VANV S H3SN

MITSUBISHI SEMICONDUCTORS

MELPS 7700

MITSUBISHI
ELECTRIC

Foreword

Foreword

This manual has been prepared to enable the users of the
Series MELPS 7700 CMOS 16-bit microcomputers to better
understand the instruction set and the features so that they can
utilize the capabilities of the microcomputers to the fullest. This
manual presents detailed descriptions of the instructions and ad-
dressing modes available for the Series MELPS 7700 micro-
computers.

For the hardware descriptions of the Series MELPS 7700 micro-
computers and descriptions of various development support
tools (e.g., assembler, debugger), please refer to the user's
manuals and operating guidebooks for the respective hardware
and software products.

Contents

2. Register Configuration in CPU
2.1 Accumulator
2.2 Index Register X
2.3 Index Register Y
2.4 Stack Pointer

3. Addressing Modes

3.1 Addressing Mode

4. Instructions

4.1 Instruction Set

5. Notes for Programming

6. Instruction Execution Sequence

Contents
Page
1. Introduction of Series MELPS 7700 Software 1
2
2.5 Program Counter
2.6 Program Bank Register
2.7 Data Bank Register
2.8 Direct Page Register
2.9 Processor Status Register
8
3.2 Explanation of Addressing Modes
52
4.2 Description of Instructions
165
167
6.1 Bus Interface Unit
6.2 Change of the CPU Basic Clock ¢cru
6.3 Instruction Execution Sequence
188

Appendixes

A. CPU Instruction Execution Sequence for each Addressing Mode 188

" B. Series MELPS 7700 Machine Instructions
C. Series MELPS 7700 Instruction Code Table

252
266

Introduction of Series MELPS 7700 Software

1. Introduction of Series MELPS 7700 Software

The software for the Series MELPS 7700 16-bit CMOS microcomputers was developed by
making is numerous enhancements on the software for the Series MELPS 740 8-bit microcom-
puter which are based on Mitsubishi Electric Corporation’s proprietary designs. The enhance-
ments include support of word (16-bit) operations and linear accessing of up to 16M bytes of
memory space.

The new software’s compact and easy to use instruction set and the support of powerful address-
ing modes will significantly increase

‘The Series MELPS 7700 microcomputers offer the following features

Upward compatibility for the Series MELPS 740.

Powerful addressing modes and fast and compact instruction set.

Direct page mapping function and memory oriented software system by direct paging.
Byte and word operations can be selected at will by the m flag.

The usual 64K bytes program memory boundary can be ignored for the practical
purposes,and programs can be written to utilize the full 16M bytes of memory space. For
data memory, linear as well as bank memory accessing are supported.

Bit manipulation instructions and bit test and branch instructions can be used for memory
and I/O accessing of the entire 16M bytes space.

Block transfer instruction capable of handling blocks of up to 64K bytes each.
Improved stack accessing capability. '

Decimal arithmetic instruction execution requiring no software compensation.

The performance of the systems based on the Series MELPS 7700 microcomputers, whether
used as advanced 8-bit microcomputer or next-generation 16-bit one.

Register Configuration

2. Register Configuration

The central processing unit (CPU) of each Series MELPS 7700 microcomputer has 10 internal
registers (See Fig.2.1). Each of these registers is described below

2.1 Accumulator (Acc)
(1) Accumulator A (A)

The accumulator A is the main register of the microcomputer, and data processing such as arith-
metic calculations, data transfer and input/output operations are executed via this accumulator.
It consists of 16-bit register, but it can be used as an 8-bit register by setting the data length se-
lection flag m in the processor status register PS. The flag m is described in detail in a later sec-
tion. The flag m value of “0” specifies 16-bit data length, and “1” specifies 8-bit data length.
When operating under 8-bit data length setting, only the lower 8 bits of the accumulator A are
used and the upper 8 bits do not change.

- (2) Accumulator B (B)

The accumulator B is a 16-bit register whose function is equivalent to that of the accumulator A.
The Series MELPS 7700 instructions can use the accumulator B instead of the accumulator A.
Note, however, that use of the accumulator B requires more instruction bytes and execution
cycles than when using the accumulator A.

2.2 Index Register X (X)

The index register X is a 16-bit register, but it can be used as an 8-bit register by setting the index
register length selection flag x in the processor status register PS. The flag x is described in
detail in a later section. The flag x value of “0” specifies 16-bit index register length, and “1”
specifies 8-bit index register length. When operating under 8-bit index register length setting, only
the lower 8 bits of the index register X are used and the upper 8 bits do not change.

In an addressing mode in which the index register X is used as the index register, the address
obtained by adding the contents of this register is accessed. For the block transfer instructions,
MVP and MVN, the contents of the index register X become the lower 16 bits of the transfer-from
address and the byte-3 of the instruction becomes the upper 8 bits.

2.3 Index Register Y (Y)

The index register Y is a 16-bit register whose function is equivalent to that of the index register
X. As in the case of the index register X, the index register length selection flag x can be used
to use only the lower 8 bits of the index register Y. For the block transfer instructions, MVP and
MVN, the contents of the index register Y become the lower 16 bits of the transfer-to address and
the byte-2 of the instruction become the upper 8 bits.

Register Configuration

Negative Flag

Overflow Flag

Processor Interrupt Priority Level

bi5 b8 b7 bo
AH AL Accumulator A (A)
b15 b8 b7 b0
B BL Accumulator B (B)
b15 b8 b7 bo '
XH X Index Register X (X)
b15 b8 b7 bo
YH Yo Index Register Y (Y)
b15 b8 b7 b0
SH S. Stack Pointer (S)
b7 bo
DT Data Bank Register (DT)
b15 b8 b7 b0
PG PCH PCL Program Counter (PC)
b7 bo
Program Bank Register (PG)
b15 b8 b7 b0
DPRH DPRL Direct Page Register (DPR)
b15 b8 b7 b0
PSH PSL Processor Status Register (PS)
Mot b10 8 b7 bo |
0, 0000 IPL N V. m| x D Z | C
Carry Flag
Zero Flag

Interrupt Disable Flag
— Decimal Operation mode Flag

— Index Register Length Selection

Flag

Data Length Selection Flag

Fig. 2.1 CPU Register Model

Register Configuration

2.4 Stack Pointer (S)

The stack pointer (S) is a 16-bit register, and it is used when calling a subroutine, at the time of
interrupt processing and when using one of the stack addressing modes. The contents of the
stack pointer specifies the address (stack area) where the memory (RAM) registers that must be
saved are to be stored.)

When an interrupt is received, the contents of the program bank register are saved at the address
specified by the stack pointer's value, and the stack pointer's value is decremented by 1.
Similarly, the contents of the program counter and the processor status register are saved in the
order of lower bytes first (PC,, PC, PS,, PS). Thus, the value of the stack pointer after an
interrupt has been accepted will be 5 less than the value before the interrupt acceptance. ‘When
the interrupt processing is completed and the control is returned to the original routine, the
registers that had been saved to the stack area are restored in the reverse order of the saving
operation, and the stack pointer's value is restored to that before the interrupt was accepted.
Similar operations are executed when a subroutine is called, except that the processor status
register (and the program bank register for some addressing modes) is not saved.

The registers other than those indicated above are not saved when an interrupt is invoked or
when a subroutine is called, so that provisions must be made in the application programs to save
the.registers if necessary. Also note that the stack pointer must be initialized after the microcom-
puter is reset, because its content is indeterminable after reset operation. Normally, the highest
address of the internal RAM is set in the stack pointer. The contents of the stack area will change
by nesting of subroutines and acceptance of multiple interrupts, so that the subroutine nesting
levels must be chosen carefully so as not to destroy the integrity of RAM data.

2.5 Program Counter (PC)

The program counter (PC) is a 16-bit register that contains the lower 16-bit values of the 24-bit
program memory address of the instruction to be executed next.

2.6 Program Bank Register (PG)

The program bank register (PG) is an 8-bit register that contains the upper 8-bit (bank) value of
the 24-bit program memory address of the instruction to be executed next. When a carry is gen-
erated by incrementing of the program counter’s content or when a carry or borrow is generated
by addition or subtraction of an offset value to the program counter’s content by execution of a
branching instruction, for example, the program bank register's content is automatically incre-
mented or decremented by 1 so that the bank boundary needs not be considered for application
programming.

b23 b15 b7)
| PG PCH | PCL
b7 b0 b15 b8 b7 b0

Register Configuration

~ 2.7 Data Bank Register (DT)

The data bank register (DT) is an 8-bit register. Its contents are interpreted as the upper 8 bits
(bank) of a 24-bit memory address under certain addressing modes.

2.8 Direct Page Register (DPR)

The direct page register (DPR) is a 16-bit register, which allows specification of a 256 byte space
called a direct page in bank-0. This area can be accessed by 2 bytes in the direct page
addressing mode. The contents of the direct page register specify the least-significant (base)
address of the direct page area. A value in the range of 01e-FFFF1s may be set in the direct page
register. When a value of or higher than FFO116 is set in the direct page register, the direct page
area will cross over the bank-0 and bank-1 boundary. Normally, the lower 8-bit value of the direct
page register is set to 001e since that reduces the number of cycles required for address genera-

tion.
0000001 00000016 |
: When DPR=00001s
L ___|0000FFs _|
_______ 0001236 |
When DPR=01231s (Note 1)
Bank-0 L]ooo2226 |
Direct page area
| .. .| OOFFD61s
| OOFFFFie | e : When DPR=FFD61s (Note 2)
01000016 .
oo] 010FD51s
Bank-1
(Note 1) Cycles-count is incremented by 1 when the lower 8-bit of DPR is not 001s.
(Note 2) Direct page is specified across bank-0 and bank-1 when DPR value is FFO116 or higher.

Fig. 2.2 Setting Direct Page by Direct Page Register

Register Configuration

2.9 Processor Status Register (PS)

The processor status register (PS) is an 11-bit register, and it consists of flags that specify the
status immediately after operation and bits that set the processor interrupt priority level. The C,
Z, V and N flags enable execution of branching instructions depending on the flag values. Each
bit of the processor status register is explained below.

bit_ 16 14 13 12 11 10

9 ¢ 7 6 5 4 3 2 1 O
folololofo] L [NJv[m|[x|D| I[z]c| Processor Status Register (PS)

(Note) Bits 11-15 are fixed at 0.

[Bit-0] Carry Flag (C)

This bit is the carry flag which holds the carry or borrow from the arithmetic logic unit (ALU) after
arithmetic operation. It is also affected by the shift and rotate instructions. This flag can be
directly set by the SECand SEP, and cleared by CLC and CLP instructions.

[Bit-1] Zero Flag (Z)

This bit is set 1 when the arithmetic operation or data transfer result is 0, and it is set 0 when
such result is not “0”. This flag is invalid for ition (ADC) instruction in th imal-
mode. This flag can be directly set by SEP and cleared by CLP instructions.

[Bit-2] Interrupt Disable Flag (I)

This is the flag that is used to disable all interrupts (except the interrupts by the watchdog timer,
BRK instruction and division by zero). When this flag is “1”, interrupts are disabled. This flag is
set to “1” automatically when an interrupt is accepted, inhibiting multiple interrupt acceptance.
This flag can be set using the SEI and SEP, and cleared using the CLI and CLP instructions.

[Bit-3] Decimal Operation Mode Flag (D)

This flag is used to determine whether to execute addition and subtraction in the binary-mode
or in the decimal-mode. “0” specifies the ordinary binary mode. When this flag is set to “1”, ad-
dition/subtraction is executed with 1 word as a 2- or 4-digit decimal value (2- or 4-digit selection
is made by the data length selection flag m). Decimal alignment is performed automatically.

N h imal-m n nl he AD nd SBC instructions.

This flag can be set by the SEP and cleared by the CLP instructions.
B his fl

[Bit-4] Index Register Length Selection Flag (x)

This flag specifies whether to use the index register X or Y in the 16-bit index register length or
in the 8-bit index register length. “0” specifies the 16-bit length mode, and “1” specifies the 8-
bit length mode. This flag can be set by the SEP, and cleared by the CLP instructions.

Register Configuration

[Bit-5] Data Length Selection Flag (m)

This flag specifies whether to use the 16-bit data length or the 8-bit data length. "0" specifies
16-bit, and "1" specifies 8-bit data length. This flag can be set by the SEM and SEP, and cleared
by the CLM and CLP instructions.

[Bit-6] Overflow Flag (V)

The overflow flag has a meaning when adding or subtracting 1 word as a signed binary number.
This flag is set 1 when the flag m is set to "0" and the result of addition or subtraction is outside
the range -32768~+32767, and it is set 0 otherwise. When the flag m is set to "1", this flag is
set 1 if the result of addition or subtraction is outside the range -128~+127 and set Ootherwise.
This flag can be directly set by the SEP, and cleared by the CLV and CLP instructions. This flag
is meaningl in th imal ration _mode.

[Bit-7] Negative flag (N)

The negative flag (N) is set 1 when the result of data transfer is negative (bit-15 of data is “1”
when the flag m is “0”, or bit-7 of data is “1” when the flag m is “1”), and it is set 0 otherwise.
This flag can be directly set by the SEP, and cleared by the CLP instructions. This flag is
meaningless in the decimal operation mode.

[Bit-8~Bit-10] Processor interrupt priority level (IPLo~IPL2)

The processor interrupt priority level (IPL) consists of 3 bits, and these 3 bits enable determination
of 8 processor interrupt priority levels (level-0 ~ level-7). An interrupt is allowed only when its
interrupt priority level is higher than the IPL value. When an interrupt is generated, IPL is saved
to the stack area, and the priority level of the allowed interrupt is set in IPL.

There is no instruction that can directly set or clear IPLo~IPL2. Therefore, in order to alter the
IPL contents, the desired value must be first stored in the stack and then the processor status
register contents altered using the PUL or PLP instruction.

Addressing Modes

3. Addressing Modes
3.1 Addressing Mode

When executing an instruction, the address of the memory location from which the data required
for arithmetic operation is to be retrieved or to which the result of arithmetic operation is to be
stored must be specified in advance. Address specification is also necessary when the control
is to jump to a certain memory address during program execution. Addressing refers to the
method of specifying the memory address.

The Series MELPS 7700 microcomputers support 28 different addressing modes, offering ex-
tremely versatile and powerful memory accessing capability.

3.2 Explanation of Addressing Modes

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode 9

Immediate addressing mode 10
Accumulator addressing mode 1
Direct addressing mode 12
Direct bit addressing mode 13
Direct indexed X addressing mode 14
Direct indexed Y addressing mode 16
Direct indirect addressing mode 17
Direct indexed X indirect addressing mode 18
Direct indirect indexed Y addressing mode 21
Direct indirect long addressing mode 24
Direct indirect long indexed Y addressing mode 25
Absolute addressing mode 28
Absolute bit addressing mode 30
Absolute indexed X addressing mode 31
Absolute indexed Y addressing mode 33
Absolute long addressing mode 35
Absolute long indexed X addressing mode 36
Absolute indirect addressing mode 37
Absolute indirect long addressing mode 38
Absolute indexed X indirect addressing mode 39
Stack addressing mode 40
Relative addressing mode 42
Direct bit relative addressing mode 43
Absolute bit relative addressing mode 45
Stack pointer relative addressing mode 47
Stack pointer relative indirect indexed Y addressing mode 48
Block transfer addressing mode 50

Implied

Mode : Implied addressing mode

Function : The single-instruction inherently address an internal register.

Instruction: BRK, CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
RTI, RTL, RTS, SEC, SEIl, SEM, STP, TAD, TAS, TAX,

TAY, TBD, TBS, TBX, TBY, TDA, TDB, TSA, TSB, TSX,
TXA, TXB, TXS, TXY, TYA, TYB, TYX, WIT, XAB

ex. . Mnemonic Machine Code
CLC 1846

sIINEEEEENEEEREER

<IINEEEEEEEREREED

ex. : Mnemonic Machine Code ex. Mnemonic Machine Code
TXA 8As TXA 8Ass
(m=1,x=0) (m=0,x=1)
X
| l | x| | |
The upper-byte
is not transferred. \L

AI l I Alooooooool I

(Note) When the data length differ between the transfer-from and trans-
fer-to locations, data is transferred at the data length for the
transfer-to location. If, however, the index register is specified as
the transfer-to location and the x flag is set to 1, 0016 is sent as

the upper byte value.

Immediate

Mode

Function

Immediate addressing mode

the bank boundary.

A portion of the instruction is the actual data. Such instruction code may cross over

Machine Code

6945 B7:6 A5

Program
bank-PG

Machine Code
A2, B7.¢ A5

Instruction: ADC, AND, CLP, CMP, CPX, CPY, DIV, EOR, LDA, LDT,
LDX, LDY, MPY, ORA, RLA, SBC, SEP
ex. : Mnemonic Machine Code ex. * Mnemonic
ADC A,#0A5H 69,5 A5 ADC A,#0A5B7H
(m=1) (m=0)
Memory Memory
/_\/ /_/
——————— 0000, R 0000,
Program
8-bit width bank-PG Op Code (69;¢)
A—A+C+ Op Code (69,¢) Program 16-bit width Operand (B746) Program
-~ Operand (A5,;) Bank Register A‘—A+C+1A5.s; B7 I(— | Operand (AS;¢) Bank Register
_______ FFFF,] FFFF,
N
/_
ex. * Mnemonic Machine Code ex. * Mnemonic
LDX #0A5H A2;5 A5 LDX #0A5B7H
(x=1) (x=0)
Memory Memory
T o0 | e 0000,
Program
bank-PG
. 16-bit width Op Code (A2:e)
8-bit width Op Code (A2,¢) Pro
gram Operand (B7,¢) Pro
- -) <~|a P gram
X A5, Operand (AS5,g) Bank Register X { Operand (A5,6) Bank Register
_______ FFFFq FFFFq

Program
bank-PG

10

Accumulator

ex.

ex.

Mode : Accumulator addressing mode
Function : The contents of accumulator are the actual data.

Instruction: ASL, DEC, INC, LSR, ROL, ROR

: Mnemonic Machine Code

ROL A 2A¢
(m=1)
b7 b0
Carry flag Accumulator A
. Mnemonic Machine Code
ROL A 2A
(m=0)

B ——

Carry flag Accumulator A

Direct

Mode Direct addressing mode
Function The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction to the contents of the direct page register become the ac-
tual data. If, however, addition of the instruction’s second byte to the direct page
register’s contents result in a value that exceeds the bank-0 range, the specified lo-
cation will be in bank-1. ,
Instruction: ADC, AND, ASL, CMP, CPX, CPY, DEC, DIV, EOR, INC,
LDA, LDM, LDX, LDY, LSR, MPY, ORA, ROL, ROR, SBC,
STA, STX, STY
ex. : Mnemonic Machine Code ex. Mnemonic Machine Code
ADC A,02H 6515 0246 ADC A,02H 65,5 02,6
(m=1) (m=0)
Memory Memory
0000, 0000,
A-AtCH Bank-0 AAtct DATAL 1236,
| DATA |<- DATA 1236, ‘_ DATA
0 ___ FFFF,q
T Direct Page
_______ FFFF,¢ Op Code (654¢) Register
A Operand (025) + [12346 |= 1236,
i T Direct Page
Op Code (65,¢) Register | —~——
Operand (02) + [12346 |=1236,
L~ —
ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
LDX 02H Abig 02,6 LDX 02H Ab6,g 02,4
(x=1) (x=0)
Memory Memory
0000, 0000,
Bank-0 Bank-0
P - DATA
X | DATA I DATA 1236, MO eyerwnrveen B { . 1236,
I___A_] DATA_
] FFFFy | | L _ __ | FFFF,
R L ~ N DI
Direct Page lrec? Page
Op Code (Aby) Register O Code (ASs) n el
Operand (02,) | + | 123445 | = 1236, Operand (02¢) [12341 | = 123616
L — T ~————

12

Direct Bit

Specifies the bank-0 memory location by the value obtained by adding the instruc-

tion's second byte to the direct page register's contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
of the instruction (third byte only when the m flag is set to 1). If, however, addition
of the instruction’s second byte to the direct page register’s contents result in a value
that exceeds the bank-0 range, the specified location will be in bank-1.

Mode Direct bit addressing mode
Function
Instruction : CLB, SEB
ex. . Mnemonic Machine Code
CLB #5AH, 04H 14,6 04,5 5A,
(m=1)
Memory

2P 2[2[2| oot238, <— (Bank-0
Direct Page
Op Code (1444) Register

Operand (04,¢)
Operand (5A:¢)

+ [1234,; |=1238,

L

i

?[0]2[o]o] 2[0]] oo1238,

ex.

: Mnemonic

CLB #5AA5H,

(m=0)

Memory

Op Code (144)

Machine Code

04H 14,6 04,5 A5, 5A¢
001238, < Bank-0
Direct Page
Register

Operand (04,¢)

+ [12345 |=1238,,

Operand (A5,g)
Operand (5A,¢)

L ~——

o

o
o
o
o
o

)

ol2]ofo]2]0]>

001238,

13

Direct Indexed X

Mode Direct indexed X addressing mode

Function The contents of the bank-0 memory location specified by the result of adding the
second byte of the instruction, the contents of the direct page register and the con-
tents of the index register X become the actual data. If, however, addition of the
instruction’s second byte, the direct page register's contents and the index register
X’s contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction: ADC, AND, ASL, CMP, DEC, DI, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA, STY
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,1EHX 7546 1E4¢ ADC A,1EH,X 7516 1Eq6
(m=1,x=1) (m=0,x=1)
Memory Memory
0000, 00006
A—A+C+ Bank-0
A—A+C
| DATAI - DATA 1338, i - + DATA, 1338,
| DATAy | DATALI‘_ DATAR
_______ FFFFis | | FFFF,
L L L J
) " Direct Page Index T T Direct Page Index
Op Code (75:6) Register Register X Op Code (75:6) Register Register X
Operand (1Eqg) | +[123446 |+| ! E646|= 13385 Operand (1E,5) | +[123446 |+ 1E64s| = 13384,
——— L -
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,1EH,X 75,6 1Eqg ADC A,1EH,X 75:6 1Eq
(m=1,x=0) (m=0,x=0)
Memory Memory
0000,
A—A+CH+
[oaTA] < DATA A—Atct DATA 4338,
(o Toma] - (|
H

Op Code (75,¢)

T pirect Page

Index
Register X

Register

Operand (1E¢)
/_\—/

+[1234,6 |+ = 4338,

FFFF,

T Direct Page
Register Register X

+[123445 |+ [30E6,, | = 4338,

Index

Op Code (754¢)
Operand (1E,q)

|

14

Direct Indexed X

ex. . Mnemonic Machine Code
LDY 1EHX B4ss 1E46
(x=1)
Memory

0000,
Bank-0

Y<|DatA |« DATA 1338,
_______ FFFF,q
S it
Direct Page Index
Op Code (Bdg) Register Register X
Operand (1E,q) + [1234, |+ TE6,s] =1338,
ex. : Mnemonic Machine Code
LDY 1EH,X B4, 1E.¢
(x=0)
Memory
0000,
Bank-0
Y< | DATA, 1 DATA, | < DATA, 433816 <1
FFFF,s
-]
Direct Page Index
Op Code (B4,¢) Register Register X
Operand (1E,q) + 1234.5J+ 30E6,, | = 4338,

Direct Indexed Y

Mode : Direct indexed Y addressing mode

Function : The contents of the bank-0 memory location specified by the result of adding the sec-
ond byte of the instruction, the contents of the direct page register and the contents
of the index register Y become the actual data. If, however, addition of the instruc-
tion’s second byte, the direct page register's contents and the index register Y's
contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction: LDX, STX

ex. . Mnemonic Machine Code
LDX 02H,Y B64¢ 02
(x=1)
M
ooy 0000,

X< | DATA l - DATA 131C,q

_______ FFFF,q

= <+

) Direct Page Index

Op Code (B6,6) Register Register Y
Operand (02,6) | +[1234, |+ =131Cy
L ~—~——
ex. . Mnemonic Machine Code
LDX 02H,Y B6:s 024
(x=0)
Memory
0000,

Bank-0

DATA_ 131C,q
X | l
<| PATA, | DATA, <—{ DATA.

——————— FFFFyq

Direct Page Index

Op Code (B6,g) Register Register Y
Operand (02y5) +[1234, | + [00E6, |= 131C,¢
L ~—

Direct Indirect

Mode

Function

Instruction :

Direct indirect addressing mode

The value obtained by adding the instruction’s second byte to the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte
and the direct page register's contents exceeds the bank-0 range, the specified
location will be in bank-1.

ADC, AND, CMP, DIV,

ex. . Mnemonic
ADC A,(1EH)
(m=1)

Memory

Machine Code
72,6 1E¢

= 1252, DATAT (014¢)
1253, DATATL (12,6)
Direct Page
Register Op Code (724¢)
— | 1234,s | + Operand (1E,q)
3 T
______ Data Bank
A—A+C+ Register-
DATA | — DATA 1201,¢
/‘\/

EOR, LDA, MPY, ORA, SBC, STA
ex. : Mnemonic Machine Code
ADC A, (1EH) 7216 1Eq¢
(m=0)
Memory
> 1252,,| DATAI (01,5) L Bank-0
1253,¢ DATAIl (1246)
N I
Direct Page
Register Op Code (72,4)
L— [1234, | + Operand (1Eqg)
NN 3
l __ __ __ __ __ _| DataBank
Register
A—A+C+
DATA, DT | 1201 -
[Loa] - | o
DATA,

17

Direct Indexed X Indirect

Mode Direct indexed X indirect addressing mode
Function The value obtained by adding the instruction’s second byte, the contents of the direct
page register and the contents of the index register X specifies 2 adjacent bytes in
memory bank-0, and the contents of these bytes in memory bank-0, and the contents
of these bytes in memory bank-DT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction’s second byte,
the direct page register's contents and the index register X's contents exceeds the
bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code
ADC A, (1EH, X) 61,5 1E¢g
(m=1,x=1)
Memory
0000,
Bank-0
DATA T (0046) 1338,
DATATL (144)
——————— FFFF 6
_______ Direct Page Index
Op Code (61,¢) Register Register X Program
Operand (1Eys) +[1234, |+ | 1 E6ys | =13384 bank-PG
\ Data Bank
Register
A~—A+c+| DATA |<— DATA 140046
/—\/

18

Direct Indexed X Indirect

ex . Mnemonic Machine Code
ADC A, (1EH, X) 6146 1Eqs
(m=0,x=1)
Memory

DATAL (0046)
DATAL (14,4)

Op Code (61,g)

0000,

Bank-0

1338,

FFFF,,

Direct Page Index
Register Register X

Operand (1E4g)

+[1234 |+[T EG‘_5:|=1338,5

N\

A+-A+ C+| DATA, | DATA_ | < {

DATA,
DATA,

ex. . Mnemonic Machine Code
ADC A, (1EH, X) 614 1E¢¢
(m=1,x=0)
Memory

DATAT (00,¢)
DATATIL (1446)

Op Code (614¢)

Data Bank
Register

140015

10000,¢
l Bank-1
10338,
1FFFF,¢
Direct Page Index
Register Register X

Operand (1E,g)

+| 12345 |+ | FOE6,s | =10338,,

Data Bank
Register
A—A+C+| DATA | DATA [T | 1400,
T ~—

Program
bank-PG

Program
bank-PG

19

Direct Indexed X Indirect

ex. . Mnemonic Machine Code
ADC A, (1EH, X) 6146 1E46
(m=0,x=0)
Memory
/_\/
——————— 10000,
Bank-1
(| oaTAT (00,0) 10338,
L[DATALl (18,0)
_______ 1FFFF,q
Direct Page Index
Op Code (614¢) Register Register X Program
Operand (1Eq) + [1234, | + [FOE6,, | =10338,, [bank-PG
~ ~
Data Bank
Register
A~—A+C+| DATA, | DATA | { DATA, 14006
DATA,
/\)

20

Direct Indirect Indexed Y

Mode Direct indirect indexed Y addressing mode
Function The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0.
The value obtained by adding the contents of these bytes and the contents of the
index register Y specifies address of the actual data in memory bank-DT (DT is
contents of data bank register). If, however, the value obtained by adding the con-
tents of the instruction’s second byte and the direct page register exceeds the bank-
0 range, the specified location will be in bank-1. Also, if addition of the contents of
memory and index register Y generate a carry, the bank number will be 1 larger than
the contents of the data bank register.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. : Mnemonic Machine Code
ADC A, (1EH),Y 7146 1Eq6
(m=1,x=1)
Memory
Bank-0
Index
1252 DATAT (0146) Register ¥
. 16 16 =
1253, DATAIL (125) } +[6] =1287.0
R
= :F
DrectPage | —*
irect Page
L Register Op Code (714¢)
[1234, | + Operand (1E;¢)
Data Bank
Register
A..A+c+l DATA I«— DATA 12E7,¢ -~
/___/

21

Direct Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH), Y 7146 1E46
(m=0,x=1) ‘
Memory
Bank-0
Index
Register Y

> 1252, DATAT (014)
1253, DATATLl (12,4)

~——

+[1 B8y | =127,

Direct Page | B _‘
Register Op Code (7146)
—1 1234, | + Operand (1Eq)

I
Data Bank
Register
A—A+C+| DATA, 1 DATA, |« DATA. 12€7,, <—
DATAy
| ——
ex. . Mnemonic Machine Code
ADC A, (1EH), Y 7146 1Eq4¢
(m=1,x=0)
Memory
Bank-0
Index
1252 DATAT (012) Register Y
—
* L +[FOE6,, | =102E7,¢
1253, DATAIL (12,¢)
Direct Page r
Register Op Code (714¢)
[1234, | + Operand (1E,5)
L L
______ u
Data Bank
Register
A~—A+c+| DATA I(_ DATA [oT |+1, 0267, <~—
N

22

Direct Indirect Indexed Y

ex. . Mnemonic Machine Code
ADC A, (1EH), Y 71,6 1E46
(m=0,x=0)
Memory
Bank-0
Index
Register Y
—————= 1252, DATAT (0146)
1253,6| DATAL (12,6 + =102E7,¢

,

44

Direct Page
Register Op Code (71,¢)
L[1284 | + Operand (1E,q)

Y J. Data Bank
Register

DATA DT |+1, 02E7,; <—
A+—A+C+| DATA, | DATA, | = { DATAL *
H

Direct Indirect LonLg

Mode . Direct indirect long addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the contents
of these bytes specify the address of the memory location that contains the actual
data. If, however, the value obtained by adding the contents of the instruction’s
second byte and the direct page register exceeds the bank-0 range, the specified
location will be in bank-1. The 3 adjacent bytes memory location may be spread over
two different banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADCL A, (1EH) 6746 1E46 ADCL A, (1EH) 675 1E4¢
(m=1) (m=0)
Memory Memory
Bank-0 Bank-0
> 12524 DATA 1 (EF,) ————= 1252, DATA (EFy¢)
1253, DATA TI (01,¢) 1253, DATAII (01,¢)
12546 DATA T (12,4) 1254, DATATI (12,g)
Direct Page T
. Direct Page
Register
1:34 Op Code (67,q) Register Op Code(67,6)
* I + Operand (1Eys) L t 1234‘51 + Operand(1E,g)
______ | 3 j:
- -— DATA 1201EF)y <——
A-AtC + DATAL 1201EF,; <—
/_/ H

24

Direct Indirect Long Indexed Y

Mode : Direct indirect long indexed Y addressing mode

Function : The value obtained by adding the instruction’s second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the value
obtained by adding the contents of these bytes and the contents of the index register
Y specifies the address of the memory location where the actual data is stored. If,
however, the value obtained by adding the contents of the instruction’s second byte
and the direct page register exceeds the bank-0 range, the specified location will be
in bank-1. The 3 adjacent bytes memory location may be spread over two differ-
ent banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. : Mnemonic Machine Code
ADCL A,(1EH), Y 7716 1Es6
(m=1, x=1)
Memory
Bank-0
Index
> 1252,¢ DATA I (EF) Register Y
1253, DATA T (01,6) +[215 | =120210,
1254:¢] DATA T (1246)

Direct Page
Register Op Code(7746)
L | 1234, | + Operand(1E,g)

A—A+C+H DATA | < DATA

120210 =———

25

Direct Indirect Long Indexed Y

ex. : Mnemonic Machine Code
ADCL A,(1EH), Y 7716 1Eq6
(m=0, x=1)
Memory
Bank-0
Index
—————>1252,4 DATA I (EF,¢) Register Y

1253,6 DATAII(01,6) + =120210,¢

1254, DATAII (12,6)

Direct Page
Register Op Code(7746)
L L 1234ﬂ + Operand(1E,q)

DATA -
A—A+C+| DATA, 1 DATA, «{ DATAL 120210,
H

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 77 1E4¢
(m=1, x=0)
Memory
Bank-0
Index
————=> 12525 DATAI (EF,) Register Y

1253, DATAL(01,5) + =12E710,¢

1254,¢ DATAIN (12,6)

T
I
I
|
|
f
|

Direct Page
Register Op Code(776)

L—| 1234, | + Operand(1E,g)

A—A+C+| DATA |< DATA 12E710,f = |

26

Direct Indirect Long Indexed Y

ex. . Mnemonic Machine Code
ADCL A,(1EH), Y 7746 1Eq6
(m=0, x=0)
Memory
Bank-0
Index
————=1252,¢ DATA I (EF,) Register Y
1263, | DATAL(01) +[E52146 | =12E710,
1254, DATAIN (12,6)

Direct Page
Register Op Code(77,6)
— [1234, | + Operand(1Es)

{4
T
f—t

DATA, 12E710,6 -
A +—A+C+| DATA, | DATA, «{ DATA,

Absolute

Mode Absolute addressing mode
Function The contents of the memory locations specified by the instruction’s second and third
bytes and the contents of the data bank register are the actual data. Note that, in
the cases of the JMP and JSR instructions, the instructions’ second and third byte
contents are transferred to the program counter.
Instruction: ADC, AND, ASL, CMP, CPX, CPY, DEC, DIV, EOR, INC,
JMP, JSR, LDA, LDM, LDX, LDY, LSR, MPY, ORA, ROL,
ROR, SBC, STA, S§TX, STY
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H 6Dy 12,6 ADyg ADC A, 0AD12H 6Dy 12,6 ADyg
(m=1) (m=0)
Memory Memory
/—\/ /\/
]
Op Code (6Dyg) Op Code (6Dy¢)
Operand (12,¢) Operand (124)]
Operand (AD,g) Operand (ADjg)
N N L\ ______ Data Bank
Register
_______ Data Bank A-At+CH+
A—A+4C+ Register _ { DATA, AD12,,
[oaTa] < DATA [DT]AD12,, DATA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
LDX 0AC14H AE ¢ 14,5 ACys LDX 0AC14H AE,; 14,5 AC,
(x=1) (x=0)
Memory Memory
/\/ /__/
Op Codé (AE,s) Op Code (AE,q)
Operand (144¢) Operand (144¢)
Operand (ACy¢) Operand (ACyg)
I k 3 N s
_______ | __ __ _] DataBank
Data Bank Register
Register DATA DT | AC14
N T P T R 2L P S A0 P "
L~
/\—/

28

Absolute

ex. . Mnemonic Machine Code
JMP 0AC14H 4C4 1446 AC;6
Memory
———]

——————— 0000,

Op Code (4C,¢)
Operand (14,¢) }

Operand (AC,¢)

Program
bank-PG
Program
Bank Register
Address to be
AC14.
executed next. 16

_______ FFFF,g

Program bank register contents are not affected.

Absolute Bit

Mode 1 Absolute bit addressing mode

Function : The contents of the instruction’s second and third bytes and the contents of the data
bank register specify the memory locations, and data for multiple bit positions in the
memory locations are specified by a bit pattern specified in the instruction's fourth and
fifth bytes (the fourth byte only if the m flag is set to 1).

Instruction: CLB, SEB

ex. . Mnemonic Machine Code eX. | Mnemonic Machine Code
CLB #5AH, 1234H 1Cy6 3446 1245 5A4¢ CLB #5AA5H, 1234H 1Cy6 3445 1246 A5 5A6
(m=1) (m=0)
Memory Memory
T ——] /___/

Op Code (1Cy¢)
Operand (34,¢)
Operand (124¢)
Operand (5A¢)

Op Code (1C,¢)
} Operand (344¢) }

Operand (12,¢)
Operand (A5,¢)
_______ Operand (5A¢)

Data Bank r b

B N Data Bank
h‘)l .')I ?I ?| ?I ?' ?I ? 1234, =— Register
_______ 2P| [o7]1284
/T/ 212020202 202 2
——————— Data Bank ;::;

Register
?Jo]2[o]o[[0 2] [bT] 1234,
______________ Data Bank
T ~——— Register

o[>[o][*]o[2]o| [DT]1234,

30

Absolute Indexed X

Mode

Function

Absolute indexed X addressing mode

The contents of the memory locations specified by a value resulting from addition of

a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register X and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register X generates a carry,
the bank number will be 1 larger than the contents of the data bank register.

Instruction: ADC, AND, ASL, CMP, DEC, Dlv, EOR, INC, LDA, LDM,
LDY, LSR, MPY, ORA, ROL, ROR, SBC, STA
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,0AD12H, X 7D:6 12,6 ADyg ADC A,0AD12H, X 7D46 12,6 AD;g
(m=1, x=1) (m=0, x=1)
Memory Memory
/—\/ T —~———
Index
Op Code (7D,,) A e';fjsf:r y %p C°dz ((:[2)“’)) Register X
peran 16
0 d (12 i = B
perand (12,q) } +| TEE|=AE00, - Operand (AD,s) } + EE1c | =AE00;
Operand (AD,)]
| il \ |
L L ¥ 3
1
______________ Data Bank
Data Bank .
A-A+C+ Register A—A+CH+ Register
I DATA]<~ DATA DT | AE00,¢ - - { DATA, @ AE00,¢ = |
DATA,
L /—_/

31

Absolute Indexed X

ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 0AD12H, X 7D46 1246 ADyg ADC A, 0AD12H, X 7Dy 12,6 ADys
(m=1, x=0) (m=0, x=0)
Memory Memory
T ~— T —
Op Code (7D,g) mdex . Inde
oqQe f ndex
p 16 Register X Op Code (7Dyg) Register X

Operand (AD;q)
p 16 Operand (AD;q)

Operand (12,¢) _
- + =BE00, Operand (12;6) _
+| 10EE,; | =BE00;s

_4 T N
B bataBank | __ __ _ _]
A—A+CH+ Register Data Bank
| DATAI - DATA DT | BE0O,, <— Register
DATA, [DT] BEOO,, <

L —~— ““A+°+“[DATA,

ex. Mnemonic Machine Code ex. - Mnemonic Machine Code
LDY 0BC12H, X BCy 1246 BCy6 LDY OBC12H, X BCy¢ 12,6 BCyg
(x=1) (x=0)
Memory Memory
/\/ /__/
Index [T T d
i Index
gp Code <(2C|;) Rgister X Op Code (BCys) Register X
perand 16 } + T EE,. | =
16| =BD00, Operand (12,4)
+ | 10EE =CD00.
Operand (BCyg) Operand (BCyg) EI "’
————————————— —<L
RN E 3]
L_. ______
Data _Bank [~ | pata Bank
Register Register
Y <[DATA | < DATA DT | BD0O,¢ DATA_ [DT]CDOOy, <
Y h DATA
H
L ~——
-

32

Absolute Indexed Y

Mode Absolute indexed Y addressing mode
Function : The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction’s second and third bytes with the
contents of the index register Y and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction’s
second and third bytes with the contents of the index register Y generates a carry,
the bank number will be 1 larger than the contents of the data bank register.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, LDX, MPY, ORA, SBC,
STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,0AD12H,Y 7916 1245 ADyg ADC A,0AD12H,Y 7946 1246 ADy
(m=1, x=1) (m=1, x=0)
Memory Memory
/—\/ /_/
____________]
Index Index
(c));; Cod: ((1729-s)) 1 Register Y Op Code (79:¢) Register Y
erand e + =AE00 Operand (12
Operand (ADyg) } 16 perand (1246) +=BE00,6
Operand (ADyq)
— == \ \
RN & [T
[Data Bank
DataBank | . —=— — =
A-~A+C+ [— ——— Register A-A+C+ Register
[oata] - DATA AE00,, | pata |— DATA DT | BE00,¢
_______ L T~
ex. . Mnemonic Machine Code ex. : Mnemonic Machine Code
ADC A,0AD12H, Y 79:6 1246 ADg ADC A,0AD12H,Y 7946 1246 ADy¢
(mzo, x=1) (m=0, X=0)
Memory
r\/ Memory
————— — m
Index J
gp e ((172916)) Register ¥ Index
perand (12, T _ Op Code (79,¢))
Operand (ADs) + AEOOs Operand (12‘:) 1 rease
1
Operand (ADyg) I + [10EEss | =BE00,
-
W _______ Data Bank ~ o
A—A+C+ Register D;;Z:g:k
DATA -DT AE00,5 A—~A+C+
DATA, | DATA | —
{ oATA, .
DATA,
/___/
| ——~—

33

Absolute Indexed Y

ex.

. Mnemonic

LDX 0BC12H, Y
(x=1)

Memory

Op Code (BE)

Operand (12,¢)
Operand (BCyg)

————— —]

X NS
C X< m‘“‘ |<. DATA

/—_/

Machine Code
BE¢ 12,6 BCy¢

Index
Register Y

ex.

Data Bank
Register

BD00,s

-

X < DATA, ' DATA_ | = [

. Mnemonic

LDX 0BC12H, Y
(x=0)

Op Code (BEqq)

Operand (12¢)
Operand (BCy)

§
1 F

Machine Code
BE.s 12,6 BC;6

Index
Register Y

Data Bank
Register

@ CD00,6

34

Absolute Long

Mode : Absolute long addressing mode

Function : The contents of the memory locations specified by the instruction’s second, third and
fourth bytes become the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions’ second and third byte contents are transferred to the
program counter and the fourth byte contents are transferred to the program bank

Machine Code
6F 6 5645 3446 12,5

register.
Instruction: ADC, AND, CMP, DIV, EOR, JMP, JSR, LDA, MPY, ORA,
SBC, STA
ex. : Mnemonic Machine Code ex. : Mnemonic
ADC A, 123456H 6F 5 5646 3445 124¢ ADC A, 123456H
(m=1) (m=0)
Memory Memory
(__/ /\/
Op Code (6F) Op Code (6F;g)
Operand (56,¢) Operand (564)
Operand (34,¢) Operand (34¢)

Operand (12,¢)

—————— -
A—~A+C+
DATA | < DATA 123456 \
I 1 1°A~—A+C+IDATAH1DATAL|<— {
/"\/
ex. . Mnemonic Machine Code
JMP 123456H 5Cy6 5645 3416 12,5
Memory
/_/
Op Code (5C4g)

Operand (56,¢)
Operand (34,¢)
Operand (12,¢)

[—

Program
Bank Register

1246 {3456, <

Address to be
executed next.

L T~

Program bank register contents are replaced by
the third operand.

Operand (124¢)

123456,, <

35

Absolute Long Indexed X

Mode Absolute long indexed X addressing mode
Function The contents of the memory location specified by adding the numeric value ex-
pressed by the instruction’s second, third and fourth bytes with the contents of the
index register X are the actual data.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. . Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 123456H, X 7F16 5646 3446 1245 ADC A, 123456H, X 7F 16 5616 3416 1246
(m=1, x=1) (m=0, x=1)
Memory Memory
/\/ /—\/
Op Code (7Fys) Index
Op Code (7F,¢) '"f’e" o 3 (56‘5) Register X
Operand (56,5) Register X peran 16 :
Operand (34,s) |y +[| Elyg|=123537,, Operand (34ys) |1+ | | Etie | =123537,,
Operand (1245) : Operand (12,¢)
L 1 X 3
A—A+C+ A—A+C+
DATA 123537
[paTa] < DATA 123537, <— * { ‘ DATA: *
/_\/ /__\/
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A, 123456H, X 7F16 5615 34,6 1244 ADC A, 123456H, X 7F 16 5615 3416 1246
(m=0, x=1) (m=0, x=0)
Memory Memory
T ~~—] T ~—— "]
_______ —— — — — —
Op Code (7Fy) Index Op Code (7F¢) Index
Operand (5655) Register X Operand (56,¢) Register X
Operand (34,) + E_Em =132337,¢ Operand (34¢) + IjEE1151 =132337,¢
Operand (12,¢) Operand (12,6)
A-A+C+)
[oara] < DATA 132837, <—— - { DATAL 13233736 <——
A—A+C+ DATAY
/\/

36

Absolute Indirect

Mode

Function

Absolute indirect addressing mode

The instruction’s second and third bytes specify 2 adjacent bytes in memory, and

the contents of these bytes specify the address within the same program bank to

which a jump is to be made.

Instruction: JMP

ex.

Address to be
executed next

Mnemonic Machine Code
JMP(1400H) 6C, 0046 1445
Memory
T~]
—————— 1
Op Code (6Cyg)

Operand (00,¢)
Operand (14,¢)

Program
bank-PG

DATA I (1Ey¢)

| DATA I (FFe) | 1400, }

Program
Bank Register

[PG] 1EFF,

37

Absolute Indirect Long

Mode : Absolute indirect long addressing mode

Function -: The instruction’s second and third bytes specify 3 adjacent bytes in memory, and the
contents of these bytes specify the address to which a jump is to be made.

Instruction: JMP

ex. . Mnemonic Machine Code
JMPL(1234H) DCi6 3445 1246
Memory
/\/
Op Code (DCy¢)

Operand (34,¢)
— Operand (12¢)

Program
Bank Register

DATA I (1246) \!‘23416

DATA TI (B46) r

DATA I (A14))
L X
_ Program
Bank Register
Address to be
B412
executed next. e

DATA I is loaded in the program bank register.

38

Absolute Indexed X Indirect

Mode : Absolute indexed X indirect addressing mode

Function : The value obtained by adding the instruction's second and third bytes and the con-
tents of the index register X specifies 2 adjacent bytes in memory, and the contents
of these bytes specify the address to which a jump is to be made.

Instruction: JMP, JSR

ex. . Mnemonic Machine Code
JMP(1234H, X) 7C16 3446 1245
(x=1)

Index
Register X Op Code (7Cy¢)

1246,,= +{ Operand (34,5)

Operand (1246)

DATA T (124) 1246, Program
DATA Tl (BCye) bank-PG
Program
Bank Register
Address to be
BC12 <
executed next. 1
L

39

Stack

Mode Stack addressing mode
Function
Instruction: PEA, PEl, PER,
: PHY, PLA, PLB,
ex. : Mnemonic
PHA 48,6
(m=1)
Memory
Stack Pointer
S-1 0046 | Syt St
S A
/\/
ex. . Mnemonic
PHD 0By¢
Memory
Stack Pointer
s-2 00,6 [St S|
S-1 DPR,
S DPRy
/\/

stack pointer. The stack pointer is set in bank-0.

PHA,
PLD,

Machine Code

Bank-0

Machine Code

Bank-0

Register contents are saved to or restored from the memory location specified by the

Machine Code

48,

Bank-0

Machine Code

PHB, PHD, PHG, PHP, PHT, PHX,
PLP, PLT, PLX, PLY, PSH, PUL
ex. : Mnemonic
PHA
(m=0)

Memory
Stack Pointer
s-2 oo‘sLs,.:' s |
S-1 A
S Ay
s
ex. . Mnemonic
PEA # 1234H
Memory

Op Code (Fdy) .

Operand (344¢)

Operand (124¢)

Stack Pointer

004 | Sy ' S

F4,¢ 3446 12,

Bank-0

40

Stack

ex.

> Mnemonic Machine Code
PEI # 12H D4, 1246
Memory
DATA I 34126
DATA I
Stack Pointer Bank-0
T
00,6 Iju : S, I
DATA [
DATA I
I
Direct Page
Op Code (D4,g) Register

Operand (12,¢)

+ | 340045 |= 3412,

ex.

Memory

. Mnemonic
PER # 1234H

ACis

684

Op Code (62,¢)

Operand (344¢)

Operand (12,¢)

Machine Code
62,6 34,6 1246

Stack Pointer

Bank-0

Program
Bank Register

[PG] 5676,
168) /AC
+[50] 0] =(88)(4C,,

Program Counter

Program
bank-PG

41

| Relative

Mode : Relative addressing mode

Function : Branching occurs to the address specified by the value resulting from addition of the
contents of the program counter and the instruction’s second byte. In the case of a
long branch by the BRA instruction, a 15-bit signed numeric value formed by the con-
tents of the instruction’s second and third bytes is added to the program counter con-
tents. If the addition generates a carry or borrow, 1 is added to or subtracted from
the program bank register.

Instruction: BCC, BCS, BEQ, BMI, BNE, BPL, BRA, BVC, BVS

ex. . Mnemonic Machine Code
BCC *x—12 90,6 F446
Branches to the address * —12 if the carry flag (C) Advances to the address * if the carry flag (C)
has been cleared. has been set.
Memory Memory
/_/ /-_/
Address to be "
executed next. -2
Op Code (904¢) Op Code (90,6)
Operand (F4,) Jump Operand (F4,¢)
* Address to be %
executed next.
e |
ex. * Mnemonic Machine Code
BRA 1234H 82,6 34,5 126
Memory
Op Code (8245) Program
Operand (34¢) bank-PG
Program

Operand (12;) Bank Register

FF12,,

Address to be 114646 Program

executed next.
bank-PG+1

42

Direct Bit Relative

Mode : Direct bit relative addressing mode

Function : Specifies the bank-0 memory location by the value obtained by adding the instruc-
tion’s second byte to the direct page register’s contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
(the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the
branching conditions, the instruction’s fifth byte (or the fourth byte if the m flag is set
to 1) is added to the program counter as a signed value, generating the branching
destination address. If, however, addition of the instruction’s second byte to the direct
page register's contents result in a value that exceeds the bank-0 range, the specified

location will be in bank-1.

Instruction: BBC, BBS

ex. . Mnemonic Machine Code
BBS #5AH, 04H, OF6H 24,; 04, 5A5 F6,6
(m=1)
Memory
o[1[1[1]1]o[1] 1] o01238,, <=
-
¥ T Program
Bank Register
Address to be —
executed next. 11,6 FFFDyq
Direct Page
Jump Op Code (24,5) Register
Operand (04,5) +[1234,6| = 1238,
Operand (5A¢) Program
Operand (F6,¢) Bank Register
000746
T ~—

(Branch)

Bank-0

Address to be

executed next.

Memory
Oi OI 1—{1 l1 lo[1r1 001238, < Bank-0
R
T
Direct Page
Op Code (244¢) Register
Operand (04,5) | + [1234;5]=1238,,
Operand (5Aq6) Program
Operand (F6,¢) Bank Register
12,4 0007,
T ~————

(Not branch)

43

Direct Bit Relative

ex. . Mnemonic

BBS #5AAS5H, 04H, OF6H

(m=0)

Address to be
executed next.

Jump

Machine Code

Memory

Op Code (24¢)

001238,

Program
Bank Register

1146| FFFE g

Direct Page
Register

Operand (04,¢)

-

24,6 04,5 A5, 5A F6,¢

+ [1234,¢|= 1238,

Operand (A5,¢)

Operand (5A¢)

Operand (F6¢)

(Branch)

Program
Bank Register

0008,
L —— —

Address to be

executed next.

Memory

Op Code (24,)

001238,

j Bank-0

Direct Page
Register

| Operand (04) |
Operand (AS5,g)
Operand (5A¢)

Operand (F6,¢)

"\)

(Not branch)

+ [1234,|= 1238,

Program

Bank Register

[12.q 0008,

44

Absolute Bit Relative

Mode

Function

Instruction :

Absolute bit relative addressing mode

The instruction’s second and third bytes and the contents of the data bank register
specify the memory location, and data for the memory location’s multiple bits is
specified by a bit pattern in the instruction’s fourth and fifth bytes (the fourth byte only
if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions,
the instruction’s sixth byte (or the fifth byte if the m flag is set to 1) is added to the
program counter as a signed value, generating the branching destination address.

BBC,

ex. . Mnemonic

BBS #5AH, 1234H, OF6H

Address to be
executed next.

Jump

Op Code (2Cy6)
Operand (34,¢)

BBS

Machine Code
2C16 3416 1216 5A1 F646

Program
Bank Register

11,5| FFFD;¢

Operand (12,¢)
Operand (5A;6)
Operand (F6,¢)

o[1]1]1]1]0]1]0

| ——

(Branch)

Program
Bank Register

0007,

Data Bank
Register

[DT] 1234,

-

Address to be
executed next.

Op Code (2Cy¢)
Operand (34,)

Operand (12y¢)
Operand (5Ay6)
Operand (F6y6)

ofo[1]1]1]o]1] 0

N

(Not branch)

Program
Bank Register

12,4/ 0007,¢

Data Bank
Register

[DT 1234,

]

45

Absolute Bit Relative

ex. . Mnemonic
BBS #5AAS5H, 1234H, OF6H

(m=0)

Address to be
executed next.

Jump

Machine Code
2C16 3446 12,6 A5 5A:6 F61¢

Memory
T ~——
Program

Bank Register
FFFD,q

Op Code (2Cy¢)

Operand (344¢)

Operand (124¢)

Operand (A5yg)

Operand (5A;5) Program

* Operand (F64g)

(L

Bank Register

000746

Data Bank
Register

1234,

(Branch)

Address to be
executed next.

Memory

Op Code (2Cyq)
Operand (34¢)

Operand (12,¢)
Operand (A5,¢)
Operand (5A4¢)
Operand (F6,¢)

(Not branch)

Program
Bank Register

0007,

Data Bank
Register

[DT 1234,

46

Stack Pointer Relative

Mode Stack pointer relative addressing mode

Function The contents of a bank-0 memory location specified by the value resulting from ad-
dition of the instruction’s second byte and the contents of the stack pointer become
the actual data. If, however, the value obtained by adding the contents of the instruc-
tion’s second byte and the stack pointer's contents exceeds the bank-0 range, the
specified location will be in bank-1.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

ex. : Mnemonic Machine Code ex. : Mnemonic
ADC A, 02H, S 63,6 02,5 - ADC A, 02H, S 6345 024
(m=1) (m=0)
Memory Memory
Bank-0
A—A+C+
A+—A+C+| DATA | < DATA
1 | DATA, | DATA, | <_{ DATA, 1236,
DATA,
\] =
Op Code (63,5) Stack Pointer Op Code (63,¢) Stack Pointer
Operand (02,5) 1234,5 | =1236,, Operand (025) | + | 1234, |=1236,,
/\/ /—_)

Machine Code

47

Bank-0

Stack Pointer Relative Indirect Indexed Y

Mode Stack pointer relative indirect indexed Y addressing mode
Function The value obtained by adding the instruction’s second byte and the contents of the
stack pointer specifies 2 adjacent bytes in memory. The value obtained by adding the
contents of these bytes and the contents of the index register Y specifies address of
the actual data in memory bank-DT (DT is contents of data bank register). If addition
of the 2 bytes in memory with the contents of the index register Y generate a carry,
the bank number will be 1 larger than the contents of the data bank register.
Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA
ex. : Mnemonic Machine Code ex. . Mnemonic Machine Code
ADC A,(1EH, S), Y 736 1E;6 ADC A,(1EH, 8), Y 7346 1E;6
(m=1, x=1) (m=0, x=1)
Memory Memory
Bank-0
Index R Bank-0
ndex Register Y Index Register Y
1252, DATA T (01,6) B 12524 DATA I (014¢)
12536 DATA 11(12) +[[E6u] 1267, 1253, | DATA 11(12,6) +[_TE6u|= 1267,
Stack Pointer
Stack Pointer Op Code (73;5) (1238,] + Op Code (734)
1234, | + Operand (1E,¢) Operand (1Es)
——————— ==
£ b Data Bank
_______ Data Bank A—A+C+ Register
A—A+C+ Register [oATA.JDATA,] < { DATA, 12E7,6
| DATA] = DATA [OT 1267, <— | DATA, |
/\/
L~

48

Stack Pointer Relative Indirect Indexed Y

ex. : Mnemonic Machine Code
ADC A, (1EH, S), Y 7346 1E46
(m=1,x=0)
Memory
)
Bank-0
Index Register Y
1252, DATA 1(01,6) "
1253,, | DATA I(12,5) +[FOE81g] = 102E7,6
[1
Stack Pointer Op Code (73,¢)
1234 | + | Operand (1E,q)
i
______ Data Bank
Register
A—A+C+|DATA| - DATA [DT J+1, 02E7,5<——
/_/
ex. . Mnemonic Machine Code
ADC A, (1EH, S), Y 7316 1E46
(m=0, x=0)
Memory
Bank-0
Index Register Y
1252, DATA I (01,5) }
FOE6,, | =102E7
1253, DATA [[(12,5) + [FOEG, | ‘“

|
|
|
|
|
o1

Stack Pointer Op Code (7346)

+ Operand (1Eg)

|

Data Bank
Register

[DT]+1, 0267y <—

DATA
A—A+C+| DATA, | DATA, | -
- DATA,

49

Block Transfer

ex.

Mode Block transfer addressing mode
Function The instruction’s second byte specifies the transfer-to data bank, and the contents of
the index register Y specify the transfer-to address within the data bank. The instruc-
tion’s third byte specifies the transfer-from data bank, and the contents of the index
register X specify the address in the data bank where the data to be transferred is
stored. The contents of the accumulator A constitute the number of bytes to be trans-
ferred. Upon termination of transfer, the contents of the data bank register will
specify the transfer-to data bank. The MVN instruction is used for transfer to lower
address location. In this case, the contents of the index registers X and Y are incre-
mented each time data is transferred. The MVP instruction is used for transfer to
higher address location. In this case, the contents of the index registers X and Y are
decremented each time data is transferred. The block of data to be transferred may
cross over the bank boundary.
Instruction : MVN, MVP
: Mnemonic Machine Code
MVN OE2H, 0E5H 54,6 E2,4 ESyg
Before transfer After transfer
Memory Memory
/__/
DATA 1 E25678,,
Bank-E2g DATA II
DATA I
T ! | |
J 3 3 I
Op Code(54,5) | A Op Code((54|s) A| FFFF,q
Operand (E2,5) | X[1234 Operand (E2:¢) | x[7237,, |
Operand (ES::) Y Operand (ES:s) Y [:5678::
or(*?] | DT[E2,
A | 3 3
DATA 1E5123415 . DATA [
DATA II | DATAD |
DATA M JBank-ESH; DATA I
"__/ ’_-\j

50

Block Transfer

ex.

. Mnemonic
MVP OESH, OE2H

Machine Code
44, E5, E2,¢

Before transfer

Memory
DATA 1
DATA II Bank-E2;
DATA I E2567A,¢
——————— /
I :;

I
Op Code(444¢) X [567A,,
Operand (ES5;g) Y
Operand (E2,6) DT

Bank-E5+¢

b ~—

After transfer

Memory
DATA [
DATA II
DATA I
r F
_______ A[FFFF,,
Op Code(44,¢) X{ 56776
Operand (E5,¢) Y| 1233
Operand (E2¢) DT

E51236,¢

51

Instructions

4. Instructions
4.1 Instruction Set

The Series MELPS 7700 microcomputers support a set of 103 instructions which are de-
scribed in this chapter. This section presents overviews of these instructions, and Sec. 4.2
presents the detailed description for each instruction.

4.1.1 Data Transfer Instructions

The data transfer instructions move data between data and registers, between a register and
the memory, between registers or between memory devices.

The following table summarizes the various data transfer instructions supported by the Series

MELPS 7700 :
Category Instruction Description
Load LDA Loads the contents of memory into the accumulator.
LDM Loads an immediate value into the memory.
LDT Loads an immediate value into the data bank register.
LDX Loads the contents of memory into the index register X.
LDY Loads the contents of memory into the index register Y.
Store STA Stores the contents of the accumulator in the memory.
STX Stores the contents of the index register X in the memory.
STY Stores the contents of the index register Y in the memory.
Transfer TAX Transfers the contents of the accumulator A to the index register X.
TXA Transfers the contents of the index register X to the accumulator A.
TAY Transfers the contents of the accumulator A to the index register Y.
TYA Transfers the contents of the index register Y to the accumulator A.
TSX Transfers the contents of the stack pointer to the index register X.
TXS Transfers the contents of the index register X to the stack pointer.
TAD Transfers the contents of the accumulator A to the direct page
register.
TDA Transfers the contents of the direct page register to the accumula-
tor A.
TAS Transfers the contents of the accumulator A to the stack pointer.
TSA Transfers the contents of the stack pointer to the accumulator A.
TBD Transfers the contents of the accumulator B to the direct page reg-
ister.
TDB Transfers the contents of the direct page register to the accumulator
B.
TBS Transfers the contents of the accumulator B to the stack pointer.

52

Instructions

Category Instruction Description
Transfer TSB Transfers the contents of the stack pointer to the accumulator B.
TBX Transfers the contents of the accumulator B to the index register X.
TXB Transfers the contents of the index register X to the accumulator B.
TBY Transfers the contents of the accumulator B to the index register Y.
TYB Transfers the contents of the index register Y to the accumulator B.
XY Transfers the contents of the index register X to the index register
Y.
TYX Transfers the contents of the index register Y to the index register
X.
MVN Transfers a block of data from the lower addresses.
MVP Transfers a block of data from the higher addresses.
Stack operation PSH Saves the contents of the specified register to the stack.
PUL Restores the contents of stack to the specified register.
PHA Saves the contents of the accumulator A to the stack.
PLA Restores the contents of stack to the accumulator A.
PHP Saves the contents of the program status register to the stack.
PLP Restores the contents of stack to the program status register.
PHB Saves the contents of the accumulator B to the stack.
PLB Restores the contents of stack to the accumulator B.
PHD Saves the contents of the direct page register to the stack.
PLD Restores the contents of stack to the direct page register.
PHT Saves the contents of the data bank register to the stack. B
PLT Restores the contents of stack to the data bank register.
PHX Saves the contents of the index register X to the stack.
PLX Restores the contents of stack to the index register X.
PHY Saves the contents of the index register Y to the stack.
PLY Restores the contents of stack to the index register Y.
Stack PHG Saves the contents of the program bank register to the stack.
PEA Saves a the numeric of 2 bytes to the stack.
PEI Saves the contents of 2 consecutive b}tes in the direct page aré;
to the stack.
PER Saves the result of adding a 16-bit numeric value to the program
counter contents to the stack.
Exchange XAB Swaps the contents of the accumulator A with the contents of the

accumulator B.

53

Instructions

4.1.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation,
comparison, rotation and shifting of register and memory contents.

The following table summarizes the arithmetic instructions supported:

Category Instruction Description
Addition ADC Adds the contents of the accumulator,the contents of memory and
. the contents of the carry flag.
Subtraction v 1ag
- SBC Subtracts the complements of the contents of memory and carry
Multiplication
flag from the contents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.
DEC Decrements the accumulator or memory contents by 1.
INX Increments the contents of the index register X by 1.
DEX Decrements the contents of the index register X by 1.
INY Increments the contents of the index register Y by 1.
DEY Decrements the contents of the index register Y by 1.
MPY Multiples the contents of the accumulator A and the contents of
memory.
DIV Divides the numeric value whose lower byte is the contents of the
accumulator A and upper byte is the contents of the accumulator B
by the contents of memory. »
Logical operation AND Performs logical AND between the contents of the accumu-
lator and the contents of memory.
ORA Performs logical OR between the contents of the accumulator and
the contents of memory.
EOR Performs logical exclusive-OR between the contents of the accumu-
lator and the contents of memory.
Comparison CMP Compares the contents of the accumulator with the contents of
memory.
CPX Compares the contents of the index register X and the contents of
memory.
CPY Compares the contents of the index register Y and the contents of
memory. :
Shifting, Lotation ASL Shifts the contents of the accumulator or memory to the left by 1 bit.
LSR Shifts the contents of the accumulator or memory to the right by 1
bit.
ROL Links the contents of accumulator or memory with the carry flag,
and rotates the result to the left by 1 bit.
ROR Links the contents of accumulator or memory with the carry flag,
and rotates the result to the right by 1 bit.
RLA Rotates the contents of the accumulator A to the left by the speci-

fied number of bits.

54

Instructions

4.1.3 Bit Manipulation Instructions

The bit manipulation instructions set the specified bits of the processor status register or
memory to “1” or “0”.

The following table summarizes the bit manipulation instructions supported:

Category Instruction Description
Bit manipulation CcLB Clears the specified memory bit to “0”.
SEB Sets the specified memory bit to “1”.
CLP Clears the specified bit of the processor status register's lower

byte (PSt) to “0”.

SEP Sets the specified bit of the processor status register’'s lower
byte (PSL) to “1”.

4.1.4 Flag Manipulation Instructions
The flag manipulation instructions set to “1” or clear to “0” the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category Instruction Description

Flag setting CLC Clears the contents of carry flag to “0”.
SEC Sets the contents of carry flag to “1”.
CLM Clears the contents of data length selection flag to “0”.
SEM Sets the contents of data length selection flag to “1".
CLI Clears the contents of interrupt disable flag to “0".
SEI Sets the contents of interrupt disable flag to 1.
CLV Clears the contents of overflow flag to “0”.

4.1.5 Branching and Return Instructions
The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category Instruction Description
Jump JMP Sets a new address in the program counter and jumps to the new
address.
BRA Jumps to the address obtained by adding an offset value to the

contents of the program counter.

JSR Saves the contents of the program counter to the stack and then
jumps to the new address.

55

Instructions

Category Instruction Description
Branch BBC Causes a branch if the specified memory ‘bits are all “0".
BBS Causes a branch if the specified memory bits are all “1”.
BCC Causes a branch if the carry flag is set to “0”.
BCS Causes a branch if the carry flag is set to “1”.
BNE Causes a branch if the zero flag is set to “0".
BEQ Causes a branch if the zero flag is set to “1”.
BPL Causes a branch if the negative flag is set to “0”.
BMI Causes a branch if the negative flag is set to “1".
BVC Causes a branch if the overflow flag is set to “0".
BVS Causes a branch if the overflow flag is set to “1”.
Return RTI Returns from the interrupt routine to the original routine.
RTS Returns from a subroutine to the original routine. The program
bank register contents are not restored.
RTL Returns from a subroutine to the original routine. The program
bank register contents are restored.

4.1.6 Interrupt Instruction (Break Instruction)

The interrupt instruction executes software interrupt.

Category Instruction

Description

Break BRK

Executes a software interrupt.

4.1.7 Special Instructions

The special instructions listed below control the clock generator circuit.

Categdry Instruction Description
Special WIT Stops the internal clock.
STP Stops the oscillator.
4.1.8 Other Instruction
Category Instruction Description
Other NOP Only advances the program counter.

56

Instructions

4.2 Description of Instructions

This section describes the Series MELPS 7700 instructions individually. To the extent possible,
each instruction is described using one page per instruction. Each instruction description page
is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the
mnemonics. For each instruction, operation and description of the instruction, status flag changes
and a listing sorted by addressing modes of the assembler coding format (Note 1), machine code,
bytes-count and cycles-count (Note 2) are presented.

Note1. The assembler coding formats shown are general examples, and they may differ from the
actual formats for the assembler used. Please be sure to refer to the mnemonic coding
description in the manual for the assembler actually used for programming.

Note2. The cycles-counts shown are the minimum possible, and they vary depending on the fol-
lowing conditions:

@ Value of direct page register's lower byte

The cycles-count shown are for when the direct page register’'s lower byte (DPRL) is
0016. When using an addressing mode that uses the direct page register with
DPRw#“0016", the cycles-count will be 1 more than the value shown.

® Number of bytes that have been loaded in the instruction queue buffer

@® Whether the first address of the mémory read/write is even- or odd-numbered in
accessing the 16-bit data length.

@ Accessing of an external memory are with BYTE=1(using 8-bit external bus)

57

Instructions

The table below lists the symbols that are used in this section:

Symbol Description Symbol Description
C Carry flag DPR Direct page register
z Zero flag DPRx Direct page register’s upper 8 bits
| Interrupt disable flag DPRL | Direct page register's lower 8 bits
D Decimal operation mode flag PS Processor status register
X Index register length selection flag PSk Processor status register's upper 8 bits
m Data length selection flag PSL Processor status register's lower 8 bits
\ Overflow flag PSha Processor status register’s n-th bit
N Negative flag M Memory contents
IPL Processor interrupt priority level M(n) Contents of memory location specified by
+ Addition operand
- Subtraction M(S) Contents of memory at address indicated
X Multiplication by stack pointer
/ Division Mn n-th memory location
A Logical AND ADc Value of 24-bit address’ upper 8-bit
. (A23~A1s)
\ Logical OR . . .
. ADH Value of 24-bit address’ middle 8-bit
X Exclusive OR : (Ats~As)
Negation ADL | Value of 24-bit address' lower 8-bit (A7~Ao)
Movement to the arrow direction bn n-th bit of data
- Movement to the arrow direction dd 8-bit offset value
« Movement to the arrow direction i Number of transfer bytes or rotation
Acc Accumulator i1, i2 Number of registers pushed or pulled
AccH Accumulator’s upper 8 bits imm 8-bit immediate value
Acc Accumulator's lower 8 bits immi1, immz | 16-bitimmediate value (imm1 specifies the
A Accumulator A upper 8-bit,and immez specifies the lower 8-
An Accumulator A’s upper 8 bits bit)
AL Accumulator A’s lower 8 bits I 8-bit address value
B Accumulator B mmil 16-bit address value (mm specifies the
Bu Accumulator B's upper 8 bits upper 8-bit and Il specifies the lower 8-bit)
BL Accumulator B's lower 8 bits hhmmll | 24-bit gddress valyg (hh spgcifies thg up-
. per 8-bit, mm specifies the middle 8-bit and
X Index register X Il specifies the lower 8-bit)
XH Index register X’s upper 8 bits nn 8-bit data value
XL, Index register X's lower 8 bits ni, N2 8-bit data value (Used when coding two 8-
Y Index register Y bit data side by side)
YH Index register Y's upper 8 bits rr Signed 8-bit data value
Yu Index register Y’s lower 8 bits rirra Signed 16-bit data value (rr1 is the upper 8-
S Stack pointer bit value, and rrz is the lower 8-bit value)
PC Program counter
PCx Program counter’s upper 8 bits
PCL Program counter’s lower 8 bits
REL Relative address
PG Program bank register
DT Data bank register

58

ADC

Add with Carry A DC

Operation

Description

Status flags

Acc, C « Acc + M + C

Adds the contents of the accumulator, memory and carry flag, and places the
result in the accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.
Executed as decimal addition if the decimal operation mode flag D is set to 1.

IPL: Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
addition.

\ Set to 1 when binary addition of signed data result in a value outside the range
of -32768 to +32767 (-128 to +127 if the data length selection flag m is set to 1).
Otherwise, cleared to 0. Meaningless :or decimal addition.

m : Not affected.

x : Not affected.

D : Not affected.

I Not affected.

Z : Setto 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless
for decimal addition.

C When the data length selection flag m is set to 0, set to 1 if binary addition
exceeds +65535 or if decimal addition exceeds +9999. Otherwise, cleared to 0.
When the data length selection flag m is set to 1, set to 1 if binary addition
exceeds +255 or if decimal addition exceeds +99. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate ADC A, #imm 6916, imm 2 2
Direct ADC A, dd 6516, dd 2 4
Direct indexed X ADC A, dd, X 7516, dd 2 5
Direct indirect ADC A, (dd) 7216, dd 2 6
Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7
Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8
Direct indirect long ADCL A, (dd) 6716, dd 2 10
Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11
Absolute ADC A, mmll 6Dss, I, mm 3 4
Absolute indexed X ADC A, mmll, X 7Dss, Il, mm 3 6
Absolute indexed Y ADC A, mmil, Y 791, Il, mm 3 6
Absolute long ADC A, hhmmll 6F1s, Il, mm, hh 4 6
Absolute long indexed X ADC A, hhmmll, X 7F1s, Il, mm, hh 4 7
Stack pointer relative ADC A, nn,S 6316, NN 2 5
Stack pointer relative ADC A, (nn, S), Y 7316, Nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216¢” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

59

AND Logical AND | AND

Operation : Acc « Acc A M

Description : Performs logical AND between the contents of the accumulator and the contents
of memory, and places the result in the accumulator.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Not affected.
Addressing mode Syntax Machine code Bytes | Cycles|
Immediate AND A, #imm | 2916, imm 2 2
Direct AND A, dd 2516, dd 2 4
Direct indexed X AND A, dd, X 3516, dd 2 5
Direct indirect AND A, (dd) 3216, dd 2 6
Direct indexed X indirect AND A, (dd, X) 2116, dd 2 7
Direct indirect indexed Y AND A, (dd), Y 3116, dd 2 8
Direct indirect long ANDL A, (dd) 2716, dd 2 10
Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2 11
Absolute AND A, mmll 2D1s, I, mm 3 4
Absolute indexed X AND A, mmll, X 3Dss, Il, mm 3 6
Absolute indexed Y AND A, mmll, Y 3916, I, mm 3 6
Absolute long AND A, hhmmll. 2F1s, Il, mm, hh 4 6
Absolute long indexed X AND A, hhmmll, X 3F1e, I, mm, hh 4 7
Stack pointer relative AND A, nn, S 2316, NN 2 5
Stack pointer relative AND A, (nn, S), Y 3316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”".
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2. ‘

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to O, the bytes-count increases by 1.

60

ASL

Arithmetic Shift Left ASL

Operation

Description

Status flags

IPL :

N

\
ON—O X 3 <

When m=0
bis bo

Cl{ T T TTTTTTTTTTITTTJeo

When m=1

bo

Cll T T T[T J+o

Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded
with 0. The carry flag C is loaded from bit 15 (or bit 7 when the data length
selection flag m is set to 1) of the data before the shift.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to1)
before the operation is 1. Otherwise, cleared to 0.

Addressing mode | Syntax | Machine code | Bytes | Cycles
Accumulator | ASL A | OAts [1 2
Direct | ASL dd | 0616, dd P2 | 7
Direct indexed X " ASL dd, X | 161, dd 2 7
Absolute - ASL mmll | OEss, Il, mm '3 7
Absolute indexed X 1 ASL mmll, X 3 1E1s, Il, mm .3 i 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator

A.

If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

61

BBC

Branch on Bit Clear ‘ . B BC

Operation

Description

Status flags

When MA IMM=0

PC « PC + n = REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=0
PC « PC +n
PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested.
The value of n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

The BBC instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 0. The branch address is specified by a relative
address.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBC #imm, dd, rr 3416, dd, imm, rr 4 7
Absolute bit relative BBC #imm, mmll, rr 3Css, Il, mm, imm, rr 5 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag
m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

62

BBS Branch on Bit Set BBS

Operation : When M A IMM=0

PC « PC + n + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When M A IMM=0
PC « PC +n
PG « PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested. The value of
n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

Description : The BBS instruction tests the specified bits (which may be specified simultane-
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 1. The branch address is specified by a relative

address.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Direct bit relative BBS #imm, dd, rr 2416, dd, imm, rr 4 7
Absolute bit relative BBS #imm, mmll, rr 2Cis, I, mm, imm, rr 5 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection
flag m set to 0.
(Note2) The cycles-count increases by 2 when a branch occurs.

63

BCC Branch on Carry Clear BCC

Operation : When C=0,

‘PC « PC + 2 + REL (REL is instruction’s second. byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=1,
PC « PC + 2
PG « PG + 1 (if carry on PC)

Description ~: When the carry flag C is clear (0), the BCC instruction causes a branch to the

specified address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances to next step without any

action.
Status flags : Not affected.
Addressing mode Syntax- Machine code Bytes |Cycles
Relative BCC 901s, 11 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

64

BCS

Branch on Carry Set BCS

Operation

Description

Status flags

When C=1,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When C=0,
PC« PC +2
PG « PG + 1 (if carry on PC)

When the carry flag C is set (1), the BCS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BCS rr BOss, 7 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

65

BEQ

Branch on Equal BEQ

Operation

Description

Status flags

When Z=1,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When Z=0,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the zero flag Z is set (1), the BEQ instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode i Syntax Machine code Bytes | Cycles

Relative

BEQ rr FO1s, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

66

BMI

Branch on Result Minus BMI

Operation

Description

Status flags

When N=1,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When N=0,
PC « PC + 2
PG « PG + 1 (if carry on PC)

When the negative flag N is set (1), the BMI instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is clear (0), the program advances to next step without
any action.)

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BMI rr 301s, T 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

67

BNE

Branch on Not Equal BN E

Operation

Description

Status flags

When Z=0,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When Z=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the zero flag Z is clear (0), the BNE instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is set (1), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Relative

BNE rr DOss, r 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

68

BPL

Branch on Result Plus B PL

Operation

Description

Status flags

When N=0,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When N=1,
PC « PC + 2
PG « PG + 1 (if carry on PC)

When the negative flag N is clear (0), the BPL instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is set (1), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Relative

BPL rr 101s, 11 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

69

BRA

BRA

Branch Always

Operation
For short relative branch,
PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)
For long relative branch,
PC « PC + 3 + REL (REL is a numeric value represented by the instruc-
tion's second and third bytes)
Description The BRA instruction causes a branch to the specified address. The branch
address is specified by a relative address.
Status flags Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Relative BRA rr 801s, IT 2 4
BRAL rrim2 821s, Ir2, 1M 3 4

70

BRK

Force Break

BRK

Operation : PC« PC+2
M(S) « PG
S« S-1
M(S) « PCn
S« S-1
M(S) « PCL
S« S-1
M(S) « PSH
S« S-1
M(S) « PSL
S« S-1
l 1
PCL « M(FFFA1s)

PCH < M(FFFBus)
PG « 001

Description : When the BRK instruction is executed, the CPU first saves the address where the
next instruction is stored, and then saves the contents of the processor status
register on the stack. Then, the CPU executes a branch to the address in bank-
0 the lower portion of which is specified by the contents of FFFA1e in bank-0 and
the upper portion specified by the contents of FFFB1s in bank-0.

Status flags
IPL : Not affected.

N Not affected.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Set to 1.

V4 Not affected.

] Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Implied BRK #nn 0016,EA1s 2 15

(Note1) The instruction's second byte is ignored, so any value impossible.

71

BVC

Branch on Overflow Clear BVC

Operation

Description

Status flags

When V=0,
PC « PC + 2 £+ REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When V=1,
PC « PC +2
PG « PG + 1 (if carry on PC)

When the overflow flag V is clear (0), the BVC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is set (1), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BVC rr 501s, IT 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

72

BVS

Branch on Overflow Set BVS

Operation

Description

Status flags

When V=1,

PC « PC + 2 + REL (REL is instruction’s second byte)
PG « PG + 1 (if carry on PC), PG « PG - 1 (if borrow on PC)

When V=0,
PC« PC +2
PG « PG + 1 (if carry on PC)

When the overflow flag V is set (1), the BVS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is clear (0), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Relative

BVS 1r 701s, 17 2 4

(Note1)The cycles-count increases by 2 when a branch occurs.

73

CLB

Clear Bit C L B

Operation

Description

Status flags

M« MA IMM

IMM is the bit pattern that specifies the bit positions that are to be cleared to 0.
The bit positions that are to be cleared are indicated by 1 in IMM, and the bit po-
sitions that are not to be cleared are indicated by 0 in IMM. '

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction.

The CLB instruction blears the specified memory bits to 0. Multiple bits to be
cleared can be specified at one time.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct bit CLB #imm, dd 1416, dd, imm 3 8
Absolute bit CLB #imm, mmll 1C1s, I, mm, imm 4 9

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection
flag m set to 0.

74

C LC | Clear Carry Flag C LC

Operation : Ce0
Description : Clears the contents of carry flag C to 0.

Status flags
IPL : Not affected.

N Not affected.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Not affected.

C Cleared to 0.
Addressing mode Syntax Machine code Bytes | Cycles
Implied CLC 1816 1 2

75

CLI ~ Clear Interrupt Disable Status ' CLI

Operation i le 0
Description : Clears the interrupt disable flag | to 0.

Status flags

IPL : Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Cleared to 0.
Not affected.
Not affected.

ON— O XxX 3 <2Z

Addressing mode - Syntax Machine code Bytes | Cycles
Implied CLI 5816 1 2

76

CLM

Clear m Flag

CLM

Operation o me0

Description : Clears the data length selection flag m to 0.

Status flags

IPL : Not affected.

ON~T 0O X 3 < 2Z

Not affected.
Not affected.
Cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

CLM

D816

77

C L P Clear Processor Status C L P

Operation © PSL e PSLA IMM
(IMM is the immediate value. lts specified in the second byte of the instruction.)

Description : Clears the processor status flags specified by the bit pattern in the second byte
of the instruction to 0.

Status flags : The specifed flags are cleared. IPL is not affected.
Addressing mode | Syntax Machine code Bytes | Cycles
Immediate l CLP #imm C216, imm 2 4

78

CLV

Clear Overflow Flag

CLV

Operation : Ve o

Description

Status flags

Clears the overflow flag V to 0.

IPL : Not affected.

ON— O X 3 < Z

Not affected.
Cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

CLv

B816

79

CMP

Compare

CMP

Operation : Acc-M

Description

Status flags

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of

the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

O N — 0O X 3 <

Subtracts the contents of memory from the contents of the accumulator. The
accumulator and memory contents are not changed.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D516, dd 2 5
Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) C11s, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D11s, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 10
Direct indirect long indexed Y | CMPL A, (dd), Y D716, dd 2 11
Absolute CMP A, mmll CDss, I, mm 3 4
Absolute indexed X CMP A, mmll, X DDss, Il, mm 3 6
Absolute indexed Y CMP A, mmil, Y D916, I, mm 3 6
Absolute long CMP A, hhmmll CFis, Il, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DFie, I, mm, hh 4 7
Stack pointer relative CMP A, nmn,-S C316, NN 2 5
Stack pointer relative CMP A, (nn, S), Y D316, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “421¢" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection

flag m set to 0, the bytes-count increases by 1.

80

CPX

Compare Memory and Index Register X CPX

Operation

Description

Status flags

IPL :

N

ON— 0O XxX 3 <

X-M

Subtracts the contents of memory from the contents of the index register X. The

index register X and memory contents are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.

Not affected. '

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate CPX #imm EO16, imm 2 2
Direct CPX dd E416, dd 2 4
Absolute CPX mmll ECis, I, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

81

CPY Compare Memory and Index Register Y CPY

Operation :Y-M

Description : Subtracts the contents of memory from the contents of the index register Y. The
index register Y and memory contents are not changed.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate CPY #imm CO1s, imm 2 2
Direct - CPY dd C41s,dd 2 4
Absolute CPY mmll CCis, Il, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se-
lection flag x set to 0, the bytes-count increases by 1.

82

DEC

Decrement by One DEC

Operation
Description

Status flags

Acc— Acc-1 or M« M-1

Subtracts 1 from the contents of the accumulator or memory.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Accumulator DEC A 1Aie 1 2
Direct DEC dd C61e, dd 2 7
Direct indexed X DEC dd, X D61s, dd 2 7
Absolute DEC mmll CEis, I, mm 3 7
Absolute indexed X DEC mmll, X DEts, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

83

DEX

Decrement Index Register X by One

DEX

Operation

Description

Status flags
IPL : Not affected.
N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON — 0O X 3 <

XeX-1

Subtracts 1 from the contents of the index register X.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

DEX

CAie

84

DEY Decrement Index Register Y by One DEY
Operation YeVY-1
Description Subtracts 1 from the contents of the index register Y.

Status flags

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax { Machine code Bytes—(Cycles

Implied

DEY 1 8816 1 2

85

DIV

Operation

If m=0

B

DIV

B(remainder), A(quotient) < (B, A) / M

A Mn+1) M) A B

Dividend | + - |_Quotient | [Remainder |

If m=1

Description

Status flags
IPL
N

\Y

N — g %X 3

| Dividend | Divisor] =

AL M(n Al B

Remainder]

Quotient |

When the data length selection flag m is set to 0, a 32-bit data stored in the
accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data
in memory. The quotient is placed in the accumulator A, and the remainder is
placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stored in the lower
8 bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an
8 bit data in memory. The quotient is placed in the lower 8 bits of the
accumulator A, and the remainder is placed in the lower 8 bits of the accumulator
B.

When an overflow results from this operation negrect removed out, the V flag is

- set.

When divisor is 0, the zero division interrupt is generated, in which case the
contents of the processor status register are saved on the stack and a branch
occurs to the address in bank-0 as specified by the zero division interrupt vector.
Accumulator contents are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
quotient from the operation is 1. Otherwise, cleared to 0.

Set to 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data
length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

Not affected.
Not affected.
Not affected.
Not affected.

Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No
changes occur when divisor is 0.

Set to 1 when the quotient from the operation exceeds 16 bns (or 8 bits if the data
length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

86

DIV Divide DIV

Addressing mode Syntax Machine code Bytes | Cycles
Immediate DIV #imm 8916, 2916, imm 3 27
Direct DIV dd 8916, 2516, dd 3 29
Direct indexed X DIV dd, X 8916, 3516, dd 3 30
Direct indirect DIV (dd) 8916, 3216, dd 3 31
Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 32
Direct indirect indexed Y DIV (dd), Y 8916, 3116, dd 3 33
Direct indirect long DIVL (dd) 8916, 2716, dd 3 35
Direct indirect long indexed Y | DIVL (dd), Y 8916, 3716, dd 3 36
Absolute DIV mmll 8916, 2D16, Il, mm 4 29
Absolute indexed X DIV mmll, X 8916, 3D1s, Il ,mm 4 31
Absolute indexed Y DIV mmll, Y 8916, 3916, Il ,mm 4 31
Absolute long DIV hhmmll 8916, 2F1s, Il, mm, hh 5 31
Absolute long indexed X DIV hhmmll, X 8916, 3F1s, I, mm, hh 5 32
Stack pointer relative DIV nn, S 8916, 2316, NN 3 30
Stack pointer relative DIV (nn, S), Y 8916, 3316, NN 3 33
indirect indexed Y

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the
cycles-count increases by 16.

87

EOR Exclusive OR Memory with Accumulator EOR

Operation © Acc « Acc ¥V M

Description : Performs the logical EXCLUSIVE OR between the contents of the accumulator
and the contents of memory, and places the result in the accumulator.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 10
Direct indirect long indexed Y | EORL A, (dd), Y 5716, dd 2 11
Absolute EOR A, mmll 4Dve, Il, mm 3 4
Absolute indexed X EOR A, mmll, X 5D1e, Il, mm 3 6
Absolute indexed Y - EOR A, mml, Y 5916, Il, mm 3 6
Absolute long EOR A, hhmmll 4F1s, Il, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F1e, Il, mm, hh 4 7
Stack pointer relative | EOR A, nn, § 4316, NN 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, Nn 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “421¢” is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

88

I N C Increment By One I N C

Operation : Acce—Acc+1 or M« M+ 1
Description : Adds 1 to the contents of the accumulator or memory.

Status flags
IPL : Not affcted.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\) Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

y4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Accumulator INC A 3Ate 1 2
Direct INC dd E61s, dd 2 7
Direct indexed X INC dd, X F61e, dd 2 7
Absolute INC mmli EEis, I, mm 3 7
Absolute indexed X INC mmll, X FEs, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accu-
mulator A. If using the accumulator B, replace “A” with “B”. In this case, “4216" is added at
the beginning of the machine code, the bytes-count increases by 1 and the cycles-count
increases by 2.

89

INX

Increment index Register X by One

Operation

Description

Status flags
IPL: Not affected. ,
N : - Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON— O X 3 <

Xe X+1

Adds 1 to the contents of the index register X.

INX

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

INX

E816

90

INY

Increment Index Register Y by One

INY

Operation DY e Y +1

Description

Status flags

IPL: Not affected.
N : Setto 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected..
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON — 0O X 3 <

Adds 1 to the contents of the index register Y.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

INY

C816

91

JMP

Jump , JMP

Operation

Description

Status flags

If absolute addressing mode,

PCL « AD.
PCH « ADn

If absolute long addressing mode,
PCL « AD.
PCH « ADH
PG « ADec

If absolute indirect addressing mode,
PCL « (ADw, ADL)
PCh « (ADw, ADL + 1)

If absolute indirect long addressing mode,
PCL « (ADn, ADv)
PCH « (ADx, ADL + 1)
PG « (ADw, ADL + 2)

If absolute indexed X indirect addressing mode,
PCL « (ADw, ADL + X)
PCH « (ADw, ADL + X + 1)

(AD., ADn and ADe specify the instruction’s second, third and fourth bytes, re-
spectively.)

The JMP instruction causes a jump to the address specified for the addressing
mode in use.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Absolute JMP mmll 4C1s, ll, mm 3 2
Absolute long JMPL hhmmil 5Css, I, mm, hh 4 4
Absolute indirect JMP (mmll) 6C1e, Il, mm 3 4
Absolute indirect long JMPL (mmll) DCis, ll, mm 3 8
Absolute indexed X indirect | JMP (mmll, X) 7Cie, I, mm 3 6

JSR

Jump to Subroutine

JSR

Operation

Description

Status flags

If absolute addressing mode,

M(S) « PCn
S« S-1
M(S) « PCL
S«S-1
PCL « ADL
PCH « ADw

If absolute long addressing mode,

M(S) « PG
S« S-1
M(S) « PCn
S« S-1
M(S) « PCL
S« S-1
PCL « ADL
PCH « ADH

PG « ADc

If absolute indexed X indirect addressing mode,

M(S) « PCn.
S« S-1
M(S) « PCL
S« S-1

PCL « (ADH, ADL + X)
PCH « (ADH, ADL + X + 1)

(ADc, ADn and ADe specify the instruction’s second, third and fourth bytes, re-

spectively.)

The contents of the program counter PC (or the program bank register PG and
the program counter PC if absolute long addressing mode) are first saved on the
stack, then a jump occurs to the address shown for each addressing mode.

Not affected.

Addressing mode Syntax Machine code Bytes| Cycles
Absolute JSR mmll 201e, I, mm 3 6
Absolute long JSRL hhmmll 2216, Il, mm, hh 4 8
Absolute indexed X indirect | JSR (mmil, X) FCis, Il, mm 3 8

93

_LDA

Load Accumulator from Memory LDA

- Operation
Description
Status flags

IPL:
"N

O > 3 <

O N —

Acc « M

Loads the contents of memory into the accumulator.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate LDA A, #imm Agi1s, imm 2 2
Direct LDA A, dd AS51s, dd 2 4
Direct indexed X LDA A, dd, X B516, dd 2 5
Direct indirect LDA A, (dd) B21s, dd 2 6
Direct indexed X indirect LDA A, (dd, X) Atse, dd 2 7
Direct indirect indexed Y LDA A, (dd), Y B1ie, dd 2 8
Direct indirect long LDAL A, (dd) A716, dd 2 10
Direct indirect long indexed Y | LDAL A, (dd), Y B71, dd 2 11
Absolute LDA A, mmll AD1s, Il, mm 3 4
Absolute indexed X LDA A, mmil, X BDis, Il, mm 3 6
Absolute indexed Y LDA A, mmil, Y B91e, Il, mm 3 6
Absolute long LDA A, hhmmil AF1s, Il, mm, hh 4 6
Absolute long indexed X LDA A, hhmmll, X BF1s, Il, mm, hh 4 7
Stack pointer relative LDA A, nn, S A316, Nn 2 5
Stack pointer relative LDA A, (nn, S), Y B31s, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by

1 and th

e cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag

m set to

0, the bytes-count increases by 1.

94

LDM

Load Immediate to Memory

LDM

Operation : M« IMM (IMM is an immediate value)
Description : Loads an immediate value into memory.
Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 74186, dd, imm 3 5
Absolute LDM #imm, mmll 9Cie, I, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9E1s, Il, mm, imm 4 6

(Note1) When operating on 16-bit data with the data length selection flag m set to

increases by 1.

0, the bytes-count

95

LDT Load Immediate to Data Bahk Register | LDT

Operation . DT « IMM (IMM is an immediate value)

Description : Loads an immediate value into the data bank register DT.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycle
Immediate LDT #imm 8916, C216, imm 3 5

96

LDX

Load Index Register X from Memory LDX

Operation

Description

Status flags

X« M

Loads the contents of memory into the index register X.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate LDX #imm A216, imm 2 2
Direct LDX dd A616, dd 2 4
Direct indexed Y LDX dd, Y B61s, dd 2 5
Absolute LDX mmll AEss, II, mm 3 4
Absolute indexed Y LDX mmll, Y BEss, Il, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se-
lection flag x set to 0, the bytes-count increases by 1.

97

LDY

Load Index Register Y from Memory LDY

Operation

Description

Status flags

Y« M

Loads the contents of memory into the index register Y.

IPL: Not affected. .
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operatlon is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Immediate LDY #imm AO1e, imm 2 2
Direct LDY dd Adie, dd 2 4
Direct indexed X LDY dd, X B4+, dd 2 5
Absolute LDY mmli ACie, Il, mm 3 4
Absolute indexed X LDY mmll, X BCie, Il, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the |ndex register length se-
lection flag x set to 0, the bytes-count increases by 1.

98

LSR

Logical Shift Right

LSR

Operation
When m=0
bis

o [[[TTTTTTTTTTTT €]

When m=1

o s [T T[T}

Description

Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit

7 if the data length selection flag m is set to 1) of the accumulator or memory is
loaded with 0.

The carry flag C is loaded from bit 0 of the data before the shift.

Status flags

IPL : Not affected.

ON - O X 3 < 2Z

Cleared to “0".
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Set to 1 when bit 0 before the operation is 1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code ‘1 Bytes | Cycles
Accumulator LSR A 4A16 I 1 2
Direct LSR dd 4616, dd | 2 7
Direct indexed X LSR dd, X 5615, dd ’ 2 7
Absolute LSR mmll 4E1e, I, mm 3 7
Absolute indexed X LSR mmll, X 5E1s, Il, mm i 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

99

MPY

Multiply

MPY

Operation

Description

Status flags
IPL :
N

ON— O X 3 <

B,A « AxM

When the data length selection flag m is set to 0, The contents of the accumulator
A and the contents of memory are multiplied. Multiplication is performed as 16-
bit x 16-bit, and the result is a 32-bit data which is placed in the accumulators B
(upper 16 bits of the result) and A (lower 16 bits of the result).
When the data length selection flag m is set to 1, the lower 8-bit contents of the
accumulator A and the contents of memory are multiplied. Multiplication is
performed as 8-bit x 8-bit, and the result is a 16-bit data which is placed in the

lower 8 bits of the accumulators B (upper 8 bits of the result)

of the result).

Not affected.

and A (lower 8 bits

Set to 1 when bit 31 (or bit 15 if the data length selection flag m is set to 1) of
" the operation result is 1. Otherwise, cleared to 0.

Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate MPY #imm 8916, 0916, imm 3 16
Direct MPY dd 8916, 0516, dd 3 18
Direct indexed X MPY dd, X 8916, 1516, dd 3 19
Direct indirect MPY (dd) 8916, 1216, dd 3 20
Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 21
Direct indirect indexed Y MPY (dd), Y 8916, 1116, dd 3 22
Direct indirect long MPYL (dd) 8916, 0716, dd 3 24
Direct indirect long indexed Y | MPYL (dd), Y 8916, 1716, dd 3 25
Absolute MPY mmll 8916, OD16, I, mm 4 18
Absolute indexed X MPY mmll, X 8916, 1D1s, I, mm 4 20
Absolute indexed Y MPY mmll, Y 8916, 1916, Il, mm 4 20
Absolute long MPY hhmmli 8916, OF16, Il, mm, hh 5 20
Absolute long indexed X MPY hhmmll, X 8916, 1F1s, Il, mm, hh 5 21
Stack pointer relative . MPY nn, S 8916, 0316, NN 3 19
Stack pointer relative MPY (nn, S), Y 8916, 1316, NN 3 22
indirect indexed Y

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag

m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 8-bit x 8-bit multiplications. For 16-bit x 16-bit multiplications,
the cycles-count increases by 8.

100

MVN

Move Negative M V N

Operation

Description

Status flags

Mn ~ Mk < Mm ~ Mmix

Normally, a block of data is transferred from upper addresses to lower
addresses. The transfer is performed in the ascending address order of the
block being transferred. The target bank is specified by the instruction’s
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are incremented by 1, so that the index register
X will become a value equal to 1 larger than the source address of the last
byte transferred and the index register Y will become a value equal to 1
larger than the target address of the last byte received. The data bank
register DT will become the terget bank number, and the accumulator A will
become FFFFre.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is “001¢”, the data are not trans-
ferred.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Block transfer

MVN ni1, n2 5416, N1, N2 3 7+(i12)x7

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

7+(i+2) x7+4.

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

101

Move Positive) M V P

MVP

Operation

Description

Status flags

Mnk ~ Mn ¢ Mmk ~ Mm

Normally, a block of data is transferred from lower addresses to upper
addresses. The transfer is performed in the descending address order of
the block being transferred. The target bank is specified by the instruction’s
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction’s third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are decremented by 1, so that the index register
X will become a value equal to 1 less than the source address of the last
byte transferred and the index register Y will become a value equal to 1
smaller than the target address of the last byte received. The data bank
register DT will become the target bank number, and the accumulator A will
become FFFFrs.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is “001¢”, the data are not trans-
ferred.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Block transfer

MVP ni, n2 4446, N1, N2 3 9+(i/2)x7

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even

number.
9 +

If i is an odd number, the cycles-count is obtained as follows:
(i+2)x7+5.

Note that (i + 2) denotes the integer part of the result of dividing i by 2.

102

NOP

No Operation

NOP

Operation : PC« PC +1
PG « PG + 1 (if carry on PC)

Description : This instruction only causes the program counter to be incremented by 1 and
nothing else.
Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

NOP

EAte

103

O R A OR Memory with Accumulator O RA

Operation . Acc « AccV M

Description : Performs the logical OR between the contents of the accumulator and the con-
tents of memory, and places the result in the accumulator.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection.flag m is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Immediate ORA A, #imm 0916, imm 2 2
Direct ORA A, dd - |05t dd 2 4
Direct indexed X : . ORA A, dd, X 1516, dd 2 5
Direct indirect ORA A, (dd) 1216, dd 2 6
Direct indexed X indirect ORA A, (dd, X) 0116, dd 2 7
Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8
Direct indirect long . |ORAL A, (dd) 0716, dd 2 10
Direct indirect long indexed Y |ORAL A, (dd), Y 1716, dd 2 1
Absolute ORA A, mmll ODvs, Il, mm 3 4
Absolute indexed X ORA A, mmll, X 1D1s, I, mm 3 6
Absolute indexed Y ORA A mmll, Y 1916, il, mm 3 6
Absolute long ORA A, hhmmll OF1s, Il, mm, hh 4 6
Absolute long indexed X ORA A, hhmmll, X 1F1e, I, mm, hh 4 7
Stack pointer relative ORA A, nn, S 0316, NN 2 5
Stack pointer relative ORA A (nn, S), Y 1316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, "4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

104

PEA

Push Effective Address

PEA

Operation : M(S) « IMM2 (IMMz is the immediate value specified by the instruction’s third byte)
S« S-1
M(S) « IMM: (IMMtis theimmediate value specified by the instruction’s second byte)
S« S-1
Description : The instruction’s third and second bytes are saved on the stack in this order.
Status flags Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Stack PEA #immimm2 F416, immz, imm1 3 5

105

P

El) Push Effective Indirect Address P El

Operation : M(S) « M (DPR + IMM + 1)

S« S-1
M(S) « M (DPR + IMM)
S«S-1

DPR represents the contents of the direct page register, and IMM represents
the offset address within the direct page as specified by the instruction’s
second byte. ‘

Description : Saves the contents of the consecutive 2 bytes in the direct page as specified by

the sum of the contents of the direct page register DPR and the instruction’s
second byte on the stack in the order of upper address first and lower address

second.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PEI #imm D41e, imm 2 5

106

Push Effective Program Counter Relative Address

PER

Operation . EAR « PC + IMM2, IMM:

M(S) « Upper byte of EAR

S« S-1

M(S) « Lower byte of EAR

S« S-1
EAR represents the value obtained by adding the 16-bit data represented by “IMM,

IMM1” and the contents of the program counter.

PER

IMM2 and IMM1 represent the

instruction’s third and second bytes, respectively, and “IMMz, IMM1” represents a 16-bit
data with IMMz being the upper byte and IMM1 being the lower byte.

Description : Saves the result of adding a 16-bit data consisting of an upper byte specified by
the instruction’s third byte and a lower byte specified by the instruction’s second
byte with the contents of the program counter on the stack in the order of the
result's upper byte first and lower byte second.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PER #immiimm2

6216, immz, immj

107

PHA

Push Accumulator A on Stack , P HA

Operation

Description

Status flags

If m=0, if m=1,
M(S) « An M(S) « A.
S« S-1 Se«S-1
M(S) « AL
S« S-1

Saves the contents of the accumulator A to the address specified by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator A’s
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator A’s lower byte is saved
on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Stack

PHA 4816 1 4

108

PHB

Push Accumulator B on Stack PH B

Operation

Description

Status flags

If m=0, If m=1,
M(S) « BH M(S) « BL
S« S-1 S« S-1
M(S) « B.
S« S-1

Saves the contents of the accumulator B to the address indicated by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator B’s
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator B’s lower byte is saved
on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Stack

PHB 4216, 4816 2 6

109

P H D Push Direct Page Register on Stack PH D

Operation . M(S) « DPRx
S«S-1
M(S) « DPRL
S« S-1
Descriptibn S Saves the contents of the direct page register DPR to the address indicated by

the stack pointer S in the order of upper byte first and then lower byte.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Stack | PHD 0B16 1 4

110

P HG Push Program Bank Register on Stack P HG
Operation . M(S) « PG

S«S-1
Description Saves the contents of the program bank register to the address indicated by the

stack pointe

Status flags

rS.

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PHG

4B1e

111

PH P ‘ Push Processor Status on Stack : PH P

Operation | . M(S) « PSu
S« S-1
M(S) « PSL
S« S-1
Description : . Saves the contents of the processor status register PS to the address indicated

by the stack pointer S in the order of upper byte and then lower byte.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes |Cycles
Stack PHP 0816 1 4

112

PHT

Push Data Bank Register on Stack

PHT

Operation : M(S) « DT
S«S-1
Description : Saves the contents of the data bank register DT to the address indicated by the

stack pointer S.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycleq

Stack

PHT

8B1s

113

PHX

Push Index Register X on Stack

PHX

Operation o If x=0, If x=1,
M(S) « Xu M(S) « Xu
S« S-1 S«S-1
M(S) « Xt
S« S-1
Description : Saves the contents of the index register X to the address indicated by the stack

pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1, only the lower byte is saved on the stack.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PHX DA1s 1 4

114

PHY

Push Index Register Y on Stack

PHY

Operation o If x=0,

Description

M(S) « Y
S«S-1
M(S) « YL
S« S-1

If x=1,
M(S) « YL
S« S-1

Saves the contents of the index register Y to the address indicated by the stack

pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1, only the lower byte is saved on the stack.

Status flags

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PHY

5A16

115

P

LA

Pull Accumulator A from Stack

PLA

Operation

Description

If m=0,"
S« S+1
AL « M(S)
S« S+1
An «— M(S)

If m=1,
S« S+1
AL« M(S)

The stack pointer S is incremented, and then restores the lower byte of the

accumulator A with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the ac-
cumulator A with the data at the address indicated by the stack pointer S. When
the data length selection flag m is set to 0, 2 bytes data are restored. When the
data length selection flag m is set to 1, only 1 byte data is restored (to the lower

byte of the accumulator A).

Status flags
IPL : Not affected.

P4

operation result is 1. Otherwise, cleared to 0.
Not affected.

Not affected.
Not affected.
I : Not affected.
Z . Setto 1 when the result of operation is 0. Otherwise, cleared to 0.
C : Not affected.

\"
m : Not affected.
X
D

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLA

6816

116

P LB Pull Accumulator B from Stack P L B
Operation If m=0, If m=1,

S« S+1 S« S +1

BL « M(S) BL « M(S)

S« S+1

Bu « M(S)
Description The stack pointer S is incremented, and then restores the lower byte of the

Status flags

accumulator B with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
accumulator B with the data at the address indicated by the stack pointer S.
When the data length selection flag m is set to 0, 2 bytes data are restored.
When the data length selection flag m is set to 1, only 1 byte data is restored (to
the lower byte of the accumulator B).

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1)of
the operation result is 1. Otherwise, cleared to 0.
\% Not affected.
m Not affected.
X Not affected.
D Not affected.
| Not affected.
z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode ‘ Syntax Machine code Bytes | Cycles

Stack

[PLB 4215, 6816 2 ! 7

117

P L D Pull Direct Page Register from Stack P L D

Operation S« S+1

DPRL « M(S)
S« S+1
DPRH « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the direct

page register DPR with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
direct page register DPR with the data at the address indicated by the stack

pointer S.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles

Stack PLD 2B1s 1 5

118

PLP

Pull Processor Status from Stack

PLP

Operation S« S+1
PSL « M(S)
S« S +1
PSH « M(S)
Description

The stack pointer S is incremented and then restores the lower byte of the

processor status register PS with the data at the address indicated by the stack
pointer S. Again, increments the stack pointer S and then restores the upper byte
of the processor status register PS with the data at the address indicated by the
stack pointer S.

Status flags

Changes to the values restored from the stack.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLP

2816

119

PLT Pull Daia Bank Register from Stack PLT

Operation : S« S+1
DT « M(S)
Description : The stack pointer S is incremented, and then the data bank register DT is

restored with the data at the address indicated by the stack pointer S. -

Status flags
IPL . Not affected.
Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

ON — O X 3 < Z

Addressing mode Syntax Machine code Bytes | Cycles

Stack PLT AB16 1 6

120

PLX

Pull Index Register X from Stack

PLX

Operation o If x=0, If x=1,
S« S+1 S« S+1
XL « M(S) XL « M(S)
S« S +1
Xu « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the index

register X with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register X with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the

lower byte of the index register X).

Status flags

IPL: Not affected.
N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

O % 3 <

O N —

Addressing mode

] Syntax

Machine code

Bytes | Cycles

Stack

i PLX

FAie

1 5

121

PLY

Pull Index Register Y from Stack

PLY

Operation :If x=0, If x=1,
: S« S+1 S« S+1
YL « M(S) YL « M(S)
S«S+1
Y « M(S)
Description : The stack pointer S is incremented, and then restores the lower byte of the index

register Y with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register Y with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the

lower byte of the index register Y).

Status flags

IPL : Not affected.
N : Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

to 1) of the operation result is 1. Otherwise, cleared to 0.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
Not affected.

- o x 3 <

O N

Addressing mode

Syntax

Machine code

Bytes

Cycles

Stack

PLY

7A1

122

PSH Push PSH

Operation : M(S) « A, B, X, Y, DPR, DT, PG or PS

Description : This instruction’s second byte specifies the registers to be saved. The registers
corresponding to the bits in the second byte that are 1 are saved on the stack.
The bit and register correspondence is as shown below:

b7 bo
[ps TpPGg DT I DPRIY [T X I B [A]
« Saved on the stack in this order.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Stack PSH #nn EBis, nn 2 12+2xi1+i2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being saved. The count is 12 cycles when no registers are saved. i1 in above table represents
the number of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and iz represents the
number of registers (chosen from DT and PG) to be saved.

Register type PS PG DT DPR Y X B A
Cycles-count 2 1 1 2 2 2 2 2

123

PSH

Push

PSH

PSH

NO

T T - 5_®
Q-0 - — Q- - mPU1.. -~ mnuq_lpﬂl
Cwnlw f R it R I 121°
Ll af |z A \e/ |a A \S/ |ataih
DAY < = c) c W\SW\S
s =2

2 2
|
<L
Lo
&
S0

)

Z
oI
oL@ \j
oia ! \
/M\SMS

124

PUL

Pull P U L

Operation

Description

Status flags

M(S) » A, B, X, Y, DPR, DT or PS

This instruction’s second byte specifies the registers to be restored. The registers
corresponding to the bits in the second byte that are 1 are restored from the
stack. The bit and register correspondence is as shown below:

b7 bo
[Ps ot [oPRIY [X [B [A]
Restored from the stack in this order. —

(Note) The contents of accumulator B's higher 8-bit will be changed, when PUL instruction
is executed with m=0 and the restored registor including PS whose m=1.

When bit 7 of the instruction’s second byte is 1, specifying that the program
status register PS is to be restored, the status flags are restored to the values
that had been restored from the stack. Otherwise, the status flags are not
affected.

Addressing mode Syntax Machine code Bytes |Cycles

Stack

PUL #nn FB1s, nn 2 14+3xi1+4xi2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being restored. The count is 14 cycles when no registers are restored. i1 in above table represents
the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be-
restored, and i2=0 if DPR is not to be restored.

Register type PS DT DPR Y X

os}
>

Cycles-count 3 3 4 3 3 3 3

125

Pull

PUL

S « S+1
DPRL « M(S)
S « S+1
DPRH « M(S)

Y

S « S+1
YL < M(S)
S « S+1
YH « M(S)

S«
YL «

S+1
M(S)

S « S+1
XL « M(S)

S+1
BL « M(S)

S « S+1

AL « M(S)

S « S+1
AL « M(S)

S « S+1
AH « M(S)

\

126

R LA Rotate Left Accumulator A R L A

Operation

If m=0, rotate n bits to left (n=0-65535)

ID‘5III|||||Il||||lb0|<J

It m=1, rotate n bits to left (n=0-255)

T

Description : The contents of the accumulator A are rotated to the left by n bits. The value
of n is specified by the instruction’s third byte (or third and fourth bytes when
m=0).

Status flags : Not affected.

Addressing mode | Syntax Machine code Bytes | Cycles
Immediate J RLA #imm 8916, 4916, imm 3 6+i

i Number of rotation
(Note1) When the data length selection flag m is 0, the bytes-count increases by 1.

127

ROL

Rotate One Bit Left R O L

Operation

If m=0,

A EEEEEEEEEEEEET

If m=1,

T e

Description

Status flags

The carry flag C is linked to the accumulator or memory, and the combined
contents are rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag
C before execution of this instruction, and the carry flag C is loaded with the
content of bit 15 (or bit 7 if the data length selection flag m.is set to 1) of the
accumulator or memory before execution of this instruction.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
Vv Not affected.
m Not affected.
X Not affected.
D Not affected.
I Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0. ‘
C Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before
execution of the instruction is 1. Otherwise, cleared to 0
Addressing mode Syntax l Machine code rBytes Cycles
Accumulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, X 3616, dd 2 7
Absolute ROL mmll 2E1e, Il, mm 3 7
Absolute indexed x ROL mmll, X 3Ess, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator

A.

If using the accumulator B, replace “A” with “B”. In this case, “4216” is added at the beginning

of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

128

RO R Rotate One Bit Right RO R

Operation
If m=0,
bis bo
IIIIIIIIIIIIIIH—J
If m=1, '
b7 bo
TR
Description : The carry flag C is linked to the accumulator or memory, and the combined

contents are shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumula-
tor or memory is loaded with the content of the carry flag C, and the carry flag
C is loaded with the content of bit 0 of the accumulator or memory before
execution of this instruction.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared

to 0.

Addressing mode Syntax Machine code Bytes | Cycles
Accumulator ROR A 6A16 1 2
Direct ROR dd 6616, dd 2 7
Direct indexed X ROR dd, X 7616, dd 2 7
Absolute ROR mmil 6Es, I, mm 3 7
Absolute indexed X ROR mmil, X 7E1s, I, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace “A” with “B”. In this case, “421¢” is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

129

RT' Return from Interrupt RTI

Operation : S« S+1

PSL « M(S)
S« S+1
PSH « M(S)
S« S+1
PCL « M(S)
S«S+1
PCH « M(S)
S« S+1
PG « M(S)

Description : The contents of the processor status register PS, program counter PC, and

program bank register PG, which are saved on the stack when the last interrupt
was accepted, are restored these registers.

Status flags : Restored according to the values that had been on the stack.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTI 4016 1 11

130

RTL Return from Subroutine Long

RTL

Operation : S« S+1
PCL « M(S)
S« S+1
PCH « M(S)
S« S+1
PG « M(S)

Description : The program counter PC and program bank register PG are restored according

to the state previously saved on the stack.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTL 6B16 1 8

131

RTS - Return from Subroutine RTS

Operation S« S+1
PCL « M(S)
S« S+1
PCH « M(S)
Description : The program counter PC is restored according to the state previously saved on
the stack.
Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied RTS 6016 1 5

132

S B C Subtract with Carry S B C

Operation : Acc,C e« Acc-M-C

Description : Subtracts the contents of memory and the 1's complements of carry flag from the
contents of the accumulator , and places the result in the accumulator. Executed
as a binary subtraction if the decimal operation mode flag D is set to 0. Executed
as a decimal subtraction if the decimal operation mode flag D is set to 1.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
subtraction.

V - : Set to 1 when binary subtraction of signed data results in a value outside the

range of -32768 to +32767 (-128 to +127 if the data length selection flag m is set
to 1). Otherwise, cleared to 0. Meaningless for decimal subtraction.

m Not affected.
X Not affected.
D Not affected.
| Not affected.
z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C : Set to 1 when the result of operation is equal to or larger than 0. Otherwise,
cleared to 0, and a borrow is indicated.

Addressing mode Syntax Machine code Bytes | Cycles
Immediate SBC A, #imm E916, imm 2 2
Direct SBC A, dd E516, dd 2 4
Direct indexed X SBC A.dd, X F516, dd 2 5
Direct indirect SBC A, (dd) F21e, dd 2 6
Direct indexed X indirect SBC A,(dd, X) E11e, dd 2 7
Direct indirect indexed Y SBC A,(dd), Y F11e, dd 2 8
Direct indirect long SBCL A, (dd) E716, dd 2 10.
Direct indirect long indexed Y | SBCL A, (dd), Y F71e6, dd 2 11
Absolute SBC A,mmil ED1s,llmm 3 4
Absolute indexed X SBC A, mmil, X FDss, ll, mm 3 6
Absolute indexed Y SBC A, mmll, Y F9ie, Il, mm 3 6
Absolute long SBC A, hhmmll EFis, Il, mm, hh 4 6
Absolute long indexed X SBC A, hhmmll, X FF1s, Il, mm, hh 4 7
Stack pointer relative SBC A, nn, S E316, nn 2 5
Stack pointer relative SBC A, (nn, S), Y F316, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note 2)When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1. ’

133

SEB set Bi SEB

Operation T M« MVIMM

IMM is the bit pattern that specifies the bit positions that are to be set to 1.

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction. :

Description : The SEB instruction sets the specified memory bits to 1. Multiple bits to be set

can be specified at one time.

Status flags : Not affected.
Addressing mode Syntax Machine code j Bytes | Cycles
Direct bit SEB #imm, dd 0416, dd, imm |3 8
Absolute bit SEB #imm, mmll 0Cis, ll, mm, imm 4 9

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

134

S EC Set Carry Flag

SEC

Operation i Ce1

Description : Sets the carry flag C to 1.

Status flags

IPL: Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1.

ON—OX 3 < 2Z

Addressing mode Syntax

Machine code

Bytes

Cycles

Implied SEC

3816

135

S EI ' Set Interrupt Disable Status S EI

Operation L

Description : Sets the interrupt disable flag | to 1.

Status flags

IPL: Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.
Set to 1.
Not affected.
Not affected.

ON—O0OX%X 3 < Z

Addressing mode Syntax Machine code Bytes | Cycles
Implied SEI 7816 1 2

136

S E M Set m Flag

SEM

Operation Doome 1

Description : Sets the data length selection flag m to 1.

Status flags
IPL: Not affected.
> Not affected.
Not affected.
Set to 1.
Not affected.
Not affected.
Not affected.
Not affected.
Not affected.

ON—TO0OXxX 3 <2Z

Addressing mode Syntax

Machine code

Bytes

Cycles

Implied SEM

F816

137

SEP

Set Processor Status

SEP

Operation : PSL« PSLV IMM

Description

the instruction to 1.

Status flags

The specified flags are set.

IPL is not affected.

(IMM is the immediateAvaIue specified in the second byte of the instruction.)

Sets the processor status flags specified by the bit pattern in the second byte of

Addressing mode

Syntax

Machine code

Bytes

Cycles

Immediate

SEP #imm

E216, imm

138

STA

Store Accumulator in Memory

STA

Operation When m=0,
M(n) « AccL
M(n+1) « Accu
Description

Status flags

Not affected.

When m=1

M(n) « Acct

Stores the contents of the accumulator in memory.
The contents of the accumulator are not changed.

Addressing mode Syntax Machine code Bytes | Cycles
Direct STA A, dd 8516, dd 2 4
Direct indexed X STA A, dd, X 9516, dd 2 5
Direct indirect STA A, (dd) 9216 dd 2 7
Direct indexed X indirect STA A, (dd, X) 8116, dd 2 7
Direct indirect indexed Y STA A (dd), Y 9116, dd 2 7
Direct indirect long STAL A, (dd) 8716, dd 2 10
Direct indirect long indexed Y | STAL A, (dd), Y 971e, dd 2 11
Absolute STA A, mmll 8D1s, Il, mm 3 5
Absolute indexed X STA A mmll, X 9Dss, I, mm 3 5

| Absolute indexed Y STA A mmll, Y 9916, I, mm 3 5
Absolute long STA A, hhmmll 8Fi1s, Il, mm, hh 4 6
Absolute long indexed X STA A, hhmmll, X 9F1s, I, mm, hh 4 7
Stack pointer relative STA A, nn, S 8316, NN 2 5
Stack pointer relative STA A (nn, S), Y 9316, NN 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace “A” with “B”.
In this case, “4216” is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

139

STP | e STP

Operation . Stop the oscillator.

Description : Resets the oscillator controlling flip-flop circuit to inhibit the oscillator. To restart
the oscillator, either an interrupt or reset must be executed.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied STP DB1e 1 3

140

STX Store Index Register X in Memory STX

Operation : When x=0, When x=1
M(n) « X. M(n) « X.
M(n+1) « Xu
Description : Stores the contents of the index register X in memory. The contents of the index

register X remain the same.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmll 8Ei1s, I, mm 3 5

141

STY Store Index Register Y in Memory STY

Operation : When x=0, When x=1
M(n) « Y. M(n) « Y.
M(n+1) « Yu
Description : Stores the contents of the index register Y in memory. The contents of the index

register Y remain the same.

Status flags : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY mmll 8Cis, Il, mm 3 5

142

TA D Transfer Accumulator A to Direct Page Regfister TA D

Operation . DPR « A

Description : Loads the direct page register DPR with the contents of the accumulator A. Data
is transferred as 16-bit data regardless of the status of the data length selection
flag m. The contents of the accumulator A are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes |Cycles
Implied TAD 5B1s 1 2

143

TAS Transfer Accumulator A to Stack Pointer TAS

Operation : S« A

Description : Loads the stack pointer S with the contents of the accumulator A. Data is
transferred as 16-bit data regardless of the status of the data length selection flag
m. The contents of the accumulator A are not changed.

Status flags : Not affected.

Addressing mode Syntax Machine code Bytes | Cycles
Implied TAS 1B1e 1 2

144

TAX Transfer Accumulator A to Index Register X TAX
Operation If x=0, If x=1,

XL« AL XL« A

Xu « AH
Description Loads the index register X with the contents of the accumulator A. The contents

Status flags

of the accumulator A are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TAX AAis 1 2

145

TAY Transfer Accumulator A to Index Register Y TAY
Operation If x=0, If x=1,
YL« A YL« A
- YH « AH
Description Loads the index register Y with the contents of the accumulator A. The contents

Status flags

of the accumulator A are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is. 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TAY A81s 1 2

146

TB D Transfer Accumulator B to Direct Page Register TB D
Operation : DPR« B
Description : Loads the direct page register DPR with the contents of the accumulator B. Data

is transferred as 16-bit data regardiess of the status of the data length selection

flag m. The contents of the accumulator B are not changed.

Status flags : Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TBD

4216, 5B1s

147

TBS

Transfer Accumulator B to Stack Pointer

TBS

Operation : S« 8B

Description

Status flags

Loads the stack pointer S with the contents of the accumulator B. Data is

transferred as 16-bit data regardiess of the status of the data length selection flag

m. The contents of the accumulator B are not changed.

Not affected.

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TBS

4216, 1B16

148

TBX Transfer Accumulator B to Index Register X TBX
Operation If x=0, If x=1,

XL « B XL« Bo

Xu « BH
Description Loads the index register X with the contents of the accumulator B. The contents

Status flags

of the accumulator B are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

Vv Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TBX 4216, AA1s 2 4

149

TBY Transfer Accumulator B to Index Register Y TBY
Operation If x=0, If x=1,

YL « BL YL « B

YH < B
Description Loads the index register Y with the contents of the accumulator B. The contents

Status flags

of the accumulator B are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TBY 4216, A816 2 4

150

TDA Transfer Direct Page Register to Accumulator A TDA
Operation If m=0, If m=1,

AL « DPRu AL « DPRL

Ax « DPRu
Description Loads the accumulator A with the contents of the direct page register DPR. The

Status flags

contents of the direct page register DPR are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\Y Not affected.
m Not affected.
X Not affected.
D Not affected.

o Not affected.
Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.

Addressing mode : ‘ Syntax | Machine code Bytes |Cycles

Implied

j TDA 7B1s 1 2

151

T DB ‘Transfer Direct Page Register to Accumulator B TD B
Operation If m=0, If m=1,

BL. « DPRL B. « DPR.

Bu « DPRu
Description Loads the accumulator B with the contents of the direct page register DPR. The

Status flags

contents of the direct page -register DPR are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
\Y Not affected. ‘
m Not affected.
X Not affected.
D Not affected.
| Not affected.
z "Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes | Cycles

Implied

TDB 4216, 7B1s 2 4

152

TSA

Transfer Stack Pointer to Accumulator A TSA

Operation

Description

Status flags

If m=0, If m=1,
AL « St AL« SL
AH « SH

Loads the accumulator A with the contents of the stack pointer S. The contents
of the stack pointer S are not changed.

IPL : Not affected.
N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TSA 3B1s 1 2

153

TS B Transfer Stack Pointer to Accumulator B TS B
Operation If m=0, If m=1,

BL « S. BL « Su

BH « SH
Description Loads the accumulator B with the contents of the stack pointer S. The contents

Status flags

of the stack pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TSB 4216, 3B1s 2 4

154

TSX Transfer Stack Pointer to Index Register X TSX
Operation If x=0, If x=1,

XL« S XL « S.

XH < SH
Description Loads the index register X with the contents of the stack pointer S. The contents

Status flags

of the stack pointer S are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or b'it 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

I Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TSX BAis 1 2

155

TXA Transfer Index Register X to Accumulator A TXA
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

AL « XL AL « Xo AL« Xu

AH «— Xu Ax « 0016
Description Loads the accumulator A with the contents of the index register X. The contents

Status flags

of the index register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Cc Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TXA 8A16 1 2

156

TX B Transfer Index Register X to Accumulator B TX B
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

BL « Xt BL « Xu Bl Xu

BH « Xu Bu « 0016
Description Loads the accumulator B with the contents of the index register X. The contents

Status flags

of the index register X are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.
Y Not affected. '
m Not affected.
X Not affected.
D Not affected.
| Not affected.
V4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.
C Not affected.
Addressing mode Syntax Machine code Bytes |Cycles

Implied

TXB 4216, 8A16 2 4

157

TXS

Transfer Index Register X to Stack Pointer

TXS

Operation o If x=0,
SL« Xu
SH « Xu
Description

Status flags

If x=1,
SL« Xu
SH « 0016

of the index register X are not changed.

Not affected.

Loads the stack pointers with the contents of the index register X. The contents

Addressing mode

Syntax

Machine code

Bytes

Cycles

Implied

TXS

9A1e

158

TXY

Transfer Index Register Xto Y TXY

Operation

Description

Status flags

If x=0, If x=1,
YL« Xu YL« X
YH ¢« XH

Loads the index register Y with the contents of the index register X. The con-
tents of the index register X are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) cf the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

p4 Set to 1 when the result of operation is 0. Otherwisé, cleared to 0.

Cc Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

XY 9B1s 1 2

159

TYA Transfer Index Register Y to Accumulator A TYA
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

AL« YL AL« YL A~ YL

A« YH Au < 001
Description Loads the accumulator A with the contents of the index register Y. The contents

Status flags

of the index register Y are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

p4 Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TYA 9816 1 2

160

TY B Transfer Index Register Y to Accumulator B TY B
Operation If m=0 and x=0, If m=0 and x=1, If m=1,

BL « Yo BL « YL BL « YL

BH « Yu Bx « 0016
Description Loads the accumulator B with the contents of the index register Y. The contents

Status flags

of the index register Y are not changed.

IPL: Not affected.
N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

\" Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes |Cycles

Implied

TYB 4216, 9816 2 4

161

TYX

Transfer Index Register Y to X TYX

Operation

Description

Status flags

If x=0, If x=1,
XL« Yo XL« Yo
XH < YH

Loads the index register X with the contents of the index register Y. The con-
tents of the index register Y are not changed.

IPL : Not affected.
N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

\ Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes | Cycles

Implied

TYX BBis 1 2

162

WIT

Wait

WIT

Operation . Stop the internal clock.

Description

The WIT instruction stops the internal clock but not the external clock is not

stopped. To restart the internal clock, either an interrupt or reset must be

executed.

Status flags

Not affected.

Addressing mode

Syntax

l Machine code

Bytes

Cycles

Implied

WIT

i CBrs

163

XA B Exchange Accumulator A and B XAB

Operation ;o If m=0, If m=1,
AL < B AL & B
Au < Bu

Description : Swaps the contents of the accumulators A and B.

Status flags
IPL : Not affected.

N : Setto 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
- the accumulator A after the operation is 1. Otherwise, cleared to 0.

\' Not affected.

m Not affected.

X Not affected.

D Not affected.

| Not affected.

z Set to 1 when the contents of the accumulator A is cleared to 0 by the operation.

Otherwise, cleared to 0.

C : Not affected.
Addressing mode Syntax Machine code Bytes | Cycles
Implied XAB 8916, 2816 2 6

164

Notes for Programming

5. Notes for Programming

Take care of the following when programming with the MELPS 7700 series.

(1) The stack pointer S is undefined immediately after the reset is commanded. Always set the
initial value.

Example) LDX #27FH
TXS

(2) The program bank register PG and the data bank register DT are disabled under the single chip
mode. Do not set value other than “001” here.

(3) When “1” is set in the D-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled.
The C and Z flags alone are effective in the SBC instruction, while the N and V flags are
disabled. (Decimal operation can be done in the ADC and the SBC instructions alone.)

(4) Using the 16-bit immediate data with “1” (data length : 8 bits) in the data length selection flag
m, or using the 8- bit immediate data with “0” (data length : 16 bits) in flag m, will cause the
program run-away. The same rule is applied to the index register length selection flag x. Take
care of the condition of these flags when coding the program.

(5) The MELPS 7700 can prefetch the instructions using the 3-byte instruction queue buffer. Keep
in mind when creating the timer with the software, that the number of cycles shown in the list
of machine language instructions is the minimum value. (Also see Chapter 6.)

(6) When value other than “001¢" is set in the lower order 8 bits of the direct page register DPR
(DPRu), the processing time will become 1 machine cycle longer than when “00” is set.

(7) The processing speed will deteriorate if a 16- bit data will be accessed from an odd address.
Place the 16-bit data from an even address if the processing speed is important.

(8) The N and Z flags will change by execution of the PLA instruction, but the contents of the proc-
essor status register will not change if the accumulator A alone is recovered by the PUL instruc-
tion.

(9) The program bank register PG can be saved into the stack by setting “1” in bit 6 of the operation
by the PSH instruction. However, the PG cannot be recovered by the PUL instruction.

When the PUL or the PSH instruction is exeCuted, the flag m and the flag x are affected in
addition.

—
—_
o

~

165

Notes for Programming

(11) The code in the second byte of the BRK instruction will not affect the CPU.

(12) When the block transfer instruction (MVN or MVP) is executed with x=1, the contents of middle
order 8-bit in source and destination address (There are consists of 24-bit.) will be fixed “0016”.

166

Instruction Execution Sequence

6.

6.1

Instruction Execution Sequence

The basic clock of the MELPS 7700 central processing unit (CPU) is clock ¢ (1/2 the oscillation
frequency f(Xi)). The basic clock of the bus is an E derived from clock ¢, so data exchange be-
tween the CPU and the internal bus is done via the bus interface unit. The frequency of E is
normally 1/2 that of clock ¢, but it becomes 1/4 that of ¢, when accessing external memory while
the wait is enabled by the wait bit.

Bus Interface Unit

The bus interface unit is a unit that helps data exchange between the CPU and the internal bus.
The unit is structured by registers and buffers as shown in Figure 6.1.1. The functions of these
registers and buffers are shown in Table 6.1.1. The CPU reads the instruction code from the
instruction queue buffer, and the data from the data buffer of the bus interface unit. Then, data
is written in the data buffer of the bus interface unit. The bus interface unit reads or writes data
from the memory or 1/O via the bus, instead of the CPU.

b23 b

=]

__
o
>

]

Program Address Register

C4

2 b

o | 1

=3

y

Instruction Queue Buffer

I
|
|
-

b23 b0
DA | Data Address Register
b1S b0
DBH | DBL | DataBuffer

Fig. 6.1.1 Bus Interface Unit Register Model

Table 6.1.1 Functions of the Registers and Buffers

Name Function

Program address register This register indicates the address where the program is stored.

Instruction queue buffer The 3-byte buffer for temporal storage of the instruction pre-
fetched from the memory.

Data address register The register that indicates the address for data read or data
write.
Data buffer The buffer where the bus interface unit temporarily stores data

read from the memory or 1/0 or where the CPU temporarily
stores data to be written into the memory or I/O.

167

Instruction Execution Sequence

6.2 Change of the CPU Basic Clock ¢cru
When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with

the bus, and waits till it is ready. As the CPU basic clock waits owing to some conditions, this
clock will be called ¢cru to be distinguished from the clock . The following are the cases in which
the ¢cru walits.)

@)

\—

Causes for the ¢cru to wait

<Cause 1>

When the CPU requests operation codes and operands, but the operation codes and op-
erands in the instruction queue buffer did not reach the necessary number.

<Cause 2>

When the CPU tried to access data, but the bus interface unit was using the bus for fetching
some data into the instruction queue buffer or writing data.

<Cause 3>

When the bus interface unit was reading data from the internal/external memory or 1/O,
according to the request of the CPU.

In addition to the above, the following are also causes for the ¢cru to be extended.
* When 16-bit data is accessed from odd address.
® When external memory 16-bit data is accessed while the BYTE terminal level is “H".
® When external memory is accessed with wait commanded by the wait bit.

JJ

The above conditions causes the execution time to differ each time, even with the same instruc-
tion and same addressing mode. Two example instructions are given in the next section to see

the

The

variation of the number of cycles according to the above conditions.

“ CPU execution sequence per addressing mode ” of Appendix-A is the CPU instruction

execution sequences based on the ¢ceu . The number of cycles shown in “ 4.2 Instructions " and
“ Appendix-B List of machirie language instructions " are the count for the shortest case, and
cannot always be applied when calculating the actual cycles or the execution time of instructions.

168

Instruction Execution Sequence

6.3 Instruction Execution Sequence

The instruction execution sequence of the CPU based on the ¢cru, and the variation of the actual

instruction execution cycle when various conditions are applied are shown here.
e Example 1. ASL instruction Direct addressing mode

e Example 2. LDA instruction Direct indirect long addressing mode

Before observing the ¢cru based CPU instruction execution sequence -

The following table describes the ¢cru based CPU instruction execution sequence symbols. The
signals indicated in this execution sequence are all CPU internal signals, that show data ex-
change between the bus interface unit and the CPU. Accordingly, these signals cannot be
observed from outside.

¢cru Based CPU Instruction Execution Sequence Symbols

Symbol Description

dcpu CPU basic clock

Ap(cru) Higher order 8 bits of the address (24 bits) of the program that the CPU is actually execution

AuAvLcruy Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution

DATAcru) Data information the CPU is processing

R/Wicpu) Data read/write request to the data buffer in the bus interface

PG,PC Contents of the program bank register (PG) and the program counter (PC)

ADr Data indicating the address (higher order 8 bits)

AD+H,ADL Data indicating the address (middle order 8 bits, lower order 8 bits)

DPRm Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register (DPRL = 0 in the examples)

Du Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)

Do Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)

dd Contents of the operand (DPRL = 0 in examples 1 and 2, so dd represents the lower order 8
bits of the address)

169

Instruction Execution Sequence

Before observing the ¢ based instruction execution sequence

The ¢ based execution sequence symbols are shown in the following table. The signals in this
execution sequence indicates data exchange of the bus interface unit with the memory and /0.
The internal instruction execution sequence of the CPU can be guessed from these signals.
However, the ¢cru and the number of data in the instruction queue buffer shown here cannot be
observed from the outside.

¢ Based Execution Sequence Symbols

Symbol v Description

o Basic operation clock of the microcomputer f(XiN) / 2

E Basic operation clock of the bus ¢ /2

hh Higher order 8 bits of the address where the bus interface unit is to access to (bank)
mm Middle order 8 bits of the address where the bus interface unit is to access to

I Lower order 8 bits of the address where the bus interface unit is to access to

DPR Contents of the direct page

DPR+ Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register
OP: Data to be fetched into the instruction queue buffer by the bus interface
OP2 (Operation code or operand)
OPs The subscript represents the fetch sequence.
Do Data to be fetched into the data buffer or data to be written into the memory by the bus interface
Dn unit
dd Data obtained as the operand (The lower order 8 bits of the address are given in examples 1

and 2, because DPRL = 0.)

ADe Higher order 8 bits of data that indicates the address (contents of the data address register)
ADH Middle order 8 bits of data that indicates the address (contents of the data address register)
ADL Lower order 8 bits of data that indicates the address (contents of the data address register)

The following are the cause of the “dcru to queue” in the ¢ based execution sequence.

@ Cause 1 A

When the CPU required operation codes and operands, but the number of operation codes and
operands did not reach the requested number.

Cause 2
When the CPU tried to access data, but the bus interface was using the bus for fetching data mto
the instruction queue buffer or for writing data.

Cause 3

When the bus interface unit is reading data from the internal/external memory or I/O, etc., accord-
ing to the request of the CPU.

\ J

170

Instruction Execution Sequence

Example 1. ASL instruction / direct addressing mode (DPRL = 001s)

f: ¢ceu based CPU instruction execution sequence =)

goru |
arcry Y pe X Pe X % X ra X
Anavcry) X pe X pon X DPRH , dd X poz X
DATAGPY) X(op code X operand X DD L Yot ses Ngg BERE

R/ Wcpu)

Note: All the signals are CPU internal signals, which cannot be observed from outside.

S Y,

The following examples 1-1 to 1-6 are examples of the ¢cru based instruction execution se-
quences under various conditions.

Example 1-1 When the instruction queue buffer is vacant

Example 1-2 When two data are in the instruction queue buffer

Example 1-3 When three data are in the instruction queue buffer

Example 1-4 When 16-bit data is accessed from odd address

Example 1-5 When external memory is accessed from the BYTE terminal using 8-bit
external bus width

Example 1-6 When external memory is accessed with wait by the wait bit

171

Instruction Execution Sequence

(Example 1-1) When the instruction queue buffer is vacant

Conditions

 Number of data in the instruction queue buffer 0

ROM, RAM
Data length selection flag m

BYTE terminal level

External memory is used (Note)

“0” (16-bit length)

“L” (External bus width is 16 bits)

* Contents of lower order bytes (PCv.) of the program counter Even

® Contents of the operand (dd)

¢ based execution sequence

Even

9
¢ L [__.J
s [] [] [] L L
Fetches Op Fetches Reads Data Modifies Writes Next
N . Code Operand Data Data Instruction
umber of data in
instruction queue 21 0 2 1
buffer
Ass~Ais Modified DL
I DATAwey X h X oPX hh X oPsX 00 X' X 0o 7Y
Op Code Next Op Code Modified DH
Ais~As
I DATAess XM X OP2X_ mm X OPax(opriX Dv X DPR: X * X
Opeland (dd)
Ato X X w2 X dd X
E I T s N [
BHE
R/W L
Cause for)CPU to queue - -~ -

Cause 1 Cause 2 Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single-chip mode.

172

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are no | Fetches the instruction, because instruction
operation codes in the instruction queue buffer.) | queue buffer is vacant and the CPU is not
using the bus.

2 | Fetches 2-byte worth of data into the instruc-

/ tion queue buffer when E becomes “L”.
Fetches the operation code.

3 Fetches the operand. Prefetches the instruction, because the in-
struction queue buffer is vacant and the CPU
is not using the bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruc-

becomes vacant.) tion queue buffer when E becomes “L”.

5 Waits for E to become “L”", to read data.

6 Reads data when E becomes “L”".

7 Modifies data.

8 Writes data into the data buffer.

9 Fetches the next operation code. Writes the contents of the data buffer into the
original address, when E becomes “L".

173

Instruction Execution Sequence

(Example 1-2) When two data are in the instruction queue buffer

Conditions

& Number of data in the instruction queue buffer 2

* ROM, RAM External memory is used (Note)
e Data length selection flag m “0” (16-bit length)

e BYTE terminal level “L” (External bus width is 16 bits)

Contents of lower order bytes (PC.) of the program counter. Even
¢ Contents of the operand (dd) Even

¢ based execution sequence

1 2 3 4 5 6 7

o LTI
o [1T [LI

L

Fetches Fetches Reads Data Modifies Writes :Next
. Op Code Operand Data Data Instruction

Number of data in
instruction queue 2 1 0 2 1
buffer

Ao Modified DL

23~ 16 \ /
/DATA(even) :> hh X OP‘X 00 X DL X 00 /(E
Next Op Code

Modified DH

f\l‘;;?;(wd) "X mm__ X OP2Xorai X Dx X DPRi)

Arho) I X dd

Ll LHR

HE
L
R/W L
Cause for OGPU 1o queue —> -—>
Cause 2 Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single chip mode.

174

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit

1 Fetches operation code.

2 Fetches operand (dd). Prefetches the instruction, because the instruct
queue buffer is vacant and the CPU is not using
the bus.

3 (Waits till the bus used by the bus interface unit | Fetches 2-byte worth of data into the instruction

becomes vacant.) queue buffer when E becomes “L".

4 Waits for E to become “L”, to read data.

5 Reads data when E becomes “L".

6 Modifies data.

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffer into the
original address, when E becomes “L".

175

Instruction Execution Sequence

(Example 1-3) When three data are in the instruction queue buffer

Conditions

® Number of data inbthe instruction queue buffer

* ROM, RAM

¢ Data length selection flag m

® BYTE terminal level

® Contents of lower order bytes (PCL.) of the program counter

& Contents of the operand (dd)

¢ based execution sequence

bepu

Number of data in
instruction queue
buffer

A2s~Ate
/ DATA(even)

Ais~As
/ DAT A(odd)

A7~Ao

m|

BHE

R/W

Cause for OcPU to queue

3

External memory is used (Note)
“0” (16-bit length)

“L” (External bus width is 16 bits)
Even

Even

[e2]

Fetches Fetches Reads Data Modifies Writes { Next
‘Op Code Operand Data Data Instruction
3 2 1 3 2
Modified DL
~ X nh X oo X o Xhh Xops X 00 XY
. Modified DH
3(mm XDPRHX Dn X mmX OPzXDPRH\< ¥ x
3(X _ed X 0 X _dd X
[I [
L
> <>
Cause 2

Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single chip mode.

176

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit

1 Fetches operation code .

2 Fetches operand (dd).

3 Waits for E to become “L”, to read data.

4 Reads data when E becomes “L”.

5 Modifies data. Prefetches the instruction, because there are two
vacant instruction queue buffers and the CPU is not
using the bus.

6 (Waits till the bus used by the bus interface| Fetches 2-byte worth of data into the instruction

unit becomes vacant.) queue buffer when E becomes “L".

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffer into the origi-
nal address, as E becomes “L”".

177

Instruction Execution Sequence

(Example 1-4) When 16-bit data is accessed from odd address

Conditions

& Number of data in the instruction queue buffer 0

ROM, RAM
Data length selection flag m
BYTE terminal level

Contents of lower order bytes (PCv) of the program counter ~ Odd

® Contents of the operand (dd) Odd

¢ based execution sequence

“0” (16-bit length)

External memory is used (Note1)

“L” (External bus width is 16 bits)

o LTI
ocrs [| I [] T T
Fetches Op Fetches Reads Data Modifies Writes
Number of data in Code Operand Data Data
instruction queue O 150 251 3
buffer
Azx~Ats ; Modi!isd o
/ DATAery X mmmmmm (o0 X ")
nvali pelan nvali
Ais~As
| DAT A X mm X(OPe X mm X OPeXprre X D XpemeX_D_X mm X OPs XranX__ZorrX_? X_
Op Code Next Op Code Invalid Invalid
Arho X D SR G € G 6D - &
E [T S R l I
BHE | |
R/W —L '_
Cause forcPU to queue ~ €—> <> — > «—> i e >
Cause 1 Cause 1 Cause 3 Cause 2 Cause 2
Note1. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of

the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed
from outside, when the mode is single chip mode.

Note 2. At the <- - -> part
* When the CPU does not use the bus, ¢cpu corresponds with ¢.

* When the CPU uses the bus, the ¢cru queues till the writing in the bus interface unit completes. (the 14
cycle)

178

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

& No. CPU Bus interface unit
1 (No fetching can be done, because there are | Fetches the instruction, because instruction queue
no operation codes in the instruction queue | buffer is vacant and the CPU is not using the bus.
buffer.)
2 | Fetches 1 odd address byte worth of data into the

/ instruction queue buffer, when E becomes—"L".
Fetches operation code.

3 (No fetching can be done, because there are | Fetches the instruction, because instruction queue
no operands in the instruction queue buffer.) | buffer is vacant and the CPU is not using the bus.

4 L Fetches 2-byte worth of data into the instruction
/ queue buffer when E becomes “L”.

Fetches operand (dd).

5 Waits for E to become “L”, to read data.

6 Reads data in the odd addresses (DL) alone into the data buffer when E becomes “L”.

7 Waits for E to become “L”, to read data.

8 Reads data in the even addresses (D+) alone into the data buffer when E becomes “L”.

9 Modifies data. Prefetches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

10 (Waits till the bus used by the bus interface | Fetches 2 bytes worth of data into the instruction

unit becomes vacant.) queue buffer, when E becomes “L”.

11 Writes data into the data buffer. Waits till E becomes “L” to write data.

12 Fetches the next operation code. Writes the contents of the data buffer (D) into the
original address (odd address), when E becomes
L

13 ? Waits till E becomes “L” to write data.

14 Writes the contents of the data buffer (Dw) into the

? original address (even address), when E becomes
o

When internal ROM or BYTE terminal level “L” external memory is used as the program memory, the instruction is
fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this
order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction,
the 1-byte of the first odd address alone is fetched into the instruction queue buffer (¢2 cycle), and the later instructions
are fetched into the instruction queue buffer in 2-byte units (¢4, 10 cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone.
The operation status can be observed from outside, according to the output of the BHE terminal and the address bus
signal Ao, as long as the mode is not single chip mode.

« When one word is fetched
The output from both the BHE terminal and the address bus Ao are at the “L” level.

« When 1 byte of odd address alone is fetched
The output from the BHE terminal is “L”, while the output from address bus Ao is “H”.

179

Instruction Execution Sequence

When internal RAM and external memory at BYTE terminal level “L” are used as the data memory, with data
length selection flag m = 0, both data read and write are normally done in 2-byte units of even and odd
addresses, in this sequence. However, access can also be done when the word data is defined from an odd
address. In other words, “H” is output first from address bus Ao and then “L” from the BHE terminal to access
to odd address alone. Next, “L” is output from Ao, and “H” from the BHE terminal to access to the even address.
(65 to 08, 611 to 914 cycle)

180

Instruction Execution Sequence

(Example 1-5) When external memoryis accessed from the BYTE terminal using

8-bit external bus width

Conditions
e Number of data in the instruction queue buffer
* ROM, RAM

® Data length selection flag m

BYTE terminal level

0

External memory is used

“0" (16-bit length)

“H” (External bus width is 8 bits)

& Contents of lower order bytes (PCv) of the program counter Even

& Contents of the operand (dd)

¢ based execution sequence

12 3 4 5 6 7 8 9

Even

Saininginininiginginininlinininis
e [T M rorire

Fetches Op Fetches Reads Data

c
Number of data in ode Operand

instruction queue 0 150 1.0
buffer

Modifies Writes i Next
Data Data Instruction

1 0

Modified DL Modified DH

Azx~A
/DT A Xt X OP X X'0P: X 00 X0 X o0 X X'rm XoP: X 0o
o peland (dd ext Op Code

Ars~As
/ ‘DSATA(odd] (mm X mm X DPR4 X

mm X __DPA: JC

Ao~ X Xt X dd X adet X

12 X o X _dde1 X

m|

L 7 1T

N N N I N

e B

R/W

Cause for OcPU to queue ~ €— <> — >
Cause 1 Cause 1 Cause 3

Note. Atthe <- - -> part
* When the CPU does not use the bus, ¢cpu corresponds with ¢.

Cause 2 Cause 2 (Note)

* When the CPU uses the bus, the ¢cpu queues till the writing in the bus interface unit completes. (the ¢13 to ¢14

cycle)

181

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are| Fetches the instruction, because the instruction queue
no operation codes in the instruction queue| buffer is vacant and the CPU is not using the bus.
buffer.)
2 | Fetches 1 odd address byte worth of data into the in-
. / struction queue buffer when E becomes “L”.
Fetches operation code.
3 (No fetching can be done, because there are| Fetches the instruction, because instruction queue
no operands in the instruction queue buffer.)| buffer is vacant and the CPU is not using the bus.
4 Fetches 1-byte worth of data into the instruction
/ queue buffer when E becomes “L”.
Fetches operand (dd).
5 Waits for E to become “L”, to read data.
6 Reads data (D) into the data buffer when E becomes “L".
7 Waits for E to become “L”, to read data.
8 Reads data (Dw) alone into the data buffer when E becomes “L”.
9 Modifies data. Prefetches the instruction, because there are two|
_| vacant positions in the instruction queue buffer, and
the CPU is not using the bus.
10 (Waits till the bus used by the bus interface| Fetches- 1 byte worth of data into the instruction
unit is vacant.) ' queue buffer when E becomes “L".
11 Writes data into the data buffer. Waits till E becomes “L” to write data.
12 Fetches the next operation code. Writes the contents of the data buffer (Di) into the
original address (odd address), when E becomes “L".
13 ? Waits till E becomes “L” to write data.
14 ? Writes the contents of the data buffer (Dw) into the
original address (even address), when E becomes “L”".

The external bus width becomes 8 bits when the “H” level is applied to the BYTE terminal. (The width of the internal
bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the
instruction can only be fetched byte by byte. (2, ¢4, 10 cycle) When external RAM is used, the data can likewise
only be handled byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2
cycles of the enable output E for data read and write. (¢ to ¢s, ¢11to ¢14 cycle)

182

Instruction Execution Sequence

(Example 1-6) When external memory is accessed with wait by the wait bit

Conditions

® Number of data in the instruction queue buffer
* ROM, RAM
® Data length selection flag m

e BYTE terminal level

0

External memoryr is used

“0" (16-bit length)

“L” (External bus width is 16 bits)

e Contents of lower order bytes (PC.) of the program counter Even
e Contents of the operand (dd) Even
¢ based execution sequence
1 2 3 4 5 6 7 8 o] 10 11 12 13 14 15 16 17

o

Number of data in
instruction queue
buffer

A23~Ats
/ DATA(even)

Ats~As
/ DATA(odd)

Ar~Ao :)

E
BHE

R/W

Cause for O¢PU to queue

0

EpipiinipininipinipinipipSnipinininiy
o |]

Fetches Op Code Fetches Operand Reads Data Modifies Writes Next
Data Data Instruction
2.1 0 2 o
hh X OP4 hh LOP: X 00 X D X 00 : X Modified DL)C
Op Code Next Op Code
mm X opz X mm X OPs X DPR« X Dv X DPRH X Modified D1 X
Opeland (dd)
i X 1+2 X dd)&

7 r 7 |

<

Cause 1 Cause 2 Cause 3 Cause 2 (Note)

183

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CPU Bus interface unit
1 (No fetching can be done, because there are Fetches the instruction, because instruction queue
2 no operation codes in the instruction queue buffer is vacant and the CPU is not using the bus.
buffer.) i
3 | Fetches 2 bytes worth of data into the instruction
4 queue buffer when E becomes “L".
Fetches the operation code . /
5 Fetches operand (dd). Prefetches the instruction because the instruction
6 queue buffer is vacant and the CPU is not using the
bus.
7 (Waits till the bus used by the bus interface Fetches 2 bytes worth of data into the instruction
8 unit becomes vacant.) queue buffer when becomes “L".
9 Waits till E becomes “L” to write data.
10
11 Reads data when E becomes “L”.
12
13 Modifies data.
14 Writes data into the data buffer.
15 Fetches the next operation code.
16 ? Writes the contents of the data bufferinto the original
address (odd address), when E becomes “L”.

Note. Atthe <- - -> part
* When the CPU does not use the bus, ¢cru corresponds with ¢.

* When the CPU uses the bus, the ¢cpu extends till the writing in the bus interface unit completes. (the ¢16 to

17 cycle))

The conditions are the same, except when wait is commanded by the wait bit (example 1-1). When accessing to
the external memory, the cycle of enable output E becomes twice that for no-wait, and thus the ¢cru wait time
also becomes twice the cycle. (¢sto ¢4, ¢7 to ds, G11to d12, 16 to d17 cycle)

184

Instruction Execution Sequence

Example 2. LDA instruction / Direct indirect long addressing mode (DPRL = 0016)

F ocru based CPU instruction execution sequence ﬁ
0 cpu J ’
AP(CPU) jX PG X PG X 00 Xoo or01><g)or01>< ADp X PG)C
AHAL(CPU) :X PC X PC+1 X DPRH, dd XD;?E; XADHADLX PC+2 >C
DATA(cPu) :><OpCode>< Opde(;andXéDHADLXNot USedX ADP X DHDL X gixéode X

R/Wecpy M

Note: All the signals are CPU internal signals, which cannot be observed from outside.

185

Instruction Execution Sequence

(Example 2-1) When the internal as well as the external memories are used together while wait
is commanded by the wait bit.

Conditions
® Number of data in the instruction queue buffer 0
* Bank 0 Internal ROM, RAM are used
Bank 1 and after External memory is used
e Data length selection flag m “0” (16-bit length) ‘
® BYTE terminal level “L” (External bus width is 16 bits)

® Contents of lower order bytes (PCL) of the program counter Even

® Contents of the operand (dd) Even
¢ Data indicated by the address ADL Even _
ADr 1 or more (bank 1 and after)

¢ based execution sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14
gors | | 1 [[T 1 LT

Fetches Op Fetches Reads Calculates Reads Reads Next
Number of data in Code Operand Data Address Data Data Instruction
instruction queue 0 2.1 0 2 1
buffer
A23~Ase
/ DAT Aceveny hh X OP1X hh XOP:X 00 XADL X 00 XAD-X ADr X Du
Gp Code Next Op Code
Ais~As
4 .
/ DATAwsg __XMM X OP2 X mm X OP«XpPRi XADH X oPRi X 2 X ADi X D
Opeland (dd) i

Ar~Ao :)(v X 2 X dd X dd+2 X /:DL
E | I S N L1 L

BHE I l
o
R/W
Cause for)CPU to queue d——>= <> <> <> - ——
Cause 1 Cause 2 Cause 3 Cause 3 Cause 3

186

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

¢ No. CcPU Bus interface unit

1 (No fetching can be done, because there are no | Fetches the instruction, because instruction queue

operation codes in the instruction queue buffer.) | buffer is vacant and the CPU is not using the bus.

2 L Fetches 2 bytes worth of data into the instruction

/ queue buffer when E becomes “L”.
Fetches the operation code .

3 Fetches operand (dd). Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

4 (Waits till the bus used by the bus interface unit | Fetches 2 bytes worth of data into the instruction

becomes vacant.) queue buffer when E becomes “L”.

5 Waits for E to becomes “L”, to read data (ADw ADL) indicated by the address obtained by adding the

contents of the operand (dd) and the DPRL.

6 Reads data when E becomes “L".

7 Calculated address.

8 Waits for E to become “L", to read data (ADr).

9 Reads data when E becomes “L".

10 | Waits for E to become “L”, to read the data (DH Dv) at the address specified by ADe ADH ADL.

1"

1§ Reads data when E becomes “L".

1

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode.
The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL
is “0016”, so the direct pages are all in bank 0. The access to the outside (¢10to 13 cycle) alone is affected by the
wait bit, and access to the internal memory is not affected by the bit.

187

APPENDIX A

CPU Instruction Execution Sequence for each Addressing Mode

APPENDIX A. CPU Instruction Execution Sequence for each Addressing Mode

The following are the CPU instruction execution sequences for each addressing mode. The exe-
cution sequences shown here describe the internal operation of the CPU. Therefore, the signals
are all CPU internal signals, and cannot be observed from outside. The CPU internal operation,
the actual execution time, and the relation between signals that can be externally checked are
described in Chapter 6 “Instruction Execution Sequence”.

The following are the signals and the symbols indicating the contents.

Symbol Description
deru CPU basic cycle
APcru) Higher order 8 bits of the CPU internal address bus.
AHALcru) Lower order 16 bits of the CPU internal address bus.
PG Contents of the program bank register.
PC Contents of the program counter.

Others are data that indicates the address obtained as result of address calculation.

DATAcry | The CPU internal data bus. The signal is output with a half-cycle delay from the CPU

internal address bus. The operation codes and the operands are fetched from the in-
struction buffer. They are not directly fetched from the memory indicated by the PG
and PC of this cycle.

R/Wicru) Becomes “L” when the CPU writes data into the data buffer of the bus interface unit.

The accumulator used in the above instructions in the CPU instruction execution sequence is
accumulator A. When accumulator B is used, the execution cycle will have the two cycles of
a “421¢” that indicates accumulator B, and an internal processing cycle added at the front.
(See the figure in the next page.)

The number of ¢cru cycles differs in the addressing mode that uses the direct page register,
according to whether the lower order 8 bits (DPRL) are “0016". The number of cycles when
DPRL = 0016 is 1 cycle (address calculation cycle) less than when DPRL # 00ss.

The number of cycles differs in the PSH and PUL instructions according to the number and
type of registers placed in (taken out of) the stack.

The number of cycles differs in the block transmission instruction (MVN, MVP), according to
the number of the data transmitted.

188

APPENDIX A
CPU Instruction Execution Sequence for each Addressing Mode

Variation of the execution cycles according to the accumulator used

<<When accumulator A is used>>
Mnemonic : ADC A #1234H Machine code : 6916 3416 1216

¢ cPU _J
Ap (cpu) :X PG X PGY PG X
AH AL (cpu) :>< PC X PC+1 X PC+3 K

DATA (cpPu) :X 6916 X 1234'i>< X

. OpCode Operand

<<When accumulator B is used>>
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216

4——2-cycle—

¢ cpu _l

F ADC Instruction / Inmediate addressing mode =\

Ap (cpPu) :X PG X PG X PG X PG X PG

AH AL (cpu) 3(PC X PC+1 X PC+1 X PC+2 X PC+4
DATA (cpu) :X 4246 XNotUsedX 6916 X123416 X:

Op Code : Op Code Operand

\

189

Implied

Instruction : CLC, CLI, CLM, CLV, DEX, DEY, INX, INY, NOP,
SEC, SEI, SEM, TAD, TAS, TAX, TAY, TDA, TSA,
TSX, TXA, TXS, TXY, TYA, TYX

Timing :

$cru I
Ap(cpu) < PG X PG X PG x
AnAL(cPu) < PC X PC+1 X PC+1 x
DATA(cpu) Op Code Not used Next
Op Code
B e
R/Wi(cpu)

Instruction : TBD, TBS, TBX, TBY, TDB, TSD, TXB, TYR

Timing :

#cru

Ap(cPu) < PG X X PG KPG X PG
e X X X X
Next
DATA(cpu) Op Code Not used Op Code Not used Op Code

R/Wiceu)

PG

PC+2

AvAL(cru)

aln

190

Implied

Instruction X AB

Timing

$cru

P(CPU)

PG

AnALicey)

= X X X A
X X X e X

><) Next
DATA(cpu) Op Code X Not usedX Op CodeXNot used X Not used >< Not used >< op Code>

R/mem

=

Instruction : STP, WIT

Timing :

Sceu

rer < i X X
A (cpun < PC X PG+ 1 >< PC+ 1

DATA cpu) x Op Code Not used X Not used

R/Wicpy)

[0]

191

Implied

Instruction : RT S

Timing :

#ceu

rere : " X re X * X re
AuAcicrw) < PC PCH1 >< 1 ><

. Next
DATA(cpu) Op Code Not used Not used ADLAD, Op Code

B oy
R/Wicpu)

s+ ADwAD,

an

NS

Instruction :RTL

Timing :

$cru ‘
AP(CPU) < PG X PG X 00 X AP : :
AALcou) < PC X PO+ 1 >< s+1 >< $+3 >< aa X
Next
DATA(cpu) Op Code Not used Not used ApAL Not used Ap Op Code
wy

R/Wicpy

192

Implied

Instruction : RT I

Timing :

| |

o (=X = X - X = X
< PC X PC+1 X S+1 X s+2 X S+3 X75+ 5 X PCPC_ x

DATA cpu. x Op CodeXNot usedXNot usedX pSHpstot usedX PCPC_ X Not usedX PG X Op CLde>

(Stack) (Stack) (Stack)

AuALicey

R/W.cpy:

193

Implied

Instruction : BRK

Timing :

Apicpu® < PG x PG X 00
< X PC+ 1 X FFFF X FFFE X FFFC X x S— l)
DATA ¢ x Op CodeX Operand x Not use;XNot usedX Not usedX Not used X Not usedX PG X Not used>

R/W.cey | l |

N

s—2 X 5—3 X s—4 X FrFa X AD.AD, X
PC Not used PS Notused X AD.AD Next
WADL A\ Op Code

LJ

194

Immediate

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

¢CPU

AnAc(ceu) < PC X PC+1 ch+ 3 x
DATA Operand Next
(cPu) x Op Code mman Op Code

When m=1, fetched operand at 2-nd cycle is 1-byte(nn).

Instruction : LDX, LDY, CPX, CPY

Timing :

$cru I

Ap(cpu) < X X X
AnAL(cPu) <;PC X PC+1 X PC+3 x
D C & .,
R/Wtcpuv“ ’

When x=1, fetched operand at 2-nd cycle is 1-byte(nn).

195

Immediate

Instruction : LDT

Timing :

$ceu I

Ap(cpu) < PG X X X PG X PG x
AnAL(cPu) < PC X PC+ 1X PC+1 X PC+ 2 X PC+ 3 x
DATA(cru) X Op Code X Not use(iXOp Codexop:rr‘a"d X Not used X g;e)xé)ode >
Rion

Instruction : RLA

Timing :

#cru

PCPU)
< PC >< PC+ >< PC+1 X PC+2 PC+3 X
AnAL(cru)

Cod Operand Next
DATA(cpu) Op Code Not used Op Code mm Not used Not used Not used Op Code

“pn

PG

R/Wiceu)

196

Immediate

Instruction : SEP

Timing :

$ceu

Ap(cpu)

e N

PG >< PG

PG

_ PC PC+ 1
AnALicPu)
Operand Next
DATA(cpu) >< Op COdeX n X Not use;X Op Code>

ale

X
W

“yr

R/Wicpu)

Instruction : CLP

Timing :

$ceu

Apicru)

AuALicpu)

PG

(

o X
(>(o1

PC+ 2

e
<

XC

Op Code Operand Not used Not d Next
Of
DATA(cpu, P nn use Op Code
e

R/Wicpy

197

Immediate

Instruction : DIV, MPY

Timing :

SV O o 0 I W B
e XXX -

o dlD € €14 PC+2 -

DATA(cpy) X Op Code X Not used X or COdeX Ope;)rnand XNot usedX_Eot used

“n

R/W(cpu)

— (Note)

—

L L L L

o PG X PG E

B PC+2 X PC+ 3>C

Y
Not used X Not used X Not used g?&ode)

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

198

Accumulator

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

#cru

Apcru)

AnALicPu) < PC X PC+1 X PC+ 1
Next
DATA(cpu) Op Code X Not used XOp Code>

R/W(CPUD

199

Direct

Instruction : ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

Timing :

DPR.# 0

$cpu l

Aricr < " x " X 0 X o 01 Fe : :
AnALcru) (PC X PC+1 XDPFH‘dd X pct+2 X

>< Operand Next
DATA(cpu) Op Code>< ad X Not usedX DuD, X Op Code

“n

R/W(cey)

-~
When DPR_ =0, this cycle is nothing.

Instruction : L DM

Timing :

DPR_#+ 0

Scru

Aeicry) < PG X PG >< PG >< 00 Xoo or 01 X
AnA(cpu) < PC >< PC+1 >< PC+2 >< 2 >< DPR+dd PC+4 ><
Operand Operand Next
DATA >< d
(cpPu) Op Code K X mm X Not use X mm nn X Op Code >

R/W cpu)

-~
When DPR_=0, this cycle is nothing.

200

Direct

Instruction : STA, STX, STY

Timing :

DPR_# 0

$cru

Ae(cpu) < PG >< PG X 00 >< 00 or 01 X

AvALccru) < PC >< PC+ 1 X DPR+dd >Qc+ 2
Next

DATA(cpy) Op Code Operand Not used Not used A Op Code

<

R/W(CPU)

-
When DPR_=0, this cycle is nothing.

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing

DPR_#+ 0

$cpu |

Apccpu) < PG >< PG >< 00 >< >< X

AvAccrw) < PCX PC+ 1 >< DPR+dd X Pct2 X
Operand Next

DATA(cpu))(Op Code>< P XNot used x DuDL >< Not used><New DHDLX op Code>

R/Wicpu)

00 or 01

-——
When DPR_ =0, this cycle is nothing.

201

Direct

Instruction : DIV, MPY

r-—

ol I I A e

=

B} | |
Ap(cru) < PG X PG X PG X PG X 00 X

00 or 01

AvALcrw) (PC X pc+13(PG+)L PC+2)(DPR+dd

DATA(cpu) x Op Code x Not used XOp CodeX Ops;andXNot usedX DuDL

“py

R/Wicpu)
e
When DPR_=0, this cycle is nothing.

_——(Note) -t

2
i [S) e I
L
00 or 01 X PG x
DPR+dd X PC+3 ><
Not used X Not usedX Not used ngxéode >

MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

' Not used

202

Direct Bit

Instruction : CLB, SEB

Timing :

DPR_#0, m=0

$cru

PG

AnAcLcru)

Ar(cpu) < PG X PG X PG X 00 X 00 or 01 X x
< PC X PC+1 X PC+2 X 2 X DPR+dd XPC+4 X

Operand Operand Next
DATA(cpu) X Op Code Not used DuD Not used New DD
¢ P dd mm nn HeL HEL Op Code

s
R/W(cpu)

-
When DPR =0, this cycle is nothing.

When m=1, fetched operand at 3-rd cycle is 1-byte(nn).

203

Direct Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

DPR.+ 0
¢CPU
Ap(cru) < PG >< PG X 00 >< OOOrOLXOO 01 or02 x
AvALiorw) < PC >< PC+ 1 4XPR+dd+ Pc+2 X

Operand Next
DATA(cpu) >< Op Code >< P XNot used >< Not used>< DuDL Xop Gode >

“yr

R/Wiceu)

When DPR_=0, this cycle is nothing.

Instruction : DM

Timing :

DPR_#0
#ceu l
Acccru) < PG X X X o0 X 00 oro1>< ot or0"2>< ra X
AnAL(cPu) (PC X PC+1 X PC+2 X ?‘XT'FGGXD;FH-CM-FX PC+4 x
Operand Operand
DATA(cpu) Op Code P P Not used Not used mmnn Next
dd mmnn Op Code

- “yr

R/W(cpy)

-
When DPR_ =0, this cycle is nothing.

204

Direct Indexed X

Instruction : STA, STY

Timing

DPR. + 0

#ceu ‘

Ap(crPu) < PG x PG x 00 XOO or 0 X 00, 01 or 02 x
AuALcru) < PC >< PC+ 1 X DPR+dd+X PC+ 2 ><

Op Cod erand Not used Not used Not used Next
DATA(cpu) p Code Op! ot use Op Code

R/W(CPU

When DPR_ =0, this cycle is nothing.

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

DPR_#+ 0

#cpu

Ar(cru; < PG >< pc X o0 ><oo or 01 X ><

AuALicru) < PC >< PC+1 X DPR-+dd+X 3(PC+2
Operand Next

DATA(cpu) X Op Code X XNot use;XNot used X DDLU XNot used XNEW DHDLXOD Code

oy

00, 01 or 02

e

N

R/W {cPu)

When DPR_ =0, this cycle is nothing.

205

Direct Indexed X

Instruction : DIV, MPY

Timing :

DPR_# 0
—

,
e[1 I L L W g

|
Ap(cru) < PG X PG X PG X PG X 00 X 00 or 01 X 00, 01 or 02
Anhuioro) < PC X PC+1)(Pc+1 X PC+2 X DPR+dd+X
DATA(cpu) X op CodeXNot use(iX op CodeXoPZLa‘"d XNot usedXNot usedX DWDL X Not used

wn

R/Wiceu)
>
When DPR_=0, this cycle is nothing.

— — —(Note) -

S) I B

00 or 01 X PG)(
DPR+dd x PC+3 ><

Not used X Not usedXNot used g;xéode>

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

206

Direct Indexed Y

Instruction

Timing

LDX

DPR_# 0

$cru

Ap(cpu) < PG X PG >< 00 ><000r01 00, 01 orO2X PG
AnALcru) < PC X PC+1 Pn+dd+X PC+ 2

Operand Next
DATA(Gru) >< op Codex p ><Not used >< Not usedx DuDL Xop Code>

oy

R/Wicpu)

an

S
When DPR_ =0, this cycle is nothing.

Instruction : STX

Timing

dcru

Aece PG >< PG X o X ooorot X 00, 01 or 02
AvAL(cPu) < PC X PC+1 X
DATA(cpu) X Op CodeXOperarFX Not used X Not used x Not usedX XO

R/W(CF‘U

DPR_# 0

DPR+dd+Y pPC+ 2

%Fﬁ

Next
p Code

oy

>
When DPR_ =0, this cycle is nothing.

207

Direct Indirect

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPR_+ 0

#ceu

Anccrw) < PG >< PG X 00 X 00 or 01 >< DT >< pa X

AvA(ru) < PC >< PCHI XDPFH—dd >< ADLAD, X Pc+2 X
Operand Next

DATA(Gry) X or CodeX >(Not usedX ADHADX DuDL Xop co de>

R/W(cpu)

-
When DPR_ =0, this cycle is nothing.

Instruction : STA

Timing :

DPR_+ 0

#cpu

Ap(cpu)

X PG x 00 x 00 or 01 X DT X x
>< PC+ 1 >< DPR+ddX ADLAD, >< pct+2 X

Operand Next
DATA(cpu) X' Op Code >< P ><Tt used >< ADyAD, >< Not used>< Xop Code

“yr

AuAL(cpu)

R/W.cpu)

-
When DPR_ =0, this cycle is nothing.

208

Direct Indirect

Instruction : DIV, MPY

Timing :

$cpu

[g g e

G X PG X 00 X000r01X DT

] |
X PGXP
X

Ap(cpu) < PG
< PC+1 X PC

AnALcpu)

PC+2

+1 X X DPFH-ddX

ADuAD,.

DATA(ceu)

>< Op CEX Not used XOp Code)(c’p‘?j'da“d XNot used X ADHADLX DuDL X Not used

_ oy
R/Wiceu)

— — — —(Note)

<>
When DPR_=0, this cycle is nothing.

L

L

|
X e X

X po+3><___

Not used x Not useEX Not usedX ggxéode>

(Note) MPY instruction is 12-cycle, and

DIV instruction is 23-cycle.

209

Direct Indexed X Indirect

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR_+ 0

$cpu

Ap(cru)

< >< PG X 00 X00m01 Xoo, 01 or 02>(bT >< Pa X
DPR+dd
< X PCH 1 >< >< AD,AD, X PC+ 2 ><
> < Operand Next
DATA Code
(cPu) Op X ad XNO! used X Not used X ADLAD_ X DD Xop Code >

oy

AnAL(cPu)

R/w(cpu)

-
When DPR_ =0, this cycle is nothing.

Instruction : STA

Timing :

DPR_ # 0

$ceu

AP(CPU)

o X e X w X oo XoworaoX o ><:

DPR
< X PCH1 X +‘“’>< ADAD, pct2 X
DATA(cpu) Op Code Operand Not used Not used ADWADL Not used Next
Op Code

“yr

AnAL(cru)

R/ W((:Pu)

=
When DPR_ =0, this cycle is nothing.

210

Direct Indexed X Indirect

Instruction : DIV, MPY

Timing :

L L rLrur

(X PG X PG X PG X 00 XOO or 01%0, 01 Orox DT
aiiern L Pe X pott X per1 X PC+2 PRt X ADuAD.

dd+Xx —

DATA(cpu) X op CodeX Not used X Op Code Ops(’ja"dX Not used Xﬂot usedX ADLAD, X DuDL Not used

”

Bcru l |

Ap(cpu)

R/Wcpu)

R
When DPR_=0, this cycle is nothing.
- — — —(Note)—————— — =y
-=9

| Epy

L ||
- X X

L %C+3X

Next
Not used XNot used x Not used Xop Code x

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

211

Direct Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

DPR .+ 0D & &

¢CPU

Ar(cpu) < PG X PG X 00 X 00 or 01 X DT XDT or DT+ 1 PG x

AvALcru) < PC >< PC+ 1 >< DPR+dd XADHADL+YX PCH 2
DATA(Gru) Op Code Ope'a"d Not used ADLAD, Not used D.D Next
e . Op Code

R/W(cpu

e >
When DPR_=0, this cycle is nothing.

Instruction : STA

Timing :

DPR_+ 0

#cpu

Artcr) (PG X PG >< 00 ><000ro1>< DT >< DT or DT+ 1 ><
AnALcry) < PC X PC+1 X DPR-+dd X ADLAD +Y XPC+2

X
X

Operand t
DATA(cpu) X ©or COdeX P XNot use;X ADHADX Not usedX Not used X X (l\;exC ’
p Code

)

“qr

R/W(cpu)

>
When DPR_=0, this cycle is nothing.

212

Direct Indirect Indexed Y

Instruction : DIV, MPY

Timing :

#cru

Ar(cru)

DPR_ #+ 0

LM L rurur

PG X PG X PG X PG X 00 X000r01X DT X DT or DT+ 1

(
AvALicru) < PG X PC+ 1 X:c+m po+2

X

DPR+dd X ADLAD +Y

DATA(opu) D(Sp Code Y Not used XOp CodeXT)pzf:"dXNot used >< ADLAD, XNot used X DuDL X Not used

— H
R/Wicpu)

<>
When DPR_=0, this cycle is nothing.

- — — (Note)

LT L
S X PG X
X PC+3 X

Not used X Not usedXNot usedX ggx(t?ode>

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

213

Direct Indirect Long

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPR,+ 0

#cru

Aeccru) < PG X PG X 00 >< 00 or 01 X 00orot X 00orof >< ADp X

AnAwccrw) < PC >< PG+ 1 X DPR+dd ><PR+da+ 2 ADHADLXPC-i—Z X
Operand Next

DATA(cpu) Op Code Not used ADLAD, Not used DuDL 0Op Code

g

R/Wicpy)

-
When DPR_=0, this cycle is nothing.

Instruction : STA

Timing
DPR.# 0
#(cpu) |
G &3 ED ChCDH Ch G € @
ArAL(cPU) < x PC+1 X DPR+dd XDPR+GU+X ADWAD, XPC+2 x

DATA(cpu) Op CodeXOperandXNot usedX ADWAD, XNot usedX ADp XNot used X A Xgex;od>
>< P e

R/W W(cpu)

-
When DPR_=0, this cycle is nothing.

214

Direct Indirect Long

Instruction : D1V, MPY

Timing :

DPR_# 0

e L) L L L L L L
Ap(cPu) < PG X PG X PG X PG X 00 x 00 or 01 X 00 or 01 X 00 or 01>
AvAciceu) < PC X PC+ 1 pC+ 1 X PC+ 2 X DPR+dd >QPT'2°">

DATA(cpu) X Op Code X Not used XOp Codexof’sga"d X Not usedX ADwAD, X Notused X AD, >

oy
R/Wicpy)

>
When DPR_=0, this cycle is nothing.

(Note) >

Pl e
H .
s T A L B B
o~ X = X
< ADLAD, X PC+ 3 ><
Q&X__--Elft-u-sfd‘) i>< Not use;XNot used g%’“c;)

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

215

Direct Indirect Long Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPR_# 0

Bcru

Ap(cru)

AnAcicru)

AD
< K X 00 X000r01><000r01X 00°r01>< ADe x or AD +1 ><
(X PC+ 1 X DPR+dd X DPR+dd-+ 2 XADHADL+Y Pc+ 2><:
DATA(cpy» x DCOdeXOPZ;andX\lot usedX ADMADLX\Iot usedX ADp x Not usedX DuDe X;Zxéode

R/W(cey)

-
When DPR_ =0, this cycle is nothing.

Instruction : STA

Timing

DPR_L* 0
- L[L] [
Apicry PG X X 00 X)O or 01 00 or OX 00 or 01 X X ADp or ADp+ 1
AvAiicey < PC PC+1 K DPR+dd X DPR+dd+ 2 X ADLAD_+Y X:H— 2
DATA(¢cpy x P Code Operan%m useTiXADuADL—XNitus;X ADp XNot used x Not usedX ‘X ;xéode>

R/W<cvu |

-
When DPR,_ =0, this cycle is nothing.

o8

Fﬁ

216

Direct Indirect Long Indexed Y

Instruction : DIV, MPY

Timing

DPR_# 0
#cru I |

Ap(cpu) PG X PG X PG X PG X 00 X 00 or 01 X 00 or 01X 00 or 01 X ADp > .
AnAiicru) PC X PG+ 1 X PC+ 1 X PC+ 2 X DPR+dd X DPR+dd+ 2 >
DATA(cpy) x Op Code X Not used XOp CodeXoDera"dX Not usedX ADLAD, X Not used X ADp x Not used

“yr - ———

R/Wicpu)

-

When DPR_=0, this cycle is nothing

(Note)

S e ey e

|
(ADp or ADp+ 1 X
X

|
ADLAD +Y X

PC+3

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

217

Absolute

Instruction :

ORA, SBC

Timing :

ADC, AND, CMP,

CPX, CPY, EOR, LDA, LDX, LDY,

#cru

Ap(cru)

AvALicru)

DATA(cpu)

DT

~

AN TN

PC+3

pGX
= X

™

S

pc+1 X hhi ><
Op Cod Operand Next
P © hhil Dube Op Code

_ “H
R/W(cpu)

KPGXPG X o X
X et X rots X o X s

an

Op Code Operand Operand mmnn Next
hhll ’ mmnn Op Code

Instruction : L. DM

Timing :
Ae(cru) (P
AnAccceu) Qpc
DATA(cry) X
RWicey)

218

Absolute

Instruction

Timing :

Instruction

Timing :

:STA, STX, STY

$cru

p(CPU) DT

AvAw(cru) < PC X PC+ 1 X hhil >< PC+3
Operand Next
o N
DATAcew) >< P Code X hhil >< o usedX A X op C°de>

R/W(CPU

;

™

:ASL, DEC, INC, LSR, ROL, ROR

$cpu

Ap(cpu) < PG PG X DT X

AuALcru) < PC XPC+ X hhii PC+3
>< Operand Next
DATA(cpu) Op Cod:X hhil X DHDTX Not used X\lew DHD"XOD Code

_ “H
R/Wicpy)

219

Absolute

Instruction : DIV, MPY

Timing :

¢CPU

-
] L L L g Ly
-d
v (e X 70 X o X o X o
< X PG+ 1 X PCH1 X PC+ 2 X hhl
DATA(cru) X Op CodeX&t usedXOp CodeXO%i:fndX DyD. X Not used

AvAL(cPu) PC

— H
R/Wceu)

—— — —-(Note)

I
X
EOC

PC+4

Not used X Not used X Not used ggxct)ode>

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

220

Absolute

Instruction

Timing

Instruction

Timing

: JMP

#cru |

Ap(cpu) < PG X PG X PG x
AnALicru) < X PC+ 1 X hhll x
><0p DEED
R/W(CP\J)

:JSR

o |
e (e X e X X X
AnALcru) < PC X PC+ 1 X X hh"x
R/W(cpu) H

221

Absolute Bit

Instruction : CLB, SEB
Timing
m=10
[|
v (e X o X = X . X = X
wvens (v XPCHX pc+3§< X ros X
Operand Next
) x Op Cod (0] d x
DATA(cpu) p oeX i X peran X DyD. NotusedXNewDATAXopcode>
R/Wicpu)

When m=1, fetched operand at 3-rd cycle is 1-byte(nn)

222

Absolute Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

Timing :

$ceu |

Ap(cru) < X PG X DT ><3T or DT-;X X

AnALccru) < PC X PC+ 1 X hhli+X >< pcts X

DATA Operand Not Next
(cPu) Op Code hhl ot used DyDL Op Code

R/W(cpu)

Instruction : L. DM

Timing :

¢CPU

DT or DT+1

><

Rricr < X X P X o
AvALicour < >< PC+1 X PC+3

>§

hII+X PC+5 x

>< Operand Operand Next
DATA, Op Code Not used mmnn
(cPu) hhil mmnn Op Code

" Ne)

FVW(cpu)

223

Absolute Indexed X

Instruction : ASL, DEC, INC, LSR, ROL, ROR

Timing :

$cry

Apicpu)

AHAL\CPU’

e

PG

< PG—X PG X DT X DT or DT+ 1 X
< PC PC+1 X hhll+X X PC+3

ale

d Next
DATA(cpu x Op Cod;X Op:hr:n >qut useiX DuDL >< Not usedXNew DuDL x op Code>
oy

R/W cpu)

224

Absolute Indexed X
Absolute Indexed Y

Instruction : DIV, MPY

Timing :

— - -

Ap(cpu) < PG X PG X PG X PG X DT X DT or DT+ 1
Ao X po+1 X re+1 X po+2 X mnixv)
DATA(cpu) X Op CodeXNot used XOp CodeX Opﬁ:‘a”“d XNot used X DuD X Not used

g

#ceu

PC

_ “H
R/W(cpu)

~ — —(Note) —y

R
i —
- X PC+4)C
" Not used X Not us;X Not used ngnCode >

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

225

Absolute Indexed X
Absolute Indexed Y

Instructian :STA

Timing :

4

crPU I
Ap(cPu) < PG X PG X DT X DT or DT+ 1 X PG X
A PC >< PC+ 1 >< hhl+-X(Y) X pot3 X
!
Operand Next
A x Op Code Not used Not used A
DATA(cpu) x hhil X Op Code
- =
R/Wcpy)

226

Absolute Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, LDX, ORA, SBC

Timing :

bero |

Aeterv) < PG X PG X DT ><)T or DT+1 P X
AvAicru) < PC X PC+ 1 mev Pc+3 X
DATA(ey X op Code>< O':}::”@(Not used DHDLX gzxéo " >
R/W(cpy) o

227

Absolute Long

Instruction

Timing :

Instruction :

Timing :

:ADC, AND, CMP, EOR, LDA, ORA, SBC

$cru |

Astcrw) < PG X 2 X PG X X e X

AvAcccrw) < PC X PCH1 X PC+3 K hnLXPc+4 X
Operand Operand Next

DATA(cpu) Op Code hhl PP DuDL Op Code

ey

R/W(cpu)

STA
bceu

Ap(cpu)

AuAL(cru) PC

NN T
> >

XX X
PC+1 X PC+3 X hhil X PC+4

fﬁfﬁ

DATAGru) Op Code Operand Operand Not used Next
hhll pp Op Code

DEN

R/W(cpm

228

Absolute Long

Instruction : DIV, MPY

Timing :

S O B O B R
Anicru) L PG‘X PG X PG X PG X PG X op
AALicru) < PC X PC+ 1 X PG+ 1 X PC+2 X PC+ 4 x il

t Next
Not used XNol used XNot usedX op Code>

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

229

Absolute Long

Instruction : J MP

Timing :

$cpu I
Apcru) < PG X PG X X X
AnALcru) < C X PC+1 X PC+3 X hhll x

Operand Operand Next
Op Code
DATA(cpu) X ©p >< hhit X pp >< Op Code >

oy

R/Wiceu)

Instruction : J SR

Timing :

$cpu |

v (e X X = X . X = X
AnALcru) < PC X PC+1 X PC+3 X S X S—2 X hhil X
> < Operand Operand > < Next
Op Code Not used PCyPC
DATA(cpu) P X hhtl X PP X Xﬁ HEL X Op Code

“yr

R/Wicru)

230

Absolute Long Indexed X

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

$ceu

AP(CPU)

< re X re X Fe X P X)p ” pp+]X
AuAccru) < PC X PC+1 X PC+3 X hil+X X PC
Op Code Operand Operand Not used DuD Next
hhll pp Op Code

S

DATA(cru)

>

“py
R/Wicpy)

Instruction : STA

Timing :

deru

PG pp or ppt+ 1

Friery < re X X " X P X X
AnAcior < PC >< PC+1X PC+ 3 X hhiH+X >< PC+ 4

™

c d Operand Operand Not " Not q Next
DATAcpu: Op Co bl ot use ot use Op Code

DED

Rxwfcpu\

231

Absolute Long Indexed X

Instruction : DIV, MPY

Timing :

S L I
w0 X _Po X e X re X ra X rp X oot pedpedete
X pet1 X rer1 X ret2 X PC+4 X PR

s (PO

DATA(Geu) X 0 Code X Not used XOp Code Ope'a”‘ix Operand XNot used X DWDL X Not used

R/W(cpu)

- — — —(Note)

[S S S
iy X
T XPC+5E

- T Next
Not used XNot usedXNot use(;Xop Gode

(Note) MPY instruction is 12-cycle; and DIV instruction is 23-cycle.

232

Absolute Indirect

Instruction : | MP

Timing :

¢CPU I

Ar(cru) < PG >< PG >< PG X PG ><
AnAL(cru) < PC pc+1)< hhil XADHADL X
DATAGr) :>Q” CﬁXop:;:nd XAD”ADLXZZX;oae >
R/W(cpu) o

233

Absolute Indirect Long

Instruction : J MP

Timing :

$cru

Ap(cru) < PG X PG X PG)(PG or PG+ 1XPG or PG+>< ADp
AnALicr) < PC >< PC+1 >(hhil >< hhil+ 2 ADLAD,
Operand Next
Op Cod Not
DATAGew) >< p Lode >< hhit ADADL >< ° "se§< ADe ><0p Code

_ “y
R/W(cpu)

e

N

234

Absolute Indexed X Indirect

Instruction : JMP

Timing :

#cru l
Apiceu) < PG X PG X PG ><=G or PG+ 1X
AuALcr) < PC X PC+1 X hhll4-X x
Operand Next
DATA x Op Code Not used
(cPu) P X hhil X X Op Code >
B wy
R/Wcpy)

Instruction : J SR

Timing :

$ceu l

Ap(cpu) <¥ PG X PG X PG X’EOI’ PG+X 00 x x
AvAiicrus < PC x pC+ 1 Xhhll+x >< S—1 >< AD.AD. X
DATA(cpu)

=

e

R/Wicpy)

Op Code XO":;:"“ XNot used XADuADL >< PCLPC, ><

Stack

Instruction : PE A

Timing :

¢CPU |

Ap(cpu) < PG X PG X

AnALicPu) < PC X PC+1 X
0Op Cod Operand Not d mmnn Next

DATA(cpru) p e mmnn ot use Op Code

- “y
R/Wicpu)

S— PC+3

e X = X
K= X

Instruction : PE |

Timing :

Bcru

00 or 01

AP(CPU' < X PG X 00 X X : :

Adicew { PC X PC+1 >< DPR+nn>< s— PC+2’ x
Operand Next

DATA(cpu) Op Code an Not used DuDL DuDL Op Gode

R/Wicpu)

236

Stack

Instruction : PER

Timing :

$ceu

Ap(cru) < PG X PG X 00 PGX
<PCX PC+ 1 >< s—1 PC+3 X

o Next
DATA(cpu) Op Code perand Not used Not used PC+mmnn X
mmnn Op Code

R/Wiceu)

AHAL(CPU)

Instruction : PHA, PHD, PHP, PHX, PHY

Timing :

$cru I

Ap(cru) < PG PG K X PG x

AnALiru) < PTX PC+1 X s—1 X po+1 X
Next

Op Code

DATA(cru) x p XNot used X Not used X A Xop Code >

B e

R/W(CPU)

237

Stack

Instruction : PHB

Timing :

dcru

—

PG

AP(CPU)

00

PC+1

COC X X
o Q Po. X o+ 1 X >< o2 X s

ale

X i
opc Not used Op Code Y Not used Not used Next
DATA(cpu) p Code ot use: ot use ot use B Op Code

o “yr
R/W(CPU)

~—

Instruction : PHG, PHT

Timing :

$ceu

Ae(cru) < PG X PG X 00 X
AnAL(cru) < PC X PC+ 1X S X PC+1
Next
Op Code x Not used X
. >< PG Op Code >

PG

AR

o
>
3
b
o)
g
<
I$<|

238

Stack

Instruction : PLA, PLD, PLX, PLY

Timing :

#cru

Ap(cpu)

AnALccpu) < PC
Next
DATA(cpu) Op Code Not used Not used DuDy Op Code

oy

RWicmy

PC+ 1 S+1 PC+1

o X X X X
X

Instruction : PLB

Timing :
$ceu ‘
AnAucru) < PC X PCH1 >< pct+1 X PCH+ 2 >< S+1 pct2 X
Next
DATA(cru) Op Code Not used Op Code Not used Not used DuDL Op Code
R/Wiceu)

239

Stack

Instruction : PLP

Timing :

¢CPU ‘

Aeccru) < PG >< PG >< 00 X Pa X

AAicrw) < PC >< PC+1 >< sH1 >< o1 X
Next

DATA(ceu) Op Code Not used Not used DyDy Not used Op Code

“yn

Instruction : PL T

Timing :

#cru l
Ar(ceu) < PG >< PG >< 00 >< DL X PG ><
AnALicru) < X PC+1 X S+ 1 X PC+ 1 x

PC
Next
DATA(cpu) Op Code Not used Not used Do Not used Op Code

“yr

R/W cpu)

240

Stack

Instruction : P SH

Timing

mmmmrlmﬁm

Ap(cpu)

i e XD

DATA cpy) XOpCodeXOpﬁ;a"dXNotusedXEotusedX;\lotusedXNotuse;X A X\lotused Not usedX B)
g

R/W.cpu I I | I

X Y DPR
-_— =

(L LU L rirurirt
D G G GECD
GO X o D)
<Not useEXNot UsedX X XNO’(usedXNOt usedX Y XNO(usedxim useEX DPR X Not used

C o X XX
Coon X Yoo X X oe X oo X X
Next
Not
D CED) O G Gl ()
(Note) This figure is an example pushed all the registers

by PSH instruction. If any register is not pushed,
its cycle (+) is nothing,

S—
e
S

241

Stack

Instruction : PUL
Timing :

P

S
= - X oo >

v (= X o X o X o X o X o X o X X o)

¢ cru X Op Code Op‘:':andxNotusedXNotusedXNotusedXNot usedX PS XNotusedXNotusedx Not used

“y
R/W. cpu:

DATA cpu:

AnALicry) PG

nEpligipigigiigigigigh
X X - X
CoOC XA XX X X
:X DT XNot usedXNot usedx DPR XNOt usedXNOt usedXﬂ usedX Y xNol used)@used

00

A

L L

< 00 X 00 X 00 X PG ><:
Co X oo X o X oo X o X o X oo X o X oo X o X
:>< X Xﬂot usedXNot usedX B XNot used XNot used X A XNot used XNOI used X 5, de>

PC+2

(Note) This figure is an example pulled all the registers
by PUL instruction. If some register is not puiled,
its cycle (++)is nothing.

242

Relative

Instruction :BR A

Timing

#cru

Ap(cPu) < PG

AnALicru

PG PG PG or PG+ 1

< X PC+1 X PC+rr X
Operand Next
DATA cpu) X Op Code >< per: ><Not uset;XNot usedX op Code>

R/W(CPU)

Instruction :BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS

Timing

Branched

¢cpu

Apicru) < PG >< PG >< PG ><’Gorpe+1><
AnALcrud < PC X PCH 1 PCHrr x

Operand Next
DATA(cpu; Op Code Not used Not used Not used Not used Op Code

R/W(CPU

When not branch, this cycle is nothing.

243

Direct Bit Relative

Instruction : BBC, BBS

Timing :

DPR_#+ 0, m=0, Branched

Ap(cru) < PG X PG >< 00 Xom)ym X P;X PG X PG XG or PG-:X:

AnALcru) < PC X PCH+ 1 XDPFH—dd)(PC+2 X PC+4 XPC,.PCL+rr><

DATAGpy) X Op CodeXOpj;a"d%ot usedX D.DL Xorgs:::dxbpe;anXNot usedXNot usec><Not usedXO'\:)eétode>
“H

R/Wicpy)

P — = B

When DPR_ =0, this cycle is nothing. When not branch, this cycle is nothing.

When m=1, fetched operand at 5-th cycle is 1-byte(nn).

244

Absolute Bit Relative

Instruction : BBC, BBS

Timing :

m=0, Branched

#ceru |

Ap(cru)

>

PC+5

PG X:G X rc X PG X PG X PG PG or PG+ 1X

AnALcru) < PC X PC+1 K nnn;X PC+3 X PC+rr x

e} Operand Operand Next

DATA(cpy Op Code perand DuD. P P Not used Not used Not used X
hhil mmnn " Op Code

“y

>

R/W(cpu)

When not branch, this cycle is nothing.

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

245

Stack Pointer Relative

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

¢CPU |

Aetcru) < >< X >< 000r01X ra X

AuAL(ceu) < >< PC+ 1 X:+rr >< PCH 2 ><
Next

Operand

DATA(cpu) X op Code>< P" ><Notused>< DD, ><0p COde>

oy

R/W(cpu)

Instruction : ST A

Timing :

¢ cPU

Aricru) < PG X PG X X 00 or 01 . ><
< >< PC+1 >< S+rr X:(H_ 2 ><
DATA(cpu) X Op COd:X Opevand X Not used XNot usedX X gzx(t‘}ode >

R/W(CPU

AnALiceu)

246

Stack Pointer Relative

Instruction : DIV, MPY

Timing :

0 Y Yy O o O
Arcoru) (PGX PG X PG X PGX 00 X 00 or 01 ——— —
(X PC+ 1 X PC+1X PC+2 X St —

DATA(cru) X Op Code X Not used>@p Code Operrrand X Not usedX DD, X Not used
uHH —— =

#cpu

AnALicry) PC

R/Wicpu)

PC+ 3
T Netused Next
Not used Not used Not used Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

247

Stack Pointer Relative Indirect Indexed Y

Instruction : ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing :

bceu

DT
Ap(cpu) < PG x X ><7oo or 01 X DT Xor DT+ 1 X ><
. ADpAD
Mhuorn (PG >(>(s+re X y L>< po+2 X
Op Cod Operand Not used ADuAD Not used DuD Next
DATA(ceu) p Code HAPL HEL Op Code

R/W(CPU)

PR

PC+1

Instruction : STA

Timing :

$cpu

Ap(cpu) PG

S+rr ADAD, +Y PC+2

Aniicru) (PC x PC+1 ><
Operand Next
x Op Code Not used ADyAD Not used Not used
DATA(cpu) P X X € X HALVL X X X X Op Code>

R/Wigeu)

DT or DT+ 1 x

><><

248

Stack Pointer Relative Indirect Indexed Y

Instruction : DIV, MPY

Timing :

o LU rire.
Artcrus WG X PG X 00 XOOormX oT X DT or DT+ 1 .

AvAucru) < PC X PC+1 XPC+.1 X PC+ 2 X St X ADJAD, +Y
DATA cpy: X Op Cod;XNot used X Op CodeXOper:a"dXNot u%DHADL X Not usedX DuDL X Not used

R/W.cpu

KXre X
X pots X
T >< >< >< Next >
Not used Not used Not used Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

249

Block Transfer

Instruction : MVN

Timing

} Repeat this cycle

B e s e I R O
Apiceu (PG X pTX dd X PG X ss X Source Bank ss >
= X PC+1 X PC+2 X o X o« X >

DATA(cpy X Op Code x X Not used X XNot used x Not usedXNot usedx DuDL x Not used x Not used

R/Wiceu)

%

$cru

AnALicru

(Target Bank) (Source Bank)

I_\ L1 [_L [
X

v X > po+3
ex
Not used X DD XNot usedXNot used Xop Code>

L

(Note) This figure is shown that transfered the 2-bytes data started from even

Fﬁfﬁ

address. If transfered more than 3-bytes data, the cycle (<) is repeated

each 2-bytes.

250

Block Transfer

Instruction : MV P

Timing :

= Repeat this cycle

- LU L L L L L L L]
s (o X e X = X = X - W v =

maceen (P X okt X v X ot X X X 2 x X—1 >
DATA(cpu» >< Op CodeX dd XNot usedX s XEO‘ used XNot usedXNot usedXNot usedX DD, X Notused
s

R/Wicey) (Target Bank) (Source Bank)

——ﬁi
Target
X Target Bank dd X Bank X PG x
X v—1 X , X) X pct+3 X
N Next
ot used DuD, Not used X Not used X Not used Not used X 0p Code

(Note) This figure is shown that transfered the 2-bytes data started from even

address. If transfered more than 3-bytes data, the cycle («<+) is repeated

each 2-bytes

251

APPENDIX B
Series MELPS 7700 Machine Instructions

MACHINE INSTRUCTIONS

Addressing mode
Symbol Function Details IMP | IMM A DIR | DIRb | DIRX | DIRY | (DIR) | (DIRX) | (DIR).Y
opjn|#opn|#fop|n|#|op|nis|op|n|#op|ni#lop|ni#t|op{n|d|op|n|H#|op|n|#
ADC Acc.C < AcctM+C | Adds the carry, the accumulator and the memory contents. 6922 65| 4 | 2 75512 72|16 121611 7(2|7118|2
(Note 1,2) The result is entered into the accumulator. When the D
flag is “0", binary additions is done, and when the D flag is 42|14 |3 42|16 |3 42|73 42/ 8| 3142/ 9| 3]42[10
“1”, decimal addition is done. 69 65 75 72, 61 71
AND Acc — AccAM Obtains the logical product of the contents of the accumu- 29/2(2 25|14 (2 35/5(2 3216221721318 |2
(Note 1,2) lator and the contents of the memory. The result is en-
tered into the accumulator. 421413 42163 421713 42/ 8 13142/ 9|3 142/10
29 25 35 32 21 31
ASL m=0 Shifts the accumulator or the memory contents one bit to 0A{2|1]06(7|2 16/ 7|2
(Note 1) | [G)«{bs] [bgl-0 | the left. “0" is entered into bit 0 of the accumulator or the
m=1 memory. The contents of bit 15 (bit 7 when the m flag is 42|42
“1") of the accumulator or memory before shift is entered 0A
{bs[oo J-0 into the C flag.
BBC Mb=0? Tests the specified bit of the memory. Branches when all
(Note 3,5) the contents of the specified bit is “0”.
BBS Mb=1? Tests the specified bit of the memory. Branches when all
(Note 3,5) the contents of the specified bit is “1”.
BCC Cc=0? Branches when the contents of the C flag is “0".
(Note 3)
BCS c=1? : Branches when the contents of the C flag is “1"
(Note 3) .
BEQ z=1? Branches when the contents of the Z flag is “1”.
(Note 3)
BMI N=1? Branches when the contents of the N flag is “1”
(Note 3)
BNE z=0? Branches when the contents of the Z flag is “0".
(Note 3)
BPL N=0? Branches when the contents of the N flag is 0" i
(Note 3)
BRA PC+PC*offset Jumps to the address indicated by the program counter
(Note 4) | PG—PG+1 plus the offset value.
(carry occured)
PG—PG—1
(borrow occured) ‘
BRK PC+—PC+2 Executes software interruption. 00’15 2 l
M(S)—PG |
S+<s—1 i
M(8)—PCy
S—s—1 i
M(S)—PCL |
S+S—1
M(S)+PSy
S+Ss—1
M(8)—PS_
S+8—1
11
PC_—AD_
PCH+ADy
PG00
BVC v=0? Branches when the contents of the V flag is “0".
(Note 3)
BVS v=1? Branches when the contents of the V flag is “1".
(Note 3)
cLB Mb+0 Makes the contents of the specified bit in the memory “0”. 14/8|3
(Note 5)
CcLC C+—0 Makes the contents of the C flag “0". 1821
cu 10 Makes the contents of the | flag “0". 5821
CLM m+—0 Makes the contents of the m flag “0". 0821
CLP PSb+0 Specifies the bit position in the processor status register by the bit 0242
pattern of the second byte in the instruction, and sets “0" in that bit.
CLv V0 Makes the contents of the V flag “0". B8[211
CMP Acc—M Compares the contents of the accumulator with the contents of C9| 2|2 C5/4 |2 D552 D2|6(2|Cl|7|2|D1|8
(Note 1,2) the memory.
4214 |3 42|16 (3 42|73 42| 8 | 3142/ 9| 3]42/10)
C9 C5 D5, D2 Cl Dl

252

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)|L(DIR).Y| ABS ABS X |ABSY| ABL |ABLX|(ABS) [L(ABS)[(ABSX)| STK | REL |DIRbR |ABSHR| SR [(SR)Y| BLK 13(9'8 716|5(4(3[2]1
#op op op| | #|op op| n|#|op| n|#fop| n |4 [op| n | |op{ n | |op| n | [op| n |#op|n|#[op|n|#|op|n|#|op|n|H|op{n|#]| IPL |[N|V|im|x|D|I|Z
2177 6D 706 | 3|79 6F| 6|4 [7F 63]5(2173/8|2 el NV s|e]|*|*|Z
342 142 42] 8 | 4 142 4285 |42[9]5 | 42|73 142/10/ 3
77 6D 7D 79 6F TF 63 73
2137 20, 306 |3 (39 2F| 6|4 |3F 23|65 (23382 cle]eN|=|e]=f*|*|Z
3142 H2 42|84 (42 42/815142|1915 42| 7 | 3142110 3
37 20 3D 39 2F 3F 23 33
OE 1E[8|3 elo|o|N|e|o|e]e]|elz
34/ 7|4 13c| 8|5 olefefofolo|o]o]els
) 24/7|4)c|8|5 elefofelafalo|o]s]e
| 9014 |2 elofofa]ofoloalolels
T B0[4 |2 elo|efeo]elola]e]e
F0l4|2 elefefe|o|e|e|oie]e
30(4 |2 elefofelolalafole]e
D0l 4|2 elelofofalo]e|a]ele
B 10[4 |2 elefofefalo]ola]e]e
80/ 4 |2 elefofolotofe|o]e]e
82(413
50(42 efefefalelalolatole
70/ 4|2 ofo|elo|ofofola]e]e
elolelolelalelalo]e
efofefe|e]O|ofafele
||°*|Specified flag b
comes “0"
elelolo|Qle|e]ole]e
2|D7] ICO) DD| 6 | 3 [D9 ICF| 6| 4 |DF| C3|512|D3(8|2 sle|*|Nlele|*|*[*|2Z
3142 42, 42| 8| 4142 42| 85 |42 4217 | 342/10 3
07 ICD) DD D9 CF| DF| C3 D3

253

| APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode

Symbol Function Details IMP | IMM A DIR | DIR,b | DIRX | DIRY | (DIR) |(DIRX) [(DIR),Y
opnﬁopn#opn#opnﬁopnﬁopn#opn#opnﬁop"n#opn#
CPX X—M Compares the contents of the index register X with the E0[2|2 E4|4 (2
(Note 1,2) contents of the memory.
CPY Y—M Compares the contents of the index register Y with the C0| 2|2 c4| 4|2
(Note 1,2) contents of the memory.
DEC Acc+Acc—1 or Decrements the contents of the accumlator or memory by 1A[2|1]C6/ 7|2 D6| 7|2
(Note 1) | M=M—1 1.
424 |2
1A
DEX Xe=X—1 Decrements the contents of the index register X by 1. oA 2|1
DEY YeY—1 Decrements the contents of the index register Y by 1. 88(2 |1
DIV A(quotient)«B,A/M | The numeral that places the contents of accumulator B to the higher order and the 89|27| 3 89/29| 3 89(30| 3 89/31| 3 8932} 3 89(33| 3
(Note 2,10) | B(remainder) contents of accumulator A to the: lower order is divided by the contents of the memoy. 29 25 I3 32 21 31
. The qudtient is entered into accumulator A and the remainder into accumulator B,
EOR Acc+Acc¥M Logical exclusive sum is obtained of the contents of the 49| 2|2 45/ 4| 2 55/5 |2 52/6|2[41)7 251|182
(Note 1,2) accumulator and the contents of the memory. The result is
placed into the accumulator. 42413 42|16 |3 42|73 42/ 8| 3142|913 142/10(3
149/ 45 55 52| 41 51
INC Acc—Acct1 or Increments the contents of the accumulator or memory by 3A|211|E6|7 (2 F6|7 (2
(Note 1) M —M+1 1.
42412
3A
INX Xe=X+1 Increments the contents of the index register X by 1. E8|21
INY Y+Y+1 Increments the contents of the index register Y by 1. C8| 21
JMP ABS Places a new address into the program counter and jumps
PCL+— ADL to that new address.
PCH < ADy
ABL
PCL < ADL
PCh + ADy
PG+—ADg
(ABS)

PC +(ADy, AD_)
PCy +—(ADy, AD_+1)
L(ABS)

PC_ —(ADy, AD.)
PCy +(ADy, AD_+1)
PG «(ADy, AD_+2)

(ABS, X)

PC_+(ADy, AD_+X)

PCy + (ADy, AD_+X
+1)

JSR ABS Saves the contents of the program counter (also the con-
M(S)+ PCy tents of the program bank register for ABL) into the stack,
§+S—1 and jumps to the new address.

M(S)« PC_
S+s—1
PCL+ AD_
PCy +— ADy

ABL
M(8)+ PG
S+Ss—1
M(8)+ PCy
§+8—1
M(8)+PC,
S+ s—1
PG, — AD,
PCy + ADy
PG < ADg

(ABS, X)

M(S)+ PCy

Ses—1 -

M(S)«< PC_

S—5—1

PC_ +(ADy, AD_+X)

PCy +(ADy, ADL+X
+1)

254

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register

L(DIR)|L

DIR)Y| ABS |ABSb [ABSX|ABSY| ABL [ABLX|(ABS)[L(ABS)[(ABSX)| STK | REL |DIRbR |ABSbR| SR [(SR)Y| BLK 10|9|8 716]/5/4(3|21

H
8
>
+*

op| n | # |op| n |#[op|n op| n|#|op|n|$]op|n|jop| n|k[op| n|#[op| n|#|op| n|4t|op| n |4k |op| n | [op| n|#|op|n|#|op|n|#|op|n|H|op|n|#] IPL [N|VIm|x|D|I|Z

EC|4 (3 efeloINlelelelelel|z
ICCl4(3 elo|o|[N|le|o|a]e]elz
CE| 7|3 DE| 8 |3 I cleleinN]ele]elelelz

189[35| 3 |89]36| 3 (89)29| 4 89(31| 4 [89|31| 4 [89[31| 5 (89|32 & 89[30] 3189(33) 3 Sl IN|V]s|e]eje|2Z
27/ 37, 20| . 3D 39) 2F 3F 23 33
4710/ 2|57|11| 2 |4D| 4 | 3 5D(6 (35963 [d4F| 6| 4|5F| 7|4 43(5 (25382 Cleie[N[|[*|*]|*|2Z
42{12] 314213/ 3 (42| 6 | 4 42|84 142|8 | 4142/ 8542/ 9|5 42(7 3 142/10/3
147 57 4D] 5D 59| 4F 5F 43! 53
EE| 713 FE| 813 Sl N[l |*]|"|2
[clelolNle|olole]e]|z

4c(2 (3 5C| 414 6C| 4|3|DC/ 8|3/7C{6|3 elefefofolo]o]e]e]e

255

'APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode
Symbol Function Details ‘IMP | IMM A DIR | DIRb | DIRX | DIR,Y | (DIR) |(DIRX) [(DIR),Y
op|ni#|opln|#op|n |3 op| n|#|op|n|#|op|n|#|op| n|#|op|n|$|op|n|#|op|n|t
LDA Acc+ M Enters the contents of the memory into the accumulator. A9 22 A5 4|2 B5|5(2 B2j6{2|A117|2|Bl|8|2
(Note 1,2)
421413 42|63 42|73 42813142/ 9|3]42(10 3
A A5 B5 B2 Al Bl
LDM M+~ IMM Enters the immediate value into the memory. 6443 74|53
(Note 5)
LDT DT < IMM Enters the immediate value into the data bank register. 89|53
C2
LDX XM Enters the contents of the memory into index register X. 2|22 A6 4|2 B6| 5|2
(Note 1,2)
LDY Y+~M Enters the contents of the memory into index register Y. A0| 2|2 M 412 B4|5|2
(Note 1,2)
LSR m=0 Shifts the contents of the accumulator or the contents of 4A[211146|7 |2 56(7 |2
(Note 1) 0~[big] - Ibo}~C the memory one bit to the right. The bit 0 of the accumula-
tor or the memory is entered into the C flag. “0” is entered 42| 412
into bit 15 (bit 7 when the m flag is “1".) 4A
MPY B, A~-A*M Multiplies the contents of accumulator A and the contents of the mem- 89/16(3 89)18| 3 89/19| 3 89/20| 3 89(21| 3 89|22, 3
(Note 2,11) ory. The higher order of the result of operation are entered into accu- 09) 05 15| 12 01 11
mulator B, and the lower order into accumulator A.
MVN Mn+ie—Mm-+i Transmits the data block. The transmission is done from
(Note 8) the lower order address of the block.
MvP Mn—i—=Mm—i Transmits the data block. Transmission is done form the
(Note 9) higher order address of the data block.
NOP PC+PGC+1 Advances the program counter, but performs nothing else. |EA[2|1
ORA Acc+AccVM Logical sum per bit of the contents of the accumulator and 0922 054 |2 15(5|2 12(62101)7 (211|182
(Note 1,2) the contents of the memory is obtained. The result is en-
tered into the accumulator. 42413 42|16 |3 42|73 42| 813142/ 9|3 142/10/ 3
09 05 15 12 01 1
PEA M(S)+—IMM; The 3rd and the 2nd bytes of the instruction are saved into
§+s—1 the stack, in this order.
M(S)+IMM;
S+85—1
PEI M(S)—M((DPR)+IMM | Specifies 2 sequential bytes in the direct page in the 2nd
+1) byte of the instruction, and saves the contents into the
S+S—1 stack.
M(S)M((DPR)+IMM)
S+8—1
PER EAR—PC+IMM2,IMM; Regards the 2nd and 3rd bytes of the instruction as 16-bit
M(S)+—EARy numerals, adds them to the program counter, and saves
Ses—1 the result into the stack.
M(S)+-EAR_
S+8—1
PHA m=0 Saves the contents of accumulator A into the stack.
M(S)—Ay
S+—S5—1
M(S)+AL
§+8§—1
m=1
M(S)+—AL
S+S5—1
PHB m=0 Saves the contents of accumulator B into the stack.
M(S)+<By
§+8—1
M(S)+—B,
S+S—1
m=1
M(8)+—BL
S+-§—1

256

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)|L(DIR).Y| ABS |ABSb|ABSX|ABS)Y| ABL |ABLX [(ABS) [L(ABS)|(ABSX)| STK | REL | DIRbR|ABSHR| SR [(SR)Y| BLK 16|9]8 716|5|4(3|2|1
op| n |#op|n|#|op|n|$t[op|n|#|op|n |t op|n|ttfop|n|#|op| n|#]op| n|#]|op|n|#|op|n|#[op|n]#|op|n|#[op|n|#]op|n|#|op|n|H|op/niH|op|n|#| IPL |N|V|m|[x|D|I]|Z
A7(10| 2 |B7(11|2 [AD[4|3 BD| 6 |3[BY|6|3|AF| 6|4 |BF| 7|4 A3|5|2(B3({8|2 sl INfe|ff=|"|2]"
142[12 3 |42(13| 3 (42|16 | 4 42(8 | 442/8(4142/8 542195 42| 7 {3 {42[10 3
A7 B, AD| BD| BY AF BF| A3 B3,
9Ci5 (4 9E|6 (4 elofefoloafofo|e]e]e
AE(4(3 BE|6 |3 ele|o|Nje|efe|e]|Z
AC| 43 BC(6 (3 cle|o|N|e|ele|e]|Z
473 5E/8|3 elele|Ofe]efe]| l|Z
[89(24 3 [89|25| 3 [89]18| 4 89]20| 4 |89(20] 4 [89120) 5 [89]21{ 5 89|19] 3 [89(22(3 el eNjefefelelelz
07| 17| 0D) 1D 19 OF 1F 03 13
54/ 713 e [o|o|o|e|e]ofe]s]e
+
- X7
4409 3] o [o| o fa]|efe]ofe]e]e
+
+X7
07/10[217/11| 2 (0D| 4 | 3 1D[6[3(19/6|3|0F|6{4|1F| 7|4 03(5 (21382 els|eN|efele]e]|Z
42[12| 3 [42]13| 3|42/ 6| 4 42/ 8|4 142184 [42/8|5)42|9|5 427 | 342110 3
07| 17 0D 1D 19 0F 1F 03 13
F|513 e|ofafefo]o|alole]e
D452 ofefofolofo]ofe]e]e
62|53 olololefofolofefele
48/ 4| 1) ofe|ololo]olole]e]e
42162 elofofalolo]o|e]e]e
48

257

APPENDIX B
Series MELPS 7700 Machine Instructions

Symbol

Function

Details

Addressing mode

IMP

IMM

DIR,b | DIRX

DIRY

(DIR) {(DIRX)

(DIR),Y

op| n{#(op

op|n

#lop|n|#

op| n

#

n{#op/n|#

op(n|#

PHD

M(S)+DPRy
S—8—1
M(S)+DPR,
S—s—1

Saves the contents of the direct page register into the
stack.

PHG

M(S)+-PG
S+—S—1

Saves the contents of the program bank register into the
stack.

PHP

M(S)+Psy
S+-S—1
M(S)—PS_
S—S—1

Saves the contents of the program status register into the
stack.

PHT

M(S)+DT
$+-S—1

Saves the contents of the data bank register into the
stack.

PHX

x=0

M(S) Xy
S+—S—1
M(S) X,
§+8—1

x=1
M(8)+XL
S+S—1

Saves the contents of the index register X into the stack.

PHY

x=0

M(S) <Yy
S+—8—1
M(S)<Y
§+-8—1

x=1
M(S)+Y,
§+-8—1

Saves the contents of the index register Y into the stack.

PLA

m=0
S+S+1
AL—M(s)
S+S+1
An—M(S)

m=1
S—S+1
AL—M(8)

Restores the contents of the stack on the accumulator A.

PLB

m=0
S+~S+1
BL+—M(S)
S+S+1
By+—M(S)

m=1
S+s+1
BL—M(S)

Restores the contents of the stack on the accumulator B.

PLD

S—5+1
DPR_—M(S)
S+—5+1
DPRy+—M(S)

Restores the contents of the stack on the direct page reg-
ister.

PLP

S+-5+1
PS —M(S)
S+-5+1
PSy—M(S)

Restores the contents of the stack on the processor status
register.

PLT

S+—S+1
DT—M(S)

Restores the contents of the stack on the data bank reg-
ister.

PLX

x=0
S—s+1

X <M(S)
S+—5+1
Xn—M(S)

x=1
S-S+t
X —M(S)

Restores the contents of the stack on the index register X.

258

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register
L(DIR)|L(DIR).Y| ABS |ABSb|ABSX|ABS,Y| ABL |ABLX|(ABS) [L(ABS)|(ABSX)| STK | REL |DIRbR |ABSBR| SR |(SR)Y| BLK 10]9|8 716|5]4(312|1]0
op| n |[#]op|n |t |op| n|#|op|n|%|op|n |3 |op|n |2k opi n|#[op|n|#|op|n|H#|op|n|#[op|n|#fop|n|fop|n|#|op| n|#|op|n|H#{op|n|H#H|op|ni#|op|n|{#]| IPL |N{V|m|x|D|I|Z
08| 4|1 elefofofela]o|a]e]e
48|31 elofofalela]ofale]e
0841 eflelofole|olole|ale
88|31 elofofe]efe]olalels
DAl 4] 1
5al 411 ool ofelo]|olole]e
68|51 eleio|N[e|eie|e]e]z
42|71 2 el InTelolele]e]z
68
28|51 eflelofole|o]ole|afe
28|16 | 1 Value saved in stack.
ABI 6 | 1 efefe|N|s]e|ele]le]|z
FA[5 |1 el Nlelelele]e]z

259

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode

Symbol Function Details IMP | IMM A DIR [DIRb [DIRX | DIR,Y | (DIR) | (DIRX) | (DIR).Y

op| n |#op| n|#fop| n|#|op|n|#fop|n|#|op|n|#|op|n|H#fop|n|H|opn|H|op|n|tt

PLY x=0 Restores the contents of the stack on the index register Y.
S+S+1
Yi—M(S)
S—S+1
YreM(S)

x=1
S+—S+1
Y +M(S)

PSH M(S)+<A, B, X+ Saves the registers among accumulator, index register,
(Note 6) direct page register, data bank register, program bank
register, or processor status register, specified by the bit
pattern of the second byte of the instruction into the stack.

PUL A, B, X+—M(S) Restores the contents of the stack to the registers among

(Note 7) accumulator, index register, direct page register, data
bank register, or processor status register, specified by
the bit pattern of the second byte of the instruction.

RLA m=0 Rotates the contents of the accumulator A, n bits to the 8963
(Note 13) | n bit rotate left left. 49‘?’
{is]] boJ—
m=1
n bit rotate left
[]
ROL 0 Links the accumulator or the memory to C flag, and rotates 2A| 21126172 36| 7|2
5

2A

m=
(Note 1) result to the left by 1 bit.
II!! 420412
m=

1

(7]~ [bo |-[C]

ROR m=0 Links the accumulator or the memory to C flag, and rotates 6A| 2 (116672 76(7 |2

(Note 1) L——_.‘ result to the right by 1 bit.
[C)-{s] T bo 42[2]2

RTI S—5+1 Returns from the interruption routine. 40/11]1

RTL S+S+1 Returns from the subroutine. The contents of the program [6B|8 | 1
PC_+M(S) bank register are also restored.

RTS S+S+1 Returns from the subroutine. The contents of the program (60| 5|1
PCL+-M(S) bank register are not restored.
S—S+1

PCuM(S)

SBC Acc, C+—Acc—M—C | Subtracts the contents of the memory and the borrow from 922 €542 F5/5|2 F2|6|2|E1|7{2|F1|8|2
(Note 1,2) the contents of the accumulator.

42| 4|3 42/6 (3 42|73 1428|3142/ 9|3]42/10 3
£ E5 5 F2 El Fl

260 »

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode

Processor status register
L(DIR)|L(DIR).Y| ABS | ABS,b |ABS,X|ABSY | ABL |ABLX|(ABS)|L(ABS)|(ABSX)| STK | REL

DIRbR [ABSHR| SR |(SR)Y| BLK 10]’9|8 716|5|4|3|2/1

0
op| n|#|op| n|#|op|n|#|op|n|#|op|n|$|op|n |2 op|n|fop|n|tfop| n|H[op|n|tfop|n||op|n||op|n|H|op|n|H|op|n|#|op|n||op|n|H|opin|#| IPL |[N|V|m|x|D|I|Z]|C
A5 |1 lele Nl ool]e]2]
EB|12| 2 elefofolofo|ofalo]e]e
+
2i1+i2
FBlﬁZ If restored the contents of PS,

it becomes its value. And the
3i1+4i2 B
other case is no change.

2E{7(3 3E(8|3 eleleIN|e|e|ele|e|Z|C
6E| 7|3 7E|8 (3 eilele|N[e|e|e|e e|Zz|C
Value saved in stack.
E7|10[2|F7|11{ 2|ED| 4 |3 FD| 6|3 [F9(6 |3 [EF|6|4|FF| 7|4 E3{5]2(F38|2 c{*f*|N|V|e|ele]e|Z|C
14212/ 3 42/13| 3142/ 6 | 4 42|84 (42|84 142/8 |5(42/9|5 42| 7| 3142|103
E7 F7 ED FD| F9 EF FF! E3 F3

261

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode

Symbol Function Details IMP | IMM A DIR | DIRb | DIRX [DIR,Y | (DIR) | (DIRX)|(DIR),Y

op| n |4 |op| n|3|op| n|# |op|n|#|op|n{#|op|n|#|op|n|%|op|n|#|op|n|H|op|n|H

SEB Mb+1 Makes the contents of the specified bit in the memory “1". 04183
(Note 5)
SEC C+1 Makes the contents of the C flag “1”. 38|21
SEI 11 Makes the contents of the | flag “1". 78|12 (1
SEM m+1 Makes the contents of the m flag “1". F82|1
SEP PSb+1 Set the specified bit of the processor status register’s low- E2(32
er byte (PS_) to “1". .
STA M+—Acc Stores the contents of the accumulator into the memory. 85| 4 |2 9552 92| 72181/ 7|291|7|2
(Note 1)
4263 42713 42(9(3142|19|342|9|3
85| 95 92 81 91
STP Stops the oscillation of the oscillator. DB(3 |1
STX M<X Stores the contents of the index register X into the memory. 8642 96/ 5 | 2
STY MY Stores the contents of the index register Y into the memory. 8442 94|52
TAD DPR+A Transmits the contents of the accumulator A to the direct [582 1
page register.
TAS S—A Transmits the contents of the accumulator A to the stack pointer. {182 | 1
TAX XA Transmits the contents of the accumulator A to the index |AA[2 |1
register X.
TAY YA Transmits the contents of the accumulator A to the index [A8]2 |1
register Y.
TBD DPR+-B Transmits the contents of the accumulator B to the direct (42|42
page register. 58
TBS S-B Transmits the contents of the accumulator B to the stack (424 |2
pointer. 1B
TBX X+-B Transmits the contents of the accumulator B to the index |42 4|2
register X. [AA|
TBY Y+-B Transmits the contents of the accumulator B to the index (42| 4 |2
register Y. A8
TDA A+<DPR | Transmits the contents of the direct page register to the |7B| 2|1
accumulator A,
TDB B+DPR Transmits the contents of the direct page register to the |42|4 |2
accumulator B. 78
TSA A+-S Transmits the contents of the stack pointer to the accumulator A. [3B]2 | 1
TSB B-S Transmits the contents of the stack pointer to the accumu- |42|4 |2
lator B. 38
TSX XS Transmits the contents of the stack pointer to the index |BA|2 |1
register X.
TXA A—X . Transmits the contents of the index register X to the accu- (8A|2 |1
mulator A,
TXB B+X Transmits the contents of the index register X to the accu- |42|4 |2
mulator B. 8A
TXS S—X Transmits the contents of the index register X to the stack |9A|2 |1
pointer.
TXY Y+~X Transmits the contents of the index register X to the index [9B]2 |1
. register Y.
TYA A=Y Transmits the contents\of the index register Y to the accu- {982 |1
mulator A.
TYB B+Y Transmits the contents of the index register Y to the accu- [42|4 |2
: mulator B. 98|
TYX XY Transmits the contents of the index register Y to the index [BB[2 |1
register X.
wIT Stops the internal clock. CB[3 |1
XAB A%B Exchanges the of the A and the con- |89(6 |2
tents of the accumulator B. 28

262

APPENDIX B
Series MELPS 7700 Machine Instructions

Addressing mode Processor status register

L(DIR)|L(DIR).Y| ABS |ABSb |ABSX|ABSY| ABL |ABLX|(ABS) [L(ABS)[(ABSX)| STK | REL |DIRbR |ABSbR| SR |[(SR),Y| BLK 10|9r8 7/6|5(4{3|2/1

op| n |[#|op{n|#|op| n|#op|n |4 |op| n |3 |op(n 3t |op| n [# |op| n|# |op| n|# [op|n|#|op| n|#|op|n|$#|op|n |3 |op| n |#]op| n |#[op|n|#|op|n|#H|op|n|#| IPL |N|V|m|x|D|I|Z

oc| 9|4 DN R I IO IR I N I I Y

D I I TS IS I IO P P I

elofofofololala]r]e

elefololo|t]o]elefe

||* | Specified flag b

comes “1".
87|10/ 2[97(11}2]8D| 5 |3 9D 539953 [8F| 6|4 [9F| 7|4 8315|2193/8]2 RN RN R N N N N
42/12]3142(13)3 (42| 7 | 4 42|74 (42|74 (42/8|542|9|5 42| 7|3 (42|10 3
87, 97 8D 90 99| 8F 9F 83 93]
8E(51(3 efefololofojelolole
8C(5|3 elefefjolo]|o|e]e]e]s

263

APPENDIX B
Series MELPS 7700 Machine Instructions

The number of cycles shown in the table is described in case of the fastest mode for each instruction. The number of cycles shown in the table is

calculated for DPR_=0. The number of cycles in the addressing mode concerning the DPR when DPR_#0 must be incremented by 1.

The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory
" read/write address is odd or even. It also differs when the external region memory is accessed by BYTE="H".

Note 1. The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B.

Note 2. When setting flag m=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

Note 3. The number of cycles increments by 2 when branching.

Note 4. The operation code on the upper row is used for branching in the range of —128~+127, and the operation code on the lower row is used for
branching in the range of —32768~+32767.

Note 5. When handling 16-bit data with flag m=0, the byte in the table is incremented by 1.

Note 6.

[Typeofregister | A | B | X | Y |[DPR| DT | PG | PS |
[Numberofcycles| 2 | 2 | 2 | 2 [2 [1 [11 2}

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12. i; indicates
the number of registers among A, B, X, Y, DPR, and PS to be saved, while i, indicates the number of registers among DT and PG to be saved.
Note 7.

[Typeofregister | A | B | X | Y [DPR| DT | PS |
[Numberofcycles| 3 | 3 | 3 [3 | 4 | 3 | 3 |

The number of cycles corresponding to the register to be pulled-are added. The number of cycles when no pulling is done is 14. i; indicates the
number of registers among A, B, X, Y, DT, and PS to be restored, while i,=1 when DPR is to be restored.

Note 8. The number of cycles is the case when the number of bytes to be transfered is even.
When the number of bytes to be transfered is odd, the number is calculated as;

7+ (i72) X7+4
Note that, (i/2) shows the integer part when i is divided by 2.

Note 9. The number of cycles is the case when the number of bytes to be transfered is even.
When the number of bytes to be transfered is odd, the number is calculated as;

9+ (i/2) X7+5
Note that, (i/2) shows the integer part when i is divided by 2.
Note 10. The number of cycles is the case in the 16-bit+8-bit operation. The number of cycles is incremented by 16 for 32-bit-+-16-bit operation.
Note 11. The number of cycles is the case in the 8-bitX8-bit operation. The number of cycles is incremented by 8 for 16-bit X16-bit operation.
Note 12. When setting flag x=0 to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1.

Note 13. When flag m is 0, the byte in the table is'incremented by 1.

264

APPENDIX B

Series MELPS 7700 Machine Instructions

Symbol Description Symbol Description
IMP Implied addreséing mode T b3 Exclusive OR
IMM Immediate addressing mode — Negation
A Accumulator addressing mode -— Movement to the arrow direction
DIR Direct addressing mode Acc Accumulator
DIR, b Direct bit addressing mode AccH ! Accumulator's upper 8 bits
DIR, X Direct indexed X addressing mode AccL Accumulator's lower 8 bits
DIR, Y Direct indexed Y addressing mode A Accumulator A
(DIR) Direct indirect addressing mode An Accumulator A’s upper 8 bits
(DIR, X) Direct indexed X indirect addressing mode AL Accumulator A's lower 8 bits
(DIR), Y Direct indirect indexed Y addressing mode B Accumulator B
L (DIR) Direct indirect long addressing mode Bu Accumulator B's upper 8 bits
L (DIR), Y Direct indirect long indexed Y addressing mode Be Accumulator B's lower 8 bits
ABS Absolute addressing mode X Index register X
ABS, b Absolute bit addressing mode Xu Index register X's upper 8 bits
ABS, X Absolute indexed X addressing mode Xy | Index register X's lower 8 bits
ABS, Y Absolute indexed Y addressing mode Y Index register Y
ABL Absolute fong addressing mode Yu Index register Y's upper 8 bits
ABL, X Absolute long indexed X addressing mode Yo Index register Y's lower 8 bits
(ABS) Absolute indirect addressing mode S Stack pointer
L (ABS) | Absolute indirect long addressing mode PC Program counter
(ABS, X) Absolute indexed X indirect addressing mode PCq ’ Program counter's upper 8 bits
STK Stack addressing mode PC_ | Program counter’s lower 8 bits
REL Relative addressing mode PG ‘ Program bank register
DIR, b, REL Direct bit relative addressing mode DT Data bank register
ABS, b, REL Absolute bit relative addressing mode DPR Direct page register
SR Stack pointer relative addressing mode DPRy Direct page register’s upper 8 bits
(SR), Y Stack pointer relative indirect indexed Y addressing DPR_ Direct page register’s lower 8 bits
mode PS Processor status register
BLK Block transfer addressing mode PSh Processor status register's upper 8 bits
c Carry flag PSL Processor status register's lower 8 bits
z Zero flag PSp Processor status register's b-th bit
I Interrupt disable flag M(S) Contents of memory at address indicated by stack
D Decimal operation mode flag pointer
X | Index register length selection flag Mp b-th memory location
m Data length selection flag ADg Value of 24-bit address’s upper 8-bit (Ax~Ay)
\% Overflow flag ADy Value of 24-bit address’s middle 8-bit (Ais~Ag)
N Negative flag AD_ Value of 24-bit address’s lower 8-bit (A;~Ag)
IPL Processor interrupt priority level op Operation code
+ Addition n Number of cycle
— Subtraction # | Number of byte
* Multiplication i | Number of transfer byte or rotation
/ Division i1, iz \ Number of registers pushed or pulled
A Logical AND 1
Vv Logical OR

265

APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-1

Ds~Do | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 [1100 | 1101 | 1110 | 1N
Hexadecimal
D7~D, notation 0 1 2 3 4 5 6 7 8 9 A B C D E F
ORA ORA | SEB | ORA | ASL | ORA ORA | ASL SEB | ORA | ASL | ORA
0000 0 BRK PHP PHD
A,(DIRX) ASR | DIRb | ADIR | DIR |AL(DIR) AIMM| A ABSb | AABS | ABS | AABL
ORA | ORA | ORA | CLB | ORA | ASL | ORA ORA | DEC CLB | ORA | ASL | ORA
0001 1 BPL cLC TAS
A(DIR),Y|A,(DIR)|A,(SR),Y| DIRb |A,DIR,X| DIRX AL(DIR)Y AABSY| A ABS,b |A,ABS,X| ABS,X |A,ABL,X
JSR | AND | JSR | AND | BBS | AND | ROL | AND AND | ROL BBS | AND | ROL | AND
0010 2 PLP PLD
ABS |(A(DIRX)| ABL | ASR [DIRb,R| ADIR | DIR |AL(DIR) AIMM| A ABS,b,R| ALABS | ABS | AABL
AND | AND | AND | BBC | AND | ROL | AND AND | INC BBC | AND | ROL | AND
0011 3 BMI SEC TSA
A(DIR),Y|A,(DIR)|A(SR),Y|DIR,b,R|A,DIR,X| DIR,X AL(DIR)Y AABSY| A ABS,b,RIA,ABS X| ABS,X |A,ABL,X
EOR EOR EOR | LSR | EOR EOR | LSR JMP | EOR | LSR | EOR
0100 4 RTI Note 1 MVP PHA PHG
A(DIRX) ASR ADIR | DIR |AL(DIR) AIMM| A ABS | AABS| ABS | AABL
EOR | EOR | EOR EOR | LSR | EOR EOR JMP | EOR | LSR | EOR
0101 5 BVC : MVN cu |, PHY | TAD
A(DIR),Y|A,(DIR)|A,(SR).Y ADIR,X| DIR,X |AL(DIR).Y AABS.Y ABL |A,ABS,X| ABSX |AABLX|
ADC ADC | LDM | ADC | ROR | ADC ADC | ROR JMP | ADC | ROR | ADC
0110 6 RTS PER PLA RTL
A(DIRX) ASR | DIR | ADIR| DIR [AL(DIR) AIMM | A (ABS) | AABS | ABS |AABL
ADC | ADC | ADC | LDM | ADC | ROR | ADC ADC JMP | ADC | ROR | ADC
o111 7 BVS SEI PLY | TDA
A(DIR),Y|A,(DIR)|A(SR),Y| DIRX |A,DIR,X| DIRX [AL(DIR).Y, AABS,Y (ABS,X) |A,ABS,X| ABS,X |A,ABL,X
BRA | STA | BRA | STA | STY | STA | STX | STA STY | STA | STX | STA
1000 8 DEY |Note2| TXA | PHT ,
REL |A(DIRX)| REL | ASR | DIR | ADIR| DIR [AL(DIR) ABS |AABS| ABS | AABL
STA | STA | STA | STY | STA | STX | STA STA LDM | STA | LDM | STA
1001 9 BCC TYA TXS | TXY
A(DIR),Y|A,(DIR)|A(SR),Y| DIRX |ADIRX| DIRY |AL(DIR)Y AABS,Y ABS |AABSX| ABS,X |AABLX
LDY | LDA | LDX | LDA | LDY | LDA | LDX | LDA LDA LDY | LDA | LDX | LDA
1010 A TAY TAX | PLT
IMM |A(DIRX)| IMM | ASR | DIR | ADIR| DIR |AL(DIR) AIMM ABS |AABS| ABS | AABL
LDA | LDA | LDA | LDY | LDA | LDX | LDA LDA LDY | LDA | LDX | LDA
1011 B BCS CLV TSX | TYX
A(DIR),Y|A,(DIR)|A(SR),Y| DIR,X |A,DIR,X| DIR,Y |AL(DIR)Y AABSY ABS,X |A,ABS,X| ABS,Y |AABL X|
CPY | CMP | CLP | CMP | CPY | CMP | DEC | CMP CMP CPY | CMP | DEC | CMP
1100 c INY DEX | WIT
IMM |A(DIRX)| IMM | ASR | DIR | ADIR| DIR |AL(DIR) AIMM ABS | AABS | ABS | AABL
CMP | CMP | CMP CMP | DEC | CMP | CMP JMP | CMP | DEC | CMP
1101 D BNE PE! CLM PHX | STP
A(DIR).Y|A,(DIR)A(SR)Y| - ADIR,X| DIRX AL(DR), AABS,Y| L(ABS)|A,ABS,X| ABS,X |AABL,X
CPX | SBC | SEP | SBC | GPX | SBC | INC | SBC SBC CPX | SBC | INC | SBC
1110 E INX NOP | PSH
IMM |A(DIRX)| IMM | ASR | DIR | ADIR| DIR [AL(DIR) AIMM ABS |AABS| ABS | AABL
SBC | SBC | SBC SBC | INC | SBC SBC JSR | SBC | INC | SBC
1 F BEQ PEA SEM PLX | PUL .
A(DIR) Y|A,(DIR)|A,(SR)Y| ADIRX| DIRX |AL(DIR) Yl AABSY (ABS,X) |A,ABS,X| ABS,X {A ABL,X

Note 1 ! 42, specifies the contents of the INSTRUCTION CODE TABLE-2.

About the second word’s codes, refer to the INSTRUCTION CODE TABLE-2.

Note 2 : 896 specifies the contents of the INSTRUCTION CODE TABLE-3.

About the third word's codes, refer to the INSTRUCTION CODE TABLE-2.

266

APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-2 (The first word’s code of each instruction is 42,¢)

Ds~Do | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | O110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
p~pfexadecimal) gyl o f 3l 4 | s | 6 | 7 | 8 | o | A | B|c | D|E]|F
ORA ORA ORA ORA ORA | ASL ORA ORA
0000 0
B,(DIRX) B,SR B,DIR B,L(DIR) BIMM| B B,ABS B,ABL
ORA | ORA | ORA ORA ORA ORA | DEC ORA ORA
0001 1 BS
B,(DIR),Y|B,(DIR)|B,(SR).Y B,DIR,X B,L(DIR) Y] BABSY B B,ABS X B,ABL,X
AND AND AND AND AND | ROL AND AND
0010 2
B,(DIRX) B,SR B,DIR B,L(DIR) BIMM| B B,ABS B,ABL
AND | AND | AND AND AND AND | INC AND AND
00N 3 TSB
B,(DIR),YB,(DIR)|B,(SR).Y B,DIR X B.L(DIR), BABSY B B,ABS,X B,ABL X
EOR EOR EOR EOR EOR | LSR EOR EOR
0100 4 PHB
B,(DIRX) B,SR B,DIR B,L(DIR) BIMM| B B,ABS B,ABL
EOR | EOR | EOR EOR EOR EOR EOR EOR
0101 5 8D
B,(DIR),Y|B,(DIR)(B,(SR).Y| B,DIR,X BL(DIR), B,ABS,Y B,ABS,X B,ABL,X
ADC ADC ADC ADC ADC | ROR ADC ADC
0110 6 PLB
8,(DIRX) B,SR B,DIR B,L(DIR) B/MM| B B,ABS B,ABL
ADC | ADC | ADC ADC ADC ADC ADC ADC
0 7 DB
B.(DIR),YB,(DIR)|B,(SR),Y| B,DIR,X B.L(DIR) Y] B,ABS,Y! B,ABS X B,ABL,X
STA STA STA STA STA STA
1000 8 TXB
B,(DIRX) B,SR B,DIR B,L(DIR) B,ABS B,ABL
STA | STA | STA STA STA STA STA STA
1001 9 TYB
B,(DIR),YB,(DIR)|B,(SR).Y| B,DIR,X| B.L(DIR), B,ABS,Y B,ABS,X B,ABL,X|
LDA LDA LDA LDA LDA LDA LDA
1010 A TBY TBX
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
LDA | LDA | LDA LDA LDA LDA LDA LDA
101 B
B,(DIR).Y|B,(DIR)(B,(SR)Y| B,DIR X BL(DIR).Y] B,ABS,Y B,ABS X B,ABL,X
CMP CMP CMP CMP CMP CMP CMP
1100 [¢
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
CMP | CMP | CMP CMP CcMP CMP CMP CMP
101 D .
B.(DIR),Y|B,(DIR)|B,(SR).Y| B,DIR X B.L(DIR), B,ABS,Y| B,ABS X B,ABL,X|
SBC SBC SBC SBC SBC SBC SBC
1110 E
B,(DIRX) B,SR B,DIR B,L(DIR) B,IMM B,ABS B,ABL
SBC | SBC | SBC SBC SBC SBC SBC SBC
1 F
B,(DIR),Y|B,(DIR)|B,(SR).Y| B,DIR X BL(DIR), B,ABS,Y| B,ABS X B,ABL,X

267

‘ APPENDIX C
Series MELPS 7700 Instruction Code Table

INSTRUCTION CODE TABLE-3 (The first word’s code of each instruction is 89,¢)

Ds~Dg | 0000 | 0001 | 0010 | 0011 { 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 { 1100 | 1101 | 1110 | 1111
Hexadecimal
D;~D, notation] - © 1 2 3 4 5 6 7 8 9 A B [D E F
MPY MPY MPY MPY MPY MPY MPY
0000 0
(DIR,X) SR DIR L(DIR) IMM ABS ABL
MPY | MPY | MPY MPY MPY MPY MPY MPY
0001 1
(DIR),Y| (DIR) |(SR),Y DIR.X L(DIR).Y] ABS)Y ABS.X ABL.X
DIV DIV DIV DIV DV DIV DIV
0010 2 XAB
(DIR,X) SR DIR L(DIR) IMM ABS ABL |
DIV | DIV | DIV DIV DIV DIV DIV DIV
0011 3
(DIR),Y| (DIR) |(SR),Y DIR,X L(DIR).Y| ABS,Y ABS,X ABLX
RLA
0100 4
1 IMM
0101 5
—
0110 6
o 7
1000 8
1001 9
1010 A
1011 B
LDT
1100 (¢}
IMM
1101 D
1110 E
1M F

268

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN .- o
Semlconductor Marketing DIVISIOFI
Mitsubishi Electric Corporation
2-3, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100, Japan
Telex: 24532 MELCO J
Telephone: (03) 218-3473

(03) 218-3499
Facsimile: (03) 214-5570

Overseas Marketing Manager
Kita-Itami Works

4-1, Mizuhara, ltami-shi,
Hyogo-ken 664, Japan

Telex: 526408 KMELCO J
Telephone: (0727) 82-5131
Facsimile: (0727) 72-2329

HONG KONG —————————
MITSUBISHI ELECTRIC (H.K.) LTD
25 Floor, Leighton Centre,

77, Leighton Road. Causeway Bay.
Hong Kong

Telex: 60800 MELCO HX
Telephone: (5) 773901-3
Facsimile: (5) 895-3104

SINGAPORE ——————
MELCO SALES SINGAPORE PTE
LTD.

230 Upper Bukit Timah Road # 03-
01/15

Hock Soon Industrial Complex
Singapore 2158

Telex: RS 20845 MELCO
Telephone: 4695255

Facsimile: 4695347

TAIWAN
MELCO-TAIWAN CO., Ltd.
1st fl., Chung-Ling Bldg.,

363, Sec. 2, Fu-Hsing S Road,
Taipei R.O.C.

Telephone: (02) 735-3030
Facsimile: (02) 735-6771

Telex: 25433 CHURYO “MELCO-
TAIWAN”

US.A.

NORTHWEST

Mitsubishi Electronics America, Inc.
1050 East Arques Avenue
Sunnyvale, CA 94086

Telephone: (408) 730-5900
Facsimile: (408) 730-4972

SAN DIEGO

Mitsubishi Electronics America, Inc.
11545 West Bernardo Court

Suite 100

San Diego, CA 92128

Telephone: (619) 592-1445
Facsimile: (619) 592-0242

DENVER

Mitsubishi Electronics America, Inc.
4600 South Ulster Street
Metropoint Building, 7th Floor
Denver, CO 80237

Telephone: (303) 740-6775
Facsimile: (303) 694-0613

SOUTHWEST

Mitsubishi Electronics America, Inc.
991 Knox Street

Torrance, CA 90502

Telephone: (213) 515-3993
Facsimile: (213) 217-5781

SOUTH CENTRAL

Mitsubishi Electronics America, Inc.
1501 Luna Road, Suite 124
Carrollton, TX 75006

Telephone: (214) 484-1919
Facsimile: (214) 243-0207

NORTHERN

Mitsubishi Electronics America, Inc.
15612 Highway 7 #1243
Minnetonka, MN 55345

Telephone: (612) 938-7779
Facsimile: (612) 938-5125

NORTH CENTRAL

Mitsubishi Electronics America, Inc.
800 N. Bierman Circle

Mt. Prospect, IL 60056

Telephone: (312) 298-9223
Facsimile: (312) 298-0567

NORTHEAST

Mitsubishi Electronics America, Inc.
200 Unicorn Park Drive

Woburn, MA 01801

Telephone: (617) 932-5700
Facsimile: (617) 938-1075

MID-ATLANTIC

Mitsubishi Electronics America, Inc.
800 Cottontail Lane

Somerset, NJ 08873

Telephone: (201) 469-8833
Facsimile: (201) 469-1909

SOUTH ATLANTIC

Mitsubishi Electronics America, Inc.
2500 Gateway Center Blvd., Suite 300
Morrisville. NC 27560

Telephone: (404) 368-4850
Facsimile: (404) 662-5208

SOUTHEAST

Mitsubishi Electronics America, Inc.
Town Executive Center

6100 Glades Road #210

Boca Raton, FL 33433

Telephone: (407) 487-7747
Facsimile: (407) 487-2046

CANADA

Mitsubishi Electronics America, Inc.
6185 Ordan Drive, Unit #110
Mississauga, Ontario, Canada L5T 2E1
Telephone: (416) 670-8711

Facsimile: (416) 670-8715

Mitsubishi Electronics America, Inc.
300 March Road, Suite 302

Kanata, Ontario, Canada K2K 2E2
Telephone: (416) 670-8711
Facsimile: (416) 670-8715

WEST GERMANY === =
Mitsubishi Electric Europe Gmb
Headquarters:

Gothear Str. 8

4030 Ratingen 1, West Germany
Telex: 8585070 MED D
Telephone: (02102) 4860
Facsimile: (02102) 486-115

Munich Office:

Arabellastraie 31

8000 Miinchen 81, West Germany
Telex: 5214820

Telephone: (089) 919006-09
Facsimile: (089) 9101399

FRANCE = oo oo o
Mitsubishi Electric Europe GmbH

55, Avenue de Colmar

92563 Rueil Malmaison Cedex

Telex: 632326

Telephone: 47087871

Facsimile: 47513622

ITALY ==
Mitsubishi Electric Europe GmbH
Centro Direzionale Colleoni

Palazzo Cassiopea i

20041 Agrate Brianza I-Milano
Telephone: (039) 636011

Facsimile: (039) 6360120

SWEDEN —=——————— =
Mitsubishi Electric Europe GmbH
Lastbilsvagen 6B

5-19149 Sollentuna, Sweden

Telex: 10877 (meab S)
Telephone: (08) 960468

Facsimile: (08) 966877

U.K. E e
Mitsubishi Electrlc (U.K)) Ltd.
Traveliers Lane

Hatfield

Herts AL10 8 XB, England, U.K.
Telephone: (0044) 7072 76100
Facsimile: (0044) 7072 78692

AUSTRALIA = =
Mitsubishi Electrlo Austraha Pty. Ltd.
73-75, Epping Road, North Ryde,
P.O. Box 1567, Macquarie Centre,
N.S.W., 2113, Australia

Telex: MESYD AA 26614
Telephone: (02) (888) 5777
Facsimile: (02) (887) 3635

MITSUBISHI SEMICONDUCTORS
MELPS 7700 (SOFT WARE) USER’S MANUAL

July. First Edition 1989
Editioned by
Committee of editing of Mitsubishi Semiconductor USER'S MANUAL

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.

©1989 MITSUBISHI ELECTRIC CORPORATION

MITSUBISHI SEMICONDUCTORS
MELPS 7700{SOFT WARE)

AMITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: MITSUBISHI DENKI BLDG MARUNOUCHI, TOKYO 100, TELEX: J24532 CABLE: MELCO TOKYO

These products or technologies
are subject to Japanese and/or
COCOM strategic restrictions, and
diversion contrary thereto is
prohibited.

H-E0112-A KI-8907 Printed in Japan (ROD) New publication, effective Jul. 1989.
© 1989 MITSUBISHI ELECTRIC CORPORATION Specifications subject to change without notice.

