

INTEL 432

SYSTEM SUMMARY:

MANAGER'S
PERSPECTIVE

Manual Order Number: 171867-001

Copyright © 1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Intel Corporation assumes no responsibility for any errors that may appear in this document.
Intel Corporation makes no commitment to update nor to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's software
license, or as defined in ASPR 7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without
the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to
identify Intel products:

BXP
CREDIT
i
ICE
iCS
im
INSITE
Intel
Intel

Intelevision
Intellec
iRMX
iSBC
iSBX
Library Manager
MCS
Megachassis
Micromainframe

Micromap
Multibus
Multimodule
Plug-A-Bubble
PROMPT
Promware
RMX/80
System 2000
UPI
pScope

and the combination of ICE, iCS, iMMX, iRMX, iSBC, iSBX, MCS, or RMX and a numerical
suffix.

PREFACE
The Intel 432 System Summary is a series of booklets that
introduces project managers and technical staff to the Intel
432 Micromainframe family. Compared to the 432's refer­
ence manuals, this material is both broader in scope and
shallower in depth. On the other hand, it is not intended to
teach any particular subject but to introduce an array of
related topics. In general, the System Summary is the first
publication anyone interested in the 432 should read.

Although the System Summary is introductory in nature,
the presentation does assume a good general background
in computer hardware and/or software. Ideally, the reader
has previously developed a microcomputer-based product.

Recognizing that readers have different backgrounds and
interests, the System Summary is published in three
volumes:

• Intel 432 System Summary: Manager's Perspective,
Order No. 171867;

• Intel 432 System Summary: Software Engineer's
Perspective, Order No. 172177;

• Intel 432 System Summary: Hardware Engineer's
Perspective, Order No. 172178.

The volumes are to be published in the order given above;
consult your Intel sales office for information on the
availability of any book in the series.

Each volume begins with an introduction that rapidly
surveys the principal members of the product family. The
Manager's Perspective links the major innovations of the
432 to the application issues that inspired them. This
material is valuable to engineers as well as managers. The
Software Engineer's Perspective begins with a description
of a few key technical concepts that are central to the
design of both the 432 and applications that are based
upon it. It covers the 432 architecture (the compiler
writer's view of the processors), Ada* (the 432's first pro­
gramming language), and iMAX (the 432's Multifunction

* Ada is a trademark of the U. S. Department of Defense.

iii

PREFACE

iv

Applications Executive). The Hardware Engineer's Per­
spective is devoted to the components (chips) and to the
System 432/600, a collection of board-level building blocks.

The Intel 432 is a comprehensive and evolving set of
hardware and software products; the System Summary
introduces only the cornerstones. For detailed and up-to­
date information on the complete product line, consult
your local Intel sales office.

CONTENTS
INTRODUCTION 1

A New Computer Technology 1
System Organization 2
General Data Processor 4
Interface Processor 7
System 432/600 9
Ada Programming Language 11
iMAX Multifunction Applications Executive 12
Summary 13

CHALLENGE AND INNOVATION 15
Computer Innovation 15
The Intel 432 17

THE EFFECTIVE PERFORMANCE
CHALLENGE 19

Performance-directed Instruction Set 19
Incremental Computing Power 21
Distributed Input/Output 24
Future Performance 25

THE SOFTWARE MANAGEMENT
CHALLENGE 27

Compiler -oriented Machine 28
Modular Programming Language 31
Modular Applications Executive 36
Concurrent Programming And Execution 37

THE DEPENDABILITY CHALLENGE 43
Reliable Floating Point Arithmetic 44
Compile-time Checking 45
Module Version Checking 47
Run-time Protection In Hardware 47
Self-checking Processors 53

SUMMARy 57

U.S. AND CANADIAN SALES OFFICES 59

INTERNATIONAL SALES OFFICES 65

v

TABLES
1. General Data Processor Specification

Summary........................... 5
2. Interface Processor Specification

Summary........................... 8
3. System 432/600 Specification Summary 10
4. Ada Specification Summary 11
5. iMAX Specification Summary 13
6. High Level Language Statements And

Machine Instructions 30

ILLUSTRATIONS
1. General 432 System Organization 3
2. General Data Processor 5
3. Interface Processor 7
4. System 432/600 9
5. Ada Program Fragment 11
6. iMAX Multifunction Applications

Executive 12
7. Gradual And Quantum Computer

Innovation 15
8. Self-dispatching. .. 22
9. Bitwise Instruction Encoding 31

10. Subprogram-based System Organization ... 32
11. General Form Of A Package 34
12. Package-based System Organization 35
13. iMAX Package-based Organization 37
14. Sequential And Concurrent Execution 38
15. Ada Strong Typing Examples 46
16. Module Version Checking 48
17. 432 Protected Addressing 50
18. Fault-tolerant Systems 54
19. Self-checking Processor Module 55

vi

A NEW COMPUTER
TECHNOLOGY

INTRODUCTION
The Intel 432 is a microcomputer family. Original
equipment manufacturers (OEMs) will use the 432 as one
element of the larger products they build for other parties.
These end products may be office automation work
stations, factory information systems, large PABXs or
telephone office switches, transaction processing systems,
families of general-purpose computers and so on. The 432
"engine" at the heart of such a product will often be
imperceptible to an end user.

While - as the above list suggests - the 432 can support
a diverse array of end products, it is at the same time
aimed at a distinctive class of applications. Products well­
suited to the 432 exhibit some or all of the following
attributes (as seen by the OEM, not the end user):

• a range of performance (potentially extending up to
the level of a midrange mainframe) is required to span
a family of related products or to provide headroom for
future growth;

• maximum dependability (data integrity and uptime) of
both hardware and software is critical;

• software dominates development cost and time to
market;

• concurrent execution of many independent and
cooperative activities characteriies the run-time
environment;

• growth and evolution of services over time make
software revision as important as initial development.

Compared to "traditional" microcomputer applications,
these applications are larger (as measured by consumption
of computer as well as staff and financial resources) and
are far more complex. These factors place demanding
requirements on the computer system selected to support
the application.

One requirement of large applications is abundant
computer resources; accordingly, the 432 family is based
on a 32-bit architecture. Compared to a 16-bit machine, the
432 provides a very large actual address space, an
enormous virtual address space, and a rich variety of data

1

INTRODUCTION

SYSTEM
ORGANIZATION

2

types, instructions and addressing modes. While these
capabilities are undeniably important, a 32-bit computer is
essentially a "bigger hammer." To meet the demands of
extremely complex applications, 32-bit resources are at
once necessary and insufficient. That is why, for the 432,
its 32-bit architecture is more a point of departure, than a
goal.

The goal of the 432 is to significantly reduce the life­
cycle costs of complex microcomputer applications.
Toward this end, the 432 introduces a new computer
technology, an integrated system of hardware, software
and methodology. The technology of the 432 preserves the
traditional microprocessor virtues of low cost, small
physical size and low power consumption. Like a main­
frame family, it offers a 32-bit architecture and spans a
range of performance. In other important ways, the 432
resembles no computer of the past. Considered as a
whole, its new technology constitutes a breakthrough in
computer system design. To emphasize that this technol­
ogy is inadequately described by conventional computer
"classifications," the Intel 432 is called the Micromainframe
family.

All 432-based systems share the overall organization
depicted in figure 1. The boundary between the central
system and the peripheral subsystems essentially divides
responsibility for data processing from input/output
processing. It also serves as a protective barrier: all
information in central system memory is shielded (by 432
hardware) against unauthorized access; peripheral
subsystems mayor may not provide any sort of protection.
Finally, t:?rocessing required to satisfy a critical real-time
constraint (usually related to an I/O device) is generally
performed in a peripheral subsystem, close to the source
of the constraint.

The central system is organized as a set of 432 processors
that share access to a common pool of memory and to
each other. General data processors (GDPs) perform

INTRODUCTION

1
Memory 432

General Data
Processor

,----,
I 432 I

• •• I General Data I

Central System
(Data Processing)

j

Peripheral Subsystems
(I/O Processing)

1

Figure l.
General 432 System Organization

I Processor I
L_, r-..I

I I
J L r----I 1.. ___ ,

" Interconnect I
t I -----' '- - - '1. r - - - __ .A

, r

Peripheral
Subsystem

...

I I ._J L_,
I 432 I
I Interface I
I Processor L_, ._J

I I
..J L..

r-J 'l...._,
I I
I Peripheral I
I Subsystem I
I I L ______ ..J

computational work, while interface processors (IPs)
provide pathways for input! output to and from the central
memory. The number and type of processors configured in
a given system is a function of performance requirements,
and can be varied independently of software. All 432
processors have built-in facilities for communicating with
each other, both automatically and under software control.
Additional communication facilities permit programs
running on the same or different processors to exchange
messages through memory. .

The central system supports up to 224 bytes (16 megabytes)
of real memory, and a virtual memory space of 240 (over a
trillion) bytes. Enforced automatically by the processors,
every. data structure in the central memory is individually
protected. It is important to note here that "data structure"
means any organized collection of information, including
such logical entities as operand stacks and sequences of
code, as well as what are ordinarily considered data
structures.

3

INTRODUCTION

GENERAL DATA
PROCESSOR

4

A multiprocessor design like the 432 permits widely
differing systems to be built from a small collection of parts.
No bus design could possibly satisfy the cost, size,
flexibility and performance requirements of all possible
system configurations. Therefore, the 432 defines a
standard processor/memory communications protocol
rather than a standard bus. Designed to minimize bus
occupancy and exploit available bus width, the protocol is
based on a variable-length (1 to 16 byte) packet of
information. Processors transmit request packets to
memory, and receive reply packets in response to read
operations. The protocol defines interprocessor communi­
cation as well. Each application is free to design an
interconnect structure that implements the protocol in
conformance with local needs.

Independent decentralized I/O, along the lines of the main­
frame channel concept, is inherent in the 432. Input/
output operations - including all device control, interrupt
handling and data buffering - are delegated to peripheral
subsystems. These are autonomous satellite computers
attached to the central system by means of 432 interface
processors. The number and configuration of peripheral
subsystems is a function of application needs and can
evolve over time. Any computer that can communicate
over a standard 8- or 16-bit bus, such as Intel's Multibus
design (IEEE standard 769), can serve as a peripheral
subsystem.

Fabricated in two 64-pin chips (see figure 2 and table 1), the
432 general data processor provides the 432' s primary
computational base. The GOP combines mainframe
computer functionality - data types, addressing modes,
basic instruction set - with the form factor, power
requirements, and cost characteristics of a microprocessor.

Figure 2.
General Data Processor

Table 1.
General Data Processor
Specification Summary

Addressability

Data Types

Addressing Modes

Basic Instructions
Data Transfer
Arithmetic

Logical
Comparison

Conversion
Bit Field (1-32 bits)
Control Flow

High-level Instructions
Communication
Storage Allocation
Mutual Exclusion
Protection

Automatic Operations

INTRODUCTION

224 bytes physical, 240 bytes virtual.

character, 16/32 bit signed and unsigned integers,
32/64/80 bit floating point.

scalar, stack top, record element, static vector element,
dynamic vector element.

move, save, zero, one.
add, subtract, multiply, divide, remainder, square root,
increment, decrement, negate, absolute value.
AND, OR, XOR, XNOR, complement.
equal, not equal, equal zero, not equal zero, greater than,
greater than or equal, positive, negative.
(to any data type).
extract, insert, significant bit.
branch (conditional and unconditional), call, call with message, return.

16 instructions (e.g., send, receive, broadcast to processors).
4 instructions (e.g., create data segment).
6 instructions (e.g., lock object).

14 instructions (e.g., restrict rights, inspect access).

Process dispatching and low-:level scheduling, message
synchronization and queuing.

(Table 1 continued on next page)

5

INTRODUCTION

Protection "Need to know" addressing at data structure level; attempted violations
detected and reported by hardware. Automatic detection of processor
hardware errors when processors are configured in self-checking pairs.

Selected Timing Data
(jJsec at 8 MHz)

Processor Cycle 0.125
Memory Read/Write

(word) 0.75
High-Ievel/ Automatic

Operations*
Send Message 86.875
Receive Message 96.975
Create Segment
(100,1000,10,000 bytes) 94.9, 308.375, 2417.75
Suspend, Reschedule
And Dispatch New
Process 401.875

Arithmetic* (32-bit integers) (80-bit floating point)
Ad d/Su btract 0.5 19.125
Multiply 6.375 27.875
Divide 10.625 48.25
Square Root n.a. 55.625

Package (Two) 64-pin quad in-line (QUIP)
Power Requirement +5V ±10%, 2.5 Watts

*Preliminary figures, subject to change. Data reflect execution time only and do not include instruction
fetch, operand fetch/store or pipeline refill, where applicable. Arithmetic figures are thus comparable to
register-to-register operations on a register-based machine. High-level and automatic operations do
include all memory accesses made during execution; in these cases the memory subsystem is assumed to
provide the minimal response time, and no provision is made for delays due to arbitration or error
correction.

Table 1.
Compared to a conventional processor, the GOP absorbs
into hardware many functions that are customarily
performed by application and systems software. For
example, the GOP provides hardware operations on
floating point numbers in its basic instruction set. Clearly,
implementing these in hardware improves performance.
Less obvious effects are the simplification and improved
reliability of software. Without effort, programmers reap
the benefits of the very clean, thoroughly-considered
algorithms of the proposed IEEE floating point standard.

General Data Processor
Specification Summary (Cont.)

6

Extending this concept, the GOP supplements its basic
instruction set with additional high-level instructions.
These instructions execute time-critical, frequently-used
operations that are conventionally performed by operating
system software. The operands of these systems program­
ming instructions are not numbers or characters but data

INTERFACE
PROCESSOR

Figure 3.
Interface Processor

INTRODUCTION

structures that resemble conventional as "control
blocks."

Going one step further, the GOP also performs a number
of functions automatically, on its own initiative, rather than
in response to an instruction. For example, a GOP
allocates itself among ready programs with no intervention
from an operating system. Since they represent operating
system software functions moved into silicon, the high­
level instructions and automatic operations are collectively
called the "silicon operating system."

The single-chip 432 interface processor (see figure 3 and
table 2) functions at the central system/peripheral
subsystem boundary. Acting as an "intelligent adaptor,"
the interface processor permits peripheral subsystem
software to direct data transfers across the system
boundary. The interface processor is wired into the
memory space of the peripheral subsystem like a memory­
mapped peripheral controller and is indistinguishable from
a block of local memory. It may be addressed by PS
software to execute commands and it may be addressed

7

INTRODUCTION

Table 2.
Interface Processor
Specification Summary

Addressability

Central System Interface

Peripheral Subsystem Interface

Transfer Units

Transfer Modes

Data Paths

Command Set

Automatic Operations

Protection

Selected Timing Date (at 8 MHz)
Maximum Data Rate

Block Mode
Random Mode

High-level Commands*
Send Message
Receive Message

Package

Power Requirements

by any active agent (e.g., DMA controller) to transfer data.
The IP's commands correspond to GDP high-level
instructions; they permit peripheral subsystem software to
operate within the central system environment. An
important group of commands enables communication
with both programs and processors in the central system.

Data transfers are performed by means of four IP data
paths, called windows. Each window exposes one "data
structure" in central system memory; peripheral subsystem
software can switch a window to a different data structure
by means of an IP command. To an agent in the peripheral
subsystem, a window is just a range of memory addresses;
writing into these addresses writes into the exposed data
structure, and reading from these addresses obtains data
from the data structure. Since all transfers pass through it,
the IP is able to insure that a peripheral subsystem does
not violate the protection standards of the central system.

224 bytes physical, 240 bytes virtual.

Identical to GOP.

Appears to peripheral subsystem as memory mapped controller; 8/16
bit data bus multiplexed with 16 bit address bus; standard control and
interrupt signals; compatible with Multibus architecture.

Byte and double-byte.

Random: Any single location; block: contiguous set of locations up to
64kb long.

3 random mode, 1 switchable block/random mode.

Equivalents for large subset of GOP high-level instructions (e.g., send,
receive, lock object, etc.)

Message synchronization and queuing.

"Need to know" addressing at data structure level; attempted violations
detected and reported by hardware; automatic detection of processor
hardware errors when processors are configured in self-checking pairs.

5.3 mb/sec.
1.1 mb/sec.

145.25 fJ.s.
141.5 fJ.s.

64-pin quad in-line (QUIP)

+5V ±10%, 2.5 Watts

'Preliminary figures, subject to change. System functions are for execution time only and do not include
operand fetch or store times, which are highly dependent on memory configuration and bus arbitration.

8

SYSTEM 432/600

Figure 4.
System 432/600

INTRODUCTION

The System 432/600 is a set of board-level building blocks
(see figure 4 and table 3) from which 432 computer systems
can be built quickly with minimal investment and minimal
hardware expertise. The 432/600 utilizes the multiproces­
sing capabilities of the 432 to provide a set of building
blocks that can be configured with unusual flexibility.

Computing and I/O power are selected by mixing GOP
boards and peripheral subsystems, respectively. By pre­
senting a standard Multibus interface, the 432/600 permits
peripheral subsystems to be built from Intel's comprehen­
sive array of iSBC computers, memories and peripheral
controllers. A 432/600 configuration may contain a total of
six processing elements (GOPs and peripheral subsys­
tems). Storage array boards of 128k-bytes and 256k-bytes
permit precise matching of memory to application require­
ments, up to a total of four megabytes of central system
storage.

In addition to these board components, the 432/600 offers
diagnostic software, cardcages and backplanes, and a
powered and cooled enclosure.

9

INTRODUCTION

Table 3.
System 432/600
Specification Summary

System Organization
Functional Elements

System Bus

Peripheral Subsystem Bus

Form Factor
Power Requirements

Data Processing
Functional Element
Extensibility
Memory Read Cycle
Memory Write Cycle

I/O Processing
Functional Element

Extensi bil ity
Data Rate

Memory
Functional Elements
Extensibility
Type
Bandwidth

Reliability
Memory

System Bus
Error Reporting

Diagnostic Software

Packaging Accessories
Back planes
Cardcages
Enclosure

432 general data processor board; 432 interface processor/link board
pair; memory controller board; 128/256 kb storage array boards.
32-bit multiplexed address/specification/data bus; dedicated status
and control signals; round-robin arbitration; 32 mb/sec. instantaneous
data rate.

Standard Intel Multibus design, separate bus for each peripheral sub­
system.

Intel iSBC (6.7Q x 12 in.)
+5V (±10%), 5-7 amps (max.) per board at 5V.

general data processor board.
1-5 GOP boards per system. *
2.125 f..1s. (word access).
3. 375f..1s. (word access).

Independent peripheral subsystem attached to central system via inter­
face processor/link board pair.
1-5 peripheral subsystems per system. *
2.5 mb/sec. per subsystem.

Memory controller board, storage array board of 128 and 256 kb each.
128 kb - 4 mb, according to number and type of storage arrays.
Dynamic RAM; onboard refresh.
7 mb/sec.

Error checking and correction standard; all single-bit errors detected
and corrected, all double-bit errors detected.
Each byte parity-checked.
Registers for system, memory and processor errors automatically
updated by hardware; accessible to software.
Rapid "go/no go" check of entire system; detailed diagnostics provided
for each board type; executes on iAPX 86/88-based peripheral sub­
system.

6/12/18 slot units.
6/12/18 slot units.
Enclosed chassis with power and cooling, 18-slot cardcage, 12-slot
system backplane, 6-slot Multibus backplane.

*The maximum number of GDPs and peripheral sUbsystems combined is 6.

10

ADA
PROGRAMMING
LANGUAGE

Figure 5.
Ada Program Fragment

Table 4.
Ada Specification Summary

Data Types

Operators
Logical
Relational/Membership
Arithmetic
Other

Control Structures

Subprograms

Module Structures

Concurrent Programming

Input/Output

Other Features

INTRODUCTION

Ada (see figure 5 and table 4) is a modern high level
language whose development was sponsored by the
United States Department of Defense. In its basic form and
"flavor," Ada resembles Pascal, probably the most
influential language of the nineteen-seventies. Ada differs
from Pascal in scope; while Pascal was developed to teach
programming, Ada is a production language, explicitly

type real_array is array
(integer range <» of float;

procedure array_sum (
a: in reaLarray;
sum_x: out float;
sum_indexes: out float;
sum_squares: out float)

is

begin
sum-->< := 0.0;
sum_indexes := 0.0;
sum_squares := 0.0;
for i in a'range loop

sum-->< := sum-->< + a(i);
sum_indexes := sum_indexes + (a(i) * float(i));
sum_squares := sum_squares + (a(i) ** 2);

end loop;
end array_sum;

Boolean, character, string, natural, integer, floating point, fixed point,
enumeration, array, record, access, plus programmer-defined types.

and, or, xor.
=, /= <. <=, in, not in.
+, -, *, /, mod, rem, **, abs.
+ (identity), - (negation), not (logical negation), & (catenation).

If-then-else, case, loop, begin-end, go to, return, exit.

Procedures and functions.

Subprograms, packages, tasks.

Complete multitasking facility, including task definition, initiation,
termination, prioritization, delayed execution, intertask communication
and synchronization.

General-purpose record-oriented sequential file processing; special
text file (line-and-column oriented) processing.

Generic (macro-like) subprograms; exception detection and handling.

11

INTRODUCTION

iMAX 432
EXECUTIVE

Figure 6.
iMAX Multifunction Applications
Executive

User
Module

• • •

CENTRAL SYSTEM

Basic
Process
Services

• • •
I/O

oriented toward the construction of software for embedded
computer applications. Examples of Ada's additional
capabilities include language constructs to support
modular development of large systems of programs,
concurrent programming (multitasking) and run-time
exception handling.

iMAX (Multifunction Applications Executive) is a collection
of software "components" (see figure 6 and table 5).
Running on both the 432 central system and peripheral
subsyst~ms, iMAX provides basic services that are
essential to most 432 applications. Carrying the notion of
"components" further, users may selectively configure
iMAX services into their systems, may replace iMAX
modules with their own, and may add new executive
services as well.

Storage
Services

PERIPHERAL SUBSYSTEM(S)

I/O

Standard
I/O

Monitor

Controller - '"

Custom ~ / \
I/O -'-1 Cust.om

Monitor ,DeVIce I
'--_---'-_ _ ..J - .,.,

• • •

I/O ~ Printers
Services 1 ___ ----------..,

I ~ I/O

Standard e
Monitor

12

User I Extended-
Module t-----------~~I type

Process
Communi­

cation
Services

Services

Controller
."... '"

Custom / \
I/O I -..(Cust.om J

Monitor r DevIce , I
_..J -""

~----------------iMAX-------------~

System Organization

Programmer Interface

Storage Services

Basic Process Services

Process Communication
Services

Extended-type Services

Input/Output Services

Initialization Services

Table 5.
iMAX Specification Summary

SUMMARY

INTRODUCTION

Modular "catalog" of Ada packages, each providing a related set of
services for central system; peripheral subsystems coordinated by
resident 110 controllers.

Ordinary Ada function and procedure calls; all calls checked at
compile-time.

Dynamic segment creation; automatic reclamation and compaction
of discarded segments in parallel with normal system operation.

Dynamic process creation, destruction and control (start, stop,
synchronize, etc.); processes and subprocesses may be organized in
trees; process scheduling by deadline and/or priority.

Port (data structure for queuing messages) creation; message
transmittal (send, receive, sequence, etc.)

Creation, identification and access control for user-defined data struc-
ture types.

I/O monitors (device drivers) for terminal-like devices provided;
users may write monitors for other devices; programmer interface
supports varying degrees of device independence.

Loading of initial central system memory image from designated
peripheral subsystem; central system startup.

The Intel 432 is a comprehensive family of products,
embracing chip- and board-level hardware components, a
high level programming language and an applications
executive. Together, these constitute a system designed to
lower the initial cost and the continuing cost of developing
complex, highly dependable end products. Such applica­
tions are further characterized by the execution of many
concurrent activities, a heavy information processing
orientation, and the ability to expand performance without
changing software.

13

CHALLENGE AND INNOVATION

COMPUTER
INNOVATION

Figure 7.
Gradual And Quantum
Computer Innovation

r
I- 370
a::
c(

30S1

w 360 t ---
::t
l-
Ll. t 0
w

7094 t I-

~
III

Few fields are more dynamic and innovative than
computing. New computers and lines of computers are
introduced almost weekly. Yet at the same time, sampling
a set of contemporary machines - even across manufac­
turers and classes (micro, mini or mainframe) - reveals a
surprising resemblance in their basic designs.

A look at figure 7 helps to explain this phenomenon by
examining computer families from IBM!, DEC2 and Intel;
the pattern holds for most other manufacturers as well.
The state of the art in computing is raised by innovation.
As the chart shows, most innovation is gradual or evolu­
tionary. A new computer (or series) usually provides an
improvement over its predecessors in terms of address
space, instruction set, speed or price, while carrying
forward an earlier basic design concept. "Quantum"
innovations, which establish new conceptual foundations,

lInternational Business Machines Corporation
2Digital Equipment Corporation

VAX-11/750

VAX-11/~Z

:2
DP-11!70 t

PDP-11/45

PDP-11/20 - - -

t t PDP-S/A

Intel 432 ...l.-
t
t
t
t
t iAPX

17
"'~~~--­
t C PDP-S SO~SOS5 ___ _

IBM MAINFRAMES DEC MINICOMPUTERS INTEL MICROPROCESSORS

~
t

Gradual Innovation

Quantum Innovation

Conceptual Base

15

CHALLENGE AND INNOVATION

16

are rare. These few seminal machines instantly elevate the
standard for the entire industry, changing the general per­
ception of what a computer is and what it can do. The
successful introduction of a quantum machine like the 360
or the PDP-II inspires a new evolutionary cycle of deriva­
tion (and imitation) as the original manufacturer brings out
enhanced models, and competitors incorporate the new
concepts into their own products.

Of course this pattern IS understandable when we consider
that a quantum innovation is rarely possible, and then very
difficult to realize. Computer innovation is enabled - if not
driven - by technology. A sufficient body of technical
advances must accumulate to provide the "raw material"
for a new design, and technology must make the new
machine buildable and economical. Even when the
technical basis for a quantum innovation exists, however,
market conditions must coincide to open the innovation
"window."

History - in the form of past machines - encourages
evolutionary development because a quantum innovation
usually requires loosening compatibility constraints.
Ironically, the very success of a previous innovative
machine tends to restrain a company from building
another one. To avoid obsoleting large customer invest­
ments in training and software, a new market must usually
be identified for a quantum machine. Existing lines can
then continue to be enhanced in an evolutionary fashion
for the benefit of the present customer base, while the new
machine builds another base.

The time, expense and risk required to pioneer a quantum
computer also pushes most companies toward an
evolutionary style of innovation. It is far easier to borrow
and enhance proven concepts than to create new ones.

THE INTEL 432

CHALLENGE AND INNOVATION

The Intel 432 is a quantum innovation in computing.
Technically, it combines software engineering and
computer science advances of the 1970's with Intel's state­
of-the-art MOS technology. The 432 program began in
1975 and the first chips were operational five years later; it
represents Intel's largest investment in a single program.

The 432's innovations can be viewed on two levels. First, of
course, it delivers 32-bit computer resources in a
microcomputer package. This powerful combination
opens up a whole new realm of products that can benefit
from microcomputer-based design. Yet at the same time,
the opportunities afforded by a 32-bit microcomputer
system are deeply intertwined with an array of formidable
challenges.

These challenges are inherent in the nature of the
applications that a 32-bit microcomputer makes feasible for
the first time. While these applications will vary enormously
in function, they will share a core of common properties.
Compared to 8- or 16-bit applications they will be an order
of magnitude larger and more complex. Many of them will
perform multiple functions concurrently, and most will
evolve over many years. Finally, long-term dependable
operation will be essential as people and organizations
become increasingly reliant on these powerful systems. To
grasp the magnitude of these new challenges, one might
well consider that the software for many 32-bit microcom­
puter applications will rival mainframe operating systems
in size, complexity, and the need for dependable operation.

What have we learned from the development of to day's
mainframe operating systems (and other ambitious
programs)? The record is not encouraging. Many of these
systems have never seen the light of day, having been
aborted when it became apparent that they could not
possibly satisfy their objectives. Those systems that have
been placed in operation have uniformly been late, over
budget, full of bugs in one release after another, and so
fragile that they are almost impossible to modify with
confidence. (In fairness, it must also be pointed out that
many of these systems do "get the job done" in the

17

CHALLENGE AND INNOVATION

18

environment for which they have been defined - often a
computer room with systems programmers and service
personnel located nearby. This is far from the environment
of the typical microcomputer-based product, however.)

In short, experience indicates that the traditional technol­
ogy exemplified in most computers and languages is not up
to the challenges of building complex, evolving, highly
dependable systems. To build a 32-bit microcomputer that
is a miniaturized conventional mainframe or supermini, or
a scaled-up 16-bit micro, is to ignore history. The 432's
second, and more profound, level of innovation is based on
this recognition.

The remainder of this booklet examines the principal
challenges facing the developers of complex computer­
based products:

• obtaining the right kind of performance;

• managing software development and revision;

• insuring dependable operation of both hardware and
software.

In each area the 432 responds with innovations designed to
meet the challenge. Collectively, these innovations
constitute a new computer technology.

THE EFFECTIVE
PERFORMANCE CHALLENGE

PERFORMANCE­
DIRECTED
INSTRUCTION SET

To appreciate what we mean by effective performance,
consider the following questions:

• How effective is a system that adds integers in a
microsecond but requires 1,000 times as long to add
real numbers?

• How effective is a system that has eight varieties of
string translation instructions, none of which is ever
generated by a compiler?

• How effective is a system that spends most of its time
executing operating system overhead routines, rather
than application code?

• How effective is any system that has a fixed level of
performance, that cannot be adapted to changing
needs?

Effective performance is more than raw instruction speed,
it is speed applied to a variety of parameters to optimize
total end product throughput, even in the face of changing
demands.

A single 432 processor has an instruction set that
effectively "automates" time-consuming functions normally
performed in software. Multiple 432 processors work
together to deliver a range of performance in both
computation and input! output, similar in concept to the
range provided by a compatible mainframe or minicom­
puter family. Finally, the current 432 product line
anticipates the ability of technology to support improved
performance in the future.

To improve the performance of any system one must apply
optimization efforts selectively to obtain the best return.
This is typically done by analyzing the system to see where
it spends its time. That is, the system is studied to identify
the routines that consume the most total time, either by
virtue of lengthy duration, high frequency of execution, or
both. This same approach has been applied to the design
of the 432's instruction set. Rather than implement a raft of

19

THE EFFECTIVE PERFORMANCE CHALLENGE

20

"clever" new instructions, the 432 moves proven high­
payoff functions into hardware. These fall into two general
categories: numeric computation and operating system
"overhead."

Floating point numbers provide a useful approximation of
the real number system that people use for most
calculations. They can express not only integers but also
fractions and irrationals, and are further capable of great
range and precision. Because of their versatility, floating
point numbers are very attractive for microcomputer
applications. Unfortunately, the floating point algorithms
are quite complex. When they are implemented in
software, floating point operations are so expensive that
they must be ruled out for many applications. For example,
addition and square root take about 1,600 and 19,600
microseconds respectively when executed in software on a
5MHz iAPX 86. By moving floating point algorithms into
hardware, the 432 makes the convenience of floating point
arithmetic a practical alternative for most applications (add
and square root execution times are about 13 and 56
microseconds respectively). Note that this same argument
is the rationale for the Intel 8087 Numeric Data Processor,
which brings hardware floating point to 16-bit applications.

Three important functions, which are normally executed
by operating system subroutines, have been absorbed into
the hardware of the 432. First, as amplified in the following
section, general data processors assume responsibility for
program dispatching - switching themselves among
multiple programs - with no intervention from software.
Second, the 432 maintains pools of free memory; storage
can be allocated from a pool with a single GOP instruction.
Third, both GDPs and IPs support a general-purpose
system of program-to-program communication. A message,
consisting of any data structure in memory, may be sent or
received in a single instruction; messages are queued
automatically by the hardware so that send and receive
operations may be executed independently of one another.

INCREMENTAL
COMPUTING
POWER

THE EFFECTIVE PERFORMANCE CHALLENGE

Since the introduction of the IBM System/360, typical
mainframe and minicomputer product lines have been
organized as compatible families. Each model of the family
offers a different level of performance (and price). While
the capability of an individual model is limited, the family as
a whole spans a wide range of performance. To obtain a
performance increment, the customer must change
hardware (i.e., substitute one model for another), but -
importantly - existing software is preserved intact.

This kind of flexible performance, taken for granted by
mainframe and minicomputer users, is not so well­
developed in microcomputers. A given microcomputer
provides a single level of performance. Over time, new
versions that run at higher clock rates are typically
introduced; over more time, a new "generation" usually
emerges with a different, but upward-compatible architec­
ture. Thus, given the passage of time, an application can
usually "trade up" to a faster processor. Often the
substitution requires substantial hardware redesign.

This approach is satisfactory in applications that are fairly
well-defined with relatively bounded execution-time
behavior, as microcomputer-based systems have tended to
be. As applications become more complex and more
dynamic, however, it becomes increasingly difficult to
predict how much processing power a system will need to
meet its performance goals. This uncertainty is a serious
source of risk since an application must usually commit
itself to a processor two years before any software has
been written. Even when the "right" decision is made
initially, design changes and extensions that crop up during
development and after introduction can threaten a
system's viability. A second limitation of the "new model"
approach is that it effectively prohibits designing a family of
end product models that use the same hardware and
software components to provide different performance
levels. In response to these challenges, the 432 has been
designed with incremental performance as an inherent
feature of the architecture.

21

THE EFFECTIVE PERFORMANCE CHALLENGE

Figure 8.
Self-dispatching

GOP

o

22

Overall computational throughput in a 432-based design
can be adjusted by changing the number of general data
processors in the system. These- processors are self­
dispatching; the normal cycle of running a program unit (a
process) until it waits for an event (blocks) or times out, re­
scheduling it for subsequent execution, and then switching
to the next ready process is performed automatically by
the GDPs (see figure 8). Software, including the operating
system, can be completely unaware of how many

REAOY PROCESSES

B

a. With One GOP

SEQUENCE OF EVENTS

• GOP is running process A, processes
Band C are waiting to run; with B
scheduled ahead of C.

• GOP detects that process A's service
period has expired, so it schedules A
for another service period. (In this
case the parameters of the processes
indicate that A should be scheduled to
follow B and C.)

• GOP dispatches the next ready
process, B.

• GOP runs process B. C and A wait. .

THE EFFECTIVE PERFORMANCE CHALLENGE

GDP-1 READY PROCESSES GDP-2 SEQUENCE OF EVENTS

o B

CJ

A

• Process A's service period has expired
and GDP-1 is scheduling it. GDP-2 is
running process C.

GDP-1 dispatches the next ready
process (B). GDP-2 continues to run
process C.

• Processes Band C are both running.

6J~ / Iii i i

GDP-1 continues to run process B.
GDP-2 is scheduling process C,
whose service period has expired;
it will dispatch A next.

Figure 8.
Self-dispatching (cont'd)

h. With Two GDPs

processors are present in the system. In everyday terms,
the effect is somewhat like the single service line used at
many banks. The line of customers waiting to be served
will move faster if additional tellers open their windows.
Since the number of processors is invisible to software, this
important facility of the 432 is called transparent
multiprocessing.

While transparent multiprocessing is most attractive for its
ability to add computing power to a system, it is also

23

THE EFFECTIVE PERFORMANCE CHALLENGE

DISTRIBUTED
INPUT jOUTPUT

24

important to recognize the significance of being able to
reduce the number of processors in a system without
altering software. If, in a multiple-GOP system, a processor.
fails, its circuit board can simply be removed from the
system. The system can be restarted and it will then
provide the same services but at a slower rate. In this way
transparent multiprocessing permits a system to remain
useful after a processor failure.

Of course, there are limitations to the performance
improvement that can be realized by adding processors,
and these break down into two general areas. First, in
order to utilize the processing potential of multiple GDPs,
there must be work for them to do. Most large applications
naturally break down into a collection of parallel activities
(processes or tasks) regardless of the computer they are
destined to run on. (Transparent multiprocessing is, in
fact, based on the recognition and exploitation of this
natural tendency.) So in practice, most 432 applications
lend themselves to effective utilization of transparent
multiprocessing as a matter of course. Furthermore, when
programmers know,that multiple processors are available,
they can often design algorithms that consciously exploit
the parallel processing capabilities of the system.

The second limitation is the ability of the application's
hardware configuration to keep the processors running at
full speed. The throughput increment obtained by adding a
processor can be constrained by memory bandwidth and
latency. Accordingly the 432 permits wide latitude in the
design of the memory system as well as the processor/
memory interconnect.

In much the same way that 432 computing power is
adjustable by varying the number of GDPs in the system,
432 I/O power is a function of the number of peripheral
subsystems attached to the central system. Since each
peripheral subsystem is an independent computer, I/O
capacity is variable along another dimension according to
the character (i.e., hardware configuration) of each

FUTURE
PERFORMANCE

THE EFFECTIVE PERFORMANCE CHALLENGE

peripheral subsystem. Additional terminals could be added
to a system, for example, either by attaching them to
existing subsystems with excess capacity, or by incorpora-

. ting them in a new peripheral subsystem.

The central system (via an interface processor) presents a
very general physical and logical interface to a peripheral
subsystem. This encourages the design of different
specialized peripheral subsystems that perform critical
operations optimally. It also permits many existing systems
to be attached to the 432 with a minimum of modification
to hardware and software. Finally, the general interface
simplifies the modification of a peripheral subsystem - to
take advantage of improved technology, for example -
and helps to insure that the changes are localized within
the subsystem.

The 432 relies on the intelligence of peripheral subsystems
to absorb the great majority of processing required to
support I/O transfers. Distributing responsibility in this
way allows multiple I/O operations to proceed in parallel
with each other, and with computation and data processing
operations running in the central system. A system's
aggregate I/O capacity is subject to the normal limitations
imposed by memory latency and bandwidth.

The 432 has been explicitly designed to provide improved
performance in the future while maintaining the overall
system framework described in this book. The classic
precipitator of a new generation is the "running out of
memory" syndrome that has been repeated again and
again in microcomputers, minicomputers and mainframes
alike. With 16 megabytes of real memory space and a
trillion of virtual, the 432 moves this traditional barrier far
into the future.

To further extend its useful lifetime, the 432 anticipates
continuing semiconductor technology advances by
carefully distinguishing between architecture and imple­
mentation. On-chip registers, caches, stack pointers and

25

THE EFFECTIVE PERFORMANCE CHALLENGE

26

so on have been made invisible because they are
implementation features designed to provide speed, rather
than function. Any or all of them can be redesigned to
obtain better performance without affecting the machine
as seen by a compiler - its architecture.

The 432 is also designed to permit new processors to be
neatly integrated into the present family. The GDP and the
IP are distinct functionally specialized processor extensions
to the 432 common base architecture. As experience with
the product line grows and new market needs develop,
additional compatible processor types can be built to
extend the common base architecture in other directions.

THE SOFTWARE
MANAGEMENT CHALLENGE

Experience with mainframe-based programs has shown
repeatedly that large software systems are among the most
difficult engineering projects that men and women
undertake. The large system that is delivered on schedule,
within budget, and with performance as promised, is a
rarity. Systems that involve real-time or concurrent
processing - the norm in microcomputer applications -
are even more challenging. Finally, successfully modifying
or extending large systems has proven so difficult that
many organizations spend well over half their budgets for
software "maintenance."

Microprocessor users were originally spared the problems
of large-scale programming because the earlier machines
simply could not support large systems. The introduction
of 16-bit machines, however, brought multi-person projects
producing upwards of 100,000 lines of source code. To
develop a system that exploits the power of a 32-bit
microcomputer system in a timely manner will require
multiple teams of programmers working in parallel. They
will develop software that is orders of magnitude larger and
more complex than anything ever written for an 8-bit
machine. In this new era, managing software size and
complexity becomes as critical to project success as
discovering and expressing the algorithms that direct the
operation of the end product.

The essence of the problem is that complexity increases
exponentially with size: it is far easier to write 50 programs
of 1,000 lines each than to write a single system of 50,000
lines. While limited address spaces and processing power
made early microcomputer-based systems small by
definition, machines like the 432 make it possible to build
very large systems indeed. To learn from the mainframe
experience, rather than repeat it, new tools are needed to
reduce complexity where possible, and to otherwise
actively manage it.

Addressing the challenge of reducing and managing
software complexity, the 432 provides innovations at four
levels: first, a machine that is an efficient target for high
level language compilers; second, a language explicitly

27

THE SOFTWARE MANAGEMENT CHALLENGE

COMPILER·
ORIENTED
MACHINE

28

designed for building large systems of programs; third, an
executive that provides a "catalog" of widely-applicable
core functions that can be selected, extended and modified
according to local requirements. Finally, the 432 has been
designed from the ground up to support concurrent
programming and concurrent execution.

A given program can be written, tested and modified faster
in a high level programming language than in an assembly
language. The basic concept at work here is simplification:
a high level language removes the attributes (and
idiosyncracies) of the computer from the programmer's
"problem set." The language replaces memory locations.
registers, addressing modes and so on, with high level
constructs: data structures (such as arrays, records and
lists) and control structures (like loops and selection
statements) that have been designed to promote the
natural and correct expression of problem solutions.

High level languages have been accepted somewhat slowly
in microcomputer-based systems primarily because the
tradeoff between programming costs and manufacturing
costs has often favored assembly language. Memory still
dominates the cost of microcomputer system hardware; a
compiler for a typical microcomputer will generally
produce a larger program than will a skilled assembly
language programmer. A larger program generally means
slower execution, so to achieve comparable performance,
a system programmed in a high level language will require
faster (and more expensive) hardware. For applications
that are comparatively small and that are produced in high
volumes (e.g., those based on single-chip microcomputers),
assembly language will continue to make sense. For very
large applications, such as those made possible by a 32-bit
microcomputer system, high level programming is a
practical necessity, since every effort must be made to
reduce the complexity of the programming task. For
applications in the middle ground, the costs must be
weighed case by case. Of course as labor and hardware
costs continue their opposing trends, the balance will
increasingly tip in favor of high level languages.

I~I

THE SOFTWARE MANAGEMENT CHALLENGE

To make high level programming economically sensible for
all 432-based products, the 432 general data processor has
been designed to favor code generation by compilers
rather than assembly language programmers. The machine
itself makes it possible for straightforward, non-optimizing
compilers to generate code that approaches assembly
language programming in size and speed. The strength of
this commitment to high level languages, and the success
of the design, is indicated by the fact that Intel does not
supply an assembler for the GOP, nor is one used in­
house. The portion of the iMAX executive that runs on
GOPs, for example, is written entirely in Ada. .

There are no visible registers in the GOP; all instruction
operands are memory-based. A good assembly language
programmer regards registers as high-speed local storage
which can be exploited by considering the run-time
behavior of the program being written. A compiler, on the
other hand, has no knowledge of the run-time behavior of
the program it is translating; to it, registers present not so
much an opportunity for optimization as a scarce resource
which must be managed. Registers are used internally in
the GOP to improve performance. By keeping registers
"behind the scenes," rather than as visible features of the
architecture, the GOP reduces compiler complexity.
Moreover, new registers can be added to future GOPs to
enhance performance without impacting existing software.

The GOP promotes the generation of fast, compact code
by requiring fewer machine instructions per high level
statement. A compiler for a typical computer must
generate several machine instructions to implement each
high level language statement. In contrast, the 432's
instruction set (in conjunction with its data types and
addressing modes) matches typical high level statements
on a one-for-one basis (see table 6). A compiler for the 432
simply generates the "obvious" machine instruction(s).

In addition to requiring fewer machine instructions, 432
programs are also made more compact by the instruction
encoding technique. As in many modern computers, the
instructions that occur most often are shorter in length

29

THE SOFTWARE MANAGEMENT CHALLENGE

432 Conventional
Ada Statement and Interpretation (1) Machine Machine

Instructions Instructlons(2)

E:= F; - -assign simple variable (scalar) Fto simple variable E. 1 (MOVE) 2

A(I):= X.B; - -assign element B of record X to I 'th element of vector 1 (MOVE) 3
- -A.

A(I) := A(I) + C; - -increment I'th element of vector A byvalue of simple 1 (ADD) 4
- -variable C.

X.B := C/D(I); - - divide si mple variable C by I'th element of vector 1 (DIVIDE) 4
- -0, and assign result to element B of record A.

A(I) := X.B-(E*F); - -multiply simple variables E and F, subtract the result 2 (MULTIPLY, 7
- -from element B of record X, and assign the result to SUBTRACT)

the I'th element of vector A.

NOTES:
(1)Assume A..F are variables of the same type (e.g., all integers or all reals) and that the value of I is

in the range 0 .. 65,535.
(2)Assume a typical register-oriented computer. For example, the instructions required to imple-

ment A(I) := A(I) + C might be:

LOAD reg1, I
LOAD reg2, A(reg1)
ADD reg2, C
STORE A(reg1), reg2

Table 6.
than those used less frequently (e.g., MOVE is shorter
than SQUARE ROOT). Instruction references to top-of­
stack operands are encoded implicitly; no bits are needed
to specify the location of these operands. When a data item
is used twice in the same instruction (e.g., A(I) := A(I) * B),
only a single reference is encoded in the instruction.
Finally, instructions are encoded bitwise (see figure 9):
each instruction consists of a variable number of variable­
length bit fields. The shortest instructions are six bits long,
while the longest are over 300 bits. Successive instructions
are located immediately adjacent to one another in
memory, irrespective of word or byte boundaries. (The
processor fetches instructions in 32-bit words and extracts
the bit fields internally.) There are no unused bits in the
instruction stream, either within one instruction or
between two instructions.

High Level Language Statements
And Machine Instructions

30

The GOP's register-free architecture, high level instruc­
tions, data types and addressing modes, and very dense
instruction encoding substantially narrow the "efficiency
gap" between compiler-generated and hand-coded

THE SOFTWARE MANAGEMENT CHALLENGE

'--__________________ ~I IWordl (Fetch Width)

'--___ ~ ________ ~ ________ ~ ______ ~I IBytel

____ ~~~~ ____ ~~~ __ ~~~~ __ ~~I~I mill
,"I -'0' ________ ""--____ ..I.-______ __ ___ ..I.-~I I Field , Field

Figure 9.
Bitwise Instruction Encoding

MODULAR
PROGRAMMING
LANGUAGE

Instruction

programs. Straightforward, non-optimizing compilers will
routinely produce code that approaches assembly
language in efficiency. This in turn makes the benefits of
high level programming economically practical for even
high-volume 432 applications.

Large software systems are inherently complex; no one
can fully understand a system of 100,000 lines. Nor is th~re
time for one person to develop a large system. As a result,
large systems are classically developed according to a
"divide and conquer" strategy. The large problem is
divided into smaller independent subproblems that can be
parceled out to teams and individuals. The subsolutions
are developed in parallel and are integrated into a single
solution that solves the whole problem. In a similar vein,
large software systems are usually modified (corrected or
extended) by identifying the part(s) of the system to be
altered or added, making the changes and additions, and
then reintegrating the old, new, and modified parts to
produce a new version of the whole system.

The parts into which a system is decomposed, both for
initial development and later modification, are called
modules. A module may be compiled independently of
other modules, and provides a service that other modules
can call upon. Modular programming has been practiced in
various forms for many years; its goal is to make the

31

THE SOFTWARE MANAGEMENT CHALLENGE

Figure 10.
Subprogram-based System
Organization

I-'
Main

Program
!---,

32

~

"-+-

inherent complexity of a large system manageable by
dividing the system into units that can be considered
independently, that is, in isolation from the rest of the
system. In theory, a programmer can then develop or
modify a module without affecting - or even understanding
- the rest of the system. Thus, in a modular system, it
should be possible to:

• develop modules separately and in parallel with the
assurance that they will fit together;

• quickly identify the module that is the source of a bug;

• introduce a new module into the system without
jeopardizing what already exists;

• change one module without changing any others.

In practice, these goals have been discouragingly elusive.
Figure 10 illustrates a conventional decomposition in which

~- ----
Subprogram

h 2

~ V
Subprogram

5
~ l"-

Subprogram
~ - ----

3

Subprogram
V

~ 6
~

~

Subprogram f----'" 4
~- - - -

Legend:

Call

Read/Write - - - ~

THE SOFTWARE MANAGEMENT. CHALLENGE

a module is a subprogram (e.g., a procedure) that performs
a well-defined function. This "decomposition by function"
is encouraged by most languages whose only support for
modular programming is the ability to compile subprograms
independently. With this approach, data is considered of
secondary importance to algorithms; the data is typically
defined "as needed" to make the algorithms work. As a
result, systems designed in this manner usually contain a
number of global data structures that are accessed by
many different modules.

Modules that share access to a data structure violate the
basic intent of modular design: they are made interdepen­
dent by virtue of their mutual dependence on the data
structure. What are the consequences of this interdepen­
dence? First, programmers writing modules that share a
data structure must coordinate the detailed definition of
the structure and any changes made to it as the
development progresses. Second, damage discovered in a
data structure can be attributable to any of the modules
that have access to it. Third, a new module that accesses a
shared data structure threatens all other modules that use
that structure. Fourth, a change in the way one module
uses the data structure can necessitate changing some (it
can be difficult to tell which) or all of the other modules that
use it.

Recognizing the importance of modular programming as
well as the shortcomings of past methodologies and tools,
Ada defines a new kind of module as an inherent element
of the language. This module is called a package (see figure
11), and is the basis for an integrated approach to modular
programming. (This section concentrates on describing
the effects of package-based program structure; more
information on packages per se is provided in the Software
Engineer's Perspective.)

A package defines both a data structure and a set of
operations on that data structure. (Note that a "data
structure" can represent an I/O channel, a bank account,
or any other type of "thing" managed by the application.)
An operation is written as an ordinary procedure or

33

THE SOFTWARE MANAGEMENT CHALLENGE

Figure 11.

Data Structure { ,

Name !_-=-I-----~ -1 References to =) Other Packages
Subprogram
Names and
Parameter
Definitions

~--------~---------~~

l L Body: Separates and hides details
and decisions of package
implementation (how it works)

Specification: Explicitly defines complete
user interface (what it does)

General Form Of A Package

function that can be called to perform a service related to
the package's data structure. In a banking application, for
example, there might be a package that manages a data
structure representing a bank account; this package might
provide operations such as open new account, close
existing account, debit account, credit account, report
account balance, and so on. A file-handling package might
provide read, write, and close operations. The (static)
organization of a system's software is a network of
packages that call each other's operations, as shown in
figure 12.

34

The fundamental characteristic of a package is localization.
One and only one module has responsibility for all
operations on one and only one data structure. A data
structure can be read or written only by the operations in
its package; other modules may gain access to information
in the data structure (or cause information in the data
structure to be changed) only by calling these operations.
Other modules know what a package will do when one of
its operations is invoked, but all knowledge of how it works
is hidden. This means that "how it works" can be changed
without affecting users so long as "what it does" is
preserved.

What are the consequences of basing a system on
packages? First, development is simplified by the separation

THE SOFTWARE MANAGEMENT CHALLENGE

STARTUP PACKAGE

Main Operation

LrB
Operation 4

Figure 12.
Package-based System
Organization

~A r -,
Operation 1 ' Data I

h I- - -, Struc- ,
Operation 2 I- - _, ture

r------. Operation 3
A 1

~J[
L __ ..J

r l 'c r -,
Data . Data ,

- - ~: Struc- I - -- Operation 5 '- _ 1 St
1 ruc- I

, ture I Operation 6 ,... - __ I ture ,
B , C L __ ...J L __ -1

Legend:

Call

Read/Write - - - ~

of package specifications ("what they do") from package
bodies ("how they work"). The specification of a package is
a contract between a package's implementors and a
package's "clients." Once a specification has been
established, clients and implementors can code in parallel;
the specification decouples the use of a package from its
implementation. Since clients depend only on a package's
specification, a change to a package body (for example, to
fix a bug or to improve performance) is guaranteed to
affect no other module in the system. (Note that the Ada
compiler checks to insure that caller/callee parameter lists
match at compile-time, thus insuring that packages "fit"
when they are linked together for testing.)

Second, if a data structure is found damaged, the damage
can only be due to an operation in the single package that
manages it. Third, a new package can be introduced into a
working system with confidence, since its interaction with
the rest of the system is limited to calls of existing package
operations.

Most observers agree that the principal contributor to low
programmer productivity is the inordinate amount of time
that is devoted to program revision - fixing bugs,

35

THE SOFTWARE MANAGEMENT CHALLENGE

MODULAR
APPLICATIONS
EXECUTIVE

36

enhancing services, or improving performance. Many large
systems are in a state of constant change from the time
development begins: new requirements are introduced,
algorithms and data structures are found to be inefficient,
"minor" misunderstandings are discovered and so on.
Conventional techniques for decomposing systems into
modules permit the correct operation of a module to
depend on a data structure which can be altered by any
number of other modules. A simple modification to such a
data structure, or to a module that updates it, can easily
trigger the modification of tens of other modules. By
increasing module independence, package-based modular
programming above all makes systems changeable.

Hardware engineers design microcomputer systems
largely from standard chip- or board-level building blocks
(disk controllers, memories, and so on). These components
perform generic functions that are useful in widely different
kinds of applications. This approach minimizes the amount
of original design work, confining it to the truly application­
specific aspects of the system.

The 432's iMAX executive is a kind of "component
catalog" for 432 software engineers. Each iMAX component
is an "off the shelf" Ada package that manages a basic
resource (e. g., free memory) that most systems use,
regardless of the application area. Electing to implement
basic system services with iMAX packages reduces project
risk since the most critical and elemental services (those
which require intimate knowledge of the machine) have
already been written, documented and tested. It also
shortens time-to-market by permitting programmers to
concentrate on the software requirements that are unique
to the application.

Since iMAX is a collection of Ada packages (see figure 13),
rather than a monolithic system, only the services that are

APPLICATION PACKAGES

THE SOFTWARE MANAGEMENT CHALLENGE

iMAX PACKAGES

I Basic
Alpha Process

Other
iMAX

Packages
Package l J-----1

1

~::-:.:::::_--t..&.-.Pa_Ck_age ~
Startup)
Package .---J

'-----'-----'~ [1--(---il Beta ,L : l.
Package '--_~----J~i-----i

Port
Package

IJ-------fl I I-------t

Storage ~~ __ --1

Package hl--~ .. I---~ ---_..&....._--

Figure 13.
iMAX Package-based
Organization

CONCURRENT
PROGRAMMING
AND EXECUTION

germane to the application need be configured. No
memory space or processor time is consumed by
unneeded facilities. (Naturally, some iMAX packages use
each other, so selection of one may implicitly select
another.) Furthermore, users may add packages to iMAX,
and, within limits, may also replace packages with
equivalent local implementations. In sum, iMAX's package­
based organization makes it remarkably adaptable to
differing local needs.

Computers were invented to perform long calculations
consisting of a great many steps executed in sequence, one
after another. While computers are still used for calculation,
their application has also broadened tremendously. Now it
is rare to find a machine that is employed to execute
programs sequentially one at a time. Instead, most
computers are busy running many programs concurrently.
The essence of concurrency is that more than one activity
is underway - but not necesarily in actual execution - at
the same time. Figure 14 contrasts sequential execution
with the two types of concurrent execution, apparent and
real.

It is useful to distinquish between concurrent execution, as
described above, and concurrent programming. Concur­
rent execution can improve system throughput by

37

THE SOFTWARE MANAGEMENT CHALLENGE

a. Sequential Execution -
Single processor executes
one program to completion
before beginning the next.

Figure 14.
Sequential And Concurrent
Execution

38

b. Apparent Concurrent
Execution -
Single processor is multi­
plexed among multiple
programs; only one actually
runs at a time.

rn
I
I

CD
I
I

c. True Concurrent Execution -
Multiple processors execute
mUltiple program in
parallel.

increasing processor utilization. Most programs actually
run in short bursts, executing some instructions then
waiting for an "event" that must occur before processing
can continue. Often the event is completion of an I/O
operation or receipt of a message sent by another
program. Rather than have the processor idle until the
event occurs, the processor can switch to a ready program
and run it. Multiplexing the processor among several
programs keeps it busy and permits more work to flow
through the system in a given period of time. Concurrent
execution does not necessarily require attention from
programmers; for example a multiprogramming operating
system may multiplex a processor among independent
programs that are unaware of each other's presence.

If a system supports concurrent execution, the added
availability of a concurrent programming facility gives
programmers the opportunity to simplify software design.

THE SOFTWARE MANAGEMENT CHALLENGE

A system of concurrently running programs is a natural
model of the "real world," particularly the world that
microcomputers interact with. In the environment of the
typical microcomputer-based product, many activities are
underway at once: end users are entering data and
requesting services, sensors are monitoring external
conditions, controllers are adjusting equipment, and so on.
Futhermore, these activities often interact with one
another: one activity may produce data that is "consumed"
by another, one activity may begin upon a signal from
another and so on. A system's software is greatly simplified
if its own structure reflects these natural activities and their
interactions.

In general, support for concurrent programming has been
limited to an operating system sandwiched between a
sequential programming language and a sequential
machine. Without language support, programmers have
been forced to learn the idiosyncracies of an operating
system in addition to their application language. Without
machine support, it is very difficult for an operating system
to efficiently multiplex the execution of concurrent
programs, and even more difficult to provide efficient
sharing of information while at the same time protecting
programs from each other. Finally, without designed-in
hardware support, it is extremely difficult to implement a
system that provides real concurrent execution; in most
computers true parallel execution is limited to I/O
operations.

The 432 is specifically designed to support concurrent
programming and concurrent execution - both apparent
and real. Concurrently executing programs nominally run
independently of one another; GDPs automatically
multiplex themselves among ready programs, removing
this overhead from operating system software. At the same
time, concurrently executing programs may be designed to
cooperate with each other; they may send messages,
synchronize their execution and share data. Finally, the
432's transparent multiprocessing capability makes moving
from apparent to real concurrent execution a simple
matter of adding processors to the system.

39

THE SOFTWARE MANAGEMENT CHALLENGE

40

Ada defines a unit of concurrency, the task, as a basic
element of the language; a task is a program unit that may
operate in parallel with other tasks. Ada gives programmers
the ability to create tasks, activate and terminate them,
pass information between them and synchronize their
execution. All of this is done directly with high level
language statements. Whether the concurrent execution
of active tasks is apparent or real is purely a matter of the
underlying hardware configuration; it does not need to be
addressed in the code at all.

Since Ada's tasking facility is intended to be implemented
on many different types of computers, its design has to
some degree traded flexibility for ease of implementation.
For example, it is difficult in Ada for one task to request a
service of another and then continue running without
waiting for the request to be acknowledged. The iMAX
executive takes advantage of the 432's unique architecture
to offer programmers a somewhat more general and
efficient set of concurrent programming facilities. The
executive also simplifies concurrent programming in
languages which do not have built-in facilities; such
facilities can be supplied in the form of a subprogram
library that interfaces to iMAX.

Underlying both iMAX and Ada is a processor expressly
designed for concurrent programming and execution. 432
general data processors automatically multiplex themselves
among ready-to-run programs, with no software interven­
tion whatever. The operations of sending and receiving
messages are single hardware instructions, like add and
subtract. These instructions execute rapidly because
transmission requires only moving a one-word reference -
the message "text" stays in place. Transmission is
asynchronous and is buffered automatically by the
hardware; a sender can produce messages at any time and
at any rate and a receiver can receive them independently
at its own convenience. "Overactive" senders, which might
exceed the capacities of message buffers, are automatically
controlled by the hardware.

THE SOFTWARE MANAGEMENT CHALLENGE

Concurrent programming and execution extends to
peripheral subsystems also. Since they are independent
computers, peripheral subsystems can fully overlap I/O
transfers with GOP operations. The same message-based
protocol used in the central system to pass information
between GOP programs is employed to send requests for
I/O to programs running on peripheral subsystems.

41

REQUEST FOR 'READER'S COMMENTS

Intel 432 System Summ,
Manager's Perspec

171867-

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of'
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME _____________________________ DATE ______ _

TITLE

COMPANY NAME/DEPARTMENT __ __

ADDRESS ___ _

CITY _____________________ STATE ___ ZIP CODE ___ _

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this
form will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

fold

IIIIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SSO Technical Publications Dept.
AL3-2-485
3585 S.W. 198th Ave.
Aloha, 0 R 97007

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,

',I
II

!

'I

THE DEPENDABILITY
CHALLENGE

It has always been important for microcomputer-based
products to run dependably. Unlike most minicomputers
and mainframes, micros usually find themselves installed
far from personnel who can diagnose and repair a piece of
hardware, not to mention fix a program bug. A microcom­
puter's "I/O devices" may include not only disks and
terminals, but also furnaces, kidney machines, radar
displays and other exotic· and expensive equipment. A
system failure can threaten equipment, organizations, and
individuals.

A 32-bit microcomputer system intensifies the importance
of dependable operation because it allows construction of
products which represent unprecedented value to end
users - so long as they work. Conversely, when an
extraordinarily able machine - one that people rely
heavily on - fails, it can suddenly become perceived as a
tremendous liability. Thus, somewhat ironically, the
consequences of a failure generally increase in severity
with a product's utility. At the same time, the likelihood of a
failure increases with the complexity of the system. High­
utility end products, made possible by a 32-bit microcom­
puter system, will be correspondingly complex, at least
internally. Developers of high-end products, then, face the
difficult prospect of building systems that are both complex
and dependable.

Dependable operation of both hardware and software
components is a high priority in the design of the 432.
Innovations in this area are based on a philosophy of
avoiding run-time defects where possible, planning for the
failures that will inevitably occur, and tightly confining the
consequences of these failures. They include a floating
point facility that greatly simplifies the development of
reliable algorithms, error checking that detects many
classical program bugs before they get into execution, an
extensive run-time protection system, and processor self­
checking for physical defects.

43

THE DEPENDABILITY CHALLENGE

RELIABLE
FLOATING POINT
ARITHMETIC

44

Like most mainframes and some minicomputers, the 432
GOP provides a floating point facility that approximates
the system of real numbers. Most floating point implemen­
tations, however, have proved difficult to use in practice.
The straightforward algorithms developed by typical
programmers often exhibit surprising, inconsistent, or
inaccurate results, particularly when processing boundary
values. As a result, many projects have had to either
abandon floating point computation, or obtain the services
of a numerical analyst.

The 432 implements the proposed IEEE standard for
micro/minicomputer binary floating point arithmetic. The
critical, time-consuming operations are implemented in
GOP hardware and the remainder of the standard is
supplied in an Ada package provided with the compiler.
The proposed standard takes care to avoid past short­
comings and insures that floating point computation
(which is inherently approximate) is as accurate and
consistent as possible. In ordinary usage, results are
rounded to the nearest representable value, and are
rounded without bias in the case of ties (two values are
equally near the true result).

The extended-precision temporary-real data type is
provided expressly for holding intermediate results. Its
extra range and precision practically eliminate the
exceptions most commonly encountered in floating point
arithmetic: overflow, underflow and harmful roundoff
errors.

The 432's approach to floating point arithmetic greatly
improves the reliability of calculations written by ordinary
(numerically unsophisticated) programmers. It is an
example of how the thoughtful design of hardware can
contribute to the development of defect-free software,
effectively eliminating one class of run-time error.

COMPILE-TIME
CHECKING

THE DEPENDABILITY CHALLENGE

Originally designed for military applications, one of Ada's
primary goals is to promote the development of reliable
programs. Two of its key features are strong typing and
parameter checking.

Nearly a decade of wide experience with the Pascal
language has verified the contribution that strong typing
makes to program clarity and reliability. Ada borrows and
improves upon this approach. As structured programming
adds discipline to the expression of algorithms, strong
typing adds discipline to the expression and use of data. It
formalizes the good programming practice of introducing
variables (and constants) before they are used; the
introduction names the item and specifies its type. A few of
the familiar types predefined in Ada are CHARACTER,
INTEGER, FLOAT and ARRAY. Importantly, program­
mers may create new types which are appropriate for the
application at hand. A data item's type defines its essential
properties and its intended use in the program. (A more
formal way of saying this is that an item's type specifies the
values it may assume during execution, and the operations
that are legal for those values.) Refer to figure 15 for some
simple examples of typed variable and constant declara­
tions in Ada.

Completely defining a variable's properties in one place
improves program clarity, rather like introducing the team
members and their positions at the start of a football
broadcast. Besides informing the reader, typed declarations
convey valuable information to the compiler. The compiler
uses this information to insure that the actual use made of
a data item matches its intended use. If a programmer
defines two different types, say APPLE and ORANGE, the
compiler will not permit variables of these two types to be
added together, because they are not compatible. This
consistency checking is the basis for characterizing Ada's
type system as "strong."

Managing a large program with many variables is not a
simple intellectual task; it demands methodical attention to
detail. Under intense (i.e., normal) schedule pressures,
"methodical" typically gives way to "expedient." When a

45

THE DEPENDABILITY CHALLENGE

Figure 15.
Ada Strong Typing Examples

46

- - use some predefined types

increment:
avg_pages:
page_no:
currenLcol:
one:
prinLwidth:
page_depth:
device_name:

integer;
float;
natural;
natural := 1;
character := '1';
constant natural : = 132;
constant natural := 60;
string (8) := "SYSPRINT";

- - define some new types

type line
type page
header _page:

is string (prinLwidth);
is array (page_depth) of line;
page;

- - simple type-checking

page_no:= 1; - - ok
page_no := one; - - illegal

new programmer must modify someone else's program, it
can be difficult for that person to understand the full impli­
cations of even a simple change. Strong typing is particu­
larly valuable in these circumstances. In effect, it acknowl­
edges human fallibility in stressful conditions; the compiler
acts as a second reader that "walks through" the code
during compilation checking for consistent usage. By cross
checking stated intentions and actual behavior, strong
typing catches many "clerical" errors before the program
gets into execution.

Mismatched parameters are a classical source of error
when many different people are developing interdependent
modules. Ada carries the principle of strong typing beyond
Pascal by checking subprogram parameters for consist­
ency, even if the calling and called routines are compiled
separately. Any discrepancy in the number of parameters,
their types, or their order is detected at compile-time when
it is simple and convenient to fix the problem. When a

MODULE VERSION
CHECKING

RUN-TIME
PROTECTION IN
HARDWARE

THE DEPENDABILITY CHALLENGE

simple mismatch is allowed to pass into execution, the
resulting system behavior can be surprisingly difficult to
trace back to the trivial source of the problem.

Another classical "bookkeeping" problem in developing,
and especially modifiying, large systems is version
mismatch. This is another situation in which a compara­
tively minor oversight can lead to disastrous consequences
which are very difficult to diagnose. The basic problem is
keeping track of the dependency relationships among a
system's modules, so that when the interface (e.g.,
parameter list) of a module is changed, all dependent
modules are also modified to match the new version. (This
situation cannot be detected at compile-time. The compiler
can follow the chain of dependency down from the module
it is compiling to modules it uses, but not up to modules
that use it; the compiler has no way of knowing which
modules depend on the module being compiled.) Figure 16
illustrates a common scenario, and shows how the 432
linker detects the discrepancy before the (mis-}modified
system gets into execution. As with type checking, this is a
simple error to fix when it is caught early.

Debugging a large software system, particularly one with
many concurrent activities, is extremely difficult. Only a
fraction of the cases the system will encounter in actual
execution can practically be tested. Complex timing
interactions can make system behavior (and, more
importantly, misbehavior) unrepeatable for purposes of
diagnosing an error or testing a fix. In fact, it is impossible
to positively demonstrate that a system fully works.

47

THE DEPENDABILITY CHALLENGE

B C

• Modules Band C depend on (use) ~ / Module A.

A

A. Source ~/ Ada f-~.Oble1

f-O • The source modules are ~L separately compiled. B. Source Ada

c. Source ~L Ada f-D
~BC. loa~ • The object modules are linked

together.

I I f-G A. Source 1 Editor
• An error is discussed in module

A's interface (e.g., it requires a
new parameter). A is modified and I A. Source, I H·Obled! recompiled.

~L Ada

• The system is relinked; however,

f-[51 Link-432 discovers that modules B i and C reference an old version of Link
A. They must be updated to match
A's new interface.

Figure 16.
Module Version Checking

48

THE DEPENDABILITY CHALLENGE

As a practical matter, then, it is prudent to accept the
inevitability of latent bugs in a complex system, and at the
same time to insure that they do the least possible damage
when they are executed. This is the basic rationale for a
run-time protection system. Such a system expects errors
and exceptions to occur· during execution, detects them
rapidly, and provides the information necessary to make
an appropriate response. Like compile-time type checking,
run-time protection represents the acknowledgment of
fallibility and the determination to limit its impact.

An extensive facility for defining, detecting and handling
run-time exceptions is inherent in the Ada language. The
bulk of the 432's protection system, however, is imple­
mented in hardware and is independent of Ada. It is built
into hardware for four reasons. First, not all systems built
with the 432 will use Ada exclusively; code generated by
other translators must be prevented from interfering with
the rest of the system, including Ada's "safer" code (even
Ada permits "unsafe programming" under special condi­
tions). Second, hardware-based protection is not suscep­
tible to corruption (innocent or malicious) by programmers.
Third, hardware protection is fast - software-based
protection mechanisms can exact high performance
penalties. Finally, hardware-based protection permits the
construction of dynamic systems that can safely deal with
new users, programs and devices that did not exist when
the system was compiled. Hardware-based protection
makes it possible, for example, to add a new service to a
running system without jeopardizing the integrity of
existing functions.

Designed into the hardware from its inception, the 432's
protection system is efficient, precise and flexible; it applies
to both computation and input/output operations. It is
based simply on controlling the access of programs to
information. The level of information to which protection is
applied is the data structure, and the level of program to
which access is controlled is the procedure (or function).

Underlying the protection system is the "need to know"
principle: a procedure should have access to only the

49

THE DEPENDABILITY CHALLENGE

Figure 17.
432 Protected Addressing

Instruction

I Opcode ! DiSP.!

50

Procedure A
Permit List

Rights Index

RIW
Procedure B
Permit List

Rights Index

R

RIW

w

Procedure C
Permit List

information it requires to perform its function and nothing
else. By "access" we mean both what information is
addressable in any ~ay, and how addressable information
can be used. This principle is applied uniformly to
"operating system" as well as "application" procedures; as
a result, no procedure is more "privileged" than any other.
The iMAX executive is protected from application
procedures because they have no way to gain access to its
data; the reverse is true as well, except as the application
explicitly passes information to the executive.

In order to. obtain protection without unduly sacrificing
performance, the 432's protection system is integrated into
the hardware's addressing mechanism. The overall
approach is. depicted in figure 17.

DESCRIPTORS

Type Length Address

DATA STRUCTURES

• Disp.
t ~
o
o
o

~ID

• May be read
by A.

• May be written
by A.

• May be read or
written by B.

• May be read
by C.

• May be read or
written by C.

• May be written
by C.

G) Processor reads permit specified in instruction
and checks rights.

® Processor reads descriptor indexed by permit,
checks type, an~, compares length to displace­
ment in instruction.

@) Processor adds displacement to data structure
address and fetches operand.

THE DEPENDABILITY CHALLENGE

All information in the memory space of the 432 is collected
into data structures. There are many distinct types of data
structures; some of them are predefined for use by the
hardware and the executive, and others are defined by
applications. Each data structure is represented by a
descriptor in a central table, which is maintained by the
processors. A descriptor contains the address of the data
structure (432 instructions do not contain addresses), its
length and its type .. Centralizing all addresses in this
manner makes it simple to move a data structure even
when many procedures have access to it; changing the
address in the descriptor causes all subsequent references
to automatically pick up the new address.

Each proc{3dure has a unique list of "permits" which
completely defines the data structures it can address. Each
permit contains a set of rights that specify how the
procedure may access the corresponding structure. The
fundamental rights are read-only, write-only, and read­
write; other rights relate to specific types of data structures
and grant! deny permission to perform certain operations.
A permit also contains an index to the descriptor for the
associated data structure.

A procedure's permit list is initially built when it is
compiled, and it may expand during execution. For
example, if the procedure creates a new data structure
dynamically, the hardware adds a permit for the new data
structure to the list. However, a procedure has no way of
operating on its permit list as ordinary data; it is impossible
for it to change th~ rights or descriptor· index. Note that
since each procedure . has its own permit list, a called
procedure does not inherit access to data structures from
its caller, other than those explicitly passed as parameters.
Thus, a progtam's instantaneous access environment
changes from one procedure call to the next.

For each of its operands, a machine instruction contains a
short encoded reference to the permit for the data
structure containing the target data item. The instruction
also specifies the displacement of the item from the
beginning of the structure. Using the displacement, the

51

THE DEPENDABILITY CHALLENGE

52

permit, and the descriptor, the processor calculates the
actual physical address of the item to be operated on. In
doing so, the processor also determines that the following
are true:

• the procedure's rights for the data structure permit the
operation that is being attempted;

• the data struct"ure's type is consistent with the
operation being attempted;

• the data item lies within the actual extent of the data
structure.

If the hardware detects an attempted protection violation,
it aborts the instruction before executing it. It also writes
diagnostic information into a predefined data structure and
passes control to a software routine which has been
designated to handle the error. This automatic facility is
called fault detection and reporting. (The hardware also
faults if it detects a conventional exception during
instruction execution, such as division by zero, and
arithmetic overflow or underflow.)

Significantly, the 432's fine-grained protection system
promotes the safe, flexible sharing of information between
cooperating procedures running concurrently on the same
or different processors. If one procedure wants to pass a
data structure to another, it is only necessary to create a
new permit containing the rights that are to be granted to
the receiver and then send the permit - there is no need
to move the data structure at all. The 432 has built-in
instructions for performing these operations simply and
efficiently. When two procedures hold references for the
same data structure, one of them can temporarily prevent
access by the other by locking the data structure (for
example, during an update). The hardware automatically
defers an attempt to gain access to a locked structure.

Note that the 432· interface processor uses the same
mechanisms to insure that I/O operations do not violate
the system's protection standards. From the 432's
perspective, an I/O operation transfers the content of a
data structure between a peripheral subsystem and central

SELF-CHECKING
PROCESSORS

THE DEPENDABILITY CHALLENGE

memory. Software running on the peripheral subsystem
directs the transfer, but the IP does all central system
addressing. The same permit lists are provided for
peripheral subsystem software, and the IP performs the
standard consistency checks, fault detection and so on.

Even a system that is apparently free of software defects
will experience hardware failures during its life, particularly
in infancy and in old age. Like a software bug, a hardware
failure may cause a system to produce invalid information;
such invalid information may be passed on to end users or
may be "consumed" internally possibly bringing the system
down. Dependable systems must therefore expect and
cope with hardware as well as software failures. The 432
exploits the unique capabilities of VLSI components to
allow construction of processor modules that detect their
own malfunction.

The tolerance of a computer-based system to hardware
faults can be viewed as a combination of its fault coverage
and its availability. Fault coverage refers to the percentage
of possible failures that the system is able to detect, and to
the tightness with which the system localizes the source of
a failure and confines its impact on the rest of the system.
Availability is the inverse of downtime; it depends on the
rate of fault detection and the time required to recover -
to return to a usable condition, perhaps with reduced
capability. It is important to note that fault tolerance is
ultimately based on fault coverage. While a high-availability
system may provide "non-stop" operation, without good
fault coverage it may also be producing invalid information
because it is insensitive to its own faults.

Applications vary in their need for fault-tolerance as shown
roughly in figure 18. Each design must weigh the cost of
hardware failures against the cost to build detection and
recovery facilities into the system. Over time, however, the
increased reliance on computer-based systems tends to
drive most applications toward increasingly fault-tolerant
operation.

53

THE DEPENDABILITY CHALLENGE

Figure 18.
Fault-tolerant Systems

54

>
~
:::i
iii
c:(
..J

Recovery
Time

1 second

~ 5 minutes
c:(

24 hours

FAULT COVERAGE

More Fault-tolerance required.

Less Fault-tolerance required.

Technology has responded to these demands with
techniques for adding redundant codes to data such as
parity, cyclic redundancy check (CRC), and error
checking and correcting (ECC). These techniques detect
data transformations and can be applied successfully to
buses, I/O devices and memory. The System 432/600, for
example, uses ECC memory, which detects all single- and
double-bit errors and corrects single-bit errors; it also
parity-checks each byte of the system bus.

Much less progress has been made in detecting processor
failures at reasonable cost. Processors by definition
transform data, and it is extremely difficult to design a
coding technique that distinguishes incorrect transforma­
tions. Practically speaking, processor fault detection
requires redundant machines and factors of cost and size

Figure 19.
Self-checking Processor Module

THE DEPENDABILITY CHALLENGE

have precluded this approach for all but the most critical
applications. A second factor that works against the
development of redundant processors is the halving of
reliability that occurs when the component count is
doubled. Unless the single processor is extremely reliable,
and recovery time is very fast, the doubling of the failure
rate may reduce availability by more than the added fault
detection is worth.

Taking advantage of the inherent high reliablility, small size
and low cost of VLSI components, the 432 significantly
expands fault coverage to include nearly instantaneous
detection of processor failures. This is achieved simply by
replicating identical processors. All GDPs and IPs have
built-in circuits that permit two processors to be wired
together into a single self-checking module (see figure 19).
The module monitors itself cycle-by-cycle, performing
every operation in parallel and comparing the results. If it
cannot guarantee correct operation (the checker's result
differs from the master's), the module automatically stops
itself in the next cycle and notifies the rest of the system.
The checking covers defects on the VLSI chips themselves,
as well as mechanical flaws in bond wires, sockets and
solder joints. No speed penalty is incurred when processors
check each other in this manner; the self-checking module
executes at the same rate as a single processor.

i-----l

.. ~I Master Processor l •••••
:-,"1 (IP or GOP) ~.._
-I 1:-= L- _____ -.J _ =

~... -= ~ Inputs,. -r. ...
: r-------, =
- I I -;~ Checker Processor Llt.lC -r; (IP or GOP) ;! __

L ____ --.J

Outputs

Hardware
Error

55

THE DEPENDABILITY CHALLENGE

56

Transparent multiprocessing and self-checking processor
modules permit the construction of systems that provide
broad fault coverage and rapid recovery. Since a failed
processor module identifies itself, it can be pulled from the
system immediately and the system can then be restarted.
If the module is an IP, one peripheral subsystem will be
unavailable, but the system may still be able to provide a
useful level of service; if the failed module is a GDP, the
other GDP's can absorb the processing load automatically.

SUMMARY

A 32-bit microcomputer system represents tremendous
computing potential: the raw material for constructing end
products of unprecedented capability and value. The
advent of this class of machine ushers in a new era of
microcomputer-based system development in which
unequalled opportunities are intimately linked with
formidable challenges. In one stroke, a 32-bit machine
lowers the barriers that have traditionally limited the
application of microcomputers, and eliminates the
constraints that have effectively shielded past projects
from the difficulties of developing complex, large-scale,
highly dependable systems.

Drawing on the experience of the mainframe community in
developing comparable systems, the remarkable new
capabilities of MOS technology, and important contribu­
tions from computer science and software engineering, the
Intel 432 has been designed to profit from history rather
than repeat it. It forges a new technology aimed at reducing
the life cycle costs of complex computer-based applications.

In its broad outlines, the 432 indeed supplies the functional
capabilities of a 32-bit microcomputer: it delivers a very
large address space, virtual memory support, and a rich
variety of data types, instructions and addressing modes.
What makes the 432 an extraordinary product family,
though, are its innovative responses to the challenges
inherent in bringing a complex, dependable product to
market quickly and economically, and then supporting and
enhancing that product over a period of years. Specifically,
the 432 delivers:

• an instruction set that moves critical, time-consuming
functions from software into hardware;

• a range of computational performance based simply on
the replication of general data processors;

• a range of inputj output performance based on the
replication of identical or different peripheral subsys­
tems;

• a standard high level language that is explicitly
designed for constructing very large, highly reliable
systems of concurrent software;

57

SUMMARY

58

• an applications executive consisting of packaged
components that can be configured, modified and
extended to precisely match local needs;

• extensive pre-execution error checking to detect
common software bugs before they get into execution;

• run-time protection in hardware to automatically
detect software errors with the lowest possible
overhead;

• the ability to build self-checking processor modules
that immediately detect their own malfunction with no
performance penalty.

Finally, the present design of the 432 anticipates future
progress in MOS technology and application of the system
to more specialized market areas by means of new
processor types. It is a family of products that establishes
the new leading edge today and will stay at the forefront for
years to come.

u.s. AND CANADIAN SALES OFFICES

ALABAMA

ARIZONA

CALIFORNIA

COLORADO

CONNECTICUT

Intel Corporation
303 Williams Avenue, S.W.
Suite 1422
Huntsville 35801
(205) 533-9353

Intel Corporation
10210 N. 25th Avenue
Suite 11
Phoenix 85021
(602) 869-4980

Intel Corporation
7670 Opportunity Road
Suite 135
San Diego 92111
(714) 268-3563

Intel Corporation
2000 East 4th Street
Suite 100
Santa Ana 92705
(714) 835-9642
TWX: 910-595-1114

Intel Corporation
650 S. Cherry Street
Suite 720
Denver 80222
(303) 321-8086
TWX: 910-931-2289

Intel Corporation
36 Padanaram Road
Danbury 06810
(203) 792-8366
TWX: 710-456-1199

Intel Corporation
5530 Corbin Avenue
Suite 120
Tarzana 91356
(213) 708-0333
TWX: 910-495-2045

Intel Corporation
3375 Scott Blvd.
Santa Clara 95051
(408) 987-8086
TWX: 910-339-9279
TWX: 910-338-0255

u.s. AND CANADIAN SALES OFFICES

FLORIDA

GEORGIA

ILLINOIS

INDIANA

IOWA

KANSAS

MARYLAND

MASSACHUSETTS

Intel Corporation
1500 N.W. 62nd Street
Suite 104
F t. Lauderdale 33309
(305) 771-0600
TWX: 510-956-9407

Intel Corporation
3300 Holcomb Bridge Road
Norcross 30092
(404) 449-0541

Intel Corporation
2550 Gulf Road
Suite 815
Rolling Meadows 60008
(312) 981-7200
TWX: 910-651-5881

Intel Corporation
9101 Wesleyan Road
Suite 204
Indianapolis 46268
(317) 875-0623

Intel Corporation
St. Andrews Building
1930 St. Andrews Drive N .E.
Cedar Rapids 52402
(319) 393-5510

Intel Corporation
9393 West 1l0th Street
Suite 265
Overland Park 66210
(913) 642-8080

Intel Corporation
7257 Parkway Drive
Hanover 21076
(301) 796-7500
TWX: 710-862-1944

Intel Corporation
27 Industrial Avenue
Chelmsford 01824
(617) 256-1800
TWX: 710-343-6333

Intel Corporation
500 N. Maitland Avenue
Suite 205
Maitland 32751
(305) 628-2393
TWX: 810-853-9219

MICHIGAN

MINNESOTA

MISSOURI

NEW JERSEY

NEW YORK

NORTH CAROLINA

u.s. AND CANADIAN SALES OFFICES

Intel Corporation
26500 Northwestern Hwy.
Suite 401
Southfield 48075
(313) 353-0920
TWX: 810-244-4915

Intel Corporation
7401 Metro Boulevard
Suite 355
Edina 55435
(612) 835-6722
TWX: 910-576-2867

Intel Corporation
502 Earth City Plaza
Suite 121
Earth City 63045
(314) 291-1990

Intel Corporation
Raritan Plaza
2nd Floor
Raritan Center
Edison 08837
(201) 225-3000
TWX: 710-480-6238

Intel Corporation
300 Motor Pkwy.
Hauppauge 11787
(516) 231-3300
TWX: 510-227-6236

Intel Corporation
80 Washington Street
Poughkeepsie 12601
(914) 473-2303
TWX: 510-248-0060

Intel Corporation
2306 W. Meadowview Road
Suite 206
Greensboro 27407
(919) 294-1541

lntel Corporation
2255 Lyell Avenue
Lower Floor, East Suite
Rochester 14606
(716) 254-6120
TWX: 510-253-7391

U.S. AND CANADIAN SALES OFFICES

OHIO

OREGON

PENNSYLVANIA

TEXAS

UTAH

VIRGINIA

Intel Corporation
Chagrin-Brainard Bldg., No. 300
28001 Chagrin Blvd.
Cleveland 44122
(216) 464-2736
TWX: 810-427-9298

Intel Corporation

Intel Corporation
6500 Poe Avenue
Dayton 45414
(513) 890-5350
TWX: 810-450-2528

10700 S.W. Beaverton-Hillsdale Hwy.
Suite 324
Beaverton 97005
(503) 641-8086
TWX: 910-467-8741

Intel Corporation
510 Pennsylvania Avenue
Fort Washington 19034
(215) 641-1000
TWX: 510-661-2077

Intel Corporation
2925 L.B.J. Freeway
Suite 175
Dallas 75234
(214) 241-9521
TWX: 910-860-5617

Intel Corporation
6420 Richmond Avenue
Suite 280
Houston 77057
(713) 784-3400
TWX: 910-881-2490

Intel Corporation
3519 Lexington Drive
Bountiful 84010
(801) 292-2164

Intel Corporation
1501 Santa Rosa Road
Suite C-7
Richmond 23288
(804) 282-5668

Intel Corporation
201 Penn Center Boulevard
Suite 301W
Pittsburgh 15235
(412) 823-4970

Intel Corporation
313 E. Anderson Lane
Suite 314
Austin 78752
(512) 454-3628

WASHINGTON

WISCONSIN

CANADA

u.s. AND CANADIAN SALES OFFICES

Intel Corporation
Sute 114, Bldg. 3
1603 116th Avenue, N.E.
Bellevue 98005
(206) 453-8086
TWX: 910-443-3002

Intel Corporation
150 S. Sunnyslope Road
Brookfield 53005
(414) 784-9060

Intel Semiconductor Corporation
Suite 233, Bell Mews
39 Highway 7, Bells Corners
Ottawa, Ontario K2H 8R2
(613) 829-9714
TELEX: 053-4115

Intel Semiconductor Corporation
50 Galaxy Boulevard
Unit #12
Rexdale, Ontario, M9W 4Y5
(416) 675-2105
TELEX: 06983574

I'

I

AUSTRALIA

BELGIUM

DENMARK

FINLAND

FRANCE

GERMANY

INTERNATIONAL SALES OFFICES

Intel Semiconductor Pty. Ltd.
Suite 2, Level 15, North Point
100 Miller Street
North Sydney, NSW, 2060
Tel: 450-847
TELEX: AA 20097

Intel Corporation S.A.
Rue du Moulin a Papier 51
Boite 1
B-1160 Brussels
Tel: (02) 660 30 10
TELEX: 24814

Intel Denmark A S
Lyngbyvej 32F 2nd Floor
DK-2100 Copenhagen East
Tel: (01) 18 20 00
TELEX: 19567

Intel Finland OY
Sentnerikuja 3
SF-00400 Helsinki 40
Tel: (0) 5624455
TELEX: 123 332

Intel Corporation S.A.R.L.
5 Place de la Balance
Silic 223
94528 Rungis Cedex
Tel: (01) 687 22 21
TELEX: 270475

Intel Semiconductor GmbH
Seidlstrasse 27
0-8000 Muenchen 2
Tel: (089) 53 89 1
TELEX: 523 177

Intel Semiconductor GmbH
Mainzer Strasse 75
0-6200 Wiesbaden 1
Tel: 0812 6121 700874
TELEX: 04 186 183

Intel Semiconductor GmbH
Wernerstrasse 67
P.O. Box 1460
0-7012 Fellbach
Tel: (0711) 580082
TELEX: 7254826

Intel Semiconductor GmbH
Hohenzollern Strasse 5
3000 Hannover 1
Tel: (0511) 327081
TELEX: 923625

Intel Semiconductor GmbH
Vertriebsburo Dusseldorf
Ober-Ratherstrasse 2
4000 Duesseldorf 30
Tel: 49211 651054/55 56
TELEX: 8586977

INTERNATIONAL SALES OFFICES

HONG KONG

ISRAEL

ITALY

JAPAN

NETHERLANDS

NORWAY

SWEDEN

Intel Semiconductor Ltd.
99-105 Des Voeux Rd., Central
18F, Unit B
Hong Kong
Tel: 5-450-847
TELEX: 63869

Intel Semiconductor Ltd.
P.O. Box 1659
Haifa
Tel: 972/452 4261
TELEX: 46511

Intel Corporation Italia Spa
Milanofiori, Palazzo E
20094 Assago (Milano)
Tel: 8240006 or 8240706
TELEX: 315183 INTMIL

Intel Japan K.K.
Flower Hill-Shinmachi East Bldg.,
1-23-9 Shimachi, Setagaya-ku
Tokyo 154
Tel: (03) 426-9261
TELEX: 781-28426

Intel Semiconductor Nederland B.V.
Oranjestraat 1
3441 Ax Woerden
Netherlands
Tel: 31-3480-112-64
TELEX: 47970

Intel Norway A/S
P.O. Box 92
Hvamveien 4
N-2013
Skjetten
Tel: (2) 742-420
TELEX: 18018

Intel Sweden AB.
Box 20092
Enighetsvagen 5
S-16120 Bromma
Tel: (08) 98 53 90
TELEX: 12261

Intel Semiconductor BV.
Cometongebouw
Westblaak 106
3012 Km Rotterdam
Tel: (10) 149122
TELEX: 22283

SWITZERLAND

UNITED KINGDOM

INTERNATIONAL SALES OFFICES

Intel Semiconductor A.G.
Forchstrasse 95
CH 8032 Zurich
Tel: 1-55 45 02
TELEX: 557 89 ich ch

Intel Corporation (U.K.) Ltd.
5 Hospital Street
Nantwich, Cheshire CW5 5RE
Tel: (0270) 62 65 60
TELEX: 36620

Intel Corporation (U.K.) Ltd.
Dorcan House
Eldene Drive
Swindon, Wiltshire SN3 3lO
Tel: (0793) 26 101
TELEX: 444447 INT SWN

Intel Corporation, Ltd.
Beam Street 46/50
GB-Nantwich-Cheshire CW5 5LJ
Tel: 44 270626 560
TELEX: 36620

