

To order Intel literature write or call:

Intel Literature Sales
P.O. Box 58130

LITERATURE

Toll Free Number:
(800) 548-4725*

Santa Clara, CA 95052-8130

Use the order blank on the facing page or call our Toll Free Number listed above to order literature.
Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

NAME

COMPLETE SET OF 8 HANDBOOKS
Save $50.00 off the retail price of$175.00

AUTOMOTIVE HANDBOOK
(Not included in handbook Set)

COMPONENTS QUALITY/RELIABILITY HANDBOOK
(Available in July)

EMBEDDED CONTROLLER HANDBOOK
(2 Volume Set)

MEMORY COMPONENTS HANDBOOK

MICROCOMMUNICATIONS HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 Volume Set)

MILITARY HANDBOOK
(Not included in handbook Set)

OEM BOARDS AND SYSTEMS HANDBOOK

PROGRAMMABLE LOGIC HANDBOOK

SYSTEMS QUALITY/RELIABILITY HANDBOOK

PRODUCT GUIDE
Overview of Intel's complete product lines

DEVELOPMENT TOOLS CATALOG

INTEL PACKAGING OUTLINES AND DIMENSIONS
Packaging types, number of leads, etc.

LITERATURE PRICE LIST
List ofIntel Literature

*Good in the U.S. and Canada

ORDER NUMBER

231003

231792

210997

210918

210830

231658

230843

210461

280407

296083

231762

210846

280199

231369

210620

'*PRICE IN
U.S. DOLLARS

$125.00

$20.00

$20.00

$23.00

$18.00

$22.00

$25.00

$18.00

$18.00

$18.00

$20.00

N/C

N/C

N/C

N/C

* * These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

LITERATURE SALES ORDER FORM
NAME: __ __

COMPANY: __ ___

ADDRESS: __ _

CITY: _________________________________ STATE: ________ ZIP: ________ _

COUNTRY: __ ___

PHONENO.:(~ __ ~ __ _

ORDER NO.

Must add appropriate postage to subtotal
(10% U.S. and Canada, 20% all other)

TITLE QTY. PRICE TOTAL

____ x _____ = ____ __

____ X _____ = ____ __

____ X _____ = ___ __

____ X _____ = ___ __

____ X _____ = ___ _

____ X _____ = ___ __

____ X _____ = ___ _

____ X _____ = ___ _

____ X _____ = ___ _

____ X ____ = ___ _

Subtotal ______ __

Must Add Your
Local Sales Tax ______ __

------------+) Postage ______ __

Total __ ~ __ _

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
o Visa 0 MasterCard 0 American Express Expiration Date ________ __
Account No. __ ___

Signature: ______________________________________ ~ __________________ _

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA
95052-8130

International Customers outside the U.S. and Canada
should contact their local Intel Sales Office or Distributor
listed in the back of most Intel literature.
European Literature Order Form in back of book.

Can Toll Free: (800) 548-4725 for phone orders

Prices good unlil12/31/88.

Source HB

Mail To: Intel Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

80960KB
HARDWARE DESIGNER'S

REFERENCE MANUAL

1988

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH,
GENIUS, i, t, ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX, im, iMDDX, iMMX,
Inboard, Insite, Intel, intel, intelBOS, Intel Certified, Intelevision,
inteligent Identifier, inteligent Programming, Intellec, Intellink, iOSP,
iPDS, iPSC, iRMK, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library
Manager, MAP-NET, MCS, Megachassis, MICROMAINFRAME,
MUL TIBUS, MULTICHANNEL, MUL TIMODULE, MultiSERVER, ONCE,
OpenNET, OTP, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware,
QUEST, QueX, Quick-Pulse Programming, Ripplemode, RMX/SO, RUPI,
Seamless, SLD, SugarCube, SupportNET, UPI, and VLSiCEL, and the
combination of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a
numerical suffix, 4-SITE.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

°MUL TlBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Distribution
Mail Stop SC6-59
3065 Bowers Avenue
Santa Clara, CA 95051

TABLE OF CONTENTS

CHAPTER 1
INTRODUCTION TO THE 80960KB MICROPROCESSOR

Architectural Attributes for Embedded Computing 1-1
Load/Store Design ... 1-1
Large General-Purpose Register Sets 1-2
Small Number of Addressing Modes 1-3
Simplified Instruction Format ... 1-3
Overlapped Execution .. 1-4
Minimum cycle operation .. 1-4

Additional S0960KB Architectural Enhancements 1-4
Floating-point Operation ... 1-4
Debug Capabilities ... 1-5

Standard Bus Interface ... 1-5
Inter-Agent Communication/Coprocessor Capabilities 1-5
Summary ... 1-5

CHAPTER 2
80960KB SYSTEM ARCHITECTURE

Overview of a Single Processor System Architecture 2-1
S0960KB Processor and the L-Bus 2-1
Memory Module ... 2-2
I/O Module ... 2-3

Summary ... 2-3

CHAPTER 3
THE 80960KB PROCESSOR AND THE LOCAL BUS

Overview of the S0960KB L-Bus ... 3-1
Basic L-Bus States .. 3-1
L-Bus Signal Groups .. 3-3

Address/Data ... 3-3
Control .. 3-4

L-Bus Transactions .. 3-S
Clock Signal .. 3-S
Basic Read ... 3-S
Basic Write ... 3-11
Burst .. 3-12

Timing Generation .. 3-14
S0960KB Processor Clock Requirements 3-14
Clock Generation .. 3-15

Arbitration ... 3-17
Single S0960KB Processor on the L-Bus 3-1S

iii

inter TABLE OF CONTENTS

State Diagram .. 3-18
Arbitration Timing ... 3-19

Two 80960KB Processors on the L-Bus 3-20
Bus states for Two 80960KB Processors 3-21
Arbitration Timing for Two 80960KB Processors on the L-Bus 3-23
Bus Exchange Example Between Two 80960KB Processors 3-23

A Peripheral Device As the Default Bus Master 3-24
Inter-Agent Communication (lAC) .. 3-25

Overview of lAC Operations .. 3-26
lAC Messages .. 3-26
Hardware Requirements for External lAC Messages 3-27

Message Buffers 3-27
lAC Pin Logic .. 3-27

External Priority Register ... 3-28
Hardware Requirements ... 3-28
External Priority and lAC Messages 3-28

Interrupts ... 3-29
Interrupt Signals ... 3-29
Interrupt Control Register .. 3-30
Using the Four Direct Interrupt Pins 3-31
Using an External Interrupt Controller 3~31
Using lAC Requests for Interrupts 3-32
Synchronization ... 3-32

RESET and Initialization .. 3-33
RESET Timing Requirements .. 3-33
RESET Timing Generation ... 3-33
Initialization ... 3-34

Error Signals ... 3-37
Summary ... 3-37

CHAPTER 4
MEMORY INTERFACE

Basic Memory Interface .. 4-1
Data Transceivers ... 4-1
Address Latch/Demultiplexer ... 4-2
Address Decoder .. 4-2
Burst Logic ... 4-3
Timing Control Logic .. 4-5
Byte Enable Latch ... 4-6

SRAM Interface .. 4-6
SRAM Interface Logic ... 4-6
SRAM Timing Considerations .. 4-7

DRAM Controller ... 4-11
Address Multiplexer .. 4-13

iv

TABLE OF CONTENTS

Refresh Interval Timer .. 4-13
Arbiter ... 4-13
DRAM Timing and Control , , 4-13
Timing Considerations fOr the DRAM Controller 4-17
DRAM Interleaving ... 4-19

Summary ... 4-20

CHAPTERS
I/O INTERFACE

Interfacing to 8-bit and 16-bit Peripherals 5-1
General System Interface•............................ 5-1

Data Transceivers ... 5-3
Address Latch/Demultiplexer ... 5-3
Address Decoder ; 5-3
Timing Control Logic , 5-4

I/O Interface Design Examples ... 5-5
8259A Programmable Interrupt Controller 5-5

Interface .. 5-5
Operation 5-7

82530 Serial Communication Controller Example 5-7
82586 Local Area Network Coprocessor Example 5-9

Interface .. 5-10
Operation•................... 5-12

82786 Graphics Coprocessor Example 5-14
Interface .. 5~15
Operation ... 5-17

Summary ... 5-19

Figures

1-1. Local Register Set .. 1-2
1-2. Global Register Set ... 1-3
2-1. Basic 80960KB System ConfiguratiOrl 2-2
3-1. Basic L-Bus States .. 3-2
3-2. L-Bus Signal Groups .. 3-3
3-3. Byte Enable Timing Diagram .. 3-5
3-4. Clock Relationships ... 3-8
3~5. 80960KB Processor Read Transaction 3-10
3-6. 80960KB Processor Write Transaction 3-12
3-7. 80960KB Processor Burst Read Transaction 3-13
3-8. 80960KB Processor Burst Write Transaction 3-14

v

inter TABLE OF CONTENTS

3-9. System Clock Puise ... 3-15
3-10. Clock <;3eneration Circuit .. 3-16
3-11. Clock Timing Wi:iVsforms .. 3-17
3-12. L-Bus States with Arbitration ,' ; 3-19
3-13. Arbitration Timing Diagram for a Bus Ma~ter 3-20
3-14. Arbitration Connection BetWeen Two a0960KB Processors 3-21
3-15. L-Bus States for Secondary Bus Master 3-22
3-16. Arbitration Timing Diagram for an SBM 3-23
3-17. Example of a8us Exchange Transaction 3-24
3-18. Forced Relinquishment Timing Diagram for an SBM 3-25
3-19. Example Flow Chart for an lAC Operation 3-26
3-20. Data Settings ... 3-27
3-21. Physical Address Interpretation for lAC Messages 3-28
3-22. Interrupt Control Register ~ 3-30
3-23. Timing Diagram for Interrupt Acknowledge Transaction 3-31
3-24. RESET Timing Diagram ... 3-33
3-25. Asynchronous RESET Circuit 3-33
3-26. Diagram for RESET Timing Generation 3-34
3-27. Synchronous RESET Circuit 3-34
3-28. Initialization Flow Chart. 3-35
3-29. RESET Signal Timing Relationship ; 3-36
4-1. Simplifif3d Block Diagram for Memory Interface Logic .. ;.................. 4-2
4-2. Burst Logic Flow Chart ... 4-4
4-3. Timing Control Logic Block Diagram 4-5
4-4. Block Diagram for SRAM Interface 4-7
4-5. Critical Timing Path for SRAM Read Operation 4-8
4-6. Critical Timing Path for SRAM Write Transaction 4-10
4-7. DRAM Controller Block Diagram , ; 4-12
4-8. Flow Chart for DRAM Timing and Control Logic 4-15
4-9. Timing Diagram for Two-word DRAM Read Transaction 4-18
4-10. Timing Diagram for Two-word DRAM Write Transaction 4-19
5-1.. Simplified Gen~ral System Interface•............. 5-2
5-2. Timing Control Block Diagram 5-4
5-3. Block Diagram for 8259A Interface 5-6
5-4. Block Diagram for 82530 Interface 5-8
5-5. LAN Station ... 5-10
5-6. Block Diagram for LAN Controller Interface 5-11
5-7. Byte Enable Generation Circuit•........... 5-12
5-8. Operational Flow Diagram for 82586 Interface 5-14
5-9. Block Diagram for 82786 Interface 5-16
5-10. Operational Flow Diagram fot 82786 Interface Circuit 5-18

vi

TABLE OF CONTENTS

Tables

3-1. SIZE Signal Decoding ... 3-4
3-2. Byte Enable Signal Decoding .. 3-5
3-3. Summary of L-Bus Signals .. 3-7
3-4. Combination of Bus Masters .. 3-18
4-1. Byte Enable Signal Decoding .. 4-6

vii

Preface

PREFACE

This manual serves as the definitive hardware reference guide for system designs using the
80960KB and 80960KA processors (for clarity, references to the 80960KB apply to both the
80960KA and 80960KB processors). Hardware designers can use this manual as a guideline
for developing microprocessor systems. Readers of this manual should be familiar with the
operating principles of microprocessors and with the 80960KB data sheet.

This manual presents the 80960KB system design from a hardware perspective. Other infor­
mation on the software architecture, instruction set, and programming of the 80960KB proces­
sor can be found in the 80960KB CPU Programmer's Reference Manual.

Together with the 80960KB Hardware Designer's Reference Manual, these publications
provide a complete description of the 80960KB system for hardware and software designers.

MANUAL ORGANIZATION

This manual, divided into five chapters, describes how to build a hardware system using the
80960KB processor. The list below shows a synopsis of each chapter.

• Chapter 1 briefly introduces the 80960KB component architecture.

• Chapter 2 presents an overview of the 80960KB hardware system design, which includes a
system configuration illustrating the various components that constitute a 80960KB sys­
tem.

• Chapter 3 describes the local bus and the interface to the 80960KB processor. This
chapter includes detailed signal descriptions and discusses timing generation, arbitration,
interrupt handling, and initialization.

• Chapter 4 discusses techniques for designing memory subsystems.

• Chapter 5 presents guidelines on how to interface I/O devices to the local bus.

Wherever appropriate, design examples are included in the chapters. These designs are based
upon functional 80960KB boards· and systems, and are simplified for ease of understanding.
The simplified versions of these designs have not been tested except for the figures that show
the part numbers.

NOTATION CONVENTIONS

This manual uses the following style conventions.

• Integer numbers are presented in decimal notation unless otherwise indicated by the sub­
script "H" for he xi decimal or "B" for binary.

• An active low signal is represented by a line over the signal name. For example, READY
is an active low signal.

Introduction to the 1
B0960KB Microprocessor

CHAPTER 1
INTRODUCTION TO THE 80960KB MICROPROCESSOR

The 80960KB is the first 32-bit microprocessor designed especially for embedded applications.
At an operating frequency of 20 MHz, this high performance processor can sustain an instruc­
tion execution rate of seven and one-half million instructions per second (MIPS), and burst
rates of 20 MIPS 1 . The 80960KB processor enhances embedded system performance by
integrating special features to eliminate the need for additional peripheral devices and the
associated software overhead. For instance, the 80960KB processor offers an on-chip floating­
point processing unit, an improved interrupt handling capability, and support for debugging
and tracing.

This chapter describes the architectural attributes and enhancements of the 80960KB processor
for embedded computing.

ARCHITECTURAL ATTRIBUTES FOR EMBEDDED COMPUTING

For over a decade, Intel has designed a large variety of 8- and 16-bit microcontrollers to fit the
needs of embedded applications. Based on this experience, several architectural attributes
shared by both microcontrollers and microprocessors can be implemented that benefit em­
bedded applications and enhance microprocessor performance. Because the 80960KB proces­
sor incorporates these attributes (listed below) in its architecture, embedded applications are
easy to design, perform well, and get to market fast.

• Simple load/store design

• Large general-purpose register sets

• Boolean and bit-field instructions

• Small number of operations and addressing modes

• Simplified instruction format

• Minimum cycle operation

Load/Store Design

In the 80960 family architecture, operations are register-to-register, with only LOAD and
STORE instructions accessing memory. This attribute simplifies the instruction set and
shortens cycle time.

The 80960KB processor uses LOAD and STORE instructions to access memory. It further
minimizes accesses to memory by providing a 512-byte, direct-mapped instruction cache.
When a memory access is required, the processor can perform a burst transaction that accesses
up to four data words with one word transferred every clock cycle.

IDEe VAX 11/780 equals 1 MIPS

1-1

INTRODUCTION TO THE 80960KB MICROPROCESSOR

Large General-Purpose Register Sets

Because the instructions operate on operands within registers, the 80960 family uses many
registers. The 80960KB processor features large, versatile register sets. For maximum
flexibility, each processor provides 32 32-bit registers and fouf 80-bit floating-point registers.

There are two types of general-purpose registers: local and global. The processor automati­
cally accesses the 16 local registers wQen a procedure call is performed. Multiple sets of local
registers are stored on-chip to further increase the efficiency of this register set, as shown in
Figure 1-1. The register cache h01ds IlP to four local register frames, which means that up to
three procedure calls can be made without having to access the procedure stack resident in
memory.

MULTIPLE
REGISTER

SETS

ONEOF
FOUR LOCAL

REGISTER
SETS

LOCAL REGISTER SET

t------,.----------t R15

'-~------__ ------------~RO
31 o

Figure 1-1: Local Register $et

The 20 global registers retain their contents across procedur~ boundaries. The global registers
consist of sixteen 32-bit re~isters (G 15 through Go) and four 80-bit registers (FP3 through FP 0)'
as shown in Figure 1-2. While .all registers can be used for flQating -point operations, the 80-bit
registers are used for accumulation of extended precision results.

1-2

INTRODUCTION TO THE 80960KB MICROPROCESSOR

GLOBAL REGISTERS

1---------------IG15

1------------------------; GO
31 o

FLOATING POINT REGISTERS'"

I~---IIF~.
~-~--~-FPO* 79 0

Note:
'" Any register can be used for floating-point operations. The BO-bit

registers are provided for extended precision accumulation.

Figure 1-2: Global Register Set

Small Number of Addressing Modes

The 80960 family uses relatively few addressing modes to facilitate a fast, simple inter­
pretation by the control engine. The 80960KB processor provides simple, fast addressing
modes, as well as a few complex addressing modes to allow optimizations for code density.

Simplified Instruction Format

A simplified instruction format eases the hardwired decoding of instructions, which again
speeds control paths. The 80960KB processor's instruction formats are simple and word
aligned; all instructions are one word long except for one class that uses the subsequent word
as a 32-bit displacement. To further enhance performance, the instructions do not cross word
boundaries. This feature eliminates a pipeline stage (that would have to align instructions) and
decreases instruction execution time.

1-3

inter INTRODUCTION TO THE 80960KB MICROPROCESSOR

Overlapped Execution

To optimize performance, the 80960KB processor overlaps instruction execution by means of
write buffering and register scoreboarding. Write buffering allows a write instruction to
proceed as soon as it is placed in the buffer. It does not have to wait for the actual write
operation to occur on the L-bus.

Similarly, register scoreboarding is a design technique that allows the 80960KB to continue
execution of instructions when it encounters a LOAD instruction. When the LOAD instruction
begins, the 80960KB sets a scoreboard bit on the target register. After the target register is
loaded with data, the processor resets the bit. While the data is being retrieved, additional
instructions that do not reference the target register can be executed. The 80960KB ensures
that these additional instructions do not reference the target register by checking the scoreboard
bit transparently (no software required). Thus, the scoreboard feature reduces the effect of
slow memory speed and provides a useful tool for optimizing procedures.

Minimum cycle operation

The 80960KB processor executes most of the core instructions in a single clock cycle. For
these instructions, the 80960KB processor uses hardwired logic rather than microcode to ex­
ecute the instruction.

The 80960KB also supports a number of important multicycle instructions, such as 32-bit
mUltiply and divide instructions. These auxiliary functions require more than one clock cycle
because it is more efficient to use microcode than hardwired logic. On the other hand, the
integration of these functions on-chip eliminates much software overhead and the negative
effects on code density that would be otherwise required. Thus, the additional functionality of
the 80960KB enhances overall system performance while keeping code size small.

ADDITIONAL 80960KB ARCHITECTURAL ENHANCEMENTS

The 80960KB incorporates two useful. features: an on-chip floating-point processing and
debugging functions. The floating-point unit can be used for applications that require preci­
sion, such as machine-control operations. The debugging function significantly decreases
development time.

Floating-point Operation

The on-chip floating-point unit of each processor improves the performance of floating"point
calculations by eliminating bus overhead used to transfer operands to a coprocessor. The
processor provides hardware support for both mandatory and recommended portions of IEEE
standard 754 for floating-point arithmetic, exponential, logarithmic, and other transcendental
functions. By integrating the floating-point unit on-chip, the 80960KB processor reduces the
overall chip count for a system, decreases power consumption, and increases overall perfor­
mance and reliability.

1-4

INTRODUCTION TO THE 80960KB MICROPROCESSOR

Debug Capabilities

The processor provides extensive system debug capabilities, an important feature for em­
bedded computing where the ability to instrument an application may be limited. The
80960KB processor allows breakpoint instructions that stop program execution on various
events, such as procedure calls, or certain instructions. Another debug facility traces the
activity of the processor while it is executing a program. Tracing is done by recording the
addresses of instructions that cause trace events to occur. For example, a trace event can occur
on the execution of a specific instruction, branch, or procedure call. To ensure that the
80960KB is operating properly, the processor performs a self-test when it is reset. If the
self-test is successful, the 80960KB begins operation, otherwise it enters the stopped state.

STANDARD BUS INTERFACE

The advanced features of the 80960KB processor are implemented using a performance­
optimized bus interface. The processor uses a high bandwidth local bus (L-bus) that consists
of standard signal groups: a 32-bit multiplexed address/data path and control signals for data
transactions. Because of the large amount of caching, the L-bus supports burst transactions
that transfer up to four successive data words. Transactions on the L-bus can use 8-, 16-, and
32-bit data types and address up to 4G bytes of physical memory. Bus arbitration can be
accomplished by simply using the hold request!hold acknowledge protocol.

INTER-AGENT COMMUNICATION/COPROCESSOR CAPABILITIES

The 80960KB processor offers a flexible way to manage interrupts. It accepts interrupts in one
of three ways: by communicating with an external interrupt controller using the standard
Interrupt!Interrupt Acknowledge signals, by activating the on-chip interrupt controller, or by
accepting an inter-agent communication (lAC) message. This allows the 80960KB to act as a
coprocessor on a shared bus with another cpu.

SUMMARY

The 80960KB processor optIIllizes embedded system performance by using a new 32-bit
architecture. The 80960 family architecture includes a load/store design, large general purpose
register sets, fast addressing modes, a simplified instruction format, and minimized instruction
execution cycles.

To further enhance system performance, the 80960KB processor provides floating-point opera­
tion, interrupt controller capabilities, and debug functions. By intergrating these functions
on-chip, the 80960KB reduces the power requirements and overall chip count for a system.

As a result of the 80960 architecture, the 80960KB processor provides unprecedented perfor­
mance. For a speed selection of 20 MHz, it can sustain an instruction execution rate of over
seven and one-half million MIPS and burst rates of 20 MIPS, speeds comparable to that of
super minicomputers. The high instruction execution rates are made possible through a in­
novative design that incorporates an on-chip instruction cache with burst-transfer capability.

1-5

B0960KB System
Architecture

2

CHAPTER 2
80960KB SYSTEM ARCHITECTURE

This chapter illustrates the flexibility and power of the 80960KB system architecture using the
advanced 32-bit 80960KB processor. This chapter examines system configurations from a
general perspective to explain the design concepts. Subsequent chapters describe the details of
the system design.

OVERVIEW OF A SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries
for the hardware system architecture. The modules are connected together by the high
bandwidth 32-bit multiplexed L-bus, which can transfer data at a maximum sustained rate of
53M bytes per second for an 80960KB processor operating at 20 MHz.

Figure 2-1 shows a simplified block diagram of a possible system configuration. The heart of
this system is the 80960KB processor, which fetches program instructions, executes code,
manipulates stored information, and interacts with I/O devices. The high bandwidth L-bus
connects the 80960KB processor to memory and I/O modules. The 80960KB processor stores
system data and instructions and programs in the memory module. By accessing various
peripheral devices in the I/O module, the 80960KB processor supports communication to
terminals, modems, printers, disks, and other I/O devices.

80960KB Processor and the L·Bus

The 80960KB· processor performs bus operations using multiplexed address and data signals
and provides all the necessary control signals. For example, standard control signals, such as
Address Latch Enable (ALE), AddresslData Status (ADS), WritelRead command (WIR), Data
TransmitlReceive (DTIR), and Data Enable (DEN) are provided by the 80960KB processor.
The 80960KB processor also generates byte enable signals that specify which bytes on the
32-bit data lines are valid for the transfer.

The L-bus supports burst transactions, which access up to four data words at a maximum rate
of one word per clock cycle. The 80960KB processor uses the two low-order address lines to
indicate how many words are to be transferred. The 80960KB processor performs burst
transactions to load the on-chip 512-byte instruction cache to minimize memory accesses for
instruction fetches. Burst transactions can also be used for data accesses.

To transfer control of the bus to an external bus master, the 80960KB processor provides two
arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving
HOLD, the processor grants control of the bus to an external bus master by asserting HLDA.

2-1

inter 80960KB SYSTEM ARCHITECTURE

Figure 2-1: Basic 80960KB System Configuration

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified
by an internal interrupt vector register. For a system with multiple processors, another method
is available, called inter-agent communication (lAC) where a processor can interrupt another
processor by sending an lAC message.

Complete details of the L-bus and bus operations are discussed in Chapter 3.

Memory Module

A memory module can consist of the memory controller, Erasable Programmable Read Only
Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory
controller first conditions the L-bus signals for memory operation. It demultiplexes the address

2-2

inter 80960KB SYSTEM ARCHITECTURE

and data lines, generates the chip select signals from the address, detects the start of the cycle
for burst mode operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In
particular, it provides the control signals, multiplexed row/column address, and refresh control
for dynamic RAMs. The controller can be designed to accommodate the burst transaction of
the 80960KB processor by using the static column mode or nibble mode features of the
dynamic RAM. In addition to supplying the operation signals, the controller generates the
READY signal to indicate that data can be transferred to or from the 80960KB processor.

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor
does not allow burst accesses to cross a 16-byte boundary to ease the design of the controller.
Each address specifies a four-byte data word within the block. Individual data bytes can be
accessed by using the four byte enable signals from the 80960KB processor.

Chapter 4 provides design guidelines for the memory controller.

I/O Module

The I/O module consists of the I/O components and the interface circuit. I/O components can
be used to allow the 80960KB processor to use most of its clock cycles for computational and
system management activities. Time consuming tasks can be off-loaded to specialized slave­
type components, such as the 8259A Programmable Interrupt Controller, or the 82530 Serial
Communication Controller. Some tasks may require a master-type component, such as the
82586 Local Area Network Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the I/O read or I/O write 'Command
from the processor's wiR signal, latches the byte enable signals, and generates the READY
signal. Because these functions are the same as some of the functions of the memory con­
troller, the same logic can be used for both interfaces. For master-type peripherals that operate
on a 16-bit data bus, the interface circuit translates the32-bit data bus to a 16-bit data bus.

The 80960KB processor uses memory-mapped addresses to access I/O devices. This allows
the CPU to use many of the same instructions to exchange information for both memory and
peripheral devices. Thus, the powerful memory-type instructions can be used to perform 8-,
16-, and 32-bit data transfers.

Chapter 5 describes design guidelines for the I/O interface by examining representative design
examples.

SUMMARY

The basic hardware system configuration is modular and flexible. The processor, memory, and
I/O modules form the natural boundaries in the basic hardware system architecture. The
high-bandwidth L-bus that supports burst transfers is used for the data path between the
80960KB processor and other modules.

2-3

inter 80960KB SYSTEM ARCHITECTURE

This chapter presents an overview for basic hardware system design. The next three chapters
discuss the details of the L-bus, memory modules, and I/O modules.

2-4

The B0960KB Processor 3
and the Local Bus

CHAPTER 3
THE 80960KB PROCESSOR AND THE LOCAL BUS

The 32-bit multiplexed local bus (L-bus) connects the 80960KB processor to memory and I/O
and forms the backbone of any 80960KB processor based system. This high bandwidth bus
provides burst-transfer capability allowing up to fout successive 32-bit data word transfers at a
maximum rate of one word every clock cycle. In addition to the L-bus signals, the 80960KB
processor uses other signals to communicate to other bus masters. This chapter, which
describes these signals and the associated operations, follows the outline shown below:

• L-bus states and their relationship to each other

• L-bus signal groups, which consist of address/data and control

• L-bus read, write, and burst transactions

• L-bus timing analyses and timing circuit generation

• Related L-bus operations such as arbitration, interrupt, and reset operations

OVERVIEW OF THE 80960KB L-BUS

The L-bus forms the data communication path between the various components in a basic
80960KB hardware system. The 80960KB processor utilizes the L-bus to fetch instructions, to
manipulate information from both memory and I/O devices, and to respond to interrupts. To
perform these functions at a high data rate, the 80960KB processor provides a burst mode,
which transfers up to four data words at a maximum rate of one 32-bit word per clock cycle.
The 80960KB L-bus has the following features:

• 32-bit multiplexed address/data path

• High data bandwidth relative to the speed selection of the 80960KB processor

• Four byte enables and a four-word burst capability that allow transfers from 1 to 16 bytes
in length

• Support for TTL latches and buffers.

BASIC L-BUS STATES

The L-bus has five basic bus states: idle (Ti), address (T a)' data (T d)' recovery (Tr), and wait
(T w)' During system operation, the 80960KB processor continuously enters and exits different
bus states as shown in Figure 3-1. This state diagram assumes that only one bus master resides
on the L-bus.

The processor occupies the Ti state When no address/data transfers are in progress. When a
new request is received, the 80960KB processor enters the T a state to transmit the address.

3-1

inter

Notes;

Tj -

Ta -

Td -
Tr -

Tw -

THE 80960KB PROCESSOR AND THE LOCAL BUS

Idle state

Address state

Data state

Recovery state

Wait state

READY
-NO BURST

READY READY asserted

NOT READY - READY not asserted
BURST Multiple word access in progress
NO BURST - Multiple word access done, or a

one-word access

Figure 3-1: Basic L-Bus States

Following a Ta state, the 80960KB processor enters aT d state to transmit or receive data on the
address/data lines provided that the data is ready (indicated by the assertion of READY at the
input of the processor). If the data is not ready, the processor enters a T w state and remains in
this state until data is ready. Tw states may be repeated as many times as necessary to allow
sufficient time for the memory or I/O device to respond.

After a data word is transferred, the 80960KB processor exits the T d or T w state for a single
word transfer or enters the T d state again to transfer another data word for a burst transaction.
If the next data word is not ready during the next clock cycle for a burst transaction, the
processor enters the T w state again.

3-2

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

When the 80960KB processor completes the data transfer of all the data words (one or up to
four), it enters the recovery (Tr) state to allow sufficient time for devices (such as memories)
on the bus to recover. The processor returns to the Tj state if no new request is pending, or
enters the T a state if a new request is pending.

L-BUS SIGNAL GROUPS

The L-bus states are used to define some of the L-bus signals. As shown in Figure 3-2, the
signals on the L-bus consist of two basic groups: address/data, and control.

LOCAL BUS

CONTROL (12 LINES)

Figure 3-2: L-Bus Signal Groups

Address/Data

The address/data signal group consists of 32 bidirectional lines. These signals are multiplexed
and serve a dual purpose depending upon the bus state.

LAD3CLADz Local Address/Data31 through Local Address/Dataz represent the
address signals on the L-bus during the T a state. LADz is the least
significant bit, and LAD31 is the most significant address bit. LAD31
through LADz contain a physical word address. LAD 1 and LADo
specify the number of data words to transfer for a burst transaction. The
address/data signals float to a high impedance state when not activated.

SIZE (LADcLADo) The SIZE signal indicates whether one, two, three, or four words are
transferred during the current transaction. During a T a state, LAD1 and
LADo represent the word size signals. The encoding is shown in Table
3-1.

3-3

Control

THE 80960KB PROCESSOR AND THE LOCAL BUS

Table 3-1: SIZE Signal Decoding

WORD SELECTION LAD, LADo

1 WORD LOW LOW

2 WORDS LOW HIGH

3 WORDS HIGH LOW

4 WORDS HIGH HIGH

Local Address/Data31 through Local AddresslDatao represent the
data signals on the L-bus during the T d and T tv states. LADo is the least
significant, and LAD31 is the most significant address bit. The
address/data signals float to a high impedance state when not activated.

The control signal group consists of 12 signals that permit the transfer of data. These signals
can be used to control data buffers, address latches, and other standard interface logic.

DTiR

WiR

The Address Latch Enable is an active low signal that can be used to
latch the address from the 80960KB processor. ALE is asserted during
the T a state and deasserted before the beginning of the T d state. ALE
floats to a high impedance level when the processor is not operating on
the bus (Le., it is in the idle state), or is at the end of any bus access.

AddresslData Status is an active low signal that is driven by the
80960KB processor to indicate an address state. ADS is asserted during
every T a state and deasserted during the following T d and T w states. For
a burst transaction, ADS is asserted again every Td (and Tw) state where
READY was asserted in the prior cycle. The ADS signal is an open
drain output.

Data Transmit/Receive indicates the direction of data flow to or from
the L-bus. For a read operation or an interrupt acknowledgement, DTiR
is low during the T a' T w' and T d states to indicat~ that data flows into the
80960KB processdt. For a write operation, DT/R is high during the Ta,
T w' and '!:d states to indicate that data flows from the 80960KB p~ces­
sor. DT/R never changes states when DEN is asserted. The DT/R line
is an opeh drain output of the 80960KB processor.

Data Enable is an active-low signal that can be used to enable data
transceivers. DEN is asserted during all Td and Tw states. The DEN
line is ail open drain output of the 80960KB processor.

The Write/Read signal instructs a memory or I/O device to write or
read data on the L-bus. The 80960KB processor asserts W iR during a
T a ~tate. The signal remains valid during subsequent T dand T w states.
W/R is an open drain output of the 80960KB processor.

The Byte Enable output signals qf the 80960KB processor specify
which bytes (up to four) on the 32-bit data bus are transferred during the
transaction. Table 3-2 shows the decoding scheme.

3-4

Ta

ClK2

ClK

THE 80960KB PROCESSOR AND THE LOCAL BUS

Table 3-2: Byte Enable Signal Decoding

BYTE ENABLE SIGNAL ADDRESS LINE SELECTION

BEa LAD7.LADa

BE, LAD,s.LADs

BE2 LADn-LAD'6

BE3 LAD3,·LAD24

The byte enable signals are valid from the 80960KB processor before
data is transferred, as shown in Figure 3-3 (assumes no wait states). The
byte enable signals that are valid for the first data word are specified
during the T a state. For a four-word burst transaction, the byte enable
signals that are valid for the second word are asserted during the first
data state (TdO)' for the third word during the second data state (Td,),
and for the fourth word during the third data state (T d2). The byte
enable signals are undefined during the last data state (T d3) of the last
word transferred.

T,

lAD,,· """"",i-""""~~h.
lAD.

READY

Figure 3-3: Byte Enable Timing Diagram

Although not shown in the diagram, the byte enable signals of each word
are latched internally by the 80960KB processor and remain valid during
every data or wait state until READY is applied. After READY is
applied the byte enable signals change during the next T d state or be­
come undefined for the last data transfer.

The 80960KB processor asserts only adjacent byte enables. For ex­
ample, the 80960KB processor does not perform a bus operation with
only BEo and BE2 active.

The Byte Enable lines are open drain outputs.

READY signal indicates that the data on the L-bus can be sampled
(read) or removed (write) by the 80960KB processor. If READY is not
asserted following T a state or in between T d states, a T w state is
generated. The READY is an active-low input signal to the 80960KB
processor.

3-5

inter

CACHE

THE 80960KB PROCESSOR AND THE LOCAL BUS

Bus Lock prevents other bus masters from gaining control of the L-bus
during a bus operation. It is activated by certain 80960KB processor
operations and instructions.

The 80960KB processor uses the bus LOCK signal when it performs a
RMW memory operation. When the processor performs a RMW-Read
operation, it asserts the LOCK signal during the T a state and holds
LOCK asserted. If the LOCK signal was already asserted, the processor
waits until this signal is deasserted before performing the RMW-Read
operation. The processor deasserts the LOCK signal during the T a state
when it performs a RMW -Write operation.

The 80960KB processor asserts the LOCK signal during the interrupt
acknowledge sequence. LOCK is an input and an open drain output.

The Cacheable signal specifies whether the data is cacheable. If the
80960KB processor asserts CACHE during the T a state, then the data is
cacheable. The CACHE signal is undefined during the T d and T w states.
The CACHE signal floats to a high impedance state when the L-bus is
not acquired.

Table 3-3 summarizes the L-bus signals.

3-6

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

Table 3-3: Summary of L-8us Signals

SIGNAL SIGNAL SIGNAL FUNCTION ACTIVE DIRECTION
TYPE OF

GROUP SYMBOL STATE OUTPUT

ADDRESS
32-BIT ADDRESS Ta 0 3-STATE (LAD31 -LAD2)

LOCAL
ADDRESSI DATA

1/0 3-STATE DATA (LAD31-LADo) 32-BITDATA Td• Tw

SIZE SPECIFIES NUMBER OF
Ta 0 3-STATE (LAD1-LADo) WORDS TO TRANSFER

ALE
ENABLES ADDRESS

Ta 0 3-STATE LATCH

ADS
IDENTIFIES AN ADDRESS

Ta. Td1, Tw1 0 OPEN DRAIN STATE

DTiR
CONTROLS DIRECTION OF

Ta. Td• Tw 0 OPEN DRAIN DATAFLOW

DEN
ENABLES DATA

Td• Tw 0 OPEN DRAIN TRANSCEIVER/LATCH

CONTROL
WiR READIWRITE COMMAND Ta. Td• Tw 0 OPEN DRAIN

BE3-BEo
SPECIFIES WHICH DATA

Ta. Td2• Tw2 0 OPEN DRAIN BYTES TO TRANSFER

'R'EAi5Y INDICATES DATA IS
Td• Tw I READY TO TRANSFER

---_ _ ... -

LOCK LOCKS BUS ANY I/O OPEN DRAIN

CACHE
INDICATES CACHEABLE

Ta 0 3-STATE TRANSACTION

Additional pins are used by the 80960KB processor to control the execution of instructions and
to interface to other bus masters. These pins include the arbitration, interrupt, error, and reset
signals. Each of these signal groups are explained in separate sections.

3-7

THE 80960KB PROCESSOR AND THE LOCAL BUS

L-BUS TRANSACTIONS

The 80960KB processor uses the L-bus signals to perform transactions, which are simply
L-bus operations where data is transferred to (or from) the CPU from (or to) another com­
ponent. During a transaction, the 80960KB processor can transfer up to four words of data for
a single address to enhance system throughput. This is especially useful when loading cache
memory.

Clock Signal

The 80960KB hardware system typically uses two clock signals, CLK2 and CLK, to
synchronize the transitions between L-bus states. CLK2 is the clock input to the 80960KB and
is double the specified processor frequency. CLK is the clock input signal to the peripheral
devices, and it is the operating frequency of the 80960KB processor. Figure 3-4 shows the
relationship between the system CLK2 and CLK.

CUSTBUSTBUS~ ..- STATE ----..~ STATE STATE -..

Ta Td Tr

CLK2
-"1»>

CLK

Figure 3-4: Clock Relationships

Basic Read

The basic transaction reads or writes one data word. Figure 3-5 shows a typical timing
diagram for a basic read transaction (for exact timings, see the 80960KB processor data sheet).
A read transaction may be preceded and succeeded by any type of bus transaction. The
following sequence of events explains the flow of the timing diagram. For simplicity, no wait
states are shown.

1. The 80960KB processor generates several signals during the T a state.

• It transmits the address on the address/data lines. LAD! and LADo specify a single
word transaction.

3-8

inter

•
•
•
•
•

THE 80960KB PROCESSOR AND THE LOCAL BUS

It asserts ALE. An ALE signal can be used to latch the address.

It asserts ADS.

It asserts BE3-BEo to specify which bytes are used when reading the data word.

It brings W if{ low to denote a read operation.

It brings DTif{ signal low. DTif{ can be used for the direction input to data
transceivers.

2. During the T d state, several actions occur.

• The 80960KB processor reads the data on the address/data lines.

• The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.
READY is asserted by external timing logic and data is transmitted from the storage
devices. If READY is not asserted, the data transfer is delayed generating a T w state.
The T w state is repeated, until READY is asserted.

3. The Tr state follows the data state. This allows the system components adequate time (one
processor clock cycle) to remove their outputs from the bus before the 80960KB processor
generates the next address on the address/data lines. During the Tr state wif{, DTif{, and
DEN become inactive.

3-9

CLK2

CLK

LAD31"
LADo

WiR

DT/R

READY

THE 80960KB PROCESSOR AND THE LOCAL BUS

Figure 3-5: 80960KB Processor Read Transaction

3-10

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

Basic Write

Figure 3-6 shows a typical timing diagram for a basic write transaction with one wait state.
Like the read transaction, a write operation may be preceded and succeeded by any type of bus
transaction. The following sequence of events explains the flow of the timing diagram.

1. Similar to the read transaction, the 80960KB processor generates several signals during
the T a state.

•

•
•
•
•
•

It transmits the address on the address/data lines. LAD J and LADo specify a single
word transaction.

It asserts ALE. An ALE signal can be used to latch the address.

It asserts ADS.

It asserts BE3-BEo to specify which bytes are used when writing the data word.

It brings W if{ high to denote a write operation.

It brings DTif{ signal high. DTif{ can be used for the direction input to data
transceivers.

2. During the T d state, several actions occur.

• The 80960KB places the data on the address/data lines.

• The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.

• READY is not asserted by external timing logic. Consequently, data is held on the
LAD lines.

3. During the .!W sta~ READY is asserted and the data is written to the storage device. Note
that the W/R, DT/R, and DEN remain constant until the bus state after READY is asserted.

4. The Tr state follows the wait state. During the Tr state wif{, DTif{, and DEN become
inactive.

3-11

ClK2

ClK

LAD31-
lADo

wlR

Burst

THE 80~60KB PROCESSOR AND THE LOCAL BUS

T,

Figure 3-6: 80960KB Processor Write Transaction

The 80960KB processor supports burst transactions that read or write up to four words at a
maximum rate of one word every processor clock cycle. Burst transactions are always con­
tained within a 16-byte boundary. If a transaction crosses a 16-byte boundary, the 80960KB
processor automatically splits the transaction into two accesses.

The byte enable signals are valid for each word to allow partial-word write operations for a
burst write transaction. The CACHE output signal during a T a state applies to all words of a
burst transaction.

~-12

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

A burst read or write transaction is similar to a basic read or write operation. It differs
primarily in the number of data words transferred: the basic transaction always transfers one
data word, the burst transaction transfers up to four data words. For a burst transaction, the
byte enable signals are applied during the T a state, and subsequently during every T d or T w

state before the data word is transferred. Figure 3-7 shows the timing for a three-word burst
read transaction without wait states. Figure 3-8 shows the timing for a two-word burst write
transaction with a wait state occurring during the transfer of the first word. Note that the byte
enable signals remain constant until the data state after READY is asserted.

LAD31-
LADo

Figure 3-7: 80960KB Processor Burst Read Transaction

3-13

T,

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

T. Td Tw Td T,

ClK2

ClK

lAD31-
lADo

ArE

AlB"

BErBEo

wifi

DTifi

!mil

READY

Figure 3-S: S0960KB Processor Burst Write Transaction

TIMING GENERATION

In an 80960KB processor-based system, timing signals must be generated for the clock and
reset inputs. To generate these signals. discrete logic should be utilized to minimize skew and
maintain the rise and fall times as short as possible. This section describes a typical circuit that
synthesizes the clock signal. The RESET timing generation is discussed in the "RESET and
Initialization" section on page 3-33.

80960KB Processor Clock Requirements

In order to design a clock generator, the clock input specifications to the 80960KB processor
are examined first. The clock (CLK2) waveform is shown in Figure 3-9. The clock pulse is
specified by five parameters listed below:

The clock fall time (tf)

The clock low time (tl)

3-14

THE 80960KB PROCESSOR AND THE LOCAL BUS

•
•
•

The clock rise time (tr)

The clock high time (th)

The clock period (tcyc)

The time required to go from 90% of the difference between the high and low voltage levels to
10% of the difference (or from low to high) is defined as the clock fall (rise) time. The clock
low time specifies the time required for the clock to remain within 10% of the low voltage
level. Similarly, the clock high time specifies the required time for the clock pulse to remain
within 10% of the high voltage level. The clock period is the sum of If + t\ + tr + tho

Teye

HIGH LEVEL

LOW LEVEL

Figure 3-9: System Clock Pulse

The clock generator must have fast enough rise and fall times to comply with the requirements
for high and low time and the overall clock period. For example, consider a clock pulse with a
50% duty cycle at 40 MHz. The clock period is specified at minimum of 25 ns, low time at
minimum of 8 ns, and high time at minimum of 8 ns. This implies that the sum of the rise and
fall time must not be greater than 9 ns. Thus, the clock generator should be designed to have
rise and fall times not greater than 4.5 ns each.

Besides specifying a maximum clock rate, the 80960KB processor requires a minimum CLK2
rate of 8 MHz to maintain the state of the internal dynamic cells. Due to this minimum
frequency requirement, the 80960KB processor cannot be single-stepped by disabling the
clock.

Clock Generation

Figure 3-10 shows an example of a clock generator that produces two clock pulses, one double
the frequency of the other with the skew between the pulses in the range of 1 to 3 ns. This
particular circuit produces a 40-MHz clock at 50% duty cycle with rise and fall times of less
than 4 ns. The circuit design consists of four devices: an oscillator, a pulse shaping network, a
synchronous up/down counter, and a NAND gate driver. The output of the 80-MHz hybrid
clock oscillator connects to the pulse shaping network (two NAND gates in series), which in
tum feeds into the clock input of the up/down counter. This counter produces a 40-MHz CLK2
output signal and a 20-MHz CLK output signal. Because the outputs of the counter are

3-15

THE 80960KB PROCESSOR AND THE LOCAL BUS

synchronous, the skew between CLK2 and CLK is typically less than 2 ns. To provide
adequate signal margin and maintain fast rise and fall times, the two clock signals are con­
ditioned by the NAND gate driver. The timing waveforms of the clock circuit are shown in
Figure 3-11.

If the opposite phase CLK is preferred, uiD pin can be connected to Vee

SO-MHz
OSCILLATOR

Vee

COUNTER

A

B OA

C Os
D

74AS169

Figure 3-10: Clock Generation Circuit

3-16

40MHz

20 MHz

Vee

ClK2

ClK

74AS1804

THE 80960KB PROCESSOR AND THE LOCAL BUS

CLK2 \'------1/ \,---",,1

CLK \---
Figure 3-11: Clock Timing Waveforms

The hybrid clock oscillator typically requires 5 ms to stabilize after power is applied. The
80960KB processor cannot begin to execute instructions until after the clock and V cc have
reached their DC and AC specifications. The RESET signal can be used to control the start of
the CPU execution when power is applied. This is discussed in the "RESET and Initialization"
section on page 3-33.

ARBITRATION

When mUltiple bus masters exist, an arbitration protocol is used to exchange control of the bus.
The protocol assumes that there are two bus masters: one that controls the bus by default, and
the other that requests control of the bus when it performs an operation, such as a DMA
controller. More than two bus masters may exist on the L-bus, but this requires external
arbitration logic. There should be no more than two 80960KB processors, however, on an
L-bus.

Assuming that there are only two bus masters, this section examines the bus arbitration, bus
states, and timing diagrams for different combinations of bus masters, as shown in Table 3-4.

3-17

THE 80960KB PROCESSOR AND THE LOCAL BUS

Table 3-4: Combination of Bus Masters

Bus Master Combination

Bus Master that Controls the Bus Bus Master that Requests
by Default Contol of the Bus

CASE 1 80960KB PROCESSOR I/O DEVICE

CASE 2 80960KB PROCESSOR 80960KB PROCESSOR

CASE 3 I/O DEVICE 80960KB PROCESSOR

Single 80960KB Processor on the L·Bus

For the first case, the 80960KB processor controls the L-bus, and a master I/O peripheral, such
as a DMA controller, requests control of the bus for operations. The 80960KB processor and
the I/O peripheral exchange control of the bus with two signals: the hold request (HOLD) and
hold acknowledge (HLDA) signals.

HOLD is an input signal of the 80960KB processor, which indicates that the master I/O
peripheral is requesting control of the L-bus. When HOLD is asserted, the 80960KB processor
surrenders control of the bus after it completes the current bus transaction. The 80960KB
processor acknowledges transfer of control of the L-bus to the other bus master by asserting the
HLDA.

State Diag ram

Figure 3-12 shows the state diagram for a L-bus with an I/O peripheral bus master. This state
diagram consists of the hold state (Th) in addition to the five basic states described in the
"Basic L-Bus State" section on page 3-1. The 80960KB processor enters the Th state when it
surrenders the control of the bus. It can enter the Th state from the T j or Tr state. When the
80960KB processor regains control of the L-bus, it enters the T a state if a new request is
pending or a T j state if no new request is pending.

3-18

THE 80960KB PROCESSOR AND THE LOCAL BUS

~
NO HOLD

-REQUEST PENDING /

NEW REQUEST

Notes:

T, Idle state

Ta Address state

Td Data state

Tr Recovery state

Tw Wait state

Th Hold state

READY

NOT READY
BURST

NO BURST

READY asserted

READY not asserted
Multiple word access in progress

Multiple word access done, or a
one-word access

Figure 3-12: L -Bus States with Arbitration

Arbitration Timing

READY
- NO BURST
-HOLD

Figure 3-13 shows the arbitration timing diagram. The "T" state represents the last cycle of a
transaction in which the READY signal was asserted or a Ti state. The 80960KB processor
receives a request to relinquish control of the bus when HOLD is asserted. After the 80960KB
processor completes the current transaction, it responds to this request by floating the three­
state output signals and deasserting the open drain output signals. The HLDA output signal,

3-19

THE; 80960KB PROCESSOR AND THE LOCAL BUS

however, remains active and is asserted as the 80960KB processor enters a Th state. During
the Th state, the CPU ignores all input signals except HOLD and RESET. When the HOLD
input signal is deasserted, the 80960KB processor exits the Th state and de asserts HLDA.

T T

CLK2

CLK

HOLD

HLDA -++""""",,,,,,,,,",-~"'f

Figure 3-13: Arbitration Timing Diagram for a Bus Master

Two 80960KB Processors on the L-Bus

For the next case, two 80960KB processors reside on the L-bus. During initialization, one is
designated as the Primary Bus Master (PBM), the other as the Secondary Bus Master (SBM).
The exchange protocol that is used guarantees that neither device is kept off the bus in­
definitely. The 80960KB processors use two pins for bus arbitration: the HOLD input pin, and
the HLDA output pins. These input and output pins for the SBM are interpreted differently,
however.

When the SBM is initia.lized, the pin normally used for HOLD input signal is interpreted as the
hold acknowledge request (HLDAR) input signal. The assertion of HLDAR indicates that the
PBM relinquished control of the L-bus. Similarly, the HLDA output signal of the SBM is
interpreted as the hold request (HOLDR) output signal. The SBM asserts HOLDR to request
acquisition of the L-bus.Thus, bus arbitration between two 80960KB processors can be
accomplished by connecting HOLD of the PBM to HOLDR of the SBM, and HLDA of the
PBM to the HLDAR of the SBM, as shown in Figure 3-14.

When using the connection shown in Figure 3-14, a delay must be inserted between the input
and output signals because the minimum clock-to-outPllt clelay is less than the maximum hold
time of the input signals. The delay time must be greater than 5 ns, but less than the clock
period minus the setup time minus the maximum clock-to-output delay (5 ns:::; Delay:::; Tperiod
- T Setup - T Clock-to-Output)·

3-20

THE 80960KB PROCESSOR AND THE LOCAL BUS

HOLD DELAY HOLDR

PRIMARY BUS SECONDARY BUS
MASTER MASTER

HLDA DELAY HLDAR

Figure 3-14: Arbitration Connection Between Two 80960KB Processors

Bus states for Two 80960KB Processors

The state diagram for the SBM is shown in Figure 3-15. Because there are two 80960KB
processors, the LOCK signal is included in the state diagram. The SBM requests control of the
L-bus by asserting HOLDR and subsequently enters the hold request (T hr) state provided that
the bus is not locked (locked means that LOCK is asserted by the PBM and the SBM has a
RMW operation pending). The SBM remains in the T hr state until it acquires control of the
L-bus by receiving HLDAR. The SBM returns to the Tj state by deasserting HOLDR provided
that the following two conditions exist:

• A RMW operation is pending

• The PBM asserted LOCK while the SBM was in the T hr state.

The SBM gains control of the bus when HLDAR is asserted provided that the bus is not
locked. After gaining control of the L-bus, the SBM performs the operations, and enters a Tw
state if necessary. At the end of a transaction, the SBM goes to the Tr state and deasserts
HOLDR for at least one processor clock cycle to allow another peripheral bus master to gain
access if needed. If another request is pending, the SBM enters the T hr state and asserts
HOLDR provided the bus is not locked. The PBM never forces the SBM off the bus.

3-21

THE 80960KB PROCESSOR AND THE LOCAL BUS

HLDAR - NOT LOCKED

LOCKED

NEW REQUEST
-NOT LOCKED

READY
- NO BURST

NO
REQUEST

NO REQUEST
+ LOCKED

NOT READY

NOTES:

Tj -
Ta -

Td -

T, -

T hr-

Idle state

Address state

Data state

Recovery state

Hold request state

READY READY asserted

NOT READY - READY not asserted
LOCKED

HLDAR

BURST

NO BURST

- LOCK asserted by another bus master and
RMW operation pending for secondary bus master

- HOLD acknowledge requested (request for bus
granted)

Multiple word access in progress

Multiple word access done, or a
one-word access

Figure 3-15: L-Bus States for Secondary Bus Master

3-22

THE 80960KB PROCESSOR AND THE LOCAL BUS

Arbitration Timing for Two 80960KB Processors on the L-Bus

Figure 3-16 shows the timing diagram for acquiring and relinquishing the L-bus by an SBM.
The SBM enters into the Hold Request (T hr) state and asserts the HOLDR signal. It remains in
the T hr state until HLDAR is asserted, which indicates that the SBM can utilize the L-bus
during the next state. When the bus is no longer required, HOLDR is deasserted during the
state following the last READY signal. Except for HOLDR, the output signals of the SBM go
into a high impedance state or are deasserted for the case of open-drain outputs.

ClK2

ClK

HOlDR

HlDAR

Figure 3-16: Arbitration Timing Diagram for an S8M

Bus Exchange Example Between Two 80960KB Processors

Figure 3-17 shows an example of bus arbitration between a PBM and an SBM using the
arbitration signals. Each bus master performs a one-word read and a two-word write trans­
action to demonstrate the fastest possible bus exchanges.

3-23

inter

PBM BUS
STATE

SSM BUS
STATE

CLK2

eLK

W/R

PBM ALE

SBMAlE

SBM
HOlDR

.8M
HOLD

.8M
HLOA

S8M
HLDAR

THE 80960KB PROCESSOR AND THE LOCAL BUS

Figure 3-17: Example of a Bus Exchange Transaction

T;

T;

While the PBM is performing a read transaction, the SBM requests control of the L-bus by
asserting HOLDR and entering the Thr state. It remains in this state until the PBM grants the
request by asserting HLDA after the read transaction is completed. After granting the request,
the PBM enters the Th state and remains in this state until its HOLD signal is deasserted.
When the SBM completes the read transaction, it deasserts HOLDR and gives control back to
thePBM.

The PBM now performs a two-word write transaction after deasserting the HLDA. The SBM
requests control of the bus again by asserting the HOLDR signal and enters the Thr state.
When the PBM completes the two-word write transaction, it grants the request by asserting
HLDA and enters the Th state. The SBM receives the signal on the HLDAR input and
performs a two-word write transaction. When the SBM completes the transaction, the control
of the L-bus is transferred to the PBM, and both the PBM and the SBM enter the T j state.

A Peripheral Device As the Default Bus Master

Another case exists where a peripheral device controls the L-bus, and the 80960KB processor
requests control of the bus to perform operations. This alternative is not advisable because it
hinders system performance. The exchange protocol is identical to the one described in the

3-24

THE 80960KB PROCESSOR AND THE LOCAL BUS

previous section. The 80960KB processor is an SBM and uses two pins for bus arbitration: the
HOLDR input pin and the HLDAR output pin. The state diagram is similar to the one shown
in Figure 3-15. The lock conditions are not used for this case, however.

The peripheral device grants control of the L-bus bus asserting HLDAR when the SBM
requests use of the L-bus. The peripheral device can obtain control of the L-bus again by
deasserting HLDAR. If this occurs, the 80960KB processor surrenders control of the bus after
it completes the current transaction, as shown in Figure 3-18. At that time, the 80960KB
processor deasserts the HOLDR signal and places the other output signals into a high im­
pedance state or a deasserted open drain level. The 80960KB processor may request access to
the L-bus by asserting HOLDR again.

CLK2

CLK

HLDAR

HOLDR

Figure 3-18: Forced Relinquishment Timing Diagram for an S8M

INTER-AGENT COMMUNICATION (lAC)

The lAC mechanism gives 80960KB processors the capability to send and receive messages to
one another and to other bus agents. The lAC mechanism is essentially a non-maskable
interrupt with pre-defined service routines. These routines are implemented in the 80960KB
processor and are used to perform control functions such as purging the instruction cache,
setting breakpoint registers, or stopping and starting the processor. By using lAC messages,
external agents can remotely control the 80960KB. This allows easy integration of the
80960KB into system environments.

lAC messages can also be used to generate interrupts that behave exactly the same as
hardwired interrupts. Since the interrupt vector is encoded in the lAC message, any of the 248
possible interrupt service routines can be invoked. For further information on lAC message
definitions see the 80960KB CPU Programmer's Reference Manual.

3-25

THE 80960KB PROCESSOR AND THE LOCAL BUS

Overview of lAC Operations

Figure 3-19 shows a typical example of an lAC operation. In this case, an external processor
gains control of the 80960KB by using anlAC operation. The external processor performs two
functions: it writes the message in a buffer, called the message buffer; and it asserts the lAC
pin of the 80960KB processor. Upon receipt of the lAC signal, the 80960KB processor stops
executing its current process and performs a four-word read of the message buffer. After
completing the read operation, the 80960KB processor automatically performs a one-word
write operation to a pre-defined address to acknowledge the receipt of the message. The
80960KB processor then proceeds to perform the required action.

lAC Messages

READ MESSAGE BUFFER
WITH FOUR-WORD BURST

NO

WRITE TO A PRE-DEFINED ADDRESS
TO ACKNOWLEDGE RECEIPT OF MESSAGE

PERFORM I;lEQUEST

Figure 3-19: Example Flow Chart for an lAC Operation

The lAC messages are specifically defined and behave much like machine instructions. The
, 80960KB processor reserves the upper 16M bytes (FFOOOOOOH to FFFFFFFFH) of the 4Mcbyte

address range for lAC message operations.

There are two types of lAC messages: internal and external. Internal lAC messages allow a
program to send a command to its own processor. An internal lAC message is sent by writing
to address FFOOOOlOH. Internal lAC messages cause no L-bus activity.

3-26

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

External lAC messages can be used to send a command to another processor on the L-bus or to
a remote processor. A processor sends an external lAC message by writing to a buffer area
and causing the lAC pin of the receiving 80960KB to be asserted.

When the lAC pin is asserted, the recipient processor reads the reserved address to fetch the
data from its lAC message buffer. After reading the lAC message buffer, the recipient does a
write operation to another reserved address to acknowledge receipt of the lAC message. The
lAC pin is deasserted as a result of this write operation, and the processor is ready to receive
another lAC.

Hardware Requirements for External lAC Messages

To use the external lAC feature of the 80960KB, the following items are needed: a four-word
message buffer RAM mapped to a reserved address to store the message, logic to assert the
lAC pin of the 80960KB, and decoding logic to deassert the lAC pin on command from the
80960KB.

Message Buffers

Each 80960KB processor that receives an lAC message must have four 32-bit words of mes­
sage buffer. This buffer can use special hardware or a reserved area in RAM. For proper
operation of the buffer, two requirements must be met: the receiving 80960KB must be able to
read this buffer at FFOOOOlOH if the receiving 80960KB's Local Processor Number (LPN) is
equal to zero (see the "RESET and Initialization" section on page 3-33 for details of the LPN),
or at FF000030H if the LPN is equal to one; and the sending processor must be able to write
this buffer.

lAC Pin Logic

When the lAC message buffer receives a message, logic asserts the lAC pin and keeps it
asserted. After the 80960KB processor reads the lAC message, it performs a one-word write to
address FFOOOOOO if its LPN is zero, or FF000020 if its LPN is one. This reserved address
serves two functions: it causes external logic to deassert the lAC pin, and it maps to a register
that contains the current processor priority. If the low order three bits of the data word have a
value of 100B (see Figure 3-20), the external logic should deassert the lAC pin on completion
of the write operation.

31
21.20 ••• 1615

4 3 2 1 0

-+.±t:-I ACKNOWLEDGE lAC MESSAGE
SET PRIORITY

~:-+:-+-:-I SET PRIORITY AND
..:..I..;.J...;.J..;..I ACKNOWLEDGE lAC MESSAGE

Figure 3-20: Data Settings

3-27

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

EXTERNAL PRIORITY REGISTER

The 80960KB contains an internal register that keeps track of the current priority (a value
between 0 and 31) at which it is executing. This priority is used to decide whether or not to
service interrupts -- higher priority interrupts are serviced, others are posted for later servicing.
In some system designs it may be desirable to have this priority visible outside of the proces­
sor. To allow this, the 80960KB provides support for an external priority register. Whenever
the priority of the 80960KB changes, the contents of this register are automatically updated.

This feature may be enabled in two steps. If the Write External Priority bit is set in the PRCB
(see the 80960KB CPU Programmer's Reference Manual), then the external priority register is
updated as a result of a MODPC instruction or whenever an interrupt occurs. If external lAC
messages are enabled, then external priority is also updated whenever a result of an lAC is to
change processor priority.

Hardware Requirements

The 80960KB expects to write its priority into a 5-bit register mapped to address FFOOOOOO if
its LPN is zero, or FFOOO020 if its LPN is one. To set the priority, the processor performs a
one-word write operation in the form shown in Figure 3-20. The priority is contained in
bit20-bit16, and bit3 is asserted to indicate that the priority is changed. It is necessary to use bit3
as a qualifier to distinguish priority write operations from lAC message acknowledgments,
which use the same reserved address.

External Priority and lAC Messages

The external priority register can be used to filter lAC messages. Since the processor always
services the lAC pin (i.e., it is non-maskable), a low priority lAC message can interrupt a high
priority task. To prevent this, a system can associate a priority with each lAC message .. This
priority can then be compared to the priority stored in the external priority register and used to
decide whether or not to accept the lAC message. One way to associate a priority with an lAC
message is to encode the message priority into the lAC message destination address as shown
in Figure 3-21. The range of reserved addresses shown in Figure 3-21 have been set aside for
this purpose.

31 24 23 14 13 9 8 4 3 2 1 0

\111\11111111111Ixlxlx Ix Ix Ix Ix Ix Ix Ix lolol111lolxlxlxlxlxlolololo\
\) '---y---J

f +'----
L._ - _____________ ADDRESSDFRECEPIENT

PRIDRITY

Figure 3-21: Physical Address Interpretation for lAC Messages

3-28

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

INTERRUPTS

The 80960KB processor responds to external events occurring at arbitrary times by means of
an interrupt signal. Various sources, which include hardware components and special software
instructions, generate an interrupt signal that can suspend execution of the 80960KB
processor's current instruction stream. The hardware-generated interrupts are discussed in this
section. For complete information on software-generated interrupts, see the 80960KB CPU
Programmers Reference Manual.

The 80960KB processor provides a flexible interrupt structure. The 80960KB processor can
be interrupted using any of three methods below:

• Receipt of ~ignal on any or all of the four direct interrupt input signals (INTo, INTI'
INT 2' and INT 3)

• Receipt of a signal on the interrupt request (INTR) line to obtain an external interrupt
vector

• Receipt of an lAC message from a processor program or external source.

The choice of the method is determined by the setting in the on-chip Interrupt Control register.
Interrupt signals can occur during any bus state regardless of which method is implemented.

This section provides details on the multiplexed interrupt pins, the three interrupt methods, the
Interrupt Control register, synchronization, and interrupt latency.

Interrupt Signals

The interrupt signals are multiplexed on four pins of the 80960KB processor: INT ofIAC, INTI'
INT 2/1NTR, and INT 3/INT A. The on-chip Interrupt Control register determines how these
pins are used (see "Interrupt Control Register" section on page 3-30).

INTI

INT2/1NTR

This pin multiplexes the Interrupto and Inter-Agent Communication
request input signals. The 80960KB processor interprets this input sig­
nal as either INTo or lAC. The INTo signal indicates a request for
interrupt service when it is asserted. The lAC signal denotes that a
message is waiting when it is asserted.

The InterruptI input signal indicates a request for interrupt service
when it is asserted.

This pin multiplexes the Interrupt2 and Interrupt Request input sig­
nals. The 80960KB processor interprets this input signal as either INT 2
or INTR~ The INT 2 signal indicates a request for interrupt service when
it is asserted. The INTR signal indicates an interrupt request from an
external interrupt controller. The 80960KB processor responds with an
interrupt-acknowledge sequence. To ensure an interrupt, the INTR sig­
nal must remain asserted until the first cycle of the interrupt­
acknowledge transaction.

This pin mUltiplexes the Interrupt3 input signal and Interrupt
Acknowledge output signal. The 80960KB processor uses this pin as

3-29

THE 80960KB PROCESSOR AND THE LOCAL BUS

the INT3 input signal or as the INTA output signal. The Interrupt Con­
trol register setting selects either the combination of INTR/INT A or
INT 2/1NT 3. The INT 3 input signal indicates a request for interrupt ser­
vice when it is asserted. INT A acknowledges the interrupt request from
an external interrupt controller. The INT A signal is latched by the
80960KB processor and remains valid during the T d state. This signal is
open drain output.

Interrupt Control Register

The 80960KB processor uses a 32-bit, on-chip Interrupt Control register to define the function
of the multiplexed interrupt pins. This 32-bit Interrupt Control register allocates eight bits for
each of the four direct interrupt signals (INTo, INTI' INT 2' and INT 3). The eight bits contain
the vector number for each interrupt signal, as shown in Figure 3-22. The vector number is
automatically read when one of the interrupt signals (INTo, INTI' INT 2' and INT 3) is activated.
For example, when an interrupt is signaled on INTo, the 80960KB processor uses bit7-bito of
the Interrupt Control register as the vector number.

The 80960KB processor uses the data field corresponding to INTo to determine identification
of the INT oIIAC input pin; a value of OOH signifies the lAC function. If the data field
corresponding to INT 2 has a value of 02H.:.. the 80960KB processor interprets the INT 2/1NTR
pin as the INTR input signal, and the INT 3/1NT A pin as the INT A output signal. In other
words, this setting specifies that the 80960KB processor should use these two pins for com­
munication with an external interrupt controller. If the functions of INTR and INT A are
selected, the direct interrupt pins (INTo and INT 1) can still be used.

The on-chip Interrupt Control register may be read and written by the Synchronous Load
(synld) and Synchronous Move (synmov) instructions at the address FF000004H (see the
80960KB CPU Programmer's Reference Manual). The value of the data fields in the Interrupt
Control register is FFOOOOOOH after initialization. This setting specifies that the four interrupt
pins function as INT A, INTR, INT l' and lAC.

31 2423 1615 8 7 0 BIT NUMBER

IIIIII 11111 III IIIIII11 IIIIII11 I II
1....-INT3--...l.--INT2---....1....-INT1---....1....-INTo~

VECTOR VECTOR VECTOR VECTOR

Figure 3-22: Interrupt Control Register

3-30

THE 80960KB PROCESSOR AND THE LOCAL BUS

Using the Four Direct Interrupt Pins

The 80960KB processor can be interrupted by asserting any or all of the four interrupt input
signals (INTo, INTI' INT 2' INT 3)' If the signals are simultaneously asserted, the 80960KB
assumes that INTo has the highest priority, followed by INTi' INT2, and INT3. Software
should follow this convention when programming the Interrupt Control register. When the
interrupt input signals are asserted, the 80960KB processor utilizes a vector number specified
by the Interrupt Control register as an index to an entry in the interrupt table located in
memory. For complete software information on this topic, see the 80960KB CPU
Programmer's Reference Manual.

Using an External Interrupt Controller

The 80960KB processor can communicate with an external interrupt controller by performing
an interrupt acknowledge sequence using the INTR and INT A signals. Figure 3-23 shows an
example of the timing of an interrupt acknowledge sequence using the 8259A Programmable
Interrupt Controller.

,
..... PREVIOUS ,... INTERRUPT .-,"

CYCLE ACKNOWLEDGEMENT
CYCLE 1

T T T Td T, T;

IDLE ~ INTERRUPT
(5BUSSTATES) ~ ACKNOWLEDGEMENT ~

. CYCLE 2

Tj T; Tj T. Td Tw T,

CLK2

ClK

INTR

INTA

DT/R

Figure 3-23: Timing Diagram for Interrupt Acknowledge Transaction

3-31

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

INTR is asserted by the 8259A and remains asserted until the 80960KB processor activates the
INT A signal for the first time. When the 80960KB processor receives an interrupt request, the
CPU completes the current transaction (or comes to some interruptible point), and asserts
INT A. INT A remains valid through the T a' T d' and T w states. The first assertion of INT A
triggers the 8259A to resolve priority among its interrupt requests.

To compensate for the timing of the 8259A, the 80960KB processor automatically inserts five
1 states before asserting the INTA again to read the interrupt vector. Figure 3-23 shows
READY asserted without a wait state during the first Interrupt Acknowledgement cycle and
with one wait state during the second Interrupt Acknowledgement cycle. In practice, the
8259A would require about four wait states in both cycles. The address during the Ta state for
both interrupt acknowledge cycles is FFFFFFFCH. For more details, see the "8259A
Programmable Interrupt Controller" section in Chapter 5 on page 5-5.

The 80960KB processor services the interrupt according to its priority. If the interrupt has
higher priority than the current activity, the 80960KB processor services it immediately.
Otherwise, after reading the interrupt vector, the 80960KB processor posts the interrupt vector
in the interrupt table. Typically, the 80960KB processor responds within 4 /ls for an interrupt
with higher priority than the current process (assuming CLK2 at 40 MHz). If the interrupt has
lower priority than the current activity, the interrupt is serviced when its priority is higher than
the priority of the subsequent activity of the 80960KB processor.

Using lAC Requests for Interrupts

The 80960KB processor can also be interrupted by an lAC message. The 80960KB processor
can send lAC messages to itself by using one of the Synchronous Move instructions. Because
this message does not utilize the L-bus when sent to the same processor, no special hardware is
required. More details are provided on page 3-25 and in the 80960KB CPU Programmer's
Reference Manual.

Synchronization

The INT ofIAC, INTI' INT 2/1NTR, and INT 3 input signals can be either synchronous or
asynchronous to the system clock (CLK2). Synchronous interrupt signals must be set up 3 ns
prior to the rising edge of CLK2 and held for 10 ns after the rising edge of CLK2. To properly
preset the interrupt signals for synchronous operation, INT ofIAC, INTI' INT 2/1NTR, and INT 3
must be deasserted for at least one processor clock cycle and asserted for at least one processor
clock cycle. These signals may be deasserted and asserted individually.

If the interrupt signals are asynchronous to CLK2, the 80960KB processor internally
synchronizes them. For the CPU to recognize the asynchronous interrupt input signals, they
must be preset by deasserting them for at least two processor clock cycles, and then asserting
them for at least two processor clock cycles. These signals may be deasserted and asserted
individually.

3-32

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

RESET AND INITIALIZATION

The system RESET signal provides an orderly way to start or restart the 80960KB processor.
When the 80960KB processor detects the low-tb-high transition of RESET, it terminates all
external activities and places the output pins in the high impedance state or deasserted con­
dition. When the RESET signal falls low again, the 80960KB processor begins the initializa­
tion process and later starts fetching instructions from a specific address.

RESET Timing Requirements

To properly reset the 80960KB processor to a known state, the low-to-high transition of
RESET must be asserted relative to any rising edge of CLK2 and remain asserted for at least
41 CLK2 cycles, as shown in Figure 3-24. RESET must be deasserted after the rising edge of
CLK2, but prior to the next rising edge of CLK2. This establishes the next rising edge of
CLK2 as edge A.

r- 41 '1 CLOCK
CYCLES A EDGE

CLK2

RESET

Figure 3-24: RESET Timing Diagram

RESET Timing Generation

The RESET input signal to the 80960KB processor can easily be generated by implementing a
synchronization circuit comprised of a two D-type flip-flops, as shown in Figure 3-25.

USER RESET D Q
SYNC

D Q

ClK >C --+-~C

Figure 3-25: Asynchronous RESET Circuit

3-33

-.. RESET TO
CPU

THE 80960KB PROCESSOR AND THE LOCAL BUS

The user RESET signal is synchronized with the CLK signal by applying CLK to the clock
input of both flip-flops. To protect against a metastable RESET signal, the output of the first
flip-flop, SYNC, is applied to the input of the second flip-flop. The output of the second
flip-flop results in a processor RESET signal. The timing diagram for these signals is shown in
Figure 3-26. CLK or CLK2 can be used instead of CLK in Figure 3-26. Using CLK provides
an edge A corresponding to the rising edge of CLK.

ClK2

ClK

USERmE'F

SYNC

CPU RESET

Figure 3-26: Diagram for RESET Timing Generation

This circuit assumes an asynchronous user RESET signal. If the user RESET signal is already
synchronous with the CLK signal, the same circuitry can be implemented as shown in Figure
3-27. In this case, however, the output from the first flip-flop is used to generate the processor
RESET signal rather than being routed to the input of the second flip-flop.

Initialization

UsERR'E'SEi - 0

ClK ~C

RESET TO
CPU

Figure 3-27: Synchronous RESET Circuit

The initialization sequence of events is shown in Figure 3-28. When RESET is deasserted
after a minimum of 41 CLK2 cycles, several actions take place: two input pins are sampled,
the FAILURE output signal (see next section for the pin description) is asserted, and the
self-test is performed.

3-34

READ
INITIALIZATION
PARAMETERS

PERFORM
SELF-TEST

PERFORM
SYSTEM CHECK

PREPARE FOR
OPERATION

THE80960KB PROCESSOR AND THE LOCAL BUS

DEASSERT RESET

SAMPLE LPN AND START-UP INPUT PINS

ASSERT FAILURE

PERFORM SELF-TEST

YES >------__t ENTER STOPPED STATE

NO
>-----.... ENTER STOPPED STATE

READ 8 WORDS FROM PHYSICAL ADDRESS 0

PERFORM CHECKSUM ON THE 8 WORDS

CLEAR ANY LATCHED INTERRUPT SIGNALS

EXECUTE FIRST INSTRUCTION

Figure 3-28: Initialization Flow Chart

3-35

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

When RESET is deasserted, the 80960KB processor samples the signals residing on the
INTofIAC and the BADAC input pins (see the next section for the pin description of BADAC).
At this time, these pins are interpreted as the Local Processor Number (LPN) and Startup
(STARTUP) signals, respectively. The LPN input signal defines whether the 80960KB
processor is a PBM (high voltage input level) or a SBM (low voltage input level). The
STARTUP input pin indicates whether the 80960KB processor performs initialization (high
voltage level) or not (low voltage level). The STARTUP signal is used to allow one or more
processors to perform the active initialization. The input voltage levels for the LPN and
STARTUP must be setup 3 ns before the rising CLK2 edge prior to edge A and held 10 ns
beyond edge C, as shown in Figure 3-29.

CLK2

ClK

CPU
RESET

OUTPUTS

INToIiACand BADAC
must be set prior to
this clock edge.

CLOCK EDGES

TNT oIlAC and BADAC
must be held beyond
this clock edge.

Latched i nterru pt
signals cleared prior
to first instruction.

Figure 3-29: RESET Signal Timing Relationship

Besides sampling the two input pins, the 80960KB processor asserts the FAILURE output
signal a few cycles after RESET is deasserted. The FAILURE signal remains asserted while
the CPU performs the self-test. If a failure is detected during the self-test, FAILURE remains
asserted and the CPU enters the stopped state where the processor does nothing. If the self-test
completes successfully, the CPU deasserts the FAILURE signal.

An 80960KB processor that is designated as the initialization processor proceeds by doing a
checksum test of eight words fetched from memory at physical address 0000 OOOOH to ensure
that the memory and L-bus are operating properly. If the initial checksum is incorrect, then the
FAILURE signal is asserted (and remains asserted) and the 80960KB processor enters the
stopped state. After a successful checksum test, the 80960KB processor uses some of the
words as addresses to initial data structures. Complete details are provided in the 80960KB
CPU Programmer's Reference Manual.

Just prior to executing the first instruction, the 80960KB processor clears any latched interrupt
signals.

3-36

inter THE 80960KB PROCESSOR AND THE LOCAL BUS

ERROR SIGNALS

The 80960KB processor provides an input signal (BADAC) for notification of an error in the
system, and provides an output signal (FAILURE) for notification of an error within the
processor.

BADAC

FAILURE

SUMMARY

When asserted, the Bad Access input signal indicates that an un­
recoverable error occurred during the current data transfer. If, however,
BADAC was asserted after a Synchronous Move or Synchronous Load
instruction, the error is recoverable. The 80960KB processor samples
the BADAC input signal during the cycle following the one when the
last READY is asserted.

The FAILURE signal indicates that an error occurred during initializa­
tion. The 80960KB processor always asserts FAILURE after the activa­
tion of the RESET signal. If a failure is detected during a self-test,
FAILURE remains asserted. Otherwise, the processor de asserts
FAILURE after a successful self-test is performed. If the initial memory
checksum is incorrect, the initialization processor asserts FAILURE a
second time, and keeps it asserted. FAILURE is an open drain output
signal.

The L-bus is a high speed 32-bit multiplexed bus with burst-transfer capability and is designed
to operate with the high performance 80960KB processor. The L-bus consists of two signal
groups: address/data, and control. These signal groups are utilized by the 80960KB processor
to perform read, write, and burst transactions.

The arbitration, interrupt, and reset operations are related to the L-bus transactions. The
arbitration operation transfers control of the L-bus to another bus master. Three methods are
available to handle interrupts: by invoking the on-chip interrupt controller, by employing an
external interrupt controller using the INTR/INT A signals, by using an lAC message. The
reset function sets the 80960KB processor to a known internal state after it successfully
completes the self-test. These operations offer power and flexibility to hardware system design
using the 80960KB processor.

This chapter focuses on the L-bus and how it relates to the 80960KB processor. The next two
chapters develop guidelines on designing memory and peripheral devices in the hardware
system.

3-37

Memory Interface 4

CHAPTER 4
MEMORY INTERFACE

The high-speed bus interface has many features that enhance high-performance designs. In
particular, the burst-transfer feature allows up to four successive 32-bit data word transfers at a
maximum rate of one word every processor clock cycle. This chapter outlines approaches for
memory designs that use these features, describes memory design considerations, analyzes the
timing, and lists a number of useful examples. The concepts illustrated by these examples
apply to a wide variety of memory system implementations.

BASIC MEMORY INTERFACE

Figure 4-1 shows the major logic blocks of the memory interface circuit. The data trahsceivers
buffer the data to compensate for any slow devices that may be connected to the 80960KB
processor. The address latches demultiplex the address/data signals from the 80960KB proces­
sor and latch the address. The address decoder selects the appropriate memory device from the
latched address. To accommodate a memory burst transaction, the burst logic decrements the
word count, increments the local address lines 3 and 2 (LAD3 and LAD2), and generates a
CYCLE-IN-PROGRESS signal. The timing control generates a READY signal and other
specific signals required by a particular memory device. The byte enable latch stores the byte
enable signals.

Although not part of the basic memory interface, the DRAM controller, SRAM interface,
DRAM, SRAM, and EPROM are included in Figure 4-1 for completeness. In a hardware
system the DRAM, SRAM, and EPROM are typically located in separate subsystems.

Although the memory interface circuit can be designed using programmable logic, gate arrays,
or other custom logic, the examples use standard components wherever possible to illustrate
the design concepts.

Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for
the L-bus. Transceivers can be used to prevent bus contention that can occur if some memories
are slow to remove data from the L-bus after a read operation. For example, if a write
operation follows a read operation, the 80960KB processor may drive the L-bus before a slow
device has removed its output data, potentially causing a current spike on the power and
ground lines. Transceivers, however, can be omitted if the data float time of the device is short
enough and the load does not exceed the 80960KB device specifications.

The data transceivers can be controlled by two signals from the 80960KB processor: data
transmit/receive (DT;R) and data enable (DEN). DT;R indicates the direction of data flow and
DEN enables the transceivers.

4-1

MEMORY INTERFACE

.'

"

----.;..
r!

LADwLADo DATA
TRANSCEIVERS

DT/i! DiR
---.

DEN G EPROM

ADDRESS
ALE Jo.

V
LE

LATCHES

~G -Q

• I 80960KB ADDRESS EPROM·CS D-< DRAM
PROCESSOR DECODER DRAM-CS RASo

SRAM·CS ::>- CASrCASo

DRAM WE

CONTROLLER

LADrLADo

i+<=
DRAMA,·DRAMA,

BURST A,_ DRAM-ROY

'--0.0
LOGIC A3

r
ADS CYCLE-iN-PROGRESS at

+
TIMING 0-

CONTROL

READY READY

W/R SRAM-WE

1
SRAM

SRAM-OE

1
~

BYTE
SRAM

BErBEo ENABLE BErBEo
INTERFACE

OErO~o

LATCH WErWEo

CLK2 1

Figure 4-1: Simplified Block Diagram for Memory Interface Logic

Address Latch/Demultiplexer

Conventional transparent latches can be used to demultiplex the address/data lines of the
80960KB processor and to hold the address constant during the memory operation, The latch
is controlled by the ALE signal from the 80960KB processor. ALE passes through an inverter,
so that when ALE goes low, the address flows through the latch. The low-to-high transition of
ALE can be used to latch the address. The output enable of the latch can be tied to ground.
The lower four address lines (LAD3-LADo) are latched by the burst logic.

Address Decoder

The 80960KB processor accesses both memory and I/O devices by supplying a 32-bit address
and a read/write command. The address decoder determines which particular memory or I/O
device is selected by decoding the address lines. The following discussion focuses on memory
selection, and the "Address Decoder" section in Chapter 5 on page 5-3 discusses I/O device
selection using memory-mapped I/O techniques.

4-2

inter MEMORY INTERFACE

The memory address can be divided into regions where one region can apply to EPROM or
ROM, another to RAM, and another to the I/O registers. In a 80960KB-based system the
ROM address space is likely to start at address 0000 OOOOH because the CPU begins execution
at this address. The RAM or I/O regions can start at any other address in the 4G-word address
range except for addresses FFOOooOOH through FFFFFFFFH, which the 80960KB processor
reserves for inter-agent communication.

Because of the large address range of the 80960KB processor, the address can be divided into
word address bits and chip select bits. Typically the higher-order address bits are decoded to
generate the selection signal for ROM, RAM, or I/O deviGes.

The address decoder can be located either before or after the address latches. Usually, it is
placed after the latches, so that the chip-select signal does not need to be latched. Figure 4-1
shows the block diagram of the address decoder placed behiqd the address latches.

Burst Logic

To enhance system performance, the 80960KB processor performs burst transaction~ that
transfer up to four data words at a maximum rate of one word every clock cycle. A DRAM
controller can be designed that takes advantage of the burst-trilDsfer capability by using the
static column mode or nibble mode features of the DRAM (see the "DEAM Controller" section
on page 4-5). This DRAM controller requires a signal, called CYCLE-IN-PROGRESS, to
identify the start and end of a memory cycle. The burst logic generates the CYCLE-IN­
PROGRESS signal.

Figure 4-2 shows the flow chart for the burst logic. If ADS is low and DEN is high, then the
burst logic latches LAP3 through LADo' and asserts the CYCLE-IN-PROGRESS signal. The
burst logic checks the SIZE signals (LAD! and LADo). If the value of the SIZE signals equal
zero, then the burstJogic runs one memory cycle, and terminates the CYCLE-INcPROGRESS
signal. If the value of the SIZE signals do not equal zero, the burst logic runs one memory
cycle, increments the address (LAD3 and LAD2), and decrements the value of the SIZE
signals. When this is finished, the burst logic checks the value of the SIZE signals again.

inter MEMORY INTERFACE

SAMPLE ADS
and DEN

LATCH LAD3-LADo
AND

ASSERT CYCLE-IN­
PROGRESS.

NO

RUN ONE CYCLE.

DECREMENT SIZE.

INCREMENT
LAD3-LADO

NO

YES

DEASSERT
CYCLE-IN-PROGRESS

RUN ONE CYCLE

Figure 4-2: Burst Logic Flow Chart

4-4

inter MEMORY INTERFACE

The burst logic can be used with memory devices, such as EPROM, SRAM, or DRAM without
static column mode or nibble mode, which do not inherently support a burst transaction.
Because the 80960KB processor ensures that a burst transaction cannot exceed four words or
cross a 16-byte boundary, incrementing LAD3 and LADz after a single data word transfer
makes the burst transfer transparent to these devices.

Timing Control Logic

The timing control logic accommodates memory devices that cannot transfer information at the
maximum bus rate by generating a READY signal when the data is available. The timing
control logic consists of a counter and timing logic, as shown in Figure 4-3. The counter
produces a 4-bit binary count. The count begins when the CYCLE-IN-PROGRESS signal is
asserted. The timing logic asserts READY at the appropriate time based upon the count, the
EPROM-CS, and the SRAM-CS signals. For a burst transfer, READY resets the counter to
properly time a READY signal for the next data transfer. When CYCLE-IN-PROGRESS is
deasserted, the clock counting is terminated.

CYCLE-IN­
PROGRESS

CLK2

W/R

iiO:c5

SRAM-CS

DRAM-ROY

-+
--..
....

COUNTO

COUNTER COUNT! TIMING
START CYCLE COUNT2 LOGIC

COUNT3

t (\)

Figure 4-3: Timing Control Logic Block Diagram

r-"

p--.
p--.

READY

SRAM-OE

SRAM-WE

Because the timing of DRAM is more complicated, the DRAM controller generates a
DRAM-RDY signal to the 80960KB processor. In addition, the clock count, the w/R com­
mand, and SRAM-CS signal can also be used to generate SRAM-WE and SRAM-OE signals.

4-5

inter MEMORY INTERFACE

Byte Enable Latch

The byte enable latch holds the byte enable signals constant until the DRAM controller or
SRAM interface uses the signals. As mentioned in the ilL-Bus Signal Groups" section in
Chapter 3 on page 3-4, the byte enable signals specify which bytes (up to four) on the 32-bit
data bus are transferred during the data cycle. Each individual byte enable signal selects eight
data lines as shown in Table 4-1.

Table 4-1: Byte Enable Signal Decoding

BYTE ENABLE51GNAL ADDRESS LINE SELECTION

BEa LAD7.LADa

BEl LAD15·LADs

BE2 LADn LAD 16

BE3 LAD3l.LAD24

The byte enable signals are valid from the 80960KB processor before data is transferred.
These signals are asserted during the address cycle for the first data word transfer; they are
asserted again during the first data cycle for the second word transfer; the second data cycle for
the third word transfer; and the third data cycle for the fourth word transfer. For each word,
the byte enable signals remain valid throughout every data or wait cycle until READY is
asserted. After READY is asserted, the byte enable signals change during the next processor
clock cycle.

The ALE signal can be used to latch the first byte enable signals. READY can be used to latch
the other byte enable signals for each word.

SRAMINTERFACE

The basic memory interface can be used in conjunction with the SRAM interface to read and
write to SRAM. This section describes the SRAM interface and examines the timing.

SRAM Interface Logic

The SRAM interface logic uses the latched byte enable signals, the SRAM-WE, and the
SRAM-OE signals to generate four output enable signals (SRAM-OE3 through SRAM-OEo)
and four write enable signals (SRAM-WE3 through SRAM-WEO), as shown in Figure 4-4.
These signals allow the 80960KB processor to write to the data byte that is specified by the
byte enable signals. SRAMs with separate OE and CS signals require only one OE signal per
bank since the 80960KB ignores unrequested bytes in read operations.

4-6

MEMORY INTERFACE

BE3
SRAM-OE 3'

BE3
SRAM-OEz'

BE3
SRAM-OE 1'

BE3
SRAM-OEO•

SRAM-OE

SRAM-WE3

10---- SRAM-WE2

10---- SRAM-WEI

JO---- SRAM-WEO

SRAM-WE -----------'

Note:

• SRAMs with separate OE and CS require only one OE signal per bank.

Figure 4-4: Block Diagram for SRAM Interface

SRAM Timing Considerations

This section analyzes the critical timing paths of the SRAM control signals. From the critical
path, the timing equations can be derived to determine the memory access time for no wait
state operation.

When evaluating critical timing paths, the timing calculations should use worst-case parameter
specifications, rather than typical specifications. By using wOfst7case timing values, reliable
operation is assured over all variations in temperature, voltage, and individual device charac­
teristics. These timing values are determined by assuming the maximum propagation delay to
latch an address, select a memory device, and pass through data buffers and transceivers.

4-7

MEMORY INTERFACE

Figure 4-5 shows the critical timing path for a one-word SRAM read operation. The diagram
consists of three time periods: the address setup period (T addrset), the memory response period
(Tmem), and the data return period (Tdataset). Note that the timing for the read command and
output control signals does not enter into the critical timing path.

.. _--- T dataset ----+I

1...------------- SRAM READ CYCLE --------------1

Figure 4-5: Critical Timing Path for SRAM Read Operation

During the T addrset period, the 80960KB processor outputs a valid address that is latched on the
low-to-high transition of the ALE signal. The address decoder generates the SRAM-CS signal
from the latched address. During the Tmem period the SRAM responds to the commands and
signals and retrieves the data. The access time of the memory determines the duration of the
Tmem period. Tmem can be varied in increments of clock cycles by delaying the READY
signal.

The data must be available at the address/data pins of the CPU before the end of the data state.
The T dataset period must take into account the setup time requirement of the 80960KB proces­
sor and the throughput delay of a data transceiver.

For a no wait state operation, the data transfer word must be completed in two system clock
(CLK) cycles. The minimum time period for a no wait state operation (Tmem-no-wait) can be
determined by using equation 1.

T mem-no-wait = 2CLK - T addrset - T dataset

where: T mem-no-wait = Memory access time for no wait state operation

2CLK

Taddrset

Tdataset

= Two system clock (CLK) cycles

= Maximum delay to valid address
+ Maximum throughput delay of address latch
+ Maximum delay to generate chip select

= Maximum delay through data transceiver
+ Maximum data setup time of CPU

4-8

(1)

MEMORY INTERFACE

A similar analysis can be done for burst transactions. Equation I can be used to determine the
access time for no wait state operation of the first word. For subsequent words, equation 2 can
be used. In this equation, the address setup time is replaced by delay in the burst logic to
change the address (T burst). In this case, the data transfer of each subsequent word must be
completed in one system clock (CLK) cycle (no address state). The minimum access time for a
no wait state operation (T mem-no-wait) can be determined by using the lesser value of equation I
or equation 2.

T mem-no-wait = CLK - T burst - T dataset

where: T mem-no-wait = Memory access time for no wait state operation

CLK

Tburst

T dataset

= One system clock (CLK) cycles

= Maximum delay to change the address

= Maximum delay through data transceiver
+ Maximum data setup time of CPU

(2)

The memory access time can be extended by delaying the READY signal and adding wait
states.

The timing analysis described for a SRAM read operation can be used for EPROM timings. If
EPROMs are only used to store initialization programs, they are seldom accessed compared to
memory devices used to store program data or instructions. Consequently, the addition of wait
states during the read cycle does not affect overall system performance.

Figure 4-6 shows the critical timing path for an SRAM write operation. The diagram consists
of two time periods: the address setup period (T addrset) and the memory response period
(Tmem)·

4-9

MEMORY INTERFACE

~------ T mem --------..1

SRAM WRITE CYCLE ..

Figure 4-6: Critical Timing Path for SRAM Write Transaction

During the T addrset period, the 80960KB processor outputs a valid address that is latched on the
low-to-high transition of ALE. The address decoder generates the SRAM-CS signal from the
latched address.

During the Tmem period the SRAM responds to the commands and writes the data. The access
time of the memory determines the duration of the T mem period. T mem can be varied in
increments of clock cycles by delaying the READY signal.

Two timing paths should be considered during the T mem period: the path where data is supplied
to the memory, and the path that monitors the memory write cycle time. The first path takes
into account the time for the 80960KB processor to generate valid data, the throughput delay of
a data transceiver, and the data setup time requirement of the memory. The second path is the
memory write cycle specification. The longer of the two paths is the critical timing path.

By examining the timing path required to operate the SRAM, equation 2 can be derived which
determines SRAM write cycle time for no wait state operation. The memory cycle time is
determined by the lesser value of equation 1 or equation 2.

4-10

MEMORY INTERFACE

T mem-no-wait = 2CLK - T addrset

where: T mem-no-wait

2CLK

Taddrset

~ Maximum delay to valid data
+ Maximum throughput delay of data transceiver
+ Maximum data setup time of memory

= Two system clock (CLK) cycles

= Maximum delay to valid address
+ Maximum throughput delay of address latch
+ Maximum delay to generate chip select

(3)

The memory access time can be extended by delaying the READY signal and generating wait
states.

DRAM CONTROLLER

This section provides design guidelines for a DRAM controller. DRAMs offer static column
mode and CAS before RAS refresh features. This section shows guidelines on how to use
these features with the burst capability of the 80960KB processor to significantly enhance
system throughput.

The DRAM controller multiplexes the address into a row and column address, performs the
refresh operation, arbitrates between a refresh request and memory request, and generates the
necessary control signals for the DRAM. To implement these functions, the memory controller
uses an address multiplexer, arbiter, refresh interval timer, and DRAM timing and control as
shown is Figure 4-7.

A standard DRAM controller can be used, but it typically degrades system performance.

4-11

inter

l-B

AD
us
DRESS

DRA M-CS

CYC

PRO

ClK

lE-IN-

GRESS

MEMORY INTERFACE

to..

r
ADDRESS

MULTIPLEXER ROW/COL

'"'
ARBITER

MEM/REF

REF-REO REF-ACK

) <)

~
REFRESH

INTERVAL
TIMI;R

-
'"' DRAM
'"' TIMING

I-..

'"' AND ,...,
CONTROL

I-..

I-..

Figure 4-7: ORAM Controller Block Diagram

4-12

...
> ...

DRAMAs-

DRAMAa

RASa

CAS a
CAS 1

CAS2

CAS3

WE

DRAM-RDY

MEMORY INTERFACE

Address Multiplexer

The address multiplexer divides the DRAM address into a row and column address. The
proper selection of a row or column address is accomplished by the row/column select signal
(ROW/COL) from the DRAM timing and control circuit.

Refresh Interval Timer

The refresh interval timer periodically generates a refresh request (REF-REQ) by counting
enough bus cycles to equal the refresh interval period. Since a refresh request is processed
after a completed operation, the refresh period must take into account the time required to
perform a bus operation, as well as the DRAM refresh specification. For example, a 1M-bit
DRAM that requires 512 refresh cycles within 8 ms needs a refresh cycle every 15.6 lis. To
meet the DRAM specification, the refresh interval timer must generate a refresh request in less
than 15.6 lis to compensate for any required time to complete the operation with wait states.

After the REF-REQ signal is generated, the arbiter sends a refresh acknowledge signal
REF-ACK back to the interval timer to assure that refresh occurred before generating another
REF-REQ.

Arbiter

DRAM controller uses an arbiter to decide whether a memory cycle or refresh cycle is per­
formed. In a synchronous design, arbitration is easily performed because memory and refresh
cycle requests never occur at or near the same time.

The arbiter monitors memory cycle requests and refresh requests. The arbiter detects a DRAM
memory request by decoding two signals: DRAM-CS and CYCLE-IN-PROGRESS. The
REF-REQ signal indicates that a refresh cycle must be performed. The arbiter arbitrates
between a memory cycle or refresh cycle and generates a Memory/Refresh (MEM/REF) signal.
The DRAM timing and control block uses the MEM/REF signal to start the generation of the
control signals.

When a refresh cycle is performed, the arbiter sends a REF-ACK signal to the refresh timer,
which uses this signal to begin another count.

DRAM Timing and Control

The DRAM timing and control circuit is the final logic block and core of the DRAM con­
troller. The functions of this circuit include the following:

• Generating the DRAM control signals (RAS, CAS, and WE) with the proper timing
relationships during system operation

• Generating the DRAM-RDY signal

• Performing the refresh function by asserting CAS before RAS

4-13

MEMORY INTERFACE

• Perfonning several wann-up cycles required by the DRAM when power is first applied.

The DRAM timing and control logic can be designed to take advantage of the burst-transfer
capability of the 80960KB processor by implementing static column mode or nibble mode.
With nibble mode, a multiplexed address is applied to the DRAM, and up to four bits of data
are quickly transferred by successively toggling the CAS pulse. The DRAM timing and
control logic can be designed to provide the successive CAS pulses by using the CYCLE-IN­
PROGRESS and DRAM-RDY signals. Static column mode can also be used to take
advantage of the burst capability of the DRAM. Static column mode allows fast access to the
bits located in the selected row of the DRAM simply by changing the column address after the
first access.

Figure 4-8 shows a flow chart for the DRAM timing and control logic using static column
mode. The DRAM timing and control circuit receives a refresh request or a memory request
on the MEM/REF and CYCLE-IN-PROGRESS input signals. For a memory request, the
DRAM timing and control detennines whether a read or a write operation is desired from the
W!R signal from the 80960KB processor.

4-14

1.

2.
3.

4.
5.

1.

2.

READ

GENERATE ROW
ADDRESS
ASSERTRASO
GENERATE COLUMN
ADDRESS
ASSERT CASrCASo
ASSERT DRAM-ROY

CHANGE COLUMN
ADDRESS.
ASSERT DRAM-ROY.

MEMORY INTERFACE

SAMPLE MEM/REF AND
CYCLE-iN-PROGRESS

iNPUTS

REFRESH CYCLE

1. GENERATE ROW ASSERT CASrCASo
ADDRESS BEFORE RASO

2. ASSERT RASO AND WE
3. GENERATE COLUMN

ADDRESS
4. ASSERT CAS3-CASO
5. ASSERT DRAM-ROY

1. DEASSERT CAS3-CASo
2. CHANGE COLUMN

ADDRESS
3. ASSERT CASrCASo
4. ASSERT DRAM-ROY

DEASSERT RAS TO END CYCLE.

Figure 4-8: Flow Chart for DRAM Timing and Control Logic

For a read operation, the DRAM timing and control logic performs several functions: it brings
ROW/COL high to select a row address; it ~sserts RASa; it brings ROW/COL low to select the
column address; it asserts CAS3 through CASa (derived from the four latched byte enable
signals); and it generates a DRAM-RDY signal. The DRAM-RDY signal causes the burst
logic to increment the address and the 80960KB processor to read the data word.

4-15

MEMORY INTERFACE

After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and
control logic maintains the ROW/COL signal low to select the new column address and
generates another DRAM-RDY. The DRAM timing and control logic repeats the procedure
until all the data words are transferred. Then the DRAM timing and control logic deasserts
RASo and observes the necessary row precharge specification of the DRAM.

For a write operation, the DRAM timing and control logic performs similar functions on the
first word: it asserts WE; it brings ROW/COL high to select a row address; it asserts RASo; it
brings ROW/COL low to select the column address; it asserts CAS3 through CASo (derived
from the four latched byte enable signals); and it generates a DRAM-RDY signal. The
DRAM-RDY signal causes the burst logic to increment the address and informs the 80960KB
processor that the data word was written.

After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and
control logic maintains the ROW/COL signal low to select the new column address, deasserts
and asserts CAS3 through CASo to observe the CAS precharge specification of the DRAM,
and generates another DRAM-RDY. The DRAM timing and control logic repeats the proce­
dure until all the data words are transferred. Then the DRAM timing and control logic
deasserts RASo and observes the necessary row precharge specification of the DRAM.

Although only one RAS signal is generated, four CAS signals (CAS3-CASo) are generated to
enable each byte of the L-bus. These CAS signals are triggered by the four· write signals
generated by the byte enable decoder and correspond to the byte enable signals of the
80960KB processor. For example, CASo' which is mapped directly from BEo' selects the
least-significant data byte (LAD7-LADo).

A single WE control signal and four CAS signals ensure that only those DRAM bytes selected
for a write cycle are enabled. All other data bytes maintain their outputs in the high-impedance
state. A common design error is to use a single CAS control signal and four WE control
signals, using the WE signals to write the DRAM bytes selectively in write cycles that use
fewer than 32 bits. Although the selected bytes are written correctly, the un selected bytes are
enabled for a read cycle. These bytes output their data to the unselected bytes of the data bus
while the data transceivers output data to every bit of the data bus. When the two devices
simultaneously output data to the same bus, bus contention occurs.

The refresh function can be performed simply by asserting CAS signal before asserting RAS.
The CAS before RAS refresh feature eliminates the need for an external refresh address
counter. When the CAS pulse is activated prior to the assertion of the RAS pulse, the DRAM
automatically performs a refresh cycle on one row by employing an on-chip address counter.
Upon completion of the refresh cycle, the address counter is automatically incremented. The
MEM/REF signal from the arbiter can be used by the DRAM timing and control logic block to
initiate a CAS before RAS refresh cycle.

Besides generating the RAS, CAS, and WE signals, the DRAM timing and control logic
generates a number of warm-up cycles for the DRAM after reset by issuing several refresh
requests.

4-16

inter MEMORY INTERFACE

Timing Considerations for the DRAM Controller

Figure 4-9 shows a typical example of a timing diagram for a two-word read transaction that
uses static column mode; similarly, Figure 4-10 is a typical example for a two-word write
transaction. The example assumes a memory access time that requires two wait states (T w) for
the initial data word and one wait for the second data word.

The critical timing areas for both read and write transactions are noted by circled numbers in
the diagrams, which are explained in the enumerated list below.

1. The delay for the CPU to generate a valid address.

2. The delay for the DRAM timing and control logic to generate the CYCLE-IN-PROGRESS
signal.

3. The delay to generate the DRAM row address. This time includes the address latch
throughput delay, the multiplexer throughput delay, and the address driver delay.

4. The delay to generate RAS, which includes the delay to generate the DRAM-CS signal.

5. The row address hold time after the high-to-Iow transition of RAS.

6. The time required to generate the multiplexer control signal (ROW/COL) after the row
address hold time is satisfied.

7. The time required to switch from a row to column address plus any driver delays.

8. The delay to generate and drive the CAS signals.

9. For a read transaction, the throughput delay of the data transceivers. For a write trans­
action, the delay by the CPU to generate valid data.

10. For a read transaction, the data setup time of the CPU. For a write transaction, the
throughput delay of the data transceivers.

11. The time required to increment and drive the column address.

12. For a write transaction only, the delay time to bring CAS high (terminate the CAS pulse
for the first data byte), to precharge the CAS pulse (required by the DRAM), and to assert
CAS again.

13. The RAS precharge time, which must be satisfied before another memory cycle can begin.

4-17

inter

ClK2

ClK

DATA TO
TRANSCEIVER

W/R

CYClE-IN­
PROGRESS

DRAMAg­
DRAMAo

ROW/cOl

ME;MORY INTERFACE

Figure 4-9: Timing Diagram for Two-word DRAM Read Transaction

4-18

ClK2

ClK

DATAFRDM
TRANSCEIVER

W/R

CYCLE-IN·
PROGRESS

DRAMA,­
DRAMAo

ROW/COL

MEMORY iNTEi=lFACE

Ta Tw

Figure 4-10: Timing Diagram for Two-word DRAM Write Transaction

DRAM Interleaving

T,

Because the DRAM consists of dynamic nodes, a row precharge time is required torecharge
the nodes after every memory Gycle. This time must be included in the timing evaluation, as
noted by the example. To avoid the precharge time delay of the DRAM, the memory array can
be arranged so that each subsequent memory access is most likely to be directed to a different
bank. In this configuration, wait time between accesses is not required because while one bank
of DRAMs peifoims the current access, another bank precharges and is ready to perform the
next access immediately.

If DRAMs are interleaved (i.e., arranged in multiple banks so that adjacent addresses are in
different banks), the DRAM precharge time can be masked for rhost accesses. With two banks
of DRAMs, one for even 32-bit addresses and one for odd 32-bit addresses, all sequential
32-bit accesses can be completed without waiting for the DRAM to precharge.

Even when random accesses are made, two DRAM banks allow 50 percent of back-to-back
accesses to be made without waiting for the DRAMs to precharge. The precharge time is also
masked when the 80960KB processor has no bus accesses to be performed. During these idle
bus cycles, the most recently accessed DRAM bank can precharge so that the next memory
access to either bank can begin immediately.

4-19

inter MEMORY INTERFACE

SUMMARY

The memory interface circuit allows the 80960KB processor to communicate with the memory
devices. The basic memory interface logic can be divided into six blocks: the data
trailsceivers, the address latches, the address decoder, the burst logic, the DRAM timing and
control logic, and the byte enable latch. The DRAM controller and SRAM interface complete
the memory interface circuit. The DRAM controller can be designed to take advantage of the
80960KB processor's burst capability to enhance system performance.

This chapter focuses on the design guidelines for the memory interface design to the 80960KB
processor. Chapter 5 develops guidelines on designing peripheral devices in the single­
processor hardware system.

4-20

lID Interface 5

CHAPTER 5
1/0 INTERFACE

The 80960KB processor supports 8-bit, l6-bit, and 32-bit I/O devices that can be mapped into
the 4G-byte memory address space. This chapter describes the design considerations for the
interface between the 80960KB processor and I/O components. Several examples illustrate the
design concepts.

INTERFACING TO 8-BIT AND 16-BIT PERIPHERALS

The 80960KB processor accesses I/O devices by using a memory-mapped address. Con­
sequently, memory-type instructions can be used to perform input/output operations. For
example, the 80960KB processor's LOAD and STORE instructions can be used to move 8-bit
and l6-bit data to I/O peripherals. The instructions include those listed below.

• Load Ordinal Byte (reads a byte)

• Load Ordinal Short (reads l6-bit data)

• Store Ordinal Byte (writes a byte)

• Store Ordinal Short (writes l6-bit data)

These instructions perform the transfer on the data bits specified by the two low-order lines of
the effective address. See the 80960KB CPU Programmer's Reference Manual for complete
details.

GENERAL SYSTEM INTERFACE

In a typical 80960KB processor system design, a number of slave I/O devices can be controlled
through a general system interface. Other I/O devices, particularly those capable of controlling
the L-bus, can use the general system interface,· but may require additional logic to isolate the
bus. This section describes the general system interface and assumes that the 80960KB
processor does not perform burst transactions to the I/O devices.

Figure 5-1 shows the major logic blocks of the general system interface. Standard 8-bit data
transceivers add drive capability, provide bus isolation, and prevent bus conflicts that may
occur with slow I/O components. The address latch demultiplexes the address/data lines and
holds the address stable throughout the L-bus transaction. The address decoder generates the
I/O chip-select signals from the latched address lines. The timing control block provides the
READY signal to the 80960KB processor and the I/O read and I/O write command.

5-1

inter 1/0 INTERFACE

,. -- ~

LAD31-LADO ... DATA '"
DT/R ~ DIR TRANSCEIVERS
DEN -+C G .. ADDRESS

ALE W LE
LATCHES

.&G Q

~ ,.
80960KB

PROCESSOR ADDRESS
DECODER

)

ADS TIMING
READY CONTROL

W/R

INTo h.

INTI

INT2/1NTR

INT3/1NTA
HOLD

HLDA

CLK2 !

Figure 5-1: Simplified General System Interface

5-2

..
"

}
}

I)ATA

LOWER
ADDRESS LINES
USED TO SELECT
1/0 REGISTERS

I 10 CHIP
SELECT
LINES

I lORD

I 10WR

NTERRUPT PINS

ARBITRATION
PINS

1/0 INTERFACE

This basic interface circuit is similar to the one used in the basic memory interface described in
Chapter 4. For most systems the same data transceivers, address decoders, and address latches
can be used to access both memory and I/O devices. The timing control logic can be designed
to accommodate both memory aI1d I/O devices.

Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for
the L-bus. Transceivers prevent bus contention that can occur if some devices are slow to
remove data from the data bus after a read cycle. For example, if an I/O write cycle follows a
I/O read cycle, the 80960KB processor may drive the L-bus before a slow device has removed
its outputs from the bus, potentially causing a current spike. Transceivers, however, can be
omitted if the data float time of the device is short enough and the load does not exceed the
80960KB device specifications.

The data transceiver can be controlled by two signals from the 80960KB processor: Data
TransmitlReceive (DT/R) and Data Enable (DEN). DT/R indicates the direction of data flow
and DEN enables the transceivers.

Address Latch/Demultiplexer

Standard transparent latches can be used to demultiplex the address/data lines of the 80960KB
processor. The latch is controlled by the ALE signal from the 80960KB processor. The ALE
signal passes through an inverter, such that when ALE goes low, the address flows through the
latch. The low-to-high transition of ALE can be used to latch the address.

If only slave-type peripherals are used in a system, the output enable of the latches can always
remain active by connecting it to ground. For systems with DMA devices, the output enable
can be used to permit the DMA device to drive a common address bus.

Address Decoder

The address decoder determines which particular I/O device is selected by decoding the ad­
dress. The I/O address can be any address in the 4G-word address range except for the upper
16M bytes (addresses FFOOOOOOH through FFFFFFFFH), which the 80960KB processor
reserves for inter-agent communication and internal I/O. Typically, a small range of address
bits is reserved for accessing I/O devices by designating certain higher-order address bits to
mean an I/O access.

For example, consider a 32-bit address: A3I through AI5 can indicate an I/O access when A3I
is set to zero, and A30-AI5 are set to one; AI4 through A5 can be used to specify a particular
I/O device; and A4 through A2 can be used to access up to 8 registers of the I/O component.
Al and Ao are not used by the I/O device. This particular scheme selects up to 1,024 devices,
while using only 32K bytes of address space.

The address decoder can be located either before or after the address latches. Usually, it is
placed after the latches, so that the chip-select signal does not need to be latched.

5-3

1/0 INTERFACE

Timing Control Logic

The timing control logic accommodates I/O devices that cannot transfer information at the
maximum bus rate by generating a READY signal when the data is available. The timing
control logic consists of a counter and timing logic, as shown in Figure 5-2. The counter
produces a 4-bit binary count. The count is started at the beginning of the operation
(determined by ADS and DEN) and is stopped by the READY signal. The timing logic asserts
the READY signal, the I/O write command (1/0-WR), and the I/O read command (l/O-RD)
based upon the clock count, the I/O chip select signal (I/O-CS), and the w!R command.

I
co UNTo ~ COUNTER COUNT,

START CYCLE
TIMING

COUNT2 LOGIC
COUNT)

ClK

t J

Figure 5-2: Timing Control Block Diagram

0-

0-

READY

IIO-RD

IIO-WR

For many peripherals, the timing logic can be programmed to assert READY at the appropriate
count for the seiected device. Specific I/O chip select signals can be used to indicate how
many clock cycles to wait before asserting READY.

For some I/O peripherals, particularly bus masters, READY cannot be determined by counting
clock cycles. For these I/O devices, READY can be supplied by the device and passed on to
80960KB processor.

The timing control block can assert the I/O-RD or 1/0-WR signal for I/O devices based upon
the clock count. The timing for these signals can be selected for the slowest device to simplify
the logic circuit or can be customized for each individual peripheral device to maximize
performance.

5-4

I/O INTERFACE

I/O INTERFACE DESIGN EXAMPLES

The general system interface shown in Figure 5-1 can be used to connect the 80960KB
processor to many slave peripherals. The following list includes some commbn peripherals
compatible with this interface:

• 8259A Programmable interrupt Controller

• 8253, 8254 Programmable Interval Timer

• 8272 Floppy Disk Controller

• 82062, 82064 Fixed Disk Controller

• 82510, Asynchronous Serial Controller

• 8274, 82530 Multi-Protocol Serial Controller

• 8255 Programmable Peripheral Interface

• 8041,8042 Universal Peripheral Interface

This section provides guidelines and design considerations for interfacing the 80960KB
processor to different types of I/O configurations. Specifically, four design examples are
examined. The 8259A and 82530 design examples show how to interface the 80960KB
processor to a slave-type peripheral device. The 82586 design example shows how a 16-bit
bus master reads and writes to the 80960KB processor's system memory. The 82786 design
example shows how the 80960KB processor can read or write to graphics memory using a
16-bit data bus.

8259A Programmable Interrupt Controller

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven
microcomputer systems, where it manages up to eight independent interrupts. The 8259A
handles interrupt priority resolution and returns an 8-bit vector to the 80960KB processor
during an interrupt-acknowledge cycle. Intel Application Note AP-59 contains detailed infor­
mation on configurations of the 8259A.

Interface

Figure 5-3 shows the connection of the 80960KB processor to a single 8259A Interrupt Con­
troller. This circuit consists of the general system interface plus a bidirectional buffer. The
example assumes that several interrupt requests occur at the same time so that priority resolu­
tion is needed.

5-5

1/0 INTERFACE

..
D4 Bs As I-- D7 LAD31 -LAOO DrDo
D3 B7 A7 ~ D6

DT/if DIR D2 B6 ~ r-- Ds
DEN G

DATA
D1 Bs

BIDIRECTIONAL
AS I: : D4

DO B4 ~ D3
TRANSCEIVERS D7 B3 BUFFER A3 f-------oo D2

D6 B2 A2 I: : D1
Ds B1 A1 Do

GBA GAB ..
ADDRESS

ALE ,I\.,. LE
LATCHES

Ao ~
.&G

IRrlRo

Q

80960KB • A,

~ PROCESSOR

"
8259A

PROGRAMMABLE
INTERRUPT

~
CONTROLLER

ADDRESS
DECODER

B2S9A-CS

Y cs
!

ADS TIMING WR WR

READY CONTROL
W/R RD RD

INTA J INTA

INTR INT

ClK2
t

Figure 5-3: Block Diagram for 8259A Interface

The data lines from the 8259A are not directly aligned to the 80960KB processor because of
the difference in priority resolution between the devices. Although both devices use an 8-bit
interrupt vector, the 80960KB processor implicitly defines the priority by dividing the interrupt
vector by eight. The 8259A defines the priority in the lower three bits of the interrupt vector.
Furthermore, the highest priority vector of the 80960KB processor has a value of 31 in the
upper five bits of the interrupt vector. Whereas, the highest priority interrupt of the 8259A has
a value of 0 in the lower three bits of the interrupt vector.

To resolve the priority difference, the interrupt vector from the 8259A can be inverted and
rotated left by three bits as shown by the data alignment between the 80960KB processor and
8259A in Figure 5-3. Rotating the data bits in this manner provides two advantages: the
interrupt table for the 8259A can be located by contiguous addresses, and the upper two most
significant bits of the interrupt vector remain free to group interrupt vectors if additional
8259As are needed.

Care must be exercised, however, when programming the registers of the 8259A. For ex­
ample, assume that the second initialization command word (ICW2 register) of the 8259A
requires a data byte value of 00011 11 lB' To transfer the correct information, the 80960KB

5-6

inter 1/0 INTERFACE

processor needs to write a data word with the value of 00000111 B because this word is rotated
left three places and inverted.

Operation

The 8259A starts the interrupt cycle by generating an interrupt request (INT) to the 80960KB
processor, which receives the signal at the INTR input pin. This assumes the Interrupt Control
register of the 80960KB processor is set to accommodate an external interrupt controller.

When the 80960KB processor comes to a breakpoint in its execution, it asserts the INT A signal
twice. The first INTA signal acknowledges the interrupt request and causes the 8259A to
prioritize the interrupt requests it received up to this point. The INT A, together with the
8259A-CS, are applied to the timing control logic to generate a READY signal.

The 80960KB processor automatically asserts the second INT A signal five clock cycles after
the assertion of READY. After the second assertion of INTA, the 80960KB processor reads
the interrupt vector from the 8259A.

The bidirectional buffer inverts and passes the 8-bit vector to the 80960KB processor with the
appropriate lines rearranged. The output enable signal for the data buffer is controlled by
INT A for this operation. After the data transfer is completed, the timing control circuit
generates a second READY signal to terminate the interrupt acknowledge cycle.

The same circuitry can be used to read or write to the 8259A registers. In this case, the
80960KB processor selects the 8259A through a memory-mapped address. Local address line
2 (A2) selects one of two internal registers of the 8259A. The I/O read or I/O write command
is generated by the timing control circuit. The data passes through the bidirectional data buffer
to or from the selected register of the 8259A.

The direction of data flow through the buffer is controlled by three logic gates shown in Figure
5-3. For an I/O write operation, the I/O write command and 8259A-CS signal control the
output enable signal of the bidirectional buffer. Similarly, for a read operation, the I/O read
command and the 8259A-CS signal control the output enable signal of the latch. After the data
is transferred, the timing control circuit asserts READY.

82530 Serial Communication Controller Example

The 82530 Serial Communication Controller is a dual-channel, multi-protocol controller with
on-chip baud rate generators, digital phase locked loops, various data encoding/decodings, and
extensive diagnostic capabilities. The 82530 is designed to interface with high-speed serial
communications lines using a variety of communication protocols, including asynchronous,
synchronous, and HDLC/SDLC protocols. The 82530 contains two independent full-duplex
channels.

The general system interface circuit previously described can be used to connect the 80960KB
processor to the 82530, as shown in Figure 5-4. The 82530 can send an interrupt request to the
80960KB processor as shown or it can send the interrupt request to an interrupt controller,
which in tum sends it to the 80960KB processor. The 80960KB processor responds to the

5-7

inter 1/0 INTERFACE

interrupt request and issues an address. After the address is latched, the address lines are
decoded to generate a chip-select (82530-CS) signal to activate the 82530 .

.. .- I LAD31-LADo D7-DO D7-DO ,. DATA I

DTIR r--- DIR TRANSCEIVERS
DEN f--c G A CHANNEL , I .. BCHANNEL

ADDRESS , I
ALE

...... LATCHES .,.... LE

.&G Q

A3
AlBCHANNEL

A2
DIe (DATAICOMMAND)

~
.,

82530 SERIAL

80960KB COMMUNICATIONS

PROCESSOR
ADDRESS CONTROLLER
DECODER

B2530-C5

CS

(

ADS -" RD
TIMING

READY CONTROL
W/R WR

t INTA

INTo INT

CLK2 t

Figure 5-4: BlockDiagram for 82530 Interface

The lower two address lines, A2 and A3, are used for chanE.el selection and command/data
selection. A2 is connected to the Channel-NChannel-B (AlB) select input pin. This selects
the channel that p~rforms the serial read or write operations. A3 is connected to the
Data/Command (D/C) select input pin. This signal defines the type of information· transferred
to or from the 82530 on the data lines (07 through Do)' A high level means data is transferred;
a low level indicates a command.

5-8

1/0 INTERFACE

The timing control circuit generates an I/O read or I/O write command based upon the W if{
command from the 80960KB processor. When the data transfer is completed, the timing
control circuit sends a READY signal to terminate the transaction.

The baud rate clocks can be programmed in several ways, including use of an external crystal.

82586 Local Area Network Coprocessor Example

The 82586 is an intelligent, high-performance communications controller designed to perform
most tasks required for controlling access to a local area network (LAN), such as Ethernet or
Starlan. In many applications, the 82586 is the communication manager for a station con­
nected to a LAN controller. Such a station usually includes a host CPU, shared memory, a
Serial Interface Unit, a transceiver, and LAN controller link, as shown in Figure 5-5. The
82586 performs all functions associated with data transfer between the shared memory and the
LAN link, including:

• Framing

• Link management

• Address filtering

• Error detection

• Data encoding

• Network management

• Direct memory access

• Buffer chaining

• High-level (user) command interpretation

5-9

,.
."

<II ~

'"
,.

80960KB PROCESSOR

1/0 INTERFACE

MEMORY AND
MEMORY CONTROLLER

~ ~

~ ~

CHANNEL '"

ATTENTION

~

INTERRUPT

~ ~

'"
,.

82586 LAN
COPROCESSOR

SERIAL .. ~

INTERACE~ ,.
82501 ETHERNET

SERIAL INTERFACE

TRANSCEIVERt
CABLE

82C502 ETHERNET
TRANSCEIVER CHIP

IEEE B02.3/ETHERNET LINK I

Figure 5-5: LAN Station

-'0..

r

The 82586 has two interfaces: a 16-bit bus interface and a network interface to the Serial
Interface Unit. The bus interface is described here. For detailed information on using the
82586, refer to the Local Area Networking Component User's Manual.

Interface

There are several ways to design an interface between the 82586 and the 80960KB processor.
The chosen design example shows how to interface the 82586 using a shared bus. In this
example, the 82586 operates in minimum mode at one-half the processor clock frequency.

The primary function of the interface circuit is to allow the 82586 to read and write 16-bit data
using the 32-bit L-bus. This is accomplished by adding the high-order address lines and
translating the 16-bit data lines to the 32-bit data lines by using byte enable signals.

5-10

inter 1/0 INTERFACE

Figure 5-6 shows the 82586 interface circuit, which includes the DRAM controller (see the
"DRAM Controller" section in Chapter 4 on page 4-11). This interface uses the general system
interface circuit plus other logic units that specifically pertain to the 82586: the LAN data
transceivers, the byte enable converter, and the LAN address latches. These logic blocks are
highlighted by the shaded boxes.

HOLD

HLDAI---.------------t---------I·ILDA

LAD".LAD, 11I- •• r-:::::-I'1IlIIiiiiilji __ .. ~ DATA I"
DTI.I--"-I-I DI. TRANSCEIVERS

DEN r-1r-rc~-----1

80960KB
PROCESSOR

ADDRESS
LATCHES

Q

ADDRESS RAM-CS
DECODER LAN-es

CYClE-IN·PROGRESS

ADSb---l+~
READY i:>.-----I*---q

TIMING P:4+.=I~C>-+-----.J CONTROL WRP

DRAM-ROY

MEMORY
CONTROLLER

& DRAM

Figure 5-6: Block Diagram for LAN Controller Interface

INTERFACE

The LAN data transceivers connect 16 data lines from the 82.586 to both the upper and lower
16 bits of the L-bus. The data transfer is controlled by converting Ao' AI' and the BHE to four
byte enable signals as shown in Figure 5-7. Al selects between the upper and lower 16-bit data
lines; Ao selects the lower data byte for either the upper or lower 16-bit data lines; and the byte
high enable signal (BHE) selects the upper data byte for either the upper or lower 16-bit data
lines. Data flows through the buffers when the appropriate byte enable signal is asserted. The
direction of the data flow is controlled by the DT/R signal of the 82586.

5-11

1/0 INTERFACE

A,

Aa BEa

i3H'E BE,

BE2

BE3

Figure 5-7: Byte Enable Generation Circuit

The LAN address latches are used to demultiplex ADlS through ADo' The address lines and
BHE are latc~ed by the ALE signal from the 82586. The upper address lines (A3l through
Al6) are generated by hardware programmable DIP switches.

The 82586 begins operation when the Channel Attention (CA) input signal is asserted. This
signal is generated by gating the write command and 82586 chip select signal.

Operation

The interaction between the 82586 and the 80960KB processor is described below and is
summarized in Figure 5-8.

• The 80960KB processor invokes the 82586 by supplying a memory-mapped address and a
write command. The memory-mapped address results in a 82586~CS signal, which is
gated with a write command to produce the CA signal.

• The 82586 responds by generating a hold request and waits for HLDA.

• The 80960KB processor asserts HLDA, which enables the outputs of the LAN address
latches arid disables the outputs of the address latches next to the 80960KB processor. The
BLDA signal also gives control of the L-bus to the 82586.

• After the 82586 takes ~ol of the bus, it generates a 16-bit address (An lS through ADo),
an ALE signal, and a BHE signal. The upper address lines are provided by the programm­
able DIP switches to produc~ an address on the L-bus.

• ~d Ao (from the 82586), and BilE are decoded to generate four byte enable signals
(BE3 through BEo)' DEN enables the output of the byte enable converter.

• DT/R from the 82586 controls the direction of the data flow through the buffers.

5-12

inter 1/0 INTERFACE

• The read or write signal from the 82586 is applied to the DRAM controller.

• The 82586 accesses DRAM by using the DRAM controller.

• The DRAM-RDY is asserted by the DRAM controller. This action enables the output of
the LAN data transceiver and terminates the 82586 memory cycle. The timing control
logic passes the PRAM-RDY signal as the READY signal to the 82586.

" The 82586 deasserts HOLD and the 80960KB processor deasserts HLDA. The 80960KB
processor regains control· of bus.

5-13

1/0 INTERFACE

Figure 5-8: Operational Flow Diagram for 82586 Interface

82786 Graphics Coprocessor Example

The 82786 is a high performance graphios processor that provides high quality text and ad­
vanced display control. It provides full liuPport for graphics primitives at up to 25 million
pixels per second and bit~mapped text up to 25 thousand characters per second. This graphics

5-14

inter I/O INTERFACE

processor supports advanced features such as hardware windows, zooming, panning, and
scrolling. Intel Application Note AP-259 and Application Note AP-270 contain detailed infor­
mation on 82786.

When using the 82786, it may be necessary for the 80960KB processor to write to graphics
memory. The interface design example illustrates how the 80960KB processor can transfer a
32-bit data word to the 16-bit data bus of the 82786.

Interface

There are several ways to design an interface between the 82786 and the 80960KB processor.
In this example, the 80960KB processor reads or writes to graphics memory by accessing the
82786 through the interface logic circuit. This example assumes that the 82786 operates in the
slave mode, and that the 80960KB processor does not perform burst transfers. The 80960KB
processor only performs burst transfers for instructions that specify accesses for more than one
word or for instruction fetches.

The interface circuit translates a 32-bit data bus to a 16-bit data bus by dividing the data lines
into the upper and lower 16 bits and sequencing the data transmission. When the 80960KB
processor writes to graphics memory, the bidirectional transceivers sequence the lower and the
upper data bits of the L-bus to the 16-bit data bus of the 82786.

The process is reversed when the 80960KB processor reads from graphics memory. The
bidirectional transceivers form a 32-bit data word by latching the first 16-bit data word on the
lower data lines, routing the next 16 bits to the upper data lines, and then passing the 32-bit
data word on the L-bus.

Figure 5-9 shows the details of the graphics controller interface circuit. This interface uses the
general system interface circuit plus the following logic units: the bidirectional transceivers,
the data buffer control, the data bus controller, and the address translator. These logic blocks
are highlighted by the shaded boxes.

5-15

DATA
DTIift--IIII---tDIR TRANSCEIVERS
DEN G

ALE b-I:>O-....... -IILE

ADDRESS
LATCHES

1/0 INTERFACE

B2786
GRAPHICS

COPROCESSOR

....,-t-..... ~5EN
~-t-.._..aRD

~-t-.._..aWR
--l-t-.._-t MiIlr

80960KB
PROCESSOR

CLK2

.. __ ___ • ____ A
l1

-Ao

.-----t-+laREADY
t-+-----i------i-f-i.._.aC5

ADDRESS
DECODER

82786-C51:>-+-+-+-+--o

wlift---r-------~r_~~-+

READY p.--t--------+-t---------'

BYTE
ENABLE
LATCH

=>----11 oct BHE

MEMORY

DATA

Figure 5-9: Block Diagram for 82786 Interface

CRT

The bidirectional transceivers pass data to (from) a 32-bit data bus from (to) a 16-bit data bus.
Data is sequenced through the transceivers by the control signals generated by the data buffer
control logic.

The data buffer control logic generates the signals that operate and sequence the bidirectional
transceivers. The direction signal for data flow through the transceivers is derived from the
W IR signal of the 80960KBprocessor. The data buffer control logic generates four output
enable signals: GABL enables the outputs on the B side for the lower 16 bits; GBAL enables
the outputs on the A side for the lower 16 bits; GABH enables the outputs on the B side for the
higher 16 bits; and GBAH enables the outputs on the A side for the higher 16 bits. These
output enable signals are derived from the byte enable signals and are asserted when the slave
enable signal (SEN) is activated by the 82786.

The select lines for the bidirectional transceivers allow data to flow from either the latched data
or the input pins. These lines, which are not shown, can be hardwired.

The data bus controller provides the read and write commands, memory or I/O·signal (MIlO),
and a READY 0 signal. This circuit generates two read or write commands for every 32-bit

5-16

inter I/O INTERFACE

data transfer to or from the 80960KB processor (one for each 16-bit data transfer). The data
bus controller starts counting clock cycles when the 82786-CS and CYCLE-IN-PROGRESS
signals are asserted. At the proper time (based upon clock counts), it asserts the read/write
command. The data bus controller produces READYo after receiving the SEN signal from the
82786. READY 0 resets the count, and another read/write command is generated.

The address translator performs four functions: it converts the four byte enable signals to Ao'
AI' and BHE; it increments Al after receiving READYo for the first 16-bit transfer; it
generates the clock signal (CBAL) that latches the first 16-bit data word in the bidirectional
transceivers when the 80960KB processor performs a read operation; and it generates the
READY signal for the CPU.

Not shown is the cycle detector circuit that generates the CYCLE-IN-PROGRESS signal. This
signal can be generated by using the circuit similar to the one shown in Figure 5-2. The start of
the cycle can be detected by gating the ADS and DEN signals. The end of the cycle can be
indicated by READY.

Operation

The interaction between the 82786 and the 80960KB processor is summarized in Figure 5-10.
The operation is divided into two 16-bit data movements for both a read and write operation.

5-17

inter

FIRST 16·BIT
DATA TRANSFER

1/0 INTERFACE

80960K8 GENERATES ADDRESS AND

DATA

INTERFACE CIRCUIT GENERATES

ASSERTING SEN

READ OPERATION
INTERFACE CIRCUIT CONTROLS DATA FLOW:

- GENERATES READY 0

WRITE OPERATION
INTERFACE CIRCUIT CONTROLS DATA FLOW:

- GENERATES READY 0

- LATCHES DATA ON LOWER 16 BITS WITH - ENABLES OUTPUTFOR DATA ON LOWER
CLOCK SIGNAL (CBALl

- INCREMENTS ADDRESS A,
16 BITS

- INCREMENTS ADDRESS A,

82786 DEASSERTS SEN

DATA BUS CONTROLLER GENERATES

RD (OR WR). BHE. and MilO

82786 RECOGNIZESCS BY

ASSERTING SEN

WRITE OPERATION
INTERFACE CIRCUIT CONTROLS DATA FLOW:

- GENERATESREAoYo
- ENABLES OUTPUTFOR DATA ON HIGHER

16 BITS

INTERFACE CIRCUIT GENERATES

READY FOR 80950 AND 82786 AND

DEASSERTS SEN

Figure 5-10: Operational Flow Diagram for 82786 Interface Circuit

5-18

inter 1/0 INTERFACE

The 80960KB processor generates a memory-mapped address and data for the desired graphics
memory location. It accesses the 82786 by triggering the interface circuit to generate the chip
select signal and several operational signals: the read (RD) or write (WR) command, BHE, and
the memory or I/O (MilO) signal. The 82786 begins the memory operation after it completes
the current graphics processing activity. The 82786 acknowledges that it is performing a
memory operation by asserting SEN.

After the 82786 asserts SEN, it begins a 16-bit memory read or write operation by translating
the address inputs (A21 through Ao) to a multiplexed DRAM address, and generating the
DRAM control signals. Note that AI and Ao are derived from the byte enable signals.

For a read operation, the data bus controller uses SEN to generate the READYo signal. The
assertion of READYo causes the address translator to increment AI and to generate CBAu
which latches the lower 16 data bits on the B inputs of the bidirectional transceivers to the A
side.

Similarly, for a write operation, the data bus controller uses SEN to generate the READYo
signal. The assertion of READY 0 causes the address translator to increment AI' The data
buffer control uses SEN and the byte enable signals to produce GABL , which enable the
outputs for the lower 16 data bits of the bidirectional transceivers.

The 82786 automatically deasserts SEN and the transfer of the first 16 data bits is complete.
To transfer the second 16 data bits, the interface circuit requests another memory operation by
generating RD (or WR), BHE, and MilO (CS is already asserted). After it completes the
current graphics processing activity, the 82786 begins the memory operation and asserts SEN.

For a read operation, the data bus controller uses SEN to generate the READYo signal. The
data buffer control uses SEN to assert GBAH and GBAL , which enable the outputs for the
higher and lower 16 data bits.

For a write operation, the data bus controller uses SEN to generate the READ Yo signal. The
data buffer control uses SEN and the byte enable signals to produce GABH, which enable the
outputs for the higher 16 data bits of the bidirectional transceivers.

The address translator generates READY for the 80960KB processor from the second
READYo to terminate the data transfer to the graphics memory.

SUMMARY

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O interfaces. A general system
interface circuit can be designed that connects to many slave-type peripherals. This interface
can be expanded to accommodate a bus master peripheral or a 32-bit to 16-bit data bus
translator. These interfaces were illustrated by four design examples.

5-19

Index ,

82530/80960KB Interface 5-7

82586/80960KB Interface 5-9

8259A/80960KB Interface 5-5

82786/80960KB Interface 5-14

A
Address Decoder

I/O interface 5-3
memory interface 4-2

Address LatchlDemultiplexer
I/O interface 5-3
memory interface 4-2

ADS (Address/Data Status) Signal
definition 3-4
timing diagram 3-9
used by the 82786 interface 5-17
used by the burst logic 4-3
used by the timing control logic 5-4

ALE (Address Latch Enable) Signal
definition 3-4
timing diagram 3-8
used by an address latch/demultiplexer

4-2,5-3
used by the byte enable latch 4-6
used by the SRAM interface logic 4-8
used in the SRAM interface logic 4-10

Arbitration

B

L-bus example 3-23
protocol for the L-bus 3-17
timing on the L-bus 3-19

BADAC (Bad Access) Signal 3-37

BE3-BEo (Byte Enable) Signals
definition 3-4
timing 3-5
timing diagram 3-9
used by the byte enable latch 4-6
used by the DRAM controller 4-16

INDEX

1-1

Burst Logic
memory interface 4-3
signal flow 4-4

Burst Transaction 3-12

C
CACHE Signal 3-6

CLK2 (Processor Clock) or CLK (Bus
Clock)

CLK2 requirements 3-14
generation 3-15
relationship of CLK2 and CLK 3-8

CYCLE-IN-PROGRESS Signal
definition 4-3

o

used by the burst logic 4-3
used by the DRAM arbiter 4-13
used by the DRAM timing and control

4-14,4-16
used by the timing control logic 4-5

Data Transceivers·
I/O interface 5-3
memory interface 4-1

DEN (Data Enable) Signal
definition 3-4
timing diagram 3-9
used by a data transceiver 4-1,5-3
used by the burst logic 4-3

DRAM Address Multiplexer 4-13

DRAM Arbiter 4-13

DRAM Controller 4-11

DRAM Interleaving 4-19

DRAM Refresh Interval Timer 4-13

DRAM Timing and Control 4-13

DRAM Timing Considerations 4-17

DT/R (Data Transmit/Receive) Signal
definition 3-4
timing diagram 3-9

F

used by a data transceiver 4-1,5-3
used by the 82586 interface 5-11,5-12

FAILURE Signal 3-37

H
HLDA (Hold Acknowledge) Signal 3-18

HLDAR (Hold Acknowledge Request) Sig-
nal 3-20

HOLD Signal 3-18

HOLDR (Hold Request) Signal 3-20

I/O Address Range 5-3

I/O Interface to 8-bit and 16-bit Peripherals
5-1

I/O Interface to the 80960KB 5-1

Initialization for 80960KB 3-34

INT ofIAC (Interrupto or Inter-Agent
Communication) Signal 3-29

INTI (Interrupti) Signal 3-29

INT iINTR (Interrupt2 or Interrupt Request)
Signal 3-29

INT 3/lNT A (Interrupt3 or Interrupt
Acknowledge) Signal 3-30

Interrupts

L

definition 3-29
direct interrupt pins 3-31
Interrupt Control register 3-30
pins that interface to an interrupt con-

troller 3-31
signals 3-29
synchronization 3-32
timing diagram 3-31

L-Bus States
address (T a) 3-21, 3-1
data (Td) 3-21,3-1
hold (Th) 3-18
hold request (Thr) 3-21

INDEX

1-2

idle (Tj) 3-21,3-1
recovery (Tr) 3-21,3-1
wait (Tw) 3-21,3-1

LAD (Local Address/Data) lines 3-4,3-3

LADI-LADo
See SIZE Signals

LOCK Signal
definition 3-6
used during arbitration 3-21

M
Memory Address Range 4-3

Memory Interface to the 80960KB 4-1

P
PBM (Primary Bus Master) 3-20

R
Read Operation, timing diagram for the L­

bus 3-8

READY Signal
definition 3-5
timing diagram 3-9
used by the 82530 interface 5-9
used by the 82586 interface 5-13
used by the 8259A interface 5-7
used by the 82786 interface 5-17
used by the byte enable latch 4-6
used by the SRAM interface 4-8, 4-9,

4-10,4-11
used by the timing control logic 4-5,

5-4

RESET

S

timing generation for 80960KB 3-33
timing requirements for 80960KB 3-33

SBM (Secondary Bus Master) 3-20

SIZE Signals
definition 3-3
used by the 82586 interface 5-12
used by the burst logic 4-3

SRAM Interface

T

interface logic 4-6
timing considerations 4-7

Timing
arbitration on the L-bus 3-19
interrupts 3-31
read operation on the L-bus 3-8
write operation on the L-bus 3-11

Timing Logic

W

I/O interface 5-4
signal flow 4-5

wiT{ (Write!Read) Signal
definition 3-4
timing diagram 3-9
used by the 82530 interface 5-9
used by the 82786 interface 5-16
used by the DRAM timing control logic

4-14
used by the timing control logic 5-4,

4-5

Write Operation, timing diagram on the L­
bus 3-11

INDEX

1-3

LITERATURE SALES FORM (EUROPE)
NAME: __ __

COMPANY: ___ _

ADDRESS: ___ __

PHONE NO.: ~---
ORDER NO TITLE QTY. PRICE TOTAL

~:::::=~~~, -..--.--,--, ------------------- __ x __ = __ _

L..-'---'---'---'---'---" - '---'--'---' ___________ _ ____ X __ = __ _

:=::::==:=~~,-~~ ------
~~~~I-~~ _____ _ 

__ X __ = __ _ 

__ X __ = __ _ 
__ X __ = __ _ 

__ X __ = __ _ 

__ X __ = __ _ 

__ X __ = __ _ 

__ X __ = __ _ 

__ X __ = __ _ 

__ X __ = __ _ 

~~~~ -:=' ~~ -------

~=:=::::=~~ -1--,--....1-....J ________________ ___
~~~-~I ~ ____ _ 
~~~~I- :=1 ~~ ______ _ 

'---'---'----'---'--~I- L.....I -'---'---' _______ _
Subtotal ___ __

Your Local Sales Tax ___ _

Postage ___ _

Total ___ _

PAYMENT

Cheques should be made payable to your local Intel Sales Office.

Other forms of payment may be available in your country. Pleas.e contact the Literature Coordinator at your
local Intel Sales Office for details.

The Completed form should be marked for the attention of the LITERATURE CO-ORDINATOR and returned
to your local Intel Sales Office.

