
intJ .
Introduction to the iAPX 432
Architecture

171821-001

INTRODUCTION TO THE
iAPX 432 ARCHITECTURE

Manual Order Number: 171821-001

Copyright © 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue. Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material; including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP intel Megachassis
CREDIT In television Micromap

Intellec Multibus
ICE iRMX Multimodule
iCS iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000

UPI
J.lScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

I. '
PREFACE I n

I

The Intel iAPX 432 represents a dramatic advance in computer architecture: it is the
first computer whose architecture supports true software-transparent, multi­
processor operation; it is the first commercial system to support an object-oriented
programming methodology; it is designed to be programmed entirely in high-level
languages; it supports a virtual address space of over a trillion (240) bytes; and it sup­
ports on the chip itself the proposed IEEE-standard for floating-point arithmetic.
Because it is so advanced, a discussion of the iAPX 432 architecture will
unavoidably introduce concepts that are new to many readers.

The purpose of this document is to provide an accurate and comprehensive overview
of the architecture, recognizing that not only are many of the concepts new, but that
readers with widely divergent backgrounds are likely to be interested in the iAPX
432. Consequently, a considerable amount of background information will be
supplied.

The Introduction is organized as follows: Chapter 1 introduces the concept of
architecture and the various elements of an iAPX 432 system. Then the focus is nar­
rowed to the architecture of the principal processing element, the General Data Pro­
cessor (GOP).

Chapters 2, 3, and 4 provide an overview of three broad areas where the GOP
architecture represents a significant advance over contemporary architectures,
namely memory organization, data manipulation, and hardware support of state-of­
the-art programming methodologies. These chapters motivate and explain most of
the architectural features.

The iAPX 432 General Data Processor Architecture Reference Manual contains
complete, detailed descriptions of all aspects of the architecture. It should be con- .
suIted whenever more information is' required on any of the topics covered in this
document.

iii

• R; n

CHAPTER 1
COMPUTER ARCHITECTURE PAGE
What is Computer Architecture? 1-1
The Hardware-Software Interface 1-3
Current Problem Areas 1-5
iAPX 432 Architecture 1-5

Main Features 1-6
Configurations 1-8

Topics Covered in this Document 1-9

CHAPTER 2
MEMORY ORGANIZATION
Fundamentals
Linear Memory

Mapping Linear Memory
Page-Based Mapping
Access Rights Based on Pages
Virtual Memory

Segmented Memory
Mapping Segmented Memory
Segment Types and Access Rights
Access Control

2-1
2-1
2-4
2-6
2-6
2-7
2-7
2-9

2-10
2-10

Structured Memory 2-10
Two-Level Mapping and Access Control 2-11
Segment Types and Access Rights 2-13
Virtual Memory and Dynamic Storage

Allocation 2-14
Complexes of Segments 2-15

Summary 2-17

CHAPTER 3
DATA MANIPULATION
What are Data Types? 3-1
iAPX 432 Operators and Primitive Data Types 3-1

Characters 3-4
Ordinals 3-4
Integers 3-4
Reals 3-4

Structured Data Types 3-4
Instructions 3-5

Addressing Modes 3-6

iv

CONTENTS I

PAGE
Operand Stack 3-8
Instruction Encoding 3-9

Summary 3-9

CHAPTER 4
PROGRAMMING ENVIRONMENT
SUPPORT
The Software Crisis 4-1

Modularity 4-1
Security 4-1
Concurrency 4-2
Expandability 4-2

New Software Methodologies 4-3
Type Managers 4-3
Processes 4-3
Architectural Support 4-4

iAPX 432 Object-Based Architecture 4-5
System Objects 4-5
Object Protection 4-6

Architectural Support for Type Managers 4-7
Domain Objects. 4-8
Context Objects 4-8
Calling Contexts 4-9
Using the Inside Representation of Type

Managers 4-9
Using the Outside Representation of Type

Managers 4-15
U ser-Defined Types 4-15

Architectural Support for System Services: the
Silicon OS 4-20

Process Objects and Processor Objects 4-20
Storage Resource Objects 4-20
Simple Interprocess Communication

Without Blocking 4-21
Conditional and Surrogate Communications 4-23
Process Blocking, Scheduling, and Dispatching .. 4-24
Multiple-Processor Systems 4-25

Summary 4-28

CONCLUSIONS

TABLE

1-1

TITLE

A Comparison of the iAPX 432
Architecture and the Architecture of

PAGE

Conventional Mainframes 1-7

. "

n

FIGURE

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
2-4

2-5
2-6

2-7
2-8
2-9
2-10
2-11
3-1

TITLE PAGE

Computer System Architectures 1-1
Configuration Architecture 1-3
Raising the Hardware-Software Interface . 1-6
A Small iAPX 432 System 1-8
A Multiple-Processor System. 1-9
Unmapped Linear Memory 2-2
Vulnerability of Unmapped Memory 2-3
A Simple Mapping Scheme 2-4
A Multiprogram Mapped

Environment 2-5
Page-Based Protection 2-6
Comparison of Segmented and

Linear Memory 2-8
Segmented, Mapped Memory 2-9
Two-Level Mapping 2-11
iAPX 432 Address Spaces 2-12
Shared Segments 2-14
A Complex of Segments 2-16
Primitive Data Types 3-2

TABLE

3-1
3-2

TABLESI

TITLE PAGE

iAPX 432 Operators and Data Types 3-3
Ranges and Precisions of Short Reals,

Reals, and Temporary Reals 3-4

ILLUSTRATIONS I

FIGURE TITLE PAGE

3-2

3-3

3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12

4-13

iAPX 432 Instruction Format
(3 Operands)

Addressing Modes and Structured
Data Types

Using the Operand Stack
Objects and Object References
Object References
A Domain Object
A Context Object
Calling a Context
Changing the Access Environment
The Outside Representation
User-Defined Type
Basic System Objects
Sending and Receiving Messages
Surrogate Sending
Resending, Scheduling, and

Dispatching
Multiple Processor System

3-5

3-6
3-8
4-6
4-7
4-8

4-10
4-11
4-13
4-16
4-18
4-21
4-22
4-24

4-26
4-27

v

• 'R CHAPTER 1
COMPUTER ARCHITECTURE

n-

1.1 What is Computer Architecture?

The term computer architecture is often used as if it meant simply "the organization
and design of computers." This rather loose definition must be made considerably
more precise before we can study the differences between the architecture of the
iAPX 432 and that of more conventional computers.

In practice, there are several distinct architectures within a computer system, each
defined by a boundary between different levels of the system. Figure 1-1 shows an
abstract picture of a computer system, with the simplest operations and functions on
the bottom and the most complex, user-dependent operations on top. Each level
makes use of the functions provided by the level below. The whole effect is like a
stack of bricks, with each of the higher bricks supported by the ones below.

OUTSIDE WORLD

APPLICATION PROGRAM

HIGH-LEVEL LANGUAGES

RUN-TIME I/O
CONTROL CONTROL

BASIC INSTRUCTION SET
INTERPRETATION & EXECUTION

MICROCODE I/O PROCESSOR

REGISTERS MEMOf\Y CONTROLLERS ALU

...--OPERATING SYSTEM
ARCHITECTURE

...-INSTRUCTION SET
ARCHITECTURE

Figure 1-1. Computer System Architectures 171821-01

1-1

Computer Architecture iAPX 432 Architecture

1-2

An architecture is the boundary or interface between two of these functional
modules or bricks. It might be defined as the functional appearance of the system
below an interface to a user above the interface. Designers above an architectural
interface are generally not concerned with the details of the system below the
architecture or with any still lower-level architectures. They are only concerned with
the function of the system at the interface immediately below them.

In his classic book, The Mythical Man-Month, Frederick Brooks, project manager
of the IBM System 360, summed up the notion of architecture as "the complete and
detailed specification of the user interface."

The highest architecture is the interface between the whole computer system and the
outside world; this can be called the system architecture. Somewhat lower down is
the interface between the application program and the high-level programming
language itself (assuming the application is written in a high-level language). This
boundary can be said to define the programming language architecture. Since more
and more programs are written in high-level languages, this architecture is the one
most programmers will be concerned with. Still lower is the interface between the
language and various run-time resource management functions that are usually pro­
vided by operating systems. We can call this boundary the operating system
architecture.

The next interface is especially significant, because in conventional computers it
defines the boundary between hardware and software. It is the level at which
elementary, machine-recognized instructions are decoded and executed. We shall
call this the conventional instruction set architecture. The two lowest-level architec­
tures (microcode architecture and gate-level architecture) define even more
primitive functions and are not of real concern to most programmers.

Out of this multiplicity of architectures, the one usually called the computer
architecture is defined by the boundary between hardware and software. To be
precise, the computer architecture is the level of the computer system that is seen by
an assembly language programmer or compiler writer.

For each computer, the computer architecture can be seen as a kind of horizontal
"slice" through the diagram in figure 1-1. Everything below the slice is performed
by the hardware in this computer; everything above the slice is performed by the
software. The major task of the computer architect is to decide which functions are
best performed below the boundary and which above the boundary. Naturally, this
boundary is not the same for all computers. Over the years, as computer technology
has developed, the boundary between hardware and software has changed. When we
compare the architecture of the iAPX 432 with other computer architectures, we will
be discussing where this boundary between hardware and software has been drawn.

Vertical slices through the system diagram in figure 1-1 may be considered as well. A
vertical slice separates components into a multiprocessor or distributed processing
system. For example, a cut that separates out I/O functions defines an I/O pro­
cessor (sometimes called a front-end processor). Other vertical cuts might separate
several general purpose processors and so define a multiprocessor system. These ver­
tical cuts may be said to define a configuration architecture. (See figure 1-2.)

iAPX 432 Architecture Computer Architecture

APPLICATIONS
PROGRAM

HIGH LEVEL
LANGUAGES

RUN·TIME
CONTROL

INSTRUCTION
SET

MICROCODE

GATES

OUTSIDE WORLD

APPLICATIONS
PROGRAM

HIGH LEVEL
LANGUAGES

RUN·TlME
CONTROL

INSTRUCTION
SET

MICROCODE

GATES

y
A DISTRIBUTED SYSTEM

APPLICATIONS
PROGRAM

HIGH LEVEL
LANGUAGES

I/O
CONTROL

INSTRUCTION
SET

MICROCODE

GATES

I/O
PROCESSOR

-I

Figure 1-2. Configuration Architecture

1.2 The Hardware-Software Interface

-.--

-.--

-.--

-.--

SYSTEM
ARCHITECTURE

LANGUAGE
ARCHITECTURE

OPERATING SYSTEM
ARCHITECTURE

INSTRUCTION SET
ARCHITECTURE

MICROCODE
ARCHITECTURE

GATE·LEVEL
ARCHITECTURE

171821-02

Thirty years ago computers were very expensive to build; the hardware filled whole
rooms and a single gate might cost several hundred dollars. Because of these costs,
early computers could have only very simple hardware operations, such as "Add the
contents of register X to register Y." Consequently, it made good economic sense to
substitute a program for a piece of equipment whenever possible. If more elaborate
operations were needed, they were implemented with a library of subroutines. Thus,
the architecture of these early machines represented a fairly low-level cut through
the diagram in figure 1-1.

As technology has advanced, hardware costs have declined rapidly. Meanwhile, for
a variety of reasons which we shall examine in Chapter 4, the overall software costs
of computer systems have increased astronomically. Today, as much as 80% of the
total system cost can be due to software. Thus, the architectural motivations of the
1950s and 1960s-trying to minimize hardware costs at the expense of software­
make little sense today.

1-3

Computer Architecture iAPX 432 Architecture

1-4

But a recent study concluded:

If one compares the architecture of most current, widely-used machines
(e.g., IBM System/370 and System 32, DEC PDP-IO and PDP-II, CDC
6600, Univac 1108, and Intel 8080) to ... the first electronic stored­
program computers (built in the 1940s), all the significant differences will be
found to have originated in the 1950s Although current systems differ
significantly in terms of cost, speed, reliability, internal organization, and
circuit technology, the computer architecture ... has not advanced beyond
the concepts of the 1950s. *

This lack of advance is why we can use a single line in figure 1-1 to represent
"conventional instruction set architecture" (i.e., conventional computer
architecture) .

The question is this: If hardware costs are not a factor, which software functions
should be done in the hardware, where they can be done faster and more reliably?
Some functions can be added to the hardware with little or no controversy. Instead
of libraries of floating point arithmetic subroutines, manufacturers now build a
floating point unit into the computer itself. But before more complicated functions
can be added to the hardware, decisions must be made about high-level languages,
operating systems, and even programming methodologies, since raising the
hardware-software interface means that the structures and operations in the
architecture will be more closely related to the structures and operations in the pro­
gramming language and operating system.

Consider the following historical example. In the late fifties, dissatisfaction with
Fortran led computer scientists to try to formulate a better computer language. This
research culminated in the design of Algol 60. At about that time, the preliminary
specifications for the Burroughs B5000 computer were being drawn up. The
architects of the B5000 decided to design an architecture specifically to support
Algol instead of a conventional architecture. They committed themselves to high­
level language programming instead of assembly language programming, and they
chose the best language available to them.

The B5000 architecture had a number of advanced features, including segmented
memory to support the static block structure of Algol and a stack mechanism to sup­
port its dynamic behavior. In fact, the B5000 and its successors were among the few
important commercial machines developed during the 1960s and 1970s whose ar­
chitectures represented any advance over the concepts of the fifties.

The B5000 had the right approach; it attempted to raise the level of the architecture
using the best available programming methodology (c. 1960), which largely reduced
to "use Algol", and the architecture supported Algol very effectively. But in the
1970s and 1980s problems have arisen for which Algol and the programming
methodology of the early 1960s, offer no solution.

These problems have led other manufacturers, whose earlier computers had more
conventional architectures, to recognize the wisdom of raising the level of the
hardware-software interface. Consider, for example, the IBM System 38, IBM's
most recent architecture. Not only have the designers of the System 38 followed the
Burroughs approach in architectural support for high-level languages, they have
also included most of the operating system in the hardware as well. It seems
inevitable that the fundamental problems facing the computer industry will force
more and more manufacturers to take this approach.

*Glenford J. Myers, Advances in Computer Architecture (New York: 1978)

iAPX 432 Architecture Computer Architecture

1.3 Current Problem Areas

The basic problem facing the computer industry today is the software crisis; soft­
ware cost as a fraction of total system cost has dramatically increased over the last
two decades. It is an odd kind of crisis, because it is in a sense a crisis caused by good
fortune: decreasing hardware costs have made possible more and more ambitious
projects. Unfortunately, our ambitions greatly exceed our current programming
abilities. There are four fundamental problems: the size of modern programs, the
demands for security, the use of concurrency, and the need for expandable systems.
These four topics are discussed in detail in Chapter 4. The software crisis has thrown
a spotlight on the deficiencies of current architectures. We can now see that conven­
tional architectures were designed to solve hardware problems that are no longer
relevant. The current problems also identify three areas where the hardware­
software interface can be profitably raised: memory organization, data manipula­
tion, and support for the programming environment. (The topics that follow are
discussed in much greater detail in Chapters 2, 3 and 4, where all the key terms are
defined.)

Memory Organization: The logical organization of memory and the memory pro­
tection mechanisms should reflect the organization of programs, not the arbitrary
limitations of the current hardware technology. Large virtual memory systems are
needed to free users from concern over the size limitations of physical memory. Effi­
cient use of memory will also require hardware support for dynamic storage alloca­
tion mechanisms, so that programs take only the memory they need, and memory
that is no longer in use can be quickly reallocated.

Data Manipulation: The instruction set should support high-level language
statements easily and yet produce compact code. The instructions should have a
complete set of operators for a full range of data types, from bits to long floating­
point numbers (typically at least 64 bits).

Support for the Programming Environment: A new programming methodology
has been developed over the last decade which can make programming cheaper and
more reliable. This new "object-oriented" methodology is based on the concepts of
abstract data types and protection domains, concepts which are difficult to imple­
ment at an acceptable performance level unless they are supported by the architec­
ture. In addition, many operating system mechanisms should be implemented in the
architecture, where they can be handled more rapidly and securely.

1.4 iAPX 432 Architecture

The iAPX 432 represents one of the most significant advances in computer architec­
ture since the 1950s.

Figure 1-3 shows a diagram similar to the one in figure 1-1, but with lines drawn to
represent the level of the hardware-software interface in conventional micro-, mini-,
and mainframe computers, and in the iAPX 432.

1.4.1 Main Features

The iAPX 432 is the first cc>mputer whose architecture supports software­
transparent, multi-processor operation. Processors can be added to or removed
from a system to select the desired price/performance level, without requiring any
software changes. If one processor fails, the rest of the system can usually continue
to operate.

1-5

Computer Architecture iAPX 432 Architecture

1-6

HIGH LEVEL LANGUAGE

OPERATING SYSTEM

""*' IIIIIIC~-o -o---<l ~ ___ --.. iAPX 432
MAINFRAME

MINICOMPUTER

r------------~~+-*""~~ ... MICROCOMPUTER

GATE LEVEL, ETC.

Figure 1-3. Raising the Hardware-Software Interface 171821-03

The iAPX 432 is the first commercial computer whose architecture fully supports
the new object-oriented programming methodology. This new methodology can
significantly reduce the enormous cost of software in contemporary systems. Both
abstract data types and objects are supported by hardware recognized, hardware
protected, and hardware manipulated structures. The iAPX 432 architecture also
includes the Silicon Operating System, which provides the hardware mechanisms to
support operations such as process scheduling, interprocess communication, and
dynamic storage allocation that are implemented by the operating software in most
computers. (See Chapter 4 for more details.)

The iAPX 432 is designed to be programmed entirely in high-level languages. To
facilitate compiler writing, the instruction set is completely symmetric. (All address­
ing modes are available for every operand, and all required operators are available
for every data type-see Chapter 3 for more details.) The iAPX 432 has also
implemented the proposed IEEE floating-point arithmetic standard.

The iAPX 432 has an extremely large virtual address space (240 bytes) and hardware­
supplied mechanisms for implementing virtual memory systems that can exploit this
address space. The memory architecture is segmented, with enough segments (over
16 million) for every meaningful program unit to have its own segment. Thus the
memory protection mechanisms, which are based on segments, can give hardware
protection to the logical structure of programs. (See Chapter 2 for more details.)

The iAPX 432 hardware can detect hundreds of different fault conditions, from
attempting to divide by zero or attempting to execute data, to complex faults involv­
ing several processes. Most computers do not detect these faults at all, even at the
operating system level, so it is common for the system to crash or for data to be
destroyed. "

iAPX 432 Architecture Computer Architecture

On the iAPX 432, if a fault is detected, the operation is aborted, and a complete
description of the fault is reported. In a mUlti-process system, a fault may cause the
current process to suspend itself, but the other processes can continue to execute. In
a multi-processor system, a fault may cause one processor to suspend itself and
begin running diagnostics, but the other processors can usually keep the system
operating. (Fault handling is described in Chapter 12 of the iAPX 432 General Data
Processor Architecture Reference Manual.)

Table 1-1 summarizes the principal differences between conventional architectures
and the architecture of the iAPX 432.

Table 1-1. A Comparison of the iAPX 432 Architecture and the Architecture of
Conventional Mainframes

Feature of Architecture
Conventional Mainframe

iAPX 432 Architecture Architecture

MEMORY ORGANIZATION

Organization, size Linear
224 - 2 32 bytes

Structured segmented
224 segments
216 byte displacement

2 40 byte virtual address
space

Logical to physical Single-level map Two-level map
address translation Page-based relocation and Segment-based relocation

virtual memory and virtual memory

Protected memory unit Fixed-size page Individual program module
or data structure

DATA MANIPULATION

Expression evaluation General register Stack or memory-to-
memory

Primitive data types Characters, unsigned Characters, unsigned
integers, integers, reals integers, integers, reals

temporary reals

Floating point hardware Yes Yes

Addressing modes Some modes not available Symmetrical: all modes
for all operands available for every

operand

PROGRAMMING
ENVIRONMENT SUPPORT

Operating system No multi-process support Multi-process mechanisms
in hardware

No support for dynamic Dynamic storage allocation
storage allocation mechanisms in hardware

Very limited multi- Software-transparent,
processor operation, multi-processor
if any operation

High level language Assembly language- Oriented toward high
oriented instruction set level languages

Programming
methodology No support at all Object-based

arc h itectu re

1-7

Computer Architecture iAPX 432 Architecture

1-8

1.4.2 Configurations

The iAPX 432 configuration architecture is defined by the components that make up
an iAPX 432 system. In order to achieve high performance in both general purpose
computation and input! output operation, the iAPX 432 has a distinct type of pro­
cessing unit for each of these functions. The General Data Processor (GOP) handles
all program decoding, computation, and address generation. The Interface Pro­
cessor (lP) handles all communication with peripheral devices. Communication
among the GDP, IP, and memory is provided by a packet-based interconnect bus.
The IP is also connected to an interrupt-driven 110 subsystem bus, to which all
peripherals are interfaced. A conventional processor, called the Attached Processor
(AP), provides processing power in the 110 subsystem.

Figure 1-4 gives an overview of a small iAPX 432 system, showing GOP, IP, AP,
memory, the interconnect bus, and the 110 subsystem bus.

The iAPX 432 is the first computer whose architecture allows for true software­
transparent multiprocessor operation. This is perhaps the most revolutionary
feature of the iAPX 432 architecture. The number of processors in a system is totally
invisible to the software. Several processors (both G OPs and IPs) and memory con­
trollers can be attached to a single interconnect bus. Figure 1-5 shows a system with
two GOPs and two IPs.

PERIPHERAL 8086

MAIN
MEMORY

SUBSYSTEM BUS OR MUL TIBUS™

INTERFACE
PROCESSOR

INTERCONNECT BUS

~ATTACHED I/O
SUBSYSTEM PROCESSOR

LOCAL
STORE

GENERAL
DATA

PROCESSOR

t
INTERRUPT-DRIVEN

1/0 PROCESSING

MESSAGE-DRIVEN
DATA PRtCESSING

Figure 1-4. A Small iAPX 432 System 171821-04

iAPX 432 Architecture Computer Architecture

GENERAL
DATA

PROCESSOR

INTERCONNECT BUS

MAIN
MEMORY

GENERAL
DATA

PROCESSOR

Figure 1-5. A Multiple-Processor System 171821-05

The Intel iAPX 432 computer system family covers a wide range in processing
power, from the iSBC 4321100 single-board computer, which contains a single GOP
(with peripheral interfacing provided by discrete components), to systems with
several GOPs, IPs, and APs.

1.5 Topics Covered in this Document

Although system configuration is an important topic, this document will deal solely
with the architecture of the General Data Processor, the principal component in an
iAPX 432 system. System configuration, the architecture of the IP, and the related
topics of communication with the outside world, initialization, program
downloading, and interface to an interrupt-driven external processor will be covered
in separate documents.

The next three chapters will examine three broad areas where the level of the
hardware-software interface has been raised in the iAPX 432 architecture. Chapter 2
describes the memory architecture of the iAPX 432 and compares it to the memory
organization of conventional computers. Chapter 3 describes the data manipulation
instruction set of the iAPX 432 and shows how it supports high-level languages.
Chapter 4 explains what objects are and how an object-oriented architecture can be
used to support the new software methodology and the Silicon Operating System.

1-9

CHAPTER 2
MEMORY ORGANIZATION

2.1 Fundamentals

One of the most important characteristics of a computer architecture is the way
memory is organized and the way information in memory is accessed.

The main memory of a computer is organized as a set of storage locations numbered
consecutively, beginning with zero. The number associated with one of these
physical storage locations is called a physical address, and the set of all physical
addresses is called physical address space.

A logical address, on the other hand, is an address in an instruction-an address as
used by a programmer. The logical address space, the set of all logical addresses, is
thus the set of addresses that can be used by a program. The organization of the
logical address space defines the memory architecture.

The organization of physical address space is determined by memory technology and
by cost, but the logical address space should not necessarily be constrained by either
of these considerations. Instead, the organization of logical memory should be
determined by the structure of the programs that will run in memory. And in fact,
the history of advanced memory architectures shows an evolution toward this goal.
Initially, the logical address space was identical to the physical address space; now,
in the iAPX 432, the level of the memory architecture has been raised much closer to
the level of user program organization. In this chapter we will explore some of this
history and show how it has led to the iAPX 432 memory architecture.

2.2 Linear Memory

The most common organization of logical address space; that is, the most common
architecture for memory, is a linear, contiguous address space. In this kind of
architecture addresses start at location zero and proceed in linear fashion (i.e., no
holes or breaks) to the upper limit imposed by the total number of bits in a logical
address. A program, often consisting of several procedures, and its data are all
located within this single address space. The logical address space of a linear
memory thus has the same basic organization as the physical memory.

The simplest kind of linear address space is exemplified by the 8080. 8080 programs
can generate 2 16 (65,536) distinct addresses. (See figure 2-1.) The addresses generated
by 8080 programs are used directly by the memory hardware to locate data. Thus, a
Load Accumulator instruction that references address 50000 will cause data to be
read from physical memory location 50000.

2-1

Memory Organization iAPX 432 Architecture

2-2

PROGRAM

.

ADDRESS
SPACE

PHYSICAL
MEMORY

65535 --------- - - - - 6553::;5.,...-------.

LOAO ~' 50000 ~

50000

50000 """""""'""-I~"""""'''''''''''I

.... -----~- - - - - - ~-------...

Figure 2-1. Unmapped Linear Memory 171821-06

The limitations of this memory architecture are readily apparent when several pro­
grams share the same machine in order to use efficiently the system's resources. It is
difficult to implement such a multiple-program system on systems with a memory
organization as simple as the 8080's.

First, nothing prevents one program from accessing or even destroying data in
another program. Since all programs share the same logical address space, any pro­
gram can access any location in memory, and no program is protected from
unauthorized access by another program. Second, all the programs have to fit inside
the relatively constricted logical address space of the 8080.

To illustrate the problem of uncontrolled access of this simple memory organiza­
tion, examine figure 2-2. A program can reference any location in memory, even if it
isn't supposed to. In this simple system nothing prevents program A from over­
writing program B or other parts of its own code or data, for that matter. A simple
programming error by A can wipe out B.

Thus, even though complex software partitioning schemes were employed, multiple­
program systems never operated reliably or securely with this memory organization.
To overcome these liabilities without abandoning linear architecture, new
mechanisms for memory management were invented: logical-to-physical address
translation (also called mapping), memory access control based on fixed-sized
pages, and virtual memory. These mechanisms are explained in the next four
su bsections.

iAPX 432 Architecture

PROGRAM 8 T;TAL ADDRESSING RANGE J

PROGRAM A TOTAL ADDRESSING RANGE)

65535

ADDRESSING
ERROR

INA /

/

/

/

/
/

/

/

/
/

/

/

/
/

/

/
/

/

PHYSICAL
MEMORY

Memory Organization

65535

~~"'~~~'-J OVERWRITE

~ A's SOFTWARE PARTITION

~ 8's SOFTWARE PARTITION

Figure 2-2. Vulnerability of Unmapped Memory 171 821-07

2-3

Memory Organization iAPX 432 Architecture

2-4

2.2.1 Mapping Linear Memory

Mapping is basically the process of translating logical addresses into physical
addresses. In the 8080 system we considered above, logical addresses are simply
equated to physical addresses; but by exploiting mapping a logical address can be
assigned to an arbitrary physical address. Thus mapping is a mechanism for
relocating the logical address space within the physical address space.

Figure 2-3 shows a very simple mapping operation. The entire logical address space
of a program (locations 0-65535 in this case) is mapped onto physical locations
30000-95535. Thus, a program reference to location 50000 actually fetches data
from physical location 80000 (50000 + 30000).

PROGRAM
LOGICAL

ADDRESS SPACE

50000 ~.",.,..,.,.,..,.,.,.,,.,,,..,.,..

LOAD l. 50000~

/

1

/
/

/

Figure 2-3. A Simple Mapping Scheme

PHYSICAL
ADDRESS SPACE

11000000

171821-08

iAPX 432 Architecture Memory Organization

THREE
LOGICAL
ADDRESS
SPACES

The utility of this operation may not be obvious, but it is extremely useful in
multiprogram systems. (In fact, mapping was developed for such systems.) With this
kind of mechanism, which is typical of most minicomputers and some advanced
microcomputers, each program has its own logical address space which is completely
independent of any other program. Thus many programs can share physical
memory without any possibility of interfering with each other. The mapping unit fits
all the logical address spaces into one physical memory, but the process is
transparent to the programs. See figure 2-4 for a multiprogram mapped
environment.

65535

PROGRAM
1

0 _____

65535 -------

PROGRAM
2

0 _____

65535

PROGRAM
3

0 _____ ...

MAP
FUNCTION

!
I
I
I
I
I

PROGRAM
1

30000

215535

.,.,.,.,.-:~,.,..,..,..,..,..,.-,4 150000

PROGRAM
3

~ _____ -I65536

PROGRAM
2

..... _____ 0

Figure 2-4. A Multiprogram Mapped Environment

'II

PHYSICAL
ADDRESS SPACE

171821-09

2-5

Memory Organization iAPX 432 Architecture

2-6

2.2.2 Page-Based Mapping

Instead of mapping the entire logical address space as a unit, as in figure 2-4, more
advanced address translation mechanisms map smaller, fixed-size "pages" of
logical address space onto pages of physical memory. Thus, a large program need
not be relocated into one contiguous chunk of physical memory, which might be
hard to find in a multiprogramming environment, but rather into several smaller
sections of memory, which are more likely to be available. (It is often much easier to
find twenty lK pages than one 20K block.)

2.2.3 Access Rights Based on Pages

The page mechanism can also provide the basis for memory protection within a
logical address space. Each page can have attributes associated with it (called access
rights) that indicate how the page can be accessed. These attributes can allow reads
only, reads and writes, or they can prevent any access at all. See figure 2-5 for a
diagram of such a paged mapping mechanism.

LOGICAL
ADDRESS SPACE

MAP
UNIT

65535 .,..,..,.,.,.,..,""""'.,.,..,.,.,..

X
R
WR

--. R

WR

--. R

NO ACCESS TO PAGE
READ ACCESS TO PAGE
WRITE/READ ACCESS TO PAGE

Figure 2-5. Page-Based Protection

1
PHYSICAL

ADDRESS SPACE

..............
e·e ••••••••••••

....... _ •• -. •• -.._ •• -. •• -.._ •• .-............... 0

171821-10

iAPX 432 Architecture Memory Organization

2.2.4 Virtual Memory

In many computer systems, the logical address space is far larger than the physical
memory. Virtual memory is a mechanism for getting around the limits on physical
memory size. Under a virtual memory system, it appears to users as if the entire
logical address space were available for storage. But, in fact, at any given moment
only a few pages of the logical address space are mapped onto physical space. The
other pages are not present in main memory at all; instead the information in these
pages is stored on a secondary-storage device, such as a disk, whose cost-per-bit is
more economical.

Every time a missing page is accessed, operating system software loads the missing
page from disk and stores on disk a page that has not been referenced recently. The
user will have the illusion of a gigantic, although slower, physical memory.

2.3 Segmented Memory

While many systems employ linear memory architecture, with memory management
mechanisms of varying complexity, a number of new processors (the Intel 8086 and
the Zilog Z8000) and some older systems (the Burroughs B5000 and the Multics pro­
cessor) have abandoned linear memory architecture altogether. Instead they use a
form of logical memory organization called segmented memory.

The basic motivation for segmented memory is that programs are not written as one
linear sequence of instructions and data, but rather as parcels of code and parcels of
data. For example, there could be a main code section and many separate pro­
cedures. Data could be organized into arrays, or arrays of arrays, linked lists, or any
number of complex data structures. Moreover, these modules of code and data
could come in many different sizes.

Segmented memory architectures were developed to support this logical structure.
The logical address space is broken down into many linear address spaces, each with
a specified size or length. Each of these linear address spaces is called a segment.
Each item within a segment is accessed by a two component address; the first com-'
ponent (the segment selector) specifies the segment itself, while the second compo­
nent (the displacement) specifies the offset from the base of the segment to the item
being selected.

Each segment can be used to hold a meaningful program module or data module.
Thus, a program might have the main procedure in a segment, each additional pro­
cedure in its own segment, and perhaps each major data structure in its own seg­
ment. With a segmented architecture, the structure of logical address space reflects
the logical organization of the program. (See figure 2-6.)

In contrast, a linear address space is by definition logically structureless. As dis­
cussed in the previous section', protection mechanisms for linear memory are usually
based on fixed-length pages, whose size is determined by hardware criteria and
which have no necessary relationship to the logical structure of programs.

2-7

Memory Organization

20000 ------...

MAIN
PROCEDURE

o~ ______ ~

8000
0
1 .. ______ _ _ DATA (A)

LOGICAL ADDRESS SPACE
LINEAR MEMORY

65535

DATA
(B)

52000

DATA
(A)

44000

DATA
(MAIN)

34000

PROCEDURE
8

28000

PROCEDURE
A

20000

MAIN
PROCEDURE

o

LOGICAL ADDRESS SPACE
SEGMENTED MEMORY

8000 ------...

PROCEDURE
A

o~ ______ ~

135305l ______ ~ _ DATA (8)

600

0

0 1
PROCEDURE 8 -----~

1000

0

01
DATA (MAIN) -----~

Figure 2-6. Comparison of Segmented and Linear Memory

2-8

iAPX 432 Architecture

171821-11

iAPX 432 Architecture Memory Organization

The problem with decomposing the logical address space into pages is that the pro­
tection mechanism cannot protect the program modules precisely; it either protects
too little or too much. The basic flaw is that the page length is fixed for hardware
reasons; thus it is not flexible enough for the logical structure of programs.

By contrast, any protection mechanism provided for segments naturally accrues to
meaningful pieces of a program. Since each segment has a specified length, it is easy
to give even a small instruction sequence its own segment and protect it from other
programs, provided there are enough segments available. (Since programs can con­
sist of hundreds or even thousands of modules, this last criterion makes clear the
importance of having a large number of segments in the architecture, if segmenta­
tion is to be used properly.)

Virtual memory mechanisms can also be implemented for segmented architectures.
In this case the segment is the memory unit that is swapped to and from the secon­
dary storage device.

2.3.1 Mapping Segmented Memory

Segmented architecture is also compatible with logical to physical address transla­
tion. In this case, the segment is the unit that" is mapped onto physical memory,
instead of the whole logical address space or some arbitrary fixed-size unit.

Mapping in this case is implemented by a segment table that holds a segment
descriptor for each segment. A segment descriptor contains the starting physical
address and the length of a segment. The segment selector component of a logical
address is used as an index to select a segment descriptor in the segment table. Then
the displacement is added to the segment starting address to produce the physical
address of the operand being referenced. (See figure 2-7.) The displacement is easily
checked by the hardware to ensure that the reference does not exceed the length of
the segment.

I
SEGMENTED LOGICAL ADDRESS

SEGMENT SELECTOR

---......

I DISPLACEMENT

SEGMENT DESCRIPTOR

SEGMENT
TABLE

I

PHYSICAL
------.. ~STARTING

SEGMENT ADDRESS

Figure 2-7. Segmented Mapped Memory 171821-12

2-9

Memory Organization iAPX 432 Architecture

2-10

2.3.2 Segment Types and Access Rights

Many computers with segmented architectures (such as the Z8000) include segment
type attributes in the segment descriptors. For example, the Z8000 Memory
Management Unit supports stack segments, which are defined by a particular bit in
the segment descriptor. Whenever an access is made to a stack segment, the hard­
ware checks to make sure that a stack push or pop operation is occurring. If the
wrong kind of access is made to a stack segment (an instruction fetch, for example),
the hardware signals a fault.

In addition, the segment descriptors often contain the access rights attributes for
each segment. Notice that the access rights are therefore associated with particular
segments, instead of to the program modules that reference the segments. If a seg­
ment is read-only, for example, it is read-only for all modules that reference it. This
association of access rights with segments is a disadvantage, because we may wish to
give different modules access to the same segment, but with different access rights.

2.3.3 Access Control

Another disadvantage with the segment mapping mechanism we have described is
that it is difficult to limit the access by one program to another program's segments.
Since the segment table contains all the segment descriptors, any program can access
any segment simply by indexing through the segment table. However, the usual cure
for this problem, multiple segment tables, may be worse than the disease itself.
Under this scheme each program is given its own segment table, with each table
referencing only the segments that the program needs. But this scheme implies that
whenever a segment is relocated in physical memory, all the programs that share the
segment will have to update their segment descriptors. This could require hundreds
of entries throughout memory to be changed. There are great advantages in keeping
all the segment descriptors in one central location.

2.4 Structured Memory

The iAPX 432 has a segmented memory. However, the differences between the
iAPX 432 and other segmented machines are great enough to justify the use of a new
term--structured memory--for the iAPX 432 memory architecture.

First, the iAPX 432 can address a very large number of segments -- 224 -- or approx­
imately 16 million segments, far more than most other computers. Furthermore,
each segment can be up to 2 16 bytes long. The total virtual address space is therefore
240 bytes, that is to say, more than one trillion bytes!

Second, the 432 uses a two-step mapping process that separates segment relocation
from access control. This two-stage mapping also allows a division of protection
features into segment-specific protection (segment type checking) and user-specific
protection (access rights). The two-step process is unique to the iAPX 432 and is
responsible for some of its most powerful features.

iAPX 432 Architecture Memory Organization

2.4.1 Two-Level Mapping and Access Control

The iAPX 432 mapping is based on the simple, one-step segment mapping process
described in section 2.3.1 and illustrated in figure 2-7, but another step has been
added.

Each independently translated program module is supplied at run-time with a collec­
tion of segment numbers (i.e., values that can be used as indices into the segment
table to select segment descriptors) for all the segments it may need to access during
execution (and no others). This collection describes the access environment of the
module, and the entire collection is stored in a set of access segments. Access
segments form the other step in the two-step mapping process.

The access mapping step works like this: The segment selector part of a logical
address is used as an index into an access segment to select one of the segment
numbers. The segment number itself then acts as an index into the segment table to
select a segment descriptor. This two-level process is illustrated in figure 2-8. The
segment numbers are actually contained in thirty-two bit entities called access
descriptors, which also contain access rights data.

The access environment is defined by a set of four access segments that are
associated with this particular invocation of the program module (see section 4.4.2,
Context Objects). Since the access environment restricts the logical address space
available to the module, we can think of the access environment as defining the
effective address space. Figure 2-9 illustrates the relationship among the logical
address space, the effective address space, and the physical address space.

SEGMENT SELECTOR ..

ACCESS DESCRIPTOR --..

ACCESS
SEGMENT

SEGMENT DESCRIPTOR -

SEGMENT
TABLE

Figure 2-8. Two-Level Mapping

SEGMENT

171821-13

2-11

Memory Organization iAPX 432 Architecture

I

///'
I

I
I
I

I
I
I
I

I
ACCESS I

I SEGMENT
I 3

I
I
I

I ,
I

"" I
I

I " I
I />

I /
I //
I / // I /

I ,,/ /
/

I /
I /// I

I
ACCESS //// I

I SEGMENT
2

, , , ,
LOGICAL

,
EFFECTIVE PHYSICAL ,

PHYSICAL
PROGRAM ADDRESS

,
ADDRESS SEGMENT ADDRESS MEMORY

MODULE SPACE > SPACE TABLE SPACE
232 BYTES // .::;; 232 BYTES 224 BYTES .::;; 224 BYTES

/
/

/
/

/

\
ACCESS ,

\
SEGMENT " \ 1 ,

\
,

\
, ,

\
" '" \

\ ,
" \ " \ " \

\ '> \
/// \

\ /
\ // \
\ /

\
\
\
\

ACCESS \
\ SEGMENT
\ 0
\
\
\
\ "
\ ,
\

,
\

, ,
\ ,
\ ,

Figure 2-9. iAPX 432 Address Spaces 171821-14

2-12

iAPX 432 Architecture Memory Organization

The two-stage mapping process has three major advantages over a one-step map:

First, it takes fewer bits in an address to specify a particular segment. Sixteen million
segments mean 16 million (224) entries in the segment table, so an index into the seg­
ment table (the segment number) must be 24 bits wide. This is far too many bits to
carry around in every logical address. But only those segments in the access environ­
ment can be referenced. And, since the number of segments in the access environ­
ment will generally be much smaller than the total number of segments in memory,
fewer bits are needed to specify one of them. In fact, the iAPX 432 can use as few as
four bits to specify a segment.

Second, the two-step mapping makes it possible to restrict the number of segments
accessible by a given program or program module. Whereas, as we indicated in the
previous section, the one-step mapping allows any program to address any segment
in memory, simply by indexing through the segment table.

Third, as we shall see in the next section, it allows the separation of access rights
information from the segment descriptors. Access rights are instead contained in the
access segments and are thus associated with program modules.

One potential problem with a two-step mapping is access time. A memory access
requires both an access descriptor and a segment descriptor, each of which may have
to be fetched from memory. The iAPX 432 avoids this problem by maintaining an
internal associative cache to speed up the address translation process. The most
recently used segment descriptors, access descriptors, and the addresses of a number
of commonly accessed items (e.g., the segment table) are all stored on the chip. The
result is that most accesses go directly to the addressed item.

2.4.2 Segment Types and Access Rights

In the iAPX 432, as in all computers with segmented memory, all information is
contained in segments. It is apparent that if the processor could tell what type of
information each segment contained, it could provide a powerful protection
mechanism. For example, if it were known that a particular segment contained
access descriptors, and a program inadvertently tried to execute the contents of the
segment as code, the error could be detected, and corrective action taken before any
damage was done.

Several different segment types are recognized by the iAPX 432 hardware. The two
fundamental types (called the two base types) are data segments and access
segments. Data segments are used to contain both instructions and operands (i.e.,
everything but access descriptors). Access segments contain access descriptors only.
Type information is contained in the segment descriptors and is checked whenever
an attempt is made to access a segment. If the access is not allowed for that type, a
fault occurs.

The hardware maintains an absolute distinction between access segments and data
segments. The contents of access segments may not be manipulated in any way by
instructions which operate on data segments. Access segments have their own set of
instructions which manipulate access descriptors.

Each base type is subdivided into several hardware-recognized system types. For
example, data segments can be subcategorized as instruction segments or stack
segments, to name only two possibilities. The hardware checks for inappropriate
accesses to system types as well as to base types. Thus, an attempt to execute the con­
tents of a stack segment can be detected and aborted.

2-13

Memory Organization iAPX 432 Architecture

2-14

The access segment is the appropriate place to put access rights information, not the
segment table (compare 2.3.2), since these rights should be associated with a pro­
gram module, not directly with a segment. Since access rights are stored
independently of the segment descriptors, several modules can share the same seg­
ment, each with a different access right to it. See figure 2-10 for an illustration of
this case.

An access rights field is part of the access descriptor. Every reference to a segment
from an instruction will be checked against an access right for that segment, con­
tained in the access descriptor. If a reference is detected that is not allowed, a fault
will occur.

2.4.3 Virtual Memory and Dynamic Storage Allocation

Each program module has its own access environment, and within that environment
instructions can potentially generate 232 unique addresses. Since a program can
dynamically modify its current access environment (for example, by calling different
procedures, see section 4.4.5), the address space available to the program over the
lifetime of its execution is equal to the maximum total number of segments in
memory times the maximum length of each segment. This enormous figure -- 240

bytes -- is called the virtual address space.

SEGMENT {
SELECTOR~

SEGMENT
SELECTOR~

ACCESS DESCRIPTOR I WR -

ACCESS SEGMENT

(MODULE 1)

ACCESS DESCRIPTOR I R

ACCESS SEGMENT
(MODULE 2)

-

..... ~

SEGMENT DESCRIPTOR f--

SEGMENT
TABLE

ACCESS RIGHTS:
WR • WRITE AND READ
R • READ ONLY

Figure 2-10. Shared Segments

SEGMENT

171821·15

iAPX 432 Architecture Memory Organization

As described in section 2.2.3, virtual memory is a way of implementing a large
logical address space with a much smaller physical space. Since no iAPX 432 user
will attach 1 trillion bytes of main memory to his system, a virtual memory
mechanism must be implemented if the gigantic virtual address space is to be used.
Each segment descriptor contains the following four I-bit fields, which are main­
tained by the hardware and can be used by the operating system to implement virtual
memory:

• The valid field, which indicates whether or not the segment is currently present
in main memory.

• The storage allocated field, which indicates whether any memory has been
associated with this descriptor.

• The accessed field, which indicates whether this segment has been accessed by
some executing process.

• The altered field, which indicates whether or not the information contained in
the segment has been modified by some executing process.

The operating system can use the valid bit and the storage allocated bit to detect
when a physical segment is not present in memory, and it can use the accessed and
altered bits to decide which of the currently present segments should be swapped out
or simply overwritten by the new segment. In addition, several fields in the segment
descriptor can be used by the operating system to record other useful information

,about the segment (e.g., frequency of use) that can also be used in the swapping
algorithm.

The amount of memory allocated to a module is not necessarily fixed at compile
time; it may be changed dynamically. The mechanism for implementing dynamic
storage allocation is described in section 4-6. The operating system can use this
dynamic storage allocation mechanism to make virtual memory more efficient by
only allocating segments as they are needed, thus preventing unreferenced segments
from using up memory. The user can also make use of the dynamic storage alloca­
tion mechanism to reserve storage as needed.

2.4.4 Complexes of Segments

The segment table contains entries for access segments as well as data segments, so
the ultimate target address specified by an access descriptor can be another access
segment. A logical address in an instruction therefore can reference an access
descriptor as well as an item of data. This access descriptor will in turn point to
another segment, which, of course, can also be an access segment. The journey from
the initial access segment, through all the intervening access segments, to the final
data segment is called an access path.

By following these access paths, we can move through elaborate complexes of
segments, in which access segments point to other access segments, and so on. To
conveniently diagram these segment complexes, the two-step mapping process will
be symbolized by a single arrow, which will be called an object reference (see figure
2-11). Figure 2-11 also shows a large segment complex.

2-15

Memory Organization

ACCESS
SEGMENT

2-16

OBJECT REFERENCE

ACCESS
SEGMENT

~
SEGMENT

\. MEA .. N..: ... S _____ --'I
------.... V·

ACCESS
SEGMENT

{

~

SEGMENT
TABLE

DATA
SEGMENT

ACCESS
SEGMENT

ACCESS
SEGMENT

~

~
Figure 2-11. A Complex of Segments

SEGMENT

DATA SEGMENT

DATA SEGMENT

DATA SEGMENT

iAPX 432 Architecture

171821-16

iAPX 432 Architecture Memory Organization

A complex of segments can be conceptually viewed as a single entity called an
object. The iAPX 432 hardware recognizes a number of these objects and can
manipulate them with instructions: Objects can consist of a single segment, a com­
plex of segments, or a contiguous subsection of a segment (called a refinement of the
segment). Objects are used to support the advanced features of the iAPX 432
architecture that are described in Chapter 4.

Viewing an object as a single entity, we can consider the segment descriptor that
points to the root segment of the object as a descriptor for the whole object. We will
often refer to such segment descriptors as object descriptors and refer to the segment
table as the object table. The object table actually consists of several data segments.
See Chapter 2 of the iAPX 432 General Data Processor Architecture Reference
Manual for more details.

2.5 Summary

The iAPX 432 memory architecture has the following features:

• Two-step mapping process which separates the relocation mechanism from the
access control mechanism.

• A unique access environment for each invocation of a program module.

• 24 °-byte virtual address space with mechanisms for implementing virtual
memory.

• Two basic types of segments: access segments and data segments; they are
recognized by the hardware and the distinction between them is rigorously
enforced.

• Access rights associated with program modules not with segments.

• Mechanisms for constructing and accessing complicated data structures
consisting of several segments.

2-17

· " CHAPTER 3
DATA MANIPULATION n

3.1 What are Data Types?
All information in a computer's memory is stored as a pattern of ones and zeros.
What these bits represent depends upon the interpretation given to them by the com­
puter. The same bit pattern that encodes an ADD instruction might represent the
number 17562 when interpreted as an integer. All computers have some basic data
representations that are recognized by the hardware. These basic representations are
called hardware-recognized data types.

Hardware-recognized data types have two additional characteristics. First, each
instance of a type (e.g. each integer) can be addressed as a unit in memory. Even if
the datum is several bytes long, it has a single address. Second, associated with each
type is a set of operations that can be performed on the type. The instruction set of a
computer is basically just the combination of all the hardware recognized operators
with all the data types that can act as operands.

Early computers (and first generation microprocessors) had very simple instruction
sets, with only a few operators and a few hardware-recognized data types. The
arithmetic instructions were usually limited to addition and subtraction of integers.
All other data types (e.g. real numbers) were manipulated by using special
subroutines. Subroutines also had to be written to perform more complex opera­
tions (e.g. multiplication and division).

For instance, to multiply two real numbers on a computer lacking hardware
multiplication and real data types, a number of steps had to be taken. A binary pat­
tern for real numbers had to be devised that could be stored in the computer's
memory and could adequately represent the range and accuracy desired. Second, a
software subroutine had to be written that could perform the multiplication and
store the result in memory. The software routine had to accomplish the multiplica­
tion using only simple operations, such as additions and subtractions of integers.

As the cost of hardware decreased, it became feasible to expand the instruction set to
include operations and data types that had previously been handled by the software.
Typically, real numbers, characters, and bits were added to the data types supported
by the instruction set. The net result was that overall performance was increased,
especially for data-type-intensive applications (e.g. scientific number crunching) and
less memory was required, since whole software routines could be replaced by single
instructions.

Ideally, any new hardware-supported data type should have been supported by a
complete set of operators. For example, if the Add operation existed, Subtract
should also have existed, and usually Multiply and Divide. Unfortunately, this ideal
was not always met. Operators were often added in an ad hoc manner, and all the
relevant operators were not supplied for each data type. The results were instruction
sets that were very difficult to use.

3.2 ·iAPX432 Operators and Primitive Data Types
The iAPX 432 provides a comprehensive set of operators for manipulating several
different hardware recognized data types. We will call them "primitive" data types
because they are used to construct more complex data structures. All required
operators are available for eight primitive data types, which may be divided into
four classes: character, ordinal, integer, and real. Figure 3-1 shows the formats of
each of the eight types.

3-1

Data Manipulation iAPX 432 Architecture

CHARACTER 8 BITS

o

SIGN

I :1 .: SHORT INTEGER

I

16 BITS

15 14 0

SHORT ORDINAL

I

16 BITS

15 0

SIGN

I ! ________ �_NT_E_G_E_R ________ 1" BITS

31 30 o

..... _________ O_R_D_IN_A_L _________ I" BITS

31 o

SIGN SHORT REAL

1 I
1 EXPONENT 1 SIGNIFICAND 32 BITS

I I
31 30 22 21

SIGN

1 i
EXPONENT

63 62 52 51

~~ ______ ~ ____ R_E_A_L_S_IG_N_I_F_IC_A_N_D ______ ~~ ~~TS
SIGN

1
j

EXPONENT

79 78 64 63

~~ _______ ~ ______ S_IG_N_I_F_IC_A_N_D ______ ~:~ OOBrrS

o

TEMPORARY REAL

Figure 3-1. Primitive Data Types 171821-17

3-2

iAPX 432 Architecture Data Manipulation

The operators for these data types can be divided into several broad groups:
arithmetic operators (e.g. Add, Subtract, Multiply, Divide), logical operators (e.g.
AND, OR, NOT, XOR), relational operators (e.g. Equals, Greater Than, Less
Than), conversion operators (e.g. Convert to Character, Convert to Integer), move
operators (e.g. Move, Zero, Save), and bit-field manipulation operators (e.g.
Extract Bit Field, Insert Bit Field). Table 3-1 provides a chart showing all hardware
recognized data types and all the operators that can be used with them. The sections
that follow describe briefly the four data type classes and the operators that go with
each class.

Table 3-1. iAPX 432 Operators and Data Types

SHORT SHORT SHORT TEMPORARY
OPERATOR CHARACTER ORDINAL ORDINAL INTEGER INTEGER REAL REAL REAL

MOVE X X X X X X X X

-<
SAVE X X X X X X X X

ZERO X X X X X X X X

ONE X X X X X

AND X X X - - - - -

-<
OR X X X - - - - -

XOR & XNOR X X X - - - - -

COMPLEMENT X X X - - - - -

ADD X X X X X * * X

SUBTRACT X X X X X * * X

MULTIPLY X X X X * * X

DIVIDE X X X X * * x

--<
REMAINDER X X X X X

INCREMENT X X X X X - - -

DECREMENT X X X X X - - -

NEGATE - - - x x x x X

ABSOLUTE VALUE - - - x x X

SQUARE ROOT X

{ "''''' x x - - - - -

INSERT X X - - - - -
SIGNIFICANT BIT X X - - - - -

EQUAL X X X X X X X X

NOT EQUAL X X X X X

EQUAL ZERO X X X X X X X X

~
NOT EQUAL ZERO X X X X X

GREATER THAN X X X X X X X X

GREATER THAN OR EQUAL X X X X X X X X

POSITIVE - - - x x x x X

NEGATIVE - - - x x x x X

CONVERT TO: CHARACTER - X

SHORT
ORDINAL X - X

ORDINAL X - X X

SHORT

-<
INTEGER - X

INTEGER X X - X

SHORT
REAL - X

REAL - X

TEMPORARY
REAL X X X X X X -

Key
This operator is available for the given data type. x

* This operator is available for the given data type and for
operations where one of the operands is a temporary real.

(blank)

This operator is not available and would not be useful if it were.

This operator is not available.

3-3

Data Manipulation iAPX 432 Architecture

3-4

3.2.1 Characters
Characters require one byte of memory and can represent three kinds of data:
ASCII characters, unsigned integers in the range 0-255, and the boolean values
TRUE or FALSE (which are stored as xxxxxxxl and xxxxxxxO, where x means either
1 or 0). Character operators include move operators, logical operators, simple
arithmetic operators (add, subtract, increment, and decrement), relational
operators, and the operator Convert Character to Short Ordinal.

3.2.2 Ordinals
Ordinals are unsigned integers; they are availiable in two sizes: 16-bit (Short
Ordinals) and 32-bit (Ordinals). They have values in the ranges 0 to 216-1 or 0 to
232-1. Ordinals are commonly used as indices into vectors and arrays and to hold bit
fields. Ordinal operators include moves, arithmetic operators (including multiplica­
tion and division), logical operators, operators for manipulating bit fields, relational
operators, and several conversion operators.

3.2.3 Integers
Integers are available in two sizes: 16-bit (Short Integers) and 32-bit (Integers). They
have values in the ranges -2 15 to 2 15 -1 or -231 to 231-1. Integer operators include
moves, arithmetic operators, relational operators, and several conversion operators.

3.2.4 Reals
Real numbers have three components: an exponent, a significand (mantissa), and a
sign bit. Reals are available in three sizes: 32-bit (Short Reals), 64-bit (Reals), and
80-bit (Temporary Reals). Each increase in size provides more precision (larger
significand) and greater range (larger exponent). Short Reals and Reals are typically
used as input and final-result operands in floating-point calculations. Temporary
reals are intended for use as intermediate results, thus preserving accuracy and
reducing the risk of overflow or underflow in multi-step calculations. Real operators
include moves, arithmetic operators, relational operators, and several conversion
operators. Table 3-2 lists the range and precision of the three sizes of reals.

'~

Table 3-2. Range and Precision of Short Real, Real, and Temporary Real

Type Range Precision

Short Reals 2-126_2127 7 decimal digits (approx)

Reals 2-1022_21023 15 decimal digits (approx)

Temporary Reals 2-16383_216383 19 decimal digits (approx)

3.3 Structured Data Types
The data types discussed in section 3.1 are called primitives. By contrast, we will use
the term structured data types for ordered aggregates of primitives. The iAPX 432
facilitates access to two structured data types that are commonly used in high-level
ianguages:

• Arrays. An array consists of a number of components, each of the same data
type. Thus we speak of arrays of integers, arrays of characters, etc.

• Records. A record consists of a number of components (usually called fields),
that can be of different data types. Thus, a record might consist of characters,
integers, and real numbers. (For instance, an employee record.)

iAPX 432 Architecture Data Manipulation

These structured types are not supported by a set of hardware operations, but the
iAPX 432 does provide a mechanism that allows structured types to be manipulated
easily. Each of the primitive types may be accessed through several addressing
modes, and these facilitate the selection of individual elements from arrays and
records (see section 3.4.1). The addressing mode used to reference an operand is
determined by the way the logical address is formed in the instruction that references
it.

3.4 Instructions
The iAPX 432 instructions specify the operator and the operands that it acts on. Up
to three operands may be required for some operators. Instructions are contained in
special hardware-recognized instruction segments in memory (see section 2.3). The
processor views an instruction segment as a continuous string of bits called the
instruction stream. Instructions may contain a variable number of bits and may
begin at any bit within the stream. (In the current implementation, the processor
reads an instruction segment in units of 32 bits.) The general instruction format of
the iAPX 432 consists of four fields arranged in the format shown in figure 3-2.

The first two instruction fields encountered by the processor in the instruction
stream are called the class field and the format field. These two fields specify how
many operands are in the instruction and information on how they are to be
accessed. The last two fields are the reference field and the operator field. The
operator field specifies the operator (e.g. ADD, SUBTRACT, NEGATE). The
reference field contains the logical addresses of up to three operands. As shown in
figure 2-7 of section 2.3, each logical address has two parts, a segment selector and a
displacement. The segment selector identifies the segment that contains the operand,
while the displacement locates the operand within the segment.

OPERATOR CODE
FIELD

/
/

/

.. INCREASING ADDRESSES

REFERENCE
FIELD

,....--A-----.,

OPR I OPR I OPR
3 I 2 I 1

/ \
/ \

/ \

LOGICAL ADDRESS

FORMAT
FIELD

SEGMENT SELECTOR DISPLACEMENT

f

/
/

/

BASE INDEX

\
\
\

}

CLASS
FIELD

Figure 3-2. iAPX 432 Instruction Format (3 operands) 171821-18

3-5

Data Manipulation iAPX 432 Architecture

3-6

3.4.1 Addressing Modes

The displacement really consists of two subcomponents: a base value and an index
value. (See figure 3-2.) Each subcomponent can reference its value either directly
(the subcomponent contains the value itself) or indirectly (the subcomponent con­
tains a pointer to the value, which is located elsewhere in memory). A direct
reference by both subcomponents is equivalent to a single-component displacement
and can be used to access non-structured data (scalars). Indirect references can be
combined with direct references to easily access three structured data types. The four
combinations of direct and indirect reference are called addressing modes:

• Base and Index Direct - used to access scalars

• Base Indirect, Index Direct - used to access records

• Base Direct, Index Indirect -:- used to access static arrays (arrays whose starting
location, the base, is established at compile time)

• Base and Index Indirect - used to access dynamic arrays (arrays whose base
can be established during execution)

Figure 3-3 illustrates the way the logical address is formed in each of the four
addressing modes and the structured data type that is accessed by each mode.

SCALAR: INDEX AND BASE SPECIFIED DIRECTLY

INDEX---------------+-. {

OPERAND

BASE-----,--------------..~ { _____

RECORD: BASE SPECIFIED INDIRECTLY

} RECORD

..,.,..,..,.~,.,.,..,..,.~,..

INDEX----------------. }
L{.,.,.~~""""""~~,-t RECORD SPECIFIED

{

RECORD SPECIFIER ~{ }

BASE • L.....--.-I . RECORD

STATIC ARRAY: INDEX SPECIFIED INDIRECTLY

{ ARRAY

-{ ARRAY INDEX
. INDEX

SCALED -{ BASE

Figure 3-3. Addressing Modes and Structured Data Types (1 of 2) 171821-19

iAPX 432 Architecture Data Manipulation

DYNAMIC ARRAY: BASE AND INDEX SPECIFIED INDIRECTLY

{

ARRAY INDEX

INDEX---. ~ _____

SCALED
ARRAY

BASE _{ ~A_R_RA_Y_S_P_EC_I_FI_ER_ -----..{ ______

Figure 3-3. Addressing Modes and Structured Data Types (2 of 2) 171821-20

The processor automatically scales an index value by multiplying it by 1, 2, 4, 8, or
16 depending on whether the operand it points to occupies a byte, double byte,
word, double word, or extended word. The compiler is thus freed from having to
perform this calculation.

The segment selector component of the logical address can also be specified indi­
rectly. This additional capability means that large, multi-segment arrays can be
implemented easily.

It is important to stress that not only are all required operators available for every
data type, but also all four addressing modes are available for any operand in an
instruction. This means that iAPX 432 instruction set is completely symmetric. Sym­
metry (sometimes called regularity) is defined essentially as the degree to which all
addressing modes exist for every operand and all required operators exist for every
data type in the instruction set.

Symmetry is especially important for easy translation of high-level languages. If the
instruction set is not symmetric (some operators are not provided for some data
types, or some addressing modes are not available with some operators) then the
compiler writer is faced with many special cases where software has to make up for
the holes in the instruction set. Thus, the compiler is more difficult to write and
more complicated.

The symmetry of the iAPX 432 instruction set and the powerful operators allow the
efficient encoding of high level language statements. For example, each of the
following statements is encoded by a single iAPX 432 instruction:

A= B * C

A [I] = B [J] I C [K]

P.Q = A [I] * C

- A three-address multiply, all scalars

- A three-address divide, all static array
elements

- Three addresses, mixed type, "element
Q of record P is assigned the product of
static array A, element I, and scalar C"

3-7

Data Manipulation iAPX 432 Architecture

3-8

3.4.2 Operand Stack

When an instruction references an operand, it can explicitly specify a logical
address, in the manner described in the previous section, or it can access the top of
the operand stack. The operand stack is a special data segment that is maintained by
the hardware for expression evaluation. An access to an operand on the stack is
called an implicit reference. Items are added to or removed from the "top" of the
stack on a last-in-first-out basis. The current stack top is pointed to by a hardware­
maintained stack pointer. The following arithmetic expressions, which can be per­
formed by single iAPX 432 instructions, illustrate the flexibility of stack usage (the
symbol "$" signifies that the operand is on the stack):

A=$ + B

$ = A * $

$ = $ + $

- Add the value on the top of the stack to
the value in B, then put the result in A

- Multiply the value in A by the value on
the top of the stack, then push the
result on the stack

- Add the top two items on the stack and
leave the result at the top of the stack

See figure J.-4 for an illustration of a case where the last example would occur.

$=A*B

(A*B) TOS

~TOS

$=C*O $=$+$

(C*O) ~TOS

(A*B) ~TOS-1 (A*B)+(C*O) ~TOS

STACK EVALUATION OF $=(A*B) +(C*O)

TOS = TOP OF STACK

Figure 3-4. Using the Operand Stack 171821-21

iAPX 432 Architecture Data Manipulation

Using implicit stack references instead of explicit memory references to address
operands allows shorter and faster instructions. The iAPX 432, however, allows
both stack arithmetic and memory-to-memory arithmetic. Research has shown that
pure stack-oriented machines (i.e. machines where all arithmetic operations are
between the top two elements of the stack) are not as fast at evaluating expressions,
nor do they have as dense a code, as machines which allow both types of
arithmetic. * But even a pure stack machine is faster and more efficient at evaluating
expressions than a machine with no stack.

3.4.3 Instruction Encoding

From studies of program behavior, it is known that certain instructions are used
more often than others. For instance, a push is far more frequently executed than a
halt. Therefore, it makes sense to distribute the binary encoding of instructions in
such a way that frequently used instructions take fewer bits to specify than infre­
quently occurring instructions. Most machines, however, have an instruction size
that is always some mUltiple of the basic unit of memory storage (frequently 8 or 16
bits). This fixed-length instruction encoding tends to be inefficient and frequently
forces unfavorable compromises in the design of the instruction set. Since a large
percentage of a computer's time is used in fetching instructions, an improvement in
instruction bit density would result in faster execution of programs and a decrease in
program storage requirements.

The iAPX 432 instruction set has been designed to be very compact; the instructions
are bit-variable in length and are not constrained to start or end on byte or word
boundaries. If an operand reference is used more than once in an instruction, it need
be specified only once. For example, in the common expression

A=A + B

the A operand need be specified only once. The format field in the instruction
indicates how many times a particular 'operand is used.

The bit encodings were based on the frequency-of-use of operators and operand
references. The shortest instruction is 6 bits long and the longest is 344 bits long.

3.5 Summary

The iAPX 432 data manipulation instruction set

• supports all required operators for 8 primitive data types

• has four addressing modes for every operand

• allows explicit or implicit access to every operand

• supports efficient coding of high-level language statements

• allows easy access to elements in arrays and records

• has a frequency-of-use bit encoding that provides compact code

*Glenford J. Myers, Advances in Computer Architecture, (New York: 1978).

3-9

CHAPTER 4
PROGRAMMING ENVIRONMENT SUPPORT

4.1 The Software Crisis

In his 1972 Turing Award lecture, E. W. Dijkstra, father of the "structured pro­
gramming" movement, described the software crisis in the following terms:

As long as there were no machines, programming was no problem at all; when
we had a few weak computers, programming became a mild problem; and now
that we have gigantic computers, programming has become an equally gigantic
problem The increased power of the hardware ... made solutions feasible
that the programmer had not dared to dream about a few years before. And
now, a few years later, he had to dream about them and, even worse, he had to
transform such dreams into reality!

Decreasing hardware costs and increasing power led to more ambitious program­
ming projects. But it proved difficult to make the programs reliable, and even more
difficult to make the programming projects come in on schedule and within budget.
There were four fundamental problems: the sheer complexity of many large systems,
the increasing demand for system security, the increasing use of concurrent pro­
gramming, and finally the demand for systems whose processing power can be
expanded without affecting the existing software.

4.1.1 Modularity

Modern computer applications often require hundreds of thousands of lines of
code; some data processing installations use systems that represent several million
lines. Such enormous software packages are far too complicted for one person to
understand completely; if they are to be developed and maintained, some form of
program modularization must be used. It should be possible for different modules
to be developed by different people, relatively independently, and for bugs to be
fixed in one module without affecting other modules in unpredictable ways. It
would also be desirable to be able to add functions by simply incorporating addi­
tional modules, without having to change the existing program.

Even though modularization seems like an easy idea to grasp, it has proved surpris­
ingly difficult to implement correctly. A program can be modularized in a number
of different ways, and some of these ways make the programming job even more
difficult than if no modules were used. Consider, as an analogy, a diamond cutter.
His job is to "modularize" an uncut diamond. If he chooses the correct modulariza­
tion, he will create valuable gems. But if he makes a mistake, he will get a pile
of dust.

The basic problem in modularization is to define correctly the interface between
modules. Under many modularization schemes, some modules need to know the
internal implementation details of other modules in order to operate. What is
needed is a set of criteria for decomposing programs into modules in a way that
minimizes the need for outside knowledge of the internal representations.

4.1.2 Security

Modern society has entrusted an enormous amount of sensitive data to computer
systems, from bank accounts, credit records, and medical histories to the specifica­
tions for hydrogen bombs. Most of this information is, unfortunately, not very

4-1

Programming Environment Support iAPX 432 Architecture

4-2

securely stored. No computer system has ever successfully resisted determined
efforts to defeat its security mechanisms, and many commercially available systems
barely put up a fight.

Security is based on limiting access to information. The basic principle is "need to
know"; users, programs, and modules within programs should have access to only
that information which they absolutely need. Most modern operating systems,
however, have a very crude access limitation scheme. Usually a distinction is made
between a few privilege levels, . and programs in the same level can do the same
things. This scheme almost always results in programs being given too many
privileges, since they cannot operate if they are given too few. What is needed is a
method that grants each module exactly those privileges that it needs to execute
properly, and no more.

4.1.3 Concurrency

As computers take on more complex tasks, they are called upon to model more and
more features of the real world. One fundamental fact about the real world is that
actions generally happen concurrently rather than in strict sequence. For example, in
industrial control applications several jobs are usually being performed at the same
time, and critical developments in one job can interrupt the work in another. Conse­
quently, software designers have developed models of concurrent processing in
order to handle these real-world situations. Concurrent processing is also often used
to mUltiplex several programs on one processor, so that shared resources, such as
memory, I/O, and the processor itself, can be more efficiently used.

Implementing concurrency requires mechanisms that permit the sharing of common
resources and also mechanisms for bringing together concurrently executing
modules to exchange information (communication) or to coordinate their action
(synchronization). Several problems have made concurrent systems difficult to
implement. The basic problem is defining the unit of concurrency. The problem is
somewhat similar to the modularization problem described in section 4.1.1, except
here the problem is how to modularize in the time domain. What is needed are
criteria for decomposing programs into modules that can be run concurrently, and
also mechanisms for communication, synchronization, and resource sharing.

4.1.4 Expandability

Project managers have always found it difficult to predict accurately just how much
memory and processing power their project will require. As the project evolves,
requirements tend to change (usually upward). Furthermore, over the lifetime of the
product new features and functions are often added, placing more demands on
power and memory. The standard approach computer manufacturers have taken to
address this well-known phenomenon is to develop a family of computer systems
that have a range of processing power.

Unfortunately, such a family takes years to develop, and the procesor with exactly
the right performance is seldom available when it is needed. The user has to buy
either too much or too little. Moreover, the operating system software is often
different on different members of the family. What users need is a system that can
be quickly and easily expanded in power without requiring any software changes.

The low cost of microcomputers has always presented the seductive possibility that
computers might someday be constructed out of a large number of identical
microprocessor components. If a system needs more power, just add another
microprocessor. But the software difficulties of such mUltiprocessor systems have
been daunting. The basic problems have been in sharing common resources and in

iAPX 432 Architecture Programming Environment Support

defining a unit of work in such a way that it could be sent to an arbitrary processor.
This unit of work needs to be totally independent of particular processors and the
communication between units of work has to be handled in an entirely processor­
independent manner.

4.2 New Software Methodologies

In recent years, progress has been made in all four problem areas: modularity,
security, concurrency, and expandability. By the late 1970s computer scientists
involved in programming language and operating systems research believed that, in
fact, solutions had been found to many of these problems.

4.2.1 Type Managers

A consensus seems to have emerged that the best way to modularize programs is by
applying the principle of "information hiding." The term is due to D. L. Parnas,
who has identified a number of criteria for correctly decomposing programs into
modules. Another name for the principle is "data encapsulation." The basic idea is
that a module should contain a collection of related procedures and the data struc­
tures they operate on. Procedures outside the module should not have access to the
implementation details inside the module. The data can be referenced from outside
the module only by a call to one of the procedures inside the module. Many names
have been given to the modules that result when this principle is applied-abstract
data types, extended types, Parnas modules-but in this document the term type
manager will be used exclusively.

Until recently, the full power of the concept could not be realized, since most pro­
gramming languages did not provide any direct support for the type manager con­
struction. Users had to build their own type manager structures on top of the
language, thus no compile-time checking facilities or enforcement mechanisms
existed for type managers. Moreover, since no standard format for type managers
existed, there was not necessarily any compatibility among different users' represen­
tations of the type manager concept, even if they used the same language.

Several modern programming languages, however, support the type manager con­
struction (or closely related concepts): In Intel's Object Programming Language
(OPL) and in Concurrent Pascal the structure is called a "class," CLU uses the term
"cluster," Alphard calls its version a "form," and the new Department of Defense
standard language, Ada, uses the term "package."

At the same time that programming language research was focusing on the concept
of a type manager as the solution to the modularization problem, operating system
research was defining a very similar structure, the protection domain, as the solution
to the security problem. (We will treat protection domain and type-manager as
synonyms.) Operating system researchers concentrated on the data in these
domains, instead of the procedures (which were the focus of the language research),
since they were concerned with security more than modularization. They gave the
name objects to the data items associated with domains, and they called the whole
information hiding methodology "object-oriented design methodology" or "the
object model."

4.2.2 Processes

The fundamental concept that underlies concurrency is the process. The process is
the module of concurrency, just as the type manager is the module of the static
organization of a program. A program can be constructed out of a single process or

4-3

Programming Environment Support iAPX 432 Architecture

4-4

several processes that communicate with each other. The use of processes originated
in multi-programming operating systems, where each job was a process. But in
recent years multiprocessing has evolved into a general methodology for implemen­
ting concurrency, a methodology we will call the process model. In fact, just as Ada
has the notion of a "package," corresponding to a type manager, it also has the con­
cept of a "task," which corresponds to a process.

Since a process is an abstraction of a processor in action, breaking up programs into
processes is a start toward multiple processor systems. In such systems, a process is a
natural unit to allocate to an available processor, because a process is naturally pro­
cessor independent. But before multiple processor systems can be implemented,
several other concepts must be formalized and made processor independent as well.
In particular, models have to be developed that abstract the details of the inter­
process communication and synchronization mechanisms.

Much recent operating system research has focused on interprocess communication
and synchronization, and progress here has been rapid. Software structures such as
"communication ports" and "messages" have been developed to separate the
logical character of the communications mechanism from the physical implementa­
tion. A communications port is an abstraction of a "mailbox," a place where
messages can be sent or picked up. Processes send messages to ports and wait at
ports to receive messages from other processes. Process scheduling can be handled in
a similarly processor-independent fashion by defining the concept of a "dispatching
port," where processes wait to be allocated to processors.

The object model and the process model are independent, but they can be combined
very simply and elegantly. Processes and ports will be objects, and the procedures
that manipulate these objects can be grouped into type managers. The HYDRA
operating system for the C.mmp multiple-processor system (16 PDP-ll minicom­
puters), a research project at Carnegie-Mellon University, demonstrated just this
combination of the object model with multiprocessing. *

4.2.3 Architectural Support

What does it mean to say that an architecture supports a software methodology? At
a minimum, it means that the architecture simply provides mechanisms to help users
follow the methodology; in this case we will say that the architecture is oriented
toward the methodology. But in a more general sense it could mean that the design
of the architecture itself also follows the principles of the methodology, in which
case we will say that the architecture is based on the methodology.

For example, an object-oriented architecture helps users to write programs that use
type managers and reflect the philosophy of information hiding. But if the architec­
ture's design is also an example of the use of that philosophy, then we will say that it
is an object-based architecture. An object-based architecture can be oriented to both
the object model and the process model; it can support type managers, but it can
also support multiprocessing, as the HYDRA system suggested. In fact, an object­
based architecture provides a uniform approach toward supporting all system
services.

If an architecture, a high-level language, and an operating system are all based on
the same methodology, then the boundaries between them begin to blur. It becomes
hard to tell where one begins and another leaves off. Functions can be moved from
the operating system to the architecture, or from the language to the operating
system. Basically, the whole system has a kind of geometrical integrity, constructed
as it is out of a set of common building blocks.

'William Wulf, Roy Levin, and Samuel P. Harbison. HYDRAIC.mmp: An Experimental
Computer System (New York: 1981).

iAPX 432 Architecture Programming Environment Support

The choice of which functions to provide in the architecture and which in system
software is dependent on many factors-the size of the microcode, the number of
gates on the chip, the presence of time-critical bottlenecks in certain frequently-used
operations, and the need for security, among others. Management of any given type
of object can be a responsibility shared by hardware and software. Time-critical
functions will be placed in hardware while less frequently used or extremely complex
functions will be left to software.

For example, type manager modularization results in many more intermodule con­
trol transfers than do more conventional modularization schemes. If the mechanism
of these transfers results in high overhead, it will not be feasible to use this
methodology. The same holds true for process scheduling and dispatching. The
frequent process switches envisioned by the process model would be prohibitively
expensive on a conventional architecture. These factors suggest that intermodule
control transfer mechanisms and process scheduling and dispatching mechanisms
should be provided by the architecture.

For reasons of flexibility, it is essential to maintain a separation of po/icy and
mechanism. Resource management policies should be in software, while
mechanisms should be in hardware. For example, scheduling policies (e.g. the choice
between a round-robin system or a priority system) should be specified in software,
since each application may have different scheduling requirements. But all schedul­
ing policies require an efficient scheduling and dispatching mechanism (i.e. the
ordering of available processes according to the policy, and the selection of one of
these processes for execution), so this mechanism should be in hardware.

4.3 iAPX 432 Object-Based Architecture

The iAPX 432 architecture provides the mechanisms which make it feasible for users
to write programs modularized into type managers and the mechanisms to support
multiprocessing and other system services. The iAPX 432 can provide these
mechanisms because it has an object-based architecture. This means that the
designers of the iAPX 432 architecture themselves followed the object methodology
described in section 4.2.1.

Therefore, since the object methodology is based on programming with type
managers, it makes sense to ask what structures in the architecture correspond to
type managers.

4.3.1 System Objects

In the iAPX 432 architecture, the structure that corresponds to a type manager is the
group of all hardware operators that manipulate certain complexes of segments (see
section 2.4.4). These hardware manipulated segment complexes are called system
objects. System objects may consists of one segment, a refinement of one segment
(see section 2.4.4), or several segments, but they are manipulated as a unit by their
instructions.

System objects provide the architectural mechanisms that support type manager
modularization and system services. For example, system objects are used to imple­
ment process scheduling and interprocess communications (in fact, an iAPX 432
process is a system object, as is a communication port and a dispatching port-see
section 4.5 for more details).

System objects provide mechanisms that allow users to build their own type
managers and define their own objects. Like system objects, user objects can be
represented by one segment, a refinement of a segment, or an entire segment com-

4-5

Programming Environment Support iAPX 432 Architecture

4-6

plex. In fact, the only real difference between system objects and user objects is that
the operations on system objects are implemented primarily in the microcode,
whereas user objects are manipulated by software. User objects can be given
hardware-enforced protection features that are similar to the ones associated with
system objects.

For example, a user could create a type manager containing a telephone directory
object and two procedures (look up telephone number, look up address) that
manipulate this object. The iAPX 432 architecture offers mechanisms that make it
impossible for any other procedure to access the directory object directly. The only
way another procedure could access the telephone directory is by calling one of the
two procedures in the type manager. The directory object is thus totally protected
against accidental or malicious damage, and no procedure outside the type manager
needs to know the internal representation of the directory.

4.3.2 Object Protection
The two-level mapping of the iAPX 432's structured memory (see section 2.4.1) pro­
vides the mechanisms for restricting access to objects. Recall the definition of object
references in section 2.4.4 in terms of access descriptors and segment descriptors.
These object references form the basis of object protection.

Object A is said to have an object reference for object B if an access segment in
object A's segment complex contains an access descriptor for the root segment of
Irs complex. See figure 4-1 for an illustration.

The access rights mechanism of segmented addressing provides one level of object
protection, the segment type mechanism provides another (see section 2.4.2), but the
basic protection comes simply from controlling the dispersal of object references.
The only way someone can get access to an object is by acquiring an object reference
for it. If a procedure doesn't have an object reference for an object, the object

OBJECT A

1

1 1 : D sE~AJtNT :

1 1 : D DATA I
1 SEGMENT 1

1 ~~~~~ 1

1 __________ 1

A

OBJECT
REFERENCE

OBJECT B

D DATA:
SEGMENT 1

D DATA:
SEGMENT 1

D DATA:
1 SEGMENT 1

1 __________ 1

B

Figure 4-1. Objects and Object References 171821-22

iAPX 432 Architecture Programming Environment Support

simply doesn't exist for the procedure. In operating system research, an object
reference is called a capability, and the whole object-oriented access mechanism is
called capability-based addressing. Figure 4-2 shows a mulitiple-object environment
and the object references of each object.

4.4 Architectural Support for Type Managers

Two aspects of the programming environment of a type manager are candidates for
architectural support: its static structure and its dynamic behavior during execution.
The iAPX 432 architecture provides a system object called a domain that
implements the static structure, while the dynamic behavior is handled by a system
object called a context.

A HAS AN OBJECT
REFERENCE FOR C

B HAS AN OBJECT
REFERENCE FOR A OBJECT B

C HAS OBJECT
REFERENCES FOR
A,B,D

DOHASNOOSJECT o REFERENCES

Figure 4-2. Object References 171821-23

4-7

Programming Environment Support iAPX 432 Architecture

4.4.1 Domain Objects
A type manager is represented by a segment complex called a domain object. The
root access segment in a domain object, that is, the domain access segment, contains
object references for all the other objects in the domain. These other objects include
instruction objects (represented by instruction segments) that contain the type
manager's procedures, and data objects (represented by data segments or segment
complexes) containing the data that is encapsulated inside the type manager.

The domain access segment distinguishes its public object references from its private
references. The public object references are contained in a refinement of the total
access segment; all other references are private. Access to the list of public references
will be made available to procedures outside the domain itself, but the private
references are accessible only by procedures within the domain. Thus the private
objects are effectively "hidden" inside the domain. This mechanism supports the
information hiding philosophy of the object-oriented design methodology. Figure
4-3 shows the segments that make up a simple domain object. Notice that references
to the instruction segments have been placed in the public portion of the domain
access segment, while the data segment complex is hidden in the private portion.

4.4.2 Context Objects

A context object is the iAPX 432 hardware-recognized object that supports the run­
time environment of a procedure in a type manager. Before a called procedure can
be executed it must be supplied with a data structure containing run-time informa­
tion that is unique to this particular instance of execution (e.g., the new instruction
pointer value and the return address to the calling procedure). All this information is

r---,

DOMAIN
ACCESS
SEGMENT

PUBLIC {t-------I
PRIVATE{~

DOMAIN OBJECT

INSTRUCTION
SEGMENT

INSTRUCTION
SEGMENT

r---------------------------------,

ACCESS
SEGMENT

DATA OBJECT

DATA
SEGMENT

DATA
SEGMENT

----------------------------------~

---~

Figure 4-3. A Domain Object 171821-24

4-8

iAPX 432 Architecture Programming Environment Support

contained in a context object. It has much the same function (although in a much
more protected fashion) that the activation record or stack frame has in stack-based
programming language implementations.

A context object is represented by a segment complex, the root of which is called the
context access segment. The context access segment contains object references for
the following objects:

• an operand stack for expression evaluation;

• the domain access segment of the context's type manager;

• four access segments that define the instantaneous access environment of the
called procedure (i.e. all the objects that may be referenced by the procedure);

• a message (if there is one) from the calling procedure;

• the context object of the calling procedure;

• a data segment containing local constants needed by the called procedure; and

• a data segment containing the current instruction pointer, stack pointer, and
status information. .

By convention, we will group into the context object the context access segment, the
operand stack, the context data segments, and the four access segments that define
the access environment (called the four entry access segments). For reasons which
will become clear in the next section, one of the four entry access. segments is the
context access segment itself. Figure 4-4 shows the segments and object references
included in a context object.

4.4.3 Calling Contexts

A new context object is automatically created when a procedure in one type manager
calls a procedure in another type manager. The new context is automatically
destroyed when the called procedure returns control to the calling procedure. A call
instruction may reference any instruction object in the public part of any domain in
the calling access environment. See figure 4-5 for an example of a call.

When a call is made, the new context has a different access environment from the
calling context, so the access environment of the called procedure will be different
from the access environment of the calling procedure. For example, notice that in
figure 4-5 the access environment of the calling context includes only the public part
of the called domain, whereas the new context's access environment includes the
entire domain. Each invocation of a procedure can be given an access environment
that includes only those objects it needs to access. Thus the call context mechanism
helps to insure the security of the whole program.

Along with the call instructions, the iAPX 432 instruction set includes two groups of
branch instructions: intrasegment branches and intersegment branches. The range
of the former group is limited to a single segment, while the latter group can specify
branches to any instruction segment in the domain (i.e. to any procedure in the
current type manager). Branch instructions do not change the access environment.

4.4.4 Using the Inside Representation of Type Managers

The domain objects we have considered so far include both procedures and the data
objects they act on. We will call this kind of domain object, in which data objects
are in the domain, the inside representation of type managers.

4-9

Programming Environment Support iAPX 432 Architecture

TO PREVIOUS
CONTEXT

4-10

The telephone directory example from section 4.3.1 can be easily implemented using
the inside representation. Object references for the two procedures are placed in the
public part of the domain, while the telephone directory object itself is in the private
portion of the domain. Thus the procedures can be called from outside the domain,
but the directory is inaccessible from outside. Whenever anyone needs to access the
directory, a call must be made to one of the two procedures, which performs the
operation on the directory, then returns to the caller.

r---

CONTEXT
ACCESS

SEGMENT

OPERAND
STACK

CONSTANT
DATA

SEGMENT

TO DOMAIN OF DEFINITION

ENTRY
ACCESS

LIST 3

ENTRY
ACCESS

LIST 2

ENTRY
ACCESS

LIST 1

CONTEXT
DATA

SEGMENT -----~I_"""l~TO MESSAGE

L:~~~~~~~:~ __ ~

Figure 4-4. A Context Object 171821-25

iAPX 432 Architecture Programming Environment Support

r-----------------------------------~

ENTRY
ACCESS

SEGMENT 0

....

ENTRY
ACCESS

SEGMENT 3

ACCESS
SEGMENT 2 ~

ENTRY

~") ~..... -----'

ENTRY
CONTEXT
ACCESS

SEGMENT

ACCESS
SEGMENT 1

CONTEXT FOR CALLING PROCEDURE

r--------------------------, ~---------------------,

DOMAIN
ACCESS

SEGMENT

CG PROCEDURE

INSTRUCTION
SEGMENT

CALLED
PROCEDURE

DOMAIN
ACCESS

'---. INSTRUCTION
SEGMENT

SEGMENT I (

I----------I} \ i -PUBLIC_ii INSTRUCTION
~ REFERENCES SEGMENT

....-----1\..---_ ...
INSTRUCTION

SEGMENT

i~-'""---""'~-""'~-"""

DOMAIN A

INITIAL CONFIGURATION

PRIVATE
REFERENCES

DOMAIN B

(PROCEDURE IN DOMAIN A CALLS PROCEDURE IN DOMAIN B)

Figure 4-5. Calling a Context (l of 2)

DATA
SEGMENT

171821-26

4-11

Programming Environment Support iAPX 432 Architecture

4-12

r------------------------,

CONTEXT FOR CALLING PROCEDURE

r------------------------,

DOMAIN A

r-------------------------,

ENTRY
ACCESS
SEGMENTO

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT 2

ENTRY
ACCESS

SEGMENT 1

_________________________ J

CURRENT CONTEXT
FOR CALLED PROCEDURE

,------------------------,
CALLE~ PROCEDU:

LJ

PUBLIC ~Di
D

DOMAIN B

CONFIGURATION AFTER CAll

Figure 4-5. Calling a Context (2 of 2) 171821-27

iAPX 432 Architecture Programming Environment Support

Figure 4-6 displays the calling sequence for the inside representation in detail. The
first drawing in figure 4-6 shows the situation that results after a call has been made
to the "look up number" procedure in the telephone directory type manager. Notice
that the telephone directory object is not in the immediate access environment of the
procedure, because the directory is referenced only by the domain access segment,
which is not one of the four entry access segments.

TO
CALLING
CONTEXT

NEW
CONTEXT

SITUATION AFTER CALL

r-------------------------~
I
I
I
I
I
I
I
I
I

CONTEXT
ACCESS

SEGMENT

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT2

ENTRY
ACCESS

SEGMENT 1

-----------------------~
r-------------------------,

I
I
I
I
I
I
I
I
I

PUBLIC

PRIVATE

DOMAIN
ACCESS

SEGMENT

INSTRUCTION
SEGMENT

INSTRUCTION
SEGMENT

DATA
SEGMENT

L _________________________ J

TELEPHONE DIRECTORY DOMAIN

"LOOK UP ADDRESS"

"LOOK UP NUMBER"

TELEPHONE DIRECTORY

Figure 4-6. Changing the Access Environment (1 of 2) 171821-28

4-13

Programming Environment Support iAPX 432 Architecture

4-14

TO
CALLING
CONTEXT

SITUATION AFTER ENTER ACCESS SEGMENT

~--,

ENTRY
ACCESS

SEGMENTO

CONTEXT
ACCESS

SEGMENT

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT 2

------------------------,
I
I
I
I

ENTRY
ACCESS

SEGMENT 1
IN~~~~~~~N "LOOK P ADDRESS"

I
I
I
I
I
I
!

INSTRUCTION "LOOK UP NUMBER"

DOMAIN
ACCESS
SEGMENT

SEGMENT i I
I I
I I
I I
I I
I I
I I

DATA TELEPHONE DIRECTORY
SEGMENT i i

I I
I I
I I I TELEPHONE DIRECTORY L... _______________________ .J I

I DOMAIN I

~--~

NEW CONTEXT

Figure 4-6. Changing the Access Environment (2 of 2) 171821-29

iAPX 432 Architecture Programming Environment Support

In order to bring the directory object into the access environment, the domain access
segment must be made into one of the entry access segments. The iAPX 432 instruc­
tion set includes an instruction, ENTER ACCESS SEGMENT, which allows th"e
user to make any access segment in the immediate access environment into an entry
access segment. Since the domain access segment is referenced by entry access seg­
ment 0 (the context access segment itself), the domain access segment is in the access
environment. The second drawing in figure 4-6 shows the result of executing an
ENTER ACCESS SEGMENT instructon. The domain access segment has been
made entry access segment 1, and the telephone directory object is now in the access
environment. The procedure can now act on the object.

This example illustrates why the context access segment is one of the four entry
access segments.

4.4.5 Using the Outside Representation of Type Managers

The alternative to the inside representation is for data to be kept outside the domain
object; only procedures will be found inside. Whenever a procedure in the type
manager is called, a reference to the data object must be passed into the domain. We
will call this the outside representation of type managers.

The outside representation is actually more common than the inside representation,
since the outside representation can be used with multiple instances of the same type
of object. For example, the type managers that control system objects use the out­
side representation. There is only one type manager for each type of system object,
but many different objects of one type can be controlled by the same type manager.
The outside representation is also used for large data objects that must be passed to
several type managers.

As an example of the outside representation, consider another telephone directory
type manager. This type manager contains only the two procedures, look up number
and look up address, and no data object. Whenever a procedure is called, a
reference to some telephone directory object must be passed to the procedure.
Figure 4-7 illustrates this example. The calling procedure uses the instruction CALL
WITH MESSAGE, and sends the directory object as a message to the called
procedure.

The problem with this simple use of the outside representation is that the data object
has no protection. Any procedure with a reference for the object can manipulate it.
Ideally, only procedures in the telephone directory type manager should be able to
manipulate directory objects. System objects solve this problem through the
mechanism of type checking; the only operators that are allowed to access a system
object of some system type are the operators in one particular type manager. Each
time an operation is attempted on a system object, the system type field in the
corresponding object descriptor (see sections 2.4.2 and 2.4.4) is checked to see if the
operation is allowed.

The iAPX 432 architecture provides a way to give a similar type checking
mechanism to user objects.

4.4.6 User Defined Types

The iAPX 432 architecture includes several system objects and operations that can
be used to create a protection mechanism for user-defined objects that is similar to
the hardware protection mechanism provided for system objects by system type
checking. This protection mechanism is called user-defined type checking.

4-15

Programming Environment Support iAPX 432 Architecture

4-16

The type definition object (TDO) is used to label user objects so they can have type
checking performed on them, in much the same way that the system type fields in the
object descriptors label system objects. All references to a typed object are made
through a special kind of descriptor, called a type descriptor, in the object table (see
section 2.4.4). This type descriptor points to both the typed object and the TOO.

The iAPX 432 instruction set includes several instructions for creating typed objects
and for accessing them. Two varieties of types can be created, public types and
private types. Public types provide no hardware protection; they merely serve to
label user objects for the software. Private types, on the other hand, offer a protec­
tion mechanism. Successfully accessing a privately-typed object requires a reference
to the TDO as well as a reference to the object itself. See Chapter 7 of the iAPX 432
General Data Processor Architecture Reference Manual for more information on
how user typing is implemented.

~--------------------------------------,

ENTRY
ACCESS
SEGMENTO

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT 2

----------------------------------- ~

CALLING CONTEXT

TELEPHONE
DIRECTORY

r -----------------------, --------------------,
I
I
I CALLING
I PROCEDURE
I
I
I
I

-------------------------~

INITIAL SITUATION

Figure 4-7. The Outside Representation (l of 2) 171821-30

iAPX 432 Architecture Programming Environment Support

Figure 4-8 shows the same example as figure 4-7, but now the telephone directory
object has been given a user-defined private type (shown by the TDO object). The
domain has a matching TDO, so procedures in the domain can access the directory.
No other procedures can access the directory. Notice that both a CALL CONTEXT
WITH MESSAGE instruction and an ENTER ACCESS SEGMENT instruction are
used in the example. The first instruction passes the typed object into the type
manager. The second instruction puts the TDO object in the access environment,
where it can be used in an access to the directory object.

TO
CALLING
CONTEXT

NEW CURRENT CONTEXT

--,

L.._

TELEPHONE
DIRECTORY

(MESSAGE FROM
CALLING CONTEXT)

r------------------------------l

I
I
I
I

CALLED
PROCEDURE

"-.

D
L _____________________________ _

SITUATION AFTER CALL WITH MESSAGE

Figure 4-7. The Outside Representation (2 of 2) 171821-31

4-17

Programming Environment Support iAPX 432 Architecture

4-18

r-----------------------------------,
ENTRY

ACCESS
SEGMENTO

•

CALLING
CONTEXT
ACCESS

SEGMENT

CALLING CONTEXT

--------------------------,
CALLING
PROCEDURE

,I
1

~-------------------------~

CALLING DOMAIN

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT2

ENTRY
ACCESS

SEGMENT 1

USER TYPED OBJECT

--------------------,
CALLED
PROCEDURE

TYPE
DEFINITION

OBJECT

~--~-------------------

TELEPHONE DIRECTORY DOMAIN

, INITIAL SITUATION

Figure 4-8. User Defined Type 171821-32

iAPX 432 Architecture Programming Environment Support

r---,

CURRENT
CONTEXT
ACCESS

SEGMENT

ENTRY
ACCESS

SEGMENT 3

ENTRY
ACCESS

SEGMENT 2

r--------------,

TELEPHONE
DIRECTORY

L ____________ _

(MESSAGE FROM
CALLING CONTEXT)

----------------------------1

ENTRY
ACCESS

SEGMENT 1

PUBLIC

CALLED
PROCEDURE

TYPE
DEFINITION

OBJECT

TELEPHONE DIRECTORY DOMAIN

NEW CONTEXT

SITUATION AFTER CALL CONTEXT WITH M ESSAG E
AND ENTER ACCESS SEGMENT

Figure 4-8. User Defined Type (Cont'd.) 171821-33

4-19

Programming Environment Support iAPX 432 Architecture

4-20

4.5 Architectural Support for System Services:
The Silicon OS

The iAPX 432 architecture implements a number of resource management
mechanisms in the hardware. We call these hardware-supplied mechanisms the
Silicon Operating System. (It is worth stressing again, as we did in section 4.2.3, that
only the mechanisms are supplied in the hardware; the resource management
policies are established by software.)

We can divide the Silicon OS into two unequal parts, one concerned with the
management of memory resources, the other with the management of processor
resources. By far the largest fraction is concerned with processor management. In
the following sections we will explore the objects that implement dynamic storage
allocation (one aspect of memory management) as well as process scheduling,
dispatching and interprocess communication.

4.5.1 Process Objects and Processor Objects

A process is the unit of concurrent execution; it may also be defined as the unit of
code that can be scheduled to run on a processor. The iAPX 432 architecture sup­
ports concurrent programming with several system objects: process objects for every
process in the system, processor objects for every processor in the system, and
processor carrier objects, which link processor objects to process objects. We will
not describe the complete segment content of these objects, as we did for domains
and contexts, but users can refer to the iAPX 432 General Data Processor Architec­
ture Reference Manual for details.

We have now mentioned all the system objects that are needed for a minimal iAPX
432 system. Figure 4-9 shows the basic objects and the object references needed for a
simple system. The system includes a processor object, a processor carrier object, a
process object, a context object, and a domain object.

4.5.2 Storage Resource Objects

Storage Resource Object (SROs) are used to implement the dynamic storage alloca­
tion mechanisms (see section 2.4.3) of the Silicon Operating System. The SROs and
the operations associated with them perform the actual binding of an unallocated
descriptor in the object table to a newly created segment in memory. Several instruc­
tions, including CREATE ACCESS SEGMENT and CREATE DATA SEGMENT,
require a reference to an SRO.

A special SRO associated with the process object is used implicitly whenever a call
instruction is executed, since these instructions create a new context object, which
must be allocated storage when it is created. Unless an SRO is used explicitly, it does
not have to be included in the system. Therefore we have not included it in the
simple system shown in figure 4-9.

iAPX 432 Architecture Programming Environment Support

PHYSICAL
PROCESSOR

MEMORY

PROCESSOR
OBJECT

PROCESSOR
CARRIER
OBJECT

PROCESS
OBJECT

Figure 4-9. Basic System Objects

CONTEXT
OBJECT

4.5.3 Simple Interprocess Communication Without Blocking

In a multi-process 'environment, procedures in different processes often need to
exchange information. Since the processes are asynchronous, the first one may be
ready to communicate before or after the second is ready. Therefore, some kind of
interprocess synchronization must be provided. In the iAPX 432 Silicon OS, a
system object called a communications port provides the synchronization
mechanism that allows asynchronous processes to communicate.

The information communicated is sent in a message object, which has no defined
system type and in fact may be any object. For example, as we shall see in section
4.5.5, an entire process can be sent as a message.

When a procedure in one process wants to send a message to a procedure in another
process, the sender specifies a message object and a communictions port as the
destination of the message, then executes a SEND instruction. Similarly, the receiver
specifies the same communications port as the source of a message and executes a
RECEIVE instruction. Neither process need be aware of the other; neither process

DOMAIN
OBJECT

171821-34

4-21

Programming Environment Support iAPX 432 Architecture

4-22

knows, when it communicates with the port, if the other process is also ready to
communicate. The port object contains a fixed-length buffer that holds a queue of
object references for the message objects that have been sent to the port and are
waiting for a receiver. As processes execute receive instructions on the port,
messages are removed from the head of the queue.

Figure 4-10 shows simple examples of messages being sent and received via com­
munications ports. Notice that the message buffer in the communications port is
neither full nor empty, so both the send and receive instructions can be executed
without difficulty. The message object being sent must be in the access environment
of the sending context. When a message is received, its object reference is placed in
the "message from calling context" slot in the context access segment.

r---------------------~

L _____________________ ~

SENDING CONTEXT

EARLIER
MESSAGE

MESSAGE
SENT

SENDING A MESSAGE

}
MESSAGE

t-----I BUFFER

t-----I

COMMUNICATION
PORT

Figure 4-10. Sending and Receiving Messages 171821-35

iAPX 432 Architecture Programming Environment Support

MESSAGE {
BUFFER

I-------t

...------1

COMMUNICATION
PORT

LATER
MESSAGE

r------------------------------,

MESSAGE
RECEIVED

L _____________________________ ~

RECEIVING CONTEXT

RECEIVING A MESSAGE

Figure 4-10. Sending and Receiving Messages (Cont'd.) 171821-36

4.5.4 Conditional and Surrogate Communication

As we shall see in the next section, when a process executes a simple SEND instruc­
tion on a port whose message buffer is full, or when it executes a simple RECEIVE
on an empty port, the process is suspended while it waits for space in the buffer or
for a message. Often, however, it will be unacceptable for a process to become
suspended in this manner. The conditional and surrogate communication operators
(CONDITIONAL SEND, CONDITIONAL RECEIVE, SURROGATE SEND,
SURROGATE RECEIVE) can be used to avoid this suspension and also to imple­
ment more advanced forms of communication.

Conditional sends have exactly the same effect as simple sends, if the message buffer
in the port is not full. Similarly, conditional receives are identical to simple receives,
if the port has a message waiting. However, if these conditions are not satisfied, the
conditional operations are not performed, whereas the simple operations are
blocked and the process is suspended (see section 4.5.5). The conditional operations
can be retried at a later time.

Surrogate sends and receives are more complicated than either simple or conditional
operations. In surrogate operations, two ports are specified, along with a special
system object called a carrier. When a SURROGATE SEND instruction is executed,
for example, the message is sent to the first port, if the buffer is not full. If the
buffer is full, the carrier object, containing a reference to the message, is enqueued

4-23

Programming Environment Support iAPX 432 Architecture

4-24

in a linked list at the port. When space becomes available in the buffer, the message
object reference is inserted in the port, and the carrier is resent to the second port.
Similarly, a SURROGATE RECEIVE can cause its carrier to become enqueued at a
port waiting for a message. When the message is received, it and its carrier are resent
to the second port. Figure 4-11 shows a queue of carriers and messages at a port.

Surrogate operations allow sophisticated communications mechanisms to be
implemented. For example, priority communications channels can be implemented
by specifying a priority-based port protocol and encoding priority information in
the carrier object. Parallel communications channels can be multiplexed onto one
port, in priority order, by executing a SURROGATE RECEIVE on several ports,
but specifying the same second port in each case. A message sent to any of the
several ports will be resent to the same second port. Thus, by executing a receive
on the second port, one process can monitor several prioritized channels. (See
Chapter 4 of the iAPX 432 General Data Processor Architecture Reference Manual
for more information.)

4.5.5 Process Blocking, Scheduling, and Dispatching

When a process attempts to execute a simple SEND instruction on a communica­
tions port with a full buffer, or to execute a RECEIVE instruction on a communica­
tions port with an empty buffer, the process will become blocked. When a process is

MESSAGE

MESSAGE {

BUFFER t::==:::!:i---........ "'L.--~ FULL I-

COMMUNICATIONS
PORT

TO SECOND
PORT

SURROGATE
CARRIER

MESSAGE

Figure 4-11. Surrogate Sending

SURROGATE
CARRIER

MESSAGE MESSAGE

171821-37

iAPX 432 Architecture Programming Environment Support

blocked it is enqueued at the communications port through its process carrier, a
special carrier object associated with the process object itself. When the port buffer
is available again, the process will be unblocked, and resent to another port object
called a dispatching port. At the dispatching port the hardware automatically per­
forms scheduling and dispatching.

Scheduling is the determination of the execution order of each process in a
multiprocess system. Although the scheduling policy (e.g. round-robin or priority­
based) is set by software, the implementation of the policy (the ordering mechanism
itself) is performed by the iAPX 432 hardware. Dispatching is the assignment of a
physical processor to execute a process.

Besides process objects, process carrier objects, and dispatching port objects, the
hardware also uses processor objects and processor carrier objects (see section 4.5.1)
to implement scheduling and dispatching. A dispatching port binds processor
carriers to process objects just as a communications port binds processes to
messages. (In fact, communications ports and dispatching ports are really just two
slightly different varieties of a generalized port object.) When the dispatching port is
created, the software specifies parameters that define the scheduling policy. (For
example, one parameter defines the maximum period of time a process can run on a
processor before rescheduling occurs.) The hardware executes this policy
automatically for all available processes.

A process can become available for scheduling for a variety of reasons: it can be
blocked while waiting to send or receive a message; it can use up its time slice on a
processor; a fault can occur which causes the process to suspend itself; or it can
deliberately suspend itself by executing a DELAY instruction.

Figure 4-12 shows the complete sequence of process blocking at a communications
port, unblocking and resending to the dispatching port, scheduling (i.e. enqueueing
at the dispatching port), and dispatching to an available processor.

Several dispatching ports can exist in a system (even a single-processor system). In
this case, the ports usually implement different scheduling policies or else are
dedicated to different functions. (One port might be dedicated to scheduling pro­
cesses that have faulted, for example.)

4.5.6 Multiple-Processor Systems

The iAPX 432 architecture can support more than one active processor in the same
system. Dispatching on a multiple processor iAPX 432 system becomes the assign­
ment of a process to an available processor. The ability to add processors to a system
and, without changing the software, improve the performance of a multi- process
environment is one of the most important and powerful features of the iAPX 432.

The iAPX 432 architecture supports multiple processor dispatching as a simple
extension of single-processor dispatching. Merely adding another processor object
and processor carrier object for each additional physical processor enables the
system to expand its power with no other changes required. Two processor carrier
objects reference the same dispatching port, but otherwise the mechanism is the
same. Multiple dispatching ports may be provided, as in the single-processor case.

Figure 4-13 shows a two-processor system running six processes. Two processes are
executing and four are waiting at the dispatching port for a free processor.

4-25

Programming Environment Support

PHYSICAL
PROCESSOR

MEMORY

CD PROCESS IS
DISPATCHED

PROCESS

iAPX 432 Architecture

}
MESSAGE BUFFER

t-----I IS EMPTY
t-----I

COMMUNICATION
PORT

PROCESS

PROCESS
CARRIER

PROCESS

\ ,
, \ CD PROCESS EXECUTES

\ , READ AND BLOCKS

\ '\ \ ,
\ \

CD PROCESS RECEIVES, MESSAGE (NOT
SHOWN) PROCESS UNBLOCKS AND
IS RESENT TO DISPATCHING PORT
AND SCHEDULED (ENQUEUED AT
DISPATCHING PORT)

\ \
\ \/.,'" , "

> / ~ __ J

T-~~_i"-----.~
I I

PROCESS
CARRIER

PROCESS

I PROCESS I
I CARRIER I

It------J

rt-----,
I I
I I
I PROCESS I
I I
I I L ______ J

Figure 4-12. Resending, Scheduling, and Dispatching 171821-38

4-26

iAPX 432 Architecture

PHYSICAL
PROCESSOR

PHYSICAL
PROCESSOR

MEMORY

Programming Environment Support

r---:::J..-_1Io.. TO CONTEXT

PROCESS

PROCESS PROCESS

r==:r. TO CONTEXT

o

Figure 4-13. Multiple Processor System 171821-39

4-27

Programming Environment Support iAPX 432 Architecture

4-28

4.6 Summary

• The object-oriented design methodology has great promise for solving many of
the current problems in software design and maintenance.

• This methodology is based on information hiding as the criterion for
modularization.

• Type managers are the modules that result when the methodology is actually
applied. They contain all procedures that directly manipulate objects of a given
type.

• Domain objects and context objects are used to implement the static structure
and dynamic behavior of type managers. The type definition object is used to
give hardware protection to user objects.

• Multi-process operation can be supported by the object-based architecture of
the iAPX 432, which also provdies a uniform approach to all system services
(the Silicon Operating System).

• The Silicon Operating System provides a full set of hardware recognized system
objects that provide support for concurrent processing (process objects, pro­
cessor objects, dispatching ports, carriers), interprocess communication (com­
munication ports), and dynamic storage allocation (storage resource objects).

CONCLUSIONS

The goal of reliable software will remain distant until computer architecture
is significantly modernized to narrow the semantic gap between language
concepts and hardware concepts. Given the high annual toll of people-hours
lost to unreliable software, we architects have something bordering on a
moral responsibility to modernize.

Peter J. Denning
Chairman of the Computer
Science Department,
Purdue University

Objects, type managers, concurrent processes, and communication ports may be
new to the world of computers, but these concepts are very familiar in the real world
of mailboxes, locks, keys, things, and events. For too long programmers have been
forced to think in concepts that are tied closely to the hardware but are distant from
the world of applications. Programmers usually find that object-oriented design
using modern languages, such as Ada, quickly becomes second nature, because it is
so much like the anthropomorphic way we all think. These modern languages and
methodologies can make programming more of a human activity, and thus capable
of being performed correctly by human beings.

But the new languages and methodologies have to be supported by the architecture
in order to work effectively. Unfortunately, most architectures deal with concepts
that are as far below the level of Ada as Fortran is below the real world. Glenford
Myers called this conceptual incompatibility between modern languages and conven­
tional architectures the "semantic gap," a gap which the iAPX 432 architecture has
bridged.

The conceptual gap between Ada and the iAPX 432 architecture is very small,
because the designers of the iAPX 432 architecture followed the same object­
oriented design methodology that users should follow when writing Ada programs.
The same methodology is also used in iMAX, the Multifunction Applications
Executive that Intel provides with Ada to handle the interface between user pro­
grams and the Silicon OS. The object methodology is thus found at every level of the
iAPX 432 system.

Conclusion-l

REQUEST FOR READER'S COMMENTS

I ntroduction to the
iAPX 432 Architecture

171821-001

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating~ _____ _

NAME __ DATE ____________ _

TITLE __ _

COMPANY NAME/DEPARTMENT __ _

ADDRESS __ _

CITY ____________________ STATE ___ ZIP CODE ___ __

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of aseries describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
ssa Technical Publications Dept.
3585 SW 198thAve.
Aloha, a R 97007

AL3-2-485

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

!
I I

INTEL CORPORATION , 3585 S.w. 198th Avenue, Aloha, Oregon 97007 • (503) 681·8080

Printed in U.S .A .lY81 / 5K/ 0881 1 AP

