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PREFACE TO REVISION B

Revision B modifies the original 1issue (August 1980) in these
substantive ways:

Chapter

Chapter

Chapter

Chapter

1

INTRODUCTION

WHAT'S AN OBJECT?

INTERPROCESS
COMMUNICATION

THE I/O SUBSYSTEM

There is new material introducing
432 architectural innovations.

Primitives are not described as
"simple objects".

Non-FIFO gqueuing disciplines are
mentioned. There is no WAIT TO
RECEIVE OR N TIME QUANTA
instruction.

The I/0 example is changed because
the Interface Processor can't
create 432 objects, and because
there can be multiple IP processes.

There are also these changes in terminology:

SEND MESSAGE is now SEND.

WAIT TO RECEIVE MESSAGE is now RECEIVE.

TRANSFORMER OBJECT is now DESCRIPTOR CONTROL OBJECT.

LABEL OBJECT is now TYPE DEFINITION OBJECT.

"Seal" is now "private type".

"Trademark" is now "public type".
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INTRODUCTION

This book focuses on objects, and on how the 432's system
objects support such high-level functions as concurrent processing,
modularity, and tvpe checking.

A broader discussion of the iAPX 432 can be found in:

Introduction to the iAPX 432 Architecture
Manual Ordexr Number 171821-001

This book provides a conceptual overview of cbjects and their use in
the 432 architecture, and does not explain implementation details.
The definitive references for the 432 processors are:

iAPX 432 General Data Processor
Architecture Reference Manual
Manual Order Number 171860-001

and

iAPX 432 Interface Processor
Architecture Reference Manual
Manual Order Number 171863-001

WHY INVENT A NEW ARCHITECTURE?

Decreasing hardware costs have changed the economics of complex

computer systems -- software costs are now a major part of overall
costs for many systems. As a result, any computer application that
requires extensive software development needs a computer

architecture designed to reduce software costs. In fact, this is
the fundamental design objective of the 432:

DEFINE A NEW COMPUTER ARCHITECTURE
THAT SIGNIFICANTLY REDUCES THE COST
OF SOFTWARE.




A SOFTWARE-ORIENTED ARCHITECTURE

The 432 is based on a complete rethinking of what hardware
facilities are needed to reduce the costs of software
development, testing, and maintenance. It is a radical departure
from conventional architectures:

1. The 432 provides a wide range of system performance without
software changes. 432 software runs on 1-, 2-, or
many-processor systems without software changes. Higher
performance can often be achieved by simply adding more
processors.

2. The 432 standardizes and speeds up important operating system

functions by placing them in hardware. These hardware
functions include storage allocation, and scheduling and
communications for multiple software tasks. The 432's

support of these functions makes possible more dynamic
information and program structures, with reliability still
provided by the 432's protection and checking mechanisms.

3. There are important software errors that are impossible on
the 432:

° A module can never maliciously or accidentally access
data outside the set of data that it has a
"need~to-know."

o A module cannot write a data structure that it should
only read, nor read a data structure that it should only
write.

° A module cannot perform an operation that is not allowed

for the type of data being operated on (such as
executing data as instructions).

The major facilities of a conventional architecture are:

) the processor registers
° the various addressing modes
° the built-in data types (e.g., bytes and words), and the

built~-in operations on those types (e.g., add or compare)



The 432 architecture, on the other hand, raises the level of
ithe hardware/software interface. It uses the most advanced
semiconductor technology (over 100,000 transistors on one chip)
to implement the most advanced ideas in computer architecture.
The 432's major facilities are ones that conventional systems try

to provide (but provide inadequately) in operating systems and
compilers:

° provide access-checking and protection, to enforce
modularity;

® provide the execution environment for program modules;

) provide scheduling and communications for multiple

software tasks;

° provide control and dispatching for multiple hardware
processors.

432
SOFTWARE-ORIENTED

ARCHITECTURE

MODULARITY
CONCURRENCY
PROTECTION

Figure 1.1 -~ Two state-of-the-art technologies merge to raise
the level of the hardware/software interface.




WHAT YOU WILL LEARN

First you will learn what an object is. The object concept
is then wused to explain the major facilities of the 432
architecture.

This book has six other chapters:

CHAPTER DESCRIPTION

2. WHAT'S AN OBJECT? How objects evolved, what they
are, and the symbols we use to
represent them.

3. PROGRAM STRUCTURE An overview of the hardware-
recognized objects used to
structure a program (i.e., what
objects are used to execute a
program) .

4. INTERPROCESS COMMUNICATION It is often advantageous to
structure a program so that
several parts of it can execute
in parallel. This chapter
describes the facilities of the
432 architecture that allow
these separate parts to
communicate and synchronize
with each other.

5. TRANSPARENT MULTIPROCESSING Any software written for the
432 can run on systems with 1,
2, Oor many Pprocessors. No
software changes are required.
This chapter explains how we
did it.

6. DESIGNING SOFTWARE SYSTEMS This chapter describes object-
oriented design and the support
that the architecture provides
for it. This method can reduce
software costs.
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CHAPTER DESCRIPTION

7. THE I1/0 SUBSYSTEM This chapter describes the
physical partitioning of a 432
system into major functional
blocks (i.e., processors,
memory, and I/O subsystems),
and explains how I/O is handled
by decentralized I/0 subsystems.

This booklet is an "Object Primer" because all of these
facilities are based on objects; this 1is why objects are
explained before any of the other facilities.

SELF-TESTS

The Object Primer is designed for self-teaching, and includes
a one-page quiz at the end of each subsequent chapter, with
answers when you turn the page.






Chapter 2

WHAT'S AN OBJECT?

This chapter answers that question by covering these subjects:

[ PRIMITIVE DATA TYPES

° 432 PRIMITIVE DATA TYPE SUPPORT

® EVOLUTION OF OBJECTS

° DEFINITION OF OBJECTS

® SYMBOLS FOR OBJECTS

2-1



PRIMITIVE DATA TYPES

To know what a certain pattern of bits in a computer memory
means, you must know what type of information it is; i.e., is it
an integer, a character, or a real? For example, consider the
following 8-bit value:

0100 0001

If this is an ASCII character it means: 'A’
If this is an integer it means: 65

In short, the data's type determines how the data is interpreted.
Integers, characters, and reals are examples of very simple

data called primitives. Primitives have three important
characteristics: '

PRIMITIVES
° Are data structures that contain information in an
organized manner.
[ Have a set of basic operations defined for them that

directly manipulate the data structure, e.g., ADD
INTEGER, or MULTIPLY REAL.

® Each primitive can be referenced (addressed) as one
thing; you don't need to reference each of the parts.

In the 432, these simple data structures are called
primitives to differentiate them from the more complex structures
called objects. Just as there are different types of primitives
(integers, reals, etc.), there are different types of objects.
I'1l discuss the precise differences between an object type and a
primitive type in a moment, but for now just visualize an object
type as a more complex primitive data type. Let's take a side
track for a moment to look at the support the 432 provides for
primitive data types, then I'll come back to the definition of
object types.
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432 PRIMITIVE DATA TYPE SUPPORT

The 432 supports these eight primitive data types:

1) E,:S:;:RACTER

2 ETwese s

B oedis s

) [L__InTEGER | 22 ms

5) [ oroinaL I

6) | swort ReaL | -

7 {_ ReaL | P

8) [ TEmPorARY ReAL { a0 strs
\ Figure 2.1 -- Primitive data types

This support includes more than 150 unique* operators for
these eight types. Figure 2.2 on the next page summarizes the
operators available for these types.

*System management and branching operators are not included in
this count. Instructions which are the same for two different
data types (e.g., MOVE INTEGER and MOVE ORDINAL) are only counted

once. Also, all instructions have multiple addressing modes but
are only counted once.




v T : o
o OPERATOR Funmni asie l cunuu.l P [ wrecer Li};‘::’ ]; xzAL im:}‘o&nn
E & {|move X X X X X b X X
g g SAVE X X X X X X X X
2]

&8 1lzero X X X X X X x X
< 0
g ] ONE X X X X X
o AND X x X - - - -
8 OR X X X - - - - -
&1 1 xor X X X - R - - N
ax I .
2 XNOR 7 X X x | - . - - .
‘é COMPLEMENT X X X - - - - -
S
ADD X X X X X * * X
SUBTRACT X X X be X * » X
o | rurtIeLy X X X X * * X
=3
s DIVIDE X X X X » * X
E REMAINDER X X X X X
31 INCREMENT X X X X X - - -
§ DECREMENT % X X x X - - -
g NEGATE - - - X X X X
< || AssoLuTE vaALUE - - - X X X
SQUARE ROOT X
2 [| ExTRACT X X - - - - -

«82

i 59| INSERT X X - - - - -

i+

& || stenrFIcanT BIT X X - - - - -
EQUAL X X X X X X X X
[}
& || not equaL X X X X X
'
2 EQUAL ZERO X X X X X ¥ X X .
& || not EqQuaL zERO x X X x X
=<
S || GREATER THAN X X X X X X X X
>~
2 GREATER THAN OR EQUAL| X X X X X X X X
S || postTive - - - X X X X X
NEGATIVE - - - X x X X X
CONVERT TO: CHARACTER| - X
SHORT
@ ORDINAL % - X
S
5 CRDINAL X - X X
& SHORT «
©, INTEGER -
z<
14 INTEGER X X - X
«n
& SHORT - X
Z REAL
8
REAL - X
:Exi°“““* X X X X X x -

This operator is available for the given data type.
= This operator is available for the given data type and for
crerations where one of the operands is a temporary real.
- = This operator is not available and would not be useful if
t were.
(blank)= This operator is not available.

Key x
*

Figure 2.2 -- Primitive operator summary
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EVOLUTION OF OBJECTS

OBJECTS RAISE THE LEVEL OF
THE HARDWARE/SOFTWARE INTERFACE.

This is easy to understand if you look at the history of
computer development.

Early machines had very simple hardware operations such as
"move byte"” and "add integer" which manipulated hardware-
recognized data types such as bytes and integers. The hardware
on these early machines was not capable of manipulating floating-
point numbers. If you needed floating-point you had to implement
it in the software.

As technology ©progressed and computer hardware gained
functionality, more complicated operations such as floating-point
add, multiply, divide, etc., were moved into the hardware. This
increase in hardware functionality increased the speed with which
more complicated operations (such as £floating-point) could be
handled, and eliminated the need to program these operations in
software. Of course, moving "software" into hardware had other
benefits, e.g., the enforcement of standard programming methods.

The 432 carries this progression one step further by placing
system management operations (such as process scheduling, memory
management, and interprocess communication) into the hardware
where they can be handled quickly and more securely.

Just as moving floating-point operations into the hardware
meant that the hardware had to manipulate the data structures
used to represent floating-point numbers, moving system
management operations into the 432 hardware means that the 432
has to manipulate the data structures associated with process
scheduling, memory managment, and interprocess communication.
These data structures are called objects.



The following chart summarizes the evolution of object-

oriented machines.

HARDWARE OPERATIOHNS

HARDWARE=-RECOGNIZED DATA TYPES

® MOVE BYTE
EARLY

MACHINES ® ADD INTEGER

® BYTES [_BYTE_ ]
® INTEGERS INTEGER

¢ DIVIDE FLOATING
POINT

@ INDEX INTO AN
ARRAY

® FLOATING POINT | [FLOATING POINT |
ARRAY

® ARRAYS

® DISPATCH PROCESS

432 oBUECT~
ORIENTED ® SEND MESSAGE
MACHINE

® PROCESSES COMMUNICATION
PORT _

® COMMUNICATION :
PORT 1 ™ Messace

Figure 2.3 -- The evolution of objects

Examples of some of the objects used by different 432 system
management operations can be found in the following chart:

OPERATION

OBJECTS

® Process scheduling

® Process object
® Processor object
® Dispatching port object

e Dynamic memory allocation

® Storage resource object

® Interprocess communication e Communication port object

Figure 2.4 -- Some objects

Don't worry if the object names (such as dispatching port)
sound mysterious; their functions are explained later. The
important point to remember now is that objects are simply data
structures in memory which may be manipulated in controlled ways

by hardware and/or software.
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This brings up an important point. Not all objects are
manipulated only by hardware operations; some are manipulated by
a combination of hardware and software operations and some are
manipulated only by software operations. Wherever ©possible,
frequently-used or time-critical operations have been placed in
the hardware and less-frequently-used operations have been left
to the software

DEFINITION OF OBJECTS

The early part of this chapter explained that primitives have
three important characteristics. What are those three
characteristics? (Fill in the blanks.)

(1)

(2)

(3)

(Check your answers by reviewing page 2-2)

An object has these same three characteristics plus one more:
An object has a label that tells its type.

This label is used to check an object's type before it is
used in an operation. I'll say more about type checking in
Chapter 6. The important thing to remember is that the
difference between an object and a primitive is that an object
has a label which tells its type. A primitive does not have a
label. 1In summary:

AN OBJECT

@ Is a data structure that contains information in an
organized manner.

® Has a set of basic operations defined for it that directly
manipulate the data structure. (The 432 hardware ensures
that these are the only operations that can directly
manipulate the data structure.)

® Can be referenced (addressed) as one thing; you don't need
to reference each of the parts.

e Has a label that tells the object's type.

Figure 2.5 -- Object characteristics
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SYMBOLS FOR OBJECTS

This book uses various symbols to represent objects.

For example, the rather shapeless symbol:

Figure 2.6 -- Any object

represents an object when we don't know or don't care what its
type is. More definite symbols such as:

Processor Communication
Process Object Port Object
Object
Figure 2.7 ~-- Specific object types

fepresent specific types of objects. Remember that all of the
above symbols represent objects (data structures) - not chunks of

2-8



The one symbol which represents silicon is the processor
symbol:

Figure 2.8 -- Physical processor

which represents a physical processor - not a data structure (not
an object).

-

The other symbol which is used frequently is the arrow:

S T

Figure 2.9 -- Object reference

which represents a protected object reference.

The 432 is different from most machines because it has an
object-oriented addressing and protection mechanism. This method
of addressing allows a program to address an object only if it
has a reference for it. You'll learn more about this when I talk
about a procedure's access environment in the next chapter. For
now, the important thing to remember is that the arrow represents
an object reference which gives a program the ability to access

the object pointed to by the reference.



For example, the figure:

Communication
Port Object

Process
Object

R

Figure 2.10

indicates that the process object can access the communication
port object because it has a reference for it.

OBJECTS VS. SEGMENTS

An object is a data structure of arbitrary complexity. What
I mean by "arbitrary complexity" is that an object does not have
to occupy a contiguous set of memory locations. An object can

look like this:

Segment
A B |

/i\;

Segment Segment

Segment

Figure 2.11 -- An object can contain several segments.

Where each of the rectangles in Figure 2.11 represents a
different physical region in memory.

A set of contiguous memory locations (a rectangle in Figure
2.11) is called a segment. Segments should not be confused with
objects. An object can be a segment, several segments, or part
of a segment.




The term segment is used to talk about the physical structure
of data in memory, i.e., where the structure is located.

The term object is used to talk about the logical structure
of data in memory, 1.e., how the memory is used.

Every bit, byte, and word of information in memory is
contained in an object of some kind. That same bit, byte, or
word of information is also contained in a segment.

Segments are not discussed in this book; I only talk about
objects in this book. I'm warning you about the difference
between segments and objects because it is easy to confuse the
two terms.
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"WHAT'S AN OBJECT?" QUIZ

Integers, characters, and reals are all examples
of : .

Communication ports and dispatching ports are both examples
of .

Objects came about as part of the "natural" evolution of more
power ful computers. Explain.

Circle the <correct answer. Operations on objects are
per formed by the:

® Hardware
® Software

Explain.

What are the four characteristics of an object? Which of
these four is not a characteristic of a primitive?

2-12



KEY TO "WHAT'S AN OBJECT?" QUIZ

Integers, characters, and reals are all examples of
primitives.

Communication ports and dispatching ports are both examples
of objects.

Objects came about as part of the "natural" evolution of more
powerful computers. Explain.

As our ability to build computer hardware has improved, we've
moved functionality from the software to the hardware. As
we've done this, the hardware has come to recognize more
complex data types. An example of this 1is moving the
functionality for floating point operations into the hardware
-- the hardware had to "learn" to recognize the structure of
a floating point number. The 432 has moved operating system
and high-level language operations (e.g., process scheduling)
into the hardware -- thus the 432 had to "learn" to recognize
the data structures needed for these operations. We call
these more complex structures "objects".

Circle the correct answer. Operations on objects are
per formed by the:

® Hardware

® Software

Explain.

The 432 hardware recognizes many objects and has many
instructions for manipulating them. In general, these
hardware operations are the ones executed frequently (so they
need to be fast) and the ones that are sensitive (so they
need to be protected).

This is not to say, however, that software cannot manipulate
objects -- it can. 1In fact the 432 includes a mechanism for
defining additional "software instructions" for manipulating
objects. This mechanism is covered in Chapter 6.

What are the four characteristics of an object? Which of
these four is not a characteristic of a primitive?

The four characteristics of an object are:
e it is a data structure that contains information in an
organized manner;
@ it has a set of operations that manipulate it;
@ it can be referenced (addressed) as one thing;
e it has a label that tells its type.

Primitives have the first 3 characteristics, but do not have
a type label.



Chapter 3

PROGRAM STRUCTURE

This chapter 1is an overview of the structure of a 432
program. Later chapters fill in some of the details and explain
how some of the objects are used. The major purpose of this
chapter is to put it all into perspective so you can see how the
pieces fit together.

CHAPTER ORGANIZATION

You start your journey through the structure of a program
with the:

® Physical processors . . . . the <chunks of silicon that
fetch and execute instructions

Along the way you briefly explore each of the objects which make
up a program:

® Processor objects . . . . . contain information about the
state of a particular physical
processor

® Process objects . . . . . . contain information about a
particular "unit of work for a
processor” (process)

® Context objects . . . . . . are activation records for
instances of procedures

® Instruction objects . . . . contain the instructions that
are fetched and executed by a
processor

® Data objects . . . . . . . contain the data manipulated by
a program



At this point, you may wonder "Why haven't I seen a
discussion of program structure in the descriptions of other
architectures?" The reason is simple. In most machines this
structure 1is part of the operating system or the language
run—-time environment. But the 432 is not a "flat" machine; these
structures are part of the 432 architecture and are recognized by
the hardware.

The structure of a program starts with:

PHYSICAL PROCESSORS

Figure 3.1 -- A physical processor

This symbol (Figure 3.1) represents a physical processor.
The physical processor is not an object (it is not a data
structure), although, as you'll see in the next section, there is
an object called a processor object. The physical processor,
however, is made of silicon, sits inside a package on a printed
circuit board, and fetches and executes instructions.




PROCESSOR OBJECTS

Each physical processor has, in memory, a processor object
(see Figure 3.2). This is used to record information about a
particular processor such as whether it 1is running or halted,
diagnostic and machine check information, and references for
other objects which the processor needs.

A Processor Object:

® Is a hardware-recognized
data structure in memory

MEMORY SPACE

) Each processor has one
) Contains information like:
® Processor status (e.g.,

running, halted, etc.)

e Diagnostic and machine
check information

® References for other
objects '
Figure 3.2 -- The processor object is part

of the structure of a program.

For those of you familiar with earlier mainframe
implementations, some of them used low-order memory to record
diagnostic and status information about the processor. But they
had a problem when they started to build a multiprocessor system
-- each processor thought that it should use the same set of
locations in 1low-order memory. One way that the problem was
solved was by creating two separate banks of low-order memory and
adding special instructions to the processors for switching
between the two banks of low-order memory.

The 432 has taken this concept of storing diagnostic and
status information about a processor and generalized it for use
with multiple processors. Each processor has its own processor
object (see Figure 3.3) which can be located anywhere in memory
and can be dynamically relocated if necessary. Each processor
addresses its processor object using an on-chip reference for the
processor object.



MEMORY SPACE

Figure 3.3 -- Each processor has its own processor object.,

(Note: For those of you wondering about the chicken-and-the-egg
problem, the processor loads its processor object reference in a
rather straightforward manner at initialization time.)

. In summary, processor objects are really simple. The
important thing to remember is that a processor object contains
information about a particular physical processor.



PROCESSES

The next stop on this journey through the structure of a
program is the process, and, you guessed it, the data structures
that contain information about processes are called process
objects. But before I talk about the kind of information found
in a process object, I'll define "process":

PROCESS - A unit of work for a processor, i.e., the
smallest unit of programming activity which
can be scheduled to run on a processor

Figure 3.4 -- Multiple processes can take turns
on a processor.

In a system with two processes that are ready to run, they
can either:

) "take turns" executing on a single processor (i.e.,
timeshare), or

) execute at the same time if there are two processors
available.

As an example, consider a single processor timesharing system
with two users (Bob and Tom) sitting at the terminals. Bob 1is
editing some text and Tom is compiling a COBOL program. In the
example, there are two processes taking turns wusing the
processor. Bob's editing process and Tom's COBOL compiler
process are scheduled to share the processor on a timesharing
basis (see Figure 3.5).




Figure 3.5 -- Timesharing processes

Bob and Tom have separate processes that share the same
processor, but the two processes are completely unrelated; they
do not work together to accomplish a common end. The next
example examines a single program with three processes that work

together.

In industrial control applications, there are many events
which can take place simultaneously. Structuring the program to
reflect this natural parallelism makes it easier to understand
and debug.

The industrial control program example uses three separate
processes, The first monitors all the sensors and performs
preliminary pre-processing of the data. This 1is called the

sensor monitor process.

The second process receives the pre-processed data from the
sensor monitor process and uses it to make control decisions.
This is called the control decision process.

The third process receives commands from the control decision
process and translates them into specific instructions for each
of the servo devices that position the controls. This is called
the servo controller process.

This program structure is summarized in Figure 3.6.

Specific
Servo
Instructions

Servo
Controller

Sensor
Input

Control
Decision

Sensor
Monitor

High Level
Control
Commands

Pre-Processed
Sensor Data

Figure 3.6 -- The structure of an example industrial
control ‘program
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Note that these three processes can execute in parallel.
While the sensor monitor is preparing a message for the control
decision process, the control decision process can be computing
the action required by data received earlier. At the same time,
the servo controller can be carrying out the commands it received
earlier. The program is structured so that three different parts
can be executing on different processors at the same time.

However, the hardware used to execute this industrial control
program could be a single processor that shares its time among
the three processes. Or, if more computational power is required
to make the control program execute faster, a second or third
processor can be added to execute more than one process at the
same time (see Figure 3.7).

Sensor
Monitor

Control
Decisions

Figure 3.7 -- A 3-process industrial control program running on
2 processors




This is called transparent multiprocessing because processors
can be added without making any software changes. There is more
about it in Chapter 5. For now, just realize that a process is
the unit of work that can be scheduled to run on a processor.

PROCESS OBJECTS

A process object is the data structure in memory that
contains information about a particular process. There is one
for each process in the system and it contains information 1like
how the process should be scheduled and what the process status
is (running, waiting, etc.) (see Figure 3.8).

Process Object

e Hardware-recognized
object

MEMORY SPACE

® One for each process
in the system

ngessor Process
Object Object . . )
® Contains information
like:
® Process status,
e.g., running/
waiting/etc.
e How the process

should be scheduled

Figure 3.8 --The process object is part of the
structure of a program.

Figure 3.8 shows that the processor object contains an object
reference for the process object currently running on the
processor. This is important because the 432's object-oriented
addressing and protection mechanism does not allow a processor to
access an object unless it has an object reference for it.

This object reference from the processor object to the
process object is not fixed. It is changed dynamically as the
processor switches among different processes.

As an example, reconsider Bob and Tom, the two users
timesharing at computer terminals. In Figure 3.9 at Time 1,
Bob's process is running and the processor object has a reference
for Bob's process. At Time 2, Tom's process is running and the
processor object has a reference for Tom's process.



Time:
r
Memory Space BOB; 1
TR
Processor Bob's
St rroces
TOM: s
Process
Object
J
Time:
r Memory Space
Tom's
Object 1 TOM: Running
Process
Object
\_ J
Figure 3.9 -- Tom and Bob taking turns on
a single processor

Note also that the process object contains the status
information showing whether its process is running or waiting.

One last note about Figure 3.9 -- it is oversimplified. 1It
does not show how the object reference gets switched from Tom's
process to Bob's process, so don't get confused. The processor
at Time 2 doesn't just arbitrarily give itself the ability to
execute a different process. The details of how this works are
explained in Chapter 5, "Transparent Multiprocessing". For now,
just remember one thing:

A processor object has a reference for the brocess
object of the process currently being executed. This
reference changes dynamically as the processes being
executed change.

Figure 3.9 shows how Bob and Tom can both share one
processor. Figure 3.10 shows how things are structured if
Bob and Tom each have their own processor. There is a
processor object for each processor and each processor
object has a reference for the process currently running on
its processor.
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\A Processor
Object 1
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/ Processor TOM:

\ Object 2 Process
Object
\.

BOB:
Process
Object

Y

Figure 3.10 -- A two processor system

PROCEDURES

Each process is made up of one or more procedures and, as you
might expect, the 432 has a hardware-recognized object that
represents a procedure. It is called a context object, but
before I explain what a context object is I need to say a few
things about procedures.

A procedure is a collection of instructions to perform some
operation, such as sine of x. A procedure is called with some
parameters, performs some operation, and optionally returns a
result.

In a computer system, several processes that need to perform
the same operation (e.g., sine of x), and they may want to share
the same procedure. Procedures are shared among several
different processes by giving each process a "copy" (an instance)
of the procedure. Actually, each "copy" does not duplicate all
of the information because some of the information (e.g., the
instructions) can be wused simultaneously by more than one
process. Each instance of a procedure (each "copy") is called a
context.
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CONTEXT OBJECTS

A context object ‘is the hardware-recognized data structure
that contains information about a particular instance of a
procedure. For example, the context object contains the
instruction pointer (This points to the current instruction that
is being executed. It is roughly equivalent to a program counter
on more conventional machines.), the stack pointer, and the list
of objects that the procedure can access.

MEMORY SPACE

Context
Object

CONTEXT OBJECT

® a hardware-~recognized object
e contains information about an instance of a procedure,e.qg.:

the instruction pointer for this context

the stack pointer for this context's stack

the return link to the calling context

references for all the objects that can be accessed by
this context

[ X N X J

Figure 3.11--The context object is part of the
: structure of a program,

The last bullet in Figure 3.11 deserves special attention:

® The context object contains a reference for all the
objects used by the procedure (see Figure 3.12).
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Context
Object

_— List of object

."“
e—+—> | references for objects
—_ that will need to be accessed

by the procedure

If an object isn't referenced,
it can't be accessed,

Figure 3.12 -- A context lists the objects accessible by an
instance of a procedure.

The complete 1list of objects accessible by a procedure is
called its access environment. Remember, the 432's
object-oriented protection mechanism does not allow a program to
access an object unless it has a reference for it. Well, all the
objects referenced by a context object are part of the context's
access environment. Any object listed in the access environment
(i.e., that has an object reference in the context object or in
one of the objects referenced by the context object) can be
accessed; all objects that are not listed cannot be accessed.

When one procedure calls another procedure, the access
environment changes because the called procedure has a different
context, i.e., a different list of objects which can be accessed
(see Figure 3.13).
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Access Environment Access Environment

of Procedure A of Procedure B
LesenT e -~
" Procedure A . /P{'ocedure B
Context / Context \
Object . Object \
CALL ]
|
A at l Note: Not
| shown are:
1 object
| reference
| that "A"
needs to call
l "B"
Accessible : | ® object
By A and B : / reference

created during
call so "B"
can return to
“A"

Figure 3.13 -- The access environment changes
with each procedure call.

Note that this means that the 432 has a finer "protection
granularity" than most machines. The protected access
environment is at the procedure level, not at the process or job
level as on most machines that have protection. We'll look at
the advantages this provides in Chapter 6.

In summary, then, a context is the root of the access
environment for an instance of a procedure. It contains
a list of references for all the objects used by this
particular instance of the procedure.

Note that in Figure 3.11 one of the things contained by the
process object is a reference for the current context object. I

say current, because this reference changes dynamically as
procedures are called and return.

Here is an example. In Figure 3.14.A, the MAIN procedure is

running. Note that the process object has a reference for the
context being executed.
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In Figure 3.14.B, MAIN has called the procedure SUB using the
CALL CONTEXT WITH MESSAGE operator. This single hardware
instruction did four things:

® SUB is now the current context being executed, as indicated
by the reference from the process object to SUB.

® The access environment was changed. The objects 1listed in
MAIN's context cannot be accessed now (unless they are also
listed in SUB's context); only the objects listed in SUB's
context can be accessed. :

@ A return 1link was created. This 1is simply an object
‘reference in the called context (SUB) for the «calling
context (MAIN). It is used to 1locate MAIN when SUB
executes a RETURN instruction.

® A message was passed. There's more about this in a minute.

The MAIN procedure must have a reference for the subroutine
SUB in order to call SUB; this reference is not shown in Figure
'3.15 -- so as not to confuse it with a reference for the context
object that represents a single activation of SUB.
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A) BEFORE CALL: (MAIN EXECUTING)

MEMORY SPACE

 HAIN:

Context
Object

B) AFTER CALL: (SUB EXECUTING)

HMEMORY SPACE

Return
Link
Object
o
C) AFTER RETURN: (MAIN EXECUTING)
MEMORY SPACE
MAIN:
Context
Object

Figure 3.14 -- Structure of a procedure call
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In Figure 3.14.C, SUB has returned control to the calling
procedure MAIN using the RETURN operator. This single hardware
instruction did three things:

e MAIN is now the current context being executed as indicated
by the reference from the process object to MAIN.

e The access environment was changed. The objects listed in
SUB's context cannot be accessed now (unless they are also
listed in MAIN's context); only the objects 1listed in
MAIN's context can be accessed.

e The return link was removed. The object reference to MAIN
from SUB no longer exists.

This method of calling procedures and returning has two major
differences from most machines:

1. The access environment changes.

2. The message-passing mechanism is very general.
Let's look at these differences in more detail.

The access environment changes. Each procedure has its own
access environment which is limited to the set of objects needed
by the procedure. This provides much finer control of protection

than is found on most other machines. Some of the advantages are
discussed in a later chapter.

The message-passing mechanism is very general. The CALL and
RETURN operators pass messages by moving the object reference for
the message to the context which is to receive the message.

Let's look at the CALL CONTEXT WITH MESSAGE operator as an
example of how messages are passed. In Figure 3.15.A, the MAIN
context is executing and has prepared a message for SUB. Note
the object reference for the message that is in MAIN's context
object.

In Figure 3.15.B MAIN has called SUB and has passed it the
object reference for the message. Note that the object reference
has been removed from MAIN's context and placed in SUB's context.



A) BEFORE CALL: (MAIN EXECUTING)

MEMORY SPACE
MAIN:
Context
Object
T A
Message
B) AFTER CALL: (SUB EXECUTING)
MEMORY SPACE
MAIN:
Context
Object

Message

tn pank

o
(-

\

Figure 3.15 —-- CALL CONTEXT WITH MESSAGE

This is a powerful parameter-passing mechanism because it is
general. Any object can be a message. For example, 1if the
called procedure is sine of x, the message is simple -- it
contains the value x. But, what if the called procedure is the
part of the operating system that schedules processes? The
message might be a process object that needs to be scheduled.

In summary, the message-passing mechanism is powerful because
it is general. It can pass a reference for a simple object that
contains the parameter values, or it can pass a reference for an
object that contains many object references (see Figure 3.16).
Messages are discussed in more detail in Chapter 4.

One final note. This discussion 1is somewhat simplified,
because context objects are actually allocated and deallocated by
the CALL and RETURN instructions. I have not explained this
because storage allocation and deallocation are beyond the scope
of this book. If you are interested in this subject, please
refer to the Architecture Reference Manual.
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EXAMPLES OF MESSAGES

Process
Cbject

Context
Object

Exploded view of
a complex object

Figure 3.16 -- Any object can be a message.

INSTRUCTION AND DATA OBJECTS

You are nearing the end of your Jjourney through the structure
of a program. We've talked about physical processors, processor
objects, process objects, and context objects. Now its time to
talk about the last two objects which are part of the basic
structure of a program.

Every computer does two very basic things:
1. It fetches and executes instructions.
2. It manipulates data.

Therefore, a context (an instance of a procedure) needs to be
able to access objects that contain instructions and data.

An instruction object is exactly what its name implies -- an
object that holds instructions. Pretty simple, but two things
make it interesting: '

1. Instruction objects only hold instructions (and a little
bit of system information) -- they don't hold data.

2. Instruction objects are the only type of objects that a
processor will use as a source of instructions to be
fetched and executed.

This second feature is nice because it means that other kinds
of objects such as data objects, process objects, etc. cannot be
accidentally mistaken for instructions and executed. This is an
example of how the 432 uses type checking to produce more
reliable systems.

Having instructions isolated in their own object has another

advantage. All 432 programs are fully reentrant. Instruction
objects can be shared by several instances of a program.
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A data object is exactly what its name implies -- an object
that holds data, e.g., integers, reals, characters, tables, etc.

"Data object", then, is a very general term. In fact, it is
so general that the 432 provides a mechanism for giving data
objects (as well as other objects) a software-defined type such
as "telephone directory" that is more specific than "data
object". This mechanism is described in Chapter 6, Designing
Software Systems.

Figure 3.17 shows the complete structure of a program. Note
that the context object has references for all the instruction
and data objects that will be executed/manipulated by this
instance of the procedure (i.e. this context).

~

Instruction
Memory Space
Instruction
Processor Object
Object

Context
Object

Process
Object

| AN

Data Object Data Object

\_ J

Figure 3.17 -- The structure of a program

When 1looking at Figure 3.17, remember that this is not a
static structure -- it changes dynamically as the program runs
different processes, as processes execute different contexts, and
as contexts create and destroy data objects.

SUMMARY

You've now had a compleEe overview of program structure, from
processors to data objects. Figure 3.18 summarizes the important
points about each object.




PHYSICAL PROCESSOR
® Made of silicon (not an object)
® Fetches and executes instructions

Hardware~Recognized

MEMORY SPACE

/’ Processor
Object

kﬁ/

‘Process
Object

A\

Context

Object

N
1

Instruction
Object

\

Data Object

PROCESSOR_OBJECT
® Each processor has one
e Contains information like:
® Processor status (e.g., running or
halted)
e Diagnostic & machine check
information
® A reference for the process
currently being executed

PROCESS OBJECT
® One for each process in the system
® Contains information like:
® Process status (e.g., running,
waiting, etc.) '
® How the process should be scheduled
® A reference for the context
currently being executed

CONTEXT OBJECT

® One for each instance of a procedure
e Contains information like:

e Instruction pointer for this
context

® Stack pointer for this context's
stack

® Return link to the calling context
® References for all the objects that
can be accessed by this context

INSTRUCTION OBJECT
® Contains only instructions -- does
not contain data
e Is the only type of object that a
processor will use as a source of
instructions to be fetched and
executed

DATA OBJECT
® Contains data (e.g., integers, reals,
characters, or a combination of
several primitive data types)

Figure 3.18 -- The objects that make up a program
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ADVANTAGES AND BENEFITS

The major advantages of building these structures into the
architecture are that:

® Frequently-used operations can be performed by the
hardware, and

® a major portion of the system design is already complete.
This means that the 432 architecture has the following benefits:

e Execution of frequently-used operating system and
high-level language operations is faster.

® The operating system is more secure because support for it
is built into the hardware.

® System design is faster because more of it is already done.
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PROGRAM STRUCTURE QUIZ

1. These objects are part of a 432 program:

e Context Object ® Processor Object
e Instruction Object e Data Object
® Process Object

Finish the picture below to show how these objects fit
together to form the structure of a 432 program.

( A
Hemory Space

o

. Y,

2. In one sentence, what is a processor object? Give 3 examples
of the kind of information that is found in a processor
object.

3. In one sentence, what is a process? Give 3 examples of the
kind of information that is found in a process object.
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KEY TO PROGRAM STRUCTURE QUIZ

These objects are part of a 432 program:

) Context Object ° Processor Object
° Instruction Object ° Data Object
° Process Object

Finish the picture below to show how these objects fit
together to form the structure of a 432 program.

‘ )
instruction
Processor
Object
“QL\\\\\‘-—ﬂ’::;}'—)

\. /

Context
Object

Data Object

In one sentence, what is a processor object? Give 3 examples

of the kind of information that is found in a processor
object.

A processor object 1is a data structure that contains
information about a specific ©processor. It contains
information like:
® processor status (e.g., running or halted)
e diagnostic and machine check information
® an object reference for the process currently being
executed

In one sentence, what is a process? Give 3 examples of the
kind of information that is found in a process object.

A process is a unit of work for a processor, i.e., the

smallest unit of programming activity that can be scheduled
to run on a processor.

A process object is a data structure that <contains
information about a specific process. It contains
information like:

® process status (running, waiting, etc.)

® scheduling parameters that describe how the process
should be scheduled to run on a processor

e a reference for the context currently being executed
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Chapter 4

INTERPROCESS COMMUNICATION

Introduction

Now that you are familiar with the basic structure of a 432
program, it is time to consider the support that the 432 provides
for concurrent programming.

This chapter discusses programs with more than one process,
i.e., two or more parts that can execute at the same time.
Special support is required for synchronization and communication
between concurrent processes, and the 432 provides this support
in the hardware.

The major topics covered by this chapter are:

® PROGRAMS WITH MORE Sometimes a program has 2 or more
THAN ONE PROCESS parts that can execute at the same
time. This section considers an

example of such a program and looks
at the support required.

° COMMUNICATION PORTS Communication ports are the 432
hardware-defined objects that
support interprocess communication
and synchronization. This section
gives an overview of how they work
and defines the term message.

° SEND AND RECEIVE This section explains how the SEND
and RECEIVE operators allow
processes to communicate by sending
and receiving messages.

° AN EXAMPLE OF This section walks through an example
INTERPROCESS of how parallel processes
COMMUNICATION communicate.




PROGRAMS WITH MORE THAN ONE PROCESS

A process is a unit of work for a processor -- it is the unit
of software that can be scheduled to run on a processor. A

program is a collection of instructions and data that runs on a
processor and tells it what to do to provide some service, such
as computing a sine, firing a missile, or managing an airline
reservation system. A program can be a process, part of a
process, or several processes.

The important difference between the two terms is that the
term program is used when we are describing a unit of software
that provides some service, and the term process is used when we
are talking about a unit of software that 1s schedulable. A
process is always a program, i.e., it always provides a service,
but a program is not always a process. A process is always
schedulable; a program may be schedulable, may not be schedulable
by itself, or may have several parts (processes) each of which is
schedulable.

Here 1is an example to clarify the distinction between the two
terms. The example involves the totally automated "office of the
future" where all the people have been replaced by computer
programs. REPORTER 1is a program that continuously produces
reports describing the accomplishments of this automated office.

The REPORTER program is made up of 2 smaller programs called
ROGER and PATTY. The first program, ROGER, is a writer program
which writes the reports and then gives them to the second
program, PATTY. PATTY is a secretarial program which types the
reports and then gives them back to ROGER for proofreading. When
a report is correct, Roger can print it (not shown).

Reporter Program

Draft Reports

Process
Object

PATTY
(Program)

Process
Object

ROGER

(Program)

Typed Reports

Figure 4.1 -- The Reporter program




Figure 4.1 shows this office of the future. Note that it
shows three programs: REPORTER, ROGER, and PATTY.

ROGER and PATTY, in addition to being programs, are also
processes, i.e., they can be independently scheduled for
execution on a processor. If there are two processors in our
system, both ROGER and PATTY can be executing at the same time on
different processors. PATTY can be typing ROGER's first report
at the same time that ROGER is writing a second report.

When a program is made up of more than one process (like the
REPORTER program), a mechanism is needed for the separate
processes to communicate with each other. In the REPORTER
program, ROGER needs to communicate with PATTY to give her draft
reports to type, and PATTY needs to communicate with ROGER to
give him typed reports to proofread.

COMMUNICATION PORTS

432 processes communicate with each other by using
communication port objects.

Communication
Port Object

This is the symbol
for communication ports:

Figure 4.2 -- A communication port

For example, communication ports can be used to implement the
REPORTER program.



Communication
Port Object

Draft Reports

Process
Object

Draft Reports

PATTY'S IN-BASKET

Process
Object

Communication
Port Object

Typed Reports Typed Reports

ROGER'S IN-BASKET

Figure 4.3 -- The Reporter program

In Figure 4.3, communication ports are used as "in-baskets"
for ROGER and PATTY. Whenever ROGER finishes writing a report,
he puts it in PATTY's in-basket. Reports accumulate in PATTY's
in-basket (in a first-in-first-out (FIFO) queue) until she is
ready to type one. Whenever PATTY needs work, she removes a
report from her in-basket, types it, and places the typed report
in ROGER's in-basket. When ROGER is ready to proofread a report,
he removes a typed report from the FIFO queue of reports in his
in-basket. (The 432 also supports other (non-FIFO) dqueuing
disciplines, but they are not covered in this primer).

The communication port acts as a buffer between the two
asynchronous processes, allowing each to proceed at 1its own
pace. ROGER does not need to wait until PATTY finishes typing
Report 1 in order to ©place Report 2 in her in-basket.
Similarily, PATTY does not need to worry about what ROGER is
doing. She just keeps typing a report until she finishes. When
she is done, she puts it in ROGER's in-basket and takes another
draft from her in-basket.

Communication ports are a very powerful and flexible
mechanism for interprocess communication because they can be used
to send just about any kind of message between two processes. 1In
the REPORTER program, the draft reports and the typed reports are
objects that are sent as messages. But, communication ports
allow any object to be a message. This includes all
hardware-defined objects (e.g., process objects and context
objects) as well as all software-defined objects (e.g., reports
and telephone books).




Context
Object

[Process
Object

Report

%‘/z Object
Z

\
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Figure 4.4 -- Any object can be a message.

There are two kinds of hardware operators that manipulate
messages and communication ports -- SEND and RECEIVE. The next

two sections take closer looks at these operators and at examples
of how they are used.

SEND and RECEIVE

When ROGER wants to give a message to PATTY, he sends it to
her by putting it in her in-basket. Later, when PATTY is ready
to receive the message, she removes it from her in-basket. The
432 hardware operation that places the message in the in-basket

is called SEND. Figure 4.5 gives a conceptual explanation of
what the instruction does.




INSTRUCTION OPERANDS ACTION

SEND MESSAGE, COMMUNICATION PORT THE MESSAGE 1S QUEUED
AT THE COMMUNICATION
PORT

Comnunication
Port Object

Message
(any object)

Before SEND instruction Execution After SEND instruction Execution

Communication
Port Object

Communication
Port Object

Process
Object

Note: Object references are not shown in this conceptual diagram.

Process
Object

Figure 4.5 -- SEND instruction

The SEND instruction has 2 operands: the message being sent
and the communication port it 1is being sent to. Figure 4.5
summarizes the action of the instruction. Before SEND is
executed, the process has a message it wants to send. After SEND
is executed, the message has been sent to the specified
communication port (the message is not actually copied; only an
object reference is copied).
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INSTRUCTION OPERAND ACT!ION

RECEIVE COMMUNICATIONS PORT MESSAGE 1S REMOVED FROM
THE PORT AND GIVEN TO
THE PROCESS

Communication
Port Object

Before RECEIVE instruction Execution After RECEIVE instruction Execution

Communication Communication
Port Object Port Object Process
Object
Figure 4.6 -- RECEIVE instruction (message waiting)

The RECEIVE instruction has one operand: the communication
port where the message is to be received. Figure 4.6 summarizes
the action of the instruction if there is a message waiting.
Before RECEIVE is executed, there is a message waiting in the
communication port (placed there earlier by a SEND instruction).
After RECEIVE is executed, the message is moved from the port to
the process executing the RECEIVE.

The RECEIVE instruction is straightforward if there 1is a
message waiting in the communication port -- the message simply
moves from the port to the process executing the RECEIVE

instruction. What happens if there are no messages waiting in
the communication port?




If the communication port is empty the
process waits '"inside'' the communication
port until a message arrives.

Before RECEIVE Execution After RECEIVE Execution
Communication Communication
Port Object Port Cbject

Process
Object Process
Object

Figure 4.7 -- RECEIVE instruction (no message waiting)

If a ©process executes a RECEIVE instruction and the
communication port is empty, the process waits "inside" the
communication port until a message 1is sent. Remember that
messages are objects and that a process is just a special type of
object. Therefore, processes can queue up waiting for messages
just like messages can queue up waiting to be received by
processes.

Execution of instructions from the waiting process stops
until a message is sent to the port. When a message is sent to a
port that has a waiting process, the message is immediately given
to the waiting process so that it can begin execution again.

Note that while a process waits at a communication port the

processor that 1is executing the process may not. It can
immediately begin executing some other process that is ready to
execute. How processors handle this scheduling and dispatching

of processes is covered in Chapter 6.

Actually, RECEIVE is only one of several receive
instructions. It is useful when you want a process to stop and
wait when there are no messages. But, sometimes it is useful for
a process to receive a message if there is one, but to continue
doing something else if there is not. The CONDITIONAL RECEIVE
instruction allows it to do just that.

The SEND instruction may also require the executing process
to wait "inside" the communication port -- if the part of the
port that holds messages (the port message buffer) is "full" and
cannot accept any more messages when the SEND is issued. When
this happens, the SENDing process waits until some other process
executes a RECEIVE on the port, removing a message and freeing a
slot in the message buffer. The SEND is then completed and the
SENDing process no longer waits at the port. Just as there are
variants of RECEIVE which do not wait if the port is empty, there
are variants of SEND (e.g., CONDITIONAL SEND), that do not wait
if the port is full.
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The next section returns to the REPORTER program and looks at
an example showing how communication ports and the SEND and
RECEIVE operators are used.

AN EXAMPLE OF INTERPROCESS COMMUNICATION

The example program has much the same structure as the
REPORTER program discussed earlier, but with one slight
difference: a second secretarial process named TOM. TOM does
the same work as PATTY and even uses the same instruction objects
as PATTY. The only difference is that there are now 3 processes
(ROGER, PATTY, and TOM) that can execute at the same time instead
of just 2 (ROGER and PATTY). ROGER does not care who types his
reports; both PATTY and TOM are equally competent.

Communication
Port Object

Draft Reports

Draft Reports

Process
Object

SECRETARIES®
IN-BASKET

Process
Object

Process
Object

Communication
Port Object

Typed Reports Typed Reports

ROGER'S
IN-BASKET

Figure 4.8

In Figure 4.8, you will note that both PATTY and TOM share
one secretarial in-basket. Whenever ROGER wants a report typed,
he places it in the secretarial in-basket and either PATTY or TOM
removes it, types it, and places it in ROGER's in-basket.

In reading the example, please remember two things: First,
the diagrams show objects being moved around. Actually, only
references for the objects are moved; the objects themselves stay
in the same locations.
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Second, unlike most of the diagrams in earlier chapters, the
diagrams in this example do not show object references. The
object references are described later, but are left out of this
example for simplicity.

Figure 4.9.1 is the first "snapshot" of what is happening as
the modified REPORTER program executes. Note that the program
has been executing for some time, because ROGER has already
written 4 reports and is now writing Report 5.

TIME: SECRETARIES
IN-BASKET:

Communication
Port Object

ROGER: PATTY: TOM:
Process

/[Process Process
Object Object Object

Communication
Port Object

\

Three processes are executing Two reports are in communication

concurrently: ports:
1. ROGER writing Report 5 1. Report 4 has been written.
2. PATTY typing Report 3 2. Report 1 has been typed.

3. TOM typing Report 2

<

Figure 4.9.1

At Time 1 (Figure 4.9.1), there are three processes running
in parallel. ROGER is writing Report 5, PATTY is typing Report
3, and TOM is typing Report 2. Report 4 has been written by
ROGER and is ready to be typed by either PATTY or TOM. Report 1
has been written by ROGER and typed by either PATTY or TOM; it is
now ready for ROGER to proofread.



At Time 2
so he executes a SEND
communication port which

(Figure 4.9.2),
instruction to send the

is being used as

ROGER's

TOM has finished typing Report 2,
report to the

in-basket.

This
in-basket.

instruction moves the report from TOM's

process to ROGER's

Time:

SECRETARIES!
IN-BASKET:

Communication
Port Object

ROGER:

ROGER'S
IN-BASKET:

Process
Object

Communication
Port Object

PATTY:

Process
Object

Report 3

TOM :

Process
Object

SEND

Figure 4.9.2 - TOM finishes Report 2 and sends it to

ROGER's in-basket.




Now that TOM has finished with Report 2, he is ready to type
another report. In Figure 4.9.3, TOM executes a RECEIVE
instruction and receives a message (Report 4) from the
secretaries' in-basket. TOM can now start typing Report 4.

Time:
SECRETARIES'!
IN-BASKET:
Communication PATTY:
Port Object Process
Object
ROGER'S
IN-BASKET:
ROGER: TOM:

Communication
Port Object

Process
Object

Process
Object

Figure 4.9.3 -- TOM looks for more work in the secretaries'
in-basket and receives Report 4.

At Time 4 (Figure 4.9.4), TOM is typing Report 4, ROGER is
writing Report 5, and PATTY has finished typing Report 3. PATTY
executes a SEND instruction and sends Report 3 to ROGER's
in-basket.



Time
SECRETARIES!
IN-BASKET:
Communication
Port Object PATTY:
Process
Object
ROGER'S
IN-BASKET:
ROGER: Communication TOM:
Process Port Object Process

Object

Object

Figure 4.9.4 -- PATTY finishes Report 3 and sends it to
ROGER's in-basket.

There are now 3 reports queued in ROGER's in-basket. When
ROGER is ready to proofread, he will execute a RECEIVE
instruction to remove a report from his in-basket. He will
receive reports one at a time (one every time he executes a
RECEIVE) in the same order that they were sent to the port.
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Now that PATTY has finished typing Report 3 and has sent it
to ROGER's in-basket, she is ready to type another report. At
Time 5 (Figure 4.9.5), PATTY executes a RECEIVE instruction to
get another report from the secretaries' in-basket. But this
time the communication port is empty. Because there is nothing
for PATTY to receive, she "climbs inside" the secretaries'
in-basket to wait for a message. Remember that processes are
objects and can be queued up to wait for messages, just as
messages are objects and can be queued up to wait for processes
to receive them.

Time:
SECRETARIES!
IN-BASKET:
Communication . _PATTY:
Port Object RECE I VE 'Proces§7 1
/ X 1
Process Object,
PATTY: [ o ject ' /
!
]
WAITING N
ROGER'S
IN-BASKET:
. TOM:
ROGER: Communication
Process Port Object Process
Object Object

Figure 4.9.5 -- PATTY looks for more work in the secretaries’
in-basket, but finds it empty, so she
"climbs inside" the in-basket to wait for a
message.
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At Time 6 (Figure 4.9.6),
ROGER is writing Report 5,
not executing right now,

only 2 processes are executing:
and TOM is typing Report 4.
because she does not have anything to

type. PATTY is waiting in the secretaries' in-basket and will
not start executing until ROGER sends a report to the
secretaries' in-basket.
Time:
SECRETARIES'
IN-BASKET:
Communication
Port Object
PATTY : Process
Object
WAITING
ROGER'S
IN-BASKET:
ROGER: Communication TOM:
Process Port Object Process

Object

Object

® Two processes are executing
concurrently:

l. ROGER is working on Report 5.
2. TOM is working on Report 4.

® PATTY is waiting for
a message.

Figure 4.9.6

PATTY is




At Time 7 (Figure 4.9.7), ROGER has finished writing Report 5
and has executed a SEND instruction to send it to the
secretaries' in-basket. PATTY, who has been waiting in the
in-basket for a message, receives Report 5 immediately.

Time
SECRETARIES!
IN-BASKET: AN
Communication _ PATTY:
Port Object RECEIVE Process
F——— =~ .
PATTY: ,Pg:;:z:, . Object
f] , “
| !
-eem wm wn ww wm wd
ROGER'S
IN-BASKET:
ROGER: Communication TOM:
Process Port Object Process

Object Object

o

Figure 4.9.7 -- ROGER finishes Report 5 and sends it

to the secretaries' in-basket where
PATTY receives it immediately.

There are now 3 processes executing: 1) ROGER, which will
either start writing another report or proofread one of the
reports that is already typed; 2) TOM, which is still typing

Report 4; and 3) PATTY, which has just received Report 5 and is
starting to type it.
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Finally, at Time 8 (Figure 4.9.8), TOM and PATTY are typing
Reports 4 and 5, and ROGER is executing a RECEIVE instruction to
receive Report 1 for proofreading.

Time: SECRETARIES'
IN-BASKET:
Communication PATTY:
Port Object Process
Object
ROGER'S
IN-BASKET:
ROGER: c T TOM:
i
Process Port Object Process
Object

Object

RECEIVE

(/7 1. PATTY is working on Report 5. !

2, TOM is working on Report 4.
3. ROGER receives Report 1.

Figure 4.9.8

This concludes our example of interprocess communication; you
should now have a good conceptual view of how processes use
communication ports and SEND and RECEIVE operators to communicate
with each other.

IT'S ALL DONE WITH OBJECT REFERENCES.

This section takes a closer look at the structure involved in
interprocess communications, using the same REPORTER program
example.
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Figure 4.10 is a more detailed view of part of the REPORTER
program. For simplicity, ROGER's in-basket is 1left out. For
clarity, all the domain objects, instruction objects, and
processor objects are left out. These objects are needed to run
the program, but they are not needed to understand what's going
on.

At Time 1 (Figure 4.10.1), ROGER is writing Report 1. Note
that ROGER's process object has a reference for the current
context, and the current context is able to access Report 1
because it has an object reference for it. This context can also
access the communication port serving as the secretaries'
in-basket, and can therefore send a message to this port. Note
that PATTY's current context has an object reference for the
secretaries' in-basket communication port and can therefore
receive a message from this port.

At Time 2 (Figure 4.10.2), ROGER has finished writing Report
1 and has already sent it to the secretaries' in-basket. Note
that the report itself has not moved, but the object reference
for it has. ROGER can no longer access Report 1 because he no
longer has a reference for it. PATTY cannot access Report 1
either because she does not have a reference for it.

At Time 3 (Figure 4.10.3), PATTY has executed a RECEIVE
instruction. Note that Report 1 has not moved, but the object
reference for it has. The object reference is no longer queued
in the port; it is now in PATTY's context object. PATTY can now
access the report.
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BEFORE THE MESSAGE IS SENT

PATTY:

Time:
ROGER:

Process
Object

Centext
Object

Figure 4.10.1

Context
Object

SECRETARIES'
IN-BASKET:

Communication
Port Object

Time: AFTER MESSAGE

1S SENT, BUT BEFORE MESSAGE IS RECEIVED

Q ROGER:

Figure 4.10.2

Context
Object

Context
Object

SECRETARIES
IN-BASKET:

Communication
Port Object

PATTY:

Process
Object

Time:

AFTER MESSAGE IS RECEIVED

ROGER:
Process
Object

Figure 4.10.3

Context
Object

Context
Object

SECRETARIES®

{N-BASKET:

Communicarion
Port Object

PATTY:

Figqre 4,10 -- It's all done with object references.

4-19







INTERPROCESS COMMUNICATION QUIZ

The SEND and RECEIVE operators allow communication between
concurrent .

Which of the following objects cannot be a message? Why?

a. Communication port object

b. Process object

c. Context object

d. Domain object

What happens when a SEND instruction is executed? (Describe

the operands and the operation.)

What happens when a RECEIVE instruction 1is executed?
(Explain both cases: (1) message waiting and (2) no message
waiting.)
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KEY TO INTERPROCESS COMMUNICATION QUIZ

The SEND and RECEIVE operators allow communication between
concurrent processes .

Which of the following objects cannot be a message? Why?

a. Communication port object
b. Process object

‘c. Context object

c. Domain object

All of the items listed are objects and any object can be a
message. Therefore, all of the items above can be messages.

What happens when a SEND instruction is executed? (Describe
the operands and the operation.)

Operands: the message to be sent and the communication
port it is to be sent to

Action: The object reference for the message is moved
from the context executing the send to the
communication port specified as an operand.

What happens when a RECEIVE instruction 1is executed?
(Explain both cases: (1) message waiting and (2) no message
waiting.)

Operand: the communication port from which the message
is to be received

Action: (1) Message waiting - The object reference
for the message is
moved from the

communication port to
the context object of
the context executing
the RECEIVE.

(2) No message waiting- An object reference
for the process
executing the RECEIVE
instruction 1is copied
into the communi-
cation port. When a
message is sent to the
port, execution
continues as in (1)
above and the object
reference for the
process is deleted
from the port.
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Chapter 5

TRANSPARENT MULTIPROCESSING

The 432 is specially designed to support parallel execution
of programs by multiple processors.

The earlier chapters of this book talked about two of the
objects in the 432 architecture that support multiple
processors. The first object discussed was the processor
object. Chapter 3 explained that the 432 Kkeeps processor-
specific information in a processor object associated with each
processor. This allows a system to have many processors without
the problem many third-generation mainframe computers had, where
each processor expected its diagnostic information and processor
status to be kept in a particular physical memory location.

The second object discussed was the communication port.
Chapter 4 talked about the support this object provides for
communication between concurrent processes. When there is more
than one processor in a system, it makes sense to structure a
program so that it can run on more than one processor at a time.
If you do, the program will run faster when additional processors
are added. The interprocess communication facilities are
important tools in structuring a program for simultaneous
execution on multiple processors.

This chapter covers a third object that supports multiple
processors: the dispatching port. The facilities provided by
this object allow any software that executes on a 432 system to
be run on systems with 1, 2, or many processors. Absolutely no
software changes are required to move programs from single-
processor systems to multiple-processor systems or vice versa.
This is called transparent multiprocessing: The number of
processors in a system is totally transparent to the software.

Transparent multiprocessing offers many advantages to users
of 432 systems. The most obvious advantage is the flexibility
provided by a machine that offers a range of performance.
Processors can be added to or removed from a configuration to
tune it to meet the desired performance or price.

A second advantage is that multiprocessor systems are

inherently more reliable. If one processor fails, the rest of
the system may be able to continue running.
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This chapter has six sections that describe how dispatching
ports support transparent multiprocessing:

[ THE THREE STAGES OF PROCESSOR MANAGEMENT

This section explains what the 432 does to manage
multiple processors. The rest of this chapter explains
how the 432 manages multiple processors.

[ ) POLICY MAKING

This section explains how the policy decisions are made
that determine how processes share processors.,

° SCHEDULING

Scheduling and dispatching are the mechanisms that
implement the policy. Scheduling is determining the
order of process execution that implements the policy.
This section explains how the 432 hardware performs
process scheduling.

° DISPATCHING

Dispatching is assigning a process to a particular
processor for execution. This section explains how the
432 hardware does this.

® A DISPATCHING EXAMPLE

This section reviews the REPORTER program example from
the last chapter and walks through an example of how the
432 scheduling and dispatching mechanisms work.

) DISPATCHING PORTS AND PROGRAM STRUCTURE

This section explains how dispatching ports fit into the
basic program structure described in Chapter 3.



THE THREE STAGES OF PROCESSOR MANAGEMENT

Before I explain how the 432 manages multiple processors and
multiple processes, I would like to sidetrack for a minute and
explain what it does.

The effective management of multiple processors and processes
requires three things:

® Policy Making
® Scheduling
® Dispatching

Policy making is setting the criteria that determine how
processes share the processors. For example, a first-come,
first-served policy allows the first process that is ready to run
to grab a processor and use it until it is finished. If a second
process is ready to run, it must wait until the first process
completes before it gets a chance to run on the processor.

Another example of a scheduling policy is round-robin. With
a round-robin policy, when a process is ready to run, it is
placed at the end of the queue of processes waiting to run.
Processes are removed from the front of the queue and given a
short turn on a processor. If a process uses up the time
allocated for its turn before it 1is finished running, it is
placed at the end of the queue and the second process in the
queue is given a chance to execute. The first process will get a
second turn after all of the other waiting processes have had a
first turn.

There are many other policies (priority, deadline, weighted
round-robin, etc.), and no one policy 1is perfect for all
applications. Many different policies can be used with a 432.
The important thing to remember is that policy making determines
how processes share processors.

The second element of processor management is scheduling.
Both scheduling and dispatching are part of the mechanism that
carries out the policy. Scheduling is the ordering of processes
to run on processors in a manner that realizes the policy. For
example, suppose there are two processes, Ann and Bob, in a gqueue
waiting for execution by a processor. If a third process,
Charlie, becomes ready to run, the round-robin policy can be
implemented by scheduling Charlie to run after Ann and Bob. If
Ann is still ready to run after she uses up her turn on the
processor, the round-robin policy <can be implemented by
scheduling Ann to run after Bob and Charlie.

Thus, scheduling is the ordering of processes to run on
processors 1n a manner that implements the policy.




The third element of processor management 1is dispatching.
Dispatching is the assignment of processes to processors in the
order in which the processes have been scheduled. In the example
above, Ann has been scheduled to execute ahead of Bob and
Charlie, but she has not been told which processor will execute
her process. Ann is dispatched when she 1is assigned to a
particular processor, e.g., if Processor 4 is 1looking for work
and Ann is first in line, then Ann will be dispatched to begin
execution on Processor 4.

In summary, the three elements of processor management are:

Policy Making - Setting the policy that determines how
processes share the processors

Scheduling - ‘Queueing the processes to run on a

processor in an order that implements
the policy

Dispatching - Assigning (in the order scheduled) the
processes to particular processors for
execution

Having covered what the 432 needs to do in order to manage
processes and processors, you can now look at how policy maklng,
scheduling, and dispatching are done on the 432.

Before going on, I should warn you that this chapter covers
only the facilities provided for short-term process/ processor
management (policy making, scheduling, and dispatching) and does
not cover long-term process/processor management. Short-term
process/processor management is handled by the hardware, while
long-term process/processor management is handled by software.

Let me explain what I mean by short-term process/processor
management. Multi-user or multi-process systems need a mechanism
for giving several users many small slices of processor time, so
that each user sitting at a terminal has a reasonable response
time for his/her requests. These time slices are typically 10 to
100 milliseconds long, and it is not unusual for a process to run
for only a fraction of its allocated time.

Computers which do not provide a hardware mechanism for
performing process switching must do so using software. Because
this software is typically executed every 10 milliseconds or so,
it can use a large share of the processor's time. It is not
unusual for a processor to spend 30% or more of its time
executing short-term scheduling software. This is why the 432
provides short-term scheduling hardware. Short-term scheduling
is done so often that it makes sense to make it as fast as
possible.
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Long-term scheduling (anything over 3 seconds or so) is done
much less frequently (about once per 100-1,000 short-term
schedulings in a time~sharing system and even less often in other
types of systems), so it has been left for the software.

POLICY MAKING

All policy making (i.e., deciding how processes share
processors) is done by software. This is because it 1is very
important for policies to be flexible. Different applications
require different policies, and some applications require
different policies under different conditions.

But, while it is important to keep the policy flexible by
placing it in the software, it is also desirable to make the
implementation of the policy efficient by moving the mechanism
that carries out the policy into the hardware.

This has been done with the 432, The policy is set by
operating system software, but the mechanism for scheduling and
dispatching is built into the hardware.

Policy decisions made by the operating system are
communicated to the hardware scheduling and dispatching
mechanisms by means of scheduling parameters. The operating
system sets scheduling parameters to tell the hardware how the
processes should share the processor(s). Figure 5.1 shows that
the scheduling parameters for a particular process are part of
the information contained in the process object.

Examples of Scheduling Parameters:

( 1. How quickly the process should
Process get a turn on a processor
Object 2. gow long a turn the process can
ave
jﬁchedunng “.__——~—"< 3. How many turns the process gets
Parameters efore the policy software
reviews its scheduling
parameters
\

Figure 5.1 -- A process object contains scheduling parameters.

By setting these parameters to different values, the policy
software can use the scheduling and dispatching hardware to
implement a wide variety of policies. . Figure 5.2 shows an
operating system process (called POLICY PROCESS) setting the
scheduling parameters on PROCESS A. Note that POLICY PROCESS can
access the process object of PROCESS A because it has an object
reference for it.
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Process
Object

POLICY
PROCESS :

I'm the policy software
that sets the scheduling
parameters.

Process
Object

I'm the process that's
being managed. The policy
software is setting my
scheduling parameters.

Scheduling
Parameters

Figure 5.2 -- Policy software sets the scheduling parameters.

Notes: 1. This diagram is somewhat simplified. Actually, the
POLICY PROCESS process object has an object reference
for its current context, and the current context has
the object reference for PROCESS A. I have left out
the context object in Figures 5.2 and 5.3 to make them
simpler.

2. POLICY PROCESS itself also has scheduling

parameters that must be set, but I am not going to
discuss the "chicken and the egg" problem.

SCHEDULING

The 1last section discussed how the first element of 432
process/processor management (i.e., policy making) is handled by
the operating system software. This section and the next section

explain how the 432 hardware mechanisms perform scheduling and
dispatching.

Once the policy software has finished setting a process's
scheduling parameters, it is ready to hand the process to the
hardware for scheduling and dispatching. It does this by sending
the process as a message (using the same SEND operator described
in Chapter 4) to a hardware-defined object called a dispatching
port. Figure 5.3 shows an operating system POLICY PROCESS
sending PROCESS A to a dispatching port for scheduling and
dispatching.



Time:

I'm the policy software
that sets the scheduling
parameters.

Policy
Process:

Dispatching Port

Process
Object

Process
Object

Scheduling
Parameters

The policy software just
finished setting my

scheduling parameters;
I'm being sent to the
dispatching port.

Time:

Policy
Process:

Process

Process
Object

Scheduling
Parameters

Dispatching Port

I'm now ready to be scheduled
and dispatched by the hardware.

Figure 5.3 -- Processes are sent to dispatching ports for
scheduling and dispatching.
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Dispatching ports are where processes "line up" (are
scheduled) for execution on a processor. The first process in
line is the first process that will be assigned to a processor.

Dispatching ports are very similar to communication ports as
you will see in a minute. But first, I'll explain one of the
differences.

Messages sent to a communication port are normally placed in
a first-in-first-out (FIFO) queue. When a process is sent to a
dispatching port, its scheduling parameters are used to determine
where it belongs in line. It may be placed anywhere in the line:
the front, the back, or somewhere in the middle. TIts position
totally depends on its scheduling parameters and the scheduling
parameters of the other processes in line at the port. This 1is
illustrated in Figure 5.4.

Scheduling is done by the Hardware.

432 hardware uses the scheduling parameters to determine

the order in which processes should run on the next available
processor.

Dispatching Port

N

To

Line Up by Processors

Parameters

cheduling
Parameters

Order of queue
is not FIFO Used by hardware to determine

process's place in line

Figure 5.4 -~ Processes “"line up" (are scheduled) for processors
at dispatching ports.
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In summary, a process is scheduled as soon as it is sent to
the dispatching port. The hardware compares 1its scheduling
parameters with the scheduling parameters of the other processes
already 1lined up at the port, and schedules the process by
placing it in line at the appropriate position.

DISPATCHING

Figure 5.4 shows two processes lined up at a dispatching
port. They have already been scheduled because they are already
lined up in the order in which they will execute on a processor.
All that remains to be done is to dispatch the processes, i.e.,
assign them to a physical processor for execution.

We have already seen that sending a process to a dispatching
port 1is very similar to sending a message to a communication
port. As we will see in a minute, a processor dispatching a
process from a dispatching port is very similar to a process
receiving a message from a communication port. Dispatching ports
are the "meeting places" for processes and processors. Processes
"stand in line" at dispatching ports to wait for service by a
processor, and processors go to dispatching ports when they need
a process to execute (see Figure 5.5). '

Dispatching Port

cheduling
Parameters

® PROCESSES "stand in line" here for service by a PROCESSOR.

® PROCESSORS "stand in line" here for PROCESSES to serve.

Figure 5.5 -- Dispatching ports are meeting places for processes
and processors.
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When a processor needs a process to execute, it simply
removes the first process in 1line at its dispatching port and
begins to execute it. If there are no processes waiting at the
dispatching port, then the processor waits at the dispatching
port until one is sent to the port (just like a process waits for
a message at a communication port), see Figure 5.6.

IF THERE ARE NO PROCESSES FOR A PROCESS TO EXECUTE.....

Dispatching Port

THE PROCESSOR WAITS AT THE DISPATCHING PORT UNTIL A PROCESS COMES.

Figure 5.6 -- A processor waiting for a process

Figure 5.6 is a conceptual view of a processor waiting at a
dispatching port. Figure 5.7 shows what really happens. An
object reference for the waiting processor's processor object 1is

queued at the dispatching port.

Processor
Object

Dispatching Port

Figure 5.7 -- A processor waiting for a process
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A DISPATCHING EXAMPLE

This section returns to the REPORTER program example
discussed in the last chapter and adds more detail. This time, a
dispatching port is included to see how it works. Figure 5.8
shows the structure of the REPORTER program and the dispatching
port: There are three processes (ROGER, PATTY and TOM), two
processors (1 and 2), and one dispatching port.

Dispatching Port

Communication
Port Object

Draft Reports

Process
Cbject

Draft Reports

‘ Process
Object

SECRETARIES'
IN-BASKET

Process
Object

Communication
Port Object

typed Peports Typed Reports

ROGER'S
IN-BASKET

Figure 5.8 -- The Reporter program

Watch for two things in this example:

® There are two reasons for a processor to switch
processes, i.e., stop executing one process and start
executing another. What are these two reasons?

® The 432 hardware performs scheduling and dispatching,
yet there are no 432 instructions called SCHEDULE or
DISPATCH. Why?

The example begins with Figure 5.9.1. This figure does not
show all the objects in Figure 5.8. I have 1left out ROGER's
in-basket because it is not used in this example.



At Time 1 (Figure 5.9.1), there are two processes executing.
ROGER 1is executing on Processor 1 and TOM 1is executing on
Processor 2. PATTY is not executing; she is waiting in the
secretaries' in-basket for a report to type. TOM is ready to
type another report and has Jjust started to execute a RECEIVE
instruction.

Time:

Dispatching Port

TOM: Pro?esﬁ
Object

SECRETARIES®
IN-BASKET:

Communication
Port Object

Process
Object

PATTY:

\ /
/ ~
'TWO PROCESSES ARE EXECUTING ONE PROCESS IS WAITING
® ROGER is executing on ® PATTY is waiting for
Processor 1. a report to type.
e TOM is executing on
Processor 2.
> y,
\

Pigure 5.9.1
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At Time 2 (Figure 5.9.2), TOM'S RECEIVE instruction has been
partially executed. Because there were no messages in the
communication port, TOM'S process has been queued up behind
PATTY'S process to wait for a message. At this point, Processor 2
is finished with TOM'S process. There 1is nothing more for
Processor 2 to do until TOM receives a message. Therefore,
Processor 2 goes to the dispatching port to hunt for another
process that is ready to execute.

Time:

Dispatching Port

PATTY

+Process , R
ToM: ", Object: ¢
JERLL X ’
’
SECRETARIES N ,
IN-BASKET: 0----'-.-.
Communication !
Port Object /
Proces Process /
ObJect Object ’I
e

Figure 5.9.2 - TOM is queued to wait for a message.




At Time 3 (Figure 5.9.3), Processor 2 has checked the
dispatching port and found it empty, i.e., no processes are ready
to run. Processor 2 has, therefore, "climbed inside" the
dispatching port to wait for a process that 1is ready to run.
Processor 1 is still executing ROGER's process.

Time:

Dispatching Port

SECRETARIES'
IN-BASKET:

Communication
Port Object

Process
Object

Process
Object

PATTY TOM

Figure 5.9.3 -- Processor 2 is waiting for a process that is
ready to execute.
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At Time 4 (Figure 5.9.4), ROGER finishes writing Report 1 and
sends it to the secretaries' in-basket, where both PATTY and TOM
are waiting for a report to type. Processor 2 is idle; it is
waiting for a process to run.

Time:

Dispatching Port

Process
Object

ROGER:

SECRETARIES
IN-BASKET:

Communication
Port Object

Process Process

Object Object
PATTY TOM
Figure 5.9.4 -- ROGER sends Report 1 to the secretaries’

in-basket.
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At Time 5 (Figure 5.9.5), ROGER'S SEND instruction has been
partially executed. The message (Report 1) has been given to
PATTY'S process, which was first in line at the port, and PATTY
is now ready to run. As part of the SEND instruction, Processor
1 moves PATTY'S process to the dispatching port so that it can be
scheduled to run on a processor. But, when Processor 1 moves
PATTY to the dispatching port, it finds Processor 2 waiting for a
process to execute. Processor 1 gives PATTY'S process to
Processor 2 and tells it to start executing PATTY.

Time:

Dispatching Port

Process

PATTY:

SECRETARIES
IN-BASKET:

Communication
Port Object

® When ROGER sends Report 1 to the secretaries'
in-basket, it is given to PATTY.

® PATTY is now ready to run and is moved to the
dispatching port, where Processor 2 1is waiting.

Figure 5.9.5

Note that ROGER'S processor, Processor 1, not only sends the
message to the communication port, it also gives the message to
the first process waiting in line and moves that process to the
dispatching port so that it can be scheduled and dispatched. 1In
this case, because Processor 2 is waiting for a process to
execute, Processor 1 also gives the process to Processor 2 and
tells it to start working. Note that, during this time, ROGER'S
processor, Processor 1, is really working for PATTY'S process so
that it can get started. After Processor 1 gets PATTY started,
it goes back to work for ROGER.
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At Time 6

ROGER

is

still

(Figure 5.9.6),

. executing on Processor

1 and PATTY 1is

there are two processes executing.

now

executing on Processor 2. TOM is still not ready to execute; he
is waiting in the communication port for a report to type.
Time:
Dispatching Port
PATTY: [ Process <
Object 7
SECRETARIES'
IN-BASKET:
Communication
Port Object
TOM: [ Process
Object
. Z
r \
e PATTY is now running on Processor 2.
® ROGER is still running on Processor 1.
@ TOM is still waiting for a report.
\,
> <
Figure 5.9.6




At Time 7 (Figure 5.9.7), ROGER'S process is in the middle of
executing a SEND instruction to send Report 2 to the
communication port being used as the secretaries' in-basket.
When Processor 1 moved the message to the communication port, it
discovered that TOM was waiting for a message and therefore gave
it to TOM. This made TOM ready to run, so Processor 1 moved TOM
to the dispatching port for scheduling and dispatching. Note
that moving TOM to the dispatching port and scheduling him for
execution is all part of the SEND instruction.

Time:

. Dispatéhing Port
TOM: Process

Object

\\N

l SECRETARIES'

{  IN-BASKET:
" Communication
\ Port Object
TomM M Process .
[ - I 4
o Opject,
[
) .
¢ ’
- eem e W o wm [}

® ROGER sends Report 2 to the secretaries' in-basket.

<
'\

Y

@ TOM is given Report 2 and is now ready to run.

® TOM is moved to the dispatching port to wait for a
. processor. Y,

( Figure 5.9.7 ]

Here is another example where ROGER'S processor, Processor 1,
has gone to work for another process (TOM'S) in order to get it
scheduled and dispatched. This time, however, there was no
processor waiting to execute the process, so Processor 1 had to
be content with simply scheduling TOM so that the next processor
that comes to the dispatching port looking for work will find TOM
waiting and ready to run.
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At Time 8 (Figure 5.9.8), TOM'S process is waiting in the
dispatching port, Processor 1 is still executing ROGER'S process
and Processor 2 is still executing PATTY'S process. Note that
the major difference between Time 6 and Time 8 is that TOM is now
ready to run and is waiting in a dispatching port. Whenever a
process is ready to run (but a processor is not available) it
waits in a dispatching port. Whenever a process is not ready to
run -- because it is waiting for a message from another process
-- it waits in a communication port.

Time:

Dispatching Port

.| Process
Object

TOM

PATTY : Process

SECRETARIES'
IN-BASKET :

Communication
Port Object

\_ -
(’ TN
® ROGER is still running on Processor 1.
® PATTY is still running on Processor 2.
® TOM is waiting for a processor in the
>: dispatching port.
~ <

FPigure 5.9.8

There have been two examples of what happens when a process
is sent to a dispatching port. Either a processor is waiting at
the port and starts executing the process immediately, or a
processor 1is not waiting at the port and the process lines up to
walt for a processor,

In both of the examples examined so far where a process was
moved to a dispatching port, the process was moved because it had
received a message and had become ready to run. In the next
section of this example we will take a look at another reason for
a process to be moved to a dispatching port -- because its time-
slice expires. ‘
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At Time 9 (Figure 5.9.9), ROGER has used up his time-slice --
it is time for another process to get a share of the processor.
Processor 1 has been keeping track of how long ROGER has been
running and has noticed that ROGER has completed the amount of
time specified by the scheduling parameter in ROGER'S process
object that tells how long a time-slice ROGER gets.

Processor 1 finishes the current instruction it is executing
for ROGER and then places ROGER in the dispatching port. 1In the
example, ROGER'S and TOM'S scheduling parameters indicate that
ROGER should be scheduled to run after TOM, so ROGER'S process is
placed second in line at the dispatching port.

Dispatching Port
Process Process
Object Object

ROGER TOM

PATTY:

SECRETARIES!
IN-BASKET:

Communication
Port Object

\_ <
- <
® ROGER uses up his time period on Processor 1.
® ROGER is moved to the dispatching port to wait
in line for another turn on a processor.
\ ' Z
é )

Figure 5.9.9




At Time 10 (Figure 5.9.10), ROGER has been inserted into the
queue of waiting processes at the dispatching port. Processor 1
now needs a process to run, so it goes to the front of the queue
at the dispatching port and removes TOM'S process for execution.

Dispatching Port

Process Process
Object Object

ROGER

TOM
ey T

Process
Object

PATTY:

SECRETARIES'
IN-BASKET:

Communication
Port Object

Y
A

® Processor 1 now needs more work and goes to the
dispatching port to find it.

® TOM is first in line and is removed from the
dispatching port to run on Processor 1.

Y
A

rigure 5.9.10
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At Time 11 (Figure 5.9.11), there are two processes running.
TOM is running on Processor 1 and PATTY is still running on
Processor 2. ROGER is ready to run, and would be able to run if
there were a third processor in the system. But, since there are
only 2 processors in this example, ROGER must wait his turn at

the dispatching port.

Dispatching Port

Process
Object

ROGER:

Process
Object

SECRETARIES'
IN-BASKET:

Communication
Port Object

Y

Z
)
e TOM is now running on Processor 1.
e PATTY is still running on Processor 2.
® ROGER is ready for execution and is waiting in
the dispatching port.
Z

Figure 5.9.11

—~
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1. A. The process being run executes a RECEIVE
instruction on an empty communication port
and must wait for a message.

1. B. The process being run uses up its time-
slice.

2, Process scheduling is done automatically
whenever a process is sent to a dispatching
port. Process dispatching is per formed
automatically by a processor whenever it needs
to switch processes. There is no need to have
SCHEDULE and DISPATCH instructions because the
processor is "smart enough" to know when it
needs to schedule and dispatch processes.
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DISPATCHING PORTS AND PROGRAM STRUCTURE

Now that you know what dispatching ports are and how they
work, you can see how they fit into the basic program structure
described in Chapter 3.

By now it should be very clear that a 432 object cannot be
accessed by a program unless the program has an object reference
for it. This brings up two questions. First, how does a
processor know which dispatching port to use when it is ready to
dispatch a new process? Simple; one of the pieces of information
that a processor keeps in its processor object is an object
reference for its dispatching port (see Figure 5.10); it
"follows" this reference to find its dispatching port.

Second question; how does a processor know which dispatching
port to use when it needs to send a process to the process's
dispatching port (e.g. to which dispatching port should a
processor send a process that it finds waiting in a communication
port when it is moving a message to the port)? Once again it is
very simple. Every process object contains an object reference
for its dispatching port (see Figure 5.10). The processor
"follows" this reference to find its dispatching port.

Memory Space

Processor
Object

This object reference
tells the processor

where its dispatching
port is.

Dispatching Port

Process
Object

This object reference
tells which dispatching
. port is used by this
process.,

Pigure 5.10 -- Each processor object and each process object
has a reference for a dispatching port.
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In the paragraphs above I have used phrases like "the
processor's dispatching port" and "the process's dispatching
port". These imply that there may be more than one dispatching
port per system ... which is true; a system can have several.
Usually, however, there is only one "central" dispatching port.
All the processes that are ready to run go to this dispatching
port, as do all of the processors that are looking for work.
This sort of scheme minimizes the problem that can occur with
multiple dispatching ports where processes are waiting ready to
run at one port while processors are idle waiting for a process
to run at another port.

Actually, the statement that there is usually only one
dispatching port per system is a bit oversimplified. To be more
precise, the statement should be: There is wusually only one
dispatching port for each type of processor. The 432
architecture not only allows for multiple processors; it allows
for multiple types of processors. Different types of processors
have different instruction sets and therefore different types of -
processes. It is important to run the right type of process on
the right type of processor, so there must be at least one
dispatching port for each type of processor.
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TRANSPARENT MULTIPROCESSING QUIZ

What happens at dispétching ports?

What determines the order in which processes are run on a
processor?

What happens if there are no processes for a processor to run?

What does the word "transparent” mean in the phrase
"transparent multiprocessing"?

Processor management requires three things. Define each and
tell where it is done by the 432 - in the hardware or the
software.

Done By

Hardware Software

1. Policy Making [:] [:]
* Sehedaling L] ]

3. Dispatching [:] [:]
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KEY TO TRANSPARENT MULTIPROCESSING QUIZ

What happens at dispatching ports?

Ready-to-run processes meet processors looking for work.

What determines the order in which processes are run on a
processor?

The scheduling parameters in the process object which were
set by the policy software

What happens if there are no processes for a processor to run?
The processor waits at the port until a process arrives.
When a process arrives, the processor starts processing it.
What does the word T"transparent" mean in the phrase
"transparent multiprocessing"?

It means that absolutely no changes need to be made to either

applications or operating system software (no changes to any
software) when additional processors are added to the system.

Processor management requires three things. Define each and

tell where it is done by the 432 - in the hardware or the
software. -

Done By

Hardware Software

1. Policy Making [:] E@ How the processes
share the processors,
e.g., round-robin,
first-come, first-

served, etc.

2. Short-Term 4 [:] Ordering processes
Scheduling to run on processors
in a manner that
realizes the policy.

3. Dispatching ktgg Assigning processes
(in order) to run on
particular processors.
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Chapter 6

DESIGNING SOFTWARE SYSTEMS

Chapter 3 described how hardware-defined objects provide the
basic structure for all 432 programs. This chapter shows how the
432 allows additional objects to be defined in software and used
to build modular, structured software systems.

This chapter has three major sections:

® DESIGN METHOD

The 432 supports an object-oriented design method that
is very different from (and much better than)
conventional design methods. This section compares the
methods and shows the advantages of the object-oriented
approach.

® DOMAINS

Domains are one of the architecture's facilities to
support the object-oriented design method. This section
describes domains and how they are used to build the
static structure of a program.

e TYPE CHECKING

Type checking is the architecture's second facility to
support the object-oriented design method. This section
describes type checking and how it fulfills two
important needs.



1. DESIGN METHOD

This section describes the 432's object-oriented design
method and compares it to a more conventional method.

There are three subsections in this section:

e THE SOFTWARE PROBLEM

Why we need a good design method

e COMPARING 2 METHODS

The major difference between an object-oriented design
method and a conventional design method is the criteria
used to divide a system into modules. This subsection
compares the different criteria by looking at a sample
system that has been "modularized" twice: once
conventionally, and once with an object-oriented method.

e THE OBJECT-ORIENTED METHOD

How the object-oriented method works and its major
advantages

THE SOFTWARE PROBLEM

Managing complexity is one of the major problems facing
today's system designers. As computers become more powerful,
they are wused for more challenging tasks. As a result, the
software that controls today's computers has become very
complicated.

The need for complex computer programs creates a need for a
design method that allows effective management and production of
large complex software systems. Historically, projects producing
large software systems have had problems meeting schedules,
producing reliable software, and producing maintainable software
that can be changed and expanded as the system evolves.

The architecture of the 432 is designed around a better
design method -- in fact, support for it is an integral part of
the architecture. We call it an object-oriented design method,
for reasons that you will understand shortly.

The easiest way to see how an object-oriented method differs
from conventional methods is to study a sample system designed
twice; once using a conventional design method and once using an
object-oriented design method. This is done in the next section.



COMPARING TWO METHODS

This comparison of the two methods is a paraphrase of an
article written by D. L. Parnas of Carnegie-~-Mellon University
("On The Criteria To Be Used 1In Decomposing Systems Into
Modules", D.L. Parnas, December 1972, Communications of the ACM).

sSummar Y

This section discusses modularization as a way to improve the
flexibility and comprehensibility of a system while shortening
its development time. The effectiveness of a modularization
depends on the «criteria used in dividing the system into
modules. A system design problem 1is presented and both a
conventional and object-oriented decomposition are described. It
is shown that the object-oriented decomposition has distinct
advantages for the goals outlined. The criteria used in arriving
at the decompositions are discussed.

Introduction

A lucid statement of the philosophy of modular programming
can be found in a 1970 textbook on the design of system programs
by Gouthier and Pont (1, para. 10.23), which I quote below:l

A well-defined segmentation of the project effort
ensures system modularity. Each task forms a
separate, distinct program module. At
implementation time, each module and its inputs
and outputs are well-defined, there 1is no
confusion in the intended interface with other
system modules. At checkout time the integrity
of the module is tested independently; there are
few scheduling problems in synchronizing the
completion of several tasks before checkout can
begin. Finally, the system 1is maintained in
modular fashion; system errors and deficiencies
can be traced to specific system modules, thus
limiting the scope of detailed error searching.

1Reprinted by permission of Prentice-Hall, Englewood
Cliffs, N.J.
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Usually nothing is said about the criteria used in dividing
the system into modules. This section discusses this issue and,
by means of examples, suggests some criteria to be wused in
decomposing a system into modules.

A Brief Status Report

The major advance in the area of modular programming has been
the development of coding techniques and assemblers which (1)
allow one module to be written with little knowledge of the code
in another module, and (2) allow modules to be reassembled and
replaced without reassembly of the whole system. This facility
is extremely valuable for the production of large pieces of code,
- but the systems most often used as examples of problem systems
are highly-modularized programs and make use of the techniques
mentioned above. Clearly, something 1s wrong with the way we are
designing systems. We are not getting the benefits we expected.

The benefits expected of modulaf programming are:

1. Managerial -- development time should be shortened
because separate groups can work on each module with
little need for communication;

2. Product flexibility =-- it should be possible to make
drastic changes to one module without needing to change
others;

3. Comprehensibility -- it should be possible to study the

system one module at a time. The whole system can
therefore be better designed because it is better
understood.

The next several sections compare a conventional design
modularization with an object-oriented design modularization. As
you will see, the object-oriented modularization has all of the
benefits listed above while the conventional modularization does
not.

What is Modularization?

Below are several partial system descriptions <called
modularizations. 1In this context, "module" is considered to be a

responsibility assignment rather than a subprogram. The
modularizations include the design decisions which must be made
before the work on independent modules can begin. =~ Quite

different decisions are included for each alternative, but in all
cases the intention is to describe all "system level" decisions
(i.e., decisions which affect more than one module).
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The Example System: A KWIC Index Production System

A KWIC index program is exactly what its name implies -- a
quick, automated way to produce an index. Every vyear, a
tremendous number of technical journals are produced and KWIC
index programs are used to produce indices that enable users to
scan for key words in journal titles.

Here is a simple example of how it works. Suppose we have
two titles as input to the KWIC index program:

TITLE DOCUMENT NUMBER
X-ray Emmission By Quasars. [1]
X-ray Diffraction Techniques. [2]

The KWIC index produced would be:

X-ray Emmission By Quasars. [1]

X-ray Diffraction Techniques. [2]

X-ray Emmission By Quasars. (2]

X-ray Emmission By Quasars. [1]
X-ray Diffraction Techniques. (2]

X-ray Emmission By Quasars. [1]

X-ray Diffraction Techniques. [2]

The center column of the KWIC index 1is an alphabetical
listing of all the words in all the titles. The far right-hand
column gives a reference number for a separate bibliography that
includes information such as the author's name and where the
article was published.

As an example of how one uses a KWIC index, say you are
interested in locating articles on X-ray diffraction. The first
thing you would do is think of key words that might appear in
titles, e.g., "x-ray" and "diffraction". The second step is to
scan the center column for titles containing these key words.
The final step is to select interesting titles and use the
document number in the right hand column to 1locate the full
reference in the bibliography.

The output format shown above, where the key words are in the
center, is only one of several ways to format the output from a
KWIC index program. It is probably one of the most useful
formats for actually using a KWIC index, but it is not the most
useful for describing how a KWIC index is produced. As a result,
the remainder of this document displays KWIC indices in a
different format.



This format has two minor differences. First, it leaves off
the document number. This makes the diagrams simpler. Second,
and more important, the column of alphabetized words appears on
the left of the page instead of in the center. Words in the
title that occur before the key word are added at the end of the
line. Thus, the KWIC index above would appear as:

By Quasars. X-ray Emmission
Diffraction Techniques. X-ray
Emmission By Quasars. X-ray
Quasars. X-ray Emmission By
Techniques. X-ray Diffraction

X-ray Emmission By Quasars.
X-ray Diffraction Techniques.

This is a small system. Except under extreme circumstances
(huge data base, no supporting software), such a system could be
produced by a good ©programmer within a week or two.
Consequently, none of the difficulties motivating modular
programming are important for this system. Because it is
impractical to treat a large system thoroughly, we must go
through the exercise of treating this problem as if it were a
large project. One modularization is given which typifies
conventional approaches, and another which uses an object-
oriented approach.

Conventional Modularization

The modules described below fit together to produce a KWIC
index program. The function of this program is summarized by
Figure 6.1. The original data file containing the titles is read
by the KWIC index program which in turn produces a file with a
KWIC index.

INPUT FILE: OUTPUT FILE:

3 <

KNIC By Quasars. X-ray Emmission
Diffraction Techniques. X-ray
INDEX Enmission by Quasars. X-ray

X-ray Emmission by Quasars

Quasars. X-ray Ermission by
X-ray Diffraction Techniques PROGRAM Technicues. X-ray Diffraction
X-ray Emmission by Quasars.

\ / Q Y Diffraction Teciﬁy

Figure 6.1 -- Overview of KWIC index program

As I explain the modules that make up this program, you get a
closer look at the intermediate steps involved in producing a
KWIC index. ‘ :
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Input Module. This module reads the data lines from the
input medium and stores them in a TITLE TABLE in main memory for
processing by the remaining modules. The characters are packed
four to a word, and an otherwise unused character 1is used to
indicate the end of a word. Figure 6.2 summarizes the action of
this module.

INPUT FILE:
(Secondary Storage)

TITLE TABLE:
(Main Memory)
INPUT X-ray Emmission by Quasars
X-ray Emnission by Quasars MODULE X-ray Diffraction Techniques
X-ray Diffraction Techniques
Figure 6.2 -- The conventional input module

Circular Shift Module. This module is called after the input
module has completed its work. It takes each title that has been
placed in the TITLE TABLE by the input module and computes all
the circular shifts of that title. For example, the title:

X-ray Diffraction Techniques
becomes:

X-ray Diffraction Techniques.
Diffraction Techniques. X-ray
Techniques. X-ray Diffraction

One way to store this information would be to build an array
containing all the circular shifts of the lines. But, this is
expensive because it requires storing quite a few characters in
memory. To conserve memory, the circular shifter builds a table
with two columns. The first column gives the line number for the
original title and the second column gives the character
displacement within the line of the word that is first for that
particular circular shift.

For example, the title "X-RAY DIFFRACTION TECHNIQUES" is the
second title in the TITLE TABLE and its words start at the
following displacements:

1 7 19

LINE #2: *-ray Diffraction Techniques.
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Thus, the table representing the circular shifts of this 1line
is:

SHIFT TABLE "TRANSLATION" OF SHIFT TABLE
LINE # CHARACTER DISPLACEMENT
2 1 X-ray Diffraction Techniques
2 7 Diffraction Techniques. X-ray
2 19 Techniques. X-ray Diffraction

Figure 6.3 summarizes the action of the circular shifter
module. The titles in the TITLE TABLE are used as input to
produce the SHIFT TABLE.

SHIFT-TABLE:
TITLE TABLE: Line # Start Char
CIRCULAR 1 1
X-ray, Emmission by Quasars SHI 1 ?
X-ray Diffraction Techniques MODSIE i ;;
‘2
2 2
2 19
Figure 6.3 -- The conventional circular shift module

By using the SHIFT TABLE and the TITLE TABLE, all the
possible circular shifts can now be listed:

X-ray Emmission By Quasars.
Emmission By Quasars. X-ray
By Quasars. X-ray Emmission
Quasars. X-ray Emmission By
X-ray Diffraction Techniques.
Diffraction Techniques. X-ray
Techniques. X-ray Diffraction

All that is left to do is to alphabetize the list of circular
shifts and write them to the output file.




Alphabetizing Module. This module 1is <called after the
circular shifter completes 1its work. It takes as input the
arrays produced by the input module and the circular shift
module, i.e., the TITLE TABLE and the SHIFT TABLE. From this
information, it produces an alphabetized list- of all the circular
shifts (a KWIC index). Once again, the module could store this
information as an array of characters, but that would be
inefficient. Instead, it produces an ALPHABETIZED SHIFT TABLE
that is in the same format as the SHIFT TABLE produced by the
circular shifter, but with the entries in alphabetical order.
Figure 6.4 summarizes the action of this module.

TITLE TABLE:

X-ray, Emmission by Quasars

X-ray Diffraction Techniques ALPHABETIZED
SHIFT-TABLE:
R Line ¢
SHIFT-TABLE: ;’e Start Char
17
Line # Start Char ALPHABETIZ I NG — i ;
1 1 ’///,/J' MODULE 1 20
1 ?
1 17 m—— : !
1 20
2 1
2 7
2 19
Figure 6.4 -- The conventional alphabetizing module

There is now an alphabetized list of circular shifts stored
in an internal format as an ALPHABETIZED SHIFT TABLE and a TITLE
TABLE. All that is needed to produce a KWIC index is to write
this information to the output file in the desired format.

Output Module. This module is called when the alphabetizing
module completes its work. It takes as input the ALPHABETIZED
SHIFT TABLE and the TITLE TABLE and produces a nicely formulated
output listing (KWIC index). Figure 6.5 summarizes the operation
of this module.
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TITLE TABLE:

X-ray, Emmission by Quasars
X-ray Diffraction Techniques OUTPUT FILE:

y

By Quasars. X-ray Emmission
Diffraction Techniques. X-ray
~——3»! Enmzission by Quasars. X-ray
uasars. X-ray Emmission by

ALPHABETIZED E:::jr
Technicues. X-ray Diffraction

SHIFT-TABLE: ‘ o
OUTPUT
MODULE
- X-ray Emmission by Quasars.

Line ¢ Start Char
- X=ray piffraction Techniques.
19 \\\5-__ __——’/)

17
?
7
1

1l

NN N

Figure 6.5 -- The conventional output module

All the modules needed to do actual manipulation of the data
have been described, but one more module is needed to coordinate
the first four.

Master Control Module, This module does little more than
control the sequencing among the other four modules. It may also
handle error messages, space allocation, etc.

Figure 6.6 summarizes the sequencing performed by the master
control module. There are four steps:

1. The input module reads the input file and produces a
TITLE TABLE.

2. The circular shift module produces a SHIFT TABLE from
the TITLE TABLE.

3. The alphabetizing module produces an ALPHABETIZED SHIFT
TABLE from the SHIFT TABLE and the TITLE TABLE.

4, The output module writes a KWIC index to the output file
using the ALPHABETIZED SHIFT TABLE and the TITLE TABLE.




CONVENTIONAL MODULARIZATION

INPUT FILE:

INPUT
MODULE

CIRCULAR
SHIFT
MODULE

ALPHABETIZING
MODULE

OUTPUT
MODULE

N NN ot s oo e

t—

SHIFT-TABLE:

_

X-ray Emmission by Quasars.

' X-ray Diffraction Techniques,

Line # Start Char

1l
7
17
20
1
7
19

ALPHABETIZED
SHIFT-TABLE:

SN——

TITLE TABLE:

X~-ray, Emmission by Quasars.

X-ray Diffraction Techniques.

Line # Start Char

17
7
?

20

19
1
1l

NN N

OUTPUT FILE:

<l O

g* Quasars. X-ray Emmission
Diffraction Techniques. X-ray
Emmission by Quasars. X-ray
uasars. X-ray Emmission by
Technigues. X-ray Diffraction
X-ray Emmission by Quasars.

ngitf:&ction Teci:xiqu)

Figure 6.6 -- These modules directly manipulate
shared data structures.
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This concludes the description of the conventional
modularization. Obviously, I have not presented all the details
(e.g., core formats, pointer conventions) needed to begin
programming, but there is enough information for comparison with
the object-oriented approach.

This conventional approach is a modularization in the sense
meant by all proponents of modular programming. The system is
divided into a number of modules with well-defined interfaces;
each one is small enough and simple enough to be thoroughly
understood and well programmed. Experiments on a small scale
indicate that this is approximately the decomposition which would
be proposed by most programmers for the task specified.

Object-Oriented Modularization

The object-oriented modularization has several things in
common with the conventional modularization. It uses the same
data structures as the conventional modularization and it also
uses the same algorithms. The difference between the two
approaches is in how the program is broken up into work
assignments, i.e., how it is modularized.

In the conventional decomposition the criterion used to
modularize the program was to make each major processing step a
module. One might say that to get the first decomposition, one

makes a flowchart. This is the most common approach to
decomposition or modularization. It is an outgrowth of
programmer training which teaches us that we should begin with a
rough flowchart and move from there to a detailed

implementation. The flowchart was a useful abstraction for
systems with on the order of 5,000-10,000 instructions, but as we
move beyond that, it does not appear to be sufficient; something
additional is needed.

The object-oriented decomposition uses the hiding of design
decisions as the criterion for modularization. As you will see,
each module in the object-oriented decomposition hides one design
decision.

For example, in the conventional decomposition there are four
modules (input, circular shift, alphabetizing, and output) that
directly manipulate the title table. All of these modules are
aware of the design decision to represent the title table by an
array in main memory, i.e., their correct operation depends on .
the structure of the title table. In the object-oriented
approach, there is only one module that directly manipulates the
title table. This module hides the structure of the title table
(i.e., the fact that it is an array in main memory and not on
file on disk) from the other modules in the system. All the
other modules are completely independent of the structure of the
title table.



This approach continues the trend toward structured
programming. The first major step by proponents of structured
programming was to add structure to the control flow of a
program. This effort involved replacing the "GO TO" of
FORTRAN-like programming languages with more structured control
statements such as the "WHILE DO" and CASE OF" statements in
Pascal.

The second major step 1in structured programming is to
structure the knowledge of how data is represented within a
machine. This step is taken by the object-oriented approach to
program decomposition. The knowledge of how data is represented
(i.e., is it an array, or a linked list? 1Is it in main memory or
on disk?) 1is confined to one module. All other modules are
written to be independent of the way the data is structured.

In a moment you will see why the object-oriented approach is
advantageous, but first the object-oriented modularization of the
KWIC index program is given. The object-oriented modularization
has six modules.

Title Storage Module. This module manages an object (a data
structure) containing the original titles read in from secondary
storage. This object 1is called the TITLE OBJECT. It is
structured the same way as the title table in the conventional
modularization, 1i.e., it is an array of characters with
characters packed four to a word and an otherwise unused
character used to indicate the end of a word. However, though it
is structured 1like the title table, there are two major
differences that makes it an object and not just a data structure.

1. It has a label that tells its type, i.e., "TITLE OBJECT".

2. It has a set of operations defined for it that are the
only operations permitted on the object.

The title storage module provides a set of procedures
available to other modules that use the TITLE OBJECT. These
procedures are the only way that other modules can use the TITLE
OBJECT. Other modules cannot directly access the TITLE OBJECT.
As an example, consider the following procedures provided by the
title storage module:



CHAR(t,w,c) - This procedure returns the cth
character of the wth yword of the tth
title in the TITLE OBJECT.

- SETCHAR (t,w,c,d) - This procedure sets the tth,k wth,

cth, character in the TITLE OBJECT to
the value 4.

WORDS (t) - This procedure returns the number of
words in the tth ¢tjtle of the TITLE
OBJECT.

DELINE (t) - This procedure deletes the tth ¢tjitle

of the TITLE OBJECT.

DELWORD (t,w) - This procedure deletes the wth yord in
the tth title of the TITLE OBJECT.

The title storage module provides some other procedures, but
I think you get the idea. Other modules that use the TITLE
OBJECT do so by calling the procedures provided by the title
storage module. They never manipulate the data structure
directly, -- only through the procedures provided by the title
storage module.,

. You can visualize the title storage module as a "black box"
(see Figure 6.7) that hides the representation of the TITLE
OBJECT (i.e., hides the fact that it is structured as a table in
main memory instead of a linked 1list or a random access disk
file). The buttons on the front of the box are the procedures
provided by the title storage module for manipulating the TITLE
OBJECT hidden inside the box. Other modules using the TITLE
OBJECT call these procedures instead of manipulating the TITLE
OBJECT themselves.
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Figure 6.7 -- A module in the object-oriented decomposition
can be viewed as a black box that hides a
design decision.

Input Module. This module hides the input format. It reads
the original 1lines from the input media and calls procedures
provided by the title storage module to store the lines inside
the title object.

Master Control Module. This module is similar to the master
control module described for the conventional modularization. It
controls the sequencing of the other modules.

As an example, consider the sequencing of the modules that
have already been described. One of the first things the master
control module does is call the input module. The input module
then reads the input file and stores the titles in the TITLE
OBJECT by calling the procedures (e.g., SETCHAR) provided by the
title storage module. When the input module has finished, it
returns to the master control module.




Now that the titles are stored in the title object, the next
step is to produce all the circular shifts of the titles. To do
that, a data structure is needed to contain the circular shifts
of the titles. This means that another module is needed to hide
the representation of this data structure, because the
representation of each data structure is a design decision that
needs to be confined within a module. This module is described
before more of the sequence of execution is explained.

Circular Shifter Module. This module manages the SHIFTED
TITLE OBJECT. The users of this module view the SHIFTED TITLE
OBJECT as an array that contains all the circular shifts of the
titles contained in the title object.

For example, if the TITLE OBJECT contains the titles:

X-ray Emmission By Quasars.
X-ray Diffraction Techniques.

then other modules using the SHIFTED TITLE OBJECT view it as
containing all the circular shifts of these titles:

X-ray Emmission By Quasars.
Emmission By Quasars. X-ray
By Quasars. X-ray Emmission
Quasars. X-ray Emmission By
X-ray Diffraction Techniques.
Diffraction Techniques. X-ray
Techniques. X-ray Diffraction

The circular shifter module provides a set of procedures
available to other modules that use the SHIFTED TITLE OBJECT. As
with the title storage module, these procedures are the only way

- that other modules can use the SHIFTED TITLE OBJECT; they cannot
manipulate it directly.

Here are a few examples of the procedures provided by the
circular shifter module:



CSCHAR (t,w,c) - This procedure is very similar in
function to the CHAR procedure in the
title storage module. The only
difference is that this procedure
returns a character from the SHIFTED
TITLE OBJECT while CHAR returns a
character from the TITLE OBJECT.

CSSETCHAR(t ,w,d) - The circular shifter module has a full
CSWORDS (t) complement of procedures for manipulating
etc. the SHIFTED TITLE OBJECT. They are all

similar to the procedures provided by
the title storage module except they
manipulate the SHIFTED TITLE OBJECT
instead of the TITLE OBJECT.

CSSETUP - Before the procedures for reading and
manipulating the SHIFTED TITLE OBJECT
can be used, some initialization needs
to be done, i.e., all the circular
shifts of the titles must be created.
The CSSETUP procedure does this. It is
called once, before any of the other
procedures are used, and it initializes
the object. I will explain this a bit
more when I resume explaining the
sequence of execution.

From the discussion so far, it would appear that the circular
shifter maintains the SHIFTED TITLE OBJECT as an array of
characters, because this is the view presented to other modules
using the SHIFTED TITLE OBJECT. Yet, earlier, in the explanation
of the conventional modularization, I explained that while it is
possible to maintain this information as an array of characters,
in practice it requires too much storage. The object-oriented
modularization faces the same 1limit, and it uses the same
solution -- storing the information as an array of line numbers
and starting characters.

Internal to the circular shifter module, and hidden from all
users of the module, is a shift table. It has the same structure
as the shift table in the conventional modularization -- a column
of line numbers and column of starting-character numbers.

Also internal to the circular shifter module is an object
reference for the title storage module. This means that the
circular shifter module can use the TITLE OBJECT by calling the
procedures provided by the title storage module. The circular
shifter module must be able to do this because it does not keep a
copy of the actual titles itself -- it uses the TITLE OBJECT for
this purpose. All the circular shifter module has is the shift
table that describes all the possible shifts of the titles in the
TITLE OBJECT.

6-17



Figure 6.8 1illustrates the difference between the users
abstract view of the object and the actual representation of the
object. The user "sees" an array of characters because this is
the view presented by the procedures in the circular shifter
module. But, the information is actually represented by a shift
table and a reference for the title storage module.

A MODULE HIDES THE DATA'S REPRESENTATION

CIRCULAR SHIFTER

SHIFTED TITLE OBJECT: MODULE TITLE OBJECT:
r 4

X-ray Emnission by Quasars
X-ray Diffraction Technigues

SHIFT-TABLE
Line # Start Charj

X~-ray Ermission by Quasars.
Emmission by Quasars. X-ray
By Quasars. X-ray Emmission
Quasars. X-ray Emmission by Q CSSETUP
X-ray Diffraction Techniques.
Diffraction techniques. X-ray etc.
Techniques. X-ray Diffraction

(:) CSCHAR

1
7
17
20
1
7
19

NN 10 =t fot ot

/

USER’S ABSTRACT DATA’S REPRESENTATION
VIEW OF THE DATA HIDDEN INSIDE MODULE
Figure 6.8 -~ Knowledge of the data's representation is

confined within a single module.
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The circular shifter module effectively hides the
representation of the SHIFTED TITLE OBJECT from other modules
that use it. It does this by presenting the other modules with
an abstract view of the object, i.e., to them it looks like an
array of characters. But, internally, the SHIFTED TITLE OBJECT
is represented by the shift table: a set of indices for the
TITLE OBJECT.

Return for a moment to the sequence of program execution.
When the sequence was left, the master control module had called
the input module, and the input module had transferred the titles
from the input file to the TITLE OBJECT. The input module never
directly manipulated the TITLE OBJECT -- it only used the
procedures provided by the title storage module.

Now that the input module has finished storing the titles and
has returned to the master control module, the circular shifts
can be created. To do this, the master control module calls the
CSSETUP procedure in the circular shifter module. The CSSETUP
procedure computes the circular shifts of the titles stored in
the TITLE OBJECT (using only the procedures provided by the title
storage module to manipulate the TITLE OBJECT) and stores the
appropriate indices to the TITLE OBJECT in its shift table. When
CSSETUP is finished initializing the shift table, it returns to
the master control module.

Now that the shift table has been initialized, all the other
procedures provided by the circular shifter can be used. These
procedures create the view of working with an abstract data type
called a SHIFTED TITLE OBJECT that looks like a character array
of all the circular shifts of the titles. The user has this
abstract view even though the SHIFTED TITLE OBJECT is actually
represented by the shift table's indices and the TITLE OBJECT.

Now that all the circular shifts of the titles are available,
all that is needed is to alphabetize them and write them to the
output file. An alphabetized 1list of the circular shifts
requires another data structure and thus another module to manage
it.

Alphabetizer Module. This module manages the ALPHABETIZATION
OBJECT, which provides the user with information about the
alphabetical order of the circular shifts.
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The alphabetizer module has two procedures:

e ALPH - This procedure is similar to the CSSETUP
procedure in the circular shifter module. It is
called to initialize the alphabetizer module.
When it 1is called, it builds an alphabetized
shift table which is used by the second
procedure. This alphabetized shift table has the
same structure as the alphabetized shift table in
the conventional modularization, but it is
constructed by using the circular shifter module
to manipulate the SHIFTED TITLE OBJECT instead of
directly manipulating the shift table like the
conventional modularization.

@ ITH(i) - This procedure allows the user to alphabetically
access the «circular shifts provided by the
circular shifter module. It does this by
returning the index t for the line in the SHIFTED
TITLE OBJECT that is ith in the alphabetical
order. For example, 1if the call ITH(l) returns
the index 3 it means that the 3rd 1line in the
SHIFTED TITLE OBJECT is the 1st 1ine in the
alphabetical ordering of the SHIFTED TITLE OBJECT.

Figure 6.9 1illustrates the "black box" view of the
alphabetizer module.

(=

\L

ALPHABETIZER
MODULE

Figure 6.9 -- The alphabetizer module hides the
alphabetization design decisions.
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Output Module. This module <creates the output file
containing the KWIC index. It does this by using procedures
provided by the alphabetizer module and the circular shifter
module., It calls procedures in the circular shifter module to
find out what the circular shifts are and it calls ITH(i) within
the alphabetizer module to find out which circular shift comes
first, which comes second, etc.

Note that this module hides the format of the output file
from the other modules. If you want to change the format of the
output, the changes necessary will be confined to the output
module.

That completes the description of all of the modules in the
object-oriented modularization of the KWIC index program. AsS a
review, here is the sequence of program execution.

1) INPUT. The master control module calls the input module. The
input module reads the 1input file and uses the procedures
provided by the title storage module to store the titles in the
TITLE OBJECT.

2) CIRCULAR SHIFT. The master control module calls the CSSETUP
procedure in the circular shifter module which computes all the
circular shifts of the titles. The circular shifter stores the
description of the circular shifts in a compact internal format,
but hides this internal representation from users of the SHIFTED
TITLE OBJECT by providing a set of procedures that lets the users
view the SHIFTED TITLE OBJECT as a character array.. The CSSETUP
procedure, as well as all of the other procedures in the circular
shifter module, use the information stored in the TITLE OBJECT,
but they do not access it directly. They use the procedures
provided by the title storage module.

3) ALPHABETIZATION. After the circular shifts have been created,
the master control module calls the ALPH procedure in the
alphabetizer module which computes the alphabetical order of the
circular shifts. During this computation, the ALPH procedure
makes use of the information stored in the SHIFTED TITLE OBJECT
by using the procedures provided by the circular shifter module
-- it never manipulates the SHIFTED TITLE OBJECT directly. Once
ALPH is finished, the procedure ITH can be used to determine the
alphabetical order of the circular shifts.

4) OUTPUT. Now that the circular shifts are alphabetized, all
that remains to be done is to print the KWIC index on the output
file. The output module accomplishes this by calling procedures
in the alphabetizer module and the circular shifter module. The
output module calls the procedure ITH in the alphabetizer module
to find out the order of the circular shifts, and then uses
procedures in the circular shifter module to find out what the
words are in that particular circular shift.



Figure 6.10 summarizes the object-oriented modularization.
Each module is shown as a box (an object) with a set of object
references for all the modules that it uses. The numbers shown
(1-4) correspond to the sequence of calls by the master control
module as described above.

OBJECT-ORIENTED MODULARIZATION

—
(M K@?C
aster
Control é22
Module)
Q KWIC
h B N
/ \ e 3 ®
@ ©) \@ \ _
) ] ) —
INPUT CIRCULAR ALPHABETIZER OUTPUT
% MODULE % S ALPE %
O IN O CSCHAR O ITH O ouT
OCSSETUP|
' B
)
HODULE, %
OCHAR
O SETCHAR
etc.

Figure 6.10 -- These modules share information by using
services (procedures) provided by other
modules instead of directly manipulating
shared data structures.

As you may have guessed by now, the 432 has a hardware-
recognized object type that represents a module. 1It's called a
"domain object" and it is covered in the next section of this
chapter.

For now, the important thing to notice is the difference

between Figure 6.10 and Figure 6.6. In the conventional
modularization (Figure 6.6), modules share information by
directly manipulating shared data structures. In the

object-oriented modularization, modules share information by
using services (procedures) provided by other modules.
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That concludes the description of the object-oriented
modularization. Now it 1is compared with the conventional
modularization.

Comparison of the Two Modularizations

General. The major difference between the two design methods
is that the object-oriented approach makes a specific attempt to
"hide" design decisions that are 1likely to change, while the
conventional approach makes no such attempt.

One of the best metrics to measure the ability of a design to
hide major design decisions is to count the number of modules
that manipulate each data structure. Because data structures are
likely to change when design decisions change, it is desirable to
minimize the number of modules that directly manipulate each data
structure. Minimizing the number of modules that need to
"understand” how the data is structured minimizes the number of
modules that need to be changed if the structure of the data
changes. :

Note the difference between the term manipulate and the term
use. Manipulate means direct access to the physical data
structure by a module. Manipulate means that a module is
dependent upon the physical representation (e.g., a memory-
resident table or a random access disk file) chosen. Use means
indirect access to the data structure through procedures that
hide its representation. Designing modules to use data
structures instead of manipulate them means that the way the data
is represented can change without changing the modules that use
it.

Figures 6.11 and 6.12 illustrate how the two modularizations
differ in the number of data structures directly manipulated by
each module. Each arrow from a module points to a data structure
that it manipulates.

In Figure 6.11, you can see that the conventional
modularization distributes the knowledge of the data's
representation among many modules. Most data structures are
directly manipulated by several different modules.

In Figure 6.12, you can see that quite the opposite is true
for the object-oriented decomposition. This method centralizes
knowledge of the data's representation within a single module.
Although each data structure may be used by many modules, only
one module has the detailed knowledge of the data's structure
required to manipulate it directly. This module provides the
other modules with procedures for using the data structure.
Because the other modules wuse the data by calling these
procedures, changing the structure of the data only requires
changing these procedures, not all the modules that use them.
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CONVENTIONAL MODULARIZATION
DOES NOT CONFINE KNOWLEDGE OF THE DATA STRUCTURES

MODULES DATA STRUCTURES
INPUT
MODULE > INPUT
FILE
CIRCULAR
SHIFT
MODULE = TITLE
~ — TABLE
ALPHABETIZING SHIFT
MODULE >< TABLE
ALPHABETIZED
I OUTPUT l
>
NODULE SHIFT TABLE

OUTPUT

MODULE FILE

MASTER \
CONTROL
N—

\__\

ARROWS POINT TO ALL THE DATA STRUCTURES THAT ARE DIRECTLY
MANIPULATED BY A MODULE.

Figure 6.11 -- Conventional modularization distributes knowledge
of the data structures throughout many modules.




OBJECT-ORIENTED MODULARIZATION
CONFINES KNOWLEDGE OF EACH DATA STRUCTURE TO ONE MODULE

MODULES DATA STRUCTURES
, ~
\
INPUT ~‘::::>
MODULE > INPUT
| FILE
TITLE SN—— __
STORAGE . TITLE
MODULE OBJECT

CIRCULAR
SHIFTER
MODULE
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» | SHIFTED TITLE OBJECT

OUTPUT
MODULE > OUTPUT
FILE
MASTER N— —-—"')
CONTROL
MODULE

ARROWS POINT TO ALL THE DATA STRUCTURES THAT ARE DIRECTLY
MANIPULATED BY A MODULE.

Pigure 6.12 -~ Object-oriented modularization centralizes
knowledge of a data structure into a
single module.




Now that you've seen the general differences between the two
modularizations, specific differences are covered in the areas of:

® Changeability
® Independent development
® Comprehensibility

Changeability. There are a number of design decisions which
are questionable and likely to change under many circumstances.
Here is a partial list:

1. The decision to have all 1lines stored in core: For
large jobs it may prove inconvenient or impractical to
keep all of the lines in core at any one time.

2, The decision to pack the characters four to a word: 1In
cases where we are working with small amounts of data,
it may prove undesirable to pack the characters; time
will be saved by a character per word layout. 1In other
cases, we may pack, but in different formats.

3. The decision to make an index for the circular shifts
rather than actually store them as such: Again, for a
small index or a large core, writing them out may be the
preferable approach. Alternatively, we may choose to
prepare nothing during CSSETUP. All computation could
be done during the calls on the other functions such as
CSCHAR.

4. The decision to alphabetize the list once, rather than
either (a) search for each item when needed, or (b)
partially alphabetize: 1In a number of circumstances, it
would be advantageous to distribute the computation
involved in alphabetization over the time required to
produce the index.

5. Input format.

By 1looking at these changes you can see the differences
between the two modularizations. Each change is confined to a
single module in the object-oriented modularization, but usually
requires changes to several modules in the conventional
modularization. Here are some specific examples:

Change 1 -- Title Storage

Changing the decision to keep all titles resident in memory
effects every module except the master control module in the
conventional modularization. All of them directly manipulate the
title table and expect it to be resident at all times (see Figure
6.11).



In the object-oriented decomposition, this change is confined
to the title storage module because it is the only module that
directly manipulates the TITLE OBJECT (see Figure 6.12). All the
other modules use the procedures provided by the title storage
module to manipulate the TITLE OBJECT. They do not need to be
changed as long as the revised title storage module continues to
provide the same set of procedures.

Change 2 -- Character Packing

-~ This change has an effect similar to the first change.
Changing the number of characters packed to a word changes the
representation of the title table. Therefore, all modules that
depend upon the representation of the title table will need to be
changed.

This involves changing every module in the conventional
modularization, but only the title storage module needs to be
changed in the object-oriented decomposition.

Change 3 -- Writing Out the Circular Shifts

Earlier, I explained that the decision had been made to
represent the circular shifts as a set of indices to the original
titles instead of storing the circular shifts as characters. 1If
we decide to change this decision, and store the circular shifts
as characters instead of indices to the original tables, we would
have to change all the modules that directly manipulate the data
structures used to represent the circular shifts. In the
conventional modularization this means changing three modules:
circular shift, alphabetizing, and output. In the object-
oriented modularization, only the circular shifter needs to be
changed.

Change 4 -- Delayed Alphabetization

In the conventional modularization, the alphabetizing module
builds an alphabetized shift table that is also manipulated by
the output module. The output module expects the alphabetized
shift table to be complete when it is called, thus both the
alphabetizing and the output module must be changed if we decide
to delay alphabetization or to only partially alphabetize.

In the object-oriented modularization, the design decision of
when to alphabetize the titles has been confined to the
alphabetizer module. Not only has the alphabetizer module hidden
the representation of the alphabetization object, it has also
hidden the decision of when it is alphabetized. Thus, only the
alphabetizer module needs to be changed in the object-oriented
modularization.



Change 5 -- Input Format

This change is especially interesting because it is the only
change that is confined to one module in both modularizations.
If you return to Figures 6.11 and 6.12 for a moment you should be
able to see why this is true. 1In both modularizations, the input
file is directly manipulated by only one module. The difference
between the two approaches is that the hiding happened by chance
in the conventional modularization, but was planned 1in the
object-oriented modularization.

This concludes the comparison of the two modularizations'

support for changeability. This comparison 1is summarized in
Figure 6.13.
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MODULES CHANGED
IN CONVENTIONAL

MODULES CHANGED IN
OBJECT~ORIENTED

CHANGE MODULARIZATION MODULARIZATION
(1) TITLE STORAGE -
Store only some of e INPUT
the titles in main ® CIRCULAR SHIFT ® TITLE STORAGE
memory. Swap to and e ALPHABETIZING
from disk storage e OUTPUT
as needed.
(2) CHARACTER PACKING -
Store one character e INPUT
per word instead ® CIRCULAR SHIFT e TITLE STORAGE
of packing four to e ALPHABETIZING
a word. e OUTPUT
(3) WRITING OUT THE
CIRCULAR SHIFTS -
Store circular e CIRCULAR SHIFT
shifts as char- e ALPHABETIZING e CIRCULAR SHIFTER
acters instead of e OUTPUT \
making an index.
(4) DELAYED
ALPHABETIZATION -
Search for each
item as needed, ® ALPHABETIZING e ALPHABETIZER
or partially e OUTPUT
alphabetize the
list instead of
alphabetizing the
whole list at once.
I(5) INPUT FORMAT - e INPUT e INPUT
COMMENTS - Most changes All changes were
involved more confined to one
than one module. module.
Figure 6.13 ~-- The object-oriented approach confines

changes to fewer modules.




Independent Development. In the conventional modularization,
the interfaces between modules are the fairly complex formats and
table organizations described above. These represent design
decisions which cannot be taken lightly. The table structure and
organization are essential to the efficiency of the various
modules and must be designed carefully. The development of the
formats is a major part of module development, and that part must
be a joint effort among the several development groups.

In the object-oriented modularization, the interfaces are
more abstract; they consist primarily in the function names and
the numbers and types of the parameters. These are relatively
simple decisions and the independent development of modules
should begin much earlier.

Comprehensibility. To understand the output module in the
conventional modularization, it 1is necessary to understand
something of the alphabetizer, the circular shifter, and the
input module. There are constraints on the tables used by the
output module that only make sense because of the way that the
other modules work. There will be constraints on the structure
of the tables due to the algorithms used in the other modules.
The system will only be comprehensible as a whole. This is not
true in the second, object-oriented modularization.

SUMMARY
The important difference between the two methodologies is:

THE CRITERIA USED FOR DECOMPOSITION

) Conventional -- Make each major step in the processing a
module.
° Object-Oriented -- Hide each design decision within a

single module.

Hiding the representation increases the independence of each
module. If the modules that use the title storage module do not
know how it represents the TITLE OBJECT, then they cannot be
written to depend upon the representation of the TITLE OBJECT.

It is this independence that gives modular programming its

benefits of flexibility, comprehensibility, and shorter
development time: flexibility, because the representation of an
object can be changed by changing only one module -- the module

that hides the representation; comprehensibility, because a
programmer only needs to understand one module at a time;
shorter development time, because each module is a responsibility
assignment and can be developed totally independently of the
other modules once the interface has been defined.



WHAT'S NEXT?

This section has compared two design methods and explained
the advantages of object-oriented design, but has not related
this to the architecture of the 432 micromainframe.

The next two sections of this chapter explain how the 432
architecture supports the object-oriented design method by
providing two facilities: domains and type checking.



2. DOMAINS

This section describes domains --  one of the 432
architectural facilities that supports the object-oriented design
method. The 3 subsections are: :

e DOMAIN OBJECTS

What a domain object is and how it fits into the basic
program structure described in Chapter 3

® NETWORKS OF DOMAINS

How domains are used to construct the static structure of a
program

e CALLING A PROCEDURE IN A DIFFERENT DOMAIN

An example explaining the change in access environments that
occurs when a procedure calls another procedure that is in a
different domain

DOMAIN OBJECTS

The 432 architecture supports the object-oriented design
method by providing a hardware~recognized object type (called
domain) that represents a module. These objects are called
domains because the modules they represent confine knowledge of
the object structure within a specified "domain". Figure 6.14
shows the two symbols used to represent domains in this book.

Domain Object

———=

IN

Domain Object

oNele

Figure 6.14 -- The 2 symbols for a domain object




Structurally, a domain is a very simple object. It is just a
list of object references for all the static objects in the
module. These static objects include:

e The instruction objects for the procedures in the domain

® The object being managed (e.g., the SHIFTED TITLE OBJECT
in the CIRCULAR SHIFTER domain)

® Any other static objects containing information used by
the procedures (e.g., constants, usage statistics)

By "static", I mean information that needs to persist between
calls to a procedure. As an example, consider a sine routine
that computes the sine of a number by interpolating a sine
table. The sine table is static -- we do not want to throw it
away when the procedure returns -- we want to save it to use the
next time the procedure is called.

In contrast, some variables are dynamic. The storage used
for them can be recycled (deallocated) when the procedure is
exited. When the procedure is called again, storage for the
dynamic variables is simply reallocated. Dynamic variables are
things like loop counters that need to be reinitialized anyway.

A domain is a list of object references for all the static
objects used by a module (not just one procedure -- the whole
module) . A context object (described in Chapter 3) is also a
list of object references, but it is for all the dynamic objects
used by a procedure (not the whole module -- just one procedure).

Figure 6.15 summarizes the basic program structure described
in Chapter 3.

Memory Space

Processor
Object

Context
Object

Process
Object

Instruction
Object

Data Object

Figure 6.15 -- The basic structure of a program
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Figure 6.16 shows the more detailed program structure. The
domain object and the static objects it references are (usually)
created at compile-time. Contexts and the dynamic objects they
reference are (usually) created at run-time.

When a program calls a procedure, the 432 CALL CONTEXT
instruction creates a context for the procedure, then calls the
procedure. When the procedure returns, the context object and
all the dynamic objects it references are deallocated and their
storage reclaimed for further use. The domain object and all the
static objects it references are retained.

A Context Object has
object references for objects that are
reclaimed {deallocated) when the
procedure returns.

Memory Space . y
Context
Processor Process Object
Object Object Dynamic

Object

Domain Object

Static
Object

)

A Domain Object is a 1ist of |nsotb’.“°“°“
object references for all the Statlc ject
Objects used by procedures in the i [~
module. Static Objects are retained (static)
when a procedure returns.

N

Figure 6.16 -- Domains are packages for the
static objects used by a module.




NETWORKS OF DOMAINS

The static structure of a 432 program is represented by a
network of domains -- a network of modules. The KWIC INDEX
example is used to show how this works.

Each module in Figure 6.17 is represented by a domain, and
each domain hides the representation of an object. For example,
the TITLE STORAGE domain hides the representation of the TITLE
OBJECT, and the CIRCULAR SHIFTER domain hides the representation
of the SHIFTED TITLE OBJECT.

Some of the domains make use of objects in other domains to
create a more complex object. The CIRCULAR SHIFTER, for
instance, uses the TITLE STORAGE domain's TITLE OBJECT to create
the more complex SHIFTED TITLE OBJECT.

If a module uses the procedures provided by a second module,
then it needs to have a reference for the domain that represents
the second module. Figure 6.17 shows the network of domains that
forms the static structure of the KWIC index program. Each
domain has object references for the other domains it needs to
use. Once again, the 432's "need to know" addressing mechanism
is used. A module can only use a procedure if it has a reference
for the domain that contains the procedure.



OBJECT-ORIENTED MODULARIZATION

)
KWIC
{(Master
Control é22
Module)
Q KWIC
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SHIFTER MODULE
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\\\\\\\\\\-‘_“_~—’ e
TITLE
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MODULE ﬂ
OCHAR

QO SETCHAR
etc.

Figure 6.17 -- These modules share information by using
services (procedures) provided by other
modules instead of directly manipulating
shared data structures.

For example, the INPUT domain has an object reference for the
TITLE STORAGE domain because it uses the TITLE OBJECT contained
by the TITLE STORAGE domain to store the lines it reads from the
input device. The output module has a reference for both the
ALPHABETIZER and the CIRCULAR SHIFTER module because it uses
both. It calls the ALPHABETIZER to determine the order of the

lines, and it calls the CIRCULAR SHIFTER to find out what each
line contains.

(=)}
i
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Figure 6.17 is also a good illustration of how domains hide
the representation of an object. Each domain is drawn as a
"black-box" with buttons on the front to select the desired
procedure. This is how domains are viewed by other domains that
use them. The INPUT domain uses the TITLE STORAGE domain, it
depends upon the TITLE STORAGE domain to provide the procedures
" CHAR, SETCHAR, etc., but it does not care how the TITLE OBJECT is
represented or what algorithms are used to manipulate it.

The domains in Figure 6.17 are viewed from the "outside",
i.e., from the perspective of the user. Domains can also be
viewed from the "inside", i.e., from the perspective of a
procedure executing inside of its own domain. Figure 6.18 shows
a black box that has been slid open. This symbol is used when
viewing a domain from the "inside".

"QUTSIDE" "INSIDE"

ﬁ/
/ /
F/ ‘/

N
Domain Object %
% 0\)(
o

Domain Object

Q00

Q0G0

Figure 6.18 -- Two ways‘to view a domain

A procedure that is executing inside a domain needs to be
able to access some objects that we do not want procedures
outside of the domain to be able to access. For example,
consider the TITLE OBJECT inside the TITLE STORAGE domain.
Procedures that are inside the domain (e.g. CHAR, SETCHAR, etc.)
must be able to access the TITLE OBJECT because  these procedures
directly manipulate the object. But, procedures outside of the
domain (e.g., procedures like CSSETUP or ALPH that are inside
other domains) should not be able to directly access the object,
because these procedures may only manipulate the TITLE OBJECT by
calling procedures in the TITLE STORAGE module.
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On the other hand, there are some objects referenced by the
domain that procedures outside of the domain must be able to
access. These objects include the instruction objects for the
procedures that are available to users of the domain (e.g., users
of the line storage domain can call the procedures CHAR, SETCHAR,

etc.).

To both provide access (to services) and prevent access (to
internals), a domain's list of object references is divided into
two parts: a public part and a private part (see Figure 6.19).
Objects in the private part of the list can only be accessed by
procedures inside the domain. Objects in the public part of the
domain can be accessed by procedures inside the domain plus all
procedures outside the domain that have a reference for the

domain.

Domain Object
Visualize . >
these as the
buttons on the These are
front of the @ > PUBLIC object
boxes in ] references,
Figure 6.9
- —
*— -
These are
- P~ < PRIVATE object
references.
® -

Figure 6.19 -- A domain is a list of object references
for all objects in a module.

As an example, look at the domain object for the TITLE
STORAGE module defined earlier. This domain (see Figure 6.20)
has a public reference for each of the procedures available to
other modules using the TITLE STORAGE MODULE, and a private
object reference for the TITLE OBJECT. The procedures are
available for use by the other modules, but the TITLE OBJECT is

hidden.
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In this example, the particular representatipn chosen for the
TITLE OBJECT requires a SWAP procedure. SWAP 1S used by all of
the public procedures to move parts of the object to and frgm
secondary storage. This procedure is part of the module, but it
should be hidden from the users of the module; thergfore its
reference is placed in the private part of the domain object.

TITLE STORAGE DOMAIN:

Domain Object

CHAR r/\‘

I CHAR SETCHAR

Instruction Instruction
Object Object

SETCHAR e~
etc.
\ y / e
Object «;‘»"A'ec\;
:3e
SWAP

Note: Although the title storage module has several other
public procedures (e.g., WORDS, DELINE), the diagrams

in this section, for simplicity, only show two
public references.

Figure 6.20 -- The title storage domain




CALLING A PROCEDURE IN A DIFFERENT DOMAIN

Here is an example of what happens when a procedure in one
domain calls another procedure in a different domain. Pay
particular attention to the complete change in access
environments that occurs when leaving one domain and entering
another.

The example comes from the KWIC index program. At Time
Period 1 in Figure 6.21.1A, the CSCHAR procedure within the
CIRCULAR SHIFTER DOMAIN is executing. 1CSCHAR is the name I have
given to the context object for this instance of the CSCHAR
procedure. You can tell that this is the current context being
executed by this process because the process object always has a
reference for the current context being executed and that
reference is pointing to 1CSCHAR.

In Figure 6.21.1A, the CIRCULAR SHIFTER domain has public
object references for the CSCHAR and CSSETUP instruction
objects. This makes sense because these procedures are publicly
available to all programs that can reference the domain. The
CIRCULAR SHIFTER DOMAIN also has private object references for
the SHIFTED TITLE OBJECT and the TITLE STORAGE DOMAIN OBJECT.
Both of these objects are hidden from procedures outside of the
CIRCULAR SHIFTER DOMAIN, but are available for use by all the
procedures in the domain (including CSCHAR).

Note that because the CIRCULAR SHIFTER DOMAIN has a reference
for the TITLE STORAGE DOMAIN, all of the procedures in the
CIRCULAR SHIFTER DOMAIN can access all the objects referenced by
the public part of the TITLE STORAGE DOMAIN. These public
objects include the procedures that the circular shifter will use
to manipulate the TITLE OBJECT hidden in the private part of the
TITLE STORAGE DOMAIN.



Time:

Process
Object

1CSCHAR: |'m the current context being

executed by this process. I'm
executing inside the CIRCULAR
SHIFTER domain.

I'm a domain that can be used

by any procedure inside the
1CSCHAR domain. Note that they
can only access objects listed in

my public part.

I'm the object
reference for 1CSCHAR's Y
domain of execution. :

CIRCULAR TITLE STORAGE:

SHIFTER: =
Domain Object
R T Q cuar
T Q sevenar %
etc.

I'm the domain of execution for
the 1CSCHAR context. All my
object references, both public
‘ and private, can be used by

% \JCSCHAR to access objects.

Pigure 6.21.1A
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Figure 6.21.1B shows the objects referenced by the TITLE
STORAGE DOMAIN, both public and private. The references for the
CHAR, SETCHAR, etc. procedures are in the public part, and can be
accessed from inside the CIRCULAR SHIFTER DOMAIN. The references
for the TITLE OBJECT and the SWAP procedure are in the private
part, and can only be accessed from a procedure inside the TITLE
STORAGE domain. How does the CSCHAR procedure call the CHAR
procedure, which is in a different domain?

The first thing to do is create a context for the CSCHAR
procedure. A context object is needed to hold the references for
the dynamic objects, and to contain system information like the
return link to the calling procedure. A context for a procedure
is created by executing a CALL CONTEXT instruction. This
instruction both creates and calls a context. It allocates the
storage for the context object, initializes the system
. information it contains, and then transfers control to the newly-
created context.
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Time:

1CSCHAR:

CIRCULAR

Process
Object

We're in the private part
of the TITLE STORAGE domain.
We cannot be executed now

because the current context
is not inside our domain.

TITLE STORAGE:

i Domain Object

Instruction
Object

SWAP

We're in the public part of
the TITLE STORAGE domain. We
can be accessed now by the
procedures in the CIRCULAR
SHIFTER domain.

Figure 6.21.1B
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Time:

Process
Object
1CSCHAR: 2CHAR: | context I'm a context for the CHAR
Object procedure. Context 1CSCHAR
just created me so it can
,,,,,, i call me. | have not been

called yet.

I'm the object reference for
2CHAR's domain of execution.

TITLE STORAGE: —

IN

Domain Object

(I'm listed In the private part of the )
CIRCULAR SHIFTER domain. |'m accessible
now, because the current context is
inside my domain. In Figure 6.21.3,
1'11 no longer be accessible, because

the current context will be outside

of my domain.
\_

Figure 6.21.2
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In Figure 6.21.2, the CALL CONTEXT instruction has been
partially executed. The context object 2CHAR has been created
for the CHAR procedure, but it has not been called yet.

Once the <context has been created, the CALL -~ CONTEXT
instruction finishes its execution by transferring control to the
newly-created context (see Figure 6.21.3). Note that the CALL
CONTEXT instruction creates a return link from the called context
(2CHAR) to the calling context (1CSCHAR), and also updates the
object reference in the process object to point to 2CHAR since it
is now the current context.

The CALL CONTEXT instruction changes the access environment.
Note the substantial difference between the objects accessible to
the CSCHAR procedure in Figure 6.21.2 before the call and the
objects accessible to the 2CHAR procedure in Figure 6.21.3 after
the call. :

Before the call, all the objects 1listed in the public and
private parts of the CIRCULAR SHIFTER DOMAIN could be accessed,
because a procedure inside the CIRCULAR SHIFTER DOMAIN was
executing. Also, all the objects in the public (but not the
private) part of the TITLE STORAGE DOMAIN could be accessed
because the CIRCULAR SHIFTER DOMAIN had an object reference for
it.

After the call, the new context is outside of the CIRCULAR
SHIFTER DOMAIN. It cannot access any of the objects listed in
the CIRCULAR SHIFTER DOMAIN, not even the objects in the public
part of the domain. There is not even an object reference for
the CIRCULAR SHIFTER DOMAIN, so the new context cannot access any
of the objects listed in it.

After the call, the new context is not only outside of the
CIRCULAR SHIFTER DOMAIN, it is inside the TITLE STORAGE domain.
This means that it can now access all the objects listed in both
the public and private parts of the TITLE STORAGE DOMAIN.

This ends the example. This section ends with a summary of
what has been said about domains.
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Object

I'm the object reference for the current
context. Note that I'm pointing to a
different context now than | was before.

1CSCHAR:] Context 2CHAR:
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Figure 6.21.3
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DOMAINS SUMMARY

A DOMAIN is a 432 hardware-recognized object that
represents an instance of a module.

NETWORKS OF DOMAINS form the static structure of a program.

DOMAINS HIDE. Only procedures inside the domain can access

objects listed in the private part of the domain.

ACCESS ENVIRONMENTS change when a procedure is called.

Figure 6.22




3. TYPE CHECKING

This section describes type checking =-- the second 432
architectural facility that supports the object-oriented design
method.

The four subsections in this section are:

® SELF-MANAGED OBJECTS VS. TYPE MANAGERS
the need for type checking

e TYPE DEFINITION OBJECTS
a way to do type checking

e HARDWARE SUPPORT FOR TYPES
how the architecture supports type checking

e PRIVATE TYPES
how type definition objects can improve control of
access to objects

SELF-MANAGED OBJECTS VS. TYPE MANAGERS

Previous sections have discussed modules that contain the
objects they manipulate.. This hides the representation of the
object because it never leaves the "inside" of the module. This
kind of module is called a self-managed object, because the
object cannot be separated from the module that manages it.

There is a second kind of module called a type manager
module. A type manager module is different from a self-managed
object because it does not always contain the object it
manipulates. A type manager allows other modules using the
object to possess it until it needs to be manipulated. At that
time, the module using the object passes it to the type manager,
which performs the manipulation and then returns the object to
the module using it.
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Figure 6.23 contrasts these two kinds of modules. The only
difference between the two is where the object is located before
and after the operation is performed. The self-managed object
keeps the object inside the module at all times; the type manager
lets the module using the object possess it when its not being
manipulated by the type manager.

SELF-MANAGED OBJECT TYPE MANAGER
gle

PARAMETERS | / PARAMETERS

TITLE STORAGE: .TITLE
STORAGE:

IN ) IN

Domain Object Uomain Object
— 5D cHar q:@ CHAR
SETCHAR 4 —y SETCHAR
o QQ‘
O woros WORDS
O oeuine 3
O oewvoro ‘

The title object
is hidden inside

o

DELINE
DELWORD

Q00

Figure 6.23 == Two ways to build a module




The major advantage of type managers is that a new instance
of the module is not needed for each new instance of the object.
One module can be used as the type manager for many instances of
the object.

As an example, consider a module that manages a user's disk
file directory. 1If there are three users: ANN, BOB, and CAROL,
using self-managed objects, there must be three instances of the
FILE DIRECTORY MANAGER -- each one containing a user's FILE
DIRECTORY object (see Figure 6.24). Using a type manager, there
are still three FILE DIRECTORY objects, but only one instance of
the FILE DIRECTORY MANAGER.

SELF-MANAGED OBJECTS
require an instance of the domain for each object.

ANN'S BOB'S CAROL'S
FILE DIRECTORY FILE DIRECTORY FILE DIRECTORY
MANAGER : MANAGER: :
= AGER = MANAGER: EEM
DPomain Object Domain Object MI» Object
O LoOKUP % O LOOKUP % ®) Lodxup %
O INSERT N O INSERT O INSERT ®
O DELETE Q) DELETE Q oELETE

TYPE MANAGERS
require only 1 instance of the domain for any number of objects.

FILE DIRECTORY
MANAGER: =

Domaln Object

.1 O Lookue
O INSERT
O DELETE

O CREATE
DIRECTORY

CAROL'S:

File
Directory

File
Directory

File

Directory
Object




Note that with a type manager, the CREATE DIRECTORY procedure
can be in the file directory manager along with the other
procedures. This procedure is used to create a new directory
object whenever a new user is added.

Type managers present some problems, though. For example,
how does the type manager check to insure that the object it is
given to manipulate 1is indeed an object of the type it
manipulates? For example, how does a type manager for file
directories know that it is given a file directory object to
manipulate and not something else, like a process object or a
context object?

A second problem is controlling access to the object. This
is no problem with the self-managed object, because other modules
never possess the object. But, with type managers, other modules
do possess the object. How can the type manager insure that
other modules cannot manipulate the object?

The following sections explain how the 432 solves these
problems.

LABELS

Chapter 2 stressed that every object has a label that tells
its type. Note that each of the symbols used to represent an
object has a label (see Figure 6.25).

EVERY OBJECT HAS A LABEL THAT TELLS ITS TYPE.

&Z

Q00

LABELS ARE SHADED.

Figure 6.25 -- Labels




These labels are used to solve the first problem discussed in
the last section -- insuring that the object to be manipulated is
of the proper type. ’

For example, when a ©processor executes any Thardware
instruction that manipulates objects, it checks these labels
before it executes the instruction. This is called type
checking. Consider the SEND instruction explained in Chapter 4.
This instruction is supposed to contain a reference for a
communication port object as one of its parameters. When the
processor executes the instruction, it checks the type label on
this object to make sure it is indeed a communication port. If
it is not, the instruction faultsl and does not execute.

Software can also check the labels on these hardware-defined
objects to make sure the object it manipulates is of the proper
type. In fact, software can even create and check 1labels for
software-defined object types. This means that software-defined
object types, like title objects, can be given a type label that
can be checked by the type manager before it manipulates the
object.

Figure 6.26 compares a "normal" operation with an object of
the correct type with an "illegal" attempt to perform the
operation on the wrong object type. When the wrong type is used,
the error is detected before the operation is performed, and the
"illegal” object is left in its original state.

lThe 432 has an extensive fault-handling mechanism. For
details, see the Architecture Reference Manuals.
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Clearly, labels solve the first problem. By using labels,
the type of the object given to the type manager can be checked.
But, what about the second problem: how to make sure that only
the type manager can manipulate an object when other modules are
permitted to possess it? Answer: by wusing 1labels, This is
explained in the "Private Types" subsection. But first, I will
cover how labels are implemented on the 432.

HARDWARE SUPPORT FOR LABELS

The 432 uses two mechanisms to implement labels. The first
is used to 1label hardware-defined object types and is highly
optimized for speedy execution. The second mechanism extends the
first mechanism to provide a general and flexible facility for
software-defined object types.

The labeling mechanism for hardware-defined object types is
built-in to the object-oriented addressing mechanism of the 432,
Every object has a label that tells its hardware type. This type
can be very specific, such as "context object", "processor
object", or "domain object", or the type can be rather general,
such as "data object". The important point is that every object
has this kind of label even if it is not very specific.

In addition to the label giving the hardware type, an object
can have an optional label that describes its software-defined
type. This 1is the second labeling mechanism provided by the
432, It extends the hardware-defined type mechanism by enabling
software to give any hardware-defined type (such as "data
object"), a more specific software-defined type (such as

"document object").
Type Definition
Object

Figure 6.27 -- A type definition object
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A software-defined type is represented by a type definition
object (Figure 6.27 shows the symbol for a type definition
object). The implementation view in Figure 6.28 shows a data
object with the type definition object that says it is a document
object. Note that the type definition object is actually a
separate object. The object-oriented addressing mechanism has a
special facility for keeping track of which type definition
object types which object. For the purposes of this book, it
suffices to draw a typed object as one object, as is shown in the
conceptual view of Figure 6.28.

IMPLEMENTATION VIEW CONCEPTUAL VIEW

Type Definition ooc,
Object oo}

et
\~’///,f— \~///,,——

Figure 6.28 -- Two ways to draw an object with a
software-defined label

The 432 architecture includes hardware support for creating
and checking both hardware- and software-defined types. This
insures that types are unforgeable. A type manager that creates
DOCUMENT OBJECTS, types them, and gives them away, can be 100%
confident that no other module has the ability to type an object
as a DOCUMENT OBJECT. Other modules may be able to read the
type, and tell that the object is a DOCUMENT OBJECT, but they
cannot type any object as a DOCUMENT OBJECT.

I won't go into the details of how the 432 makes types
unforgeable, but conceptually it is similar to our ability to
possess a piece of paper that is typed as a one-dollar bill. We
can read the type on the paper and tell it is a one-dollar bill,
yet we cannot type other pieces of paper as one-dollar bills.
The reason we cannot type other pieces of paper is that we do not
possess the object needed to do that -- a printing press.
Without the printing press, we cannot type paper as one dollar
bills.

The 432 makes types unforgeable in a similar manner. To make
a type definition object, you need an object called a descriptor
control object. Without the descriptor control object, the
hardware will not 1let you make type definition objects. The
ability to make type definition objects is controlled by
carefully controlling the distribution of descriptor control
objects.
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PRIVATE TYPES

Because types are unforgeable, they can also be used to
control access to typed objects. Types let a type manager give
an object away to other modules without giving away the ability
to manipulate the object.

There are two different kinds of types because types are used
for two different reasons. The first reason for using types has
been covered -- type checking -- making sure the object that is
going to be manipulated is of the proper type. These types are
called "public types" because they allow a type manager to stamp
its unforgeable type on the objects it manipulates.

The second kind of label 1is called a "private type". A
private type is like a public type in many ways. A private type
is unforgeable and identifies an object's type. Any procedure
that has a reference for a public-type or private-type object can
read the type of the object.

A private type has one additional property that a public type
does not. An object of a private type cannot be accessed unless
the procedure accessing the object possesses a matching type
definition.

The object's type definition acts like a lock. A procedure
that has an object reference for a private object cannot access
the object until it unlocks it. The object can only be unlocked
if the procedure has an object reference for a type definition
that matches the type definition that is locking the object.

Figure 6.29 1illustrates how a procedure locks an object.
There is an instruction (RETRIEVE TYPE REPRESENTATION) to lock an
object so that it can be accessed in a normal manner. This
instruction requires as an operand a reference for a type
definition object to be used as a key to unlock the object.
Figure 6.30 shows what happens when a procedure tries to use the
wrong "key" -- the object stays locked.



RETRIEVE TYPE REPRESENTATION uses
a type definition as a key to
unlock access to the private
object.

Type Definition
Objec
DOCUMENT

RETRIEVE TYPE
REPRESENTATION

Type Definition

Object

After the instruction, the
procedure can access the object.

Type Definition
. Object m

Type Definition
. Object

Figure 6.29 -- Successful RETRIEVE TYPE REPRESENTATION

What happens when a procedure
tries to ''break into'' a private
object by using the wrong type
definition to unlock the object?

Type Definition
Object

f

After the instruction, the
procedure still cannot access
the object.

Type Definition
. Objec

Type Definition

\ Object

Figure 6.30 -- Unsuccessful RETRIEVE TYPE REPRESENTATION
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Here are five points to remember about type checking.

e TYPE MANAGERS are used to keep objects outside of their

modules when they are not being manipulated.

e HARDWARE TYPE CHECKS all hardware-defined objects before

using them in an operation.

e HARDWARE SUPPORTS SOFTWARE-DEFINED TYPES with a mechanism

that makes software~defined types unforgeable.

® PUBLIC TYPES are software-defined types that

hardware to:

) TYPE-CHECK a software-defined object type.

® PRIVATE TYPES are software-defined types that

hardware to:

° TYPE-CHECK a software-defined object type.

allow

allow

° CONTROL ACCESS. A module can give away an object

without giving away the ability to access it.

Figure 6.31




4. DESIGNING SOFTWARE SYSTEMS SUMMARY

DESIGN METHOD

e The OBJECT-ORIENTED DESIGN METHOD wuses information
hiding as the criteria for modularization. This
increases the independence of modules, making them more
flexible, more comprehensible, and quicker to program.

® TYPE MANAGERS are modules that package all knowledge of
an object type. They contain all the procedures that
directly manipulate objects of the type managed, plus
all the static information shared by the type manager's
procedures.

DOMAINS

e A DOMAIN 1is a 432 hardware-recognized object that
represents an instance of a module.

® NETWORKS OF DOMAINS form the static structure of a
program.

e DOMAINS HIDE. Only procedures inside the domain can
access objects listed in the private part of the domain.

® ACCESS ENVIRONMENTS can change drastically when a
procedure inside a different domain is called.

TYPE CHECKING SUMMARY

e TYPE MANAGERS are used to keep objects outside of their
modules when they are not being manipulated.

e The HARDWARE TYPE-CHECKS all hardware-defined objects
before using them in an operation.

® The HARDWARE SUPPORTS SOFTWARE-DEFINED TYPES with a
mechanism that makes software-defined types unforgeable.

e PUBLIC TYPES are software-defined types that allow
hardware to:

' TYPE-CHECK a software-defined object type.

e PRIVATE - TYPES are software-defined types that allow
hardware to:

° TYPE-CHECK a software-defined object type.

° CONTROL ACCESS. A module can give away an object
without giving away the ability to access it.

Figure 6.32
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DESIGNING SOFTWARE SYSTEMS QUIZ

What is the difference between conventional and object-
oriented modularizations?

What is a domain?

What is the difference between a procedure that is executing
within a domain and a procedure that has a reference for a
domain?

What 1is the difference between a self-managed object and a
type manager? ‘

How can a module possess an object without being able to
manipulate it?

N
|
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KEY TO DESIGNING SOFTWARE SYSTEMS QUIZ

What 1is the difference between conventional and object-
oriented modularizations?

A conventional modularization is decomposition by flowchart,
i.e., each major step in the processing is a module. The
object-oriented modularization isolates each design decision
that is likely to change within a module. An object-oriented
modularization is easier to develop, easier to understand,
and easier to change.

What is a domain?

A domain is a hardware-recognized object used to represent a
module. It is a list of all the static objects used by the
module, e.g., procedures and static data.

What is the difference between a procedure that is executing
within a domain and a procedure that has a reference for a
domain?

A procedure executing within a domain has access to the
objects listed in both the public and private parts of the
domain. A procedure that is not executing within a domain,
but does have an object reference for it, can only access the
objects listed in the public part of the domain.

What is the difference between a self-managed object and a
type manager?

Self-managing objects and type managers are both modules.
The difference is that a self-managing object module always
contains the object it is managing. A type manager, on the
other hand, only contains the object while it 1is being
manipulated. One type manager can be used to manage several
objects because the selected object 1is given to the type
manager when manipulation is required; a single self-managing
object, however, can only manage one object, itself.

How can a module possess an object without being able to
manipulate it?

A module can possess a private type object without being able
to manipulate it. To manipulate a private type object, a
module must be able to unlock it. A private object can only
be unlocked 1if the module possesses a matching type
definition that can be used as a key to unlock the object.
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Chapter 7

THE I/0 SUBSYSTEM

This chapter has four sections that describe the 1I/0
subsystem of the 432 micromainframe:

® 432 SYSTEM ORGANIZATION

This section explains how the I/0O subsystem fits into
the physical organization of a 432 system.

e I/0 SUBSYSTEM ORGANIZATION

This section describes the physical organization of the
I/0 subsystem.

e THE INTERFACE PROCESSOR

Interface processors connect I/0 subsystems to 432
systems. This section describes the functions provided
by interface processors.

e AN I/0 EXAMPLE

This section contains a simple example that illustrates
how a GDP process can communicate with an I/O subsystem
to perform I/0.



432 SYSTEM ORGANIZATION

This section gives you an overview of how a 432 system is
physically organized, i.e., how it is partitioned into functional
blocks such as processors, memory, I/0 systems, and buses.

Figure 7.1 illustrates a minimal 432 system. It is divided
into three major parts:

e A data processing system that handles all the data
processing operations, i.e., everything but I1/0

® An I/O subsystem that handles all I/O processing operations
and~ 1s fully compatible with Intel's broad family of
peripherals

iAPX 432 1APX 432
GENERALIZED DATA STORAGE
PROCESSOR (GDP) MODULE
PACKET BUS
- — R — — — — — — MESSAGE-DRIVEN
| | DATA PROCESSING
L1APX 432 Anacnttzxpl;noczsson I
............ 4 |INTERFACE PROCESSOR 1APX 86 1APX 186 r------_-----n ——
I (IP) 'éc. !
| INTERRUPT-DRIVEN
e e e e e 2 4 1/0 PROCESSING
< MULTIBUS or Components Bus >
LOCAL PERIPHERAL
STORAGE CONTROLLER

PERIPHERAL
DEVICE

Figure 7.1 -- System organization




This system organization has three important advantages:

e Interrupts are isolated within the I/O subsystem.

e Both I/O and data processing performance are extensible.

e Attached processing by Intel's existing line of
microprocessors and peripherals is supported.

Interrupts are isolated within the I/O subsystem. Interrupts
are interesting because of their "two-faced" nature. They are
undesirable, but essential. Historically interrupts have been a
source of system reliability problems. Because of their random
nature, interrupts can cause very complex and unpredictable
interactions to occur. This problem is manageable 1in smaller
systems, but becomes much more difficult to deal with in 1large
complex systems. On the other hand, interrupts are necessary for
interfacing tc today's peripherals and real-time environments.

The system organization of the 432 micromainframe
accommodates the two-faced nature of interrupts. By supporting
interrupts, the 432 retains the ability to interface to today's
peripherals and real-time systems. By confining interrupts
within an interrupt-driven I/0 subsystem and by using
message-driven communication in the data processing system, the
432 limits the sgsize of the system that 1is affected by the
interrupts (see Figure 7.1). This improves the reliability of
the overall system and makes it easier to debug.

Independent extensibility of I/0 and data processing
performance. The 432 provides a range of both I/O0 and data
processing performance because additional I/0 subsystems and data
processors can be added as necessary.

Chapter 5 explained how the 432 schedules and dispatches
processes on multiple GDPs in a way that allows the same software
to run on systems with 1, 2, or many processors, called
transparent multiprocessing. Figure 7.2 illustrates how multiple
processors are configured in a system. Additional data
processors, storage modules, and I/0 subsystems can be added as
needed to achieve the desired performance.
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Figure 7.2 -- Performance extensibility

Transparent multiprocessing for generalized data processors
not only provides "instant" Dbreadth of product 1line by
simplifying the construction of systems with different levels of
performance, it also allows performance to be a design variable.
The configuration of a system can be tuned to meet its data
processing needs by adding data processors as needed, and can be
independently tuned to meet its I/0 requirements by adding
additional I/0 subsystems.

Fully independent and decentralized I/0 subsystems. These
subsystems completely off-load I/0 processing functions (e.qg.,
setting up DMA transfers, polling devices) from the data
processing system, allowing generalized data processors to spend
more of their time processing data instead of managing complex
I/0 details.

The level of function handled by the I/0 subsystem can be
varied by the system designer. For example, if the application
requires an inexpensive I/0 subsystem, the designer can elect to
use an 8085 as the attached processor (AP) and 1limit the I/0
subsystem functions to a fairly low level, such as setting up DMA
transfers and polling devices. Higher-level functions such as
file management can be performed by the data processing system.
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On the other hand, if the application requires a complex I/O
subsystem, the system designer can use an iAPX 86 or 186 as the
attached processor. With this increased processing power, the
I1/0 subsystem can off-load more functions from the data
processing system, e.g., part of the file management function
could be performed by the I/O subsystem instead of the data
processing system.

The ability to support multiple I/0 subsystems allows each
subsystem's hardware and software configuration to be optimized
for specific types of I1I/0. Figure 7.3 shows one example. I/0O
subsystem #1 is configured to handle high speed disk drives that
make DMA transfers, while I/0 subsystem #2 1is configqured to
manage 15 terminals using a polling protocol. Note that this
independent and decentralized I/0 structure is very similar to
the channel structure found on many of today's mainframe
computers,
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high speed DMA Transfers a polling protocol
Figure 7.3 —-- Optimized I/0 subsystems




Attached processing. The design of the 432 allows Intel's
existing line of microprocessors (e.g., 8085) to be attached as
subsystems to the 432 micromainframe. Thus, programs written for
other Intel processors can be run on an attached processor in a
432 system, preserving the software investment.

In summary, the four major advantages of the 432's system
organization are:

® Interrupts are isolated within the I/0 subsystem.

® Both I/0 and data processing performance are extensible.

® I/0 subsystems are fully independent and decentralized.

® Attached processing by Intel's existing line of
microprocessors and peripherals is supported.

I/0 SUBSYSTEM ORGANIZATION

Now that you have had an overview of the 432 system
organization, the remainder of the chapter focuses on the I/O
subsystem and how it interfaces with the data processing system.
This section covers how the I/O subsystem is organized, the next
section explains the functions provided by the IP, and the final
section gives an example of an I/O transfer.

A 432 I/0 subsystem has 4 parts:

® An attached processor (AP), e.g., an iAPX 86, 186, 8085,
8080, etc.

® 432 interface processor (IP)
e Local memory
® Peripheral controllers, e.g., 8271 floppy disk controller

An attached processor is half of the peripheral subsystem's
I/0 processor (the IP 1is the other half). The AP 1is the
"intelligence" that manages an I/0 subsystem. An AP does things
like polling devices, responding to interrupts, and setting up
and monitoring DMA transfers -- in general, all the busy work
associated with controlling a group of peripheral controllers.

APs may also handle additional functions such as file
debuffering, packing of 1logical records into physical records
(blocks), and unpacking of blocks into 1logical records. As
mentioned before, it is up to the system designer to decide where
to distribute the functionality.
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An interface processor (IP) is the second half of an I/O
subsystem's I/0O processor. An IP is a bridge between the "I/O
world" and the "data processing world". IPs can be used to
connect the 432 packet bus to either the 8086 component bus or to
the Multibus. The next section is a closer look at how the IP
works.

Local memory is used by the AP for two things. First, it is
used to contain the programs that run on the AP. Second, it can
be used as a buffer for data being moved from a peripheral to the
data processing system's main memory or vice-versa.

Peripheral controllers are devices 1like 8271 floppy disk
controllers or 8275 CRT controllers that handle the control
requirements of specific I/O devices.

THE INTERFACE PROCESSOR

This section covers the facilities provided by the interface
processor. It starts off by explaining:

® The structure of an IP program
and then describes the three major facilities provided by the IP:

e Mapping memory locations

® Extending the AP instruction set

® Initialization and diagnostic support

The Structure of an IP "Program"

Chapter 3 described the structure of a program for a 432
GDP. A 432 IP program has a similar structure.

Figure 7.4 illustrates the structure of an IP program. Note
that an IP has a processor object, a process object, and a
context object just like a GDP does.

~ ' w
432
Memory Space

@ Process c:t:;?:tt
Object Object ad
~u\\\“;:7—» 7

\. Aj

Figure 7.4 =-- The structure of an IP "program"
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IP processor, process, and context objects are similar to
their GDP counterparts in many ways. Much of the information
they contain is the same, because the objects fulfill much the
same function. But, they are not identical; some of the
information they contain is specific to the particular type of
processor (IP).

One of the similarities shown Figure 7.4 is that an 1IP
context object has a list of references for data objects that can
be accessed by the context. The IP uses the same protection
mechanisms as a GDP. The IP can only access objects for which it
has an object reference. Thus, an AP using an IP's mapping
facilities to access 432 memory can only access objects that are
referenced by the IP program.

One of the differences shown in Figure 7.4 is that an 1IP
context object does not have a reference for an IP instruction
object. This 1is because IPs are slave processors; they do not
fetch their own instructions. They accept and execute
instructions one at a time from the attached processor.

The fact that 1IPs do not fetch and execute their own
instructions has several other implications. In general, it
means that IP program structure is much more static, i.e., less
likely to change as the program executes. Here are two examples:

First, there are no CALL CONTEXT instructions to change the
current context within the current process. Each IP process has
only a single, fixed context. :

The reason is straightforward. Contexts are switched
whenever the £flow of control changes from one procedure to
another. But the IP does not have any flow of control because it
does not fetch its own instructions. It accepts them one at a
time as requests from the AP. Thus, the IP never really needs to
change contexts, so it does not.

However, the IP may change processes, and when it does so,
the new process has a new process object and context object
associated with it. This implicitly switches the current context.

A second example of the IP's more static program structure is
process switching. Process switching is not done automatically,
as on the GDP, but is controlled by the AP software. For
example, when the AP software detects that a SEND or RECEIVE
involving one process has blocked, then the AP can switch to
another process by changing the IP's current process reference.

When a process running on a GDP needs to communicate with the
I/0 subsystem, it does so by sending a message to a communication
port that is used by the I/0 subsystem as an "in-basket" for
requests from the GDPs. When the GDP executes a SEND instruction
to send a message to the communication port, one of two things
happen, depending on the state of the communication port.
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If the IP process 1is not waiting at the port for a message,
then the GDP simply queues the message at the port. The
execution of this instruction is exactly the same as if the GDP
had sent a message to another GDP process.

But, what happens if the IP process is ready to receive a
message and is waiting at the communication port? 1If the message
was being sent from one GDP process to another GDP process, the
message would be given to the waiting process which would then be
sent to its dispatching port. It works the same way when the IP
process is waiting to receive a message. The message is given to
the IP process which is then sent to the IP dispatching port.

But why does the IP need separate process and context
objects? After all, there is a one-to-one correspondence between
them. When a message is sent from a GDP process to an IP
process, the GDP uses the same SEND instruction it uses to send
messages to other GDP processes. This means the GDP expects the
IP process to be structured in much the same way a GDP process is
structured, i.e., IP processes need to be structured to be
compatible with the GDP mechanisms that interface with the IP.
One of the implications of these compatibility constraints is
that the IP needs separate process and context objects.

Structuring an IP program similar to a GDP program has two
advantages. First, it simplifies the interface between
processors by allowing a GDP to interface with IPs by using the
same mechanisms it uses to interface with other GDPs. In other
words, a GDP does not need to "know" a different program
structure for IPs. The second advantage is that the structure of
an IP program is easy for people to learn, because it is very
similar to the structure of a GDP program.

In summary, this subsection has described the similarities
and differences between the IP's program structure and a GDP's
program structure. In general, the two program structures are
very similar. This makes it easier to interface GDP and 1IP
processors and also makes it easier to understand the IP program
structure. But, there are some differences between the two
program structures. First, the IP program structure tends to be
much more static, because IPs do not fetch and execute their own
instructions. Second, some of the information recorded in
processor objects, process objects, etc., is processor-specific
and thus is slightly different for GDPs and IPs.

This concludes the discussion of IP program structure. The
next three subsections explain the three major facilities
provided by an IP: mapping memory locations, extending the AP
instruction set, and initialization and diagnostic support.



Mapping Memory Locations (Windows)

A primary function is to provide protected windows into the
432 address space. Figure 7.4 shows how this windowing works.
Locations within the AP address space are mapped by the IP into
the 432 address space. Whenever an AP (or any other device in
the I/O subsystem) reads or writes to these mapped locations, the
IP acts as a memory controller, dgrabs the bus, prevents access to
any RAM or ROM in the AP subsystem that has the same address, and
instead performs the read or write using the mapped address in
the 432 address space. This mapping is called a "window" because
it allows an attached processor a protected view of 432 memory.

MAPPABLE
AP
ADDRESS
SPACE 432
VIRTUAL
ADDRESS
SPACE

Reads and writes

to mapped addresses
in AP address

space are inhibited.

Data is read from
and written to
memory at mapped
address in 432
address space.

Figure 7.5 == The IP maps addresses from the AP address
space to the 432 address space.




Here is a simple example with one window. Locations 512
through 767 (decimal) in the AP address space are mapped to a 256
byte segment in the 432 address space (i.e., byte 512 in the AP
address space maps to byte 0 in the 432 segment, byte 513 maps to
byte 1, etc. -- see Figure 7.6).

432
AP ADDRESS VIRTUAL
SPACE Agggggs
P d —~
P - r.a
AP can use
additional
addresses,
but they
cannot be
mapped
65,535 WINDOW l
\
\
-
256
Bytes},
1 %
256
64KB
MAPPABLE Bytes

/

Note: The mappable
address space can be
hard-wired to start

on any 64K byte boundary

Figure 7.6 -- A window maps addresses from the AP address
space to the 432 address space,
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If the AP executes MOVB AX,512, it normally moves a byte from the
AX register to location 512 in the AP address space. However,
with the window set up, the byte is moved to byte 0 in the 432
segment. The IP monitors the I/0 subsystem bus and when it sees
an address that it is mapping, it performs the read or write
using the mapped location in 432 memory. To the AP, however, it
seems as if part of 432 storage has been moved into its address
space.

The example can be extended to consider what happens when a
peripheral device makes a transfer to the 432. One way to do
this is to buffer the transfer in the local storage of the I/0
subsystem as illustrated in Figure 7.7. After the peripheral
device has completed the transfer, the attached processor can set
up a mapping and transfer the data to 432 storage.
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L1APX 432 STORAGE
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PACKET BUS
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Figure 7.7 =-- Unmapped data transfer




Memory mapping is performed in a way that preserves the
integrity of the 432's object-oriented protection mechanism. As
described in Chapter 3, a GDP context object contains a list of
object references for all the objects that the context can
access. The same 1is true for the IP context object. Only
objects with object references in the context object may be
accessed. To set up a map from the AP address space to the 432
address space, there must be an object reference for the
locations selected in the 432 address space. Locations that lie
outside of the objects referenced by the context object cannot be
addressed because a map cannot be set up.

So far, the discussion of the IP has been limited to examples
with a single window. In a running system it is often desirable
to have several windows, thus a single IP can map to four
different windows for data transfer at a time (see Figure 7.9).
Each window can map a segment from 1 to 32K bytes 1long. These
maps are set up and changed programmatically using one of the
IP's instructions. A fifth window is defined for control of the
IP by the AP, but this window cannot be changed by 1IP
instructions. Each window requires 2 to the n bytes (n = 0 to
15) in the AP address space, and windows may not overlap in the
AP address space.

432
AP VIRTUAL
ADDRESS ADDRESS
SPACE SPACE
WINDOW 3
WINDOW 2
WINDOW 1
WINDOW 0
Figure 7.9 -- A single IP can map 4 data-transfer windows
at a time.




Extending the Attached Processor's Instruction Set

To effectively interface with GDPs, an I/0 subsystem must be
able to execute the 432's object-oriented instructions such as:
SEND, RECEIVE, RETRIEVE TYPE DEFINITION, etc. The interface
processor provides the I/O0 subsystem with these operations by
extending the instruction set of the attached processor. The AP
and IP work together as a team -- the AP executes the arithmetic
and logical operations and the IP executes the 432's high-level
object-oriented instructions.

The IP executes 432 instructions as a slave processor for the
AP. The IP itself does not fetch and execute a stream of
instructions -- instead it executes instructions one at a time
when commanded to by the AP, When it finishes executing an
instruction, it interrupts the AP to signal that it is finished
and waits until it is commmanded to execute another instruction.

The AP commands the IP to execute an instruction by writing
the operands and opcode for the desired instruction into a
function request area located in the IP's context object. The IP
starts execution of the requested instruction as soon as the
opcode is written into the function request area. Once it starts
executing an instruction, no other instruction should be written
until it finishes the current instruction. When it finishes
executing the instruction, it records status information (e.g.,
operation successful, operation faulted) in its context object
and interrupts the AP to let it know it is finished.

To give the IP a command, the AP must be able to write into
the function request area in the IP's context object. It does
this by using the memory mapping facilities described in the last
sub-section. One of the five memory windows (WINDOW 4) is always
used to map part of the IP's context object into the AP address
space. This window allows the AP to give the IP a command and to
read status information. Thus, to give the IP a command all the
AP has to do 1is write the operands and the opcode to the
addresses that are mapped to the function request area in the
IP's context object (see Figure 7.10).
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As an example, consider what happens when the I/O subsystem
wants to receive a message:

1. The AP causes the IP to execute a RECEIVE instruction.
It does this by writing the operands for the instruction
and the opcode for the instruction into the function
request area of the IP's context object. The context
object resides in 432 physical memory, but the AP can
write to it because Map 4 is always set up to map an
address subrange from the AP address space to the’
context object.

2. Once the AP has written the command into the 1IP's
function request area, the AP is free to go off and
perform other duties. The IP will interrupt it when the
RECEIVE is completed. '

3. As soon as the AP has finished writing the operands and
opcode into the function request area, the IP begins to
execute the instruction. Note that the IP can only
perform one function at a time. The AP may not request
another function until this one completes.

4. In a moment, I will explain what happens if a message is
not waiting in the communication port. For now, assume
that a message is waiting in the port. The IP performs
the receive operation, removing the object reference
from the communication port and moving it to the IP's
context object. (Note: To be able to access the
message that has been received, AP software must request
the IP to set up a map to it. It does this by
commanding the IP to execute an UPDATE WINDOW
instruction.)

5. When the IP is finished with the instruction, it records
the status of the instruction (e.qg., instruction
successful, instruction faulted) in its context object,
and interrupts the AP.

6. The AP examines the status information recorded by the
IP in its context object to determine if the operation
was successful.

7. Because the IP has completed the instruction, the AP can
now command it to execute another instruction by writing
the next instruction into the function request area.

The AP causes the IP to execute other instructions in a
similar manner. These instructions include some of the 432's
object-oriented instructions for interprocess communication,
interprocessor communication, etc., plus an instruction for
setting up and changing the mapping windows.
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One IP instruction that is a bit unusual is the RECEIVE
instruction. This instruction is straightforward when a message
is waiting in the communication port, but 1is unusual when a
message is not waiting in the communication port. Consider what
happens when the communication port is empty:

1.-3. These steps are the same as in the example above. The AP
gives the IP the command and the IP begins to respond.

4, When the IP finds out that the communication port does
not contain a message, it queues up the IP process object
to wait for a message. So far so good. This is the same
action taken by a GDP when it finds an empty
communication port. But now there is a problem. The IP
can only execute one instruction at a time and it 1is
stuck in the middle of a RECEIVE instruction waiting for
a message to arrive.

5. This problem is easily resolved. The IP writes status
information in its context object that indicates that it
is waiting for a message, and then it interrupts the AP.

6. When the AP responds to the interrupt and checks the
status, it 1learns that the IP did not find a message.
And, since the IP has, for now, stopped executing the
RECEIVE instruction, the AP can give it other commands
such as CONDITIONAL SEND or UPDATE WINDOW. Normal use of
the IP resumes with only one restriction. One IP process
can only be waiting for one message at a time; i.e., the
AP cannot request a second RECEIVE instruction until the
first one completes (or is cancelled by the IP), or until
the AP switches to another IP process.

7. When a message is sent to the port with the waiting IP
process, the standard action described in Chapter 4 1is
taken. The message is given to the IP process, and the
IP process is sent to the IP dispatching port. Waiting
at the IP dispatching port is the processor object for
the IP that initially executed the RECEIVE. This causes
the processor performing the SEND to signal the IP (using
a hardware interprocessor bus signal) that it has a
process that requires service.

8. When the IP receives the interprocessor signal, it first
finishes the instruction it 1is executing (if any). The
AP must then cause the IP to execute a SURROGATE RECEIVE
(not covered here) on the IP's dispatching port to pick
up the now ready IP process. If the AP has switched the
IP to another process, the IP's process reference must be
changed back to the process just received at the IP's
dispatching port. The IP now finishes the RECEIVE,
stores status information that indicates that the RECEIVE
is complete, and then interrupts the AP.



9. The AP inspects the status and learns that a message has
been received. Because the previous RECEIVE 1is now
complete, the AP can once again ask the IP to execute a
RECEIVE.

This concludes the discussion of how the IP extends the
instruction set of the AP. The important point to remember is
that the IP is a slave to the AP and executes instructions
whenever the AP 1loads the 1IP's function request area. These
instructions include the relevant object-oriented instructions
provided by the GDP (e.g., interprocess communication
instructions) plus the instruction for setting up and changing
the mapping windows.

Initialization and Diagnostic Support

Interface processors and their associated I/O subsystems have
a second important role to play in addition to their normal I/O
duties. The 432 generalized data processors (GDPs) require
several data structures existing in memory before they are
"turned on." Most of these structures are the -kind that need to
be modified during program execution and, therefore, cannot
pre—-exist in ROM. These structures include GDP processor
objects, GDP process objects, and other structures discussed in
Chapter 3. There must be a way to load the 432's main memory
with these structures, and then signal the GDPs to begin their
processing. Interface processors and their associated 1I/0
subsystem are used to do this.

Previous sections have discussed the IP in 1its 1logical
addressin mode. This mode uses the 432's object-oriented
addressing and protection mechanism just like the GDP, and is
ideal for most operations performed by the IP. There 1is a
problem in trying to use logical addressing for initialization.
Logical addressing requires the existence of several data
structures in memory (e.g., object references and a physical
memory management table). At initialization these structures do
not exist, so logical addressing cannot be used. There must be
another way to address memory.

The other way to address memory is called physical addressing
mode. Physical addressing is similar to logical addressing 1in
several ways. Windows are created into the 432's memory that map
addresses from the AP address space. The AP accesses 432 memory
by addressing the mapped areas in its address space.
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The difference between the 1logical and physical addressing
modes is in how the windows are set up. With logical addressing,
you are not concerned about where the object resides in 432
physical memory. When you set up a window, you give the IP a
logical address (an object reference) and it figures out where
the object is physically located. With physical addressing, the
map is set up by telling the IP the desired physical address in
432 memory.

In physical address mode the AP/IP is not constrained by the
432's object-oriented protection mechanism. This allows it to
initialize memory with all the structures required to start up
the 432 GDPs. After the structures are moved into place in 432
memory by the AP/IP in physical mode, it switches to logical mode
and signals the GDPs that they can begin processing.

Physical mode can also be used by an AP/IP subsystem that is
performing diagnostic functions. 1If, for some reason, a failure
occurs that damages the data structures wused for 1logical
addressing, an AP/IP can be used in physical mode to attempt
diagnosis and repair. :

The physical mode is a very privileged state of operation
because it allows the AP/IP unconstrained access to all of the
432 memory, 1i.e., it completely overrides all of the object-
oriented protection mechanisms. Because of this, there 1is a
mechanism controlling the ability of an AP program to place an IP
in physical mode.

To place an IP in physical mode, the IP context must have an
object reference for that IP's processor object. Thus, an AP
cannot place its IP in physical mode unless the IP context object
contains an object reference for the IP's processor object. For
example, a multiple-user system can be configured so that only
the I/0 subsystem used by the system operator has an object
reference for its 1IP processor object and can be placed in
physical mode.

In summary, physical mode allows the I/0 subsystem to access
432 main memory without the restrictions of the object-oriented
addressing and ©protection mechanism. This is useful for
initialization and diagnostics, but must be controlled to insure
the integrity of the object-oriented protection mechanism.
Therefore, a control mechanism is provided to prevent an IP from
accidentally or maliciously being used in physical mode.



AN I/0 EXAMPLE

To help you understand how the 432 performs I/0, this section
walks through a simple example that illustrates one technique for
performing I/0. 1In the example, a process running on a 432 GDP
provides the physical device number and physical address of the
data to be read into memory, and a buffer object to hold the
incoming data. The I/0 subsystem takes it from there -- setting
up the peripheral controllers and monitoring the transfer. All
higher-level functions, such as managing files, maintaining
directories, and translating logical file names into physical
device numbers and addresses, are handled by the 432 data
processing system.

It is important to note that the amount of functionality
placed in the I/0 subsystem is a design decision. This example
moves minimal functionality to the I/0 subsystem to make the
example easy to explain. In many applications, the I/0 subsystem
will provide more functionality; for example, an extremely
functional I/0 subsystem may manage files, maintain directories,
and translate logical file names into physical device numbers and
addresses. This off-loads work from the data processing system
by allowing it to make I/0O requests at a higher level, e.g., READ
FILE DATA.F4 instead of READ DEVICE 3 TRACK 5 SECTOR 2.

Chapter 4 presented an example of interprocess communication
where several processes running on one or more 432 GDPs
communicated with each other by placing messages in in-baskets.
The I/0 example below also involves interprocess communication,
but this time one of the processes is running on a 432 GDP and
the other 1is running on the attached processor in the 1I/0
subsystem.

The GDP process communicates with the I/0 process by placing
messages in the IP "in-basket." The attached processor uses the
receive instructions provided by the IP to receive these
messages, which usually request some sort of I/O activity. When
the AP finishes the I/O for the GDP process, it sends the GDP
process a reply message using the GDP process's in-basket.

The example below has eight different steps. Each step
corresponds to one of the frames in Figure 7.8. As you read the
example, it is recommended that you flip back and forth between
the text and the frames of Figure 7.8 that follow the example.



In Figure 7.11.1, the GDP process is ready to ask the I/0
subsystem to read a block of data. The message it has
prepared for the 1I/0 subsystem tells it to do two
things. First, read a block of data from address 0145 in
the I/0 subsystem and deposit it in a buffer in the 432's
main memory. Second, send the buffer as a message to the
communication port pointed to by the object reference in
the message object. 1In Figure 7.11.1, the GDP process is
executing the SEND instruction, sending the message to
the communication port used by the I/O subsystem.

Now that the GDP process has made its I1/0 request by
sending the message to the I/O subsystem, it is ready to
wait for the reply (i.e., the buffer full of data from
address 0145). In Figure 7.11.2, the GDP process is
executing a RECEIVE instruction that will cause it to
wait in its in-basket until the I/O subsystem sends the
reply.

In Figure 7.11.3, there are two important things to
observe. First, notice that the GDP process has finished
executing its RECEIVE instruction and is "inside" the
communication port waiting for the I/O subsystem's reply.

Second, notice that the I/0 subsystem 1is executing a
RECEIVE instruction. The AP has commanded the IP to
execute a RECEIVE instruction by writing the instruction
into the function request area 1located in the 1IP's
context object. Note that the context object is located
in the 432 memory space, and is accessible by the AP
because of the mapping facilities provided by the 1IP.

Window 4 is always used to map part of the AP's address

space to the context object. This allows the AP to read
and write the IP context object by reading and writing
the mapped locations in its address space.

In Figure 7.11.4, the IP has finished executing the
RECEIVE instruction. Note that the IP is now able to
access the message object, because the RECEIVE
instruction has moved an object reference for the message
from the communication port to the IP's context object.
The IP has also recorded status information in 1its
context object indicating that the RECEIVE was
successful, and has interrupted the AP to let it know
that the IP completed the instruction.

The AP responds to the IP's interrupt by checking the
status information in the context object. The status
information tells the AP that the RECEIVE was successful
and that the IP is waiting for another instruction.



Note:

At this point, the AP can interpret the message to learn
what it should do. But, the message is in the 432's
address space, which means that the AP software must
cause the IP to set up a map so that the AP can read the
message.

In Figure 7.11.5, the AP has caused the IP to set up
Window 3 to map part of the AP address space to the
message oObject. The AP software now interprets the
message and learns that it should read a  block of data
into the buffer provided and then send the buffer back to
the GDP process.

The next thing the I/O subsystem needs to do is open a
window to the buffer. To do this, the AP first commands
the IP to copy the object reference for the buffer object
from the message object into the IP's context object.
Note that the I/O subsystem can only access this buffer
because it now has an object reference for the buffer.
The AP then commands the IP to set up Window 2 to map the
buffer into the AP address space.

Now that the buffer is mapped, the AP can proceed with
the I/O transfer. AP software accomplishes this by
calling an I/O driver for the device requested. The AP
and I/0 subsystem perform all the functions required to
move data from the I/0 device to the buffer. Depending
on the I/O subsystem configuration, the AP may poll the
device, be interrupt-driven, or simply set up a DMA
transfer using an 8089.

When the AP has finished filling the buffer, it is ready
to send the buffer to the GDP process that requested the
read. Note that one of the pieces of information in the
message sent to the I/O0 subsystem by the GDP process was
an object reference for the communication port where it
expected the reply. Figure 7.11.7 shows the IP executing
a SEND instruction to send the buffer to the port
specified by this object reference.

In Figure 7.11.8, the SEND instruction has finished
executing. The GDP process has received the buffer and
can now proceed with its execution.

Figure 7.11 shows objects being moved about within the
432 memory. This is an illustrative aid only, actually
only object references are moved, and the objects
themselves (e.g., the buffer object) are not physically
relocated. -
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As a review, take a quick look at what each of the three
processors (GDP, IP, AP) does in the example below (see Figure
7.12).

The process running on the 432 GDP does not perform I/O
directly. It sends an I/0 request to the I/0O subsystem (the IP
and AP), proceeds asynchronously until it needs the data it
requested, and then waits to receive the reply message from the
I/0 subsystem.

The 432 IP provides services for the software running on the
attached processor. It extends the instruction set of the AP
with high-level 432 instructions such as SEND and RECEIVE, and
provides the AP with protected access to 432 storage.

The AP software 1is divided into two parts: a peripheral
interface executive, and I/0O drivers (see Figure 7.12). The
executive receives the request message from the GDP process by
the message after requesting the IP to set up a map to it; gets
access to the buffer by requesting to IP to COPY ACCESS
DESCRIPTOR for the buffer into the IP context object; sets up a
window to the buffer by asking the IP to execute an UPDATE WINDOW
instruction; and then calls the I/0 driver for the device
requested. The I/0 driver sets up the device, monitors the
transfer, and returns completion information to the executive.
The executive then sends the buffer to the GDP process as a reply
by causing the IP to execute a SEND instruction.

Communication
Port Object
Send Receive
Requests Requests Interrupt
Oraa—— r————————— ———————t
432 GDP 432 ATTACHED
PROCESS Receive Send INTERFACE Function PROCESSOR
/ _ Replies __ Replies PROCESSOR!  Request | SOFTWARE
- Communication g (IP) [~ AR,
4 Port Object .

GDP PROCESS: Ip: AP SOFTWARE:
® SENDS REQUEST MESSAGE ® EXTENDS A.P. PERIPHERAL INTERFACE
INSTRUCTION SET EXECUTIVE
® ASYNCHRONOUSLY PROCEEDS e SEND “@ RLCEIVES REQUEST MESSAGE
UNTIL DATA REQUIRED . ® RFCEIVE ® SETS UP MAP TO BUFFER
® CUPY ACCESS CALLS I/0 DRIVER
® WAITS TO RECEIVE ® DESCRIPTOR SENDS REPLY TO GDP
REPLY MESSAGE e UPDATE WINDOW PROCESS
® MAPS 432 ADDRESS
" SPACE POR ACCESS 1/0 DRIVFR
BY THE A.P. ® SETS UP DEVICE

® MONITORS TRANSFER
® RETURNS COMPLETION
INPORMATION

Figure 7.12 -- Coordination of GDP, IP, and AP
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The example above describes a very simple situation where a
GDP process sends a request to the I/0O subsystem. The reverse is
also possible, i.e., the I/O subsystem can send a message to a
GDP process that asks the GDP process to take some action.

SUMMARY

The 432 micromainframe is divided into two major parts:

® The data processing system made up of one or more
general data processors

@ One or more I/0 subsystems controlled by attached
processors

The four major advantages of this organization are:
® Both I/0 and data processing‘performance are extensible.
® I/0 subsystems are fully independent and decentralized.
They can work in parallel with the data processing
system, thus off-loading much of the I/0 burden from the
generalized data processors.

® System reliability is improved because interrupts are
isolated to a relatively small portion of the system.

® Intel's existing line of  microprocessors can Dbe
connected as attached processors.
Interface processors connect I/0 subsystems to the data

processing system by providing three important facilities:

® Windows that map addresses from the AP address space
into the 432 address space

® Additional instructions that extend the instruction set
of the attached processor with object-oriented
instructions such as SEND

® Initialization and diagnostic support that enable an I/O
subsystem to initialize and diagnose the 432 system
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I1/0 SUBSYSTEM QUIZ

1. What are the three major facilities provided by the interface
processor?

2. List three pieces of information contained in an IP context
object. :

3. How do GDPs perform I/0?
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KEY TO I/O SUBSYSTEM QUIZ

1. What are the three major facilities provided by the interface
processor?

® Mapping memory addresses from the AP address space into
the 432 address space

® Extending the AP instruction set with object-oriented
instructions such as SEND

® Initialization and diagnostic support
2. List three pieces of information contained in an IP context
object.

® Object references for all the objects that can be
addressed by the I/0 subsystem

e A function request area where the AP writes instructions
it wants the IP to execute

e Status information that tells the AP if the instruction
it requested was completed successfully
3. How do GDPs perform I/0?
They don't. GDP processes send messages to I/0 subsystems

asking them to do the I/O. The I/O subsystems perform the
requested I/0 and send reply messages.to the GDP processes.
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