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PREFACE 
The Intel 432 System Summary is a series of booklets that 
introduces project managers and technical staff to the Intel 
432 Micromainframe family. Compared to the 432's refer­
ence manuals, this material is both broader in scope and 
shallower in depth. On the other hand, it is not intended to 
teach any particular subject but to introduce an array of 
related topics. In general, the System Summary is the first 
publication anyone interested in the 432 should read. 

Although the System Summary is introductory in nature, 
the presentation does assume a good general background 
in computer hardware and/or software. Ideally, the reader 
has previously developed a microcomputer-based product. 

Recognizing that readers have different backgrounds and 
interests, the System Summary is published in three 
volumes: 

• Intel 432 System Summary: Manager's Perspective, 
Order No. 171867; 

• Intel 432 System Summary: Software Engineer's 
Perspective, Order No. 172177; 

• Intel 432 System Summary: Hardware Engineer's 
Perspective, Order No. 172178. 

The volumes are to be published in the order given above; 
consult your Intel sales office for information on the 
availability of any book in the series. 

Each volume begins with an introduction that rapidly 
surveys the principal members of the product family. The 
Manager's Perspective links the major innovations of the 
432 to the application issues that inspired them. This 
material is valuable to engineers as well as managers. The 
Software Engineer's Perspective begins with a description 
of a few key technical concepts that are central to the 
design of both the 432 and applications that are based 
upon it. It covers the 432 architecture (the compiler 
writer's view of the processors), Ada* (the 432's first pro­
gramming language), and iMAX (the 432's Multifunction 

* Ada is a trademark of the U. S. Department of Defense. 
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Applications Executive). The Hardware Engineer's Per­
spective is devoted to the components (chips) and to the 
System 432/600, a collection of board-level building blocks. 

The Intel 432 is a comprehensive and evolving set of 
hardware and software products; the System Summary 
introduces only the cornerstones. For detailed and up-to­
date information on the complete product line, consult 
your local Intel sales office. 
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A NEW COMPUTER 
TECHNOLOGY 

INTRODUCTION 
The Intel 432 is a microcomputer family. Original 
equipment manufacturers (OEMs) will use the 432 as one 
element of the larger products they build for other parties. 
These end products may be office automation work 
stations, factory information systems, large PABXs or 
telephone office switches, transaction processing systems, 
families of general-purpose computers and so on. The 432 
"engine" at the heart of such a product will often be 
imperceptible to an end user. 

While - as the above list suggests - the 432 can support 
a diverse array of end products, it is at the same time 
aimed at a distinctive class of applications. Products well­
suited to the 432 exhibit some or all of the following 
attributes (as seen by the OEM, not the end user): 

• a range of performance (potentially extending up to 
the level of a midrange mainframe) is required to span 
a family of related products or to provide headroom for 
future growth; 

• maximum dependability (data integrity and uptime) of 
both hardware and software is critical; 

• software dominates development cost and time to 
market; 

• concurrent execution of many independent and 
cooperative activities characteriies the run-time 
environment; 

• growth and evolution of services over time make 
software revision as important as initial development. 

Compared to "traditional" microcomputer applications, 
these applications are larger (as measured by consumption 
of computer as well as staff and financial resources) and 
are far more complex. These factors place demanding 
requirements on the computer system selected to support 
the application. 

One requirement of large applications is abundant 
computer resources; accordingly, the 432 family is based 
on a 32-bit architecture. Compared to a 16-bit machine, the 
432 provides a very large actual address space, an 
enormous virtual address space, and a rich variety of data 
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types, instructions and addressing modes. While these 
capabilities are undeniably important, a 32-bit computer is 
essentially a "bigger hammer." To meet the demands of 
extremely complex applications, 32-bit resources are at 
once necessary and insufficient. That is why, for the 432, 
its 32-bit architecture is more a point of departure, than a 
goal. 

The goal of the 432 is to significantly reduce the life­
cycle costs of complex microcomputer applications. 
Toward this end, the 432 introduces a new computer 
technology, an integrated system of hardware, software 
and methodology. The technology of the 432 preserves the 
traditional microprocessor virtues of low cost, small 
physical size and low power consumption. Like a main­
frame family, it offers a 32-bit architecture and spans a 
range of performance. In other important ways, the 432 
resembles no computer of the past. Considered as a 
whole, its new technology constitutes a breakthrough in 
computer system design. To emphasize that this technol­
ogy is inadequately described by conventional computer 
"classifications," the Intel 432 is called the Micromainframe 
family. 

All 432-based systems share the overall organization 
depicted in figure 1. The boundary between the central 
system and the peripheral subsystems essentially divides 
responsibility for data processing from input/output 
processing. It also serves as a protective barrier: all 
information in central system memory is shielded (by 432 
hardware) against unauthorized access; peripheral 
subsystems mayor may not provide any sort of protection. 
Finally, t:?rocessing required to satisfy a critical real-time 
constraint (usually related to an I/O device) is generally 
performed in a peripheral subsystem, close to the source 
of the constraint. 

The central system is organized as a set of 432 processors 
that share access to a common pool of memory and to 
each other. General data processors (GDPs) perform 
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computational work, while interface processors (IPs) 
provide pathways for input! output to and from the central 
memory. The number and type of processors configured in 
a given system is a function of performance requirements, 
and can be varied independently of software. All 432 
processors have built-in facilities for communicating with 
each other, both automatically and under software control. 
Additional communication facilities permit programs 
running on the same or different processors to exchange 
messages through memory. . 

The central system supports up to 224 bytes (16 megabytes) 
of real memory, and a virtual memory space of 240 (over a 
trillion) bytes. Enforced automatically by the processors, 
every. data structure in the central memory is individually 
protected. It is important to note here that "data structure" 
means any organized collection of information, including 
such logical entities as operand stacks and sequences of 
code, as well as what are ordinarily considered data 
structures. 
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A multiprocessor design like the 432 permits widely 
differing systems to be built from a small collection of parts. 
No bus design could possibly satisfy the cost, size, 
flexibility and performance requirements of all possible 
system configurations. Therefore, the 432 defines a 
standard processor/memory communications protocol 
rather than a standard bus. Designed to minimize bus 
occupancy and exploit available bus width, the protocol is 
based on a variable-length (1 to 16 byte) packet of 
information. Processors transmit request packets to 
memory, and receive reply packets in response to read 
operations. The protocol defines interprocessor communi­
cation as well. Each application is free to design an 
interconnect structure that implements the protocol in 
conformance with local needs. 

Independent decentralized I/O, along the lines of the main­
frame channel concept, is inherent in the 432. Input/ 
output operations - including all device control, interrupt 
handling and data buffering - are delegated to peripheral 
subsystems. These are autonomous satellite computers 
attached to the central system by means of 432 interface 
processors. The number and configuration of peripheral 
subsystems is a function of application needs and can 
evolve over time. Any computer that can communicate 
over a standard 8- or 16-bit bus, such as Intel's Multibus 
design (IEEE standard 769), can serve as a peripheral 
subsystem. 

Fabricated in two 64-pin chips (see figure 2 and table 1), the 
432 general data processor provides the 432' s primary 
computational base. The GOP combines mainframe 
computer functionality - data types, addressing modes, 
basic instruction set - with the form factor, power 
requirements, and cost characteristics of a microprocessor. 



Figure 2. 
General Data Processor 

Table 1. 
General Data Processor 
Specification Summary 

Addressability 

Data Types 

Addressing Modes 

Basic Instructions 
Data Transfer 
Arithmetic 

Logical 
Comparison 

Conversion 
Bit Field (1-32 bits) 
Control Flow 

High-level Instructions 
Communication 
Storage Allocation 
Mutual Exclusion 
Protection 

Automatic Operations 

INTRODUCTION 

224 bytes physical, 240 bytes virtual. 

character, 16/32 bit signed and unsigned integers, 
32/64/80 bit floating point. 

scalar, stack top, record element, static vector element, 
dynamic vector element. 

move, save, zero, one. 
add, subtract, multiply, divide, remainder, square root, 
increment, decrement, negate, absolute value. 
AND, OR, XOR, XNOR, complement. 
equal, not equal, equal zero, not equal zero, greater than, 
greater than or equal, positive, negative. 
(to any data type). 
extract, insert, significant bit. 
branch (conditional and unconditional), call, call with message, return. 

16 instructions (e.g., send, receive, broadcast to processors). 
4 instructions (e.g., create data segment). 
6 instructions (e.g., lock object). 

14 instructions (e.g., restrict rights, inspect access). 

Process dispatching and low-:level scheduling, message 
synchronization and queuing. 

(Table 1 continued on next page) 
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Protection "Need to know" addressing at data structure level; attempted violations 
detected and reported by hardware. Automatic detection of processor 
hardware errors when processors are configured in self-checking pairs. 

Selected Timing Data 
(jJsec at 8 MHz) 

Processor Cycle 0.125 
Memory Read/Write 

(word) 0.75 
High-Ievel/ Automatic 

Operations* 
Send Message 86.875 
Receive Message 96.975 
Create Segment 
(100,1000,10,000 bytes) 94.9, 308.375, 2417.75 
Suspend, Reschedule 
And Dispatch New 
Process 401.875 

Arithmetic* (32-bit integers) (80-bit floating point) 
Ad d/Su btract 0.5 19.125 
Multiply 6.375 27.875 
Divide 10.625 48.25 
Square Root n.a. 55.625 

Package (Two) 64-pin quad in-line (QUIP) 
Power Requirement +5V ±10%, 2.5 Watts 

*Preliminary figures, subject to change. Data reflect execution time only and do not include instruction 
fetch, operand fetch/store or pipeline refill, where applicable. Arithmetic figures are thus comparable to 
register-to-register operations on a register-based machine. High-level and automatic operations do 
include all memory accesses made during execution; in these cases the memory subsystem is assumed to 
provide the minimal response time, and no provision is made for delays due to arbitration or error 
correction. 

Table 1. 
Compared to a conventional processor, the GOP absorbs 
into hardware many functions that are customarily 
performed by application and systems software. For 
example, the GOP provides hardware operations on 
floating point numbers in its basic instruction set. Clearly, 
implementing these in hardware improves performance. 
Less obvious effects are the simplification and improved 
reliability of software. Without effort, programmers reap 
the benefits of the very clean, thoroughly-considered 
algorithms of the proposed IEEE floating point standard. 

General Data Processor 
Specification Summary (Cont.) 
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Extending this concept, the GOP supplements its basic 
instruction set with additional high-level instructions. 
These instructions execute time-critical, frequently-used 
operations that are conventionally performed by operating 
system software. The operands of these systems program­
ming instructions are not numbers or characters but data 



INTERFACE 
PROCESSOR 

Figure 3. 
Interface Processor 

INTRODUCTION 

structures that resemble conventional as "control 
blocks." 

Going one step further, the GOP also performs a number 
of functions automatically, on its own initiative, rather than 
in response to an instruction. For example, a GOP 
allocates itself among ready programs with no intervention 
from an operating system. Since they represent operating 
system software functions moved into silicon, the high­
level instructions and automatic operations are collectively 
called the "silicon operating system." 

The single-chip 432 interface processor (see figure 3 and 
table 2) functions at the central system/peripheral 
subsystem boundary. Acting as an "intelligent adaptor," 
the interface processor permits peripheral subsystem 
software to direct data transfers across the system 
boundary. The interface processor is wired into the 
memory space of the peripheral subsystem like a memory­
mapped peripheral controller and is indistinguishable from 
a block of local memory. It may be addressed by PS 
software to execute commands and it may be addressed 

7 
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Table 2. 
Interface Processor 
Specification Summary 

Addressability 

Central System Interface 

Peripheral Subsystem Interface 

Transfer Units 

Transfer Modes 

Data Paths 

Command Set 

Automatic Operations 

Protection 

Selected Timing Date (at 8 MHz) 
Maximum Data Rate 

Block Mode 
Random Mode 

High-level Commands* 
Send Message 
Receive Message 

Package 

Power Requirements 

by any active agent (e.g., DMA controller) to transfer data. 
The IP's commands correspond to GDP high-level 
instructions; they permit peripheral subsystem software to 
operate within the central system environment. An 
important group of commands enables communication 
with both programs and processors in the central system. 

Data transfers are performed by means of four IP data 
paths, called windows. Each window exposes one "data 
structure" in central system memory; peripheral subsystem 
software can switch a window to a different data structure 
by means of an IP command. To an agent in the peripheral 
subsystem, a window is just a range of memory addresses; 
writing into these addresses writes into the exposed data 
structure, and reading from these addresses obtains data 
from the data structure. Since all transfers pass through it, 
the IP is able to insure that a peripheral subsystem does 
not violate the protection standards of the central system. 

224 bytes physical, 240 bytes virtual. 

Identical to GOP. 

Appears to peripheral subsystem as memory mapped controller; 8/16 
bit data bus multiplexed with 16 bit address bus; standard control and 
interrupt signals; compatible with Multibus architecture. 

Byte and double-byte. 

Random: Any single location; block: contiguous set of locations up to 
64kb long. 

3 random mode, 1 switchable block/random mode. 

Equivalents for large subset of GOP high-level instructions (e.g., send, 
receive, lock object, etc.) 

Message synchronization and queuing. 

"Need to know" addressing at data structure level; attempted violations 
detected and reported by hardware; automatic detection of processor 
hardware errors when processors are configured in self-checking pairs. 

5.3 mb/sec. 
1.1 mb/sec. 

145.25 fJ.s. 
141.5 fJ.s. 

64-pin quad in-line (QUIP) 

+5V ±10%, 2.5 Watts 

'Preliminary figures, subject to change. System functions are for execution time only and do not include 
operand fetch or store times, which are highly dependent on memory configuration and bus arbitration. 
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Figure 4. 
System 432/600 

INTRODUCTION 

The System 432/600 is a set of board-level building blocks 
(see figure 4 and table 3) from which 432 computer systems 
can be built quickly with minimal investment and minimal 
hardware expertise. The 432/600 utilizes the multiproces­
sing capabilities of the 432 to provide a set of building 
blocks that can be configured with unusual flexibility. 

Computing and I/O power are selected by mixing GOP 
boards and peripheral subsystems, respectively. By pre­
senting a standard Multibus interface, the 432/600 permits 
peripheral subsystems to be built from Intel's comprehen­
sive array of iSBC computers, memories and peripheral 
controllers. A 432/600 configuration may contain a total of 
six processing elements (GOPs and peripheral subsys­
tems). Storage array boards of 128k-bytes and 256k-bytes 
permit precise matching of memory to application require­
ments, up to a total of four megabytes of central system 
storage. 

In addition to these board components, the 432/600 offers 
diagnostic software, cardcages and backplanes, and a 
powered and cooled enclosure. 

9 
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Table 3. 
System 432/600 
Specification Summary 

System Organization 
Functional Elements 

System Bus 

Peripheral Subsystem Bus 

Form Factor 
Power Requirements 

Data Processing 
Functional Element 
Extensibility 
Memory Read Cycle 
Memory Write Cycle 

I/O Processing 
Functional Element 

Extensi bil ity 
Data Rate 

Memory 
Functional Elements 
Extensibility 
Type 
Bandwidth 

Reliability 
Memory 

System Bus 
Error Reporting 

Diagnostic Software 

Packaging Accessories 
Back planes 
Cardcages 
Enclosure 

432 general data processor board; 432 interface processor/link board 
pair; memory controller board; 128/256 kb storage array boards. 
32-bit multiplexed address/specification/data bus; dedicated status 
and control signals; round-robin arbitration; 32 mb/sec. instantaneous 
data rate. 

Standard Intel Multibus design, separate bus for each peripheral sub­
system. 

Intel iSBC (6.7Q x 12 in.) 
+5V (±10%), 5-7 amps (max.) per board at 5V. 

general data processor board. 
1-5 GOP boards per system. * 
2.125 f..1s. (word access). 
3. 375f..1s. (word access). 

Independent peripheral subsystem attached to central system via inter­
face processor/link board pair. 
1-5 peripheral subsystems per system. * 
2.5 mb/sec. per subsystem. 

Memory controller board, storage array board of 128 and 256 kb each. 
128 kb - 4 mb, according to number and type of storage arrays. 
Dynamic RAM; onboard refresh. 
7 mb/sec. 

Error checking and correction standard; all single-bit errors detected 
and corrected, all double-bit errors detected. 
Each byte parity-checked. 
Registers for system, memory and processor errors automatically 
updated by hardware; accessible to software. 
Rapid "go/no go" check of entire system; detailed diagnostics provided 
for each board type; executes on iAPX 86/88-based peripheral sub­
system. 

6/12/18 slot units. 
6/12/18 slot units. 
Enclosed chassis with power and cooling, 18-slot cardcage, 12-slot 
system backplane, 6-slot Multibus backplane. 

*The maximum number of GDPs and peripheral sUbsystems combined is 6. 
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PROGRAMMING 
LANGUAGE 

Figure 5. 
Ada Program Fragment 

Table 4. 
Ada Specification Summary 

Data Types 

Operators 
Logical 
Relational/Membership 
Arithmetic 
Other 

Control Structures 

Subprograms 

Module Structures 

Concurrent Programming 

Input/Output 

Other Features 

INTRODUCTION 

Ada (see figure 5 and table 4) is a modern high level 
language whose development was sponsored by the 
United States Department of Defense. In its basic form and 
"flavor," Ada resembles Pascal, probably the most 
influential language of the nineteen-seventies. Ada differs 
from Pascal in scope; while Pascal was developed to teach 
programming, Ada is a production language, explicitly 

type real_array is array 
(integer range <» of float; 

procedure array_sum ( 
a: in reaLarray; 
sum_x: out float; 
sum_indexes: out float; 
sum_squares: out float) 

is 

begin 
sum-->< := 0.0; 
sum_indexes := 0.0; 
sum_squares := 0.0; 
for i in a'range loop 

sum-->< := sum-->< + a(i); 
sum_indexes := sum_indexes + (a(i) * float(i)); 
sum_squares := sum_squares + (a(i) ** 2); 

end loop; 
end array_sum; 

Boolean, character, string, natural, integer, floating point, fixed point, 
enumeration, array, record, access, plus programmer-defined types. 

and, or, xor. 
=, /= <. <=, in, not in. 
+, -, *, /, mod, rem, **, abs. 
+ (identity), - (negation), not (logical negation), & (catenation). 

If-then-else, case, loop, begin-end, go to, return, exit. 

Procedures and functions. 

Subprograms, packages, tasks. 

Complete multitasking facility, including task definition, initiation, 
termination, prioritization, delayed execution, intertask communication 
and synchronization. 

General-purpose record-oriented sequential file processing; special 
text file (line-and-column oriented) processing. 

Generic (macro-like) subprograms; exception detection and handling. 

11 
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Figure 6. 
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oriented toward the construction of software for embedded 
computer applications. Examples of Ada's additional 
capabilities include language constructs to support 
modular development of large systems of programs, 
concurrent programming (multitasking) and run-time 
exception handling. 

iMAX (Multifunction Applications Executive) is a collection 
of software "components" (see figure 6 and table 5). 
Running on both the 432 central system and peripheral 
subsyst~ms, iMAX provides basic services that are 
essential to most 432 applications. Carrying the notion of 
"components" further, users may selectively configure 
iMAX services into their systems, may replace iMAX 
modules with their own, and may add new executive 
services as well. 
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System Organization 

Programmer Interface 

Storage Services 

Basic Process Services 

Process Communication 
Services 

Extended-type Services 

Input/Output Services 

Initialization Services 

Table 5. 
iMAX Specification Summary 

SUMMARY 

INTRODUCTION 

Modular "catalog" of Ada packages, each providing a related set of 
services for central system; peripheral subsystems coordinated by 
resident 110 controllers. 

Ordinary Ada function and procedure calls; all calls checked at 
compile-time. 

Dynamic segment creation; automatic reclamation and compaction 
of discarded segments in parallel with normal system operation. 

Dynamic process creation, destruction and control (start, stop, 
synchronize, etc.); processes and subprocesses may be organized in 
trees; process scheduling by deadline and/or priority. 

Port (data structure for queuing messages) creation; message 
transmittal (send, receive, sequence, etc.) 

Creation, identification and access control for user-defined data struc-
ture types. 

I/O monitors (device drivers) for terminal-like devices provided; 
users may write monitors for other devices; programmer interface 
supports varying degrees of device independence. 

Loading of initial central system memory image from designated 
peripheral subsystem; central system startup. 

The Intel 432 is a comprehensive family of products, 
embracing chip- and board-level hardware components, a 
high level programming language and an applications 
executive. Together, these constitute a system designed to 
lower the initial cost and the continuing cost of developing 
complex, highly dependable end products. Such applica­
tions are further characterized by the execution of many 
concurrent activities, a heavy information processing 
orientation, and the ability to expand performance without 
changing software. 
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CHALLENGE AND INNOVATION 

COMPUTER 
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Few fields are more dynamic and innovative than 
computing. New computers and lines of computers are 
introduced almost weekly. Yet at the same time, sampling 
a set of contemporary machines - even across manufac­
turers and classes (micro, mini or mainframe) - reveals a 
surprising resemblance in their basic designs. 

A look at figure 7 helps to explain this phenomenon by 
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The state of the art in computing is raised by innovation. 
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space, instruction set, speed or price, while carrying 
forward an earlier basic design concept. "Quantum" 
innovations, which establish new conceptual foundations, 
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are rare. These few seminal machines instantly elevate the 
standard for the entire industry, changing the general per­
ception of what a computer is and what it can do. The 
successful introduction of a quantum machine like the 360 
or the PDP-II inspires a new evolutionary cycle of deriva­
tion (and imitation) as the original manufacturer brings out 
enhanced models, and competitors incorporate the new 
concepts into their own products. 

Of course this pattern IS understandable when we consider 
that a quantum innovation is rarely possible, and then very 
difficult to realize. Computer innovation is enabled - if not 
driven - by technology. A sufficient body of technical 
advances must accumulate to provide the "raw material" 
for a new design, and technology must make the new 
machine buildable and economical. Even when the 
technical basis for a quantum innovation exists, however, 
market conditions must coincide to open the innovation 
"window." 

History - in the form of past machines - encourages 
evolutionary development because a quantum innovation 
usually requires loosening compatibility constraints. 
Ironically, the very success of a previous innovative 
machine tends to restrain a company from building 
another one. To avoid obsoleting large customer invest­
ments in training and software, a new market must usually 
be identified for a quantum machine. Existing lines can 
then continue to be enhanced in an evolutionary fashion 
for the benefit of the present customer base, while the new 
machine builds another base. 

The time, expense and risk required to pioneer a quantum 
computer also pushes most companies toward an 
evolutionary style of innovation. It is far easier to borrow 
and enhance proven concepts than to create new ones. 



THE INTEL 432 

CHALLENGE AND INNOVATION 

The Intel 432 is a quantum innovation in computing. 
Technically, it combines software engineering and 
computer science advances of the 1970's with Intel's state­
of-the-art MOS technology. The 432 program began in 
1975 and the first chips were operational five years later; it 
represents Intel's largest investment in a single program. 

The 432's innovations can be viewed on two levels. First, of 
course, it delivers 32-bit computer resources in a 
microcomputer package. This powerful combination 
opens up a whole new realm of products that can benefit 
from microcomputer-based design. Yet at the same time, 
the opportunities afforded by a 32-bit microcomputer 
system are deeply intertwined with an array of formidable 
challenges. 

These challenges are inherent in the nature of the 
applications that a 32-bit microcomputer makes feasible for 
the first time. While these applications will vary enormously 
in function, they will share a core of common properties. 
Compared to 8- or 16-bit applications they will be an order 
of magnitude larger and more complex. Many of them will 
perform multiple functions concurrently, and most will 
evolve over many years. Finally, long-term dependable 
operation will be essential as people and organizations 
become increasingly reliant on these powerful systems. To 
grasp the magnitude of these new challenges, one might 
well consider that the software for many 32-bit microcom­
puter applications will rival mainframe operating systems 
in size, complexity, and the need for dependable operation. 

What have we learned from the development of to day's 
mainframe operating systems (and other ambitious 
programs)? The record is not encouraging. Many of these 
systems have never seen the light of day, having been 
aborted when it became apparent that they could not 
possibly satisfy their objectives. Those systems that have 
been placed in operation have uniformly been late, over 
budget, full of bugs in one release after another, and so 
fragile that they are almost impossible to modify with 
confidence. (In fairness, it must also be pointed out that 
many of these systems do "get the job done" in the 
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environment for which they have been defined - often a 
computer room with systems programmers and service 
personnel located nearby. This is far from the environment 
of the typical microcomputer-based product, however.) 

In short, experience indicates that the traditional technol­
ogy exemplified in most computers and languages is not up 
to the challenges of building complex, evolving, highly 
dependable systems. To build a 32-bit microcomputer that 
is a miniaturized conventional mainframe or supermini, or 
a scaled-up 16-bit micro, is to ignore history. The 432's 
second, and more profound, level of innovation is based on 
this recognition. 

The remainder of this booklet examines the principal 
challenges facing the developers of complex computer­
based products: 

• obtaining the right kind of performance; 

• managing software development and revision; 

• insuring dependable operation of both hardware and 
software. 

In each area the 432 responds with innovations designed to 
meet the challenge. Collectively, these innovations 
constitute a new computer technology. 



THE EFFECTIVE 
PERFORMANCE CHALLENGE 

PERFORMANCE­
DIRECTED 
INSTRUCTION SET 

To appreciate what we mean by effective performance, 
consider the following questions: 

• How effective is a system that adds integers in a 
microsecond but requires 1,000 times as long to add 
real numbers? 

• How effective is a system that has eight varieties of 
string translation instructions, none of which is ever 
generated by a compiler? 

• How effective is a system that spends most of its time 
executing operating system overhead routines, rather 
than application code? 

• How effective is any system that has a fixed level of 
performance, that cannot be adapted to changing 
needs? 

Effective performance is more than raw instruction speed, 
it is speed applied to a variety of parameters to optimize 
total end product throughput, even in the face of changing 
demands. 

A single 432 processor has an instruction set that 
effectively "automates" time-consuming functions normally 
performed in software. Multiple 432 processors work 
together to deliver a range of performance in both 
computation and input! output, similar in concept to the 
range provided by a compatible mainframe or minicom­
puter family. Finally, the current 432 product line 
anticipates the ability of technology to support improved 
performance in the future. 

To improve the performance of any system one must apply 
optimization efforts selectively to obtain the best return. 
This is typically done by analyzing the system to see where 
it spends its time. That is, the system is studied to identify 
the routines that consume the most total time, either by 
virtue of lengthy duration, high frequency of execution, or 
both. This same approach has been applied to the design 
of the 432's instruction set. Rather than implement a raft of 
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"clever" new instructions, the 432 moves proven high­
payoff functions into hardware. These fall into two general 
categories: numeric computation and operating system 
"overhead." 

Floating point numbers provide a useful approximation of 
the real number system that people use for most 
calculations. They can express not only integers but also 
fractions and irrationals, and are further capable of great 
range and precision. Because of their versatility, floating 
point numbers are very attractive for microcomputer 
applications. Unfortunately, the floating point algorithms 
are quite complex. When they are implemented in 
software, floating point operations are so expensive that 
they must be ruled out for many applications. For example, 
addition and square root take about 1,600 and 19,600 
microseconds respectively when executed in software on a 
5MHz iAPX 86. By moving floating point algorithms into 
hardware, the 432 makes the convenience of floating point 
arithmetic a practical alternative for most applications (add 
and square root execution times are about 13 and 56 
microseconds respectively). Note that this same argument 
is the rationale for the Intel 8087 Numeric Data Processor, 
which brings hardware floating point to 16-bit applications. 

Three important functions, which are normally executed 
by operating system subroutines, have been absorbed into 
the hardware of the 432. First, as amplified in the following 
section, general data processors assume responsibility for 
program dispatching - switching themselves among 
multiple programs - with no intervention from software. 
Second, the 432 maintains pools of free memory; storage 
can be allocated from a pool with a single GOP instruction. 
Third, both GDPs and IPs support a general-purpose 
system of program-to-program communication. A message, 
consisting of any data structure in memory, may be sent or 
received in a single instruction; messages are queued 
automatically by the hardware so that send and receive 
operations may be executed independently of one another. 
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Since the introduction of the IBM System/360, typical 
mainframe and minicomputer product lines have been 
organized as compatible families. Each model of the family 
offers a different level of performance (and price). While 
the capability of an individual model is limited, the family as 
a whole spans a wide range of performance. To obtain a 
performance increment, the customer must change 
hardware (i.e., substitute one model for another), but -
importantly - existing software is preserved intact. 

This kind of flexible performance, taken for granted by 
mainframe and minicomputer users, is not so well­
developed in microcomputers. A given microcomputer 
provides a single level of performance. Over time, new 
versions that run at higher clock rates are typically 
introduced; over more time, a new "generation" usually 
emerges with a different, but upward-compatible architec­
ture. Thus, given the passage of time, an application can 
usually "trade up" to a faster processor. Often the 
substitution requires substantial hardware redesign. 

This approach is satisfactory in applications that are fairly 
well-defined with relatively bounded execution-time 
behavior, as microcomputer-based systems have tended to 
be. As applications become more complex and more 
dynamic, however, it becomes increasingly difficult to 
predict how much processing power a system will need to 
meet its performance goals. This uncertainty is a serious 
source of risk since an application must usually commit 
itself to a processor two years before any software has 
been written. Even when the "right" decision is made 
initially, design changes and extensions that crop up during 
development and after introduction can threaten a 
system's viability. A second limitation of the "new model" 
approach is that it effectively prohibits designing a family of 
end product models that use the same hardware and 
software components to provide different performance 
levels. In response to these challenges, the 432 has been 
designed with incremental performance as an inherent 
feature of the architecture. 
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Figure 8. 
Self-dispatching 
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Overall computational throughput in a 432-based design 
can be adjusted by changing the number of general data 
processors in the system. These- processors are self­
dispatching; the normal cycle of running a program unit (a 
process) until it waits for an event (blocks) or times out, re­
scheduling it for subsequent execution, and then switching 
to the next ready process is performed automatically by 
the GDPs (see figure 8). Software, including the operating 
system, can be completely unaware of how many 

REAOY PROCESSES 

B 

a. With One GOP 

SEQUENCE OF EVENTS 

• GOP is running process A, processes 
Band C are waiting to run; with B 
scheduled ahead of C. 

• GOP detects that process A's service 
period has expired, so it schedules A 
for another service period. (In this 
case the parameters of the processes 
indicate that A should be scheduled to 
follow B and C.) 

• GOP dispatches the next ready 
process, B. 

• GOP runs process B. C and A wait. . 
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GDP-1 READY PROCESSES GDP-2 SEQUENCE OF EVENTS 
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• Process A's service period has expired 
and GDP-1 is scheduling it. GDP-2 is 
running process C. 

GDP-1 dispatches the next ready 
process (B). GDP-2 continues to run 
process C. 

• Processes Band C are both running. 

6J~ / Iii i i 

GDP-1 continues to run process B. 
GDP-2 is scheduling process C, 
whose service period has expired; 
it will dispatch A next. 

Figure 8. 
Self-dispatching (cont'd) 

h. With Two GDPs 

processors are present in the system. In everyday terms, 
the effect is somewhat like the single service line used at 
many banks. The line of customers waiting to be served 
will move faster if additional tellers open their windows. 
Since the number of processors is invisible to software, this 
important facility of the 432 is called transparent 
multiprocessing. 

While transparent multiprocessing is most attractive for its 
ability to add computing power to a system, it is also 
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important to recognize the significance of being able to 
reduce the number of processors in a system without 
altering software. If, in a multiple-GOP system, a processor. 
fails, its circuit board can simply be removed from the 
system. The system can be restarted and it will then 
provide the same services but at a slower rate. In this way 
transparent multiprocessing permits a system to remain 
useful after a processor failure. 

Of course, there are limitations to the performance 
improvement that can be realized by adding processors, 
and these break down into two general areas. First, in 
order to utilize the processing potential of multiple GDPs, 
there must be work for them to do. Most large applications 
naturally break down into a collection of parallel activities 
(processes or tasks) regardless of the computer they are 
destined to run on. (Transparent multiprocessing is, in 
fact, based on the recognition and exploitation of this 
natural tendency.) So in practice, most 432 applications 
lend themselves to effective utilization of transparent 
multiprocessing as a matter of course. Furthermore, when 
programmers know,that multiple processors are available, 
they can often design algorithms that consciously exploit 
the parallel processing capabilities of the system. 

The second limitation is the ability of the application's 
hardware configuration to keep the processors running at 
full speed. The throughput increment obtained by adding a 
processor can be constrained by memory bandwidth and 
latency. Accordingly the 432 permits wide latitude in the 
design of the memory system as well as the processor/ 
memory interconnect. 

In much the same way that 432 computing power is 
adjustable by varying the number of GDPs in the system, 
432 I/O power is a function of the number of peripheral 
subsystems attached to the central system. Since each 
peripheral subsystem is an independent computer, I/O 
capacity is variable along another dimension according to 
the character (i.e., hardware configuration) of each 
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peripheral subsystem. Additional terminals could be added 
to a system, for example, either by attaching them to 
existing subsystems with excess capacity, or by incorpora-

. ting them in a new peripheral subsystem. 

The central system (via an interface processor) presents a 
very general physical and logical interface to a peripheral 
subsystem. This encourages the design of different 
specialized peripheral subsystems that perform critical 
operations optimally. It also permits many existing systems 
to be attached to the 432 with a minimum of modification 
to hardware and software. Finally, the general interface 
simplifies the modification of a peripheral subsystem - to 
take advantage of improved technology, for example -
and helps to insure that the changes are localized within 
the subsystem. 

The 432 relies on the intelligence of peripheral subsystems 
to absorb the great majority of processing required to 
support I/O transfers. Distributing responsibility in this 
way allows multiple I/O operations to proceed in parallel 
with each other, and with computation and data processing 
operations running in the central system. A system's 
aggregate I/O capacity is subject to the normal limitations 
imposed by memory latency and bandwidth. 

The 432 has been explicitly designed to provide improved 
performance in the future while maintaining the overall 
system framework described in this book. The classic 
precipitator of a new generation is the "running out of 
memory" syndrome that has been repeated again and 
again in microcomputers, minicomputers and mainframes 
alike. With 16 megabytes of real memory space and a 
trillion of virtual, the 432 moves this traditional barrier far 
into the future. 

To further extend its useful lifetime, the 432 anticipates 
continuing semiconductor technology advances by 
carefully distinguishing between architecture and imple­
mentation. On-chip registers, caches, stack pointers and 
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so on have been made invisible because they are 
implementation features designed to provide speed, rather 
than function. Any or all of them can be redesigned to 
obtain better performance without affecting the machine 
as seen by a compiler - its architecture. 

The 432 is also designed to permit new processors to be 
neatly integrated into the present family. The GDP and the 
IP are distinct functionally specialized processor extensions 
to the 432 common base architecture. As experience with 
the product line grows and new market needs develop, 
additional compatible processor types can be built to 
extend the common base architecture in other directions. 
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Experience with mainframe-based programs has shown 
repeatedly that large software systems are among the most 
difficult engineering projects that men and women 
undertake. The large system that is delivered on schedule, 
within budget, and with performance as promised, is a 
rarity. Systems that involve real-time or concurrent 
processing - the norm in microcomputer applications -
are even more challenging. Finally, successfully modifying 
or extending large systems has proven so difficult that 
many organizations spend well over half their budgets for 
software "maintenance." 

Microprocessor users were originally spared the problems 
of large-scale programming because the earlier machines 
simply could not support large systems. The introduction 
of 16-bit machines, however, brought multi-person projects 
producing upwards of 100,000 lines of source code. To 
develop a system that exploits the power of a 32-bit 
microcomputer system in a timely manner will require 
multiple teams of programmers working in parallel. They 
will develop software that is orders of magnitude larger and 
more complex than anything ever written for an 8-bit 
machine. In this new era, managing software size and 
complexity becomes as critical to project success as 
discovering and expressing the algorithms that direct the 
operation of the end product. 

The essence of the problem is that complexity increases 
exponentially with size: it is far easier to write 50 programs 
of 1,000 lines each than to write a single system of 50,000 
lines. While limited address spaces and processing power 
made early microcomputer-based systems small by 
definition, machines like the 432 make it possible to build 
very large systems indeed. To learn from the mainframe 
experience, rather than repeat it, new tools are needed to 
reduce complexity where possible, and to otherwise 
actively manage it. 

Addressing the challenge of reducing and managing 
software complexity, the 432 provides innovations at four 
levels: first, a machine that is an efficient target for high 
level language compilers; second, a language explicitly 
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designed for building large systems of programs; third, an 
executive that provides a "catalog" of widely-applicable 
core functions that can be selected, extended and modified 
according to local requirements. Finally, the 432 has been 
designed from the ground up to support concurrent 
programming and concurrent execution. 

A given program can be written, tested and modified faster 
in a high level programming language than in an assembly 
language. The basic concept at work here is simplification: 
a high level language removes the attributes (and 
idiosyncracies) of the computer from the programmer's 
"problem set." The language replaces memory locations. 
registers, addressing modes and so on, with high level 
constructs: data structures (such as arrays, records and 
lists) and control structures (like loops and selection 
statements) that have been designed to promote the 
natural and correct expression of problem solutions. 

High level languages have been accepted somewhat slowly 
in microcomputer-based systems primarily because the 
tradeoff between programming costs and manufacturing 
costs has often favored assembly language. Memory still 
dominates the cost of microcomputer system hardware; a 
compiler for a typical microcomputer will generally 
produce a larger program than will a skilled assembly 
language programmer. A larger program generally means 
slower execution, so to achieve comparable performance, 
a system programmed in a high level language will require 
faster (and more expensive) hardware. For applications 
that are comparatively small and that are produced in high 
volumes (e.g., those based on single-chip microcomputers), 
assembly language will continue to make sense. For very 
large applications, such as those made possible by a 32-bit 
microcomputer system, high level programming is a 
practical necessity, since every effort must be made to 
reduce the complexity of the programming task. For 
applications in the middle ground, the costs must be 
weighed case by case. Of course as labor and hardware 
costs continue their opposing trends, the balance will 
increasingly tip in favor of high level languages. 

I~I 
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To make high level programming economically sensible for 
all 432-based products, the 432 general data processor has 
been designed to favor code generation by compilers 
rather than assembly language programmers. The machine 
itself makes it possible for straightforward, non-optimizing 
compilers to generate code that approaches assembly 
language programming in size and speed. The strength of 
this commitment to high level languages, and the success 
of the design, is indicated by the fact that Intel does not 
supply an assembler for the GOP, nor is one used in­
house. The portion of the iMAX executive that runs on 
GOPs, for example, is written entirely in Ada. . 

There are no visible registers in the GOP; all instruction 
operands are memory-based. A good assembly language 
programmer regards registers as high-speed local storage 
which can be exploited by considering the run-time 
behavior of the program being written. A compiler, on the 
other hand, has no knowledge of the run-time behavior of 
the program it is translating; to it, registers present not so 
much an opportunity for optimization as a scarce resource 
which must be managed. Registers are used internally in 
the GOP to improve performance. By keeping registers 
"behind the scenes," rather than as visible features of the 
architecture, the GOP reduces compiler complexity. 
Moreover, new registers can be added to future GOPs to 
enhance performance without impacting existing software. 

The GOP promotes the generation of fast, compact code 
by requiring fewer machine instructions per high level 
statement. A compiler for a typical computer must 
generate several machine instructions to implement each 
high level language statement. In contrast, the 432's 
instruction set (in conjunction with its data types and 
addressing modes) matches typical high level statements 
on a one-for-one basis (see table 6). A compiler for the 432 
simply generates the "obvious" machine instruction(s). 

In addition to requiring fewer machine instructions, 432 
programs are also made more compact by the instruction 
encoding technique. As in many modern computers, the 
instructions that occur most often are shorter in length 
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432 Conventional 
Ada Statement and Interpretation (1) Machine Machine 

Instructions Instructlons(2) 

E:= F; - -assign simple variable (scalar) Fto simple variable E. 1 (MOVE) 2 

A(I):= X.B; - -assign element B of record X to I 'th element of vector 1 (MOVE) 3 
- -A. 

A(I) := A(I) + C; - -increment I'th element of vector A byvalue of simple 1 (ADD) 4 
- -variable C. 

X.B := C/D(I); - - divide si mple variable C by I'th element of vector 1 (DIVIDE) 4 
- -0, and assign result to element B of record A. 

A(I) := X.B-(E*F); - -multiply simple variables E and F, subtract the result 2 (MULTIPLY, 7 
- -from element B of record X, and assign the result to SUBTRACT) 

the I'th element of vector A. 

NOTES: 
(1)Assume A..F are variables of the same type (e.g., all integers or all reals) and that the value of I is 

in the range 0 .. 65,535. 
(2)Assume a typical register-oriented computer. For example, the instructions required to imple-

ment A(I) := A(I) + C might be: 

LOAD reg1, I 
LOAD reg2, A(reg1) 
ADD reg2, C 
STORE A(reg1), reg2 

Table 6. 
than those used less frequently (e.g., MOVE is shorter 
than SQUARE ROOT). Instruction references to top-of­
stack operands are encoded implicitly; no bits are needed 
to specify the location of these operands. When a data item 
is used twice in the same instruction (e.g., A(I) := A(I) * B), 
only a single reference is encoded in the instruction. 
Finally, instructions are encoded bitwise (see figure 9): 
each instruction consists of a variable number of variable­
length bit fields. The shortest instructions are six bits long, 
while the longest are over 300 bits. Successive instructions 
are located immediately adjacent to one another in 
memory, irrespective of word or byte boundaries. (The 
processor fetches instructions in 32-bit words and extracts 
the bit fields internally.) There are no unused bits in the 
instruction stream, either within one instruction or 
between two instructions. 

High Level Language Statements 
And Machine Instructions 

30 

The GOP's register-free architecture, high level instruc­
tions, data types and addressing modes, and very dense 
instruction encoding substantially narrow the "efficiency 
gap" between compiler-generated and hand-coded 
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Figure 9. 
Bitwise Instruction Encoding 
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programs. Straightforward, non-optimizing compilers will 
routinely produce code that approaches assembly 
language in efficiency. This in turn makes the benefits of 
high level programming economically practical for even 
high-volume 432 applications. 

Large software systems are inherently complex; no one 
can fully understand a system of 100,000 lines. Nor is th~re 
time for one person to develop a large system. As a result, 
large systems are classically developed according to a 
"divide and conquer" strategy. The large problem is 
divided into smaller independent subproblems that can be 
parceled out to teams and individuals. The subsolutions 
are developed in parallel and are integrated into a single 
solution that solves the whole problem. In a similar vein, 
large software systems are usually modified (corrected or 
extended) by identifying the part(s) of the system to be 
altered or added, making the changes and additions, and 
then reintegrating the old, new, and modified parts to 
produce a new version of the whole system. 

The parts into which a system is decomposed, both for 
initial development and later modification, are called 
modules. A module may be compiled independently of 
other modules, and provides a service that other modules 
can call upon. Modular programming has been practiced in 
various forms for many years; its goal is to make the 
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inherent complexity of a large system manageable by 
dividing the system into units that can be considered 
independently, that is, in isolation from the rest of the 
system. In theory, a programmer can then develop or 
modify a module without affecting - or even understanding 
- the rest of the system. Thus, in a modular system, it 
should be possible to: 

• develop modules separately and in parallel with the 
assurance that they will fit together; 

• quickly identify the module that is the source of a bug; 

• introduce a new module into the system without 
jeopardizing what already exists; 

• change one module without changing any others. 

In practice, these goals have been discouragingly elusive. 
Figure 10 illustrates a conventional decomposition in which 
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a module is a subprogram (e.g., a procedure) that performs 
a well-defined function. This "decomposition by function" 
is encouraged by most languages whose only support for 
modular programming is the ability to compile subprograms 
independently. With this approach, data is considered of 
secondary importance to algorithms; the data is typically 
defined "as needed" to make the algorithms work. As a 
result, systems designed in this manner usually contain a 
number of global data structures that are accessed by 
many different modules. 

Modules that share access to a data structure violate the 
basic intent of modular design: they are made interdepen­
dent by virtue of their mutual dependence on the data 
structure. What are the consequences of this interdepen­
dence? First, programmers writing modules that share a 
data structure must coordinate the detailed definition of 
the structure and any changes made to it as the 
development progresses. Second, damage discovered in a 
data structure can be attributable to any of the modules 
that have access to it. Third, a new module that accesses a 
shared data structure threatens all other modules that use 
that structure. Fourth, a change in the way one module 
uses the data structure can necessitate changing some (it 
can be difficult to tell which) or all of the other modules that 
use it. 

Recognizing the importance of modular programming as 
well as the shortcomings of past methodologies and tools, 
Ada defines a new kind of module as an inherent element 
of the language. This module is called a package (see figure 
11), and is the basis for an integrated approach to modular 
programming. (This section concentrates on describing 
the effects of package-based program structure; more 
information on packages per se is provided in the Software 
Engineer's Perspective.) 

A package defines both a data structure and a set of 
operations on that data structure. (Note that a "data 
structure" can represent an I/O channel, a bank account, 
or any other type of "thing" managed by the application.) 
An operation is written as an ordinary procedure or 
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Figure 11. 
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Subprogram 
Names and 
Parameter 
Definitions 

~--------~---------~~ 

l L Body: Separates and hides details 
and decisions of package 
implementation (how it works) 

Specification: Explicitly defines complete 
user interface (what it does) 

General Form Of A Package 

function that can be called to perform a service related to 
the package's data structure. In a banking application, for 
example, there might be a package that manages a data 
structure representing a bank account; this package might 
provide operations such as open new account, close 
existing account, debit account, credit account, report 
account balance, and so on. A file-handling package might 
provide read, write, and close operations. The (static) 
organization of a system's software is a network of 
packages that call each other's operations, as shown in 
figure 12. 
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The fundamental characteristic of a package is localization. 
One and only one module has responsibility for all 
operations on one and only one data structure. A data 
structure can be read or written only by the operations in 
its package; other modules may gain access to information 
in the data structure (or cause information in the data 
structure to be changed) only by calling these operations. 
Other modules know what a package will do when one of 
its operations is invoked, but all knowledge of how it works 
is hidden. This means that "how it works" can be changed 
without affecting users so long as "what it does" is 
preserved. 

What are the consequences of basing a system on 
packages? First, development is simplified by the separation 
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of package specifications ("what they do") from package 
bodies ("how they work"). The specification of a package is 
a contract between a package's implementors and a 
package's "clients." Once a specification has been 
established, clients and implementors can code in parallel; 
the specification decouples the use of a package from its 
implementation. Since clients depend only on a package's 
specification, a change to a package body (for example, to 
fix a bug or to improve performance) is guaranteed to 
affect no other module in the system. (Note that the Ada 
compiler checks to insure that caller/callee parameter lists 
match at compile-time, thus insuring that packages "fit" 
when they are linked together for testing.) 

Second, if a data structure is found damaged, the damage 
can only be due to an operation in the single package that 
manages it. Third, a new package can be introduced into a 
working system with confidence, since its interaction with 
the rest of the system is limited to calls of existing package 
operations. 

Most observers agree that the principal contributor to low 
programmer productivity is the inordinate amount of time 
that is devoted to program revision - fixing bugs, 
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MODULAR 
APPLICATIONS 
EXECUTIVE 
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enhancing services, or improving performance. Many large 
systems are in a state of constant change from the time 
development begins: new requirements are introduced, 
algorithms and data structures are found to be inefficient, 
"minor" misunderstandings are discovered and so on. 
Conventional techniques for decomposing systems into 
modules permit the correct operation of a module to 
depend on a data structure which can be altered by any 
number of other modules. A simple modification to such a 
data structure, or to a module that updates it, can easily 
trigger the modification of tens of other modules. By 
increasing module independence, package-based modular 
programming above all makes systems changeable. 

Hardware engineers design microcomputer systems 
largely from standard chip- or board-level building blocks 
(disk controllers, memories, and so on). These components 
perform generic functions that are useful in widely different 
kinds of applications. This approach minimizes the amount 
of original design work, confining it to the truly application­
specific aspects of the system. 

The 432's iMAX executive is a kind of "component 
catalog" for 432 software engineers. Each iMAX component 
is an "off the shelf" Ada package that manages a basic 
resource (e. g., free memory) that most systems use, 
regardless of the application area. Electing to implement 
basic system services with iMAX packages reduces project 
risk since the most critical and elemental services (those 
which require intimate knowledge of the machine) have 
already been written, documented and tested. It also 
shortens time-to-market by permitting programmers to 
concentrate on the software requirements that are unique 
to the application. 

Since iMAX is a collection of Ada packages (see figure 13), 
rather than a monolithic system, only the services that are 
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CONCURRENT 
PROGRAMMING 
AND EXECUTION 

germane to the application need be configured. No 
memory space or processor time is consumed by 
unneeded facilities. (Naturally, some iMAX packages use 
each other, so selection of one may implicitly select 
another.) Furthermore, users may add packages to iMAX, 
and, within limits, may also replace packages with 
equivalent local implementations. In sum, iMAX's package­
based organization makes it remarkably adaptable to 
differing local needs. 

Computers were invented to perform long calculations 
consisting of a great many steps executed in sequence, one 
after another. While computers are still used for calculation, 
their application has also broadened tremendously. Now it 
is rare to find a machine that is employed to execute 
programs sequentially one at a time. Instead, most 
computers are busy running many programs concurrently. 
The essence of concurrency is that more than one activity 
is underway - but not necesarily in actual execution - at 
the same time. Figure 14 contrasts sequential execution 
with the two types of concurrent execution, apparent and 
real. 

It is useful to distinquish between concurrent execution, as 
described above, and concurrent programming. Concur­
rent execution can improve system throughput by 
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a. Sequential Execution -
Single processor executes 
one program to completion 
before beginning the next. 

Figure 14. 
Sequential And Concurrent 
Execution 
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b. Apparent Concurrent 
Execution -
Single processor is multi­
plexed among multiple 
programs; only one actually 
runs at a time. 
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c. True Concurrent Execution -
Multiple processors execute 
mUltiple program in 
parallel. 

increasing processor utilization. Most programs actually 
run in short bursts, executing some instructions then 
waiting for an "event" that must occur before processing 
can continue. Often the event is completion of an I/O 
operation or receipt of a message sent by another 
program. Rather than have the processor idle until the 
event occurs, the processor can switch to a ready program 
and run it. Multiplexing the processor among several 
programs keeps it busy and permits more work to flow 
through the system in a given period of time. Concurrent 
execution does not necessarily require attention from 
programmers; for example a multiprogramming operating 
system may multiplex a processor among independent 
programs that are unaware of each other's presence. 

If a system supports concurrent execution, the added 
availability of a concurrent programming facility gives 
programmers the opportunity to simplify software design. 
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A system of concurrently running programs is a natural 
model of the "real world," particularly the world that 
microcomputers interact with. In the environment of the 
typical microcomputer-based product, many activities are 
underway at once: end users are entering data and 
requesting services, sensors are monitoring external 
conditions, controllers are adjusting equipment, and so on. 
Futhermore, these activities often interact with one 
another: one activity may produce data that is "consumed" 
by another, one activity may begin upon a signal from 
another and so on. A system's software is greatly simplified 
if its own structure reflects these natural activities and their 
interactions. 

In general, support for concurrent programming has been 
limited to an operating system sandwiched between a 
sequential programming language and a sequential 
machine. Without language support, programmers have 
been forced to learn the idiosyncracies of an operating 
system in addition to their application language. Without 
machine support, it is very difficult for an operating system 
to efficiently multiplex the execution of concurrent 
programs, and even more difficult to provide efficient 
sharing of information while at the same time protecting 
programs from each other. Finally, without designed-in 
hardware support, it is extremely difficult to implement a 
system that provides real concurrent execution; in most 
computers true parallel execution is limited to I/O 
operations. 

The 432 is specifically designed to support concurrent 
programming and concurrent execution - both apparent 
and real. Concurrently executing programs nominally run 
independently of one another; GDPs automatically 
multiplex themselves among ready programs, removing 
this overhead from operating system software. At the same 
time, concurrently executing programs may be designed to 
cooperate with each other; they may send messages, 
synchronize their execution and share data. Finally, the 
432's transparent multiprocessing capability makes moving 
from apparent to real concurrent execution a simple 
matter of adding processors to the system. 
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Ada defines a unit of concurrency, the task, as a basic 
element of the language; a task is a program unit that may 
operate in parallel with other tasks. Ada gives programmers 
the ability to create tasks, activate and terminate them, 
pass information between them and synchronize their 
execution. All of this is done directly with high level 
language statements. Whether the concurrent execution 
of active tasks is apparent or real is purely a matter of the 
underlying hardware configuration; it does not need to be 
addressed in the code at all. 

Since Ada's tasking facility is intended to be implemented 
on many different types of computers, its design has to 
some degree traded flexibility for ease of implementation. 
For example, it is difficult in Ada for one task to request a 
service of another and then continue running without 
waiting for the request to be acknowledged. The iMAX 
executive takes advantage of the 432's unique architecture 
to offer programmers a somewhat more general and 
efficient set of concurrent programming facilities. The 
executive also simplifies concurrent programming in 
languages which do not have built-in facilities; such 
facilities can be supplied in the form of a subprogram 
library that interfaces to iMAX. 

Underlying both iMAX and Ada is a processor expressly 
designed for concurrent programming and execution. 432 
general data processors automatically multiplex themselves 
among ready-to-run programs, with no software interven­
tion whatever. The operations of sending and receiving 
messages are single hardware instructions, like add and 
subtract. These instructions execute rapidly because 
transmission requires only moving a one-word reference -
the message "text" stays in place. Transmission is 
asynchronous and is buffered automatically by the 
hardware; a sender can produce messages at any time and 
at any rate and a receiver can receive them independently 
at its own convenience. "Overactive" senders, which might 
exceed the capacities of message buffers, are automatically 
controlled by the hardware. 
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Concurrent programming and execution extends to 
peripheral subsystems also. Since they are independent 
computers, peripheral subsystems can fully overlap I/O 
transfers with GOP operations. The same message-based 
protocol used in the central system to pass information 
between GOP programs is employed to send requests for 
I/O to programs running on peripheral subsystems. 
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THE DEPENDABILITY 
CHALLENGE 

It has always been important for microcomputer-based 
products to run dependably. Unlike most minicomputers 
and mainframes, micros usually find themselves installed 
far from personnel who can diagnose and repair a piece of 
hardware, not to mention fix a program bug. A microcom­
puter's "I/O devices" may include not only disks and 
terminals, but also furnaces, kidney machines, radar 
displays and other exotic· and expensive equipment. A 
system failure can threaten equipment, organizations, and 
individuals. 

A 32-bit microcomputer system intensifies the importance 
of dependable operation because it allows construction of 
products which represent unprecedented value to end 
users - so long as they work. Conversely, when an 
extraordinarily able machine - one that people rely 
heavily on - fails, it can suddenly become perceived as a 
tremendous liability. Thus, somewhat ironically, the 
consequences of a failure generally increase in severity 
with a product's utility. At the same time, the likelihood of a 
failure increases with the complexity of the system. High­
utility end products, made possible by a 32-bit microcom­
puter system, will be correspondingly complex, at least 
internally. Developers of high-end products, then, face the 
difficult prospect of building systems that are both complex 
and dependable. 

Dependable operation of both hardware and software 
components is a high priority in the design of the 432. 
Innovations in this area are based on a philosophy of 
avoiding run-time defects where possible, planning for the 
failures that will inevitably occur, and tightly confining the 
consequences of these failures. They include a floating 
point facility that greatly simplifies the development of 
reliable algorithms, error checking that detects many 
classical program bugs before they get into execution, an 
extensive run-time protection system, and processor self­
checking for physical defects. 
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Like most mainframes and some minicomputers, the 432 
GOP provides a floating point facility that approximates 
the system of real numbers. Most floating point implemen­
tations, however, have proved difficult to use in practice. 
The straightforward algorithms developed by typical 
programmers often exhibit surprising, inconsistent, or 
inaccurate results, particularly when processing boundary 
values. As a result, many projects have had to either 
abandon floating point computation, or obtain the services 
of a numerical analyst. 

The 432 implements the proposed IEEE standard for 
micro/minicomputer binary floating point arithmetic. The 
critical, time-consuming operations are implemented in 
GOP hardware and the remainder of the standard is 
supplied in an Ada package provided with the compiler. 
The proposed standard takes care to avoid past short­
comings and insures that floating point computation 
(which is inherently approximate) is as accurate and 
consistent as possible. In ordinary usage, results are 
rounded to the nearest representable value, and are 
rounded without bias in the case of ties (two values are 
equally near the true result). 

The extended-precision temporary-real data type is 
provided expressly for holding intermediate results. Its 
extra range and precision practically eliminate the 
exceptions most commonly encountered in floating point 
arithmetic: overflow, underflow and harmful roundoff 
errors. 

The 432's approach to floating point arithmetic greatly 
improves the reliability of calculations written by ordinary 
(numerically unsophisticated) programmers. It is an 
example of how the thoughtful design of hardware can 
contribute to the development of defect-free software, 
effectively eliminating one class of run-time error. 
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Originally designed for military applications, one of Ada's 
primary goals is to promote the development of reliable 
programs. Two of its key features are strong typing and 
parameter checking. 

Nearly a decade of wide experience with the Pascal 
language has verified the contribution that strong typing 
makes to program clarity and reliability. Ada borrows and 
improves upon this approach. As structured programming 
adds discipline to the expression of algorithms, strong 
typing adds discipline to the expression and use of data. It 
formalizes the good programming practice of introducing 
variables (and constants) before they are used; the 
introduction names the item and specifies its type. A few of 
the familiar types predefined in Ada are CHARACTER, 
INTEGER, FLOAT and ARRAY. Importantly, program­
mers may create new types which are appropriate for the 
application at hand. A data item's type defines its essential 
properties and its intended use in the program. (A more 
formal way of saying this is that an item's type specifies the 
values it may assume during execution, and the operations 
that are legal for those values.) Refer to figure 15 for some 
simple examples of typed variable and constant declara­
tions in Ada. 

Completely defining a variable's properties in one place 
improves program clarity, rather like introducing the team 
members and their positions at the start of a football 
broadcast. Besides informing the reader, typed declarations 
convey valuable information to the compiler. The compiler 
uses this information to insure that the actual use made of 
a data item matches its intended use. If a programmer 
defines two different types, say APPLE and ORANGE, the 
compiler will not permit variables of these two types to be 
added together, because they are not compatible. This 
consistency checking is the basis for characterizing Ada's 
type system as "strong." 

Managing a large program with many variables is not a 
simple intellectual task; it demands methodical attention to 
detail. Under intense (i.e., normal) schedule pressures, 
"methodical" typically gives way to "expedient." When a 
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Figure 15. 
Ada Strong Typing Examples 
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- - use some predefined types 

increment: 
avg_pages: 
page_no: 
currenLcol: 
one: 
prinLwidth: 
page_depth: 
device_name: 

integer; 
float; 
natural; 
natural := 1; 
character := '1'; 
constant natural : = 132; 
constant natural := 60; 
string (8) := "SYSPRINT"; 

- - define some new types 

type line 
type page 
header _page: 

is string (prinLwidth); 
is array (page_depth) of line; 
page; 

- - simple type-checking 

page_no:= 1; - - ok 
page_no := one; - - illegal 

new programmer must modify someone else's program, it 
can be difficult for that person to understand the full impli­
cations of even a simple change. Strong typing is particu­
larly valuable in these circumstances. In effect, it acknowl­
edges human fallibility in stressful conditions; the compiler 
acts as a second reader that "walks through" the code 
during compilation checking for consistent usage. By cross 
checking stated intentions and actual behavior, strong 
typing catches many "clerical" errors before the program 
gets into execution. 

Mismatched parameters are a classical source of error 
when many different people are developing interdependent 
modules. Ada carries the principle of strong typing beyond 
Pascal by checking subprogram parameters for consist­
ency, even if the calling and called routines are compiled 
separately. Any discrepancy in the number of parameters, 
their types, or their order is detected at compile-time when 
it is simple and convenient to fix the problem. When a 
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simple mismatch is allowed to pass into execution, the 
resulting system behavior can be surprisingly difficult to 
trace back to the trivial source of the problem. 

Another classical "bookkeeping" problem in developing, 
and especially modifiying, large systems is version 
mismatch. This is another situation in which a compara­
tively minor oversight can lead to disastrous consequences 
which are very difficult to diagnose. The basic problem is 
keeping track of the dependency relationships among a 
system's modules, so that when the interface (e.g., 
parameter list) of a module is changed, all dependent 
modules are also modified to match the new version. (This 
situation cannot be detected at compile-time. The compiler 
can follow the chain of dependency down from the module 
it is compiling to modules it uses, but not up to modules 
that use it; the compiler has no way of knowing which 
modules depend on the module being compiled.) Figure 16 
illustrates a common scenario, and shows how the 432 
linker detects the discrepancy before the (mis-}modified 
system gets into execution. As with type checking, this is a 
simple error to fix when it is caught early. 

Debugging a large software system, particularly one with 
many concurrent activities, is extremely difficult. Only a 
fraction of the cases the system will encounter in actual 
execution can practically be tested. Complex timing 
interactions can make system behavior (and, more 
importantly, misbehavior) unrepeatable for purposes of 
diagnosing an error or testing a fix. In fact, it is impossible 
to positively demonstrate that a system fully works. 
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B C 

• Modules Band C depend on (use) ~ / Module A. 

A 

A. Source ~/ Ada f-~.Oble1 

f-O • The source modules are ~L separately compiled. B. Source Ada 

c. Source ~L Ada f-D 
~BC. loa~ • The object modules are linked 

together. 

I I f-G A. Source 1 Editor 
• An error is discussed in module 

A's interface (e.g., it requires a 
new parameter). A is modified and I A. Source, I H·Obled! recompiled. 

~L Ada 

• The system is relinked; however, 

f-[51 Link-432 discovers that modules B i and C reference an old version of Link 
A. They must be updated to match 
A's new interface. 

Figure 16. 
Module Version Checking 
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As a practical matter, then, it is prudent to accept the 
inevitability of latent bugs in a complex system, and at the 
same time to insure that they do the least possible damage 
when they are executed. This is the basic rationale for a 
run-time protection system. Such a system expects errors 
and exceptions to occur· during execution, detects them 
rapidly, and provides the information necessary to make 
an appropriate response. Like compile-time type checking, 
run-time protection represents the acknowledgment of 
fallibility and the determination to limit its impact. 

An extensive facility for defining, detecting and handling 
run-time exceptions is inherent in the Ada language. The 
bulk of the 432's protection system, however, is imple­
mented in hardware and is independent of Ada. It is built 
into hardware for four reasons. First, not all systems built 
with the 432 will use Ada exclusively; code generated by 
other translators must be prevented from interfering with 
the rest of the system, including Ada's "safer" code (even 
Ada permits "unsafe programming" under special condi­
tions). Second, hardware-based protection is not suscep­
tible to corruption (innocent or malicious) by programmers. 
Third, hardware protection is fast - software-based 
protection mechanisms can exact high performance 
penalties. Finally, hardware-based protection permits the 
construction of dynamic systems that can safely deal with 
new users, programs and devices that did not exist when 
the system was compiled. Hardware-based protection 
makes it possible, for example, to add a new service to a 
running system without jeopardizing the integrity of 
existing functions. 

Designed into the hardware from its inception, the 432's 
protection system is efficient, precise and flexible; it applies 
to both computation and input/output operations. It is 
based simply on controlling the access of programs to 
information. The level of information to which protection is 
applied is the data structure, and the level of program to 
which access is controlled is the procedure (or function). 

Underlying the protection system is the "need to know" 
principle: a procedure should have access to only the 
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Figure 17. 
432 Protected Addressing 
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information it requires to perform its function and nothing 
else. By "access" we mean both what information is 
addressable in any ~ay, and how addressable information 
can be used. This principle is applied uniformly to 
"operating system" as well as "application" procedures; as 
a result, no procedure is more "privileged" than any other. 
The iMAX executive is protected from application 
procedures because they have no way to gain access to its 
data; the reverse is true as well, except as the application 
explicitly passes information to the executive. 

In order to. obtain protection without unduly sacrificing 
performance, the 432's protection system is integrated into 
the hardware's addressing mechanism. The overall 
approach is. depicted in figure 17. 

DESCRIPTORS 

Type Length Address 

DATA STRUCTURES 

• Disp. 
t ~ 
o 
o 
o 

~ID 

• May be read 
by A. 

• May be written 
by A. 

• May be read or 
written by B. 

• May be read 
by C. 

• May be read or 
written by C. 

• May be written 
by C. 

G) Processor reads permit specified in instruction 
and checks rights. 

® Processor reads descriptor indexed by permit, 
checks type, an~, compares length to displace­
ment in instruction. 

@) Processor adds displacement to data structure 
address and fetches operand. 
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All information in the memory space of the 432 is collected 
into data structures. There are many distinct types of data 
structures; some of them are predefined for use by the 
hardware and the executive, and others are defined by 
applications. Each data structure is represented by a 
descriptor in a central table, which is maintained by the 
processors. A descriptor contains the address of the data 
structure (432 instructions do not contain addresses), its 
length and its type .. Centralizing all addresses in this 
manner makes it simple to move a data structure even 
when many procedures have access to it; changing the 
address in the descriptor causes all subsequent references 
to automatically pick up the new address. 

Each proc{3dure has a unique list of "permits" which 
completely defines the data structures it can address. Each 
permit contains a set of rights that specify how the 
procedure may access the corresponding structure. The 
fundamental rights are read-only, write-only, and read­
write; other rights relate to specific types of data structures 
and grant! deny permission to perform certain operations. 
A permit also contains an index to the descriptor for the 
associated data structure. 

A procedure's permit list is initially built when it is 
compiled, and it may expand during execution. For 
example, if the procedure creates a new data structure 
dynamically, the hardware adds a permit for the new data 
structure to the list. However, a procedure has no way of 
operating on its permit list as ordinary data; it is impossible 
for it to change th~ rights or descriptor· index. Note that 
since each procedure . has its own permit list, a called 
procedure does not inherit access to data structures from 
its caller, other than those explicitly passed as parameters. 
Thus, a progtam's instantaneous access environment 
changes from one procedure call to the next. 

For each of its operands, a machine instruction contains a 
short encoded reference to the permit for the data 
structure containing the target data item. The instruction 
also specifies the displacement of the item from the 
beginning of the structure. Using the displacement, the 
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permit, and the descriptor, the processor calculates the 
actual physical address of the item to be operated on. In 
doing so, the processor also determines that the following 
are true: 

• the procedure's rights for the data structure permit the 
operation that is being attempted; 

• the data struct"ure's type is consistent with the 
operation being attempted; 

• the data item lies within the actual extent of the data 
structure. 

If the hardware detects an attempted protection violation, 
it aborts the instruction before executing it. It also writes 
diagnostic information into a predefined data structure and 
passes control to a software routine which has been 
designated to handle the error. This automatic facility is 
called fault detection and reporting. (The hardware also 
faults if it detects a conventional exception during 
instruction execution, such as division by zero, and 
arithmetic overflow or underflow.) 

Significantly, the 432's fine-grained protection system 
promotes the safe, flexible sharing of information between 
cooperating procedures running concurrently on the same 
or different processors. If one procedure wants to pass a 
data structure to another, it is only necessary to create a 
new permit containing the rights that are to be granted to 
the receiver and then send the permit - there is no need 
to move the data structure at all. The 432 has built-in 
instructions for performing these operations simply and 
efficiently. When two procedures hold references for the 
same data structure, one of them can temporarily prevent 
access by the other by locking the data structure (for 
example, during an update). The hardware automatically 
defers an attempt to gain access to a locked structure. 

Note that the 432· interface processor uses the same 
mechanisms to insure that I/O operations do not violate 
the system's protection standards. From the 432's 
perspective, an I/O operation transfers the content of a 
data structure between a peripheral subsystem and central 
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memory. Software running on the peripheral subsystem 
directs the transfer, but the IP does all central system 
addressing. The same permit lists are provided for 
peripheral subsystem software, and the IP performs the 
standard consistency checks, fault detection and so on. 

Even a system that is apparently free of software defects 
will experience hardware failures during its life, particularly 
in infancy and in old age. Like a software bug, a hardware 
failure may cause a system to produce invalid information; 
such invalid information may be passed on to end users or 
may be "consumed" internally possibly bringing the system 
down. Dependable systems must therefore expect and 
cope with hardware as well as software failures. The 432 
exploits the unique capabilities of VLSI components to 
allow construction of processor modules that detect their 
own malfunction. 

The tolerance of a computer-based system to hardware 
faults can be viewed as a combination of its fault coverage 
and its availability. Fault coverage refers to the percentage 
of possible failures that the system is able to detect, and to 
the tightness with which the system localizes the source of 
a failure and confines its impact on the rest of the system. 
Availability is the inverse of downtime; it depends on the 
rate of fault detection and the time required to recover -
to return to a usable condition, perhaps with reduced 
capability. It is important to note that fault tolerance is 
ultimately based on fault coverage. While a high-availability 
system may provide "non-stop" operation, without good 
fault coverage it may also be producing invalid information 
because it is insensitive to its own faults. 

Applications vary in their need for fault-tolerance as shown 
roughly in figure 18. Each design must weigh the cost of 
hardware failures against the cost to build detection and 
recovery facilities into the system. Over time, however, the 
increased reliance on computer-based systems tends to 
drive most applications toward increasingly fault-tolerant 
operation. 
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Figure 18. 
Fault-tolerant Systems 
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Technology has responded to these demands with 
techniques for adding redundant codes to data such as 
parity, cyclic redundancy check (CRC), and error 
checking and correcting (ECC). These techniques detect 
data transformations and can be applied successfully to 
buses, I/O devices and memory. The System 432/600, for 
example, uses ECC memory, which detects all single- and 
double-bit errors and corrects single-bit errors; it also 
parity-checks each byte of the system bus. 

Much less progress has been made in detecting processor 
failures at reasonable cost. Processors by definition 
transform data, and it is extremely difficult to design a 
coding technique that distinguishes incorrect transforma­
tions. Practically speaking, processor fault detection 
requires redundant machines and factors of cost and size 



Figure 19. 
Self-checking Processor Module 
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have precluded this approach for all but the most critical 
applications. A second factor that works against the 
development of redundant processors is the halving of 
reliability that occurs when the component count is 
doubled. Unless the single processor is extremely reliable, 
and recovery time is very fast, the doubling of the failure 
rate may reduce availability by more than the added fault 
detection is worth. 

Taking advantage of the inherent high reliablility, small size 
and low cost of VLSI components, the 432 significantly 
expands fault coverage to include nearly instantaneous 
detection of processor failures. This is achieved simply by 
replicating identical processors. All GDPs and IPs have 
built-in circuits that permit two processors to be wired 
together into a single self-checking module (see figure 19). 
The module monitors itself cycle-by-cycle, performing 
every operation in parallel and comparing the results. If it 
cannot guarantee correct operation (the checker's result 
differs from the master's), the module automatically stops 
itself in the next cycle and notifies the rest of the system. 
The checking covers defects on the VLSI chips themselves, 
as well as mechanical flaws in bond wires, sockets and 
solder joints. No speed penalty is incurred when processors 
check each other in this manner; the self-checking module 
executes at the same rate as a single processor. 
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Transparent multiprocessing and self-checking processor 
modules permit the construction of systems that provide 
broad fault coverage and rapid recovery. Since a failed 
processor module identifies itself, it can be pulled from the 
system immediately and the system can then be restarted. 
If the module is an IP, one peripheral subsystem will be 
unavailable, but the system may still be able to provide a 
useful level of service; if the failed module is a GDP, the 
other GDP's can absorb the processing load automatically. 



SUMMARY 

A 32-bit microcomputer system represents tremendous 
computing potential: the raw material for constructing end 
products of unprecedented capability and value. The 
advent of this class of machine ushers in a new era of 
microcomputer-based system development in which 
unequalled opportunities are intimately linked with 
formidable challenges. In one stroke, a 32-bit machine 
lowers the barriers that have traditionally limited the 
application of microcomputers, and eliminates the 
constraints that have effectively shielded past projects 
from the difficulties of developing complex, large-scale, 
highly dependable systems. 

Drawing on the experience of the mainframe community in 
developing comparable systems, the remarkable new 
capabilities of MOS technology, and important contribu­
tions from computer science and software engineering, the 
Intel 432 has been designed to profit from history rather 
than repeat it. It forges a new technology aimed at reducing 
the life cycle costs of complex computer-based applications. 

In its broad outlines, the 432 indeed supplies the functional 
capabilities of a 32-bit microcomputer: it delivers a very 
large address space, virtual memory support, and a rich 
variety of data types, instructions and addressing modes. 
What makes the 432 an extraordinary product family, 
though, are its innovative responses to the challenges 
inherent in bringing a complex, dependable product to 
market quickly and economically, and then supporting and 
enhancing that product over a period of years. Specifically, 
the 432 delivers: 

• an instruction set that moves critical, time-consuming 
functions from software into hardware; 

• a range of computational performance based simply on 
the replication of general data processors; 

• a range of inputj output performance based on the 
replication of identical or different peripheral subsys­
tems; 

• a standard high level language that is explicitly 
designed for constructing very large, highly reliable 
systems of concurrent software; 
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• an applications executive consisting of packaged 
components that can be configured, modified and 
extended to precisely match local needs; 

• extensive pre-execution error checking to detect 
common software bugs before they get into execution; 

• run-time protection in hardware to automatically 
detect software errors with the lowest possible 
overhead; 

• the ability to build self-checking processor modules 
that immediately detect their own malfunction with no 
performance penalty. 

Finally, the present design of the 432 anticipates future 
progress in MOS technology and application of the system 
to more specialized market areas by means of new 
processor types. It is a family of products that establishes 
the new leading edge today and will stay at the forefront for 
years to come. 
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