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iAPX 43203 
VLSIINTERFACE PROCESSOR 

Fully Independent and Decentralized • Protected I/O Interface to 432 Memory 
I/O 

• Silicon Operating System Instruction 
Buffered Data Path for High-Speed Set Extensions for Attached iAPX 
Burst-Mode Transfers Processors 

Initialization/Diagnostic Interface to • Multibus™ System Compatible 
432 Systems Interface 

Multiple 43203's per System Provide • Functional Redundancy Checking 
Incremental I/O Capacity Mode for Hardware Error Detection 

The Intel 43203 Interface Processor (lP) provides 1/0 facilities in iAPX 432 micromainframe systems 
employing peripheral subsystems. An IP maps a portion of the peripheral subsystem address space into 
iAPX 432 system memory. As any iAPX 432 processor, the IP operates in an object-oriented, capability­
based, multiprocessing environment. 

The 43203 is a VLSI device, fabricated with Intel's highly reliable + 5 volt, depletion load, N-channel, silicon 
gate HMOS technology, and is packaged in a 64-pin Quad In-Line Package (QUIP). Refer to Figure 1 for the 
QUIP representation of the 43203 pin configuration. 
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Figure 1. iAPX 43203 Interface Processor Pin Configuration 
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FUNCTIONAL DESCRIPTION 

The block diagram shown in Figure 2 illustrates 
the internal arch itectu re of the Interface 
Processor. Figure 3 represents the Interface Pro­
cessor as a logical device and illustrates the 
signal interface to the Processor Packet bus (left 
side) and the peripheral subsystem (right side). 
The Interface Processor (lP) operates in conjunc­
tion with an Attached Processor (AP) to form the 
logical 110 processor of an iAPX 432 system. 

The IP acts as a slave to the AP, and maps a por­
tion of the AP's peripheral subsystem address 
space into iAPX 432 system memory with the same 
protection mechanisms as any iAPX 432 pro­
cessor. Five peripheral subsystem (PS) memory 
subranges may be mapped into iAPX 432 memory 
segments. These five windows (labeled 0 through 

iAPX 432 
SYSTEM 

A DATA 

4) allow the AP to reference iAPX 432 memory with 
logical addresses or, in special circumstances, 
with direct, 24-bit physical addresses. 

A BASIC I/O MODEL 

A typical application based on the iAPX 432 
microprocessor family consists of a main system 
and one or more peripheral subsystems. Figure 4 
illustrates a hypothetical configuration that 
employs two peripheral subsystems. The main 
system hardware is composed of one or more 
iAPX 432 general data processors (GDPs) and a 
common memory that is shared by these pro­
cessors. The main system software is a collection 
of one or more processes that execute on the 
GDP(s). 
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A fundamental principle of the iAPX 432 architec­
ture is that the main system environment is self­
contained; neither processors nor processes 
have any direct contact with the "outside world." 
Conceptually, the main system is enclosed by a 
wall that protects objects in memory from possible 
damage by uncontrolled 1/0 operations. 

In an iAPX 432-based system, the bulk of process­
ing required to su pport inputl output operations is 
delegated to peripheral subsystems; this includes 
device control, timing, interrupt handling and buf­
fering. A peripheral subsystem is an autonomous 
computer system with its own local memory, I/O 
devices and controllers, at least one processor, 
and software. The number of peripheral sub­
systems employed in any given application 
depends on the I/O-intensiveness of the applica­
tion, and may be varied with changing needs, 
independent of the number of GDPs in the 
system. 

A peripheral subsystem resembles a mainframe 
channel in that it assumes responsibility for low­
level I/O device support, executing in.parallel with 
main system processor(s). Unlike a simple chan­
nel, however, each peripheral subsystem can be 
configured with a complement of hardware and 
software resources that precisely fits application 
cost and performance requirements. In general, 
any system that can communicate over a standard 
8- or 16-bit microcomputer bus such as Intel's 
Multibus design may serve as an iAPX 432 
peripheral subsystem. 

A peripheral subsystem is attached to the main 
system by means of an IP. At the hardware level, 
the IP presents two separate bus interfaces. One 
of these is the standard iAPX 432 Processor 
Packet bus and the other is a very general 
interface. 

To support the transfer of data through the wall 
that separates a peripheral subsystem from the 
main system, the IP provides a set of software­
controlled windows. A window is used to expose a 
single object in main system memory so that its 
contents may be transferred to or from the 
peripheral subsystem. 

The IP also provides a set of functions that are 
invoked by software. While the operation of these 
functions varies considerably, they generally per­
mit objects in main system memory to be 
manipulated as entities, and enable communica­
tion between main system processes and soft­
ware executing in a peripheral subsystem. 
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It is important to note that both the window and 
function facilities utilize and strictly enforce the 
standard iAPX 432 addressing and protection 
systems. Thus, a window provides protected 
access to an object, and a function provides a ~ro­
tected way to operate in the main system. The IP 
permits data to flow across the peripheral sub­
system boundary while preserving the integrity of 
the main system. 

As Figure 5 illustrates, input/output operations in 
an iAPX 432 system are based on the notion of 
passing messages between main system pro­
cesses and device interfaces located in a 
peripheral subsystem. A device interface is con­
sidered to be the hardware and software in the 
peripheral subsystem that is responsible for 
managing an I/O device. An I/O device is con­
sidered to be a "data repository," which may be a 
real device (e.g., a terminal), a file, or a pseudo­
device (e.g., a spooler). 

A message sent from a process that needs an I/O 
service contains information that describes the 
requested operation (e.g., "read file XYZ"). The 
device interface interprets the message and car­
ries out the operation. If an operation requests 
input data, the device interface returns the data as 
a message to the originating process. The device 
interface may also return a message to positively 
acknowledge completion of a request. 

A very general and very powerful mechanism for 
passing messages between processes is inherent 
in the iAPX 432 architecture. A given peripheral 
subsystem may, or may not, have its own 
message facility, but in any case, such a facility 
will not be directly compatible with the iAPX 432's. 
By interposing a peripheral subsystem interface 
at the subsystem boundary, the standard IP com­
munication system can be made compatible with 
any device interface (see Figure 6). 

iAPX 432 SYSTEM INTERFACE 

The IP exists in both the protected environment of 
the iAPX 432, and the conventional environment of 
the peripheral subsystem. Because of this, an IP 
is able to provide a pathway over which data may 
flow between the iAPX 432 system and the exter­
nal subsystem. The IP operates at the boundary 
between the systems, providing compatibility and 
protection. In this position, the 'Interface Pro­
cessor presents two different views of itself, one 
to software and processors in the iAPX 432 
environment and another to its attached 
processor. 
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Figure 5. Basic 10 Service Cycle 

From the iAPX 432 side, an IP looks and behaves 
very much like any other processor. It attaches to 
the Processor Packet bus in the same way as a 
GOP. Within the iAPX 432 memory, the IP supports 
an execution environment that is compatible with, 
and largely identical to, the GOP. Thus, the IP 
recognizes and manipulates system objects 
representing processors, processes, ports, etc. It 
supports and enforces the iAPX 432' s access con­
trol mechanisms, and provides full interprocess 
and interprocessor communication facilities. 

The principal difference between the two pro­
cessors is that the GOP manipulates its environ­
ment in response to the instruction it fetches, 
while the IP operates under the direction of its 
attached processor. Indeed, the IP may be said to 
extend the instruction set of the Attached Pro­
cessor (AP) so that it may function in the environ­
ment of the iAPX 432 system. 

PERIPHERAL SUBSYSTEM INTERFACE 

A peripheral subsystem interface (PSI) is a collec­
tion of hardware and software that acts as an 
adapter that enables message-based communica­
tion between a process in the main system and a 
device interface in a peripheral subsystem (see 
Figure 6). Viewed from the iAPX 432 side, the 
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peripheral subsystem interface appears to be a 
process. The peripheral subsystem interface may 
be designed to present any desired appearance to 
a device interface. For example, it may look like a 
collection of tasks, or like a collection of 
subroutines. 

Hardware 

The PSI hardware consists of an IP, an AP, and 
local memory (see Figure 7). To improve per­
formance, these may be augmented by a OMA 
controller. The AP and the IP work together as a 
team, each providing complementary facilities. 
Considered as a whole, the AP / IP pair may be 
thought of as a logical I/O processor that supports 
software operations in both the main system ano 
the peripheral subsystem. 

ATTACHED PROCESSOR 

Almost any general-purpose CPU, such as an 
8085, an iAPX 86 or an iAPX 88 can be used as an 
AP. The AP need not be dedicated exclusively to 
working with the IP. 

It may, for example, also execute device interface 
software. Thus, the AP may be the only CPU in the 
peripheral subsystem, or it may be one of several. 
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As Figure 7 shows, the AP is "attached" to the 
interface processor in a logical sense only. The 
physical connections are standard bus signals 
and one interrupt line (which would typically be 
routed to the AP via an interrupt controller). 

Continuing the notion of the logical 110 processor, 
the AP fetches instructions, and provides the 
instructions needed to alter the flow of execution, 
and to perform arithmetic, logic and data transfer 
operations within the peripheral subsystem. 

INTERFACE PROCESSOR 

The IP completes the logical 110 processor by pro­
viding data paths between the peripheral sub­
system and the main system, and by providing 
functions that effectively extend the AP's instruc­
tion set so that software running on the logical 110 
processor can operate in the main system. Since 
these facilities are software-controlled, they are 
discussed in the next section. 

As Figure 7 shows, the IP presents both a 
peripheral subsystem bus interface and a stan­
dard iAPX 432 Processor Packet bus interface. By 
bridging the two buses, the IP provides the hard­
ware link that permits data to flow under software 
control between the main system and the 
peripheral subsystem. 

The IP connects to the main system in exactly the 
same way as a GOP. Thus, in addition to being 
able to access main memory, the IP supports 
other iAPX 432 hardware-based facilities, 
including processor communication, the alarm 
signal and functional redundancy checking. 

The IP is connected to the peripheral subsystem 
bus as if it were a memory component; it occupies 
a block of memory addresses up to 64K bytes 
long. Like a memory, the IP behaves passively 
within the peripheral subsystem (except as noted 
below). It is driven by peripheral subsystem 
memory references that fall within its address 
range. 

While the IP generally responds like a memory 
component, it also provides an interrupt request 
signal. The interface processor uses this line to 
notify its AP that an event has occurred which 
requires its attention. 

To summarize, the AP and the IP interact with 
each other by means of address references 
generated by the AP and interrupt requests 
generated by the IP. Since the IP responds to 
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memory references, other active peripheral sub­
system agents (bus masters), such as OMA con­
trollers, may obtain access to main system 
memory via the IP. 

Software 

IP CONTROLLER 

The peripheral subsystem interface is managed 
by software, referred to as the IP controller. The IP 
controller executes on the AP and uses the 
facilities provided by the AP and the IP to control 
the flow of data between the main system and the 
peripheral subsystem. 

While there are no actual constraints on the struc­
ture of the IP controller, organizing it as a collec­
tion of tasks running under the control of a 
multitasking operating system (such as an RMX-80 
or iRMX-86 operating system) can simplify soft­
ware development and modification. This type of 
organization supports asynchronous message­
based communication within the IP controller, 
similar to the iAPX 432's intrinsic interprocessor 
communication facility. Extending this approach 
to the device interface as well results in a consis­
tent, system-wide communication model. 
However, communication within the IP controller 
and between the IP controller and device inter­
faces, is completely application-defined. It may 
also be implemented via synchronous procedure 
calls, with "messages" being passed in the form 
of parameters. 

However it is structured, the IP controller interacts 
with the main system through facilities provided 
by the interface processor. There are three of 
these facilities: execution environments, win­
dows, and functions. 

EXECUTION ENVIRONMENTS 

The IP provides an environment within the main 
system that supports the operation of the IP con­
troller in that system. This environment is 
embodied in a set of system objects that are used 
and manipulated by the IP. At any given time, the 
IP controller is represented in main memory by a 
process object and a context object. Like a GOP, 
the IP itself is represented by a processor object. 
Representing the IP and its controlling software 
like this creates an execution environment that is 
analogous to the environment of a process run­
ning on a GOP. This environment provides a stan­
dard framework for addressing, protection and 
communication within the main system. 
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Like a GDP, an IP actually supports multiple pro­
cess environments. The IP controller selects the 
environment in which a function is to be executed. 
This permits, for example, the establishment of 
separate environments corresponding to indi­
vidual device interface tasks in the peripheral sub­
system. If an error occurs while the IP controller is 
executing a function on behalf of one device inter­
face, that error is confined to the associated pro­
cess, and processes associated with other device 
interfaces are not affected. 

WINDOWS 

Every transfer of data between the main system 
and a peripheral subsystem is performed with the 
aid of an IP window. A window defines a corre­
spondence, or mapping, between a subrange of 

peripheral subsystem memory addresses (within 
the range of addresses occupied by the IP) and an 
object in main system memory (see Figure 8). 
When an agent in the peripheral subsystem (e.g., 
the IP controller) reads a local windowed address, 
it obtains data from the associated object; writing 
into a windowed address transfers data from the 
peripheral subsystem to the windowed object. 

The action of the IP, in mapping the peripheral 
subsystem address to the main system object, is 
transparent to the agent making the reference; as 
far as it is concerned, it is simply reading or 
writing local memory. 

Since a window is referenced like local memory, 
any individual transfer may be between an object 
and local memory, an object and a processor 
register, or an object and an I/O device. The 
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latter may be appealing from the standpoint of 
"efficiency," but it should be considered with 
caution. Using a window to directly "connect" an. 
1/0 device and an object in main memory has the 
undesirable effect of propagating the real-time 
constraints imposed by the device beyond the 
subsystem boundary into the main system. It 
may seriously complicate error recovery as well. 
Finally, since there is a finite number of windows, 
most applications will need to manage them as 
scarce resources that will not always be instantly 
available. This means that at least some 1/0 
device transfers will have to be buffered in local 
memory until a window becomes available. It may 
be simplest to buffer all 1/0 device transfers and 
use the windows to transfer data between local 
memory and main system memory. 

There are four IP windows that may be mapped 
onto four different objects. The IP controller may 
alter the windows during execution to map dif­
ferent subranges and objects. References to win­
dowed subranges may be interleaved and may be 
driven by different processors in the peripheral 
subsystem. For example, the AP and a OMA con­
troller may be driving transfers concurrently, sub­
ject to the same bus arbitration constraints that 
would apply if they were accessing local memory. 

FUNCTIONS 

A fifth window provides the IP controller with 
access to the IP's function facility. By writing 
operands and an opcode into predefined locations 
in this window's subrange, the IP controller 
requests the IP to execute a function on its behalf. 
This procedure is very similar to writing com­
mands and data to a memory-mapped peripheral 
controller (e.g., a floppy disk controller). Upon 
completion of the function, the IP provides status 
information that the IP controller can read through 
the window. The IP can perform transfer requests 
through the other four windows while it is 
executing a function. 

The IP's function set permits the IP controller to: 

• alter windows; 
• exchange messages with GOP processes via 

the standard 432 communication facility; 
• manipulate objects. 

These functions may be viewed as instruction set 
extensions to the AP, which permit the IP con­
troller to operate in the main system. The com­
bination of the IP's function set and windows, the 
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AP's instruction set, and possibly additional 
facilities provided by a peripheral subsystem 
operating system, permits the construction of 
powerful IP controllers that can relieve the main 
system of much I/O-related processing. At the 
same time, by utilizing only a subset of the 
available IP functions, relatively simple IP con­
trollers can also be built (in cases where this 
approach is more appropriate). 

SUPPLEMENTARY INTERFACE 
PROCESSOR FACILITIES 

The preceding sections describe the IP as it is 
used most of the time. The IP provides two addi­
tional capabilities that are typically used less fre­
quently, and only in exceptional circumstances. 
These are physical reference mode and intercon­
nect access. 

Physical Reference Mode 

The IP normally operates in logical reference 
mode; this mode is characterized by its object­
oriented addressing and protection system. There 
are times when logical referencing is impossible 
because the objects used by the hardware to per­
form logical-to-physical address development are 
absent (or, less likely, are damaged). In these 
situations, the IP can be used in physical 
reference mode. 

In physical reference mode, the IP provides a 
reduced set of functions. Its windows operate as 
in logical reference mode, except that they are 
mapped onto memory segments (rather than 
objects) that are specified directly with 24-bit 
addresses. In this respect, physical reference 
mode is similar to traditional computer addressing 
techniques. 

Physical reference mode is most often employed 
during system initialization to load binary images 
of objects from a peripheral subsystem into main 
memory. Once the required object images are 
available, processors can begin normal logical 
Jeference mode operations. 

Interconnect Access 

In addition to memory, the iAPX 432 architecture 
defines a second address space called the 
processor-memory interconnect address space. 
One of the IP windows is software-switchable to 
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either space. In logical reference mode, the inter­
connect space is addressed in the same object­
oriented manner as the memory space, with the IP 
automatically performing the logical-to-physical 
address development. In physical reference 
mode, the interconnect space is addressed as an 
array of 16-bit registers, with a register selected 
by a 24-bit physical add ress. 

iAPX 432 INFORMATION STRUCTURE 

The following information describes the 
requirements placed on the logical structure of 
the iAPX 432 hardware environment. These 
requirements are concerned directly with the con­
straints of physical memory, the type of data 
transferred, and the structure of the data types. 
These requirements are common to the iAPX 432 
family of processors. (Any pin notations called out 
in this information are described in the 43203 Pin 
Description section of this data sheet). 

Any 432 processor in the system can access all the 
contents of physical memory. This section 
describes how information is represented and 
accessed. 

Memory 

The iAPX 432 implements a two-level memory 
structure. The software system exists in a 
segmented environment in which a logical 
address specifies the location of a data item. The 
processor automatically translates this logical 
address into a physical address for accessing the 
value in physical memory. 

Physical Addressing 

Logical addresses are translated by the processor 
into physical addresses. Physical addresses are 
transmitted to memory by a processor to select 
the beginning byte of a memory value to be 
referenced. A physical address is 24 binary bits in 
length. This results in a maximum physical 
memory of 16 Megabytes. 

Data Formats 

When a processor executes the instructions of an 
operation within a context, operands found in the 
logical address space of the context may be 
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manipulated. An individual operand may occupy 
one, two, four, eight, or ten bytes of memory 
(byte, double byte, word, double word, or 
extended word, respectively). All operands are 
referenced by a logical address as described' 
above. The displacement in such an address is the 
displacement in bytes from the base address of 
the data segment to the first byte of the operand. 
For operands consisting of multiple bytes, the 
address locates the low-order byte while the 
higher-order bytes are found at the next higher 
consecutive addresses. 

DATA REPRESENTATION 

An iAPX 432 convention has been adopted for 
representing data operands stored in memory. 
The bits in a field are numbered by increasing 
numeric significance, with the least-significant bit 
shown on the right. Increasing byte addresses are 
shown from right to left. Examples of the five basic 
data lengths used in the iAPX 432 system are 
shown in Figure 9. 

DATA POSITIONING 

The data operand types shown in Figure 9 may be 
aligned on an arbitrary byte boundary within a data 
segment. Note that more efficient system opera­
tion may be obtained when multi-byte data struc­
tures are aligned on double-byte boundaries (if 
the memory system is organized in units of double 
bytes). 

Requirements of an iAPX 432 
Memory System 

The multiprocessor architecture of the iAPX 432 
places certain requirements on the operation of 
the memory system to ensure the integrity of data 
items that can potentially be accessed 
simultaneously. Indivisible read-modify-write 
(RMW) operations to both double-byte and word 
operands in memory are necessary for manipu­
lating system objects. When an RMW-read is 
processed for a location in memory, any other 
RMW-reads from that location must be held off by 
the memory system until an RMW-write to that 
location is received (or until an RMW timeout 
occurs). Note that while the memory system is 
awaiting the RMW-write, any other types of reads 
and writes are allowed. Also, for ordinary reads 
and writes of double-byte or longer operands, the 
memory system must ensure the entire operand 
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Figure 9. Basic iAPX 432 Data Lengths 

has been either read or written before beginning 
to process another access to the same location; 
e.g., if two simultaneous writes to the same loca­
tion occur, the memory system must ensure that 
the set of locations used to store the operand 
does not get changed to some interleaved com­
bination of the two written values. 

iAPX 432 HARDWARE ERROR 
DETECTION 

iAPX 432 processors include a facility to support 
the hardware detection of errors by functional 
redundancy checking (FRC). At initialization time, 
each iAPX 432 processor is configured to operate 
as either a master or a checker processor (Figure 
10). A master operates in the normal manner. A 
checker places all output pins that are being 
checked into a high-impedance state. Thus, those 
pins which are to be checked on a master and 
checker are parallel-connected, pin for pin, such 
that the checker is able to compare its master's 
output pin values with its own. Any comparison 
error causes the checker to assert HERR. 
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Figure 10. Hardware Error Detection 

PROCESSOR PACKET BUS DEFINITION 

This section describes and defines the signifi­
cance of the 19 signal lines that make up the Pro­
cessor Packet bus, and the general scheme by 
which timing relationships on these lines are 
derived. Although this section defines all legal 
bus activities, the processors do not necessarily 
perform all allowed activities. Slaves to the Pro­
cessor Packet bus must support all state transi­
tions to ensure compatibility. 
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The Processor Packet bus consists of 3 control 
lines: 
• Processor Packet bus Request (PRO), 
• Enable Buffers for Output (BOUT), 
• Interconnect Status (ICS). 

This bus also includes sixteen 3-state Address­
Control-Data lines (ACD15 through ACDO). PRO 
has two functions whose use depends upon the 
application; i.e., PRO either indicates the first 
cycle of a transaction on the Processor Packet bus 
or the cancellation of a transaction initiated in the 
previous cycle. Of the three control lines, BOUT 
has the simplest function, serving as a direction 
control for buffers in large systems requiring more 
electrical drive than the processor components 
can provide. The ICS signal has significance per­
taining to one of three different system conditions 
and depends on the state of the Processor Packet 
bus transaction. The processor interprets the ICS 
input as an indicati.on of one of the following: 

• Whether or not an interprocessor com­
munication (lPC) is waiting, 

• Whether or not the slave requires more time to 
service the processor's request, 

• Whether or not a bus ERROR has occurred. 

The Address/Control/Data lines emit output 
specification information to indicate the type of 
cycle being initiated, e.g., addresses, data to be 
written, or control inJormation. They also receive 
data returned to the processor during reads. 
Details of the ACD line operation and the 
associated control lines are summarized below. 

ACD15-ACDO (Address/Control/Data) 

As shown in Figure 11, the first cycle, (T1 or Tvo) of 
a Processor Packet bus transaction (indicated by 
the rising edge of PRO), the high-order 8 ACD bits 
(ACD15 ... ACD8) specify the type of the current 
transaction. In this first cycle, the low-order ACD 
bits (ACD7 ... ACDO) contain the least-significant 
eight bits of the 24-bit physical address. 

During the subsequent cycle (T2), the remainder 
of the address is present on the ACD pins (aligned 
such that the most significant byte of the address 
is on ACD15 through ACD8, the mid-significant 
byte on ACD7 through ACDO). If PRO is asserted 
during T2, the access is cancelled and the ACD 
lines are not defined. 

During the third cycle (T3 or Tw) of a Processor 
Packet bus transaction the processor presents a 
high impedance to the ACD lines for read trans­
actions and asserts write data for write 
transactions. 
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Once the bus has entered T3 or Tv, the sequence 
of state transactions depends on the type of 
cycle requested during the preceding T1 or Tvo. 
Accesses ranging in length from 1 to 32 bytes may 
be requested (see Table 1). If a transfer of more 
than one double byte has been requested, it is 
necessary to enter T3 for every double-byte that is 
transferred. The processor may simply enter T3 or 
it may first enter Tw for any number of cycles (as 
dictated by ICS). 

After all data is transferred, the processor enters 
either Tv or Tvo. Tvo can be entered only when the 
internal state of execution is such that the pro­
cessor is prepared to accomplish an immediate 
write transfer (overlapped access). During Tvo, 
the ACD lines contain address and specification 
information aligned in the same fashion as in T1. If 
the processor does not require an overlapped 
access, the bus state moves to Tv (the ACD lines 
will be high impedance). After Tv, a new bus cycle 
can be started with T1, or the processor may enter 
the idle state(Ti). 

ICS (Interconnect Status) 

ICS has three possible interpretations depending 
on the state of the bus transaction (see Table 2). 
Notice that under most conditions ICS has IPC 
significance for more than one cycle. It is impor­
tant to note that a valid low during any cycle with 
IPC significance will signal the processor that an 
IPC or reconfiguration request has been received. 
An iAPX 432 processor is required to record and 
service only one IPC or reconfiguration request at 
a time. Logic in the interconnect system must 
record and sequence multiple' (possibly 
simultaneous) IPC occurrences and reconfigura­
tion requests to the processor. Thus the logic that 
forms ICS must accomodate global and local IRC 
arrivals and requests for reconfiguration as 
individual events: 

1. Assert IPC significance on .ICS for the arrival of 
an IPC or reconfiguration request. 

2. When the iAPX 432 processor reads 
interconnect address register 2, it will respond 
to one of the status bits for the IPC or recon­
figuration request signalled on ICS in the 
following order: 

Bit 2 (1=reconfigure, O=do not reconfigure) 

Bit 1 (1=globaIIPC arrived, O=no globallPC) 

Bit 0 (1=locaIIPC arrived, O=no locallPC) 
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Initial State Next State Trigger 

Ti TI Bus cycle desired 

Ti No bus cycle desired 

TI T2 U ncond itional 

T2 T3 ICS high 

Tw ICSlow 

TI Cancelled, Access Pending 

Ti Cancelled, No Access Pending 

T3 T3 Additional transfer required, ICS high 

Tw Additional transfer required, ICS low 

Tv All transfers completed, no overlapped access 

Tvo Current write with overlapped access 

Tv Ti No access pending 

TI Access pending 

Tvo T2 Unconditional 

Tw Tw ICS low 

T3 ICS high 

Figure 11. Processor Packet Bus State Diagram 
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Table 1. ACO Specification Encoding 

ACO ACO ACO 
15 14 13 

Access Op RMW 

0- 0- 0-
Memory Read Nominal 

1 - 1 - 1 -
Other Write RMW 

3. The logic in the interconnect system must clear 
the highest order status bit that was serviced by 
the iAPX 432 processor, and if additional IPC 
information has arrived, the interconnect 
system logic must signal an additional IPC 
indication to the iAPX 432 processor. 

The interconnect system must signal the 
second IPC by raising ICS high for at least one 
cycle and then setting ICS low for at least one 
cycle during IPC significance time. 

Table 2. ICS Interpretation 

Level 
State High Low 

IPC None Waiting Ti, T1, T2* 
Stretch Don't Stretch T3, Tw 
Err Bus Error No Error Tv, Tvo 

* ICS has no significance in a cycle following a T2 
where PRQ is asserted (cancelled access) or in any 
cycle during which CLRI is asserted. 

PRQ (Processor Packet Bus Request) 

PRQ is normally low and can go high only during 
T1, T2 and Tvo. High levels during Tvo and T1 
indicate the first cycle of an access. A high level 
during T2 indicates that the current cycle is to be 
cancelled. See Table 3. 

ACO ACO ACO ACO ACO 
12 11 10 9 8 

Length Modifiers 

000 -1 Byte AGD 15 = 0: 
001 - 2 Bytes OO-Inst Seg 
010 - 4 Bytes Access 
011 - 6 Bytes 01-Stack Seg 
100 - 8 Bytes Access 
101 -10 Bytes 1 O-Context Gtl 
110 -16 Bytes* Seg Access 
111 -32 Bytes* 11-0ther 

AGD 15 = 1: 
* Not implemented OO-Reserved 
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01-Reserved 
10-Reserved 
11-lnterconn 

Register 

Table 3. PRO Interpretation 

State PRO Condition 

Ti 0 Always 
T1 1 Initiate access 
T2 0 Continue access 

1 Cancel access 
T3 0 Always 
Tw 0 Always 
Tv 0 Always 
Tvo 1 Initiate overlapped access 

BOUT (Enable Buffers for Output) 

BOUT is provided to control external buffers when 
they are present. Table 4 and Figures 12 through 
16 show its state under various cond itions. 

Processor Packet Bus Timing 
Relationships 

All timing relationships on the processor packet 
bus are derived from a simple scheme and related 
to Table 5. Each timing diagram shown in the 
following pages (Figures 12 through 17) provides a 
separate table illustrating the various system 
states during the cycle. This approach to transfer 
timing was designed to allow maximum time for 
the transfer to occur and yet guarantee hold time. 
The solid lines in Figure 18 show the state transi­
tions initiated by the IP. 
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Any agent connected to the processor packet bus 
is recognized as either a processor or a slave. 
Examples of processors are the GDP and the IP. A 
memory system provides an example of a slave. 

adequate time for the transfer and ensures suffi­
cient hold time after sampling. The BOUT timing is 
unique because BOUT is intended as a direction 
control for external buffers. 

In all tranfers between a processor and a slave, 
the data to be driven are clocked three-quarters of 
a cycle before they are to be sampled. This allows 

Detailed set-up and hold times depend on the pro­
cessor implementation and can be found in the ac 
characteristics section. 

Table 4. BOUT Interpretation 

Low-to-High High-to-Low High-to-Low 
Transition Transition Transition 

BOUT Always High or Low or Low or High 

Write 11, T2, T3, Tw, Tvo Ti None Tv 
Read T1,T2 Ti, Tv T3, Tw None 

Table 5. iAPX 432 Component Signaling Scheme 

Processor Slave 

Inputs AGD: ~GLKA All: tCLKB 
Sampled Others: tGLKA 

Outputs All (except BOUT): ~GLKA AGO: ~GLKB 

Driven Others: tCLKB 
BOUT: tGLKA 

I- NOMINAL WRITE CYCLE -I 5 CLKA CYCLES 

1 
TI I Tl I T2 I T3 I Tv I TI I Tl I T2 I 

CLKA 

- ioo.o-

AC D15··· >{ WRITE DATA }----------------------{ ADDRISPEC }< }--ACDo .-----------< ADDRISPEC >{ ADDR ADDR 

PRQ I \ / \ 

ICS IPC X IPC X IPC Y STRETCH '< ERR X IPC X IPC X IPC )C 

BOUT ~ \ / 
ACD15 ACD8 ACD7 ACDO State 

Hi·z Hi·z Ti 

Spec La-adr Tl 

Hi·adr Mid-adr T2 

Hi·datal' La·datal T3 

Hi·z Hi·z Tv 

Hi-z Hi-z Ti 

Spec La-adr Tl 

Hi-adr Mid-adr T2 

'Undefined if single byte write 

171873-15 

Figure 12. Nominal Write Cycle Timing 
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I- MINIMUM WRITE CYCLE -I 3 CLKA CYCLES 

Tv 1 T1 T2 T3 1 TvO T2 T3 

CL~A 

AC D15···ACDo -----------

PRO ____ I ' _____ 1 \_---------------

ICS ___ IP_C_--'X'--_I_PC_--JX'--__ IP_c_--'y STRETCH '<"" __ ER_R_--'X'--__ IP_C_--'X STRETCH C 

BOUT ---.I 
AC015 AC08 ACO? ACOO State 

Hi-z Hi-z Tv" 

Spec Lo-adr T1 

Hi-adr Mid-adr T2 

Hi-data1' Lo-data1 T3 

Spec Lo-adr Tvo 

Hi-adr Mid-adr T2 

Hi-data1 Lo-data1 T3 

'Undefined If single byte wnte 
"(preceded by read cycle) 

171873-16 

Figure 13. Minimum Write Cycle Timing 

Tw Tv 

CLKA 

-----
ACD15 .. ·ACDo ------------{ ADDRISPEC X", __ A_D_D_R_--IX WRITE DATA X"' ____ W_R_IT_E_D_A_T_A~----'}----------------

PRO 

ICS IPC 

BOUT ---.I \_---
AC015 AC08 ACO? ACOO State 

Hi-z Hi-z Ti 

Spec Lo-adr T1 
Hi-adr Mid-adr T2 

Hi-data1 Lo-data1 T3 
Hi-data2 Lo-data2 Tw 

Hi-data2 Lo-data2 T3 
Hi-z Hi-z Tv 

Hi-z Hi-z Ti 

171873-17 

Figure 14. Stretched Write Cycle Timing 
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I- MINIMUM READ CYCLE 

"I 5 CLKA CYCLES 

TI 
1 

T1 T2 T3 Tv TI I T1 

CLKA 

AC D15 .. ·ACD O -----------{ ADDRISPEC X", __ A_D_D_R_--, READ DATA }----------------{ ADDRISPEC >C 

PRO 

ICS IPC X IPC X IPC Y STRETCH '( ERR X IPC X IPC x= 
BOUT / \ / 

ACD15 ACD8 ACD7 ACDO State 
HO,-z Hi-z Ti 
Spec Lo-adr T1 
Hi·adr Mid-adr T2 
Hi·data' Lo-data1 T3 
Hi-z Hi-z Tv 
Hi·z Hi-z Ti 
Spec Lo·adr T1 

'Undeflned If single byte read 

171873·18 

Figure 15. Minimum Read Cycle (Not Buffered) 

I- MINIMUM READ CYCLE (BUFFERED SYSTEM) 
.. I 6 CLKA CYCLES 

TI 
1 

T1 T2 Tw T3 Tv TI 1 

CLKA 

ACD15···ACDo n __________ { ADDRISPEC X .. __ A_D_D_R __ }-----------------{ READ DATA )-----------------( ADDR 

PRO / \ I 

ICSX IPC X IPC X IPC ~ STRETCH / STRETCH '< ERR X IPC x= 
BOUT / \ / 

ACD15 ACD8 ACD7 ACDO State 

Hi-z Hi-z Ti 
Spec Lo-adr T1 
Hi-adr Mid-adr T2 
Hi·z Hi-z Tw 
Hi·data1' Lo-data1 T3 

Hi-z Hi-z Tv 
Hi-z Hi-z Ti 

'Undefined If single byte read 171873·19 

Figure 16. Minimum Read Cycle (Buffered System) 
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2 CLKA CYCLES 

TV 

CLKA 

ACD1S· .. 

ACDo ------

8 
PRQ / -- \~-------------------------------CANCEL 

ICS IPC 

AC01S AC08 AC07 ACOO 

Hi-z Hi·z 

Spec Lo-adr 

Undefined Undefined 

Spec Lo-adr 

Hi·adr Mid-adr 

Hi-data· La-data 

Hi·z Hi-z 

Hi·z Hi-z 

·Undefined if single byte write 
•• Access Cancelled 

State 

Ti 

T1 
T2·· 

T1··· 

T2 

T3 

Tv 

Ti 

···New Access Started (Slave must 
support this subsequent access 
even though all processors may not 
implement it.1 

IGNORE 
COMPLETELY 

Figure 17. Minimum Faulted Access Cycle 

*NOTE THAT THE BROKEN TRANSITION 
IN THE IP STATE DIAGRAM IS NOT 
GENERATED BY THE IP. 

Figure 18. IP State Diagram 
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Table 6. iAPX 43203 Interface Processor Pin Summary 

432 System Side 

Hardware 
Pin Group Pin Name Direction Error 

Detection 

PROCESSOR ACD15 ... ACDO I/O X 
PACKET BUS PRQ a X 
GROUP ICS I 

BOUT a 

SYSTEM ALARM / I 
GROUP FATAL! a (I at 

Initialization) 

CLR/ I 
PClK/ I 
INIT/ I 

CLOCK ClKA I 
GROUP ClKB I 

HARDWARE ERROR HERR a (I at 
DETECTION GROUP Initialization) 

Peripheral Subsystem Side 

Hardware 
Pin Group Pin Name Direction Error 

Detection 

PERIPHERAL AD15 ... ADO I/O X 
SUBSYSTEM BHEN/ I 
BUS GROUP CS/ I 

WR/ I 

PS TIMING GROUP ALE I 
OE I 
SYNC I 

PS BUFFER CONTROL DEN/ 0 X 
GROUP 

PS INTERLOCK GROUP HLD 0 X 
HDA I 

PS SYNCHRONIZATION XACK/ 0 X 
GROUP NAK/ 0 X 

INH1 0 X 

PS INTERRUPT GROUP INT a X 

PS RESET GROUP PSR 0 X 
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43203 PIN DESCRIPTION 

The following section provides detailed informa­
tion concerning the 43203 pin description. Table 6 
lists a summary of all signal groups, signal names 
and their active states, and whether or not they 
are monitored by the Hardware Error Detection 
circuitry. 

Processor Packet Bus Group 

ACD1S-ACDo (Address/Controll 
Data lines, Inputs or Three-state Outputs, 
high asserted) 

The Processor Packet bus Address/Control/Data 
lines are the basic communication path between 
the IP and its environment. These pins are used 
three ways: 

• They may indicate control information for bus 
transactions, 

• They may issue physical addresses generated 
by the IP for an access, or 

• They may transfer data (either direction). 

When the 43203 is in checker mode, the ACD pins 
are monitored by the hardware error detection 
logic and are in the high impedance mode. 

PRQ (Processor Packet bus Request, 
Three-state Output, high asserted) 

PRO is used to indicate th.e presence of a trans­
action between the IP and its external environ­
ment. Normally low, the PRO pin is brought high 
during the same cycle as the first double-byte of 
address information is being driven onto the ACD 
pins. PRO remains high for only one cycle during 
the access, unless an address development fal:llt 
occurs. The 43203 will leave PRO high for a second 
cycle to indicate the GOP has detected an 
addressing or segment rights fault in completing 
address generation. PRO is checked by the hard­
ware error detection logic. PRO is in a high 
impedance state when the 43203 is in checker 
mode. 
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ICS (Interconnect Status, 
Input, high asserted) 

ICS is an indication to the 43203 from the bus 
interface circuitry concerning the status of a bus 
transaction. The interpretation of the ICS state is 
dependent upon the present cycle of a bus trans-
action and may indicate: . 

• Interprocessor communication (IPC) message 
waiting, 

• Input data invalid, 

• Output data not taken, 

• Bus error in external environment. 

System Group 

ALARM/ (Alarm, Input, low asserted) 

The ALARM / input monitors the occurrence of an 
unusual, system-wide condition such as power 
failure. ALARM / is sampled on the rising edge of 
CLKA. 

FATAL/ (Fatal, Output, low asserted) 
(Master, Input, low asserted) 

FATAL/ is asserted by the IP under microcode 
control when the processor is unable to continue 
due to various error or fault conditions. Once 
FAT AL/ is asserted, it can only be reset by asser­
tion of INIT /. FATAL/ is not checked by the hard­
ware error detection logic. 

When INIT/ is asserted, the FATAL/ pin assumes 
an input role. Please refer to the INIT / pin descrip­
tion for a discussion of this function. 

Hardware Error Detection Group 

HERR (Hardware Error Output, Open 
Drain Output, high asserted) (Master~ 
Input, low asserted) 

HERR is used to signal a discrepancy between a 
master and a checker (difference between the 
value internally computed in the checker and that 
output by the master). The sampling of errors 
occurs at the most appropriate time for the pin(s) 
being checked. 
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HERR is an open drain output which requires an 
external pullup resistor. Nominally the output is 
held low. HERR is released upon the detection of 
discrepancy. The timing of HERR depends on the 
source of the error. Once HERR is high it will 
remain high until external logic forces it to go low 
again. When HERR goes low again, the present 
HERR error condition is cleared and HERR is 
immediately capable of detecting and signaling 
another error. 

When INIT / is asserted, the HERR pin assumes an 
input role. Please refer to the IN IT / pin description 
for a discussion of this function. 

PClKI (Processor Clock, Input, 
low asserted) 

Assertion of PCLK/ for one clock cycle causes the 
system timer in the IP to decrement. Assertion of 
PCLK/ for two or more cycles causes the system 
timer to be reset. PCLK/ must be unasserted for at 
least 10 clock cycles before being asserted again. 

ClRI (Clear, Input, low asserted) 

Assertion of CLR/ results in a microprogram trap 
which causes the IP to immediately terminate any 
bus transactions or internal operations which may 
be in progress at the time, reset to a known state, 
assert FATAL/, and await an IPC (which resets the 
IP to the same state as INIT / assertion does). The 
IPC will not be serviced for at least four clock 
cycles following CLR/ assertion. 

Response to CLR/ is disabled by the first CLR/ 
assertion and is reenabled when the IP receives 
the first IPC (or INIT / assertion). 

CLR/ is sampled by the IP on the rising edge of 
CLKA. 

INIT I (Initialize, Input, low asserted) 

Assertion of INIT / causes the internal state of the 
IP to be reset and starts execution of the initializa­
tion microcode. INIT I must be asserted for a 
minimum of 10 clock cycles. After the INIT / pin is 
returned to its nonasserted state, IP microcode 
will initialize all of the internal registers and win­
dows and will wait for a 10ca11PC. 

During INIT / assertion, the FATAL/ and HERR 
pins are sampled by the IP to establish the mode 
in which the two bus interfaces of the IP are to par-
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ticipate in hardware error detection. Table 7 
specifies the encoding of the master/checker 
modes. 

Table 7. Representation of MASTER/CHECKER 
Modes at Initialization 

iAPX 432 Peripheral 
FATAL/ HERR Side Subsystem Side 

0 0 MASTER MASTER 
0 1 MASTER CHECKER 
1 0 CHECKER MASTER 
1 1 CHECKER CHECKER 

Clock Group 

ClKA, ClKB (Clock A, Clock B, Inputs) 

CLKA provides the basic timing reference for the 
IP. CLKS follows CLKA by one-quarter cycle and 
is used to assist internal timings. 

Peripheral Subsystem Bus Group 

AD1s-ADo (Address/Data, Input/Output) 

These pins constitute a multiplexed address and 
data input! output bus. When the attached pro­
cessor bus is idle or during the first part of an 
access, these pins normally view the bus as an 
address. The address is asynchronously checked 
to see if it falls within (matches) anyone of the five 
window address ranges. The address is latched 
on the falling edge of ALE thereby maintaining 
the state of a match or no match for the remainder 
of the access cycle. The addresses are then 
unlatched on the falling edge of OE. 

Once SYNC has pulsed high, the AD15-ADo pins 
become data input and output pins. When WR/ is 
high (read mode), data is now accessed in the IP 
and the output buffers are enabled onto the AD 
pins if the OE is asserted. When WRI is low (write 
mode), data is sampled by the IP after the rising 
edge of SYNC during the CLKA high time. 

The address is always a 16-bit, unsigned number. 
Data may be either 8 bits or 16 bits as defined by 
SHEN / and ADo. The 8-bit data may be transferred 
on either the high (AD15-ADs) or the low 
(AD7-ADo) byte. When 8-bit data is transferred on 
the high or low byte, the opposite byte is 3-stated. 
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Twenty-bit addresses are accommodated by the 
external decoding of the additional address bits 
and are incorporated in the external CSf logic. 

During the clock in which write data is sampled, 
data must be set up before the rising edge of 
CLKA and must be held until the falling edge of 
that CLKA. Read data is driven out from a CLKA 
high and should be sampled on the next rising 
edge of CLKA. 

Hardware error detection sampling is not done 
synchronously to CLKA. It is sampled by the fail­
ing edge of the OE pin. The internal AD pin hard­
ware error detection signal is then clocked and 
output on the HERR pin. At this point it may still 
not be synchronous with CLKA and should be 
externally synchronized. 

BHENI (Byte High Enable, Input, 
low asserted) 

This pin, together with ADO, determines whether 
8 or 16 bits of data are to be accessed, and if it is 
8 bits, whether it is to be accessed on the upper or 
lower byte position. This pin is latched by the fail­
ing edge of ALE and unlatched by the falling edge 
of OE. BHEN f and ADO decode as shown in 
Table 8. 

Table 8. Bus Data Controls 

BHENI ADO Description 

0 0 16-bit access 

0 1 8 bits on upper byte, 
lower byte tristated 

1 0 8 bits on lower byte, 
upper byte tristated 

1 1 8 bits on lower byte, 
upper byte tristated 

CSI (Chip Select, Input, low asserted) 

Chip Select specifies that this IP is selected and 
that a read or write cycle is requested. This pin is 
latched by the falling edge of ALE and unlatched 
by the falling edge of OE. 

WRI (Write, Input, low asserted) 

This pin specifies whether the access is to be a 
read or a write. WR f is asserted high for a read 
and asserted low for a write. This pin is latched by 
the falling edge of ALE and unlatched by the fail­
ing edge of OE. 

PS Timing Group 

ALE (Address Latch Enable, Input, 
Rising- and Falling-Edge-Triggered) 

The rising edge of ALE s~ts a flip-flop which 
enables Transfer Acknowledge (XACKI) to 
become active. The falling edge of ALE latches 
the address on the AD15-ADO pins and latches 
WRf, BHEN f and CSf. Figure 19 shows two styles 
of ALE. 

OE (Data Output Enable, Input, high 
asserted) 

During a read cycle the OE pin enables read data 
on to the AD15-ADO pins when it is asserted. Dur­
ing a read or write cycle the falling edge of OE 
signifies the end of the access cycle. Specifically, 
the falling edge of OE does three things: 

1. Resets the XACKf enable flip-flop, thereby 
terminating XACKf. 

2. Terminates DEN f (if read cycle). 

3. Opens address latches WRf, BHEN f, and CSf. 

AD15 ... ADO, WR/, CS/, BHEN/ --<1)-
ALE (STYLE 1) 

ALE (STYLE 2) 

, 
.~ 

\ 
Figure 19. Two styles of ALE 
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SYNC (Synchronized Qualifier Signal, 
Input, high asserted) 

A rising edge on this signal must be synchronized 
to the IP CLKA falling edge. This signal qualifies 
the address, BHEN I, CSI and WR/, indicating a 
valid condition. SYNC also initiates any internal 
action on the IP's part to process an access. It 
starts the request for data to the IP in a read 
access. In a write access, data is expected one or 
two CLKA's after SYNC pulses high. At initializa­
tion time, IP microcode sets the write sample 
delay to the slowest operation (two CLKA's after 
SYNC). However, this can be modified to one 
clock cycle by making a function request to the IP 
to change the write sample delay. 

When the hold/hold-acknowledge mechanism of 
the IP is used, and once HDA has pulsed high, a 
SYNC pulse is required to qualify the hold 
acknowledge since the HDA pin can be 
asynchronous. 

PS Buffer Control Group 

DEN/ (Data Enable, Output, low 
asserted) 

This pin enables external data buffers which 
would be used in systems where the address and 
data are not multiplexed (e.g., a Multibus system). 
DEN / assertion begins no sooner than the CLKA 
high time of the first clock of SYNC assertion if a 
valid, mappable address range is detected. It is 
terminated with the falling edge of OE. In a write 
access, it is also terminated after XACK/ 
assertion. 

Hardware error detection occurs during the first 
clock of SYNC assertion. 

PS Interlock Group 

HLD (Hold Request, Output, high 
asserted) 

The hold I hold-acknowledge mechanism is an 
interlocking mechanism between the peripheral 
subsystem and the IP. Hold is used by the IP to 
gain control of the subsystem bus to ensure that 
no subsystem processors will make an access to 
the IP while it alters internal registers. 

This signal is put out synchronously with the 
rising edge of CLKA. Hardware error detection 
sampling occurs during CLKA low time. 
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In special cases it may not be necessary to use 
the HLD function interlocking. In this case HDA 
can be tied high and no SYNC pulse will be 
required for HDA qualification. The hardware 
detects this condition by noting that the H DA pin 
was high a half clock before HLD requests a hold. 
In this mode the HLD output still functions and can 
be monitored if desired. 

HDA (Hold Acknowledge, Input, high 
asserted) 

HDA is asserted by the peripheral subsystem 
when the IP's request for a hold has been granted. 
This pin need only be a high pulse and can be 
asynchronous to CLKA. This pin must be followed 
by a SYNC pulse in order to synchronously 
qualify it. 

PS Synchronization Group 

XACK/ (Transfer Acknowledge, Output, 
low asserted) 

XACKI is used to acknowledge that a data transfer 
has taken place. 

For random or local accesses, XACK/ indicates 
that a transfer to or from iAPX 432 memory has 
been completed. 

For buffered accesses where the XACK-Delay is 
not in the advanced mode, XACKI signifies that 
the transfer from Ito the prefetch / postwrite buffer 
in the IP has been completed. 

For buffered accesses wh ich use advanced 
acknowledge mode (XD=O) the formation ot an 
advanced XACK/ signal is requested. This allows 
the possibility of interfacing to the peripheral sub­
system without wait states. The acknowledge will 
be advanced if the access is a read operation and 
the buffer contains the required data or the access 
is a write operation and the buffer contains suffi­
cient space to accept the write data. In addition, 
the access must be valid. 

If XACK/ is preceded by a low pulse on NAK/, 
then XACKI signifies that the access encountered 
a fault. If the access was a random access, other 
than window #4, the window will be placed in the 
faulted state and any further accesses to this win­
dow will be ignored by the IP. 
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If the IP is programmed to be in advanced 
acknowledge mode (XD=O) and XACKI is not 
returned before the peripheral subsystem issued 
SYNC, then XACKI will be postponed until valid 
data has been established on the AD15-ADO bus. 

Five conditions affecting XACKI behavior are: 

• XACK-Delay, user programmable through an IP 
function request. This parameter establishes 
the minimum operating XACK-delay with 
respect to the SYNC signal. Table 9 displays the 
representation of the XACK-delay codes. 

• XACK-enable-flip-flop, set by the rising edge of 
the ALE signal and reset by the falling edge of 
the OE signal. 

• Internal IP Registers. These are used to 
determine validity of the peripheral subsystem 
access and establish access modes. 

• Type of access behavior: Random or Buffered, 
Memory or Interconnect. 

• Bus Faults, nonexistent memory, etc. 

Hardware error detection occurs during the first 
clock of SYNC assertion. 

NAK/ (Negative Acknowledge, Output, 
low asserted) 

This signal precedes XACKI by one-half, clock 
cycle in order to qualify it as a negative 
acknowledge. This pin pulses low for only one 
clock period. 

When the IP is in physical mode and making an 
interconnect access, negative acknowledge may 
be used to indicate that the access was made to a 
nonexistent interconnect address space. This will 

allow determination of the system configuration 
by a subsystem processor at system initialization 
time. 

This pin could be used to set a status bit and 
cause a special interrupt to transmit the informa­
tion back to the subsystem. 

This signal is synchronously driven from the fail­
ing edge of CLKA. Hardware error detection 
occurs during CLKA high time. 

INH1 (Inhibit, Output, high asserted) 

This pin is asynchronously asserted by non­
clocked logic when a valid mappable address 
range is detected. It can be used to override other 
memories in the peripheral subsystem whose 
address space is overlapped by an IP window. 
After initialization, the microcode sets the IN H1 
mode for each window by loading registers in the 
IP for each window. Once the subsystem is 
allowed to make a function request, it can selec­
tively disable or enable the inhibit mode on each 
window. This pin is gated off by CS/. 

The selection of the inhibit mode for window 0, 
when in buffered mode, causes a corresponding 
built-in XACK-delay which delays the 
acknowledge from going active until two clock 
periods after the rising edge of SYNC. This was 
done to facilitate most Multibus systems using 
IN H1, as they require that the acknowledge be 
delayed. When the Advanced XACKI mode is pro­
grammed, the inhibit mode should not be used on 
window 0 when in buffered mode, since the 
acknowledge will not be effectively delayed. 

Hardware error detection occurs during the first 
clock of SYNC assertion. 

Table 9. XACKI Timing Parameters 

Inhibit WRI XD1 XDO XACKI Formation 
Mode 

0 X 0 0 Advanced Acknowledge 
(XACKI can occur before SYNC) 

0 1 0 1 Rising edge of SYNC 
0 0 0 1 Rising edge of SYNC plus 1 Clock 
0 1 1 0 Rising edge of SYNC plus 1 Clock 
0 0 1 0 Rising edge of SYNC plus 2 Clocks 
1 X 1 0 Rising edge of SYNC plus 2 Clocks 
1 X 0 1 Rising edge of SYNC plus 2 Clocks 
X X 1 1 Illegal cond ition 

Note: X=don't care condition 
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PS Interrupt Group 

INT (Interrupt, Output, high asserted) 

This output is a pulse 2 CLKA's wide, and is 
synchronously driven from the rising edge of 
CLKA. Hardware error detection occurs during 
CLKA low time. 

PS Reset Group 

PSR (Peripheral Subsystem Reset, 
Output, high asserted) 

PSR is asserted by the IP under microprogram 
control. When asserted, the peripheral subsystem 
should be reset. In a debug type of control, it may 
be desirable to use this pin to set a status bit in an 
external register or possibly cause a special inter-

rupt. This pin is normally asserted by the IP when 
the peripheral subsystem is believed to be faulty 
and would not respond to other means of control. 

This signal is put out synchronously with the ris­
ing edge of CLKA. Hardware error detection 
sampling occurs during CLKA low time. 

43203 ELECTRICAL CHARACTERISTICS 

Tables 10 through 12 and Figures 20 through 25 
provide electrical specification information and 
include input/output timing, read and write timing, 
and component maximum ratings. 

Instruction Set Comparison 

Refer to Table 13 for a GDP liP operator 
comparison. 

Table 10. 43203 Absolute Maximum Ratings 

Absolute Maximum Ratings 

Ambient Temperature Under Bias 00 C to 70 0 C 

Storage Temperature -65 0 C to + 150 0 C 

Voltage on Any Pin with Respectto GND -1 V to + 7 V 

Power DisSipation 2.5 Watts 

Table 11. iAPX 43203 DC Characteristics 

VCC = 5V±10% Ta =O°C to 70°C 

Spec Description Min Max Units 

Vilc Clock Input Low Voltage -0.3 +0.5 V 

Vihc* Clock Input High Voltage 3.5 VCC+0.5 V 

Vii Input Low Voltage -0.3 0.8 V 

Vih Input High Voltage 2 VCC+0.5 V 

Icc Power Supply Current - 450 mA 

Iii Input Leakage Current - ±10 uA 

10 Output Leakage Current - ±10 uA 

101 @0.45 Vol 
HERR - 8 mA 
FATAL! - 4 mA 
AD15 ... ADO - 4 mA 
OTHER - 2 mA 

loh @2.4 Voh - -0.1 mA 

* For operation at 5 MHz or slower, the 43203 may be operated with a Vihc minimum of 2.7 volts. 
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Symbol 

tcy 
tr, tf 
t1 , t2 
t3, t4 
tis 
tsi 
tie 

tdc 
tcd 
tdh 
toh 
ten 
tdf 

tas 

tah 

tss 

tsh 

tsw 

tds 

tdx* 

tdhx 
tasy 

tsdh 
taih 

tede 
tead 

tdad 

tced 

tcvd 
tox 

tdds 

txde 

tcde 

iAPX 43203 

Table 12. iAPX 43203 AC Characteristics 

Loading: AD1S ... ADO 20 to 100pf 
OTHER 20 to 70pf 

Description 

GLOBAL TIMING REQUIREMENTS 

Clock Cycle Time 
Clock Rise and Fall Time 

Clock Pulse Widths 
INITf to Signal Hold Time 
Signal to INIT f Setup Time 
INIT f Enable Time 

SYSTEM SIDE TIMING REQUIREMENTS 

Signal to CLOCK Setup Time 
Clock to Signal Delay Time 
Clock to Signal Hold Time 
Clock to Signal Output Hold Time 
Clock to Signal Output Enable Time 
Clock to Signal Data Float Time 

8 MHz. 
Min Max 

125 

26 
15 
10 
10 

5 

25 
15 
15 

1000 
10 

250 

55 

55 

PERIPHERAL SUBSYSTEM SIDE TIMING REQUIREMENTS 

AD15 ... ADO,CSf ,WRf ,BHENf 
Setup Time to ALE Low 

AD15 ... ADO,CSf ,WRf ,BHEN f 
Hold Time to ALE Low 

SYNC High Setup Time to 
CLKA High 

SYNC Low Hold Time to 
CLKA High 

SYNC High Pulse Width 

Write Data Setup to 
Sampling CLKA High 

Write Data Hold to Sampling 
CLKA Low (Advanced XACKI) 

Write Data Hold to XACKf 
AD15 ... ADO,CSf ,WRf ,BHEN f 

Setup to SYNC 

o 

32 

50 

30 
50 

10 

10 
5 

120 

PERIPHERAL SUBSYSTEM TIMING RESPONSES 

C'LKA High to HLD,INT,PSR 
Valid AD15 ... ADO,CS f 

to Chip INH1 Valid Delay 
OE to DEN f Delay 
OE to Enable AD15 ... ADO Buffers 

Delay (Read Cycle) 
OE to Disable AD15 ... ADO Buffers 

Delay (Read Cycle) 
CLKA High to Enable AD15 .. ADO 

Buffers Delay 
CLKA High to Valid Read Data Delay 
OE Inactive to XACKf 

Inactive Delay 
AD15 ... ADO Disable Setup 

to DEN f High 
XACKf Low to DEN f High 

(Write Cycle) 
CLKA High to DEN fLow 

o 

26 

tss + 
1.5tcy 

75 

80 
65 

70 

52 

70 
80 

80 

35 
70 

SMHz. 
Min Max 

200 

45 
20 
10 
10 

5 

35 
20 
20 

o 

35 

60 

40 
60 

20 

20 
5 

160 

a 

1000 
10 

250 

85 

75 

tss + 
1.5tcy 

90 

85 
70 

75 

52 

75 
90 

90 

40 
75 

Unit 

nsec. 
nsec. 

nsec. 
nsec. 
nsec. 
tcy 

nsec. 
nsec. 
nsec. 
nsec. 
nsec. 
nsec. 

nsec. 

nsec. 

nsec. 

nsec. 
nsec. 

nsec. 

nsec. 
nsec. 

nsec. 

nsec. 

nsec. 
nsec. 

nsec. 

nsec. 

nsec. 
nsec. 

nsec. 

nsec. 

nsec. 
nsec. 
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Table 12. iAPX 43203 AC Characteristics (Cont'd.) 

Symbol Description 8 MHz. 5MHz. Unit 
Min Max Min Max 

XACKI TIMING CHARACTERISTICS 

Buffered Accesses with XD= 0 
tax ALE High to XACKI Valid 0 65 0 70 nsec. 
tdsx AD15 ... ADO Read Data Valid 

Setup to XACKI Valid 
(When internal state does not 
allow XACKI before SYNC) 20 - 20 - nsec. 

tadx Valid AD15 ... ADO to XACKI Valid 
(When internal state. allows 
XACK I before SYNC) - 120 - 140 nsec. 

Buffered Accesses (With XD=1 or 
XD=2) or Random Accesses 

tdsx AD15 ... ADO Read Data Valid 
Setup to XACKI 20 - 20 - nsec. 

Faulted Accesses 
tsdl ClKA low to NAKI - 75 - 90 nsec. 
tsnx Setup of NAKI to XACKI 50 - 50 - nsec. 

Note: All timing parameters are measured at the 1.,5 Volt level except for ClKA and ClKB which are measured 
at the 1.8 Volt level. 

* Write data is sampled for only one clock cycle. The PS must meet the tDHX specification thereby guaranteeing 
tDX' 

~tey 

ClKA 

ClKB 

171873-22 

Figure 20. 43203 Clock Input Specification 

ClKA 

All OUTPUT 
PINS 

EXCEPT BOUT 
(ON 432 SIDE) 

BOUT 

--.- ~teo --.- .....- tOH 

171874-11 

Figure 21. 43203 Output Timing Specification 
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ClKA 

ACD15 ... ACDO 
iREAD DATA INVALID INVALID 

TIMING) 

~~ 

HARDWARE ERROR toe tOH 
DETECTION INPUT -----~ I---I-~ ,.---­
TIMING AND INPUT 

TIMING FOR All 
INPUTS EXCEPT 
ACD15···ACDO 
(ON 432 SIDE) 

INVALID INVALID 

171874-12 

Figure 22. 43203 Input Timing Specification 

ClKA 

INIT/ 

HERR 
FATAL! 

~ tlE----'-
------ ~ ..-tiS 

MASTER/CHECKER 

171874-13 

Figure 23. 43203 Initialization Timing 
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Figure 24. Local Processor Bus Timing 
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Figure 25. Multibus™ Interface Timing 
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Table 13. G D P II P Operator Comparison 

OPERATOR IP IMPLEMENTATION 

Window Definition Operator 
Update Window + 

Access Descriptor Movement Operators 
Copy Access Descriptor = 
Null Access Descriptor = 

Rights Manipulation Operators 
Amplify Rights = 
Restrict Rights = 

Type Definition Manipulation Operators 
Create Public Type -

Create Private Type -

Retrieve Public Type = 
Retrieve Type = 
Retrieve Type Definition = 

Refinement Operators 
Create Generic Refinement = 
Create Typed Refinement = 
Retrieve Refinement = 

Segment Creation Operators 
Create Data Segment -

Create Access Segment -

Create Typed Segment -

Create Access Descriptor -

Access Path Inspection Operators 
Inspect Access Descriptor = 
Inspect Access Path = 

Object Interlock Operators 
Lock Object = 
Unlock Object = 
Indivisibly Add Short Ordinal -

Indivisibly Add Ordinial -

Indivisibly Insert Short Ordinal -

Indivisibly Insert Ordinal -

Context Communication Operators 
Enter Access Segment = 
Enter Process Globals Access Segment = 
Set Context Mode / 
Call -

Call Context with Message -

Return -
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Table 13. GDP/IP Operator Comparison (Cont'd.) 

OPERATOR 

Process Communication Operators 
Send 
Receive 
Conditional Send 
Conditional Receive 
Surrogate Send 
Surrogate Receive 
Delay 
Read Process Clock 

Processor Communication Operators 
Send to Processor 
Broadcast to Processors 
Read Processor Status and Clock 
Move to Interconnect 
Move from Interconnect 

Branch Operators 
Character Operators 
Short-Ordinal Operators 
Short-Integer Operators 
Ordinal Operators 
Integer Operators 
Short-Real Operators 
Real Operators 
Temporary-Real Operators 

Legend: 
= IP and GOP identical implementation 
+ GOP does not implemen~ operator 
- IP does not implement operator 

IP IMPLEMENTATION 

= 

= 

= 

= 

= 
= 

= 
= 

= 

= 

= 
-

-

-

-

-

-

-

-

-

-

-

While conceptually similar, IP imp.lements operator differently 
than GOP 
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