
W
hen microcontrollers are mentioned, for
many Mitsubishi is not a name that would
immediately spring to mind. To raise the
profile of the M16C family of 16-bit micro-
controllers, a considerable amount of

Mitsubishi advertising has recently appeared showing two
aliens - or is it the management’s perception of the electronics
department? The advertising makes the following claims of the
M16C family:
• A new architecture that combines the benefits of both accu-

mulator and register based machines.
• Code execution performed in fewer cycles and uses less

ROM.
• Facility to correct bugs, even after masking.
• All peripherals neatly stowed on board, so there is no need

for external devices.
• CRC (cyclic redundancy check) calculation circuit for

checksums.
• High levels of EMC and ESD protection.

Some of these claims are investigated later in this article.

A brief comparsion
The M16C range of microcontrollers was originally developed
for Mitsubishi mobile telephones. The architecture bears close
resemblance to that of the Hitachi H8 family, with which read-
ers may already be familiar.

Table 1 below gives a brief overview of M16C facilities
and compares them with one of Hitachi’s best selling family of
devices, the H8/300H. It can be seen from Table 1 that there are
commonalties between the H8300H and the M16C. However,
the M16C family does offer some facilities not normally seen on
other families of microcontroller, namely:
• Choice of two clock sources, one for normal (fast) operation

and the other for slow speed (low power) operation
• Selectable fundamental clock division ratio
• Choice of multiplexed or non-multiplexed address bus
• Three serial ports on the M16C61

The H8300H has stepper motor outputs and 16MB of address
space, neither of which are provided by the M16C family.

Architecture
Registers R0-R3, A0, A1 and FB are arranged in two identical
banks. Rather than having the bottleneck of an accumulator, reg-
isters R0, R1, R2 and R3 are used as working registers. Registers

Device
Hitachi H8/300H Mitsubishi M16C60 Mitsubishi M16C61

Number of pins 100 100 100

Clock division ratio 1:1 Configurable 1:1, 2:1, Configurable 1:1, 2:1 4:1,

4:1, 8:1 or 16:1 8:1 or 16:1

Maximum clock frequency 16 MHz 10 MHz 10 MHz

RAM (bytes) 512 - 4K 10K 4K - 10K

On board ROM 16K -128K 64K 64K

Port pins in single chip mode 78 87 87

Port pins in external mode 46 (H8/3002) 52 52

Serial Ports 2 2 3

Analogue to digital converter 8 channels/ 10 bits 8 channels/ 10 bits 8 channels/ 10 bits

ADC Conversion time 8.4mS 3.3mS 3.3mS

Digital to analogue converter None on H8/3002 8 bits 8 bits

2 on H8/3042/H8/3048 2 channels 2 channels

Pulse width modulation 2 x 8 bit 5 x 16 bit or 8 bit using timer 5 x 16 bit or 8 bit using timer

Stepper motor outputs 16 No No

16 bit timers 5 channels 5 timers + 3 5 timers + 3

Direct Memory Access Controller 4 channels 2 channels 2 channels

Watchdog Yes Yes Yes

CRC generating circuit No Yes Yes

Multiplexed Address Bus No Yes Yes

Non-multiplexed address bus Yes Yes Yes

Address Space 1 MB or 16 MB 1MB 1MB

External Interrupts 9 4 4

Chip select lines 4 4 4

Mathematical operations ADD, SUB
Logical operations AND, OR
Bit Operations BCLR, BTST, BSET, BNOT
Compare CMP
Rotates ROR, ROL
Sub-routine calls JSR
Sub-routine returns RET

Instruction Description
ADCF #immediate(byte and word) Add with carry flag
ADD:Q # -8 to +7 (byte and word) Add immediate to restricted range value
ADD #immediate (byte) Add immediate to byte
AND #immediate (byte and word) AND register with immediate value
CMP:Q # -8 to +7 (byte and word) Compare register with restricted range value
CMP #immediate (byte) Compare register with immediate value
DEC (byte and word) Decrement register
INC (byte and word) Increment register
INTO Interrupt on overflow
LDC (byte and word) Load register into control register

e.g. FLG, SP,ISP,USP etc.
MOV #immediate (byte) Move immediate value to register
NEG (byte and word) Two’s complement register contents
NOP No operation
NOT (byte and word) Invert register contents
OR #immediate (byte) Logical OR immediate with register
ROLC and RORC (byte and word) Rotate left and rotate right through carry.
STC Load register from control register
STNZ #immediate (byte) Store on non-zero.
STZ #immediate(byte) Store on zero.
SUB #immediate(byte) Subtract immediate value from register

Table 1: Comparison of features of Hitachi H8 and Mitsubishi M16C devices

Table 2: Instructions common to M16C, H8300 and H8500

A0 and A1 are used as pointers memory or
for general purpose.

Registers R0 and R1 can be used as
either two16-bit registers or four 8-bit reg-
isters. Two stack pointers are provided, the
User Stack Pointer (USP) for normal pro-
gram operation and an Interrupt Stack
Pointer (ISP). The two stack pointers are
useful for implementing real-time operat-
ing systems, especially when used with the
special ‘context’ instructions.

Boolean variables can be stored in
terms of data type ‘bit’. Bits can be useful
for storing flags and can be used to imple-
ment encryption algorithms, etc.
Addressing an individual bit is very simple
indeed. State a starting address in memory
and then add a number for the bit in the
range 0-65535. The M16C offers eight
timers but unlike the H8 does not have ded-
icated PWM registers. Instead, timers can be
used to give 8-bit or 16-bit pulse width mod-

Table3: M16C instructions operating in one clock cycle

• Stack frames (not available on H8300H)
• Multiple register operations (not available on H8300H)

On the other hand, there are one or two operations that the
H8300H and H8500 can do that are provided on the M16C:
• Bit accumulator on H8300H (T bit)
• Moves to peripheral in synchronisation with E clock (for

6800 style peripherals)
• More choice of operations on control register
• 32-bit operations on the H8300H

Execution times
The execution times of M16C instructions varies from one cycle
for simple byte operations to more than ten cycles for complex
operations. By and large, operations done directly on registers
take two cycles (18 per cent of all instructions) and operations
on indirectly addressed values in RAM take three cycles (50 per
cent of all instructions).

Unlike the H8 family, the M16C family does have a certain
number of instructions which operate in a single cycle. Even
though this only represents a small percentage (2.1 per cent) of
all the instructions, they represent some of those most com-
monly used and are listed in Table 3:

Special instructions
The M16C offers some instructions that are unavailable on the
H8300H and the H8500:

The ABS function puts the absolute value of a register into
that register, e.g. if value in register R0L is 8 or -8, then after
ABS.B R0L instruction, R0L will contain 8.

Operating system commands are supported by the LDCTX
and STCTX instructions. The STCTX instruction allows up to
eight registers (an operating system task or context) to be saved
in one operation.The LDCTX instruction restores up to eight regis-
ters already stored (loads an operating system task). An unusual
instruction is the move nibble instruction which can move a nibble
from one register to another:
MOVHL R0L, R1L; Puts high nibble in R0L into low nibble of R1L

The RMPA instruction has applications in digital filtering.
It is used to generate the sum of inputs multiplied by appropri-
ate filter constants.
e.g. Result = a x constA + b x constB + c x constC etc

Simplifications to implementation high-level language
constructs are the conditional instructions STZ, STNZ and
STZX (for bytes) and BMCND (for bits). The following piece
of code can be implemented to execute in three cycles:
unsigned char x, y; /* Allocate x to R0L and
y to R0H */
if (x == 7) /* CMP #7,R0L */
y = 5;

else y = 6; /* STZX #5, #6, R0H */
Program correction

A first look at the Mitsubishi
M16C 16-bit microcontroller

An independent review by Richard Sikora, Design Engineer.

ulation, but it is not quite as straightforward as on the H8.

Instruction set
The M16C instruction set is very similar to that of the H8500 which
in turn resembles the Motorola 68000. Instuction syntax is the same
as Hitachi and Motorola, i.e. from left to right with instruction,
source, destination - for example mov R1,R2

For the following operations, there are commonalties
between 32 of the M16C, H8500 and H8300 instructions. In
many cases the mnemonics are identical. Examples are listed in
Table 2.

The M16C offers the following improvements over the
H8300H and H8500:
• More bit operations than on H8500

One of the interesting facilities provided by the M16C family is
the ability to make a maximum of two corrections to masked
ROM. There may be more than one reason for doing this. A bug
may appear after the mask has been finalised or it may be nec-
essary to make a program change to sell the finished product in
a new country.

Code correction makes use of two address match inter-
rupts. When the program counter reaches one of two preset
values, program flow is diverted away from the mask ROM and
runs instead from the corrected (patch) code in RAM.

Each code correction can correct more than one bug if a
common point before the bugs occur can be identified and
intercepted. However, in order to make use of the code correc-
tion facility, both hardware and software must be designed in a
specific way.

One simple hardware implementation is to put the patch
code into an external serial EEPROM. Devices such as the
24CXX family are not expensive, come in various sizes and
may already be used on the PCB for non-volatile storage. If
there is not an on-board EEPROM, then room for a socket
should be laid out on the PCB.

In software, during initialisation, the interrupt vector table
must be copied from ROM to RAM. The patch code must also
be copied from EEPROM into RAM. Under normal circum-
stances the two address match interrupts would be assigned to
unreachable code and would, therefore, have no effect.

However, when a patch EEPROM is present, address
match interrupt 0 and address match interrupt 1 are loaded from
addresses in EEPROM . When these addresses are reached in
program flow, the code diverts to the patch in RAM instead of
the masked ROM.

There are two limitations to program correction. First, it is
not possible to patch boot code. Secondly, the size of patch code
is limited by the total amount of RAM in the system.
CRC generation
A CRC (cyclic redundancy check) checksum gives a much
higher level of error checking than can a longitudinal parity

M16C H8 500 H8 300

Add ADD ADD ADD

And AND AND AND

Bit clear BCLR BCLR BCLR

Bit test BTST BTST BTST

Bit set BSET BSET BSET

Bit not BNOT BNOT BNOT

Compare CMP CMP CMP

Divide (unsigned) DIVU DIVXU DIVXU

Jump unconditional JMP JMP JMP

Jump indirect JMPI JMP@@ JMP@@

Jump conditional JCnd BCC BCC

Jump sub-routine JSRI JSR@@ JSR@@

indirect

Jump sub-routine JSR BSR/JSR BSR/JSR

Load control register LDC LDC LDC

Multiply unsigned MULU MULXU MULXU

Two’s complement NEG NEG NEG

No operation NOP NOP NOP

Invert all bits NOT NOT NOT

Logical OR OR OR OR

Move MOV / MOVA MOV MOV

Return from REIT RTE RTE

interrupt

Rotate left ROLC ROTXL ROTXL

with carry

Rotate right RORC ROTXR ROTXR

with carry

Rotate ROT ROTL/ROTR

ROTL/ROTR

Return from RTS RTS RTS

subroutine

Subtract with SBB SUBX SUBX

borrow

Shift arithmentic SHA SHAL/SHAR SHAL/SHAR

Shift logical SHL SHLL/SHLR SHLL/SHLR

Store from control STC STC STC

register

Subtract without SUB SUB SUB

borrow

Wait (Sleep?) WAIT SLEEP SLEEP

Exclusive OR XOR XOR XOR

Table 5: Instructions that have very similar names/operations

check (XOR of bytes) or a simple checksum. The disadvantage
of the CRC is usually execution time. Each character of the
CRC can take about 80 clock cycles to be generated using con-
ventional instructions.

The M16C can do a 16-bit CRC using the CCITT standard
(X16 + X12 + X5 + 1) in two clock cycles using a hardware
implementation. One use for a CRC is to test the integrity of the
code in ROM at power-up. In the event of there being a cor-
rupted cell, then the code will not be run. A second use for the
CRC is serial communications.

Documentation
Documentation for the M16C family is by and large produced in
Japan and, therefore, some of the translations could be
improved. Usually, the meanings are still clear.

Some of the instructions are not clearly explained and give
no example, e.g. the interrupt for undefined instruction UND.
There is similarity in the naming and operations of the three
microcontrollers; see Table 5 for more information

Support tools
An ANSI ‘C’ compiler is available from IAR and a development
board with on-board debugger interfacing to a PC has be just
been released. Two Mitsubishi emulators are available - the high
specification emulator with real-time trace and a lower cost
device without trace. Emulators interface via the 100 pin PLCC
connector rather than the flat pack connector which can be prob-
lematic at the best of times. Also available is an unpopulated
printed circuit board which is laid out for a 100 pin PLCC socket
(provided), RS232 port, two crystals, MAX232, bread-board
area, etc. This costs in the region of £50

Conclusion
The M16C family offers some features not found on other 16-
bit microcontrollers - built in CRC checksum generator, facility
to make changes to masked ROM and three serial ports on the
M16C61.

The device also offers the user a wider range of choices
than competitive products - adjustable clock division ratio,
choice of multiplexed/non-multiplexed address buses and two
crystal sources. In terms of instruction set, the M16C offers the
best of both H8300 and H8500 families plus some extras.
Overall, the Mitsubishi M16C family device looks to be a good
alternative to the Hitachi H8.

Richard Sikora
Design Engineer

Reprinted from the June, 1997, issue of
Micro Technology Europe & MDA.

Internet Website: http://www.mitsubishi-chips.com

Instruction Description
ABS Calculates absolute value of variable

ADJNZ, SBJNZ Add jump non-zero, subtract jump

non-zero. Used for iteration loops.

BTSTC, BTSTS Bit test clear, bit test and set

BMCND Bit move conditional

LDCTX, STCTX Load / store context

MOVLL, MOVHL, Operations on nibbles

MOVLH, MOVHH

RMPA Repeat multiply and addition

SMOVB, SMOVF, SSTR Move strings (or data blocks)

STZ, STNZ, STZX Store conditional on zero, non-zero,

zero with extension

Table 4: M16C instructions unavailable on Hitachi H8300 or H8500

