MIPS64™ Specification

Revision 1.0
November 15, 1999

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

RESTRICTED DOCUMENT UNDER DOC U EN T CONTROL

Copy Nuinber: SiByte Controlled Copv- '

Registered to: SiByte

Copyright © 1998, 1999 MIPS Technologies, Inc’:yﬂAll"

Unpublished rights reserved under the Copynght Laws of thevi mted States of America. No part of this software,
specification, or documentation may be copxed by an ns w1thout the prior written permission of MIPS Technolo-

gies, Inc. o

This software, specification, or documentatxon contains mformatlon that is proprietary to MIPS Technologies, Inc. -
and is authorized for disclosure only to those employees of MIPS Technologies, Inc. with a need to know, or as other-
wise authorized in writing by MIPS Technologles Inc. Any use or disclosure of this software, specification, or docu-
mentation which is not expressly authorized by | MIPS Technologies, Inc. in writing is strictly prohibited.

MIPS Technologies, Inc. reserves the right to change this software, specification, or documentation to improve func-
tion, design or otherwise. MIPS Technologies, Inc. does not assume any liability arising out of the application or use
of this software, specification, or documentation. Any license under patent rights or any other intellectual property
rights owned by MIPS Technologies, Inc. or third parties shall be conveyed by MIPS Technologies, Inc. in a separate
license agreement signed by MIPS Technologies, Inc. and the licensee.

This software, specification, or documentation constitutes “Commercial Computer Software” or “Commercial Com-
puter Software Documentation,” as described in FAR 12.212. This software, specification, or documentation may
only be disclosed to the U.S. Government with prior written consent from MIPS Technologies, Inc. Such disclosure
to the U.S. Government shall be subject to license terms and conditions at least as restrictive and protective of the
confidentiality of this information as the terms and conditions used by MIPS Technologies, Inc. in its license agree-
ments covering this software, specification, or documentation.

MIPS, R3000, R4000, R5000, R8000, and R10000 are among the registered trademarks of MIPS Technologies, Inc.,
and R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS 1, MIPS II, MIPS III, MIPS 1V, MIPS V, MDMX,
4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, and MIPS-based are among the trademarks of MIPS Technologies, Inc.

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Revision History
Revision Date Who | Description
0.1 January 8, 1999 GMU | Release for first internal review
02 January 20, 1999 | GMU | Update based on internal review in preparation for first external
release. Changes in this revision:
Update based on final internal review and software ISV feed-
back. Changes in this revision:
* To reduce the number of software options, allow no
FPU, one with S+D+W+L and one with
S+D+PS+W+L.
e Explain the reason for decommitting support for the
Branch Likely instructions.
* Explain why the SPEC2 variants of instruction multiply
do not allow multiple destination registers.
* Add L2 cache encodings to the Cache instruction.
* To provide a stable software environment, upgrade the
compliance level for PageMask Count, Compare,
Configl, PerfCnt, ‘TagLo, and TagH1 in situations as
described in the PRA chapter
* Add the WR bit to Configl.
e Reserve CPO regxster 22 for 1mplementatlons En
* Require implementation of at least encodings 2 and 3 in
the 5:ache coherency attrlbutes
a0 Virtual ddress mapping description recast in terms of
lmplementatlon parameters for numbers of virtual and
' 1ca1 address bits, and generally expanded.
0.21 July 1,1999 Modify clo and clz definitions to use rd as the target register
. instea of rt Requnre that software duphcate the target register in
‘both reglster fields to ensure compatibility.
November 15, 1999 -i-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Revision Date Who | Description

0.9 October 20, 1999 | GMU | Update with all feedback since last major release. Changes in
this version:

» Clarify the difference between the use of Coprocessor
Unusable Exceptions and Reserved Instruction Excep-
tions. The cases are now enumerated for each excep-
tion.

* Add the COP2 interface instructions that allow the pro-
cessor to communicate with a generic coprocessor.

* Clarify the intent behind the pref instruction hints and
allow implementation dependent hints.

* Clarify the required Cache instruction encodings and
the boundary condition between a locked cache line
and an intervention that hits on the line.

* Note that the VPN/PFN bits corresponding to the bits
set in the PageMask register may be either preserved or
zeroed during a TLB write, or a subsequent read.

* Add descriptions of all of the ﬂoatmg point control reg-
isters.

+ Add the floating pomt control reglster descriptions to N
capture the small changes from the MIPS RISC Archi- :
tecture documents ‘ i

* Clarify the exact deﬁnmon of all operatmg modes
including Debug Mode and note that Debug Mode has
full access to all Kemel Mode resources.

. Move the BAT descrlptlons to Appendix A and add an

a : }»ed mappmg 'MMU description to the

Clanfy the exception that occurs when a parlty or ECC
rror is detected on the system bus.

Include a warning about potential live lock in the Ran-

‘ .dom register description.

‘e . Clarify the required and the optional cache coherency
attribute encodings and provide some historical per-
spective on use.

* Note that the behavior of the Count register in low
power modes is implementation dependent.

* Clean up the Status register diagram and corresponding
descriptions.

» Allow implementation dependent exception cause
encodings

*+ Add a description of the PerfCnt register.

» Update the CPO hazards section.

November 15, 1999 -1l -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Revision Date Who | Description
0.9, con- October 20, 1999 GMU | Continue correction of minor errors:
tinued » Clarify delta instruction table encoding to indicate that

Coprocessor Unusable Exceptions are taken on copro-
cessor interface instructions only if access to the copro-
cessor is not enabled. Otherwise, a Reserved
Instruction Exception is taken on unimplemented
coprocessor interface instructions.

Clarify the COPz instruction to note that a Reserved
Instruction Exception is possible if access is allowed to
coprocessor z and the COPz instruction is not imple-
mented for that coprocessor.

Note that it is implementation dependent whether a
watch exception occurs on a cache or prefetch instruc-
tion. The preferred implementation is not to cause a
watch exception on these instructions.

« Correct the reset state of the I, R, and W bits in
WatchLo. Their reset state should be zero.

Update the list of initiah’zcd state described for the
Reset and Soft Reset exceptions to be consistent with .
the values in the CPO register descriptions.

» Clean up the use of sign_extend in the pseudo-code.
Fix TLB Write Indexed that should have been-Write
Random in Random Register description.

Add restriction on setting Statusgg; while executing in

.

ite the sections on virtual memory to correctly

explam "the nuances involved in implementing 64-bit
&

clarify the) exact generation of the physical address
from pfn and va, as a function of the page size in the
matchm0 TLB entry.

Reduce the size of the address range that transforms
from user mapped to unmapped when ERL is a one.
Ihis increases implementation flexibility by allowing
‘the logic that transforms ksegO or ksegl addresses to

. also be used in this instance.

+ Modify cache instruction encodings to support a unified
secondary and a tertiary cache.

Add the PC bit in Configl and the M bit in the Perfor-
mance Counter Control Register to allow software to
determine how many performance counters are imple-
mented.

Generalize the description of the XContext register to
use the new SEGBITS parameter.

+ Reserve Cause code value 18 for precise Coprocessor 2
exceptions.

Update the CacheErr register description to more accu-
rately reflect previous MIPS implementations.

Make it clear that access to all floating point instruc-
tions is controlled by CU1, not CU3.

L]

November 15, 1999 - il -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Revision Date Who | Description

1.0 November 15, 1999 | GMU | Do final edits for Revision 1.0 release. Changes in this version:

* Add assembler format for optional third (sel) operand
of [DJMFCz and [D]JMTCz instructions.

» Correct the description of the function of the FR bit in
the Status register.

» _ Correct the inconsistencies describing the enabling of
64-bit operations in Supervisor Mode. When the pro-
cessor is running in Supervisor Mode, 64-bit operations
are always enabled. The PX and SX bits in the Status
register do not affect 64-bit operations.

e Add implementation and programming notes to the
multiply-related instructions indicating that software
should place short operands in GPR rt and hardware
should check that register for data-dependent latency.

» Add a section describing changes to the MIPS RISC
Architecture specification that are a required part of
MIPS64.

» Ifadeferred watch exceptlon occurs along with another
exception on the same instruction, make it implementa-
tion dependent whether the WP bit is set.

* Add optional cache instruction encodings for Second-
ary and Temary caches Also note that cache error
excepuons can occur on some cache instruction opera-
tions. R

. Clea up the termmology around reset: The Cold Reset

& sxgnal éauses a Reset Exceptlon and the Reset signal

scrlptlons for the movn. ps and movz.ps instruc-

hich were added to MIPS64 in the previous

elease of thxs document, but for which there was no

; pstructxon description. .

. Clean up the redundant wording in the pref instruction

descnptlon

»Note that any TLB instruction may generate a Machine

Check

. Add missing set of ERL on a cache error exceptlon

"“¢" Note that cache and bus errors may be imprecise in
some cases.

» Note that the preferred rate at which to increment the

Count register is once per processor cycle.

~» Modify the definition of the xuseg/xsuseg/xkuseg Seg-
ments to refer to the area above useg/suseg/kuseg. This
is simply a definition (not a functional) change.

November 15, 1999 -iv -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64T™ Specification

Contents

Revision HiStOry «.cvetietetieiiiiiiniiiiieineeneeecancassassscssossossosossssossssssssscnsos i
COMEINLS « e vttt tineenanenetassoasesansenasoeaseassosassssasssessasscossasonsansssscsseansas \7
) T a0 T ix
Listof Tables .. cvuiuiiniinitiiiiiieiiii ittt etiereeresoeecsssneeasecosossassssssossssssnnns X
1. The MIPS64™ Architectureoiuutiiiiiiiiniineereneneensonssosasoneosssosossnsnseosasnns 1
1.1 Archite'ctufe and Document Feedback ittt ittt iiiininnnnns 1
1.2 MIPS6d Overview .. .cuun ittt iiiiiiieeueeunseeserssseesnsesesscscnsosnsassanscnns 1
1.2.1 Historical Perspectivec..viuitrenenerrereoreeoneecoeseaossosssssossssssssssnsnns 1
1.2.2 The MIPS64 Architectureoiioiiiiiiiiiiiiiiiiereeeennseceennnsennnencens 1
2. The MIPS64 IS A ottt i i ittt ittt eraneseseensnsnsesseceeannsansnceesnnnns 2
2.1 Complianceand Subsetting0iiiiiiiienennn.. g 2
2.2 Changes to Revision 5.1 of the MIPS RISC Architecture Speciﬁcaﬁon 3
2.3 CPU ATCHIteCtUTe « v vv v e veeeeseeeeeeeeneeenenennnns ST ST 3
2.3.1 CPU RegISter OVELVIEW «.vvevnssn e e e s dvnsnene s ine e en e reneneenanns 3
2.3.2 Endlanness.’ eeeteeennaneas 4
2.3.3 CPU InStruction OVErvIeWoeeeeeeesenns e e, ‘.'.:._~ 4
2.4 FPU Architectureo.eueueueenennnnn. T i e v ererenensnensensennonenaenon 9
2.4.1 FPU Register Overview i e .A e hrrenaneteserenannsonnsanerenn 9
2.4.2 FPU Instruction Overview 1 Veeeeaeans ettt 10
2.5 Coprocessor Architecture; Zin TeeesTenanes 12
2.5.1 Coprocessor Instruction Overview s ceen 13
2.6 Privileged Instruction Set Architecture . PP < A 13
2.6.1 Privileged Register Overview e eas e 13
2.6.2 Privileged Instruction Oyeﬁi@& T S 13

2.7 EJTAG Support Instructionsz .. L S ' '
2.8 TNSErUCHON BIt ENCOGINE -« «+e22 2 +eeveesanessnessnsssnesnnaessnassnnesnneeenesnneces 14
2.9 MIPS64 InStruction DESCHPHONS .« .v v iseenennnenseseneneneneneneneneneenns e, 19
2.9.1 UNPREDICTABLE and UNDEFINEDcictiiiiiienrnniinreceennnennnncanannnns 19
2.9.2 Unprivileged INStructionscoiiiiiiiiiiinieneressesensecessessecsscsssannnns 20
2.9.3 Privileged Instructionsiuiiiiiiiiiiiiiiirirotresceccaccssceosenssscnennns 46
3. Floating Point Control Registers 61
3.0.1 Floating Point Implementation Register (CP1 Register 0) . T 61
3.0.2 Floating Point Control and Status Register (CP1 Register 31)cocvvvevcenencerenenenns 62
3.0.3 Floating Point Condition Codes Register (CP1 Register 25) ...covvveeeeeennoroenacennnens 65
3.0.4 Floating Point Exceptions Register (CP1 Register 26) «......ocveiiiveerionenneeecennnnns 65
3.0.5 Floating Point Enables Register (CP1 Register 28)ccovvieinreincnarocnnncennens 66
4. The MIPS64 Privileged Resource Architecturecciiieiiiriiiiereeneeenseenesocncoonnns 68
4.1 INtroductionttt tiiiteiiieeeeenenneaeoasasaceseeeneenseosessascansacasacsanss 68

November 15, 1999 -v-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4.2 Compliance .. .ot iiiitiieeettenneennnernaaeeannaseansaseocasncasnnnaenns 68
4.3 The MIPS Coprocessor Modeliiiiiiiiieireiiiereennernnseeesaneonasonneennns 68
4.3.1 CPO - The System CoProCesSOruveeuereneeeeneeensnseosssesssssessecsssanncenns 68
4.3.2 CPO RegiSter SUIMIMATY « vttt tttntnneeernrennseeaneeroosesossscesnnessncsanasannnes 68
4.4 Operating Modesuuunnuiiiiiiiiiiiereneereennsneasesossnasessscsssssasosssonsnns 71
441 Debug Mode ...iuiiiniiiitiiiiittiteteeriterettatetterttaeataterettaasteneaannan 71
442 Kernel Mode - .. .oootiiiiiiiiiiiiiiiiitteitrnenssneannnnnncnescesesssnssnnnnsnnas 71
4.4.3 Supervisor MOde . ..ouuuiittuiiieieeeoeeneenneroseseessesssssesnnnsesssssssansnnns 72
444 USer MOde .« ovvunniiiiiiiiiiiiiiiisesesernnnnonesessonsnsssosesassssssesnssnsosss 72
4.5 Other Modes . .ovvuireiiiiiiiiireiiineeteeeeoeeusesssaseosnsnscassenssosssoss Ceereeeaes 72
4.5.1 64-bit AddressEnableiiiiiiiii i iiiiieiit ittt 72

© 4.5.2 64-bit Operations Enablec.oiiiiiiiiiiiiiiiiiiiereneennnnennscecenensnnns 72
453 64-bit FPRERableo . it iiiiiiiciiitiiiiriiaaaans 72
4.6 VIrtual Memory . ..onttituiiienittiiieeeessoenonesseasesnasossonassssssssossosnssnsans 73
4.6.1 Terminology «....oouuieineinenenennennennnnnnnnnnss .. “ [P 73
4.6.2 VirtualAddressSpaces..............................;.‘.f‘ s e 73
4.6.3 ComPHANCE « o v vvvereenennennenunneeeenneeneennsns ' e eereeeeas 76
4.6.4 Access Control as a Function of Address and Operatmg Mode Té
4.6.5 Address Translation and Cache Coherency Attributes for the ksegO and ksegl Segments 79
4.6.6 Address Translation and Cache Coherency Attnbutes for the xkphys Segment .. R 80
4.6.7 Address Translation for the kuseg Segment when StatusERL Lottt 83
4.6.8 Special Behavior for the kseg3 Segment when DebugDM =1 i iunniennrennneesnoneennanes 83
4.6.9 Special Behavior for Data References in User Mod “with StatusUX 0 iirriiiiiiiieeannnns 84

4.6.10 TLB-Based Virtual Address Tran: ation
4.7 Interrupts
4.8 Exceptions

4.8.1 Exception Priority%.....

4.8.2 Exception Vector Location; .

4.8.3 General Exception Processmg

4.8.4 EJTAG Debug Exception 5 93
4.8.5 Reset Exception e v e e e et e e et eneans Ceeeeeeenes e 93
4.8.6 Soft Reset Exception s P 94
4.8.7 Non Maskable Interrupt (NMI) Exceptionc.cvvtreiiiiieerereroneneeenenenanns 95
4.8.8 Machine Check Exception T 96
4.8.9 Address Errof'Exception Cebeeeeceetrianaceenetrarecassonnne seveeccrnsencassnaninonae 96
4.8.10 TLB Refill and XTLB Refill EXCEPHODNS « « -+« v v v ennnesneesnnneenneenneens e, 97
4.8.11 TLB Invalid Exceptionciiiiiiiiiiiininnrneterennneansecosssesosssnsssnoons 98
4.8.12 TLB Modified EXCePtioniiiieiiiiieieninneronecttoeeenneesaosncenassosasanans 99
4.8.13 Cache Error EXceptionoiiiiiieiirneneeerererorenesssecessssnsososasssass 99
4.8.14 Bus Error EXceptionciiiiiiiiiiiiiieiieeoneeescesesoasssssnsaseascoscnnns 100
4.8.15 Integer Overflow EXceptioncciiiiniiiiiiiiieieerneieneenaeenanaosssnas 100
4.8.16 Trap EXCeptioncuiuinuinuuiiiiniiiiiiiiineeetereeeenneaesacnassncnanaens 101
4.8.17 System Call Exceptiono i ittt iiiiiiiiiiiiiiiiitiiiiteereeasscsennnnns 101
November 15, 1999 - vi-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4.8.18 Breakpoint Exceptioncoioiiiiiiiiiiiiintirrneeanoernencencananaanens 101
4.8.19 Reserved Instruction Exception ittt iiiiiieeaaeaniannnn 101
4.8.20 Coprocessor Unusable EXceptionc.ueuitiiriiireeiranesionnssronnoasossanans 102
4.8.21 Floating Point Exceptioniiiitiiiiiiiiieeneereronrasessnessssconsonnns 103
4.8.22 Watch EXceptionciveiuiiiiiiiiiniiiiiieiieeennasonscasssasessssssscassas 103
4.8.23 Interrupt EXCeption .. .ouutrtteniitinieneeeeneroenenesnsosesecoassasoseaasennns 104
49 CPO REZISIEIS oot vt vttt ettt iiiiitieeeteneeaaeneeesneronneesasesoaasaassssassansas 104
4.9.1 Index Register (CP0 Register 0, Select 0)cciiiireininneninnenernnnsecnnnaneans 105
4.9.2 Random Register (CP0 Register 1,Select 0)vvttvrrrnerrnereneeneecaaceasonans 106
4.9.3 EntryLo0, EntryLol (CPO Registers2and 3,Select 0)coveivennnreneennanoncannan 107
4.9.4 Context Register (CP0O Register 4,Select 0)cc.oitrirrierneenrnernseeeesocanens 110
4.9.5 PageMask Register (CP0 Register 5,Select 0)coiiiiiiienirienenneneesessoannas 111
4.9.6 Wired Register (CP0 Register 6, Select 0)ovuvrernererneernneenneenannsasoasanaas 112
4.9.7 BadVAddr Register (CP0 Register 8, Select 0)ovvvirrinreereeenreeeneocesencannas 113
4.9.8 Count Register (CP0 Register 9, Select 0) e e 114
4.9.9 EntryHi Register (CP0 Register 10, Select0)% S B R LT T 114
4.9.10 Compare Register (CPO Register 11, Select0) L iees S e eearresannaenenns 116
49.11 Status Register (CP Register 12, Select 0) vt aiensernrnrarnrnanannananes 116
4.9.12 Cause Register (CP0 Register 13, Select 0) feveeai [eeereneees 123
4.9.13 Exception Program Counter (CP0 Register 14, Select “0) [S 126
4.9.14 Processor Identification (CPO Register 15, Select 1) AR 127
4.9.15 Configuration Register (CP0 Reglster 16, Select 0 reererseeanannas et 128
4.9.16 Configuration Register 1 (CP0 Reglster 16 Select 1) R 130
4.9.17 Load Linked Address (CP0 Reglster 17 elect 0) ierenens e, 132

4.9.18 WatchLo Register (CP0 Reglster 18)
4.9.19 WatchHi Register (CP0 Reglster 19) :
4.9.20 XContext Register (CP0 Reglster 20 Select 0) 135

4.9.21 Reserved for Implementatlons (CPO Reglster 22, all Select values) 136

4.9.22 Debug Register (CP0O Reglster 23) ,“.‘.’ A Sl S 136

4.9.23 DEPC Register (CP0 Register 24) ... ,? ... 137

4.9.24 Performance Counter Register (CP0 Register 23 T e 137

4.9.25 ErrCtl Register (CP0 Register 26,~ Select 0) B S R 140

4.9.26 CacheErr Register (CP0 Register 27, Select 0) 140

4.9.27 TagLo Register (CP0 Register 28, Select 0,2)cceeeeveeeeeeceerocacaseosacsoonns 142

- 4.9.28 DataLo Register (CP0 Register 28, Select 1,3) eresestesetesnserenenan 143

4.9.29 TagHi Register (CP0 Register 29, Select 0,2)cvvveierrrnnenernennnns eeceasennnas 143

4.9.30 DataHi Register (CP0 Register 29, Select 1,3)vviiitininneenrneeneenenencoceaenns 144

4.9.31 ErrorEPC (CPO Register 30, Select 0)cvviiiiiiinnieeeenenrneocrocossssaasnes 144

4.9.32 DESAVE Register (CPO Register 31)cvuriiiiniiinrineeenenncnroncssoasssosoasnns 145

410 CPOHAzZArdS «ovvvviiiiinitintiienensostsseosssosossosossssssosasssosnsnsasansnsnsss 145

Appendix A Alternative MMU Organizationsc.ccoteiiiiiiieieinniiiernnneennneeananns 147

A.1 Fixed Mapping MU ...ttt ittt iitterettseoteetesesesncsncncnennnns 147

A.1.1 Fixed Address Translationoo.i ittt iiiiiiiniiiiiieiiernnscnsrosnnneens 147
November 15, 1999 - vii -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

A.1.2 Cacheability Attributesiiitiiitirireireeeersnncossosrssosssnsnanssnses 149
A.1.3 Changes to the CP0 Register Interfaceccieiiiiiinreriereinsennanenneenns .. 150
A.2 Block Address Translation Cecesesesescacnnns Cetersesesesanens eseecereacnans 150
A2.1 BATOrganizationccouuitiieneeennnnnnnn Ceeeesescnecsteasatastessnnanns 150
A.2.2 Address Translationcoivtiiinnnnneinennenns et eesieessereetesresaensanas 151
A.2.3 Changes to the CPO Register Interface e teeetentenerecteasesoatensranns veess 152

November 15, 1999 - viii -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

List of Figures

Figure 1: CPU Registers in MIPS64 Native Modeoovtrettiiieieinrentneoncnsensssscsnsnnnas 4
Figure 2: FPU Registers if StatusFRis 1 i iiiiiiiiiiiiiireiiienennrsnseneonanennnns 9
Figure 3: FPU Registers if StatusFR IS 0t iiiiiiiiiiiiiiieiiiiinerernonenssnaeaseenans 10
Figure 4: Usage of Address Fields to Select Indexand Wayccoiiiiitiiinierenieneennenennns 47
Figure 5: FIR Register Formatoiiiiiiiiiiiiiiiiiiiiiiiireneeereeennnnnnns Ceereeae 61
Figure 6: FCSR Register Format i i i iiiiiiiiiiirnnnnanaaeensoasosencnnnnnnannn 62
Figure 7: FCCR Register Formatoiiiiiiiiiiiiiiiiiiietinesenroceenenrosssnnosnenanans 65
Figure 8: FEXR Register Formatou.iiiiiiiiniiiiiieereennnseeenaneesoncaceannennnns 66
Figure 9: FENR Register Formatoiii i iiiiiiiiiiiiiiiiierenreneneeeannnnnsansaaeans 66
Figure 10: Virtual Address Spacesciiuiiiiiiiinniiieteeeeennsseseoneessancessocsansnns 74
Figure 11: Address Interpretation for the xkphys Segmentcoiiiiiiiiiinirneneeinenennnns 80
Figure 12: Contents of aTLBERNtrycctiiiiiiiiiiiiniiiieneononenennanns Ceeeeesenetaneans 85
Figure 13: Index Register .. .oouuiiniiiiiii it ittt iiiiiietiiierneeaseoenacoenoescsacaasnnens 106
Figure 14: Random Register Format i iiiiiiiiiiiiiiieiiiienreennserennsessnonnans 107
Figure 15: Entrylo0, EntryLol Register Format P 107
Figure 16: Context Register Formats e S S 111
Figure17:P_ageMaskRegisterFormat............................;‘*.,'; fesene Certessersenoan 111
Figure 18: Wired And Random Entries In The TLB AP ¢ A 113
Figure 19: Wired Register 113
Figure 20: BadVAddr Register Format0000e..s. S A U 114
Figure 21: Count Register Formatco0vveennn.. i eee et M. 114
Figure 22: EntryHi Register Format e e 115
Figure 23: Compare Register Format : S

Figure 24: Status Register Format

Figure 25: Cause Register Format

Figure 26: EPC Register Format

Figure 27: PRId Register Format ~

Figure 28: Config Register Format s

Figure 29: Configl Register Format e eie s e s e et eebese et bttt enntaotenesanens 130
Figure 30: LLAddr Register FOrmatt ieieenennenrneeneeneeneesoeneeneeaseancennn 132
Figure 31: WatchLo Register Format NPT S et et e e 133
Figure 32: WatchHi Register Format - . ‘e B ereereennan, eeeereeeee eeeeetetreeeeaens 134
Figure 33: XContext Register Format Feeemaeresaerasessessecsanssonnnacnan N 136
Figure 34: Performance Counter Control Register Formatcoiieiiiiiiiiiiiniieniennn, 138
Figure 35: Performance Counter Counter Regiéfér Formatcvvviieiiiiiiniienronennneenennns 140
Figure 36: CacheErr Register Formatitiitiiiiiiiiiiiiineneeeennnansocanssnsasonass 141
Figure 37: TagLlo Register Format i iiiiiiiiiniiiieneirereeocenceasscossocacsnnns 142
Figure 38: DataLo Register Format iiiiiiiieiiiniiiieeireeenernenensosnoencenaenns 143
Figure 39: TagHi Register Formatcccceiiiiinenrnnnnneneranns et eeseeetaecetesarens 144
Figure 40: DataHi Register Format iiiiiiieieiiiirieerererennssacsenencooncnnnn 144
Figure 41: ErrorEPC Register Format itiiiiiiiiiiiiiiitrietnennnneceeeroensaennnns 145
Figure 42: Memory Mapping when ERL =0 iiiiiiiiiiitiiiitiiireiernneneeacanannans 148
Figure 43: Memory Mapping when ERL = 1 iiiiiiiiiiiiiiiiiiirrenrenrenrenneananns 149
Figure 44: Config Register Additionso it iiiiiiiiiiiiiiietierinrerennonnceosossnnss 150
Figure 45: Contents of a BAT Entryottt iiieii ittt iineenneencennecanananas 151
November 15, 1999 Six -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROLMIBITED.

Revision 1.0 MIPS64T™ Specification

List of Tables

Table 1: CPU Load, Store, and Memory Control INStructionsc.eeveeeseresecaccencnsensaaeenns 5
Table 2: CPU Arithmetic Instructions i ittt iiiretcnnseccsesesacannn 5
Table 3: CPU Logical Instructionsiiiiiiiieinineeeireeesreeenassseaassssoosssssonssssasss 6
Table 4: CPUMove INStructionsooiuitiiiiiteinieeennnenessnecsosssssssssossonssesnssnsss 6
Table 5: CPU Shift Instructionsueiiiniiiiiiiiiiiir it irnnrerosssssnsssnsssnesacanessas 7
Table 6: CPU Branch and Jump Instructionsc.c.ueitineiiiereneereerenscsnscssoncnssncenns 7
Table 7: CPU Trap Instructionscoiiiiiiiniineinnriinennereenensaseccsoncacoscansaanns ceeenn 7
Table 8: Obsolete Branch Instructionsoiiiiiiiieiniiiiiiiiiiiersssioaseseaneecenssnnsss 8
Table 9: Embedded Application Instructionsiiiiiiiietiieernnerrononsossoacecasoans 8
Table 10: FPU Load and Store INStructionso ovveninneneeerrerereeeesnssnnenensssnssoseescns 10
Table 11: FPU Arithmetic Instructionsciuiiiiiiiieiiiiiiisiensseneneensnssaonnnnsess 11
Table 12: FPU Move Instructionscooiiuiiiinennennnenneennnn

Table 13: FPU Convert INStrUCtiONS « .« ... veeeeeeeeeennnnnneseeens

Table 14: FPU Branch Instructionsc.eeeeenenn... el

Table 15: Obsolete FPU Branch Instructions

Table 16: Coprocessor Interface Instructions cene s :

Table 17: Privileged Instructions
Table 18:
Table 19:

Table 21:
Table 22:

Table27.MIPS64COPOEncodmgofrsFleld....;;’;’ 16
Table 28: MIPS64 COPO Encoding of Function Fjei?i Whenrs=CO.............. Ceesesteeserannaanes 17
Table29:MIPS64COPlEncodingofrsField..‘.l.......;'.................Q ceeeranns 17
Table 30: MIPS64 COP1 Encoding of Function Field Whenrs=Scccovireierierennenss ceseraaes 17
Table 31: MIPS64 COP1 Encoding of Function Field When rs=Dccivieiiiieeerireneneensnnns 17
Table 32: MIPS64 COP1 Encoding of Function Field When rs=WorL esseretreeseenceonnas 18
Table 33: MIPS64 COP1 Encoding of Function Field Whenrs=PScc.ciiiiiiiiiiiiiiennnnnn. 18
Table 34: MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF 18
Table 35: MIPS64 COP1X Encoding of Function Field Cetestasiseetseeaereainanaas 18
Table 36: PREF hint field encodingscoiiiiiiiiiniiiernneneeneenerocavassesasons Cererecenas 41
Table 37: Usage of Effective Addressoviiineeneeneeerneeneneeeosnocsasssssossassnssnsssnes 46
Table 38: Encoding of Bits[17:16] of CACHE Instructionccoiiiiuiienereeneencosnanennenns 47
Table 39: Encoding of Bits [20:18] of the CACHE Instructioncccceieieereeeensooasssoseces 48
November 15, 1999 -X -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 40: FIR Register Field Descriptionscuiuiiiiiiiiiiriieinenrenenneneensoneonannnnes 61
Table 41: FCSR Register Field Descriptionsc.uuetiiiniiierinreeeneenesnonooosasensanonnns 62
Table 42: Cause, Enable, and Flag Bit Definitionscvivrivitiirieinineeneeneseereonanenns 64
Table 43: Rounding Mode Definitionsc.c.iitiitiierrnetiinieeenereorereenoeesanennaennnns 64
Table 44: FCCR Register Field Descriptionscovuuieeiniiiiinnierneeneenerosesossasennnnns 65
Table 45: FEXR Register Field Descriptionsccviuieiieeiiiiiieeenerenereenocesononnnenanes 66
Table 46: FENR Register Field Descriptionsccovvevennennn eteresteseasestestetnnanens 66
Table 47: Coprocessor 0 Registers in Numerical Orderccoeeieennneeienneecooscasasnaaanns 69
Table 48: Virtual Memory Address SPacescveeeitieiereeeaeronesronecaceassoasesnaneans 75
Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode 77
Table 50: Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments 80
Table 51: Address Translation and Cacheability Attributes for the xkphys Segmentccouu... 80
Table 52: Physical Address Generationc.coiieiiiuieieeeenerensscnssoasosssasosacannns 87
Table 53: Mapping of Interrupts to the Cause and Status Registers et e e ittt 87
Table 54: Priority of EXCEPHONS « .. .vveeeeennnnnreeeeeeennnneeeannns Fereesherennneeeernanaeeenn 88
Table 55: Exception Type Characteristicsccvvunn. ees Seeees 90
Table 56: Exception Vector Base Addressescoc0veun.. Tiaennens e 91
Table 57: Exception Vector Offsetsoiviiin e o iveeeeneenns N 91
Table 58: Exception Vectorscocviieieenennennennnnnnn eesesescasasnasensans B eeeeenees 92
Table 59: Index Register Field Descriptions.............. By 106
Table 60: Random Register Field Descriptions: SE

Table 61: EntryLo0, EntryLol Register Field Descrlptlons \

Table 62: Cache Coherency Attributes0.. ... in..... e e 109
Table 63: Context Register Field Descrlptions oes 111
Table 64: PageMask Register Field Descnptlons ETREREER 111
Table 65: Values for the Mask Field of the PageMask Reglster 112
Table 66: Wired Register Field. Descrlptlons et .,f o seses e ee s eseeasese st eranssasnnes 113
Table 67: BadVAddr Register Field Descrlptlons ereeereieneeeeaes 114
Table 68: Count Register Field Descriptions S PR e, e eesebens 114
Table 69: EntryHi Register Field DeSCIPHONS .. v rennnnesnnneeeeeeeeeeennaeeeeeeeennnns 115
Table 70: Compare Register Field Descriptions e 116
Table 71: Status Register Field Descriptionscciuiitiiiiiiieeriorsesesrosroscsecsansasnns 117
Table 72: Cause Register Field Descriptions ©................. erieeseens R 124
Table 73: Cause Register ExcCode Fieldoiiiiiiiiiiiiiiiiiiiiiiiiiintrnenasscanananns 125
Table 74: EPC Register Field Descriptionsc..cieeiiiiiieietnneerennenrecenoncesaoeannans 127
Table 75: PRId Register Field Descriptionscciitiiiiiiiiniieiiiiereeeeeccnanosannncnnass 127
Table 76: Config Register Field Descriptionscciiuiieiiiienieiiiinennenenroeenroaenassasane 129
Table 77: Configl Register Field Descriptionscoiiuiiiiiiiiiiinnerereeeoeeraseransonens 130
Table 78: LLAddr Register Field Descriptionscoeeiiieiinieieenrenrecscoercasaaasnans 132
Table 79: WatchLo Register Field Descriptionsccciiieiiieiiiinneereronancaeeanaasnns 133
November 15, 1999 - Xi -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 80: WatchHi Register Field Descriptionsccuutietintiiiiiiereeeeeranrneeoceanasnnnns 134
Table 81: XContext Register Fieldscocivviiiininnnnnnnnn et eteteressenesttastanaraennan 136
Table 82: Example Performance Counter Usage of the PerfCnt CP0 Registercvvevvvvenreeens 137
Table 83: Performance Counter Control Register Field Descriptions eeeeeeens Ceereenaees 138
Table 84: Performance Counter Counter Register Field Descriptionsc.cou.. Cerererantieas 140
Table 85: CacheErr Register Field Descriptions Ceesrbesesstetentetesnenanns ... 141
Table 86: TagLo Register Field Descriptions e etecevesharsecssesenannn ceeeees vees. 142
Table 87: DataLo Register Field Descriptions SR eiieianrensinetioaseesnoesesrtnenorans 143
Table 88: TagHi Register Field Descriptions C ettt eteatassetesesetasaneenenetennarnnan 144
Table 89: DataHi Register Field Descriptions ceesesesesanns P 144
Table 90: ErrorEPC Register Field Descriptions ceeeaes Ceeseiserrenestanans Cereeeenans 145
Table 91: “Typical” CP0 Hazard Spacingccccvvivvennnnn. Ceteetsecreseseseseeneraoannns 146
Table 92: Physical Address Generation from Virtual Addresses Cecesectettrcerersconnene 147

Table 93:
Table 94:

November 15, 1999 - Xii -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

1. The MIPS64™ Architecture

1.1 Architecture and Document Feedback
Comments or questions on the MIPS64™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.

1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture @mips.com.

1.2 MIPS64 Overview

1.2.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over-time from the orlomal MIPS I™ ISA to the most
recent MIPS VT ISA. As the ISA has evolved, all extensions have been backward compatxble with previous versions
of the ISA. With the MIPS III™ level of the ISA, 64-bit integers and addresses were added to the instruction set. The
MIPS IV™ and MIPS V™ levels of the ISA added improved floating pomt operatlons "as well as a set of instructions
intended to improve the efficiency of generated code and of data movement. Because of the strict backward-compati-
ble requirement of the ISA, such changes were unavailable to 32-bit: 1mplementanons of the ISA which were, by def-
inition, MIPS I™ or MIPS II™ implementations. . N -

While the user-mode ISA was always backward compatible, the pnvﬂeged environment was allowed to change on a
per-implementation basis. As a result, the R3000® prwnleged environment was different than the R4000® privileged
environment, and subsequent implementations, whxle sxmllar t the R4000 pnvxleged environment, included subtle
differences. Because the privileged environment w; ,never part ofdthe ‘MIPS ISA, an implementation had the flexibil-
ity to make changes to suit that particular implementat i Unfortunately, this required kernel software changes to

every operating system or kernel environment %n which that 'mplementatlon was intended to run.

Many of the original MIPS implementations were targeted at” computer-hke applications such as workstations and
servers. In recent years MIPS implementations have had 51gn1ﬁcant success in embedded applications to the extent
that most of the MIPS parts that are shipped go into some ‘sort of embedded application. Such applications tend to
have different trade-offs than computer-like applications. mcludmg a focus on cost of implementation, and perfor-
mance as a function of cost and power..-

1.2.2 The MIPS64 Architecture

The MIPS64 Architecture is intended to address the need for a high-performance but cost-sensitive 64-bit MIPS
instruction set. It is based on the MIPS V ISA and is backward compatible with the 32-bit MIPS32 Architecture. It
also brings the privileged environment into the Architecture definition to address the needs of operating systems and
other kernel software. The MIPS64 Architecture therefore consists of the following components: -

¢ The Instruction Set Architecture based on the MIPS V ISA, with backward compatibility to the MIPS32

Architecture.
» The 64-bit MIPS Privileged Resource Architecture which defines the requirements for the privileged envi-

ronment.
e The provision for including MIPS Application Specific Extensions (ASEs) to address the specific needs of

particular markets.

November 15, 1999 -1-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2. The MIPS64 ISA

The MIPS64 instruction set includes the following instructions:

The MIPS V CPU instructions

e The MIPS V FPU instructions

» A setof new instructions targeted at embedded applications.

» The instructions which act as the ISA interface to the MIPS Privileged Resource Architecture

This specification does not describe many of these instructions in any detail because it is assumed that the reader also
has access to the most recent copy of the two-volume set entitled MIPS RISC Architecture. Only differences and
additions are described in this document. Upon completion of the review process, this document will be incorporated
into the MIPS RISC Architecture document.

2.1 Compllance and Subsetting

To be compliant with the MIPS64 Architecture, designs must implement a set of required features, as described in
this document. To allow flexibility in implementations, the MIPS64 Architecture does provide subsetting rules. An
implementation that follows these rules is compliant with the MIPS64 Architecture as long as it adheres strictly to the
rules, and fully implements the remaining instructions. Supersetting of the MIPS64 Archxtecture is only allowed by
adding partner-specific functions to the SPECIAL2 major opcode, by adding control for co-processors via the COP2,
LWC2, SWC2, LDC2, and/or SDC2 opcodes, or via the addition of approved Apphcatxon Specific Extensions. The
subsetting rules are:

« Al CPU instructions must be implemented - no subsetting is allowed.

e The FPU and related support instructions, including the MOVF and MOVT CPU instructior$; may be omit-
ted. If the FPU is implemented, the paired single (PS) format is optional. Therefore, the following allowable
FPU subsets are compatible with the MIPS64 architecture:
e NoFPU -
e FPU with S, D, W, and L formats and, afwsupportm i
e FPU with S, D, PS, W, and L formats’ %’hd 11 suppor mg,mstructlons

¢ Implementation of the full 64-bit address sp space i$ optional. The processor may implement 64-bit data and
operations with a 32-bit only address: space In thlS e the MMU acts as if 64-bit addressing is always dis-
abled.

* Supervisor Mode is optional. If Superv1sor Mode is not implemented, bit 3 of the Status register must be
ignored on write and read as zero. 4

e The standard TLB-based memory management unit may be replaced with a simpler MMU (e.g., a Fixed
Mapping MMU). If this is done; the rest of | - interface to the Privileged Resource Architecture must be
preserved. If a TLB-based memory management unit is implemented, it must be the standard TLB-based
MMU as described in the Privileged Resource Architecture chapter.

¢ The Privileged Resource Architecture includes several implementation options and may be subsetted in
accordance with those options.

» Instruction, CPO Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in
the description of that field are reserved for future use by the architecture and are not available to implemen-

. tations. Implementations may use those fields that are explicitly reserved for implementation dependent use.

» CPO Register and CP1 Control Register encodings that are not currently used are reserved for the future use
of the architecture and are not available to implementations. Implementations may use those encodings that
are explicitly reserved for implementation dependent use.

» EJTAG and the ASEs are optional and may be subsetted out. If they are implemented, they must implement
the entire ISA applicable to the component, or implement subsets that are approved by the EJTAG or ASE
specifications.

» If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause
the appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

i

November 15, 1999 -2-

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.2 Changes to Revision 5.1 of the MIPS RISC Architecture Specification

In addition to the MIPS64 Architecture described in this document, the following changes to Revision 5.1 of the
MIPS RISC Architecture Specification are required for compliance with the MIPS64 Architecture:

« The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment
requirements (all but load and store byte and load and store left and right) in which the base register used by
the instruction must also be naturally aligned (the restriction expressed in the MIPS RISC Architecture
Specification is that the offset be aligned, but the implication is that the base register is also aligned, and this
is more consistent with the indexed load/store instructions which have no offset field). The restriction that
the base register be naturally-aligned is eliminated by the MIPS64 Architecture, leaving the restriction that
the effective address be naturally-aligned.

« Early MIPS implementations required two instructions separating a mflo or mthi from the next integer mul-
tiply or divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Archi-
tecture Specification does not clearly explain this fact. The MIPS64 Architecture explicitly eliminates this
hazard and requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and
divide instructions (including, but not limited to, the madd, maddu, msub, msubu, and mul instructions intro-
duced in this specification).

+ The Implementation and Programming Notes included in this specification for the madd, maddu msub,
msubu, and mul instructions should also be applied to all integer multxply -and d1v1de instructions in the
MIPS RISC Architecture Specification. :

2.3 CPU Architecture

R
S

2.3.1 CPU Register Overview
The MIPS64 Architecture defines the following CPU reOisters: bt bt

e 32 64-bit general purpose registers (GPRs) \
» apair of special-purpose registers to hold the results of mteger multlply, divide, and multiply-accumulate

operations (HI and LO) §
» aspecial-purpose program counter (PC), whxch is affected only indirectly by certain instructions - it is not an
architecturally-visible register. ¢

A MIPS64 processor always produces a 64-bit result; even for those instructions which are architecturally defined to
operate on 32 bits. Such instructions typically sign- -extend their 32-bit result into 64 bits. In so doing, 32-bit programs
work as expected, even though the r¢01§’§ers are actually 64 b_lts wide rather than 32.

November 15, 1999 -3-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROMHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 1: CPU Registers in MIPS64 Native Mode

63 0 63 0
r0 (hardwired to zero) HI
r] LO
12
r3
4
)
ro
r/
[
)
rl0
rll
rlZ
: [3 K
- 114
rl>
rl6
rl7/
rid
rlY
120
12l
122
123
24
[P
120
127/
123
r2Y
150
rJ1 (link register)

= PC

General Purpose Registers Special Purpose Registers

2.3.2 Endianness
?’?f L R

Compliant implementations of the MIPS chltecture must be bi- endnan That i is, they must be capable of running
in either a big-endian or a little-endian b der, as selected by an implementation-specific power-up sequence. The
BE bit in the Config register, set as part of the power—up sequence, indicates the endian mode in which the processor
is running. It is implementation-dependent whether reverse-endian mode is implemented.

-

2.3.3 CPU Instruction Overview

Table 1 through Table 9 list'the CPU instructions that are part of the MIPS64 ISA. If 64-bit operations are not
enabled, certain instructions, as described in the Instruction Bit Encoding tables, are not legal and result in a Copro-
cessor Unusable Exception or Reserved Instruction Exception, as appropriate to the type of instruction.

Note

Although the Branch Likely instructions are included in this specification, software is strongly encouraged to
avoid use of the Branch Likely instructions, as they will be removed from a future revision of the MIPS64
architecture. The Branch Likely instructions were added to the ISA at a time when processor implementations
were much simpler. Since that time, implementation of the Branch Likely instructions has been shown to be
increasingly difficult and costly on processors with aggressive branch prediction. Continued use by software
will result in serious performance issues as such processor designs penetrate the embedded market. The

November 15, 1999 -4 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION 1S PROHIBITED.

Revision 1.0 MIPS64™ Specification

Branch Likely instructions are listed in Table 8 and Table 15.

Table 1: CPU Load, Store, and Memory Control Instructions

Original
Mnemonic Instruction MIPS ISA
Level
LB Load Byte I
LBU Load Byte Unsigned - 1
LH Load Halfword 1
LHU Load Halfword Unsigned I
LW Load Word I
LWL Load Word Left 1
LWR Load Word Right i
SB Store Byte I
SH Store Halfword I
SW Store Word 1.
SWL Store Word Left 2
SWR Store Word Right 1
LL Load Linked Word -
SC Store Conditional Word P S
SYNC Synchronize Memory Operations % I s
LD Load Doubleword . III .
LDL Load Doubleword Left o 111
LDR Load Doubleword Right . 1T
LLD Load Linked Doubleword III
LWU Load Word Unsigned . I
SCD Store Conditional Doubleword I
SD Store Doubleword = it
SDL Store Doubleword Left 1
SDR Store Doubleword Right I
PREF Prefetch Memory:Data - - «xisen: - v v
PREFX Prefetch Memory Data Indexed ‘i v
Table 2: CPU Arithmetic Instructions
' Original
Mnemonic Instruction MIPS ISA
, Level
ADD Add Word I
ADDI - | Add Immediate Word I
ADDIU Add Immediate Unsigned Word I
ADDU Add Unsigned Word 1
DIV Divide Word 1
DIVU Divide Unsigned Word 1
MULT Multiply Word 1
MULTU Multiply Unsigned Word 1
SLT Set on Let Than I
November 15, 1999 -5-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Table 2: CPU Arithmetic Instructions
Original
Mnemonic Instruction MIPS ISA
Level
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate Unsigned I
SLTU Set on Less Than Unsigned I
SUB Subtract Word I
SUBU Subtract Unsigned Word I
DADD Add Doubleword I
DADDI Add Immediate Doubleword I
DADDIU Add Immediate Unsigned Doubleword I
DADDU Add Unsigned Doubleword I
DDIV Divide Doubleword III
DDIVU Divide Unsigned Doubleword it
DMULT Multiply Doubleword 1
DMULTU Multiply Unsigned Doubleword o T i
DSUB Subtract Doubleword w5
DSUBU Subtract Unsigned Doubleword
Table 3: CPU Logical Instructions = -

Mnemonic Instruction
AND Logical AND) 1
ANDI Logical AND Immediate I
LUI Load Upper Immediate s I
NOR Logical NOR ‘ I
OR Logical OR B I
ORI Logical OR Immediate I
XOR Logical XOR &, I
XORI Logical XOR Immediate q I

Table 4: CPU Move ’Ii;?;ructions”
Original
Mnemonic Instruction MIPS ISA
Level
MFHI Move from HI 1
MFLO Move from LO I
MTHI Move to HI 1
MTLO Move to LO I
MOVF? Move Conditional on Floating Point False v
MOVN Move Conditional on Not Zero Y
MOVT? Move Conditional on Floating Point True v
MOVZ Move Conditional on Zero v
November 15, 1999 -6-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

a. These instructions require a floating point unit and may be subsetted out if no
floating point unit is implemented.

Table 5: CPU Shift Instructions

Original
Mnemonic Instruction MIPS ISA
Level
SLL Shift Word Lett Logical T
SLLV Shift Word Left Logical Variable I
SRA Shift Word Right Arithmetic I
SRAV Shift Word Right Arithmetic Variable I
SRL Shift Word Right Logical I
SRLV Shift Word Right Logical Variable I
DSLL Shift Doubleword Left Logical 1
DSLL32 Shift Doubleword Left Logical + 32 I
DSLLV Shift Doubleword Right Logical Variable T :\
DSRA Shift Doubleword Right Arithmetic B | |
DSRA32 Shift Doubleword Right Arithmetic + 32 o el , ‘
DSRAV Shift Doubleword Right Arithmetic Variable e, I
DSRL Shift Doubleword Right Logical : I
DSRL32 Shift Doubleword Right Logical + 32 I
DSRLV Shift Doubleword Right Logical Variable = »2:.f ' 11
Table 6: CPU Branch and Jump :
“Original
Mnemonic MIPS ISA
Level
BEQ Branch on Equal D , I
BGEZ Branch on Greater Than or Equal Zero I
BGEZAL Branch on Greater Than or Equal Zero and Link I
BGTZ Branch on Greatcr Than Zero.- ; ' I
BLEZ Branch on Less Than or Equal Zero I
BLTZ Branch on Less ThanZero " I
BLTZAL Branch on Less Than Zero and Link I
BNE Branch on Not Equal I
J Jump I
JAL Jump and Link I
JALR Jump and Link Reglster I
JR Jump Register 1
Table 7: CPU Trap Instructions
Original
Mnemonic Instruction MIPS ISA
Level
BREAK Breakpoint T
SYSCALL System Call I
November 15, 1999 -7-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS64™ Specification

©

Revision 1.0

Table 7: CPU Trap Instructions

Original
Mnemonic Instruction MIPS ISA
Level

TEQ Trap if Equal I
TEQI Trap if Equal Immediate 1I
TGE Trap if Greater Than or Equal II
TGEI Trap if Greater Than or Equal Immediate II
TGEIU Trap if Greater Than or Equal Immediate Unsigned II
TGEU Trap if Greater Than or Equal Unsigned II
TLT Trap if Less Than II
TLTI Trap if Less Than Immediate II
TLTIU Trap if Less Than Immediate Unsigned II
TLTU Trap if Less Than Unsigned II
TNE Trap if Not Equal

TNEI Trap if Not Equal Immediate

Table 8: Obsolete? Branch Instructions
Mnemonic Instruction
BEQL Branch on Equal Likely I
BGEZALL Branch on Greater Than or Equal Zero. and Link 5o 10
Likely 4 , A

BGEZL Branch on Greater Than or Equal Zero L1 ely: © I
BGTZL Branch on Greater Than Zero Likely £ :»;»‘ I
BLEZL Branch on Less Than or Equal Zero Likely ..~ I
BLTZALL Branch on Less Than Zero and Link leelyj 1I
BLTZL Branch on Less Than Zero kaely I
BNEL Branch on Not Equal leely I

a. Software is strongly encouraged to ave

of zthe Branch Likely instructions,

as they will be removed from a future revision of the MIPS64 architecture.

Table 9: Embedded App tion Instructions
Original
Mnemonic Instruction MIPS ISA
. Level

CLO Count Leading Ones.in Word MIPS32
CLZ Count Leading Zeros in Word MIPS32
DCLO Count Leading Ones in Doubleword MIPS64
DCLZ Count Leading Zeros in Doubleword MIPS64
MADD Multiply and Add Word MIPS32
MADDU Multiply and Add Unsigned Word MIPS32
MSUB Multiply and Subtract Word MIPS32
MSUBU Multiply and Subtract Unsigned Word MIPS32

November 15, 1999

-8-

MIPS® PROPRIETARY/CONFIDENTIAL:

MIPS64™ Specification

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 9: Embedded Application Instructions

Original
Mnemonic Instruction MIPS ISA
Level
MUL Multiply Word to Register MIPS32
SSNOP Superscalar Inhibit NOP MIPS32

| 2.4 FPU Architecture

2.4.1 FPU Register Overview
The MIPS64 Architecture defines the following FPU registers:

e 32 64-bit floating point registers (FPRs).
» Five FPU control registers

For compatibility with MIPS32 processors, a MIPS64 processor can be conﬁgured to run in a mode in which the
FPRs are treated as 32 32-bit registers, each of which is capable of storing only 32 bit data types. In this mode, the
double-precision floating point (type D) data type is stored in even-odd pzurs of FPRs, and the long-integer (type L)
and paired single (type PS) data types are not supported. S =4

&

Figure 2: FPU Registers if Statusgg is 1~ L
63 S

116 Vv
TT7T i
118 iy
119
120
121
22 31 0
125 | FCKO 1
124
125 [FCR25]
126
127 [FCRZ6]
128
129 1 FCRZS]
150
31 L FCSK]

General Purpose Registers Special Purpose Registers

November 15, 1999 -9.

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 3: FPU Registers if Statusgg is 0

63 32 31 0
T0

....... -1
12

....... g
4

Unpredictable

FCRO |
——TCRTS]
FCR76 |
FCRZS |
FCSK]

Sp?gial Purpose Registers

Table 10 through Table 15 list the FPU instructions that are pa{;t of the MIPS64 ISA. If the processor is configured to
run in the mode providing backward compatlbxlxty, 'to.MIPS32 processors, certain instructions, as described in the
Instruction” Bit Encoding tables, are not’ legal and”resﬁlt in a Reserved Instruction exception. This includes those
instructions which operate on paired single floating pomt (type PS) and 64-bit fixed point (type L) data types.

Table 10: FPU Load and Store Instructions

o Original
Mnemonic Instruction MIPS ISA
Level

LWCI1 Load Word to Floating Point I
SWCl1 Store Word to Floating Point I
LDC1 Load Doubleword to Floating Point I
SDCl! Store Doubleword to Floating Point I
LDXCl1 Load Doubleword Indexed to Floating Point v
LWXCI1 Load Word Indexed to Floating Point v
SDXCl1 Store Doubleword Indexed to Floating Point v

November 15, 1999 -10 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 10: FPU Load and Store Instructions

Original
Mnemonic Instruction MIPS ISA
Level
SWXCI Store Word Indexed to Floating Point v
LUXCI Load Doubleword Indexed Unaligned to Floating v
Point
SUXClI Store Doubleword Indexed Unaligned to Floating \Y
Point
Table 11: FPU Arithmetic Instructions
Original
Mnemonic Instruction MIPS ISA
Level
ABS . fmt Floating Point Absolute Value LV
ADD.fmt Floating Point Add P SN
C.cond.fmt Floating Point Compare i LV
DIV.fmt Floating Point Divide T L
MUL.fmt Floating Point Multiply e LVT
NEG.fmt Floating Point Negate e WY .
SUB. fmt Floating Point Subtract LV e
SQRT.fmt Floating Point Square Root e, |2, I
MADD.fmt Floating Point Multiply Add IV, V
MSUB.fmt Floating Point Multiply Subtract w’”’”’ 3 LIV, V
NMADD.fmt Floating Point Negative Mulnply Add = /I, V
NMSUB.fmt Floating Point Negative Multiply. Subtract s v, v
RECIP.fmt Floating Point Reciprocal Approx1mat10n 7 v
RSQRT.fmt Floating Point Reciprocal Squarc Root Appr0x1- v
mation :
Table 12: FPU Moye};l.ns,g-uct‘lons G 0
S Original
Mnemonic Instruction MIPS ISA
R Level
CECl1 Copy Word from Floating Point Control Register 1
CTCl1 Copy Word to Floating Point Control Register I
MFC1 Move Word from FPR I
MOV.fmt Floating Point Move b
MTCl1 Move Word to FPR 1
DMFC1 Move Doubleword from FPR 1
DMTClI Move Doubleword to FPR I
MOVE.fmt Floating Point Conditional Move on FP False v, v
MOVN.fmt Floating Point Conditional Move on Non-Zero 1V, V, MIPS64
MOVT.fmt Floating Point Conditional Move on FP True v,V
MOVZ.fmt Floating Point Conditional Move on Zero IV, V, MIPS64
November 15, 1999 -11-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Table 13: FPU Convert Instructions

Original
Mnemonic Instruction MIPS ISA
Level
CVT.W.fmt Floating Point Convert to Word Fixed Point I
CVT.D.fmt Floating Point Convert to Double Floating Point I, III
CVT.S.fmt Floating Point Convert to Single Floating Point LIILV
CEIL.W.fmt Floating Point Ceiling to Word Fixed Point . II
FLOOR.W.fmt Floating Point Floor to Word Fixed Point II
ROUND.W.fmt | Floating Point Round to Word Fixed Point II
TRUNC.W.fmt Floating Point Truncate to Word Fixed Point 1I
CEIL.L.fmt Floating Point Ceiling to Long Fixed Point III
CVT.L.fmt Floating Point Convert to Long Fixed Point 111
FLOOR.L.fmt Floating Point Floor to Long Fixed Point I
ROUND.L.fmt Floating Point Round to Long Fixed Point
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point
ALNV.PS Floating Point Align Variable
CVTPS.S Floating Point Convert Pair to Pair Single LNy
CVTS.PL Floating Point Convert Pair Lower to Single e
CVTS.PU Floating Point Convert Pair Upper to Single 5
PLL.PS Floating Point Pair Lower Lower , »
PLU.PS Floating Point Pair Lower Upper
PUL.PS Floating Point Pair Upper Lower _, N
PUU.PS Floating Point Pair Upper Upper™ .
i S
Table 14: FPU Branch Instr
& Original
Mnemonic Instruction. MIPS ISA
B, Level
BCIF Branch on Floating Point False LIV
BCIT Branch on Floating Point‘f[f;ue LIV
Table 15: Obsolete? FPUkljal;cl; Instructions
Original
Mnemonic Instruction MIPS ISA
Level
BCIFL Branch on Floating Point False Likely IL 1V
BCITL. Branch on Floating Point True Likely I, Iv

a. Software is strongly encouraged to avoid use of the Branch Likely instructions,
as they will be removed from a future revision of the MIPS64 architecture.

2.5 Coprocessor Architecture

The MIPS64 Architecture supports the use of an additional coprocessor to perform application-specific tasks. Support
for this coprocessor is provided by instructions, described below, that act as the control and data movement interface
between the CPU and the coprocessor. The flexibility of this interface places almost no restrictions on the coproces-

November 15, 1999

-12-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS64™ Specification

Mg

Revision 1.0 MIPS64™ Specification

sor, other than the fact that the coprocessor load and store instructions can only address 32 coprocessor-specific regis-
ters. It is implementation dependent whether all twelve coprocessor interface instructions are implemented - a subset
of the instructions may be implemented as dictated by the requirements of the specific coprocessor. If the coprocessor
is implemented and usage is enabled, an attempt to execute an unimplemented coprocessor interface instruction
results in a Reserved Instruction Exception.

2.5.1 Coprocessor Instruction Overview

Table 16 lists-the interface instructions supported by the MIPS64 Architecture.

Table 16: Coprocessor Interface Instructions

Original
Mnemonic Instruction MIPS ISA
Level

BC2 Branch on Coprocessor 2 Condition MIPSI
CFC2 Move Control from Coprocessor 2 MIPS I
COP2 Perform Coprocessor 2 Operation +MIBPST
CTC2 Move Control to Coprocessor 2 . MIPST
DMFC2 Move Doubleword from Coprocessor 2 .| MIPS IIT¥
DMTC2 Move Doubleword to Coprocessor 2 sl MIPS I -
LDC2 Load Doubleword to Coprocessor 2 S “UMIPS I
LWC2 Load Word to Coprocessor 2 5 MIPS I .
MFC2 Move from Coprocessor 2 Yoo MIPSI
MTC2 Move to Coprocessor 2 S ek MIPS T
SDC2 Store Doubleword to Coprocessor GRS MIPS I
SwC2 Store Word to Coprocessor 2 &7 +MIPS I

2.6.2 Privileged Instruction Overvnew

Table 17 lists the privileged instructions which act as the ISA interface to the MIPS Privileged Resource Architecture.

Table 17: Privileged Instructions

Mnemonic - - - Instruction

CACHE Perform Cache Operation

DMFCO Move Doubleword From Coprocessor Zero

DMTCO Move Doubleword To Coprocessor Zero

ERET Exception Return

MFCO Move Word From Coprocessor Zero

MTCO Move Word To Coprocessor Zero

TLBP Translation Look Aside Buffer Probe

TLBR Translation Look Aside Buffer Read
November 15, 1999 -13-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHMHIBITED.

Revision 1.0 MIPS64™ Specification

Table 17: Privileged Instructions

Mnemonic Instruction
TLBWI Translation Look Aside Buffer Write Indexed
TLBWR Translation Look Aside Buffer Write Random
WAIT Enter Standby Mode

2.7 EJTAG Support Instructions N

Table 18 lists the EJTAG support instructions that are Supported by MIPS64. Refer to the EJTAG specification for
more information about these instructions.

Table 18: EJTAG Support Instructions

Mnemonic Instruction
DERET Debug Exception Return
SDBBP Software Debug Breakpoint

2.8 Instruction Bit Encoding 5
Table 20 through Table 34 describe the encoding used for the MIPS64 ISA

blei;l?wdescribes the meaning of the - -

symbols used in the tables.
Table 19: Symbols Used in the Instruction ;Evn_cdding Tables S
Symbol wMeaning B
N Operation or ﬁeld codes marked with this symbol are reserved for future use. Executing
such an instruction must cause a Reserved Ins ructlon Exceptron
(Also italic field name.) Operatlon or eld codes marked with this symbol denotes a
) field class. The instruction word mus! (V,further decoded by examining additional

tables that show values for another mstructlon field. :
Operation or field codes marked with this symbol represent a valid encoding for a
B higher-order MIPS ISA level. Executmg such an instruction must cause a Reserved
Instrucnon Exceptxon R

.....

legal if the processor is conﬁgured to be backward compatible with MIPS32 proces-
sors. If the processor is executing in Kernel Mode, Debug Mode, or 64-bit instructions
are enabled, execution proceeds normally. In other cases, executing such an instruction
must cause a Reserved Instruction Exception (non-coprocessor encodings or coproces-
sor instruction encodings for a coprocessor to which access is allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
access is not allowed).

Operation or field codes marked with this symbol are available to licensed MIPS part-
ners. To avoid multiple conflicting instruction definitions, the partner must notify MIPS
Technologies, Inc. when one of these encodings is used. If no instruction is encoded

0 with this value, executing such an instruction must cause a Reserved Instruction Excep-
tion (SPECIALZ encodings or coprocessor instruction encodings for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruc-
tion encodings for a coprocessor to which access is not allowed).

November 15, 1999 - 14 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROUIBITED.

Revision 1.0 MIPS64™ Specification

Table 19: Symbols Used in the Instruction Encoding Tables

Symbol Meaning

Field codes marked with this symbol represent an EJTAG support instruction and
implementation of this encoding is optional for each implementation. If the encoding is
not implemented, executing such an instruction must cause a Reserved Instruction
Exception. If the encoding is implemented, it must match the instruction encoding as
shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application
Specific Extensions. If the ASE is not implemented, executing such an instruction must
cause a Reserved Instruction Exception.

Operation or field codes marked with this symbol are obsolete and will be removed
from a future revision of the MIPS64 ISA. Software should avoid using these operation
or field codes.

Table 20: MIPS64 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 . 6 7
bits 31..29 000 001 010 011 100 101 < 110 111
0 | 000 | SPECIALS | REGIMM & J JAL BEQ BNE .| . BLEZ BGTZ
1 | oot ADDI ADDIU SLTI SLTIU ANDI * ORI " XORI LUI
2]010]| COPOS cori 8 CoP205 | COPIX5L | BEQL¢ | BNEL9 BLEZL ¢ | BGTZL ¢
3| o11 | paDDIL | DADDIUL | LDLL LDR L |SPECIAL28| JALXe-+| MDMXed | = =
4 {100 LB LH LWL Lw LBU . LHU LWR LWU L
5] 101 SB SH SWL SW SDL L#+f - SDR L SWR CACHE
6 | 110 LL LWCI1 LWC2 8 PREF ..|. LLDL LDC1 LDC2 8 LD L
7|1 sC SWCI SWC26 * o= liasep L SDCI SDC2 6 sp L

4 £ X e 4
Table 21: MIPS64 SPECIAL Opcode Encoding of Function Field

function | birs 2.0 W

0 1 2 3 g 5 6 7
bits 5..3 000 001 010 o1l 100 101 110 111
0 | 000 SLL MOVCI § SRL. 7] SRA “%|:..SLLV * SRLV SRAV
1| oot R JALR MOVZ | MQVYN | SYSCALL | BREAK E SYNC
2 | o10 MFHI MTHI MFLO :{MTLO, | DSLLV L. * DSRLV L | DSRAV L
3| otl MULT MULTU pivisl DIVUZ | bpmMUuLT L |pmuLtul| pDIvLl | DDIVU L
4 | 100 ADD ADDU SUB SUBU’ AND OR XOR NOR
5 | 101 * * SLT LSLTU DADD.L | DADDU.L | DSUB.L | DSUBU.L
6 | 110 TGE TGEU TLT TLTU “TEQ * TNE *
71| psLLl * DSRLL | DSRAL | DsLL32L * DSRL32 L | DSRA32 L

. Table 22: MIPS64 REGIMM Encoding of rt Field
[rt] bisis.is
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL¢ | BGEZL ¢ * * * *
1| ot TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2| 10 | BLTZAL | BGEZAL | BLTZALL ¢ | BGEZALL ¢ * * * *
3) 11 * * * * * * * *
November 15, 1999 -15-

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0 MIPS64™ Specification

Table 23: MIPS64 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 MADD MADDU MUL [*] MSUB MSUBU 6 e
1 | 00t [¢] 6 0 0 [t} 6 0 C}
2| 010 ¢} 0 0 0 0 t] 0 *]
3| Ol 0 ¢} 0] <] [*] 0 0
4 | 100 CLZ CLO] 3] DCLZ L DCLO L [¢] 0
51 101 0 0 0 ¢] 2] [¢] 0 0
6| 110 0 0 0 0 2] 0 ¢] 0
71 111 <] 0 6 ;] 0] c] SDBBP o

Table 24: MIPS64 MOVCI Encoding of tf Bit

[«] wiis

0 1
MOVF MOVT

Table 25: MIPS64 COPz Encoding of rs Field

l rs | bits23.21
0 7
bits 25..24 000 4 111
0| 00 MFCz DMFCz L X
1] o1 BCz : ¥
2 10
3 11
{})s"
oding of rs Field .
s 1 bits 23..21 -
T 0 1 2 37 4 5 6 7
bits 25..241- 000 001 010 ey OFT 100 101 110 111
0] 00 MFCO0 DMFC0 L * * MTCO DMTCO L Co* *
1 01 * * * * * * * *
2 10
ST 1 COo3d
November 15, 1999 -16-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 28: MIPS64 COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7
bits 5.3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI * * * TLBWR *
1 | 001 TLBP * * * * * > -
2| 010 * * * * * * * *
3| 011 ERET * * * * * * DERET o
41 100 WAIT * * * * - * - -
5| 101 * * * * * * * *
6| 110 * * * * * * * ¥
7 [111 . * * . ¥ n n :

Table 29: MIPS64 COPI Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 = 110 111
0| oo MFC1 DMFC1 L CFC1 * MTCI DMTCI L “CTCl *
1{ ol BCI18 |BCIANY2 8¢ 1|BCIANY4 de L] * * * Ao *
21 10) D3 * * wd .|, L8Lu..] .iPSSL *
3 11 * * * * * Ao, * o * * -

“Table 30: MIPS64 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 B N 5 6 7

bits 5..3 000 001 010 0110, 100 L 101 110 111

0 | 000 ADD SUB MUL 5 DIV % .|+ SQRT i ABS MOV NEG

1 {00l | ROUNDLL | TRUNCLL | CEILLL | FLOORL“ | ROUND.W | TRUNC.W CEIL.W FLOOR.W

2| 010 * MOVCF MOVZ 7| - ' ¥ * RECIP L RSQRT L *

3] o1t * * * RECIP2el | RECIP1el | RSQRTl1el | RSQRT2¢el

4] 100 * CVTD * 7 CVT.W CVTL L CVTPS L *

5 101 * *) * i k* N * * * *

6 | 110 CF C.UN CEQ. C.UEQ., C.OLT C.ULT C.OLE C.ULE
CABS.Fel | CABS.UNel | CABS.EQel |CABS.UEQel|{CABS.OLT ¢ L |CABS.ULT ¢ L|{CABS.OLE ¢l [CABS.ULEeL

71 C.SF C.NGLE EC.NGL C.LT C.NGE C.LE C.NGT
CABS.SFel |CABS.NGLE ¢l CABSINGLel| CABS.LTel [CABSNGEel| CABS.LEel |CABS.NGTel

Table 31: MIPS64 COI’J;gn;cfoding of Function Field When rs=D:m

I function bits 2..0

0 1 2 3 4 5 6 7
bits 5.3 000 001 010 011 100 101 110 111
0 | 000 ADD - SUB MUL DIV SQRT ABS MOV NEG
1| 001 | ROUND.L L [TRUNC.L L CEIL.L L FLOOR.L L | ROUND.W TRUNC.W CEIL.W FLOOR.W
2] 010 * MOVCF & MOVZ MOVN * RECIP L RSQRT L *
3] 011 * * * * RECIP2el RECIP1 el | RSQRTIel | RSQRT2¢el
4 | 100 CVT.S * * * CVT.W CVTL L * *
5 lOl * * * * * * * *
61 110 CF C.UN C.EQ C.UEQ| C.OLT C.ULT C.OLE C.ULE
CABS.Fel | CABS.UNel | CABSEQel |CABS.UEQeLl|CABS.OLT el |CABS.ULT ¢l |CABS.OLE ¢l |CABS.ULEeL
71 1 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
CABS.SFel. ICABS.NGLE el{CABS.SEQ¢eL|CABSNGLeLl| CABS.LTeL |CABSNGEeLl| CABS.LEeL |CABS.NGTel
November 15, 1999 -17-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 | MIPS64™ Specification

Table 32: MIPS64 COPI Encoding of Function Field When rs=W or L?

function bits 2..0
0 1 2 3 4 5 6 7
bits 5.3 000 001 010 011 100 101 110 11
0 000 * * * * * * * *
1 | 001 * * * * * * * *
2 010 * * * * * * * *
3 Ol 1 * * * * * * * *
4 | 100 CVT.S CVTD * * * * CVT.PS.PW *
el
5 lol * * * * * * * *
6 l 10 * * * * * * * *
111 * * * * * #* * *

a. Format type L is legal only if 64-bit operations are enabled.

Table 33: MIPS64 COPI Encoding of Function Field When rs=PS?

function | birs 2.0 Pl
0 1 2 3 4 o5 6 7
bits 5..3 000 001 010 011 100 - w101 ¥ 110 111
0 | 000 ADD SUB MUL * * T “ABS MOV NEG -
1 001 * * * * * * * *
2 | 010 * MOVCF 3 MOVZ MOVN - g * *
3] 011 ADDR ¢ * MULR ¢ o * RECIP2 ¢ RECIP! € RSQRT1 € RSQRT2 ¢
4 | 100 CVTS.PU * * * .CVT.PW.PS¢ * * *
5] 101 CVT.S.PL * * * o PLL.PS "~} PLU.PS PUL.PS PUU.PS
6| 110 CF C.UN C.EQ QUEQ ~ coLT ";‘;31 C.ULT C.OLE C.ULE
CABS.Fe | CABS.UNe¢ | CABS.EQe | CABS.UEQe:| CABS.OLT¢ | CABS.ULT¢ | CABS.OLE¢ | CABS.ULE¢
I C.SF C.NGLE CSEQ | TeLr | CNGE CLE CNGT
CABS.SFe |CABS.NGLEe| CABS.SEQ¢ CABS.LTe | CABS.NGEe | CABS.LEe | CABS.NGT¢
a. Format type PS is legal only if 64-bit operations aré’%ﬁgbledf

4 tf

1
MOVT.fmt

MOVF.fmt

Table 35: MIPS64 COPIXTCﬁncoding of Function Field®

l function bits 2.0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 LWXCl1 LDXCl1 * * * LUXC1 * *
1| 001 SWXC1 SDXCI * * * SUXC1 * PREFX
2 010 * * * * * * * *
3] 01 * * * * * * ALNV.PS *
4 | 100 | MADD.S MADD.D * * * * MADD.PS *
5| 101 MSUB.S MSUB.D * * * * MSUB.PS *
6 | 110 | NMADD.S | NMADD.D * * * * NMADD.PS *
7 | 111 | NMSUB.S | NMSUB.D * * * * NMSUB.PS *

a. COP1X instructions are legal only if 64-bit operations are enabled.

November 15, 1999 - 18-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9 MIPS64 Instruction Descriptions

As described earlier, this specification does not include instruction descriptions for all instructions that are in the
MIPS64 ISA. Rather, it includes by reference the MIPS RISC Architecture document for the majority of the instruc-
tions. The following sections describe only those ISA-related features and any instructions that are new or modified
by their inclusion in MIPS64.

2.9.1 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this specification to describe the behavior of
the processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instruc-
tions in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

2.9.1.1 UNPREDICTABLE

UNPREDICTABLE results may vary from implementation to implementation, instruction to instruction, or as a
function of time on the same implementation or instruction. Software can never depend on results that are UNPRE-
DICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated, it is
UNPREDICTABLE. UNPREDICTABLE operations may cause arbxtrary exceptlons

UNPREDICTABLE results or operations have several implementation : restnctlons

+ UNPREDICTABLE results must not depend on any data source (memory or internal state) which are inac-
cessible in the current processor mode.

+ UNPREDICTABLE operations must not read, write, or modlfy the contents of memory or ‘internal state
which is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed
in user mode must not access memory or mternal state that is only accessible in Kernel Mode or Debug
Mode or in another process. = 4

+ UNPREDICTABLE operations must not halt or hang the processor &

2.9.1.2 UNDEFINED

UNDEFINED operations or behavior may vary from unplementatxon to implementation, instruction to instruction, or
as a function of time on the same 1mplementat10n or mstructxon UNDEFINED operations or behavior may vary
from nothing to creating an environment in whxch executxon can no lonoer continue. UNDEFINED operations or
behavior may cause data loss. ==~ ¢ i

UNDEFINED operations or behavior has one 1mplementat10n restriction:

« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor) The assertion of any of the reset signals must
restore the processor to an operational state.

November 15, 1999 - 19-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2 Unprivileged Instructions

2.9.2.1 The BCz instruction

Branch on Coprocessor Condition F T T R : e BCz
31 26 25 21 20 16 15 0
COPz BC ' Cond Offset
0100zz 01000
6 5 5 16
Format:
BCzCond offset ' MIPS64
Purpose:

Branch to the specified address if the coprocessor condition is met.

Description: henly
A branch target address is computed from the sum of the address of the instruction in the delay slot and the

16-bit offset, shifted left two bits and sign extended. Branch to that address if the coprocessor z condition is
met. The cond field is specific to each coprocessor and determmes the condition.

Note that the BCz instruction is actually a class of mstructrons one for each coprocessor number specified
by z, and including taken and not taken variants. e

Restrictions: , L
If the coprocessor enable bit for coprocessor z is zero in the Szatus re°rster, access to this coprocessor is not

allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, ac $S to coprocessor 0 is enabled even if the CUO bit is zero in the
Status register. # /

For coprocessor 0, this instruction is not valid and results in a Reserved Instruction Exception if access is
allowed to coprocessor 0. A Reserved Instructron Exceptlon is also initiated if BCz is not implemented for
COProcessor z. s, ;

Operation: e
I if (Statusgy, = 1) or i ;f;
((z = 0) and ((Statusggy= 00,) or (DebpgDM = 1) or (Statusgyy = 1) or (Statusggy = 1))) then
Access allowed to coprocessorz.
if ((z = 0) or (BCz Not Implemented)) then .
InitiateReservedInstructionException

endif
target_offset < sign_extend(offset || 0%)
else
Access not allowed to coprocessor z
InitiateCoprocessorUnusableException(z)
endif
I+1:If COPz.Condition[Cond] then
PC « PC + target_offset
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)

November 15, 1999 -20-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or BCz not implemented
for this coprocessor)

November 15, 1999 =21 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.2 The CFCz Instruction

Move Control from Coprocessorz = - CFCz
31 26 25 21 20 16 15 11 10 0
COPz CF rt rd 0
0100zz 00010 00000000000
6 5 5 5 11
Format:
CFCz rt,rd MIPS64

Purpose:

Move the contents of a coprocessor control register to a general register.

Description:
The contents of the control register rd of coprocessor z are sign-extended and loaded into general register rt.

Restnctlons s
If the coprocessor enable bit for coprocessor z is zero in the Status reoxster, access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor Ois enabled even if the CUO bit is zero in the

Status register.

For coprocessor 0, this instruction is not valid and results in a Reserved Instruction Exceptxon if access is
allowed to coprocessor 0. A Reserved Instruction Exception is also mmated if CFCz is not implemented for
COProcessor Z.

.V{,

The results are UNPREDICTABLE if cop};ocesso does not contain a control register as specified by rd.

Operation: 7
if (Statuscy, = 1) or :
((z = 0) and ((Statusggy= 00,) or (DebugDM 1) or (Statusgx; = 1) or (Statusggry, = 1))) then
Access allowed to coprocessor z
if ((z = 0) or (CFCz Not Implemented(
InitiateReservedInstructionExceptio
endif
temp <— CCR[z,rd]
GPR[rt] « sign_extend(temp)
else
Access not allowed to coprocessor z
ImtlateCoprocessorUnusableExccptlon(z)
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or CFCz not imple-

mented for this coprocessor)

November 15, 1999 -22-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

2.9.2.3 The CLO Instruction)

MIPS64™ Specification

Count Leading Ones in Word CLO -
31 26 25 21 20 16 15 11 10 5 0
SPEC2 rs rt rd 0 CLO
011100 00000 100001
6 5 5 5 5 6
Format:
CLO rd, rs MIPS64

Purpose:

Count the number of leading ones in a word

Description:

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is
counted and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR

rd is 32.

Architecture Change
Hardware/Software Implementatlon Note

In an earlier release of this document, the destination GPR of thls instruction was specified by the rt

field. In order to align the definition of this instruction with other similar instructions, the architecture
has changed to specify the destination GPR with the rd field. The following items provide a transpar-
ent transition between previous and current architectnre deﬁnitions:

* Software must place the same GPR number in both the rt and rd fields of the instruction. This will
guarantee correct execution on 1mplementatxons of both previous and current architecture defini-
tions. This is required to be compliant with’ the MIPS32 and MIPS64 architecture.

* New processor designs should use the rd field : as the ‘destination GPR number.

» Current processor designs should be changed to reﬂect the new definition to the extent that it is

convenient to do so.

Restrictions:

If GPR rs does not contain a sxgn-extended 32 b1t value (bits 63. 31 equal) then the results of the operation

are UNPREDICTABLE.

Operation:

if NotWord Value(GPR[rs]) then

UNPREDICTABLE

endif
temp ¢ 32
foriin31..0

if GPR[rs]; = O then

temp < 31 - i
break
endif
endfor
GPR[rd] « temp

Exceptions:
None

November 15, 1999

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS.

.23 .

MIPSY PROPRIETARY/CONFIDENTIAL:

DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.4 The CLZ Instruction

Count Leading Zeros in Word o o e o CLZ -
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt rd 0 cLz
011100 00000 100000

6 5 5 5 5 6

Format:
CLZ rd, rs MIPS64

Purpose

Count the number of leading zeros in a word

Description:
-Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is
counted and the result is written to GPR rd. If none of bits 31..0 were set in GPR rs, the result written to
GPR rd is 32. ;
Architecture Change

Hardware/Software Implementatlon Note , .
In an earlier release of this document, the destination GPR of thls mstructlon was speclﬁed by the rt
field. In order to align the definition of this instruction with other similar instructions, the architecture
has changed to specify the destination GPR with the rd field. The following items provide a transpar-
ent transition between previous and current hitecture deﬁmtlons

* Software must place the same GPR number i in both the 7 and rd fields of the instruction. This will
guarantee correct execution on 1mplementatxons of both previous and current architecture defini-
tions. This is required to be compllant w1th the MIPS32 and MIPS64 architecture.

» New processor designs should use the rd field ; as the ‘destination GPR number. .

* Current processor designs should be. anged to reﬂect the new deﬁmtlon to the extent that it is
convenient to do so.

Restrictions: -
If GPR rs does not contain a 51gn-extended 32-b1t value (bxts 63..31 equal) then the results of the operation
are UNPREDICTABLE.

Operation:
if NotWordValue(GPR[rs]) then
UNPREDICTABLE
endif
temp ¢ 32
foriin31..0
if GPR[rs]; = 1 then
temp < 31 -i
break
endif
endfor
GPR[rd] < temp

Exceptions:
None

November 15, 1999 224 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.5 The COPz Instruction

. Coprocessor Operation for Coprocessor z . RECREE o S enie s COPZ
31 26 25 24 0
COPz co Coprocessor Function
0100zz 1
6 1 25
Format:
COPz rt,rd MIPS64
Purpose:

Perform the coprocessor function specified by Bits [24:0].

Description:
A coprocessor function, as described by Bits [24:0], is performed that i is specxﬁc to coprocessor z. Refer to
the instruction descriptions for each coprocessor for more details.

Restrictions: :
If the coprocessor enable bit for coprocessor z is zero in the Status remster, access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor 0 is enabled even if the CUO bit is zero in the
Status register.

g
A Reserved Instruction Exception is taken if access is allowed to _coprocessor z and COPz is not imple-
mented for that coprocessor. 5

Operation:
if (Statuscy, = 1) or S,
((z = 0) and ((Statusggy= 00,) or (DebugDM = 1) or (StatusEXL = 1) or (Statusgg; = 1))) then
Access allowed to coprocessorz
if (COPz Not Implemented) then .
ImuateReservedInstrucuonExcepnon P
endif o _ 7
CoprocessorOperatxon(z CoprocessorFunctmn)

:

else :
Access not allowed to coprocessorz 4
InitiateCoprocessorUnusableException(z)
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (Access allowed, and COPz not implemented for this coprocessor)

November 15, 1999 -25-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 ‘ MIPS64™ Specification

2.9.2.6 The CTCz Instruction

Move Control to Coprocessor z _ o : CTCz .
31 26 25 21 20 1615 1110 0
COPz CT rt rd 0
0100zz 00110 00000000000
6 5 5 5 11
Format:
CTCz rt,rd MIPS64
Purpose:

Move the contents of a general register to a coprocessor control register.

Description:

.Bits 31..0 of GPR rt are loaded into the control register rd of coprocessor z.

Restrictions: i :
If the coprocessor enable bit for coprocessor z is zero in the Status register, access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception.. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor 0i is enabled even if the CUO bit is zero in thé
Status register. ‘ =

For coprocessor 0, this instruction is not valid and results in a Reserved Instruction Exception if access is
allowed to coprocessor 0. A Reserved Instruction Exceptxon is also. mmated if CTCz is not implemented for
COprocessor z. 25 -

Y Hamm, ; :
The results are UNPREDICTABLE if coprocessor z does not contain a control register as specified by rd.

Operation:
if (Statuscy, = 1) or 5
((z =0) and ((Statusggyy= 00;) or (DebugDM = 1) or (StatusEXL = 1) or (Statusggy = 1))) then
Access allowed to coprocessor z e
if ((z =0) or (CTCz Not Implemented)) then
ImtxateReservedInstrucnonExceptxon
endif
temp < GPR[rt]
CCR(z,rd] ¢ temp
else
Access not allowed to coprocessor z
InitiateCoprocessorUnusableException(z)
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (Access allowed to coprocessor and coprocessor 0 or CTCz not imple-
mented for this coprocessor)

November 15, 1999 -26-

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.7 The DCLO Instruction

Count Leading Ones in Doubleword =~ -~ .~ P w _-." . . DCLO .
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt rd 0 DCLO
011100 00000 100101
6 5 5 5 5 6
Format:
DCLO rd,rs MIPSé64
Purpose:

Count the number of leading ones in a doubleword

Description:
Bits 63..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is
counted and the result is written to GPR rd. If all of bits 63..0 were set m GPR rs, the result written to GPR
rd is 64. i
Architecture Change

Hardware/Software Implementatlon Note

In an earlier release of this document, the destination GPR of this mstructlon was specified by the r¢
field. In order to align the definition of this instruction with other similar instructions, the architecture
has changed to specify the destination GPR with the. rd field. The following items provide a transpar-
ent transition between previous and current architecture deﬁmt:ons

* Software must place the same GPR number in. th the rt and rd fields of the instruction. This will
guarantee correct execution on lmpleymentatlons of both previous and current architecture defini-
tions. This is required to be compliant the MIPSSZ and MIPS64 architecture.

e New processor designs should use the rd field : as the destination GPR number.

¢ Current processor designs should be changed to reﬂect the new definition to the extent that it is
convenient to do so. -

Restrictions: .
This instruction is not legal unless acce ess to 64-b1t operatlons is enabled If access is not enabled execution
results in a Reserved Instruction Excepnon ’

Operation:
if not MIPS64OperationsEnabled() then
InitiateReservedInstructionException()
endif
temp < 64
foriin63..0
if GPR[rs]; = O then
temp ¢— 63 - i
break
endif
endfor
GPR(rd] ¢ temp

Exceptions:

Reserved Instruction Exception

November 15, 1999 -27 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.8 The DCLZ Instruction

Count Leading Zeros in Doubleword : : i SR ‘st DCLZ
31 26 25 21 20 16 15 1110 6 5 0
SPEC2 rs rt rd 0 DCLZ
011100 00000 100100
6 5 5 5 5 6

Format:

DCLZ rd,rs MIPS64
Purpose

Count the number of leading zeros in a doubleword

Description:
‘Bits 63..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is
- counted and the result is written to GPR rd. If none of bits 63..0 were set in GPR rs, the result written to
GPR rd is 64.
Architecture Change 4

Hardware/Software Implementatlon Note -

In an earlier release of this document, the destination GPR of thi§ iis't'ruction was specified by the rt
field. In order to align the definition of this instruction with bther similar instructions, the architecture
has changed to specify the destination GPR with the rd field. The following items provide a transpar-
ent transition between previous and current a hite&ifré déﬁnifionS'

* Software must place the same GPR number f both the rt and rd fields of the instruction. This will
guarantee correct execution on lmple entatlons of both previous and current architecture defini-
tions. This is required to be compliant th the MIPS32 and MIPS64 architecture.

* New processor designs should use the rd ﬁeld as,the destination GPR number.

e Current processor designs should be changed tor eflect the new definition to the extent that it is
convenient to do so. e

Restrictions: “ -
This instruction is not lega] unless access to 64-b1t operatlons is enabled If access is not enabled, execution
results in a Reserved Instruction Exception. o

Operation:
if not MIPS64OperationsEnabled() then
InitiateReservedInstructionException()
endif
temp < 64
foriin63..0
if GPR[rs]; = I then
temp ¢ 63 -1i
break
endif
endfor
GPR[rd] < temp

Exceptions:

Reserved Instruction Exception

November 15, 1999 -28-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 - MIPS64™ Specification

2.9.2.9 The DMFCz Instruction

Doubleword Move from Coprocessorz Ceoe P me e e ow e DMFCz
31 26 25 21 20 16 15 11 10 32 0
COPz DMF rt rd 0 sel
0100zz 00001 00000000
6 5 5 5 8 3
Format:
DMFCz rt, rd MIPS64

DMFCz rt, rd, sel

Purpose:
Move the contents of a coprocessor register to a general register.

Description:
The contents of the coprocessor z register specrﬁed by. the combination;of rd and sel-are loaded into general
register rz. Not all coprocessors or registers within a coprocessor support the sub selection specified by the
sel field. In those instances, the sel field must be set to zero g

»

Restrictions:
If the coprocessor enable bit for coprocessor z is zero in the Status regrster access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor 0.is enabled even if the CUO'Bit is zero in the
Status register.

owed to coprocessor z and DMFCz is not imple-
is not enabled.

A Reserved Instruction Exception is taken if ‘access
mented for that coprocessor or if access to 64-bi

does.not contain a register as specified by rd and sel or
a' 32-b1t register.
;

I

The results are UNPREDICTABLE 1f coprocesso
if the coprocessor z register specified by rd and se

Operation:
if (Statuscy, = 1) or
((z=0) and ((Statusggy = OOﬁ or
if (DMFCz Not Implemented) or
(not MIPS640perationsEnabled()) then
ImtrateReservedInstrucuonExceptron
endif
data <« CPR[z,rd,sel]
GPR[rt] < data.

e ong = 1) or (Statusgxy, = 1) or (Statusggy, = 1))) then

else
InitiateCoprocessorUnusableException(z)
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (access allowed, and DMFCz not implemented for this coprocessor or
access to 64-bit operations is not enabled)

November 15, 1999 -29 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.10 The DMTCz Instruction

Doubleword Move to Coprocessor z . : . DMTCz
31 26 25 21 20 16 15 11 10 32 0
COPz DMT rt d 0 sel
0100zz 00101 0000000
6 5 5 5 8 3
Format:
DMTCz rt,rd MIPS64

DMTCz rt, rd, sel

Purpose:
Move the contents of a general register to a coprocessor register.

Description:
The contents of general register rt are loaded into the coprocessor z regiSter specified bythe combination of
rd and sel. Not all coprocessors or registers within a coprocessor support the sub selection specified by the
sel field. In those instances, the sel field must be set to zero. 2

Restrictions:
If the coprocessor enable bit for coprocessor z is zero in the Status reglster, access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception..If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor O is enabled even if the CUO bit is zero in the

Status register.

A Reserved Instruction Exception is taken i is allowed to coprocessor z and DMTCz is not imple-
mented for that coprocessor or if access to 64 bit operatxonskls not enabled.

The results are UNPREDICTABLE 1f coprocesso 'z does not contain a register as specified by rd and sel or
if the coprocessor z register specified by rd and sel is 32 ‘bit register.

Operation:
if (Statuscy, = 1) or _ ‘8
((z =0) and ((Statusggy= 002) or (DebugDM T)or (Statusgyy = 1) or (Statusggy = 1))) then
if (DMTCz Not Implemented) o "ﬂ%?
(not MIPS64QOperationsEnabled()) then
InitiateReservedInstructionException
endif
data < GPR[rt]
CPR([z,rd,sel] « data

else -
InitiateCoprocessorUnusableException(z)

endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (access allowed, and DMTCz not implemented for this coprocessor or
access to 64-bit operations is not enabled)

November 15, 1999 -30-

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.11 The MADD Instruction

Multiply and Add Word to Hi,Lo k) e e e B MADD
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 s rt 0 0 MADD
011100 00000 00000 000000
6 5 5 5 5 6
Format:
MADD rs, rt MIPS64

Purpose:

Multiply two words and add the result to Hi, Lo

Description:
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit-Concatenated values of Hl3, o and

LO5; o. The most significant 32 bits of the result is sign-extended and‘written into HI and the least significant
32 bits of the result is sign-extended and written into LO. No am.hmetlc exceptxon occurs under any circum-
stances. ;

Restrictions: ~ . .
If GPRs rs or rt do not contain sign-extended 32-bit values (b1ts 63 31 equal) then the results of the opera-
tion are UNPREDICTABLE. :

Note that this instruction does not provide the caﬁéb,i\lity of writing directly to a target GPR.

Operation:
if NotWord Value(GPR[rs]) or NotWordVa]ue(GPR[rt]) then
UNPREDICTABLE E
endif
temp < (HI31 0 ” LO31 0) + (GPR[I‘S]:“ 0 * GPR[I’E]:;I 0)
HI « sign_extend(tempgs_35) ’
LO « sign_extend(tempy; o) >, ..

sy

Exceptions:
None

Implementation Note:
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has
an operation latency which is data dependent, should assume that the shorter operand is in GPR rz.

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may
reduce the latency of the instruction on those processors which implement data-dependent instruction laten-
cies.

November 15, 1999 -31-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.12 The MADDU Instruction

.'Mult\iply and Add Uiisigned :Wofd to)Hi,Lof"‘_ S : SRR MADDU
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt 0 0 MADDU
011100 00000 00000 000001
6 5 5 5. 5 6
Format:
MADDU rs, 1t MIPS64

Purpose:

Multiply two unsigned words and add the result to Hi, Lo

Description:
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as
Unsigned values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of Hi3; o

and LO;; o The most significant 32 bits of the result is sign-extended and wntten into HI and the least sig-
nificant 32 bits of the result is sign-extended and written into LO. No arlthmetxc exception occurs under any
circumstances.

Restrictions: 5 4
If GPRs rs or rt do not contain sign-extended 32-bit values (blts 63 31 equal), then the results of the opera-
tion are UNPREDICTABLE. :

Note that this instruction does not provide thgﬁ@ﬁl ility of writing directly to a target GPR.

Operation: 5

if NotWord Value(GPR([rs]) or NotWordValue(G 7»
UNPREDICTABLE

endif

temp < (Hl3; o [| LO3;.0) + ((032 ” GPR[rS]31 0

HI « sign_extend(tempg3 32)

LO « sign_extend(temps;_g) -

Exceptions:
None

Implementation Note:
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has
an operation latency which is data dependent, should assume that the shorter operand is in GPR rz.

Programming Note: :
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may
reduce the latency of the instruction on those processors which implement data-dependent instruction laten-

cies.

November 15, 1999 -32-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.13 The MFCz Instruction
Move,from Coprocessorz - R Tl e e ot .. MFCz.-.
31 26 25 21 20 16 15 11 10 32 0
COPz MF rt rd 0 sel
0100zz 00000 00000000
6 5 5 5 8 3
Format:
MFCz 1t rd MIPS64

MFCz 1t rd, sel

Purpose:
Move the contents of a coprocessor register to a general register.

Description:
The contents of the least significant 32 bits of the coprocessor z register:specified by the combination of rd
and se! are sign-extended and loaded into general register rz. Not all coprocessors or registers within a copro-
cessor support the sub-selection specified by the sel field. In those mstances, the sel field must be set to zero

Restrictions: ‘Z; o
If the coprocessor enable bit for coprocessor z is zero in the Status recnster access to this coprocessor is not

allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor 0i is enabled even if the CUO Bit is zero in the

Status regxster B

,"’\

A Reserved Instruction Exception is taken if access
mented for that coprocessor.

is allowed to coprocessor z and MFCz is not imple-

o

The results are UNPREDICTABLE if coprocess otz does not contain a register as specified by rd and sel.

“

Operation:
if (Statuscy, = 1) or ; :
((z =0) and ((Statusgsy = 002) or (DebugDM = 1) or (Statusgyy = 1) or (Statusggy = 1))) then
if (MECz Not Implemented) then~
ImtlateReservedInstructlonExceptxon 4

endif e
data < CPR([z,rd,sel]
GPR(rt] « sign_extend(data)

else
InitiateCoprocessorUnusableException(z)

endif '

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (access allowed, and MFCz not implemented for this coprocessor)

November 15, 1999 -33-

MIPSY PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.14 The MOVN.PS Instruction

Floating Point MQVe Cohdi_tional onNotZero - S MOVN.’i’S
31 26 25 21 20 16 15 11 10 6 5 0
COP1 PS rt fs fd MOVN
010001 10110 010011
6 5 5 5 5 6
Format:
MOVN.PS fd, fs, rt MIPS64
Purpose:

To test a GPR then conditionally move an FP value.

Description:
If the value in GPR rt is not equal to zero, then the value in FPR f5 is placed in FPR fd. The source and des-
tination are values in format PS. ;

-If GPR rt contains zero, then FPR fs is not copied and FPR fd contams its prev1ous value in format PS. If
FPR fd did not contain a value either in format PS or previously unused data from a load or move-to opera-
tion that could be interpreted in format PS, then the value of FPR fd becomes UNPREDICTABLE.

UNPREDICTABLE.

The operand must be a value in format.
FPR fs becomes UNPREDICTABLE

Operation:
if GPR[rt] # O then
StoreFPR(fd, PS, ValueFPR(fs, PS))

else
StoreFPR(fd, PS, ValueFPR(fd PS))
endif

Exceptions:
Coprocessor Unusable Exception (Access not alIowed to coprocessor)
Reserved Instruction Exception (access allowed, but 64-bit operations are not enabled or the paired single
format is not implemented)

November 15, 1999 -34 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.15 The MOVZ.PS Instruction

Floating Point Move Conditional on Zero .- S e o e MOVZPS
31 26 25 21 20 16 15 1110 6 5 0
COP1 PS rt fs fd MOvZ
010001 10110 010010
6 5 5 5 5 6
Format:
MOVZ.PS fd, fs, 1t MIPS64
Purpose:

To test a GPR then conditionally move an FP value.

Description:
If the value in GPR rt is equal to zero, then the value in FPR fs is placed in FPR fd. The source and destina-

tion are values in format PS. iy

O
If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its prev:ous value in format PS. If FPR
fd did not contain a value either in format PS or previously unused data from a load or move-to operatlon

that could be interpreted in format PS, then the value of FPR fd becomcs UNPREDICTABLE

The move is non-arithmetic; it causes no IEEE 754 exceptlons ‘,»»,f

Restrictions:

FPR f5 becomes UNPREDICTABLE

Operation:
if GPR[rt] = 0 then
StoreFPR(fd, PS, ValueFPR(fs PS))

else 77
StoreFPR(fd, PS, ValueFPR(fd,wPS))
endif /’7
Exceptions:

Coprocessor Unusable Exception (Access not allowed to coprocessor)
Reserved Instruction Exception (access allowed, but 64-bit operations are not enabled or the paired single
format is not implemented)

November 15, 1999 -35-

MIPSY PROPRIETARY/CONFIDENTIAL :
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.16 The MSUB Instruction

- Multiply and Subtract Word to Hi,Lo : ‘ L ERRS e R e A MSfIB R
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt 0 0 MsuB
011100 00000 00000 000100
6 5 5 5 5 6
Format:
MSUB rs,1t MIPS64
Purpose:

Multiply two words and subtract the result from Hi, Lo

Description:

~The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as snoned

values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of Hl3;

and LO;; o The most significant 32 bits of the result is sign-extended and written into HI and the least sig-

-nificant 32 bits of the result is sign-extended and written into LO No ar1thmetlc exceptxon occurs under any
circumstances. % -

o8y,

Restrictions: i
If GPRs rs or rt do not contain sign-extended 32-bit values (bxts 63 31 equal), then the results of the opera-

tion are UNPREDICTABLE.

Note that this instruction does not provide the capability of writing directly to a target GPR.

Operation:
if NotWord Value(GPR[rs]) or NotWordValue(GPR{rt]) then
UNPREDICTABLE :
endif
temp — (HI3| 0 “ LO31 o) (GPR[I'S]31 0 * GPR[I'I]M 0)
HI « sign_extend(tempg;z_33) ;.' : P
LO ¢ sign_extend(temps;)

~ ?

Exceptions:
None

Implementation Note:
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has
an operation latency which is data dependent, should assume that the shorter operand is in GPR rt.

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rz. This may
reduce the latency of the instruction on those processors which implement data-dependent instruction laten-

cies.

November 15, 1999 -36-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.17 The MSUBU Instruction

Multiply gndSubtr'act Unsigned Word to Hi,Lo ... R U P PR U A C o oo.n. MSUBU ;-
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt 0 0 MSuUBU
011100 00000 00000 000101
6 5 5 5 5 6
Format:
MSUBU rs, 1t MIPS64

Purpose:

Multiply two unsigned words and subtract the result from Hi, Lo

Description:
The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rz, treating both operands as
unsigned values, to produce a 64-bit result. The product is subtracted-from the 64-bit concatenated values of
Hl3; o and LO;;. o, The most significant 32 bits of the result is sign- extended and written into HI and the least
significant 32 bits of the result is sign-extended and written mto LO No anthmenc exception occurs under
any circumstances. Rty

Restrictions: J
If GPRs rs or rt do not contain sign-extended 32-bit values (bltS 63 31 equal) then the results of the opera-
tion are UNPREDICTABLE. {

N

Note that this instruction does not provide the capability of writing directly to a target GPR.

Operatlon

UNPREDICTABLE
endif

temp ¢ (319 [| LO31.0) - (0°2 [GPRIrslyy.0) %(0? || GPRIrtl31.0))
HI « sign_extend(temps3_32) . ’
LO « sign_extend(temps; o)

Exceptions: g
None |

Implementation Note:
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has
an operation latency which is data dependent, should assume that the shorter operand is in GPR rz.

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rz. This may
reduce the latency of the instruction on those processors which implement data-dependent instruction laten-
cies.

November 15, 1999 -37-

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.18 The MTCz Instruction

Move to Coprocessor z e T ' . MTCz
31 26 25 21 20 16 15 11 10 32 0
COPz MT rt rd 0 sel
010022 00100 0000000
6 5 5 5 8 3
Format:
MTCz rt,rd MIPS64

MTCz rt, rd, sel

Purpose:
Move the contents of a general register to a coprocessor register.

Description:
The contents of general register rz are loaded into the coprocessor z register specified by the combination of
rd and sel. Not all coprocessors or registers within a coprocessor support the sub—selectlon specified by the
sel field. In those instances, the sel field must be set to zero. - :

Restrictions: s
If the coprocessor enable bit for coprocessor z is zero in the Status reglstet access to this coprocessor is not
allowed, and execution of this instruction results in a Coprocessor Unusable Exception. If the processor is
running in Kernel Mode or Debug Mode, access to coprocessor 0 is enabled even if the CUO bit is zero in the
Status register.

A Reserved Instruction Exception is taken if s is allowed to coprocessor z and MTCz is not imple-

mented for that coprocessor.

Operation:
if (Statuscyy, = 1) or
((z=0) and ((Statusggy = 002) or (DebugDM = 1) or (Statusgy; = 1) or (Statusgg; = 1))) then
if (MTCz Not Implemented) then *
InitiateReservedInstructionException
endif
data < GPR[rt]
if (z = 0) and (Width(CPR[z,rd,sel]) = 64) then
CPR[z,rd,sel] « data
else
CPR[z,rd,sel] < datas; g
endif
else
InitiateCoprocessorUnusableException(z)
endif

Exceptions:
Coprocessor Unusable Exception (Access not allowed to coprocessor)

November 15, 1999 .38 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Reserved Instruction Exception (access allowed, and MTCz not implemented for this coprocessor)

November 15, 1999 -39.-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.19 The MUL Instruction

Multiply Word to GPR - VL , e . .MUL .
31 26 25 21 20 16 15 11 10 6 5 0
SPEC2 rs rt rd 0 MUL
011100 00000 000010
6 5 5 5 5 6
Format:
MUL rd,rs, 1t MIPS64
Purpose:

Multiply two words write the result to a GPR

Description:
“The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The least significant 32 bits of the product are written to GPR rd. The con-
tents of HI and LO are not defined after the operation. No arnthmetlc exceptxon oceurs. under any circum-

“'stances. |

RestnctlonS'

Operation:
if NotWord Value(GPR[rs]) or NotWordV‘ U
UNPREDICTABLE ;»
endif \

temp <— GPR[rsl3; o * GPR(rt]3; o
GPR[rd] « sign_extend(temps;_q)
HI « UNPREDICTABLE
LO « UNPREDICTABLE

Exceptions:
None

Implementatlon Note:
Processors which implement a multiplier array which is not square (e.g., 32 x 16), and which therefore has
an operation latency which is data dependent, should assume that the shorter operand is in GPR rt.

Programming Note:
Where the size of the operands are known, software should place the shorter operand in GPR rt. This may
reduce the latency of the instruction on those processors which implement data-dependent instruction laten-

cies.

November 15, 1999 -40 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 ' MIPS64™ Specification

2.9.2.20 The PREF Instruction

Prefetch - . Lo) o . . ; . PREF
31 26 25 21 20 16 15 0
PREF base hint Offset
110011
6 5 5 16
Format:
PREF hint, offset(base) MIPS IV
Purpose:

To move data between memory and cache

Description:
PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint
field supplies information about how the addressed data is to be manip_ula'ted.

PREF enables the processor to take some action as specified by the hmt ﬁeld to improve program perfor-
mance. The action taken for a specific PREF instruction is both- system and context dependent. Any action,
including doing nothing, is permitted as long as it does not change archxtecturally visible state or alter the
meaning of a program. Implementatlons are expected elther to do nothmg, or take an action that increases
the performance of the program. -

Dy be

PREF does not cause addressing-related exceptions. If Vit{)'élbeé&happen to raise an exception condition, the
exception condition is ignored. If an addressmg-related exception condmon is raised and ignored, no data
movement occurs. 4

i “
For a cached location, the expected and useful action f
cache and the memory hierarchy. The 51ze of the block transferred is implementation dependent, but soft-
ware may assume that it is at least one cache blo¢

Jire e N

The following table defines the hmt ﬁeld values

Table 36: PREF hint field encodings

Value Name Daté Use and Desired PREF action

0 load Use: Prefetched data is expected to be read (not modified)

Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified

Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

November 15, 1999 -41 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 36: PREF hint field encodings

Value

Name

Data Use and Desired PREF action

load_streamed

Use: Prefetched data is expected to be read (not modified)
but not reused extensively; it “streams” through the cache

Action: Fetch data as if for a load and place it in the cache
so that it does not displace data prefetched as “retained”

store_streamed

Use: Prefetched data is expected to be stored or modified
but not reused extensively; it “streams” through the cache

Action: Fetch data as if for a store and place it in the cache
so that it does not displace data prefetched as “retained”

load_retained

Use: Prefetched data is expected to be read (not modified)
and reused extensively; it should be “retained” in the cache

Action: Fetch data as if for a load and place it in the cache
so that it is not displaced by data prefetched as “streamed”

store_retained

Use: Prefetched data is expected to be stored or modified
and reused extenswely, it shoul L be “retained” in the cache

Action: Fetch data as if for a store and place it in the c'aéhe
so that it is not displaced by data prefetched as “streamed”

8-24

Reserved

Reserved"fg‘f'f*future use - not a\?ailable to implementations.
A Rl ¥h

25

writeback_invalidate
(also known as nudge)

ger to be exbeeted to be used

Actlon For wnteback cache, schedule a writeback of any

7‘4d1rty data. At the completlon of the writeback, mark as

invalid th state of any cache lines written back.

26-31

Implementanon Depen-"

dent

sznassxgned by the Archxtecture avaxlable for implementa-

txon("(fependent use

Restrictions:

None

Operation:

vAddr < GPR[base] + sign_extend(offset)
(pAddr, CCA) < AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot access a mapped location unless the translation for that location is present in the TLB. Loca-
tions in memory pages that have not been accessed recently may not have translations in the TLB, so

prefetch may not be effective for such locations.

November 15, 1999

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

-472 -

MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0 MIPS64T™ Specification

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using a pointer
before the validity of the pointer is determined.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from soft-
ware to hardware. Software should not assume that hardware will always prefetch data in an optimal way. If
data is to be truly retained, software should use the Cache instruction to lock data into the cache.

Implementation Notes:
It is implementation dependent whether encodings of the hint field listed as “Implementation Dependent” or
“Unimplemented” are treated as a NOP, or mapped to another valid encoding of the hint field.

Hint field encodings whose function is described as “‘streamed” or “retained” convey usage intent from soft-
ware to hardware. Processors should make an attempt to take this information into account when prefetching
data, but are not obligated to do so.

Processors should never implement the writeback_invalidate encoding of the hint field in such a way that the
action moves data from memory hierarchy to the cache. This function should either take the action intended
for the encoding (to schedule a possible writeback and subsequent. mvahdanon) or treat the function as a
NOP. ; }

It is implementation dependent whether a data watch is trig ered by a prefetch instruction whose address
matches the Watch register address match conditions. The preferred 1mplementat10n is not to match on the
prefetch instruction. 5

e

November 15, 1999 -43 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.21 The PREFX Instruction

Prefetch Indexed . ‘ v v o : e PREFX
31 26 25 21 20 16 15 11 10 6 5 0
COP1X base index hint 0 PREFX
010011 00000 001111
5 6
Format:
PREFX hint, index(base) MIPS IV
Purpose:

To move data between memory and cache

Description:
PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The
‘hint field supplies information about how the addressed data is to be mampulated s
The only functional difference between the PREF and PREFX lnstructlons is the addressing mode imple-
mented by the two. Refer to the PREF instruction description for all other details, including the encoding of
- the hint field. o
Note, however, that the prefx instruction is only available on ‘processdrs"ihat 1mplement..”ﬂ.oat1ng point, and
should only be generated by compilers in situations in Wthh the correspondmo load and store indexed float-
ing point instructions are generated. PR :

Restrictions:
None

Operation:
if (Statuscyy = 0) then
InmateCoprocessorUnusableExceptxon(1»)
-endif
‘vAddr «<— GPR[base] + GPR[mdex]
“(pAddr, CCA) « AddressTranslatlon(vAddr DATA LOAD)
Prefetch(CCA, pAddr, vAddr, DATA; hint)

Exceptions:
Coprocessor Unusable Exception
Prefetch does not take any TLB-related or address- related exceptions under any circumstances.

Programming Notes:
Refer to the corresponding section in the PREF instruction description.

Implementation Notes:
Refer to the corresponding section in the PREF instruction description.

November 15, 1999 - 44 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.2.22 The SSNOP Instruction

Superscalar Inhlblt NOP - o ' C e e SSNOP .. -
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 0 0 1 SLL
000000 00000 00000 00000 00001 000000
6 5 5 5 5 6
Format:
SSNOP MIPS32
Purpose:

Break superscalar issue on a superscalar processor

Description:
This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP
instruction to single-issue. Notwithstanding implementation dependent issue rules, a processor must end the
current instruction issue between the instruction previous to the SSNOP and the SSNOP. The SSNOP then
issues alone in the next issue slot.

. SSNOFP is intended for use primarily to allow the programmer control over CPO hazards by converting
instructions into cycles in a superscalar processor. For example, to msert at least two cycles between an
MTCO and an ERET, one would use the following sequence o

mtc0

ssnop
ssnop
eret

Based on the normal issues rules of the process: MTCO issues in cycle T. Because the SSNOP instruc-
tions must issue alone, they may issue no earlier tha cle T+1 and cycle T+2, respectively. Finally, the
ERET issues no earlier than cycle T+3. Note that although the instruction after an SSNOP may issue no
earlier than the cycle after the SSNOPus issued, that instruction may issue later. This is because other imple-
mentation-dependent issue ru[es may agply that prevent an issue in the next cycle. Processors should not
introduce any unnecessary dela uing SSNOP instructions.

On a single-issue processor, this mstructxon isa nop that takes an issue slot.

Restrictions:
None

Operation:

Exceptions:
None

November 15, 1999 -45 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.3 Privileged Instructions

2.9.3.1 The CACHE Instruction

Perform Cache Qperatidrl e N o " CACHE
31 26 25 21 20 16 15 0
CACHE base op ‘ Offset
101111
6 5 5 16
Format:
CACHE op, offset(base) MIPS64
Purpose:

To perform the cache operation specified by op.

Description: s .
The 16-bit offset is sign-extended and added to the contents of the base regrster to form an effective address.
The effective address is used in one of three ways based on th . operation to be performed and the type of
cache as described in Table 37.

Table 37: Usage of Effective A’?]dress e

gk

Operation Type of
Requires an Cache

Usage (l)f> Effectiv:eJAddress

g

Address Virtual The effectlve address s’ “used to address’ the cache It is implementa-

Address Physical | The eﬂectrve addres , is/translated by the MMU to a physical address.

The physrcal addressm then used to address the cache

. Index N/A dress may be translated by the MMU to a physrcal
address. It is 1mplementat10n dependent whether the effective address

or the translated’ ‘physical address are used to index the cache. :

Assuming that the total cache size in bytes is CS, the associativity is
A, and the number of bytes per tag is BPT, the following calculations
give the fields of the address which specify the way and the index:

OffsetBit <~ Log2(BPT)

IndexBit <— Log2(CS / A)

WayBit < IndexBit + Ceiling(Log2(A))
Way < Addry,yBit-1..IndexBit

Index <= AddripgexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the
Index value fully specifies the cache tag. This is shown symbolically
in Figure 4.

November 15, 1999 - 46 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 4: Usage of Address Fields to Select Index and Way

WayBit IndexBit OffsetBit
yaw s s 0

Unused Way Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation.
For index operations (where the address is used to index the cache but need not match the cache tag) soft-
ware should use unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified
exceptions nor TLB Refill exceptions with a cause code of TLBS nor data Watch exceptions.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For
example, if a Writeback operation detects a cache or bus error during the processing of the operation, that
error is reported via a Cache Error exception.

An Address Error Exception (with cause code equal AAEL) may occur.if the effective address references a
portion of the kernel address space which would normally result in such an exceptxon It is implementation
dependent whether such an exception does occur. R

It is implementation dependent whether a data watch is triggered by a cache instruction whose address
matches the Watch register address match conditions. The preferred 1mplementanon is not to match on the
cache instruction. ’ i

Bits [17:16] of the instruction specify the cache on whrch to perfonn the operation, as follows:

R

Table 38: Encoding of ?1ts[17] 6] of)CACHE Irrgtructron

Code | Name ,|%m, ° Cache

00 1 Prlmary Instruction

01 D -Primary Datayor Unified Primary
10 |T. |Tertiary -~

11 IS Seconﬂarty

Bits [20:18] of the instruction: specrfyat e operation to perform. To provide software with a consistent base of
cache operations, certain encodings must be supported on all processors. The remaining encodings are rec-
ommended.

November 15, 1999 47 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

I
Table 39: Encoding of Bits [20:18] of the CACHE Instruction
Effective
Code | Caches Name 3 ddress Operation Compliance
perand
Type
Set the state of the cache block at the
specified index to invalid.
| I Index Invalidate | Index This required encoding may be used by Required
software to invalidate the entire instruc-
tion cache by stepping through all valid
y indices.
N Index Writeback For a write-back cache: If the state of the
| D Invalidate / Index | Index cache block at the specified index is valid | Required
. Invalidate and dirty, write the block back to the
memory address specxﬁed by the cache
000 tag. After that operation is completed set
the state of the cache bIock to mvalxd If
the block is valid but not dxrty set the
state of the block to mvahd
Index Writeback : ‘ .
S.T Invalidate / Index Index For a write- through cache: Set the state of B;ﬁional

Invalidate the cache block at the specxﬁed index to
mvahd :

This reqmred encodmg may be used by
»software to mvahdate the entire data
y steppmg through all valid indi-
5 ces.
7Read the tag for the cache block at the
' specxﬁed index into the Taglo and TagHi -
] COPO registers. If the Datal.o and DataHi
‘i ‘reglsters are 1mplemented also read the
‘data corresponding to the byte index into
ithe DataLo and DataHi registers.
001 [CAl Index Load Tag Index =z Recommended
o " | The granularity and alignment of the data
read into the Datalo and DataHi registers
is implementation-dependent, but is typi-
cally the result of an aligned access to the
cache, ignoring the appropriate low-order
bits of the byte index.

November 15, 1999 -48 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 39: Encoding of Bits [20:18] of the CACHE Instruction

Code | Caches

Name

Effective
Address
Operand

Type

Operation

Compliance

010 | All

Index Store Tag

Index

Write the tag for the cache block at the
specified index from the Taglo and TagHi
COPO registers.

This required encoding may be used by
software to initialize the entire instruction
of data caches by stepping through all
valid indices. Doing so requires that the
TagLo and TagHi registers associated with
the cache be initialized first. '

Required

011

Available for lmplementatlon dependent
operation “

Optional

LD
100

Hit Invalidate

Address

If the cache block contams the specified
address, set the state of the cache block to

o

invalid. : ;',;-" Ve

from the mstructlon cache by stepping

S, T

Hit Invalidate

Address

through the address’ range by the line size
-of the cache.

This required encodmg may be used by ..
software to mvahdate arange of addresses

Required
(Instruction
Cache Encod-
ing Only),
Recom-
mended other-
wise

Optional

Fill

Address

Fill the cache from the specxﬁed address

Recommended

Hit Writeback

Invalidate / Hit

Invalidate

Address

s ‘:Forpa Wwrite-back cache: If the cache block

tains the specxﬁed address and it is
valid 3 d dirty, write the contents back to

101

S, T

Hit Writeback
Invalidate / Hit
Invalidate

Address "

g
&

memory -After that operation is com-
jpleted set the state of the cache block to
mvahd If the block is valid but not dirty,
ﬁset the state of the block to invalid.

;For a write-through cache: If the cache
“block contains the specified address, set
the state of the cache block to invalid.

This required encoding may be used by
software to invalidate a range of addresses
from the data cache by stepping through
the address range by the line size of the
cache.

Required

Optional

Hit Writeback

Address

If the cache block contains the specified

S, T

Hit Writeback

Address

address and it is valid and dirty, write the
contents back to memory. After the opera-
tion is completed, leave the state of the
line valid, but clear the dirty state. For a
write-through cache, this operation may
be treated as a nop.

Recommended

Optional

November 15, 1999

- 49 -

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 39: Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address

Code | Caches - Name Operand A Operation Compliance

Type

If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to
valid and locked. If the cache already con-
tains the specified address, set the state to
locked. In set-associative or fully-associa-
tive caches, the way selected on a fill from
memory is implementation specific.

The lock state may be cleared by execut-
ing an Index Invalidate, Index Writeback
Invalidate, Hit Invalxdate, or Hit Write-
back Invalidate operation to the locked
line, or via an Index Store Tag operation
to the line that clears the lock bit. Note
that clearing the lock state via ‘Index Store -
111 { LD Fetch and Lock Address Tag is dependent on the unplementatlon- .| Recommended
dependent cache tag and cache line orga- |
nization, and that Index and Index Write-
back Invahdate operatxons are dependent
el cache line orgamzatlon Only Hit and

-4,
ar

It is impl mentanon dependent whether a
Jlocked Ime is displaced as the result of an
yexgﬁemal invalidate or intervention that
hlts gn the locked line. Software must not
-depend on the Tocked line remaining in
‘the cache if an external invalidate or inter-
-vention would invalidate the line if it were
#| not locked.

Restrictions:
Execution of this instruction is legal only if the processor is operating in Kernel Mode or Debug Mode, or if
the CPO enable bit is set in the Status register. In other circumstances, a Coprocessor Unusable Exception is
taken.

The operation of this instruction is UNDEFINED for any operation/cache combination that is not imple-
mented.

The operation of this instruction is UNDEFINED for uncacheable addresses.

November 15, 1999 -50-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Operation:

if (Statuscyg = 1) or (Statusggy= 00,) or (Debugpyg = 1) or (Statusgxy = 1) or (Statusgg = 1) then
vAddr « GPR[base] + sign_extend(offset)
(pAddr, uncached) <~ AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

else
InitiateCoprocessorUnusableException(0)

endif

Exceptions:
TLB Refill Exception.
TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception
Cache Error Exception

November 15, 1999 -51-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.3.2 The ERET Instructxon

ExceptionReturnERET .
31 26 25 24 0
COPO co 0 ERET
010000 1 0000000000000000000 011000
6 1 19 6
Format:
ERET MIPS64

Purpose:

Return from interrupt, exception, or error trap

Description:
ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap process-
.ing. ERET does not execute the next instruction (i.e., it has no delay slot). :

Restrictions: ra

-The operation of the processor is UNDEFINED if an ERET is placed in the delay slot of a branch or Jump
“instruction. i .

An ERET placed between an LL and SC instruction will alvﬁﬁ cause the SC to fail.
This instruction is legal only if the processor is in Kernel Mode ;‘gi;“l?ebug Mode, or if the CPO usable bit is
set in the Status register. In other cnrcumstance ~execution of this instruction results in a Coprocessor Unus-
able Exception. 2

S
T

of the instruction at the PC to whnch the ERET‘
state, and addressing mode. @

Operatnon'

if Statusgg; =1 then
PC « ErrorEPC
StatusERL «~0
else
PC « EPC
Statusgy; ¢ 0
endif
LLbit <0
else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

November 15, 1999 -52-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.3.3 The TLBP Instruction

Probe TLB for Matching Entry -~~~ T S T TP
31 26 25 24 0
COPO co 0 TLBP
010000 1 000 0000000000000000 001000
6 1 19 6
Format:
TLBP MIPS64

Purpose:

Find a matching entry in the TLB.

Description:
The Index register is loaded with the index of the TLB entry whose contents match the contents of the
EntryHi register. If no TLB entry matches, the high-order bit of the Index register is set.

Restrictions:
This instruction is legal only if the processor is in Kernel Mode.or De ug: Mode, or if the CPO usable bit is
set in the Status register. In other circumstances, execution of this' mstructlon results in a Coprocessor Unus-
able Exception. .

“a.

For processors that do not include the standard TLB MMU the operation of this instruction is UNDE-
FINED. However, the preferred 1mplementat10n is a Reserved Instructlon Exception.

Operation: ;
if (Statuscyg = 1) or (Statusggy= 00,) or (DebugD
Index « 1 || UNPREDICTABLE3}"
for i in 0...TLBEntries-1
if (TLB[i]g = EntryHig) and)
((TLB[ilven; and not (TLB(ilyug) =,
(EntryHiypy; and not: (TEB[ilya))) and -
(TLBi]g or (TLB[l}AsxD UyﬁlAsm)) then. -
Index «1i
endif
endfor
else

Statusgy; = 1) or (Statusgg; = 1) then

InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
Reserved Instruction Exception (if not implemented)
Machine Check (if implemented and a TLB shutdown condition is detected on a TLB read)

November 15, 1999 -53-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2934-TheTLBRInanUon

ReadIndexed TLBEntry . TR
31 26 25 24 0
COPO Cco 0 TLBR
010000 1 0000000000000000000 000001
6 1 19 6
Format:
TLBR MIPS64
Purpose:

Read an entry from the TLB.

Description:

The EntryHi, EntryLo0O, EntryLol, and PageMask registers are loaded with the contents of the TLB entry

pointed to by the Index register. Note that the value written to the EntryHi, EntryLo0, and EntryLol registers

may be different from that originally written to the TLB via these regxstefs in that:

e The value returned in the VPN2 field of the EntryHi register may | have those bits set to zero correspond-
ing to the one bits in the Mask field of the TLB entry (the least 51gn1ﬁcant bit of VPN2 corresponds to -
the least significant bit of the Mask field). It is implementation dependent whether these bits are pre-
served or zeroed after a TLB entry is written and then read. |

+ The value returned in the PFN field of the EntryLo0 and EntryLol registers may have those bits set to

zero corresponding to the one bits in the Mask field:of the TLB entry (the least significant bit of PFN
corresponds to the least significant bit of the Mask’ fiel ‘;1mplementat10n dependent whether these
bits are preserved or zeroed after a TLB entryis written and then read.

The value returned in the G bit in both the Ent EntryLol registers comes from the single G bit
ical AND of the two G bits in EntryLo0O and

EntryLol when the TLB was written.
Restrictions: &
This instruction is legal only if the process LS i
set in the Status register. In other
able Exception.

The operation is UNDEFINED if
of TLB entries in the processor.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDE-
FINED. However, the preferred implementation is a Reserved Instruction Exception.

November 15, 1999 -54 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Operation:
i ¢~ Index
if (Statuscyg = 1) or (Statusggy= 00,) or (Debugpy, = 1) or (Statusgxy = 1) or (Statusgg; = 1) then
if i > TLBEntries -1 then
UNDEFINED
endif
PageMaskyqc = TLB[i]pask
EntryHi « TLB[ilg || 0F!||
(TLB[ilypnz and not TLB[ilp,g0) || - # Masking of VPN2 is implementation dependent
0° || TLBlilasip

EntryLol < 0P || (TLB(ilpgy; and not TLBiJy,) |l #Masking of PEN is implementation dependent
TLBilc || TLB[ilp, || TLB[ily, || TLB(ilg

EntryLo0 « OF!!|| (TLB[ilpgno and not TLB[ilyus) || # Masking of PFN is implementation dependent
TLB(ilco || TLBlilpo || TLBIilvo || TLB[ilg

else
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
Reserved Instruction Exception (if not implemented) ;
Machine Check (if implemented and a TLB shutdown condition.i is detected ona TLB read)

November 15, 1999 -55-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.3.5 The TLBWI Instruction

Write Indexed TLB Entry R e ~ TLBWI
31 26 25 24 0
COPO co 0 TLBWI
010000 1 000 0000000000000000 000010
6 1 19 6
Format:
TLBWI MIPS64
Purpose:

Write a TLB entry indexed by the Index register.

Description:
The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLoO0,
EntryLol, and PageMask registers. The information written to the TLB entry may be different from that in
the EntryHi, EntryLo0, and EntryLol registers, in that: 3
e The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to

the one bits in the Mask field of the PageMask register (the least mgmﬁca bit of VPN2 corresponds to.
the least significant bit of the Mask field). It is 1mplementat10n ¢ pendent whether these bits are pre-
served or zeroed during a TLB write.
e The value written to the PFNO and PFNI1 fields of the TLB .entry may have those bits set'to zero corre-
sponding to the one bits in the Mask field of PageMask register (the least significant bit of PFN corre-
sponds to the least significant bit of the Mask field). It is imp ementanon dependent whether these bits
are preserved or zeroed during a TLB write.
+ The single G bit in the TLB entry is set from
EntryLol registers.

logical AND of;;gl}e G bits in the EntryLo0 and

Restrictions:]
This instruction is legal only if the proce
set in the Status register. In other c1rcumstance
able Exception. /

in Ker:h Mode or Debug Mode, or if the CPO usable bit is
execution of this instruction results in a Coprocessor Unus-

The operation is UNDEFINED
of TLB entries in the processor.

f the Index register are greater than or equal to the number

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDE-
FINED. However, the preferred implementation is a Reserved Instruction Exception.

November 15, 1999 - 56 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Operation:
1 < Index
if (Statuscyg = 1) or (Statusg gy = 00,) or (Debugpyg = 1) or (Statusgxy = 1) or (Statusggy, = 1) then
if i > TLBEntries -1 then
UNDEFINED
endif
TLB[i]y,sk ¢ PageMasky,ac
TLB[i]g < EntryHig
TLB[ilypna ¢~ EntryHiypy, and not PageMasky,,c # Masking of VPN2 is implementation dependent
TLB[i]asip ¢~ EntryHiagp
TLB[i]g < EntryLolg and EntryLoOg
TLBl[ilpgn; ¢ EntryLolpgy and not PageMasky, # Masking of PFN is implementation dependent
TLBl[i]c, ¢« EntryLol¢
TLB[i]p; < EntryLolp
TLB[i]y; < EntryLoly
TLB(i]pgno ¢~ EntryLoOpgy and not PageMasky,qc ~ # Masking of PFN is implementation dependent
TLB[i]gg ¢~ EntryLoO¢ Er e
TLB[i]pg ¢ EntryLo0Op
TLB[i]yg < EntryLoOy
else

InitiateCoprocessorUnusableException(0)
endif

"

Exceptions:
Coprocessor Unusable Exception ; .
Reserved Instruction Exception (if not 1mplemented) -
Machine Check (if implemented and a TLB shutdown condmon is detected on a TLB write)

November 15, 1999 -57-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2 9.3.6 The TLBWR Instructxon

‘Write Random TLB Entry L , Celgbesat oo UOTLBWR
31 26 25 24 0
COPO co 0 TLBWR
010000 1 0000000000000000000 000110
6 1 19 6
Format:
TLBWR MIPS64

Purpose:

Write a TLB entry indexed by the Random register.

Description:
The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0,
EntryLol, and PageMask registers. The information written to the TLB entry may be different from that in
the EntryHi, EntryLo0, and EntryLol registers, in that: .

» The value written to the VPN2 field of the TLB entry may have those b1ts set to zero correspondmg to
the one bits in the Mask field of the PageMask register (the Ieast 51gmﬁcant bit of VPN2 corresponds to-
the least significant bit of the Mask field). It is 1mplementanon pendent whether these bits are pre-
served or zeroed during a TLB write. Y

e The value written to the PFNO and PFN1 fields of the TLB entry may have those bits set'to zero corre-
sponding to the one bits in the Mask field of PageMask register (the least significant bit of PFN corre-
sponds to the least significant bit of the Mask field). Tt is 1mpIementat10n dependent whether these bits
are preserved or zeroed during a TLB writ

¢ The single G bit in the TLB entry is set from h 1
EntryLol registers.

1 AND of the G bits in the EntryLo0 and

Restrictions:
This instruction is legal only if the processor is in K 1 Mode or Debug Mode, or if the CPO usable bit is
set in the Status register. In other cxrcumstances executxon of this instruction results in a Coprocessor Unus-
able Exception. -

;faard TLB MMU, the operation of this instruction is UNDE-
entatioil is a Reserved Instruction Exception.

For processors that do not mcl de tt
FINED. However, the preferred im

November 15, 1999 -58 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Operation:
i < Random
if (Statuscyg = 1) or (Statusggy= 00,) or (Debugpy = 1) or (Statusgxy = 1) or (Statusggy = 1) then
TLB[i]yask < PageMasky,ex
TLB[i]g ¢~ EntryHig
TLB[ilypns <~ EntryHiypyns and not PageMaskyy,c ~ # Masking of VPN2 is implementation dependent
TLB(i]asip = EntryHiasp
TLBI[ilg ¢« EntryLolg and EntryLoOg
TLBI[i]pgn; ¢ EntryLolpgy and not PageMasky;,q # Masking of PFN is implementation dependent
TLB(i]¢; ¢ EntryLolc
TLB[i]p; < EntryLolp
TLB[i]y, < EntryLoly
TLB[ilpgno ¢ EntryLoOpgy and not PageMaskyy,qc # Masking of PFN is implementation dependent
TLB[]]CO — EntryLoOC
TLB[i]lpg ¢ EntryLoOp
TLB[i]yg < EntryLoOy
else

InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception
Reserved Instruction Exception (if not implemented)
Machine Check (if implemented and a TLB shutdown condition‘is ‘dgtected on a TLB write)

My

November 15, 1999 -59-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

2.9.3.7 The WAIT Instruction

Enter Standby Mode e ‘ S o G WAIT
31 26 25 24 0
COPO CO WAIT
010000 1 Implementation-Dependent Information 100000
6 1 19 6
Format:
WAIT MIPS64
Purpose:
Wait for Event
Description:

~The WAIT instruction performs an implementation-dependent operation, usually involving a lower power
mode. Software may use bits 24..6 of the instruction to communicate additional information to the proces-
sor, and the processor may use this information as control for the lower power mode A value of zero for bits
:24..6 is the default, and must be valid in all 1mplementat10ns Y . -

The WAIT instruction is typically implemented by stalling the plpelme at the completion of the mstructlon
and entering a lower power mode. The pipeline is restarted when an extemal event, such as an interrupt or
external request occurs, and execution continues with the 1nstruct10n followmg the WAIT instruction. It is
implementation-dependent whether the pipeline restarts when a'non-enabled interrupt is requested. In this
case, software must poll for the cause of the restart. If the pxpelme restarts as the result of an enabled inter-
rupt, that interrupt is taken between the WAIT tructlon and the followmg instruction (EPC for the inter-
rupt points at the instruction following the W ‘

The assertion of any reset or NMI signal
sponding exception must be taken.

masked by JTAG) must restart the pipeline and the corre-

Restrictions: }
The operation of the processor i UNDEFINED i wéit instruction is placed in the delay slot of a branch or

a jump. =

ThlS instruction is legal only , in Kernel Mode or Debug Mode, or 1f the CPO usable bit is

set in the Status register. In other c1rcumstances execution of this instruction results in a Coprocessor Unus-

"able Exception.

Operatlon:
if (StatusCUO =Dor (StatuSKsu= 002) or (DebugDM =1)or (StatusEXL =1)or (StatusERL = 1) then
Enter implementation dependent lower power mode
else ‘
InitiateCoprocessorUnusableException(0)
endif

Exceptions:
Coprocessor Unusable Exception

November 15, 1999 -60 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

3. Floating Point Control Registers

Although all five floating point control registers are included in the MIPS RISC Architecture documentation for the
MIPS V ISA, several changes are included in MIPS64. As such, the registers are described below. Refer to the MIPS
RISC Architecture documentation for a full description of the MIPS Floating Point Architecture.

3.0.1 Floating Point Implementation Register (CP1 Register 0)

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying
the capabilities of the floating point unit, the floating point processor identification, and the revision level of the float-
ing point unit. Figure 5 shows the format of the FIR register; Table 40 describes the FIR register fields.

Figure 5: FIR Register Format

31 20 19 18 17 16 15 8 7 0
0 3DPS{D| S ProcessorID Revision

Table 40: FIR Register Field Descriptions

Fields Rea d/‘

1 Write

Description Reset State | Compliance

Name Bits

0 31:20 | Reserved for future use; reads as zero Y 0 0 Reserved

S

3D 19 Indicates that the MIPS-3D ASE is implemented: | * R Preset Required
0: MIPS-3D not implemented 3
1: MIPS-3D implemented

PS 18 | Indicates that the paired single (PS) floating R Preset Required
point data type and instructions are implemented:
0: PS floating not implemented
1: PS floating implemented

D 17 Indicates that the double-precision (D) floating "R Preset Required
point data type and instrug .are implemented: .
0: D floating not implemente
1: D floating implemented ¢

S 16 Indicates that the single-precision (S) floating R Preset Required .
point data type and instructions are implemented: :

0: S floating not implemented
I: S floating implemented

Proces- 15:8 Identifies the floating point processor. This value R Preset Required
sorlD should normally match the corresponding field of
the PRId CPO register unless there are different
floating point implementations used by a single
CPU.

November 15, 1999 -61 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 40: FIR Register Field Descriptions

Fields Read/
Description R Reset State | Compliance
. Write
Name Bits
Revision 7:0 Specifies the revision number of the floating R Preset Optional

point unit. This field allows software to distin-
guish between one revision and another of the
same floating point processor type. If this field is
not implemented, it must read as zero.

3.0.2 Floating Point Control and Status Register (CP1 Register 31)

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the floating
point unit. Access to FCSR is not privileged; it can be read or written by any program that has access to the floating
point unit (via the coprocessor enables in the Status register). Figure 6 shows the format of the FCSR register;

Table 41 describes the FCSR register fields.

31

25 24 23 22 212

Figure 6: FCSR Register Format e

18 17

FCC

FSFC(C| Impl Cause

Enables

RM

716

5(4|3

211

0

EVZOU'I

31 30 29 28 27 26 25

Z{O0|U

17 16 15 14ui1

71510 9

8

Fields

Name

Bits

Read/
Write

Reset State

Compliance

FCC

31:25,
23

Floating point condmon codes. These bits record
the result of ﬂoa’ung point compares and are
tested for floating pointc nal branches and
conditional moves. The FCC bit to use is speci-
fied in the compare, branch, or ‘conditional move
instruction. For backward: compat1b111ty with pre-
vious MIPS ISAs, the FCC bits are separated into
two, non-contiguous fields.

Undefined

Required

ES

24

Flush to Zero. When FS is one, denormalized
results are flushed to zero instead of causing an
Unimplemented Operation exception. It is imple-
mentation dependent whether denormalized
operand values are flushed to zero before the
operation is carried out.

Undefined

Required

Impl

22:21

Available to control implementation dependent
features of the floating point unit. If these bits are
not implemented, they must be ignored on write
and read as zero.

Undefined

Optional

November

15, 1999

- 62 -

MIPS® PROPRIETARY/CONFIDENTIAL :
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 41: FCSR Register Field Descriptions

Fields

Description Rea.d/ Reset State | Compliance
. Write
Name Bits
0 20:18 | Reserved for future use; Must be written as zero; 0 0 Reserved
returns zero on read.
Cause 17:12 | Cause bits. These bits indicate the exception con- | R/W Undefined Required

ditions that arise during execution of an FPU
arithmetic instruction. A bit is set to 1 if the cor-
responding exception condition arises during the
execution of an instruction and is set to O other-
wise. By reading the registers, the exception con-
dition caused by the preceding FPU arithmetic
instruction can be determined.

Refer to Table 42 for the meaning of each bit.

Enables 11:7 Enable bits. These bits control whether or not a ; R/W ‘Undefined Required
trap is taken when an IEEE exception condition .| 7 o f

occurs for any of the five conditions. The trap
occurs when both an Enable bit and the corre-
sponding Cause bit are set either during an FPU
arithmetic operation or by moving a value t '
FCSR or one of its alternative representatio
Note that Cause bit E has no corre ondmg

Flags 6:2 R/W Undefined Required

exception condition that does not result in a
Floating Point Exception (i.e- Jthe Enable bit was
off), the corresponding blt(s) in the Flag field are
set, while the others remain unchanged. Arith-
metic operations that result in a Floating Point
Exception (i.e., the Enable bit was on) do not
update the Flag bits.

This field is never reset by hardware and must be
explicitly reset by software.

Refer to Table 42 for the meaning of each bit.

November 15, 1999 -63 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 41: FCSR Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits .
RM 1:0 Rounding mode. This field indicates the round- R/W Undefined Required.

ing mode used for most floating point operations
(some operations use a specific rounding mode).

Refer to Table 43 for the meaning of the encod-
ings of this field.

Table 42: Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in
the Cause field)

Invalid Operations

Divide by Zero

Overflow

CjOoO|IN| <

Underflow ‘

P

Inexact

L

Table 43: Ro ding M(iaé Definitions : -

RM Field

Encoding ~# “Meaning -

“ 0 RN - Round to Nearest

Rounds the result to the nearest representable value. When two representable values are
equally near, the result is rounded to the value whose least significant bit is zero (that is,
even)

1 RZ - Round Toward Zero

Rounds the result to the value closest to but not greater than in magnitude than the
result.

2 RP - Round Towards Plus Infinity

Rounds the result to the value closest to but not less than the result.

November 15, 1999 -64 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 43: Rounding Mode Definitions

RM Field

Encoding Meaning

3 RM - Round Towards Minus Infinity

Rounds the result to the value closest to but not greater than the result.

3.0.3 Floating Point Condition Codes Register (CP1 Register 25)

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point condi-
tion code values that also appear in FCSR. Unlike FCSR, all eight FCC bits are contiguous in FCCR. Figure 7 shows
the format of the FCCR register; Table 44 describes the FCCR register fields.

Figure 7: FCCR Register Format

31 8 7o 0
0 FCC

Table 44: FCCR Register Field Descriptions

Fields i Ready
Description . s . Reset State | Compliance
. - Write
Name Bits Y
0 31:8 Must be written as zero; retv.ims zero onread 0 0 Reserved
FCC 7:0 Floating point condition code. Refer to the” R/W Undefined Required
description of this field in the FCSR reglster

CPIZ Reglster 26)

The Floating Point Exceptions Reglster (FEXR) is'an a[ternatwe way to read and write the Cause and Flags fields that
also appear in FCSR. Figure 8 shows the format of the FEXR register; Table 45 describes the FEXR register fields.

3.0.4 Floating Point Exceptlons Reglst

November 15, 1999 -65 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS64™ Specification

Revision 1.0
Figure 8: FEXR Register Format
31 18 17 12 11 76 21 0
0 Cause 0 Flags 0
E{V]Z|O|U}1I VIZ|O|U|I
1716 1514 13 12 6 5 4 2
Table 45: FEXR Register Field Descriptions
Fields
Description Re?d/ Reset State | Compliance
. Write
Name Bits
0 31:18, | Must be written as zero; returns zero on read 0 0 Reserved
11:7,
1:0 s
Cause 17:12 | Cause bits. Refer to the description of this fieldin | ' R/W | Undefined Required
the FCSR register. : .
Flags 6:2 Flags bits. Refer to the description of this field in ﬁ R/W. Undefined Optional
the FCSR register. e o

3.0.5 Floating Point Enables Register (CP1 Reglster 28)
The Floating Point Enables Register (FENR) is an altematxve way to read and write the Enables, FS, and RM fields

that also appear in FCSR. Figure 9 shows the format of the FENR register; Table 46 describes the FENR register

fields.
Figure 9: FENR Reglster Format
31 12 11 7.6 321 0
. Enables 0. |FS| RM
VIiZ|O|U|I
11 10 9 8 17
Table 46: FENR Register Field Descriptions
Fields : - _
Description Rea‘d/ Reset State | Compliance
. Write
Name Bits
0 31:12, | Must be written as zero; returns zero on read 0 0 Reserved
6:3
Enables 11:7 Enable bits. Refer to the description of this field R/W Undefined Required
in the FCSR register.
FS 2 Flush to Zero bit. Refer to the description of this R/W Undefined Required
field in the FCSR register.

November 15, 1999

- 66 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 46: FENR Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
RM 1:0 Rounding mode. Refer to the description of this R/W Undefined Required
field in the FCSR register.
November 15, 1999 -67 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4. The MIPS64 Privileged Resource Architecture

4.1 Introduction

The MIPS64 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instruc-
tion Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual
memory layout. Many other components are visible only to the operating system kernel and to systems programmers.
The PRA provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, excep-
tions and user contexts. This chapter describes these mechanisms.

4.2 Compliance

Features described as Required in this document are required of all processors claiming compatibility with the
MIPS64 Architecture. Features described as Recommended should be implemented unless there is an overriding need
not to do so. Features described as Optional provide a standardization of features that may or may not be appropriate
for a particular MIPS processor implementation. If such a feature is implemented, it must be implemented as
described in this document if a processor claims compatibility with the MIPS64 Architecture.

In some cases, there are features within features that have different levels of comphance For example, if there is an
Optional field within a Required register, this means that the register must be 1mplemented but the field may-or may
not be, depending on the needs of the implementation. Similarly, if the Required field within an Optional regis-
ter, this means that if the register is implemented, it must have the specified fiel

4.3 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the, functlonallty of the MIPS ISA, while
sharing the instruction fetch and execution control log1c of CPU Some coprocessors, such as the system copro-
cessor and the floating point unit are standard parts of the are specified as such in the architecture docu-
ments. Coprocessors are generally optional, with the system coprocessor, is required. CPO is the
ISA interface to the Privileged Resource Archltecture and provide full control of the processor state and modes.

ML

4.3.1 CPO - The System Coprocessor

CPO provides an abstraction of the functi ns necessary to ¢ port an operating system: exception handling, 1 memory»
management, scheduling, and control of criti urces. The interface to CPO is through various instructions
encoded with the COPO opcode, inclu move data to and from the CPO registers, and specific func-
tions that modify CPO state. The CPO reglsters and the interaction with them make up much of the Privileged
Resource Architecture. e

4.3.2 CPO Register Summary

Table 47 lists the CPO registers in numerical order. The individual registers are described later in this document. If the
compliance level is qualified (e.g., “Required (TLB MMU)”), it applies only if the qualifying condition is true. The

November 15, 1999 - 68 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Sel column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 47: Coprocessor 0 Registers in Numerical Order

Register Sel Register Function Reference Compliance
Number Name Level
0 0 Index Index into the TLB array Section 4.9.1 Required
on page 105 (TLB MMU);
Optional
(others)
1 0 Random Randomly generated index into the TLB Section 4.9.2 Required
array on page 106 (TLB MMU);
Optional
(others)
2 0 EntryLoO Low-order portion of the TLB entry for Section 4.9.3 Required
even-numbered virtual pages |-on page 107 (TLB MMU);
1 Optional
(others)
3 0 EntryLol Low-order portion of the TLB entry for Section 4.9.3 Required (TLB -
odd-numbered virtual pages | onpage 107 MMU);
5 “Optional (oth-
ers)
4 0 Context Pointer to page table entry in memory Section 4.9.4 Required
= on page 110 (TLB MMU);
Optional
(others)
5 0 PageMask | Control for variable p‘iige size in TLB Section 4.9.5 Required
entries Y 4 on page 111 (TLB MMU);
Optional
(others)
6 0 Wired Controls the number of fixed (“wired”) Section 4.9.6 | Required
TLBentries on page 112 (TLB MMU);
T Optional
(others)
7 all Reserved for future extensions Reserved
8 0 BadVAddr | Reports the address for the most recent Section 4.9.7 Required
address-related exception on page 113
9 0 Count Processor cycle count Section 4.9.8 Required
on page 114
10 0 EntryHi High-order portion of the TLB entry Section 4.9.9 Required
on page 114 (TLB MMU);
Optional
(others)
11 0 Compare Timer interrupt control Section 4.9.10 | Required
on page 116

November 15, 1999

-69-
MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 47: Coprocessor 0 Registers in Numerical Order

Register Sel Register Function Reference Compliance
Number Name Level
12 0 Status Processor status and control Section 4.9.11 | Required
on page 116
13 0 Cause Cause of last general exception Section 4.9.12 | Required
on page 123
14 0 EPC Program counter at last exception Section 4.9.13 | Required
on page 126
15 0 PRId Processor identification and revision Section 4.9.14 | Required
on page 127
16 0 Config Configuration register Section 4.9.15 | Required
on page 128
16 1 Config! Configuration register 1 Section 4.9.16 | Required
on page 130
17 0 LLAddr Load linked address - Section 4.9.17 | Optional
« 2 on page 132
18 0-n | WatchLo Watchpoint address Section 4.9.18 | Optional
on page 132
19 0-n | WatchHi ‘Watchpoint control Section 4.9.19 | Optional
r 4 ; | on page 134
20 0 XContext | Extended Addfessin Paéé Table Context | Section 4.9.20 | Required
4 on page 135 (64-bit TLB
MMU)
Optional
(Others)
21 all ReSéfved for future extéﬁéions-.' o Reserved
22 all Available for implementation dependent | Section 4.9.21 | Implementation-
use on page 136 Dependent
23 ™| 0 | Debug EJTAG Debug register EJTAG Speci- | Optional
fication
24 0 DEPC Program counter at last EITAG debug EJTAG Speci- | Optional
" exception ' fication
25 O-n | PerfCnt Performance counter interface Section 4.9.24 | Recommended
on page 137
26 0 ErrCtl Parity/ECC error control and status Section 4.9.25 | Optional
on page 140
27 0-3 | CacheErr Cache parity error control and status Section 4.9.26 | Optional
on page 140

November 15, 1999

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

-70 -
MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0 MIPS64™ Specification

Table 47: Coprocessor 0 Registers in Numerical Order

Register Sel Register Function Reference Compliance
Number Name Level
28 0 TagLo Low-order portion of cache tag interface | Section 4.9.27 | Required
on page 142 (Cache)
28 1 DatalLo Low-order portion of cache data interface | 4.9.28 on page | Optional
143
29 0 TagHi High-order portion of cache tag interface | Section 4.9.29 | Required
on page 143 (Cache)
29 l DataHi High-order portion of cache data interface | 4.9.30 onpage | Optional
144
30 0 ErrorEPC Program counter at last error Section 4.9.31 | Required
on page 144
31 0 DESAVE EJTAG debug exception save register ‘EJ‘TAG_Speci- Optional
fication

4.4 Operating Modes

The MIPS64 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode, the
programmer has access to the CPU and FPU registers that are prov1ded by the ISA and to a flat, uniform virtual mem-
ory address space. When operating in Kernel Mode, the systems programmer has access to the full capabilities of the
processor, including the ability to change virtual memory mappmg, control the system environment, and context
switch between processes.

In addition, the MIPS64 PRA supports the xmplementatlon of two addmonal modes Supervisor Mode and EJITAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

Finally, the MIPS64 PRA provides backward compatlble support for 32-bit programs by providing enables for both
64-bit addressing and 64-bit operations. If access is not enabled, an attempt to reference a 64-bit address or an
instruction that implements a 64-bit operation results in an exception.

S

44.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the Debug register
is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Kernel
Mode operation.

4.4.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero (if the processor imple-
ments Debug Mode), and any of the following three conditions is true:

» The KSU field in the Status register contains 00,

e The EXL bit in the Stazus register is one

« The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

November 15, 1999 -71 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 , MIPS64™ Specification

4.4.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of
the following conditions are true:

* The DM bit in the Debug register is a zero (if the processor implements Debug Mode)
* The KSU field in the Status register contains 01,

e The EXL and ERL bits in the Status register are both zero

4.4.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

* The DM bit in the Debug register is a zero (if the processor implements Debug Mode)
« The KSU field in the Starus register contains 10,

¢ The EXL and ERL bits in the Status register are both zero

4.5 Other Modes

4.5.1 64-bit Address Enable

Access to 64-bit addresses are enabled under any of the following conditic

* A legal reference to a kernel address space occurs and the KX bit m‘th atus register is.a one
* A legal reference to a supervisor address space occurs and the SX bit in the Status register is aone
* Alegal reference to a user address space occurs and the bit i in the Status register is a one

Note that the operating mode of the processor is not relevant to 64-bi address enables. That is, a reference to user
address space made while the processor is operating el Mode is controlled by the state of the UX bit, not by
the KX bit.

An attempt to reference a 64-bit address space W

'*64 bit addres s are not enabled results in an Address Error

When a TLB miss occurs, the choice of the Exceptlon Vector isalso determined by the 64-bit address enable. If 64-bit
addresses are not enabled for the reference, the TLB Refill Vec is used. If 64-bit addresses are enabled for the ref-
erence, the XTLB Refill Vector is used.

4.5.2 64-b1t Operatlons Enabl'

oy . L.
Instructxons that perform 64-bit operations are legal under any of the following conditions:

. The processor is operating in Kernel Model
e The PX bit in the Status register is a one
e The processor is operating in User Mode, as described above, and the UX bit in the Status register is a one.

, Supervisor Mode, or Debug Mode, as described above.

An attempt to execute an instruction Wthh performs 64-bit operations when such instructions are not enabled results
in a Reserved Instruction Exception.

4.5.3 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted as
32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit registers,
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd pairs of
registers.

The operation of the processor is UNPREDICTABLE under any of the following conditions:
» The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64-bits
November 15, 1999 -72-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

» The FR bit is a zero and a floating point instruction is executed whose data type is L or PS
* 64-bit operations are not enabled, the FR bit is a one, and an instruction references the floating point regis-
ters.

4.6 Virtual Memory

4.6.1 Terminology

4.6.1.1 Address Space

An Address Space is the range of all possible addresses that can be generated for a particular addressing mode. There
is one 64-bit Address Space and one 32-bit Compatibility Address Space that is mapped into a subset of the 64-bit
Address Space.

4.6.1.2 Segment and Segment Size (SEGBITS)

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. A 32-bit
Compatibility Segment is part of the 32-bit Compatibility Address Space. and 1s either 229 or 231 bytes in size,
depending on the specific Segment. A 64-bit Segment is part of the 64-bit Address Space and is no larger than 262

bytes in size, but may be smaller on an implementation dependent basis. The symbol SEGBITS is used to represent

the actual number of bits implemented in each 64-bit Segment. As such it 40 vrrtual address blts were implemented,

2SEGBITS _ 240

the actual size of the Segment would be bytes.

4.6.1.3 Physical Address Size (PABITS)

The number of physical address bits implemented is re

ented by the symbol PABITS. As such, if 36 physical
.2PABITS — 236

address bits were implemented, the size of the physical addr ss space would be bytes.

4.6.2 Virtual Address Spaces

With support for 64-bit operations and address calcpl‘xlatlon, the MIPS64 architecture implicitly defines and provides
support for a 64-bit virtual Address Space sub—drv ed into four Segments selected by bits 63:62 of the virtual

address. To provide compatibility for 32bit '] programs and MIPS32 processors, a 232 -byte Compatibility Address
Space is defined, separated into two non- contrguous;manges in which the upper 32 bits of the 64-bit address are the
sign extension of bit 31. The Compatibility:. ddress Space is similarly sub-divided into Segments selected by bits
31:29 of the virtual address. Figure 10 shows the layout of the Address Spaces, including the Compatibility Address
Space and the segmentation of each Address Spa

November 15, 1999 -73 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 10: Virtual Address Spaces

64-bit Virtual Memory Address Space 32-bit Compatibility Address Space
OxFFFF FFFF FFFF FFFF @ OxFFFF FFFF FFFF FFFF
z Kernel
g kseg3
&, Mapped
Kernel 9% O0xFFFF FFFF E000 00000
xkseg Mapped % Supervisor |
%, - -sseg
Z Mapped
'“3;% O0xFFFF FFFF C000 0000
e, Kernel
0xC000 0000 0000 0000 - Unmapped ksegl
Uncached | oxFFFF FFFF A000 0000
Kernel Kernel kseg0
xkphys d Unmapped
phys | Unmappe PPe% | oxFFFF FFFF 8000 0000

0x8000 0000 0000 0000
Supervisor
Xsseg Mapped (000 0000 7FFF FFFF
.
0x4000 0000 0000 0000
useg

xuseg

0x0000 0000 0000 0000 0x0000 0000 0000 0000

R

Each Segment of an Address Space is classified as “N;apped” or “Unmapped”. A “Mapped” address is one that is
translated through the TLB or other memory mgnagcniént translation unit. An “Unmapped” address is one which is
not translated through the TLB and which provides a window into the lowest portion of the physical address space,
starting at physical address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the ksegl Segment is classified as “Uncached”. References to this Segment bypass all levels of the
cache hierarchy and allow direct access to memory without any interference from the caches.

November 15, 1999 74 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Table 48 lists the same information in tabular form.

Table 48: Virtual Memory Address Spaces

MIPS64™ Specification

64-bit Reference
Add- Legal Actual
Segment Maximum Address ress Associated from Segment | Segment
VA63.62 Name(s) Range Enable | with Mode | Mode(s) Size Type
OxFFFF FFFF FFFF FFFF 32-bit
kseg3 through Always Kernel Kernel 2% bytes | Compati-
OxFFFF FFFF E000 0000 bility
sseq OxFFFF FFFF DFFF FFFF Supervisor 32-bit
© through Always | Supervisor P 2% bytes | Compati-
ksseg Kernel i
OxFFFF FFFF C000 0000 bility
OxFFFF FFFF BFFF FFFF 32-bit
11, ksegl through Always Kernel Kernel 2% bytes | Compati-
OxFFFF FFFF A000 0000 e bility
OxFFFF FFFF 9FFF FFEFF . § 32-bit
kseg0 through Always Kernel Kernel 22 pytes | Compati-
OxFFFF FFFF 8000 0000 A bility
OXFFFF FFFF TFFF FFFF (2SEGBITS _
xkseg through KX . Kernel Kernel 31 a 64-bit
0xC000 0000 0000 0000 BE 2°)) bytes
- g 2PABITS
i g a
OxBFFF FFFF FFFF FFFE |- = , byte
10, xkphys _ through KX Kernel Kernel rFﬁTO“S 64-bit
0x8000 0000 00000000 | . within the
' 262 byte
- Segment
Ox7FFF FFFEFFFFFFFE | = | . SEGBITS
01, x"lf::f through .~ | SX | Supervisor S‘g;‘slo‘ 2 \ 64-bit
& | 0x4000 000000000000 | © bytes
Xuseg O0x3FFF FFFF FFFF FFFF User (255(;317'5 _
Xsuseg through UXx User Supervisor 31 a 64-bit
0 xkuseg | 0x0000 0000 8000 0000 Kernel | 27)bytes
2
useg 0x0000 0000 7FFF FFFF User 32-bit
suseg ~ through Always User Supervisor | 23! bytes | Compati-
kuseg 0x0000 0000 0000 0000 Kernel bility

a. See Section 4.6.1.2 on page 73 and Section 4.6.1.3 on page 73 for an explanation of the symbols SEGBITS and
PABITS, respectively

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor,
or Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or a
more-privileged mode. For example, a Segment associated with User Mode is accessible when the processor is run-
ning in User, Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged
mode than that associated with the Segment. For example, a Segment associated with Supervisor Mode is not accessi-

November 15, 1999

-75 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

ble when the processor is running in User Mode and such a reference results in an Address Error Exception. The
“Reference Legal from Mode(s)” column in Table 48 lists the modes from which each Segment may be legally refer-
enced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam-
ple, the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refer-
ence to the same Segment from kernel mode.

References to 64-bit Segments (as shown in the “Segment Type” column of Table 48) are enabled only if the appro-
“priate 64-bit Address Enable is on (see 4.5.1 on page 72, and the “64-bit Enable” column of Table 48). References to
32-bit Compatibility Segments are always enabled.

4.6.3 Compliance
A MIPS64 compliant processor must implement the following 32-bit Compatibility Segments:

e useg/kuseg
* kseg0
e ksegl

In addition, a MIPS64 compliant processor using the TLB-based address translation mechanism must also implement
the kseg3 32-bit Compatibility Segment. It is also strongly recommended that'the sseg segment be implemented,
whether Supervisor Mode is implemented or not. : |

It is implementation dependent whether a MIPS64 compliant processor 1mplements 64 bit addressing and the 64-bit
Segments associated with the 64-bit Address Space. If 64-bit addressmg is xmplemented it must be implemented as
described here.

T

It is implementation dependent whether a MIPS64 compliant processor 'implements Supervisor Mode and the Seg-
ments associated with that mode. If Supervisor Mode is 1mp1emented ‘it must be implemented as described here. If
Supervisor Mode is not implemented a processor may. implement the sseg and xsseg segments, or treat references to
them as address error exceptions. If the xsseg segment is implemented, access to it is controlled by the SX bit in the
Status register, just as it would be if Supervisor Mode was xmplemented

A MIPS64 compliant processor may implement fewer than 64 b1ts in the virtual address by restricting all 64-bit Seg-

ments to be less than 292 bytes in size. A MIPS64 comphant processor that implements 64-bit virtual addressing must
implement a value of SEGBITS that is no smaller than 40 bits. An attempt to reference an unimplemented reglon of a

segment (that between 2SEGBITS 44 262 l) results in an Address Error Exception.

i

4.6.4 Access Control as a Fun’c‘tiqn%pf‘ Kddféss and Operating Mode

Table 49 enumerates the action taken by the processqrft:or each section of the 64-bit Address Space as a function of
the operating mode of the processor. The selection'of TLB Refill vector and other special-cased behavior is also listed

November 15, 1999 -76 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

for each reference.

MIPS64™ Specification

Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode

Action when Referenced from Operating

Virtual Address Range Mode
Assuming
‘Symbolic SEGBITS = 40, Segment A Supervisor A
PABITS =36 Name(s) User Mode? Mode Kernel Mode
Mapped
Refill Vector:
OxFFFF FFFF FFFF FFFF | OxFFFF FFFF FFFF FFFF TLB (KX=0)
XTLB(KX=1)
through through kseg3 Address Error | Address Error
See 4.6.8 on
O0xFFFF FFFF E000 0000 | OxFFFF FFFF E000 0000 page 83 for
special behav-
ior when
DebugDM =1
OxFFFF FFFF DFFF FFFF | OxFFFF FFFF DFFF FFFF Méppf:d Mapped
sseg . b b
through through i Address Error | Refill Vector’: | Refill Vector”:
e T TLB (KX=0) | TLB (KX=0)
OxFFFF FFFF C000 0000 | OxFFFF FFFF C000 0000 |. XTLB(KX=1) | XTLB(KX=1)
OXFFFF FFFF BFFF FFFF | OxFFFF FFFF BFEF Unmapped,
Uncached
through through N Address Error | Address Error See Section
OXFFFF FEFF A000 0000 | OxFFFF FEEF A000 0000 | - 465 2o E
i Wy
OxFFFF FFFF 9FFF FFFF OxFFFFFFFF 9FFF FFFF | Unmapped
through w through v kseg0 Address Error | Address Error See Section
wgsl 4.6.5 on page
OxFFFF FFFF 8000 0000 OxFFFF FFFF 8000 0000 79
OxFFFF FFFF 7FFF FFFF
OxFFFF FFFF 7FFF FFFF
through
through Address Error | Address Error | Address Error
0xC000 0000 0000 0000 +
5SEGBITS_ 31 0xCO000 00FF 8000 0000
November 15, 1999 -77 -

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode
Action when Referenced from Operating
Virtual Address Range Mode
Assuming
Symbolic SEGBITS = 40, Segment Supervisor
PABITS =36 Name(s) ‘|- User Mode? Mode Kernel Mode
Address Error
0xC000 0000 0000 0000 + ifKX=0
SSEGBITS 531 _ | 0xCO000 OOFF 7FFF FFFF
through through xkseg Address Error | Address Error Még(pzdllf
0xC000 0000 0000 0000
0xC000 0000 0000 0000 | Refill Vector:
XTLB
Address Error
if KX=0orin
certain
O0xBFFF FFFF FFFF FFFF | OxBFFF FFFF FFFF FFFF address ranges
’] within the
through through xkphys . | Address Error | Address Error Segment
0x8000 0000 0000 0000 | 0x8000 0000 0000 0000 e Unmapped
See Section
4.6.6 on page
80
Ox7FFF FFFF FFFF FFFF
through
Address Error | Address Error | Address Error
0x4000 0000 0000 0000 +
»SEGBITS
; AddressError | Address Error
0x4000 0000 0000 0000 + s ifSX=0 ifSX=0
oSEGBITS _ | 0x4000 OOFF FFFE FFFF
xsseg Mapped if Mapped if
through through xksseg Address Error SX = | SX = 1
0x4000 0000 0000 0000 0x4000 0000 0000 0000 - Refill Vector: | Refill Vector:
' ' XTLB XTLB
0x3FFF FFFF FFFF FFFF
* Ox3FFF FFEF FFFF FFFF
through
oue through Address Error | Address Error | Address Error
0x0000 0000 0000 0000 +
,SEGBITS 0x0000 0100 0000 0000
November 15, 1999 -78 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Table 49: Address Space Access and TLB Refill Selection as a Function of Operating Mode
Action when Referenced from Operating
Virtual Address Range Mode
Assuming
Symbolic SEGBITS = 40, Segment Supervisor
PABITS =36 Name(s) | User Mode? Mode Kernel Mode
Address Error
ifUX=0
Mapped if
Address Error | Address Error UX=1
0x0000 0000 0000 0000 + ; = ; -
X JSEGRITS | 0x0000 00FF FFFF FFFF ifUX =0 iFUX=0" | Refill Vector:
xuses Mapped if Mapped if XILB
through xsuseg UX=1 UX = 1
through xkuseg - - See Section
0x0000 0000 8000 0000 g s 4.6.7 on page
0x0000 0000 8000 0000 X Refill Vector: | Refill Vector: | ¢3¢ ° infpli_
XTLB XTLB -
. : mentation
/ ‘ dependent
behavior
when Statu-
SERL=1
Unmapped if
StatusERL= 1
Mapped Maoped See Section
0x0000 0000 7FFF FFFF | 0x0000 0000 7FFF FFFF | . pp PP 4.6.7 on page
through through ,Sulls;g Refill Vector: | Refill Vector: 83
£ e | kusez TLB (UX=0) | TLB (UX=0) | oo
0x0000 0000 00000000 |~ 0x0000 0000 [| XTLBAUX=D | XTLBUX=D | gy o =0
b Refill Vector:
TLB (UX=0)
XTLB(UX=1)

a. See Section 4.6.9 on page 84 for the special treatment of the address for data references when the processor is run-
ning in User Mode and the UX bit is zero.
b. Note that the Refill Vector for references to sseg/ksseg is determined by the state of the KX bit, not the SX bit. This
simplifies the processor implementation by allowing them to treat the entire quadrant of the address space in which
VAg3 ¢ are 11, in the same manner, as well as simplifying operating system software design which does not use

Supervisor Mode.

4.6.5 Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Seg-

ments

The ksegO and ksegl Unmapped Segments provide a window into the least significant

229

bytes of physical memory,

and, as such, are not translated using the TLB or other address translation unit. The cache coherency attribute of the
kseg0 Segment is supplied by the KO field of the Config register. The cache coherency attribute for the ksegl Segment

November 15, 1999

-79-

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

is always Uncached. Table 50 describes how this transformation is done, and the source of the cache coherency
attributes for each Segment.

Table 50: Address Translation and Cache Coherency Attributes for the kseg0 and ksegl Segments

] S;i::::t Virtual Address Range | Generates Physical Address | Cache Attribute
OxFFFF FFFF BFFF FFFF | 0x0000 0000 1FFF FFFF
ksegl through through Uncached
O0xFFFF FFFF A000 0000 0x0000 0000 0000 0000
OxFFFF FFFF 9FFF FFFF 0x0000 0000 1FFF FFFF
. From KO field of
kseg0 through through e Config Register
OxFFFF FFFF 8000 0000 0x0000 0000 OOOQ 0000

 4.6.6 Address Translation and Cache Coherency Attnbutes for the xkphys Segment

The xkphys Unmapped Segment is actually composed of 8 address ranges each of whlch provides a window into the
entire 2PABITS bytes of physical memory and, as such, is not translated usmg the TLB or other address translation unit.
For this Segment, the cache coherency attribute is taken from VA 5o and has the same encoding as that shown in
' _ Table 62. An Address Error Exception occurs if VAsg py ny are non-zero. If no Address Error Exception occurs, the
physical address is taken from VApspi7s.1.0- Fxgure 11 show nterpretatron of the various fields of the virtual

address when referencing the xkphys Segment

Figure 11: Address Interpreta for the xkphys Segment

636261 59 58 e, :
10 |{CCA| Address Error if Non-Zero. |. = Physical Address.

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range
Symbolic Assuming Generates Physical

y PABITS =36 Address Cache Attribute

OxBFFF FFFF FFFF FFFF
OxBFFF FFFF FFFF FFFF
through
through Address Error N/A

0xB800 0000 0000 0000 +

o PABITS 0xB800 0010 0000 0000

November 15, 1999 -80-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Table 51: Address Translation and Cacheability Attributes for the xkphys Segment
Virtual Address Range
Symbolic Assuming Generates Physical
yrmbot PABITS =36 Address Cache Attribute
0xB800 0000 0000 0000 + 0x0000 0000 0000 0000 +
oPABITS _ | 0xB800 O00F FFFF FFFF PABITS _ |
Uses encoding 7 of
through
through " through Table 62
0xB800 0000 0000 0000
0xB800 0000 0000 0000 0x0000 0000 0000 0000
FFFF FFFE FFFF
OxBTEE 0xB7FF FFFF FFFF FFFF
th h
roug through Address Error N/A
0xB000 0000 0000 0000 + W
HPABITS 0xB000 0010 0000 0000
0xB00O 0000 0000 0000 + 0x0000 0000 0000 0000 +
LPABITS_| 0xB000 000F FFFF FFFF BT | |
Uses encoding 6 of
through oy N
through oue “through Table 62
0xB000 0000 0000 0000
0xB000 0000 0000 0000
OxAFFF FFFF FFFF FFFF
through a
roug through Address Error N/A
0xA800 0000 0000 0000 + :
HPABITS OxA800%0‘\OIO 00000000 | -
0xA800 0000 0000 0000 + 7 . ﬁi_0x0000000000000000+
HPABITS _ | 0xA800 O00F FFEF FFFF oPABITS _ |
throueh Uses encoding S of
through B through Table 62
0xA800 0000 0000 0000
0xA800 0000 0000 0000 0x0000 0000 0000 0000
0xA7FF FFFF FFFF FFFF
- | OxAT7FF FFFF FFFF FFFF |
through
roug through Address Error N/A
0xA000 0000 0000 0000 +
HPABITS 0xA000 0010 0000 0000

November 15, 1999

-81-

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range
Symbolic Assuming Generates Physical
y PABITS =36 Address Cache Attribute
0xA000 0000 0000 0000 + | 0x0000 0000 0000 0000 +
SPABITS _ | 0xA000 000F FFFF FFFF SPABITS |
Uses encoding 4 of
through
through e through Table 62
0xA000 0000 0000 0000
0xA000 0000 0000 0000 | 0x0000 0000 0000 0000
Ox9FFF FFFF FFFF FFFF
X 0x9FFF FFFF FFFF FFFF
through
roug through Address Error N/A
0x9800 0000 0000 0000 + -
S PABITS 0x9800 0010 0000 0000
00 0000 0000 0000 0x0000 0000 0000 0000
0x9800 0000 00 * | 0x9800 000F FEFF FEEF | 0000 9900 00000000+
2 -1 2FABITS _ 14 :
) b Cacheable (see
through encoding 3 of
through Table 62)
0x9800 0000 0000 0000 | +
0x9800 0000 0000 0000 X | 0x0000 0000 0000 0000
97FF FFFF FFFF FFFF A
0x97 0x97FF FFFF FEEF FFFF
through a
roug through Address Error N/A
0x9000 0000 0000 0000 +
L PABITS 0x9000 0010 0000,0000
0x9000 0000 0000 0000 +, . 0x0000.0000 0000 0000 + “
;"“2PABITS -1 2PABITS -1 -
Uncached (see
through encoding 2 of
through . through Table 62)
ok 0x9000 0000 0000 0000 |
- | 0x9000 0000 0000 0000 0x0000 0000 0000 0000
Ox8FFF FFFF FFFF FFFF
b | OxS8FFF FFFF FFFF FFFF
through A ') ' ,
roug " through - Address Error N/A
0x8800 0000 0000 0000
BT " | 0x8800 0010 0000 0000
November 15, 1999 -82-

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0 . MIPS64™ Specification

Table 51: Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range
Symbolic Assuming Generates Physical
y PABITS =36 Address Cache Attribute
0x8800 0000 0000 0000 + 0x0000 0000 0000 0000 +
HPABITS _ | 0x8800 OOOFFFFFFFFF‘ LPABITS
Uses encoding 1 of
through
through us through Table 62
0x8800 0000 0000 0000
0x8800 0000 0000 0000 0x0000 0000 0000 0000
0x87FF FFFF FFFF FFFF
XSTEE 0x87FF FFFF FFFF FFFF
th h
roug through Address Error N/A
0x8000 0000 0000 0000 + W N
HPABITS 0x8000 0010 0000 0000 g
0 (0.0000
0x8000 Og?.g T%OOO 0000 + 0x8000 GOOF OxOOOQ 0000 0000:0000 +
2 -1 ‘ :
Uses encoding 0 of
through through Table 62
0x8000 0000 0000 0000
0x8000 0000 0000 0000 .

If 64-bit addressing is implemented and the UX bit is a one in the Status register, it is implementation dependent

whether the range of addresses between 231 and 25EGBITS_| are also treated as an unmapped, uncached Segment. That
is, an implementation may choose to treat the entire xkuseg Segment in the same manner as the kuseg Segment.

-4.6.8 Special Behavior for the kseg3 Segment when Debugpy; =1 -

If EJTAG is implemented on the processor, the EJTAG block may treat the virtual address range OxFFFF FFFF FF20
0000 through OxFFFF FFFF FF3F FFFF, inclusive, as a special memory-mapped region in Debug Mode. A MIPS64
compliant implementation that also implements EITAG must:

» explicitly range check the address range as given and not assume that the entire region between OxFFFF
FFFF FF20 0000 and OxFFFF FFFF FFFF FFFF is included in the special memory-mapped region.
* not enable the special EJTTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EITAG specification for details on

November 15, 1999 -83-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 ‘ MIPS64™ Specification

this mapping.

4.6.9 Special Behavior for Data References in User Mode with Statusyx = 0

When the processor is running in User Mode, legal addresses have VAs3; equal zero, and the 32-bit virtual address is
sign-extended (really zero-extended because VA3 is zero) into a full 64-bit address. As such, one would expect that

the normal address bounds checks on the sign-extended 64-bit address would be sufficient. Unfortunately, there are
cases in which a program running on a 32-bit processor can generate a data address that is legal in 32 bits, but which
is not appropriately sign-extended into 64-bits. For example, consider the following code example:

la r10, 0x80000000
Iw rl0, -4(r10)

The results of executing this address calculation on 32-bit and 64-bit prbcessors with UX equal zero is shown below:

32-bit Processor 64-bit Processor
0x8000 0000 OxFFFF FFFF 8000 0000

+0xFFFF FFFC +0xFFFF FFFF FFFFE FFFC
OxX7FFF FFFC OxFFFF FFFF 7FFE FFFC

On a 32-bit processor, the result of this address calculation results in-a’ vahd useg address On a 64-bit processor,
however, the sign-extended address in the base register is added to the sign- extended dlsplacement as a 64-bit quan-
tity which results in a carry-out of bit 31, producmg an address that is not properly sign extended.

for instruction references.

This results in a properly zero-extended address for all egal data addresses (which cleans up the address shown in the
example above), and results in a properly: &gn”extende address for all illegal data addresses (those in which bit 31 is
a one). Code running in Debug Mode,:Kernel M Supemsor Mode with the appropriate 64-bit address enable
off is prohibited from generating an effective hich there is a carry-out of bit 31. If such an address is pro-
duced, thc operatxon of the instruction generating such an address is UNPREDICTABLE. '

4.6.10 TLB-Based Virtual Address Translation

" This section describes the TL.B-based virtual address translation mechanism. If a TLB-based translation mechanism
~ is implemented, it must be the one described below. Note that sufficient TLB entries must be implemented to avoid a
~TLB exception loop on load and store instructions. The absolute minimum is therefore two entries, but the realistic
minimum.is a function of the operating system running on the processor. Sixteen entries is a realistic minimum for

- simple operating systems. More may be required for complex operating systems.

4.6.10.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual
address across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
the ASID when doing address translation. In certain circumstances, the operating system may wish to associate the
same virtual address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the
ASID comparison during translation.

November 15, 1999 -84 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4.6.10.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the mapping
region specifier (R) and the virtual page number (actually, the virtual page number/2 since each entry maps two phys-
ical pages, VPN2) of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability
to map different page sizes with a single entry. The physical translation section contains a pair of entries, each of
which contains the physical page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field
(C). There are two entries in the translation section for each TLB entry because each TLB entry maps an aligned pair
of virtual pages and the pair of physical translation entries corresponds to the even and odd pages of the pair.
Figure 12 shows the logical arrangement of a TLB entry. The physical arrangement of the TLB entry data is imple-
mentation dependent, and the implemented size of the R, VPN2, PFNO, and PFN1 fields can vary as a function of vir-
tual address modes supported (32-bit versus 64-bit) and of the needs of the implementation.

Figure 12: Contents of a TLB Entry

PageMask

R VPN2 G| ; AsD

PFNO (o co |pgva

PFN1 Cl1 [Divy

The fields of the TLB entry correspond exactly to the fields n the CPO PageMask EntryHi, EntryLoO and EntryLol
registers. The even page entries in the TLB (e.g., PFNO) come rom EntryLoO Similarly, odd page entries come from
EntryLol.

4.6.10.3 Address Translation =

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked 31multaneously for a match, which occurs when all of the following conditions are true:

e The current process ASID (as obtamed er;]
or the G bit is set in the TLB entry

* Bits 63:62 of the virtual address match the reglon code in the R field of the TLB entry.

* The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within
the TLB entry. The “appropriate” number of bits is determined by the PageMask field in each entry by per-
forming an ANDNOT operation on both the virtual page number and the TLB VPN2 field. This allows each
entry of the TLB to support a different page size, as determined by the PageMask register at the time that the
‘TLB entry was written.-If the recommended PageMask register is not 1mplemented the TLB operation is as
if the PageMask register was written with a zero.

e Entrsz reglster) matches the ASID field in the TLB entry,

If a TLB entry matches the address and ASID presented, the corresponding PEN, C, V, and D bits are read from the
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the PageMask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid and a
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is
raised. If there is an address match with a valid entry and no dirty exception, the PFN and the cache attribute bits are
appended to the offset-within-page bits of the address to form the final physical address with attributes.

November 15, 1999 -85-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

The TLB lookup process can be described as follows:

found « 0
for i in 0...TLBEntries-1
if (TLB[X]R = va63“62) and
((TLB[i}vpn and not (TLB[ilpas)) = (Vasggairs-1.13 and not (TLB[ily.e))) and
(TLB[i]g or (TLB[i]asip = EntryHiagp)) then
EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry
case TLB[ilyask
000000000000,: EvenOddBit < 12
00000000001 1,: EvenOddBit « 14
000000001111,: EvenOddBit « 16
000000111111,: EvenOddBit « 18
000011111111,: EvenOddBit « 20
001111111111,: EvenOddBit « 22
1111111111115: EvenOddBit < 24
otherwise: UNDEFINED :
endcase 4 : ’ -
if vag,enodait = O then 4
pfn < TLBI[i]lpeno
V& TLB[i]VO Y . =
¢ < TLBlilgo Ry '
d « TLB[ilpg :
else
pfn < TLB[ilpgn;
V& TLB[l]Vl
¢ « TLBlil¢
d < TLBlilp; ,,)
if v =0 then ; = 4
Initiate TLBInvalidException(reftype).
endif Y A
+ . if (d = 0) and (reftype = store then
Initiate TLBModifiedException()
endif ’ 4
ww. . *pfpagirs 12,0 correspondstopapsprs 1 .12
" pa < piNpspTs-1-12. Even0ddBit-12 || VAEven0ddBit-1.0
found « 1
break
endif
endfor
if found = O then
InitiateTLBMissException(reftype, VA64Enable)
endif

It is implementation dependent whether the VPN2, PFNO, and PFN1 fields of the TLB are stored with the original
value, or are pre-masked by the Mask value on a TLB write. This provides implementations with the flexibility of
eliminating the “and not TLB[i]y,e~ terms in the pseudo code above. Note that the virtual address must still be

masked with the TLB[i]y,q value in either case.

Table 52 demonstrates how the physical address is generated as a function of the page size of the TLB entry that

November 15, 1999 - 86 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

matches the virtual address. The “Even/Odd Select” column of Table 52 indicates which virtual address bit is used to
select between the even (EntryLoO) or odd (EntryLol) entry in the matching TLB entry. The “PA generated from”
column specifies how the physical address is generated from the selected PFN and the offset-in-page bits in the vir-
tual address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLoO or EntryLol
registers, and has the bit range PFNp4 g;75.1.12..0, corresponding to PApspirs.1. .12

Table 52: Physical Address Generation

Page Size E‘;;i?:i d PA generated from
4K Bytes VA1 PENpagirs-1-12.0 | VA11.0
16K Bytes VA4 PENpagirs-1-12.2 | VA13.0
64K Bytes VA6 PFNpagizs-1-12.4 |l vais.o
256K Bytes VAg PENpapi7s-1-12.6 | YAW..O
1M Bytes VAg
4M Bytes VA,,
16M Bytes VA,

e

4.7 Interrupts

Cause register. F
o Hardware interrupts - Six hardware interrupt req
dependent external requests to the progessor.

e Timer interrupt - A timer interrupt is raised when the Count and Compare registers reach the same value.
* Performance counter interrupt - A-performanc T interrupt is raised when the most significant bit of
the counter is a one, and the interrupt is enabled

after an interrupt exception has occurred). The mapping of Cause register bits to the various interrupt requests is
shown in Table 53.

Table 53: Mapping of Interrupts to the Cause and Status Registers

Cause Register Bit Status Register Bit
Interrupt Type Ilsff;;?;t Number Name Number Name
0 8 IPO 8 MO
Software Interrupt
1 9 IP1 9 M1
November 15, 1999 -87 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 53: Mapping of Interrupts to the Cause and Status Registers

Cause Register Bit Status Register Bit
Interrupt Type I;:f;:;:ﬂt Number Name Number Name
0 10 P2 10 M2
1 11 IP3 11 M3
Hardware Interrupt 2 12 IP4 12 M4
3 13 IPS 13 IM5
4 14 IP6 14 M6
Hardware Interrupt, Timer Interrupt, 5 15 P7 15 M7
or Performance Counter Interrupt

interrupt is only taken when all of the following are true:

* An interrupt request bit is a one in the IP field of the Cause réﬁg

Table 53.
¢ The IE bit in the Status register is a one.
e The DM bit in the Debug register is a zero (for processov 'g}
e The EXL and ERL bits in the Status reglster arg

f the Status register. The final interrupt request is
then asserted only if both the EXT. and ERL bits4 r are zero, and the DM bit in the Debug register

is zero, corresponding to a non-exception, NON-€rTOr, N0 c%g%g processing mode.
& ‘

4.8 Exceptions

Normal execution of instructions may be 1nterrugt en an exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., an.inte low caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to*mstructlon execution (e.g., an external 1nterrupt) When an
exception occurs, the processor stops processing mstmcuons saves sufficient state to resume the interrupted instruc-
tion stream, enters kernel mode, and starts a sofafvfarc exception handler. The saved state and the address of the soft-
ware exception handler are a function of both the type of exception, and the current state of the processor.

4.8.1 Exception Priority

Table 54 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 54: Priority of Exceptions

Exception Description Type
Reset The Cold Reset signal was asserted to the processor Asynchro-
Soft Reset The Reset signal was asserted to the processor nous Reset
November 15, 1999 -88-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 54: Priority of Exceptions

Exception Description Type
Debug Single Step An EJTAG Single Step occurred. Prioritized above other Synchro-
exceptions, including asynchronous exceptions, so that one n(})lus
can single-step into interrupt (or other asynchronous) han-
Debug
dlers
Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted Asynchro-
nous
Imprecise Debug Data Break An imprecise EJTAG data break condition was asserted Debug
Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor
Machine Check An internal inconsistency was detected by the processor
Interrupt An enabled interrupt occurred Asynchro-
nous
Deferred Watch A watch exception, deferred because EXLwas-one when
the exception was detected, was asserted after EXL went to
zero : 5
Debug Instruction Break An EJTAG instruction break condmon was asserted. Priori- Synchro-
tized above instruction fetch exceptrons to allow break on . | nous
illegal instruction addresses. - S ..Debug
Watch - Instruction fetch A watch address match was detected on an instruction fetch.
Prioritized above 1rrstructron fetch: exccptrons to allow
nstr iction addresses.
Address Error - Instruction fetch | A non-word 'Vlvigned gddre} s iwas loaded into PC
TLB/XTLB Refill - Instruction on an instruction fetch Synchro-
fetch nous
TLB Invalid - Instruction fetch The valid blt was zero inithe TLB entry mapping the address
referenced by an mstructron fetch
Cache Error - Instruction fetch- v ”curred on an instruction fetch
Bus Error - Instruction fetch A bus error occrirred on an instruction fetch
SDBBP An EJTAG SDBBP instruction was executed Synchro-
nous
Debug
Instruction Validity Exceptions An instruction could not be completed because it was not .
allowed access to the required resources, or was illegal:
Coprocessor unusable, reserved instruction. If both excep- '
tions occur on the same instruction, the Coprocessor Unus- Synchro-
able Exception takes priority. nous
Execution Exception An instruction-based exception occurred: Integer overflow,
trap, system call, breakpoint, floating point exception

November 15, 1999 -89 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 54: Priority of Exceptions

Exception Description Type
Precise Debug Data Break A precise EJTAG data break on load/store (address match
. Synchro-
only) or a data break on store (address+data match) condi- nous
tion was asserted. Prioritized above data fetch exceptions to Debu
allow break on illegal data addresses. ‘ g
Watch - Data access A watch address match was detected on the address refer-
enced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses.
Address error - Data access An unaligned address, or an address that was inaccessible in
the current processor mode was referenced, by a load or
store instruction
TLB/XTLB Refill - Data access | A TLB miss occurred on a data access Synchro-
TLB Invalid - Data access The valid bit was zero in the TLB entry: mappmg the address | "O"°
referenced by a load or store instruction .
TLB Modified - Data access The dirty bit was zero in the TLB entry mappmg ‘the address
referenced by a store instruction® =
Cache Error - Data access a cache error occurred on a lo:é»d%or store data reference -
Bus Error - Data access A bus error occurred on ibad o) : tore data reference
Precise Debug Data Break A precise EJTAG break on load (address+data match
e Synchro-
sserted Prlormzed Jlast because all
nous
Debug
The “Type” column of Table 54 describes the pe of excep ble 55 explains the characteristics of each excep-
tion type. ’
. Exception Type Characteristics

Asynchronous Reset | Denotes a reset-type e){ception that occurs asynchronously to instruction exe-
o cution. These exceptions always have the highest priority to guarantee that the
processor can always be placed in a runnable state.

Asynchronous Debug | Denotes an EITAG debug exception that occurs asynchronously to instruction
execution. These exceptions have very high priority with respect to other
exceptions because of the desire to enter Debug Mode, even in the presence of
other exceptions, both asynchronous and synchronous.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction
execution. These exceptions are shown with higher priority than synchronous
exceptions mainly for notational convenience. If one thinks of asynchronous
exceptions as occurring between instructions, they are either the lowest prior-
ity relative to the previous instruction, or the highest priority relative to the
next instruction. The ordering of the table above considers them in the second
way.

November 15, 1999 -90 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 55: Exception Type Characteristics

Exception Type Characteristics

Synchronous Debug | Denotes an EJTAG debug exception that occurs as a result of instruction exe-
cution, and is reported precisely with respect to the instruction that caused the
exception. These exceptions are prioritized above other synchronous excep-

tions to allow entry to Debug Mode, even in the presence of other exceptions.

Synchronous Denotes any other exception that occurs as a result of instruction execution,
and is reported precisely with respect to the instruction that caused the excep-
tion. These exceptions tend to be prioritized below other types of exceptions,
but there is a relative priority of synchronous exceptions with each other.

4.8.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location OxFFFF FFFF BFC0 0000. EJTAG Debug
exceptions are vectored to location OXFFFF FFFF BFCO 0480 or to location OxFFFF FFFF FF20 0200 if the ProbEn
bit is zero or one, respectively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination
of a vector offset and a base address. Table 56 gives the base address as a funcnon of the exception and whether the
BEV bit is set in the Status register. Table 57 gives the offsets from the base addrcss as a function of the exception.-
Table 58 combines these two tables into one that contains all possible vector addresses asa funcnon of the state that
can affect the vector selection. 4 L -

5 7N
4, Z

Table 56: Exception Vector Base Qd&resses

Exception -
1
Reset, Soft Reset, NMI xFFFF FFFF BFCO0 0000
EJTAG Debug (with ProbEn =0 !
in the EJTAG_Control_register) | \ 0x BFCO 0480
EJTAG Debug (with ProbEn =1 -
in the EJTAG_Control reglster) (Ox FF20 0200
Cache Error OXFFFF FFFF A0000000 | OxFFFF FFFF BFC0 0200
Other O0xFFFF FFFF 8000 0000 OxFFFF FFFF BFCO0 0200
Table 57: Exception Vector Offsets
.Exception Vector Offset

TLB Refill, EXL =0 0x000

64-bit XTLB Refill, EXL. =0 0x080

Cache error 0x100

General Exception 0x180

Interrupt, Causepy = 1 0x200

Reset, Soft Reset, NMI None (Uses Reset Base Address)

November 15, 1999 -91-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 58: Exception Vectors

Exception BEV | EXL | IV fg(:ﬁ; Vector

Reset, Soft Reset, NMI X X X X OxFFFF FFFF BFC0 0000
EJTAG Debug X x | x 0 OXFFFF FFFF BFCO 0480
EJTAG Debug X X X 1 O0xFFFF FFFF FF20 0200
TLB Refill 0 0 | x X OXFFFF FEFF 8000 0000
XTLB Refill 0 0 | x X 0xFFFF FFEF 8000 0080
TLB Refill 0 1| x X OxFFFF FFFF 8000 0180
XTLB Refill 0 1| x X OXFFFF FFFF 8000 0180
TLB Refill 1 0 | x X OXFFFF FFFF BFCO 0200
XTLB Refill Ll oo | «x x | OXFFFF FFFF BFCO 0280
TLB Refill 1 1| x OXFEEF FFFF BFCO 0380
XTLB Refill 1 1| x ¢ OxFFFF FFFF BFCO 0380
Cache Error 0 x | x X | OXFFFF FFEF A000 0100
Cache Error 1 x | x OxFFFF FFFF BFCO 0300
Interrupt OgFFF FFFF 8000 0180
Interrupt OXFEFF FFEF 8000 0200
Interrupt OxFFFF FFFF BFCO 0380
Interrupt OXFFFF FFFF BFCO 0400
All others OxFFFF FFFF 8000 0180
All others ' OXFFFF FFFF BFCO 0380
‘x’ denotes don’t care

4.8.3 General Exception Processing

With the exception of Reset, Soft Reset, and NMI exceptions, which have their own special processing as described
below, exceptions have the same basic processing flow: .

« Ifthe EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register. The value loaded into the EPC register is
the current PC if the instruction is not in the delay slot of a branch, or PC-4 if the instruction is in the delay
slot of a branch. If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is
not changed in the Cause register.

* The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception.
The CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

e The EXL bit is set in the Status register.

» The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
November 15, 1999 -92 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

handler software in the normal case. Software need not look at the BD bit in the Cause register unless is wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:
if StatusEXL =0
if InstructionInBranchDelaySlot then
EPC«PC-4
| CaUSCBD «—1

else
EPC « PC

| Causegp <0

endif

if ExceptionType = TLBRefill then
| vectorOffset «— 0x000

elseif (ExceptionType = XTLBRefill) then
| vectorOffset «— 0x080

elseif (ExceptionType = Interrupt) and
(Causepy = 1) then

| vectorOffset < 0x200
else
| vectorOffset <— 0x180 .
endif
else
| vectorOffset «— 0x180
endif

Causecg ¢— FaultingCoprocessorNumber
Causeg,.coqe <— ExceptionType
StatUSEXL «—1

if Statusggy = 1 then L

I PC « OFFFF FFFF BFC0 0200 + vectorOffset
else o, il

I PC « OXFFFF FFFF 8000 0000 + vectorOffset
endif i V

4.8.4 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the ESTAG
Specification for details of this exception.

Entry Vector Used S o . o
- OxFFFF FFFF BFCO 0480 if the ProbEn bit is zero in the EJTAG_Control_register; OXFFFF FFFF FF20
0200 if the ProbEn bit is one.

4.8.5 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable.
When a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from

| uncached, unmapped address space. On a Reset Exception, the state of the processor in not defined, with the follow-
ing exceptions:

November 15, 1999 -93-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

* The Random register is initialized to the number of TLB entries - 1.

e The Wired register is initialized to zero.

» The Config and Configl registers are initialized with their boot state.

« The BEV, TS, SR, NMI, ERL, and RP fields of the Status register are initialized to a specified state.

e Watch register enables and Performance Counter register interrupt enables are cleared.

e The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this
value may or may not be predictable if the Reset Exception was taken as the result of power being applied to

“the processor because PC may not have a valid value in that case. In some implementations, the value loaded
into ErrorEPC register may not be predictable on either a Reset or Soft Reset Exception.

« PC is loaded with OxFFFF FFFF BFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (OxFFFF FFFF BFCO 0000)

Operation
Random < TLBEntries - 1
Wired < 0
Config < ConfigurationState
Configgy <2 # Suggested - see Confi

Configl < ConfigurationState
Statusggy ¢ 1
Statustg <— 0
Statusgg < 0
Statusypg <— 0
Statusggp «— 1
Statusgp ¢<— 0
WatchLo[n]; <~ 0
WatchLo[n]g <~ 0
WatchLo[n]y <0 . i mented Watch registers
PerfCnt.Control[n] < 0 # For all imple;tfxented PerfCnt registers
if InstructionInBranchDelaySlot then 4
.. ErrorEPC <~ PC - 4
else

ErrorEPC « PC
endif]
PC « OxFFFF FFFF BFCO 0000

-

escription

4.8.6 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. It is implementation dependent
whether Soft Reset is implemented. If the Soft Reset Exception is not implemented, the Reset Exception should be
used instead. This exception is not maskable. When a Soft Reset Exception occurs, the processor performs a subset of
the full reset initialization. Although a Soft Reset Exception does not unnecessarily change the state of the processor,
it may be forced to do so in order to place the processor in a state in which it can execute instructions from uncached,
unmapped address space. Since bus, cache, or other operations may be interrupted, portions of the cache, memory, or
other processor state may be inconsistent. In addition to any hardware initialization required, the following state is

November 15, 1999 -94 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

| established on a Soft Reset Exception:

* The BEV, TS, SR, NMI, ERL, and RP fields of the Status register are initialized to a specified state.

e Watch register enables and Performance Counter register interrupt enables are cleared.

» The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this
value may or may not be predictable.

» PC is loaded with OxFFFF FFFF BFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved

None
Entry Vector Used
| Reset (OxFFFF FFFF BFCO 0000)
Operation o
Configgg ¢ 2 # Suggested - see Config register description -

Statusggy ¢ 1 -
Statuspg < 0 k.
Statusgg ¢ 1

Statusypy <— 0
Statusgpy ¢ 1
Statusgp ¢— 0 i
WatchLo[n]; < 0 # For all implemented Watch rcé%été@
WatchLo[n]g < 0 # For all implemented Watch registers:

WatchLo[n]y < O ipl ed W
PerfCnt.Control[n];z < 0 # For all img
if InstructionInBranchDelaySlot then

e

i,

| ErrorEPC < PC - 4 48
else

I ErrorEPC « PC -
endif 7 -

| PC « OxFFFF FFFF BFCO 000

4.8.7 Non Maskable Interrupt (NMI)MEgggei)tion

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor. It is implementation
dependent whether the NMI exception is implemented. However, several embedded operating systems make use of
the NMI exception, so its implementation is strongly recommended.

* Unlike all other interrupts, this exception is not maskable. An.NMI occurs only at instruction boundaries, so does not
do any reset or other hardware initialization. The state of the cache, memory, and other processor state is consistent
and all registers are preserved, with the following exceptions:

e TheBEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

o The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an
instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

* PC is loaded with OxFFFF FFFF BFCO 0000.

Cause Register ExcCode Value
None

November 15, 1999 -95-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 ‘ ' MIPS64™ Specification

Additional State Saved
None

Entry Vector Used
Reset (OxFFFF FFFF BFCO 0000)

Operation
StatusBEV «—1
Status—rs «—0
" Statusgg «— 0
Statusyyy < 1
Statusgg; ¢ 1
if InstructionInBranchDelaySlot then
ErrorEPC < PC - 4
else
ErrorEPC « PC
-endif
PC « OxFFFF FFFF BFCO0 0000

4.8.8 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency. It is implementation depen-
dent whether the Machine Check Exception is implemented. If no internal co 31stency checkmg 1s performed by the
processor, the Machine Check Exception need not be implemented. R

The following conditions cause a machine check exception:

a TLB-based MMU It is implementation dependent
at creates multlple matching entries, or on a reference
wster is set to indicate thxs condition. It is imple-

e Detection of multiple matching entries in the
whether this condition is detected on the TLB
that detects them. In either case, the TS b'

flushing the entire TLB. If the condlt'on can be of ed, oftware must clear this bit before resuming nor-
mal operation.

,susyyors should attempt to preserve the entry already in
mation for software debug of the problem.

If the condition is detected during:
the TLB, if possible_,y as Fhat p
Cause Register ExcCode Value T
~MCheck

Additional State Saved :
Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used _
~'General exception vector (offset 0x180)

4.8.9 Address Error Exception
An address error exception occurs under the following circumstances:

e Aload or store doubleword instruction is executed in which the address is not aligned on a doubleword

boundary.
* An instruction is fetched from an address that is not aligned on a word boundary.
* Aload or store word instruction is executed in which the address is not aligned on a word boundary.
» Aload or store halfword instruction is executed in which the address is not aligned on a halfword boundary.
» Areference is made to a kernel address space from User Mode or Supervisor Mode.

November 15, 1999 -96 -
MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

« Areference is made to a supervisor address space from User Mode.

» Areference is made to a a 64-bit address that is outside the range of the 32-bit Compatibility Address Space
when 64-bit address references are not enabled.

« Areference is made to an undefined or unimplemented 64-bit address when 64-bit address references are
enabled.

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value
AdEL: Reference was a load or an instruction fetch
AdES: Reference was a store

Additional State Saved

Register State Value
BadVAddr failing address oy
Contextypns UNPREDICTABLE 7
igg::ﬁ;”’ N2 | UNPREDICTABLE
EntryHiypx, UNPREDICTABLE
EntryHip
EntryLo0 UNPREDICTABLE .
EntryLol UNPREDICTABLE - _

Entry Vector Used
General exception vector (offset Ox180)

4.8.10 TLB Refill and XTLB Reﬁll Exceptlons o

A TLB Refill or XTLB Refill exceptlon occurs in a TLB based MMU: when no TLB entry matches a reference to a
mapped address space and the EXL bit is zero in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off, in which casea “TLB Invalid exception occurs. Refill exceptions have distinct
exception vector offsets: 0x000 for a 32-bit TLB Refill and 0x080 for a 64-bit extended TLB (“XTLB”) refill. The
XTLB refill handler is used whenever a reference is made to an enabled 64-bit address space.

Cause Register ExcCode Value
- TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved
Register State Value
BadVAddr failing address
November 15, 1999 -97 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Register State Value

Context The BadVPN2 field contains VA3,.|3 of the failing
address

XContext The XContext BadVPN?2 field contains VAgg;.

BITs-1:13 and the XContext R field contains
VAg3.6> of the failing address. '

EntryHi The EntryHi VPN2 field contains VASEGBITS-[‘.]3

of the failing address and the EntryHi R field con-
tains VAg3.¢, of the failing address; the ASID field

contains the ASID of the reference that missed

EntryLo0 UNPREDICTABLE
|.EntryLol UNPREDICTABLE
Entry Vector Used : :
» TLB Refill vector (offset 0x000) if 64-bit addresses are not enabled and StatusBXL =0 at the time of excep-
tion. ¢

e XTLB Refill vector (offset 0x080) if 64-bit addresses are enab]ed and Statusgxy, = 0 at the time of exception.
» General exception vector (offset 0x180) in either case if StatugEXL 1 ‘the time of exceptlon

e
N

4.8.11 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry
entry has the valid bit off. r

e to a'inﬁpped address space, but the matched

Note that the condition in which no TLB entry.matches a r a mapped address space and the EXL bit is one
in the Status register is indistinguishable from a TLB Invali ception in the sense that both use the general excep-
tion vector and supply an ExcCode value of TLBL:er LBS. The only way to distinguish these two cases is by prob-
ing the TLB for a matching entry (using FL.

Cause Register Echode Value |
TLBL: Reference was a load or
TLBS: Reference was a store

nstructio ﬂetch

Additional State Saved

Register State 4 ‘ Value

BadVAddr failing address

Context The BadVPN2 field contains VAj,.q3 of the failing
address

XContext The XContext BadVPN2 field contains VAgg;.
BITs-1:13- and the XContext R field contains
VAg3.62 of the failing address.

November 15, 1999 -98 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Register State Value

EntryHi The EntryHi VPN2 field contains VAgzsp7s-1:13

of the failing address and the EntryHi R field con-
tains VAg3.¢, Of the failing address; the ASID field

contains the ASID of the reference that missed

EntryLo0O UNPREDICTABLE
EntryLol UNPREDICTABLE
Entry Vector Used

General exception vector (offset 0x180)

4.8.12 TLB Modified Exception

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry is valid,
but the entry’s D bit is zero, indicating that the page is not writable. :

Cause Register ExcCode Value
Mod

Additional State Saved

Register State Valuew‘

BadVAddr failing address

Context The BadVPN?2 field contains VA31 13 of the failing
address

XContext The XContext BadVPN2 field contams VAggG.

BITS-1:13- and the XContext R ﬁeld contains
VAg3.62 of the fallmg address.’"“’jl a

EntryH1 The EntryHl VPNZ ﬁeld contams VASEGBITS—I 13

of the failing address and the EntryHi R field con-
tains VAg3.6, of the faxlmg address; the ASID field

contains the ASID of the reference that missed

EntryLo0O UNPREDICTABLE
EntryLol UNPREDICTABLE
Entry Vector Used

General exception vector (offset 0x180)

4.8.13 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error
was in a cache, the exception vector is to an unmapped, uncached address. It is implementation dependent whether a
cache error exception resulting from an access to the data cache is reported precisely with respect to the instruction

November 15, 1999 -99 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

that caused the cache error.

Cause Register ExcCode Value
N/A

Additional State Saved

Register State Value
CacheErr Error state
ErrorEPC PC

Entry Vector Used

Cache error vector (offset 0x100)

Operation
CacheErr « ErrorState
StatusERL «—1
if InstructionInBranchDelaySlot then
ErrorEPC <~ PC - 4
else
ErrorEPC « PC
endif
if Statusggy = 1 then

-

4.8.14 Bus Error Exception

; dgta; or prefetch gécesg makes a bus request (due to a cache miss or an
i an error. Note that parity errors detected during bus transac-

A bus error occurs when an instructi
uncacheable reference) and that reque

Cause Register ExcCode Value
IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

4.8.15 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

November 15, 1999 - 100 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Cause Register ExcCode Value
Ov

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)

4.8.16 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value
Tr

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

4.8.17 System Call Exception

A system ¢all exception occurs when a SYSCALL instruction is executed. -

Cause Register ExcCode Value
Sys

Additional State Saved
None

Entry Vector Used 0
General exception vector (offset Ox 1 80)

4.8.18 Breakpoint Exception ;"

o i #
A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value o
Bp e

Additional State Saved
None

Entry Vector Used
+ General exception vector (offset 0x180)

4.8.19 Reserved Instruction Exception
A Reserved Instruction Exception occurs if any of the following conditions is true:

* Aninstruction was executed that specifies an encoding of the opcode field (Table 20) that is flagged with “*”
(reserved), “B” (higher-order ISA), “L” (64-bit) if 64-bit operations are not enabled, or an unimplemented
“g” (ASE).

e An instruction was executed that specifies a SPECIAL opcode encoding of the function field (Table 21) that

November 15, 1999 - 101 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 ' MIPS64™ Specification

is flagged with “*” (reserved), “B” (higher-order ISA), or “L” (64-bit) if 64-bit operations are not enabled.

e An instruction was executed that specifies a REGIMM opcode encoding of the rt field (Table 22) that is
flagged with “*” (reserved).

e Aninstruction was executed that specifies an unimplemented SPECIAL?2 opcode encoding of the function
field (Table 23) that is flagged with an unimplemented “8” (partner available), “L” (64-bit) if 64-bit opera-
tions are not enabled, or an unimplemented “c” (EJTAG).

* An instruction was executed that specifies a COPz opcode encoding of the rs field (Table 25, Table 27,

Table 29) that is flagged with “*” (reserved), “B” (higher-order ISA), “ 1" (64-bit) if 64-bit operations are not
enabled, or an unimplemented “€” (ASE), assuming that access to the coprocessor is allowed. If access to
the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For the COPI opcode,
some implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unim-
plemented Operation bit in the Cause field of the FCSR register.

e An instruction was executed that specifies an unimplemented COPQ opcode encoding of the function field
when rs is CO (Table 28) that is flagged with “+” (reserved), or an unimplemented “c” (EJTAG), assuming '
that access to coprocessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable
Exception occurs instead.

* An instruction was executed that specifies a COP opcode encoding of the function field when s is S, D, or
W (Table 30, Table 31, Table 32) that is flagged with “+” (reserved), B’ (higher—order ISA), “L” (64-bit) if
64-bit operations are not enabled, or an unimplemented “¢” (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exceptxon occurs instead.

Some implementations of previous ISAs reported this case as a Floatmg P 'nt 'Exception, setting the Unim- -
plemented Operation bit in the Cause field of the FCSR regxster' .

e An instruction was executed that specifies a COP/ opcode encodmg whens is L or PS (Table 32, Table 33)
and 64-bit operations are not enabled, or with a function field encodmg that is flagged with “*"*(reserved),
“B” (higher-order ISA), or an unimplemented “€” (ASE), assuming that access to coprocessor 1 is allowed.
If access to the coprocessor is not allowed, a Coprocessor’ Unusable Exception occurs instead. Some imple-
mentations of previous ISAs reported this case as a Floating Point Exceptlon setting the Unimplemented
Operation bit in the Cause field of the FCSR regi .

* An instruction was executed that specifies.a COP1X opc encodmg of the function field (Table 35) that is
flagged with “*” (reserved), or any executlon fthe ‘COP1X opcode when 64-bit operations are not enabled,
assuming that access to coprocessor 1 is allowed. If access to the coprocessor is not allowed, a Coprocessor
Unusable Exception occurs instead. Some 1mplementat10ns of previous ISAs reported this case as a Floating
Point Exception, setting the Unimplement e perauon bit in the Cause field of the FCSR register.

Cause Register ExcCode Value
RI

Additional State Saved
None

Entry Vector Used
General exception vector (offset 0x180)

4.8.20 Coprocessor Unusable Exception
A coprocessor unusable exception occurs if any of the following conditions is true:

e A COPO or Cache instruction was executed while the processor was running in a mode other than Debug
Mode or Kernel Mode, and the CUO bit in the Starus register was a zero

« ACOPI,COPIX,LWCI, SWCI,LDC1, SDC1 or MOVCI (Special opcode function field encoding)
instruction was executed and the CU1 bit in the Starus register was a zero.

e A COP2,LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU?2 bit in the Status register
was a zero.

November 15, 1999 -102 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Cause Register ExcCode Value

CpU
Additional State Saved
Register State Value
Causecg unit number of the coprocessor being referenced
Entry Vector Used

General exception vector (offset 0x180)

4.8.21 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value
FPE

Additional State Saved

Register State Value

FCSR indicates the cause of the floating point exception.

Entry Vector Used
General exception vector (offset 0x180),

Pl
L

4.8.22 Watch Exception

The watch facility provides a software debﬁéging vehicle initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of the Statu gxster are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both the
EXL and ERL bits in the Status register are zero. Software may use the WP bit in the Cause register to determine if
the EPC register points at the instruction that cause(}ﬁ the watch exception, or if the exception actually occurred while
in kernel mode. '

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (which

. is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the. lower priority exception is taken.
It is implementation dependent whether the WP bit is set in this case. The preferred implementation is to set the WP
bit only if the instruction completes with no other exception.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. The preferred implementation is not to match on these
instructions.

Register ExcCode Value
WATCH

November 15, 1999 - 103 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Additional State Saved

Register State Value

Causewp indicates that the watch exception was deferred
until after both Statusgy; and Statusgg; were zero.
This bit directly causes a watch exception, so soft-
ware must clear this bit as part of the exception
handler to prevent a watch exception loop at the
end of the current handler execution.

Entry Vector Used
G_eneral exception vector (offset 0x180)

4.8.23 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enabled by the Status reglsters See
Section 4.7 on page 87 for more information. :

Register ExcCode Value
Int

Additional State Saved

Register State Value .

———

Cause indicates the interrupts that are pending,
P p ararcp g

Entry Vector Used .
General exception vector (offset 0x180) if th IV b1t in the Cause register is zero.
Interrupt vector (offset 0x200) 1f the IV bit in the Cause reglster is one.

4.9 CP0 Registers

The CPO registers provide the interface between:the ISA and the PRA. Each register is discussed below, with the reg-
isters presénted in numerical order, first by register number, then by select field number.

_For each register described below, field descriptions include the read/write properties of the field, and the reset state

November 15, 1999 - 104 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

of the field. For the read/write properties of the field, the following notation is used:

Read/Vlete Hardware Interpretation Software Interpretation
Notation

R/W A field in which all bits are readable and writable by software and, potentially, by hard-
ware.
Hardware updates of this field are visible by software read. Software updates of this
field are visible by hardware read.
If the Reset State of this field is “Undefined”, either software or hardware must initial-
ize the value before the first read will return a predictable value. This should not be
confused with the formal definition of UNDEFINED behavior.

R A field which is either static or is updated | A field to which the value written by soft-
only by hardware. ware is ignored by hardware. Software

may write any value to this field without
If the Reset State of this field is either. “0” | affecting hardware behavior. Software
or “Preset”, hardware initializes this field | reads of this field return the last value
to zero or to the appropriate state, respec- | updated by hardware.
tively, on powerup. e

If the Reset State of this field is “Unde-
If the Reset State of this field is “Unde- fined”, software reads of this field result
fined”, hardware updates this field only in an UNPREDICTABLE value except
under those conditions specified in the .. | after a hardware update done under the
description of the field. (P Tsgy conditions specified in the description of

. the field. -

0 A field which hardware does not update, | A field to which the value written by soft-
and for which hardware can assume a ware must be zero. Software writes of
zero value. | non-zero values to this field may result in

UNDEFINED behavior of the hardware.
Software reads of this field return zero as
long as all previous software writes are
zero. '

e If the Reset State of this field is “Unde-

fined”, software must write this field with

zero before it is guaranteed to read as
ZEero.

4.9.1 Index Register (CP0 Register 0, Select 0)
Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Index register is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of
TLB entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-

ten to the Index register.

Figure 13 shows the format of the Index register; Table 59 describes the Index register fields.

November 15, 1999

- 105 -
MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 13: Index Register
31 30 n p-l 0
P 0 ’ Index

Table 59: Index Register Field Descriptions

Fields Read/
Description Write Reset State | Compliance

Name Bits

P 31 Probe Failure. Hardware writes this bit during R Undefined Required
execution of the TLBP instruction to indicate .
whether a TLB match occurred:

0: A match occurred, and the Index field
contains the index of the matching entry

1: No match occurred and the Index field is
UNPREDICTABLE

Index n-1:0 | TLB index. Software writes this field to provide | R/W | Undefined Requiféd
- the index to the TLB entry referenced by the T S, -
TLBR and TLBWI instructions. Sy e | -

Hardware writes this field with the mdex of the .
matching TLB entry during execution of the S
TLBP instruction. If the TLBP: falls to find a
match, the contents of thi field are UNPRE
DICTABLE. /

0 30:n | Must be written as zero; returns zéridffqg_, read. 0 0 Reserved

4.9.2 Random Register (CP0 Register 1, Sefé@g 0)
Comphance Level: Required for TLB~based MMUs;

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of thie Random field is calculated in the same manner as that described for the Index register above.

Opn’oﬁa[otherwise.

The value of the register varies between an upper and lower bound as follow:

* Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the
contents of the Wired register). The entry indexed by the Wired register is the first entry available to be writ-
ten by a TLB Write Random operation.

* An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for
the Random register is implementation-dependent. However, designers should be aware of a potential live lock condi-
tion for implementations that simply increment the Random field every ‘n’ cycles. With such an implementation, the
TLB/XTLB refill handler can fall into synchronization with the Random field such that the same entry is used during
each pass through the refill handler. If the instruction causing the TLB/XTLB refill requires more than a single entry
to complete (e.g., a load instruction requiring both an instruction and a data translation), no forward progress is made
and a live lock condition is created. In most cases, some other event, such as an interrupt, breaks the condition. How-
ever, if the offending instruction is executed in Kernel Mode with interrupts disabled, breaking the live lock may not
be possible. Designers are encouraged to introduce some pseudo-random behavior on top of a counter implementa-

November 15, 1999 - 106 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

tion of the Random field, such as might be provided by, for example, an LFSR.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register is
written.

Figure 14 shows the format of the Random register; Table 60 describes the Random register fields.

Figure 14: Random Register Format

31 n nl 0
0 ’ Random

Table 60: Random Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
Random n-1:0 | TLB Random Index #Re: TLB Required
/ ‘Entries - 1
0 3l:n Must be written as zero; returns zero on read. ../ | 0. il 0 Reserved

4.9.3 EntryLo0, EntryLol (CP0 Registers 2 and 3, Select 0) e oo

Compliance Level: EntryL.o0 is Required for a TLB-based MMU;j-Opti,brtial otherwise.
Compliance Level: EntryLo! is Required for a TLB- based MMU' Optional otherwise

The pair of EntryLo registers act as the interface betwéen the TLB and the TLBR TLBWI, and TLBWR instructions.
EntryLoO holds the entries for even pages and EntryLol holds the entnes for odd pages.

The contents of the EntryLo0O and EntryLol remsters are not defined after an address error exception and some fields
may be modified by hardware during the address error excepuon sequence

Figure 15 shows the format of the EntryLoO and EntryLol reglsters Table 61 describes the EntryLoO and EntryLol

register fields.
Flgure 15 EntryloO EntryLol Reglster Format

P ' : TR S0 g9 65 3210
Fill PFN C DV

Table 61: EntryLo0, EntryLol Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name | Bits
Fill 63:30 | Ignored on write; returns zero on read. R 0 Required

November 15, 1999 - 107 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 61: EntryLo0, EntryLol Register Field Descriptions

Fields ‘Read/
Description Write Reset State | Compliance

Name Bits

PFN 29:6 Page Frame Number. Corresponds to R/W Undefined Required
bits[PABITS-1:12] of the physical address. The
width of this field implicitly limits the size of the
physical address to 36 bits. If the processor
implements fewer physical address bits than this
limit, the unimplemented bits must be written as
zero, and return zero on read. If the processor
implements more physical address bits that this
limit, the PFN field boundary moves to the left,
compressing out bits of the Fill field.

C ’ 5:3 Coherency attribute of the page. See Table 62 R/W Undefined Required
below. A

D 2 “Dirty” bit, indicating that the page is writable. If | ‘R/W ,-/Undeﬁned Required
this bit is a one, stores to the page are permitted. | oo

If this bit is a zero, stores to the page causea "
TLB Mocdified exception. :

Kernel software may use this bit to implement
paging algorithms that require knowing which - -
pages have been written. If this bitis always zero
when a page is initially mappéd L
fied exception that results o”’ any store to the
page can be used to update elAdata structures

that indicate that the page was ‘actualLy wntten

\% . o1 Valid bit, indicating that the TLB entry, and thus R/W Undefined Required
the virtual page mappmv are valid. If this bit is a o
one, accesses to the page are permitted. If this bit
is a zero, accesses to the page cause aTLB
Invalid exceptxon -

G 0 Global bit. On a TLB write, the logical AND of R/W Undefined Required
the G bits from both EntryLoO and EntryLol (TLB MMU)
becomes the G bit in the TLB entry. If the TLB
entry G bit is a one, ASID comparisons are
ignored during TLB matches. On a read from a
TLB entry, the G bits of both EntryLo0 and
EntryLol reflect the state of the TLB G bit.

Table 62 lists the encoding of the C field of the EntryLo0 and EntryLol registers and the KO field of the Config regis-
ter. An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple-
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In
other cases, the operation of the processor is UNDEFINED if software specifies an unimplemented encoding.

November 15, 1999 - 108 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 62 lists the required and optional encodings for the coherency attributes, in addition to giving an historical per-
spective on the encodings implemented by various MIPS processors, as obtained from the processor chip specifica-
tion.

Table 62: Cache Coherency Attributes

<. Cache Coherency Attributes .
C(5:3) Value With Historical Usage Compliance
0 Available for implementation dependent use Optional
Historical usage:
» Reserved (R4000®, VR5400, R10000®)
¢ Unused, defaults to cached (R4300™)
¢ Cacheable, noncoherent, write through, no write
allocate (RC32364, RM5200)
1 Available for implementation dependent use Optional
Historical usage:
¢ Reserved (R4000)
¢ Unused, defaults to cached (R4300) :
¢ Cacheable, noncoherent, write through, wrxte allo—
' cate (RC32364, RM5200) .
* " Cacheable write-through, write allocate (VR5400))
2 Uncached Required
Historical usage: :
¢ Uncached (alI processors)
3 Cacheable ' / Requifed
Historical usace 4 ~
» Cacheable noncoherent (noncoherent) (R4000
RlOOOO)
.. Cached (R4300)
. Cacheable ‘noncoherent (writeback) (RC32364
RM5200) '.
» Cacheable, wnteback (VR5400)
4 Available for 1mplementat1on dependent use Optional
Historical usage:
¢ Cacheable coherent exclusive (exclusive) (R4000,
R10000)
¢ Unused, defaults to cached (R4300)
¢ Reserved (RC32364, RM5200, VR5400)

November 15, 1999 - 109 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 62: Cache Coherency Attributes

X Cache Coherency Attributes .
C(5:3) Value With Historical Usage Compliance
5 Available for implementation dependent use Optional
Historical usage:
* Cacheable coherent exclusive on write (sharable)
(R4000, R10000)
¢ Unused, defaults to cached (R4300)
* Reserved (RC32364, RM5200, VR5400)
6 Available for implementation dependent use Optional
Historical usage:
* Cacheable coherent update on write (update)
(R4000)
¢ Unused, defaults to cached (R4300)
* Reserved (RC32364, RM5200, R10000) - ' .
7 Available for implementation dependent use Optional g)
Historical usage: . o
+ Reserved (R4000) , ‘
¢ Unused, defaults to cached (R4300)
» Reserved (RC32364, RM5200)
¢ Uncached accelerated (VR5400 RlOOOO)

4.9.4 Context Register (CP0 Register 4, S lect 0)
Compliance Level: Required for TLB-based MMUs

The Context register is a read/write register contammo a pomter to an entry in the page table entry (PTE) array Thxs
array is an operating system data structure that stores vmual -to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register is primarily intended
for use with the TLB Refill handler, but is also loaded by hardware on an XTLB Refill and may be used by software
in that handler. The Context register duphcates some of the information provided in the BadVAddr register, but is
organized in such a way that the operating system can dxrectly reference a 16-byte structure in memory that describes
the mapping.

A TLB exception (TLB Refill, XTLB Refill, TLB Invahd or TLB Modxﬁed) causes bits VA, 3 of the virtual address

. to be written into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating
system. :

; Opno] otherw1sc

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be modi-
fied by hardware during the address error exception sequence.

Processor implementations must not assume that software will write the same value into the PTEBase fields of the
Context and XContext registers (i.e., the PTEBase fields of the two registers may be set to different values, thus can-
not share storage).

Figure l6yshows‘the format of the Context Register; Table 63 describes the Context register fields."

November 15, 1999 -110-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification
Figure 16: Context Register Formats
63 23 12 4 3 0
PTEBase BadVPN2 0
Table 63: Context Register Field Descriptions
Fields
Description Rea.d! Reset State | Compliance
. Write
Name Bits
PTEBase 63:23 This field is for use by the operating system R/W Undefined Required
and is normally written with a value that
allows the operating system to use the Conrext
Register as a pointer into the current PTE S)
array in memory %
BadVPN2 22:4 This field is written by hardwareona TLB = | * R . ;ijndeﬁried Required
i exception. It contains bits VA3.;3 of the v1r- f S '
tual address that caused the exception. & | ot
0 3:0 Must be written as zero; returns zero on rcz{fd.,)‘ 0 0 - Reserved

4.9.5 PageMask Register (CPO Reglster 5, Select 0)
Compliance Level: Required for TLB-based MMU Opnonal otherwxse

The PageMask register is a read/write register used for. readmg from ‘and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as’shown in Table 65. Figure 17 shows the format of the
PageMask register; Table 64 descnbes the PageMask reglster ﬁelds

i,

Flgure 17 PageMask Reglster Format

31 25 24 , : 1312 0
0 Mask 0
Table 64: PageMz;;k Register Field Descriptions
Fields .
Description Rea.d/ Reset State | Compliance
. Write
Name , Bits
Mask 24:13 | The Mask field is a bit mask in which a “1” bit R/W Undefined Required
indicates that the corresponding bit of the virtual
address should not participate in the TLB match.
0 31:25, | Must be written as zero; returns zero on read. 0 0 Reserved
12:0
November 15, 1999 -111-

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0 MIPS64T™ Specification

Table 65: Values for the Mask Field of the PageMask Register

Bit
Page Size
24 23 22 21 20 19 18 17 16 15 14 13
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0
16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1
64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1
256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1
1 MByte 0 0 0 0 1 1 1 1 1 1 1 1
4 MByte 0 0 1 1 1 1 1 1 1 1 1 1
16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1

It is implementation dependent how many of the encodings described in Table 65 are implemented. All processors
must 1mplement the 4KB page size (an encoding of all zeros). If a particular page size encodmg is not implemented
by a processor, a read of the PageMask register must return zeros in all bits that correspond to encodings that are not -
implemented. Software can determine which page sizes are supported by writing the encoding for a 16MB page to the
PageMask register, then examine the value returned from a read of the PageMask register. If a pair of bits reads back
as ones, the processor implements that page size. The operation of the processor is UNDEFINED if software loads
the PageMask register with a value other than one of those listed in Table 65.

4.9.6 Wired Register (CP0 Register 6, Select 0)
Compliance Level: Required for TLB-based MMUs

The Wired register is a read/write register that specxﬁes the boundary between the wired and random entries in the
TLB as shown in Figure 18. The width of the Wired field i is calculated in the same manner as that described for the
Index register above. Wired entries are fixed, non-replaceable entrles which are not overwritten by a TLBWR instruc-
tion. Wired entries can be overwritten by a TLBWI mstructlon

Optzonal otherw1se = 4

’

The Wired register is set to zero by a Reset Exceptxon Wrxtmg the Wzred regxster causes the Random register to reset
to its upper bound.

The operation of the processor is UNDEFINE
ten to the Wired register.

if a value greater than or equal to the number of TLB entries is writ-

Figure 19 shows the format of the Wired reglster Table 66 describes the Wired register fields.

November 15, 1999 -112-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™™ Specification

Figure 18: Wired And Random Entries In The TLB
Entry TLBSize-1 A
: £
’ o
: ~
, =
. <
; &
Wired Register | 10 | ——» Entr;/ 10 +
' g
1 O
. =
Entry 0)
Figure 19: Wired Regiéter*i » RO
3 A el 0
0 Wired e

Table 66: Wired Regiétér Field Descriptions

Fields e ﬁea o o
Description . Reset State | Compliance
. Write
Name Bits :
Wired n-1:0 TLB wired boundary L T, RW 0 Required
0 3l:n | Must be written as zero; returns zéijb onread. 0 (U Reserved

4.9.7 BadVAddr Register (CPO Register 8?,S'elect 0)
Compliance Level: Required. s A

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

» .Address error (AdEL or AdES)

+ TLB/XTLB Refill

» TLB Invalid (TLBL, TLBS)

+ TLB Modified
The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
none is an addressing error.

Figure 20 shows the format of the BadVAddr register; Table 67 describes the BadVAddr register fields.

November 15, 1999 -113-

MIPS® PROPRIETAR Y/CONFIDENTIAL :
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 20: BadVAddr Register Format

63 0
BadVAddr

Table 67: BadVAddr Register Field Descriptions

Fields Read/
Description ea. Reset State | Compliance
i Write
Name Bits
BadVAddr 63:0 Bad virtual address R Undefined Required

4.9.8 (jgunt Register (CP0 Register 9, Select 0)

Compliance Level: Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The rate at which the counter increments is implementation-
dependent, and is a function of the frequency of the processor, not the issue width of the processor. The preferred -
implementation is to increment the Count register once per processor cycle :

It is implementation dependent whether the Count register continues to count or stops when the processor enters a
low power mode, as might occur after executing the Wait mstrucnon

The Count register can be written for functional or dxaonostrc purposes, including at reset or to synchronize proces-
SOrs. .

* Figure 21 shows the format of the Count register; Tabrle 68 describes the Count register fields.
Figure 21: Count ke’gister'\i?‘ormat
31 0 b
Count S

- Tabﬁiey 68: Cou t Register Field Descriptions

Fields . Read/
- Description : . Reset State | Compliance
. : Write
Name Bits
Count 31:0 Interval counter R/W Undefined Required

4.9.9 EntryHi Register (CPO Register 10, Select 0)
Compliance Level: Required for TLB-based MMU; Optional otherwise.
The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes the bits of the virtual address cor-
responding to the R and VPN2 fields to be written into the EntryHi register. The ASID field is written by software
with the current address space identifier value and is used during the TLB comparison process to determine TLB
match.

November 15, 1999 114 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Software may determine the size of the virtual address space implemented by a processor by writing all ones to the
EntryHi register and then reading the value back.

The VPN2 and R fields of the EntryHi register are not defined after an address error exception and these fields may be
modified by hardware during the address error exception sequence. Software writes of the EntryHi register (via
MTCO or DMTCO) do not cause the implicit write of address-related fields in the BadVAddr, Context, or XContext
registers.

Figure 22 shows the format of the EntryHi register; Table 69 describes the EntryHi register fields.

Figure 22: EntryHi Register Format

13 12 8 7 0
VPN2 0 ASID

63 62 61
R Fill

40 39

Table 69: EntryHi Register Field Descriptions

Fields

Name

Bits

Description

Read/

Write

Reset
State

Complianc
e

R

63:62

Virtual memory region, corresponding to VA63 62 ,

00: xuseg: user address region
01: xsseg: supervisor address region.
If supervisor mode is not 1mplcmented
this encoding is reserved. B
10: Reserved
11: xkseg: kernel address reglon

This field is written by hardware on a TLB xcep-
tion or on a TLB read, and is wnttcn by software
before a TLB write. . i

R/W

"Undefined

Required

Fill

61:40

Fill bits reserved for expansion of the virtual
address space. See below. Returns : zeros on read,
ignored on wrlte e :

Required

VPN2

39:13

VAs39. 3 of the virtual address (virtual page num-
ber / 2). This field is written by hardware on a
TLB exception or on a TLB read, and is written by
software before a TLB write. The default width of
this field implicitly limits the size of each virtual
address space to 40 bits. If the processor imple-
ments fewer virtual address bits than this default,
the Fill field must be extended to take up the
unimplemented VPN2 bits. If the processor imple-
ments more virtual address bits than this default,
the VPN2 field must be extended to take up some
or all of the Fill bits.

Undefined

Required

November 15,

1999

-115-

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCTIMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 69: EntryHi Register Field Descriptions

Fields ' Descriti Read/ Reset Complian;:
escription Write State e
Name Bits
ASID 7:0 | Address space identifier. This field is written by R/W Undefined Required
hardware on a TLB read and by software to estab- (TLB
lish the current ASID value for TLB write and MMU)
against which TLB references match each entry’s
TLB ASID field.
0 ‘ 12:8 | Must be written as zero; returns zero on read. 0 0 Reserved

4.9.10 Compare Register (CP0 Register 11, Select 0)

Compliance Level: Required.

The Compare register acts in conjunction with the Count register to implement a txmer and timer interrupt function.
. The Compare register maintains a stable value and does not change on its own. : :

When the value of the Count register equals the value of the Compare reglster, an interrupt request is combined in an
implementation-dependent way with hardware interrupt 5 to set mterrupt bit IP(7) in the Cause re°1ster This causes
. an interrupt as soon as the interrupt is enabled. :

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is
write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt. Figure 23 shows the
format of the Compare register; Table 70 describes the Compare register fields.

Figure 23: Compare ’Registéf Format

31

Compare

“Table 70: Compﬁfé Register Field Descriptions

Fields : Read/
Description : .. . | Reset State | Compliance
. Write
Name Bits
Compare 31:0 Interval count compare value R/W Undefined Required

4.9.11 Status Register (CP Register 12, Select 0)

~ Compliance Level: Required.

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to Section
4.4 on page 71 and Section 4.7 on page 87 for a discussion of operating modes and interrupt enable, respectively.

Figure 24 shows the format of the Status register; Table 71 describes the Status register fields.

November 15, 1999 -116-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 24: Status Register Format

31 28 27 26 25 24 23 22 21 20 19 1817 1615 8 7 6 S5 4 3 2 10
CU3-CUQRP FRIRE|MX|PX|BEVTS|SRNMI| Of Impl| IM7-IMO |KX|SX|UX{UM|RO|ERL|EXL|IE
KSU

Table 71: Status Register Field Descriptions

Fields Read/
Description Write Reset State | Compliance

Name Bits

CU 31:28 | Controls access to coprocessors 3,2, 1, and O, R/W Undefined | Required for
(CU3.. respectively: all imple-
CU0) 0: access not allowed mented

1: access allowed L ; COprocessors

Coprocessor 0 is always usable when the processor
is running in Kernel Mode or Debug Mode, inde- -
pendent of the state of the CUj, bit. i

Execution of all floating point instructions, includ-
ing those encoded with the COP1X opcode,-is con-
trolled by the CU1 enable. CU3 is not currently

used by MIPS64 implementations and is reserved :
for future use by the Architecture. .o &

If there is no provision for connecting a coproces-
sor, the corresponding CU bit must be ignored on
write and read as zero. However, for backward
compatibility with earlier MIPS processors, CU3
may be implemented as a read/write bit, even
though its state does not affect the operation of the
Processor. R

RP 27 Enables reduced power mode on'some implementa- | R/W 0 Optional
tions. The specific operation of this bit is imple-
mentation dependent.

If this bit is not implemented, it must be ignored on
write and read as zero. If this bit is implemented,

. the reset state must be zero so that the processor
starts at full performance.

November 15, 1999 - 117 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Table 71: Status Register Field Descriptions

MIPS64™ Specification

Fields

Name Bits

Description

Read/
Write

Reset State

Compliance

Controls the floating point register mode:

0: Floating point registers can contain any
32-bit datatype. 64-bit datatypes are stored
in even-odd pairs of registers.

1: Floating point registers can contain any
datatype

Certain combinations of the FR bit and other state
or operations can cause UNPREDICTABLE
behavior. See Section 4.5.3 on page 72 for a discus-
sion of these combinations.

R/W

Undefined

Required

Used to enable reverse-endian memory references
while the processor is running in user mode:

0: User mode uses configured endianness

1: User mode uses reversed endianness

Neither Kernel Mode nor Supervisor Mode refer-
ences are affected by the state of this bit.

If this bit is not implemented, it must be wnored on

write and read as zero.

Undefined

Optional

MX 24

Enable access to MDMX™ resources on proces-
sors implementing MDMX. If MDMX is not
implemented, the bit must be 1gnored on wrlte and
read as zero.

Undefined

Optional

PX 23

Enable access to 64-bit operatlons in User mode,
without enabling 64-bit addressing:

0: 64-bit operatlons are not enabled

1: 64-bit operations are enabled

Undefined

Requiréd

BEV 22

Controls the location of exceptlon vectors:
0: Normal ‘
1: Bootstrap

See Section 4.8.2 on page 91 for details.

Required

November 15, 1999

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

-118-

MIPS® PROPRIETARY/CONFIDENTIAL :

Revision 1.0

Table 71: Status Register Field Descriptions

MIPS64™ Specification

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

TS

21

Indicates that the TLB has detected a match on
multiple entries. It is implementation dependent
whether this detection occurs at all, on a write to
the TLB, or an access to the TLB. When such a
detection occurs, the processor initiates a machine
check exception and sets this bit. It is implementa-
tion dependent whether this condition can be cor-
rected by software. If the condition can be
corrected, this bit should be cleared before resum-
ing normal operation.

If this bit is not implemented, it must be ignored on
write and read as zero.

Software writes to this bit may not cause a 0-to-1 -

transition. Hardware may ignore software attempts

to cause such a transition.

R/W

Required if
TLB Shut-
down is
implemented

SR

20

Indicates that the entry through the reset exceptlon
vector was due to a Soft Reset:

0: Not Soft Reset (NMI or Reset)

1: Soft Reset

1 for Soft
Reset; 0
otherwise

Required if
Soft Reset is
implemented

NMI

19

Indicates that the entry through the reset exceptron
vector was due to an NMI~ e -

0: Not NMI (Soft Reset or Reset) P

1: NMI 5

1 for NMI,
0 otherwise

Required if
NMI is
implemented

0

18

Must be written as zero; returns zero on read.

0

Reserved

Reserved
for
Imple-
menta-
tions

17:16

These bits are im‘plementation dependent and not
defined by the arclutecture If they are not imple-
mented, they must be ignored on write and read as
Zero.

.- Undefined

Optional

M

15:8

Interrupt Mask: Controls the enabling of each of the
external, internal and software interrupts. Refer to
Section 4.7 on page 87 for a complete discussion of
enabled interrupts.

0: interrupt request disabled

1: interrupt request enabled

Undefined

Required

November 15,

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

1999

-119-

MIPS® PROPRIETARY/CONFIDENTIAL:

Revision 1.0

Table 71: Status Register Field Descriptions

MIPS64™ Specification

disabled, TLB Refill Vector used for
references to Supervisor Segments

1: Access to 64-bit Supervisor Segments -
enabled, XTLB Refill Vector used for
references to Supervisor.Segments

If Supervisor Mode is not implemented, it is imple-
mentation dependent whether access to what would
normally be 64-bit supervisor address space is
enabled with the SX or KX bit.

If 64-bit addressing is not implemented, this bit
must be ignored on write and read as zero.

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
KX 7 Enables the following behavior: R/W Undefined | Required for
e Access to 64-bit Kernel Segments 64-bit
» Use of the XTLB Refill Vector for refer- Addressing
ences to Kernel Segments
0: Access to 64-bit Kernel Segments disabled,
TLB Refill Vector used for references to
Kernel Segments
1: Access to 64-bit Kernel Segments enabled,
XTLB Refill Vector used for references to
Kernel Segments
If 64-bit addressing is not implemented, this bit
must be ignored on write and read as zero. E :
SX 6 If Supervisor Mode is implemented, enables the =~ | R/W | Undefined Required if
following behavior: : both Super-
e Access to 64-bit Supervisor Segments Lvisor Mode
¢ Use of the XTLB Refill Vector for refer-_ and 64-bit
ences to Supervisor Segments addressing
are imple-
. 0: Access to 64-bit Supervisor Segments mented

November 15, 1999

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

- 120 -

MIPS® PROPRIETARY/CONFIDENTIAL :

Revision 1.0

Table 71: Status Register Field Descriptions

MIPS64™ Specification

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

UXx

Enables the following behavior:
e Access to 64-bit User Segments
¢ Use of the XTLB Refill Vector for refer-
ences to User Segments
¢ Execution of instructions which perform
64-bit operations while the processor is
operating in User Mode

0: Access to 64-bit User Segments
disabled, TLB Refill Vector used for
references to User Segments, execution
of instructions which perform 64-bit
operations is disallowed while the processor
is running in User Mode

: Access to 64-bit User Segments
enabled, XTLB Refill Vector used for
references to User Segments, execution
of instructions which perform 64-bit
operations is allowed while the processor
is running in User Mode .

 p—

If 64-bit addressing is not imple éhié?d, this bit
must be ignored on write and read as ’iéro.

R/W

Undefined

Required for
64-bit
Addressing

KSU

4:3

If Supervisor Mode is implemented, the encod'mg
of this field denotes the-base opera ’»mode of the
processor. See Section 4.4 for a full dlsc(1351on of
operating modes. The encodmg this field is:

00,: Base mode is Kem
01,: Base mode is que
10,: Base mode is User Mode v
11,: Reserved. The operauon of the processor

is UNDEFINED if thxs value is written
to the KSU field

Note: This field overlaps the UM and RO fields,
described below.

Undefined

Required if
Supervisor
Mode is
imple-
mented;
Optional
otherwise

November 15, 1999

- 121 -

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 71: Status Register Field Descriptions

Fields Read/
Description Write Reset State | Compliance

Name Bits

UM 4 If Supervisor Mode is not implemented, this bit R/W Undefined Required
denotes the base operating mode of the processor. .
See Section 4.4 on page 71 for a full discussion of
operating modes. The encoding of this bit is:

0: Base mode is Kernel Mode
1: Base mode is User Mode

Note: This bit overlaps the KSU field, described
above.

RO 3 If Supervisor Mode is not implemented, this bit is R 0 Reserved
reserved. This bit must be ignored on write and :
read as zero.

Note: This bit overlaps the KSU field, describec
above.

ERL 2 Error Level; Set by the processor when a Reset,’
Soft Reset, NMI or Cache Error exception:are
taken.
0: normal level
1: error level

1 .. Required

When ERL is set: -

¢ The processor is runnin

+ Interrupts are disabled

* The ERET instructi
address held in ErrorEPC

+ _.The lowg}ﬁg bytes.of kusegare treated as. | .. .
an unmapped a ached region. See
Section 4.6.7 on page 83 This allows
main memory to be agééssed in the pres-
ence of cache errors The operation of the
processor is UNDEFINED if the ERL bit
is set while the processor is executing
instructions from kuseg.

November 15, 1999 - 122 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 71: Status Register Field Descriptions

Fields Read/
Description Write Reset State | Compliance

Name Bits

EXL 1 Exception Level; Set by the processor when any R/W Undefined Required
exception other than Reset, Soft Reset, NMI or
Cache Error exception are taken.

0: normal level

1: exception level

When EXL is set:

e The processor is running in Kernel Mode

e Interrupts are disabled.

* TLB/XTLB Refill exceptions will use the
general exception vector instead of the
TLB/XTLB Refill vectors.

* EPC and Causegp, will not be updated if

another exception is taken

+

IE 0 Interrupt Enable: Acts as the master enable for soft— R/W | Undefined Required
ware and hardware interrupts: R

0: disable interrupts -
1: enables interrupts

4.9.12 Cause Register (CP0 Register 13, Sele ’

Compliance Level: Required.

The Cause register primarily describes the cause of the [most recent exception. In addition, fields also control software
interrupt requests and the vector through which mterrupt dnspaiched With the exception of the IP[1:0], IV, and
WP fields, all fields in the Cause register are read- only

Figure 25 shows the format of the Cause register; Table‘ describes the Cause register fields.

November 15, 1999 - 123 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Figure 25: Cause Register Format

31 30 29 28 27 24 23 22 21 16 15 8 7

MIPS64™ Specification

6 2

BD| 0| CE 0 (IViwH O IP7:1PO 0

Exc Code

Table 72: Cause Register Field Descriptions

Fields Read/
Write

Description

Name Bits

Reset State

Compliance

BD 31 Indicates whether the last exception taken R

occurred in a branch delay slot:

0: Not in delay slot
1: Indelay slot

The processor updates BD only if Statusgy;
was zero when the exception occurred.

Undefined

Required

CE 29:28 | Coprocessor unit number referenced when a
Coprocessor Unusable exception is taken. This.
field is loaded by hardware on every exception, |
but is UNPREDICTABLE for all exceptions.... |

except for Coprocessor Unusab

Undeﬁned

Required

v 23 Indicates whether an interrupt exc pijon uses
the general exception vector or a special intet-

rupt vector:

0: Use the general“éXception vector (0x1 80)
1: Use the spec@al interrupt-vector (0x200)

Undefined

Required

FRra

Indicates that a-watch exception was deferred
because Statusgy; or Staflisgg;, Were a one at’
the time the watch exception was detected. This
bit both indicates that the watch exception was
deferred, and causes the-exception to be initi-
ated once Statusgy; and Statusgg are both

22

zero. As such, software must clear this bit as
part of the watch exception handler to prevent a
watch exception loop.. .

Software writes to this bit may not cause a 0-to-
1 transition. Hardware may ignore software
attempts to cause such a transition.

If watch registers are not implemented, this bit
must be ignored on write and read as zero.

Undefined

Required if
watch regis-
ters are
implemented

November 15, 1999 - 124 -

MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 72: Cause Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
IP[7:2] 15:10 | Indicates an external interrupt is pending: R Undefined Required
15: Hardware interrupt 5, timer or
performance counter interrupt
14: Hardware interrupt 4
13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt O
IP[1:0] 9:8 Controls the request for software interrupts: R/W Undefined Required
9: Request software interrupt 1
8: Request software interrupt O
ExcCode 6:2 Exception code - see Table 73 A, R ‘“ } ,:;r;(Undeﬁned Required
0 30, . .| Must be written as zero; returns zero on readw Or L 0 Reserved -
27:24,
21:16,
7, 1.0
Table 73: Cause Regi
Exception Code Value
Decimal Hexidecimal | Mnemonic Description
0 0x00 Int
1 0x01 Modﬁ odification exception
2 0x02 MTLB B exception (load or instruction fetch)
3 0x03 TLB exception (store)
4 0x04 AdEL "' Address error exception (load or instruction fetch)
5 0x05 AdES Address error exception (store)
6 Ox06. IBE Bus error exception (instruction fetch)
7 0x07 DBE Bus error exception (data reference: load or store)
8 0x08 Sys Syscall exception
9 0x09 Bp Breakpoint exception
10 0x0a RI Reserved instruction exception
11 0x0b CpU Coprocessor Unusable exception
12 0x0c Ov Arithmetic Overflow exception
November 15, 1999 - 125 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 73: Cause Register ExcCode Field

Exception Code Value
Decimal Hexidecimal | Mnemonic Description
13 0x0d Tr Trap exception
14 0x0e - Reserved
15 0x0f FPE Floating point exception
16-17 0x10-0x11 - Available for implementation dependent use
18 0x12 C2E Reserved for precise Coprocessor 2 eXéeptions
19-22 0x13-0x16 - Reserved
23 0x17 WATCH | Reference to WatchHi/WatchLo address
24 0x18 MCheck | Machine check
25-29 0x19-0x1d - Reserved 3
30 Oxle CacheErr | Cache error. In nor al Jmode, a cache error exception has‘a -
dedicated vector and the Cause register is not updated If
EJTAG is 1mplemented and a cache error occurs whlle in
Debug Mode, this code is used to indicate that re-éntry to
Debug Mode‘was c d by a cache error.
31 Ox1f VCED Virt 1 ggherency Exceptxon Data. This exception code was
used on the R4000 and is hsted here only for historical per-

For synchronous (precise) exceptions, EPV

« the virtual address of the instruction thatfw s'the direct cause of the exception, or
» the virtual address of the immediately precedmg branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execution.
The processor does not write to the EPC register when the EXL bit in the Stazus register is set to one.

Figure 26 shows the format of the EPC register; Table 74 describes the EPC register fields.

November 15, 1999 - 126 -
MIPS® PROPRIETARY/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 26: EPC Register Format

63 0
EPC

Table 74: EPC Register Field Descriptions

Fields Read/
Description R Reset State | Compliance
. Write
Name Bits
EPC 63:0 Exception Program Counter R/W Undefined Required

4.9.14 Processor Identification (CP0 Register 15, Select 0)

Compliance Level: Required.

The Processor Identification (PRId) register is a 32 bit read-only register that cémainé information identifying the
manufacturer, manufacturer options, processor identification and revxsxonvlevel of the processor Figure 27 shows the
format of the PRId register; Table 75 describes the PRId register fields.”s

Figure 27: PRId Register Format .~

31 2423 1615 . B 87 0

Company Options CompanyID ° ProcessorID - Revision

ield D}gscrlptlons
Fields .
Description Rea.dj Reset State | Compliance
. o Write
Name Bits .)
Company 31:24 | Available to the designer or manufacturer of R Preset Optional
Options the processor for company dependent options.
The value in this field is not specified by the
architecture. If this field i is not implemented, it
must read as zero.
November 15, 1999 -127 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 75: PRId Register Field Descriptions

Fields Read/

Write

Description Reset State | Compliance

Name Bits

Company 23:16 | Identifies the company that designed or manu- R Preset Required
D factured the processor.

Software can distinguish a MIPS32 or MIPS64
processor from one implementing an earlier
MIPS ISA by checking this field for zero. If it
is non-zero the processor implements the
MIPS32 or MIPS64 Architecture.

Company IDs are assigned by MIPS Technolo-
gies when a MIPS32 or MIPS64 license is
acquired. The encodings in this field are:

0: Not a MIPS32 or MIPS64 processor

1: MIPS Technologies, Inc. .

2-255: Contact MIPS Technologies, Inc. fo
the list of CompanyID assignments

Processor 15:8 Identifies the type of processor. This field A R Preset Required
ID allows software to distinguish between vari
processor implementations within a single
company, and is qualified by ‘the CompanyID

field, described above. The combmg ion of the

unique number a551gned to-ea
implementation.

Revision 7:0 Specifies the revision nurﬁper of the processor. R Preset Optional
This field allows software todtstmgulsh

between one Tevision and another of the same
processor type If thxsﬁe not 1mp1emented
it must read as zer

4.9.15 Configuration Register (CP0 Reg ter 16, Select 0)

Compliance Level: Required.

The Config register specifies various configuration and capabilities information. Most of the fields in the Config regis-
ter are initialized by hardware during the Reset Exception process, or are constant. One field, KO, must be initialized
by software in the reset exception handler.

Figure 28 shows the format of the Config register; Table 76 describes the Config register fields.

[W
1

November 15, 1999 - 128 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 28: Config Register Format

31 30 16 15 14 1312 109 7 6 32 0
M Reserved for Implementations BE AT| AR|MT 0 KO
Table 76: Config Register Field Descriptions
Fields
Description Rea.d/ Reset State | Compliance
. Write
Name Bits
M 31 Denotes that the Configl register is implemented R Preset Required
at a select field value of 1.
30:16 | This field is reserved for implementations. Refer Undefined Optional
to the processor specification for the format and
definition of this field
BE 15 Indicates the endian mode in which the processor “ Preset or Required
is running:

0: Little endian
1: Bigendian

AT 14:13 | Architecture type implemented by the processor R Preset “Required
0: MIPS32

1: MIPS64 with 32-bit addresses onk
2: MIPS64 with 32/64-b1t ad

3: Reserved

AR 12:10 | Architecture revision level = Preset Required
0: Revision 1

1-7: Reserved B

MT 9:7 MMU Type: Preset Required
: None

Standard! TLB .
StandardBAI (See Appendix A)
Standard ﬁxed‘mapplng (see Appendix A)
Reserved 7

Reserved
Reserved
Reserved

NNk

KO0 2:0 Kseg0 coherency algorithm. See Table 62 for the R/W Undefined?® Optional
encoding of this field.

0 6:3 Must be written as zero; returns zero on read. 0 0 Reserved

a. Itis strongly recommended that the KO field be initialized by hardware to a value that would allow the pro-
cessor to operate correctly even if software references kseg0 before initializing this value. The suggested
value is the uncached encoding of 2. Some operating systems have been seen to reference kseg0 before
initializing the KO field, causing processors who do not initialize the KO field at reset to hang during boot.
While this is certainly a software error, having to debug such errors during boot of a new processor may
easily justify the minimal hardware necessary to initialize the KO field at reset.

November 15, 1999 -129 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4.9.16 Configuration Register 1 (CP0 Register 16, Select 1)

Compliance Level: Required.

The Configl register is an adjunct to the Config register and encodes additional capabilities information. All fields in
the Configl register are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and
the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Figure 29 shows the format of the Config! register; Table 77 describes the Configl register fields.

Figure 29: Configl Register Format
31 30 2524 2221 1918 16 15 1312 109 76 5 4 3 210
0| MMUSize-1 | IS IL |IA | DS | DL | DA 0 |PCWRCAEHF.

Fields
Description

Name Bits Ay

Reset State | Compliance

0 31 This bit is reserved to indicate that a Conﬁgz reg- R Preset Required
ister is present. With this revision of the archit
ture, writes to this bit must bc ignored, and it
must read as zero. $

R Preset Required

MMU 30:25
Size - 1

Number of entries m the :['L minus one. The

IS 24:22 R Preset Required
4 ot
128
256
512
1024
2048
4096
Reserved

RNV

L 21:19 | Icache line size: R Preset Required
’ No Icache present

4 bytes

8 bytes VR
16 bytes :
32 bytes
64 bytes
128 bytes
Reserved

Nk wNN o

November 15, 1999 -130 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 77: Configl Register Field Descriptions

Fields Read/
Descripti .
escription Write Reset State | Compliance

Name Bits

IA 18:16 | Icache associativity: R Preset Required
0: Direct mapped
2-way
3-way
4-way
5-way
6-way
7-way
8-way

NN h 2N

DS 15:13 | Dcache sets per way: R Preset Required
: 64

128

256

512

1024 =4
2048 5
4096
Reserved

IR A ol Sl el 4

DL 12:10 | Dcache line size: Sk, R Preset Required
0: No Dcache present 3

1: 4 bytes
2: 8bytes
3: 16 bytes
4: 32 bytes
5.

6

7

64 bytes
: 128 bytes
: Reserved

DA 9:7 Dcache associz}_tivity: R Preset Required
Direct mapped
2-way
3-way
4-way
S5-way
6-way
7-way

 8-way

N s o

PC 4 Performance Counter registers implemented: R Preset Required

0: No performance counter registers Y
implemented

1: At least one performance counter register

implemented

November 15, 1999 -131-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 77: Configl Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
WR 3 Watch registers implemented: R Preset Required
0: No watch registers implemented
1: At least one watch register implemented
CA 2 Code compression (MIPS16) implemented: R Preset Required
0: No code compression
1: Code compression
EP 1 EJTAG implemented: R Preset Reserved
0: No EJTAG implemented
1: EJTAG implemented
FP 0 FPU implemented: R Preset Required
0: NoFPU N
1: FPU
0 6:5 Must be written as zero; returns zero on read. & 0. 0 Reserved
4.9.17 Load Linked Address (CP0 Register 17, Select 0) o

Compliance Level: Optional.

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked instruction.
This register is implementation dependent and for dlagnostm purposes only and serves no function during normal
operation. e

Figure 30 shows the format of the LLAddr registe?{ 251‘;;78iédescribés the LLAddr register fields.

Figure 30: LLAddr Reéfsfer Format : e

63 0
PAddr
Table 78: LL‘Addr“R'egister Field Descriptions
Fields
Description Re%d/ Reset State | Compliance
. Write
Name Bits
PAddr 63:0 This field encodes the physical address read by R Undefined Optional

the most recent Load Linked instruction. The for-
mat of this register is implementation-dependent,
and an implementation may implement as many
of the bits or format the address in any way that it
finds convenient.

4.9.18 WatchLo Register (CP0 Register 18)

Compliance Level: Optional.

November 15, 1999 -132-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

The WatchLo and WarchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL. and ERL bits are zero in
the Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred
until both the EXT. and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
select field of the MTCO/MFCO and DMTCO/DMFCO instructions, and each pair of Watch registers may be dedicated
to a particular type of reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and
WatchHi registers are implemented via the WR bit of the Config] register. See the discussion of the M bit in the
WatchHi register description below.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match. If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch
register pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch or a cache instruction whose address
matches the Watch register address match conditions. The preferred 1mplementat10n is not to match on these instruc-

tions.
Figure 31 shows the format of the WarchLo register; Table 79 describes the WatchLo regxster fields.

:'“

Figure 31: WatchLo Register Format

63 »r A
VAddr I| R

Fields Read/

Write Reset State | Compliance

Description
Name Bits

VAddr 63:3 This field specifies:the virtual address to match. R/W Undefined Required
Note that this isa ‘doubleword address since bits
[2:0] are used: to control the type of match.

I 2 If this bit is one, watch exceptlons are enabled R/W 0 Optional
for instruction fetches that match the address and
are actually issued by the' processor (speculative
instructions never cause Watch exceptions).

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R 1 If this bit is one, watch exceptions are enabled R/W 0 Optional
for loads that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

-~

November 15, 1999 -133-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 79: WatchLo Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
w 0 If this bit is one, watch exceptions are enabled R'W 0 Optional

for stores that match the address.

If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

4.9.19 WatchHi Register (CP0 Register 19)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only- if the EXL and ERL bits are zero in
the Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exceptlon is deferred
until both the EXL and ERL bits are zero. W

An implementation may provide zero or more pairs of WatchLo an WatchH gisters, referencing them via the
select field of the MTCO/MFCO and DMTCO/DMFCO instructions, and each pai of Watch registers. may be dedicated
to a particular type of reference (e.g., instruction or data). Software may determine if at least one pair of WarchLo and
WatchHi registers are 1mplemented via the WR bit of the Conﬁgl regxster If the M bit is one in the WarchHi register
reference with a select field of ‘n’, another WatchHi/WatchLo pznr plemented with a select field of ‘n+1".

The WatchHi register contains information that qualif virtual address: spe01ﬁed in the WatchLo register: an
ASID, a G(lobal) bit, and an optional address mask. If" the (’1t is:ene, any vn:tnal address reference that matches the
specified address will cause a watch exception. If the G bit i 1s 4'zero; only those virtual address references for which
the ASID value in the WarchHi register matches the AS) value in the EntryHi register cause a watch exception. The
optlonal mask field provides address maskmg to quahfy f:" ddressmpeaﬁed in WatchLo.

313020 2423 15 1211 32 0
MG| 0 0 MASK 0
Table 80: WatchHi Register Field Descriptions
Fields
~ Description Rea.d/ Reset State | Compliance
i Write
Name Bits
M 31 If this bit is one, another pair of WatchHi/ R Preset Required
WatchLo registers is implemented at a MTCO or ‘ "
MFCO select field value of ‘n+1

November 15, 1999 -134 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Table 80: WatchHi Register Field Descriptions

Fields Read/
Descripti .
escription Write Reset State | Compliance

Name Bits

G 30 If this bit is one, any address that matches that R/W Undefined Required
specified in the WarchLo register will cause a
watch exception. If this bit is zero, the ASID field
of the WarchHi register must match the ASID
field of the EntryHi register to cause a watch
exception.

ASID 23:16 | ASID value which is required to match that in the R/W Undefined Required
EntryHi register if the G bit is zero in the
WatchHi register.

Mask 11:3 Optional bit mask that qualifies the address in the R/W Undefined Optional
WatchLo register. If this field is implemented, s
any bit in this field that is a one inhibits the corre- | .~ B
sponding address bit from participating in the '
address match.

If this field is not implemented, writes to it must
be ignored, and reads must return zero.

Software may determine how many mask bitsare |
implemented by writing ones the this field and
then reading back the result. 7

0 29:24, | Must be written as zero; ret{;';'ns zero on read. 0 0 Reserved
15:12,
1 2:0

, Sélect 0)
MMUs Opnonal otherwise.

4.9.20 XContext Register (CP0 Register 2
Compliance Level: Required for 64- bxt TLB

The XContext register is a read/write reglster contammg(\a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores)v1rtual -to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The XContext register is primarily
intended for use with the XTLB Refill handler, but is also loaded by hardware on a TLB Refill. However, it is unlikely
to be useful to software in the TLB Refill Handler. The XContext register duplicates some of the information provided
in the BadVAddr register, but is organized in such a way that the operating system can directly reference a 16-byte
structure in memory that describes the mapping.

A TLB exception (TLB Refill, XTLB Refill, TLB Invalid, or TLB Modified) causes bits 63:62 of the virtual address

to be written into the R field and bits SEGBITS-1:13 of the virtual address to be written mto the BadVPN?2 field of the
XContext register. The PTEBase field is written and used by the operating system. R

The BadVPN?2 field of the Context register is not defined after an address error exception and this field may be modi-
fied by hardware during the address error exception sequence.

Processor implementations must not assume that software will write the same value into the PTEBase fields of the
Context and XContext registers (i.e., the PTEBase fields of the two registers may be set to different values, thus can-
not share storage).

Figure 33: shows the format of the XContext register; Table 81: describes the XContext register fields. In Figure 33,

November 15, 1999 -135-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTTALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

bit numbers above the figure use the symbol SEGBITS; bit number under the figure assume that SEGBITS has the

value 40.
Figure 33: XContext Register Format
SEGBITS-13+6
SEGBITS-13+3
PTEBase R BadVPN2 (VASEGBITS-I..13) 0
63 33 32 31 30 $3 0
Table 81: XContext Register Fields
Field Descrinti Read/ Reset .
escription Writ Stat Compliance
Name Bits e ate
PTEBase 63 : SEGBITS-13+6 | This field is for use by the operating sys-' | R/'W Undefined | Required
tem and is normally written with a value | a
(63:33 assuming that allows the operating system to use. the
SEGBITS is 40) Context Register as a pointer mto the cur- |
rent PTE array in memory :
R SEGBITS-13+5: | The Region field contains bits 63 2 of R Undefined | Required
SEGBITS-13+4 the virtual address. SR :
00 = xuseg ;
(32:31 assuming 01: xsseg: supervxsor address reglon.) A4
SEGBITS is 40) If supervisor mode is not 1mple-
mented, 5
this encoding is reserved
10= Reserved ;
1= xkseg : :353 . B
BadVPN2 SEGBITS-13+3:4 | The Bad Virtual Page Number/2 field is R Undefined B@qqifcd
wntten by hardware on a miss. It contains
(30:4 assuming bits VASEGBITS 1: 13 of the virtual address
SEGBITS is 40) that missed.
0 3:0 Must be written as zero; returns zero on 0 0 Reserved
read.

4.9.21 Reserved for Implementations (CP0 Register 22, all Select values)

Compliance Level: Optional: Implementation Dependent.

CPO register 22 is reserved for implementation dependent use and is not defined by the architecture.

4.9.22 Debug Register (CP0 Register 23)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of this

register.

November 15, 1999

- 136 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

4.9.23 DEPC Register (CP0 Register 24)

Compliance Level: Optional.

The DEPC register is part of the EJTAG specification. Refer to that specification for the format and description of this
register.

All bits of the DEPC register are significant and must be writable.

4.9.24 Performance Counter Register (CP0 Register 25)

Compliance Level: Recommended.

The MIPS64 Architecture supports implementation dependent performance counters that provide the capability to
count events or cycles for use in performance analysis. If performance counters are implemented, each performance
counter consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional
capability, multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When bit 31 of the counter register is a one (the counter overflows), the performance
counter optionally requests an interrupt that is combined in an xmplementanon dependent way with hardware inter-
rupt 5 to set interrupt bit IP(7) in the Cause register. Counting continues after ounter reglster overflow whether or
not an interrupt is requested or taken. ki 4 .

Each performance counter is mapped into even-odd select values of the Perant reglster Even selects access the con-
trol register and odd selects access the counter register. Table 82 shows an example of two performance counters and
how they map into the select values of the PerfCnz register. Y

Table 82: Example Performance Counter Uéag;éV(;f‘the?P‘grant CPO0 Register

PerfCnt
Performance .
Register Select .
Counter
Value
PerfCnt, Select 0 Control Register 0
PerfCnt, Select 1 ‘| Counter Register O
PerfCr,;;, Select 2 antroi:'Register 1
PerfCnt, Select 3 | Counter Register 1

N

More or less than two performance counters are also possible, extending the select field in an obvious way to obtain
the desired number of performance counters. Software may determine if at least one pair of Performance Counter
Control and Counter registers is implemented via the PC bit in the Configl register. If the M bit is one in the Perfor-
mance Counter Control register referenced via a select field of ‘n’, another pair of Performance Counter Control and
Counter registers is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 34 shows the format of the Performance Counter Control Register; Table 83 descnbes the Performance
Counter Control Register fields. : W

November 15, 1999 - 137 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

Figure 34: Performance Counter Control Register Format

31 30 11 10 5 4 3 2 1

MIPS64™ Specification

IE| U

Event

Table 83: Performance Counter Control Register Field Descriptions

Fields Read/

Write Reset State

Description

Name Bits

Compliance

M 31 If this bit is a one, another pair of Performance R Preset

Counter Control and Counter registers is imple-
mented at a MTCO or MFCO select field value of
‘n+2’ and ‘n+3’.

Required

30:11 Must be written as zero; returns zero on read

Reserved

Event 10:5 Selects the event to be counted by the corre-

sponding Counter Register. The list of events:is
implementation dependent, but typical events
include cycles, instructions, memory reference
instructions, branch instructions, cache and TLB

misses, etc.

Requi{pd

R

Interrupt Enable“”Enables the mterrupt request
when the corresponding counter overflows (bit
31 of the counter is one).

Note that this bit simply enables the interrupt
request. The actual interrupt is still gated by the
| normal interrupt masks and enable in the Status
register.

0: Performance counter interrupt disabled vl
1: Performance counter interrupt enabled

- Required

November 15, 1999 - 138 -

MIPS® PROPRIETAR Y/CONFIDENTIAL:

RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0

MIPS64™ Specification

Table 83: Performance Counter Control Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

U

Enables event counting in User Mode. Refer to
Section 4.4.4 on page 72 for the conditions under
which the processor is operating in User Mode.

0: Disable event counting in User Mode
1: Enable event counting in User Mode

R/'W

Undefined

Required

Enables event counting in Supervisor Mode (for
those processors that implement Supervisor
Mode). Refer to Section 4.4.3 on page 72 for the
conditions under which the processor is operat-
ing in Supervisor mode.

If the processor does not implement Supervisor
Mode, this bit must be ignored on write and
return zero on read.

0: Disable event counting in Supervisor Mode. .

1: Enable event counting in Supervisor.‘l\X{:Iq;leA

i)
i,

Undefined

Required

Ty

Enables event counting in Kernel Mode. Unlike o ey

the usual definition of Kernel»Modé .S described

0: Disable event ' counting i ¢
1: Enable event countmg i 1] Kemel Mode

Undefined

Required

EXL

Enables event countmg ‘when the EXL bit in the
Status register is one and the ERL bit in the Sta-
tus register is zero. &

0: Disable event counting while EXL =1,
ERL=0

1: Enable event counting while EXL = 1,
ERL=0

Counting is never enabled when the ERL bit in
the Status register is one.

Undefined

Required

The Counter Register associated with each performance counter increments once for each enabled event. Figure 35
shows the format of the Performance Counter Counter Register; Table 84 describes the Performance Counter Counter

Register fields.

November 15, 1999

-139 -

MIPS® PROPRIET AR Y/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 35: Performance Counter Counter Register Format

31 0

Event Count

Table 84: Performance Counter Counter Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
Event 31:0 | Increments once for each event that is enabled by R/W Undefined Required
Count the corresponding Control Register. When bit 31
is one, an interrupt request is made if the IE bit in
the Control Register is one. ’

4.9.25 ErrCtl Register (CP0 Register 26, Select 0)

Compliance Level: Optional.

g

The ErrCtl register provides an implementation dependent dxagnostlc terface with the error detection mechanisms

implemented by the processor. This register has been used in pre lementations to read and write parity or

ECC information to and from the primary or secondary cache dat rays »,,conJunctlon with specific encodings of

the Cache instruction or other implementation- dependen method. The exact format of the ErrCtl register is imple-

mentation dependent and not specified by the archztecture "R3 ‘to.the proc sor specification for the format of this
G

register and a description of the fields.

Compliance Level: Optional.

¢ R e
The CacheErr register provides an interface with the cache error detection logic that may be implemented by pro-
Cessor.

The exact format and operation of the CacheErr regzs/t} is implementation dependent. The description below is an
example of a format that is similar to previous 1mplementatxons Caches with substantially different sizes, organiza-
tions, and error correction/detection properties may require a different format from that shown below.

Figure 36 shows the example format of the CacheErr register; Table 85 describes the CacheErr register fields.

November 15, 1999 - 140 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

The ErrorEPC register is a read-write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, Nonmaskable Interrupt (NMI), and Cache Error exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
error. ErrorEPC contains either:

e the virtual address of the instruction that was the direct cause of the exception, or
« the virtual address of the immediately preceding branch or jump instruction when the error causing instruc-
tion is in a branch delay slot.

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

Figure 41 shows the format of the ErrorEPC register; Table 90 describes the ErrorEPC register fields.

Figure 41: ErrorEPC Register Format
63 ' 0
ErrorEPC

7 N
& i

Table 90: ErrorEPC Register Field Descriptions

Flelds Description ‘ N UT‘Readr/;
i Write

X Reset State | Compliance
. Name Bits . ,

ErrorEPC 63:0 | Error Exception Program Counter o RIW Undefined Required

i

4.9.32 DESAVE Register (CPO Register 31)
Compliance Level: Optional.

The DESAVE register is part of the EJTAG specification.
this register. ;

efer to that specification for the format and description of

4.10 CPO Hazards

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS64 proces-
sor, manipulation of these resources may produce results that are not detectable by subsequent instructions for some
number of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is
visible to a second instruction, a CPO hazard exists. Some MIPS implementations have placed the entire burden on
the kernel programmer to pad the instruction stream in such a way that the second instruction is spaced far enough
from the first that the effects of the first are seen by the second. Other MIPS implementations have added full hard-
ware interlocks such that the kernel programmer need not pad. The trade-off is between kernel software changes for
each new processor vs. more complex hardware interlocks required in the processor.

The MIPS64 Architecture does not dictate the solution that is required for a compatible implementation. The choice
of implementation ranges from full hardware interlocks to full dependence on software padding, to some combination
of the two. For an implementation choice that relies on software padding, Table 91 lists the “typical” spacing required
to allow the consumer to eliminate the hazard. The “typical” values shown in this table represent spacing that is in
common use by operating systems today. An implementation which requires less spacing to clear the hazard (includ-
ing one which has full hardware interlocking) should operate correctly with and operating system which uses this
hazard table. An implementation which requires more spacing to clear the hazard incurs the burden of validating ker-
nel code against the new hazard requirements.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than
November 15, 1999 - 145 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this
reason that MIPSG64 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

Table 91: “Typical” CP0 Hazard Spacing

“Typical”
Producer — Consumer Hazard Spacing
On
(Cycles)
TLBP, TLBR TLB entry 3
TLBWR, TLBWI N Load/store using new TLB entry TLB entry 3
Instruction fetch using new TLB TLB entry 5
entry
MTCO Status[CU] SN S‘Ce(';»processor instruction needs CU Status[CU] 4
MTCO Status — ERET Status 3
MTCO Status[IE] — Interrupted Instruction 4. Status[IE] 3
MFCO EntryHi %, -] EntryHi,
TLBR - MFCO PageMask }. PageMask 3
MTCO EntryLo0 TLBP i EntryLo0
MTCO EntryLol TLBR ;EntryLol .
MTCO Entry Hi — TLBWI ~ EntryHi 2-
MTCO PageMask TLBWR PageMask
MTCO Index Index
TLBP Index 2
MTCO EPC EPC 2

November 15, 1999

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

- 146 -

Revision 1.0 MIPS64™ Specification

Appendix A Alternaﬁve MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS64 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided by
the address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU. It is not anticipated that MIPS64 processors that implement a fixed-mapping
MMU will require a 64-bit address capability. As a result, the description below is given assuming a 32-bit address.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

e Kseg0 and Ksegl addresses are translated in an identical manner to the TLB based MMU: they both map to
the low 512MB of physical memory. g

* Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the v1rtual address when the ERL bit is zero in
the Status register, and are mapped using an identity mapping when the ERL blt is one in the Status register.

o Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mappmg

Table 92 lists all mappings from virtual to physical addresses. Note that address error checking is still done before the
translation process. Therefore, an attempt to reference ksegO from User Mode still results in an address error excep-
tion, just as it does with a TLB-based MMU.

Table 92: Physical Address Generation from 'Vlrtual Addresses

S . r f ene :x)i-’ates Phyéical Address
;gmen Virtual Address ——
ame e St?tusERLE 0 StatUSERL =1
useg 0x 0000 0000 - |7, Ox 4000 0000 0x 0000 0000
suseg throtgh. through
kuseg 0x 7FFF FFPF) : 0x 7FFF FFFF
kseg0 0x 8000 oooo & 0x 0000 0000
through J;ﬁ" through
Ox 9FFF FFEE, |~ Ox 1FFF FFFF
0x A000 0000 ‘ 0x 0000 0000
ksegl through through
0x BFFF FFFF Ox 1FFF FFFF
sseg 0x C000 0000 0x C000 0000
: ksseg through - . through
kseg2 Ox DFFF FFFF 0x DFFF FFFF
kseg3 0x E000 0000 0xE0000000
through through
0x FFFF FFFF Ox FFFF FFFF

Note that this mapping means that physical addresses 0x2000 0000 through Ox3FFF FFFF are inaccessible when the
ERL bit is off in the Status register, and physical addresses 0x8000 0000 through OxBFFF FFFF are inaccessible
when the ERL bit is on in the Status register.

November 15, 1999 - 147 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 : MIPS64™ Specification

Figure 42 shows the memory mapping when the ERL bit in the Status register is zero; Figure 43 shows the memory
mapping when the ERL bit is one. gt

Figure 42: Memory Mapping when ERL =0

Ox FFFF FFFF Ox FFFF FFFF
kseg3
0x E000 0000 0x EC00 0000
kseg2
ksseg
0x C000 0000 sseg 0x C000 0000
ksegl
0x A000 0000
kseg0
0x 8000 0000
kuseg ,7 -
suseg - 0x 4000 0000
useg
0x 2000 0000
0x 0000 0000 0x 0000 0000
November 15, 1999 - 148 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 43: Memory Mapping when ERL =1

Ox FFFF FFFF Ox FFFF FFFF
kseg3
0x E000 0000 0x E00O 0000
kseg2
ksseg
0x C000 0000 sseg 0x C000 0000
ksegl
0x A000 0000
kseg0
0x 8000 0000 0x 8000 0000

kuseg
suseg
useg

0x 0000 0000 0Ox 0000 0000

Al2 Cacheability Attributes &

The cacheability attributes for kseg0O and ksegylw are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for ksegO comes from the KO field of Config, and references to ksegl are always uncached.

Figure 44 shows the format of the additions to the Config register; Table 93 describes the new Config register fields.

November 15, 1999 - 149 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 44: Config Register Additions

3130 2827 2524 16 15 141312 109 7 6 320
M| K23 KU IBE AT| AR|MT 0 KO

Table 93: Config Register Field Descriptions

Fields Read/
Description . Reset State | Compliance
. Write
Name Bits
K23 30:28 | Kseg2/Kseg3 coherency algorithm. See Table 62 R/W Undefined Optional
for the encoding of this field.
KU 27:25 | Kuseg coherency algorithm when Statusgg; is R/W Undefined Optional
zero. See Table 62 for the encoding of this field.

A.1.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the followmg chanoes are necessary to.the CPO register -
interface:

¢ The Index, Random, EntryLo0, EntryLol, Context, PageMask, Wu'ed and EntryHi remsters are no longer
required and may be removed

* The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and should cause a Reserved
Instruction Exception

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the hard-
ware and software interface that exists for a TEB-Based vmual address translation mechanism. This mechamsm has
the following features: ;

o It preserves as much as possible; of the TLB-Based interface, both in hardware and software.
¢ It provides independent base- and-bounds checkmg ‘and relocation for instruction references and data refer-

ences. e :
e It provides optional support for base and bounds relocation of kseg2 and kseg3 virtual address regions

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and relocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose
width is implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit. Figure 45 shows
the logical arrangement of a BAT entry.

November 15, 1999 - 150 -

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 MIPS64™ Specification

Figure 45: Contents of a BAT Entry

BoundsVPN

BasePFN C |D}V

The BAT is indexed by the reference type and the address region to be checked as shown in Table 94.

Table 94: BAT Entry Assignments

Reference

Type

0 Instruction

Entry Index Address Region

1 Data

Instruction

Data

Instruction

LNl |l WVWIN

the needs of the particular 1mplementat10n If entries for
dependent how, if at all, these address regions: are translaf
kseg3 mto a single pair of instruction/data entnes Sofi

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address
region is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate reference t type is initiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as follows:

i « SelectIndex (reftype, va)
bounds ¢~ BAT[i]gounasven | 12
pfn « BAT[i]gaseprn

¢ « BAT[i]c

d « BAT[ilp

v « BATT[i]y

November 15, 1999 -151-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

Revision 1.0 : MIPS64™ Specification

if (va > bounds) or (v = 0) then
InitiateTLBInvalidException(reftype)

endif

if (d = 0) and (reftype = store) then
InitiateTLBModifiedException()

endif

pa < va + (pfn || 0'%)

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves the first virtual page mapped.

A.2.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

e The Index register is used to index the BAT entry to be read or written by the TLBWI and TLBR instruc-
tions.

» The EntryHi register is the interface to the BoundsVPN field in the BAT: “entry.

» The EntryLoO register is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register
has the same format as for a TLB-based MMU.)

» The Random, EntryLol, Context, PageMask, and Wired registers are elim
write to these registers is UNDEFINED.

* The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the
BAT entry whose index is contained in the Index register. The effects of executmg a TLBP or TLBWR are
UNDEFINED, but processors should prefer a Reserved Instruction Exception.

d. The effects of a read or

November 15, 1999 -152-

MIPS® PROPRIETARY/CONFIDENTIAL:
RESTRICTED DOCUMENT SUBJECT TO CONFIDENTIALITY OBLIGATIONS. DUPLICATION IS PROHIBITED.

