
•

•

•

•

iAPX 43203
VLSIINTERFACE PROCESSOR

Fully Independent and Decentralized • Protected I/O Interface to 432 Memory
I/O

• Silicon Operating System Instruction
Buffered Data Path for High-Speed Set Extensions for Attached iAPX
Burst-Mode Transfers Processors

Initialization/Diagnostic Interface to • Multibus™ System Compatible
432 Systems Interface

Multiple 43203's per System Provide • Functional Redundancy Checking
Incremental I/O Capacity Mode for Hardware Error Detection

The Intel 43203 Interface Processor (lP) provides 1/0 facilities in iAPX 432 micromainframe systems
employing peripheral subsystems. An IP maps a portion of the peripheral subsystem address space into
iAPX 432 system memory. As any iAPX 432 processor, the IP operates in an object-oriented, capability­
based, multiprocessing environment.

The 43203 is a VLSI device, fabricated with Intel's highly reliable + 5 volt, depletion load, N-channel, silicon
gate HMOS technology, and is packaged in a 64-pin Quad In-Line Package (QUIP). Refer to Figure 1 for the
QUIP representation of the 43203 pin configuration.

INT

ALE

OE

INH1

VSS

XACK/

DEN/

HlD

HDA

SYNC

NAK/

BOUT

ICS

PRQ

VCC

ACD1S

ACD14

ACD13

ACD12

ACD11

ACD10

ACD9

ACD8

VSS

ACD7

ACD6

ACDS

ACD4

ACD3

ACD2

ACD1

ACDO

o

41

40

o

AD1S

AD14

AD13

AD12

AD11

AD10

AD9

AD8

vcc
AD7

AD6

ADS

AD4

AD3

AD2

AD1

ADO

VSS

PSR

BHEN/

WR/

CS/

AlARM/

ClR/

HERR

FATAl/

PClK/

INIT/

VCC

ClKA

ClKB

VSS

Figure 1. iAPX 43203 Interface Processor Pin Configuration

171874-1

The following are trademarks of Intel Corporation and may be used only to identify Intel products: BXP, CREDIT, i, ICE, iCS, im, Insite, Intel, intel, Intelevision, Intellec, iRMX,
iSBC, iSBX, Library Manager, MCS, Megachassis, Micromap, Multibus, Multimodule, PROMPT, Promware, RMX/80, System 2000, UPI, I'Scope, and the combination of ICE, iCS,
iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.
© Intel Corporation 1981 171874-001 Rev. A

inter iAPX 43203

FUNCTIONAL DESCRIPTION

The block diagram shown in Figure 2 illustrates
the internal arch itectu re of the Interface
Processor. Figure 3 represents the Interface Pro­
cessor as a logical device and illustrates the
signal interface to the Processor Packet bus (left
side) and the peripheral subsystem (right side).
The Interface Processor (lP) operates in conjunc­
tion with an Attached Processor (AP) to form the
logical 110 processor of an iAPX 432 system.

The IP acts as a slave to the AP, and maps a por­
tion of the AP's peripheral subsystem address
space into iAPX 432 system memory with the same
protection mechanisms as any iAPX 432 pro­
cessor. Five peripheral subsystem (PS) memory
subranges may be mapped into iAPX 432 memory
segments. These five windows (labeled 0 through

iAPX 432
SYSTEM

A DATA

4) allow the AP to reference iAPX 432 memory with
logical addresses or, in special circumstances,
with direct, 24-bit physical addresses.

A BASIC I/O MODEL

A typical application based on the iAPX 432
microprocessor family consists of a main system
and one or more peripheral subsystems. Figure 4
illustrates a hypothetical configuration that
employs two peripheral subsystems. The main
system hardware is composed of one or more
iAPX 432 general data processors (GDPs) and a
common memory that is shared by these pro­
cessors. The main system software is a collection
of one or more processes that execute on the
GDP(s).

A

PERIPHERAL
SUBSYSTEM

ACD15 ... ACDO) ACQUISITION I(~ AD15 ... ADO

PRQ, ICS, BOUT

FATAL/, ALARM/,
PCLK/, INIT!, CLRI

HERR

'"
--y UNIT "

"- EXECUTION) UNIT y

t t
- .--..
- .--..

iAPX PERIPHERAL
432 SUBSYSTEM - ~

CONTROL

B
CONTROL

T
1

CLKA,CLKB

Figure 2. iAPX 432031P Functional Block Diagram

2

BHEN/, CS/, WRI

ALE, OE, SYNC

DENI

I

I

HLD, HDA

NH1,XACK/, NAK/

NT

PSR

171874-2

iAPX 43203

TT
{

ACD1S-0
PROCESSOR

PACKET PRQ
BUS GROUP ICS

BOUT

<==> / II.

'¥ -y

.. ..

AD1S-0

} PS
BHEN/ BUS

CS/
GROUP

WR/

{
ALARM/

SYSTEM
FATAL!

GROUP PCLK/
INIT/
CLR/

..
,.

• .. --.. 43203
IP

ALE) PSTIMING
OE GROUP
SYNC

PS BUFFER
DEN/ CONTROL GROUP

HLD PS INTERLOCK
LOGIC HDA CONTROL GROUP

CLOCK CLKA SYMBOL
GROUP CLKB

HARDWARE HERR 11 ..
INH1

PS SYNCHRONIZATION
XACK/ GROUP
NAK/

ERROR
DETECTION

GROUP
INT PSINTERRUPT

GROUP

-- PSR PS RESET
GROUP

iAPX 432 SYSTEM PERIPHERAL SUBSYSTEM

171874-3

Figure 3. iAPX 43203 IP Logic Symbol

171874-4

Figure 4. Main System and Peripheral Subsystem

3

inter iAPX 43203

A fundamental principle of the iAPX 432 architec­
ture is that the main system environment is self­
contained; neither processors nor processes
have any direct contact with the "outside world."
Conceptually, the main system is enclosed by a
wall that protects objects in memory from possible
damage by uncontrolled 1/0 operations.

In an iAPX 432-based system, the bulk of process­
ing required to su pport inputl output operations is
delegated to peripheral subsystems; this includes
device control, timing, interrupt handling and buf­
fering. A peripheral subsystem is an autonomous
computer system with its own local memory, I/O
devices and controllers, at least one processor,
and software. The number of peripheral sub­
systems employed in any given application
depends on the I/O-intensiveness of the applica­
tion, and may be varied with changing needs,
independent of the number of GDPs in the
system.

A peripheral subsystem resembles a mainframe
channel in that it assumes responsibility for low­
level I/O device support, executing in.parallel with
main system processor(s). Unlike a simple chan­
nel, however, each peripheral subsystem can be
configured with a complement of hardware and
software resources that precisely fits application
cost and performance requirements. In general,
any system that can communicate over a standard
8- or 16-bit microcomputer bus such as Intel's
Multibus design may serve as an iAPX 432
peripheral subsystem.

A peripheral subsystem is attached to the main
system by means of an IP. At the hardware level,
the IP presents two separate bus interfaces. One
of these is the standard iAPX 432 Processor
Packet bus and the other is a very general
interface.

To support the transfer of data through the wall
that separates a peripheral subsystem from the
main system, the IP provides a set of software­
controlled windows. A window is used to expose a
single object in main system memory so that its
contents may be transferred to or from the
peripheral subsystem.

The IP also provides a set of functions that are
invoked by software. While the operation of these
functions varies considerably, they generally per­
mit objects in main system memory to be
manipulated as entities, and enable communica­
tion between main system processes and soft­
ware executing in a peripheral subsystem.

4

It is important to note that both the window and
function facilities utilize and strictly enforce the
standard iAPX 432 addressing and protection
systems. Thus, a window provides protected
access to an object, and a function provides a ~ro­
tected way to operate in the main system. The IP
permits data to flow across the peripheral sub­
system boundary while preserving the integrity of
the main system.

As Figure 5 illustrates, input/output operations in
an iAPX 432 system are based on the notion of
passing messages between main system pro­
cesses and device interfaces located in a
peripheral subsystem. A device interface is con­
sidered to be the hardware and software in the
peripheral subsystem that is responsible for
managing an I/O device. An I/O device is con­
sidered to be a "data repository," which may be a
real device (e.g., a terminal), a file, or a pseudo­
device (e.g., a spooler).

A message sent from a process that needs an I/O
service contains information that describes the
requested operation (e.g., "read file XYZ"). The
device interface interprets the message and car­
ries out the operation. If an operation requests
input data, the device interface returns the data as
a message to the originating process. The device
interface may also return a message to positively
acknowledge completion of a request.

A very general and very powerful mechanism for
passing messages between processes is inherent
in the iAPX 432 architecture. A given peripheral
subsystem may, or may not, have its own
message facility, but in any case, such a facility
will not be directly compatible with the iAPX 432's.
By interposing a peripheral subsystem interface
at the subsystem boundary, the standard IP com­
munication system can be made compatible with
any device interface (see Figure 6).

iAPX 432 SYSTEM INTERFACE

The IP exists in both the protected environment of
the iAPX 432, and the conventional environment of
the peripheral subsystem. Because of this, an IP
is able to provide a pathway over which data may
flow between the iAPX 432 system and the exter­
nal subsystem. The IP operates at the boundary
between the systems, providing compatibility and
protection. In this position, the 'Interface Pro­
cessor presents two different views of itself, one
to software and processors in the iAPX 432
environment and another to its attached
processor.

iAPX 43203

MAIN SYSTEM PERIPHERAL SUBSYSTEM

PROCESS

171874-5

Figure 5. Basic 10 Service Cycle

From the iAPX 432 side, an IP looks and behaves
very much like any other processor. It attaches to
the Processor Packet bus in the same way as a
GOP. Within the iAPX 432 memory, the IP supports
an execution environment that is compatible with,
and largely identical to, the GOP. Thus, the IP
recognizes and manipulates system objects
representing processors, processes, ports, etc. It
supports and enforces the iAPX 432' s access con­
trol mechanisms, and provides full interprocess
and interprocessor communication facilities.

The principal difference between the two pro­
cessors is that the GOP manipulates its environ­
ment in response to the instruction it fetches,
while the IP operates under the direction of its
attached processor. Indeed, the IP may be said to
extend the instruction set of the Attached Pro­
cessor (AP) so that it may function in the environ­
ment of the iAPX 432 system.

PERIPHERAL SUBSYSTEM INTERFACE

A peripheral subsystem interface (PSI) is a collec­
tion of hardware and software that acts as an
adapter that enables message-based communica­
tion between a process in the main system and a
device interface in a peripheral subsystem (see
Figure 6). Viewed from the iAPX 432 side, the

5

peripheral subsystem interface appears to be a
process. The peripheral subsystem interface may
be designed to present any desired appearance to
a device interface. For example, it may look like a
collection of tasks, or like a collection of
subroutines.

Hardware

The PSI hardware consists of an IP, an AP, and
local memory (see Figure 7). To improve per­
formance, these may be augmented by a OMA
controller. The AP and the IP work together as a
team, each providing complementary facilities.
Considered as a whole, the AP / IP pair may be
thought of as a logical I/O processor that supports
software operations in both the main system ano
the peripheral subsystem.

ATTACHED PROCESSOR

Almost any general-purpose CPU, such as an
8085, an iAPX 86 or an iAPX 88 can be used as an
AP. The AP need not be dedicated exclusively to
working with the IP.

It may, for example, also execute device interface
software. Thus, the AP may be the only CPU in the
peripheral subsystem, or it may be one of several.

PROCESS

MAIN
MEMORY

iAPX 43203

MAIN SYSTEM PERIPHERAL SUBSYSTEM

PERIPHERAL
SUBSYSTEM
INTERFACE

DEVICE
INTERFACE

Figure 6. Peripheral Subsystem Interface

MAIN SYSTEM PERIPHERAL SUBSYSTEM

I/- J\. OPTIONAL

I' -) DMA-TYPE
C/) "I v CONTROLLER
:::>
OJ

:2:
w
~
C/)

>-
C/)
OJ
:::> ,----r------- C/) f-----------
...J

I
«
a:
w

1 :I:
a.

I ii:
1

w
a.

A I ...
INTERFACE I(-\ <==> ATTACHED I(PACKETBUS) PROCESSOR ~ PROCESSOR "I I V

I
1

I INTERRUPT

1 L ____ LOGICAL I/O PROCESSOR
t-----~-- f-----------

<==> LOCAL
MEMORY

Figure 7. Peripheral Subsystem Interface Hardware

6

-I
I
1

I
1

I
1

I
1

I
I

-~

171874-6

171874-7

inter iAPX 43203

As Figure 7 shows, the AP is "attached" to the
interface processor in a logical sense only. The
physical connections are standard bus signals
and one interrupt line (which would typically be
routed to the AP via an interrupt controller).

Continuing the notion of the logical 110 processor,
the AP fetches instructions, and provides the
instructions needed to alter the flow of execution,
and to perform arithmetic, logic and data transfer
operations within the peripheral subsystem.

INTERFACE PROCESSOR

The IP completes the logical 110 processor by pro­
viding data paths between the peripheral sub­
system and the main system, and by providing
functions that effectively extend the AP's instruc­
tion set so that software running on the logical 110
processor can operate in the main system. Since
these facilities are software-controlled, they are
discussed in the next section.

As Figure 7 shows, the IP presents both a
peripheral subsystem bus interface and a stan­
dard iAPX 432 Processor Packet bus interface. By
bridging the two buses, the IP provides the hard­
ware link that permits data to flow under software
control between the main system and the
peripheral subsystem.

The IP connects to the main system in exactly the
same way as a GOP. Thus, in addition to being
able to access main memory, the IP supports
other iAPX 432 hardware-based facilities,
including processor communication, the alarm
signal and functional redundancy checking.

The IP is connected to the peripheral subsystem
bus as if it were a memory component; it occupies
a block of memory addresses up to 64K bytes
long. Like a memory, the IP behaves passively
within the peripheral subsystem (except as noted
below). It is driven by peripheral subsystem
memory references that fall within its address
range.

While the IP generally responds like a memory
component, it also provides an interrupt request
signal. The interface processor uses this line to
notify its AP that an event has occurred which
requires its attention.

To summarize, the AP and the IP interact with
each other by means of address references
generated by the AP and interrupt requests
generated by the IP. Since the IP responds to

7

memory references, other active peripheral sub­
system agents (bus masters), such as OMA con­
trollers, may obtain access to main system
memory via the IP.

Software

IP CONTROLLER

The peripheral subsystem interface is managed
by software, referred to as the IP controller. The IP
controller executes on the AP and uses the
facilities provided by the AP and the IP to control
the flow of data between the main system and the
peripheral subsystem.

While there are no actual constraints on the struc­
ture of the IP controller, organizing it as a collec­
tion of tasks running under the control of a
multitasking operating system (such as an RMX-80
or iRMX-86 operating system) can simplify soft­
ware development and modification. This type of
organization supports asynchronous message­
based communication within the IP controller,
similar to the iAPX 432's intrinsic interprocessor
communication facility. Extending this approach
to the device interface as well results in a consis­
tent, system-wide communication model.
However, communication within the IP controller
and between the IP controller and device inter­
faces, is completely application-defined. It may
also be implemented via synchronous procedure
calls, with "messages" being passed in the form
of parameters.

However it is structured, the IP controller interacts
with the main system through facilities provided
by the interface processor. There are three of
these facilities: execution environments, win­
dows, and functions.

EXECUTION ENVIRONMENTS

The IP provides an environment within the main
system that supports the operation of the IP con­
troller in that system. This environment is
embodied in a set of system objects that are used
and manipulated by the IP. At any given time, the
IP controller is represented in main memory by a
process object and a context object. Like a GOP,
the IP itself is represented by a processor object.
Representing the IP and its controlling software
like this creates an execution environment that is
analogous to the environment of a process run­
ning on a GOP. This environment provides a stan­
dard framework for addressing, protection and
communication within the main system.

inter iAPX 43203

Like a GDP, an IP actually supports multiple pro­
cess environments. The IP controller selects the
environment in which a function is to be executed.
This permits, for example, the establishment of
separate environments corresponding to indi­
vidual device interface tasks in the peripheral sub­
system. If an error occurs while the IP controller is
executing a function on behalf of one device inter­
face, that error is confined to the associated pro­
cess, and processes associated with other device
interfaces are not affected.

WINDOWS

Every transfer of data between the main system
and a peripheral subsystem is performed with the
aid of an IP window. A window defines a corre­
spondence, or mapping, between a subrange of

peripheral subsystem memory addresses (within
the range of addresses occupied by the IP) and an
object in main system memory (see Figure 8).
When an agent in the peripheral subsystem (e.g.,
the IP controller) reads a local windowed address,
it obtains data from the associated object; writing
into a windowed address transfers data from the
peripheral subsystem to the windowed object.

The action of the IP, in mapping the peripheral
subsystem address to the main system object, is
transparent to the agent making the reference; as
far as it is concerned, it is simply reading or
writing local memory.

Since a window is referenced like local memory,
any individual transfer may be between an object
and local memory, an object and a processor
register, or an object and an I/O device. The

PERI PH ERAL SU BSVSTEM MEMO RV SPAC E _1 ___ MAl N SVSTEM MEMO RV SPACE

-,---

LOCAL MEMORY ADDRESSES

I..

~@) NORMAL MEMORY REFERENCE

1
--

IP WINDOW MAPS SUBRANGE OF

ONTO AN OBJECT IN MAIN MEMORY.
(PERIPHERAL SUBSYSTEM ADDRESS

INTERFACE PROCESSOR ADDRESSES

I
I OBJECT

SUBRANGE I
I I..

'/-0'/#$,0; WINDOWED MEMORY REFERENCE
I '/LL///L

I

--
171874-8

Figure 8. I nterface Processor Window

8

iAPX 43203

latter may be appealing from the standpoint of
"efficiency," but it should be considered with
caution. Using a window to directly "connect" an.
1/0 device and an object in main memory has the
undesirable effect of propagating the real-time
constraints imposed by the device beyond the
subsystem boundary into the main system. It
may seriously complicate error recovery as well.
Finally, since there is a finite number of windows,
most applications will need to manage them as
scarce resources that will not always be instantly
available. This means that at least some 1/0
device transfers will have to be buffered in local
memory until a window becomes available. It may
be simplest to buffer all 1/0 device transfers and
use the windows to transfer data between local
memory and main system memory.

There are four IP windows that may be mapped
onto four different objects. The IP controller may
alter the windows during execution to map dif­
ferent subranges and objects. References to win­
dowed subranges may be interleaved and may be
driven by different processors in the peripheral
subsystem. For example, the AP and a OMA con­
troller may be driving transfers concurrently, sub­
ject to the same bus arbitration constraints that
would apply if they were accessing local memory.

FUNCTIONS

A fifth window provides the IP controller with
access to the IP's function facility. By writing
operands and an opcode into predefined locations
in this window's subrange, the IP controller
requests the IP to execute a function on its behalf.
This procedure is very similar to writing com­
mands and data to a memory-mapped peripheral
controller (e.g., a floppy disk controller). Upon
completion of the function, the IP provides status
information that the IP controller can read through
the window. The IP can perform transfer requests
through the other four windows while it is
executing a function.

The IP's function set permits the IP controller to:

• alter windows;
• exchange messages with GOP processes via

the standard 432 communication facility;
• manipulate objects.

These functions may be viewed as instruction set
extensions to the AP, which permit the IP con­
troller to operate in the main system. The com­
bination of the IP's function set and windows, the

9

AP's instruction set, and possibly additional
facilities provided by a peripheral subsystem
operating system, permits the construction of
powerful IP controllers that can relieve the main
system of much I/O-related processing. At the
same time, by utilizing only a subset of the
available IP functions, relatively simple IP con­
trollers can also be built (in cases where this
approach is more appropriate).

SUPPLEMENTARY INTERFACE
PROCESSOR FACILITIES

The preceding sections describe the IP as it is
used most of the time. The IP provides two addi­
tional capabilities that are typically used less fre­
quently, and only in exceptional circumstances.
These are physical reference mode and intercon­
nect access.

Physical Reference Mode

The IP normally operates in logical reference
mode; this mode is characterized by its object­
oriented addressing and protection system. There
are times when logical referencing is impossible
because the objects used by the hardware to per­
form logical-to-physical address development are
absent (or, less likely, are damaged). In these
situations, the IP can be used in physical
reference mode.

In physical reference mode, the IP provides a
reduced set of functions. Its windows operate as
in logical reference mode, except that they are
mapped onto memory segments (rather than
objects) that are specified directly with 24-bit
addresses. In this respect, physical reference
mode is similar to traditional computer addressing
techniques.

Physical reference mode is most often employed
during system initialization to load binary images
of objects from a peripheral subsystem into main
memory. Once the required object images are
available, processors can begin normal logical
Jeference mode operations.

Interconnect Access

In addition to memory, the iAPX 432 architecture
defines a second address space called the
processor-memory interconnect address space.
One of the IP windows is software-switchable to

iAPX 43203

either space. In logical reference mode, the inter­
connect space is addressed in the same object­
oriented manner as the memory space, with the IP
automatically performing the logical-to-physical
address development. In physical reference
mode, the interconnect space is addressed as an
array of 16-bit registers, with a register selected
by a 24-bit physical add ress.

iAPX 432 INFORMATION STRUCTURE

The following information describes the
requirements placed on the logical structure of
the iAPX 432 hardware environment. These
requirements are concerned directly with the con­
straints of physical memory, the type of data
transferred, and the structure of the data types.
These requirements are common to the iAPX 432
family of processors. (Any pin notations called out
in this information are described in the 43203 Pin
Description section of this data sheet).

Any 432 processor in the system can access all the
contents of physical memory. This section
describes how information is represented and
accessed.

Memory

The iAPX 432 implements a two-level memory
structure. The software system exists in a
segmented environment in which a logical
address specifies the location of a data item. The
processor automatically translates this logical
address into a physical address for accessing the
value in physical memory.

Physical Addressing

Logical addresses are translated by the processor
into physical addresses. Physical addresses are
transmitted to memory by a processor to select
the beginning byte of a memory value to be
referenced. A physical address is 24 binary bits in
length. This results in a maximum physical
memory of 16 Megabytes.

Data Formats

When a processor executes the instructions of an
operation within a context, operands found in the
logical address space of the context may be

10

manipulated. An individual operand may occupy
one, two, four, eight, or ten bytes of memory
(byte, double byte, word, double word, or
extended word, respectively). All operands are
referenced by a logical address as described'
above. The displacement in such an address is the
displacement in bytes from the base address of
the data segment to the first byte of the operand.
For operands consisting of multiple bytes, the
address locates the low-order byte while the
higher-order bytes are found at the next higher
consecutive addresses.

DATA REPRESENTATION

An iAPX 432 convention has been adopted for
representing data operands stored in memory.
The bits in a field are numbered by increasing
numeric significance, with the least-significant bit
shown on the right. Increasing byte addresses are
shown from right to left. Examples of the five basic
data lengths used in the iAPX 432 system are
shown in Figure 9.

DATA POSITIONING

The data operand types shown in Figure 9 may be
aligned on an arbitrary byte boundary within a data
segment. Note that more efficient system opera­
tion may be obtained when multi-byte data struc­
tures are aligned on double-byte boundaries (if
the memory system is organized in units of double
bytes).

Requirements of an iAPX 432
Memory System

The multiprocessor architecture of the iAPX 432
places certain requirements on the operation of
the memory system to ensure the integrity of data
items that can potentially be accessed
simultaneously. Indivisible read-modify-write
(RMW) operations to both double-byte and word
operands in memory are necessary for manipu­
lating system objects. When an RMW-read is
processed for a location in memory, any other
RMW-reads from that location must be held off by
the memory system until an RMW-write to that
location is received (or until an RMW timeout
occurs). Note that while the memory system is
awaiting the RMW-write, any other types of reads
and writes are allowed. Also, for ordinary reads
and writes of double-byte or longer operands, the
memory system must ensure the entire operand

inter iAPX 43203

BIT 7 0

BYTE c=J
ADDRESS N

BIT 15 87 0

DOUBLE BYTE I
ADDRESS N+1 N

BIT 31 2423 1615 87 0

WORD I I I
ADDRESS N+3 N+2 N+1 N

BIT 63 56

ADDRESS~
)31 2423 1615 87 0

DOUBLE WORD I
N+3 N+2 N+1 N

BIT 79 72

f'
4039 3231 2423 1615 87 0

EXTENDED WORD ADDRESS~ I
N+5 N+4 N+3 N+2 N+1 N

171873-13

Figure 9. Basic iAPX 432 Data Lengths

has been either read or written before beginning
to process another access to the same location;
e.g., if two simultaneous writes to the same loca­
tion occur, the memory system must ensure that
the set of locations used to store the operand
does not get changed to some interleaved com­
bination of the two written values.

iAPX 432 HARDWARE ERROR
DETECTION

iAPX 432 processors include a facility to support
the hardware detection of errors by functional
redundancy checking (FRC). At initialization time,
each iAPX 432 processor is configured to operate
as either a master or a checker processor (Figure
10). A master operates in the normal manner. A
checker places all output pins that are being
checked into a high-impedance state. Thus, those
pins which are to be checked on a master and
checker are parallel-connected, pin for pin, such
that the checker is able to compare its master's
output pin values with its own. Any comparison
error causes the checker to assert HERR.

11

MASTER

1
INPUTS OUTPUTS

CHECKED
INPUTS OUTPUTS I~

HERR

CHECKER

171873-12

Figure 10. Hardware Error Detection

PROCESSOR PACKET BUS DEFINITION

This section describes and defines the signifi­
cance of the 19 signal lines that make up the Pro­
cessor Packet bus, and the general scheme by
which timing relationships on these lines are
derived. Although this section defines all legal
bus activities, the processors do not necessarily
perform all allowed activities. Slaves to the Pro­
cessor Packet bus must support all state transi­
tions to ensure compatibility.

inter iAPX 43203

The Processor Packet bus consists of 3 control
lines:
• Processor Packet bus Request (PRO),
• Enable Buffers for Output (BOUT),
• Interconnect Status (ICS).

This bus also includes sixteen 3-state Address­
Control-Data lines (ACD15 through ACDO). PRO
has two functions whose use depends upon the
application; i.e., PRO either indicates the first
cycle of a transaction on the Processor Packet bus
or the cancellation of a transaction initiated in the
previous cycle. Of the three control lines, BOUT
has the simplest function, serving as a direction
control for buffers in large systems requiring more
electrical drive than the processor components
can provide. The ICS signal has significance per­
taining to one of three different system conditions
and depends on the state of the Processor Packet
bus transaction. The processor interprets the ICS
input as an indicati.on of one of the following:

• Whether or not an interprocessor com­
munication (lPC) is waiting,

• Whether or not the slave requires more time to
service the processor's request,

• Whether or not a bus ERROR has occurred.

The Address/Control/Data lines emit output
specification information to indicate the type of
cycle being initiated, e.g., addresses, data to be
written, or control inJormation. They also receive
data returned to the processor during reads.
Details of the ACD line operation and the
associated control lines are summarized below.

ACD15-ACDO (Address/Control/Data)

As shown in Figure 11, the first cycle, (T1 or Tvo) of
a Processor Packet bus transaction (indicated by
the rising edge of PRO), the high-order 8 ACD bits
(ACD15 ... ACD8) specify the type of the current
transaction. In this first cycle, the low-order ACD
bits (ACD7 ... ACDO) contain the least-significant
eight bits of the 24-bit physical address.

During the subsequent cycle (T2), the remainder
of the address is present on the ACD pins (aligned
such that the most significant byte of the address
is on ACD15 through ACD8, the mid-significant
byte on ACD7 through ACDO). If PRO is asserted
during T2, the access is cancelled and the ACD
lines are not defined.

During the third cycle (T3 or Tw) of a Processor
Packet bus transaction the processor presents a
high impedance to the ACD lines for read trans­
actions and asserts write data for write
transactions.

12

Once the bus has entered T3 or Tv, the sequence
of state transactions depends on the type of
cycle requested during the preceding T1 or Tvo.
Accesses ranging in length from 1 to 32 bytes may
be requested (see Table 1). If a transfer of more
than one double byte has been requested, it is
necessary to enter T3 for every double-byte that is
transferred. The processor may simply enter T3 or
it may first enter Tw for any number of cycles (as
dictated by ICS).

After all data is transferred, the processor enters
either Tv or Tvo. Tvo can be entered only when the
internal state of execution is such that the pro­
cessor is prepared to accomplish an immediate
write transfer (overlapped access). During Tvo,
the ACD lines contain address and specification
information aligned in the same fashion as in T1. If
the processor does not require an overlapped
access, the bus state moves to Tv (the ACD lines
will be high impedance). After Tv, a new bus cycle
can be started with T1, or the processor may enter
the idle state(Ti).

ICS (Interconnect Status)

ICS has three possible interpretations depending
on the state of the bus transaction (see Table 2).
Notice that under most conditions ICS has IPC
significance for more than one cycle. It is impor­
tant to note that a valid low during any cycle with
IPC significance will signal the processor that an
IPC or reconfiguration request has been received.
An iAPX 432 processor is required to record and
service only one IPC or reconfiguration request at
a time. Logic in the interconnect system must
record and sequence multiple' (possibly
simultaneous) IPC occurrences and reconfigura­
tion requests to the processor. Thus the logic that
forms ICS must accomodate global and local IRC
arrivals and requests for reconfiguration as
individual events:

1. Assert IPC significance on .ICS for the arrival of
an IPC or reconfiguration request.

2. When the iAPX 432 processor reads
interconnect address register 2, it will respond
to one of the status bits for the IPC or recon­
figuration request signalled on ICS in the
following order:

Bit 2 (1=reconfigure, O=do not reconfigure)

Bit 1 (1=globaIIPC arrived, O=no globallPC)

Bit 0 (1=locaIIPC arrived, O=no locallPC)

iAPX 43203

171873-14

Initial State Next State Trigger

Ti TI Bus cycle desired

Ti No bus cycle desired

TI T2 U ncond itional

T2 T3 ICS high

Tw ICSlow

TI Cancelled, Access Pending

Ti Cancelled, No Access Pending

T3 T3 Additional transfer required, ICS high

Tw Additional transfer required, ICS low

Tv All transfers completed, no overlapped access

Tvo Current write with overlapped access

Tv Ti No access pending

TI Access pending

Tvo T2 Unconditional

Tw Tw ICS low

T3 ICS high

Figure 11. Processor Packet Bus State Diagram

13

iAPX 43203

Table 1. ACO Specification Encoding

ACO ACO ACO
15 14 13

Access Op RMW

0- 0- 0-
Memory Read Nominal

1 - 1 - 1 -
Other Write RMW

3. The logic in the interconnect system must clear
the highest order status bit that was serviced by
the iAPX 432 processor, and if additional IPC
information has arrived, the interconnect
system logic must signal an additional IPC
indication to the iAPX 432 processor.

The interconnect system must signal the
second IPC by raising ICS high for at least one
cycle and then setting ICS low for at least one
cycle during IPC significance time.

Table 2. ICS Interpretation

Level
State High Low

IPC None Waiting Ti, T1, T2*
Stretch Don't Stretch T3, Tw
Err Bus Error No Error Tv, Tvo

* ICS has no significance in a cycle following a T2
where PRQ is asserted (cancelled access) or in any
cycle during which CLRI is asserted.

PRQ (Processor Packet Bus Request)

PRQ is normally low and can go high only during
T1, T2 and Tvo. High levels during Tvo and T1
indicate the first cycle of an access. A high level
during T2 indicates that the current cycle is to be
cancelled. See Table 3.

ACO ACO ACO ACO ACO
12 11 10 9 8

Length Modifiers

000 -1 Byte AGD 15 = 0:
001 - 2 Bytes OO-Inst Seg
010 - 4 Bytes Access
011 - 6 Bytes 01-Stack Seg
100 - 8 Bytes Access
101 -10 Bytes 1 O-Context Gtl
110 -16 Bytes* Seg Access
111 -32 Bytes* 11-0ther

AGD 15 = 1:
* Not implemented OO-Reserved

14

01-Reserved
10-Reserved
11-lnterconn

Register

Table 3. PRO Interpretation

State PRO Condition

Ti 0 Always
T1 1 Initiate access
T2 0 Continue access

1 Cancel access
T3 0 Always
Tw 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

BOUT (Enable Buffers for Output)

BOUT is provided to control external buffers when
they are present. Table 4 and Figures 12 through
16 show its state under various cond itions.

Processor Packet Bus Timing
Relationships

All timing relationships on the processor packet
bus are derived from a simple scheme and related
to Table 5. Each timing diagram shown in the
following pages (Figures 12 through 17) provides a
separate table illustrating the various system
states during the cycle. This approach to transfer
timing was designed to allow maximum time for
the transfer to occur and yet guarantee hold time.
The solid lines in Figure 18 show the state transi­
tions initiated by the IP.

inter iAPX 43203

Any agent connected to the processor packet bus
is recognized as either a processor or a slave.
Examples of processors are the GDP and the IP. A
memory system provides an example of a slave.

adequate time for the transfer and ensures suffi­
cient hold time after sampling. The BOUT timing is
unique because BOUT is intended as a direction
control for external buffers.

In all tranfers between a processor and a slave,
the data to be driven are clocked three-quarters of
a cycle before they are to be sampled. This allows

Detailed set-up and hold times depend on the pro­
cessor implementation and can be found in the ac
characteristics section.

Table 4. BOUT Interpretation

Low-to-High High-to-Low High-to-Low
Transition Transition Transition

BOUT Always High or Low or Low or High

Write 11, T2, T3, Tw, Tvo Ti None Tv
Read T1,T2 Ti, Tv T3, Tw None

Table 5. iAPX 432 Component Signaling Scheme

Processor Slave

Inputs AGD: ~GLKA All: tCLKB
Sampled Others: tGLKA

Outputs All (except BOUT): ~GLKA AGO: ~GLKB

Driven Others: tCLKB
BOUT: tGLKA

I- NOMINAL WRITE CYCLE -I 5 CLKA CYCLES

1
TI I Tl I T2 I T3 I Tv I TI I Tl I T2 I

CLKA

- ioo.o-

AC D15··· >{ WRITE DATA }----------------------{ ADDRISPEC }< }--ACDo .-----------< ADDRISPEC >{ ADDR ADDR

PRQ I \ / \

ICS IPC X IPC X IPC Y STRETCH '< ERR X IPC X IPC X IPC)C

BOUT ~ \ /
ACD15 ACD8 ACD7 ACDO State

Hi·z Hi·z Ti

Spec La-adr Tl

Hi·adr Mid-adr T2

Hi·datal' La·datal T3

Hi·z Hi·z Tv

Hi-z Hi-z Ti

Spec La-adr Tl

Hi-adr Mid-adr T2

'Undefined if single byte write

171873-15

Figure 12. Nominal Write Cycle Timing

15

iAPX 43203

I- MINIMUM WRITE CYCLE -I 3 CLKA CYCLES

Tv 1 T1 T2 T3 1 TvO T2 T3

CL~A

AC D15···ACDo -----------

PRO ____ I ' _____ 1 _---------------

ICS ___ IP_C_--'X'--_I_PC_--JX'--__ IP_c_--'y STRETCH '<"" __ ER_R_--'X'--__ IP_C_--'X STRETCH C

BOUT ---.I
AC015 AC08 ACO? ACOO State

Hi-z Hi-z Tv"

Spec Lo-adr T1

Hi-adr Mid-adr T2

Hi-data1' Lo-data1 T3

Spec Lo-adr Tvo

Hi-adr Mid-adr T2

Hi-data1 Lo-data1 T3

'Undefined If single byte wnte
"(preceded by read cycle)

171873-16

Figure 13. Minimum Write Cycle Timing

Tw Tv

CLKA

ACD15 .. ·ACDo ------------{ ADDRISPEC X", __ A_D_D_R_--IX WRITE DATA X"' ____ W_R_IT_E_D_A_T_A~----'}----------------

PRO

ICS IPC

BOUT ---.I _---
AC015 AC08 ACO? ACOO State

Hi-z Hi-z Ti

Spec Lo-adr T1
Hi-adr Mid-adr T2

Hi-data1 Lo-data1 T3
Hi-data2 Lo-data2 Tw

Hi-data2 Lo-data2 T3
Hi-z Hi-z Tv

Hi-z Hi-z Ti

171873-17

Figure 14. Stretched Write Cycle Timing

16

inter iAPX 43203

I- MINIMUM READ CYCLE

"I 5 CLKA CYCLES

TI
1

T1 T2 T3 Tv TI I T1

CLKA

AC D15 .. ·ACD O -----------{ ADDRISPEC X", __ A_D_D_R_--, READ DATA }----------------{ ADDRISPEC >C

PRO

ICS IPC X IPC X IPC Y STRETCH '(ERR X IPC X IPC x=
BOUT / \ /

ACD15 ACD8 ACD7 ACDO State
HO,-z Hi-z Ti
Spec Lo-adr T1
Hi·adr Mid-adr T2
Hi·data' Lo-data1 T3
Hi-z Hi-z Tv
Hi·z Hi-z Ti
Spec Lo·adr T1

'Undeflned If single byte read

171873·18

Figure 15. Minimum Read Cycle (Not Buffered)

I- MINIMUM READ CYCLE (BUFFERED SYSTEM)
.. I 6 CLKA CYCLES

TI
1

T1 T2 Tw T3 Tv TI 1

CLKA

ACD15···ACDo n __________ { ADDRISPEC X .. __ A_D_D_R __ }-----------------{ READ DATA)-----------------(ADDR

PRO / \ I

ICSX IPC X IPC X IPC ~ STRETCH / STRETCH '< ERR X IPC x=
BOUT / \ /

ACD15 ACD8 ACD7 ACDO State

Hi-z Hi-z Ti
Spec Lo-adr T1
Hi-adr Mid-adr T2
Hi·z Hi-z Tw
Hi·data1' Lo-data1 T3

Hi-z Hi-z Tv
Hi-z Hi-z Ti

'Undefined If single byte read 171873·19

Figure 16. Minimum Read Cycle (Buffered System)

17

iAPX 43203

2 CLKA CYCLES

TV

CLKA

ACD1S· ..

ACDo ------

8
PRQ / -- \~-------------------------------CANCEL

ICS IPC

AC01S AC08 AC07 ACOO

Hi-z Hi·z

Spec Lo-adr

Undefined Undefined

Spec Lo-adr

Hi·adr Mid-adr

Hi-data· La-data

Hi·z Hi-z

Hi·z Hi-z

·Undefined if single byte write
•• Access Cancelled

State

Ti

T1
T2··

T1···

T2

T3

Tv

Ti

···New Access Started (Slave must
support this subsequent access
even though all processors may not
implement it.1

IGNORE
COMPLETELY

Figure 17. Minimum Faulted Access Cycle

*NOTE THAT THE BROKEN TRANSITION
IN THE IP STATE DIAGRAM IS NOT
GENERATED BY THE IP.

Figure 18. IP State Diagram

18

171873-20

171874-9

inter iAPX 43203

Table 6. iAPX 43203 Interface Processor Pin Summary

432 System Side

Hardware
Pin Group Pin Name Direction Error

Detection

PROCESSOR ACD15 ... ACDO I/O X
PACKET BUS PRQ a X
GROUP ICS I

BOUT a

SYSTEM ALARM / I
GROUP FATAL! a (I at

Initialization)

CLR/ I
PClK/ I
INIT/ I

CLOCK ClKA I
GROUP ClKB I

HARDWARE ERROR HERR a (I at
DETECTION GROUP Initialization)

Peripheral Subsystem Side

Hardware
Pin Group Pin Name Direction Error

Detection

PERIPHERAL AD15 ... ADO I/O X
SUBSYSTEM BHEN/ I
BUS GROUP CS/ I

WR/ I

PS TIMING GROUP ALE I
OE I
SYNC I

PS BUFFER CONTROL DEN/ 0 X
GROUP

PS INTERLOCK GROUP HLD 0 X
HDA I

PS SYNCHRONIZATION XACK/ 0 X
GROUP NAK/ 0 X

INH1 0 X

PS INTERRUPT GROUP INT a X

PS RESET GROUP PSR 0 X

19

iAPX 43203

43203 PIN DESCRIPTION

The following section provides detailed informa­
tion concerning the 43203 pin description. Table 6
lists a summary of all signal groups, signal names
and their active states, and whether or not they
are monitored by the Hardware Error Detection
circuitry.

Processor Packet Bus Group

ACD1S-ACDo (Address/Controll
Data lines, Inputs or Three-state Outputs,
high asserted)

The Processor Packet bus Address/Control/Data
lines are the basic communication path between
the IP and its environment. These pins are used
three ways:

• They may indicate control information for bus
transactions,

• They may issue physical addresses generated
by the IP for an access, or

• They may transfer data (either direction).

When the 43203 is in checker mode, the ACD pins
are monitored by the hardware error detection
logic and are in the high impedance mode.

PRQ (Processor Packet bus Request,
Three-state Output, high asserted)

PRO is used to indicate th.e presence of a trans­
action between the IP and its external environ­
ment. Normally low, the PRO pin is brought high
during the same cycle as the first double-byte of
address information is being driven onto the ACD
pins. PRO remains high for only one cycle during
the access, unless an address development fal:llt
occurs. The 43203 will leave PRO high for a second
cycle to indicate the GOP has detected an
addressing or segment rights fault in completing
address generation. PRO is checked by the hard­
ware error detection logic. PRO is in a high
impedance state when the 43203 is in checker
mode.

20

ICS (Interconnect Status,
Input, high asserted)

ICS is an indication to the 43203 from the bus
interface circuitry concerning the status of a bus
transaction. The interpretation of the ICS state is
dependent upon the present cycle of a bus trans-
action and may indicate: .

• Interprocessor communication (IPC) message
waiting,

• Input data invalid,

• Output data not taken,

• Bus error in external environment.

System Group

ALARM/ (Alarm, Input, low asserted)

The ALARM / input monitors the occurrence of an
unusual, system-wide condition such as power
failure. ALARM / is sampled on the rising edge of
CLKA.

FATAL/ (Fatal, Output, low asserted)
(Master, Input, low asserted)

FATAL/ is asserted by the IP under microcode
control when the processor is unable to continue
due to various error or fault conditions. Once
FAT AL/ is asserted, it can only be reset by asser­
tion of INIT /. FATAL/ is not checked by the hard­
ware error detection logic.

When INIT/ is asserted, the FATAL/ pin assumes
an input role. Please refer to the INIT / pin descrip­
tion for a discussion of this function.

Hardware Error Detection Group

HERR (Hardware Error Output, Open
Drain Output, high asserted) (Master~
Input, low asserted)

HERR is used to signal a discrepancy between a
master and a checker (difference between the
value internally computed in the checker and that
output by the master). The sampling of errors
occurs at the most appropriate time for the pin(s)
being checked.

iAPX 43203

HERR is an open drain output which requires an
external pullup resistor. Nominally the output is
held low. HERR is released upon the detection of
discrepancy. The timing of HERR depends on the
source of the error. Once HERR is high it will
remain high until external logic forces it to go low
again. When HERR goes low again, the present
HERR error condition is cleared and HERR is
immediately capable of detecting and signaling
another error.

When INIT / is asserted, the HERR pin assumes an
input role. Please refer to the IN IT / pin description
for a discussion of this function.

PClKI (Processor Clock, Input,
low asserted)

Assertion of PCLK/ for one clock cycle causes the
system timer in the IP to decrement. Assertion of
PCLK/ for two or more cycles causes the system
timer to be reset. PCLK/ must be unasserted for at
least 10 clock cycles before being asserted again.

ClRI (Clear, Input, low asserted)

Assertion of CLR/ results in a microprogram trap
which causes the IP to immediately terminate any
bus transactions or internal operations which may
be in progress at the time, reset to a known state,
assert FATAL/, and await an IPC (which resets the
IP to the same state as INIT / assertion does). The
IPC will not be serviced for at least four clock
cycles following CLR/ assertion.

Response to CLR/ is disabled by the first CLR/
assertion and is reenabled when the IP receives
the first IPC (or INIT / assertion).

CLR/ is sampled by the IP on the rising edge of
CLKA.

INIT I (Initialize, Input, low asserted)

Assertion of INIT / causes the internal state of the
IP to be reset and starts execution of the initializa­
tion microcode. INIT I must be asserted for a
minimum of 10 clock cycles. After the INIT / pin is
returned to its nonasserted state, IP microcode
will initialize all of the internal registers and win­
dows and will wait for a 10ca11PC.

During INIT / assertion, the FATAL/ and HERR
pins are sampled by the IP to establish the mode
in which the two bus interfaces of the IP are to par-

21

ticipate in hardware error detection. Table 7
specifies the encoding of the master/checker
modes.

Table 7. Representation of MASTER/CHECKER
Modes at Initialization

iAPX 432 Peripheral
FATAL/ HERR Side Subsystem Side

0 0 MASTER MASTER
0 1 MASTER CHECKER
1 0 CHECKER MASTER
1 1 CHECKER CHECKER

Clock Group

ClKA, ClKB (Clock A, Clock B, Inputs)

CLKA provides the basic timing reference for the
IP. CLKS follows CLKA by one-quarter cycle and
is used to assist internal timings.

Peripheral Subsystem Bus Group

AD1s-ADo (Address/Data, Input/Output)

These pins constitute a multiplexed address and
data input! output bus. When the attached pro­
cessor bus is idle or during the first part of an
access, these pins normally view the bus as an
address. The address is asynchronously checked
to see if it falls within (matches) anyone of the five
window address ranges. The address is latched
on the falling edge of ALE thereby maintaining
the state of a match or no match for the remainder
of the access cycle. The addresses are then
unlatched on the falling edge of OE.

Once SYNC has pulsed high, the AD15-ADo pins
become data input and output pins. When WR/ is
high (read mode), data is now accessed in the IP
and the output buffers are enabled onto the AD
pins if the OE is asserted. When WRI is low (write
mode), data is sampled by the IP after the rising
edge of SYNC during the CLKA high time.

The address is always a 16-bit, unsigned number.
Data may be either 8 bits or 16 bits as defined by
SHEN / and ADo. The 8-bit data may be transferred
on either the high (AD15-ADs) or the low
(AD7-ADo) byte. When 8-bit data is transferred on
the high or low byte, the opposite byte is 3-stated.

inter iAPX 43203

Twenty-bit addresses are accommodated by the
external decoding of the additional address bits
and are incorporated in the external CSf logic.

During the clock in which write data is sampled,
data must be set up before the rising edge of
CLKA and must be held until the falling edge of
that CLKA. Read data is driven out from a CLKA
high and should be sampled on the next rising
edge of CLKA.

Hardware error detection sampling is not done
synchronously to CLKA. It is sampled by the fail­
ing edge of the OE pin. The internal AD pin hard­
ware error detection signal is then clocked and
output on the HERR pin. At this point it may still
not be synchronous with CLKA and should be
externally synchronized.

BHENI (Byte High Enable, Input,
low asserted)

This pin, together with ADO, determines whether
8 or 16 bits of data are to be accessed, and if it is
8 bits, whether it is to be accessed on the upper or
lower byte position. This pin is latched by the fail­
ing edge of ALE and unlatched by the falling edge
of OE. BHEN f and ADO decode as shown in
Table 8.

Table 8. Bus Data Controls

BHENI ADO Description

0 0 16-bit access

0 1 8 bits on upper byte,
lower byte tristated

1 0 8 bits on lower byte,
upper byte tristated

1 1 8 bits on lower byte,
upper byte tristated

CSI (Chip Select, Input, low asserted)

Chip Select specifies that this IP is selected and
that a read or write cycle is requested. This pin is
latched by the falling edge of ALE and unlatched
by the falling edge of OE.

WRI (Write, Input, low asserted)

This pin specifies whether the access is to be a
read or a write. WR f is asserted high for a read
and asserted low for a write. This pin is latched by
the falling edge of ALE and unlatched by the fail­
ing edge of OE.

PS Timing Group

ALE (Address Latch Enable, Input,
Rising- and Falling-Edge-Triggered)

The rising edge of ALE s~ts a flip-flop which
enables Transfer Acknowledge (XACKI) to
become active. The falling edge of ALE latches
the address on the AD15-ADO pins and latches
WRf, BHEN f and CSf. Figure 19 shows two styles
of ALE.

OE (Data Output Enable, Input, high
asserted)

During a read cycle the OE pin enables read data
on to the AD15-ADO pins when it is asserted. Dur­
ing a read or write cycle the falling edge of OE
signifies the end of the access cycle. Specifically,
the falling edge of OE does three things:

1. Resets the XACKf enable flip-flop, thereby
terminating XACKf.

2. Terminates DEN f (if read cycle).

3. Opens address latches WRf, BHEN f, and CSf.

AD15 ... ADO, WR/, CS/, BHEN/ --<1)-
ALE (STYLE 1)

ALE (STYLE 2)

,
.~

\
Figure 19. Two styles of ALE

22

171874-10

intJ iAPX 43203

SYNC (Synchronized Qualifier Signal,
Input, high asserted)

A rising edge on this signal must be synchronized
to the IP CLKA falling edge. This signal qualifies
the address, BHEN I, CSI and WR/, indicating a
valid condition. SYNC also initiates any internal
action on the IP's part to process an access. It
starts the request for data to the IP in a read
access. In a write access, data is expected one or
two CLKA's after SYNC pulses high. At initializa­
tion time, IP microcode sets the write sample
delay to the slowest operation (two CLKA's after
SYNC). However, this can be modified to one
clock cycle by making a function request to the IP
to change the write sample delay.

When the hold/hold-acknowledge mechanism of
the IP is used, and once HDA has pulsed high, a
SYNC pulse is required to qualify the hold
acknowledge since the HDA pin can be
asynchronous.

PS Buffer Control Group

DEN/ (Data Enable, Output, low
asserted)

This pin enables external data buffers which
would be used in systems where the address and
data are not multiplexed (e.g., a Multibus system).
DEN / assertion begins no sooner than the CLKA
high time of the first clock of SYNC assertion if a
valid, mappable address range is detected. It is
terminated with the falling edge of OE. In a write
access, it is also terminated after XACK/
assertion.

Hardware error detection occurs during the first
clock of SYNC assertion.

PS Interlock Group

HLD (Hold Request, Output, high
asserted)

The hold I hold-acknowledge mechanism is an
interlocking mechanism between the peripheral
subsystem and the IP. Hold is used by the IP to
gain control of the subsystem bus to ensure that
no subsystem processors will make an access to
the IP while it alters internal registers.

This signal is put out synchronously with the
rising edge of CLKA. Hardware error detection
sampling occurs during CLKA low time.

23

In special cases it may not be necessary to use
the HLD function interlocking. In this case HDA
can be tied high and no SYNC pulse will be
required for HDA qualification. The hardware
detects this condition by noting that the H DA pin
was high a half clock before HLD requests a hold.
In this mode the HLD output still functions and can
be monitored if desired.

HDA (Hold Acknowledge, Input, high
asserted)

HDA is asserted by the peripheral subsystem
when the IP's request for a hold has been granted.
This pin need only be a high pulse and can be
asynchronous to CLKA. This pin must be followed
by a SYNC pulse in order to synchronously
qualify it.

PS Synchronization Group

XACK/ (Transfer Acknowledge, Output,
low asserted)

XACKI is used to acknowledge that a data transfer
has taken place.

For random or local accesses, XACK/ indicates
that a transfer to or from iAPX 432 memory has
been completed.

For buffered accesses where the XACK-Delay is
not in the advanced mode, XACKI signifies that
the transfer from Ito the prefetch / postwrite buffer
in the IP has been completed.

For buffered accesses wh ich use advanced
acknowledge mode (XD=O) the formation ot an
advanced XACK/ signal is requested. This allows
the possibility of interfacing to the peripheral sub­
system without wait states. The acknowledge will
be advanced if the access is a read operation and
the buffer contains the required data or the access
is a write operation and the buffer contains suffi­
cient space to accept the write data. In addition,
the access must be valid.

If XACK/ is preceded by a low pulse on NAK/,
then XACKI signifies that the access encountered
a fault. If the access was a random access, other
than window #4, the window will be placed in the
faulted state and any further accesses to this win­
dow will be ignored by the IP.

inter iAPX43203

If the IP is programmed to be in advanced
acknowledge mode (XD=O) and XACKI is not
returned before the peripheral subsystem issued
SYNC, then XACKI will be postponed until valid
data has been established on the AD15-ADO bus.

Five conditions affecting XACKI behavior are:

• XACK-Delay, user programmable through an IP
function request. This parameter establishes
the minimum operating XACK-delay with
respect to the SYNC signal. Table 9 displays the
representation of the XACK-delay codes.

• XACK-enable-flip-flop, set by the rising edge of
the ALE signal and reset by the falling edge of
the OE signal.

• Internal IP Registers. These are used to
determine validity of the peripheral subsystem
access and establish access modes.

• Type of access behavior: Random or Buffered,
Memory or Interconnect.

• Bus Faults, nonexistent memory, etc.

Hardware error detection occurs during the first
clock of SYNC assertion.

NAK/ (Negative Acknowledge, Output,
low asserted)

This signal precedes XACKI by one-half, clock
cycle in order to qualify it as a negative
acknowledge. This pin pulses low for only one
clock period.

When the IP is in physical mode and making an
interconnect access, negative acknowledge may
be used to indicate that the access was made to a
nonexistent interconnect address space. This will

allow determination of the system configuration
by a subsystem processor at system initialization
time.

This pin could be used to set a status bit and
cause a special interrupt to transmit the informa­
tion back to the subsystem.

This signal is synchronously driven from the fail­
ing edge of CLKA. Hardware error detection
occurs during CLKA high time.

INH1 (Inhibit, Output, high asserted)

This pin is asynchronously asserted by non­
clocked logic when a valid mappable address
range is detected. It can be used to override other
memories in the peripheral subsystem whose
address space is overlapped by an IP window.
After initialization, the microcode sets the IN H1
mode for each window by loading registers in the
IP for each window. Once the subsystem is
allowed to make a function request, it can selec­
tively disable or enable the inhibit mode on each
window. This pin is gated off by CS/.

The selection of the inhibit mode for window 0,
when in buffered mode, causes a corresponding
built-in XACK-delay which delays the
acknowledge from going active until two clock
periods after the rising edge of SYNC. This was
done to facilitate most Multibus systems using
IN H1, as they require that the acknowledge be
delayed. When the Advanced XACKI mode is pro­
grammed, the inhibit mode should not be used on
window 0 when in buffered mode, since the
acknowledge will not be effectively delayed.

Hardware error detection occurs during the first
clock of SYNC assertion.

Table 9. XACKI Timing Parameters

Inhibit WRI XD1 XDO XACKI Formation
Mode

0 X 0 0 Advanced Acknowledge
(XACKI can occur before SYNC)

0 1 0 1 Rising edge of SYNC
0 0 0 1 Rising edge of SYNC plus 1 Clock
0 1 1 0 Rising edge of SYNC plus 1 Clock
0 0 1 0 Rising edge of SYNC plus 2 Clocks
1 X 1 0 Rising edge of SYNC plus 2 Clocks
1 X 0 1 Rising edge of SYNC plus 2 Clocks
X X 1 1 Illegal cond ition

Note: X=don't care condition

24

iAPX 43203

PS Interrupt Group

INT (Interrupt, Output, high asserted)

This output is a pulse 2 CLKA's wide, and is
synchronously driven from the rising edge of
CLKA. Hardware error detection occurs during
CLKA low time.

PS Reset Group

PSR (Peripheral Subsystem Reset,
Output, high asserted)

PSR is asserted by the IP under microprogram
control. When asserted, the peripheral subsystem
should be reset. In a debug type of control, it may
be desirable to use this pin to set a status bit in an
external register or possibly cause a special inter-

rupt. This pin is normally asserted by the IP when
the peripheral subsystem is believed to be faulty
and would not respond to other means of control.

This signal is put out synchronously with the ris­
ing edge of CLKA. Hardware error detection
sampling occurs during CLKA low time.

43203 ELECTRICAL CHARACTERISTICS

Tables 10 through 12 and Figures 20 through 25
provide electrical specification information and
include input/output timing, read and write timing,
and component maximum ratings.

Instruction Set Comparison

Refer to Table 13 for a GDP liP operator
comparison.

Table 10. 43203 Absolute Maximum Ratings

Absolute Maximum Ratings

Ambient Temperature Under Bias 00 C to 70 0 C

Storage Temperature -65 0 C to + 150 0 C

Voltage on Any Pin with Respectto GND -1 V to + 7 V

Power DisSipation 2.5 Watts

Table 11. iAPX 43203 DC Characteristics

VCC = 5V±10% Ta =O°C to 70°C

Spec Description Min Max Units

Vilc Clock Input Low Voltage -0.3 +0.5 V

Vihc* Clock Input High Voltage 3.5 VCC+0.5 V

Vii Input Low Voltage -0.3 0.8 V

Vih Input High Voltage 2 VCC+0.5 V

Icc Power Supply Current - 450 mA

Iii Input Leakage Current - ±10 uA

10 Output Leakage Current - ±10 uA

101 @0.45 Vol
HERR - 8 mA
FATAL! - 4 mA
AD15 ... ADO - 4 mA
OTHER - 2 mA

loh @2.4 Voh - -0.1 mA

* For operation at 5 MHz or slower, the 43203 may be operated with a Vihc minimum of 2.7 volts.

25

Symbol

tcy
tr, tf
t1 , t2
t3, t4
tis
tsi
tie

tdc
tcd
tdh
toh
ten
tdf

tas

tah

tss

tsh

tsw

tds

tdx*

tdhx
tasy

tsdh
taih

tede
tead

tdad

tced

tcvd
tox

tdds

txde

tcde

iAPX 43203

Table 12. iAPX 43203 AC Characteristics

Loading: AD1S ... ADO 20 to 100pf
OTHER 20 to 70pf

Description

GLOBAL TIMING REQUIREMENTS

Clock Cycle Time
Clock Rise and Fall Time

Clock Pulse Widths
INITf to Signal Hold Time
Signal to INIT f Setup Time
INIT f Enable Time

SYSTEM SIDE TIMING REQUIREMENTS

Signal to CLOCK Setup Time
Clock to Signal Delay Time
Clock to Signal Hold Time
Clock to Signal Output Hold Time
Clock to Signal Output Enable Time
Clock to Signal Data Float Time

8 MHz.
Min Max

125

26
15
10
10

5

25
15
15

1000
10

250

55

55

PERIPHERAL SUBSYSTEM SIDE TIMING REQUIREMENTS

AD15 ... ADO,CSf ,WRf ,BHENf
Setup Time to ALE Low

AD15 ... ADO,CSf ,WRf ,BHEN f
Hold Time to ALE Low

SYNC High Setup Time to
CLKA High

SYNC Low Hold Time to
CLKA High

SYNC High Pulse Width

Write Data Setup to
Sampling CLKA High

Write Data Hold to Sampling
CLKA Low (Advanced XACKI)

Write Data Hold to XACKf
AD15 ... ADO,CSf ,WRf ,BHEN f

Setup to SYNC

o

32

50

30
50

10

10
5

120

PERIPHERAL SUBSYSTEM TIMING RESPONSES

C'LKA High to HLD,INT,PSR
Valid AD15 ... ADO,CS f

to Chip INH1 Valid Delay
OE to DEN f Delay
OE to Enable AD15 ... ADO Buffers

Delay (Read Cycle)
OE to Disable AD15 ... ADO Buffers

Delay (Read Cycle)
CLKA High to Enable AD15 .. ADO

Buffers Delay
CLKA High to Valid Read Data Delay
OE Inactive to XACKf

Inactive Delay
AD15 ... ADO Disable Setup

to DEN f High
XACKf Low to DEN f High

(Write Cycle)
CLKA High to DEN fLow

o

26

tss +
1.5tcy

75

80
65

70

52

70
80

80

35
70

SMHz.
Min Max

200

45
20
10
10

5

35
20
20

o

35

60

40
60

20

20
5

160

a

1000
10

250

85

75

tss +
1.5tcy

90

85
70

75

52

75
90

90

40
75

Unit

nsec.
nsec.

nsec.
nsec.
nsec.
tcy

nsec.
nsec.
nsec.
nsec.
nsec.
nsec.

nsec.

nsec.

nsec.

nsec.
nsec.

nsec.

nsec.
nsec.

nsec.

nsec.

nsec.
nsec.

nsec.

nsec.

nsec.
nsec.

nsec.

nsec.

nsec.
nsec.

iAPX 43203

Table 12. iAPX 43203 AC Characteristics (Cont'd.)

Symbol Description 8 MHz. 5MHz. Unit
Min Max Min Max

XACKI TIMING CHARACTERISTICS

Buffered Accesses with XD= 0
tax ALE High to XACKI Valid 0 65 0 70 nsec.
tdsx AD15 ... ADO Read Data Valid

Setup to XACKI Valid
(When internal state does not
allow XACKI before SYNC) 20 - 20 - nsec.

tadx Valid AD15 ... ADO to XACKI Valid
(When internal state. allows
XACK I before SYNC) - 120 - 140 nsec.

Buffered Accesses (With XD=1 or
XD=2) or Random Accesses

tdsx AD15 ... ADO Read Data Valid
Setup to XACKI 20 - 20 - nsec.

Faulted Accesses
tsdl ClKA low to NAKI - 75 - 90 nsec.
tsnx Setup of NAKI to XACKI 50 - 50 - nsec.

Note: All timing parameters are measured at the 1.,5 Volt level except for ClKA and ClKB which are measured
at the 1.8 Volt level.

* Write data is sampled for only one clock cycle. The PS must meet the tDHX specification thereby guaranteeing
tDX'

~tey

ClKA

ClKB

171873-22

Figure 20. 43203 Clock Input Specification

ClKA

All OUTPUT
PINS

EXCEPT BOUT
(ON 432 SIDE)

BOUT

--.- ~teo --.-- tOH

171874-11

Figure 21. 43203 Output Timing Specification

27

ClKA

ACD15 ... ACDO
iREAD DATA INVALID INVALID

TIMING)

~~

HARDWARE ERROR toe tOH
DETECTION INPUT -----~ I---I-~ ,.---­
TIMING AND INPUT

TIMING FOR All
INPUTS EXCEPT
ACD15···ACDO
(ON 432 SIDE)

INVALID INVALID

171874-12

Figure 22. 43203 Input Timing Specification

ClKA

INIT/

HERR
FATAL!

~ tlE----'-
------ ~ ..-tiS

MASTER/CHECKER

171874-13

Figure 23. 43203 Initialization Timing

iAPX 43203

"'{
~ ALE ~

I Cii MULTIPLEXED
'" ADDRESS + DATA
~ ,STATUS

'" RD#,WR#,DEN# g (8086 MAX MODE)

{

CLKA

! . SYNC

OE

XACKI

INH1

~ NAKI

HLD,INT,PSR

wg CS/,WR/,BHEN

{

ADO.15

~~
;;:;?

DENI

~{ADO'15 ~~ CS/, WR/, BHEN
w:;;

(t~

DEN I

~ {MUL TlBUS ADDRESS

'" MULTI BUS DATA
aJ

~ MULTIBUS COMMAND
~ IMWTC,MRDC/)

CLKA

ALE

'"
'" z

'" Cii SYNC
()

'"
.... OE
z

I XACKI

'" a:
INH1

:I:

~
NAKI

HLD,INT,PSR

{ '00> CS/,WR/,BHEN
....
cc
;;:

DENI

{ '00> a
CS/,WR/,BHEN

'" a:

II VALID ADDR I I VALID WRITE DATA

\ I
WSD = 0 WSD = 1

WRITE DATA WRITE DATA
SAMPLE TIME SAMPLE TIME

I I I I L

J r- tASY ~ Isw----" r-IS~

I \

-~ F1X=:J I ~IOSX~ r----;--1 ~IOX_I
\ I XD - 0 XD = 1 READ \ \ XD - 2WRITE J --- tAIH=:I I

XD _ 2 READ
XD = 1 WRITE

I VI\LlD INHIBIT

I--lsOL:::i
\ I

1-- -tSOH==!
I

~~I I_IDS

VALID AD DR I VALID WRITE DATA

~ ~I
\ I

--tCVO'----"

IEA01
.... tCED ...-tDAD~I ... tDDS""

VALID AD DR VALID READ DATA

,.ICOEj ___ IEOE_
~ __ ~r---

171874-14

Figure 24. Local Processor Bus Timing

~~ __________________________ ~:~ ________ ~; _____ c==
~ ~ ~ c==

~--~~~------------~~
- ~~~~ I I I

I

_ISH--EISS~
tASY----' tws ,

11-4

f4-losx:i-tox H
I

I-IAIH-j
I

M
\

\ I
I--lsOH __ \

X
_lAS I--IAHj I:IOS+ I-10x_1

VALID ADDRESS 1 VALID WRITE DATA X
.-ICOE-j ~-

\ I
..- tEDE---.j

T.~ .. ICED
I-I0AO:r-IOOS+-~:

lEAD ~c.
VALID ADDRESS ~ VALID READ DATA ;' ...

.-ICOE-! 1---1 ED E
\ ,

.....-tEDE---.I
171874-15

Figure 25. Multibus™ Interface Timing

28

iAPX 43203

Table 13. G D P II P Operator Comparison

OPERATOR IP IMPLEMENTATION

Window Definition Operator
Update Window +

Access Descriptor Movement Operators
Copy Access Descriptor =
Null Access Descriptor =

Rights Manipulation Operators
Amplify Rights =
Restrict Rights =

Type Definition Manipulation Operators
Create Public Type -

Create Private Type -

Retrieve Public Type =
Retrieve Type =
Retrieve Type Definition =

Refinement Operators
Create Generic Refinement =
Create Typed Refinement =
Retrieve Refinement =

Segment Creation Operators
Create Data Segment -

Create Access Segment -

Create Typed Segment -

Create Access Descriptor -

Access Path Inspection Operators
Inspect Access Descriptor =
Inspect Access Path =

Object Interlock Operators
Lock Object =
Unlock Object =
Indivisibly Add Short Ordinal -

Indivisibly Add Ordinial -

Indivisibly Insert Short Ordinal -

Indivisibly Insert Ordinal -

Context Communication Operators
Enter Access Segment =
Enter Process Globals Access Segment =
Set Context Mode /
Call -

Call Context with Message -

Return -

29

iAPX 43203

Table 13. GDP/IP Operator Comparison (Cont'd.)

OPERATOR

Process Communication Operators
Send
Receive
Conditional Send
Conditional Receive
Surrogate Send
Surrogate Receive
Delay
Read Process Clock

Processor Communication Operators
Send to Processor
Broadcast to Processors
Read Processor Status and Clock
Move to Interconnect
Move from Interconnect

Branch Operators
Character Operators
Short-Ordinal Operators
Short-Integer Operators
Ordinal Operators
Integer Operators
Short-Real Operators
Real Operators
Temporary-Real Operators

Legend:
= IP and GOP identical implementation
+ GOP does not implemen~ operator
- IP does not implement operator

IP IMPLEMENTATION

=

=

=

=

=
=

=
=

=

=

=
-

-

-

-

-

-

-

-

-

-

-

While conceptually similar, IP imp.lements operator differently
than GOP

30

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara 95051 (408) 734-8102 x598

Printed in U.S.A./Y-33/0281/50K/PS/GFH

