0960KB Programmer’s

‘ eference Manu

Order Number: 270567-001

intal

LITERATURE
To order Intel literature write or call:
Intel Literature Sales Toll Free Number:
P.O. Box 58130 (800) 548-4725*

Santa Clara, CA 95052-8130
Use the order blank on the facing page or call our Toll Free Number listed above to order literature.

Remember to add your local sales tax and a 10% postage charge for U.S. and Canada customers, 20% for
customers outside the U.S. Prices are subject to change.

1988 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design information.

**PRICE IN

NAME ORDER NUMBER U.S. DOLLARS
COMPLETE SET OF 8 HANDBOOKS 231003 $125.00
Save $50.00 off the retail price of $175.00
AUTOMOTIVE HANDBOOK 231792 $20.00
(Not included in handbook Set)
COMPONENTS QUALITY/RELIABILITY HANDBOOK 210997 $20.00
(Available in July)
EMBEDDED CONTROLLER HANDBOOK 210918 $23.00
(2 Volume Set)
MEMORY COMPONENTS HANDBOOK 210830 $18.00
MICROCOMMUNICATIONS HANDBOOK 231658 $22.00
MICROPROCESSOR AND PERIPHERAL HANDBOOK 230843 $25.00
(2 Volume Set)
MILITARY HANDBOOK 210461 $18.00
(Not included in handbook Set)
OEM BOARDS AND SYSTEMS HANDBOOK 280407 $18.00
PROGRAMMABLE LOGIC HANDBOOK 296083 $18.00
SYSTEMS QUALITY/RELIABILITY HANDBOOK 231762 $20.00
PRODUCT GUIDE 210846 N/C
Overview of Intel’s complete product lines
DEVELOPMENT TOOLS CATALOG 280199 N/C
INTEL PACKAGING OUTLINES AND DIMENSIONS 231369 N/C
Packaging types, number of leads, etc.
LITERATURE PRICE LIST 210620 N/C

List of Intel Literature

*Good in the U.S. and Canada

**These prices are for the U.S. and Canada only. In Europe and other international locations, please contact
your local Intel Sales Office or Distributor for literature prices.

intel

LITERATURE SALES ORDER FORM

NAME:

COMPANY:

ADDRESS:

CITY: STATE: ZIP:
COUNTRY:

PHONE NO.: {)

ORDER NO. TITLE QTY. PRICE TOTAL
HEEEEE x -
LT T[] x _
LI T X -
LI T[T X _
LI T T T] x _
LI T x _
[TTTTT] x _
LI TP X -
LI T T TT] x _
LTIl x _

Subtotal

Must Add Your

Local Sales Tax

Mt 20 spprprte posege Lo sttt
Total

Pay by Visa, MasterCard, American Express, Check, Money Order, or company purchase order payable
to Intel Literature Sales. Allow 2-4 weeks for delivery.
O visa [MasterCard [J American Express Expiration Date

Account No.

Signature:

Mail To: Intel Literature Sales International Customers outside the U.S. and Canada
P.O. Box 58130 should contact their local Intel Sales Office or Distributor
Santa Clara, CA listed in the back of most Intel literature.
95052-8130 European Literature Order Form in back of book.

Call Toll Free: (800) 548-4725 for phone orders
Prices good until 12/31/88.
Source HB

Mail To: Intel Literature Sales
PO. Box 58130
Santa Clara, CA 95052-8130

intel

80960KB
PROGRAMMER’S
REFERENCE MANUAL

1988

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, FASTPATH, GENIUS, i,?, ICE,
iCEL, iCS, iDBP, iDIS, I2ICE, iLBX, im, iMDDX, iMMX, Insite, Intel, intgl, intglBOS,
Intelevision, intgligent Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPDS,
iPSC, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MAP-NET, MCS,
Megachassis, MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE,
ONCE, OpenNET, OTP, PC-BUBBLE, Plug-A-Bubble, PROMPT, Promware, QUEST,
QueX, Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, UPI,
and VLSICEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPl and a
numerical suffix, 4-SITE.

Ethernet is a trademark of Xerox.
DEC is a trademark of Digital Equipment Corporation.
VAX is a trademark of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Distribution
Mail Stop SC6-59

P.O. Box 58130
Santa Clara, CA 95052-8130

©INTEL CORPORATION 1988

TABLE OF CONTENTS

CHAPTER 1
GUIDE TO MANUAL
Manual Structure 1-1
Chapter OVerVIeW e 1-2
Notation and Terminology i 1-3
Reserved and Preserved i 1-3
Setand Clear 1-4
CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE
A New 32-Bit Architecture fromintel i 2-1
High Performance Program Execution i 2-1
Load and Store Model 2-2
On-Chip Cachingof CodeandData 2-2
Overlapped Instruction Execution 2-2
Single-Clock Instructions e 2-3
Efficient Interrupt Model 2-3
Simplified Programming Environment i 2-4
Highly Efficient Procedure Call Mechanism 2-4
Versatile Instruction Set and Addressingc.. i 2-4
Extensive Fault Handling Capability 24
Debugging and Monitoring e 2-5
Support for Architectural Extensions 2-5
Extensions Included in the 80960K Series Processors 2-5
On-Chip Floating Point i i e e 2-5
Interagent Communication e 2-6
Look forMoreinthe Future 2-6
CHAPTER 3
EXECUTION ENVIRONMENT
Overview of the Execution Environment 3-1
AdAress SPaCEt e 3-3
Register Model 3-3
Global Registerst 3-3
Floating-Point Registers i 3-4
Local Registerst e 3-5
Register Alignment 3-5
Register Scoreboarding 3-5
Instruction Pointer 3-6
Arithmetic Controls e 3-7
Initializing and Modifying the Arithmetic Controls 3-7

inter TABLE OF CONTENTS

Functions of the Arithmetic Controls Bits
Condition Code Flagsciuin i 3-8
Arithmetic Status Flags
Integer Overflow Mask
No Imprecise Faults Flag 3-10

Floating-Point Flags and Masks 3-10
Floating-Point NormalizingMode Flag 3-10
Floating-Point Rounding Control 3-10
Process and Trace Controlst e 3-11
Instruction Caching i e 3-11
CHAPTER 4
PROCEDURE CALLS
Types of Procedure Calls it 4-1
Call/Return Mechanism e 4-1
Local Registers and the Procedure Stack e 4-3
Procedure Linking Information i 4-3
Frame Pointer e 4-3
Stack Pointer 4-5
Padding Area 4-5
Previous Frame Pointer i 4-5
Return Status and Prereturn-Trace Information 4-5
Return Instruction Pointer 4-6
Mapping the Local Registers to the Procedure Stack 4-7
Local Call ... 4-8
Local Call Operation i... Ceeaetienas 4-8
Local Return Operation ...t e e 4-8
Parameter Passingcoii i e e 4-9
Passing Parameters in Global Registers 4-9
Passing Parameters inan Argument List 4-9
Passing Parameters Throughthe Stack 4-9
System Call 4-9
System Procedure Table i e 4-11
Procedure Entriest e 4-11
Supervisor Stack Pointer 4-11
Trace Control Flag o 4-12
System CalltoaLocal Procedure, 4-13
User-Supervisor Protection Model i 4-13
User and Supervisor Modes ...ttt 4-13
Supervisor Calls 4-13
SUPEIVISOr StaCKt e 4-14
Hints on Using the User-Supervisor Protection Model 4-14
Branchand Link e 4-15

intelg TABLE OF CONTENTS

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

Data Ty PES ..ottt 5-1
INtegers ... 5-1
Ordinals e 5-1
RealS ..o e e e 5-2
DECimMalS ... e 5-3
Bitsand Bit Fields 5-4
Tripleand Quad Wordsot 5-4

Byte, Word, and Bit Addressing i e 5-5

Addressing Modes e 5-5
Lerals ... e 5-6
Register ... e 5-7
Absolute ... e e e 5-7
Register Indirect 5-7
Register Indirect with Index 5-7
Index with Displacement 5-7
IP with Displacement e 5-8

CHAPTER 6

INSTRUCTION SET SUMMARY

Instruction Formats e 6-1
Assembly-Language Format 6-1
Machine Formats i e e e 6-1

INStruction GroUPSo o e e 6-2

Data Movement e 6-4
oA . e 6-4
S (] Y 6-5
MOV . e e 6-5
Load Addressot e e e 6-6

Arthmetic e 6-6
Add, Subtract, Multiply, and Divide i 6-6
Extended Arithmetic 6-7
Remainderand Modulo 6-8
Shiffand Rotate 6-8

LogiCal ... e 6-9

COMPANISON . o\ttt et e 6-9
Compare and Conditional Compare iiiiiinnennnen.. 6-9
Compare and Increment or Decrement 6-10

BranCh .. e 6-10
Unconditional Branch e 6-10
Conditional Branch 6-11
CompareandBranch et 6-11

Bitand Bit Field i e 6-12

intela TABLE OF CONTENTS

Bit Operations e e e 6-12
Bit Field Operations i e e 6-12
Byte OPEratioNsttt e et e 6-13
Conversion e A 6-13
Calland Return i e e 6-13
Atomic InStructions L e 6-14
Conditional Faults e e 6-14
DEbUG .. 6-14
Processor Management e 6-15
80960KB Non-Floating-Point Instruction-Set Extensions 6-15
Synchronous LoadandMove S, e 6-15
Decimal .. e 6-16
CHAPTER 7
PROCESSOR MANAGEMENT AND INITIALIZATION
Overview of Processor Management Facilities 7-1
Instruction List e 7-1
System Data Structures i e 7-1
1] C=T £ (o] £ 7-3
ACS e 7-3
Faults ... e e 7-3
Process Controls 7-3
Changing the Process Controls i, 7-5
[(10 11T 7-5
Processor States e 7-6
Executing and Interrupted State o S 7-6
Stopped and Stopped- Interrupted States 7-6
Instruction SUSPENSION e 7-6
Memory Requirements e 7-7
Memory Restrictionst e 7-7
Software Requirements for Processor Management 7-8
Processor Initialization e 7-9
Initial Memory Image i 7-9
Check-SumWords i 7-10
System Address Table 7-10
Processor Control Block i 7-10
Initialization Code e 7-12
Changing the Initial Memory Image i 7-12
BuildingaMemory Image ...t e e 7-12
Typical Initialization Scenario i i 7-18
First Stage of Initialization i 7-13
Second Stage of Initialization oo PRI 7-15

vi

inte|° TABLE OF CONTENTS

CHAPTER 8
INTERRUPTS
Overview of the Interrupt Facilities 8-1
Software Requirements for Interrupt Handling 8-1
Vectors and Priority e 8-2
Interrupt Table e 8-2
Interrupt Handler Procedures i 8-4
Interrupt Stack e 8-4
Interrupt Handling Actions 8-4
Receiving aninterrupt 8-5
Servicing an Interrupt 8-5
Executing State Interrupt 8-5
Interrupted State Interrupt 8-6
Interrupt Record e 8-6
Stopped State Interrupt 8-8
Stopped-Interrupted State Interrupt 8-8
Pending Interrupts e 8-8
Posting Pending Interrupts 8-9
Checking for Pending Interrupts i i 8-9
Handling Pending Interrupts i 8-9
Signaling Interrupts e 8-10
Interrupts From Interrupt Pins 8-10
IAC Interrupts 811
CHAPTER 9
FAULT HANDLING
Overview of the Fault-Handling Facilites e 9-1
Fault TYPeS . .ot e 9-1
Fault-Handling Method 9-3
Multiple Fault Conditions i e 9-3
Faultsand Interrupts i e 9-3
Software Requirements for Handling Faults 9-3
Fault Table 9-4
Location of the Fault TableinMemory 9-4
Fault-Table Entries i e e e 9-4
Fault-Handler Procedures e 9-6
Program and Instruction Resumption Followinga Fault 9-6
Fault Controls i e e e 9-7
Signaling a Fault e 9-8
Fault-If Instructions e 9-8
Fault Recordo e e e 9-8
Saved Instruction Pointer [e 9-9
Resumption Record i e 9-9
Location of the Fault and Resumption Records 9-10

vii

intel” TABLE OF CONTENTS

Fault Handling ACtion ittt et 9-10
Implicit, Local Call/Return o 9-10
Implicit, Local Procedure-Table CaII/Return e e 9-11
Implicit, Supervisor Call/Return 9-11

Program State AfteraFault [P 9-11
Return Without Resumption i 9-12

Precise and Imprecise Faults i 9-13

Fault Reference e e e 9-14
Fault Reference Notation i .. 9-14

Fault Type and Subtype i e 9-14
FUNCHON ..o e 9-14
Fault Record e e 9-15
Saved P .. 9-15
Program StateChanges 915
Arithmetic Faults 9-16
Constraint Faults e 9-17
Floating-Point Faults e 9-18
Operation Faults it e 9-20
Machine Faults i e 9-21
Protection Faults 9-22
Trace Faultso 9-23
Type Faults e 9-25
CHAPTER 10
DEBUGGING

Overview of the Trace-Control Facilities 10-1

Required Software Supportfor Tracingot 10-1

Trace ControlS . ..o 10-1
Trace-Controls Word o e 10-2
Trace-Enable and Trace-Fault-PendingFlags 10-3
Trace Control on SupervisorCalls i, 10-3

Trace MOGESot e 10-3
INStruction Trace it e 10-4
Branch Traceiuiiieeinao.. e 10-4
Call TraCe . .. it e e e 10-4
RetUrn Trace . ..ot e e 10-4
Prereturn Traceo i e 10-5
T =T 4T I - Vo PP 10-5
Breakpoint Trace i e 10-5

Trace-Fault Handler 10-5

SignalingaTraceEvent e 10-6

Handling Multiple Trace Events 10-6

Trace Handling ACtion i e 10-7
Normal Handlingof Trace Events 10-7

viii

intelﬁ TABLE OF CONTENTS

Prereturn Trace Handlingot e
Tracing and Interrupt Handlers
Tracingand Fault Handlers

CHAPTER 11
INSTRUCTION SET REFERENCE

Introduction e e e e et e e e

Notation e
Alphabetic Reference i
MNemMONIC . ..o
Format ...
DesCriptioN ... e
ACHON o e
Faults ... e e
Example ... e
Opcode and Instruction Format
See AlSO ...

INStrUCtiONS . ..

CHAPTER 12
FLOATING-POINT OPERATION

Introducing the 80960KB Floating-Point Architecture
Real Numbers and Floating-Point Format
Real Number System
Floating-Point Format i i i e
Normalized Numbers i e i
Biased Exponent
Real Number and Non-Number Encodings ciiiiinnnnn..
SIgnNed Zeros
Signed, Nonzero, Finite Values
Denormalized Numbers i i
Signed Infinities
NaNS ..
Real Data Types oot
Execution Environment for Floating-Point Operations
Registers e
Loading and Storing Floating-Point Values
Moving Floating-Point Values i
Arithmetic Controls e e
Normalizing Mode e
Rounding Control e
Instruction Format e
Instruction Operands i
Summary of Floating-Point Instructions
Data Movement e

—

—
3 K6 I AR AR AR VY VLN

- —d
g [1

—r
R G (O AT (Y (ST T QST U QI QT G
]

—_

—_

—_

—_

intal TABLE OF CONTENTS

Data Type Conversionttt ittt it et 12-15
Basic Arithmetic 12-17
Comparison, Branching, and Classification 12-17
THQONOMELHC e 12-18
T 12-18
Logarithmic, Exponential, andScale 12-19
Arithmetic Versus Nonarithmetic Instructions 12-20
Operations on NaNs e 12-20
Exceptions and Fault Handling 12-21
Fault Handler e 12-22
Floating Reserved-Encoding Exception 12-22
Floating Invalid-Operation Exception 12-23
Floating Zero-Divide Exception i 12-23
Floating Overflow Exception i, 12-24
Floating Underflow Exception i 12-24
Floating Inexact Exception i 12-25
Floating-Point Underflow Condition 12-26
CHAPTER 13
INTERAGENT COMMUNICATION
Introduction to IAC MeSSagesco it 13-1
IAC Message Formatot s 13-1
Software Requirements for Handling IACs i, 13-2
Internal IACS e 13-2
External IACS e 13-3
Sending External IACS i 13-3
Receiving and Handling an External IACs o i 13-4
Summary of IAC MESSageSo v it e 13-5
IAC Message Reference 13-5
Continue Initialization e 13-6
FreBzZe .. o e 13-7
Interrupt .. e 13-8
Purge Instruction Cache 13-9
Reinitialize Processort e 13-10
Set Breakpoint Register e 13-11
Store System Base e 13-12
Test Pending Interruptst 13-13
APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE
Instruction Quick Reference A-1
Instruction List by Assembler Mnemonic A-2
Instruction Listby Opcode i A-6
Summary of System Data Structures e A-10

Execution Environment A-10

intel TABLE OF CONTENTS

Processor Management A-13

Interrupt Handling e A-15

A S . A-17

FaultHandling A-17

Trace CoNtrol e A-19
APPENDIX B

MACHINE-LEVEL INSTRUCTION FORMATS

General Instruction Format B-1
REG Format B-2
COBR FOrmat e e e e e e B-3
CTRL Format e B-4
MEM Format B-4
MEMA Format Addressingttt e e B-5
MEMB Format Addressingoutiii it e B-6
APPENDIX C
INSTRUCTION TIMING
INtrodUCHION C-1
Internal Structure of the 80960KB Processoro i C-1
Bus Control LOGIC ... oot C-2
Instruction Fetch Unit and InstructionCache C-3
Instruction Decoder e C-3
Simple Instructions e C-4
Floating Point and Branch Instructions C-4
Complex Instructions C-5
Load and Store Instructions C-5
Micro-Instruction Sequencerand ROM C-6
Instruction Execution Unit i C-6
Instruction Execution Unit Performance Enhancements C-7
Floating Point Unit C-8
Execution times e C-8
Execution times for the 80960 Architecture Instructions C-9
Logical instructions i C-9
Bit INStructionso C-10
Register MOVES i e C-11
Integer and Ordinal Arithmetic C-11
Multiply and Divide Instructions i C-12
Branching C-13
Call/Return Instructionst e e C-14
Load INnStructions i e C-15
Store Operations C-17
Execution times for the Extended Instructions C-17
Decimal Instructions C-17
Floating-Point Instructions C-17

inte|° TABLE OF CONTENTS

APPENDIX D
INITIALIZATION CODE

OV BIVIBW . .o e

Example Code ... e e
eXample.lSt ... e
ftable.lst ... e
table.dst e e
fhandler.C .. e e
handler.C ..
Cola.Id . e e e

APPENDIX E

CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE
Architecture Restrictions
SALIGN Parameter
Boundary Alignment
Fauls ... e
Physical Memory
A S i e e e e
I erTUPES . e
Initialization e
Breakpoints e
Implementation Dependent Instructions i i,
Lock Pin

Figures
3-1. Execution Environment
3-2. Registers Available to a Single Procedure
3-3. Arithmetic Controls i
4-1. Local Registers and Procedure Stack
4-2. Procedure Stack Structure
4-3. System Call Mechanism e e

4-4. Procedure Table Structure
5-1. Integer Format and Range
5-2. Ordinal Format and Range
5-3. Decimal Formatt e e e
5-4. Bitsand Bit Fieldsc i i
7-1. System Defined Data Structures
7-2. Process-Controls Word
7-3. Initial Memory Image

Xii

inte|° TABLE OF CONTENTS

7-4. Algorithm for First Stage of Initialization Procedure 7-14
8-1. Interrupt Table 8-3
8-2. Storing of an Interrupt Recordonthe Stack 8-7
8-3. Interrupt-Control Register 8-10
9-1. Fault Table and Fault-Table Entries 9-5
9-2. Fault Record e 9-9
10-1. Trace-Controls Word i e e e e 10-2
12-1. Binary Number System e 12-2
12-2. Binary Floating-Point Format L. 12-3
12-3. RealNumbersandNaNs 12-5
12-4. Real Number Formats 12-7
12-5. Storage of Real Values in Global and Local Registers 12-9
12-6. Interaction of Floating Underflow and Inexact Exceptions 12-27
13-1. IAC Message Format i 13-2
13-2. Encoding of Address for Processor ReceivinganIAC 13-3
A-1. Arithmetic Controls (Chapter3) oot A-10
A-2. Registers Available to a Single Procedure (Chapter3) A-11
A-3. Procedure Stack Structure (Chapter4) A-12
A-4. Process Controls (Chapter 7) i e e A-13
A-5. Initial Memory Image (Chapter 7)o e A-14
A-6. Interrupt Table (Chapter 8) i i A-15
A-7. Interrupt Record on Stack (Chapter8) A-16
A-8. IAC Message Format (Chapter 13) A-17
A-9. Fault Record (Chapter 9)t A-17
A-10. Fault Table and Fault-Table Entries (Chapter9) A-18
A-11. Trace Controls (Chapter 10)t A-19
B-1. Instruction Formats e B-1
C-1. Block Diagram of the 80960KB Processorc.coiiienienann.. C-2
C-2. Execution Time of an Instruction i .. C-9
C-3. Load Where the Next Instruction Requires the Fetched Data C-15
C-4. Load Where the Next Instruction Does Not Require the Fetched Data C-16
C-5. Back-to-Back Load Instructions i C-16

inte|® TABLE OF CONTENTS

Tables

1-1. Chapters of Interest for Specific Users: e 1-1
3-1. Condition Codes for True or False Conditions AT 3-8
3-2. Condition Codes for Inequality Conditions 3-9
3-3. Encoding of Arithmetic Status Field 3-9
3-4. Encoding of Rounding Control Field 3-11
4-1. Encoding of Return Status Field e 4-6
4-2. Encodings of Entry Type Field in System Procedure Table Entry 4-11
5-1. Addressing Modeso 5-6
6-1. Summary of the 80960 Instruction Set, 6-3
6-2. Summary of the 80960KB Instructlon Set Extensions 6-4
6-3. Arithmetic Operations0. e e 6-7
7-1. Encoding of Processor State Field, 7-4
7-2. ROM and RAM Resident Data Structures oo .. 7-13
9-1. Fault Types and SUDtYpeSi it 9-2
9-2. Fault Flags or Masksttt et e 9-7
12-1. Real Number Notation e 12-3
12-2. Denormalization Processot 12-6
12-3. Real Numbers and NaN Encodings 12-8
12-4. Arithmetic Controls Used in Floating-Point Operations | PR 12-11
12-5. Rounding Methods e L. 12-13
12-6. Rounding of Positive Numbers 12-13
12-7. Rounding of Negative Numbers 12-13
12-8. Formatof QNaN Results e 12-21
13-1. JAC MESSagES ..ttt e e 13-5
B-1. Encoding of Src1 and Src2 Fieldsin REG Format B-2
B-2. Encoding of Src/Dst Fieldin REG Format B-3
B-3. Addressing Modes for MEM Format Instructions B-5
B-4. Encodingof Scale Field i B-6
C-1. Registers Scoreboarded According to Registers Referenced C-7
C-2. Logical Instruction TIMING it e C-10
C-3. BitInstruction Timingc i e e e C-10
C-4. Scan and Span Bit Instruction Timing C-11
C-5. Move Instruction Timing C-11
C-6. Integer and Ordinal Arithmetic Instruction Timing C-12
C-7. Add/Subtract With Carry, Conditional Compare Instruction Timing C-12
C-8. Multiply and Divide Instruction Timingo ... C-13
C-9. Multiply/Divide Execution Times Based on SignificantBits C-13
C-10. Branch Instruction Timing e C-14
C-11. Decimal Instruction Timing ...ttt C-17
C-12. Simple Floating-Point Instruction Timing C-18
C-13. Complex Floating-Point Instruction Timing C-19

Xiv

Preface

PREFACE

This manual provides detailed programming information for the Intel 80960KB processor,
which is part of the 80960K series of embedded-processor products. All of the processors in
the 80960K series of products are based on the Intel 80960 architecture.

Most of the information in this manual also pertains to the Intel 80960KA processor, which
will be available from Intel in the near future. The only difference between the 80960KB and
80960KA processors, is that the 80960KA does not provide on-chip support for floating-point
operations or operations on decimal numbers.

Guide to Manual

CHAPTER 1
GUIDE TO MANUAL

This chapter describes this manual. It explains the organization of the manual, describes the
contents of each chapter, and discusses terminology used in the manual. It also shows the
chapters of the manual that should be of most interest to applications programmers, compiler
designers, and designers of operating-system kernels (or system executives).

MANUAL STRUCTURE

This manual is a reference manual for the Intel 80960KB processor. It has been designed to
serve two functions:

1. To give programmers and system designers detailed information about the processor’s
programming environment and kernel (or executive) support facilities.

2. To provide reference information on the Intel 80960 architecture, the architecture on
which the 80960KB processor is based.

To meet these two goals, the manual is organized to describe the various elements of the 80960
architecture first (in Chapters 2 through 11), then to describe those additional features that are
included in the 80960KB implementation of the architecture (in Chapters 12 and 13). A
summary of those features of the 80960KB processor that are implementation dependent is
provided in Appendix E.

Some other useful features of this manual are as follows:
e Detailed reference information for all the 80960KB instructions is given in Chapter 11.
The instructions are arranged alphabetically.

e A quick reference for all of the 80960KB instructions, sorted both alphabetically and by
opcode, is given in Appendix A. Also in this chapter are a collection of illustrations of all
the system-data structures. ‘

Table 1-1 shows those chapters that will be of most interest to applications programmers,
compiler designers, or kernel designers.

Table 1-1: Chapters of Interest for Specific Users

User Chapters

Applications Programmer | Chapters 2 through 6, Chapter 11,
Chapter 12, and Appendices A and C

Compiler Designer Chapters 2 through 6, Chapter 8, Chapter 9,
Chapter 11, Chapter 12, and Appendices A, B, C and E

Kernel Designer Chapters 2 through 13, and Appendices A through E

/

inte|” GUIDE TO MANUAL

CHAPTER OVERVIEW

The following is a brief overview of the contents of each chapter:
Chapter 1 — Guide to Manual. Overview of this manual.

Chapter 2 — Introduction to the 80960 Architecture. Overview of the Intel 80960 architec-
ture, the architecture on which the 80960KB processor is based.

Chapter 3 — Execution Environment. Description of the environment in which instructions
are executed. The topics discussed in this chapter include the address space registers, instruc-
tion pointer, and arithmetic controls. .

Chapter 4 — Procedure Calls. Description of the various mechanisms available for making
procedure calls. The topics discussed here include the local call/return mechanism, procedure
stack, branch-and-link procedure calls, procedure table calls, and supervisor call mechanism.

Chapter 5 — Data Types and Addressing Modes. Description of the non-floating-point data
types and of how bits and bytes are addressed. The addressing modes provided for addressing
data in memory are also described in this chapter. :

Chapter 6 — Instruction Set Summary. Overview of all the non-floating point instructions
in the 80960KB instruction set, arranged by functional groups. Also included is a brief
description of the assembly language instruction format.

Chapter 7 — Processor Management and Initialization. Description of the processor
management facilities. Included is a discussion of the system data structures required to
operate the processor, the software requirements for processor management, and the require-
ments for physical memory. Processor initialization is described at the end of the chapter.

Chapter 8 — Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt
table, interrupt-handling procedures, and the software requirements for handling interrupts.

Chapter 9 — Fault Handling. Description of the processor’s fault-handling mechanism.
Included here is a discussion of the fault-table structure, fault-handling procedures, and the
software requirements for handling faults. A detailed description of each fault is given in a
reference section at the end of the chapter.

Chapter 10 — Debugging. Description of the debugging and monitoring support facilities,
including the trace control register.

\ 4
Chapter 11 — Instruction Set Reference. Alphabetical listing of the complete 80960KB
instruction set with detailed descriptions of each instruction, assembly-language syntax, ex-
amples, and algorithms.

Chapter 12 — Floating-Point Operation. Description of the floating-point processing
facilities of the processor. This chapter includes an overview of floating-point numbers and a
description of the 80960KB floating-point data types and their relationship to the IEEE
floating-point standard. Also included is a description of the floating-point instructions, excep-
tions, and faults.

1-2

intela GUIDE TO MANUAL

Chapter 13 — Interagent Communication. Description of the interprocessor communication
(IAC) mechanism, which allows several processors to communicate with one another on the
bus. The topics covered in this chapter include the IAC mechanism and software requirements
for using internal IACs. A detailed description of each IAC is given in a reference section at
the end of the chapter.

Appendix A — Instruction and Data Structure Quick Reference. Two lists of the 80960KB
instructions: one sorted alphabetically by assembly-language mnemonic and one sorted by
machine language opcode. A collection of illustrations showing the system data structures is
also provided here.

Appendix B — Machine-Level Instruction Formats. Description of the machine-level in-
struction formats.

Appendix C — Instruction Timing. Description of the 80960KB processor’s instruction
pipeline and how it affects the timing of instructions. The number of clock cycles required for
each instruction are also given in this appendix.

Appendix D — Initialization Code. Listing of code to initialize the 80960KB processor.

Appendix E — Considerations for Writing Portable Software. Discussion of various
aspects of the 80960 architecture that should be considered if code written for the 80960KB
processor is intended to be ported at a later date to other implementations of the 80960
architecture.

NOTATION AND TERMINOLOGY

The following paragraphs describe the notation and terminology used in this manual that have
special meaning.

Reserved and Preserved

Certain fields in the processor’s system data structures are described as being either reserved
fields or preserved fields. A reserved field is one that other implementations of the 80960
architecture can use. To help insure that a current software design is compatible with future
processors based on the 80960 architecture, the bits in reserved fields should be set to O when
the data structure is initially created. Thereafter, software should not access these fields.

Some fields in system data structures are shown as being required to be set to either 1 or 0.
These fields should be treated as if they were reserved fields. They should be set to the
specified value when the data structure is created and not accessed by software thereafter.

A preserved field is one that the processor does not use. Software may use preserved fields for
any function.

inter GUIDE TO MANUAL

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system
data structure. If a bit is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a
bit means giving it a value of 1 and clearing a bit means giving it a value of 0.

Introduction to the 2
80960 Architecture

CHAPTER 2
INTRODUCTION TO THE 80960 ARCHITECTURE

This chapter provides an overview of the architecture on which the 80960K series of proces-
sors is based.

A NEW 32-BIT ARCHITECTURE FROM INTEL

The 80960KB processor marks the introduction of the 80960 architecture — a new 32-bit
architecture from Intel. This architecture has been designed specifically to meet the needs of
embedded applications such as machine control, robotics, process control, avionics, and in-
strumentation. It represents a renewed commitment from Intel to provide reliable, high-
performance processors and controllers for the embedded processor marketplace.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to
meet the needs of specific processing and control applications.

Some of the important attributes of the 80960 architecture include:

o full 32-bit registers
o high-speed, pipelined instruction execution

e a convenient program execution environment with 32 general-purpose registers and a
versatile set of special-function registers

o a highly optimized procedure call mechanism that features on-chip caching of local vari-
ables and parameters

o extensive facilities for handling interrupts and faults
o extensive tracing facilities to support efficient program debugging and monitoring

o register scoreboarding and write buffering to permit efficient operation with lower perfor-
mance memory subsystems

The following sections describe those features of the 80960 architecture that are provided to
streamline code execution and simplify programming. Also described are those features that
allow extensions to be added to the architecture.

HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor’s
computational and data processing speed through increased parallelism. The following
paragraphs describe several of the mechanisms and techniques used to accomplish this goal,
including:

intef INTRODUCTION TO THE 80960 ARCHITECTURE

o an efficient load and store memory-access model
o caching of code and procedural data

o overlapped execution of instructions

e many one or two clock instructions

Load and Store Model

One of the more important features of the 80960 architecture is that most of its operations are
performed on operands in registers, rather than in memory. For example, all the arithmetic,
logic, comparison, branching, and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing
the number of memory accesses required to execute a program. Second, it reduces memory
latency encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose
registers. For each procedure, 32 registers are available (28 of which are available for general
use). These registers are divided into two types: global and local. Both these types of
registers can be used for general storage of operands. The only difference is that global
registers retain their contents across procedure boundaries, whereas the processor allocates a
new set of local registers each time a new procedure is called.

The architecture also provides a set of fast, versatile load and store instructions. These instruc-
tions allow burst transfers of 1, 2, 4, 8, 12, or 16 bytes of information between memory and the
registess.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code
and data on chip: an instruction cache and multiple sets of local registers. The instruction
cache allows prefetching of blocks of instruction from memory, which helps insure that the
instruction execution pipeline is supplied with a steady stream of instructions. It also reduces
the number of memory accesses required when performing iterative operations such as loops.
(The size of the instruction cache can vary. With the 80960KB processor, it is 512 bytes.)

To optimize the architecture’s procedure call mechanism, the processor provides multiple sets
of local registers. This allows the processor to perform most procedure calls without having to
write the local registers out to the stack in memory.

(The number of local-register sets provided depends on the processor implementation. The
80960KB processor provides four sets of local registers.)

Overlapped Instruction Execution
Another technique that the 80960 architecture employs to enhance program execution speed is

overlapping the execution of some instructions. This is accomplished through two
mechanisms: register scoreboarding and branch prediction.

2-2

intelg INTRODUCTION TO THE 80960 ARCHITECTURE

Register scoreboarding permits instruction execution to continue while data is being fetched
from memory. When a load instruction is executed, the processor sets one or more scoreboard
bits to indicate the target registers to be loaded. After the target registers are loaded, the
scoreboard bits are cleared. While the target registers are being loaded, the processor is
allowed to execute other instructions that do not use these registers. The processor uses the
scoreboard bits to insure that target registers are not used until the loads are complete. (The
checking of scoreboard bits is carried out transparently from software.) The net result of using
this technique is that code can often be optimized in such a way as to allow some instructions
to be executed in zero clock cycles (that is, executed for free).

Conditional branch instructions commonly cause bottlenecks in the instruction execution
pipeline, since the instruction decoder cannot decode instructions past the branch instruction
until it knows the direction the branch is going to take. The 80960 architecture solves this
problem with a technique called branch prediction. Branch prediction allows a programmer or
compiler to select conditional branch instructions that indicate to the processor the direction a
branch is likely to go. The decoder can then continue decoding instructions beyond the branch,
even though the branch condition has not yet been tested. This technique eliminates waits
between the decoder and execution unit, while branch conditions are being evaluated.

Note

The branch prediction mechanism is not implemented in the 80960K series of processors.

Single-Clock Instructions

It is the intent of the 80960 architecture that a processor be able to execute commonly used
instructions such as moves, adds, subtracts, logical operations, and branches in a minimum
number of clock cycles (preferable one clock cycle). The architecture supports this concept in
several ways. For example, the load and store model described earlier in this chapter (with its
concentration on register-to-register operations) eliminates the clock cycles required to perform
memory-to-memory operations.

Also, all the instructions in the 80960 architecture are 32-bits long and aligned on 32-bit
boundaries. This feature allows instructions to be decoded in one clock cycle. It also
eliminates the need for an instruction-alignment stage in the pipeline.

The design of the 80960KB processor takes full advantage of these features of the architecture,
resulting in over 50 instructions that can be executed in a single clock-cycle.

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt
vectors (240 of which are available for general use). When an interrupt is signaled, the
processor uses a pointer from the interrupt table to perform an implicit call to an interrupt
handler procedure. In performing this call, the processor automatically saves the state of the
processor prior to receiving the interrupt; performs the interrupt routine; and then restores the
state of the processor. A separate interrupt stack is also provided to segregate interrupt
handling from application programs.

2-3

intele INTRODUCTION TO THE 80960 ARCHITECTURE

The interrupt handling facilities also feature a method of evaluating interrupts by priority. The
processor is then able to store interrupt vectors that are lower in priority than the task that the
processor is currently working on in a pending interrupt section of the interrupt table. At
certain defined times, the processor checks the pending interrupts and services them.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Partly as a side benefit of its streamlined execution environment and partly by design, proces-
sors based on the 80960 architecture are particularly easy to program. For example, the large
number of general purpose registers allows relatively complex algorithms to be executed with a
minimum number of memory accesses. The following paragraphs describe some of the other
features for the architecture that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between
procedures simple and compact. Each time a call instruction is issued, the processor automati-
cally saves the current set of local registers and allocates a new set of local registers for the
called procedure. Likewise, on a return from a procedure, the current set of local registers is
deallocated and the local registers for the procedure being returned to are restored. On a
procedure call, the program thus never has to explicitly save and restore those local variables
and parameters that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The architec-
ture offers a full set of load, store, move, arithmetic, comparison, and branch instructions, with
operations on both integer and ordinal data types. It also provides a complete set of Boolean
and bit-field instructions, to simplify operations on bits and bit strings.

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record struc-
tures. '

The large 4-gigabyte address space provides ample room to store programs and data. The
availability of 32 addressing lines allows some address lines to be memory-mapped to control
hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide selection of faults that
the processor detects, including arithmetic faults, invalid operands, invalid operations, and
machine faults. When a fault is detected, the processor makes an implicit call to a fault handler
routine, using a mechanism similar to that described above for interrupts. The information
collected for each fault allows program developers to quickly correct faulting code. It also
allows automatic fault recovery from some faults.

2-4

inte|° INTRODUCTION TO THE 80960 ARCHITECTURE

Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. The processor can be configured to detect as many
as seven different trace events, including the instruction execution, branch events, calls, super-
visor calls, returns, prereturns, and breakpoints. When the processor detects a trace event, it
signals a trace fault and calls a fault handler. Intel provides several tools that use this feature,
including an in-circuit emulator (ICE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture described earlier in this chapter provides a high-performance comput-
ing engine for use as the computational and data processing core of embedded processors or
controllers. The architecture also provides several features that enable processors based on this
architecture to be easily customized to meet the needs of specific embedded applications, such
as signal processing, array processing, or graphics processing.

The most important of these features is a set of 32 special function registers. These registers
provide a convenient interface to circuitry in the processor or to pins that can be connected to
external hardware. They can be used to control timers, to perform operations on special data
types, or to perform I/O functions.

The special function registers are similar to the global registers. They can be addressed by all
the register-access instructions.

EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS

The 80960K series of processors offer a complete implementation of the 80960 architecture,
plus several extensions to the architecture. These extensions fall into two categories: floating-
point processing and interagent communication.

On-Chip Floating Point

The 80960KB processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating-
point operations, including add, subtract, multiply, divide, trigonometric functions, and
logarithmic functions. These operations are performed on single precision (32-bit), double
precision (64-bit), and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-point handling facilities are
completely integrated into the normal instruction execution environment. Single- and double-
precision floating-point values are stored in the same registers as non-floating point values.
The four, 80-bit floating-point registers are provided to hold extended-precision values.

irltés INTRODUCTION TO THE 80960 ARCHITECTURE

Interagent Communication

All of the processors in the 80960K series provide an interagent communication (IAC)
mechanism, which allows agents connected to the processor’s bus to communicate with one
another. This mechanism operates similarly to the interrupt mechanism, except that IAC
messages are passed through dedicated seéctions of memory. The sorts of tasks handled with
IAC messages are processor reinitialization, stopping the processor, purging the instruction
cache, and forcing the processor to check pending interrupts.

LOOK FOR MORE IN THE FUTURE

As has been shown in the preceding discussion, the 80960 architecture offers lots of pos-
sibilities and lots of room to grow. The first implementation of this architecture (the 80960KB
processor) provides average instruction processing rates of 7.5 million instructions per second
(7.5 MIPS) at 20 MHz clock rate and 10 MIPS at a 25 MHz clock ratel. This performance
places the 80960KB at the top of the performance range for advanced, VLSI processor ar-
chitectures.

However, the 80960KB is only the beginning. With improvements in VLSI technology, future
implementation of this architecture will offer even greater performance. They will also offer a
variety of useful extensions to solve specific control and monitoring needs in the field of
embedded applications.

1 MIP is equivalent to the performance of a Digital Equipment Corp. VAX 11/780.

2-6

]
Execution Environment 3

CHAPTER 3
EXECUTION ENVIRONMENT

This chapter describes how the 80960KB processor stores and executes instructions and how it
stores and manipulates data. The parts of the execution environment that are discussed include
the address space, the register model, the instruction pointer, and the arithmetic controls.

The execution environment’s procedure stack and procedure-call mechanism are described in
Chapter 4.

OVERVIEW OF THE EXECUTION ENVIRONMENT

When the 80960KB processor is initialized, it sets up an execution environment. It then begins
executing instructions from a program, using this execution environment to store and manipu-
late data.

Figure 3-1 shows the part of the execution environment that the processor sets up to execute a
procedure within a program. This environment consists of a 232-byte address space, a set of
global and floating-point registers, a set of local registers, a set of arithmetic-controls bits, the
instruction pointer, a set of process-controls bits, and a set of trace-controls bits. All of these
items, except the address space, reside on the 80960KB chip.

Note

The floating-point registers shown in Figure 3-1 are not defined in the 80960 architecture.
They are extensions to the architecture that have been added to the 80960KB processor to
support floating-point operations on the extended-real (floating point) data type. (The
80960K A processor does not provide floating-point registers.)

The 32 special-function registers (shown in Figure 3-1 in a dashed box) are defined in the
80960 architecture. These registers are not implemented in the 80960KB and 80960KA
Processors.

When the instruction stream includes a procedure call, a procedure stack and some additional

elements are added to this execution environment. These procedure-call related elements are
shown and discussed in Chapter 4.

3-1

intel” EXECUTION ENVIRONMENT
90 0
SIXTEEN GLOBAL
32-BIT 1
REGISTERS REGISTERS
g15
fpo FLOATING-
‘ FOUR 80-BIT REGISTERS POINT
fp3 REGISTERS
r0
SIXTEEN LOCAL ADDRESS
32-BIT REGISTERS? SPACE
REGISTERS
ri5
32-BITS ARITHMETIC CONTROLS
32-BITS INSTRUCTION POINTER
2324
32-BITS PROCESS CONTROLS
32-BITS TRACE CONTROLS
I Notes:
I SPECIAL 1 Register g15is reserved for
I THIRTY-TWO , FUNCTIONS stack management functions.
| 32-BIT REGISTERS® 2 Registersr0, r1, and r2 are
I REGISTERS reserved for stack management
functions.
| 3 Special function registers are

] {1 f TR,

not implemented in this
processor.

Figure 3-1: Execution Environment

3-2

intel‘” EXECUTION ENVIRONMENT

ADDRESS SPACE

From the point of view of the processor, the address space is flat (unsegmented) and byte
addressable, with addresses running contiguously from 0 to 232 - 1. Programs and the kernel
can allocate space for data, instructions, and the stack anywhere within this space, with the
following exceptions:

e Instructions must be aligned on word boundaries.

e Some of the addresses in the upper 16M Bytes of the address space (addresses
FF000000,¢ through FFFFFFFF,) are reserved for specific functions. In general,
programs and the kernel should not use this section of the address space.

The memory requirements to support this address space are given in Chapter 7 in the section
titled "Memory Requirements."

REGISTER MODEL

The processor provides three types of data registers: global, floating-point, and local. The 16
global registers constitute a set of general-purpose registers, the contents of which are
preserved across procedure boundaries. The 4 floating-point registers are provided to support
extended floating-point arithmetic. Their contents are also preserved across procedure boun-
daries. The 16 local registers are provided to hold parameters specific to a procedure (i.e.,
local variables). For each procedure that is called, the processor allocates a separate set of 16
local registers.

For any one procedure within a program, 36 registers are thus available (as shown in Figure
3-2): the 16 global registers, the 4 floating-point registers, and the 16 local registers. All of
these registers are maintained on the processor chip.

Global Registers

The 16 global registers (g0 through g15) are 32-bit registers. Each register can thus hold a
word (32 bits) of data. Registers g0 through g14 are general-purpose registers; g15 is reserved
for the current frame pointer (FP). The FP contains the address of the first byte in the current
(topmost) stack frame. (The FP and the procedure stack are discussed in detail in Chapter 4.)

The general-purpose global registers (g0 through g14) can hold any of the data types that the
processor recognizes (i.e., ordinals, integers, reals).

ntel EXECUTION ENVIRONMENT

g0
:EGILSATERS gggHROUGH,g1S4
VAILABLE FOR GENERAL USE GLOBAL
CONTENTS OF
GLOBAL AND REGISTERS
FLOATING-POINT
REGISTERS
PRESERVED
ACROSS
PROCEDURE
BOUNDARIES
g15 FRAME POINTER (FP)
fp0 |
AVAILABLE FOR GENERAL USE FLO@&%?&%'NT
fp3 I
0 PREVIOUS FRAME POINTER (PFP)
r STACK POINTER (SP)
r2 [RETURN INSTRUCTION POINTER (RIP)
NEW SET OF
LOCALO LOCAL
REGISTERS REGISTERS
AL
FgSEQEEP REGISTERS r4 THROUGH r15
PROCEDURE AVAILABLE FOR GENERAL USE
r15

Figure 3-2: Registers Available to a Single Procedure

Floating-Point Registers

The four floating-point registers (fp0 through fp3) are 80-bit registers. These registers can be
accessed only as operands of floating-point instructions. All numbers stored in these registers
are stored in extended-real format. (This format is described in Chapter 12.) The processor

34

inte|° EXECUTION ENVIRONMENT

automatically converts floating-point values from real or long-real format into extended-real
format when a floating-point register is used as a destination for an instruction.

Note

The floating-point registers are defined in the 80960 architecture as an option for processors
such as the 80960KB that support floating-point operations. These registers may be omitted
from implementations of the architecture that do not support floating-point operations.

Local Registers

The 16 local registers (r0 through r15) are 32-bit registers, like the global registers. The
purpose of the local registers is to provide a separate set of registers, aside from the global and
floating-point registers, for each active procedure. Each time a procedure is called, the proces-
sor automatically sets up a new set of local registers for that procedure and saves the local
registers for the calling procedure. The program does not have to explicitly save and restore
these registers. '

Local registers r3 through r15 are general-purpose registers. Registers r0 through 12 are
reserved for special functions, as follows: register rO contains the previous frame pointer
(PFP); r1 contains the stack pointer (SP); and r2 contains the return instruction pointer (RIP).
(The PFP, SP, and RIP are discussed in detail in Chapter 4.) The processor accesses the local
registers at the same speed as it does the global registers.

Register Alignment

Several of the processor’s instructions operate on multiple-word operands. For example, the
load-long instruction (ldl) loads two words from memory into two consecutive registers. Here,
the register number for the least significant word is specified in the instruction and the most
significant word is automatically loaded into the next higher numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of four if three or four registers are accessed (e.g., g0, g4). If a register
reference for a source value is not properly aligned, the value is undefined. If a register
reference for a destination value is not properly aligned, the registers that the processor writes
to are undefined.

Register Scoreboarding

The 80960KB provides a mechanism called register scoreboarding that in certain situations
permits instructions to be executed concurrently. This mechanism works as follows. While an
instruction is being executed, the processor sets a scoreboard bit to indicate that a particular
register or group of registers is being used in an operation. If the instructions that follow do
not use registers in that group, the processor in some instances is able to execute those instruc-
tions before execution of the prior instruction is complete. In effect, the register scoreboarding
mechanism allows some instructions to be executed for free (zero clock cycles).

intel EXECUTION ENVIRONMENT

A common application of this feature is to execute one or more fast instructions (instructions
that take one to three clock cycles) concurrently with load instructions. ‘A load instruction
typically takes 3 to 9 clock cycles (depending on the design of system memory). Register
scoreboarding allows other instructions to be executed concurrently with the load instruction,
providing that the other instructions do not affect the registers being loaded. For example, the
following group of instructions loads a group of local registers while performing some other
operations on data in global registers.

1d xyz, ré6

addi g4, g6, g7
addi g9, gl0, gll
1d abc, r8

and g0, Oxffff, gl
addi r6, r8, r7

r6 ¢ data from address xyz
g7 < g4 + gb

gll « g9 + gl0

r6 ¢ data from address abc
gl ¢« g0 AND Oxffff-

r7 ¢ r6 + r8

H= o S

Here, the two addi instructions following the first load and the and instruction following the
second load are performed for free.

The other situation where scoreboarding can be useful for procedure optimization is when
floating-point instructions are being executed. Floating-point operations are handled by a
separate execution unit in the processor. So, non-floating point instructions can often be
executed concurrently with floating-point instructions, providing that they do not use the same
registers and do not use the arithmetic-logic unit (ALU).

(A detailed description of the register-scoreboarding mechanism is given in Appendix C.)

INSTRUCTION POINTER

The instruction pointer (IP) is the address (in the address space) of the instruction currently
being executed. This address is 32 bits; however, since instructions are required to be aligned
on word boundaries in memory, the 2 least-significant bits of the IP are always zero.

Instructions in the processor are one or two words long. The IP gives the address of the lowest
order byte of the first word of the instruction.

The IP is stored in the processor and cannot be read directly. However, the IP-with-
displacement addressing mode allows the IP to be used as an offset into the address space.
This addressing mode can also be used with the lda (load address) instruction to read the
current value of the IP.

When a break occurs in the instruction stream (due to an interrupt or a procedure call), the IP

of the next instruction to be executed (i.e., the RIP) is stored in local register r2, which is then
stored on the stack. Refer to Chapter 4 for further discussion of this operation.

3-6

intel EXECUTION ENVIRONMENT

ARITHMETIC CONTROLS

The processor’s arithmetic controls are made up of a set of 32 bits, which are cached on the
processor chip in the arithmetic-controls register. Figure 3-3 shows the arrangement of the
arithmetic controls bits. The arithmetic controls bits include condition code bits; floating-point
control and status bits; integer control and status bits; and a bit that controls faulting on
imprecise faults.

RESERVED
(INITIALIZE TO 0)

T |
L——COMDI'I'ION CODE

ARITHMETIC STATUS

INTEGER OVERFLOW FLAG

INTEGER OVERFLOW MASK

NO IMPRECISE FAULTS

FLOATING OVERFLOW FLAG

FLOATING UNDERFLOW FLAG
FLOATING INVALID-OP FLAG

FLOATING ZERO-DIVIDE FLAG
FLOATING INEXACT FLAG

FLOATING OVERFLOW MASK
FLOATING UNDERFLOW MASK
FLOATING INVALID-OP MASK
FLOATING ZERO-DIVIDE MASK
FLOATING INEXACT MASK
FLOATING-POINT NORMALIZING MODE
FLOATING-POINT ROUNDING CONTROL

Figure 3-3: Arithmetic Controls

The processor sets or clears these bits to show the results of certain operations. For example,
the processor modifies the condition code bits after each comparison operation to show the
result of the comparison. Other arithmetic control bits, such as the floating-point fault masks,
are set by the currently running program to tell the processor how to respond to certain fault
conditions.

Note

The arithmetic status flags and the floating-point flags and masks are not defined in the 80960
architecture. They are an extension to the architecture, which is provided in the 80960KB
processor to support floating-point operations. For implementations of the architecture that do
not support floating-point operations, these flags and masks are reserved bits.

Initializing and Modifying the Arithmetic Controls
The state of the processor’s arithmetic controls is undefined at processor initialization or on a

processor reinitialize (initiated with a reinitialize processor IAC). Part of the initialization code
should thus be to set the arithmetic controls to a specific state.

The arithmetic controls can be examined and modified using the modify AC (modac) instruc-
tion. This instruction uses a mask to allow specific bits to be checked and changed.

3-7

inte|® EXECUTION ENVIRONMENT

The processor automatically saves and restores the arithmetic controls when it services an
interrupt or handles a fault. Here, the processor saves the current state of the arithmetic
controls in an interrupt record or fault record, then restores the arithmetic controls upon return-
ing from the interrupt or fault handler, respectively.

The modac instruction can be used to explicitly save and restore the contents of the arithmetic
controls.

Functions of the Arithmetic Controls Bits

The functions of the various arithmetic controls bits are as follows:

Note

In the following discussion, some of the arithmetic controls bits are referred to as "sticky flags."
A sticky flag is one that the processor never implicitly clears. Once the processor sets a sticky
flag to indicate that a particular condition has occurred, the flag remains set until the program
explicitly clears it.

Condition Code Flags

The processor sets the condition code flags (bits 0-2) to indicate the results of certain instruc-
tions (usually compare instructions). Other instructions, such as conditional-branch instruc-
tions, examine these flags and perform functions according to their state. Once the processor
has set these flags, it leaves them unchanged until it executes another instruction that uses these
flags to store results.

These flags are used to show either true or false conditions or inequalities (greater-than, equal,
or less-than conditions). To show true or false conditions, the flags are set as shown in Table
3-1.

Table 3-1: Condition Codes for True or False Conditions

Condition | Condition
Code

010 true

000 false

The condition code flags are set as shown in Table 3-2 to show inequalities.

intel° EXECUTION ENVIRONMENT

Table 3-2: Condition Codes for Inequality Conditions

Condition | Condition

Code

000 unordered

001 greater than

010 equal

011 greater than or equal
100 less than

101 not equal

110 less than or equal
111 ordered

The terms ordered and unordered are used when comparing floating-point numbers. If, when
comparing two floating-point values, one of the values is a NaN (not a number), the relation-
ship is said to be "unordered.” Refer to the section in Chapter 12 titled "Comparison and
Classification" for further information about the ordered and unordered conditions.

Arithmetic Status Flags

The processor uses the arithmetic status field (bits 3-6) in conjunction with the classify instruc-
tions (classr and classrl) to show the class of a floating-point number. When executing these
instructions, the processor sets the arithmetic status bits as shown in Table 3-3, according to the
class of the value being classified.

Table 3-3: Encoding of Arithmetic Status Field

Arithmetic | Classification

Status

s000 Z€ero

s001 denormalized number
s010 normal finite number
s011 infinity

s100 quiet NaN

s101 signaling NaN

s110 reserved operand

The "s" bit is set to the sign of the value being classified.

Integer Overflow Mask

The integer overflow mask (bit 12) and the integer overflow flag (bit 8) are used in conjunction
with the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault.

3-9

~intal EXECUTION ENVIRONMENT

When the fault is masked, the processor sets the integer overflow flag whenever an integer or
decimal overflow occurs, to indicate that the fault condition has occurred even though the fault
has been masked. If the fault is not masked, the fault is allowed to occur and the flag is not set.
The integer overflow flag is a sticky flag. (Refer to the discussion of the arithmetic integer-
overflow fault in Chapter 9 for more information about the integer overflow mask and flag.)

No Imprecise Faults Flag

The no imprecise faults flag (bit 15) determines whether or not imprecise faults are allowed to
be raised. If set, faults are required to be precise; if clear, certain faults can be imprecise.
(Refer to the section in Chapter 9 titled "Precise and Imprecise Faults" for more information
about this flag.)

Floating-Point Flags and Masks

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same
functions as the integer overflow flag and mask, except they are used for operations on real
(floating point) numbers. When a mask bit is set, its associated floating-point fault is masked.
If a mask bit is set, the processor sets the flag for the associated fault whenever the fault
condition occurs. All the floating-point flag bits are sticky bits. Refer to the section in Chapter
12 titled "Exceptions and Fault Handling" for a detailed discussion of the floating-point faults
and their associated flag and mask bits in the arithmetic controls.

Floating-Point Normalizing Mode Flag

The floating-point normalizing mode flag (bit 29) determines whether or not floating-point
instructions are allowed to operate on denormalized numbers. If set, floating-point instructions
are allowed to operate on denormalized numbers; if clear, the processor generates a floating
reserved-operand fault when it detects denormalized numbers that are used as operands for
floating-point instructions. (Refer to the section in Chapter 12 titled "Normalizing Mode" for
more information on the use of this flag.)

Floating-Point Rounding Control
The floating-point rounding control field (bits 31-30) indicates which rounding mode is in

effect for floating point computations. These bits are set as shown in Table 3-4, depending on
the rounding mode to be selected.

3-10

intela EXECUTION ENVIRONMENT

Table 3-4: Encoding of Rounding Control Field

Rounding | Rounding Mode

Control

00 round to nearest (even)

01 Round down (toward negative infinity)
10 Round up (toward positive infinity)

11 Truncate (round toward zero)

(Refer to the section in Chapter 12 titled "Rounding Control" for more information on the use
of the floating-point rounding control bits.)

All the unused bits in the AC register are reserved and must be set to 0.

PROCESS AND TRACE CONTROLS

The processor’s process controls and trace controls are also cached on the processor chip. The
process controls are a set of 32 bits that control or show the current execution state of the
processor. The process controls are described in detail in Chapter 7.

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The
trace controls are described in Chapter 10.

INSTRUCTION CACHING

The processor provides a 512-byte cache for instructions. When the processor fetches an
instruction or group of instructions from memory, they are stored in this cache before being fed
into the instruction-execution pipeline. The processor manages this cache transparently from
the program being run.

This instruction cache is a read-only cache, meaning that once bytes from the instruction
stream are written into the instruction cache, they cannot be changed. Because of this, the
processor does not support self-modified programs in a transparent fashion. The only way to
change the instruction stream once it has been written into the instruction cache is to purge the
instruction cache. The IAC message "purge instruction cache" is provided for this purpose, as
described in Chapter 13.

Note

The purge instruction cache IAC is not defined in the 80960 architecture. It is an
implementation-dependent feature of the 80960KB processor.

3-11

Procedure Calls Vi |

CHAPTER 4
PROCEDURE CALLS

This chapter describes the 80960KB processor’s procedure call and stack mechanism. It also
describes the supervisor call mechanism, which provides a means of calling privileged
procedures such as kernel services.

TYPES OF PROCEDURE CALLS

The processor supports three types of procedure calls:

o Local call
e System call
e Branch and link

A local call uses the processor’s call/return mechanism, in which a new set of local registers
and a new frame on the stack are allocated for the called procedure. A system call is similar to
a local call, however, it provides access to procedures through a system procedure table. The
most important use of a system call is to call privileged procedures called supervisor
procedures. A system call to a supervisor procedure is called a supervisor call. A branch and
link is merely a branch to a new instruction with the return IP stored in a global register.

In this chapter, the call/return mechanism is introduced first and is followed by a discussion of
how this mechanism is used to make local calls and system calls.

Note

The processgr’s interrupt- and fault-handling mechanisms use implicit procedure calls. These
implicit calls are described in detail in Chapters 8 and 9, respectively.

CALL/RETURN MECHANISM

The processor’s call/return mechanism has been designed to simplify procedure calls and to
provide a flexible method for storing and handling variables that are local to a procedure.

Two structures support this mechanism: the local registers (on the processor chip) and the
procedure stack (in memory). Figure 4-1 shows the relationship of the local registers to the
procedure stack.

For each procedure, the processor automatically allocates a set of local registers and a frame on
the procedure stack. Since the local registers are on-chip, they provide fast-access storage for
local variables. If additional space for local variables is required, it can be allocated in the
stack frame.

intal PROCEDURE CALLS

PROCEDURE STACK
IN MEMORY
n+0 -]
SET OF 16 LOCAL
RECISTERS O T LocaLRecisTen
SAVE AREA
STACK FRAME
FOR CALLING
PROCEDURE
n+64
OPTIONAL SPACE
STACK FOR ADDITIONAL
GROWTH VARIABLES
LOCAL REGISTER STACK FRAME
SAVE AREA FOR CALLED
PROCEDURE
Note:

* Stack grows from low addresses to high addresses.

Figure 4-1: Local Registers and Procedure Stack

When a procedure call is made, the processor automatically saves the contents of the local
registers and the stack frame for the calling procedure and sets up a new set of local registers
and a new stack frame for the called procedure.

This procedure call mechanism provides two benefits. First, it provides a structure for storing
a virtually unlimited number of local variables for each procedure: the on-chip local registers

provide quick access to often-used variables and the stack provides space for additional vari-
ables.

Second, a program does not have to explicitly save and restore the variables stored in the local
registers and stack frames. The processor does this implicitly on procedure calls and on
returns.

A detailed description of the call/return mechanism is given in the following paragraphs.

inter PROCEDURE CALLS

Local Registers and the Procedure Stack

For each procedure, the processor allocates a set of 16 local registers. Three of these registers
(r1, r2, and r3) are reserved for linkage information to tie procedures together. The remaining
13 local registers are available for general storage of variables.

The processor maintains a procedure stack in memory for use when performing local calls.
This stack can be located anywhere in the address space and grows from low addresses to high
addresses.

The stack consists of contiguous frames, one frame for each active procedure. As shown in
Figure 4-2, each stack frame provides a save area for the local registers and an optional area for
additional variables.

To increase the speed of procedure calls, the 80960KB processor provides four sets of local
registers. Thus, when a procedure call is made, the contents of the current set of local registers
often do not have to be stored in the procedure stack. Instead, a new set of local registers is
assigned to the called procedure. When procedure calls are made greater than four deep, the
processor automatically stores the contents of the oldest set of local registers on the stack to
free up a set of local registers for the most recently called procedure.

Refer to the section later in this chapter titled "Mapping the Local Registers to the Procedure
Stack" for further discussion of the relationship between the local register sets and the proce-
dure stack.

Procedure Linking Information

Global register g15 (FP) and local registers rO (PFP), r1 (SP), and r2 (RIP) contain information
to link procedures together and to link the local registers to the procedure stack. The following
paragraphs describe this linkage information.

Frame Pointer

The FP is the address of the first byte of the current (topmost) stack frame. On procedure calls,
the FP for the new frame is stored in global register g15; on returns, the FP for the previous
frame is restored in g15.

The 80960KB processor aligns each new stack frame on a 64-byte boundary. Since the
resulting FP always points to a 64-byte boundary, the processor ignores the 6 low-order bits of
the FP and interprets them to be zero.

Note

The alignment boundary for new frames is defined by means of an implementation-dependent
parameter called SALIGN. The relationship of SALIGN to the frame alignment boundary is
described in Appendix E.

- |®©
|nte| PROCEDURE CALLS
PFP |P|RRR| r0 <«=— n+0
SP r—
RIP r2
PREVIOUS STACK
FRAME GROWTH
r15
OPTIONAL VARIABLES
- n+64 STACK
GROWS
FROM LOW
ADDRESSES
TO HIGH
ADDRESSES
' PADDING AREA
PREVIOUS FRAME POINTER (PFP) [P|RRR| r0 —— <——|
STACK POINTER (SP) M o—
RETURN INSTRUCTION POINTER (RIP) r2 THE CURRENT FRAME
POINTER (FP) STORED
IN g15 POINTS TO
THIS WORD IN THE
STACK.
CURRENT
FRAME
r15
-

Figure 4-2: Procedure Stack Structure

4-4

inter PROCEDURE CALLS

Stack Pointer

The procedure stack grows upward (i.e., toward higher addresses). The SP points to the next
available byte of the stack frame, which can also be thought of as the last byte of the stack
frame plus one. To determine the initial SP value, the processor adds 64 to the FP.

If additional space is needed on the stack for local variables, the SP may be incremented in
one-byte increments. For example, the following instruction adds six words of additional
space to the stack:

addo sp, 24, sp # sp « sp + 24

With the Intel 80960KB Assembler, the keyword "sp" stands for register rl.

Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a
padding area to the stack so that the new frame starts on a 64 byte boundary. To create the
padding area, the processor rounds off the SP for the current stack frame (the value in rl) to the
next highest 64 byte boundary. This value becomes the FP for the new stack frame.

Previous Frame Pointer

The PFP is the address of the first byte of the previous stack frame. Since the 80960KB
ignores the 6 low-order bits of the FP, only the 26 most-significant bits of the PFP are stored
here. The 4 least-significant bits of r0 are then used to store return status information.

Return Status and Prereturn-Trace Information

Bits 0 through 2 of local register r0 contain return status information for the calling procedure
and bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or
implicit), the processor records the call type in the return status field. The processor then uses
this information to select the proper return mechanism when returning to the calling procedure.

Table 4-1 shows the encoding of the return status field according to the different types of calls
that the processor supports. Of the five types of calls allowed, the fault call (described in
Chapter 9) and the interrupt and stopped-interrupt calls (described in Chapter 8) are implicit
calls that the processor initiates. The local call (described in this section) is an explicit call that
a program initiates using the call or callx instruction. The supervisor call (described at the end
of this chapter in the section titled "User-Supervisor Protection Model") is an explicit call that
a program makes using the calls instruction.

intal PROCEDURE CALLS

Table 4-1: Encoding of Return Status Field

Encoding Call Type Return Action
000 Local call or supervisor call made | Local return
from the supervisor mode
001 Fault call Fault return
010 Supervisor call from user mode, | Supervisor return, with the trace
trace was disabled before call enable flag in the process controls
set to 0 and the execution mode
flag set to O
011 Supervisor call from user mode, | Supervisor return, with the trace
trace was enabled before call enable flag in the process controls
set to 1 and the execution mode
flag setto 0
100 reserved
101 reserved
110 Stopped-interrupt call Stopped-interrupt return
111 Interrupt call Interrupt return

The third column of Table 4-1 shows the type of a return action that the processor takes
depending on the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag
in the process controls is set prior to a supervisor call and one for when the flag is clear prior to
the call. The trace controls are described in detail in Chapter 10.

The prereturn-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If
the call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a
prereturn trace event is generated on a return before any actions associated with the return
operation are performed. Refer to Chapter 10 for a detailed discussion of the interaction of the
call-trace and prereturn-trace modes and the prereturn-trace flag.

Return Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. This instruction is the instruction that follows the procedure call instruction.

Since the processor uses the same procedure call mechanism to make implicit procedure calls

to service faults and interrupts, programs should not use register r2 for purposes other than to
hold the RIP.

46

intel“ PROCEDURE CALLS

Mapping the Local Registers to the Procedure Stack

The availability of multiple register sets cached on the processor chip and the saving and
restoring of these register sets in stack frames should be transparent to most programs.
However, the following additional information about how the local registers and procedure
stack are mapped to one another can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to
access the stack frame in the procedure stack, even though space has been allocated on the
stack for the current frame. The processor only accesses the current frame in the procedure
stack in the following instances:

1. toread or write variables other than those held in the local registers, or

2. to read local registers that were stored in the procedure stack due to the nesting of
procedures calls more than four deep.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a local register does not guarantee that it will
be stored in its associated word in the current stack frame. Likewise, storing information in the
first 16 words of a stack frame does not guarantee that the local registers associated with the
stack frame are modified.

Second, if you try to read the contents of the current set of local registers through a memory
access to the first 16 words of the current stack frame, you may not get the expected result.
This is also true if you try to read the contents of a previously stored set of local registers
through a memory address to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area
of its associated stack frame only if the nesting of procedure calls (local or supervisor) is
deeper than the number of local register sets.

Occasionally, it is necessary to have the contents of all local register sets match the contents of
the register-save areas in their associated stack frames. For example, when debugging software
it may be necessary to trace the call history back through the nested procedures. This can not
be done unless the cached local-register frames are flushed (i.e., written out to the procedure
stack).

The processor provides the flushreg (flush local registers) instruction to allow voluntary flush-
ing of the local registers. This instruction causes the contents of all the local-register sets,
except the current set, to be written to their associated stack frames in memory.

Third, if you need to modify the previous FP in register r0, you should precede this operation
with the flushreg instruction, or else the behavior of the ret (return) instruction is not predict-
able.

Fourth, local registers should not be used for passing parameters between procedures.
(Parameter passing is discussed in the following section.)

4-7

SRS

inter PROCEDURE CALLS

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear
or initialize these registers. The initial contents of these registers are therefore unpredictable.
Also, the processor does not initialize the local register-save area in the newly created stack
frame for the procedure, so its contents are equally unpredictable.

LOCAL CALL

A local call is made using either of two local call instructions: call and callx. These instruc-
tions initiate a procedure call using the call/return mechanism described earlier in this chapter.

The call instruction specifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (i.e., -2 310223 -4).

The callx instruction allows any of the addressing modes to be used to specify the procedure
address. The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

Local Call Operation
During a local call, the processor performs the following operations:

Stores the RIP in current local-register r2.

Allocates a new set of local registers for the called procedure.

Allocates a new frame on the procedure stack.

Changes the instruction pointer to point to the first instruction in the called procedure.
Stores the PFP in new local-register 0.

Stores the FP for the new frame in global register g15.

Allocates a save area for the new local registers in the new stack frame.

® Nk =

Stores the SP in new local-register rl.

Local Return Operation

On a return, the processor performs these operations:

1. Sets the FP in global register g15 to the value of the PFP in current local-register r0.

// . . LR
2. Deallocates the current local registers for the procedure that initiated the return and
switches to the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.
Sets the IP to the value of the RIP in new local-register 2.

The algorithms that the call, callx, and ret instructions use are described in greater detail in
Chapter 11.

4-8

inter PROCEDURE CALLS

PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list.

Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling
procedure copies the parameters to be passed into global registers. The called procedure then
copies the parameters (if necessary) out of the global registers after the call.

On a return, the called procedure can copy result parameters into global registers prior to the
return, with the calling procedure copying them out of the global registers after the return.

Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be
placed in an argument list. This argument list can be stored anywhere in memory providing
that the procedure being called has a pointer to the list. Commonly, a pointer to the argument
list is placed in a global register.

Parameters can also be returned to the calling procedure through an argument list. Here again,
a pointer to the argument is generally returned to the calling procedure through a global
register.

The argument list method of passing parameters should be thought of as an escape mechanism
and used only when there are not enough global registers available for passing parameters.

Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure.
Storing the argument list in the stack provides the benefit of having the list automatically
deallocated upon returning from the procedure that set up the list. Space for the argument list
is created by incrementing the SP, as described earlier in this chapter in the section titled
"Stack Pointer."

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in
the frame for the called procedure, since this frame is deallocated on the return. Also, if the
return list is to be placed in the frame of the calling procedure, the calling procedure must
allocate space for this list prior to making the call.

SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call
except that the processor gets the IP for the called procedure from a data structure called the
system procedure table. (System calls are sometimes referred to in this manual as "system
procedure-table calls.")

.

intgl | PROCEDURE CALLS

Figure 4-3 illustrates the use of the system procedure table in a system call. The calls
instruction requires a procedure-number operand. This procedure number provides an index
into the system procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE

ENTRY IN THE SYSTEM
PROCEDURE TABLE
CONTAINS AN INSTRUCTION
POINTER TO THE CALLED
PROCEDURE.
SYSTEM
PROCEDURE
TABLE
HEADER
P ENTRY 1
P ENTRY 2
CALLING PROCEDURE P ENTRY 3
ISSUES A calls
INSTRUCTION, WHICH P ENTRY 4
CONTAINS AN INDEX FOR
AN ENTRY IN THE
SYSTEM PROCEDURE P ENTRY 5
TABLE.
P ENTRY 6

Figure 4-3: System Call Mechanism

The system call mechanism supports two types of procedure calls: local calls and supervisor
calls. A local call is the same as that made with the call and callx instructions, except that the
processor gets the IP of the called procedure from the system procedure table. The supervisor
call differs from the local call in two ways: (1) it causes the processor to switch to another
stack (called the supervisor stack), and (2) it causes the processor to switch to a different
execution mode.

The system call mechanism offers two benefits. First, it supports portability for application
software. System calls are commonly used to call kernel services. By calling these services
with a procedure number rather than a specific IP, applications software does not have to be
changed each time the implementation of the kernel services is modified.

4-10

intal PROCEDURE CALLS

Second, the ability to switch to a different execution mode and stack allows kernel procedures
and data to be insulated from applications code. This benefit is describe in more detail later in
this chapter in the section titled "User-Supervisor Protection Model".

SYSTEM PROCEDURE TABLE

The system procedure table is a general structure, which the processor uses in two ways. The
first way is as a place for storing IPs for kernel procedures, which can then be accessed through
the system call mechanism. The processor gets a pointer to the system procedure table from
the initial memory image (IMI) as described in Chapter 7 in the section titled "System Data-
Structure Pointers."

The second way a system procedure table is used is as a place for storing IPs for fault handler
procedures. Here, the processor gets a pointer to the system procedure table from entries in the
fault table, as described in Chapter 9 in the section titled "Fault-Table Entries."

The structure of the system procedure table is shown in Figure 4-4. The following sections
describe the fields in this table.

Procedure Entries

The procedure entries specify the target IPs for the procedures that can be accessed through the
system procedure table. Each entry is made up of an address (or IP) field and a type field. The
address field gives the address of the first instruction of the target procedure. Since all
instructions are word aligned, only the 30 most-significant bits of the address are given. The
processor automatically provides zeros for the least-significant bits.

The procedure entry type field indicates the type of call to execute: local or supervisor. The
encodings of this field are shown in Table 4-2.

Table 4-2: Encodings of Entry Type Field in System Procedure Table Entry

Entry Type | Procedure Type
Field

00 local procedure

01 reserved

10 supervisor procedure
11 reserved

Supervisor Stack Pointer

When a supervisor call is made, the processor switches to a new stack called the supervisor
stack. The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes
12-15, bits 2-31) in the system procedure table. Since stack frames are word aligned, only the
30 most-significant bits of the supervisor stack pointer are given.

intel‘” PROCEDURE CALLS

4&\\\ L

48
PROCEDURE ENTRIES
| |
PROCEDURE ENTRY
31 2 10
ADDRESS |x x
L
} 00 - LOCAL
10 - SUPERVISOR

RESERVED (INITIALIZE TO 0)

Y PRESERVED

Figure 4-4: Procedure Table Structure

Trace Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag when a
supervisor call causes a switch from user mode to supervisor mode. The use of this bit is
described in Chapter 10.

inte|° PROCEDURE CALLS

System Call to a Local Procedure

When a calls instruction references a procedure entry designated as a local type (00,), the
processor executes a local call to the procedure selected from the system procedure table.
Neither a mode switch nor a stack switch occurs.

The ret instruction permits returns from either a local procedure or a supervisor procedure.
The return status field in local register rO determines the type of return action that the processor
is to take. If the return status field is set to 000,, a local return is executed. In a local return,
no stack or mode switching is carried out.

USER-SUPERVISOR PROTECTION MODEL

The processor provides a mode and stack switching mechanism called the user-supervisor
protection model. This protection model allows a system to be designed in which kernel code
and data reside in the same address space as user code and data, but access to the kernel
procedures (called supervisor procedures) is only allowed through a tightly controlled inter-
face. This interface is provided by the system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a
different stack (the supervisor stack) than is used to execute applications program procedures.
The ability to switch stacks helps maintain the integrity of the kernel. For example, it would
allow system debugging software or a system monitor to be accessed, even if an applications
program crashes.

User and Supervisor Modes

When using the user-supervisor protection model, the processor can be in either of two execu-
tion modes: user or supervisor. The difference between the two modes is that when in the
supervisor mode, the processor

o switches to the supervisor stack, and

e may execute a set of supervisor only instructions.

Note

In the 80960KB implementation of the 80960 architecture, the only supervisor-only instruction
is the modify process controls instruction (medpc).

Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. A supervisor call is a call executed with the calls instruction that references a
supervisor procedure in the system procedure table (i.e., a procedure with an entry type 10,).

inte|° PROCEDURE CALLS

When the processor is in the user mode and it executes a calls instruction, the processor
performs the following actions:

o It switches to supervisor mode
o It switches to the supervisor stack

o It sets the return status field in register RO of the calling procedure to 01X,, indicating that
a mode and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure
that caused the original mode switch. While in the supervisor mode, either the local call
instructions (call and callx) or the calls instruction can be used to call supervisor procedures.

(The call and callx instructions call local (or user) procedures in user mode and supervisor
procedures in supervisor mode. There is no stack or processor state sw1tch1ng associated with
these instructions.)

When a ret instruction is executed and the return status field is set to 01X,, the processor
performs a supervisor return. Here, the processor switches from the supervisor stack to the
local stack, and the execution mode is switched from supervisor to user.

Supervisoi' Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the
address space, one for procedures executed in the user mode (local procedures) and another for
procedures executed in the supervisor mode (supervisor procedures). When in the user mode,
the local procedure stack described at the beginning of this chapter is used. When a supervisor
call is made, the processor switches to the supervisor stack. It continues to use the supervisor
stack until a return is made to the user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in
Figure 4-2). The processor obtains the SP for the supervisor stack from the system procedure
table. When a supervisor call is executed while in the user mode (causing a switch to the
supervisor stack), the processor aligns this SP to the next 64 byte boundary to form the new FP
for the supervisor stack. When a local call or supervisor call is made while in the supervisor
mode, the processor aligns the SP in the current frame of the supervisor stack to the next 64
byte boundary to form the FP pointer. This operation allows supervisor procedures to be called
from supervisor procedures.

Hints on Using the User-Supervisor Protection Model
The user-supervisor has three basic uses in‘an embedded system application:

1. to allow the modpc instruction to be used,
to allow kernel code to use a separate stack from the applications code, and

3. to allow an external memory management unit (MMU) to provide protection for kernel
code and data.

4-14

inte|° PROCEDURE CALLS

If an application does not require any of the above features, it can be designed to not use the
user-supervisor protection model. Here, all procedure calls are to local procedures. If the
system table is used, all the entries must be the local type (i.e., entry type 00,).

If access to the modpc instruction is required, but the other two features are not, it is suggested
that the system be designed to always run in supervisor mode. At initialization, the processor
automatically places itself in supervisor mode, prior to executing the first instruction. The
processor then remains in supervisor mode indefinitely, as long as no action is taken to change
the execution mode to user mode (i.e., using the modpc instruction to change the execution
mode bit of the process controls to 0). With this technique, all of the procedure calling
instructions (call, callx, and calls) can be used. The processor only uses one stack, which is
considered the supervisor stack. It gets the supervisor stack pointer from local register r2.
(Prior to making the first procedure call, the supervisor stack pointer must be loaded into r2.)

The processor does not support the last use of the user-supervisor protection model directly. In
other words, the processor does not provide a pin or other device that indicates to external
hardware when a mode switch has occurred. Several techniques are available to perform this
operation, which are beyond the scope of this manual.

BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction
(RIP) in a specified location, then branch to a target instruction or set of instructions. The state
of the local registers and stack remains unchanged. (For the bal instruction, the RIP is
automatically stored in global register gl4; for the balx instruction, the location of the RIP is
specified with one of the instruction operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the
target instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call
other procedures (i.e., for procedure calls that do not result in nesting of procedures) and (2) do
not need many local variables (i.e., allocation of a new set of local registers does not provide
any benefit). Here, local registers as well as global registers can be used for parameter passing.

4-15

Data Types and
Addressing Modes

CHAPTER 5
DATA TYPES AND ADDRESSING MODES

This chapter describes the data types that the 80960KB processor recognizes and the address-
ing modes that are available for accessing memory locations.

DATA TYPES

The processor defines and operates on the following data types:

o Integer (8, 16, 32, and 64 bits)
e Ordinal (8, 16, 32, and 64 bits)
o Real (32, 64, and 80 bits)

e Decimal (ASCII digits)

o Bit Field

o Triple-Word (96 bit)

¢ Quad-Word (128 bit)

Note

The real and decimal data types are not defined in the 80960 architecture. They are supported
in the 80960KB processor, but not in the 80960K A processor.

The integer, ordinal, real, and decimal data types can be thought of as numeric data types
because some operations on these data types produce numeric results (e.g., add, subtract).

The remaining data types (bit field, triple word, and quad word) represent groupings of bits or
bytes that the processor can operate on as a whole, regardless of the nature of the data
contained in the group. These data types facilitate the moving of blocks of bits or bytes.

Integers

Integers are signed whole numbers, which are stored and operated on in two’s complement
format. The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short
integers), 32 bit (integers), and 64 bit (long integers). Figure 5-1 shows the formats for the
four integer sizes and the ranges of values allowed for each size.

Ordinals

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8
bit (byte ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure
5-2 shows the formats for the four ordinal sizes and the ranges of numeric values allowed for
each size.

L] ©

in DATA TYPES AND ADDRESSING MODES

32
BITS

64
63 0
DATA TYPE RANGE DECIMAL EQUIVALENT
lete Integer -27to 2’-1 -128to 127
Short Integer -2 to 2'%-1 -32,768 t0 32,767
Integer -2t0 2% -1 -2.14x10°t0 2.14x 10°

Long Integer -2%t0 2% -1 -9.22x10%1t09.22 x 10"®

Figure 5-1: Integer Format and Range

The processor uses ordinals for both numeric and non-numeric operations. For numeric opera-
tions, ordinals are treated as unsigned whole numbers. The processor provides several arith-
metic instructions that operate on ordinals. For non-numeric operations, ordinals contain bit
fields, byte strings, and Boolean values.

When ordinals are used to represent Boolean values, a 1, represents a TRUE and a 0,
represents a FALSE.

Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals),
64 bit (long reals), and 80 bit (extended reals). The real-number format conforms to
ANSI/IEEE Std. 754-1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real
numbers are discussed in greater detail in Chapter 12.

5-2

intef DATA TYPES AND ADDRESSING MODES

8
BITS }:

32
BITS

64

BITS [: : i : : :
63 0
DATA TYPE RANGE DECIMAL EQUIVALENT
Byte Ordinal 0 to 28-1 0to 255
Short Ordinal 0to 2'-1 0to 65,535
Ordinal 0to 2%-1 0to4.29x 10°
Long Ordinal 0to2%-1 0to 1.84x 10"

Figure 5-2: Ordinal Format and Range

Decimals

The processor provides three instructions that perform operations on decimal values when the
values are presented in ASCII format. Figure 5-3 shows the ASCII format for decimal digits.
Each decimal digit is contained in the least-significant byte of an ordinal (32 bits). The
decimal digit must be of the form 0011dddd,, where dddd, is a binary-coded decimal value
from O to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal
digit are ignored.

intel DATA TYPES AND ADDRESSING MODES

ASCII FORMAT

31

Figure 5-3: Decimal Format

Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or fields
of bits within an ordinal (32 bit) operand. Figure 5-4 shows these data types.

31 |

|
LENGTH BIT NUMBER OF
L LOWE

Figure 5-4: Bits and Bit Fields

An individual bit is specified for a bit operation by giving its bit number in the ordinal in which
itresides. The least-significant bit of a 32-bit ordinal is bit 0; the most-significant bit is bit 31.

A bit field is a contiguous sequence of bits of from O to 32 bits in length within a 32-bit
ordinal. A bit field is defined by giving its length in bits and the bit number of its lowest-
numbered bit.

A bit field cannot span a register boundary.

Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12
bytes and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes.
The triple-word data type is useful for moving extended-real numbers (80 bits).

The quad-word instructions (ldq, stq, and movq) offer the most efficient way to move large
blocks of data. ‘

inte|° DATA TYPES AND ADDRESSING MODES

BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for
blocks are bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad
words. For example, the stl (store long) instruction stores an 8-byte (double word) block of
data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a
base memory address and the more significant bytes are stored at successively higher ad-
dresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of
the block is always loaded in bit O of the register. When loading double words, triple words,
and quad words, the least-significant word is stored in the base register. The more significant
words are then stored at successively higher numbered registers. Double words, triple words,
and quad words must also be aligned in registers to natural boundaries as described in Chapter
3 in the section titled "Register Alignment."

Bits can only be addressed in data that resides in a register. Bit O in a register is the least-
significant bit and bit 31 is the most-significant bit.

ADDRESSING MODES

The processor offers 11 modes for addressing operands. These modes are grouped as follows:

e Literal

e Register

e Absolute

e Register Indirect

o Register Indirect with Index
e Index with Displacement

o P with Displacement

Most of the instructions use only the first two modes (literal and register). The remaining
modes are used for memory related instructions.

Table 5-1 shows all the addressing modes, a brief description of the elements of the address in
each mode, and the assembly-code syntax for each mode.

5-5

DATA TYPES AND ADDRESSING MODES

Table 5-1: Addressing Modes

with offset

Mode Description Assembler Syntax
Literal value value

Register register reg

Absolute offset | offset exp

Register Indirect | abase (reg)

Register Indirect | abase + offset exp (reg)

Register Indirect
with index

abase + (index*scale)

(reg) [reg*scale]

Register Indirect
with index and

abase + (index*scale)
+ displacement

exp (reg) [reg*scale]

displacement
Index with (index*scale) exp [reg*scale]
displacement + displacement
IP with IP + displacement + 8 | exp (IP)
displacement

Where:

reg is register and exp is expression

Literals

The processor recognizes two types of literals: ordinal literal and floating-point literal. An
ordinal literal can range from O to 31 (5 bits). When an ordinal literal is used as an operand,
the processor expands it to 32 bits by adding leading zeros. If the instruction defines an
operand larger than 32 bits, the processor zero-extends the value to the operand size. If an
ordinal literal is used in an instruction that requires integer operands, the processor treats the
literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and +1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the
processor converts the floating-point literals to the operand size specified by the instruction.

A few of the floating-point instructions use both floating-point and non-floating-point operands
(e.g., the convert integer-to-real instructions). Ordinal literals can be used in these instructions
for non-floating-point operands.

Note

Floating-point literals are not defined in the 80960 architecture.

5-6

inte|” DATA TYPES AND ADDRESSING MODES

Register

A register is referenced as an operand by giving the register number (e.g., g0, 15, fp3). Both
floating-point and non-floating-point instructions can reference global and local registers in
this way. However, floating-point registers can only be referenced in conjunction with a
floating-point instruction.

Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0
of the address space, ranging from -23! to 231 - 1. Typically, an assembler will allow absolute
addresses to be specified through arithmetic expressions (e.g., x + 44), symbolic labels, and
absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruc-
tion format (i.e., MEMA or MEMB). For the MEMA format, the offset is an ordinal number
ranging from O to 2048; for the MEMB format, the offset is an integer (called a displacement)
ranging from 23110 231 1. After evaluating an absolute address, the assembler will convert
the address into an offset and select the appropriate machine-level instruction type and address-
ing mode. (The machine-level addressing modes and instruction formats are described in
Appendix B.) :

Register Indirect

The register indirect addressing modes allow an address to be specified with an ordinal value
(32 bits) in a register or with an offset or a displacement added to a value in a register. Here,
the value in the register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression
or symbolic label, then evaluate the address to determine whether an offset or a displacement is
appropriate.

Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value
in a register. The index is specified by means of a value placed in a register. This index value is

then multiplied by the scale factor. The allowable scale factors are 1, 2, 4, 8, and 16.

A displacement may also be added to the abase value and scaled index.

Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and is multiplied by a scaling constant before the displacement is added to it.

intela DATA TYPES AND ADDRESSING MODES

IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to
make them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the
instruction.

Instruction Set Summary 6

CHAPTER 6
INSTRUCTION SET SUMMARY

This chapter provides an overview of the instruction set for the 80960KB processor. Included
is a discussion of the instruction format and a summary of the instruction groups and the
instructions in each group.

Chapter 11 gives detailed descriptions of each of the instructions. The instructions are listed in
this chapter in alphabetical order. Included for each instruction are the assembly-language
format, the action taken when the instruction is executed, and examples of how the instruction
might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also
gives the number of clock cycles required for each instruction.

INSTRUCTION FORMATS
Instructions are described in this reference manual in two formats: assembly language and
machine level.

Assembly-Language Format

Throughout most of this manual, the instructions are referred to by their assembly-language
mnemonics. For example, the add ordinal instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from O to 3
operands, separated by commas. The following example shows the assembly-language state-
ment for the addo instruction:

addo g5, g9, g7
Here, the ordinal operands in global registers g5 and g9 are added together and the result is
stored in g7.
A detailed description of the nomenclature used to describe assembly-language instructions is
given in Chapter 11.
Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instruc-
tions are one word long, although some addressing modes make use of a two-word format.

There are four instruction formats: register (REG), compare and branch (COBR), control
(CTRL), and memory (MEM). Each instruction uses one of these formats, which is deter-
mined by the opcode field of the instruction.

intgl INSTRUCTION SET SUMMARY

The machine-level formats for the instructions are described in detail in Appendix B.

INSTRUCTION GROUPS

The 80960KB processor implements all the instructions in the 80960 instruction set, which
includes all of the data movement, arithmetic, logical, and program control instructions com-
monly found in computer architectures. The processor also includes a set of floating-point
instructions and several instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following groups of instructions:

o Data Movement

e Arithmetic (Ordinal and Integer)
e Logical

o Bit and Bit Field

e Comparison

e Branch

e Call/Return
e Fault

o Debug

e Processor Management

The instruction-set extensions found in the 80960KB processor include the following groups of
instructions: ‘

o Integer toReal Conversion

o Floating Point

e Synchronous Move and Load

e Decimal

Tables 6-1 and 6-2 give a summary of the 80960 instructions and the 80960KB instruction-set
extensions, respectively. The actual number of instructions is greater than those shown in this
list, because for some operations, several different instructions are provided to handle different
operand sizes, data types, or branch conditions.

6-2

intel

INSTRUCTION SET SUMMARY

Table 6-1: Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit and Bit
Field
Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit
Remainder Exclusive Or Alter Bit
Modulo Not Or Scan For Bit
Shift Or Not Scan Over Bit
Extended Nor Extract
Multiply Exclusive Nor Modify
Extended Not
Divide Nand
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults
Compare Conditional Branch | Call System
Compare and Compare and Return
Increment Branch Branch and Link
Compare and
Decrement
Debug Processor Miscellaneous
Modify Trace Modify Arithmetic | Atomic Add
Controls Controls Atomic Modify
Mark Modify Process Scan Byte For
Force Mark Controls Equal
Flush Local
Registers
Test Condition
Code

6-3

inter INSTRUCTION SET SUMMARY

Table 6-2: Summary of the 80960KB Instruction-Set Extensions

Conversion Floating Point Synchronous Decimal

Convert Real to Move Real Synchronous Load | Move
Integer Add Synchronous Move | Add With Carry
Convert Integer to | Subtract Subtract With Carry
Real Multiply
Divide
Remainder
Scale
Round
Square Root
Sine
Cosine
Tangent
Arctangent
Log
Log Binary
Log Natural
Exponent
Classify
Copy Real Extended
Compare

The following sections give a brief overview of the instructions in each of these groups. The
floating-point instructions are described in Chapter 12.
DATA MOVEMENT

The data movement instructions include those instructions that move data from memory to the
global and local registers; that move data from the global and local registers to memory; and
that move data among these registers.

Load

The load instructions (listed below) copy bytes or words from memory to a selected register or
group of registers:

Id load

1dob load byte ordinal

Idos load short ordinal
1dib load byte integer

1dis load short integer
1dl load long

1dt load triple

ldq load quad

6-4

intelﬁ’ INSTRUCTION SET SUMMARY

For the 1d, ldob, ldos, I1dib, and ldis instructions, a memory address and a register are specified
in the instruction and the value at the memory address is copied into the register. Zero and sign
extending is performed automatically for byte and short (half-word) operands.

The 1d, 1dl, 1dt, and ldq instructions copy 4, 8, 12, and 16 bytes from memory into successive
registers.

Note

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the
rules for register alignment must be followed. Refer to the section in Chapter 3 titled "Register
Alignment" for a discussion of these rules.

Store

For each load instruction there is a corresponding store instruction (listed below), which copies
bytes or words from a selected register or group of registers to memory:

st store

stob store byte ordinal
stos store short ordinal
stib store byte integer
stis store short integer
stl store long

stt store triple

stq store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in
the instruction and the value in the register is copied into memory. For the byte and short
instructions, the value in the register is automatically reformatted for the shorter memory
location. For the stib and stis instructions, this reformatting can lead to overflow if the register
value is too large to be represented in the shorter memory location.

The st, stl, stt, and stq instructions copy 4, 8, 12, and 16 bytes from successive registers into
memory.

Move

The move instructions, listed below, copy data from a register or group of registers to another
register or group of registers.

mov move word

movl move long word
movt move triple word
movq move quad word

These move instructions can only be used to move data among the global and local registers.
A set of move-real instructions (movr, movrl, and movre) are provided for moving real
number values between the global and local registers and the floating-point registers. The
move-real instructions are described in Chapter 12.

6-5

inte|® INSTRUCTION SET SUMMARY

Load Address

The lda instruction computes an effective address in the address space from an operand
presented in one of the addressing modes. A common use of this instruction is to load a
constant into a register.

ARITHMETIC

Table 6-3 lists all the arithmetic operations for which the 80960KB processor provides instruc-
tions and the data types that the instructions operate on. An "X" in this table indicates that the
80960 architecture provides an instruction for the specified operation and data type; an "E"
indicates that an 80960KB instruction-set extension provides an instruction for the specified
operation and data type. An "E*" indicates that the specified operation can be performed on
the specified data type using 80960KB extended instructions, but that a unique instruction for
this operation is not provided. For example, a specific instruction is not provided to add two
extended-real values. However, this operation can be carried out with either the add real
(addr) or the add long real (addrl) instruction.

With two exceptions, all the processor’s arithmetic operations are carried out on operands in
registers. The processor does not provide instructions that perform arithmetic operations on
operands in memory.

The two instructions that are exceptions are the atadd (atomic add) and atmod (atomic
modify) instructions, which are discussed later in this chapter.

A summary of the arithmetic instructions for real (floating-point) data types is provided in

Chapter 12. The following sections describe the arithmetic instructions for ordinal and integer
data types.

Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals:

addi add integer
addo add ordinal
subi subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results
in a register.

6-6

intgl

INSTRUCTION SET SUMMARY

Table 6-3: Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real
Add X X E E E*
Subtract X X E E E*
Multiply X X E E E*
Divide X X E E E*
Remainder X X E E E*
Modulo X
Shift Left X X
Shift Right X X
Shift Right X
Dividing
Scale E E E*
Round E E E*
Square Root E E E*
Sine E E E*
Cosine E E E*
Tangent E E E*
Arctangent E E E*
Exponent E E E*
Log E E E*
Log Binary E E E*
Log Epsilon E E E*
Classify E E E*
Copy Sign E
Copy Reversed E
Sign

Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e., arithmetic operations on operands greater than one word in length):

addc
subc
emul
ediv

add ordinal with carry
subtract ordinal with carry
extended multiply
extended divide

intgl INSTRUCTION SET SUMMARY

The addc and subc instructions add or subtract two words (contained in registers) plus a
condition code bit (used as a carry bit). If the result has a carry, the carry bit in the condition
code is set. Also, a second condition code bit is set if the operation would have resulted in an
integer overflow condition. (The three-bit condition code is contained in the arithmetic con-
trols as described in Chapter 3.)

These instructions treat the operands as ordinals, however, the indication of overflow in the
condition code facilitates a software implementation of extended-integer arithmetic.

The emul instruction multiplies two ordinals (each contained in a register), producing long
ordinal result (stored in two registers). The ediv instruction divides a long ordinal by an
ordinal, producing an ordinal quotient and an ordinal remainder.

Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the
operation:

remi remainder integer
remo remainder ordinal
modi modulo integer

The difference between the remainder and modulo instructions lies in the sign of the result.
For the remi and remo instructions, the result has the same sign as the dividend; for the modi
instruction, the result has the same sign as the divisor.

Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

These instructions shift the operand a specified number of bits to the left or to the right. The
shlo, shli, shro, and shrdi instructions are equivalent to multiplying (shift left) or dividing
(shift right) by the power of 2. Bits shifted beyond the register boundary are discarded

The shri instruction performs a conventional arithmetic shift right. However, when this in-
struction is used to divide an integer operand by the power of 2, it produces an incorrect
quotient for negative operands. (The shrdi instruction produces the correct quotient when this
divide operation is used on negative operands.)

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by

a specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear
at the right boundary (bit 0).

6-8

intel‘° INSTRUCTION SET SUMMARY

LOGICAL
The following instructions perform bitwise Boolean operations on the specified operands:
and A and B
notand (not A) and B
andnot A and (not B)
xor not (A =B)
or AorB
nor (not A) and (not B)
xnor A=B
not not A
notor (not A) or B
ornot A or (not B)
nand (not A) or (not B)
COMPARISON

The processor provides several types of instructions that are used to compare two operands.
The following sections describe the compare instructions for ordinal and integer data types.
The compare instructions for real data types are discussed in Chapter 12.

Compare and Conditional Compare

The compare instructions listed below, compare two operands then set the condition-code bits
in the arithmetic controls according to the results.

cmpi compare integer
cmpo compare ordinal
concmpi conditional compare integer
concmpo conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater
than the other operand. (Refer to the section in Chapter 3 titled "Functions of the Arithmetic
Controls Bits" for a discussion of meanings of the condition-code bits for conditional
operations.)

The cmpi and cmpo instructions simply compare the two operands and set the condition-code
bits accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If
it is not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set,
no comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range
comparisons to check if A is between B and C (i.e., B < A < C). Here, a compare instruction
(cmpi or cmpo) is used to check one side of the range (e.g., A = B) and a conditional compare
instruction (concmpi or concmpo) is used to check the other side (e.g., A < C) according to the
result of the first comparison.

6-9

intal INSTRUCTION SET SUMMARY

Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

These instructions are intended for use at the end of iterative loops.

BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly
modifying the IP. The processor provides three types of branch instructions:

» unconditional branch

e conditional branch

e compare and branch

Most of the branch instructions specify the target IP by specifying a signed displacement to be
added to the current IP. Other branch instructions specify the memory address of the target IP
using one of the processor’s addressing modes. This latter group of instructions are called
extended-addressing instructions (e.g., branch extended, branch and link extended)

Unconditional Branch

The following four instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

The b and bx instructions cause program execution to jump to the specified target IP. As
described in Chapter 11, these two instructions perform the same function; however, they use
different machine-level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register,
then jump to the specified target IP. (For the bal instruction, the RIP is automatically stored in
register G14; for the balx instruction the location of the RIP is specified with an instruction
operand.) As described in Chapter 4, the branch and link instructions provide a method of
performing procedure calls that does not use the processor’s call/return mechanism. Here, the
saved instruction address is used as a return IP.

The bx and balx instructions can be made IP-relative by using the IP with displacement
addressing mode.

6-10

intel INSTRUCTION SET SUMMARY

Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code
bits in the arithmetic controls. If these bits match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement plus IP method of
specifying the target IP:

be branch if equal

bne branch if not equal

bl branch if less

ble branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered

(Refer to the section in Chapter 3 titled "Functions of the Arithmetic Controls Bits" for a
discussion of meanings of the condition-code bits for conditional operations.)

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Chapter 12.
Compare and Branch

The compare and branch instructions compare two operands, then branch according to the
results. There are three subtypes of instructions in this group: compare integer, compare
ordinal, and check bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two
operands are compared and the condition-code bits are set, as with the compare instructions
described earlier in this chapter. A conditional branch is then executed as with the conditional
branch (branch if) instructions.

inte|° INSTRUCTION SET SUMMARY

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the
other operand. The condition-code bits are set according to the state of the specified bit (i.e.,
010, if the bit is set and 000, if the bit is clear). A conditional branch is then executed
according to the setting of the condition-code bits.

BIT AND BIT FIELD

The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

Bit Operations
The following instructions operate on a specified bit:
setbit set bit
clrbit clear bit
notbit not bit
chkbit check bit
alterbit alter bit
scanbit scan for bit’
spanbit span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in
an ordinal.

The chkbit instruction causes the condition-code bits to be set according to the state of a
specified bit in a register. The condition code is set to 010, if the bit is set and 000, otherwise.

The alterbit instruction alters the state of a specified bit in an ordinal according to the con-
dition code. If the condition code is 010,, the bit is set; if the condition code is 0002, the bit is
cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respec-
tively, in an ordinal.

Bit Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a
specified bit field, taken from an ordinal value, into an ordinal value. In essence, this instruc-
tion shifts a bit field in a register to the right and fills in the bits to the left of the bit field with
ZEeros. .

The modify instruction copies bits from one register, under control of a mask, into another
register. Only the unmasked bits in the destination register are modified.

intela INSTRUCTION SET SUMMARY

BYTE OPERATIONS

The scanbyte instruction performs a byte-by-byte comparison of two ordinals to determine if
any two corresponding bytes are equal. The condition code is set according to the results of
the comparison.

CONVERSION

Data can be converted from one length to another by means of the load and store instructions.
For example, the ldis instruction loads a short integer from memory to a register and automati-
cally converts the integer from a half word to a full word.

The 80960KB extended instruction set provides instructions to perform conversions between
integer and real data types. These instructions are described in Chapter 12.

CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is described in detail in Chapter
4. The following four instructions are provided to support this mechanism.

call call

callx call extended
calls call system
ret return

The call and callx instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP.
The callx instruction uses extended addressing, as described for the bx and balx instructions,
to specify the target procedure. For both of these instructions, a new set of local registers and a
new stack frame are allocated for the called procedure.

The calls instruction operates similarly to the call and callx instructions, except that it gets its
target procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the calls instruction can
cause a supervisor call to be executed. A supervisor call causes the processor to switch to the
supervisor stack and to switch to supervisor mode. The supervisor call is described in detail in
Chapter 4.

The ret instruction performs a return from a called procedure to the calling procedure (the
procedure that made the call). This instruction obtains its target IP (return IP) from linkage
information that was saved for the calling procedure. The ret instruction is used to return from
local and supervisor calls and from implicit calls to interrupt and fault handlers.

inter INSTRUCTION SET SUMMARY

ATOMIC INSTRUCTIONS

The atomic instructions perform read-modify-write operations on operands in memory. They
insure that an operation on a specified memory location is completed before another agent with
access to memory is allowed to access that memory location. These instructions are par-
ticularly useful in systems in which several agents have access to system memory.

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The
atadd instruction causes an operand to be added to the value in the specified memory location.
The atmod causes bits in the specified memory location to be modified under control of a
mask.

CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types of faults without explicit inter-
vention by the currently running process. (Faults are discussed in detail in Chapter 9.)

The following conditional fault instructions permit a fault to be generated explicitly according
to the state of the condition-code bits:

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal

faultg fault if greater

faultge fault if greater or equal

faulto fault if ordered

faultno fault if unordered
DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc modify trace controls
mark mark
fmark force mark

The trace functions are controlled through the processor’s trace controls bits. Some of these
bits allow various types of tracing to be enabled or disabled. Other bits act as flags to indicate
when an enabled trace event has been detected. (Trace controls are described in detail in
Chapter 10.)

The modtc instruction permits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace
mode is enabled. The fmark instruction generates a breakpoint trace independent of the state
of the breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed
anywhere in a program.

inter INSTRUCTION SET SUMMARY

PROCESSOR MANAGEMENT
The processor provides several instructions for use in controlling processor-related functions.

The modpc instruction provides a method of reading and modifying the contents of the process
controls.

In certain instances, it is necessary to insure that the contents of the local-register save area of
the stack frames are the same as the local registers. The flush local registers instruction
(flushreg) automatically stores the contents of all the local register sets, except the current set,
in the register save area of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the
bit instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instruction (medac) permits bits in the arithmetic controls
register to be modified under the control of a mask.

The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal

testne test if not equal

testl test if less

testle test if less or equal
testg test if greater

testge test if greater or equal
testo test if ordered

testno test if unordered

These instructions cause a TRUE (010,)to be stored in a destination register if the condition
code matches the condition specified with the instruction. Otherwise, a FALSE (000,) is
stored in the register.

80960KB NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960 architecture instruc-
tion set. The synchronous load and move instructions are provided in both the 80960KB and
80960K A processors; the decimal instructions are provided only in the 80960KB processor.

Synchronous Load and Move

The processor’s store instructions are executed asynchronously with the memory controller.
Once the processor sends data out on its bus for storage in main memory, it continues with the
next instruction in the instruction stream, assuming that its bus control logic will carry out the
operation.

The 80960KB processor provides four special instructions for performing memory operations
that perform store and move operations synchronously with memory.

intel‘“ INSTRUCTION SET SUMMARY

The synchronous load instruction (synld) loads a word from a register into memory. When
this instruction is performed, the processor waits until a condition code bit is set in the arith-
metic controls, indicating that the operation has been completed, before it begins executing the
next instruction.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous
moves of data from one location in memory to another.

These instructions are used primarily for sending IAC messages, as described in Chapter 13.

Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

dmovt move and test decimal
daddc decimal add with carry
dsubc decimal subtract with carry

These instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded
decimal in the least-significant byte of the word (as shown in Figure 5-3).

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition
code according to the results of the test: 010, if the operand contains a decimal digit and 000,
otherwise.

The daddc and dsubc instructions operate similarly to the addc and' subc instructions. They
add or subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If
the operation produces a decimal carry, the condition code is set accordingly. The subtraction
operation is carried out in 10’s complement arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.
With the 80960KB processor, the most efficient method of multiplying or dividing decimal

numbers is to convert them into extended-real numbers and use the mulr and divr instructions.
Decimal values of up to 18 decimal digits can be handled with this technique.

6-16

Processor Management
and Initialization

CHAPTER 7
PROCESSOR MANAGEMENT AND INITIALIZATION

This chapter describes the facilities for initializing and managing the operation of the 80960KB
processor. Included is a description of the processor-management facilities and the steps
required to initialize the processor. Appendix D gives a listing of the necessary 80960KB code
to initialize the processor.

OVERVIEW OF PROCESSOR MANAGEMENT FACILITIES

This chapter and Chapters 8, 9, 10, and 13 describe the 80960KB’s processor-management
facilities. These facilities are primarily software-related, although some hardware considera-
tions are also discussed.

For the purpose of discussion in these chapters, it is assumed that the processor is going to
execute a program made up of a system kernel (or executive) and applications code. This
program may be located in ROM or RAM.

Such a program has the following facilities available to it to initialize, communicate with, and
control the processor:

o Instruction List

e System Data Structures

o Interrupts

o IAGCs

e Faults

These facilities allow system hardware and the kernel to initialize the processor and initiate
instruction execution. They also provide software or external agents with methods of inter-
rupting the processor to service external I/O devices.

The following paragraphs give an overview of these processor-management facilities.

Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that
the processor fetches from memory and executes one at a time. Once the processor is initial-
ized, it begins executing instructions and continues until it is stopped.

System Data Structures
The processor defines several system data structures that reside in memory. These data struc-

tures (shown in Figure 7-1) offer a means of configuring the processor to operate in a specific
way.

intela PROCESSOR MANAGEMENT AND INITIALIZATION

> INITIAL 31 INTERRUPT
PROCESSOR MEMORY JABLE
IMAGE
(1M1)
INTERRUPT
STACK

>>| FAULT TABLE

> SYSTEM [—>>| SUPERVISOR
PROCEDURE STACK
TABLE

STACK POINTER = =3 LOCAL
LOCATED IN LOCAL PROCEDURE
REGISTER r1 STACK

Figure 7-1: System Defined Data Structures

The system data structures can be located anywhere in the processor’s address space. The
processor gets pointers to most of these data structures from the initial memory image (IMI).
The IMI is described later in this chapter in the section titled "Initial Memory Image."

The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector
numbers act as indices into this table. For the purpose of handling interrupts, a separate
interrupt stack is maintained in the address space. The interrupt mechanism is described in
Chapter 8.

The fault table provides pointers to fault-handling procedures. When the processor detects a
fault, it generates a fault vector number internally that provides an index into the fault table.
The fault mechanism is described in Chapter 9.

The system procedure table contains pointers to the kernel procedures, which are accessed
using the system call (calls) mechanism. The system table structure is described in Chapter 4
in the section titled "System Procedure Table."

The processor uses two stacks for procedures calls: the local procedure stack and the (optional)
supervisor stack. These stacks are described in Chapter 4.

The processor also contains a register, called the process controls register, that it uses to store

information about the current state of the processor and the program it is executing. The
process controls are described later in this chapter in the section titled "Process Controls."

7-2

inte|° PROCESSOR MANAGEMENT AND INITIALIZATION

Interrupts

The processor defines two methods of asynchronously requesting services from the processor:
interrupts and IAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a program so that the processor can handle a more
urgent chore. Interrupt requests are generally sent to the processor from an external source,
often to request I/O services. When the processor receives an interrupt request, it temporarily
stops work on its current task and begins work on an interrupt-handling procedure. Upon
completion of the interrupt-handling procedure, the processor generally returns to the task that
was interrupted and continues work where it left off.

Interrupts also have a priority, which the processor uses to determine whether to service the
interrupt immediately or to postpone service until a later time.

IACs

The 80960KB processor provides an alternate method of communicating with other agents in
the system called IAC messages, or simply IACs. Using the IAC mechanism, other agents on
the system bus are able to communicate with the processor through messages that are ex-
changed in a reserved section of memory.

Like interrupts, IACs are used to request that the processor stop work on its current task and
begin work on another task. However, where an interrupt generally causes a temporary break
in the execution of a program, an IAC often causes a permanent change in the control flow of
the processor.

The IAC mechanism is described in Chapter 13.

Faults

While executing instructions, the processor is able to recognize certain conditions that could
cause it to return an inappropriate result or that could cause it to go down a wrong and possibly
disastrous path. One example of such a condition is a divisor operand of zero in a divide
operation. Another example is an instruction with an invalid opcode. These conditions are
called faults.

The processor handles faults almost the same way that it handles interrupts. When the proces-

sor detects a fault, it automatically stops its current processing activity and begins work on a
fault-handling procedure.

PROCESS CONTROLS
The process-controls word (shown in Figure 7-2) contains miscellaneous pieces of information

~ to control processor activity and show the current state of the processor. The various functions
of this field are described in the following paragraphs.

7-3

inter PROCESSOR MANAGEMENT AND INITIALIZATION

31 2120

l T—TRACE ENABLE
EXECUTION MODE

RESUME

TRACE-FAULT PENDING
STATE

PRIORITY

INTERNAL STATE

RESERVED (INITIALIZE TO 0)

Figure 7-2: Process-Controls Word

The execution mode flag determines whether the processor is operating in the user mode (clear)
or supervisor mode (set). The processor automatically sets this bit on a supervisor call and
clears it on a return from supervisor mode.

The priority field determines the priority (from O to 31) of the processor. When the processor
is in the executing state, it sets its priority according to this value.

The state flag determines the state of the processor. The encoding of this bit is shown in Table
7-1.

Table 7-1: Encoding of Processor State Field

State Processor
Field State

0 Executing

1 Interrupted

This bit tells software whether the processor

e is currently executing a program (0) or

» has been interrupted so the it can service an interrupt (1).

The trace-enable and trace-fault-pending flags control tracing. The trace-enable field deter-
mines whether trace faults are to be generated (set) or not-generated (clear). The trace-fault-

pending field is a flag that the processor uses to determine if a trace event has been detected
(set) or not (clear). The use of these fields is discussed in detail in Chapter 10.

7-4

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The resume flag signals the processor that an instruction has been suspended. The processor
sets this flag whenever it suspends an instruction to handle an interrupt or fault. On a return
from the interrupt or fault handler, the processor checks this flag and performs an instruction
resumption action if the flag is set.

All of the bits in the process controls are set to zero as part of the initialization procedure. Bits
2 through 8, 11, 12, 15, and 21 through 31 are reserved. These bits should not be altered
following initialization.

Changing the Process Controls
The kernel can change the process controls using any of the following three methods:

+ Modify-process-controls instruction (modpc)
¢ Alter the saved process controls prior to a return from an interrupt handler
o Alter the saved process controls prior to a return from a fault handler

The modpc instruction reads and modifies the process controls cached in the processor.

In the latter two methods, the kernel changes the process controls in the interrupt or fault
record that is saved on the stack. On the return from the interrupt or fault handler, the modified
process controls are copied into the processor’s internal process controls.

Note

Changing the saved process controls by means of a fault handler can only be used if the fault
handler was invoked by means of an implicit supervisor call.

When the process controls are changed as described above, the processor acts on the changes
as soon as it receives the new information, except for the following situation.

If the modpc instruction is used to change the trace-enable flag, the processor does not
guarantee to act on the change until after up to four more instructions have been executed.

PRIORITIES

The processor defines a priority mechanism for determining the order in which programs,
interrupts, and IACs are worked on. Priorities range from O to 31, with 31 being the highest
priority. Each interrupt vector is assigned a priority. Also, when the processor is executing a
program, it sets its priority according to the priority field of the process controls.

Interrupt priorities serve two functions. First, they determine if the processor will service an
interrupt immediately or delay servicing it with respect to its current priority. Second, they
determine which interrupt of several interrupts is serviced first.

When the processor receives an IAC, it always services it immediately (i.e., treats the IAC as if
it has a priority of 31). A mechanism is provided that allows priorities to be assigned to IACs.
When using this mechanism, external hardware is required to intercept all IACs sent to the
processor and to check their priority. This hardware then determines whether to send the IAC

intel" PROCESSOR MANAGEMENT AND INITIALIZATION

to the processor for servicing or delay it according to the current priority of the processor.
(The 80960KB Hardware Designer’s Reference Manual provides a more complete description
of this mechanism.)

PROCESSOR STATES

The processor has four different operating states: executing, interrupted, stopped, and stopped-
interrupted. The processor is placed in one of two states (executing or stopped) at initializa-
tion. After that, the processor and software control the processor’s state.

The processor can switch between the executing and interrupted states or between the stopped
and stopped-interrupted states. However, the processor never switches from the executing
state to the stopped state, unless it detects a series of fault conditions that it cannot handle.

Software can change the state of the processor in either of two ways: (1) issue a reinitialize
IAC or (2) issue a freeze IAC. The reinitialize IAC forces the processor to reread the pointers
from the IMI and begin executing instructions from a new IP. The freeze IAC forces the
processor into the stopped state.

Executing and Interrupted State

In the executing state, the processor is executing the program.

If the processor is interrupted while in the executing state, it saves the current state of the
program, switches to the interrupted state, and services the interrupt. Upon returning from the
interrupt handler, the processor resumes work on the program.

Stopped and Stopped-interrupted States

In the stopped state the processor ceases all activity. The only tasks it can perform while in
this state are to service an interrupt or an IAC. While servicing an interrupt, the processor
switches to the stopped-interrupted state. It then switches back to the stopped state upon
completion of the interrupt routine. Likewise, while servicing an IAC, the processor switches
to the stopped-interrupted state. If the IAC handling action does not result in a change in the
processor’s state, the processor switches back to the stopped state when it finishes the IAC
handling action.

The only way to get the processor out of the stopped state (other than to service an interrupt) is

to reinitialize the processor, either with a hardware reset or by sending it an external reinitialize
IAC.

INSTRUCTION SUSPENSION

When the processor is interrupted while it is in the midst of executing an instruction, it does
one of three things before it services the interrupt:

7-6

intel” PROCESSOR MANAGEMENT AND INITIALIZATION

1. It completes the instruction.

2. It terminates the instruction and sets the processor state so that it is as if execution of that
instruction had not yet begun.

3. It suspends the instruction and saves the necessary resumption information so that execu-
tion of the instruction can be continued when the processor begins work on the program
again. This course of action is generally reserved for instructions that have a long execu-
tion time and that alter the internal and external processor state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the program can be resumed with no loss of
information.

Refer to the section in Chapter 8 titled "Interrupt Handling Action” for more information on
how resumption information is saved when an interrupt is serviced.

MEMORY REQUIREMENTS

The processor provides a 232-byte address space. This address space can be mapped to
read-write memory, read-only memory, and memory-mapped I/O. (The processor does not
provided a dedicated, addressable I/O space.)

The address space is linear (or flat): there are no subdivisions of the address space such as
segments. For the purpose of memory management, an external memory management unit
(MMU) may subdivide memory into pages or restrict access to certain areas of memory to
protect kernel code and data. But from the point of view of the processor, the address space is
linear.

All of the address space is available for general use except the upper 16M bytes (FF000000,
to FFFFFFFF, ¢), which are reserved for special functions. (These functions are described in
Chapter 13.)

An address in memory is a 32-bit value in the range 0 to FFFFFFFF .. It can be used to
reference a single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory depending on
the instruction being used. (Refer to the descriptions of the load and store instructions in
Chapter 11 for information on multiple-byte addressing.)

Memory Restrictions

The processor requires that the memory to which the address space is mapped has the follow-
ing capabilities.
o It must be byte addressable.

o It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes
in length).

inter PROCESSOR MANAGEMENT AND INITIALIZATION

o It must guarantee indivisible access (read or write) for memory addresses that fall within
16-byte boundaries.

o It must guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processors to share a common
memory conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations
will complete the operation before another processor can read or write the same location. The
processor requires indivisible access within an aligned, 16-byte block of memory.

An atomic access is a read-modify-write operation. Here external logic must guarantee that
once a processor begins a read-modify-write operation on a set of memory locations, it is
allowed to complete the operation before another processor is allowed to access the same
location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing
another atomic operation within that block until the first operation has been completed.

The 80960KB processor provides two features to aid in implementing the memory require-
ments described above: SIZE lines and a LOCK line on the local bus.

The SIZE lines indicate the length of a memory access in bytes. These lines can be used to
specify 1-, 2-, 4-, 8-, 12-, or 16-byte lengths. When making a multiple-byte access, the
processor thus sends the memory controller a base address, on the address lines, and a length,
on the SIZE lines.

The LOCK line is used to synchronize atomic operations. When a processor performs an
atomic operation, it first examines the LOCK line. If it is asserted, the processor waits until the
line is not asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor
asserts the LOCK line when it is performing an atomic read and deasserts the line when it
performs the companion atomic write.

The LOCK line mechanism allows only one atomic operation to be carried out in memory at
one time.

SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this chapter allow the processor to be
configured and operated in several ways. This section lists the data structures that the kernel
must supply to operate the processor. \

To use the processor, the kernel must provide the following items:

o« IMI
e Other System Data Structures

7-8

intef PROCESSOR MANAGEMENT AND INITIALIZATION

e Address Space
o Stacks
e Code

The IMI comprises the minimum data structures that the processor needs to initialize the
system.

As part of the initialization procedure, a more complete set of system data structures are
established in memory. These data structures include an interrupt table and a fault table. If the
system call mechanism is going to be used, a system procedure table is required.

Two stacks are also required: an interrupt stack and a local (or user) procedure stack. The
initial stack pointer for the interrupt stack is given in the IMI. The initial stack pointer (SP) for
the local-procedure stack is given in local register rl; the initialization code is required to
establish the SP value in this register.

If the supervisor call mechanism is to be used, a supervisor stack must also be provided. The
initial stack pointer for this stack is given in the system-procedure table. The supervisor stack
can be placed anywhere in the address space.

Note

The section in Chapter 4 titled "Hints on Using the User-Supervisor Protection Model"
describes an application of the user-supervisor protection model, in which the processor is
always in supervisor mode. When using this application, the local stack and the supervisor
stack are the same. The processor gets the initial stack pointer for this stack from register r1.

Finally, three levels of code are required: initialization code, kernel code, and applications
code. The initialization code is part of the IMI. (Appendix D gives an initialization code
example.) The starting IP for the initialization code is also provided in the IMI.

PROCESSOR INITIALIZATION

This section describes how to initialize the 80960KB processor. It defines the mechanism that
the processor uses to establish its initial state and begin instruction execution. It also describes
some general guidelines for writing code to complete the initialization of the processor for
specific applications.

Note

The 80960 architecture does not define an initial memory image or an initialization procedure.
The following initialization requirements are specific to the 80960KB processor.

Initial Memory Image

The IMI performs three functions for the processor: (1) it provides check-sum words that the
processor uses in its self-test routine at start-up, (2) it provides pointers to the system data
structures, and (3) it provides scratch space that the processor uses to perform certain internal
functions. Figure 7-3 shows the structure of the IMI.

7-9

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The IMI is made up of four parts: the check-sum word, the system address table (SAT), and
the processor control block (PRCB), and the initialization code. In an embedded application,
all of the parts of this image will generally be held in ROM, except the scratch space of the
PRCB. For this reason, the PRCB should be copied from ROM to RAM after system in-
itialization. (The reinitialize IAC, described in Chapter 13, is used to give the processor the
PRCB pointer for the relocated PRCB.)

Check-Sum Words

The check-sum words must be in memory locations 00000000, to 0000001F, .. The first of
these words is a pointer to the base of the SAT. The second word is a pointer to the base of the
PRCB. The fourth word is the instruction pointer to the first instruction of the initialization
code.

The remaining words (word 3 and words 5 through 8) are check words, which must be chosen
such that the one’s complement of the sum of the eight words plus FFFFFFFF, (equals 0.

System Address Table

The SAT is 158 bytes in size and can be located anywhere in the address space. It has four
required entries. The word beginning at byte 136 must contain a pointer to the base (first byte)
of the SAT. This pointer is identical to the pointer given in the first word of the check-sum
words. The word beginning at byte 152 must contain a pointer to the base of the system
procedure table. The words beginning at byte 140 and 156 must contain 00FCOOFB ¢ and
304400FB 4, respectively.

All of the other words in the SAT are preserved and can be used by software.

Processor Control Block

The PRCB is 174 bytes long and can also be located anywhere in the address space. It has
seven required entries and one reserved space.

Bits 0 through 30 of the word beginning at byte 4 must be zero.

The write-external-priority flag (bit 31 of the word beginning at byte 4) instructs the processor
to write the priority of the processor to the IAC message control field whenever an interrupt
(not caused by an IAC) or the execution of the modpc instruction occurs. When this bit is set,
the write-external-priority mechanism is enabled; when the bit is clear, the mechanism is
disabled. The use of this flag is described in Chapter 13.

7-10

PROCESSOR MANAGEMENT AND INITIALIZATION

CHECK-SUM WORDS

SAT POINTER

PRCB POINTER

CHECK WORD

INSTRUCTION POINTER

4 CHECK WORDS

PHYSICAL
ADDRESSES

0 >

;L

4

12
16
20
24
28

e
[] reserven(inmaLizeTo0)

NNy PRESERVED

SYSTEM ADDRESS TABLE (SAT)

E

POINTER TO OFFSET 0

00FC 00FB1¢

-

SYSTEM PROCEDURE POINTER

3044 00FB g

PROCESSOR CONTROL BLOCK
(PRCB)

INTERRUPT TABLE POINTER

INTERRUPT STACK POINTER

Lol w6t]
Bl R
0000 027F4¢
0000 027Fq¢

FAULT TABLE POINTER

0000000046

<

S SCRATCH SPACE

INITIALIZATION CODE

OFFSET

0

136

140

144

148

152

156

OFFSET

24

28

32

36

40

44

48

76

80

172

OFFSET
0

Figure 7-3: Initial Memory Image

inter PROCESSOR MANAGEMENT AND INITIALIZATION

The interrupt table pointer points to the first byte of the interrupt table. The interrupt stack
pointer points to the top (first available byte) of the interrupt stack.

The words beginning at bytes 32 and 36 must each contain 0000027F .
The fault table pointer points to the first byte of the fault table.
The word beginning at byte 44 must contain all zeros.

The processor uses the scratch space in the IMI for internal functions. This field should be set
to all zeros at initialization or reinitialization of the processor and not accessed by software
thereafter.

The remaining fields in the PRCB (bytes 8 through 19, bytes 28 through 31, and bytes 48
through 79) are reserved. They should be set to all zeros at initialization or restart and not
accessed by software thereafter.

Initialization Code

The initial instruction list that the processor begins executing following its self test can be
located anywhere in the address space.

Changing the Initial Memory Image

At initialization or on a reinitialize processor IAC, the processor reads the pointers from the
IMI in memory and caches them.

In general, to change any of the IMI fields that have been cached on the processor chip, the
kernel must first modify the IMI in memory, then reinitialize the processor using the reini-
tialize processor IAC. The processor then rereads the IMI and reloads the cached fields in its
internal cache.

Building a Memory Image

The IMI shown in Figure 7-3 contains the minimum data structures required for the processor
to initialize itself and begin executing code. To build a useful system, however, additional data
structures are required, such as an interrupt table, a fault table, a system procedure table, a set
of kernel procedures, a set of stacks, and a heap. Some of these data structures can be located
in ROM along with the IMI; however, others must be in RAM because they must be writable.

Table 7-2 lists the various system data structures and shows which can be in ROM and which

must be in RAM. The following paragraphs give the system limitations if a data structure is
included in ROM.

7-12

intel

PROCESSOR MANAGEMENT AND INITIALIZATION

Table 7-2: ROM and RAM Resident Data Structures

Data Structure May Be in ROM May Be in ROM Must Be in RAM
with Limitations

IMI X

PRCB X

SAT X

Interrupt table X

Fault table X

Kernel Procedures X

Stacks and heap X

All of the PRCB except the scratch space area must be in ROM. The scratch space must be in
RAM.

The interrupt table must be in RAM for the processor to operate properly, because it contains
the interrupt pending fields, which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault
handler routines.

The kernel procedures can be in either ROM or RAM or both, depending on the design of the
kernel.

Typical Initialization Scenario

Initialization of the 80960KB processor typically is handled in two stages. In the first stage of
initialization the processor performs a self test and reads pointers from the IMI. During the
second stage, the processor executes initialization code designed to build the remainder of the
memory image so that execution of applications code can begin.

First Stage of Initialization

The following procedure shows the steps that system hardware and the processor go through in
the first stage of initialization. The algorithm in Figure 7-4 gives the details of this procedure.

intel

PROCESSOR MANAGEMENT AND INITIALIZATION

assert FAILURE pin;
perform self test;
if self test fails
then enter stopped state;
else
deassert FAILURE pin;
enter predefined state;
if STARTUP pin=0
then enter stopped state;
else
x <~ memory(0); read 8 words beginning
at address 0
AC.cc « 0002;
temp < FFFFFFFF, c add_with_carry x(0);
temp « temp add_with_carry x(1);
temp ¢ temp add_with_carry x(2);
temp < temp add_with_carry x(3);
temp ¢ temp add_with_carry x(4);
temp < temp add_with_carry x(5);
temp « temp add_with_carry x(6);
temp < temp add_with_carry x(7);
if temp #0
then
assert FAILURE pin;
enter stopped state;
else
prcb_address <— memory(4);
IP <~ memory (12)
fetch IMI;
processor.priority « 31;
processor.state < interrupted;
FP < IMLinterrupt_stack_pointer;
clear any latched external interrupt/IAC
signals;
begin execution;
endif;
endif;,
endif;

Figure 7-4: Algorithm for First Stage of Initialization Procedure

1. Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its local processor number (1 or 0). (LPN and STAR-
TUP are signals that come from multiplexed information received on several processor

pins.)

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes

the self test, it deasserts the FAILURE pin.

7-14

intelm PROCESSOR MANAGEMENT AND INITIALIZATION

4. The processor samples STARTUP to determine whether it is the initializing processor (1)
or not (0). If the processor is the initializing processor, it continues with the initialization
procedure; if it is not, it goes into the stopped state. (In multiprocessing systems, all
processors except the initializing processor are put in the stopped state.)

5. The processor reads the 8 check-sum words and checks that the check sum is 0.

Using the contents of the check-sum words, the processor determines the location of the
SAT, the PRCB, and the first instruction to be executed.

The processor sets its process priority to 31 (highest possible) and its state to interrupted.

The processor clears any latched external interrupt or IAC signals. This means that the
processor will not service any interrupts or IACs prior to beginning instruction execution.

9. The processor begins execution of the initialization instruction list.

After self test, the processor establishes its own state. For the initializing processor this state is
interrupted; for any other processors in the system this state is stopped. Also at initialization,
the trace controls are set to zero; the process controls are set to zero (except for the execution
mode, which is set to supervisor, and the priority, which is set to 31); and the breakpoint
registers are disabled.

Since the processor places itself in the interrupted state during the first stage of initialization,
the initialization code is essentially a special interrupt-handler procedure.

Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the proces-
sor begins instruction execution, is up to software. In general, this stage of initialization is
used to copy or create additional data structures in memory, such as the interrupt table, the
system-procedure table, and the fault table (if not in the initial memory image), and the kernel
procedures.

Once these jobs are completed, the processor can then begin executing applications code.

Appendix D gives an example of the 80960KB code that might be used to carry out this second
stage of initialization.

A common initialization technique is to create a new PRCB and interrupt table in RAM along
with the other system data structures that are placed in memory in the second stage of in-
itialization. The processor is then reinitialized to point to the PRCB and interrupt table. (The
code in Appendix D uses this technique.)

The processor is reinitialized using the reinitialize IAC. This reinitialize IAC message includes
new pointers to the SAT and PRCB. The processor reads the new PRCB, then begins instruc-
tion execution according to the control information contained in the PRCB.

Interrupts 8

CHAPTER 8
INTERRUPTS

This chapter describes the 80960KB processor’s interrupt handling facilities. It also describes
how interrupts are signaled.

OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a program so that the processor can
handle another chore. Interrupts are generally requested from an external source. The inter-
rupt request either contains a vector number or else points to a vector that tells the processor
what chore to do while in the interrupted state. When the processor has finished servicing the
interrupt, it generally returns to the program that it was working on when the interrupt occurred
and resumes execution where it left off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure
call to a selected interrupt handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the program is saved. If the interrupt occurs
during an instruction that requires many machine cycles, the instruction state is also saved and
execution of the instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to
the interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the program that was
running when the interrupt occurred, restores it to the state it was in when the interrupt
occurred, and resumes work on it.

Another feature of this interrupt handling mechanism is that it allows interrupts to be
prioritized. If an interrupt is signaled that has the same or a lower priority than the processor’s
current priority, the processor will save the interrupt vector and service the interrupt at a later
time. Interrupts that are waiting to be serviced are called pending interrupts.

SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, software must provide the following items
in memory:

o Interrupt Table

o Interrupt Handler Routines

o Interrupt Stack

These items are generally established in memory as part of the initialization procedure. Once
these items are present in memory and pointers to them have been entered in the appropriate
system data structures, the processor then handles interrupts automatically and independently
from software.

inter INTERRUPTS

The requirements for these items are given in following sections of this chapter.

VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined.
In practice, vectors O through 7 cannot be used, and vectors 244 through 251 are reserved and
should not be used by software.

Each vector has a predefined priority, which is defined by the following expression:

priority = vector/8

Thus, at each priority level, there are 8 possible vectors (e.g., vectors 8 through 15 have a
priority of 1, vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which
have a priority of 31).

The processor uses the priority of an interrupt to determine whether or not to service the
interrupt immediately or to delay service. If the interrupt priority is greater than the
processor’s current priority, the processor services the interrupt immediately; if the interrupt
priority is equal to or less than the processor’s current priority, the processor saves the interrupt
vector as a pending interrupt so that it can be serviced at a later time.

A priority-31 interrupt is always serviced immediately.

Note that the lowest program priority allowed is 0. If the current program has a O priority, a
priority-0 interrupt will never be accepted. This is why vectors O through 7 cannot be used. In
fact, there are no entries provided for these vectors in the interrupt table.

INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt
handlers. It must be aligned on a word boundary. The processor determines the location of the
interrupt table by means of a pointer in the IMI.

As shown in Figure 8-1, the interrupt table contains one entry (i.e., one pointer) for each
allowable vector. The structure of an interrupt-table entry is given at the bottom of Figure 8-1.
Each interrupt procedure must begin on a word boundary, so the two least-significant bits of
the entry are set to 0.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of
the table is divided into two fields: pending priorities (byte-offset O through 3) and pending
interrupts (byte-offset 4 through 35).

The pending priorities field contains a 32-bit string in which each bit represents an interrupt
priority. The bit number in the string represents the priority number. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority
is set. For example, if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is
set.

8-2

intel

INTERRUPTS

31 0
PENDING PRIORITIES 0
4
2 PENDING INTERRUPTS 2
32
ENTRY 8 36
ENTRY 9 40
ENTRY 10 a4
S . e
ENTRY 243 976
980
992
996
1000
1008
ENTRY 252 1012
ENTRY 255 1024
PROCEDURE ENTRY FORMAT
31 210
| INSTRUCTION POINTER [o]o]

RESERVED (INITIALIZE TO 0)

(VECTOR 8)
(VECTOR 9)
(VECTOR 10)

.
.
.

(VECTOR 243)
(VECTOR 244)

(VECTOR 247)
(VECTOR 248)
(VECTOR 249)

.
.
.

(VECTOR 251)
(VECTOR 252)

.
.
.

(VECTOR 255)

The pending interrupts field contains a 256-bit string in which each bit represents an interrupt
For example, byte-offset 4 is reserved, byte-offset 5 is for vectors § through 15,
byte-offset 6 is for vectors 16 through 23, and so on. When a pending interrupt is logged, its

vector.

Figure 8-1: Interrupt Table

corresponding bit in the pending interrupt field is set.

8-3

inte|° : INTERRUPTS

This encoding of the pending priority and pending interrupt fields permits the processor to first
check if there are any pending interrupts with a priority greater than the current program and
then to determine the vector number of the interrupt with the highest priority. Software should
set these fields to O at initialization and not access these fields after that.

Note

Refer to the section later in this chapter titled "Handling Pending Interrupts" for a description of
the processor’s pending interrupt mechanism.

INTERRUPT HANDLER PROCEDURES

An interrupt handler is a procedure that performs a specific action that has been associated with
a particular interrupt vector. For example, a typical job for an interrupt handler is to read a
character from a keyboard.

The interrupt handler procedures can be located anywhere in the address space. Each proce-
dure must begin on a word boundary.

The processor execution mode is always switched to supervisor while an interrupt is being
handled.

When an interrupt-handler procedure is called, the states of the process controls and arithmetic
controls for the interrupted program are saved. However, the interrupt handler shares the other
resources of the interrupted program, in particular the global registers and the address space.
This sharing of resources imposes one important restriction on the interrupt handler
procedures.

The interrupt handler procedures must preserve and restore the state of any of the resources
that it uses. For example, the processor allocates a set of local registers to the interrupt
handler, just as it does on an explicit procedure call. If the interrupt handler needs to use the
global or floating-point registers, however, it should save their contents before using them and
restore them before returning from the interrupt handler.

INTERRUPT STACK

The interrupt stack can be located anywhere in the address space. The processor determines
the location of the interrupt stack by means of a pointer in the IMI.

The interrupt stack has the same structure as the local procedure stack described in Chapter 4
in the section titled "Procedure Stack."

INTERRUPT HANDLING ACTIONS

When the processor receives an interrupt, it handles it automatically. The processor takes care
of saving the processor state, calling the interrupt-handler routine, and restoring the processor
state once the interrupt has been serviced. Software support is not required.

8-4

intela INTERRUPTS

The following section describes the actions the processor takes while handling interrupts. It is
not necessary to read this section to use the interrupt mechanism or write an interrupt handler
routine. This discussion is provided for those readers who wish to know the details of the
interrupt handling mechanism.

Receiving an Interrupt
Whenever the processor receives an interrupt signal, it performs the following action:

1. It temporarily stops work on its current task, whether it is working on a program or
another interrupt procedure.

It reads the interrupt vector.
3. It compares the priority of the vector with the processor’s current priority.

If the interrupt priority is higher than that of the processor, the processor services the
interrupt immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the processor, the processor sets the
appropriate priority bit and vector bit in pending interrupt record and continues work on its
current task.

Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is
in when it receives the interrupt. The following sections describe the interrupt handling actions
for various states of the processor. In all of these cases, it is assumed that the interrupt priority
is higher than that of the processor and will thus be serviced immediately after the processor
receives it. The handling of lower priority interrupts is described later in this chapter in the
section titled "Pending Interrupts."

Executing State Interrupt

When the processor receives an interrupt while it is in the executing state (i.e., executing a
program), it performs the following actions to service the interrupt; this procedure is the same
regardless of whether the processor is in the user or the supervisor mode when the interrupt
occurs:

1. The processor saves the current state of process controls and arithmetic controls in an
interrupt record on the stack that the processor is currently using. This stack can be the
local-procedure stack or the supervisor stack. (The interrupt record is described in the
following section.)

2. If the execution of an instruction was suspended, the processor includes a resumption
record for the instruction in the current stack and sets the resume flag in the saved process
controls. (Refer to the section in Chapter 7 titled "Instruction Suspension” for a discussion
of the criteria for suspending instructions.)

3. The processor switches to the interrupted state.

8-5

intela INTERRUPTS

4. The processor sets the state flag in the process controls to interrupted, its execution mode
to supervisor, and its priority to the priority of the interrupt. Setting the processor’s
priority to that of the interrupt insures that lower priority interrupts can not interrupt the
servicing of the current interrupt.

5. Also in its internal process controls, the processor clears the trace-fault-pending and trace-
enable flags. Clearing these flags allows the interrupt to be handled without trace faults
being raised.

6. The processor allocates a new frame on the interrupt stack and switches to the interrupt
stack.

The processor sets the frame return status field (associated with the PFP) to 111,.

8. The processor performs an implicit call-extended operation (similar to that performed for
the callx instruction). The address for the procedure that is called is that which is
specified in the interrupt table for the specified interrupt vector.

Once the processor has completed the interrupt procedure, it performs the following action on
the return:

1. 'The processor deallocates the stack frame from the interrupt stack and switches to the local
or supervisor stack (whichever one it was using when it was interrupted).

2. The processor copies the arithmetic controls field from the interrupt record into its arith-
metic controls register.

3. The processor copies the process controls field from the interrupt record into its internal
process controls.

4. If the resume flag of the process controls is set, the processor copies the resumption record
from the interrupt record to the resumption record field of the PRCB.

5. The processor checks the interrupt table for pending interrupts that are higher then the
priority of the program being returned to. If a higher-priority pending interrupt is found, it
is handled as if the interrupt occurred at this point.

6. Assuming that there are not pending interrupts to be serviced, the processor switches to the
executing state and resumes work on the program.

Interrupted State Interrupt

If the processor receives an interrupt while it is servicing an interrupt, and the new interrupt has
a higher priority than the interrupt currently being serviced, the current interrupt-handler
routine is interrupted. Here the processor performs the same action to save the state of the
interrupted interrupt-handler routine as is described at the beginning of this section. Here, the
interrupt record is saved on the top of the interrupt stack, prior to the new frame that is created
for use in servicing the new interrupt.

Interrupt Record

The processor saves the state of an interrupted program (or interrupt-handler) routine in an
interrupt record. Figure 8-2 shows the structure of this interrupt record.

8-6

inte|® INTERRUPTS

LOCAL, SUPERVISOR, OR INTERRUPT STACK

31 0
STACK P
GROWTH REGISTER SAVE AREA
FOR CURRENT FRAME
ADDITIONAL VARIABLES
AND PADDING AREA
(OPTIONAL)
INTERRUPT STACK
31 7 0
. NSP*
PADDING AREA <
STACK
GROWTH
RESUMPTION RECORD !
FOR SUSPENDED INSTRUCTION < INTERRUPT
(OPTIONAL) RECORD
SAVED PROCESS CONTROLS NFP-16
SAVED ARITHMETIC CONTROLS NFP-12
- {VECTORNUMBER |NFP-8 §

NEW FRAME NFP

l +

*If the interrupt is serviced while the processor is working on another
interrupt procedure, the new stack pointer (NSP) will be the same as
the SP.

RESERVED

Figure 8-2: Storing of an Interrupt Record on the Stack

inteF INTERRUPTS

The resumption record within the interrupt record is used to save the state of a suspended
instruction. If no instruction is suspended, the resumption record is not created.

Stopped State Interrupt

The processor can also be interrupted while in the stopped state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is
in the executing state, with the following exception. When the processor allocates the new
frame on the interrupt stack, it sets the frame return field to 110,. This causes the processor to
revert to the stopped state when the processor returns from the interrupt-handler procedure.

Stopped-Interrupted State Interrupt

If the processor receives an interrupt while it is in the stopped-interrupted state, it handles the
interrupt just as it would if it occurred in the interrupted state.

Pending Interrupts

As is described earlier in this chapter, the processor provides a mechanism for evaluating
interrupts according to their priority. If the interrupt priority is equal to or lower than the
processor’s current priority, the processor does not service the interrupt immediately. Instead,
it posts the interrupt in the pending interrupt section of the interrupt table. The processor
checks the interrupt table at specific times and services those interrupts that have a higher
priority than its current priority. This pending interrupt mechanism provides two benefits:

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing
activity on higher priority tasks.

2. In a system that uses two or more 80960KB processors, both processors can share the
same interrupt table. This interrupt-table sharing allows the processors to share the inter-
rupt handling load.

The following paragraphs describe how the processor handles pending interrupts.

Note

The 80960 architecture defines the section of the interrupt table for storing pending interrupts
and a mechanism for checking the interrupt table for pending interrupts. The method used for
posting interrupts to the interrupt table and circumstances under which the processor check the
interrupt table for pending interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the
sections titled "Posting Pending Interrupts” and "Checking for Pending Interrupts” is specific to
the 80960KB processor. The information given in the section titled "Handling Pending
Interrupts” is defined in the 80960 architecture and should be common in all processors that
implement this part of the architecture.

8-8

inte|° INTERRUPTS

Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways:

1. The processor receives an interrupt with a priority equal to or lower than that of the
program the processor is currently working on. The processor then automatically posts the
interrupt in the pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt
table.

Using the first method, the processor performs an atomic read/write operation that locks the
interrupt table until the posting operation has been completed. Locking the interrupt table
prevents other agents on the bus from accessing the interrupt table during this time.

The second method of posting an interrupt is risky, because it does not use this locking
technique. (The processor’s atomic instructions are not able to perform a locking operation
that spans several instructions.) This method will work only if the kernel can insure the
following:

o that no external I/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

o that an interrupt cannot occur after one bit (e.g., the pending priority bit) of the pending-
interrupt record is set but before the other bit (the pending interrupt vector) is set.

Checking for Pending Interrupts

The processor automatically checks the interrupt table for pending interrupts at the following
times:

e After returning from an interrupt-handler procedure

o While executing a modify-process-controls instruction (modpc), if the instruction causes
the program’s priority to be lowered.

e After receiving a test pending interrupts IAC message.

Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrupt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents
other agents on the bus from accessing the interrupt table until the pending-interrupt check has
been completed.

When the processor finds a pending interrupt, it handles it as if it had just received the
interrupt. The handling mechanism is the same as is described earlier in this chapter for
interrupts that are serviced as soon as they are received.

inte|° INTERRUPTS

If the processor finds two pending interrupts at the same priority, it services the interrupt with
the highest vector number first.

SIGNALING INTERRUPTS

Note

The 80960 architecture does not define a mechanism for signaling interrupts to the processor.
The methods of signaling interrupts described in the following section are specific to the
80960KB processor.

The 80960KB processor can be interrupted in any of the following five ways:

o Signal on its interrupt pins

e Signal on its interrupt pins from an external interrupt controller
e AnIAC message from external source

e AnIJAC message from a program in the processor

e A pending interrupt (described earlier in this chapter)

Interrupts From Interrupt Pins

The processor has four interrupt pins, called INTO, INT1, INT2, and INT3. These pins can be
configured in either of the following three ways:
o as four interrupt-signal inputs;

e as two interrupt inputs and two pins for handshaking with an interrupt controller such as
the Intel 8259A Programmable Interrupt Controller; or

o asone IAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 8-3.

31 2423 1615 8 7 0
| wr3vecror | T2 vecToR INT1 VECTOR INTO VECTOR |

Figure 8-3: Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of
the four fields in the interrupt-control register. Then, when an interrupt is signaled on one of
the pins, the processor reads the vector from the pin’s associated field in the register. For
example, if an interrupt is signaled on pin INTO, the processor reads the vector from bits 0
through 7.

8-10

inter INTERRUPTS

The processor assumes that the interrupt vectors in the interrupt register are arranged in des-
cending order from the INTO field to the INT3 field (e.g., the priority of INTO = INT1 = INT2
2 INT3). To insure that interrupts are handled in the proper order, software should follow this
convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to IAC, and it is
used to signal the processor that an external IAC message has been sent to it. In fact, the INTO
pin must be configured in this manner for the processor to service external IAC messages.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to
INTR and INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt
controller and the INTA pin is used to send acknowledge signals back to the controller. When
the processor receives a signal on the INTR pin, it reads an interrupt vector from the least-
significant 8 bits of its bus, then sends an acknowledge signal to the controller through INTA.
When the INT2 and INT3 pins are configured in this manner, the processor ignores the INT3
vector field.

Note

Refer to the 80960KB Hardware Designer’s Reference Manual for more information on the use
of INT2 and INT3 pins with an interrupt controller.

The interrupt-control register is memory mapped to addresses FF000004,. through
FF000007,¢. Only the processor can read or write this register using the synchronous load
(synld) and synchronous move (synmov) instructions. External agents on the bus cannot
access this register.

The value in the interrupt-control register after the processor is initialized is FF000000 ¢.

IAC Interrupts

The processor can also receive an interrupt request by means of the IAC mechanism. (The
IAC mechanism is described in detail in Chapter 13.) The interrupt IAC message can be sent
to the processor either from an external bus agent, such as an I/O processor or another
80960KB processor, or internally as part of the currently running program. The interrupt
vector is contained in the interrupt IAC message.

As with any other IJAC message, the processor receives notice of an external interrupt-IAC
message through the INTO pin, which has been configured as an IAC pin, as described in the
previous section. The processor then reads the IAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-IAC
message. An internal IAC is sent to the processor by means of a synchronous move instruc-
tion. When the processor executes a synchronous move to its IAC message space, it signals an
IAC message internally. The processor then reads the IAC message as it would for an external
IAC.

Fault Handling 9

CHAPTER 9
FAULT HANDLING

This chapter describes the fault handling facilities of the 80960KB processor. The subjects
covered include the fault-handling data structures, the software support required for fault
handling, and the fault handling mechanism. A reference section that contains detailed infor-
mation on each fault type is provided at the end of the chapter.

OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions in code or in its internal state (called "fault
conditions") that could cause the processor to deliver incorrect or inappropriate results or that
could cause it to head down an undesirable control path. For example, the processor recog-
nizes divide-by-zero and overflow conditions on integer calculations. It also detects in-
appropriate operand values, uncompleted memory accesses, or references to incomplete or
non-existent system-data structures.

The processor can detect a fault while it is executing a program, an interrupt handler, or a fault
handler. (In this chapter, when a program is referred to, it generally also means any interrupt
handler or fault handler that may have been invoked while the processor was working on the
program.)

When the processor detects a fault, it handles the fault immediately and independently of the
program or handler it is currently working on, using a mechanism similar to that used to
service interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to making the call, the processor
saves the state of the current program and in some cases the state of an incomplete instruction.
It also saves information about the fault, which the fault handler can use to correct or recover
from the condition that caused the fault.

If the fault handler is able to recover from the fault, the processor can then restore the program
to its state prior to the fault and resume work on the program. If the fault handler is not able to
recover from the fault, it can take any of several actions to gracefully shut down the processor.

FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types
and subtypes, each of which is given a number. The processor uses the type number to select a
fault handler. The fault handler then uses the subtype number to select a specific fault-
handling procedure. ‘

Table 9-1 lists the faults that the processor detects, arranged by type and subtype. For con-
venience, individual faults are referred to in this manual by their fault-subtype name. Thus a
machine bad-access fault is referred to as simply a bad-access fault, or an arithmetic integer
overflow fault is referred to as an integer overflow fault.

9-1

FAULT HANDLING

intel

The fifth column of Table 9-1 shows each fault as it appears in the fault record (the word at
offset 40 of the fault record is shown later in this chapter).

Table 9-1: Fault Types and Subtypes

Fault Type Fault Subtype Fault Record
No./Bit
No. Name Position | Name
1 Trace Bit 1 Instruction Trace 0xXXO01 0002
Bit2 Branch Trace 0xXX01 0004
Bit3 Call Trace 0xXX01 0008
Bit 4 Return Trace 0xXX01 0010
Bit5 Prereturn Trace 0xXX01 0020
Bit 6 Supervisor Trace 0xXXO01 0040
Bit7 Breakpoint Trace 0xXX01 0080
2 Operation 1 Invalid Opcode 0xXX02 0001
2 Unimplemented 0xXX02 0002
4 Invalid Operand 0xXX02 0004
3 Arithmetic 1 Integer Overflow 0xXX03 0001
2 Arithmetic Zero-Divide 0xXX03 0002
4 glqating Bit 0 Floating Overflow 0xXX04 0001
oint
Bit 1 Floating Underflow 0xXX04 0002
Bit2 Floating Invalid-Operation 0xXX04 0004
Bit 3 Floating Zero-Divide 0xXX04 0008
Bit4 Floating Inexact 0xXX04 0010
Bit 5 Floating Reserved-Encoding 0xXX04 0020
5 Constraint 1 Constraint Range 0xXX05 0001
2 Privileged 0xXX05 0002
7 Protection Bit 1 Length 0xXX07 0001
8 Machine 1 Bad Access 0xXX08 0001
9 Structural 3 IAC 0xXX09 0003
A Type 1 Type Mismatch 0xXX0A 0001
Note

The 80960 architecture defines a basic set of fault types and subtypes. Processors that provide
extensions to the architecture may recognize additional fault conditions. The encoding of fault
types and subtypes allows any of these extensions to be included in the fault table along with
the basic faults. Space in the fault table will be reserved in such a way that processors that
recognize the same fault types and subtypes will encode them in the same way.

For example, the floating-point faults (fault type 4) are an extension provided in the 80960KB

processor (but not in the 80960KA processor). Any other processors based on the 80960
architecture that also recognize floating-point faults will also encode them as fault type 4.

9-2

inter FAULT HANDLING

FAULT-HANDLING METHOD

The processor handles all faults through an implicit procedure call to a fault handler. When a
fault occurs while the processor is executing a program, the processor creates a fault record on
its current stack. This record includes information on the state of the program and data on the
fault. If the fault occurred while the processor was in the midst of executing an instruction, a
resumption record for the instruction may also be saved on the stack.

Following the creation of the fault and resumption records, the processor selects a fault handler
from a system-data structure called the fault table. It then invokes the fault handler (by means
of an implicit call) and begins executing the handler procedure. As is described later in this
chapter, the fault-handler call can be a local call (call-extended operation), a local system-
procedure-table call (local system-call operation), or a supervisor call.

This same procedure call method is used to handle faults that occur while the processor is
servicing an interrupt or that occur while the processor is working on a fault handler.

Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such
as trace faults or protection faults, bit positions in the fault-subtype field are used to indicate
the occurrence of multiple faults of the same type. As a general rule, however, the processor
does not indicate situations where multiple faults occur. Instead, it records one of the faults
and does not report on the faults that were not recorded.

If a fault occurs while the processor is executing a fault handling routine, the operating of the
processor is not predictable.

Faults and Interrupts

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has
faulted while the processor is in the midst of selecting the fault handler, the processor will
handle the fault in either of the following ways:

e It includes the fault information as part of its interrupt record and services the interrupt
immediately. After it has serviced the interrupt, it handles the fault.

o It completes the selection of the fault handler, then' services the interrupt just prior to
executing the first instruction of the fault handler.

SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor’s fault-handling facilities, the following system-data structures and
procedures must be present in memory:

¢ Fault Table
o Fault-Handler Procedures

intela FAULT HANDLING

o Interrupt Table
o Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure.
Once they are present in memory and pointers to them have been included in the IMI, the
processor then handles faults automatically and independently from software.

Requirements for the fault table and fault-handler procedures are given in the following sec-
tions.

FAULT TABLE

The fault table provides the processor with a pathway to the fault handlers when the processor
is using the implicit procedure-call method of handling faults. As shown in Figure 9-1, there is
one entry in the fault table for each fault type. When a fault occurs, the processor uses the fault
type to select an entry in the fault table. From this entry, the processor then obtains a pointer to
the fault handler for the type of fault that occurred.

The fault handler reads the fault subtype or subtypes from the fault record to determine the
appropriate fault recovery action.

Location of the Fault Table in Memory

The fault table can be located anywhere in the address space. The processor obtains a pointer
to the fault table from the IMI.

Fault-Table Entries

Each entry in the fault table is two words long. As shown at the bottom of Figure 9-1, there are
two types of fault-table entries allowed: local-procedure entry and system-procedure-table
entry. The entry-type field determines the entry type.

A local-procedure entry (entry type 00,) provides an instruction pointer (address in the address
space) for the fault-handler procedure. Using this entry, the processor invokes the specified
fault handler by means of an implicit call-extended operation (similar to that performed for the
callx instruction). The second word of a local-procedure entry is reserved. It should be set to
zero when the fault table is created and not accessed after that.

A system-procedure-table entry (entry type 10,) provides a procedure number in the system
procedure table. Using this entry, the processor invokes the specified fault handler by means
of an implicit call-system operation (similar to that performed for the calls instruction).

Fault-handling procedures in the system procedure table can be local procedures or supervisor

procedures. A fault handler can thus be invoked through the fault table in any of three ways:
implicit local-procedure call, implicit local procedure-table call, or implicit supervisor call.

9-4

n

FAULT HANDLING

31 0

0
TRACE FAULT ENTRY 8
OPERATION FAULT ENTRY 16
ARITHMETIC FAULT ENTRY 24
FLOATING-POINT FAULT ENTRY 32
CONSTRAINT FAULT ENTRY 40
PROTECTION FAULT ENTRY 56
MACHINE FAULT ENTRY 64
72
TYPE FAULT ENTRY 80
88
96
104
112
120
252
. LOCAL PROCEDURE FAULT-TABLE ENTRY 210
FAULT-HANDLER PROCEDURE ADDRESS ofo] M
e n+4
3 SYSTEM-PROCEDURE-TABLE FAULT-TABLE ENTRY 210
FAULT-HANDLER PROCEDURE NUMBER | 1 |o n
0000027F, n+4

RESERVED (INITIALIZE TO 0)

Figure 9-1: Fault Table and Fault-Table Entries

intele FAULT HANDLING

FAULT-HANDLER PROCEDURES

The fault-handler procedures can be located anywhere in the address space. .Each procedure
must begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending
on the type of fault table entry.

Note

To resume work on a program at the point where a fault occurred (following the recovery action
of the fault handler), the fault handler must be executed in the supervisor mode. The reason for
this requirement is described in a following section titled "Program and Instruction Resumption
Following a Fault."

Many of the faults that occur can be recovered from easily. When recovery from the fault is
possible, the processor’s fault-handling mechanism allows the processor to automatically re-
sume work on the program or interrupt that it was working on when the fault occurred. The
resumption action is initiated with a ret instruction in the fault-handler procedure.

If recovery from the fault is not possible or not desirable, the fault handler can take one of the
following actions, depending on the nature and severity of the fault condition (or COIldlthIlS in
the case of multiple faults):

e Return to a point in the program or interrupt code other than the point of the fault

o Save the current state of the processor and call a debug monitor

o Save the current state of the processor and place the processor in the stopped state (using a
freeze IAC)

o Explicitly write the processor state, fault record, and instruction resumption record into
memory and place the processor in the stopped state

o Place the processor in the stopped state without explicitly saving the processor state or the
fault information.

When working with the processor at the development level, a common action of the fault
handler is to save the fault and processor state information and make a call to a debugging
device such as a debugging monitor. This device can then be used to analyze the fault. '

Program and Instruction Resumption Following a Fault
The processor allows work on a program to be resumed at the point where the fault occurred,
following a return from a fault handler. If an instruction was suspended to handle the fault,

execution of the instruction can also be resumed on the return.

This resumption mechanism is similar to that provided for returning from an interrupt handler.
It is only useful, however, for faults from which recovery is possible, such as the trace faults.

To use this mechanism, the fault handler must be invoked using an implicit supervisor

procedure-table call. This method is required because to resume work on the program and a
suspended instruction at the point where the fault occurred, the saved process controls in the

9-6

FAULT HANDLING

intal

fault record must be copied back into the processor on the return from the fault handler. The
processor only performs this action if the processor is in the supervisor mode on the return.

If the fault handler is invoked with an implicit local-procedure call or an implicit local-
procedure-table call, the return IP determines where in the program the processor resumes
work, following a return from a fault handler. Here, the return is handled in a similar manner
to a return from an explicit call with a call or callx instruction.

The return IP (referred to later in this chapter as the saved IP) is saved in the RIP register (12)
of the stack frame that was in use when the fault occurred. This IP may be the instruction the
processor faulted on or the next instruction that the processor would have executed if the fault
had not occurred. In either case, the resumption record is not used, so the processor might
continue work on the program without completing the instruction that the fault occurred on.

A fault handler should thus be invoked with an implicit local-procedure or local-procedure-
table call only if it is not required or desirable to resume the program at the point of the fault.
The section later in this chapter titled "Return Without Resumption"” discusses returning to a
point in the program code other than the point of the fault.

FAULT CONTROLS

Certain fault types and subtypes have masks or flags associated with them that determine
whether or not a fault is signaled when a fault condition occurs. Table 9-2 lists these flags and
masks, the system data structures in which they are located, and the fault subtype they affect.

Table 9-2: Fault Flags or Masks
Flag or Mask Name Location Fault Affected
Integer Overflow Mask Arithmetic Controls | Integer Overflow
Floating Overflow Mask Arithmetic Controls | Floating Overflow
Floating Underflow Mask Arithmetic Controls | Floating Underflow
Floating Invalid Operation Mask | Arithmetic Controls | Floating

Invalid Operation

Floating Zero-Divide Mask

Arithmetic Controls

Floating Zero-Divide

Floating-point Inexact Mask

Arithmetic Controls

Floating Inexact

No Imprecise Faults Flag

Arithmetic Controls

All Imprecise Faults

Trace-Enable Flag

Process Controls

All Trace Faults

Trace-Mode Flags

Trace Controls

All Trace Faults

The integer and floating-point mask bits inhibit faults from being raised for specific fault
conditions (i.e., integer overflow and floating-point overflow, underflow, zero divide, invalid
operation, and inexact). The use of these masks is discussed in the fault-reference section at
the end of this chapter. Also, the floating-point fault masks are described in Chapter 12 in the
section titled "Exceptions and Fault Handling."

9-7

inte|® FAULT HANDLING

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults
called imprecise faults. This flag should be set to 1. The function of this flag is described later
in this chapter in the section titled "Precise and Imprecise Faults". ‘

The trace-mode flags (in the trace controls) and trace-enable flag (in the process controls)
support trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the
generation of trace faults. The use of these flags is described in the fault reference section on
trace faults at the end of this chapter. Further discussion of these flags is provided in Chapter
10-in the section titled "Trace-Enable and Trace-Fault-Pending Flags."

!

SIGNALING A FAULT

The processor generates faults implicitly when fault conditions occur and explicitly at the
request of software. Most faults are generated implicitly. The fault control bits described in
the previous section allow the implicit generation of some faults to be either enabled (as with
the trace faults) or masked (as with the floating-point faults).

Fault-If Instructions

The fault-if instructions (faulte, faultne, faultl, faultle, faultg, faultge, faulto, and faultno)
allow a fault to be generated explicitly anywhere within an application program, kernel proce-
dure, interrupt handler, or fault handler. When one of these instructions is executed, the
processor checks the condition code bits in the arithmetic controls, then signals a constraint-
range fault if the condition specified with the instruction is met.

FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record. The
fault handler and processor use this information to recover from or correct the fault condition
and resume execution of the process. Figure 9-2 shows the structure of the fault record. The
use of the fields in this record are described in the following paragraphs.

The type number (byte ordinal) of a fault is stored in the fault-type field; the subtype number or
bit positions (byte ordinal) is stored in the fault-subtype field.

The fault-flags field provides a set of general-purpose flags that the processor uses to indicate
additional information about a particular fault subtype. Most of the faults do not use these
flags, in which case the flags have no defined values.

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the
fault or that was being executed when the fault occurred.

The states of the process controls and arithmetic controls at the time that a fault is generated

are stored in their respective fields in the fault record. This information is used to resume work
on the program after the fault has been handled.

9-8

n

FAULT HANDLING

FAULT DATA

PROCESS CONTROLS 32

ARITHMETIC CONTROLS 36

FAULT FLAGS I FAULT TYPE] FAULT SUBTYPE [40
ADDRESS OF FAULTING INSTRUCTION [44

RESERVED

Figure 9-2: Fault Record

Finally, a three-word fault data field is provided for the fault. The information that is stored in
these fields depends on the type of fault that occurs. Any part of a fault-data field that is not
used for a particular fault has no defined value. The information that is stored in these fields
for each fault type is given in the fault reference section at the end of this chapter.

Saved Instruction Pointer

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is
also part of the fault information that the processor saves when a fault occurs. This IP
generally points to the next instruction that the processor would have executed if the fault had
not occurred, although it may point to the faulting instruction. It is this instruction that the
processor begins working on when the return from the fault handler is initiated.

Resumption Record

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption
record. The criteria that the processor uses to determine whether or not to suspend an instruc-
tion and the structure of the resumption record are the same as are used when an interrupt
occurs.

intel° FAULT HANDLING

Location of the Fault and Resumption Records

The fault and resumption records are stored in the stack that the processor is using when the
fault occurs. This stack can be the local stack, the supervisor stack, or the interrupt stack.

FAULT HANDLING ACTION :

Once a fault has occurred, the processor saves the program state, calls the fault handler, and
restores the program state (if this is possible) once the fault recovery action has been com-
pleted. No software other than the fault-handler procedures is required to support this activity.

Three different types of implicit procedure calls can be used to invoke the fault handler,
according to the information in the selected fault-table entry: local call, local call through the
system procedure table, and supervisor call (also through the system procedure table).

Implicit, Local Call/Return

When the selected fault-handler entry in the fault table is an entry type 00, (local procedure),
the processor performs the following action:

1. The processor stores a fault record as shown in Figure 9-2 on the top of the stack that the
processor is currently using. The stack can be the local stack, the supervisor stack, or the
interrupt stack.

2. If the fault caused an instruction to be suspended, the processor includes an instruction-
resumption record on the current stack and sets the resume flag in the saved process
controls.

3. The processor creates a new frame on the current stack, with the frame-return status field
set to 0012.

4. Using the procedure address from the selected fault-table entry, the ’i)rocessor performs an
implicit call-extended operation to the fault handler.

If the fault handler is not able to perform a recovery action, it performs one of the actions
described in the section earlier in this chapter titled "Possible Fault-Handler Actions."

If the handler action results in a recovery from the fault, a ret instruction in the fault handler
allows processor control to return to the program that was being worked on when the fault
occurred. On the return, the processor performs the following action:

The processor deallocates the stack frame created for the fault handler.

2. The processor copies the arithmetic controls field from the fault record into the arithmetic
controls register in the processor.

3. The processor then resumes work on the program it was working on when the fault
occurred at the instruction in the return IP register.

"9-10

intel’” FAULT HANDLING

Implicit, Local Procedure-Table Call/Return

When the fault-handler entry selects an entry in the system procedure table (entry type 10,)
and the system-procedure-table entry is for local procedure, the processor performs the same
action as is described in the previous section for a local procedure call/return. The only
difference is that the processor gets the address of the fault handler from the system procedure
table rather than from the fault table.

Implicit, Supervisor Call/Return

When the fault-handler entry selects an entry in the system procedure table (entry type 10,)
and the system-procedure-table entry is for a supervisor procedure, the processor performs the
same action as is described in the previous section for a local procedure call and return, with
the exceptions described in the following paragraphs.

On a supervisor fault-handler call, the processor performs the following additional actions:

1. If the processor is in user mode when the fault occurs, the fault record and resumption
record are stored in the local stack. The processor then takes the stack pointer from the
procedure table and switches to the supervisor stack. The execution mode is then set to
supervisor.

2. If the processor is already in supervisor mode when the fault occurs, the fault record is
stored in the current stack (which is the supervisor stack). The processor then creates a
new frame on the current stack and begins work on the fault-handler procedure selected
from the procedure table.

3. In both of the above cases, the processor copies the state of the trace-control flag (byte 12,
bit 1) of the procedure table into the trace-enable flag field of the process controls.

On a return from the fault handler, the processor performs the following additional actions:

1. If the processor is in supervisor mode prior to the return from the fault handler (which it
should be), it copies the saved process controls into its internal process controls.

2. If the resume flag of the process controls is set, the processor reads the resumption record
from the stack.

3. The processor then resumes work on the program at the point it was working on when the
fault occurred.

The restoration of the process controls causes any changes in the process controls through the
action of the fault handler to be lost. In particular, if the ret instruction from the fault handler
caused the trace-fault-pending flag in the process controls to be set, this setting would be lost
on the return.

Program State After a Fault
As has been described earlier in this chapter, faults can occur prior to the execution of the

faulting instruction (i.e., the instruction that causes the fault), during the instruction, or after the
instruction. When the fault occurs before the faulting instruction is executed, the instruction

9-11

inte|° FAULT HANDLING

can theoretically be executed on the return from the fault handler. So, the fault is not accom-
panied by a change in the control flow of the program.

When a fault occurs during or after the instruction that caused a fault, the fault may be
accompanied by a change in the program’s control flow such that the faulting instruction
cannot be reexecuted. For example, when an integer-overflow fault occurs, the overflow value
is stored in the destination. If the destination register was the same as one of the source
registers, the source value is lost, making it impossible to reexecute the faulting instruction.

In general, changes in the program’s control flow never accompany the following fault types or
subtypes:

o All Operation Subtypes

o Arithmetic Zero-Divide

o All Floating-Point Subtypes Except Floating Inexact

o All Constraint Subtypes

o Prereturn Trace

Changes in the program’s control flow.always accompany the following fault types and sub-
types:

o All Trace Subtypes Except Prereturn Trace

o Integer Overflow

o Floating Inexact

Changes in the program’s control flow may or may not accompany the following fault types
and subtypes:

e Structural

o Bad Access

The effect that specific fault types have on a program is given in the fault reference section at
the end of this chapter under the heading "Program State Changes."

Return Without Resumption

There may be situations where the fault handler needs to return to a point in the program other
than where the fault occurred. This can be done by altering the return IP in the previous frame.
However, if resumption information was collected with the fault (resulting in the resume flag
being set in the saved process controls), such a return can cause unpredictable results.

To predictably perform a return from a fault handler to an alternate point in the program, the

fault handler should clear the following information in the process-controls field of the fault
record before the return: the resume and trace-fault-pending flags; the internal state field.

9-12

intela FAULT HANDLING

Note

A return of this type can only be performed if the processor is in supervisor mode prior to the
return.

PRECISE AND IMPRECISE FAULTS

As described in the section in Chapter 3 titled "Register Scoreboarding," the 80960KB proces-
sor is, in some instances, able to execute instructions concurrently. When two instructions are
being executed concurrently, it is possible for them to generate faults simultaneously. When
this occurs, one of the faults may not be signaled or may be signaled out of order, making it
impossible to recover from that fault.

The processor provides two mechanisms to allow the circumstances under which faults are
signaled to be controlled. These mechanisms are the no imprecise faults flag (NIF flag) in the
arithmetic controls and the synchronize faults instruction (syncf). The following paragraphs
describe how these mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise, and asynchronous.

Precise faults are those that are intended to be recoverable by software. For any instruction
that can generate a precise fault, the processor will (1) not execute the instruction if an
unfinished prior instruction will fault and (2) not execute subsequent out-of-order instructions
that will fault. The following faults are always precise:

e trace

e protection

Imprecise faults are those that in some instances are allowed to occur and not be signaled or be
signaled out of order. These faults include the following:

e operation

e arithmetic

o floating point

e constraint

. type

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This category includes the machine fault.

The NIF flag controls whether or not imprecise faults are allowed. When this flag is set, all
faults must be precise. In this mode, the ability to execute instructions concurrently is essen-
tially disabled. All faults that occur are signaled.

When the NIF flag is clear, faults in the imprecise category can in some instances occur and
not be signaled. In this mode, the following conditions hold true:

intgl FAULT HANDLING

1. 'When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting
instruction in the fault record is valid).

2. If instructions are executed concurrently when an imprecise fault occurs, the results
produced by these instructions are undefined.

3. If instructions are executed out-of-order and multiple imprecise faults occur, only onhe of
the faults is generated. The one that is selected is not predictable.

The syncf instruction forces the processor to complete execution of all instructions that occur
prior to the syncf instruction and to generate all faults, before it begins work on instructions
that occur after the syncf instruction. This instruction has two uses. One use is to force faults
to be precise when the NIF is clear. The other use is to insure that all instructions are complete
and all faults signaled in one block of code before execution of another block of code (for
example, on Ada block boundaries when the blocks have different exception handlers).

The intent of these fault-generating modes is that compiled code should execute with the NIF
clear, using the syncf instruction where necessary to ensure that faults occur in order. In this
mode, imprecise faults are considered as catastrophic errors from which recovery is not
needed.

If recovery from one or more of the imprecise faults is required (for example, a program that
needs to handle unmasked floating-point exceptions and recover from them) and the fault
handler cannot be closely coupled with the application to perform recovery even if the faults
are imprecise, the NIF should be set. Executing with the NIF set will likely lead to slower
execution times.

FAULT REFERENCE

This section describes each of the fault types and subtypes and gives detailed information
about what is stored in the various fields of the fault record. The section is organized al-
phabetically by fault type.

Fault Reference Notation

The following paragraphs describe the information that is provided for each fault type.

Fault Type and Subtype

The fault-type section gives the number entered in the fault-type field of the fault record for the
given fault type. The fault-subtype section lists the fault subtypes and their associated number
or bit position in the fault-subtype field of the fault record.

Function

The function section gives a general description of the purpose of the fault type, then describes

the purpose of each of the fault subtypes in detail. It also describes how the processor handles
each fault subtype.

9-14

inte|° FAULT HANDLING

Fault Record

The fault record section describes how the flags, fault-data, and address-of-faulting-instruction
fields of the fault record are used for the fault type and subtypes.

Saved IP

The saved IP section describes what value is saved in the RIP register (r2) of the stack frame
the processor was using when the fault occurred.

Program State Changes

The program state changes section describes the effects that the fault subtypes have on the
control flow of a program.

9-15

inte|° FAULT HANDLING

Arithmetic Faults

Fault Type: 316

Fault Subtype: Number Name
0 Reserved
1 Integer Overflow
2 Arithmetic Zero-Divide
3-F Reserved

Function: Indicates that there is a problem with an operand or the result of an
arithmetic instruction. This fault type applies only to ordinal and
integer instruction, not floating-point instructions.
The integer-overflow fault occurs when the result of an integer in-
struction overflows the destination and the integer-overflow mask in
the arithmetic-controls register is cleared. Here, the n least sig-
nificant bits of the result are stored in the destination, where 7 is the
destination size.
The arithmetic zero-divide fault occurs when the divisor operand of
an ordinal or integer divide instruction is zero.

Fault Record: Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP for the instruction on which the processor

faulted.
Saved IP: IP for the instruction that would have been executed next, if the

Prog. State Changes:

fault had not occurred.

A change in the program’s control flow accompanies the integer-
overflow fault, because the result is stored in the destination before
the fault is signaled. The faulting instruction can thus not be
reexecuted.

A change in the program’s control flow does not accompany the
arithmetic zero-divide fault, because the fault occurs before the ex-
ecution of the faulting instruction.

9-16

inter FAULT HANDLING

Constraint Faults

Fault Type: 516

Fault Subtype: Number Name
0 Reserved
1 Constraint Range
2-F Reserved

Function: Indicates that the processor is either in or not in the required state
for the instruction to be executed.
The constraint-range fault occurs when a fault-if instruction is ex-
ecuted and the condition code in the arithmetic controls matches the
condition required by the instruction.

Fault Record: Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP for the instruction on which the processor

faulted
Saved IP: Not used.

Prog. State Changes:

No changes in the program’s control flow accompany the
constraint-range fault. This fault occurs after the fault-if instruction
has been executed, but the instruction has no effect on the program
state.

9-17

inter’ FAULT HANDLING
Floating-Point Faults
Fault Type: 416
Fault Subtype: Bit Number Name
Bit0 Floating Overflow
Bit 1 Floating Underflow
Bit 2 Floating Invalid-Operation
Bit3 Floating Zero-Divide
Bit4 Floating Inexact
Bit5 Floating Reserved-Encoding
Bits 6 and 7 Reserved
Function: Indicates that there is a problem with an operand or the result of a

floating-point instruction. Each floating-point fault is assigned a bit
in the fault-subtype field. Multiple floating-point faults can only
occur simultaneously, however, with the floating-overflow,
floating-underflow, and floating-inexact faults.

The floating-point faults are described in detail in the section in
Chapter 12 titled "Exceptions and Fault Handling." The following
paragraphs give a brief description of each floating-point fault.

A floating-overflow fault occurs when (1) the floating-point over-
flow mask is clear and (2) the infinitely precise result of a floating-
point instruction exceeds the largest allowable finite value for the
specified destination format. This fault interacts with the floating-
inexact fault (as described in Chapter 12).

A floating-underflow fault occurs when (1) the floating-point under-
flow mask is clear and (2) the infinitely precise result of a floating-
point instruction is less than the smallest possible normalized, finite
value for the specified destination format. This fault interacts with
the floating-inexact fault (as described in Chapter 12).

The floating invalid-operation fault occurs when (1) the floating-
point invalid-operation mask is clear and (2) one of the source
operands for a floating-point instruction is inappropriate for the type
of operation being performed.

The floating zero-divide fault occurs when (1) the floating-point
zero-divide mask is clear and (2) the divisor operand of a floating-
point divide instruction is zero.

The floating-inexact fault occurs when (1) the floating-point inexact
mask is clear and (2) an infinitely precise result cannot be encoded
in the format specified for the destination operand. This fault inter-
acts with the floating-overflow and floating-underflow faults (as
described in Chapter 12).

The floating reserved-encoding fault occurs when a denormalized
value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

9-18

intel

FAULT HANDLING

Fault Record:

Saved IP:

Prog. State Changes:

Flags: F0 — Used if inexact fault occurs in conjunc-
tion with overflow or underflow fault. If set,
FO indicates that the adjusted result has been
rounded toward +e; if clear, FO indicates that
the adjusted result has been rounded toward

=00,

F1 — Used with overflow and underflow
faults only. If set, F1 indicates that the ad-
justed result has been bias adjusted, because
its exponent was outside the range of the
extended-real format.

Fault Data: Used only with overflow and underflow
faults. Adjusted result is stored in this field
in extended-real format (as shown in Figure
12-5).

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

IP for the instruction that would have been executed next, if the
fault had not occurred.

Changes in the program’s control flow accompany the floating-
overflow, floating-underflow, and floating-inexact faults, because a
result is stored in the destination before the fault is signaled. The
faulting instruction can thus not be reexecuted.

Changes in the program’s control flow do not accompany the float-
ing invalid-operation, floating zero-divide, and floating reserved-
encoding faults, because the faults occur before the execution of the
faulting instruction.

9-19

inte|° FAULT HANDLING

Machine Faults

Fault Type: 816

Fault Subtype: Number Name
0 Reserved
1 Bad Access
2-F Reserved

Function: Indicates that the processor has detected a hardware or memory-
system error.
The bad-access fault is the only one of this fault type. This fault
occurs whenever an unrecoverable memory error occurs on a
memory operation. In the 80960KB processor, the processor
receives a signal on its bad access pin (BADAC) to indicate an
unrecoverable memory error. Upon receiving this signal, the
processor signals a machine bad access fault. There is one excep-
tion to this action. The processor will not signal a machine bad
access fault while executing any of the synchronous load or move
instructions. Instead, it sets the condition code bits to indicate
whether or not the memory access was completed successfully.

Fault Record: Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: Not used.

Saved IP: Not used.

Prog. State Changes:

This fault may occur at any time. When it does occur, the accom-
panying state of the program’s control flow is undefined. As a
result, the processor is not able to return predictably from the fault
handler to the point in the program where the fault occurred.

If this fault occurs during an atomic operation, there is no guarantee
that the locking mechanism that memory uses for synchronization is
unlocked.

9-20

intel

FAULT HANDLING

Operation Faults

Fault Type:
Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

Number Name

Reserved
Invalid Opcode
Unimplemented
Reserved
Invalid Operand
5-F Reserved

S LW ~=O

Indicates that the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

The invalid-opcode fault occurs when the processor attempts to ex-
ecute an instruction that contains an undefined opcode or addressing
mode.

The unimplemented fault occurs when unaligned memory accesses
are not allowed and the processor attempts to access an unaligned
word or group of words in memory. (The 80960KB processor does
allow unaligned memory accesses, so this fault never occurs.)

The invalid-operand fault occurs when the processor attempts to
execute an instruction for which one or more of the operands have
special requirements and one or more of the operands do not meet
these requirements. This fault subtype is not generated on floating-
point instructions.

Flags: Not used.
Fault Data: Not used.

Addr. Fault. Inst.: IP for the last instruction executed in the
process.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program’s control flow does not accompany the
operation faults, because the faults occur before the execution of the
faulting instruction.

9-21

inter FAULT HANDLING
Protection Faults
Fault Type: 716
Fault Subtype: Bit Number . Name
Bit0 Reserved
Bit 1 Length
Bit 2-7 Reserved
Function: Indicates that the index operand used in a calls instruction points to

Addr. Fault. Inst.:
Saved IP:

Prog. State Changes:

an entry beyond the extent of the system procedure table.
Fault Flags: ~ Not used.

Fault Data: Not used.

IP for the instruction on which the processor faulted.
Same as the address-of-faulting-instruction field.

A change in the program’s control flow does not accompany the
protection length fault.

9-22

inte|° FAULT HANDLING
Trace Faults
Fault Type: Lie
Fault Subtype: Bit Number Name
Bit 0 Reserved
Bit 1 Instruction Trace
Bit 2 Branch Trace
Bit 3 Call Trace
Bit4 Return Trace
Bit 5 Prereturn Trace
Bit 6 Supervisor Trace
Bit7 Breakpoint Trace
Function: Indicates that the processor has detected one or more trace events.

The processor’s event tracing mechanism is described in detail in
Chapter 10.

A trace event is the occurrence of a particular instruction or type of
instruction in the instruction stream. The processor recognizes
seven different trace events (instruction, branch, call, return,
prereturn, supervisor, and breakpoint). It detects these events,
however, only if a mode bit is set for the event in the trace controls
word, which is cached in the processor chip. If, in addition, the
trace-enable flag in the process controls is set, the processor
generates a fault when a trace event is detected.

The fault is generated following the instruction that causes a trace
event (or prior to the instruction for the prereturn trace event).

The following trace modes are available:

o Instruction — Generate trace event following any instruction.

o Branch — Generate trace event following any branch instruc-
tion when branch is taken.

e Call — Generate trace event following any call or branch-and-
link instruction, or implicit procedure call (i.e., call to fault or
interrupt handler).

¢« Return — Generate trace event following any return instruc-
tion.

e Prereturn — Generate trace event prior to any return instruc-
tion.

o Supervisor — Generate trace event following any call-system
instruction.

e Breakpoint — Generate trace event following any processor
action that causes a breakpoint condition.

There is a trace fault subtype and a bit in the fault-subtype field
associated with each of these modes. Multiple fault subtypes can

9-23

intgl

FAULT HANDLING

Fault Record:

Saved IP:

Prog. State Changes:

occur simultaneously, with the fault-subtype bit set for each subtype
that occurs.

When a fault type other than a trace fault occurs during the execu-
tion of an instruction that causes a trace event, the non-trace-fault is
handled before the trace fault. An exception to this rule is the
prereturn trace fault. The prereturn trace fault will occur before the
processor has a chance to detect a non-trace-fault, so it is handled
first.

Likewise, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the trace fault is handled.
Again, the prereturn trace fault is an exception. Since it occurs
before the instruction, it will be handled before any interrupt that
might occur during the execution of the instruction.

Flags: Not used.
Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction that caused the trace
' event, except for the prereturn trace fault.
For the prereturn trace fault, this field has no

defined value.

IP for the instruction that would have been executed next, if the
fault had not occurred.

* A change in the program’s control flow accompanies all the trace

faults (except the prereturn trace fault), because the events that can
cause a trace fault occur after the faulting instruction is completed.
As a result, the faulting instruction cannot be reexecuted upon
returning from the fault handler.

Since the prereturn trace fault occurs before the return instruction
is executed, a change in the program’s control flow does not accom-
pany this fault and the faulting instruction can be executed upon
returning from the fault handler. :

9-24

intele FAULT HANDLING
Type Faults
Fault Type: A
Fault Subtype: Number Name
0 Reserved
1 Type Mismatch
2-F Reserved
Function: Indicates that an attempt was made to execute the modpc instruc-
tion while the processor was in the user mode.
Fault Record: Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP for the instruction on which the processor
faulted
Saved IP: Not used.
Prog. State Changes: When a type mismatch fault occurs, the accompanying state of the

program is undefined. The processor is thus not able to return
predictably from the fault handler to the point in the program where
the fault occurred.

9-25

Debugging 10

CHAPTER 10
DEBUGGING

This chapter describes the tracing facilities of the 80960KB processor, which allow the
monitoring of instruction execution.

OVERVIEW OF THE TRACE-CONTROL FACILITIES

The 80960KB processor provides facilities for monitoring the activity of the processor by
means of trace events. A trace event in the 80960KB is a condition where the processor has
just completed executing a particular instruction or type of instruction, or where the processor
is about to execute a particular instruction.

By monitoring trace events, debugging software is able to display or analyze the activity of the
processor or of a program. This analysis can be used to locate software or hardware bugs or
for general system monitoring during the development of system or applications programs.

The typical way to use this tracing capability is to set the processor to detect certain trace
events either by means of the trace-controls word or a set of breakpoint registers. An alternate
method of creating a trace event is with the mark and force mark fmark instructions. These
instructions cause an explicit trace event to be generated when the processor detects them in
the instruction stream.

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault
handler for trace faults can then call the debugging monitor software to display or analyze the
state of the processor when the trace event occurred.

REQUIRED SOFTWARE SUPPORT FOR TRACING

To use the processor’s tracing facilities, software must provide trace-fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate several control
flags to enable the various tracing modes and to enable or disable tracing in general. These
control flags are located in the system-data structures described in the next section.

TRACE CONTROLS

The following flags or fields control tracing:

e Trace controls

o Trace-enable flag in the process controls

o Trace-fault-pending flag in the process controls

o Trace flag (bit 0) in the return-status field of register rQ

o Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure
table

inte|@ DEBUGGING

Trace-Controls Word
The trace-controls word is cached internally in the processor.

The trace controls allow software to define the conditions under which trace events are
generated. Figure 10-1 shows the structure of the trace-controls word.

23222120191817

INSTRUCTION
TRACE MODE

BRANCH TRACE MODE
CALL TRACE MODE
RETURN TRACE MODE
PRERETURN TRACE MODE
SUPERVISOR TRACE MODE
BREAKPOINT TRACE MODE
INSTRUCTION TRACE EVENT
BRANCH TRACE EVENT
CALL TRACE EVENT
RETURN TRACE EVENT
PRERETURN TRACE EVENT
SUPERVISOR TRACE EVENT
BREAKPOINT TRACE EVENT

RESERVED (INITIALIZE TO 0)

Figure 10-1: Trace-Controls Word

This word contains two sets of bits: the mode flags and the event flags. The mode flags define
a set of trace modes that the processor can use to generate trace events. A mode represents a
subset of instructions that will cause trace events to be generated. For example, when the
call-trace mode is enabled, the processor generates a trace event whenever a call or branch-
and-link operation is executed. To enable a trace mode, the kernel sets the mode flag for the
selected trace mode in the trace controls. The trace modes are described later in this chapter.

The processor uses the event flags to keep track of which trace events (for those trace modes
that have been enabled) have been detected.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to set or
clear flags in the trace controls. On initialization, all the flags in the processor’s internal trace
controls are cleared. The modtc instruction can then be used to set or clear trace mode flags as
required. "

10-2

intel” DEBUGGING

Software can access the event flags using the modtc instruction, however, there is no reason to.
The processor modifies these flags as part of its trace-handling mechanism.

Bits 0, 8 through 16, and 24 through 31 of the trace controls are reserved. Software should
initialize these bits to zero and not modify them.

Trace-Enable and Trace-Fault-Pending Flags

The trace-enable flag and the trace-fault-pending flag, in the process controls (shown in Figure
7-2), control tracing. The trace-enable flag enables the processor’s tracing facilities. When
this flag is set, the processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the trace controls. It then sets
the trace-enable flag when tracing is to begin. This flag is also altered as part of some of the
call and return operations that the processor carries out, as described at the end of this chapter.

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace
event has been detected. The processor uses this flag as follows. When the processor detects
an enabled trace event, it sets this flag. Before executing an instruction, the processor checks
this flag. If the flag is set, it signals a trace fault. By providing a means of recording the
occurrence of a trace event, the trace-fault-pending flag allows the processor to service an
interrupt or handle a fault other than a trace fault, before handling the trace fault. Software
should not modify this flag.

Trace Control on Supervisor Calls

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a
call-system instruction (calls) is executed that results in a switch to supervisor mode. This
action occurs independent of whether or not tracing is enabled prior to the call.

When a supervisor call is executed (calls instruction that references an entry in the system
procedure table with an entry type 11,), the processor saves the current state of the trace-enable
flag (from the process controls) in the trace flag (bit 0) of the return-status field of register r0.

Then, when the processor selects the supervisor procedure from the procedure table, it sets the
trace-enable flag in the process controls according to the setting in the trace-control flag in the
procedure table (bit O of the word that contains the supervisor-stack pointer).

On a return from the supervisor procedure, the trace-enable flag in the process controls is
restored to the value saved in the return-status field of register r0.

TRACE MODES

The following trace modes can be enabled through the trace controls:

o Instruction trace

intele DEBUGGING

o Branch trace

o Call trace

e Return trace

e Prereturn trace

¢ Supervisor trace
¢ Breakpoint trace

These modes can be enabled individually or several modes can be enabled at once. Some of
these modes overlap, such as the call-trace mode and the supervisor-trace mode. The section
later in this chapter titled "Handling Multiple Trace Events" describes what the processor does
when multiple trace events occur.

The following sections describe each of the trace modes.

Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event
each time an instruction is executed. This mode can be used within a debugging monitor to
single-step the processor.

Branch Trace

When the branch-trace mode is enabled, the processor generates an branch-trace event any
time a branch instruction that branches is executed. A branch-trace event is not generated for
conditional-branch instructions that do not branch. Also, branch-and-link, call, and return
instructions do not cause branch-trace events to be generated.

Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call
instruction (call, callx, or calls) or a branch-and-link instruction (bal or balx) is executed. An
implicit call, such as the action used to invoke a fault handler or an interrupt handler, also
causes a call-trace event to be generated.

When the processor detects a call-trace event, it also sets the prereturn-trace flag (bit 3 of
register r0) in the new frame created by the call operation or in the current frame if a branch-
and-link operation was performed. The processor uses this flag to determine whether or not to
signal a prereturn-trace event on a return instruction.

Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a
ret instruction is executed.

10-4

inte|° DEBUGGING

Prereturn Trace

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to the
execution of any ret instruction, providing the prereturn-trace flag in 10 is set. (Prereturn
tracing cannot be used without enabling call tracing.)

The processor sets the prereturn-trace flag whenever it detects a call-trace event (as described
above for the call-trace mode). This flag performs a prereturn-trace-pending function. If
another trace event occurs at the same time as the prereturn-trace event, the prereturn-trace flag
allows the processor to fault on the non-prereturn-trace event first, then come back and fault
again on the prereturn-trace event. The prereturn trace is the only trace event that can cause
two successive trace faults to be generated between instruction boundaries.

Supervisor Trace

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event
any time (1) a call-system instruction (calls) is executed, where the procedure table entry is a
supervisor procedure, or (2) when a ret instruction is executed and the return-status field is set
to 010, or 011, (i.e., return from supervisor mode).

This trace mode allows a debugging program to determine the boundaries of kernel procedure
calls within the instruction stream.

Breakpoint Trace

The breakpoint-trace mode allows trace events to be generated at places other than those
specified with the other trace modes. This mode is used in conjunction with the mark and
force-mark (fmark) instructions, and the breakpoint registers.

The mark and fmark instructions allow breakpoint-trace events to be generated at specific
points in the instruction stream. When the breakpoint-trace mode is enabled, the processor
generates a breakpoint-trace event any time it encounters a mark instruction. The fmark
causes the processor to generate a breakpoint-trace event regardless of whether the breakpoint-
trace mode is enabled or not.

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break-
point 1. Using the set-breakpoint-register IAC, one instruction pointer can be loaded into each
register. The processor then generates a breakpoint trace any time it executes an instruction
referenced in a breakpoint register.

TRACE-FAULT HANDLER

A fault handler is a procedure that the processor calls to handle faults that occur. The require-
ments for fault handlers are given in Chapter 9 in the section titled "Fault-Handler Procedures."

A trace-fault handler has one additional restriction. It must be called with an implicit super-
visor call, and the trace-control flag in the system-procedure-table entry must be clear. This

inte|° DEBUGGING

restriction insures that tracing is turned off when a trace fault is being handled, which is
necessary to prevent an endless loop.

SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace
event when it detects any of the following conditions:

e An instruction included in a trace-mode group is executed or about to be executed (in the
case of a prereturn trace event) and the trace mode for that instruction is enabled.

e Animplicit call operation has been executed and the call-trace mode is enabled.

e A mark instruction has been executed and the breakpoint-trace mode is enabled.

o Anfmark instruction has been executed.

e An instruction specified in a breakpoint register is executed and the breakpoint-trace mode
is enabled.

When the processor detects a trace event and the trace-enable flag in the process controls is set,
the processor performs the following action:

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event
meets the conditions of more than one of the enabled trace modes, a trace-event flag is set
for each trace mode condition that is met.

2. The processor sets the trace-fault-pending flag in the process controls.

Note

The processor may set a trace-event flag and the trace-fault-pending flag before it has com-
pleted execution of the instruction that caused the event. However, the processor only handles
trace events in between the execution of instructions.

If, when the processor detects a trace event, the trace-enable flag in the process controls is
clear, the processor sets the appropriate event flags, but does not set the trace-fault-pending
flag.

HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the
following precedence, where 1 is the highest precedence:
1. Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-,
call-, or return-trace event

3. Instruction-trace event

When multiple trace events are detected, the processor may not signal each event; however, it
will signal at least the one with the highest precedence.

10-6

intal DEBUGGING

TRACE HANDLING ACTION

Once a trace event has been signaled, the processor determines how to handle the trace event,
according to the setting of the trace-enable and trace-fault-pending flags in the process controls
and to other events that might occur simultaneously with the trace event such as an interrupt or
a non-trace fault.

The following sections describe how the processor handles trace events for various situations.

Normal Handling of Trace Events

Prior to executing an instruction, the processor performs the following action regarding trace
events:

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the
processor begins execution of the next instruction. If the flag is set, the processor per-
forms the following actions.

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the
processor clears any trace event flags that have been set, prior to starting execution of the
next instruction. If the trace-enable flag is set, the processor performs the following
action.

3. The processor signals a trace fault and begins the fault handling action, as described in
Chapter 9.

Prereturn Trace Handling

The processor handles a prereturn-trace event the same as described above except when it
occurs at the same time as a non-trace fault. Here, the non-trace fault is handled first.

On returning from the fault handler for the non-trace fault, the processor checks the prereturn-
trace flag in register r0. If this flag is set, the processor generates a prereturn-trace event, then
handles it as described above.

Tracing and Interrupt Handlers

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It
does this by saving the current state of the process controls, then clearing the trace-enable and
trace-fault-pending flags in the current process controls.

On returning from the interrupt handler, the processor restores the process controls to the state
they were in prior to handling the interrupt, which restores the state of the trace-enable and
trace-fault-pending flags. If these two flags were set prior to calling the interrupt handler, a
trace fault will be signaled on the return from the interrupt handler.

intal DEBUGGING

Tracing and Fault Handlers

The processor can invoke a fault handler with either an implicit local call or an implicit
supervisor call. On a local call, the trace-enable and trace-fault-pending flags are neither saved
on the call nor restored on the return. The state of these flags on the return is thus dependent
on the action of the fault handler.

On a supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the
saved process controls, and restored on the return. So, if these two flags were set prior to
calling the fault handler, a trace fault will be signaled on the return from the fault handler.

Note

On a return from an interrupt handler or a fault handler (other than the trace-fault handler), the
trace-fault-pending flag is restored. If this flag is set as a result of the handler’s ret instruction,
the detected trace event is lost.

10-8

Core Instruction 11
Reference

CHAPTER 11
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each of the instructions for the 80960KB
processor. To provide quick access to information on a particular instruction, the instructions
are listed alphabetically by assembly-language mnemonic. An explanation of the format and
abbreviations used in this chapter is given in the following section.

INTRODUCTION

The information in this chapter is oriented toward programmers who are writing assembly-
language code for the 80960KB processor. The information provided for each instruction
includes the following:

o Alphabetic reference

e Assembly-language mnemonic and name

¢ Assembly-language format

o Description of the instruction’s operation

e Action the instruction carries out when executed (generally presented in the form of an
algorithm)

o Faults that can occur during execution
e Assembly-language example

e Opcode and instruction format

e Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

o Chapter 6 -- Summary of the instruction set by group and description of the assembly-
language instruction format

¢ Appendix A -- Instruction Quick Reference
o Appendix B -- Machine-Level Instruction Formats

NOTATION

To simplify the presentation of information about the instructions, a simple notation has been
adopted in this chapter. The following paragraphs describe this notation.

Alphabetic Reference

The instructions are listed alphabetically by assembly-language mnemonic. If several instruc-
tions are related and fall together alphabetically, they are described as a group on a single page.

inter INSTRUCTION SET REFERENCE

The reference at the top of each page gives the assembly-language mnemonics for the instruc-
tions covered on that page (e.g., subc). Occasionally, there are so many instructions covered
on the page that it is not practical to give all the mnemonics in the page reference. In these
cases, the name of the instruction group is given in capital letters (e.g., BRANCH or FAULT
IF)

A box around the alphabetic reference (such as | addr, addrl)) indicates that the instruction or

group of instructions are extensions to the 80960 architecture instruction set.

Mnemonic
The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name
for each instruction covered on the page, for example:

subi Subtract Integer

Format

The Format section gives the assembly-language format of the instruction and the type of
operands allowed. The format is given in two or three lines. The following is an example of a
two line format:

sub#* srcl, sre2, dst
reg/lit reg/lit reg

The first line gives the assembly-language mnemonic (bold-face type) and the operands
(italics). When the format is used for two or more instructions, an abbreviated form of the
mnemonic is used. The " * " sign at the end of the mnemonic indicates that the mnemonic has
been abbreviated.

The operand names are designed to describe the functions of the operands (e.g., src, len, mask).

The second line of the format shows what is allowed to be entered for each operand. The
notation used on this line is as follows:

reg Global (g0 ... g15) or local (10 ... r15) register

freg Global (g0 ... g15) or local (10 ... r15) register, or floating-point (fp0 ... fp3) register,
where the registers contain floating-point numbers

lit Integer or ordinal literal of the range O ... 31

flit Floating-point literal of value 1.0 or 0.0 ‘

disp Signed displacement of range -222 ... (222 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line will be added to show specifically what will be in a register or

memory location. For example, it may be useful to know that a register is to contain an
address. The notation used in this line is as follows:

intel" INSTRUCTION REFERENCE

addr Address
efa Effective address
Description

The Description section describes what the instruction does and the functions of the operands.
It also gives programming hints when appropriate.

Action

The Action section gives an algorithm written in a pseudo-code that describes in detail what
actions the processor takes when executing the instruction and the precise order of these
actions. The main purpose of this section is to show the possible side effects of the instruction.
The following is an example of the action algorithm for the alterbit instruction:

if (AC.cc and 2#010#) =0
then dst « src and not (2(bitpos mod 32));
else dst « src or 2A(bitpos mod 32);

end if;

In these action statements, the term AC.cc means the condition-code bits in the arithmetic
controls. The notation 2#value# means that the value enclosed in the "#" signs is in base 2.

Faults

The Faults section lists the faults that can be signaled as the result of execution of the instruc-
tion. Faults listed with all-capital letters refer to a group of faults; faults listed with initial-
capital letters refer to a specific fault.

All instructions can signal a group of general faults which are referred to as STANDARD
FAULTS. The standard faults include the trace-instruction and machine-bad-access faults. In
addition, for all instructions that have a MEM machine-format (such as, load, store, call
extended), the invalid-opcode and operation-unimplemented faults are standard faults.

The following list shows the various fault groups and the individual faults in each group:

TRACE FAULTS
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace
Breakpoint Trace

intal INSTRUCTION REFERENCE

OPERATION
Invalid Opcode
Unimplemented
Invalid Operand

ARITHMETIC
Integer Overflow
Arithmetic Zero-Divide

FLOATING-POINT
Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact
Floating Reserved-Encoding

CONSTRAINT
Constraint Range
Privileged

PROTECTION
Segment Length

MACHINE
Bad Access

TYPE
Type Mismatch

Example

The Example section gives an assembly-language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and machine language instruction
format for each instruction, for example:

subi 593 REG
The opcode is given in hexadecimal format.
The machine language format is one of four possible formats: REG, COBR, CTRL, and

MEM. Refer to Appendix B for more information on the machine-language instruction for-
mats.

INSTRUCTION REFERENCE

See Also

The See Also section gives the mnemonics of related instructions, which can then be looked up
alphabetically in this chapter for comparison. For instructions that are grouped on one page
(such as addr and addrl) only the first mnemonic is given.

INSTRUCTIONS

This section contains reference information on the processor’s instructions. It is arranged
alphabetically by instruction or instruction group.

INSTRUCTION SET REFERENCE

addc

Mnemonic: adde Add Ordinal With Carry .
Format: addc srcl, src2, dst
reg/lit reg/lit reg

Description: Adds the src2 and srcl values, and bit 1 of the condition code (used here as a
carry in), and stores the result in dst. If the ordinal addition results in a carry,
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, bit O of the condition code is set; otherwise,
bit 0 is cleared. Regardless of the results of the addition, bits O and 1 of the
arithmetic controls are always written.

The addc instruction can be used for either ordinal or integer arithmetic. The
instruction does not distinguish between ordinal and integer source operands.
Instead, the processor evaluates the result for both data types and sets bits 0
and 1 of the condition code accordingly.

An integer overflow fault is never signaled with this instruction.

Action: # Let the value of the condition code be xCx.
dst « src2 + srcl + C;
AC.cc « 2#0CVH#;
C is carry from ordinal addition.
V is 1 if integer addition would have generated an overflow.

Faults: STANDARD

Example: # Example of double-precision arithmetic
Assume 64-bit source operands
in g0,gl and g2,93

cmpo 1, O # clears Bit 1 (carry bit) of
the AC.cc
addc g0, g2, g0 # add low-order 32 bits;
g0 ¢ g2 + g0 + Carry Bit
addc gl, g3, gl # add high-order 32 bits;
gl ¢« g3 + gl + Carry Bit
64-bit result is in g0, gl
Opcode: addc 5B0 REG
See Also: addo, subc

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:
Action:

Faults:

Example:

Opcode:

See Also:

addi Add Integer
addo Add Ordinal
add* srcl,

reg/lit

addi, addo

src2, dst
reg/lit reg

Adds the src2 and srcl values and stores the result in dst.

dst < src2 + srcl;
STANDARD

Integer Overflow

addi r4, g5,

addi 591
addo 590

addc, addr, subi, subo

Refer to discussion of faults at the begin-
ning of this chapter.

~ Result is too large for destination format.
This fault is signaled only when execut-
ing the addi instruction and if both of the
following conditions are met: (1) the
integer-overflow mask in the arithmetic-
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

r9 ¢« g5 + r4

REG
REG

intela’ INSTRUCTION SET REFERENCE

addr, addrl

Mnemonics: addr Add Real
addrl Add Long Real
Format: addr* srcl, src2, dst.

freg/flit freg/flit freg

Description: Adds the src2 and srcl values and stores the result in ds?.

For the addrl instruction, if the srci, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when adding various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srcl
- -F -0 +0 +F +® | NaN
-) - - -0 -0 * NaN
-F -0 -F src2 | src2 |[tFor 20| +» NaN
-0 -00 srcl -0 t0 srcl + 00 NaN
Src2| +0 -0 srcl 10 +0 srel + 00 NaN
+F -0 |*For £0{ src2 | src2 +F + o NaN
4+ * + 00 +0o | 4o + 00 +o | NaN
NaN NaN NaN NaN | NaN | NaN NaN [NaN

Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

When the sum of two operands with opposite signs is zero, the result is +0,
except for the round toward -e mode, in which case, the result is -0. When
zero is added to itself (e.g. srcl + srcl, where srcl is 0), the result retains the
sign of the source.

Action: dst « src2 + srcl;

intal

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

addr, addrl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.

Floating Underflow Normalized result is too small for des-
tination format.

Floating Invalid Operation Source operands are infinities of unlike
sign.

One or more operands is an SNaN value.

Floating Inexact Result cannot be represented exactly in
destination format.

Floating overflow occurred and the over-
flow exception was masked.

addrl g6, g8, fp3 #fp3 ¢« g6,g97 + g8,g9

addr 78F REG
addrl 79F REG
addi, subr

intal

INSTRUCTION SET REFERENCE

alterbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

alterbit Alter Bit

alterbit bitpos, src, dst
reg/lit reg/lit reg

Copies the src value to dst with one bit aitered. The bitpos operand specifies
the bit to be changed; the condition code determines the value the bit is to be
changed to. If the condition code is X1X2, the selected bit is set; otherwise,
it is cleared.

if (AC.cc and 2#010#) =0
then dst « src and not 2*(bitpos mod 32));
else dst < src or 2A(bitpos mod 32);

end if;

STANDARD

assume condition code is 2#010#
alterbit 24, g4, g9 # g9 « g4, with bit 24 set

alterbit 58F REG

checkbit, clearbit, notbit, setbit

11-10

intel

INSTRUCTION SET REFERENCE

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

and
andnot

and

andnot

and, andnot

And

And Not

srcl, src2, dst
reg/lit reg/lit reg
srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on the src2 and srcl values and stores the result in dst.
Note in the action expressions below, the src2 operand comes first, so that
with the andnot instruction the expression is evaluated as

{src2 andnot (srcl)}

rather than

{srcl andnot (src2)}.

and: dst < src2 and srcl;
andnot: dst < src2 and not (srcl);
STANDARD

and 0x17, g8, g2 # g2 < g8 AND 0x1l7
andnot r3, rl2, r9 # r9 « rl2 AND NOT r3

and
andnot

581 REG
582 REG

nand, nor, not, notand, notor, or, ornot, xnor, xor

inter INSTRUCTION SET REFERENCE

atadd

Mnemonic: atadd Atomic Add

Format: atadd srcldst, sre, dst
reg reg/lit reg
addr

Description: Adds the src value (full word) to the value in the memory location specified
with the src/dst operand. The initial value from memory is stored in dst.

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the src/dst
operand until the operation has been completed).

The memory location in src/dst is the address of the first byte (least sig-
nificant byte) of the word. The address is automatically aligned to a word
boundary.

Action: tempa < src/dst and not (3); # force alignment to word boundary
temp « atomic_read (tempa);
atomic_write (tempa) <— temp + src;

dst < temp,

Faults: STANDARD

Example: atadd r8, r2, r1ll # r8 « r2 + address r8,
where r8 specifies the
address of a word in
memory; rll ¢« initial
value stored at address
r8 in memory

Opcode: atadd 612 REG

See Also: atmod

1112

intel

INSTRUCTION SET REFERENCE

atanr, atanrl

Mnemonics: atanr Arctangent Real
atanrl Arctangent Long Real
Format: atanr* srcl, src2, dst
freg/flit freg/flit freg
Description: Calculates the arctangent of the quotient of src2/srcl and stores the result in
dst. The result is returned in radians and is in the range of -% to +=, in-
clusive. The sign of the result is always the sign of src2.
For the atanrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).
These instructions are commonly used as part of an algorithm to convert
rectangular coordinates to polar coordinates. They can also be used to imple-
ment the FORTRAN intrinsic functions ATAN and ATAN2. If srcl is the
floating-point literal value +1.0, then these instructions return a result in the
range of -7t/2 to +m/2.
The following table gives the range of results for various values of src2 and
srcl, assuming that neither overflow nor underflow occurs.
Srcl
-0 -F -0 +0 +F +o |NaN
- -3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 |NaN
-F -n -nto-n/2 [-n/2 -n/2 -n/2 to -0 -0 |NaN
-0 -n -n -n -0 -0 -0 [NaN
Src2 +0 +n +n +n +0 +0 +0 {NaN
+F +n [+nto+n/2 HFn/2 | +0/2 |+0/2t0 +0 | +0 |NaN
+o |+ 3n/4 +n/2 +n/2 | +n/2 +n/2 +n/4 |NaN
NaN | NaN NaN NaN | NaN NaN NaN |NaN
Notes:

F Means finite-real number.

11-13

intela INSTRUCTION SET REFERENCE

atanr, atanrl

Action: dst « arctan (src2/srcl);
Faults: STANDARD Refer to the discussion of faults at the
beginning of this chapter.
Floating Reserved Encoding One or more operands is an unnormal-

ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

Example: atanrl g8, gl0, fp3 # fp3 «
arctan (gl0,g911/98,g9)
atanrl 1.0, g0, g0 # 90,91 ¢« arctan (g0,gl)

Opcode: atanr 680 REG
atanrl 690 REG

See Also: tanr

11-14

intgl

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atmod

atmod

Atomic Modify

src, mask, srcldst
reg reg/lit reg
addr

“atmod

Copies the src/dst value into the memory location specified in src. The bits
set in the mask operand select the bits to be modified in memory. The initial
value from memory is stored in src/dst.

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the src/dst
operand until the operation has been completed).

The memory location in src is the address of the first byte (least significant
byte) of the word to be modified. The address is automatically aligned to a
word boundary.

tempa < src and not (3); # force alignment to word boundary

temp < atomic_read (tempa);
atomic_write (tempa) < (src/dst and mask) .

or (temp and not(mask));

src/dst < temp;

g5 ¢« g5 masked by g7,

where g5 specifies the

address of a word in

gl0 ¢« initial value
stored at address gb

STANDARD
atmod g5, g7, gl0 #
#
#
memory;
#
#
in memory
atmod 610 REG
atadd

11-15

intal

INSTRUCTION SET REFERENCE

bal, balx

Mnemonic:

Format:

Description:

bal Branch And Link :
balx Branch And Link Extended
bal targ
" disp
balx targ, dst
' mem reg

Stores the address of the next instruction (the instruction following the bal or
balx instruction) and branches to the instruction specified with the targ
operand.

With the bal instruction, the address of the next instruction is stored in
register gl4. The farg operand can be either a label or an absolute address

that specifies the IP of the target instruction. This value can be no farther

than -223 to (223 - 4) from the current IP.

The balx instruction performs almost the same operation as the bal instruc-
tion except that the target instruction can be farther than -223 to (223 - 4)
from the current IP. With the balx instruction, the address of the next
instruction is stored in dst. The targ operand is a memory type, which
allows the full range of addressing modes to be used to specify the IP of the
target instruction. Here, the "IP + displacement” addressing mode allows the
instruction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

Note

At the machine level, the bal instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac-
tion statement for the bal instruction), which can range from 221 4o (221 .
1). To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP. '

11-16

intel

INSTRUCTION SET REFERENCE

Action:

Faults:

Example:

Opcode:

See Also:

bal, balx

To allow labels or absolute addresses to be used in the assembly-language
version of the bal instruction, the Intel 80960KB Assembler performs the
following calculation to convert the farg value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-

dix B.
bal: G14 « IP +4; # destination next IP is always gl4
IP < IP + targ; # resume execution at the new IP
balx: dst < IP + inst length; # instruction length
#1is 4 or 8 bytes
IP « targ; # resume execution at the new IP
STANDARD

bal xyz # IP « xyz;

balx (g2), g4 # IP <« (g2);
address of return instruction
is stored in g4; example of
indirect addressing.

bal 0B CTRL

balx 85 MEM

b, bx

intel

INSTRUCTION SET REFERENCE

b, bx

Mnemonic:

Format:

Description:

b Branch
bx Branch Extended
b targ
bx targ
mem

Branches to the instruction specified with the farg operand.

With the b instruction, the targ operand can be either a label or an absolute
address that sgecifies the IP of the target instruction. This value can be no
farther than -223 to (223 - 4) from the current IP.

The bx instruction performs the same operation as the b instruction except
that the target instruction can be farther than -223 to (223 - 4) from the current
IP. With the bx instruction, the targ operand is a memory type, which allows
the full range of addressing modes to be used to specify the IP of the target
instruction. Here, the "IP + displacement” addressing mode allows the in-
struction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

Note

At the machine level, the b instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac-
tion statement for the b instruction), which can range from 221 221 7).
To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the b instruction, the Intel 80960KB Assembler performs the
following calculation to convert the farg value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-
dix B.

11-18

intel

INSTRUCTION SET REFERENCE

Action:

Faults:

Example:

Opcode:

See Also:

b, bx
b: IP « IP + displacement; # resume execution at the new IP
bx: IP « targ; # resume execution at the new IP
STANDARD

b xyz # IP « xyz;

bx 1332 (ip)
b 08
bx 84

IP « IP + 1332;
this example uses ip-relative
addressing.

CTRL
MEM

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM-
PARE ORDINAL AND BRANCH

intel

INSTRUCTION SET REFERENCE

bbc, bbs

Mnemonic:

Format:

Description:

bbc Check Bit and Branch If Clear

bbs Check Bit and Branch If Set

bb* bitpos, sre, targ
reg/lit reg -

Checks the bit in src (designated by bitpos) and sets the condition code in the
arithmetic controls according to the value found. The processor then per-
forms a conditional branch based on the value of the condition code.

For the bbc instruction, if the selected bit in src is clear, the processor sets
the condition code to 010, and branches to the instruction specified with the
targ operand; otherwise, it sets the condition code to 000, and goes to the
next instruction.

For the bbs instruction, if the selected bit is set, the processor sets the con-
dition code to 010, and branches to targ; otherwise, it sets the condition code
to 000, and goes to the next instruction.

When using the Intel 80960KB Assembler, the targ olzaerand can be either a
label or an absolute address that is no farther than -21% to (212 - 4) from the
current IP.

Note

At the machine level, the bbe and bbs instructions use the COBR instruc-
tion format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from -219 to (219 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.

To allow labels or absolute addresses to be used in the assembly-language
versions of the bbe and bbs instructions, the Intel 80960KB Assembler
performs the following calculation to convert the targ value in an assembly-
language instruction to the displacement value required by the machine
instruction format:

displacement = (targ/4) - (IP + 4)

For further information about the COBR instruction format, refer to Appen-
dix B.

11-20

inter INSTRUCTION SET REFERENCE

bbc, bbs

Action: bbc:

if (src and 27(bitpos mod 32)) =0
then AC.cc « 2#010#;
IP < IP + 4 + (displacement * 4);
resume execution at the new IP
else AC.cc « 2#000#;
IP « IP + 4; # resume execution at the next IP
end if;

bbs:

if (src and 2\(bitpos mod 32)) = 1
then AC.cc « 2#010#;
IP « IP + 4 + (displacement * 4);
resume execution at the new IP

else AC.cc « 2#000#;
IP « IP + 4; # resume execution at the next IP
end if;
Faults: STANDARD
Example: # assume bit 10 of r6 is clear
bbc 10, r6, xyz # bit 10 of r6 is checked
and found clear;
AC.cc « 2#010#
IP « xyz;
Opcode: bbc 30 COBR
bbs 37 COBR

See Also: chkbit

11-21

intel

INSTRUCTION SET REFERENCE

BRANCH IF

Mnemonics: be
bne
bl
ble
bg
bge
bo
bno

Format: b*

Description: Branches to a new instruction according to the state of the condition code in

Branch If Equal

Branch If Not Equal
Branch If Less

Branch If Less Or Equal
Branch If Greater

Branch If Greater Or Equal
Branch If Ordered

Branch If Unordered

targ
disp

the arithmetic controls.

For

all branch-if instructions except the bmo instruction, the processor
branches to the instruction specified with the farg operand, if the logical
AND of the condition code and the mask-part of the opcode is not zero.

Otherwise, it goes to the next instruction.

For the bno instruction, the processor branches to the instruction specified
with targ, if the logical AND of the condition code and the mask-part of the

opcode is zero. Otherwise, it goes to the next instruction.

When using the Intel 80960KB Assembler, the targ operand can be either a
label or an absolute address that specifies the IP of the target instruction.

This value can be no farther than -223 to (223 - 4) from the current IP.

Note

At the machinc\ level, the branch-if instructions use the CTRL instruction
format. With this format, the target instruction for the branch is specified
by means of a word-displacement (represented by displacement in the
following action statements), which can range from 2240 221 - 1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

11-22

- ©

n

INSTRUCTION SET REFERENCE

Action:

BRANCH IF

To allow labels or absolute addresses to be used in the assembly-language
version of the branch-if instructions, the Intel 80960KB Assembler per-
forms the following calculation to convert the targ value in an assembly-
language instruction to the displacement value required by the machine

instruction format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-

dix B.

The following table shows the condition-code mask for each instruction:

Instruction

Mask

Condition

bno

000

Unordered

bg

001

Greater

be

010

Equal

bge

011

Greater or equal

bl

100

Less

bne

101

Not equal

ble

110

Less or equal

bo

111

Ordered

For the bno instruction (unordered), the branch is taken if the condition code

is equal to 000,.

The mask is in bits 0-2 of the opcode.

For All Instructions Except bno:

if (mask and AC.cc) # 2#000#
then IP « IP + displacement;, # resume execution at new IP

end if;
bno:

if AC.cc = 2#000#

then IP < IP + displacement; # resume execution at new IP

end if;

11-23

inte|° INSTRUCTION SET REFERENCE

BRANCH IF
Faults: STANDARD
Example: | 4 assume AC.cc AND 241004 are # 0

bl xyz # IP « xyz;

Opcode: be 12 CTRL
bne 15 CTRL
bl 14 CTRL
ble 16 CTRL
bg 11 CTRL
bge 13 CTRL
bo 17 CTRL
bno 10 CTRL

See\AIso: b, bx

11-24

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

call
call Call
call targ

Calls a new procedure. The processor performs a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

When using the Intel 80960KB Assembler, the targ operand can be either a
label or an absolute address that specifies the IP of the first instruction in the
called procedure. This value can be no farther than 223 t0 (22 - 4) from the
current IP.

Note

At the machine level, the call instruction uses the CTRL instruction format.
With this format, the first instruction of the called procedure is specified by
means of a word-displacement (represented by displacement in the follow-
ing action statement), which can range from 2214 (221 - 1). To determine
the IP of the target instruction, the processor converts this displacement
value to a byte displacement (i.e., multiplies the value by 4). It then adds
the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the call instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-
dix B.

intel

INSTRUCTION SET REFERENCE

call

Action:

Faults:

Example:

Opcode:

See Also:

wait for any uncompleted instructions to finish;
temp < (SP + 63) and not (63); # round to next boundary
RIP « IP;
if register_set_available

then allocate as new frame;

else save a register_set in memory at its FP;

allocate as new frame;

local register references now refer to new frame
IP « IP + displacement;
PFP « FP;
FP « temp;
SP « temp + 64;

STANDARD
call xyz # IP ¢ xyz
call 09 CTRL

bal, calls, callx

11-26

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

calls
calls Call System
calls targ
reg/lit

Calls a system procedure. Theltarg bperand gives the number of the proce-
dure being called.

For this instruction, the processor performs the system call operation
described in Chapter 4 in the section titled "System Calls." The targ operand
provides an index to an entry in the system procedure table. From this entry,
the processor gets the IP of the called procedure.

The procedure called can be either a local procedure or a supervisor proce-
dure, depending on the entry type in the procedure table. If it is a supervisor
procedure, the processor also switches to supervisor mode (if it is not already
in this mode).

As part of ‘this operation, the processor allocates a new set of local registers

and a new stack frame for the called procedure. If the processor switches to
the supervisor mode, the new stack frame is created on the supervisor stack.

11-27

intel” INSTRUCTION SET REFERENCE

calls
Action: if targ > 259 then raise Protection Length Fault;
wait for any uncompleted instructions to finish;
temp_p_e < memory (SPT, 48 + (4 * rarg));
SPT is pointer to system procedure table from IMI
RIP « IP;
IP « temp_p_e.address; if (temp_p_e.type = local) or
execution_mode = supervisor
then temp < (SP + 63) and not(63);
tempRRR « 2#000#;
else temp < memory (SPTSS, 12); # supervisor call
tempRRR « 2#01T#; #T is process_controls.T
execution_mode < supervisor;
process_controls. T « temp.T;
endif;
if frame_available
then allocate as new frame;
else save a frame in memory at its FP;
allocate as new frame;
local register references now refer to new frame
endif; ‘
PFP « FP;
LO.RRR « tempRRR;
FP ¢ temp;
SP « temp + 64;
Faults: STANDARD
Example: calls rl2 # IP « value obtained from
procedure table for procedure
number given in rl2
Opcode: calls 660 REG
See Also: bal, call, callx

11-28

intal

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

callx
callx Call Extended
callx targ
mem

Calls a new procedure. The processor performs a local call operation as
described in Chapter 4 in the section titled,"Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

This instruction performs the same operation as the call instruction except
that the target instruction can be farther than -223 to (223 - 4) from the current
IP.

The targ operand is a memory type, which allows the full range of address-
ing modes to be used to specify the IP of the target instruction. The "IP +
displacement” addressing mode allows the instruction to be IP-relative. In-
direct calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

wait for any uncompleted instructions to finish;
temp < (SP + 63) and not (63); # round to next boundary
RIP « IP;
if register_set_available
then allocate as new frame;
else save a register_set in memory at its FP;
allocate as new frame;
local register references now refer to new frame
endif;,
IP « targ;
PFP « FP;
FP « temp;
SP « temp + 64;

11-29

inter INSTRUCTION SET REFERENCE

callx

Faults: STANDARD

Example: callx (g5) # IP « (g5), where the address
in g5 is the address of the new
procedure

Opcode: bal,callx 86 * MEM

See Alsb:, call, calls

11-30

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:
Example:
Opcode:

See Also:

chkbit
chkbit Check Bit
chkbit bitpos, src
reg/lit reg/lit

Checks the bit in src designated by bitpos and sets the condition code accord-
ing to the value found. If the bit is set, the condition code is set to 010,; if
the bit is clear, the condition code is set to 000,.

if (src and 2/ (bitpos mod 32)) =0
then AC.cc « 2#000#;
else AC.cc « 2#0104#;

end if;

STANDARD
chkbit 13, g8 # checks bit 13 in g8
chkbit 5AE REG

alterbit, clrbit, notbit, setbit

11-31

intele INSTRUCTION SET REFERENCE

classr, classrl

Mnemonic: classr Classify Real
classrl Classify Long Real

Format: classr* src
freg/flit

Description: Checks the classification of the real number in src.and stores the class in
arithmetic-status bits (3 through 6) of the arithmetic controls.

For the classrl instruction, if the src opei’and references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the setting of the arithmetic-status bits dependmg
on the classification of the operand.

AStatus | Classification

s000 Zero

s001 Denormalized number
s010 Normal finite number
s011 Infinity

s100 Quiet NaN

s101 Signaling NaN

s110 Reserved operand

The "s" bit is set to the sign of the src operand.

Refer to Chapter 7 for a discussion of the different real number classifica-
tions.

11-32

inter INSTRUCTION SET REFERENCE

classr, classtrl

Action: s < sign_of(src)

if src=0

then arithmetic_status < s000;
elseif src = denormalized

then arithmetic_status « s001;
elseif src = normal finite

then arithmetic_status < s010;
elseif src =

then arithmetic_status <« s011;
elseif src = QNaN

then arithmetic_status « s100;
elseif src = SNaN

then arithmetic_status <« s101;
elseif src = reserved operand

then arithmetic_status < s110;
end if

Faults: STANDARD Refer to the discussion of faults at the
beginning of this chapter.

None of the floating-point exceptions can be raised.

Example: classrl gl2 # classifies long real in gl2,gl3
Opcode: classr 68F REG
classrl 69F REG

11-33

intal

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

clrbit Clear Bit

clrbit bitpos, . src, dst
reg/lit reg/lit - Teg’

Copies the src value to dst with one bit cleared The bztpos operand spemﬁes
the bit to be cleared. o

dst < src and not(2*(bitpos mod 32));
STANDARD

clrbit 23, g3, g6 # g6 « g3 with blt 23
cleared

clrbit 58C REG

alterbit, chkbit, notbit, setbit

11-34

inte|° INSTRUCTION SET REFERENCE

cmpi, cmpo

Mnemonics: cmpi Compare Integer
cmpo Compare Ordinal
_Format: cmp#* srel, src2

reg/lit reg/lit

Description: Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The following table shows the setting of the
condition code for the three possible results of the comparison.

Condition | Comparison
Code ,

100 srcl <sre2
010 srcl = src2
001 srcl > sre2

The cmpi instruction followed by one of the branch-if instructions is equiv-
alent to one of the compare-integer-and-branch instructions. The latter
method of comparing and branching produces more compact code; however,
the former method can result in faster running code because it takes advan-
tage of the processor’s pipelined architecture. The same is true for the comp
instruction and the compare-ordinal-and-branch instructions.

Action: if srcl < src2 then AC.cc < 2#100#;
elseif srcl = src2 then AC.cc « 2#010#,
else AC.cc « 2#001#;
end if;
Faults: STANDARD
Example: cmpo 0x10, r9 # compare values in r9 and 0x10

and set condition code

Opcode: cmpi 5A1 REG

cmpo SA0 REG
See Also: cmpibe, cmpr, cmpdeci, cmpdeco

11-35

intal

INSTRUCTION SET REFERENCE

cmpdeci, cmpdeco

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

cmpdec* srcl, src2, dst
reg/lit reg/lit reg

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then decremented by one
and the result is stored in dst.

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition | Comparison
Code

100 srcl < src2
010 srcl = src2
001 srcl > src2

These instructions are intended for use in ending iterative loops. For the
cmpdeci instruction, interger overflow is 1gn0red to allow looping down
through the minimum integer values.

if srcl < src2 then AC.cc « 2#100#;

elseif srcl = src2 then AC.cc « 2#010#;

elseif srcl > src2 then AC.cc « 2#001#;

end if;

dst « src2 - 1; #overflow suppressed for cmpdeci
instruction

STANDARD

cmpdeci 12, g7, gl # g7 and 12 are compared;
gl « g7 -1

cmpdeci 5A7 REG
cmpdeco 5A6 REG

cmpinco, cmpo

11-36

intal

INSTRUCTION SET REFERENCE

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cmpinci, cmpinco

cmpinci Compare and Increment Integer

cmpinco Compare and Increment Ordinal

cmpinc srcl, src2, dst
reg/lit reg/lit reg

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then incremented by one
and the result is stored in dst.

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition | Comparison
Code

100 sréel < src2
010 srcl = src2
001 srcl > src2

These instructions are intended for use in ending iterative loops. For the
cmpinci instruction, integer overflow is ignored to allow looping up through
the maximum integer values.

if srcl < src2 then AC.cc « 2#1004#;

elseif srcl = src2 then AC.cc « 2#010#;

elseif srcl > src2 then AC.cc < 2#001#;

end if;

dst « src2 + 1; # overflow suppressed for cmpinci
instruction

STANDARD

g2 and r8 are compared;
99 « g2 +1

cmpinco r8, g2, g9

REG
REG

cmpinci 5A5
cmpinco 5A4

cmpdeco, cmpo .

11-37

intel

INSTRUCTION SET REFERENCE

cmpor, cmporl

Mnemonics:
Format:

Deééﬁpﬁon:

Action:

cmpor Compare Ordered Real
cmporl Compare Ordered Long Real

cmpors* srcl, src2
freg/flit freg/flit

Compares the src2 and srcl values and sets the condition code according to

the results of the comparison.

For the emporl instruction, if the srcl or src2 operand references a giobal or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the setting of the condition code for the four
possible results of the comparison.

Condition | Comparison

Code o

100 srcl < sre2

010 srcl = sre2

001 srcl > src2

000 if either srcl or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 000, and a floating
invalid-operation exception is raised. The cmpor and cmporl instructions
operate the same as the cmpr and cmprl instructions, except that the latter
instructions do not signal an exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl < src2
then AC.cc « 2#1004#;
elseif srcl = src2 .
then AC.cc < 2#010#;
elseif srcl > src2
then AC.cc « 2#001#;
else AC.cc < 2#000#; # indicates one number is a NaN
raise floating invalid operation fault
end if;

11-38

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

cmpor, cmporl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

‘

Floating Invalid Operation One or more operands are a NaN value.

cmporl g6, gl2 # compare value in gl2,gl3
with value in g6,g7

cmpor 684 REG
cmporl 694 REG
cmpr, cmpi, BRANCH IF

11-39

intal

INSTRUCTION SET REFERENCE

|cmpr, cmprl

Mnemonics:
Format:

Description:

Action:

cmpr Compare Real
cmprl Compare Long Real
cmpr* srel, . sre2

freg/lit freg/flit

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. For the cmprl instruction, if the src/ or src2
operand references a global or local register, this register is the first (lowest
numbered) of two successive registers.

The followihg table shows the setting of the condition code for the four

possible results of the comparison.

‘Condition | Comparison
Code
100 srcl < src2
010 srcl = src2
001 srcl > sre2
000 if either srcl or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 000,, but no fault is
raised. The cmpr and cmprl instructions operate the same as the cmpor and
cmporl instructions, except that the latter instructions raise an invalid-
operand exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl <src2

then AC.cc « 2#100#;

elseif srcl = src2
then AC.cc « 2#0104#;
elseif srcl > src2
then AC.cc « 2#001#;

else AC.cc « 2#0004#; # indicates one number is a NaN

end if;

11-40

intal

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

cmpr, cmprl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
‘ ized (including denormalized) value and
the normalizing-mode bit in the arith-

metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Iﬁvalid Operation One or more operands are an SNaN
value.

cmprl g2, g6 # compare values in g6,g7

and g2,g3
cmpr 685 REG
cmprl 695 REG

cmpor, cmpi, BRANCH IF

11-41

intel

INSTRUCTION SET REFERENCE S

COMPARE AND BRANCH

Mnemonics:

Format:

Description:

cmpibe Compare Integer And Branch If Equal

cmpibne . Compare;Integer And Branch If Not' Equal
cmpibl - Compare Integer And Branch If Less

cmpible Compare Integer And Branch If Less Or Equal
cmpibg Compare Integer And Branch If Greater =
cmpibge = Compare Integer And Branch If Greater Or Equal
cmpibo Compare Integer And Branch If Ordered
cmpibno Compare Integer And Branch If Unordered

cmpobe Compare Ordinal And Branch If Equal

cmpobne Compare Ordinal And Branch If Not Equal -
cmpobl Compare Ordinal And Branch If Less

cmpoble - Compare Ordinal And Branch If Less Or Equal
cmpobg Compare Ordinal And Branch If Greater
cmpobge Compare Ordinal And Branch If Greater Or Equal

cmpib srcl, src2, targ
reg/lit reg

cmpob* srcl, sre2; targ
reg/lit reg disp

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. If the logical AND of the condition code and
the mask-part of the opcode is not zero, the processor branches to the instruc-
tion specified with the targ operand; otherwise, the processor goes to the
next instruction.

When using the Intel 80960KB Assembler, the targ olz)erand can be either a
label or an absolute address that is no farther than -212 to (212 - 4) from the
current IP.

Note

At the machine level, the compare-and-branch instructions use the COBR
instruction format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from 204 (219-1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.

11-42

INSTRUCTION SET REFERENCE

COMPARE AND BRANCH

To allow labels or absolute addresses to be used in the assembly-language
versions of these instructions, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - (IP + 4)

For further information about the COBR instruction format, refer to Appen-
dix B.

The following table shows the condition-code mask for each instruction:

Instruction | Mask | Branch Condition
cmpibno 000 | No Condition
cmpibg 001 srcl > src2
cmpibe 010 | srcl = src2
cmpibge 011 | srcl 2 src2

cmpibl 100 |srcl <src2
cmpibne 101 | srel #src2
cmpible 110 | srcl <src2
cmpibo 111 | Any Condition :
cmpobg 001 | srcl >src2-
cmpobe 010 |srcl =src2 .
cmpobge 011 |srcl 2src2
cmpobl 100 | srcl <src2
cmpobne 101 srcl # src2
cmpoble 110 |srcl <src2:

The cmpibo instruction always branches; the cmpibno instruction never
branches. '

The functions that these instructions perform can be duplicated with a cmpi

instruction followed by a branch-if instruction, as described in the descrip-
tion of the cmpi instruction in this chapter.

11-43

inter INSTRUCTION SET REFERENCE

COMPARE AND BRANCH

Action: if srcl < src2 then AC.cc « 2#100#;
elseif srcl = src2 then AC.cc « 2#010#;
else AC.cc < 2#001#;
end if;
if mask and AC.cc # 2#000#
then IP « IP + 4 + (displacement * 4);
resume execution at the new IP

else IP < IP + 4;
resume execution at the next IP
end if;
Faults: STANDARD
Example: # assume g3 < g9 .

cmpibl g3, g9, xyz # g9 is compared with g3;
IP ¢« xyz.

assume r7 2 19
cmpobge r7, 19, xyz # 19 is compared with r7
IP « xyz.

Opcode: cmpibe 3A COBR
cmpibne 3D COBR
cmpibl 3C COBR
cmpible 3E . COBR
cmpibg 39 COBR
cmpibge 3B COBR
cmpibo 3F COBR
cmpibno 38 COBR
cmpobe 32 COBR
cmpobne 35 COBR
cmpobl 34 COBR
cmpoble 36) COBR
cmpobg 31 COBR
cmpobge 33 COBR

See Also: BRANCH IF, cmpi ~

11-44

intel

INSTRUCTION SET REFERENCE

Mnemonics:
Format:

Description:

Action:

Faulits:

Example:

Opcode:

See Also:

concmpi, concmpo

concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

concmp* srcl, src2
reg/lit reg/lit

Compares the src2 and srcl values if bit 2 of the condition code is not set. If
the comparison is performed the condition code is set according to the
results of the comparison. :

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is in-
clusively between two other values.

The example below illustrates this application by testing whether the value in
g3 is'between the values in g5 and g6, where g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than
or equal to g6 (i.e., condition code is either 010, or 001), a conditional
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than
or equal to g5 (indicating that"g3 is within the bounds of g5 and g6), the
condition code is set to 010,; otherwise, it is set to 001,.

if (AC.cc and 2#100#) = 0 then
if srcl <src2

then AC.cc « 2#010;
else AC.cc « 2#001;
endif;,
endif;
STANDARD
cmpo g6, g3 #-cofnpares g6 and g3 and sets
condition code
concmpo g5, g3 # if condition code is not
2#1xx#, g5 is compared
with g3 .
concmpi - 5A3 REG
concmpo 5A2 REG

cmpo, cmpi

11-45

intel

INSTRUCTION SET REFERENCE

cosr, cosrl|

Mnemonics:

Format:

Description:

Action:

cosr Cosine Real

cosrl Cosine Long Real
COSI** src, dst

freg/flit freg

Calculates the cosine of the value in src and stores the result in dsz. The src

value is an angle given in radians. The resulting dst value is in the range -1
to +1, inclusive.

For the cosrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g.; g0, g2, g4).

The following table shows the results obtained when taking the cosine of
various classes of numbers with neither overflow nor underflow.

Src - | Dst

-00 o *

-F -1to +1
-0 +1

+0 +1

+F -1to +1
+ *

NaN NaN
Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

In the trigonometric instructions, the 80960KB uses a value for m with a
66-bit mantissa which is 2 bits more than are available in the extended-real
format. The section in Chapter 12 titled "Pi" gives this value, along with
some suggestions for representing this value in a program.

dst < cosine (src);

11-46

» |®

iNt INSTRUCTION SET REFERENCE

costr, cosrl

Faults: STANDARD Refer to the discussion of faults at the
/ beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation The src operand is oe.
One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

Example: cosrl r8, g2 # cosine of value in r8,r9 is
stored in g2,g3

Opcode: cosr 68D REG
cosrl 69D REG
See Also: sinr, sinrl, tanr, tanrl

11-47

intgl

INSTRUCTION SET REFERENCE “h

|cpyrsre, cpysre o

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

cpysre Copy Sign Real Extended
cpyrsre Copy Reversed Sign Real Extended

cpy* srcl, src2, dst
freg/flit freg/flit freg

Copies the absolute value of src/ into dst. For the cpysre instruction, the
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the
sign of src2 is copied to dst.

If the srcl, src2, or dst operand references a global or local register, this
register is the first (lowest numbered) of three successive registers. Also, the
number of this register must be a multiple of four (e.g., g0, g4, g8).

These instructions only operate on values in the extended-real format. The
same operations can be performed on real- and long-real values using the
setbit and clearbit instructions, or a combination of the chkbit and alterbit
instructions.

cpysre if src2 is positive
then dst « abs (srcl)
else dst « -abs (srcl)

cpyrsre if src2 is negative
then dst « abs (srcl)
else dst « -abs (srcl)

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is a denormalized
value and the normalizing-mode bit in
the arithmetic controls is set.

cpysre fp0, fpl, £fp2
absolute value from fpO is copied to
fp2; sign from fpl is copied to £fp2

cpysre 6E2 REG
cpyrsre 6E3 REG

11-48

intel

INSTRUCTION SET REFERENCE

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cvtilr, cvtir

cvtilr Convert Long Integer to Real
cvtir Convert Integer to Real
cvti* sre, dst

reg/lit freg

Converts the integer in src to a real and stores the result in dst. For the cvtilr
instruction, the src¢ operand references the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., g0, g2,
g4).

Converting an integer to long real format requires two instructions. First, the
integer is converted to extended real format by using the cvtir or cvtilr
instruction with a floating-point register as a destination. Then the movrl
instruction is used to move the value from the floating-point register to two
global or local registers, causing an explicit conversion to long real format.
(Note that this conversion is always exact.) The example section below
illustrates this conversion.

dst < real (src);

STANDARD Refer to the discussion of faults at the
' beginning of this chapter.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Inexact Can only be signaled when converting an
integer to real (32-bit) format

Conversion of an integer to a long real value
cvtir g6, fp3
movrl fp3, g8 # result stored in g8,g9

cvtir 674 REG
cvtilr 675 REG
cvtri, movr

11-49

intel

INSTRUCTION SET REFERENCE

cvtri, cvtril, cvtzri, cvtizril

Mnemonics:

Format:

Description:

Action:

cvtri Convert Real To Integer

cvtril Convert Real To Integer Long

cvtzri Convert Truncated Real To Integer
cvtzril Convert Truncated Real To Long Integer
cvtri* sre, dst

freg/flit reg

Converts the real value in src to an integer and stores the result in dsz.

For the cvtril and cvtzril instructions, the dst operand references the first
(lowest numbered) of two successive registers. Also, this register must be

-even numbered (e.g., g0, g2, g4).

The nontruncated versions of these instructions round according to the cur-
rent rounding mode in the Arithmetic Controls register. The truncated ver-
sions always round toward zero.

Converting a long real value to an integer requires two instructions. First,
the long real value is converted to extended real format by using the movrl
instruction with a floating-point register as a‘ destination. (Note that this
operation is always exact.) Then one of the convert real-to-integer instruc-
tions is used to move the value from the floating-point register to one or two
global or local registers. The example section below illustrates this conver-
sion.

If the magnitude of the result cannot be represented in the destination, an
integer-overflow fault is raised, and the maximum positive or maximum

. negative value is stored in the destination (depending on whether the real
value was positive or negative, respectively).

dst < integer (srcl);
srcl is rounded to integer value

11-50

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

cvtri, cvtril, cvtzri, cvtzril

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

The following exception can be raised. Whether or not the exception results
in a fault being raised depends on the state of its associated mask bit in the
arithmetic controls register.

Integer Overflow Result is too large for destination format.

Conversion of long real value to an integer

movrl g4, fp2 # long-real source is
converted to extended-real
format and moved to fp2
cvtril -fp2, gl2 # extended-real value 1is
converted to long integer
cvtri 6CO REG
cvtril 6C1 REG
cvtzri 6C2 REG
cvtzril - 6C3 . REG
cvtir, movr

11-51

intal

INSTRUCTION SET REFERENCE

daddc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

daddc Decimal Add With Carry
daddc srcl, src2, dst
reg reg reg

Adds bits 0 through 3 of src2 and srcl and bit 1 of the condition code (used
here'as a carry bit). The result is stored in bits O through 3 of dst. If the
addition results in a carry, bit 1 of the condition code is set. Bits 4 through
31 of src are copied to dst unchanged.

This instruction is intended to be used iteratively to add binary-coded-
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers O to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Let the value of the condition code be xCx.

dst < src2 + srcl + C;

AC.cc « 2#0CO#,

C is carry from addition of bits O through 4 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 of src2

STANDARD

daddc g5, g9, gl0 gl0 ¢« g9 + g5 + Carry Bit,

#
where arithmetic is

carried out only on bits 0
through 3 of the operands

daddc 642 REG

dsubc, dmovt

11-52

intal

INSTRUCTION SET REFERENCE

Mnemonic:
Format:
Description:

Action:

Faults:

Examplé:

Opcode:

See Also:

divi Divide Integer

divo Divide Ordinal

div* srel, src2, dst
reg/lit reg/lit reg

Divides the src2 value by the src/ value and stores the result in dst.

For the divi instruction, and integer-overflow fault can be signaled.

dst « src2 [srcl;

STANDARD Refer to discussion of faults at the begin-
ning of this chapter.
Arithmetic Zero Divide The srcl operand is 0.

The following fault condition can be raised with the divi instruction.
Whether or not a fault is raised depends on the state of its associated mask bit
in the arithmetic-controls register.

Integer Overflow Result is too large for destination format.
divo r3, r8, rl3 # rl3 « r8/r3

divi 74B REG
divo "~ 70B REG

ediv, mulo

11-53

inter INSTRUCTION SET REFERENCE

divr, divrl

Mnemonic: divr Divide Real
divrl Divide Long Real
Format: divr* srcl, sre2, dst

freg/flit freg/flit freg

Descriptio‘n: Divides the src2 value by the srcl value and stores the result in dst.

For the divrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, e, or a NaN.

The following table shows the results obtained when dividing various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srel
- -F -0 +0 +F +0o | NaN
-0 * + 00 + o0 -0 -0 * NaN
-F +0 +F ** *x -F -0 NaN
-0 +0 +0 * * -0 -0 NaN
Src2| +0 -0 -0 * * +0 | +0 | NaN
+F -0 -F ** ** +F +0 NaN
+ o * -0 -00 + oo | NaN
NaN NaN NaN | NaN | NaN | NaN | NaN | NaN

Notes:

F Means finite-real number.
* Indicates floating invalid-operation exception.
** Indicates floating zero-divide exception.

Action: dst « src2 | srcl,;

11-54

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

divr, divrl

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Zero Divide

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.
Result is too small for destination format.

The srcl operand is O and the src2
operand is numeric and finite.

Both source operands are 0 or both are
oo,

One or more operands are an SNaN
value.

Result cannot be'represented exactly in
destination format.

divrl gl10, g0, fpl # fpl « g0,9l1 / gl0,gll

divr 78B REG
divrl 79B REG

ediv, mulr, mulrl

11-55

intal

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

i

Description:

Action:

Faults:

Example:

Opcode:

See Also:

C"11()"tlivf'

dmovt Decimal Move And Test
dmovt src, . dst
reg . reg

3

Copies the src value into dst. The least-significant eight bits of the src value

are tested to determine whether or not they constitute a valid ASCII decimal
(00110000, .. 0011 1001 5), and the condmon code is set accordingly. If the
value is a vahd ASCII de01mal the condition code is set to 0002, otherwise,
it is set to 010,.

¢
te

This instruction is intended to be used iteratively to validate decimal strings.

* dst src;

if src = 2#0011000# .. 2#00111001#
then AC.cc « 2#000#;
else AC.cc « 2#010#;
end if;

STANDARD

L
f

dmovt gl, g6 # g6 « gl;
gl tested for decimal value

dmovt 644 REG

daddc, dsubc

11-56

inte|° INSTRUCTION SET REFERENCE

dsubc
Mnemonic: dsubc Decimal Subtract With Carry
Format: dsubc srcl, src2, dst.
reg reg reg

Description: Subtracts bits 0 through 3 of src2 and src/ and bit 1 of the condition code
(used here as a carry bit). The result is stored in bits O through 3 of dst. If
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4
through 31 of src are copied to dst unchanged.

This instruction is intended to be used iteratively to subtract binary-coded-
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers O to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Action: # Let the value of the condition code be xCx.
dst « src2 - srcl -'1+C;
AC.cc « 2#0CO0#,
C is carry from subtraction of bits O through 4 of operands
Bits 4 - 31 of dst are same as bits 4 - 31 of src2

Faults: STANDARD

Example: dsubc rl, r2, rl2 # rl2 < r2 - rl -1 + Carry
Bit, where arithmetic is
carried out only on bits 0
through 3 of the operands

Opcode: dsubc 643 REG

See Also: daddc, dmovt

11-57

inte|° INSTRUCTION SET REFERENCE
ediv
Mnemonic: ediv Extended Divide
Format: ediv srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 by srcl and stores the result in dsz. The src2 value is a long
‘ ordinal (i.e., 64 bits), which is contained in two adjacent registers. The src2
operand spec1ﬁes the lower numbered register, which contains the least sig-
nificant bits of the operand. The src2"'operand must be an even numbered
register (i.e., 10, 12, r4, ... or g0, g2, ...). The srcl value is a normal ordinal
(i.e., 32 blts) -
The remainder is stored in the register- des1gnated by dst and the quotient is
stored in the next highest numbered reglster The dst operand must be an
even numbered reglster (i.e., 10,12, 14, . -or gO g2)
This instruction performs ordmal arlthmetlc
If this operation overﬂows (i.e., the qudti;:nt or remainder do not fit in 32-
bits), no fault is raised and the result is undefined.
Action: dst < (src2 - (src2 [srcl) * srcl); # remainder
dst + 1 « (src2 / srcl); # quotient
Faults: STANDARD, Arithmetic Integer Divide
Example: ediv g3, g4, 910 # gl0 ¢ remainder of g4 g5/g3
gll « quotient of g4,g5/g3
Opcode: ediv 671 REG
See Also: emul

11-58

intal

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:
Example:
Opcode:

See Also:

emul
emul Extended Multiply
emul srcl, src2, dst
reg/lit reg/lit reg

Multiplies src2 by srcl and stores the result in dst. The result is a long
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst
operand specifies the lower numbered register, which receives the least sig-
nificant bits of the result. The dst operand must be an even numbered
register (i.e., 10, 12, 4, ... or g0, g2, ...).

This instruction performs ordinal arithmetic.

dst « (srcl * src2) mod 2/32;
dst + 1 « (src¢ * src2)/mod 2/32;

STANDARD
emul r4, r5, g2 # g2,93 ¢ rd * rb5
emul 670 REG

ediv

11-59

intelo INSTRUCTION SET REFERENCE

expr, exprl

Mnemonic: expr Exponent Real
exprl Exponent Long Real
Format: expx src, dst

v freg/flit freg

Description: Calculates an approximation of the exponential value of 2 to the src power,
minus 1, and stores the result in dst. The src value. must be within the range
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is
undefined.

For the exprl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The followmg table shows the results obtained when computing the exponent
of various classes of numbers.

Src Dst

-0.5 t0 -0 -(1/V2)-1t0-0
-0 -0

+0 +0

+0to +0.5 +0toV2-1

Notes:
+ Results are unpredictable

Action: dst « (27src) - 1;

11-60

intel” INSTRUCTION SET REFERENCE

expr, exprl

Faults: STANDARD Refer to the discussion of faults at the

beginning of this chapter.
Floating Reserved Encoding One or more operands is an unnormal-

ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation ~ One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

Example: #y=2"x (y and x in g0)
uses identity
2°x = 2" (I+f)
= 2"T * ((2°f - 1)+1)
where: I integer, -0.5 <= f <= +0.5
assumes round-to-nearest
does not handle infinities or NaNs
_pow2x:
roundr g0, fp0 # I in fp0
subr fp0,90,g0 # £ in g0
expr g0, g0
addr 0£f1.0,g90,90
cvtri fp0, gl
scaler gl,£fp0,g0
Opcode: expr 689 REG
exprl 699 REG

See Also: scaler, logr

intel

INSTRUCTION SET REFERENCE

extract
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

extract Extract
extract bitpos, len, srcldst
reg/lit reg/lit reg

Shifts a specified bit field in src/dst right and fills the bits to the left of the
shifted bit field with zeros. The bitpos value specifies the least significant bit
of the bit field to be shifted, and the len value specifies the length of the bit
field.

srcldst « (src/dst [2Mbitpos mod 32))
and (2Mlen - 1);

STANDARD

extract 5, 12, g4 # g4 ¢« g4 with bits 5
through 16 shifted right

extract 651 REG

modify

11-62

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault*

FAULT IF

Fault If Equal

Fault If Not Equal

Fault If Less

Fault If Less Or Equal
Fault If Greater

Fault If Greater Or Equal
Fault If Ordered

Fault If Unordered

Raises a constraint-range fault if the logical AND of the condition code and
the mask-part of the opcode is not zero.

The following table shows the condition-code mask for each instruction:

Instruction Mask | Condition
faultno 000 Unordered
faultg 001 Greater
faulte 010 Equal
faultge 011 Greater or equal
faultl 100 Less
faultne 101 Not equal
faultle 110 Less or equal
faulto 111 Ordered
For the faultno instruction (unordered), the fault is raised if the condition

code is equal to 2#0004#.

For all instructions except faultno:

if (mask and AC.cc) # 2#000#

end if;

faultno:

then raise constraint-range fault;

if AC.cc = 2#000#

end if;

then raise constraint-range fault;

'ntel' INSTRUCTION SET REFERENCE

FAULT IF
Faults: STANDARD, Constraint Range
Example: # assume 2#110# AND AC.cc # 2#000#

faultle # raises Constraint Range Fault

Opcode: faulte 1A CTRL
faultne 1D CTRL
faultl 1C CTRL
faultle 1E CTRL
faultg 19 CTRL
faultge 1B CTRL
faulto 1IF CTRL
faultno 18 CTRL

Sed Also: be, teste

11-64

intal

INSTRUCTION SET REFERENCE

Mnemonic:
Format:

Description:

Action:

Faults:
Example:

Opcode:

flushreg
flushreg Flush Local Registers
flushreg

Copies the contents of all the cached local-register sets into their associated
register-save areas in the procedure stack. The contents of all the local-
register sets except for the current set are then marked as invalid. On a
return, the local registers for the frame being returned to are then loaded from
the stack.

The flushreg instruction is provided to allow a compiler or applications
program to circumvent the normal call/return mechanism of the processor.
For example, a compiler may need to back up several frames in the stack on
the next return, rather than using the normal return mechansim that returns
one frame at a time. Here, the compiler uses the flushreg instruction to
update the stack with the current states of the saved register sets. The
compiler can then return to any frame in the stack without losing the contents
of the saved local-register sets. To return to a frame other than the frame
directly below the current frame, the complier merely modifies the PFP in
register 10 of the current frame to point to the frame that it wishes to return
to.

Each register set except the current set is flushed to its associated stack frame
in memory and marked as purged, meaning that they will be reloaded from
memory if and when they become the current local register set.

STANDARD
flushreg

flushreg 66D REG

11-65

Intel INSTRUCTION SET REFERENCE B
fmark
Mnemonic: fmark Force Mark - L TR
Format: fmark
Description: Generates a breakpoint trace-event, regardless of the setting of the breakpoint
- trace mode flag.
» When a breakpomt trace event is detected, the trace- fault-pendmg flag (bit
10) of the process controls word and the breakpomt—trace event flag (bit 23)
of the trace controls are set. Before the next instruction is executed, a trace
fault is generated ‘ =z
For more 1nformat10n on trace-fault generation, i'cfer to Chapter 12.
Action: if process.trace_ controls and breakpomt trace_flag
h then
. raise trace breakpoint fault
- endif ‘
Faults: STANDARD, Breakpoint Trace
Example: 1d xyz, r4
addi .r4, r5, ré6
fmark : .
Breakpoint trace event is generated at
this point in the instruction stream.
Opcode: fmark 66C REG
See Also: mark

11-66

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

LOAD

Id Load

ldob Load Ordinal Byte

ldos Load Ordinal Short

Idib Load Integer Byte

ldis Load Integer Short

1dl Load Long

ldt Load Triple

ldq Load Quad

1d* src, dst
mem reg

Copies a byte or string of bytes from memory into a register or group of
successive registers. The src operand specifies the address of the first byte to
be loaded. The full range of addressing modes may be used in specifying
src. (Refer to Chapter 5 for a complete discussion of the addressing modes
available with memory-type operands.)

The dst operand specifies a register or the first (lowest numbered) register of
successive registers.

The ldob and ldib, and ldos and Idis instructions load a byte and half word,
respectively, and convert it to a full 32-bit word. The 1d, 1dl, 1dt, and ldq
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into
successive registers.

For the 1dl instruction, dst must specify an even numbered register (e.g., g0,
g2, ..., g12). For the ldt and ldq instructions, dst must specify a register
number that is a multiple of four (e.g., g0, g4, g8). If the data extends
beyond register g15 or r15 for the 1dl, ldt, or ldq instruction, the results are
unpredictable.

dst < memory (src);
STANDARD

1dl 2456 (r3), rl0 # rl0, rll < value of two

words beginning at offset
2456 plus the address in

r3 in memory

= H

11-67

7

inte|° INSTRUCTION SET REFERENCE

LOAD

Opcode: Id 90 MEM
1dob 80 MEM
Idos 88 MEM
1dib Co MEM
1dis C8 MEM
1dl 98 MEM
1dt A0 MEM
ldq BO MEM

See Also: MOVE, STORE

11-68

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

Ida

Ida Load Address

1da src dst
mem reg
efa

Computes the effective address specified with src and stores it in dst. The
src address is not checked for validity.

An important application of this instruction is to load a constant longer than

5 bits into a register. (To load a register with a constant of 5 bits or less, the
move instruction (mov) can be used with a literal as the src operand.)

dst « efa (src);

STANDARD
lda 58 (g9), gl # Computes the effective
address specified with
" # 58 (g9) and stores it in gl
lda 0x749, r8 # loads the constant 16#749#
in r8
lda 8C MEM

11-69

intgl

INSTRUCTION SET REFERENCE

logbnr, logbnri

Mnemonic:

Format:

Description:

logbnr Log Binary Real
logbnrl Log Binary Long Real

logbnr* src, dst
freg/flit freg

Calculates the log, (src) and stores the integral part of this value (i.e., the
part to the left of the binary point) as a real number in dst. The result of this
operation is an unbiased exponent. When src is a denormalized number, dst
is the unbiased exponent that src would have if the format had unlimited
exponent range.

(The fractional part of log, (src) is ignored. If the fractional part is needed,
use the logr or logrl instruction.)

This instruction implements the IEEE recommended function logb. It is
useful for calculating the order of magnitude of a number.

For the logbnrl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the log binary of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 + oo

-F *F

-0 ¥

+0 **

+F tF

+ + o0

NaN NaN
Notes:

F Means finite-real number

hid Indicates floating zero-divide exception

11-70

intel

INSTRUCTION SET REFERENCE

Action:

Faults:

Example:

Opcode:

See Also:

logbnr, logbnril

Note that the significand of the src operand can be extracted by using the

scaler or scalerl instruction.

dst < (log, (unbiased exponent (src)) - fraction);
the integral part of the unbiased exponent of src
is stored in dst as a biased real

STANDARD Refer to the discussion of faults at the
beginning of this chapter.
Floating Reserved Encoding One or more operands is an unnormal-

ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact

Result cannot be represented exactly in
destination format.

Floating Zero Divide The src operand is 0.

logbnrl gl2,

logbnr 68A
logbnrl 69A

logr, scaler

fp3 # fp3 « integral part
of log2 (gl2,gl3)

REG
REG

intgl

INSTRUCTION SET REFERENCE

logepr, logepri

Mnemonic: logepr Log Epsilon Real
logeprl Log Epsilon Long Real
Format: logepr srcl, src2, dst
freg/flit freg/flit freg
Description: Calculates (src2 * log, (srcl + 1)), and stores the result in dst.
| For the logeprl instruction, if the srcl, src2, or dst opérand references a
global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., g0, g2,
g4).
The following table shows the results obtained when taking the log epsilon of
various classes of numbers, assuming that neither overflow nor underflow
occurs.
Srcl
(1/V2)-1to-0| -0 | +0 | +0toV2-1 NaN
- -0 * * -0 NaN
-F +F +0 -0 -F NaN
-0 +0 +0 -0 -0 NaN
Src2 +0 -0 -0 +0 +0 NaN
+F -F -0 +0 +F NaN
40 + 00 * * + m NaN .
NaN NaN NaN | NaN NaN NaN
Notes:

F Means finite-real number.
Indicates floating invalid-operation exception.

*

This instruction offers optimal accuracy for values of src/ + 1 close to 1 (i.e.,
for values of srcl close to 0). This expression is commonly found in com-
pound interest and annuity calculations. The result can be simply converted
into a value in another logarithm base by including a scale factor in src2.

11-72

intgl

INSTRUCTION SET REFERENCE

Action:

Faults:

logepr, logeprl

The following equation is used to calculate the scale factor for a particular
logarithm base, where n is the logarithm base desired for the result stored in
dst:

scale factor = log 2

The range of srcl is restricted to the following:

1/sqrt (2) < srcl + 1 <sqrt (2)

When the srcl operand is outside this range, the logr or logrl instruction can
be used with very insignificant loss of accuracy by adding 1.0 to srcl.

dst « src2 * log, (srcl + 1);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.

Floating Underflow Result is too small for destination format.

Floating Invalid Operation The srcl operand is O and the src2
operand is .

The srcl operand does not fall within the
range defined in the above description
section.

One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in
destination format.

11-73

inte|° INSTRUCTION SET REFERENCE

logepr, logeprli

Example: - logepr g8, g4, fp2 . :
. # fp2 « g4,95 * log2 (g8,99 + 1)

Opcode: logepr 681 REG
logeprl 691 REG
See Also: logr

11-74

intgl

INSTRUCTION SET REFERENCE

logr, logrl
Mnemonic: logr Log Real
. logrl - Log Long Real
Format: logr= srcl, src2, dst
freg/flit freg/flit freg
Description: Calculates (src2 * log, (srcl)), and stores the result in dst. (The logbnr and
logbnrl instructions perform this function more efficiently, if only an es-
timate is needed.)
For the logrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).
The following table shows the results obtained when taking the log of
- various classes of numbers, assuming that neither overflow nor underflow
occurs. '
Srcl
-0 -F -0 +0 +F + o NaN
-00 * * *% *% i 00 00 NaN
-.F * * ** ** +F -» | NaN
-0 * * * * 10 * NaN
Src2| +0 * * * * t0 * NaN
+F T * ** ** +F + NaN
+ ‘ * * k% *% i- 00 + 00 NaN
’ NaN NaN | NaN | NaN [NaN | NaN | NaN | NaN
Notes:

F -Means finite-real number.

*
ook

Indicates floating invalid-operation exception.

Indicates floating zero-divide exception.

The logr instruction combined with the expr instruction forms the basis for
the power function x9.

11-75

intel

INSTRUCTION SET REFERENCE

logr, logrl

Action:

Faults:

Adding 1.0 to a number to be used as the src/ operand will causé infor-
mation to be lost. To perform this function, use the logepr or logeprl
instruction.

These instructions provide a simple method of converting the result of the
log, arithmetic into a value in another logarithm base by including a scale
factor in src2. The following equation is used to calculate the scale factor for
a particular logarithm base, where n is the logarithm base desired for the
result stored in dst;

scale factor = log 2
dst « src2 * log, (srcl);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an

exception results in a fault being raised depends-on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow ~Result is too large for destination format.
Floating Underflow Result is too small for destination format.

Floating Zero Divide The srcl operand is 0 and src2 is non-
zZero. '

Floating Invalid Operation The srcl and src2 operands are both 0.

The srcl operand is oo and the src2
operand is 0. ,

The srcl operand is 1 and the src2
operand is oo.

The srcl operand is negative and non-
zero.

One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in
destination format.

11-76

inter INSTRUCTION SET REFERENCE

logr, logrl

Example: logrl r2, g8, g2 # g2,g3 « g8,g9 * log2(r2,r3)
Opcode: logr 682 REG

logrl 692 REG
See Also: expr, logepr

intel

INSTRUCTION SET REFERENCE

mark
Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

mark Mark
mark

Generates a breakpoint trace event if the breakpoint trace mode has been
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0)
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace
controls have been set. Both these words are located in the PCB.

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the
trace controls are set. Before the next instruction is executed, a trace fault is
generated.

If the breakpoint-trace mode has not been enabled, the mark instruction
behaves like a no-op.

For more information on trace-fault generation, refer to Chapter 12.
raise trace breakpoint fault
STANDARD, Breakpoint Trace

Assume that the breakpoint trace mode is
enabled.

1d xyz, r4
addi r4, r5, ro
mark

Breakpoint trace event is generated at
this point in the instruction stream.

mark 66B REG

fmark, modpc, modtc

11-78

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modac
modac Modify AC

modac mask, src, dst
reg/lit reg/lit reg

Reads and modifies the arithmetic controls. The src operand contains the
value to be placed in the arithmetic controls and the mask operand specifies
the bits that may be changed. Only the bits set in mask are modified in the
arithmetic controls. Once the arithmetic controls have been changed, their
initial state is copied into dst.

temp « AC
AC « (src and mask) or

(AC and not (mask));
dst « temp;

STANDARD

gl, g9, gl2 # AC « g9, masked by gl
gl2 « initial value of AC

modac 645 REG

modpc, modtc

intel

INSTRUCTION SET REFERENCE

modi
Mnemonic:

Format:

Description:

Action:

Fauits:
Example:
Opcode:

See Also:

modi Modulo Integer
modi srcl, src2, dst
reg/lit reg/lit reg

Divides src2 by srcl, where both are integers, and stores the modulo
remainder of the result in dsz. If the result is nonzero, dst is given the same
sign as srcl.

dst « src2 - ((src2/srcl) * srcl);
if src2 * srcl <0

then dst « dst + srcl;
end if;

STANDARD, Arithmetic Zero Divide
modi r9, r2, r5, # r5 ¢« modulo (r2/r9)
modi 749 REG

div, remi

11-80

intgl

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Qpcode:

See Also:

modify
modify Modify
modify mask, src, srcldst
reg/lit reg/lit reg

Modifies selected. bits in src/dst with bits from src. The mask operand
selects the bits to be modified: only the bits set in the mask are modified in
srcldst.

‘ srcldst « (src and mask) or (src/dst and not (mask));

STANDARD
modify g8, gl0, r4 # r4 < gl0 masked by g8
modify 650 REG

alterbit, extract

11-81

intel

INSTRUCTION SET REFERENCE

modpc
Mnémonic: ‘

Format:

Description:

Action:

modpc Modify Process Controls -
modpc sre, mask, srcldst’
reg/lit reg/lit reg

Reads and modifies the processor’s internally cached process controls as
specified with mask and src/dst. The src/dst operand contains the value to be
placed in the process controls and the mask operand specifies the bits that
may be changed. Only the bits set in the mask are modified in the process
controls. Once the process controls have been changed, their initial value is
copied into src/dst. The src operand is a dummy operand that should be set
equal to the mask operand.

The processor must be in the supervisor mode to modify the process controls
using this instruction. If the mask operand is set to 0, this instruction can be
used to read the process controls, without the processor being in the super-
visor mode.

If the action of this instruction results in the priority of the processor being
lowered, the interrupt table is checked for pending interrupts.

Changing the state, resume, internal state, and trace enable fields of the
process controls can lead to unpredictable behavior, as described in Chapter
7 in the section titled "Changing the Process-Controls Word."

if mask # 0
then if process.process_controls.execution_mode # supervisor
then raise type-mismatch fault;
end if;
temp ¢ process.process_controls;
process.process_controls «—
(mask and src/dst) or
(process.process_controls and not (mask));
src/dst < temp;
if (temp.priority > process.process_controls.priority
then check_pending_interrupts;
if continue here, no interrupt to do
end if;
else src/dst « process.process_controls;
end if;

11-82

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

STANDARD, Type Mismatch

modpc g9, g9,

modpc 655

modac, modtc

g8

process controls ¢« g8
masked by g9

REG

11-83

modpc

intal

INSTRUCTION SET REFERENCE

modtc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modtc Modify Trace Controls

modtc mask, sre, dst
reg/lit reg/lit reg

Reads and modifies the trace controls for the current process. The processor
changes its internally cached trace controls as specified with mask and src.
The src operand contains the value to be placed in the trace controls and the
mask operand specifies the bits that may be changed. Only the bits set in the
mask are modified in the trace controls. Once the trace controls have been
changed, their initial state is copied into dst.

This instruction only affects the trace controls cached in processor. The trace
controls in the PCB for the current process are not affected.

Since bits 8 through 15 and 24 through 31 of the trace-controls word are
reserved, the mask operand is ANDed with 00FFOOFF, ¢ to insure that these
bits are not set in the mask.

The changed trace controls take effect on the first non-branching instruction
fetched from memory. Since instructions are prefetched four at a time, the
trace controls may not take effect for up to the next four instructions ex-
ecuted.

For more information on the trace controls, refer to Chapters 12 and 16.

temp ¢ process.trace_controls;
templ « 16#00FFOOFF# and mask;
process.trace_controls «—
(templ1 and src) or
(process.trace_controls and not(temp1));
dst < temp;

STANDARD

modtc gl2, gl0, g2
trace controls « gl0 masked by gl2;
previous trace controls stored in g2

modtc 654 REG

modac, modpc

11-84

intgl

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:
Example:

Opcode:

See Also:

mov
movl
movt
movq

mov*

Move

Move Long

Move Triple
Move Quad

dst
reg

src,

reg/lit

MOVE

Copies the content of one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst

operand).

For the movl, movt, and movq instructions, the src and dst operands specify
the first (lowest numbered) register of several successive registers. The src
and dst registers must be even numbered (e.g., g0, g2) for the movl instruc-
tion and an integral multiple of four (e.g., g0, g4) for the movt and movq

instructions.

When the src and dst operands overlap, the value moved is unpredictable.

dst « src;

STANDARD

movt g8, r4 # rd4, r5, r6 « g8, g9, glo
mov 5CC REG

movl 5DC REG

movt SEC REG

movq SFC REG

1d, movr, st

11-85

intal

INSTRUCTION SET REFERENCE

movr, movre, movrl

Mnemonic:

Format:

Description:

‘Action:

movr Move Real

movrl Move Long Real
movre Move Extended Real
movrs* sre, dst

freg/flit freg

Copies a real value from one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

For the movrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. For the movre instruction, if the src or dst operand references a
global or local register, this register is the first (lowest numbered) of three
successive registers.

When copying real numbers between global or local registers and floating-
point registers, conversion between real or long-real format to extended-real
format is performed implicitly. Conversion between real and long-real for-
mats must be done through floating-point registers and requires two instruc-
tions, as illustrated in the example below.

When the movre instruction moves an operand from global or local registers
to a floating-point register, it automatically truncates the most-significant 16
bits of the word in the third register (refer to Figure 12-5). Likewise, when
this instruction is used to move an operand from a floating-point register to
global or local registers, it adds 16 zeros to the third word. The movre
instruction is not a numeric instruction; it merely manipulates bits.

The movr and movrl instructions can cause a floating-point exception to be
raised, which might result in a fault being raised, as is explained in the

section below on faults. The movre instruction can never raise an exception
and thus never faults.

dst « src;

11-86

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

movr, movre, movrl

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation
Floating Inexact

Result is too large for destination format.
Result is too small for destination format.
Source operand is an SNaN value.

Result cannot be represented exactly in
destination format.

Conversion of real value in g3 to a
to a long real value, which is stored

in g4,g5
movr g3, fp2
movrl fp2, g4

movr 6C9 REG
movrl 6D9 REG
movre 6E9 REG
mov

intal INSTRUCTION SET REFERENCE

muli, mulo

Mnemonic: muli Multiply Integer

‘ mulo Multiply Ordinal
Format: mul* srcl, src2, dst
reg/lit reg/lit reg

Description: Multiplies the src2 value by the srcl value and stores the result in dst.

Action: dst « src2 * srcl;
Faults: STANDARD, Integer Overflow
Example: r\nulvi r3, r4, r9 # r9 « r4 TIMES r3
Opcode: muli 741 REG
mulo 701 REG
See Also: emul, mulr

11-88

intel

INSTRUCTION SET REFERENCE

muir, mulrl

Mnemonic: mulr Multiply Real
mulrl Multiply Long Real
Format: mulr* srcl, src2, dst

freg/flit freg/flit freg

Description: Multiplies the src2 value by the srcl value and stores the result in dst.

Src2

Action:

For the mulrl iﬁstruétion, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

~ The sign of the result is always the exclusive-OR of the source signs, even if
‘one or more of the source values is 0, , or a NaN.

The following table shows the results obtained when multiplying various
classes of numbers together, assuming that neither overflow nor underflow

occurs.
Srel

- -F -0 +0 +F + NaN

- + o0 + 00 * * -00 -0 NaN

-F + o +F +0 -0 -F -0 NaN

-0 * +0 +0 -0 -0 * NaN

+0 * -0 -0 +0 +0 * NaN

+F -00 -F -0 +0 +F +o | NaN

+o -00 -00 * * + o0 +o | NaN

NaN NaN | NaN [NaN | NaN | NaN | NaN | NaN
Notes:

F Means finite-real number.
* Indicates floating invalid-operation exception.

When you need to multiply by the power of 2, the scaler and scalerl instruc-
tions can also be used.

dst « src2 * srcl,

11-89

inte|° INSTRUCTION SET REFERENCE

mulr, mulrl

Faults: STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including dénormalized) value and
the ‘normalizing-mode bit in the arith-
metic controls is set.

The following ﬂoating -point exceptions can be raised. Whether or not an
exceptlon results in a fault being raised depends on the state of its associated

mask bit i in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation

Floating Inexact

Example: mul‘rl glz, §4 , fp2
Opcode: mulr 78C

mulrl 79C
See Also: emul, muli, scaler

Result is too large for destination format.
Result is too small for destination format.

One source operand is 0 and the other is

oo,

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

fp2 « g4,g5 * gl2,9l13

REG
REG

11-90

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

nand
nand Nand
nand srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NAND operation on the src2 and srcl values and stores
the result in dst.

dst « (not (src2)) or not (srcl);

STANDARD

nand g5, r3, r7 # r7 ¢ r3 NAND g5
nand 58E REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

11-91

intel

INSTRUCTION SET REFERENCE

nor
Mnemonic:

Format:
Description:

Action:
Faulté:
Example:
Opcode:

See Also:

nor Nor
nor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOR operation on the src2 and srcl values and stores the
result in dst.

dst < not (src2) and not (srcl);

STANDARD

nor g8, 28, rb # r5 ¢« 28 NOR g8
nor 588 REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

11-92

intal

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

not, notand

not Not
notand Not And

not src, dst
reg/lit reg

notand srcl, src2, - dst)
reg/lit reg/lit reg

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and srcl values and stores the result in dst.

not: dst « not (srcl);

notand: dst « (not (src2)) and srcl;
STANDARD

not g2, g4 # g4 < NOT g2
notand r5, r6, r7 # r7 « NOT r6 AND r5

not 58A REG
notand 584 REG

and, andnot, nand, nor, notor, or, ornot, Xnor, xor

11-93

intel

INSTRUCTION SET REFERENCE

notbit

Mnemonic:

Format:
Description:

Action:
Faults:

Example:

Opcode:

See Also:

notbit Not Bit
notbit bitpos, src, dst
reg/lit reg/lit reg

Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

dst « src xor 27\(bitpos mod 32);
STANDARD

notbit r3, rl2, r7 # r7 ¢« rl2 with the bit
specified in r3 toggled

notbit 580 REG

alterbit, chkbit, clrbit, setbit

11-94

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

notor
notor Not Or
notor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOT OR operation on the src2 and srcl values and stores
the result in dst.

dst « (not (src2)) or srcl,

STANDARD

notor gl2, g3, g6 # g6 « NOT g3 OR gl2
notor 58D REG

and, andnot, nand, nor, not, notand, or, ornot, xnor, xor

intal INSTRUCTION SET REFERENCE

or, ornot
Mnemonic: or Or
ornot Or Not
Format: or srcl, sre2, dst
reg/lit reg/lit reg
ornot srcl, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ernot instruction) opera-
tion on the src2 and srcl values and stores the result in dst.

Action: or: dst« src2 or srcl;

ornot: dst < src2 or not (srcl);
Faults: STANDARD

Example: or 14, g9, g3 # g3 « g9 OR 14
ornot r3, r8, rll # rll « r8 OR NOT «r3

Opcode: or 587 REG
ornot 58B REG
See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor

11-96

intel” INSTRUCTION SET REFERENCE

remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal
Format: rems* srcl, sre2, dst
reg/lit reg/lit reg

Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Action: dst < src2 - ((src2 [srcl) * srcl);
Faults: STANDARD Refer to discussion of faults at the begin-
ning of this chapter.
Integer Overflow Result is too large for destination format.

This fault is signaled only when execut-
ing the remi instruction and if both of
the following conditions are met: (1) the
integer-overflow mask in the arithmetic-
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

Example: remo r4, r5, r6 # r6 « r5 rem r4
Opcode: remi 748 REG

remo 708 REG
See Also: remr, modi

11-97

intel

INSTRUCTION SET REFERENCE

remr, remrl

Mnemonic: remr Remainder Real
remrl Remainder Long Real
Format: remrx* srcl, src2, dst
freg/flit freg/flit freg
Description: Divides src2 by srcl and stores the remainder in dsz. The sign of the result
(if nonzero) is the same as the sign of src2.
For the remrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).
The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that neither overflow nor
underflow occurs.
Srcl
-0 -F, -0 +0 +F +o NaN
-0 * * * * * * NaN
-F src2 | -For -0 | ** ** -For -0 |src2 | NaN
-0 -0 -0 ¥ * -0 -0 NaN
Src2| +0 +0 +0 ¥ * +0 +0 NaN
+F src2 |[+For +0| ** ** |4+For +0 | src2 | NaN
+o * * * * * o NaN
NaN | NaN NaN NaN | NaN NaN NaN | NaN
Notes:

F Means finite-real number.

*

When the result is O, its sign is the same as that of src2. When the srcl is oo,

Indicates floating invalid-operation exception.
* * Indicates floating zero-divide exception.

the result is equal to the src2.

The result of this operation is always exact if the destination format is at least

as wide as the src2 and srcl.

11-98

L] ®

in

INSTRUCTION SET REFERENCE

Action:

remr, remrl

The remainder provided with the remr and remrl instructions is different
from the remainder described in the IEEE floating-point standard. The dif-
ference is related to how the quotient (N) of the expression (src2/srcl) is
determined.

As shown below in the action statement, N for the remr and remrl instruc-
tions is the nearest integer value obtained when the exact result (E) of the
expression (src2/srcl) is truncated toward zero. N will always be less than
or equal to the absolute value of E.

For the IEEE standard, N is sirhply the nearest integer value to E. Here, N
may be less than, equal to, or greater than the absolute value of E.

To help determine the IEEE remainder from the result given by the remr and
remrl instructions, the following information about the quotient is given in
the arithmetic-status field in the arithmetic: .

Arithmetic Meaning
Status Bit

6 Ql1, the next-to-last quotient bit

5 * 1 QO, the last quotient bit

4 QR, the value the next quotient bit
would have if one more reduction were
performed (the "round" bit of the -
quotient)

3 QS, set if the remainder after the QR
reduction would be nonzero (the
"sticky" bit of the quotient)

The information can then be used to determine the IEEE standard remainder,
as shown in the example below.

dst < src2 - (N * srcl);

where N = truncate (src2/srcl.

Here, (src2/srcl) is truncated

toward zero to the nearest integer.

11-99

intel'

INSTRUCTION SET REFERENCE

remr, remrl

Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Zero Divide
Floating Invalid Operation

Floating Inexact

remrl g6, g8, fpl

fpl & 98,99 rem g6,qg7

remr 683
remrl 693
remi, modi

REG
REG

11-100

Result is too large for destination format.
Result is too small for destination format.
The srcl operand is O.
The src2 operand is ee.
The srcl operand is O.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

ret

ret Return
ret

Returns process control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the stack frame of the calling procedure. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call instruc-
tion.

As shown in the action statement below, the action that the processor takes
on the return is determined by the return status and prereturn trace bits.
These bits are contained in bits 0, through 3 of register 10 of the current set of
local registers.

Refer to Chapter 4 for further discussion of the return instruction.

wait for any uncompleted instructions to finish;
case frame_status is

2#000#: FP « PFP;
free current register_set;
if register_set (FP) not allocated
then retrieve from memory(FP);
end if;
IP « RIP;

2#001#: x < memory(FP-16);
y ¢ memory(FP-12);
do case 000 action;
arithmetic_controls « y;
if execution_mode = supervisor
then process_controls « x;
end if;

2#010#: if execution_mode # supervisor
then go to case 000;
else process_controls.T « 0;
execution_mode « user;
go to case 000;
end if;

intelg INSTRUCTION SET REFERENCE

ret
2#011#: if execution_mode # supervisor
then go to case 000;
else process_controls.T « 1;
execution_mode « user;
go to case 000;
end if;

2#100#: undefined
2#101#: undefined

2#1104#: if execution_mode = supervisor
then free current register set;
check_pending_interrupts;
if continue here, no interrupt to do
do case 000 action;
end if;

2#111#:. x < memory(FP-16);
y « memory(FP-12);
do case 000 action;
arithmetic_controls « y;
if execution_mode = supervisor
then process_controls « x;
check_pending_interrupts;
end if;

Faults: STANDARD

Example: ret # process control returns to
calling procedure
environment

Opcode: ret 0A CTRL

See Also: call, calls, callx

11-102

intgl

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

rotate
rotate Rotate
rotate len, sre, dst
reg/lit reg/lit reg

Copies src to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). (The bits shifted off the left end of the word
are inserted at the right end of the word.) The len operand specifies the
number of bits that the dst operand is rotated. The len operand can range
from O to 31.

This instruction can also be used to rotate bits to the right. Here, the number
of bits the word is to be rotated right is subtracted from 32 to get the len
operand.

dst « rotate (len mod 32 (src))
STANDARD

rotate r4, r8, rl2 # rl2 « r8
with bits rotated
r4 bits to left

rotate 59D REG

SHIFT

intal

INSTRUCTION SET REFERENCE

roundr, roundrl

Mnemonic:
Format:

Descriptioné

Action:

Faults:

Example:

Opcode:

roundr Round Real
roundrl Round Long Real

roundr* src, dst
freg/lit = freg

Rounds sr¢ to the nearest mtegral value, dependlng on the rounding mode,
and stores the result in dst.

For the roundrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

If the src operand is oo the result is src. If the src operand is not an integral
value, a floating-inexact exception is raised.

,

dst « round_to_integral_value (srcl);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.

Floating Underflow Result is too small for destination format.

Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

roundrl r4, rl0
rl0,rll « r4,r5 rounded

roundr 68B REG
roundrl 69B REG

11-104

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

scaler, scalerl

scaler Scale Real

scalerl Scale Long Real

scaler* srcl, src2, dst
reg/lit freg/flit freg

Multiplies src2 by 2 to the power of srcl and stores the result in dst. The
srcl operand is an integer; whereas, src2 and dst are reals.

For the scalerl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when scaling various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srel
-N 0 +N
=00 -Q0 -00 -00
-F -F -F -F
-0 -0 -0 -0

Src2| +0 +0 +0 +0
+F +F +F +F
+ o + 00 + o0 + o

NaN NaN | NaN | NaN

Notes:

F Means finite-real number.
N Meansinteger.

In most cases, only the exponent is changed and the mantissa (fraction)
remains unchanged. However, when the srcl operand is a denormalized
value, the mantissa is also changed and the result may turn out to be a
normalized number. Similarly, if overflow or underflow results from a scale
operation, the resulting mantissa will differ from the source’s mantissa.

11-105

intel” INSTRUCTION SET REFERENCE

scaler, scalerl

Refer to the sections titled "Floating Overflow Exception" and "Floating
Underflow Exception" in Chapter 12 for further discussion of how overflow

and underflow are handled.
Action: dst « src2 * 2nsrcl)
Faults: STANDARD ‘

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.
Floating Overflow

Floating Under\ﬂovtv

Floating Zero Divide

Floating Invalid Operation

Result is too large for destination format.
Result is too small for destination format.
The srcl operand is 0.

One or more operands are an SNaN

- value.

Floating Inexact

Example: scalerl g6, g2, £p0
fp0 ¢« g2,93 * 2"g6

Opcode: scaler 677 REG-
scalerl 676 REG
See Also: mulr

11-106

Result cannot be represented exactly in

destination format.

inter INSTRUCTION SET REFERENCE

scanbit
Mnemonic: scanbit Scan For Bit

Format: scanbit sre, dst
reg/lit reg

Description: Searches the src value for the most-significant set bit (1 bit). If a most-
significant 1 bit is found, its bit number is stored in dst and the condition
code is set to 010,. If the src value is zero, all 1’s are stored in dst and the
condition code is set to 000,.

Action: dst « 16#FFFFFFFF#;
AC.cc « 2#000#;
for i in 31..0 reverse loop
if (src and 27i) #0
then
dst « i
AC.cc « 2#0104#,
exit;
end if;
end loop;

Faults: STANDARD

Example: # assume g8 is nonzero
scanbit g8, glo0
gl0 « bit number of
most-significant set bit
in g8; AC.cc « 2#010#

Opcode: scanbit 641 REG

See Also: spanbit

intel INSTRUCTION SET REFERENCE

scanbyte
Mnemonic: scanbyte Scan Byte Equal

Format: scanbyte srcl, src2
reg/lit reg/lit

Description: Performs a byte-by-byte comparison of srcl and src2 and sets the condition
* code to 2#010# if any two corresponding bytes are equal. If no correspond-
ing bytes are equal, the condition code is set to 000,.

Action: if (srcl and 16#000000FF#) = (src2 and 16#000000FF#) or
(srcl and 16#0000FF00#) = (src2 and 16#0000FF00#) or
(srcl and 16#00FF0000#) = (src2 and 16#00FF0000#) or
(srcl and 16#FF000000#) = (src2 and 16#FF000000#)

then AC.cc < 2#010#,
else AC.cc « 2#0004#;
endif;
Faults: STANDARD
Example: # assume r9 = 0x11AB1100

scanbyte 0x00AB0011, r9
AC.cc « 2#010#

Opcode: scanbyte 5AC REG

11-108

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Fatilts:

Example:

Opcode:

See Also:

setbit
setbit Set Bit
setbit bitpos, src, dst
reg/lit reg/lit reg

Copies the src value to dst with one bit set. The bitpos operand specifies the
bit to be set.

dst « src or 2(bitpos mod 32);
STANDARD

setbit 15, r9, rl
rl ¢« r9 with bit 15 set

setbit 583 REG

alterbit, chkbit, cIrbit, notbit,

11-109

intel

INSTRUCTION SET REFERENCE

SHIFT

Mnemonic:

Format:

Description:

Action:

shlo Shift Left Ordinal

shro Shift Right Ordinal

shli Shift Left Integer

shri Shift Right Integer

shrdi Shift Right Dividing Integer

sh* len, src, dst
reg/lit reg/lit reg

Shifts src left or right by the number of digits indicated with the len operand
and stores the result in dsz. This operation (with the exception of the shri
instruction, as described below) is equivalent to multiplying (shift left) or
dividing (shift right) the src value by 2'".

The shri instruction performs a conventional arithmetic right shift, which,
when used as a divide, produces an incorrect quotient for negative src values.
To get a correct quotient for a negative src value, use the shrdi instruction,
which performs correct rounding of negative results.

shlo: if len< 32
then dst < src* 2Mlen
else dst < 0;
end if;

shro: if len < 32

then dst < src/2Mlen
else dst < 0;

end if;
shli: dst « src* 2Nlen
shri: ifsrc>20
then if len < 32
then dst < src/2Nlen

else dst « 0;
else if len < 32
then dst < (src - 2M\len + 1)[2Nlen
else dst « -1;
end if;
end if;

shrdi: dst « src[2MNlen

11-110

inteI” INSTRUCTION SET REFERENCE

SHIFT

Faults: STANDARD, Integer Overflow

Example: shli 13, g4, r6
g6 ¢« g4 shifted left 13 bits

Opcode: shlo 59C REG
shro 598 REG
shli S9E REG
shri 59B REG
shrdi 59A REG

See Also: divi, muli, rotate

intel

INSTRUCTION SET REFERENCE

sinr, sinrl

Mnemonics:

Format:

Description:

Action:

sinr Sine Real
sinrl Sine Long Real
sinr* sre, dst

freg/flit freg

Calculates the sine of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range -1 to +1,
inclusive.

For the sinrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 *

-F -1to +1
-0 -0

+0 +0

+F -1to +1
+ 00 *

NaN NaN
Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

In the trigonmetic instructions, the 80960KB uses a value for ® with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this m value, along with some
suggestions for representing this value in a program.

dst < sin (src);

11-112

intel

INSTRUCTION SET REFERENCE

Faults:

Example:

Opcode:

See Also:

sinr, sinrl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation The src operand is oo.
One or more operands is an SNaN value.

Floating Inexact Result cannot be represented exactly in
destination format.

sinrl g6, g0
sine of value in g6,g7
is stored in g0,gl

sinr 68C REG
sinrl 69C REG
cosr, tanr

intel

INSTRUCTION SET REFERENCE

spanbit
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

spanbit Span Over Bit

spanbit src, dst
reg/lit reg

Searches the src value for the most-significant clear bit (0 bit). If a most-
significant O bit is found, its bit number is stored in dst and the condition
code is set to 0102. If the src value is all 1’s, all 1’s are stored in dst and the
condition code is set to 000,.

dst « 16#FFFFFFFF#;
AC.cc « 2#0004;
for iin 31..0 reverse loop
if (src and 2M) =0
then
dst « i,
AC.cc « 2#0104#;
exit;
end if;
end loop;

STANDARD

assume r2 is not 16#FFFFFFFF#
spanbit r2 r9

r9 « bit number of

most-significant clear bit

in r2; AC.cc « 2#010#

spanbit 640 REG

scanbit

11-114

inte|® INSTRUCTION SET REFERENCE

sqrtr, sqrirl

Mnemonic: sqrtr Square Root Real
sqrtrl Square Root Long Real
Format: sqrtr* src, dst

freg/flit freg

Description: Calculates the square root of src and stores it in dst.

For the sqrtrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the square root
of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *

-F *

-0 -0
+0 +0
+F +F
+ 0 + 00

NaN \ NaN

Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

With these instructions, it is not possible to raise a floating overflow or
floating underflow fault unless the src operand is in a floating-point register
and the dst operand is not.

Action: dst « sqrt (src);

11-115

intgl

INSTRUCTION SET REFERENCE

sqrtr, sqrtri

Faults:

Example:

Opcode:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow

Floating Invalid Operation

Floating Inexact

sgrtrl g6, £fp0
fp0 « sqgrt of g6,g97

REG
REG

sqrtr 688
sqrtrl 698

11-116

Result is too large for destination format.
Result is too small for destination format.
The src operand is less than -0.

The src operand is an SNaN value.

Result cannot be represented exactly in
destination format.

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

STORE

st Store

stob Store Ordinal Byte

stos Store Ordinal Short

stib Store Integer Byte

stis Store Integer Short

stl Store Long

stt Store Triple

stq Store Quad

st src, dst
reg/lit mem

Copies a byte or string of bytes from a register or group of registers to
memory. The src operand specifies a register or the first (lowest numbered)
register of successive registers.

The dst operand specifies the address of the memory location where the byte
or the first byte of a string of bytes is to be stored. The full range of
addressing modes may be used in specifying dst. (Refer to Chapter 5 for a
complete discussion of the addressing modes available with memory-type
operands.)

The stob and stib, and stos and stis instructions store a byte and half word,
respectively, from the low order bytes of the src register. The st, stl, stt, and
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive
registers to memory.

For the stl instruction, dst must specify an even numbered register (e.g., g0,
g2, ..., g12). For the stt and stq instructions, dst must specify a register
number that is a multiple of four (e.g., g0, g4, g8).

memory (dst) « src;
STANDARD, Integer Overflow Fault (stib and stis instructions only)

st g2, 1256 (g6)
word beginning at offset
1256 + (g6) « g2

11-117

- ®

in INSTRUCTION SET REFERENCE

STORE

Opcode: st 92 MEM
stob 82 MEM
stos 8A MEM
stib C2 MEM
stis CA MEM
stl 9A MEM
stt A2 MEM
stq B2 MEM

See Also: LOAD, MOVE

. 11-118

intel

INSTRUCTION SET REFERENCE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

subc
subc Subtract Ordinal With Carry
subc srcl, sre2, dst
reg/lit reg/lit reg

Subtracts (srcl - 1) from src2, adds bit 1 of the condition code (used here as
a carry bit), and stores the result in dst. If the ordinal subtraction results in a
carry, bit 1 of the condition code is set.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, bit O of the condition code is set.

The subc instruction does not distinguish between ordinals and integers: it
sets bits 0 and 1 of the condition code regardless of the data type.

Let the value of the condition code be xCx.

dst « src2 - (srcl - 1) + C;

AC.cc « 2#0CV#

C is carry from ordinal subtraction.

V is 1 if integer subtraction would have generated
an overflow.

STANDARD

subc g5, g6, g7
g7 « g6 - (g5 - 1)
+ Carry Bit

subc 5B2 REG

addc

11-119

intgl INSTRUCTION SET REFERENCE

subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal
Format: sub* srcl, src2, dst
reg/lit reg/lit reg

Description: Subtracts srcl from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: dst « src2 - srcl;
Faults: STANDARD, Integer Overflow (subi instruction only)
Example: subi g6, g9, gl2 # gl2 « g9 - g6
Opcode: subi 593 REG

subo 592 REG
See Also: addi, addr, subc, subr

11-120

intel” INSTRUCTION SET REFERENCE

subr, subrl

Mnemonic: subr Subtract Real
subrl Subtract Long Real
Format: subr* srcl, src2, dst

freg/flit freg/flit freg

Description:. Subtracts srcl from src2 and stores the result in dsz.

For the subrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when subtracting various
classes of numbers, assuming that neither overflow nor underflow occurs.

Srcl
- -F -0 +0 +F + | NaN
- * e -0 -0 -0 -0 NaN
-F +o |*For 0| src2 | sre2 -F -00 NaN
-0 + o srel 10 -0 srcl -00 NaN
Src2| +0 +o0 srcl +0 | 0 srcl -0 | NaN
+F +o +F src2 | sre2 |tFort 0] -o NaN
+o + 0 + 0 +o | 4o + * NaN
NaN NaN NaN NaN | NaN | NaN NaN | NaN

Notes:

F Means finite-real number.
* Indicates floating invalid-operation exception.

When the difference between two operands of like sign is zero, the result is
+0, except for the round toward - mode, in which case the result is -0. This
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0.

When one source operand is oo, the result is e of the expected sign. If both
source operands are o of the same sign, an invalid-operation exception is
raised.

intgl

INSTRUCTION SET REFERENCE

subr, subrl

Action:

Faults:

Example:

Opcode:

See Also:

dst « src2 - srcl;
STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation

Floating Inexact

subrl g6, £fp0, fﬁl
fpl « fp0 - g6,g97

subr 78D
subrl 79D

REG
REG

subi, subc, addr

11-122

Result is too large for destination format.
Result is too small for destination format.

Source operands are infinities of like
sign.

One or more operands are an SNaN
value.

Result cannot be represented exactly in

. destination format.

intel

INSTRUCTION SET REFERENCE

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

syncf
syncf Synchronize Faults
syncf

Waits for any faults to be generated associated with any prior uncompleted
instructions.

if arithmetic_controls.nif
then; ,
else wait until no imprecise faults can occur
associated with any uncompleted instructions;
end if;

STANDARD

1d xyz, g6

addi ro6, r8, r8

syncf

and g6, OxFFFF, g8 ,

the syncf instruction insures that any faults
that may occur during the execution of the

1ld and addi instructions occur before the

and instruction is executed

= = S e

syncf 66F REG

mark, fmark

intal

INSTRUCTION SET REFERENCE

synid

Mnemonic:

Format:

Description:

Action:

Faults:

i

synld Synchronous Lc').ad

synld src, dst
reg reg
addr addr

Copies a word from the memory location specified with src into dst and
waits for the completion of all memory operations, including those initiated
prior to the synld instruction. When the load has been successfully com-
pleted, the condition code is set to 2#010#.

The primary function of this instruction is for reading IAC messages, the
IAC Message Control word, or the IAC Interrupt Control Register.
However, this instruction is not restricted to IAC applications. It may be
used when it is important to guarantee the completion of the load operation
before proceeding or to avoid a bad-access fault.

The setting of the condition code indicates whether or not the load was
completed successfully. If the load operation results in a bad access con-
dition (e.g., reading an AP-bus interconnect register), the condition code is
set to 0002, but the bad-access fault is not raised.

if PRCB.addressing_mode = physical
then tempa « src;
else tempa <« physical_address (src);
end if;
tempa < tempa and 16#FFFFFFFC#; # force alignment
if tempa = 16#FF000004#
then dst « interrupt_control_reg;
AC.cc « 2#010#,
else dst «— memory (tempa);
if bad_access
then AC.cc < 2#000#;
else AC.cc « 2#010#;
end if;
end if;

STANDARD

11-124

intel

INSTRUCTION SET REFERENCE

Example:

Opcode:

See Also:

lda 16#FF000010#, g8

synld g8, g9 # g9 ¢« word from IAC
message buffer;
AC.cc = 2#0104

synid 615 REG

synmov

11-125

synid

intal

INSTRUCTION SET REFERENCE

synmov, synmovl, synmovq

Mnemonic:

Format:

Description:

synmov Synchronous Move
synmovl Synchronous Move Long
synmovq Synchronous Move Quad

synmov* dst, src
reg reg
addr addr

Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory
location specified with src to the memory location specified with dst and
waits for the completion of all memory operations, including those initiated
prior to this instruction. When the move has been successfully completed,
the condition code is set to 010,.

The src and dst operands specify the address of the first (lowest address)
word. These addresses should be for word boundaries (synmov), double-
word boundaries (synmovl), or quad-word boundaries (synmovq). If not,
the processor forces alignment to these boundaries.

The primary function of these instructions is for sending IAC messages.
However, this instruction is not restricted to IAC applications. It may be
used when it is important to guarantee the completion of the move operation
before proceeding or to avoid a Bad Access Fault.

The setting of the condition code indicates whether or not the move was
completed successfully. If the move operation results in a bad access con-
dition (e.g., sending an IAC message to a non-existent agent on the AP-bus),
the condition code is set to 000,, but the Bad Access Fault is not raised.

Address FF000010¢ is used to send an IAC message to the processor upon

which the instruction is executed. Refer to Chapter 11 for further infor-
mation about sending internal IAC messages.

11-126

intel

INSTRUCTION SET REFERENCE

Action:

synmov, synmovl, synmovq

synmov:

if PRCB.addressing_mode = physical
then tempa « dst;
dst is used as a physical address
else tempa <« physical_address (ds?);
dst translated into a physical address
end if;
tempa < tempa and 16#FFFFFFFC#;
force alignment
if tempa = 16#FF000004+#
then interrupt_control_reg < memory (src)
AC.cc « 2#0104#,
else temp < memory (src);
memory (tempa) < temp;
write operations into memory (tempa) are
interpreted as noncacheable
wait for completion;
if bad_access
then AC.cc « 2#000#;
else AC.cc « 2#010#;
end if;
end if;

synmovl:

if PRCB.addressing_mode = physical
then tempa « dst;
dst is used as a physical address
else tempa <« physical_address (dst);
dst is translated into as a physical address
end if;
tempa <— tempa and 16#FFFFFFF8#; # force alignment
temp < memory (src);
memory (tempa) < temp;
write operations into memory (tempa) are interpreted
as noncacheable
wait for completion;
if bad_access
then AC.cc « 2#0004#;
else AC.cc « 2#010#;
end if;

11-127

intgl

INSTRUCTION SET REFERENCE

synmov, synmovl, synmovq

Faults:

Example:

Opcode:

See Also:

synmovq:

if PRCB.addressing_mode = physical
then tempa « dst;
dst is used as a physical address
else tempa «— physical_address (ds?);
dst is translated into as a physical address
end if;
tempa « tempa and 16#FFFFFFFO#; # force alignment
temp < memory (src);
if tempa = 16#FF000010#
then AC.cc « 2#010#;
use temp as a received iac message;
else memory (tempa) < temp;
write operations into memory (tempa) are interpreted
as noncacheable
wait for completion;
if bad_access
then AC.cc « 2#000#;
else AC.cc < 2#010#;
end if;
end if;

STANDARD

lda 16#FF000010#, g7

g7 « 16#FF000010
synmovqg g7, g8

g7 « IAC message from g8

synmov 600 REG
synmovl 601 REG
synmovq 602 REG
synld

11-128

intel

INSTRUCTION SET REFERENCE

Mnemonics:

Format:

Description:

tanr, tanrl

tanr Tangent Real
tanrl Tangent Long Real
tanr* src, dst

freg/flit freg

Calculates the tangent of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range of -co to +oo,
inclusive; a result of -oo or +eo will result in a floating invalid-operation
exception being signaled.

For the tanrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the tangent of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-00 *

-F -Fto +F

-0 -0

+0 +0

+F -Fto+F

+ 0 *

NaN NaN

Notes:
F Means finite-real number
* Indicates floating invalid-operation exception

If the source operand is a finite value, the result will be finite, unless the src
operand is in a floating-point register and the dst operand is not.

In the trigonmetic instructions, the 80960KB uses a value for ©t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this 7 value, along with some
suggestions for representing this value in a program.

inte|° INSTRUCTION SET REFERENCE

| tanr, tanrl

Action: dst « tangent (src);
Faults: STANDARD

Floating Reserved Encoding

K

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation

Floating Inexact

Result is too large for destination format.

Result is too small for destination format.

The src operand is .

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

Example: tanrl g4, fpO # tangent of value in g4,g5 is
" # stored in fpO0

Opcode: tanr 68E REG
tanrl 69E REG
See Also: cosr, sinr

11-130

inter INSTRUCTION SET REFERENCE

TEST

Mnemonic: teste Test For Equal

testne Test For Not Equal

testl Test For Less

testle Test For Less or Equal

testg Test For Greater

testge Test For Greater or Equal

testo Test For Ordered

testno Test For Unordered
Format: test* dst

reg

Description: Stores a true (1) in dst if the logical AND of the condition code and the
mask-part of the opcode is not zero. Otherwise, the instruction stores a false

(0) in dst. :
The following table shows the condition-code mask for each instruction:
Instruction | Mask | Condition
testno 000 | Unordered
testg 001 Greater
teste 010 Equal
testge 011 Greater or equal
testl 100 Less
testne 101 Not equal -
testle 110 Less or equal
testo 111 Ordered

For the testno instruction (Unordered), a true is stored if the condition code
is 2#000#; otherwise a false is stored.

11-131

intal

INSTRUCTION SET REFERENCE

TEST

Action:

Faults:

Example:

Opcode:

See Also:

For All Instructions Except testno:

if (mask and AC.cc) # 2#000#
then dst < 1; # dst set for true
else dst < 0; # dst set for false
end if;

testno:
if AC.cc = 2#000#
then dst < 1; # dst set for true

else dst « 0; # dst set for false
end if;

STANDARD

assume AC.cc = 2#100#
testl g9 # g9 « 16#00000001#

teste 22 COBR
testne 25 COBR
testl 24 COBR
testle 26 COBR
testg 21 COBR
testge 23 COBR
testo 27 COBR
testno 20 COBR

cmpi, cmpdeci, cmpinci

11-132

inter INSTRUCTION SET REFERENCE

Xnor, xor
Mnemonic: xnor Exclusive Nor
xor Exclusive Or
Format: xnor srcl, src2, dst
reg/lit reg/lit reg
xor srcl, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and srcl values and stores the result in dst.

Action: Xnor: dst < not (src2 or srcl) or
(src2 and srcl);

Xor: dst « (src2 or srcl) and
not (src2 and srcl);

Faults: STANDARD
Example: xnor r3, r9, rl2 # rl2 « r9 XNOR r3
xor gl, g7, g4 # g4 « g7 XOR gl)
Opcode: xnor 589 REG
xor 586 REG
See Also: and, andnot, nand, nor, not, notand, notor, or, ornot

11-133

Floating-Point Operation 12

CHAPTER 12
FLOATING-POINT OPERATION

This chapter describes the floating-point processing capabilities of the 80960KB processor.
The subjects discussed include the real number data types, the execution environment for
floating-point operations, the floating-point instructions, and fault and exception handling.

INTRODUCING THE 80960KB FLOATING-POINT ARCHITECTURE

The floating-point architecture used in the 80960KB processor is designed to allow a con-
venient implementation of the IEEE Standard 754-198S5 for Binary Floating-Point Arithmetic.
This hardware architecture, along with a small amount of software support, conforms to the
IEEE standard and provides support for the following data structures and operations:

e Real (32-bit), long real (64-bit), and extended real (80-bit) floating-point number formats.
e Add, subtract, multiply, divide, square root, remainder, and compare operations

o Conversion between integer and floating-point formats

o Conversion between different floating-point formats

o Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the 80960KB floating-point architecture is needed primarily to handle
conversions between real numbers and decimal strings.

In addition, the 80960KB floating-point architecture supports several functions that go beyond
the IEEE standard. These functions fall into two categories:

o functions recommended in the appendix to the IEEE standard, such as copy sign and
classify, and

e commonly used transcendental functions, including trigonometric, logarithmic, and ex-
ponential functions.

REAL NUMBERS AND FLOATING-POINT FORMAT

This section provides an introduction to real numbers and how they are represented in floating-
point format. Readers who are already familiar with numeric processing techniques and the
IEEE standard may wish to skip this section.

Real Number System

As shown at the top of Figure 12-1, the real-number system comprises the continuum of real
numbers from minus infinity (-c0) to plus infinity (+o).

intel" FLOATING-POINT OPERATION

BINARY. REAL NUMBER SYSTEM
-100 -10 -1 0 1 10 100

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WITH
IEEE SINGLE-PRECISION (32-BIT) FLOATING-POINT FORMAT

-100 -10 -1 0 1

100

10.0000000000000000000000

A ARRRRRERRRRRRRRARARARE]
PRECISION:|<— 24 BINARY DIGITS ——3

NUMBERS WITHIN THIS RANGE
CANNOT BE REPRESENTED

Figure 12-1: Binary Number System

Because the size and number of registers that any computer can have is limited, only a subset
of the real-number continuum can be used in real-number calculations. As shown at the
bottom of Figure 12-1, the subset of real numbers that a particular processor supports
represents an approximation of the real number system. The range and precision of this
real-number subset is determined by the format that the processor uses to represent real num-
bers. '

Floating-Point Format

To increase the speed and efficiency of real number computations, computers or numeric
processors typically represent real numbers in a binary floating-point format. In this format, a
real number has three parts: a sign, a significand, and an exponent. Figure 12-2 shows the
binary floating-point format that the processor uses. This format conforms to the IEEE stan-
dard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a
binary fraction. The j-bit is often not represented, but instead is an implied value. The
exponent is a binary integer that represents the base-2 power that the significand is raised to.

12-2

intel

FLOATING-POINT OPERATION

SIGN

EXPONENT SIGNIFICAND

A FRACTION

INTEGER OR J-BIT—/

Figure 12-2: Binary Floating-Point Format

Table 12-1 shows how the real number 201.187 (in ordinary decimal format) is stored in
floating-point format. The table lists a progression of real number notations that leads to the
format that the 80960KB processor uses. In this fqrmat, the binary real number is normalized

and the exponent is biased.

Table 12-1: Real Number Notation

NOTATION VALUE
ORDINARY DECIMAL 201.187
SCIENTIFIC DECIMAL 2.01187E402

SCIENTIFIC BINARY

1.1001001001011111E,111

SCIENTIFIC BINARY

1.1001001001011111E,10000110

(BIASED EXPONENT)

32-BIT SIGN BIASED EXPONENT SIGNIFICAND
FLOATING-POINT

FORMAT 0 10000110 1001001001011111
(NORMALIZED) i 1. (IMPLIED)

Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means that
except for zero, the significand is always made up of an integer of 1 and a fraction as follows:

L.fff.. ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the
exponent is decremented by one.)

12-3

inteIQ FLOATING-POINT OPERATION

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an
exponent that gives the number’s binary point.

Biased Exponent

The processor represents exponents in a biased form. This means that a constant is added to
the actual exponent so that the biased exponent is always a positive number. The value of the
biasing constant depends on the number of bits available for representing exponents in the
floating-point format being used. The biasing constant is chosen so that the smallest normal-
ized number can be reciprocated without overflow.

Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are’ generally
divided into three classes: =+ 0, + nonzero-finite numbers, and *+ . Encodings for non-
numbers (NaNs) are also defined. The term NaN stands for "Not a Number."

Figure 12-3 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision (32-bit)
format, where the term "s" indicates the sign bit, "e" the biased exponent, and "f" the fraction.
(The exponent values are given in decimal.)

Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may
indicate the sign of an oo that has been reciprocated.

Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor-
malized. The normalized finite numbers comprise all the nonzero finite values that can be
encoded.in a normalized real number format from zero to e. In the 32-bit form shown in
Figure 12-3, this group of numbers includes all the numbers with biased exponents ranging
from 1 to 254, (unbiased, the exponent range is from -126,, to +127,).

Denormalized Numbers
When real numbers become very close to zero, the normalized-number format can no longer be

used to represent the numbers. This is because the range of the exponent is not large enough to
compensate for shifting the binary point to the right to eliminate leading zeros.

12-4

|nte|° FLOATING-POINT OPERATION

-DENORMALIZED FINITE + DENORMALIZED FINITE
- -NORMALIZED FINITE \ .-0 * 0l Lt NORMALIZEDFINITE +®

REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT

s E F s E F

(1] o | o]w sofof o | o]
[1] o | wonzero | "DENORMALIZED + DENORMALIZED [of o | nonzero |
[1]1.. 258 T anvvawue] NORNGEZEP +NCENTE 0 [o T .. 25a [anvvaLue |
(1] 255 | 0 | = +o Jo| 255 | 0 |
[x| 255 | 1.0XX? | -SNaN +SNaN Lx'[255 | 1ox¢* |
x| 255 | 1axx | -anan +QNaN [x'| 255 [1axx |
Notes:

1. Sign bitignored
2. Fractions must be nonzero

Figure 12-3: Real Numbers and NaNs

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range
are called denormalized numbers. The use of leading zeros with denormalized numbers allows
smaller numbers to be represented. However, this denormalization causes a loss of precision
(the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, a processor normally operates on
normalized numbers and produces normalized numbers as results. Denormalized numbers
represent an underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 12-2
gives an example of gradual underflow in the denormalization process. Here the 32-bit format
is being used, so the minimum exponent (unbiased) is -126,,. The true result in this example
requires an exponent of -129, in order to have a normalized number. Since -129, is beyond
the allowable exponent range, the result is denormalized by inserting leading zeros until the
minimum exponent of -126,, is reached.

12-5

inte|° FLOATING-POINT OPERATION

Table 12-2: Denormalization Process

Operation Sign | Exponent” | Significand

True Result 0 -129 1.01011100...00
Denormalize 0 -128 0.101011100...00
Denormalize 0 -127 0.0101011100...00
Denormalize 0 -126 0.00101011100...00
Denormal Result | 0 -126 0.00101011100...00

Note: *Expressed as unbiased, decimal number.

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

Signed Infinities

The two infinities, +co and -0, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a zero fraction and the maximum biased exponent allowed in the specified format (e.g.,
255, for the 32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 12-3, the
encoding space for NaNs in the 80960KB floating-point formats is shown above the ends of
the real number line. This space includes any value with the maximum allowable biased
exponent and a non-zero fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling
NaN (SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN
with the most significant fraction bit clear. QNaNs are allowed to propagate through most
arithmetic operations without signaling an exception. SNaNs signal an invalid-operation ex-
ception whenever they appear as operands in arithmetic operations. Exceptions are discussed
later in this chapter in the section titled "Exceptions and Fault Handling."

The section at the end of this chapter titled "Operations on NaNs" provides detailed infor-
mation on how the processor handles NaNs.

12-6

intelo FLOATING-POINT OPERATION

REAL DATA TYPES

The processor supports three real-number data formats: real, long real, and extended real.
These formats correspond directly to the single-precision, double-precision, and double-
extended precision formats in the IEEE standard. Figure 12-4 shows these data formats and
gives the resolution that each provides.

SIGN REAL
Bt | [Exponent [FRACTION
3130 23 22 INTEGER o
IMPLIED
SIGN LONG REAL
o4 HWONENT — FRACTION
6362 52 51 INTEGER IMPLIED 0
SIGN EXTENDED REAL
sivs || Exeonent "ﬂ—\ FRACTION
7978 6463 62 INTEGER °
DATA TYPE RANGE
Real 2-126 10 2127 (-10%5 to -10%8)
Long Real 2-1022 tg 21023 (. 10324 to -10308)
Extended Real 2-16382 g 216383 (. 14950 tg -1Q +4932)

Figure 12-4: Real Number Formats

For the real and long-real formats, only the fraction is given for the significand. The integer is
assumed to be 1 for all numbers except 0 and denormalized finite numbers.

For the extended-real format, the integer is contained in bit 63, and the most-significant
fraction bit is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities,
and NaNss, and to O for zero and denormalized numbers.

Table 12-3 shows the encodings for all the classes of real numbers (i.e., zero, denormalized
finite, normalized finite, and o) and NaNs, for each of the three real data-types.

EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS

An important feature of the 80960KB processor is that the floating-point processing
capabilities have been integrated into the execution environment of the processor. Operations
on floating-point numbers are carried out using the same registers that are used for ordinals and
integers. In addition, four floating-point registers have been provided for extended-precision
floating-point arithmetic.

The following sections describe how floating-point operations are handled in the processor’s
execution environment.

[©

in FLOATING-POINT OPERATION
Table 12-3: Real Numbers and NaN Encodings
CLASS SIGN | BIASED EXPONENT |INTEGER' |FRACTION
+® 0 1.1 1 00...00
0 11...10 1 1.1
+ NORMALS .
POSITIVE 0 00...01 1 00...00
0 00...00 0 1.1
+ DENORMALS . .
0 00...00 0 00..01
+ZERO 0 00...00 0 00..00
-ZERO 1 00...00 0 00..00
1 00...00 0 00...01
-DENORMALS .
NEGATIVE 1 00...00 11...11
1 00...01 00...00
-NORMALS
1 11...10 1 11..11
- 1 1.1 1 00...00
SNaN X 1.1 1 0X...XX?
NaN
QNaN X 1.1 1 1X... XX
kEAL: 8 BITS -— 23 BITS ——>»
LONG REAL: -€ 11BITS - 52BITS —>]
EXTENDED REAL: 15 BITS < 63BITS —>
Notes:

1.Integer is implied for real and long real formats and is not stored.
2.Fraction for SNaN must be non-zero.

Registers

All of the registers in the processor’s execution environment, (i.e., global, local, and floating
point) can be used for floating-point operations. When using global or local registers, real
values (i.e., 32 bits) are contained in one register; long-real values (i.e., 64 bits) are contained
in two successive registers; and extended-real values (i.e., 80 bits) are contained in three
successive registers.

12-8

inter FLOATING-POINT OPERATION

Figure 12-5 shows how the three forms of the real data type are encoded when stored in global
and local registers. Note that long-real values must be aligned on even-numbered register
boundaries (e.g., g0, g2, ...). Extended-real values must be aligned on register boundaries that
are an integral multiple of four (e.g., g0, g4, ...).

REGISTER
REAL DISPLACEMENT
31 23 22 0
EXPONENT FRACTION n
SIGN
LONG REAL
1 2019 0
FRACTION (LEAST SIGNIFICANT BITS) n'
EXPONENT FRACTION (MOST SIGNIFICANT BITS) n+1
SIGN
EXTENDED REAL
31 16 15 14 0
FRACTION (LEAST SIGNIFICANT BITS) n?
FRACTION (MOST SIGNIFICANT BITS) n+1
EXPONENT n+2
INTEGER SIGN
Notes:

1. Register number must be even.
2. Register number must be an integral multiple of four.

RESERVED (INITIALIZE TO 0)

Figure 12-5: Storage of Real Values in Global and Local Registers

Real values in the floating-point registers are always in the extended-real format. When a real
or long-real value is moved from global or local registers to a floating-point register, the
processor automatically reformats it for the extended-real format.

Loading and Storing Floating-Point Values

Floating-point values are loaded from memory into global or local registers using the load (1d),
load long (Idl), and load triple (Idt) instructions. Likewise, floating-point values in global or
local registers are stored in memory using the store (st), store long (stl), and store triple (stt)
instructions.

Loading a floating-point value into a floating-point register requires two steps (two
instructions). First, a floating-point value must be loaded from memory into one or more
global or local registers. Then, the value must be moved to the floating-point register using a
move real (movr), move long-real (movrl), or move extended-real (movre) instruction.

intelg FLOATING-POINT OPERATION

A similar two-step procedure is required to store a .value from a floating-point register into
memory. The value must first be moved into one or more global or local registers (using a
movr, movrl, or movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice
versa may seem a little cumbersome; however, in practice it generally is not. Floating-point
registers are most often used to store and accumulate intermediate results of computations.
The contents of these registers are not normally stored in memory.

For example, the following instruction

divr r3, r4, £fp2

causes the real value in local register r4 to be divided by the value in r3, with the extended-real
result stored in floating-point register fp2. Here, a move operation from the local registers to
the floating-point registers is not required, since it is implicit in the divide operation.

Moving Floating-Point Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr,
movrl, or movre) can be used to move real values among global and local registers. The move
real instructions are generally used to convert a real value from one format to another or for
moving real values between the global or local registers and floating-point registers. The move
instructions are used to move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point numbers between the
global or local registers and the floating-point registers, the processor automatically converts
values from real and long-real format, respectively, into the extended-real format and vice
versa.

For example, the following instruction
movr g3, fpl
causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real format
and placed in floating-point register fp1.
Going the opposite direction, the instruction
movrl fpO, r4

causes an extended-real value in floating-point register fp0 to be converted to 64-bit, long-real
format and placed in local registers r4 and r5.

The movre instruction moves 80-bit, extended-real values between registers, without format
conversion. When this instruction is used to move a value from three global or local registers
to a floating-point register, the processor extracts the 80-bit value from the three word
extended-real format. When moving a value from a floating-point register to global or local
registers, the processor inserts the 80-bit value into the three registers in the three-word format.

12-10

inte|° FLOATING-POINT OPERATION

Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 12-4 shows the bits in the arithmetic controls that are used in
floating-point operations.

Table 12-4: Arithmetic Controls Used in Floating-Point Operations

Arithmetic | Function

Control

Bits

0-2 Condition code

3-6 Arithmetic status field

8 Integer overflow flag

12 Integer overflow mask

16 Floating overflow flag

17 Floating underflow flag

18 Floating invalid-operation flag
19 Floating zero-divide flag

20 Floating inexact flag

24 - | Floating overflow mask

25 Floating underflow mask

26 Floating invalid-operation mask
27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag
30-31 Rounding control

The condition code flags are used to indicate the results of comparisons of real numbers, just as
they are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (classr and classrl)
and remainder real (remr and remrl) instructions. These instructions are discussed later in this
chapter.

The floating-point flags indicate exceptions to floating-point operations. Here, the term excep-
tion refers to a potentially undesirable operation (such as dividing a number by zero) or an
undesirable result (such as underflow). The flags provide a means of recording the occurrence
of specific exceptions.

The floating-point masks provide a method of inhibiting the processor from invoking a fault
handler when an exception is detected.

12-11

inter FLOATING-POINT OPERATION

Use of the floating-point flag and mask bits are discussed later in this chapter in the section
titled "Exceptions and Fault Handling."

Normalizing Mode

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set)
or not (clear). \
Normalizing mode is the most common mode of operation. Here, the processor operates on
valid floating-point operands, regardless of whether they are normalized or denormalized
values.

When the processor is not operating in normalizing mode, it signals a reserved-encoding
exception whenever it encounters a denormalized floating-point value as a source operand. In
either mode, denormalized numbers are be produced if the underflow exception is masked.

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved-
encoding exception is detected, the processor generates a floating reserved-encoding fault and
leaves the destination operand unchanged (i.e., no result is stored).

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be
simulated with software. Here, a fault handler routine can be used to perform unnormalized
arithmetic whenever a reserved-encoding exception is signaled.

Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the
format of the destination operand. For example, the following value has a 24-bit fraction. The
least-significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real
(32-bit) format:

1.0001 0000 1000 0011 1001 0111E, 101

The processor must then round the result to one of the following two values:
1.0001 0000 1000 0011 1001 O11E, 101

1.0001 0000 1000 0011 1001 100E, 101

A rounded result is called an inexact result. When an inexact result is produced, the floating-
point inexact flag bit in the arithmetic controls is set.

The processor rounds results according to the destination format (real, long real, or extended

real) and the setting of the rounding-mode flags of the arithmetic controls. Four types of
rounding are allowed, as described in Table 12-5.

12-12

inter FLOATING-POINT OPERATION

Table 12-5: Rounding Methods

Rounding Mode Description

Round up (toward +eo) Rounded result is close to but no
less than the infinitely precise
result

Round down (toward -eo) Rounded result is close to but no
greater than the infinitely precise
result

Round toward zero (Truncate) | Rounded result is close to but no
greater in absolute value than the
infinitely precise result

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two
values are equally close, the result
is the even value (i.e., the one with
the least-significant bit of zero).

When the infinitely precise result is between the largest positive finite value allowed in a
particular format and +oo, the processor rounds the result as shown in Table 12-6.

Table 12-6: Rounding of Positive Numbers

Rounding Mode Description
Round up (toward +co0) +o0
Round down (toward -o) Maximum, positive finite value

Round toward zero (Truncate) | Maximum, positive finite value

Round to nearest (even) +o0

When the infinitely precise result is between the largest negative finite value allowed in a
particular format and -eo, the processor rounds the result as shown in Table 12-7.

Table 12-7: Rounding of Negative Numbers

Rounding Mode Description
Round up (toward +e) Maximum, negative finite value
Round down (toward -o) -oo

Round toward zero (Truncate) | Maximum, negative finite value

Round to nearest (even) -0o

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

12-13

intelg FLOATING-POINT OPERATION

The floating-point instructions allow a result to be stored in a shorter destination than the
source operands. For example, the instruction

addr fpl, £fp2, g5

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such
operations, only one rounding error occurs: the error that occurs when rounding the infinitely
precise result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation
of the IEEE standard. However, systems that are designed to conform to the IEEE standard do
not need to use this capability of the processor.

INSTRUCTION FORMAT

The instruction format for floating-point instructions is the same as for the other processor
instructions. When programming in assembly language, an assembly language statement
begins with an instruction mnemonic and is followed by from one to three operands. For
example, the multiply-real instruction mulr might be used as follows:

mulr r8, r9, fp3

Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in
floating-point register fp3.

From the machine level point of view, all floating-point instructions use the REG format.
Refer to Appendix B for details on the REG format instructions.

INSTRUCTION OPERANDS

Operands for floating-point instructions can be either floating-point literals or registers. The
processor recognizes two encodings for floating-point literals: +0.0 and +1.0.

All of the registers in the processor’s execution environment (global registers g0 through g15,
local registers rO through r15, and floating-point registers fpO through fp3) can be used as
operands in floating-point instructions. (Of course, registers gl5, 10, rl, and r2 would
generally not be used for storing floating-point numbers, since they are reserved for stack
management functions.)

When global or local registers are specified as operands, the instruction mnemonic (or opcode)
determines how the values in these registers are interpreted. For example, there are two
floating-point divide instructions: divide real (divr) and divide long real (divrl). When using
the divr instruction, the processor assumes that global- or local-register operands contain real
(32-bit) values. When using the divrl instruction, global- or local-register operands are as-
sumed to contain long-real (64-bit) values.

With either instruction, floating-point registers (containing extended-real values) can also be
used as operands.

12-14

intelg FLOATING-POINT OPERATION

Using floating-point registers as operands allows mixed format or mixed precision arithmetic
to be performed with either real and extended-real values or long-real and extended-real
values. Mixed-format operations with real and long-real values are not supported.

SUMMARY OF FLOATING-POINT INSTRUCTIONS

The processor’s floating-point instructions consist of all instructions for which as least one
operand is a real data type.

These instructions can be divided into the following groups:

o Data Movement

o Data Type Conversion

¢ Basic Arithmetic

o Comparison and Classification
o Trigonometric

e Logarithmic and Exponential

The following sections give a brief overview of the instructions in each group. Detailed
descriptions of the operations of these instructions are given in Chapter 11.

Data Movement

As has been described earlier in this chapter, the non-floating-point load and store instructions
are used to move real values between registers and memory. Once in registers, the non-
floating-point move instructions (mov, movl, and movt) are used to move real values between
global and local registers without format conversion; whereas, the floating-point move instruc-
tions (movr, movrl, and movre) are used to move real values between global and local
registers and floating-point registers.

The copy-sign-real extended (cpysre) and copy-reverse-sign real-extended (cpyrsre) instruc-
tions provide a means of copying the sign of one extended-real value to another, if one of the
values is in a floating-point register. This operation is best performed on real and long-real
values using the bit instructions chkbit and alterbit.

Data Type Conversion

Two types of data type conversions are provided: conversion from one floating-point format to
another (e.g., real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by
move instructions or implicitly by using the floating-point registers as operands in instructions.

As described earlier in this chapter, the movr instruction implicitly converts values from real to
extended real, and vice versa, when moving values between global or local registers and
floating-point registers. Likewise, the movrl instruction implicitly converts values from long
real to extended real, and vice versa.

intelo FLOATING-POINT OPERATION

Conversion between real and long-real formats requires the use of both instructions. For
example, the following two instructions convert a real value in global register g6 to a long-real
value contained in g6 and g7, using a floating-point register for intermediate storage of the
value:

movr g6, fpl
movrl fpl, g6

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic,
and exponential instructions. For example, the instruction

addr r4, r5, fp2
adds two real values together and produces an extended-real result.

The following six instructions allow conversion between integers and reals:

cvtir convert integer to real

cvtilr convert long integer to long real
cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real
value by specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or
long-integer value. For the cvtri and cvtril instructions, the rounding mode determines the
direction the real number is rounded. For the convert truncated real-to-integer instructions
(cvtzri and cvtzril), rounding is always toward zero. The latter two instructions are provided
to allow efficient implementation of FORTRAN:-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:

movrl g6, fp3
cvtzri fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruc-
tion converts the extended-real value to an integer.

12-16

inte|° FLOATING-POINT OPERATION

Basic Arithmetic

The following instructions perform the basic arithmetic operations specified in the IEEE stan-
dard:

addr add real

addrl add long real

subr subtract real

subrl subtract long real
mulr multiply real

mulrl multiply long real
divr divide real

divrl divide long real
remr remainder real
remrl remainder long real
roundr round real

roundrl round long real
sqrtr square root real
sqrtrl square root long real

The round instructions round the floating-point operand to its nearest integral (i.e., integer)
value, based on the current rounding mode. These instructions perform a function similar to
the convert real-to-integer instructions except that the result is in floating-point format.

Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because
with floating-point values there are four, rather than the usual three, mutually exclusive
relationships: less than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a
NaN. This additional relationship is required because, by definition, NaNs are not numbers, so

they cannot have greater than, equal, or less than relationships with other floating-point values.

The following instructions are provided for comparing floating-point values:

cmpr compare real

cmprl compare long real

cmpor compare ordered real
cmporl compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the
results of the comparison. With the compare instructions (cmpr and cmprl), the condition
code flags are set to 000, for the unordered condition. With the compare ordered instructions
(cmpor and cmporl), the condition code flags are set to 000, and an invalid-operation excep-
tion is signaled for the unordered condition.

Two branch instructions (bo and bno) allow conditional branching to be performed on an

ordered or unordered condition, respectively. With these instructions, the processor checks the
condition code flags for unordered (000,) or ordered (111,) and branches accordingly.

12-17

inte|° FLOATING-POINT OPERATION

The classify-real instructions (classr and classrl) provide a means of determining the class of a
floating-point value (i.e., zero, denormalized finite, normalized finite, e, SNaN, or QNaN).
The result of this operation is stored in the arithmetic status field of the arithmetic controls.

N

Trigonometric

The following instructions provide four common trigonometric functions:

sin sine real

sinrl sine long real

cosr cosine real

cosrl cosine long real
tanr tangent real

tanrl tangent long real
atanr arctangent real
atanrl arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

Pi
The processor uses the following value for 7 in its compufations:
=0.f*2°
where:
* f=C90FDAA2 2168C234 C,q
e = 2 if significand is 0.f
(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros
have been added to the value so that it can be represented in a hexadecimal format. The
least-significant hex digit (C,) is thus 1100,, where the two least significant bits represent bits
67 and 68 of the mantissa.)

If the results of computations that explicitly use & are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for m should be used. This insures that the results are
consistent with the argument reduction algorithms that these instructions use. Using a rounded
version of T can cause inaccuracies in result values, which if propagated through several
calculations, might result in meaningless results.

12-18

inter FLOATING-POINT OPERATION

A common method of representing the full 66-bit fraction of 7 is to separate the value into two
numbers. For example, the following two long-real values added together give the value for 7t
shown above with the full 66-bit fraction:

7t = highn + lown
where:
highn = 400921FB 54400000 ¢
lown =3DD0B461 1A600000, ¢
Here highr gives the most significant 33 bits of © and lown gives the least significant 33 bits.
Similar versions of 7 can also be written in the extended-real format.
When using this two-part & value in an algorithm, parallel computations should be performed

on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponential func-
tion, and a scale function: -

logbnr log binary real
logbnrl log binary long real
logr log real

logrl log long real

logepr log epsilon real
logeprl log epsilon long real
expr exponent real

exprl exponent long real
scaler scale real

scalerl scale/long real

These instructions are described in detail in Chapter 11. The following is a brief description of
their functions. : C P

The log binary instructions compute the IEEE recommended function logb (X). The result is an
integral value that is the binary log of X.

The log instructions compute the function Y * log (X), where the log of X is the base-2
logarithm.

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a
base-2 logarithm.

inte|° FLOATING-POINT OPERATION

The exponent instructions compute the value 2% - 1.

The scale instructions perform a multiplication of a floating-point value by a power of 2.

Arithmetic Versus Nonarithmetic Instructions

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish
among NaN, oo, normalized finite, denormalized finite, and zero values.

All but five of the floating-point instructions are arithmetic. The five nonarithmetic instruc-
tions are move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign
real extended (cpyrsre), and classify real (classr and classrl). These nonarithmetic instruc-
tions are insensitive to real values and cannot generate floating-point exceptions or faults.

This distinction between arithmetic and nonarithmetic instructions is important because
floating-point exceptions and faults can be signaled only during the execution of arithmetic
instructions.

OPERATIONS ON NANS

As was described earlier in this chapter, the processor supports two types of NaNs: QNaN and
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least
one other fraction bit set to 1. (If all the fraction bits are set to 0, the value is an e.) A QNaN
is any NaN value with the most-significant fraction bit set to 1. The sign bit of a NaN is not
interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is
allowed to propagate through a computation. An SNaN on the other hand causes a floating
invalid-operation exception to be signaled.

The floating invalid-operation exception has a flag and a mask bit associated with it in the
arithmetic controls. The mask bit determines how the processor handles an SNaN value. If the
floating invalid-operation mask bit is set, the SNaN is converted to a QNaN by setting the most
significant fraction bit of the value to a 0. The result is then stored in the destination and the
floating invalid-operation flag is set. If the invalid operation mask is clear, a floating invalid-
operation fault is signaled and no result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 12-8, depending on
the form of the source operands.

12-20

[®©

in FLOATING-POINT OPERATION

Table 12-8: Format of QNaN Results

Source Operands QNaN Result

Only one operand is NaN, destina- | QNaN version of NaN source
tion is same width

Only one operand is NaN, destina- | QNaN version of NaN source, with

tion is longer fraction extended with zeros

Only one operand is NaN, destina- | QNaN version of NaN source, with
tion is shorter fraction truncated

Both operands are NaNs QNaN version of source whose

fraction field has greatest mag-
nitude, with fraction extended or
truncated as described above

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a
standard QNaN is returned. The significand for the standard QNaN is as follows:

1.1000...00
(For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any
purpose.

EXCEPTIONS AND FAULT HANDLING

Occasionally, a floating-point .instruction can result in an exception being signaled. The
processor recognizes six floating-point exceptions:

¢ Floating Reserved Encoding

o Floating Invalid Operation

o Floating Zero Divide

¢ Floating Overflow

¢ Floating Underflow

e Floating Inexact

These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and
would cause an exception to be signaled.

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first
category; the overflow, underflow, and inexact exceptions fall in the second category.

12-21

inter FLOATING-POINT OPERATION

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a
mask bit associated with it in the arithmetic controls. When an exception condition occurs, the
processor performs one of the following operations:

o If the mask bit for the exception is set, the flag for the exception is set and instruction
execution continues, substituting a default value in place of the result.

o If the mask bit for the exception is clear, the flag for the exception is not set and a
floating-point arithmetic fault is raised. The processor then stores diagnostic information
in the fault information area and diverts instruction execution to a fault handler.

Since the floating reserved-encoding exception does not have a flag or mask bit, it always
results in a fault.

Note

The floating-point exception flags are "sticky," which means that the processor does not
implicitly clear them while carrying out floating-point operations. They may be cleared by
software.

Fault Handler

As is described in Chapter 9, when a floating-point fault is signaled, the processor calls a single
fault handler. This fault handler determines how to handle the specific fault subtype by
interpreting the floating-point exception flags and the information in the fault record.

Floating Reserved-Encoding Exception

A reserved encoding exception occurs as a result of either of the following two conditions:

e When a reserved encoding is used as an operand in a floating-point instruction, or

e When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

The first condition is rare. It can only occur if a program presents an extended-real value to the
processor that has a zero j-bit (integer part) and a non-zero biased exponent.

The second condition was discussed earlier in this chapter in the section titled "Normalizing
Mode." This condition is also rare, since the vast majority of programs run with the normaliz-
ing mode enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception
occurs, the processor raises a floating reserved-encoding fault and does not store a result.

12-22

inter FLOATING-POINT OPERATION

Floating Invalid-Operation Exception

The invalid-operation exception indicates that one of the source operands is inappropriate for
the type of operation being performed. The following conditions cause this exception to be
signaled:

e Any arithmetic operation on an SNaN

e Addition of infinities of unlike sign

e Subtraction of infinities of like sign

e Multiplication of zero by e

o Division of zero by zero or e by o

¢ Remainder of x by y, if y is zero or x is o

e Square root of a negative, nonzero value

o Conversion of a NaN from floating-point format to integer format

e Sine, cosine, or tangent of oo

e y*log(x),if:

- X is negative and nonzero,
— yiszeroand x is oo,

— yand x are zero, or

- yisecandxis 1

o Log epsilon of (y, x), if y is ec and x is 0
e Compare ordered, if a source operand is a NaN

When a floating invalid-operation exception occurs and its mask is set, the following occurs:

e When the result is a floating-point value, the standard QNaN value is stored in the destina-
tion and the floating invalid-operation flag is set. (A discussion of how the processor
handles NaNs was provided earlier in this chapter in the section titled "Operations on
NaNs.")

e When the result is an integer, the maximum negative integer is stored in the destination
and the floating invalid-operation flag is set.

When the mask is clear, no result is stored; the floating invalid-operation flag is not set; and the
floating invalid-operation fault is signaled.

Floating Zero-Divide Exception

The floating zero-divide exception is signaled when an exact non-finite result would be
produced from finite operands. (Note that a different exception, overflow, is signaled when an
infinite result is produced inexactly from finite operands.) The most common example of this
exception is a division operation, where the divisor is zero and the dividend is a nonzero, finite
value.

12-23

intel° ‘ FLOATING-POINT OPERATION

When the floating zero-divide mask is set: a correctly signed eo is stored in the destination and
the floating zero-divide flag is set. When the mask is clear, no result is stored; the floating
zero-divide flag is not set; and a floating zero-divide fault is signaled.

\

Floating Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. For example, if
the destination format is real (32 bits), overflow occurs when the infinitely precise result falls
outside the range -1.0 * 2126 15 1,0 * 2126 (exclusive), where 126 is the unbiased exponent of
the result.

When the floating overflow mask is set, a rounded result is stored in the destination and the
floating overflow flag is set. The current rounding mode determines the method used to round
the result.

When the mask is clear: no result is stored in the destination and the floating overflow flag is
not set. Instead, the processor stores the result in extended-real format in the fault information
area. The fraction of the extended-real value is rounded to the instruction’s destination preci-
sion. For example, if the destination operand’s format is real (32 bits), the extended-real
fraction is rounded to 23 bits, with the 40 least-significant bits filled with zeros.

If the exponent exceeds the range of the extended-real format (16383 unbiased), then the
exponent is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is
set in the fault information area to indicate that the exponent has been bias adjusted. After this
fault information is stored, a floating overflow fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias adjusted exponent.
Here, a properly signed oo is stored in the fault record.

The floating overflow exception cannot occur on a conversion from floating-point format to
integer format (although an integer overflow exception can occur).

Floating Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction
is less than the smallest possible normalized, finite value for the specified destination format.
For example, for the real (32-bit) format, underflow occurs when an infinitely precise result
falls in the range -1.0 * 27126 to 1.0 * 2126 (exclusive), where -126 is the unbiased exponent.

When a floating underflow condition occurs, the setting of the floating underflow mask deter-
mines how the processor handles the condition.

If the mask is set when an underflow condition occurs, the processor goes ahead and denor-
malizes the result. Then if the result is exact, it is stored in the destination and the floating
underflow exception is not signaled, nor is the floating underflow flag set. If, on the other
hand, the denormalized result is inexact, the floating underflow flag is set and the processor
goes on to handle the inexact condition as described in the next section.

12-24

intal FLOATING-POINT OPERATION

If the floating underflow mask is clear when an underflow-condition occurs, no result is stored
in the destination and the floating underflow flag is not set. Instead, the processor stores the
result in extended-real format in the fault information area, with the fraction of the extended-
real value rounded to the instruction’s destination precision. For example, if the destination
precision is real (23-bit fraction) the 40 least-significant bits of the fraction are set to 0.

If the exponent of the value stored is less than the minimum allowable value in the extended-
real format (-16,382 unbiased), then the exponent is multiplied by 224376 and a flag (bit 1 of the
fault or override flags byte) is set in the fault information area to indicate that the exponent has
been bias adjusted. After this information is stored, a floating underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result
is too small to be represented, even with a bias adjusted exponent. Here, a properly signed
zero is stored in the fault record.

Refer to the section later in this chapter titled "Floating-Point Underflow Condition" for more
information on the interaction of the floating underflow and inexact exceptions.

Floating Inexact Exception

The floating inexact exception occurs when an infinitely precise result cannot be encoded in
the format specified for the destination operand. Either of the following two conditions can
cause an inexact exception to be signaled:

e When a result is rounded and the result is not exact
e When overflow occurs and the floating overflow mask is set

If the floating inexact mask is set when an inexact condition occurs and an unmasked overflow
or underflow condition does not occur, the rounded result is stored in the destination and the
floating-point inexact flag is set. The current rounding mode determines the method used to
round the result. '

If the floating inexact mask is clear when an inexact condition occurs, the floating inexact flag
is not set and one of the following operations is carried out:

o If only the inexact condition has occurred, the processor stores the rounded result in the
specified destination, then raises a floating-inexact fault.

o If the inexact condition occurs along with overflow or underflow, no result is stored in the
destination. Instead, the processor stores the result in extended-real format in the fault
information area, as described for the floating overflow and underflow exceptions, then
raises a floating inexact fault.

Refer to the following section for more information on the interaction of the floating underflow
and inexact exceptions.

inte|° FLOATING-POINT OPERATION

Floating-Point Underflow Condition

Two aspects of underflow are important in numeric processings: the "tininess" of a number
and "loss of accuracy.” A result is tiny when it is nonzero and its exponent is between + 2Emin,
where E . is the smallest unbiased exponent allowed in the destination format. For example,
if the destination format is long-real (64-bit format), a result is tiny if it is nonzero and in the
range of +1 * 271022 to _1 * 2-1022_ The ability to detect a tiny result is important because such
a result may cause an exception to be signaled in a later operation (e.g., overflow on a
division).

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization
process so that it will fit into the destination format.

In the 80960KB processor, tininess is detected after rounding as an underflow condition. Loss
of accuracy is detected as an inexact condition.

The algorithm in Figure 12-6 shows how the processor responds to these two conditions, when
a floating-point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow

exception is signaled only if the denormalized result is inexact. If the denormalized number is
exact, no flags are set and no faults are signaled.

12-26

intel

FLOATING-POINT OPERATION

generate infinitely precise result # exponent and significand;
if exponent < underflow threshold
then
if underflow fault mask clear
then
goto underflow fault handler;
exit algorithm;
else generate denormalized number
if denormalized significand equals infinitely precise significand
then
store denormalized result in destination;
no underflow is signaled;
else
set underflow flag in AC;
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AC;
store dencrmalized result in destination;
end if;
end if;
end if;
else
if infinitely precise result is inexact
then
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AC;
store normalized result in destination;
end if;
else
store normalized result in destination;
end if;
end if;
exit algorithm

Figure 12-6: Interaction of Floating Underflow and Inexact Exceptions

Interagent Communication 13

CHAPTER 13
INTERAGENT COMMUNICATION

This chapter describes the interagent communication (IAC) mechanism of the 80960KB
processor. Included is a description of the IAC message structure, the IAC message sending
and receiving mechanism, and reference information on the available IAC messages.

Note

The 80960KB processor’s interagent communication mechanism is an extension to the 80960
architecture and may not be supported in other processors based on this architecture.

INTRODUCTION TO IAC MESSAGES

The IAC facilities provide a mechanism for agents connected to the processor’s bus to com-
municate with the processor by means of messages. The agents that use these facilities may be
other 80960KB processors, I/O processors, or special purpose hardware. Programs running on
the 80960KB processor can also use this message-passing mechanism to send messages inter-
nally to the processor.

The primary function of these facilities is to provide an alternative to the interrupt mechanism
for external hardware to communicate with the processor. Also, certain processor functions
like reinitialization, purging the instruction cache, and setting breakpoint registers can only be
carried out with this mechanism.

IAC messages (referred to here as IACs) are four words in length and are exchanged by means
of message buffers that are mapped to memory. All the usable IACs are predefined. The
processor handles an IAC in much the same way as it handles an instruction.

The processor provides two mechanisms for exchanging IACs: external and internal. The
external IAC mechanism is used to pass IACs between two agents on the processor’s bus. A
processor uses the internal IAC mechanism to pass an IAC to itself.

IAC MESSAGE FORMAT

Figure 13-1 shows the format for an IAC message. Each message consists of a message-type
field and up to five parameter fields.

The message type is an 8-bit binary code. Each IAC has a unique message type.

The parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of
the JACs do not require parameters. When a message type does require one or more
parameters, the processor only looks at the required parameter fields. Those fields not used are
ignored.

inter INTERAGENT COMMUNICATION

31 - 2423 16 15 0
MESSAGE TYPE FIELD 1 FIELD 2
FIELD 3 4
FIELD 4
FIELD S5 12

Figure 13-1: 1AC Message Format

SOFTWARE REQUIREMENTS FOR HANDLING IACS

No special software, such as dedicated data structures or stacks, are required to handle IACs.
An IAC is sent with a quad synchronous move instruction (synmovq). When the processor
receives an IAC, it handles it independently from the program execution environment. It does
not use the instruction execution unit, the registers (global or local), the stack, or memory.
Thus, the state of the processor when the IAC is received does not need to be saved.

Some IACs, such as the purge instruction cache IAC, do not affect the processor’s state. The
processor treats these IACs as if they were an instruction inserted in the control flow of the
process. When the IAC action is complete, the processor resumes work on the program it is
currently running.

Other IACs, such as the reinitialize processor IAC, cause the state of the processor or the
control of the currently running program to be permanently changed. In these instances, the
processor resumes activity in its new processor state, following the execution of the IAC.

All IACs are assumed to have a priority of 31, so the processor executes the action requested in
the IAC message immediately, even if the processor’s current priority is 31. While the
processor is handling an IAC, it will not respond to interrupts signaled on the interrupt pins.

INTERNAL IACS

Internal IACs are used for functions such as setting breakpoint registers, purging the instruc-
tion cache, or sending software initiated interrupts.

To send an internal IAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

2. Execute a synmovq instruction to move the message from its source address to destination
address FF000010,¢.

13-2

intelg INTERAGENT COMMUNICATION

When the destination operand of a synmovq instruction is FF000010, 4, the processor inter-
prets the instruction as a send internal-IAC instruction. The processor then receives the IAC
by moving the message from memory into an internal message buffer.

The action of the synmovq move instruction insures that the loading of the message into the
processor is completed before the processor is allowed to perform any other chores.

Note

The address range of FF000000,, through FFFFFFFF ¢ is reserved for interrupt handling and
IAC message passing.

EXTERNAL IACS

External IACs are used by agents external to the processor to initiate processor actions such as
testing for pending interrupts or freezing the processor. External IACs can be sent between
two 80960KB processors that are connected to the same bus or by external logic that duplicates
the external IAC sending mechanism. The following sections describe how one processor
sends an IAC to another processor. The 80960KB Hardware Designer’s Reference Manual
describes the requirements that external logic must meet to perform these same functions.

Sending External IACs

Sending an external IAC message is similar to sending an internal IAC message, except that
the address of the receiving agent is specified in a slightly different way. Figure 13-2 shows
the required encoding of the address for the receiving agent.

EEENENERERERERER! [ofof1]1]0] [olofo]o]
31 24 23 14 13 9 8 4 3 0
T t———l’RIORITY

ADDRESS OF IAC
RECIPIENT

Figure 13-2: Encoding of Address for Processor Receiving an IAC

At initialization each agent on the bus is assigned a unique address in the range of FFO00C00, ¢
to FFFFCCO00,4. To send an IAC to an agent, the sending agent sends the message to the
address assigned to the receiving agent. As shown in Figure 13-2, only bits 14 through 23 of
this address are interpreted to determine the address of the receiving agent. Bits 4 through 8 of
this address are used to encode the priority of the message.

For example, to send a priority 25, IAC to the agent at address 0000000001,, the message
address would be FF004D90, .

To send an external IAC from one 80960KB processor to another, software must perform the
following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a
word boundary.

13-3

inter INTERAGENT COMMUNICATION

2. Execute a synmovq instruction to move the message from its source address to the address
“of the receiving agent (encoded in the form shown in Figure 13-2).

3. Check the condition code in the arithmetic controls to determine if the message was
received (010,) or rejected (000,).

The action of the synmovq move instruction insures that the sending processor does not
execute any other instructions until the synmovq instruction is complete. It also sets the
condition code bits to indicate whether or not the move was successful. A successful move is
interpreted as the IAC being received by the processor.

Receiving and Handling an External IACs ’

A processor receives and handles an external IAC in somewhat the same manner as it receives
and handles an interrupt. To conflgure a processor to receive external IACs, vector INTO of
the interrupt-control register (shown in Figure 8-3) is set to 0. The INTO pin on the processor
chip then becomes' the TAC pin. (Refer to the section in Chapter 8 titled "Interrupts From
Interrupt Pins" for further discussion of the interrupt pins and interrupt-control register.)

When the processor receives a signal on the TAC pin, it handles it initially as if it were
receiving an interrupt. It reads the vector number associated with this pin (bits O through 7 of
the interrupt-control register). If it is zero, the processor recognizes that it is receiving an
external JAC. It then reads the four-word IAC message from the bus and performs the
requested IAC. ‘

The processor acts immediately on any IAC that it receives. For efficient system operation,
external logic must thus be provided to insure that low priority IAC messages do not interrupt
the processor while it is handling a higher priority task. The handshaking for this operation is
provided by the write-external-priority mechanism described in Chapter 7.

Using the write-external-priority mechanism, the processor keeps the external logic updated
regarding the processor’s current priority. When an IAC is sent to the processor, the external
logic intercepts it and reads the priority. The external logic then determines whether the IAC
priority is above that of the processor or not. If the IAC has a higher priority, the external logic
sends an acknowledge signal to the sending processor, then signals the receiving processor by
asserting the IAC pin. If the IAC has an equal or lower priority, the external logic sends a
non-acknowledge signal to the sending processor.

The sending processor uses the acknowledge or non-acknowledge signals to set the condition
codes to complete the synmovq instruction.

While the processor is servicing an IAC, it performs some handshaking with the external logic
so that the logic knows when the processor has finished work on an IAC. The external logic is
then able to reject any IAC that it receives while the processor is servicing another IAC.

Refer to the 80960KB Hardware Designer’s Reference Manual for further information on the
requirements for handling IAC messages.

13-4

inter INTERAGENT COMMUNICATION

SUMMARY OF IAC MESSAGES

Table 13-1 gives a list of the IAC messages that the processor can send either internally or
externally. The following section provides detailed reference information on these messages.

Table 13-1: IAC Messages

Interrupt Handling | Processor Management
Interrupt Purge Instruction Cache
Test Pending Interrupt | Set Breakpoint Register
Store System Base
Freeze

Continue Initialization
Reinitialize Processor

IAC MESSAGE REFERENCE

The following section provides detailed descriptions of the operations carried out for each of
the IACs. This section is organized alphabetically by IAC title for easy reference.

13-5

intgl

INTERAGENT COMMUNICATION

Continue Initialization

Message Type:
Function:

Carries out the initialization procedure that follows the processor
self test. The processor executes the initialization procedure begin-
ning with reading the initial memory image from ROM. The self
test is not performed.

Refer to the section in Chapter 7 titled "Processor Initialization" for
further details on the initialization process.

13-6

intal INTERAGENT COMMUNICATION

Freeze
Message Type: 916
Function: Stops the processor. The processor puts itself in the stopped state.

intal

INTERAGENT COMMUNICATION

Interrupt

Message Type:

Parameters:

Function:

Field 1 Interrupt vector
Fields 2 - § Not Used

Generates an interrupt request. The interrupt vector is given in field
1 of the IAC message. The processor handles the interrupt request
just as it does interrupts received from other sources. If the inter-
rupt priority is higher than the processor’s current priority, the
processor services the interrupt request immediately. Otherwise, it
posts the interrupt in the pending interrupts section of the interrupt
table.

Refer to Chapter 8 for further information on the servicing of inter-
rupt IACs.

13-8

inter’ INTERAGENT COMMUNICATION

Purge Instruction Cache

Message Type: 8916

Function: Invalidates all entries in the processor’s internal instruction cache.

13-9

intel INTERAGENT COMMUNICATION

Reinitialize Processor

Message Type: 93,6
Parameters: Fields 1 -2 Not Used
Field-3 Address of System Address Table
Field-4 Address of Processor Control Block
Field 5 Start Instruction IP
Function: Reestablishes the processor state. In reinitializing itself, the proces-

sor first locates the system address table and the processor control
block in the IMI from the addresses given in fields 3 and 4.

The processor then begins executing the instruction list beginning
with the IP given in field 5.

13-10

inte|° INTERAGENT COMMUNICATION

Set Breakpoint Register

Message Type: 8F ¢
Parameters: Fields 1 -2 Not Used
Field 3 Breakpoint IP
Field 4 Breakpoint IP
Field 5 Not Used
Function: Enables or disables two breakpoints. When the processor receives

this IAC, it conditionally loads the parameters from fields 3 and 4
into breakpoint registers 0 and 1, respectively. Field 3 provides a
breakpoint IP for breakpoint register 0, and field 4 provides a break-
point IP for breakpoint register 1. Bit 1 in each of these fields is a
breakpoint disable flag.

If the disable flag in one of these fields is set, the breakpoint for the
corresponding breakpoint register is disabled. Otherwise, the IP
value in the field is loaded into the corresponding breakpoint
register and the breakpoint is enabled.

Breakpoints are described in the section in Chapter 10 titled
"Breakpoint-Trace Mode."

13-11

intgl

INTERAGENT COMMUNICATION

Store System Base

Message Type:

Parameters:

Function:

806

Fields 1 -2 Not Used

Field 3 Destination Address
Fields4 -5 Not Used

Stores the current locations of the system address table and the
PRCB in a specified location in memory. The address of the system
address table is stored in the word starting at the byte specified in
field 3, and the address of the PRCB is stored in the next word in
memory (field 3 address plus 4).

13-12

inter INTERAGENT COMMUNICATION

Test Pending Interrupts

Message Type: 416

Function: Tests for pending interrupts. The processor checks the pending
interrupt section of the interrupt table for a pending interrupt with a
priority higher than the processor’s current priority. If a higher
priority interrupt is found, it is serviced immediately. Otherwise, no
action is taken.

13-13

Appendix
Instruction and Data
Structure Quick Reference

APPENDIX A
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

This appendix provides quick reference for the 80960KB instructions and data structures.

INSTRUCTION QUICK REFERENCE

This section provides two lists of 80960KB instructions: one sorted by assembly-language
mnemonic and another sorted by machine-level opcode. In these lists, each entry includes the
assembly-language mnemonic for an instruction; the operands (given in the required order); the
machine-level opcode and instruction type (i.e., REG, MEM, COBR, CTRL); and the page
number in Chapter 11 where the detailed description of the instruction is given.

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction List by Assembler Mnemonic

Mnemonic Operands -+ Opcode Inst. Type: Page
addc srcl, src2, dst 5B0 REG 11-6

addi srcl, src2, dst 591 REG 11-7

addo srcl, sre2, dst 590 REG 11-7

addr srcl, src2, dst 78F REG 11-8

addrl srcl, src2, dst T9F REG 11-8

alterbit bitpos, src, dst 58F REG 11-10
and srcl, src2, dst 581 REG 11-11
andnot srcl, src2, dst 582 REG 11-11
atadd srcldst, src, dst 612 REG 11-12
atanr srcl, sre2, dst 680 REG 11-13
atanrl srel, src2, dst 690 REG 11-13
atmod src, mask, srcl/dst 610 REG 11-15
b targ 08 CTRL 11-18
bal targ 0B CTRL 11-16
balx targ, dst 85 MEM 11-16
bbc bitpos, src, targ 30 COBR 11-20
bbs bitpos, sre, targ 37 COBR 11-20
be targ 12 CTRL 11-22
bg targ 11 CTRL 11-22
bge targ 13 CTRL 11-22
bl targ 14 CTRL 11-22
ble targ 16 CTRL 11-22
bne targ 15 CTRL 11-22
bno targ 10 CTRL 11-22
bo targ 11 CTRL 11-22
bx targ 84 MEM 11-18
call targ 09 CTRL 11-25
calls targ 660 REG 11-27
callx targ 86 MEM 11-29
chkbit bitpos, src SAE REG 11-31
classr src 68F REG 11-32
classrl src 69F REG 11-32
clrbit bitpos, sre, dst 58C REG 11-34
cmpdeci srcl, src2, dst 5A7 REG 11-36
cmpdeco srcl, src2, dst 5A6 REG 11-36
cmpi srcl, src2 5A1 REG 11-35
cmpibe srcl, sre2, targ 3A COBR 11-42
cmpibg srcl, src2, targ 39 COBR 11-42
cmpibge srcl, src2, targ 3B COBR 11-42
cmpibl srcl, src2, targ 3C COBR 11-42
cmpible srcl, src2, targ 3E COBR 11-42
cmpibne srel, src2, targ 3D COBR 11-42
cmpibno srcl, src2, targ 38 COBR 11-42
cmpibo srel, sre2, targ 3F COBR 11-42

A-2

intal

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic

cmpinci
cmpinco
cmpo
cmpobe
cmpobg
cmpobge
cmpobl
cmpoble
cmpobne
cmpor
cmporl
cmpr
cmprl
concmpi
concmpo
cosr
cosrl
cpyrsre
cpysre
cvtilr
cvtir
cvtri
cvtril
cvtzri
cvtzril
daddc
divi
divo
divr
divrl
dmovt
dsubc
ediv
emul
expr
exprl
extract
faulte
faultg
faultge
faultl
faultle
faultne
faultno
faulto
flushreg
fmark

Operands

srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
src,
sre,
srcl,
srcl,
src,
src,
src,
src,
src,
src,
srcl,
srcl,
srcl,
srcl,
srcl,
src,
srcl,
srcl,
srcl,
src,
src,
bitpos,

src2,
src2,
src2
src2,
src2,
src2,
src2,
src2,
src2,
src2
src2
src2
src2
src2
src2
dst
dst
src2,
src2,
dst
dst
dst
dst
dst
dst
src2,
src2,
src2,
src2,
src2,
dst
src2,
src2,
src2,
dst
dst
len,

dst
dst

targ
targ
targ
targ
targ
targ

dst
dst

dst
dst
dst
dst
dst

dst

dst
dst

srcldst

Opcode

S5AS
S5A4
5A0
32
31
33
34
36
35
684
694
685
695
S5A3
5A2
68D
69D
6E3
6E2
675
674
6CO0
6C1
6C2
6C3
642
74B
70B
78B
79B
644
643
671
670
689
699
651
1A
19
1B
1C
1E
1D
18
1IF
66D
66C

Inst. Type Page

REG
REG
REG
COBR
COBR
COBR
COBR
COBR
COBR
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
CTRL
CTRL

CTRL*

CTRL
CTRL
CTRL
CTRL
CTRL
REG

REG

11-37
11-37
11-35
11-42
11-42
11-42
11-42
11-42
11-42
11-38
11-38
11-40
11-40
11-45
11-45
11-46
11-46
11-48
11-48
11-49
11-49
11-50
11-50
11-50
11-50
11-52
11-53
11-53
11-54
11-54
11-56
11-57
11-58
11-59
11-60
11-60
11-62
11-63
11-63
11-63
11-63
11-63
11-63
11-63
11-63
11-65
11-66

intal

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic

Id

Ida
Idib
Idis

1dl
1dob
Idos
ldq

1dt
logbnr
logbnrl
logepr
logeprl -
logr
logrl
mark
modac
modi
modify
modpc
modtc
mov
movl
movq
movr
movre
movrl
movt
muli
mulo
mulr
mulrl
nand
nor
not
notand
notbit
notor
or
ornot
remi
remo
remr
remrl
ret
rotate
roundr

\

. Operands

src,
src
src,
src,
sre,
src,
src,
src,
‘src,
src,
src,
srcl,
srcl,
srcl,
srcl,

mask,
srcl,
mask,
src
mask,
src,
src,
src,
src,
src,
src,
src,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
sre,
src, -
bitpos,
srcl,
srcl,
srcl,
srcl,
srcl,
srel,
srcl,

len,
sre,

dst
dst
dst
dst
dst
dst
dst
dst
dst
dst
dst
src2,
src2,
src2,
src2,

src,
src2,
src,
mask,
src,
dst
dst
dst
dst
dst
dst
dst
sre2,
sre2,
src2,
sre2,
sre2,
sre2,
dst
dst
src,
src2,
src2,
src2,
src2,
src2,
src2,
src2,

src,
dst

dst
dst
dst
dst

dst
dst
srcldst
srcldst
dst

dst
dst
dst
dst
dst
dst

dst
dst
dst
dst
dst
dst
dst
dst

dst

A-4

Opcode

90
8C
Co
C8
98

650
655
654
5CC
5DC
SFC
6C9
6E9
6D9
SEC
741
701
78C
79C
S8E
588
S58A
584
580
58D
587
58B
748
708
683
693
0A
59D
68B

Inst. Type Page

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
CTRL
REG
REG

11-67
11-69
11-67
11-67
11-67
11-67
11-67
11-67
11-67
11-70
11-70
11-72
11-72.
11-75

- 11-75

11-78
11-79
11-80
11-81
11-82
11-84
11-85
11-85
11-85
11-86
11-86
11-86
11-85
11-88
11-88
11-89
11-89
11-91
11-92
11-93
11-93
11-94
11-95
11-96
11-96
11-97
11-97
11-98
11-98
11-101
11-103
11-104

inte|° INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Mnemonic Operands Opcode Inst. Type Page

roundrl src, dst 69B REG 11-104
scaler srcl, src2, dst 677 REG 11-105
scalerl srcl, src2, dst 676 REG 11-105
scanbit src, dst 641 REG 11-107
scanbyte srcl, src2 5AC REG 11-108
setbit bitpos, src, dst 583 REG 11-109
shli len, src, dst 59E REG 11-110
shlo len, sre, dst 59C REG 11-110
shrdi len, src, dst 59A REG 11-110
shri len, src, dst 59B REG 11-110
shro len, src, dst 598 REG 11-110
sinr src, dst 68C REG 11-112
sinrl src, dst 69C REG 11-112
spanbit sre, dst 640 REG 11-114
sqrtr src, dst 688 REG 11-115
sqrtrl sre, dst 698 REG 11-115
st src, dst 92 MEM 11-117
stib src, dst C2 MEM 11-117
stis src, dst CA MEM 11-117
stl src, dst 9A MEM 11-117
stob src, dst 82 MEM 11-117
stos src, dst 8A MEM 11-117
stq src, dst B2 MEM 11-117
stt src, dst A2 MEM 11-117
subc srcl, src2, dst 5B2 REG 11-119
subi srcl, src2, dst 593 REG 11-120
subo srcl, src2, dst 592 REG 11-120
subr srcl, src2, dst 78D REG 11-121
subri srcl, src2, dst 79D REG 11-121
syncf 66F REG 11-123
synld src, dst 615 REG 11-124
synmov dst, src 600 REG 11-126
synmovl dst, src 601 REG 11-126
synmovq dst, src 602 REG 11-126
tanr src, dst 68E REG 11-129
tanrl sre, dst 69E REG 11-129
teste dst 22 COBR 11-131
testg dst 21 COBR 11-131
testge dst 23 COBR 11-131
testl dst 24 COBR 11-131
testle dst 26 COBR 11-131
testne dst 25 COBR 11-131
testno dst 20 COBR 11-131
testo dst 27 COBR 11-131
xnor srcl, src2, dst 589 REG 11-133
xor srcl, src2, dst 586 REG 11-133

A-5

intel

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Instruction List by Opcode

Opcode

08
09
0A
0B
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
30
31
32
33
34

Inst. Type

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR
MEM

Mnemonic

b

call

ret

bal

bno

bg

be

bge

bl

bne

ble

bo
faultno
faultg
faulte
faultge
faultl
faultne
faultle
faulto
testno
testg
teste
testge
testl
testne
testle
testo
bbe
cmpobg
cmpobe
cmpobge
cmpobl
cmpobne
cmpoble
bbs
cmpibno
cmpibg
cmpibe
cmpibge
cmpibl
cmpibne
cmpible
cmpibo
1dob

Operands

targ
targ

targ
targ
targ
targ
targ
targ
targ
targ
targ

dst
dst
dst
dst
dst
dst
dst
dst
bitpos,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
bitpos,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
srcl,
src,

A-6

src,
src2,
src2,
src2,
src2,
src2,
src2,
src,

src2,
src2,
src2,
src2,
src2,
src2,
src2,
sre2,
dst

targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ
targ

Page

11-18
11-25
11-101
11-16
11-22
11-22
11-22
11-22
11-22
11-22
11-22
11-22
11-63
11-63
11-63
11-63
11-63
11-63
11-63
11-63
11-131
11-131
11-131
11-131
11-131
11-131
11-131
11-131
11-20
11-18
11-42
11-42
11-42
11-42
11-42
11-20
11-42
11-42
11-42
11-42
11-42
11-42
11-42
11-42
11-67

inter INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page
82 MEM stob src, dst 11-117
84 MEM bx targ 11-18
85 MEM balx targ, dst 11-16
86 MEM callx targ 11-29
88 MEM Idos src, dst 11-67
8A MEM stos sre, dst 11-117
8C MEM Ida src dst : 11-69
90 MEM Id src, dst 11-67
92 MEM st sre, dst 11-117
98 MEM 1d1 sre, dst 11-67
9A MEM stl src, dst 11-117
A0 MEM 1dt src, dst 11-67
A2 MEM stt src, dst 11-117
BO MEM ldq src, dst 11-67
B2 MEM stq src, dst 11-117
CO MEM Idib src, dst 11-67
C2 MEM stib src, dst 11-117
C8 MEM Idis sre, dst 11-67
CA MEM stis src, dst 11-117
580 REG notbit bitpos, sre, dst 11-94
581 REG and srcl, src2, dst 11-11
582 REG andnot srcl; src2, dst 11-11
583 REG setbit bitpos, src, dst 11-109
584 REG notand src, dst 11-93
586 REG xor srcl, src2, dst 11-133
587 REG or srcl, src2, dst 11-96
588 REG nor srcl, sre2, dst 11-92 -
589 REG xnor srcl, src2, . dst 11-133
58A REG not src, dst 11-93
58B REG ornot srcl, src2, dst 11-96
58C REG clrbit bitpos, sre, dst 11-34
58D REG notor srcl, src2, dst 11-95
58E REG nand srcl, src2, dst 11-91
58F REG alterbit bitpos, sre, dst 11-10
590 REG addo srel, src2, dst 11-7
591 REG addi srcl, src2, dst 11-7
592 REG subo srel, src2, dst 11-120
593 REG subi srcl, src2, dst 11-120
598 REG shro len, sre, dst 11-110
59A REG shrdi len, src, dst 11-110
59B REG shri len, src, dst 11-110
59C REG shlo len, src, dst 11-110
59D REG rotate len, src, dst 11-103
S9E REG shli len, src, dst 11-110
5A0 REG cmpo srcl, src2 11-35
5A1 REG cmpi srcl, src2 . 11-35
5A2 REG concmpo srcl, src2 11-45

intele INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page
5A3 . REG concmpi srcl, src2 11-45
5A4 REG cmpinco srcl, sre2, dst 11-37
SAS REG cmpinci srcl, src2, dst 11-37
5A6 REG cmpdeco srcl, sre2, dst 11-36
S5A7 REG cmpdeci srcl, sre2, dst 11-36
S5AC REG scanbyte srcl, src2 11-108
SAE REG chkbit bitpos, src 11-31
5B0 REG addc srcl, src2, dst 11-6
5B2 REG subc srcl, src2, dst 11-119
5CC REG mov src, dst 11-85
5DC REG movl src, dst 11-85
5EC REG movt src, dst 11-85
SFC REG movq src, dst 11-85
600 REG synmov dst, src 11-126
601 REG synmovl dst, src 11-126
602 REG synmovq dst, src 11-126 -
610 REG atmod src, mask, srcldst 11-15
612 REG atadd srcldst, sre, dst 11-12
615 REG synld src, dst 11-124
640 REG spanbit src, dst 11-114
641 REG scanbit src, dst 11-107
642 REG daddc srcl, src2, dst 11-52
643 REG dsubc srcl, src2, dst 11-57
644 REG dmovt src, dst 11-56
645 REG modac mask, sre, dst 11-79
650 REG modify mask, sre, srcldst 11-81
651 REG extract bitpos, len, srcldst 11-62
654 REG modtc mask, src, dst 11-84
655 REG modpc mask, srcldst 11-82
660 REG calls targ 11-27
66B REG mark 11-78
66C REG fmark 11-66
66D REG flushreg 11-65
66F REG syncf 11-123
670 REG emul srcl, src2, dst 11-59
671 REG ediv srcl, src2, dst 11-58
674 REG cvtir src, dst 11-49
675 REG cvtilr src, dst 11-49
676 REG scalerl srcl, src2, dst 11-105
677 REG scaler srcl, sre2, dst 11-105
680 REG atanr srcl, src2, dst 11-13
681 REG logepr srcl, sre2, dst 11-72
682 REG logr srcl, src2, dst 11-75
683 REG remr srcl, src2, dst 11-98
684 REG cmpor srcl, src2 11-38
685 REG cmpr srcl, src2 11-40
688 REG sqrtr src, dst 11-115

A-8

inte|° INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Opcode Inst. Type Mnemonic Operands Page
689 REG expr src, dst 11-60
68A REG logbnr . src, : dst 11-70
68B REG roundr src, dst 11-104
68C REG sinr src, dst 11-112
68D REG cosr src, dst 11-46
68E REG tanr src, dst ' 11-129
68F REG classr src 11-32
690 REG atanrl srcel, src2, dst 11-13
691 REG logeprl srcl, src2, dst 11-72
692 REG logrl srcl, src2, dst 11-75
693 REG remrl srcl, src2, dst 11-98
694 REG cmporl srcl, src2 11-38
695 REG cmprl srcl, src2 11-40
698 REG sqrtrl src, dst 11-115
699 REG exprl src, dst 11-60
69A REG logbnrl src, dst 11-70
69B REG roundrl src, dst 11-104
69C REG sinrl src, dst 11-112
69D REG cosrl src, dst 11-46
69E REG tanrl sre, dst 11-129
69F REG classrl src 11-32
6CO REG - cvtri src, dst 11-50
6C1 REG cvtril src, dst 11-50
6C2 REG cvtzri sre, dst 11-50
6C3 REG cvtzril src, dst 11-50
6C9 REG movr src, dst 11-86
6D9 REG movrl sre, dst 11-86
6E2 REG cpysre srcl, src2, dst 11-48
6E3 REG cpyrsre srel, src2, dst 11-48
6E9 REG movre src, dst 11-86
701 REG mulo srcl, src2, dst 11-88
708 REG remo srcl, src2, dst 11-97
70B REG divo srcl, src2, dst 11-53
741 REG muli srcl, src2, dst 11-88
748 REG remi srcl, src2, dst 11-97
749 REG modi srcl, src2, dst 11-80
74B REG divi srcl, src2, dst 11-53
78B REG divr srcl, src2, dst 11-54
78C REG mulr srcl, src2, dst 11-89
78D REG subr srcl, src2, dst 11-121
78F REG addr srcl, src2, dst 11-8
79B REG divrl srcl, src2, dst 11-54
79C REG mulrl srcl, src2, dst 11-89
79D REG subrl srcl, src2, dst 11-121
T9F REG addrl srcl, src2, dst 11-8

intel

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

SUMMARY OF SYSTEM DATA STRUCTURES

The following pages provide a collection of the system data structures presented in this
manual. They are are grouped by function. The chapter reference below each data structure

shows where in this manual this data structure is described.

Execution Environment

T

2

J L

' RESERVED
(INITIALIZE TO 0)

L—(OND"‘ION CODE

ARITHMETIC STATUS
INTEGER OVERFLOW FLAG

INTEGER OVERFLOW MASK

NO IMPRECISE FAULTS

FLOATING OVERFLOW FLAG

FLOATING UNDERFLOW FLAG

FLOATING INVALID-OP FLAG

FLOATING ZERO-DIVIDE FLAG

FLOATING INEXACT FLAG

FLOATING OVERFLOW MASK

FLOATING UNDERFLOW MASK

FLOATING INVALID-OP MASK

FLOATING ZERO-DIVIDE MASK

FLOATING INEXACT MASK

FLOATING-POINT NORMALIZING MODE

FLOATING-POINT ROUNDING CONTROL

Figure A-1: Arithmetic Controls (Chapter 3)

A-10

intel

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

FLOATING-POINT
REGISTERS

g0
REGISTERS g0 THROUGH g14
CONTENTS OF AVAILABLE FOR GENERAL USE Rgé'OS_Br?I’iS
GLOBAL AND
FLOATING-POINT
REGISTERS
PRESERVED
ACROSS
PROCEDURE
BOUNDARIES
g1s FRAME POINTER (FP)
fp0 |
AVAILABLE FOR GENERAL USE
fp3 I
r0 PREVIOUS FRAME POINTER (PFP)
r STACK POINTER (SP)
r2 | RETURN INSTRUCTION POINTER (RIP)
NEW SET OF
LOCAL LOCAL
REGISTERS REGISTERS
AF%QCEQZE.{D REGISTERS r4 THROUGH r15
PROCEDURE AVAILABLE FOR GENERAL USE
r15

Figure A-2: Registers Available to a Single Procedure (Chapter 3)

A-11

intel INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

PFP |P|RRR| r0 <«=— n+0
SP rl ——
RIP r2
PREVIOUS \
FRAME STACK
GROWTH
r1s
OPTIONAL VARIABLES
<€ n+64 STACK
GROWS
FROM LOW
ADDRESSES
TO HIGH
ADDRESSES
PREVIOUS FRAME POINTER (PFP) |P|RRR]| ro —— <———|
STACK POINTER (SP) M —
RETURN INSTRUCTION POINTER (RIP) r2 THE CURRENT FRAME
POINTER (FP) STORED
IN g15 POINTS TO
THIS WORD IN THE
STACK.
CURRENT
FRAME
r15
-

Figure A-3: Procedure Stack Structure (Chapter 4)

A-12

intel’ INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Processor Management

31 2120

EXECUTION MODE
RESUME

TRACE-FAULT PENDING
STATE

PRIORITY

INTERNAL STATE

RESERVED (INITIALIZE TO 0)

Figure A-4: Process Controls (Chapter 7)

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

CHECK-SUMWORDS FHYSICAL

RESERVED (INITIALIZE TO 0)

m PRESERVED

SYSTEM ADDRESS TABLE (SAT) OFFSET

12

INTERRUPT TABLE POINTER | 20

24

INTERRUPT STACK POINTER

0000 027F1¢ 2
0000 027F¢ 36
FAULT TABLE POINTER 40
0000 000046 7]

SCRATCH SPACE

INITIALIZATION CODE

Figure A-5: Initial Memory Image (Chapter 7)

A-14

intel

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Interrupt Handliﬁg
31 0
PENDING PRIORITIES 0
: a
3 PENDING INTERRUPTS S

32

ENTRY 8 36 (VECTORS)

ENTRY 9 40 (VECTOR 9)

ENTRY 10 43 (VECTOR 10)
(vecn.m 243)

ENTRY 252 1012
ENTRY 255. . 1024
PROCEDURE ENTRY FORMAT
31 210
| INSTRUCTION POINTER |o]o]

RESERVED (INITIALIZE TO 0)

(VECTOR 244)

(VECTOR 247)
(VECTOR 248)
(VECTOR 249)

(VECTOR 251)
(VECTOR 252)

(VECTOR 255)

Figure A-6: Interrupt Table (Chapter 8)

inte|° INSTRUCTION'AND DATA STRUCTURE QUICK REFERENCE

LOCAL, SUPERVISOR, OR INTERRUPT STACK

'

RESERVED

'

*1f the interrupt is serviced while the processor is working on another
interrupt procedure, the new stack pointer (NSP) will be the same as
the SP.

3 0
STACK FP
GROWTH REGISTER SAVE AREA
FOR CURRENT FRAME S
ADDITIONAL VARIABLES !
AND PADDING AREA S
(OPTIONAL)
l P
INTERRUPT STACK
31 7 0
NSP*
PADDING AREA 4
STACK
GROWTH
L RESUMPTION RECORD !
FOR SUSPENDED INSTRUCTION S INTERRUPT
(OPTIONAL) RECORD
SAVED PROCESS CONTROLS NFP-16
SAVED ARITHMETIC CONTROLS NFP-12
VECTORNUMBER |NFP-8
NEW FRAME NFP

Figure A-7: Interrupt Record on Stack (Chapter 8)

A-16

inte|° INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

IACs
31 2423 1615 0
MESSAGE TYPE FIELD 1 FIELD 2
FIELD 3 , 4
FIELD 4
'FIELD 5 12
Figure A-8: |AC Message Format (Chapter 13)
Fault Handling

FAULTDATA

PROCESS CONTROLS ‘ 32

ARITHMETIC CONTROLS 36
40

FAULT FLAGS l FAULT TYPE FAULT SUBTYPE
ADDRESS OF FAULTING INSTRUCTION 44

RESERVED

Figure A-9: Fault Record (Chapter 9)

intal

INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

TRACE FAULT ENTRY

OPERATION FAULT ENTRY

ARITHMETIC FAULT ENTRY

FLOATING-POINT FAULT ENTRY

CONSTRAINT FAULT ENTRY

PROTECTION FAULT ENTRY

MACHINE FAULT ENTRY

TYPE FAULT ENTRY

31 LOCAL PROCEDURE FAULT-TABLE ENTRY 210

FAULT-HANDLER PROCEDURE ADDRESS

104
112
120

252

3 SYSTEM-PROCEDURE-TABLE FAULT-TABLE ENTRY 210

FAULT-HANDLER PROCEDURE NUMBER [1]o

0000027F,

RESERVED (INITIALIZE TO 0)

n+4

Figure A-10: Fault Table and Fault-Table Entries (Chapter 9)

A-18

inte|° INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE

Trace Control

31

~

3222120191817 76543210

INSTRUCTION
TRACE MODE

BRANCH TRACE MODE
CALL TRACE MODE
RETURN TRACE MODE
PRERETURN TRACE MODE
SUPERVISOR TRACE MODE
BREAKPOINT TRACE MODE
INSTRUCTION TRACE EVENT
BRANCH TRACE EVENT
CALL TRACE EVENT
RETURN TRACE EVENT
PRERETURN TRACE EVENT
SUPERVISOR TRACE EVENT
BREAKPOINT TRACE EVENT

RESERVED (INITIALIZE TO 0)

Figure A-11: Trace Controls (Chapter 10)

A-19

Appendix
Machine-Level
Instruction Formats

APPENDIX B
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the machine-level format for 80960KB instructions. Included is a
description of the four instruction formats and how the addressing modes relate to these
formats. Also, a table is given that shows the relationship between the machine-level instruc-
tion operands and the assembly-language-level instruction operands.

GENERAL INSTRUCTION FORMAT

At the machine-level, all the 80960KB instructions are one word long and begin on word
boundaries. (One group of instructions allows a second word, which contains a 32-bit
displacement.) '

There are four basic instruction formats: REG, COBR, CTRL, and MEM. Figure B-1 shows
these formats. Each instruction has only one format, which is defined by the opcode field of
the instruction.

31 24 23 19 18 1413 12 1110 765 4 0 REG
| OPCODE | srRopsT | SRC2 | [[| opcobe [o o] SRC1 |
T t . M1
m2
M3
31 24 23 19 18 1413 12 2 10 COBR
| OPCODE | srct SRC2 [1 DISPLACEMENT [o o]
t M1
31 24 23 210 ‘
| OPCODE [' DISPLACEMENT o o] CTRL
Al 24 23 19 18 141312 11 0
| OPCODE SRUDST | ABASE | |o] OFFSET | MEMA
t MODE
31 24 23 19 18 14 13 109 7654 0 MEMB
| OPCODE | srcost | ABASE | moDE | scale [o o] iNDEX |
bmmmmm e OPTIONALOISPLACEMENT _ _ _ _ _ _ _ _ ________ k

Figure B-1: Instruction Formats

The following sections describe the fields in the instruction word for each format.

intel

REG FORMAT

MACHINE-LEVEL INSTRUCTION FORMATS

The REG format is for operations that are performed on data contained in the global, local, and
floating-point registers. The majority of the 80960KB instructions use this format.

The opcode for the REG instructions is 12 bits long (3 hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the opcode for the addi instruction is
591,¢. Here, 59, is contained in bits 24 through 31 and 1,4 is contained in bits 7 through 10.

The srcl and src2 fields specify source operands for the instruction. The operands can be
either registers or literals. The mode bits (m1 for srcl and m2 for src2) and the instruction type
(non-floating point or floating point) determine whether an operand is a register or a literal.
Table B-1 shows the relationship between the instruction type, the mode bits, and the srcl and
src2 operands.

Table B-1: Encoding of Src1 and Src2 Fields in REG Format

Inst. Type M1 or M2 Srcl or Src2 | Register Literal
Operand Number Value
Value
Non-FP 0 00000 10
01111 rl5
10000 g0
11111 gl5
1 00000 0
11111 31
FP 0 00000 r0
01111 rl5
10000 g0
11111 gl5s
1 00000 fp0
00011 fp3
00100 to reserved
01111
10000 +0.0
10001 to reserved
10101
10110 ' +1.0
10111 to reserved
11111

intele MACHINE-LEVEL INSTRUCTION FORMATS

For non-floating-point instructions, if a mode bit is set to 0, the respective srcl or src2 field
specifies a global or local register. If the mode blt is' set to 1, the field specifies an ordmal
literal in the range of O to 31. »

For floating-point instructions, if the mode bit is set to 0, the respective srcl or src2 field
specifies a global or local register (just as it does for non-floating-point instructions). If the
mode bit is set to 1, the field specifies either a floating-point register or one of two real-number
literals (+0.0 or +1.0). All of the other encoding when the mode bit is set to 1 are reserved.
When a reserved encoding is used as a source, the processor either signals an invalid opcode
fault or produces an undefined value.

The src/dst field can specify either a source operand or a destination operand or both, depend-
ing on the instruction. Here again, the mode bit (m3) and the instruction type (non-floating
point or floating point) determine how this field is used. Table B-2 shows this relationship.

Table B-2: Encoding of Src/Dst Field in REG Format

Inst. Type | m3 | Src/Dst | Src Only | Dst Only
Non-FP 0 g0..gl5 |g0..gl5 g0 .. gl5
10..r15 10..115 f0..rl5
1 NA Literal NA
FP 0 NA NA g0 .. gl5
10..115
1 NA NA p0 .. fp4

Note: NA means not allowed

For non-floating-point instructions, if M3 is clear, the src/dst operand is a global or local
register that is encoded as shown in Table B-1. If M3 is set, the src/dst operand can be used
only as a src operand that is an ordinal literal.

For floating-point instructions, the src/dst field is only used to encode destination operands.
Here, the encoding is the same as shown in Table B-1, except that the encodings for floating-
point literals are not allowed. That is, if M3 is clear, the destination operand is a. global or
local register; if M3 is set, the destination operand is a floating-point register. When a reserved
encoding or literal encoding is used as a destination, the processor either signals an invalid
opcode fault or produces an undefined result.

COBR FORMAT

The COBR format is used primarily for control-and-branch instructions. (The test-if instruc-
tions also use this format.) The opcode field for this format is 8 bits (two hexadecimal digits).

The srcl and src2 fields specify source operands for the instruction. The srcl field can specify
either a global or local register or a literal as determined by mode bit m1. (The encoding of the
srcl field is the same as is shown in Table B-1 for the non-floating point instructions.) The
src2 field can only specify a local or global register.

intel MACHINE-LEVEL INSTRUCTION FORMATS

The displacement field contains a signed, twos complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction that
the processor goes to as the result of a comparison. The displacement field can range from -210
to (210 -1). To determine the IP of the target instruction, the processor converts the displace-
ment value to a byte displacement (i.e., multiplies the value by 4). It then adds the resultmg
byte displacement to the IP of the next instruction. .

Note

To allow labels or. absolute addresses to be used in the assembly-language version of the COBR
format instructions, the Intel 80960KB Assembler converts a farg (target) operand value in an
assembly-language instruction into the displacement value required for the COBR format, using
the following calculation:

displacement = (ttirg/4) -(IP+4)

For the test-if instructions, only the srcl field is used. Here, this field specifies a destination
global or local register (m1 is ignored).

CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, including the branch,
branch-if, bal, and call instructions. The return instruction also uses this format. The opcode
field for this format is 8 bits (two hexadecimal digits).

The instructions that use this format have no operands. The target address for a branch is
specified with the displacement field in the same manner as is done with the COBR format
instructions. Here, the displacement field s })emfles a word displacement (also a signed, twos
complement number) that can range from -24! to 22!

The processor ignores the displacement field for the return instruction.

-

MEM FORMAT

The MEM format. is used for instructions that require a memory address to be computed.
These instructions include the load, store, and lda instructions. Also, the extended versions of
the branch, branch-and-link, and call instructions (bx, balx, and callx) uses this format.

There are two MEM formats, MEMA and MEMB. The MEMB format offers the option of
including a 32-bit displacement (contained in a second word) to the instruction. Bit 12 of the
first word of the instruction determines whether the format is MEMA (clear) or MEMB (set).

For both formats the opcode field is 8 bits long. The src/dst field specifies a global or local
register. For load instructions, the src/dst field specifies the destination register for a word
loaded into the processor from memory or, for operands larger than one word, the first of
successive destination registers. For store instructions, this field specifies the register or group
of registers that contain the source operand to be stored in memory.

B4

inter MACHINE-LEVEL INSTRUCTION FORMATS

The mode bit (or bits for the MEMB format) determine the address mode used for the instruc-
tion. Table B-3 summarizes the addressing modes for the two versions of the MEM format.
The fields used in these addressing modes are described in the following sections.

Table B-3: Addressing Modes for MEM Format Instructions

Format | Mode | Address Computation

Bit(s)
MEMA |0 offset
1 (abase) + offset

MEMB | 0100 (abase)

0101 (IP) + displacement + 8
0110 reserved

0111 | (abase) + (index) * 2scale
1100 | displacement

1101 (abase) + displacement
1110 | (index) * 25¢@le 4 displacement

1111 (abase) + (index) * 25¢@l€ 4 displacement

Notes:

1. In the address computations above, a field in parentheses (e.g., (abase))
indicates that the value in the specified register is used in the computation.

2. The use of a reserved encoding causes an invalid opcode fault to be signaled.

MEMA Format Addressing

The MEMA format provides two addressing modes:

e absolute offset
o register indirect with offset

The offset field specifies an unsigned byte offset from O to 4096. The abase field specifies a
global or local register that contains an address in memory. The address is interpreted as either
a virtual address or a physical address depending on whether the processor is operating in
virtual-addressing or physical-addressing mode, respectively.

For the absolute offset addressing mode (the mode bit is clear), the processor interprets the
offset field as an offset from byte 0 of the current process address space. The abase field is
ignored. Using this addressing mode along with the lda instruction allows a constant of from 0
to 4096 to be loaded into a register.

For the register indirect with offset addressing mode (the md bit is set), the value in the offset
field is added to the address in the abase register. Setting the offset value to zero creates a
register indirect addressing mode, however, this operation can generally be carried out faster
by using the MEMB version of this addressing mode.

B-5

intel' MACHINE-LEVEL INSTRUCTION FORMATS

MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

e absolute displacement

e register indirect

o register indirect with displacement

e register indirect with index

e register indirect with index and displacement
¢ index with displacement

o [P with displacement

The abase and index fields specify local or global registers, the contents of which are used in
the address computation. When the index field is used in an addressing mode, the processor
automatically scales the value in the index register by the amount specified in the scale field.
Table B-4 gives the encoding of the scale field. The optional displacement field is contained in
the word following the instruction word. The displacement is a 32-bit, signed, twos comple-
ment value.

Table B-4: Encoding of Scale Field

Scale Scale Factor
(Multiplier)
000 1
001 2
010 4
011 8
100 16
101 to 111 | reserved

Note:
The use of a reserved encoding causes
an invalid opcode fault to be signaled.

For the IP with displacement mode, the value of the displacemeht field plus 8 is added to the
address of the current instruction.

Appendix
Instruction Timing

APPENDIXC
INSTRUCTION TIMING

This appendix describes the 80960KB procéssor’s instruction pipeline and how it affects the
timing of instructions. The number of clock cycles required for each instruction are also given
here.

INTRODUCTION

The 80960 architecture defines several mechanisms for increasing processor performance
through the use of pipelining and parallel execution of instructions. This appendix describes
how these mechanisms have been incorporated into the design of the 80960KB processor and
provides information to help programmers maximize the performance of the processor.

INTERNAL STRUCTURE OF THE 80960KB PROCESSOR

The 80960KB processor is composed of the following six major functional units (shown in
Figure C-1):

e Bus Control Logic

¢ Instruction Fetch Unit and Instruction Cache

¢ Instruction Decoder

e Micro-Instruction Sequencer and ROM

o Instruction Execution Unit

¢ Floating Point Unit

intel INSTRUCTION TIMING

EXTENTION TO THE 80960

ARCHITECTURE - .
- -
[1
1 1 GLOBAL
1 FLOATING- 1 REGISTERS AND™
1 POINT 1 LOCAL REGISTER
1 REGISTERS 1 SETS
1 |
| |
N S i)
1 I
| |
I FLOATING- 1 INSTRUCTION
1 POINT UNIT 1 EXECUTION
1| 1 UNIT
| s 1

; 1 -
L__I___‘.*___. I 1

A 1 > EXTERNAL
15 BUS BLS
+ CONTROL :
LOGIC

)
14

q
A 4

N

< - -)
A 4 A4 h 4 h 4

MICRO- INSTRUCTION
INSTRUCTION FETCH UNIT INSTRUCTION
SEQUENCER |4 AND ¢—)| DECODER
AND ROM INSTRUCTION
CACHE

Figure C-1: Block Diagram of the 80960KB Processor

These units function independently from one another, but in close cooperation. The functions
of each of these units is described in the following sections.

Bus Control Logic

The Bus Control Logic (BCL) provides the interface between the processor and the external
world. This interface consists of a multiplexed, burst bus, which is capable of memory-access
rates of over 53 Megabytes/second (with a 20 Mhz CPU clock). The BCL accepts requests
from other units within the 80960KB, prioritizes them, and executes them. It attempts to
maximize bus access efficiency through buffering and burst accesses.

The BCL provides a queuing mechanism that can buffer up to three outstanding requests at any

given time. This mechanism, coupled with other 80960KB features (such as scoreboarding,

which is discussed later), allow other units in the 80960KB to continue operation without

waiting for bus requests to be completed. As a result, the execution of most memory reference’
instructions require little or no delay in the instruction execution pipeline.

C-2

intal INSTRUCTION TIMING

The BCL generates burst cycles on the external bus, which allow from one to 16 bytes of data
to be read or written in a single operation. The processor takes advantage of burst transfers in
several ways. First, multiple-register load or store operations can be carried out in a single bus
operation, using the 1dl (load long), ldt (load triple), and ldq (load quad) instructions and the
corresponding stl (store long) stt (store triple), and stq (store quad) instructions. Second,
instructions can be fetched in 16-byte bursts, thereby reducing bus traffic for instruction
fetches. Third, floating-point values of 32, 64 or 80 bits can be stored in a single bus opera-
tion.

Instruction Fetch Unit and Instruction Cache

The Instruction Fetch Unit (IFU) acts as an intelligent "buffer" for the Instruction Decoder
(ID). Its purpose is to present the instruction stream to the ID in the fastest and most trans-
parent way possible. The IFU uses several mechanisms to accomplish this goal, as described
in the following paragraphs.

The IFU maintains a 512 byte, direct-mapped instruction cache. This cache allows very fast
access to instructions. While the other units in the processor are executing instructions, the
IFU looks ahead in flow of instructions stored in the instruction cache. If a cache miss is
detected (that is, an instruction that will soon be needed is not in the instruction cache), the IFU
issues a prefetch request to the BCL. Upon receiving the requested instruction, the IFU
updates the instruction cache. In most cases, this fetch and load will take place before the ID
requires the instruction. The major exception to this rule happens on branch conditions.

The IFU works closely with the ID in handling branch conditions. The ID informs the IFU of
any branch operations that are about to take place. Such notifications take place on uncon-
ditional branches and on conditional branches in which the condition code is valid. When the
IFU is notified of a branch, it checks for a cache hit on the desired instruction. If the
instruction is not present, the IFU begins fetching instructions for the new control path.

To further minimize delays in the instruction pipeline, the ID sends a special signal to the IFU
whenever instructions are required immediately. The IFU then passes the fetched instructions
to the ID directly, rather than writing them to the cache and reading them back out again. This
technique is called an instruction-cache bypassing.

The instruction pointer (IP) register in the processor and the IFU maintain several instruction
pointers. These pointers point to instructions at various stages of the fetch-decode-execute
pipeline. If a fault is signaled from any unit, the processor uses these pointers to determine the
problem and preserve the state of the processor.

Instruction Decoder
The ID decodes the instructions it receives from the IFU and routes them to the appropriate
execution units. In doing this, it attempts to keep the computing resources of the processor

working at the highest possible levels.

Instructions are decoded into the following four groups, according to how the instructions are
executed:

intel INSTRUCTION TIMING

o Simple Instructions

+ Floating Point and Branch Instructions
+ Complex Instructions)

o Load and Store Instructions

The following paragraphs list the instructions in each of these groups and describe how the ID
handles them.

Simple Instructions

The instructions in the simple-instruction group require very little decoding. These instructions
include logical; comparison; shift; integer add and subtract; and ordinal add and subtract
instructions. The ID decodes these instructions and passes them to the instruction execution
unit (IEU), where they are executed, usually in a single clock period. »

Floating Point and Branch Instructions

All floating-point instructions are executed by the floating-point unit (FPU). Often, the execu-
tion of floating-point instructions requires interaction between the FPU, ID, and Micro-
Instruction Sequencer (MIS). For example, the FPU may require access to the general-purpose
registers (maintained by the IEU). Here, the ID assists in supplying data to the FPU. Also,
many of the floating-point instructions are executed by means of microcode. The FPU gets the
microcode from the MIS.

The ID executes branch instructions directly. If the branches are unconditional, no interaction
with the processor’s other execution units is required.

On conditional branch instructions, the ID uses a condition code scoreboard to streamline the
branching process. Scoreboarding is a mechanism by which various resources within the
processor can be marked as in use (or pending a result). When one of the execution units in
the processor is in the process of altering the condition code, it marks the condition code
scoreboard. When the ID prepares to execute a conditional branch instruction, it checks the
condition code scoreboard. If the scoreboard is marked as in use, the ID waits for the result
before proceeding. If the condition code scoreboard is clear, the ID signals the IFU im-
mediately if a change in program flow is about to happen.

Conditional fault instructions (fault-if instructions) are also executed in the ID. These opera-
tions differ from conditional branches in that they result in a fault event being generated,
followed by an implicit call to the appropriate fault-handler routine.

As a result of the pipelining described above, branches can often be carried out in zero clock
cycles: For example, the branch instruction (b) shown below will execute in zero cycles, since
the branch time is overlapped completely by the execution time of the floating-point instruction
(sinr). :

c-4

intal INSTRUCTION TIMING

sinr g0, gl
b some_location

some_location:
mov gl,g2

The branch-if instruction (be) in the following example is also executed in zero cycles:

cmp 0x10, r9
divi rl0, rll, rl0
be go_here

go_here:
mov gl,g2

Here, the comparison instruction (cmp) is placed early in the instruction stream, allowing the
branch condition based on the value of r9 to take place while the integer divide instruction
(divi) is being executed.

Complex Instructions

Complex instructions are those that are executed using one or more microcode instructions.
Examples of such instructions are the flushreg (flush local registers), mark, and fmark (force
mark) instructions. The ID decodes complex instructions and forwards them to the MIS unit.
The MIS then sends the equivalent microcode to the IEU.

Load and Store Instructions

Load and store instructions are those that request data to be read from or written into memory.
The ID sends these instructions directly to the BCL, which executes them.

The ID is responsible for converting the addressing information encoded in load, store, branch,
and call instructions into an effective memory addresses. The circuitry that actually performs
effective-address calculations resides in the IFU, but the ID oversees these operations. The
generation of effective addresses is performed within a separate carry look-ahead adder, used
with hardware shift logic. The ability to calculate effective addresses independently from
instruction execution allows address calculation to be overlapped with computation. The time
required to calculate an effective address ranges from zero to four cycles; but, for the most
commonly used addressing modes, this time is less than two cycles.

Instructions that require effective addresses are executed by either the ID or the BCL, thus
preserving the pipeline and eliminating delays or resource constraints on the IEU or FPU.

intgl INSTRUCTION TIMING

Micro-Instruction Sequencer and ROM

The MIS is a multipurpose unit designed to help in the execution of instructions that use
microcode. All of the processor’s microcode is stored in ROM, which is accessed through the
MIS. When the ID receives a complex instruction (one that requires microcode to be
executed), the MIS supplies the microcode to the IEU as described earlier in the discussion of
complex instructions. ‘

The MIS also supplies microcode for floating-point instructions; the power-up and self-test
performed during processor initialization; interrupt handling; and fault handling.

Instruction Execution Unit

The IEU contains the Arithmetic Logic Unit (ALU) and the mechanism for register and
condition-code scoreboarding. It also manages the 16 global registers and the 4 sets of 16 local
registers.

The ALU performs the following functions for the IEU:

e Addition and subtraction of integers and ordinals
e Moves between registers

o Logical operations

e Bit operations

o Shifts and rotates

o Comparisons

It is capable of performing any of these operations in a single clock cycle.

The IEU can also work with integer literals in the range of -16 to +31, which are encoded in
the REG instruction format. This method of encoding literals performs two functions. First, it
provides a more compact instruction stream. Second, when a literal is used as an argument for
an instruction, the IEU is able to execute the instruction in one less clock cycle.

The IEU handles the reading and writing of global and local registers. It also handles the
allocation of local registers sets on procedure calls. The IEU allocates a new set of local
registers on each procedure call. If all four register sets become allocated, the IEU automati-
cally flushes the oldest frame to the stack on the next procedure call. The IEU also automati-
cally retrieves any local register frame from the stack when required by a return operation. The
majority of procedure calls or returns do not require the processor to flush local registers to
memory. Call instructions that can be executed without flushing a register set require only 9
cycles to complete, with the corresponding return taking only 7 cycles.

The register scoreboard provides scoreboarding for the global and local registers. When, one
or more registers are being used in an operation, they are marked as in use. The register
scoreboarding mechanism allows the processor to continue executing subsequent instructions,
as long as those instructions do not require the contents of the scoreboarded registers.

Cc-6

intgl’ INSTRUCTION TIMING

A typical event that would cause scoreboarding is a load operation. For a load from memory,
the contents of the affected registers are not valid until the BCL fetches the data and the
registers are loaded. For example, consider the sequence:

1d g0, (gl)

addi g2, g3, g4
addi g5, g4 ,g6
subi g0, g6, g6

Here, when the BCL initiates the 1d operation, register g0 is scoreboarded. As long as sub-
sequent instructions do not require the contents of g0, the ID continues to dispatch instructions.
For example, the two addi instructions above are executed while the BCL is fetching the data
for g0. If g0 is not loaded by the time the subi instruction is ready to be executed, the IEU
delays execution of the instruction until the loading of g0 has been completed.

If an operation accesses a single register, only that register is scoreboarded. However, if
multiple registers are accessed (such as, with the 1dl, lit, or ldq instructions), registers are
scoreboarded as shown in Table C-1, according to the base register of the the group being
accessed.

Table C-1: Registers Scoreboarded According to Registers Referenced

Base Register Block of Registers
Accessed Scoreboarded
g0 0-3
g2 0-3
g4 0-7
g6 0-7
g8 8-11
glo 8-11
gl2 12-15
gl4 12-14

Instruction Execution Unit Performance Enhancements

The execution times of instructions in the IEU are dependent on the instruction flow. Two
features in the IEU that can enhance the performance of instruction execution are:

e Register Bypassing
e Condition Code Scoreboarding

Register Bypassing. Register bypassing is a mechanism that allows an instruction that would
ordinarily require source operands to be placed in registers to be executed without accessing
one or both of the source registers. Register bypassing occurs in either of two circumstances.
First, when the IEU executes an instruction with two source operands, register bypassing
occurs if one or both of the operands are literals. Second, register bypassing will also occur

C-7

intel" INSTRUCTION TIMING

when the second of two source operands is the result of the previous instruction. The net result
of register bypassing is the saving of one clock cycle. Most instructions that the IEU executes
can be executed in a single cycle when register bypassing occurs.

Condition Code Scoreboarding. The processor requires one clock cycle to set the condition
code bits as the result of an instruction. If one of the instructions that follows depends on the
condition code, condition-code scoreboarding can be used to save one cycle of execution time.
The following example illustrates this technique:

Case 1 — 5 cycles

addc r4, r5, rl0
mov gl0, gl2
addc ro, r7, rll

Case 2 — 6 cycles

addc r4, r5, rl0
addc r6, r7, rll
mov gl0, glz2

Here, both Case 1 and Case 2 accomplish the same task. However, Case 2 requires a wait of
one clock cycle between the first and second addc instruction, while the condition code is set.
Case 1, on the other hand, takes advantage of condition code scoreboarding by executing the
move (mov) instruction while the condition code is being set. The code in Case 1 thus
executes one clock cycle faster than the code in Case 2.

Floating Point Unit

The FPU performs all the floating-point computations for the processor, as well as the integer
multiply and divide operations. It also manages the four 80-bit floating-point registers, which
it uses for extended-precision, floating-point calculations.

The FPU shares the resources of the processor. For example, it can use the global and local
registers as operands for floating-point operations. It also gets microcode for the execution of
complex floating-point instructions from the MIS.

To perform integer multiplication and several floating-point calculations, the FPU contains a
32-bit integer Booth-Multiplier. This multiplier performs integer multiplication operation in a
variable amount of time, depending on the number of significant bits. It is used for integer
multiplications and several floating-point calculations.

EXECUTION TIMES

The following section describes the execution times that can be expected for the various
instructions in the 80960KB processor. As illustrated in the previous sections of this appendix,
the execution time for each instruction can vary considerably, for two reasons. First, many
instructions can vary in execution time, depending on their arguments and the state of the

C-8

intel INSTRUCTION TIMING

on-chip resources being used. Second, by taking advantage of pipelining and overlapping of
operations, a program can be written in which some instructions, in effect, take no clock cycles
to execute.

In the following discussion of instruction timing, the execution time of an instruction is defined
as the time between the beginning of actual execution of a decoded instruction and the begin-
ning of execution for the next decoded instruction. For example, the illustration in Figure C-2
shows the execution time of a two operand instruction to be two clocks, with respect to the
next instruction to be executed.

FIRST INSTRUCTION
FETCH DECODE | EXECUTE sre2 RESULT
srcl
M
EXECUTION TIME
SECOND INSTRUCTION
FETCH DECODE WAIT EXECUTE | RESULT

Figure C-2: Execution Time of an Instruction

Execution times for the 80960 Architecture Instructions

The following paragraphs show the instruction times for the instructions defined in the 80960
architecture.

Logical instructions

The timing of the logical instructions depends on the IEU bypass mechanism described earlier
in this appendix, in particular for any instruction of the form:

alu_instruction srcl, src2, dst
If srcl or src2 is a literal or if src2 is the result of the previous operation, a bypass hit occurs.
Otherwise, there is no bypass hit and the instruction requires an extra clock to load the second

operand. Table C-2 shows the timing of the logical instructions depending on whether or not a
bypass hit occurs.

Note

In all the following tables, execution time is given in number of clock cycles.

C-9

INSTRUCTION TIMING

Bit Instructions

The execution times for the bit instructions are also dependent on whether or not a register

Table C-2: Logical Instruction Timing

Instruction

Normal Case
Execution Time
(Bypass Hit)

Worst Case
Execution Time
(Bypass Miss)

and

1

nand

or

nor

Xxor

xnor

andnot

notand

not

notor

ornot

rotate

shlo

shro

shli

shri

shrdi

Nl =] === m=mm=m =m == =] =

W IWIWIN[N|ININDIN=ININININININININ

bypass has occurred or not, as is shown in Table C-3.

Table C-3: Bit Instruction Timing

Instruction Normal Case Worst Case
Execution Time | Execution Time
(Bypass Hit) (Bypass Miss)
notbit 2 3
setbit 2 3
clrbit 2 3
alterbit 2 3
chkbit 2 3
extract 7 7
modify 8 8

INSTRUCTION TIMING

intal

The execution times of the scanbit and spanbit instructions (shown in Table C-4 depend on
condition code scoreboarding. If the condition code is not set by the previous instruction
execution, the instruction will complete in one less clock cycle. Execution time is also depend-
ent on the number of bits operated upon.

Table C-4: Scan and Span Bit Instruction Timing

Instruction Best Case Normal Case Worst Case
Execution Time | Execution Time | Execution Time
scanbit 8 11 14
spanbit 8 11 14

Register Moves

The timing of instructions that move data between registers is directly related to the number of
words moved. One clock cycle is required to move one (as shown in Table C-5).

Table C-5: Move Instruction Timing

Instruction Execution Time
mov 1
movl 2
movt 3
movq 4

Integer and Ordinal Arithmetic

The execution times for the basic add, subtract, and comparison instructions (as shown in
Table C-6) depend on register bypass. The normal-case results are achieved when a register
bypass occurs.

intel

INSTRUCTION TIMING

Table C-6: Integer and Ordinal Arithmetic Instruction Timing

Instruction Normal Case Worst Case
Execution Time | Execution Time
(Bypass Hit) (Bypass Miss)
addo 1 2
addi 1 ‘ 2
subo 1 2
subi 1 2
cmpo 1 2
cmpi 1 2
cmpinco 2 3
cmpdeco 2 3
cmpinci 2 3
cmpdeci 2 3

The execution times for the add. and subtract with carry and conditional compare instructions
(shown in Table C-7) depend on condition code scoreboarding. If the instruction executed
prior to any of these instructions sets the condition code (CC), the worst case instruction
execution time occurs; if an instruction is inserted between the ‘instruction that sets the con-
dition code and one of the instructions listed in Table C-7, the instruction is executed in the
normal case time.

Table C-7: Add/Subtract With Carry, Conditional Compare Instruction Timing

Instruction Normal Case -Worst Case
Execution Time Execution Time
, (CC Available) (CC Not Available)
addc 1 2
subc 1 2
subi 1 2
concmpi 1 2

Multiply and Divide Instructions

Table C-8 shows the typical instruction execution times for the multiply and divide instruc-
tions:

inter INSTRUCTION TIMING

Table C-8: Multiply and Divide Instruction Timing

Instruction Range of Typical Case
Significant Bits | Execution Time
mulo 9021 18
muli 91021 18
divi 37 37
divo 37 37
remo 37 37
remi 37 37
modi 37 37
emul 37 24
ediv 37 40

Since the processor contains a Booth Multiplier with early out, the execution times on the
multiply and divide instructions (shown in Table C-8) depend on the number of significant bits
in the srcl operand. For example, Table C-9 shows the execution times based on the number
of significant bits in srcl:

Table C-9: Multiply/Divide Execution Times Based on Significant Bits

Srcl Significant Bits Execution Time
2 9
4 10
8 11
32 21

Note that the shift instructions or the add and subtract instructions may be faster than the
multiply instructions in certain instances (for example, when multiplying by 3, 5, 15, etc.).

Branching

Branch instructions are executed directly by the ID and do not require IEU or FPU resources.
Because of this, branch instructions can in most cases be programmed so that their execution is
overlapped with other operations. Table C-10 lists the ranges of times for execution of branch
instructions, from best (maximum overlap) to worst (no overlap). (The instructions in capital
letters indicate groups of instructions that branch on condition codes, such the BRANCH IF
instructions, be, bg, bl, etc.)

INSTRUCTION TIMING

Table C-10: Branch Instruction Timing

Instruction Best Case Worst Case
Execution Time Execution Time
(CC Available) (CC Not Available)
b 0to2(0to2) 0to2(0to?2)
BRANCH IF 0to2(0to1) 0to3(0to?2)
bx 0to 6 (0to6) 0to6(0to6)
BRANCH AND 2to 8 (20 8) 2to 8 (2to 8)
LINK
COMPARE AND 3to5(Bto4) 3to5(3to4)
BRANCH
TEST IF 0to3(0to2) 0to4(0to 3)
FAULT IF 0to2(0to1) 0to3(0to?2)

The second column of numbers lists execution-time ranges for conditional branches in which
the condition code was not set in the previous instruction, and the third column lists ranges for
branches in which the condition code was set by the previous instruction. Also, the first range
in each column is for the case in which the branch is taken, and the range in parentheses is for
the case in which the branch is not taken.

When writing optimized code for the 80960KB processor, it is best to perform conditional tests
at least one instruction before a conditional branch. This practice allows the execution times in
column two to be achieved. It is also important to note that the "not taken" branch case
executes in one less cycle, because there is no break in the pipeline. (Remember, instruction
time is defined as the time from the start of execution of one instruction to the start of
execution of the next instruction. If the pipeline is stalled, the fetch of the next instruction will
be delayed one clock. This delay may or may not be hidden by the parallelism of the 80960KB
processor).

Call/Return Instructions

As described earlier in this appendix, the 80960KB processor provides four sets of local
registers. When a call instruction is executed, the processor allocates a new set of local
registers to the called procedure or interrupt routine. If, when a call or callx instruction is
executed, a set of local registers is available, the processor executes the instruction in 9 clock
cycles.

If a set of local registers is not available, the processor flushes the oldest set of registers to the
stack in memory to free up a register set. Flushing a set of local registers requires four
quad-word stores to memory. Assuming zero-wait-state memory, this operation adds 24 clocks
to the 9 clocks normally required to execute a call.

The ret (return) instruction normally requires 7 clock cycles. If the local registers being

returned to have been flushed to the stack, an additional 24 clocks must be added to this
execution time (with zero-wait-state memory) for the processor to reload the local registers

C-14

intel INSTRUCTION TIMING

from the stack. It is important to note that the processor only reloads the local registers when
they are required, thus eliminating unnecessary memory cycles.

Load Instructions

A load instruction requires the following steps:

Instruction Fetch

Decode

Compute Effective Address/Scoreboard Register(s)
Place Address on Bus

Wait State(s)

Receive Data on Bus

N A=

Place Data in target register

Of these steps, only steps 3 through 7 are included in the definition of execution time for an
instruction. The following figures show several examples of load instruction timing depending
on where the load instruction is placed in the instruction stream. .

The example in Figure C-3 illustrates a load instruction where the instruction that follows
requires the fetched data. Here, the pipeline is stalled while the processor waits for the load to
complete. Assuming a one-clock-cycle effective-address calculation, the load will require 4 or
5 clock cycles to be executed, depending on whether or not zero-wait-state memory is used.

PREVIOUS INSTRUCTION

DECODE EXECUTE

Id INSTRUCTION

EFFECTIVE | ADDRESS DATA ON DATAIN
FETCH DECODE ADDRESS ON BUS WAIT BUS REGISTER
4 'Y
N 14
EXECUTION TIME

INSTRUCTION USING Id RESULT

FETCH DECODE EXECUTE RESULT

Figure C-3: Load Where the Next Instruction Requires the Fetched Data

intgl INSTRUCTION TIMING

Figure C-4 gives an example of a load instruction where the instruction that follows does not
require the data being fetched from memory. Here, the unrelated instruction can be executed
while the load is being completed. The 2 clock cycles required to execute the unrelated
instruction are then overlapped with the 4 or 5 cycles required to execute the load (again
depending on whether or not zero-wait-state memory is used). The load instruction thus
requires a net of 1 or 2 clock cycles from the pipeline to be executed.

PREVIOUS INSTRUCTION

DECODE EXECUTE

Id INSTRUCTION

EFFECTIVE | ADDRESS DATAON | DATAIN
FETCH | DECODE | L npress | onsus WAIT BUS REGISTER
4 _h

A | L4
EXECUTION TIME

UNRELATED INSTRUCTION

FETCH DECODE EXECUTE RESULT

Figure C-4: Load Where the Next Instruction Does Not Require the Fetched Data

Finally, Figure C-5 shows an example of two load instructions being executed back-to-back.
These two instructions can be executed in 5 or 6 clock cycles, as long as the number of BCL
requests is limited to 3 or less (which is the size of the output request FIFO in the BCL’s
control queue). Here, the second load is almost completely overlapped by the first load. Times
for multiple word loads will be lengthened 1 cycle plus wait states for each additional word. If
more than 3 requests become outstanding, the processor will wait until the number of outstand-
ing load operations goes below the size of the output FIFO.

FIRST Id INSTRUCTION

EFFECTIVE | ADDRESS DATA ON DATAIN
FETCH DECODE ADDRESS ONBUS WAIT BUS REGISTER

SECOND Id INSTRUCTION

EFFECTIVE | ADDRESS DATA ON DATAIN
FETCH DECODE ADDRESS ON BUS WAIT BUS REGISTER

'
L4

PN

EXECUTION TIME FOR BOTH INSTRUCTIONS

Figure C-5: Back-to-Back Load Instructions

C-16

intgl INSTRUCTION TIMING

Store Operations

Store instructions involve a posting of an address and data request to the BCL and are usually
executed in 2 to 3 clock cycles. (They do not require register scoreboarding.) If the instruction
following a store instruction is another store instruction, the second store instruction is usually
executed in 2 clock cycles. If the following instruction uses the IEU, the execution time is 3
clock cycles. The only case in which this time will increase is when the three-request output
FIFO in the BCL becomes full. Here, if another store instruction is issued, the processor waits
for the BCL to complete its operations before other instructions can execute.

Execution times for the Extended Instructions

The following paragraphs show the execution times for those 80960KB instructions that are
extensions to the 80960 architecture.

Decimal Instructions

Table C-11 shows the instruction times for the decimal instructions.

Table C-11: Decimal Instruction Timing

Instruction Execution Time
dmovt 7

daddc 8
dsubc 8

Floating-Point Instructions

Table C-12 shows the instruction execution times for the simple floating-point instructions.
Where applicable, a range and a typical observed average are given.

intgl INSTRUCTION TIMING

Table C-12: Simple Floating-Point Instruction Timing

Instruction Execution Time
movr . 5
movrl 5to7
movre 7to8
cpysre 8
cpyrsre 8
addr 9 to 17 (typical 10)
addrl 12 to 20 (typical 13)
subr 9 to 17 (typical 10)
subrl 12 to 20 (typical 13)
mulr 11 to 22 (typical 20)
mulrl 14 to 43 (typical 36)
divr 35
divrl 77
cmpr 10
cmprl 12
cmpor 10
cmporl 12
cvtri 25 to 33
cvtril 26 to 35
cvtilr 41to0 45
cvtilr 42 to 46
cvtzri 41 to 45
cvtzril 42 to 46
roundr 56 to 69
roundrl 56 to 70
scaler 28
scalerl 30
logbnr 32to 41
logbnrl 32t043

The instructions given in Table C-13 consist of the complex floating point instructions. Only
typical instruction execution rates are given here. In many cases, the clock count can vary by
30-40%. Execution time is dependent on the operands.

C-18

Intelg INSTRUCTION TIMING

Table C-13: Complex Floating-Point Instruction Timing

Instruction Execution Time
sqrtrl 104
expr 300
exprl 334
logepr 400
logeprl 420
logr 438
logrl 438
remr (67 to 75878)
remrl (67 to 75878)
atanr 267
atanrl 350
cosr 406
cosrl 441
tanr 293
tanrl 323

It is important to note that these floating-point instructions are interruptible. When an interrupt
is received while one of these instructions is being executed, the processor can suspend execu-
tion, service the external request, then resume execution of the instruction.

Appendix
Initialization Code

APPENDIX D
INITIALIZATION CODE

This appendix provides an example of the initialization code required to initialize the 80960KB
processor.

OVERVIEW

The code given in this appendix demonstrates one of the methods that can be used to initialize
the 80960KB processor. To use this code, the programmer must assemble (and compile, in the
case of the C program modules) the individual files into object modules. These modules must
then be loaded into ROM (generally EPROM). The resulting EPROM will contain an IMI (as
shown in Figure 7-3; an interrupt table; a fault table; and a system procedure table; a set of
dummy interrupt and fault handler routines; and a set of dummy system procedures. (The
dummy interrupt and fault handler routines merely perform a return to the initialization code if
an interrupt or fault occurs during initialization. Likewise, the dummy system procedures
perform returns. These routines may be changed to suit the needs of a particular application.)

When the RESET pin on the processor is asserted, the processor performs its self test, then
begins executing the initialization code. This code directs the processor to perform the follow-
ing rudimentary steps of initialization:

Copy the PRCB from the IMI into RAM.
Copy the interrupt table into RAM.

3. Execute a reinitialize processor IAC, to enable the processor to load the new pointers to
the PRCB and interrupt table.

The PRCB and interrupt table are copied into RAM because both of these data structures have
fields that the processor must be able to write.

Once these first steps of initialization have been completed, the processor is able to execute
additional initialization steps to configure the processor for a particular application. The
following items are examples of further initialization actions that might be included in the
initialization code:

o Copy new interrupt handler routines into RAM and change the pointers in the interrupt
table to point to these new routines.

o Copy the fault table into RAM; copy new fault handler routines into RAM; change the
pointers in the fault table to point to the new fault handler routines; and change the pointer
in the PRCB to point to the relocated fault table.

e Create a new system procedure table in RAM; copy the system procedures into RAM;
change the pointer in the PRCB to point to the new system procedure table.

Alternatively, the interrupt handler routines, fault handler routines, and system procedures can
all be loaded into ROM. Here, execution of an application program can begin directly follow-
ing the reinitialization of the processor.

intef INITIALIZATION CODE

EXAMPLE CODE

The example code consists of the following six files:

e example.lst
o f table.lst

e i_table.lst

e f handler.c
e i_handler.c
e coldld

The first three files are listings from the Intel 80960KB Assembler. These listings include
assembly code (such as would be included in an ".s" file) and the resulting object code. The
fourth and fifth files are C program modules. The sixth file is a load module.

The following steps describe how to use the code in these files:

1. Assemble the assembly code in files example.s, f _table.s, and i_table.s. (Here the " s" files
are made up of the assembly code only from the ".Ist" files listed above.)
Compile the C code in files f handler.c and i_handler.c.

Link the object modules (example.o, f table.o, i_table.o, f handler.o, and i_handler.o),
using the 80960 Linker and the script in the cold.ld file. The script in cold.ld directs the
linker to locate the linked code at address 0.

4. Burn the output file from the linker in an EPROM.

example.lst

1 0000 FhEFFERER AR R R R R R R R R R R R R R R R R R
2 0000 #

3 0000 # Below is example system initialization code and tables.

4 0000 # The code builds the prcb in memory, sets up the stack frame,

5 0000 4 the interrupt, fault, and system procedure tables, and

6 0000 # then vectors to a user defined routine.

7 0000 #

8 0000 FHEFRFHERFEE AR AR ER AR AR AR AR R R R R R R R R R R R R
9 0000
10 0000 # —----- declare the below symbols public

~ 11 0000

12 0000 .globl system_address_table

13 0000 .globl prcb_ptr

14 0000 .globl start_ip

15 0000 .globl csl

16 0000

17 0000 .globl wuser_stack

18 0000 .globl sup_stack

®
|nte| INITIALIZATION CODE
19 0000 .globl intr_stack
20 0000
21 0000 # - define IAC address
22 0000
23 0000 .set local IAC, 0xff£000010
24 0000
25 0000 # ————— core initialization block (located at address 0)
26 0000 # ---— (8 words)
27 0000
28 0000 .text
29 0000 00000140 .word system_address_table # SAT pointer
30 0004 00000020 word prcb_ptr # PRCB pointer
31 0008 00000000 .word O
32 000c 000001e8 word start_ip # Pointer to first IP
33 0010 00000000 .word csl # calculated at link time
34 0014 00000000 .word 0 # csl = -(segtab + PRCB + startup)
35 0018 00000000 .word 0
36 001lc fEfffffff .word -1
37 001c
38 001lc
39 001lc # --—-— initial PRCB
40 001c #
41 001c # —m———- This is our startup PRCB. After initialization, this will
42 001c # om———— Be copied to RAM
43 0020 prcb_ptr:
44 0020 00000000 .word 0x0 # 0 - reserved
45 0024 00000000 .word 0x0 # 4 - initialize to 0
46 0028 00000000 .word 0x0 # 8 - reserved
47 002c 00000000 .word 0x0 # 12 - reserved
48 0030 00000000 .word 0x0 # 16 - reserved
49 0034 00000000 .word intr_table # 20 - interrupt table address
50 0038 00000£50 .word intr_stack # 24 - interrupt stack pointer
51 003c 00000000 .word 0x0 # 28 - reserved
52 0040 0000027f .word 0x0000027f # 32 -
53 0044 0000027f .word 0x0000027f # 36 -
54 0048 00000000 .word fault_table # 40 - fault table
55 004c 00000000 .word 0x0 # 44 - reserved
56 0050 .space 12 # 48 - reserved
57 005¢c 00000000 .word 0x0 # 60 - reserved
58 0060 .space 8 # 64 - reserved
59 0068 00000000 .word 0x0 # 72 - reserved
60 006c 00000000 .word 0x0 # 76 - reserved
61 0070 .space 48 # 80 - scratch space (resumption)
62 00a0 .space 44 # 128 - scratch space (error)
63 00a0
64 00a0
65 00a0 # The system procedure table will only be used if software puts the
66 00a0 # processor into user mode and makes a supervisor procedure call
67 00a0
68 00cc .align 6
69 0100 sys_proc_table:
70 0100 00000000 .word 0 # Reserved 0
71 0104 00000000 .word 0 # Reserved 4
72 0108 00000000 .word 0 # Reserved 8
73 010c 00001150 .word sup_stack # Supervisor stack pointer 12
74 0110 00000000 .word 0 # Preserved
75 0114 00000000 .word 0 # Preserved
76 0118 00000000 .word 0 # Preserved
77 01lc 00000000 .word 0 # Preserved
78 0120 00000000 ! .word 0 # Preserved
79 0124 00000000 .word 0 # Preserved
80 0128 00000000 .word 0 # Preserved
81 012c 00000000 .word 0 # Preserved
82 0130 000001e0 .word proc_entry 0 # Procedure entry 0 (user)
83 0134 00000le6 .word (proc_entry 1 + 0x2) # Procedure entry 1 (sup.
84 0134
85 0134
86 0134 # -- initial segment table
87 0134
88 0138 .align 6
89 0140 system_address_table:
90 0140 .space 136 # reserve 136 bytes
91 0140
92 01c8 00000140 .word system_address_table
93 O0lcc 00fc00fb .word 0x00£fc00fb # initialization words
94 01d0 .space 8
95 01d0

D-3

intef INITIALIZATION CODE
96 01d8 00000100 .word sys_proc_table # initialization words
97 0ldc 304400fb .word 0x304400fb
98 0ldc
99 0ldc
100 Oldc #
101 Oldc # -- Below are two "dummy" system procedures. In reality, these
102 0ldc # -- would contain the real system code, rather than returns
103 0le0 .align 4
104 0le0 .text
105 01e0 proc_entry 0:
106 01e0 0a000000 ret # These pointers are to dummy
107 Ole4 proc_entry 1: # supervisor routines. They
108 0le4 0a000000 ret # are for example only
109 Ole4
110 Ole4 # --- Processor starts execution at this spot after reset.
111 Oled # -
112 0le8 start_ip:
113 0les8
114 Ole8 # -
115 Oles8 # -- copy the interrupt table to RAM
116 Oles8 -
117 0le8 8c800400 lda 1024, g0 # load length of int. table
118 Olec 8ca00000 lda 0, g4 # initialize offset to 0
119 01£f0 8c883000 00000000 lda intr_table, gl # load source
120 01f8 8c903000 00000290 lda intr_ram, g2 # load addrss of new table
121 0200 000040 Ob bal loop_here # branch to move routine
122 0200
123 0200 # --
124 0200 # -- Processor will copy PRCB to ram space, located at prcb_ram
125 0200 # -
126 0204 8c8000b0 lda 176, g0 # load length.of prcb
127 0208 8ca00000 lda 0, g4 # initialize offset to 0
128 020c 8c883000 00000020 lda prcb_ptr, gl # load source
129 0214 8c903000 00000690 lda prcb_ram, g2 # load destination
130 021c 000024 0b bal loop_here # branch to move routine
131 021c # -
132 021c # -- fix up the prcb to point to a new interrupt table
133 021c # --
134 0220 8ce03000 00000290 lda intr_ram, gl2 # load address
135 0228 92e4a014 st gl12,20(g2) # store into PRCB
136 0228
137 0228
138 0228 #
139 0228 # -- At this point, the prcb, and interrupt table have
140 0228 # -- been moved to RAM. It is time
141 0228 # -- to issue a REINITIALIZE IAC, which will start us anew with
142 0228 # -- our RAM based prcb.
143 0228 # -
144 0228 # -- The IAC message, found in the 4 words locatad at the
145 0228 # -- reinitialize_iac label, contain pointers to the current
146 0228 # -- System address table, the new, RAM based PRCB, and to
147 0228 # -- the instruction pointer labeled start_again_ip
148 0228 #
149 0228
150 022c¢c iac:
151 022c 8ca83000 ££000010 lda local_IAC, g5
152 0234 8cb03000 00000280 lda reinitialize_iac, g6
153 023c 6005al115 synmovg g5, g6
154 023c
155 023c # --
156 023c # - Below is the software loop to move data
157 023c # -
158 0240 loop_here:
159 0240 Db0Oc45clé4 1ldg (gl) [g4*1], g8 # load 4 words into g8
160 0244 Db2c49cl4 stq g8, (g2)[g4*1l] # store to ram proc. block
161 0248 59a41094 addi g4,16, g4 # increment index
162 024c 39851ff4 cmpibg g0,g4, loop_here # loop until done
163 0250 84079000 bx (gl4)
164 0250
165 0250
166 0250 #
167 0250 # -- The processor will begin execution here after being
168 0250 # -- reinitialized. We will now set up the stacks and continue
169 0250
170 0254 start_again_ip:
171 0254 8cf83000 00000750 lda user_stack, fp # set up user stack space
172 025c 8c07£400 ffffffcO lda -0x40 (fp), pfp # load pfp (just in case)

D-4

intel

INITIALIZATION CODE

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190,
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

0264
0264
0264
0268
0268
0268
0268
0268
026¢c
0274
0274
0274
0274
0274
0274
0274
0274
0274
0274
0274
0278
0278
0278
0278
0280
0280
0284
0288
028c
028c
028c
028c

0290
0290
0290
0290
0290
0290
0290
0690
0690
0690
0740
0740
0750
0750
0750
0750
0750
0£50
0£50
0£50
0£50
0£50
1150
1150
1150
1150
1150
1150

8c0fe040

5¢cf01e00

8c803000
64840290

86003000

93000000
00000140
00000690
00000254

30001000

00000000

lda

lda
modac

0x40 (fp)

0, gl4

v

sp

0x3b001000,

g0, 90,

g0

- call main code from here

set up current stack ptr

13 arguements.
Tnitialize to 0

= A W W

gl4 used by C compiler
for arguement lists past

g0 # set up arith. controls

to mask unwanted
exceptions

*

- C. Also, no opens are done for stdin, stdout,

- If I/0 is required,
- before the call to main.

R e
|
1

callx

reinitialize_iac:

.word 0x93000000

_main

Note: This setup assumes a main module "main()" written in

or stderr.

the devices would need to be opened

reinitialize iac

.word system_address_table
.word prcb_ram
.word start_again_ip

o other misc.

.data

-- define RAM area to copy the prcb

.align 6
intr_ram:
.space 1024

prcb_ram:
.space 176

.align 6

user_stack:

.space 0x800
intr_stack:

.space 0x200
#

sup_stack:
.space 0x400

the end

use newly copied
start here

stuff

reserved area for the user stack
this can be located anywhere in memory
Size is set depending on application needs

message

prcb

& intr to after initial bootup

reserved area for the interrupt stack
this can be located anywhere in memory

Reserve stack space for

#

supervisor stack

el

INITIALIZATION CODE

f_table.Ist

1 0000

2 0000

3 0000

4 0000

5 0000

6 0000 00000000

7 0004 00000000

8 0008 00000000

9 000c 00000000
10 0010 00000000
11 0014 00000000
12 0018 00000000
13 001c 00000000
14 0020 00000000
15 0024 00000000
16 0028 00000000
17 002¢c 00000000
18 0030 00000000
19 0034 00000000
20 0038 00000000
21 003c 00000000
22 0040 00000000
23 0044 00000000
24 0048 00000000
25 004c 00000000
26 0050 00000000
27 0054 00000000
28 0058 00000000
29 005¢ 00000000
30 0060 00000000
31 0064 00000000
32 0068 00000000
33 006c 00000000
34 0070 00000000
35 0074 00000000
36 0078 00000000
37 007¢c 00000000
38 0080 00000000
39 0084 00000000
40 0088 00000000
41 008c 00000000
42 0090 00000000
43 0094 00000000
44 0098 00000000
45 009¢c 00000000
46 00a0 00000000
47 00ad4 00000000
48 00a8 00000000
49 00ac 00000000
50 00b0O 00000000
51 00b4 00000000
52 00b8 00000000
53 00bc 00000000
54 00cO 00000000
55 00c4 00000000
56 00c8 00000000
57 00cc 00000000
58 0040 00000000
59 00d4 00000000
60 0048 00000000
61 00dc 00000000
62 00e0 00000000
63 00e4 00000000
64 00e8 00000000
65 00ec 00000000
66 00£0 00000000
67 00f4 00000000
68 00f8 00000000
69 00fc 00000000

% Kkkok kK Kk kR ok k ok kR Kk kk Kk kk kK k kKKK Ak kk kK Kk kkkhkkkkkkkkkkhkhk * /

_user_reserved # Type 0 Reserved Fault Handler

Type 6 Reserved Fault Handler

/* User Fault Table
.globl fault_table
.align 8

fault_table:
.word
.word # 4
.word _user_trace; #8
.word 0 #
.word _user_operation;

. .word 0 #
.word _user_arithmetic;
.word
.word _user_real_ arithmetic;
.word #
.word _user_constraint;
.word 0 #
.word _user_reserved #
.word O #
.word _user_protection;
.word 0 #
.word _user_machine; #
.word 0 #
.word _user_reserved;

.word #
.word _user_type;

.word 0 #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word O #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word O #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #
.word _user_reserved # Type
.word 0 #

D-6

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Reserved

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Fault

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

Handler

*/

intel

INITIALIZATION CODE

i_table.lst

LIV S WN R

0000
0000
0000
0000
0000
0004
0024
0028
002¢c
0030
0034
0038
003c
0040
0044
0048
004c
0050
0054
0058
005¢c
0060
0064
0068
006c
0070
0074
0078
007c
0080
0084
0088
008c
0090
0094
0098
009¢c
00a0
00a4
00a8
00ac
00b0
00b4
00b8
00bc
00c0
00c4
00c8
00cc
00d0
0044
00d8
00dc
00e0
00e4
00e8
00ec
00£f0
00f4
00f8
00fc
0100
0104
0108
010c
0110
0114
0118
0llc
0120
0124
0128
012¢c
0130

00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

/* Initial Interrupt Table */
.globl intr_table
.align 6

intr_table:
.word 0 # Pending Priorities
Lfill 8,4,0 # pending Interrupts
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # i1nterrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # i1nterrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_aintrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt

0

4 +

table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table

(0->7) *4
entry 8
entry 9
entry 10
entry 11
entry 12
entry 13
entry 14
entry 15
entry 16
entry 17
entry 18
entry 19
entry 20
entry 21
entry 22
entry 23
entry 24
entry 25
entry 26
entry 27
entry 28
entry 29
entry 30
entry 31
entry 32
entry 33
entry 34
entry 35
entry 36
entry 37
entry 38
entry 39
entry 40
entry 41
entry 42
entry 43
entry 44
entry 45
entry 46
entry 47
entry 48
entry 49
entry 50
entry 51
entry 52
entry 53
entry 54
entry 55
entry 56
entry 57
entry 58
entry 59
entry 60
entry 61
entry 62
entry 63
entry 64
entry 65
entry 66
entry 67
entry 68
entry 69
entry 70
entry 71
entry 72
entry 73
entry 74
entry 75

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147
148
149
150
151

0134
0138
013c
0140
0144
0148
0l4c
0150
0154
0158
015c
0160
0164
0168
0l6c
0170
0174
0178
017¢
0180
0184
0188
018c
0190
0194
0198
019c
01a0
0la4
0la8
Olac
01b0
01b4
01b8
O0lbc
01cO
0lc4
0lc8
Olcc
01d0
0144
01d8
0ldc
0le0
0le4d
Oles8
Olec
01£0
01f4
01£8
Olfc
0200
0204
0208
020c
0210
0214
0218
021c
0220
0224
0228
022c
0230
0234
0238
023c
0240
0244
0248
024c
0250
0254
0258
025c
0260
0264

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
60000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

INITIALIZATION CODE

.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word ._user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt
.word _user_intrh; # interrupt

D-8

table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table
table

entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry

®
|nte| INITIALIZATION CODE
152 0268 00000000 .word _user_intrh; # interrupt table entry 143
153 026c 00000000 .word _user_intrh; # interrupt table entry 144
154 0270 00000000 .word _user_intrh; # interrupt table entry 145
155 0274 00000000 .word _user_intrh; # interrupt table entry 146
156 0278 00000000 .word _user_intrh; # interrupt table entry 147
157 027¢c 00000000 .word _user_intrh; # interrupt table entry 148
158 0280 00000000 .word _user_intrh; # interrupt table entry 149
159 0284 00000000 .word _user_intrh; # interrupt table entry 150
160 0288 00000000 .word _user_intrh; # interrupt table entry 151
161 028c 00000000 .word _user_intrh; # interrupt table entry 152
162 0290 00000000 .word _user_intrh; # interrupt table entry 153
163 0294 00000000 .word _user_intrh; # interrupt table entry 154
164 0298 00000000 .word _user_intrh; # interrupt table entry 155
165 029c 00000000 .word _user_intrh; # interrupt table entry 156
166 02a0 00000000 .word _user_intrh; # interrupt table entry 157
167 02a4 00000000 .word _user_intrh; # interrupt table entry 158
168 02a8 00000000 .word _user_intrh; # interrupt table entry 159
169 02ac 00000000 .word _user_intrh; # interrupt table entry 160
170 02b0 00000000 .word _user_intrh; # interrupt table entry 161
171 02b4 00000000 .word _user_intrh; # interrupt table entry 162
172 02b8 00000000 .word _user_intrh; # interrupt table entry 163
173 02bc 00000000 .word _user_intrh; # interrupt table entry 164
174 02c0 00000000 .word _user_intrh; # interrupt table entry 165
175 02c4 00000000 .word _user_intrh; # interrupt table entry 166
176 02c8 00000000 .word _user_intrh; # interrupt table entry 167
177 02cc 00000000 .word _user_intrh; # interrupt table entry 168
178 02d0 00000000 .word _user_intrh; # interrupt table entry 169
179 02d4 00000000 .word _user_intrh; # interrupt table entry 170
180 02d8 00000000 .word _user_intrh; # interrupt table entry 171
181 02dc 00000000 .word _user_intrh; # interrupt table entry 172
182 02e0 00000000 .word _user_intrh; # interrupt table entry 173
183 02e4 00000000 .word _user_intrh; # interrupt table entry 174
184 02e8 00000000 .word _user_intrh; # interrupt table entry 175
185 02ec 00000000 .word _user_intrh; # interrupt table entry 176
186 02£f0 00000000 .word _user_intrh; # interrupt table entry 177
187 02f4 00000000 .word _user_intrh; # interrupt table entry 178
188 02£8 00000000 .word _user_intrh; # interrupt table entry 179
189 02fc 00000000 .word _user_intrh; # interrupt table entry 170
190 0300 00000000 .word _user_intrh; # interrupt table entry 171
191 0304 00000000 .word _user_intrh; # interrupt table entry 172
192 0308 00000000 .word _user_intrh; # interrupt table entry 173
193 030c 00000000 .word _user_intrh; # interrupt table entry 174
194 0310 00000000 .word _user_intrh; # interrupt table entry 175
195 0314 00000000 .word _user_intrh; # 1nterrupt table entry 176
196 0318 00000000 .word _user_intrh; # interrupt table entry 177
197 031lc 00000000 .word _user_intrh; # interrupt table entry 178
198 0320 00000000 .word _user_intrh; # interrupt table entry 179
199 0324 00000000 .word _user_intrh; # interrupt table entry 180
200 0328 00000000 .word _user_intrh; # interrupt table entry 181
201 032c 00000000 .word _user_intrh; # interrupt table entry 182
202 0330 00000000 .word _user_intrh; # interrupt table entry 183
203 0334 00000000 .word _user_intrh; # interrupt table entry 184
204 0338 00000000 .word _user_intrh; # interrupt table entry 185
205 033c 00000000 .word _user_intrh; # interrupt table entry 186
206 0340 00000000 .word _user_intrh; # interrupt table entry 187
207 0344 00000000 .word _user_intrh; # interrupt table entry 188
208 0348 00000000 .word _user_intrh; # interrupt table entry 189
209 034c 00000000 .word _user_intrh; # interrupt table entry 190
210 0350 00000000 .word _user_intrh; # interrupt table entry 191
211 0354 00000000 .word _user_intrh; # interrupt table entry 192
212 0358 00000000 .word _user_intrh; # interrupt table entry 193
213 035¢c 00000000 .word _user_intrh; # interrupt table entry 194
214 0360 00000000 .word _user_intrh; # interrupt table entry 195
215 0364 00000000 .word _user_intrh; # interrupt table entry 196
216 0368 00000000 .word _user_intrh; # interrupt table entry 197
217 036c 00000000 .word _user_intrh; # interrupt table entry 198
218 0370 00000000 .word _user_intrh; # interrupt table entry 199
219 0374 00000000 .word _user_intrh; # interrupt table entry 200
220 0378 00000000 .word _user_intrh; # interrupt table entry 201
221 037¢c 00000000 .word _user_intrh; # interrupt table entry 202
222 0380 00000000 .word _user_aintrh; # interrupt table entry 203
223 0384 00000000 .word _user_intrh; # interrupt table entry 204
224 0388 00000000 .word _user_intrh; # interrupt table entry 205
225 038c 00000000 .word _user_ intrh; # interrupt table entry 206
226 0390 00000000 .word _user_intrh; # interrupt table entry 207
227 0394 00000000 .word _user intrh; # interrupt table entry 208
228 0398 00000000 .word _user_ intrh; # interrupt table entry 209

D-9

®
|nte| INITIALIZATION CODE
229 039c 00000000 .word _user_intrh; # interrupt table entry 210
230 03a0 00000000 .word _user_intrh; # interrupt table entry 211
231 03a4 00000000 .word _user_intrh; # interrupt table entry 212
232 03a8 00000000 .word _user_intrh; # interrupt table entry 213
233 03ac 00000000 .word _user_intrh; # interrupt table entry 214
234 03b0 00000000 .word _user_intrh; # interrupt table entry 215
235 03b4 00000000 .word _user_intrh; # interrupt table entry 216
236 03b8 00000000 .word _user_intrh; # interrupt table entry 217
237 03bc 00000000 .word _user_intrh; # interrupt table entry 218
238 03c0 00000000 .word _user_intrh; # interrupt table entry 219
239 03c4 00000000 .word _user_intrh; # interrupt table entry 220
240 03c8 00000000 .word _user_intrh; # interrupt table entry 221
241 03cc 00000000 .word _user_intrh; # interrupt table entry 222
242 03d0 00000000 .word _user_intrh; # interrupt table entry 223
243 03d4 00000000 .word _user_intrh; # interrupt table entry 224
244 03d8 00000000 .word _user_intrh; # interrupt table entry 225
245 03dc 00000000 .word _user_intrh; # interrupt table entry 226
246 03e0 00000000 .word _user_intrh; # interrupt table entry 227
247 03e4 00000000 .word _user_intrh; # interrupt table entry 228
248 03e8 00000000 .word _user_intrh; # interrupt table entry 229
249 03ec 00000000 .word _user_intrh; # interrupt table entry 230
250 03f0 00000000 .word _user_intrh; # interrupt table entry 231
251 03f4 00000000 .word _user_intrh; # interrupt table entry 232
252 03f8 00000000 .word _user_intrh; # interrupt table entry 233
253 03fc 00000000 .word _user_intrh; # interrupt table entry 234
254 0400 00000000 .word _user_intrh; # interrupt table entry 235
255 0404 00000000 .word _user_intrh; # interrupt table entry 236
256 0408 00000000 .word _user_intrh; # interrupt table entry 237
257 040c 00000000 .word _user_intrh; # interrupt table entry 238
258 0410 00000000 .word _user_intrh; # interrupt table entry 239
259 0414 00000000 .word _user_intrh; # interrupt table entry 240
260 0418 00000000 .word _user_intrh; # interrupt table entry 241
261 041c 00000000 ‘.word _user_intrh; # interrupt table entry 242
262 0420 00000000 .word _user_intrh; # interrupt table entry 243
263 0424 00000000 .word _user_intrh; # interrupt table entry 244
264 0428 00000000 .word _user_intrh; # interrupt table entry 245
265 042c 00000000 .word . _user_intrh; # interrupt table entry 246
266 0430 00000000 .word _user_intrh; # interrupt table entry 247
267 0434 00000000 .word _user_intrh; # interrupt table entry 248
268 0438 00000000 .word _user_intrh; # interrupt table entry 249
269 043c 00000000 .word _user_intrh; # interrupt table entry 250
270 0440 00000000 .word _user_intrh; # interrupt table entry 251
271 0444 00000000 .word _user_intrh; # interrupt table entry 252
272 0448 00000000 .word _user_intrh; # interrupt table entry 253
273 044c 00000000 .word _user_intrh; # interrupt table entry 254
274 0450 00000000 .word _user_intrh; # interrupt table entry 255

intel

INITIALIZATION CODE

f_handler.c

user_reserved() {}
user_machine () 8
user_trace () {}
user_operation () {}
user_arithmetic () {}
user_real_arithmetic() {}
user_constraint () {}
user_protection() {}
user_type () {}
i_handler.c

user_intrh()
{
}

cold.ld

MEMORY
{
rom: o0=0x0,1=0x40000
ram: o0=0x40000,1=0x40000
}

SECTIONS

{
.text :
{

} >rom

.data :

} >ram

}

csl = -(system_address_table + prcb_ptr + start_ip);

Appendix
Considerations for
Writing Portable Software

v

APPENDIX E
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

This appendix describes those parts of the 80960KB processor design that are implementation
dependent. This information is provided to facilitate the design of programs and kernel code
that will be portable to other implementations of the 80960 architecture.

ARCHITECTURE RESTRICTIONS

The following aspects of the 80960KB’s operation are deviations from the 80960KB architec-
ture:

1. On all bus write operations except those of the synmov, synmovl, and synmovq instruc-
tions, the processor ignores the BADAC pin (i.e., errors signaled on "normal” writes are
ignored).

2. The check for out-of-range input values for the expr, exprl, logepr, and logeprl instruc-
tions is omitted; out-of-range inputs yield an undefined result.

3. Bits 5 and 6 of a machine-level instruction word in the REG and MEMB formats and bits
0 and 1 of the CTRL format are provided to designate special function registers. The
80960KB processor has no special function registers.

4. The 80960KB processor does not guarantee that the value in register r2 of the current
frame is predictable.

5. (The following is a note rather than a restriction.) When using the REG-format instruc-
tions, the m bit for every operand that is not defined by the instruction should be set (e.g.,
code the unused operand as an arbitrary literal). This practice may reduce overhead in
some situations.

SALIGN PARAMETER

Stack frames in the 80960KB architecture are aligned on (SALIGN*16) byte boundaries.
SALIGN is an implementation defined parameter. For the 80960KB processor, SALIGN is 4.
Stack frames for this processor are thus aligned on 64 byte boundaries.

The low-order N bits of the FP are ignored and always interpreted to be zero. The N parameter
is defined by the following expression: SALIGN*16 = 2N. Thus for the 80960KB processor,
Nis6.

BOUNDARY ALIGNMENT

The physical-address boundaries on which an operand begins has an impact on processor
performance. For the 80960KB processor, the following is true:

e An operand that spans more word boundaries than necessary (e.g., addressing a 32-bit
operand on a nonword boundary) suffers a moderate cost in speed because of extra bus
and memory cycles.

inte|° CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

e An operand that spans a 16-byte boundary suffers a large cost in speed.
o String operands that begin on nonword boundaries suffer a moderate cost in speed. String

operands that begin on word boundaries but not on 16-byte boundaries suffer a small cost
in speed.
FAULTS

The size of resumption records conditionally placed on the stack during faults and interrupts is
16 bytes.

PHYSICAL MEMORY

The upper 16M bytes of physical memory are reserved for special functions of local-bus
components and IACs.

IACS

The mechanism for sending, receiving, and handling IAC messages is not defined in the 80960
architecture. It is a special implementation of the 80960KB processor.

The write-external-priority flag in the IMI controls is not defined in the 80960 architecture.

INTERRUPTS

The interrupt IAC message, the interrupt pins, and the interrupt register are not defined in the
80960 architecture. They are special implementations for the 80960KB processor.

INITIALIZATION
The 80960 architecture does not define an initialization mechanism. The initialization

mechanism and procedures described in this manual are implementation dependent for the
80960KB processor. :

BREAKPOINTS

The breakpoint registers in the 80960KB processor are not defined in the 80960 architecture.

'IMPLEMENTATION DEPENDENT INSTRUCTIONS

The synmov, synmovl, synmovq, and synld instructions are not defined in the 80960 architec-
ture and are implementation dependent in the 80960KB processor.

inte|° CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE

LOCK PIN

The LOCK pin is not defined in the 80960 architecture and is implementation dependent in the
80960KB processor.

Index

INDEX

80960 Architecture
branch prediction 2-3
extensions included in 2-5
implementation dependent aspects of

80960KB processor E-1

instruction cache 2-2
load and store model
local register sets 2-2
overview of 2-1
parallel instruction execution 2-2
register scoreboarding 2-3

2-2

A

Abase 5-7

Absolute addressing mode, description of

5-7

AC.cc 11-3

Add instructions 6-6

Add with Carry Instruction 6-7

addc 6-7,11-6

addi, addo 6-6, 11-7

addr, addrl 11-8, 12-17

addr, notation 11-2

Address space
address 7-7
description of 7-7

Addressing modes, used in instructions
abase 5-7
absolute 5-7
description of 5-5
index 5-7
index with displacement
IP with displacement 5-8
literal 5-6
register 5-7
register indirect 5-7
register indirect with index 5-7
scale factor 5-7

5-7

alterbit 6-12, 11-10, 12-15
and, andnot 6-9, 11-11
Architecture
See 80960 Architecture
Arithmetic controls
arithmetic status field 3-9
condition code flags 3-8
description of 3-7
fault masks and flags 9-7
floating-point flags and masks 3-10
floating-point normalizing mode flag
3-10
floating-point rounding control field
3-10
functions of bits
initializing 3-7
integer-overflow flag and mask 3-9
modify arithmetic controls instruction
6-15
modifying 3-7
no imprecise faults flag 3-10, 9-13
saving and restoring 3-7
structure of 3-7
Arithmetic faults 9-16
Arithmetic status field 12-11, 12-17
description of 3-9
Arithmetic zero-divide fault
11-53, 11-58, 11-80
atadd 6-6, 6-14, 11-12
atanr, atanrl 11-13, 12-18
atmod 6-6, 6-14, 11-15
Atomic operations
atomic instructions
description of 7-8

3-8

9-2, 9-16,

6-14

B
b 6-10,11-18
Bad access fault 9-2, 9-21

intel

INDEX

bal, balx 4-15, 6-10, 10-4, 11-16
bbc, bbs 6-11, 11-20
BCL C-2
be, bg, bge 6-11, 11-22
Biased exponent 12-3, 12-4
Bits and bit fields
bit addressing 5-5
bit field instructions 6-12
bit operation instructions: 6-12
description of 5-4
bl, ble, bne 6-11, 11-22
bno,bo 6-11,11-22,12-17
Branch and link
description of 4-15
instructions 6-10
Branch prediction 2-3
Branch trace
event flag 10-2
fault 9-2,9-23
mode 10-4
mode flag 10-2
Breakpoint registers
description of 10-5, 10-6
set breakpoint register IAC 10-5, 13-11
Breakpoint trace ‘
event flag 10-2
fault 9-2,9-23,11-66, 11-78
mode 10-5
mode flag 10-2
Bus control logic
See BCL
bx 6-10,11-18
Byte addressing 5-5

C
call 4-8,4-13,6-13,9-7, 10-4, 11-25
Call instructions 6-13
Call trace
event flag 10-2
fault 9-2,9-23
mode 10-4
mode flag 10-2

calls 4-9,4-13,6-13, 9-4, 10-3, 10-5, 11-27
callx 4-8,4-13,6-13,9-4,9-7,10-4, 11-29
Check bit and branch instructions 6-11
Check-sum words 7-10, 7-15

chkbit 6-12, 11-31, 12-15

classr, classrl 11-32, 12-11, 12-17, 12-20
Clear, definition of 1-4

clrbit 6-12,11-34

cmpdeci, cmpdeco 6-10, 11-36

cmpi 6-9,11-35 ,
cmpibe, cmpibne, cmpibl, cmpible,

cmpibg, cmpibge, cmpibo,
cmpibno 6-11,11-42

cmpinci, cmpinco 6-10, 11-37

cmpo 6-9, 11-35

cmpobe, cmpobne, cmpobl, cmpoble,

cmpobg, cmpobge 6-11, 11-42
cmpor, cmporl 11-38, 12-17
cmpr, cmprl 11-40, 12-17
Compare and branch instructions 6-11
Compare and decrement instructions 6-10
Compare and increment instructions 6-10
Compare instructions 6-9
concmpi, concmpo 6-9, 11-45
Condition code
See Condition code flags
Condition code flags
description of 3-8
in floating-point compare instructions
12-17
in floating-point operations
12-17
in test instructions 6-15
modification of 6-15
Condition code scoreboarding C-8, C-12,
C-13
Conditional branch instructions 6-11
Conditional compare instructions 6-9
Constraint faults 9-17
Constraint range fault 9-2,9-17, 11-63

12-11,

intal

INDEX

Continue initialization IAC 13-6

cosr, cosrl 11-46, 12-18

cpyrsre, cpysre 11-48, 12-15, 12-20
cvtilr, cvtir 11-49, 12-16

cvtri, cvtril, cvtzri, cvtzril 11-50, 12-16

D
daddc 6-16,11-52
Data length conversion 6-13
Data structures, quick reference A-10
Data types
bits and bit fields 5-4
decimal 5-3
description of 5-1
integer 5-1
ordinal 5-1
quad word 5-4
real 5-2
triple word 5-4
Debugging support
overview of 2-5
See also Tracing
Decimal Multiplication and Division 6-16

Decimals
data type 5-3
instructions 6-16

multiplication and division 6-16
Denormalized numbers
definition of 12-4
denormalization technique 12-5
disp, notation 11-2
divi, divo 6-6, 11-53
Divide instructions 6-6
divr, divrl 11-54, 12-17
dmovt 6-16, 11-56
dsubc 6-16, 11-57

E

ediv 6-8,11-58
efa, notation 11-2
emul 6-8,11-59

Exceptions, floating-point
See Floating point faults
Execution environment
address space 3-3
arithmetic controls 3-7
description of 3-1
floating-point registers 3-4
global registers 3-3
instruction cache 3-11
instruction pointer - 3-6
local registers 3-5
process controls 3-11
trace controls 3-11
Execution mode
description of 4-13
execution mode flag 4-5, 7-4
Exponent, in floating point format 12-2
expr, exprl 11-60, 12-19
Extended . multiply and divide instructions
6-8
External IACs
See IACs
extract 6-12, 11-62

F
FAILURE pin 7-14
Fault handling
control flags and masks 9-7
fault handler, description of 9-1
fault handler, procedures 9-6
fault handling actions 9-10
fault handling method 9-3
local calls to fault handling procedures
9-4
overview of fault-handling facilities
9-1
possible fault-handler actions 9-6
procedure table calls to fault handling
procedures 4-11
program and instruction resumption fol-
lowing a fault 9-6
software requirements for handling faults
9-3

INDEX

intel°

support for 2-4 ,
system procedure table calls to fault han-
dling procedures 9-4 .
See also Fault record, Fault table, Faults
Fault record
description of 9-8
location of fault record 9-10
location of resumption record 9-10
resumption record 9-9 S
saved instruction pointer 9-9
Fault table 9-3
description of '7-2, 9:4
fault table entries * 9-4
fault table pointer in IMI' 7-12 . .
location of in memory 9-4 -
required at initialization 7-9
Fault table pointer 7:12
Fault-if instructions ‘9-8
faulte, faultne, faultl, faultle, faultg,
faultge, faulto, faultno 6-14,
11-63
Faults
arithmetic faults 9-16
constraint faults 9-17
description of 7-3
fault instructions 6-14, 9-8
floating-point faults 9-18
interrupts and faults 9-3)
location of resumption record 9-10
machine faults 9-21
multiple fault conditions 9-3
operation faults 9-20 |
precise and imprecise faults 9-13
program state after a fault 9-11
protection faults 9-22
reference information on faults *9-14
resumption record 9-9
saved instruction pointer 9-9
saved process controls 9-11
signaling a fault, 9-8
standard faults 11-3
trace faults 9-23
, type faults 9-25

types and subtypes 9-1
See also Fault handling, Fault record
flit, notation 11-2 !
Floating inexact fault 9-2, 9-18, 11-8,
11-13, 11-46, 11-49, 11-60, 11-70,
11-72, 11-75, 11-86, 11-89, 11-98,
11-104, 11-105, 11-112, 11-115,
11-121, 11-129, 12-25, 12-26
Floating inexact flag and mask 9-7, 12-11,
12-25 .
Floating invalid-operation fault 9-2, 9-18,
11-8, 11-13, 11-38, 11-40, 11-46,
11-54, 11-60, 11-70, 11-72, 11-75,
11-86, 11-89, 11-98, 11-104,
11-105, 11-112, 11-115, 11-121,
11-129, 12-23
Floating invalid-operation flag and mask
9-7,12-11, 12-20, 12-23
Floating overflow fault 9-2, 9-18, 11-8,
11-54, 11-72, 11-75, 11-86, 11-89,
11-98, 11-104, 11-105, 11-115,
11-121, 11-129, 12-24
Floating overflow flag and mask 9-7,
12-11, 12-24, 12-25
Floating point
architecture support for 12-1
arithmetic controls 12-11
arithmetic vs. non-arithmetic instructions
12-20
basic arithmetic instructions 12-17
biased exponent 12-3, 12-4
branch instructions 12-17
classification instructions 12-17
comparison instructions 12-\1‘7
data movement instructions 12-15
data type conversion 12-15
denormalized numbers 12-4
execution environment for floating-point
operations 12-7
exponent 12-2
exponential instructions 12-19
finite values 12-4
floating inexact exception 12-25

intgl

INDEX

floating invalid operation exception
12-23

floating overflow exception 12-24

floating reserved encoding exception
12-22

floating underflow exception 12-24

floating zero-divide exception and fault
12-23

format of binary floating-point numbers
12-2

fraction 12-2

IEEE standard 12-1, 12-2, 12-4, 12-6,
12-7, 12-14, 12-17, 12-19

infinities 12-6

instruction format 12-14

instruction operands 12-14

integer 12-2

j-bit 12-2

literals 12-14

loading and storing floating-point values
12-9

logarithmic instructions 12-19

moving floating-point values 12-10

NaNs 12-4,12-20

normalized number 12-3

normalizing mode 12-12

pi 12-18 _

real data types 5-2, 12-7

real number and NaN encodings 12-4

real number formats 12-7

real number notation 12-3

real number system 12-1

reall number and NaN encodings 12-7

register alignment for floating-point
values 12-9

registers, storage of floating-point num-
bersin 12-8

rounding control 12-12

scale instructions 12-19

sign bit 12-2

significand 12-2

summary of floating-point instructions
12-15

support for 2-5

trigonometric instructions 12-18
underflow condition 12-26
zeros 12-4
See also Floating point faults
Floating point faults 9-18
exceptions 12-6, 12-21
fault handling 12-21, 12-22
floating inexact exception 12-21
floating invalid operation exception
12-21
floating overflow exception 12-21
floating reserved encoding exception
12-21
floating underflow exception 12-21
floating zero divide exception 12-21
override flags 12-24, 12-25
Floating point unit
See FPU
Floating reserved-encoding fault 9-2, 9-18,
11-8, 11-13, 11-38, 11-40, 11-46,
11-48, 11-54, 11-60, 11-70, 11-72,
11-75, 11-86, 11-89, 11-98,
11-104, 11-105, 11-112, 11-115,
11-121, 11-129, 12-22
Floating underflow fault - 9-2, 9-18, 11-8,
11-13, 11-54, 11-60, 11-70, 11-72,
11-75, 11-86, 11-89, 11-98,
11-104, 11-105, 11-112, 11-115,
11-121, 11-129, 12-25, 12-26
Floating underflow flag and mask 9-7,
12-11, 12-24
Floating zero-divide fault 9-2, 9-18, 11-54,
11-70, 11-75, 11-98, 11-105,
12-23
Floating zero-divide flag and mask 9-7,
12-11, 12-23
Floating-point flags and masks 3-10
Floating-point normalizing mode flag 3-10,
12-11, 12-12
Floating-point registers
description of 3-4
register model 3-3
See Registers

intel

INDEX

Floating-point rounding control field 3-10,
12-11
Flush local registers
instruction 6-15
flushreg 4-7, 6-15, 11-65
fmark 6-14, 10-1, 10-5, 10-6, 11-66
Force Mark Instruction’ 6-14
FP, frame pointer 3-3, 4-14
description of 4-3°
FPU C-8
Fraction, in floating-point format 12-2
Frame pointer
See FP
Frame return status field 8-6
Freeze IAC 13-7
freg, notation 11-2

G

Global registers
description of 3-3
FP 33
register alignment 3-5
register model 3-3
storing of RIP on a branch and link in-
struction 4-15

I

IAC fault 9-2

IAC pin 8-11, 13-4

IACs
continue initialization IAC 13-6
description of 7-3
external IACs 13-1, 13-3
freeze IAC . 13-7
IAC fault 9-2
IACpin 134 -
internal IACs' 13-1
interrupt IAC 13-8
introduction to 13-1
mechanisms for exchanging 13-1
message, description of 13-1
message, format of 13-1

priorities 7-5
purge instruction cache IAC 13-9
receiving and handling external IACs
13-4
receiving and handling internal IACs
13-2
reference information 13-5
reinitialize processor IAC 13-10
sending external IACs 13-3
sending internal IACs 13-2
set breakpoint register IAC 13-11
software requirements for handling IACs
13-2
store system base JAC 13-12
summary of IACs 13-5
test pending interrupts IAC 13-13
ID C-3
IEU C-6
IFU C-3
IMI
caching the IMI in the processor 7-12
changing the IMI 7-12
check-sum words 7-10
description of 7-2,7-9
fault table pointer 7-12
interrupt stack pointer 7-10
interrupt table pointer 7-10
SAT 7-10
scratch space 7-12
system procedure table pointer
7-10
write external pribrity flag 7-10
Index with displacement addressing mode,
description of 5-7
Index, description of 5-7
Indivisible, description of 7-7
Inexact result, definition of 12-12

4-11,

Initial memory image
See IMI
Initialization code example D-1
Initialization of the processor
Building a memory image 7-12
check-sum words 7-10

INDEX

intgl

continue initialization IAC 13-6
description of 7-9
fault table 7-13
first stage of initialization 7-13
IMI 7-9
initialization code 7-12
initialization code example D-1
initialization heap 7-12
initialization PRCB 7-13
initialization stack 7-12
interrupt table 7-13
kernel procedures 7-13
PRCB 7-10
reading the IMI 7-12
reinitialize processor IAC
SAT 7-10,7-12
second stage of initialization 7-15
self test 7-14
typical initialization scenario 7-13
Instruction cache
description of 2-2, 3-11,C-3
purge instruction cache IAC 13-9
Instruction decoder
See ID
Instruction execution unit
See IEU
Instruction fetch unit
See IFU
Instruction list 7-1

13-10

Instruction pointer
See IP
Instruction reference
introduction to 11-1
Notation 11-1
Instruction suspension
description of 7-6
Instruction timing
bit instructions C-10
branch instructions C-13
call and return instructions C-14
decimal instructions C-17
description of C-8
floating point instructions C-17

-7

integer and ordinal arithmetic instruc-
tions C-11
load instructions C-15
logical instructions C-9
multiply and divide instructions C-12
register move instructions C-11
store instructions C-17
Instruction trace
event flag 10-2
fault 9-2,9-23
mode 10-4
mode flag 10-2
Instructions
arithmetic 6-6
assembly-language format 6-1
bit and bit field 6-12
branch 6-10
call and return 6-13
comparison 6-9
data length conversion 6-13
data movement 6-4
debug 6-14
decimal 6-16
detailed reference information 11-1
extended arithmetic 6-7
fault instructions 6-14
instruction groups 6-2
logical 6-9
machine-level instruction forrats B-1
processor management 6-15
quick reference A-1
summary of 80960KB instruction-set ex-
tensions 6-3
summary of 80960 instructions 6-2
See also Machine-level formats
INTO, INT1, INT2, INT3 pins 8-10, 8-11
INTA pin 8-11
Integer overflow
description of 3-9
fault 9-2, 9-12, 9-16, 11-7, 11-50,
11-53, 11-88, 11-97, 11-110,
11-117, 11-120
flag 3-9,9-7,9-16, 12-11

intel

INDEX

mask 3-9,9-7,9-16, 12-11

Integer, description of 5-1
Interagent communication messages

See IACs

Internal state field, of process controls 9-12
Interrupt control register

addresses in memory 8-11
description of 8-10
uses of 8-10

Interrupt handler

used for initialization 7-15

Interrupt handling

interrupt control register 8-10

interrupt handler procedures 8-4

interrupt stack 8-4

interrupt table 8-2

location of interrupt handler procedures
8-4

restrictions on interrupt handler 8-4

software requirements for interrupt han-
dling 8-1

support for 2-3

Interrupt IAC 8-9, 13-8

description of 8-11

Interrupt pins

description of 8-10
uses of 8-10

Interrupt record

description of 8-6

Interrupt stack

description of 7-2, 8-4
interrupt stack pointer in IMI 7-10
required at initialization 7-9

Interrupt stack pointer 7-10
Interrupt table

description of 7-2, 8-2
interrupt table pointer in IMI 7-10
required at initialization 7-9

Interrupt table pointer 7-10
Interrupt vectors, description of 8-2
Interrupts

description of 7-3

executing state interrupt 8-5
idle or stopped state interrupt 8-8
interrupt control register 13-4
interrupt handling actions 8-4
interrupt IAC 8-11, 13-8
interrupt pins 8-10
interrupt record 8-6
interrupted state interrupt 8-6
overview of interrupt facilities 8-1
pending interrupts 8-8
priorities 7-5, 8-2
servicing an interrupt 8-5
signaling interrupts 8-10
stopped-interrupt state interrupt 8-8
test pending interrupts IAC 13-13
vectors 8-2
See also Interrupt handling

INTR pin 8-11

Invalid opcode fault 9-2, 9-20

Invalid operand fault 9-2, 9-20

IP
description of 3-6
procedure-table entry 4-11
storage of 3-6

IP with displacement addressing mode 5-8

J
J-bit 12-2

K

Kernel 1-1
altering process controls 7-5
supervisor procedure 4-13

L
1d, ldib, Idis, 1dl, 1dob, ldos, 1dq, 1dt 5-4,
6-4,11-67, 12-9
lda 3-6, 6-6, 11-69
Length fault 9-2,9-22
lit, notation 11-2
Literal
description of 5-6
floating-point 12-14

intal

INDEX

ordinal 5-6
Load address instruction 6-6
Load instructions 6-4
Local call
call operation 4-8
description of 4-8
return operation 4-8
Local registers
call/return mechanism 4-1
description of 2-2, 3-5
mapping of local register sets to proce-
dure stack 4-7
multiple local register sets 4-3
PFP 3-5
purpose of 3-5
register alignment 3-5
register model 3-3
relationship to procedure stack 4-3
RIP 3-5
SP 3-5
LOCK line 7-8
logbnr, logbnrl 11-70, 12-19
logepr, logeprl 11-72, 12-19
Logical instructions 6-9
logr, logrl 11-75,12-19

M
Machine faults 9-21
Machine-level formats 6-1, B-1
Manual
guideto 1-1
structure of 1-1
mark 6-14, 10-1, 10-5, 10-6, 11-78
Mark Instruction 6-14
mem, notation 11-2
Memory requirements
description of 7-7
restrictions 7-7
Micro-instruction sequencer
See MIS
MIS C-6

Mnemonic 11-2

modac 3-7, 6-15, 11-79

modi 6-8, 11-80

modify 6-12, 11-81

Modify process controls instruction 6-15

Modify trace controls instruction 6-14

modpc 6-15, 7-5, 8-9, 11-82

modtc 6-14,10-2, 11-84

Modulo instructions 6-8

mov, movl, movq, movt 5-4, 6-5, 11-85,
12-10, 12-15

Move instructions 6-5

movr, movre, movrl
12-15, 12-20

muli, mulo 6-6, 11-88

mulr, mulrl 11-89, 12-14,12-17

Multiply instructions 6-6

11-86, 12-9, 12-10,

N

nand 6-9, 1191

NaNs
arithmetic vs. non-arithmetic instructions

12-20 ‘

classify instructions
comparison 12-17
defined 12-6
encodings 12-4, 12-7
extended-real format 12-7
invalid-operation exception
operations on 12-20
QNaN 12-6, 12-17,12-23
QNaN, definition of 12-20
rounding 12-13
SNaN 12-6,12-17, 12-23
SNaN, definition of 12-20
unordered 12-17
unordered classification 3-9

No imprecise faults flag 3-10, 9-7, 9-13

nor 6-9,11-92

Normalized number 12-3

12-17

12-23

Normalizing mode, floating-point normaliz-
ing mode flag 3-10

intel

INDEX

not, notand 6-9, 11-93
Notation 1-3

notbit 6-12,11-94
notor 6-9, 11-95

(0]

Operating-system kernel
See Kernel

Operation faults 9-20

or,ornot 6-9, 11-96

Ordinal, description of 5-1

P

Padding area, description of 4-5
Parameter passing
description of 4-9
in an argument list 4-9
through global registers 4-9

through the procedure stack 4-9

Pending interrupts
checking for 8-9
handling of 8-9
posting of 8-9
servicing of 8-8

PFP 3-5,8-6
description of 4-5

Pi 12-18

PRCB
description of 7-10
store system base IAC 13-12

Prereturn trace
event flag 10-2
fault 9-2,9-23
mode 10-5
mode flag 10-2
prereturn trace flag 4-5

Preserved 1-3

Previous frame pointer

See PFP

Priorities 7-5

Procedure calls)
branch and link 4-15

1-10

call/return mechanism 4-1
FP 4-3

local call 4-8

local registers 4-3
overview of 4-1

padding area 4-5
parameter passing 4-9

PFP 4-5

prereturn trace flag 4-5
procedure linking information 4-3
procedure stack 4-3

return status field 4-5

RIP 4-6

saving of local registers 4-1
SP 4-5

supervisor call 4-13
supervisor stack 4-14
system call 4-9)
system procedure table 4-11

Procedure Stack

call/return mechanism 4-1
description of 4-3

mapping of local registers to 4-7
register save area 4-3, 4-7

stack frames 4-3

Process Controls

changing of 7-5
description of 7-2, 7-3
execution mode flag 7-4
internal state field 9-12
priority field 7-4

state flag 7-4

trace enable flag 7-4

trace fault pending flag 7-4

Process controls word

See Process controls

Processor

execution mode 4-13

freeze IAC 13-7

internal structure of C-1
priorities 7-5

purge instruction cache IAC 13-9
reinitialize processor IAC 13-10

inter INDEX

self test 7-14 Register save area

store system base IAC 13-12 See Procedure stack
Processor Control Block Register scoreboarding 2-3, 3-5, C-6

See PRCB Registers

Processor management addressing of 5-7

instructions 6-15 floating-point registers 2-5, 3-3
Processor management facilities L flush local registers instruction 6-15

faults 7-3 global registers 3-3

IACs 7-3 local registers 3-3

instruction list 7-1 register model 3-3

interrupts 7-3 special function registers 3-1

overview of 7-1 See also Floating-point registers,

system data structures 7-1 " Global registers, Local registers,
Processor management, software require- Special function registers

ments for 7-8 Reinitialize processor IAC 3-7,7-12, 13-10

Processor states Remainder instructions 6-8

description of 7-6 remi, remo 6-8, 11-97

executing state 7-6 remr, remrl 11-98,12-11, 12-17

interrupted state 7-6 Reserved 1-3

stopped state 7-6 RESET pin 7-14

stopped-interrupted state 7-6 Resume flag 8-5, 8-6, 9-10, 9-11, 9-12

Programming e'}"im"“fe“‘ ret 4-8, 6-13, 9-6, 9-10, 9-11, 10-4, 10-5,
See Execution environment 108

Protection faults 9-22
Purge instruction cache IAC 13-9

Q
QNaN
See NaNs
Quad word, description of 5-4

Return
return 11-101
from local call 4-8
from local system call 4-13
from supervisor call 4-14
Return instruction 6-13
Return instruction pointer
See RIP

R Return status field 9-10
Real num'ber description of 4-5

encodings 12-4 encoding of 4-5

systen? 12-1 return from local system call ~ 4-13
reg, notation 11-2 return from supervisor call 4-14
Register bypassing C-7 Return trace
Register indirect addressing modes event flag 10-2

description of 5-7 fault 9-2,9-23
Register indirect addressing modes, descrip- mode 10-4

tion of 5-7 ' mode flag 10-2

11

intel

INDEX

RIP 3-5,3-6

description of 4-6

on.a branch and link 4-15
rotate 6-8,11-103
Rotate instructions 6-8
Rounding control

See Floating-point
field

roundr, roundrl 11-104, 12-17

S
SAT

description of 7-10
Saved IP, for fault 9-9''
Scale factor in addressing, descrlptlon of

5-7
scaler, scalerl 11-105, 12-19, 12-24
scanbit 6-12,11-107
scanbyte 6-13
Scoreboarding
See Register scoreboarding
Scratch space 7-12 °
Self test, of processor 7-14
Set breakpoint register IAC 13-11
Set, definition of 1-4
setbit 6-12,11-109
Shift instructions 6-8
shli, shlo, shrdi, shri, shro 6-8, 11 110
Significand, in floating-point format 12-2
sinr, sinrl 11-112, 12-18
SIZE lines 7-8
SNaN
See NaNs

SP 3-5,4-14

description of 4-5
spanbit 6-12,11-114
Special function registers

description of 3-1
sqrtr, sqrtrl 11-115, 12-17
st, stib, stis, stl, stob, stos, stq, stt- . 5-4,

5-5,6-5,11-117, 12-9

rounding control

Stack
See Procedure stack
Stack frame, definition of < 4-3 °
Stack pointer R
See SP
Standard faults 11-3
STARTUP pin 7-14
Sticky flags, definition of 3-8
Store instructions 6-5
Store system base IAC 13-12
subc 6-7,11-119
subi, subo 6-6,11- 120 ‘
subr, subrl 11-121, 12-17
Subtract instructions 6-6
Subtract with Carry Instruction 6-7
Supervisor call
system call instruction 6-13 |
Supervisor call mechanism
supervisor call 4-13
Supervisor mode. . :
See User-supervisor protection model
Supervisor stack
structure of 4-14
supervisor stack pointer 4-11
Supervisor stack pointer 4-11
Supervisor trace
event flag 10-2
fault 9-2,9-23
mode 10-5 .
mode flag 10-2
syncf 9-13,11-123
synld 6-15,11-124
synmov, synmovl, synmovq 6-15, 11-126,
13-2,13-3
System Address Table . ;
See SAT
System call
description of 4-9
mechanism of, 4-10 .
System data structures
description of 7-1

INDEX

intel

System executive
Kernel 1-1
System procedure table
description of 7-2
procedure entry structure 4-11
structure of 4-11
supervisor stack pointer entry 4-11
system call instruction 6-13
system procedure table pointer in IMI
7-10
trace control flag 4-11
System procedure table call 4-9
See also System call
System procedure table pointer 7-10

T
tanr, tanrl 11-129, 12-18
Terminology 1-3
Test instructions 6-15
Test pending interrupts IAC 13-13
teste, testne, testl, testle, testg, testge,
testo, testno 6-15, 11-131
Trace control flag (in system procedure
table) 4-11, 9-11, 10-1, 10-3,
10-5
Trace controls
See Tracing
Trace enable flag 7-4, 8-6, 9-7, 9-11, 10-1,
10-3, 10-6, 10-7, 10-8
Trace fault pending flag 7-4, 8-6, 9-12,
10-1, 10-3, 10-6, 10-7, 10-8
Trace flag (in return-status field of r0)
10-1,10-3
Tracing
branch trace mode 10-4
breakpoint registers 10-5
breakpoint trace mode 10-5
call trace mode 10-4
fault handlers, tracing with 10-8
handling multiple trace events 10-6
instruction trace mode 10-4
interrupt handlers, tracing with 10-7

modifying trace controls 10-2
overview of trace-control
10-1
prereturn trace handling 10-7
prereturn trace mode 10-5
return trace mode 10-4
signaling a trace event 10-6
software support required for tracing
10-1
supervisor trace mode 10-5
trace control flag (in system procedure
table) 10-3
trace control on supervisor calls 10-3
trace controls 10-1
trace controls word 10-2
trace enable and mode flags 9-7
trace enable flag 10-3
trace event flags 10-2
trace fault handler 10-5
trace fault pending flag 10-3
trace faults 9-23, 10-1, 10-3, 10-5
trace flag (in return-status field of r0)
10-3
trace handling action 10-7
trace mode flags 10-2
trace modes 10-3
tracing instructions 6-14
Triple word, description of 5-4
Type faults 9-25
Type mismatch fault 9-2,9-25, 11-82

facilities

U

Unconditional branch instructions 6-10
Unordered
definition of 3-9
numbers 12-17
User-supervisor protection model
description of 4-13
mode switching 4-13
supervisor call 4-13
supervisor mode 4-13
supervisor procedure 4-13
user mode 4-13

intel° INDEX

w
Words
addressing of 5-5
size 3-3
write external priority flag 7-10

X
xnor, xor 6-9, 11-133

I-14

intel

LITERATURE SALES FORM (EUROPE)

NAME:

COMPANY:
ADDRESS:
PHONE NO.:

ORDER NO. TITLE QTY. PRICE TOTAL
HEEEEENEEE X -
LI]] X -
HEEREEREEE X -
HEEEEESEEE X =
HEEEEEREEE X _
HEEEEESEEN X -
(ITTTTTI-CTT] x _
HEEEEEREEE X _
HEEEEENEEN X _
HEEEEESEEE x _
HEEREENEEE X _

Subtotal
Your Local Sales Tax
Postage
Total
PAYMENT

Cheques should be made payable to your local Intel Sales Office.

Other forms of payment may be available in your country. Please contact the Literature Coordinator at your
local Intel Sales Office for details.

The Completed form should be marked for the attention of the LITERATURE CO-ORDINATOR and returned
to your local Intel Sales Office.

ALABAMA

wm cavdp
15 Bradford Dr , #2
Huntsville
Tel (205) 830-4010
ARIZONA

Intel Corj
‘1225 N gmn Or, #D214
Phoenix 85029
Tel (602) 869-4980

“81 N El Dorado Place
Su 30
Tol (002) 299~GB|5
CALIFORNIA

Intel Corj

1515 Vunowen Street
Suite 116
canogl Park 91303
Tel (818) 704-8500
;gw Corp

50 E Imperial Highwa

Suite 218 pe anwey
El Sogundo 90245
Tel (213) 640-6040
Intel Co
1510 M Way, Sullo 101

Sacramento
Tel (916) emeoss

tintel Corp.
gaso Execullve Drive
uite

San 92121
Tel (619) 452-5880

Intel Corp *

400 N. Tustin Avenue
Suite 450

Santa Ana 92705

Tel (714) 835-9642
TWX 910-595-1114

g‘nm Corp *

in Tomas 4

2700 San Tomas Expressway
Santa Clara, CA 95051

Tel. (408) 986-8086

TWX 910-338-0255

COLORADO
Intel Corj

4445 NOﬁhOlvk Drive
Sune IOO

o5 8 b

intel Corp *
350 S Chcrrg St, Suite 915
Denv

Tel (303) 321-8086
TWX 910-931-2289

CONNECTICUT

intel Corp
Mill Pta-n Road

Danbu
Tel (2& 746-3130
56-1199

FLORIDA
;Inlal Corp
42 N xgosimome Dr
ite 1
Ammon(e s 32714
Tel 5’&8
FAX(303—682

Intel Cow

6363 N W 6th Wﬂ;, Suite 100

Ft Lauderdale

‘el (305) 771-0600
510-956-9407

FAX 305-772-8193

Intaloor.g
11300 4th Street North

S rent
Tel (613 57 2‘!3
FAX. 813-578-

1Sales and Service Office
*Fleld Application Location

DOMESTIC SALES OFFICES

GEORGIA
52 I Corp

80 Pointe Parkway
Suite 200
Norcross 30092
Tel, (404) 449-0541
LLINOIS

300 N umngalo Road, Suite 400
Tel (312) 3’?0-8031
INDIANA
slmﬂ Coidp
777 Purdue Road
Suite 125
Indianapolis 46268
Tel (317) 075-0023
I0WA
tel Corp
s‘ Andrews Building
1930 St Andrews Drive N.E
Cedar Rapids 52402
Tel. (319) 393-5510
KANSAS
;I‘mei Corp
00 W 110th Street
Sutte 170
Overland Park 66210
Tel (913) 345-2727
MARYLAND
7321 Earkwny Drive South
mnov 21076
Tal (301) 796-7500
X 710-862-1944
Intel Corp
5th Floor
7833 Walker Drive
Greent
Tel (301) 441-1020
MASSACHUSETTS

tintel Corp *
Westford Corp Center

Westfor

Tel (6!7%?92-3222
TWX 710-343-6333
MICHIGAN

tintel Corp

7071 Orchard Lake Road
Sutte 1

West Bloomfield 48033
Tel (313) 851-8096
MINNESOTA

Intel Corp
3500 W som St., Suite 360

Bloom:
Tel (812%835-6722
TWX 910-576-2867

MISSOURI
Intel Cory
gzoa Egrlh City Expressway
e
Tel (:m? 291-1990
NEW JERSEY
Intel Corp *
Parkwny 109 Office Center
328 Newman Springs Road
Red Bank 07701
Tel' (201) 747-2233
Intel Corp
280 Corporate Center
75 Livingston Avenue
First Floor

Roseland 07068
Tel (201) 740-0111

NEW MEXICO

Intel Corp
8500 Menual Boulevard N E
Suite B 295

e

Albuquerque 87112

r:“&os;qzsz-m

NEW YORK

Intel Corp

127 Main Street

Binghamton 13905

Tel (607) 773-0337

Intel Corp *

850 Cross Keys Office Park
port 14450

Tol 7|e) 425-2750
510-253-7391

Intel Corp *

300 Motor Parkway
Huupgaugo 11787

Tel)é 16) 231-3300

TWX 510-227-6236

Intel

Smle 28 Holloworook Puvk

NORTH CAROLINA

Intel
5700 Elecunve Center Drive

Churiot\o 28212
Tel (704) 568-8966

;In tel Corp

700 Wgclm Road
Tel":g1 9) 701 -8022
OHIO

Intel Corp *

3401 Park Center Drive
Surte 220

Dayton 45414

Tel (513) 890-5350
TWX 810-450-2528

Intel Corp *
25700 Science Park Dr , Suite 100
44122

Beachwood
Tel (216) 464-2736
TWX 810-427-9298

Oklahoma City 73116
Tel (405) 848-8086

OREGON
tintel Corj

15254 N »ﬂ Greonbnef Parkway, Bidg B

Beaverton 9
Tel (503) 64!
TWX 910467 8741

PENNSYLVANIA

Intel Corp
5 3 Csdnl Clln Drive
Camp Hill 1
Tel (717) 737 5035

Intel Corp *

455 Pennsylvania Avenue
Fort Washington 1

Tel (215) 641-1000

TWX 510-661-2077

Intel Corp *

400 Penn Center Bivd , Suite 610
Pittsburgh 15235

Tel (412) 823-4970

PUERTO RICO

Intel Microprocessor Corp
South industnal Park

PO Box 910

Las Piedras 00671

Tel (809) 733-8616

TEXAS

intel Ce

13 E :'»gsvson Lane
Sutte 31
Austin
Tel (512; 454 3628
tintel Corp *
12300 Ford Road
Suite

Dallas

Tol (2|4) 241 8097
910-860-5617

Tel. (713) 988-1 SOM
TWX 910-881-2490

Intel Corp

5201 Green Street
Suite 290

Murray 84123

Tel (801) 263-8051

VIRGINIA

:504 S?n’lg Rosa Road
ite 108

Sul
Richmond 23288
Tel (804) 282-5668

WASHINGTON
Intel Cory
155-108 Avanue NE
Surt e 386
Belley
Tel (20654
-443-3002
Intel Coaa
408 N Mullan Road
Surte 102
Spokane 99206
Tel (509) 928-8086
WISCONSIN
;gam Corp
S Executive Dr
Suite 102
Brookfield 53005
Tel (414) 784-8087
FAX (414) 796-2115
CANADA
BRITISH COLUMBIA
Intel Semiconductor of Camda, Ld
4585 Canada wn Surte 202
Burnaby V5G 4
298- 7
FAX' (604) 298-8234
ONTARIO
;Imel Semiconductor ol Canada, Ltd
eensview
Surte 250
Ottawa K2B 8HB
Tel (613) 829-9714
TLX 053-4115
tintel Semiconductor of Canada, Ltd
190 Attwell Drive
Surte 500
Rexdale MSW 6H8
Tel (416) 675-2105
TLX 74
FAX (416) 675-2438
QUEBEC
Intel Semiconductor of Canada, Ltd
20 St Jean Boulevard

Pointe Clare H9R 3K3
Tel (514) 694-9130
TWX 514-694-9134

€G-10/20/87

ALABAMA

Arrow Electronics, inc
1015 Henderson Road
Huntsville 35816

Tel. (205) 837-6955

lemllton/Avm Electronics
940 Resnrch Drive

intsville
TM 205 837 7210
-726-2162

Inc.
4825 Unlvou unvemp

TW)} 81 l)~728-21 97

ARIZONA

wslmlnon/Avmt Electronics
S. Mldlson Drive

281
Tol ﬁa'oz 968-1461
TWX 810-850-0077

Khruln Electronics, inc
E. Wood Street

Phoenix 85040
Tel: (802) 437-0750
FAX' 802-252-9109
W le Distribution Group

855 N. Bllck Canyon Highway

Pnoon X 850

3 -2888
FAX 60 866-6937
CALIFORNIA
Arrow Electronics, ':nc

Tel. (818) 701~7500
FAX: 818-772-8930

Avww Electronics, Inc
511 Ridgahnven Court

SIH Di

Tel (61 585—4900

FAX 619-279-0862

tArrow Elomromcs. Inc

521 Weddell D

Sunnyvale 94089

Tﬂ (¢ ‘0003'745 -6600
743-4770

Arrow Electronics, Inc
2961 Dow Avenue
Tustin 92680

Tel (714) 838-5422
FAX 714-838-4151

Avnet Electronics

50 Mc ick Avenue
Costa Mesa 92626
Tel (714) 754-6051
FAX 714-754-6007

Ham-non/Avnel Electronics
175 Bordeaux Drive

Sun Xvulo 94089

Tel (408) 743-3300

FAX' 408-745-6679

tHamilton/Avnet Electronics
4545 Viewridge Avenue

San Diego 92123
Tel 16’1’%571»7500
FAX 619-277-6136
‘tHamilton/Avnet Electronics
\ve
Chatsworth 91311
Tel (818) 700-1222, 6500
FAX 818-700-6553
-»Hamcl(on‘Avrm Electronics
03 ate Boulevard
mento 95834
(918 920-3150
AX 916-925-3478
%mnhon/kvne« Electronics
Ontario 9

1311
Tel (714) 989-9411
FAX 714-980-7129

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd.)

Kierulff Electronics, Inc
10824 Hope Street

ypress
Tel. (7' 14) 220-6300
FAX: 714-821-8420

Kierulff Electronics, Inc.
180 Murphy A;/enuo

9
AX 408-947- 3432

TKhvulﬂ Eloclmnlcs. Inc
}42: ber Rd

Tel' (714) 731-5711
FAX. 714-669-4235

mmm Electronics, Inc

lnol St

Chattswort

TOI (213; 725 0325
7-0803

g&h Distribution Group

77 W. Agoura Rd

Calabasas 91302

Tel 000

FAX: 818-880-5510

1Wsz,a Dll(rlbullcn Group
Cowan Avenue

92714
Tel (714 863-9953
-863-0473

Wyle Distribution Group
11151 Sun Center Drive
Rancho Cordova 95670
Tel. (916) 638-5282
FAX 916-638-1491

;W le Distribution Group
525 Chesapeake Drive
San Dy 1.

Tel: (61 585 9171

W,

1-959;
FAX. 6!9 565 9171 ext 274
;w%le Distribution Group
Avent

FAX 408-727-5896
%e Military

18910 Teller Avenue
Irvine 92715

Tel (714) 851-9958

TWX 310-371-9127
FAX 714-851-8366

Wyle Syst

7382 Lampson Avenue
Garden Grove 92641
Tel (714) 891-1717
FAX 714-895-9038

COLORADO

Arrow Electronics, Inc
1390 S Potomac Street
Sutte 136

Aurora 800

Tel (303) 5964 11

Hamilton/Avnet Electronics
765 E Orchard Road
Suite 708
Englewood 80111
Tel (303) 740-1017
TWX 910-935-0787

1Wyle Distribution Group
451 E 124th Avenue
Thornton 80241

Tel (303) 457-9953

TWX 910-936-0770

CONNECTICUT

tArrow Electronics, Inc
12 Beaumont Road
Wallln%gord 06492

ol (203) 265-7741
TWX 710-476-0162

Hamilton/Avnet Electronics
Commerce Industrial Park

th
10950 W Washington Bivd
Culver City 90230

Tel (213) 558-2458
FAX 213-558-2248

tHamiiton Electro Sales
3170 Pullman Street
Costa Mesa 9

Tel (714) 641-4150
FAX 714-641-4122

"
Tel (255 7072600
 757-2866

tPioneer Northeast Electronics
112 Main Street

Norwalk 51

Tel (203) 853-1515

TWX 710-468-3373

tMicrocomputer System Technical Distributor Centers

FLORIDA

Arrow Electronics, Inc
Fairway Drive
Deerfield Beach
Tel (305) 429-8200
TWX: 510-955-9456
Arrow Electronics,
1001 N W 62nd S' S's 108
Ft Lauderdale 33309

Tel)5305 475-4297
-955-9456

1Anow Eloclvonlct. Inc
1530 N E

Paim B I
Tel (30 30480

wonmlhon/Awm Electronics

Tel' (305) 971-2900
TLX: 510-956-3097

Hamilton/Avnet Elocl'omcs
3245 Tech Drive Nort
Petersburg 337 %"

T‘ol ’galsmam

Hamilton/Avnet Electronics
6947 University Boulevard
wm(argark 32 92

303 628-! 3306 ext 40

Pioneer Electronics
7 N. Lake Blvd Ste WOO

Alm Monh s 3270°
305 SSLooH

TWX 810-853-0284

Pioneer Electronics
674 s Mll-mry TVIII
h 33442

Tol 305 lZB 8877
-955-9653

GEORGIA

!‘Arrow Electronics, Inc

s1.‘55 Northwoods Parkway
ut e

Tal (404 449-8252
FAX 404-242-6827

HumnltonP/Avnet Electronics
5825 D Peachtree Corners East

Norcross 30092

Tel (404) 447-7500

TWX 810-766-0432
Pioneer Electronics

3100 F Northwoods Place
Norcross 300

Tel (404) 448-1711

FAX 404-446-8270

ILLINOIS

Arrow Electronics, Inc
000 E Alonquin Street

17.
Tel (312) 397-3440
FAX 312-397-3550

tNammon/Avne\ Elsc!vonlcs
1130 Thorndale

Tel (312) 860-7780
TWX 910-227-0060

Kierulff Electronics, Inc
1140 W Thorndale

Itasca 60143
Tel (312) 250-0500
FAX 312-250-0916

MTI Systems Sales
1!00 est Tnomdals

Itasc:
Tel (3|2) 22300

tPioneer Electronics
1551 Carmen Drive

Elk Grove Village 60007
Tel (312&437-

TWX 910-222-1

INDIANA

Arrow Electronics, Inc

495 Directors Row, Suite H
Indianapolis 46241
Tel (317) 243-9353
TWX 810-341-3119

INDIANA (Cont'd.)

Hamilton, Avnct Electronics
485 Gradle Drive
Carmel 46032

Tel (3|77) 844-9333
FAX: 317-844-5021
& loneer Electronics

1794
KANSAS
;mmllton/kvm Electronics
Overland Park 86215
el (91?
FAX: 913-541-7951

Pioneer Electronics

10551 Lackman Rd
xa 66215

Tel (913 492-0500

FAX 913-492.7832

KENTUCKY «

Hamilton/Avnet Electronics
805-A Newtown Circle
Lexington 40511

Tel" 259-1475
FAX(60&-252-3238
MARYLAND

Arrow Electronics, I
8300 Guilford Road, Su H

FAX 301 331 3054
tHamilton/Avnet Electronics
22 Oak Hall Lane

Tel. (301) 995-3500
FAX 301-995-3593

MoslTocnnoW y Corj
720 Palux foods Dr

Columbia
Tel (301 720~5020
TWX 710-828-9702

tPioneer Electronics
9100 Garther Road
Garthersburg 20877
Tel (301) 921-0660
TWX 710-828-0545

MASSACHUSETTS

tArrow Eleclromcs. Inc
1 Arrow Drive

Wobu n01001

Tel (617) 933-8130

TWX 710-393-6770
tHamnlton/Avnet Electronics
10D Centennial Drive

Peal bod; 01960

Tel (617) 532-3701

TWX: 710-383:0382

Klemm Elmromcs Inc

Fortune
B;llenca 01521
Tel (617) 667-8331
TWX 710-390-1449
FAX 617-663-1754

Pioneer Northeast Electronics
44 Hartwell Avenue
Lexington 02173

Tel (617) 861-9200

FAX 617-863-1547

MICHIGAN

Arrow Electronics, Inc
755 Phoenix Drive

gHam-noﬂ/Amet Electronics
7 Schoolcraft Road
Livonia 48150

FAX 313-522-2624

Hamilton/Avnet Electronics
2215 Street SE
Space A5

Grand Rapids 49508
Tel (616) 243-8805
TWX 810-273-6921
FAX 616-243-0028

MICHIGAN (Cont'd.)

Pioneer Electronics

505 Broadmoor Ave. S.E.
Grand Rapids 49508
Tel: (616) 698-1800
FAX 61 1831
tPioneer Electronics
‘3405 Sttmlord

Tll 3!3 52&1000
-242-3271

MINNESOTA

Arrow Electronics, Inc.

230 W _73rd Street
Edina 55435
Tel: (Gl? 830-1800
FAX: 812-830-1856
Hamilton/Avnet Electronics
12400 White Water Drive
Minnetonka 55343
‘I’el (012 932-0800

AX. 612-932-0813
Ploneer Electroni
534!

Tel: (612 935 5444

FAX: 812-935-1821
MISSOURI

Arrow Electronics, Inc.
St Louis 63146
Tel. (314) 567-6888
FAX 314-567-1184
1H|mll|oﬂ/Avmt Electronics
13743 Shoreline Court East

Cif 03045

Tol' (314 344-1200
FAX: 314-291-8889
Kierulff Electronics, Inc
1 Borman Dr.
St Louis 63146
Tel (314) 997-4956
FAX 314-567-0860
NEW HAMPSHIRE

Arrow Electronics, Inc.

Perimeter Road
Mnlnchestor 03103
el,

(603) 668-6968
(WJ—WMM
Hamiiton/Avnet Electronics
444 E Industnal Drive
Mancma(er 03103
‘ol (603) 624-9400
FAX 624-2402
NEW JERSEY

tArrow Electronics, Inc
6000 Lincoln Drive East

Mariton
Tel (609) 596-8000
FAX 609-596-5632

Arrow Electronics, inc.

FAX 201-538-4962

‘tHamilton/Avnet Electronics
1 Kayslom Ave , Bidg 36
%9 Il 08003
Tel () 424-0110
-940-0262
FAX 609 751-&624
wammon/Avnet Electronics
Fairfield 07006
Tel (201) 575-3390
FAX 201-575-5839
tPioneer Northeast Electronics
45 Route 4
Pinebre 7058
Tel (201) 575-3510
FAX 201-575-3454

;MTI Systems Sales
7 Kulick Rd

Fairfield 07006
Tel (201) 227-5552
FAX 201-575-6336

CG-10/20/87

NEW MEXICO
Alllanm Electronics Inc
Coaml 3

o

Hamlnon/Avnat El-?gonlcs
Albu%&?' q]ue 87101

NEW YORK

Arrow Electronics, Inc
25 Hub Drive

Melville 11747

Tel (516) 694-6800
TWX 510-224-6126
FAX 516-391-1401

DY

Arrow Electronics, Inc
'5 Bri

gmon-Hemmta Townhine Rd

Rochester 1.
Tel (716) 42
FAX 716-427-0735

Arrow Electronics, Inc
ﬁo Oser Avo;\‘na

au)
Tel (516) 2311000
FAX 516-231-1072
Hamilton/Avnet Electronics
2060 Townline Rd

Rochester 14623
Tel (716) 475-9130
FAX 716-475-9119

tHamilton/Avnet Electronics
103 Twin Drive

Syracuse 13206
Tel (315) 437-2641
FAX 315-432-0740

memnon/Avnsl Electronics
933 Mutor Pl l

;MTI Systems Sales
PMK Dnive
PO Box 271
Washington 11050

Port

Tel (516) 621-6200

FAX(51 8—625-3039

1Pioneer Nomaast Electronics
68 carpof

Tel (607 722 9000
-722-9562

Pioneer Northeast Electtomcs
Cmss way Park Wesf
loodbury, Lo island 11797
Tel (516)92 -8700
TWX 510-221-2184
FAX 516-921-2143

Pioneer Northeast Electronics
0 Fal port Park

114450
L5 (716) 381-7070
FAX 716-381-5955

NORTH CAROLINA

tArrow Electronics, Inc
5240 Gr;e&s) Dairy Road

Ralex
Tel (919) 676-3132
FAX 919-876-3132, ext 200

wammon/l\vmt Electronics
t Drive

gh 27
Tel ¢ 19&878-0919
TWX 510-928-1836

DOMESTIC DISTRIBUTORS

NORTH CAROLINA (Cont'd.)

Pioneer Electronics
9801 A-SO”U?MH Pine Bivd

Charlotte 26217

Tel)}704) 527-8188
TWX 810-621-0366
OHIO

Arrow Electronics, inc
70 icEwen Road
Centerville 45459

Tel (513) 435-5563
FAX 513-435-2049

Arrow Electronics, Inc
38 Cochran Road

Solon 44133

Tel (216) 248-3990

FAX 216-248-1106
Hamilton/Avnet Electronics
777 Brook Blvd

ag:mllton/Avnet Electronics
Senate Drive

ton 45459

(513 439-6700
FAX 513-439-6711

gggmulton/hnet Electronics
25 Bambridge Rd , Bldg A

Solon 44139
Tel (2|6 349-5100

. FAX 216-349-1894

I oneer Electronics
433 Imerpgm Bivd

Ta (513) 236-9900

FAX 513-236-8133
tPioneer Eiectronics
4800 E 131st Street
Cleveland 44105

Tel (216) 587-3600
TWX 810-422-2211

FAX 216-587-3906
OKLAHOMA

Arrow Electronics, Inc
3158S 108 East Ave, Ste 210
Tulsa 74146

Tel (918) 665-7700

FAX 9% 5-7700
‘OREGON

tAimac Electronics Corp
1885 N W 169th Place
Beaverton 97006

Tel (503) 629-8090
8(503-6450611

w-mulmn/AvaEle?romcs

ge Dlstnbunon Grou
lam Yo way

anlsboro 97124
Tel (503 640-6000
FAX -640-5846
PENNSYLVANIA
Arrow Electronics, Inc
Monroevilie 15146

ol 41? -7000
FAX 412-856-5777

Hamilton/Avnet Electronics
2 Ave Bldg E

Tel 141 281—4‘50
FAX 412-281-8662

‘tMicrocomputer System Technical Distributor Centers

PENNSYLVANIA (Cont'd.)

82-2300
TWX 710-795-3122
FAX 412-963-8255

Pioneer Electronics
1 Glbmlur Road
Horsh:
Tel (2‘5 674-4000
TWX -6

510-665-
FAX 215-674-3107
TEXAS

A"ow Electronics, Inc
20 Commander Drive
Carroliton 75006

Tel (2!4) 380-6464
FAX' 214-248-7208
TArrow Electronics, Inc
10899 Kinghurst Dr
Suite 100

Houston 77099

Tel (713) 530-4700
FAX 713-568-8518

tArrow Electronics, Inc
2227 W_Braker Lane
Austin 78758

Tel (512) 835-4180
FAX 512-832-9875

tHamilton/Avnet Electronics
1807A W Bfaker Lane
Austin 78758

Tel (5‘22 837—89"

;Hammon/Amet Electronics
111 W Walnut Hilt Lane
Irving 7!

Teln?zu

FAX 21 550—61 72

tHamilton/Avnet Electronics
4850 Wright Road, Ste 190
Staftord 77477

Tel (713) 240-7733

FAX' 713-240-0582

Kierulft Electronics, Inc
2010 Merritt Dr
Garland 75040
Tel (2141 0-0110
278-0928

tPioneer Electronics
1826-D Kramer Lane
Austin 78758

Tel (512) 835-4000
FAX 512-835-9829

tPioneer Electronics
13710 Omega Road
Dallas 752

Tel (214) 386-7300
FAX 214-490-6419

tPoneer Electronics
5853 Point West Drive
:jouslon 77036

el (71%) 988-5555

FAX 713-988-1732

UTAH

‘tHamilton/Avnet Electronics
1585 West 2100 South

Salt Lake City 8411
Tel (801) 972-280
FAX 801-974.9675
Kierulff Electronics, Inc
1946W Parkway Bivd
Salt Lake Ci 119
Tel (501 973-691.
FAX' 801-972-0200

‘Wyle Distribution Group
5 West 2200 South

S
o

ite £
Salt Lake C 84119
Tel (801)974-9953
FAX 801-972-2524

Brookfield 53005
Tel (414) 792-0150
FAX 414-792-0156

WASHINGTON ONTARIO
fAImac Electronics Corp Arrow Electronics inc
- 14360 SE Eastgate Way 1093 Meyerside Dr.
Bel ue 98007 Unit2
(206 643-9992 Mississauga LST 1M4
A)(-843-9709 Tel (416 72-7769
72-0489
Arrow Electronics, inc
14320 N E_21st Street Arrow Electronics inc
Bellevue 98007
Tel (22%? 643-4800 Tel' (8 2
FAX -748-3740 FAX 613-723-2018
t
14212 N E 21st Street 8845 Rexwood Road
‘i.’:il (206 453-5874 a’l‘ Sioen L4V 1R2
issi
FAX 203-64 TM (416 8;7 7432
V;yle Dls(rlbuuon Group
d Ave N E Hamiiton/Avnet Electronics
23688 Nashua Dr
Tol (@ 453-8300 Units 9 and 10
FAX' 206-453-4071 Mississauga L4V 1M5
Tel (416) 677-041
WISCONSIN X 416-677-
‘tArrow Electronics, Inc tnam-lton/Avm Electronics
200 N Patrick Blvd , Ste 100 Co ROld South

T.l (613 226-1700
FAX 613-226-1184

Hamilton/

2975 Moorland Road
New Berlin 53151
Tel {414) 784-4510
FAX 414-784-9509

Kierulff Electronics, Inc
2238-EW Bluemound Rd
53186

Tel (414) 784-8160
FAX 414-784-0409

CANADA
ALBERTA

Hamllmn/Avnet Eloelromcs
28 6 21st Street N

Tal (IXG 25&9580
0:2 250-1591

Zentronics

6815 8th Street, NE , Ste 100
Gaigargesz THT

Tel (403) 29 8

FAX 403-295-8714

BRITISH COLUMBIA

Hlmnl\on/Avrm Electronics
2550 Boundary Rd , Ste 115
Bumaby V5M 323

Tel (604) 437-6667

FAX 604-437-4712

Zentronics
108-11400 Bri 5 Road
6X

Tel (604) 273-5575
FAX 604-273-2413

MANITOBA

Zentrons

60-!3\3 Border Street

Winnipeg R3H 0X4

Tel (: 694-1957
FAX 633-9255

12
gnibury Court

ton LET 3T4
T (416) 451-9600
FAX 416-451-8320

‘tZentronics

155 Colonnade Road
Unit 17

Nepean K2E 7K1

Tel (613) 226-8840

FAX' 613-226-6350
SASKATCHEWAN
Zentronics

173-1222 Alberta Avenue
Saskatoon S7K 134

Tel 3&955-2202 2207
FAX (306) 244-3731
QUEBEC

Arrow Electronics Inc
050 Jean Talon Quest

Montreal H4P 1
Tel (514) 735-5611
FAX 51 1-4821

Arrow Electronics Inc

Hamlnon/Avnot Electronics
2796 Rue al

Tel (514) 335 1000
FAX 514-335-2481

Zentronics
817 McCafre
St Laurent H4T 1N4
Tel (514) 737-9700
FAX 514-737-5212

€G-10/20/87

ehltodnmq 61, 3rd Floor
2400 hagen NV
Tel; (01) 19°80

TLX: 19567

FINLAND

00390 Hesinki 39
Tel (0) 54 46 44
TLX: 123332
FRANCE

Intel

1 rue Eason BP 303

St Quentin
T.l (2990 57 70 00

Intel

Immeuble BBC

4, Q\lllLdvs Etroits
Tel' 78 Iﬁo 89
TLX 305153

-en-Yvelines Cedex

WEST GERMANY

Intel*

Seidistrasse 27

8000 Muenchen

Tel: (089) 5 38 90

TLX' 523177

Intel

Nmnuzo!lam st:nu 5
Tel: (051) 1 34 40 81
TLX.

Intel

Abraham Lincoin Strasse 16-18
6200 Wiesbaden

Tel: (08‘26217 6050

TLX. 4186183

intel

Bruckstrasse 61

7012 Fellbach

o8 158 00 82
ruk(ng‘szs

EUROPEAN SALES OFFICES

ISRAEL

Aiﬁdlm Industrial Park
P.0. Box 43202

Tel Aviv 61430

Tel* (03) 49 80 80

TLX: 371215

ITALY

Intel*

Mlllm'Aiod Palazzo E

ssago

Milano

Tel. (?} 824 40 71

TLX: 341286

NETHERLANDS

Intel®

Alexander Poort Building

Marten Meesweg 93

O

TLX 22&83

NORWAY

Intel

Hvamveien 4-P.0 Box 92
2013 Sk‘:\m\

Tel (67) 12 420

TLX 78018

SPAIN

Intel

Calle Zurbaran no. 28-1 Isq
28010 M

Tel: (1) 410 40 04
TLX:

SWEDEN

Intel*

"rzl1 (0!507'54. 0100
%0
SWITZERLAND

Intel*
Talackerstrasse 17

Tel- (01) 829 29 77
TLX' 5
UNITED KINGDOM

Intel*
Pipers Way
i itshire SN3 1RJ

, Wi
Tel (0793) 69 60 00
TLXA(44“"7

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Badw Eloctronm GmbH
1 120

Tel (0222) 835 64 60
TLX 131532

BELGIUM

Ineico
Av du Cronx de Guerve 94

ixelles

Ta' (02) 216 0160
DENMARK
ITT-Muitikomponent A/S
Naverland 29
2600 Glostrup
Tel (02) 45 66 45
TX
FINLAND
OY Fintronic AB
Melkonkatu 24A
00210 Helsinki 21
Tel (0) 692 60 22
TLX. 124224
FRANCE

" Generm
A+ dols Bananert BﬂmBP 88
919‘3 Les Ulis Cedex
Tol (1) 69 07 7878
Jormgvn SA
73-79, rue des Solets
Silic 585
s e e
TLX. Z)GOSG7
Metrol
Ioul dL.sna"u

, av_Laurent-Cely
92606
Tel. (2 47 90 62 40
TLX' 611448
Cho des Bruyere
65

Rue Carle-Vernet - BP 2

g?‘(? 45347535
TLX2)0¢552

*Field Application Location

WEST GERMANY

Electronic 2000 Vertriebs-AG
S ruberring 12

uenche
ol, (0391)420010

T Mumkompomm GmbH
7141 M
Yd (071002%9

Jermyn GmbH
im Dachsstueck 9

Tel (064) 31
TLX 415257-0

Meﬁrlologle GmbH o
|sttusse

luenchen 7
Tel (089)750420
TLX 5213189

Proelectron Vertriebs GmbH
Max Planck Strasse 1-3

6072 Dreieich

Tel (061) 03 30 43 43
TLX 417972

IRELAND

Micro Marketing
Glenageary Office Park
Co Oubin”

Tel (? 85 62 88

TLX 31584

ISRAEL

Eastronics Ltd

11 Rozanis Street

PO Box 39300

Tel Aviv 61392

Tel (03) 47 51 51

TLX 33638

ITALY

Intesi ation Italia S A
Mllmo%lwmuo E/5
Toi: (02) 82 47 01

TLX 311351

ITALY (Cont'd.)

Las Elettronica S p
Viale Fulvio Testi 126
20092 Cinisello Balsamo
Milano

Tel (02) 244 00 12
TLX 3 0
NETHERLANDS

Koning en Hartman
Ener %wsg 1

2627ng Delft

Tel (015) 60 99 06
TLX 38250

NORWAY
goofdlsk Elektronik A/S
Smodsvmgen 4

1364 Hvalstad

Tel (27) 84 6210

TLX 77546
PORTUGAL

Ditram

Av M Bombarda, 133-1 D
1000 Lisboa

Tel (1)54 5313

TLX 14182

SPAIN

ATD Electronica S A
Plaza Ciudad de Viena no 6

28040

Tel (|‘) 234 40 00

TLX 42477

Calie Ml Angel no 21-3

no 21-

28010 ngel

Tel (1) 419 09 57

TLX 27461

SWEDEN

Nordisk Elektronik A.B
Huvudst un

1PO Box

Tel: (0) 734 9770

TLX 10547

SWITZERLAND

industrade A G
Hertistrasse 31

8304 Wallisellen
Tel. (01) 8 30 50 40
TLX" 56788

UNITED KINGDOM

Accent Electronic Components Lt
Jubilee House, Jubilee Wa
Letchworth, SG6 1 Q!!
Td (0462) 68 66 66

Bytech Comway Ltd

Unit 2 The Western Centre
Western Road N

Bracknell
Berks RG12 1RW

Tel (0344) 4822 11 s
TLX(84321 5

Jermyn

Vestry Estate

Otford Road

S
Kent TN14 5EU
Tel (0732‘) 4501 44
TLX 95142

Bucks HP11 2ER
Tel. (0494) 44 22 66
TLX 837931

Rapid Systems
Rabd Hbuss
High Wi

g} be
Bucks HP11 2ER
Tel (0494) 45 02 44
TLX' 837931

YUGOSLAVIA

C€G-10/20/87

INTERNATIONAL SALES OFFICES

AUSTRALIA
intel Australia Ltd.*
rum Bull:lv

Pacific Hr

Crows Nest, N

Tol. (2) 957-2744

TLX: 20087

FAX: (2) 923-2632

BRAZIL

Intel Semicondutores do Brasil LTDA

Av. Paul 159-CJS 404/405

0‘311 - lo - SP.

T Tissi4g
FAX: 55-11-212-7631

CHINA

Intel PRC Corporation
15/F, Office 1, Citic Bidg.
Jian Guo Mon Wai Street
Beijing,

Tel: (
TLX: 7 INTEL CN
FAX. (1) 500-2053

HONG KONG

Intel Semiconductor Ltd.*
1701-3 Connaught Centre
1 Connaught Road

Tel, (5) 844-4555

TWX

FAX: (5) 294-589

ARGENTINA
DAFSYSSRL

TLX:
Hoywm Electronica S.R L
rec: 3631
Tel 54 (1) 701—«62/66
54 (1 ; 111722
221 2.
AUSTRALIA
Totnl Elowonlu
9 Hlvk S!r
Burwood, Victoria 3125
Tel 61-3-288-4044
TLX. AA 31261
Total Electronics
P 0. Box 139
Artamon, NSW 2064
Tel- 61-02-438-1855
TLX. 26297
BRAZIL

Elebra Microelectronica
R Geraldo Flausino Gomes, 78

\ndar B
04575 - Sao Paulo - S.P
Tel 55-11-534-9522
TLX 1154591 or 1154593BR
FAX 55-11-534-9637
CHILE
DIN Instruments
Suecia
Casilla 8055, Correo 22

it
Tel 52‘2’-225—!189
440422 RUDY CZ

CHINA

Novel Precision Machinery Co , Ltd.
Flat D, 20 Kingsford Ind Bidg.

Ph m , 26 Kwai Hei Street

NT, Kowloon

Tel £ 23-222

TWX 39114 JINMI HX

FAX 852-0-261-602

“Field Application Location

JAPAN

Intel Japan K K
5-8 Tokodai Toyosato-machi
Tlukubl 2un Ibaraki-ken 300-26

TLX 3656-100

FAX: 029747-8450

intel Ja&an KK.*

Dallchl litsugi Bidg

Fuchu-cho

Fuchu-lhl T“‘; 183
el 0423-80-7671

AX 0423-80-0315

Intel Japan K.K.*
Flow III Shin-machi Bldg
1-2 hinmachi

a) l-k Tok 154
Tel’ &Y u v
FAX: 03—427~7020

Intel Japan K K.*

Bidg. Kumagaya

288 Hon-cho

Kumu nm Saitama 360

FAX 04852 -7518

Intel Japan K.K.*
Mitsi imei Musashi-| kosugl Bidg
915 Shinmaruko, Nakahi

Kawasaki-shi, Kan;
Tel: 044-733-7011
FAX 044-733-7010

JAPAN (Cont'd)

Intel Japan K K.

Nihon &Imel Atsugi Bidg
1-2-1 Asahi-machi
Ats Ki jawa 243

Tal‘u&b 31
FAX: 0462-29-3781
Intel Japan KK *
Ryoku_lt_:m Eklhﬁldg

o? i, Osaka 560
Tel (0&563-1091
FAX' 06-863-1084
Intel Japan K.K.
smnmuru Bidg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Tel. 03-201-3621

AX 03-201-6850
Intel Japan K K.

Tokal Bid
1-16-30 Meleki Minami
Nakamura-ku, Nagoya-shi

icl
Tel 052-561-5181
FAX 052-561-5317

INTERNATIONAL
DISTRIBUTORS/REPRESENTATIVES

CHINA (Cont'd)

Schmidt & Co Ltd
18/F Grel(Elqle Centre

w.nchll. Hong Kong
Tel 852-5-833-0222

X 74768 SCHMC HX
FAX 852-5-891-8754

INDIA
Micronic Devices

LX 0845-8332 MD BG IN

Micronic Devices

403, Gagan Deep

12, Rajendra Place

New Delhi ||0 00!

Tel 91-58-97.

TLX. 03163235 MDND IN

Mlcronlc Devices
516 5th Fioor

No

Swastik Chlmbera
Sion, Chambray Road
Bomblym 1

Tel- 91-52-39-63
TLX 9531 171447 MDEV IN
JAPAN

Asahi Electronics Co. Ltd
KMM Bidg 2-14-1 Asano
Kokurakita-ku
Km ushu-shi 802

-511-8471
FAX 093-! 55!-786!
C Itoh Tochnmsaenu Co, Ltd
C Itoh Bidg , 2-5-1 anAoyuml
Minato-ku, Tokyo 107
Tel 03-497:
FAX 03-497-4969

igt
%g

JAPAN (Cont'd)

Dia Semicon Systems, Inc

chore 84, 1-37-8 sagganjuyl
&:yl -Ku, Toky

Tcl 386

FAX: 03~ 4!7 8088

FAX 052-204-2901

Ryoyo Eallsclra Corp

onwa
1-12-22 Tsukij
Cnuo-ku Tokj o 104
03 6-

AX 03-546- 5044

KOREA
J-Tek Corporation
6th Floor, Government Pension Bldg
34 -3 ngdo- on

oungdeungpo-ku
Soou?1 50 o
Tel 82-2-782-8039
TLX 25299 KODIGIT
FAX- 82-2-784-8391
Samsung Semiconductor &
Tgbac;r:rq?l?unam Co, Clr-t‘u "
1 afpyung-ro, u
Seoul 100 pyung g
Tel 82-2-751-3987
TLX. 27970 KORSST
FAX. 82-2-753-0967
MEXICO

Dicopel S.A.
Tocmlv 368 Fracc Ind. San Antonio

A:c
.80760~M0)(ICO. DF
o, 52-5-561-

TLX 1773790 DICOME

KOREA
Inte! Tecnnoiogy Asia Ltd
5-4 Yoldo<Do cW%uﬂgdoungw:»-ku

eoul 1

ol (2) 784-8186

LX 29312 INTELKO
'AX. (2) 784-8096

SINGAPORE

Intel Singapore Technology, Ltd
01 Thomson Road #21-
Goldhill Square
Ingl re 1130

: 250-7811
LX 39921 'NGTEL
TAIWAN

intel Technology (Far East) Ltd
|lw|n Branch
F., No. 205 Tun Hua N Road
pel R
‘ol 886-2-; 71 6-9660
LX 13159 INTELTWN
AX' 886-2-717-2455

NEW ZEALAND
Northrup Instruments & Systems Ltd
459 Kgc Pass Road
.0 x 5454 Newmarket
Aucklan
Tel 64- 9 501 219, 501-801
TLX 21570 THERMAL
Northrup Instruments & Systems Ltd
P O Box 2406
Wellington 856658
Tel. 64-4-856-658
TLX. NZ3380
FAX 64-4-857276
SINGAPORE
Francotone Elec(rcm% Pte Ltd

FAX 2895327

SOUTH AFRICA

Electronic Building Elements, Pty Ltd
P.O Box 4609

Pine Square, 18th Street
anlwood Pret oln 0001
Tel 27-12-469921

TLX 3-227786 SA

TAIWAN
Mitac Corporation

No 585, Ming Shen East Rd
Taipel, R O
Tel. 886-; 8231

FAX. 886-2- 5014265
VENEZUELA

P Benavides S A
Avilanes a Rio
Residencia Kamarat
Locales 4 AL 7

La canMInrla. Clucas
Tel: 58-2-!

LX:
FAX' 58-2-572-3321

€G-10/20/87

ALABAMA

5015 Brad'ord Drive, #2
Huntsville 35805

Tel (205) 830-4010
ARIZONA

Intel Corj
11225 N zem Dr, #D214
85029

Phoenix

Tel (602) 869-4980

500 E Fry Bivd, Suite M-15
Sierra Vista 85635

Tel (602) 459-5010
ARKANSAS

intel Corp

PO Box 206

Uim 72170

Tel (501) 241-3264
CALIFORNIA

Intel Corp .
21515 Vanowen St
Surte 116

canogl Park 91303

Tel (818) 704-8500

Intel Corp

2250 E Imperial Highway
Sutte 218

El Segundo 90245
Tel '-800-468-3548

1900 Pmne City Rd

Folsom 97

Tel (916) 351-6143

Intel Corj

2000 E 4th Street

Suite 110

Santa Ana 92705

Tel (714) 835-5789
910-595-2475

2700 San Tomas Expressway
Sanf 5051
Tel (408) 970 1740

Corp
4350 Executive Drive
Suite 105
San Diego 92121
Tel (619) 452-5880
COLORADO
Intel Corp
650 South Cherry
Suite 915

Denver 80222
Tel (303) 321-8086
TWX 910-931-2289

| CALIFORNIA

2700 San Tomas Expressway
Santa Clara 95051

Tel (408) 970-1700

CALIFORNIA

Santa Clara

2700 San Tosng% Expressway
Tel (408) 986-8086

CONNECTICUT

Intel C

26 MI“O;EII‘\ Road
Dunbu‘;g 06811

Tel (2 wa—awo
TWX 710-456-1199
FLORIDA

1500 N LE 62, Suite 104

Ft Lauderdale 33309

Tel (305) 771-0600
510-956-9407

Intel Cory
§42 N Westmonte Drive

Tgl”(rgsm Sgt 5’?5’ 32714

GEORGIA

itel Cor
3280 Ponnte Pavkwly
Suite 200
Norcross
Tel (404; m 117|

ILLINOIS

Intet CO'T
300 N Martingale Rd
300

Schaumburg 60194
Tel (312) 310-5733

INDIANA

Intel Corp

8777 Purdue Rd , #125
Indianapolis 4

Tel (317) 875-0623

KANSAS

Intel Cory

8400 W ‘ 10th Street
Sutte 170

Overland Park 66210
Tel (913) 345-2727

KENTUCKY

3525 Tatgscveek Road, #51
Lexington 4050
Tel (¢)272—6745

MARYLAND

Intel Corp

5th Floor

‘6033 Walker Dnve
reer

Tel (301) “1-1020

MASSACHUSETTS

Intel Corp

Waestford carp Center
3 Carlisle Road
Westford 01886

Tel (617) 692-1060

3

ILLINOIS
300 Marll alo7. #300
Tel (312) 3?05700

ILLINOIS

300N Martingale, #300
Schaumburg 60173
Tel (312) 310-8031

DOMESTIC SERVICE OFFICES

MICHIGAN

Intel Corp

707| Ovchald Lake Road
loomfield 48033

Tel (3!3) 851-8805

MISSOURI

SR Gt o &
art Xpress:
Suite 143 &4 ey

Earth City 63045
Tel (31;?29‘-2015
NEW JERSEY
335 Sylvnn Avenue
hiffs 07632
01 201 567-0821
991-8593

Intel Col

Edison 08817
Tel (201) 225-3000
NORTH CAROLINA

Intel Corp
omvmmw Road

Groensbovo 27407

Tel (919) 294-1541

Intel Corp

2700 Wychff Rd , Suite 102
uletgn

Tel (919) 781-8022

OHIO

Ch nn-gramurd Bld,
:g 305 9
28001 Cha&nn Boulevard
land 44122

Tel 216 464-6915
27-9298

Intel Corp

6500 Poe

Dayton 45414

Tel (513) 890-5350
OREGON

15254 N w Gsr;enbﬁef Parkway, Bldg B

?‘l‘fgoem«saos
el
TWX 91\1.}-46%8741

Intel Cog:
5200 N E Elam Young Parkway
Hilisboro 97123

Tel (503) 681-8080

CUSTOMER TRAINING CENTERS

MASSACHUSETTS

3 Carbsle Road
Westtord 01886
Tel (617) 692-1000

SYSTEMS ENGINEERING OFFICES

MASSACHUSETTS

3 Carlisle Road
Westford 01886
Tel (617) 692-3222

PENNSYLVANIA

Intel 3

201 m&nw Boulevard
Surte 301 W

Pmsbu?h 15235

Tel. (313) 354-1540

TEXAS

Intel Corp
313 E_Anderson Lane
S\Me 3

454-3628
- 910-874-1347

Dallas 75234
Tel ;214 241-2820
TWX 91 5617

Intel

88|5°°'pr01 St , Suite 225
El Paso

Tel (915) 751-0186
VIRGINIA

Intel Corp
1603 Santa Rosa Rd , #109
23288

Richmond

Tel (804) 282-5668
WASHINGTON
Intel Cor|

110 110th Avenue N E
Suite 510

WISCONSIN

Intel

330 goErsacutlve or

Surte 102

Brookfield 53005

Tel (414) 784-8087

CANADA

Intel Corp

190 Attwell Drive, Suite 500

Rexdale, Ontario

Can 6H8

Tel (416) 675-2105

Intet Corp

620 St Jean Bivd

Pointe Claire, Quebec

Canada H9R 3K3

Tel (514) 694-9130

Intel Cor

2650 ansvnaw Drive, #250
0 no

Td (6‘ 3) 029-971 4

MARYLAND

7833 Walker Dr., 4th Floor
Greenbelt 20770

Tel (301) 220-3380

NEW YORK
300 Motor P
Souppage ;108"
Tel (516) 231-3300

C€G-10/20/87

td

UNITED STATES
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

FRANCE

Intel Paris

1 Rue Edison, BP 303

78054 Saint-Quentin-en-Yvelines Cedex

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon

Wiltshire, England SN3 1R]

WEST GERMANY

Intel Semiconductor GmbH
Seidlstrasse 27

D-8000 Muenchen 2

HONG KONG

Intel Semiconductor Ltd.
1701-3 Connaught Centre
1 Connaught Road

CANADA

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario MOW 6H8

Printed in U.S.A 0388 15K/RRD SM
Embedded Controllers

ISBN 1-55512-032-6

