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I. ' 
PREFACE I n 

I 

The Intel iAPX 432 represents a dramatic advance in computer architecture: it is the 
first computer whose architecture supports true software-transparent, multi­
processor operation; it is the first commercial system to support an object-oriented 
programming methodology; it is designed to be programmed entirely in high-level 
languages; it supports a virtual address space of over a trillion (240) bytes; and it sup­
ports on the chip itself the proposed IEEE-standard for floating-point arithmetic. 
Because it is so advanced, a discussion of the iAPX 432 architecture will 
unavoidably introduce concepts that are new to many readers. 

The purpose of this document is to provide an accurate and comprehensive overview 
of the architecture, recognizing that not only are many of the concepts new, but that 
readers with widely divergent backgrounds are likely to be interested in the iAPX 
432. Consequently, a considerable amount of background information will be 
supplied. 

The Introduction is organized as follows: Chapter 1 introduces the concept of 
architecture and the various elements of an iAPX 432 system. Then the focus is nar­
rowed to the architecture of the principal processing element, the General Data Pro­
cessor (GOP). 

Chapters 2, 3, and 4 provide an overview of three broad areas where the GOP 
architecture represents a significant advance over contemporary architectures, 
namely memory organization, data manipulation, and hardware support of state-of­
the-art programming methodologies. These chapters motivate and explain most of 
the architectural features. 

The iAPX 432 General Data Processor Architecture Reference Manual contains 
complete, detailed descriptions of all aspects of the architecture. It should be con- . 
suIted whenever more information is' required on any of the topics covered in this 
document. 
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• 'R CHAPTER 1 
COMPUTER ARCHITECTURE 

n-

1.1 What is Computer Architecture? 

The term computer architecture is often used as if it meant simply "the organization 
and design of computers." This rather loose definition must be made considerably 
more precise before we can study the differences between the architecture of the 
iAPX 432 and that of more conventional computers. 

In practice, there are several distinct architectures within a computer system, each 
defined by a boundary between different levels of the system. Figure 1-1 shows an 
abstract picture of a computer system, with the simplest operations and functions on 
the bottom and the most complex, user-dependent operations on top. Each level 
makes use of the functions provided by the level below. The whole effect is like a 
stack of bricks, with each of the higher bricks supported by the ones below. 

OUTSIDE WORLD 

APPLICATION PROGRAM 

HIGH-LEVEL LANGUAGES 

RUN-TIME I/O 
CONTROL CONTROL 

BASIC INSTRUCTION SET 
INTERPRETATION & EXECUTION 

MICROCODE I/O PROCESSOR 

REGISTERS MEMOf\Y CONTROLLERS ALU 

...--OPERATING SYSTEM 
ARCHITECTURE 

...-INSTRUCTION SET 
ARCHITECTURE 

Figure 1-1. Computer System Architectures 171821-01 
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An architecture is the boundary or interface between two of these functional 
modules or bricks. It might be defined as the functional appearance of the system 
below an interface to a user above the interface. Designers above an architectural 
interface are generally not concerned with the details of the system below the 
architecture or with any still lower-level architectures. They are only concerned with 
the function of the system at the interface immediately below them. 

In his classic book, The Mythical Man-Month, Frederick Brooks, project manager 
of the IBM System 360, summed up the notion of architecture as "the complete and 
detailed specification of the user interface." 

The highest architecture is the interface between the whole computer system and the 
outside world; this can be called the system architecture. Somewhat lower down is 
the interface between the application program and the high-level programming 
language itself (assuming the application is written in a high-level language). This 
boundary can be said to define the programming language architecture. Since more 
and more programs are written in high-level languages, this architecture is the one 
most programmers will be concerned with. Still lower is the interface between the 
language and various run-time resource management functions that are usually pro­
vided by operating systems. We can call this boundary the operating system 
architecture. 

The next interface is especially significant, because in conventional computers it 
defines the boundary between hardware and software. It is the level at which 
elementary, machine-recognized instructions are decoded and executed. We shall 
call this the conventional instruction set architecture. The two lowest-level architec­
tures (microcode architecture and gate-level architecture) define even more 
primitive functions and are not of real concern to most programmers. 

Out of this multiplicity of architectures, the one usually called the computer 
architecture is defined by the boundary between hardware and software. To be 
precise, the computer architecture is the level of the computer system that is seen by 
an assembly language programmer or compiler writer. 

For each computer, the computer architecture can be seen as a kind of horizontal 
"slice" through the diagram in figure 1-1. Everything below the slice is performed 
by the hardware in this computer; everything above the slice is performed by the 
software. The major task of the computer architect is to decide which functions are 
best performed below the boundary and which above the boundary. Naturally, this 
boundary is not the same for all computers. Over the years, as computer technology 
has developed, the boundary between hardware and software has changed. When we 
compare the architecture of the iAPX 432 with other computer architectures, we will 
be discussing where this boundary between hardware and software has been drawn. 

Vertical slices through the system diagram in figure 1-1 may be considered as well. A 
vertical slice separates components into a multiprocessor or distributed processing 
system. For example, a cut that separates out I/O functions defines an I/O pro­
cessor (sometimes called a front-end processor). Other vertical cuts might separate 
several general purpose processors and so define a multiprocessor system. These ver­
tical cuts may be said to define a configuration architecture. (See figure 1-2.) 
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Thirty years ago computers were very expensive to build; the hardware filled whole 
rooms and a single gate might cost several hundred dollars. Because of these costs, 
early computers could have only very simple hardware operations, such as "Add the 
contents of register X to register Y." Consequently, it made good economic sense to 
substitute a program for a piece of equipment whenever possible. If more elaborate 
operations were needed, they were implemented with a library of subroutines. Thus, 
the architecture of these early machines represented a fairly low-level cut through 
the diagram in figure 1-1. 

As technology has advanced, hardware costs have declined rapidly. Meanwhile, for 
a variety of reasons which we shall examine in Chapter 4, the overall software costs 
of computer systems have increased astronomically. Today, as much as 80% of the 
total system cost can be due to software. Thus, the architectural motivations of the 
1950s and 1960s-trying to minimize hardware costs at the expense of software­
make little sense today. 

1-3 
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But a recent study concluded: 

If one compares the architecture of most current, widely-used machines 
(e.g., IBM System/370 and System 32, DEC PDP-IO and PDP-II, CDC 
6600, Univac 1108, and Intel 8080) to ... the first electronic stored­
program computers (built in the 1940s), all the significant differences will be 
found to have originated in the 1950s .... Although current systems differ 
significantly in terms of cost, speed, reliability, internal organization, and 
circuit technology, the computer architecture ... has not advanced beyond 
the concepts of the 1950s. * 

This lack of advance is why we can use a single line in figure 1-1 to represent 
"conventional instruction set architecture" (i.e., conventional computer 
architecture) . 

The question is this: If hardware costs are not a factor, which software functions 
should be done in the hardware, where they can be done faster and more reliably? 
Some functions can be added to the hardware with little or no controversy. Instead 
of libraries of floating point arithmetic subroutines, manufacturers now build a 
floating point unit into the computer itself. But before more complicated functions 
can be added to the hardware, decisions must be made about high-level languages, 
operating systems, and even programming methodologies, since raising the 
hardware-software interface means that the structures and operations in the 
architecture will be more closely related to the structures and operations in the pro­
gramming language and operating system. 

Consider the following historical example. In the late fifties, dissatisfaction with 
Fortran led computer scientists to try to formulate a better computer language. This 
research culminated in the design of Algol 60. At about that time, the preliminary 
specifications for the Burroughs B5000 computer were being drawn up. The 
architects of the B5000 decided to design an architecture specifically to support 
Algol instead of a conventional architecture. They committed themselves to high­
level language programming instead of assembly language programming, and they 
chose the best language available to them. 

The B5000 architecture had a number of advanced features, including segmented 
memory to support the static block structure of Algol and a stack mechanism to sup­
port its dynamic behavior. In fact, the B5000 and its successors were among the few 
important commercial machines developed during the 1960s and 1970s whose ar­
chitectures represented any advance over the concepts of the fifties. 

The B5000 had the right approach; it attempted to raise the level of the architecture 
using the best available programming methodology (c. 1960), which largely reduced 
to "use Algol", and the architecture supported Algol very effectively. But in the 
1970s and 1980s problems have arisen for which Algol and the programming 
methodology of the early 1960s, offer no solution. 

These problems have led other manufacturers, whose earlier computers had more 
conventional architectures, to recognize the wisdom of raising the level of the 
hardware-software interface. Consider, for example, the IBM System 38, IBM's 
most recent architecture. Not only have the designers of the System 38 followed the 
Burroughs approach in architectural support for high-level languages, they have 
also included most of the operating system in the hardware as well. It seems 
inevitable that the fundamental problems facing the computer industry will force 
more and more manufacturers to take this approach. 

*Glenford J. Myers, Advances in Computer Architecture (New York: 1978) 
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1.3 Current Problem Areas 

The basic problem facing the computer industry today is the software crisis; soft­
ware cost as a fraction of total system cost has dramatically increased over the last 
two decades. It is an odd kind of crisis, because it is in a sense a crisis caused by good 
fortune: decreasing hardware costs have made possible more and more ambitious 
projects. Unfortunately, our ambitions greatly exceed our current programming 
abilities. There are four fundamental problems: the size of modern programs, the 
demands for security, the use of concurrency, and the need for expandable systems. 
These four topics are discussed in detail in Chapter 4. The software crisis has thrown 
a spotlight on the deficiencies of current architectures. We can now see that conven­
tional architectures were designed to solve hardware problems that are no longer 
relevant. The current problems also identify three areas where the hardware­
software interface can be profitably raised: memory organization, data manipula­
tion, and support for the programming environment. (The topics that follow are 
discussed in much greater detail in Chapters 2, 3 and 4, where all the key terms are 
defined.) 

Memory Organization: The logical organization of memory and the memory pro­
tection mechanisms should reflect the organization of programs, not the arbitrary 
limitations of the current hardware technology. Large virtual memory systems are 
needed to free users from concern over the size limitations of physical memory. Effi­
cient use of memory will also require hardware support for dynamic storage alloca­
tion mechanisms, so that programs take only the memory they need, and memory 
that is no longer in use can be quickly reallocated. 

Data Manipulation: The instruction set should support high-level language 
statements easily and yet produce compact code. The instructions should have a 
complete set of operators for a full range of data types, from bits to long floating­
point numbers (typically at least 64 bits). 

Support for the Programming Environment: A new programming methodology 
has been developed over the last decade which can make programming cheaper and 
more reliable. This new "object-oriented" methodology is based on the concepts of 
abstract data types and protection domains, concepts which are difficult to imple­
ment at an acceptable performance level unless they are supported by the architec­
ture. In addition, many operating system mechanisms should be implemented in the 
architecture, where they can be handled more rapidly and securely. 

1.4 iAPX 432 Architecture 

The iAPX 432 represents one of the most significant advances in computer architec­
ture since the 1950s. 

Figure 1-3 shows a diagram similar to the one in figure 1-1, but with lines drawn to 
represent the level of the hardware-software interface in conventional micro-, mini-, 
and mainframe computers, and in the iAPX 432. 

1.4.1 Main Features 

The iAPX 432 is the first cc>mputer whose architecture supports software­
transparent, multi-processor operation. Processors can be added to or removed 
from a system to select the desired price/performance level, without requiring any 
software changes. If one processor fails, the rest of the system can usually continue 
to operate. 

1-5 
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Figure 1-3. Raising the Hardware-Software Interface 171821-03 

The iAPX 432 is the first commercial computer whose architecture fully supports 
the new object-oriented programming methodology. This new methodology can 
significantly reduce the enormous cost of software in contemporary systems. Both 
abstract data types and objects are supported by hardware recognized, hardware 
protected, and hardware manipulated structures. The iAPX 432 architecture also 
includes the Silicon Operating System, which provides the hardware mechanisms to 
support operations such as process scheduling, interprocess communication, and 
dynamic storage allocation that are implemented by the operating software in most 
computers. (See Chapter 4 for more details.) 

The iAPX 432 is designed to be programmed entirely in high-level languages. To 
facilitate compiler writing, the instruction set is completely symmetric. (All address­
ing modes are available for every operand, and all required operators are available 
for every data type-see Chapter 3 for more details.) The iAPX 432 has also 
implemented the proposed IEEE floating-point arithmetic standard. 

The iAPX 432 has an extremely large virtual address space (240 bytes) and hardware­
supplied mechanisms for implementing virtual memory systems that can exploit this 
address space. The memory architecture is segmented, with enough segments (over 
16 million) for every meaningful program unit to have its own segment. Thus the 
memory protection mechanisms, which are based on segments, can give hardware 
protection to the logical structure of programs. (See Chapter 2 for more details.) 

The iAPX 432 hardware can detect hundreds of different fault conditions, from 
attempting to divide by zero or attempting to execute data, to complex faults involv­
ing several processes. Most computers do not detect these faults at all, even at the 
operating system level, so it is common for the system to crash or for data to be 
destroyed. " 
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On the iAPX 432, if a fault is detected, the operation is aborted, and a complete 
description of the fault is reported. In a mUlti-process system, a fault may cause the 
current process to suspend itself, but the other processes can continue to execute. In 
a multi-processor system, a fault may cause one processor to suspend itself and 
begin running diagnostics, but the other processors can usually keep the system 
operating. (Fault handling is described in Chapter 12 of the iAPX 432 General Data 
Processor Architecture Reference Manual.) 

Table 1-1 summarizes the principal differences between conventional architectures 
and the architecture of the iAPX 432. 

Table 1-1. A Comparison of the iAPX 432 Architecture and the Architecture of 
Conventional Mainframes 

Feature of Architecture 
Conventional Mainframe 

iAPX 432 Architecture Architecture 

MEMORY ORGANIZATION 

Organization, size Linear 
224 - 2 32 bytes 

Structured segmented 
224 segments 
216 byte displacement 

2 40 byte virtual address 
space 

Logical to physical Single-level map Two-level map 
address translation Page-based relocation and Segment-based relocation 

virtual memory and virtual memory 

Protected memory unit Fixed-size page Individual program module 
or data structure 

DATA MANIPULATION 

Expression evaluation General register Stack or memory-to-
memory 

Primitive data types Characters, unsigned Characters, unsigned 
integers, integers, reals integers, integers, reals 

temporary reals 

Floating point hardware Yes Yes 

Addressing modes Some modes not available Symmetrical: all modes 
for all operands available for every 

operand 

PROGRAMMING 
ENVIRONMENT SUPPORT 

Operating system No multi-process support Multi-process mechanisms 
in hardware 

No support for dynamic Dynamic storage allocation 
storage allocation mechanisms in hardware 

Very limited multi- Software-transparent, 
processor operation, multi-processor 
if any operation 

High level language Assembly language- Oriented toward high 
oriented instruction set level languages 

Programming 
methodology No support at all Object-based 

arc h itectu re 

1-7 
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1.4.2 Configurations 

The iAPX 432 configuration architecture is defined by the components that make up 
an iAPX 432 system. In order to achieve high performance in both general purpose 
computation and input! output operation, the iAPX 432 has a distinct type of pro­
cessing unit for each of these functions. The General Data Processor (GOP) handles 
all program decoding, computation, and address generation. The Interface Pro­
cessor (lP) handles all communication with peripheral devices. Communication 
among the GDP, IP, and memory is provided by a packet-based interconnect bus. 
The IP is also connected to an interrupt-driven 110 subsystem bus, to which all 
peripherals are interfaced. A conventional processor, called the Attached Processor 
(AP), provides processing power in the 110 subsystem. 

Figure 1-4 gives an overview of a small iAPX 432 system, showing GOP, IP, AP, 
memory, the interconnect bus, and the 110 subsystem bus. 

The iAPX 432 is the first computer whose architecture allows for true software­
transparent multiprocessor operation. This is perhaps the most revolutionary 
feature of the iAPX 432 architecture. The number of processors in a system is totally 
invisible to the software. Several processors (both G OPs and IPs) and memory con­
trollers can be attached to a single interconnect bus. Figure 1-5 shows a system with 
two GOPs and two IPs. 

PERIPHERAL 8086 

MAIN 
MEMORY 

SUBSYSTEM BUS OR MUL TIBUS™ 

INTERFACE 
PROCESSOR 

INTERCONNECT BUS 

~ATTACHED I/O 
SUBSYSTEM PROCESSOR 

LOCAL 
STORE 

GENERAL 
DATA 

PROCESSOR 

t 
INTERRUPT-DRIVEN 

1/0 PROCESSING 

MESSAGE-DRIVEN 
DATA PRtCESSING 

Figure 1-4. A Small iAPX 432 System 171821-04 
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MAIN 
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Figure 1-5. A Multiple-Processor System 171821-05 

The Intel iAPX 432 computer system family covers a wide range in processing 
power, from the iSBC 4321100 single-board computer, which contains a single GOP 
(with peripheral interfacing provided by discrete components), to systems with 
several GOPs, IPs, and APs. 

1.5 Topics Covered in this Document 

Although system configuration is an important topic, this document will deal solely 
with the architecture of the General Data Processor, the principal component in an 
iAPX 432 system. System configuration, the architecture of the IP, and the related 
topics of communication with the outside world, initialization, program 
downloading, and interface to an interrupt-driven external processor will be covered 
in separate documents. 

The next three chapters will examine three broad areas where the level of the 
hardware-software interface has been raised in the iAPX 432 architecture. Chapter 2 
describes the memory architecture of the iAPX 432 and compares it to the memory 
organization of conventional computers. Chapter 3 describes the data manipulation 
instruction set of the iAPX 432 and shows how it supports high-level languages. 
Chapter 4 explains what objects are and how an object-oriented architecture can be 
used to support the new software methodology and the Silicon Operating System. 

1-9 





CHAPTER 2 
MEMORY ORGANIZATION 

2.1 Fundamentals 

One of the most important characteristics of a computer architecture is the way 
memory is organized and the way information in memory is accessed. 

The main memory of a computer is organized as a set of storage locations numbered 
consecutively, beginning with zero. The number associated with one of these 
physical storage locations is called a physical address, and the set of all physical 
addresses is called physical address space. 

A logical address, on the other hand, is an address in an instruction-an address as 
used by a programmer. The logical address space, the set of all logical addresses, is 
thus the set of addresses that can be used by a program. The organization of the 
logical address space defines the memory architecture. 

The organization of physical address space is determined by memory technology and 
by cost, but the logical address space should not necessarily be constrained by either 
of these considerations. Instead, the organization of logical memory should be 
determined by the structure of the programs that will run in memory. And in fact, 
the history of advanced memory architectures shows an evolution toward this goal. 
Initially, the logical address space was identical to the physical address space; now, 
in the iAPX 432, the level of the memory architecture has been raised much closer to 
the level of user program organization. In this chapter we will explore some of this 
history and show how it has led to the iAPX 432 memory architecture. 

2.2 Linear Memory 

The most common organization of logical address space; that is, the most common 
architecture for memory, is a linear, contiguous address space. In this kind of 
architecture addresses start at location zero and proceed in linear fashion (i.e., no 
holes or breaks) to the upper limit imposed by the total number of bits in a logical 
address. A program, often consisting of several procedures, and its data are all 
located within this single address space. The logical address space of a linear 
memory thus has the same basic organization as the physical memory. 

The simplest kind of linear address space is exemplified by the 8080. 8080 programs 
can generate 2 16 (65,536) distinct addresses. (See figure 2-1.) The addresses generated 
by 8080 programs are used directly by the memory hardware to locate data. Thus, a 
Load Accumulator instruction that references address 50000 will cause data to be 
read from physical memory location 50000. 
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Figure 2-1. Unmapped Linear Memory 171821-06 

The limitations of this memory architecture are readily apparent when several pro­
grams share the same machine in order to use efficiently the system's resources. It is 
difficult to implement such a multiple-program system on systems with a memory 
organization as simple as the 8080's. 

First, nothing prevents one program from accessing or even destroying data in 
another program. Since all programs share the same logical address space, any pro­
gram can access any location in memory, and no program is protected from 
unauthorized access by another program. Second, all the programs have to fit inside 
the relatively constricted logical address space of the 8080. 

To illustrate the problem of uncontrolled access of this simple memory organiza­
tion, examine figure 2-2. A program can reference any location in memory, even if it 
isn't supposed to. In this simple system nothing prevents program A from over­
writing program B or other parts of its own code or data, for that matter. A simple 
programming error by A can wipe out B. 

Thus, even though complex software partitioning schemes were employed, multiple­
program systems never operated reliably or securely with this memory organization. 
To overcome these liabilities without abandoning linear architecture, new 
mechanisms for memory management were invented: logical-to-physical address 
translation (also called mapping), memory access control based on fixed-sized 
pages, and virtual memory. These mechanisms are explained in the next four 
su bsections. 
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2.2.1 Mapping Linear Memory 

Mapping is basically the process of translating logical addresses into physical 
addresses. In the 8080 system we considered above, logical addresses are simply 
equated to physical addresses; but by exploiting mapping a logical address can be 
assigned to an arbitrary physical address. Thus mapping is a mechanism for 
relocating the logical address space within the physical address space. 

Figure 2-3 shows a very simple mapping operation. The entire logical address space 
of a program (locations 0-65535 in this case) is mapped onto physical locations 
30000-95535. Thus, a program reference to location 50000 actually fetches data 
from physical location 80000 (50000 + 30000). 
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The utility of this operation may not be obvious, but it is extremely useful in 
multiprogram systems. (In fact, mapping was developed for such systems.) With this 
kind of mechanism, which is typical of most minicomputers and some advanced 
microcomputers, each program has its own logical address space which is completely 
independent of any other program. Thus many programs can share physical 
memory without any possibility of interfering with each other. The mapping unit fits 
all the logical address spaces into one physical memory, but the process is 
transparent to the programs. See figure 2-4 for a multiprogram mapped 
environment. 
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2.2.2 Page-Based Mapping 

Instead of mapping the entire logical address space as a unit, as in figure 2-4, more 
advanced address translation mechanisms map smaller, fixed-size "pages" of 
logical address space onto pages of physical memory. Thus, a large program need 
not be relocated into one contiguous chunk of physical memory, which might be 
hard to find in a multiprogramming environment, but rather into several smaller 
sections of memory, which are more likely to be available. (It is often much easier to 
find twenty lK pages than one 20K block.) 

2.2.3 Access Rights Based on Pages 

The page mechanism can also provide the basis for memory protection within a 
logical address space. Each page can have attributes associated with it (called access 
rights) that indicate how the page can be accessed. These attributes can allow reads 
only, reads and writes, or they can prevent any access at all. See figure 2-5 for a 
diagram of such a paged mapping mechanism. 

LOGICAL 
ADDRESS SPACE 

MAP 
UNIT 

65535 .,..,..,.,.,.,..,""""'.,.,..,.,.,.. 

X 
R 
WR 

--. R 

WR 

--. R 

NO ACCESS TO PAGE 
READ ACCESS TO PAGE 
WRITE/READ ACCESS TO PAGE 

Figure 2-5. Page-Based Protection 

1 
PHYSICAL 

ADDRESS SPACE 

.............. .............. .............. .............. .............. .............. .............. .............. 
e·e •••••••••••• 

....... _ •• -. •• -.._ •• -. •• -.._ •• .-............... 0 

171821-10 



iAPX 432 Architecture Memory Organization 

2.2.4 Virtual Memory 

In many computer systems, the logical address space is far larger than the physical 
memory. Virtual memory is a mechanism for getting around the limits on physical 
memory size. Under a virtual memory system, it appears to users as if the entire 
logical address space were available for storage. But, in fact, at any given moment 
only a few pages of the logical address space are mapped onto physical space. The 
other pages are not present in main memory at all; instead the information in these 
pages is stored on a secondary-storage device, such as a disk, whose cost-per-bit is 
more economical. 

Every time a missing page is accessed, operating system software loads the missing 
page from disk and stores on disk a page that has not been referenced recently. The 
user will have the illusion of a gigantic, although slower, physical memory. 

2.3 Segmented Memory 

While many systems employ linear memory architecture, with memory management 
mechanisms of varying complexity, a number of new processors (the Intel 8086 and 
the Zilog Z8000) and some older systems (the Burroughs B5000 and the Multics pro­
cessor) have abandoned linear memory architecture altogether. Instead they use a 
form of logical memory organization called segmented memory. 

The basic motivation for segmented memory is that programs are not written as one 
linear sequence of instructions and data, but rather as parcels of code and parcels of 
data. For example, there could be a main code section and many separate pro­
cedures. Data could be organized into arrays, or arrays of arrays, linked lists, or any 
number of complex data structures. Moreover, these modules of code and data 
could come in many different sizes. 

Segmented memory architectures were developed to support this logical structure. 
The logical address space is broken down into many linear address spaces, each with 
a specified size or length. Each of these linear address spaces is called a segment. 
Each item within a segment is accessed by a two component address; the first com-' 
ponent (the segment selector) specifies the segment itself, while the second compo­
nent (the displacement) specifies the offset from the base of the segment to the item 
being selected. 

Each segment can be used to hold a meaningful program module or data module. 
Thus, a program might have the main procedure in a segment, each additional pro­
cedure in its own segment, and perhaps each major data structure in its own seg­
ment. With a segmented architecture, the structure of logical address space reflects 
the logical organization of the program. (See figure 2-6.) 

In contrast, a linear address space is by definition logically structureless. As dis­
cussed in the previous section', protection mechanisms for linear memory are usually 
based on fixed-length pages, whose size is determined by hardware criteria and 
which have no necessary relationship to the logical structure of programs. 
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The problem with decomposing the logical address space into pages is that the pro­
tection mechanism cannot protect the program modules precisely; it either protects 
too little or too much. The basic flaw is that the page length is fixed for hardware 
reasons; thus it is not flexible enough for the logical structure of programs. 

By contrast, any protection mechanism provided for segments naturally accrues to 
meaningful pieces of a program. Since each segment has a specified length, it is easy 
to give even a small instruction sequence its own segment and protect it from other 
programs, provided there are enough segments available. (Since programs can con­
sist of hundreds or even thousands of modules, this last criterion makes clear the 
importance of having a large number of segments in the architecture, if segmenta­
tion is to be used properly.) 

Virtual memory mechanisms can also be implemented for segmented architectures. 
In this case the segment is the memory unit that is swapped to and from the secon­
dary storage device. 

2.3.1 Mapping Segmented Memory 

Segmented architecture is also compatible with logical to physical address transla­
tion. In this case, the segment is the unit that" is mapped onto physical memory, 
instead of the whole logical address space or some arbitrary fixed-size unit. 

Mapping in this case is implemented by a segment table that holds a segment 
descriptor for each segment. A segment descriptor contains the starting physical 
address and the length of a segment. The segment selector component of a logical 
address is used as an index to select a segment descriptor in the segment table. Then 
the displacement is added to the segment starting address to produce the physical 
address of the operand being referenced. (See figure 2-7.) The displacement is easily 
checked by the hardware to ensure that the reference does not exceed the length of 
the segment. 
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2.3.2 Segment Types and Access Rights 

Many computers with segmented architectures (such as the Z8000) include segment 
type attributes in the segment descriptors. For example, the Z8000 Memory 
Management Unit supports stack segments, which are defined by a particular bit in 
the segment descriptor. Whenever an access is made to a stack segment, the hard­
ware checks to make sure that a stack push or pop operation is occurring. If the 
wrong kind of access is made to a stack segment (an instruction fetch, for example), 
the hardware signals a fault. 

In addition, the segment descriptors often contain the access rights attributes for 
each segment. Notice that the access rights are therefore associated with particular 
segments, instead of to the program modules that reference the segments. If a seg­
ment is read-only, for example, it is read-only for all modules that reference it. This 
association of access rights with segments is a disadvantage, because we may wish to 
give different modules access to the same segment, but with different access rights. 

2.3.3 Access Control 

Another disadvantage with the segment mapping mechanism we have described is 
that it is difficult to limit the access by one program to another program's segments. 
Since the segment table contains all the segment descriptors, any program can access 
any segment simply by indexing through the segment table. However, the usual cure 
for this problem, multiple segment tables, may be worse than the disease itself. 
Under this scheme each program is given its own segment table, with each table 
referencing only the segments that the program needs. But this scheme implies that 
whenever a segment is relocated in physical memory, all the programs that share the 
segment will have to update their segment descriptors. This could require hundreds 
of entries throughout memory to be changed. There are great advantages in keeping 
all the segment descriptors in one central location. 

2.4 Structured Memory 

The iAPX 432 has a segmented memory. However, the differences between the 
iAPX 432 and other segmented machines are great enough to justify the use of a new 
term--structured memory--for the iAPX 432 memory architecture. 

First, the iAPX 432 can address a very large number of segments -- 224 -- or approx­
imately 16 million segments, far more than most other computers. Furthermore, 
each segment can be up to 2 16 bytes long. The total virtual address space is therefore 
240 bytes, that is to say, more than one trillion bytes! 

Second, the 432 uses a two-step mapping process that separates segment relocation 
from access control. This two-stage mapping also allows a division of protection 
features into segment-specific protection (segment type checking) and user-specific 
protection (access rights). The two-step process is unique to the iAPX 432 and is 
responsible for some of its most powerful features. 
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2.4.1 Two-Level Mapping and Access Control 

The iAPX 432 mapping is based on the simple, one-step segment mapping process 
described in section 2.3.1 and illustrated in figure 2-7, but another step has been 
added. 

Each independently translated program module is supplied at run-time with a collec­
tion of segment numbers (i.e., values that can be used as indices into the segment 
table to select segment descriptors) for all the segments it may need to access during 
execution (and no others). This collection describes the access environment of the 
module, and the entire collection is stored in a set of access segments. Access 
segments form the other step in the two-step mapping process. 

The access mapping step works like this: The segment selector part of a logical 
address is used as an index into an access segment to select one of the segment 
numbers. The segment number itself then acts as an index into the segment table to 
select a segment descriptor. This two-level process is illustrated in figure 2-8. The 
segment numbers are actually contained in thirty-two bit entities called access 
descriptors, which also contain access rights data. 

The access environment is defined by a set of four access segments that are 
associated with this particular invocation of the program module (see section 4.4.2, 
Context Objects). Since the access environment restricts the logical address space 
available to the module, we can think of the access environment as defining the 
effective address space. Figure 2-9 illustrates the relationship among the logical 
address space, the effective address space, and the physical address space. 
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The two-stage mapping process has three major advantages over a one-step map: 

First, it takes fewer bits in an address to specify a particular segment. Sixteen million 
segments mean 16 million (224) entries in the segment table, so an index into the seg­
ment table (the segment number) must be 24 bits wide. This is far too many bits to 
carry around in every logical address. But only those segments in the access environ­
ment can be referenced. And, since the number of segments in the access environ­
ment will generally be much smaller than the total number of segments in memory, 
fewer bits are needed to specify one of them. In fact, the iAPX 432 can use as few as 
four bits to specify a segment. 

Second, the two-step mapping makes it possible to restrict the number of segments 
accessible by a given program or program module. Whereas, as we indicated in the 
previous section, the one-step mapping allows any program to address any segment 
in memory, simply by indexing through the segment table. 

Third, as we shall see in the next section, it allows the separation of access rights 
information from the segment descriptors. Access rights are instead contained in the 
access segments and are thus associated with program modules. 

One potential problem with a two-step mapping is access time. A memory access 
requires both an access descriptor and a segment descriptor, each of which may have 
to be fetched from memory. The iAPX 432 avoids this problem by maintaining an 
internal associative cache to speed up the address translation process. The most 
recently used segment descriptors, access descriptors, and the addresses of a number 
of commonly accessed items (e.g., the segment table) are all stored on the chip. The 
result is that most accesses go directly to the addressed item. 

2.4.2 Segment Types and Access Rights 

In the iAPX 432, as in all computers with segmented memory, all information is 
contained in segments. It is apparent that if the processor could tell what type of 
information each segment contained, it could provide a powerful protection 
mechanism. For example, if it were known that a particular segment contained 
access descriptors, and a program inadvertently tried to execute the contents of the 
segment as code, the error could be detected, and corrective action taken before any 
damage was done. 

Several different segment types are recognized by the iAPX 432 hardware. The two 
fundamental types (called the two base types) are data segments and access 
segments. Data segments are used to contain both instructions and operands (i.e., 
everything but access descriptors). Access segments contain access descriptors only. 
Type information is contained in the segment descriptors and is checked whenever 
an attempt is made to access a segment. If the access is not allowed for that type, a 
fault occurs. 

The hardware maintains an absolute distinction between access segments and data 
segments. The contents of access segments may not be manipulated in any way by 
instructions which operate on data segments. Access segments have their own set of 
instructions which manipulate access descriptors. 

Each base type is subdivided into several hardware-recognized system types. For 
example, data segments can be subcategorized as instruction segments or stack 
segments, to name only two possibilities. The hardware checks for inappropriate 
accesses to system types as well as to base types. Thus, an attempt to execute the con­
tents of a stack segment can be detected and aborted. 
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The access segment is the appropriate place to put access rights information, not the 
segment table (compare 2.3.2), since these rights should be associated with a pro­
gram module, not directly with a segment. Since access rights are stored 
independently of the segment descriptors, several modules can share the same seg­
ment, each with a different access right to it. See figure 2-10 for an illustration of 
this case. 

An access rights field is part of the access descriptor. Every reference to a segment 
from an instruction will be checked against an access right for that segment, con­
tained in the access descriptor. If a reference is detected that is not allowed, a fault 
will occur. 

2.4.3 Virtual Memory and Dynamic Storage Allocation 

Each program module has its own access environment, and within that environment 
instructions can potentially generate 232 unique addresses. Since a program can 
dynamically modify its current access environment (for example, by calling different 
procedures, see section 4.4.5), the address space available to the program over the 
lifetime of its execution is equal to the maximum total number of segments in 
memory times the maximum length of each segment. This enormous figure -- 240 

bytes -- is called the virtual address space. 
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As described in section 2.2.3, virtual memory is a way of implementing a large 
logical address space with a much smaller physical space. Since no iAPX 432 user 
will attach 1 trillion bytes of main memory to his system, a virtual memory 
mechanism must be implemented if the gigantic virtual address space is to be used. 
Each segment descriptor contains the following four I-bit fields, which are main­
tained by the hardware and can be used by the operating system to implement virtual 
memory: 

• The valid field, which indicates whether or not the segment is currently present 
in main memory. 

• The storage allocated field, which indicates whether any memory has been 
associated with this descriptor. 

• The accessed field, which indicates whether this segment has been accessed by 
some executing process. 

• The altered field, which indicates whether or not the information contained in 
the segment has been modified by some executing process. 

The operating system can use the valid bit and the storage allocated bit to detect 
when a physical segment is not present in memory, and it can use the accessed and 
altered bits to decide which of the currently present segments should be swapped out 
or simply overwritten by the new segment. In addition, several fields in the segment 
descriptor can be used by the operating system to record other useful information 

,about the segment (e.g., frequency of use) that can also be used in the swapping 
algorithm. 

The amount of memory allocated to a module is not necessarily fixed at compile 
time; it may be changed dynamically. The mechanism for implementing dynamic 
storage allocation is described in section 4-6. The operating system can use this 
dynamic storage allocation mechanism to make virtual memory more efficient by 
only allocating segments as they are needed, thus preventing unreferenced segments 
from using up memory. The user can also make use of the dynamic storage alloca­
tion mechanism to reserve storage as needed. 

2.4.4 Complexes of Segments 

The segment table contains entries for access segments as well as data segments, so 
the ultimate target address specified by an access descriptor can be another access 
segment. A logical address in an instruction therefore can reference an access 
descriptor as well as an item of data. This access descriptor will in turn point to 
another segment, which, of course, can also be an access segment. The journey from 
the initial access segment, through all the intervening access segments, to the final 
data segment is called an access path. 

By following these access paths, we can move through elaborate complexes of 
segments, in which access segments point to other access segments, and so on. To 
conveniently diagram these segment complexes, the two-step mapping process will 
be symbolized by a single arrow, which will be called an object reference (see figure 
2-11). Figure 2-11 also shows a large segment complex. 
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A complex of segments can be conceptually viewed as a single entity called an 
object. The iAPX 432 hardware recognizes a number of these objects and can 
manipulate them with instructions: Objects can consist of a single segment, a com­
plex of segments, or a contiguous subsection of a segment (called a refinement of the 
segment). Objects are used to support the advanced features of the iAPX 432 
architecture that are described in Chapter 4. 

Viewing an object as a single entity, we can consider the segment descriptor that 
points to the root segment of the object as a descriptor for the whole object. We will 
often refer to such segment descriptors as object descriptors and refer to the segment 
table as the object table. The object table actually consists of several data segments. 
See Chapter 2 of the iAPX 432 General Data Processor Architecture Reference 
Manual for more details. 

2.5 Summary 

The iAPX 432 memory architecture has the following features: 

• Two-step mapping process which separates the relocation mechanism from the 
access control mechanism. 

• A unique access environment for each invocation of a program module. 

• 24 °-byte virtual address space with mechanisms for implementing virtual 
memory. 

• Two basic types of segments: access segments and data segments; they are 
recognized by the hardware and the distinction between them is rigorously 
enforced. 

• Access rights associated with program modules not with segments. 

• Mechanisms for constructing and accessing complicated data structures 
consisting of several segments. 
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DATA MANIPULATION n 

3.1 What are Data Types? 
All information in a computer's memory is stored as a pattern of ones and zeros. 
What these bits represent depends upon the interpretation given to them by the com­
puter. The same bit pattern that encodes an ADD instruction might represent the 
number 17562 when interpreted as an integer. All computers have some basic data 
representations that are recognized by the hardware. These basic representations are 
called hardware-recognized data types. 

Hardware-recognized data types have two additional characteristics. First, each 
instance of a type (e.g. each integer) can be addressed as a unit in memory. Even if 
the datum is several bytes long, it has a single address. Second, associated with each 
type is a set of operations that can be performed on the type. The instruction set of a 
computer is basically just the combination of all the hardware recognized operators 
with all the data types that can act as operands. 

Early computers (and first generation microprocessors) had very simple instruction 
sets, with only a few operators and a few hardware-recognized data types. The 
arithmetic instructions were usually limited to addition and subtraction of integers. 
All other data types (e.g. real numbers) were manipulated by using special 
subroutines. Subroutines also had to be written to perform more complex opera­
tions (e.g. multiplication and division). 

For instance, to multiply two real numbers on a computer lacking hardware 
multiplication and real data types, a number of steps had to be taken. A binary pat­
tern for real numbers had to be devised that could be stored in the computer's 
memory and could adequately represent the range and accuracy desired. Second, a 
software subroutine had to be written that could perform the multiplication and 
store the result in memory. The software routine had to accomplish the multiplica­
tion using only simple operations, such as additions and subtractions of integers. 

As the cost of hardware decreased, it became feasible to expand the instruction set to 
include operations and data types that had previously been handled by the software. 
Typically, real numbers, characters, and bits were added to the data types supported 
by the instruction set. The net result was that overall performance was increased, 
especially for data-type-intensive applications (e.g. scientific number crunching) and 
less memory was required, since whole software routines could be replaced by single 
instructions. 

Ideally, any new hardware-supported data type should have been supported by a 
complete set of operators. For example, if the Add operation existed, Subtract 
should also have existed, and usually Multiply and Divide. Unfortunately, this ideal 
was not always met. Operators were often added in an ad hoc manner, and all the 
relevant operators were not supplied for each data type. The results were instruction 
sets that were very difficult to use. 

3.2 ·iAPX432 Operators and Primitive Data Types 
The iAPX 432 provides a comprehensive set of operators for manipulating several 
different hardware recognized data types. We will call them "primitive" data types 
because they are used to construct more complex data structures. All required 
operators are available for eight primitive data types, which may be divided into 
four classes: character, ordinal, integer, and real. Figure 3-1 shows the formats of 
each of the eight types. 
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CHARACTER 8 BITS 

o 

SIGN 

I :1 .: SHORT INTEGER 

I 

16 BITS 

15 14 0 

SHORT ORDINAL 

I 

16 BITS 

15 0 

SIGN 

I ......... ! ________ �_NT_E_G_E_R ________ .... 1" BITS 

31 30 o 

..... _________ O_R_D_IN_A_L _________ ..... I" BITS 

31 o 

SIGN SHORT REAL 

1 I 
1 EXPONENT 1 SIGNIFICAND 32 BITS 

I I 
31 30 22 21 

SIGN 

1 i 
EXPONENT 

63 62 52 51 

~~ ______ ~ ____ R_E_A_L_S_IG_N_I_F_IC_A_N_D ______ ~~ ~~TS 
SIGN 

1 
j 

EXPONENT 

79 78 64 63 

~~ _______ ~ ______ S_IG_N_I_F_IC_A_N_D ______ ~:~ OOBrrS 

o 

TEMPORARY REAL 

Figure 3-1. Primitive Data Types 171821-17 
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The operators for these data types can be divided into several broad groups: 
arithmetic operators (e.g. Add, Subtract, Multiply, Divide), logical operators (e.g. 
AND, OR, NOT, XOR), relational operators (e.g. Equals, Greater Than, Less 
Than), conversion operators (e.g. Convert to Character, Convert to Integer), move 
operators (e.g. Move, Zero, Save), and bit-field manipulation operators (e.g. 
Extract Bit Field, Insert Bit Field). Table 3-1 provides a chart showing all hardware 
recognized data types and all the operators that can be used with them. The sections 
that follow describe briefly the four data type classes and the operators that go with 
each class. 

Table 3-1. iAPX 432 Operators and Data Types 

SHORT SHORT SHORT TEMPORARY 
OPERATOR CHARACTER ORDINAL ORDINAL INTEGER INTEGER REAL REAL REAL 

MOVE X X X X X X X X 

-< 
SAVE X X X X X X X X 

ZERO X X X X X X X X 

ONE X X X X X 

AND X X X - - - - -

-< 
OR X X X - - - - -

XOR & XNOR X X X - - - - -

COMPLEMENT X X X - - - - -

ADD X X X X X * * X 

SUBTRACT X X X X X * * X 

MULTIPLY X X X X * * X 

DIVIDE X X X X * * x 

--< 
REMAINDER X X X X X 

INCREMENT X X X X X - - -

DECREMENT X X X X X - - -

NEGATE - - - x x x x X 

ABSOLUTE VALUE - - - x x X 

SQUARE ROOT X 

{ "''''' x x - - - - -

INSERT X X - - - - -
SIGNIFICANT BIT X X - - - - -

EQUAL X X X X X X X X 

NOT EQUAL X X X X X 

EQUAL ZERO X X X X X X X X 

~ 
NOT EQUAL ZERO X X X X X 

GREATER THAN X X X X X X X X 

GREATER THAN OR EQUAL X X X X X X X X 

POSITIVE - - - x x x x X 

NEGATIVE - - - x x x x X 

CONVERT TO: CHARACTER - X 

SHORT 
ORDINAL X - X 

ORDINAL X - X X 

SHORT 

-< 
INTEGER - X 

INTEGER X X - X 

SHORT 
REAL - X 

REAL - X 

TEMPORARY 
REAL X X X X X X -

Key 
This operator is available for the given data type. x 

* This operator is available for the given data type and for 
operations where one of the operands is a temporary real. 

(blank) 

This operator is not available and would not be useful if it were. 

This operator is not available. 
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3.2.1 Characters 
Characters require one byte of memory and can represent three kinds of data: 
ASCII characters, unsigned integers in the range 0-255, and the boolean values 
TRUE or FALSE (which are stored as xxxxxxxl and xxxxxxxO, where x means either 
1 or 0). Character operators include move operators, logical operators, simple 
arithmetic operators (add, subtract, increment, and decrement), relational 
operators, and the operator Convert Character to Short Ordinal. 

3.2.2 Ordinals 
Ordinals are unsigned integers; they are availiable in two sizes: 16-bit (Short 
Ordinals) and 32-bit (Ordinals). They have values in the ranges 0 to 216-1 or 0 to 
232-1. Ordinals are commonly used as indices into vectors and arrays and to hold bit 
fields. Ordinal operators include moves, arithmetic operators (including multiplica­
tion and division), logical operators, operators for manipulating bit fields, relational 
operators, and several conversion operators. 

3.2.3 Integers 
Integers are available in two sizes: 16-bit (Short Integers) and 32-bit (Integers). They 
have values in the ranges -2 15 to 2 15 -1 or -231 to 231-1. Integer operators include 
moves, arithmetic operators, relational operators, and several conversion operators. 

3.2.4 Reals 
Real numbers have three components: an exponent, a significand (mantissa), and a 
sign bit. Reals are available in three sizes: 32-bit (Short Reals), 64-bit (Reals), and 
80-bit (Temporary Reals). Each increase in size provides more precision (larger 
significand) and greater range (larger exponent). Short Reals and Reals are typically 
used as input and final-result operands in floating-point calculations. Temporary 
reals are intended for use as intermediate results, thus preserving accuracy and 
reducing the risk of overflow or underflow in multi-step calculations. Real operators 
include moves, arithmetic operators, relational operators, and several conversion 
operators. Table 3-2 lists the range and precision of the three sizes of reals. 

'~ 

Table 3-2. Range and Precision of Short Real, Real, and Temporary Real 

Type Range Precision 

Short Reals 2-126_2127 7 decimal digits (approx) 

Reals 2-1022_21023 15 decimal digits (approx) 

Temporary Reals 2-16383_216383 19 decimal digits (approx) 

3.3 Structured Data Types 
The data types discussed in section 3.1 are called primitives. By contrast, we will use 
the term structured data types for ordered aggregates of primitives. The iAPX 432 
facilitates access to two structured data types that are commonly used in high-level 
ianguages: 

• Arrays. An array consists of a number of components, each of the same data 
type. Thus we speak of arrays of integers, arrays of characters, etc. 

• Records. A record consists of a number of components (usually called fields), 
that can be of different data types. Thus, a record might consist of characters, 
integers, and real numbers. (For instance, an employee record.) 
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These structured types are not supported by a set of hardware operations, but the 
iAPX 432 does provide a mechanism that allows structured types to be manipulated 
easily. Each of the primitive types may be accessed through several addressing 
modes, and these facilitate the selection of individual elements from arrays and 
records (see section 3.4.1). The addressing mode used to reference an operand is 
determined by the way the logical address is formed in the instruction that references 
it. 

3.4 Instructions 
The iAPX 432 instructions specify the operator and the operands that it acts on. Up 
to three operands may be required for some operators. Instructions are contained in 
special hardware-recognized instruction segments in memory (see section 2.3). The 
processor views an instruction segment as a continuous string of bits called the 
instruction stream. Instructions may contain a variable number of bits and may 
begin at any bit within the stream. (In the current implementation, the processor 
reads an instruction segment in units of 32 bits.) The general instruction format of 
the iAPX 432 consists of four fields arranged in the format shown in figure 3-2. 

The first two instruction fields encountered by the processor in the instruction 
stream are called the class field and the format field. These two fields specify how 
many operands are in the instruction and information on how they are to be 
accessed. The last two fields are the reference field and the operator field. The 
operator field specifies the operator (e.g. ADD, SUBTRACT, NEGATE). The 
reference field contains the logical addresses of up to three operands. As shown in 
figure 2-7 of section 2.3, each logical address has two parts, a segment selector and a 
displacement. The segment selector identifies the segment that contains the operand, 
while the displacement locates the operand within the segment. 

OPERATOR CODE 
FIELD 

/ 
/ 

/ 

.. INCREASING ADDRESSES 

REFERENCE 
FIELD 

,....--A-----., 

OPR I OPR I OPR 
3 I 2 I 1 

/ \ 
/ \ 

/ \ 

LOGICAL ADDRESS 

FORMAT 
FIELD 

SEGMENT SELECTOR DISPLACEMENT 

f 

/ 
/ 

/ 

BASE INDEX 

\ 
\ 
\ 

} 

CLASS 
FIELD 

Figure 3-2. iAPX 432 Instruction Format (3 operands) 171821-18 
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3.4.1 Addressing Modes 

The displacement really consists of two subcomponents: a base value and an index 
value. (See figure 3-2.) Each subcomponent can reference its value either directly 
(the subcomponent contains the value itself) or indirectly (the subcomponent con­
tains a pointer to the value, which is located elsewhere in memory). A direct 
reference by both subcomponents is equivalent to a single-component displacement 
and can be used to access non-structured data (scalars). Indirect references can be 
combined with direct references to easily access three structured data types. The four 
combinations of direct and indirect reference are called addressing modes: 

• Base and Index Direct - used to access scalars 

• Base Indirect, Index Direct - used to access records 

• Base Direct, Index Indirect -:- used to access static arrays (arrays whose starting 
location, the base, is established at compile time) 

• Base and Index Indirect - used to access dynamic arrays (arrays whose base 
can be established during execution) 

Figure 3-3 illustrates the way the logical address is formed in each of the four 
addressing modes and the structured data type that is accessed by each mode. 

SCALAR: INDEX AND BASE SPECIFIED DIRECTLY 

INDEX---------------+-. { 

OPERAND 

BASE-----,--------------..~ { ..... _____ ...... 

RECORD: BASE SPECIFIED INDIRECTLY 

} RECORD 

..,.,..,..,.~,.,.,..,..,.~,.. 

INDEX----------------. } 
L{.,.,.~~""""""~~,-t RECORD SPECIFIED 

{

RECORD SPECIFIER ~{ } 

BASE • L.....--.-I . RECORD 

STATIC ARRAY: INDEX SPECIFIED INDIRECTLY 

{ ARRAY 

-{ ARRAY INDEX 
. INDEX 

SCALED -{ BASE 

Figure 3-3. Addressing Modes and Structured Data Types (1 of 2) 171821-19 
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DYNAMIC ARRAY: BASE AND INDEX SPECIFIED INDIRECTLY 

{ 

ARRAY INDEX 

INDEX---. ~ _____ .... 

SCALED 
ARRAY 

BASE _{ ~A_R_RA_Y_S_P_EC_I_FI_ER_ -----..{ ______ .... 

Figure 3-3. Addressing Modes and Structured Data Types (2 of 2) 171821-20 

The processor automatically scales an index value by multiplying it by 1, 2, 4, 8, or 
16 depending on whether the operand it points to occupies a byte, double byte, 
word, double word, or extended word. The compiler is thus freed from having to 
perform this calculation. 

The segment selector component of the logical address can also be specified indi­
rectly. This additional capability means that large, multi-segment arrays can be 
implemented easily. 

It is important to stress that not only are all required operators available for every 
data type, but also all four addressing modes are available for any operand in an 
instruction. This means that iAPX 432 instruction set is completely symmetric. Sym­
metry (sometimes called regularity) is defined essentially as the degree to which all 
addressing modes exist for every operand and all required operators exist for every 
data type in the instruction set. 

Symmetry is especially important for easy translation of high-level languages. If the 
instruction set is not symmetric (some operators are not provided for some data 
types, or some addressing modes are not available with some operators) then the 
compiler writer is faced with many special cases where software has to make up for 
the holes in the instruction set. Thus, the compiler is more difficult to write and 
more complicated. 

The symmetry of the iAPX 432 instruction set and the powerful operators allow the 
efficient encoding of high level language statements. For example, each of the 
following statements is encoded by a single iAPX 432 instruction: 

A= B * C 

A [I] = B [J] I C [K] 

P.Q = A [I] * C 

- A three-address multiply, all scalars 

- A three-address divide, all static array 
elements 

- Three addresses, mixed type, "element 
Q of record P is assigned the product of 
static array A, element I, and scalar C" 
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3.4.2 Operand Stack 

When an instruction references an operand, it can explicitly specify a logical 
address, in the manner described in the previous section, or it can access the top of 
the operand stack. The operand stack is a special data segment that is maintained by 
the hardware for expression evaluation. An access to an operand on the stack is 
called an implicit reference. Items are added to or removed from the "top" of the 
stack on a last-in-first-out basis. The current stack top is pointed to by a hardware­
maintained stack pointer. The following arithmetic expressions, which can be per­
formed by single iAPX 432 instructions, illustrate the flexibility of stack usage (the 
symbol "$" signifies that the operand is on the stack): 

A=$ + B 

$ = A * $ 

$ = $ + $ 

- Add the value on the top of the stack to 
the value in B, then put the result in A 

- Multiply the value in A by the value on 
the top of the stack, then push the 
result on the stack 

- Add the top two items on the stack and 
leave the result at the top of the stack 

See figure J.-4 for an illustration of a case where the last example would occur. 

$=A*B 

(A*B) .... TOS 

~TOS 

$=C*O $=$+$ 

(C*O) ~TOS 

(A*B) ~TOS-1 (A*B)+(C*O) ~TOS 

STACK EVALUATION OF $=(A*B) +(C*O) 

TOS = TOP OF STACK 

Figure 3-4. Using the Operand Stack 171821-21 
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Using implicit stack references instead of explicit memory references to address 
operands allows shorter and faster instructions. The iAPX 432, however, allows 
both stack arithmetic and memory-to-memory arithmetic. Research has shown that 
pure stack-oriented machines (i.e. machines where all arithmetic operations are 
between the top two elements of the stack) are not as fast at evaluating expressions, 
nor do they have as dense a code, as machines which allow both types of 
arithmetic. * But even a pure stack machine is faster and more efficient at evaluating 
expressions than a machine with no stack. 

3.4.3 Instruction Encoding 

From studies of program behavior, it is known that certain instructions are used 
more often than others. For instance, a push is far more frequently executed than a 
halt. Therefore, it makes sense to distribute the binary encoding of instructions in 
such a way that frequently used instructions take fewer bits to specify than infre­
quently occurring instructions. Most machines, however, have an instruction size 
that is always some mUltiple of the basic unit of memory storage (frequently 8 or 16 
bits). This fixed-length instruction encoding tends to be inefficient and frequently 
forces unfavorable compromises in the design of the instruction set. Since a large 
percentage of a computer's time is used in fetching instructions, an improvement in 
instruction bit density would result in faster execution of programs and a decrease in 
program storage requirements. 

The iAPX 432 instruction set has been designed to be very compact; the instructions 
are bit-variable in length and are not constrained to start or end on byte or word 
boundaries. If an operand reference is used more than once in an instruction, it need 
be specified only once. For example, in the common expression 

A=A + B 

the A operand need be specified only once. The format field in the instruction 
indicates how many times a particular 'operand is used. 

The bit encodings were based on the frequency-of-use of operators and operand 
references. The shortest instruction is 6 bits long and the longest is 344 bits long. 

3.5 Summary 

The iAPX 432 data manipulation instruction set 

• supports all required operators for 8 primitive data types 

• has four addressing modes for every operand 

• allows explicit or implicit access to every operand 

• supports efficient coding of high-level language statements 

• allows easy access to elements in arrays and records 

• has a frequency-of-use bit encoding that provides compact code 

*Glenford J. Myers, Advances in Computer Architecture, (New York: 1978). 
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CHAPTER 4 
PROGRAMMING ENVIRONMENT SUPPORT 

4.1 The Software Crisis 

In his 1972 Turing Award lecture, E. W. Dijkstra, father of the "structured pro­
gramming" movement, described the software crisis in the following terms: 

As long as there were no machines, programming was no problem at all; when 
we had a few weak computers, programming became a mild problem; and now 
that we have gigantic computers, programming has become an equally gigantic 
problem .... The increased power of the hardware ... made solutions feasible 
that the programmer had not dared to dream about a few years before. And 
now, a few years later, he had to dream about them and, even worse, he had to 
transform such dreams into reality! 

Decreasing hardware costs and increasing power led to more ambitious program­
ming projects. But it proved difficult to make the programs reliable, and even more 
difficult to make the programming projects come in on schedule and within budget. 
There were four fundamental problems: the sheer complexity of many large systems, 
the increasing demand for system security, the increasing use of concurrent pro­
gramming, and finally the demand for systems whose processing power can be 
expanded without affecting the existing software. 

4.1.1 Modularity 

Modern computer applications often require hundreds of thousands of lines of 
code; some data processing installations use systems that represent several million 
lines. Such enormous software packages are far too complicted for one person to 
understand completely; if they are to be developed and maintained, some form of 
program modularization must be used. It should be possible for different modules 
to be developed by different people, relatively independently, and for bugs to be 
fixed in one module without affecting other modules in unpredictable ways. It 
would also be desirable to be able to add functions by simply incorporating addi­
tional modules, without having to change the existing program. 

Even though modularization seems like an easy idea to grasp, it has proved surpris­
ingly difficult to implement correctly. A program can be modularized in a number 
of different ways, and some of these ways make the programming job even more 
difficult than if no modules were used. Consider, as an analogy, a diamond cutter. 
His job is to "modularize" an uncut diamond. If he chooses the correct modulariza­
tion, he will create valuable gems. But if he makes a mistake, he will get a pile 
of dust. 

The basic problem in modularization is to define correctly the interface between 
modules. Under many modularization schemes, some modules need to know the 
internal implementation details of other modules in order to operate. What is 
needed is a set of criteria for decomposing programs into modules in a way that 
minimizes the need for outside knowledge of the internal representations. 

4.1.2 Security 

Modern society has entrusted an enormous amount of sensitive data to computer 
systems, from bank accounts, credit records, and medical histories to the specifica­
tions for hydrogen bombs. Most of this information is, unfortunately, not very 
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securely stored. No computer system has ever successfully resisted determined 
efforts to defeat its security mechanisms, and many commercially available systems 
barely put up a fight. 

Security is based on limiting access to information. The basic principle is "need to 
know"; users, programs, and modules within programs should have access to only 
that information which they absolutely need. Most modern operating systems, 
however, have a very crude access limitation scheme. Usually a distinction is made 
between a few privilege levels, . and programs in the same level can do the same 
things. This scheme almost always results in programs being given too many 
privileges, since they cannot operate if they are given too few. What is needed is a 
method that grants each module exactly those privileges that it needs to execute 
properly, and no more. 

4.1.3 Concurrency 

As computers take on more complex tasks, they are called upon to model more and 
more features of the real world. One fundamental fact about the real world is that 
actions generally happen concurrently rather than in strict sequence. For example, in 
industrial control applications several jobs are usually being performed at the same 
time, and critical developments in one job can interrupt the work in another. Conse­
quently, software designers have developed models of concurrent processing in 
order to handle these real-world situations. Concurrent processing is also often used 
to mUltiplex several programs on one processor, so that shared resources, such as 
memory, I/O, and the processor itself, can be more efficiently used. 

Implementing concurrency requires mechanisms that permit the sharing of common 
resources and also mechanisms for bringing together concurrently executing 
modules to exchange information (communication) or to coordinate their action 
(synchronization). Several problems have made concurrent systems difficult to 
implement. The basic problem is defining the unit of concurrency. The problem is 
somewhat similar to the modularization problem described in section 4.1.1, except 
here the problem is how to modularize in the time domain. What is needed are 
criteria for decomposing programs into modules that can be run concurrently, and 
also mechanisms for communication, synchronization, and resource sharing. 

4.1.4 Expandability 

Project managers have always found it difficult to predict accurately just how much 
memory and processing power their project will require. As the project evolves, 
requirements tend to change (usually upward). Furthermore, over the lifetime of the 
product new features and functions are often added, placing more demands on 
power and memory. The standard approach computer manufacturers have taken to 
address this well-known phenomenon is to develop a family of computer systems 
that have a range of processing power. 

Unfortunately, such a family takes years to develop, and the procesor with exactly 
the right performance is seldom available when it is needed. The user has to buy 
either too much or too little. Moreover, the operating system software is often 
different on different members of the family. What users need is a system that can 
be quickly and easily expanded in power without requiring any software changes. 

The low cost of microcomputers has always presented the seductive possibility that 
computers might someday be constructed out of a large number of identical 
microprocessor components. If a system needs more power, just add another 
microprocessor. But the software difficulties of such mUltiprocessor systems have 
been daunting. The basic problems have been in sharing common resources and in 
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defining a unit of work in such a way that it could be sent to an arbitrary processor. 
This unit of work needs to be totally independent of particular processors and the 
communication between units of work has to be handled in an entirely processor­
independent manner. 

4.2 New Software Methodologies 

In recent years, progress has been made in all four problem areas: modularity, 
security, concurrency, and expandability. By the late 1970s computer scientists 
involved in programming language and operating systems research believed that, in 
fact, solutions had been found to many of these problems. 

4.2.1 Type Managers 

A consensus seems to have emerged that the best way to modularize programs is by 
applying the principle of "information hiding." The term is due to D. L. Parnas, 
who has identified a number of criteria for correctly decomposing programs into 
modules. Another name for the principle is "data encapsulation." The basic idea is 
that a module should contain a collection of related procedures and the data struc­
tures they operate on. Procedures outside the module should not have access to the 
implementation details inside the module. The data can be referenced from outside 
the module only by a call to one of the procedures inside the module. Many names 
have been given to the modules that result when this principle is applied-abstract 
data types, extended types, Parnas modules-but in this document the term type 
manager will be used exclusively. 

Until recently, the full power of the concept could not be realized, since most pro­
gramming languages did not provide any direct support for the type manager con­
struction. Users had to build their own type manager structures on top of the 
language, thus no compile-time checking facilities or enforcement mechanisms 
existed for type managers. Moreover, since no standard format for type managers 
existed, there was not necessarily any compatibility among different users' represen­
tations of the type manager concept, even if they used the same language. 

Several modern programming languages, however, support the type manager con­
struction (or closely related concepts): In Intel's Object Programming Language 
(OPL) and in Concurrent Pascal the structure is called a "class," CLU uses the term 
"cluster," Alphard calls its version a "form," and the new Department of Defense 
standard language, Ada, uses the term "package." 

At the same time that programming language research was focusing on the concept 
of a type manager as the solution to the modularization problem, operating system 
research was defining a very similar structure, the protection domain, as the solution 
to the security problem. (We will treat protection domain and type-manager as 
synonyms.) Operating system researchers concentrated on the data in these 
domains, instead of the procedures (which were the focus of the language research), 
since they were concerned with security more than modularization. They gave the 
name objects to the data items associated with domains, and they called the whole 
information hiding methodology "object-oriented design methodology" or "the 
object model." 

4.2.2 Processes 

The fundamental concept that underlies concurrency is the process. The process is 
the module of concurrency, just as the type manager is the module of the static 
organization of a program. A program can be constructed out of a single process or 
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several processes that communicate with each other. The use of processes originated 
in multi-programming operating systems, where each job was a process. But in 
recent years multiprocessing has evolved into a general methodology for implemen­
ting concurrency, a methodology we will call the process model. In fact, just as Ada 
has the notion of a "package," corresponding to a type manager, it also has the con­
cept of a "task," which corresponds to a process. 

Since a process is an abstraction of a processor in action, breaking up programs into 
processes is a start toward multiple processor systems. In such systems, a process is a 
natural unit to allocate to an available processor, because a process is naturally pro­
cessor independent. But before multiple processor systems can be implemented, 
several other concepts must be formalized and made processor independent as well. 
In particular, models have to be developed that abstract the details of the inter­
process communication and synchronization mechanisms. 

Much recent operating system research has focused on interprocess communication 
and synchronization, and progress here has been rapid. Software structures such as 
"communication ports" and "messages" have been developed to separate the 
logical character of the communications mechanism from the physical implementa­
tion. A communications port is an abstraction of a "mailbox," a place where 
messages can be sent or picked up. Processes send messages to ports and wait at 
ports to receive messages from other processes. Process scheduling can be handled in 
a similarly processor-independent fashion by defining the concept of a "dispatching 
port," where processes wait to be allocated to processors. 

The object model and the process model are independent, but they can be combined 
very simply and elegantly. Processes and ports will be objects, and the procedures 
that manipulate these objects can be grouped into type managers. The HYDRA 
operating system for the C.mmp multiple-processor system (16 PDP-ll minicom­
puters), a research project at Carnegie-Mellon University, demonstrated just this 
combination of the object model with multiprocessing. * 

4.2.3 Architectural Support 

What does it mean to say that an architecture supports a software methodology? At 
a minimum, it means that the architecture simply provides mechanisms to help users 
follow the methodology; in this case we will say that the architecture is oriented 
toward the methodology. But in a more general sense it could mean that the design 
of the architecture itself also follows the principles of the methodology, in which 
case we will say that the architecture is based on the methodology. 

For example, an object-oriented architecture helps users to write programs that use 
type managers and reflect the philosophy of information hiding. But if the architec­
ture's design is also an example of the use of that philosophy, then we will say that it 
is an object-based architecture. An object-based architecture can be oriented to both 
the object model and the process model; it can support type managers, but it can 
also support multiprocessing, as the HYDRA system suggested. In fact, an object­
based architecture provides a uniform approach toward supporting all system 
services. 

If an architecture, a high-level language, and an operating system are all based on 
the same methodology, then the boundaries between them begin to blur. It becomes 
hard to tell where one begins and another leaves off. Functions can be moved from 
the operating system to the architecture, or from the language to the operating 
system. Basically, the whole system has a kind of geometrical integrity, constructed 
as it is out of a set of common building blocks. 

'William Wulf, Roy Levin, and Samuel P. Harbison. HYDRAIC.mmp: An Experimental 
Computer System (New York: 1981). 
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The choice of which functions to provide in the architecture and which in system 
software is dependent on many factors-the size of the microcode, the number of 
gates on the chip, the presence of time-critical bottlenecks in certain frequently-used 
operations, and the need for security, among others. Management of any given type 
of object can be a responsibility shared by hardware and software. Time-critical 
functions will be placed in hardware while less frequently used or extremely complex 
functions will be left to software. 

For example, type manager modularization results in many more intermodule con­
trol transfers than do more conventional modularization schemes. If the mechanism 
of these transfers results in high overhead, it will not be feasible to use this 
methodology. The same holds true for process scheduling and dispatching. The 
frequent process switches envisioned by the process model would be prohibitively 
expensive on a conventional architecture. These factors suggest that intermodule 
control transfer mechanisms and process scheduling and dispatching mechanisms 
should be provided by the architecture. 

For reasons of flexibility, it is essential to maintain a separation of po/icy and 
mechanism. Resource management policies should be in software, while 
mechanisms should be in hardware. For example, scheduling policies (e.g. the choice 
between a round-robin system or a priority system) should be specified in software, 
since each application may have different scheduling requirements. But all schedul­
ing policies require an efficient scheduling and dispatching mechanism (i.e. the 
ordering of available processes according to the policy, and the selection of one of 
these processes for execution), so this mechanism should be in hardware. 

4.3 iAPX 432 Object-Based Architecture 

The iAPX 432 architecture provides the mechanisms which make it feasible for users 
to write programs modularized into type managers and the mechanisms to support 
multiprocessing and other system services. The iAPX 432 can provide these 
mechanisms because it has an object-based architecture. This means that the 
designers of the iAPX 432 architecture themselves followed the object methodology 
described in section 4.2.1. 

Therefore, since the object methodology is based on programming with type 
managers, it makes sense to ask what structures in the architecture correspond to 
type managers. 

4.3.1 System Objects 

In the iAPX 432 architecture, the structure that corresponds to a type manager is the 
group of all hardware operators that manipulate certain complexes of segments (see 
section 2.4.4). These hardware manipulated segment complexes are called system 
objects. System objects may consists of one segment, a refinement of one segment 
(see section 2.4.4), or several segments, but they are manipulated as a unit by their 
instructions. 

System objects provide the architectural mechanisms that support type manager 
modularization and system services. For example, system objects are used to imple­
ment process scheduling and interprocess communications (in fact, an iAPX 432 
process is a system object, as is a communication port and a dispatching port-see 
section 4.5 for more details). 

System objects provide mechanisms that allow users to build their own type 
managers and define their own objects. Like system objects, user objects can be 
represented by one segment, a refinement of a segment, or an entire segment com-
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plex. In fact, the only real difference between system objects and user objects is that 
the operations on system objects are implemented primarily in the microcode, 
whereas user objects are manipulated by software. User objects can be given 
hardware-enforced protection features that are similar to the ones associated with 
system objects. 

For example, a user could create a type manager containing a telephone directory 
object and two procedures (look up telephone number, look up address) that 
manipulate this object. The iAPX 432 architecture offers mechanisms that make it 
impossible for any other procedure to access the directory object directly. The only 
way another procedure could access the telephone directory is by calling one of the 
two procedures in the type manager. The directory object is thus totally protected 
against accidental or malicious damage, and no procedure outside the type manager 
needs to know the internal representation of the directory. 

4.3.2 Object Protection 
The two-level mapping of the iAPX 432's structured memory (see section 2.4.1) pro­
vides the mechanisms for restricting access to objects. Recall the definition of object 
references in section 2.4.4 in terms of access descriptors and segment descriptors. 
These object references form the basis of object protection. 

Object A is said to have an object reference for object B if an access segment in 
object A's segment complex contains an access descriptor for the root segment of 
Irs complex. See figure 4-1 for an illustration. 

The access rights mechanism of segmented addressing provides one level of object 
protection, the segment type mechanism provides another (see section 2.4.2), but the 
basic protection comes simply from controlling the dispersal of object references. 
The only way someone can get access to an object is by acquiring an object reference 
for it. If a procedure doesn't have an object reference for an object, the object 
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simply doesn't exist for the procedure. In operating system research, an object 
reference is called a capability, and the whole object-oriented access mechanism is 
called capability-based addressing. Figure 4-2 shows a mulitiple-object environment 
and the object references of each object. 

4.4 Architectural Support for Type Managers 

Two aspects of the programming environment of a type manager are candidates for 
architectural support: its static structure and its dynamic behavior during execution. 
The iAPX 432 architecture provides a system object called a domain that 
implements the static structure, while the dynamic behavior is handled by a system 
object called a context. 

A HAS AN OBJECT 
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4.4.1 Domain Objects 
A type manager is represented by a segment complex called a domain object. The 
root access segment in a domain object, that is, the domain access segment, contains 
object references for all the other objects in the domain. These other objects include 
instruction objects (represented by instruction segments) that contain the type 
manager's procedures, and data objects (represented by data segments or segment 
complexes) containing the data that is encapsulated inside the type manager. 

The domain access segment distinguishes its public object references from its private 
references. The public object references are contained in a refinement of the total 
access segment; all other references are private. Access to the list of public references 
will be made available to procedures outside the domain itself, but the private 
references are accessible only by procedures within the domain. Thus the private 
objects are effectively "hidden" inside the domain. This mechanism supports the 
information hiding philosophy of the object-oriented design methodology. Figure 
4-3 shows the segments that make up a simple domain object. Notice that references 
to the instruction segments have been placed in the public portion of the domain 
access segment, while the data segment complex is hidden in the private portion. 

4.4.2 Context Objects 

A context object is the iAPX 432 hardware-recognized object that supports the run­
time environment of a procedure in a type manager. Before a called procedure can 
be executed it must be supplied with a data structure containing run-time informa­
tion that is unique to this particular instance of execution (e.g., the new instruction 
pointer value and the return address to the calling procedure). All this information is 
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contained in a context object. It has much the same function (although in a much 
more protected fashion) that the activation record or stack frame has in stack-based 
programming language implementations. 

A context object is represented by a segment complex, the root of which is called the 
context access segment. The context access segment contains object references for 
the following objects: 

• an operand stack for expression evaluation; 

• the domain access segment of the context's type manager; 

• four access segments that define the instantaneous access environment of the 
called procedure (i.e. all the objects that may be referenced by the procedure); 

• a message (if there is one) from the calling procedure; 

• the context object of the calling procedure; 

• a data segment containing local constants needed by the called procedure; and 

• a data segment containing the current instruction pointer, stack pointer, and 
status information. . 

By convention, we will group into the context object the context access segment, the 
operand stack, the context data segments, and the four access segments that define 
the access environment (called the four entry access segments). For reasons which 
will become clear in the next section, one of the four entry access. segments is the 
context access segment itself. Figure 4-4 shows the segments and object references 
included in a context object. 

4.4.3 Calling Contexts 

A new context object is automatically created when a procedure in one type manager 
calls a procedure in another type manager. The new context is automatically 
destroyed when the called procedure returns control to the calling procedure. A call 
instruction may reference any instruction object in the public part of any domain in 
the calling access environment. See figure 4-5 for an example of a call. 

When a call is made, the new context has a different access environment from the 
calling context, so the access environment of the called procedure will be different 
from the access environment of the calling procedure. For example, notice that in 
figure 4-5 the access environment of the calling context includes only the public part 
of the called domain, whereas the new context's access environment includes the 
entire domain. Each invocation of a procedure can be given an access environment 
that includes only those objects it needs to access. Thus the call context mechanism 
helps to insure the security of the whole program. 

Along with the call instructions, the iAPX 432 instruction set includes two groups of 
branch instructions: intrasegment branches and intersegment branches. The range 
of the former group is limited to a single segment, while the latter group can specify 
branches to any instruction segment in the domain (i.e. to any procedure in the 
current type manager). Branch instructions do not change the access environment. 

4.4.4 Using the Inside Representation of Type Managers 

The domain objects we have considered so far include both procedures and the data 
objects they act on. We will call this kind of domain object, in which data objects 
are in the domain, the inside representation of type managers. 
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The telephone directory example from section 4.3.1 can be easily implemented using 
the inside representation. Object references for the two procedures are placed in the 
public part of the domain, while the telephone directory object itself is in the private 
portion of the domain. Thus the procedures can be called from outside the domain, 
but the directory is inaccessible from outside. Whenever anyone needs to access the 
directory, a call must be made to one of the two procedures, which performs the 
operation on the directory, then returns to the caller. 
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Figure 4-6 displays the calling sequence for the inside representation in detail. The 
first drawing in figure 4-6 shows the situation that results after a call has been made 
to the "look up number" procedure in the telephone directory type manager. Notice 
that the telephone directory object is not in the immediate access environment of the 
procedure, because the directory is referenced only by the domain access segment, 
which is not one of the four entry access segments. 
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In order to bring the directory object into the access environment, the domain access 
segment must be made into one of the entry access segments. The iAPX 432 instruc­
tion set includes an instruction, ENTER ACCESS SEGMENT, which allows th"e 
user to make any access segment in the immediate access environment into an entry 
access segment. Since the domain access segment is referenced by entry access seg­
ment 0 (the context access segment itself), the domain access segment is in the access 
environment. The second drawing in figure 4-6 shows the result of executing an 
ENTER ACCESS SEGMENT instructon. The domain access segment has been 
made entry access segment 1, and the telephone directory object is now in the access 
environment. The procedure can now act on the object. 

This example illustrates why the context access segment is one of the four entry 
access segments. 

4.4.5 Using the Outside Representation of Type Managers 

The alternative to the inside representation is for data to be kept outside the domain 
object; only procedures will be found inside. Whenever a procedure in the type 
manager is called, a reference to the data object must be passed into the domain. We 
will call this the outside representation of type managers. 

The outside representation is actually more common than the inside representation, 
since the outside representation can be used with multiple instances of the same type 
of object. For example, the type managers that control system objects use the out­
side representation. There is only one type manager for each type of system object, 
but many different objects of one type can be controlled by the same type manager. 
The outside representation is also used for large data objects that must be passed to 
several type managers. 

As an example of the outside representation, consider another telephone directory 
type manager. This type manager contains only the two procedures, look up number 
and look up address, and no data object. Whenever a procedure is called, a 
reference to some telephone directory object must be passed to the procedure. 
Figure 4-7 illustrates this example. The calling procedure uses the instruction CALL 
WITH MESSAGE, and sends the directory object as a message to the called 
procedure. 

The problem with this simple use of the outside representation is that the data object 
has no protection. Any procedure with a reference for the object can manipulate it. 
Ideally, only procedures in the telephone directory type manager should be able to 
manipulate directory objects. System objects solve this problem through the 
mechanism of type checking; the only operators that are allowed to access a system 
object of some system type are the operators in one particular type manager. Each 
time an operation is attempted on a system object, the system type field in the 
corresponding object descriptor (see sections 2.4.2 and 2.4.4) is checked to see if the 
operation is allowed. 

The iAPX 432 architecture provides a way to give a similar type checking 
mechanism to user objects. 

4.4.6 User Defined Types 

The iAPX 432 architecture includes several system objects and operations that can 
be used to create a protection mechanism for user-defined objects that is similar to 
the hardware protection mechanism provided for system objects by system type 
checking. This protection mechanism is called user-defined type checking. 
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The type definition object (TDO) is used to label user objects so they can have type 
checking performed on them, in much the same way that the system type fields in the 
object descriptors label system objects. All references to a typed object are made 
through a special kind of descriptor, called a type descriptor, in the object table (see 
section 2.4.4). This type descriptor points to both the typed object and the TOO. 

The iAPX 432 instruction set includes several instructions for creating typed objects 
and for accessing them. Two varieties of types can be created, public types and 
private types. Public types provide no hardware protection; they merely serve to 
label user objects for the software. Private types, on the other hand, offer a protec­
tion mechanism. Successfully accessing a privately-typed object requires a reference 
to the TDO as well as a reference to the object itself. See Chapter 7 of the iAPX 432 
General Data Processor Architecture Reference Manual for more information on 
how user typing is implemented. 
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Figure 4-8 shows the same example as figure 4-7, but now the telephone directory 
object has been given a user-defined private type (shown by the TDO object). The 
domain has a matching TDO, so procedures in the domain can access the directory. 
No other procedures can access the directory. Notice that both a CALL CONTEXT 
WITH MESSAGE instruction and an ENTER ACCESS SEGMENT instruction are 
used in the example. The first instruction passes the typed object into the type 
manager. The second instruction puts the TDO object in the access environment, 
where it can be used in an access to the directory object. 
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4.5 Architectural Support for System Services: 
The Silicon OS 

The iAPX 432 architecture implements a number of resource management 
mechanisms in the hardware. We call these hardware-supplied mechanisms the 
Silicon Operating System. (It is worth stressing again, as we did in section 4.2.3, that 
only the mechanisms are supplied in the hardware; the resource management 
policies are established by software.) 

We can divide the Silicon OS into two unequal parts, one concerned with the 
management of memory resources, the other with the management of processor 
resources. By far the largest fraction is concerned with processor management. In 
the following sections we will explore the objects that implement dynamic storage 
allocation (one aspect of memory management) as well as process scheduling, 
dispatching and interprocess communication. 

4.5.1 Process Objects and Processor Objects 

A process is the unit of concurrent execution; it may also be defined as the unit of 
code that can be scheduled to run on a processor. The iAPX 432 architecture sup­
ports concurrent programming with several system objects: process objects for every 
process in the system, processor objects for every processor in the system, and 
processor carrier objects, which link processor objects to process objects. We will 
not describe the complete segment content of these objects, as we did for domains 
and contexts, but users can refer to the iAPX 432 General Data Processor Architec­
ture Reference Manual for details. 

We have now mentioned all the system objects that are needed for a minimal iAPX 
432 system. Figure 4-9 shows the basic objects and the object references needed for a 
simple system. The system includes a processor object, a processor carrier object, a 
process object, a context object, and a domain object. 

4.5.2 Storage Resource Objects 

Storage Resource Object (SROs) are used to implement the dynamic storage alloca­
tion mechanisms (see section 2.4.3) of the Silicon Operating System. The SROs and 
the operations associated with them perform the actual binding of an unallocated 
descriptor in the object table to a newly created segment in memory. Several instruc­
tions, including CREATE ACCESS SEGMENT and CREATE DATA SEGMENT, 
require a reference to an SRO. 

A special SRO associated with the process object is used implicitly whenever a call 
instruction is executed, since these instructions create a new context object, which 
must be allocated storage when it is created. Unless an SRO is used explicitly, it does 
not have to be included in the system. Therefore we have not included it in the 
simple system shown in figure 4-9. 
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4.5.3 Simple Interprocess Communication Without Blocking 

In a multi-process 'environment, procedures in different processes often need to 
exchange information. Since the processes are asynchronous, the first one may be 
ready to communicate before or after the second is ready. Therefore, some kind of 
interprocess synchronization must be provided. In the iAPX 432 Silicon OS, a 
system object called a communications port provides the synchronization 
mechanism that allows asynchronous processes to communicate. 

The information communicated is sent in a message object, which has no defined 
system type and in fact may be any object. For example, as we shall see in section 
4.5.5, an entire process can be sent as a message. 

When a procedure in one process wants to send a message to a procedure in another 
process, the sender specifies a message object and a communictions port as the 
destination of the message, then executes a SEND instruction. Similarly, the receiver 
specifies the same communications port as the source of a message and executes a 
RECEIVE instruction. Neither process need be aware of the other; neither process 
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knows, when it communicates with the port, if the other process is also ready to 
communicate. The port object contains a fixed-length buffer that holds a queue of 
object references for the message objects that have been sent to the port and are 
waiting for a receiver. As processes execute receive instructions on the port, 
messages are removed from the head of the queue. 

Figure 4-10 shows simple examples of messages being sent and received via com­
munications ports. Notice that the message buffer in the communications port is 
neither full nor empty, so both the send and receive instructions can be executed 
without difficulty. The message object being sent must be in the access environment 
of the sending context. When a message is received, its object reference is placed in 
the "message from calling context" slot in the context access segment. 
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4.5.4 Conditional and Surrogate Communication 

As we shall see in the next section, when a process executes a simple SEND instruc­
tion on a port whose message buffer is full, or when it executes a simple RECEIVE 
on an empty port, the process is suspended while it waits for space in the buffer or 
for a message. Often, however, it will be unacceptable for a process to become 
suspended in this manner. The conditional and surrogate communication operators 
(CONDITIONAL SEND, CONDITIONAL RECEIVE, SURROGATE SEND, 
SURROGATE RECEIVE) can be used to avoid this suspension and also to imple­
ment more advanced forms of communication. 

Conditional sends have exactly the same effect as simple sends, if the message buffer 
in the port is not full. Similarly, conditional receives are identical to simple receives, 
if the port has a message waiting. However, if these conditions are not satisfied, the 
conditional operations are not performed, whereas the simple operations are 
blocked and the process is suspended (see section 4.5.5). The conditional operations 
can be retried at a later time. 

Surrogate sends and receives are more complicated than either simple or conditional 
operations. In surrogate operations, two ports are specified, along with a special 
system object called a carrier. When a SURROGATE SEND instruction is executed, 
for example, the message is sent to the first port, if the buffer is not full. If the 
buffer is full, the carrier object, containing a reference to the message, is enqueued 
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in a linked list at the port. When space becomes available in the buffer, the message 
object reference is inserted in the port, and the carrier is resent to the second port. 
Similarly, a SURROGATE RECEIVE can cause its carrier to become enqueued at a 
port waiting for a message. When the message is received, it and its carrier are resent 
to the second port. Figure 4-11 shows a queue of carriers and messages at a port. 

Surrogate operations allow sophisticated communications mechanisms to be 
implemented. For example, priority communications channels can be implemented 
by specifying a priority-based port protocol and encoding priority information in 
the carrier object. Parallel communications channels can be multiplexed onto one 
port, in priority order, by executing a SURROGATE RECEIVE on several ports, 
but specifying the same second port in each case. A message sent to any of the 
several ports will be resent to the same second port. Thus, by executing a receive 
on the second port, one process can monitor several prioritized channels. (See 
Chapter 4 of the iAPX 432 General Data Processor Architecture Reference Manual 
for more information.) 

4.5.5 Process Blocking, Scheduling, and Dispatching 

When a process attempts to execute a simple SEND instruction on a communica­
tions port with a full buffer, or to execute a RECEIVE instruction on a communica­
tions port with an empty buffer, the process will become blocked. When a process is 
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blocked it is enqueued at the communications port through its process carrier, a 
special carrier object associated with the process object itself. When the port buffer 
is available again, the process will be unblocked, and resent to another port object 
called a dispatching port. At the dispatching port the hardware automatically per­
forms scheduling and dispatching. 

Scheduling is the determination of the execution order of each process in a 
multiprocess system. Although the scheduling policy (e.g. round-robin or priority­
based) is set by software, the implementation of the policy (the ordering mechanism 
itself) is performed by the iAPX 432 hardware. Dispatching is the assignment of a 
physical processor to execute a process. 

Besides process objects, process carrier objects, and dispatching port objects, the 
hardware also uses processor objects and processor carrier objects (see section 4.5.1) 
to implement scheduling and dispatching. A dispatching port binds processor 
carriers to process objects just as a communications port binds processes to 
messages. (In fact, communications ports and dispatching ports are really just two 
slightly different varieties of a generalized port object.) When the dispatching port is 
created, the software specifies parameters that define the scheduling policy. (For 
example, one parameter defines the maximum period of time a process can run on a 
processor before rescheduling occurs.) The hardware executes this policy 
automatically for all available processes. 

A process can become available for scheduling for a variety of reasons: it can be 
blocked while waiting to send or receive a message; it can use up its time slice on a 
processor; a fault can occur which causes the process to suspend itself; or it can 
deliberately suspend itself by executing a DELAY instruction. 

Figure 4-12 shows the complete sequence of process blocking at a communications 
port, unblocking and resending to the dispatching port, scheduling (i.e. enqueueing 
at the dispatching port), and dispatching to an available processor. 

Several dispatching ports can exist in a system (even a single-processor system). In 
this case, the ports usually implement different scheduling policies or else are 
dedicated to different functions. (One port might be dedicated to scheduling pro­
cesses that have faulted, for example.) 

4.5.6 Multiple-Processor Systems 

The iAPX 432 architecture can support more than one active processor in the same 
system. Dispatching on a multiple processor iAPX 432 system becomes the assign­
ment of a process to an available processor. The ability to add processors to a system 
and, without changing the software, improve the performance of a multi- process 
environment is one of the most important and powerful features of the iAPX 432. 

The iAPX 432 architecture supports multiple processor dispatching as a simple 
extension of single-processor dispatching. Merely adding another processor object 
and processor carrier object for each additional physical processor enables the 
system to expand its power with no other changes required. Two processor carrier 
objects reference the same dispatching port, but otherwise the mechanism is the 
same. Multiple dispatching ports may be provided, as in the single-processor case. 

Figure 4-13 shows a two-processor system running six processes. Two processes are 
executing and four are waiting at the dispatching port for a free processor. 
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4.6 Summary 

• The object-oriented design methodology has great promise for solving many of 
the current problems in software design and maintenance. 

• This methodology is based on information hiding as the criterion for 
modularization. 

• Type managers are the modules that result when the methodology is actually 
applied. They contain all procedures that directly manipulate objects of a given 
type. 

• Domain objects and context objects are used to implement the static structure 
and dynamic behavior of type managers. The type definition object is used to 
give hardware protection to user objects. 

• Multi-process operation can be supported by the object-based architecture of 
the iAPX 432, which also provdies a uniform approach to all system services 
(the Silicon Operating System). 

• The Silicon Operating System provides a full set of hardware recognized system 
objects that provide support for concurrent processing (process objects, pro­
cessor objects, dispatching ports, carriers), interprocess communication (com­
munication ports), and dynamic storage allocation (storage resource objects). 



CONCLUSIONS 

The goal of reliable software will remain distant until computer architecture 
is significantly modernized to narrow the semantic gap between language 
concepts and hardware concepts. Given the high annual toll of people-hours 
lost to unreliable software, we architects have something bordering on a 
moral responsibility to modernize. 

Peter J. Denning 
Chairman of the Computer 
Science Department, 
Purdue University 

Objects, type managers, concurrent processes, and communication ports may be 
new to the world of computers, but these concepts are very familiar in the real world 
of mailboxes, locks, keys, things, and events. For too long programmers have been 
forced to think in concepts that are tied closely to the hardware but are distant from 
the world of applications. Programmers usually find that object-oriented design 
using modern languages, such as Ada, quickly becomes second nature, because it is 
so much like the anthropomorphic way we all think. These modern languages and 
methodologies can make programming more of a human activity, and thus capable 
of being performed correctly by human beings. 

But the new languages and methodologies have to be supported by the architecture 
in order to work effectively. Unfortunately, most architectures deal with concepts 
that are as far below the level of Ada as Fortran is below the real world. Glenford 
Myers called this conceptual incompatibility between modern languages and conven­
tional architectures the "semantic gap," a gap which the iAPX 432 architecture has 
bridged. 

The conceptual gap between Ada and the iAPX 432 architecture is very small, 
because the designers of the iAPX 432 architecture followed the same object­
oriented design methodology that users should follow when writing Ada programs. 
The same methodology is also used in iMAX, the Multifunction Applications 
Executive that Intel provides with Ada to handle the interface between user pro­
grams and the Silicon OS. The object methodology is thus found at every level of the 
iAPX 432 system. 

Conclusion-l 





REQUEST FOR READER'S COMMENTS 

I ntroduction to the 
iAPX 432 Architecture 

171821-001 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating~ _____ _ 

NAME ____________________________________________________ DATE ____________ _ 

TITLE ____________________________________________________________________ _ 

COMPANY NAME/DEPARTMENT ______________________________________________ _ 

ADDRESS ______________________________________________________________ _ 

CITY ____________________ STATE ___ ZIP CODE ___ __ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ... 

This document is one of aseries describing Intel products. Your comments on the back of this form 
will help us produce better manuals. Each reply will be carefully reviewed by the responsible 
person. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

I ntel Corporation 
ssa Technical Publications Dept. 
3585 SW 198thAve. 
Aloha, a R 97007 

AL3-2-485 

IIIIII NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

! 
I I 



INTEL CORPORATION , 3585 S.w. 198th Avenue, Aloha, Oregon 97007 • (503) 681·8080 

Printed in U.S .A .lY81 / 5K/ 0881 1 AP 


