i860 " 64— BIT MICROPROCESSOR
HARDWARE DESIGN GUIDE

FEB. 1989

intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

intel retains the right to make changes to these specifications at any time, without notice.
Con(ag:t your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify intel Products:

376, 386, 386SX, 387, 387SX, 486, 4-SITE. Above, BITBUS, COMMputer,
CREDIT, Data Pipeline, ETOX, Genius, i, i, i860, ICE, iCEL, iCS, iDBP, iDIS,
RICE, iLBX, iy, iMDDX, iMMX, inboard, insite, intel. intgl, Intel376, Intel386,
intglBOS, Intel Certified, Intelevision, intgligent identifier, intgligent Programming,
Intellec, intellink, iOSP, iPDS, iPSC, iIRMK, iRMX, iSBC, iSBX, iSDM, iSXM,
KEPROM, Library Manager, MAPNET, MCS, Megachassis, MICROMAINFRAME,
MULTIBUS, MULTICHANNEL, MULTIMODULE, ONCE, OpenNET, OTP,
PC BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Puise Programming, Rippiemode, RMX/80, RUPI, Seamless. SLD,
SugarCube, UPI, and VLSICEL, and the combination of ICE, iCS, iRMX, iSBC,
iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MULTIBUS is a patented Inte! bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Sales *

P.O. Box 58130

Santa Clara, CA 95052-8130

©INTEL CORPORATION 1989

PREFACE

Preface

The Intel i860™ 64-bit Microprocessor combines capabilities of supercomputers and 3D
graphics workstations in a single VLS| component. The versatile 64-bit design of the
i860 microprocessor balances performance across integer, floating point, and graphics
processing capability. Its parallel architecture achieves high throughput with RISC design
techniques, pipelined processing units, wide data paths, large on-chip caches and fast
one micron CHMOS IV* silicon technology.

This manual provides the basic information required to implement an i860
Microprocessor based system. It explains all the hardware details of the processor. The
design examples published in this manual are NOT TESTED. The tested examples
will be published at a later date.

Although the main users of this manual are hardware design engineers. It contains
basic hardware information which is of value to the software engineers and
programmers. These readers should reference the first three chapters only.

RELATED PUBLICATIONS

In this manual, the i860 microprocessor is presented from a hardware perspective.
Information on the software architecture, instruction set and programming can be found
in these related Intel publications:

* i860™ Microprocessor Programmers Reference Manual, Order Number 240329

Information on the device specification for the i860 micrprocessor is available in the
i860™ Microrocessor Data Sheet, Order Number 240296. Always refer to the most
recent version of the device specification.

ORGANIZATION OF THE MANUAL

* Chapter 1, * Introduction to i860 64-bit Microprocessor *. This chapter provides an
overview of the features of the "i860 Microprocessor* and the advantages to the
system designers. It also provides the insight to i860 microprocessor applications.

* Chapter 2, " Internal Architecture “. This chapter describes the internal architecture of
the i860 Microprocessor.
* CHMOS is the patented process of Intel Corporation

* Chapter 3, " Local Bus Interface ". This chapter discusses the i860 Microprocessor
local bus interface. This includes the signal descriptions, bus operation and local bus
interface guidelines.

* Chapter 4, * Memory Interfacing *. This chapter discusses techniques for designing
memory subsystems for the i860 microprocessor.

* Chapter 5, " I/O Interface ". This chapter discusses techniques for connecting 1/0
devices to an i860 microprocessor system.

* Chapter 6, " Graphics Subsystem Example *. This chapter discusses a design
example for implementing an i860 microprocessor based graphics subsystem example.

* Chapter 7, * MULTIBUS Il and i860 Microprocessor". This chapter provides a design
example for the MULTIBUS |l board built around the i860 microprocessor. '

* Appendix A and B provides the UNTESTED schematics of i860 microprocessor
Graphics Frame Buffer Board and the Multibus |l board. Appendix A is to be used in
conjunction with Chapter 6. Appendix B contains the DRAM interfacing for Chapter 4
and the MULTIBUS II interface for Chapter 7.

TABLE OF CONTENTS

CHAPTER 1 PAGE

INTRODUCTION TO i860™ 64-BIT MICROPROCESSOR

1.1 Processor characteristics 1-1
1.2 Processor overview. 1-3
1.2.1 Pipelining and parallelism. 1-3
1.2.2 Reduced instruction set architecture. 14
1.23 Registers 14
1.24 Addressspace 14
1.25 Floating point operations 1-5
1.2.6 Graphics support. 1-5
1.2.7 Caches. 1-56
1.2.8 PagingUnit.................. 1-6
1.2.9 Debugging support 1-6
1.2.10 External interface. 16
1.2.11 Clock requirements. 1-8
1.2.12 Packaging/power requirements. 1-8
1.3 System configuration. 1-9
1.3.1 Private and shared memory configuration . . 1-9
1.4 Application overview. "~ 113
CHAPTER TWO

INTERNAL ARCHITECTURE

2.1 Core executionunit 2-3
2.2 Floating pointunit 26
2.21 Floating point register bank. 2-6
222 Pipelined and scalar operations 2-7
223 Floating point adder unit 29
2.24 Floating point multiplier unit. 29
225 Dual operation feature. S 29
2.26 Dual instructonmode 2-11
2.2.7 Floating-point computation throughput 2-13
23 Pagingunit.................. 2-13
2.3.1 Paging algorithm. 2-14
2.4 On chip caches and bus control. 2-16
2.4.1 Instruction cache unit. 2-17
242 Datacachewunit................ 2-17
243 Bypassing instruction and data cache. 2-18
244 Flushing inst. cache, data cache, and TLB . . 2-19

TABLE OF CONTENTS

PAGE

2.5 Bus and cache control unit. 2-20
24.6 Write buffers 2-21
2.5 Graphicsunit 2-21
CHAPTER 3
LOCAL BUS INTERFACE
3.1 i860 microprocessor external interface

andbussignals................ 3-1
3.1.1 i860 microprocessor buses 3-1
3.1.2 i860 microprocessor output signals. 3-1
3.1.3 Inputsignals 3-1
3.1.4 Power and ground pins 34
3.2 Bus characteristics 34
33 Bus transfer operations 3-5
3.3.1 64-btbusandbyte.............. 3-6
3.3.2 Basic bus operation 3-9
333 Nonpipelined bus operation. 3-10
3.33.1 Nonpipelined read operations. 3-11
3.33.2 Nonpipelined write cycles 3-12
3.3.33 Write cycles following read cycles. 3-14
3.34 Pipelined operations. 3-15
3.34.1 Pipelined and interleaved memory banks. . . . 3-16
3.34.2 Ordering of data during pipelined operations. 3-17
3.343 Bus state machine for pipelining. 3-17
3344 Pipelined read and write cycles 3-20
3.35 8-bit transfers for bootstrapping (CS8 mode). 3-22
3.4 Bus control operations. 3-23
3.4.1 Page mode, static column DRAMs and next

nearoperation. 3-23
3.4.2 Bus hold, hold acknowledge, bus request . . 3-24
3.43 Buslock.................... 3-27
3.4.3.1 Supervisor -- Mode activation of lock number. 3-28
3432 User-mode activation of lock number 3-28
3433 Bus lock during page table update 3-29
3.5 Cache control operations. 3-30
3.6 Traps and interrupts. 3-31
3.7 Test support functions. 3-33
3.7.1 Normal mode operation 3-34
3.7.2 Serial mode operation 3-34

3.8 Reset and clock circuit 3-35

TABLE OF CONTENTS

CHAPTER 4
MEMORY INTERFACING

4.0 Introduction.

4.1 CPU features.
4.1.1 The KEN# input.
4.1.2 Bus pipelining.
4.1.3 Thenextnearpin...............
414 Write data function
4.2 DRAM subsystem overview
421 Address path logic.
422 Datapathlogic................
4.2.3 Parity logic.
424 Controllogic

43 Subsystem function.
4.3.1 Signal description.
43.1.1 Processor interfface
4.3.1.2 Data path logic control
43.1.3 Address path logic control.
43.14 Controller signals.
43.2 Basicreadcycle.
433 Pipelined read cycles
434 Basicwritecycle
434.1 Consecutive write cycles.
43.5 Consecutive bus cycles.
4.3.5.1 Write followed by read cycles
43.5.2 Read followed by write cycles
436 Page misscycles.
437 Refreshcycles.
4.4 Paritycircuit.

441 Circuit overview.
442 Dedicated signals

443 Parity function

PAGE

4-1
4-2
4-2
43
4-4
4-4
46
46
4-7
4-7
49
4-11
4-11
4-11
4-11
4-12
4-12
4-14
4-15
4-17
4-18
4-19
4-20
4-21
4-22
4-24
4-25
4-25
4-25
4-27

TABLE OF CONTENTS

CHAPTER 5

1/0 INTERFACING

5.1 Overview.

5.1.1 i860™ 1/O subsystem.
5.2 Generating 1/O control signals.
5.2.1 I/Ocontrollogic

5.2.2 Address decode and chip select.
5.2.3 IORD#/IOWR#
5.2.4 Ready #

5.25 Recoverytme

5.3 I/Ocycles.

5.3.1 Read cycletiming
5.3.2 Write cycle timing.

5.4 Design Examples
5.4.1 82510 interface

5.4.2 EPROMinterface
5.4.2.1 Double copyload.
5.4.2.2 EPROM timings

5.5 DMA Interface recommendations
CHAPTER 6

GRAPHICS SUBSYSTEM

6.1 Introduction.

6.2 Graphics and the i860 microprocessor.
6.2.1 Performance
6.2.2 Processor bus bandwidth
6.3 3-D graphics example.
6.3.1 Features.

6.3.2 Testing

6.4 System overview
6.4.1 Expansion bus interface
6.4.2 Data transceiver/latch control.
6.4.3 Address Transceiver/Latch

PAGE

5.1
5.1
53
54
55

5.6
5.7

5.7

5.10
5.12
5.13
5.16
5.16
5.19
5.20

TABLE OF CONTENTS

CHAPTER 7

Serial row/column address generation.

Double buffering. . .

oooooooooooo

Expansion interrupt/buffer switch
CRT timing generation

Pixel serializer.
Video DACs.
Operation

Speed mode.

ooooooooooo

oooooooooooo

Processor-initiated cycles.
Refresh/RAM-to-SAM transfer cycles.
Expansion bus interface

Expansion select. . .

Data transceiver/latch sharing.

CRT timing logic. . .
Appendix.

............

ooooooooooo

MULTIBUS Il AND i860 MICROPROCESSOR

7.1

7.2
7.2.1
7.2.2
7.2.2.1
7222
7223
73

74

7.5
7.5.1
7.5.2
7.6
7.6.1
76.2
7.7
7.71
7.7.2

i860 microprocessor
Multibus Il standard.
Parallel system bus (

CPUboard

iPSB).

Message passing coprocessor
MPC interface to iPSB
MPC local bus interface

MPC DMA interface .
i860 Microprocessor
DRAM system
Local 1/O system. . .

bus interface

82380 integrated systems peripheral

SBX connector

DMA control and SRAM message system . .

DMA channels.
SRAM message area
Expansion connector
Memory expansion. .
Intelligent expansion

oooooooooooooo

ooooooooooooo

............

TABLE OF CONTENTS

Appendix A : Schematics of the Graphics frame buffer board
Appendix B: Schematics of the Multibus Il design

Vi

TABLE OF CONTENTS

TITLES

Stand alone System Configuration
Shared Memory Configuration

PAGES

1-10
1-11

Combined shared and Private Memory Configuration1-11

Block diagram of i860° microprocessor
Pipelined Instruction Execution
Dual-Operation Data Paths
Dual-Instruction Mode

Paging Algorithm Implementation

Little Endian Big Endian Memory Format
Byte Enable Control Signals
Non-Pipelined Bus State Machine

Fastest Read/Write Cycles

Fastest Write Cycles

Fastest Read/Write Cycles

Memory operation pipelining

Pipelined Bus State Machine

Pipelined Read Followed by Pipelined Write
Piplined Write Followed by Pipelined Read
CS8 and RESET Activity

Pipelined Bus State Machine Including Hold State
HOLD, HLDA, and BREQ

Locked Cycles

Boundary Scan Chain

Circiut for Clock, RESET and CS8 Generation
KEN# Timing

BUS Pipelining

Read-Write Timing

Maximum Example configuration

Address Map

Basic Read Cycle

Pipelined Read Cycles

Basic Write Cycles

Write Followed by Read Cycles

Pipelined Read followed by Write Cycles
Page Miss Cycle

Parity Block Diagram

vii

2-2
28

2-11
2-12
2-15
3-6

3-8

3-10
3-14
3-13
3-14
3-16
3-10
3-20
3-21
3-23
3-25
3-27
3-30
3-35
3-37
4-2

4-3

4.5

4-8

4-9

4-13
4-16
4-18
4-20
4-22
4-23
4-26

TABLE OF CONTENTS

FIGURES

5.1
5.2
53
54
5.5
5.6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
7.1
7.2
73
74
7.5
7.6
7.7

TABLES

3.1
3.2
3.3
3.4
3.5
3.6

TITLES

i860 Microprocessor System

1/O Microprossor System

Read Cycle Timings

1/0O Write Timings

i860 Processor Interface to 82510
i860 EPROM Interface

PAGES

5-2
5-2
5-9
5-11
5-15
5-18

i860 Processor Based Graphics Frame Buffer Board 6-3

Read/Write/Read Operation (0 wait state write)
Write/Read/Write Operation(0 wait state write)
Refresh RAM to SAM Transfers

Expansion Space

Blank and Sync Signals

Serial Data Clocking

Blank Signals

i860 Microprocessor Based MULTIBUS I Board
PSB Bus Cycle Timing

MPC Signal Groups

Fly-by Transger with SRAM Read and 1/O Write
SRAM Message Area using 32-bit Bus

SRAM Message Area Using 64-bit Bus

DMA system Arbitration and Control

TITLES

Pin Summary

Write Byte Enable Combination
Types of Traps

Test Mode Selection

Test Mode Latches

Output Pin Status During Reset

viii

6-6
6-7
6-8
6-9
6-11
6-12
6-13
7-2
7-4
7-5
7-12
7-14
7-15
7.16

PAGES

3.5
3.9
3.32
3.33
3.34
3.36

Introduction to 860"
64— bit Microprocessor.

CHAPTER 1
INTRODUCTION TO THE i860™ 64- BIT MICROPROCESSOR

This Chapter provides an overview of the i860™ microprocessor, its characteristics,
possible system configurations and applications.

The i860 microprocessor combines capabilities of supercomputers and 3-D graphics
workstations in a single component. Its integer performance makes it ideal for super-
minicomputers. The i860 microprocessor uses pipelining, parallelism and reduced
instruction set computer (RISC) design techniques for high performance. With over one
million transistors it integrates an integer unit, a floating-point unit, a graphics unit,
memory management and separate data and instruction caches.

The i860 microprocessor executes up to two instructions in parallel and makes
extensive use of pipelining. High integration and wide data paths reduce bottlenecks
in fetching instructions or data from on-chip caches.

1.1 Processor Characteristics

The 860 microprocessor offers a high level of integration with a million transistor
design. This allows a single board design. To complete a processor system all that
is needed is four address latches, 8 data tranceivers, clock generator circuit, one
EPROM for bootstrapping, a 64-bit wide memory and a few PALs. The i860
microprocessor integrates the following features:

. Integer Processing Unit

. On-chip floating-point and graphics unit.

. On-chip memory management unit

. 8 Kbyte data cache with 128-bit internal data path

. 4 Kbyte instruction cache with 64-bit internal data path

The i860 microprocessor uses RISC design techniques. These allow the integer logic
to match the speed of the floating-point logic. The integer instruction set controls the
entire chip. It can execute any language or portable operating system. RISC design
features are:

. Load and store architecture

. 32 general purpose 32-bit registers

. Delayed branching

. Register scoreboarding

. Register bypassing

. Single-cycle loop instruction

. Branch taken/not-taken instruction fetching optimization

1-1

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

The on-chip graphics and fioating-point support of the i860 microprocessor support
simulation and 3-D displays. The integer instructions can be used to feed data to the
graphics and floating-point hardware. These units are pipelined to produce up to two
floating-point results per clock. Some of the features related to the graphics and
floating-point unit are:

. Separate adder and multiplier units.

. Pipelined/parallel floating-point hardware

. Graphics instructions and hardware optimized for 3-D

- 8-, 16- or 32-bit color or black and white pixel data types
- Single- and double precision IEEE fioating-point standard

The i860 microprocessor’s high-performance design uses wide buses and pipelined
logic to sustain many parallel operations. The level of performance of the i860
microprocessor is difficult to achieve in muitichip systems due to the need for many
wide buses. The high-performance design applies to the external bus as well,
maximizing the possible performance that can be obtained from DRAM memory. Some
of the performance related features are:

. 64-bit design

. Sustains three operations per clock

. Dual-instruction mode

. 33/40 MHz operating frequency

. Executes 85K Dhrystones at 40 MHz

. 80 Mfiops peak in single-precision

. 60 Mflops peak in double-precision

. 320 Mbyte/sec instruction cache bandwidth at 40 MHz
. 640 Mbyte/sec data cache bandwidth at 40 MHz

. 160 Mbyte/sec external bus bandwidth at 40 MHz

. Fast data movement with 128-bit load and store instructions
. External bus allows up to three pipelined bus cycles.

The 860 microprocessor has virtual memory and multiprocessor support. These
support common operating systems like UNIX". Al memory references are fully
restartable in case of virtual memory faults. Full support is provided for synchronizing
operation between multiple CPUs. Features related to virtual memory and
multiprocessor support are:

- 32-bit (4 gigabyte) address space with on-chip paging unit

. Support for demand paging
. 4 Kbyte page size

1-2

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

. On-chip 64-entry translation lookaside buffer (TLB)
. User level/supervisor level protection

. Bus locking across muitiple instructions

. Cache control

. Trap mechanism for interrupts and faults

The i860 microprocessor implementation simplifies system design. It has a conventional
microprocessor bus. Standard READY# signal is used to allow accesses to slow
memories. Software development is assisted by specialized hardware debugging
capabilities. Some of the additional implementation features to facilitate hardware design
and software development are:

. 1X clock

. Optimizations for use of page mode and static mode dynamic RAMs
. Pin boundary scanning for component or board testing

. CHMOS-IV" 1-micron technology/TTL compatible

. 3 watt power dissipation at 40 Mhz

. Single 8-bit EPROM can boot system

. On-chip debugging support

1.2'Processor Overview

This section provides a quick overview of the i860 microprocessor. The processor
architecture will be discussed in greater detail in Chapter 2, and the external interface
in Chapter 3.

1.2.1 Pipelining And Parallelism

Pipelining is a technique which divides tasks into a series of smaller subtasks, which
can be performed quickly and concurrently with one another. By means of pipelining,
several data items can be acted on simultaneously; although several clock cycles are
needed to complete an operation, a new result is produced each clock. Pipelining is
used throughout the i860 microprocessor to achieve maximum performance.

Parallelism allows two or more operations to execute simultaneously. The i860
microprocessor supports parallelism allowing multiplication and addition to execute
simultaneously within the floating-point unit. Parallelism also allows the integer and
floating-point units to execute simultaneously. The i860 microprocessor can execute an
integer instruction and two floating-point operations in the same clock to achieve three
operations per clock cycle.

1-3

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

1.2.1 Instruction Set Architecture

The core unit executes the basic instruction set including arithmetic, logical, shift and
program control instructions. The core unit, floating-point unit and graphics unit are all
implemented using RISC principles. All instructions execute in only one clock cycle.

The 860 microprocessor uses a load and store architecture. Only load and store
instructions can access memory data. All other instructions use only registers to
perform operations. Integer and floating-point instructions use two operand registers
and a destination register for the result.

The i860 microprocessor employs special branching techniques to avoid interruptions
to the flow of data through pipelines. An optimized set of conditional branch and loop
instructions minimizes pipeline breaks. Use of a branch-taken or branch-not-taken
version of the conditional branch instruction selects whether to pre-fetch the upcoming
sequential instruction or the branch target address. Delayed branching is also used
to avoid breaks by executing the instruction following the branch.

1.2.3 Registers

The 860 microprocessor provides 32 32-bit integer registers for the core unit and
another 32 32-bit fioating-point registers that are used in the floating-point unit, the
graphics unit and for extended arithmetic instructions. The floating-point registers can
also be used in pairs as double-precision registers. Quadword memory load
instructions use four floating-point registers. Register r0 of the integer registers and 0
and f1 of the floating-point registers are special in that they return a zero value when
read and are treated as a null destination when stored into.

1.2.4 Address Space

The 860 microprocessor can address up to four gigabytes of memory and memory-
mapped /O locations. Programmers can access memory space as

8-, 16-, 32-, 64- and 128-bit quantities. 8- and 16-bit operands are automatically aligned
to the low order bits of a 32-bit register on a load and are moved back to appropriate
byte address locations on a store. Only the bytes involved in store operations are
enabled for writing. An improperly aligned data access causes a trap.

1-4

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

1.2.5 Floating-Point Operations

The floating-point unit supports the ANSI/IEEE 754-1985 Standard for Binary Floating-
Point Arithmetic and supports both single- and double-precision operands. Traps are
detect all floating-point exceptions. Hardware implements all rounding modes in order
to support the standard with minimal overhead. The flioating-point unit provides a full
complement of operations to permit efficient implementation of all low-level and high-
level functions defined by the standard.

The parallel floating-point adder unit and multiplication unit have been designed to
efficiently perform matrix manipulation, series expansion and signal processing
algorithms. The pipelined, parallel operation in dual-instruction mode of the fioating-
point unit and integer unit can provide or emulate the capability of vector processing
instructions found in supercomputers, but with added flexibility.

A set of floating-point register load instructions provides 32-, 64- and 128-bit operands
for the floating-point unit while it operates in dual-instruction mode.

1.2.6 Graphics Support

The graphics unit supports instructions for 3-D color or black and white algorithms. 8-
,16- or 32-bit pixel formats are supported. It supports efficient implemention of
Phong/Gouraud shading operations. A Z-buffer check instruction is provided to detect
the closest surface of a 3-D image. The 3-D graphics hardware uses much of the
floating-point point hardware.

1.2.7 Caches

Two on-chip caches help to sustain the i860 microprocessor’s high performance. The
8 Kbyte data cache is a two-way set-associative memory with a 32-byte line size and
a 128-bit data path. It uses a write-back technique on memory write operations. This
technique delays the external write operations needed to maintain consistency between
the cache and external memory. With this approach, multiple write operations to the
same location, do not result in needless multiple bus operations. When write operations
to external memory are performed they use two 128-bit wide write buffers which post
the write operations and delays them until the memory subsystem is not in use.

The 4 Kbyte instruction cache is also implemented as a two-way set associative
memory. It provides a 64-bit wide internal datapath. The instruction cache is read-
only; writes to memory do not update the code cache. A separate flush instruction
is available to invalidate the contents of code cache, if the need arises.

1-5

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

Since the data and instruction caches map virtual addresses to data, the data and
instruction caches can operate in parallel with the translation lookaside buffer (TLB).
Data can be obtained in one clock cycle when there is a hit in the cache.

1.2.8 Paging Unit

The on-chip paging unit converts 32-bit virtual memory addresses to 32-bit physical
addresses. Each page is 4 Kbytes in size. Supervisor and user level read and write
memory protection is provided on a per page basis. Supervisor pages can be write-
protected to perform copy-on-write operations for supervisor data.

A translation lookaside buffer (TLB) acts as a 64-entry cache for the virtual memory
tables. These tables map virtual page addresses to physical page addresses and
provide protection rights. The TLB makes memory management more efficient by
operating in parallel with the data and instruction caches. The TLB performs instruction
and data address translation simultaneously and in one clock cycle. Translation buffer
cache misses and updates are handled automatically in hardware.

1.2.9 Debugging Support

The 860 microprocessor provides a debug hardware support trap which can be
activated when reading, writing or both at an address stored in the data breakpoint
register. The address can refer to data inside the caches or off-chip.

1.2.10 External Interface

This section outlines the functions provided by the i860 microprocessor’s external
interface. These functions are detailed in Chapter 3.

The external interface pin-out consists of a 29-bit address bus, an 8-bit byte enable
control bus, a 64-bit data bus, 19 other signals and 48 power and ground pins. The
external bus is timed relative to a clock. All outputs are valid before the end of a clock
period. All inputs are synchronous to the clock.

A. Two-Level Bus Pipelining of Local Bus

The i860 microprocessor permits up to two levels of pipelining in external memory
operations, providing throughput beyond the cycle or access time of the components
used. A two level configuration allows three operations to occur simultaneously and
triples memory throughput; while the total cycle time is six clocks, 64 bits of data are
transferred every two clocks. Pipelining permits a high-performance memory system
while using low-cost DRAMs. Even with a single bank of DRAMs, pipelining allows

1-6

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

overlapping of accesses to the same DRAM page.

B. Bus Arbitration Support

The 860 microprocessor provides three signals to control bus and control line
arbitration: the input line HOLD (bus hold request) and the output lines HLDA (hold
acknowledge) and BREQ (bus request). HOLD and HOLDA provide a handshake with
other processors or an arbitration circuit to allow several processors to share the
external buses. The processor can operate out of its internal cache for periods of time
and uses the BREQ signal to indicate that it is waiting to use the external bus.

C. DRAM Interface Support (Page-Mode and Static Column)

The i860 microprocessor provides support for page mode and static column DRAMSs.
These provide faster memory cycles when sequential reads or writes take place from
the same row address in a DRAM component. This occurs often since cache updates
typically involve four 64-bit sequential read cycles and the write buffers often group
together four sequential write cycles.

The i860 microprocessor provides a next near signal (NENE#) to reduce the amount
of external circuitry needed to support page mode and static column DRAMs. The
signal is asserted when successive current cycles are in the same DRAM page. The
size of the DRAM can be programmed.

D. Cache Control

The i860 microprocessor supports memory mapped |/O, external caches and multiple
CPUs. All of these require correct use of caching. The cache enable input signal
(KEN#) and page table bit output signal (PTB) control and monitor the data and
instruction caches. The KEN# signal input is used by external logic to tell the
processor when read data should not be cached. This prevents the processor from
caching shared memory in a multiprocessor system and alleviates inconsistencies when
two or more processors are accessing the same area of memory. All read operations
from memory mapped 1/0O locations must deassert KEN#.

The page table bit (PTB) output signal operates in two modes. In one mode it
indicates whether the software has disabled updates to the data or code cache during
the current read cycle. In its other mode of operation it indicates whether the software
has disabled the use of an external cache for the current cycle. This kind of software
control of caching is done on a page by page basis, only when paging operation is
enabled. The software controls the use of the cache in order to guarantee the

1-7

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

consistency of shared data in a multiprocessor environment.

E. Locked Memory Cycles.

The external LOCK# pin indicates that the i860 microprocessor is performing a set of
memory cycles that should not be interrupted. The memory subsystem cannot be
accessed by other processors while this pin is active. Multiple instructions can be
executed while the lock signal is active. Operations like compare and swap are
possible. All semaphore operations can be implemented. HOLD is not recognized
during locked operations.

F. Eight-Bit Bus Access For Bootstrapping Operation (Cs8)

The INT/CS8 input pin can establish 8-bit code accesses upon hardware reset. This
feature allows bootstrapping from an 8-bit external EPROM or ROM device and reduces
the number of parts needed to complete a board. Only code accesses are affected
in this mode. This mode only works immediately after activation of RESET. A control
register allows software to disable this mode, but not to reenable it.

G. Boundary Scan To Simplify Board Level Testing

The i860 microprocessor allows all the input pins to be serially sampled. Likewise, the
state of all the output pins can assume a value set by serial input data. This precludes
the need for complex programs that are normally needed to manipulate pins and permit
the exercise and test of board logic circuitry with the i860 microprocessor installed.

1.2.11 Clock Requirements

The i860 microprocessor uses an external TTL compatible clock that runs at 40 Mhz.
This clock synchronizes the internal functional blocks of the processor, and
synchronizes the external signals. Most logic connected to the i860 CPU will also use
this clock.

1.2.12 1860 Microprocessor Packaging And Power Requirements
The i860 microprocessor is available in a 168-pin pin-grid array (PGA) package with 120
signal pins and 48 power and ground pins. All the power and ground pins must be

connected. Low-inductance bypass capacitors should be used around the i860 CPU
to handie current surges when all the address and data lines change state

1-8

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

simultaneously. Direct current power dissipation when running at 33 Mhz is two watts
at normal operation and three watts at peak operation. A heat sink may be used to
keep the case temperature within specification depending on airfiow.

2. System Configuration

The i860 microprocessor is suitable as a central processor in a mainframe computer
or engineering workstation. It will usually be configured as a stand-alone processor
with private memory and a memory mapped 1/O subsystem.

Other configurations employ the i860 microprocessor as an application accelerator. In
this case a communications bus will exist between the i860 and the host. This bus
should be allow quick data transfers.

The processor may also be used in a multiprocessor system. The i860 CPU may work
in a loosely-coupled fashion, communicating through shared memory or through a link
of independent memories. The LOCK# signal must be used to guarantee atomic
multiple cycle memory accesses.

The i860 microprocessor provides several functions for multiprocessing support. Bus
granting logic (HOLD, HOLDA, BREQ) eases the interface with other processors and
with DMA. The cache enable/disable logic is used to maintain consistency between
internal caches and shared memory. The capability for locked external cycles allow
implementation of semaphores for use with shared memory.

1.3.1 Private and shared memory configuration

Peak performance for a multiprocessor i860 system requires minimal contention for the
use of memory. Typically, this is achieved by providing each i860 microprocessor with
its own private memory, along with memory that can be shared.

Multiprocessor systems not requiring peak performance can use shared memory only.
This results in a simpler and lower-cost implementation. The memory subsystem can
prioritize access to the shared memory between the processors to maximize efficiency.

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

860 ™ DataBus Memory
CPU

I AddressBus I

Figure 1.1 Stand-Alone System Configuration

1-10

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

64 Shered Memory Data Bus
[” .
A Vo 'fg}
Dbus Obus Obus Dbus
i /(& //..
Cbus
Shared w DMA
:J‘ Mamory Devices [\
: -
'2.?3 Address Bus 2
2 |
R
4 Shared Memory

Figure 1.2 Shared Memory Configuration

P Shared Memory Dete Bus
I 7
-
Obue [" Obus One
] [}
Obue
. ™ . w0 OMA
1860 - el I v
p " $& :
%
] A
_V X
& 4 Shared Mermery
. Address hus
e .
I o
s
ooV
Private
Memory

Figure 1.3 Combined Shared and Private Memory Configuration

1-11

INTRODUCTION TO i860 64-BIT MICROPROCESSOR

1.4. Application Overview

The 860 microprocessor is designed for use in a wide range of applications. The
processor's support of demand-paged virtual memory and the IEEE Floating Point
Standard makes it especially suitable as a main processing engine for high-performance
engineering workstations and mainframe computers and supercomputers.

The i860 power can support computational intensive applications such as electronics
or mechanical systems simulations. The power of the hardware 3-D graphics support
real-time graphics applications of all tupes.

The 860 microprocessor eliminates the need for special-purpose signal, graphics or
floating-point processors. The processor can be used for high-performance embedded
controlier applications, or as an applications accelerator for existing systems.

* 1860, 386 and 486 are trademarks of Intel Corporation.

UNIX is a trademark of AT&T.
0S/2 is a trademark of IBM.

1-12

Internal Arcliitecture

CHAPTER 2

INTERNAL ARCHITECTURE
Thé i860™ microprocessor incorporates capabilities of a supercomputer and graphics
workstation in its architecture. The i860 microprocessor architecture defines the
functional aspects of the target computer system, consisting of registers, arithmetic data
paths, memory hierarchy, and control logic. The i860 microprocessor architecture
obtains its performance by a combination of larger data paths, increased local access
to data and instructions (caches and registers), a larger number of important functions
included on-chip, and greater levels of pipelining and parallelism. This architecture
allows up to three operations per clock to be executed.
The programmer controls the parallelism to manage data flow to and from the floating-
point unit. The on-chip cache provides storage for instructions and data. Wide buses
can transfer an instruction pair and two double-precicion floating-point operands each
clock. A programmer can use the data cache as large bank of vector floating-point
registers.
The i860 Microprocessor architecture consists of nine units:
Core Execution Unit
Floating-Point Control Unit
Floating-Point Adder Unit
Floating-Point Multiplier Unit
Paging Unit
Data Cache Unit
Instruction Cache Unit
Bus and Cache Control Unit
Graphics Unit

The arrangement of these nine units is shown in Figure 2.1. This chapter describes
how these nine units interact to interpret the instructions.

2-1

INTERNAL ARCHITECTURE

32

External Addr |
Memory
Instruction Cache Mln:,gcmom Data Cache
nit
inst ata O
Ext.
Data Addr Data
e ’ FP | 128
‘ 324 '32 r 4
4—/24-—
External | Bus Control ’ Floating Point
Data Unit integer Unit Control Unit
647 844 64
Dest
Sret
Sre2
Graphics Unit
— Adder Unit Moltipler

Figure 2.1 Block diagram of i860 microprocessor

2-2

INTERNAL ARCHITECTURE

2.1 CORE EXECUTION UNIT

The core execution unit is the center of intelligence for the i860 microprocessor and
is responsible for its overall operation. It fetches both integer and floating-point
instructions. It decodes and executes integer, logical, control-transfer, load/store,
exception handling, and cache flushing instructions. It can perform loads and stores
to and from the integer register file and the floating-point register file. It also includes
a special pixel store instruction that facilitates implementation of the Z-buffer hidden-
surface elimination algorithm.

The core execution unit includes a register file containing 32, 32-bit integer registers,
a 32-bit ALU, a barrel shifter, two 32-bit processor status registers, a data breakpomt
register, a fault instruction register and control logic.

The integer registers, labeled rO through r31, are accessible by arithmetic operations
and load/store instructions. These registers are used for address computation and
scalar integer computations. All the registers can be read and written except r0, which
always reads a value of zero. Writes to rO are ignored. rO works in combination with
a number of instructions to modify and extend their function. For example, to check
if a register contains a zero, the or instruction can be used with the other source
operand and destination as r0. The register bank remains unmodified as a result, and
the condition code CC indicates if the given register contains a zero.

The processor status register (PSR) and extended processor status register (EPSR)
are 32-bit read/write registers which contain various information on the status of the
current process. They provide information such as condition code bit status, loop
condition code, interrupt control and status, trap flags, data breakpoint control, pixel
information, processor identification, etc. Refer to the i860 microprocessor
Programmer’s Reference Manual for more information.

The extended processor status register (EPSR) is a 32-bit read/write register which
contains additional state information beyond what is contained in the PSR. This
information includes the processor type (value of one for the i860 Microprocessor), step
number to distinguish among different revisions, data cache size field, and five flags:
the overflow flag, big-endian mode bit, page table bit Mode, write-protect mode bit, and
the interlock bit. Refer to the i860 Microprocessor Programmer’s Reference Manual for
more information.

The data breakpoint register (DB) contains a breakpoint address. It is used to generate
traps when loads or stores are made from or to this address, and is thus

useful for debugging. Refer to the i860 Microprocessor Programmer’s Reference
Manual for details.

2-3

INTERNAL ARCHITECTURE

The core execution unit contains logic for handling exceptions and external interrupts.
When an exception condition or an external interrupt occurs, the processor transfers
control to the trap handier. Refer to i860 Microprocessor Programmer’s Reference
Manual for details.

The 32-bit instructions are fetched into the core execution unit from the instruction
cache given the next instruction's address provided by the core execution unit. If this
address location is not in the cache (a cache miss), the 32-bit instruction is fed to the
core execution unit from the external memory, while the corresponding Instruction
Cache block is simultaneously filled.

The core execution unit is designed according to RISC principles, as explained in
Chapter 1. It uses a pipelined organization that maximizes performance. The
instructions are made purposefully simple using a Load/Store architecture. Emphasis
is placed on minimizing circuit delays and economizing chip space in order to include ,
the other processing units that are essential to overall high performance -- the floating-
point unit, graphics unit, paging unit, caches and register banks. Pipelining is coupled
with register bypassing, scoreboarding, and delayed branching to further enhance
performance.

Execution pipelining is transparent for arithmetic, logic and shift instructions. These
instructions appear to operate in one clock cycle with the destination register aiready
loaded by the time the next instruction begins executing. However, this is not actually
the case. Due to the delay required in storing to and reading from a register, the
processor detects if the last instruction's destination is used as an operand in the
current instruction. If it is, it bypasses the register bank and operand value directly
from the bus (in parallel with the previous destination register). This technique is known
as register bypassing, and is invisible to the programmer.

Uniike arithmetic and logic operations, load operations require a minimum of two clock
Cycles to provide a valid result for the destination register. Because of the extra delay
needed to get the valid result, the code should be arranged so that a reference to a
register does not directly follow a load instruction to that same register. For this case
the instruction directly following the load can execute while the load operation is
finishing. However, when the register operand of the current instruction is the same
as the destination of an immediately preceding load, the hardware automatically detects
this and freezes the clock until the data is present. This technique is called
scoreboarding.

244

INTERNAL ARCHITECTURE

The use of register bypassing and scoreboarding allows load and store instructions to
be executed at an effective rate of one instruction per clock cycle, assuming the data
and instructions are found in their respective caches. When a cache miss occurs, the
hardwareed will automatically resolve potential problems by freezing execution if the data
is needed. ‘

Branch instructions can also have the effect of locking the pipeline for one or more
clock cycles. To avoid this waste, several techniques are used as described below.

An extra clock cycle is always required on a successful branch in order to refill the

instruction pipeline. The iB60 microprocessor uses a technique called delayed

branching, in which the instruction following the branch is always executed. The system

software or the programmer is responsible for reorganizing the program to take

advantage of this technique. If no useful instruction can be found for the instruction

frgllow)ing the branch, then an operation which does nothing must be used, (e.g. or r0,
, 10).

A common cause of pipeline breaks is the prefetching of the wrong address on a
conditional branch. To avoid this, the i860 ® Microprocessor provides an optimized set
of conditional branch and loop instructions. Conditional branch instructions come in
two flavors -- one that prefetches the next sequential instruction, and one that
prefetches the branch target address. The compiler or assembler programmer is
responsible for using the most desirable flavor of the instruction. Conditional branches
at the end of loops, for instance, are usually selected to prefetch the branch destination
since code within a loop is executed more often than the code that exits from the loop.

By using the above techniques, it is possible to execute core unit instructions at the
peak rate of one per clock quite consistently, thus providing a rate of 40 MIPs (40 MHz
clock) of native integer operation performance.

The core unit can operate in parallel with the floating point unit. This operation is known
as dual instruction mode and is explained in detail in Section 2.2.6.

INTERNAL ARCHITECTURE

2.2 FLOATING-POINT UNIT

In addition to the core execution unit, which handles integer instructions, another very
important unit is the floating-point control unit, which processes floating-point
instructions. The pipelined floating-point unit, along with the on-chip cache, enables the
40 MHz i860 microprocessor to achieve a peak execution rate of up to 80 MFLOPs
for single-precision and up to 60 MFLOPs for double-precision operations.

The floating-point unit consists of: the floating-point register bank, floating-point adder,
floating-point muttiplier, floating-point status register and floating-point control unit.

Floating-point data types, fioating-point instructions, and exception handling all support
the IEEE Standard for Binary floating-point arithmetic (ANSI/IEEE Std 754-1985) for both
single- and double-precision data types. The floating-point status register holds
information about the result of the operation. A complete set of traps includes tests for
invalid source operands such as NaN (not a number), denormalized numbers, and
infinities, as well as tests for errors in the result, such as overflow and underfiow. The
cause of the traps can be determined by examining the value in the floating-point status
register. The floating-point traps permit implementation of the IEEE Standard in a very
efficient manner.

Due to the low-level instruction set philosophy of the i860 microprocessor architecture,
high-level functions defined by the IEEE Standard, such as square root, SIN, and COS
are not implemented directly by the hardware. The facilities of the floating-point unit,
however, allow for a very efficient implementation of these functions, that actually
outperforms dedicated floating-point processors.

intel provides an IEEE trap handler program, as well as a software library, that provides
i860 microprocessor programs with the full set of functions supported by the IEEE
standard.

2.2.1 FLOATING-POINT REGISTER BANK

The floating-point unit is provided with its own register bank. It contains 32 floating-
point registers, each 32-bits wide, labeled fO through f31. The registers can ailso be
accessed in pairs for 64-bit double-precision values or 64-bit integer values. For this
purpose, only even registers are used, (e.g. f2, f4, etc.). Load and store instructions
also support the transfer of 128-bits worth of data (e.g. two double-precision
operands). The registers are used in groups of four for this purpose, (e.g. f4, 8, 12,
etc.). Registers fO and f1 are special in that, when read, they always provide a value
of zero, and writing into them has no effect. These registers modify and extend the

2-6

INTERNAL ARCHITECTURE

function of the floating-point instructions. Two null registers are required in order to
provide a O-operand and void destination when using double-precision operations.

The floating-point register bank (refer to Figure 2.1)' allows multiple operations to occur
in parallel. It contains two read ports, one write port, and two bidirectional ports. All
these ports are 64-bits wide and can be used concurrently.

The two 64-bit source operands provided by the floating-point registers are used as
data input to the floating-point multiplier unit (FPMU), the floating-poina Adder unit
(FPAU) or the graphics unit. A 64-bit input port to the floating-point registers transfers
the result of the operations. The 64-bit integer instructions and graphics instructions
also use this register bank for their source and destination operands.

Two 64-bit bi-directional ports between the data cache and the floating-point register
bank allow transfers of up to 128 bits. A 64-bit bus can connect either of these two
buses to the data bus on the bus cache control unit. This bus allows 64-bit transfers
to and from external memory. The transfers are performed by the various floating-
point load and store instructions. These transfers are controlied by the core unit and
can occur in parallel with the floating-point instructions, as explained in Section 2.2.6.

2.2.2 PIPELINED AND SCALAR OPERATIONS

The floating-point unit uses parallelism to increase the rate of operations performed.
One type of parallelism used in the floating-point unit is known as “pipelining.” A
pipelined architecture treats each operation as a series of more primitive operations
called stages. These can be executed in parallel. Consider the floating-point adder unit
as an example. Let "A" represent the operation of the adder, and let the stages be
represented by A[1], A[2] and A[3]. The stages are designed such that the A[i+ 1]
stage for one ADD instruction can execute in parallel with the A[i] stage for the next
ADD instruction. Since each A[i] stage can perform its task in a single clock, and three
instructions can be in executing in parallel, one Add operation per clock is achieved.

Pipelining within the floating-point multiplier unit can be described similarly, except that
it requires two clocks per stage on double-precision operations. The resulting status-
bits in the FSR reflect the resuilt of the last completed operation within the pipeline.
Pipelined instruction execution is shown in Figure 2.2.

The functions performed by each stage of the pipeline are not documented. Programs
should not rely on specific actions, only that the pipeline is of fixed length.

27

INTERNAL ARCHITECTURE

STAGE | STAGE 2 STAGE 3
results (stotus) | resuits (status) | results stotus
CLOCK n
INSTRUC !
' 4 (s)
\ CLOCK ne 1t
INSTRUC 1 !
! r (s) 4 (s)
NV o\
INSTRUC o2 *1 i
o2 r (s) r (s) r *
\ cLOCK ms\ \
NSTRUC "3 o2 1 by
o3 r _ (s) r (s) r i s
\ CLOCK nu\ \
NSTRUC s o3 w2 ot
fed r (s) r (s) r [
cLOCK 005\ \
NSTRUC oS os *3 vy
s ’ (o) r (s) r .
Figure 22 Pipelined Instruction Execution.

In addition to pipelined execution, the i860 Microprocessor can also execute floating-
point operations in scalar mode. In this mode, the floating-point unit does not initiate
a new operation until the previous floating-point operation is completed, so that the
scalar operation passes through all the stages of its pipeline before a new operation
is started. Scalar mode is used when the next operation depends upon the result of
the previous floating-point operations, or when the compiler or assembly language

programmer wishes to avoid the added complexity of pipelining.

28

INTERNAL ARCHITECTURE

2.2.3 FLOATING-POINT ADDER UNIT

The floating-point adder unit of the i860 microprocessor supports both double- and
single-precision IEEE 754 format and operates in two modes: scalar or pipelined mode.
in scalar mode, three clocks are required to complete an add, subtract or compare
operation. In pipeline mode, one result per clock for either a single- or double-precision
operation is obtained.

The adder unit supports the following precision combinations between inputs and
results: single to double, double to double and single to double. For this reason, the
adder is also used to perform data precision conversions. Some of the instructions
executed exclusively by the adder unit are:

Floating-point add (FADD)

Floating-point subtract (FSUB)
Pipelined floating-point comparisons: (pfgt.p, pfeq.p)

2.2.4 FLOATING-POINT MULTIPLIER UNIT

The floating-point multiplier unit performs floating-point multiplication in accordance with
the IEEE standard. It is organized as a three-stage pipeline. In pipelined mode, the
multiplication throughput is one clock for single-precision and two clocks for double-
precision. ‘

The multiplier unit also supports a reciprocal instruction which is used to implement
division and square-root operations by means of an iterative process. A small macro
(or function) can be developed based on these instructions to perform the full division
or square root. _ '

Some instructions aliow the muiltiplier unit to operate in parallel with the adder unit in
a variety of flexible ways, thereby doubling the number of operations per clock.

2.2.5 DUAL OPERATION FEATURE

Dual operation is a special feature of the 860 ® microprocessor which allows the
floating-point adder and multiplier unit to work in parallel, thus doubling the number of
floating-point operations performed. Both add-and-multiply and subtract-and-muitiply
operations are supported.

The instruction formats for add-and-multiply and subtract-and-multiply allow specification

29

INTERNAL ARCHITECTURE

of only two source operands and one destination. However, when operating the adder
and multiplier in parallel, two pairs of operands and two destinations are needed for the
general case. To overcome this limitation, the adder and multiplier can be configured
in a variety of ways that are specially suitable for such problems as:

matrix manipulation (e.g., solving linear equations)

infinite series calculations (e.g., SIN function calculation)
signal processing applications (e.g., fast Fourier transform)
graphics (e.g., coordinate transformations)

For this purpose, three special registers are used -- KR, Kl and T. Both KR and Kl can
be used to hold constants or temporary values. These values can be loaded when
used as operand inputs to the multiplier, and can later supply the value, without the
need for an explicit instruction operand. T can act as a transfer register to hold the
value of the result of a multiplication, which can be passed on as an operand to the
adder on a later instruction.

The data paths available are shown in Figure 2.3. Possible configurations can be
selected as follows:

Operand 1 of the multiplier can be KR, Ki, or scri.
Operand 2 of the multiplier can be scr2 or the last stage of the adder pipeline.

Operand 1 of the adder can be scrl, the T-register, or the last stage result of the adder
pipeline.

Operand 2 of the adder can be scr2, the last-stage result of the multiplier pipeline, or
the last-stage resuit of the Adder pipeline.

In addition to the selection of operands, the instruction can choose whether to load Ki,
KR, or T as part of its operation. The possible operand data path selections and
loading options allow a large number of possible combinations. Many of these
combinations are functionally redundant or of no interest. Each instruction format for
add-and-multiply and subtract-and-multiply supports 16 different instructions, and each
of these instructions provides a different configuration of operand data path and Ki, KR,
or T loading selection. The configurations have been specially selected to streamline
the implementation of the applications previously mentioned. Refer to the i860
Microprocessor Programmer’s Reference Manual for further details.

240

INTERNAL ARCHITECTURE

ADDER Uit

RESULT

Figure 2.3 Dual-operation Data Paths.

2.2.6 DUAL-INSTRUCTION MODE

The i860 microprocessor also provides an additional form of parallelism, which results
from the abilty to execute a core instruction and a floating-point instruction
simultaneously. This parallel instruction execution is referred to as dual-instruction mode.
When executing in this mode, the instruction sequence consists of 64-bit aligned
instruction pairs with a floating-point instruction in the lower 32 bits and a core
instruction in the upper 32 bits. Figure 2.4 identifies the instructions executed by the
core unit and those executed by the floating-point unit.

241

INTERNAL ARCHITECTURE

the instruction that does the enablin
the operation.

242

+48. (1
op
4. tp-op
.. d.fp-op « core-op l
core-op 4.fp-op :‘"’"““‘
core-op tp-op ::_::“
core=op fp=op ‘
o .
i !
+8 <
op
i l
o tp-op
r core-op £p-cp mm
op
Figure 2.4 Dual-instruction Mode.

Enabling and disabling dual and single instruction mode is controlied by software.
The d.fp-op in Figure 2.4 indicates the instructions responsible for enabling the dual-
instruction mode. As shown in the Figure, there is a one-instruction delay between
g or disabling and the instruction which performs

Note that when a 64-bit dual-instruction pair directly follows a delayed branch
instruction in dual-instruction mode, both 32-bit instructions are executed.

Further details regarding the use of dual-mode instructions are provided in the i860
Microprocessor Programmer's Reference Manual.

INTERNAL ARCHITECTURE

2.2.7 FLOATING-POINT COMPUTATION THROUGHPUT

The combination of the dual-instruction mode feature with pipelined dual operation
allows the i860 Microprocessor to achieve a sustained 80 MFLOPs in single-precision
and 60 MFLOPs in double-precision for inner loops of common computations.
Assuming the code is in the cache, no visible memory cycles are needed to fetch the
instructions.

The dual-instruction mode allows the loading and storing of operands and the
updating of array indexes and loop control information to be performed in parallel with
floating-point execution. A load or a store (core unit instruction) can transfer up to
four single-precision operands or two double-precision operands, assuming these
operands are adjacent to each other in memory within some data array. Loads and
stores take one clock cycle if the data is in the cache, and two clock cycles if fetched
from external memory. If the operands are from memory, instructions can continue
to be executed in the pipeline as long as they don't access the registers being
loaded. Thus, indexing, loop-control, and operand loading can typically take place
in parallel with the floating-point computation, maintaining the sustained rate.

In pipelined mode, two single-precision floating-point operations can be executed per
clock cycle resulting in a rate of (2 operations/clock) X(40 MHz/sec) = 80 MFLOPs.
For double-precision, addition requires one clock cycle, while multiplication requires
two. For algorithms that require two floating-point additions and one multiplication for
each iteration, two adds and one multiply can be done in parallel in two clock cycles.
This results in three operations in two clock cycles, or (3-operations/2-cycles) X(40
MHz) = 60 MFLOPs. Algorithms requiring a double-precision multiply and add for
every iteration execute at two operations per two clock cycles (due to the muitiply
two-clock bottleneck), resulting in an execution rate of 40 MFLOPs.

2.3 PAGING UNIT

The paging unit provides the i860 microprocessor with the capability of supporting
an efficient implementation of demand-paged virtual memory. Demand-paged virtual
memory allows programs to use a larger, virtual memory space, which is actually
supported by a smaller real (or physical) memory space. The paging unit, in
combination with the appropriate memory management software, automatically
allocates physical pages of memory to virtual page addresses as they are needed (on
demand). Typically, when all of physical memory is used up, physical memory is
swapped out to disk, and pages are reallocated.

The paging unit provides the ability to translate virtual addresses used by the
243

INTERNAL ARCHITECTURE

processor to physical addresses that correspond to locations in the external memory.
It also provides page-level protection based on access rights, as well as two levels
of privilege: user and supervisor.

Address translation and memory protection are optional. They are enabled by the
aAddress transiation enable (ATE) bit in the directory base register. If this bit is not
set, the physical address is the same as the virtual address, and no translation or
access-rights checking is performed. The ATE bit is cleared upon reset. i860
microprocessor paging unit functions the same and uses the same page table entgry
formats as the Intel 386™/486™ Microprocessors.

23.1 PAGING ALGORITHM

A virtual address is mapped to a physical address according to a set of tables called
page tables. The address is divided into a page address and an offset. A page is
a collection of data that occupies the space of a page frame in main memory, or
some location in secondary storage when there is insufficient space in main memory.
A page frame consists of 4K bytes of contiguous physical memory starting on a 4K-
byte boundary. The upper 20 bits of the 32-bit address of a page frame is referred
to as the page address. In the i860 microprocessor, both virtual and physical
addresses are 32 bits wide. They both consist of a 20-bit page address and a 12-
bit offset. The concatenation of the two provides a complete 32-bit byte address.

The address translation algorithrh uses two levels of page tables. The two levels are
referred to as the page directory and the page tables. Both levels of page tables are
a page (4096 bytes) in size, consisting of 1024, 32-bit entries.

The directory-base register, DIRBASE, contains a 20-bit field which points to the page
address of the page directory. Only one page directory table is active at any given
time. The entries of the page directory contain the physical addresses of all the page
tables used for the mapping process, or contain entries indicating that the given page
tables (corresponding to virtual segments of address space) are not present in
physical memory. The page tables themselves contain physical page addresses for
all the valid virtual pages, or entries indicating that the given virtual memory address
is not present in physical memory.

The algorithm mapping virtual memory to physical memory is fully implemented by
the hardware and is depicted in Figure 2.5. The most-significant 10 bits of the virtual
address are used as an index into the page directory, which selects a specific page
table. The next 10 bits are used as an index into the selected page table, selecting
a page frame address. The last 12 bits act as an offset into the page frame address,

214

INTERNAL ARCHITECTURE

building up a full 32-bit physical byte address. This then, completes the virtual to
physical address conversion.

Lf during a memory transfer, the page directory or page table indicates that a
selected page table or page frame is not present (by means of a zero in the present
bit of the table entry), a trap occurs, allowing the software to validate the page by
reading it from disk. The page table entries also provide the write, user, cache
disable, accessed and dirty bits, as well as three user-defined bits. These bits, along
with the write protect bit in the extended processor status register, are used to
provide page-level protection rights, page cacheability information, and information
needed to implement an efficient replacement algorithm for swapping out page frames
when main memory is full. More details are provided in the i860 Microprocessor
Programmer’s Reference Manual.

om] PAGE | oFFSET PAGE FRAME
PHYSICAL
ADORESS
PAGE DIRECTORY PAGE TASLE
PG TOL ENTRY
—1 O CNTRY
b * 3
(I

Figure 2.5 Paging Algorithm implementation.
215

INTERNAL ARCHITECTURE

To avoid accessing the page directory and page table for every address transiation,
the i860 microprocessor implements an on-chip translation look-aside buffer (TLB),
which is a cache that directly translates a virtual page address to a physical address,
and provides the additional bits from the page tables needed to provide protection
and information for replacement algorithms. TLB translation requires one clock cycle
and is typically invisible because of the processor’s pipelining.

The TLB is implemented as a 4-way, set-associative cache, mapping a total of 64
page table entries. Because each page table entry maps 4 Kbytes of address space,
a total of 4K X 64 or 256 Kbytes of memory are mapped at any one time by the TLB.
When there is a miss in the TLB and the page tables in memory are used, an entry
in the TLB is automatically replaced by the new mapping. Selection of which entry to
replace is performed by a proprietary LRU-like (least recently used) algorithm.

2.4 ON-CHIP CACHES AND BUS CONTROL

The 860 microprocessor contains both an instruction and data cache. Being
integrated so close to the processor, and having been carefully designed for minimum
delay, cache storage can operate much faster than external memory. In addition,
having both caches on-chip, they can operate in parallel. Thus, the processor can
simultaneously read instructions (instruction cache), read or write data (data cache),
and translate virtual addresses(TLB). The caches also provide wide data-paths: the
instruction cache is 64-bits wide, and the data cache is 128-bits wide. Also, on-chip
caches reduce the need for external caches, which reduces the total system cost and
makes available valuable PC-board real estate.

Both the data and instruction caches are virtually addressed. This not only provides
for faster operation, but allows the TLB to perform its virtual address to physical
translation in parallel with the operation of the cache. If one of the caches
determines that it does not have the contents of the required virtual address (a cache
miss), the TLB will at that point be ready with a physical address with which to begin
an external memory cycle.

Both the instruction and data caches are implemented as a two-way set associative
memory which maps a virtual address to a 32-byte block of data. These blocks
correspond to 32 consecutive bytes loaded from an address having zero for the least-
significant five bits. When transferring data to or from the cache, the processor will
use the desired set of bytes from this 32-byte group. Allocation and replacement for
both caches is always performed using blocks of 32 bytes. The i860 microprocessor
uses a wrap-around technique which makes more efficient the process of filling a

216

INTERNAL ARCHITECTURE

cache block and performing the necessary memory reads. Since a block consists
of four, 64-bit (8 byte) entries, the processor will first read the 64-bit entry that
contains the data item, instruction, or instruction pair that is needed by the processor.
The processor, now having the entry it needs, continues processing. The entry read
is simultaneously stored in the cache. Next, the processor sequentially reads the
remaining three, 64-bit entries of the block and stores them in the cache. Since the
first entry read may lie in the middle of the block, the processor wraps around to
reading the first 64-bit entry of the block after the last one is read. In this manner,
the cache block is loaded and the processor gets its data as quickly as possible.
If the data item being read is 128 bits, a similar approach is used, but with the two
initial reads providing the required data.

The use of the caches when accessing memory can be bypassed by means of the
CD (cache disable) bit in the page tables or externally with the KEN# (cache enable)
signal as explained in Chapter 3. This is required for special cases such as 1/0
references, or shared data in a multiprocessor system.

2.4.1 INSTRUCTION CACHE UNIT

The instruction cache size is 4 Kbytes. With a 64-bit wide data path, the cache can
provide two, 32-bit instructions in each fetch cycle: one core unit instruction, and one
floating-point unit instruction. Thus, the transfer rate of the cache is 64 bits/clock
(320mbytes/sec at 40 MHz). .

The instruction cache is intended to be used to map read-only memory (i.e., it does
not support self-modifying code). System code that requires modification of code
memory that might be in the cache should disable the instruction cache and invalidate
the contents.

242 DATA CACHE UNIT

The data cache size is 8 Kbytes. Using a 128-bit wide bus for reading data, It can
transfer up to 128 bits/clocks. Thus, with a 40 MHz clock, 640 Mbytes/sec can be
transferred. Uniike the instruction cache, the data cache supports both read and

write operations (corresponding to load and store instructions).

The data cache with its 128-bit internal bus can supply up to two 64-bit operands to
the floating point unit per cycle. Alternatively, it can supply one 32-bit operand per
load cycle, or a 16-bit, or 8-bit, right-aligned, signed-extended value to the execution
core unit.

217

INTERNAL ARCHITECTURE

The data read must be aligned in memory according to its size. The table below
shows the restriction on the addresses that makes this possible for different size data
items.

Data Number of least-significant bits
Size in byte address that are 0
16-bit value 1 1

32-bit value 2 2

64-bit value 3 3
128-bit value 4

2.4.2.1 WRITE OPERATIONS AND THE DATA CACHE

Writes to memory locations not present in the cache are sent directly to the memory
write buffers and do not affect the cache. A write operation to a location that is
already in the cache is written to the cache but is not immediately written to memory.
In this scheme, known as write-back, the blocks that have been written to the cache
but not to memory are marked as "dirty." When the replacement algorithm chooses
to replace a block containing a dirty block, or when a cache block is flushed, these
dirty blocks are written to memory.

The write-back scheme provides much better performance than the write-through
approach, in which data written to the cache is immediately written to memory. This
is because accesses and stores to variables or indexes that are in the data cache
require no external memory cycles.

When the data cache writes a block to memory, it uses two, 128-bit wide write
buffers. These buffers delay the actual memory writes until an opportune time, if

possible, as explained in Section 2.4.6.

2.4.3 BYPASSING INSTRUCTION AND DATA CACHES

There are two pins on the i860 microprocessor that relate to cache enabling during
any memory cycle. They are the cache enable input pin (KEN#) and the page table
bit (PTB) output pin.

When the i860 microprocessor detects that the KEN# input is not asserted prior to

248

INTERNAL ARCHITECTURE

a bus cycle, the processor inhibits use of the data cache and instruction cache for
this cycle.

When paging is enabled, the C (cacheable) bit of the secondary page table used
during a memory transfer determines whether or not to enable the use of the
instruction or data caches. The value of this bit is reflected on the PTB output pin.
When paging is disabled, the PTB pin remains not asserted.

KEN# is internally NORed with the PTB pin to determine whether or not to enable
use of the cache, as shown in Table 2..

P78 KEN# Meaning

0 o Cacheable access

0 1 Noncacheable access
1 0 Noncacheabie page
1 1 Noncacheabile pege

Table 2.1 Cacheability Based on PTB and KEN #.

244 FLUSHING INSTRUCTION CACHE DATA CACHE, AND TLB

Setting the [Tl (instruction TLB invalidate) bit in the DIRBASE register invalidates the
contents of the instruction cache and the translation lookaside buffer.

The data cache is flushed by software using the Cache Flush instruction. This
instruction flushes one cache block at a time.

249

INTERNAL ARCHITECTURE

2.4.5 BUS AND CACHE CONTROL UNIT

The bus and cache control unit interfaces to the external bus, performing instruction
and data accesses for the execution core unit. It transfers data to and from the
external code memory, and controls TLB translation, including normal translation, miss
replacement and fault processing. It receives cycle requests and specifications from
the execution core unit. It performs instruction or data cache accesses and handles
data or instruction cache miss processing (cache block replacement). its pipelined
structure supports up to three outstanding bus cycles. The three-level bus cycle
pipelining is explained in Chapter 1.

The bus and cache control unit can fetch one 64-bit instruction from the instruction
cache and 128-bits of data from the data cache on every clock cycle, as long as the
accessed data resides in the cache.

The bus control unit also performs the physical address comparison for the
generation of the Next Near (NENE#) signal. The NENE# signal is asserted by the
860 microprocessor if the currently issued address falls on the same DRAM page
as the previously issued address. The NENE# pin allows the external memory
system to take advantage of the static column and page-mode DRAMs. The size of
the DRAM page is programmable by three bits in the DIRBASE register.

The i860 microprocessor can operate in two instruction fetch modes, normal or CS8
(Codesize eight) mode. When the CS8 bit in the DIRBASE register is set, external
memory cycles are processed as 8-bit cycles. When this bit is clear, instruction cache
misses are processed as 64-bit bus cycles. This bit cannot be set by software. To
enter the CS8 mode, the INT pin is asserted prior to the falling edge of the RESET
signal. This allows the instruction bytes to be fetched on the eight least-significant
bits of the external data bus. Data may be transferred as 64, 32, 16 or 8 bits values
using all 64 bits of the data bus.

The CS8 mode allows the i860 microprocessor processor to be bootstrapped from
an 8-bit EPROM. In the CS8 mode the signals BE2, BE1 and BEO are redefined to
correspond to the three least-significant bits of the address so that a complete byte
address is available (i.e., 32 address pins can be used).

Once the bootstrap code has been loaded into the 64-bit memory, a 64-bit fetch can

be initiated. This is accomplished by clearing the CS8 bit in the DIRBASE register
via software (one time only). Once this bit is disabled, it can not be enabled until a

220

INTERNAL ARCHITECTURE

new hardware reset occurs.
2.4.6 WRITE BUFFERS

The bus and cache control unit also supports the use of two 128-bit write buffers.
These buffers are designed to delay any write operations to memory until memory
is not being used (i.e., instructions and data are being read from the caches). This
optimizing delay is not always possible, because the memory operation in question
may itself be read. The bus control logic forces memory write operations whenever
necessary to insure proper functionality.

The two 128-bit write buffers can operate on independent memory cycles. When
write operations of 128 bits are performed, each write buffer is written in two memory
cycles. When writes are made that are smaller than 128 bits (64, 32, 16 or 8 bits),
the write buffer is written in a single cycle. Proper alignment and the selection of the
correct byte enables is made for cycles smaller than 64 bits.

2.5 GRAPHICS UNIT

The graphics unit executes instructions designed to support high-performance 3-D
graphics applications. Support for packed pixels of 8-, 16- and 32-bit data are
supported. The precise pixel formats are given in the 860 Microprocessor
Programmer’s Reference Manual.

The graphics unit executes simple but powerful instructions which can be applied to
the following graphics functions:

. Hidden surface elimination.
. Distance interpolation.
. 3-D shading using intensity interpolation.

Based on these instructions, the i860 microprocessor can perform real-time, shaded
graphics without the need for an external graphics processor.

The instructions operate properly for the various pixel formats. The 8-bit format
includes three bits of color and five bits of intensity. With this format, the operations
only affect the intensity. For 16- and 32-bit color pixels, the operations affect the
isolated color vectors (e.g., red, green, or bilue). Operations are performed on 64-bit
entities, which can contain the values of multiple pixels in parallel. A special pixel

221

INTERNAL ARCHITECTURE

store instruction implemented by the core unit can work in parallel with some of the
graphics instructions.

The interpolation operations of the processor support graphics applications in which
a set of points on the surface of a solid object is represented by polygons. The
distance and color intensities of the vertices of the polygons are known, but the
distance and intensities of other points must be calculated by interpolation between
these points. ‘

Graphics instructions such as floating-point instructions can be used in dual-
instruction mode, in order to achieve greater computation rates.

222

Local Bus Inferface

CHAPTER 3
LOCAL BUS INTERFACE

The local bus is designed to provide high data throughput between the processor,
memory and I/O subsystems. It provides a flexible interface that is suitable for a
wide variety of system environments.

This chapter describes the local bus interface, its basic function, operation, and timing
for related signals.

3.1 i860™ Microprocessor External Interface And Bus Signals

The external interface of the i860 microprocessor consists of a 64-bit data bus, 29-
bit address bus, eight-bit byte-enable control bus, 19 status and control signals, and
48 power and ground pins. This section provides an overview of the services
provided by the external interface of the i860 microprocessor.

Signal mnemonics convey whether a signal state is active high or active low. An
active-low signal mnemonic is suffixed with a pound character (#); an active-high
signal mnemonic does not have this suffix.

3.1.1 1860 Microprocessor Buses

The 860 microprocessor communicates with external memory and 1/O through a
synchronous bus interface that includes a separate data and address bus as follows:

D63 - DO These 64 pins make up the bi-directional data bus external
interface. Either 8, 16, 32, or 64 bits of data can be transferred
during a bus cycle. Pins D7-DO0 transfer the least-significant byte.
Pins - D56 transfer the most-significant byte.

A31 - A3 The address bus consists of 29 address pins which address one
of 2** 64-bit memory locations.

BE7# - BEO# The byte-enable bus consists of eight pins that specify which bytes
to access within a 64-bit location. These pins are used to enable
writing in one, two, four or eight-bytes of the double-word invoived
in the current write cycle. Read operations should always return
64-bits of data. See Section 3.3.1.3 for details. BE2#, BE1#,
BEO# are used as address bits A2, A1, AD respectively while in
CS8 mode. See Section 3.3.5 for details.

31

LOCAL BUS INTERFACE

3.1.2 860 Mlcroprocessor Output Signals

The i860 microprocessor output signals provide control and status information. The
output signals are as follows:

ADS#

R/W#

LOCK#

NENE#

PTB

HLDA

BREQ

The i860 microprocessor asserts the address status signal to
indicate the begining of a bus cycle. It identifies the clock period
during which it provides a valid address and the other signals
required to perform a memory cycle. This signal is not held active
during a pipelined cycle, thus allowing two levels of pipelining.

The write/read# signal indicates whether the current cycle is a
write (high state) to or read (low state) from the memory or 1/0
subsystem.

The lock signal is generated by the processor to indicate locked
Cycles to external circuitry (Section 3.4.3 provides further
explanation).

The next near signal tells the memory subsystem that a cycle is
on the same DRAM row as a previous cycle. This allows the
memory subsystem to use page mode or static-column mode
features of DRAMs (Section 3.4.1 provides further explanation).

The page table bit signal reflects either the value of the cache
disable (CD) bit, or the write through (WT) bit of page table entry
during the current cycle. The PBM (page-table bit mode) bit of the
EPSR indicates which: if PBM is clear, PTB reflects CD; otherwise,
it reflects WT (Section 3.5 provides further exlanation).

The hold acknowledge signal indicates that the bus has been
released (Section 3.4.2 provides further explanation).

The bus request signal is asserted when an internal bus request
is pending. This signal is used to assist external bus arbitration.
Its value is independent of the state of HOLD and HOLDA (Section
3.4.2 provides further explanation).

BREQ is also used as serial output for the boundary scan chain

while in boundary scan mode (Section 3.7 provides further
explanation).

32

LOCAL BUS INTERFACE

3.1.3 860 Microprocessor Input Signals

Input signals control various i860 microprocessor actions:

CLK

READY#

NA#

INT/CS8

KEN#

The clock input provides basic timing information for the processor
to synchronize internal and external operations. All other signals
are sampled relative to the rising edge of CLK. The internal

operating frequency is the same as the clock frequency. The CLK
is TTL compatible.

The ready signal indicates to the processor that a bus cycle is
finished. For read cycles, the READY# signal indicates that data
being read is valid and that the processor can latch the contents
of the data bus. For write cycles, it indicates that the data being
output to the data bus is being latched by the memory subsystem
and is no longer needed to finish the bus cycle. READY# must
be synchronous to CLK; it is sampled on every clock after the
clock which follows the sampling of ADS#. .

The next address signal allows external data transfers to request
pipelining. The signal indicates to the processor that the memory
or 1/0 subsystem is ready to receive a new address and begin a
pipelined cycle. NA# is sampled during the second clock after
ADS# (Section 3.3.4 provides further explanation).

The interrupt and code size eight signal serves two functions.
When the RESET signal is asserted, the CS8 signal can be used
to set the code size eight mode to indicate whether the bus
performs instruction fetches on the low-order byte of the bus
instead of the 64 bit wide bus. This feature is useful to allow
booting from a single EPROM. Section 3.3.5 provides further
details. At all other times, this pin serves as the INT signal and
functions as the i860 microprocessor's maskable external interrupt
(Section 3.6 provides further explanation). The state of the INT
input is sampled on every clock.

The cache enable signal enables updates to the processor’s
instruction and data caches. When paging is enabled, this signal
works in combination with the WT bit of the page table entry of the
current bus cycle. KEN# is sampled on every bus cycle (Section
3.5 provides details).

33

LOCAL BUS INTERFACE

HOLD The bus hold signal floats all output signals except HOLDA and
BREQ and causes the processor to relinquish control of the bus.
The HLDA signal indicates that the bus has been granted.
Instruction execution continues unless required instructions and
data cannot be read from the on-chip cache (Section 3.4.2,
g‘r&\;kides further explanation). The state of this pin is sampled every

SHI The boundary scan shift input signal is used to read boundary
scan chain serial data when in boundary scan mode (Section 3.7
provides further explanation).

BSCN The boundary scan enable signal enables boundary scan mode
for board or component testing (Section 3.7 provides further
explanation).

SCAN The shift scan is used in conjunction with boundary scan mode to

set normal mode (when SCAN is deasserted) or shift mode (when
SCAN is asserted) (Section 3.7 provides further explanation).

CC1, CCO These pins are reserved by Intel and must be strapped low. 860
microprocessor bus interface pins are summarized in Table 3-1.

3.1.4. Power and Ground Pins

The 860 microprocessor has 24 GND pins and 24 power pins. The i860
microprocessor Data Sheet provides pin number assignments, detailed electrical
characteristics, and decoupling requirements.

3.2 Bus Characteristics

The fully-synchronous local bus provides 64-bit data transfers to and from memory
or 1/O devices. Minimum read and write cycles can be done in two clock cycles.
The bus is capable of pipelining bus cycles two levels deep (three stages). 1/O is
memory mapped. An external address decoder can map address ranges to
correspond with the 1/O subsystem and the memory subsystem. Also, memory-
mapped devices should drive KEN# high during reads to prevent data caching.

To simplify explanation, the term memory subsystem refers to the I/O subsystem
and the memory subsystem.

LOCAL BUS INTERFACE

Pin Active Input/
Neme Function State :
Execution Control Pins
CLK ClocK 1
RESET System reset High [
HOLD Bus hold High |
HLDA Bus hoid acknowiedge High 0
BREQ Bus request High (o]
INT/CS8 Interrupt, code-size High t
Sus interface Pine
A31-A3 Address bus High (o)
BE7¢ -BEO¢ Byte Enables Low o
De3-D0 Data bus High 7o}
LOCK ¢ Bus lock Low o]
W/Re¢ Write/Read bus cycle Hi/Low (o]
NENE ¢ ~ NExt NEar Low (o]
NA¢ Next Address request Low |
READY ¢ Transfer Acknowiedge Low |
ADS¢ ADdress Status Low (o]
Cache interface Pine
KENe Cache ENable Low |
PTB Page Table Bit High (o]
Testability Pine
SHi Boundary Scan Shift input High |
BSCN Boundary Scan Enable High |
SCAN Shift Scan Path High 1
intel-Reserved Configurstion Pins
CC1-CCo | Configuration | High] |
Power and Ground Pins
Vee System power
Vss System ground

A # after 8 pin name indicates that the signal is active when at the low voltage level.

TABLE 3.1 Pin Summary

3.3 Bus Transfer Operations

This section discusses all bus transfer operations including data alignment issues,
pipelined and non-pipelined bus transfers, and 8-bit mode operation for bootstrapping.

35

LOCAL BUS INTERFACE

3.3.1 64-bit Bus and Byte Alignment of Data

The i860 microprocessor normally performs data transfers on its 64-bit data bus.
This section discusses how the bus control unit accomodates data of variable size.

llustrations in this manual depict the byte furthest to the right as a lowest memory
byte address. Bits within data formats are numbered from zero starting with the
least-significant bit which is shown at the right of every byte.

3.3.1.1 Memory Addressability and Little and Big Endian Formats

Memory is addressed in byte units within a paged virtual address space of 2*2 bytes.
Data and instructions may be located anywhere within this space. ‘

1860 microprocessor instructions can operate on data of variable size including bytes
(8-bits), half-words (16-bits), words (32-bits), double-words (64-bits) and quadwords
(128-bits). ,

Normally, multiple-byte data values are stored in little endian format (with the least
significant byte at the lowest memory address). The processor also provides big
endian capability whereby the most significant byte is at the lowest address). This
feature can be dynamically enabled with software while in supervisor mode, as
described in the i860 Programmer’s Reference Manual. Big endian and little endian
data should not be used together within the same 64-bit data word. Code accesses
always use little endian addressing. Figure 3.1 illustrates the two storage modes.

Ltle Endian Format
« % o7 » 3 2 18 7 [
| | | 1 1 | 1 | |

[K24 mee mes mee ;e [R X} me L]

Sig Endian Format
[% L1 » n 2 (L] ? []
L)| I I] | | | J

- me ;me? mes [XX] L XX] [X] me?
= & O mamery alums of 0o 0448 wwd

Figure 3.1 Little and Big Endian Memory Format

Data alignment requirements: ' :
* 128-bit values are aligned on 16-byte boundaries when referenced in
memory (the four least significant address bits must be zero).

36

LOCAL BUS INTERFACE

* 64-bit values are aligned on 8-byte boundaries when referenced in
memory (the three least significant address bits must be zero).

* 32-bit values are aligned on 4-byte boundaries when referenced in
memory (i.e. the two least significant address bits must be zero).

N 16-bit values are aligned on 2-byte boundaries when referenced in
- memory (the least significant address bit must be zero).

An instruction cannot access misaligned data items. This causes the instruction to
abort and invokes a trap. Trap handling software can perform a load or store at the
misaligned address. However, frequent invocation of the trap to handle misaligned
data severely degrades performace. Use of misaligned data is not recommended.

3.3.1.2 Data Alignment During Read Operations

The i860 microprocessor performs aligned read operations in the following manner.
64- and 128-bit transfers are handled as one and two 64-bit memory transfers,
respectively. 8-, 16- and 32-bit memory read operations are accomplished by first
reading 64-bits of data and then processing the data to achieve the format required
by processor instructions. The 64-bit data is typically stored in the cache before any
processing takes place. The data is prepared by shifting the 64-bit value so that the
byte at the lowest address is aligned with data bus D7-DO. Only the numbers of
bytes required for the data size are used. The value is then sign extended (for 8-
and 16-bit data) if appropriate and loaded into a register.

During read cycles, the byte enable signals reflect the bytes currently needed. These
signals should not be used to enable read operations since read operations require
all 64-bits to be read.

Enable inputs that correspond to the bytes in a 64-bit word must not be enabled
with values of BE7#-BEO#: instead, they must be enabled as shown in the simplified
circuit diagram in Figure 3.2

3.3.1.3 Data Alignment During Write Operations

Aligning write data reverses the process used when aligning data for reading. 64-
and 128-bit write operations are handled as one and two 64-bit data transfers,
respectively. Eight-, 16- and 32-bit memory write operations are performed by
aligning the data item to be written and then writing only the bytes involved. For byte
operations, the byte enable lines are used to determine what bytes are written into.

LOCAL BUS INTERFACE

MM s8] (8 5| [§8 i 3
S
= 2D

“s

<y © © © ©

= \ N N N

mw N N N /M,,

}——» BES

by BES

—os BE2

b BE1

WEN = Write Enable

| BEO

083- 58

D55~ 48 |+

D47- 40
D7-D0

i860™ uP

OEN = Output Enable

Figure 3.2 Byte Enable Control Signais

38

LOCAL BUS INTERFACE

For 8-bit, 16-bit and 32-bit data the data being shifted is shifted to the left to properly
position the least-significant byte of the data with the corresponding byte address.
The amounts of bytes shifted are based on the address and the endian mode.

The write operation is performed on properly-aligned data bytes that are enabled by
the proper BE7#-BEO# signals. The circuit shown in Figure 3.3 shows how enable
signals operate during a write. Data bytes on the data bus need not be masked
because only selected bytes are written while others are ignored. Table 3.2 Shows
the corresponding byte enable signals that are asserted for various byte addresses,
data sizes and endian modes.

Byte Enables

Size Little Endian Big Endian Internal Bus

(BE7#-BEO#) (BE7#-BEO#) A2 Al A0
64-bits 7t0 7to0 0 0 o
32-bits 7 to 4 3to0 1

3to0 7to4 0
16-bits 7,6 1,0 1 1

5,4 3,2 1 0

3,2 5,4 o 1

1,0 7,6 0 o
8-bits 7 0 1 1

6 1 1 1 0

5 2 1 0 1

4 3 1 0 o

3 4 0 1 1

2 5 0 1 o©

1 6 0 0 1

] 7 0 0 O

Table 3.2 Write Byte Enable Combinations
3.3.2 Basic Bus Operation

The i860 microprocessor's fully-synchronous external bus may operate without
pipelining or with up to two levels of pipelining to boost memory subsystem
throughput. All control signals that affect bus operations are sampled relative to the

39

LOCAL BUS INTERFACE

rising edge of the clock.

Bus cycles begin when ADS# is sampled active and end when READY# is sampled
active. READY# is sampled on every cycle after ADS# is sampled active. New bus
cycles can be started on any clock cycle after a one clock cycle delay following the
beginning of the prior bus cycle. Thus, new cycles can start as often as every other
cycle. Pipelining allows up to three outstanding cycles to exist concurrently. A bus
cycle is considered outstanding while its associated READY# has not been sampled
active.

The processor can generate pipelined and non-pipelined read and write bus cycles,
as requested by the memory subsystem. A pipelined cycle starts while one or two
other bus cycles are outstanding. Pipelined cycles are started under control of the
NA# signal as explained in Section 3.3.4.

3.3.3 Non-Pipelined Bus Operations

Bus cycles require at least two clock cycles to complete. The state diagram in Figure
3.3 illustrates how the bus operates in non-pipelined mode.

One Outstanding Cycle

RDY . REQ

Figure 3.3 Non-Pipelined Bus State Machine

310

LOCAL BUS INTERFACE

The state machine assumes the idle T, state when there are no processor requests
for external bus cycles (indicated by REQ in Figure 3.4). When the processor
requests a bus cycle, the bus controller transitions to the T, state and the ADS#
signal is asserted. ADS# can be sampled by the memory subsystem at the end of
the T, clock. ADS# assertion indicates the beginning of a bus cycle. The T, clock
is always followed by the T,, clock during which the bus cycle is allowed to complete.
The address bus (A32-A3) and the signals W/R#, NENE# and PTB are all made
valid and stable prior to the end of the first T,, clock cycle. During read operations,
the data bus (D63-DO) is floated to allow the memory sussystem to drive the data.
During write operations, the processor drives the data bus and makes it valid and
stable before the end of the first T,, clock cycle.

The memory subsystem does not assert the READY# signal unless the read and
write cycles finish within the first T,, clock. The diagram in Figure 3.3 shows that as
the state machine repeats the T,, state to add a wait-state when NA# is not asserted.
Wait-states can be added as needed by leaving READY# unasserted. The signals
involved in the memory cycle remain valid during wait-states. Assertion of NA# allow
pipelined cycles to take place (Section 3.3.4. provides further explanation). When the
processor samples the READY# signal indicating completion of a bus cyeles, the
state machine transitions to the T, state, if there is no new processor bus requests
at the time. If new requests are present, the state machine assumes the T, state and
a new cycle begins. .

3.3.3.1 Non-Pipelined Read Operations

Figure 3.4 shows that read operations can complete at end of the first T, state to
produce two-clock read cycle. To achieve this level of efficiency, the memory
subsystem must provide read data, assert READY# and allow for processor sampling
before the read cycle completes. This calls for an extremely fast address to data
access time (the i860 microprocessor Data Sheet provides detailed timing
information). Required memory access times can be relaxed by adding wait-states
or by use of pipelining. Each wait-state eases the access time requirement by one
clock period.

311

LOCAL BUS INTERFACE

CYCLE 1 CYCLE 2 CYCLE 3
NON=PIPELINED | NON=PIPELINED | NON=PWELINED
READ READ READ
(2-2) (2=2) (2=2)
M) A7) L0 Tiy 4 T
ax
ADSS
A31=A3, W/R¢,
0ng, NENEY,
LOCKY, PTR |
-, |
READY) A /77/ /77/
083=-00 }-.-..C}.--D-C}...-.c

Figure 3.4 Fastest Read Cycles

3.3.3.2 Non-pipelined Write Cycles

312

Figure 3.5 shows a timing diagram of back to back write cycles. To perform a non-
pipelined write cycle, the cycle is started the same as a read cycle, by the processor
asserting the ADS# signal during T1. This is followed by the T11 state driving the
signals needed to perform the bus cycle. These include the same signals needed
for a read, such as the address bus, R/W#, etc; but also the write data on the data
bus, and the byte enable lines BE7#-BEO#. Write operations differ from read
operations, in that the processor does not need to wait for memory to finish its cycle,
in order to continue computing. The memory subsystem can merely latch the
address bus, data bus, byte enable lines and other bus related signals, while
simultaneously asserting READY#, allowing the processor to continue computing.

LOCAL BUS INTERFACE

The memory subsystem can perform the write operation while the processor is
starting a new cycle. Thus, in Figure 3.5 write cycle, Cycle 1 can be physically
writing to memory while T1, and T11 of Cycle 2 is setting up the next write cycle.
In this way, Cycle 1 has a full two clock cycles to operate without the need for wait-
states. This situation is quite different than for read cycles where the required RAM
access time needed to perform a two clock non-pipelined operations was very small.

Unlike cachable read operations, write operations make use of the processor-driven
byte enable signals BE7#-BEO# driven by the i860 microprocessor (Section 3.3.1.3

provides further explanation).

A31=A3, W/R§,
BEng, NENES,
41]

NA#

READYS

083-00

ADS#

CYCLE 1

NON=PIPELINED
WRITE
(2-2)

T

=

T

L

CYCLE 2

NON=PIPELINED
WRITE
(2-2)

T T

LU
A\\//4

CYCLE 3

NON=PWELINED
WRITE
(2-2)

N T

LY

N\ /7|
=
P

W71
—
PR

Figure 3.5 Fastest Write Cycles

313

LOCAL BUS INTERFACE

3.3.3.3 Write Cycles Following Read Cycles ,

The timing diagram in Figure 3.6 shows that even though the data is not guaranteed
valid until the later part of the T,, cycle, the processor may begin driving the data bus
early in the T, cycle. If a read cycle precedes a write cycle, there could be
contention for the data bus between read data being held by the memory subsystem
past the beginning of the write's T, cycle, and write data being driven early in T, by
the processor. As shown in figure 3.6, the processor avoids this problem by delaying
a write operation by one clock cycle when it follows a read operation. This is
demonstrated by the fact that the processor does not start driving the write data for
the write cycle (Cycle 2 in Figure 3.6) until the beginning of T,,, as opposed to the
write cycle in Figure 3.5, which starts driving the data as early as T,.

Memory subsystem design must add a wait-state to accommodate the special
handling of write cycles that follow read cycles. Although it is possible for the sake
of simplicity to add a wait-state to all write operations, this is very undesireable due
to the degradation in performance.

CYCLE ¢ CYCLE 2 CYCLE 3
NON=PPELINED NON=PIPELINGD NON=PIPELINGD
READ WRITT READ
(2-2) (3=3) (2=2)

L8 T uT) T T

E o

g
g | 32}:
o 77T T\ | /777
e - O @D+ 1-C

Figure 3.6 Fastest Read/Write Cycles

314

LOCAL BUS INTERFACE

3.3.4 Pipelined Operations

The i860 microprocessor provides up to two levels of pipelining for 64-bit non-cached
read and write operations. Two levels of pipelining implies the presence of three
outstanding cycles, one level, two outstanding cycles, and no pipelining implies no
more than one outstanding cycle.

Pipelining of the external bus is controlled by the Next Address signal, NA#. By use
of this signal the memory subsystem allows, one, two, or no levels of pipelining.
After a clock during which the processor has asserted ADS# to start a memory
cycle, the memory subsystem can assert NA# to indicate that even though the
outstanding cycle is not finished, the processor can, if it needs to, start a new bus
cycle. The NA# signal needs to be asserted only for one clock cycle since it is
latched internally. Once an asserted ADS# is latched, a new level of pipelining is
permitted even if the processor’'s bus request comes at a later time.

An m-n read or write Cycle has a cycle time of m clocks and a cycle-to-cycle time of
n clocks (m >= n). Total cycle time is calculated from the clock in which ADS# is
asserted to the clock in which READY# becomes active. Cycle-to-cycle time is
calculated from the time that READY# is sampled active for the previous cycle to the
time that it is sampled active for the current cycle.

Pipelining may begin whenever a bus cycle in progress requires more than two clock
cycles to finish (m > 2). A new cycle may begin while another cycle is still in
progress, if asserion of NA# requests it. NA# is only recognized in a clock where
ADS# is inactive.

Figure 3.7 shows how pipelining takes advantage of memory operations with four
interleaved banks. Pipelined memory reads achieve 6-2 cycles. That is, total cycle
times of six clocks and cycle to cycle throughput of two clocks. The "A" in the
diagram indicates when the address is valid. Total access time in this example is six
clock cycles.

345

LOCAL BUS INTERFACE

Start of Start of Start of Start of Start of :
memory memofy memory memory memory
cycle1 cycle2 cycle3 cycle4 cycle5 ..
End of End of End of
memory memory memory
cycle 1 cycle 2 cycle 3
Effective Throughput = | <-2clks-> |
|- l—=|—|—]—|—=|—|—|—]|—=|—]—|
MemoryCycle1=|6dod<s
|—A
MemoryQ/dezsledocks
A
Memoryqdo3=‘6dod<s
A
MornoryCycle4-'6docks
A
Memory Cycle 5§

Figure 3.7 Memory Operation Pipelining
3.3.4.1 Pipeline and Interieaved Memory Banks

Memory subsystems will typically use as many interleaved memory banks as there
are stages in the pipeline. Two levels of pipelining are most effective when a
memory subsystem with four interleaved banks that can work in parallel is used
(using three banks is not feasible because of the difficulty in making an address
decoder of this kind). Interleaved memory banks are designed to each support one
of several sequential 64-bit addresses. In a two bank system, for example, one
memory bank handles odd 64-bit addresses while the other handles the even
addresses. In a four bank system, each bank handles one of four consecutive 64-bit
addresses. When memory address cycles require a bank currently in use by an
outstanding bus cycle, the memory subsystem adds wait-states while the specific

316

LOCAL BUS INTERFACE

outstanding cycle completes. It then then resumes with pipelined operation.

In another approach to the use of bus pipelining, the system initiates one more
memory operation than the interleaved memory banks can accomodate. When the
extra memory cycle is started, the memory subsystem stops issuing cycles until the
accessed memory bank becomes free. The memory subsystem has all the
information needed to perform the cycle at this point and while it does it it queues
up another cycle. In this manner it eliminates the extra delay that is required to get
a valid address and additional signals needed to perform the queued up bus cycle.

3.3.4.2 Ordering of Data During Pipelined Operations

In typical implementations, the memory subsystem indicates completion of pipelined
write operations by asserting READY# when the processor provides valid data for
writing. When pipelined bus operations are performed the ordering of data driven
onto the data during read or write cycles must correspond to the order in which
the outstanding cycles were initiated. If two read operations and a write operation
are outstanding, the processor will not provide the write data until the outstanding
read operations are completed. The memory subsystem must have a state machine
that tracks when to drive the read data, and when to latch the write data.

3.3.4.3 Bus State Machine for Pipelining
Operation of pipelined bus cycles is illustrated by the bus state machine shown in

Figure 3.8. Transitions are made on every clock cycle according to the state of the
signals provided in the transition path logic equations.

317

LOCAL BUS INTERFACE

from RESET

Figure 3.8 Pipelined Bus State Machine

318

LOCAL BUS INTERFACE

Notes:
* RDY# in the table corresponds to the READY# signal
* NA# is not sampled during ADS# active clock
* ADS# is made active in T,, T, and T,
*

REQ corresponds to an internal processor bus request

The state machine has been divided into sections that indicate zero, one, two and
three outstanding cycles. Sections that indicate zero and one outstanding cycle are
small extensions of the non-pipelined bus state machine shown in Figure 3.3.

Two three-state machines have been added to provide non-pipelined operation
(Figure 3.3). They indicate state machines for two and three outstanding pipelined
cycles. The states are labeled with subscripts in the form of T, or T,,. The j subscript
indicates the number of outstanding cycles, and the i subscript indicates substates
1 and 2. ‘

There are three processor states for each of the j-states. The states labeled with a
single subscript T, correspond to the initial state entered to begin a new cycle, given
j-1 or no outstanéing cycles. A T, state is entered only once for each external bus
cycle and asserts the ADS# signal. A T, state for j>1 is not entered unless there
is a request from the processor and the NA# has been or is in the process of being
asserted. ‘ ,

T,, is an auxiliary state which helps to complete memory cycles. T,, states operate
as the T,, state does for in non-pipelined cycles. During the first T,, cycle in a given
operation, signals that are relevant to the operation (such as address bus, W/R# and
NENE#) are made valid and kept valid during subsequent T,, wait-states. A T,, state
can be repeated on subsequent clock cycles as wait-states are introduced (that is,
READY# remains unasserted).

If the processor is not requesting a new cycle, T,, can be entered from T,, when
synchronous sampling detects an asserted NA# while a memory cycle is still active.
A cycle request is indicated by the REQ internal signal. The T,, state performs like
the T,, state but remembers that an NA# signal has been asserted and that a further
level of pipelining can be introduced at the processor’s request. The logic equations
for the T,2 transition paths are like a T,; signal with the NA# asserted.

As mentioned, pipelined cycles occur when the memory subsystem asserts NA#
while the CPU is processing an outstanding cycle (the memory subsystem should
not assert NA# when there are no outstanding cycles). The NA# signal tells the
processor that the memory subsystem is prepared to receive another cycle while
the previous cycle completes. In Figure 3.10, for example, NA# is asserted by the

319

LOCAL BUS INTERFACE

memory subsystem before the end of the T,, cycle while the READY# signal remains
unasserted. In this case, the memory subsystem has stored all the information it
needs to complete the outstanding cycles. As soon as the processor is ready to
request a new memory cycle (as indicated by the REQ signal) and starting on the
clock following the smapling of NA#, the processor provides a new ADS# which
starts the memory cycle.

3.3.4.4 Pipelined Read and Write Cycies

Figures 3.9 and 3.10 illustrate the bus state machine and pipelined memory cycles.
Figures 3.9 shows four memory cycles. Non-pipelined cycles begin when there are
no outstanding cycles. The digits in parentheses (such as 5-2 for Cycle 2 in Figure
4.5) characterize the number of clocks needed to perform a pipelined cycle. The first
digit indicates the total number of clocks between cycle initiation (ADS# assertion)
and completion (READY# assertion). The second digit indicates the throughput rate
(the number of clocks between READY# signals).

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

NON-PPTLIMED PeTLIGD reTLIaD FOLLID
ACAD ALAD wamg warmt
(3~3) (3-2) (s=9) (e=2)

T3 K s T s s

S
g
-

=
W7

W\\lﬂﬂ

f22 8
g

A \ﬁ
¥

Figure 3.9 Pipelined Read Followed By Pipelined Write
320

LOCAL BUS INTERFACE

CYCLE 1 CY”iL: CYCLE 3 CYCLE 4

“E & ||

o gigigigiigigiiah

o W7 W\

gt | D DY ¢ Y |

we | [TTA77N LLTTA0ON LTZ0DN L7730\ L7000\ | 1777
s | T T\ LD\ [T\ (7T

e Dt Dt-C

Figure 3.10 Pipelined Write Followed by Pipelined Read

Figure 3.10 illustrates the sequence of events in a group of pipelined cycles.

The first operation is the Cycle 1 memory read which begins when T, ends while
asserting ADS#. At the completion of the T,, state, address lines A31-A3, W/R#,
NENE# and PTB# are valid and latched by the memory subsystem. During this T,,
clock cycle the memory subsystem asserts NA# to request a pipelined cycle. The
state machine transitions to T, initializing the read cycle, Cycle 2, by the assertion of
ADS#. During T,,, the memory subsystem latches the various signals needed to
perform the cycle, and asserts NA# to start another pipelined cycle. As a result, the
processor requests another cycle. The state machine transitions to T, and a third
cycle begins by another assertion of ADS#. During the same T, clock, READY# is
asserted indicating that Cycle 1 has completed and that the data bus has valid data.
The state machine transition from T, to T,, should be understood to gain insight as
to how the pipelined bus state machine operates. Cycle 3 starts with a T, state and
ends with a T, state (instead of T,,), since the sampling of an active READY# signal

321

LOCAL BUS INTERFACE

rewduces the number of outstanding cycles back to two. Cycle 3 is a write cycle.
So during T, all the previously mentioned bus cycle related signals in addition to the
byte enable lines (BE7#-BEO#) and the data bus are made valid and latched by the
memory subsystem. During T,, a new NA# is asserted, allowing the state machine
to start Cycle 4 and transition into T, again. Another READY# is asserted and Cycle
2 completes, leaving Cycle 3 and 4 outstanding. For the remaining cycles the state
machine oscillates between T, and T,, through maintaining the bus fully occupied with
two levels of pipelining (three outstanding bus cycles).

The processor does not drive Cycle 3 data onto the Data Bus until two READY#
assertions indicate completion of pipelined cycles 1 and 2. Note that since the Cycle
3 write operation follows a read operation (Cycle 2), the processor waits an additional
clock cycle before driving Cycle 3 data. The memory subsystem must detect the
read/write sequence and delay READY# signal assertion and write data sampling by
one clock cycle.

Figure 3.11 shows a non-pipelined write operation foliowed by a

pipelined write and two pipelined reads. The write operations are not preceded by
a read operation, and the memory subsystem is not required to add a wait-state to
complete the cycle.

3.3.5 8-Bit Bus Transfers for Bootstrapping (CS8 Mode)

Eight-bit code size mode is enabled when the INT/CS8 signal is sampled active by
the clock at the time RESET is deasserted (Figure 3.11). In eight-bit code size mode,
instruction cache misses are transferred as single byte reads instead of 8-byte reads
(using bits D7-DO of the data bus). This allows the i860 microprocessor to be
bootstrapped with an 8-bit EPROM. For these single byte code reads, byte enables,
BE2#-BEO#, are redefined to to be the three low order bits of the address bus, A2-
AO. While KEN# is asserted, these code byte reads are used to update the contents
of the instruction cache. (Section 3.5 explains the function of the KEN# signal).
Pipelined memory cycles are not started in this mode, even if NA# is asserted.

In CS8 mode, all program code (instruction fetches) reside in 8-bit memory (ROM)
while data reads and writes are in 64-bit memory (RAM). The processor may be
bootstrapped from an 8-bit ROM. A reset operations traps to the OxFFFFFFOOH
standard trap handler starting address. Hardware must disable RAM address space
covered by the 8-bit bootstrap ROMs and enable the ROM or EPROM over this
address space. When exiting 8-bit code size mode, programs must output to a
special 1I/O port which tells the processor to unmap ROM or EPROM from memory
and map the normal 64-bit memory. Once code is loaded in 64-bit memory,
initialization code initiates 64-bit code fetches by clearing the CS8 bit in the DIRBASE
register. Once 8-bit code-size mode is disabled by software, it cannot be reenabled
until the next INT/CS8 hardware reset.

322

LOCAL BUS INTERFACE

& 16 CLKs
o [L
RESET / !
wrzess DOOODOOCKX X

OTHER
INPUTS

L
XOOODOOXX

Figure 3.11 CS8 and RESET Activity
3.4 BUS CONTROL OPERATIONS

This section explains bus control operations including: page-mode and static-column
DRAM support, bus arbitration, and bus locking.

3.4.1 Page Mode, Static Column DRAMs and Next Near Operation
The external bus interface facilitates high-performance designs using low-cost DRAMs.

The next near signal (NENE#) facilitates designs using page mode and static column
DRAMs.

Page mode and static column DRAMs perform best when multiple reads or writes
access closely-situated areas of memory (as in the same row address of a given
DRAM). This occurs frequently because memory accesses are often sequential and

323

LOCAL BUS INTERFACE

because of the way caches are filled and write buffers are output.

The NENE# signal indicates that a memory cycle is using the RAM page address
as the previous cycle. The lower bits of the address corresponding to the size of a
page in the DRAM are ignored. NENE provides information to the memory
subsystem that it can use to enable page mode or the static-column mode operation
of the DRAMs. NENE# eliminates the need for external circuitry and eliminates the
difficult timing problems that are involved in implementing this capability.

The 860 microprocessor determines page size by interpreting the DPS field in the
DIRBASE register. DPS is a 3-bit field corresponding to bits 3, 2 and 1. The value
in the field indicates the number of least-significant bits to ignore when comparing a
Cycle addresses to previous addresses. The number ignored equals 12 plus DPS.
Zero is is an appropriate value for 256K X n RAMSs, 1 for 1M X n RAMSs, and so on.

NENE# is never asserted on a bus cycle immediately following the deassertion of
HLDA. NENE# is not asserted for TLB miss processing cycles.

3.4.2 Bus Hold, Hold Acknowledge, Bus Request

The i860 microprocessor provides the input line HOLD and the output lines HOLDA
(hold acknowiedge) and BREQ (bus request) to control arbitration of the buses and
control lines.

The hold request signal (HOLD) is driven by an external device or bus arbiter to
request control of the bus from the processor. The HOLD signal can be driven
asynchronously. HOLD is masked out by the bus lock requests (LOCK#) prior to
internal synchronization, thereby protecting the bus from being relinquished during a
locked sequence. The processor has an internal synchronizer to prevent metastable
problems when sampling for HOLD. When hold is asserted, the processor blocks
any new cycles. Once all outstanding bus cycles are completed, the processor floats
all output lines except HOLDA and BREQ to relinquish bus control. HOLDA indicates
to the requesting device that bus control has been relinquished. The device can then
use the signals and buses it needs until it relinquishes control to the processor.

324

LOCAL BUS INTERFACE

g
gqi
g
$
g
£l

:

Figure 3.12 Pipelined Bus State Machine including Hold State

325

LOCAL BUS INTERFACE

Notes:
* RDY# in the table corresponds to the READY# signal
* NA# is not sampled during ADS# active clock
* ADS# is made active in T,, T, and T,
* REQNH is the internal bus request *anded" with synchronized HOLD
* HLDA is made active in T,
*

HOLD is synchronized internally and is masked out while a bus lock
request is active.

The 860 microprocessor can continue executing from the cache once it has
relinquished control of the bus. Execution when the i860 needs to perform an
external bus request. The BREQ signal indicates to any external bus arbiter that the
processor is waiting for an external bus cycle. BREQ provides a means to implement
a more efficient system for arbitrating between bus contenders such as a DMA device
or another processor.

The bus state machine in Figure 3.12 illustrates the process that brimgs bus activity
to a halt when the HOLD input signal is asserted. This diagram is similar to the bus
state machine in Figure 3.8, except for the fact that it includes the hold state and
labels the REQ signals as REQNH. REQNH corresponds to REQ “anded* with “not"
HOLD. "Anding" all REQ signals with "not* HOLD prohibits the bus control unit from
initiating new cycles while a hold is pending. Once all outstanding cycles are done,
the state machine assumes the T, idle state where the SHOLD signal (synchronized
version or HOLD) transitions to the hold state T,. When the processor detects that
the SHOLD signal is no longer active, the state machine transitions back to T; if no
internal requests are pending ("not* REQ) or to T, to start a new bus cycle.

Figure 3.13 timing diagrams illustrate the operation of HOLD, HOLDA, and BREQ.
HOLD is asserted within a T21 cycle. Since external HOLD must be synchronized
internally, SHOLD is asserted one clock cycle after the assertion of HOLD. This
explains why the T,, T,, bus cycle was started. This new bus cycle would not have
started if HOLD had been asserted one clock earlier. The state machine completes
all outstanding cycles and ignores internal bus requests indicated by the assertion of
BREQ. Once the T, idle state is reached, the hold state T, is entered. HOLDA is
then asserted, and all output signals except HOLDA and BREQ are floated. Within
the second hold cycle, the HOLD signal deasserts. The state machine exits the hold
state and transitions to T, to perform another bus cycle request. Unlike the assertion
of HOLD, deassertion of HOLD resets the SHOLD signal so that on the next clock
cycle, the bus can be recovered and HOLDA made inactive. Recommended set-
up and hold times are required to ensure release of the hold state on the clock cycle
following the deassertion of HOLD.

LOCAL BUS INTERFACE

BREQ is activated by the processor’s internal bus requests independent of the state
of HOLD and HOLDA. BREQ remains active for at least one clock cycle once ADS#
has been activated for the requested cycle.

as [L L L L L
ws \ [maat N/
we N TV AT TN T30\
wore 7\ | /777 151 VI 0N
wseto po " Tp==q-CD-=4- P -1~ 1- 41 CRRX
nOW _/ N
s V74 AN

!
A
d

Figure 3.13 HOLD, HLDA, and BREQ
3.4.3 Bus Lock

The bus lock signal (LOCK#) provides indivisible read-modify-write memory operation
sequences for use in multiprocessor systems. The internal arbiter (using HOLD and
HOLDA signals) will not release the bus to other bus masters unti LOCK# is
deasserted. Multiprocessor systems with an external arbiter shouid also use the
LOCK# signal to prevent granting the bus to other masters.

Locked sequences begin when the BL bit is set in the DIRBASE register and end

327

LOCAL BUS INTERFACE

when the BL bit is cleared.

Programmers need not track synchronicity between the bus and the instruction that
sets the BL bit. LOCK# is asserted along with ADS# on the first data bus cycle
following the setting of the BL bit. LOCK# and ADS# are deasserted on the first
data bus cycle after clearing of the BL bit.

The bus is not locked until after the first data access cache miss causes the
assertion of the LOCK# signal. Multiprocessor system software should therefore
ensure that the first load instruction in a locked sequence references non-cachable
memory.

3.4.3.1 Supervisor-Mode Activation of LOCK#
Supervisor mode software can set or clear the BL bit in the DIRBASE register directly.
3.4.3.2 User-Mode Activation of LOCK#

User mode software can set or clear the BL in the DIRBASE with the LOCK and
UNLOCK instructions. These instructions support generalized interiocked sequences.
The LOCK instruction sets the BL bit in the DIRBASE, and the next load or store
operation locks the bus. Interrupts are disabled until the bus is unlocked. The
UNLOCK instruction clears the BL bit in the DIRBASE, and the next load or store
operation uniocks the bus.

Some restrictions apply to this method. An interlocked instruction sequence must not
branch or execute outside the 32 sequential instructions that follow a LOCK
instruction. The interlocked sequence must be restartable from the LOCK instruction
if a trap occurs, as in read-modify-write sequences. In sequences with more than
one store instruction, software must prevent traps following the initial non-restartable
store instruction. This ensures that the sequence will not be restarted beyond this
point. To meet this condition, the software must read and write the unmodified
values of the locations used by the instructions following the first store, to the
possibility of a data access page fault. Software must also ensure that executed
code is within the same page to prevent instruction fetch page faults.

The processor will ignore a second LOCK instruction issued before the bus is
uniocked. A trap occurs when 32 instructions have executed following a LOCK
instruction, if a load or store not using the cache and which follows an UNLOCK
instruction has not been executed.

If a trap occurs between a LOCK instruction and the first load or store following an
UNLOCK instruction, the interlock bit (IL) in the PSR is set and BL is cleared. IL
indicates to the trap handler that a LOCK sequence has caused the trap. It searches

328

LOCAL BUS INTERFACE

backward for the LOCK instruction and restarts from that point. The trap handler can
scan up to 32 instructions: if no LOCK instruction is found, it signals an error to the
user code.

3.4.3.3 Bus Lock During Page Table Update

The i860 microprocessor also asserts LOCK# in TLB miss processing to update the
accessed bit within a page-table entry. The maximum time that LOCK# may be
asserted for this case is five clocks plus the time needed for hardware to perform a
read-modify-write in the page-table entry.

The LOCK# signal is asserted with an appropriate setup time relative to the clock
cycle that samples the assertion of ADS#. This ensures that this bus cycle will be
part of a locked sequence. Within the processor, the LOCK# signal masks the
HOLD signal before it is synchronized by the processor. In this way, the LOCK#
signal prevents the local bus arbiter (HOLD and HOLDA) from relinquishing the bus
(See section 3.4.2 provides for more information about the local bus arbiter). The
LOCK# output signal internally controls the local bus arbiter. It may also be
connected to an external bus arbiter to perform its bus locking function.

Figure 3.14 illustrates locked cycles. The LOCK# signal is asserted prior to the
begining of the T,, state of Cycle 1 to initiate a locked cycle. The LOCK# signal is
unasserted after the end of T,, to indicate that Cycle 2 is not locked. This particular
example is not of practical use, since it locks a single cycle, but it illustrates the
LOCK# signal timing.

LOCAL BUS INTERFACE

CYCLE 1 CYCLE 2 CYCLE 3
NON=PIPELINED | NON=PIPELINED | NON=PIPELINED
READ WRITE WRITE

(2=2) (2=2) (2=2)
i Tyt i Ty T Tys

« U
s \NNZ7TNLT

A31=A3, W/R§, |
BEng, NENES,
PT®

waone | [77177N \STTHION /777

we NN [T

Figure 3.14 Locked Cycles
3.5 CACHE CONTROL OPERATIONS

The KEN# (cache enable) input signal is used to externally enables or disables
cache updates. The PTB output signal is used when paging is enabled to provide
the memory subsystem with cache control page table information relating to the
current cycle.

The i860 microprocessor prevents updates of both the data and instruction caches
unless the KEN# sampled active. Enabling cache updates for a given cycle requires
that the KEN# be sampled on the clock period after ADS# is asserted through the
clock in which NA# or READY# is asserted. Updating either cache involves the
generation of four 64-bit read operations. KEN# must be asserted through all four
cycles. if KEN# is found deasserted at any time during the above described
sampling period, the data being read is not cached and two scenarios are possible:

330

LOCAL BUS INTERFACE

1. If the bus cycle is due to a data-cache miss, no subsequent cache-fill cycles are
generated.

2. If the bus cycle is due to an instruction miss, additional cycles are generated until
the address reaches a 32-byte boundary.

Accesses to data or instructions already cached are not inhibited by KEN#. To
prevent such accesses the caches must be flushed.

When paging is enabled, the values in the cache disable (CD) and write through
(WT) page table bits are used to determine the caching strategy. During memory
transfers, the secondary page table entry’s CD bit indicates whether accessed data
should be stored in an external cache. CD in the first-level page table is ignored.
The WT bit allows software to determine the internal caching strategy. If WT is set
in a page table entry (PTE), on-chip caching is inhibited. If WT is clear, normal
write-back policy applies to page table data. The WT bit of page directory entries is
reserved and is not referenced by the processor. The WT bit is independent of the
CD bit: data that is not stored in the on-chip caches may be placed in an external
cache.

The internal cache is disabled when a CD bit is set or when an external KEN# signal
is unasserted. The CD and WT bits do not function when paging is disabled.

When the PBM bit in the EPSR is set, the PTB output signal reflects the value of the
WT bit. When clear, PTB reflects the value of the CD bit. The PTB output signal
remains unasserted while paging is disabled.

3.6 TRAPS AND INTERRUPTS

Traps are caused by external conditions or by exceptional conditions detected in the
course of program execution. Traps cause the instruction being executed to abort
and transfer control to a trap handler program stored in the hexidecimal virtual
address OFFFFFFOO0.

The trap handler reads the PSR and FSR register to identify the cause of the trap and
branches to a portion of code that processes the trap (or traps if more than one
occurred simultaneously). Once the trap handler has executed code to service the
trap conditions involved, it restores the state of the processor, restarts the aborted
instruction and resumes normal program execution. The i860 microprocessor is
designed to ensure that all program instructions can be restarted. The i860
Programmer’s Reference Manual explains how to write trap handling software. Table
3.3 summarizes the causes and indications of various traps. '

331

LOCAL BUS INTERFACE

Type indication Caused by
PSR FSR Condition Instruction
Instruction T Software traps trap, intovr
Fault Missing uniock Any
Floating SE Floating-point source exception Any M- or A-unit except fmiow
Point Floating-point result exception | Any M- or A-unit except fmiow, pfgt,
Fault FT AO, MO overfiow and pfeq. Reported on any F-P
AU, MU underfiow instruction pius pst, fst, and
Al Mi inexact result sometimes id, pfid, ixfr
Instruction IAT Address transiation exception Any
Access Fault during instruction fetch
Data Access Load/store address transiation | Any load/store
Fault exception
DAT® Misaligned operand address Any loed/store
Operand address matches Any load/store
db register
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signai

‘Mmmmmmmmmwm.

Table 3.3 Types of Traps

The reset trap and interrupt trap are caused by external conditions. Reset traps are
caused by hardware resets (Section 3.8 provides further explanation). Interrupts are
caused when an external source asserts the INT signal while interrupts are enabled
(i.e. while the IM, interrupt mask bit is set in the PSR). Traps immediately save and
clear the IM to inhibit incoming interrupts.

The i860 microprocessor does not provide an interrupt acknowledge signal. After the
interrupt takes place, the trap handler can read from the external I/0 system to
determine the source of the interrupt. The processor then indicates to a port that the
interrupt has been processed.

332

LOCAL BUS INTERFACE

3.7 TEST SUPPORT FUNCTIONS

The i860 microprocessor has a boundary scan mode for component or board level
testing of signals and logic. Special test logic or instrumentation needs only to
connect to CLK, BSCN, SCAN, SHI and BREQ signals to sample and drive external
processor signals.

Sampling of an active boundary scan (BSCN) input signal initiates the boundary scan
mode within the following clock cycle. Boundary scan mode may be activated while
RESET is active. The processor exits boundary scan mode on the clock cycle
following deassertion of BSCN. The internal state is undefined when the processor
exits boundary scan mode. RESET should be asserted to reinitialize the processor.

BSCN | SCAN Testabliity Mode

LO Lo No testability mode selected

Lo HI (Reserved for intel)

Hl Lo Boundary scan mode, normal

HI Hi Boundary scan mode, shift
SHI as input; BREQ as
output

Table 3.4 Test Mode Selection

While in boundary scan mode, the processor may operate in normal mode or shift
mode. Shift mode is a sub-mode which may be entered on the clock in which SCAN
input is asserted. The normal mode sub-mode may be entered on the clock in
which SCAN input is deasserted.

During normal mode, test logic provides a set of latches which can force a value onto
the output pins or sample all pin values. Every pin has a latch, and each output
signal and output bus (including the bi-directional data bus) has a one-bit control
latch.

LOCAL BUS INTERFACE

rout Ovpmt Assecisted
Lateh Lateh Im“. o

SH

‘83CN

SCAN

RESET

00-083 00-083 DATA

cC1C00
A31-A3 ADORt
NENE ¢ NENEL
PTB¢ PTB
W/Re W/Rt
ADG ¢ ADSt
HLDA .
LOCK ¢ LOCKt

READY ¢

KEN¢

NA¢

INT/CS8

HOLD

BE7¢ -8E0¢ BEt
BREQ

Table 3.5 Test Mode Latches

Table 3.5 identifies latch names and classifies each as input, output or control.
Latches may be loaded and read serially when in serial-mode.

Here is a typical test sequence:
1. Enter shift mode and assign a value to all the latches.

2. Enter normal mode to force values onto desired output pins and read
all pin values.

3. Enter shift mode to read new values on all input pins.
3.7.1 Normal Mode Operation

Normal mode begins with a clock cycle that samples a deasserted SCAN input
signal. Within normal mode, the contents of the output latches are driven onto the
output pins or buses if the corresponding control latch bits are set. Output pins or
buses with the corresponding control latches not set are floated.

3.7.2 Serial Mode Operation

Shift mode begins with a clock cycle that samples the SCAN input in the active state.

The value of all pins are immediately loaded into latches. input pin latches load
externally driven values. Floated output or bidirectional pins also read externally
driven values. Latches with forced output pin values during normal mode, load their
own values and do not change.

LOCAL BUS INTERFACE

Immediately after the clock cycle that sets the shift mode, the output of the BREQ
output signal reflects the value of the BREQ latch. On subsequent clocks, the value
of all the latches are shifted to the BREQ pin. At the same time, new values are
being shifted in via the SHI pin. Figure 3.16 shows the order in which boundary scan
latch chains are serially read and written. All outputs except HOLDA and BREQ are
floated in shift mode to avoid glitches on the output lines. However, some glitches
may be evident in the HOLDA output pin.

1 2 3 L) L) [} [
~ S > SCN -~ SCAN > AENMT = DATAt = 00 <~ ... = O =
n ” ” 00 " e haad 104
CCl = CCO == A% - - A} = ADDRM = MEME! ~ NENES — PTRR <~
108 "0 107 L) *e 10 " 12 "3
PTG — W/ — WRG = ADR = -ADSO =~ MDA =+ LOON = LOCKS «o ARADYS ~o
"e "s ”"e 1"? 1" 10 1% "
KENS —o NACG —= INT/CBE == HOLD =~ Ot = OF7¢ - . - 0 ~ SRS -

re

Figure 3.15 Boundary Scan Chain
3.8 RESET AND CLOCK CIRCUIT

i860 microprocessor RESET input must remain high for at least 16 clock periods to
initialize the processor. Table 3.6 shows the status of all output pins while RESET
is asserted. Once the RESET signal goes low, the processor traps and begins
execution at hexadecimal address OFFFFFFOO0 to execute the central trap handiing
routine. The 860 Programmer’s Reference Manual details processor status following

a reset operation.

335

LOCAL BUS INTERFACE

Pin Value

Acknowiedged g
ADS#, LOCK# HIGH Tri-State OFF
W/R#, PTB Low Tri-State OFF
BREQ Low LOW
HLDA Low HIGH
063-00 Tri-State OFF | Tri-State OFF
A31-A3,
BE7¢-BEOQ#, Undefined Tri-State OFF
NENE ¢

Table 3.6 Output Pin Status During Reset

The circuit in Figure 3.16 shows the simple system needed to generate the clock
and the RESET signal. The clock is a standard TTL circuit rated for the i860
microprocessor configuration used (e.g. 40 MHz).

The RESET signal is triggered when power is first turned on or when the reset button
is pushed. Voltage in the capacitor falls to zero, creating a high value for inverter
output. The value is clocked by two D flip-flops to synchronously assert a RESET
signal. The 10,000 ohm resistor charges the capacitor and, after a long delay, raises
inverter input to a voltage level that moves output switches to a low state. The
low-level signal is clocked through two flip-flops and causes the RESET to deassert.
The RC delay is long enough to ensure that RESET remains asserted for the needed
16 cycles. The inverter and the flip-flops are used to clean up the RC signal and
synchronize the resulting RESET signal. Two flip-flops help to prevent a metastable
state that could be derived when synchronizing the RC network pulse.

The circuit shown to generate CS8 consists of a driver (e.g. two inverters) to delay
RESET and provide hold time relative to the falling edge of RESET. This signal is
“ored” with INT. CS8 is inactive after being sampled by the falling edge of RESET,
and the INT signal remains unaffected.

336

LOCAL BUS INTERFACE

uopeseusd §SO PuR 13S3U NO0ID 10 YNAD 9L°c einBid

3
J
3
k]
$
I
AA.M—‘\..__
! |

.!m M

N

YOLVINISO Hnee

AAJ
LN -)

337

Memory Interfacing

CHAPTER 4
MEMORY INTERFACING

4.0 Introduction

The on-chip caches of the i860™ 64-bit microprocessor contribute to its extremely high
level of performance. Depending on the locality of memory references, the processor
can usually operate from these caches. As a result, fewer access are made to the
external bus allowing instructions and data to be supplied to the CPU at a very fast
rate.

The need for the on-chip cache system stems from the access time performance of
the i860 CPU which is double that of current DRAM devices. This disparity is likely to
exist for some time. But, the caches reduce the number of accesses to the memory
system. Therefore, the memory system's effect on the processor’s performance is
greatly reduced.

The locality of memory references is key in determining the affect of the memory
system on processor performance. Some program algorithms generate widely
disbursed memory references. This type of program behavior increases the number
of external bus accesses. Obviously, the memory subsystem’s effect on processor
performance is more pronounced in this case.

Linpack or graphics matrix operations and memory management applications behave
in this manner. It is applications such as these that warrant the effort and cost needed
to design efficient DRAM subsystems. An inefficient design can reduce the performance
of these applications by 60 or 70 percent. Poor performance of these applications can
have a disproportionate detrimental effect on overall system performance. This effect
is especially noticeable if system functions such as paging or display are involved.

This chapter examines a DRAM subsystem design. The example has been optimized
to reduce the number of clocks in which the processor waits for the bus. Controller
function, processor features and details such as timing are analyzed. The example
cannot account for all processor applications, and many applications will implement
optimizations not found here. This design has been built and tested, however. If
desired, it may be implemented as shown here.

The example assumes a working knowledge of computer system design. items that
will be discussed but not explained include DRAM operation, PAL programming and
operation, worst case analysis techniques and i860 microprocessor bus operation.

MEMORY INTERFACING

4.1 CPU features

Certain i860 microprocessor features are specially devised to facilitate optimum DRAM
subsystem performance. The next near pin (NENE#) is one example: it serves to
define DRAM page size. This section briefly describes these special features.

4.1.1 The KEN# Input

External logic, which is usually part of the DRAM controller, generates the KEN#
input. KEN# indicates that the current read cycle is cacheable. As discussed in
earlier sections, the processor generates three read cycles (in addition to the current
cycle) in response to KEN#. These cycles provide 32 bytes, enough data to fill one
cache line. The handling of these cycles impacts memory system performance and
will be discussed in the next section.

KEN# is generated for every cache line fill cycle. Itis usually generated by decoding
the processor address. Since the processor has no 1/0 space, memory mapped I/0
addresses must be non-cacheable.

Figure 4.1 shows the timing requirements for generating KEN#. The most stringent
case is a pipelined zero-wait-state cycle where KEN# must be generated in one
clock. Once the address is valid, KEN# must be generated in 11 nanoseconds,
dictating that KEN# be generated by combinatorial logic.

E— 3003 —4

a L[L _—'

' e
w3 TN\, / /| ;
|] |]
ADDRESS & = | I
’L s | |
N : I
|

;/'?_

|
1308 (€&~

- TN

Figure 4.1 KEN# timing
42

MEMORY INTERFACING

4.1.2 Bus Pipelining

Obviously, the i860 microprocessor’s bus pipelining feature must be incorporated in
DRAM subsystem design. This feature allows the processor to overlap bus cycles.

Pipelining is controlled by the processor's NA# input signal. It allows the processor
to begin a new bus cycle while another cycle is in progress. It can be activated
twice before RDY# is activated. In this way, three bus cycies can be activated before
the first is completed.

Although the process is not demonstrated in this example, write cycles can be
pipelined. In this design, writes are buffered or "posted” and can run without wait-
states. As such, write cycle performance does not benefit from the use of pipelining.

Read cycle perfomance does benefit from pipelining, however, especially if read
cycles are due to a floating point vectore load. Line fills replace that with vector
loads. Vector loads can occur in long strings. Since most of these cycles do not
cross a DRAM page boundry, they can be executed with a minimum number of
wait-states. Figure 4.2 demonstrates how pipelining facilitates cache line fills. Here,
two cache line fills occur consecutively. :

ADS§# Lt/ 2/ s/ \le /s /
ADDRESS X 1 X — T — OO T
NA# \ / \ M\ M\ T\
DATA - ccvvremmeaanannneaanaanneanens 4o
RDYy§ '/ \ S\l

Figure 4.2 Bus Pipelining
The first read cycle in Figure 4.2 occurs from an idle bus state. In this case, the

DRAM controller must add five wait-states to the cycle. These wait-states satisfy the
RAS access time of the DRAMs. They are added by suppressing READY.

43

MEMORY INTERFACING

Ordinarily, waiting for READY is a waste of processor time. Activating NA#, however,
allows the next bus cycle to start. NA# is sampled active in the third clock, and
ADS# is driven active. The address for the second cycle is valid one clock later.

NA# is activated again before returning READY to the CPU, and the third vector load
performed. At this point, READY must be returned to the processor before NA# is
activated again. Data for the first read cycle must be valid at the processor data
input pins when NA# is activated.

In this example, the pattern can be repeated an unlimited number of bus cycles.
When ADS# is not activated in response to NA#, the pattern is interrupted. Clearly,
the benefit of pipelining in this example is that read cycles overlap. Consecutive
pipelined read cycles return data to the processor every two clocks. In contrast,
non-pipelined read cycles return data every four clocks.

4.1.3 The Next Near Pin

The next near (NENE#) feature directly supports the DRAM subsystem (The next
near pin is described fully in chapter 3). Its function optimizes page or static column
mode designs. It indicates that the current row address is the same as the previous
address.

This DRAM design example uses static column mode memories. These memory
devices contain a row address register. The register simplifies access to memory if
the access is within the same DRAM page (row address). In the example, RAS# can
remain active from the previous cycle. For read cycles, CS# can also remain active.
This type of cycle saves clock cycles: the required number of clocks doubles if RAS#
must be activated to latch the row address. These extra clocks are required to meet
RAS precharge time. Implementation of this function will be detailed later in this
chapter.

The NENE# function optimizes memory subsystem design. If implemented in logic,
the function requires at least one register and a comparator. Another benefit is that
NENE# is available along with the address, and no additional time is needed to
generate this signal. Zero-wait-state accesses could not be performed without this
feature.

4.1.4 Write Data function

Data bus contention could result when a write cycle is immediately preceded by a
read cycle. The i860 CPU includes a bus feature to prevent this probilem. When a
write cycle occurs in the clock following a read cycle, write data valid timing changes.
Figure 4.3 illustrates this change.

44

MEMORY INTERFACING

CIX -~

oy | N /T L /T
!

L L |

| .

l/ul

DATA I (el el il el il \Zollldlellll
' AR NEEES ARARUVOUUURARN

ey N s N

Diagram A. Zero-Wait-State Write Cycles

Diagram B. Read cycle Followed by Write

Figure 4.3 Read - Write Timing

45

MEMORY INTERFACING

Diagram A shows two successive write cycles. Diagram B shows a read cycle
followed by a write cycle. The write data in Diagram B is driven one clock later than
it is in Diagram A. This feature allows data bus transcievers to tristate the processor
side of the bus before the CPU drives the write data.

4.2 DRAM Subsystem Overview

The features just described help make the DRAM subsystem more

efficient. These functions are included in the processor to save on the logic needed
to implement the DRAM controller. Timing constraints have also been eliminated,
allowing fewer clocks per bus cycle.

The DRAM subsystem example described in this chapter illustrates how to use these
features and describes the interaction of the processor with the memory system.
The subsystem has been designed to use a 33.33 MHz clock. The example uses one
Mbit memories which are organized 256k x 4. This memory is selected because of
its minimum configuration. With a 64-bit bus, the minimum memory configuration is
2 Mbytes (16 devices). Using 1M x 1 memory devices, the minimum memory
configuration is 8 Mbytes (64 devices).

As defined in this chapter, the system can support up to eight 8 Mbytes. It is easily
upgraded, however.

Figure 4.4 is a block diagram of the memory subsystem example. It is comprised
of five parts: address path logic, data path logic, parity logic, controller and DRAMs.

4.2.1 Address Path Logic

Address path logic performs several functions. Its primary function is to drive the
processor address to the DRAM bank. To perform properly, it requires two paths for
the ROW and COLUMN address.

In this example, the ROW address consists of processor address bits 12 through 20.
These bits are buffered by the 74BCT29827 buffer. The buffer also disables the ROW
address when the COLUMN address is selected and uses the device's OE pin for
this function.

The output enable of the column address logic is also used for this function, but the
column address must be latched for pipelining. For this reason, an AS821 register
with output enable function is used.

The register and buffer chosen to implement the address path logic are

10 bits wide. The memory uses nine of these bits. The remaining bit drives the

46

MEMORY INTERFACING

parity DRAMS. Parity logic is described later.

Outputs of ROW and COLUMN address devices drive every DRAM.

Restrictions on the drive capabilities of these devices require additional drivers every
4 Mbytes. Two sets of address logic devices are shown in Figure x.4. This
configuration allows up to eight Mbytes of memory. Additional drivers can easily be
added for larger configurations.

4.2.2 Data Path Logic

The data path consists of eight 74AS646 bi-directional latching transcievers. These
devices fulfill two critical memory system requirements. These transcievers hold read
data when the processor performs pipelined read cycles. Data for two reads has
been accessed when the processor begins the third read cycle in a pipelined
sequence. The data registers hold the first cycle’s data while second cycle’s data
is held at the transceiver input.

The register feature of the transcievers is also used during write cycles. The memory
system posts all write cycles. During a posted write, NRDY# is returned to the
processor before data is written to the DRAM. Without posting, write cycles would
require at least two wait-states. Registers in the data transceivers hold write data
after NRDY# has been activated. Section 4.3.4 provides a detailed description of the
posted write function.

4.2.3 Parity Logic

Parity logic generates parity information and checks for parity
errors. Eight 74AS280 9-bit parity generator/checker devices are used.

One parity bit is generated by each device. These bits are either

written to the parity DRAMS or used by logic to generate a parity error signal. The
parity error (PARERR) signal generates an interrupt which cannot be processed in
time to stop the current bus cycle. The bus cycle which caused the error cannot be
restarted. :

The Parity DRAM devices are 1Mbit chips organized as 1M x 1. These DRAMs are
used to store parity information for all eight Mbytes of main memory. The tenth
address bit mentioned in Section 3.1 supports these devices. They divide the parity
DRAMs into four sections which correspond to appropriate banks of main memory.

Odd-parity was chosen because of implementation restrictions. If even-parity is used,
"I inputs of the parity generators must be pulled down. Pull-ups are preferable in

47

uonjeandyjuo) ajdwexy wnwixepy ‘p'y 24ndy

MEMORY INTERFACING

48

viva qvay
saymiay ssasppy uumpo)
t@ ﬂai g
€506y 1SOHSVY ooy ssasppy uwmio))
r ®
2 Via § »pog I-UQSJ noy feu
o
28025V 0S0+40SVH e
|
(r-0)isa kS 1€
fodsvi
._s.,_._-_

Avia _ M o0
ALiNvVd A
VIVQ ALIVd avay d
< VIVQ ALINVd 2iiMM p—

YARYvd

A

MEMORY INTERFACING

light of noise immunity.
4.2.4 Control Logic

The controller circuit contains the bus tracking state machine which is implemented
with one PAL. The output signals of the PAL control five other PAL devices, each
of which implements a specific control function.

The state machine PAL generates five state-variable outputs. These outputs define
32 states; designated sequences of these states implement various bus cycles. The
state variable signals are decoded by the other control PALs to create control signals.
These signals, such as RASO#, CAE#, and WEL, are activated to control the DRAMs,
addresses and data logic.

Because of timing restraints, the state machine PAL (DSTAT in Appendix B) generates
control signals NA# and RDY#. These constraints will be explained in the functional
description (Section 4.3).

800000
7FFFFF
BANK3
600000
SFFFFF
BANK2
400000
JFFFFF
BANK1
200000
1FFFFF
BANKO

Figure 4.5 Address Map
49

MEMORY INTERFACING

The DSTAT PAL also generates the BSY# signal. It serves as an arbiter between
different system units, allocating processor bus priority to other subsystems that
support bus pipelining.

The Control-A PAL generates row address strobe (RAS) signals for all DRAM banks.
Address bits are decoded along with state variable outputs of the DSTAT PAL to
generate these signals. Each signal drives every DRAM in a 2 Mbyte array. The PAL
is not registered because it primarily performs a decode function.

The RAS signals select the active DRAM bank. Address inputs of this PAL are
A21-A23. Figure 4-5 shows the address map for four banks of memory. The PAL
program for this PAL is listed in Appendix B. It shows the states decoded for the
write, read and refresh functions. This PAL can be duplicated if a larger main
memory is required, in which case address decode must be modified to select more
memory banks.

This PAL also generates RAS for the parity DRAMs. RASPO enables the
1M x 1 DRAMs containing parity information for 8 Mbytes of main memory. Decode
of this signal requires fewer address inputs.

Together, the Control-B and Control-C PALs generate all address and data path
control signals. They both have as inputs the state variables from the DSTAT PAL.
Control-B also operates from a delayed clock, DCLK.

The delayed clock allows the Control-B PAL to sample state variables in the clock
they are generated. Control-B outputs can be generated in the same clock.

The Control-B PAL controls the column address path. The PAL aiso generates the
column address enable (CAE#) signal, which determines data access time, and the
CSX# signal, which generates CS# signals to the DRAMs. Because the early write
function is used, CSX# determines when data is written to the DRAMs. Control-B
also generates signals which control the transceiver registers. The remaining
transceiver control signals are generated by Control-C.

Control-C also generates parity logic control signals. These

signals latch parity data during writes and error indication during reads. Another
important Control-C signal is RAE which controls the row address path. Control-C
also generates OEX# which generates output enable signals for the DRAMs.

The Control-D PAL does not use state variable inputs. Its only
function is to generate write enable signals for the DRAMs. The WEL signal from
Control-B is the clock input for this PAL. The signal is generated at the beginning

410

MEMORY INTERFACING

and end of write cycles. By monitoring LADS# and W/R#, this PAL can determine
the type of cycle being run when WEL is activated. The WE# signals are activated
during writes and deactivated during reads.

4.3 DRAM Subsystem Function
This section defines the function of DRAM subsystem bus cycles.

4.3.1 Signal Description

The following list describes the purpose of all signals generated for the DRAM
subsystem. Subsequently, the signals will be implemented in a functional discussion.

4.3.1.1 Processor Interface

NRDY#
NRDY# is directly connected to the processors RDY input. It signals
termination of a bus cycle and can be tristated.
NNA#
NNA# is connected to the processors NA# input. It is
activated to enable pipelining and can also be tristated.
KEN#
KEN# indicates when caching can be enabled. It generates a
cache line fill when activated in the same CLK as NA# and RDY#.

4.3.1.2 Data Path Logic Control

RAE#
RAE# enables the row address drivers. It disables the row address
before the column address is driven.

CAE#
CAE# enables the column address register outputs. It disables the
column address when the row address is driven.

CAL#
CAL# drives the clock input of the column address registers.

RDL#
RDL# activates the transceiver registers during read cycles.

411

MEMORY INTERFACING

4.3.1.3 Address Path Logic Control

CSX#
CSX# generates CS# signals for four banks of memory and is generated
from the rising edge of DCLK.

CS#0-3 |

These signals are buffered versions of CSX#. Each signal drives one
bank of memory.

OEX#
OEX# generates OE signals for four banks of memory and is generated
from the rising edge of CLK.

OE#0-3
These signals are buffered versions of OEX#. Each signal drives one
bank of memory.

RAS#0-3
These signals are decoded separately. Each enables
access to a specific memory bank. They are decoded from
address and state variable outputs.

RASPO#
RASPO# is generated during any access to the first four DRAM banks
DRAMs. It latches the row address in the parity DRAMs.

WEO-WE?7
These signals are generated by the control-D PAL. Each signal
corresponds to a single byte in each DRAM Bank.

4.3.1.4 Controller Signals

WEL ‘
WEL is connected to the clock input of the control-D PAL. It latches the
BE#0-7 inputs and is activated only during write cycles.

LADS#
LADS# is used by the state machine to determine when a
bus cycle has started. It also indicates that the processor address is
valid.

CPEN#
CPEN# indicates that a bus cycle has started and is waiting to be
completed. It signals to the state machine that LADS# has been active
and that a bus cycle is pending.

DCLK
DCLK drives the clock input of the control-B pal. It is produced by
delaying CLK 20 ns.

412

MEMORY INTERFACING

S0-S4
These signals are the state variable outputs of the state

machine. They are decoded by other control PALs to produce cond

signals.
BSY#

BSY# is used to prevent other subsystems from driving NA#, RDY# or
the data bus before the DRAM subsystem has completed pipelined bus

cycles.
DRAMSEL

DRAMSEL is a decode output which indicates that the current bus cycle

is a DRAM access.
CLRCYC _
This signal clears the cycle pending register.

R B B B B L Bl e Bl
DCLK Sy By By

ADS§{ T\ L/ T
LADS§ —H__! -~

. L]

] 4 1
ADDRESS | — } : '
RBF |] T |
RAS# | | —— | ; 1 /—‘—'
CAE# |] ™\ | | | /Jl—|
DRAMADDR | e —t - - e T——t+—p- - - |

CALY -“L}_./4—‘W_L.;F+'+\4__/ﬂ‘-wi£::£1::::+
CS#(0-3) ~ |

|
OBHO-Y) ———— L
DRAMDATA - - - - cfr - - - - - - - - <R o3> |- ==+~ = |
RDL] 1 | T 1 I |
T I 1
DATA -~ ,,]m i m:,‘:m :
NRDY# | L ,___I_/—j—[
I b I :

Figure 4.6 Basic Read Cycle

413

MEMORY INTERFACING

4.3.2 Basic Read Cycle

The basic read cycle is shown in Figure 4-6. This cycle is performed when the
processor requests a single read while the bus is idle. Pipelining is not used in this
example to simplify discussion, so the NA# signal is not shown.

The read cycle begins when the CPU activates ADS#. ADS# is latched by controller
logic and heid for one clock. ADS# is latched with discrete logic because of
processor bus timing constraints. Note that the processor address is not valid in this
clock.

The LADS# register output is sampled active at the next clock edge. The trailing
edge of LADS# activates CPEN# if DRAMSEL is active. The Row address from the
processor becomes valid in this clock. Since RAE# is already active, the row
address is driven to the DRAMs and is valid in the following clock. RAS is driven
active following this CLK edge.

The falling edge of RAS latches the row address in the DRAMs. The row address
drivers must be tristated at this point, but not until the row address hold time is met.
For this reason, RAE# is not deactivated until one clock after RAS is activated.

At this point, the column address must be driven as soon as possible. The address
valid delay adds directly to data valid time, but row address buffers must be tristated
before CAE# is activated. The delayed clock, DCLK, allows CAE# to be activated
in the same clock in which RAE# is deactivated. In this way, CAE# is activated in
the minimum time possible.

CAL# latches the column address for pipelined reads in the same clock in which
CAE# is activated. CSX# is also activated in this clock and is buffered to produce
four CS# signals. These signals enable DRAM data buffers for the read cycle while
the column address stabilizes.

Data becomes valid two clocks after CAE# is activated. Read data is not valid long
enough to meet hold time requirements of CLK or DCLK and must be latched and
synchronized to CLK. This function is performed by the RDL signal.

RDL enables data transciever registers. It is driven from the same PAL as CAE# and
is exactly in synch with CAE#. RDL is activated two DCLKs after CAE#, however,
to be ensured active in time to latch read data.

NRDY# is generated in the next clock. The processor samples read data heid in the
transceivers at this point. If no other cycle is pending, RAS# and CS# are
deactivated in the next clock. The cycle ends when the state machine has waited

414

MEMORY INTERFACING

three clocks and met RAS precharge time.

4.3.3 Pipelined Read Cycles

The basic read cycle just described only occurs if the processor generates a single
read cycle to a noncacheable address. Since most read cycles are cacheable, they
occur as cache line fills.

A cache line fill generates four consecutive read cycles. Using the pipelining feature
of the bus, these cycles may be overlapped as shown in Figure 4.6. Through
pipelining, addresses of subsequent read cycles are driven before the previous cycle
completes. As a result, latency of the last three cycles of a fill line is reduced. A
cache line fill begins as a basic read cycle. It is converted to a cache line fill by
the KEN# signal which is sampled active when NA# or RDY# is active. Three
additional read cycles occur subsequently to fetch the entire cache line, and these
cycles can be pipelined.

NA# controls bus pipelining and is generated by DRAM control logic. NA# is driven
active by logic during any read cycle. If another bus cycle is pending, the processor
activates ADS# in the following clock. Once this bus cycle has started, NA# is
activated a second time. The processor then begins the next cycle by issuing ADS#.

Up to three bus cycles may be pending at one time. NRDY# must be returned for
the first read cycle before NA# can be activated a third time. This function must be
enforced by the DRAM control logic. The state machine PAL is programmed to
activate NA# at the appropriate time. During the first read, it activates NA# three
clocks prior to the clock in which NRDY# is active. It activates NA# again one clock
before the clock in which NRDY# is active. Figure 4.7 shows signal timing for this
bus cycle sequence.

Column address and data registers are needed to implement this function. As seen
in Figure 4.7, the column address path remains enabled throughout the sequence.
CAE#, RAS# and CSX# remain active from the first read. An address driven by the
processor in response to NA# must be latched; otherwise, the column address
changes before DRAM read data is valid. Once the data becomes valid, it must also
be latched. Without data registers, the column address would be held for an
additional DCLK to allow the processor to sample the data. This requirement would
add an additional wait-state.

NA# is activated again once NRDY# is returned to the processor for the first read
cycle. As in the previous cycles, ADS# begins the fourth read one clock later. At
this time, NRDY# is returned to the processor, completing the second read cycle.

415

MEMORY INTERFACING

At this point, NA# is activated a fourth time. If another bus cycle is pending, ADS#
will be activated. Otherwise, DRAM logic completes the next two bus cycles. If no
bus cycles have been started, it then deactivates RAS# and CSX#.

Another bus cycle may begin before the final bus cycles have completed, but not on
the clock after which NA# is activated. RAS# and CSX# signals will remain active
in this case.

~F— 1T 1

L1]]

|

CAL$
CS§(0-3) |
OL§(0-3) |
DRAMDATA |- - -
RDL

|

DATA Tl il
|
|

]
1

Figure 4.7 Pipelined Read Cycles
Pipelined sequences usually occur as described here. These cycles must all occur
within the same DRAM page, however. If the ROW address changes, RAS must be
deactivated, and the pipelined sequence is interrupted. Read cycles generated for

416

MEMORY INTERFACING

a line fill are always within the same page, and the sequence shown in Figure 4.9
ilustrates this case. Note that all cycles of subsequent cache line fils can be
pipelined.

4.3.4 Basic Write Cycle

In this example, pipelining is not uséd with write cycles. A method called posting is
employed instead.

Posting is similar to pipelining because it improves performance by allowing
consecutive bus cycles to overlap. In posting, however, NRDY# is returned to the
processor before a cycle is completed at the DRAM. This function is better suited to
write cycles because data is not returned form the DRAMs. The processar may
complete a cycle and begin another while the DRAM subsystem completes the
WRITE.

A write data register is needed to implement posted write cycles. This register holds
write data after NRDY# is returned to the processor. Write cycles can complete while
the next cycle is in progress.

The row address function of read and write cycles are the same. Figure 4.8
illustrates the function of a write cycle, which begins from an idle bus state. LADS#
starts the cycle one CLK after ADS# is activated. The row address propagates to
the DRAM, and RAS# is activated. As with read cycles, CAE# is activated one clock
later.

CAL# is activated in this clock to latch the column address. The write data latch

signal (WDL) is also activated. It is connected to the transciever clock input. Here,
data is latched and driven to memories.

417

MEMORY INTERFACING

CLK

ax 1 L
oy T '
LADS§# |

e e e

|

-

ADDRESS l)OOOOOO’OL i
L | —

RAE# | , T r/: | l | '
RAS# R e i '/_l—:
CAE# N N VS S T
DRAMADDR {IG@L“‘*&F}_J\'
CAL¥ T N TN —
CS#(0-3) , [; | T !
WE#(0-7)] | — MR 7| 7
DATA IR, i T g
WDL | | |
DRAMDATA : : }
oy T |

Figure 4.8 Basic Write Cycles

CS#-controlled (early) writes are used in this example. When writes are performed
in this way, data must be valid before CS# is activated. The WE# DRAM inputs
must also be active prior to the falling edge of CS#.

CS# is activated one clock after NRDY# is returned to the processor. The write
enable signals are driven in the clock after LADS# is activated. Data becomes valid
in the same clock that CS# is activated. If another bus cycle is pending, ADS# is
active at the next clock edge.

4.3.4.1 Consecutive Write Cycles

Posting is most beneficial when write cycles are consecutive. Figure 4.9 shows three
consecutive write cycles. The first is identical to that shown in Figure 4.8. The
addresses of the following two cycles are in the same DRAM page as the first.
These cycles can be completed without wait-states on the processor's bus.

418

MEMORY INTERFACING

Timing becomes more critical at zero wait-states. The WE# signals, for example, are
no longer valid three clocks before CS#. They are activated in the same clock as
CS#. In addition, write data is only valid in the last clock of the bus cycle.

Figure 4.9 Consecutive Write Cycles
4.3.5 Consecutive Bus Cycles
Additional wait-states are needed when different types of bus cycles occur
consecutively. These are added to the second cycle of the sequence and allow the
first bus cycle to complete after the second cycle begins.

The state machine performs this function. It tracks the current bus sequence. If a
read cycle immediately follows a write, or if the opposite occurs, the controller adds

419

MEMORY INTERFACING

the needed number of wait-states. Bus cycles proceed normally but are delayed to
allow the previous bus cycle to complete and to reverse the direction of the data bus.

These functions are different for read and write cycles. The specific sequence for
each is described in the following sections.

4.3.5.1 Write Followed By Read Cycles

Figure 4.10 shows a write cycle followed by a read cycle. This sequence occurs

when a read cycle is pending before a write cycle has completed. A timing conflict
would occur if the read is to the same DRAM page as the write.

The state machine enters a special sequence to handle this event. It begins as if a
normal write cycle had occured. After it returns NRDY# for the write cycle, however,
the processor asserts ADS#. This signal starts the read cycle.

—

| |

S
NRDY} { | T
DRMEN}§ | ' t
DRMDIR]
T
RDL | | 1

Figure 4.10 Write Followed By Read Cycles
420

MEMORY INTERFACING

In the first clock, data is written to the DRAM. Next, WDL is deactivated to prepare
for another write cycle. Because the state machine has no way to determine the next
cycle type, it prepares for the next write.

The process continues into the next clock. Here, CSX# is also deactivated to
prepare for the next write. The write enables are still active, and WDL is activated.
Control and address signals for the read become valid in this CLK, and the state
machine samples them at the next CLK edge.

Once the state machine determines that a read cycle has started, it enters a special
state sequence. It activates the OE# signal and activates CSX# to enable the DRAM
for a read cycle. The control-D PAL samples W/R# low and deactivates the WE#
signals.

At this point, the DRAM controller has added one extra wait-state to the normal read
process. It adds another for the next clock to allow data to propagate to the latching
transcievers. RDL is then activated to latch the read data, and the cycle completes
normally.

4.3.5.2 Read Cycles Followed by Write Cycles

Figure 4.11 illustates a read cycle followed by a write cycle. Both cycles access the
same DRAM. The write cycle begins while the read cycle is in progress.

Pipelined reads add a level of complexity to the problem. When NA# is activated,
a write cycle can start. This cycle can start before NRDY# is returned to the
processor. Figure 4.11 illustrates a worst-case scenario in which two read cycles
must complete after the write cycle has begun.

ADS# for the write cycle is active in the clock in which NRDY# is returned for the
first of two read cycles. LADS# is active in the next clock. LADS# and W/R#
indicate to the state machine that the cycle is a write. The state machine then enters
a two clock sequence to complete the second read.

The cycle pending signal is important in this sequence. LADS# is not

active when the second read is finished. The CPEN# signal is the only indication
that that another cycle has started. CPEN# is sampled by the state machine in the
clock that NRDY #is active for the last read. In response, the state machine enters
a special state sequence. Here, it performs the functions necessary to prepare for
a write cycle.

421

MEMORY INTERFACING

|

V0% R e — - e e— — —
My NN T T T T T T T T
g: L e T T R T T I
ag L T T T T TT1T T T T T T A~
DRAMADDR 0k ——ob——t—d————F——F——oomonok
cALY —T T\ T T T T
csy(0-3) —t—t——t—t—t—t— 7
OE#(0-3) l 1 | 1 | %’ | : | ;] | !
e oL]

smanits hebemde—dmele—das- L1 i)
RDL | A ——t—t1
DATA ook IO0NE TR DD - el - {- - |- - - | -
WDL P T T T T N9—~T N—~T 7
magy [1 MM M
ppoR L1 T T T T T |7

Figure 4.11 Pipelined Read Followed By Write Cycles

Two clocks after NRDY# completes the last read, OE# is deactivated. In

the next clock, WDL latches the write data. NRDY# is then returned to complete the
write cycle. CSX# is deactivated in this CLK so that data can be written in the next
clock. At this point, the cycle continues as described in Section 3.4.

4.3.6 Page Miss Cycles

A page miss cycle is a memory access which changes the row address. This type
of access is important in modern memory systems using page or static column
DRAMs. These DRAMs have an internal register which holds the row address.
Access can be made by simply changing the column address. This feature reduces
the average access time by several clocks.

The DRAM controller must be designed to take advantage of this feature. In doing

422

MEMORY INTERFACING

so, memory system performance is improved dramatically. To use this feature,
control logic need only activate RAS when the row address changes.

The NENE# signal indicates when the row address has changed. It is available
along with the address during any bus cycle. The state machine samples this pin at
the beginning of every bus cycle.

When NENE# is sampled inactive, the state machine enters a special state sequence.
Here, it performs the functions needed to latch the new row address. Figure 4.12
shows a typical page miss sequence.

CS#(0-3) I \NANAY S/./

| |
ey’ i S R R
—_— T |

|

-4
-
— e wef cmp o] e e e f el and

Figure 4.12 Page Miss Cycles
The RAS# signal is immediatly deactivated when a page miss is detected and is is
held inactive for four clocks. The time RAS# is held inactive is determined by the
RAS# precharge time. This timing is a requirement of the DRAMs and varies
depending on the manufacturer and the speed selection used.

CAE# is deactivated in the same clock as RAS#. The column address register
423

MEMORY INTERFACING

Outputs must be tristated before driving the row address. RAE# is activated two
clocks later. At this time, the new row address is asserted at the DRAM address
inputs. The cycle can then be completed as described earlier.

4.3.7 Refresh Cycles

Refresh cycles must be performed at regular intervals of approximately 500
milliseconds. Each cycle refreshes one row of DRAM data.

Most DRAMs provide their own refresh address. This address is maintained in an
internal counter and is updated if CS# is activated before RAS#. The address from
the counter also refreshes the memory array. This function is called CS# before
RAS# refresh.

Although not illustrated in this example, the refresh address can be provided by an
external counter. This method is called RAS# only refresh.

The RFRQ signal is generated by another counter and indicates that a refresh cycle
must be performed. The counter is set to a count which ensures the proper refresh
interval.

The RFRQ signal is sampled by the state machine during any idle cycle and at the
end of every bus cycle. If the signal is active, the state machine enters a page miss
cycle state sequence. Once the RAS# precharge time is satisfied, the state machine
enters the refresh sequence.

A new row address must be latched after a refresh cycle is performed. After RAS#
is activated for the refresh cycle, it is again deactivated. Once the precharge time
has been met, RAS# can be activated to complete a pending bus cycle.

CPEN# is the only indication that a bus cycle has begun during the refresh cycle.

If this signal is active after the second RAS# precharge, a bus cycle begins
immediately. Only one bus cycle may be started during the refresh sequence.

424

MEMORY INTERFACING

4.4 Parity Circuit

4.4.1 Circuit Overview

Parity logic provides error detection capability for each byte of data. One bit is
stored in the parity memory for each data byte. The value of this bit depends on the
number of bits set in the corresponding byte. The parity logic is designed for odd
parity. If a byte contains an even number of set bits, the parity bit is also set.

Parity data is generated during write cycles. Some delay is incurred, but because
writes are posted, parity data is available in time to be latched by CS# signals.
These signals drive parity DRAMs and data memory.

A separate RAS# signal is generated for the parity DRAMs. This signal must be
activated for accesses to all four banks of memory. The control-A PAL generates this
signal during any cycle to the banks it controls.

Parity is checked during read cycles. The parity error signal is
activated if a zero is detected on any of the parity outputs.

Figure 4.13 is a block diagram of parity logic. It shows connections of the control
and bus signals.

4.4.2 Dedicated Signals
The following is a summary of the signals that control parity logic.

RASPO#
RASPO# drives parity DRAM RAS# input.
PARERR
PARERR is activated when a parity error is detected. It is held in a
register once activated.
PERLTCH
PERLTCH activates the register which samples PARERR
during read cycles.
WPL -
WPL activates the write parity data register.

425

MEMORY INTERFACING

PARERR
WY AT
PARITY
DRAMS
READ PARITY DATA
Q D
X
Prom DRAM Control Logic 3t)
T ——— L
DRMDIR
WPL
RASPO#
CS§{(0-3)
WR§(0-7)

Figure 4.13 Parity Block Diagram

426

MEMORY INTERFACING

4.4.3 Parity Function

Parity data is latched during zero-wait-state writes. It is latched on the clock after
which write data has been latched. The write data register is clocked by WDL in the
clock in which NRDY# is activated. WPL clocks the parity write data register as
shown in Figure 4.13. WPL is activated from the rising edge of CLK. Since CSX#
is activated from DCLK, parity data can propagate to the DRAMs before CSX# is
active.

Parity data is generated by 74AS280 devices. The | inputs of these devices are not
driven during write cycles but are pulled high to generate correct parity output.
During read cycles, read parity data is driven to | inputs. Appendix B provides
complete DRAM system schematics.

Read parity data is accessed in the same way that read data is accessed. The
parity data register is clocked by RDL, and parity data is valid at the parity generators
at about the same time that read data is valid at the transceivers. The DRAMDIR
signal enables output of this register. It disables the register outputs during write
cycles.

The PARERR signal indicates that a parity error has occured. It is generated by a
74ASB0 nand gate. The inputs of this gate are connected to the OD outputs of the
parity generator. If any of these outputs is high during a read cycle, PARERR is
activated.

Once it occurs, the PARERR signal is latched. The PERLATCH signal activates the

PARERR register. It is active every read cycle. The PARERR register can be cleared
in the read cycle following the cycle that caused the parity error.

427

/O Interfacing

CHAPTER 5
I/O INTERFACING

5.1. Overview

I/O devices can be mapped anywhere within the i860™ microprocessor's four
gigabyte physical address space and can be 64-, 32-, 16- or 8-bits wide. For
accesses to 8-, 16- or 32-bit devices, byte-swap logic or 8-, 16- or 32-bit load/store
instructions must be used. Although address pipelining can be used for all i860
microprocessor accesses, 1/O recovery time and infrequent back-to-back 1/0
accesses greatly reduce pipelining benefits. The 860 microprocessor does not
not include 1/0 instructions and there is no separate address map. All I/O devices
must be mapped into the memory address space. The system distinguishes
between memory and I/O accesses by decoding processor addresses. Although
all reads can be cached, the I/O reads must not be cacheable and should
deassert KEN# to indicate a non-cacheable access.

§.1.1 i860 Microprocessor I/0 Subsysterh

Figure 5.1 illustrates the 1/O subsystem of an i860 microprocessor based system.
The memory address and data are latched to allow pipelined operation. /0
addresses and data can be buffered if drive requirements exceed i860
microprocessor specifications. Processor addresses are decoded to determine
whether access is to 1/O or to a memory device. Decoder outputs notify control
logic of cycles and indicate whether the cycles are to memory or to I/O. Read,
write and chip select are generated by control logic. This logic also generates
wait-states in i860 microprocessor cycles and generates READY# when it is ready
to terminate the processor cycle. Interface to all slave devices except DRAMs is
very similar and less performance sensitive. Non-volatile memories such as ROMs
and EPROMSs are accessed through 1/0 control logic and share address and data
paths with other slave I/O devices. The i860 microprocessor provides a CS/8
bootstrap mode for byte-wide ROMs used only during power-up. The mode is
disabled once the system boots.

I/O INTERFACING

-
= [&
~ =t =] == =]
T ==t 2
Il
T

Figure 5.1 1860 Microprocessor System

I/O devices may be mapped anywhere within the processor’'s four gigabyte
5- 2

I/O INTERFACING

physical address space. To minimize the decode logic, devices are placed within
one contiguous block of the i860 microprocessor’'s address map. This minimizes
the number of address lines needed to generate I/O select signals. If 8-, 16- or
32-bit 1/0 devices are used without byte swap logic, 1/O ports must be placed at
8-byte increments (i.e addresses must correspond to the data pins the device is
hardwired t0). This causes the processor to read or write data on the proper bytes
of the data bus. For example, an 8-bit access may get data on D7-0; a 16-bit
access may get data on D15-0; a 32-bit access may get data on D31-0. Here,
addresses are on 64-bit boundaries.

This limitation does not apply if external byte swap logic is used. 8-bit devices can
be placed on continuous byte boundaries; 16-bit devices can be placed on
continuous even byte (word) boundaries; and 32-bit devices can be placed on
continuous, multiple-of-four byte boundaries. If a 16-bit access is attempted on an
odd byte boundary, or if a 32-bit access is attempted on an address boundary that
is not a multiple of four, the i860 microprocessor generates an exception and
aborts the cycle.

5.2 Generating 1/0 Control Signals

Control and chip select signals for slave I/O devices are generated by I/O control
logic. The i860 microprocessor does not provide a separate |/O space, and the
distinction between accesses to memory and to 1/O devices is made by decoding
addresses. The address decoder typically provides an IOSEL (I/O select) or
MEMSEL (memory select) output to indicate the access type. When IOSEL is
asserted, 1/O control logic generates appropriate control signals, drives KEN#
inactive to indicate a non-cacheable access, inserts any needed wait-states and
returns READY to the processor to terminate the cycle. 1/O control logic must
enable appropriate address and data buffers, and it must eliminate bus contention
caused by data float delays. Most |/O devices require a recovery period between
back-to-back accesses. This can be enforced either through hardware or software.

I/O INTERFACING

5.2.1 1/0 Control Logic

Figure 5.2 illustrates i860 microprocessor control logic. 1/0 select signals are
generated from the decode of unlatched addresses. The decoder also generates
device select signals which are latched to provide chip selects for specific devices
being accessed. ADS# does not ensure a valid address when asserted. A latched
version of ADS# (LADS#) is valid in T11 and can be used to generate an address
latch enable (ALE) signal. Address is guaranteed to be valid on the clock (rising)
edge during which LADS# is active.

When LADS# is active and 1/O select is asserted, I/0 control logic generates read
or write signals based on the state of W/R# input. During pipelined operation, |/0
control logic must know of any outstanding DRAM cycles to avoid misordered
cycles. BSY indicates that there are outstanding DRAM cycles and that | /O control
logic should not start a cycle until BSY is deasserted. I/0 control logic inserts
needed 1/O cycle wait-states according to the number of wait-states required by
the device being accessed. In a simple design, 1/0 accesses can be assigned the
number of wait-states required by the slowest device.

Following read cycles, 1/O devices may need time to turn off the data bus. During
this period, a write or read from another device causes bus contention. To ensure
proper operation, I/O devices also require recovery time between consecutive
accesses. It may or may not be practical to enforce this recovery with a hardware
counter. The advantage of using a hardware enforced recovery mechanism is
transparency and reliability. Also, future upgrades to higher CPU clock speeds will
not require any changes in the 1/O device drivers. If the recovery period is too
long to be enforced with hardware, then software timing loops or a timer chip may
be used to ensure proper operation. The hardware 1/0 recovery time is enforced
by the control logic. Recovery logic generates a recovery delay (RECOVER) signal
which prevents 1/O control logic from asserting read or write until the recovery
delay signal is deasserted.

I/0 INTERFACING

L__J Lcame
ax
e
oomc 1 N——
(v e U :
v Lo N
— gAY | snanemgen T L] —
] s E—— oay [
ARV [- L] "o
- f—
Ll —
o[f———— owm (O
[Z
MM CONROLLIN ” T
ax
LY

Figure 5.2 - I/O Control Logic

522 Address Decode and Chip Select

Chip selects for various I/O subsystem devices are generated through address
decoding. Decodes may be done with a PAL or with a simple one-of-four decoder
such as the 74F138. Decodes can be done from latched or unlatched addresses.
Unlatched address decodes allow device selects to be generated one propagation
delay after an address becomes valid. Some 1/0 devices need a long chip select
hold time from read or write. This requires that chip selects be latched. Decodes
can be done alternately from latched addresses, but this delays the chip select

5-5

I/O INTERFACING

generation and may result in slower cycles. Device selects are also used by 1/0
control logic to determine the number of wait-states for a device being accessed.
If device selects are generated from unlatched addresses, 1/0 control logic must
sample the device select with LADS# to ensure a valid sample of the device select.

Latched device selects must be deasserted (unlatched) once READY# is returned
to the processor. They are unlatched by activating the latch enable signal which
causes the latch to become transparent. The device select is deasserted when
address changes and a new cycle begins.

I/O device addresses should simplify decode logic and reduce the number of
address pins required to generate device selects and the 1/O select signal. The
I/0O select signal indicates |/O device accesses to control logic. 1/O devices are
typically mapped with a contiguous single address space. Address space size is
determined by the address lines used in decode.

5.2.3 IORD#/IOWR#

IORD# and IOWR# command signals are generated some time after the processor
W/R# signal chip select. 1/O devices have command active width requirements,
and wait-states are inserted in 1/O cycles to accomodate these. The number of
wait-states is determined by the 1/O control logic of selected devices. Minimum
command active times range from 100ns to 400ns across various slave devices.
I/O devices also have chip select set-up and hold time requirements. Chip select
requirements are met by inserting delays in activating commands. If one delay is
used across all devices, it must be the worst case delay. In the examples given
here, the delay is two clocks. [If necessary, hold time is met by latching chip
selects and addresses.

It may be necessary to delay driving write data onto the bus for several clocks.
This is necessary if the previous cycle was a read to an 1/0 device with a long
data float delay. It may ailso be necessary to delay the assertion of READY# from
the rising edge of IOWR# to ensure sufficient write data hold time.

5.2.4 Ready#

Wait-states are introduced into the i860 CPU cycle by deasserting READY# on
rising edge of T11. Since most I/O devices are much slower than the i860
processor processor bus, all I/O cycles require additional wait states. Since
READY# can be driven by control PALs, it must be tri-stated by the PALs not in
use. If several devices reside in the 1/O subsystem, the wait-state logic can be

5-6

I/O INTERFACING

simplified by inserting the same number of wait-states in all I/O accesses. This
slows accesses to some of the faster I/O devices, but these accesses are
infrequent, and impact on system performance is minimal. If 1/0 speed is critical,
a small ROM or PAL can be used to insert wait-states and enforce recovery on a
per device basis.

5.2.5 Recovery And Bus Contention

Most 1/O devices require a recovery period between back-to-back accesses. At
higher i860 CPU clock frequencies, bus contention poses an additional concern.
This is because long float delays of the I/O devices can conflict with data driven
out in the next cycle by another device or by write data from the CPU. All slave
devices stop driving data on the bus on the rising edge of Read. Some delay after
the rising edge of Read the data will float. If, however, another device drives data
onto the bus before the data from the previous access floats, bus contention will
occur. The iB60 CPU has extremely small cycle times (30ns @33 MHz, 25hs @40
MHz), and the possibility of bus contention must be addressed. The 1/O control
logic implements recovery to eliminate bus contention. It asserts a signal
(RECOVER) which inhibits new 1/0 cycles from starting until the data from the
previous read has floated. 1/O control logic can also accomplish 1/0O recovery
using a similar mechanism. The only time hardware enforced I/O recovery may
not be possible is when recovery times are too great for the hardware counter (i.e.
when recovery time is in microseconds rather than in nanoseconds. In this case,
recovery time can be enforced with software using NOPs and delay loops or with
a programmable timer.

5.3 1/0 Cycles

The 1/0 read and write cycle timings depend upon the implementation of the 1/0
control logic. Figures 5.2. and 5.3 illustrate the timings of the 1/O read and write
cycle for a typical implementation.

5.3.1 Read Cycle timing

A new i860 microprocessor read cycle is initiated when ADS# is asserted in T1.
The address and status signals become valid in T11. LADS# becomes valid in
T11, and the address is latched on the next rising edge of clock (second T11).
The 1/O select signal is generated from a combinatorial decode of the addresses.
I/O select, when active with LADS#, indicates an 1/0 cycle to the control logic.
The chip select is either asserted at the same time as 1/O select or is latched in
the clock following 1/O select. The IORD# signal is asserted in the second T11 if
RECOVER is inactive. RECOVER, if active, indicates that the new cycle must be

5-7

I/O INTERFACING

delayed in order to meet the recovery time of the 1/O device or to prevent data bus
contention. i RECOVER is active, then the I/O read (IORD#) signal is not
asserted until RECOVER is deasserted. |/O data becomes valid on the bus one
read delay after IORD# is asserted. The bus control logic will need to keep IORD#
active to meet the minimum active time requirements.

The worst-case timings values are calculated by assuming the maximum delay in
the address latches and decode logic and the maximum delay through the data
transceivers. These equations will yield the fastest possible cycle. Wait-states must
be added to meet the access times of the particular 1/O device.

The critical timings for 1/O Read cycles are the following:
Chip select or address setup to IORD#.

IORD# minimum active width.

Chip select or address hold after IORD#.

IORD# active to data valid.

Data fioat after IORD# inactive

1. Chip Select/Address Setup to IORD#: '
>= 3Tcy + PALclk-to-output(min) - Decode delaymax - Address Valid
delaymax - Latch Prop. Delaymax .

Chip select goes active later than 1/O address and is
latched, so chip select timing is used for the equation.

Tcy : CLK PERIOD OF i860 Microprocessor.
Address Valid Delay : Processor address valid delay in T11.

2. IORD# Minimum Active Width:
>= Tcy + PALclk-to-output - PALclk-to-output + nTey
>= Tcy + nTcy

n is the number of wait states inserted into the I/0
read cycle. NTCY represents the additional time
due to wait states.

3. Chip Select/Address Hold after IORD#:
>= Tcy - PALck-to-output + Address Validmin + Latch Prop. Delaymin

5-8

I/O INTERFACING

O READ CYCLE
SIGNALS T (1 ™ T ™ ™ ™ ™ T
ADS#® 1-f
LADS# r——tf
ADDRESS} 4 3
I0SEL f
Chp - =
Select# —)
IORD® Y
I00LY# . o
DBUFOE:! + £
Osta —
READY# e

Figure 5.3 Read Cycie Timings

I/O INTERFACING

Assumes 1/O address changes earliest, so hold time
calculations are done using the 1/O address timings.

4. IORD# Active to Data valid:
>= Tcy - PALclk-to-output - Data Setup Time - Data buffer Prop. delay.
Data Setup Time: Processor setup time requirement for data to
rising edge of clock.

This assumes the minimum IORD# active pulse width
of 1 clock. For wait states add the appropriate number
of clocks to this value.

Other timings which need consideration for read Cycles are the read inactive to
data float delay and address/chip select hold time after read. The address and
chip select hold times from read will not be a problem, since both chip select and
address will be latched. The data fioat delay in slave devices can be very long (40
ns). This can cause data bus contention and is taken care of with the 1/0
recovery logic (Section 5.2.5 provides further information).

5.3.2 Write Cycle Timing

An 1/O write cycle starts similarly to an 1/O read cycle. The address and status
timings are similar to the 1/O read. The processor outputs data in T11. 1/0O write
(IOWR#) may be asserted one or two clocks after the chip select (the exact delay
between chip select and IOWR# depends upon the chip select/address setup to
write requirements of the I/0 devices). The use of latching data buffers can
improve CPU write performance. Once the data and address of the cycle are
latched, READY# can be returned to the processor and the CPU operation and the
write cycle to the device can continue. IOWR# is deasserted only after the data
set-up to write specification is met. Data is written into the I/0 device on the rising
edge of IOWR#, and the processor stops driving data once READY# is sampled
active.

The critical timings for the 1/O write cycle are the following:

Write (IOWR#) Active Puise Width

Address/Chip Select Set-up to Write (IOWR#) Active
Data Set-up to Write (IOWR#) Inactive

Data Hold Time After IOWR# Inactive

1/O Write Timing - Figure 5.4

5-10

I/O INTERFACING

IOWRITE
SIGNALS T T h (T ™ ™* ™ Tu®
ADS# tf
LADS# - tf
ADDRESS 7 \
STATUS \ >4
I0SEL £
W T Lo
Select ant T
owWRe { i f
M ¢ \l
VOD.‘ y4 N
(Lasched) * 4
READY# s

Figure 5.4 1/O Write Timings

5-11

I/O INTERFACING

1. IOWR# Active Pulse Width:
>Tcy - PALclk-to-output- PALclk-to-output - PALcik-to-output + nTcy
>= Tcy + nTcy

n is the number of wait states inserted into the 1/0
write cycle. NTCY represents the additional time
due to wait-states.

2. Address/Chip Select Set-up to Write:
>= 3Tcy + PALclk-to-output(min) - Decode delaymax - Address Valid
delay max - Latch Prop. Delaymax

Chip select goes active later than 1/O address and is
latched, so chip select timing is used for the equation.

Tcy : CLK PERIOD OF i860 Processor.
Address Valid Delay : Processor address valid delay in T11.

3. Data Setup To Write Inactive:
‘ >= 4Tcy - 860 Data Valid Delaymax - Data Buffer Prop. Delaymax +
PALclk-to-output Delay

This Equation assumes a zero-wait-state write cycle. Write is not posted.
PALclk-to-output delay is the delay in deasserting IOWR# from the rising edge of
the clock.

Other timings in the 1/O write cycle are the address/chip select hold time from
write (IOWR#) high and data hold time after write (IOWR#) high. Since the
address and chip select are latched, hold time will not be a problem. However, if
data is buffered through a 74F245 type device, the data could float as early as 7ns
from READY#. Typical hold times for I/O devices vary from Ons to 20ns. If data
~ hold time requirements of the slave device are greater than 7ns, the write data

must be latched; otherwise, READY# is returned some delay after the rising edge
of IOWR# .

5.4 Design Examples

This section discusses the i860 microprocessor interface to specific slave devices.
It describes the basic interface, critical timings and equations.

5-12

I/O INTERFACING

5.4.1 82510 Interface

82510 is a UART with an asynchronous CPU interface. The basic interface is
illustrated in Figure 5.5. The eight I/O ports of the 82510 are mapped to memory
locations 07000000 through 07FF0000. The ports are located on 64-bit boundaries
to allow data to be read on D7-0 without the use of external byte swap logic. The
chip select signal is generated from the decode of A20 and A19. By decoding
more of the address lines, a smaller memory block can be used to map the device.
For example, a full decode could allow the 82510 to be mapped to 07000000 -
0700000C. The address decoder generates the IOSEL as well as the 82510SEL
signal. The address and chip select are latched to meet the minimum chip select
active width and hold time. The RD# and WR# signals of the 82510 are generated
by the IOCTL1 PAL. Critical timings of the 82510 are the following:

Read Cycle

1. Address Valid to Read Active (Tavrl)

2. Command (IORD#) Access Time to Data Valid

3. Command (IORD#) Active width.

4. Command (IORD#) Inactive to Active (Recovery Time)
5. Command (IORD#) Inactive to Data Float Time.

b

. Address Valid to Read Active (TAVRL):

Tavrl <= 3Tcy + PALclk-to-output(min) - Decode Delaymax - Address Valid
delaymax - Latch Prop. Delaymax

ns <= 3Tcy-25
<= 50 ns (@40MH2)
2. Command Access Time To Data Valid (TRLDV):

Tridv <= Tcy - PALclk-to-output - Data Setup Time - Data buffer Propagation
delay +NTcy.

N: # of Wait States.
281 <=Tcy-10-12-6 + NTcy

<= (N+1)Tcy - 28
N =9

5-13

I/O INTERFACING

3. Command Active Width (TRLRH):

Trirh <= (N+1)Tcy
N =9

4.Read Inactive to Active (TCIAD):

TCIAD <= 123 ns.
<= 4Tcy - PALclk-to-outputmax + PALclk-to-outmin
<=4Tcy - 10 + 2
<=4*31-8
<= 116 ns

The i860 microprocessor can assert IORD# no earlier than 116ns after the previous
read. This violates the recovery requirements of the 82510. Control logic can
enforce this requirement by delaying the assertion of IORD# by one clock, or
software can implement this by using NOPs. ‘
Write Cycle

1. Address Valid to Write Low (Tavwil)

2. Write Active Width

3. Data valid to Write Inactive. (TDVWH)

4. Data Hold Time after Write Inactive (TWHDX)

Address valid to write low and write active width timings are similar to 1 and 2 for
read cycles.

3. Data Valid to Write Inactive (TDVWH):

Tdwh <= 3Tcy - Data Valid Delay - Buffer Delay +
PALclk-to-outputmin

<=3Tcy-50-6 + 2
90 <=3*31-506 +2 = 39

The IOWR# pulse must be extended by two clocks.
4. Data Hold Time after Write Inactive (TWHDX):

Twhdx <= Data Float Delaymin + Buffer Delaymin
12 <=35+ 25 =60

5-14

1/0 INTERFACING

The minimum data float and buffer delays do not meet the 82510 hold time
requirements. In this case, READY# can be delayed from IOWR# by one clock,
or data can be latched and READY# can be returned early. The second option
reduces wait-states but requires latches on the data bus.

DATA
BUFFER

. . 82510

:
i
:
:

1]

3338 g

5
=
T}

OCT.
S el Lo
108EL L))—-—-
igg__ LADE#]]

$108EL

Figure 5.5 - i860 Processor Interface to 82510

5-15

I/O INTERFACING

5.4.2 EPROM INTERFACE

The i860 CPU supports a special CS/8 mode for bootup from 8-bit 1/O devices.
This allows the processor to bootup from an 8-bit ROM. Once the system boots,
the ROM can be copied into memory or can be disabled and replaced by DRAM.
In this mode, code fetches (that are misses in the code cache) are eight bits wide.
To facilitate 8-bit reads, the BE2#-0# pins behave as A2-0. Once the i860
microprocessor boots, the CS/8 mode can be disabled by setting the CS/8 bit of
the DIRBASE register. Iif EPROM contents are to be copied into DRAM after the
bootup, the EPROM Iocations need to be remapped to 64-bit boundaries. This
allows the i860 microprocessor to access the EPROM bytes on D7-0 without using
byte swap logic. It does, however, require the address muiltiplexor to use either
the processor address bus or the byte enables for A2-0 inputs of the EPROM. A
method which does not require an address mux is the double load copy method.
This method is more dependent upon software, however. It uses the BE2#-0#
signals which are connected directly to the EPROM A2-0 addresses to select the
bytes.

Figure 5.6 shows the i860 Processor interface to a byte-wide EPROM (27010) and
uses an address multiplexor to select between BE2#-0# in CS8 mode and
Processor addresses in data mode. The chip enable of the EPROM is generated
decoding the memory address and the MAP bit. The MAP bit when set maps the
EPROM addresses into the power-up bootstrap locations. When MAP is low the
EPROM is mapped to another address and DRAM is mapped to the bootstrap
locations. The OE# signal is connected to the IORD# signal generated by the 1/0
Control Logic. The upper 14 address bits of the EPROM are connected to i860
CPU addresses. The lower three addresses A2-0 are multiplexed between
BE2#-0# or three address bits of the processor. The muiltiplexor is controlled by
the MAP input which is generated by a bit in an I/O register. The EPROM data
bus D7-0 is connected to the lower byte (D7-0) of the processor data bus. This
requires that the EPROM when mapped as data must be on 64-bit boundaries.

5.4.2.1 Double Copy Load

An alternative to the address multiplexor is the Double Copy Load method. This
method requires considerably more software effort than the address mux method
and also uses more EPROM space (since two copies of the code are required).
In this case the EPROM A2-0 are directly connected to the BE2#-0#. The 8-bit
data bus of the EPROM is connected to D7-0 of the processor. Unlike the address
mux method of copying, this method uses the on-chip data cache, and like the
address mux method the EPROM will need to be remapped from the bootstrap

5-16

I/0 INTERFACING

locations into another portion of the memory space of the i860 processor.
However, in this case two copies of the code are needed in the EPROM; one copy
with code bytes located on 8-bit boundaries and one copy with code bytes spaced
for copying. As table 1 illustrates, in the non-CS8 mode there are only six valid
BE2#-0# combinations for the eight possible EPROM addresses. Therefore the
second copy of the code needs to be spaced so that the first byte is at location
0 and the second byte is at location 3.

Table 1: Valid Addresses for SPACED copying

Bus BE#s Valid Address EPROM
Address 210 TorF Address
000 T (Load 32-bit value 0
001 F (16-bit access on odd boundary) Invalid
010 F (two non-contiguous bytes) Invalid

011 T (Load 1 byte) 3
100 T (Load 16-bit value)
101 T (Load 1 byte)
110 T (Load 1 byte)
111 T (Load 1 byte)

NOOLWN-2L0O
~NoOOs~W

The data is first copied into the data cache by using the Id.l or Id.b instructions to
assert the proper BE2#-0# values. Once the data is in the cache it is read into
a register and saved in the appropriate DRAM location. An untested example of
the possible code for the Double Copy Load method is illustrated in the following
pages.

5-17

I/0 INTERFACING

eoeuolu] WOUd3 0981 - 9°S einbiy

am

#SQV1

| #AQVIN |
13SnoYd bwb..moo:c B
[T
zo3a0t

[121]

3gono

#0-#238

am .
o2vd3
0 XV §S3HQQY

20 #QHO! oIV

L
stvev $na viva
o2y)
(214 8 HOAV

NOYd3 H344nQ

5-18

I/O INTERFACING

5.4.2.2 EPROM TIMINGS

The timing analysis assumes that the address multiplexor scheme is being used for
the EPROM interface. The OE# input of the EPROM is connected to IORD#
output of the 1/O Control Logic. The following are the critical timings:

1. Address/CE# to Output

2. OE# to Output

3. OE# High To Output Float

1. Address/CE# to Output (TACC):

Assumes that the multiplexed address bits are the last to become valid.

- Tacc <= 3Tcy - Latch Propmax - Addr. Muxmax - i860 CPU data Setup -
Buffer Delaymax

Tacc <= 3Tcy - 35

For Tacc of 200 ns @33MHz Two Wait States

Addr. Mux. :Address Multiplex Delay.
2. OE# To Output (TOE):
Assumes zero wait state cycle.

Toe <= Tcy - PALclk-to-output - Buffer Delay - i860 uP Setup

Toe <= Tcy - 28

For Toe of 85 ns requires 3 wait states.
3. OE# High to Output Float (Tdf):
If READY# is asserted to the processor on the clock edge prior to IORD# going
inactive, the EPROM data outputs cam float as late as 60 ns after the rising edge
of IORD#. This means that EPROM data may be valid until as late as 10 ns into
the second T11 of the next cycle. The i860 CPU for writes can output data as
early as 3.5 ns from clock edge of the second T11. If this were allowed to happen

5-19

I/0O INTERFACING

it would result in data bus contention and will cause problems in the system. The
IOTIME PAL eliminates bus contention by not allowing the next cycle to begin until
all data outputs of the slave device float.

5.5 DMA Interface Recommendations

Performing DMA (Direct Memory Access)transfers in an i860 microprocessor system
requires deciding between two general approaches. One uses DMA in the
convential mode performing data transfers directly to DRAM. The other technique
uses an intermediate memory area. [Each has important issues regarding
performance, software complexity, and part count.

Any DMA design must take into account the i860 processor caches. The i860
microprocessor caches use a write back mechanism to minimize external bus
traffic and increase performance. The on-chip caches are logical address
caches. External bus snooping is not provided since such cycles would
conflict with internal accesses reducing overall performance.

If DMA is permitted directly to main memory, then the software must insure that no
data values associated with that memory area are in the caches. The data cache
must be flushed before the DMA may read from the memory area. Both the code
and instruction caches must be flushed after the DMA has written to memory if the
i860 microprocessor might have an old copy of the data.

If DMA transfers directly to main memory, it must also take into account the paging
structure used in most systems. Paging breaks up the contiguous logical address
space of the application into discontiguous memory addresses. The DMA device
needs to transfer a stream of data to discontiguous address if that data stream
crosses a memory page boundary.

Based on these issues two general approaches are possible: low-cost, lower
performance design using DMA directly to i860 microprocessor memory and a
higher cost, higher performance approach using an intermediate memory area.

An 82380 is used in this example. It provides eight DMA channels, 17 interrupt
inputs, and five 16-bit timers. The 82380 has a bus interface identical to that of the
386™ microprocessor. It uses a 2x clock. A 16 Mhz 82380 requires the i860
microprocessor run at 32 MHz. A 20 MHz 82380 can work with a 40 MHz i860
microprocessor.

The first approach is conventional. An 82380 DMA device with four extra data
transceivers could perform DMA to memory. It can run directly off the i860

5-20

I/0 INTERFACING

processor clock with special PALs used to convert the 82380 bus

signals into DRAM commands. The i860 processor HOLD/HLDA signals are used.
Each transfer will require at least four clocks on the i860 processor bus. More will
usually be needed to allow access to real memory or I/O devices. For DRAM
accesses by the 82380, the DRAM controller must perform them in pairs of clocks
to match the 82380 bus timing. If the I/O device is not 32-bits wide then the
82380 must either perform two cycle transfers or else extra data transceivers are
needed to route the I/O data to the correct part of the 64-bit data bus.

The 82380 can support paged memory systems via a set of second address and
count registers per channel. After completing the transfer of one block, the
DMA channel will automatically switch to the next set of registers. The registers
must be reprogramed during the time of a page transfer. If the operating system
can not guarantee quick enough interrupt response, DMA transfers can not cross
a page boundary.

The second approach is to add a special 1/O buffer memory between the 1/0
device and the i860 processor. SRAMs make this easier. The 82380 performs DMA
transfers into the SRAMs on an isolated bus. The SRAM area is large enough for
all the simulataneous DMA transfers in progress at once.

The i860 processor copies data between the SRAM space and DRAM. The copy
operation updates the cache and handles page boundary crossing. This approach
offers higher performance for several reasons: the DMA channels do not tie up the
CPU bus when accessing the 1/O device, The SRAM read/write and DRAM
write/read occurs faster than the DMA doing it because the i860 processor does
these faster than the 82380 and more DRAM page hits will happen when properly
programmed. The DMA transfers can be longer since the /0 buffer is contiguous.
An entire disk track could be read into the SRAM area. The i860 processor caches
need not be flushed because of an 1/0 transfer.

The cost of using the 1/O buffer memory is the SRAM devices and two or three
address latches. Four data transceivers are still needed to buffer the data
- bus. Reads to the SRAM area must disable KEN#.

When copying data from DRAM to SRAM, use pfid instructions to prevent the
data from flushing the data cache. Normal writes can be used since a write
miss does not cause a cache load. The SRAMs will appear on only the lower
16/32 bits of the data bus. The copy routine must increment its address
accordingly. The copy function shown here acheive 1Mbyte/MHz data rate
assuming 4 wait states on first DRAM access and 1 wait state per SRAM access.
At this rate, the time spent in copying data is negligible.

5-21

I/O INTERFACING

// The following code coples from the 1/0 buffer to regular memory.
!/ The address of the buffer in 1/0 memory is in r16.

// The destination address is in r17, it must be 8 byte aligned.

// The count of 32-bit words to transfer Is in r18.

// Perform four back-to-back DRAM cycles for page mode speedups.

getiodata:

or r0,-1,r21 // Set count value

addu r18,-9,r18 // Setup for BLA

shr r18,3,r20 // Divide count by 8, don't change CC

jnc gshort // Jump If short count

or 0,8,r19 // Set 1/O address increment

bla r21,r18,gloop // Setup for loop

subu r16,r19,r16 // Setup for autoincrement loop
gloop:

idl r19(r16+ +),f16 // Get an 1/0 value

idl r19(r16+ +),117 // Get an 1/0 value

id!l r19(r16+ +),f18 // Get an 1/0 value

idl r19(r16+ +),f19 // Get an 1/0 value

Idl r19(r16+ +),120 // Get an 1/0 value

idl r19(r16+ +),f21 // Get an 1/0 value

ldl r19(r16+ +),f22 // Get an 1/0 value

idl r19(r16+ +),123

addu r17,32,r17 // Update destination address

std 116,-32(r17) // Put into DRAM space

std f18,-24(r17) // Put into DRAM space

std f20,-16(r17) // Put into DRAM space

bla r21,r18,gloop // Loop till done

std f22,-8(r17) // Put into DRAM space

and r18,7,r18 // Get remaining count

addu r18,-9,r18 // Setup for final test

subu ri6,r19,r16 // Restore source address
gshort:

addu r188,r18 // Setup for BLA

jnc exit // Jump if zero count

bla r21,r18,11 // Setup for loop

or r0,8,r19 // Set 1/O address increment
i:

idl (r16).f16 // Get an 1/0 value

addu r16,8,r16 // Update source address

addu n74,r17 // Update destination address

bla r21,rig, 1 // Loop till done

std f16,-4(r17) // Put into DRAM space
exit:

bri g // All done

5-22

I/O INTERFACING

nop

// The following code transfers data from DRAM space to the 1/0 space.

// Nothing to do here

// 1/0 buffer is only on lower 32-bits of bus.

/{ The memory

source address is in r16, it must be 8 byte aligned.

// The destination 1/O buffer address is in r17.

// The count of 32-bit words to transfer is in r18.

// Use pfid instructions to avoid flushing the data cache.
// Perform four DRAM reads back to back to run page mode accesses.

putiodata:
or
addu
shr
jnc

or
subu
pfid.d
pﬂd d

pﬂdd

pfid.d
addu
pfid.d
pfid.d
piid.d
fst.|
fst.l
fst.l
fst
fst.
fst.l
fst.
bla
fst.l

pfiid.d
and
fstl
fst
pid.d
addu
fst.l
fst.
addu
pfid.d
addu
fst.l

ploop:

r0,-1,r21
r18,-9,r18

r18,3,r19

pshort

r0,8,r20
r16,r20,r16
r20(r16+ +),f0
r20(ri6+ +),10
r21,r19,ploop
r20(r16 + +),f0

r20(r16+ +),f16
r17,64,r117
r20(r16+ +),18
r20(r16+ +),120
r20(r16+ +),f22
£16,-64(r17)
f17,-56(r17)
18,48(r17)
£17,-40(r17)
18,-32(r17)
£17,-24(r17)
f18,-16(r17)
r21,r19,ploop
19,-8(r17)

8(r17),f16
r18,7,r18
f16,(r17)
17,8(r17)
8(r17).f16
r18,-9,r18
£16,16(r17)
f17,24(r17)
r16,8,r16
-8(r17),116
r17,48,r17
16,-16(r17)

// Set loop counter

// See if short count, can't do pfids
// Form 32 byte block count in r19
// Jump if short count

// Set address increment
// Setup for autoincrement addressing
// Start getting source data
// Start getting source data
// Setup loop counter
// Start getting source data

// Get memory data
// Update destination buffer address

// Put into 1/0 buffer

// Loop
// Put into 1/O buffer

// Copy items, read old 1/O data
// Mask out odd count value

// Copy items, read oid 1/0 data
// Adjust remaining count for pshort

// Bump source pointer
// Copy ltems

// Update destination counter
// Store items in 1/0 buffer

5-23

I/0 INTERFACING

fstl £17,-8(r17)
pshort:

or r0,4,r20

addu r18,8,r18

jnc exit

bla r21,r18,psloop

subu r16,r20,r16
psioop:

idl r20(rt6+ +),f16

addu r17,8,r17

bla r21,r18,psloop

st £16,-8(r17)

bri r1
nop

// Set source increment
// See Iif count was zero
// Jump if zero count

// Setup for inner loop
// Setup for autoincrement addressing

// Get source
// Bump destination
// Loop

// Write to 1/0 buffer

// Return to caller
// Nothing to do here

5-24

Graphics Subsysfem Example 6

Chapter 6
GRAPHICS SUBSYSTEM EXAMPLE

6.1 Introduction

Computer graphics technology has developed rapidly in recent years and has
transformed the computing environment. Graphics provides visualization -- the ability
of computers to create revealing, life-like images from hard-to-interpret numerical data.
Graphics offers user-friendliness to ease the man-machine interface, and it opens new
applications in science, engineering and the arts. Advances in graphics hardware
technology are catalysts for innovation. Raster display technology, low-cost, high-speed
display memory and powerful, intelligent graphics processors are key elements to recent
changes. A decade ago, high resolution graphics was reserved to centralized
computing facilities. Today, home and office computers provide even better graphics
at a fraction of the cost.

The underlying trend in computer graphics development is toward better display and
pixel resolution. Display requirements for solids modeling and visualization are stringent
because of the need to accurately represent smooth shaded objects. Graphics
workstations are a new class of machine for graphic-intensive applications. They
combine medium- to high-resolution color graphics with high-speed computational
capability. Applications may call for real-time manipulation of complicated images
composed of close to a hundred thousand polygons. These 3-D graphics applications
demand high MFLOPS (millions of floating-point operations per second) performance.
Object modeling, transformation and rendering are common applications that usually
require supercomputer power.

6.2 Graphics and the i860™ Microprocessor

The 860 microprocessor’s architectural features provide high performance graphics
capability. Floating-point power, parallel execution units, high integration and dedicated
3-D graphics hardware combine to provide supercomputing graphics performance and

capability.

The processor provides an integer operation and up to two floating-point operations per
clock cycle. Pipelined floating-point multiplication and addition units operate
simultaneously using special dual operation instructions. This speeds matrix arithmetic
and vector computation to provide 80 single precision or 60 double precision MFLOPS
at 40 MHz.

The i860 microprocessor supports 3-D graphics operations such as hidden surface
elimination and Gouraud shading. It operates on 8, 16, or 32-bit pixels. Its high speed,
64-bit data bus delivers a peak 160 megabytes per second with zero-wait-state
accesses. Dual instruction mode allows floating-point or graphics operations to execute

6-1

GRAPHICS SUBSYSTEM EXAMPLE

in parallel with pixel loading and storing. Scoreboarding can provide continuous
execution during cache-miss processing of data reads.

6.2.1 Performance

The i860 microprocessor is capable of over 500,000 complete transformations per
second at 40 MHz. Each transformation includes translation, rotation, scaling and
perspective computation. The processor can generate more than 50,000 Gouraud
shaded, 100-pixel triangles per second for an 8-bit pixel resolution.

62.2 Processor Bus Bandwidth

In real-time applications, frames must be refreshed at least 10 times per second.
Bandwidth requirements vary according to display and pixel resolution. Nearly 40
megabytes per second bandwidth must be dedicated to memory refresh to provide
real-time graphics on a 1,280 x 1,024 pixel monitor with 24-bit resolution. Additional
data transfers for modeling, transformation, hidden surface elimination and shading
increase the bandwidth requirement.

At 40 MHz, the i860 microprocessor provides 160 megabytes per second bus
bandwidth with zero-wait-state cycles. This allows for real-time manipulation of
high-resolution 3-D images. '

6.3 3-D Graphics Example

This example outlines is a graphics frame buffer daughter card for an i860
microprocessor evaluation vehicle. The example does not represent an ideal design but
is instead employed to demonstrate the processor’'s 3-D graphics capabilities. The
concepts employed here can be extended to complete systems where more board
space and dedicated hardware/software support permit greater sophistication.

This evaluation vehicle is designed as a frame buffer extension to an i860 processor
based system. The processor connects to the board through the expansion bus. The
frame buffer is mapped into the expansion space as allocated by the CPU core.

6.3.1 Features
The following features are included in the frame buffer example:

1,024 x 768 RGB Display with 16-Bit Pixel Resolution
Double-Buffering at Two Megabytes Per Buffer
33 MHz with 40 MHz Upgrade Path
PAL-Based VRAM Controller
VRAM Control Option for 100ns and 80ns VRAMs
PAL-Based Non-interlaced CRT Control

6-2

GRAPHICS SUBSYSTEM EXAMPLE

Dedicated to the three colors, red, green and blue are 6, 6, and 4 bits per pixel
respectively. 16-bit pixel resolution allows a double-buffered scheme requiring only four
megabytes of total display memory for a 1,024 x 768 pixel display. It aiso allows four
pixels per 64-bit load/store operation and four pixels per computation. Transformation
and refresh rates are higher than with 24-bit or 32-bit pixel resoiution.

6.32 Testing
This example has not been tested, and no PAL codes are included.

VRAM
— contRoL | | ConTROL
DATA
P DISPLAY
3 | ocesson BUFFER#0 | «
ROW/COLUMN
e || e
5 g ¢
DISPLAY
BUFFER#1 |]
— EXPANSION INTR
& BUFFER
SWITCH
{
!
CRT TMING

Figure 6.1 Block diagram of the i860 processor based graphics frame buffer
board.

6-3

GRAPHICS SUBSYSTEM EXAMPLE

6.4 System Overview

The frame buffer board is composed of three major sections: VRAM control, CRT
control and expansion bus interface. The VRAM controller controls four megabytes of
video RAMs which are divided into two display buffers. While the i860 processor
accesses one buffer, the CRT may display the other buffer (please refer to the block
diagram in Figure 6.1).

6.4.1 Expansion Bus Interface

Frame buffer logic resides on the expansion bus. The key signals are listed below:

64-bit i860 microprocessor data bus

Bits A23-A3 of the i860 microprocessor address bus

i860 microprocessor control signals such as ADS#, READY# and NA#
Decoded signals from the CPU core such as EXPSEL#

Power supply and ground signals

Please refer to schematics for the complete list of signals.
6.4.2 Data Transceiver/Latch Control

Data is transferred to and from the i860 microporcessor through data
transceivers/latches in the core. Expansion data control signals are generated to
control the logic.

6.4.3 Address Transceiver/Latch

Address bits A20-A3 are used to generate row and column addresses during data
access cycles. Bits A20-A12 are buffered and then latched as row address by VRAMs.
Bits A11-A3 are latched externally as column address when a VRAM cycle is detected.
Including Bit 21 (which selects display buffer #0 or #1), four megabytes of address
space are provided.

6.4.4 VRAM Control

VRAM control provides VRAM control signals for read/write cycles, refresh cycles, and
RAM-to-SAM transfer cycles. VRAM read/write cycles are synchronized with pipelined
cycles to the DRAM subsystem on the CPU core.

6.4.5 Serial Row/Column Address Generation

RAM-to-SAM transfer for the serial port occurs during horizontal blank periods, and row
- addresses increment accordingly. Each row transfer provides two screen lines, and row
addresses increment every other horizontal blank time. A column address latched

6-4

GRAPHICS SUBSYSTEM EXAMPLE

during SAM transfer indicates the origin of data within the SAM register. All but the
most significant bit in the column address are zero. The most significant bit alternates
between one and zero. If the bit is a one, the serial shift from the serial port originated
from the middle of the SAM register. This occurs during a RAM-to-SAM transfer of
display data for the second screen line stored in the second half of the same VRAM
row. The row address is not incremented in this case.

6.4.6 Double Butfering

Double buffering reduces flickering and partial image update. Here, each buffer
consists of two megabytes of video RAM.

6.4.7 Expansion Interrupt/Butfer Switch

When ready to display data in a second buffer, the processor may read or write to a
corresponding location in the unused area of the expansion space (A22 being high).
Actual buffer switching occurs in the subsequent vertical trace. A low value on A3
indicates that display data comes from buffer #0; a high value indicates that data
comes from buffer#1. The processor is interrupted when vertical retrace occurs.

6.4.8 CRT Timing Generation

Blank and sync signals are generated with PAL/TTL logic, and clocking is derived from
the 64 MHz pixel clock. The 16 MHz serial clock clocks data out of the VRAM serial

ports.
6.4.9 Pixel Serializer

Pixel resolution is 16 bits/pixel, and four pixels are clocked out with each rising edge
of the serial clock. Pixels are loaded into shift registers at serial clock rate but shifted
out of the registers at pixel clock rate.

6.4.10 Video DACs

Video DACs convert digital video data into analog video data at the pixel clock rate.
Sync information is also embedded in analog output. The sync-on-green mode of the
color monitor provides synchronzation.

6.5 Operation
6.5.1 VRAM Control

VRAM control logic prowdes all control signals for VRAM operation,including serial port
accesses.

GRAPHICS SUBSYSTEM EXAMPLE

6.5.1.1 Speed Mode

Two operation modes are designed to use 100ns and 80ns VRAMs. They are
designated as 1-wait-state-write and 0-wait-state-write modes respectively. The 100ns
VRAMSs are used in initial prototyping. They require one wait-state for writes and two
wait-states for reads in page mode. 80ns VRAMs zero wait-states for writes and 1
wait-state for reads. Please refer to the timing diagrams in Figure 6.2 and 6.3 for zero
wait-state write mode operation.

2 AR whe rad A
nunununur-mt_H.munumwmunuhmunurmmun_
9, @ 3 O > |

ADS® N\ yeaV) 7 Aval X
NA# I O/ @/ @
LADSS Oy O 9l 9 Sl
ADDR b0k ©; xx:T(x XD D) MO G,
RASx#
ROWE# /
COLE# \
" pooxtol oW [T O MR ¥ et Ll
CASx# ©)) T T o |7
MD ' x| | xkx] x0TI T xxx :
ERDLS 1Wo l; o) nto
RDY# 0, A/ / G
CPEND# o g 7 o /7'““,_@_
LWRe redd (0> i nad [|7 || [i
063-00 FOPOGOODOHONKX DN 101D)e hodooboepod T |
WDELS /
EWDLS WO/ m\tRY
DTOES \ 7
ERDES \ 7 \
EWDES T 7

Figure 62 Read/Write/Read Operation (0 wait state write)

6-6

GRAPHICS SUBSYSTEM EXAMPLE

0] (&) (©) ® ®
Wiie Wrie Read Write Write
LN nnnhnnnnnnny
O © © (® ©)
ADS* O\ [T A7 Vavg mpuaray N7
NA#
LADS# \9 4 nely 9 7
ADDR pOXXXXXC XXX)X XX XXX XAXAX 0 XXX
RASx# I\
ROWE# /
COLE# \
MA OXAXX Trow VmomMtmoN. HEO) X O] XX
CASx# \ 9 J 1\ © \ & ®” u
MD XX XX XKx @D e XX
EROL# 1
RDY# Ha g e/ e/ WO er
CPEND# 1o Y] ©) O ©)
LWR# T wite () twitg® [\\re wite (D el
D63-00 XEXTID-—-20000C Ol
WDEL# e 7
EWDL# O \to /el /g ol/mvor/m
DTOE# WO
ERDE# W /
EWDE# \ \

Figure 6.3 Write/Read/Write Operations (0 wait state write)
6.5.1.2 Processor-initiated Cycles

The frame buffer board shares processor and latched data control buses with the CPU
core. VRAM cycles may be started by the VRAM controller when the VRAM space is
selected and DRAM busy signal (DRMBSY#) is deasserted (that is, pipelined cycles are
completed). The expansion busy signal (EXPBSY#) is also asserted to prevent other
cycles from starting while VRAM cycles are pending.

Once the first VRAM cycle is started, VRAMs remain in page mode during near(NENE#
asserted) cycles. Reads are pipelined with NA#. A new cycle can start when NA# is
activated in pipelined mode or when READY# is activated in non-pipelined mode. Idle

6-7

GRAPHICS SUBSYSTEM EXAMPLE

or far cycles put VRAMs in precharge mode. Row addresses are latched by VRAMs on
the falling edge of RAS#, and column addresses are latched on the faling edge of
CAS#. Subsequent near cycles to the VRAM space need supply column addresses
only. Near cycles are indicated by the i860 microprocessor NENE# pin.

In read cycles, data is latched by the data latch in the core before being read by the
processor. This provides sufficient setup and hold times. In write cycles, data is also
latched before being written into VRAMs. The data latch control is controlled by
expansion bus data control lines. Latch latency requires that write data be latched to
maintain zero wait-state operation in successive VRAM write cycles (one wait-state is
adequate in siow mode). Latch signals require at least one clock period to recover.
This adds complexity in some situations as when a single idle cycle precedes write.

When a write cycle is immediately preceded by a read, data is not driven by the
processor until one clock after READY# is returned. This is illustrated in Figure 6.2 and
6.3.

ADS#
LADS#

nhnhnnnphnnnnhhhhhhhihbibhl
e

12 o

RASx# [1\ ; /f m"”\"’
rowes : | | . ; : LS '

COLES ; : i 1 : B : BERE

WA bocobooc) : D) 5 f T)}--@“"ﬁ?'&)—-@j
cass [¥ O r : : ; i
EroLe [T Tpl
RDYS ; '
crenoe | T n »
TRFOS : T Lid 1 7 MEL Y/

}e
=B

4

i

=

E

5

Rerce | T / 1 Ay

CLAFROR ; L

DTOES \ N

Figure 6.4 Refresh/RAM-t0-SAM Transfers

6-8

GRAPHICS SUBSYSTEM EXAMPLE

6.5.1.3 Refresh/RAM-To-SAM Transter Cycles

The refresh and serial register (SAM) transfer VRAM cycles are not initiated by the
processor. The cycles occur simultaneously in both VRAM banks and have priority
over processor-initiated cycles. Outstanding processor-initiated cycles resume following
refresh/SAM cycles. Refresh cycles have priority over RAM-to-SAM cycles.

Figure 6.4 illustrates a far cycle (NENE# not active) followed by a RAM-to-SAM transfer
request and refresh request (REF). The refresh cycle begins as soon as RAS#
precharge time has been met. The RAM-to-SAM request (TRQ) arrives one clock
before the refresh request. Request lines are not sampled until the end of the precharge
period when both lines are active. These cycles are equally important in displaying the
correct images continuously. RAM-to-SAM requests occur during video blanking time
and minor delay is tolerable. The RAM-to-SAM cycle begins as soon as RAS#
precharge time for the refresh cycle is satisfied. CAS-before-RAS refresh VRAM mode
is used to generate a refresh address internally.

A RAM-to-SAM read transfer is requested when DT/OE# is asserted on the falling edge
of RAS#. In real-time read transfers without RAM-to-SAM transfers, the transfer must
remain active until CAS# has been deactivated. Although not indicated in the diagram,
WE# must be deasserted during refresh/RAM-to-SAM transfer cycles. While external
address generation is not required in refresh cycles, a scan line address is required for
RAM-to-SAM transfers. The address setup and hold mechanisms are similar to those
in a regular cycle.

Hish Address y

Unpopulated

Space

8 MBytes
Buffer #1

Buffer #0
Low Address 4

Figure 6.5 Expansion Space

6-9

GRAPHICS SUBSYSTEM EXAMPLE

6.5.2 Expansion Bus Interface

The expansion bus allows the i860 processor to access the frame buffer from the core.
The schematics provide a complete list of bus signals. Expansion address space spans
8 megabytes. Mapping is illustrated in Figure 6.5.

6.5.2.1 Expansion Select

‘The expansion select signal (EXPSEL#), A21 and A22 are needed to decode access
to the expansion address space in two megabyte increments (please refer to Figure
6.5). Low levels on EXPSEL# and the A22 signal VRAM accesses. A21 distinguishes
between display buffers #0 and #1 when the random port (processor side) of the
VRAMs is accessed. When A22 is high for an access to the expansion space, A3
enables the serial port (CRT side) of buffer #0 or buffer #1. Buffer switching occurs
during vertical retrace. Although available, A23 is not used in decode logic: VRAMs and
unpopulated space are assigned to two eight megabyte regions.

6.5.2.2 Data Transceiver/Latch Sharing

Four signals control the data transceivers/latches used in VRAM data accesses. The
ERDL# and EWDL# latch read and write data, ERDE# is used for transceiver enable
and EWDE# is used for transfer direction control. ERDL# and EWDL# must meet the
setup time requirement relative to the delay clock(delayed from CLK) on the CPU core.
Data is latched in the latter part of the processor clock period. EWDL# activates the
write data latch signal on alternating clocks at the fastest rate. To support
zero-wait-state, consecutive cycles in fast mode (low on WAIT), EWDL# is generated
blindly. It latches write data on the assumption that the next write is a write to the
VRAMSs: if not,latched data is not used.

6.5.3 CRT Timing Logic

The 64 MHz pixel clock (PCLK) keys all timing signals. A divide-by-16 clock is
generated to clock the horizontal blank signal, HBLANK. As shown in Figure 6.6, each
horizontal active period supports the 1,024 pixel horizontal display. Display active times
are set at 16.5us while inactive times are set at 4.5us. The horizontal sync signal,
HSYNC# has a front porch of 1.0us, an active time of 2.0us and a back porch of
1.5us. The horizontal frequency is approximately 48 KHz. These timings are adjusted
for use with a different monitor.

640

GRAPHICS SUBSYSTEM EXAMPLE

HBLANK / N S
e T\
| tus | 2us | 150 | 20.5us |
M /A
VSYNCH —\J
oo |

Notes: 1) H = horizontal retrace period
2) VSYNCH# is not generated but combined
with HSYNC# to generated SYNC#

Figure 6.6 Blank and sync signals

The vertical blank signal, VBLANK# is active low and remains active for 45 HBLANK
periods. To provide a 768 line display (by remaining inactive for 768 HBLANK clock
periods), the vertical retrace rate becomes approximately 60 times/sec. The front
porch, active time and back porch for the vertical sync signal (VSYNC#) are six, six
and 33 HBLANK periods respectively (please refer to Figure 6.6).

Zeros are shifted into the shift registers during blanking periods. When blanking ends,
display data is shifted out of the VRAMs and loaded into the shift register by the
load/shift signal (LDSR#). Undefined data is not displayed. Figure 6.7 provides serial
data clocking timing. The serial clock (SC) is held low after all required data has been
moved from the shift registers at the end of the display period.

The pixel clock is divided by 16 to generate the CDIV16 clock used in most CRT timing

logic. Final timings are synchronized to the pixel clock to ensure correct blanking by
the video DACs where digital data, composite sync and blank signals combine to

641

GRAPHICS SUBSYSTEM EXAMPLE

generate RGB signals.

CRT timing relationships are illustrated in Figure 6.8. The horizontal blank (HBLANK)
is generated by counting COUNT, and the blank (VBLANK#) is generated by counting
HBLANKs. The counters are reset by HCLR# at the end of horizontal display periods
and by the VCLR# (not shown) at the end of each display periods.

Sax g NN NN W N NN NN
DIV-BY 16 *
(M) B L
SBLANK# ?
(TOLOGIC) - gL
s |
(16MHz) @ L I— _L“
SERIAL VRAM X®)
v XXXXXX @ XX}XXA
LDSR# i T,i_J
DIGITAL VIDEO K. €3 .60 €0 €. O
DATA “
BLANK l #
(TO VIDEODAC)

Figure 6.7 Serial Data Clocking

642

GRAPHICS SUBSYSTEM EXAMPLE

COUNT 81 112 17|18 81/ 0] 1|2 17(18
ove MUY L, UL,
HBLANK] 1 . 1024 PCLKS [;r—L__
VBLANK# ¢]
CBLANK# ”_J_—”ﬁ |
HCLRX# .

I i
i 1 23 45 6 1022 1024 1026
BLANK# _/ v o L

- n =256

sc DI\ /_H) @ U i=4(n-1)s2

Figure 6.8 Blank Signals

643

GRAPHICS SUBSYSTEM EXAMPLE

6.6 Appendix
Refer to Appendix A for the schematics.

6.6.1 Schematics Description

Sheet #1
This sheet contains address transceivers and latches.

Sheet #2
This sheet contains half of the VRAMs in Buffer #0.

Sheet #3
This sheet contains half of the VRAMs in Buffer #0.

Sheet #4
This sheet contains half of the VRAMs in Buffer #1.

Sheet #5
This sheet contains half of the VRAMs in Buffer #1.

Sheet #6

This sheet contains VRAM control logic. RAS1# and RASO# control Buffers #1 and
#0 respectively. RAS1# is activated when A21 is low; RASO# is activated when A21
is high. RAS1# and RASO# are combined to control the remaining logic.

CAS2#, CAS1# and CASO# are activated together; they are generated to share
loading.

PRECH# controls RASx# precharge time: three CLKs for far cycles; four clocks for
refresh/SAM to support CAS#-/DTOE# before RAS#. REFC# controls RAS# active
time (five CLKs) during refresh/SAM. TRFQ# is activated when refresh (REF) or SAM
request (TRQ) is active. RASDEL# is to delay RAS# active edge by one clock when
TRFQ# is found active.

ROWE# /COLE# and SRAE#/SCAE# are address enabled for regular VRAM and serial
port row/column addresses.

CPEND# is activated when VRAM cycles are detected. They are deactivated when
CAS# is deactivated and no new VRAM cycle is detected. WDEL# delays logic
activation when a write follows a read. NCLK# is added to minimize the number of
inputs (related to WDEL#) to the RDY# (processor ready signal) PAL.

614

GRAPHICS SUBSYSTEM EXAMPLE

ERDL# is activated in the clock that VRAM data is valid. It causes RDL activation in
the core logic in the same CLK.

DTOEx# enables VRAM output for read cycles and signals SAM transfer on the RASx#
falling edge. CLRTRFQ# clears the refresh request (REF) while CLRTRQ# clears the
SAM request (TRQ). ERDE# and EWDE# control direction (DRMDIR#) and enabling
(DRMEN#) of data bus XCVRs in the CPU core. Please refer to timing diagrams in the
Appendix for details.

Sheet #7:

This sheet contains additional VRAM control and miscellaneous logic. DREF, PREF and
TREF are decode signals to the product terms and determine the number of inputs
required for DTOEx#, CASx# and RASx#, respectively.

EWDL# activates WDL in the core logic in the same CLK to capture processor write
data. In the case of zero-wait-state writes, it is activated whenever a VRAM cycle is
detected regardless of the read/write or near/far state.

SE1# and SEO# are activated when an access to the upper portion of the expansion
space is detected. A low value on A3 activates SEO#; a high value activates SE1#.
Upon reset, SEO# is activated. SE1# and SEO# cannot be active at the same time.

RDY# is activated for VRAM cycles and for buffer selection accesses to the upper
portion of the expansion space. RDY# is always in the high state when floated.
VSELX1 and VSELXO0 are state variables for these access cycles.

EXPBSY# is activated when VRAM cycles are in progress. CBUSY# combines the
various busy signals.

WEx# are write enable signals for VRAMs. They must be inactive to allow
CAS-before-RAS refresh and SAM transfer on the RASx# faling edge. REFC#
deactivates WEx#.

Sheet #8:
LDSR# loads serial data into the shift registers. Data to be clocked out by PCLK.
SCLR# clears register contents once all needed data has been shifted.

Sheet #9:
The VOG signal carries composite sync information to support sync-on-green. When
BLANK# is active, remaining shift register data is not displayed.

Sheet #10:

PCLK is divided by 16 to generate CDIV16 for composite blank and sync clocking.
SBLANK# is the composite blank signal synchronized to PCLK. The final blank

645

GRAPHICS SUBSYSTEM EXAMPLE

signal BLANK# is used to clear the screen after remaining pixels are cleared from the
shift register. The composite sync (SYNC#) and BLANK# are used by the video DACs.

Sheet #11:
REF and TRQ generation. TRQ is activated by HBLANK; REF by REFREQ in the core
logic.

Sheet #12-15:
Terminations for VRAM control and for the expansion bus CLK signals (CLKC and
CLKG). Test points are needed for surface-mounted device signals.

SIGNAL DESCRIPTION

RASx# RAS# for buffer #x

RAS# RAS1# ANDed with RASO#

LRAS# Delayed RAS#

CASx# CAS# for buffer #x

WEx# Write control for VRAMs

DTOEx# Output control and SAM transfer request
CPEND# cycle pending

ROWE# Row address enable

COLE# Column address enable

WDEL# Write delay

NCLK# Timing control for WDEL#

REF Refresh request

TRQ SAM transfer request

TRFQ# Conditioned refresh/SAM transfer request
RASDEL# RAS# delay for CAS-/DTOE-before RAS
PRECH# Controling RAS# precharge time
REFC# Controlling RAS# active time for TRFQ#
ERDL# Expansion read data latch

LERDL# Delayed ERDL#

EWLD# Expansion write data latch

ERDE# Expansion read data enable

EWDE# Expansion write data enable

CLRTRQ# Clearing TRQ

CLRREF# Clearing REFRESH

SRAE# Row address enable for SAM transfer
SCAE# Column address enable for SAM transfer
HBLANK Horizontal blank

HCOUNT HBLANK count for generating vertical signal
HCLR# Clear counter used to generate HBLANK

616

GRAPHICS SUBSYSTEM EXAMPLE

VCLR# Clear counter used to generate VBLANK#.
VBLANK# Vertical blank

SYNC# Composite sync for video DACs
CBLANK# Composite blank

SBLANK# Composite blank synchronized to PCLK
VD Bus Video data bus

LDSR# Loading 4 pixels into shift registers

SC Serial clock for shifting VRAM data out,16MHz
BLANK# Blank signal for video DACs
VOG/VOR/VOB RGB signals

PCLK Pixel clock, 64 MHz

6417

MULTIBUS I and the i860" Microprocessor 7

CHAPTER 7
MULTIBUS" Il AND THE i860™ MICROPROCESSOR

The i860™ microprocessor provides supercomputing performance and capability that
can be provided on a standard bus platform. This allows systems integrators to take
advantage of rapidly advancing CPU technology while preservmg their investment in
existing hardware. MULTIBUS Il boards based on the i860 microprocessor can be
added to existing systems or can be the basis for a new system design.

7.1 1860 MICROPROCESSOR CPU BOARD

Figure 7-1 shows a block diagram of a MULTIBUS Il board designed around the i860
microprocessor. The main features include the following:

* MULTIBUS 1l Interface
* i860 Microprocessor
* DRAM Main Memory
* Local I/O Devices
- 82380 Integrated Systems Peripheral
- 82510 UART
- SBX Connector
- Single 8-bit Boot EPROM
* DMA Control and SRAM Message Area
* Memory and Graphics Expansion Connector

7.2 MULTIBUS Il STANDARD

The MULTIBUS Il standard is a processor-independent bus architecture with full
distributed multiprocessor support. The standard defines a 32-bit parallel system bus
(PSB) with a maximum throughput of 40 Megabytes per second. The parallel system
bus is isolated from the CPU local bus to allow the i860 microprocessor to access
memory on its 64-bit data bus. The parallel system bus (PSB) handles interprocessor
communications and accesses to |/O devices not dedicated to a single CPU board.

The MULTIBUS Il architecture also includes the system expansion 1/O bus (iSBX).
refer to the IEEE 959 specification for a full description of this bus.

MULTIBUS® Il AND THE 1860 MICROPROCESSOR

preog || SNgIL1NW paseyd
10s59201d0JOIN 098! JO WeIbeg doo|g walsAs |°L ainbiy

4

1n
s

- I‘J\ OOI “ l
. g
G
S3lAGN v -
n
AVHUY NYHA .

H
a
y

Gu—
n le -

och “ " ”
>] 1
.&- ..ﬁ " .* .* «.~ Alu_v dn o981
su3dine [
0103H09 WED 2dn “ 01528 wouda | |mvus oeczs
t¢_Nen |
n# n~ ¢ ' * 4 3

tfee -t

MULTIBUS® Il AND THE i860 MICROPROCESSOR

7.2.1 PARALLEL SYSTEM BUS (PSB)

The parallel system bus (PSB) is optimized for standardized interprocessor data
transfer and signalling. Its burst transfer capability provides a maximum sustained
bandwidth of 40 megabytes per second for high-performance data transfers. A
hardware recognized data type, called a packet, is used to ensure consistent and
reliable transfers between different system boards.

The PSB supports four address spaces for each bus agent (board that encompasses
a functional subsystem). Conventional I/O and memory address spaces are included,
as are two address spaces that support system functions:

* A 255-address message space supports message passing. Microprocessor
typically performs interprocessor communication inefficiently. Message passing allows
two bus agents to exchange blocks of data at full bus bandwidth without
microprocessor supervision. An intelligent bus interface capable of message passing
shifts the burden of interprocessor communication away from the processor and into
dedicated hardware for this task, thus enhancing overall system performance.

* An interconnect space allows geographic addressing, the identification of any bus
agent (board) by slot number. Every MULTIBUS Il system contains a central
services module (CSM) that provides system services for all bus agents residing on
the PSB bus. These services include uniform initialization and bus timeout detection.
The CSM may use the interconnect space registers of each bus agent to configure
the agent dynamically. Stake pin jumpers, DIP switches and other hardware
configuration devices can thus be eliminated.

Three types of bus cycles define activity on the PSB bus:

* Arbitration Cycle - Determines the next owner of the bus. This cycle consists of a
resolution phase in which competing bus agents determine priority for bus control.
It also includes an acquisition phase in which the bus agent with the highest priority
initiates a transfer cycle. This cycle overlaps other cycles allowing agents to transfer
bus control on back-to-back cycles.

* Transfer Cycle - Performs a data transfer between the bus owner and another
bus agent. In the request phase, address control signals are driven. In the reply
phase, two agents perform a handshake to synchronize the data transfer. The reply
phase is repeated and data transfers continue until the bus owner ends the transfer

cycle.
7-3

MULTIBUS® Il AND THE 1860 MICROPROCESSOR

* Exception Cycle - Indicates that an exception (error) has occurred during a
transfer cycle. In the signal phase, an exception signal from one bus agent causes
all other bus agents to terminate any arbitration and transfer cycles in progress. In
the recovery phase, the exception signals go inactive. A new arbitration cycle can
begin on the clock cycle following the recovery phase.

Figure 7-2 illustrates how the timing of these cycles overlap.

ARBITRATION CYCLE
ACSOLUTION
K=
ARDSe
TRANSFER CYCLE
W= '(:eu . :)"'(90 + 800 =7
e '< ADS10 + ADSS >""< -n::?w}_""

EXCEPTION CYCLE

D

Figure 7.2 PSB Bus Cycle Timing

7-4

MULTIBUS" Il AND THE l860 MICROPROCESSOR

NN

Controi Lines

4

(Optional)

§

w:nm-n'ncml

. Local Bus
VO Address Bus ———F~——— | A[S2] PS8
ODmaBs i | D3 M
Decoded Select REGSELY |
VO Read Consl ———————— | RD# c
VO Write Control WRs
intenrupt Controlier .—,a—z w
DMA
IDREQ
DMA ODREQ
Controler 1DACK
ODACK

u wCcCow-—-—-rcg

Figure 7.3 MPC Signal Groups

MULTIBUS" I AND THE i860 MICROPROCESSOR

7.2.2 Message Passing Coprocessor

The interface from the processor’s local bus to the PSB can be simplified with the
Intel 82388 message passing coprocessor (MPC). The MPC has been designed for
message passing protocols of the MULTIBUS i architecture. It participates in the
entire PSB bus protocol and performs bus arbitration, transfer control, error detection
and reporting, and parity generation and checking. These functions occur
independently of the host CPU.

The MPC decouples local bus activities from interprocessor communications over the
PSB bus. The decoupled bus approach has two advantages:

* Resources that would be held in wait-states while dedicated bus access
arbitration is underway are instead free. This parallelism increases
system performance.

* One bandwidth of one bus does not limit the transfer rate of another.
Each bus can perform full-speed, synchronous transfers.

As shown in Figure 7-3, the MPC signals can be divided into three
functional groups:

* PSB interface
* Local bus interface
* DMA interface

These signal groups are discussed below.

7.2.2.1 MPC INTERFACE TO PSB

The primary functions of PSB interface signals are arbitration and system control.
Five bi-directional arbitration signals (ARB5-ARBQ) are used during reset to read
card-slot ID and arbitration ID from the CSM. During arbitration, these signals output
the arbitration ID for priority resolution. Bus request (BREQ#) is a bi-directional
signal. (it should not be confused with the BREQ# i860 microprocessor signal.)
Each bus agent asserts BREQ# to request control of the bus and samples BREQ#
to determine if other agents are also contending for bus control.

7-6

MULTIBUS® Il AND THE i860 MICROPROCESSOR

Bus error (BUSERR#) is a bi-directional signal that a bus agent sends to all other
bus agents when it detects a transfer cycle parity error. The CSM sends the bus
timeout signal (TIMOUT#) to all bus agents when a bus cycle fails to end within a
prescribed time period. '

Ten system control signals (SCO9# - SCO#) coordinate transfer cycles. The
MULTIBUS |l Architectural Specification defines each signal. Directional enables
(SCOEH and SCOEL) are provided to let transceivers buffer these bi-directional
signals. The MPC checks byte parity lines (PAR3- PARQ) are for incoming operations
and set the parity lines for outgoing operations.

Other PSB signals are reset (RST#), reset-not-complete (RSTNC#) and ID latch
(LACHn#, n = slot number). These signals are used only during system initialization.

The MPC coordinates interrupt handling for a bus agent on the PSB bus. Interrupts
are implemented as virtual interrupts in the message space. To send an interrupt
message, the processor writes to the MPC to indicate the source destination and
message type. The MPC coordinates the interrupt message transfer.

The PSB interface consists of the muiltiplexed address/data bus (AD31# - ADO#).
The MPC controls external buffers used to drive the PSB. As a requesting agent,
the MPC drives addresses and data at appropriate times. As a receiving agent, the
MPC monitors the address/data bus for its address. When it recognizes one of its
own addresses, the MPC performs the required handshake and reads the message
into the message queue. The MPC then, if necessary, interrupts the i860
microprocessor to indicate that the message is pending in the queue. The processor
reads the message and services the interrupt accordingly.

7.2.2.2 MPC LOCAL BUS INTERFACE

The local bus interface of the MPC is like that of any other simple |/O device
consisting of select lines, address signals and read and write control lines. To
support message passing, MPC registers have various functions. They are accessed
by asserting REGSEL# and the appropriate register address while performing a read
or write cycle. Among other functions, the registers are used to program data
message transfers, to receive and send control transfers and handle errors.

MULTIBUS" Il AND THE i860 MICROPROCESSOR

7.22.3 MPC DMA INTERFACE

The DMA interface of the MPC has two channels that use the standard DREQ (DMA
Request) DACK (DMA Acknowledge) hardware transfer protocol. The two channels
are dedicated to the MPC; one as the input channel and one as the output channel.
Each has its own control lines and operates independently.

MULTIBUS Il uses a message passing protocol for data transfer. Control transfers
(also called unsolicited messages) are up to 32 bytes long, and data transfers (also
called solicited messages) are up to 16 Mbytes long and are split into 32 byte
packets by the sending and receiving MPCs. The sending and receiving DMA
controllers do not know that the data is being packetized on the system bus. This
bus bandwidth preserving feature does not affect local data transfers. The MPC has
32-byte internal FIFOs for packaging data before sending it on the MULTIBUS
backplane (PSB: parallel system bus).

The board includes an SRAM message area to isolate back plane data rates from the
processor’s local bus. For a solicited outgoing message, the i860 microprocessor
transfers messages into the SRAM at a high rate. The DMA channel then transfers
messages from the SRAM to the MPC’s outgoing message FIFO. For a solicited
incoming message the DMA channel transfers the message into the SRAM buffer
and signal the processor when it has completed. The processor can then very
quickly transfer from the SRAM area into main memory. As discussed later, using
the SRAM as a dedicated DMA buffer area has several advantages over DMA directly
out main memory.

7.3 1860 MICROPROCESSOR BUS INTERFACE

The i860 microprocessor has a synchronous interface with a non-multiplexed address
‘and data bus. The data bus is 64 bits wide and the address bus provides 32-bit
addressing. Addressing consists of 29 address lines and separate byte enable for
each of eight data bytes. The bi-directional data bus can accept or drive

new data on every other clock, yielding a bandwidth of 160 megabytes per second
at 40 MHz. The bus allows two levels of pipelining that may be selected on a cycle
by cycle basis. In pipelined mode, a new cycle is started before earlier cycles have
completed. Chapter 3 provides a complete description of the i860 microprocessor
bus interface.

MULTIBUS® Il AND THE 1860 MICROPROCESSOR

7.4 DRAM SYSTEM

The memory system consists of static column mode, non-interleaved parity checked
DRAMs. The processor’s pipelined bus and address and data latches combine to
hide DRAM latency for most accesses. Using 80 nanosecond static column mode
DRAMs, the memory system can supply the maximum data bandwidth required by
the processor.

The board allows up to four megabytes of DRAM on the base board. DRAMS are
static column, 80 nanosecond, 256K x 4 chips in ZIP sockets. Parity DRAMS are 1M
x 1. An additional four megabytes of DRAM can be added to the expansion
connector without additional parity DRAMS. Chapter 4 provides more information
about the DRAM interface.

7.5 LOCAL 1/O SYSTEM

The 1/0 system consists of an integrated systems peripheral (82380), a serial port
(82510), one 8-bit boot EPROM and an SBX connector. The 82380 integrated
systems peripheral includes timers (8254), two interrupt controllers (8259 master and
slave) and eight DMA channels. The 1/O system is memory mapped.

The serial port can be used in a polled (interrupt) mode. It also suitable as a
console monitor. Timers are clocked from a reduced version of the serial controller’s
oscillator module. A control port enables and disables the timers. Timer outputs are
connected as 8259 interrupts. The master and slave 8259 chips provide 15
interrupts.

Four of the DMA channels are used. Two are for the MPC interface, and two are for
the SBX connector. The DMA channels can transfer into or out of the SRAM
“message area.

7.5.1 82380 INTEGRATED SYSTEMS PERIPHERAL

The 82380 integrated systems peripheral serves both as a slave 1/O device and as
a bus master DMA controller. The 82380 contains four 16-bit programmable timers
and has connections for 15 external interrupts. In addition, there are five internal
interrupts that can be used with the DMA channels and the timers.

The 82380 uses a double frequency clock. This allows a 40 Mhz CPU to operate
synchronously with a 20 MHz 82380. At reset a phase clock is generated and used

7-9

MULTIBUS® Il AND THE 1860 MICROPROCESSOR

by the control logic for 82380 accesses. The port addressing and data bus
requirements of interfacing the 64-bit i860 microprocessor to the 32-bit 82380 are
discussed in chapter 5.

The DMA channels are programmed with the 82380 in slave mode. Once
programmed, the DMA channels become bus masters to complete transfers. To gain
control of the bus, the 82380 asserts HOLD. When HOLDA is returned to the 82380,
it initiates the DMA transfer. Transfers continue until completion or until HOLDA is
deasserted.

7.5.2 SBX CONNECTOR

An SBX connector is also included. The DMA control interface can be

configured as defined in the SBX specification. Several jumpers are provided for
connection configuring. To access 8- and 16-bit SBX devices, the processor must
address them on eight byte boundaries.

DMA transfers with the SBX are supported. Transfers are with the SRAM message
area. The DMA controller supports byte assembly and unassembly from 8 or 16 bit
to 32 bits.

7.6 DMA CONTROL AND THE SRAM MESSAGE SYSTEM

DMA controllers benefit systems that have peripherals requiring block memory
transfers. In this system, DMA channels are used for incoming and outgoing
MULTIBUS Il messages and for /O devices on the SBX connector. Once a DMA
channel is programmed, the processor remains uninterrupted while block transfers
complete.

DMA performance depends on the DMA controller transfer rate and the effect of the
DMA controller on processor memory bandwidth. The relative influence of these
factors varies according to the task at hand. If the processor waits for DMA data,
then transfer rate is most important. In a multitasking environment, DMA effect on
bandwidth is more critical. A multitasking system puts a task waiting for the DMA
to sleep and continues to execute other tasks. Overlapping tasks in this way
improves overall system performance. Any DMA method must also consider the
write-back caching protocols of the CPU and that the physical memory is arranged
as pages.

I/O system devices are slow relative to the processor’s local bus. The DMA

7-10

MULTIBUS" Il AND THE i860 MICROPROCESSOR

controller is separated from this bus by address and data buffers. This allows DMA
memory accesses to occur independently of processor memory accesses. The
memory portion of DMA transfers accesses the SRAM message area. Direct transfers
to main memory would have to place the processor in a hold state, could not cross
page boundaries and would require the operating system to maintain memory
consistency between the caches and the DMA areas of memory. Transfers into the
SRAM area do not initiate a hold, but they do require the processor to perform a
main memory data transfer once the DMA transfer completes. The processor retains
full memory bandwidth during DMA transfers to the SRAM area and may continue to
execute tasks. Transfers between SRAM and DRAM area execute very quickly
because SRAM and DRAM accesses occur at full bus bandwidth. DMA transfers
into the SRAM can be programed to transfer blocks larger than the 4 Kilobyte page
size.

7.6.1 DMA CHANNELS

The 82380 is the system DMA controller and contains eight DMA channels. DMA
interface devices use the standard DREQ/DACK protocol. 82380 bus control logic
is identical to the 386™ microprocessor and similar to the i860 microprocessor. The
82380 can perform data assembly and disassembly for 8- and 16-bit DMA devices.
The maximum data width for the device is 32-bits, and it uses address line A2 for
accessing within 64-bit processor words.

Fly-by mode may be used for transfers between the |/O and SRAM systems. In this
mode, SRAM reads and MPC writes occur together to produce the highest possible
DMA transfer rate. Fly-by mode can only be used with 32-bit DMA devices such as
the MPC. Figure 7-4 shows two fly-by transfers between the SRAM and the output
data channel of the MPC. In the second cycle, the MPC deasserts ODREQ,
indicating to the DMA channel that its FIFO is full and that it cannot accommodate
another transfer. The DMA channel resumes transfers when ODREQ is again
asserted.

The 82380 can assemble and disassemble 8-bit 1/O accesses to 32-bit memory

accesses during both main memory and SRAM message area accesses. Address line
A2 of the 82380 determines which half of 64-bit memory data is accessed.

711

MULTIBUS" Il AND THE i860 MICROPROCESSOR

l ' | l | | | | |
ex LM MMANNM AN

PCLK _I_IL_IT_JLJLJLJ1|1|1

ADs3so¢ L | 1
ssams D C »
oback L [—
SRAMRD¥ | [L —
Data C) C D
IOWR# \ / 1 /__“
RDY 380# | \ /
ODREQ | |

Figure 7.4 Fly-by Transfer with SRAM Read and /0O Write

7-12

MULTIBUS" Il AND THE i860 MICROPROCESSOR

7.6.2 SRAM MESSAGE AREA

The SRAM message area is ideally suited for isolating DMA traffic from the i860
microprocessor’s local bus. DMA transfers may occur in parallel with CPU main
memory accesses. Both the DMA controller and the CPU can act as bus masters
to access the SRAM and the 1/O bus.

The SRAM message area can be designed for various levels of price/performance.
Two implementations are shown in Figures 7-5 and 7-6. The first figure illustrates an
approach that requires fewer parts and uses four 8-bit SRAMs. In this example, the
SRAM data bus is directly connected to the 1/O data bus. Four data buffers are
needed on the processor side. Only the lower 32-bit processor data lines are used.

This reduces the processor to memory transfer rate by one-half. The processor may
continue to access the SRAM with zero wait-states, but it may only access even-
word addresses. The auto-increment addressing mode of the processor is used, and
no full modula two addressing efficiency is maintained.

The second example supports a full 64-bit processor interface. Four additional data
buffers are needed on the processor side, the I/O side of the bus requires four
additional SRAMS and data buffers. The I/O side buffers are used to multiplex the
halves of the 64-bit wide SRAM to one 32-bit I/O data bus. Eight 256 Kbit SRAMs
produce a 256 Kbyte message space. 64 Kbit SRAMs can be used instead if less
message space is required. The previous example employs only half the number of
SRAMSs.

Arbitration between the two bus masters is performed by a PAL. The PAL can grant
control of the DMA message system to the 82380 by asserting HOLD. If the i860
microprocessor begins a bus cycle that requires the DMA message system, the
-arbitration PAL forces the 82380 from the bus.

Figure 7-7 shows arbitration and DMA control logic blocks. The 82380 asserts HOLD
and the arbitration PAL returns HOLDA. The 82380 takes control of the bus and
performs DMA cycles until HOLDA is deasserted or until the transfer is completed.
If HOLDA is deasserted, the 82380 relinquishes control of the bus. The duration of
this process includes 82380 cycle time and data bus recovery time of the device
being accessed. The arbitration PAL deasserts HOLDA to the 82380 and waits for
it to deassert HOLD. Although HOLD becomes active again in the next clock,
HOLDA is not returned to the 82380 until the processor is finished with the bus. The
82380 is programmed in demand mode to allow this type of arbitration to work.

7-13

MULTIBUS” Il AND THE i860 MICROPROCESSOR

S S S S
Address R R R A /O Address Bus
Latches A A A A
M M M M
Processor x8 x8 x8 x8
Address Bus
Data
Buffers
Processor
Data Bus
[D31: DO] VO Data Bus
32

Figure 7.5 SRAM Message Area using 32-bit Bus

MULTIBUS? 1l AND THE i860 MICROPROCESSOR

Processor Side DMA Side
Address
Latches S S S S S S S S
Processor R R R R R R R R VO Adress
Address Bus A A A A A A A A Bus
] M M M M M M M M
x8 x8 x8 x8 x8 x8 x8 x8
Da'a Data
Buffers Buffers
mie]
Data
Processor . Bus
Data Bus 74F646 <
54 (X4) (32
74F646
(X8)

Figure 7.6 SRAM Message Area using 64-bit Bus

7-15

MULTIBUS" Il AND THE i860 MICROPROCESSOR

When the processor finishes its I/O cycle, it returns HOLDA to the 82380.

7.7 EXPANSION CONNECTOR

The expansion connector can support memory expansion ranging from simple
extensions to complex extensions such as those found in graphics systems. DRAM
control lines and processor bus signals are both available on the connector.

7.7.1 MEMORY EXPANSION

Additional memory can be added to the expansion board.

In this design, the
processor address bus must be buffered on the memory board. The address buffers
perform address mulitiplexing and provide DRAM drive capabilities. Control signals
are available on the connector, and DRAM and address buffer control signals can be
generated using simple decode logic. The data bus uses data buffers from the main

board.
vo SRAM
CONTROL
CYCLES r
MPC
i860 uP
TARGET
CONTROL
—t PAL
ARBITRATION
conmalionl 82380 owm
gl
PAL |HOLD
oL | geaa
ODACK
IDACK

Figure 7.7 DMA System Arbitration and Control

7-16

MULTIBUS" Il AND THE 1860 MICROPROCESSOR

7.7.2 INTELLIGENT EXPANSION

The connector provides the control signals needed to build an intelligent expansion
board. One example of an intelligent board is a frame buffer board. It requires its
own VRAM controller and control logic for returning READY# and NA# to the
processor. Motherboard data buffer control signals are also available. The controller
tracks ADS# and EXPSEL# signals to know when a cycle is intended for the
expansion board controller. The controller uses the EXPBSY# signal to indicate that
it will be asserting the READY# and NA# control lines. The base controller must
disable control of these lines when this occurs.

717

Appendix
Graphics Frame Buffer
Schemaltics

*This design has not been tesled. The tested design will be published at a later date.

- eo——

c [
VA(0.8)
A(0.23) - ‘TIA!ll' Yzo
‘ 10 velANKE 4 ["Tye 1701 » A|!(Y!!:‘!
ADOR zo SRiES 3L 1ne2 1/02 N
A 49072382 20 RECET 2 ve
N) 0 -———Lg———-—s-\.IN?B 1/03 4 4y s
" b2 113 a0 2 hinepa 1/04 a "‘
Ve
. Y so & d1nes 1709 s by 4
o v 2 h1nrs 1/06 2 e e
3 1£] INP? 1707 a
4 ro e ? ry
INPB 1/08
A1D N " ° ve
A)S sac312 1/09 1ofs s
X Te 9
INCt PLCC I/010 11 .
A20 1o viop!
s APl " NC2 1/011]3-MROV fhd I
1|o~1-; ouds cLx SQ.ANK 2 JeLk/INPY Iz0i227 ore
L v L) —Lﬁln,:/[gn/;ukz
Vid
13 r cjpeaerd
. 2 4ACI2902
ALz 2 pARCI2ag A4 2 veLaice | a gashid 1760 R
AS . 2 Le re
A12 2h: w2 \E o SRAES S fhrneez 1/02 P
AYa il . - N RESE & i 1nr3 1/03) al, e
415 Ll ve " Zh1nra 1/04 .
ALS ' 2 s rs
s s 8 hines 17089 7
Al7 2 A2 L 9 | e e
ig [} 1£] 410 3 LINPE 1708 2 b, o
a
LS . ? 14 ALl ' INP? I/07 2 e ve
20 “,.o ve oSy L INPO 1708 10,4 s
s vs sac3yz /09 dlhiio vio)
1o vio) RP HG €1 PLEC T/010 - -
oL CRT TY . NC 2 1/011
ourt4 i 2 uee
) vzl CLK/INPL 17012 L
ROVES ‘ K/INP
COLEs - LIS |
SBLANK
VOLANKS
SRAE®
RESET
SCAEe
.05[0.713
m—
LBE(O. 718
' vy 23 L8EOS
aur 2z _L8€t1s
RP2 RP1 21 LBE2s -
290 LBE3S 6
= ouit3 L3 Legas our
00 LOESS 1s RPS
. 12 _LBEGS out
3 18 LBE7e RP2
LdTew s S =
e PTYTY e e
= g Torew ouT
12 13 w17 RP2 SMD PRODUCT MARKETING
ouv aur

ADDR XCVRs/LATCHES SH.1

IFR!N; BUFFER
REV. Q1

DATE || -20-88| DRANN BY. jp

1]

i
i

A] 0
0(0+311}
SN70.31)
SCO
: RICEQS
M~ SE0s
CASOs
" RASOS
v $242%2 J524257 1524257 05242872
ho sro¢ fo srosjr—508 Q% ho 1ol ho 3101
bt sroz bt srozHe.§09 bt stoz At srozfle 5025
X he . sros hz srospi-—SR1O bz 1oy he srosf1-——S026 Q
hs s104 by sroe k3 sroe hs sros
YRV pe viszo0 e viszol he wiszoiHE D24
L] hs wzsroe hs v2/roz hs vesrez s wzsroppdd 029
4 he w3sros b8 v3s10d o he wisros he wisrosft 028
'—m'——xl‘h7 ¥4/304 A7 waesI0a A7 wvasz04 A 7 v4/10 027
o nci o net o wet he wei
HH weps 3 (13
b 13} sc 13534 8 L vesfo 8 b Nt
; x o ¥ p e g
1] x 7 0 = VBV x e 1 Y& 0
Pe v3o b u3s J v4o us4
¢ ¢ ’y
va 24282 15242572 524257 24287
ho srot ho sros foszod YT 20268
L k1 sroz[He 808 bt st0z b sroz —YAL__ 234, g0, 2029
L Wz s10y he sr1o3 hz s10» bz sro» 3030
Y hs sros ks sroef8—S5015 | s sro.f8S023 | ks 104
VA4 he viszo he visroifE—RIR he wiszol he wisron
4 hs vesroz hs vzsrozft2-013 hs w2sroeH3—D21 hs - vzsroz
ke v3sx03 be wysgosfi—OL4 he vasrosf2——022 ke wasroyf2 030 |
A7 h? vastos b7 vertoe 1 h? vaszos b7 waszolf2—031 |
v
he ne he net ho weiHd
ncz uce,
b 13 13 '":B 8 1sc :g:g
rim ﬂ wrEL
OH 7 [N8V 0 7V D
Ll uaz us? vt l
C 8
uEOo#
€18
-lel
-VIEBI —_—
VAL0.8) .
SMD PRODUCT MARKETING
VRAMs A-1 SH.2
FRAME BUFFER
[radseparecy | '11-20-88 | ORAWN BY. 4p
A 8 c 0

c | 0
R 2 |
0{32.63
sp(32:.63])
n-e $CO
! p10EOS]
= SE08 \ 4
CAS2¢
-
CAsoe
Hasss 15242527
1524257 1524257 . 15242 . Lazezsl,
A (o stoi} Lo srot ho szot
4 y Y bt stoz
Y ki sroz i stoe it sroz :
| y 4 he 3o
y a2 sre> 2 sros
he sre3 . 4 " e 303
y A S s104 4 Ay sroefe——5042 X1 stos "
Ad 4 4 ha viston
A4 s wisEOL ha vistol
e vi/TOM . " ¢ e :
Y hs v2sr02 Y hs vesroz 4 hs wesroz N
2 042 X e v3s10sp—R30 he v3/10))
v3/t09 he v3/503 .
" A/ L A7 w4/104
L] 7 wa/T04 A7 Wa/t0e A7 vasto04)
v A L o ncift va r o wei y Lo wciHs
8 -cl_u 'tt..l.’ nez e 't’m
z wes ¢ ues 3 ue3
sc ues3
11 7 ry 'y 1L
tits 1]) <+ W [11 / [y
] = uvis ['T 1} ues
¢ ua 3 ' e,
b (3 (
15242
1521252 15242 152425 v ‘
va 24 ya ko sroi] 44 va ko szot o srot
r 0 E24 1) K A v N .
va by sz02 L iy sto2 bt 3102 "
v he sre» ya bz sto03 46 VA he sres 4 o bz srosfr——S0B2
. L ks 3104 YA hy sx0e 47 L] hs sro0s o hs sros
: yad he wiszot vad he wisroprz— 044 | Ad e viszopi2—— 092 " he vispoiHiE—— 080
YA hs wezsroz s vesrogft—043 | y s vzsropd—033 . hs vz/toz
v 103 ya hs ¥3/103 4 v e w3srod 4 ke ¥3/109
o A 47 YA AZ A7 wva/I0a
y A7 V4/104 A? w4asi04 A7 wa/sI04 A \
n YA 4 ho wey
Y A A ho uci he wciHs st
o HH Mc2 NC 2 - 1
¢ e he NES P
%:; wxs]
119
a wl 7%
[2ud 03 H v X 7V) 0-[
2
L sy L use us ™
misse)
|
4EG8 L
Rif7e —
‘ vatere! SMD PRODUCT MARKETING
VRAMs A-2 SH
ERAM FFER I DATE + || -20-88| DRAWN BY: P
REV. 01
[4 - [1]
) 8 [

Iy] [
0(0.31]
SO(0.31)
-1 |
- R TR }“
» SEls - -
CASLE
RAS|®
1524257 1 42512 1524257 $24257
’u s10: ho sros e sro¢ Ll ho sz04
Y bt srez b stoz y bt sro2 A 1 sroz
il hz sroy bz sros y k2 sros Y he 1o
¥ W3 sros A3 sroe hs stos by sto4
Y94 he wiszon he wistod ¥e4 he wiston vg4 e wisLo1
.l hs wv2sroz hs wvz/r02 Ll ks wz/r0z Y hs wvz/ro2
Y he wssrod hs v3sron y A8 w3/ros Ll he wvisros
h? wveszo4 A? wvarsxod vo 7 A? we/X04 y A7 wa/104
Ll o ey —YB80 174, "“is o :3
u 13
a Isc '13] f1s¢ '13i 24 £ e 3]
ry :l x 11
1 Nu A Al) 1 Iy
Fyn b) uaz o uga
¢ [[L
1524257 . 1524257 15242572 v 24257
ho sror ho sro: y ho s1a¢ ho sro1
y At sroz A sroz y o sro2 at stoz{te 9029
v b2 srosji- 506 hz sros v b2 sro» Y k2 sros
v Ay sroe hy sroeff— 35015 y ks sro4 b sros
4 he wisro4 4 he wisron Yo4 e wis100 We wisron
As wz/ro2 hs w2s102 L] s wvz/r02 v As vespozHd 029
Y A8 v3/10) hs wssros}Z— Q14 v hs wvasro» L] e vasro>
Ll) vasros h? wesroafd— 015 Yoy W7 vaszos Y b7 wesros
m— e b T -
"
sc 113 c ne| s 1131 2
L H br7Tr Wry|
oH v < 7V x CXA] @41
] us4 usa ua3 L
mheos]
Vgl s
-TEY 1
mifase —
vel(o.e)
SMD PRODUCT MARKETING
VRAMSs SH. 4
FPER | pATE - - DRAWN BY.
REV. 01 11-20-88 JP
A N l 8 (4

A 8 [
0f{32:63)
50(32:63)
1 SC1
DRETEE]
» SE1®
CAS2S
= Sts
= RAS]S .
v 1524252 1524257 1524257 1524252
r 0 3101 XJ 3101 | 4 jro 3I01 Ao 24)
|| NEEFITT ki sroz 4 L bkt stoz ¥ ki sr02
¥ 2 s103 hz sros 15042 Y 2 sro3 hz sto>
3] 9104 1] 3104 A3 910e %] 9104
ves aa we/srOW he VIZIOH 4 v hs wvi/s100 ve4 he wvisiO!M
y AS w2z/102 hs w2102 4 X hs w2/sro2 y A3 wE/r02 Z
v e w3/10) A8 w5/10)| v s v¥3/10) y A8 Ww3/X0)
y h? vesroe b7 wasrod—R43 . v87 22L, vaszos L k7 weszos
v I v 1 v veg 12 I
] ucu he (.14} ho nei1 [] NCL
2 131 '13] ne2 weeH3
8 Js¢ ney| fdsc -ui; s ¢ ney 8 _tsc 13
il 11
s rm® » 7} * r A
11 14 1 v x e 7V H 0
'y 0iq vay uaz
L ¢ L L
i
L_ "
v 152425 1524257 v 1524257 1524257
Lo sro1] Y Lo srot 44 ko srot ko stoi]
Y v srozjro—S03Z y. A1 sto2 4 Y e srez y e szopfle—S061
, bz sros ke stoy 4 ¥ez__ 2442 srod v hz s10d
3 X hs st0e y ks s104 11 y hs sroe Y ks 104
vo4 ha visron y he visIos 44 ve4 e wiszot ve4 he viszO0
v s we2/I02 y hs w2/r102 4 y AS w2sro02 y As wv2zsio02
Yy he v3/z0) ¥ be wistoaps 4 y he v3/103) v s v3/10)
3 A7 wa/rod4 h7 vasI04 47 L] h? wa/L04 y A7 wasI04
S ol S - e o
N
e 113 2 tsc 13 2 Jsc I3 S tsc 113
1 il 11 it
me HH H- Yo - H wrs]
[S 7V x oH 7V x o Vi) Y oH ™ x
L] uss L] uno uss ues
- -
uEds
T
T |
muEle L
4 ve(o0:9) pon
SHD PRODUCT MARKETING
VRAMs B-2 SH.5
OATE + | |-20-B88| DRAUN BY: jp
. A 8 c [

) I . . I ¢ I

o
PZORED
BSLKG 2
CLK prec
[LADSsS 3 Py
m-NENES 41p2 a1 |26
A2z 5 {es az RASQs
A2l & lpa a3 R4 BASIS o
m-S8USYs 2 Qs RASDELS]
IRFQs 9 fpg as
m-LBEE 198y as RECHS PRECHS
m-RESET tipe a7l - CPENDE o
[X])
m-EEPSELS 18ps qo)? 100
mBREF PENDS 13510
— 4 -1
L5y ii - 1hz]s] 4| sfef]e
RP% r
outls
mALL VOELS o
P1ERGD PIGRED
Jr1 Lipa risple : CLNE 1 fp) Piapl9
21p, riapll CPENDS cPENDY 2 1., riaple . CAS2e o
w2 2le3 P17 pl? BAse 3 1e; Pi17pll _Casise cAsle o
2 ira ri1s pl® YALT 4 1p, PisplE crgor o
5 lps pispls LuRs_ S fpg P15 bls CASX] o
£ 1rs Plapld VOELS YDELE 6 fpg Prapls
e 21p, Piapld VDELXO covee 7 Jp, Piapld EROLY g
2 1pg piz pl? IRFQe_8 Jpg P12l RESET 20880
i rs PrLIDLL PREF__ 9 fpg PLIDLL LLKG &Ltk s cc
. DREF F| Pl
bk uze EXPSELS 4]y, a1 26
CPENDS® -1 P3 a2z CLRYRQS —n
mlapsa2ze LA054228 6 o, a3fee | eroEx0 -
1RFQS TREQS 2)es a4 EWDES -
m-Y/Re W/RE 3 lpe as DIOE -
LYRS 10 p7 as 10€08
20840 RASS 1pg a? CLRREXO =
LLKG e b cc Weg as|l®
PIGROD RASE 3l,, O 24 ' PO
Liey PioplICOLES LOLES TH PY% ez LANT PO
21e2 PraplB SCAES LADSE 5 lpy 3Rl LuRme & PTPI11a &
m—REE 2 1e3 Pr7OLZ REECS Y/RS § lpa 04 : 18§, v e
m—LR0 41p4 ris pls JRFQ® 2lpe Uy YRFQS =
5{ps PIspLSTREQS PENDS 9l 1o, ROYS NAXO =
m—RASE [P1aple VOELXO 10lp 1o f25 RESEY Rove o
. Zlpy Pi13pLa SRAES WDEL® tHpn 103 P9 VALY CoLes o
8 lpe PiI2pl2 ROVES PO r04 L8 :‘E’:cﬁ*z n
msoss s i s i
vz7 wewes 7! ol ScAgs
RASQELS P2 :g;ig
m—LERDLS - Ledwr bes SMD PRODUCT MARKETING
_ul1o
EXPBSYS VRAM CONTROL SH.6
OREF AH EER{ DATE - - .
= TONY 11-20-88| DRAWN BY. jp
A ‘] [c)

P —

A c | 0
PI1GR4D
p—SLKC crkc 1 le, praple ROYE o
P2 prapl®
m—La0se 2lp3 p17pt?
=" EXPSELS 4 lpas PIG:)-LG
n—t22 31ps P1s veFlt o m
A2 € lpe praple_veFos -
m—DRNBSYS 2 P13pl2 ceusve o
- 25“ 8 tre rP12pl2
e gxpgsye 9 lpg P11
]
oz out NOTE:. U13 & US2 NEED TO
- RASLE 2 RPS BE REPLACED WHEN CHANCING
YTy 1 *WAIT® OPTION
= RAS®
m—SCAES 4 .|
m—1RFQS ::2?“"
m—BRECHS b
REF 9 IREF
e ERDES :
w—Caias o had 13 _ERQES - DREE u
c:‘nsox:'x - _10pg 108 > 16RED
» 1
re 18 DREF CLKC Pl piapl?
VALY pio 0! 11X Y] 8
6 _PREF P2 P18 DL
PIl 0z veF)s 3 17 CLRREQS
Lene. P2 p17pl LI
m—buE P12 e RESEY 4]py PisbLE
;70'!3 HH 3 vsyne 5 lps pispls seos g
PL4 uee 6 P Fl‘r\l‘ gl =
us 2ip7 pi3pl? 2
T T e g b
p I P19 2ee papll— RPS
m—BRESET P2 P18 pl®
P3 P17l ut EXPRSY® o =
p—coLEs ales P16 D EvVDLE
PNAXO S ies P15 NAS®
FCPENDI PE PLAD LERDLY o
PUDELl A ry) P13
m—BEFCE re P12
2 lrs Pil :E:: -
-l
v2s MESS g
m—ERDLS ugde o
m—YALY VE3S oy
uegzse .
VELS o
LBE[O0+7)8
VEOS -
SMD PRODUCT MARKETING
out P14
u
ars . 3 VRAM & MISC LOGIC SH.7
= FRAM UFFER
- eBul OATE 1 [-20-88 | DRAWN BY: gp
A l c 0

R e

8 | 0
SV
L1d) RP(
out) i
SO0l0:63)
D4p 3 gliriay $052 3 D56 prlage 060 a2 gleriag
i I o H- 2% D0 b o o D44 . o
: bz ezfa- 0 D24 ZIN 1Y D28 be ez fo.
20 3] 1) 04 D bs o v) s o v
D4 b wpla ‘ 0 b4 eepla 0 b« [Ty =
0 ps espl2 D D4 bs as |z 04 s esliz
. =1 s . 0 be ae L2 0 = oe M2
.5y . p? [. 2 o7 [v . b7 a7 v
44 cn ||crr (1, ||cw cn 3
RP 1 J| — il N e 9
T — o L
out]s o3 . o —
osoll] 3 ppeeisy, asall o g, osall] 2 gzeriag osz {11y caursy
— 15, o e 03§ 15y o (o 042 b, a D4t 3 g, e
018 2 2 ezl D22 z 2 oz |8 D26 7 2 Qz bA 030 2 R ezle.
0 Lps esHeve 0 Lps oy(oV0E bLo by s Y010 14 3 by aslie vors
DS sl , PPy IE] PS5 185, eaHs D59 1al, Pyy TR] 63 el ot Y
0 e T} asii2 D29 104y s H2 D43 1oLy asHZ 47 1 ez
_— Rebe qelr2 223 22ps oefsa D27 Robs gsfia EY 20, gofra
D 224, erj21L Y03 D7 224, Q7 vNO? D11} 2zl o7 f2L V0§ qs 22§, orfze vors]
LLchr cH Lckr e 43 o T cn Lkr el
14 o| 14 2 14 4 't 4 a2z
< L ot § & N § o N §
mlOsSRe [0 uss 1 uso Vi
[FRd4N] l
l S —————
Vo[0.15)
14 -
12
p s ’ 8 9 10 1" our ad out
our out our out ourt our oury RPS RPs ars
RPS RPS RPS flﬂ'.’a RPS RPS f”s = .
SMD PRODUCT MARKETING
PIXEL SERIALIZATIUN SH.8
ERAME BUFF ATE -20-88[oRAWN BY.
REV. 0| 0 ‘l1-20-88 JP
l 8) l (4 0

>
—
=]
N
-—
=3

. . AVOD 1 _ L7 . -
° °
LY voo
vo{0:15]) R38 .
81102 TVWea—e c9o | ce3 R96
vasiL2 "
vaagpia 1x R34 > o 7 “
Lad 2
vous -l mw <| = N 1x csz , cos €32
Y014 L los TVABRCHT| 1ooR3S . - = -
oL 205 SETUP T Wy 7 coi| cod LH3BS 1.2V - JUF 10UF '
¥012 S-lo4 ““A—-_\f‘:u_" 7]
2
:::; 9 : 5::: 19 [NOTE: ALL INDUCTORS
R36 " -
195, YREF-LA R3I7 R30 ARE FERRITE BEADS
-
r ° FS_ADJST|-LS 27 OHN a “
voo Tuser]12 2
-unm.um'—_. '3 . st
-] renop--2 —1 L)) vor
3 ud 3%0/880 2 hd 9
~ » m e om <|w vzl AVDO2 R \ul}
il v 75 —\AY
CFEEEEE"
Addds E 'y 8v102 . S Ls
VAL “
vaazl 24 ";‘ > «
- =2
(1Y) 25y WURTTEDL— 1k el = cr2 €74 ces
g voe 4 bs TVRERTHTHEL 4 1 4 =
vo7 Sbs sevup |21 2 0d e T el TS 1UF css TuF
'oe § b4 1RETR-2Q LA
yos 213 coupf-Le l L4 §
voa 352 Toutie
190y YREFpLS R27 R24
: o
150 FS.ADusTLS A~ R28 & by
" SYNCS Zq;ﬂrr ¢ oruserfdl 27 oM 4 .
ZLock acnop-12 ‘
‘m 18 _ \O voc
uss L3 3 ‘r
AVDO3)
' N y Y . . w—"
87102 R23 cso
varip-tl]
- -
Varz24 [=8 - cso , €51 1
vo3 1, TRTTEpl— 1x RIS ° - cas — T
— L jos VW2 - 1uf 10UF sc
TVRERTHTDAA. -
Yol Sbs seTup 2L R20 |oo'c4 ¢ > voe
yoo £ o4 IRET2Q - p
'_Ea conp-LE L2 ! 5 .lf.
'- 2 b2 1ouT-L2
n po o
r'n’l: - 1%, veRes—14 R21 R10 1
- ° o iUno FS_ADJST, R22 @ - i
= = 22 12 ° ~
= = n THSEY 27 OHM -
>~ I iLock acnol-L3
" o—zcﬁ'rru'r agnpy)-te ol
SMD PRODUCT MARKETING
PCLKC u3s
Ly X®
N
ot ns "o VIDEO DACs SH.9
100
jpe— FRAM £ DATE - - | ORAWN BY: gp
— REV. 01 t1-20-88
[
. I 8 ¢

< [
1 o5y o8y Y .5V o8y
RP; nr§ nr; n§ n§ re3
outty outlz ours outls ours ourls
, PLERED
42328
= TR Ivis 4 Pi PiapHld RESET 7' us afsi u.u VCLRe n
Al /o0 1/00 £CE 2 1p2 PigpLe HaLanNg ENP ENT 'R FTRNRVIYR VY
UGEr jesf2 €03 A1y P17pL7 al, aalLla_kco 3l werha
an® + PN £C4 21pa Pieple ExPInNte 4l a8 HE | afie 1o ha
2T 10 £€2 3ips PISpHLS _HSYNCe =~ sl acltz_wcz rles zsedly
—LUGTT 1/02 £c2 & {re Pilabld Colanke 6o oo} L1 wca 2lie 1ses vELANKS
CETr 1/01 CCl 21py Pi1apld HCLRS w17 1ses ySYHG
an® LS PIYY & .) 8 1pe Pi12plL2 2 Nex Reo 1S afie 1ser g
" Euacky yphw rs P11 pl! Iuxw 123 100 e
') ﬁ 4ALS16] . CSYNCe
u:l‘ 1709 =]
Ui s l tr
1 — 14 CLKsze
our J— FITRTSY 2
- 33
| T
RP2 T
7) 9 = EXPINTS o
out{our{ our| our
VCLRXE
RP RP RP RP2 GROE [LRX VBLANK ®
+ 1 1 1 ecikay |, Pis j Y a
veers 2 §,, rreple | Hcipxe sy _PlERAE
RP3
HCLRE 3 fpy r17pl? RP3 PCLKA e, piable
o L P1s LS out)? seLance 2 |,, Preple
2ps PisplS outle 31ps P17 DL
! Lipg riaple | 10 45 Adps P16 pDLE BLANKS o
Ziey Prapl?d Slps P15 pLS
Lire r12pl? 1z, FRE . Elpg Piable RE
(£] PIt 2 Zipy Pi3pld__ scr o
"5} [} i Dok whe ::n Pizpl2 sco o
RP2 PCLKA Pa Pt)
= 4F74 u29 our
m-BRESET (]5 RP2
WL PeLx 74FCT244 R2 | A 1
ouT IO 2, SBLANKy
A2 v2 R? POLKA g
0osc. 4
A3 y3 2 PCLKD gy
A4 vajlL2 Z
T PCLKC o
Re
. 1z M 2 | SMD PRODUCT MARKETING
ourv /P2 4
RP2 CRT TIMING SH.10
1 g“ FnARNEv o‘Ff R DATE 'II-ZO‘BB' DRAWN BY: 4p
A I 8 < 0

—— A — o e ——a— .

+5v
RP3 RP3 .
ourtls outlio oun 11
T 10 g
PRET PRE
’ °r o ot REF gy
mREFREQ 3 >c.,x TpE Dok TR
TR TR
t “F74 Tg iFra
LRRFQS
..fj.x; ®
.5V vsv
X1} RP3 RP3
RP3 ourj13 ouTi12
4 10
outfia ys u4
[al-% 12 1,y al-2 Tku.
ibcx TpHE L ek Tpe
(41, T
4F74 674
i i
mESLRIRQS |
LY 17 +5Y
RP3 RP I
outl1s [T'R{EK]
15
m-SSYNCS 2 € ¢ -
[Q .
mPola 1Bk TPE SYNe g
TR
f; aF74
SMD PRODUCT MARKETING
MISC SH. 11
FRAM FFER N :
REV 01 DATE ll-ZO—BBI ORAWN BY. JP
A] . | 0

| ¢

NAQ

vgo

VAL

VAT

VAS

yaj3

VA2

VA4

YAS

Illllllf

320/660

348

vey

330/660

SEl e

SC1

11

RASI®

QI0EQ02

CAS)#

$CQ

vgsa

RASO®

330/660

[1]

T l”ll!i'(lJ OHll!t'tRJ !chncvtzJ

SEos

DTQEDS

CASOS

» CAS2S

LIRSE R XA

330/660

(¥1]

orfefofepppsplefefr

THESE R-PAKS ARE EQUAL TO
200 DHM THEVENIN

CONNECT 330 OHM TO VOO

& 660 DHM YO CROUND

voo voo

VoD voo

Voo

R32

SMD PRODUCT MARKETING

TERMINATIONS SH.

12

I.L&m_nm
REV . 0)

DATE *11-20-88] oRAWN BY. jp

vyoo

' II.IUF

C34

II . LUF

c3e

II.I\IF b

Ca4q

< ”‘IUF s

€52

p II.lUF s

€82

Il.IUF s

€67

ll . JUF

€9

SN LA

cs3

—] |-'—I-!i—0

€39

Il;luf S

cas

II.IU’ S

€s3

< IIAIUF S

c63

« I‘.IIIF s

(4]

II.IUf s

c8o

||.IUF S

[4:3

—— "o

€94

II.lUf S

c40

ll.lllf S

Ca6

p ll.lUl’

CS54

II.IUF S

C64

o
ad

&

&

o

Py

o

Py

A

‘ ‘I.IUP

c23

p “.lur s

c2s

—] }—'LLD

c2s

y “.lur

c24

p ll.ll"'

— |+:'—-0
=

€31

p Il.IUF b

cee

p ll.luf S

ce2

y ll.ll.lf b

c70

< Il.luf s

(43

p II.IUF s

€sS

p “.wr

c47

< ll.ll”' S

c4

“.lur S

€8s

|| ALUF

ca?

p II.IUF

cel

II.I\H’ S

C69

o o
\ 4

: o———-“—'—“"——o

o— }—;;—:'—0
¢—j l-éi—:—'-—u
"o

ci19

€56

p II.IU? s

cs?

p lI.IUF

cs8

y l'.lllF s

€S9

p lIAIUF >

0———”—'%2—‘—-0
e
) 1 UL

ci8

‘ Il.luf

c17

II . VUF

ci6

Il.lUF s

c3o

p ll.lUF b

c29

Il .IUF

c22

ll . LUF

cze

I' . 1UF ®

c27

A4

A4

o

o

o

Py

P II.IUF

b
- 'I LV1UF

€33

& ll‘lUF b

c7e

¢ — }-J-Ei—o

€77

& lI.IUF b

c78

. ||.IUF S

€38

- ll.lUF

c13

- “.lur S

cia

*- l'.lllf

c3s

o ‘I.IUF

c37

- Il.lUF b

c1s

| ll.lUF s

c71

A

A4

— =

c::lf SIR TEST PATTERNS
—k,
SMD PRODUCT MARKETING
CAPS/TEST POINTS SH.13
FRAM FFER

REV .01

OATE

" 11-2-88 | DRAWN BY. 4p

voo

T

po IV b fo ko ko [Jon R i R

!xPasyn.

NAS

E)(PINT:.

D36

o0 o [s o b (O o0 B0 b o fon i B w4

I~

14
15
BEOs L&
17
BELs 18
BE2e 139
pEds 29

N

ROYS -

ERDLSE o

EVDLSE 4

ERQES o

BE{O:7)8

m—REFREQ

NENES

W/RS

DRUBSYS

EXPSELS

RESET

LADS S

CLxC

CLKG

MCABSY®

EupEs -

SMD PRODUCT MARKETING

EXPANSION BUS

S5H. 17

FRAM
REY 0]

FE

R

OATE « | 1-20-88] orRAWN BY. jp

0

Appendix
MULTIBUS //
Schematics

*This design has not been tested. The tested design wiit be published at a iater date.

~

0
12 esct Ui
ourt)e 1L R CLKD o DLO 63]
13 ia2 v2|l CLKEg i = - , -
oscCc . 1S A3 Y3 3 ‘LKE.
40MHZ 17 114 val 2 CLKE .
T . s
S 724 o ju [i iy -
are o m N M YU B~ B O - NM oYM ® @ ® o - Nm YN e D 0 o ~
O 0O O A 0 € 0 0 0 0 = = W= e - e e e - e NN N NN NN AN MM
's o o o0 0 oo o0 o000 00000000000 ao,z D
- J 23 \ 3 cLK n
[u 2l 3] o] o] o] 7| o] sl 10 033
: 034
$13 |gpeser 034
o HOLD . s9 lrnrscse 03513 038
.5V 3 LTI R duas 036 §
out NREADYE a8 __ 037 R27)
= (] READYS
n|$ Re n;a
Q9 033
outja L HOLD S
: SHI $12_ fsurx : Do ALl 040
BSCAN 13 lgscan 041 .
ot lour e scaM 813 lgean o4zj10 D4
ouT c€Cl £3 cet 043 2.9
R17<R17 DaslrloDad
RE7 ey €Co £2_ lcco 25 D4
= = | mlrENS RS rens oas |8
N € _rres pag |49 D46
ccru 047 D47
: D48
‘ __.I' 2 __Jerea 048 58 049
e 82 __JHLoa 049
miLocke mlaose S7_daoss 0so 030
uia RESET LLLL S8 _Ju/Re o5y (Ll X
NNENES RE nenes ps2fAE O
mELKC 1 ley rraplauintcse = g 970
NLOCKS s8 Jiocks 053
mLRES_2.1p2 piaple. URSTy ™ oS4 |BE D54
._E;QJ.Q_LT_U n7:)-|-z-z-|-n£-s-——- mloEo 212 _dseos oss ,
..S_E.S.EJ__S“ . P4 "SDU-uﬁls mNeEL 812 dgere . ™ 056 RIE
sv; P I NSDL. meEZ RiL_jeczs | 8 6 O CPU os7}CE_ D57
i Praph T3] s11 Jeeas pse (B3 030
mAINT 2 lpy p13pld PCLKy NBE4 arl psa s o
8 | Hl2 CRSTy [Jeeas
re riz mABES 510 Jpess 060 REQ
EEEY '“Du__l_ NBES 910 deees 051 D &
PRACTERY *S miBED R10 BETS : oe2 R D
> © —~ N M TN WA ® N O -~ NMY NGNS 0N O — 4 D6
Uit M T DB N D ® — e e e e oem e e = e NN NN NN N NN MM 063
< ® < < f € A g g R K € X R g < f - | | X <€ < <
4 Swi o
) " 'FEEEEEEE EEE 2 3 AL3:311
v |o|sornsasz|f
o b4 T
raLs1a MBII DESIGN EXAMPLE
RFY
CPU and CLOCK

I-——SJ'—J—— DATE -02-10-89| DRANN BY:NH

A I L] l C]

)
-
)
-
b
i
. 3
s
it 10437107 4y
111 Roigar
- it L 3
= Ty Hw
BI4C42S
LT 1
x
1. 1
1
F
2
O
. 0
= =]]
orérr (T
St GHif
&+ I.“D.:
y(oe
YE2e
yE4o .
IJLI_!
s I:
£
¢ L1484
' 1822 - |
ST Rt
ael
wTeCeTNe
e (223
s A 4
0112
4 leiu-i—l- :: "
L a
| e
a8
£ "
. a0
L o Jitiiad 2 il
Ll Lam T ® (s f;--ufz'm'
oH o+ Taeohd
e B
niece280 nvacazse RT4Ca2%0
>
MBII DESIGN EXAMPLE
Maafe.9)
DRAM BANK O
- [£3X]
OATE + o02-10-89 l ORANN BY: NM
A l ‘] I [1]

RP7 WO[0:63)
+5
1 4 2
|l!l50l7.3l0
+5
{3
4 1
u 2] o] o] s] o] 7] o]] 10
)
f
Ras10 \1138 w 14
L3318
11 :dﬂ _‘:" lﬂﬁh rve
.ﬂll. IV 1] 12} L
vee -
[
(1)
1) (1%} 2AAL
o (113 LYY
9, a "3 MAAS
" (11]
a8
1A 13] 47
WLﬂ- 2
3
¥ [T3Y
0‘. LEE 0‘-" tILJ g
Lam 1l @+ w g
] %:" NIece2%8 uv4ceazss AR
; Ytag BAAZ
vERe |] rYYYY
[11%] s
a8
ar
as
"
a
n
"
1)
a8
, < 44 118 Pe ooe
@1 L1 2 111 rS LLLAEW
-d Y Y h & 120 0 045T
el ¥ [ravseg K2
avacezss
wie
Aare Crvy
1
u
1 [l
ll zf 3] o] 5] 6] 2] 0 ||° %
o (119 ¥ :
ppAsos "1 Ty > “! o
mesos ot Niriss o [odm I
WTeEqint TOF) O OITIN WTTEiTee
ey -
vyEL®
- KTETH &
vEse b
"" MBII DESIGN EXAMPLE
o
(o.31ke
i DRAM BANK 1
2
med fst2 _ _Joate «g2-10-gg] DRAUN BY. NN
A | (] l C - [

39 DBUFCTL

Lipy r23jp 22
21r2 r22pR2
3ls; p21 b2l $A9
dipa r20 0 DBUFOE
3les risple CPAB
Slee rrabll SBA g
21p, r17pll 1Y T
L ipre r1spLs
2 1es Pisbls
101p10 prefte us? , us?
m-I0SEL 11lpyy i3 s 3 DBUFA]
ATZORY 74737 DByFE 7
— o aF37
Sun 14€2 "= 4
RAMSEL
=
74F37 usz
37 _1SPCTLY 1 DBUFDIR g
m-ChKE 1 1py p23}-23 ,,,—3;
PCLK 2 2
= P2 p22pR
w823805EL 3lpy p21 2l ADS®_380
m200.380 4lpe r20 20 yRE_ 360 g
-LADS’ -1 s Pl’:}l—l pC#s _360
.BUR. & PE '|.3]_B MIDe 380 =
21 ez ri7pl?
mEECOVER 2 lpe risplLs
mSHOOE 3iss rispls
mlCRES 19 1p10 pralds
m-A2d Liesr p13
v ALZIUWNY
.C“ODE OF
38 ISPCTL2
m-SLKD 1]e p23l-23
Lis2 r22 a2
2 e3 rz1 2!
41pa pzo p2O
5les rispl?
8 irs rieple
2ley ri7plL
8 lee P L6
2 lpg pispls ¢
18 1p10o Prafld o
e us:)j— ja
-3 - >
ACUZURS
) E E E o MBII DESIGN EXAMPLE
- E N R
82380 CONTROL
NM

DATE ~02-l0—89| DRAWN BY NM

8 c 0
ORAMSEL S -
EXPSELS
} = MUALTS u
i
» NREADYS 10SEL -
m-CLKE
' 8251 0SEL o
I00EC!H
PI oy, P23ER
P2 p22 22 10TIME
»3 p21 h2l SBXSEL Y43
P4 p2020 EXPSELS 1 ey p23l 23 VAITS -
PS P19 3[! MPCSEL 2 P2 P22 D{Z
P preple_SRANSEL 3 {p3 p21 b2t
p7 ri7pl? 825105EL {pse pzopo
Po pispli 10SEL Sips piapld
Pe pisli RRANSEL 6 {ps p1apls
P10 Pi4fld 2lp7 P17l RECOVER o
P11l P13 2 1pe P16 pls
XTTULE 2 lpe P15 LS
4g 10CTLY 10 lp10 Pralle EPROMSEL o
m—SLKE = 1dp p23)-23 11 1p1 Pi3
21r2 r22p2? XTZURE
2lp3 p21 p&! -_
EMOLY ¥ =
P reo b0 censmeg 1001 sRAN_ D g
mlaose sles r1sple SRAM VR
. mouae ° 6 |pg ri1aple 10808 s
11 2 ley riz7pl I10uRS -
mHREADYS 8 lpe P16 jolE DMAALE g
mSMODE 3 |pe r1spHLs pchd
TCRES 10 4
- P10 eraL]S
Llipi1 pr13pld ueo
outs RD2s
ALCUKD®D 13
, 74L508
CHODE_QF
= uso
VR2S
42 I0CVL2
m-CLKD . p23]23 74L508
2lr2 pezppR2
— 2les p21 PRI
4 ip4 p2o pRO
s]es Prsple DLOCKSE o
£ lpe riepl®
8sy 7)p, P17 pl2
£ lpa pigpLe
CHOOE 9 |pq pispls
. 19 Jp10 pPrafdLd
NLOCKS Ll P s
bl Preoo e q.l:z MBII DESIGN EXAMPLE
ACZURG g <] =
— o Z| 2 SRAM & I/0 CONTROL
- [B]
}—_—S—u—.__ DATE «02-10-B9] prawN BY. NM
A] 8 C [}

A [1 4 |)
ONA_.D(O0:7)
DMA_D?7? 4 07
DHA_ D6 b HAX233
DMA_D y
DMA D4 oS i reeeDL RS232
t; Txo}-& TXp) —haa vto;vD»‘-‘-J—m-l-—|——ol
[ouaoz 24l 2 Rxp L2 BXD) 3 Chyeur ,,,._A_&I.N_h——Lng
ﬁl RTS3E MChrovr nzzafpts 418
m TS C’—‘ Cdciae cra. 105
] L—os
oswi3-L Qe czee (o7
10R02¢ 26 TYR3E [::vu cu-::j Lioe
10uR2s 18lg DCOPR - cze- 409
pua.a0s 24, The wl,.
RHA_AD4 230, ouvzsxz 8- - .
PuALaD3 22, cLk/x1 j2 J——
9 1.8
mLC5825] . ‘s %
,,“” ourig S s aafdl ‘ves
RESET a8 - aa]2
57 0sC . >' ac |C>T a8 REFRE
0S¢l 2. “":_u__g_u_. 18.432UNK2 Elcur acl-2
b 4 | 16 CLR ao |-&
P 7415857 7aCS3Y
£4a3 vafls CHOPORT cLarrg g
e 12 Clrc gy
Mg Ldpy P1apls
4F244 DMA_AD) 2 lp2 rraple Rj .
OMA _AD4 2lp3 P17 317 R2 B upe
DMA_ADS T P P LS PORT u@
Sirs rPispls.
— ACCERRINT
— 10WRZS s lpe i »
! z21p; Pispld
DMA_AD(3.:8] ! 8 lpa rPi2pl2 o
Gro.e oua los 9 lpg aa ™M Du:l_ T
RZ2# =
=slzosv|oxn: XTTERE cg ysi
21, a SREFREQ g
mloLK
Ll ek wpt
m-REQRCE 2 TT1L8 0Na 0 o
mlAL 3].; vasy, DHA.DO 3 7AFT4
413 v3 D D
.“:oi : e v SRESET o
QuooD DM ALD
- a8 vs FINT
miesle Zlae e QHA.04 - —
.MEICJMP 8 A? Y7 DMA_D :
FINI 9 1,y Y8 RMADE - [MBII DESIGN EXAMPLE
I 3T R
G Ts sLssal HIEHE 82510 and CHMDPORT
L BN hd N | T
mESCHOR : ® ; [—5——5‘* DATE 02-10-83 | orRAwN BY. yy
R | [} c 0

DMA_AD{O.18])

+5

DHA_D{O0:+7])

.Ml! 4 r 1
lH A27 ‘ EMUX "
' A 13 EPROM . AOQ DMA_ADO
1 o A EPROM._ A} ! T
: P2 [2Y R, DHA_AD2 2 13
weefo:3) | B . AL P3 P17 plL ‘ DMALAD3 o 20
. DMA.ADIE 4 1p, Pisplt OMuA_ADY s 21
; QMA, AD
; NQE2 S lps PLS DLS DMA_ADS Ly s
| HBE ™ prabLe DMA_ADZ hio TOPRA—
NBEQ 7 lpy Pi13pl3 TTWTT p1 TP
[P T I WS- 8lpe ri2pld EPROM A2 YT ::: welse
OuA_ 40159 lpg Py Lt .:: £0 ™
D)
PRACTETY OMA . AD y‘::
A(3:31) ; 2421
t
w-10RD2#
m-MesyY
100EC2
m-chxo 1| P p2afl
P2 r22pi?
A P3 p21 DRI : CSCHOR o
A LI ' p2o R0 ! ACCERROR o
A24 (13 praple
PE piapl® \
P7 P17 Ll 92380SEL
2 lre P16 pLE EPRONSEL o
S HOOE 9 1pe Pispls DBEIL o
- 1CRES 19 p10 P1afls
PR Lllpgr P13
NREADYS TZ0LE
mLA0se

MBII DESIGN EXAMPLE

EPROM INTERFACE

f__i____-"-7 |

DATE :02- 10—89| DRAWN BY: NM

e e e e =

8 c b B
X1 X1
R20 R20
ouvtls outl2 *S
L]
ui21
m—lINouT 3
RrTYY: s 8 1IM0UTS
u-05L0 b 28 f-10 PROTE g
Ut . EL -2 pcLoe o
A 2 A 4pl-8 RSTE o
I . . S e T TTS
ouT 741814 13
- CSKe
*
1 RS T
uiz2 CSMPAL
m—BLLK
m—UEBST e rrspld RCVYS o
YT, 21e2 riapll o
3ip3 Pr7pll |
4
Actos . P4 P16 pDLE
PS P15 LS
.Ut CIMLE lpg Prapld
7
2 Py P13l UCINTS
P8 Pi2pl2 UCRST o
2leg P11
KCTBRT
PORSTS]
IROS ? 3 Csue o
LINTS -
BCLK]E
BCLXKO® =
- CCLKO®
chxu:
MBII DESIGN EXAMPLE
CSM INTERFACE
F_Lu.._e* OATE oz—lo-esl DRAMN BY: NM
A
8 < 0

N 1 . | — I

[
124 ARDCTL
meLEC [l p23 |22 82380SEL g
\ 24p2 P22l HOLDA.380 o
mbhiDce Ales r21 pR!
[T 41p4 r20 RO
n—tl [rispla OMODE.OE
R2. & <7 -
s risp CHODE.QE
m NREADYS 21e7 »17 Lz CHOOE .
HOLD .380 0 [1g OMODE CMOOE o
» re risb QMOOE
I0SEL 8 i5 OOFF =
| 3 P PIS D DOFF
mRECOVER 10 ip10 praftd u
1l ien na;l:j_
ALCUNKD
-— SV
c Y123 oMACTL R20
LK
- PCLK *® Lirs p23}-23 out|?
- oua ! 21p2 p22pR2-BELEASE
= 4017 : 3 21
P3 P21 P SRAM_RD
m-DMALADIE 4 20 -
P4 P20 SRAM_UR o
: s 19
m-ADSs. 380 - . Ps PI3p s I10RDE g
£6 Prepll IovRs
m-VRE.390 : 5 7 u
u10%,.380 i P17pt
L P8 Pi1sDLE
9 lpse pIspls ROY2.380 o
TCRES 10 lpio pral-t4 BCYCOLY
» 1llets pi3
AT ZORG
OMODE .OF
DMATIME
46
Lipy pispl®
2 le2 Piapl8
2 ie3 p17 pl?
urps ACKOEC Llpa pi1s pled
s
iles T : PS us:)li——‘
22 r1sble , PE P14 ;)1-3
P7
d.1p3 r17plL o "33"2
mRMAADIS 4 fpa Pis LS re P12 pL
5les ns, 3_ips P11 pll—

4 3 PP P14 XCTERY |
m-EpAlK0 21e7 P13 BCYCREC —
m-E0ACK] g 1pe P12
m-E0ACK2 S lps [BN -

ACTeUH - o~ : -|
m - - RS la
» = = u "y
< = I 5 MBII DESIGN EXAMPLE
S bre = b
= 1321 % . 82380 MASTER snd ARB

H"_»i___ DATE OZ-IO-BSlroRMm aYy: NM

0

Al3.31)

OMA_ALE
m-CMODEDE
53
Aque
Lic
2 {10 L o e —
3120 2018
4 130 a2
3t 4ok
£ 150 sqf-l8
2150 sq-ls
8170 7ol
A30 2 leo T
54
lqor
11
2 1o 1al1a
2 12p 20}-18
4130 gLz
310 418
S 1sp sqf-l3
zleo saf-14
2 170 7a}-12
2 Je0 esa |12
DMA_ADIG
OMA_AD)?
yg3 BESVAP DMA_ADIO17)
idoe
1le
10 5 10
NBELO. 3] 20— 24 LAATIR R
30, 30
" ADD PULLOOWN
0 . 40 TO BE3S#
N 50 oy 50 LLS82510 g
60 — 6o
ADD A2l imput L;o 70
poz510sEL P i ™ . MBII DESIGN EXAMPLE
DMA ADDRESS BUFFERS
HLL_< DATE 02-10-89 ' ORAWN BY: NM
A - I 8 [}

T e T e DT 0T £

R | 8
L "
DMA_D[O0.31)
DBUFQE
~-ITIT)
cpag
548
:?auroxn
uss
1 Jcas cBr
SAB SBA
2 fo1r T
Al 81
A2 82
A3 83
Y] 84
4 AS 85
I3 '
A? 87
Y] e8
74ASE4S
uss
L cAB CBA
[o SAB S'A..u——————-l——-—4|
2 {o1r Tpil
4 At ¥} [} MA
a2 gz |12 0Ma_09 |
A3 CE ’
Ad a7 OuA_DLL
AS 8S
A6 BE na
4 A7 B7 4 MA 4
n 8e A
T4ASEAE
use
[CAB CBA ¢
. sae seal|-RZ
A lo1r Tphid
41 a|.2_°__9.u‘.nJ-L
2 A2 gz |19 DMA_DL7 |
A3 p3|- 18 _DWA_DIB |
Iy} 'Y LY
AS 8s LY
AS pej]-150MA_Q2)
A7 g7 |14 OWA_ D22
| 20 '] ua
7445646
us7?
1 lcae cBa]
2s5a8 SBA
— ' {} Th
4 4 1ay 81
A2 B2
A3 83
y M— B4
AS 8BS
0 P b MBII
A7 87 DESIGN EXAMPLE
031 11 l,g Be
0[{0+63) 74AS646 DMA DATA BUFFE_RS
l l——s—’L-—U——-—————‘DAYE '02-10-89 DRAMWN BY'NH
A o =

]

YEREDS] ? - 2
- ——— HAA[O0:9]
e ——— e —
F4ncI2a82 sCI2ae2)
AL T] T
he re N ve *5V e85V a5y .8y
.5 3 12] s
. e s e R9 LY R9 RS
n hs s s
w40 Lo ve outrl7 outl4a ourls outls
FRE [430
2], ols a7 12} Ly A28
a8 re 3 A28
cLke s e :,
2 >C|.K TD& AL e rio g
— TR kT T ACS - P ot]
(! “F74 'Y I D I
» ADS® & RAES
114pP CAL”
§ uise 1% e Caes 22 OCTLA
FHE CLRCYCS P1 P pLe RASOS®
2l NAdSs 2 195 u
[® ° Qi rI..Z_(, al-& CPEN® —} = S[0:4] P2 Pie ple RAS| S
L] P17 plL NKENS
3 .
Dok wpe ek ol DRAMSEL s . = X Pis pLE
LADS2® S0 5 lpg P15 pls
T aF7 TS T4F74 bcTLE 21 6 fpg PraplLe
® Y Pt Prapyta | RTBas 227 1py p13pll RASPOS
—{ @ ORAMSELS " P2 ore capse : S3 8 lpg Pi2pl2 PFORCE
OLE =
P3 PizpLZ L Care $4_9 Jpg pripll Az2e |
oSTAT 4 1ps ’“;315 PAXTCTGERY S[O0:4)]
18 PS PIsHIS WEL L4052
26ty
Lipi Pispld L] Praple L vOL csxs
m-SREFREQ 2152 Praple 21py e1apla | eoy
mHuRSE P PN o1y 4 Pe Y ¢ RIAGS 15 DCTLO ula C500:31#
3| g NNENES]pa pie P9 Pri Lt | 11p, p23|-23] :; Y] Y1 L
*
15 |ps PIS P2 P22 A2 ve
TCTERE™ p3 p21 13 {3 va|-S. C52e
- L PIapld 17 N
mEXxppsys 2 P13 Y17 pCcTLC p— Pa P20 A4 'C'“
upsY 8 PS PIS
[FLEE Po Przpli— Lp, Pisple] e "o HS 4F244
2 lpg Pit NWRS P2 frale. ny
1 TTTERE P3 pr7pl? DEXS p7 P17 QEXeL 2 T Y1 DEQ 20y
re PIE 4 0gls
— 41pa Pisple Az v2 =
- P5 Pispls k9 P1s £4a3 yafls
P10 P14 9 avee
P6 Prapte et P13 LR g, ¢ -
4 P? Pr1apld 4F244 _j__
1 8 pq P12z XUZORY Y f—
*
meLKA &1 21pg p11pl! WELO 718
4 XCTERY e
- = I MBII DESIGN EXAMPLE
of -f af o - - ":
43 JI9 94 = DRAM CONTROL
an ddd s — 3|3
N EN DEE RmD = M)]-—L—LL———"- DATE :02~-10-89 | pRawN BY- NM
A l 8 ¢ [}

[
DMA_DLO31)
— e ———
P R E R T o
o o f o o -]] N ad g
(= BE- BN B- Y- Y- - o o o
<J 4
.7 .7 .7 =4 ; =3 = ; «f =] «| =] <] «| = -| «| «
o= o o x x| xf x| x| x| x| x| x| x
ouTlé ouT|3 ourtf2 of of of of of o o o o o
[T
miovi_ 360 |
~ o m nd v] n{ of of o~y n{
g!'z a!g e -t o]]] d o o oy oy -
® = NM Y OW N DO - N MY D SN B0 O -~ NMY D WD O O —
D O8O OO0 O O O = = o o e e o owe ow NN NN NN NN MM :
o 0o o o o o0 0o 0o oo
= ICLK N1 CLKIN o o000 o0 00 n. o o
[FEmAN] $14 cLk2 trait |PLO PERINT o
m—LCRES N12 |mESET IrRa)2 [NLO NINT
Ml2 CPURST IRQ13 2 EINT.
NAS_380 ua{’u. IR0 4 M2 Eltnl'-
REAQY S M1} ~READYS IrRQ15 P9 G2S10INT o
FRDO 2990 Wiz C"“"" IRQ16 B ACCERRINI.
m—HoL0. 380 412 |HovLo 1rRa17 8 LINT
m-HoLDA_ 3080 N3 HLOA 1RQ148 P8 AUXINT
m—DCe_300 L2 pscs 18019 }B2 SBXINT o
m—2108,.380 113 u/108 1ra20 |2 EINT o
w5y phAd K13 JTouTI/REFS 1Ra21 | M2
Tor2 TOUT28/5R038 1Ro22 M€
R7 R? 813 A ;) NP24
% ToUT3 (U_uz_cwuni 8 2 3 B 0 IRQ23 [EE 1RQ23 "JQ-I
out|s outla usco P11 vsco :
wsCl Hio wsc1 €E0P# K3 £ope o
mMINT . u2 Ny U477 eoackofL3 EDACKO g
EDACKE M} £0ACK] o
ADSS#_390
mVRe 380 1L Kk2 Jross EDACK2|L2 £04CK2 o
+5Y esv esv esy |Lx12 Ju/rs
' (13 RE R7 RE
DREQO | 4§ DREQO
? 8 110007
m-0BEQS ouy outls outjiooura Lt _decos OREQ!|PS OREQL
®
m-L0E1e . £ deers DREQZ|NS 0REQ2
moocze 43 Jecas DREG3|P4 QREQ3
m-R8E3e J2__ dee3s OREQ4/IRQIS|NuS DREQ4INT o
2 By OREQS|P3 90REQ g
ouy OREQS [M4 10REQ g
RS i DREQY]
= G = N YN W NS MO —~NM YN BN BT O - [S 9 ®
oISt TIIITIIIIiIYyNyyynnyyanm out {our {our {our
RITT RI7< R < RO
- ~ o~ ¢ L B e I G L B B B I B Y
= al g ol g o A o oy o8 o =] o] w o oA« - - - -
Of -4 o -~
o s [e I e [[t i e
[I I 5. IS 5 IS IS I, MBII DESIGN EXAMPLE
x| x| x| = xf = 2| 2| 2| =
o o o
b DRAM CONTROL
DNA_ADL0.29)

|
:

DATE - 02-10-89| DRAWN BY:

A I - 8 I C I

[
n
-
0(0:63] >
0PD[07
ue?
A n
8 -]
gPDO 1
4
¢ EVEN c EVEN|S 01 2
: 0 0 P02 2 .
€ E
PD3 4 PARERR
7
. F 03713 |, 0PD4 1¢/je2 —
¢ 000 c oo £p4 PoS §] 7arsao
g DRMOIR —Ldvr ? M H
mReL ek PR e 4]y n:o: 1;
10 10 7¥XSZHU TTIXSZY 1
20 20 55 66
30 3aQ [A A
40 40 8 4 8 WPO[O0:7}
50 sa 4 EVEN 4 EvEn|S 20
s0 s o 4 o]
~
70 70 E € 442 |, wgrc‘
80 L1} . 4 . cLK
PO} 3
RPDLO:7) ALris YV 000 48 11¢ 000 pE QDS 03 20 20
H B aPps 2|30 3q
Pl 41y £s 41y (1Y]
TTIXSZUD TIX5 790 40 4q
64 9POS§ 13 | sp sa
. . N 9PD4 14)eo -
: . . 02 12,0 70
[TXY 18
80 aa
4 EVEN c EvENL 3 J TIXS3ITX
0 1]
(02012 | € —
[3 F =
4 P
'SV 5V +SY 5V +5v +SV ¢S5y +5y ¢ ooo ¢ eoo
M H
R1Q R9 RS R18 R18 RIB> RIB> RIQ 41 PG 44y
TARSZ FT¥3XSZ
out9 ourle outls outls outls ourls ourl7 oute 2 2
[o a 4 A A
025 9 |g ®
[EVEN 05810 J¢ EVEN]S
[[
[3 E
F F
030 | § 000 062 1 J¢ 000 POy
0231 2 I, H
£I 4], P2 4|,
TIKS2Y TITSZEY MBII DESIGN EXAMPLE
DPL{O:7) PARITY GENERATOR
H"—""“ DATE +02- IO-,BSI DRANMN BY: NM
R [8 l c 0

4 [
RPD[O7)
MAA[O019]
1
wRASFO#
Y7 ue us uio
4 A0 AA A0 HAA A0 a0
HA At MAL Al MAL At u Al
A A2 Ad A2 MAR A2 HA A2
NAA A3 wAAd 14,5 WAAY 14],3 WAAD 14],3
MA Ad MAA Ad y AA4 Ak MAALY Ad
- .Sy AS sout AL as poyr [1-8£02 WAAS 17],5 pour uAAS 17},¢ pout |2 REDE
Ha AS A8 A AS MA I3
MAAZ A7 MAAT A7 MAAD A7 1] It
RE MAA AB HAA A8 MAA It AA A8
MAA WA MAA
A A A
ounla 9 A8 9 3
L RAS/ P08 Ipas/ P Zdrass ¢ RA £ I4RASY
£ cs/ 3 css 2 cs/ £ css
ugos vE/ uERS vE/ vEAS NEZ MEES VE/
Y DIN DIN uPp4 loxn ue oIN
2
u3 U4 us ue
MA A0] A0 MAA AQ MAA A0
A Al MNAA Al NAA Al AA Al
' a2 Ad A2 Ad A2 L] A2
3 AAd A3 ‘A‘ < A3 MAAA A A3 ::: : A3
A4 A4 A4 v
A as oouT AAS 17],s oourt RP [TY 25 oouT WA As pour |2 RPO7
L) A MAA A8 LY AS ua I
L] A7 Z A7 WAL A7 Y A7
4 A® [TYY A8 A %) L1 A®
T as Al a9 WAL As AA A9
RAGP RAS/ E g RAS/ RA '; I Rass BA '; I rass
| | cs/ cs/ cs/ cs/
LELS wE/ ¥ vE/ MESS WE/ YED vE/
X DIN Ye lox1n ue 1N ve 1N
CS[(0:3)#
WELO:+7)#
WPD(O+7])
4
MBII DESIGN EXAMPLE
PARITY ORAMS
Fi._.l_i__——"~ DATE :02-10-89 Lonmn Br: NM
A | 8 l 14 [}

R] 8 | c 0
MDlO0+/63]
RUENS ;
LT i
mRoL .
1N !
RTADS
-ITTTIT
[IX ves
:l'n;'. ; A o ITYY] B4 :'r“;ec ; cae c“_zj“"t—l%‘;
R A Aj-22 RYgasg
ORWDYR 3 :;: s.-e-DZJ_M!_g R DRMOIR 3 3,: ss_r DRWE NsY R
0O 4 a0 1 L] 032 a1, B1| <20 M03IZ2
. a2 82 133 S 1,2 g2|-13 MO . —
0 A3 83 L 134 6 1,3 B3f- 10 M034
0 e paf LI M03 | 035 11, FHANEATYTE
0 AS 85|16 _Mpa | 136 8 f,5 gs|- 16 MO3IE
. A6 86 M 1372 9 1,6 86 MO
0 0 a7 s7jle ¥ 138 10 1.y 87|14 M0
D A® 1) Ll 139 11 4,9 8e Hp
74AS646 7445646
uez us3 5
[=5 cas caal-23 __ROLE & YOoL Licas coaa 8 -9
RTAD 22 RIpAS | CENY Y RYGA2N
&8 I :;: “—é 'Y B o ::: sa_é_ TTIET Bl
08 4 Al 8l])4 4 Al 8t 0 _MD4O
03 A2 82 ML 51,2 B2 Mo 4
D10 6 1,3 83}.18 M010 | D42 6 1.3 83 LI'X]
© Al 84 L] 14 2 faa a2 _MD43
0 AS es| 1€ 4012 | 1448], 8s LI XX
: AB 86 L 145 9 1,6 86 MD4 —
D e e EYETIV 146 10}, 87 4 _NDAG
0 A8 8e| L 47 1) 1, LY L
Tars646 7445646
L1 ues
h ") can cea 22 R\‘;Ai g 'l :ne- 2 cre s ntR¢ P
' 1 Hoewo oin %% rucnsff 19 forworma|iie SB2 TTTEY Wi
: L)) 81 " 148404, B 120 ND4O 3
. '} 2}-13 4012 | 49 5 1,2 2113 _MD4Q
D A3 83 N 030§ 1.3 83|18 MD3Q
! Y] saf 2 HOI9 1 S P e 17 MO
D20 AS 8BS L 1528 1,4 s |16 MO
D I 86 M N3 91,6 a6 L
0 0 147 B7j-L4 M 5410 f,, 87|14 4054
D Y] B8 uo M55 10 1,8 88 HD
7445646 74AS646]
ue? ves
:A » a8 coa 22 ar;n :gku ; caB o cea Toas
B R P .
DRMOIR ,s,:: “—é- RMENS ORNDIR 3 :;: "{r DRMEN®
D24 4 Al gl M 4 0SE 4 Al 81 0 MDS 6
0 a2 pzpld ¥p25 | 082 9 1.2 2|13 uD37
0 § {a3 83 L] S8 6§ 1.3 B3}-18 K058
. 2 taa B4 2 _MD27 Dss 7 1,, gaj-1? MDSY |
30 2 1as 85 : JFL-—L AS as‘lﬁ—:o-g-?— ‘
A %029 061 9 | P
050 Tl A8] v NTFENT oy e woez MBII DESIGN EXAMPLE
' iy i Eama L oe e DRAM DATA BUFFERS
DLo0+631 7445646 7405646
= I._S__Ijﬁ_"— DATE 'OZ'IO—BSI DRAWN BY: NM
R | 8 | c 0

IADLO:7]

- - l
~ >
= =
~ L.
sy 5 = us1
= FRE
s eeRInT g
"8 [[
+5
XtTaLt po.o outls Pcu by
PO. 1
PO.2 TR
XTAL2 P0.3 N2y
PO.4 TL
:g': MEMINP oy
PO.7 - o
P AT =
TRy PRI uss
P1.2p P12 2 D@ LINT
Pi.3 ; [l
P14 LRES
pi.stE PFORCE =
P1.6}H
+5y p1.2}8 U9S
21 12 Doll BIROES o
RIS P2.0 :
PZ.Ié;
ut p2.2 PROT
u° 2.3t giR ol
P2.4 €oL0s
< p2.5RE gc._n=
- p2.6 2L WeCRST g
p2. 728 URST o
JurRe
P3.0/Rxo S Taps @
.5 P3.tsTxp L Tast ™
P3.2/INTOS :; u
| P3.3/INTLS !
EAs/vPP P3.4sPOfL4 PARERRS at
YGRSy }]
» RST P3.5/Ti &R +5
P3.6/uRsfle uss v Ri1l ° »
X1} ?3.7/R0s L2 _u_{>0|_9____ PARA AR R b
rs:nsﬁ%
aLesprocsfd 74LS14
R19 YEL
ouy Uit R12 (13 TN
o T4 17] P10 9 Y s
m-1REQS 74LS14
R e TTTIN CRN
=unu vt R13 oS N
N1 A RN S
—— WA
/15 ‘ 74LS14
RN
s —fo o op— me ofR
R1B GRNZB | RN RN
—— =
m-CALe MBII CESIGN EXAMPLE
MPCB7C51 INTERFACE
'—7—5—'1-41—7——0AIE -OZ-IO-BBI DRAMN BYSNM
A] c 0

A

-
*S5Yy *Sy a o a @
R7
R20
ourtle outle
© =~ mmw w w o~ ® 0o ~mewww~® MO ~NMmMY OO ~N®D® O - SEL/ERR ourvls
OMA_AD[O.3) OMA_ADO 03 .--......._.._——-~—-~~~u~~~~~~unm .
A2 nﬂaonaaacu-n-----n-u--uu-o--n-nu
OMA_AD2 c2 a4 - tInour -2z TIMOUT o
DMA_AD3 81 AS m:)!sj___
wrrThia VALTe
mOoBE0S £3 Advwre " 1
" te O WINT |0 MINT
lfnliz‘ T HET eInT X1 EINT
mle me i1 10REQ 10REQ o *SY
mROE2e Cl{m
ooreq &1l Q0REQ o .
mURCRST a9 RESET TTThhL-
mLACHN P8 LACHN IRETHELS IREQs o L4y
CLK ae
-t N o 3 FUTTY REFADR LN REFADR
0DACKS €3 9 Aoprq |48 s001e
= -JUbACR BusSERrR P2 BUSERRS
RSTNC[-43 RSINCS
__MPCINSEL F3 A YOSTC 8req L& BREQ®
MPCMEMSEL £2 o wewRsEr scoImo X SCoTRO o
m-MPCREGSEL £1 A weeser SCOIR! SCOIR)
m-2LocKe 42 ToTe BSCl0.91)s
m-L10RDZ# w2 dwr esco
._LQ_!"ZI Hi__ A wO esct
mlAST £14 1 yast Uusg 4 8scz
mluge ¢1s 4 vow 8sc3
mlR0s 015 J oy asc4
8SCS
TAO(O.7 ADO
— ! 1AD0 8scs
1A0} 8SC7
1402 8scse
1403 BsSCS
T1AD4 BPAR[O3 1
8PARO |-N
Ta08 BPAR]
IADS
1A07 BPAR2
8PAR3
ARBILO:51#
L) 8 ARBS
ARD Y
ARE)
ARB2
ARB} O~ N MY N BN DN O -~ em " w @ ® o ~
L] m - w W W = - e o e e e - = NN NN ~N o~ ~N N m om
ARBO o o o a @O o0oocoaonoconocoeasococaa e o o o0oo0o
- - = - € X € € €« € €« « < € X € € « <« = - = - « - -
- - o - ® m W ® mm oW - om0 e e o - o @™ m » @
<] <] TR <]

BAD[O:31 1%

MBII DESIGN EXAMPLE

82389 MPC

DATE .02—|0~89| ORANN BY:NM

! e = e

R |

] [4
A0[0.31)0
RCLODY
- paare
f‘lﬂl"l.
12 5 -1z
» []
] q
ce |, cs €9 cs et
= .0 1 UF]
220F T].'owr zzurT LOIUF
PIA (8
.“_LKI. .’ ;:
is 2i
13 AREOR py
i Y]
i 23 232 ARB(0-3)8
3
1o 28 5%
|y 27 ¢
PAR[{0.%0)0 ': f: T
-4 \
L i o 30
Al '3 g; 12
P18
S
Avar > i -f? e2 S
+Ha 20 RS
s Y
AD1S i gg Rare =
ADSY ‘; 3 RIINCE gy
it
' :E Ez :a acas
142 :, 23 AC3t
Anias S ey
PIC
T—‘——T PARZY
T
acixag s —
mceLaet {3 . BuaLeRy g
i A
L to ze A
2 o 3c(0:9)s
:z 5: M
H 4] g 5§;s KCLK
8/02 BELKOY
LCLKLR .
aynr .
uss
lDOL___um__- MBII DESIGN EXAMPLE
- 7431004
- uss MULTIBUS II Pl CONNECTOR
_11>°““““‘ = SH.TY
: DATE '02-|0-33I DRANN BY' NN
A l 8 (4 D

1 0 5 o e 14 P b L

-L_LMIJQ J.Jlfmuu

b b PO I IO I b 0y e

rONO—mnnvNO~OR O~

ﬁl’Oll"$l7.9°lt

..W-ﬂ.ﬂwﬁ_-munuuuum

SOLLT.L LY Y. eeanin
LA <l dnlal,
-y

n@NO ~mnenOnBNO -
e e am O NS Y

NN DO NO N - e

R

VP

o
ez
==z
"
Slels
Nv.
-}
&=
T iol=z
<o i=x
> <
EZM
a.
z |
(U)
L l®
wr '
wl,(o
alg|=-
B.
IIZ
Ivlo
=5
UE
E |-
<
(=]
o
|
b
L)

[
Yi1os
24 8 |-L8
ada2 8217 .
4 [16
4143 83
BPAR[O3)# Sdaa Ba LS PAR[O:3)28
s A ps| 14 Pamrgs
PARLS 16 96 RlS
PAR2® A7 g7 12 _PAR2S
PARIS 18 se 2
&2 4“F245 [|
T |
m-81R0ES
ADDIR ° *
BADEO 31 1% T)
8scfo.«91# | Y103 yios yros
' 04078 Al 8 8 407s 840 | a1 Bl g AQ3i# -
B2 DGs Az .82 DEe Dioe ba2 82 ios 2
83 BADS # 4 A3 83 ADS#® GAD2S s 4 A3 83 AD 8’
Y 9AD4s A4 LY 4048 240208 A4 Bej-13 __a020s §
8s BAD3# 6 AS 85 4 AD3s BAD 1] AS Bs 4 AD27%#
86 PAD28 7 A6 85 AD2s BAD2G 2 '3 86 D
87 DAQLe 9 117 87 LN 0ADZS# A7 87 D
8e 8BADOS Y 88 ADOS D248 Y] 88 AD24as -
D €. 0 . DIR
T4F2as 4F 245
. 4F24s 3 s i
< <
mSCOIRO
yi1o1 uioz
ol pADISS " 81 8__ADISS AD23s Al 81 AD238
82 —8AD14s 3 1,; 82 Dilde 2 A2 82 Apzze 3
83 gAp13s 4}, 03 ADI3# AQ T A 83 AD
B4 940128 5 1,, B4 0i12# AD20¢ Y] 84 Apgos
8s BAD [B AS 85 4 D] . D : AS 8s L4 AD1S? .
21as 86 -BA010s 2], ec |12 _adloe BAD10e. 7 145 86 N
LA7 07 BADI9 S : Y] 87 AQS# BAD 2 : A7 87 AD]
LAB 88 BADD S 28) AD BAD A8 88 11 ADIG®
0 T __DIR —
X 0 5 T4F245 4F 245
19 ?s ﬁ‘h A
mSCOIRY

2

ADL O 31 I#

SCL0O9 1#

MBII DESIGN EXAMPLE

MULTIBUSII INTERFACE

DATE '02-|0-39I DRAWN BY: NM

]

_ |

OMA_ADLO18)

NISC2568 : NTSC25689

OMA D ' latae N oua_4ap14 LIPSV
") " :
HA LA :‘ At3 oal 12 T T :5 at3 - oat X
DMA_ARLZ. |01z vezll pMa DY _OMA_4DI2 5412 oaz
DMA_AD Tt vasfld DUA D2 DMA_ 4D} SH41t a3
DMA_ARLG A10 DOQ4 OMA_D3) QMA_AD1O A10 DO«
> AD 24] o vas '8 oua o4 - 0uA_ 409 244 oas
DMUALAQ :5 A8 Dee :; QMA °5I OUA_AD0 :5 A8 oas
0 0 27 e[oM osl DMA_A0Q7 47 oar
DMA_ADS A6 oas OMA 07 DNA.4DE A6 obus
D AD s AS D AD 5 15
DMA_AD4 L P EYTWY L
DMA_AD 4 a3 DMA _AD ’ A3
DMA_AD L a2 vl QA _AD 8 1.2 we?
OMALAD 2 {a .“%___Ez QuA_AD N s 5
V1 Trl° § 084400 10040 a4
uio08) uss
MTSC2568 MYSC2568
pua_ADL4a b faya DMA 4D 4 ' Jara
D 1 B
MA_AD :5 s13 0l :2 ouA, D8 OMA_ADI3 :5 A13 Dol :; DHA_D24
D 20 {0z sazf i QMA_D9 [NITWYIF Stz ezt (LT
QUA_AQ ST]A1 sea = DUA °'°| j—0HALADIL Zr]Atr ee3fs DuA
DMA 4D 10 A10 Dos O4A_DI) DHA_AD|Q 210 Dpas ouA
DMA_ADS 241,8 opasl'® oua. 012 ff OMA 409 24,8 opas|t® OMA_ D28
DMA_ ADD :S A8 oos :: OMA_DI2 N MLTWYT! :5 i8 oag :; DMA D29
DA _AQ o LR DHA_ D14 j0xa107 7 earbl oMA
D ADE A6 oge pMADLS DHA_ADE A6 oO8 pua
0 D L QMA_AD 5 Jas
DNA AD4 L DMA _AQ 5 1ae
D 0 ? B Dua_ap 7
A A3 . A3
puaspz 8}, 27 DA AQ 8 1wl
DUA_AD S | gt X3] ETTNY' LI W;g_z_
10 2o 10
DUA_ADO A0 5% DMA_ADO 20 %
ui07 use
m-SRAM_BD
m-SRAM_ VR
e MBII DESIGN EXAMPLE

SRAM INTERFACE
DATE ‘02-10-89] ORAWN BY. NM

A l 8 I c 0

e et f e+ ———————-

f—_ o - et

8 [[4 0
s12 .12 .5
L4 |] L] X 17
*SV eSSV ® b
R18 RE lcu I Clzl (] _I_“ cie Re
b > B . sutj2
out100utf10 T = - - -T
hef b v hd HUATTS o
—_ SBXINT g

- lCHES sox B
' TN 5
a
oKl_AD(O0:2) ‘ - e
Dua_A02 3
[DRXXUT 3
, mMESTS i‘?"‘ 400 (3
I10UR2E ®
m-10802s o
OMA_D{O:15])
a'
mSBXSELI —
m-SRXSEL2 — s
’ SBXAUKINT -IEELUD 4T
" BXTOMA pMA.D4 3 |
mlRACKdE J"I:I_'_éj Jue S9X0PT) :;: :: E
BXOPYO = 3
Jup
mlRACKIE ‘{Oj J"@r__ SBXMDACK T:: “; 0
N JuE SEXDRAT = o
mOREQ4/INT |@ Lc:%___ 1)
Ju 0]
: ez 9 o ;
mOREQD '"l'@ ""@,__‘, R?
ba!
JHP)O JHP outls S,
wroee tol° "ok | =
4
i MBII DESIGN EXAMPLE
!
: DMA CONTROL INTERFACE
: { SH. 23 DATE '02-10-831 DRAWN BY: NN
A l] l — <]

SV +*5y .5y

533

0uTl3 outj2z outls
Al 0,23]
0[0.53) e ———— e
)
-l ‘ D12 [l e) - ['ETH
[]] 3
A3 2 D_tl 2] 2 2 2 32132 057
A4 z 01§ 21 3 z 3 33fid D59 [|
4 34 —
H] 018 5 g ils 35135 061
AG [020 g 'Y £l ¢ 36 063
L : S =tF =i
[:] 38
9 D24 9 g) 2! 9 39 S' EXPBSVO.
Ag 10 D286 10/, 9 1940 ‘ollq
i ¥ e izl Izl A Exiur 8
13 D30 13:§ .s;§ :§4a — :
Al2 14 p32 14 4 144, 4 4444 NREADYS
IYE] 15 034 |s:g 15hs 4sl RIDSS o
speol e 16l g l§=5 4548
17 036 17}, 7 1287 4 le EROL®
TR b vali raHPH T cuoe—m
19 19 49
nop€3al |20 2010 20 so ERDES
21 . 2105, 21 s EVDES
| D49 225z 22 CPENS » —1
Do 23 B 042 23hy
D2 24 241 54
04 25 D44 25l ss
[YT 26bg 56
DE 27 D40 2707 &7
08 28 rd: 1 P¥) 58
010 29 DSO 29 b«
ps2 30Ho
NBE[O0:71] N 3
REFREQ
: NADSS
m—NNENES -
[BuRS
m—BsY
= E£XPSELS
m—LCRES
™ LADS2S
»n CLKG
» QRAMSEL®
4

MBII DESIGN EXAMPLE

EXPANSION B8US

DATE

' 02-10-B9] DRAWN BY. Ny

