
User's Guide to VxGDB
A Source-Level Debugger

for Vx960

Release 3.2

Intel Corporation

Copyright e Intel Cozporation 1991

Portions Copyright e Wind River Systems, Inc. Reproduced with permission.

ALL RIGHI'S RESERVED.

No part of this publication may be reproduced in any form, by photocopy, miaofilm, retrieval system, or by
any other means now known or hereafter invented without the prior written permission of Intel Corpora­
tion.

Intel Corporation makes no warranty for use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information contained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

i960, Intel,. Vx9fIJ

COMPANY AND PROOUCfNAMES USED IN TInS DOCUMENT ARE TRADEMARKS OR REGISTERED
1RADEMARKS OFTI-IEIR RESPECTIVE CORPORATIONS. -

Additional copies of this manual or other Intelliteralure may be obtained from:

Intel Corporation

literature Sales

P.O. Box 7641

Mt. Prospect, IL 6Q()56.:7641

Order No. 517914

Part 1

Using VxGDB with Vx960

VxGDB

Contents

1 CI Introd uction e. " •••••••••••••••••••••••••••• _ •••••••• $ •••••••••••••••••••••••••••• 3
1.1 Overview 3
1.2 Documentation .. 6

2. Getting Started with VxGDB, 6
2.1 VxGDB Configuration .. 6
2.2 Invoking VxGDB ... 8

3. VxGDB Graphical User-interface .. 8
3.1 Windows 9
3.2 Window Operations ... 11
3.3 Command Buttons .. 11
3.4 Displaying C Data Structures .. 14

4. Debugging with VxGDB ... 16
4.1 Specifying Source Directories ... 16
4.2 Cormecting to a Vx960 Target ... 16

VxGDB

Part 1. UsIng VxGDB with Vx960 5.0.3

4.3 Compiling an Application Module .. 17
4.4 Downloading toa Vx960 Target .. _ 17
4.5 Starting to Debug ... _ 18
4.6 Using VxGDB with the Vx960 Shell Debugger 19

5. Setting the Display Defaults _ _ ... 21

6. Differences between VxGDB 1.0 and GDB 3.2 22

II VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

1. Introduction

The VxGDB 3.2 remote symbolic debugger is included in the Vx960 5.0.3 release. It
provides source-level debugging of Vx960 applications from a UNIXTM workstation.
VxGDB extends the line-oriented mode of the GNU Source-Level Debugger (GDB),
Version 3.2, with a graphical user-interface based on the X Wmdow System.

1.1 Overview

While running on the host system, VxGDB allows you to spawn and debug tasks
running on networked Vx960 targets. Already-running tasks spawned from the
Vx960 shell can also be debugged. To help diagnose and locate bugs, VxGDB pro­
vides extensive control and information features, allowing you to stop, resume, or
alter task execution and to examine task and system resources such as the stack,
data, symbol table, and source code. These features are highlighted below:

• Stopping Task Execution

VxGDB can stop task exerution in four basic circumstances: (1) when encoun­
tering a breakpoint, (2) when single-stepping through the program, (3) when an
exception occurs in the debugged task, or (4) when AC is typed.

(1) Breakpoints - You can set breakpoints at specific line numbers in source
files, at entries to functions, or at specific addresses. You can also set tern-

. porary breakpoints, which are disabled when hit, and conditional break­
points, which stop a task at a specified point only if a C language
expression evaluates to true. Furthermore, you can specify commands to
be automatically exeruted at a breakpoint (For example, you might want
to print the values of certain expressions.) You can disable, re-enable, and
delete breakpoints at any time.

(2) Single-stepping - You can step through a task, stopping after executing a
single line of source or as sembI y code.

VxGDB 3

VxGDB 3.2 - Use(s Guide

(3) Exceptions - VxGDB will trap any exceptions (e.g., divide-by-zero) occur­
ring within the debugged task.

(4) User Interoention - You can suspend execution of the remote task by typing
the interrupt character (usually AO in the dialogue window while the task
is running.

• Information Utilities

When a task stops, a variety of VxGDB information utilities are available to help
monitor the task and diagnose bugs. These utilities include commands to exam­
ine the stack, symbol table, source code, memory, variables, constants, and
other data.

(1) Examining the stack - When a task is stopped, you can backtrace through
stack frames to see how the program arrived at its present state. Each frame
of the stack contains data associated with a single call to a single function,
including the function's local variables, and the address at which the func­
tion is executing.

(2) Examining the symbol table - VxGDB provides information about the sym­
bols (names of variables, functions, and types) defined in a program. It can
list the names and data types of variables and functions, and describe
where a variable is stored.

(3) Examining source files - When the location of a bug has been determined,
you can selectively list source lines by line number, function, or program
address, and search forward or backwards for a text pattern in a source file.

(4) Examining data - VxGDB can compute and print the value of any variable
or C expression, including function calls, conditional expressions, casts,
string constants, and values in memory and machine registers. To display
the value of an expression frequently, you can add the expression to an
automatic display list. Every time the task stops execution, the automatic
display prints out expressions from the list and their values. You can exam­
ine previously displayed values with the VxGDB value history, which
saves all printed values. You can also store values in "convenience vari­
ables," which hold a value for reference but have no effect on a task's exe­
cution.

4 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

• Resuming or Altering Execution

After examining the stack, source, data, or other infonnation, you can continue
execution of a stopped task, starting from where the task stopped. You can also
alter execution of the task without editing source code, re-compiling, linking, or
downloading. You can change the value of any local or global variable. You can
force a function call to return immediately and you can set the return values.
VxGDB also provides a jump command which allows you to continue the exe­
cution of a task at a line number or address other than the stopping point.

• User-Interface

The host portion of VxGDB consists of three components: a graphical user­
interface, a command-line debugger, and a command driver.

• xvxgdb
The graphical user-interface, based on the X Wmdow System (XllR4), lets you
enter commands either by selecting a command button with the mouse or
by typing the command directly into the dialogue window.

• vxgdb960
VxGDB960 is the command-line debugger based on the original GNU 3.2 ver­
sion of gdb. It includes features such as command history and command­
line editing. With this debugger, you can define new commands and com­
mand ffies made up of VxGDB command sequences that can be executed.
VxGDB even provides a facility for documenting user-defined commands.

• vxgdb
The command driver invokes VxGDB with either the graphical user-interface
or the line-oriented debugger. See 2.2 Invoking VxGDB for more information.

• Vx960 Tools

While using VxGDB, you can continue to take advantage of Vx96O's native
development tools. The combination of the Vx960 shell, symbolic debugging
and disassembly, and performance monitoring facilities, provides a compre­
hensive high-level debugging solution. See 4.6 Using VxGDB with the Vx960 Shell
Debugger for more information.

VxGDB 5

I •

i

VxGDB 3.2 - User's Guide

1.2 Documentation

The sections below describe the use of VxGDB with Vx960 and will familiarize you
with the graphical user-interface to the debugger. A "getting started" section is
included, as well as a discussion of how the display defaults can modify the appear­
ance and behavior of the graphical user-interface.

Detailed information about the debugger command set can be found in Part 2, the
Free Software Foundation's GDB Manual, The GNU Source-Level Debugger, Third Edi­
tion, for GDB Version 3.2. Refer to 6. Differences between VxGDB 1.0 and GOB 3.2 for any
variations to the commands or functionality described in the GDB Manual.

Except for general page layout, the GDB Manual is supplied verbatim as distributed
by the Free Software Foundation (FSF).

2. GeHing Started with VxGDB

2.1 VxGDB Configuration

VxGDB 3.2 remote symbolic debugger is included in the Vx960 5.0.3 release. It pro­
vides source-level debugging of Vx960 applications from a UNIX workstation.

Please note the following important points:

• VxGDB 3.2 is configured in Vx960.

The gdb tools are found in the Vx960 bin directory; e.g., lusr/vx/binlsun4 or
lusrlvxlbinlap400. The remote server library rdb.a is already installed in the
Vx960 libraries. #define INCLUDE_RDB is turned on in
lusrlvxlconfiglalliconfigAlLh. See the Vx960 Release Notes: Vx960 5.03 for addi­
tional information.

• The command-line version of gdb is supported on all hosts.

6 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

• There is a new X interface for the following hosts:
• Sun-4
• Sun-3
• HP9000/300
• IBM RS/6000

• Source code for gdb is not supplied on this tape. If you want source code,
request it from your local Intel sales office, or send a message to
vx960bugs@ichips.inteLcom. Intel will provide any source code derived from
FSF.

There are two gdb front-ends. There is a command-line version called vxgdb960 that
is based on the original GNU 3.2 version. There is also a new XI1R4 based version,
called xvxgdb which provides visual debugging via an X client. The interface is sim­
ilar to Sun's dbxtooL

For example, assume that lusrlvx is the name of your Vx960 directory, and that you
will be running VxGDB on a Sun 4 host system. If your shell is csh, you would use
the command:

% satenv PATH /uar /vx/bi.n/sun4: $PATH

or the following:

% sat path= (/usr/vx/bin/ sun4 Spath)

In sh or ksh, use the command:

$ PATH=/u8r/vx/bin/sun4: $PATH; export PATH

Put these commands in the appropriate shell startup file (e.g., .cshrc or .profile).

VxGDB consists of code that runs on both the UNIX host and the Vx960 target. The
remote debug server (RDB) is installed on the Vx960 target. This server resides in the
Vx960 library rdb.a and is incorporated into the system image when source-level
debugging is enabled in the Vx960 configuration by defining INCLUDE_ROB in the
configuration file configAILh. Defining INCLUDE_ROB adds the RDB interface rou­
tines and spawns the source debugging task tRdbTask when Vx960 is booted. For
more infonnation on configuring and remaking Vx960, see 8. Configuration, in the
Vx960 Programmer's Guide. .

VxGDB 7

VxGDB 3.2 - User's Guide

2.2 Invoking VxGDB

VxGDB is invoked on the host command line with the following syntax:

% vxgdb [-1] [gdb-option •.•] [gui-option ••• 1

The following are two examples of the above syntax:

vxgdb

or

vxgdb -1

NOTE: Both vxgdb960 and vxgdb -1 invoke the command-line VxGDB.

If the -1 <Command-line) flag is used, it must appear as the first option. You can also
set the shell variable VXGDB_DEBUGGER to specify the name of the VxGDB execut­
able file; its value supersedes any other specification of the debugger executable file.

VxGDB also accepts the GDB command-line options (gdb-option), and the standard
Xtoolkit command-line options (gui-option)l.

When VxGDB starts up, it looks for the file .vxgdbinit in your home directory. If it
finds the file, VxGDB executes the commands (one per line). VxGDB searches next
for the file .v:x:gdbinit in the current working directory, and (if fOWld) executes the
commands in this file. Refer to the section entitled 13. Canned Sequences of Com­
mands in the GDB ManUilI for more infonnation on command files.

3. VxGDB Graphical User-interface

VxGDB uses a graphical user-interface based on the X Wmdow System. You can
invoke a VxGDB command by using a mouse to select a command button in the
command window or by typing the equivalent command in a dialogue window.
The VxGDB windows and command buttons are described below ..

1. For more information, refer to X Toolkit Intrinsics - C Language Interface, X VVindaw System, X Ver­
sum 11, Release 4, Massachusetts Institute of Technology, 1988.

8 VxGDB

Part 1. Using VxGDB wl1h Vx960 5.0.3

3.1 Windows

The VxGDB graphical user-interface consists of the following windows:

FIle Wmdow - Displays the full patlmame of the file currently displayed in
the source window, and the line number in the file where
the insertion point (displayed as·a caret in the source win­
dow) is located. The file window is noted as 0 in Figure 1

Source Wmdow - Displays the current source file. You can move through the
source file with the scrollbar, which appears on the left side.
You can also move through a file with the cursor keys (if the
keyboard and XllR4 display server support cursor move­
ments). The source window is noted as 6 in Figure 1.

Message Wll1dow - Displays the last message issued by the debugger. The mes-
sage window is noted as 0 in Figure 1.

Command Wll1dow - Contains a set of buttons for frequently used VxGDB com­
mands. Clicking the left mouse button while the pointer is
inside a button activates the associated VxGDB command.
Some buttons use information selected in the source win­
dow as an implicit argument to the debugger command.
Some buttons exhibit different behavior when they are
selected by the right mouse button (see 3.3 Command But­
tons). The command window is noted as 0 in Figure 1.

Dialogue Wll1dow - When the pointer is in this window, any keystroke you type
(before typing RETURN) serves as direct input to the
debugger. Note that the GDB command-line editing and
history expansion features are disabled when VxGDB runs
under the graphical user-interface (see 2. GOB User-Interface
in the GDB Manual). The dialogue window is noted as 0 in
FIgure 1.

Display Wmdow - When you enter the display command, the values of vari-
ables are collected and displayed in this window each time
execution stops. Use the undisplay command to stop
reporting the value of variables. The display window is
noted as 0 in Figure 1.

VxGOB 9

VxGDB 3.2 - User's Guide

WINOOWTYPE .
~ VlcGDB 1.8.1 Beta-3 [!]

OFue - IUSt1UIstJllt'Og.c lOS

}

/ _ ••.•• _ ••.•.•...•••......••••..•.•.•.••••••....•. ······················i ..
.. setBoo - low level routine .. /

f.) Source -
VOID setBoo <pBoo)

struet boo *pBoo;

C (

pBoo-)thelnt = 99;
pBoo-)e = '1';
pBoo-)next = (struct boo .) l1lalloe (sizeof' (struet boo) l;

C bzero «char ..) pBoo->next. sizeof (struet boo»;
pBoo-)next-)thelnt = 999;
pBoo-)next-)e = .. '" : .. . pBoo-)next->next = 0;
}

f5>Message- Old< the label to pop down Iha data p>pUp

o Command -
GQ~ ~ (flnlsh) ~ (tbrW.) (deleu:) ~~
~ (prtnt-) (dISPI...") (<.ndISPli,j) ~ (locals) ~ (oea-<.n) ~

(vxgdb)
Continuing.

Bpt 3. setBoo (pBoo=<struet boo ..) Ox1aba30) (prog.e line 102)
o Dialogue- (vxgdb) <vxgdb) next.

(vxgdb) next
(vxgdb) next
(vxgdb) (vxgdb)
(vxgdb) ..

•
1: .. pBoo = (

o Display-
thelnt = 99.
e = 124 "',
next = Oxlb~968

)

Figure 1. VxGDB Wmdows

10 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

3.2 Window Operations

You can adjust the relative sizes of the source window, command window, dialogue
window, and display window by dragging the grip (a small rectangle near the right
edge of a horizontal border) with the left mouse button held down.

When there is a scrollbar present, pressing the left mouse button scrolls the text for­
ward in a window while pressing the right mouse button scrolls the text backward.
The amount of scrolling depends on the distance of the pointer button away from
the top of the scrollbar. If the button is pressed at the top of the scrollbar, only one
line of text is scrolled. If the button is pressed at the bottom of the scrollbar, one
screenful of text is scrolled.

Pressing the middle mouse button down on the scrollbar and dragging will dynam­
ically cause the text to slide around under the window for quick positioning.

3.3 Command Buttons

You can invoke many frequently used VxGDB commands using command buttons
in the command window. Some command buttons use the selection made in the
source window as an argument when presenting the command to the underlying
debugger for execution.

For example, you can move the insertion point (caret) in the source window to a par­
ticular line and then dick (press and release) on the (break) button. The source line
containing the insertion point serves as the argument to the (break) button for
VxGDB, and a breakpoint is set at the marked place. You can also move the pointer
to a function name, click the left mouse button once, and the function name is high­
lighted. Qicking the (break) button causes a breakpoint to be set at the first exe­
cutable line of the function. In the following discussion, selection refers to either
highlighted text in the source window or the position of the insertion point.

Text selection in the source window has been modified to make it easier to select C
expresSions. Clicking the left mouse button selects a C expression by highlighting it
in reverse-video. This also positions the insertion point (caret) and updates the file
window accordingly.

C expression selection is based on the Xl1R4 resource delimiters which determine the
set of characters that delimit a C expression. Text selection adjustment is possible by
holding down the left mouse button and dragging the caret to extend the high­
lighted text.

VxGDB 11

VxGDB 3.2 - lJse(s Guide

Oicking the left mouse button while holding down the SHIFT key prints the value
of the expression selected.

The debugger commands that can be invoked with a command button are listed
below by function. Those commands that use the current selection are marked with
the symbol .t.

3.3.1 Execution Command BuHons

(cont)

(step)

(next)

(finish)

- Continue execution from where the target program stopped.

- Execute one source line, stepping into a function if the source
line contains a function call.

- Execute one source line, stepping over function calls.

- Continue execution until the currently selected stack frame
returns.2

3.3.2 Breakpoint Command Buttons

(break).t

(tbreak) .t

- Set a breakpoint at the line where program execution is to be
halted. Place the caret on the source line and click on the
(break) button. A breakpoint symbol will appear next to the
source line. You can also click on a function name using the left
mouse button and then click on the (break) button; the pro­
gram will then be stopped at the first executable line of the
selected function. A breakpoint symbol will be placed at that
location. An arrow symbol next to the breakpoint symbol indi­
cates that execution has stopped at the indicated line. The
breakpoint and arrow symbols are illustrated in the source
window f) in Figure 1.

- Like the (break) command button, except that a temporary
breakpoint is placed at the indicated location.

2. currently selected in this context does not refer to the current text selection, but to the notion in
GOB of the selected stack frame (refer to the section entitled 8. Examining the Stack of the
GDB Mt2nual (Part 2».

12 VxGDB

(delete) .I

Part 1. Using VxGDB with Vx960 5.0.3

- Remove the breakpoint named by the selected breakpoint
number, or set at the selected source line, function, or break­
point number.

3.3.3 Stack Command Buttons

(up)

(down)

(stack)

(locals)

(args)

- Move up one level on the call stacie

- Move dovm one level on the call stack.

- Show a stack trace of the functions called.

- Show the local variables of the currently selected frame.2

- Show the arguments of the currently selected frame.2

NOTE: For information on the limitations to the data you will receive using the
(locals) and (args) buttons, refer to 10.4.1 Task Trace:tt() of
the Vx960 Programmer's Guide.

3.3A Data Display Command BuHons

(print) .I - Print the value of the selected expression.

(print *).1 - Print the value of the object the selected expression is pointing
to.

(display).1 - Display the value of a selected expression in the display win-
dow, updating its value every time execution stops.

(undisplay).1 - Delete the display associated with the selected number. (You
can select the number of the display to remove directly from
the display window).

3.3.5 Miscellaneous Command BuHons

(search) - Pop up a search panel which allows both forward (») and
reverse «<) search of text strings in the source file. Typing

VxGDB 13

VxGDB 3.2- \Jse(sGuide

(quit)

RETURN after entering the search string will begin a forward
search and pop down the search panel.

- Exit VxGDB.

3.4 Displaying C Data Structures

VxGDB provides support for graphically displaying C structures and following
pointers to linked data structures. Clicking the right mouse button on the (print)
button (or the (print *) button> displays the value of the selected expression (or
the value of the selected expression being referenced) in a data popup window. H the
value is a pointer or a structure containing pointers, you can examine the value of
the referenced object by clicking the left mouse button on the pointer value (see 0 in
Figure 2). This will create another data popup window that displays the object the
pointer points to. Pressing the label of a data popup window will remove it and all
of its descendants (see f) in Figure 2).

14 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

181 ~08 1.0.1 Bata-] ill
Aarllesl/pnlg.c 105

)
;::;UfttM!lIi!Ijl Data "";';p!illll:/:l!lll::

/ .. ! >pBoo I i
w I '3 " (

:~ w setBoo - low level routine thelnt - 99,
w/ c = 124 • I'. , next " Oxl,.be968
VOID setBoo (pBoo) i)

struct boo ·pBoo; . . ~ ,

0 {

pBoo->thelnt c 99:
pBoo-)c " • I':
pBoo-)next ,. (struct boo .) ..alloc (slzeo1' (struct boo»; / 0 bzero ((char .) pBoo->next. slzeof (struct boo»: .-
pBoo-)next-)thelnt = 999; . ,q~!!!i1;III:oata f'I>pu~llli;;;W'
pBoo-)next-)c = '; >($3.next) ': .. . pBoo->next-)next =
)

0: _~4 = (

thelnt " 999.
c = 43 '+'" ...
next = OxO

;--1 } CId< u.. 10 pap _ Iha data popup . '",'.

GQ GD ~ ~ ~ (tbrook) (delete) ~ ~
~ (POint.) (dISPI4!!) (...,jbpl~ G:) ~ G;D (...-.) GQ
(vxgdb)
Continuing.

Bpt 3. .. etBao (pBoo=(struct boo ..) Oxlaba30) (prog.c line 102)
(vxgdb) (vxgdb) next
CvXgdb) next
(Yxgdb) next
Cvxgdbl (vxgdb)
(vxgdb) _

I-
1: ·pBoo = (

thelnt " 99.
c .. 124 'I '.
n.,xt = Oxlb.,968

)

Figure 2. Displaying C Structures

0

V

f)

V

Click on the value
and hold to traverse
to the next element
in the list.

Click here to
remove the popup
window.

VxGDB 15

VxGDB 3.2 - User's Guide

4. Debugging with VxGDB

4.1 Specifying Source Directories

The symbol table for an object module records the name of the source file from
which it was compiled, but not the directory in which the source file resides. VxGDB
maintains a list of directories to search for source files; this list is called the "source
path." Whenever VxGDB needs to display source code, it searches all the directories
in the source path in order, until it finds a source file with the desired name.

When VxGDB starts up, the source path consists of the current working directory
only. To add other directories, use the directory command.

Another way to add directories to the source path is to use the -d flag when invoking
VxGDB. See the section 4. OpHons and Arguments for GOB in the GDB Manual.

To see VxGDB's current source path, type in the dialogue window:

(vxgdb) info dir

4.2 Connecting to a Vx960 Target

The VxGDB command target lets you coIUlect to a Vx960 target on the network. To
connect to a target whose host name is "tt", type in the dialogue window:

(vxgdb) target tt

VxGDB will display a message such as:

Attaching remote machine across net _ ..
Connected to tt.

VxGDB will then attempt to read the symbol tables of any object modules loaded
into the Vx960 target since it was last booted. VxGDB will locate the object files by
searching the directories listed in the source path; if it fails to find an object file, it
will display a message such as:

prog.o: No such file or directory.

16 VxGDB

Part 1. Using VxGDB with Vx9tIJ 5.0.3

1bis will not cause the target command to abort. VxGDB will print an error message
in this case, but will continue with the execution of the target command. However,
you will not be able to debug a program that references the object modules VxGDB
was unable to find. You may use the directory command to specify the location of
these object modules and reissue the target command.

4.3 Compiling an Application Module

Compile source files as you do normally for Vx960, but add the -g option, which pro­
duces additional symbol table information for debuggers. For example, to compile
the demo program prog.c provided in lusrlvxJdemo/rdb3, type from the UNIX host

% cd /usr/vx/dGmo/rdb
% go0960 -DCPU=I960CA -ACA -0 -g -I/usr/vx/h prog.o

4.4 Downloading to a Vx960 Target

If you have connected to the Vx960 target and you want to debug an object file that
has not yet been loaded, you can use the VxGDB load command to download a file
from UNIX to Vx960 incrementally. The object file given as an argument to the load
command is actually opened twice: first by the Vx960 target in order to download
the code, then by VxGDB in order to read the symbol table. This can lead to problems
if the current working directories on the two systems differ. It is Simplest to set the
working directory on both systems to the directory in which the object file resides,
and then to reference the file by its name, without any path. Thus, to load prog.o, the
example demo program, type from the Vx960 prompt

-> od "/usr/vx/dGmo/rdb"

From VxGDB, type in the dialogue window:

(vxgdb) cd /usr/vx/diamo/rdb
(vxgdb) directory /usr/vx/dGmo/rdb
(vxgdb) load proq.o

VxGDB will display a response like:

Raading aymbol data from /usr/vx/dGmo/rdb/prog.o ... done.

3. For clarity, in examples where a full pathname must be specified, the files are often referred to
as lusrlvxlfi1ename. However, Vx%O does not assume or require this pathname.

VxGDB 17

VxGDB 3.2- User's Guide

You can also use the load command to reload an object mod u1e after editing and re­
compiling the corresponding source file. Note that this will cause VxGDB to delete
all currently defined breakpoints, auto-displays, and convenience variables, and to
clear the value history. (This is necessary in order to preserve the integrity of debug­
ger data structures that reference the target system's symbol table.>

Avoid using the load command to reload an object module while debugging a task.
The debugger will not have accurate symbol information if the task being debugged
makes references to the reloaded object modu1e, and all breakpoints and auto-dis­
plays set for the task will be deleted. Use the kill command to delete the current task
before reloading an object module.

4.5 Starting to Debug

After you have configured VxGDB (refer to 2.1 VxGDB Configuration). you are ready
to run the following tutorial. A supplied sample program, prog.c, is used as an
example throughout this section ..

(1) Copy the sample file lusrlvx!demo/rdb/prog.c to a local directory like
Imy/directory. Now compile the file using the appropriate compiler with the
-g command-line option to produce the file prog.o:

% cd /my/directory
% ep /uar/V,X/demo/rdb/proq.c
% gcc960 -DCl?U=I960CA -ACA -c -q -I/usr/vx/h prog.c

(2) Log in to your target machine and load the new object module into the target's
memory.

-> cd "/my / directory"
-> ld < proq.o

(3) From your UNIX host, change to the directory that contains prog.o and type:

% v'xqdb

(4) From the command-line:

(vxgdb) tarqet tt

If all is well, you should see a message indicating that symbols have been
loaded from prog.o.

18 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

(5) To activate the source window, type in the dialogue window:

(vxgdb) break prog

to set a breakpoint. The source code in prog.c should immediately appear in the
source window, and you should see a breakpoint symbol next to the first exe­
cutable line of the main procedure.

(6) To run the program, type in the dialogue window:

(vxgdb) run prog 10

Note that when spawning a task under Vx960, you must specify an entry point
to run; unlike GOB, main is not assumed. You should now see an arrow symbol
- next to the breakpoint symbol in the source window; this means that execu­
tion has stopped at the indicated line.

(7) Using the mouse, click on the (step) button a few times. You will see the
arrow symbol ad vance to follow the execution of the program.

(8) Click on a variable within scope and click on the (print) or cprint *) but­
ton. If you use the @ispla0 command to display a variable, its value will
appear in the bottom window. You can resize this window if the full value of
the variable cannot be seen. The scrollbar is also available if you are displaying
more variables than can comfortably fit on the screen.

(9) Click on a pointer to a structure, and use the right button to click on the
(print *) button. You should see a structure-traversal window appear. Click­
ing on any pOinter's value should advance to the indicated member of the
structure.

For an extensive explanation of the debugger command set, see the GDB Manual,
Part 2 of this publication.

4.6 Using VxGDB with the Vx960 Shell Debugger

While using VxGDB, you can continue to take advantage of the Vx960 shell for sym­
bolic debugging and disassembly, and performance monitoring facilities. The com­
bination provides a comprehensive high-level debugging solution. The interaction
between VxGDB and the Vx960 shell debugger is described below.

VxGDB 19

VxGDB 3.2 - User's Guide

4.6.1 Setting Breakpoints In the Same Task

You can set breakpoints from either VxGDB or the Vx960 shell, but they should not
access the same task. If a breakpoint set from the Vx960 shell is encountered by
VxGDB, task execution will stop and the following error message will be displayed:

UnGXpGcted braakpoint/trace event

To avoid this problem, make sure that breakpoints set from VxGDB and the Vx960
shell operate on different tasks. Note that any breakpoint set on all tasks from the
Vx960 shell can affect a task being debugged by VxGDB.

4.6.2 Monitoring Spawned Tasks

You can monitor a task spawned by VxGDB from the Vx960 shell, or monitor a task
spawned by the Vx960 shell from VxGDB.

When you start a program from VxGDB using the run command, a task named
tRdbRun is spawned on the Vx960 target system. You can change its priority, task
options, and stack size from the Vx960 shell by changing the value of the task vari­
ables rdbRunTaskPriority, rdbRunTaskOptions, and rdbRunTaskStack5ize. The default
values are:

rdbRunTaskPriority 100
rdbRunTaskOptions VX_SUPERVISOR_MODE I VX_FP_TASK I VX_STDIO

rdbRunTaskStackSize 20000

To use VxGDB to debug a task spawned from the Vx960 shell, invoke the attach
command by typing in the dialogue window:

(vxgdb) attach taskId

where taskId is the Vx960 hexadecimal task !D. The task can be running or sus­
pended when you attach. If running, the task will be suspended at the time of attach­
ment

20 VxGDB

Part 1. Using VxGDB with Vx960 5.0.3

5. Seffing the Display Defaults

Many attributes of the display interface can be changed with the XllR4 defaults
mechanism. The following examples illustrate changes to VxGDB that can be made
from your .Xde£aults file:

• Change the debugger invoked by default:

xvxqdb*debugqQr: /usr/too1s/intQl/VxGDB.960

• Change the font in the source window to bold, the font in the dialogue window
to Courier, and the font in the message window to TImes-Roman:

xvxgdb*sourcQWindow*font: 9x15bold

xvxgdb*dia1ogwindow*font:-adobe-courier-roQdium-r-norma1--18-180-75-
75-m-llO-*-1

xvxgdb*mQssaqeWindow*font:-*-timas-mQdi~r-*-*-*-180-*-*-*-*-*-*

• Change the shape and highlight thickness of the command buttons:

xvxgdb*Command.ahapeSty1e:Rectang1e

xvxgdb*Command.hiqhliqhtThickness:4

• Change the size and position of the window pane grips for the main window.
If the display is a color monitor, change the color of the grips to green:

xvxgdb*Paned*qripIndent: 5

xvxqdb*Grip.heiqht: 5

xvxgdb*Grip.width: 5

xvxqdb*Grip. foreground: green

• Change the key bindings in the source window so that A F means "forward
page," as in the vi editor:

xvxqdb*sourcQWindow.Translations: 'overrida\
ctr1<Key>F: nQXt-paqe ()

VxGDB 21

VxGDB 3.2- User's Guide

6. Differences between VxGDB 1.0 and GOB 3.2

Detailed information about the debugger command set can be found in Part 2, the
Free Software Foundation's GDB Manual, The GNU Source-Level Debugger, Third Edi­
tion, for GDB Version 32. Some of the commands documented in Part 2 have been dis­
abled in VxGDB since they have no meaning when debugging a remote Vx960 target
system. The disabled commands are:

add-file
exec-file
info environment
set environment
tty

core-file
handle
info signals
signal
unset environment.

NOTE: The add-file command is replaced by the load command in VxGDB.

VxGDB does not handle signals, but will trap any exceptions <e.g., divide-by-zero)
within the debugged task.

In addition, the following commands described in the GDB Manual behave differ­
ently in VxGDB:

run

22 VxGDB

- The arguments to the VxGDB run command are interpreted by
the remote debug server running on the Vx960 target, rather
than the UNIX shell as is the case in GDB. This means that
UNIX shell meta-characters or environment variables appear­
ing in the argument list are not expanded. Items that can
appear in the argument list are as follows:

C-style hexadecimal and decimal constants
C-style string constants
C-style character constants
Input/ output direction operators < and >
Names of symbols in the Vx960 system symbol table

symbol-file

Part 1. Using VxGDB with Vx960 5.0.3

- The symbol-file command is used internally by VxGDB to load
the symbol table of the Vx960 system image from which the
target was booted. This command should not be issued
directly. Use the load command to load object modules incre­
mentally.

VxGDB 23

VxGDB 3.2 - lJse(s Guide

VxGDB

