L INTERCEPT JR.
TUTORIAL SYSTEM
FROM INTERS

1

OWNERS HANDBOOK

MODULE SOCKETS
(BEHIND CELLS)

. FOUR (4)
~ D-CELL
BATTERIES
ON-OFF —P- [
POWER SWITCH
RAM 256 x 12
MEMORY

CRYSTAL

CONSOLE CONTROL

MICROPROCESSOR
IM6100

MONITOR ROM USER GENERATED RESET DISPLAY ADDRESS
ROM SOCKET SWITCH INTERFACE
LOGIC

Rev. A-November 15, 1976

Intersil cannot assume responsibility for use of any
circuitry described other than circuitry entirely
embodied in an Intersil product. No other circuit
patent licenses are implied. Intersil reserves the
right to change without notice at any time the
circuitry and specifications.

CHAPTER

TABLE OF CONTENTS

1 INTRODUCTION

2 WORKING WITH THE INTERCEPT JR. MODULE
INTERCEPT JR. START-UP
RESET SWITCH
ENTERING THE CONTROL MODE
SELECTING A FUNCTION
SHIFT
SETPC
DECREMENT PC, DECPC
DEPOSIT DATA INTO MEMORY, MEM
RUN
HALT
RESET
SIN
DIS
BIN LOADER
MICRO
MICROINTERPRETER FUNCTIONS
MEMORY REFERENCE INSTRUCTIONS
INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS
OPERATE INSTRUCTIONS
LEAVING MICRO MODE
PROGRAM EDITING AND CORRECTION
TABLE OF INSTRUCTION CODES

3 INTERCEPT JR. PROGRAMMING EXAMPLES

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

EXAMPLE

EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE
EXAMPLE

- INCREMENTING MEMORY DATA
DECREMENTING MEMORY DATA
PROGRAMMING TIME DELAYS
ADDRESSING MODES

INDIRECT ADDRESSING USED IN TABLE
MANIPULATION

THE JMS INSTRUCTION AND INDIRECT
ADDRESSING

- AUTOINDEXING

- ADDRESS FIELD MODIFICATION

- USING CONDITIONAL SKIPS

10 - FLOWCHARTING A PROGRAM

11 - BIT MANIPULATION

12 - LOGICAL OPERATIONS

13 - I/0 PROGRAMMING

14 - TELETYPE I/0 USING MONITOR CALLS
15 - PRINTING UNDER KEYPAD CONTROL

16 - PROGRAM TO DEMONSTRATE I/0 USING THE
6957 AUDIO MODULE

1
2
3
4
5

(o)}
1

O 00~

PAGE

—
]
—_

PPN MNP NN NN N
1
ONNOOOOOGIoITCToTOTAEEPRPPLWLWWWNDNDN — —

WW WWWWWWwWwww w
1

w
I

—_—

0]

INTERCEPT JR. MODULE

INTRODUCTION

TYING ON TO THE DX BUS
ADDRESS DEMULTIPLEXING
DATA DEMULTIPLEXING
KEYBOARD INPUT

DIGITAL DISPLAY QUTPUT
IOT PROCESSING

OPTIONS

SCHEMATIC

JR. RAM MODULE

INTRODUCTION
DISCUSSION
SCHEMATIC

JR. P/ROM MODULE

INTRODUCTION
DISCUSSION
SCHEMATIC

JR. PIEART SERIAL I/O MODULE

INTRODUCTION
DISCUSSION
SCHEMATIC

INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

INITIALIZATION OF RAM

REFSH - DISPLAY REFRESH

SWDB - SWITCH DEBOUNCE

CLKPD - CLEAR KEYPAD

HEX

EXIT

INCAC - INCREMENT ACCUMULATOR
DECPC - DECREMENT PROGRAM COUNTER
HALT

RUN

RESET

MEM - DEPOSIT INTO MEMORY

DIS - BLANK FLAG TOGGLE

SETPC - SET PROGRAM COUNTER
MICRO - MICROINTERPRETER

SIN - SINGLE INSTRUCTION EXECUTE
INPIE - INITIALIZE PIE

TALK - PRINT TO TELETYPE

LISN - RECEIVE FROM TELETYPE KEYBOARD/PRINTER
BIN - BINARY LOADER

DUMP - MEMORY DUMP

MONITOR PROGRAM LISTING

IT

1
ONPDEWWNON ———

-b-l}-h-bh-lh-b-b-h-h

[}
— e e e e e = OO VOOV NNNOYOY — —

NorortoTon ot O

OOOOOOOOOOGJOOOOOOCOOOC;OOOOOOOOOOOOOOOOOOOOOOO

9 INTERCEPT JR. AUDIO CARD
INTRODUCTION
DISCUSSION
SCHEMATIC

APPENDICES

APPENDIX A INTERCEPT JR. PROGRAMMING FUNDAMENTALS
NUMBERING SYSTEMS
BINARY
OCTAL
HEXIDECIMAL
TWO'S COMPLEMENT

ARITHMETIC PROGRAMMING EXAMPLE #1 - ADDITION
ARITHMETIC PROGRAMMING EXAMPLE #2 - TWO'S COMPLEMENT
ARITHMETIC PROGRAMMING EXAMPLE #3 - LINKING PROGRAMS
BINARY AND OCTAL ADDITION AND MULTIPLICATION TABLES

APPENDIX B INTRODUCTION TO LOGIC

APPENDIX C OCTAL-DECIMAL INTEGER CONVERSION TABLE

APPENDIX D INSTRUCTION SUMMARY AND BIT ASSIGNMENTS

APPENDIX E GLOSSARY

APPENDIX F ASCII CHARACTER CODES
CHARACTER CODES
CONTROL CODES

APPENDIX G LOADING CONSTANTS INTO THE ACCUMULATOR

APPENDIX H KEYBOARD TENNIS PROGRAM WITH THE INTERCEPT JR.

DESCRIPTION
PROGRAM LISTING

ITI

FrrEEraEre
—— oD -
noO

lwe)
1
—_—

(ep]
1
—

D-1

2-1
2-2
2-3
2-4

2-5

2-6

6-1
7-1

8-1
8-2
8-3

8-5

2-1
3-1

6-1
7-1
7-2

7-4
7-5

FIGURES

INTERCEPT JR. TUTORIAL SYSTEM

INTERCEPT JR. MODULE

MEMORY REFERENCE INSTRUCTION FORMAT

IOT INSTRUCTION FORMAT

GROUP 1 MICROINSTRUCTION FORMAT
GROUP 2 MICROINSTRUCTION FORMAT
GROUP 3 MICROINSTRUCTION FORMAT

JR. RAM MODULE
JR. P/ROM MODULE
JR. SERIAL I/O MODULE

IM6402 UART TIMING USING THE ICM7213

MEMORY ALLOCATION MAP

INTERCEPT JR. MAIN FLOWCHART

STATUS WORD

CONTROL STATE KEY SELECTION/CONNECTIONS KEY - DX BUS

LED DISPLAY WORD FORMAT

TABLES

TABLE OF INSTRUCTION CODES

PAGE VS MEMORY LOCATIONS

JUMPER CONNECTIONS FOR MAPPING
ADDRESS RANGE IN OCTAL IM5623/IM5624
CONTROL REGISTER A CONSTANTS

CONTROL REGISTER B CONSTANTS

VECTOR REGISTER
UART CONTROL REGISTER BIT

20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS

PIE-UART INSTRUCTIONS

IV

1-2

2-1

2-10
2=11
2-14
2-16
2-17

6-1
7-1
7-9
8-1
8-2
8-4

8-6

2-9
3-5

6-2
7-2
7-3
7-3
7-4
7-6

CHAPTER 1
INTRODUCTION

The theoretical principles underlying digital computers were first
enunciated by Charles Babbage in 1833, but the technology available
at the time was not equal to the task of actually building a working
machine. John Von Neumann developed the stored program concept at
the Institute for Advanced Studies at Princeton University and, since
then electronic computers have undergone several reiterations from
the early vacuum tube machines to transistorization to integrated
circuit systems, and now the age of LSI is evident. Architectural
advances from the first use of hardware index registers, microprogrammed
control, interrupt processing, direct memory access channels, and
distributed processing have been numerous, but the history of digital
computers has yet to be fully written.

In the late 1930's and early 1940's, wartime requirements and the
development of vacuum tubes Ted to the construction of extremely
expensive and complex digital computers used mainly to speed up
numerical calculations. As the technology progressed, computers
became faster, smaller and less expensive. Advances in hardware
architecture and programming languages evolved rapidly. As a result,
the 1960's saw significant increases in the application of business
and data processing computers.

The first minicomputer, the PDP-8*, was introduced by Digital
Equipment Corporation in 1965 and made dedicated applications for
digital computers possible. This first minicomputer, costing
approximately $50,000, was considered so inexpensive that it found
itself being used in universities, laboratories, and in numerous
process control applications. Many versions of this machine were
brought out in succeeding years.

Computers, big and small, must all have a processor, main memory and
input/output. Decreasing hardware costs and increasing sophistication
of processing technology led to multiplicity of computer architecture.
The early 1970's saw the microprocessor, the heart of a computer,

enter the scene. Its function is to accept data from the user, process
it according to instructions provided by the user, and stored in
memory, and return usable results to the user in some convenient
fashion.

LSI techniques, with their high density capability, have enabled
semiconductor manufacturers to produce processing units and memory
devices on single monolithic silicon chips. Input and output devices
which constitute the man/machine interface, have remained relatively
bulky.

* Trademark of Digital Equipment Corporation, Maynard, Mass.

1-1

1

FIGURE 1

1-2

The INTERCEPT JR. TUTORIAL SYSTEM, pictured in Figure 1-1, recognizes
the instruction set of Digital Equipment Corporation's PDP-8/E and is
designed with a modular concept to enable the user to purchase only
those modules which meet his requirements. The design permits the user
to participate in the future of digital computers by yielding an
understanding of the microprocessor and related component functions as
well as programming fundamentals.

Large Scale Integration (LSI) of Intersil's digital CMOS components
results in the system being battery operable and, thereby, yields

the flexibility of a portable system. Experience can be gained with
the components required for a classical computer architecture--a
processor, or central processing unit (CPU), memory and input/output.
The IM6100 microprocessor serves as the CPU and memory is available
in the form of CMOS RAM, ROM and bipolar P/ROM. Input/output can be
experienced in its simplest form via the keyboard and LED displays

or can be studied in greater detail by utilizing the JR. SERIAL I/O0
MODULE.

This Owner's Handbook presents a step-by-step learning experience

for the INTERCEPT JR. TUTORIAL SYSTEM. Chapter 2 entitled "Working
With The Intercept Jr. Module" instructs the user in the fundamentals
of the basic module--the start-up and the selection of a function.
The console control, or keyboard, is discussed in detail. Chapter 3,
"Programming Fundamentals", presents the user with simple programming
examples and the ability to progress to more complex problems.
Chapters 4, 5, 6 and 7 explain the hardware aspects of the four
modules via pictorial representation, text and the corresponding
schematics. Chapter 8 discusses the monitor ROM program, presents
the flow chart and listing, and, thereby, gives the user a greater
degree of programming insight. The Appendices contain fundamental
information on number systems, two's complement arithmetic, an intro-
duction to logic, and other miscellaneous information that will be of
interest to the user.

It is Intersil Incorporated's opinion that the INTERCEPT JR. TUTORIAL
SYSTEM will enable you to embark upon a truly rewarding educational
experience. The microprocessor has resulted in a natural evolutionary
step in electronic circuitry design. This is only the beginning.

We sincerely wish that your participation in this evolution will be
rewarding to you.

CHAPTER 2
WORKING WITH THE INTERCEPT JR. MODULE

MODULE SOCKETS
(BEHIND CELLS)

FOUR (4)
D-CELL
BATTERIES
ON-OFF
POWER SWITCH
RAM 256 x 12
CRYSTAL MEMORY

CONSOLE CONTROL

MICROPROCESSOR
IM6100

MONITOR ROM USER GENERATED RESET DISPLAY ADDRESS
ROM SOCKET SWITCH INTERFACE
LOGIC
FIGURE 2-1

Figure 2-1 provides a pictorial representation of the INTERCEPT JR.
MODULE with the pertinent components discussed in this chapter highlighted.

INTERCEPT JR. START-UP

Turn the module "ON" with the "ON-OFF" power switch. Power is
provided by the four (4) D-Cell batteries which must be inserted,
with the sleeve, in the module. When facing the module, with the
keyboard in front and connectors on the far side, the left hand

2-1

battery clip is positive and the right hand battery clip is negative.
BATTERY REVERSAL WILL DAMAGE THE SYSTEM. The module does a power-

up RESET so that it will always come up halted with the Program
Counter, PC (ADDRESS) equal to 7777. The CONSOLE CONTROL timer will
be active so that the ADDRESS and MEMORY displays will be valid
provided a "BLANK DISPLAY" is not in effect. The information displayed
will be PC = 7777 in the ADDRESS and the MEMORY data in that location
will be 5366. This instruction branches the microprocessor to
routines which save registers, initialize the RAM stack and search
for keyboard depressions. If the display does not illuminate, press
@ to turn it on.

RESET SWITCH

The RESET SWITCH does a complete hardware reset of the micro-
processor and can be used at any time for this purpose.
Therefore, it is not necessary to turn power off to reset

the microprocessor. When switching the module OFF it is
recommended that the RESET SWITCH be depressed while the
power is turned off. This keeps the microprocessor from
running during the power down process thereby eliminating

the possibility of writing bad data into the RAM as the
voltage level goes lower than the minimum specified. If

the RAM data is not required to be preserved, use of the RESET
SWITCH is not required during power-off.

ENTERING THE CONTROL MODE

The operator will now enter the control mode by
pressing the control key, CNTRL, on the KEYBOARD.
This key will cause the module to enter what is
referred to as an undefined control mode when

the CONSOLE CONTROL timer is enabled, or at any
point during the execution of a control function.
This state is referred to as undefined as we

have not yet chosen a CONSOLE CONTROL function to
be performed. We may leave this state, without
choosing any function, by pressing what we will
refer to as the SHIFT key, S, or the key designated

1AC

Rev | IAC REV IND. This will take the module out of the
control mode and place it in the user mode, be it
running, or halted. In the user mode, the module
is either waiting for or executing user programs.

SELECTING A FUNCTION

After pressing the CNTRL key, we are now ready to choose
a function to be performed. This is accomplished by
pressing any of the ten (10) function keys which are
described below.

2-2

SHIFT

As SHIFT, this is not a function key and

Rev ¥ pressing it will cause the module to return

| to the user mode. This key also has special
meaning for certain functions and its use is
described with each of those functions. This
key is color-coded yellow.

" This function allows the user to control the
%§§ Program Counter, PC, in the module for purposes

24 of depositing words, or examining words or
conditions. Following the activation of this
key, the user will Toad an octal number into
the PC by entering the digits on keys 0-7. The
digits will be displayed in ADDRESS and will be
entered from the right, shifting the previously
entered digits to the left. Any number of digits
may be entered until the display contains the
value desired. Then the SHIFT key is pressed to
indicate that the value is entered and that we
wish to return to user mode. A CNTRL key will
enter the value displayed into the PC and will
return the state to undefined control mode. Note
that leading zeros may be needed to clear the
display before entering the desired octal numbers.

DECREMENT PC, DECPC

PC by one and return the module to user mode.
This function is useful when examining sequences

— This function will decrement the value of the
OPR1
~ of memory locations.

DEPOSIT DATA INTO MEMORY, MEM

and data in the RAM as well as set the values of
the internal registers of the module by depositing
the data into memory locations used by the monitor
program to save and update the data in these
registers. After a closure of the MEM key, the user
will proceed to enter digits on to MEMORY with

keys 0-7 as he did for SETPC. The new digits will
be displayed on MEMORY, entering from the right and
shifting to the left. When the MEMORY display
contains the desired value, the user will deposit
it in the RAM by pressing either DECPC, or MEM. If

p— This function allows the user to enter instructions
eiiig
OPR3

DECPC is pressed, the MEMORY display will be
deposited into RAM in the memory location
addressed by the ADDRESS display. The ADDRESS
display will be decremented and the RAM information
in the decremented address will be displayed in
MEMORY. If MEM is pressed, the value shown in
the MEMORY display will be deposited into the

RAM in the memory location addressed by the
ADDRESS display, the ADDRESS display will be
incremented and the next word in RAM will be
displayed in MEMORY. Successive depressions of
MEM will increment the memory ADDRESS. Digits

can now be entered from the right, as before. If
the user wishes to skip a location, he presses
MEM again. This will retain the value of that
Tocation in RAM and the ADDRESS will move to the
next location. By pressing SHIFT, the user will
deposit the value of MEMORY into the location
specified by ADDRESS, the module will exit the
control mode and enter the user mode. If the
user presses CNTRL, the value shown in MEMORY will
be deposited and the module will enter the undefined
control mode. RAM locations 0000 and 0140-0177
are reserved for the MONITOR and should not be
modified (see Chapter 8). ,

RUN

The module will come out in the user mode at the

This function will set the microprocessor Run
%g flip flop to RUN and will exit the control mode.
~ PC point specified during control mode, running.

HALT

This function will clear the RUN flip flop in
the microprocessor so that the module will come
- out of the control mode halted.

RESET

' This function will be a complete software RESET

of the module. A11 internal microprocessor

Baed flags are initialized, the accumulator and link
are cleared and the PC is set to 7777. It will

also remove a BLANK DISPLAY status.

2-4

SIN

This function, referred to as Single Instruction,
will cause the module to perform, in the user
mode, a single instruction. Following this, the
possible changes of state can be observed by
inspecting the contents of the appropriate
memory locations. Due to the MONITOR program
structure, the user can not single step through
ROM-P/ROM locations or JMP.-T1 instruction (see
Chapter 8). SIN may be successively depressed
to single step through a program.

DIS

This function will BLANK and RESTORE the

ADDRESS and MEMORY display thereby conserving
power. The BLANK/RESTORE function is achieved
by depressing CNTRL followed by DIS to BLANK
the display and then CNTRL followed by DIS to
RESTORE the display. A blanked display will
carry over from a power-down but will be
cleared by a software RESET (depression of
CNTRL and RESET). The RESET switch does not
affect display status.

BIN LOADER

This function will activate the firmware loader
'1%§? which will load BINary tapes using the 6953~
TAD & PTEART, JR. SERIAL I/0 MODULE. This loader
will return to the halted user mode when data
has finished loading.

MICRO

This function will place the CONSOLE CONTROL

. at the control of the MICROINTERPRETER 1in the
MONITOR ROM. The MICROINTERPRETER functions
are elaborated on in the next section.

MICROINTERPRETER FUNCTIONS

Pressing CNTRL followed by MICRO causes INTERCEPT JR. to
execute the microinterpreter routines which are resident
in the MONITOR ROM. These routines will interpret key
closures as opcode bits, relative address bits, page bits,
address mode bits, and microinstruction bits according to
the specific sequence in which the keys are depressed.

2-5

This enables the user to rapidly enter programs via the
keyboard without constantly referring to the instruction
format Tistings. The user should be familiar with the

use of the instructions and the rules for combining micro-
instructions in order to make the most efficient use of
the microinterpreter.

MEMORY REFERENCE INSTRUCTIONS

In the MICRO mode, if any of the keys marked AND, TAD,
ISZ, DCA, JMS, or JMP are pressed, the MEMORY display
at the current memory ADDRESS will show 0000, 1000,
2000, 3000, 4000, or 5000, respectively.

A11 the following key closures are interpreted as address
bits. The numerical keys may be depressed as many
times as desired, entering octal address digits from
right to left. If the resulting relative address is
outside the page boundary (0-1778 is the allowable
relative addressing range), the displays will flash.
Depression of the SHIFT key will stop the flashing and
Rev § clear the address field. The user should again attempt
_____ to enter a valid address.
At any time after the opcode is entered and the display
is not flashing, thereby representing a valid address,
depression of the SHIFT key will set the indirect bit
of the instruction (add 4 to the next-to-most significant
octal digit). After entering the instruction, depressing
CNTRL will advance the ADDRESS counter. SHIFT may be
pressed repeatedly to advance the ADDRESS counter.

INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

‘ In the MICRO mode, depression of the IOT key will cause
6000 to be entered into the currently addressed memory
Tocation. Subsequent numeric key depressions are performed
~ to enter the required device address and control bits
into the IOT instruction.

Depressing CNTRL will advance the ADDRESS counter to the
next Tocation. Depressing SHIFT will cause the ADDRESS
counter to step.

OPERATE INSTRUCTIONS

Operate instructions are divided into three groups of
operate microinstructions. Thus, in the MICRO mode,

the desired microinstruction group is selected by
depressing the keys marked OPR1, OPR2 or OPR3. This will
enter 7000, 7400 or 7401, respectively, into the MEMORY

2-6

qqg

S
(o]

display. If no additional keys are depressed and the
address counter is advanced, these instructions, which
are all NO OPERATION, NOP, will be entered. Further key
depressions will set various bits in the instruction
enabling the user to select valid microinstruction
combinations. The microinterpreter does not check for
illegal microinstruction combinations so the user must

be careful about the combinations being selected. The
tables show the more useful combinations. The user should
become familiar with the rules of combinations and logical
execution sequence in order to create microinstructions
not shown in the tables.

On the CONSOLE CONTROL, in general, the designations in
red are associated with OPRT microinstructions, and the
designations in green, except for -QA and -QL, are
associated with OPR2 microinstructions. The -QA and

-QL designations stand for MQA and MQL which are OPR3
microinstructions.

Conditional skip microinstructions in the OPR2 group may
have their skip condition inverted by pressing the REV
key while setting the microinstruction bits.

Rotate instructions in the OPR1 group may be changed
from a single bit rotate to a two bit rotate by pressing
the key with T/BSW designation on it. (This key is

used for both two bit rotates as well as Byte SWap.)

The CLA command is used in all the operate microinstruction

%ﬁf: groups and the key may be pressed in any of these groups.

LEAVING MICRO MODE

Depressing the CNTRL key twice puts the user back into
the undefined control state and free to choose the next
function.

PROGRAM EDITING AND CORRECTION

If an instruction is entered incorrectly, the user must
exit MICRO by depressing CNTRL twice. This will

result in advancing the ADDRESS counter by one. Decre-
menting the ADDRESS counter by one is achieved by pressing
DECPC. The user must then reenter the MICRO mode by
pressing CNTRL and MICRO. Now the correct instruction

is reentered in full.

2-7

The program may be examined location by location by
successively pressing DECPC or MEM from the undefined
control state. DECPC results in stepping backward
through memory, and MEM results in stepping forward.
These two keys may be pressed without going through the
undefined control state in order to go backwards and
forwards through the program in any sequence.

Memory data may be changed at will while stepping back
and forth through the program simply by depressing the
numeric keys in any desired fashion.

When editing in the MICRO mode, an instruction may be
changed by entering a new sequence of keys. If an
instruction is correct, the address counter may be
stepped simply by pressing the yellow SHIFT key
(immediately after CNTRL has been pressed to step the
address) as many times as desired.

2-8

TABLE 2-1

TABLE OF INSTRUCTION CODES

KEYS DEPRESSED MEMORY OPERATION
LEFT TO RIGHT OCTAL CODE

- Enter MICROINSTRUCTION Mode

MEMORY REFERENCE INSTRUCTIONS

KEYS DEPRESSED MNEMONIC MEMORY OPERATION
LEFT TO RIGHT OCTAL CODE
AND* 0000 Logical AND
nN....n 00nn or Depress numeric keys as
Olnn required for valid address
04nn or Depress IND key if INDirect
05nn MRI is required

Q

Advances ADDRESS counter to
next Tocation

TAD 1000 Binary ADD
il y

%E 1SZ 2000 Increment and Skip if Zero

* The sequence of key depressions required to enter the opcode, address field, indirect
bit (if necessary) and advance the address counter is shown in full for this case.
The same sequence is true for the other memory reference instructions, but only the
initial operation of entering the opcode is shown for the remainder to avoid duplication

2-9

DCA 3000 Deposit and Clear
Accumulator
JMS 4000 JuMp to Subroutine
JMP 5000 JuMP
S 0 1 2 3 4 5 6 7 8 9 10 11
1 | I 1 | I 1 1
OP CODE 0-5 1A MP ADDRESS
1 1 1 { | | { |
MEMORY REFERENCE | —
INSTRUCTION FORMAT RELATIVE ADDRESS
INDIRECT ADDRESSING
0 = DIRECT
1 = INDIRECT
L—MEMORY PAGE
0 =PAGE O
1 = CURRENT PAGE
FIGURE 2-2

MICROPROCESSOR INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

KEYS DEPRESSED MNEMONIC MEMORY OPERATION
LEFT TO RIGHT OCTAL CODE

SKON 6000 Skip if Interrupt on

a

=

Q%N ION 6001 Interrupt Turn on

RgT } 10T 6002 Interrupt Turn off

SRQ 6003 Skip if INT Request
£ GTF 6004 Get Flags
9

T
5

<EYS DEPRESSED
_EFT TO RIGHT

=

n, N, N, N...N

KEYS DEPRESSED
LEFT TO RIGHT

SZA-QL REV
OPR1 IND

RTF 6005 Return Flags
SGT 6006 Operation is Determined
by External Device, if
Any
CAF 6007 Clear A1l Flags
0 1 2 3 4 5 6 7 8 9 10 1
I [I I I | | |]
1 1 0 DEVICE SELECTION CONTROL
| | | | | | | L |

10T INSTRUCTION FORMAT

FIGURE 2-3

DEVICE INPUT/OUTPUT TRANSFER (IOT) INSTRUCTION

MNEMONIC MEMORY OPERATION
OCTAL CODE
As applicable 6000
énnn Depress numeric keys as

required to enter specific
address and control bits

GROUP 1 OPERATE MICROINSTRUCTIONS

MNEMONIC

NOP

IAC

MEMORY OPERATION
OCTAL CODE

7000 No operation

7001 Increment Accumulator

B (RAL 7004 Rotate Accumulator Left

RTL 7006 Rotate Two Left
T%” The T in T/BSW indicates
P bit 10 is set to give two
shifts. Key may be pressed

before RAL if desired.

DECPC 1. RAR 7010 Rotate Accumulator Right

ofkR
33
g1
sk
=

TR 7012 Rotate Two Right
Except for OPR1 key,
order of depression is
irrelevant.

§ DECPC
oty Tﬁfﬁ” BSW 7002 Byte Swap

Only bit 10 set giving
byte swap function,

DECPC ‘ N
SaaL %@ CML 7020 Complement Link
3?;‘}-3 CMA 7040 Complement Accumulator

CIA 7041 Complement and Increment
Accumulator
Logical execution sequence
is CMA, IAC, but keys may
be pressed in IAC, CMA order.

DECPC CLL 7100 Clear Link
OPR1

CLL RAL 7104 Clear Link-Rotate Accumulator
Left
Logical sequence first
clears link, then rotates.

600

wlals
80

B0

Key sequence:

CLL RTL

CLL RAR

CLL RTR

STL

CLA

CLA IAC

GTL

CLA CLL

STA

Logical sequence:

DECPC
OPR1

Octal dinstruction:

CLA

S|
5y
OFR2

7327

SZA-QL

7106 Clear Link-Rotate Two Left
7110 Clear Link-Rotate Accumulator
Right
7112 Clear Link-Rotate Two
Right
7120 Set the Link

Logical sequence first clears,
then complements Tink.

7200 Clear Accumulator
Common to all groups, so
not colored.

7201 Clear Accumulator-Increment
Accumulator
Loads accumulator with 1.

7204 Get the Link
Accomplished by rotating
it into cleared accumulator.

7300 Clear Accumulator-Clear Link
7240 Set the Accumulator
Sets accumulator to all
ones.

Example of microprogrammed instruction to set accumulator to
octal six.

CLL CML IAC RTL

1 i !

: 1ac B :

OO
IND 'r

2-13

T i
RAR | RAL 0
_— | == |—1| 1aCc
1 1 1 0 CLA | CLL [CMA | CML AR | RIL 1

BSW IF BITS ’
88&9 AREO
ANDBIT 10 1S 1.

LOGICAL SEQUENCES:
1—CLA, CLL
2—CMA, CML
3—IAC
4—RAR, RAL, RTR, RTL, BSW

GROUP 1 MICROINSTRUCTION FORMAT

FIGURE 2-4

GROUP 2 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED MNEMONIC MEMORY OPERATION
LEFT TO RIGHT OCTAL CODE
s ’ .
P
ggf, NO 7400 No operation

HLT 7402 Halt

OSR 7404 Or with Switch Register
s 1AC
é%: ey SKP 7410 Skip

REV key sets bit 8 giving
the AND condition of skips
specified in bits 5, 6, 7.
This results in unconditional

skip.
SNL 7420 Skip on Non-Zero Link
SZL 7430 Skip on Zero Link

REV reverses selected skip
condition by setting bit 8.

SE?: poa SZA 7440 Skip On Zero Accumulator

(0] OPR1

OPR1

. 352'& SNA 7450 Skip on Non-Zero Accumulator

SZA SNL 7460 Skip on Zero Accumulator,
or Skip on Non-Zero Link,
or both
OR'ed skip conditions.

 szaall j SNA SZL 7470 Skip on Non-Zero Accumulator,
OW“ OPR1 -\ and Skip on Zero Link
AND'ed skip conditions.

SMA 7500 Skip on Minus Accumulator
SPA 7510 Skip on Positive Accumulator
IND
['s MEM SMA SNL 7520 Skip on Minus Accumulator, or
‘ 3",5&%“ Skip on Non-Zero Link, or both

OR'ed skip conditions.

MEM x IAC SPA SZL 7530 Skip on Positive Accumulator
osr2 M OPR3 i’ and Skip on Zero Link
AND'ed skip conditions.

scr MEM]ggﬂi SMA SZA 7540 Skip on Minus Accumulator or
Y D G Skip on Zero Accumulator or

both.
OR'ed skip conditions.

ew Woccre 1@ SPA SNA 7550 Skip on Positive Accumulator
o2 Sl 'opra M OPRi M and Skip on Non-Zero Accumulator

AND'ed skip conditions.

s Y viem W oECee OB SMA SZA 7560 Skip on Minus Accumulator or
%gg‘ oy B B SNL Skip on Zero Accumulator or
; . Sk1p on Non-Zero Link or all
OR'ed skip conditions.

[o]

J St% osorch SPA SNA 7570 Skip on Positive Accumulator
OFR2 g} OPR3 Jii OPR1 SZL and Skip on Non-Zero Accumulato
and Skip on Zero Link
REV AND'ed skip conditions.
S S
C, C CLA 7600 Clear Accumulator
:g ‘ ‘E Common to all groups.
s i s s
C Cia B T LAS 7604 Load Accumulator with
E E :%N Switch Register
Logical sequence clears AC
then loads it with switch
register.
%%;ci SZA CLA 7640 Skip on Zero Accumulator
then Clear Accumulator
%%? occeell ke SNA CLA 7650 Skip on Non-Zero Accumulator
wicd Ul W then Clear Accumulator
Order of key depression is
irrelevant.
S| MEM ¥ S SMA CLA 7700 Skip on Minus Accumulator
_ then Clear Accumulator
, Joew W iac SPA CLA 7710 Skip on Positive Accumulator
OFR2 i OPR3 gt IND JR O then Clear Accumulator
SPA SNA 7774 Skip on Positive Accumulator
SZL CLA and Skip on Non-Zero Accumulato
0SR and Skip on Zero Link, then
clear accumulator and load
accumulator with the content of
the switch register
0 1 2 3 4 5 6 7 9 10 11
1 ' 1 ' 1 1 CLA SMA | SZA Si OSR HLT 0

SPA

SNA

SZL

LOGICAL SEQUENCES:

1 (Bit 8 is Zero)— SMA or SZA or SNL
(Bit 8 is One) — SPA and SNA and SZL
2

—CLA
3 — OSR, HLT

GROUP 2 MICROINSTRUCTION FORMAT

FIGURE 2-5

2-16

GROUP 3 OPERATE MICROINSTRUCTIONS

KEYS DEPRESSED MNEMONIC MEMORY OPERATION
LEFT TO RIGHT : OCTAL CODE
M NOP 7401 No operation

OPR3

SME,“AA pecec] MQL 7421 MQ Register Load
OPR3 0PR1 4

MQA 7501 MQ Register into Accumulator
 OPR3 @ OPR3 J
%E%y}%ﬁg?ji oLl SWP 7521 Swap Accumulator and MQ
¥ |} S OPR1_ Register
CLA 7601 Clear Accumulator

Common to all groups.

MEM SEF
| SMA-QA | ﬁéf;
L OPR3 @ OPR2 |

CAM 7621 Clear Accumulator and MQ
Register
[vew B) ACL 7701 Clear Accumulator and
- § C
% Load MQ Register into
Accumulator
CLA SWP 7721 Clear Accumulator and

Swap Accumulator and
MQ Register

0 1 2 3 4 5 6 7 8 9 10 11
I I I I [1 | |
1 1 1 1 CLA MQA maL 1
1 | 1 | I | 1 1
I;O_GC!&‘AL SEQUENCE: *Don't Care
2—MQA, MQL

3—ALL OTHERS

GROUP 3 MICROINSTRUCTION FORMAT

FIGURE 2-6
2-17

CHAPTER 3
INTERCEPT JR. PROGRAMMING EXAMPLES

INTRODUCTION

The reader who is not familiar with elementary programming
techniques, two's complement arithmetic and octal coding,
should study Appendix A and the IM6100 brochure for a
description of the instruction set before continuing with
this section. The MONITOR program will be used to illustrate
the use of various techniques.

EXAMPLE 1 - INCREMENTING MEMORY DATA

6400 2140 INCAC, ISZ SAVAC /Increment data in
01408, Tocation SAVAC

6401 7000 NOP /In case location contained
. 7777

This technique uses the ISZ instruction to directly increment
memory data without needing to bring it into the AC first. Note
the use of the NOP in case the data was 7777 and a skip was
performed. In applications where the programmer knows this
cannot happen, the NOP could be omitted.

EXAMPLE 2 - DECREMENTING MEMORY DATA

6403 7340 DECPC, CLA CLL CMA /Set AC to -T

6404 1000 TAD SAVPC /Add data in SAVPC
(Tocation 0000)
6405 3000 DCA SAVPC /Restore decremented data

Note the use of the microinstruction combination CLA CLL CMA to
clear the AC and the Tink and then to complement the AC, resulting
in 7777 in the AC and 0 in L. By adding the contents of location
SAVPC to the AC in two's complement arithmetic, a decrement is
effectively performed. Note that the Togical sequence of micro-
instruction execution is chosen for usefulness. It would be of

no value to complement the AC first and then to clear it.

3-1

EXAMPLE 3 - PROGRAMMING TIME DELAYS

6203 3145 DCA SAVE /Store AC in SAVE and clear AC
6204 1233 TAD TK1 /Get Time constant #1

6205 3144 DCA TIME /Store in timer

6206 2144 ISz TIME /Time out 4 ms at 3.33 MHz
6?07 5206 JMP. -1 /Jdump back one location

6?33 7400 TK1, 7400 /-256

This sequence is part of SWDB, the switch debounce routine
described in Chapter 8. The AC is cleared (incidentally while
depositing in SAVE), and the constant TK1 is fetched from the
current page address 6233. It is stored in the page 0 location
0144 and ISZ instructions are successively executed until the
timer goes to zero and the jump-back instruction is skipped.
The delay produced may be calculated by counting the number of
major states in each instruction executed and multiplying by
the state time. Thus, ISZ requires 16 states and JMP requires
10, so these 26 states are gone through a total of 256 times,
for a total of 6656 states. Adding in the states for the DCA,
TAD and DCA (11 + 10 + 11 = 32) we have 6688 states. With a
3.3 MHz clock rate, the state timer is 600 ns so the delay is
(0.6 x 6688) microseconds = 4012.8 microseconds or approximately
4 milliseconds. At 4 MHz, if the constant is not changed, the
delay will be reduced by the factor 5/6 to 3.33 ms.

It is also instructive to note that the location TIME is in

. page 0, whereas the constant TK1 is stored in the current page
(page 31). In this case, RAM happens to be available only in
page 0 and 1 and by keeping TIME in page 0, the ISZ instruction
in page 31 was able to directly reference the location TIME in
page 0. Obviously, ISZ instructions may only reference RAM
locations.

EXAMPLE 4A - ADDRESSING MODES

The user should note that a characteristic of page addressing
results in the octal coding for two memory reference instructions
on different pages being identical when their operands are in

the same relative location on the respective pages.

0020 5225 /JIMP to location 25 on current
: page, for example to 0025

0é20 5225 /IMP to location 25 on current
. page, for example to 0225

The user should enter these instructions. By using the SIN,
single instruction key, to execute the instruction, the user will
see how the addresses are referenced.

Note that memory reference instructions can reference 400g locations
directly, 2008 on page 0, and 200g on the page containing this
instruction. If the instruction happens to be on page 0, then only
locations 0 to 177g are directly addressable.

EXAMPLE 4B - ADDRESSING MODES

OéZO 5625 /IMP indirect via 0025
0525 0010 /Pointer to 00108
OéZO 5625 /IMP indirect via 0225
0%25 0010 /Pointer to 00108

Now, by using the single step key at locations 0020 or 0220, the
address should change to 0010 showing that an indirect reference
has been made.

The pointer (location containing the effective address) can
contain a full 12 bits of address, so the program can branch
anywhere in the 4K address space by jumping indirect.

When constants and pointer addresses are stored in page 0,
references may be made to them from any page, avoiding the
necessity of storing them on each page that needs them.

EXAMPLE 5 - INDIRECT ADDRESSING USED IN TABLE MANIPULATION

This example is taken from the UDCS routine described in Chapter 8.
It is a common technique of passing program control to one of
several possible sequences by adding an index to a base address.

At the point that the following sequence is entered, the accumulator
contains an octal number from 0 to 13 which stands for the routines
MICRO, BIN, BLK, SIN, RUN, HALT, RESET, SETPC, DECPC, DEP, INCAC

and UDCS respectively.

6123 1330 TAD GOTO /add base address to constant
6124 - 3147 DCA POINT /store pointer in POINT

6125 1547 TAD I POINT /get routine starting address
6126 3147 DCA POINT /phase starting address in POINT
6127 5547 JMP T POINT /go to the routine

6130 6131 GOTO, GOTO +1 /base address

6131 6633 MICRO)

6132 7600 BIN)

6133 6566 BLK)

6134 7301 SIN)

6135 6411 RUN) TABLE OF ROUTINE

6136 6407 HALT) STARTING ADDRESSES

6137 6414 RESET)

6140 6600 SETPC)

6141 6403 DECPC)

6142 6524 DEP)

6143 6400 INCAC)

6144 6117 ubcs)

Note that location 6130, labeled GOTO contains base address 6131, so
by adding a number from 0g to 13g to 6131, a number from 6131 to
6144 is obtained. This number is stored in POINT.

Now, the effective starting address is obtained by executing a TAD
indirect through POINT, for example contents of POINT used as
operand address. Thus, is AC contained 3g, then 6134 would be
stored in POINT, and TAD I POINT would place 7301 in the AC to be
again stored in POINT. This time an indirect jump through POINT
loads 7301 into the program counter.

Of course, POINT had to be stored in RAM and since pages 0 and 1

are in RAM, POINT was chosen to be in page 0, in order that the upper
ROM pages could reference it. It can be seen that indirect
addressing makes writing programs easier in mixed RAM-ROM memory
where memory references cannot be easily confined to small relative
address displacements. See Table 3-1 for a list of pages and

their memory locations.

TABLE 3-1

PAGE MEMORY LOCATIONS
0 0-177
1 200-377
2 400-577
3 600-777
4 1000-1177
5 1200-1377
6 1400-1577
7 1600-1777

10 2000-2177
11 2200-2377
12 2400-2577
13 2600-2777
14 3000-3177
15 3200-3377
16 3400-3577
17 3600-3777
20 4000-4177
21 4200-4377
22 4400-4577
23 4600-4777
24 5000-5177
25 5200-5377
26 5400-5577
27 5600-5777
30 6000-6177
31 6200-6377
32 6400-6577
33 6600-6777
34 7000-7177
35 7200-7377
36 7400-7577
37 7600-7777

EXAMPLE 6 - THE JMS INSTRUCTION AND INDIRECT ADDRESSING

A very important use of indirect addressing is in returning to

a main program from a subroutine. Appendix A shows how two

programs may be Tinked using JMP instructions. The JMS instruction's
usefulness 1ies in the fact that only one copy of a subroutine

need be stored, for example in page 0, and a program anywhere in

main memory may call it. INTERCEPT JR. uses a "last-in-first-out"
(LIFO) or "pushdown" stack in page 0 to store subroutine return
addresses. This allows nesting of subroutines and calling sub-
routines stored in the MONITOR ROM by Tinking through RAM. For
further details refer to INTERSIL Applications Bulletin M008.

3-5

Our example will demonstrate the use of the JMS instruction in
RAM, and the use of indirect addressing to return.

To enter the program, use the microinterpreter as described in

Chapter 2.

0020 7240 CLA CMA /AC set to 7777

0021 4100 JMS 0100 /Jump to subroutine starting
at 0100

0022 7240 CLA CMA /AC set to 7777

0023 7402 HLT :

0100 0000 /This location will contain
return address

0101 7200 CLA /AC set to 0000

0102 5500 JMP I 0100 /Return to main program

Single step through this program (by successive depressions of

SIN key after initial "CNTRL" "SIN" sequence at program starting
address) and the program sequencing will be seen to go from 0020 -
0021 - 0100 - 0107 - 0102 - 0022 - 0023. In between, it will be
instructive to look at Tocation 0140 where the AC is saved by

the MONITOR. The AC will initially be set to 7777, then the
subroutine clears it, and then the main program again sets it to
7777. The JMS instruction stores the return address, namely

0022 in Tocation 0100 so that upon executing the JMP indirect via
0100, the main program can be rejoined in sequence.

If a 1K RAM option card is available, the user could relocate

the main program in an upper page and execute the same program
provided the subroutine remained in page 0. The subroutine

could be moved to a page different from page O or the main program's
page but then an indirect JMS would have to be executed. We can
illustrate this in page 0 as follows:

0020 7240 CLA CMA /AC = 7777

0021 4424 JMS I 0024 /Jdump via pointer in 0024
0022 7240 CLA CMA /AC = 7777

0023 7402 HLT

0024 0100 /pointer address

0101 7200 CLA /AC = 0000

0102 5500 JMP I 0100 /Return

An extra Tocation to store the pointer is needed.
EXAMPLE 7 - AUTOINDEXING

Example 3 showed how a simple loop could be programmed using the
ISZ and JMP instructions.

3-6

The IM6100 treats memory locations 0010 through 0017, in page O,

in a unique manner. Whenever an instruction makes an indirect
reference to any of these Tlocations, the content of the Tocation

is incremented before it is used as an operand. These locations

can, therefore, be used in indexing applications. The incre-
mentation is done automatically, provided the Tocation was referenced
indirectly, without needing ISZ or TAD and IAC instructions, so

this feature is known as autoindexing. When these locations

are addressed directly, they act as any other location.

Since the autoindex Tocation is incremented before it is used
as an operand, it must be set to one less than the first value

desired.
0010 /Autoindex Tocation
0200 7200 CLA /Clear AC to 0000
0201 1212 TAD 0212 /Get # of locations to be cleared
0202 7041 CMA IAC /2's complement of AC
0203 3212 DCA 0212 /Store in loop counter
0204 1213 TAD 0213 /Get "starting address -1"
0205 3010 DCA 0010 /Store in autoindex location
0206 3410 DCA I 0010 /Clear location pointed to by 0010
0207 2212 ISZ 0212 /Increment Toop counter
0210 5206 JMP 0206 /Jump back two places
0211 7402 HLT /Stop. A11 locations cleared
0212 0100 CONSTANT /# of Tocations to be cleared
0213 0277 START-1 /Starting address (0300) -1

Note that the autoindex location supplies successive memory address
pointers until the counter goes to zero and the program halts.
The program will clear locations 0300 to 0377.

EXAMPLE 8 - ADDRESS FIELD MODIFICATION

Instructions and program data may be stored in the same memory.
Thus, it is possible to treat instructions as data or data as
instructions if this would be of any use.

A powerful programming technique involves performing arithmetic
on memory reference instructions in order to alter the location
being referenced. In this case, the instruction is treated as an
operand and incremented, decremented, etc. Logical operations
such as masking certain bits may also be useful. Such techniques
are useful when manipulating large data tables. Example 5 has
shown one technique of manipulating jump address pointers.

Consider the following example:

3-7

0200 7300 CLA CLL /Clear AC and L

0201 1213 TAD 0213 /Get # of data items

0202 7041 CMA IAC /2's complement of constant

0203 3213 DCA 0213 /Store TALLY

0204 7240 CLA CMA /AC = 7777

0205 0300 AND 0300 /AND contents of 0300 with AC

0206 7450 SNA

0207 5215 JMP 0215

0210 2205 IS7Z 0205 /Increment address field

0211 2213 ISZ 0213 /Increment TALLY

0212 5204 JMP 0204 /Jump back to check next item

0213 0100 TALLY /Constant giving # of items to
be checked

0214 0777 MASK /Used to mask off opcode bits

0215 1205 TAD 0205 /Get instruction referencing
zero data item

0216 0214 AND 0214 /Zero opcode bits

0217 3221 DCA 0221 /Store address of zero item

0220 7402 HALT /Halt

0221 /Address of zero item

This program checks data stored in locations 03008 to 03778, when
it encounters a zero data item in the list, it stores the address
of this item in 0221 and stops.

Location 0213 initially contains the number of items stored
starting in location 0300. The program replaces this number

with its negative by two's complementing it. Successive data

items are then read, AND'ing with 7777 in the AC. Note that

if the AND Teaves a non-zero AC, the AND instruction is incremented,
stepping to the next item. A logical operation is done with

this instruction to strip off the opcode bits when and if a

zero data item is eventually detected. For this purpose, the

mask 0777 1is stored in 0214.

On powering up most locations will be non-zero, so the user can
put a zero anywhere he chooses to check Example 8 operation. This
technique of modifying instructions is a dangerous one to use in
many situations because programs may be unintentionally changed
because of an undiscovered "bug". (Modern concepts of structured
programming discourage the use of this technique, but it is
included because in some microprocessor applications, it might
save memory locations.) For example, in this case, every time the
program is rerun, locations 0205 and 0213 must be initialized.

EXAMPLE 9 - USING CONDITIONAL SKIPS

Group 2 microinstructions are primarily conditional skips and may

be used to test conditions other than the number of passes that have
been made through a Toop. That is, the program may be made to

loop an indefinite number of times until a specific condition is
present in the accumulator or Tink bit. When two or more skip
conditions are microprogrammed into a single instruction, the
resulting condition on which the decision will be based is the
logical OR of the individual conditions when bit 8 is 0, or, when
bit 8 is 1, the decision will be based on the Togical AND.

3-8

In the Tast example, the SNA instruction was used to skip on
non-zero accumulator. The loop would continue as long as the
next instruction was skipped and when the AC became zero, the
program would jump out of the loop.

Very often conditional skips are used along with Group 1 operate
microinstructions. The Group 1 instructions are used to
manipulate the AC and L with shift, rotate, set, clear operations
to set up these registers for testing with conditional skip
instructions. This is used extensively in the MONITOR program,
for example, in the routine called HEX (see Tisting of MONITOR
and Chapter 8).

The following segment of code is in the MONITOR locations 6503-
6507.

6503 7006 RTL

6504 7420 SNL

6505 5310 JMP.+3

6506 7325 CLA CLL CML IAC RAL
6507 5564 RETURN

This segment shows how a rotate is used to "set up" the link and bit

0 of the AC for a test with skip instructions. AC (0) can be

tested with instructions such as SMA, skip if AC is less than 0,

SPA, skip if AC is greater than or equal to 0, and their combinations,
and the Link can be tested with instructions such as SZL, skip if
Link = 0, SNL, skip if Link = 1. Combinations are possible which

test these bits in one instruction, for example, SMA SNL, skip

if AC is less than 0 OR if Link = 1, or SPA SZL, skip if AC is greater
than or equal to 0 and Link = O.

The user should note that SMA SNL will produce a skip on minus AC
OR non-zero Tink OR both, whereas SPA SZL will produce a skip on
plus AC AND zero Tink (both conditions must be present for a skip).

The example also shows how microprogrammed combinations of micro-
instructions may be used to set various constants into the AC.

In this case, the AC is set to 0003. The sequence is as follows:
AC and L are cleared, L is set, the AC is incremented and by
shifting left one, the L is shifted into the LSB and the former
LSB. is shifted into bit 10, so the AC contains 0003 and the L
contains O.

Refer to the HEX routine for more examples of this nature.

EXAMPLE 10 - FLOWCHARTING A PROGRAM

Flowcharts may be used to represent hardware operation as well
as to represent an algorithm to be implemented in software.

As an example of an algorithm, or computational procedure, we
shall work out a program to compute the product of two octal
numbers.

PROBLEM: Compute the product of two octal numbers

ASSUMPTION: The numbers are positive integers and their
product does not exceed 409510 or 777783.
The 1st operand is not zero.

SOLUTION: Many different multiplication algorithms exist. We
shall choose a simple, inefficient one which is
easy to understand and flowchart.

Add one number repeatedly to itself using a second
number to determine the number of additions.

The program will make use of a memory reference instruction known
as "Increment and Skip on Zero". The ISZ instruction adds a 1 to
the referenced data word and then examines the result of the
addition. If the result is not zero, the program continues in
sequence, performing the instruction following the ISZ. If the
result is zero, the instruction following the ISZ 1is skipped (by
incrementing the Program Counter again). In either case, the
result of the addition replaces the original data word in memory.

By computing the 2's complement of one operand (data word) and
referencing it with the ISZ instruction, we can repeatedly add

the second operand to itself until the desired product is obtained.
At this point, the counter becomes zero and the loop exit is

taken.

After entering the program as shown, data may be entered into

Tocations 0032 and 0033, the Program Counter is set to the
starting address, and the program is run.

3-10

INITIALIZE

y

Read Tst Operand

Compute 2's Complement
of 1st Operand

Store Loop Counter

-—

ADD 2nd Operand

%

Increment Loop Counter

NO

Counter = 0

YES

Store Product

HALT

0020 7300 CLA CLL

0021 1032 TAD 0032
0022 7041 CMA IAC
0023 3031 DCA 0031
0024 1033 TAD 0033
0025 2031 ISZ 0031
0026 5024 JMP 0024
0027 3031 DCA 0031
0030 7402 HLT

0031 loop counter and final product
0032 : 1st OPERAND
0033 2nd OPERAND

PROGRAM TO MULTIPLY TWO OCTAL NUMBERS TOGETHER

CNTRL SETPC 0 0 2 0
CNTRL MICRO OPR1 CLA CLL
CNTRL TAD 0 0 3 2
CNTRL OPR1 CMA IAC
CNTRL DCA 0 0 3 1
CNTRL TAD 0 0 3 3
CNTRL ISz 0 0 3 1
CNTRL JMP 0 0 2 4 enter program
CNTRL DCA 0 0 3 1
CNTRL OPR2 HALT
CNTRL
CNTRL SETPC 0 0 3 2
CNTRL MEM 1st OPERAND
MEM 2nd OPERAND
CNTRL SETPC 0 0 2 0 execute program
CNTRL RUN Display shows product

For example, if 1st operand is 0004 and 2nd operand is 0010,

the display will show 0040. The user will also find it instructive
to load small numbers as operands and single-step through the
program to verify that the program follows the flowchart. Thus,

set the PC to 0020, then press "CNTRL", "SIN" and then press the
"SIN" key repeatedly. Each time it is pressed, the program executes
one SINgle instruction. At any point, the user may set the PC

to 0140 to examine the contents of the accumulator (this is explained
further in Chapter 8) and resume execution of single instructions

by resetting the PC to the last address he had stopped at and
continuing with SIN key depressions.

The user will find it useful to rewrite the program to make the
assumptions less restrictive. For example, a check could be
included to test for a zero 1st operand and, if the test was true,
the product zero could be immediately calculated. Tests for
negative operands could be included and/or checks for arithmetic
overflow.

EXAMPLE 11 - BIT MANIPULATION

Often, it is necessary to set, clear or determine the status

of individual bits in a word. For example, a peripheral inter-
face may be returning the status of various devices, and the
processor must take action conditional on the status of these
flags.

There are several methods. In one, the AC is rotated until
the desired bit is in the 1ink and then group 2 operate
microinstructions are used to skip conditionally on the 1ink
status. This technique is illustrated in Example 9. Another
method is to AND a mask word with the AC, zeroing out all bits
except the one to be tested and then testing the AC for zero.

This technique will be illustrated with an example from the SIN
routine in the MONITOR.

7343 1400 INDB, TAD I SAVPC /Get the instruction

7344 0355 AND LOT /Mask out indirect bit

7345 7650 SNA CLA /Test; 1is bit set

7346 5564 RETURN /Nos; return with true

address in TIME

7347 1544 TAD I TIME /Yes; get true address

7350 3144 DCA TIME /Place it in TIME

7351 5564 _ RETURN /Return with true address
. in TIME

7355 0400 LOT, 0400 /AND mask word

This routine INDB, determines the effective address referenced

by an instruction and places it in location TIME. By AND'ing

the instruction with 0400, the AC will be non-zero if the indirect
bit, bit 3, is set and zero if this bit is zero.

The methods for setting and clearing bits are similar. One can
rotate the bit into the 1link and then use group 1 microinstructions
to clear or set the Tink. This has the advantage that rotates

may be combined with Tink bit operations in one instruction.

To clear a bit, one can AND the word in AC with a word containing
one's everywhere except in the desired bit position. To set a bit,
one can add a word containing zero's everywhere except in the
desired bit position. This technique is used by the bit set
routines in the MICROINTERPRETER, ROM locations 7246-7300, 1isting
Tines 1006-1045.

The next example shows the use the MQ register in logical operations.
It will be seen that this register may also be used in bit
manipulation operations.

EXAMPLE 12 - LOGICAL OPERATIONS

Boolean operations play an important role in computer logic.
We have seen examples of how the AND instruction can be used
to mask out selected bits.

The NOT or logical complement operation is easily performed by
placing the Togical data word in the accumulator and executing
a CMA, complement AC, instruction.

The inclusive OR operation is performed by placing one logical
operand into the MQ register (executing an MQL - Toad MQ from
AC), Toading the second logical operand into the AC, then
executing an MQA instruction (contents of the MQ are OR'ed with
contents of the AC).

Any Boolean operation may be synthesized using combinations of
the basic AND, OR and NOT operations.

EXAMPLE 13 - I/0 PROGRAMMING

Chapter 7 and Chapter 8 give examples of I/0 instructions as
used in INTERCEPT JR.

There are three methods by which information may be transferred
between INTERCEPT JR. and peripheral devices:

1) DMA 1/0 transfer
2) Interrupt I/0 transfer
3) Programmed I/0 transfer

The first method involves Direct Memory Access, DMA, by an I/0
devices and allows for high speed transfers of blocks of data

at essentially the memory cycle rate. The transfer is controlled
without processor intervention on a "cycle stealing" basis.

That is, the I/0 device requests a DMA cycle and the processor
grants it at the end of the current instruction. (See Figure 17
of the IM6100 brochure.) The processor tri-states its bus
drivers and from that point on, as Tong as the DMA REQ Tine is
active, the device controls the DX bus and data transfers on the
bus. Typical DMA using devices are disks, tapes and CRT screen
refresh circuits.

INTERCEPT JR. primarily uses the last two methods. Both of

these require CPU intervention. Interrupt transfers use the
interrupt system to service one or more peripheral devices
simultaneously, permitting processing to be performed concurrently
with data I/0 operations.

Both methods use the AC as a data buffer for transfers in
both directions.

Interrupt programming is especially useful in real time systems
which are required to respond to real time events. The time

spent waiting for a change in device status is greatly reduced or
even eliminated. This is done by writing I/0 handling routines
which are separate from the main program and using the interrupting
capability of I/0 devices to enter these routines only when the

I/0 device is either ready to perform a data transfer or requires
CPU intervention. Thus, as Tong as the device does not request

an interrupt, the mainline program may continue to run and time

is not wasted "polling" I/0 devices for changes in status.

In INTERCEPT JR., the control panel timer generates interrupt
requests at periodic intervals. The display refresh routine that
periodically drives the LED displays is an example of an I/0
hand1ing routine. When the main program is interrupted, a

method of returning to it after servicing the interrupt request

is necessary. INTERCEPT JR. saves the current content of the PC

in location 0000g of the memory and fetches the next instruction
from location 0001g if an external I/0 device requests an interrupt.

In the case of a control panel interrupt, the return address is
stored in location 0000g of panel memory. This is the same as
0000g of page 0 memory in INTERCEPT JR.; status word bit O
differentiates between panel and user memory. The CPU resumes
operation at Tocation 77778 of panel memory, for example 7777g
of MONITOR ROM ISD002 with status word bit 0 = 0.

For further details on device interrupts and CP interrupts, refer
to the IM6100 and IM6101 data sheets.

The third, and slowest method, that of programmed data transfer,
is also the simplest, needing a minimum of hardware support. The
INTERCEPT JR. PIEART board uses this technique. The processor,
upon recognizing an I/0 instruction, opcode 6g, places the
instruction on the DX bus during IOTpA - LXMAR. The selected
device communicates with the CPU through four control lines--

Cos> C1, C2 and SKP. The control Tine SKP, when low during an IOT,
causes the CPU to skip the next sequential instruction.

The INPIE, TALK, LISN, READ routines of the MONITOR should be
studied to see the use of IOT's in programmed data transfer.

For example, the print to TTY routine is as follows:

7&66 6163 TALK, SKIP?2 /Skip on clear Xmit buffer

7467 5266 JMP. -1 /Xmit buffer not yet clear

7470 6161 WRITET /Write AC to buffer

7471 3144 DCA TIME /Store data for possible
recovery

7472 5564 RETURN

Note the use of the SKIP2 instruction to implement a "wait"
loop. When the condition is satisfied, the Toop is exited. The
device must activate the SKP Tine back to the CPU in order for
the CPU to skip the next instruction.

The WRITET instruction is another IOT used to write the AC to the
UART. (See Chapter 7 for device address codes and command codes.)
Refer to the IM6100 and IM6101 data sheets for more information.

The next chapter describes dedicated IOT instructions used in
INTERCEPT JR. namely, 6400, Load Display, 6402, Enable/Disable
CP Timer, 6403, IOT CPREQ, 6406, IOT Reset, 6407, IOT RUN.

The experienced user may use these to shut off the timer and
perhaps use subroutines in the MONITOR for his own purposes,
for instance, display information other than the USERPC and its
contents.

EXAMPLE 14 - TELETYPE I/0 USING MONITOR CALLS

The following program makes use of the MONITOR ROM PIE-UART
subroutines by calling them via the software stack mechanism.

The control panel interrupt requests must be shut off to prevent
timing difficulties.

0100 7340 Set AC to 7777

0101 6402 Disable CP request timer

0102 4161 CALL

0103 7445 PIE initialization routine in PIE
0104 4161 CALL READ from

0105 7501 Teletype routine

0106 4161 CALL TALK, the print

0107 7466 to TTY routine

0110 5104 Jump back for next character

Note that the stack mechanism requires that the CALL instruction
(JMS 0161) be followed by the entry address of the subroutine.

EXAMPLE 15 - PRINTING UNDER KEYPAD CONTROL

The following program will print ASCII characters on a Teletype
under control of the INTERCEPT JR. board.

Refer to Appendix F for the ASCII character set.

100
101
102
103
104
105
106
107
110
111
112
113

114
115
116

117
120
121
122
123
124
125
126
127
130
131
132

Appendix F shows
property that if
digit is 4, 5, 6
the second octal

7340
6402
4161
7445
7300
4161
6110
4161
6425
7004
7006
7002

1131
7500
7001

7002
3132
4161
6110
4161
6425
1132
4161
7466
5104
0002
0000

BACK.,

K0002,
TEMPT,

STA STL
I0T TIMER
CALL
INPIE
CLA CLL
CALL
CLKPD
CALL
HEX

RAL

RTL

BSW

TAD K0002
SMA
IAC

BSW

DCA TEMP1
CALL
CLKPD
CALL

HEX

TAD TEMPI1
CALL
PRINT
JMP BACK
0002
0000

/Disable

/Control panel timer
/Initialize

/PIEART interface

/Wait for keypad

/To clear

/Read octal

/Data from keypad

/Shift three places

/Left and swap bytes

/To determine Teading
code digit

/MSB of ASCII code
always one

/Is 2nd ASCII digit
4,5,6,7?

/No, 1st digit must
therefore be 3

/Yes, 1st digit must be 2
/Store temporarily

/MWait for clear

/Keypad

/Read 2nd octal

/Digit

/Assemble ASCII character

/Transmit character

/To printer

/Go back for next character

that the 8-bit ASCII character codes have the
the Teft octal digit is 2, the second octal

or 7, and if the left octal digit is 3, then
digit is 0, 1, 2 or 3.

This program allows the user to enter characters as two successive

octal digits.

Note that this assumes the eighth (parity) bit is always set.

EXAMPLE 16 - PROGRAM TO DEMONSTRATE I/0 TO 6957 AUDVIS MODULE

0225 7201 CLA IAC /Set AC=0001

0226 6402 ENDIS TIMER /Shut off CP timer

0227 7000 NOP

0230 7000 NOP

0231 7604 READ, LAS /Load keypad to AC

0232 7450 SNA /Key depressed?

0233 5231 JMP READ /No, go back to try
again

0234 6401 LD DISPLAY /Display AC on LED
register

0235 6404 CLOCK /Click speaker

0236 5231 JMP READ

The first two instructions shut off the control panel interrupt
timer, The three instruction loop in locations 231, 232, and 233
cause the processor to wait until a key is depressed, and when
this occurs, to Toad the LED register with the AC and CLICK the
speaker.

While a key is depressed, the processor executes the instructions

LAS (15 major states)
SNA (10 major states)
LD DISPLAY (17 major states)
CLOCK (17 major states)
JMP READ (10 major states)

continuously, and the speaker "clicks" merge into a high pitched
beep. The fundamental frequency of this "beep" is easily
calculated by counting the number of major states in the above
instruction sequence, multiplying by twice the clock period and
taking the reciprocal of this number.

In this case, there are 69 major states; and, assuming a 2.56 MHz
crystal, the clock period is 390 ns, and the "beep" frequency is
1/ (69 X 2 X 390 X 10-6) = 18 KHz.

Now change the instruction in Tocation 0236 to 5230. This adds a NOP,
or 10 more major states to the loop, decreasing the frequency of the
beep. By placing 5227 in location 0236, the frequency is Towered
further. This program enables the user to find out which DX Tine

each key is connected to.

Instead of a beep, the program can be made to click on each key
depression by replacing the two NOPs with 4161 and 6110. This calls
the CLKPD subroutine which waits for a clear (fully released)

keypad before returning to the calling program.

The action of the HEX program which encodes key depressions in
order to generate MONITOR program subroutine starting addresses
may be easily seen by replacing the three instruction keypad read
Toop in locations 231, 232 and 233 with the sequence 7000, 4161,
and 6425. As before, 4161 is a JMS to the top of the RAM sub-
routine stack and 6425 is the starting address of the HEX
routine. Descriptions of these programs may be found in Chapter
8, and a discussion of the software stack may be found in
Applications Bulletin M008 of the IM6100 databook.

The program just entered should have looked like this:

0225 7201
0226 6402
0227 4161
0230 6110
0231 7000
0232 4161
0233 6425
0234 6401
0235 6404
0236 5227

3-19

CHAPTER 4
INTERCEPT JR. MODULE

INTRODUCTION

As shown on the schematic, all memory and I/0 devices are
connected to the IM6100 DX bus. The twelve (12) bit bus carries
time-multiplexed addresses and data from memory and I/0 devices.

Timing information must be provided to strobe data on and off
the bus and select lines are needed to enable the proper devices.

The MONITOR ROM and 256 X 12 RAM are mapped in upper and Tower
areas of the 4K address space, and it is necessary to select the
proper devices during memory I/0.

The keyboard commands must be interpreted after making sure switch
bounce does not cause erroneous operation.

The ADDRESS and MEMORY display digits are multiplexed in order to
reduce the number of decoder/drivers required.

The IM6100 microprocessor used in the INTERCEPT JR. is the commercial
temperature range device and a 2.46 MHz crystal is used in order to
ensure operation of the system as battery voltage falls from 6 V to
4,5V,

TYING ON TO THE DX BUS

The DX bus carries addresses and data at different times. ATl
peripherals and memory address inputs, peripherals and memory
data inputs and outputs are connected to the bus. A1l elements
connected to the bus are, therefore, tri-state devices.

Data strobes+and device signals must he generated in order to
demultiplex data from the bus or multiplex data onto the bus.

The MONITOR ROM, a 1024 X 12 device is mask-programmed at the
factory to decode the lower ten (10) bits as an address, and the
upper two (2) bits as a chip enable. For example, the MONITOR
ROM, as supplied by the factory, has the upper two bits mask
programmed to 11 to select the ROM for 6000 to 7777.

When data is read out, the chip puts its data out onto the DX
bus. Thus the DX pins on the 6312 are bidirectional (addresses
in and data out). o

The RAM is a 256 X 12 array implemented in CMOS.

The Ap-A7 address inputs and the I/0 data pins are connected to the
DX bus.

4-1

ADDRESS DEMULTIPLEXING

DATA

Both the ROM chips and the RAM chips have internal address latches.
These Tatches are loaded from the address inputs when the strobe
input STR is driven low. When STR is Tow, the latches are not
affected.

When the processor places memory address data on the bus, it
drives the signal LXMAR at pin 10 Tow. This signal, Load External
Memory Address Register, is intended to strobe the memory address
latches. Note that the chip does not have to be selected in order
to latch address information.

DEMULTIPLEXING

After the CPU places a memory address on the bus, a data transfer
must take place either into the CPU from memory or from the CPU to
memory. The direction is indicated by the XTC Tine. The various
SELECT Tines are activated during the data-in and data-out phases

of the memory cycle. XTC is high for the first half of a memory
cycle (when memory read operations may be performed) and low for the
second half (when memory may be written into). Thus XTC may be
directly connected to OEH, Output Enable Active High, of the ROM
chips and WE, Write Enable Active Low, of the RAM chips to enable
these chips for reading or writing. During XTC high, of course, the
RAM may be selected for reading. The memory outputs will not be
activated unless the chip has been selected as well as had its
output enabled. Otherwise, many chips would be activated at the
same time.

Obviously, it would be undesirable to simultaneously read from
several devices onto the same DX lines at once.

For this reason, the active low chip select pins on the RAM chips
and OEL, Output Enable Active Low, on the IM6312's are connected

to the SEL line. This Tine may be strapped to either the "MEM SEL"
1ine or the AND'ed combination of "MEM SEL" and "CP SEL". These

are active Tow signals generated by the CPU to select user memory,
MEM SEL, or control panel memory, CP SEL. With only the Intersil
provided control panel ROM in the system, the jumpers should provide
the combination AND signal. This combination signal will select
memory when either MEM SEL or CP SEL goes low.

Another aspect to be considered is how addressable memory space is
partitioned. In the INTERCEPT JR., the MONITOR ROM occupies the
highest 1K of the basic 4K address space and the RAM occupies the
Towest 256 words of this space. It is possible to program 256 word
pages of the 4K address space for RAM into the IM6312 ROM such that
it will generate an RSEL, RAM SELECT, signal by decoding the high

4-2

order four bits of the address. These fields must obviously be aligned
with page boundaries. RSEL is connected to CS3 of the IM6524's. 1In
the IM6312-002 MONITOR ROM, RSEL is activated by "0000" on DX0, DX1,
DX2 and DX3.

RSEL allows random mapping of double page RAM fields within the 4K
address space. Note that the base page, or at least the first 16
Tocations mut be writable in order for the autoincrement instructions
and interrupt instructions to work. Also note that the highest
location (7777) should normally be in ROM as it is used as a pointer
to power up initialization routines. See Figure 8-1 for a memory
map.

Normally the RAM area does not overlap with the ROM area, therefore,
one of the RAM chip select pins is kept permanently Tow by a Jjumper
to GND so that selection depends only on the chip select connected
to the SEL Tine. RAM VCC is always present for data retention.

The mapping.of RAM into ROM space is of significance should the
user generate a ROM to be placed in the spare socket which requires
this feature. In such a case, the RAM chip select jumper must be
connected to the appropriate RSEL pin. The ROM is mask programmed
to generate RSEL appropriately.

Please refer to the IM6312 data sheet for further details.

KEYBOARD INPUT

The INTERCEPT JR. uses a 12 switch keyboard which is an ideal
situation as there are 12 DX Tlines. Each key is connected through
a 3-state inverting buffer to the corresponding DX line.

When the CPU executes an OSR instruction, OR Switch Register with

accumulator contents, it activates the SW SEL, Switch Select, line
and OR's the DX bus with the accumulator. SW SEL is used to enable
the keyboard buffers thereby giving the means to read the keyboard.

Naturally, it must not respond to illegal key closures (illegal
combinations, bouncing, or too many keys being depressed, etc.).
These conditions are checked by the firmware, to be described later.

To improve noise immunity, the inputs to the buffers are pulled up
to VCC via 10K resistors in a DIP package. This is done to the DX
bus as well, because Tines floating at threshold are sensitive to noise.

DIGITAL DISPLAY OUTPUT

The INTERCEPT JR. has two display registers, each with four decimal
(BCD) digits.

Each register is driven by a type 4511 CMOS BCD-TO-7 segment latch/
decoder/driver and four transistors that enable successive digits
in turn (E2, F2, Q1, Q2, Q3, Q4)*.

The CPU loads the BCD latch with a digit each, and the 34042

quad CMOS latch (D2) with a single bit and this enables two
particular digits to display the decoded contents of the BCD
latches. In the next cycle, the BCD latches get loaded with the
contents of the two adjacent digits and the bit shifts one position
in the quad latch, enabling the next digits, and so on. The CPU
can blank the displays under keyboard control in order to conserve
battery power.

The data in the AC is loaded into the display latches by 'LOAD
DISPLAY' at IOTA . XTC . DEVSEL The 'LOAD DISPLAY' command is
generated by IOT decoding circuitry to be described in the next
section.

The 2N2222 transistors, when turned on by the shifting bit, connect
the LED common cathode to a Tow voltage. The drivers source current
to individual segments, lighting these up for the time that the

bit keeps that digit selected (nominally 8 ms at 4 MHz).

IOT PROCESSING

The INTERCEPT JR. uses Programmed Data Transfer techniques for all

I/0 operations. This technique uses the IM6100 IOT instructions,
which have an octal opcode of 6, to initiate peripheral I/0 operations.
These operations could be sensing of peripheral device status flags,
for example, "is TTY ready", or controlling device operation, for
example, "move disk head to next track", or a data transfer operation,
for example, "read character". The nature of the operation depends
entirely on the device interface circuitry.

The IM6100 also has the capability for INTERRUPT data transfers
and DMA data transfer, but these are unused in the INTERCEPT JR.
except for console interrupts described in the next section.

When the IM6100 fetches an IOT instruction, it executes an IOTA

cycle, during which the entire IOT instruction is placed on the DX

bus during LXMAR time. This means external address registers, such

as the ones on board memory chips, will all be loaded with the IOT
instruction. In order not to have a memory chip respond falsely,

the CPU suppresses the MEM SEL signal, and activates the DEV SEL, Device
Select, signal. The device address and control information present

in bits 3-11 of the IOT instruction are decoded and the DEV SEL signal
is used by the peripheral to enable the selected functions.

* These designations are used to identify the devices on the
schematic and on the assembled board.

4-4

The 340175 CMOS quad latch (D3) is strobed by LXMAR to latch DX3
and DX9, DX10, DX11 from the bus. The 74C42 CMOS BCD to decimal
decoder (E3) is fed with AX11, AX10, AX9 and AX3. The AX3 line
acts as an enable to the decoder and must be high in order for
the]D input to the decoder, which is the most significant bit, to
be Tow.

This means that all device addresses in this system should be

of the form 1XXXXX. The 74C42 is a control decoder and only eight
of its outputs, corresponding to the possible permutations of the
three bit control field in the IOT instruction, may be used. Of
these eight, only five, corresponding to I0T's with DX3 high and

0, 2, 3, 6 and 7g in their control field, are used. For simplicity
we shall assume a device address of 100000 or 40g.

These IOT instructions will now be described:

LOAD DISPLAY, or 6400 is gated along with XTC and DEVSEL
through an OR, the 34025 NOR (F3) followed by the 34069
inverter (F4), into the Load Enable pins of the display
drivers. During IOTA « XTC . DEVSEL time, this control
function will Tload the latches in the display drivers
(E2, F2) and the 34042 quad latch (D2) which drives the
multiplexing transistors.

I0T RESET, or 6406 is gated along with DEVSEL through the

two NOR's (E4) to generate an active low RESET. RESET fis

also generated on power-up, when the one input of the 34001

NOR gate (E4) is pulled high by the charging .47 microfarad
capacitor. The RESET Tine driven Tow will clear the IM6100
accumulator, load 7777g into the program counter, and halt

the CPU, besides resetting external logic. RESET is activated
on power-up through the RC circuit, at any time by pressing

the RESET switch or under program control. The RESET line

into the IM6100 is sampled at T1 time of the last cycle of an
instruction, and the worst case response time is 14 usec at 4 MHz.
The IOT RESET is a software simulation of the direct RESET

Tine needing approximately a dozen instructions. Including

the time needed to debounce the keypad, executing the routine,
etc., the response time is many milliseconds. Thus the CPU
does not actually do a RESET; it is made to clear all registers
initialize the PC to 7777 and 1is then halted.

I0T RUN, or 6407 from the control decoder is gated along with
DEVSEL. When enabled by XTC, the RUN/HLT 1line is driven by a
negative going pulse. Each such pulse causes the CPU to
alternatively run and halt by changing the state of the
internal RUN/HLT flip flop.

4-5

IOT CPREQ, or 6403 is gated with DEVSEL through the 34025
NOR (F3) and 34069 inverter (F4) into the active low direct
set input of the DFF 74C74 (F5). During IOTA time, DEVSEL
will set the DFF and provided that INTGNT is not active and
holding off the 34011 NAND (E5), a CPREQ will be issued.
The 74C74 1is reset by CPSEL.

CP TIMER EN/DIS, or 6402 is an IOT instruction that is used
to turn the control panel interrupt timer or or off under
program control. The CP timer circuit is formed by two
gates (34001 NOR at E4 and 34011 inverter at E5) and an RC
circuit (6.8 K R4 and .47 microfarad C16) and as long as

pin 8 of the NOR at E5 is low, the oscillator is enabled,
running and clocking the DFF at F5 at a 30 Hz rate. Thus,

CP REQuests are issued at a 30 Hz rate (the DFF being reset
by CPSEL in between). When IOT instruction 6402 is executed,
during IOTA . DEVSEL « XTC time, clock input pin 3 of the
74C74 DFF at F5 is driven low and the rising edge of DEVSEL
clocks in the data on DX11 into the flip flop. At this time,
the IM6100 is driving the DX bus with the accumulator so if
AC11 1is high, the DFF is set, and if AC11 is Tow, the DFF is
cleared. If the DFF is set, the CP timer 1is disabled by
holding pin 10 of the NOR gate at E4 at a Tow. If the DFF

is cleared, this gate is allowed to toggle and the timer runs.
Note that during normal operation, the CP timer is running,
and CPREQ and CPSEL are being generated.

The reason that CPREQ is not activated unless INTGNT is inactive
is that control panel interrupt requests have higher priority
than device interrupt requests or even DMA requests. Since
INTERCEPT JR. uses main memory for both control panel as well

as user routines, interrupt return addresses are saved in location
0000g. Thus, if CPREQ were allowed to be active at all times,
the user's device interrupt return address could be destroyed
by a CPREQ. INTGNT is activated only by INTREQ and is reset

by executing the first IOT instruction in the interrupt service
routine. At this time, the CPREQ is allowed to get through,

as long as the IOT did not disable the CP timer. If the

user is implementing an interrupting device interface

with PIE interrupts enabled, a single IOT would be used

to reset INTGNT, disable CPREQ and get an interrupt vector

from the PIE. At the conclusion of the service routine,

CPREQ would be re-enabled under program control.

The monitor firmware will be more fully discussed in Chapter
8. For a more detailed discussion of the control panel
capabilities of the IM6100, refer to the IM6100 brochure.
INTERCEPT JR. uses the same memory address space for control
panel, monitor functions and user memory. The monitor keeps
track of memory use by periodically examining a status word.
See the discussion on the monitor program for further details.

4-6

OPTIONS

The user may put another IM6312 ROM in the second socket provided

on the INTERCEPT JR. board. Extra decoders are not required. The
second ROM could contain user and/or factory generated programs such
as floating point math routines, I/0 handlers, diagnostics programs,
utilities, etc.

The following chapters will describe the optional boards that

may be plugged into the 6950-INTERCEPT JR. to expand its capabilities
The three connectors on the 6950 board are in parallel and bring out
the DX bus, IM6100 control Tines, select Tines, power connections

and unused IOT control 1ines from the 74C42 decoder (E3).

The basic 256 words of RAM may be disabled by tying chip select
high through the jumper option pins provided. This is done when
the 6951-M1KX12 JR. RAM MODULE board is to be mapped into the
Tower 1K field in 0000g to 1777g.

The information in this manual and in the IM6100 Family brochure
should help the user to design his own I/0 interface boards if
required.

INTERCEPT JR, MODULE SCHEMATIC

4-8

R2
g100

A2
IM6100

IN914

6 14 2 6 4 2 10 12
7 13 O3 7 5 3 9 1 VT
Dx3 Ibxq IDXxs Ibxg IDx7 IDXg IDXg IDXqq 4_ _ }5 [)7
1 1 I 14 .
7]RsEL 77| RSEL —an—13 4lp B0 qf2 2N2222
EL 7] OEL w Q2
STR 315TR DX LINE — AN 1] 71p Q 10 2N2222 3
ot oEH PULL-UP N wl, L2 s Pz Y *
DXg DXo RESISTOR ——AAAS D 4042 q 2N2222
as BS DIP PAC . :~ ;’ | 14 1 2N2222 N @)
2- 10K D Q CR4
6312 - 002 6::: l e 4 12 Eq a1 6.2v 2w
8 M-12 8 - NS . 5 11| s 2EZ6.2D5
10 10 . 10
L 6|1 6[1 6|1 61
11 1 | 10
i 2 _—— of5 : oIS | I T
13 3 b - b
m MONITOR 1 He e ¢ 5] | l I
RAM Iy L 1% 1], cosstt dfg a]d o | P2 O |,
16 e
swmrers Lo " 020 DX11 DX11 7 1 15 2], | or—O
s > A 14 3 ADDRESS ™
R Vee L-ct BL LT Led 9 |
- Vee)
pam Rl w0S 2ofcs +ofcs1 ———5o[%1 s P s l | | I
Vec € —MWN—O0 | 0| CS2 30| CS2 — — —379|CS2 6]1 61 61 61
10K —|sTR {STR — — —5s™R s py RE] 107 j l
POWER o WE |12 o|we L — —'2olwe D |12 b
e 2 N1 2 M1 2 B1 He F2 U e | I
SWITCH B 2] i l
o1 o T]A0 6524 1% 6524 — 1" g5 1], cowsm d ,;“ 51a DLs I o | ou pL8
SUPER SEL 15 15 [5] — i e
4 I M-0 T M-1 — — 4 M-11 7 ? |15 1 | I op O
7 7 [1] A I 7] g | MEMORY I P2
5 3 9 BL_CT g9]
10 10 [10
| 10] [10
114 11) Ao, A 7Y Vce
7 7 D — —1A7p D CRS
a L o Do Dy Do 1 0 1 " TP5 J1,2,3
K L, L ® e, I° 2 e 5 3 o)
0 - LI @ . - @ @ 2z
T £ £ £ B G z g g |£°TIF 3 2 3
12 o a o H 5 @) a a a3 & Vee SUPERSEL|
37 MEM SEL MEMSEL| |
.38 CP SEL CPSEL] wm
o 31 SW SEL SWSEL| ¢
}__RUN - RUN| 21
3 DMA GNT DMA GNT| 5o
|4 DMA REQ DMAREQ]
0.5 CP REQ CPREQ| 4o
o 6 RUN/HLT RUN/HLT]
o7 RESET RESET| 47
13 xTC X1c| R
10 LXMAR LXMAR] 4
INT/SKP
o
32 co ol |,
o33 C1 c1|
34 C2 c2
(35 skp K
35 SKP/NT|
16 DXp oxo| 4
17 DXq DX1| ,
18 DXy oxz| 5
19 DX3 pxa] .
20 DX, oxa|
21 DXs DX5| o
22 DXg DX6|
23 DX7 Dx7] 4o
24 DXg X8| .
25 DXg Dxs| ,,
27 DXqg oxto] 3
'8 DX11 DX11 14
11 WAIT WAIT
o1 WA XTA 1.?
[12XTB XTB| g
30 DEV SEL DEVSEL] .
36 IFETCH IFETCH|
39 INT GNT INTGNT|
40 DATA FLAG DATAF| 44
29 LINK unk|
© 64X1
[, 4025 069 saxtl oy
H 0N 9 1 12 waxs| &
XTH
2 DIS LD _(64X0) e i b 0 <] 15
4069 3 w
E =0 4 o«
] ol 2 El o
a g =
fa £ 2 z| 8] 5] & = & Sl [P
. . @ =ls] |_ 9 I
Qi — o - [. F4 o~ NOTE: LINE A,
a o 1 LEFT FOR USER
i g g 3 2 g g | o
a R
o L_2] 3] & @ Vce | D4
Q 74C74
[4q J025 4069 5 4, 4011 3 sToP Vee
Q o 10 ALY = o = - moOP
"2 10 11 3 _ I u 5
o — =9 o CLK a 12 R 9 2| E5 @ z
13] w > F
‘ = | 7acTa - & 2 IN914
< Q4 9] CR1
Vee <& F5
o RAM +
Vec E Vce
g 12 ON Owen
R POWE
2 A2 Cc. POWER JUMPER Bg{':'PERY
>] Vec €0 g pg
w % 11 SWITCH A
< |>? § 3 xtc_13 | E5 L e
< < g §
A5 O x =|%(% GND <& —
12 z [e] = ool
ofo1 = TP7 o
: 1
i3 2
E3 3l
14 74c42 4|5
6
15 sfo
sfoL
702
Sloti-
ojo1-

5V - 10v
DISPLAY
JUMPER

ry

CR2

CR3

CHAPTER 5
JR. RAM MODULE

INTRODUCTION

The JR. RAM MODULE, 6951-M1KX12, pictured in Figure 5-1, allows
the user to expand the complexity and size of the programs that
may be written.

l

<—-— BATTERY BACKUP

‘ FOR RAM
..... = Al : NON-VOLATILITY
TWELVE IM6518 — — >
1024 x 12 CMOS POWER FAIL
RAM ARRAY DETECTOR

FIGURE 5-1

| SELECTLOGIC

ADDRESS, STR

& WE BUFFERS
FIELD JUMPERS

ADDRESS BUFFERS

The board is fully nonvolatile using penlite chips to retain the RAM
chips in the low power data retention mode. Thus, the user may

write programs on a board, unplug it and use a different board with-
out Tosing programs. The board may be mapped into memory space
according to several jumper options. The board may also be configured
as either an Instruction Field or a Data Field by jumper option.
(Refer to the IM6100 brochure and Applications Bulletin M007)

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 X

12 array for this board. The IM6518 is organized as 1024 X 1 with
separate data-in and data-out pins and ten (10) address pins. (Refer
to the IM6508/18 data sheet for further information.) INTERCEPT JR.
uses a single bus for all address and data I/0, therefore, the DI

and DO pins on the RAM chips are both connected to the respective DX
line. The ten (10) address lines are buffered using ten gates from

5-1

CHAPTER 5
JR. RAM MODULE

INTRODUCTION

The JR. RAM MODULE, 6951-M1KX12, pictured in Figure 5-1, allows
the user to expand the complexity and size of the programs that
may be written.

BATTERY BACKUP
FOR RAM
NON-VOLATILITY

TWELVE IM6518
1024 x 12 CMOS
RAM ARRAY

POWER FAIL
DETECTOR

B~ FIELD JUMPERS
FIGURE 5-1 o

— CHIP & FIELD
SELECT LOGIC

ADDRESS, STR

& WE BUFFERS
FIELD JUMPERS

ADDRESS BUFFERS

The board is fully nonvolatile using penlite chips to retain the RAM
chips in the Tow power data retention mode. Thus, the user may

write programs on a board, unplug it and use a different board with-
out losing programs. The board may be mapped into memory space
according to several jumper options. The board may also be configured
as either an Instruction Field or a Data Field by jumper option.
(Refer to the IM6100 brochure and Applications Bulletin M007)

DISCUSSION

Twelve (12) IM6518 CMOS RAM chips are used to implement the 1024 X

12 array for this board. The IM6518 is organized as 1024 X 1 with
separate data-in and data-out pins and ten (10) address pins. (Refer
to the IM6508/18 data sheet for further information.) INTERCEPT JR.
uses a single bus for all address and data I/0, therefore, the DI

and DO pins on the RAM chips are both connected to the respective DX
line. The ten (10) address lines are buffered using ten gates from

two 34050 hex CMOS buffers (Gl and G2). Two gates are used to buffer
LXMAR and XTC. These two signals, as previously explained in the
discussion of the 6950 board, strobe memory addresses into the RAM
chips and enable the chip for data write operations.

The SUP SEL signal is also buffered. This signal selects the
RAM for both control panel and main memory use.

The two most significant bits of address are latched in the 340175
quad D-type latch (G3). This latch provides both true and
complemented outputs, and, by connecting the appropriate jumpers
to the 34023 three input NAND (F3), the 1K RAM field provided by
the board may be mapped into any of the four 1K fields of the
total 4K memory space addressable by the IM6100 microprocessor.

Since the highest 1K field is occupied by the MONITOR ROM and
256 words of RAM are provided in the Tower 1K field by the 6950
module, normally the jumper should be placed to map the RAM into
one of the middle 1K areas, for example 20008-3777g or 4000g-
5777g. '

If these two fields are being allocated for the PROM board, 6952,

the RAM may be mapped into the 1K base field in which it will

overlay the 256 words provided in the 6950 board. This will

provide the additional 768 words that would otherwise be unobtainable.

Table 5-1 provides the jumper connections for different mappings.

TABLE 5-1
Desired Mapping Strap* Pins 9, 10
0-1777 To Pins 5 & 8
2000-3777 To Pins 5 & 6
4000-5777 To Pins 7 & 8
6000-7777 To Pins 7 & 6

* These strapping option pins are numbered and located
between the 340175 at G3 and the connector pins. As
an example, for mapping 2000-3777, pins 9 and 5 should
be strapped and pins 10 and 6 must be strapped, or
alternatively, pins 9 and 6 strapped together and pins
10 and 5 strapped together.

The board may also be configured to be either an instruction field
or a data field by an appropriate jumper connected to the DATAF
pin. Normally, the field jumper from test point 2 is connected

to Vgc and distinctions are not made between IF and DF. These
distinctions are usually required only in extended memory systems
(Refer to Applications Bulletin M007)

5-2

The RAM on this board may be made nonvolatile by using two "AA"
type penlite cells in the chips provided. If V¢C from the "D"
cells falls below 3.9 volts, the zener diode CR2 turns off,
turning off transistor Q2, which in turn cuts off the series
transistor Q1. Diode CR1 becomes forward biased, and the "AA"
cells power the RAM array in the data retention mode.

5-3

JR. RAM MODULE SCHEMATIC

DATA F

DX

DXq

LXMAR

SUP SEL

XTC

DXy
DX3
DXy
DX5
DXg
DX7
DXg

DX10
DX11

@

Svo~NaG

11

12

13
Z,22

2,8

2N3638

Q1

Vee RAM V¢, <€ ’ '
1
3 FIELD JUMPERS . CR1
12 o otrm— c1 IN914 4700 CR2
13 4 LA [17]cs2 L 17.]cs, - rfcs, 68uF |~ o R 3oV
Iojcs 1ofcs | 15)cs - 1olcs ENER
P P P Pk 2 1 2 1 av g 400mw
4089 STR STR 15]5TR —_—— —— ———STR 2 “AA” — B1 IN748
15 e 150 we L Slwe — — — 155w CELLS
3], 3]a 3| o 3la
4 2 7 I a]°)" a]™ 2N2222
apb———To 4023 Aq -
o aBE——— 50 o2 4 51, 5 5 — 5 Q2 ™
oz 6 10 < 612 F1 6 E1 6 D1 - s A2 K
P @ gfs ° o 7] es8 7] . 6518 7] » 6518 —_ 7] 2 6518
e o . -
2] 40175 gfho 0] 2 10] « 10} » - L
o aju_ 1] . 1) * N _ m N
13 apis 12] ° 12 12 o 12
D ale 13 13 13 _ 13
CLK MR i1 i P 14] —-—_— 1]
s |1 i 16] 54 il i 177
NOTE: 4023 & 40175 ON 1°" oo Do Do Do
RAM Ve, 3 S 5
Vee Vee cc 8
1 _4023 51
9
2] F3
9 8 4069
- 1 10
4069
1N 15
ly 1 2
4050
5 I\4
V 3 4
4050
—_ 4023
13
- 10 5|> 08
Vee

GND

» Voo

CHAPTER 6
JR. P/ROM MODULE

INTRODUCTION

The JR. P/ROM MODULE, 6952-P2KX12, pictured in Figure 6-1, enables
user developed programs to be stored in user programmable read
only memory.

BIPOLAR P/ROM POWER STROBE
SOC!(ETS DRI\!ERS

ADDRESS RANGE |
5000g - 5777g

ADDRESS RANGE
40008-47778‘

ADDRESS RANGEJ
Figure 6-1 3000g-3777

ADDRESS RANGE
2000, - 2777

ADDRESS
LATCH

MEMORY ENABLE
AND POWER STROBE
DECODING LOGIC

The user has the option of utilizing the IM5623, 256 X 4, or IM5624,
512 X 4, three-state output Avalanche Induced Migration (AIM)
programmable bipolar P/ROMs to obtain from 256 to 2048 words of
program. Power dissipation is minimized by supplying power, via
the POWER STROBE DRIVERS, only to those P/ROMs which are enabled.
ADDRESS LATCH, MEMORY ENABLE AND POWER STROBE DECODING LOGIC are
pictured in Figure 6-1.

The figure shows the address range for IM5624, 512 X 4 P/ROMs. For
the user's convenience, the address range for the IM5623, 256 X 4,
P/ROM and IM5624 are shown in TABLE 6-1. The user should change
address range, as required, when mixing IM5623 and IM5624 on a given
module.

6-1

TABLE 6-1
ADDRESS RANGE IN OCTAL IM5623/IM5624

IM5623 (256 X 4) IM5624 (512 X 4)
2000-2377 2000-2777
3000-3377 3000-3777
4000-4377 4000-4777
5000-5377 5000-5777

DISCUSSION

This text should be used in conjunction with the enclosed
schematic for a complete understanding of the 6952-P2KX12
JR. P/ROM MODULE.

The memory address is latched from the DX bus by the two 74LS174
hex Tatches when they are strobed by LXMAR.

The lower nine bits of the address go to the address inputs of
all the twelve P/ROMs, which are arranged in a matrix of four
rows of three.

The higher order three bits of the address are decoded by the
74LS138, and it generates a chip enable to the appropriate row

of P/ROMs. This chip enable is also used to turn on the two
transistors in the appropriate power strobe circuit in order

to connect V¢c (Tess a VCE(SAT%) to the power pins of the enabled
row of P/ROMs., There is no delay penalty in power strobing
hecause the bipolar P/ROMs are much faster than required by the
CMOS processor. The average power dissipation is reduced to
approximately 5% of the non-strobed case. With the chip enable
high, the P/ROM outputs are in a high impedance state permitting
XTC to be used as one of the signals enabling the 74LS138
decoder. The P/ROM outputs, therefore, may be directly connected
to the DX bus. The XTC Tline signals the read and write phases of
the memory cycle. Thus, XTC when high, enables decoder pin Gl
during the time that the address is latched into the 74LS174's,
and remains enabled during the time the address is decoded, the
P/ROMs are enabled, strobed and accessed. XTC goes low during the
second half of the memory cycle, disabling the P/ROMs.

Decoder pin G2A is enabled only during the SUP SEL time, that is,
when either MEMSEL or CPSEL is active. Therefore, the memory is
really powered only for three clock cycles.

The uppermost 1K of memory is in the monitor ROM on the processor

board, so the decoder does not use the pins for a decoded zero
and one.

6-2

In the event that extended memory is used, the DATAF (DATA Field)

pin is jumpered to the G2B enable pin of the 74LS138 decoder.

This signal is normally Tow, enabling the decoder, and is activated

to the high state during the execute phase of indirectly addressed
AND, TAD, ISZ and DCA instructions (see IM6100 data sheet) so that
data transfers are controlled by the Data Field, DF, and not the
Instruction Field, IF, when addressing more than 4K words. Otherwise,
the G2B pin may be Teft grounded by a jumper.

Table 6-1 shows the address space occupied by the P/ROMs. The

user must supply at Teast three P/ROMs and can use them anywhere
in the address space provided.

6-3

JR, P/ROM MODULE SCHEMATIC

6-4

[powenstaose g vee 1 [T] r 1o

I REPEATED 4 TIMES

R12 7 I | POWER STROBE I POWER STROBE POWER STROBE
2N3638 REPEAT | REPEAT | | REPEAT
| IN I IN, | IN
lc7|
a Q4 | | 010 | Q6
15 I_ 001 4F
N o RN Y\ S N\ A N . O AN N
xTc| R DY P 1lo24— out 3 uT n out S out
SUPSEC| x By 41624 2[02
1 2 1 5 12
DATAF| 18 o © G28B 3o
INSTUCTION . 3lc afl
FIELD 2 10
Vee |22,z gevec JUMPER o
1 g 6 7
sjo—o0 o
cs 7fol—o0 o——¢
Gnd{2,B}—— Gnd 7405138 4 5
MONITOR
— JUMPERS
74L5174
DXg 3 3 b a 2
4 5 16 16 16
Dx1} 4 b Q 13 Vee 3 Vee 5 Vee
6 7 BTN 74°| CE —————————o[cE
oxz| s D Q 14 1ag Ag Ag
A5 15 15 15
1 10 1] 1] * 1]
pxz| & D a . o He
2 5624 21 5624 . 5624
13 12 3] e 3 3 B4
oxg| 7 D . A4] . c4 nk 2000 - 2777
14 15 7 7] » 7] e
pxs| 8 D .
s 6] 6] e 6]e
CLK 5 5 5
A0, 03 oy o0y 200, 03 02 04 R0y 03 05 0
9 |10 |11 |2 9 |10 |11 |12 9 |10 |11 |12
of Tasme
2
pxg| o D
6 a v.. s v e I L5
4 5 13 cc 13 cc 3 cc
DXz} 10 D Q — 2O ¢E ————°|F — e [+
A A
6 7 15]%8 15]°8 15]"8
pxg| 11 D Q . . .
B5 il ° 1], il
. 1 10 2 5624 2 5624 2 5624
Dxg | 12) o] R .
13 31° A3 sl e c3 3l - B3 3000 - 3777
12 4] e 4 .
DX 3 Q
10 1 D] 7] « 7] * 7] e
DXy} 14 L]) als 6] 6] 6],
1 51a 51Ag 51ag
CLK 00, 03 0 0 04 03 0y 04 05 03 0y 04
9 9 |10 [11 |12 s [10 |11 [12 9 |10 [11 |12
LXMAR| 1 oot 16 16 oy I
13 Vee 3) ce Vee EDN ¢
L 13, [13
I 741504 120 CE 14 13
Ag Ag Ag
15 15 15
1] °® 1° 11
2 5624 2| * 5624 2 s624
Z 4000 - 477
3le A2 3| e c2 3] e B2 00 - 4777
af e 41 e 4) e
7] e 7] o 7] o
5, N :°
5
Ado, 03 0, 04 Adg, 03 03 o0 Avo; 03 02 0q
9 |10 [11 |12 9 [10 |11 |12 9 [10 |11 |12
v.. |8 Vee |18 Vee &
13 ce 13 13
CE L Blee L —olcE
1)) 2 Y T3 Y
15]7° 152 158
1 1 5624 Il g 5624
2 5624 2]° c1 2] B1 5000 - 5777
3] Al 3] 3le
a|e 4| e 4l e
7] 7] o 7] o
5] 6] o 5],
5 5l 5
Ao, 03 0 04 09, 03 03 04 Avo, 03 0 04
9 (10 [11 |12 9 |10 (11 |12 9 |10 ln I12

CHAPTER 7
JR. SERIAL I/0 MODULE

INTRODUCTION

The JR. SERIAL I/0 MODULE, 6953-PIEART, pictured in Figure 7-1,
allows the user to communicate with a 110 baud full duplex terminal
with either an EIA RS-232C type differential voltage interface or

a 20 mA current Toop interface.

TTY TRANSMIT
OUT (20mA FDX)

READER
RELAY
DRIVER

EIA RS-232C —

TRANSMIT
ouT

Figure 7-1 IMG101
ADDRESS

SELECT T

SWITCHES

IM6101
ADDRESS ”
PULL-UPS

ASYNCHRONOUS
SERIAL
INTERFACE
CONNECTOR

EIA RS-232C
RECEIVER IN

TTY RECEIVER
IN (20mA FDX)

B~ CRYSTAL

IM6403 UNIVERSAL
ASYNCHRONOUS
RECEIVER
TRANSMITTER UART

IM6101 PARALLEL
INTERFACE
ELEMENT PIE .

This board uses two CMOS LSI chips, the IM6101 Programmable Interface
Element (PIE) and the IM6403 Universal Asynchronous Receiver/
Transmitter (UART). The MONITOR ROM provided with the 6950-INTERCEPT
JR. MODULE contains a bootstrap loader for loading programs from the
6953-PIEART using BIN formatted media, such as paper tape punched

out by the 6950-INTERCEPT JR. via the 6953-PIEART and an ASR-33
Teletype using the Memory Dump routines contained in the MONITOR ROM.
This allows the user to create programs, dump them out on paper tape
and use them at a later date by simply reading the tape back in.

DISCUSSION

The data sheets on the PIE and UART should be studied in order to
fully understand the description of the operation of this module.

It will also be beneficial to study the 1isting of the PIE-UART
routines in the MONITOR ROM. These routines are listed in Tine
numbers 1171 through 1511.

The PIE address used is 00111, therefore, all IOT instructions
to the PIE are of the form 616X or 617X in octal.

By using a UART, the amount of code required to do serial I/0
is considerably reduced because bit timing is taken care of by
the UART. Also, the programs become insensitive to the CPU
clock frequency. Both the PIE (B3) and the UART (B1) are
general purpose programmable devices and, therefore, need to
be programmed or initialized to specific system requirements.

Some functions are programmed by hardwired pin connections and
others by MONITOR ROM firmware routines.

The DIP switch is set up to program the PIE SEL 3-7 inputs to

the address 00111. It also grounds CNTRL pin 2 of the 6403

UART selecting the internal 11 stage divider. This divider's
output is the 16X clock used by the receiver register and
transmitter register. The 6403 is designed to be directly
clocked by a crystal. The crystal used is a_TV colorburst crystal
of 3,579,545 Hz. When this is divided by 211 and 16, the baud
rate of 109.2 Hz is within the tolerance Timits of a 110 baud
Teletype interface. The DIP package of 10K resistors (A3)

pulls up the SEL 5, 6, 7 inputs and the PIE series priority input
pin 3. The PIE control registers A and B and the vector register
are tnitialized by the INPIE routine in firmware. Table 7-1
shows the constants loaded into these registers.

TABLE 7-1
CONTROL REGISTER A

FL4 FL3 FL2 FL1T WP2 . WP1 . IE4 IE3 IE2

FL 2, 3, 4 bits set high cause the unused FLAG outputs
2, 3, 4 to be at high Tevel

FL 1 bit set low causes FLAG output 1 (Reader Run
Relay Flag) to be at low level

WP 2 set high means positive WRITE POLARITY or
positive pulses at WRITE output 2 (used to
load the UART CONTROL REGISTER)

7-2

WP 1 set low causes negative pulses at WRITE output
1 (used to load the UART TRANSMITTER BUFFER
REGISTER from the data inputs)

IE1, 2, 3, 4 set at 0 disables all PIE interrupts.

TABLE 7-2
CONTROL REGISTER B

0 1 2 3 4 5 6 7
SL4 SL3 SL2 SL1 SP4 SP3 SP2 SP1
0 0 1 1 0 1 1 1

NOTE:

1. Sense input S4 is not used, therefore, SL4 and SP4 bits
are irrelevant.

2. SL 3 =0 and SP 3 =1 program the SENSE3 flip flop to be
set by a positive going edge. SENSE3 is connected to the
serial data input of the UART and is used for start bit
detection.

3. SL2=1and SP 2 =1 program the SENSE2 flip flop to be
set by a high Tevel. SENSE2 is connected to the TRANSMITTER
BUFFER REGISTER EMPTY (TBRE) output of the UART which indicates
that the UART transmitter is ready for new data. The TBRE
signal is a high level.

4, SL 1 =1and SP 1 =1 program the SENSET flip flop to be
set by a high level. SENSE1 is connected to the DATA
READY (DR) output of the UART, which is a high Tevel indicating
that a character has been received and transferred to the
receiver buffer register.

TABLE 7-3
VECTOR REGISTER

01 23 456 7 8 9 10 1
INTERRUPT VECTOR VPRI1
0 00O0O0OOOOOO O O

NOTE: The PIE interrupts are disabled in this application, and
the sense flip flops are tested by the firmware with
SKIP instructions.

7-3

The PIE's READ2 output is unused and the READ1 output is connected
to the UART RECEIVER REGISTER DISABLE (RRD) and DATA RECEIVED

RESET (DRR, an active Tow input) so that when a received character
is ready, R1 which is normally high (keeping the RECEIVER REGISTER
disabled) pulses low during IOTA.DEVSEL, transferring the receiver
data to the IM6100 via the DX bus while simultaneously clearing the
DR flag in readiness for the next character.

The UART is also initialized both via hardwired connections and
under program control.

STATUS FLAGS DISABLE (SFD pin 16) is grounded to enable all UART
status flags. The UART CONTROL REGISTER bits are loaded from the
DX bus as shown in Table 7-4.
TABLE 7-4
DX Lines 0 1 2 3 4
Designations PI SBS EPE CLST CLS2

Constant 1 1 1 1 1

PI =1 PARITY INHIBIT - Parity generation and checking
is inhibited and PARITY ERROR (PE) output is
forced Tow.
SBS =1 STOP BIT SELECT - In conjunction with CLS1 and CLS2,
this selects two (2) stop bits.
EPE = 1 EVEN PARITY ENABLE - Irrelevant as parity is
inhibited.
CLST = 1) CHARACTER LENGTH SELECTED - These bits select on
CLS2 = 1) eight-bit character.

A11 unused pins are brought out to test points, to facilitate
experiments by the user.

The UART TBR parallel data input bus and RBR parallel data output
bus are connected to DX4-11.

The serial input and output pins of the UART go to both EIA-RS-
232C and 20 mA current Toop interface drivers and receivers.

7-4

Table 7-5 shows the connector and jumper options for the two
interfaces.

Serial output bits from the UART cause the push-pull EIA driver
to switch between Vgc and -12 volt (-12 volt must be provided
externally) and transistor Q2 to supply 25 mA nominally (5 volt =
(R5 + R4)) to the current Toop interface.

Briefly, the PIEART interface works as follows once the interface
is initialized. When transmitting to a terminal, the IM6100
executes a waiting loop using a SKIP on SENSE2 instruction
followed by a jump back. SENSE2 as shown in Table 7-3 is set
when the TRANSMITTER BUFFER is empty. When the character has
been transmitted, the waiting loop is exited and a WRITE1
instruction is executed writing a new character into the UART
transmit buffer. The PIE strobes the DX bus at the proper time
when this instruction is performed.

When receiving from a terminal, the IM6100 resets the SENSE3

flip flop by executing a SKIP on SENSE3 instruction. This flip
flop senses the start bit of a character. The READER RUN flag

is set by executing a SET FLAG 1 instruction to the PIE. Now the
interface is ready for a character from either a tape reader or a
keyboard and a wait T1oop is entered. This joop is exited when

a start bit is detected and the READER RUN flag is cleared just
in case the data source was a reader. This stops the reader from
advancing until the CPU is ready for another character. Another
wait Toop is entered and this time it is exited when the DATA
RECEIVED flag goes true, setting the SENSE1l flip flop. The
accumulator may then be cleared and a READ1 command executed. This
causes the PIE to enable the UART receiver buffer onto the DX
bus, simultaneously clearing the DR flag.

When reading BIN tape, the abcve transmit and receive program
sequences are called as subroutines, while the main program performs
functions such as testing characters for a rubout, accumulating
checksums, testing for leader-trailer, etc. (Refer to MONITOR
description)

Whenever SKIP on SENSE flip flop instructions are executed, the
PIE will test the state of the desired flip flop and, if it has
been set, it will assert the SKP/INT output causing the IM6100 to
skip the next instruction. The sense flip flop is then cleared.
For more details, refer to the PIE data sheet.

TABLE 7-5

20 mA LOOP/EIA RS232-C CONNECTOR PINOUTS

OPTION

STANDARD CONNECTION

MODIFIED CONNECTION

Voltage Change
Option

Driver/Receiver
Change Option

EIA Earth
Ground Option

+5 VDC on Ve

Connect points #1 and
#2

20 mA Toop

Connect points #4 and
#5

No EIA Earth ground

+10 VDC on V¢

Cut between points #1
and #2 and connect
points #1 and #3

EIA RS232-C

Cut between points #4
and #5 and connect
points #5 and #6

To connect Earth
ground, tie points #7
and #8 together

20 mA Loop

O W 0 N O O & W N —~

—

CONNECTOR PINOUTS

EIA RS232-C

Signal Pin Signal
XMIT+ 1 Earth Ground
KEY 2 XMIT
XMIT- 3 RCVE
RCVE+ 7 Signal Ground
RCVE- 18 -12 VDC
RDR+ A1l others are N.C.
RDR- Pins 5 (Clear to Send)
-12 VDC 6 (Data Set Ready)

8 (Received Line Signal
N.C. Detector)
N.C. may have to be tied to VCC

7-6

with some terminals

In order to use the module, it must first be connected to a serial
ASCII 110 baud tape reader, typically an ASR-33 Teletype equipped
with the reader. The connection is done by a cable connecting the
20 mA loop connector pins to the Teletype terminal strip (Figures
7 and 8 of Intersil Applications Bulletin M005 "Teletype Interface
for the IM6100 Microprocessor"). The external =12 VDC supply is
connected and the Teletype is turned to the LINE position.

Note that the Teletype must be equipped for 20 mA full duplex
operation and should have a reader run relay installed.

To read BIN format tape, the tape is placed in the reader, the key
is put in the START position and the sequence CNTRL 1 is pressed
on the INTERCEPT dJR.

As explained on page 2-5, this function will activate the loader.
At the end of the load sequence, the machine is halted showing

the AC (SAVAC Tocation 0140) whose contents represent the checksum
and should be zero for a valid load.

To dump memory onto tape, the starting and ending address of the
block should be entered into locations 0176 and 0177 and the program
run starting at location 7510. Naturally, the tape punch should

be turned on.

Chapter 8 page 14 describes these routines in more detail.

Table 7-6 lists the PIE-UART instructions as used by the MONITOR.
These instructions are also listed in the program listing on
page 8-16C.

TABLE 7-6
PIE-UART INSTRUCTIONS

6160 READ1 (Reset UART Data Received Flag and read
received character)

6170 READ2 (Generate read strobe 2) - Not used

6161 WRITET (Load UART Transmit Buffer)

6171 WRITE2 (Load UART Control Register)

6162 SKIP1 (Test state of sense FF1; skip if set
by UART Data Received Flag)

6163 SKIP2 (Test state of sense FF2; skip if set
by UART Transmit Buffer Empty Flag)

6172 SKIP3 (Test state of sense FF3; skip if set
by START bit)

6173 SKIP4 (Test state of sense FF4; skip if set) -
Not used

6164 RCRA (Read control register A)

6165 WCRA (Write control register A)

6175 WCRB (Write control register B)

6174 WVR (Write vector register)

6166 SFLAGT (Set FLAG 1) - Reader Relay Flag - ON

6176 SFLAG3 (Set FLAG 3)

6167 CFLAGT (Clear FLAG 1) - Reader Run Relay Flag - OFF
6177 CFLAG3 (Clear FLAG 3)

In addition to these, the IM6100 internal IOT instruction 6007g
or CAF (Clear A1l Flags) clears the sense flip-flop thus
clearing all interrupt requests.

The serial I/0 module is typically used with the INTERCEPT JR.
BINARY LOADER and MEMORY DUMP routines in order to read BIN
format tape and dump a block of memory onto BIN formatted tape.

The PIE-UART interface is initialized only when the BIN and

~ DUMP programs are used. The user has access to these routines
via the software subroutine call stacking mechanism in case the

serial port is to be used for other purposes, such as printing

characters on the Teletype.

The user may also write his own code in RAM for interface
utilization and handling Teletype I/0.

Example 14 in Chapter 3 shows how the MONITOR subroutine may be
called to implement Teletype keyboard and printer operation.

7-8

JR, PIEART SERIAL I/0 MODULE SCHEMATIC

7-9

RESET

DXg

DXq

DXz

DX3

DX4

DXs

DXg

DXz

DXg

DXg

DX10

DX11

XTC
LXMAR
DEV SEL
INT GNT
Cq

C2

SKP/INT

J1

o o & w

14

NOTE: ALL RESISTORS ARE % WAﬁ

13 [y Lk : o> TP15
14 I’:
a—— o - #OXMT +
23 MR v1 I xvaL 1 2N2222
35 TTY TRANSMIT
36 o 40 Q2 2‘: ’ OuTPUT
sBS Cout . —> TP6 2N3638 4
i o
43 XMT -
38 cLsy 3) Q3
2N3638
cLs, Tour |2 Q01 4F
2
p
33 1g c3 I gm
I‘[_s 001 4F 1000
R
8 ™1
32177 +5v
T s 6403 /77
R
7 UART Otz 4069 A2v
kil B1 1IN0 10
s 7 © 820 CRy
LTlns EIA JUMPERS 4069 R17 R13 IN914
5 4 10K
hao Ts A [20 0—0O 12 3 #4 RCVE+
S P CRg TTY RECEIVER
c4 INPUT
29 T.47 uE IN914
T
I[. onTRL |2 #5. RCVE-
Ra TBRE 22
28 2 R12
— TRE R14 270
3.6K BB-2
10 19 Q6
R3 DR
2 2N2222
£1i CRL
T n TeAL {2 “12v
R2 RRD |4
hzs T DRR |18
JEr] sFp 1€
1 Vee =1 +5v
Gnd =3
Gnd ¢
684F || T
LLI CRy
5.1 VOLT
2 400 MW
ZENER
" TTY POWER IN751
DX1q 9] & PN, JUMPERS 3
25 1
DX1g e EL O TP3
2 oxg wz |38 s +5v
23
DXg s1|Z © P13 CRy
22 P! IN914
DXz s2]& ©TP4 ;2;0.
21 oy)
20 a7 # RDR+
200 pxs R2 > TP8 R3
19 4069 ke
DX4 5 5.6K
18 s3 —O> TP21 51508 AA 2N3638 CR READER
DX3 . a1 3 RELAY
17 'sz 6101 sS4 TP20 IN914 DRIVER
6
1 EIA-AA JUMPER ‘
18] oy PIE P2 > TF1 1 uF
154 bx & AA-1 ot
0 F2 |2 © TP10 °_<= P—
13 30 8 7
” XTC F3 - TP11 1200
A R1
28 LXMAR ra 2 O TP12 18
©JDEV SEL) #8 12 VOLT SUPPLY
2L iNT GNT . L 60 MA LOAD MAX
3} c, SEL3 ABZ
1
I 18 seLa |2 6 —of ¢
sl seLs U 26—~ol ¢ 2
o] skp/INT 12 3 o
SEL6 o —o0—9 > = TEST POINT % = CONNECTOR POINT CD =EIAPOINT
Vee-1 se7d o ‘o—o0l
Gnd =27 p PO — - DIPSWITCH
3 4. 10K|
v V Vee
P19 TP7

CHAPTER 8
INTERCEPT JR. TUTORIAL SYSTEM MONITOR PROGRAM

The MONITOR uses main memory to store control panel routines in
order to keep the system inexpensive. The IM6100 architecture,
however, will allow control panel programs to exist in separate
memory totally transparent to the user.

Figure 8-1 shows the memory allocation map for INTERCEPT JR.

The MONITOR uses several locations in page 0. These are listed
in the program.

Some of these locations, SAVAC, SAVMQ, SAVFL in locations 0140g,
0141g, 0142g, are used by the MONITOR to store IM6100 registers
and flags and enable the user to conveniently examine and alter
these registers.

Most other locations are used as temporary workspace by the
MONITOR routines. Locations 167 to 177 are used as a software
stack for subroutine return addresses.

The stack is initialized on power-up and on every pass through
the control panel interrupt service routine.

WORD PAGE
0
256 BIT RAM 0
IM6524 1
377
6000 304
ROM
IM6312-002
7777 37g
FIGURE 8-1

8-1

START START UNDEFINED CONTROL STATE

ADDRESS ADDRESS 114
7777 6000
N N3 CALL CLKPD
CP MODE MAIN MODE
START POINT START POINT
N3 A
SAVE AC, SAVE AC,
) ESTABLISH THE
FLAGS IN RAM FLAGS IN RAM TMP POINTER
N 4
CLEAR MEM SET MEM ‘I/
BIT IN STATUS 81T IN STATUS Jump THAU
POINTER TABLE
TO PROPER
ROUTINE
BITO
INAT
ESTABLISH CP STACK BITI 0 :%J:‘ZE
LOCATIONS (N RAM LAC
BIT2 GO TO THE
_n.ow KEYPAD DEPOSIT ROUTINE
BIT3 G0 TO THE
SET PC ROUTINE
BIT4 GO TO THE
DEC PC ROUTINE
0 TO QUT
TEST FOR YES
“C"KEY
BITS GO TO THE
RESET ROUTINE
HJe GO TO THE
v HALT ROUTINE
BIT7 GO TO THE
RUN ROUTINE
RESTORE
oL Ma
aiITe GO TO THE
SINGLE INSTRUCTION ROUTINE
© SN
BiTa GO TO THE
MOVT DISPLAY BLANK/RESTORE ROUTINE
RESTORE AC CLEAR MEM BLX
AND FLAGS BIT IV STATUS
N L GO TO THE
RETURN TO RESTORE AC BIT 10 LOADER ROUTINE
USER STATUS AND FLAGS a1
THROUGH T
Loc ¢ JUMP INDIRECT
THRU oLd M@ BITI G0 TO THE
CEND) I MICRO ASSEMBLER
(END)

8-2

SwWDB
SAVE LINK

LOAD KEYPAD
INTO RAM
€
TIME OUT
4 MSEC

CALL REFSH

ESTABLISH THE
WAIT COUNTER

N

TIME OUT

5 MSEC

CALL REFSH

COUNT DOWN
ONE CYCLE
ON WAIT

LOAD KEYPAD
TO AC
N

SUBTRACT OLD
KEYPAD READING

NO

YES

RETURN WITH
SW REG
IN THE AC

<& >

YES
RESTORE OLD AC

SAVE AC
AND LINK

TEST FOR YES

BLANK FLAG

CLEAR BIT
BUCKET

GET DIGIT CODE
FADM STATUS,

QO TO ROUTINE
FOR DIGIT CODED

L

SUBROVUTINE OVERHEAD

JUMP TO A SUBROVUTINE
THRUA LINK IN RAM,
STORE VSER PC IN
LOCATION CALLX
L
CALLY
SAVE THE AC
N2
UPDATE THE
STACK POINTER

g

GENERATE THE RETURN
ADDRESS FROM THE OLD
PC STORED IN THE RAM

)

CONDITIONS 'FOR DIGIT

ESTABLISH PROPER SHIFT AND LOAD

STORE THE RETURN
ADDRESS ON THE STACK

RED
YELLOW

‘MEM”
DEC PC

o~

O-muda

N
SHIFT DIGITS AND
LOAD THEM TO DISPLAY
N

INCREMENT
0IGIT CODE

L

RESTORE AC

AND LINK

WAIT FOR
A KEYPRESS
N
SAVE THE AC
WHICH HAS THE
KEYPRESS IN RAM

A
FIND THE HEX NUMBER
CORRESPODING TO THE

KEYPRESS

L

LOAD THE HEX BINARY
NUMBER TO BITS

“S THRU *11 OFAC

VALUE TABLE FOR HEX

SW REG

8IT* HEX VALVE
[e] B
1 A
A Qq
4 -4
> 1
5 6
© N
7 4
8 3
q 2
10 1
" o

8-2A

RESTORE THE AC

GO TO THE
SUBROUTINE

L
GET THE
RETURN ADDRESS

.DECREMENT THE
STACK POINTER

RESTORE AC
AND LINK

&
RETURN TO
THE PROGRAM

]

CLEAR:
SAVAC
SAVMa
SAVEL

STATUS

£
10T RESET
6406
N
SET PC TO
7777

CALL A
SUBROUTINE

RETY RETURN FROM
SAVE THE AC [SUBROUTINE

GET THE ADDRESS

ESTABLISH A POINTER
NO TO THE PROPER

ROUTINE

FROM SAVPC

J

SHIFT IT THREE

JUMP INDIRECT
ON THAT POINTER

PLACES TO THE

ESTABLISH THE RAM
RETURN LINK

FETCH INSTRULTION
SPECIFIED BY SAVPC

1S THE Yeo

LEFT Wit %0 0 10
L voCs
ADD N THE
NEW DIGIT
J bit¥| 60 TO
RESTORE TO BT
SAVPC
\L I}
G0 BACK TO | bitsZ 4.
START
SN
CALL ¢LKPD

INSTRUCTION
A TMS

1S THE
INSTRUCTION
AIMP

NO

COMPUTE “NEXT" AND “NEXT+|
BY ADDING ONE AND TWo TO
THE VALUE IN SAVPC

L

REPLACE WITH BREMKROYINTS THE INSTRUTION

SPECIFIED BY “NEXT"AND “NEYT+1" AND
STORE THE OIO INSTRUCTIONS IN RAM

Lot wap

WERE
BREAKPOINT

{RESTORE THE USER STATE

EXECUTE THE INSTRUCLTION
SPECIFIED BY SAVRC
N
RETURN THROUGH THE BREAKPOINT
AND THE RAM LINK
N
SAVE THE AC,
M@, AND FLAGS
N

RESTORE THE O/0 INSTRUCTIONS
TO NEXT" AN O 'NEXT+/"

UPDATE THE SAVPC

INCREMENT “NEXT”

s
CALL HEX

YES

ST FOR
HEX NUMBER
>

No

L

ESTABLISH A POINTER

GET THE MEMORY WORD
INDIRECT USING SAVPC

TO THE PROPER
ROUTINE

&

SHIFT IT TO THE

LEFT 3 TIMES
N

ADD IN THE

NEW DIGIT

N

RESTORE THE UPDATED
WORD TO THE RAM

]GO BACK k-

bit#o

GO TO UOLS

#

bit¥]

ﬁ

.4&
bit¥s
DEC SAVPC

/= F

INAD

COMPUTE THE
PAGE ADDRESS

1S THE
INSTRUCTION
A CURRENT PAGE
REFE?RAN(E

COMBINE THE PAGE NUMBER
WITH THE PAGE ADDRESS

IS THE

TOGGLE BLANK BIT
IN STATUS

8-2B

INSTRUCTION

AN INDIRECT

REFERANCE
?

GET THE TRUE ADDRESS
THRU THE ADDRESS
SPECIFIED ALREADY

L

PLALE THE ADDRESS

FOUND JA “NEXT"

HLINK AND AL
DESTROYED

INC SAVAC

MICRO

CALL CLKPD

CALL MEX]

ADTUST VALUE
TO USE AS A
POINTER

e

THEN JumP
THRU POINTER

key “c"
"
KEY 'S
#1 5] INCREMENT savec |
W
KEY 9

‘

GO TO AQPR 3

b}
<
@,

i

GO TO AOPR 1

[
KeEY T
GO TO AOPR T

i

=
a

i

EY ©
60 To_AIOY

(3K3
KEY 5

#*
Ll
o
i

-

o

>
e
=
[~

LN}
KEY 4

*
K
@
=]
4
°
i
x
o

L]
KEY 3
Go To

"ou
KEY 2
Go To

KEY |
GO TO ATA

é

v | #U
KEY O

GO TO AAND

8-2C

>
1
=
B

CLEAR THE INSTRUCTION
WORD AT LOCATLoN (SAVPC)

M

LOAD "5* INTO THE OP
CODE OF THE INSTRUCTION

8

-

s
E 3

>

CLEAR THE INSTRUCTION
WORD AT LOCATION (SAVP(C)

3

LOAD "4" INTO THE OP
CODE of THE INSTRUCTION

GO TO MRPA

oAl

CLEAR THE lNSTRUCTIO}N
WORD AT LOCATTON (SAV P()

¥

LOAD "3" INTO THE oP
CODE OF THE INSTRUCTION

»

Go To MRP

AISE

|

CLEAR THE TNSTRUCT IoN
WORD AT LOCATION (SAVPC)

N

LOAD "2" INTO THE OP
CODE OF THE INSTRUCTION

8
4
©
=
3
>

ATAD

CLEAR THE INSTRUCTLON
WORD AT LOCAT ION (SAVPC)

¥

LOAD "1* INTO THE OP
CODE OF THE INSTRUCTION

Go To MRPA

AAND

CLEAR TNSTRUCTION
WORD AT LOC (SAVPC)

)

MRPA

CALL CLKPD

CALL HEX
1S VALUE FRoM
HEX > 7 2)

1S VALUE

YES

FROM HEX = "¢" KEYPRESSZ

IS5 VALUE YES

INCREMENT SAVPC
GO To MICRO

TOGGLE THE
INDIRECT BIT

FROM HEX ="5" KEYPReSS?

IN THE 1w

s

SHIFT THE ADDRESS

OVER ONE DIGIT

| Ao THe new prerT |

BOUND THE ADDRESS

To BITS # 5 THRU ¥1i

—

PLACE THE PAGE ADDRESS
IN THE INSTRUCTION

I5 ADDRESS
IN PAGE ZERO?

IS ADDRESS NO

ATOT

SET THE INSTRUCTION
WORD TO 6@@p

1
CLEAR IOT COBE
CALL CLKPD

YES TEST FOR

—

FLASH
ERROR CONDITION
CLEAR THE ADDRESS

(—‘

¥
[BANK THe DIsPLAY |

L TIME OUT ~5 SEC |

L ESTABLISH COUNT j

_{

CALL 3wbB

]

Yes

TEST FOR

IN CURRENT PAGE?

GO BACK FOR

THE NEXYT DIGIT

KEYPRESS

COUNT DOWN
BY ONE

COUNT COMPLETE 7

8-2D

“" KEYPRESS

SHI FT TOT CODE
OVER ONE DIGIT

|

ADD THE NEw DIGLT
To THE 10T (OvE

¥

BOUND 10T, CODE
To BITS #¥3THRU*N

|| | cLemr e1ts #3THRU 0
IN INSTRUCTION

|
COMBINE THE
INSTRUCTION AND
THE NEW 0T Code

SET THE INSTRUCTION
WORG TD 7400

CALL (LKPD

CALL jEX.

ESTABLISH THE POINTER TO THE VALUE OF
THE ROLTINE ADDRELS

GO To MNEXT

9‘ n-sf: \\]-aﬂlo

CALL BSETS

CALL BSET4

CALL BSET

GO BACK

A

JUMP THRU THE POINTER TO
THE PROPER ROCTIME

% ¢"[0"*n

CALL BSETY

»Z «“'1 \‘ZI: Wq’
% g7 |'3"%B
X3
% e | %

SET THE INSTRULTION
WORD TO 7401

CALL CLKPD

ESTABLISH THE POINTER TO THE VALVE OF
THE ROUTINE ADDRESS

JUMP THRU THE POINTER TO
THE PRO PER ROUTINE

AT
PP \-“

R M

GO BACK

¥
,3 a7u \\4”»7

\xqu o Jq

% g |'v 8

o o ulepn »
6 |'5" %

8-2E

CALL QsETlo

SET THE INSTRUCTION
WORD TO TBge

CALL CLKPD

CALL HEX

ESTABLISH THE
POINTER T0 TABLE
1

JMP THRU TABLE TO
THE RIGHT ROUTINE

*0 "Cl» n"" #2

.___.l Go To NEXT I'L

* s
|- Ico To BSET uk t s

" #*
___l CALL BSET 4 L > 7 o "u

:: * *1o [:
4 CALL BSET 5§ s e 1 ! CALL BSET 10 3

- " tn *’
£6 5
| CALL BSET & >]| CALL BSET 2 l,_.__.
vy R
"3 #* 8

JI CALL BseT 8 }_

____I CALL BSET 7 |l(*7 4

#

GET THE BIT4 GET THE BIT6 GET THE 81T GET THE BITK B;?AEZN;:'E\NT
N
CONSTANT CONSTANT CONSTANT CONSTANT IN THE MQ
GO To MpsT Go TO MBST G0 TO MBST ¥
npsT [G0 T resT | B ——
WITH THE
INSTRUCTION
BSET s BSET 7 BSET 9 WoRb
1
GET THE BITS GET THE BITT GET THE BITY GET THE BITL 55::;555:5
CONSTANT CONSTANT CONSTANT CONSTANT

GO TO MBST

i

GO TO MBST

oo

-2F

CALL INPIE

INITIALIZE RAM LOCATIONS
__UsEvBY BN
CHECKSUM=@
CHAR. ADDRESS=0177
LAST CHAR.= 0200
LAST CHAR, FLAG = —|

\| LOAD TEMP

GET THE FIRST TTY

YES

CHAR, BY CALLING
[WEYN)

STORE THAT CHAR,
HoLp"

19 THE

VES FIRST CHAR.

GET A (HAR,
FROM LISH

A RUBOLT?

15 THE
FIRST CHAR.
A L[T?

YES

STORE CHAR.
INVBACK”

N

ADD CHAR.TO
CHECKSUM IN"STORE®

1S ITA
L] CHANGE FIELD

PLACE 'CHAR,

CHAR.Z

3
IN TOP HALF C“A'ldm“?
oF shvx PUNCHED?
GET THE FIRST CHAR,
FLAG LoC, “sav 1"
INCREMENT
“PoIdT"
PLACE CHAR,
1N LAST HALF i YES T ISTHIS
HE SECOND
OF SAVRC PC CHARZ

IS THIS
THE SECOND
DATA CHAR,Z

YES

STORE CHAR,

IN “SAVE!

CLEAR THE LAST CHAR,

FLAG TO ¢pod

WAS THE
LAST CHAR. A

LIT ChaRZ

ASSEMBLE THE LAST
TWO CHAR. RECEIVED

SUBTRALT THIS VALVE

FROVM) CHELKSUM

SUBTRACT THE TwO
HALVES OF THE LAST
WORD FROM THE RESLLT]

N9

STORE THE FINAL
RESULT IM “SAVPL”

N2
SETsAVAL
EQUAL TO 0l40

GO TO HALT

GET ADDRESS FROM

CHAR. ADDRESS

“SHIFT" AND POSITION

GET THE FIRST HALF
OF LORD CHAR.IN

1T IN USAU 3

N

DEPOSIT WORD FROM
SAV 3" IN RAM SPECIFIED
BY CHAR.ADDRESS

L

GET NEXT FEIRST HALF

AND PLALE IN SHIFT"

N

GET NEXT LAST HALF
AND PLACE IN “sAV3"

L

TRANSFER “SAVAC"
TO THE C(HAR, ADDRESS

8-2G

INCREMEMT
“save

I

Jump
TO BEGG

CLEAR ALL FLAGS
CLEAR DISPLAY

LOAD PIE CRA
WITH 7200

LOAD PIE CRB
WITH 1560

LOAD UART
CONTROL REG
WITH 7600

A
XMIT BUFFER
CLEAR?

WRITE A(TO UVART
XMIT BUFFER

J

STORE AC IN “TIME"
AND CLEARPL

)

()

RESET START BIT
SENSE FLAG

€L

SET READER
RUN FLAM

CLEAR READER RUM FLAG
-

READll

DATA READY ?

CLEAR AL

READ UART BUFFER AND
CLEAR DATA READY FLAG

]

(e |

TURN TRPE PUNCH
To ON -LINE

)

ESTARLISH START AND
SToP PaINTS IN LoC.
176 AND 77 USING

oep
v

SET PC TO 73/0
USING SETPC

4

USE RUN TQ START
MACHINE IN USER

DISABLE CP TIMER
INTERRUPTS

CALL INPTIE

[PLAC.E -2 1IN “Bac\('l

cALL

TwWTY

FETCH ORIGIN ABDRESS
FRom loc 1776

!

FORMAT TOP HALF AS
BIN FORMAT ORIGIN

ey

FORMAT LAST HALF AS
BiN FOoRMAT CHARACTER

FETCH DATHA

SPECIFIED RY Loc. ITe

IN MEMORY Loc.

!

[NcrREMENT BACK”]

FORMAT ToP HALF
To A BIN FORMAT
CHARACTER

EQUAL To

SET THE COUNT
-63

L

PLACE A 'LEADER/TRG»LER
CHARACTER IN

THE AC

CALL

TALK

[IN¢cREMENT counT]|

No

FORMAT LAST HALF
To A BIN FORMAT
CHARACTER

: .
RESET BAck’ To

1S LOC. 176 EQUAL
To ¢7?

INCREMENT Loc M6

IS ADDRESS
Loc 176 EQULA
Jo Loc 717

8-2H

NeH

CALL TALwk

TO PuNcH ouT
THE CHARACTER

L

ADD THE CHARACTER|
To CHECK SUM

RETURN

FETeH THE|,

YES

YES

CHECKSLM

| IncREMENT “sAck”

s Back” = &7

YES

FORMAT THE LAST
HALR OF CHECKSLUM

No

FORMAT THE
FIRST HALF
QF CHEWK3IUM

CALL TALx le

No

RE sTORE cP
INTERRLUPTS

Referring to Figure 8-2, the INTERCEPT JR. MAIN FLOW CHART, the
MONITOR is entered on power-up or on every CPREQ through Tocation
7777 of control panel memory and the return address is saved in
location 0000. Since in INTERCEPT JR. control panel routines and
user programs share the same memory, bit 0 of the status word,
Figure 8-3 is used to keep track of who is executing currently,
the MONITOR or the user. For example, the programmer may disable
the CP TIMER and yet use MONITOR SUBROUTINES in the "user" mode.

Thus the MONITOR updates the register save locations, CP/user mode
bit 0 in the status word, and goes on to the initialization
routines. The CP subroutine stack is established. (Refer to
Applications Bulletin M008 for a description of software stack
operation with the IM6100.) Returns from subroutine calls should
normally leave AC, MQ and L unchanged.

The Display Refresh subroutine, REFSH, is executed 100-200 times a
second in order to keep the display flicker-free.

Next, the keypad is tested for depression of the CNTRL key. If
this is not detected, the monitor goes to the exit point, restores
registers and flags and returns via the pointer in location 0000
or in the old MQ according to the memory mode status bit. The
return via MQ feature is provided as a convenience in writing

user mode programs that do not use MQ for any other purpose.

If a CNTRL key depression is detected, the switch debounce routine,
SWDB, is called, and the test for CNTRL is made again. In case

the test fails, the routine waits for the keypad to become inactive,
by calling CLKPD, and exits as before. If the CNTRL key is
definitely detected, the MONITOR enters the undefined control state
and subsequent key depressions will have to be detected and analyzed.
The MONITOR waits for the keypad to clear, by calling CLKPD, and
calls HEX, a routine which generates starting addresses for the
subroutines that are used to service each of the different key
depressions that define a control state. Figure 8-4 shows the
connections between the keys and the DX bus, and the control state
selected by the key.

The MONITOR 1is directed to the proper service routine, and may or
may not need further data (more key depressions, external conditions,
status word bit settings, etc.) to properly execute the routine.

We shall now study some frequently called subroutines in the MONITOR
ROM, REFSH, SWDB, CLKPD, HEX and EXIT.

0 1 2 3 4 5
MEM
FLAG
6 7 8 9 10 11
BLANK BIT DISPLAY DISPLAY
FLAG BUCKET CODE CODE
#1 #2
0 - CP/MAIN MEMORY MODE BIT
6 - DISPLAY BLANK = 1
9 - CATCHES "OVERFLOW" FROM BIT 10. IS PERIODICALLY
TESTED AND CLEARED.
10 & 11 - SELECTS ONE OUT OF FOUR LED DIGITS IN DISPLAY

FIGURE 8-3 STATUS WORD

8-4

DX LINE 0 1 2 3 4 5
1AC { .
KEYBOARD D o
CONTROL CNTRL SHIFT MEMory SETPC DECPC RESET
STATE data
deposit
VALUE 0013g 0012g 0011g 0007g 0010g 0006g
RETURNED or or or or or or
BY HEX B1g A 916 716 816 616
DX LINE 6 7 8 9 10 11
CONTROL HALT RUN SINgle DISplay binary MICRO
STATE instruction| blank/ loader interpreter
execute restore
VALUE 0005g 0004g 0003g 0002g 0001g 0000g
RETURNED or or or or or or
BY HEX 516 Y6 316 216 116 016
FIGURE 8-4

8-5

REFSH - ROM Tocations 6236-6373, listing line numbers 237-346, flow
chart Figure 8-1

This routine first saves the AC and LINK as it uses them and then
Tooks at the display blank flag, bit # 6 of the status word,
Figure 8-3. It does this by doing a byte swap, bringing bit # 6
into bit 0 and testing for a negative sign. If the blank flag is
set, all zeros are loaded to the display, resulting in disabling
all the multiplexing transistors and thus blanking the display.
The routine would return in this case to the calling program after
restoring the AC and L.

If the flag was clear, the display must be refreshed. Bits 10

and 11 of the status word encode the digit to be driven. Bit 9, the
"bit bucket", is cleared every time a refresh is performed in order
to prevent other bits in the status word from being affected when
the status word is incremented to select the next digit to be
refreshed. Constants stored in ROM are used as "AND masks" to
clear bit 9 and select the digit code. The digit code is added to
a base address to generate a pointer to one of four routines, DIGO,
DIGT, DIG2, DIG3, that set up constants and Toop counters with
which to enter the LOAD routine. LOAD uses a mask to select the
particular digit to be displayed from the user PC and data at the
user PC. Then LOAD uses the loop counter constants to rotate these
digits into the proper position and adds the multiplexer select

bit (stored in TEMP). Figure 8-5 shows the format of this IOT
word.

o 1 2 314 5 6 718 9 10 1

D4 D3 D2 DI BCD BCD
Address Memory data
FIGURE 8-5

SWDB - ROM Tocations 6200-6235, T1isting line numbers 190-230, flow
chart, Figure 8-1

This routine reads the keypad into the accumulator, waits for 25
milliseconds, and again reads the keypad to see if it matches the
first reading, thus indicating the end of switch bounce. If the

readings do not match another 25 milliseconds timeout is allowed.
During the timeout, the display is refreshed approximately every
five milliseconds.

8-6

CLKPD - ROM Tlocations 6110-6116, 1listing Tine numbers 350-361, flow
chart Figure 8-1

This routine calls SWDB in order to timeout bounces, and
checks for a zero reading from the keypad (indicating
keypad clear) as long as required then returns to the
calling program.

HEX - ROM locations 6425-6523, listing Tine numbers 434-514, flow
chart Figure 8-1

This routine determines whick key was pressed and generates a
different number for each key. These numbers are used by the
UNDEFINED CONTROL STATE routine to generate starting addresses
to the control state routines for each key.

EXIT - ROM locations 6061-6076, 1isting Tine numbers 152-170, flow
chart Figure 8-1

This routine is entered when no keypad activity can be detected.
The routine waits for the keypad to clear by executing CLKPD,
then restores all registers and flags from RAM save locations.
The memory mode bit in the status word is checked to make sure
that the routine was entered by the control panel MONITOR.

There is another entry point to this routine called OUT which is
used if no keypad activity was detected even before key debouncing
is needed, indicating the keypad was already clear. By entering
at OUT, CLKPD does not have to be called, saving at least the 25
milliseconds it takes to execute SWDB.

If EXIT was entered in the main mode, the routine clears the
memory mode bit, restores flags and registers and exits indirect
via the contents of the SAVMQ location. This feature is provided
to enable the user to store his return address in the MQ and

not have to alter other registers. This is useful when writing
programs that use subroutines in the MONITOR. The MONITOR itself
rarely uses MQ for anything (for example, routine MBST at 7273g).

CONTROL STATE SERVICE ROUTINES

Five of the control states possible through key depressions require
extremely simple service routines. These five along with the
symbolic starting address are: :

INCREMENT AC INCAC

DECREMENT PC DECPC
HALT HALT
RUN RUN

RESET RESET

These routines are stored in ROM locations 6400-6424, 1isted on
lines 393-430 and the flow charts are in Figure 8-2.

These routines are each a few instructions long and self-explanatory.
They modify the RAM save Tlocations.

The control panel program when executing the EXIT routine restores
all flags and registers in the IM6100 from these RAM save locations.

The RUN routine uses the IOT RUN, 6407, command described in
Chapter 4.

The RESET routine clears all save locations, executes the IOT
RESET command, 6406, sets the PC to 7777 and goes to the HALT
routine.

Except for DECPC, the above routines, when complete, branch to

the EXIT routine described previously by jumping indirect via the
location labeled UG. DECPC, upon completion, jumps indirect via BUG
which is the starting address of UDCS, returning INTERCEPT JR. to the
undefined control state. This enables the user to pick the next
control state without again pressing the CNTRL key.

DEPOSIT INTO MEMORY, MEM, ROM locations 6524-6556, listing Tine
numbers 516-550, flow chart Figure 8-2

This, routine with starting address at DEP may be executed
repeatedly when a sequence of numbers is entered from the
keypad. It begins by calling CLKPD, then HEX. The

value passed on by HEX is tested for being greater than 7.
If it is not greater than 7, it is interpreted to be an
octal digit to be deposited into memory by shifting it into
the rightmost digit. This is done by getting the current
memory data indirect via 0000g, SAVPC, shifting left three
bits, while clearing the 1ink each time so that zeros are
shifted into the LSB, then adding the new digit. The
updated data word is restored via the pointer in SAVPC and
the routine jumps back to the beginning for the next digit
from HEX.

If the digit is greater than 7, it is not to be entered into
memory, but rather a pointer is computed to force a branch
to the proper routine to be executed next. This is done

by adding the contents of TAB, 6534g, to the value returned
by HEX, 10, 11, 12, 13, resulting in 6544g, 6545g, 6546g,

8-8

6547g. These locations contain pointers to routines DCI,
PCI, EXIT and UDCS, respectively.

In other words, pressing DECPC at this time results in
routine DCI being executed, pressing MEM results in routine
PCI being executed, pressing the yellow key results in the
EXIT routine being executed and pressing the CNTRL key
results in UDCS being executed, meaning a return to
undefined control state.

Routine DCI decrements the PC by adding -1, 7777g, to it,
and returns to DEP to get the next digit, indicating the
contents of the decremented memory Tocation may now be
altered.

Routine PCI increments the PC when key MEM is pressed and
returns to DEP so that data may be entered into the incremented
memory Tocation.

These routines allow the user to step forwards and backwards
through memory and alter data at will, as long as the memory area
being addressed is not in ROM. ROM may be examined but not altered.

BLANK FLAG TOGGLE, DIS, ROM Tlocations 6566-6575, listing line
numbers 564-579, flow chart Figure 8-2

This routine is executed when the key marked DIS RAL ISZ

is pressed when in the undefined control state. Bit #6

in the status word, Figure 8-3, is called the blank flag,
and this routine toggles it every time it is executed,
therefore, allowing the user to shut off the display to
conserve power and to turn it back on. The routine clears
the AC and L, gets the status word, shifts bit #6 into

the Tink (by doing a byte swap and left shift), complements
the 1ink, shifts it back, swaps bytes again, restores
status and goes to EXIT.

SET PROGRAM COUNTER, SETPC, ROM locations 6600-6632, listing
Tine numbers 578-612, flow chart Figure 8-2

This routine, 1ike DEP, accepts octal digits from the
keypad. It begins by calling CLKPD, and then HEX to get

a valid number from a key depression. The value is checked
for being over 7. If not, the routine goes on to GOON,
which loads the digit into the rightmost octal position

in the PC and jumps back to SETPC to pick up a new key
depression.

8-9

If the value returned by HEX is greater than 7, a base
address in Tocation ADJT is added to it, and the sum
is used as an indirect pointer back to SETPC (if the
DECPC or MEM keys are pressed) to EXIT (if yellow key
is pressed) or to UDCS (if CNTRL is pressed).

MICROINTERPRETER, MICRO, ROM Tlocations 6633-7300, Tisting
Tine numbers 613-1045, flow chart Figure 8-2

Routine MICRO calls HEX and gets an index to compute a
pointer to the routines servicing the individual keys
(see Example 5 in Chapter 3 for a detailed description).

Pressing the SHIFT key causes AINC to be executed,
incrementing SAVPC. Pressing any of the keys with memory
reference instruction opcodes on them causes routines

ATAD, AISZ, ADCA, AJMS or AJMP to be executed. These
routines load the opcode into the AC and jump to AAND.

(Note that the opcodes are sometimes stored as constants,

and sometimes are instructions located elsewhere in the same
page.) This results in the AC being placed into the

location being addressed by the user. The MONITOR, therefore,
displays the address and opcode selected by the user.

Routine MRPA continues to scan digits entered from the
keypad and checks to see if they are address digits, 0-7,

a CNTRL key depression (routine NEXT is executed in which
the user PC is incremented, and control returns to MICRO

to interpret the next instruction) or a SHIFT key depression
(in which case routine ZONK is entered in order to set
indirect bit 3). This is done by rotating the bit into the
link, setting it and rotating back. Control is passed back
to MRPA so it makes no difference if the indirect bit is

set before or after the address bits are supplied.

Address digits are shifted into the address field from
right to left and the resulting address is checked for
validity (in page 0 or in current page). If the address

is outside valid page boundaries, then the program branches
to routine FLASH. If the address is valid, MRPA is re-
entered to get the next digit. Routine FLASH flashes the
display to indicate an invalid address field.

The routine blanks the display using IOT instruction 6400
and times out approximately (4096 X (16 + 10) X 10) or
1064960 states. This takes over half a second at 3.33 or
4 MHz.

The routine then checks to see if the keypad has been
depressed. If it has, the address field is loaded with
the new digits. If it has not, the routine continues
to time out a different constant, TKB.

Routine AIOT 1is entered if in the MICRO mode, key IOT is
pressed. An opcode of 6 is entered into the AC with a
microprogrammed combination of Group I microinstructions
and the routine collects digits from the keypad, while
checking for a CNTRL key entry.

Detection of a CNTRL causes a branch to NEXT which
increments SAVPC and returns to MICRO as before. Octal
digits are shifted into the device address and control
fields of the IOT instruction from right to left.

Routine AOPR1 is entered when an operate group 1 instruction
is to be Toaded via the keypad. The routine starts by
loading 7000 into the user addressed location, then calling
CLKPD and HEX as further digits are expected.

A table of jump addresses is used as described in Example 5,
Chapter 3 to branch to the proper routine.

The branches either cause the program to ignore the key
and Took for the next key depression, AOPR1 + 2, or to
call an appropriate bit set subroutine, JA10-JA4. The
bit set routines are used by routines in all three operate
groups so they are coded as subroutines that may be nested
in the MONITOR stack.

The bit set routines work by reading a constant, AAA-AAG,
corresponding to the appropriate bit being set into the AC,
then jumping to the MBST routine. This routine stores the
constant temporarily in MQ, clears the AC, gets the
instruction in its current state, updates it by OR'ing in
the MQ, replaces it at the user addressed location and
returns.

This procedure is followed by all the operate group micro-
instruction service routines.

In other words, a table of jump addresses is used to
compute a branch to either a bit set routine or back to
the keypad reading sequence.

SINGLE INSTRUCTION EXECUTE, SIN, ROM locations 7301-7444, Tlisting
Tine numbers 1047-1170, flow chart Figure 8-2

This routine is useful in program development as a single
instruction at a time may be executed allowing intermediate
results to be examined under MONITOR control. This routine
may only be used to single step through programs in RAM and
not in ROM because software "breakpoints" are implemented
by replacing the instruction at a breakpoint with a jump

to the breakpoint processing subroutine and this requires
writing into the memory.

SIN first initializes page 0 locations 0152 and 0153 Tabeled
STORE and SHIFT to contain the instruction JMP I SHIFT

and the address 7427. Then it checks the instruction to

see if it is a JMP or JMS. It does this by extracting the
opcode bits with an AND mask, adding -4000 or -5000 to

them and checking for AC = 0.

It also checks the address mode bits with routines INAD
and INDB and computes the effective address for the next
memory reference. This address is in location TIME. 1In
case of a JMS, location TIME 1is incremented (to point to
the next instruction to be fetched which follows the
location where the return address is to be stored).

Routines INAD and INDB determine whether the current page
bit and indirect bit are set by masking of all other bits
and testing for a non-zero AC. If the page bit is set,
the current page number is obtained by masking off other
bits. This page number is concatenated with the page
address. If the indirect bit is set, the effective address
is fetched and replaced in TIME. In any event, when
location EXEC + 4 is reached, TIME contains the address
of the next instruction to be fetched. Now the program
gets the contents of this location, NEXT, and the next
sequential one (NEXT + 1) and saves them in SAVE and SAVT.
The contents of these two locations are replaced by the
instruction JMS BACK, which is 4151, a JMS to page O
location 0151 labeled BACK. Then both these locations
are tested to see if the instruction was actually placed
there, that is, if RAM exists there. The program does
this by reading the locations back, adding the two's
complement of 4151g to them and checking for a zero AC.

If the Tocations were indeed loaded correctly, the program
proceeds to restore the MQ, LINK and AC and performs an
indirect jump via SAVPC, executing the instruction
specified by the user.

8-12

This instruction is executed, and, when the user program
fetches the next instruction, it turns out to be the JMS
BACK breakpoint placed by the MONITOR, so the user program
stores the return address in BACK, 0151, and executes the
instruction in location 0152 which happens to be the JMP I
SHIFT which was placed there earlier. Thus, control is
returned to the SIN routine at the point 7427 labeled RET.
The routine saves away the AC, L and MQ again, restores

the two instructions at the breakpoints, updates the user PC
using the address stored in BACK and returns to the undefined
control state.

The reason for storing JMS BACK in two successive locations
can now be seen to provide for the case when the single
instruction to be executed may skip the next location.

A Timitation of this program is that JMP.-1, JMS.-1 and
JMS.-2 instructions cannot be single stepped. There is
not much application for a JMS.-1 or a JMS.-2, so the real
Timitation is with the instruction JMP.-1.

What happens is that one breakpoint will be placed in the
location of the actual instruction that is to be performed.
Thus, the effective address referred to as NEXT will be

the Tocation containing JMP.-1 and the location NEXT + 1 will
actually be the Tocation containing JMP.-1. As these two
locations are replaced by the JMS BACK, the program in
attempting to perform the JMP.-1 will immediately see the
breakpoint. Control will return without any action having
been taken and the state of the machine when restored will be
identical to what it was before. The effect is that of not
performing the instruction.

To get around this Timitation, when writing skip and test
Toops, always provide an additional NOP so that the JMP will
not be a ".-1".

Example:
Address Instruction
A NOP
A+ 1 SKIP on condition
A+ 2 JMP., -2

This Timitation affects only the single instruction function
and does not apply to running in normal mode.

This limitation applies to the TAD, ISZ and DCA memory
reference instructions when they try to reference a
*+2 or *+1 location. (There is not much application
for a program that uses instructions referencing the
next sequential Tocation, and especially, alters it).

The instruction TAD *+2 will add the breakpoint
instruction 4151 to the contents of the AC.

The instruction ISZ*+2 will increment the value 4151 to
4152 and then the original datum is restored so there is
no net effect when single stepping this instruction.

The instruction DCA*+2 1is useful in the INTERCEPT JR. to
display a result when the location following this
instruction contains the HALT instruction 7402. However,
when single stepping this instruction, the DCA will write
over the breakpoint instruction, then the original content
is restored, so there is no net effect. It is recommended
that the sequence

DCA*+3

NOOP

HALT

is used to display data in programs when single stepping

is desired. Alternatively, the user, after single stepping
through the previous part of the program, can depress

CNTRL RUN for the display sequence.

8-14

PIE INITIALIZE, INPIE, PRINT TO TTY, TALK, RECEIVE FROM TTY KEYBOARD
OR READER, LISN

These routines in ROM Tocations 7445-7507, listed in lines
1170-1248 are described in Chapter 7 on the PIEART board.
See Figure 8-2 for the flow chart.

INTERCEPT JR. BINARY LOADER, BIN, ROM Tocations 7600-7755, listing
T1ine numbers 1249-1385, flow chart Figure 8-2

This Tloader uses the PIEART interface board. The BIN format
is described in Applications Bulletin M003, and the Teletype
modifications are described in Applications Bulletin MO0O05.
The routine initializes the PIE-UART checksum and RAM
locations it uses, then gets a character by calling LISN.
The character is checked for being a rubout (all channels
punched) or part of leader-trailer (only channel 8 punched),
and if it is either, the program branches to RUM or LTC
respectively. RUM continues to scan characters until another
rubout is detected at which point it returns to BEG, the
beginning of the character processing program. Thus the
system ignores text enclosed by rubouts.

LTC checks if the character is a first, LT character or not.
If so, the load routine is ended, the checksum computed, the
SAVAC Tocation placed in the address display and the machine
is halted showing the checksum.

If the character received was neither a rubout nor an LT
character, the program updates the checksum, checks for a
"change field" character (if it is, it is ignored and the
next character is processed), checks for "origin" data (if

so, it gets the address data in two successive characters) and
checks to make sure the starting address does not fall in the
range 0140-0177 which is used by the MONITOR. If the address
falls in this range, the RAM is not Toaded. Data is loaded

by routine DL2 only when conditions are valid.

INTERCEPT JR. MEMORY DUMP, DUMP, ROM Tlocations 7510-7576, listing
Tine numbers 1410-1511, flow chart Figure 8-2

This program requires that the first and last locations, of
a block of memory to be dumped on tape, should be entered
in Tocations 0176 and 0177, and the program run starting at
lTocation 7510.

The program uses the leader-trailer routine contained in
locations 7757-7765 and 6173-6176. It will punch out a
BIN formatted tape complete with leader-trailer and checksum.

The program disables the CP request timer, initializes
the PIE-UART, calls routine TWTY in the leader-trailer
program to punch 63 LT characters. (Note that TWTY

uses a constant KM63, which happens to be an instruction
Tocated in address 7723 that conveniently lies in the
same page and has the numerical value required. This
programming device saves valuable memory locations.)

The program next punches out the origin address, user
entered in 0176, in two successive ASCII characters
along with the channel 7 punch.

The data is also punched out using two characters per 12
bit word. The program counts the 1st and 2nd characters
by looking at location BACK which is loaded with 7776
and incremented as a character is output. After two
characters, the Tocation becomes zero and the ISZ that
incremented it will skip the BSW that is used to position
the 2nd half of the character.

After every data item is transmitted, the address is
checked to see if the end of the block has been reached.

As each character is punched (by calling the PUNCH routine,
which in turn calls TALK, then jumps to LINKER) the check-
sum is updated in location SAV5 (by routine LINKER).

After the last data item has been punched, the checksum
is punched by CHSUM and routine TWTY is again called to
punch out the leader-trailer tape.

Finally, the CP request timer is restored and the processor
halted.

MICROINTER

BEGIN PASS 1

END OF PASS 1

BEGIN FASS 2

VRN B AW N~

oooc

0140
ol4l
cl42
0142

0144
0145
0146

c15¢c

0161

0164
0165
0l&¢€

i

1766
1767
1770
7771
772
7773
1174
775
1776

6011
€012
6012
6014
6015
6016
6017
6020

6034
€035
€036
6037

604C
€041
6042
6042
6044
6045
6046
6047
605¢C

6051
6052
€0£3
6054
€055

coco

0000

0164

000C
0000
ococ

4161
5564

1777
53¢6
7766

3140
6004
3142
1143
7104
7110
3143
5776
6007

€o0co

3140
6004
3142
1143
7104
7130
3143

7521
3141

3166

31¢€1
7060
1165

*0C00

SAwWC,

*C140

SAVAC,
SAVMQ,
SAVFL,
STATUS,

TINEs
SA\E,
HCLDy
PCINT,
TENP,

*0164

RETXy
STACK,
AC,

0

ocoo0n000 ®o9obo oooo

CALL=JMS CALLX
RETURN=JMP 1 RETX

*177

*7766

CPMODE,

*6C00

START,

INIT,

JNFL,
KCALLY,
KRETY
BASE,

CALLY,

RETY,

cca
GTF
cca
TAD
cLL
cLL
oca
JMp

CPNOCE

SAVAC

SAVFL
ST ATUS
RAL
RAR
STATLS
1 7776

INIT

TAD

TAD
cca
TAD
cca
TAD
cca

JMP T CALLX#2

CALL
RETY
STAC!

oCA
152
TAD
1AC
DCA
140
ocA
TaD
ave

DcA
TAD
nca
CrA
Teo

SAVAC

SAVFL
STATUS
RAL

CML RAR

STATUS

SAVMQ

JMPI
CALLX+]
KCALLY

CALLX+2

KRETY
RETX
BA SE
STACK

Y

K+ 2

AC
STack
CALLX

T STACK
T CALLX
CALLX
AC

U CALLX

AC

T STACK
CALLX
CML
STACK

/ THE MONITOR PRCGRAM FOR TFHE
/ INTERCEPT JR.

/ Tt PAGE ZERC LOCATIONS

/ THE PAGE ZERQ LOCATIONS FCR THE
/. CP MONITOR STACK

/ THE LOCAT IONS 167 TO 177 ARE THE
/ STACK POINTER TABLE LOCAT [ONS

/ THE PROGRAM MACRCS

/ THE CP ENTRY PCINT

/ GG TO THE CPMCCE START POINT

~

SAVE THE AC

SAVE THE FLAGS

GET THE STATUS WORD

POSITION BIT %0

CLEAR THE MEF FLAG BIT IN STATUS
RESTORE STATUS

GO TO INIT

THE (GMMIN START POINTER

NSNS SNSNS

/ THE USER START PCINT

SAVE THE AC

GET THE FLAGS

SAVE THE FLAGS

GET THE STATUS WCRD

PCSITION BIT

SET THE MEM FLAG BIT IN STATLS
RESTORE STATUS

NSNS SAS

GET THE MQ
SAVE THE MQ

~~

~

ESTABLISH THE CP SUBROUTINE STACK

7 THIS WILL CLEAR THE STACK POINTER

~

GO ON WITH THE PROGRAM

~

CALL THE FIRST DISPLAY REFRESH

LOAD THE KEYPAC 1O THE AC
TEST; IS THE "C" KEY PRESSED
NO; GO YO CUuT

YES: CALL A SWDB TO BE SURE

RN

TEST; IS THERE A VALID "C" KEYPRESS
NO: GO TO EXIV

YES; GO TO THE UNDEFINEC CONTROL
STATE

NN

THIS IS THE SULBRCUTINE STACK
RCM OVERHEAD

~~

SAVE THE AC

UPDATE THE STACK POINTER
CALLX HAS THE RETURN AODRESS
INCREMENT THE RETURN ADDRESS
SAVE UN THE LIFD STACK

GET THE USER SUBROUTINE

PUT IT IN CALLX

RESTORE THE AC

GO TO THE SUBRDUTINE

AN

SAVE THE AC

AND PUT IT IN CALLX

COMPLIMENT THE AC AND LINK
DECREMENT THE STACK PDINTER AND
RESTORE THE LINK

NSNS NSNS

GET THE RETURN ADDRE SS FROM THE STACK

288
290
291
292
293

8=17

€061
6062
60¢€3
6064
6065
€0¢€€
6067
607C
£071
6072
6073
6074
6075

6376

6233
6234
6235

6236
6237
624C
€241
6242
6243

6244

6251

3165
1166
5561

4161
6110
7300
1141
7421
1143
7710
5277
1142
7104
7200
114C
6C01

5400

6200

7210
3155
76C4

3145
1233
3144
2144
5206
41€1
623¢€
1235

1234

7500
742C
1774

3152

EXIT,

oLt

MCLT,

%6200
SwCBy

GAR,

TK1y
TKZ,
TCAT,

REFSH,

THRY,

ADJy
TAELE,

DICO,

DIGL,

01G2y

ceca

TAD A

g

CaLL

STACK

C
1 CALLX

CLKFD

cLa
14D
vaL
140
H
Jmp
14D
cLL
cLa
140
TCN

JMp

140
cLe
CLL
CCA
180
RTF
cLA
TAD
JMp

CLA
cCA
LAS

oCcA
TAD
cCa
152
Jrp

cLL
SAVMC

STATUS
cLA
MOUT
SAVFL
RAL

SAVAC
1 SAVPC

STATUS
RAL

RAR
STATLS
SAVFL

SAVAC
I SavMg

RAR
SAvV2

SAVE
TK1
TIVE
TIME
-1

cacL
REF SH

TAD
ocA
TAD
cCA
1sz
JrP

TCNTY
SAV4
TK2
TIME
TIME
=1

CALL
REF SH

152
JMP
LAS
cIA
TAD
SIA
P
T40

SAV4
-7
SAVE

GAR
SAVE

RETURN

7500
742C
1174

cca
RAR
oca
TAD
R SW
SMA

JMP
€40
TaD
cLL
TAD

BACK

HOLD
ST ATUS

cLa

46
c
HOLD
RAL
8ACK

FETLRN

TAD
AND
DCA
TAD
AND
TAD
ctca
Jrp

STATUS
MSK1
STATUS
STATLS
MSK2
ADJ
POINT

I POINT

TABLE

Jrp
Jmp
Jvp
JKp

niGo
CIGL
D1G2
DIG3

CLL CML RTR

TEMP

KM11
POINT
KMT
STORE
MASK]
SHIFT
10aC

CLL CML RTR
TEMP
KM 14
POTNT
KM10
SYCRE

RESTORE THE STACK POINTER
RESTORE THE AC
RETURN TD THE PRCGRAM

S~

~~

WE NOW CONTINLE wITH THE CP
PROGRAM

~

TFIS 1S THE EXIT POINT

~

WAIT FOR THE KEYPAD TO CLEAR

CLEAR THE AC AND THE LINK

GET THE MQ

RESTURE THE MC

GET THE STATUS WORD

TEST: [S THE MEM FLAG SET?
YES; GO TO THE MEMORY EX1Y ROUTINE
GET THE FLAGS

RESTORE THE LINK

CLEAR THE AC

GET THE AC

RESTORE THE IENFF AND COME OUT
OF THE CP MOCE

RESTORE THE PC

P N

GET THE STATUS WORD
PCSITION BIY #0

CLEAR THE MEM FLAG IN
RESTGRE THE STATUS WOR
GEV THE FLAGS

RESTORE THE FLAGS
CLEAR THE AC

RESTORE THE CLD AC
RETURN THRU THE CLD MQ

STATUS
bl

NSNS SSSN AN

/ THE MONITOR SUBROUTINES

THE SWITCH DEEBOUNCE AND
DISPLAY REFRESH RCUTINE

NEN

POSITION THE LINK IN A CLEARED AC
SAVE THE LINK IN SAV2

LOAD THE SWITCH REGISTER (KEYPAD)
T0 THE AC

STORE IT IN SAVE

GET THE TIME CONSTANT #1

STORE IT IN THE VIMER

TIME OUT 4 MILLISECONDS AT 2.5 MHZ
JUMP BACK ONE PLACE

CALL THE DISPLAY REFRESH

NSNS NANNSNS

GET THE WAIT COUNT

PLACE THE COUANT IN THE COUNTER

GET THE TIME CONSTANT #2

PLACE IN THE TIMER

TIME DUT 5 MILLISECONDS AT 2.5 MHZ
JMP BACK GNE PLACE

REFRESH THE CISPLAY

I NNNS

COUNT DOWN THE CCUNTER

GO BACK FGR ANCTHER WAIT CYCLE
LCAD THE KEYPACL # SECOND TIME
NEGATE THE VALUE

ADD THE FIRST READING

TEST; ARE THE VALUES THE SAME
NO: GO BACK AMND CO [T AGAIN
YES; GET THE READING INTC THE
AC

RETURN TO THE FRCGRAM

NSNS SASNSS

-192
-240
-4

BN

THE DISPLAY REFRESH SUBROUTINE

SAVE THE AC IN BACK

PCSITION THE LINK

SAVE THE LINK IN HOLD

GET THE STATUS WORD

PCSITION THE BLANK FLAG, BIT #¥6
TEST; IS THE BLANK FLAG SET,
CLEAR THE AC

NO; SKIP TC THE DISPLAY REFRESH
YES; LOAD ZERCS TO THE DISPLAY
GET THE LINK

RESTORE THE LINK

RESTORE THE AC

RETURN TO THE PROGRAM

N N S N

GET THE STATUS WGRD
CLEAR THE BIT BUCKET
RESTORE THE STATUS WORD
GET THE STATLS WORD
MASK OUT THE CIGIT CODE
ADJUST FOR THE TABLE

NSNS NSS

GC TO THE PRCPER ROUTINE THRU
THE TABLE

~~

/ GO TO THE PROPER ROUTINE

SET THE AC ECUAL 10 2000
SET THE AC EQUAL TC 0400
PLACE IN THE TEMP

SET THE AC ECUAL TO -8
STORE IN POINT

SET THE AC ECUAL TO -4
PLACE IN STCOFE

GET MASK 7000

PLACE IT IN SHIFT

GC TO LOAD

NSNS SNSNNSSS

SET THE AC ECQUAL
PLACE IN THE I1CY
SET THE AC ECUAL
PLACE IN POINTY
SET THE AC ECUAL TO -7
PLACE IN STORE

GET THE MASK C70C
PLACE IN SHIFY

GO T0 L3AD

T0 1000
WORD
0 ~-11

NNSNNNNNS

SET THE AC ECUAL TO 20CO0

PLACE THE BJT COCE IN THE [OT WORD
SET THE AC ECULAL 10 -14

PLACE IT IN POINT

SET THE AC ECLAL TO ~10

PLACE IT IN SYORE

NN

€402
€4cs
€405
6406

64CT
€410

€425
€426
€421
663¢C

1362
3152
5333

73320
3150
1366
3147
724C
2152
1363
3153

ICGC

2167
534C

14C0

0153
2152
5351
5353
7CC4

5346
1150
6400
2143
7300
5246

7000
0700
ce7cC
0007

77€1
7767
1713
7770
7765
T7¢4

7713
0003

616]
4161

6425
133¢
3147
1547
2147
5547
6131
6633
76C0
6566
7301
6411
€4C7
6414
b6CC
€4C3
6524
€4cC
6117

4161
6200
T745C
5225

DIC3,

LC#Dy

MASKO,
MASK1,y
MA K2,
MASK3,
KM1l4,
KM8,
KN4,
KM,
KM1Dy
KM1ly

MEK1,
MSK24

*€11C

CLKPD,

uncs,

GOY0,

*6400

INCAC,

DECPC,

HALT ,

RUN,

RESET,

HEX,

180
nca
Jve

CLA
o

o
>

TAD
nca

ncA
14D
nca

AN
152
JMp
Jve
RAL

JMP
140

6400
sz

CLA
Jup

MASK2
SHIFTY
Lcan

CLL (ML RAR
TEMP

TEMP
1 Savee

SHIF 1
STGRE
.2
43

4
TEMP
STATUS

cLL
THRU

7C00
0700
007¢C
0007

7761
1767
1773
777¢
7765
1764

1772
0002

DCA

SAVL

SWDE
SZA

awp
TAD

=3
SAV]

RETURN

CALL
CLKFD
CALL

FEX
Tan
nca
Tan
0CA
Jvp

GoTo
PCINT
1 PCINT

COTC+1
MICRC

RIN
BLK
SIN
RUN

HALT

RESET
SETPC
DECPC

DEP

INC AC
uoC s

15z
nCP
Jmp

cLa
TAD
oca
Jmp

KLY
JmMp

KLY

SAVAC

CLL CMA
SAVPC
SAVPC
1 BUG

6407

Jep

cLA
DCA
oca
Dca
CCA

6406

cMa
oCA

1 UG

cLL
SAVAC
SAVFL
SAVMQ
STATUS

SAVPC

JVP HALT

CALL
SwWD8

JMP HEX

NANSNSSNNN NSNS

PN

~

NSNS SSS

NN

~

SNSS NN

~

~~

AN NN

~~

NSNS NSNS N NN

~

AN N S NS

~ NSNS

PN

GET MASK 097C
PLACE IT IN SHIFT
GG TO LOAD

SET THE AC ECUAL TO 4000
PLACE IT IN THE ICT wORD
SET THE AC EQLAL 70 -4
PLACE' IT IN PCINT

SET THE AL ECUAL TO =~
PLACE IT [N STCRE
GET MASK 0007

PLACE IT IN SHIFT

GEYT THE USER PC
MASK JUT THE CESIRED DIGIT
ENTER THE SHIFT LOOP

SHIFT TO POSITION FOR CISPLAY #1
CCMBINE WITH THE 10T WCRD

RESTORE THE ICT WORD
GET THE MEMORY DATA THRU THE

USER PC
MASK OUT THE DESIRED DIGIT
ENTER THE SHIFT LCOP

SHIFT TO THE PROPER LOCATION FOR
DISPLAY #2

COMBINE wITH THE [OT WCRD
LOAD 1T TO THE DISPLAY
UPDATE THE DIGIT CANE

GC TO THE EXIT POINT OF THE ROUTINE

THE WAIT FCR CLEAR KEYPAD ROUTINE

SAVE THE AC IN SAVl
CALL THE SWITCH CEBOUNCE

TEST; IS THE KEYPAD CLEAR?
NG; GO BACK UNTIL IT IS
YES; RESTORE THE AC

GO BACK TO THE PROGRAM

THE UNDEF INEC CONTROL STATE

WAIT FOR THE KEYPAD TO CLEAR

LCOK FOR A HEX DICIT FROM THE
KEYPAD

ADJUST A POINTER TO THE TABLE
PLACE THE POINTER IN POINT
GET THE RCGUTINE ACDRESS
PLACE THAT ACCRESS IN POINT
GO TO THAT RCUTIAE

ThIS IS THE TABLE OF ROUTINE
ADORESSE

THE INCREMENT AC ROUTINF

INCREMENT THE AC
IN CASE AC WAS 7777
GO TO EXIT

THE DECREMENT PC ROUTINE

SET THE AC ECUAL TO -1

ADD THE USER PC

RESTORE THE CECREMENTED USER PC
GO TO UNDEFINEC CONTROL STATE

THE HALT SURRCUT INE

CLEAR THE RUN FLIP/FLOP
GC TO EXIT

THE RUN ROUT INE

CLEAR THE RUN FLIP/FLOP
ICT RUN COMMANC
GC TO EXIT

THE RESET ROUTINE

CLEAR THE
CLEAR THE
CLEAR THE
CLEAR THE MC

CLEAR THE STATUS WORD

10T RESET COMMANC

SET THE AC ECLAL TO 7777

SET THE PC EQUAL TO 7777

GO TO THE KALT RCUTINE TO CLEAR
THE RUN FLIP/FLOP

AC AND LINK
USER AC
FLAGS

THE HEX DIGIT ROUTVINE

TAKES A KEYPRESS FROM THE KEYPAD
AND CONVERTS 171 19 A HEX BINARY
DIGIT FROM 0 TC 12

GET A KEYPAD VALUE
TEST FOR A KEYPRESS

NO: GO BACK UNTIL THERE IS A
KEYPRESS

€431
6432

6524
€525
6526
€527
€530
€531
65122
6533
€534
6535
6536
6527
654C

6561
6542

€543
6544
€545
6546
6547

6550
6551
6552
6557
€554
6555
6556

€557
6560
6561
6562

6563
6564
6565

6566
6567
657C
6571
€572
€573
6574
6575

6600
66C1
€602
6603
66C4
66C5
s6C€
€607
€61C
6611
6612
€613
€614

7CC4
7420

7300
1143
7002
7CC4
7030
7cC2
3143
5746

€6cC

4l€1
611C
4161
6425
315C
1150
c207
765C
5224
115¢C
1217
3150
155C

KoCe7,

DEF,

SNERD,

ocI,

PCI,

RLky

*€€0C

SETPC,

MASK,

RAL
SAL
JNo L +4
CLA CLL IAC
TAD KOOO7
PETLRN
SMA
JMP .44
CLA CLL CML
TAD k0007
RETURN
RTL
SN
Jvp
CLA CLL TAC
TAD K00O7
RETURN
SkA
JMP 44
CLA CLL CML
C

tb

TAl
RETLRN
RTL
SNL
JMp
CLA CLL TAC
TAD K0OOO7
RETURN

SMA

JMP .43
CLA CLL CML

otb

RETLRN
RTL
SNL
JMP L+ 4
CLa CLL
IAC
RETURN
SMA
Jwp .43
CLA CLL

RETURN
RTL
ShL

JMP .43
CLA CLL

RETURN
SMA

JMP .43
CLA CLL

RETLRN
RTL

SNL

JMP .+3
CLA CLL 1AC
RETURN

CLA CLL

RETURN

ccor

caLL
CLKFD
CALL

HEX

DCA TEMP
TAD TEMP
AND SNERD
SNA CLA
J¥P PON
TAD TEMP
TAD TAB
CCA TEMP
TAD U TEMP

CCA TEMP
JMP [TEMP

TAB=7
oct
PCY
Ex11
ucc &

TAD | SAVPC
CLL RAL

RAL

aaL
TEMP

1 SsavpC
DEP

CLL CML
SAvVPC
SAVPC
DEP

SavPC

DEP

CLA CLL
TAD STATUS
BSW
RAL
oML
BSW
DCA STATLS
Jep 1 UG

RAR

CALL
CLKFD
CALL
HEX
nca
TAD

TEMP
TENP
MASK
cua
GOCK
TEMP
ADJT
TEVP

1 TEMNP

SNA
Jmp
TAD
TAD
DCA
TAD

RTL

1AC

RAL

1AC

1AL

RTL

RTL

1AC

RAL

cMa

RAL

RTL

RTL

RAL

B e N N N N N N N N N N N NS NN

~

~ 0~

S S SN

NNNSNNNN ~ NN NNNN NSNS ~~

COEEN ~~

N N

YES: POSITICN BITS #0 AND #1
TEST FOR A "C" KEYPRESS, BIT #0
NG; GG ON

YES; SET THE AC EQUAL TO 0004
ADJUST THE AC TO 0013, HEX = B
GO BACK TU THE PROGRAM

TEST FOR A "Sm KEYPRESS, BIT #1
NO; GO ON

YES; SET THE AC EQUAL 710 0003
ADJUST THE AC TO 0012, HEX = A
GO BACK TO THE PROGRAM

POSITION BITS #2 AND #3

TEST FOR A "9" KEYPRESS, BIT #2
NC: GO ON

YES; SET THE AC EQUAL TO 0002
ADJUST THE AC 7O 0011, HEX = G
GO BACK TO ThE PRCGRAM
TEST FOR “7" KEYPRESS,
ANG; GG ON

YES; SET THE AC ECUAL TO 0006
SET THE AC FQLAL TO 0007, HEX =
GG BACK TU THE PROGRAM
POSITION BITS #4 AND #S
TEST FOR "8" KEYPRESS,
NC; GO ON

YES: SET THE AC EQUAL TO 0001
ADJUST THE AC TO 001G, HEX = 8
GO BACK TO THE PROGRAM

TEST FOR "6" KEYFRESS, BIT #5
NG; GU ON

YES; SET THE AC EQUAL TO 0006
HEX = 6

GC BACK T8O THE PROGRAM
PCSITION BIYS #6 ANO #7

TEST FCR ®S5" KEYPRESS, BIT #6
NO; GO ON

YES; SET THE AC EQUAL TO 0004

SET THE AC ECUAL TO 0005, HEX =
RETURN TO THE PRCGRAM

TEST FOR A ™4™ KEYPRESS, BIT #7
NG: GG ON

YES; SET THE AC EQUAL TO 0004,
HEX = &

GO BACK TG THE PROGRAM

POSITION BITS #8 AND #9
TEST FOR "3" KEYPRESS,

NO: GO ON

YES; SET THE AC EQUAL TC 0003,
HEX = 3

GO BACK TO THE PROGRAM

TEST FOR A "2" KEYPRESS,
NG; GO ON

SET THE AC EQUAL TO 0002,

BIT 43

BIT #4

BIT #8

BIT #9

GC BACK TO THE PROGRAM
POSITION BITS #10 AND #11
TEST FOR A 1" KEYPRESS

NO; GO ON

YES SET THE AC ECUAL TC 0COl,
HEX = 1

GO BACK TO THE PRQOGRAM

DEF AULT
THE "o"
0000, HEX

RETURN TO TH(PRCGRAM

THE DEPOSIT INTO MEMORY ROUTINE

WAIT FOR THE KEYPAD TO CLEAR
GET A HEX VALUE FROM THE KEYPAD

PLACE IT IN YEMP

GET THE VALUE FROM TEMP
MASK OUT BIT #8

TEST; IS VALUE > 7

NC; GO TO LOAC MEMORY

YES; GET THE VALLE

ADJUST TO POINY AT THE TABLE

AND PLACE IT IN A POINTER LOCATION

GET THE ADDRESS OF THE ROUTINE
FROM THE TABLE

AND PLACE IT IN TEMP

GO TO THE PROPER ROUTINE

GET THE MEMORY DATA THRU SAVPC
SHIFT IT QVER CNE DIGIT

ADC IN THE NEW DIGIT
RESTORE THE CATA TO THE MEMORY
GC GET THE NEXT CIGIT

SET THE AC ANC LINK
DECREMENT THE PC
RESTORE THE PC

GG GET THE NEXT CIGIT

INCREMENT THE PC
IN CASE THE PC WAS 7777
GO GET THE NEXT DIGIT

THE BLANK FLAG TCGGLE ROUTINE

CLEAR THE AC AND LINK

GET THE STATUS WCRD

POSITION THE BLANK FLAG, BIT #6
PUT THE FLAG INTC THE LINK
TOGGLE THE FLAG AND RESTORE
RESTORE THE POSIVION OF AC
RESTORE THE STATUS WORD

GO TO EXIT

THE SET PROGRAM CCUNTER (PC)
SUBROUTINE

WAIT FOR THE KEYPAC TO CLEAR
GET A HEX VALLE FROM THE KEYPAD

STORE IN TENMF

GET THE VALUE FRCM TEMP
MASK QUT BIT #8

TEST; IS VALLE >

NO; GO ON 19 lDAC THE PC
YES: GET THE VALUE

ADJUST TO POINT AT THE TABLE
PLACE IN A PCINTER WORD

GET THE JUMP ADDRESS FROM THE TABIF

CONDITION: IT MUST HAVE BEEN
KEV SE SET THE AC EQUAL TO

6666
667C

6671
6672

6673
€674
6675

6676

670C

6744
6745
6746
6747
675¢C
6751
€152
€753

6754
€755
6756
€757
6760
6761
€762
€7€3

6764
ETES
6766
6767
€770
6771
€112

€773
6774
€77¢
6776

4161
6110
4161
6425
1244
3147
1547

745¢C

5303
3146
1000
0342
qC41
1146
7640

5377
4161
725%
5303

ACJT,

GOCN,

K3€00,

MICRC,

XEC,

AIM,

AJKS,
K4C00,
NP,

K5C00,

ABND,

MRPA,

0T,

BOCB,
B8CCB2,

ICMK,y

NEXT,

TUC,
TLEL,
Tuc2,

TCZ,

PLP,

ncA
awe

TEMP
1 Tewmp

ACYT=T
SETPC
SETFC
FxUy
uoc

TAD
oL
[g &8
cLL
TAD
ccA
Jep

sAvPC
/AL
RaL
aaL
TENP
SAVPC
SETPC

cALL
CLKFD
CALL

FEX
TAD
ccA
TAD
oCA
Jrp

XEO
POINT

I POINT
POINT

1 POINT

XEO#+1
ABNC
ATAD
AISZ
spCA
AJMS
AP
AlQ1
AQPR2
ACPR1

1an
Jrp

T2D
Jrp
20

TAD
IMP
TAD

140
Jwe

SAVPC
MICRC
MICRC

00

K5000C
ABND

s00C

CCA
DCA

I savec
SAvV3

caLL
CLKPD
CALL

HEX
DCA
TAD
AND
SNA
Jup
TaD
T80
SNA
Jee
1ap
TaD
SNA
JMp
Jrp

TEMP
TEMP
07
cLa
Tcz
TEMP
BOOR
cLA
NEXT
TEMP
80082
cLa
ZONK
MRPA

7765
1166

TAD
cLL

RIL
cLL
RTR
cca
Jup

1§34
Jmp
Jep

o177
760C
740C

T8
AND
cIa
TAD
SZA

Jve
CALL
BSET
JMp

1 sAavpPC
RTL

CML RTR

1 SAvPC
MRP A

SAVPC
MICRC
MTCRC

SAV3
RAL

RAL

RAL
TEMP
SAV3

1 SAVPC
TUG2

1 SAvpPC
SAV3
TuE
1 SAVPC
1 SaveC
SAV3
TuG1

MRFA
HOLD
SAveC
TUCcL

HOLD
cLa

FLASH

4
MRPA

~~

~~

~ NN ~s~

PN

~

[N NENEN

~~

~~ ~~

s~

~

IS NN ~

PN PN

N T NN

~

N T NN

PLACE THAT ACCRESS IN THE PCINTER
GO TO THE PROPER ROUTINE

GET THE PC
SHIFY IT OVER ONE DIGIT

PLACE THE NEW DICIT
PLACE IN THE PC LOCATICN
GU BACK FOR A NEW OIGIT

THIS IS
PROGRAM
MONITOR
MCNITOR

THE MICRGC ASSEMBLER
WHICE IS ENTERED FRCM THE
BY DEPRESSING THE

SELECT KEY

WAIT FOR A CLEAR KEYBOARD
GET A HEX VALLE FROM THE KEYFAD

ADJUST A POIANTER TO THE TABLE
PLACE IN THE POINTER

GET THE JUMP ADDRESS FROM THE TABLE
PLACE THIS ADCRESS IN THE POINYER
GC TO THE PRCPER ROUTINE

THLS IS THE YABLE OF JUMP ADDRESSES
INCREMENT THE USER PC

GO ASSEMBLE THE NEXT INSTRUCTION
IN CASE THE USER PC WAS 7777

SET THE AC EQLAL TO 10C0

GG TO MRPA

SET THE AC EQLAL TO 20¢C0

GC TG MRPA

SET THE AC ECLAL TO 3000

GO TO MRPA

SET THE AC EQUAL TO 40CO

GC TO MRPA

SET THE AC EQUAL TO 50C0

GG TO MRPA

PLACE THE OP (ODE INTO THE INSTRUCTION 8

CLEAR THE ABSCLUTE ADDRESS
WAIT FOR A CLEAR KEYPAD

GET A HEX VALLE FROM THE KEYPAD

PLACE IN TEMP

GET THE VALUE

MASK LUT BIT #8

TEST; IS THE VALLE > 7

NGi GO TG LOAC THE ADDRESS

YES: GET THE VALUE AGAIN

ADD -11

TEST; 1S THERE A "C" KEYPRESS
YES; GJ ASSEMBLE THE NEXT INSTRUCTION
ANCi GET THE VALUE

ADD ~10

TEST; IS THERE A M"S™ KEYPRESS
YES; SET THE INDIRECT BIT

NC; GO BACK AND CET ANOTHER VALUE

~11 AND -10

GET THE INSTRLCTION

CLEAR THE LINK AND ROTATE THE AC TWICE
LEFT

PLACE THE INDIRECT 8IT IN THE LINK
SET THE INDIRECT BIT AND ROTATE

BACK

RESTIRE THE INSTRUCTION

GO GET THE NEXT VALUC

INCREMENY THE USER PC
GG TO MICRO
IN CASE PC EQLAL 7777

GET THE ABSOLUTE ADDRESS
SHIFT IT OVER CNE OIGIT

ADD IN THE NEW DIGIT

RESTORE THE ABSOLUTE ADDRESS

GET THE ABSOLLTE ADDRESS

MASK QUT THE CP CODE AND INDIRECT

BIT

RIEPLACE THE INSTRUCTION

GET THE ABSOLLTE ADDRESS

MASK OUT THE PAGE ADDRESS

COMBINE wITH THE INSTRUCTION

PLACE THE INSTRUCTION IN MEMCRY

GET THE ABSOLUTE ADDRESS

MASK QUT BITS #0 THRU #4

TEST: IS THE ABSOLUTE ADDRESS IN
PAGE ZERD

YESi G3 GET TVHE NEXT DIGIT

NCi PLACE TRE BITS #0 THRU #4 IN HOLC
GET THE USER PC

MASK GUT BITS 40 THRY #4

NEGATE THE VALUE

ADD THE ABSOLUTE PAGE NUMBER

TEST; IS THE ABSCLUTE ADDRESS IN THE
CURRENT PACE

NG GO TO ERRCR

SEV THE CURRENT PAGE BIT

GO GET THE NEXY CIGIT

761 6777
749
749
750
751
752 7000
753 79C1
154 10C2
755 70C3
756 7004
157 700¢
758 7006
759 10¢7
760 7010
761 1011
162 1012
163 7013
164 7014
765 7015
766 701¢
161 7017
768 702C
769 7021
170 7022
71
172 7023
713 7024
174
775
176 7025
717 102¢
178
779
780
7el 7027
782 7030
783 7031
784 7032
785 7022
786 1034
787 7035
798 702¢
789 7037
750 704C
791 7041
792 7042
793 7043
794 7044
795 7045
79¢ 704€
797 7047
798
799 705¢C
800 7051
801 7052
302
803 7053
804 7054
805 7055
806 7056
807 7057
808 70€0
809 7061
810 1062
81l 7063
812 7064
813 7065
814 7066
815 7067
816
817 70
818

€16
820
821

22
823

824
825
826 7071
827 7072
828 7073
829 7074
830 7075
821 7076
832 7077
833 7100
834 7101
e3s 7102
836 7103
e37

828

839 71C4
840 7105
84l 710¢
842 7107
843 T1LC
844 7111
845 7112
B46 7113
847 T114
848 7115
849 TL16
850 7117
851 7120
852
853
854
R55
856 7121
857 7122
858 7123
859
860 7124
861 7125
se2 26
863
864 1127
865 713C
866 7131
867
868 7132
869 7123
870 7134
871
872 7135
873 7136
874 7137
875
876 7140
877 7141
er8 7142
879
880 7143
881 1144
882 7145
833
884 714¢
885 7147
886 7150
887 7151
eag 7152
AA9
890
891
892
293
894 7153
895 7154
896 715%

3156

4161
61l1C
64CC
1223
3144
215C
2150
52C6
2144
520€
1224
31eC
4161
6200
764C
5625
21€C
5214
5626

7765
7157

6752
6117

3400

5232

1251
3400
4161
611¢
416l
6425
1304
3147
1547
3147
5547

4lél
7267
5273

4161
7271
5213

14CC
7010
7124
3400
273

1366
3400
4161

FLASH,

KA,
TkA,

SCLo,

ZC%,

ATCT,

ACFR1 ,

GU¥,

JA4y

JAb,

JAT,

JAEy

JAS,

JALO,

BSETL1,

ACPR2,

CCA SAV3

caLL
CLKPD
6400
TAD
CCA TIME
cca
1314
awp
1Sz
JNP
TAD
£ca
caLL
SWDE
SIA
Jre
152
JMP
awp

cLa
1 soup
SAVS
-5
T 20k

1765
11517

[T
FLASH

CLA CLL CML IAC RTR
DCA T SAVPC

DCA SAV3

cALL

CLKPD

cALL
FEX

cca

14D

AND

SNA

Jro

TAD

Tap

SNA

arp

Jup

TEMP
TEMp
cna
cLa
SGR
TEMP
SNCT
cLa

1 scr
A10T+3

1765
700C
777
TAD 1
AND SO
oca
TAD
cLL
cLL
cLL
Ta0
AN
DCA
TAD
T80
oCca

SAVPC
C

1 SAVPC
SAvV3
RAL
RAL
RAL
TEFP
cus
SAV3
SAV3

1 Savec
1 SAVPC

JMP AICT+3

TAD SCC

CCA [SAVPC
CALL

CLKPD

caLL

GUM
POINT

1 PCINT
PCINT

JMP T POINT

GUM+1
ACPR1+2
JAlC
Jas

JAR

JAT

JAe

JAS

Jas
ACPR1+2
ACPR1+2
BSETLIL
NEXT

CALL
BSET4
JMP AQPR 1+ 2

CALL
BSETS
JMP AQPRL+2

caLL
RSE 16
JMP ADPR1+2

CALL

BSE 17

JMB ADPR1+2
CALL

RSET8
JMP AQPRI+2

CALL
BSE 19
JVP ACFR1+2

caLL
BSETIO

JMP ADPR 142
TAD U SAVPC
R A

CLL _CML RAL
CCA | SAVPC
JNP ACPRLI+2

TaD Z0L2
DCA 1 SAvPC
CcaLL

NNNNN NSNS NSNS N O NNSSNS

NN ~~

N NSNS SNSSSS

NN

NSNS SSSS

~~

[N

NN

~~

7

ERNEN

PN

ERRUR CONDITION. FLASK THE DISPLAY
TC INDICATE AN ATTEMPT TC LOAC AN
ADDRESS THAT IS NCT IN THE CURRENT
PAGE LR PACE 2FRC. CLEAR THE ABSOLUTE
ADDRESS.

WAIT FUR A CLEAR KEYPAC

BLANK THE CISPLAY

GET THE TIME CCNSTANT #A
PLACE [T IN THE TIMER
CLEAR TEMP

CGOUNT QUT TENP 4(C96 TIMES

CCUNT OUT TIME

GET TIME CONSTANT #8
PLACE IN SAVS

GET A KEYPAD VALLE
TEST; IS THERE A KEYSOARD PRESS
YES; GO TU GEV THE PROPER ADCRESS
NO; CUUNT TIME

GC BACK TO SwCe

GO BACK TO FLASH THE DISPLAY

=o0012
=0Clo

(=10}
(=161

SET THE AC ECLAL TD 6000
PLACE IT IN THE [NSTRUCTICN
CLEAR THE A3SCLUTE ANDRESS
WAIT FOR A CLEAR KEYPAD

GET A VALUE FRCM THE KEYPAD

PLACE IN TEMF

CET THE VALUE

MASK OUT BIT #8

TEST: 1S THE VALUE > 7

NC: GO TU ADCFRESS LOAD

YES: GET THE VALUE

ADD ~-11

TEST: IS IT A "C® KEYPRESS

YES: GU TO NEXT

NC; DEFAULT, GC GET THE NEXT DIGIT

=0013 (~-11)

GET THE INSTRUCTION

MASK GUT BITS #0 THRU #2
PLACE BACK IN THE MEMORY
GEY THE ABSOLLTF ADDRESS
ROTATE [T OVER ONE DIGIT

ACD IN THE NEW DIGIT

BOUND THE ADCRESS TO BITS #3 THRU #11
PLACE THE NEW ADDRESS IN SAV3

GET THE NEW ADDRESS

COMBINE WITH THE INSTRUCTICN

PLACE THE NEw INSTRUCTION INTO

THE MEMORY

GC GET THE NEXT CIGIT

THE JPERATE GROUPS ASSEMBLY
ROUTINES

SET THE AC EQUAL YO 7000
PLACE THIS IN THE INSTRUCTION
WAIT FOR THE KEYBCAD TO CLEAR

GET A HEX VALUE FROM THE KEYPAD

ADJUST A POINTER TO THE TABLE

PLACE IN THE POINTER

GET THE JUMP ADDRESS FROM THE TABLE
PLACE IN THE POINTER

GG TC THE PRCPER ROUTINE

THE TABLE ADJULSTMENT VALUE
THE TABLE OF JUMP ADDRESSES

GO TO THE APRCPRIATE BIT SET ROUTIANE

GET THE INSTRLCTICN

PCSITION BIT #11 IN THE LINK

SET THE LINK AND ROTATE THE WORD BACK
RESTORE TU THE MEMORY

SET THE AC ECLAL TO 7400
STORE IN THE INSTRUCTION
WAIT FOR THE KEYEBOAD TC CLEAR

1246
7247
125C
7251
1252
7253
7254

1255
12%€

7257
726C

12€1
T2€2

1263
7264

1265
1266

7267
T27¢C

7271
1272

7273
7274

727% -

1276
7277
7300

6110
4161
6425
1367
3147
1547
3147
5547

7400

7170
6156
6164
7155
7155
7155
6167
7155
€145
€153
6150
€1€1
6736

6145

ez,
Gue,

*6145

JB4,

JBE

JE6y

JB,

JBE,

JE10,

TOK,

*7:04

ACPR3,

L3,

BCA,

JC 4y

JCs,

JC1,

AR,
ABE,
ABC,
A&C,
AAE,
AAF,
ARGy
BSET4,
BSETS5,
BEET6,
BSETT,
BSET8,
BSET9,

BSETIC,

MEST,

CLKFD

CaLL

FEX

TAD GUE
CCA POINT
Tan I POINT
DCA POINT
JMP T POINT

740C
GUB+1
Jer
Ja9

ACPR2+2
ACPR2+2

CALL
BSE T4
JMP [TOK

CALL
BSETS
JNP T TOK

CALL
BSET6
Jep T TCK

CALL
BSET7
JMP T TOK

CALL
BSETS
Jre 1 TOK

CALL
RSET9
JMP T TOK

CALL
BSET10
JMP [TOK

AOPR2+2

TAD 20L3
DCA 1 SAVPC
CALL

CLKFD

CALL

HEX

TAD 808

CCA POINT
TAD [PCINT
DCA PCINT
JMP [POINT

7401

E0B+1
ACPR3+ 2
ACPR3¢2
A0PR3+2
ACPR3+2
ACPR3+2
ACPR3+2
ACPR3+2
JC4

Jer

Jes
AOPR3+2
NEXT

CALL
BSET4
JMP ACPR3+2

caLL
RSE 15
JVP ACPR342

CALL
PSET7
JMP AOPRZ+ 2

0002
0004
cole
002¢C
004 C
cioc
0200

TAD AAG
JMp MBSTY

TAD AAF
JMP MBSTY

TAD AAE
JMP MRST

TAD AAD
JMP MBST

TAD AAC
JMP MBST

TAD AR
Jre MaST

TAD AAA
J¥p MAsSY

SWP

CLA CLL

TAD 1 SAVPC
Mca

DCA | SAVPC
RETURN

GET A HEX VALLE FROM THE KEYPAD

~

ADJUST A POINTER TO THE TABLE

PLACE IN THE FOINTER

GET THE JUMP ADDRESS FROM THE TABLFE
PLACE IN THE PCIATER

GC TO THE PRCPER ROUTINE

NN

~

CPERATE GKOUP 2 CP CODE

THE TABLE ADJUSTMENT VALUE
THE TABLE GF JUMP ADDRESSES

~~

/ GO TO THE APRCPRIATE BIT SEY ROUTINE

/ GO BACK TO ACFRZ

~

PCINTER TO GO BACK

SET THE AC EQUAL TO 7401
PLACE THIS IN THE INSTRUCTIOAN
WAIT FOR THE KEYBOAD TO CLEAR

S~

GET A HEX VALUE FROM THE KEYFAD

ADJUST A POINTER TO THE TABLE
PLACE IN THE PCIATER

GET THE JUMP ADDRESS FRCP THE TABLE
PLACE IN THE PCIM

GC TO THE PRCPER RﬂUTINE

SSSSS N

~

CPERATE GRCUP 3 CP CODE

~

TABLE OF JUMP ADDRESSES

/ THE BIT SET SUBROUTINES

SET BIT #10
SET BIT »9
SET BIT #8
BIT #7
SET BIT #6
SET BIT #5
SET BIT w4

PN NS
»
m
a

~
o
m
ot
-
x
m

PROPER SET WORD

PLACE THE SET COMNSTANT [N THE MQ
CLEAR THE

GET THE INSTRLCTIGN

OR IN THE SET CONSTANT

REPLACE THE INSTRUCTION

GO BACK TG THE PRCGRAM

DN

1047

1049
10€0

1055

1056

1¢59
1060

1066
1067

7301
7302
73C3
73C4
7305
73CE€
7307
7310
7311
7312
7312

315
7316

1371
7372
7372
7374
7375
7376
7377
7400
7401
14C2
7402
7404
7405
7406
7407
7410
7411
1412
7413
7614
7415

1416
7417
7420
7421
1422
7422

1424

1425
7426

1427
143¢C
7421
7432
1433
7434
7435
7436
1417
7440
7441
1442
7442
1444

5625

1141
7421
1142
7CC4
7200
114¢C

5400

6160
€170
€161
6171
6162
6163
6172
6113
6164
6165
€175
6174
6166
6176
6167
6177

SIN,

KibPy JMP

K11,
PLLM, RET

KJvp
STCRE
PLUM
SHIFT

1 savecC
MK

KT

cLa
EJMS

1 SavpC

KAT
CLA
FJIMP
EXEC

1 SHIFT

KeT, 3000

1N8D, TaD

nca

TACB, TAD
AND

I SAavpC
NOT
TIVE

1 SAVPC
GUT

CLA
INDB
SAVPC
pUC
TIME
TIME

1 SavPC
LT

SNA CLA
RETURN

TaD
cca

1 TIVE
TIME

RETURN

NC T,
PLL,
GL1,
Loy,
EJNS,

TNAT
152
NOP

JMp

EJNP,

€77
760C
0200
0400
CALL

TIME

.7

CALL

INAC

Jwp

EXEC, AL)
TAC
nca

T80
MCL
TAD
RAL
CLA
Tap

Jwp

. t4
SAVPC

TIME

SAVMC

SAVFL

SAVAC

1 SAVPC

HOT, HALT

TAL, JMS

RETy cCcA
GIF

REIDL=61EC
RELD2=61TC
WRITE1=€161
WRITEZ=€171
SKIP1=6162
SKIP2=6163
SKIP3=6172
SK1P4=6173
RCRA=E164
WCRA=61€5
WCRB=E175
WYR=6174
SFLAG1=61¢€6
SFLAG3=£176
CELAGL=€1€7
CFLAG3=61T7

BACK
SAVAC
SAVFL

SAVMQ

~

I N N

N N N T RN

NSNS N N NSNS N

N R N R NN

N~ N NS NSNS

~ 0~

~

~

N N

~~

~

WAIT FOR A CLEAR KEYPAD

CLEAR THE AC

GET THE INSTRUCT ION "JMP I SHIFT"
PLACE IV IN PAGE IERO

GET THE KETURN ACDRESS

PLACE IT IN SHIFT

GET THE INSTRLCTION TO BE PREFORMED
MASK GUT THE CPCODE

ADD -4000

TEST: IS THE INSTRUCTION A JMS
YES; GO TO THE JMS ROUTINE

NO; GET THE INSTRUCTION

MASK UUT THE CP CODE

ADD =-5000

YE$Y. IS THE INSTRUCTICN A JNP
GO TO THE JMP ROUTINE

GU TO THE EXECUTE ROUTINE

Nln

GET THE INSTRLCTION

MASK OUT THE PAGE ADDRESS
PLACE IN TIME

GET ThHE INSTRUCY ION

MASK OUT THE CURRENT PAGE BIT
TEST; IS THRIS BIT SET

NC; NO GO TC INCB

YES: GET THE CURRENT ADDRESS
MASK OUT THE PAGE NUMBER
COMBINE WITH THE PAGE ACDRESS
PLACE IN TIME

GET THE INSTRUCTION

MASK OUT THE INDIRECT BIT

TEST; IS THE BIT SET

NC; RETURN WITH THE TRUE ADDRESS

IN LOCATION TIME

YES: GET THE TRUE ADDRESS

PLACE LT IN VIME

RETURN WITH THF TRUE ADDRESS IN TIME

GET THE JMS ACDRESS

INCREMENT 1T TC "NEXT®
FOR hRAP ARCUND
GC TO EXEC

GET THE JMP ACORESS
GG TO EXEC

GEYT THE CURRENT ADDRESS
INCREMENT IT TC AEXT
PLACE IT IN VIME

NOW WE CONTINUE CN WITH “NEXT"
IN TIME

GET THE NEXT ADDRESS
INCREMENT IT

PLACE IT IN SAVE

GET THE NEXT INSTRUCTICN

STYORE IT IN SAV1

GET THE ®“NEXT+1" INSTRUCT ION
PLACE IT IN SAV2

GET THE INSTRUCTION "JMS BACK"™
PLACE IT IN THE NEXT LOCATION

GET THE INSTRUCTION AGAIN

PLACE IT IN THE NEXT+L LOCATIGN
GNCE MORE

NEGATE IT

TEST FOR RAM

TEST; DID IT GET PLACEC?

NO; THERE IS NC RAM THERE

YES; ALSO TEST THE NEXT+1 LOCATION

ADD THE NEXT+1 LOCATION
TEST; DID IT GET PLACED?
NO; THERE IS NO RAM THERE

EVERYTHING IS OK SO WE CAN
NOw EXECUTE THE INSTRUCTION

RESTDRE THE MQ

RESTORE THE LINK

RESTORE THE AC

GO EXECUTE THE SINGLE INSTRUCTION
HALT ROUTINE PCINTER

SAVE THE AC ANC FLAGS

GET THE MQ

SAVE IV

GET THE ORIGINAL FIRST INSTRUCTION
REPLACE IT

GET THE OTHER

REPLACE IT

SET THE AC ECUAL 10 -1

DECREMENY THE RETURN PC

ULPDATE THE USER FC

THE FOLLOW ING ROUTINES USE
THE PEE-UART INTERFACE.

ThE PIE-UART INSTRUCTICNS

7445
1446
7447
7450
7451
7452
7453
7454
7455
T4cE
7457
7460
7461
T462

T463
7464
1465

T466
1467
147C
7471

1472

1473
1474
7475
1476
1477
75¢C

7501
71502
7503
75C4

75¢5
1506
75¢7

1674

1617

77CC
7701
7702
7703
77¢C4

770%
7706
707
7710

1711
7712
7713
1714
7715
1716
mna

1720

60C7
6400
1263
6165
73CC
1264
6175
73CC
1265
6171
7300
61174
3160
55€4

7200
15€0
7600

€163
5266
6161
3144

5564

INFIE,

KCRA,
KCRB,
KTTY,

TALK,

LISN,

READ,

TTYM,

*7600

BINe

BECGy

BEC,

KLING,

oCL2,

PCL,y

RUN,

CAF
4

6400
TAD

KCRA

WCRA

cLA
Tap

cLt
KCRB

WCRE

cLa
Tan

cLL
KTTY

WRITE2

cLa
hVR
0CA

cLe
SAVS

RETLPN

T120C
1560
760C

SKIP2

P

=1

WRITEL

ocA

TUME

RETURN

SKIP3

NCP

SFLAGL
SKIF3

Jup

-1

CFLAGL

AND

TTYM

RETURN
0377

CALL
et

Tap

TAD
cca
Tap
TAD
SMA
JMp
TAD
AND
S2A
JMP
T£0
SZA
Jrp
152

JMp
1Sz
JMp
TAD
oCA
Jrp

TaD
18D
SMA
Nigd
14D
T80
Sva
JMp
TAD

BSW
TaD
tca

T&D
ctca
TAD
cca

TAD
cca
157
JMp
ave

1AD
TAD
cCA
Jmp

TAD
A
AND
RSW
0CcA
(4.2}
JNP

CaLL

E
STORE
K177
SAVS
K177

BACK
CHA
SAV1
cLa
TENP
POINT

HOLD

HLD
KRUB
cLa

HOLD
KCH8

HOLD

HOLD
SAVE
REGG+2

SAVS5
KCHR
cLA
«*5
SAVS
KLING
CcLA
.5
SHIFT

SAV3
1 5avs

SAVE
SHIFT
HOLC
SAV3

SAVPC
SAVS
SAVPL
BEGG
BECG

HOLD
SAvVPC
SAVPC
REGG
KLCNG
HOLD
SAvPC

REGE42

/

IO

~~

OGN

~ ~~ NNNSN N NSNS N NS NN

~~

NNSSSSaNS

B N N e N N N

NNSNNSNSSASNNN

EENENN SNNSN NN

NSNS SNS

~

THE PLE INITALIZE ROUTINE

CLEAR ALL FLACS
CLEAR THE DISPLAY

GET THE CRA WCRD
LOAD IT TO CRA IN PIE

GET THE CRB WCRD

LOAD IT TG THE CRB WORD IN PIE

GET THE TTY-UART CONTROL WORD

LUAD IT TG UART CCNTROL WCRD

WRITE ALL ZERCS INTO THE VECTOR WCRD
CLEAR SAVS

GC BACK TC THE PRCGRAM

THE PRINT TO TTY ROUTINE

SKIP ON CLEAR XMIT BUFFER

XMIT BUFFER NCT YET CLEAR
WRITE THE AC TC THE UART

CLEAR THE AC AND STORE THE DATA
IN TIME FUR PCSSIEBLE RECOVERY
GO BACK TO THE PRCGRAM

LISN IS THE RCUTINE TO GET A
CHARACTER FROM TKE TTY KEYBOARD
CR READER .

RESET THE START EIT SENSE FLAG

SET THE READER RUN FLAG
WAIT FOR THE FIRST START 81T
NOT YET

CLEAR THE REACER RUN FLAG

RAIT FOR DATA READY FLAG

CLEAR THE AC

READ THE UART BUFFER AND ERROR
FLAGS, CLEAR THE CATA READY FLAG.
CLEAR QUT THE UNWANTED BITS

GO BACK TO THE PRCGRAM

THE INTERJEPT JR. BTN LCADER
USING THE °IE=-UART INTERFACE

INITEALIZE THE PIE-UART

CLEAR THE CHECKSLNM
SET THE PC EQUAL TO 177
SET THE AC EQUAL
SET THE AC ECLAL
STORE [N BACK
SET THE AC ECUAL
SET SAV1

SET AC TO 7777
SET TEMP

CLEAR POINT

10 20C
T0 200

T0 1777

GET THE FIRST TTY CHARACTER
STORE THE CHAR IN HOLD FOR
SAFE KEEP INC
GET THE CHAR
ADD =377
1S 1T A RUBOUT?
GO TO RLECUT ROUT INE
NC; GET THE CHAR
ADD -200
TEST: WAS IT A LEADER-TRAILER
YES; GO YO THE L1 ROUTINE
GET THE CHARACTER
PLACE IT IN THE LAST CHARACTER HOLE
GET THE CHARACTER
ADD TO THE CHECKSUM SUBTCTAL
PLACE IN CFECKSUM
GET THE CHAR
ADD =277
TEST; IS IT & CHANGE FIELD CHAR
YES; IGNORE 11
GET THE CHARACTER
MASK OUT CHANNEL 17
TEST: IS IT AN ORGIN?
YES: GO TU LGAD THE PC
NO; GET THE FIRST CHAR FLAG
TEST; HAVE WE GOTTEN A LT YET?
NO; IGNORE THE DATA
YES; 1S THIS 2 SECOND PC CHAR?
NG; GO ON
YES: LOAD THE SECOND HALF OF THE PC
TEST; IS THIS A SECOND DATA CHAR
YES; GO TO SECOND DATA LOAD
NO; GET THE CHARACTER
STORE IT IN SBVE
GO BACK FGR THE SECOND PART

GET THE ADDRESS INTO THE AC
ADD =177

TEST: IS PC > 177

YES; UK TO LCAC THE RAM

NC: GET THE ACTRESS

ADD -140

TEST; IS PC < 14C

NO; BYPASS THE LCAD OF RAW
YES: GET THE FIRSY HALF OF THE
LCAD CHARACTER

POSITION IT

GET THE SECOND HALF

PLACE THE WNRC IN THE RAM

GET THE NEXT FIRST HALF
PLACE LT IN SKIFTY
GEY THE NEXT SECOND HALF
PLACE 1T IN SAV3

GET THE ADDRESS

PLACE IT IN THE LCAD PCINTER
INCREMENT THE PC

GO GET THE NEXT CHARACTER

GET THE CHARBCTER
PLACE IN THE LAST HALF OF PC
RESTORE 3

GET ANOTHER CHARACTER

SEY THE AC TC 0100
SET THE AC TO 7677
GEYT THE CHARACTER MINUS CHANNEL 7
POSITION THE RYTS

PLACE AS THE FIRST HALF CF oC

SET THE AC TC 7717

GO GET THE SECONL KaL©

GET ANUTHER CFARACTER FROM THE

8-17D

1399
14C0
1401
14C2
1403
1604
14C5
1406
1407
1408
1409
1410
1411
1512
1413
1414
1415
1416
1417
1418
1419
1420

1422
1423

1428

1473
1474
1475
147¢
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
14eC
1491
1492
1452
1a94
1635

1496

el
7722
7723
1724
172¢

7726
7727

7734
1735
173¢
1737
7740
1741

1742
1743
1744
1745
174€
1747

775G
7751
1152
7752
1754
1728

6173
6174
6172
€176

1554
7555
155

7557
756C
75€1
7562
1563
1564

1565
15¢€¢€

15€17
7570

7571
1572

rais
1351
770C
5215
532¢
3154
1151
1353
7€5C
5215

113

6173

2145
5176
5564
7761

1176
0371
41€1
7573

1576

2116
5332

1160
2151
7CcC2
0371
4161
T4€6
1151
7640
5354

4161
1157

6402
1402

o077
cloo

KMEd,

Lic,

K117,
KRLB,
KFCy
KCF8,
KLCNG
K14Cy

27757

Twhly,

*6173

LINK,

oure,

DATAL .

CHSUM,

HALF,
ORCIN,

1158

TAD KRUR
SMA CLA

Jmp
e

tCA

RSW
TaD
cIa
TAD
C1A
Tapn

180
cca

SAV3

STCRE

SHIFT

SAV3
SAVAC

TAD K14C

nca
Jwp
HALT

o177
7401
7500
760C
olo0
clac

1AD

SavecC

KME3

CCA SAVE
JAD KCHB

cALL
TALK
Jre

LINK

T .+l

1SZ SAVE

Jvp
RETU
TwWTY

cLa
€402
CALL
NPl
cLa
cca

CALL
TWTY

TAD
8 Sk
AND

1 .+2
RN
+2

CLL CMA

E
CLL CHA RAL
BACK

176

HALF

TAD DRGIN

CALL
PUNC!
TAD
AND
CALL

H
176
HALF

PUN CH

TAD
152

TAD
sz
RSW
AND
caLL
TALK
140
SIA
Jro

caLL
ThTY

6402
LY

cert
0100

T 17¢
BACK

DATAL

CLL CMA RAL
BACK

176

177
cLa
.+3
176
nATAL

SAVS
BACK

HALF
BACK

cLa
CHSUW

R R N N

ENEN

NN

N NN

P N L NN NN

NSNS SS NSNS NSNS S OSSN SSS

A S N

SNSN~

NSNS

~~

UART
ADD =377
TEST: IS IT A RUBQUT?

YES: CONTINUE wWITH THE LCADING
NG; IGNDRE UNTIL & RUBCUT OCCURS

CLEAR THE LF FLAC
GET THE LAST CHAR

ADD =200

TEST; IS IT A LT CHAR?

YES; CHARACTER RECEIVEC WAS NOT THE
FIRST LT

NC; THE CHARACTER RECEIVED WAS

A FIRST LT CFARACTER AND)
THEREFORE THIS SHOULD END THE LOAD
ROUTINE. GET THE FIRST HALF CF THE
LAST FIRST CHARACTER

POSITION IT

ADD THE LAST FALF OF THE LAST CHARACTER
NEGATE THE VALUE

ACD THE CHECKSUM

NEGATE THE RESULT

NOw ADJJST FOR THE SECOND

TIME WITH THE CHECKSUM

STCRE IN THE AC
GET THE SAVAC ADDRESS
PLACE IN THE PC

GO TO THE KALT ROQUTINE

THIS IS THE LEADER-TRAILER
ROUTINE FOR THE MEMORY DQUMP
PROGRAM. PLEASE NOTE THAT
IT LINKS THROLGH TWO PAGES.

SET THE AC TOQ —-63

PLACE IT IN SAVE

GET THE CHARACTER YOU WANT TC
PRINT

PRINT IT GUT CAN THE TTY

GC THROUGH THE LINK TO THE
REST OF THE SUBRCUTINE

COUNT OUT THE NUMBER OF LGCOPS
NCT DONE YET. GC DO ANOTHER
CCOMPLETE. GO BACK TO PROGRAM
RETURN T3 THIS POINT

ThiS 1S THE MEMORY DUMP

PROGRAM WHICH CAN BE IPPLIMENTED
BY STARTING THE INTERCEPT
JUNIOR RUNNINC [N THE NORMAL
HMODE WITH A STARTING ADDRESS
7510. TO SET THE ADDRESSES

OF THE RANGE CF MEMORY YOU

WANT PUNCHED CQUT IN BIN FORMAT
PLACE THE ADORESS OF THE FIRST
LOCATION YOU WANT PUNCHED IN
LOCATION 176 AND THE LAST
LCCATIONS ADCRESS IN 177.

THE PROGRAM WILL THEN PUNCH OUT ALL
MEMORY LOCATICNS IN BETWEEN WITH
LEADER-TRAILER AND A CHECKSUM.

SET THE AC ¥C 7777
DISABLE THE CF REQUEST TIMER
INITIALIZE THE PLEIUART

SET THE AC ECLAL TO 7776
PLACE THIS IN BACK

PRINT OUT 63 LEADER-TRAILER CHARACTERS

PRINT QUT THE ORGIN
POSITION FCR THE FIRST BITS
MASK OUT THE BITS

ADD THE CHANNEL 7 PUNCH
PUNCH IT OUT CN THE TTY

GET THE STARTING ADDRESS AGAIN
MASK OUT THE LAST HALF
PUNCH IT OUT CN ThE TTY

PRINT OUT THE CATA

TEST; IS THIS FIRST OR SECOND
FIRST; PUSITICN THE BITS
MASK OUT THE BITS

PUNCH OUT CN THE TTY

GET THE FIRST FLAG

TEST: [S THIS THE FIRST?

YES; GO BACK AND DO THE LAST HALF
NG; RESET BACK TC 7776

GET THE ADDRESS

NEGATE 1IT

ADD THE LAST Z2DDRESS

TEST: ARE THEY THE SAME?

YES: GO TO END OF DUMP

NO; INCREMENT THE ADDRESS

GO GET THE NEXT wORD. NOTE

THAT IF THE ADDRESS WAS 7777 THEN THE
DUMP PROGRAM wILL DEFAULT TO END

GET THE CHECKSUM AND PUNCH 1T OQUT
TEST: IS THIS FIRST OR LAST
FIRST; POSITICN THE BITS

MASK QUT THE BITS

PUNCH QUT THE CHECKSUM

GET THE FIRST FLAG

TEST IF FIRSY OF SECOND HALF
FIRST HALF, CC BACK FOR SECOND
PWNCH OUT LEACER-TRAILER

RESTORE THE CP REQUEST TIMER
END THE PROGRAM

1498 7573
1499 7574
1500 7575
1501 757¢
1502
1803
1504
15C5
1506 6374
1507 6375
1208 €376
15C9 6377
1510
1511

END OF PASS 2

0 ERRORS DETECTED

6374

1144
1160
3160
5564

PUNCH,

*6274

LIMKER,

CALL

TALK

JMP T 41
LINKER

TAD TIME
TAD SAVS
DCA SAVS
RETURN

/
/

/

SYMBOL TASLE

AAA

XEC

GUTPUT THE AC TO THE TTY

LINK TO THE REST OF THE SUBROUTINE

RECOVER THE CHARACTER

ADD TO THE CHECKSUM

UPDATE THE NEW CHECKSUM
GO BACK TG THE PRCGRAM

T246

7250 AAD
6617 ACJ
7153 AOPR3
€566 808

510 EJMP
6130 Gue
7425 INAD
1124 JAs
€153 JB?

1324 McuT

6063 pCt

7573 pupP
564 RETX

8-17t

AAG 7254
AISZ 6666
BASE 6037
BSETIO 7271
BUG 6547
ccs 7041
DIGL 6301
EXIT 6051
HALF 7571
INIT 6007
JAg 7140
JC4 7235
KCRB T4b4
KM14 6364
KO007 6523
L INK 6173
MASK3 6363
Msk2 6373
PLUM 7326
READ2 6170
RUM 7720
SAV2 0155
SIN 7301
sac 7051
TABLE 6263
TKA 7023

2
WRITEZ2 6171

CHAPTER 9
INTERCEPT JR. AUDIO CARD

DISPLAY
7-SEGMENT CONTROL
DISPLAY
LINK BINARY DISPLAY

=— SWITCH REGISTER
AUDIO DRIVE

DISPLAY LATCHES
AND DECODERS

INTERRUPT [
REQUEST \%}

TRISTATE
BUFFERS

REQUEST

SPEAKER
AND
VOLUME
CONTROL

I0T DECODE

FIGURE 9-1

INTRODUCTION

The INTERCEPT JR. AUDIO MODULE, 6957-AUD/VIS, pictured in Figure 9-1,
is used in microprocessor tutorial courses developed by INTERSIL INC.

The user can "click" the speaker or produce tones by controlling the
rate at which the speaker clicks; the user can read a switch register
and Toad data to an LED display register in either binary or in both
binary and octal.

9-1

DISCUSSION

The AUDIO card makes use of the three unused IOT instruction codes
64 X 1, 64 X 4 and 64 X 5 brought out to connector pins Y, C and 15
of the INTERCEPT JR. module.

~ The card should be plugged in with the LED display on top and the
speaker below using the card edge connector designated "to INTERCEPT
JUNIOR".

The switch register is connected to the DX bus via two 340098 three-state
hex buffers. The LED binary register is driven by three 74C175 quad
D-Tatches with their inputs connected to the DX bus. The true outputs

of the latches drive three 4511 BCD to 7 segment decoder drivers. The

D input of each of the 4511's is grounded so that the seven segment
display can only display in octal. The display can be blanked by

pulling the blanking inputs on the 4511's low via the Display Control
Switch. S12. :

A11 the switch. outputs are pulled up to Vgc via the 10K resistor pack.

IOT 6401 along with DEVSEL and XTC drives a 4025 three input NOR so
that during IOTA-DEVSEL.XTC the 74C74 flip-flop is clocked by the
execution of this instruction. The flip-flop toggles every time it
is clocked as its Q output is connected back to the D input. This
turns the transistors in the push-pull driver alternately ON or OFF,
charging and discharging the 68 microfarad capacitor through the
speaker voice coil and producing an audible click.

I0T 6404 is also an output instruction and thus is gated with DEVSEL
and XTC to produce a load pulse (inverted by a 4069) to the three quad
D-Tatches connected to the DX bus. The latches will thus store the
contents of the AC which are placed on the bus by the IM6100 during
I0TA.DEVSEL-XTC.

IOT 6405 is an input instruction and is decoded along with DEVSEL and
XTC to produce a strobe pulse at IOTA<DEVSEL-XTC time. This pulse is
inverted by a 4069 and enables the tristate buffers onto the DX bus -
and also turns ON the two 2N2222 transistors driving the Cgp and Cj
lines. The IM6100 thus reads the DX bus during IOTA. +XTC and
loads the data into the accumulator.

The INTREQ and SKP Tlines to the IM6100 are multiplexed onto the same
line. The data read strobe generated by an IOT 6405 enables the SKP
Tine so that depression of the SKP switch will drive the SKP Tine Tow.
The INTREQ line is always enabled except during DEVSEL time. Actually,
the SKP Tine is sampled only during DEVSEL:XTC, but for simplicity,
interrupt requests are disabled even during DEVSEL.XTC. In any case,
the INTREQ T1ine is sampled only during the last cycle of an instruction
execution during the first major state time.

The LINK bit drives an LED diode directly via a 4069.

9-2

6957—AUDVIS
vee () ALLTI LEDS INTERCEPT JR. AUDIO CARD SCHEMATIC

Vee
Yy Y Y Y YYYYYY N JL
DXg DX11 I
j = = 2 13 10 s
- LE T a
4| CLR oo 2] B §F) . 2N2222
T o™ gf ; i : .,
GO Blo o - B coasin ([10 ¢ B2R —
= DXy 5], 74%758_7 A PO I] 4], IF 1 68uF
Cowx afe 15 2 6 L
PX2 12 Sk 61p f f =
CGOsx D ary Fiold 3lg 375E %
X3 ck® POT < 2N3638
= 4 aw
9 5 3| l
1 N e i 07
CLR c o2 9],
(G 4o af-2 1 J 8],
o 5 af7 8 cpasti 410 5]y 828
(ons P 74c175 Q |6 1 24 PRI I 415 1
&> 121, 4p Q10 6lo HiE 2] 6
DX af
Do el opE [Biof e
a _14 —
DX7 CLK! = I 2 =
) 5| 3
1 el . 101,
c b b
CLR qI 1 8
=7 c
iy 1o afle Bco4511: 5|, B2IR
DXg afls 7 5D 3F 1
2D Blo = A . 4]
DXg 74C175 Q |14 6 2 5
GO Yo e 2F2 ° : o, gL 1S
DX ar 819 9 Q
G o 2l af10 ' L T Vee
DXq4q aFn = 4 74C74
e 503 CLR cD4025
SAME- o J]J7 LECT a 0r, ! 13 64X 1(L)
NAME \YAAY VVV€7 ¢ b 91y __Iz 8 1012
SIGNAL 0y 04 07 03 04 O Og O7 Og Og 01001 c 1 DEVSEL (L)
HAE B cpas11 [10 5| B27R =
1413 P N L1 9 K F 5 6 E d d
o al, 4F 1 XT‘H R_)
PIN NUMBERS OF 6lp i 211 5 4
TOP EDGE CONNECTOR | 519 q
= ry INS14 = CDA4069 coa0zs
o 8 6
% ool T enxan
’ 6A
5
VCC BECKMAN 10k RESISTOR PACK 6A
o 6A 6
C CD4025
€D4069 -
899110k § 5¢ DISPLAY 8
10 14 ON/OFF q 2 —4 64X5(L)
SWITCH 3 —5)
13[1[o] 2[1o] 8] 3] 5[6] 1] 7] 412
CD4069 CD4069
15 1 :5,2 3 12 13
—— — 2
2| ©F, 0§, |2 = 6A 6A 7 vee
m R SWITCH K
13 —04 14 —oo— g T SKP/INT(L)
11 6C 12 6 TIMES 2N2222
9 10
8) Cg .001uF AN
R
15 1 4 ag P
= 13| OE, OF4 |14 206 2N2222
11 a2
40098 SWITCH LINK
7 6
0&1 - ” 2 d LINK
3 2 —o‘\o— ———(:)
T1LED 6A
9 2 10 6 TIMES
TOP EDGE
5 4 CONNECTOR
LJ] J] J] > -roweRGRID D u
v VVVVVVVVV 5708 = (D = 44PIN INTERCEPT JR. BUSS
SIGNAL NAME g 17 1913 14 15 16 17 1g 19 110119 SWITCH
16SR12ZM11J 87 D4 3 REGISTER [> = Top EDGE cONNECTOR

PIN NUMBERS OF
TOAP ENGFE CONNFOTOR

APPENDIX A
INTERCEPT JR. PROGRAMMING FUNDAMENTALS

NUMBER SYSTEMS

INTERCEPT JR., as most digital computers, uses the binary system.
Representation of binary numbers by positional notation is
analogous to the common representation of decimal numbers by
assigning ten different "weights" to each position. Any number
of n digits may be written as the string of digits.

C .C; C

C 1%

n-1 "n-2°°

where C's can range from 0 to 9.

This actually stands for
Cn-] followed by (n-1) zeros +
C,.p Tollowed by (n-2) zeros +

C

-3 followed by (n-3) zeros +

é] followed by 1 zero +

Co

n-1 n-2 1 0
or Cn-] (10) + Cn_2 (10) + ...C-I (10)" + CO (10)

For example, 1234 is 1000 + 200 + 30 + 4 or 1 X 105 + 2 X 10% +

3% 10 + 4.

Similarly, in the binary system, any number may be represented
by a string of coefficients

B B B, B

n-1 "n-2"°°"0 "1
which stands for
n-1 n-2 1 0
Boq (2" 8, (2" 4By (2) + B, (2)
where the B's may be 0 or 1.

The "radix", or base of the binary system is 2, whereas it is O
in the case of the decimal system.

A-1

The reason that the binary system is universally used in digital
computers is that it is very convenient and easy to provide for

two states in digital circuits and this makes a binary representation
of digital system states very practical.

Other physical systems may be easier to describe in a number system
with a different number of states. To illustrate, consider this
puzzle:

Given a scale balance, how many different weights would
be needed to balance any object that could weigh a
whole (integer) number of pounds up to 1000 pounds?

One way of Tooking at this puzzle is by imagining that the object
is placed on one pan of the balance and the weights are added, or
taken off, the other side until the pan balances.

Since a weight could either be on the pan, or not on the pan, we
have two possible states for each weight--on or off the pan. By
now, it may be intuitively apparent that we could take a group of
weights, in ascending powers of two, and using them or not using
them on the pan, we could balance any weight up to the sum total
of all weights.

It takes ten binary digits, or "bits" for short, to represent any
number from 0 to 1023. Our problem is solved by having ten weights,
weighing 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 pounds each.

We have gone from 1000 to 10 by making the binary connection.
Can we do better? Actually, we can, by going just a Tittle further
along the same train of thought. ‘

What if we were allowed to place the weight on the opposite pan,
along side the object? This adds a third possible state to each
weight. Now it can either be on the "normal" side, on the "object"
side, or not on the balance at all. We have a three-valued, or a
ternary system.

By putting the object on the "object" side, we are effectively
giving it a negative weight, as it acts to force the "normal"
side of the pan upwards. So each physical weight has three
mathematical "weights" assigned to it, 0 +1, -1 according to
where it is--off, on or opposite side of the pan.

It can be proved, but it should also be intuitively apparent that
now we need weights in ascending powers of three. The weights
required are 1, 3, 9, 27, 81, 243, 729 so we have bettered our
previous score by three.

Digital circuits are composed of vast quantities of two-state
or bi-stable devices known as flip-flops.

A-2

In theory, binary numbers may be used to describe the condition
of these flip-flops.

A system with 12 flip-flops could be represented by a 12 bit
number, for example 1 01 100111001, where each bit
represents the set or reset state of a particular flip-flop.
Binary numbers are unwieldy to handle because of the Tong strings
involved, so often a simplification is introduced.

Consider the numbers 0 through 15 written in their binary
equivalent.

23 22 21 20

8 4 2 1

0 0 0 0 O
o o0 o0 1 1
0o 0 1 0 2
o o0 1 1 3
0o 1 0 0 4
o 1 0 1 5
0o 1 1 0 6
o 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1T 0 10
1T 0 1 1 1
1 1T 0 0 12
T 1 0 1 13
1T 1 1 0 14
T 1 1 1 15

Observe that in the "units", or 20 position, the state changes, or
"toggles" most often, for example every time the number increments.
In the next or 21 position, the bits toggle every two increments,
and in the 22 position, every four times, etc.

Or, looking at this another way, the one bit groups 0 and 1
alternate every time, the two bit groups 00, 01, 10, 11 recur
every fourth time, the three bit groups

recur every eight times, and so on.

Thus, to shorten binary numbers, we could encode these groups.
The tradeoff is between the length of the number string, and the
number of symbols required.

A-3

We could encode the two bit groups with four symbols.

00 0
01 1
10 2
11 3

Then we could represent the same number we had before as shown:

10 11 00 11 10 01
2 3 0 3 21

The string has half the number of digits, but it took twice the
number of symbols.

We could go further, and take three bit groups. Let us encode
the group as follows:

000
001
010
011
100
101
110
111

NOOoOTR_RWwWwN—=O

The previous example is split up into three bit groups as shown:

101 100 111 001
5 4 7 1

We now have one-third the number of digits in the string, but
instead of only three times the number of symbols, we have four
times the number of symbols. This is because the number of
symbols is doubled every time we increase the group size by
one more.

Proceeding further, using four bit groups. We will run out
of numerals, so we will use some alphabetic characters to
help encode the group.

AS

0000 O 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
ot 7 1111 F

A-4

Our 12 bit number may now be represented by three of the above
codes:

1011 0011 1001
or B 3 9

So, we have doubled the number of symbols to sixteen but reduced
the length of our string only by one, from four to three. The
code itself has also become a 1ittle unwieldy because the number
of different symbols.

As a matter of fact, this representation by four bit groups 1is
known as the hexadecimal system (base 16 system) and is widely
used.

The system of representation with three bit groups encoded with
the eight symbols O through 7 is known as the octal number system
and is also in wide use.

We shall adopt the octal numbering system for INTERCEPT JR.

It should be evident by now that the choice is based purely on
convenience and consistency with the available literature as
almost all digital computers are fundamentally binary machines.

At this point, it is instructive to turn your machine ON. Press

the CNTRL key and the MEM key and then keep pressing the MEM

key. The address display will increment in an octal progression.
By watching the addresses increment, the user can become familiar
with the octal system.

To recapitulate, conversion from binary to octal is done by
taking groups of three bits, starting from the Teast significant
bit, filling in a zero or zeros to the most significant group,
if necessary, and writing down the octal equivalent for each
group.

Conversion from octal to binary is done by directly writing down
three bits from each octal number.

INTERCEPT JR. uses two's complement arithmetic in its processing
logic.

The processor performs binary addition between two operands but
binary subtraction is best done adding the "negative" of one
operand to the other. This requires an extra symbol to indicate
the sign of the number. To avoid this, a form of representation
known as two's complement has been devised to represent negative
numbers.

A-5

To illustrate the concept involved, let us look at a couple of
analogies in the decimal system. In the decimal system, we
could use the "ten's complement" to represent negative decimal
numbers. Consider a ruler marked off in centimeters. If zero is
your reference point, then "1" would be the same as +1. To
measure "-1", you would have to turn the ruler around. Or,

you could slide it so that the number 10 was opposite your
reference point. Now, the point "-1" is marked by the number 9.
That is, 9 is the 10's complement of 1. Similarly, 8 is the
ten's complement of 2, 7 is the ten's complement of 3, etc.,
these numbers representing -1, -2, -3, etc.

To subtract one number from another, we add their ten's complement
together and ignore the carry.

Thus 8 - 3 is given by adding 8 and 7 to get 15 and ignoring the
carry to finally give 5.

The one's complement, by definition is obtained by subtracting
each digit from one. In the binary system, this is particularly
easy. All one has to do is to invert the bits.

00000101
One's complement 11111010
Add 1 to get 2's complement 11111011

By taking the two's complement again, we get the negative of
a negative number, so we should get the original number back
again.

11111011
One's complement 00000700
Add T to get 2's complement 00000101

Thus 8 - 3 in binary is 1000 - 0011, or taking two's complement

1000 + (1700 + 1) = 1000 + 1101 = 10101 or 1010 = 5 neglecting
the high order carry.

ARITHMETIC PROGRAMMING EXAMPLE #1

ADDRESS MEMORY SYMBOL
0020 7200 CLA
0021 1026 TAD 0026
0022 1027 TAD 0027
0023 3025 DCA 0025
0024 7402 HLT

We shall enter this program with INTERCEPT JR. via the keyboard
to practice binary arithmetic. At this point, it is sufficient
to know that CLA stands for clear accumulator, TAD for binary
ADD, DCA for deposit into memory and HLT for halt.

The octal numbers on the left are successively numbered memory
locations or "addresses" and the numbers on the right are the
octal representations for the binary data that will be stored

in these memory locations.

Each Tlocation can store four octal digits, that is, twelve binary
digits, or bits. Each location may be thought of as a row of
twelve flip-flops that are set or reset according to the data to
be stored.

To enter this program, turn on the machine and perform the
following sequence of key depressions:

CONTRL SETPC 0 0 2 0

This enters the starting address.
CONTRL MEM 7 2 0 O

This enters the first instructions.
MEM This increments the address.
CNTRL MEM 1 0 2 6

This enters the second instruction in location 0021.
MEM Increments address.

Finally, after HLT is entered, press MEM twice to step the
address to 0026.

Now, enter an octal number, for example 7, into this address,
step MEM again and enter a second octal number, for example 10.
These are the operands in location 0026 and 0027. The program
will add them and place the result in lcoation 0025. In this
case, 0017 will be seen in this location.

Now, to run the program, we have to get back to the beginning,
SO press

CONTRL SETPC 0 0 2 0

The display will show the address and the instruction.

Press
CONTRL RUN

The program will be executed, and the processor will halt,
showing the result in Tocation 0025. Note that if the sum of
the two numbers is greater than 7777 in octal, a carry out or
overflow will occur from the most significant bit position,
setting the LINK bit in the processor.

Practice different addition problems on paper, in binary,
then in octal and check them on INTERCEPT JR.

At this point, think of all the numbers as unsigned positive
integers. Now, think of the numbers as signed two's complement
numbers.

Write down two numbers, and subtract one from the other using
this program to add one operand to the two's complement of the
other operand.
EXAMPLE: oo 111 000 111 or 0707

111 000 111 000 or 7070

added together

11111 1t 111 or 7777
If 7070 is considered as a negative number, then, by taking the
two's complement, we get:

goo 111 000 111 + 1 =

000 111 001 000 or 0710
That is 0707 - 0710 = 7777. This can be seen to be true because

0710 is just one greater than 0707 and 7777 is obviously -1
(two's complement = 0000 + 1).

Since data entry and readout in INTERCEPT JR. is in octal, it
may be convenient to work in eight's complement notation. This
is a direct extension of the previously described technique:

EXAMPLE: Subtract 3456g from 7142g
A) 7's complement of 3456g 4321g
B) add 1 to get 2's complement 4322g
C) add to 7142 71428
134648
D) discard high order
carry to give answer = 34644

A-8

ARITHMETIC PROGRAMMING EXAMPLE #2

We shall now explore in greater detail the advantages of two's
complement arithmetic.

As explained previously, to form the two's complement of a
binary number, the one's complement is taken and one is added to
it.

In general, this works with any radix (base). That is, the
complement with respect to the Tlargest single digit integer
in the system is taken, and one is added to it to give the
radix complement.

In particular, the binary system lets us implement the one's
complement in a simple way. You simply invert the bits. This
is very easily done in almost all modern digital Togic families
because inversion is a function basic to them all.

In many circuits, the true and inverted levels are available
at the same time (flip-flops) and one just has to select the
desired level.

The addition of 1 is also easy to do because the capability to
add must be present anyway.

Thus 2's complement conversion, in conjunction with standard adders,
allows the processor to do signed arithmetic. Multiplication and
division are done by programming suitable algorithms, that is,
computational sequences. We shall study these techniques later

in this text.

The following program computes the two's complement of a binary
number. Bear in mind that the number is entered in octal, and
the two's complement is also displayed in octal.

ADDRESS MEMORY SYMBOLIC
0020 7200 CLA / Clear accumulator
0021 1026 TAD 0026 / Read data in 26
0022 7040 CMA / Complement accumulator
0023 1027 TAD 0027 / Add one
0024 3026 DCA 0026 / Deposit into 26
0025 7402 HLT / Halt
0026 / Result and user entered data
0027 0001 0001 / DATA =1

Enter this program exactly as explained in example one. Notice
that this program uses data supplied by the user as well as data
contained in the program itself

What if we would 1like to use both the program examples together?

If you Took at the memory addresses used by the two programs,
they look very similar. In fact, we just wrote over the first
example and effectively lost it.

Let us assume we want to keep both example 1 and example 2 in
memory. Since we wrote over example 1, let us choose to relocate
it. Go back to the listing for that example and take a look at
the symbolic code.

The octal numbers following the mnemonics are memory addresses that
are referenced by the instructions.

A1l we have to do is to alter the memory references according to
where the program is going to be relocated and make sure that the
data is entered in the proper addresses where the program expects
to find it.

Let us move the program up to twenty locations. A1l addresses
must have twenty added to them and the three memory reference
instructions must also have twenty added to them.

0040 7200
0041 1046
0042 7040
0043 1047
0044 3046
0045 7402
0046

0047 0001

Enter this as explained before. Naturally, the data must be
entered into 46 and the result will also be in 46. Run a few
examples and check out the program

Now we can do signed arithmetic by using one program for addition
and the other for calculating two's complement. The only problem
is, each time we have to enter data, execute, read data and then

repeat the process for the other program.

ARITHMETIC PROGRAMMING EXAMPLE #3

This brings us to the concept of 1linking programs together and
passing parameters between them.

For example, we can link the two programs into a single program
that subtracts one number from another and displays the result
in two's complement notation.

One program must give the other program the number to be converted
and receive the two's complement result from it so it can finish
the addition, for example subtraction of the original number, and
display the result.

We pass parameters by storing data where both programs can reference
it. We pass control by using unconditional branch or jump
instructions to change the flow of the program. A jump instruction
specifies the location from which the next instruction is to be
fetched.

ADDRESS MEMORY SYMBOLIC
0020 7200 CLA
0021 1026 TAD 0026
0022 7040 CMA
0023 1027 TAD 0027
0024 3046 DCA 0046
0025 5040 JMP 0040
0026 / DATA 1
0027 0001 0001
0040 7200 CLA
0041 1046 TAD 0046
0042 1047 TAD 0047
0043 3045 DCA 0045
0044 7402 HLT
0045 / RESULT DISPLAYED : DATA 2 - DATA 1
0046 / DATA STORED BY FIRST PART OF PROGRAM
0047 / DATA 2

Note that location 24 is changed to store the two's complement of
DATA 1 in location 46 instead of 26. Location 25 contains a

JUMP to 0040 instead of a HLT. This causes the computer to

fetch the next instruction from location 40 and, thus, execute
the second segment of the program which finally halts showing the
result of the subtraction in location 45.

Note that we could have relocated the data in 27 elsewhere and
filled the space from 25 to 40 with NOP instruction, No Operation.
This would have let the computer ripple down to the second segment
of the program but would have been wasteful of memory space and
not permitted the introduction of the JMP instruction.

A further simplification would have been to use the instruction
CMA IAC or 7041 1in location 0022. This would have eliminated
the TAD instruction in 0023 and the data stored in 0027. CMA IAC

complements the accumulator, then increments it in the same memory

cycle.
instructions.

studied.
before the IAC.
Togical sequences.

Additional Reference:

This is an example of the use of combinations of micro-
When using such combinations, the "logical
sequence" of .execution of the microinstructions must be carefully
In this example, for instance, CMA must be performed
Refer to the IM6100 brochure for details on

"Introduction to Programming", Digital
Equipment Corporation Software Distribution
Centers - 146 Main Street, Maynard, MA
01754 or 1400 Terrabella Road, Mountain
View, CA 94040

ADDITION AND MULTIPLICATION TABLES

Addition Multiplication
Binary Scale
0+0=0 0X0=0
0+1=1T+0=1 0X1T=1X0=0
1+1=10 1TX1=1
Octal Scale
01 01 02 03 04 05 06 07 1102 03 04 05 06 07
1102 03 04 05 06 07 10 2 104 06 10 12 14 16
21 03 04 0506 07 10 11 3106 11 14 17 22 25
3104 05 06 07 10 11 12 4 110 14 20 24 30 34
41 05 06 07 10 11 12 13 5 112 17 24 31 36 43
5106 07 10 11 12 13 14 6 | 14 22 30 36 44 52
61 07 10 11 12 13 14 15 7 116 25 34 43 52 61
7110 11 12 13 14 15 16

APPENDIX B
INTRODUCTION TO LOGIC

INTRODUCTION

This appendix briefly reviews truth tables as applied to simple
Togic elements, both combinatorial and sequential. Timing
diagrams and state diagrams are illustrated using flip-flops

as examples.

TRUTH TABLES
AND FUNCTION

Symbol for AND gate

1
2
3

n

Output is true only if all inputs are true, that is,
input T AND input 2 AND...AND input N

Input 1 Input 2 Input N Output
0 | I 1 0
0 0 ceees 1 0
0 0 cees 0 0
1 0 ... 1 0
1 0 ceee 0 0
1 1 all 1's 1]

This table shows a conventional positive logic AND gate,
with 1 representing logic high or true, and 0 representing
logic low or false. Thus, only one combination of the
inputs gives a high output.

B-1

OR FUNCTION SYMBOL FOR OR GATE

Output is true if at least one of the inputs is true, for
example Input 1 OR Input 2 OR...Input N OR any combination
of true inputs yields a true output.

Input 1 Input 2 Input N Output

0 0 all 0's 0 0
0 1 coes 0 1
1 1 ceens 0 1
0 0 e 1 1

Here, only one of the 2N possible input combinations
namely all 0's will yield a false or low output.

NOT FUNCTION

Symbol for inverter

A)

OR

B)

Qutput is logical inversion of input.

Input Output
1 0
0 1

The position of the "bubble" tells you what the active level

of the input is expected to be by the designer. Quite often,
it is drawn as in A above.

B-2

NAND FUNCTION
Symbol for NAND gate

A
C

B

A B C

1 1 0

0 1 1

1 0 1

0 0 1

This is the same as an AND gate followed by an inverter.

NOR FUNCTION
Symbol for NOR gate

A
C

B

A B C

0 0 1

0 1 0

1 0 0

1 1 0

This is the same as an OR gate followed by an inverter.

EXCLUSIVE-OR FUNCTION
Symbol for EX-OR gate

A

B-3

A B C
0 0 0
0 1 1
1 0 1
1 1 0

Output is true if Input A OR B but not BOTH are true.
Note that this gate can be used to detect the fact that
the inputs are identical. Thus, it is used quite often
in digital comparators.

D-TYPE FLIP-FLOPS (L

Symbol
Preset
SEN— | ('
Clock @ D—
Clear
TRUTH TABLE (1)
Input Output
D Clock Clear Preset Q q
X X 0 0 1 1
X X 0 1 0 1
X X 1 0 1 0
X 0 1 1 STABLE
X 1 1 1 STABLE
X 4 1 1 STABLE
0 4 1 1 0 1
1 4 1 1 1 0

The truth table for a D flip-flop is complicated
by the sequential nature of this logic device.
Strictly speaking, truth tables should represent
combinatorial logic properties only.

In this case, the truth table also shows the edge-
triggered action of the flip-flop with ¢ representing
the negative going edge and + the positive going
edge. 0 and 1 show stable levels.

B-4

The table is really a hybrid of a combinatorial
truth table and a state table.

This flip-flop is a synchronous storage element. In
other words, it stores data using a clock signal to
synchronize the operation. In this case, the device
is positive-going edge triggered, or simply, positive
edge triggered.

The bottom two Tines show that as long as the clear
and present inputs are high, the positive clock edge
loads the flip-flop with the data at D such that the
Q output reflects the D input. The Q output is
always supposed to be the inverse of the Q input.

A11 other conditions of the clock--high, Tow, or
negative edge, have no effect and the outputs remain
stab;e (at the value Toaded on the previous positive
edge).

The D flip-flop thus delays data by one clock period.
Note that during the preceding discussion, the clear
and preset inputs were assumed high.

These inputs are asynchronous, and so can change the
outputs regardless of the clock or data input.

The bubbles indicate active low operation.

When both asynchronous, or "direct" inputs are low,
both Q and Q go high, so this condition is normally
forbidden.

In sequential circuits, other time related parameters
are generally specified. Thus data inputs generally
have to meet setup and hold times with respect to

the active edge of the clock, or "interrogating"

edge. A setup time is the time the data must be present
before the active edge, and the hold time is the time
for which it must continue to be present--"held", after
the active edge in order for proper operation. Sequential
device operation can be much better understood using
another graphical technique known as a timing diagram.
Such diagrams bring out the time-sequential interactions
in these devices much more clearly. The next section
will deal with timing diagrams.

TIMING DIAGRAMS

Shown below is a timing diagram for a D flip-flop.

Preset “

C]ear‘—u U
Clock T UL UyUlL

o BB
&

Q

5

STATE DIAGRAMS

Sequential circuits inherently contain storage elements each of
which may be in one of two stable states. Each "state" of a
digital system, as explained in the section on truth tables,
could be represented by a binary number. The system changes
states in response to internal and/or external conditions.

The state transition may be synchronous to a clock pulse train
or asynchronous. Asynchronous sequential circuits will not be
covered in detail in this book, and we shall deal only with
clocked Togic.

State tables and state transition diagrams are additional tools
of analysis and design that digital engineers use.

As an example, we shall show the state table and state transition
diagram for the J-K flip-flop.

Qn Jn Kn Qn+1
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

B-6

The transition, if any, from Q to Qn+7 (Q at time tp and Q at
time tp+1) is triggered by the negative going edge of the clock.

In words, when J and K are zero, the outputs do not change. When
J and K are both one, the output toggles at every clock pulse
and when J and K are at opposite levels, Q follows J (and Q
follows K).

Another form of the state table shows this relationship:

Jn=0,Kn=O Jn=0, Kn=1 J =1, Kn=0 J =1, Kn=1

n n)
Present State Next State Next State Next State Next State
Qn Qn+1 Qn+1 Qn+1 Qn+1
0 0 0 1 1
1 1 0 1 0

The number of inputs and outputs in a digital system are not
related to the number of states. They only determine the number
of paths along which a change of state may occur. In this
specific case, the output is also the state.

éo op

The state diagram shows the different states of a digital system
and the conditions necessary to cause the system to change states.

Information that is not shown on a state transition diagram is
presented in other visual aids such as timing diagrams.

Thus, in general, a complex system must be studied with the aid

of many different tools in order to gain insight into the operation
of the system from many different angles.

B-7

Digital systems may be "hardwired" or programmable. Hardwired
digital systems have many logic devices scattered at random
and many operations are done in parallel.

This "random Togic" consists of such standard SSI and MSI
functions as counters, multiplexers, decoders, latches, registers,
etc.

Programmable logic systems usually have denser, more regularly
arrayed chips such as ROMs, PROMs, RAMs, FPLAs, microprocessors,
etc. and substitute many sequential operations for a single
parallel operation, though this is not always the case.

Such systems replace the "randomness" in the logic with random
bit patterns in the memory components. Programmable logic
systems are gaining popularity with the advent of inexpensive LSI
storage and processor devices.

B-8

0000 | 0000

to to
0777 | 0511
(Octal)|(Decimal)

Octal Decimal

60000-24576
70000-28672

OCTAL-DECIMAL INTEGER CONVERSION TABLE

0 1 2 3 4 5 6 7
0000 | 0000 0001 0002 0003 0004 0005 0006 0007
0010 0008 0009 0010 0011 0012 0013 0014 0015
0020 | 0016 0017 0018 0019 0020 0021 0022 0023
0030 | 0024 0025 0026 0027 0028 0029 0030 0031
0040 | 0032 0033 0034 0035 0036 0037 0038 0039
0050 | 0040 0041 0042 0043 0044 0045 0046 0047
0060 | 0048 0049 0050 0051 0052 0053 0034 0055
0070 | 0056 0057 0058 0059 0060 LO61 0062 0063
0100 | 0064 0065 0066 0067 0068 0069 0070 0071
0110 | 0072 0073 0074 0075 0076 0077 0078 0079
0120 | 0080 0081 0082 0083 0084 0085 0086 0087
0130 | 0088 0089 0090 0091 0092 0093 0094 0095
0140 | 0096 0097 0098 0099 0100 0101 0102 0103
0150 | 0104 0105 0106 0107 0108 0109 0110 0111
0160 0112 0113 0114 0115 0116 0117 0118 0119
0170 | 0120 0121 0122 0123 0124 0125 0126 0127
0200 | 0128 0129 0130 0131 0132 0133 0134 0135
0210 ; 0136 0137 0138 0139 0140 0141 0142 0143
0220 0144 0145 0146 0147 0148 0149 0150 0131
0230 0152 0153 0154 0155 0156 0157 0158 0159
0240 | 0160 0161 0162 0163 0164 0165 0166 0167
0250 @ 0168 0169 0170 0171 0172 0173 0174 0175
0260 : 0176 0177 0178 0179 0180 0181 0182 0183
0270 | 0184 0185 0186 0187 0188 0189 0190 0191
v300 | 0192 0193 0194 0195 0196 0197 0198 0199
0310 | 0200 0201 0202 0203 0204 0205 0206 0207
0320 | 0208 0209 0210 0211 0212 0213 0214 0215
0330 0216 0217 0218 0219 0220 0221 0222 0223
0340 | 0224 0225 0226 0227 0228 0229 0230 0231
0350 | 0232 0233 0234 0235 0236 0237 0238 0239
0360 | 0240 0241 0242 0243 0244 0245 0246 0247
0370 | 0248 0249 0250 0251 0252 0253 0254 0255
0400 | 0256 0257 0258 0259 0260 0261 0262 0263
0410 | 0264 0265 0266 0267 0208 0269 027G 0271
0420 | 0272 0273 0274 0275 0276 0277 0278 0279
0430 | 0280 0281 0252 0283 0284 0285 0286 0287
0440 | 0288 0280 0290 0291 0292 0293 0294 0295
0450 0296 0297 0298 0299 0300 0301 0302 0303
0460 | 0304 0305 0306 0307 0308 0309 0310 0311
0470 | 0312 0313 0314 0315 0316 0317 0318 0319
0500 | 0320 0321 0322 0323 0324 0325 0326 0327
0510 | 0328 0329 0330 0331 0332 0333 0334 0335
0520 | 0336 0337 0338 0339 0340 0341 0342 0343
0530 | 0344 0345 0346 0347 0343 0349 0350 0351
0540 | 0352 0353 0354 0355 0356 0357 0358 0359
0550 | 0360 0361 0362 0363 0364 0365 0366 0367
0560 | 0368 0369 0370 0371 0372 0373 0374 0375
0570 | 0376 0377 0378 0379 0380 0381 0382 0383
0600 | 0384 0385 0386 0387 0388 0389 0390 0391
0610 | 0392 0393 0394 0395 0396 0397 0398 0399
0620 | 0400 0401 0402 0403 0404 0405 0406 0407
0630 | 0408 0409 0410 0411 0412 0413 0414 0415
0640 0416 0417 0418 0419 0420 0421 0422 0423
0650 0424 0425 0426 0427 0428 0429 0430 0431
0660 | 0432 0433 0434 0435 0436 0437 0438 0439
0670 | 0440 0441 0442 0443 0444 0445 0446 0447
0700 | 0448 0449 0450 0451 0452 0453 0454 0455
0710 | 0456 0457 045R 0459 0460 0461 0462 0463
0720 | 0464 0465 0466 0467 0468 0469 0470 0471
0730 | C472 0473 0474 0475 0476 0477 0478 0479
0740 | 0480 0481 0482 0483 0484 0485 0486 0487
0750 | 0488 0489 0490 0491 0492 0493 0491 0495
0760 | 0496 0497 0498 0499 0500 0501 0503
0770 | 0504 0505 0506 0507 0508 0509 0510 0511

APPENDIX C

1000 | 0512
to to
1777 1023

(Octal)|(Decimal)

[2 3 4 5 6 7
1000 | 0512 0513 0514 0515 0516 0517 0518 0519
1010 | 0520 0521 0522 0523 0524 0525 0526 0527
1020 | 0528 0529 0530 0531 0532 0533 0534 0535
1030 | 0536 0537 0538 0539 0540 0541 0542 0543
1040 | 0544 0545 0546 0547 0548 0549 0550 0551
1050 | 0352 0553 0554 0555 0556 0557 0558 0559
1060 | 0560 0561 0562 0563 0564 0565 0566 0567
1070 | 0568 0569 0570 0571 0572 0573 0574 0575
1100 | €576 0577 0578 0579 0580 0581 0582 0583
1110 | 0584 0585 0586 0587 0588 0583 0590 0591
1120 | 0592 0593 0594 0595 0596 0597 0598 0599
1130 | 0600 0601 0602 0603 0604 0605 0506 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 | 0616 0617 0618 0619 0620 0621 0622 0623
1160 | 0624 0625 0626 0627 0628 0629 0630 0631
1170 | 0632 0633 0634 0635 0636 0637 0638 0639
1200 | 0640 0641 0642 0643 0644 0645 0646 0647
1210 | 0848 0649 0650 0651 0652 0653 0654 0655
1220 | 0656 0657 0858 0859 0860 0581 0662 0663
1230 | 0864 0665 0666 0667 0668 0669 0670 0671
1240 | 0672 0673 0674 0675 0676 0677 0678 0679
1250 | 0680 0681 0832 0833 0634 0685 0686 0687
1260 | 0688 0889 0690 0691 0892 0893 0894 0695
1270 | 0696 0697 0898 0699 0700 0701 0702 0703
1300 0704 0705 0708 0707 0708 0709 0710 0711
1310 | 0712 0713 0714 0715 0718 0717 0718 0719
1320 | 0720 0721 0722 0723 0724 0725 0726 0727
1330 0728 0720 0730 0731 0732 0733 0734 0735
1340 | 0736 0737 0738 0739 0740 0741 0742 0743
1350 | 0744 0745 0746 0747 0748 0749 0750 075)
1360 | 0752 0753 0754 0755 0756 0757 0758 0759
1370 | 0760 0761 0762 0763 0764 0765 0768 0767
1400 | 0768 0769 0770 0771 0772 0773 0774 0775
1410 | 0776 0777 0778 0779 0780 0781 0782 0782
1420 | 0784 0785 0786 0787 0788 0789 0790 0791
1430 | 0792 0793 0794 0795 0796 0797 0798 0799
1440 | 0800 0801 0802 0803 0804 0805 0806 0807
1450 | 0808 0809 0810 0811 0812 0813 0814 0815
1460 | 0816 0817 0818 0819 0820 0821 0822 0823
1470 | 0824 0825 0826 U827 0828 0829 0830 0831
1500 | 0832 0833 0834 0835 0836 0837 0838 0839
1510 | 0840 0841 0842 0843 0844 0845 0846 0847
1520 | 0848 0849 0850 0851 0852 0853 0854 0855
1530 | 0856 0857 0853 0859 0860 0861 0862 0863
1540 | 0864 0865 0866 0867 0R68 0869 0870 0871
1580 | 0872 08?3 0874 0875 0876 0877 0878 0879
1560 | 0880 0881 0882 0883 0884 0885 0836 0887
1570 | 0888 0889 0890 0891 0892 0893 0894 0895
1600 | 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0007 0908 0909 0910 0911
1620 | 0912 0913 0914 0915 0916 0917 0918 0919
1630 | 0920 0921 0922 0923 0924 0925 0926 0927
1640 | 0928 0929 0930 0931 0932 0933 0934 0935
1650 | 0936 0937 0938 0039 0940 0941 0942 0943
1660 | 0944 0945 0046 0047 0948 (949 0950 0951
1670 | 0952 0953 0954 0955 0956 0957 0958 0959
1700 | 0960 0961 0062 0963 0964 0965 0966 0967
1710 | 0968 0969 0970 0971 0972 0973 0974 0975
1720 | 0976 0977 0978 0979 0980 0081 0982 0983
1730 | 0084 0985 0986 0987 0988 0989 0990 0991
1740 | 0992 0993 0994 0995 0996 0997 0998 0999
1750 | 1000 1001 1002 1003 1004 1005 1008 1007
1760 | 1008 1009 1010 1011 1012 1013 1014 1015
1770 | 1016 1017 1018 1019 1020 1021 1022 1023

2000
to

1024
to

2777 | 1836
(Octal)|(Decimal)

c-1

o 1 2 3 4 5 6 7
2000 | 1024 1025 1026 1027 1028 1029 1030 1031
2010 | 1032 1033 1034 1035 1036 1037 1038 1039
2020 | 1040 1041 1042 1043 1044 1045 1046 1047
2030 | 1048 1049 1050 1051 1052 1053 1054 1055
2040 | 1056 1057 1058 1059 1060 1061 1062 1063
2050 | 1084 1065 1066 1067 1068 1069 1070 1071
2060 | 1072 1073 1074 1075 1076 1077 1078 1079
2070 1080 1081 1082 1083 1084 1085 1086 1087
2100 | 1088 1089 1090 1061 1092 1093 1094 1095
2110 | 1096 1007 1098 1009 1100 1101 1102 1103
2120 | 1104 1105 1106 1107 1108 1109 1110 1111
2130 | 1112 1113 1114 1115 1116 1117 1118 1119
2140 1120 1121 1122 1123 1124 1125 1126 1127
2150 | 1128 1129 1130 1131 1132 1133 1134 1135
2160 | 1136 1137 1138 1139 1140 1141 1142 1143
2170 | 1144 1145 1146 1147 1148 1149 1150 1151
2200 1152 1153 1154 1155 1156 1157 1158 1159
2210 | 1160 1161 1162 1163 1164 1165 1166 1167
2220 | 1168 1169 1170 1171 1172 1173 1174 1175
2230 | 1176 1177 1178 1179 1180 1181 1182 1183
2240 | 1184 1185 1186 1187 1188 1189 1190 1191
2250 | 1192 1193 1194 1195 1196 1197 1198 1199
2260 | 1200 1201 1202 1203 1204 1205 1206 1207
2270 | 1208 1209 1210 1211 1212 1213 1214 1215
2300 | 1216 1217 1218 1219 1220 1221 1222 1223
2310 | 1224 1225 1226 1227 1228 1229 1230 1231
2320 | 1232 1233 1234 1235 1236 1237 1238 1239
2330 1240 1241 1242 1243 1244 1245 1246 1247
2340 | 1248 1249 1250 1251 1252 1253 1254 1255
2350 | 1256 1257 1258 1259 1260 1261 1262 1263
2360 | 1264 1265 1266 1267 1268 1269 1270 1271
2370 | 1272 1273 1274 1275 1276 1277 1278 1279
2400 | 1280 1281 1282 1283 1284 1285 1286 1287
2410 | 1288 1289 1200 1291 1292 1203 1204 1205
2420 | 1206 1297 1208 1299 1300 1301 1302 1303
2430 | 1304 1305 1306 1307 1308 1309 1310 1311
2440 | 1312 1313 1314 1315 1316 1317 1318 1319
2450 | 1320 1321 1322 1323 1324 1325 1326 1327
2460 1328 1329 1330 1331 1332 1333 1334 1335
2470 | 1336 1337 1338 1339 1340 1341 1342 1343

1344 1345 1346 1347 1348 1349 1350 1351
2510 | 1352 1353 1354 1355 1356 1357 1358 1350
2520 | 1360 1361 1362 1363 1364 1365 1366 1367
2530 | 1368 1369 1370 1371 1372 1373 1374 1375
2540 | 1376 1377 1378 1379 1380 1381 1382 1383
2550 | 1384 1385 1386 1387 1388 1389 1390 1391
2560 | 1392 1393 1394 1395 1396 1397 1398 1399
2570 | 1400 1401 1402 1403 1404 1405 1406 1407
2600 1408 1409 1410 1411 1412 1413 1414 1415
2610 | 1416 1417 1418 1419 1420 1421 1422 1423
2620 | 1424 1425 1426 1427 1428 1429 1430 1431
2630 | 1432 1433 1434 1435 1436 1437 1438 1439
2640 | 1440 1441 1442 1443 1444 1445 1446 1447
2650 | 1448 1449 1450 1451 1452 1453 1454 1455
2660 | 1456 1457 1458 1459 1460 1461 1462 1463
2670 | 1464 1465 1466 1467 1468 1469 1470 1471
2700 | 1472 1473 1474 1475 1476 1477 1478 1479
2710 | 1480 1481 1482 1483 1484 1485 1486 1487
2720 1488 1489 1490 1491 1492 1493 1494 1495
2730 | 1496 1497 1498 1499 1500 1501 1502 1503
2740 | 1504 1505 1506 1507 1508 1509 1510 1511
2750 | 1512 1513 1514 1515 1516 1517 1518 1519
2760 | 1520 1521 1522 1523 1524 1525 1526 1527
2770 | 1528 1529 1530 1531 1532 1533 1334 1535

3
(Octal)

6000
to

1836

2047
(Decimal)

3072
to

6777 3583
(Octal)|(Decimal)

o 1 2 3 4 5 6 7
3000 | 1536 1537 1538 1539 1540 1541 1542 1543
3010 | 1544 1545 1546 1547 1548 1549 1550 1551
3020 | 1552 1553 1554 1555 1556 1557 1558 1550
3030 | 1560 1561 1562 1563 1564 1565 1566 1567
3040 | 1568 1569 1570 1571 1572 1573 1574 1575
3050 1576 1677 1578 1579 1580 1581 1582 1583
3060 | 1584 1585 1586 1587 1588 1589 1500 1501
3070 | 1592 1593 1594 1595 1596 1597 1598 1599
3100 | 1600 1601 1602 1603 1604 1605 1606 1607
3110 1608 1609 1610 1611 1612 1613 1614 1615
3120 | 1616 1617 1618 1619 1620 1621 1622 1623
3130 | 1624 1625 1626 1627 1628 1629 1630 1631
3140 | 1632 1633 1634 1635 1636 1637 1638 1639
3150 | 1640 1641 1642 1643 1644 1645 1646 1647
3160 | 1643 1649 1650 1651 1652 1653 1654 1655
3170 | 1656 1657 1658 1659 1660 1661 1662 1663
3200 | 1664 1665 1666 1667 1668 1660 1670 1671
3210 | 1672 1673 1674 1675 1676 1677 1678 1679
3220 | 1680 1681 1682 1683 1684 1685 1686 1687
3230 | 1688 1689 1690 1691 1692 1693 1694 1695
3240 | 1696 1697 1698 1699 1700 1701 1702 1703
3250 | 1704 1705 1706 1707 1708 1709 1710 1711
3260 |°1712 1713 1714 1715 1716 1717 1718 1719
3270 | 1720 1721 1722 1723 1724 1725 1726 1727
3300 | 1728 1720 1730 1731 1732 1733 1734 1735
3310 1736 1737 1738 1739 1740 1741 1742 1743
3320 | 1744 1745 1746 1747 1748 1749 1750 1751
3330 | 1752 1763 1734 1755 1756 1757 1758 1750
3340 | 1760 1761 1762 1763 1764 1785 1766 1767
3350 | 1768 1769 1770 1771 1772 1773 1774 1775
3360 | 1776 1777 1778 1779 1780 1781 1782 1783
3370 | 1784 1785 1786 1787 1788 1789 1790 1791
3400 | 1702 1793 1704 1795 1796 1797 1798 1799
3410 | 1800 1801 1802 1803 1804 1805 1806 1807
3420 1808 1809 1810 1811 1812 1813 1814 1815
3430 | 1816 1817 1818 1819 1820 1821 1822 1823
3440 | 1824 1825 1826 1827 1828 1829 1830 1831
3450 | 1832 1833 1834 1835 1836 1837 1838 1839
3460 | 1840 1841 1842 1843 1844 1845 1846 1847
3470 | 1848 1849 1850 1851 1852 1853 1854 1855
3500 | 1856 1857 1858 1859 1860 1861 1862 1863
3510 | 1864 1865 1866 1867 1868 1869 1870 1871
3520 | 1872 1873 1874 1875 1876 1877 1878 1879
3530 | 1880 1881 1882 1883 1884 1885 1886 1887
3540 | 1888 1889 1890 1801 1892 1893 1894 1895
3550 | 1896 1897 1898 1899 1900 1901 1902 1903
3560 1904 1905 1906 1907 1908 1909 1910 1911
3570 1912 1913 1914 1915 1916 1917 1918 1919
3600 | 1920 1921 1922 1923 1924 1925 1926 1927
3610 | 1928 1929 1930 1931 1932 1933 1034 1935
3620 | 1936 1937 1938 1939 1940 1941 1942 1943
3630 1944 1045 1946 1947 1948 1949 1950 1951
3640 | 1952 1953 1954 1955 1956 1957 1958 1959
3650 1960 1961 1962 1963 1964 1965 1966 1967
3660 1968 1969 1970 1971 1972 1973 1974 1975
3670 | 1976 1977 1978 1079 1980 1981 1982 1983
3700 | 1984 1985 1986 1987 1988 1989 1990 1991
3710 | 1992 1993 1994 1995 1996 1997 1998 1999
3720 | 2000 2001 2002 2003 2004 2005 2006 2007
3730 | 2008 2009 2010 2011 2012 2013 2014 2015
3740 | 2016 2017 2018 2019 2020 2021 2022 2023
3750 | 2024 2025 2026 2027 2028 2029 2030 2031
3760 | 2032 2033 2034 2035 2036 2037 2038 2039
3770 | 2040 2041 2042 2043. 2044 2045 2046 2047
0 1 2 3 4 5 6 7
6000 | 3072 3073 3074 3075 3076 3077 3078 3079
6010 | 3080 3081 3082 3083 3084 3085 3086 3087
6020 | 3088 3089 3090 3091 3092 3093 3094 3095
6030 | 3096 3097 3098 3099 3100 3101 3102 3103
6040 | 3104 3105 3106 3107 3108 3109 3110 3111
6050 | 3112 3113 3114 3115 3116 3117 3118 3119
6060 | 3120 3121 3122 3123 3124 3125 3126 3127
6070 3128 3129 3130 3131 3132 3133 3134 3135
6100 | 3136 3137 3138 3139 3140 3141 3142 3143
6110 | 3144 3145 3146 3147 3148 3149 3150 3151
6120 | 3152 3153 3154 3155 3156 3157 3158 3159
6130 | 3160 3161 3162 3163 3164 3165 3166 3167
6140 | 3168 3169 3170 3171 3172 3173 3174 3175
6150 | 3176 3177 3178 3179 3180 3181 3182 3183
6160 | 3184 3185 3186 3187 3188 3189 3190 3191
6170 | 3192 3193 3194 3195 3196 3197 3198 3199
6200 | 3200 3201 3202 3203 3204 3205 3206 3207
6210 | 3208 3209 3210 3211 3212 3213 3214 3215
6220 | 3216 3217 3218 3219 3220 3221 3222 3223
6230 | 3224 3225 3226 3227 3228 3229 3230 3231
6240 | 3232 3233 3234 3235 3236 3237 3238 3239
6250 | 3240 3241 3442 3243 3244 3245 3246 3247
6260 | 3248 3249 3250 3251 3252 3253 3254 3255
6270 | 3256 3257 3258 3259 3260 3261 3262 3263
6300 | 3264 3265 3266 3267 3268 3269 3270 3871
6310 | 3272 3273 3274 3275 3276 3277 3278 3279
6320 | 3280 3281 3282 3283 3284 3285 3286 3287
6330 3288 3289 3290 3291 3292 3293 3294 3295
6340 | 3296 3207 3208 3299 3300 3301 3302 3003
6350 | 3304 3305 3306 3307 3308 3309 3310 3311
6360 | 3312 3313 3314 3315 3316 3317 3318 3319
6370 | 3320 3321 3322 3323 3324 3325 3326 3327
6400 | 3328 3329 3330 3331 3332 3333 3334 3335
6410 | 3336 3337 3338 3339 3340 3341 3342 3343
6420 | 3344 3345 3346 3347 3348 3349 3350 3351
6430 | 3352 3353 3354 3355 3356 3357 3358 3359
6440 | 3360 3361 3362 3363 3364 3365 3366 3367
6450 | 3368 3369 3370 3371 3372 3373 3374 3375
6460 | 3376 3377 3378 3379 3380 3381 3382 3383
6470 | 3384 3385 3336 3387 3388 3389 3390 3361
6500 | 3392 3393 3304 3305 3396 3397 3398 3399
6510 | 3400 3401 3402 3403 3404 3405 3406 3407
6520 | 3408 3409 3410 3411 3412 3413 3414 3415
6530 | 3416 3417 3418 3419 3420 3421 3422 3423
6540 | 3424 3425 3426 3427 3428 3420 3430 3431
6550 | 3432 3433 3434 3435 3436 3437 3438 3439
6560 3440 3441 3442 3443 3444 3445 3446 3447
6570 3448 3449 3450 3451 3452 3453 3454 3455
6600 3456 3457 3458 3459 3460 3461 3462 3463
6610 3464 3465 3466 3467 3468 3469 3470 3471
6620 3472 3473 3474 3475 3476 3477 3478 3479
6630 3480 3481 3482 3483 3484 3485 3486 3487
6640 3488 3489 3490 3491 3492 3493 3494 3495
6650 3496 3497 3498 3499 3500 3501 3502 3503
6660 3504 3505 3506 3507 3508 3509 3510 3511
6670 3512 3513 3514 3515 3516 3517 3518 3519
6700 | 3520 3521 3522 3523 3524 3525 3526 3527
6710 | 3528 3520 3530 3531 3532 3533 3534 3535
6720 | 3536 3537 3538 3539 3540 3541 3542 3543
6730 | 3544 3545 3546 3547 3548 3549 3550 3551
6740 | 3552 3553 3554 3555 3556 3557 3558 3559
6750 | 3560 3561 3562 3563 3564 3655 3566 3567
6760 | 3568 3569 3570 3571 3572 3573 3574 3575
6770 | 3576 3577 3578 3579 3580 3581 3582 3583

4000
to
4777

2048
to
2559

(Octal) | (Decimal)

0 1 2 3 4 5 [} 7
4000 | 2048 2049 2050 2051 2052 2053 2054 2055
4010 | 2056 2057 2058 2059 2060 2061 2062 2063
4020 | 2064 2065 2066 2067 2068 2069 2070 2071
4030 | 2072 2073 2074 2075 2076 2077 2078 2079
4040 2080 2081 2082 2083 2084 2085 2086 2087
4050 2088 2089 2090 2091 2092 2093 2094 2095
4060 2096 2097 2098 2099 2100 2101 2102 2103
4070 | 2104 2105 2106 2107 2108 2109 2110 211t
4100 2112 2113 2114 2115 2116 2117 2118 2119
4110 | 2120 2121 2122 2123 2124 2125 2126 2127
4120 2128 2129 2130 2131 2132 2133 2134 2135
4130 2136 2137 2138 2139 2140 2141 2142 2143
4140 2144 2145 2140 2147 2148 2149 2150 2151
4150 | 2152 2153 2154 2155 2156 2157 2158 2159
4160 2160 2161 2162 2163 2164 2165 2166 2167
4170 2168 2169 2170 2171 2172 2173 2174 2175
4200 2176 2177 2178 2179 2180 2181 2182 2183
4210 | 2184 2185 2186 2187 2188 2189 2190 2191
4220 2192 2193 2194 2195 2196 2197 2198 2199
4230 | 2200 2201 2202 2203 2204 2205 2206 2207
4240 | 2208 2209 2210 2211 2212 2213 2214 2215
4250 2216 2217 2218 2219 2220 2221 2222 2223
4260 | 2224 2225 2226 2227 2228 2229 2230 2231
4270 2232 2233 2234 2235 2236 2237 2238 2239
4300 | 2240 2241 2242 2243 2244 2245 2246 2247
4310 2248 2249 2250 2251 2252 2253 2254 2255
4320 2256 2257 2258 2259 2260 2261 2262 2263
4330 | 2264 2265 2266 2267 2268 2269 2270 2271
4340 | 2272 2273 2274 2275 2276 2277 2218 2279
4350 | 2280 2281 2282 2283 2284 2285 2286 2287
4370 | 2288 2289 2290 2291 2202 2293 2294 2295
4370 | 2296 2297 2298 2299 2300 23v1 2302 2303
4400 | 2304 2305 2306 2307 2308 2309 2310 2311
4410 | 2312 2313 2314 2315 2316 2317 2318 2319
4420 | 2320 2321 2322 2323 2324 2325 2326 2327
4430 | 2328 2329 2330 2331 2332 2333 2334 2335
4440 2336 2337 2338 2339 2340 2341 2342 2343
4450 | 2344 2345 2346 2347 2348 2349 2350 2351
4460 | 2352 2353 2354 2355 2356 2357 2358 2350
4470 | 2360 2361 2362 2363 2364 2365 2366 2367
4500 | 2368 2369 2370 2371 2372 2373 2374 2375
4510 | 2376 2377 2278 2379 2380 2381 2382 2383
4520 | 2384 2385 2386 2387 2388 2389 2390 2391
4530 | 2392 2393 2394 2395 2396 2397 2395 2399
4540 | 2400 2401 2402 2403 2404 2405 2406 2407
4550 | 2408 2409 2410 2411 2412 2413 2114 2415
4560 2416 2417 2418 2419 2420 2421 2422 2423
4570 | 2424 2425 2426 2427 2428 2429 2430 2431
4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4610 | 2440 2441 2442 2443 2444 2445 2446 2447
4620 | 2448 2449 2450 2451 2452 2453 2454 2455
4630 | 2456 2457 2455 2459 2460 2461 2462 2463
4640 | 2464 2465 2466 2467 2468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 | 2480 2481 2482 2483 2484 2485 2486 2487
4670 | 2488 2489 2490 2491 2492 2493 2494 2495
4700 | 2496 2497 2498 2499 2500 2501 2502 2503
4710 | 2504 2505 2506 2507 2508 2509 2510 2511
4720 | 2512 2513 2514 2515 2516 2517 2518 2519
4730 | 2520 2521 2522 2523 2524 2525 2526 2527
4740 | 2528 2529 2530 2531 2532 2533 2534 2535
4750 | 2536 2537 2538 2539 2540 2541 2542 2543
4760 | 2544 2545 2546 2547 2548 2549 2550 2551
4770 | 2552 2553 2554 2555 2556 2557 2558 2250

C-2

5000 | 2560
to to
5777 | 30m1
(Octal)|(Decimal)
7000 | 3584
to to
777 | 4095

(Octal)|(Decimal)

[1 2 3 4 5 6 7

2560 2561 2562 2563 2564 2565 2566 2567
5010 | 2568 2569 2570 2571 2572 2573 2574 2575
5020 | 2576 2577 2578 2579 2580 2581 2582 2583
5030 | 2584 2585 2586 2587 2588 2589 2500 2591
5040 | 2502 2503 2504 2505 2506 2597 2508 2599
5050 | 2600 2601 2602 2603 2604 2605 2606 2607
5060 | 2608 2609 2610 2611 2612 2613 2614 2615
5070 | 2616 2617 2618 2619 2620 2621 2622 2623
5100 | 2624 2625 2626 2627 2628 2629 2630 2631
5110 | 2632 2633 2634 2635 2636 2637 2638 2639
5120 | 2640 2641 2642 2643 2644 2645 2646 2647
5130 | 2648 2649 2650 2651 2652 2653 2654 2655
5140 | 2656 2657 2658 2659 2660 2661 2662 2663
5150 | 2664 2665 2666 2667 2668 2669 2670 2671
5160 | 2672 2673 2674 2675 2676 2677 2678 2679
5170 2680 2681 2682 2683 2684 2685 2656 2687

2688 2689 2690 2691 2692 2693 2694 2695
5210 1 2696 2697 2698 2699 2700 2701 2702 2703
5220 | 2704 2705 2706 2707 2708 2709 2710 2711
5230 2712 2713 2714 2715 2716 2717 2718 2719
5240 2720 2721 2722 2723 2724 2725 2726 2727
5250 | 2728 2729 2730 2731 2732 2733 2734 2735
5260 | 2736 2737 2738 2739 2740 2741 2742 2743
5270 | 2744 2745 2748 2747 2748 2749 2750 2751
5300 | 2752 2783 2754 2755 2756 2757 2758 2759
5310 2760 2761 2762 2763 2764 2765 2766 2767
8320 | 2768 2769 2770 2771 2772 2773 2774 2735
5330 | 2776 2777 2778 2779 2780 2781 2782 2783
5340 | 2784 2785 2736 2787 2788 2789 2790 2791
5350 | 2792 2793 2794 2795 2796 2797 2798 2799
5360 | 2800 2801 2802 2803 2804 2805 2506 2807
5370 | 2908 2809 2810 2811 2812 2813 2814 2815
5400 | 2816 2817 2818 2819 2820 2821 2822 2823
5410 | 2824 2825 2826 2827 2828 2820 2830 2831
5420 | 2832 2833 2834 2835 2836 2837 2838 2839
5430 | 2840 2841 2842 2843 2844 2845 2846 2847
5440 | 2848 2849 2850 2851 2852 2853 2354 2855
5450 | 2856 2857 2858 2850 2860 2861 2862 2863
5460 | 2864 2865 2866 2867 2868 2860 2870 2871
5470 | 2872 2873 2874 2875 2876 2877 2878 2870
5500 | 2880 2881 2882 2883 2884 2885 2886 2887
5510 | 2888 2889 2890 2891 2802 2803 2894 2895
5520 | 2896 2897 2898 2899 2000 2001 2902 2903
5530 | 2904 2005 2006 2007 2903 2009 2910 2911
5540 | 2912 2013 2914 2015 2918 2917 2018 2919
5550 | 2920 2021 2922 2923 2924 2025 2926 2927
5560 2928 2020 2930 2031 2932 2033 2034 2935
5570 | 2036 2937 2938 2939 2040 2041 2942 2043

2044 2945 2046 2047 2948 2949 2950 2951
5610 | 2052 2083 2954 2955 2956 2957 2958 2959
5620 | 2060 2961 2962 2063 2064 2965 2966 2967
5630 | 2068 2969 2970 2971 2972 2973 2074 2075
5640 | 2976 2077 2078 2079 2080 2981 2982 2983
5650 2984 2985 2986 2987 2988 2089 2000 2991
5660 | 2002 2003 2994 2095 2996 2997 2098 2999
5670 | 3000 3001 3002 3003 3004 3005 3006 3007
5700 | 3008 3009 3010 3011 3012 3013 3014 3015
5710 | 3016 3017 3018 3019 3020 3021 3022 3023
5720 | 3024 3025 3026 3027 3028 3029 3030 3031
5730 [3032 3033 3034 3035 3036 3037 3038 3039
5740 | 3040 3041 3042 3043 3044 3045 3046 3047
5750 | 304 3049 3050 3051 3052 3053 3054 3055
5760 | 3056 3057 2058 3059 3060 3081 3062 3063
5770 | 3064 3065 3066 3067 3088 3069 3070 3071

0 1 2 3 4 5 6 7
7000 | 3584 3585 3586 3587 3588 3589 3500 3591
7010 | 3592 3593 3594 3505 3506 3597 3598 3599
7020 | 3600 3601 3602 3603 3604 3605 3606 3607
7030 | 3608 3609 3610 3611 3612 3613 3614 3615
7040 | 3616 3617 3618 3619 3620 3621 3622 3623
7050 | 3624 2625 3626 3627 3628 3629 3630 3631
7060 | 3632 3633 3634 3635 3636 3637 3638 3639
7070 3640 3641 3642 3643 3644 3645 3646 3647
7100 | 3648 3649 3650 3651 3652 3653 3654 3655
7110 | 3656 2657 2658 2659 3660 3661 3662 3663
7120 | 3664 3665 3666 3667 3668 3669 3670 3671
7130 | 3672 3673 3674 3675 3676 3677 3678 3679
7140 | 3680 3681 3682 3683 3684 3685 3686 3687
7150 | 3688 2689 2690 3691 3692 3693 3694 3695
7160 | 3606 3607 3698 3609 3700 3701 3702 3703
7170 | 3704 3705 3706 3707 3708 3709 3710 3711
7200 | 3712 3713 3714 3715 3716 3717 3718 3719
7210 | 3720 3721 3722 3723 3724 3725 3726 3727
7220 3728 3729 3730 3731 3732 3733 3734 3735
7230 | 3736 3737 3738 3739 3740 3741 3742 3743
7240 | 3744 3745 3746 3747 3748 3749 3750 3751
7250 | 3752 3753 3754 3755 3756 3757 3758 3759
7260 | 3760 3761 3762 3763 3764 3765 3766 3767
7270 | 3768 3769 3770 3771 3772 3773 3774 3775
7300 | 3776 3777 3778 3779 3780 3781 3782 3783
7310 | 3784 3785 3786 3787 3788 3789 3790 3791
7320 | 3792 3893 3794 3795 3796 3797 3798 3799
7330 | 3800 3801 3802 3803 3804 3805 3806 3807
7340 | 3808 3809 3810 3811 3812 3813 3814 3815
7350 | 381€ 3817 3818 3819 3820 3821 3822 3823
7360 | 3824 3825 3826 3827 3828 3829 3830 3831
7370 | 3832 3833 3834 3835 3836 3837 3838 3839
7400 | 3840 3841 3452 3843 3844 3845 3846 3847
7410 | 3843 3849 3850 3851 3852 3853 3854 3855
7420 | 2856 3857 3853 3850 3860 3861 3862 38563
7430 | 3864 3865 3860 3867 3868 3869 3870 3871
7440 | 3872 3873 3874 3875 3876 3877 3578 3879
7450 581 3882 3583 3884 3885 3886 3887
7460 9 3590 3891 3892 38593 3894 3895
470 3895 3899 3900 3901 3902 3903
7500 3906 3907 3908 3909 3910 3911
7510 3914 3915 3916 3917 3918 3919
7520 3922 3923 3924 3925 3026 3927
7530 29 3930 3931 3932 3033 3934 3935
7540 3938 3939 3040 3941 3942 3943
7550 3946 3947 3948 3049 3950 3951
7560 3954 3955 3956 3057 3958 3959
7570 3960 3961 3962 3963 3964 3965 3966 3067
7600 3968 3969 4970 3074
7610 3976 3977 8
7620 3984 3985
7630 | 3992 3993 3994 3995 73
7640 4000 4001 4002 4003 4005 4006 4007
7650 4008 4009 4010 4011 4013 4014 4015
7660 4016 4017 4018 4019 21 4022 4023
7670 4024 4025 4026 4027 4028 4020 4030 4031
7700 4032 4033 4034 4035 4036 4037 4038 4039
710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4050 4060 4061 4062 4063
7740 4064 4065 4U66 4067 4068 4004 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4056 4087
7710 4088 4089 4090 4091 4092 4093 4094 4085

APPENDIX D
INSTRUCTION SUMMARY
AND
BIT ASSIGNMENTS

BASIC INSTRUCTIONS
OCTAL NO. OF STATES
MNEMONIC CODE OPERATION DIR IND utTo
AND 0000 Logical AND 10 15 16
TAD 1000 Binary ADD 10 15 16
ISZ 2000 Increment, and skip if zero 16 21 22
DCA 3000 Deposit and clear AC " 16 17
JMS 4000 Jump to subroutine 11 16 17
JMP 5000 Jump 10 15 16
10T 6000 In/out transfer 17 - -
OPR 7000 Operate 10/15* — -
0 1 2 3 4 5 6 7 8 9 10 1 *For ROTATES
MEMORY —_ For FOTA
REFERENCE OF; CODE I0-5 | wmp l 1 AIDDRESIS | |
INSTRUCTION PAGE
RELATIVE ADDRESS
FOB‘MAT INDIRECT ADDRE!
0 = DIRECT
1 = INDIRECT
L MEMORY PAGE
0 = PAGE 0
1 = CURRENT PAGE
PROCESSOR IOT INSTRUCTIONS
OCTAL
MNEMONIC CODE OPERATION NO. OF STATES
SKON 6000 Skip if interruption on 17
ION 6001 Interrupt turn on 17
IOF 6002 Interrupt turn off 17
SRQ 6003 Skip if INT request 17
GTF 6004 Get flags 17
RTF 6005 Return flags 17
SGT 6006 Operation is determined by external devices, if any 17
CAF 6007 Clear all flags 17

BIT ASSIGNMENTS > — 22+ = ¢ 7 8 »° © W

10T

1
1

1 0 DEVICE SELECTION CONTROL
A { 1 Il L 1

GROUP I OPERATE MICROINSTRUCTIONS

OCTAL LOG NO. OF
MNEMONIC CODE OPERATION SEQ. STATES
NOP 7000 No operation 1 10
IAC 7001 Increment accumulator 3 10
RAL 7004 Rotate accumulator left 4 15
RTL 7006 Rotate two left 4 15
RAR 7010 Rotate accumulator right 4 15
RTR 7012 Rotate two right 4 15
BSW 7002 Byte swap 4 15
CcML 7020 Complement link 2 10
CMA 7040 Complement accumulator 2 10
CIA 7041 Complement and increment accumulator 23 10
CLL 7100 Clear link 1 10
CLL RAL 7104 Clear link—rotate accum. left 1,4 15
CLLRTL 7106 Clear link—rotate two left 1,4 15
CLL RAR 7110 Clear link—rotate accum. right 1,4 15
CLLRTR 7112 Clear link—rotate two right 1,4 15
STL 7120 Set the link 1,2 10
CLA 7200 Clear accumulator 1 10
CLAIAC 7201 Clear accumulator —Increment accumulator 13 10
GLT 7204 Get the link 1,4 15
CLACLL 7300 Clear accumulator—clear link 1 10
STA 7240 Set the accumulator 1,2 10
BIT ASSIGNMENTS 0 , 1 . 2 3 4 5 6 7 8 9 10 n
GROUP 1 v o e o on (2R e |
BSW IF BITS
8&9AREO
AND BIT 101S 1
LOGICAL SEQUENCES:
1—CLA, CLL
2—CMA, CML
3—IAC
4—RAR, RAL, RTR, RTL, BSW
GROUP 2 OPERATE MICROINSTRUCTIONS
OCTAL LOG NO. OF
MNEMONIC CODE OPERATION SEQ STATES
NOP 7400 No operation 1 10
HLT 7402 Halt 3 10
OSR 7404 Or with switch register 3 15
SKP 7410 Skip 1 10
SNL 7420 Skip on non-zero link 1 10
SzZL 7430 Skip on zero link 1 10
SZA 7440 Skip on zero accumulator 1 10
SNA 7450 Skip on non-zero accumulator 1 10
SZA SNL 7460 Skip on zero accum, or skip on non-zero
link, or both 1 10
SNA SzZL 7470 Skip on non-zero accum. and skip on
zero link 1 10
SMA 7500 Skip on minus accumulator 1 10
SPA 7510 Skip on positive accumulator 1 10
SMA SNL 7520 Skip on minus accum. or skip on
non-zero link or both 1 10
SPA SZL 7530 Skip on positive accum. and skip on
zero link 1 10
SMA SZA 7540 Skip on minus accum. or skip on
zero accum. or both 1 10
SPA SNA 7550 Skip on positive accum. and skip on
non-zero accum. 1 10
SMASZASNL 7560 Skip on minus accum. or skip on
zero accum. or skip on non-zero link
orall 1 10
SPA SNA SZL 7570 Skip on positive accum. and skip on
“non-zero accum. and skip on zero link 1 10
CLA 7600 Clear accumulator 2 10
LAS 7604 Load accumulator with switch register 13 15
SZA CLA 7640 Skip on zero accum. then clear accum. 1,2 10
SNA CLA 7650 Skip on non-zero accum. then clear
accumulator 1,2 10
SMA CLA 7700 Skip on minus accum. then clear
accumulator 1,2 10
SPA CLA 7710 Skip on positive accum. then clear
accumulator 12 10
BIT ASSIGNMENTS = =2 ° ¢ S;A S; —T— S IELL UL
GROUPZ 1 | 1 ‘ 1 ' toa &R 'S"_AlelT OSR| HT | o l
LOGICAL SEQUENCES:
1(Bit 8is Zero)— SMA or SZA or SNL
(Bit 8is One) — SPA and SNA and SZL
2 —CLA
3 — OSR, HTL
GROUP 3 OPERATE MICROINSTRUCTIONS
OCTAL LOG NO. OF
MNEMONIC CODE OPERATION SEQ STATES
NOP 7401 No operation 3 10
MQL 7421 MQ register load 2 10
MQA 7501 MQ register into accumulator 2 10
SWP 7521 Swap accum. and MQ register 3 10
CLA 7601 Clear accumulator 1
CAM 7621 Clear accum. and MQ register 3 10
ACL 7701 Clear accum. and load MQ register
into accumulator 3 10
CLA SWP 7721 Clear accum. and swap.accum. and
MQ register 3 10
BIT ASSIGNMENTS _° ' 2 ° « s o v o o w©
GROUP 3 [1] 1ocLA MoA| - MaL - . . 1
1 1 1 1 1 Il 1 Il
LOGIE:L SEQUENCE “Don't Care
2—MQA, MaL

3—ALL OTHERS

APPENDIX E
GLOSSARY

ABSOLUTE ADDRESS: A binary number that is permanently assigned
as the address of a memory storage location.

ACCESS TIME: The time required to locate an off-line storage
location.

ACCESSING DATA: The process of locating the off-line storage
Tocation with which data is to be transferred.

ACCUMULATOR: A 12-bit register in which the result of an
operation is formed; abbreviation: AC.

ADDRESS: A Tabel, name, or number which designates a Tocation
where information is stored.

ADDRESSING: The term given to the act of selecting a word in
memory.

ALGORITHM: A prescribed set of well-defined rules or processes
for the solution of a problem in a finite number of steps.

ALPHANUMERIC: Pertaining to a character set that contains both
letters and numerals, and usually other characters.

ARGUMENT:
1. A variable or constant which is given in the call of a
subroutine as information to it.
2. A variable upon whose value the value of a function depends.
3. The known reference factor necessary to find an item in a
table or array (i.e. the index).

ARITHEMETIC AND LOGIC UNIT (ALU): The unit which performs both
arithmetic and logic operations.

ARITHMETIC UNIT: The component of a computer where arithmetic
and logical operations are performed.

ASCII: An abbreviation for American Standard Code for Information
Interchange. ’

ASSEMBLE: To translate from a symbolic program to a binary
program by substituting binary operation codes for symbolic
operation codes and absolute or relocatable addresses for
symbolic addresses.

ASSEMBLER: A program which translates symbolic op-codes into
machine Tanguage and assigns memory locations for variables and
constants.

AUTO-INDEXING: When one of the absolute locations from 0010
through 0017 is addressed indirectly, the content of that
location is incremented by one, rewritten in that same location,
and used as the effective address of the current instruction.

E-1

AUXILLARY STORAGE: Storage that supplements memory such as disk
or tape.

BASE ADDRESS: A given address from which an absolute address is
derived by combination with a relative address, synonymous
with address constant.

BINARY: Pertaining to the number of system with a radix of two.

BINARY CODE: A code that makes use of exactly two distinct
characters, 0 and 1.

BIT: A binary digit. In the IM6100 microprocessor each word is
composed of 12 bits.

BLOCK: A set of consecutive machine words, characters, or
digits handled as a unit, particularly with reference to I/0.

BOOTSTRAP: A technique or device designed to bring a program
into the computer from an input device.

BRANCH: A point in a routine where one of two or more choices
is made under control of the routine.

BUFFER: A storage area.

BUG: A mistake in the design or implementation of a program
resulting in erroneous results.

BYTE: A group of binary digits usually operated upon as a
unit.

CALL: To transfer control to a specified routine.

CALLING SEQUENCE: A specified set of instructions and data
necessary to set up and call a given routine.

CENTRAL PROCESSING UNIT: The unit of a computing system that
includes the circuits controlling the interpretation and
execution of instructions--the computer proper, excluding
I/0 and other peripheral devices.

CHARACTER: A single Tetter, numeral, or symbol used to
represent information.

CLEAR: To erase the contents of a storage location by
replacing the contents, normally with zeros or spaces; to
set to zero.

CODING: To write instructions for a computer using symbols

meaningful to the computer, or to an assembler, compiler
or other language processor.

E-2

COMMAND: A user order to a computer system, usually given
through a Teletype keyboard.

COMMAND DECODER: That part of a computer system which
interprets used commands. Also called command-string
decoder.

COMPATIBILITY: The ability of an instruction or source
language to be used on more than one computer.

COMPILE: To produce a binary-coded program from a program
written in source (symbolic) language, by selecting
appropriate subroutines from a subroutine library, as
directed by the instructions or other symbols of the
source program. The Tlinkage is supplied for combining
the subroutines into a workable program, and the sub-
routine and Tinkage are translated into binary code.

COMPILER: A program which translates statements and
formulas written in a source Tanguage into a machine
language program, e.g. a FORTRAN Compiler. Usually
generates more than one machine instruction for each
statement.

COMPLEMENT: (One's) To replace all 0 bits with 1 bits
and vice versa. (Two's) To form the one's complement
and add 1.

CONDITIONAL ASSEMBLY: Assembly of certain parts of a
symbolic program only if certain conditions have been met.

CONDITIONAL SKIP: Depending upon whether a condition within
the program is met, control may transfer to another point
in the program.

CONSOLE: Usually the external front side of a device where
controls and indicators are available for manual
operation of the device.

CONVERT:
1. To change numerical data from one radix to another.
2. To transfer data from one recorded format to another.

CORE MEMORY: The main high-speed storage of a computer in
which binary data is represented by the switching polarity
of magnetic cores.

COUNT: The successive increase or decrease of a cumulative
total of the number to times an event occurs.

COUNTER: A register or storage location (variable) used to
represent the number of occurrences of an operation.

CURRENT LOCATION COUNTER: A counter kept by an assembler to
determine the address assigned to an instruction or constant
being assembled.

CURRENT PAGE: The page of memory "pointed to" or addressed by
the Program Counter. The page we are on.

CYCLE TIME: The length of time it takes the computer to
reference one word of memory.

DATA: A general term used to denote any or all facts, numbers,
letters and symbols. It connotes basic elements of
information which can be processed or produced by a computer.

DATA BREAK: A facility which permits I/0 transfers to occur on
a cycle-stealing basis without disturbing program execution.

DEBUG: To detect, locate and correct mistakes in a program.

DEVICE FLAGS: One-bit registers which record the current
status of a device.

DIGITAL COMPUTER: A device that operates on discrete data,
performing sequences of arithmetic and Togical operations on
this data.

DIRECT ADDRESS: An address that specifies the location of an
instruction operand.

DOUBLE PRECISION: Pertaining to the use of two computer words
to represent one number. In the IM6100 a double precision
result is stored in 24 bits.

DUMP: To copy the contents of all or part of core memory,
usually onto an external storage medium.

EFFECTIVE ADDRESS: The address actually used in the execution
of a computer instruction.

EXECUTE: To carry out an instruction or run a program on the
computer.

EXTERNAL STORAGE: A separate facility or device on which data
usable by the computer is stored (such as paper tape, tape
or disk.

FIELD:
1. One or more characters treated as a unit.
2. A specified area of a record used for a single type of
data.
3. A division of memory on a IM6100 computer referring to
a 4K section of core.

E-4

FILE: A collection of related records treated as a unit.

FLAG: A variable or register used to record the status
of a program or device. In the latter case, also called
a device flag.

FLIP-FLOP: A device with two stable states.

FLOATING POINT: A number system in which the position of
the radix point is indicated by one part of the number
(the exponent) and another part represents the significant
digits (the mantissa), I/0.

FLOWCHART: A graphical representation of the operations
required to carry out a data processing operation.

HARDWARE: Physical equipment, e.gd., mechanical, electrical
or electronic devices.

HEAD: A component that reads, records or erases data on
a storage device.

INDIRECT ADDRESS: An address in a computer instruction which
indicates a location where the address of the referenced
operand is to be found.

INITIALIZE: To set counters, switches, and addresses to zero
or other starting values at the beginning of, or at pre-
scribed points in, a computer routine.

INSTRUCTION: A command which causes the computer or system to
perform an operation. Usually one line of a source program.

INSTRUCTION FETCH (IFETCH): The act of completing an instruction
address to memory and returning to the Microprocessor with the
instruction.

INSTRUCTION REGISTER (IR): The register which holds the
instruction when it is obtained, or received, from memory.

INTERNAL STORAGE: The storage facilities forming an integral
physical part of the computer and directly controlled by the
computer. Also called main memory.

INTERPRETER: A program that translates and executes source
Tanguage statements at run time.

I/0: Abbreviation for input/output.

JOB: A unit of code which solves a problem, i.e. a program and
all its related subroutines and data.

JUMP: A departure from the normal sequence of executing
instructions in a computer.

K: An abbreviation for the prefix kilo, i.e. 1000 in decimal
notation.

LABEL: One or more characters used to identify a source
language statement or line.

LANGUAGE, ASSEMBLY: The machine-oriented programming language
used by an assembly system.

LANGUAGE, COMPUTER: A systematic means of communicating
instructions and information to the computer.

LANGUAGE, MACHINE: Information that can be directly processed
by the computer, expressed in binary notation.

LANGUAGE, SOURCE: A computer Tanguage such as PAL III or
FOCAL 1in which programs are written and which require
extensive translation in order to be executed by the computer.

LEADER: The blank section of tape at the beginning of the tape.
LEAST SIGNIFICANT DIGIT: The right-most digit of a number.

LIBRARY ROUTINES: A collection of standard routines which can
be incorporated into larger programs.

LINE FEED: The Teletype operation which advances the paper by
one line.

LINE NUMBER: In source languages such as FOCAL, BASIC, and
FORTRAN, a number which begins a line of the source program
for purposes of identification. A numeric Tabel.

LINK:

1. A one-bit register in the IM6100.

2. An address pointer generated automatically by the PAL-D
or MACRO-8 Assembler to indirectly address an off-page
symbol.

3. An address pointer to the next element of a list, or
the next block number of a file.

LIST:
1. A set of items.
2. To print out a Tisting on the line printer or Teletype.

LOAD: To place data into internal storage.

E-6

LOCATION: A place in storage or memory where a unit of data or
an instruction may be stored.

LOOP: A sequence of instructions that is executed repeatedly
until a terminal condition prevails.

MACHINE LANGUAGE PROGRAMMING: In this text, synonymous with
assembly language programming. This term is also used to mean
the actual binary machine instructions.

MACRO INSTRUCTION: An instruction in a source language that is
equivalent to a specified sequence of machine instructions.

MANUAL INPUT: The entry of data by hand into a device at the
time of processing.

MANUAL OPERATION: The processing of data in a system by
direct manual techniques.

MASK: A bit pattern which selects those bits from a word of
data which are to be used in some subsequent operation.

MASS STORAGE: Pertaining to a device such as disk or tape
which stores large amounts of data readily accessible to
the central processing unit.

MATRIX: A rectangular array of elements. Any table can be
considered a matrix.

MEMORY:
1. The alterable storage in a computer.
2. Pertaining to a device in which data can be stored
and from which it can be retrieved.

MEMORY ADDRESS REGISTER (MAR): The register which contains
the address where information is to be read from memory or
written (stored) into memory.

MEMORY PAGING: A system by which a memory is subdivided in order
to permit addressing with a Timited number of binary bits.

MEMORY PROTECTION: A method of preventing the contents of some
part of main memory from being destroyed or altered.

MICROCOMPUTER: A complete small computing system that usually
sells for Tless than $5,000 and whose main processor building
blocks are made of semiconductor integrated circuits. In
function and structure it is similar to a minicomputer, with
the main difference being price, size, speed and computing
power.

E-7

MICROPROCESSOR: The semiconductor central processing unit (CPU)
and one of the principal components of the microcomputer. The
elements of the microprocessor are frequently contained on a
single chip or within the same package but sometimes
distributed over several chips. Microprocessors can contain
registers, an arithmetic logic unit, a PLA, and associated
timing and control Togic.

MINICOMPUTER: A computer whose main frame sells for less than
$25,000. Usually it is a parallel binary system with 8, 12
16, 18, or 24-bit word lengths incorporating semiconductor
or magnetic memory offering 4K words to 32K words of storage.
A naked minicomputer is one without cabinet;, console and
power supplies and consists of as little as a single PC
card selling for less than $1,000.

MONITOR: The master control program that observes, supervises,
controls or verifies the pperation of a system.

MQ REGISTER: A register which is program accessible and
interacts with the Accumulator.

NESTING:
1. Including a program loop inside loop. Special rules
apply to the nesting of FORTRAN DO-Toops.
2. Algebraic nesting, such as (A+B* (C+D)), where
execution proceeds from the innermost to the outermost
level.

NORMALIZE: To adjust the exponent and mantissa of a floating-
point number so that the mantissa appears in a prescribed
format.

OBJECT PROGRAM: The binary coded program which is the output
after translation of a source language program.

OCTAL: Pertaining to the number system with a radix of eight.

OFF-LINE: Pertaining to equipment or devices not under
direct control of the computer, or processes performed
on such devices.

ON-LINE: Pertaining to equipment or devices under direct
control of the computer and to programs which respond
directly and immediately to user commands.

OPERAND:
1. A quantity which is affected, manipulated or operated
upon.

2. The address, or symbolic name, portion of an assembly
language instruction.

OPERATOR: The symbol or code which indicates an action (or
operation) to be performed, e.g. + or TAD.

OR: (Inclusive) A Togical operation such that the result
is true if either or both operands are true, and false
if both operands are false. (Exclusive) A logical operation
such that the result is true if either operand is true,
and false if either or both operands are false. When
neither case is specifically indicated, Inclusive OR is
assumed.

ORIGIN: The absolute address of the beginning of a section
of code.

OUTPUT: Information transferred from the internal storage
of a computer to output devices or external storage.

OVERFLOW: A condition that occurs when a mathematical
operation yields a result whose magnitude is larger than
the program is capable of handling.

PAGE: A 128-word section of IM6100 memory beginning at an
address which is a multiple of 200.

PASS: One complete cycle during which a body of data is
processed. An assembler usually requires two passes
during which a source program is translated into binary
code.

PATCH: To modify a routine in a rough or expedient way.

PERIPHERAL EQUIPMENT: In a data processing system, any unit
of equipment distinct from the central processing unit
which may provide the system with outside storage or
communication.

POINTER ADDRESS: Addreés of a memory location containing
the actual (effective) address of desired data.

PRIORITY INTERRUPT: An interrupt which is given preference
over other interrupts within the system.

PROCEDURE: The course of action taken for the solution of
a problem.

PROGRAM COUNTER (PC): The register which contains, at any
given time, the address in memory of the next instruction.

PROGRAMMED LOGIC ARRAY (PLA): That section of the

Microprocessor which correctly sequences the Microprocessor
for the appropriate instruction.

E-9

PSEUDO-OP: See Pseudo-operation.

PSEUDO-OPERATION: An instruction to the assembler; an
operation code that is not part of the computer's
hardware command repertoire.

PUSHDOWN LIST: A Tist that is constructed and maintained
so that the next item to be retrieved is the item most
recently stored in the Tist.

QUEUE: A waiting list. In time-sharing, the monitor
maintains a queue of user programs waiting for processing
time.

RADIX: The base of a number system; the number of digits
symbols required by a number system.

RANDOM ACCESS: A storage device in which the address-
ability of data is effectively independent of the
Tocation of the data. Synonymous with direct access.

RANDOM ACCESS MEMORY: A memory whose content can be pre-
determined, stored indefinitely, changed at will and '
retrieved at random

READ ONLY MEMORY: A memory whose content, once predetermined,
is permanent and can not be changed.

REAL-TIME: Pertaining to computation performed while the
related physical process is taking place so that results
of the computation can be used in guiding the physical
process.

RECORD: A collection of related items of data treated as
a unit.

RECURSIVE SUBROUTINE: A subroutine capable of calling itself.

REGISTER: A device capable of storing a specified amount of
data, usually one word.

RELATIVE ADDRESS: The number that specified the difference
between the actual address and a base address.

RELOCATABLE: Used to describe a routine whose instructions
are written so that they can be located and executed in
different parts of core memory.

RESPONSE TIME: Time between initialing an operation from a
remote terminal and obtaining the result. Includes
transmission time to and from the computer, processing time
and access time for files employed.

RESTART: To resume execution of a program.

ROUTINE: A set of instructions arranged in proper sequence
to cause the computer to perform a desired task. A program
or subprogram.

RUN: A single, continuous execution of a program.

SEGMENT:
1. That part of a long program which may be resident
in memory at any one time.
2. To divide a program into two or more segments or to
store part of a routine on an external storage device
to be brought into core as needed.

SERIAL ACCESS: Pertaining to the sequential or consecutive
transmission of data to or from memory, as with paper tape:
contract with random access.

SHIFT: A movement of bits to the left or right frequently
performed in the accumulator.

SIMULATE: To represent the function of a device, system or.
program with another device, system or program.

SINGLE STEP: Operation of a computer in such a manner that
only one instruction is executed each time the computer
is started.

SOFTWARE: The collection of programs and routines associated
with a computer.

SOURCE LANGUAGE: See Language, source.

SOURCE PROGRAM: A computer program written in a source
language.

STATEMENT: An expression or instruction in source language.

STORAGE ALLOCATION: The assignment of blocks of data and
instructions to specified blocks of storage.

STORAGE CAPACITY: The amount of data that can be contained
in a storage device.

STORAGE DEVICE: A device in which data can be entered,
retained and retrieved.

STORE: To enter data into a storage device.

STRING: A connected sequence of entities such as characters
in a command string.

SUBROUTINE, CLOSED: A subroutine not stored in the main part
of a program, such a subroutine is normally called or
entered with a JMS instruction and provision is made to
return control to the main routine at the end of the sub-
routine.

SUBROUTINE, OPEN: A subroutine that must be relocated and
inserted into a routine at each place it is used.

SUBSCRIPT: A number or set of numbers used to specify a
particular item in an array.

SWAPPING: In a time-sharing environment, the action of
either temporarily bringing a user program into core or
storing it on the system device.

SWITCH: A device or programming technique for making
selections.

SYMBOL TABLE: A table in which symbols and their corresponding
values are recorded.

SYMBOLIC ADDRESS: A set of characters used to specify a
memory location within a program.

SYMBOLIC EDITOR: A system Tlibrary program which helps users
in the preparation and modification of source language
programs by adding, changing or deleting Tines of text.

SYSTEM: A combination of software and hardware which performs
specific processing operations.,

TABLE: A collection of data stored for ease of reference,
generally as an array.

TEMPORARY REGISTER (TEMP): A register which is used primarily
as a latch for the result and ALU operation before it is
sent to the destination register to avoid race conditions.

TEMPORARY STORAGE: Storage locations reserved for immediate
results.

TERMINAL: A peripheral device in a system through which data
can enter or leave the computer.

TIMESHARING: A method of allocating central processor time
and other computer resources to multiple users so that the
computer, in effect, processes a number of programs
simultaneously.

TIME QUANTUM: In time-sharing,‘a unit of time allotted to
each user by the monitor.

TOGGLE: To use switches to enter data into the computer memory.
TRANSLATE: To convert from one language to another.
TRUNCATION: The reduction of precision by dropping one or more

of the Teast significant digits, e.g. 3.141592 truncated to
four decimal digits is 3.141.

UNDERFLOW: A condition that occurs when a floating point
operation yields a result whose magnitude is smaller than
the program is capable of expressing.

USER: Programmer or operator of a computer.

VARIABLE: A symbol whose value changes during execution of
a program.

WORD: With the IM6100, a 12-bit unit of data which may be
stored in one addressable Tocation.

WRITE: To transfer information from memory to a peripheral
device or to auxiliary storage.

ZERO PAGE: The first page in the subdivided memory.

ZOMBIE: Appearance assumed by programmer attempting to debug
undocumented object code.

CHARACTER CODES

APPENDIX F
ASCIT CHARACTER CODES

8-bit 6-bit CHARACTER

ASCII REPRESENTATION
CODE CODE
240 40
241 47 !
242 42 L
243 43 #
244 44 $
245 45 %
246 46 &
247 47 '
250 50 (
251 51)
252 52 *
253 53 +
254 54 ,
255 55 -
256 56 .
257 57 /
260 60 0
261 61 1
262 62 2
263 63 3
264 64 4
265 65 5
266 66 6
267 67 7
270 70 8
271 71 9
272 72 :
273 73 ;
274 74 <
275 75 =
276 76 >
277 77 ?

F-1

REMARKS

space (non-printing)
exclamation point
quotation marks

number sign

dollar sign

percent

ampersand

apostrophe or acute accent

opening parenthesis
closing parenthesis
asterisk

plus

comma

minus sign or hyphen
period or decimal point
slash

colon
semicolon
Tess than
equals
greater than
question mark

8-bit 6-bit CHARACTER REMARKS

ASCII REPRESENTATION

CODE CODE

300 00 @ at sign]
301 01 A

302 02 B

303 03 C

304 04 D

305 05 E

306 06 F

307 07 G

310 10 H

311 11 I

312 12 J

313 13 K

314 14 L

315 15 M

316 16 N

317 17 0

320 20 P

321 21 Q

322 22 R

323 23 S

324 24 T

325 25]

326 26)

327 27 W

330 30 X

331 31 Y

332 32 Z

333 33 C opening bracket, SHIFT/K
334 34 \ backslash, SHIFT/L
335 35] closing bracket, SHIFT/M
336 36 + up arrow
337 37 < back arrow?

Footnotes:

(1) In 6-bit code, 00g represents CARRIAGE RETURN
(2) In 6-bit code, 37g represents TAB

F-2

CONTROL CODES

8-bit CHARACTER
ASCII NAME
CODE

000 null

200 leader/trailer
203 CTRL/C
207 BELL

211 TAB

212 LINE FEED
213 VT

214 FORM

215 RETURN
217 CTRL/O
225 CTRL/U
232 CTRL/Z
233 ESC

375 ALTMODE
376 PREFIX
377 RUBOUT

(2)

(3)

REMARKS

Ignored in ASCII input

Leader/trailer code precedes and
follows the data portion of binary files

IFDOS break character, forces return
to Keyboard Monitor, echoed as +C

CTRL/G
CTRL/I, horizontal tabulation

Used as a control character by the
Command Decoder and ODT

CTRL/K, vertical tabulation
CTRL/L, form feed

Carriage return, generally echoed as
carriage return followed by a line feed

Break Character, used conventionally to
suppress Teletype output, echoed as +0

Delete current input line, echoes as +U

End-of-File character for all ASCII and
binary files (in relocatable binary files
CTRL/Z is not a terminator if it occurs
before the trailer code)

Escape replaces ALTMODE on some terminals
Considered equivalent to ALTMODE

Special break character for Teletype input

PREFIX replaces ALTMODE on some
terminals. Considered equivalent to
ALTMODE

Key 1is Tabeled DELETE on some terminals
Deletes the previous character typed

(1) IFDOS break character--does not affect INTERCEPT JR. MONITOR
(2) OCTAL DEBUGGING TECHNIQUE program as supplied on IM6312 ROM
(3) Applies to IFDOS (INTERSIL FLOPPY DISK OPERATING SYSTEM)

MNEMONIC

K0000
K00O01
K0002

K0002
K0003
K0004
K0006
K0100
K2000
K3777
K4000
K5777
K6000
K7775
K7776
k7777

APPENDIX G

LOADING CONSTANTS INTO THE ACCUMULATOR

DECIMAL

CONSTANT

[AS]

OCTAL

CODE

7300
7301
7305
(or)
7326
7325
7307
7327
7203
7332
7350
7330
7352
7333
7346
7344
7340

G-1

INSTRUCTIONS COMBINED

CLA
CLA
CLA

CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA

CLL
CLL
CLL

CLL
CLL
CLL
CLL
IAC
CLL
CLL
CLL
CLL
CLL
CLL
CLL
CLL

IAC
IAC

CML
CML
IAC
CML
BSW
CML
CMA
CML
CMA
CML
CMA
CMA
CMA

RAL

RTL
IAC
RTL
IAC

RTR
RAR
RAR
RTR
IAC
RTL
RAL

RAL

RTL

RTL

APPENDIX H
KEY BOARD TENNIS PROGRAM WITH INTERCEPT JR.

DEMO PROGRAM: “PING”

IN ‘PING’, THE PLAYER PLAYS AGAINST THE
MACHINE. THE COMPUTER “SERVES” FROM THE
LEFT, AND THE “BALL’ TRAVELS ALONG THE
LED’S UNTIL IT REACHES BIT 11, THE
RIGHTMOST LED.

IF THE PLAYER PRESSES THE YELLOW BUTTON
(IAC), THE BALL WILL BE RETURNED WITH A
‘CLICK’. THE MACHINE WILL RETURN THE BALL
AND THE SEQUENCE IS REPEATED.

IN ORDER TO ADD EXCITEMENT TO THE GAME,
EACH TIME THE PLAYER RETURNS THE BALL, IT
SPEEDS UP. :

WHEN THE PLAYER MISSES, BY PRESSING THE
BUTTON TOO SOON OR TOO LATE, THE MACHINE
BUZZES, DELAYS, THEN SERVES AT THE
SLOWEST RATE.

HAVE FUN!

(NOTE: THE CONTENTS OF LOCATION 0262
DETERMINE THE ORIGINAL SPEED OF THE BALL,
AND LOCATION 0263 DETERMINES HOW FAST IT
SPEEDS UP)

H-1

“PING”

ADDRESS; CONTENTS, ADDRESS; CONTENTS; ADDRESS; CONTENTS,
0201 7300 0223 7320 0245 1263
0202 1262 0224 6404 0246 3264
0203 3264 0225 6401 0247 7004
0204 7330 0226 2265 0250 3265
0205 6401 0227 5223 0251 1264
0206 6404 0230 7010 0252 3266
0207 3265 0231 2265 0253 1265
0210 1264 0232 5231 0254 6404
0211 3266 0233 7440 0255 7450
0212 7604 0234 5230 0256 5204
0213 7440 0235 5201 0257 2266
0214 5236 0236 6401 0260 5255
0215 2266 0237 7300 0261 5247
0216 5212 0240 1265 0262 0000
0217 1265 0241 7010 0263 1000
0220 7010 0242 7440 0264 —
0221 7440 0243 5223 0265 —
0222 5206 0244 1264 0266 —

H-2

FLOWCHART FOR KEYBOARD

TENNIS PROGRAM WITH INTERCEPT

JR.

L TIMER OFF]

-

CLICK SPEAKER

Y

ADD +1TO
THE HITTER’S
SCORE

A

ADD +1TO
THE
OPPONENT’S
SCORE

A

5

:ROUTINE TO DISPLAY

SCORES.

SHIFT A BALL ONE PLACE TO
THE OPPONENT DIRECTION

DID BALL
REACH GOAL?
NO

L DISPLAY WHERE BALL IS. I

WAS BALL
HIT BY OPPONENT
?

NO WAS IT

NO

©

YES

CHANGE DIRECTION
& BALL SPEED
ACCORDING TO WHERE
IT IS HIT.

A

IN LEGAL REGION
?

H=-3

eee2e
geeel
8p922
eoe23
80024
§062s
80826
60827
00830
20831
280832
208833
000834
80838
90236
9037
00040
2804l
80042

808843
800844
98845
80046
esear
o0ese
#0051
808852
00853
LLLER
20805S
20856
o000s7?
00060
20061
o8862
00063
80064
830865
90066
00067
20070
goe7l
see72
28873

g8074
80875
80876
oe877
oalee

6400
6401
6402
6484

8o2e
eeee
7368
7684
7804
7438
5040
7084
7620
5428
7140
3128
7684
7640
5833
2020
5420
7300
3128
5833

(111
7380
3117
1124
4074
1116
3121
1117
3122
3117
1128
4874
1116
71086
7806
1121
1133
4106
1117
7186
7806
1122
1132
4186
5443

(L1
7100
1127
7420
5183

/KEY BOARD TENN1S VITH INTERCEPT JR.

RULES:

NNNNNNNNNNNNNSNNNSNSNNNNNNN

START AT LOCATION ¢200.

SINCE JR IS WAITING FOR SIGN OF STARTER.
PRESS IAC OR CTR WHCIHEVER STARTS FIRST
TO PREPARE FOR SERVICE.

THEN, SERVE THE BALL BY PRESSING THE KEY.
THE OPPONENT MUST PRESS KEY BEFORE BALL
HITTING THE SIDE BUT IN THE NEAREST 2 BITS
NOT TO LOSE POINTS.

SCORE IS +1 FOR ONE SUCCESSFUL GOAL AND
+] BY THE OPPONENT'S FAULTe. THE HIGHEST
SCORE WHICH CAN BE HANDLED IS 99.

DEFINITIONS:

WVRITED= 6400 /WRITE DISPLAY.
CLICK=6401 /CLICK SPEAKERe
TIMER=6402 /TIMER ON OR OFF.
WRITES=6404 /WRITE DISPLAY OF 1/0 BRD.

/ SUBPRO GRAMS:

*20

KEY, [/TO DETECT KEY BOARD.
CLA CLL
LAS /LOAD AC WITH SRe
RAL /CTR=4008.
szL /CTR KEY PRESSED?
JMP 1D@ /YES.
RAL /1AC=20088.
SNL CLA /1AC KEY PRESSED?
JMP 1 KEY /NEITHER PRESSEDe
CLL CMA /PUT ALL 1°'S IN AC.
DCA ID /1D=] FOR 1AC PLAYER.

GO, LAS /STOP FURTHER EXECUTION
SZA CLA /UNTIL KEY 1S RELEASED.
JMP -2
1SZ REY /TO GET OUT OF WAITING LOOP.
JMP 1 KEY

100, CLL CLA
DCA 1D /1D=@ FOR CTR PLAYER.
JMP GO /RETURN.

/

/

SHOV, [} /SUBROUTINE TO DISPLAY SCORES:
CLA CLL
DCA DIGIT2 /CLEAR REGISTER DIGIT2.
TAD SCORE!L /BRING IAC PLAYER'S SCORE.
JMS DECIML /CONVERT OCTAL TO DECIMAL.
TAD DIGITI /1ST DECIMAL DIGIT.
DCA SAVE!L /STORE IT IN SAVEl.
TAD DIGIT2 /STORE 2ND DECIMAL DIGIT
DCA SAVE1® /IN SAVEIl@.
DCA DIGIT2 /CLEAR DIGIT2.
TAD SCORE2 /BRING CTR PLAYER'S SCORE.
JMS DECIML /CONVERT IT INTO DECIMAL NO.
TAD DIGIT! /SHIFT 1ST DECIMAL NO. INTO
CLL RTL /28D BITE FROM RIGHT.
RTL
TAD SAVEI] /JOIN TO IAC PLAYER'S SCORE.
TAD K4009 /SET BIT #9 TO DISPLAY THEM.
JMS DELAY /D1SPLAY 1ST DECIMAL DIGITS
TAD DIGIT2 /0F BOTH PLAYER'S SCORES.
CLL RTL /SHIFT 28D DECIMAL NO.
RTL
TAD SAVE}@ /JOIN TO IAC PLAYER'S SCORE.
TAD K2800 /SET BIT #1.
JMS DELAY /DISPLAY 2ND DECIMAL DIGITS
JMP [SHOW /0F BOTH SCORES & RETURN.

/

/

DECIML, @ /SUBROUTINE TO CONVERT OCTAL TO DECIMAL.
CLL /KILL LINK BIT.
TAD M12 /AC=~12.
SNL /NO MORE 2ND DECIMAL DIGITS?
JMP OUT /1F NOT, OUTPUT RESULTS.

H-4

goiel 2117 1SZ DIGIT2 /1F YES, COUNT THE DIGITS.

8g102 5075 JMP DECIML+! /EXHAUST 10TH DI1GITe
#9183 1138 O0UT, TAD P12 /ADD 12 TO COMPENSATE.
Pd104 3116 DCA DIGITI! /STORE IT.
28185 5474 JMP 1 DECIML)
/
/
80106 0098 DELAY, @ /SUBROUTINE TO DISPLAY & DELAY TIME.
28187 6409 VRITED /DISPLAY AC CONTENTS.
@o118 7300 CLA CLL
ea111 1131 TAD M70809 /TO COUNT S12.
go112 3123 DCA TEMP
#8113 2123 1SZ TEMP /COMPLETED COUNTING?
88114 5113 JMP .-] /NOT YET.
20115 5586 JMP 1 DELAY /YES.
/
/
/DATA (1)
/
op116 00688 DIGITI, @
28117 op0ee DIGIT2, @
89120 0060 1D,]
go121 P00 SAVEL, @
8g122 0090 SAVE1@, ¢
#8123 0088 TEMP,]
ee124 0000 SCOREl, @
00125 @008 SCORE2, @
eBl26 7774 Ma, -4
08127 7766 M12, =12
28138 @812 P12, ge12
ea131 7088 M7008, 70080
89132 2000 K2eee, 2009
98133 4800 Kag08, 4008
#8134 7700 K7700, 7780

/PROGRAM FOR GAME STARTS HERE:
o200 *206¢ /STARTING ADDRESS.

eo288 7301 CLA CLL IAC /AC=] FOR TIMER OFFe.
00201 6402 TIMER /AC MUST BE @ FOR TIMER ONe
08282 7209 CLA

60283 3124 DCA SCORE! /INITIAL SCORE.

20204 3125 DCA SCORE2

#8205 1134 DISPLY, TAD K7768 /CLICK SPEAKER 64 TIMES
80206 3361 DCA COUNT /IN 1.5 SEC FOR STARTING SIGN.
08207 6401 CLICK)
202198 4843 JMS SHOW /TO KEEP DISPLAYING.
go211 236! 1SZ COWNT

gs212 52087 JHP -3

60213 7301 CLA CLL IAC /AC=1.

90214 6404 RLEFT, VWRITES /DISPLAY AC.

88215 3362 DCA SR /SAVE DISPLAY BIT.

26216 4355 JMS BOARD /CHECK KEY COMMAND.
809217 4843 JMS SHOW /48 MS TIME DELAY

80220 4043 JMS SHOW /T0 KEEP DISPLAYING.
#8221 1362 TAD SR /BRING DISPLAY BIT BACK.
08222 7864 RAL /SHIFT LEFT ONE.

86223 7420 SNL /REACHED TO EDGE?

80224 5214 JMP RLEFT /NOT YET.

88225 7018 RAR /YES.

88226 6494 RRIGHT, WRITES /DISPLAY.

80227 3362 DCA SR /SAVE IT.

26230 4355 JMS BOARD /CHECK KEY INPUT.

89231 4843 JMS SHOW /46 MS TIME DELAY TO
98232 4843 JMS SHOW /DISPLAY.

98233 1362 TAD SR

@@234a 7818 RAR /SHIFT RIGHT ONE.

886235 7428 SNL /REACHED TO EDGE?

98236 5226 JMP RRIGHT /1F NOT, KEEP SHIFTING.
28237 7084 RAL /1F YES, CHANGE DIRECTION.
08248 5214 JMP RLEFT

89241 11280 START, TAD ID /CHCK WHICH PLAYER FIRST.
gP242 7658 SNA CLA /THE FOLLOVING ROUTINE
608243 5251 JMP ¢ +6 /BRINGS BALL TO THE
@8244 7101 CLL IAC /PLAYER'S SIDE.

80248 6484 WRITES

88246 3362 DCA SR /SAVE DISPLAY BIT.

908247 1364 TAD LEFT /LEFT=RAL.

80258 5255 JMP ++5

#8251 1133 TAD K4600

08252 6404 WRITES

808253 3362 DCA SR /SAVE DISPLAY BIT.

#8254 1365 TAD RIGHT /RIGHT=RAR. .

986255 3266 DCA ROTATE /DEFINE SHIFT DIRECTION.
86256 4020 JMS KEY /GAME STARTED?

20257 5261 JMP ++2 /NOT YET.

#8268 5263 JMP «+3 /YES» STARTED.

20261 4843 JMS SHOW /TO0 KEEP DISPLAYING.
88262 5256 JMP « =4 /CHECK KEY AGAIN.

#0263 127a TAD SPEED+1} /INITIALIZE SPEED.
90264 3273 DCA SPEED

H-5

28265 1362 TAD SR /BRING DISPLAY BIT TO SHIFT.

908266 0902 ROTATE, @ /RAL OR RAR 1S STORED HERE.
98267 7430 SZL /SUCCEEDED TO GOAL?
60270 S3al JMP SCORE /1F YES» SCORE & CLICKe.
20271 6484 WRITES /DISPLAY NEW SHIFTED BIT.
80272 3362 DCA SR /SAVE DISPLAY BIT.
#8273 4843 SPEED, JMS SHOW /THIS 1S ONLY FOR SERVER.
00274 4243 JMS SHOW /20 MS TIME DELAY.
80275 40843 JMS SHOW /20 MS.
80276 4843 JMS SHOW /206 MS.
20277 4243 JMS SHOW /FASTEST=4@8 MS, SLOWEST=10€ MS.
80380 4aB20 JMS KEY /O0PPONENT KEY PRESSED?
203061 5265 JMP ROTATE-1 /NOT YET, SO KEEP SHIFTING.
2@3062 1120 TAD 1D
203063 7640 SZA CLA /WHICH PLAYER RECEIVED BALL?
60304 5321 JMP CTR /CTR SIDE.
203085 1362 TAD SR /1AC SIDE.
823066 1131 TAD M7808 /DETERMINE RETURN SPEED.
00387 7440 SZA /HIT BALL AT 2ND BIT?
02318 S31a JMP Al /NO.)
@8311 1131 EASY., TAD M7868 /1F YES, GIVE EASY BALL.
20312 3273 DCA SPEED /M7808="NOP".
28313 5330 JMP CHANGE /RETURN THE BALL.
80314 7718 Al, SPA CLA /1S 1T FAULT OR BEST BIT?
608315 5351 JMP FAULT /HIT IN WRONG REGION.
#8316 1363 DFFCLT, TAD JMPDFF /1T WAS BEST HIT. SO, RETURN
#8317 3273 DCA SPEED /BALL FASTEST.
09320 S330 JMP CHANGE
20321 1362 CTR. TAD SR
89322 1126 TAD Ma /AC==4.
88323 7450 SNA /HIT AT 2ND BIT.
@9324 5311 JMP EASY /YES.
88325 77080 SMA CLA /1S 1T FAULT HIT?
#0326 S351 JMP FAULT /YESe.
28327 5316 JMP DFFCLT /NO, 'IT WAS BEST HIT.
80338 1128 CHANGE, TAD ID /CHANGE DIRECTION.
80331 7650 SNA CLA
#8332 5335 JMP «+3
20333 1364 TAD LEFT
#2334 5336 JMP . +2
80335 1365 TAD RIGHT
88336 3266 DCA ROTATE /DEFINE NEW DIRECTION.
88337 7100 CLL /CLEAR USELESS LINK BIT.
88348 5265 JMP ROTATE-~1 /SHIFT TO THE DIRECTION.
28341 7388 SCORE,» CLA CLL
89342 1129 TAD 1D
808343 7658 SNA CLA /WHICH SCORED?
80344 5347 JMP ++3
80345 2124 1SZ SCORE! /1AC SIDE.
00346 5205 JMP DISPLY
22347 2125 1SZ SCORE2 /CTR SIDE.
28350 5285 JMP DISPLY
80351 1128 FAULT, TAD ID /CHECK WHO WAS AGAINST RULE.
20352 7940 CMA /GIVE POINT TO THE OPPONENT.
68353 3120 DCA 1D
28354 5342 JMP SCORE+!

/
2@355 @0e6 BOARD, @ /SUBROUTINE BOARD.
88356 4ap2e@ JMS KEY /CHECK KEY.
@@3s87 S87%S JMP I BOARD /1F NO INPUT, RETURN TO LOOP.
98368 524l JMP START /1F SIGN, START GAME.

/

/

/DATA (2)3

/
88361 66090 COWNT, @
88362 0890 SR, ']
98363 5276 JMPDFF, $276
99364 7884 LEFT, 7884
86365 7010 RIGHT., 7018

/

/

808366 7888 NOP

Al
BOARD
CHANGE
CLICK
COWNT
CTR
DECIML
DELAY
DFFCLT
DIGIT!
DIGIT2
DISPLY
EASY
FAULT
GO
1D
1D®
JMPDFF
KEY
K2000
K4008
K7708
LEFT
Ml2
M4
M7000
ouT
Pl2
RIGHT
RLEFT
ROTATE
--RRIGHT
SAVE!L
SAVEL®
SCORE
SCORE!
SCORE2
SHOV
SPEED
SR
START
TEMP
TIMER
WRITED
WRITES

8314
8358
8339
6401
8361
8321
2074
21086
8316
8116
8117
9205
8311
8351
8833
o128
8840
8363
28208
2132
8133
@134
8364
o127
g126
2131
2183
@138@
B836S
8214
2266
8226
g121
8122
8341l
8124
2125
8843
8273
8362
2241
8123
6482
64080
6404

H-7

1

10900 N. Tantau Ave., Cupertino, Calif. 95014, (408) 996-5000, TWX 910-338-0228

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-08a
	5-01
	5-01
	5-02
	5-03
	5-04
	5-04a
	6-01
	6-02
	6-03
	6-04
	6-04a
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-09a
	8-01
	8-02
	8-02a
	8-02b
	8-02c
	8-02d
	8-02e
	8-02f
	8-02g
	8-02h
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-17a
	8-17b
	8-17c
	8-17d
	8-17e
	9-01
	9-02
	9-03
	9-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	xBack

