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PREFACE 

This manual serves as the definitive hardware reference guide for system designs using the 
80960KB and 80960KA processors (for clarity, references to the 80960KB apply to both the 
80960KA and 80960KB processors). Hardware designers can use this manual as a guideline 
for developing microprocessor systems. Readers of this manual should be familiar with the 
operating principles of microprocessors and with the 80960KB data sheet. 

This manual presents the 80960KB system design from a hardware perspective. Other infor­
mation on the software architecture, instruction set, and programming of the 80960KB proces­
sor can be found in the 80960KB CPU Programmer's Reference Manual. 

Together with the 80960KB Hardware Designer's Reference Manual, these publications 
provide a complete description of the 80960KB system for hardware and software designers. 

MANUAL ORGANIZATION 

This manual, divided into five chapters, describes how to build a hardware system using the 
80960KB processor. The list below shows a synopsis of each chapter. 

• Chapter 1 briefly introduces the 80960KB component architecture. 

• Chapter 2 presents an overview of the 80960KB hardware system design, which includes a 
system configuration illustrating the various components that constitute a 80960KB sys­
tem. 

• Chapter 3 describes the local bus and the interface to the 80960KB processor. This 
chapter includes detailed signal descriptions and discusses timing generation, arbitration, 
interrupt handling, and initialization. 

• Chapter 4 discusses techniques for designing memory subsystems. 

• Chapter 5 presents guidelines on how to interface I/O devices to the local bus. 

Wherever appropriate, design examples are included in the chapters. These designs are based 
upon functional 80960KB boards· and systems, and are simplified for ease of understanding. 
The simplified versions of these designs have not been tested except for the figures that show 
the part numbers. 

NOTATION CONVENTIONS 

This manual uses the following style conventions. 

• Integer numbers are presented in decimal notation unless otherwise indicated by the sub­
script "H" for he xi decimal or "B" for binary. 

• An active low signal is represented by a line over the signal name. For example, READY 
is an active low signal. 
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CHAPTER 1 
INTRODUCTION TO THE 80960KB MICROPROCESSOR 

The 80960KB is the first 32-bit microprocessor designed especially for embedded applications. 
At an operating frequency of 20 MHz, this high performance processor can sustain an instruc­
tion execution rate of seven and one-half million instructions per second (MIPS), and burst 
rates of 20 MIPS 1 . The 80960KB processor enhances embedded system performance by 
integrating special features to eliminate the need for additional peripheral devices and the 
associated software overhead. For instance, the 80960KB processor offers an on-chip floating­
point processing unit, an improved interrupt handling capability, and support for debugging 
and tracing. 

This chapter describes the architectural attributes and enhancements of the 80960KB processor 
for embedded computing. 

ARCHITECTURAL ATTRIBUTES FOR EMBEDDED COMPUTING 

For over a decade, Intel has designed a large variety of 8- and 16-bit microcontrollers to fit the 
needs of embedded applications. Based on this experience, several architectural attributes 
shared by both microcontrollers and microprocessors can be implemented that benefit em­
bedded applications and enhance microprocessor performance. Because the 80960KB proces­
sor incorporates these attributes (listed below) in its architecture, embedded applications are 
easy to design, perform well, and get to market fast. 

• Simple load/store design 

• Large general-purpose register sets 

• Boolean and bit-field instructions 

• Small number of operations and addressing modes 

• Simplified instruction format 

• Minimum cycle operation 

Load/Store Design 

In the 80960 family architecture, operations are register-to-register, with only LOAD and 
STORE instructions accessing memory. This attribute simplifies the instruction set and 
shortens cycle time. 

The 80960KB processor uses LOAD and STORE instructions to access memory. It further 
minimizes accesses to memory by providing a 512-byte, direct-mapped instruction cache. 
When a memory access is required, the processor can perform a burst transaction that accesses 
up to four data words with one word transferred every clock cycle. 

IDEe VAX 11/780 equals 1 MIPS 
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INTRODUCTION TO THE 80960KB MICROPROCESSOR 

Large General-Purpose Register Sets 

Because the instructions operate on operands within registers, the 80960 family uses many 
registers. The 80960KB processor features large, versatile register sets. For maximum 
flexibility, each processor provides 32 32-bit registers and fouf 80-bit floating-point registers. 

There are two types of general-purpose registers: local and global. The processor automati­
cally accesses the 16 local registers wQen a procedure call is performed. Multiple sets of local 
registers are stored on-chip to further increase the efficiency of this register set, as shown in 
Figure 1-1. The register cache h01ds IlP to four local register frames, which means that up to 
three procedure calls can be made without having to access the procedure stack resident in 
memory. 

MULTIPLE 
REGISTER 

SETS 

ONEOF 
FOUR LOCAL 

REGISTER 
SETS 

LOCAL REGISTER SET 

t------,.----------t R15 

'-~------__ ------------~RO 
31 o 

Figure 1-1: Local Register $et 

The 20 global registers retain their contents across procedur~ boundaries. The global registers 
consist of sixteen 32-bit re~isters (G 15 through Go) and four 80-bit registers (FP3 through FP 0)' 
as shown in Figure 1-2. While .all registers can be used for flQating -point operations, the 80-bit 
registers are used for accumulation of extended precision results. 
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GLOBAL REGISTERS 

1---------------IG15 

1------------------------; GO 
31 o 

FLOATING POINT REGISTERS'" 

I~---------------------------------------------IIF~. 
~-~------------------------------------------------~-FPO* 79 0 

Note: 
'" Any register can be used for floating-point operations. The BO-bit 

registers are provided for extended precision accumulation. 

Figure 1-2: Global Register Set 

Small Number of Addressing Modes 

The 80960 family uses relatively few addressing modes to facilitate a fast, simple inter­
pretation by the control engine. The 80960KB processor provides simple, fast addressing 
modes, as well as a few complex addressing modes to allow optimizations for code density. 

Simplified Instruction Format 

A simplified instruction format eases the hardwired decoding of instructions, which again 
speeds control paths. The 80960KB processor's instruction formats are simple and word 
aligned; all instructions are one word long except for one class that uses the subsequent word 
as a 32-bit displacement. To further enhance performance, the instructions do not cross word 
boundaries. This feature eliminates a pipeline stage (that would have to align instructions) and 
decreases instruction execution time. 
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Overlapped Execution 

To optimize performance, the 80960KB processor overlaps instruction execution by means of 
write buffering and register scoreboarding. Write buffering allows a write instruction to 
proceed as soon as it is placed in the buffer. It does not have to wait for the actual write 
operation to occur on the L-bus. 

Similarly, register scoreboarding is a design technique that allows the 80960KB to continue 
execution of instructions when it encounters a LOAD instruction. When the LOAD instruction 
begins, the 80960KB sets a scoreboard bit on the target register. After the target register is 
loaded with data, the processor resets the bit. While the data is being retrieved, additional 
instructions that do not reference the target register can be executed. The 80960KB ensures 
that these additional instructions do not reference the target register by checking the scoreboard 
bit transparently (no software required). Thus, the scoreboard feature reduces the effect of 
slow memory speed and provides a useful tool for optimizing procedures. 

Minimum cycle operation 

The 80960KB processor executes most of the core instructions in a single clock cycle. For 
these instructions, the 80960KB processor uses hardwired logic rather than microcode to ex­
ecute the instruction. 

The 80960KB also supports a number of important multicycle instructions, such as 32-bit 
mUltiply and divide instructions. These auxiliary functions require more than one clock cycle 
because it is more efficient to use microcode than hardwired logic. On the other hand, the 
integration of these functions on-chip eliminates much software overhead and the negative 
effects on code density that would be otherwise required. Thus, the additional functionality of 
the 80960KB enhances overall system performance while keeping code size small. 

ADDITIONAL 80960KB ARCHITECTURAL ENHANCEMENTS 

The 80960KB incorporates two useful. features: an on-chip floating-point processing and 
debugging functions. The floating-point unit can be used for applications that require preci­
sion, such as machine-control operations. The debugging function significantly decreases 
development time. 

Floating-point Operation 

The on-chip floating-point unit of each processor improves the performance of floating"point 
calculations by eliminating bus overhead used to transfer operands to a coprocessor. The 
processor provides hardware support for both mandatory and recommended portions of IEEE 
standard 754 for floating-point arithmetic, exponential, logarithmic, and other transcendental 
functions. By integrating the floating-point unit on-chip, the 80960KB processor reduces the 
overall chip count for a system, decreases power consumption, and increases overall perfor­
mance and reliability. 

1-4 
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Debug Capabilities 

The processor provides extensive system debug capabilities, an important feature for em­
bedded computing where the ability to instrument an application may be limited. The 
80960KB processor allows breakpoint instructions that stop program execution on various 
events, such as procedure calls, or certain instructions. Another debug facility traces the 
activity of the processor while it is executing a program. Tracing is done by recording the 
addresses of instructions that cause trace events to occur. For example, a trace event can occur 
on the execution of a specific instruction, branch, or procedure call. To ensure that the 
80960KB is operating properly, the processor performs a self-test when it is reset. If the 
self-test is successful, the 80960KB begins operation, otherwise it enters the stopped state. 

STANDARD BUS INTERFACE 

The advanced features of the 80960KB processor are implemented using a performance­
optimized bus interface. The processor uses a high bandwidth local bus (L-bus) that consists 
of standard signal groups: a 32-bit multiplexed address/data path and control signals for data 
transactions. Because of the large amount of caching, the L-bus supports burst transactions 
that transfer up to four successive data words. Transactions on the L-bus can use 8-, 16-, and 
32-bit data types and address up to 4G bytes of physical memory. Bus arbitration can be 
accomplished by simply using the hold request!hold acknowledge protocol. 

INTER-AGENT COMMUNICATION/COPROCESSOR CAPABILITIES 

The 80960KB processor offers a flexible way to manage interrupts. It accepts interrupts in one 
of three ways: by communicating with an external interrupt controller using the standard 
Interrupt!Interrupt Acknowledge signals, by activating the on-chip interrupt controller, or by 
accepting an inter-agent communication (lAC) message. This allows the 80960KB to act as a 
coprocessor on a shared bus with another cpu. 

SUMMARY 

The 80960KB processor optIIllizes embedded system performance by using a new 32-bit 
architecture. The 80960 family architecture includes a load/store design, large general purpose 
register sets, fast addressing modes, a simplified instruction format, and minimized instruction 
execution cycles. 

To further enhance system performance, the 80960KB processor provides floating-point opera­
tion, interrupt controller capabilities, and debug functions. By intergrating these functions 
on-chip, the 80960KB reduces the power requirements and overall chip count for a system. 

As a result of the 80960 architecture, the 80960KB processor provides unprecedented perfor­
mance. For a speed selection of 20 MHz, it can sustain an instruction execution rate of over 
seven and one-half million MIPS and burst rates of 20 MIPS, speeds comparable to that of 
super minicomputers. The high instruction execution rates are made possible through a in­
novative design that incorporates an on-chip instruction cache with burst-transfer capability. 
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CHAPTER 2 
80960KB SYSTEM ARCHITECTURE 

This chapter illustrates the flexibility and power of the 80960KB system architecture using the 
advanced 32-bit 80960KB processor. This chapter examines system configurations from a 
general perspective to explain the design concepts. Subsequent chapters describe the details of 
the system design. 

OVERVIEW OF A SINGLE PROCESSOR SYSTEM ARCHITECTURE 

The central processing module, memory module, and I/O module form the natural boundaries 
for the hardware system architecture. The modules are connected together by the high 
bandwidth 32-bit multiplexed L-bus, which can transfer data at a maximum sustained rate of 
53M bytes per second for an 80960KB processor operating at 20 MHz. 

Figure 2-1 shows a simplified block diagram of a possible system configuration. The heart of 
this system is the 80960KB processor, which fetches program instructions, executes code, 
manipulates stored information, and interacts with I/O devices. The high bandwidth L-bus 
connects the 80960KB processor to memory and I/O modules. The 80960KB processor stores 
system data and instructions and programs in the memory module. By accessing various 
peripheral devices in the I/O module, the 80960KB processor supports communication to 
terminals, modems, printers, disks, and other I/O devices. 

80960KB Processor and the L·Bus 

The 80960KB· processor performs bus operations using multiplexed address and data signals 
and provides all the necessary control signals. For example, standard control signals, such as 
Address Latch Enable (ALE), AddresslData Status (ADS), WritelRead command (WIR), Data 
TransmitlReceive (DTIR), and Data Enable (DEN) are provided by the 80960KB processor. 
The 80960KB processor also generates byte enable signals that specify which bytes on the 
32-bit data lines are valid for the transfer. 

The L-bus supports burst transactions, which access up to four data words at a maximum rate 
of one word per clock cycle. The 80960KB processor uses the two low-order address lines to 
indicate how many words are to be transferred. The 80960KB processor performs burst 
transactions to load the on-chip 512-byte instruction cache to minimize memory accesses for 
instruction fetches. Burst transactions can also be used for data accesses. 

To transfer control of the bus to an external bus master, the 80960KB processor provides two 
arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving 
HOLD, the processor grants control of the bus to an external bus master by asserting HLDA. 
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Figure 2-1: Basic 80960KB System Configuration 

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt 
controller, an external interrupt controller, or both. The type of interrupt structure is specified 
by an internal interrupt vector register. For a system with multiple processors, another method 
is available, called inter-agent communication (lAC) where a processor can interrupt another 
processor by sending an lAC message. 

Complete details of the L-bus and bus operations are discussed in Chapter 3. 

Memory Module 

A memory module can consist of the memory controller, Erasable Programmable Read Only 
Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory 
controller first conditions the L-bus signals for memory operation. It demultiplexes the address 
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and data lines, generates the chip select signals from the address, detects the start of the cycle 
for burst mode operation, and latches the byte enable signals. 

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In 
particular, it provides the control signals, multiplexed row/column address, and refresh control 
for dynamic RAMs. The controller can be designed to accommodate the burst transaction of 
the 80960KB processor by using the static column mode or nibble mode features of the 
dynamic RAM. In addition to supplying the operation signals, the controller generates the 
READY signal to indicate that data can be transferred to or from the 80960KB processor. 

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor 
does not allow burst accesses to cross a 16-byte boundary to ease the design of the controller. 
Each address specifies a four-byte data word within the block. Individual data bytes can be 
accessed by using the four byte enable signals from the 80960KB processor. 

Chapter 4 provides design guidelines for the memory controller. 

I/O Module 

The I/O module consists of the I/O components and the interface circuit. I/O components can 
be used to allow the 80960KB processor to use most of its clock cycles for computational and 
system management activities. Time consuming tasks can be off-loaded to specialized slave­
type components, such as the 8259A Programmable Interrupt Controller, or the 82530 Serial 
Communication Controller. Some tasks may require a master-type component, such as the 
82586 Local Area Network Control. 

The interface circuit performs several functions. It demultiplexes the address and data lines, 
generates the chip select signals from the address, produces the I/O read or I/O write 'Command 
from the processor's wiR signal, latches the byte enable signals, and generates the READY 
signal. Because these functions are the same as some of the functions of the memory con­
troller, the same logic can be used for both interfaces. For master-type peripherals that operate 
on a 16-bit data bus, the interface circuit translates the32-bit data bus to a 16-bit data bus. 

The 80960KB processor uses memory-mapped addresses to access I/O devices. This allows 
the CPU to use many of the same instructions to exchange information for both memory and 
peripheral devices. Thus, the powerful memory-type instructions can be used to perform 8-, 
16-, and 32-bit data transfers. 

Chapter 5 describes design guidelines for the I/O interface by examining representative design 
examples. 

SUMMARY 

The basic hardware system configuration is modular and flexible. The processor, memory, and 
I/O modules form the natural boundaries in the basic hardware system architecture. The 
high-bandwidth L-bus that supports burst transfers is used for the data path between the 
80960KB processor and other modules. 
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This chapter presents an overview for basic hardware system design. The next three chapters 
discuss the details of the L-bus, memory modules, and I/O modules. 
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CHAPTER 3 
THE 80960KB PROCESSOR AND THE LOCAL BUS 

The 32-bit multiplexed local bus (L-bus) connects the 80960KB processor to memory and I/O 
and forms the backbone of any 80960KB processor based system. This high bandwidth bus 
provides burst-transfer capability allowing up to fout successive 32-bit data word transfers at a 
maximum rate of one word every clock cycle. In addition to the L-bus signals, the 80960KB 
processor uses other signals to communicate to other bus masters. This chapter, which 
describes these signals and the associated operations, follows the outline shown below: 

• L-bus states and their relationship to each other 

• L-bus signal groups, which consist of address/data and control 

• L-bus read, write, and burst transactions 

• L-bus timing analyses and timing circuit generation 

• Related L-bus operations such as arbitration, interrupt, and reset operations 

OVERVIEW OF THE 80960KB L-BUS 

The L-bus forms the data communication path between the various components in a basic 
80960KB hardware system. The 80960KB processor utilizes the L-bus to fetch instructions, to 
manipulate information from both memory and I/O devices, and to respond to interrupts. To 
perform these functions at a high data rate, the 80960KB processor provides a burst mode, 
which transfers up to four data words at a maximum rate of one 32-bit word per clock cycle. 
The 80960KB L-bus has the following features: 

• 32-bit multiplexed address/data path 

• High data bandwidth relative to the speed selection of the 80960KB processor 

• Four byte enables and a four-word burst capability that allow transfers from 1 to 16 bytes 
in length 

• Support for TTL latches and buffers. 

BASIC L-BUS STATES 

The L-bus has five basic bus states: idle (Ti), address (T a)' data (T d)' recovery (Tr), and wait 
(T w)' During system operation, the 80960KB processor continuously enters and exits different 
bus states as shown in Figure 3-1. This state diagram assumes that only one bus master resides 
on the L-bus. 

The processor occupies the Ti state When no address/data transfers are in progress. When a 
new request is received, the 80960KB processor enters the T a state to transmit the address. 
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Idle state 

Address state 

Data state 

Recovery state 

Wait state 

READY 
-NO BURST 

READY READY asserted 

NOT READY - READY not asserted 
BURST Multiple word access in progress 
NO BURST - Multiple word access done, or a 

one-word access 

Figure 3-1: Basic L-Bus States 

Following a Ta state, the 80960KB processor enters aT d state to transmit or receive data on the 
address/data lines provided that the data is ready (indicated by the assertion of READY at the 
input of the processor). If the data is not ready, the processor enters a T w state and remains in 
this state until data is ready. Tw states may be repeated as many times as necessary to allow 
sufficient time for the memory or I/O device to respond. 

After a data word is transferred, the 80960KB processor exits the T d or T w state for a single 
word transfer or enters the T d state again to transfer another data word for a burst transaction. 
If the next data word is not ready during the next clock cycle for a burst transaction, the 
processor enters the T w state again. 

3-2 



inter THE 80960KB PROCESSOR AND THE LOCAL BUS 

When the 80960KB processor completes the data transfer of all the data words (one or up to 
four), it enters the recovery (Tr) state to allow sufficient time for devices (such as memories) 
on the bus to recover. The processor returns to the Tj state if no new request is pending, or 
enters the T a state if a new request is pending. 

L-BUS SIGNAL GROUPS 

The L-bus states are used to define some of the L-bus signals. As shown in Figure 3-2, the 
signals on the L-bus consist of two basic groups: address/data, and control. 

LOCAL BUS 

CONTROL (12 LINES) 

Figure 3-2: L-Bus Signal Groups 

Address/Data 

The address/data signal group consists of 32 bidirectional lines. These signals are multiplexed 
and serve a dual purpose depending upon the bus state. 

LAD3CLADz Local Address/Data31 through Local Address/Dataz represent the 
address signals on the L-bus during the T a state. LADz is the least 
significant bit, and LAD31 is the most significant address bit. LAD31 
through LADz contain a physical word address. LAD 1 and LADo 
specify the number of data words to transfer for a burst transaction. The 
address/data signals float to a high impedance state when not activated. 

SIZE (LADcLADo) The SIZE signal indicates whether one, two, three, or four words are 
transferred during the current transaction. During a T a state, LAD1 and 
LADo represent the word size signals. The encoding is shown in Table 
3-1. 
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Table 3-1: SIZE Signal Decoding 

WORD SELECTION LAD, LADo 

1 WORD LOW LOW 

2 WORDS LOW HIGH 

3 WORDS HIGH LOW 

4 WORDS HIGH HIGH 

Local Address/Data31 through Local AddresslDatao represent the 
data signals on the L-bus during the T d and T tv states. LADo is the least 
significant, and LAD31 is the most significant address bit. The 
address/data signals float to a high impedance state when not activated. 

The control signal group consists of 12 signals that permit the transfer of data. These signals 
can be used to control data buffers, address latches, and other standard interface logic. 

DTiR 

WiR 

The Address Latch Enable is an active low signal that can be used to 
latch the address from the 80960KB processor. ALE is asserted during 
the T a state and deasserted before the beginning of the T d state. ALE 
floats to a high impedance level when the processor is not operating on 
the bus (Le., it is in the idle state), or is at the end of any bus access. 

AddresslData Status is an active low signal that is driven by the 
80960KB processor to indicate an address state. ADS is asserted during 
every T a state and deasserted during the following T d and T w states. For 
a burst transaction, ADS is asserted again every Td (and Tw) state where 
READY was asserted in the prior cycle. The ADS signal is an open 
drain output. 

Data Transmit/Receive indicates the direction of data flow to or from 
the L-bus. For a read operation or an interrupt acknowledgement, DTiR 
is low during the T a' T w' and T d states to indicat~ that data flows into the 
80960KB processdt. For a write operation, DT/R is high during the Ta, 
T w' and '!:d states to indicate that data flows from the 80960KB p~ces­
sor. DT/R never changes states when DEN is asserted. The DT/R line 
is an opeh drain output of the 80960KB processor. 

Data Enable is an active-low signal that can be used to enable data 
transceivers. DEN is asserted during all Td and Tw states. The DEN 
line is ail open drain output of the 80960KB processor. 

The Write/Read signal instructs a memory or I/O device to write or 
read data on the L-bus. The 80960KB processor asserts W iR during a 
T a ~tate. The signal remains valid during subsequent T dand T w states. 
W/R is an open drain output of the 80960KB processor. 

The Byte Enable output signals qf the 80960KB processor specify 
which bytes (up to four) on the 32-bit data bus are transferred during the 
transaction. Table 3-2 shows the decoding scheme. 

3-4 



Ta 

ClK2 

ClK 

THE 80960KB PROCESSOR AND THE LOCAL BUS 

Table 3-2: Byte Enable Signal Decoding 

BYTE ENABLE SIGNAL ADDRESS LINE SELECTION 

BEa LAD7.LADa 

BE, LAD,s.LADs 

BE2 LADn-LAD'6 

BE3 LAD3,·LAD24 

The byte enable signals are valid from the 80960KB processor before 
data is transferred, as shown in Figure 3-3 (assumes no wait states). The 
byte enable signals that are valid for the first data word are specified 
during the T a state. For a four-word burst transaction, the byte enable 
signals that are valid for the second word are asserted during the first 
data state (TdO)' for the third word during the second data state (Td,), 
and for the fourth word during the third data state (T d2). The byte 
enable signals are undefined during the last data state (T d3) of the last 
word transferred. 

T, 

lAD,,· """"",i-""""~~h. 
lAD. 

READY 

Figure 3-3: Byte Enable Timing Diagram 

Although not shown in the diagram, the byte enable signals of each word 
are latched internally by the 80960KB processor and remain valid during 
every data or wait state until READY is applied. After READY is 
applied the byte enable signals change during the next T d state or be­
come undefined for the last data transfer. 

The 80960KB processor asserts only adjacent byte enables. For ex­
ample, the 80960KB processor does not perform a bus operation with 
only BEo and BE2 active. 

The Byte Enable lines are open drain outputs. 

READY signal indicates that the data on the L-bus can be sampled 
(read) or removed (write) by the 80960KB processor. If READY is not 
asserted following T a state or in between T d states, a T w state is 
generated. The READY is an active-low input signal to the 80960KB 
processor. 
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Bus Lock prevents other bus masters from gaining control of the L-bus 
during a bus operation. It is activated by certain 80960KB processor 
operations and instructions. 

The 80960KB processor uses the bus LOCK signal when it performs a 
RMW memory operation. When the processor performs a RMW-Read 
operation, it asserts the LOCK signal during the T a state and holds 
LOCK asserted. If the LOCK signal was already asserted, the processor 
waits until this signal is deasserted before performing the RMW-Read 
operation. The processor deasserts the LOCK signal during the T a state 
when it performs a RMW -Write operation. 

The 80960KB processor asserts the LOCK signal during the interrupt 
acknowledge sequence. LOCK is an input and an open drain output. 

The Cacheable signal specifies whether the data is cacheable. If the 
80960KB processor asserts CACHE during the T a state, then the data is 
cacheable. The CACHE signal is undefined during the T d and T w states. 
The CACHE signal floats to a high impedance state when the L-bus is 
not acquired. 

Table 3-3 summarizes the L-bus signals. 
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Table 3-3: Summary of L-8us Signals 

SIGNAL SIGNAL SIGNAL FUNCTION ACTIVE DIRECTION 
TYPE OF 

GROUP SYMBOL STATE OUTPUT 

ADDRESS 
32-BIT ADDRESS Ta 0 3-STATE (LAD31 -LAD2) 

LOCAL 
ADDRESSI DATA 

1/0 3-STATE DATA (LAD31-LADo) 32-BITDATA Td• Tw 

SIZE SPECIFIES NUMBER OF 
Ta 0 3-STATE (LAD1-LADo) WORDS TO TRANSFER 

ALE 
ENABLES ADDRESS 

Ta 0 3-STATE LATCH 

ADS 
IDENTIFIES AN ADDRESS 

Ta. Td1, Tw1 0 OPEN DRAIN STATE 

DTiR 
CONTROLS DIRECTION OF 

Ta. Td• Tw 0 OPEN DRAIN DATAFLOW 

DEN 
ENABLES DATA 

Td• Tw 0 OPEN DRAIN TRANSCEIVER/LATCH 

CONTROL 
WiR READIWRITE COMMAND Ta. Td• Tw 0 OPEN DRAIN 

BE3-BEo 
SPECIFIES WHICH DATA 

Ta. Td2• Tw2 0 OPEN DRAIN BYTES TO TRANSFER 

'R'EAi5Y INDICATES DATA IS 
Td• Tw I READY TO TRANSFER 

---_ .... _ ... -

LOCK LOCKS BUS ANY I/O OPEN DRAIN 

CACHE 
INDICATES CACHEABLE 

Ta 0 3-STATE TRANSACTION 

Additional pins are used by the 80960KB processor to control the execution of instructions and 
to interface to other bus masters. These pins include the arbitration, interrupt, error, and reset 
signals. Each of these signal groups are explained in separate sections. 
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L-BUS TRANSACTIONS 

The 80960KB processor uses the L-bus signals to perform transactions, which are simply 
L-bus operations where data is transferred to (or from) the CPU from (or to) another com­
ponent. During a transaction, the 80960KB processor can transfer up to four words of data for 
a single address to enhance system throughput. This is especially useful when loading cache 
memory. 

Clock Signal 

The 80960KB hardware system typically uses two clock signals, CLK2 and CLK, to 
synchronize the transitions between L-bus states. CLK2 is the clock input to the 80960KB and 
is double the specified processor frequency. CLK is the clock input signal to the peripheral 
devices, and it is the operating frequency of the 80960KB processor. Figure 3-4 shows the 
relationship between the system CLK2 and CLK. 

CUSTBUSTBUS~ ..- STATE ----..~ STATE STATE -.. 

Ta Td Tr 

CLK2 
-"1»> 

CLK 

Figure 3-4: Clock Relationships 

Basic Read 

The basic transaction reads or writes one data word. Figure 3-5 shows a typical timing 
diagram for a basic read transaction (for exact timings, see the 80960KB processor data sheet). 
A read transaction may be preceded and succeeded by any type of bus transaction. The 
following sequence of events explains the flow of the timing diagram. For simplicity, no wait 
states are shown. 

1. The 80960KB processor generates several signals during the T a state. 

• It transmits the address on the address/data lines. LAD! and LADo specify a single 
word transaction. 
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It asserts ALE. An ALE signal can be used to latch the address. 

It asserts ADS. 

It asserts BE3-BEo to specify which bytes are used when reading the data word. 

It brings W if{ low to denote a read operation. 

It brings DTif{ signal low. DTif{ can be used for the direction input to data 
transceivers. 

2. During the T d state, several actions occur. 

• The 80960KB processor reads the data on the address/data lines. 

• The 80960KB processor asserts DEN. DEN can be used to enable data transceivers. 
READY is asserted by external timing logic and data is transmitted from the storage 
devices. If READY is not asserted, the data transfer is delayed generating a T w state. 
The T w state is repeated, until READY is asserted. 

3. The Tr state follows the data state. This allows the system components adequate time (one 
processor clock cycle) to remove their outputs from the bus before the 80960KB processor 
generates the next address on the address/data lines. During the Tr state wif{, DTif{, and 
DEN become inactive. 
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Figure 3-5: 80960KB Processor Read Transaction 
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Basic Write 

Figure 3-6 shows a typical timing diagram for a basic write transaction with one wait state. 
Like the read transaction, a write operation may be preceded and succeeded by any type of bus 
transaction. The following sequence of events explains the flow of the timing diagram. 

1. Similar to the read transaction, the 80960KB processor generates several signals during 
the T a state. 

• 

• 
• 
• 
• 
• 

It transmits the address on the address/data lines. LAD J and LADo specify a single 
word transaction. 

It asserts ALE. An ALE signal can be used to latch the address. 

It asserts ADS. 

It asserts BE3-BEo to specify which bytes are used when writing the data word. 

It brings W if{ high to denote a write operation. 

It brings DTif{ signal high. DTif{ can be used for the direction input to data 
transceivers. 

2. During the T d state, several actions occur. 

• The 80960KB places the data on the address/data lines. 

• The 80960KB processor asserts DEN. DEN can be used to enable data transceivers. 

• READY is not asserted by external timing logic. Consequently, data is held on the 
LAD lines. 

3. During the .!W sta~ READY is asserted and the data is written to the storage device. Note 
that the W/R, DT/R, and DEN remain constant until the bus state after READY is asserted. 

4. The Tr state follows the wait state. During the Tr state wif{, DTif{, and DEN become 
inactive. 
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T, 

Figure 3-6: 80960KB Processor Write Transaction 

The 80960KB processor supports burst transactions that read or write up to four words at a 
maximum rate of one word every processor clock cycle. Burst transactions are always con­
tained within a 16-byte boundary. If a transaction crosses a 16-byte boundary, the 80960KB 
processor automatically splits the transaction into two accesses. 

The byte enable signals are valid for each word to allow partial-word write operations for a 
burst write transaction. The CACHE output signal during a T a state applies to all words of a 
burst transaction. 
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A burst read or write transaction is similar to a basic read or write operation. It differs 
primarily in the number of data words transferred: the basic transaction always transfers one 
data word, the burst transaction transfers up to four data words. For a burst transaction, the 
byte enable signals are applied during the T a state, and subsequently during every T d or T w 

state before the data word is transferred. Figure 3-7 shows the timing for a three-word burst 
read transaction without wait states. Figure 3-8 shows the timing for a two-word burst write 
transaction with a wait state occurring during the transfer of the first word. Note that the byte 
enable signals remain constant until the data state after READY is asserted. 

LAD31-
LADo 

Figure 3-7: 80960KB Processor Burst Read Transaction 
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T. Td Tw Td T, 

ClK2 

ClK 

lAD31-
lADo 

ArE 

AlB" 

BErBEo 

wifi 

DTifi 

!mil 

READY 

Figure 3-S: S0960KB Processor Burst Write Transaction 

TIMING GENERATION 

In an 80960KB processor-based system, timing signals must be generated for the clock and 
reset inputs. To generate these signals. discrete logic should be utilized to minimize skew and 
maintain the rise and fall times as short as possible. This section describes a typical circuit that 
synthesizes the clock signal. The RESET timing generation is discussed in the "RESET and 
Initialization" section on page 3-33. 

80960KB Processor Clock Requirements 

In order to design a clock generator, the clock input specifications to the 80960KB processor 
are examined first. The clock (CLK2) waveform is shown in Figure 3-9. The clock pulse is 
specified by five parameters listed below: 

The clock fall time (tf) 

The clock low time (tl) 
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• 
• 
• 

The clock rise time (tr) 

The clock high time (th) 

The clock period (tcyc) 

The time required to go from 90% of the difference between the high and low voltage levels to 
10% of the difference (or from low to high) is defined as the clock fall (rise) time. The clock 
low time specifies the time required for the clock to remain within 10% of the low voltage 
level. Similarly, the clock high time specifies the required time for the clock pulse to remain 
within 10% of the high voltage level. The clock period is the sum of If + t\ + tr + tho 

Teye 

HIGH LEVEL 

LOW LEVEL 

Figure 3-9: System Clock Pulse 

The clock generator must have fast enough rise and fall times to comply with the requirements 
for high and low time and the overall clock period. For example, consider a clock pulse with a 
50% duty cycle at 40 MHz. The clock period is specified at minimum of 25 ns, low time at 
minimum of 8 ns, and high time at minimum of 8 ns. This implies that the sum of the rise and 
fall time must not be greater than 9 ns. Thus, the clock generator should be designed to have 
rise and fall times not greater than 4.5 ns each. 

Besides specifying a maximum clock rate, the 80960KB processor requires a minimum CLK2 
rate of 8 MHz to maintain the state of the internal dynamic cells. Due to this minimum 
frequency requirement, the 80960KB processor cannot be single-stepped by disabling the 
clock. 

Clock Generation 

Figure 3-10 shows an example of a clock generator that produces two clock pulses, one double 
the frequency of the other with the skew between the pulses in the range of 1 to 3 ns. This 
particular circuit produces a 40-MHz clock at 50% duty cycle with rise and fall times of less 
than 4 ns. The circuit design consists of four devices: an oscillator, a pulse shaping network, a 
synchronous up/down counter, and a NAND gate driver. The output of the 80-MHz hybrid 
clock oscillator connects to the pulse shaping network (two NAND gates in series), which in 
tum feeds into the clock input of the up/down counter. This counter produces a 40-MHz CLK2 
output signal and a 20-MHz CLK output signal. Because the outputs of the counter are 
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synchronous, the skew between CLK2 and CLK is typically less than 2 ns. To provide 
adequate signal margin and maintain fast rise and fall times, the two clock signals are con­
ditioned by the NAND gate driver. The timing waveforms of the clock circuit are shown in 
Figure 3-11. 

If the opposite phase CLK is preferred, uiD pin can be connected to Vee 

SO-MHz 
OSCILLATOR 

Vee 

COUNTER 

A 

B OA 

C Os 
D 

74AS169 

Figure 3-10: Clock Generation Circuit 
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CLK2 \'------1/ \,---",,1 

CLK \---
Figure 3-11: Clock Timing Waveforms 

The hybrid clock oscillator typically requires 5 ms to stabilize after power is applied. The 
80960KB processor cannot begin to execute instructions until after the clock and V cc have 
reached their DC and AC specifications. The RESET signal can be used to control the start of 
the CPU execution when power is applied. This is discussed in the "RESET and Initialization" 
section on page 3-33. 

ARBITRATION 

When mUltiple bus masters exist, an arbitration protocol is used to exchange control of the bus. 
The protocol assumes that there are two bus masters: one that controls the bus by default, and 
the other that requests control of the bus when it performs an operation, such as a DMA 
controller. More than two bus masters may exist on the L-bus, but this requires external 
arbitration logic. There should be no more than two 80960KB processors, however, on an 
L-bus. 

Assuming that there are only two bus masters, this section examines the bus arbitration, bus 
states, and timing diagrams for different combinations of bus masters, as shown in Table 3-4. 
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Table 3-4: Combination of Bus Masters 

Bus Master Combination 

Bus Master that Controls the Bus Bus Master that Requests 
by Default Contol of the Bus 

CASE 1 80960KB PROCESSOR I/O DEVICE 

CASE 2 80960KB PROCESSOR 80960KB PROCESSOR 

CASE 3 I/O DEVICE 80960KB PROCESSOR 

Single 80960KB Processor on the L·Bus 

For the first case, the 80960KB processor controls the L-bus, and a master I/O peripheral, such 
as a DMA controller, requests control of the bus for operations. The 80960KB processor and 
the I/O peripheral exchange control of the bus with two signals: the hold request (HOLD) and 
hold acknowledge (HLDA) signals. 

HOLD is an input signal of the 80960KB processor, which indicates that the master I/O 
peripheral is requesting control of the L-bus. When HOLD is asserted, the 80960KB processor 
surrenders control of the bus after it completes the current bus transaction. The 80960KB 
processor acknowledges transfer of control of the L-bus to the other bus master by asserting the 
HLDA. 

State Diag ram 

Figure 3-12 shows the state diagram for a L-bus with an I/O peripheral bus master. This state 
diagram consists of the hold state (Th) in addition to the five basic states described in the 
"Basic L-Bus State" section on page 3-1. The 80960KB processor enters the Th state when it 
surrenders the control of the bus. It can enter the Th state from the T j or Tr state. When the 
80960KB processor regains control of the L-bus, it enters the T a state if a new request is 
pending or a T j state if no new request is pending. 
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~ 
NO HOLD 

-REQUEST PENDING / 

NEW REQUEST 

Notes: 

T, Idle state 

Ta Address state 

Td Data state 

Tr Recovery state 

Tw Wait state 

Th Hold state 

READY 

NOT READY 
BURST 

NO BURST 

READY asserted 

READY not asserted 
Multiple word access in progress 

Multiple word access done, or a 
one-word access 

Figure 3-12: L -Bus States with Arbitration 

Arbitration Timing 

READY 
- NO BURST 
-HOLD 

Figure 3-13 shows the arbitration timing diagram. The "T" state represents the last cycle of a 
transaction in which the READY signal was asserted or a Ti state. The 80960KB processor 
receives a request to relinquish control of the bus when HOLD is asserted. After the 80960KB 
processor completes the current transaction, it responds to this request by floating the three­
state output signals and deasserting the open drain output signals. The HLDA output signal, 
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however, remains active and is asserted as the 80960KB processor enters a Th state. During 
the Th state, the CPU ignores all input signals except HOLD and RESET. When the HOLD 
input signal is deasserted, the 80960KB processor exits the Th state and de asserts HLDA. 

T T 

CLK2 

CLK 

HOLD 

HLDA -++""""",,,,,,,,,",-~"'f 

Figure 3-13: Arbitration Timing Diagram for a Bus Master 

Two 80960KB Processors on the L-Bus 

For the next case, two 80960KB processors reside on the L-bus. During initialization, one is 
designated as the Primary Bus Master (PBM), the other as the Secondary Bus Master (SBM). 
The exchange protocol that is used guarantees that neither device is kept off the bus in­
definitely. The 80960KB processors use two pins for bus arbitration: the HOLD input pin, and 
the HLDA output pins. These input and output pins for the SBM are interpreted differently, 
however. 

When the SBM is initia.lized, the pin normally used for HOLD input signal is interpreted as the 
hold acknowledge request (HLDAR) input signal. The assertion of HLDAR indicates that the 
PBM relinquished control of the L-bus. Similarly, the HLDA output signal of the SBM is 
interpreted as the hold request (HOLDR) output signal. The SBM asserts HOLDR to request 
acquisition of the L-bus.Thus, bus arbitration between two 80960KB processors can be 
accomplished by connecting HOLD of the PBM to HOLDR of the SBM, and HLDA of the 
PBM to the HLDAR of the SBM, as shown in Figure 3-14. 

When using the connection shown in Figure 3-14, a delay must be inserted between the input 
and output signals because the minimum clock-to-outPllt clelay is less than the maximum hold 
time of the input signals. The delay time must be greater than 5 ns, but less than the clock 
period minus the setup time minus the maximum clock-to-output delay (5 ns:::; Delay:::; Tperiod 
- T Setup - T Clock-to-Output)· 
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HOLD DELAY HOLDR 

PRIMARY BUS SECONDARY BUS 
MASTER MASTER 

HLDA DELAY HLDAR 

Figure 3-14: Arbitration Connection Between Two 80960KB Processors 

Bus states for Two 80960KB Processors 

The state diagram for the SBM is shown in Figure 3-15. Because there are two 80960KB 
processors, the LOCK signal is included in the state diagram. The SBM requests control of the 
L-bus by asserting HOLDR and subsequently enters the hold request (T hr) state provided that 
the bus is not locked (locked means that LOCK is asserted by the PBM and the SBM has a 
RMW operation pending). The SBM remains in the T hr state until it acquires control of the 
L-bus by receiving HLDAR. The SBM returns to the Tj state by deasserting HOLDR provided 
that the following two conditions exist: 

• A RMW operation is pending 

• The PBM asserted LOCK while the SBM was in the T hr state. 

The SBM gains control of the bus when HLDAR is asserted provided that the bus is not 
locked. After gaining control of the L-bus, the SBM performs the operations, and enters a Tw 
state if necessary. At the end of a transaction, the SBM goes to the Tr state and deasserts 
HOLDR for at least one processor clock cycle to allow another peripheral bus master to gain 
access if needed. If another request is pending, the SBM enters the T hr state and asserts 
HOLDR provided the bus is not locked. The PBM never forces the SBM off the bus. 
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HLDAR - NOT LOCKED 

LOCKED 

NEW REQUEST 
-NOT LOCKED 

READY 
- NO BURST 

NO 
REQUEST 

NO REQUEST 
+ LOCKED 

NOT READY 

NOTES: 

Tj -
Ta -

Td -

T, -

T hr-

Idle state 

Address state 

Data state 

Recovery state 

Hold request state 

READY READY asserted 

NOT READY - READY not asserted 
LOCKED 

HLDAR 

BURST 

NO BURST 

- LOCK asserted by another bus master and 
RMW operation pending for secondary bus master 

- HOLD acknowledge requested (request for bus 
granted) 

Multiple word access in progress 

Multiple word access done, or a 
one-word access 

Figure 3-15: L-Bus States for Secondary Bus Master 
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Arbitration Timing for Two 80960KB Processors on the L-Bus 

Figure 3-16 shows the timing diagram for acquiring and relinquishing the L-bus by an SBM. 
The SBM enters into the Hold Request (T hr) state and asserts the HOLDR signal. It remains in 
the T hr state until HLDAR is asserted, which indicates that the SBM can utilize the L-bus 
during the next state. When the bus is no longer required, HOLDR is deasserted during the 
state following the last READY signal. Except for HOLDR, the output signals of the SBM go 
into a high impedance state or are deasserted for the case of open-drain outputs. 

ClK2 

ClK 

HOlDR 

HlDAR 

Figure 3-16: Arbitration Timing Diagram for an S8M 

Bus Exchange Example Between Two 80960KB Processors 

Figure 3-17 shows an example of bus arbitration between a PBM and an SBM using the 
arbitration signals. Each bus master performs a one-word read and a two-word write trans­
action to demonstrate the fastest possible bus exchanges. 
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Figure 3-17: Example of a Bus Exchange Transaction 

T; 

T; 

While the PBM is performing a read transaction, the SBM requests control of the L-bus by 
asserting HOLDR and entering the Thr state. It remains in this state until the PBM grants the 
request by asserting HLDA after the read transaction is completed. After granting the request, 
the PBM enters the Th state and remains in this state until its HOLD signal is deasserted. 
When the SBM completes the read transaction, it deasserts HOLDR and gives control back to 
thePBM. 

The PBM now performs a two-word write transaction after deasserting the HLDA. The SBM 
requests control of the bus again by asserting the HOLDR signal and enters the Thr state. 
When the PBM completes the two-word write transaction, it grants the request by asserting 
HLDA and enters the Th state. The SBM receives the signal on the HLDAR input and 
performs a two-word write transaction. When the SBM completes the transaction, the control 
of the L-bus is transferred to the PBM, and both the PBM and the SBM enter the T j state. 

A Peripheral Device As the Default Bus Master 

Another case exists where a peripheral device controls the L-bus, and the 80960KB processor 
requests control of the bus to perform operations. This alternative is not advisable because it 
hinders system performance. The exchange protocol is identical to the one described in the 
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previous section. The 80960KB processor is an SBM and uses two pins for bus arbitration: the 
HOLDR input pin and the HLDAR output pin. The state diagram is similar to the one shown 
in Figure 3-15. The lock conditions are not used for this case, however. 

The peripheral device grants control of the L-bus bus asserting HLDAR when the SBM 
requests use of the L-bus. The peripheral device can obtain control of the L-bus again by 
deasserting HLDAR. If this occurs, the 80960KB processor surrenders control of the bus after 
it completes the current transaction, as shown in Figure 3-18. At that time, the 80960KB 
processor deasserts the HOLDR signal and places the other output signals into a high im­
pedance state or a deasserted open drain level. The 80960KB processor may request access to 
the L-bus by asserting HOLDR again. 

CLK2 

CLK 

HLDAR 

HOLDR 

Figure 3-18: Forced Relinquishment Timing Diagram for an S8M 

INTER-AGENT COMMUNICATION (lAC) 

The lAC mechanism gives 80960KB processors the capability to send and receive messages to 
one another and to other bus agents. The lAC mechanism is essentially a non-maskable 
interrupt with pre-defined service routines. These routines are implemented in the 80960KB 
processor and are used to perform control functions such as purging the instruction cache, 
setting breakpoint registers, or stopping and starting the processor. By using lAC messages, 
external agents can remotely control the 80960KB. This allows easy integration of the 
80960KB into system environments. 

lAC messages can also be used to generate interrupts that behave exactly the same as 
hardwired interrupts. Since the interrupt vector is encoded in the lAC message, any of the 248 
possible interrupt service routines can be invoked. For further information on lAC message 
definitions see the 80960KB CPU Programmer's Reference Manual. 
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Overview of lAC Operations 

Figure 3-19 shows a typical example of an lAC operation. In this case, an external processor 
gains control of the 80960KB by using anlAC operation. The external processor performs two 
functions: it writes the message in a buffer, called the message buffer; and it asserts the lAC 
pin of the 80960KB processor. Upon receipt of the lAC signal, the 80960KB processor stops 
executing its current process and performs a four-word read of the message buffer. After 
completing the read operation, the 80960KB processor automatically performs a one-word 
write operation to a pre-defined address to acknowledge the receipt of the message. The 
80960KB processor then proceeds to perform the required action. 

lAC Messages 

READ MESSAGE BUFFER 
WITH FOUR-WORD BURST 

NO 

WRITE TO A PRE-DEFINED ADDRESS 
TO ACKNOWLEDGE RECEIPT OF MESSAGE 

PERFORM I;lEQUEST 

Figure 3-19: Example Flow Chart for an lAC Operation 

The lAC messages are specifically defined and behave much like machine instructions. The 
, 80960KB processor reserves the upper 16M bytes (FFOOOOOOH to FFFFFFFFH) of the 4Mcbyte 

address range for lAC message operations. 

There are two types of lAC messages: internal and external. Internal lAC messages allow a 
program to send a command to its own processor. An internal lAC message is sent by writing 
to address FFOOOOlOH. Internal lAC messages cause no L-bus activity. 
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External lAC messages can be used to send a command to another processor on the L-bus or to 
a remote processor. A processor sends an external lAC message by writing to a buffer area 
and causing the lAC pin of the receiving 80960KB to be asserted. 

When the lAC pin is asserted, the recipient processor reads the reserved address to fetch the 
data from its lAC message buffer. After reading the lAC message buffer, the recipient does a 
write operation to another reserved address to acknowledge receipt of the lAC message. The 
lAC pin is deasserted as a result of this write operation, and the processor is ready to receive 
another lAC. 

Hardware Requirements for External lAC Messages 

To use the external lAC feature of the 80960KB, the following items are needed: a four-word 
message buffer RAM mapped to a reserved address to store the message, logic to assert the 
lAC pin of the 80960KB, and decoding logic to deassert the lAC pin on command from the 
80960KB. 

Message Buffers 

Each 80960KB processor that receives an lAC message must have four 32-bit words of mes­
sage buffer. This buffer can use special hardware or a reserved area in RAM. For proper 
operation of the buffer, two requirements must be met: the receiving 80960KB must be able to 
read this buffer at FFOOOOlOH if the receiving 80960KB's Local Processor Number (LPN) is 
equal to zero (see the "RESET and Initialization" section on page 3-33 for details of the LPN), 
or at FF000030H if the LPN is equal to one; and the sending processor must be able to write 
this buffer. 

lAC Pin Logic 

When the lAC message buffer receives a message, logic asserts the lAC pin and keeps it 
asserted. After the 80960KB processor reads the lAC message, it performs a one-word write to 
address FFOOOOOO if its LPN is zero, or FF000020 if its LPN is one. This reserved address 
serves two functions: it causes external logic to deassert the lAC pin, and it maps to a register 
that contains the current processor priority. If the low order three bits of the data word have a 
value of 100B (see Figure 3-20), the external logic should deassert the lAC pin on completion 
of the write operation. 

31 
21.20 ••• 1615 

4 3 2 1 0 

-+.±t:-I ACKNOWLEDGE lAC MESSAGE 
SET PRIORITY 

~:-+:-+-:-I SET PRIORITY AND 
..:..I..;.J...;.J..;..I ACKNOWLEDGE lAC MESSAGE 

Figure 3-20: Data Settings 
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EXTERNAL PRIORITY REGISTER 

The 80960KB contains an internal register that keeps track of the current priority (a value 
between 0 and 31) at which it is executing. This priority is used to decide whether or not to 
service interrupts -- higher priority interrupts are serviced, others are posted for later servicing. 
In some system designs it may be desirable to have this priority visible outside of the proces­
sor. To allow this, the 80960KB provides support for an external priority register. Whenever 
the priority of the 80960KB changes, the contents of this register are automatically updated. 

This feature may be enabled in two steps. If the Write External Priority bit is set in the PRCB 
(see the 80960KB CPU Programmer's Reference Manual), then the external priority register is 
updated as a result of a MODPC instruction or whenever an interrupt occurs. If external lAC 
messages are enabled, then external priority is also updated whenever a result of an lAC is to 
change processor priority. 

Hardware Requirements 

The 80960KB expects to write its priority into a 5-bit register mapped to address FFOOOOOO if 
its LPN is zero, or FFOOO020 if its LPN is one. To set the priority, the processor performs a 
one-word write operation in the form shown in Figure 3-20. The priority is contained in 
bit20-bit16, and bit3 is asserted to indicate that the priority is changed. It is necessary to use bit3 
as a qualifier to distinguish priority write operations from lAC message acknowledgments, 
which use the same reserved address. 

External Priority and lAC Messages 

The external priority register can be used to filter lAC messages. Since the processor always 
services the lAC pin (i.e., it is non-maskable), a low priority lAC message can interrupt a high 
priority task. To prevent this, a system can associate a priority with each lAC message .. This 
priority can then be compared to the priority stored in the external priority register and used to 
decide whether or not to accept the lAC message. One way to associate a priority with an lAC 
message is to encode the message priority into the lAC message destination address as shown 
in Figure 3-21. The range of reserved addresses shown in Figure 3-21 have been set aside for 
this purpose. 

31 24 23 14 13 9 8 4 3 2 1 0 

\111\11111111111Ixlxlx Ix Ix Ix Ix Ix Ix Ix lolol111lolxlxlxlxlxlolololo\ 
\ ) '---y---J 

f +'----
L._ - _____________ ADDRESSDFRECEPIENT 

PRIDRITY 

Figure 3-21: Physical Address Interpretation for lAC Messages 
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INTERRUPTS 

The 80960KB processor responds to external events occurring at arbitrary times by means of 
an interrupt signal. Various sources, which include hardware components and special software 
instructions, generate an interrupt signal that can suspend execution of the 80960KB 
processor's current instruction stream. The hardware-generated interrupts are discussed in this 
section. For complete information on software-generated interrupts, see the 80960KB CPU 
Programmers Reference Manual. 

The 80960KB processor provides a flexible interrupt structure. The 80960KB processor can 
be interrupted using any of three methods below: 

• Receipt of ~ignal on any or all of the four direct interrupt input signals (INTo, INTI' 
INT 2' and INT 3) 

• Receipt of a signal on the interrupt request (INTR) line to obtain an external interrupt 
vector 

• Receipt of an lAC message from a processor program or external source. 

The choice of the method is determined by the setting in the on-chip Interrupt Control register. 
Interrupt signals can occur during any bus state regardless of which method is implemented. 

This section provides details on the multiplexed interrupt pins, the three interrupt methods, the 
Interrupt Control register, synchronization, and interrupt latency. 

Interrupt Signals 

The interrupt signals are multiplexed on four pins of the 80960KB processor: INT ofIAC, INTI' 
INT 2/1NTR, and INT 3/INT A. The on-chip Interrupt Control register determines how these 
pins are used (see "Interrupt Control Register" section on page 3-30). 

INTI 

INT2/1NTR 

This pin multiplexes the Interrupto and Inter-Agent Communication 
request input signals. The 80960KB processor interprets this input sig­
nal as either INTo or lAC. The INTo signal indicates a request for 
interrupt service when it is asserted. The lAC signal denotes that a 
message is waiting when it is asserted. 

The InterruptI input signal indicates a request for interrupt service 
when it is asserted. 

This pin multiplexes the Interrupt2 and Interrupt Request input sig­
nals. The 80960KB processor interprets this input signal as either INT 2 
or INTR~ The INT 2 signal indicates a request for interrupt service when 
it is asserted. The INTR signal indicates an interrupt request from an 
external interrupt controller. The 80960KB processor responds with an 
interrupt-acknowledge sequence. To ensure an interrupt, the INTR sig­
nal must remain asserted until the first cycle of the interrupt­
acknowledge transaction. 

This pin mUltiplexes the Interrupt3 input signal and Interrupt 
Acknowledge output signal. The 80960KB processor uses this pin as 
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the INT3 input signal or as the INTA output signal. The Interrupt Con­
trol register setting selects either the combination of INTR/INT A or 
INT 2/1NT 3. The INT 3 input signal indicates a request for interrupt ser­
vice when it is asserted. INT A acknowledges the interrupt request from 
an external interrupt controller. The INT A signal is latched by the 
80960KB processor and remains valid during the T d state. This signal is 
open drain output. 

Interrupt Control Register 

The 80960KB processor uses a 32-bit, on-chip Interrupt Control register to define the function 
of the multiplexed interrupt pins. This 32-bit Interrupt Control register allocates eight bits for 
each of the four direct interrupt signals (INTo, INTI' INT 2' and INT 3). The eight bits contain 
the vector number for each interrupt signal, as shown in Figure 3-22. The vector number is 
automatically read when one of the interrupt signals (INTo, INTI' INT 2' and INT 3) is activated. 
For example, when an interrupt is signaled on INTo, the 80960KB processor uses bit7-bito of 
the Interrupt Control register as the vector number. 

The 80960KB processor uses the data field corresponding to INTo to determine identification 
of the INT oIIAC input pin; a value of OOH signifies the lAC function. If the data field 
corresponding to INT 2 has a value of 02H.:.. the 80960KB processor interprets the INT 2/1NTR 
pin as the INTR input signal, and the INT 3/1NT A pin as the INT A output signal. In other 
words, this setting specifies that the 80960KB processor should use these two pins for com­
munication with an external interrupt controller. If the functions of INTR and INT A are 
selected, the direct interrupt pins (INTo and INT 1) can still be used. 

The on-chip Interrupt Control register may be read and written by the Synchronous Load 
(synld) and Synchronous Move (synmov) instructions at the address FF000004H (see the 
80960KB CPU Programmer's Reference Manual). The value of the data fields in the Interrupt 
Control register is FFOOOOOOH after initialization. This setting specifies that the four interrupt 
pins function as INT A, INTR, INT l' and lAC. 

31 2423 1615 8 7 0 BIT NUMBER 

IIIIII 11111 III IIIIII11 IIIIII11 I II 
1....-INT3--...l.--INT2---....1....-INT1---....1....-INTo~ 

VECTOR VECTOR VECTOR VECTOR 

Figure 3-22: Interrupt Control Register 
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Using the Four Direct Interrupt Pins 

The 80960KB processor can be interrupted by asserting any or all of the four interrupt input 
signals (INTo, INTI' INT 2' INT 3)' If the signals are simultaneously asserted, the 80960KB 
assumes that INTo has the highest priority, followed by INTi' INT2, and INT3. Software 
should follow this convention when programming the Interrupt Control register. When the 
interrupt input signals are asserted, the 80960KB processor utilizes a vector number specified 
by the Interrupt Control register as an index to an entry in the interrupt table located in 
memory. For complete software information on this topic, see the 80960KB CPU 
Programmer's Reference Manual. 

Using an External Interrupt Controller 

The 80960KB processor can communicate with an external interrupt controller by performing 
an interrupt acknowledge sequence using the INTR and INT A signals. Figure 3-23 shows an 
example of the timing of an interrupt acknowledge sequence using the 8259A Programmable 
Interrupt Controller. 

,
..... PREVIOUS ..... ,... INTERRUPT .-," 

CYCLE ACKNOWLEDGEMENT 
CYCLE 1 

T T T Td T, T; 

IDLE ~ INTERRUPT 
(5BUSSTATES) ~ ACKNOWLEDGEMENT ~ 

. CYCLE 2 

Tj T; Tj T. Td Tw T, 

CLK2 

ClK 

INTR 

INTA 

DT/R 

Figure 3-23: Timing Diagram for Interrupt Acknowledge Transaction 
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INTR is asserted by the 8259A and remains asserted until the 80960KB processor activates the 
INT A signal for the first time. When the 80960KB processor receives an interrupt request, the 
CPU completes the current transaction (or comes to some interruptible point), and asserts 
INT A. INT A remains valid through the T a' T d' and T w states. The first assertion of INT A 
triggers the 8259A to resolve priority among its interrupt requests. 

To compensate for the timing of the 8259A, the 80960KB processor automatically inserts five 
1 states before asserting the INTA again to read the interrupt vector. Figure 3-23 shows 
READY asserted without a wait state during the first Interrupt Acknowledgement cycle and 
with one wait state during the second Interrupt Acknowledgement cycle. In practice, the 
8259A would require about four wait states in both cycles. The address during the Ta state for 
both interrupt acknowledge cycles is FFFFFFFCH. For more details, see the "8259A 
Programmable Interrupt Controller" section in Chapter 5 on page 5-5. 

The 80960KB processor services the interrupt according to its priority. If the interrupt has 
higher priority than the current activity, the 80960KB processor services it immediately. 
Otherwise, after reading the interrupt vector, the 80960KB processor posts the interrupt vector 
in the interrupt table. Typically, the 80960KB processor responds within 4 /ls for an interrupt 
with higher priority than the current process (assuming CLK2 at 40 MHz). If the interrupt has 
lower priority than the current activity, the interrupt is serviced when its priority is higher than 
the priority of the subsequent activity of the 80960KB processor. 

Using lAC Requests for Interrupts 

The 80960KB processor can also be interrupted by an lAC message. The 80960KB processor 
can send lAC messages to itself by using one of the Synchronous Move instructions. Because 
this message does not utilize the L-bus when sent to the same processor, no special hardware is 
required. More details are provided on page 3-25 and in the 80960KB CPU Programmer's 
Reference Manual. 

Synchronization 

The INT ofIAC, INTI' INT 2/1NTR, and INT 3 input signals can be either synchronous or 
asynchronous to the system clock (CLK2). Synchronous interrupt signals must be set up 3 ns 
prior to the rising edge of CLK2 and held for 10 ns after the rising edge of CLK2. To properly 
preset the interrupt signals for synchronous operation, INT ofIAC, INTI' INT 2/1NTR, and INT 3 
must be deasserted for at least one processor clock cycle and asserted for at least one processor 
clock cycle. These signals may be deasserted and asserted individually. 

If the interrupt signals are asynchronous to CLK2, the 80960KB processor internally 
synchronizes them. For the CPU to recognize the asynchronous interrupt input signals, they 
must be preset by deasserting them for at least two processor clock cycles, and then asserting 
them for at least two processor clock cycles. These signals may be deasserted and asserted 
individually. 
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RESET AND INITIALIZATION 

The system RESET signal provides an orderly way to start or restart the 80960KB processor. 
When the 80960KB processor detects the low-tb-high transition of RESET, it terminates all 
external activities and places the output pins in the high impedance state or deasserted con­
dition. When the RESET signal falls low again, the 80960KB processor begins the initializa­
tion process and later starts fetching instructions from a specific address. 

RESET Timing Requirements 

To properly reset the 80960KB processor to a known state, the low-to-high transition of 
RESET must be asserted relative to any rising edge of CLK2 and remain asserted for at least 
41 CLK2 cycles, as shown in Figure 3-24. RESET must be deasserted after the rising edge of 
CLK2, but prior to the next rising edge of CLK2. This establishes the next rising edge of 
CLK2 as edge A. 

r- 41 '1 CLOCK 
CYCLES A EDGE 

CLK2 

RESET 

Figure 3-24: RESET Timing Diagram 

RESET Timing Generation 

The RESET input signal to the 80960KB processor can easily be generated by implementing a 
synchronization circuit comprised of a two D-type flip-flops, as shown in Figure 3-25. 

USER RESET D Q 
SYNC 

D Q 

ClK >C --+-~C 

Figure 3-25: Asynchronous RESET Circuit 
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The user RESET signal is synchronized with the CLK signal by applying CLK to the clock 
input of both flip-flops. To protect against a metastable RESET signal, the output of the first 
flip-flop, SYNC, is applied to the input of the second flip-flop. The output of the second 
flip-flop results in a processor RESET signal. The timing diagram for these signals is shown in 
Figure 3-26. CLK or CLK2 can be used instead of CLK in Figure 3-26. Using CLK provides 
an edge A corresponding to the rising edge of CLK. 

ClK2 

ClK 

USERmE'F 

SYNC 

CPU RESET 

Figure 3-26: Diagram for RESET Timing Generation 

This circuit assumes an asynchronous user RESET signal. If the user RESET signal is already 
synchronous with the CLK signal, the same circuitry can be implemented as shown in Figure 
3-27. In this case, however, the output from the first flip-flop is used to generate the processor 
RESET signal rather than being routed to the input of the second flip-flop. 

Initialization 

UsERR'E'SEi - ....... 0 

ClK ~C 

RESET TO 
CPU 

Figure 3-27: Synchronous RESET Circuit 

The initialization sequence of events is shown in Figure 3-28. When RESET is deasserted 
after a minimum of 41 CLK2 cycles, several actions take place: two input pins are sampled, 
the FAILURE output signal (see next section for the pin description) is asserted, and the 
self-test is performed. 
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DEASSERT RESET 

SAMPLE LPN AND START-UP INPUT PINS 

ASSERT FAILURE 

PERFORM SELF-TEST 

YES >------__t ENTER STOPPED STATE 

NO 
>-----.... ENTER STOPPED STATE 

READ 8 WORDS FROM PHYSICAL ADDRESS 0 

PERFORM CHECKSUM ON THE 8 WORDS 

CLEAR ANY LATCHED INTERRUPT SIGNALS 

EXECUTE FIRST INSTRUCTION 

Figure 3-28: Initialization Flow Chart 
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When RESET is deasserted, the 80960KB processor samples the signals residing on the 
INTofIAC and the BADAC input pins (see the next section for the pin description of BADAC). 
At this time, these pins are interpreted as the Local Processor Number (LPN) and Startup 
(STARTUP) signals, respectively. The LPN input signal defines whether the 80960KB 
processor is a PBM (high voltage input level) or a SBM (low voltage input level). The 
STARTUP input pin indicates whether the 80960KB processor performs initialization (high 
voltage level) or not (low voltage level). The STARTUP signal is used to allow one or more 
processors to perform the active initialization. The input voltage levels for the LPN and 
STARTUP must be setup 3 ns before the rising CLK2 edge prior to edge A and held 10 ns 
beyond edge C, as shown in Figure 3-29. 

CLK2 

ClK 

CPU 
RESET 

OUTPUTS 

INToIiACand BADAC 
must be set prior to 
this clock edge. 

CLOCK EDGES 

TNT oIlAC and BADAC 
must be held beyond 
this clock edge. 

Latched i nterru pt 
signals cleared prior 
to first instruction. 

Figure 3-29: RESET Signal Timing Relationship 

Besides sampling the two input pins, the 80960KB processor asserts the FAILURE output 
signal a few cycles after RESET is deasserted. The FAILURE signal remains asserted while 
the CPU performs the self-test. If a failure is detected during the self-test, FAILURE remains 
asserted and the CPU enters the stopped state where the processor does nothing. If the self-test 
completes successfully, the CPU deasserts the FAILURE signal. 

An 80960KB processor that is designated as the initialization processor proceeds by doing a 
checksum test of eight words fetched from memory at physical address 0000 OOOOH to ensure 
that the memory and L-bus are operating properly. If the initial checksum is incorrect, then the 
FAILURE signal is asserted (and remains asserted) and the 80960KB processor enters the 
stopped state. After a successful checksum test, the 80960KB processor uses some of the 
words as addresses to initial data structures. Complete details are provided in the 80960KB 
CPU Programmer's Reference Manual. 

Just prior to executing the first instruction, the 80960KB processor clears any latched interrupt 
signals. 
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ERROR SIGNALS 

The 80960KB processor provides an input signal (BADAC) for notification of an error in the 
system, and provides an output signal (FAILURE) for notification of an error within the 
processor. 

BADAC 

FAILURE 

SUMMARY 

When asserted, the Bad Access input signal indicates that an un­
recoverable error occurred during the current data transfer. If, however, 
BADAC was asserted after a Synchronous Move or Synchronous Load 
instruction, the error is recoverable. The 80960KB processor samples 
the BADAC input signal during the cycle following the one when the 
last READY is asserted. 

The FAILURE signal indicates that an error occurred during initializa­
tion. The 80960KB processor always asserts FAILURE after the activa­
tion of the RESET signal. If a failure is detected during a self-test, 
FAILURE remains asserted. Otherwise, the processor de asserts 
FAILURE after a successful self-test is performed. If the initial memory 
checksum is incorrect, the initialization processor asserts FAILURE a 
second time, and keeps it asserted. FAILURE is an open drain output 
signal. 

The L-bus is a high speed 32-bit multiplexed bus with burst-transfer capability and is designed 
to operate with the high performance 80960KB processor. The L-bus consists of two signal 
groups: address/data, and control. These signal groups are utilized by the 80960KB processor 
to perform read, write, and burst transactions. 

The arbitration, interrupt, and reset operations are related to the L-bus transactions. The 
arbitration operation transfers control of the L-bus to another bus master. Three methods are 
available to handle interrupts: by invoking the on-chip interrupt controller, by employing an 
external interrupt controller using the INTR/INT A signals, by using an lAC message. The 
reset function sets the 80960KB processor to a known internal state after it successfully 
completes the self-test. These operations offer power and flexibility to hardware system design 
using the 80960KB processor. 

This chapter focuses on the L-bus and how it relates to the 80960KB processor. The next two 
chapters develop guidelines on designing memory and peripheral devices in the hardware 
system. 
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CHAPTER 4 
MEMORY INTERFACE 

The high-speed bus interface has many features that enhance high-performance designs. In 
particular, the burst-transfer feature allows up to four successive 32-bit data word transfers at a 
maximum rate of one word every processor clock cycle. This chapter outlines approaches for 
memory designs that use these features, describes memory design considerations, analyzes the 
timing, and lists a number of useful examples. The concepts illustrated by these examples 
apply to a wide variety of memory system implementations. 

BASIC MEMORY INTERFACE 

Figure 4-1 shows the major logic blocks of the memory interface circuit. The data trahsceivers 
buffer the data to compensate for any slow devices that may be connected to the 80960KB 
processor. The address latches demultiplex the address/data signals from the 80960KB proces­
sor and latch the address. The address decoder selects the appropriate memory device from the 
latched address. To accommodate a memory burst transaction, the burst logic decrements the 
word count, increments the local address lines 3 and 2 (LAD3 and LAD2), and generates a 
CYCLE-IN-PROGRESS signal. The timing control generates a READY signal and other 
specific signals required by a particular memory device. The byte enable latch stores the byte 
enable signals. 

Although not part of the basic memory interface, the DRAM controller, SRAM interface, 
DRAM, SRAM, and EPROM are included in Figure 4-1 for completeness. In a hardware 
system the DRAM, SRAM, and EPROM are typically located in separate subsystems. 

Although the memory interface circuit can be designed using programmable logic, gate arrays, 
or other custom logic, the examples use standard components wherever possible to illustrate 
the design concepts. 

Data Transceivers 

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for 
the L-bus. Transceivers can be used to prevent bus contention that can occur if some memories 
are slow to remove data from the L-bus after a read operation. For example, if a write 
operation follows a read operation, the 80960KB processor may drive the L-bus before a slow 
device has removed its output data, potentially causing a current spike on the power and 
ground lines. Transceivers, however, can be omitted if the data float time of the device is short 
enough and the load does not exceed the 80960KB device specifications. 

The data transceivers can be controlled by two signals from the 80960KB processor: data 
transmit/receive (DT;R) and data enable (DEN). DT;R indicates the direction of data flow and 
DEN enables the transceivers. 

4-1 



MEMORY INTERFACE 

.' 

" 

----.;.. 
r! 

LADwLADo DATA 
TRANSCEIVERS 

DT/i! DiR 
---. 

DEN G EPROM 

ADDRESS 
ALE Jo. 

V 
LE 

LATCHES 

~G -Q 

• I 80960KB ADDRESS EPROM·CS D-< DRAM 
PROCESSOR DECODER DRAM-CS RASo 

SRAM·CS ::>- CASrCASo 

DRAM WE 

CONTROLLER 

LADrLADo 

i+<= 
DRAMA,·DRAMA, 

BURST A,_ DRAM-ROY 

'--0.0 
LOGIC A3 

r 
ADS CYCLE-iN-PROGRESS at 

+ 
TIMING 0-

CONTROL 

READY READY 

W/R SRAM-WE 

1 
SRAM 

SRAM-OE 

1 
~ 

BYTE 
SRAM 

BErBEo ENABLE BErBEo 
INTERFACE 

OErO~o 

LATCH WErWEo 

CLK2 1 

Figure 4-1: Simplified Block Diagram for Memory Interface Logic 

Address Latch/Demultiplexer 

Conventional transparent latches can be used to demultiplex the address/data lines of the 
80960KB processor and to hold the address constant during the memory operation, The latch 
is controlled by the ALE signal from the 80960KB processor. ALE passes through an inverter, 
so that when ALE goes low, the address flows through the latch. The low-to-high transition of 
ALE can be used to latch the address. The output enable of the latch can be tied to ground. 
The lower four address lines (LAD3-LADo) are latched by the burst logic. 

Address Decoder 

The 80960KB processor accesses both memory and I/O devices by supplying a 32-bit address 
and a read/write command. The address decoder determines which particular memory or I/O 
device is selected by decoding the address lines. The following discussion focuses on memory 
selection, and the "Address Decoder" section in Chapter 5 on page 5-3 discusses I/O device 
selection using memory-mapped I/O techniques. 
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The memory address can be divided into regions where one region can apply to EPROM or 
ROM, another to RAM, and another to the I/O registers. In a 80960KB-based system the 
ROM address space is likely to start at address 0000 OOOOH because the CPU begins execution 
at this address. The RAM or I/O regions can start at any other address in the 4G-word address 
range except for addresses FFOOooOOH through FFFFFFFFH, which the 80960KB processor 
reserves for inter-agent communication. 

Because of the large address range of the 80960KB processor, the address can be divided into 
word address bits and chip select bits. Typically the higher-order address bits are decoded to 
generate the selection signal for ROM, RAM, or I/O deviGes. 

The address decoder can be located either before or after the address latches. Usually, it is 
placed after the latches, so that the chip-select signal does not need to be latched. Figure 4-1 
shows the block diagram of the address decoder placed behiqd the address latches. 

Burst Logic 

To enhance system performance, the 80960KB processor performs burst transaction~ that 
transfer up to four data words at a maximum rate of one word every clock cycle. A DRAM 
controller can be designed that takes advantage of the burst-trilDsfer capability by using the 
static column mode or nibble mode features of the DRAM (see the "DEAM Controller" section 
on page 4-5). This DRAM controller requires a signal, called CYCLE-IN-PROGRESS, to 
identify the start and end of a memory cycle. The burst logic generates the CYCLE-IN­
PROGRESS signal. 

Figure 4-2 shows the flow chart for the burst logic. If ADS is low and DEN is high, then the 
burst logic latches LAP3 through LADo' and asserts the CYCLE-IN-PROGRESS signal. The 
burst logic checks the SIZE signals (LAD! and LADo). If the value of the SIZE signals equal 
zero, then the burstJogic runs one memory cycle, and terminates the CYCLE-INcPROGRESS 
signal. If the value of the SIZE signals do not equal zero, the burst logic runs one memory 
cycle, increments the address (LAD3 and LAD2), and decrements the value of the SIZE 
signals. When this is finished, the burst logic checks the value of the SIZE signals again. 
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Figure 4-2: Burst Logic Flow Chart 
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The burst logic can be used with memory devices, such as EPROM, SRAM, or DRAM without 
static column mode or nibble mode, which do not inherently support a burst transaction. 
Because the 80960KB processor ensures that a burst transaction cannot exceed four words or 
cross a 16-byte boundary, incrementing LAD3 and LADz after a single data word transfer 
makes the burst transfer transparent to these devices. 

Timing Control Logic 

The timing control logic accommodates memory devices that cannot transfer information at the 
maximum bus rate by generating a READY signal when the data is available. The timing 
control logic consists of a counter and timing logic, as shown in Figure 4-3. The counter 
produces a 4-bit binary count. The count begins when the CYCLE-IN-PROGRESS signal is 
asserted. The timing logic asserts READY at the appropriate time based upon the count, the 
EPROM-CS, and the SRAM-CS signals. For a burst transfer, READY resets the counter to 
properly time a READY signal for the next data transfer. When CYCLE-IN-PROGRESS is 
deasserted, the clock counting is terminated. 

CYCLE-IN­
PROGRESS 

CLK2 

W/R 

iiO:c5 

SRAM-CS 

DRAM-ROY 

-+ 
--.. 
.... 

COUNTO 

COUNTER COUNT! TIMING 
START CYCLE COUNT2 LOGIC 

COUNT3 

t ( \) 

Figure 4-3: Timing Control Logic Block Diagram 

r-" 

p--. 
p--. 

READY 

SRAM-OE 

SRAM-WE 

Because the timing of DRAM is more complicated, the DRAM controller generates a 
DRAM-RDY signal to the 80960KB processor. In addition, the clock count, the w/R com­
mand, and SRAM-CS signal can also be used to generate SRAM-WE and SRAM-OE signals. 
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Byte Enable Latch 

The byte enable latch holds the byte enable signals constant until the DRAM controller or 
SRAM interface uses the signals. As mentioned in the ilL-Bus Signal Groups" section in 
Chapter 3 on page 3-4, the byte enable signals specify which bytes (up to four) on the 32-bit 
data bus are transferred during the data cycle. Each individual byte enable signal selects eight 
data lines as shown in Table 4-1. 

Table 4-1: Byte Enable Signal Decoding 

BYTE ENABLE51GNAL ADDRESS LINE SELECTION 

BEa LAD7.LADa 

BEl LAD15·LADs 

BE2 LADn LAD 16 

BE3 LAD3l.LAD24 

The byte enable signals are valid from the 80960KB processor before data is transferred. 
These signals are asserted during the address cycle for the first data word transfer; they are 
asserted again during the first data cycle for the second word transfer; the second data cycle for 
the third word transfer; and the third data cycle for the fourth word transfer. For each word, 
the byte enable signals remain valid throughout every data or wait cycle until READY is 
asserted. After READY is asserted, the byte enable signals change during the next processor 
clock cycle. 

The ALE signal can be used to latch the first byte enable signals. READY can be used to latch 
the other byte enable signals for each word. 

SRAMINTERFACE 

The basic memory interface can be used in conjunction with the SRAM interface to read and 
write to SRAM. This section describes the SRAM interface and examines the timing. 

SRAM Interface Logic 

The SRAM interface logic uses the latched byte enable signals, the SRAM-WE, and the 
SRAM-OE signals to generate four output enable signals (SRAM-OE3 through SRAM-OEo) 
and four write enable signals (SRAM-WE3 through SRAM-WEO), as shown in Figure 4-4. 
These signals allow the 80960KB processor to write to the data byte that is specified by the 
byte enable signals. SRAMs with separate OE and CS signals require only one OE signal per 
bank since the 80960KB ignores unrequested bytes in read operations. 
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• SRAMs with separate OE and CS require only one OE signal per bank. 

Figure 4-4: Block Diagram for SRAM Interface 

SRAM Timing Considerations 

This section analyzes the critical timing paths of the SRAM control signals. From the critical 
path, the timing equations can be derived to determine the memory access time for no wait 
state operation. 

When evaluating critical timing paths, the timing calculations should use worst-case parameter 
specifications, rather than typical specifications. By using wOfst7case timing values, reliable 
operation is assured over all variations in temperature, voltage, and individual device charac­
teristics. These timing values are determined by assuming the maximum propagation delay to 
latch an address, select a memory device, and pass through data buffers and transceivers. 
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Figure 4-5 shows the critical timing path for a one-word SRAM read operation. The diagram 
consists of three time periods: the address setup period (T addrset), the memory response period 
(Tmem), and the data return period (Tdataset). Note that the timing for the read command and 
output control signals does not enter into the critical timing path. 

.. _--- T dataset ----+I 

1...------------- SRAM READ CYCLE --------------1 

Figure 4-5: Critical Timing Path for SRAM Read Operation 

During the T addrset period, the 80960KB processor outputs a valid address that is latched on the 
low-to-high transition of the ALE signal. The address decoder generates the SRAM-CS signal 
from the latched address. During the Tmem period the SRAM responds to the commands and 
signals and retrieves the data. The access time of the memory determines the duration of the 
Tmem period. Tmem can be varied in increments of clock cycles by delaying the READY 
signal. 

The data must be available at the address/data pins of the CPU before the end of the data state. 
The T dataset period must take into account the setup time requirement of the 80960KB proces­
sor and the throughput delay of a data transceiver. 

For a no wait state operation, the data transfer word must be completed in two system clock 
(CLK) cycles. The minimum time period for a no wait state operation (Tmem-no-wait) can be 
determined by using equation 1. 

T mem-no-wait = 2CLK - T addrset - T dataset 

where: T mem-no-wait = Memory access time for no wait state operation 

2CLK 

Taddrset 

Tdataset 

= Two system clock (CLK) cycles 

= Maximum delay to valid address 
+ Maximum throughput delay of address latch 
+ Maximum delay to generate chip select 

= Maximum delay through data transceiver 
+ Maximum data setup time of CPU 
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A similar analysis can be done for burst transactions. Equation I can be used to determine the 
access time for no wait state operation of the first word. For subsequent words, equation 2 can 
be used. In this equation, the address setup time is replaced by delay in the burst logic to 
change the address (T burst). In this case, the data transfer of each subsequent word must be 
completed in one system clock (CLK) cycle (no address state). The minimum access time for a 
no wait state operation (T mem-no-wait) can be determined by using the lesser value of equation I 
or equation 2. 

T mem-no-wait = CLK - T burst - T dataset 

where: T mem-no-wait = Memory access time for no wait state operation 

CLK 

Tburst 

T dataset 

= One system clock (CLK) cycles 

= Maximum delay to change the address 

= Maximum delay through data transceiver 
+ Maximum data setup time of CPU 

(2) 

The memory access time can be extended by delaying the READY signal and adding wait 
states. 

The timing analysis described for a SRAM read operation can be used for EPROM timings. If 
EPROMs are only used to store initialization programs, they are seldom accessed compared to 
memory devices used to store program data or instructions. Consequently, the addition of wait 
states during the read cycle does not affect overall system performance. 

Figure 4-6 shows the critical timing path for an SRAM write operation. The diagram consists 
of two time periods: the address setup period (T addrset) and the memory response period 
(Tmem)· 
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~------ T mem --------..1 

SRAM WRITE CYCLE .. 

Figure 4-6: Critical Timing Path for SRAM Write Transaction 

During the T addrset period, the 80960KB processor outputs a valid address that is latched on the 
low-to-high transition of ALE. The address decoder generates the SRAM-CS signal from the 
latched address. 

During the Tmem period the SRAM responds to the commands and writes the data. The access 
time of the memory determines the duration of the T mem period. T mem can be varied in 
increments of clock cycles by delaying the READY signal. 

Two timing paths should be considered during the T mem period: the path where data is supplied 
to the memory, and the path that monitors the memory write cycle time. The first path takes 
into account the time for the 80960KB processor to generate valid data, the throughput delay of 
a data transceiver, and the data setup time requirement of the memory. The second path is the 
memory write cycle specification. The longer of the two paths is the critical timing path. 

By examining the timing path required to operate the SRAM, equation 2 can be derived which 
determines SRAM write cycle time for no wait state operation. The memory cycle time is 
determined by the lesser value of equation 1 or equation 2. 
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T mem-no-wait = 2CLK - T addrset 

where: T mem-no-wait 

2CLK 

Taddrset 

~ Maximum delay to valid data 
+ Maximum throughput delay of data transceiver 
+ Maximum data setup time of memory 

= Two system clock (CLK) cycles 

= Maximum delay to valid address 
+ Maximum throughput delay of address latch 
+ Maximum delay to generate chip select 

(3) 

The memory access time can be extended by delaying the READY signal and generating wait 
states. 

DRAM CONTROLLER 

This section provides design guidelines for a DRAM controller. DRAMs offer static column 
mode and CAS before RAS refresh features. This section shows guidelines on how to use 
these features with the burst capability of the 80960KB processor to significantly enhance 
system throughput. 

The DRAM controller multiplexes the address into a row and column address, performs the 
refresh operation, arbitrates between a refresh request and memory request, and generates the 
necessary control signals for the DRAM. To implement these functions, the memory controller 
uses an address multiplexer, arbiter, refresh interval timer, and DRAM timing and control as 
shown is Figure 4-7. 

A standard DRAM controller can be used, but it typically degrades system performance. 
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Address Multiplexer 

The address multiplexer divides the DRAM address into a row and column address. The 
proper selection of a row or column address is accomplished by the row/column select signal 
(ROW/COL) from the DRAM timing and control circuit. 

Refresh Interval Timer 

The refresh interval timer periodically generates a refresh request (REF-REQ) by counting 
enough bus cycles to equal the refresh interval period. Since a refresh request is processed 
after a completed operation, the refresh period must take into account the time required to 
perform a bus operation, as well as the DRAM refresh specification. For example, a 1M-bit 
DRAM that requires 512 refresh cycles within 8 ms needs a refresh cycle every 15.6 lis. To 
meet the DRAM specification, the refresh interval timer must generate a refresh request in less 
than 15.6 lis to compensate for any required time to complete the operation with wait states. 

After the REF-REQ signal is generated, the arbiter sends a refresh acknowledge signal 
REF-ACK back to the interval timer to assure that refresh occurred before generating another 
REF-REQ. 

Arbiter 

DRAM controller uses an arbiter to decide whether a memory cycle or refresh cycle is per­
formed. In a synchronous design, arbitration is easily performed because memory and refresh 
cycle requests never occur at or near the same time. 

The arbiter monitors memory cycle requests and refresh requests. The arbiter detects a DRAM 
memory request by decoding two signals: DRAM-CS and CYCLE-IN-PROGRESS. The 
REF-REQ signal indicates that a refresh cycle must be performed. The arbiter arbitrates 
between a memory cycle or refresh cycle and generates a Memory/Refresh (MEM/REF) signal. 
The DRAM timing and control block uses the MEM/REF signal to start the generation of the 
control signals. 

When a refresh cycle is performed, the arbiter sends a REF-ACK signal to the refresh timer, 
which uses this signal to begin another count. 

DRAM Timing and Control 

The DRAM timing and control circuit is the final logic block and core of the DRAM con­
troller. The functions of this circuit include the following: 

• Generating the DRAM control signals (RAS, CAS, and WE) with the proper timing 
relationships during system operation 

• Generating the DRAM-RDY signal 

• Performing the refresh function by asserting CAS before RAS 
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• Perfonning several wann-up cycles required by the DRAM when power is first applied. 

The DRAM timing and control logic can be designed to take advantage of the burst-transfer 
capability of the 80960KB processor by implementing static column mode or nibble mode. 
With nibble mode, a multiplexed address is applied to the DRAM, and up to four bits of data 
are quickly transferred by successively toggling the CAS pulse. The DRAM timing and 
control logic can be designed to provide the successive CAS pulses by using the CYCLE-IN­
PROGRESS and DRAM-RDY signals. Static column mode can also be used to take 
advantage of the burst capability of the DRAM. Static column mode allows fast access to the 
bits located in the selected row of the DRAM simply by changing the column address after the 
first access. 

Figure 4-8 shows a flow chart for the DRAM timing and control logic using static column 
mode. The DRAM timing and control circuit receives a refresh request or a memory request 
on the MEM/REF and CYCLE-IN-PROGRESS input signals. For a memory request, the 
DRAM timing and control detennines whether a read or a write operation is desired from the 
W!R signal from the 80960KB processor. 
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Figure 4-8: Flow Chart for DRAM Timing and Control Logic 

For a read operation, the DRAM timing and control logic performs several functions: it brings 
ROW/COL high to select a row address; it ~sserts RASa; it brings ROW/COL low to select the 
column address; it asserts CAS3 through CASa (derived from the four latched byte enable 
signals); and it generates a DRAM-RDY signal. The DRAM-RDY signal causes the burst 
logic to increment the address and the 80960KB processor to read the data word. 
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After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and 
control logic maintains the ROW/COL signal low to select the new column address and 
generates another DRAM-RDY. The DRAM timing and control logic repeats the procedure 
until all the data words are transferred. Then the DRAM timing and control logic deasserts 
RASo and observes the necessary row precharge specification of the DRAM. 

For a write operation, the DRAM timing and control logic performs similar functions on the 
first word: it asserts WE; it brings ROW/COL high to select a row address; it asserts RASo; it 
brings ROW/COL low to select the column address; it asserts CAS3 through CASo (derived 
from the four latched byte enable signals); and it generates a DRAM-RDY signal. The 
DRAM-RDY signal causes the burst logic to increment the address and informs the 80960KB 
processor that the data word was written. 

After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and 
control logic maintains the ROW/COL signal low to select the new column address, deasserts 
and asserts CAS3 through CASo to observe the CAS precharge specification of the DRAM, 
and generates another DRAM-RDY. The DRAM timing and control logic repeats the proce­
dure until all the data words are transferred. Then the DRAM timing and control logic 
deasserts RASo and observes the necessary row precharge specification of the DRAM. 

Although only one RAS signal is generated, four CAS signals (CAS3-CASo) are generated to 
enable each byte of the L-bus. These CAS signals are triggered by the four· write signals 
generated by the byte enable decoder and correspond to the byte enable signals of the 
80960KB processor. For example, CASo' which is mapped directly from BEo' selects the 
least-significant data byte (LAD7-LADo). 

A single WE control signal and four CAS signals ensure that only those DRAM bytes selected 
for a write cycle are enabled. All other data bytes maintain their outputs in the high-impedance 
state. A common design error is to use a single CAS control signal and four WE control 
signals, using the WE signals to write the DRAM bytes selectively in write cycles that use 
fewer than 32 bits. Although the selected bytes are written correctly, the un selected bytes are 
enabled for a read cycle. These bytes output their data to the unselected bytes of the data bus 
while the data transceivers output data to every bit of the data bus. When the two devices 
simultaneously output data to the same bus, bus contention occurs. 

The refresh function can be performed simply by asserting CAS signal before asserting RAS. 
The CAS before RAS refresh feature eliminates the need for an external refresh address 
counter. When the CAS pulse is activated prior to the assertion of the RAS pulse, the DRAM 
automatically performs a refresh cycle on one row by employing an on-chip address counter. 
Upon completion of the refresh cycle, the address counter is automatically incremented. The 
MEM/REF signal from the arbiter can be used by the DRAM timing and control logic block to 
initiate a CAS before RAS refresh cycle. 

Besides generating the RAS, CAS, and WE signals, the DRAM timing and control logic 
generates a number of warm-up cycles for the DRAM after reset by issuing several refresh 
requests. 
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Timing Considerations for the DRAM Controller 

Figure 4-9 shows a typical example of a timing diagram for a two-word read transaction that 
uses static column mode; similarly, Figure 4-10 is a typical example for a two-word write 
transaction. The example assumes a memory access time that requires two wait states (T w) for 
the initial data word and one wait for the second data word. 

The critical timing areas for both read and write transactions are noted by circled numbers in 
the diagrams, which are explained in the enumerated list below. 

1. The delay for the CPU to generate a valid address. 

2. The delay for the DRAM timing and control logic to generate the CYCLE-IN-PROGRESS 
signal. 

3. The delay to generate the DRAM row address. This time includes the address latch 
throughput delay, the multiplexer throughput delay, and the address driver delay. 

4. The delay to generate RAS, which includes the delay to generate the DRAM-CS signal. 

5. The row address hold time after the high-to-Iow transition of RAS. 

6. The time required to generate the multiplexer control signal (ROW/COL) after the row 
address hold time is satisfied. 

7. The time required to switch from a row to column address plus any driver delays. 

8. The delay to generate and drive the CAS signals. 

9. For a read transaction, the throughput delay of the data transceivers. For a write trans­
action, the delay by the CPU to generate valid data. 

10. For a read transaction, the data setup time of the CPU. For a write transaction, the 
throughput delay of the data transceivers. 

11. The time required to increment and drive the column address. 

12. For a write transaction only, the delay time to bring CAS high (terminate the CAS pulse 
for the first data byte), to precharge the CAS pulse (required by the DRAM), and to assert 
CAS again. 

13. The RAS precharge time, which must be satisfied before another memory cycle can begin. 
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Figure 4-9: Timing Diagram for Two-word DRAM Read Transaction 
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Because the DRAM consists of dynamic nodes, a row precharge time is required torecharge 
the nodes after every memory Gycle. This time must be included in the timing evaluation, as 
noted by the example. To avoid the precharge time delay of the DRAM, the memory array can 
be arranged so that each subsequent memory access is most likely to be directed to a different 
bank. In this configuration, wait time between accesses is not required because while one bank 
of DRAMs peifoims the current access, another bank precharges and is ready to perform the 
next access immediately. 

If DRAMs are interleaved (i.e., arranged in multiple banks so that adjacent addresses are in 
different banks), the DRAM precharge time can be masked for rhost accesses. With two banks 
of DRAMs, one for even 32-bit addresses and one for odd 32-bit addresses, all sequential 
32-bit accesses can be completed without waiting for the DRAM to precharge. 

Even when random accesses are made, two DRAM banks allow 50 percent of back-to-back 
accesses to be made without waiting for the DRAMs to precharge. The precharge time is also 
masked when the 80960KB processor has no bus accesses to be performed. During these idle 
bus cycles, the most recently accessed DRAM bank can precharge so that the next memory 
access to either bank can begin immediately. 
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SUMMARY 

The memory interface circuit allows the 80960KB processor to communicate with the memory 
devices. The basic memory interface logic can be divided into six blocks: the data 
trailsceivers, the address latches, the address decoder, the burst logic, the DRAM timing and 
control logic, and the byte enable latch. The DRAM controller and SRAM interface complete 
the memory interface circuit. The DRAM controller can be designed to take advantage of the 
80960KB processor's burst capability to enhance system performance. 

This chapter focuses on the design guidelines for the memory interface design to the 80960KB 
processor. Chapter 5 develops guidelines on designing peripheral devices in the single­
processor hardware system. 
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CHAPTER 5 
1/0 INTERFACE 

The 80960KB processor supports 8-bit, l6-bit, and 32-bit I/O devices that can be mapped into 
the 4G-byte memory address space. This chapter describes the design considerations for the 
interface between the 80960KB processor and I/O components. Several examples illustrate the 
design concepts. 

INTERFACING TO 8-BIT AND 16-BIT PERIPHERALS 

The 80960KB processor accesses I/O devices by using a memory-mapped address. Con­
sequently, memory-type instructions can be used to perform input/output operations. For 
example, the 80960KB processor's LOAD and STORE instructions can be used to move 8-bit 
and l6-bit data to I/O peripherals. The instructions include those listed below. 

• Load Ordinal Byte (reads a byte) 

• Load Ordinal Short (reads l6-bit data) 

• Store Ordinal Byte (writes a byte) 

• Store Ordinal Short (writes l6-bit data) 

These instructions perform the transfer on the data bits specified by the two low-order lines of 
the effective address. See the 80960KB CPU Programmer's Reference Manual for complete 
details. 

GENERAL SYSTEM INTERFACE 

In a typical 80960KB processor system design, a number of slave I/O devices can be controlled 
through a general system interface. Other I/O devices, particularly those capable of controlling 
the L-bus, can use the general system interface,· but may require additional logic to isolate the 
bus. This section describes the general system interface and assumes that the 80960KB 
processor does not perform burst transactions to the I/O devices. 

Figure 5-1 shows the major logic blocks of the general system interface. Standard 8-bit data 
transceivers add drive capability, provide bus isolation, and prevent bus conflicts that may 
occur with slow I/O components. The address latch demultiplexes the address/data lines and 
holds the address stable throughout the L-bus transaction. The address decoder generates the 
I/O chip-select signals from the latched address lines. The timing control block provides the 
READY signal to the 80960KB processor and the I/O read and I/O write command. 
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1/0 INTERFACE 

This basic interface circuit is similar to the one used in the basic memory interface described in 
Chapter 4. For most systems the same data transceivers, address decoders, and address latches 
can be used to access both memory and I/O devices. The timing control logic can be designed 
to accommodate both memory aI1d I/O devices. 

Data Transceivers 

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for 
the L-bus. Transceivers prevent bus contention that can occur if some devices are slow to 
remove data from the data bus after a read cycle. For example, if an I/O write cycle follows a 
I/O read cycle, the 80960KB processor may drive the L-bus before a slow device has removed 
its outputs from the bus, potentially causing a current spike. Transceivers, however, can be 
omitted if the data float time of the device is short enough and the load does not exceed the 
80960KB device specifications. 

The data transceiver can be controlled by two signals from the 80960KB processor: Data 
TransmitlReceive (DT/R) and Data Enable (DEN). DT/R indicates the direction of data flow 
and DEN enables the transceivers. 

Address Latch/Demultiplexer 

Standard transparent latches can be used to demultiplex the address/data lines of the 80960KB 
processor. The latch is controlled by the ALE signal from the 80960KB processor. The ALE 
signal passes through an inverter, such that when ALE goes low, the address flows through the 
latch. The low-to-high transition of ALE can be used to latch the address. 

If only slave-type peripherals are used in a system, the output enable of the latches can always 
remain active by connecting it to ground. For systems with DMA devices, the output enable 
can be used to permit the DMA device to drive a common address bus. 

Address Decoder 

The address decoder determines which particular I/O device is selected by decoding the ad­
dress. The I/O address can be any address in the 4G-word address range except for the upper 
16M bytes (addresses FFOOOOOOH through FFFFFFFFH), which the 80960KB processor 
reserves for inter-agent communication and internal I/O. Typically, a small range of address 
bits is reserved for accessing I/O devices by designating certain higher-order address bits to 
mean an I/O access. 

For example, consider a 32-bit address: A3I through AI5 can indicate an I/O access when A3I 
is set to zero, and A30-AI5 are set to one; AI4 through A5 can be used to specify a particular 
I/O device; and A4 through A2 can be used to access up to 8 registers of the I/O component. 
Al and Ao are not used by the I/O device. This particular scheme selects up to 1,024 devices, 
while using only 32K bytes of address space. 

The address decoder can be located either before or after the address latches. Usually, it is 
placed after the latches, so that the chip-select signal does not need to be latched. 

5-3 



1/0 INTERFACE 

Timing Control Logic 

The timing control logic accommodates I/O devices that cannot transfer information at the 
maximum bus rate by generating a READY signal when the data is available. The timing 
control logic consists of a counter and timing logic, as shown in Figure 5-2. The counter 
produces a 4-bit binary count. The count is started at the beginning of the operation 
(determined by ADS and DEN) and is stopped by the READY signal. The timing logic asserts 
the READY signal, the I/O write command (1/0-WR), and the I/O read command (l/O-RD) 
based upon the clock count, the I/O chip select signal (I/O-CS), and the w!R command. 

I 
co UNTo ~ COUNTER COUNT, 

START CYCLE 
TIMING 

COUNT2 LOGIC 
COUNT) 

ClK 

t J 

Figure 5-2: Timing Control Block Diagram 

0-

0-

READY 

IIO-RD 

IIO-WR 

For many peripherals, the timing logic can be programmed to assert READY at the appropriate 
count for the seiected device. Specific I/O chip select signals can be used to indicate how 
many clock cycles to wait before asserting READY. 

For some I/O peripherals, particularly bus masters, READY cannot be determined by counting 
clock cycles. For these I/O devices, READY can be supplied by the device and passed on to 
80960KB processor. 

The timing control block can assert the I/O-RD or 1/0-WR signal for I/O devices based upon 
the clock count. The timing for these signals can be selected for the slowest device to simplify 
the logic circuit or can be customized for each individual peripheral device to maximize 
performance. 
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I/O INTERFACE DESIGN EXAMPLES 

The general system interface shown in Figure 5-1 can be used to connect the 80960KB 
processor to many slave peripherals. The following list includes some commbn peripherals 
compatible with this interface: 

• 8259A Programmable interrupt Controller 

• 8253, 8254 Programmable Interval Timer 

• 8272 Floppy Disk Controller 

• 82062, 82064 Fixed Disk Controller 

• 82510, Asynchronous Serial Controller 

• 8274, 82530 Multi-Protocol Serial Controller 

• 8255 Programmable Peripheral Interface 

• 8041,8042 Universal Peripheral Interface 

This section provides guidelines and design considerations for interfacing the 80960KB 
processor to different types of I/O configurations. Specifically, four design examples are 
examined. The 8259A and 82530 design examples show how to interface the 80960KB 
processor to a slave-type peripheral device. The 82586 design example shows how a 16-bit 
bus master reads and writes to the 80960KB processor's system memory. The 82786 design 
example shows how the 80960KB processor can read or write to graphics memory using a 
16-bit data bus. 

8259A Programmable Interrupt Controller 

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven 
microcomputer systems, where it manages up to eight independent interrupts. The 8259A 
handles interrupt priority resolution and returns an 8-bit vector to the 80960KB processor 
during an interrupt-acknowledge cycle. Intel Application Note AP-59 contains detailed infor­
mation on configurations of the 8259A. 

Interface 

Figure 5-3 shows the connection of the 80960KB processor to a single 8259A Interrupt Con­
troller. This circuit consists of the general system interface plus a bidirectional buffer. The 
example assumes that several interrupt requests occur at the same time so that priority resolu­
tion is needed. 
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Figure 5-3: Block Diagram for 8259A Interface 

The data lines from the 8259A are not directly aligned to the 80960KB processor because of 
the difference in priority resolution between the devices. Although both devices use an 8-bit 
interrupt vector, the 80960KB processor implicitly defines the priority by dividing the interrupt 
vector by eight. The 8259A defines the priority in the lower three bits of the interrupt vector. 
Furthermore, the highest priority vector of the 80960KB processor has a value of 31 in the 
upper five bits of the interrupt vector. Whereas, the highest priority interrupt of the 8259A has 
a value of 0 in the lower three bits of the interrupt vector. 

To resolve the priority difference, the interrupt vector from the 8259A can be inverted and 
rotated left by three bits as shown by the data alignment between the 80960KB processor and 
8259A in Figure 5-3. Rotating the data bits in this manner provides two advantages: the 
interrupt table for the 8259A can be located by contiguous addresses, and the upper two most 
significant bits of the interrupt vector remain free to group interrupt vectors if additional 
8259As are needed. 

Care must be exercised, however, when programming the registers of the 8259A. For ex­
ample, assume that the second initialization command word (ICW2 register) of the 8259A 
requires a data byte value of 00011 11 lB' To transfer the correct information, the 80960KB 
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processor needs to write a data word with the value of 00000111 B because this word is rotated 
left three places and inverted. 

Operation 

The 8259A starts the interrupt cycle by generating an interrupt request (INT) to the 80960KB 
processor, which receives the signal at the INTR input pin. This assumes the Interrupt Control 
register of the 80960KB processor is set to accommodate an external interrupt controller. 

When the 80960KB processor comes to a breakpoint in its execution, it asserts the INT A signal 
twice. The first INTA signal acknowledges the interrupt request and causes the 8259A to 
prioritize the interrupt requests it received up to this point. The INT A, together with the 
8259A-CS, are applied to the timing control logic to generate a READY signal. 

The 80960KB processor automatically asserts the second INT A signal five clock cycles after 
the assertion of READY. After the second assertion of INTA, the 80960KB processor reads 
the interrupt vector from the 8259A. 

The bidirectional buffer inverts and passes the 8-bit vector to the 80960KB processor with the 
appropriate lines rearranged. The output enable signal for the data buffer is controlled by 
INT A for this operation. After the data transfer is completed, the timing control circuit 
generates a second READY signal to terminate the interrupt acknowledge cycle. 

The same circuitry can be used to read or write to the 8259A registers. In this case, the 
80960KB processor selects the 8259A through a memory-mapped address. Local address line 
2 (A2) selects one of two internal registers of the 8259A. The I/O read or I/O write command 
is generated by the timing control circuit. The data passes through the bidirectional data buffer 
to or from the selected register of the 8259A. 

The direction of data flow through the buffer is controlled by three logic gates shown in Figure 
5-3. For an I/O write operation, the I/O write command and 8259A-CS signal control the 
output enable signal of the bidirectional buffer. Similarly, for a read operation, the I/O read 
command and the 8259A-CS signal control the output enable signal of the latch. After the data 
is transferred, the timing control circuit asserts READY. 

82530 Serial Communication Controller Example 

The 82530 Serial Communication Controller is a dual-channel, multi-protocol controller with 
on-chip baud rate generators, digital phase locked loops, various data encoding/decodings, and 
extensive diagnostic capabilities. The 82530 is designed to interface with high-speed serial 
communications lines using a variety of communication protocols, including asynchronous, 
synchronous, and HDLC/SDLC protocols. The 82530 contains two independent full-duplex 
channels. 

The general system interface circuit previously described can be used to connect the 80960KB 
processor to the 82530, as shown in Figure 5-4. The 82530 can send an interrupt request to the 
80960KB processor as shown or it can send the interrupt request to an interrupt controller, 
which in tum sends it to the 80960KB processor. The 80960KB processor responds to the 
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interrupt request and issues an address. After the address is latched, the address lines are 
decoded to generate a chip-select (82530-CS) signal to activate the 82530 . 

.. .- I ........... LAD31-LADo D7-DO D7-DO ,. DATA I ............... 
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Figure 5-4: BlockDiagram for 82530 Interface 

The lower two address lines, A2 and A3, are used for chanE.el selection and command/data 
selection. A2 is connected to the Channel-NChannel-B (AlB) select input pin. This selects 
the channel that p~rforms the serial read or write operations. A3 is connected to the 
Data/Command (D/C) select input pin. This signal defines the type of information· transferred 
to or from the 82530 on the data lines (07 through Do)' A high level means data is transferred; 
a low level indicates a command. 
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The timing control circuit generates an I/O read or I/O write command based upon the W if{ 
command from the 80960KB processor. When the data transfer is completed, the timing 
control circuit sends a READY signal to terminate the transaction. 

The baud rate clocks can be programmed in several ways, including use of an external crystal. 

82586 Local Area Network Coprocessor Example 

The 82586 is an intelligent, high-performance communications controller designed to perform 
most tasks required for controlling access to a local area network (LAN), such as Ethernet or 
Starlan. In many applications, the 82586 is the communication manager for a station con­
nected to a LAN controller. Such a station usually includes a host CPU, shared memory, a 
Serial Interface Unit, a transceiver, and LAN controller link, as shown in Figure 5-5. The 
82586 performs all functions associated with data transfer between the shared memory and the 
LAN link, including: 

• Framing 

• Link management 

• Address filtering 

• Error detection 

• Data encoding 

• Network management 

• Direct memory access 

• Buffer chaining 

• High-level (user) command interpretation 
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The 82586 has two interfaces: a 16-bit bus interface and a network interface to the Serial 
Interface Unit. The bus interface is described here. For detailed information on using the 
82586, refer to the Local Area Networking Component User's Manual. 

Interface 

There are several ways to design an interface between the 82586 and the 80960KB processor. 
The chosen design example shows how to interface the 82586 using a shared bus. In this 
example, the 82586 operates in minimum mode at one-half the processor clock frequency. 

The primary function of the interface circuit is to allow the 82586 to read and write 16-bit data 
using the 32-bit L-bus. This is accomplished by adding the high-order address lines and 
translating the 16-bit data lines to the 32-bit data lines by using byte enable signals. 
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Figure 5-6 shows the 82586 interface circuit, which includes the DRAM controller (see the 
"DRAM Controller" section in Chapter 4 on page 4-11). This interface uses the general system 
interface circuit plus other logic units that specifically pertain to the 82586: the LAN data 
transceivers, the byte enable converter, and the LAN address latches. These logic blocks are 
highlighted by the shaded boxes. 
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Figure 5-6: Block Diagram for LAN Controller Interface 

INTERFACE 

The LAN data transceivers connect 16 data lines from the 82.586 to both the upper and lower 
16 bits of the L-bus. The data transfer is controlled by converting Ao' AI' and the BHE to four 
byte enable signals as shown in Figure 5-7. Al selects between the upper and lower 16-bit data 
lines; Ao selects the lower data byte for either the upper or lower 16-bit data lines; and the byte 
high enable signal (BHE) selects the upper data byte for either the upper or lower 16-bit data 
lines. Data flows through the buffers when the appropriate byte enable signal is asserted. The 
direction of the data flow is controlled by the DT/R signal of the 82586. 
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Figure 5-7: Byte Enable Generation Circuit 

The LAN address latches are used to demultiplex ADlS through ADo' The address lines and 
BHE are latc~ed by the ALE signal from the 82586. The upper address lines (A3l through 
Al6) are generated by hardware programmable DIP switches. 

The 82586 begins operation when the Channel Attention (CA) input signal is asserted. This 
signal is generated by gating the write command and 82586 chip select signal. 

Operation 

The interaction between the 82586 and the 80960KB processor is described below and is 
summarized in Figure 5-8. 

• The 80960KB processor invokes the 82586 by supplying a memory-mapped address and a 
write command. The memory-mapped address results in a 82586~CS signal, which is 
gated with a write command to produce the CA signal. 

• The 82586 responds by generating a hold request and waits for HLDA. 

• The 80960KB processor asserts HLDA, which enables the outputs of the LAN address 
latches arid disables the outputs of the address latches next to the 80960KB processor. The 
BLDA signal also gives control of the L-bus to the 82586. 

• After the 82586 takes ~ol of the bus, it generates a 16-bit address (An lS through ADo), 
an ALE signal, and a BHE signal. The upper address lines are provided by the programm­
able DIP switches to produc~ an address on the L-bus. 

• ~d Ao (from the 82586), and BilE are decoded to generate four byte enable signals 
(BE3 through BEo)' DEN enables the output of the byte enable converter. 

• DT/R from the 82586 controls the direction of the data flow through the buffers. 
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• The read or write signal from the 82586 is applied to the DRAM controller. 

• The 82586 accesses DRAM by using the DRAM controller. 

• The DRAM-RDY is asserted by the DRAM controller. This action enables the output of 
the LAN data transceiver and terminates the 82586 memory cycle. The timing control 
logic passes the PRAM-RDY signal as the READY signal to the 82586. 

" The 82586 deasserts HOLD and the 80960KB processor deasserts HLDA. The 80960KB 
processor regains control· of bus. 
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Figure 5-8: Operational Flow Diagram for 82586 Interface 

82786 Graphics Coprocessor Example 

The 82786 is a high performance graphios processor that provides high quality text and ad­
vanced display control. It provides full liuPport for graphics primitives at up to 25 million 
pixels per second and bit~mapped text up to 25 thousand characters per second. This graphics 
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processor supports advanced features such as hardware windows, zooming, panning, and 
scrolling. Intel Application Note AP-259 and Application Note AP-270 contain detailed infor­
mation on 82786. 

When using the 82786, it may be necessary for the 80960KB processor to write to graphics 
memory. The interface design example illustrates how the 80960KB processor can transfer a 
32-bit data word to the 16-bit data bus of the 82786. 

Interface 

There are several ways to design an interface between the 82786 and the 80960KB processor. 
In this example, the 80960KB processor reads or writes to graphics memory by accessing the 
82786 through the interface logic circuit. This example assumes that the 82786 operates in the 
slave mode, and that the 80960KB processor does not perform burst transfers. The 80960KB 
processor only performs burst transfers for instructions that specify accesses for more than one 
word or for instruction fetches. 

The interface circuit translates a 32-bit data bus to a 16-bit data bus by dividing the data lines 
into the upper and lower 16 bits and sequencing the data transmission. When the 80960KB 
processor writes to graphics memory, the bidirectional transceivers sequence the lower and the 
upper data bits of the L-bus to the 16-bit data bus of the 82786. 

The process is reversed when the 80960KB processor reads from graphics memory. The 
bidirectional transceivers form a 32-bit data word by latching the first 16-bit data word on the 
lower data lines, routing the next 16 bits to the upper data lines, and then passing the 32-bit 
data word on the L-bus. 

Figure 5-9 shows the details of the graphics controller interface circuit. This interface uses the 
general system interface circuit plus the following logic units: the bidirectional transceivers, 
the data buffer control, the data bus controller, and the address translator. These logic blocks 
are highlighted by the shaded boxes. 
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The bidirectional transceivers pass data to (from) a 32-bit data bus from (to) a 16-bit data bus. 
Data is sequenced through the transceivers by the control signals generated by the data buffer 
control logic. 

The data buffer control logic generates the signals that operate and sequence the bidirectional 
transceivers. The direction signal for data flow through the transceivers is derived from the 
W IR signal of the 80960KBprocessor. The data buffer control logic generates four output 
enable signals: GABL enables the outputs on the B side for the lower 16 bits; GBAL enables 
the outputs on the A side for the lower 16 bits; GABH enables the outputs on the B side for the 
higher 16 bits; and GBAH enables the outputs on the A side for the higher 16 bits. These 
output enable signals are derived from the byte enable signals and are asserted when the slave 
enable signal (SEN) is activated by the 82786. 

The select lines for the bidirectional transceivers allow data to flow from either the latched data 
or the input pins. These lines, which are not shown, can be hardwired. 

The data bus controller provides the read and write commands, memory or I/O·signal (MIlO), 
and a READY 0 signal. This circuit generates two read or write commands for every 32-bit 
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data transfer to or from the 80960KB processor (one for each 16-bit data transfer). The data 
bus controller starts counting clock cycles when the 82786-CS and CYCLE-IN-PROGRESS 
signals are asserted. At the proper time (based upon clock counts), it asserts the read/write 
command. The data bus controller produces READYo after receiving the SEN signal from the 
82786. READY 0 resets the count, and another read/write command is generated. 

The address translator performs four functions: it converts the four byte enable signals to Ao' 
AI' and BHE; it increments Al after receiving READYo for the first 16-bit transfer; it 
generates the clock signal (CBAL) that latches the first 16-bit data word in the bidirectional 
transceivers when the 80960KB processor performs a read operation; and it generates the 
READY signal for the CPU. 

Not shown is the cycle detector circuit that generates the CYCLE-IN-PROGRESS signal. This 
signal can be generated by using the circuit similar to the one shown in Figure 5-2. The start of 
the cycle can be detected by gating the ADS and DEN signals. The end of the cycle can be 
indicated by READY. 

Operation 

The interaction between the 82786 and the 80960KB processor is summarized in Figure 5-10. 
The operation is divided into two 16-bit data movements for both a read and write operation. 
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Figure 5-10: Operational Flow Diagram for 82786 Interface Circuit 
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The 80960KB processor generates a memory-mapped address and data for the desired graphics 
memory location. It accesses the 82786 by triggering the interface circuit to generate the chip 
select signal and several operational signals: the read (RD) or write (WR) command, BHE, and 
the memory or I/O (MilO) signal. The 82786 begins the memory operation after it completes 
the current graphics processing activity. The 82786 acknowledges that it is performing a 
memory operation by asserting SEN. 

After the 82786 asserts SEN, it begins a 16-bit memory read or write operation by translating 
the address inputs (A21 through Ao) to a multiplexed DRAM address, and generating the 
DRAM control signals. Note that AI and Ao are derived from the byte enable signals. 

For a read operation, the data bus controller uses SEN to generate the READYo signal. The 
assertion of READYo causes the address translator to increment AI and to generate CBAu 
which latches the lower 16 data bits on the B inputs of the bidirectional transceivers to the A 
side. 

Similarly, for a write operation, the data bus controller uses SEN to generate the READYo 
signal. The assertion of READY 0 causes the address translator to increment AI' The data 
buffer control uses SEN and the byte enable signals to produce GABL , which enable the 
outputs for the lower 16 data bits of the bidirectional transceivers. 

The 82786 automatically deasserts SEN and the transfer of the first 16 data bits is complete. 
To transfer the second 16 data bits, the interface circuit requests another memory operation by 
generating RD (or WR), BHE, and MilO (CS is already asserted). After it completes the 
current graphics processing activity, the 82786 begins the memory operation and asserts SEN. 

For a read operation, the data bus controller uses SEN to generate the READYo signal. The 
data buffer control uses SEN to assert GBAH and GBAL , which enable the outputs for the 
higher and lower 16 data bits. 

For a write operation, the data bus controller uses SEN to generate the READ Yo signal. The 
data buffer control uses SEN and the byte enable signals to produce GABH, which enable the 
outputs for the higher 16 data bits of the bidirectional transceivers. 

The address translator generates READY for the 80960KB processor from the second 
READYo to terminate the data transfer to the graphics memory. 

SUMMARY 

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O interfaces. A general system 
interface circuit can be designed that connects to many slave-type peripherals. This interface 
can be expanded to accommodate a bus master peripheral or a 32-bit to 16-bit data bus 
translator. These interfaces were illustrated by four design examples. 
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