FBC Reference Manual

Curtis Priem

SUN Microsystems Inc.
2550 Garcia Avenue

Mountain View, CA 94030

Version 3.0

January 21, 1988

This Document contains unpublished, proprietary information and describes sub-
ject matter proprietary to SUN Microsystems Inc. This document may not be
disclosed to third parties or copied or duplicated in any form without the
prior written consent of SUN Microsystems Inc.

CONTENTS

Chapter 1 - Introduction
Chapter 2 - Register Summary
Chapter 3 - Addressing

Address Registers

Indexed Address Registers
Raster Offset Registers
Autoincrement Registers

Chapter 4 - Window Registers
CLIP Registers
Picking Window
Testing Window
TEC CLIPCHECK Register

Chapter 5 - DRAW Command
DRAWSTATUS Register
Drawing Objects

Chapter 6 - BLIT Command
BLITSTATUS Register
Blitting Rectangles

Chapter 7 - FONT Command
FONT Register
FONTing Characters and Images

Chapter 8 - STATUS Register

Chapter 9 - Attribute Registers
COLOR Registers
RASTEROP Register
PLANEMASK Register
PIXELMASK Register
PATTERN Registers

Chapter 10 - Miscellaneous Register

Chapter 11 - Configuration Register

1 - INTRODUCTION

The FBC (Frame Buffer Controller) chip is the heart of the CG6
architecture. It contains the hardware to do 2D graphic¢ rendering.
The rendering hardware can execute the following commands:

Command Source Destination
DRAW PATTERN Register Frame Buffer
FONT CPU Frame Buffer
BLIT Frame Buffer Frame Buffer
2 - REGISTER SUMMARY

There are a total of 76 user registers in the FBC which the CPU can
access. The user registers are used to input the actual graphics commands and
data. Only 33 of these registers need to be restored after a context switch.

There is one system register which the CPU can access using the HWC chip
select. The system register is for hardware configuration and is accessed by
the boot proms. They will reside in a different page from the user registers
so that they can be protected by the MMU from user accesses. These registers
do not need to be saved or restored during context switching.

All accesses to the registers will be 32 bit wide ONLY and are aligned to
the 32 bit word boundary. This is the only type of access the 68020, 80386,
and RISC processors have in common.

0 = zeros when read

1 = ones when read

s = sign extended when read

fbc = pointer to the FBC data structure

fhc = pointer to the FBC Hardware Configuration data structure (protected)
tec = pointer to the TEC data structure
thc = pointer to the TEC Hardware Configuration data structure (protected)

Address

fbc+0x880
fbc+0x884
fbc+0x888
fbc+0x890
fbc+0x894

fbc+0x898

fbc+0x8c0
fbc+0x8c4
fbc+0x8c8
fbc+0x8d0
fbc+0x8d4

fbc+0x8d8

fbc+0x%00
fbc+0x904
fbc+0x908
fbc+0x910
fbc+0x914

fbc+0x918

fbec+0x0c0

fbc+0x0c4

fbc+0x0d0

fbec+0x0d44

Name

——— —— — ———— . —_———— o~ ———— o ———— o ——

———————_—— —— - ————————— i ——— ———— -~

——— — ——————————_———————— ——— —_— - ———_————

Description

INDEXED ADDRESS REGISTERS

X

Y

for
for
for
for
for

for

for
for
for
for
for

for

for
for
for
for
for

for

Integer
Integer
Integer
Integer
Integer

Integer

Integer
Integer
Integer
Integer
Integer

Integer

Integer
Integer
Integer
Integer
Integer

Integer

Absolute Tri

Absolute
Absolute
Relative
Relative

Relative

Absolute
Absolute
Absolute
Relative

Relative

Tri
Tri
Tri
Tri

Tri

Quad
Quad
Quad
Quad

Quad

Relative Quad

Abs
Abs
Abs
Rel
Rel

Rel

Rectangle
Rectangle
Rectangle
Rectangle
Rectangle

Rectangle

RASTER OFFSET REGISTERS

X offset of raster

Y offset of raster

AUTOINCREMENT REGISTERS

X auto-increment

Y auto-increment

Address

fbc+0x0el
fbc+0x0e4
fbc+0x0£0

fbc+0x0£4

fbc+0x008

fbe+0x100
fbc+0x104
fbc+0x108
fbc+0x10c
fbec+0x110
fbc+0x120
fbe+0x124
fbc+0x128
fbec+0x12c
fbc+0x130
fbc+0x134
fbc+0x138
fbc+0x13c

fbc+0xllc

Name

31 0
CLIPMINX |
________________________________ +
CLIPMINY |
________________________________ +
CLIPMAXX |
________________________________ +
CLIPMAXY]
________________________________ 14
31 0
CLIPCHECK |
________________________________ 4
31 0
FCOLOR |
________________________________ +
BCOLOR [
________________________________ +
RASTERQP |
________________________________ +
PLANEMASK |
________________________________ +
PIXEILMASK |
________________________________ +
PATTERNO |
________________________________ +
PATTERN1 |
________________________________ +
PATTERNZ2 |
________________________________ +
PATTERN3 |
________________________________ +
PATTERN4 |
________________________________ +
PATTERND |
________________________________ +
PATTERNG6 I
________________________________ +
PATTERN7 |
________________________________ +
PATTALIGN |

—— o ——————— - ——— O ——— " — —— —— ————

Description

WINDOW REGISTERS

Upper Left X of Clip Window

Upper Left Y of Clip Window

lower Right X of Clip Window

Lower Right Y of Clip Window

CLIP CHECK REGISTER

TEC Clip Check Register

ATTRIBUTE REGISTERS
Foreground Color Register
Background Color Register
RasterOp Register

Plane Mask Register

Pixel Mask Register
Pattern Register 0
Pattern Register 1
Pattern Register 2
Pattern Register 3
Pattern Register 4
Pattern Register 5
Pattern Register 6
Pattern Register 7

Pattern Alignment Register

Address

fbc+0x010
fbec+0x014
fbc+0x018

fbe+0x01c

fbc+0x004

fhe+0x000
fbc+0x000

—— e — - — - —— ———— T ————— T —— —————— "

Name

Description

STATUS & COMMAND REGISTERS
Status Registerx

DRAW Status Register

BLIT Status Register

Font Register

MISCELLANEQUS REGISTER

Miscellaneous Register

CONFIGURATION REGISTER

Configuration Register

3.1 - ADDRESS REGISTERS

The address registers have different meanings when doing DRAW, BLIT, or
FONT commands. See each of the commands for details. When doing a DRAW or
FONT, the address registers can represent either subpixels or pixels depending
on if the FBC is in HRMONO mode (high resolution monochrome mode) or COLOR1
(1 plane COLOR mode, the FBC expands the source from 1 plane to 8 planes)
respectively. When doing a DRAW, BLIT, or FONT the address registers represent
pixel locations if the FBC is in COLOR8 mode (8 plane color mode). The Z
registers do not store a Z value, but are used when the Z clip information is
autoloaded from the TEC.

All the address registers can be read and written for context switching.

31 0

s S T e s et e st e e e e s

| | X0 (RW)
s e S i s T e et S R e e e

[| YO (RW)
e s T S T e et et et S SR S S e o e e S e

I | 20 (W)
L ok o e T R e R et et el S Tt B R e

| | X1 (RW)
R s T S s Tt s At SR R e

| | Y1 (RW)
T T e s s St A e S e e e stk At 3

l | 21 (W)
s e s S e e e s St s et S e e e e e

| | X2 (RW)
e T ST T et s e e e et

| | Y2 (RW)
e e T S e s Kt et st e e e

I | 22 (W)
s e T S S e e Kt e s st T e B e e

| | X3 (RW)
T s T S S s ks St e e

] | Y3 (RW)
S T S e e T s e i e a s

| 4 | 23 (W)
T T R i ek S S e e

Figure 3-2 Address Registers (Signed Integer)

3.2 INDEXED ADDRESS REGISTERS

There are alsoc a set of indexed address registers which reduces the number
of accesses that need to be done to the FBC to load the absolute or relative
coordinates for points, lines, triangles, quadrilaterals, and aligned
rectangles, especially when these objects are chained. There is a 2 bit
address INDEX which points to the next set of address registers that is to be
modified. The INDEX is incremented after every X address is written for each
of the objects and after Y is written for only the aligned rectangles. This
allows the software to write only one x-y vertex to describe a chained point,

line, triangle,

or quadrilateral,
The address INDEX can be read or written through the MISC register.

coordinate should always be loaded before the X coordinate.
The coordinate type ¢of the indexed address registers can only be integer.

For absolute coordinates,
register is added to the value loaded into the FBC,

into the registers pointed to by the address INDEX.

For relative coordinates,
register is added to the value loaded into the FBC,

into the registers pointed to by the address INDEX.
Table 3-1 shows which address registers are affected by each of the index
The table also indicates which commands

registers for every possible INDEX.

increment the INDEX.

Index
Register INDEX=00 INDEX=01 INDEX=10 INDEX=11 INDEX++
IPOINTABSX, IJIPOINTRELX X0,X1,X2,X3 X1,X2,X3,X0 X2,X3,X0,X1 X3,X0,X1,X2 yes

and two vertices to describe a rectangle,.
The Y

the contents of the RASTEROFFX or RASTEROFFY
and the result is placed

the contents of the X[INDEX-1l] or Y[INDEX-1]
and the result is placed

IPOINTABSY, IPOINTRELY YO,Y1l,Y2,Y3 Y1,Y2,¥3,¥0 Y2,¥3,vY0,Yl Y¥3,Y0,Y1,¥Y2 no
IPOINTABSZ, IPOINTRELZ YO,Y1l,Y2,Y3 Y1,Y2,¥3,Y0 Y2,Y¥3,Y0,Yl1 ¥3,Y0,Y1,Y2 no
ILINEABSX, ILINERELX X0,X1,X2 X1l,X2,X3 X2,X3,X0 X3,X0,X1 yes
ILINEABSY, ILINERELY Y0,Y1l,Y2 Y1l,Y2,Y3 Y2,Y¥3,Y0 ¥3,Y0,Y1 no
ILINEABSZ, ILINERELZ Y0,Y1l,Y2 Y1l,Y2,¥3 Y2,¥3,Y0 Y3,Y0,Y1 no

ITRIABSX, ITRIRELX X0,X1 X1,X2 X2,X3 X3,X0 yes

ITRIABSY, ITRIRELY Y0, Y1 Y1l,Y2 Y2,Y3 ¥3,Y0 no

ITRIABSZ, ITRIRELZ Y0, Y1 Yl,Y2 Y2,Y3 Y3,Y0 no
IQUADABSX, IQUADRELX X0 X1 X2 X3 yes
IQUADABSY, IQUADRELY YO0 Yl Y2 Y3 no
IQUADABSZ, IQUADRELZ YO0 Yl Y2 Y3 no
IRECTABSX, IRECTRELY X0, X1 X1,X2 X2,X3 X3,X0 yes
IRECTABSY, IRECTRELY Y0, Y1 Y1l,Y2 Y2,Y3 Y3,Y0 yes
IRECTABSZ, IRECTRELZ Y0, Yl Y1l,Y2 Y2,Y3 Y3,Y0 no

Table 3-1

Address Registers affected by Index Registers

5.1 DRAW STATUS REGISTER

After the vertices have been entered, the DRAWSTATUS register is checked
to see if the object can be drawn by the FBC (DRAW_HARDWARE), or the object
must be drawn by the software driver (DRAW_SOFTWARE) .

If an object is classified as DRAW_HARDWARE, the FBC will be able to draw
the object without any assistance from software. The definition of a
DRAW_HARDWARE object is:

A) The object is DRAW_HIDDEN (or)
B) The object surrounds the clip window (or)
C) 1) The object is not DRAW_HIDDEN (and)
2) The object has only two active edges (and)
3) All of the vertices are between -2**14 and 2**14-1 (and)
4) a) All of the vertices are inside the test window (or)
b) The object is a line and one of the end points

is inside the test window (or)

c) All of the x vertices are inside the test window and
the top or bottom vertex is inside the test window {or)

d) The object is an aligned rectangle (this includes
vertical and horizontal lines)

All other objects must be drawn by software. The FBC will only be able to
help by doing horizontal lines, clipping, ROPs, etc. The definition of a
DRAW_SOFTWARE object is:

A) The object is not DRAW_HARDWARE
The DRAWSTATUS register is updated whenever a value is written to the

address or clip registers. The DRAW EXCEPTION bit in the register is set if one
of the following bits are set:

A) DRAW_SOFTWARE (or)
B) FBC_FULL (or)
C) TEC_EXCEPTION (or)
D) UNSUPPORTED ATTR (or)
E) ACC_OVERFLOW (or)

F) TEC_INTERSECT

The object is drawn by the FBC if the CPU reads the DRAWSTATUS register
and the DRAW_EXCEPTION bit is zero. If the DRAW_EXCEPTION bit is set, the FBC
will not render the obiject.

The DRAWSTATUS register is read only since by reloading the address and
clip registers of the FBC during a context switch, the correct status will be
regenerated.

DRAW_EXCEPTION
TEC_EXCEPTION
FULL

BUSY

+-.
| | DRAWSTATUS (R)
-+

(1=There is a DRAW exception)
(1=TEC has an exception)
(1=FBC internal address registers are full)

(1=FBC is Busy)

UNSUPPORTED_ATTR (1=Unsupported Attribute)

(1=High Resclution Monochrome)

(1=Overflow in FBC has occurred)

(1=pPart of the Object Fell Inside PICK Window)
(1=Object is Hidden)

(1=OCbject is Intersecting the TEC CLIP check)
(1=Object is Totally Inside the TEC CLIP check)
(1=FBC can blit the rectangle)

must blit the rectangle)

HRMONO
ACC_OVERFLOW
ACC_PICK
TEC_HIDDEN
TEC_INTERSECT
TEC_VISIBLE
BLIT HARDWARE
BLIT_SOFTWARE
BLIT_SRC_HID
BLIT_SRC_INT
BLIT_SRC_VIS
BLIT DST_HID
BLIT _DST INT
BLIT_DST_VIS
DRAW_HARDWARE
DRAW_SOFTWARE
DRAW_HIDDEN
DRAW_INTERSECT
DRAW_VISIBLE

Figure 5-1

(1=Software

(1=Src
(1=Src
(1=Src
(1=Dst
(1=Dst
(1=Dst
(1=FBC

Rect
Rect
Rect
Rect
Rect
Rect

is
is
is
is
is
is

Hidden)

Intersecting the CLIP Window)
Totally Inside the CLIP Window)
Hidden)

Intersecting the CLIP Window)
Totally Inside the CLIP Window)

can draw the Object)

(l1=Software must draw the Object)

(1=Object is Hidden)

(1=Cbject is Intersecting the CLIP Window)
(1=Object is Totally Inside the CLIP Window)

DRAW Status Register

5.2 DRAWING OBJECTS

The polygons can be drawn with bounding lines to form overlapping polygons
or without bounding lines to form nonoverlapping polygons. Overlapping polygons
are defined as the union of the (balanced) lines that connect the vertices of
the polygon and all pixels inside the bounding lines. The points in common
between two adjacent overlapping polygons will form a balanced line.

Nonoverlapping polygons are defined as all of the points on or within the
ideal lines that connect the vertices except for the right most pixels and
bottom line of each (trapezoid) section of the polygon. There are no points in
common between two adjacent nonoverlapping polygons. Nonoverlapping lines and
points are not drawn since they have no thickness. The attribute that selects
between overlapping and nonoverlapping polygons is in the RASTERCP register.

When the edge of a polygon or a line falls half way between the center of
two pixels, the FBC rounds to the right for horizontal midpoints or rounds down
for vertical midpoints, with respect to the screen (not the x-y addressing).

A quadrilateral can be drawn by entering four unique vertices into the
IQUADABS or IQUADREL registers as shown in Figure 5-2 and 5-3. A triangle can
be drawn by making two of the vertices the same or by entering only three
vertices into the ITRIABS or ITRIREL registers as shown in Figure 5-4 and 5-5.
A line can be drawn by making three of the vertices the same, by making two
pair of vertices the same or, by entering only two vertices into the ILINEABS
or ILINEREL registers as shown in Figure 5-6. A point can be drawn by making
all four of the vertices the same or by entering only one vertex into the
IPOINTABS or IPOINTREL registers as shown in Figure 5-7.

(X0,Y0)

* %
* ok kk Kk Kk
* ok ok ok ok Kk kK k ok
* Kk Kk k %k ok ok k Kk kkokkk
% %k Kk Kk ok Kk k k ok ok k ok ok ok k ok
kkkhkhkkkkkkkkkkkkkkkkxk
**************************(X3,Y3)
khkkhkhkhkkkkhkkkhkkhhkkhkkhkdkkkdhkk*k
hhkkhkhkkkhkhkkkkhkhkhkhkkhhkkkhkhkkkxx
hkkhkkkhkhkdkhkkkhkkkdkhkkhkkhkhkkhhkkr
%k Kk ok ok %k ke sk kv ok sk ok ok ok sk ok ok ok ke Rk ok ke
(Xl,Yl)**************************
hkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkkhk
sk &k Ak ok Kok dk k& ok ok ok ok ok ok ok X
% Kk Kk ok Kk kK ok ok ok ok ok ok
%ok ok ok A ok ke kok ok
*kkkkx
% %

{(X2,Y2)

Figure 5-2 Drawing an Overlapping Quadrilateral

(X0,Y0)

% %k ok Kk
* %k Kk Kk kK kk
%%k ok koo Kk ok ok ok ok ok ok
* ok %k Kk kok ok ok ok ok ok ok kok kk
% ok Kk dodk ok k ok ok gk ok koo ok ok ok ok ok ok ok
khkkkhkkkkkkkkhkhkkkkkhkkkhkkhkk (X3,Y3)
khkkkkkhkhkkkhkhkkkhhkkkkhkkkxk
%k ok Kk Kk ok ok ok ok k ok ok ok ke k ok ok ok ok ok ok ok ko
AhkkhkKkA kKA AkAk Ak hkhk Ak X hkhkdx
kkkhkhkkhkkhkkkkhkhkkkhhkkkhk ki
(Xl,Yl)************************
kkkhkkkkhkkkkkkhkkkkkkkx
Kk ok okok ok kokkkkkkkokk
%k %k Kk Kk Kk ok ok kkkk
* %k Kk %k kk Kk
*k k%

(X2,Y2)

Figure 5-3 Drawing a Nonoverlapping Quadrilateral

- — = - ————— i —————— —————— ————— — ———— o _—-———— A ————— ——— - _——— M ———— o ——

(X2,Y2)

* %k Kk
%k kK ok ok k ok ok ok
k kK ok kk ok ok okkokok
%k Kk ok ok ok ok ok ok ok ok ok ok
% %k %k Kk Kk Kk kok ok ok kk ok ok ok k
% Kk kK ok k k k kK ok ok ok k ok ok ok K (Xl,Yl)
k ok dok ok ke ok ok kok ok ok ok ok ok ok
* % Kk k Kk kok ok kk

* Kk Kk *
(X0,Y0)
(X3,Y3)

Figure 5-4 Drawing an Overlapping Triangle

(X2,Y2)

* %
* Kk Kk
*K Kk Kk
*kkokkkk ok
*ok ko kK ke ok kK (X1,Y1)
*kok kK okK KKk kKK
*k Kk k

(X0,Y0)
(X3,Y3)

Figure 5-5 Drawing a Nonoverlapping Triangle

e —— — A — — A — — — — {— —— —— — — — —— fo— — 2 e ®

(X0,Y0)

(X2,Y2)
(X3,Y3)
* %
* % %k
* % *
* %k
* % %
* %k K
* %k %k
* %k *
* %k
* K K
* % *
* %
(X1,Y1)

— - —— . —————— " T ———— — - " T —— - V0 T e T M - S S e e S S S S S e mm e e S S S T

(X0,Y0)
(X1,Y1)
(X2,Y2)
(X3,Y3)

*

Figure 5-7 Drawing an Overlapping Point

. e e e — . —————— — . ——— —— —_—— —— .

6 - BLIT COMMAND

The FBC has the capability of doing a BLock Image Transfer (BLIT). The
software can specify a rectangular area in the frame buffer as the source and
another rectangular area in the frame buffer as the destination to which the
source will be rasteroped. The source and destination can overlap in any
direction and can be non-aligned.

The BLIT command can only be used in pixel coordinates (COLOR1 or COLORS

mode). The meaning of the address registers for the BLIT command are shown in
Table 6-1.
Address
Register Description
X0 X coordinate for upper left corner of source
YO0 Y coordinate for upper left corner of source
X1 X coordinate for lower right corner of source
Y1 Y coordinate for lower right corner of source
X2 X coordinate for upper left corner of destination
Y2 Y coordinate for upper left corner of destination
X3 X coordinate for lower right corner of destination
Y3 Y coordinate for lower right corner of destination

Table 6-1 Address Registers for BLIT Command

The addresses must be in the bounds of the screen and meet the constraints
in Table 6-2.

1024x768 Color Mode 1024x1024 Color Mode 1152x900 Color Mode
X2 - X0 = X3 - X1 X2 - X0 = X3 - X1 X2 - X0 = X3 X1
Y2 - Y0 = Y3 ~ Y1 Y2 - Y0 = Y3 - Y1 Y2 - Y0 = Y3 - Y1

0 <= X0 <= X1 <= 1023 0 <= X0 <= X1 <= 1023 0 <= X0 <= X1 <= 1151

0 <= X2 <= X3 <= 1023 0 <= X2 <= X3 <= 1023 0 <= X2 <= X3 <= 1151

0 <= Y0 <= Y1 <= 767 0 <= Y0 <= Y1 <= 1023 0 <= Y0 <= Y1 <= 899

0 <= Y2 <= Y3 <= 767 0 <= Y2 <= Y3 <= 1023 0 <= Y2 <= Y3 <= 899

Table 6-2 Legal Address Register Ranges

6.1 BLIT STATUS REGISTER

After the vertices have been entered, the BLITSTATUS register is checked
to see if the rectangle can be blitted by the FBC (BLIT HARDWARE), or it must
be done by the software driver (BLIT_SOFTWARE).,

If an object is classified as BLIT_HARDWARE, the FBC will be able to blit
the rectangle without any assistance from software. The definition of a
BLIT HARDWARE blit is:

A) The destination rectangle is BLIT_DST_HID (or)
B) 1) The source rectangle is BLIT_ SRC HID (and)
2) Blit source is included (BLIT SRC CHK=10)

C) 1) The source rectangle is BLIT_SRC_VIS ()
2) Blit source is included (BLIT SRC_CHK=10) (and)

()

()

3) The destination rectangle is not BLIT _DST_HID and
4) The source rectangle is between -2**14 and 2**14-1 and
5) The destination rectangle is between -2**14 and 2**14-1

D) 1) Blit source is excluded (BLIT_SRC_CHK=01) {and)
2) The destination rectangle is not BLIT _DST_HID (and)
3) The source rectangle is between -2%%14 and 2**14-1 (and)

4) The destination rectangle is between -2**14 and 2**14-1

All other blits must be done by software. The FBC will only be able to
help by doing shifting, clipping, ROPs, etc. The definition of a BLIT_SOFTWARE
object is:

A) The object is not BLIT_HARDWARE
The BLITSTATUS register is updated whenever a value is written to the

address or clip registers. The BLIT EXCEPTION bit in the register is set if one
of the following bits are set:

A) BLIT_SOFTWARE (or)
B) FBC_FULL (or)
C) UNSUPPORTED_ATTR (or)
D) ACC_OVERFLOW (or)
E) HRMONO

The rectangle is blitted by the FBC if the CPU reads the BLITSTATUS
register and the BLIT_EXCEPTION bit is zero. If the BLIT EXCEPTION bit is set,
the FBC will not blit.

The BLITSTATUS register is read only since by reloading the address and
clip registers of the FBC during a context switch, the correct status will be

regenerated.

O N WS

BLIT EXCEPTION
TEC_EXCEPTION
FULL
BUSY

BLITSTATUS (R)

(1=There is a BLIT exception)

(1=TEC has an exception)

(1=FBC internal address registers are full)
(1=FBC is Busy)

UNSUPPORTED_ATTR(1l=Unsupported Attribute)

HRMONO
ACC_OVERFLOW
ACC_PICK
TEC_HIDDEN
TEC_INTERSECT
TEC_VISIBLE
BLIT HARDWARE
BLIT_SOFTWARE
BLIT_SRC_HID
BLIT SRC_INT
BLIT_SRC_VIS
BLIT DST_HID
BLIT DST_INT
BLIT DST VIS
DRAW_HARDWARE
DRAW_SOFTWARE
DRAW_HIDDEN
DRAW_INTERSECT
DRAW VISIBLE

Figure 6-1

(1=High Resolution Monochrome)

(1=Overflow in FBC has occurred)

(1=Part of the Object Fell Inside PICK Window)
(1=Object is Hidden)

(1=Object is Intersecting the TEC CLIP check)
(1=Object is Totally Inside the TEC CLIP check)
(1=FBC can blit the rectangle)

(1=Software must blit the rectangle)

(1=Src Rect is Hidden)

(1=Src Rect is Intersecting the CLIP Window)
(1=Src Rect is Totally Inside the CLIP Window)
(1=Dst Rect is Hidden)

(1=Dst Rect is Intersecting the CLIP Window)
(1=Dst Rect is Totally Inside the CLIP Window)
(1=FBC can draw the Object)

(l1=Software must draw the Object)

(1=Object is Hidden)

(1=Object is Intersecting the CLIP Window)
(1=Object is Totally Inside the CLIP Window)

BLIT Status Register

6.2 BLITTING RECTANGLES

Figure 6-2 gives an example of blitting the source to the destination
rectangle.

(X2,Y2)

destination
(X3,Y3)

(X0,Y0) /

source

Figure 6-2 Example of a BLIT

7 - FONT COMMAND

The software can read and write to the frame buffer by using the FONT
register. There are two ways to access the frame buffer; by plane and by
pixel. If a character font is described in a single plane data structure, it
can be written to the frame buffer through the FONT register in COLORl or
HRMONO mode. The FBC will expand it to the eight planes of data (with the
correct RASTEROP and COLOR) in COLOR1 mecde and expand it to the proper
grayscale value in HRMONO mode. The FONT register is write only in these modes
since the FBC can not do a reverse conversion (8 planes to one). If a
character font or image is described in an eight plane format, it can be
written to the the frame buffer (with RASTEROP and COLOR) through the FONT
register in COLOR8 mode. The Table 7-1 summarizes the different modes for
the FONT register.

Mode CPU Format FB Format FONT R/W
HRMONO 1 plane 8 planes W
COLOR1 1l plane 8 planes W
COLCRS 8 planes 8 planes W

Table 7-1 FONT Register Modes

Before a character or image is written to the frame buffer, address range
and window comparisons must be done. This can be done by setting up the FBC
to draw a rectangle around the area that is to be modified. The upper left
and lower right points should be entered using the IRECTABSX and IRECTABSY
registers. The STATUS register is then checked for any exceptlons and to see
if the object does not DRAW_INTERSECT the clip window or is DRAW_HIDDEN. If
there are no special cases, "the software can start downloading the image or
font to the frame buffer.

The address registers must then be loaded with the font mask or font width
mask (the horizontal line of pixels or subpixels that are to be RASTEROPed).
This is done by loading (X0,Y0) with the left point and (X1,Y¥Y0) with the right
most point of where the data will be placed in the frame buffer. The number of
pixels or subpixels (inclusive) between X0 and X1 indicates the width of the
data that will be loaded into the FONT register. The difference between X0 and
X1 should not be greater than 31 for HRMONO and COLOR1l and should not be
greater than 3 for COLOR8. No pixels or subpixels will be modified outside
this range. This mask is combined with the clip mask before rendering,

Normally the AUTOINCX and AUTOINCY registers are used in conjunction with
the font register.

The meaning of the address registers for a FONT command are given in
Table 7-2.

X0 X coordinate for left pixel/subpixel of font

YO Y coordinate for left pixel/subpixel of font

X1 X coordinate for right pixel/subpixel of font
Y1l (used only during clip window checking)

X2 (used only during clip window checking)

Y2 (used only during clip window checking)

X3 (used only during clip window checking)

Y3 (used only during clip window checking)

Table 7-2 Address Registers for FONT Command

7.1 FONT REGISTER

The FONT register can be used in either HRMONO,

COLOR1, or COLOR8 mode.

The addressing is pixel coordinates for color mode and subpixel coordinates

for anti-aliasing mode.

normally done only for saving the contents of the screen,

needs to be saved or moved.

Reads from the FONT register while in COLOR8 mode are

ie. when a window

The FONT register does not have to be saved during context switching
because the frame buffer data may change before that context is used again.

31 0
s e S e e st e T T e R S e s el ek Sk st
[T T Y Y [Y Y O B 4+ 11ty v 81 | FONT (W)
s e T e R e s s ek T T e g S S B A s et o S R
Bits Description
31 Source Bit for Pixel (X0, YO0)
30 Source Bit for Pixel (X0+1, YO)
1 Source Bit for Pixel (X0+30,Y0)
0 Source Bit for Pixel (X0+31,Y0)
Figure 7-3 FONT Register Format (COLOR1 mode & 68020/SPARC mode)
31 0
B T e n a AT S S e s s et ik ik et TS S P A S S
N T T Y A I N Y O IO [0y 1111 1 1 P | | FONT (W)
R e T T S e e i S St S S e A At R et sl
Bits Description
31 Source Bit for Pixel (X0+31,Y0)
30 Source Bit for Pixel (X0+30,Y0)
1 Source Bit for Pixel (X0+1, YO)
0 Source Bit for Pixel (X0, YQ)

Figure 7-4

FONT Register Format (COLOR1 mode & 80386 mode)

BT e s ek et T e e e e e e e
T e A I I T O e B B 2 (W)
T ok S R s s s st et e Pt et e
Bits Description
31 Source Bit for Subpixel (X0, Y0)
30 Source Bit for Subpixel (X0+1, YO)
1 Source Bit for Subpixel (X0+30,Y0)
0 Source Bit for Subpixel (X0+31,Y0)
Figure 7-5 FONT Register Format (HRMONO mode & 68020/SPARC mode)
0
T T T s ks L ST B e ettt A ol e T L et T
e b1 FONT (W)
s S N s T sk e Tl et Lt
Bits Description
31 Source Bit for Subpixel (X0+31,Y0)
30 Source Bit for Subpixel (X0+30,Y0)
1 Source Bit for Subpixel (X0+1, YO0)
0 Source Bit for Subpixel (X0, Y0)

Figure 7-6 FONT Register Format

(HRMONO mode & 80386 mode)

31 24 23 16 15 8 7 0
B e T T S T L e et st e A e Sl S T
| (X0, Y0) | (X0+1,Y0) | (X0+2,Y0) ! {X0+3,Y0) | FONT (RW)
[R s o s A s S e e T R e i
Bits Description Bits Description
31 Pixel (X0,Y¥Y0), Plane 7 15 Pixel (X0+2,Y0), Plane 7
24 Pixel (X0,Y0), Plane 0 8 Pixel (X0+2,Y0), Plane O
23 Pixel (X0+1,Y¥0), Plane 7 7 Pixel (X0+3,Y0), Plane 7
16 Pixel (X0+1,Y¥0), Plane 0 0 Pixel (X0+3,Y0), Plane O
Figure 7-7 FONT Register Format (COLOR8 mode & 68020/SPARC mode)
31 24 23 16 15 8 7 0
—+—t—+ —tmt—t—t =ttt —F—t—t—t—t—t =ttt =t -t —t—F—F b=t~ ,
| (X0 0) | (X0+2,Y0) | (X0+1,Y0) | (X0,Y0) | FONT (RW)
Vbt - B e e e S s s e s s T S ST S e R
Bits Description Bits Description
31 Pixel (X0+3,Y0), Plane 7 15 Pixel (X0+1,Y0), Plane 7
24 Pixel (X0+3,Y0), Plane 0 8 Pixel (X0+1,Y0), Plane 0
23 Pixel (X0+42,Y0), Plane 7 7 Pixel (X0,Y¥0), Plane 7
16 Pixel (X0+2,Y¥Y0), Plane O 0 Pixel (X0,YC), Plane O
Figure 7-8 FONT Register Format (COLOR8 mode & 80386 mode)
7.2 FONTING CHARACTERS AND IMAGES
Figure 7-9 gives an example of fonting a character in COLOR1l mode with
the following initializations: AUTOINCX=0, AUTOINCY=-1l, and X1=X0+10. The next

value to be written to FONT is 0x04000000. Figure 7-10 gives an example of
fonting an image in COLOR8 mode with the following initializations: AUTOINCX=4,
AUTOINCY=0, X1=X0+3, mode=68020. The next value to be written to FONT is
O0x1£1£001f£.

* Kk Kk k& ok %k kKK % Kk K Kk Kk Kk ok kK * *
* * * * % *
* * * * %k *
* * * * * *
* * * * * *
* Kk k Kk kk * * * * *
* * * * *
* * * * * *
* * * * * %
* * * * * %
* * ok k Kk kk ok kK * * *

b 3

1001£2£1£000000001£1£1¢ |
1001£1£1£00000000000000000000 |
100000000000000000000000000000000001£1£1£00000000000000000000000000 |
100000000000000000000000000001£1£1£00000000000000000000000000000000 |
10000000000000000000000001£1£00000000000000000000000000000000000000 |
10000000000000000001£1f1£1F1£1£1£0000000000000000000000000000000000 |
1000000000000001£1£000000000000001£1£000000000000000000000000000000 |
10000000000001£00000000000000000000001£0000000000000000000000000000 |
{00000000001£00000000001£1£1£00000000001£00000000000000000000000000 |
1000000001£00000000001£1£1£1£1£00000000001£000000000000000000000000 |
1000000001£00000000001£1£1£1£1£00000000002£000000000000000000000000 |
{0000001£000000000000001£1£1£000000000000001£0000000000000000000000 |
10000001£00000000000000000000000000000000001£0000000000000000000000 |
100001£000000000000000000000000000000000000001£00000000000000000000 |
100001£000000000000000000000000000000000000001£00000000000000000000 |
100001£000000000000000000000000000000000000001£0000000000000000001f |
100001£001£0000001£0000001£0000001£001£0000001£000000000000001£1£00 |
|001£00001£1£001£1£00001£001£00001£001£000000001£000000001£1£000000 |
1001£00001£001£001£001£0000001£001£001£000000001£00001£1£0000000000 |
|001£00001£001£001£002f1f1F1£1£001£001£000000001£00001£1£0000000000 |
1001£00001£0000001£001£0000001£001£001£000000001£000000000000000000 |
|001£00001£0000001£001£0000001£0021£001£1E. . . . |
| (X0,Y0) (X1,Y0) !

——— ————— - ———— i ——— - ——— - —— . ——— T — _———— g —— T —— - " = —————— - ——— Y ——

Figure 7-10 Example of a FONTing an Image

8 - STATUS REGISTER

The STATUS register contains the status of DRAWSTATUS, BLITSTATUS,
PT_STATUS, and accumulated status. The STATUS register is updated whenever a
value is written to the address or clip registers.

The FBC overflow state is accumulated in the STATUS register in the
ACC_OVERFLOW bit. The PICK is also accumulated in the STATUS register in the
ACC_PICK bit. An accumulated status is cleared by setting the ACC_CLEAR bit
and the appropriate bit for the flag that is to be cleared. All flags that do
not have their bits set will not be affected. If the ACC_CLEAR bit is not set,
the value written will be loaded into the registers.

The status mask register can be read and written for context switching.
The ACC_CLEAR bit will always read zero so that when the STATUS is reloaded
during a context switch the flags will be set and not cleared. Writing to the
STATUS register can only affect the ACC status. The other status will be
regenerated during a context switch by reloading the address and clip
registers.

31 24 23 16 15 8 7 0
B e i e R e e e e att a St e
ot 1 1o op (oo (o e bt 1000r 11| | | STATUS (RW)
M e e e Bt o e T e T s e aitat: St Dt S
Bits Description
31 ACC_CLEAR (1=Clear Flags) (Always reads 0)
30 TEC_EXCEPTION (1=TEC has an exception)
29 FULL (1=FBC internal address registers are full)
28 BUSY {(1=FBC is Busy)
25 UNSUPPORTED ATTR(l=Unsupported Attribute)
24 HRMONO {(1=High Resolution Monochrome)
21 ACC_OVERFLOW (1=Overflow in FBC has occurred)
20 ACC_PICK (1=Part of the Object Fell Inside PICK Window)
18 TEC_HIDDEN (1=Object is Hidden)
17 TEC_INTERSECT (1=Object is Intersecting the TEC CLIP check)
16 TEC_VISIBLE (1=Object is Totally Inside the TEC CLIP check)
15 BLIT_HARDWARE (1=FBC can blit the rectangle)
14 BLIT SOFTWARE (1=Software must blit the rectangle)
13 BLIT_SRC_HID (1=Src Rect is Hidden)
1z BLIT_SRC_INT (1=Src Rect is Intersecting the CLIP Window)
11 BLIT_SRC_VIS (1=Src Rect is Totally Inside the CLIP Window)
10 BLIT DST_HID (1=Dst Rect is Hidden)
S BLIT_DST_INT (1=Dst Rect is Intersecting the CLIP Window)
8 BLIT DST_ VIS (1=Dst Rect is Totally Inside the CLIP Window)
4 DRAW HARDWARE (1=FBC can draw the Object)
3 DRAW_SOFTWARE (1=Software must draw the Object)
2 DRAW_HIDDEN (1=0Object is Hidden)
1 DRAW_ INTERSECT (1=Object is Intersecting the CLIP Window)
0 DRAW_VISIBLE (1=Object is Totally Inside the CLIP Window)

Figure 8-1 STATUS Register

9 - ATTRIBUTE REGISTERS

There are five attribute register sets: COLOR, RASTEROP, PLANEMASK,
PIXELMASK, and PATTERN. They contain information about the current attributes
of the FBC.

All the attribute registers can be read and written for context switching.
It is expected that a copy of the attribute registers will be kept in memory so
that on a context switch the attribute register contents will not have to be
saved. Only the new context’s attributes will have to be loaded.

The FBC must be idle before any of these registers can be written to.

9.1 COLCR REGISTERS

The color registers contain the current foreground and background colors.
They are used in combination with the RASTEROP register to determine the final
graphics operation that is to be done when rendering to the frame buffer. In
COLOR1 or COLOR8 mode the eight bits of color registers correspond to the eight
planes of the frame buffer. In HRMONO mode only the lowest bit has meaning,
the other seven bits are ignored.

31 8 7 0
S s e Rttt I S Al e e e e et ok sl Lt o st

10 0000000000000000000O0O0O0 O] { | FCOLOR {RW)
+—d ettt =ttt et b=ttt =ttt —t ==t b=t —F ==~ =t~ F b=t —+ -+

00 0000000000C000O0O0O0O0OOOO0 O] | | BCOLOR (RW)
R I s T e st Ll

Bits Description
7 Color bit for plane (COLOR Modes Only)

Color bit for plane
Color bit for plane
Color bit for plane
Color bit for plane
plane
Color bit for plane
Color bit for plane

(COLOR Modes Only)
(COLOR Modes Only)
(COLOR Modes Only)
(COLOR Modes Only)
(COLOR Modes Only)
(COLOR Modes Only)
(COLOR or HRMONO Mode)

o NWR W
(@]
O
—
[0}
[a
o2
'_J
o+
Hh
@)
o}
O MNWS U]

Figure 9-1 Foreground and Background Color Registers

9.2 RASTERCP REGISTER

The FBC contains two different types of rasterops: BOOLEAN (Pixrect type)

and LINEAR (anti-aliasing).

pixels in the 128 bit (16 pixel) datapath.

The rasterops will be done in parallel across all

Both types of rasterops have 16 different logical operations with two
There will be a sixteen bit rasterop register where the

colors and masking.

software will be able to program any of the 64K combinations of rasterops.

The BOOLEAN rasterops are done between each corresponding source and
destination bit of every pixel.

SOURCE
DESTIN

MEHOOQOWWPOWOdAUMd WNEHO

Code

1100

1010

Code Description Pixrect rop
0000 d <= (0) PIX_OPCLR
0001 d <= (~((d) | {s)}))

0010 d <~ ((d) & ~(s))

0011 d <~ (~{(s))

0100 d <= (~(d) & (s))

0101 d <- (~(d))

0110 d <= ((d) ~ (s))

0111 d <= (~((d) & (s)))

1000 d <- ((d) & (s))

1001 d <= ((d) ~ ~{s))

1010 d <- (d) PIX_OPDST
1011 d <= ((d) | ~(s))

1100 d <~ (s) PIX_OPSRC
1101 d <= (~(d) | (s))

1110 d <= ((d) | (s))

1111 d <- (~0) PIX OPSET
Figure 9-2 16 BOOLEAN Raster Operations

CTX_ROP Values
CTX_RCP_CLEAR
CTX_ROP_NOR
CTX_ROP_ERASE
CTX_ROP_DRAW_INVERTED
CTX_ROP_ERASED_ REVERSED
CTX_ROP_INVERT
CTX_ROP_XOR
CTX_ROP_NAND
CTX_ROP_AND
CTX_ROP_EQUIVALENT
CTX_ROP_NOP
CTX_ROP_PAINT INVERTED
CTX_ROP_DRAW
CTX_ROP_PAINT_REVERSED
CTX_ROP_PAINT

CTX _ROP_SET

Programming a Raster Operation for the FBC involves selecting the
appropriate RasterOp for the four combinations of foreground and background
bit values (ie. 00, 01, 10, 11) for any given plane that will result in the

desired effect.

The LINEAR rasterops assume that the pixels each contain a linear
grayscale value that represent the intensity of that pixel. If the FBC is in
COLCR mode, the grayscale value will be operated on directly. If the FBC is in
HRMONO mode, a source bit represents one of 16 subpixels for each pixel in the
frame buffer. These subpixels can be altered to be s, ~s, 0, or 1 which is
then masked againsted the clip window. The resulting subpixels are then
applied to a flat antialiasing filter. The flat filter weighting is:

Flat

e
o
R Sy
R

The grayscale value is calculated by adding together the weighting coefficients
of the subpixels that are set and are not masked for a given subpixel line.
The resulting value is the linear grayscale source which is applied to the
linear rasterop.

There are 10 linear rasterops which are supported by the FBC. The 6
rasterops that are not supported must be done in a two step process. 1) The
background must be prepared by clearing, setting, or complementing the data
in the frame buffer. 2) The image must be merged into the frame buffer
through the use of the DRAW, ERASE, etc. rasterops.

The linear rasterops are composed of the add/subtract with/without
saturate functions. Figure 9-3 shows the LINEAR functions that corresponds to
the BOOLEAN functions. When complementing the destination, the FBC must be
set to PLOT for the initial drawing and to UNPLOT mode to erase the object.
Bit 7 of the frame buffer is a direction bit that corresponds to the carry out
of the add/subtract function. This bit allows the destination to be
complemented and uncomplemented correctly. There are two indexes that
correspond to each grayscale level.

SOURCE 1100
DESTIN 1010

OP_urop Code Description PLOT UNPLOT

0 0000 d <- (0) d=sat(d - 1) d=sat(d - 1)
1 0001 d <= (~((d) | (s))) na na

2 0010 d <- ((d) & ~(s)) d =sat(d - s) d = sat(d - s)
3 0011 d <- (~(s)) na na

4 0100 d <- (~(d) & (s)) na na

5 0101 d <= (~(d)) d=d + 1 d=d -1

6 0110 d <= ((d) ~ (s)) d=d + s d=d - s

7 0111 d <= (~((d) & (s))) na na

8 1000 d <- ((d) & (s)) d = sat(d -~s) d = sat(d -~s)
9 1001 d <= ((d) ~ ~(s)) d =d +~s d=d -~s

A 1010 d <- (d) d=d d=d

B 1011 d <- ((d) | ~(s)) d = sat{(d +~s) d = sat{(d +~s)
C 1100 d <- (s) na na

D 1101 d <- (~(d) | (s)) na na

E 1110 d <= ((d) | (s})) d = sat(d + s) d = sat(d + s)
F 1111 d <- (~0) d=sat(d + 1) d = sat(d + 1)

Figure 9-3 10 LINEAR Raster Operations

Programming a Raster Operation for the FBC involves selecting the
appropriate RasterOp for the four combinations of foreground and background
bit values (ie. 00, 01, 10, 11) for only plane 0 that will result in the
desired effect.

The RASTEROP register can override the values in the PLANEMASK, PIXELMASK,
and PATTERN registers without affecting the values in the registers. The type
of polygon is also stored in the RASTEROP register.

31 24 23 16 15 8 7 0
e ST T e o e ks S S A e e R e el Lot T et ol ke s
| J ! ! | 10 0 0 0/ | | ROpll | ROpl0 | ROpO1l | ROpOO | RASTEROP (RW)
Vedbotmt ettt mdmb b =t et~ et — b mt e pmt =ttt —t—F—t—F =ttt — =t =t =

Bits Description

31-30 Override Plane Mask Select

(00=Ignore, 01=Use zeroces, 10=Use ones, 1ll=Use PLANEMASK)
29-28 Override Pixel Mask Select

(00=Ignore, 01l=Use zeroes, 10=Use ones, 11l=Use PIXELMASK)
27-26 Override Pattern Select

(00=Ignore, 01=Use zerces, 10=Use ones, 11=Use PATTERN)
25-24 Polygon Draw Select

(00=Ignore, 01=Overlapping, l10=Nonoverlapping, ll=Illegal)
23-22 UNSUPPORTED_ATTR

(00=Ignore, 0l=Unsupported, 10=Supported, 1ll=Illegal)

17 Rasterop Mode (0=BOOLEAN, 1=LINEAR)
16 Plot/Unplot Mode {0=PLOT, 1=UNPLOT)
15-12 Rasterop used when FCOLOR[p]=1 and BCOLOR[p]=1
11-8 Rasterop used when FCOLOR[p]=1] and BCOLCR{p]=0
7-4 Rasterop used when FCOLOR[p]=0 and BCOLOR{pl=1
3-0 Rasterop used when FCOLOR[p]=0 and BCOLOR[p]=0

where: FCOLOR[p] is the foreground color bit for plane p.
BCOLOR[p] is the background color bit for plane p.

Figure 9-4 RasterOp Register

9.3 PLANEMASK REGISTER

The plane mask register determines which planes should be written to and
which should not. This allows the software to write only to the specified
planes. The plane mask is tied directly to the frame buffer (it actual resides
in the video ram) and works the same in color or anti-aliasing modes.

31 8 7 0
B s tots ts A S S g T e ts H s o A st s Hs Hoars He s s i
1000000000 CO0O00O000C0O0O0O0OO0OO0COOQO0Q] | PLANEMASK (RW)
R St S A ST e e R Ak ks S s S M s S S et S
Bits Description

7 Plane 7 Mask (O=Writes disabled, 1l=Writes enabled)

6 Plane 6 Mask (0=Writes disabled, 1l=Writes enabled)

1 Plane 1 Mask (0=Writes disabled, l=Writes enabled)

0 Plane 0 Mask (O=Writes disabled, 1l=Writes enabled)

Figure 9-5 Plane Mask Register

9.4 PIXELMASK REGISTER

The pixel mask register determines which pixels should be written to and
which should not. This allows the software to write to specified pixels for
operations such as stenciling. The pixel mask is tied directly to the frame
buffer and works the same in color or anti-aliasing mode.

31 0
B s L T T e S e L s et e et S el D
Lttt 11| PIXELMASK (RW)
T ST S s s s S e S L el Dl Lt
Bits Description
31 Mask for Pixel (x%$32==0) (left most) (l=Writes enabled)
30 Mask for Pixel (x%32==1) (1=Writes enabled)
29 Mask for Pixel (x%32==2) (l1=Writes enabled)
2 Mask for Pixel (x%32==29) (1=Writes enabled)
1 Mask for Pixel (x%32==30) (l1=Writes enabled)
0 Mask for Pixel (x%32==31) (right most) (l1=Writes enabled)
Figure 9-6 PIXELMASK Register (68020/SPARC mode)
31 0
B T T T R s e ok Tk B S B S S e e
S O s s Y Y Y Y Y Y B B | | PIXELMASK
R s T T T T ST e e e i A i e shrts st o
Bits Description
31 Mask for Pixel (x%32==31) (right most) (1=Writes enabled)
30 Mask for Pixel (x%32==30) (1=Writes enabled)
29 Mask for Pixel (x%32==29) (l1=Writes enabled)
2 Mask for Pixel (x%32==2) (1=Writes enabled)
1 Mask for Pixel (x%32==1) (1=Writes enabled)
0 Mask for Pixel (x%32==0) {left most) (1=Writes enabled)

9-7

PIXELMASK Register (80386 mode)

9.5 PATTERN REGISTERS

The pattern registers contain a 16 x 16 repeating pattern that is used
as the source for the draw function. The pattern can be aligned in the x and
y direction with respect to the screen by writing the appropriate offset to
the pattern alignment register PATTALIGN. The pattern can repeat in both the x
or y direction by a binary number (1,2,4,8,16) up to 16 by calculating the
correct 16 x 16 pattern in software. An operation that uses any other pattern
(ie. repeats every 3 pixels) must be must done totally in software. The
pattern can be disabled by setting the pattern disable bit and pattern source
bit in the RASTEROP register. A pattern of all one’s or all zero’s (as
selected) will be substituted as the source pattern and the contents of the
pattern registers will not be altered.

In the color modes the pattern is tied to the pixel boundaries and repeats
every 16 pixels. In anti-aliasing mode the pattern is tied to the subpixel and
repeats every 4 pixels (16 subpixels). In either mode the pattern is mainly
used for setting the gray level of the draw command.

31 16 15 0

B s s s d S e e e e S kSl i el et ek ot et

| (y-ALIGNY)%16==0 | (y-ALIGNY) %$16==1 | PATTERNO (RW)
e D e e D e D D e e e e e e T e e e e e e e M et il Dty Lt b S

| (y-ALIGNY) %16==2 | (y~ALIGNY)%16==3 | PATTERN1 (RW)
+=t—t=t=t—t—t—t—t—t—t—t—F =ttt =ttt bttt =t —b—F bt -t —F+ =+

| (y~=ALIGNY) %$16==4 | (y-ALIGNY)%16==5 | PATTERN2 (RW)
ottt -t -ttt -ttt —F -ttt -ttt -ttt b=t —t—F—F bt e f = —+

| (y-ALIGNY) $16==6 | (y-ALIGNY) %16== | PATTERN3 (RW)
i e it e e e et ket S e e e e e e e e e shats

| (y-ALIGNY) %$16==8 | (y-ALIGNY)%$16==9 | PATTERN4 (RW)
R e e e e e e D e e e D D D e e et Ll el e e e et Tl Dl Dl et et el

| (y-ALIGNY) %16==10 | (y-ALIGNY)%16==11 | PATTERNS (RW)
+-t—t—t—t—t—t—t—F bttt —t—F -ttt -t =ttt -ttt —F —t -t — =t =+

| (y-ALIGNY)%16==12 | (y-ALIGNY)%16==13 | PATTERN6 (RW)
+—t—t ettt =ttt -ttt -ttt —F—F—F =t —t =t —F —F—F =t -+ =+

| (y~=ALIGNY) %$16==14 | (y-ALIGNY) %$16==15 | PATTERN7 (RW)
Vet —t—t—t—t—t—t—t—t=t -ttt —F—F—F =ttt =t —F bt -t =t =t~ —F ==

Bits Description

31,15 Source for Pixel or Subpixel (x-ALIGNX)$%$16==0 (left most)
30,14 Source for Pixel or Subpixel (x-ALIGNX)%1l6==1

1,17 Source for Pixel or Subpixel (x-ALIGNX)%16==14
0,16 Source for Pixel or Subpixel (x-ALIGNX)%16==15 (right most)

Figure 9-8 Pattern Registers (68020/SPARC mode)

31 16 15
e e ot T L S e e
| (y-ALIGNY)%16==1 |
R s ek T S A
| (y-ALIGNY)%16==3 |
T s Tt T e S S SR S S
| (y-ALIGNY) %$16==5 |
I T S O s Rts st sl 2L Sl
| (y-ALIGNY) %$16=="7 |
s ST e e s tts Kt S A s 3
J (y-ALIGNY)%16==9 |
O I e o S e R s st Sk et
| (y-ALIGNY)$16==11 I
e e s sl R e e s s B Al 2
| (y-ALIGNY)%$16==13 |
R s S R e D e e e e
[(y-ALIGNY) $16==15 |
Vet mt et et =ttt b=t =t mt =t~ f =t = b=+
Bits Description
31,15 Source for Pixel or
30,14 Source for Pixel or
1,17 Source for Pixel or
0,16 Source for Pixel or

31

Figure

9-9 Pattern

16 15

(y-ALIGNY) $16==0
O e T S s st St Tl
(y-ALIGNY)%16==2
s S = T S
(y-ALIGNY)%16==4
s et
(y-ALIGNY) %16==6
s e s S S s R
(y-ALIGNY) $16==8
dotmd =t et —b—t—t =t —
(y-ALIGNY)%16==1

o S I S A

+

(y-ALIGNY)%16==
t—tmt—t bttt =t =t
(y-ALIGNY) %$16==14
e e e e A

Subpixel
Subpixel

Subpixel
Subpixel

Registers

O

(x~ALIGNX) %$16==15
(x-ALIGNX) $16==14

0
ettt

l
d—t—t=t

|
+mt—t—t
l
+—t—t—~t

+=+—+=~+

+=t—t=t

it

(x-ALIGNX) %16==1
(x-ALIGNX) %16==

(80386 mode)

0

B Rt et e S e R s I i St ek s At R L S S A e

100 0000O0O0CO0OCO0 O]

ALIGNX|0 0 0 0 0 000 OO0 O Of

ALIGNY |

R s et T T S K st s S S S B ekt

Bits
19-16
3-0

Figure 9-10

Description

Pattern Alignment X Offset
Pattern Alignment Y Offset

Pattern Alignment Register

PATTERNO
PATTERNL
PATTERN?Z2
PATTERNS3
PATTERNA4
PATTERNS
PATTERNG

PATTERN7

(right most)

(left most)

PATTALIGN

(RW)

10 - MISCELLANEOUS REGISTER

The MISC register contains a bunch of miscellaneous leftover stuff.

The FBC'’s EXCEPTION status for BLITs can be configured to include or not
include the information that the source of a blit intersects the clip window
(BLIT_SRC_INT). If it is included and the source is hidden (BLIT SRC_HID),
no exception will be given and nothing will be blitted.

VBLANK_OCCURED bit is set every time the display reaches the vertical
blanking. Writing a one to the VBLANK OCCURED bit will clear VBLANK_OCCURED.
This bit is used when the user’s software wants to wait (by spinning on a bit)
for the next vertical blanking to occur instead of generating an interrupt.

The FBC can be in one of three different addressing modes: COLORS8 (8
plane color), COLOR1 (1 plane color), and HRMONO (1 plane high resolution
antialiased monochrome). Figure 10-1 shows the different addressing modes
for each of the commands.

Addressing Modes
Command Scurce Destination COLOR8 COLOR1 HRMONO

—— — - ——— —— ——— — ——— ——t—— ——— — - — ——— -—— — ——

DRAW Pattern Reg Frame Buffer Expand Expand Filter
Pixel Pixel Subpixel

FONT CPU Frame Buffer Normal Expand Filter
Pixel Pixel Subpixel

BLIT Frame Buffer Frame Buffer Normal Normal *
Pixel Pixel

* Illegal Combination, BLITSTATUS will cause an exception

Normal = all data is accessed as 8 planes

Expand = duplicate 1 plane source across all 8 planes
Filter = create grayscale value from 1 plane source
Pixel = addresses are pixel coordinates

Subpixel = addresses are subpixel coordinates

Figure 10-1 Addressing Modes

The FBC can be set to RENDER or PICK mode. If it is in RENDER mode,
objects will be clipped to the clip window and rendered to the frame buffer.
If the FBC is in PICK mode, objects will be clipped to the clip window to see
if it is picked and will not be rendered to the frame buffer.

The FBC also handles double buffering. The user can chose which buffer
is to be displayed, which buffer (or both) is to be written to, and which
buffer the reads should come from.

The address INDEX bits contain the index for the Index Address Registers.
It can be modified by writing the new value to the MISC register with the
Modify Address INDEX bit set.

The miscellaneous register can be read and written for context switching.

31 24 23 16 15 8 7 0
O s s e T e e e R e e N e A St o
10 0000O0O0O0O0 O] I I I I I | [1] |0 0 0 0| MISC (RW)
LTt s S et S e et et ot A et St st St sl S
Bits Description

21~-20 BLIT_SRC_CHK
(00=ignore, 0l=Exclude Src, 10=Include Src, ll=Illegal)
19 VBLANK OCCURED (1=VBLANK has occurred)
18-17 Anti-Aliasing/Color Mode Select
(00=ignore, 01=COLOR8, 10=COLOR1l, 11=HRMONO)
16-15 Render/Pick Mode Select
(00=ignore, O01=RENDER, 10=PICK, 1ll=Illegal)
14-13 Buffer 0 Write Enable
(00=ignore, 0l=Enable, 10=Disable, ll=Illegal)
12-11 Buffer 1 Write Enable
(00=ignore, 0l=Enable, 10=Disable, ll=Illegal)
10-9 Buffer Read Enable
(00=ignore, 0l=Read from Buffer0, 1l0=Read Bufferl, 1ll=Illegal)
8-7 Buffer Display Enable
(00=ignore, 0l=Display Buffer0, 10=Display Bufferl, 1ll=Illegal)
6 Modify Address INDEX (1=Modify Address Index)
5-4 Address INDEX

Figure 10-2 Miscellaneous Register

11 - CONFIGURATION REGISTER

The CONFIG register contains a bunch of miscellaneous leftover stuff that
has to do with the hardware configuration of the frame buffer and system.

When the RESET bit is set all state machines except for the CPU interface
are reset.

There are four ID pins (ID3 to IDO) on the FBC which correspond to bits
(27 and 24) of the configuration register, respectively. The frame buffer ID
number, number of buffers, etc. can be hard coded on each board.

The Chip Version Number is a unique number for every FBC developed.

The Row, Source, and Destination Caches can be individually disabled.

When the RESET bit is set all state machines except for the CPU interface
are reset.

The Resolution bits select the width of the screen. It can either be
1024 or 1152 pixels across. Any vertical resolution can be obtained by
programming the TEC with the appropriate numbers. The most common resolutions
will be be 1024x768, 1024x1024, 1152x900, 1280x1024, or 1600x1280. All VRAMs
must be populated for any of these modes.

The SPARC/020/386 Mode selects the byte ordering for 32 bit access for the
FONT register during COLORS8 mode. It also selects the correct decoding of the
size and address pins during the Dumb Frame Buffer Emulation.

The test window’s offset from the CLIPPING window (TESTX,TESTY) are also
stored in the CONFIG register. They can be modified by writing the new value
to the CONFIG register with the Modify TESTX & TESTY bit set.

The configuration register can be read and written from the FBC hardware
configuration address space (fhc). It also can be read from regular FBC
address space (fbc), the configuration register will not change if it is
written to in the FBC address space (fbc).

%
I T
31 24 23 16 15 2 g oy 87 0
T T s e e R s s s ot St T Ll e S S
j01 1 0 XXXXI0O0O0O0) | IV 1010 1 []1| TESTY | TESTX | CONFIG (RW)
R T LT T A R L R ks S S A Hts S Mo S S s S s
Bits Description
31-24 Frame Buffer ID Number (0x60=CG6) (R)
23~20 Chip Version Number (R)
19 Disable FROPs (1=Disable Fast ROPs)
18 Row Cache Disable (1=Disable Row Cache)
17 Source Cache Disable (1=Disable Source Cache)
16 Dest Cache Disable (l=Disable Dest Cache)
15 RESET (1=Reset FBC)
13 Bit/Byte Reversal (0=68020/SPARC, 1=80386)
12-11 Resolution (00=1024, 01=1152, 10=1280, 11=1600)
10-9 SPARC/020/386 Mode (00=SPARC, 01=68020, 10=80386)
8 Modify TESTX & TESTY (1=Modify Tests)

-4 TESTY
3-0 TESTX

Figure 11-1 Configuration Register

