ADVANCED AND EVER ADVANCINGMITSUBISHI ELECTRIC

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY

! MITSUBISHI
ELECTRIC

Keep safety first in your circuit designs!

¢ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

e These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

e Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

¢ All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication
of these materials, and are subject to change by Mitsubishi Electric Corporation
without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation
by various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

e When using any or all of the information contained in these materials, including
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate
all information as a total system before making a final decision on the applicability of
the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information
contained herein.

e Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

e The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

e If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan
and/or the country of destination is prohibited.

e Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon
ductor product distributor for further details on these materials or the products con
tained therein.

Preface

This programming manual is written about
the M16C/60, M16C/20 series of Mitsubishi
CMOS 16-hit microcomputers explaining
the basics of the C language and describing
how to put your program into ROM and how
to use the real-time OS (MR30) while using
NC30, the C compiler for the M16C/60,
M16C/20 series. This manual will prove
helpful to you as a guide to the C language,
as well as a textbook to be referenced when
creating a C language program.

For details about hardware and
development support tools available for
each type of microcomputer in the M16C/
60, M16C/20 series, please refer to the
user's manual and instruction or reference
manuals supplied with your microcomputer.

Chapter 1 Introduction to C Language il

Chapter 2 ROM'ing Technology 2

Chapter 3 Using Real-time OS (MR30) 3

Appendices Appendices

Guide to Using This Manual

This manual is a programming manual for NC30, the C compiler for the M16C/60, M16C/20
series.

Knowledge of the M16C/60, M16C/20 series microcomputer architecture and the assembly
language is required before using this manual.

This manual consists of three chapters. The following provides an approximate guide to using
this manual:

» Those who learn the C language for the first time - Begin with Chapter 1.
» Those who wish to know NC30 extended functions — Begin with Chapter 2.
» Those who use the real-time OS, MR30 - Begin with Chapter 3.

Furthermore, appendices are included at the end of this manual: "Functional Comparison
between NC30 and NC77", "nc30 Command Reference", and "Q & A".

M16C Family-related document list

Usages
(Microcomputer development flow)

Selection of Type of document Contents
microcomputer
Data sheet and Hardware specifications (pin assignment,
o data book memory map, specifications of peripheral
. . = functions, electrical characteristics, timing
Outline design g charts)
of system 5 : — —
= Detailed description about hardware specifi-
T User’'s manual cations, operation, and application examples
Detail design (connection with peripherals, relationship
of system with software)
) Programming Method for creating programs using assem-
g manual bly and C languages
%‘ Software manual Detailed description about operation of each
N instruction (assembly language)
evaluation
M16C Family Line-up
M16C Family —— M16C/80 Series M16C/80 Group

M16C/60 Series

M16C/20 Series

M16C/60 Group
M16C/61 Group
M16C/62 Group

M16C/20 Group
M16C/21 Group

Table of contents

Chapter 1 Introduction to C Language

1.1 Programming iN C LANQUAGEcceteeeeeeiiieiiiiiiieeeeeeeeeeesasasnsteaeeeeeeeaeeassssaansssnnseeeeeeaeaessesnnnnnnens 1eennes 3
1.1.1 Assembly Language and C LANQUATEccoruuuiieiiiiiiieeiiiiiie et e st e e 3
1.1.2 Program Development ProCEAUIEooiiiiiiiiiiii et 4
1.1.3 Easily Understandable Program ...t 6

L2 DALA TYPES iiiieiiiiiiet ettt ettt et oo oot e e e e e et et e e e e e e e £aaa s 10
1.2.1 "Constants" Handleable in C LANQUAGEouurriieiiiiiiieeiiiee ettt 10
R Y - T - 1 o] [PRSP PRR 12
1.2.3 Data CharaCteriStICS . ..eeeiiiiiitiiiiieiii e e e e ettt e e e e e e e e ettt e e e e e e e e e e e nbnb e e e e e aeaaaeeeaaeeaaannnn 14

I O 01T =10 £ PO PTPRTR T 16
1.3.1 OPErators OF NC 30coiiiieeiiiiiiet ettt e e e e e e e e e et et e e e e e e e e e e e e annnanbeeeeaaeaaaaaaaaans 16
1.3.2 Operators for NUmMeric CalCUlatiONScceeieiiiiiiiiiiiiie e e e eeaae s 17
1.3.3 Operators for ProCeSSING DAtaccuiiiiiiiiiiiiiiiiieiii e e e e e e e e e e e e e 20
1.3.4 Operators for EXamining CONGItIONcooiiiiiiiiiiiiii e e e e e e e e e e e e e s 23
(IR oI @101 @0 1=T = 1 o] £ TR TSP 24
1.3.6 PriOritieS Of OPEIALOrScceeei ittt e e e e e e e e e e s e e e e e aeaeeesaaanssbeaaeaeeaeeaaaees 26

O o] 1 (0] IS] r= 1 (= 01 1]] PP PRP 27
O R U o (U T] = o T | = o SR 27
1.4.2 Branching Processing Depending on Condition (branch processing)ccccooevcuviveeeeeeeeenn. 28
1.4.3 Repetition of Same Processing (repeat ProCESSING) ..vuuurrrieeeeeeiiiiiiiiieeirereeeeeesssnnrrneeeereeaees 32
1.4.4 SUSPENAING PrOCESSING ..eettiiieeiiiiiiiitie et e e e e e e ettt e e e e e e e e e s e e nbebbebeeeeaaaaaaaasaannnnbeseeaeeaaeaass 35

L5 FUNCLIONS ettt ettt et e e oo ookttt ettt e e e a4 a4 e e e s bbb bbb et et e e e e e e e aaaanabs teeeeaeeeesesanninnes 37
1.5.1 FuNCtions and SUDIOULINESeeiiiiiiiiiiiiiee et e e e e e e e aannes 37
1.5.2 Creating FUNCLIONSottt ettt e e e e ettt e e et e e e e e annaeas 38
1.5.3 Exchanging Data between FUNCLIONSccooiiiiiiiiiciceeeeee s e e e e e e e e e e e aeaeeees 40

1.6 STOTAQE CIASSES ..oveiiiieieeeiii ittt e e e e et e e et e e e e e e e e s e ettt e et e e e aeeeese s e sbabbrraeaaaaaeaes arrarrnreeeeees 41
1.6.1 Effective Range of Variables and FUNCLIONSc.ceviiiiiioiiiiiiieeee e 41
1.6.2 Storage Classes of Variablescooiiiiiiiiii e 42
1.6.3 Storage Classes Of FUNCHONSuuiiiiiiiieei et e e e e e e e e e e s s re e e e e e e e e e e 44

1.7 Arrays and POINTEISoiiciiiiiiiie e e e ettt e e e e e e e e r e e e e e e e s e s s et a bt arraraeaeaeeaaans rreeeeeaees 46
R N - V£ PURPUR 46
1.7.2 CrEALNG @N AITAY ..iuttieeeeiitee ettt e ettt e e ekt e e e a bt e e e e ok et e e e ek b bt e e e e st b e e e e e abbe e e e e e annees 47
IO ARG T =1 01 1= £ PSR STPRRR 49
1.7.4 USING POINTEIS ...ttt ettt e ekt e et e e ekt e e e et e e e e et e e e e e e 51
1.7.5 Placing POINEIS iNt0 @N AITAYuuvuriiiiieiiee e e e e ieeiiiiere e e e e e e e e s s s st eaeaeeee e s s s anssberaeereaaaaaaeaes 53

1.7.6 Table Jump UsiNg FUNCHON POINTETuuiiiiiiiiiiee ettt 55

RS {8 Lo A=Y o (o B0 1 10) o T 57

S] 1 U od =T (o B0 T o PO PUPURURRRR 57
1.8.2 Creating NEW Dat@ TYPES ..oviiiieeeiieiiiiiieeieeeee e e e e s se et ae e e e e eee e e s e s sste e eeaeaaeeesesasnnssstnneranaeaeaens 58
1.9 PreproCeSS COMMEANUS ...uuuiiiiieeeeeiieiititieeteeeeeeesssssssssnteereeeeeeaeaessaaassasaaeereeeaeessssasasssrnnnnnerens 1eensnes 62
1.9.1 Preprocess Commands Of NC30coiiuiiiiiiiiiiiiee ittt 62
1.9.2 TaKING IN A FIIE ettt e e et e e e e e e e e e e et e e s e beeeaaaeeeaas 63
TR T 1Y = Tod o I 1= 1114 o SRR 64
1.9.4 CoNditioN@l COMPIIEoeiiiiieeiiee ettt e e e e e e e et e e r e e e e e eeaaeeeaas 66

Chapter 2 ROM'ing Technology

2% V1T g To T VA = o] o1 o OSSP 71
2.1.1 Types Of COUE ANA DALAcviiieeeiii it e e e e e s e e e e e e e e e e s e st aeaeaaeaaees 71
2.1.2 Sections Managed DY NC30 ..ottt e e e e e e eeeaaaeeeas 72
ARSI @do] 1 (o] o) 1Y/ (=T g To T VN1 =1 o] o1 o PSR 74
2.1.4 Controlling Memory Mapping Of STFUCTeeiiiiii it 76

2.2 SEAITUP PrOGIAIM ..ot e e e e e e e e e e e e e et ettt ee et eeesee e babn bbb as teeeeeeeeeeeeees 78
2.2.1 RoOleS Of STartUp PrOGIraMcooiiiiiiiiiieie ettt e ettt e e e e e e e e e s e e e e e e aaaeaeeaas 78
2.2.2 EStiMating StACK SIZES USEMcooiiiiiiiieiiiiiiee ettt ettt e et e e sbbe e e e e e 80
2.2.3 Creating Startup PrOGIaIMoooiiiiiiiiiiieie et e et e e e e e e e e e s et b e e e eaaaaaaaeaeas 83

2.3 Extended Functions for ROM'ING PUIMPOSESooiiuiiiiiiiiiiiiee ettt e e e e 90
A T R = o =T Yo [£ [T PSS 90
2.3.2 HANAING O BILSeiiiiiitiiii ettt e et e e e st e e e s e anbaeeeesaaes 94
2.3.3 CoNtrol Of I/O INTEITACE ...t 96
2.3.4 When Cannot Be Written in C LANQUAJEccoiuriiiiiiiiiiiee ittt e e e e 98

2.4 Linkage With ASSEMDIY LANGUAGEocoiiiiiiiiiiiiiie ettt 100
2.4.1 Interface DetWeen FUNCHIONSc.eiiiiiiiiiiie e e e e e e e e s e e eeeeeeee s 100
2.4.2 Calling Assembly Language from C LaNQUAGEcccuurrrriirieeeeeeeieiiiiiineeeeeee e e e e e s e seansnnneens 105
2.4.3 Calling C Language from ASSemMDIlY LANQUAGEcooiuiiiiiiiiiiiieeiiieee e 111

2.5 INTEITUPT PTOCESSING ..iuttieiieiiiie ittt ettt ettt et e e et e e et e e st e e e e as beeeesaannes 112
2.5.1 Writing Interrupt Processing FUNCHONScooiiiiiiiiiiiieiiee e a e 112
2.5.2 Registering Interrupt Processing FUNCLIONScccuiviiiiiiiiiee e e e e e e e 115

2.5.3 Example for Writing Interrupt Processing FUNCHONcoooiiiiiiiiiiiiiiieeeee e 116

Chapter 3 Using Real-time OS (MR30)

3.1 BasSIiCS Of REAILIME OSooiiiiiiiii ettt e e e e s snaaee nreeeens 121
3.1.1 ReEAl-tIME OS @NU TASK ..uttriiiiiiieeiiiiiiiie e s et r e e e e e e s e s et r e e e e e e e e e asnnnnrenneeeeeees 121
3.1.2 Functions of REAI-IIME OS ..ot e e e e 124
3.1.3 INLEITUPE MBNAGEMENT ...ttt ee ettt e e e e e e s et e e e e e e s e s nnreeeneees 127
3.1.4 SPECIAI HANGIBIS ...ttt e e e e e e e e et e b eeeees 130

3.2 Method for Using SysStem CallScoooiiiiiiiiii e .. 131
3.2.1 MR3O0'S SYSLEM CallS ...uuuiiiiiiii i e e e e e e e e e 131
3.2.2 WHIitiNg @ SYSIEM Call.....eiiiiiiiiiieeiei e 132

3.3 Development Pro cedures USING MR30coiiiiiiiiieiiiiiee ittt 135
3.3.1 Files Required during DeVEIOPIMENTcciiiiiiiieiiiiie et 135
3.3.2 Flow of Development USiNg MR30uuiiiiiiiiieeiiieiiiiiiiee e et re e e e e e e e e 140

3.4 Building MR30 into Program UsSIiNg NC30cccuuiiiiiieieeeeiiiiiiiiieiir e e e e e e e e s sssinvnsneeeeeeaeeesennnnns 141
3.4.1 Writing Program USING NC30.......ccciiiiiiiiiiiiir e e et e e e e e e s e st eraaaeaeeeesennnnnnnnees 141
3.4.2 Writing TASKS USING NC3B0 ...coiiiiiiiiiiiiiii ettt e e e e e et e e e e e e e e e e e annneeeeee e 143
3.4.3 Writing INterrupt HANAIEToeiiee et e e e e e e eeaeees 147
3.4.4 Writing Cyclic and Alarm HaNAIEISooiiiiiiiieeee e 151

Appendices
Appendix A. Functional Comparison between NC30 and NC77cccceeveeeeeeiiiiinnnnnen, Appendix-3
Appendix B. NC30 Command REFEIENCEcociiiiiiiiiiiiiiii e Appendix-6

Appendix C. QUESTIONS & ANSWETSuuuieiiereeeeieiiiiiiiieeeeereeaeessssssnsrnsaeereeaeeeasasanssnseeneeees Appendix-12

Table of contents for example

Chapter 1 Introduction to C Language

1.1 Programming in C Language

1.2 Data Types

1.3 Operators

A o]] 0] IS] r= 1= 041 PSPPI 27
Example 1.4.1 Count Up (if-else Stat€mMENt)cooiiiiiiiiiiieee e e e e e 28
Example 1.4.2 Switchover of Arithmetic Operations-1 (else-if statement)ccccciieiiiiiiennnnnnns 29
Example 1.4.3 Switchover of Arithmetic Operations-2 (switch-case statement)ccccceeeeerinnns 30
Example 1.4.4 Finding Sum Total -1 (While Statement) ..ot 32
Example 1.4.5 Finding Sum Total -2 (for statement)uuuviiiieeeeeiiiiiir e 33
Example 1.4.6 Finding Sum Total -3 (do-while statement)ccuuviiiiiiiiiiie e 34

L5 FUNCLIONS ..ttt ettt oo e oo ook b ettt et e e e e e e o e s e kb bbb e e et e e e e e e e e e aaannbes teeeeaeeessssannnnnes 37
Example 1.5.1 Finding Sum of Integers (example for writing a function)occccviiiieeiienennnnn. 40

1.6 Storage Classes

1.7 AIrays @nd POINTETScooiiiiiiiiiiiiei ettt e et e e e et e e e ee s rreeeaannes 46
Example 1.7.1 Finding Total Age of @ Family -1c.oooiiiiiiiiiiii e 46
Example 1.7.2 Finding Total Age of @ Family -2.........ccciiiiiiiiiii e a7
Example 1.7.3 Switching Arithmetic Operations Using Table Jump........cccocviiiiiiiiiniee e, 56

1.8 Struct and Union

1.9 Preprocess Commands

.
Chapter 2 ROM'ing Technology

2.1 Memory Mapping

2.2 Startup Program

2.3 Extended Functions for ROM'ING PUIMPOSEScuuiiiiiiiiiiieeiiiiie ettt e e 90
Example 2.3.1 Defining SFR Area Using "#pragma ADDRESS"ccccoiiiiiiiiiiiecee e 97

2.4 Linkage With ASSEMDBIY LANGUAGEoooiiiiiiieiiiiiie ettt e 100
Example 2.4.1 Calling SUDIOULINEouviiiiiiiie ittt e e 107
Example 2.4.2 Calling a Subroutine by Table JUMPccvviiiiiiiieee e 109
Example 2.4.3 A Little Different Way to Use Table JUMP ... 110

2.5 Interrupt Processing

Chapter 3 Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.2 Method for Using System Calls

3.3 Development Procedures Using MR30

3.4 Building MR30 into Program Using NC30

Appendices

Appendix A. Functional Comparison between NC30 and NC77

Appendix B. NC30 Command Reference

Appendix C. Questions & Answers

Chapter 1

Introduction to C Language

1.1 Programming in C Language
1.2 Data Types

1.3 Operators

1.4 Control Statements

1.5 Functions

1.6 Storage Classes

1.7 Arrays and Pointers

1.8 Struct and Union

1.9 Preprocess Commands

This chapter explains for those who learn the C language for the
first time the basics of the C language that are required when
creating a built-in program.

Introduction to C Language

1 1.1 Programming in C Language

1.1 Programming in C Language

1.1.1 Assembly Language and C Language

As the scale of microcomputer-based systems increased in recent years, a program's productivity
and maintainability became to attract the attention of the people concerned. At the same time,
more and more programs have become to be developed in the C language, instead of using the
conventional assembly language.

The following explains the main features of the C language and describes how to write a program
in the C language.

Features of the C language

(1) An easily traceable program can be written.
The basics of structured programming, i.e., "sequential processing", "branch
processing”, and "repeat processing"”, can all be written in a control statement. For this
reason, it is possible to write a program whose flow of processing can easily be traced.

(2) A program can easily be divided into modules.
A program written in the C language consists of basic units called "functions”. Since
functions have their parameters highly independent of others, a program can easily be
made into parts and can easily be reused. Furthermore, modules written in the
assembly language can be incorporated into a C language program directly without
modification.

(3) An easily maintainable program can be written.
For reasons (1) and (2) above, the program after being put into operation can easily be
maintained. Furthermore, since the C language is based on standard specifications
(ANSI standard®™°®), a program written in the C language can be ported into other
types of microcomputers after only a minor modification of the source program.

Comparison between C and assembly languages

Table 1.1.1 outlines the differences between the C and assembly languages with respect to
the method for writing a source program.

Table 1.1.1 Comparison between C and Assembly Languages

|| C language | Assembly language

Basic unit of
program (Method of Function (Function name () {}) | Subroutine (Subroutine name:)
description)

Format Free format 1 instruction in 1 line
Discrimination Uppercase and lowercase are
between uppercase discriminated (Normally written Not discriminated
and lowercase in lowercase)
Allocation of data Specified by a number of bytes

Specified by "data type"

area (using pseudo-instruction)
Input/output No input/output instructions Inpgt/output mstructlpns
.) . available (However, it depends
instruction available

on hardware and software.)

Note: This refers to standard specifications stipulated for the C language by the American National Standards Institute (ANSI)
to maintain the portability of C language programs.

Introduction to C Language
1.1 Programming in C Language

1.1.2 Program Development Procedure

An operation to translate a source program written in the C language into a machine language
program is referred to as "compiling”. The software provided for performing this operation is
called a "compiler".

This section explains the procedure for developing a program by using NC30, the C compiler for
the M16C/60, M16C/20 series of Mitsubishi single-chip microcomputers.

NC30 product list

Figure 1.1.1 lists the products included in NC30, the C compiler for the M16C/60, M16C/20
series of Mitsubishi single-chip microcomputers.

Compile driver

(nc30) It starts up the compiler, assembler, or linker.
I
Pl’epI’OCGSSOI’
(cpp30) It processes macro and conditional compiling.

Compiler main unit
(ccom30) It converts C language source files into assembly
language source files.

NC30

Stack size calculating utility

product

(Stk30) It calculates the amount of
| stacks used.

package

Sample startup program
(ncrt0.a30/sect30.inc)

Standard libraries

Standard library source files

Figure 1.1.1 NC30 product list

Introduction to C Language
1.1 Programming in C Language

Creating machine language file from source file

Creation of a machine language file requires startup programs written in the assembly
language, in addition to the source file that contains a C language program.
Figure 1.1.2 shows a tool chain necessary to create a machine language file from a C

language source file.

Startup programs

C language
source file

Compile driver nc30 I
Preprocessor ccp30 I

sect30.inc
N Compiler main unit ccom30
ncrt0.a30
Assembly i Assembly N i Stack usage D
language language : information :
source file :_source file_ P f ie _________ :
Stack size
Relocatable assembler as30 calculating utility
stk30
Librari : Relocatable ; Relocatable : ! Stack usage TA
Ibraries : file : file i ! calculation result
I I S I ; display file
Linkage editor In30
Load module converter Imc30
"""M'g};!}};;'k
: language file == 7o ROM

- Files prepared by the
user (including libraries)

File nameEl

Software I -Software included in NC30
product package

: Software included in AS30

product package

Software

Figure 1.1.2 Creating machine language file from C language source file

Introduction to C Language
1.1 Programming in C Language

1.1.3 Easily Understandable Program

Since there is no specific format for C language programs, they can be written in any desired way
only providing that some rules stipulated for the C language are followed. However, a program
must be easily readable and must be easy to maintain. Therefore, a program must be written in
such a way that everyone, not just the one who developed the program, can understand it.

This section explains some points to be noted when writing an "easily understandable” program.

Rules on C language

The following lists the six items that need to be observed when writing a C language

program:

(1) As arule, use lowercase English letters to write a program.

(2) Separate executable statements in a program with a semicolon ";".

(3) Enclose execution units of functions or control statements with brackets "{" and "}"

(4) Functions and variables require type declaration.

(5) Reserved words cannot be used in identifiers (e.g., function names and variable
names).

(6) Write comments between "/ and "".

Configuration of C language source file

Figure 1.1.3 schematically shows a configuration of a general C language source file. For
each item in this file, refer to the section indicated with an arrow.

Reading header file P Refer to 1.9, "Preprocess Commands".
Type declaration of functions used; b Refer to 1.5, "Functions".
Macro definition » Refer to 1.9, "Preprocess Commands".
Declaration of external variables » Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".
Type function name (dummy argument, ...) | ™ Refer to 1.5, "Functions".
Declaration of internal variables; ——————® Refer to 1.2, "Date Types" and 1.6,

"Storage Classes".

Executable statement; » Refer to 1.3, "Operators" and 1.4,
: "Control Statements".

74

Figure 1.1.3 Configuration of C language source file

Introduction to C Language

1.1 Programming in C Language

Programming style

To increase the maintainability of a program, it is necessary that a template for program list
is determined by consultation between those who develop the program. By sharing this
template as a "programming style" among the developers, it is made possible to write a
source program that can be understood and maintained by anyone. Figure 1.1.4 shows an
example of a programming style.

(1) Create a function separately for each functionality of the program.
(2) Limit processing within one function unless specifically necessary. (A size not larger
than 50 lines or so is recommended.)

(3) Do not write multiple executable statements in one line.

(4) Indent each processing block successively (normally 4 tab stops).

(5) Clarify the program flow by writing comment statements as appropriate.

(6) When creating a program from multiple source files, place the common part of the
program in an independent separate file and share it.

Enclose a set of processing
with brackets "{" and "}"

Enclose a comment statement with "/0' and "7 ".

/0 Test program
unsigned int raml,;
main()

/ .
- char a;

Inglentation while(1){
B if(a::raml) {
. break ;
Indentation }
else{
a=raml;
}

}

U

'main’ processing

'‘while' processing

74

Figure 1.1.4 Example of programming style of C language program

Introduction to C Language
1.1 Programming in C Language

Method for writing a comment statement

The method for writing a comment statement constitutes an important point in writing an
easily readable program. Program flow can be clarified by, for example, indicating the
functionality of a file or that of a function as the header.

J Example of file header|
/,

/O0"FILE COMMENT™ U_ULLLLLUJ_U_LLUJ_ULU_LLUJJJLLLLLUJ_UJ_LLU_%Q/JLLLLLUJ_U_LLUJJ

[BystemName : Test program

OFileName : TEST.C

OVersion :1.00

OCPU : M30600M8-XXXFP
OCompiler - NC30 (Ver.1.00)
0os : Unused

OProgrammer 1 XXXX

OO T
OCopyright, XXXX XXXXXXXXXXXXXXXXX CORPORATION
OO T

COHistory T XXXX XX XX : Start

O0"™FILE COMMENT END"" (T
/0" Prototype declaration"" [T
void main (void) ;

void key_in (void);) Example of function header
void key out (void) ;

/O0™FUNC COMMENT"" (I LA T T
OFunction name : main()

O

ODeclaration : void main (void)

O

OFunctionality : Overall control

O

CArgument : void

O

OReturn value : void

O

OFunctions used : voidkey_in (void) ; Input function

0 : voidkey_out (void) ; Output function

O0"™FUNC COMMENT END"" O O T T T

void main (void)

{
while(1){ /OEndless loop I
key_in() ; /Olnput processing O
key_out(); /O00utput processing O
}
/ 7

Figure 1.1.5 Example for using comments

Introduction to C Language
1.1 Programming in C Language

Column Reserved words of NC30

The words listed in Table 1.1.2 are reserved for NC30. Therefore, these words cannot be
used in variable or function names.

Table 1.1.2 Reserved Words of NC30

_asm const far register switch
_far continue float return typedef
_near default for short union
asm do goto signed unsigned
auto double if sizeof void
break else int static volatile
case enum long struct while
char extern near

Introduction to C Language

1 1.2 Data Types

1.2 Data Types

1.2.1 "Constants" Handleable in C Language

Four types of constants can be handled in the C language: "integer”, "real", "single character",

and "character string".
This section explains the method of description and the precautions to be noted when using each

of these constants.

Integer constants
Integer constants can be written using one of three methods of numeric representation:

decimal, hexadecimal, and octal. Table 1.2.1 shows each method for writing integer
constants. Constant data are not discriminated between uppercase and lowercase.

Table 1.2.1 Method for Writing Integer Constants

Numeration Method of writing Example
Decimal Normal mathematical notation (nothing added) 127, +127 ,-56
Hexadecimal | Numerals are preceded by Ox or OX (zero eks). 0x3b, 0X3B
Octal Numerals are preceded by 0 (zero). 07,041

Real constants (Floating-point constants)

Floating-point constants refer to signed real numbers that are expressed in decimal. These
numbers can be written by usual method of writing using the decimal point or by
exponential notation using "e" or "E".

» Usual method of writing Example: 175.5, -0.007

¢ Exponential notation Example: 1.755e2, -7.0E-3

Single-character constants

Single-character constants must be enclosed with single quotations ('). In addition to
alphanumeric characters, control codes can be handled as single-character constants.
Inside the microcomputer, all of these constants are handled as ASCII code, as shown in
Figure 1.2.1.

Alnteger L AsClIl cod
1= | oxor 5 1Ty | oxat coe

Single-character
constant

Integer
constant

Figure 1.2.1 Difference between 1 and '1’

10

Introduction to C Language

1.2 Data Types

Character string constants

A row of alphanumeric characters or control codes enclosed with double quotations () can
be handled as a character string constant. Character string constants have the null
character "\0" automatically added at the end of data to denote the end of the character

string.

Example: "abc”, "012\n", "Hello!"

Memory
{ |a| ’ Ibl } :D |a| 2 byteS Of
_ data area
A set of single- o are used
character b .
constants
2

Memory
1] n PN “
ab a
Character 3 bytes of
string b’ data area
constant are used.
I\OI
Null code | Y

Figure 1.2.2 Difference between {'a’, 'b'’} and "ab"

Column

List of control codes (escape sequence)

The following shows control codes (escape sequence) that are frequently used in the C

language.

Table 1.2.2 Escape Sequence in C Language

Notation Content Notation Content
\f Form feed (FF) \ Single quotation
\n New line (NL) \" Double quotation
. \x constant .

\r Carriage return (CR) Hexadecimal
value
\ constant

\t Horizontal tab (HT) Octal
value

\\ \ symbol \0 Null code

11

Introduction to C Language

1.2 Data Types

1.2.2 Variables

Before a variable can be used in a C language program, its "data type" must first be declared in
the program. The data type of a variable is determined based on the memory size allocated for

the variable and the range of values handled.

This section explains the data types of variables that can be handled by NC30 and how to declare

the data types.

Basic data types of NC30

Table 1.2.3 lists the data types that can be handled in NC30.
the table below can be omitted when declaring the data type.

Table 1.2.3 Basic Data Types of NC30

Descriptions enclosed with () in

Range of values that can be

Data type Bit length expressed
(unsigned) char 8 bits 0 to 255
singned char —128 to 127
unsigned short (int) 16 bits 0 to 65535
Integer || (signed) short (int) — 32768 to 32767
unsigned int 16 bits 0 to 65535
(signed) int — 32768 to 32767
unsigned long (int) 32 bits 0 to 4294967295
(signed) long (int) — 2147483648 to 2147483647
float 32 bits Number of significant digits: 9
Real Il 4ouble 64 bits Number of significant digits: 17
long double 64 bits Number of significant digits: 17

12

Int

roduction to C Language

1.2 Data Types

Declaration of variables

Variables are declared using a format that consists of a "data type A variable name;".

Example: To declare a variable a as char type
char a;

By writing "data type A variable name = initial value;", a variable can have its initial value

set simultaneously when it is declared.

Example: To set 'A’ to variable a of char type as its initial value

chara ="A’
Furthermore, by separating an enumeration of multiple variables wit
variables of the same type can be declared simultaneously.
Example: inti, j;
Example:inti=1,j=2;

. 8 bit .
. - . its
void main (voi
() S > a XX
{ :
char a; -0 ’ T > b A
char b="A"; ----------
int i; "TTTTTTTTTTTTTTTTYT '
L > 1= XX =
unsigned int k=500; [T :
long n= 0x100007 ek CERrr __________________
I/

.

Denotes that thisisthe | Lo
long type of data.

Figure 1.2.3 Declaration of variables

h a comma (,),

XX: Indeterminate

8 bits
> =
“I 500 A
> n| 0x10000L |

13

Introduction to C Language

1.2 Data Types

1.2.3 Data Characteristics

When declaring a variable or constant, NC30 allows its data characteristic to be written along with
the data type. The specifier used for this purpose is called the "type qualifier".

This section explains the data characteristics handled by NC30 and how to specify a data
characteristic.

Specifying that the variable or constant is singed or unsigned data (singed/
unsigned qualifier)

Write the type qualifier "signed" when the variable or constant to be declared is signed data
or "unsigned" when it is unsigned data. If neither of these type specifiers is written when
declaring a variable or constant, NC30 assumes that it is signed data for only the data type
char, or unsigned data for all other data types.

void main (void)

{ Synonymous with "unsigned char a";|
char a;

signed char s a;
_ ‘__—_,__,__J Synonymous with "signed int b", |
int b;

unsigned int u_b;

) 7

Figure 1.2.4 Example for writing type qualifiers "signed" and "unsigned"

Specifying that the variable or constant is constant data (const qualifier)

Write the type qualifier "const” when the variable or constant to be declared is the data
whose value does not change at all even when the program is executed. If a description is
found in the program that causes this constant data to change, NC30 outputs a warning.

void main (void)
{
chara=10;
constcharc_a =20 ;
a=5; Warning is generated.
ca=5;
: 7

Figure 1.2.5 Example for writing the type qualifier "const"

14

Introduction to C Language

1.2 Data Types

Inhibiting optimization by compiler (volatile qualifier)

NC30 optimizes the instructions that do not have any effect in program processing, thus
preventing unnecessary instruction code from being generated. However, there are some
data that are changed by an interrupt or input from a port irrespective of program
processing. Write the type qualifier "volatile" when declaring such data. NC30 does not
optimize the data that is accompanied by this type qualifier and outputs instruction code for
it.

void main (void)
{
char portl;
volatile char port2;
Optimized and no code is output

portl ; because it is only read.
|

port2 ; \‘ Code is output without optimizing.
} %

Figure 1.2.6 Example for writing the type qualifier "volatile"

Column Syntax of declaration

When declaring data, write data characteristics using various specifiers or qualifiers along
with the data type. Figure 1.2.7 shows the syntax of a declaration.

Declaration specifier
Storage class Declarator
specifier Type Type (data name)
(described later) qualifier specifier
static unsigned int dataname

register signed char
auto const float
extern volatile struct
union

Figure 1.2.7 Syntax of declaration

15

Introduction to C Language

1 1.3 Operators

1.3 Operators
1.3.1 Operators of NC30

NC30 has various operators available for writing a program.
This section describes how to use these operators for each specific purpose of use (not including
address and pointer operators(Note)) and the precautions to be noted when using them.

Operators usable in NC30
Table 1.3.1 lists the operators that can be used in NC30.

Table 1.3.1 Operators Usable in NC30

Monadic arithmetic operators || ++ ——- —

Binary arithmetic operators || + - oo/ %

Shift operators || << >>

Bitwise operators || & | A ~

Relational operators || > < >= <= == |I=

Logical operators || && || !

Assignment operators || = += = [= /= %= <<= >>= &= |= 7=

Conditional operator || ?:

sizeof operator || sizeof()

Cast operator (type)

Address operator || &

Pointer operator || U

Comma operator || ,

Note: For address and pointer operators, refer to Section 1.7, "Arrays and Pointers".

16

Introduction to C Language
1.3 Operators

1.3.2 Operators for Numeric Calculations

The primary operators used for numeric calculations consist of the "arithmetic operators" to
perform calculations and the "assignment operators" to store the results in memory.

This section explains these arithmetic and assignment operators.

Monadic arithmetic operators

Monadic arithmetic operators return one answer for one variable.

Table 1.3.2 Monadic Arithmetic Operators

Operator Description format Content

++ variable (prefix type) .
++ }) Increments the value of an expression.
variable ++ (postfix type)

- variabl "
- v_arlab e (pre I)f type) Decrements the value of an expression.
variable -- (postfix type)

Returns the value of an expression after

- - expression) o
inverting its sign.

When using the increment operator (++) or decrement operator (--) in combination with a
assignment or relational operator, note that the result of operation may vary depending on
which type, prefix or postfix, is used when writing the operator.
<Examples>
Prefix type: The value is incremented or decremented before assignment.

b=++a; - a=za+1;b=a;
Postfix type: The value is incremented or decremented after assignment.

b=a++, - b=a,a=a+1,;

Binary arithmetic operators

In addition to ordinary arithmetic operations, these operators make it possible to obtain the
remainder of an "integer divided by integer" operation.

Table 1.3.3 Binary Arithmetic Operators

Operator Description format Content

Returns the sum of expression 1 and

+ expression 1 + expression 2]))
expression 2 after adding their values.

Returns the difference between expressions 1

- expression 1 - expression 2))
and 2 after subtracting their values.

Returns the product of expressions 1 and 2

O expression 1 [Jexpression 2 o]
after multiplying their values.
. . Returns the quotient of expression 1 after diving
/ expression 1 / expression 2 . i
its value by that of expression 2.
: . Returns the remainder of expression 1 after
% expression 1 % expression 2 P

dividing its value by that of expression 2.

17

Introduction to C Language
1.3 Operators

Assignment operators

The operation of "expression 1 = expression 2" assigns the value of expression 2 for
expression 1. The assignment operator '=' can be used in combination with arithmetic
operators described above or bitwise or shift operators that will be described later. (This is
called a compound assignment operator.) In this case, the assignment operator '=" must

always be written on the right side of the equation.

Table 1.3.4 Substitute Operators

Operator Description format Content
= expression 1 = expression 2 Substitutes the value of expression 2 for expression 1.
. . Adds the values of expressions 1 and 2, and
+= expression 1 += expression 2 . .
substitutes the sum for expression 1.
Subtracts the value of expression 2 from that of
-= expression 1 -= expression 2 expression 1, and substitutes the difference for
expression 1.
. . Multiplies the values of expressions 1 and 2, and
N; expression 1 [expression 2 p P)
substitutes the product for expression 1.
Divides the value of expression 1 by that of
/= expression 1 /= expression 2 expression 2, and substitutes the quotient for
expression 1.
Divides the value of expression 1 by that of
%= expression 1 %= expression 2 expression 2, and substitutes the remainder for
expression 1.
Shifts the value of expression 1 left by the amount
<<= expression 1 <<= expression 2 | equal to the value of expression 2, and substitutes the
result for expression 1.
Shifts the value of expression 1 right by the amount
>>= expression 1 >>= expression 2 | equal to the value of expression 2, and substitutes the
result for expression 1.
. . ANDs the bits representing the values of expressions
&= expression 1 &= expression 2 P . 9 P .
1 and 2, and substitutes the result for expression 1.
. . ORs the bits representing the values of expressions 1
|= expression 1 |= expression 2 . .
and 2, and substitutes the result for expression 1.
N . . XORs the bits representing the values of expressions
= expression 1 = expression 2 . .
1 and 2, and substitutes the result for expression 1.

18

Introduction to C Language
1.3 Operators

Column Implicit type conversion

When performing arithmetic or logic operation on different types of data, NC30 converts the
data types following the rules shown below. This is called "implicit type conversion".
» Data types are adjusted to the data type whose bit length is greater than the other before
performing operation.
» When substituting, data types are adjusted to the data type located on the left side of the
equation.
word = byte ; byte = word ;
/Oint « char O /Ochar « int

h byte = 0x12 ;
ox | 0o |12 | & ox|_56 |

0x00 is extended Upper 1 byte is cut

When ...

Figure 1.3.1 Assign different types of data

19

Introduction to C Language
1.3 Operators

1.3.3 Operators for Processing Data

The operators frequently used to process data are "bitwise operators" and "shift operators".
This section explains these bitwise and shift operators.

Bitwise operators
Use of bitwise operators makes it possible to mask data and perform active conversion.

Table 1.3.5 Bitwise Operators

Operator Description format Content

Returns the logical product of the values of

& expression 1 & expression 2]))
expressions 1 and 2 after ANDing each bit.

Returns the logical sum of the values of

expression 1 | expression 2]))
expressions 1 and 2 after ORing each bit.

Returns the exclusive logical sum of the values

N expression 1 ~ expression 2))]
of expressions 1 and 2 after XORing each bit.
~ ~ . Returns the value of the expression after
expression . L
inverting its bits.
Shift Operators

In addition to shift operation, shift operators can be used in simple multiply and divide
operations. (For details, refer to Column, "Multiply and divide operations using shift
operators".)

Table 1.3.6 Shift Operators

Operator Description format Content

Shifts the value of expression 1 left by the
<< expression 1 << expression 2 | amount equal to the value of expression 2,
and returns the result.

Shifts the value of expression 1 right by the
>> expression 1 >> expression 2 | amount equal to the value of expression 2,
and returns the result.

20

Introduction to C Language
1.3 Operators

Comparison between arithmetic and logical shifts

When executing "shift right", note that the shift operation varies depending on whether the

data to be operated on is singed or unsigned.

» When unsigned - Logical shift: A logic 0 is inserted into the most significant bit.

« When signed - Arithmetic shift: Shift operation is performed so as to retain the sign.
Namely, if the data is a positive number, a logic O is inserted into the
most significant bit; if a negative number, a logic 1 is inserted into the
most significant bit.

<Unsigned> <Negative number> <Positive number>
unsigned int i = OxFC18 signed int i = OXFC18 signed int i = OxO3E8
(i = 64520) (i = -1000) (i = +1000)
| 1111 1100 0001 1000 | | 1111 1100 0001 1000 | | 0000 0011 1110 1000 |
i>>1 | 0111 1110 0000 1100 | | 1111 1110 0000 1100 | (500) | 0000 0001 1111 0100 | (+500)
i>>2 | 0011 1111 0000 0110 | | 1111 1111 0000 0110 | (-250) | 0000 0000 1111 1010 | (+250)
i>>3| | 00011111 1000 0011 1111 111110000011 | (.125) | 0000 000001111101 | (+125)
Logical shift Arithmetic shift
(positive or negative sign is retained)

Figure 1.3.2 Arithmetic and logical shifts

21

Introduction to C Language
1.3 Operators

Column Multiply and divide operations using shift operators

Shift operators can be used to perform simple multiply and divide operations. In this case,
operations are performed faster than when using ordinary multiply or divide operators.
Considering this advantage, NC30 generates shift instructions, instead of multiply
instructions, for such operations as "[2", "[4", and "[8".

» Multiplication: Shift operation is performed in combination with add operation.
all- a<<1
alB- (a<<l) +a
al4- a<<2
allV » (a<<?2)+(a<<l) +a
alB- a<<3
al20- (a<<4) + (a<<?)

 Division: The data pushed out of the least significant bit makes it possible to know the

remainder.
ald - a>>2
a8 - a>>3
alle- a>>4

22

Introduction to C Language
1.3 Operators

1.3.4 Operators for Examining Condition

Used to examine a condition in a control statement are "relational operators" and "logical
operators". Either operator returns a logic 1 when a condition is met and a logic 0 when a
condition is not met.

This section explains these relational and logical operators.

Relational operators

These operators examine two expressions to see which is larger or smaller than the other.
If the result is true, they return a logic 1; if false, they return a logic 0.

Table 1.3.7 Relational Operators

Operator Description format Content

True if the value of expression 1 is smaller than

< expression 1 < expression 2 . .
that of expression 2; otherwise, false.
. . True if the value of expression 1 is smaller than or
<= expression 1 <= expression 2 . i
equal to that of expression 2; otherwise, false.
. . True if the value of expression 1 is larger than that
> expression 1 > expression 2 .)
of expression 2; otherwise, false.
. . True if the value of expression 1 is larger than or
>= expression 1 >= expression 2

equal to that of expression 2; otherwise, false.

True if the value of expression 1 is equal to that of

== expression 1 == expression 2) .
expression 2; otherwise, false.

True if the value of expression 1 is not equal to

I= expression 1 != expression 2 . .
that of expression 2; otherwise, false.

Logical operators

These operators are used along with relational operators to examine the combinatorial
condition of multiple condition expressions.

Table 1.3.8 Logical Operators

Operator Description format Content

True if both expressions 1 and 2 are true;

&& expression 1 && expression 2 .
otherwise, false.

False if both expressions 1 and 2 are false;

Il expression 1 || expression 2 .
otherwise, true.

False if the expression is true, or true if the

! I expression o
expression is false.

23

Introduction to C Language

1.3 Operators

1.3.5 Other Operators

This section explains four types of operators which are unique in the C language.

Conditional operator

This operator executes expression 1 if a condition expression is true or expression 2 if the
condition expression is false. If this operator is used when the condition expression and
expressions 1 and 2 both are short in processing description, coding of conditional
branches can be simplified. Table 1.3.9 lists this conditional operator. Figure 1.3.3 shows
an example for using this operator.

Table 1.3.9 Conditional Operator

Operator

Description format

Content

Condition expression ?
? expression 1:
expression 2

Executes expression 1 if the condition expression
is true or expression 2 if the condition expression

is false.

« Value whichever larger is selected.

c=a>b?a:b; |7/

» Absolute value is found.

c=a>07a:-a; I%

if (a>b){

c=a;
}
else{

c=b;
}

L/

if(a > 0){

c=a;
}
else{

c=-a;
}

Figure 1.3.3 Example for using conditional operator

sizeof operator

Use this operator when it is necessary to know the number of memory bytes used by a
given data type or expression.

Table 1.3.10 sizeof Operator

Operator Description format Content
. sizeof expression Returns the amount of memory used by the
sizeof()
sizeof (data type) expression or data type in units of bytes.

24

Introduction to C Language
1.3 Operators

Cast operator

When operation is performed on data whose types differ from each other, the data used in
that operation are implicitly converted into the data type that is largest in the expression.
However, since this could cause an unexpected fault, a cast operator is used to perform
type conversions explicitly.

Table 1.3.11 Cast Operator

Operator Description format Content
. Converts the data type of the variable to
) (new data type) variable v P var
the new data type.

Comma operator

This operator executes expression 1 and expression 2 sequentially from left to right. This
operator, therefore, is used when enumerating processing of short descriptions.

Table 1.3.12 Comma operator

Operator

Description format

Content

expression 1, expression 2

Executes expression 1 and expression 2
sequentially from left to right.

25

Introduction to C Language

1.3 Operators

1.3.6 Priorities of Operators

The operators used in the C language are subject to "priority resolution" and "rules of
combination" as are the operators used in mathematics.
This section explains priorities of the operators and the rules of combination they must follow:

Priority resolution and rules of combination

When multiple operators are included in one expression, operation is always performed in
order of operator priorities beginning with the highest priority operator. When multiple

operators of the same priority exist, the rules of combination specify which operator, left or
right, be executed first.

Table 1.3.13 Operator Priorities

Rules of
Type of operator Operator L
combination
High Expression () [1 @D > 5
~ (Note 2) (Note 3)
o . ! ++ ——= = [
Monadic arithmetic operators, etc. | -
sizeof() (type)
Multiply/divide operators 9 % o
Add/subtract operators + - -
Shift operator << >> 5
Relational operator (comparison) | < <= > >= N
Relational operator (equivalent) | == I= >
Bitwise operator (AND) & N
Bitwise operator (EOR) A N
Bitwise operator (OR) | -
Logical operator (AND) && -
Logical operator (OR) Il -
Conditional operator ?: -
. = += = 0= /= %=
Assignment operator -
<<= >>= &= N= |:
Low Comma operator , -

Note 1: The dot "' denotes a member operator that specifies struct and union members.

Note 2: The asterisk '] denotes a pointer operator that indicates a pointer variable.

Note 3: The ampersand '&' denotes an address operator that indicates the address of a variable.
Note 4: The asterisk '} denotes a multiply operator that indicates multiplication.

26

Introduction to C Language
1 1.4 Control Statements

1.4 Control Statements

1.4.1 Structuring of Program

The C language allows all of "sequential processing”, "branch processing”, and "repeat
processing"--the basics of structured programming--to be written using control statements.
Consequently, all programs written in the C language are structured. This is why the flow of
processing in C language programs are easy to understand.

This section describes how to write these control statements and shows some examples of
usage.

Structuring of program

The most important point in making a program easy to understand is how the program flow
can be made easily readable. This requires preventing the program flow from being
directed freely as one wishes. Thus, a move arose to limit it to the three primary forms:
"sequential processing”, "branch processing”, and "repeat processing”. The result is the
technique known as "structured programming".

Table 1.4.1 shows the three basic forms of structured programming.

Table 1.4.1 The three basic forms of structured programming

Processing A

Sequential | Executed top down, from

processing _ top to bottom.
Processing B

False
ondition P

Branched to processing A

True or processing B
Branch _ depending on whether
processing Processing A| | Processing B condition P is true or

‘ false.
False
True Processing A is repeated

Repeat as long as condition P is
processing Processing A met.

—I*i

Introduction to C Language
1.4 Control Statements

1.4.2 Branching Processing Depending on Condition (branch processing)

Control statements used to write branch processing include "if-else", "else-if", and "switch-case"

statements.
This section explains how to write these control statements and shows some examples of usage.

if-else statement

This statement executes the next block if the given condition is true or the "else" block if the
condition is false. Specification of an "else" block can be omitted.

¢ |[f the else statement is omitted

Is condition False if (condition |
expression expression)
true?

True Execution statement A

False

Is condition
expression

if (condition {
expression)

Execution } Execution statement A

statement A

Execution
else{ statement A }

Execution
statement B ‘ ;

Execution statement B

Y : v

Figure 1.4.1 Example for if-else statement

Example 1.4.1 Count Up (if-else statement)

In this example, the program counts up a seconds counter "second" and a minutes counter
"minute". When this program module is called up every 1 second, it functions as a clock.

void count_up(void) ; <€ E:icrg%snsgc;unt_up function. (Refer to Section 1.5,
unsigned int second = 0 ; <€ Declflrgs vaEiables for "second" (seconds counter)
unsigned int minute = 0 ; and "minute” (m inutes counter).
void count_up(void) <€——————— Defines "count_up" function.
| if(second >=59)}{ | (——| If greater than 59 seconds,|
second =0, the module resets "second" and
minute ++ ; counts up "minute”.
}
else{ | = |If less than 59 seconds, |
second] the module counts up "second".
/ 4

Example 1.4.1 Count up (if-else statement)

28

Introduction to C Language
1.4 Control Statements

else-if statement

Use this statement when it is necessary to divide program flow into three or more flows of
processing depending on multiple conditions. Write the processing that must be executed
when each condition is true in the immediately following block. Write the processing that
must be executed when none of conditions holds true in the last "else" block.

Is condition ~~_True if (condition expression 1) {
expression 1])
true? - Execution statement A
Execution
statement A }
s condition else if (condition expression 2) {
exp;essfi}on 2
rue’ i
Execution Execution statement B
statement B }
else if (condition expression 3
Is condition True (P) 4
expression 3
true?) Execution statement C
Execution
False statement C }
Execution else{
statement D
Execution statement D
Y } 7

Figure 1.4.2 Example for else-if statement

Example 1.4.2 Switchover of Arithmetic Operations-1 (else-if statement)

In this example, the program switches over the operation to be executed depending on the
content of the input data "sw".

void select(void); —<€——

Declares "select" function.
(Refer to Section 1.5, "Functions".)

int a=29,b=40; <
long int ans;

char sw;

void select(void) «€«——
{

if(sw == 0){ « | If the content of "sw" is 0, |
ans=a+b;

Declares the variables used.

Defines "select" function.

the program adds data.

}
else if(sw == 1){| «€—— | If the content of "sw" is 1, |
7 ans=a-b; the program subtracts data.
else if(sw == 2){| ««—— | If the content of "sw" is 2, |
7 ans =alb; the program multiplies data.
else if(sw == 3){| <€«— | If the content of "sw" is 3, |
ans=alb; -
the program divides data.
the content of "sw" is 4 or greater,
else] << Ifth fsw" is 4
error(); the program performs error
} processing.
: 7

Example 1.4.2 Switchover of arithmetic operations -1 (else-if statement)

29

Introduction to C Language
1.4 Control Statements

switch-case statement

This statement causes program flow to branch to one of multiple processing depending on
the result of a given expression. Since the result of an expression is handled as a constant

when making decision, no relational operators, etc. can be used in this statement.

etermination
of expression

Constant 1 Constant 2| Constant3 Others
[

switch(expression){

Execution
statement A

case constant 1: execution statement A

break;

Execution
statement B

case constant 2: execution statement B

;

break;
- case constant 3: execution statement C
Execution
statement C break:
) : execution statement D
Execution default:
statement D break:
: 7

Figure 1.4.3 Example for switch-case statement

Example 1.4.3 Switchover of Arithmetic Operations-2 (switch-case statement)

In this example, the program switches over the operation to be executed depending on the

content of the input data "sw".

}

{
swich(sw){] <

void select(void); <

int a=29,b=40; <€——
long int ans;

char sw;

void select(void) €«—F——

Declares "select" function.
(Refer to Section 1.5, "Functions".)

Declares the variables used.

Defines "select" function.

Determines the content of "sw".

anS =a+b;, <&—— Ifthe content of "sw" is 0, the program

adds data.

break ;

case l:ans=a-b;
break ;

case 2:ans=alb;
break ;

case 3:ans=alb;
break ;

error(); <

break ;

}

‘—
<——

-

4

If the content of "sw" is 1, the program
subtracts data.

If the content of "sw" is 2, the program
multiplies data.

If the content of "sw" is 3, the program
divides data.

If the content of "sw" is 4 or greater, the
program performs error processing.

Example 1.4.3 Switchover of arithmetic operations -2 (switch-case statement)

30

Introduction to C Language
1.4 Control Statements

Column Switch-case statement without break

A switch-case statement normally has a break statement entered at the end of each of its
execution statements.

If a block that is not accompanied by a break statement is encountered, the program
executes the next block after terminating that block. In this way, blocks are executed
sequentially from above. Therefore, this allows the start position of processing to be
changed depending on the value of an expression.

Determination
of expression . .
switch(expression){

Others Constant 3 Constant 2 Constant 1

Execution case constant 1: execution statement A
statement A

—

Execution case constant 2; execution statement B
statement B

) case constant 3: execution statement C
Execution

statement C
|
|
Execution
statement D

default: execution statement D

Figure 1.4.4 switch-case statement without break

31

Introduction to C Language
1.4 Control Statements

1.4.3 Repetition of Same Processing (repeat processing)

Control statements used to write repeat processing include "while", "for", and "do-while"

statements.
This section explains how to write these control statements and shows some examples of usage.

while statement

This statement executes processing in a block repeatedly as long as the given condition
expression is met. An endless loop can be implemented by writing a constant other than 0
in the condition expression, because the condition expression in this case is always "true".

Is condition
expression
true?

while
(condition expression) {

True

Execution
statement A }

|] Ve

—

Figure 1.4.5 Example for while statement

Execution statement A

Example 1.4.4 Finding Sum Total -1 (while statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function. (Refer to Section 1.5,
"Functions".)

void sum(void) ; <€

unsigned int total =0 ; <& Declares the variables used.

void sum(void) <& Defines "sum" function.

{
unsignedint i=1; --&—

Defines and initializes counter variables.

|while(i <= 100){| ¢
total +=1i;
i++; <& Changes the counter content.

}

Loops until the counter content reaches 100.

4

Example 1.4.4 Finding sum total -1 (while statement)

32

Introduction to C Language
1.4 Control Statements

for statement

The repeat processing that is performed by using a counter like in Example 1.4.4 always
requires operations to "initialize" and "change" the counter content, in addition to
determining the given condition. A for statement makes it possible to write these
operations along with a condition expression. (See Figure 1.4.6.) Initialization (expression
1), condition expression (expression 2), and processing (expression 3) each can be
omitted. However, when any of these expressions is omitted, make sure the semicolons (;)
placed between expressions are left in. This for statement and the while statement
described above can always be rewritten.

Expression 1

for (expression 1] expression 2};|expression 3){

Is expression 2 False

true?

Execution statement

Execution
statement

| }

Expression 3

]

+

Figure 1.4.6 Example for "for" statement

Example 1.4.5 Finding Sum Total -2 (for statement)

In this example, the program finds the sum of integers from 1 to 100.

void sum(void) ; <€ Declares "sum"' function. _
() (Refer to Section 1.5, "Functions".)

unsigned int total =0 ; -

Declares the variables used.

void sum(void) € —————
{

Defines "sum" function.

unsigned int i; <«€———— Defines counter variables.

for(i=1;i<=100; i++){ e Loops until the counter content
| 'fotal +=i; i increments from 1 to 100.

) v

Example 1.4.5 Finding sum total -2 (for statement)

33

Introduction to C Language
1.4 Control Statements

do-while statement

Unlike the for and while statements, this statement determines whether a condition is true
or false after executing processing (post-execution determination). Although there could be
some processing in the for or while statements that is never once executed, all processing
in a do-while statement is executed at least once.

. dof
Execution
statement A

Execution statement

Is condition |_}| while (condition expression);
expression

true?

False |7

Figure 1.4.7 Example for do-while statement

Example 1.4.6 Finding Sum Total -3 (do-while statement)

In this example, the program finds the sum of integers from 1 to 100.

void sum(void) ; €—

Declares "sum" function. (Refer to
Section 1.5, "Functions".)

unsigned int total = 0; <€ Declares the variables used.

void sum(void) <& Defines "sum" function.
{
unsigned int i=0; < Defines and initializes counter variables.
i ++;
total +=1i ;
|}Whi|e(i <100); | < Loops until the counter content increments from 1 to 100.
} 7

Example 1.4.6 Finding sum total -3 (do-while statement)

34

Introduction to C Language
1.4 Control Statements

1.4.4 Suspending Processing

There are control statements (auxiliary control statements) such as break, continue, and goto

statements that make it possible to suspend processing and quit.
This section explains how to write these control statements and shows some examples of usage.

break statement

Use this statement in repeat processing or in a switch-case statement. When "break;" is
executed, the program suspends processing and exits only one block.

* When used in a for statement
|
Expression 1

* When used in a while statement

False False

Is condition
expression
true?

Is expression 2
?

True

Execution statement|

Expression 3 |

|
|

Figure 1.4.8 Example for break statement

continue statement

Use this statement in repeat processing. When "“continue;" is executed, the program
suspends processing. After being suspended, the program returns to condition
determination when continue is used in a while statement or executes expression 3 before
returning to condition determination when used in a for statement.

¢ When used in a for statement
|
Expression 1

* When used in a while statement

Is condition
expression
true?,

True

False

Execution statement

Figure 1.4.9 Example for continue statement

) False
Is expression 2
true?
True

Execution statement

______ continue;
continue; == | ==
| | Expression 3 |

35

Introduction to C Language
1.4 Control Statements

goto statement

When a goto statement is executed, the program unconditionally branches to the label
written after the goto statement. Unlike break and continue statements, this statement
makes it possible to exit multiple blocks collectively and branch to any desired location in
the function. (See Figure 1.4.10.) However, since this operation is contrary to structured
programming, it is recommended that a goto statement be used in only exceptional cases
as in error processing.
Note also that the label indicating a jump address must always be followed by an
execution statement. If no operation need to be performed, write a dummy statement
(only a semicolon ;") after the label.

goto

err;

void main(void)

{
‘while(1){
; , while(-+){
; {if(-H
L)
5 }
}

= err: errorf();
}

Figure 1.4.10 Working of goto statement

Entering a label
label: execution statement;

If no operation need to be performed,
label: ; (dummy statement)

36

Introduction to C Language

1 1.5 Functions

1.5 Functions

1.5.1 Functions and Subroutines

As subroutines are the basic units of program in the assembly language, so are the "functions" in
the C language.
This section explains how to write functions in NC30.

Arguments and return values

Data exchanges between functions are accomplished by using "arguments”, equivalent to
input variables in a subroutine, and "return values", equivalent to output variables in a
subroutine.

In the assembly language, no restrictions are imposed on the number of input or output
variables. In the C language, however, there is a rule that one return value per function is
accepted, and a "return statement" is used to return the value. No restrictions are imposed
on arguments. Mow©)

* "Subroutine” in assembly language

Main routine
Subroutine

Input variable 1 SUB:
Input variable 2 .

JSR SUB
Output variable 1 '
Output variable 2 SUB END:

v RTS 7

« "Function" in C language

Main function (calling function)])
Function (called function)

func(---)

Argument 1
Argument 2

func(--) ;

Return value
(One value per
function)

return return value;

) 74

v

Figure 1.5.1 "Subroutine” vs. "function”

Note: In some compilers designed for writing a finished program into ROM, the number of arguments is limited.

37

Introduction to C Language
1.5 Functions

1.5.2 Creating Functions

Three procedures are required before a function can be used. These are "function declaration"
(prototype declaration), "function definition", and "function call".
This section explains how to write these procedures.

Function declaration (prototype declaration)

Before a function can be used in the C language, function declaration (prototype
declaration) must be entered first. The type of function refers to the data types of the

arguments and the returned value of a function.
The following shows the format of function declaration (prototype declaration):

(data type of returned value function name (list of data types of arguments))

If there is no returned value and argument, write the type called "void" that means null.

Function definition

In the function proper, define the data types and the names of "dummy arguments" that are
required for receiving arguments. Use the "return statement” to return the value for the

argument.
The following shows the format of function definition:

-
data type of return value function name (data type of dummy argument 1 dummy
{ argument 1, ...)

return return value;

!}

Function call

When calling a function, write the argument for that function. Use a assignment operator to
receive a return value from the called function.

(function name (argument 1, ...);)

When there is a return value

(variable = function name (argument 1, ...);)

38

Introduction to C Language
1.5 Functions

Example for a function

In this example, we will write three functions that are interrelated as shown below.

No argument : » No return value
v :

Main function
main

4 int type
int type No return value

Function 1 Function 2
func 1 func 2

int type char type

/0 Prototype declaration [
void main (void) ;

int funcl (int);

void func2 (int, char);

/0 Main function O
void main()

{
int a=40,b=29;
int ans;
char ¢ =0xFF; Calls function 1 ("funcl") using a as argument.
Return value is substituted for "ans".
ans =funcl (a);
func2 (b, c); |
} Calls function 2 (“func2") using b, ¢ as arguments.
There is no return value.

/0 Definition function 1 [0
int funcl (int x)

return z;

} Returns a value for the argument
/0 Definition function 2 [\\ using a "return statement".
void func2 (int y,char m)

{

}

’

Figure 1.5.2 Example for a function

39

Introduction to C Language
1.5 Functions

1.5.3 Exchanging Data between Functions

In the C language, exchanges of arguments and return values between functions are
accomplished by copying the value of each variable as it is passed to the receiver ("Call by
Value"). Consequently, the name of the argument used when calling a function and the name of
the argument (dummy argument) received by the called function do not need to coincide.

Since processing in the called function is performed using copied dummy arguments, there is no
possibility of damaging the argument proper in the calling function.

For these reasons, functions in the C language are independent of each other, making it possible
to reuse the functions easily.

This section explains how data are exchanged between functions.

Example 1.5.1 Finding Sum of Integers (example for a function)

In this example, using two arbitrary integers in the range of -32,768 to 32,767 as
arguments, we will create a function "add" to find a sum of those integers and call it from
the main function.

/0 Prototype declaration [
void main (void) ;
long add (int,int);

/0 Main function O
void main (void)
{
long int answer ;
int a=29,b=40;

answer = add (a, b3
} " T] Calls the add function.

/0 Add function O
long add(int x,int y)
{

long int z;

__J (2) Executes addition.
z=(longint)x+y; |

return z=
} (3) Returns a value
for the argument.

<Flow of data>

Main function al 29 bl 40 answer
1) co
(1) copy (3) copy
2)
. dummy dummy (
Add function X | argument| *Y | argument|—p> Z

Example 1.5.1 Finding sum of integers (a function)

40

Introduction to C Language

1 1.6 Storage Classes

1.6 Storage Classes

1.6.1 Effective Range of Variables and Functions

Variables and functions have different effective ranges depending on their nature, e.g., whether
they are used in the entire program or in only one function. These effective ranges of variables
and functions are called "storage classes (or scope)".

This section explains the types of storage classes of variables and functions and how to specify
them.

Effective range of variables and functions

A C language program consists of multiple source files. Furthermore, each of these source
files consists of multiple functions. Therefore, a C language program is hierarchically
structured as shown in Figure 1.6.1.

There are following three storage classes for a variable:
(1) Effective in only a function
(2) Effective in only a file
(3) Effective in the entire program

There are following two storage classes for a function:
(1) Effective in only a file
(2) Effective in the entire program

In the C language, these storage classes can be specified for each variable and each
function. Effective utilization of these storage classes makes it possible to protect the
variables or functions that have been created or conversely share them among the
members of a team.

(3) Storage classes of variable Storage classes of function (2)
A Program
K) ____________________ L -
Effective _ _ Effective
range File File range
e o
Function| [Function | | Function| | Function| [Function| | Function

Figure 1.6.1 Hierarchical structure and storage classes of C language program

41

Introduction to C Language
1.6 Storage Classes

1.6.2 Storage Classes of Variables

The storage class of a variable is specified when writing type declaration. There are following two
points in this:

(1) External and internal variables (- location where type declaration is entered)

(2) Storage class specifier (- specifier is added to type declaration)

This section explains how to specify storage classes for variables.

External and internal variables

This is the simplest method to specify the effective range of a variable. The variable
effective range is determined by a location where its type declaration is entered. Variables
declared outside a function are called "external variables" and those declared inside a
function are called "internal variables". External variables are global variables that can be
referenced from any function following the declaration. Conversely, internal variables are
local variables that can be effective in only the function where they are declared following
the declaration.

int main(void) ;

int func(void) ;]
External to function

Effective range —>| int main(void)
of tmp {

int a; Internal to function

Effective range of a

int func(void)
{

int b; Internal to function

Effective range of b

Figure 1.6.2 External and internal variables

Storage class specifiers

The storage class specifiers that can be used for variables are auto, static, register, and
extern. These storage class specifiers function differently when they are used for external
variables or internal variables. The following shows the format of a storage class specifier.

(storage class specifier A data type A variable name;)

42

Introduction to C Language
1.6 Storage Classes

Storage classes of external variable

If no storage class specifier is added for an external variable when declaring it, the variable
is assumed to be a global variable that is effective in the entire program. On the other
hand, if an external variable is specified of its storage class by writing "static" when
declaring it, the variable is assumed to be a local variable that is effective in only the file
where it is declared.
Write the specifier "extern” when using an external variable that is defined in another file
like "mode" in source file 2 of Figure 1.6.3.

Source file 1

Source file 2

char mode ;
static int count;

void funcl(void)

{

count=0;

mode = STOP ;

{

count =100 ;

4

extern char mode ;
static int count ;

void func2(void)

mode = BACK ;

/

Figure 1.6.3 Storage classes of external variable

Storage classes of internal variable

Memory space

Program
area ,

Common mode

Data area

count of source
file 1

Stack area

count of source
file 2

An internal variable declared without adding any storage class specifier has its area
allocated in a stack. Therefore, such a variable is initialized each time the function is
called. On the other hand, an internal variable whose storage class is specified to be
"static" is allocated in a data area. In this case, therefore, the variable is initialized only
once when starting up the program.

Source file

{

}
{

void funcl(void)

void func2(void)

char flag=0;

static int count=0;
flag = SET ;
count=count+ 1 ;
func2() ;

char flag=0;
static int count=0;

flag = SET ;
count=count+1;

74

Memory space

Program
area

count of funcl —

Data area

Stack area

count of func2 —

Figure 1.6.4 Storage classes of internal variable

flag of func2

Return
address

flag of funcl

43

Introduction to C Language
1.6 Storage Classes

1.6.3 Storage Classes of Functions

The storage class of a function is specified on both function defining and function calling sides.
The storage class specifiers that can be used here are static and extern.
This section explains how to specify the storage class of a function.

Global and local functions

)

&)

®)

If no storage class is specified for a function when defining it

This function is assumed to be a global function that can be called and used from any
other source file.

If a function is declared to be "static" when defining it

This function is assumed to be a local function that cannot be called from any other
source file.

If a function is declared to be "extern" in its type declaration

This storage class specifier indicates that the declared function is not included in the
source file where functions are declared, and that the function in some other source file
be called. However, only if a function has its type declared--even though it may not be
specified to be "extern”, if the function is not found in the source file, the function in
some other source file is automatically called in the same way as when explicitly
specified to be "extern”.

Source file 1 Source file 2
void funci(void) ; void funcl(void)
extern void func2(void) ; {

void func3(void) ;
Can be called }

void main(void)
{ / 5 void func2(void)
funcl() ; {

Can be called

func2() : — |
func3() ; }
} T Can be called
~=» static void func3(void)
{
’ /

Figure 1.6.5 Storage classes of function

44

Introduction to C Language
1.6 Storage Classes

Summary of storage classes

Storage classes of variables are summarized in Table 1.6.1. Storage classes of functions
are summarized in Table 1.6.2.

Table 1.6.1 Storage Classes of Variables

Storage . .
9 External variable Internal variable
class
Storage . . o
Global variables that can also be Variables that are effective in only the
class . . .
- referenced from other source files. function [Allocated in a stack when
specifiers . . .
i [Allocated in a data area] executing the function]
omitted

Variables that are effective in only the
auto function [Allocated in a stack when
executing the function]

Local variables that cannot be
static referenced from other source files
[Allocated in a data area]

Variables that are effective in only the
function [Allocated in a data area]

Variables that are effective in only the
function [Allocated in a register when
register executing the function]

However, they do not have any effect
in NC30 (ignored when compiled).

Variables that reference variables in
other source files (cannot be
referenced from other functions)
[Not allocated in memory]

Variables that reference variables in
extern other source files
[Not allocated in memory]

Table 1.6.2 Storage Classes of Functions

Storage class || Types of functions
Storage class . .
g_) Global functions that can be called and executed from other source files
specifiers . _ - .
i [Specified on function defining side]
omitted
static Local functions that can not be called and executed from other source files
[Specified on function defining side]
extern Calls a function in other source files [Specified on function calling side]

45

Introduction to C Language
1.7 Arrays and Pointers

1.7 Arrays and Pointers

1.7.1 Arrays

Arrays and pointers are the characteristic features of the C language.
This section describes how to use arrays and explains pointers that provide an important means
of handling the array.

What is an array?

The following explains the functionality of an array by using a program to find the total age
of family members as an example. The family consists of parents (father = 29 years old,
mother = 24 years old), and a child (boy = 4 years old). (See Example 1.7.1.)

In this program, the number of variable names increases as the family grows. To cope with
this problem, the C language uses a concept called an "array"”. An array is such that data
of the same type (int type) are handled as one set. In this example, father's age (father),
mother's age (mother), and child's age (boy) all are not handled as separate variables, but
are handled as an aggregate as family age (age). Each data constitutes an "element” of
the aggregate. Namely, the O'th element is father, the 1st element is mother, and the 2nd
element is the boy.

Multiple

variables of the = Array

same data type

father
@ boy 0'th element (= papa)
mother w 1st element (= mama)
24 :

Figure 1.7.1 Concept of an array

Example 1.7.1 Finding Total Age of a Family -1

In this example, we will find the total age of family members (father, mother, and boy).

As the family grows, so do the type declaration of

variables and the execution statements to be initialized.

void main(void)

{ Y
int father =29 ;

?nt mother = 24 ; void main(void)
int boy =4; {

int total ; int father = 29 ;

int mother =24 ;
int boy =4;

} int sister1=1;
|7 int sister2=1;

total = father + mother + boy ;

int total ;

}

total = father + mother + boy + sister 1 + sister 2 + --;

I/

Example 1.7.1 Finding total age of a family -1

46

Introduction to C Language
1.7 Arrays and Pointers

1.7.2 Creating an Array

There are two types of arrays handled in the C language: "one-dimensional array" and "two-
dimensional array".
This section describes how to create and reference each type of array.

One-dimensional array

A one-dimensional array has a one-dimensional (linear) expanse. The following shows the
declaration format of a one-dimensional array.

(Data type array name [number of elements];)

When the above declaration is made, an area is allocated in memory for the number of
elements, with the array name used as the beginning label.

To reference a one-dimensional array, add element numbers to the array name as
subscript. However, since element numbers begin with 0, the last element number is 1 less
than the number of elements.

¢ Declaration of one-dimensional array ¢ Declaration and initialization of one-dimensional array
8 bits 8 bits

buff1-{ buff1[0] buff 1 ‘a’
char buff1[3]; buff1[1] char buffl[]={ b
int buff2[3] ; buff1[2] ‘a','b','c o
: b :

buff 2 = puff[o] int buff2[] = { buff2- = 10 -

~ buff2[1] 10, 20, 30 L o0 -

C buff2[2]] IREEE - 30 7

Figure 1.7.2 Declaration of one-dimensional array and memory mapping

Example 1.7.2 Finding Total Age of a Family -2

In this example, we will find the total age of family members by using an array.

#idefine MAX 3 (tore) #define MAX 3
void main(void) void main(void)
@nt ageI[MA(\JX] ; int age[]={
int total =0 ; T .
int i; or 3 29,24,4 Initialized simultaneously
' when declared.
Zgg% N gg f int total =0 ; By using an array, it is
age[2] = 4 : int 1 possible to utilize a
' for(i= 01 SMAX ; i+4) { repeat statement where
for(i =0 ;i< MAX ; i++) { tot_al = ageli] ; ' the number of elements
total += ageli] ; } ' are used as variables.
}

(Note): #define MAX 3: Synonym defined as MAX = 3.
(Refer to Section 1.9, Preprocess Commands".)

Example 1.7.2 Finding total age of a family -2

47

Introduction to C Language
1.7 Arrays and Pointers

Two-dimensional array

A two-dimensional array has a planar expanse comprised of "columns" and "rows". Or it
can be considered to be an array of one-dimensional arrays. The following shows the
declaration format of a two-dimensional array.

(Data type array name [number of rows] [number of columns];)

To reference a two-dimensional array, add "row numbers" and "column numbers" to the
array name as subscript. Since both row and column numbers begin with 0, the last row
(or column) number is 1 less than the number of rows (or columns).

» Concept of two-dimensional array

Columns -
Rows| Row0 |[Row0 |RowO |RowO
! column O column 1| column 2| column 3
Row 1 Row 1 Row 1 Row 1
column O [column 1 | column 2| column 3
Row 2 Row 2 Row 2 Row 2
column O |column 1 | column 2 | column 3
* Declaration and initialization of two- « Declaration and initialization of two-dimensional array
dimensional array
| buff 1[0]-| buff 1[0][0 —] =
char buff 1[2][3] ; [0 (ool Chaf‘ buff }[%][3] {| buff 1[0]- a
buff 1[0][1] {a,p,c}, b
{'d',e,f},
buff 1[0][2] }e 'c
buff 1[1] - buff 1[1][0] buff 1[1] - J'
buff 1[1][1] e
buff 1[1][2] !
buff 2[0] - ~ buff 2[0]
i : — buff 2[0][0] L _
int buff 2[2][3] ; [01[0] int buff 2[1[3] = { 10
10, 20,30, 40,50, 60
- buff 2[0][1] b L 0 A
When initializing a two-
— buff 2[0][2] dimensional array L 30 4
simultaneously with
buff2[1] - declaration, buff 2[1]
— buff 2[1][0] specification of the | 0 A
number of rows can be
omitted. (Number of
- buff 2[1][1] columns cannot be | |
omitted.) 50
- buff 2[1][2] L 50 A

Figure 1.7.3 Declaration of two-dimensional array and memory mapping

48

Introduction to C Language
1.7 Arrays and Pointers

1.7.3 Pointers

A pointer is one that points to data; i.e., it indicates an address.
A "pointer variable" which will be described here handles the "address" at which data is stored as
a variable. This is equivalent to one that is referred to as "indirect addressing" in the assembly

language.
This section explains how to declare and reference a pointer variable.

Declaring a pointer variable

The format show below is used to declare a pointer variable.

(Pointed data type Opointer variable name;)

However, it is only an area to store an address that is allocated in memory by the above
declaration. For the data proper to be assigned an area, it is necessary to write type

declaration separately.

* Pointer variable declaration

char [p; |7| int [p; |7| char Ip;

— P — P p
Address Address Address
[“chartype | [T o
P .., data Pl inttype _| Address
data | | loo.......
S R T hariype
No area is allocated. (Ip | data

Figure 1.7.4 Pointer variable declaration and memory mapping

49

Introduction to C Language
1.7 Arrays and Pointers

Relationship between pointers and variables

The following explains the relationship between pointer variables and variables by using a
method for substituting constant '5' by using pointer variable 'p' for variable of int type 'a' as

an example.

void main(void)
{
int a;

int [p;

Address modifier
!

This "&a" indicates the address of
variable 'a'.

This "[p" indicates the content of
variable 'a'.

Figure 1.7.5 Relationship between pointer variables and variables

Column

Data length of pointer variable

The data length of variables in C language programs are determined by the data type. For
a pointer variable, since its content is an address, the data length provided for it is
sufficiently large to represent the entire address space that can be accessed by the

microprocessor used.

Pointer variables in NC30 are two or four bytes in data length depending on the location
(near or far area) where the corresponding data is stored. For details about this, refer to

Section 2.1, "Memory Mapping".

50

Introduction to C Language
1.7 Arrays and Pointers

1.7.4 Using Pointers

This section shows some examples for effectively using a pointer.

Pointer variables and one-dimensional array

When an array is declared by using subscripts to indicate its element numbers, it is
encoded as "index addressing". In this case, therefore, address calculations to determine
each address "as reckoned from the start address" are required whenever accessing the
array.

On the other hand, if an array is declared by using pointer variables, it can be accessed in
indirect addressing.

void main(void) str 2 str[0] or [p
{ char str[] ="ab"; Ll sultjortp L)
char 0 ’ o' str[1] or [{p+2)
char t;
'b' t
— p = str ;
t=0Lp+1); P

4

The start address of a one-dimensional array can be obtained by "str".
(Address modifier '&'" is unnecessary.)

Figure 1.7.6 Pointer variables and one-dimensional array

Pointer variables and two-dimensional array

As in the case of a one-dimensional array, a two- dimensional array can also be accessed
by using pointer variables.

void main(void) mtx[0] —* = MIOI[0]
{ b mtx[O][1]
Ch?r Tt).(.[z].[.g] =1 o' mtx[0][2]
ab", "cd mtx[1] —
b c mtx[1][0] or [
char [p; 'd' mtx[1][1] or [(p+1)
char t; \0' mtx[1][2] or p+2)
" p=mix[1]; o t
t=Lp+1);
: " P

The start address of the first row of a two-dimensional array
"mtx" can be obtained by "mtx[1]". ('&'is unnecessary.)

Figure 1.7.7 Pointer variables and two-dimensional array

51

Introduction to C Language
1.7 Arrays and Pointers

Passing addresses between functions

The basic method of passing data to and from C language functions is referred to as "Call
by Value". With this method, however, arrays and character strings cannot be passed
between functions as arguments or returned values.

Used to solve this problem is a method, known as "Call by Reference", which uses a
pointer variable. In addition to passing the addresses of arrays or character strings
between functions, this method can be used when it is necessary to pass multiple data as a
returned value.

Unlike the Call by Value method, this method has a drawback in that the independency of
each function is reduced, because the data in the calling function is rewritten directly.
Figure 1.7.8 shows an example where an array is passed between functions using the Call
by Reference method.

<Calling function> <Called function>

#define MAX 5 |Received as pointer variable

void cls_str (char 0); th | \
1

void main (void) |str| Str [0] ~at— void cls_str (char [p)

{ str{1] {

char str[MAX];

cls_str.(str); / \ for (i=0;i<MAX;i++){

int i;

: * Hp+i)=0;
}

} \/ 0 ° }
L | The array's start [4

address is passed
as argument.

The array body is
operated on.

Figure 1.7.8 Example of Call by Reference for passing an array

Column Passing data between functions at high speed

In addition to the Call by Value and the Call by Reference methods, there is another
method to pass data to and from functions. With this method, the data to be passed is
turned into an external variable.

This method results in loosing the independency of functions and, hence, is not
recommended for use in C language programs. Yet, it has the advantage that functions
can be called at high speed because entry and exit processing (argument and return value
transfers) normally required when calling a function are unnecessary. Therefore, this
method is frequently used in ROM'ed programs where general-purpose capability is not an
important requirement and the primary concern is high-speed processing.

52

Introduction to C Language

1 1.7 Arrays and Pointers

1.7.5 Placing Pointers into an Array

This section explains a "pointer array" where pointer variables are arranged in an array.
Pointer array declaration

The following shows how to declare a pointer array.

(Data type far®™® [array name [number of elements];)

* Pointer array declaration

trl —
char far [ptrl[3]; P pirL[0] T char type data
int far [ptr2[3]; , ptri[l] — g char type data
PUri[2] L g char type data
ptr2 - ptr2[0] ——® int type data
ptr2[1] — - int type data
PUr2[2] — g ¢ type data
* Pointer array initialization
ptbl -
_ ptbl[0] -
char far [ptbl[4] ={ Address of 'S' sl 1] o oo
"STOP",
"START", ptbl[1] B
"RESET", Address of 'S sl | A R T N0
"RESTART" ptbi[2] -
}: Address of 'R’ rl El sl ElTI\0O
7 ptbi[3] -
Address of 'R’ Rl E] ST A R T N\O

Each character string's start address is stored here.

Figure 1.7.9 Pointer array declaration and initialization

Note: In NC30, the body data of a pointer array is located in the far area. Consequently, be sure to write “far" for the pointer. (For
details, refer to Section 2.3.1, "Efficient Addressing".)

53

Introduction to C Language
1.7 Arrays and Pointers

Pointer array and two-dimensional array

The following explains the difference between a pointer array and a two-dimensional array.
When multiple character strings each consisting of a different number of characters are
declared in a two-dimensional array, the free spaces are filled with null code "\0". If the
same is declared in a pointer array, there is no free space in memory. For this reason, a
pointer array is a more effective method than the other type of array when a large amount
of character strings need to be operated on or it is necessary to reduce memory
requirements to a possible minimum.

» Two-dimensional array

char name[][7] ={
"Norita" ,
"Rumi",
"Ryo-ma"

b

* Pointer array

char far [hame[3] ={
"Norita" ,
"Rumi",
"Ryo-ma"

b

N'| o |'r i 't 'a' ["\O'
R| w | m| 7 |0 |0 [0]] Filled with null code.
R'[Y ||| 'm|"a|"\0
name[0] ——p
Address of 'N' ‘N o' | ' it 'a' |"\O
name[1] -
Address of 'R’ ‘R'| 'u' | 'm'| i ["\O
name[2] —
Address of 'R’ Ry | o | 'm]|a [\O

Figure 1.7.10 Difference between two-dimensional array and pointer array

54

Introduction to C Language
1.7 Arrays and Pointers

1.7.6 Table Jump Using Function Pointer

In assembly language programs, "table jump" is used when switching processing load increases
depending on the contents of some data. The same effect as this can be obtained in C language
programs also by using the pointer array described above.

This section explains how to write a table jump using a "function pointer".

What does a function pointer mean?

A "function pointer" is one that points to the start address of a function in the same way as
the pointer described above. When this pointer is used, a called function can be turned
into a parameter. The following shows the declaration and reference formats for this
pointer.

<Declaration format> Type of return value (Ofunction pointer name) (data type of argument);

<Reference format> Variable in which to store return value = (Jfunction pointer name) (argument);

55

Introduction to C Language
1.7 Arrays and Pointers

Example 1.7.3 Switching Arithmetic Operations Using Table Jump

The method of calculation is switched over depending on the content of variable "num".

int
int
int
/a0
int

1

{

}
int

{

Jump table

/OPrototype declaration [T TTTTTTTIITT/

calc_f(int,int,int);
add_f(int,int), sub_f(int,int);
mul_f (int,int), div_f(int,int);

(Ctonst

jmptbl[1) (int, int) ={

NERNRERNNANEED)

add _f,sub f, mul f,div_f

void main (void)

int x=10,y=2;

int num, val;

num=2;
if (num<4){

val =calc_f(num,x,y);

}

calc_f(int m,int x,int y)

int z;

int (Cp) (int,int);

p=jmptol [m];
z=(p) (x,y);

return z;

Function pointers arranged in an array

: Start address
JmptoI[0] |~ o vaqq ¢
: Start address
JmptoI[L] |~ of vsub_f-
. Start address
jmptbi[2] of "mul_f"
imptbl[3 Start address
Imptolf3] of "div_f"

’J Setting of jump address

\‘ Function call using a function pointer

.

Example 1.7.3 Switching arithmetic operations using table jump

56

Introduction to C Language

1 1.8 Struct and Union

1.8 Struct and Union
1.8.1 Struct and Union

The data types discussed hereto (e.g., char, signed int, and unsigned log int types) are called the
"basic data types" stipulated in compiler specifications.

The C language allows the user to create new data types based on these basic data types.
These are "struct" and "union".

The following explains how to declare and reference structs and unions.

From basic data types to structs

Structs and unions allows the user to create more sophisticated data types based on the
basic data types according to the purposes of use. Furthermore, the newly created data
types can be referenced and arranged in an array in the same way as the basic data types.

Names

10 [

Addresses Collectively 1 :
managed Names
Addresses
Telephone
numbers
Telephone (|| — Dates of birth
numbers
Dates of -
birth I
Basic data types — > More sophisticated
(elements of struct) data types (structs)

Figure 1.8.1 From basic data types to structs

57

Introduction to C Language
1.8 Struct and Union

1.8.2 Creating New Data Types

The elements that constitute a new data type are called "members". To create a new data type,
define the members that constitute it. This definition makes it possible to declare a data type to
allocate a memory area and reference it as necessary in the same way as the variables
described earlier.

This section describes how to define and reference structs and unions, respectively.

Difference between struct and union
When allocating a memory area, members are located differently for structs and unions.
(1) Struct: Members are sequentially located.

(2) Union: Members are located in the same address.
(Multiple members share the same memory area.)

Definition and declaration of struct

To define a struct, write "struct".

struct structtag {
member 1;
member 2;

J3

The above description creates a data type "struct struct tag”. Declaration of a struct with
this data type allocates a memory area for it in the same way as for an ordinary variable.

(struct A struct tag A struct variable name;)

58

Introduction to C Language
1.8 Struct and Union

Referencing struct

To refer to each member of a struct, use a period '." that is a struct member operator.

(struct variable name.member name)

To initialize a struct variable, list each member's initialization data in the order they are
declared, with the types matched.

name a.name
struct person{ -T-

char [hame ; — -
| . a

ong numper, L number - a.number
char section[5] ;

int work_year ;

b section[0]
: o ™ section[1] | a.section[0]
void main(void) L . _
{ b | section[2] to
struct person a,b; i Section[S]_ a.section[4]
: : section[4]
7 -work_year- a.work_year

If the area that contains name is a near area, "struct person” becomes a 13-byte type; if a far
area, it becomes a 15-byte type.

Olnitialization of struct variable

Address
struct person a={ of's' a.name
"SATOH", 10025, "T511", 25 -T-
b -]
-~ 10025 - a.number
ITI -1
- o5 a.section[0]
: L : to
| T i a.section[4]
I\OI
- 25 a.work_year

Figure 1.8.2 Struct declaration and memory mapping

59

Introduction to C Language
1.8 Struct and Union

Example for referencing members using a pointer

To refer to each member of a struct using a pointer, use an arrow '->'".

(Pointer -> member name)

struct person{ : T
char far [hame; &a - Address p->name
i of 'S'
long numper ; aorm 4
char section[5]; | _
int work_year ;
} . — 10025 — p->numbel‘
struct person a={ B]
"SATOH", 10025, "T511", 25 : T
. ITI
H 5 T e p->section[0]
void main(void) - T to
{ : T p->section[4]
struct person [p; B o' 7
p=2&a; T
: - 5 p->work_year

Figure 1.8.3 Example for referencing members using a pointer

60

Introduction to C Language
1.8 Struct and Union

Unions

Column

Unions are characteristic in that an allocated memory area is shared by all members.
Therefore, it is possible to save on memory usage by using unions for multiple entries of
such data that will never exist simultaneously. Unions also will prove convenient when they
are used for data that needs to be handled in different units of data size, e.g., 16 bits or 8
units, depending on situation.

To define a union, write "union”. Except this description, the procedures for defining,
declaring, and referencing unions all are the same as explained for structs.

g : all word
union pack { T T 7T
long all; a [
char byte[4]; B B —|_ (0]
short word[2] ; (1]
b H - - _|_ 4
}/oid main(void)) | | £|2_] [1]
union pack |a, b [3]
- 4 1 _1
H : : byte
4

A 4-byte area is shared by all,
byte, and word.
Figure 1.8.4 Declaring and referencing a union

Type definition

Since structs and unions require the keywords "struct" and "union”, there is a tendency that
the number of characters in defined data types increases. One method to circumvent this
is to use a type definition "typedef".

(typedef existing type name new type name)

When the above description is made, the new type name is assumed to be synonymous
with the existing type name and, therefore, either type name can be used in the program.
Figure 1.8.5 below shows an example of how "typedef" can actually be used.

When using type definition, the struct
*_ (union) tag name is unnecessary.

struct data sdata, [bptr;

74

struct dataf typedef struct {
char a; char a;
short b ; short b;
long c; long c;

b } DATA;

DATA sdata, [sptr;

74

Figure 1.8.5 Example for using type definition "typedef"

61

Introduction to C Language
1 1.9 Preprocess Commands

1.9 Preprocess Commands

1.9.1 Preprocess Commands of NC30

The C language supports file inclusion, macro function, conditional compile, and some other
functions as "preprocess commands".
The following explains the main preprocess commands available with NC30.

Preprocess command list of NC30

Preprocess commands each consist of a character string that begins with the symbol '# to
discriminate them from other execution statements. Although they can be written at any
position, the semicolon ;' to separate entries is unnecessary. Table 1.9.1 lists the main
preprocess commands that can be used in NC30.

Table 1.9.1 Main Preprocess Commands of NC30

Description Function
#include Takes in a specified file.
#define Replaces character string and defines macro.
#undef Cancels definition made by #define.

#if to #elif to #else to #endif | Performs conditional compile.

#ifdef to #elif to #else to

) Performs conditional compile.
#endif

#ifndef to #elif to #else to . :
Performs conditional compile.

#endif
#error Outputs message to standard output devices before suspending
processing.
#line Specifies a file's line numbers.
#assert Outputs alarm when constant expression is false.
Instructs processing of NC30's extended function. This is
#pragma

detailed in Chapter 2.

62

Introduction to C Language
1.9 Preprocess Commands

1.9.2 Taking in A File

Use the command "#include" to take in another file. NC30 requires different methods of
description depending on the directory to be searched.
This section explains how to write the command "#include" for each purpose of use.

Searching for standard directory

(#include <file name>)

This statement takes in a file from the directory specified with the startup option —I." If the
specified file does not exist in this directory, NC30 searches the standard directory that is
set with NC30's environment variable "INC30" as it takes in the file.

As the standard directory, normally specify a directory that contains the "standard include
file".

Searching for current directory

(#include "file name")

This statement takes in a file from the current directory. If the specified file does not exist in
the current directory, NC30 searches the directory specified with the startup option '-I' and
the directory set with NC30's environment variable "INC30" in that order as it takes in the
file.

To discriminate your original include file from the standard include file, place that file in the
current directory and specify it using this method of description.

Example for using "#include"

NC30's command "#include" can be nested in up to 8 levels. If the specified file cannot be
found in any directory searched, NC30 outputs an include error.

/OncludeTTTITTIT The standard include file is read from the
standard directory.

#include <stdio.h>

#include "usr_global.h" _ _
“ The header of a global variable is read

from the current directory.

/Cain function (CTTTITTTTY

void main (void)

{

} 74

Figure 1.9.1 Typical description of "#include"

63

Introduction to C Language
1.9 Preprocess Commands

1.9.3 Macro Definition

Use the "#define identifier" for character string replacement and macro definition. Normally use
uppercase letters for this identifier to discriminate it from variables and functions.
This section explains how to define a macro and cancel a macro definition.

Defining a constant

A constant can be assigned a name in the same way as in the assembler "equ statement”.
This provides an effective means of using definitions in common to eliminate magic
numbers (immediates with unknown meanings) in the program.

/J_J Defines that the threshold = 100. |
#define THRESHOLD 100

#define UPPER_LIMIT (THRESHOLD + 50) l\‘ Sets the upper limit at +50_|
#define LOWER_LIMIT (THRESHOLD - 50) \V,\‘ Sets the | limit at +50 |
ets the lower limit a .

Figure 1.9.2 Example for defining a constant

Defining a character string

It is possible to assign a character string a name or, conversely, delete a character string.

#define TITLE "Position control program"” U The defined character string is inserted at
the position of "TITLE".
char mess[]=TITLE ;

#define void
"void" is deleted.
void func() For a compiler where "void" is not supported, this definition
(eliminates the need for modification in the source file.
} v

Figure 1.9.3 Example for defining a character string

64

Introduction to C Language
1.9 Preprocess Commands

Defining a macro function

The command "#define" can also be used to define a macro function. This macro function
allows arguments and return values to be exchanged in the same way as with ordinary
functions. Furthermore, since this function does not have the entry and exit processing that
exists in ordinary functions, it is executed at higher speed.

What's more, a macro function does not require declaring the argument's data type.

#define ABS(a) ((@)>07?(a):—(a)) 7

Macro function that returns the
argument's absolute value

#define SEQN(a,b,c){\
funcl(a) ;\
func2(b) ; \
func3(c) ; \

The symbol "\" denotes successive description.
Descriptions entered even after line feed are
assumed to be part of a continuous character
string.

p———

Enclose a complex
statement with brackets
{"and '}.

Figure 1.9.4 Example for defining a macro function

Canceling definition

(#undef identifier)

Replacement of the identifier defined in "#define" is not performed after "#undef".
However, do not use "#undef" for the following four identifiers because they are the

compiler's reserved words.

« _FILE_ Source file name

e LINE_ Line number of current source file

« DATA_ Compilation date
e TIME_ Compilation time

65

Introduction to C Language
1.9 Preprocess Commands

1.9.4 Conditional Compile

NC30 allows you to control compilation under three conditions.

Use this facility when, for example, controlling function switchover between specifications or
controlling incorporation of debug functions.

This section explains types of conditional compilation and how to write such statements.

Various conditional compilation
Table 1.9.2 lists the types of conditional compilation that can be used in NC30.

Table 1.9.2 Types of Conditional Compile

Description Content

#if condition expression

A . L .
If the condition expression is true (not 0), NC30 compiles

#el
eise block A, if false, it compiles block B.

#endif

#ifdef identifier

A If an identifier is defined, NC30 compiles block A, if not
#else) . .

B defined, it compiles block B.
#endif
#ifndef identifier

If an identifier is not defined, NC30 compiles block A; if

#else i . :

B defined, it compiles block B.
#endif

In all of these three types, the "#else" block can be omitted. If classification into three or
more blocks is required, use "#elif" to add conditions.

Specifying identifier definition

To specify the definition of an identifier, use "#define" or NC30 startup option '-D'.

(#define identifier) ~ Specification of definition by "#define"

(%nc30 -D identifier) ~ Specification of definition by startup option

66

Introduction to C Language
1.9 Preprocess Commands

Example for conditional compile description

Figure 1.9.5 shows an example for using conditional compilation to control incorporation of
debug functions.

It defines an identifier "DEBUG". (Set to debug mode.)

#define DEBUG

void main (void)

{

#ifdef DEBUG When in deb de, it calls "debug function;" otherwise, it

. en in debug mode, it calls "debug function;" otherwise, i

check_output() ; calls "ordinary output function”. In this case, it calls "debug
#else function™.

output() ;
#endif

}

#ifdef DEBUG
void check_output (void)

{

When in debug mode, it incorporates "debug function".

.
.
.

}
#endif

V

Figure 1.9.5 Example for conditional compile description

67

Introduction to C Language
1.9 Preprocess Commands

68

Chapter 2

ROM'ing Technology

2.1 Memory Mapping

2.2 Startup Program

2.3 Extended Functions for ROM'ing
2.4 Linkage with Assembly Language
2.5 Interrupt Processing

This chapter describes precautions to be followed when
creating built-in programs by focusing on the extended
functions of NC30.

ROM'ing Technology
2 2.1 Memory Mapping

2.1 Memory Mapping
2.1.1 Types of Code and Data

There are various types of data and code that constitute a program. Some are rewritable, and
some are not. Some have initial values, and some do not. All data and code must be mapped
into the ROM, RAM, and stack areas according to their properties.

This section explains the types of data and code that are generated by NC30.

Data and code generated by NC30

Figure 2.1.1 shows the types of data and code generated by NC30 and their mapped
memory areas.

Automatic P To stack area
Variable data variable o
_ With initial value —® To RAM and ROM areas
Static —|:
variable Without initial value —® To RAM area
Constant, P To ROM area
Fixed data 4|: character string

Figure 2.1.1 Types of data and code generated by NC30 and their mapped areas

Handling of static variables with initial values

Since "static variables with initial values" are rewritable data, they must reside in RAM.
However, if variables are stored in RAM, initial values cannot be set for them.

To solve this problem, NC30 allocates an area in RAM for such static variables with initial
values and stores initial values in ROM. Then it copies the initial values from ROM into
RAM in the startup program.

RAM area ROM area
char moji ='A’; moji: Ox41 Initial value of "moji"
int seisu =0x1234; . ial val Frsaisy”
void main (void) Sseisu: 0x34 Initial value of "seisu
0x12

{ | |

H I Block transfer from

ROM to RAM

! 7

Startup program

RAM area <J
moiji:
) 0x41 Setting of
. initial values
seisu: 0x34 I (:I()Impylet:d

]
0x12 /

Figure 2.1.2 Handling of static variables with initial values

71

ROM'ing Technology
2.1 Memory Mapping

2.1.2 Sections Managed by NC30

NC30 manages areas in which data and code are located as "sections".
This section explains the types of sections generated and managed by NC30 and how they are
managed.

Sections types

NC30 classifies data into sections by type for management purposes. (See Figure 2.1.3.)
Table 2.1.1 lists the sections types managed by NC30.

Table 2.1.1 Sections types Managed by NC30

Section base name Content

data Contains static variables with initial values.

bss Contains static variables without initial values.
rom Contains character strings and constants.
program Contains programs.

vector Variable vector area (compiler does not generate)
fvector Fixed vector area (compiler does not generate)
stack Stack area (compiler does not generate)

heap Heap area (compiler does not generate)

L Static -
inti=1; variables with —)
initial values data section
charc="0";
P Static variables .
inti, k; without initial - bss section RAM
alues ZY—— stack section
utomatic - (Compiler does not
const charcc='a’; generate) a
. . . L
void main(void) / I e
{ / ——> program section
intl, m; /
Character strings, .
i=zi+k; .
Initial values data_|I section
}

v _

Figure 2.1.3 Mapping data into sections by type

72

ROM'ing Technology
2.1 Memory Mapping

Sections attributes

The sections generated by NC30 are further classified into smaller sections by their
"attributes”, i.e., whether or not they have initial value, in which area they are
mapped, and their data size.

Table 2.1.2 lists the symbols representing each attribute and its contents.

Table 2.1.2 Sections attributes

. Applicable
Attribute Content pp

section name
| Section to hold data's initial value. data

N-near attribute (64-byte area at absolute addresses from 0 to OFFFF)
N/F/S F-far attribute (entire 1-Mbyte memory area from address 0 to FFFFF) data,bss,rom
S-SBDATA attribute (area where SB relative addressing can be used)

E-Data size is even.
E/O o data,bss,rom
O-Data size is odd.

For details on how to specify these attributes, refer to Section 2.3.1, "Efficient Addressing".

Rule for naming sections

The sections generated by NC30 are named after their section base name and attributes.
Figure 2.1.4 shows a combination of each section base name and attributes.

CSection name = section base name_attribute | Section base name |
| data | bss | rom| program

Attribute Meaning |
N near attribute
F far attribute

S SBDATA attribute
E Even-size data

(@] Odd-size data
| Contains initial value

Figure 2.1.4 Rule for assigning section names

73

ROM'ing Technology
2.1 Memory Mapping

2.1.3 Control of Memory Mapping

NC30 provides extended functions that enable memory mapping to be performed in an efficient
way to suit the user's system.
This section explains NC30's extended functions useful for memory mapping.

Changing section names (#pragma SECTION)

(#pragma A SECTION A designated section base name A changed section base name)

This function changes section base names generated by NC30. The effective range of a
changed name varies between cases when "program" is changed and when some other
section base name is changed.

<For data> <For program>
int datal ; prog

void funcl (void)

{

Expanded in default section name

Section name
} changed

#pragma ! SECTION data new_data
#pragma SECTION program new_prograrn

int data2;
void func2 (void) N
{
- . Expanded in changed
For both, expanded in H section name
changed section }
name |7

.section program—==#
_funci:

.section new_program
_func2:

P> section new_data_NO,DATA
_datal:
.blkb 2
_data2:
.blkb 2

Figure 2.1.5 Typical description of "#pragma SECTION"

74

ROM'ing Technology
2.1 Memory Mapping

Forcible mapping into ROM (const modifier)

Both RAM and ROM areas are allocated by writing the initial data when declaring the type
of a variable. However, if this data is a fixed data that does not change during program
execution, write the "const" modifier when declaring the type. Because only a ROM area is
allocated and no RAM area is used, this method helps to save the amount of memory used.
Furthermore, since explicit substitutions are checked when compiling the program, it is
possible to check rewrite errors.

(const datatype variable name)

RAM
char a=5; e : Copied
—10- A 2-byte area
const char ¢=10; (i allo>(/:ate o Startup program
ROM ;
O0X05 freeeeeee ;
Only 1 byte is
aIIocateD_> c| oxoA

void main(void)

o]

Warning is generated
when compiling.

} v

Figure 2.1.6 const modifier and memory mapping

eoe

75

ROM'ing Technology
2.1 Memory Mapping

2.1.4 Controlling Memory Mapping of Struct

When allocating memory for structs, NC30 packs them in the order they are declared in order to
minimize the amount of memory used. However, if the processing speed is more important than
saving memory usage, write a statement "#pragma STRUCT" to control the method of mapping

structs into memory.

This section explains NC30's specific extended functions used for mapping structs into memory.

NC30 rules for mapping structs into memory

NC30 follow the rules below as it maps struct members into memory.
(1) Structs are packed. No padding occurs inside the struct.
(2) Members are mapped into memory in the order they are declared.

struct tag_s1 {
int i; - sLi
char c; :\r/:%prgng sl.c <@
int k; g
Vsl — slk
4

Figure 2.1.7 An image depicting how NC30's default struct is mapped into memory

Inhibiting struct members from being packed (#pragma ASTRUCTAtag name Aunpack)

This command statement inserts pads into a struct so that its total size of struct members
equals even bytes. Use this specification when the access speed has priority.

#pragma STRUCT tag_s2 un7\ack
- s2i

struct tag s2{

Declares inhibition Mapping s2.c <
int 1; of packing. image 6 bytes

char c; - s2k -
int k; -
Padding
}s2; —
4

A struct's total size is
adjusted to even bytes.

Figure 2.1.8 Inhibiting struct members from being packed

76

ROM'ing Technology
2.1 Memory Mapping

Optimizing mapping of struct members (#pragma ASTRUCTAtag name Aarrange)

This command statement allocates memory for the members of an even size before other
members no matter in which order they are declared. If this statement is used in
combination with the "#pragma STRUCT unpack" statement described above, each
member of an even size is mapped into memory beginning with an even address.
Therefore, this method helps to accomplish an efficient memory access.

#pragma STRUCT

struct tag_s3{
int i;
char c;
int k;

}s3;

tag_s3 arrange —l
/\ — s3.i Members of even size
are mapped first.
Declares optimization Mapping
of mapping. image — s3.k

s3.c

e

Figure 2.1.9 Optimizing memory allocation for struct members

77

ROM'ing Technology
2 2.2 Startup Program

2.2 Startup Program

2.2.1 Roles of Startup Program

For a built-in program to operate properly, it is necessary to initialize the microprocessor and set
up the stack area before executing the program. This processing normally cannot be written in
the C language. Therefore, an initial setup program is written in the assembly language
separately from the C language source program. This is the startup program.

The following explains the startup programs supplied with NC30, "ncrt0.a30" and "sect30.inc".

Roles of startup program

The following lists the roles performed by the startup program:
(1) Allocate a stack area.

(2) Initialize the microprocessor.

(3) Initialize a static variable area.

(4) Set the interrupt table register "INTB".

(5) Call the main function.

(6) Set the interrupt vector table.

78

ROM'ing Technology
2.2 Startup Program

Structure of sample startup programs

NC30's startup program consists of two files: "ncrt0.a30" and "sect30.inc".

—{seets0ine

| Set size of heap area. |

) | Set arrangement of each section
Set size of stack area.

vector table.

| Set variable vector table.

| .include sect30.inc

Set start address of |nterrupt | Set start addreSS Of Section. |

| Set fixed vector table.

| Set SB area. |

Define macro for initializing
variable area.

Set processor operation mode.
Initialize stack pointer.
Initialize FB and SB registers.
Initialize INTB register.

Initialize near area of data.
Initialize far area of data.

Initialize heap area.

Initialize standard 1/O function
library.

Call main function.

Figure 2.2.1 Structure of sample startup program

79

ROM'ing Technology
2.2 Startup Program

2.2.2 Estimating Stack Sizes Used

Set an appropriate stack size in the startup program. If the stack size is excessively small, the
system could run out of control. Conversely, if excessively large, it means wasting memory.
This section explains how to estimate an appropriate stack size.

Iltems that use a stack

The following items use a stack:

(1) Automatic variable area

(2) Temporary area used for complex calculation
(3) Return address

(4) Old frame pointer

(5) Arguments to function

File for displaying stack sizes used

Calculate the stack sizes used by each function. Although it can be estimated from
program lists, there is a more convenient way to do it. Specify a startup option

"- fshow_stack usage” when starting up NC30. It generates a file "xxx.stk" that contains
information about the stack sizes used. However, this information does not include the
stacks used by assembly language subroutine call and inline assembler. Calculate the
stack sizes used for these purposes from program lists.

<Stack image> Information on
< stk file> function func()
ior Stk ile Return address
B - 7 Old frame pointer
Argument FUNCTION func ()
context 5 bytes Automatic variable
?itzaecsk auto 3 bytes | temporary area
Automatic variable f8regSize 0 bytes
used by |tem 1 Area used for 64-bit
porary area
func() : 4 bytes PUSH&CALL funcl floating-point calculation
Old frame pointer 6 bytes PUSH&CALL func2
Return address 6 bytes PUSH (MAX) |7\ Stapk sizes u;ed when
I PR .. jsr calling subordinate
function (used for

argument)

Figure 2.2.2 Stack size usage information file

80

ROM'ing Technology
2.2 Startup Program

Calculating the maximum size of stacks used

Find the maximum size of stacks used from the stack sizes used by each individual
function after considering the relationship of function calls and handling of interrupts.
Figure 2.2.3 shows by using a sample program an example of how to calculate the

maximum size of stacks used.

<Source file "sample.c">

void main (void) ;
int funcl (int,int);
int func2 (char, char);
int func3 (int) ;
void main (void)
int m,n;
long kekkal , kekka2 ;
kekkal =funcl (m,n);
kekka2 =func2 (m,n);
}
int funcl (intx,inty)
{
int z1,22;
z1=x+y;
z2 =func3 (z1);
return z2;
}
int func2 (char x, chary)
{
int z;
z=x Oy ,;
return z;
}
int func3 (intx)
{
return °x;
}
4
main()
5+8=13 bytes
Q) | | Y (2
[| +1 bytes
funcl() func2()
5+2=7 bytes 5+2=7 bytes
func3()
5 bytes

%nc30 -fshow_stack_usage sample.c

<Stack size usage information file "sample.stk">

FUNCTION main

j|Stack size used
5 bytes by each function

context

auto 8 bytes

f8regSize 0 bytes
0 bytes PUSH & CALL funcl
1 byteg PUSH & CALL func2
1 bythN/IAX)

FUNCTION funcl Stack size used when
context 5 bytes calling a function
auto 2 bytes
f8regSize 0 bytes

0 bytes PUSH & CALL func3
0 bytes PUSH (MAX)

FUNCTION func2
context 5 bytes
auto 2 bytes
f8regSize 0 bytes

0 bytes PUSH (MAX)

FUNCTION func3
context 5 bytes
auto 0 bytes
f8regSize 0 bytes

0 bytes PUSH (MAX)
4

(1)Stack size for path : 13+7+5=25 bytes —
(2)Stack size for path : 13+1+7=21 bytes

Maximum size of stacks used is 25 byes.

Figure 2.2.3 Method for calculating the maximum size of stacks used

81

ROM'ing Technology
2.2 Startup Program

Automatically calculating the maximum size of stacks used

If the program structure is simple, it is possible to estimate the stack sizes used by
following the method described above. However, if the program structure is complicated or
when the program uses internal functions, calculations require time and labor. In such a
case, Mitsubishi recommends using the "stack size calculating utility, stk30" that is included
with NC30. It automatically calculates the maximum size of stacks used from the stack size
usage information file "xxx.stk" that is made at compiling and outputs the result to standard
output devices. Furthermore, if a startup option '-0' is added, it outputs the relationship of
function calls along with the calculation result to a "calculation result display file ,xxx.siz".
To estimate an interrupt stack size, it is necessary to calculate the stack sizes used by
each interrupt function and those used by the functions called by the interrupt function. In
this case, use a startup option '-e function name'. If this startup option is used along with
'-0', the stk30 utility outputs the stack sizes used below a specified function and the
relationship of function calls.

Figure 2.2.4 shows the processing results of stk30 by using the sample program described
above.

<Standard output>

Stack size
usage %stk30 sample.stk >stk30 sample.stk
information g
file(sample.stk) [TTIStack Size TTJ

%stk30 -0 sample.stk 25 bytes

<Calculation result display file (sample.siz) >

%stk30 -0 -efuncl sample.stk

v | Stack size used from "funcl” [IStack Size [T
7/
25 bytes
[ITIStack Size
12 bytes TC Flow 1T
ITIC Flow 111 main(sample.stk)
funcl(sample.stk)
funcl(sample01.stk) func3(sample.stk)
func3(sample01.stk) func2(sample.stk)
74 74

Figure 2.2.4 Stack size calculating utility "stk30"

82

ROM'ing Technology
2.2 Startup Program

2.2.3 Creating Startup Program

The sample startup program shown above must be modified to suit the C language program to be

created.
This section describes details on how to modify the sample startup program.

Modifying sample startup program

Modify the following points to suit the C language program to be created:

—| ncrt0.a30

| Setting size of heap area |

| Setting size of stack area |

Setting start address of
interrupt vector table

| Setting processor mode register |

—| sect30.inc

Arranging sections and setting start
address

| Setting variable vector table |

| Setting fixed vector table |

Figure 2.2.5 Points to be modified in sample startup program

83

ROM'ing Technology
2.2 Startup Program

Setting the size of heap area ("ncrt0.a30")

Set the required memory size to be allocated when using memory management functions
(calloc, malloc). Set'0" when not using memory management functions. In this case, it is
possible to prevent unwanted libraries from being linked and reduce ROM sizes by turning
lines of statements initializing the heap area in "ncrt0.a30" into comments.

; HEAP SIZE definition

HEAPSIZE .equ

A

0

/

When not using memory

turn the heap area initialization
section into comments.

management functions, set '0' and

Figure 2.2.6 Setting the heap area

; heap area initialize

.glb
.glb
.glb
mov.w
mov.w
mov.w
mov.w
mov.w
mov.w

_mbase

_mnext

_msize
#(heap_top&OFFFFH),_mbase
#(heap_top>>16), mbase+2
#(heap_top&OFFFFH), _mnext
#(heap_top>>16), mnext+2
#(heap_top&OFFFFH), msize
#(heap_top>>16), msize+2 va

Setting the size of stack area ("ncrt0.a30")

By using the results obtained by the stack size calculating utility "stk30", etc., set the user

stack and the interrupt stack sizes.
When using multiple interrupts, find the total size of interrupt stacks used for them and set it

as the interrupt stack size.

; STACK SIZE definition

STACKSIZE

.equ

300H

; INTERRUPT STACK SIZE definition

ISTACKSIZE

.equ

300H

74

Figure 2.2.7 Setting the stack size

AN

When using multiple interrupts, set the
total size of interrupt stacks used for them.

84

ROM'ing Technology
2.2 Startup Program

Setting the start address of interrupt vector table ("ncrt0.a30")

Set the start address of the interrupt vector table. The value set here is set in the interrupt
table register "INTB" within "ncrt0.a30".

; INTERRUPT VECTOR ADDRESS definition

VECTOR_ADR

.equ OFFDOOH
Set in interrupt table register "INTB"
; interrupt section start
.glb start
.section interrupt

start:

; after reset, this program will start

Idintb #VECTOR_ADR

V

Figure 2.2.8 Setting the start address of interrupt vector table

Setting the processor operation mode ("ncrt0.a30")

Set the processor operation mode. In the same way, add the instructions here that directly
controls the operation of the M16C/60,M16C/20, such as one that sets the system clock.
Figure 2.2.9 shows locations where to add these instructions and how to write the
instruction statements.

After a reset, the program starts from this label.

[

|

) ,ﬂerrupt section start

start
interrupt

.glb
.section

start: .
. | Add settings matched to the system.

; after reset, this program will start

’ mov.b #00000011B,000AH /ﬁ\ble register protect

mov.b #10000111B,0004H
mov.b #00001000B,0006H
mov.b #00100000B,0007H
mov.b #00000000B,000AH

Idc
Idc
Idc
ldc
Idc

#0080H,flg
#stack_top-1,sp
#istack_top-1,isp
#stack_top-1,fb
#data_SE_top,sb

ldintb #VECTOR_ADR

processer mode register 0
systerm clock control register O
systerm clock control register 1
enable register protect

Figure 2.2.9 Setting the processor operation mode

85

ROM'ing Technology
2.2 Startup Program

Arranging each section and setting start address ("sect30.inc")

Arrange the sections generated by NC30 and set their start addresses. Use the pseudo-
instruction ".org" to specify the start address of each section.

If any section does not have a specified start address, memory for it is allocated in a
contiguous location following the previously defined section.

; Arrangement of section

; Near RAM data area Specify the start address of each
; area in conformity with memory

; SBDATA area map.
.section data_SE,DA/
.org 400H

data_SE_top:

.section bss SE,DATA
bss_E_top:

; Far RAM data area

.section data_FE,DATA
.org 10000H
data_FE_top:

; Far ROM data area

.section rom_FE,ROMDATA
.org OFO000H
data_FE_top:
: Z

Figure 2.2.10 Setting the start address of each section

86

ROM'ing Technology
2.2 Startup Program

Setting the variable vector table ("sect30.inc")

Add the setup items related to the variable vector table to the section definition file
"sect30.inc".
Figure 2.2.11 shows an example of how to set.

; variable vector section
.section vector ; variable vector table
.org VECTOR_ADR
.Ilword dummy_int ; vector O (BRK))
.org (VECTOR_ADR + 44)
Iword dummy_int ; DMAQO (for user)
Iword dummy_int ; DMAL (for user)
Iword dummy_int ; input key (for user)
Iword dummy_int ; AD Convert (for user)
.org (VECTOR_ADR + 63)
.Ilword dummy_int ; UARTO trance (for user)
.Ilword dummy _int ; UARTO receive (for user)
.Ilword dummy _int ; UARTL1 trance (for user)
.Ilword dummy_int ; UARTL1 receive (for user)
.lword dummy_int ; TIMER AO (for user)
.Ilword dummy_int ; TIMER ALl (for user)
Iword dummy_int ; TIMER A2 (for user)
Iword dummy_int ; TIMER A3 (for user)
.Iword dummy_int ; TIMER A4 (for user) (vector 25)
.Iword dummy_int ; TIMER BO (for user) (vector 26)
Iword dummy_int ; TIMER BL1 (for user) (vector 27)
.Ilword dummy_int ; TIMER B2 (for user) (vector 28)
.Ilword dummy _int ; INTO (for user) (vector 29)
.Ilword dummy _int ; INT1 (for user) (vector 30)
.Ilword dummy_int ; INT2 (for user) (vector 31)
.Ilword dummy_int ; vector 32 (for user or MR30)
.Ilword dummy_int ; vector 33 (for user or MR30)
Iword dummy_int ; vector 34 (for user or MR30)
Iword dummy_int ; vector 35 (for user or MR30)
Iword dummy_int ; vector 36 (for user or MR30)
Iword dummy_int ; vector 37 (for user or MR30)
Iword dummy_int ; vector 38 (for user or MR30)
.Ilword dummy_int ; vector 39 (for user or MR30)
.Ilword dummy _int ; vector 40 (for user or MR30)
.Ilword dummy _int ; vector 41 (for user or MR30)
.lword dummy_int ; vector 42 (for user or MR30)
.lword dummy_int ; vector 43 (for user or MR30)
.Ilword dummy_int ; vector 44 (for user or MR30)
.Ilword dummy_int ; vector 45 (for user or MR30)
Iword dummy_int ; vector 46 (for user or MR30)
Iword dummy_int ; vector 47 (for user or MR30)
; to vector 63 from vector 32 is used for MR30

Figure 2.2.11 Setting variable vector table

87

2.2

ROM'ing Technology
Startup Program

Setting the fixed vector table ("sect30.inc")

Set the start address of the fixed vector table and the vector address of each interrupt.
Figure 2.2.12 shows an example of how to write these addresses.

fixed vector section

Set the start address of the fixed vector table.

I/

.section fvector ; fixed vector table
.org OFFEOOH
; still nothing
.org OFFFDCH
UDI:
.Iword dummy_int
OVER_FLOW: Set the vector address of the
Iword dummy_int function used. When not using
B R K: functions, leave the field set as
Iword dummy _int "dummy_int".
ADDRESS_MATCH:
Iword dummy_int
SINGLE_STEP:
.Iword dummy_int
WDT:
.Iword dummy_int
DBC:
Iword dummy_int
NMI:
.Iword dummy_int
RESET:
word start
\

Processing of "dummy_int" (" ncrt0.a30 ")

; dummy interrupt function

dummy_int:
reit

Figure 2.2.12 Setting fixed vector table

88

ROM'ing Technology
2.2 Startup Program

Precautions for operating in single-chip mode

When operating the M16C/60,M16C/20 in single-chip mode, note that the "near ROM" and
the "far ROM" areas are not used. Delete the "ncrt0.a30" and the "sect30.inc" blocks
shown in Figure 2.2.13 or turn them into comment statements.

ncrt0.a30: far area initialization program ("FAR area initialize")
sect30.inc: near ROM area allocation ("Near ROM data area")
far RAM area allocation ("Far RAM data area")

(* ncrt0.a30 *)

FAR area initialize.

; bss_FE & bss_FO zero clear

BZERO ebss_Esz,ebss_E_top
BZERO ebss_Osz,ebss_O_top

; Copy data_FE(FO) section from data_IFE(IFO) section

; BCOPYedata_Esz,edata_E_top,edata_EI_top
; BCOPYedata_Osz,edata_O_top,edata_OI_top
; Idc #stack_top-1,sp

; Idc #stack_top-1,fb

H 74

(" sect30.inc ™)

Near ROM data area

; .sectionrom_NE,ROMDATA

; rom_NE_top:
Leave these lines as |/ ; .sectionrom_NO,ROMDATA
comments. ; rom_NO_top:

Far RAM data area

.sectiondata_EI,DATA
; .org 10000H
; data_FE_top:

: .sectionbss_FE,DATA,ALIGH
; bss_FE_top:

; .sectiondata_FO,DATA
; data_FE_top:

; .sectionbss_FO,DATA
; bss_FO_top:

74

Figure 2.2.13 Example for writing program when operating in single-chip mode

89

ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3 Extended Functions for ROM'ing Purposes

2.3.1 Efficient Addressing

The maximum area accessible by the M16C/60,M16C/20 series is 1 Mbytes. NC30 divides this
area into a "near area" in addresses from 00000 to OFFFF and a "far area” in addresses from

00000 to FFFFF for management purposes.
This section explains how to arrange and access variables and functions in these areas.

The near and the far areas

NC30 divides a maximum 1 Mbytes of accessible space into the "near area" and the "far
area" for management purposes. Table 2.3.1 lists the features of each area.

Table2.3.1 near Area and far Area

Area name Feature
This space is where the M16C/60,M16C/20 series can access data efficiently.
near area | Itis a 64-Kbyte area in absolute addresses from 00000 to OFFFF, in which
stacks and internal RAM are located.
This is the entire 1-Mbyte memory space in absolute addresses from 00000 to
far area FFFFF that can be accessed by the M16C/60. Internal ROM, etc. are located
in this area.

Default near/far attributes

NC30 discriminates the variables and functions located in the near area as belonging to the
"near attribute” from those located in the far area as belonging to the “far attribute”. Table

2.3.2 lists the default attributes of variables and functions.

Table 2.3.2 Default near/far Attributes

Classification Attribute
Program far, fixed
RAM data near
ROM data far
Stack data near, fixed

If any of these default near/far attributes needs to be modified, specify the following startup
options when starting up NC30:

—ffar_ RAM (—fFRAM)

. Changes the default attribute of RAM data to "far".

—fnear_ROM (-fNROM) : Changes the default attribute of ROM data to "near".

90

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

near/far of variables

([storage class] A type specifier A near/far A variable name;)

Unless near/far is specified when declaring type, RAM data is located in the near area, and
RAM data with the const modifier specified and ROM data are located in the far area.

static int data; » data | |

static int near n_data;

static int far f data: L'V n_data | _

static const int c_data =0x1234;— |7 near area
L f data i far area

P C_data. | 0x1234

Figure 2.3.1 near/far of static variables

Specification of near/far for automatic variables does not have any effect at all. (All
automatic variables are located in the stack area.) What is affected by this specification is
only the result of the address operator '&'.

void func(void)
{
int neari_near;_____ | g &i near - 16 bits long
int far i_far; = &i_far - 20 bits long
_ Pointer variable for near area is available
int [addr_near ; (described later).
int [Caddr far;
addr_near = &i_near Alﬂ
addr_far = &i_far; Warning occurs!
} Substituted by ignoring
[/ | upper address.

Figure 2.3.2 near/far of automatic variables

91

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

near/far of pointers
By specifying near/far for a pointer, it is possible to specify the size of addresses stored in
the pointer and an area where to locate the pointer itself. If nothing is specified, all pointers
are handled as belonging to the near attribute.

(1) Specify the size of addresses stored in the pointer.

([storage class] A type specifier A near/far A Ovariable name;)

near - 16 bits long (16-bit absolute)
far— 20 bits long (20-bit absolute)

int near C[hear data; J near_data - 7]
int far [far_data; — i
- far_data |- J neararea
Chear_data [—
(far_data | i far area
Figure 2.3.3 Specifying address size stored in pointer
(2) Specify the area in which to locate the pointer itself.
([storage class] A type specifier A Onear/far A variable name;)
near - Located in near area
far - Located in far area
int Chear near_data ;J near_data [~ 7]
int [far far_data;
— Mhear data |- —| near area
(far_data [~ =
far_data [~ 7| far area

Figure 2.3.4 Specifying area to locate the pointer

near/far of functions

The attributes of NC30 functions are fixed to the far area for reasons of the M16C/
60,M16C/20 series architecture. If near is specified for an NC30 function, NC30 outputs a
warning when compiling the program and forcibly locates it in the far area.

92

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

Using SB relative addressing (#pragma SBDATA)

(#pragma SBDATA variable name)

For the variables declared in this way, NC30 generates AS30 pseudo-instruction ".SBSYM"
and uses the SB relative addressing mode when referencing them. This makes it possible
to generate highly ROM-efficient code.

#pragma SBDATA m
static int m,n;

void main (void)

{
m=m+n; |
}
7 SBSYM _m Pseudo-instruction
-SECTION program ".SBSYM" is generated
.glb _main for variable 'm'.
_main:
addW n, m
fs Whether or not to use
the SB addressing
mode depends on the
SECTION bss_NE,DATA | |assembler.
_n .blkb 2
.SECTION bss_SE,DATA
Variable 'm' is located as m: blkb 2
belonging to the SBDATA -
attribute.
.end
74
Figure 2.3.5 An image depicting expansion of "#pragma SBDATA"
Column Locating both pointer and indicated data in far area

What declaration is necessary to locate both a pointer itself and its indicated data in a far
area? The following shows the format and a description example.

[storage class] A type specifier A far A Ofar A variable name;
Example: int far Ofar ff data:

Conversely, when locating both in a near area, near/far specification is unnecessary. This
is because the variables and pointers in NC30 assume the near attribute by default.

93

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

2.3.2 Handling of Bits

NC30 allows the user to handle data in units of bits. There are two methods to use data in such
a way: "bit field", an application of structs, and an extended function of NC30.
This section explains each method of use.

Bit field

NC30 supports a bit field as a method to handle bits. A bit field refers to using structs to
assign bit symbols. The following shows the format of bit symbol assignment.

struct tag {
type specifier A bit symbol : number of bits;

When referencing a bit symbol, separate it with a period '.' when specifying it, as in the
case of structs and unions.

(variable name.bit symbol J

Memory allocation for a declared bit field varies with the compiler used. NC30 has two
rules according to which memory is allocated for bit fields. Figure 2.3.6 shows an example
of actually how memory is allocated.
(1) Allocated sequentially beginning with the LSB.
(2) Different type of data is located in the next address.

(The size of the allocated area varies with each data type.)

struct ex{
char a:1; bit7 6 5 4 3 2 1 0
char b:1;
char c:1;
char d: 1;
} sO;

sO s0.d| sO.c| sO.b| sO.a| |1Byte

Y

y

s1.b3|s1.b0
struct ex1{ si _ 1Byte

char b0:1; s1.b12

int b12:2; 2Byte

char b3:1;
}sl;

4

Memory is allocated for each
data type as follows:

char type — 1 byte
inttype - 2 bytes

long type - 4 bytes

Figure 2.3.6 Example of memory allocation for bit fields

94

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

Generating bit instruction (#pragma BIT)

NC30's bit field is such that although bit symbols can be handled in the program, it is an
arithmetic/logic instruction, and not a bit instruction, that is generated. To output a code-
efficient "direct 1-bit instruction”, write an extended function "#pragma BIT" along with bit
field declaration.

Figure 2.3.7 shows an example of how to write such a statement and how it will be
expanded.

.) Declaration of bit field

struct bit {

char b0:1 ,/

char bl:1;
H
#pragma BIT bitl Specification to output bit
struct bit bitl ; instruction
struct bit bit2 ;
void main (void) \ <Expansion image>
{ _main:

bitl . b0=1; p> bset || O0H,_ bitl

bit2.b0=1; P orb #01H, bit2
} rts

4

Figure 2.3.7 Typical description of "#pragma BIT"

In addition to the data where "#pragma BIT" is declared, the direct 1-bit instruction is

generated by the following:

 Variables where "#pragma SBDATA" is declared

» Variables where "#pragma ADDRESS" is declared and that area located at absolute
addresses 00000 to O1FFF

* near-type variables for which the '-fbit' option is specified

95

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

2.3.3 Control of I/O Interface

When controlling the 1/O interface in a built-in system, specify absolute addresses for variables.
There are two methods for specifying absolute addresses in NC30: one by using a pointer, and
one by using an extended function of NC30.

This section explains each method of specification.

Specifying absolute addresses using a pointer

Use of a pointer allows you to specify absolute addresses. Figure 2.3.8 shows a
description example.

Example: Substituting Oxef for address 0000a

char [point ; EF 0000a
point = (char [)0x000a ;
Cpoint = Oxef ;
|| When rearranged into 0A .
one line 00 point
[{char [)Ox000a = Oxef ;

Figure 2.3.8 Specifying absolute addresses using a pointer

Specifying absolute addresses using an extended function (#pragma ADDRESS)

(#pragma A ADDRESS A variable name A absolute address)

The above declaration causes a variable name to be located at an absolute address.

Since this method defines a variable name as synonymous with an absolute address, there
is no need to allocate a pointer variable area as required for the above method. Therefore,
this method helps to save memory usage.

/AsSO format of numeric description must be followed.

#pragma ADDRESS port4 03e8h Expansion image
char near port4 ;

void func(void) _port4 .equ 03e8h

{ . |:> mov.b #0,_port4

port4 = 0x00 ;

74

"#pragma ADDRESS" is effective for only variables defined
outside a function and those declared in a function as being
a static variable.

Figure 2.3.9 Specifying absolute addresses using "#pragma ADDRESS"

96

ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

Example 2.3.1 Defining SFR Area Using "#pragma ADDRESS"

The extended function "#pragma ADDRESS" can be used to set the SFR area. For this
method of SFR setting, normally prepare a separate file and include it in the source

program.

The following shows one example of an SFR area definition file.

Reads in the SFR area definition file.

<Source file>

#include "m30600.h" /

void main (void)

SFR area definition file <m30600.h>

P6.all = 0x00 ; ;

#pragma ADDRESS P6 03ECH
#pragma ADDRESS P7 O3EDH
#pragma ADDRESS PD6 O03EEH
#pragma ADDRESS PD7 03EFH
#pragma ADDRESS P8 03FOH
{ . References the #pragma ADDRESS P9 03F1H
SFR area. #pragma ADDRESS PD8 03F2H
#pragma ADDRESS PD9 03F3H
#pragma ADDRESS TABSR 0380H
#pragma ADDRESS TAO 0386H
Sets absolute L #pragma ADDRESS TAl 0388H
addresses. #pragma ADDRESS TAOMR 0396H
#pragma ADDRESS TALMR 0397H
#pragma ADDRESS TAOIC 0055H
#pragma ADDRESS TA1lIC 0056H
typedef union {
struct {
T_ype decl_aration for L unsiged char b0:1;
bit operation unsiged char bl:1;
unsiged char b2:1;
unsiged char b3:1;
unsiged char b4:1;
unsiged char b5:1;
unsiged char b6:1;
unsiged char b7:1;
} bit ;
unsigned char all;
} SFR;
SFR P6,P7,P8,P9;
SFR PD6, PD7, PD8, PD9;
SFR TABSR, TAOMR, TAIMR;
SFR TAOIC, TAlIC;
unsigned int TAO, TAl;

Example 2.3.1 Defining SFR area using "#pragma ADDRESS"

97

ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3.4 When Cannot Be Written in C Lanquage

There are some cases where hardware-related processing cannot be written in the C language.
This occurs when, for example, processing cannot be finished in time or when one wishes to
control the C flag directly. To solve this problem, NC30 allows you to write the assembly
language directly in C language source programs (“inline assemble” function). There are two
inline assemble methods: one using the "asm" function, and one using "#pragma ASM".

This section explains each method.

Writing only one line in assembly language (asm function)

(asm ("character string"))

When the above line is entered, the character string enclosed with double quotations (") is
expanded directly (including spaces and tabs) into the assembly language source program.
Since this line can be written both in and outside a function, it will prove useful when one
wishes to manipulate flags and registers directly or when high speed processing is
required.
Figure 2.3.10 shows a description example.

Sets

interrupt enable flag.

void main (void)

{ initialize() ;
asm(" FSET

} :

"

74

Figure 2.3.10 Typical description of asm function

Accessing automatic variables in assembly language (asm function)

When it is necessary to access automatic variables inside the function, write a statement
using "$$[FB]" as shown in Figure 2.3.11. Since the compiler replaces "$$" with the FB
register's offset value, automatic variable names in the C language can be used in
assembly language programs.

| Defines automatic

<Expansion image>

void main (void) / variable 'm'.
{
unsigned int m;
m = 0x07~=
| FB offset value of 'm'is -2.
asm(" MOV.W $$[FB],R0",m) ; \
} v _main:
\ enter #02H
FB relative addressing is used.L mov.w #0007H,-2[FB] ; m
<F > WSM START
orma MOV.W -2[FB].RO
asm ("assembly language", automatic ##H# ASM END
variable name); exitd

Figure 2.3.11 Using automatic variables in asm function

98

ROM'ing Technology
2.3 Extended Functions for ROM'ing Purposes

Writing entire module in assembly language (#pragma ASM)

If the embedded assembly language consists of multiple lines, use an extended function
"#pragma ASM". With this extended function, NC30 determines a section enclosed with
"#pragma ASM" and "#pragma ENDASM" to be an area written in the assembly language
and outputs it to the assembly language source program directly as it is.

void func (void)

{
Int Lo . This area is output to the assembly
for (i=0;i<10; i++)} language source program directly
func2() ; as it is.
}
#pragma ASM /
FCLR | /

MOV.W #0FFH,RO

FSET |
#pragma ENDASM

74

Figure 2.3.12 Example for using "#pragma ASM" function

Column Suppressing optimization partially by using asm function

When the startup option '-O' is added, NC30 optimizes generated code when compiling the
program. However, if this optimization causes inconveniences such as when an interrupt
occurs, NC30 allows you to suppress optimization partially by using the asm function.
Figure 2.3.13 shows an example for using the asm function for this purpose.

struct bit {

char bit0:1;

char bitl:1; The '-O' option is specified.
b

#pragma BIT flag

struct bit flag ;
<Expansion image>

void main (void) _main:
{
flag . bit0 =1 Rearranged into » orb #03H,_flag
f bitl = 1 - one instruction by ‘ =
ag.bitl =4, optimization.
flag . b.lto =1; Optimization is b= phset 00H, flag
asm() ; suppressed. - pset 01H,_flag
flag.bitl=1;
} rs
7 7

Figure 2.3.13 Suppressing optimization partially by using asm function

99

ROM'ing Technology
2 2.4 Linkage with Assembly Language

2.4 Linkage with Assembly Language

2.4.1 Interface between Functions

When the module size is small, inline assemble is sufficient to solve the problem. However, if the
module size is large or when using an existing module in the program, NC30 allows you to call an
assembly language subroutine from the C language program or vice versa.

This section explains interfacing between functions in NC30.

Entry and exit processing of functions

The following lists the three primary processings performed in NC30 when calling a
function:

(1) Construct and free stack frame

(2) Transfer argument

(3) Transfer return value
Figure 2.4.1 shows a procedure for these operations.

int func (int,int); int func(int x,int y)
{
void main (void)
{ }
int a=3,b=5;
int c;

.
.

c:f.unc(a,b);

Public declaration of label

Preparation for $func :
passing argument

| Constructing stack frame |

JSR $func —
| Receiving argument |

Receiving
return value

| Storing return value |

Freeing stack frame
(including RTS)

Y

Figure 2.4.1 Operations for calling a function

100

ROM'ing Technology

2.4 Linkage with Assembly Language

Structure of a stack frame

When a function is called, an area like the one shown below is created in a stack. This
area is called a "stack frame".

The stack frame is freed when control returns from the called function.

Area for saving registers

Stack

Automatic variable area

Area allocated by the
called function

frame

Old frame pointer

Return address

Argument area

Area allocated by
the calling function

Figure 2.4.2 Structure of a stack frame

Constructing a stack frame

Figure 2.4.3 shows how a stack frame is constructed by tracing the flow of a C language

program.

void main(void)

(1) main under
execution

A

{
int i;
char c;
func(i,c);
}

void func(int x, char y)

{

— (2) Inmediately

Processing of func

funcis
completed

Figure 2.4.3 Constructing a stack frame

Stack frame of
main function

Argument i

Argument c

Return address

Argument i(x)

Argument c(y)

Stack frame of

main function

before Stack frame of
jumping to main function
func
~ SP
Automatic variable
of func
P (3) Wh t -
®) en e.n Y Old frame pointer
processing of ~ FB

101

ROM'ing Technology
2.4 Linkage with Assembly Language

Rules for passing arguments

NC30 has two methods for passing arguments to a function: "via a register" and "via a
stack".

When the following three conditions are met, arguments are passed via a register;
otherwise, arguments are passed via a stack.

(1) The types of the function's arguments are prototype declared.
(2) One or more arguments are the type that can be assigned to a register.
(3) No short-cut form is used in the argument part of prototype declaration.

Table 2.4.1 Rules for Passing Arguments

. Third and following
Type of argument First argument Second argument
arguments
char type RiL Stack Stack
short, int types
. R1 R2 Stack
near pointer type

Other types Stack Stack Stack

/OPrototype declaration [TTTTTTTTTY
void funcl (char, char, char);
void func2 (int, int);
}/0|d main (void) Register R1
|
char a,b,c; ArglIJment a
int m,|n;
int 1T Stack area
void funcl (char x, chary, char‘ Z)
funcl(a,b,c); { A
Return .
address :
Argument b :
Argument ¢
Register R1 void func2 (int 'S int 4y)
l Argument m ! {
func2 (m,n); Register R2
- T [| it
} v Argument n | ’;

Figure 2.4.4 Example for passing arguments to functions

102

ROM'ing Technology

2.4 Linkage with Assembly Language

Rules for passing return values

All return values except those expressed by a struct or union, are stored in registers.
However, different registers are used to store the return values depending on their data
types.
The return values represented by a struct or union are passed via "stored address and
stack". Namely, an area to store a return value is prepared when calling a function, and
this address is passed via a stack as a hidden argument. The called function writes its
return value to the area indicated by the address placed in the stack when control returns

from

it.

Table 2.4.2 Rules for Passing Return Value

Data type Returning method
char ROL
int
short RO
long
float R2RO
double R3R2R1R0
near pointer RO
far pointer R2RO
struct . .
union Store address is passed via a stack

/OPrototype declaration [T TTTTTTTTTY
int func (int,int);

W

Figure 2.4.5 Example for passing return value

int func2 (int x,int, y)
void main (void) {
{ Register R1
int m,n; I Argument m I
int ans; Register R2
I ! Argument n !
ani: func (m, ul Register RO return X+ y;
} £ —| Returnvalue | v
hen returned value is a struct
struct tag_st{
char moji; _ struct tag_st func (char x,int y)
int suji; Register R1 { f
} ; ! Argument al struct-tag.st-z.;
Register R2
struct tag_st func (|char, int); ! Argument b !
void main (void) Stack area
{ Return
char a ; address
int b;
struct tag_st ret |dafa ; > f‘d‘ir‘?jss{ of
ret.data p...... --P>return z;
r.et_‘ija_ ta = func (a.,-h.) ; ret_data }
} > Body) | 7

103

ROM'ing Technology
2.4 Linkage with Assembly Language

Rules for symbol conversion of functions into assembly language

In NC30, the converted symbols differ depending on the properties of functions. Table
2.4.3 lists the rules for symbol conversion.

Table 2.4.3 Rules for Symbol Conversion

Function type Conversion method

Arguments passed via register Functions are prefixed with "$".

Arguments passed via stack
No argument
#pragma INTERRUPT
#pragma PARAMETER

Functions are prefixed with "_".

Column A measure for calling functions faster

A function call requires stack manipulation for the return values and arguments to be
passed from a function to another. This takes time before the actual processing can be
performed. Consequently, the via-register transfer reduces the time required for
procedures from calling to processing, because it involves less stack manipulation than the
other method.

To reduce this difference in time further, NC30 provides a facility called "inline storage
class". When functions are specified to be an inline storage class, NC30 generates code
for them as macro functions when compiling the program. This means that ordinary stack
manipulation is nonexistent, and that processing in the called function can be executed
immediately after a call.

. . . | Code is generated as user macro.
inline int func (int,int);

inline int func (int x, int y_)—4> _func: .MACRO
{

return (x+vy); mov.w R1,R

} addw R2,

void main (void) .ENDM

{ 4
int m,n;
int ans;

There must be a body definition before a
| function call (within the same file).

ans =func(m,n);

74

Figure 2.4.6 Example for writing inline storage class

104

ROM'ing Technology
2.4 Linkage with Assembly Language

2.4.2 Calling Assembly Language from C Language

This section explains details on how to write command statements for calling an assembly
language subroutine as a C language function.

Passing arguments to assembly language (#pragma PARAMETER)

(#pragma PARAMETER function name (register name,))

A function that is written as shown above sets arguments in specified registers without
following the ordinary transfer rules as it performs call-up operation.
Use of this facility helps to reduce the overhead during function call because it does not
require stack manipulation for argument transfers. However, the following precautions
must be observed when using this facility:
(1) Before writing "#pragma PARAMETER", be sure to prototype declare the specified
function.
(2) Observe the following in prototype declaration:
» Make sure a function arguments are an 8-bit or 16- bit integer or a 16-bit pointer.
Structs and unions cannot be declared as a function return value.
Make sure the register sizes and argument sizes are matched.
Register names are not discriminated between uppercase and lowercase.

If the body of a function specified with this #pragma command is defined in the C
language, an error results.

Be sure to declare the assembler
function's prototype before declaring
#pragma PARAMETER.

/
void asm_func (int,int);
#pragma PARAMETER asm_func (RO, R1)
void main (void) T~ _ ,
Following can be used as register

{ names:

int i) RO, R1, R2, R3,

ROL, ROH, R1L, R1H,

asm _func (i,j); A0, Al

} Note, however, that arguments are
v passed to a function via these registers.

\

Argument i and argument j
are stored in RO and R1,
respectively when calling a
function.

Figure 2.4.7 Example for writing #pragma PARAMETER

105

ROM'ing Technology
2.4 Linkage with Assembly Language

Calling assembly language subroutine

Follow the rules described below when calling an assembly language subroutine from a C
language program.

(1) Write the subroutine in a file separately from the C language program.

(2) Follow symbol conversion rules for the subroutine name.

(3) Declare the subroutine's prototype in the C language program, from which the
subroutine is to be called. At this time, declare the external reference using the
storage class specifer "extern”.

<C language> <Assembly
language>
Prototype declaration of Specification of section
called assembly language (.section)
. External definition of function's
Declaration of argument I
transfer via register beginning label symbol (.glb)
(#pragma PARAMETER) .
_asm_func:
_ Entry processing
of function
Saving and setting FB
asm_func() ; Actual
Setting return value
Exit processing
of function
Restoring FB
v RTS
Always write.

Write if necessary.

Figure 2.4.8 Calling assembly language subroutine

106

ROM'ing Technology

2.4 Linkage with Assembly Language

Example 2.4.1 Calling Subroutine

The program in this example displays count-up results using LEDs. The LED display part
is written in the assembly language and the count-up part is written in the C language.

Then the two parts are linked.

<Count-up part>

Sets the method for
calling assembly
language function.

/OPrototype declaration O
void led (int) ;

#pragma PARAMETE led (A0)

/O Specification of variables used in SB relative
addressing [

#pragma SBDATA counter

<LED display part>

led (counter) : Calls assembly language
() function "led()".

Example 2.4.1 Calling subroutine

static int counter=0; There is no conversion of
. . . subroutine name because #
void - main (void) pragma PARAMETER is
{ specified.
if (counter < 9) {
counter ++ ;
}else {
counter=0;
}

P7 .equ 03edh Sets the allocated area.
.section program Externally defines
subroutine name.

.glb led
led:
Ide.b table[a0] , P7

rs

; LED display data table

.section

table :
.byte 0cOh, 0f9h , 0a4h , ObOh , 099h
.byte 092h, 082h, 0f8h , 080h , 090h

rom_FE , ROMDATA

.end

107

ROM'ing Technology
2.4 Linkage with Assembly Language

Calling a subroutine by indirect addressing

Normally an instruction "jsr" is generated for calling an assembly language subroutine from
the C language. To call a subroutine by indirect addressing using "jsri", use a "function
pointer". However, when using a function pointer, note that no registers can be specified
for argument transfers by "#pragma PARAMETER".

Figure 2.4.9 shows a description example.

Assembly
Count-up Count-down language
source file

Be sure to declare the called subroutine as
an external referenced function in advance.

External declaration of called subroutine

<C language source file> \<Assembly language source file>
/OPrototype declaration O section program
extern int count_up (int); glb $count_up
extern int count_down (int); $count_up: -
. . . W #1,R1
}’O'd main (void) Declares function ;dodv'w Rl,,RO
pointer.
int counter=0; rs
int mode ;
int (JQump_adr) (int); .glb $count_down
$count_down:
if (mode ==0){ sub.w #1,R1

} jump_adr = count_up ; Sets jump address mov.w R1,RO
in function pointer. | 'S
else{

jump_adr = count_down ;

.end
} Arguments and return values /
_ | | are exchanged following NC30's
counter = (Qump_adr) (Tounter) ; | | yransfer rules.

L

Figure 2.4.9 Calling a subroutine by indirect addressing

108

ROM'ing Technology
2.4 Linkage with Assembly Language

Example 2.4.2 Calling a Subroutine by Table Jump

The program in this example calls different subroutines from a C language program
according to the value of "num". In cases where multiple branches are involved like in this
example, use of table jump makes it possible to call any desired subroutine in the same
processing time. However, no registers can be specified for argument transfers by
"#pragma PARAMETER".

Determination
of "num"

"num"= 0| "num"= 1 | "num"= 2| "num"= 3| "num"> 3
Assembly Addition Subtraction Multiplication Division
language source subroutine subroutine subroutine subroutine
file (add_f) (sub_f) (mul_f) (div_f)
<C language source file> <Assembly language source file>
/OPrototype declaration [] .section program
int cal_f(int,int,int); add_f: Specifies located section
- mov.w R1,RO
extern int (gmptol[])(int, int): f’idd-W R2,R0
rts
void main (void) Externally references
{ relevant table name as sub_f:
it x=10,y= Zf;unctlon pointer. mov.w R1,RO
int num, val : sub.w R2,RO
rts
num=2;
if (num<4){ mul_f:
val=cal_f(num,x,y); mov.w R1,RO
} mul.w R2,RO
} rs
int cal_f(m,x,y))
{ - div_f:
int z: mov.w R2,R3
int (Cp)(int,int); mov.w R1,RO
Gets jump address exts.w RO
. Ju . ;
p = jmptbl [W_] divw R3
z=()(X,y); mov.w R2,R0O
return z; rts
} :
7 .section rom_FE , ROMDATA
W .glb _jmptbl
i i i jmptbl:
|Uses function pointer to call subroutine. _jmp word add ¥ Externally declares
| d b f table name.
Use pseudo-instruction ".lword" to register word - sub_
each subroutine's start address. Aword mul_f
Aword div_f
.END 7

Example 2.4.2 Calling a subroutine by table jump

109

ROM'ing Technology
2.4 Linkage with Assembly Language

Example 2.4.3 A Little Different Way to Use Table Jump

Once the internal labels of a subroutine are registered in a jump table, NC30 allows you to
change the start address of the subroutine depending on the mode. Since multiple
processings can be implemented by a single subroutine, this method helps to save ROM
capacity.

Determination
of "mode”
Assembly language

"mode"= 0 source file
/I
. . | Resets counter. |
mode"= 1 S
>
| Counts up. |
"mode"= 2
|
>
"mode"s> 2 Sets return value.
(Stops counting.)
(|
<C language source file> <Assembly language source file>
/OPrototype declaration [J reset: -section program
int clock (int,int); mov.w #OFFFFH.RL
extern int (Ctlock_mode []) (int) ; count:
void main (void) addw #1,R1
{ :
. stop:
int mode ;
int counter=0; mov.w R1,RO
rts
irfn(o:jneO(:j e2 s ' section rom_FE,ROMDATA
counter = clock(mode , counter) ; gl . _clock_mode
} _clock_mode:
} word reset
word count
. . . word stop
|{nt clock(int m,int x) 'END \ .
nz; i i | labels of
int int) - Registers internal labels o
int (Ltp) (int); subroutine in jump table.
p =clock_mode [m];
z=(p)(x);
return z;
s e

Example 2.4.3 A little different way to use table jump

110

ROM'ing Technology
2.4 Linkage with Assembly Language

2.4.3 Calling C Language from Assembly Language

This section explains how to call a C language function from an assembly language program.

Calling a C language function

Follow the rules described below when calling a C language function from an assembly
language program.

(1) Follow NC30's symbol conversion rules for the labels of the called subroutine.

(2) Write the C language function in a file separately from the assembly language
program.

(3) Inthe assembly language file, declare external references using AS30's pseudo-
instruction ".glb" before calling the C language function.

<Assembly language> <C language>

External reference of function's
beginning label symbol (.glb)

Saving registers func (argument)
Setting arguments

Allocating area for storing return
values

JSR _func
(JSR $func)

Freeing area that contains return
values

Freeing argument area

Restoring registers }

Figure 2.4.10 Calling C language function

111

2

ROM'ing Technology

2.5 Interrupt Processing

2.5 Interrupt Processing

2.5.1 Writing Interrupt Processing Functions

NC30 allows you to write interrupt processing as C language functions. There are two

procedures to be followed:

(1) Write interrupt processing functions.

(2) Register them in an interrupt vector table.

This section explains how to write C language functions for each type of interrupt processing.

Writing hardware interrupts (#pragma INTERRUPT)

(#pragma A INTERRUPT A interrupt function name)

When an interrupt function is declared as shown above, NC30 generates instructions to
save and restore all registers of the M16C/60,M16C/20 and the reit instruction at entry and
exit of the specified function, in addition to ordinary function procedures. For both
arguments and return values, void is only the valid type of interrupt processing functions. If
any other type is declared, NC30 generates a warning when compiling the program.

#pragma INTERRUPT intr

void intr (void)

{

Interrupt processing

image

Only the "void" type is valid for both
arguments and return values.

Expansion

.section program

.glb _intr

Saves all registers.

_intr: /

pushm RO,R1,R2,R3,
AO,Al,SB,FB

Interrupt processing

Restores all registers.

popm RO,R1,R2,R3,

A0, A1, SB

reit

, FB

74

Returns by reit instruction |

Figure 2.5.1 An image depicting expansion of interrupt processing function

112

ROM'ing Technology
2 2.5 Interrupt Processing

Writing interrupts that need to be invoked in short time (#pragma INTERRUPT/B)

The M16C/60,M16C/20 has a facility to switch over the register banks while at the same
time protecting register contents, etc., and making it possible to reduce the time until an
interrupt handler is invoked. To utilize this facility, write a command statement as follows:

(#pragma A INTERRUPT/B A interrupt function name)

When an interrupt function is declared as shown above, NC30 generates instructions to
switch over the register banks, in place of instructions to save and restore the registers.
However, since the M16C/60,M16C/20 register banks consist of only bank 0 and bank 1,
only one interrupt can be specified at a time®™°®, Therefore, use this facility for the interrupt
that needs to be invoked in the shortest time possible.

#pragma INTERRUPT/B intr .section program
.glb _intr
L. . — Uses register
void intr (void) Expansion _intr: ’ bank 1.
{ Image fset B
Interrupt processing Interrupt processing

fcr B Returns to register
J 4 ﬁ bank 0.
reit

17‘

Returns by reit instruction |

Figure 2.5.2 An image depicting expansion of fast interrupt processing function

Note: When not using multiple interrupts, this facility can be used in all interrupts.

113

ROM'ing Technology
2.5 Interrupt Processing

Writing software interrupts (#pragma INTCALL)

To use the M16C software interrupts, write a command statement as follows:

(#pragma A INTCALL A INT number A function name)

In software interrupts, arguments can be passed to a function via registers. Furthermore,
any return value except those expressed by a struct or union, can be received from the
called function.

Be sure to declare the function prototype

before declaring #pragma INTCALL.
void call32 (int, int) I
INT number (decimal) |

#pragma INCALL 32 call32 (RO, R1)
Following can be used as register names:

RO, R1, R2, R3,
void main (void) ROL, ROM, RIL, RIH,
{ These arguments are passed to a function
) via these registers.
int m,n;
call32(m,n);

Function "CALL32" is called by INT instruction.

} \
enter #02H] Sets argument in register.
mov.w -2[FB],R1 n
mov.w -2[FB],RO ;m
int #32
exitd %

Figure 2.5.3 Example for writing "#pragma INTCALL"

114

ROM'ing Technology
2.5 Interrupt Processing

2.5.2 Reaqistering Interrupt Processing Functions

For interrupts to be serviced correctly, in addition to writing interrupt processing functions, it is
necessary to register them in an interrupt vector table.
This section explains how to register interrupt processing functions in an interrupt vector table.

Registering in interrupt vector table

When interrupt processing functions are written, they must be registered in an interrupt
vector table. This can be accomplished by modifying the interrupt vector table in the
sample startup program "sect30.inc".

Follow the procedure described below to modify the interrupt vector table.

(1) Externally define the interrupt processing function names using the pseudo-instruction
".glb".

(2) Change the dummy function names "dummy_int" of the interrupts used to interrupt
processing function names.

; variable vector section

.section vector : variable vector table

.org VECTOR_ADR

word dummy_int ; vector (BRK)

.org (VECTOR_ADR +44)

Jword dummy_int ; DMAQO (for user)

Iword dummy_int ; DMAL (for user)

word dummy_int ; input key (for user)

Jword dummy_int ; A-D Convert (for user)

.org (VECTOR_ADR +68)

Iword dummy_int ; uart0 trance (for user)

Iword dummy_int ; uartO receive (for user)

word dummy_int ; uartl trance (for user)

word dummy_int ; uartl receive (for user)

ta0
_ta0 ; TIMER AO (for user)
dummy_int ; TIMER ALl (for user)

- dummy_int ; TIMER A2 (for user)
Registers function "ta0()" in .lword dummy_int ; TIMER A3 (for user)
TAO interrupt. word dummy_int ; TIMER A4 (for user)

Figure 2.5.4 Interrupt vector table ("sect30.inc")

115

ROM'ing Technology
2.5 Interrupt Processing

2.5.3 Example for Writing Interrupt Processing Function

The program shown in this description example counts up the content of "counter" each time an
INTO interrupt occurs.

Writing interrupt processing function

Figure 2.5.5 shows an example of source file description.

/OPrototype declaration LTI T T
void int0 (void) ;

#pragma INTERRUPT intO
{EEEEEEEENEEEEENEENEEEEEEEEEEEENEENEENERREEEEERERRRNRNRREED,

unsigned int counter=0;

void intO (void) /Olnterrupt function O
{
if (counter<9){
counter ++ ;
}
else {
couter =0 ;
}
}
void main (void)
{
INTOIC=1; /O0Setting interrupt level O
asm (" fset i"); [/OEnabling interrupt O
while (1) ; /OInterrupt waiting loop O
}

Figure 2.5.5 Example for writing interrupt processing function

116

ROM'ing Technology
2.5 Interrupt Processing

Registering in interrupt vector table

Figure 2.5.6 shows an example for registering the interrupt processing functions in an

interrupt vector table.

variable vector section

.section
.org

.org
Iword
.lword
.Ilword
.Ilword
.Ilword
Iword
Iword
.lword
.lword
.lword
.Ilword
Iword
.glb

Iword
.lword
.lword

vector

VECTOR_ADR

(VECTOR_ADR + 68)

dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy_int
dummy int
_int0

_int0

dummy_int
dummy_int

; variable vector table

; UARTO trance (for user)

; UARTO receive (for user)

; UARTZ1 trance (for user)

; UART1 receive (for user)

; TIMER AO (for user)

; TIMER ALl (for user)

; TIMER A2 (for user)

; TIMER A3 (for user)

; TIMER A4 (for user) (vector 25)
; TIMER BO (for user) (vector 26)
; TIMER B1 (for user) (vector 27)
; TIMER B2 (for user) (vector 28)

; INTO (for user) (vector 29)
; INT1 (for user) (vector 30)
; INT2 (for user) (vector 28)

Figure 2.5.6 Example for registering in interrupt vector table

117

ROM'ing Technology
2.5 Interrupt Processing

118

Chapter 3

Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.2 Method for Using System Calls

3.3 Development Procedures Using MR30
3.4 Incorporating MR30 by Using NC30

This chapter outlines the functions of the real-time OS (MR30) for
the M16C/60,M16C/20 series and explains the precautions to be
observed when you use the real-time OS while using NC30.

Using Real-time OS (MR30)
3 3.1 Basics of Real-time OS

3.1 Basics of Real-time OS
3.1.1 Real-time OS and Task

Programs using a real-time OS are configured in units of tasks.
This section explains how tasks are handled in the real-time OS (MR30).

Programs configured with tasks

A task refers to one of program modules that are divided by functionality, processing time,
or other units. One task may consist of one function, or may be configured with multiple
functions.

MR30 uses different identification numbers "ID" for each task for the purpose of task
management. The task ID can be any desired value.

Task 3
ID=3

Task 1
/ ID=1
/

Real-time monitor

~>

Task 2
ID=2

>
=%

Task 4
ID=4

Figure 3.1.1 Program configuration with multiple tasks
Task styles
Each task assumes one of the styles listed in Table 3.1.1.

Table 3.1.1 Task Styles

Style that finishes under some
condition

Style that repeats in
endless loop

Style that finishes
void taskl (void)
{
}

void task2 (void)
{
for (55){
it (){

break ;

void task3 (void)

{
for (;;){

121

3

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

Task status

All tasks are managed by the real-time OS. The real-time OS refers to a "system call”, a
request from each task, to determine the task to be executed. The status of each task also
is managed by the real-time OS.

Figure 3.1.2 shows task status in MR30.

READY Gains control of the CPU RUN

Executable state) [“® Executing state
(A A) Relinquishes control of the CPU (g)

Task places itself
in wait state

7 Clears wait state WAIT
(Idle state)

Request from Request from other
other task to clear task for forced wait

forced walt [\ AIT-SUSPEND |
(Forced idle state)

>
Request from

other task for
Request from Request to clear forced
other task for wait state termination
forced wait
- SUSPEND ‘ 2
(Forced idle state)
Request to clear
forced wait
Request from other task for
forced termination > DORMANT o

(Idle state) -t

Invocation from other task
Figure 3.1.2 Each task status (including status transitions)

Especially important among the above states are RUN, READY, and WAIT.

(RUN: This is a state where processing in the task can be executed. Only one task at a)
time can be in this state.

READY: This is a state where the task is waiting to be placed in the RUN state. When a
task in the RUN state changes state, one of the tasks in the READY state enters
the RUN state.

WAIT: This is a state where a task in the RUN state has had its processing stopped by

some cause. When a task in the RUN state goes idle, the real-time OS places

one of the tasks in the READY state into a RUN state.)

122

Using Real-time OS (MR30)
3 3.1 Basics of Real-time OS

Changeover of task status

There are following three events upon which tasks change state:

* When the RUN task has issued a system call
e When a system call is issued in an interrupt program
¢ When a system call is issued in the interrupt program managed by the real-time OS

Thus, tasks are made to change state by issuing a system call, and the task in the RUN
state is changed from one task to another in succession. Then, when a wait time occurs in
the program, the real-time OS executes another processing that is irrelevant to the wait.

Column MR30 and MUITRON specifications ®et)

MR30 is the real-time OS based on "UITRON specifications". The pITRON specifications
are industry standards created in Japan for real-time OSs that are designed specifically for
controlling microcomputers. The following lists the main specification items:

1. Standardization of system call names
2. Definition of task status (RUN, WAIT, and READY are essential)

Note: The HITRON specifications are copyrighted by Dr. K. Sakamura of the University of Tokyo.

123

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

3.1.2 Functions of Real-time OS

The three primary functions of the real-time OS are "task scheduling", "task dispatch”, and
"object management".
This section explains about these functions.

Task scheduling

Several tasks, and not just one, in a system can be in the READY state. However, it is
always only one task that is in the RUN state. Therefore, the real-time OS must choose
one task from those in the READY state that is placed in the RUN state next. This
selection process is called "scheduling”. Among several methods of scheduling, MR30
uses a "priority method".

Priority method: Each task is assigned priority (or weight) and the task with higher
priority than other tasks is placed in the RUN state first. If two or more
tasks with the same priority exist, the task that is placed in the READY
state first is given priority.

Task priorities are set by the user as necessary, and not set by the real-time OS. Priority
resolution among tasks is the most important point in using the real-time OS.

Context and task control block (TCB)

The process of placing a task in the READY state into a RUN state by the real-time OS is
referred to as "dispatching”. When the real-time OS makes this dispatching, the task in the
RUN state is suspended.

This requires that the task's resources (e.g, contents of registers) be saved in some place.
These task resources are called "context”. For the purpose of context management, the
real-time OS prepares as many "task control blocks (TCBs)" as the number of tasks set.

Task Control Block (TCB)

This is a data table that is set for each task managed by the real-time monitor.

Content of TCB Task 1 Task 2
Task status
TCB TCB
Task priority Task 1 Task 1 Task 2 Task 2
Area where task's COd? Codg
stack pointer is J section section
stored
o Task 1 Task 2
Other ! Stack Stack

Figure 3.1.3 Main structure of TCB

124

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

Task dispatch

The following shows the flow of task dispatch.

4 . N\
Dispatch occurs.

The context of the task in the RUN state is saved to the stack.

The current stack pointer is saved to an area in the TCB.

The ID of the next task to be placed in the RUN state is checked.

Based on this ID, a stack pointer is acquired from the TCB of the next task to be
placed in the RUN state.

The context for the next task is acquired from the stack.

Based on the stack pointer, the next task is switched to the RUN state.)

agrwnNE

No

Objects types
The items that can be operated on by using a system call are called "objects”. A task itself
is part of objects because it can be operated on by a system call. Table 3.1.2 lists the
objects other than tasks prepared by MR30.

Table 3.1.2 Objects of MR30

Object name Function

Used to synchronize the timing between tasks. The flag can be set one

Event fla
g event for one bit. (1 word long)

Used to synchronize the timing between tasks. A semaphore is used
Semaphore mainly for exclusive control between tasks. Exclusive control by
semaphore is based on a semaphore counter.

Used to communicate (exchange data) between tasks. One-word long

Mail box
data or start address of data block can be sent to and from a mail box.

A counter, though not an object, is provided inside the TCB to synchronize the timing of
operation between tasks. Each object is managed by an identification number "ID" as for
tasks. The ID can be any value set by the user.

Column Some note about scheduling

In addition to the priority method, there are following methods of scheduling:
* FCFS method (First Come First Service)
—Tasks are switched to the RUN state in the order they go to a READY state.
* Round robin method
—Tasks are switched to the RUN state sequentially in the same way as with the FCFS
method. The difference is that a task in the RUN state is forcibly switched to another at
certain time intervals by the real-time OS.

125

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

Object management
The real-time OS uses a system call to manage the objects.
Table 3.1.3 lists the system calls necessary to manipulate tasks and each object and their
functions.

Table 3.1.3 Main System Calls for Object Manipulation

Classification Object System call Function
Task Task)
sta_tsk() Activates a task (READY state).
management
Terminates its own task normally
ext_tsk()
(DORMANT state).
Task attendant | Task _ .
slp_tsk() Places its own task in WAIT state.

synchronization

wup_tsk() Places WAIT task in READY state.

Synchronization | Event flag Sets an event flag. If there is a task waiting
and set_flg() for an event flag, this system call activates it
communication (READY state).

Waits for an event flag (WAIT state). If the
wai_flg() event flag is already set, this system call
continues processing.

Semaphore Frees a semaphore (incrementing
semaphore counter by 1). If there is a task
sig_sem() waiting for a semaphore, this system call
activates it (READY state). In this case, the
semaphore does not change.

If the semaphore counter is already 0, this
system call waits (WAIT state). If not O, it
decrements the semaphore counter by 1
and continues processing.

wai_sem()

Mail box Sends a message to a mail box. If there is
a task waiting for a message, this system
snd_msg() call activates it (READY state) and passes
the message. If there is no waiting task,
the message is kept in the mail box.

Receives a message from a mail box. If
there is no message, this system call waits

rcv_msg() (WAIT state). If there is already a message,
it receives the message and continues
processing.

126

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

3.1.3 Interrupt Management

In MR30, interrupt programs are called "interrupt handlers".
This section explains the types of interrupt handlers available with MR30 and how the OS-
dependent interrupt handler, one of these interrupt handlers, is managed.

Types of interrupt handlers

In MR30, the interrupt handlers are classified by whether or not they use a system call
inside the OS. The interrupt handlers that use a system call internally are called "OS-
dependent interrupt handlers" and those do not are called "OS-independent interrupt
handlers". The following explains the functions of the OS-dependent interrupt handlers.

Table 3.1.4 Types of Interrupt Handlers

Interrupt handler Content

These interrupt handlers use the system calls provided by MR30.

OS-dependent interrupt o] i :
Unlike interrupt programs, they require processing for using system

handler
calls.
OS-independent These interrupt handlers do not use the system calls provided by
interrupt handler MR30. They function in the same way as interrupt programs.

OS-dependent interrupt handlers

Unlike tasks, the OS-dependent interrupt handlers are not the subject of dispatching or
scheduling operation; therefore, no TCBs are created for them.

The following describes the processing procedures for the OS-dependent interrupt
handlers:

Registers are saved.

Handler is executed (using system call).

Registers are restored.

OS-dependent interrupt handler terminating system call "ret_int"

) To terminate an OS-dependent interrupt handler, MR30 uses a special system call
named "ret_int". Scheduling and dispatching are performed in this system call.
Since a dispatch is performed when an OS-dependent interrupt handler is
terminated, the task that is in the RUN state at termination of the handler is not
necessarily the one that was in the RUN state when an interrupt occurred.

PonpE

127

Using Real-time OS (MR30)
3 3.1 Basics of Real-time OS

Executing OS-dependent interrupt handler

Figure 3.1.4 shows how an OS-dependent interrupt handler is executed in comparison with
invocation by a system call.

<Invocation by system call> : <Invocation from handler>
G G |

Registers saved and
stacks switched

| Registers saved |

System call | i 5 [:
issued : : .
. System call ' : System call (Note) :
H processed : issued and task :
H | ' wait cleared
; [

Execution tasks | Registers restored |

: switched ' I

| - Handler -

' Stacks switched ' PR Execution tasks

: 4 h ! terminating [hed and di h
: and registers : system call switched and dispatc
: restored :

RTM: Acronym of Real-time Monitor

Figure 3.1.4 Executing OS-dependent interrupt handler during task execution

Note: The system calls that can be used in interrupt handlers are limited. Be sure to use the system calls that are usable in interrupt
handlers.

128

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

Management of multiple interrupts

Multiple interrupts could occur (e.g., an interrupt of higher interrupt enable priority may
occur when executing an OS-dependent interrupt handler).

Figure 3.1.5 shows how OS-dependent interrupt handlers operate when multiple interrupts
occur.

<Task 1> <OS-dependent interrupt handler 1> <OS-dependent interrupt handler 2>
(Priority = low) (Priority = high)

1]

| Registers saved |

System call issued

| Registers saved |
I
System call
issued
Interrupt Interrupt |

| Registers restored |
I

| ret_int |

| Registers restored |

| ret_int | Dispatch not performed.
\ Returns to the first interrupt handler.

Dispatch occurs.
Task switching in handlers 1 and 2 are performed here.

Figure 3.1.5 Execution of OS-dependent interrupt handlers when multiple interrupts occur

When multiple interrupt occur, the system call "ret_int" in the OS-dependent interrupt
handler that was invoked for an interrupt of high priority does not perform task dispatch.
This is because all processing of the OS- dependent interrupt handler must be completed
before returning to the task.

129

Using Real-time OS (MR30)
3.1 Basics of Real-time OS

3.1.4 Special Handlers

In addition to the interrupt handlers described above, MR30 has some other handlers that utilize
the functions of the real-time OS.
This section explains about such special handlers.

System clock interrupt handler
The system clock interrupt handler is a special handler provided by the real-time OS. This
handler is used for time management by using one hardware timer as the system clock
exclusively for this purpose.

Table 3.1.5 Interrupt Handler Provided by Real-time OS

Handler name Function Remark

This handler is provided by the real-time
monitor for timer interrupts. Any timer can be
chosen for this purpose. This timer is required
when using a time management function of the
OsS.

One timer is occupied for
this purpose. The timer
also can be disabled
from use.

System clock
interrupt handler

The cycle time of the system clock interrupt handler (i.e., timer interrupt generation
intervals) can be set as desired by the user.

Special handlers

All handlers listed in Table 3.1.6 are invoked as part of the system clock interrupt handler.
For this reason, system calls can be used in these handlers.

Table 3.1.6 Special Handlers

Handler name Function Remark

Invoked from inside the system clock interrupt
handler periodically at time intervals set. Since
Cyclic handler this handler functions as part of the system Prepared by the user.
clock interrupt handler, it assumes the form of a
subroutine.

Invoked from inside the system clock interrupt
handler only once in a set duration of time.
Alarm handler Since this handler functions as part of the Prepared by the user.
system clock interrupt handler, it assumes the
form of a subroutine.

130

3

Using Real-time OS (MR30)

3.2 Method for Using System Calls

3.2 Method for Using System Calls

3.2.1 MR30's System Calls

This section explains about the system calls that are required when using the real-time OS by
describing in which form MR30 is supplied and how it can be built into a system.

Supplied form of MR30

MR30 is supplied in library form. This means that the library of MR30 is built into a system

only when linking it.

Each system call of MR30 constitutes a library module.

Figure 3.2.1 shows the system call library provided by MR30.

Event
flag

Semaphore

Mail box

Task
management

Task attendant
synchronization

Time
management

Version
management

Scheduler

Interrupt
processing /

Figure 3.2.1 System call library provided by MR30

Incorporation into a system

MR30 consists of a library of each system call. Therefore, when linking the entire system,
only the system calls written in the user program are built into the system. Not all of MR30

is built into the system.

When viewed from the program side, all system calls are handled as external functions
(i.e., functions prepared by MR30).

131

Using Real-time OS (MR30)
3.2 Method for Using System Calls

3.2.2 Writing a System Call

This section explains how to write system calls necessary to use the real-time OS by using the C
language.

Basic method for writing a system call

All system calls are handled as functions. Therefore, the method for using system calls in a
program is the same as the one normally used for function calls.

#include <mr30.h> |

void task1 (void) I Include file required for using MR30 |
{

Ip_tsk(); i -
) slp_tsk()] Places its own task in WAIT state. |

4

Figure 3.2.2 Writing a system call

System call parameters

Write the parameters for a system call as arguments of a function.

Include file required for using MR30
#include <mr30.h> /IJ
|

#include "id.h" Include fi red f oulati
void task2 (void) ﬂ nclude file required for manipulating

(objects
wup_tsk (ID_taskl); -
} w Activates a task (READY state).

Figure 3.2.3 Writing a system call which has parameters

Object specification

When using system calls in MR30 that manipulate objects, specify the ID of the object. In
MR30, an object name is used for this ID to indicate it in a visually understandable manner.
Although a simple numeric value can be used to specify the ID, Mitsubishi recommends
using this method for better readability of the program.

Method for specifying ID ID_[object name]
- Set any object name as desired.

132

Using Real-time OS (MR30)
3.2 Method for Using System Calls

Error code of system calls

All return values of system calls constitute the error codes of system calls. Specific
character strings are used for these error codes also, for easy identification.
Table 3.2.1 lists the error codes of system calls.

Table 3.2.1 Error Code List Mo®©

Character string Meaning
E_OK Terminated normally.
E_OBJ Object status is invalid.
E_QOVR Queuing or nesting overflowed.
E_TMOUT Polling failed or timed out.
E_RLWAI Wait state forcibly cleared.

These error codes can be used to choose the processing to be performed after using a
system call. Figure 3.2.4 shows an example for using error codes for this purpose.

\) Include file that is required by using MR30.

In MR30, arbitrary characters are used to define data type
in system call.

#include < mr30.h

void taskl (void)

{
ER err_code;
err_code = slp_tsk () ;
if (err_code ! =E_OK) {

ext tsk () ;

}

}

) Places its own task in WAIT state. |

J Determines error code after clearing WAIT. |

Error codes of slp_tsk() are:
E_OK and E_RLWAI

74

Figure 3.2.4 Utilization of error code

Note: Usable error codes vary with each system call.

133

Using Real-time OS (MR30)
3.2 Method for Using System Calls

Column Defined character strings
MR30 has defined character strings regarding the data types of system call parameters
and specific other data types. These character strings are standardized to maintain
compatibility between the real-time OSs based on pITRON specifications.

Table 3.2.2 Data Types and Characters

Specific data

Signed 8-bit integer B |Signed 16-hit integer H | Signed 32-bit integer w

Unsigned 8-bit integer | UB |Unsigned 16-bit integer | UH | Unsigned 32-bit integer | UW

Pointer to unmatching

VP
data types
Parameter data
Object ID ID |[Error code ER | Task priority PRI

134

Using Real-time OS (MR30)
3 3.3 Development Procedures Using MR30

3.3 Development Procedures Using MR30

3.3.1 Files Required during Development

When developing a program using MR30, there must be a "startup program" and an "object
definition file" available, in addition to the program itself.
This sectio