
c
({)
m
:n
({)

$:
)>

MITSUBISHI SEMICONDUCTORS

z
c
)>

'MELPS 7700

• MITSUBISHI
.... ELECTRIC

Foreword

Foreword

This manual has been prepared to enable the users of the
Series MELPS 7700 CMOS 16-bit microcomputers to better
understand the instruction set and the features so that they can
utilize the capabilities of the microcomputers to the fullest. This
manual presents detailed descriptions of the instructions and ad­
dressing modes available for the Series MELPS 7700 micro­
computers.

For the hardware descriptions of the Series MELPS 7700 micro­
computers and descriptions of various development support
tools (e.g., assembler, debugger), please refer to the user's
manuals and operating guidebooks for the respective hardware
and software products.

Contents

1. Introduction of Series MELPS 7700 Software

Contents

Page

1

2. Register Configuration in CPU

2.1 Accumulator

===========2

2.2 Index Register X

2.3 Index Register Y

2.4 Stack Pointer

2.5 Program Counter

2.6 Program Bank Register

2.7 Data Bank Register

2.8 Direct Page Register

2.9 Processor Status Register

3. Addressing Modes

3.1 Addressing Mode

3.2 Explanation of Addressing Modes

4. Instructions ================~52

4.1 Instruction Set

4.2 Description of Instructions

5. Notes for Programming ~===========~165

6. Instruction Execution Sequence

6.1 Bus Interface Unit
~=========~167

6.2 Change of the CPU Basic Clock <j>cPu

6.3 Instruction Execution Sequence

Appendixes ~================~188

A. CPU Instruction Execution Sequence for each Addressing Mode 188

B. Series MELPS 7700 Machine Instructions

C. Series MELPS 7700 Instruction Code Table

252

266

Introduction of Series MELPS 7700 Software

1. Introduction of Series MELPS 7700 Software

The software for the Series MELPS 7700 16cbit CMOS microcomputers was developed by
making is numerous enhancements on the software for the Series MELPS 740 8-bit microcom­
puter which are based on Mitsubishi Electric Corporation's proprietary designs. The enhance­
ments include support of word (16-bit) operations and linear accessing of up to 16M bytes of
memory space.

The new software's compact and easy to use instruction set and the support of powerful address­
ing modes will significantly increase

:The Series MELPS 7700 microcomputers offer the following features

• Upward compatibility for the Series MELPS 740.

• Powerful addressing modes and fast and compact instruction set.

• Direct page mapping function and memory oriented software system by direct paging.

• Byte and word operations can be selected at will by the m flag.

• The usual 64K bytes program memory boundary can be ignored for the practical
purposes,and programs can be written to utilize the full 16M bytes of memory space. For
data memory, linear as well as bank memory accessing are supported.

• Bit manipulation instructions and bit test and branch instructions can be used for memory
and 1/0 accessing of the entire 16M bytes space.

• Block transfer instruction capable of handling blocks of up to 64K bytes each.

• Improved stack accessing capability.

• Decimal arithmetic instruction execution requiring no software compensation.

The performance of the systems based on the Series MELPS 7700 microcomputers, whether
used as advanced 8-bit microcomputer or next-generation 16-bit one.

Register Configuration

2. Register Configuration

The central processing unit (CPU) of each Series MELPS 7700 microcomputer has 1 O internal
registers (See Fig.2.1). Each of these registers is described below

2.1 Accumulator (Ace)

(1) Accumulator A (A)

The accumulator A is the main register of the microcomputer, and data processing such as arith­
metic calculations, data transfer and input/output operations are executed via this accumulator.
It consists of 16-bit register, but it can be used as an 8-bit register by setting the data length se­
lection flag m in the processor status register PS. The flag m is described in detail in a later sec­
tion. The flag m value of "O" specifies 16-bit data length, and "1" specifies 8-bit data length.
When operating under 8-bit data length setting, only the lower 8 bits of the accumulator A are
used and the upper 8 bits do not change.

(2) Accumulator B (B)

The accumulator B is a 16-bit register whose function is equivalent to that of the accumulator A.
The Series MELPS 7700 instructions can use the accumulator B instead of the accumulator A.
Note, however, that use of the accumulator B requires more instruction bytes and execution
cycles than when using the accumulator A.

2.2 Index Register X (X)

The index register X is a 16-bit register, but it can be used as an 8-bit register by setting the index
register length selection flag x in the processor status register PS. The flag x is described in
detail in a later section. The flag x value of "O" specifies 16-bit index register length, and "1"
specifies 8-bit index register length. When operating under 8-bit index register length setting, only
the lower 8 bits of the index register X are used and the upper 8 bits do not change.

In an addressing mode in which the index register X is used as the index register, the address
obtained by adding the contents of this register is accessed. For the block transfer instructions,
MVP and MVN, the contents of the index register X become the lower 16 bits of the transfer-from
address and the byte-3 of the instruction becomes the upper 8 bits.

2.3 Index Register Y (Y)

2

The index register Y is a 16-bit register whose function is equivalent to that of the index register
X. As in the case of the index register X, the index register length selection flag x can be used
to use only the lower 8 bits of the index register Y. For the block transfer instructions, MVP and
MVN, the contents of the index register Y become the lower 16 bits of the transfer-to address and
the byte-2 of the instruction become the upper 8 bits.

Register Configuration

b15 b8 b7 bO

I AH I AL I Accumulator A (A)

b15 b8 b7 bO

I BH I BL I Accumulator B (B)

b15 b8 b7 bO

I XH
I

XL I Index Register X (X)

b15 b8 b7 bO

I YH I YL I Index Register Y (Y)

b15 b8 b7 bO

I SH
I SL I Stack Pointer (S)

b7 bO

I OT I Data Bank Register (DT)

b15 b8 b7 bO

PG I PCH I PCL I Program Counter (PC)

b7
I

bO

Program Bank Register (PG)

b15 b8 b7 bO

I DPRH I DPRL I Direct Page Register (DPR)

b15 b8 b7 bO

PSH PSL I Processor Status Register (PS) I I l. ____ _j
L - - - - - - - - - -b;;l

b15 b10 b8 b7

0 I 0 I 0 0 0 IPL N v m x D z c

L Carry Flag

Zero Flag

Interrupt Disable Flag

Decimal Operation mode Flag

Index Register Length Selection

Data Length Selection Flag

-- Overflow Flag

L_ Negative Flag

Flag

--Processor Interrupt Priority Level

Fig. 2.1 CPU Register Model

3

Register Configuration

2.4 Stack Pointer (S)

The stack pointer (S) is a 16-bit register, and it is used when calling a subroutine, at the time of
interrupt processing and when using one of the stack addressing modes. The contents of the
stack pointer specifies the address (stack area) where the memory (RAM) registers that must be
saved are to be stored.

When an interrupt is received, the contents of the program bank register are saved at the address
specified by the stack pointer's value, and the stack pointer's value is decremented by 1.
Similarly, the contents of the program counter and the processor status register are saved in the
order of lower bytes first (PCH, PCL, PSH, PSL). Thus, the value of the stack pointer after an
interrupt has been accepted will be 5 less than the value before the interrupt acceptance. When
the interrupt processing is completed and the control is returned to the original routine, the
registers that had been saved to the stack area are restored in the reverse order of the saving
operation, and the stack pointer's value is restored to that before the interrupt was accepted.
Similar operations are executed when a subroutine is called, except that the processor status
register (and the program bank register for some addressing modes) is not saved.

The registers other than those indicated above are not saved when an interrupt is invoked or
when a subroutine is called, so that provisions must be made in the application programs to save
the registers if necessary. Also note that the stack pointer must be initialized after the microcom­
puter is reset, because its content is indeterminable after reset operation. Normally, the highest
address of the internal RAM is set in the stack pointer. The contents of the stack area will change
by nesting of subroutines and acceptance of multiple interrupts, so that the subroutine nesting
levels must be chosen carefully so as not to destroy the integrity of RAM data.

2.5 Program Counter (PC)

The program counter (PC) is a 16-bit register that contains the lower 16-bit values of the 24-bit
program memory address of the instruction to be executed next.

2.6 Program Bank Register (PG)

4

The program bank register (PG) is an 8-bit register that contains the upper 8-bit (bank) value of
the 24-bit program memory address of the instruction to be executed next. When a carry is gen­
erated by incrementing of the program counter's content or when a carry or borrow is generated
by addition or subtraction of an offset value to the program counter's content by execution of a
branching instruction, for example, the program bank register's content is automatically incre­
mented or decremented by 1 so that the bank boundary needs not be considered for application
programming.

b23 b15 b7 bO

PG PCH PCL

b7 bO b15 b8 b7 bO

Register Configuration

2.7 Data Bank Register (DT)

The data bank register (DT) is an 8-bit register. Its contents are interpreted as the upper 8 bits
(bank) of a 24-bit memory address under certain addressing modes.

2.8 Direct Page Register (DPR)

The direct page register (DPR) is a 16-bit register, which allows specification of a 256 byte space
called a direct page in bank-0. This area can be accessed by 2 bytes in the direct page
addressing mode. The contents of the direct page register specify the least-significant (base)
address of the direct page area. A value in the range of 016-FFFF16 may be set in the direct page
register. When a value of or higher than FF011s is set in the direct page register, the direct page
area will cross over the bank-0 and bank-1 boundary. Normally, the lower 8-bit value of the direct
page register is set to 0016 since that reduces the number of cycles required for address genera­
tion.

00000016

Bank-0

OOFFFF16
01000016

Bank-1

I

00000016 J Wheo DPR=OOOO,o

OOOOFF16

00012316 J Wheo DPR=0123rn (Note 1)

00022216

Direct page area

OOFFD61s J Wheo tlPR=FF06,. (Nole 2)

01 OFD516

(Note 1) Cycles-count is incremented by 1 when the lower 8-bit of DPR is not 001s.
(Note 2) Direct page is specified across bank-0 and bank-1 when DPR value is FF0116 or higher.

Fig. 2.2 Setting Direct Page by Direct Page Register

5

Register Configuration

2.9 Processor Status Register (PS)

The processor status register (PS) is an 11-bit register, and it consists of flags that specify the
status immediately after operation and bits that set the processor interrupt priority level. The C,
Z, V and N flags enable execution of branching instructions depending on the flag values. Each
bit of the processor status register is explained below.

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I 0 I 0 I 0 I 0 I 0 I IPL IN Iv I ml x I Di I I z I cl Processor Status Register (PS)

(Note) Bits 11-15 are fixed at 0.

[Bit-0] Carry Flag (C)

This bit is the carry flag which holds the carry or borrow from the arithmetic logic unit (ALU) after
arithmetic operation. It is also affected by the shift and rotate instructions. This flag can be
directly set by the SECand SEP, and cleared by CLC and CLP instructions.

[Bit-1] Zero Flag (Z)

This bit is set 1 when the arithmetic operation or data transfer result is 0, and it is set 0 when
such result is not "O". This flag is invalid for addition (ADC) instruction in the decimal-operation
~. This flag can be directly set by SEP and cleared by CLP instructions.

[Bit-2] Interrupt Disable Flag (I)

This is the flag that is used to disable all interrupts (except the interrupts by the watchdog timer,
BAK instruction and division by zero). When this flag is "1 ", interrupts are disabled. This flag is
set to "1" automatically when an interrupt is accepted, inhibiting multiple interrupt acceptance.
This flag can be set using the SEI and SEP, and cleared using the CLI and CLP instructions.

[Bit-3] Decimal Operation Mode Flag (D)

This flag is used to determine whether to execute addition and subtraction in the binary-mode
or in the decimal-mode. "O" specifies the ordinary binary mode. When this flag is set to "1 ", ad­
dition/subtraction is executed with 1 word as a 2- or 4-digit decimal value (2- or 4-digit selection
is made by the data length selection flag m). Decimal alignment is performed automatically.

Note that decimal-mode can be used only by the ADC and SBC instructions.

This flag can be set by the SEP and cleared by the CLP instructions.

Because this flag directly affects arithmetic operation it must be initialized whenever the micro­
computer is reset.

[Bit-4] Index Register Length Selection Flag (x)

6

This flag specifies whether to use the index register X or Y in the 16-bit index register length or
in the 8-bit index register length. "O" specifies the 16-bit length mode, and "1" specifies the 8-
bit length mode. This flag can be set by the SEP, and cleared by the CLP instructions.

Register Configuration

[Bit-5) Data Length Selection Flag (m)

This flag specifies whether to use the 16-bit data length or the 8-bit data length. "O" specifies
16-bit, and "1" specifies 8-bit data length. This flag can be set by the SEM and SEP, and cleared
by the CLM and CLP instructions.

[Bit-6) Overflow Flag (V)

The overflow flag has a meaning when adding or subtracting 1 word as a signed binary number.
This flag is set 1 when the flag m is set to "O" and the result of addition or subtraction is outside
the range -32768-+32767, and it is set 0 otherwise. When the flag m is set to "1", this flag is
set 1 if the result of addition or subtraction is outside the range -128-+127 and set Ootherwise.
This flag can be directly set by the SEP, and cleared by the CLV and CLP instructions. This flaQ
is meaninQless in the decimal operation mode.

[Bit-7) Negative flag (N)

The negative flag (N) is set 1 when the result of data transfer is negative (bit-15 of data is "1"
when the flag mis "O", or bit-7 of data is "1" when the flag mis "1"), and it is set O otherwise.
This flag can be directly set by the SEP, and cleared by the CLP instructions. This flaQ is
meaninQless in the decimal operation mode.

[Bit-8-Bit-1 OJ Processor interrupt priority level (IPL0-IPL2)

The processor interrupt priority level (IPL) consists of 3 bits, and these 3 bits enable determination
of 8 processor interrupt priority levels (level-0 - level-7). An interrupt is allowed only when its
interrupt priority level is higher than the IPL value. When an interrupt is generated, IPL is saved
to the stack area, and the priority level of the allowed interrupt is set in IPL.

There is no instruction that can directly set or clear IPL0-IPL2. Therefore, in order to alter the
IPL contents, the desired value must be first stored in the stack and then the processor status
register contents altered using the PUL or PLP instruction.

7

Addressing Modes

3. Addressing Modes

3.1 Addressing Mode

When executing an instruction, the address of the memory location from which the data required
for arithmetic operation is to be retrieved or to which the result of arithmetic operation is to be
stored must be specified in advance. Address specification is also necessary when the control
is to jump to a certain memory address during program execution. Addressing refers to the
method of specifying the memory address.

The Series MELPS 7700 microcomputers support 28 different addressing modes, offering ex­
tremely versatile and powerful memory accessing capability.

3.2 Explanation of Addressing Modes

8

Each of the 28 addressing modes is explained on the pages indicated below:

Implied addressing mode

Immediate addressing mode

Accumulator addressing mode

Direct addressing mode

Direct bit addressing mode

Direct indexed X addressing mode

Direct index~d V addressing mode

Direct indirect addressing mode

Direct indexed X indirect addressing mode

Direct indirect indexed V addressing mode

Direct indirect long addressing mode

Direct indirect long indexed V addressing mode

Absolute addressing mode

Absolute bit addressing mode

Absolute indexed X addressing mode

Absolute indexed V addressing mode

Absolute long addressing mode

Absolute long indexed X addressing mode

Absolute indirect addressing mode

Absolute indirect long addressing mode

Absolute indexed X indirect addressing mode

Stack addressing mode

Relative addressing mode

Direct bit relative addressing mode

Absolute bit relative addressing mode

Stack pointer relative addressing mode

Stack pointer relative indirect indexed V addressing mode

Block transfer addressing mode

9

10

11

12

13

14

16

17

18

21

24

25

28

30

31

33

35

36

37

38

39
40

42

43

45

47

48

50

Implied

Mode Implied addressing mode

Function The single-instruction inherently address an internal register.

Instruction : BRK,
RTI,
TAY,
TXA,

CLC,
RTL,
TBD,
TXB,

CLI,
ATS,
TBS,
TXS,

CLM,
SEC,
TBX,
TXY,

ex.

PSI I I

: Mnemonic

CLC
Machine Code

1815

c

I I I I I I I I I I I I I
l

PSI I I I I I I I I I I I I I I I 0 I

ex.

x

A

: Mnemonic

TXA
(m=1,x=O)

The upper-byte
is not transferred

Machine Code

BA16

CLV,
SEI,
TBY,
TYA,

x

DEX,
SEM,
TOA,
TYB,

ex.

DEY,
STP,
TDB,
TYX,

INX,
TAD,
TSA,
WIT,

: Mnemonic

TXA

INY,
TAS,
TSB,
XAB

(m = 0, x = 1)

Al 0 0 0 0 0 0 0 0

NOP,
TAX,
TSX,

Machine Code
8A16

(Note) When the data length differ between the transfer-from and trans­

fer-to locations, data is transferred at the data length for the

transfer-to location. If, however, the index register is specified as

the transfer-to location and the x flag is set to 1, 0016 is sent as

the upper byte value.

9

ex.

Immediate

Mode Immediate addressing mode

Function A portion of the instruction is the actual data. Such instruction code may cross over
the bank boundary.

Instruction : ADC,
LDX,

: Mnemonic

ADC A,#OASH
(m= 1)

Memory

AND,
LDY,

,,... -

CLP,
MPV,

CMP,
ORA,

Machine Code

6916 A515

!--------- ~ 0000,.

CPX,
RLA,

CPY,
SBC,

ex.

DIV,
SEP

EOR, LDA,

: Mnemonic

ADC A, # OA587H

(m=O)

Memory

LDT,

Machine Code
6916 8716 A516

~ 0000,.

Program
bank-PG

8-bit width

A-A+C+ Op Code (6916) Program

Bank Register

Program
bank-PG Op Code (6916)

16-bit width { Operand (8716) Program

ex.

lAs,.1 ~ Operand (AS16)

8-bit width

t---- - -- --
.......

: Mnemonic

LOX #OASH
. (x =1)

-

Memory - -,

t----- - -----1

Op Code (A216)

x.._ I As, 0 I~ Operand (AS16)

1-------i

-

1 (}

~ FFFF16

A-A+ c +I As,. i 81,.1- ,___O_p_e-ra_n_d_(A-5-,.-)--1 Bank Register

~ FFFF16

Machine Code

A21 6 A516

~ 0000,.

Program
Bank Register

~ FFFF16

Program
bank-PG

ex.

16-bit width

x-IAs,0 ! 87,. 1-{

("'"

: Mnemonic

LOX #OA587H
(x = 0)

Memory - -
1------ --

Op Code (A216)

Operand (8716)

Operand (A516)

t--=._--- ---1

Machine Code

A215 8716 A515

~ 0000,.

Program

Bank Register

~ FFFF16

Program
bank-PG

ex.

ex.

Accumulator

Mode Accumulator addressing mode

Function The contents of accumulator are the actual data.

Instruction : ASL, DEC, INC, LSR, AOL, ROA

: Mnemonic
AOL A
(m = 1)

Lffi"
Carry flag

: Mnemonic
AOL A
(m=O)

Carry flag

I

Machine Code

2A1e

I
~~

Accumulator A

Machine Code

2A16

Accumulator A

11

ex.

Direct

Mode Direct addressing mode

Function The contents of the bank-0 memory location specified by the result of adding the sec­
ond byte of the instruction to the contents of the direct page register become the ac­
tual data. If, however, addition of the instruction's second byte to the direct page
register's contents result in a value that exceeds the bank-0 range, the specified lo­
cation will be in bank-1.

Instruction : ADC,
LOA,
STA,

: Mnemonic

ADC A,02H
(m = 1)

Memory

AND,
LDM,
STX,

ASL,
LOX,
STY

CMP,
LOY,

Machine Code

SS15 0215

0000,.

CPX,
LSR,

CPY,
MPV,

ex.

DEC,
ORA,

DIV,
ROL,

EOR,
ROR,

: Mnemonic

ADC A,02H
(m=O)

Memory

INC,
SBC,

Machine Code

ss,. 02,.

0000,.

A-A+C+ Bank-0 I DATAH: DATAc I.,_{
Bank-0

123S,.-Et----, DAT Ac

ex.

I DATA I - 1----D_A_TA __ ---I 123s, • ...r---~

12

FFFF16
t---------1

Direct Page

Op Code (S516) Register

1---0_p_e_ra_n_d_(o_2_10_)---1 + ~ = 123S16

: Mnemonic

LOX 02H
(x = 1)

Memory

DATA

1---------1

['

Op Code (AS16)

Operand (02,.)

_,,.

Machine Code

AS16 0216

0000,.

Bank-0

123S,. ------;

FFFF16

Direct Page
Register

+ ~=123S,.

ex.

DATAH

t-- ---- -

Op Code (6516)

Operand (0216)

-...-

: Mnemonic

LOX 02H
(x = 0)

-

Memory

_,,,

x-1 DATAH: DATAc 1~{ DAT Ac

DAT Ac

!--------;

Op Code (AS16)

Operand (0216)

....

FFFF16

Direct Page
Register

+ ~=123S,.

Machine Code

AS16 0216

0000,.

Bank-0
123S,.<8-----~

FFFF16

Direct Page
Register

+ ~=1236,.

ex.

Direct Bit

Mode Direct bit addressing mode

Function Specifies the bank-0 memory location by the value obtained by adding the instruc­
tion's second byte to the direct page register's contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
of the instruction (third byte only when the m flag is set to 1). If, however, addition
of the instruction's second byte to the direct page register's contents result in a value
that exceeds the bank-0 range, the specified location will be in bank-1.

Instruction CLB, SEB

: Mnemonic

CLB #SAH, 04H

(m= 1)

Memory

?J "Jt'l? l"J' l"
!--------

Op Code (1416)

Machine Code
1416 0416 SA16

001238,.

Direct Page
Register

Bank-0

Operand (0416) + ~=1238,.
Operand (5A16)

...... -

ex. : Mnemonic Machine Code
CLB #SAA5H, 04H
(m=O)

1416 0416 AS16 SA16

Memory

001238,.
Bank-0

Direct Page

Op Code (14,.) Register

Operand (0416) + ~= 123816

Operand (A516)

Operand (5A16)

J

13

ex.

ex.

Direct Indexed X

Mode Direct indexed X addressing mode

Function The contents of the bank-0 memory location specified by the result of adding the
second byte of the instruction, the contents of the direct page register and the con­
tents of the index register X become the actual data. If, however, addition of the
instruction's second byte, the direct page register's contents and the index register
X's contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction : ADC,
LDY,

: Mnemonic
ADC A,1EH,X
(m = 1, x = 1)

Memory

DATA

t------ ---1

~

Op Code (7516)

Operand (1 E16)

.....

: Mnemonic

ADC A,1EH,X
(m = 1, x = 0)

Memory

DATA

1---------1

r
Op Code (7516)

AND,
LSR,

0000,.

ASL,
MPV,

CMP,
ORA,

Machine Code

7515 1E15

Bank-0
1338,.-Et---------.

FFFF16

Direct Page Index
Register Register X

+I 1234,.1+~=1338,.

0000,.

Machine Code

751 6 1E1s

Bank-0
4338,6--------~

FFFF16

Direct Page Index
Register Register X

Operand (1E16) + [1234,. [+ I 30E&,. [= 4338,.

-

14

DEC,
ROL,

DIV,
ROR,

ex.

EOR,
SBC,

INC,
STA,

LDA,
STY

: Mnemonic
ADC A,1EH,X

(m = o, x = 1)

Memory
0000,.

LDM,

Machine Code

7516 1 E1s

Bank-0
1338,.<f.I-------~

A-A+C+

I DATAH i DATALI +-{ DAT AL

DATAH

ex.

1--------1 FFFF16

[:: ~
Direct Page Index

Op Code (7516) Register Register X

Operand (1E16) +11234,.1+~= 1338,.

.....

: Mnemonic
ADC A,1EH,X

(m =O, x= 0)

Memory

0000,.

Machine Code

751s 1E1s

Bank-0
4338, • ..,_ ____ __, DAT AL

DATAH

A-A+C+

I DATAH ; DATAL I - {

r--------1 FFFF16

* Direct Page Index
Op Code (7516) Register Register X

Operand (1E16) +[1234,. [+I 3oes,. [,,. 433816

-

ex.

ex.

: Mnemonic

LOY 1EH,X
(x = 1)

Memory

DATA

1-------j

~

Op Code (B416)

Operand (1E16)

: Mnemonic
LOY 1EH,X
(x =O)

-/

Direct Indexed X

Machine Code

8416 1 E16

0000,.

Bank-0
1338,.~+---------,

FFFF16

Direct Page Index
Register Register X

+ 1123410 I+~ = 133816

Machine Code
8416 1 E, 6

Memory

0000,.

Bank-0

v----1 DATA" [DATA, I~{ DATA,

DATA"

4338,. ~-+--------~

FFFF16
I---- ---

:r
Direct Page Index

Op Code (B41s) Register Register X

Operand (1E16) + ~+I 30E6,. I = 433815
..... /

15

ex.

ex.

Direct Indexed Y

Mode Direct indexed Y addressing mode

Function The contents of the bank-0 memory location specified by the result of adding the sec­
ond byte of the instruction, the contents of the direct page register and the contents
of the index register Y become the actual data. If, however, addition of the instruc­
tion's second byte, the direct page register's contents and the index register Y's
contents results in a value that exceeds the bank-0 or bank-1 range, the specified
location will be in bank-1 or bank-2.

Instruction : LDX, STX

: Mnemonic

LOX 02H,Y
(x = 1)

Memory

DATA

:::
Op Code (8616)

Operand (0216)

......

: Mnemonic

LOX 02H,Y
(x=O)

_....-

Machine Code

es,. 02,.

0000,.

Bank-0

131 c,. <Eo-t--------

FFFF16

Direct Page Index
Register Register Y

+[!234,. I+~ = 131C,.

Machine Code

es,. 02,.

Memory

0000,.

X-<-1 DATA" ! DATA, I~ { DATA,

DATA"

131c10 ~-----~
Bank-0

f------- FFFF16

r:
Direct Page Index

Op Code (8616) Register Register Y

Operand (0216) + \ 123410 \+I ooes,. [= 131c10

......

16

ex.

Direct Indirect

Mode Direct indirect addressing mode

Function The value obtained by adding the instruction's second byte to the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0, and the contents
of these bytes in memory bank-OT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction's second byte
and the direct page register's contents exceeds the bank-0 range, the specified
location will be in bank-1 .

Instruction : ADC, AND, CMP, DIV, EOR, LOA, MPV, ORA, SBC, STA

: Mnemonic Machine Code ex. : Mnemonic Machine Code
ADC A,(1EH) 7216 1 E, 6 ADC A,(1EH) 7216 1E16

(m= 1) (m=O)

Memory Memory

Bank-0
~-__.,,.. 1252,.

1253,.

DATA I (01 16)

DATAII (1216)

---;...1252,.

1253,.

DATA I (01,.J

DATAII (12,.)
}

Bank-0

--+----

Direct Page
Register

I 1234,. 1 +

!----------]

~
t--------1

Op Code (7216)

Operand (1 E16)

t---- - - ---j

Direct Page
Register

~+

A~A+C+

I DAT AH : DATA, I <C- {

t-------1

t----------j

Op Code (7216)

Operand (1 E16)

I- - ____ __,

~
1---------j

DATA,

DAT AH

-

Data Bank
Register

~1201,.

17

ex.

Di.rect Indexed X Indirect

Mode Direct indexed X indirect addressing mode

Function The value obtained by adding the instruction's second byte, the contents of the direct
page register and the contents of the index register X specifies 2 adjacent bytes in
memory bank-0, and the contents of these bytes in memory bank-0, and the contents
of these bytes in memory bank-OT (DT is contents of data bank register) become the
actual data. If, however, the value obtained by adding the instruction's second byte,
the direct page register's contents and the index register X's contents exceeds the
bank-0 or bank-1 range, the specified location will be in bank-1 or bank-2.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPV, ORA, SBC, STA

: Mnemonic
ADC A, (1EH, X)

(m = 1, x = 1)

Machine Code

611s 1E1s

Memory

DATAI (0016)

DATA!I (14,.)

t--------'

}:
t----- - - -

Op Code (61 16)

Operand (1 E16)

r--------
~

0000,.

Bank-0

1338,.-E'-f------~

FFFF16

Direct Page Index
Register Register X

+I 1234,. I+ I i Es,. I =1338,.

Data Bank

Register

Program

bank-PG

A-A+c+~~ DATA ~1400,.

I-- - - - - --1
....-

18

ex. : Mnemonic
ADC A, (1EH, X)

(m = o, x = 1)

{

Direct Indexed X Indirect

Machine Code

61 16 1E16

Memory

DATA I (0016)

DATAII (14,.)

I-------

I-------

Op Code (61 16)

Operand (1E16)

1--------1

0000,.

Bank-0

1338,.

FFFF16

Direct Page Index

Register Register X

+~+~]=1338,,

I- - - - - ·- --1 Data Bank

Register
j ,__ __ D_A_T_A_L---; ~140010

A+- A+ c +I DATAH : DATAL I ~ l DATAH

ex. : Mnemonic
ADC A, (1EH, X)

(m=1,x=O)

{

A~A+c+I DATA I~

Machine Code

61 16 1E16

Memory
- _....-1

1----------1

DATA I (0010)

DATAII (1415)

1---------1

1---------1

Op Code (61 16)

Operand (1 E16)

1-------- -

10000,.

Bank-1
10338,. <E--+-------,

1FFFF16

Direct Page Index
Register Register X

+~+I FOE&,. I =10338,.

r: :::
1------ - --

DATA

-

Data Bank
Register

@]1400,.

Program

bank-PG

Program
bank-PG

19

ex. : Mnemonic
ADC A; (1EH, X)
(m=O,x=O)

{

A~ A+ C +I DATA" DATAL, _,,_ {

20

Direct Indexed X Indirect

....

Machine Code
61 16 1 E16

Memory - -t---------;

DATA I (0010)

DATA[[(14,.)

t---------1

j::
t-------1

Op Code (61 16)

Operand (1E16)

r---------1

:=:- r:
r--------j

DATAL

DAT AH

-

10000,. t
Bank-1

10338,.

1FFFF16

Direct Page Index
Register Register X

+ I 1234,. I + I FOES,. I =10338,.

Data Bank
Register

CE!] 1400,.

Program
bank-PG

ex.

Direct Indirect Indexed Y

Mode Direct indirect indexed Y addressing mode

Function The value obtained by adding the instruction's second byte and the contents of the
direct page register specifies 2 adjacent bytes in memory bank-0.
The value obtained by adding the contents of these bytes and the contents of the
index register Y specifies address of the actual data in memory bank-OT (OT is
contents of data bank register). If, however, the value obtained by adding the con­
tents of the instruction's second byte and the direct page register exceeds the bank-
0 range, the specified location will be in bank-1. Also, if addition of the contents of
memory and index register Y generate a carry, the bank number will be 1 larger than
the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV, EOR, LOA, MPV, ORA, SBC, STA

: Mnemonic
ADC A, (1EH) ,Y

(m = 1, x = 1)

Machine Code

71 16 1E16

1252,.

1253,.

I Direct Page L Register

] 1234,. I +

Memory

DATA I (01,.) l
DATA[] (1216)

J

1------ --

f ;::
1--------1

Op Code (71 16)

Operand (1 E16)

t-------1

1---------1

Bank-0

Index
Register Y

+~=12E716

Data Bank
Register

A-A+c+j DATA I~ DATA ~ 12E716

.....-

21

ex. : Mnemonic
ADC A, (1EH), Y
(m =O, x= 1)

~--~1252,.

1253,.

Direct Page
Register

~+

Direct Indirect Indexed Y

Machine Code

711 6 1E15

Memory

DATA I (01 16)

DATAII (12,.J

Index
Register Y t Bank-0

} +~=12E716

1----- - --I

t---------j

Op Code (71 16)

Operand (1E16)

1---------j

!-------~

Data Bank
Register

A-A+c+I DATA": DATA,,.._ { ,__ __ D_AT_A_,_--<
. . . DAT AH

~ 12E716

ex.

22

...... - _,.,,,.

: Mnemonic
ADC A, (1EH), Y
(m = 1, x = O)

~---~ 1252,.

1253,.

Direct Page
Register

I 1234,. I +

A-A+c+j DATA j..,__

Machine Code
71 16 1E16

Memory

DATA I (01 16)

DATAII (1216)

t--------1

j::
t--------j

Op Code (71 16)

Operand (1E16)

t--------1

~
1-------~

DATA

....... ..,...,

}
~f Bank-0 Index

Register Y

+[FOE616 [=102E716

Data Bank
Register

~+1,02e116

ex. : Mnemonic
ADC A, (1EH), Y
(m = 0, x =O)

~----.,.. 1252,

1253,

Direct Page
Register

~+

•
•

A~A+c+I DATA" i DATA, 1~ {

Direct Indirect Indexed Y

Machine Code

71 16 1 E1s

Memory

DATA I (01 16)

DATAII (12,.)

t-------

t-------

Op Code (71 16)

Operand (1E16)

I-------

1---------

~

DATA,

DAT AH

....-

Index

Register Y iBank-0

} +I FOE6,. I =102E7,.

Data Bank
Register

~+1, 02E716

23

ex.

Mode

Function

Direct Indirect Long

Direct indirect long addressing mode

The value obtained by adding the instruction's second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the contents
of these bytes specify the address of the memory location that contains the actual
data. If, however, the value obtained by adding the contents of the instruction's
second byte and the direct page register exceeds the bank-0 range, the specified
location will be in bank-1. The 3 adjacent bytes memory location may be spread over
two different banks.

Instruction: ADC, AND, CMP, DIV, EOR, LOA, MPV, ORA, SBC, STA

: Mnemonic
ADCL A, (1EH)
(m=1)

Memory

Machine Code
6716 1 E1s

ex. : Mnemonic
ADCL A, (1EH)
(m=O)

Memory

~--~125210

1253,.

1254,.

DATA I (EF16)

DATA II (01 16)

DATA Ill (1216)

Bank-0 l --+--------,

~---- 1252,.
1253,.

1254,.

DATA I (EF16)

DATAII (01 16)

DATAllI(1216)

24

Direct Page
Register

Q™;l+

1------~

r
1-------

Op Code (6716)

Operand (1 E16)

1-------

Direct Page
Register

~+

A~A+c+j DATA"! DATAL I-{

1--------1

1-------1

Op Code(6716)

Operand(1E16)

t-------

~
t--------

DAT AL

DATAH _

Machine Code

6716 1E1s

l
Bank-0

1201EF16

ex.

Direct Indirect Long Indexed Y

Mode Direct indirect long indexed Y addressing mode

Function The value obtained by adding the instruction's second byte and the contents of the
direct page register specifies 3 adjacent bytes in memory bank-0, and the value
obtained by adding the contents of these bytes and the contents of the index register
Y specifies the address of the memory location where the actual data is stored. If,
however, the value obtained by adding the contents of the instruction's second byte
and the direct page register exceeds the bank-0 range, the specified location will be
in bank-1. The 3 adjacent bytes memory location may be spread over two differ­
ent banks.

Instruction: ADC, AND, CMP, DIV, EOR, LDA, MPY, ORA, SBC, STA

: Mnemonic

ADCL A,(1EH), Y
(m=1, x=1)

Machine Code
7716 1E16

~--~125210

1253,.

1254,.

Direct Page
Register

~+

Memory

DATA l (EF, 6)

DATA II (01 16)

DATAIII (1216)

t-------

;::
1-------

Op Code(7716)

Operand (1 E16)

1-------

1-------

}

Bank-0

Index
Register Y

+[=:rn;J =120210,.

A-A+C+~~ DATA

..... - ~

25

ex.

Direct Indirect Long Indexed Y

: Mnemonic
ADCL A,(1EH), Y

(m=O, x=1)

.-----3"-1252,.

1253,.

1254,.

Direct Page
Register

1 1234,. 1 +

Machine Code

n 1s 1E1s

Memory

DATA l (EF16)

DATAI! (01 16)

DATAill(1216)
)

t-------

;::
I-------

Op Code(7716)

Operand(1E16)

t--- -- _ _,

r. ;
1-------1

Bank-0

Index

Register Y

+ I 21,.1 =120210,.

DAT AL

DATAH
A-A+c+I DATAH l DATAL 1-{

ex.

--
: Mnemonic

ADCL A,(1EH), Y
(m=1, x=O)

Machine Code
7716 1E1s

.-----~ 1252,.

1253,.

1254,.

Direct Page
Register

1234,. I +

Memory

DATA l (EF16)

DATAI! (01 16)

DATAill(1216) l
t----- _ __,

~
t---'------1

Op Code(n,0)

Operand(1E16)

t-------

1-------

Bank-0
Index

Register Y

+I E521,. I =12E110,.

A-A+c+I DATA 1- DATA 12E71016 .,.,.._ ____ _,

26

Direct Indirect Long Indexed Y

ex. : Mnemonic
ADCL A,(1EH), Y
(m=O, x=O)

------1252,.

1253,.

1254,.

Direct Page

Register

~+

A-A+c+I DATA" J DATA, 1-{

Machine Code
77,6 1E16

Memory

DATA I (EF16)

DATA!I (01 16)

DATAill(1216)

1----- --1

r:
1---------j

Op Code(7716)

Operand(1E16)

1----- --j

1-------1

DATA,

DATAH

_,.,.,,,.

Bank-0

Index

l
Register Y

+~ =12E71016

12E710,6

27

ex.

ex.

Absolute

Mode Absolute addressing mode

Function The contents of the memory locations specified by the instruction's second and third
bytes and the contents of the data bank register are the actual data. Note that, in
the cases of the JMP and JSR instructions, the instructions' second and third byte
contents are transferred to the program counter.

Instruction : ADC,
JMP,
ROR,

AND,
JSR,
SBC,

ASL,
LOA,
STA,

CMP,
LDM,
~TX,

28

: Mnemonic
ADC A, OAD12H
(m=1)

Machine Code
SD16 1216 AD16

Memory

,,... _,,.,,
!----------

Op Code (6D16)

Operand (1216)

Operand (AD16)

t--------1

DATA

t--------1

..... _...J

: Mnemonic
LOX OAC14H
(x=1)

Memory ,.., - ,.,,..
1-------

Op Code (AE16)

Operand (1416)

Operand (AC16) }
1--------

Data Bank
Register

~AD1216

Machine Code

AE1s 1415 Ac,.

Data Bank
Register

DATA @J AC1416

I-------

- /

CPX,
LOX,
STY

CPY,
LOY,

ex.

DEC,
LSR,

DIV,
MPY,

EOR,
ORA,

: Mnemonic

ADC A, OAD12H
(m=O)

Memory

,,- -
Op Code (6D16)

Operand (1216)

Operand (AD16)

INC,
ROL,

Machine Code
SD16 1216 AD16

t----- -- Data Bank
Register

A-A+c+

I DATA" i DATA, I~ { DATA,

DATA"

~AD1216

ex.

1--------

...... _,,.,,

: Mnemonic

LOX OAC14H
(x=O)

Memory

,,,.... - _.....,
1-------1

Op Code (AE16)

Operand (1416)

Operand (AC16)

Machine Code
AE16 1416 AC16

Data Bank
Register

x-1 DATA": DATA, 1~ { t----~-:~-:-~---1 @J AC1416
J

ex.

Address to be
executed next

: Mnemonic

JMP OAC14H

Memory _
1-------

Op Code (4C16)

Operand (1416)

Operand (AC,.)

f--------"

--""

Absolute

}

Machine Code

4C16 1416 AC16

~oooo,.

Program
Bank Register

~AC1416

~ FFFF,6

Program

bank-PG

Program bank register contents are not affected.

29

ex.

Absolute Bit

Mode Absolute bit addressing mode

Function The contents of the instruction's second and third bytes and the contents of the data
bank register specify the memory locations, and data for multiple bit positions in the
memory locations are specified by a bit pattern specified in the instruction's fourth and
fifth bytes (the fourth byte only if the m flag is set to 1).

Instruction : CLB, SEB

30

: Mnemonic

CLB :ti SAH, 1234H
(m=1)

Memory

Op Code (1C16)

Machine Code

1C16 3416 1216 5A16

Operand (3416) }
1------"'--.I

Operand (1216)

Operand (5A16)

Data Bank
Register

~ 1234,.

Data Bank
Register

@:) 1234,.

ex. : Mnemonic

CLB #SAASH, 1234H
(m=O)

Memory

Op Code (1C16)

Machine Code

1C16 3416 1216 A51e 5A16

Operand (3416) }
~

Operand (1216)

Operand (A516)

Operand (5A16)

Data Bank
Register

~1234,.

Data Bank
Register

~ 1234,.

ex.

Absolute Indexed X

Mode Absolute indexed X addressing mode

Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction's second and third bytes with the
contents of the index register X and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction's
second and third bytes with the contents of the index register X generates a carry,
the bank number will be 1 larger than the contents of the data bank register.

Instruction : ADC,
LOY,

AND,
LSR,

ASL,
MPV,

CMP,
ORA,

: Mnemonic

ADC A, OAD12H, X

(m=1,x=1)

Memory

,.....,

1--------

Op Code (7D16)

Operand (1216)

Operand (AD16)

1-- -- - - ---j

r
t--------1

DATA

t--------1

1.-'" -

Machine Code

7D16 1216 AD16

Index
Register X

} + I ! EE,.1=AE00,.

Data Bank
Register

@l'JAE0016

DEC,
ROL,

DIV,
ROR,

ex.

EOR,
SBC,

INC,
STA

: Mnemonic

LOA, LDM,

ADC A, OAD12H, X

(m=O, x=1)

Machine Code
7D16 1216 AD16

Memory

,.- -t-------

Op Code (7D16)

Operand (1216)

Operand (AD16)

Index

I Register X

f + ~J =AE0016 •

t------;--1

1-- - -- - - ---i Data Bank

A - A+ C + Register

I DATA,, i DATA, I~ ~ ~--D_A_TA_, __ -l ~ AEOO,.
l DAT AH

31

ex. : Mnemonic

ADC A, OAD12H, X

(m=1, x=O)

Memory -..- -t--------

Op Code (7D16)

Operand (1216)

Operand (AD,6)

1-------

A-A+c+

ex.

I DAT A I ""--- ,__ __ D_A_T_A __ __,

: Mnemonic

LOY OBC12H, X
(x=1)

Memory

~ -
t---------1

Op Code (BC, 6)

Absolute Indexed X

Machine Code

7016 121s AD1s

Index
Register X

+~=BEoo,0

Data Bank

Register

ex. : Mnemonic
ADC A, OAD12H, X

(m=O, x=O)

Memory

,,,...
t--------1

Op Code (7D, 6)

Operand (1216)

Operand (AD16)

t-------1

I- - -------1

DAT AL

DATAH

[E!j BE0016

A-A+c+IDATAH(DATALI~{

Machine Code
BC16 12, 6 BC16

Index

Rgister X

ex.

-

: Mnemonic

LOY OBC12H, X
(x=O)

Memory

...-'

,... _,.,,....
r---~---

Operand (1216)

Operand (BC1~~ } + I i EE,. I =Booo10

Op Code (BC16)

Operand (1216)

Operand (BC16)

t-------1

t
1-------

DATA

..... -

32

Data Bank

Register

@:] Booo10

1-------

~

1-------1

DATA,

DATAH
v~I DATAH i DATA, I~ {

--

Machine Code

7016 1216 AD16

Index
Register X

} +~=BE00,6

Data Bank

Register

@!) BE00,6

Machine Code
BC, 6 1216 BC,6

Index
Register X

+~=cooo,.

Data Bank
Register

@!] cooo,.

ex.

Absolute Indexed Y

Mode Absolute indexed Y addressing mode

Function The contents of the memory locations specified by a value resulting from addition of
a 16-bit numeric value expressed by the instruction's second and third bytes with the
contents of the index register Y and the contents of the data bank register are the
actual data. If, however, addition of the numeric value expressed by the instruction's
second and third bytes with the contents of the index register Y generates a carry,
the bank number will be 1 larger than the contents of the data bank register.

Instruction: ADC, AND, CMP, DIV,
STA

EOR, LOA, LOX, MPV, ORA, SBC,

: Mnemonic
ADC A,OAD12H, Y
(m=1, x=1)

Memory

Machine Code

7916 1216 AD16

Index
Op Code (79,.) Register y

Operand (1216) I j : j
o-----~-__, \ + : EE16 =AE0016

1---0_p_er_an_d_(_A_D-'16_)--l j

ex. : Mnemonic
ADC A, OAD12H, Y
(m=1, x=O)

Memory

,,.. -
t-------

Op Code (7916)

Operand (1216)

Operand (AD16)

1-------1

Machine Code
7916 1216 AD16

Index

Register Y l +I 10EE,. I =BEOO,.

A-A+c+

Data Bank
Register

ex.

~ - ,__ __ D_A_TA __ __, @!] AE0016

: Mnemonic
ADC A,OAD12H, Y
(m=O, x=1)

Memory
,,..... -

Machine Code
7916 1216 AD16

......,

f--- - ----1

Op Code (7916)

ex.

Operand (1216)

Operand (AD16)

Index

Register Y

} +I : EE,. I =AEOO,.

1--------1

~

1-------1
A-A+c+

I DATA": DATA, I - DATA,

DATA"

v -

Da1a Bank

Register

@lJ AE0016 A-A+C+

DATA" : DATA, I -

: Mnemonic

ADC A, OAD12H, Y
(m=O, x=O)

Memory

r -
--------1

Op Code (7916)

Operand (1216)

Operand (AD16)

t-------

1--------1

DATA,

DATA"

-v -

Machine Code

7916 1216 AD16

Index

l Register Y

f +~EE,. I =BEoo,.

Data Bank

Register

[i>'fJ BE0016 ..;----

33

ex.

34

: Mnemonic

LOX OBC12H, Y
(x=1)

Memory - _....,
1---------j

Op Code (BE16)

Operand (1216)

Operand (BC16)

1--------

1---------j

DATA

1---------j

..... _

Absolute Indexed Y

Machine Code

BE16 1216 BC16

Index
Register Y

ex.

+I ! EE,. \ =BDOO,,

Data Bank

Register

~BD0010
X -I DATAH : DATAc I~ {

: Mnemonic
LOX OBC12H, Y
(x=O)

Memory

,.... -
1--------

Op Code (BE16)

Operand (1216)

Operand (BC16)

t-------

1--------~

DAT Ac

DAT AH

,,....

Machine Code
BE16 1216 BC,6

Index

Register Y

+~=CD0016

Data Bank

Register

@!._]cooo,.

ex.

ex.

Absolute Long

Mode Absolute long addressing mode

Function The contents of the memory locations specified by the instruction's second, third and
fourth bytes become the actual data. Note that, in the cases of the JMP and JSR
instructions, the instructions' second and third byte contents are transferred to the
program counter and the fourth byte contents are transferred to the program bank
register.

Instruction : ADC,
SBC,

AND,
STA

CMP, DIV, EOR, JMP, JSR, LDA, MPV, ORA,

: Mnemonic
ADC A, 123456H
(m=1)

Machine Code

6F16 56,6 341s 121s

Memory ,... --t----- --

Op Code (6F16)

Operand (5616)

Operand (3416)

Operand (1216) \
t--------

t---------j

ex. : Mnemonic
ADC A, 123456H
(m=O)

Machine Code

6F1a 561s 341s 121s

Memory

r-
t----------j

Op Code (6F16)

Operand (5616)

Operand (3416)

Operand (1216)
}-

t------

;::
1-------

DATA

....... -- DATA,

DAT AH
123456 {

16 A-A+c+I DATA": DATA,,.,__
123456,.

: Mnemonic
JMP 123456H

Machine Code
5C16 5616 341s 1216

Address to be

executed next.

Memory -,....
1--------j

Op Code (SC, 6)

Operand (5616)

Operand (3416)

Operand (1216)

r- _____ _,

t-------1

-

Program

Bank Register

@;]345&,.

Program bank register contents are replaced by
the third operand.

....

35

ex.

ex.

Absolute Long Indexed X

Mode Absolute long indexed X addressing mode

Function The contents of the memory location specified by adding the numeric value ex­
pressed by the instruction's second, third and fourth bytes with the contents of the
index register X are the actual data.

Instruction : ADC, AND, CMP, DIV, EOR, LDA, MPV, ORA, SBC, STA

36

: Mnemonic
ADC A, 123456H, X

(m=1, x=1)

Memory

Machine Code
7F16 5616 3416 1216

Op Code (7F16) Index

Operand (56,.) l Register X

t---O-'-p_e_ra_nd_(3_4cc:10_l --l + [~=12353716
Operand (1216)

t---------1

DATA

: Mnemonic

ADC A, 123456H,X
(m=O, x=1)

Memory
.....,

!---------

Op Code (7F16)

Operand (5616)

Operand (3416)

Operand (1216)

1-------

1-------

123537,.

Machine Code

7F16 5616 3416 1216

Index

+I EEE1,. I =132337,. l Register X

ex. : Mnemonic

ADC A, 123456H, X

(m=O, x=1)

Memory ,.....- -
1--- - ---1

Machine Code
7F16 5616 3416 1216

Op Code (7F16) Index

Operand (56,.)) Register X

,___o_:_p_er_a_nd_(3_4,-'-o_) __. + j [E1,. j =12353716

1---0-'-p_er_a_nd_(1_21:::.o_l --l

1--------i

1-- - - - ----"

A~A+C+

I DATA" : DATA, l+- {1----~A-A~-:-"~---I 123537,.

- _..)

ex. : Mnemonic
ADC A, 123456H, X

(m=O, x=O)

Memory _ __..,.

!--------__;

Op Code (7F16)

Operand (5616)

Operand (3416)

Operand (1216)

1--------

1---------

Machine Code
7F16 5616 3416 1216

Index

+I EEE1,. I =132337,. l Register X

DATA 132337,,

- _..,....
I DATA" i DATA, I - {

A~A+c+

DATA,

DATA"

132337,. -E'--___J

i.-- - __.)

ex.

Absolute Indirect

Mode Absolute indirect addressing mode

Function The instruction's second and third bytes specify 2 adjacent bytes in memory, and
the contents of these bytes specify the address within the same program bank to
which a jump is to be made.

Instruction: JMP

: Mnemonic

JMP(1400H)

Memory ,....- _.....,
t--------j

Op Code (6C16)

Operand (0016)

Operand (1416)

DATA I (FF16)

DATA II (1E 16)

Machine Code

6C16 0016 14,6

~ 1400,. }

Bank Register

Program
bank-PG

Address to be
executed next

Program ~I
~ 1EFF16

t----------j -i---

37

ex.

Absolute Indirect Long

Mode Absolute indirect long addressing mode

Function The instruction's second and third bytes specify 3 adjacent bytes in memory, and the
contents of these bytes specify the address to which a jump is to be made.

Instruction: JMP

: Mnemonic
JMPL(1234H)

Machine Code
DC, 6 34, 6 1216

Memory - -
r-------1

Op Code (DC16)

-{ Operand (3416)

Operand (1216)

c___,.. DATA I (1216)

Address to

executed n

be

ext.

DATA II (8416)

DATA ill (A1 16)

1-------

~
!-------

-.... _

Program

Bank Register

1~123416

j

Program

Bank Register

~8412,.

DATA ill is loaded in the program bank register.

38

-

ex.

Absolute Indexed X Indirect

Mode Absolute indexed X indirect addressing mode

Function The value obtained by adding the instruction's second and third bytes and the con­
tents of the index register X specifies 2 adjacent bytes in memory, and the contents
of these bytes specify the address to which a jump is to be made.

Instruction: JMP, JSR

: Mnemonic
JMP(1234H, X)
(x=1)

- Memory -

Machine Code
7C16 3416 1216

.....,

1--------1

Index

Register X Op Code (7C16)

246,.= I : 12,.1 + { Operand (3416)

Operand (1216)

DATA I (1216)

DATA Il (BC16)

Address to be

executed next

1---------1

-

1246,. }

Program
Bank Register

§Jec1210

Program
bank-PG

39

ex.

ex.

Stack

Mode Stack addressing mode

Function Register contents are saved to or restored from the memory location specified by the
stack pointer. The stack pointer is set in bank-0.

Instruction : PEA,
PHY,

S-1

s

S-2

S-1

s

40

: Mnemonic

PHA
(m=1)

Memory

AL

!-------

_.,,..

: Mnemonic
PHO

Memory

DPRL

DPRH

1-------j

- _,.,,;

PEI,
PLA,

PER,
PLB,

PHA,
PLO,

Machine Code

4816

Stack Pointer

0015~

Bank-0

Machine Code

0815

Stack Pointer

0015~

Bank-0

PHB,
PLP,

PHO,
PLT,

ex.

S-2

S-1

s

PHG,
PLX,

PHP,
PLY,

: Mnemonic
PHA
(m=O)

Memory

AL

AH

t-----­

_.,,..

PHT,
PSH,

PHX,
PUL

Machine Code

4815

Stack Pointer

oo .. [ill:J

Bank-0

ex. : Mnemonic
PEA j:j: 1234H

Machine Code
F416 3416 1216

Memory

S-2

3416

12,.

Op Code (F416)

Operand (3416)

Operand (1216)

Stack Pointer

oo,.~

Bank-0

ex.

S-2

S-1

s

~

~

: Mnemonic
PEI # 12H

Memory

DATA I
DATA II

DATA I

DATA II

1-------

~
!--------

Op Code (0416)

Operand (1216)

I- --- - --'

Stack

Machine Code

04,. 12,.

341216 -----+-~

Stack Pointer

001 6~

Direct Page

Register

Bank-0

+~=3412,.

S-2

S-1

s

ex. : Mnemonic Machine Code

PER# 1234H 62,. 34,. 12,.

Memory

AC16

68,.

Stack Pointer

oo,.~

Program

Bank Register

Bank-0

Op Code (6216) ~ 567616

Operand (3416) }
>---------<

Operand (1216) + I 56 i 78,. I = (6s1 r Ac1
...._ _,, \ /16

Program Counter -

Program
bank-PG

41

ex.

ex.

Relative

Mode Relative addressing mode

Function Branching occurs to the address specified by the value resulting from addition of the
contents of the program counter and the instruction's second byte. In the case of a
long branch by the BRA instruction, a 15-bit signed numeric value formed by the con­
tents of the instruction's second and third bytes is added to the. program counter con­
tents. If the addition generates a carry or borrow, 1 is added to or subtracted from
the program bank register.

Instruction : BCC, BCS. BEQ, BMI, BNE, BPL, BRA, BVC, BVS

42

: Mnemonic
BCC *-12

Machine Code
9015 F41s

Branches to the address *-12 if the carry flag (C)

has been cleared.

Address to be

executed next.

: Mnemonic
BRA 1234H

"'"""'' (executed next

Memory

Op Code (9016)

Operarid (F416)
Jump

*

Machine Code
8216 3416 121s

Memory

- --1--------

Op Code (8216)

Operand (3416)

Operand (1216)

t--------

t----- ---

Program
Bank Register

~ FF1216

~1146,.

Advances to the address * if the carry flag (C)
has been set

Address to be
executed next.

Program

bank-PG

Program

bank-PG+1

Memory

-

Op Code (9016)

Operand (F416)

*
........ -

ex.

Mode

Function

Direct Bit Relative

Direct bit relative addressing mode

Specifies the bank-0 memory location by the value obtained by adding the instruc­
tion's second byte to the direct page register's contents, and specifies the positions
of multiple bits in the memory location by the bit pattern in the third and fourth bytes
(the third byte only if the m flag is set to 1). Then, if the specified bits all satisfy the
branching conditions, the instruction's fifth byte (or the fourth byte if the m flag is set
to 1) is added to the program counter as a signed value, generating the branching
destination address. If, however, addition of the instruction's second byte to the direct
page register's contents result in a value that exceeds the bank-0 range, the specified
location will be in bank-1.

Instruction : BBC, BBS

: Mnemonic Machine Code

BBS # 5AH, 04H, OF6H 2416 0416 5A16 F616

(m=1)

Memory

001238,,

Program

Address to be
Bank Register

executed next '11 16 FFFD, 6

Direct Page

Jump Op Code (2416) Register

Operand (0416) + 11234,.1=1238,.
Operand (SA16) Program
Operand (F616) Bank Register

~0001,.

(Branch)

Memory

Bank-0 ol ol1[1l1J 0J 1J 1

1---------1

1--------

Op Code (2416)

Operand (0416)

Operand (SA, 6)

Operand (F616)

Address to be

executed next

-
I Not branch)

001238,.

Direct Page

Register

Bank-0

+ 11234,.1=1238,.

Program

Bank Register

~ 0001,.

43

ex.

Direct Bit Relative

: Mnemonic Machine Code

BBS :It SAASH, 04H, OFSH
(m=O)

24,. 04,. As,. SA,. Fs,.

Memory

00123810

Program

Address to be
Bank Register

executed next. ~ FFFE16

Direct Page

Jump
Op Code (2416) Register

Operand (0416) + j 123416 j= 123816

Operand (AS16)

Operand (SA16) Program
Operand (F616) Bank Register Address to be

~ 000816 executed next.

(Branch)

44

Memory

0J1l1l oTol 111] 1

OJ:1Tol1T1lo11]1

I----~--

1--------1

Op Code (2416)

Operand (0416)

Operand (AS16)

Operand (SA,6)

Operand (FS, 6)

......
(Not branch)

001238,.

Direct Page
Register

+ 11234,.1=1238,.

Program

Bank Register

~000816

Bank-0

Absolute Bit Relative

Mode Absolute bit relative addressing mode

Function The instruction's second and third bytes and the contents of the data bank register
specify the memory location, and data for the memory location's multiple bits is
specified by a bit pattern in the instruction's fourth and fifth bytes (the fourth byte only
if the m flag is set to 1). Then, if the specified bits all satisfy the branching conditions,
the instruction's sixth byte (or the fifth byte if the m flag is set to 1) is added to the
program counter as a signed value, generating the branching destination address.

Instruction : BBC, BBS

ex. : Mnemonic Machine Code

BBS # 5AH, 1234H, OF6H 2C16 3416 121s 5A16 F615

(m=1)

Memo~ Memo~

Address to be

executed next

Jump

Pro-gram

Bank Register
1----------l ~ FFFD, 6

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (SA16) Program

Operand (f616) Bank Register

~0007,.

Data Bank

Register

@!.J 1234,.

(Branch)

......
1-------

r--------1

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand I SA16)

Operand (F616)

Address to be
executed next.

t----------1

r-------

010111111101110

......
(Not branch)

Program
Bank Register

~0007,.

Data Bank

Register

@!]1234,.

45

ex. : Mnemonic
BBS lt5AA5H, 1234H, OF6H
(m=O)

Memory

Address to be
executed next.

Op Code (2C16)

Jump Operand (3416)

Operand (1216)

Operand (AS16)

Operand (SA16)

Operand (F616)

(Branch)

46

Absolute Bit Relative

Machine Code

2C1s 3415 1215 A51s 5A15 F616

Memory

-I-------
Program

Bank Register

~FFFD16
1-------

Op Code (2C16)

Operand (3416)

Operand (1216)

Operand (AS16)

Program
Bank Register Address to be

Operand (SA16)

Operand (F616)

§;_]0001,. executed next. I-

1-------

1--------
Data Bank
Register

~ 1234,. oJ oEFI Of iJ oJ 1

1J1JoJ1_EI1J1Jo

-
(Not branch)

Program

Bank Register

~0001,.

Data Bank

Register

~1234,.

ex.

Stack Pointer Relative

Mode Stack pointer relative addressing mode

Function The contents of a bank-0 memory location specified by the value resulting from ad­
dition of the instruction's second byte and the contents of the stack pointer become
the actual data. If, however, the value obtained by adding the contents of the instruc­
tion's second byte and the stack pointer's contents exceeds the bank-0 range, the
specified location will be in bank-1.

Instruction : ADC, AND, CMP, DIV, EOR, LOA, MPV, ORA, SBC, STA

: Mnemonic
ADC A, 02H, S
(m=1)

Memory

DATA

Machine Code

6316 02,. -

Bank-0

1236,.

1--------
}

1-------

Op Code (6318) Stack Pointer

Operand (0218) +I 1234i:J=1236,.

f-------

-

ex.

A-A+C+

: Mnemonic
ADC A, 02H, S
(m=O)

Memory

I DATAH i DATAL I ..,_ { DATA,

DATA"

1--------
~ ~
1-------

Op Code (6318)

Operand (0218)

f-------

... -

Machine Code

63,. 02,.

Bank-0

1236,.

Stack Pointer

+~=1236,.

47

ex.

Mode

Function

Stack Pointer Relative Indirect Indexed Y

Stack pointer relative indirect indexed Y addressing mode

The value obtained by adding the instruction's second byte and the contents of the
stack pointer specifies 2 adjacent bytes in memory. The value obtained by adding the
contents of these bytes and the contents of the index register Y specifies address of
the actual data in memory bank-DT (DT is contents of data bank register). If addition
of the 2 bytes in memory with the contents of the index register Y generate a carry,
the bank number will be 1 larger than the contents of the data bank register.

instruction: ADC, AND, CMP, DIV, EOR, LDA, MPV, ORA, SBC, STA

: Mnemonic
ADC A,(1EH, S), Y
(m=1, x=1)

Memory

Machine Code

7315 1E16

1252,.
1253,.

DATA I (01 16) · } f :::k.-:,egister Y

t--------,.---1 +I : E&,. J = 12E7,.
t---D_A_T_A_Il_(1_2-'-'16_) --1

t-------1

1-------1

ex. : Mnemonic

1252,.
1253,.

ADC A,(1EH, S), Y
(m=O, x=1)

Memory

DATA I (01 16)

DATA]] (1216)

t-------1

t-------

Machine Code

7315 1E16

+
Bank-0

}
Index Register Y

+~=12E716

Stack Pointer Op Code (7316)

Stack Pointer

11234,. I+
Op Code (7316)

I 1234,. J + Operand (1E16)

t---------1

A-A+c+

I DATAH I DATAL I-{

48

Operand (1 E16)

I-------,

t-------

DATAL
DATAH

Data Bank

Register

[Q!J 12E716

ex.

ex.

Stack Pointer Relative Indirect Indexed Y

: Mnemonic

ADC A, (1EH, S), Y
(m=1,x=O)

Memory

Machine Code

731s 1 E1s

1252,.
1253,.

DATA l (01 16)

DATA II (1216) } f\ Bank-0

ndex Register Y

+~=102E716

t-------1

~
t------1

Stack Pointer

11234,. I +

Op Code (7316)

Operand (1E16)

t-------1

: Mnemonic
ADC A, (1EH, S), Y
(m=O, x=O)

Machine Code

7316 1 E16

Memory

125215

1253,.

DATA l (01 16)

DATA II (1216)

Index Register Y ~
Bank-0

} +I FOE6;J = 102E710

---------;

t--------1

Stack Pointer Op Code (7316)

I 1234" I + Operand (1 E16)

t--------j

1-----~--1

A-A+c+I DATA" i DATAL I~ {
I--

DATA,

DATAH

Data Bank
Register

[QI]+ 1, 02E716

-...... -

49

ex.

Mode

Function

Instruction

Block Transfer

Block transfer addressing mode

The instruction's second byte specifies the transfer-to data bank, and the contents of
the index register Y specify the transfer-to address within the data bank. The instruc­
tion's third byte specifies the transfer-from data bank, and the contents of the index
register X specify the address in the data bank where the data to be transferred is
stored. The contents of the accumulator A constitute the number of bytes to be trans­
ferred. Upon termination of transfer, the contents of the data bank register will
specify the transfer-to data bank. The MVN instruction is used for transfer to lower
address location. In this case, the contents of the index registers X and Y are incre­
mented each time data is transferred. The MVP instruction is used for transfer to
higher address location. In this case, the contents of the index registers X and Y are
decremented each time data is transferred. The block of data to be transferred may
cross over the bank boundary.

MVN, MVP

: Mnemonic Machine Code

541s E21s E51s

50

MVN OE2H, OESH

Before transfer

Memory

Op Code(5416)

Operand (E216)

Operand (E516)

DATA l
DATA Il
DATA Ill

Bank-E2rn

A~
x~
v I s61s,. 1

OTC]

E5123416

Bank-ES"

After transfer

Memory -1-------

DATA l

DATA Il
DATA Ill

1------1

1--------1

~~e~~~;~~~~
Operand (E516)

1-------j

~
1--------1

DATA l
DATA Il
DATA Ill

1--- ----1

- -

E2567816

A@ff;-l
XI 123715 I
v I s61s,. I
OT~

ex. : Mnemonic

MVP OESH, OE2H

Before transfer

Memory

DATA I
DATA II

DATA Ill

Op Code(4416)

Operand (ES16)

Operand (E216)

Block Transfer

Machine Code

4416 E516 E216

Bank-E2, 6

E2S67A16

A I 0003,. I
x I S67A,. I
y~

OT CJ

Bank-E516

After transfer

Memory

,... -1--------

DATA]

DATA II
DATA Ill

!--------

'
!--------

Op Code(4416)

Operand (ES16)

Operand (E216)

1---- - - --

t-------

DATA I

DATA II

DATA Ill

1--------

..... -

A/ FFFF16

x 1 5677,.

v/ 1233,,

DT~

ES123616

51

Instructions

4. Instructions
4.1 Instruction Set

The Series MEL PS 7700 microcomputers support a set of 103 instructions which are de­
scribed in this chapter. This section presents overviews of these instructions, and Sec. 4.2
presents the detailed description for each instruction.

4.1.1 Data Transfer Instructions

The data transfer instructions move data between data and registers, between a register and
the memory, between registers or between memory devices.

The following table summarizes the various data transfer instructions supported by the Series
MELPS 7700:

Category Instruction Description

Load LOA Loads the contents of memory into the accumulator.

LDM Loads an immediate value into the memory.

LDT Loads an immediate value into the data bank register.

LOX Loads the contents of memory into the index register X.

LOY Loads the contents of memory into the index register Y.

Store STA Stores the contents of the accumulator in the memory.

STX Stores the contents of the index register X in the memory.

STY Stores the contents of the index register Y in the memory.

Transfer TAX Transfers the contents of the accumulator A to the index register X.

TXA Transfers the contents of the index register X to the accumulator A.

TAY Transfers the contents of the accumulator A to the index register Y.

TYA Transfers the contents of the index register Y to the accumulator A.

TSX Transfers the contents of the stack pointer to the index register X.

TXS Transfers the contents of the index register X to the stack pointer.

TAD Transfers the contents of the accumulator A to the direct page
register.

TOA Transfers the contents of the direct page register to the accumula-
tor A.

TAS Transfers the contents of the accumulator A to the stack pointer.

TSA Transfers the contents of the stack pointer to the accumulator A.

TBD Transfers the contents of the accumulator B to the direct page reg-
ister.

TDB Transfers the contents of the direct page register to the accumulator
8.

TBS Transfers the contents of the accumulator B to the stack pointer.

52

Instructions

Category Instruction Description

Transfer TSB Transfers the contents of the stack pointer to the accumulator B.

TBX Transfers the contents of the accumulator B to the index register X.

TXB Transfers the contents of the index register X to the accumulator B.

TBY Transfers the contents of the accumulator B to the index register Y.

TYB Transfers the contents of the index register Y to the accumulator B.

TXY Transfers the contents of the index register X to the index register
Y.

TYX Transfers the contents of the index register Y to the index register
x.

MVN Transfers a block of data from the lower addresses.

MVP Transfers a block of data from the higher addresses.

Stack operation PSH Saves the contents of the specified register to the stack.

PUL Restores the contents of stack to the specified register.

PHA Saves the contents of the accumulator A to the stack.

PLA Restores the contents of stack to the accumulator A.

PHP Saves the contents of the program status register to the stack.

PLP Restores the contents of stack to the program status register.

PHB Saves the contents of the accumulator B to the stack.

PLB Restores the contents of stack to the accumulator B.

PHO Saves the contents of the direct page register to the stack.

PLO Restores the contents of stack to the direct page register.

PHT Saves the contents of the data bank register to the stack.

PLT Restores the contents of stack to the data bank register.

PHX Saves the contents of the index register X to the stack.

PLX Restores the contents of stack to the index register X.

PHY Saves the contents of the index register Y to the stack.

PLY Restores the contents of stack to the index register Y.

Stack PHG Saves the contents of the program bank register to the stack.

PEA Saves a the numeric of 2 bytes to the stack.

PEI Saves the contents of 2 consecutive b~tes in the direct page area
to the stack.

PER Saves the result of adding a 16-bit numeric value to the program
counter contents to the stack.

Exchange XAB Swaps the contents of the accumulator A with the contents of the
accumulator B.

53

Instructions

4.1.2 Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, division, logical operation,
comparison, rotation and shifting of register and memory contents.

The following table summarizes the arithmetic instructions supported:

Category Instruction Description

Addition ADC Adds the contents of the accumulator.the contents of memory and

Subtraction
the contents of the carry flag.

Multiplication
SBC Subtracts the complements of the contents of memory and carry

flag from the contents of the accumulator.
Division INC Increments the accumulator or memory contents by 1.

DEC Decrements the accumulator or memory contents by 1.

INX Increments the contents of the index. register X by 1.

DEX Decrements the contents of the index register X by 1.

ll')IY Increments the contents of the index register Y by 1.

DEY Decrements the contents of the index register Y by 1.

MPY Multiples the contents of the accumulator A and the contents of
memory.

DIV Divides the numeric value whose lower byte is the contents of the
accumulator A and upper byte is the contents of the accumulator B
by the contents of memory.

Logical operation AND Performs logical AND between the contents of the accumu-
later and the contents of memory.

ORA Performs logical OR between the contents of the accumulator and
the contents of memory.

EOR Performs logical exclusive-OR between the contents of the accumu-
later and the contents of memory.

Comparison CMP Compares the contents of the accumulator with the contents of
memory.

--

CPX Compares the contents of the index register X and the contents of
memory.

CPY Compares the contents of the index register Y and the contents of
memory.

Shifting, Lotation ASL Shifts the contents of the accumulator or memory to the left by 1 bit.

LSR Shifts the contents of the accumulator or memory to the right by 1
bit.

ROL Links the contents of accumulator or memory with the carry flag,
and rotates the result to the left by 1 bit.

ROR Links the contents of accumulator or memory with the carry flag,
and rotates the result to the right by 1 bit.

RLA Rotates the contents of the accumulator A to the left by the speci-
lied number of bits.

54

Instructions

4.1.3 Bit Manipulation Instructions

The bit manipulation instructions set the specified bits of the processor status register or
memory to "1 '' or "O".

The following table summarizes the bit manipulation instructions supported:

Category Instruction Description

Bit manipulation CLB Clears the specified memory bit to "O".

SEB Sets the specified memory bit to "1 ".

CLP Clears the specified bit of the processor status register's lower
byte (PSL) to "O".

SEP Sets the specified bit of the processor status register's lower
byte (PSL) to "1 ".

4.1.4 Flag Manipulation Instructions

The flag manipulation instructions set to "1" or clear to "O" the C, I, m and V flags.

The following table summarizes the flag manipulation instructions supported:

Category Instruction Description

Flag setting CLC Clears the contents of carry flag to "O".

SEC Sets the contents of carry flag to "1 ".
-~------~---

CLM Clears the contents of data length selection flag to "O".

SEM Sets the contents of data length selection flag to "1 ".

CLI Clears the contents of interrupt disable flag to "O".

SEI Sets the contents of interrupt disable flag to "1 ".

CLV Clears the contents of overflow flag to "O".

4.1.5 Branching and Return Instructions

The branching and return instructions enable changing the program execution sequence.

The following table summarizes the branching and return instructions:

Category Instruction Description

Jump JMP Sets a new address in the program counter and jumps to the new
address.

BRA Jumps to the address obtained by adding an offset value to the
contents of the program counter.

JSR Saves the contents of the program counter to the stack and then
jumps to the new address.

55

Instructions

Category Instruction Description

Branch BBC Causes a branch if the specified memory bits are all "O".

BBS Causes a branch if the specified memory bits are all "1 ".
-----~

BCC Causes a branch if the carry flag is set to "O".
~-

BCS Causes a branch if the carry flag is set to "1 ".

BNE Causes a branch if the zero flag is set to "O".

BEQ Causes a branch if the zero flag is set to "1 ".

BPL Causes a branch if the negative flag is set to "O".

BMI Causes a branch if the negative flag is set to "1 ".

BVC Causes a branch if Hrn overflow flag is set to "O".
-··-------

BVS Causes a branch if the overflow flag is set to "1 ".

Return RTI Returns from the interrupt routine to the original routine.

RTS Returns from a subroutine to the original routine. The program
bank register contents are not restored.

RTL Returns from a subroutine to the original routine. The program
bank register contents are restored.

4.1.6 Interrupt Instruction (Break Instruction)

The interrupt ins,truction executes software interrupt.

Category Instruction Description

Break BRK Executes a software interrupt.

4.1.7 Special Instructions

The special instructions listed below control the clock generator circuit.

Category Instruction Description

Special WIT Stops the internal clock.

STP Stops the oscillator.

4.1.8 Other Instruction

Category Instruction Description

Other NOP Only advances the program counter.

56

Instructions

4.2 Description of Instructions

This section describes the Series MELPS 7700 instructions individually. To the extent possible,
each instruction is described using one page per instruction. Each instruction description page
is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the
mnemonics. For each instruction, operation and description of the instruction, status flag changes
and a listing sorted by addressing modes of the assembler coding format (Note 1), machine code,
bytes-count and cycles-count (Note 2) are presented.

Note1. The assembler coding formats shown are general examples, and they may differ from the
actual formats for the assembler used. Please be sure to refer to the mnemonic coding
description in the manual for the assembler actually used for programming.

Note2. The cycles-counts shown are the minimum possible, and they vary depending on the fol­
lowing conditions:

• Value of direct page register's lower byte

The cycles-count shown are for when the direct page register's lower byte (DPRL) is
001s. When using an addressing mode that uses the direct page register with
DPRL'1'"0016", the cycles-count will be 1 more than the value shown.

• Number of bytes that have been loaded in the instruction queue buffer

• Whether the first address of the memory read/write is even- or odd-numbered in
accessing the 16-bit data length.

• Accessing of an external memory are with BYTE=1 (using 8-bit external bus)

57

Instructions

The table below lists the symbols that are used in this section:

Symbol Description

58

c
z
I

D
x
m

v
N

IPL

+

x
I

/\
v
v

~

~

H

Ace

ACCH

ACCL

A

AH

AL

B

BH
BL
x
XH
XL
y

YH
YL

s

Carry flag

Zero flag

Interrupt disable flag

Decimal operation mode flag

Index register length selection flag

Data length selection flag

Overflow flag

Negative flag

Processor interrupt priority level

Addition

Subtraction

Multiplication

Division

Logical AND

Logical OR

Exclusive OR

Negation

Movement to the arrow direction

Movement to the arrow direction

Movement to the arrow direction

Accumulator

Accumulator's upper 8 bits

Accumulator's lower 8 bits

Accumulator A

Accumulator A's upper 8 bits

Accumulator A's lower 8 bits

Accumulator B

Accumulator B's upper 8 bits

Accumulator B's lower 8 bits

Index register X

Index register X's upper 8 bits

Index register X's lower 8 bits

Index register Y

Index register Y's upper 8 bits

Index register Y's lower 8 bits

Stack pointer

PC Program counter

PCH Program counter's upper 8 bits

PCL Program counter's lower 8 bits

REL Relative address

PG Program bank register

DT Data bank register

Symbol

DPR

DPRH

DPRL

PS

PSH

PSL

PSn

M

M(n)

M(S)

Mn

AOG

ADH

Description

Direct page register

Direct page register's upper 8 bits

Direct page register's lower 8 bits

Processor status register

Processor status register's upper 8 bits

Processor status register's lower 8 bits

Processor status register's n-th bit

Memory contents

Contents of memory location specified by
operand

Contents of memory at address indicated
by stack pointer

n-th memory location

Value of 24-bit address' upper 8-bit
(A2rA16)

Value of 24-bit address' middle 8-bit
(A1s-As)

Value of 24-bit address' lower 8-bit (A7-Ao)

bn n-th bit of data

dd 8-bit offset value

i Number of transfer bytes or rotation

ii, i2 Number of registers pushed or pulled

imm 8-bit immediate value

imm1, imm2 16-bit immediate value (imm1 specifies the
upper 8-bit,and imm2 specifies the lower 8-

bit)

II 8-bit address value

mmll 16-bit address value (mm specifies the
upper 8-bit and II specifies the lower 8-bit)

hhmmll 24-bit address value (hh specifies the up­
per 8-bit, mm specifies the middle 8-bit and

II specifies the lower 8-bit)

nn 8-bit data value

n,, n2 8-bit data value (Used when coding two 8-
bit data side by side)

rr Signed 8-bit data value

mrr2 Signed 16-bit data value (mis the upper 8-
bit value, and mis the lower 8-bit value)

ADC
Operation

Description

Add with Carry ADC
Ace, C ~ Ace + M + C

Adds the contents of the accumulator, memory and carry flag, and places the
result in the accumulator.

Executed as binary addition if the decimal operation mode flag D is set to 0.

Executed as decimal addition if the decimal operation mode flag D is set to 1.

Status flags

I PL: Not affected.

N : Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
addition.

V Set to 1 when binary addition of signed data result in a value outside the range
of -32768 to +32767 (-128 to +127 if the data length selection flag mis set to 1).
Otherwise, cleared to 0. Meaningless ;or decimal addition.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0. Meaningless
for decimal addition.

C When the data length selection flag m is set to 0, set to 1 if binary addition
exceeds +65535 or if decimal addition exceeds +9999. Otherwise, cleared to 0.
When the data length selection flag m is set to 1, set to 1 if binary addition
exceeds +255 or if decimal addition exceeds +99. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate ADC A, #imm 6916, imm 2 2

Direct ADC A, dd 6516, dd 2 4

Direct indexed X ADC A, dd, X 7516, dd 2 5

Direct indirect ADC A, (dd) 7216, dd 2 6

Direct indexed X indirect ADC A, (dd, X) 6116, dd 2 7

Direct indirect indexed Y ADC A, (dd), Y 7116, dd 2 8

Direct indirect long ADCL A, (dd) 6716, dd 2 10

Direct indirect long indexed Y ADCL A, (dd), Y 7716, dd 2 11

Absolute ADC A, mmll 6D16, II, mm 3 4

Absolute indexed X ADC A, mmll, X 7016, 11, mm 3 6

Absolute indexed Y ADC A, mmll, Y 7916, 11, mm 3 6

Absolute long ADC A, hhmmll 6F16, II, mm, hh 4 6

Absolute long indexed X ADC A, hhmmll, X 7F16, 11, mm, hh 4 7

Stack pointer relative ADC A, nn,S 6316, nn 2 5

Stack pointer relative ADC A, (nn, S), Y 7316, nn 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

59

AND Logical AND AND
Operation Ace t- Ace /\ M

Description Performs logical AND between the contents of the accumulator and the contents
of memory, and places the result in the accumulator.

Status flags

IPL: Not affected.

60

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

x Not affected.

Not affected.

Not affected.

D

I

z
c

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes
-Immediate AND A, #imm 2916, imm 2

Direct AND A, dd 2516, dd 2

Direct indexed X AND A, dd, X 3516, dd 2

Direct indirect AND A, (dd) 3216, dd 2

Direct indexed X indirect AND A, (dd, X) 2116, dd 2

Direct indirect indexed Y AND A, (dd), Y 3116, dd 2

Direct indirect long ANDL A, (dd) 2716, dd 2

Direct indirect long indexed Y ANDL A, (dd), Y 3716, dd 2

Absolute AND A, mmll 2D16, II, mm .3

Absolute indexed X AND A, mmll, X 3D16, II, mm 3

Absolute indexed Y AND A, mmll, Y 3916, II, mm 3

Absolute long AND A, hhmmll. 2F16, II, mm, hh 4

Absolute long indexed X AND A, hhmmll, X 3F16, II, mm, hh 4

Stack pointer relative AND A, nn, S 231s, nn 2

Stack pointer relative AND A, (nn, S), Y 3316, nn 2

indirect indexed Y

Cycles

2

4

5

6

7

8
10

11

4

6

6

6

7

5

8

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "8".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

ASL
Operation When m=O

b15

When m=1
b1

Arithmetic Shift Left ASL

bo

bo

Description Shifts all bits of the accumulator or memory one place to the left. Bit 0 is loaded
with 0. The carry flag C is loaded from bit 15 (or bit 7 when the data length
selection flag m is set to 1) of the data before the shift.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit 15 (or bit 7 when the data length selection flag m is set to1)
before the operation is 1. Otherwise, cleared to 0.

Addressing mode I Syntax Machine code 1 Bytes i Cycles

Accumulator I ASL A OA16
I

1 I 2
'

Direct
i

ASL dd 0616, dd I 2 7 I

Direct indexed X ASL dd, x 1616, dd ! 2
i 7 I

Absolute ASL mmll '1 OE16, 11, mm
I 3 I 7

I

Absolute indexed X I ASL mmll, X 1 E16, 11, mm -'- 3 18 I

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator 8, replace "A" with "8". In this case, "4216" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

61

BBC Branch on Bit Clear BBC
Operation When MA IMM=O

PC ~ PC + n ± REL (REL is instruction's second byte)

PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

When M /\ IMM,,oQ

PC~ PC+ n

PG ~ PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested.

The value of n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

Description The BBC instruction tests the specified bits (which may be specified simultane­
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 0. The branch address is specified by a relative
address.

Status flags Not affected.

62

Addressing mode I Syntax Machine code Bytes J Cycles
I

Direct bit relative l BBC #imm, dd, rr 3416, dd, imm, rr 4 I 7
Absolute bit relative BBC #imm, mmll, rr 3C16, II, mm, imm, rr 5 18
(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection flag

m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

BBS
Operation

Description

Status flags

Branch on Bit Set BBS
When M /\ IMM=O

PC ~ PC + n ± REL (REL is instruction's second byte)

PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

When MA IMMi<'O

PC~ PC+ n

PG ~ PG + 1 (if carry on PC)

IMM is the bit pattern that specifies the bit positions to be tested. The value of
n is determined as follows:

If the data length selection flag m is set to 1, n=4 if direct bit relative
addressing mode, and n=5 if absolute bit relative addressing mode.

If the data length selection flag m is set to 0, n=5 if direct bit relative
addressing mode, and n=6 if absolute bit relative addressing mode.

The BBS instruction tests the specified bits (which may be specified simultane­
ously) of memory. The instruction causes a branch to the specified address
when the specified bits are all 1. The branch address is specified by a relative
address.

Not affected.

Addressing mode I Syntax Machine code I Bytes I Cycles

Direct bit relative I BBS #imm, dd, rr 2416, dd, imm, rr l4
I

7
I I l Absolute bit relative j BBS #imm, mmll, rr 2Crn, II, mm, imm, rr I s 8

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection

flag m set to 0.

(Note2) The cycles-count increases by 2 when a branch occurs.

63

BCC
Operation

Description

Status flags

Branch on Carry Clear BCC
When C=O,

PC ~ PC + 2 ± REL (REL is instruction's second, byte)
PG ~ PG + 1 (if carry on PC), PG ~ PG. - 1 (if borrow on PC)

When C=1,

PC~ PC+ 2

PG ~ PG + 1 (if carry on PC)

When the carry flag C is clear (0), the BCC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is set (1), the program advances .to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCC rr 9.01s, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

64

BCS
Operation

Description

Status flags

Branch on Carry Set BCS
When C=1,

PC ~ PC + 2 ± REL (REL is instruction's second byte)
PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

When C=O,

PC~ PC+ 2

PG ~ PG + 1 (if carry on PC)

When the carry flag C is set (1), the BCS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the carry flag C is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BCS rr B01e, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

65

BEQ
Operation

Description

Status flags

Branch on Equal BEQ
When Z=1,

PC f- PC + 2 ± REL (REL is instruction's second byte)
PG f- PG + 1 (if carry on PC), PG f- PG - 1 (if borrow on PC)

When Z=O,

PC f- PC + 2

PG f- PG + 1 (if carry on PC)

When the zero flag Z is set (1), the BEQ instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is clear (0), the program advances to next step without any
action.

Not affected.

Addressing mode l Syntax Machine code Bytes Cycles

Relative lsrn rr F01s, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

66

BMI
Operation

Description

Status flags

Branch on Result Minus BMI
When N=1,

PC f- PC + 2 ± REL (REL is instruction's second byte)
PG f- PG + 1 (if carry on PC), PG f- PG - 1 (if borrow on PC)

When N=O,

PC f- PC+ 2

PG f- PG + 1 (if carry on PC)

When the negative flag N is set (1), the BMI instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is clear (0), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax I Machine code Bytes Cycles

Relative BMI rr J 3016, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

67

BNE
Operation

Description

Status flags

Branch on Not Equal BNE
When Z=O,

PC ~ PC + 2 ± REL (REL is instruction's second byte)
PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

When Z=1,

PC~ PC+ 2

PG ~ PG + 1 (if carry on PC)

When the zero flag Z is clear (0), the BNE instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the zero flag Z is set (1), the program advances to next step without any
action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BNE rr D01s, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

68

BPL
Operation

Description

Status flags

Branch on Result Plus BPL
When N=O,

PC ~ PC + 2 ± REL (REL is instruction's second byte)
PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

When N=1,

PC~ PC+ 2

PG ~ PG + 1 (if carry on PC)

When the negative flag N is clear (0), the BPL instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the negative flag N is set (1). the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BPL rr 1016, rr 2 4

(Note1) The cycles-count increases by 2 when a branch occurs.

69

BRA
Operation

Description

Status flags

Branch Always BRA

For short relative branch,

PC ~ PC + 2 ± REL (REL is instruction's second byte)

PG ~ PG + 1 (if carry on PC), PG ~ PG - 1 (if borrow on PC)

For long relative branch,

PC ~ PC + 3 ± REL (REL is a numeric value represented by the instruc­
tion's second and third bytes)

The BRA instruction causes a branch to the specified address. The branch
address is specified by a relative address.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BRA rr 8016, rr 2 4
BRAL rrHr2 8216, rr2, m 3 4

70

BRK
Operation

Description

Status flags

IPL:

N

v
m

x

D

I

z
c

PC~ PC+ 2

M(S) ~PG

s ~ s - 1

M(S) ~ PCH

s ~ s - 1

M(S) ~ PCL

s ~ s - 1

M(S) ~ PSH

s ~ s - 1

M(S) ~ PSL

s ~ s - 1

I~ 1

PCL ~ M(FFFA16)

PCH ~ M(FFFB16)

PG~ 0016

Force Break BRK

When the BRK instruction is executed, the CPU first saves the address where the
next instruction is stored, and then saves the contents of the processor status
register on the stack. Then, the CPU executes a branch to the address in bank-
0 the lower portion of which is specified by the contents of FFFA16 in bank-0 and
the upper portion specified by the contents of FFFB16 in bank-0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1.

Not affected.

Not affected.

Addressing mode Syntax Machine code ! Bytes Cycles

Implied BRK #nn 0016,EA16 J2 15

(Note1) The instruction's second byte is ignored, so any value impossible.

71

BVC
Operation

Description

Status flags

Branch on Overflow Clear BVC
When V=O,

PC f--- PC + 2 ± REL (REL is instruction's second byte)

PG f--- PG + 1 (if carry on PC), PG f--- PG - 1 (if borrow on PC)

When V=1,

PC f--- PC + 2

PG f--- PG + 1 (if carry on PC)

When the overflow flag Vis clear (0), the BVC instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is set (1), the program advances to next step without
any action.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Relative BVC rr 5016, rr 2 4

(Note 1) The cycles-count increases by 2 when a branch occurs.

72

BVS
Operation

Description

Status flags

Branch on Overflow Set BVS
When V=1,

PC f- PC + 2 ± REL (REL is instruction's second byte)
PG f- PG + 1 (if carry on PC), PG f- PG - 1 (if borrow on PC)

When V=O,

PC f- PC+ 2

PG f- PG + 1 (if carry on PC)

When the overflow flag V is set (1), the BVS instruction causes a branch to the
specified address. The branch address is specified by a relative address.

When the overflow flag V is clear (0), the program advances to next step without
any action.

Not affected.

Addressing mode 1 Syntax Machine code Bytes Cycles

Relative i BVS
I rr 7016, rr 2 4

(Note1)The cycles-count increases by 2 when a branch occurs.

73

CLB

Operation

Description

Status flags

Clear Bit CLB

M ~MA IMM

IMM is the bit pattern that specifies the bit positions that are to be cleared to 0.
The bit positions that are to be cleared are indicated by 1 in IMM, and the bit po­
sitions that are not to be cleared are indicated by O in IMM.

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
th.e instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction.

The CLB instruction clears the specified memory bits to 0. Multiple bits to be
cleared can be specified at one time.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

74

Direct bit CLB #imm, dd 1410, dd, imm 3 8

Absolute bit CLB #imm, mmll 1 C1a, II, mm, imm 4 9

(Note1) The bytes-count increases by 1 when operating on 16-bit data with the data length selection
flag m set to 0.

CLC Clear Carry Flag CLC
Operation c~o

Description Clears the contents of carry flag C to O.

Status flags

IPL: Not affected.

N Not affected.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

z Not affected.

c Cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLC 1816 1 2

75

CLI Clear Interrupt Disable Status CLI
Operation I <c- 0

Description Clears the interrupt disable flag I to 0.

Status flags

IPL: Not affected.

N Not affected.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

I Cleared to 0.

z Not affected.

c Not ciffected.

Addressing mode Syntax J Machine code J Bytes l Cycles J
Implied CLI 15816 J 1 12 J

76

CLM Clear m Flag CLM
Operation m f- 0

Description Clears the data length selection flag m to 0.

Status flags

IPL: Not affected.

N Not affected.

v Not affected.

m Cleared to 0.

x Not affected.

D Not affected.

I Not affected.

z Not affected.

c Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied CLM 0816 1 2

77

CLP
Operation

Description

Status flags

Clear Processor Status CLP
PSL <c- PSL (\ IMM

(IMM is the immediate value. Its specified in the second byte of the instruction.)

Clears the processor status flags specified by the bit pattern in the second byte
of the instruction to 0.

The specifed flags are cleared. IPL is not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CLP #imm C216, imm 2 4

78

CLV Clear Overflow Flag CLV
Operation v f- 0

Description Clears the overflow flag V to 0.

Status flags

IPL: Not affected.

N Not affected.

v Cleared to 0.

m Not affected.

x Not affected.

0 Not affected.

I Not affected.

z Not affected.

c Not affected.

Addressing mode ! Syntax Machine code Bytes Cycles

Implied 1 CLV 8816 1 2

79

CMP Compare CMP
Operation Ace - M

Description Subtracts the contents of memory from the contents of the accumulator. The
accumulator and memory contents are not changed.

Status flags

IPL: Not affected.

80

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CMP A, #imm C916, imm 2 2
Direct CMP A, dd C516, dd 2 4
Direct indexed X CMP A, dd, X D51s, dd 2 5

Direct indirect CMP A, (dd) D216, dd 2 6
Direct indexed X indirect CMP A, (dd, X) C11s, dd 2 7
Direct indirect indexed Y CMP A, (dd), Y D116, dd 2 8
Direct indirect long CMPL A, (dd) C716, dd 2 10
Direct indirect long indexed Y CMPL A, (dd), Y D716, dd 2 11
Absolute CMP A, mmll CD16, II, mm 3 4
Absolute indexed X CMP A, mmll, X DD16, II, mm 3 6
Absolute indexed Y CMP A, mmll, Y D916, II, mm 3 6

Absolute long CMP A, hhmmll CF1s, II, mm, hh 4 6
Absolute long indexed X CMP A, hhmmll, X DF1s, II, mm, hh 4 7
Stack pointer relative CMP A, nn, S C316, nn 2 5

Stack pointer relative CMP A, (nn, S), Y D316, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B''.
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection
flag m set to 0, the bytes-count increases by 1.

CPX
Operation

Description

Status flags

IPL:

N

v
m

x
D

I

z
c

Compare Memory and Index Register X CPX
X-M

Subtracts the contents of memory from the contents of the index register X. The
index register X and memory contents are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPX #imm E01s, imm 2 2
Direct CPX dd E416, dd 2 4
Absolute CPX mmll EC1s, II, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length
selection flag x set to 0, the bytes-count increases by 1.

81

CPY Compare Memory and Index Register Y CPY
Operation Y-M

Description Subtracts the contents of memory from the contents of the index register Y. The

index register Y and memory contents are not changed.

Status flags

82

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 if the result of operation is 0 or larger. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Immediate CPY #imm C016, imm 2 2
Direct CPY dd C416,dd 2 4
Absolute CPY mmll CC1s, II, mm 3 4

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se­
lection flag x set to 0, the bytes-count increases by 1.

DEC
Operation

Description

Status flags

IPL:

N

v
m

x
D

I

z
c

Decrement by One DEC
Ace ~ Ace - 1 or M ~ M -1

Subtracts 1 from the contents of the accumulator or memory.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator DEC A 1A16 1 2
Direct DEC dd C616, dd 2 7
Direct indexed X DEC dd, x D616, dd 2 7
Absolute DEC mmll CE1s, 11, mm 3 7
Absolute indexed X DEC mmll, X DE16, II, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator 8, replace "A" with "8". In this case, "421s" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

83

DEX Decrement Index Register X by One DEX
Operation X ~ X - 1

Description Subtracts 1 from the contents of the index register X.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied DEX CA1s 1 2

84

DEY Decrement Index Register V by One DEY
Operation Y (- Y - 1

Description Subtracts 1 from the contents of the index register Y.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode J Syntax Machine code Bytes Cycles

Implied I DEY
I

8816 1 2

85

DIV Divide DIV
Operation B(remainder), A(quotient) f- (B, A) I M

If m=O
B A M(n+1) M(n) A B

Dividend + I Divisor I ~ Quotient Remainder

If m=1

Description

Status flags

IPL

N

86

v

m

x
D

I

z

c

BL AL
Dividend + ~ FII · (I Quotient I k\ { I Remainder I

When the data length selection flag m is set to 0, a 32-bit data stored in the
accumulators B (upper 16 bits) and A (lower 16 bits) are divided by a 16-bit data
in memory. The quotient is placed in the accumulator A, and the remainder is
placed in the accumulator B.

When the data length selection flag m is set to 1, a 16-bit data stored in the lower
8 bits of the accumulators B (upper 8 bits) and A (lower 8 bits) are divided by an
8 bit data in memory. The quotient is placed in the lower 8 bits of the
accumulator A, and the remainder is placed in the lower 8 bits of the accumulator
B.

When an overflow results from this operation negrect removed out, the V flag is
set.

When divisor is 0, the zero division interrupt is generated, in which case the
contents of the processor status register are saved on the stack and a branch
occurs to the address in bank-0 as specified by the zero division interrupt vector.
Accumulator contents are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
quotient from the operation is 1. Otherwise, cleared to 0.

Set to 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data
length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the quotient from the operation is 0. Otherwise, cleared to 0. No
changes occur when divisor is 0.

Set to 1 when the quotient from the operation exceeds 16 bits (or 8 bits if the data
length selection flag m is set to 1) (i.e., an overflow has occurred). Otherwise,
cleared to 0. No changes occur when divisor is 0.

DIV Divide DIV

Addressing mode Syntax Machine code Bytes Cycles

Immediate DIV #imm 8916, 2916, imm 3 27
Direct DIV dd 8916, 2516, dd 3 29
Direct indexed X DIV dd, x 8916, 3516, dd 3 30

Direct indirect DIV (dd) 8916, 3216, dd 3 31

Direct indexed X indirect DIV (dd, X) 8916, 2116, dd 3 32

Direct indirect indexed Y DIV (dd), y 8916, 3116, dd 3 33

Direct indirect long DIVL (dd) 8916, 2716, dd 3 35

Direct indirect long indexed Y DIVL (dd), y 8916, 3716, dd 3 36

Absolute DIV mmll 8916, 2D16, II, mm 4 29

Absolute indexed X DIV mmll, X 8916, 3D16, II ,mm 4 31

Absolute indexed Y DIV mmll, Y 8916, 3916, II ,mm 4 31

Absolute long DIV hhmmll 8916, 2F16, II, mm, hr 5 31

Absolute long indexed X DIV hhmmll, X 8916, 3F16, II, mm, hh 5 32

Stack pointer relative DIV nn, S 8916, 2316, nn 3 30

Stack pointer relative DIV (nn, S), Y 8916, 3316, nn 3 33

indirect indexed Y

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 16-bit + 8-bit operations. For 32-bit + 16-bit operations, the
cycles-count increases by 16.

87

EOR Exclusive OR Memory with Accumulator EOR
Operation Ace~ Ace V M

Description Performs the logical EXCLUSIVE OR between the contents of the accumulator
and the contents of memory, and places the result in the accumulator.

Status flags

IPL: Not affected.

88

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate EOR A, #imm 4916, imm 2 2
Direct EOR A, dd 4516, dd 2 4
Direct indexed X EOR A, dd, X 5516, dd 2 5
Direct indirect EOR A, (dd) 5216, dd 2 6
Direct indexed X indirect EOR A, (dd, X) 4116, dd 2 7
Direct indirect indexed Y EOR A, (dd), Y 5116, dd 2 8
Direct indirect long EORL A, (dd) 4716, dd 2 10
Direct indirect long indexed Y EORL A, (dd), Y 5716, dd 2 11
Absolute EOR A, mmll 4D16, II, mm 3 4
Absolute indexed X EOR A, mmll, X 5D16, II, mm 3 6
Absolute indexed Y EOR A, mmll, Y 5916, II, mm 3 6
Absolute long EOR A, hhmmll 4F16, II, mm, hh 4 6
Absolute long indexed X EOR A, hhmmll, X 5F16, II, mm, hh 4 7
Stack pointer relative EOR A, nn, S 4316, nn 2 5
Stack pointer relative EOR A, (nn, S), Y 5316, nn 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the l:iytes-count increases by 1.

INC Increment by One INC
Operation Ace f- Ace + 1 or M f- M + 1

Description Adds 1 to the contents of the accumulator or memory.

Status flags

IPL : Not affcted.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator INC A 3A16 1 2
Direct INC dd E616, dd 2 7
Direct indexed X INC dd, x F616, dd 2 7
Absolute INC mmll EE16, II, mm 3 7
Absolute indexed X INC mmll, X FE16, II, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accu­
mulator A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at
the beginning of the machine code, the bytes-count increases by 1 and the cycles-count
increases by 2.

89

INX Increment Index Register X by One , INX
Operation X (- X + 1

Description Adds 1 to the contents of the index register X.

Status flags

IPL : Not affected.

N ·Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1 . Otherwise, cleared to O.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INX E816 1 2

90

INY
Operation

Description

Status flags

IPL:

Increment Index Register Y by One INY
y ~ y + 1

Adds 1 to the contents of the index register Y.

Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation b 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied INY C816 1 2

91

JMP
Operation

Description

Status flags

Jump

If absolute addressing mode,

PCL ~ ADL

PCH ~ ADH

If absolute long addressing mode,

PCL ~ ADL

PCH ~ ADH

PG~ ADG

If absolute indirect addressing mode,

PCL ~ (ADH, ADL)

PCH ~ (ADH, ADL + 1)

If absolute indirect long addressing mode,

PCL ~ (ADH, ADL)

PCH ~ (ADH, ADL + 1)

PG ~ (ADH, ADL + 2)

If absolute indexed X indirect addressing mode,

PCL ~ (ADH, ADL + X)

PCH ~ (ADH, ADL + x + 1)

JMP

(ADL, ADH and ADG specify the instruction's second, third and fourth bytes, re­
spectively.)

The JMP instruction causes a jump to the address specified for the addressing
mode in use.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Absolute JMP mmll 4C16, 11, mm 3 2
Absolute long JMPL hhmmll 5C16, II, mm, hh 4 4
Absolute indirect JMP (mmll) 6C16, II, mm 3 4
Absolute indirect long JMPL (mmll) DC16, II, mm 3 8
Absolute indexed X indirect JMP (mmll, X) 7C16, II, mm 3 6

92

JSR
Operation

Description

Status flags

Jump to Subroutine

If absolute addressing mode,

M(S) ~ PCH
s ~ s - 1
M(S) ~ PCL
s ~ s - 1

PCL ~ ADL

PCH ~ ADH

If absolute long addressing mode,

M(S) ~PG
s ~ s - 1
M(S) ~ PCH
s ~ s - 1
M(S) ~ PCL
s ~ s - 1
PCL ~ ADL
PCH ~ ADH

PG~ ADG

If absolute indexed X indirect addressing mode,

M(S) ~ PCH
s ~ s - 1

M(S) ~ PCL
s ~ s - 1
PCL ~ (ADH, ADL + X)

PCH ~ (ADH, ADL + x + 1)

JSR

(ADL, ADH and ADG specify the instruction's second, third and fourth bytes, re­
spectively.)

The contents of the program counter PC (or the program bank register PG and
the program counter PC if absolute long addressing mode) are first saved on the
stack, then a jump occurs to the address shown for each addressing mode.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Absolute JSR mmll 2016, 11, mm 3 6
Absolute long JSRL hhmmll 2216, II, mm, hh 4 8
Absolute indexed X indirect JSR (mmll, X) FC16, II, mm 3 8

93

LOA Load Accumulator from Memory LOA
Operation Ace ~ M

Description Loads the contents of memory into the accumulator.

Status flags

I PL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag mis set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDA A, #imm A916, imm 2 2

Direct LDA A, dd A516, dd 2 4

Direct indexed X LDA A, dd, X 8516, dd 2 5

Direct indirect LDA A, (dd) 8216, dd 2 6

Direct indexed X indirect LDA A, (dd, X) A116, dd 2 7

Direct indirect indexed Y LDA A, (dd), Y 8116, dd 2 8

Direct indirect long LDAL A, (dd) A716, dd 2 10

Direct indirect long indexed Y LDAL A, (dd), Y 8716, dd 2 11

Absolute LDA A, mmll AD16, II, mm 3 4

Absolute indexed X LDA A, mmll, X 8D16, II, mm 3 6

Absolute indexed Y LDA A, mmll, Y 8916, II, mm 3 6

Absolute long LDA A, hhmmll AF16, II, mm, hh 4 6

Absolute long indexed X LDA A, hhmmll, X 8F16, II, mm, hh 4 7

Stack pointer relative LDA A, nn, S A316, nn 2 5

Stack pointer relative LDA A, (nn, S), Y 8316, nn 2 8

indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator 8, replace "A" with "B".

94

In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by
1 and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing_ mode with the data length selection flag
m set to O, the bytes-count increases by 1.

LDM Load Immediate to Memory LDM
Operation M ~ IMM (IMM is an immediate value)

Description Loads an immediate value into memory.

Status flags Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct LDM #imm, dd 6416, dd, imm 3 4
Direct indexed X LDM #imm, dd, X 7416, dd, imm 3 5
Absolute LDM #imm, mmll 9C16, II, mm, imm 4 5
Absolute indexed X LDM #imm, mmll, X 9E16, II, mm, imm 4 6

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

95

LDT Load Immediate to Data Bank Register LDT
Operation OT (-- IMM (IMM is an immediate value)

Description Loads an immediate value into the data bank register OT.

Status flags Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LDT #imm 891s, C216, imm 3 5

96

LOX Load Index Register X from Memory LOX
Operation X f- M

Description Loads the contents of memory into the index register X.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate LOX #imm A216, imm 2 2

Direct LOX dd A616, dd 2 4

Direct indexed Y LOX dd, y 8616, dd 2 5
Absolute LOX mmll AE16, II, mm 3 4
Absolute indexed Y LOX mmll, Y BE1s, II, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se­
lection flag x set to 0, the bytes-count increases by 1.

97

LOY Load Index Register Y from Memory LOY
Operation Y 0 M

Description Loads the contents of memory into the index register Y.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set

98

to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles
Immediate LOY #imm A016, imm 2 2
Direct LOY dd A416, dd 2 4
Direct indexed X LOY dd, x 8416, dd 2 5
Absolute LOY mmll AC16, 11, mm 3 4
Absolute indexed X LOY mmll, X BC16, 11, mm 3 6

(Note1) When operating on 16-bit data in the immediate addressing mode with the index register length se­
lection flag x set to 0, the bytes-count increases by 1.

LSR Logical Shift Right LSR
Operation

When m=O

When m=1

Description Shifts all bits of the accumulator or memory one place to the right. Bit 15 (or bit
7 if the data length selection flag m is set to 1) of the accumulator or memory is
loaded with 0.

The carry flag C is loaded from bit 0 of the data before the shift.

Status flags

IPL : Not affected.

N Cleared to "O".

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit O before the operation is 1. Otherwise, cleared to 0.

Addressing mode Syntax Machine code Bytes Cycles

Accumulator I LSR A 4A16 1 h
Direct LSR dd 4616, dd 2 7

Direct indexed X LSR dd, x 5616, dd 2 7

Absolute LSR mmll 4E16, 11, mm 3 7

Absolute indexed X LSR mmll, X 5E16, II, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

99

MPV
Operation

Description

Status flags

IPL:

N

v
m

x
D

I

z
c

Addressing mode

Immediate

Direct
Direct indexed X
Direct indirect

Multiply MPV
B, A ~ Ax M

When the data length selection flag m is set to 0, The contents of the accumulator
A and the contents of memory are multiplied. Multiplication is performed as 16-
bit x 16-bit, and the result is a 32-bit data which is placed in the accumulators B
(upper 16 bits of the result) and A (lower 16 bits of the result).

When the data length selection flag m is set to 1, the lower 8-bit contents of the
accumulator A and the contents of memory are multiplied. Multiplication is
performed as 8-bit x 8-bit, and the result is a 16-bit data which is placed in the
lower 8 bits of the accumulators B (upper 8 bits of the result) and A (lower 8 bits
of the result).

Not affected.

Set to 1 when bit 31 (or bit 15 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Syntax Machine code Bytes

MPY #imm 8916, 0916, imm 3

MPY dd 8916, 0516, dd 3
MPY dd, x 8916, 1516, dd 3
MPY (dd) 8916, 1216, dd 3

Cycles

16
18

19
20

Direct indexed X indirect MPY (dd, X) 8916, 0116, dd 3 21
Direct indirect indexed Y MPY (dd), y 8916, 1116, dd 3 22

Direct indirect long MPYL (dd) 8916, 0716, dd 3 24

Direct indirect long indexed Y MPYL (dd), y 8916, 1716, dd 3 25

Absolute MPY mmll 8916, OD16, II, mm 4 18

Absolute indexed X MPY mmll, X 8916, 1 D16, II, mm 4 20

Absolute indexed Y MPY mmll, Y 8916, 1916, II, mm 4 20

Absolute long MPY hhmmll 8916, OF1s, II, mm, hh 5 20
Absolute long indexed X MPY hhmmll, X 8916, 1 Fis, II, mm, hh 5 21
Stack pointer relative MPY nn, S 8916, 0316, nn 3 19

Stack pointer relative MPY (nn, S), Y 8916, 1316, nn 3 22

indirect indexed Y

(Note1) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

(Note2) The cycles-count in this table are for 8-bit x 8-bit multiplications. For 16-bit x 16-bit multiplications,
the cycles-count increases by 8.

100

MVN
Operation

Description

Status flags

Move Negative MVN
Mn - Mn+k f- Mm - Mm+k

Normally, a block of data is transferred from upper addresses to lower
addresses. The transfer is performed in the ascending address order of the
block being transferred. The target bank is specified by the instruction's
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction's third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are incremented by 1, so that the index register
X will become a value equal to 1 larger than the source address of the last
byte transferred and the index register Y will become a value equal to 1
larger than the target address of the last byte received. The data bank
register DT will become the terget bank number, and the accumulator A will
become FFFF1s.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is "0016", the data are not trans­
ferred.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVN n1, m 5416, n1, n2 3 7+(i/2)x7

(Note1) The cycles-count shown above is for when the number of bytes transferred, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

7 + (i + 2) x 7 + 4.
Note that (i + 2) denotes the integer part of the result of dividing i by 2.

101

MVP Move Positive MVP
Operation Mn-k - Mn ~ Mm-k - Mm

Description Normally, a block of data is transferred from lower addresses to upper
addresses. The transfer is performed in the descending address order of
the block being transferred. The target bank is specified by the instruction's
second byte, and the address within the target bank is specified by the
contents of the index register Y. The source bank is specified by the
instruction's third byte, and the address within the source bank is specified
by the contents of the index register X. The accumulator A is loaded with the
bytes-count of the data to be transferred. As each byte of data is transferred,
the index registers X and Y are decremented by 1, so that the index register
X will become a value equal to 1 less than the source address of the last
byte transferred and the index register Y will become a value equal to 1
smaller than the target address of the last byte received. The data bank
register DT will become the target bank number, and the accumulator A will
become FFFF16.

The accumulator A is affected by flag m. The index register X and Y are
affected by flag x.

When the contents of the accumulator A is "0016", the data are not trans­
ferred.

Status flags Not affected.

102

Addressing mode Syntax Machine code Bytes Cycles

Block transfer MVP n1, n2 4416, n1, n2 3 9+(i/2)x7

(Note1) The cycles-count shown above is for when the number of bytes transferred, i, is an even
number. If i is an odd number, the cycles-count is obtained as follows:

9 + (i + 2) x 7 + 5.
Note that (i + 2) denotes the integer part of the result of dividing i by 2.

NOP
Operation

Description

Status flags

No Operation NOP
PC f- PC+ 1

PG f- PG + 1 (if carry on PC)

This instruction only causes the program counter to be incremented by 1 and
nothing else.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied NOP EA1s 1 2
'

103

ORA OR Memory with Accumulator ORA
Operation Ace <- Ace V M

Description Performs the logical OR between the contents of the accumulator and the con­
tents of memory, and places the result in the accumulator.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code I Bytes Cycles

Immediate ORA A, #imm 0916, imm 2 2

Direct ORA A, dd 0516, dd 2 4

Direct indexed X ORA A, dd, X 1516, dd 2 5

Direct indirect ORA A, (dd) 1216, dd 2 6

Direct indexed X indirect ORA A, (dd, X) 0116, dd 2 7

Direct indirect indexed Y ORA A, (dd), Y 1116, dd 2 8
Direct indirect long ORAL A, (dd) 0716, dd 2 10

Direct indirect long indexed Y ORAL A, (dd), Y 1716, dd 2 11

Absolute ORA A, mmll OD16, II, mm 3 4

Absolute indexed X ORA A, mmll, X 1D16, II, mm 3 6

Absolute indexed Y ORA A, mmll, Y 1916, II, mm 3 6

Absolute long ORA A, hhmmll OF16, II, mm, hh 4 6

Absolute long indexed X ORA A, hhmmll, X 1 F16, II, mm, hh 4 7

Stack pointer relative ORA A, nn, S 0316, nn 2 5

Stack pointer relative ORA A, (nn, S), Y 1316, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator 8, replace "A" with "8".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note2) When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to 0, the bytes-count increases by 1.

104

PEA Push Effective Address PEA
Operation M(S) ~ IMM2 (IMM2 is the immediate value specified by the instruction's third byte)

s ~ s - 1

M(S) ~ IMM1 (IMM1 is the immediate value specified by the instruction's second byte)

s ~ s - 1

Description ,The instruction's third and second bytes are saved on the stack in this order.

Status flags Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PEA #imm1imm2 F416, imm2, imm1 3 5

105

PEI
Operation

Description

Status flags

Push Effective Indirect Address

M(S) f- M (DPR +IMM + 1)

Sf-S-1

M(S) f- M (DPR + IMM)

Sf-S-1

PEI

DPR represents the contents of the direct page register, and IMM represents
the offset address within the direct page as specified by the instruction's
second byte.

Saves the contents of the consecutive 2 bytes in the direct page as specified by
the sum of the contents of. the direct page register DPR and the instruction's
second byte on the stack in the order of upper address first and lower address
second.

Not affected.

Addressing mode J Syntax Machine code Bytes Cycles

Stack j PEI #imm 0416, imm 2 5

106

PER
Operation

Description

Status flags

Push Effective Program Counter Relative Address

EAR f--- PC + IMM2, IMM1

M(S) f--- Upper byte of EAR

Sf---S-1

M(S) f--- Lower byte of EAR

Sf---S-1

PER

EAR represents the value obtained by adding the 16-bit data represented by "IMM2,
IMM1" and the contents of the program counter. IMM2 and IMM1 represent the
instruction's third and second bytes, respectively, and "IMM2, IMM1" represents a 16-bit
data with IMM2 being the upper byte and IMM1 being the lower byte.

Saves the result of adding a 16-bit data consisting of an upper byte specified by
the instruction's third byte and a lower byte specified by the instruction's second
byte with the contents of the program counter on the stack in the order of the
result's upper byte first and lower byte second.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PER #imm1imm2 6216, imm2, imm1 3 5

107

PHA
Operation

Description

Status flags

Push Accumulator A on Stack

If m=O,

M(S) ~AH

s ~ s - 1

M(S) ~AL

s ~ s - 1

If m=1,

M(S) ~AL

s ~ s - 1

PHA

Saves the contents of the accumulator A to the address specified by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator A's
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator A's lower byte is saved
on the stack.

Not affected.

[Addressing mode Syntax Machine code I Bytes I Cycles J
[Stack . PHA 4816

108

PHB
Operation

Description

Status flags

Push Accumulator Bon Stack

If m=O,

M(S) (- BH

S(-S-1

M(S) (-BL

S(-S-1

If m=1,

M(S) (- BL

S(-S-1

PHB

Saves the contents of the accumulator B to the address indicated by the stack
pointer S. When the data length selection flag m is set to 0, the accumulator B's
upper byte is saved on the stack first and then the lower byte. When the data
length selection flag m is set to 1, only the accumulator B's lower byte is saved
on the stack.

Not affected.

Addressing mode Syntax Machine code I Bytes Cycles
I

Stack PHB 4216, 4816
I

2 6

109

PHO
Operation

Description

Status flags

Push Direct Page Register on Stack

M(S) <--- DPRH

S<--S-1

M(S) (- DPRL

S<--S-1

PHO

Saves the contents of the direct page register DPR to the address indicated by
the stack pointer S in the order of upper byte first and then lower byte.

Not affected.

Addressing mode 1 Syntax \ Machine code Bytes J Cycles

Stack I PHD

110

I 0816 1 I 4
I

PHG
Operation

Description

Status flags

Push Program Bank Register on Stack PHG

Saves the contents of the program bank register to the address indicated by the
stack pointer S.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PHG 4816 1 3

111

PHP
Operation.

Description

Status flags

Push Processor Status on Stack

M(S) (c- PSH

S(c-S-1

M(S) (c- PSL

S(c-S-1

PHP

Saves the contents of the processor status register PS to the address indicated
by the stack pointer S in the order of upper byte and then lower byte.

Not affected.

Addressing mode Syntax I Machine code Bytes J Cycles

Stack PHP I 0816 1 14

112

PHT
Operation

Description

Status flags

Push Data Bank Register on Stack PHT

Saves the contents of the data bank register DT to the address indicated by the
stack pointer S.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PHT 8B1s 1 3

113

PHX
Operation

Description

Status flags

Push Index Register X on Stack

If X=O,

M(S) f- XH

Sf-S-1

M(S) f- XL

Sf-S-1

,

If X=1,

M(S) f- XL

Sf-S-1

PHX

Saves the contents of the index register X to the address indicated by the stack
pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1, only the lower byte is saved on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PHX DA1s 1 4

114

PHY
Operation

Description

Status flags

Push Index Register Von Stack

If X=O,

M(S} f- YH

Sf-S-1

M(S} f- YL

Sf-S-1

If X=1,

M(S} f- YL

Sf-S-1

PHY

Saves the contents of the index register Y to the address indicated by the stack
pointer S. When the index register length selection flag x is set to 0, the contents
are saved in the order of upper byte and then lower byte. When the index register
length selection flag x is set to 1 , only the lower byte is saved on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PHY 5A16 1 4

115

PLA
Operation

Description

Status flags

IPL:

N

v
m

x
D

I

z
c

Pull Accumulator A from Stack

If m=O, ·

s ~ s + 1

AL~ M(S)

s ~ s + 1

AH~ M(S)

If m=1,

s ~ s + 1

AL.~ M(S)

PLA

The stack pointer S is incremented, and then restores the lower byte of the
accumulator A with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the ac­
cumulator A with the data at the address indicated by the stack pointer S. When
the data length selection flag m is set to 0, 2 bytes data are restored. When the
data length selection flag m is set to 1, only 1 byte data is restored (to the lower
byte of the accumulator A).

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PLA 6816 1 5

116

PLB
Operation

Pull Accumulator B from Stack

If m=O,

Sf-S+1

BL f- M(S)

Sf-S+1

BH f- M(S)

If m=1,

Sf-S+1

BL f- M(S)

PLB

Description The stack pointer S is incremented, and then restores the lower byte of the
accumulator B with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
accumulator B with the data at the address indicated by the stack pointer S.
When the data length selection flag m is set to 0, 2 bytes data are restored.
When the data length selection flag m is set to 1, only 1 byte data is restored (to
the lower byte of the accumulator B).

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1)of

the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode I Syntax Machine code Bytes J Cycles

Stack I PLB 4216, 6816 2 I 7
I

117

PLO
Operation

Description

Status flags

Pull Direct Page Registertrom Stack

s ~ s + 1

OPAL~ M(S)

s ~ s + 1

DPRH ~ M(S)

PLO

The stack pointer S is incremented, and then restores the lower byte of the direct
page register DPR with the data at the address indicated by the stack pointer S.
Again, increments the stack pointer S and then restores the upper byte of the
direct page register DPR with the data at the address indicated by the stack
pointer S.

Not affected.

Addressing mode Syntax Machine code l Bytes Cycles

Stack PLO 2816 l 1
5

118

PLP
Operation

Description

Status flags

s ~ s + 1

PSL ~ M(S)

s ~ s + 1

PSH ~ M(S)

Pull Processor Status from Stack PLP

The stack pointer S is incremented and then restores the lower byte of the
processor status register PS with the data at the address indicated by the stack
pointer S. Again, increments the stack pointer Sand then restores the upper byte
of the processor status register PS with the data at the address indicated by the
stack pointer S.

Changes to the values restored from the stack.

Addressing mode i Syntax Machine code Bytes Cycles

Stack l PLP 2816 1 6

119

PLT
Operation Sf-S+1

DT f- M(S)

Pull Data Bank Register from Stack PLT

Description The stack pointer S is incremented, and then the data bank register DT is
restored with the data at the address indicated by the stack pointer S.

Status flags

IPL: Not affected.

N

v
Set to 1 when bit 7 of the operation result is 1. Otherwise, cleared to 0.

Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PLT AB10 1 6

120

PLX
Operation

Pull Index Register X from Stack

If X=O,

s ~ s + 1

XL~ M(S)

s ~ s + 1

XH ~ M(S)

If X=1,

s ~ s + 1

XL~ M(S)

PLX

Description The stack pointer S is incremented, and then restores the lower byte of the index
register X with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register X with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the
lower byte of the index register X).

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax J Machine code Bytes l Cycles

Stack PLX l FA16

121

PLY
Operation

Pull Index Register Y from Stack

If X=O,

s ~ s + 1

YL ~ M(S)

s ~ s + 1

YH ~ M(S)

If X=1,

s ~ s + 1

YL ~ M(S)

PLY

Description The stack pointer S is incremented, and then restores the lower byte of the index
register Y with the data at the address indicated by the stack pointer S. Again,
increments the stack pointer S and then restores the upper byte of the index
register Y with the data at the address indicated by the stack pointer S. When
the index register length selection flag x is set to 0, 2 bytes are restored. When
the index register length selection flag x is set to 1, only 1 byte is restored (to the
lower byte of the index register Y).

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PLY 7A1s 1 5

122

PSH
Operation

Description

PS

Status flags

Push PSH
M(S) (--- A, 8, X, Y, DPR, DT, PG or PS

This instruction's second byte specifies the registers to be saved. The registers
corresponding to the bits in the second byte that are 1 are saved on the stack.
The bit and register correspondence is as shown below:

bo
PG DT DPR y x B A

(--- Saved on the stack in this order.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PSH #nn EB1s, nn 2 12+2xii+i2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being saved. The count is 12 cycles when no registers are saved. ii in above table represents
the number of registers (chosen from A, B, X, Y, DPR and PS) to be saved, and i2 represents the
number of registers (chosen from DT and PG) to b!l" saved.

Register type PS PG DT DPR y x B A
Cycles-count 2 2 2 2 2 2

123

PSH

124

PSH

M(S) f--- AH
Sf--- S-1

M(S) f--- AL
Sf--- S-1

M(S) f--- BH
S f--- S-1

M(S) f--- BL
Sf--- S-1

M(S) f--- XH
Sf--- S-1

M(S) f--- XL
Sf--- S-1

M(S) f--- YH
Sf--- S-1

M(S) f--- YL
Sf--- S-1

NO

NO

NO

NO

M(S) f--- AL
Sf--- S-1

M(S) f--- BL
Sf--- S-1

M(S) f---XL
Sf--- S-1

M(S) f--- YL
Sf--- S-1

Push PSH

M(S) f--- DPRH
Sf--- S-1

M(S) f--- DPRL
Sf--- S-1

M(S) f--- PSH
Sf--- S-1

M(S) f--- PSL
Sf--- S-1

PUL
Operation

Description

Status flags

Pull PUL
M(S) --+ A, B, X, Y, DPR, DT or PS

This instruction's second byte specifies the registers to be restored. The registers
corresponding to the bits in the second byte that are 1 are restored from the
stack. The bit and register correspondence is as shown below:

~ ~

PS I ltll DT I DPR I y x B A

Restored from the stack in this order. --+

(Note) The contents of accumulator B's higher 8-bit will be changed, when PUL instruction
is executed with m=O and the restored registor including PS whose m=1.

When bit 7 of the instruction's second byte is 1, specifying that the program
status register PS is to be restored, the status flags are restored to the values
that had been restored from the stack. Otherwise, the status flags are not
affected.

Addressing mode Syntax Machine code Bytes Cycles

Stack PUL #nn FB16, nn 2 14+3xh+4xi2

(Note1) To the cycles-count shown above, the values shown below are added depending on the registers
being restored. The count is 14 cycles when no registers are restored. i1 in above table represents
the number of registers (chosen from A, B, X, Y, PS and DT) to be saved. i2=1 if DPR is to be
restored, and i2=0 if DPR is not to be restored.

PS DT DPR y x B A
3 3 4 3 3 3 3

125

PUL

126

PUL

Sf--- S+ 1
PSL f--- M(S)

Sf--- S+ 1
PSH f--- M(S)

Sf--- S+ 1
DPRL f--- M(S)

Sf--- S+ 1
DPRH f--- M(S)

Sf--- S+ 1
YL f--- M(S)
Sf--- S+ 1

YH f--- M(S)

Sf--- S+ 1
YLf--- MS)

Pull PUL

NO

S f--- S+ 1 S f--- S+ 1
XL f--- M(S) XL f--- M S
Sf--- S+ 1

XH f--- M(S)

Sf--- S+1
BL f--- M(S)
Sf--- S+ 1

BH f--- M(S)

Sf-- S+1
AL f--- M(S)
Sf-- S+1

AH f--- M(S)

0

Sf--- S+1
BL f--- M S

Sf--- S+ 1
AL f--- M(S)

RLA Rotate Left Accumulator A RLA
Operation

If m=O, rotate n bits to left (n=0-65535)

If m=1, rotate n bits to left (n=0-255)

Description The contents of the accumulator A are rotated to the left by n bits. The value
of n is specified by the instruction's third byte (or third and fourth bytes when
m=O).

Status flags Not affected.

Addressing mode _l Syntax Machine code Bytes Cycles

Immediate l ALA #imm 8916, 4916, imm 3 6+i

i: Number of rotation

(Note1) When the data length selection flag m is 0, the bytes-count increases by 1.

127

ROL Rotate One Bit Left ROL
Operation

If m=O,

If m=1,

Description The carry flag C is linked to the accumulator or memory, and the combined
contents are rotated by 1 bit to the left.

Bit 0 of the accumulator or memory is loaded with the content of the carry flag
C before execution of this instruction, and the carry flag C is loaded with the
content of bit 15 (or bit 7 if the data length selection flag m is set to 1) of the
accumulator or memory before execution of this instruction.

Status flags

128

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to O.

C Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) before
execution of the instruction is 1. Otherwise, cleared to 0

Addressing mode Syntax Machine code Bytes Cycles

AccuMulator ROL A 2A16 1 2
Direct ROL dd 2616, dd 2 7
Direct indexed X ROL dd, x 3616, dd 2 7
Absolute ROL mmll 2E16, II, mm 3 7
Absolute indexed x ROL mmll, X 3E16, II, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

ROR Rotate One Bit Right ROR
Operation

If m=O,

If m=1,

Description The carry flag C is linked to the accumulator or memory, and the combined
contents are shifted by 1 bit to the right.

Bit 15 (or bit 7 if the data length selection flag m is set to 1) of the accumula­
tor or memory is loaded with the content of the carry flag C, and the carry flag
C is loaded with the content of bit 0 of the accumulator or memory before
execution of this instruction.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

v Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when bit 0 before execution of the instruction is 1. Otherwise, cleared
to 0.

Addressing mode Syntax Machine code Bytes Cycles
--

Accumulator ROA A 6A16 1 2
Direct ROA dd 6616, dd 2 7
Direct indexed X ROA dd, x 7616, dd 2 7
Absolute ROA mmll 6E16, II, mm 3 7
Absolute indexed X ROA mmll, X 7E16, II, mm 3 8

(Note1) The accumulator addressing mode's specification in this table applies when using the accumulator
A. If using the accumulator B, replace "A" with "B". In this case, "4216" is added at the beginning
of the machine code, the bytes-count increases by 1 and the cycles-count increases by 2.

129

RTI
Operation

Description

Status flags

S<-S+1

PSL (---- M(S)

S<-S+1

PSH (---- M(S)

S<-S+1

PCL (---- M(S)

S<-S+1

PCH (---- M(S)

S<-S+1

PG<---- M(S)

Return from Interrupt RTI

The contents of the processor status register PS, program counter PC, and
program bank register PG, which are saved on the stack when the last interrupt
was accepted, are restored these registers.

Restored according to the values that had been on the stack.

Addressing mode Syntax Machine code Bytes Cycles

Implied RTI 4016 11

130

RTL
Operation

Description

Status flags

S<c-S+1

PCL <c- M(S)

S<c-S+1

PCH <c- M(S)

S<c-S+1

PG <c- M(S)

Return from Subroutine Long RTL

The program counter PC and program bank register PG are restored according
to the state previously saved on the stack.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied RTL 6816 1 8

131

RTS
Operation

Description

Status flags

S<-S+1

PCL <- M(S)

S<-S+1

PCH <- M(S)

Return from Subroutine RTS

The program counter PC is restored according to the state previously saved on
the stack.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied RTS 6016 1 5

132

SBC Subtract with Carry SBC
Operation Ace, C (- Ace - M - C

Description Subtracts the contents of memory and the 1 's complements of carry flag from the
contents of the accumulator , and places the result in the accumulator. Executed
as a binary subtraction if the decimal operation mode flag D is set to 0. Executed
as a decimal subtraction if the decimal operation mode flag D is set to 1.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0. Meaningless for decimal
subtraction.

V Set to 1 when binary subtraction of signed data results in a value outside the
range of -32768 to +32767 (-128 to + 127 if the data length selection flag m is set
to 1). Otherwise, cleared to 0. Meaningless for decimal subtraction.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Set to 1 when the result of operation is equal to or larger than 0. Otherwise,

cleared to 0, and a borrow is indicated.

' Addressing mode Syntax Machine code Bytes Cycles

Immediate SBC A, #imm E916, imm 2 2

Direct SBC A, dd E516, dd 2 4

Direct indexed X SBC A,dd, X F516, dd 2 5

Direct indirect SBC A, (dd) F216, dd 2 6

Direct indexed X indirect SBC A,(dd, X) E11s, dd 2 7

Direct indirect indexed Y SBC A,(dd), Y F11s, dd 2 8

Direct indirect long SBCL A, (dd) E71s, dd 2 10

Direct indirect long indexed Y SBCL A, (dd), Y F716, dd 2 11

Absolute SBC A,mmll ED1s,ll,mm 3 4

Absolute indexed X SBC A, mmll, X FD16, 11, mm 3 6

Absolute indexed Y SBC A, mmll, Y F916, II, mm 3 6

Absolute long SBC A, hhmmll EF16, II, mm, hh 4 6

Absolute long indexed X SBC A, hhmmll, X FF16, II, mm, hh 4 7

Stack pointer relative SBC A, nn, S E316, nn 2 5

Stack pointer relative SBC A, (nn, S), Y F316, nn 2 8
indirect indexed Y

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

(Note 2)When operating on 16-bit data in the immediate addressing mode with the data length selection flag
m set to O, the bytes-count increases by 1.

133

SEB
Operation

Description

Status flags

Set Bit SEB
M ~ M V IMM

IMM is the bit pattern that specifies the bit positions that are to be set to 1.

When the data length selection flag m is set to 1, IMM is placed in the third byte
(direct bit addressing mode) or the fourth byte (absolute bit addressing mode) of
the instruction.

When the data length selection flag m is set to 0, IMM is placed in the third and
fourth bytes (direct bit addressing mode) or the fourth and fifth bytes (absolute bit
addressing mode) of the instruction.

The SEB instruction sets the specified memory bits to 1. Multiple bits to be set
can be specified at one time.

Not affected.

Addressing mode I Syntax Machine code I Bytes Cycles

134

Direct bit l SEB #imm, dd 0416, dd, imm

1~
8

Absolute bit SEB #imm, mmll OC16, II, mm, imm 9

(Note1) When operating on 16-bit data with the data length selection flag m set to 0, the bytes-count
increases by 1.

SEC Set Carry Flag SEC
Operation C +- 1

Description Sets the carry flag C to 1.

Status flags

IPL : Not affected.

N Not affected.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

z Not affected.

C Set to 1.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEC 3816 1 2

135

SEI Set Interrupt Disabl~ Status SEI
Operation I (-- 1

Description Sets the interrupt disable flag I to 1 .

Status flags

IPL : Not affected.

N Not affected.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Set to 1.

z Not affected.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEI 7816 1 2

136

SEM Set m Flag SEM
Operation m +-- 1

Description Sets the data length selection flag m to 1.

Status flags

IPL : Not affected.

N Not affected.

V Not affected.

m Set to 1.

x Not affected.

D Not affected.

Not affected.

z Not affected.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied SEM F81e 2

137

SEP
Operation

Description

Status flags

Set Processor Status SEP
PSL ~ PSL v IMM

(IMM is the immediate value specified in the second byte of the instruction.)

Sets the processor status flags specified by the bit pattern in the second byte of
the instruction to 1.

The specified flags are set. IPL is not affected.

Addressing mode Syntax Machine code Bytes Cycles

Immediate SEP #imm E216, imm 2 3

138

STA Store Accumulator in Memory

Operation When m=O, When m=1

M(n) (-- AccL M(n) (-- AccL

M(n+ 1) (-- AccH

Description Stores the contents of the accumulator in memory.

The contents of the accumulator are not changed.

Status flags Not affected.

Addressing mode Syntax Machine code

Direct STA A, dd 8516, dd

Direct indexed X STA A, dd, X 9516, dd

Direct indirect STA A, (dd) 9218 dd

Direct indexed X indirect STA A, (dd, X) 8116, dd

Direct indirect indexed Y STA A, (dd), Y 9116, dd

Direct indirect long STAL A, (dd) 8716, dd

Direct indirect long indexed Y STAL A, (dd), Y 9716, dd

Absolute STA A, mmll 8D16, II, mm

Absolute indexed X STA A, mmll, X 9D16, II, mm

Absolute indexed Y STA A, mmll, Y 9916, II, mm

Absolute long STA A, hhmmll 8F16, II, mm, hh

Absolute long indexed X STA A, hhmmll, X 9F16, 11, mm, hh

Stack pointer relative STA A, nn, S 8316, nn

Stack pointer relative STA A, (nn, S), Y 9316, nn

indirect indexed Y

STA

Bytes Cycles

I
2 4

2 5
' 2 7

2 7

2 7

2 10

2 11

3 5

3 5

3 5

4 6

4 7

2 5

2 8

(Note1) This table applies when using the accumulator A. If using the accumulator B, replace "A" with "B".
In this case, "4216" is added at the beginning of the machine code, the bytes-count increases by 1
and the cycles-count increases by 2.

139

STP
Operation

Description

Status flags

Stop STP
Stop the oscillator.

Resets the oscillator controlling flip-flop circuit to inhibit the oscillator. To restart
the oscillator, either an interrupt or reset must be executed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied STP DB1s 1 3

140

STX
Operation

Description

Status flags

Store Index Register X In Memory

When x=O,

M(n) ~XL

M(n+1) ~ XH

When x=1

M(n) ~XL

STX

Stores the contents of the index register X in memory. The contents of the index
register X remain the same.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STX dd 8616, dd 2 4
Direct indexed Y STX dd, Y 9616, dd 2 5
Absolute STX mmli 8E16, II, mm 3 5

141

STY
Operation

Description

Status flags

Store Index Register Y in Memory

When x=O,

M(n) <c- YL

M(n+1) <c- YH

When x=1

M(n) <c- YL

STY

Stores the contents of the index register Y in memory. The contents of the index
register Y remain the same.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Direct STY dd 8416, dd 2 4
Direct indexed X STY dd, X 9416, dd 2 5
Absolute STY m.1111 8Cis, II, mm 3 5

142

TAD
Operation

Description

Status flags

Transfer Accumulator A to Direct Page Register TAD
DPR <- A

Loads the direct page register DPR with the contents of the accumulator A. Data
is transferred as 16-bit data regardless of the status of the data length selection
flag m. The contents of the accumulator A are not changed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAD 5816 1 2

143

TAS
Operation

Description

Status flags

Transfer Accumulator A to Stack Pointer TAS
S <c- A

Loads the stack pointer S with the contents of the accumulator A. Data is
transferred as 16-bit data regardless of the status of the data length selection flag
m. The contents of the accumulator A are not changed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAS 1816 2

144

TAX
Operation

Transfer Accumulator A to Index Register X

If X=O,

XL~ AL

XH ~AH

If X=1,

XL~ AL

TAX

Description Loads the index register X with the contents of the accumulator A. The contents
of the accumulator A are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode } Syntax Machine code Bytes Cycles

Implied l TAX AA16 1 2

145

TAY
Operation

Description

Status flags

IPL:

N

v
m

x
D

Transfer Accumulator A to Index Register Y

If X=O,

YL f- AL

YH f- AH

If X=1,

YL f- AL

TAY

Loads the index register Y with the contents of the accumulator A. The contents
of the accumulator A are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TAY A8rn 1 2

146

TBD
Operation

Description

Status flags

Transfer Accumulator B to Direct Page Register TBD
DPR f--- B

Loads the direct page register DPR with the contents of the accumulator B. Data
is transferred as 16-bit data regardless of the status of the data length selection
flag m. The contents of the accumulator B are not changed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBD 4216, 5816 2 4

147

TBS
Operation

Description

Status flags

Transfer Accumulator B to Stack Pointer TBS
S~B

Loads the stack pointer S with the contents of the accumulator B. Data is
transferred as 16-bit data regardless of the status of the data length selection flag
m. The contents of the accumulator B are not changed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBS 4216, 1816 2 4

148

TBX
Operation

Description

Status flags

IPL:

N

v
m

x
D

Transfer Accumulator B to Index Register X

If X=O,

XL~ BL

XH ~ BH

If X=1,

XL~ BL

TBX

Loads the index register X with the contents of the accumulator B. The contents
of the accumulator B are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1 . Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBX 4216, AA16 2 4

149

TBY
Operation

Description

Status flags

IPL:

N

v
m
x
D

I

z
c

Transfer Accumulator B to Index Register Y

If X=O,

YL f-- BL

YH f-- BH

If X=1,

YL f-- BL

TBY

Loads the index register Y with the contents of the accumulator B. The contents
of the accumulator B are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TBY 4216, A816 2 4

150

TOA
Operation

Transfer Direct Page Register to Accumulator A

If m=O,

AL (- DPRL

AH (- DPRH

If m=1,

AL (- DPRL

TOA

Description Loads the accumulator A with the contents of the direct page register DPR. The
contents of the direct page register DPR are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode · l Syntax l Machine code J Bytes Cycles

Implied ! TDA I
! 7816 ! 1 2

151

TDB
Operation

Transfer Direct Page Register to Accumulator B

If m=O,

BL f- DPRL

BH f- DPRH

If m=1,

BL f- DPRL

TDB

Description Loads the accumulator B with the contents of the direct page register DPR. The
contents of the direct page register DPR are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise. cleared to O.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code J Bytes Cycles

Implied TDB 4216, 7B1s J 2 4

152

TSA
Operation

Transfer Stack Pointer to Accumulator A

If m=O,

AL f- SL

AH f- SH

If m=1,

AL f- SL

TSA

Description Loads the accumulator A with the contents of the stack pointer S. The contents
of the stack pointer S are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

Z Set to 1 when the result of operation is O. Otherwise, cleared to O.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSA 3816 1 2

153

TSB
Operation

Description

Status flags

IPL:

N

v
m
x
D

I

z
c

Transfer Stack Pointer to Accumulator B

If m=O,

BL~ SL

BH ~SH

TSB

Loads the accumulator B with the contents of the stack pointer S. The contents
of the stack pointer S are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSB 4216, 3816 2 4

154

TSX
Operation

Transfer Stack Pointer to Index Register X

If X=O,

XL~ SL

XH ~SH

If X=1,

XL~ SL

TSX

Description Loads the index register X with the contents of the stack pointer S. The contents
of the stack pointer S are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is O. Otherwise, cleared to O.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TSX BA16 2

155

TXA
Operation

Transfer Index Register X to Accumulator A

If m=O and X=O,

AL r XL

AH r XH

If m=O and X=1,

AL r XL

AH r 0016

TXA

Description Loads the accumulator A with the contents of the index register X. The contents
of the index register X are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

Not affected.

z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXA 8A1s 1 2

156

TXB
Operation

Transfer Index Register X to Accumulator B

If m=O and x=O,

BL (- XL

BH (- XH

If m=O and x=1,

BL (- XL

BH (- 0016

TXB

Description Loads the accumulator B with the contents of the index register X. The contents
of the index register X are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is O. Otherwise, cleared to O.

C Not affected.

Addressing mode I Syntax Machine code Bytes Cycles

Implied I TXB 4216, 8A16 2 4

157

TXS
Operation

Description

Status flags

Transfer Index Register X to Stack Pointer

If X=O,

SL~ XL

SH~ XH

If X=1,

SL~ XL

SH~ 001s

TXS

Loads the stack pointers with the contents of the index register X. The contents
of the index register X are not changed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXS 9A16 1 2

158

TXY
Operation

Description

Status flags

IPL:

N

v
m
x
D

I

z
c

If X=O,

YL ~XL

YH ~ XH

Transfer Index Register X to Y TXY
If X=1,

YL ~XL

Loads the index register Y with the contents of the index register X. The con­
tents of the index register X are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) cf the operation result is 1. Otherwise, cleared to O.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TXY 9816 1 2

159

TVA
Operation

Description

Status flags

IPL:

N

v
m

x
D

I

z
c

Transfer Index Register Y to Accumulator A

If m=O and x=O,

AL f--- YL

AH f--- YH

If m=O and x=1,

AL f--- YL

AH f--- 0016

If m=1,

Alf- YL

TVA

Loads the accumulator A with the contents of the index register Y. The contents
of the index register Y are not changed.

Not affected.

Set to 1 when bit 15 (or bit 7 if the data length selection flag mis set to 1) of
the operation result is 1. Otherwise, cleared to O.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TVA 9816 1 2

160

TYB
Operation

Transfer Index Register Y to Accumulator B

If m=O and x=O,

BL f- YL

BH f- YH

II m=O and X=1,

BL f- YL

BH f- 0016

If m=1,

BL f- YL

TYB

Description Loads the accumulator B with the contents of the index register Y. The contents
of the index register Y are not changed.

Status flags

IPL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the data length selection flag mis set to 1) of
the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYB 4216, 9816 2 4

161

TYX
Operation If X=O,

XL f- YL

XH f- YH

Transfer Index Register Y to X TYX
If X=1,

XL f- YL

Description Loads the index register X with the contents of the index register Y. The con­
tents of the index register Y are not changed.

Status flags

I PL : Not affected.

N Set to 1 when bit 15 (or bit 7 if the index register length selection flag x is set
to 1) of the operation result is 1. Otherwise, cleared to 0.

V Not affected.

m Not affected.

x Not affected.

D Not affected.

I Not affected.

Z Set to 1 when the result of operation is 0. Otherwise, cleared to 0.

C Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied TYX 8816 1 2

162

WIT
Operation

Description

Status flags

Wait WIT
Stop the internal clock.

The WIT instruction stops the internal clock but not the external clock is not
stopped. To restart the internal clock, either an interrupt or reset must be
executed.

Not affected.

Addressing mode Syntax Machine code Bytes Cycles

Implied WIT CB1s 1 3

163

XAB
Operation

Description

Status flags

IPL:

N

v
m

x

D

If m=O,

AL H BL

AH H BH

Exchange Accumulator A and B

If m=1,

AL H BL

Swaps the contents of the accumulators A and B.

Not affected.

XAB

Set to 1 when bit 15 (or bit 7 if the data length selection flag m is set to 1) of
the accumulator A after the operation is 1. Otherwise, cleared to 0.

Not affected.

Not affected.

Not affected.

Not affected.

Not affected.

Z Set to 1 when the contents of the accumulator A is cleared to 0 by the operation.
Otherwise, cleared to 0.

C Not affected.

Addressi'!9_ mode 1 S_yntax Machine code ~es C_I!:les

Implied l XAB 8916, 2816 2 6

164

Notes for Programming

5. Notes for Programming

Take care of the following when programming with the MELPS 7700 series.

(1) The stack pointer S is undefined immediately after the reset is commanded. Always set the
initial value.

Example) LOX #27FH
TXS

(2) The program bank register PG and the data bank register OT are disabled under the single chip
mode. Do not set value other than "0016" here.

(3) When "1" is set in the 0-flag for decimal operation:

The C-flag alone is effective in the ADC instruction, while the Z, N, and V flags are disabled.
The C and Z flags alone are effective in the SBC instruction, while the N and V flags are
disabled. (Decimal operation can be done in the ADC and the SBC instructions alone.)

(4) Using the 16-bit immediate data with "1" (data length : 8 bits) in the data length selection flag
m, or using the 8- bit immediate data with "O" (data length : 16 bits) in flag m, will cause the
program run-away. The same rule is applied to the index register length selection flag x. Take
care of the condition of these flags when coding the program.

(5) The MELPS 7700 can prefetch the instructions using the 3-byte instruction queue buffer. Keep
in mind when creating the timer with the software, that the number of cycles shown in the list
of machine language instructions is the minimum value. (Also see Chapter 6.)

(6) When value other than "0016" is set in the lower order 8 bits of the direct page register DPR
(OPAL), the processing time will become 1 machine cycle longer than when "0016" is set.

(7) The processing speed will deteriorate if a 16- bit data will be accessed from an odd address.
Place the 16-bit data from an even address if the processing speed is important.

(8) The N and Z flags will change by execution of the PLA instruction, but the contents of the proc­
essor status register will not change if the accumulator A alone is recovered by the PUL instruc­
tion.

(9) The program bank register PG can be saved into the stack by setting "1" in bit 6 of the operation
by the PSH instruction. However, the PG cannot be recovered by the PUL instruction.

(10) When the PUL or the PSH instruction is executed, the flag m and the flag x are affected in
addition.

165

Notes for Programming

(11) The code in the second byte of the BRK instruction will not affect the CPU.

(12) When the block transfer instruction (MVN or MVP) is executed with X=1, the contents of middle
order 8-bit in source and destination address (There are consists of 24-bit.) will be fixed "0016".

166

Instruction Execution Sequence

6. Instruction Execution Sequence

The basic clock of the MELPS 7700 central proceS§ing unit (CPU) is clock <j> (1/2 the oscillation
frequency f(X1N)). The basic clock of the bus is an E derived from clock <j>, so data exchange be­
tween the CPU and the internal bus is done via the bus interface unit. The frequency of E is
normally 1/2 that of clock <j>, but it becomes 1/4 that of <j>, when accessing external memory while
the wait is enabled by the wait bit.

6.1 Bus Interface Unit

The bus interface unit is a unit that helps data exchange between the CPU and the internal bus.
The unit is structured by registers and buffers as shown in Figure 6.1.1. The functions of these
registers and buffers are shown in Table 6.1.1. The CPU reads the instruction code from the
instruction queue buffer, and the data from the data buffer of the bus interface unit. Then, data
is written in the data buffer of the bus interface unit. The bus interface unit reads or writes data
from the memory or 1/0 via the bus, instead of the CPU.

b23 bO

I PA I Program Address Register
b7 bO

I Qo I I I
I 01 I I Instruction Queue Buffer

I
I Q2 I _J

b23 bO

DA I Data Address Register
b15 bO

DBH DBL Data Buffer

Fig. 6.1.1 Bus Interface Unit Register Model

Table 6.1.1 Functions of the Registers and Buffers

Name Function

Program address register This register indicates the address where the program is stored.

Instruction queue buffer The 3-byte buffer for temporal storage of the instruction pre-
fetched from the memory.

Data address register The register that indicates the address for data read or data
write.

Data buffer The buffer where the bus interface unit temporarily stores data
read from the memory or 1/0 or where the CPU temporarily
stores data to be written into the memory or 1/0.

167

Instruction Execution Sequence

6.2 Change of the CPU Basic Clock <j>c:Pu

168

When the bus interface unit is not ready, the CPU extends the basic clock to synchronize with
the bus, and waits till it is ready. As the CPU basic clock waits owing to some conditions, this
clock will be called cpcPu to be distinguished from the clock . The following are the cases in which
the <J>cPu waits.

Causes for the <j>cPu to wait

<Cause 1>
When the CPU requests operation codes and operands, but the operation codes and op­
erands in the instruction queue buffer did not reach the necessary number.

<Cause 2>
When the CPU tried to access data, but the bus interface unit was using the bus for fetching
some data into the instruction queue buffer or writing data.

<Cause 3>
When the bus interface unit was reading data from the internal/external memory or 1/0,
according to the request of the CPU.

In addition to the above, the following are also causes for the <)>cPu to be extended.
• When 16-bit data is accessed from odd address.
• When external memory 16-bit data is accessed while the BYTE terminal level is "H".
• When external memory is accessed with wait commanded by the wait bit.

The above conditions causes the execution time to differ each time, even with the same instruc­
tion and same addressing mode. Two example instructions are given in the next section to see
the variation of the number of cycles according to the above conditions.

The " CPU execution sequence per addressing mode " of Appendix-A is the CPU instruction
execution sequences based on the <)>cPu . The number of cycles shown in " 4.2 Instructions " and
" Appendix-B List of machine language instructions " are the count for the shortest case, and
cannot always be applied when calculating the actual cycles or the execution time of instructions.

Instruction Execution Sequence

6.3 Instruction Execution Sequence

The instruction execution sequence of the CPU based on the <j>cPu, and the variation of the actual
instruction execution cycle when various conditions are applied are shown here.

• Example 1. ASL instruction Direct addressing mode

• Example 2. LDA instruction Direct indirect long addressing mode

wltlit·@M@:wd Before observing the c)lcPu based CPU instruction execution sequence •ifWM!Mtl

The following table describes the c)lcPu based CPU instruction execution sequence symbols. The
signals indicated in this execution sequence are all CPU internal signals, that show data ex­
change between the bus interface unit and the CPU. Accordingly, these signals cannot be
observed from outside.

<!>cPu Based CPU Instruction Execution Sequence Symbols

Symbol Description

c)lcPU CPU basic clock

AP(CPU) Higher order 8 bits of the address (24 bits) of the program that the CPU is actually execution

AHAL IC PU) Lower order 16 bits of the address (24 bits) of the program that the CPU is actually execution

DATA1cPU) Data information the CPU is processing

R/W1cPU) Data read/write request to the data buffer in the bus interface

PG,PC Contents of the program bank register (PG) and the program counter (PC)

ADP Data indicating the address (higher order 8 bits)

ADH,ADL Data indicating the address (middle order 8 bits, lower order 8 bits)

DPRH Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register (DPRL = 0 in the examples)

DH Data to be fetched or written from the data buffer by the CPU (higher order 8 bits)

DL Data to be fetched or written from the data buffer by the CPU (lower order 8 bits)

dd Contents of the operand (DPRL = O in examples 1 and 2, so dd represents the lower order 8
bits of the address)

169

Instruction Execution Sequence

lttttJt:tt:M::r::w::I Before observing the <!> based instruction execution sequence I:tH::Htw:::i:rrm:n:n@

The <!>based execution sequence symbols are shown in the following table. The signals in this
execution sequence indicates data exchange of the bus interface unit with the memory and 1/0.
The internal instruction execution sequence of the CPU can be guessed from these signals.
However, the <!>cPu and the number of data in the instruction queue buffer shown here cannot be
observed from the outside.

<P Based Execution Sequence Symbols

Symbol Description

<I> Basic operation clock of the microcomputer f{XIN) f 2

E Basic operation clock of the bus <1>12

hh Higher order 8 bits of the address where the bus interface unit is to access to (bank)
--------- - -------------·

mm Middle order 8 bits of the address where the bus interface unit is to access to

II Lower order 8 bits of the address where the bus interface unit is to access to

DPR Contents of the direct page

DPRH Contents of the higher order 8 bits of the direct page register

DPRL Contents of the lower order 8 bits of the direct page register

OP1 Data to be fetched into the instruction queue buffer by the bus interface

OP2 (Operation code or operand)
Qp3 The subscript represents the fetch sequence.

:

DL Data to be fetched into the data buffer or data to be written into the memory by the bus interface
DH unit

dd Data obtained as the operand (The lower order 8 bits of the address are given in examples 1

and 2, because DPRL = 0.)

ADP Higher order 8 bits of data that indicates the address (contents of the data address register)

ADH Middle order 8 bits of data that indicates the address (contents of the data address register)

ADL Lower order 8 bits of data that indicates the address (contents of the data address register)

The following are the cause of the "<l>cPu to queue" in the <I> based execution sequence.

170

Cause 1
When the CPU required operation codes and operands, but the number of operation codes and
operands did not reach the requested number.

Cause 2
When the CPU tried to access data, but the bus interface was using the bus for fetching data into
the instruction queue buffer or for writing data.

Cause 3
When the bus interface unit is reading data from the internal/external memory or 1/0, etc., accord­
ing to the request of the CPU.

Instruction Execution Sequence

Example 1. ASL instruction I direct addressing mode (DPRL = 001s)

<j>cPu based CPU instruction execution sequence

<)>CPU

AP(CPU) ~ PG x PG x ~---oo ___ ~X PG)[

AHAL(CPU) -y._ PC x PC+1 x '--~~-D_P_R_H~·-d_d~~--'~ PC+2 >C
New Next
DH D L Op Code DATA(CPU) Op Code Operand DH D L 1fot Used

RI W(CPU)

Note: All the signals are CPU internal signals, which cannot be observed from outside.

The following examples 1-1 to 1-6 are examples of the <j>cPu based instruction execution se­
quences under various conditions.

Example 1-1 When the instruction queue buffer is vacant

Example 1-2 When two data are in the instruction queue buffer

Example 1-3 When three data are in the instruction queue buffer

Example 1-4 When 16-bit data is accessed from odd address

Example 1-5 When external memory is accessed from the BYTE terminal using 8-bit
external bus width

Example 1-6 When external memory is accessed with wait by the wait bit

171

Instruction Execution Sequence

(Example 1-1) When the instruction queue buffer is vacant

Conditions

• Number of data in the instruction queue buffer

•ROM, RAM

• Data length selection flag m

• BYTE terminal level

0

External memory is used (Note)

"O" (16-bit length)

"L" (External bus width is 16 bits)

• Contents of lower order bytes (PCL) of the program counter Even

• Contents of the operand (dd) Even

¢ based execution sequence

. 1 2 3 4 5 6 7 8 9

¢c;Pu

! Fetches Op
! Code

Fetches
Operand

Reads Data Modifies Writes Next

Number of data in
Data Data ' Instruction

instruction queue O 2_,1 0 2
buffer

A2T-A16
Modified DL

I DAT A1even)
Modified DH

A1s-AB
I DATA1odd)

Opeland (dd)

A7-AD =x:~--~X 11+2 Xc_ ____ d_d __ ~~>=

BHE
"L" ;..------ ----------------

R/W

Cause for ¢c;Pu to queue -Cause 1 -Cause 2 -Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single-chip mode.

172

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

<I> No. CPU

1 (No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Bus interface unit

Fetches the instruction, because instruction
queue buffer is vacant and the CPU is not
using the bus.

2

Fetches the operation code.

!-- Fetches 2-byte worth of_?ata into the instruc­
~ lion queue buffer when E becomes "l.'.".

3

4

Fetches the operand.

(Waits till the bus used by the bus interface unit
becomes vacant.)

5 Waits for t: to become "L", to read data.

6 Reads data when E becomes "L".

7 Modifies data.

8 Writes data into the data buffer.

9 Fetches the next operation code.

Prefetches the instruction, because the in­
struction queue buffer is vacant and the CPU
is not using the bus.

Fetches 2 bytes worth of data into the instruc­
tion queue buffer when t: becomes "L".

Writes the contents of the data buffer into the
original address, when E becomes "L".

173

Instruction Execution Sequence

(Example 1-2) When two data are in the instruction queue buffer

Conditions

• Number of data in the instruction queue buffer

•ROM, RAM

2

External memory is used (Note)

"O" (16-bit length) • Oat.a length selection flag m

• BYTE terminal level "L" (External bus width is 16 bits)

• Contents of lower order bytes (PCL) of the program counter. Even

• Contents of the operand (dd)

c)> based execution sequence

c)>cPU

Number of data in
instruction queue
buffer

A2-rA1a
I DATA(ovon)

MsNAa
I DATA(ood)

i Fetches Fetches
! Op Code Operand

2 I o
I

'

Even

Modifies Writes I Next
Data Data ! Instruction

Reads Data

2 I
Modified DL

Modified DH

=*~~~~X.__~~d_d~--.--x=

"L" '----------------'----+----

R/W

Cause for c)>cPU to queue ..____..
Cause 2

........
Cause 3

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, RiW signal cannot be observed from
outside, when the mode is single chip mode.

174

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

<j>No. CPU Bus interface unit

1 Fetches operation code.

2 Fetches operand (dd). Prefetches the instruction, because the instruct
queue buffer is vacant and the CPU is not using
the bus.

3 (Waits till the bus used by the bus interface unit Fetches 2-byte worth of data into the instruction
becomes vacant.) queue buffer when E becomes "L".

4 Waits for E to become "L", to read data.

5 Reads data when E becomes "L".

6 Modifies data.

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffe·r into the
original address, when E becomes "L".

175

Instruction Execution Sequence

(Example 1-3) When three data are in the instruction queue buffer

Conditions

• Number of data in the instruction queue buffer 3

• ROM, RAM External memory is used (Note)

• Data length selection flag r:n "O" (16-bit length)

• BYTE terminal level "L" (External bus width is 16 bits)

• Contents of lower order bytes (PCL) of the program counter Even

• Contents orthe operand (dd) Even

<I> based execution sequence

QCPU

Number of data in
instruction queue
buffer

A23-A16
I DATA(even)

A15-/lv:J
I DATA(oddl

!Fetches
l°P Code

3 i 2

Fetches
Operand

Reads Data Modifies
Data

3

Writes
Data

Modified DH

BHE
"L" !..-----------------+---­

'
R/W

Cause for QcPU to queue -­Cause 3 -­Cause 2

Note. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of the
level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed from
outside, when the mode is single chip mode.

176

Instruction Execution Sequence

Operation of the CPU and bus Interface unit under various cycles

Q>No. CPU Bus interface unit

1 Fetches operation code .

2 Fetches operand (dd).

3 Waits for E to become "L", to read data.

4 Reads data when E becomes "L".

5 Modifies data. Prefetches the instruction, because there are two
vacant instruction queue buffers and the CPU is not
using the bus.

6 (Waits till the bus used by the bus interface Fetches 2-byte worth of data into the instruction
unit becomes vacant.) queue buffer when E becomes "L".

7 Writes data into the data buffer.

8 Fetches the next operation code. Writes the contents of the data buffer into the origi-
nal address, as E becomes "L".

177

Instruction Execution Sequence

(Example 1-4) When 16-bit data is accessed from odd address

Conditions

• Number of data in the instruction queue buffer

•ROM, RAM

• Data length selection flag m

• BYTE terminal level

0

External memory is used (Note1)

"O" (16-bit length)

"L" (External bus width is 16 bits)

• Contents of lower order bytes (PCL) of the program counter Odd

Odd • Contents of the operand (dd)

<J> based execution sequence

¢<;PU

Number of data in

instruction queue O
buffer

A2:r-A1s
I DATA1even1

A1s-Aa
I DATA10••1

~ Fetches Op
j Code

1~0

Fetches
Operand

Reads Data

2~1

Op Code Ne:.1 Op Code

J x

BHE

RIW

Cause for <i>cPU to queue__.

Cause 1

11+1 x

...___.
Cause 1

dd

Invalid

x dd+1 x

Cause 3

Modifies Writes
Data Data \Instruction

3

11+3 x

...___.
Cause 2

2

dd x

Modified DH

Invalid

dd+1 :c

...............
Cause 2
(Note2)

Note1. The operation when internal ROM and internal RAM are used, will be as shown above, regardless of
the level of the BYTE terminal. However, the address/data bus, BHE, R/W signal cannot be observed
from outside, when the mode is single chip mode.

Note 2. At the <- - -> part

178

• When the CPU does not use the bus, <j>cPu corresponds with <j>.

* When the CPU uses the bus, the <!JcPu queues till the writing in the bus interface unit completes. (the ¢14

cycle)

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

<j>No.

2

3

4

5

6

7

CPU

(No fetching can be done, because there are
no operation codes in the instruction queue
buffer.)

Fetches operation code.

(No fetching can be done, because there are
no operands in the instruction queue buffer.)

Bus interface unit

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

Fetches 1 odd address byte worth of data into the
instruction queue buffer, when E becomes-"L".

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

/ Fetches 2-byte wort_ti of data into the instruction
~ I queue buffer when E becomes "L".

Fetches operand (dd).

Waits for E to become "L", to read data.

Reads data in the odd addresses (DL) alone into the data buffer when E becomes "L".

Waits for E to become "L", to read data.

8 Reads data in the even addresses (DH) alone into the data buffer when E becomes "L".

9

10

11

12

13

14

Modifies data.

(Waits till the bus used by the bus interface
unit becomes vacant.)

Writes data into the data buffer.

Fetches the next operation code.

?

?

Pref etches the instruction, because there are two
vacant positions in the instruction queue buffer,
and the CPU is not using the bus.

Fetches 2 bytes worth of data into the instruction
queue buffer, when E becomes "L".

Waits till E becomes "L" to write data.

Writes the contents of the data buffer (DL) into the
original address (odd address), when E becomes
"L".

Waits till E becomes "L" to write data.

Writes the contents of the data buffer (DH) into the
original address (even address), when E becomes
"L".

When internal ROM or BYTE terminal level "L" external memory is used as the program memory, the instruction is
fetched into the instruction queue buffer normally in 2-byte (word) unit of sequential even and odd addresses in this
order. However, when the instruction must be fetched from odd address like after execution of the JMP instruction,

the 1-byte of the first odd address alone is fetched into the instruction queue buffer (¢2 cycle), and the later instructions
are fetched into the instruction queue buffer in 2-byte units (¢4, ¢10 cycle).

The bus interface unit automatically selects whether to fetch one word or to fetch the 1 byte of odd address alone.
The operation status can be observed from outside, according to the output of the BHE terminal and the address bus
signal Ao, as long as the mode is not single chip mode.

•When one word is fetched

The output from both the BHE terminal and the address bus Ao are at the "L" level.

• When 1 byte of odd address alone is fetched

The output from the BRE terminal is "L", while the output from address bus Ao is "H".

179

Instruction Execution Sequence

When internal RAM and external memory at BYTE terminal level "L" are used as the data memory, with data
length selection flag m = 0, both data read and write are normally done in 2-byte units of even and odd
addresses, in this sequence. However, access can also be done when the word data is defined from an odd
address. In other words, "H" is output first from address bl.is Ao and then "L" from the BHE terminal to access
to odd address alone. Next, "L" is output from Ao, and "H" from the BHE terminal to access to the even address.
(<i>s to ¢s, ¢11 to c)>14 cycle)

180

Instruction Execution Sequence

(Example 1-5) When external memory is accessed from the BYTE terminal using
8-bit external bus width

Conditions

• Number of data in the instruction queue buffer

•ROM, RAM

• Data length selection flag m

• BYTE terminal level

• Contents of lower order bytes (PCL) of the program counter

• Contents of the operand (dd)

cj> based execution sequence

GlCPU

Number of data in
instruction queue
buffer

,1 2

Fetches Op
Code

3 4

Fetches
Operand

5 6 7 8

Reads Data

DP~

dd x A1-Ao =x ___ __,X 11+1 X._ ___ _, dd+1

BHE

RIW

Cause for QcPu to queue ...__.,.

Cause 1

Note. At the <- - -> part

___.
Cause 1 Cause 3

* When the CPU does not use the bus, cj>cPu corresponds with cj>.

9

x
x

0

External memory is used

"O" (16-bit length)

"H" (External bus width is 8 bits)

Even

Even

10 11 ,12 13 14

Modifies Writes
Data Data ~ Instruction

mm x •
11+2 x

___.
Cause 2

dd

0

Modified DL Modified OH

DP~

x
:c:

dd+1 :c:

~
Cause 2 (No1e)

• When the CPU uses the bus, the cj>cru queues till the writing in the bus interface unit completes. (the cj>13 to cj>14
cycle)

181

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

<j> No. CPU Bus interface unit

1 (No fetching can be done, because there are Fetches the instruction, because the instruction queue
no operation .codes in the instruction queue buffer is vacant and the CPU is not using the bus.
buffer.)

2

~
Fetches 1 odd address byte worth of data into the in-
struction queue buffer when E becomes "L".

Fe.tches operation code.

3 (No fetching can be done, because there are Fetches the instruction, because instruction queue
no operands in the instruction queue buffer.) buffer is vacant and the CPU is not using the bus.

4 Fetches 1-byte worth of data into the instruction

~ queue buffer when E becomes "L".
Fetches operand (dd).

-

5 Waits for E to become "L", to read data.

-

6 Reads data (DL) into the data buffer when E becomes "L".

7 Waits for E to become "L", to read data.

8 Reads data (DH) alone into the data buffer when E becomes "L".

9 Modifies data. Prefetches the instruction, because there are two
vacant positions in the instruction. queue buffer, and
the CPU is not using the bus.

10 (Waits till the bus used by the bus interlace Fetches 1 byte worth of data into the instruction
unit is vacant.) queue buffer when E becomes "L".

-
11 Writes data into the data buffer. Waits till E becomes "L" to write data.

12 Fetches the next operation code. Writes the contents of the data buffer (DL) into the
original address (odd address), when E becomes "L".

-
13 ? Waits till E becomes "L" to write data.

14 ? Writes the contents of the data buffer (DH) into the
original address (even address), when E becomes "L" . .

The external bus width becomes 8 bits when the "H" level is applied to the BYTE terminal. (The width of the internal
bus is 16 bits, regardless of the level of the BYTE terminal.) When external ROM is used under this mode, the
instruction can only be fetched byte by byte. (<j>2, <j>4, <j>10 cycle) When external RAM is used, the data can likewise
only be handled byte by byte. Accordingly, when data length selection flag m = 0 is selected, it takes time worth 2
cycles of the enable output E for data read and write. (lj>s to <j>s, <j>11 to <j>14 cycle)

182

Instruction Execution Sequence

(Example 1-6) When external memory is accessed with wait by the wait bit

Conditions

• Number of data in the instruction queue buffer O

• ROM, RAM External memory is used

• Data length selection flag m "O" (16-bit length)

• BYTE terminal level "L" (External bus width is 16 bits)

• Contents of lower order bytes (PCL) of the program counter Even

• Contents of the operand (dd) Even

<J> based execution sequence

2 3 4 6 8 9 10 11 12 13 14 ,15 16 17

<bcPU

Number of data in
instruction queue
buffer

o!

A2J-A16 =:)('.
I DA TA1.,•nl ;

Ais-Ae =:x
/DATA100dl ,

A7-Ao =:x
E

BHE
"L"

RIW

Cause for ¢lcPu to queue

Fetches Op Code

2~1

hh x OP1 x
?5j)~CXie

mm x OP2 x
~eland(dd)

x

Cause 1

Fetches Operand Reads Data Modifies Writes
Data Data j Instruction

0 2

hh x OP3 x 00 x D.. x 00
NeK1 Op Code

X Modified C\. ~
~-----.,--~

mm x OP• x DPRI x DH x DP~ ~-----,--~X Modified DH x==
11+2 x dd

~
Cause 2 Cause 3 Cause 2 (Note)

183

Instruction Execution Sequence

Operation of the CPU and bus interface unit under various cycles

<j>No.

1
2

CPU

(No fetching can be done, because there are
no operation codes in the instruction queue
buffer.)

Bus interface unit

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

3
4

Fetches the operation code .

v Fetches 2 bytes worth of data into the instruction
~ queue buffer when E becomes "L".

5
6

7
8

Fetches operand (dd).

(Waits till the bus used by the bus interface
unit becomes vacant.)

9 Waits till E becomes "L" to write data.
10

11 Reads data when E becomes "L".
12

13 Modifies data.

14 Writes data into the data buffer.

15 Fetches the next operation code.

16 ?

Note. At the <- - -> part

Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when becomes "L".

Writes the contents of the data buffer into the original
address (odd address), when E becomes "L".

* When the CPU does not use the bus, <j>cPu corresponds with <j>.
* When the CPU uses the bus, the <j>cPu extends till the writing in the bus interface unit completes. (the <jl16 to

<j>11 cycle)

The conditions are the same, except when wait is commanded by the wait bit (example 1-1). When accessing to
the external memory, the cycle of enable output E becomes twice that for no-wait, and thus the <j>cPu wait time
also becomes twice the cycle. (<j>3 to <j>4, <j>1 to <j>a, <j>11 to <j>12, <j>16 to <j>11 cycle)

184

Instruction Execution Sequence

Example 2. LOA instruction I Direct indirect long addressing mode (DPRL = 001s)

<)>cPu based CPU instruction execution sequence

cp CPU

AP(CPU)] PG X PG X oo Xooor01 Xooor01 X ADP X PG I:_

AHAL(CPU) -y,, PC ~ DPRH, dd xD:::; x ADHADL x PC+2 y::_

DATA(CPU)

RI W(CPU) "H"

Op Code Operand ADH ADL Not Used
dd

ADP DHDL
Next
OpCode .

Note: All the signals are CPU internal signals, which cannot be observed from outside.

185

Instruction Execution Sequence

(Example 2·1) When the internal as well as the external memories are used together while wait
is commanded by the wait bit.

Conditions

• Number of data in the instruction queue buffer

• Bank O

Bank 1 and after

• Data length selection flag m

• BYTE terminal level

0

Internal ROM, RAM are used

External memory is used

"O" (16-bit length)

• Contents of lower order bytes (PCL) of the program counter

"L" (External bus width is 16 bits)

Even

• Contents of the operand (dd)

• Data indicated by the address ADL

ADP

<P based execution sequence

2 3 4

<I>

<j>cPU

Fetches Op Fetches

Number of data in
Code Operand

instruction queue o: 2-.1 0 2
buffer

A2a-A16
I DATA(even)

A,s-~

I DATA<oddl
Ope!and (dd)

5

A7-Ao =* x 11+2 x
E

SHE

"H"

R/W

Cause for <f>cPu to queue --- ---Cause 1 Cause 2

186

6 7 8

Reads Calculates

Data Address

dd x

--Cause 3

Even

Even

1 or more (bank 1 and after)

9 10 11 12 13 ,14

Reads Reads
Data Data ; Instruction

ADP DL

ADH DH

dd+2 x ADL c=

--Cause 3 Cause 3

Instruction Execution Sequence

O___Q_eration of the CPU and bus interface unit under various qcles

<j> No. CPU Bus interface unit

(No fetching can be done, because there are no
operation codes in the instruction queue buffer.)

Fetches the instruction, because instruction queue
buffer is vacant and the CPU is not using the bus.

2 / Fetches 2 bytes w~rth of data into the instruction
~ queue buffer when E becomes "L".

3

4

Fetches the operation code .

Fetches operand (dd).

(Waits till the bus used by the bus interface unit
becomes vacant.)

Prefetches the instruction because the instruction
queue buffer is vacant and the CPU is not using the
bus.

Fetches 2 bytes worth of data into the instruction
queue buffer when E becomes "L".

5 Waits for E to becomes "L", to read data (ADH ADL) indicated by the address obtained by adding the
contents of the operand (dd) and the DPRL.

6 Reads data when E becomes "L".

7 Calculated address.

8 Waits for E to become "L", to read data (ADP).

9 Reads data when E becomes "L".

10 Waits for E to become "L", to read the data (DH DL) at the address specified by ADP ADH ADL.
11

12 Reads data when E becomes "L".
13

The above is the case when bank 1 and after are used by the external memory under the memory expansion mode.

The currently executed program is in bank 0. The contents of the lower order bytes of the direct page register DPRL
is "0016", so the direct pages are all in bank 0. The access to the outside (<j>10 to <j>13 cycle) alone is affected by the
wait bit, and access to the internal memory is not affected by the bit.

187

APPENDIX A
CPU Instruction Execution Sequence for each Addressing Mode

APPENDIX A. CPU Instruction Execution Sequence for each Addressing Mode

The following are the CPU instruction execution sequences for each addressing mode. The exe­
cution sequences shown here describe the internal operation of the CPU. Therefore, the signals
are all CPU internal signals, and cannot be observed from outside. The CPU internal operation,
the actual execution time, and the relation between signals that can be externally checked are
described in Chapter 6 "Instruction Execution Sequence".

The following are the signals and the symbols indicating the contents.

Symbol Description

<j>CPU CPU basic cycle

AP(CPU) Higher order 8 bits of the CPU internal address bus.
AHAL(CPU) Lower order 16 bits of the CPU internal address bus.

PG Contents of the program bank register.
PC Contents of the program counter.

Others are data that indicates the address obtained as result of address calculation.

DATA1cPu1 The CPU internal data bus. The signal is output with a half-cycle delay from the CPU
internal address bus. The operation codes and the operands are fetched from the in-
struction buffer. They are not directly fetched from the memory indicated by the PG
and PC of this cycle.

-

R/W1cPU) Becomes "L" when the CPU writes data into the data buffer of the bus interface unit.

188

The accumulator used in the above instructions in the CPU instruction execution sequence is
accumulator A. When accumulator B is used, the execution cycle will have the two cycles of
a "4216" that indicates accumulator B, and an internal processing cycle added at the front.
(See the figure in the next page.)

The number of <j>cPu cycles differs in the addressing mode that uses the direct page register,
according to whether the lower order 8 bits (DPRL) are "0016''. The number of cycles when
DPRL = 0016 is 1 cycle (address calculation cycle) less than when DPRL '# 0016.

The number of cycles differs in the PSH and PUL instructions according to the number and
type of registers placed in (taken out of) the stack.

The number of cycles differs in the block transmission instruction (MVN, MVP), according to
the number of the data transmitted.

APPENDIX A
CPU Instruction Execution Sequence for each Addressing Mode

Variation of the execution cycles according to the accumulator used

ADC Instruction I Immediate addressing mode

<<When accumulator A is used»
Mnemonic: ADC A,#1234H Machine code: 6916 3416 1216

<j> CPU

AP (CPU) J PG PG PG

AHAL(CPU) PC PC+1 PC+3

....

DATA (CPU)
_/

6916 123416

: OpCode Operand

<<When accumulator B is used»
Mnemonic : ADC B,#1234H Machine code : 4216 6916 3416 1216

. .
~2-cycle__.:
. .

<j> CPU

AP (CPU) ~ PG x PG x PG ~~ PG

AHAL(CPU) J< PC x PC+1 x PC+1 x PC+2 x PC+4

DATA(CPU) 4216 Not Used 6916 123416

Op Code Op Code Operand

189

Implied

Instruction : C LC, CL I. C LM, CLV, DEX, DEY, IN X, I NY, NOP,
SEC, SE I. S EM, TAD, TAS, TAX, TAY, TDA, TSA,
TSX, TXA, TXS, TXY, TYA, TYX

Timing

¢CPU

AP(CPU)

R/W(cpu)

Instruction T B D, T B S, TB X, TB Y, T p B , T S D, TX B , TY B

Timing

¢cpu

Ap(CPU}

DATA(cPul Not used Op Code Not used

R/W<cPul
"H"-----------------------

190

Implied

Instruction X AB

Timing:

</>cpu

AP(CPU)

PC+2 ><=
DATA(cPul Not used Op Code Not used

Next
Op Code

Instruction : S T P, W I T

Timing:

¢CPlJ

AP(CPU) PG

PC+ I

DATA1cpu1 =:x Op Codex Not used X.___N_o_t _us-ed _____ _

"H"---------------------
R/W:cpuJ

191

Implied

Instruction RTS

Timing

r/Jcpu

AP(CPU)

Instruction : R T L

Timing

r/Jcpu

Ap(CPU)

DATA(cpul

192

Implied

Instruction R T I

Timing

¢>CPU

AplCPU I

DATA:cPu

(Stack) (Stack) (Stack)
"H"---

R/W.cpu

193

Implied

Instruction BRK

Timing

00

~---s_-_4 __ __.X FFFA X AD"Ao, x::=
r---..,. Next

Op Code

194

Immediate

Instruction A D C , A N D , C MP , E 0 R, L D A, 0 RA, S B C

Timing

m=O

When m=1, fetched operand at 2-nd cycle is 1-byte(nn).

Instruction LDX, LDY, CPX, CPY

Timing

"H"-----------------
RIW1cpu1

When x=1, fetched operand at 2-nd cycle is 1-byte(nn).

195

Immediate

Instruction : . L D T

Timing

Instruction R L A

Timing

¢CPU

Ap{cpu)

PC+3 ><=
Next

DATA(CPU I Op Code

R!W(cpu\
"H"---

196

Immediate

Instruction : S E P

Timing

<f>cPu

Ap(CPU)

DATA(CPU}

- "H"----------------------
R/W(cPul

Instruction CLP

Timing

¢CPU

Ap:cpul

R/W(CPU

197

Instruction

Timing

198

Immediate

DIV, MPY

Ap(CPU}

DATA(CPU)

R/WccPul

-(Note)---------~

--,
I
L-

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

r--
1 _ _J

Accumulator

Instruction A S L , D E C , I N C , L S R, R 0 L , R 0 R

Timing

199

Instruction

Timing

Instruction

Timing

200

Direct

ADC, AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY,
ORA, SBC

DPRL * 0

¢cpu

AP(CPU)

DATArcPul

When DPRL =O, this cycle is nothing.

LDM

DPRL 4' 0

<f>cPU

Ap(CPU)

mm nn

R/W(CPU)
"H"---------------------,

When DPRL =O, this cycle is nothing.

Instruction

Timing

Direct

STA, STX, STY

DPR,* 0

AP(CPU)

DATA(CPU)

PC+ 1

Operand
dd

Not used

·- "H"--------------------.
R/WtcPul

When DPR, =O, this cycle is nothing.

Instruction : A S L, D E C, I N C , L S R, R 0 L, R 0 R

Timing

DPR, * 0

¢CPU

Ap(CPU)

DATA(CPU) Op Code

R/W(CPU)

PC+ 1

Operand

dd
Not used

~----;;..

When DPR, =O, this cycle is nothing.

Not used

Next
A

Op Code

PC+2 ~
Next

Op Code

201

Direct

Instruction DIV, MPY

Timing

<f>cpu

AP(CPU)

DATA{ CPU)

"H"---------------------------
R/W(cPul

When DPRL=O, this cycle is nothing.

Next
Op Code

MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

202

I
I

_.J

Direct Bit

Instruction C L B , S E B

Timing

DPR,4'0, m= 0

AP(CPU} 00 or 01

DPR+dd PC+4 x=
DATA(CPU)

Next

Op Code

When DPR, =O, this cycle is nothing.
When m=1, fetched operand at 3-rd cycle is 1-byte(nn).

203

Instruction

Timing

Instruction

Timing

Ap(CPU)

204

Direct Indexed X

ADC, AND, CMP, EOR, LDA, LDY, ORA, SBC

OPAL oF 0

<f>cpu

AP(CPU)

OATA(CPU) Op Code

A/W(cpu)

LDM

Operand

dd

.,,..________,,.
When OPAL =O, this cycle is nothing.

When OPAL =O, this cycle is nothing.

Next

Op Code

Direct Indexed X

Instruction STA, STY

Timing

DPR, * 0

¢cPU

Ap{CPUl

DATA(cPul

Instruction

Timing

DPR, * 0

AP(CPU

DATA1cpu)

R/W,.CPU\

Op Code Operand
dd

Not used

<"----------~

When DPR, =O, this cycle is nothing.

Not used

ASL, DEC, INC, LSR, ROL, ROR

Op Code

PC+l

Operand

dd
Not used

~----------
When DPR, =O, this cycle is nothing.

00, 01 or 02

Not used

Next
Op Code

Next
Op Code

205

Direct Indexed X

Instruction DIV, MPY

Timing

OPAL oF 0

<f>cpu

Ap(CPU)

DATA(CPU)

- "H"--------------------------
A/W(cPul

206

- - -(Note)--------...... --..,
I
1..,_

00 or 01

DPA+dd

When OPAL =O, this cycle is nothing.

==~~Not used X Not used X ~~xhode)
(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

Not used

Instruction LDX

Timing

DPRc 4' 0

rf>cpu

AP(CPU)

DATA(CPU)

Direct Indexed Y

Operand

dd
Not used Not used

Next

Op Code

"H"---------------------------------
R/W(cPul

-<'-----·-~

When DPRc =O, this cycle is nothing.

Instruction STX

Timing

DPR, 4' 0

AP(CPU) 00, 01 or 02

DPR+dd+Y PC+2 ~
Next

Op Code
DATA(cPul A

When DP Re =O, this cycle is nothing.

207

Direct Indirect

Instruction ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPRL * 0

AP(CPU)

z·---~

When DPR, =O, this cycle is nothing.

Instruction STA

Timing

DPRL * 0

AP(CPU)

PC x PC+ 1 x DPR+dd x A DH AD,

Op Code
Operand

Not used Not used
dd

ADHADL DATA(cPUl A
Next

Op Code

- "H"------------------------
R/W(cPul

When DPR, =O, this cycle is nothing.

208

Direct Indirect

Instruction DIV, MPY

Timing

DPRL * 0 t4------------

</Jcpu

Ap(CPU)

DATAtcPUl Not used

- "H"--------------------------
R/W(cPul

< >
When DPRL =O, this cycle is nothing.

= ::. -:: = =========~
Next
Op Code

(Note) MPV instruction is 12-cycle, and DIV instruction is 23-cycle.

209

Direct Indexed X Indirect

Instruction ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

DPR, * 0

</Jcpu

AP{ CPU)

Next
DATA(CPU) Op Code

Op Code

- "H"------------------------------------
R/W(cPul

When DPR, =O, this cycle is nothing.

Instruction STA

Timing

DPR, * 0

Ap(CPU)

PC+l xDP:~ddx ADHAD, x
DATA1cPu) Not used Not used ADHAD,

Next
Not used A

Op Code

- "H"--------------------'-----------,
R/W{cPul

When DPR, =O, this cycle is nothing.

210

Direct Indexed X Indirect

Instruction DIV, MPY

Timing

DPRc 4' 0
~-------

¢CPU

Ap(CPU)

R/W(CPLJ)

..,.__
When DPRc =O, this cycle is nothing.

- - - -(Note)----- -

---: 11 11 11
L.. - J L__J L_J L_

PG

______ __,X PC+ 3 x
==~o~~~x~odeX

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

211

Direct Indirect Indexed Y

Instruction ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

OPRL'i' 0C1)t ~

AP(CPU)

DATA1cPul Op Code Operand

dd
Not used Not used

Next

Op Code

- "H"'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

R/W1cPul

When DPRL =O, this cycle is nothing.

Instruction STA

Timing

OPAL* 0

¢icpu

AP(CPU) DTorDT+l

Next
DATA1c•ul A

Op Code

When DPRL =O, this cycle is nothing.

212

Direct Indirect Indexed Y

Instruction DIV, MPY

Timing:

DPR, * 0 i----------

¢>CPU

Ap(CPU) DTorDT+l

DATA1cPul Not used

- "H"----------------------------
R/W(cPul

When DPRL =O, this cycle is nothing.

Next
Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

213

Direct Indirect Long

Instruction ADC, AND, CMP, EOR, LOA, ORA, SBC

Timing

DPR, * 0

Ap(CPU}

AHAUcPul PC x PC+ 1 x DPR+dd

ADP
Next

Op Code
DATA1cPu) Op Code

Operand
Not used Not used

dd

RIW(CPU)
"H"

When DPR, =O, this cycle is nothing.

Instruction STA

Timing

When DPR, =O, this cycle is nothing.

214

Direct Indirect Long

Instruction D I V, M P Y

Timing

DPR,* 0

When DPR, =O, this cycle is nothing.

----. ..
: I :
I o o J , ___ ...

ADp_ ______ --------======:::::
<'---------~~~~:~~~----------...J

(Note) MPV instruction is 12-cycle, and DIV instruction is 23-cycle.

215

Direct Indirect Long Indexed Y

Instruction ADC, AND, CMP, EOR, LOA, ORA, SBC

Timing

When DPRL =O, this cycle is nothing.

Instruction STA

Timing

!/Jcpu

APICPU

-<"c----
When DPRL =O, this cycle is nothing.

216

Direct Indirect Long Indexed Y

Instruction DIV, MPY

Timing

DPR,* 0

<f>cPu

AP(CPU)

R/WccPul

When DPR, =O, this cycle is nothing

(Note)--------<

n__s-i_n __ j--UL____fl__J
(ADp or Ao.+ 1 x PG x==
< ADHAD,+Y x PC+3 x==
=~~~~e~X Not used X Not used X ~~xtode

(Note) MPV instruction is 12-cycle, and DIV instruction is 23-cycle.

217

Instruction

Timing

Instruction

Timing

218

Absolute

ADC, AND, CM P, C PX, C PY, E OR, L DA, LD X, L DY,
ORA, SBC

t/Jcpu

Ap(CPU)

R/W(cPul

LDM

Absolute

Instruction S T A, S T X, S T Y

Timing

Ap(cPu)

DATA(CPU)
hhll

- "H"'--------------
R/W<cPul

Instruction A S L , D E C , I N C , L S R, R 0 L. R 0 R

Timing

¢CPU

Ap(CPU)

Operand

hhll

Next

Op Code

219

Instruction DIV, MPY

Timing

rf>cpu

AP(CPU) PG

AHAL(cPul PC

DATA1ceu)

R/W(CPU)

Absolute

,--­

' _J

~=================

Not used

Next
Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

220

Absolute

Instruction JMP

Timing

rf>cPU

Ap(CPU)

DATA(cpul

AIW(cPul
"H"------------------

Instruction JSR

Timing

¢cPu

AP(CPU)

R/W(CPU)

221

Absolute Bit

Instruction C L B, S E B

Timing

AP(CPU)

DATA(CPU)

222

m=O

Op Code
Operand

hhll

When m=1, fetched operand at 3-rd cycle is 1-byte(nn)

PC+5 x::=
Next

Op Code

Absolute Indexed X

Instruction : AD C , AND , CM P, E 0 R, L D A, L D Y, 0 RA, S B C

Timing

Instruction : L D M

Timing

¢CPU

Ap(CPUl

DATA(cPul

223

Absolute Indexed X

Instruction : A S L, D E C , I N C , L S R, R 0 L, R 0 R

Timing:

¢cpu

DATA,cPu Op Code

224

PC+l

Operand

hhll
Not used

DTorDT+l

hhll+X

Not used
Next

Op Code

Instruction

Timing

Ap(CPU)

DATAccPU)

R/W(cpu)

DIV, MPY

Absolute Indexed X
Absolute Indexed Y

Next
Op Code

(Note) MPV instruction is 12-cycle, and DIV instruction is 23-cycle.

.,.....___.. ______ _

Not used

225

Instruction S TA

Timing

¢cPU

AP(CPU)

DATA(cPul

Absolute Indexed X
Absolute Indexed Y

PC+ 1 x hhll+X(Y)

Operand
Not used Not used

hhll

- "H"-·-------------~
R/W(cpu)

226

x PC+3 '!::_
Next

A
Op Code

Absolute Indexed Y

Instruction AD C , AND, CM P, E 0 R, L D A, L D X, 0 RA, S B C

Timing

</>cpu

AP(CPU)

DATA(CPU)

227

Absolute Long

Instruction ADC, AND, CMP, EOR, LOA, ORA, SBC

Timing

¢cpu

Ap(CPU)

DATA(CPU)
hhll

- "H"--------------------------
R/W(cPul

Instruction STA

Timing

228

Absolute Long

Instruction DIV, MPY

Timing

i..---- - - - - - - - --

r/Jcpu

AP(CPU)

DATA(cPul Not used

. "H"---------------------------
R/W(cPul

- - - - _______ __,

Not used. X Not used X Not used X ~~xhode)

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

229

Absolute Long

Instruction JMP

Timing

Ap(cPU}

DATA(CPU) hhll

- "H"---------------------
R/W(cPul

Instruction JSR

Timing

AP(CPU}

R/W(CPU)

230

Absolute Long Indexed X

Instruction AD C, AND, CM P, E 0 R, L D A, 0 RA, S B C

Timing

Instruction STA

Timing

PC x PC+ I x PC+ 3 hhtt+x

DATA,.cPu' Op Code
Operand Operand

hhll pp
Not used A

Next

Op Code

231

Absolute Long Indexed X

Instruction DIV, MPY

Timing

..,....__ ________ _
</JcpU

Ap(CPU) ;::::====== =.-=. ·:::.

DATA(cPul

- - - - ______ __,
-- - - --------

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

232

Absolute Indirect

Instruction J MP

Timing

233

Absolute Indirect Long

Instruction JMP

Timing

<f>cpu

Ap(CPU)

234

Instruction JMP

Timing

Instruction JSR

Timing

¢cPu

DATA(CPU

Absolute Indexed X Indirect

PC+ 1

Operand

hhll

235

Stack

Instruction PEA

Timing

Instruction PEI

Timing

236

Instruction PER

Timing

t/Jcpu

Ap(CPUl

DATA(CPU)

R/W(CPU)

Op Code
Operand

mmnn

Stack

PG

PC+l

Instruction PHA, PHD. PHP, PHX, PHY

Timing

PC+3 ><=
Not used PC+mmnn

Next

Op Code

237

Stack

Instruction PHB

Timing

Instruction PHG, PHT

Timing

AP(CPU)

R/WccPul

238

Stack

Instruction P LA, P L D , P L X, P L Y

Timing

Instruction PLB

Timing

¢CPU

Ap::cPul

239

Stack

Instruction PLP

Timing

<PcPu

Ap(CPU) PG 00 PG

PC+1 s+1 PC+ 1 x=
Next

DATA(CPU) Op Code Not used Not used DHDL Not used
Op Code

- "H"-----------------------------
R/W(cPul

Instruction P L T

Timing

¢cpu

AP(CPU)

DATA(CPU I Op Code Not used Not used Not used
Next

Op Code

... "H"------------------------------
R/W(cPul

240

Instruction PSH

Timing

DT

Stack

A

x

PG

(Note) This figure is an example pushed all the registers
by PSH instruction. If any register is not pushed,
its cycle (-) is nothing.

B
~---------

DPR

PS

Next
PS Op Cod~

241

Instruction PUL

Timing

DATA(CPU'

AHAucpui PG

AP(CPU'

¢icPu

R/W(CPU'

DT

x B

(Note) This figure is an example pulled all the registers
by PUL instruction. If some register is not pulled,
its cycle (-)·is nothing.

242

Stack

PS

00

DPR y

A

Relative

Instruction : B RA

Timing:

¢CPU

PC x PC+ 1

DATAtCPUJ Op Code
Operand

rr

Next

Op Code

Instruction : B C C, B C S, B E Q, BM I , B N E, B P L, B V C, B V S

Timing

Branched

¢CPU

Ap(CPU

DATA(CPU

When not branch, this cycle is nothing.

243

Direct Bit Relative

Instruction BBC, BBS

Timing

DPR, * 0 , m= O , Branched

When DPR,=O, this cycle is nothing. When not branch, this cycle is nothing.

When m=1, fetched operand at 5-th cycle is 1-byte(nn).

244

Absolute Bit Relative

Instruction BBC, BBS

Timing

m= 0 , Branched

~CPU

Ap(CPU)

When not branch, this cycle is nothing.

When m=1, fetched operand at 4-th cycle is 1-byte(nn).

245

Stack Pointer Relative

Instruction ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing

Ap(cPu)

DATA(CPU)

-- "H"-------------------------
R/W(cPul

Instruction S TA

Timing

s+rr x
Not used

Next
A

Op Code

246

Stack Pointer Relative

Instruction D I V, MP Y

Timing

AP(CPU)

DATA(CPU)

-- -(Note)-------------,
I
L-

Next
Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

,.--------------

247

Stack Pointer Relative Indirect Indexed Y

Instruction :ADC, AND, CMP, EOR, LDA, ORA, SBC

Timing:

t/Jcpu

Ap(CPU)

PC x PC+I x
Op Code

Operand

rr
Not used

Next

Op Code DATArcPul

R/W(cPul

Instruction S TA

Timing

s+rr x ADHADc+Y x PC+2 ~

AD"ADc Not used Not used
Next

A
Op Code

248

Stack Pointer Relative Indirect Indexed Y

Instruction DIV, MPY

Timing

¢cpu

Ap{CPUi

R/W'CPUl

--,
I
L_

===== ----=
Next
Op Code

(Note) MPY instruction is 12-cycle, and DIV instruction is 23-cycle.

249

Block Transfer

Instruction MVN

Timing

¢CPU

250

(Target Bank) (Source Bank)

(Note) This figure is shown that transfered the 2-bytes data started from even

address. If transfered more than 3-bytes data, the cycle (-) is repeated

each 2-bytes.

Block Transfer

Instruction MVP

Timing

(Target Bank) (Source Bank)

(Note) This figure is shown that transfered the 2-bytes data started from even

address. If transfered more than 3-bytes data, the cycle (-) is repeated

each 2-bytes.

251

APPENDIX B

Series MELPS 7700 Machine Instructions

MACHINE INSTRUCTIONS
Addressing mode

r------, ---,---,----,---,---,----.---,------,---1
Symbol Function Details IMP IMM A DIR DIR,b DIR,X DIR,Y (DIR) (DIR,X) (DIR),Y

op n .#op n #op n #op nl#: op n #op n #op n #op n :j:l: op n :tt: op n #

ADC Acc,C ..-- Acc+M+C ' Adds the carry, the accumulator and the memory contents
(Note 1,2) The result is entered into the accumulator. When the D

flag is "O", binary additions is done, and when the D flag is

1-------1-------·-----··

AND Acc...-AccAM
(Note 1,2) I

"1", decimal addition is done

Obtains the logical product of the contents of the accumu­
lator and the contents of the memory. The result is en­
tered into the accumulator

ASL m=O Shifts the accumulator or the memory contents one bit to

69 2 2

~
69

29 2 2

f.i2t4Cj1
29

I

65 4 I 2

~
65

I 25 4 2

~
25

OA 2 1 06 7 2
(Note 1) CQJ-1 bid ··TbQJ-o . the left. "O" is entered into bit O of the accumulator or the ~

m=l memory. The contents of bit 15 (bit 7 when them flag is I ~ 4 i 2

72 6 2 61 7 2 71 8 2

~'42 9tji4;,iWJ
72 61 71

32 6 2 21 7 2 31 B 2

42 8 3 42 9 3 4210 3
32 21 31

[~Tc-:! ''1") of the accumulator or memory before shift is entered _i! DA1 I
[QJ-- -~lL...l.~Q_J•-0 into the C flag.

--+---·---------------------t--+-+-1 t-+r-t-+--Hr--+-+-t-+-+-+-t-t--t-r--+-+-t--+-t-+-1-+-+-H
BBC Mb=O "? Tests the speci.fi.ed bi.t of. the '.11emory. Branches when alt rti. [I
(Note 3,5) the contents of the specified bit 1s "O" ,

~S~·-- Mb=1 ? -~;;the spec1f1ed bit of the me~ory. B~anche~--when all - t--it-+-+--t--t--t-H-+--t-+-t-H-+--t--+-+-H--t-+--+-+-H--1

(Note 3,5) the contents of the spec1f1ed bit 1s "1 :
f---- ----------- ------t-t--+-+--H---t-+-+-+-t--1---t-+-+-+-H---t-+-+--t-t-I- r- -i---r-r--1--t--1
BC~te

3
) I C=O '! Branches when the contents of the C flag ts 'O' j

(N~ J
~sole

3
) ~C=1 -, ------+;;;;;~he~;;-;; the contents o-;-the c flag-~:;------ I

ts~ z~-1-" ___ ---i--9~nches when the contents of the z flag 1s 1 ----- 1
(I 11 ! j'
Note 3 [1---- __ ----t-+--t--t--H-+--+-+-+--+--+--+-+--+-+-+-+-H-+--+-+-+- t-i-t--+-+-+-+

BMl , I N=l ? . i Branches when the conten. ts of the N flag is "1" I
(Note 3~+:- Ts 1 ~ [

~(~~le~ ~-=-~~-=-=+:anches when the :nlents of the z ~:g is :~-~---_-_--_--_ -_ -~nt-+-t-tl-+--t-!i -t--t-!' -+--+ --t-r--+-+-+--+--t-t--t-+-Jl,I Tt
BPL N =O l Branches when the contents of the N flag 1s 'O' ; 1

(Note3) l
BRA PC-PC±offset 7umps to the address 1nd1cated by the program co~~.-;;;- -r I
(Note 4) ~;:~~;~red) plus the offset value i I'

(borrow occured)
~-K-- Pc--PC+-2-----+-E-x--e-cu-t-es_s_o_tt_w_ar-e-in--t-er-ru_p_ti-on-.--- -----------+ootit,,_15 2-+-+-H---t-+--+-+-t--t---t-+--+-+-H--t-+--+--t--t-cH--+--t--t--t-1

M(S)•-PG i -1-

~7;)-::_1PCH j' I' 1'

s-s-1
M(S)-PC, II

s~-s-1 I
M(S)-PSH
s-s-1
M(S)-PSc 1

s-s-1 I', 1-1
PCL-ADL
PCH-ADH

____ PG~------~-- ------------------+-~--+--t-t--+-+--t--+--t-r--+-+--t--+-t-i--t--t-t--t--+-t-i--t-t--+-+-H--f
BVC V=O? I Branches when the contents of the V flag is "O".

I Note 3) t' ------------------- --r---i--r-t--+--t-t---1-+--t--+--t-t---t-+-t--+--J-t---t-+-t--t-,-+--+-t--+-+-1
BVS V=l? Branches when the contents of the V flag is "1".
(Note 3) '

~LB- -M;.=_-0----·--i Make~ the contents of the specified bit in the memory "O''
(Note 5)

14 8 3
I

~C-LC----+-c---O-------+--M~ke_s_t_he--co--n-te_n_ts_o_f_th_e_C_fl~ag-"O-".--------+l-Bt2-+l-+-t-1H-+-+-+-+-l-+-+--t--+-+-ll-+-+-++-Ht-i-+-+-1-+-H

1----~--------1 -------------------+-+-+-l-+-+-+~-+-11--t-i ·t---t--r--i--t---t--r--r--t---t--r--r--1-j-j--+-t--
~~-1 ___ ~-------Makes the contents of the I flag_"O_"_. _________ --t-5_B1_2+-l t-1-+-+-t-+-t-1---t-+--+-+-t-1--+-+--+-+-H-t-+-1--t--t-C--t~
~~~ ·-m-0 Makes the contents of them flag "O''. 08 2 1 

CLP PSb-0 Specifies the bit position in the processor status register by the bit 
pattern of the second byte in the instruction, and sets "O" in that bit 

CLV v-o Makes the contents of the V flag "O". 

CMP Acc-M Compares the cootents of the accumulator with the contents of 
(Note 1,2) the memory. 

252 

Bii 2 1 

C2 4 2 

C9 2 2 

~ 
C9 l 

C5 4 2 05 5 2 D2 6 2 Cl 7 2 DI 8 2 

~ 1:421]"3 42 8 3 42 9 3 42 10 3 
C5 05 02 Cl Dl 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode Processor status register r---__,--__,-- - .. --,--- --~--~-~--T--··--r- ,------, ----,--- - - - - ,--- B-9El 
L(OIR) L(DIR)Y ABS ABS,b ABSX ABSY ABL ABL,X (ABS) L(ABS) (ABSX) STK REL DIRbR ABSbR SR (SR) Y BLK 10 9 8 7 6 5 4 3 2 1 0 
--,- t- r- ,---,+ · c-+--c- r- t-~- - - ,--,-+- ,--- -,---,-+-, r-.---1 -+--+-+--l· l--+-+--+-l 
~n 11 op n 11 op n 11 opl n I 11 op n 11 op n 11 op n 11 op n 11 op n # opl n I:! Joel n 11 lool n # op n ll op n 11 op n 11 op n ll op n #loo! n ll IPL N V m x D I Z C +--+-- 1-+- - -+-+-- -1--t-1 +-i r- r- 1--1 +-+-+--t CJ --1 
~7 10 2 77 11 2 60 4 3 7D 6 3 79 6 3 6F 6 4 7F 7 4 63 5 2 73 8 2 • • • N V • • Z C 

~113131426'4- 42+-s+-4-421814~19 5 '4t?t-i42103 

i67+-i-~I - 60t i _ J- 1 __ /D t- 791_ 6F 7F t-+- _ _ -++- +--+-+- -t-i + _ 63 73 j +-t- _ -+-+--+-+--l··--l--+-+--+--+-l 
27 1 o 2 37 11 2 20 4 3 ml 61 3 39 6 3 2F 6 4 JF 7 4 

1 
I 23 5 2 33 s i 2 • N • • z • 

4212 3 42133~26 4 '421-8\4-42 8 4 42 8 5 42 9 5 42 7 3 4210 3 
27 37 2D JD 39 2F JF 23 33; 

r- - t- - t--t t- 1-1 t-i I -t--l-i-t-i l--r-t--t
1

- - t-t--r---+ •t t t t 

I 
t-M I-· 

OE73 IE83 I N • • z c 

-t--H-t-1-----1--1 11-+-I I +-+--+-l-+·· -I 

i 

I 

H - t- -+--+--+--+-- t -1- 1-t-H - +-+-+-+1 --l--+-+--+--t--1 
3474JC85 

+-+-+-1-·: -t-t--1 ++- t-1 I- ++-I t- - t--i--1 24;7 4 2C 8+-;,+-- t- -t-+-i t-i t-++-- i·--1-1--1 

1-H - _1 + i -+--+-+--+--+-+--+--+-+--+--~-+--+---++ +-+-+- t :- I +++1()14+JH +-- -+-+--+--+--+--+--+ t--f-+--+-t--j--+-+-1 +--1 -: I • I :-. 

t-+-+--t --

-1--1--i -Lt-I --- -+-+-+-+-T+' -+-+-+--+-+--+~+++-t--- -+[Ill +-+-+-++I - + t-+- t+ 1-- I I-
I BO 4 2 • ! • • • I • 

t-i -t + t- t- --1 - t -+-t- FO+-:;-t 2 t-t--1 11 l-t-+t-l-t- - H -

I l t , 30 4 2 I- r +- -t--1·-·+r-t--1--+-t--+-j-- I -+-+--+----t--+--t--+__, 

+- +- - H I ITI t-- - t-+--+--r-•-+--r--+-+--+-+-+-+----t--+--+-t--+-+-+---t--+ 

-+-++-+- -+-+--l--+--+-+--l--+--T----+--+--+-+-l--+--iLLJ-1- 1-H -t-+--+--+--+-+--t--1-+-+--+--1-1 

r-+-1+-+--+ -+--+--+-+-- -+-t---1 
t-i --

soi 4 2 

~ 
Ill 

I 

I I 

r-+-+-+--r-r--+- ii- l-+--+-+- +--+--+ ; 

~I i I", T, 
, I 

11 I I 

I I I I 

t--t-i-

50 4 2 

I 

--- t-+-i--j-+- 70 4 ' 2 +-+-+-I -l-+-+--+--r+- l-+-11 :t-+-+:1. : ; . . . . 
r 1· +-t--+-t-+-+-1:-t- ++-+--+-++-+-I--+-+-+·-+ - I -t-H --1--t-- I-- -t--

i T 

+-+-+I- - I -+--+---t-+-+--t-+- l JI' t -t-+-11 - -+-+-+ +--+--+--+-

·I· .. 
t--f-+-+--+--l- -+--+--+-+--+-r-+--+-C-+--t -++-+-J--t--t t--+--t-t--+--t-t 1~- ff+-+-+-+-1-r--1-1- " i-+++--i-t---

t-H - -+-~--+--+-+- t- _J_--i 

:::~::~:::::~::_·+-H-tt--+---tl-+-IH-+t--l-·:_ .. 1~+-.-~+--:-~+-+-+-++-+ il--+-t-+--+-+H-+-1~>-+--le--+I-:~ ~-+-1 -t- +--t-t--tH-+-r-+1 -+-~-t-t-~r--.:-~~~-~--··~~~i::i:O-d"=· _11;~9~·~-br~--l 
+-t--+- -+-+-+- +--+--l-+T +-+-+-+-

C7 10 2 07 11 2 CD 4 3 DD 6 3 09 6 3 C16 4 DF 7 4 CJ 5 2 03 8 2 1. 

42 12 3 42 13 3 42 614-i 42 8 4 42 8 4 42 8 5 42 9 5 11 42 7 3 42 I 0 3 
Cl D7 D DD 09 CF DF CJ DJ 

N • 

t--1 

• 0 

z c 

253 



I 
Symbol Function 

CPX X-M 
(Note 1, 2) 

CPY Y-M 
(Note 1, 2) 

DEC Acc-Acc-1 or 
(Note 1) M-M-1 

I 

DEX x-x-1 

APPENDIX 8 

Series MELPS 7700 Machine Instructions 

Details 

Compares the contents of the index register X with the 
contents of the memory. 

Compares the contents of the index register Y with the 
contents of the memory. 

1 Decrements the contents of the accumlator or memory by 

11 

Addressing mode 

IMP IMM A DIR DIR,b DIR,X DIR,Y (DIR) (DIR,X) (DIR),Y 

opn:l:l:opn # op n ~ op n ft: op n ! # opl n # op n ! :1:1: op n :1:1: op 'n :1:1: op n ~ 
EO 2 2 E4 4 2 I i 
co 2 2 C4 4 2 

IA21C672 

~ 
IA I 

I 
l 

I 0017 2 

I 
I 
I 

DEY Y-Y-1 

Decrements the contents of the index register X by 1. CA 2 1 
__,_D_e_c-re_m_e_n-ts-t-he~co-n-te-n-ts_o_f-th_e_i_nd_e_x_r-eg-i-st-er-Y~by~1.~~r88+-2+1-++-+-H-+++-+-H-+++-+-r_j_;'-+-++-+-H-~ 

DIV A(quotient)+--B,A/M 
(Note 2,10) B( remainder) 

EOR Acc-AccVM 
(Note 1,2) 

INC Acc-Acc+l or 
(Note 1) M -M+l 

The numeral that places lt1e cootents ct acCtJmulatcr B to the higher crder and the 
cmtents d accumulato: A to the looer crder is divded by ltle cootents ct the memcry­
The quctient is entered into accuroolata A and the remainder into accumulata 8 

Logical exclusive sum is obtained of the contents of the 
1 accumulator and the contents of the memory. The result is 

I placed into the accumulator 

I Increments the contents of the accumulator or memory by 

11 

89 27 3 
29 

49 2 2 

~ 
49 

89 29 3 

251 

45' 4 2 

~ 
45 

3A21E672 

~ 
JA 

89 30 3 
35 

55 5 2 

ttj7'3 
551 

F617 2 

89 31 3 89 32 3 89 33 3 
32 21 31 

52 6 2 41 7 2 51 8 2 

42 8 3 42 9 3 42 I 0 3 
52 41 J 51 

I 
1-~--~t--~~~~~-·~+--~~~~~~~~~~~~~~~~~~+----T-+-+-+-+--r-+--+-r-t-+-++-t-t-t-+-++-t-t--t-+-+·+-+-t--t-1 

INX x-x+ 1 . Increments the c.ontents of the index register X by 1 E8 2 1 j 
INY ; Y+--Y+l Increments the contents of the index register Y by 1. ca· 2 1 
1----+---------+---- --·----·+--t--t-+-++-+-t--t-+-++-+-t--t-+~+·+-H-c-+++-HH-+-j 

JMP : ABS Places a new address into the program counter and jumps ; I 
I PCL - AOL to that new address. 

JSR 

254 

PCH-ADH 

ABL 
PCL +---AOL 
PCH .-.- ADH 

PG+---ADo 

(ABS) 
PCc -(ADH, ADcl 
PCH-(ADH,ADc+l) 

L(ABS) 
PCL +-(ADtt, AOL) 

PCH-(ADH,ADc+ll 
PG -(ADH, ADc +2) 

(ABS, X) 
PCc-IADH, ADc +xi 
PCH-(ADH,ADc+X 

+11 
ABS 
M(S)-PCH 
s-s-1 
M(S)- PCc 
s-s-1 
PCL -AOL 
PCH +--AOH 

ABL 
M(S)-PG 
s-s-1 
M(S)- PCH 
s-s-1 
M(S)-PCc 
s-s-1 
PCL +--AOL 

PCH +-- ADH 
PG-ADG 

(ABS, X) 
M(S)- PCH 
s-s-1 
M(S)-PCc 
s-s-1 
PCc -(ADH, ADc+X) 
PCH -(ADH, ADc +x 

+11 

Saves the contents of the program counter (also the con+ 
tents of the program bank register for ABL) into the stack, 
and jumps to the new address. 



APPENDIX 8 

Series MELPS 7700 Machine Instructions 

Processor status register Addressing mode ·-·---,------ --- ,---------,--·- ·---·- ---···- ·---~---· --- -- -------- -------'--------=------
L(DIR) L(DIR),Y ABS ABS,b ABS,X ABS,Y ABL ABL,X (AB~_i_ L(ABS) (ABS,X) STK REL DIR.b.R ABS,b,R SR (SR),Y BLK 10 9 8 7 6 5 4 3 2 1 0 

~··~··~··~··~··~··~··~··~··~··~··~··~··~··~··~··~··~·· IPL N V m x D I z c 
EC 4 3 1 N z c 

pc 4 3 N z c 

CE 7 3 DE 8 3 N z 

l--+-t-+-J-+i--t-t-+-t-+-+-+-+-1--+-t-+-J-+-t-J-+-J--t--+- J- ++-+I- . +- -J-++-- - - --1-.-l--t-+--C-+-' "'-+-l--1-..J-L-L--'--l--'-L-+-t-J...-L .. C- . .l-'-..l 

8935 3 8936 3 8929 4 8931 4 8931 4 8931 5 8932 5 
27 37 2D JD 39 2F 3F 

1--+-+-+-1--+-+-+-1--+-+-+-+-++-+-+-t-+-+--++-+-+-++-+-+-t-+-1--+-+-+-1--+-+-+-11--
47 10 2 57 11 2 4D 4 3 

4212 3 4213 3 42 6 4 
47 57 4D 

i 

EE 7 3 
I 

4C 2 3 

20 6 3 

I 

I 

I 

5D 6 3 59 6 3 4F 6 4 5F 7 4 

42 s 4 42 s 4 42 sJsl 4zfg+g-
5D 59 4F 5F 

FE 8 3 

5C 4 4 

I 

22 8 4 

i 

I 

I 

6C43DC837C63 

' 
! 

' 

I 

FC 8 3 

I 

N z 
N z 

89 30 3 89 33 3 N V z c 
23 33 

-·-
43 5 2 53 8 2 N Z 

42 7 3 42 10 3 I 

43 53 
-1-1--. 

N Z 

i 

N z 
N z 

I 

255 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode 

Symbol Function Details 'IMP IMM A DIA DIA,b DIA,X DIA,Y (DIA) (DIR)C) (DIRl.Y 

op n #op n # op n #op n # op n # op n # op n # op n # op n #op n # 

LOA Acc-M Enters the contents of the memory Into the accumulator. A9 2 2 Afj 4 2 85 5 2 B1 6 2 Al 7 2 Bl 8 2 
(Note 1,2) 

~ ~ ~ 42 8 3 42 9 3 42 10 3 
JIJ Afj 85 B1 Al Bl 

LDM M-IMM Enters the immediate value into the memory. 64 4 3 74 5 3 
(Note 5) 

LDT DT-IMM Enters the Immediate value into the data bank register. 89 5 3 
C2 

LOX X-M Enters the contents of the memory into Index register X. A2 2 2 Af, 4 2 86 5 2 
(Notel,2) 

LOY Y-M Enters the contents of the memory into Index register Y. AO 2 2 A4 4 2 84 5 2 
(Note1,2) 

LSA m=O Shifts the contents of the accumulator or the contents of 4A 2 1 46 7 2 56 7 2 
(Note 1 I o-~-c the memory one bit to the right. The bit 0 of the accumula-

~ m=l tor or the memory is entered into the C flag. "O" is entered 

o-~-c 
Into bit 15 (bit 7 when them flag is "1".) 4A 

MPY B, A-A*M Multiplies the contents of accumulator A and the cootents of the mem- 8916 3 8918 3 8919 3 89 20 3 89 21 3 89 22 3 
(Note 2,11) ory. The higher order of the result of operation are entered into accu- 09 05 15 12 01 11 

mulator 8, and the lower order into accumulator A. 

MVN Mn+i-Mm+i Transmits the data block. The transmission is done from 
(Note 8) the lower order address of the block. 

MVP Mn-i-Mm-i Transmits the data block. Transmission is done form the 
(Note9) higher order address of the data block. 

NOP PC-PC+l Advances the program counter, but performs nothing else. EA 2 1 

ORA Acc-AccVM Logical sum per bit of the contents of the accumulator and 09 2 2 05 4 2 15 5 2 12 6 2 01 7 2 11 8 2 
(Note 1,2) the contents of the memory is obtained. The result is en-

~ ~ ~ tered into the accumulator. 42 8 3 42 9 3 42 10 3 
09 05 15 12 01 11 

PEA M(S)-IMM2 The 3rd and the 2nd bytes of the instruction are saved into 
s-s-1 the stack, in this order. 
M(S)-IMM1 
s-s-1 

PEI M(S)-M((DPR)tlMM Specifies 2 sequential bytes in the direct page in the 2nd 
tl) byte of the instruction, and saves the contents into the 

s-s-1 stack. 
M(S)-M((DPR)tlMM) 
s-s-1 

PEA EAR-PCtlMM2,IMM1 Regards the 2nd and 3rd bytes of the inslruction as 16-bit 
M(S)-EAAH numerals, adds them to the program counter, and saves 
s-s-1 the result into the stack. 
M(S)-EAAL 
s-s-1 

PHA m=O Saves the contents of accumulator A into the stack. 
M(S)-AH 
s-s-1 
M(S)-AL 
s-s-1 

m=1 
M(S)-AL 
s-s-1 

PHB m=O 
M(S)-BH 

Saves the conten~ of accumulator B into the stack. 

s-s-1 
M(S)-B, 
s-s-1 

m=l 
M(S)-BL 
s-s-1 

256 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode Processor status register 
r----~-~-~-~--~·-~--~-~-~---~·-~~--~-~--~~- ---,------ ,,--,--! 
L(DIR) LIDIA).Y ABS ABS,b ABS,X ABS,Y ABL ABL,X (ABS) L(ABS) (ABS,X) STK REL DIR,b,R ABS,b,R SR (SR),Y BLK 10 9 8 7 6 5 4 3 2 I 0 

op n # op n # op n # op n # op n # op n # op n # op n # op n # op n # opff:J:l: op n # op n # op n # op n # op n # op n # op n # IPL N V m x D I Z C 

A7ID2B7112AD43 BD638963AF64BF74 A3528382 N• •Z 
- H-- t- +-+- 1 --

~~42"113'416- 4 W41:\2 8 4 42 8 5 42 9 5 I ' ~ i~ 3 
M ro ~ oo m Af ~ ~ m 
t---t---+-t-+t-t--H- - +-H- H-t-++1 1-- --- - i+--H---H--+-+-+-+-t-++-r--t---t----J-T-+--t--t--1--+--1 

9C54 9E64 

f-+-+-+--r-+-+-r-+-+-+-1-t-+-+-l-+-+-+-+-+-+-+-+-+-t-+-+-+-t-+-+-++-+-+-++-f--+t-t-+---l-c·-t-+-H-

f-- -- t I-+ - - +-+-+-+-+-+-+-+-f--+ -1-++- l-++-+--1 
AE43 BE63 N • • z 

AC 4 3 BC 6 3 N • • z l >-+-+-+--+-+-+4-E+-7-+-3+-+-+I-+5-E1-8+3--+--+-"r-+-+-+-~>-+-+-+-+-+-t--+--1-++-r-+-+-+-r-+-+-+-+--+--+-+-+--+-~l-+--+-+-+-+--+-+-+--+--+--+-o+-~--+-+--+-z+-;c 

89 24 3 89 25 3 89 18 4 
07 17 OD 

07102171120D4 3 

42 12 3 42 13 3 42 6 4 
07 17 OD 

I l ..l 

I 1 

89 2014 89 20 4 89 20 5 89 21 5 8919 3 8922 3 
lD 1 19 OF 1F 03 13 

I 
I 

l 
54li 3 

• N • • z 0 

__!_X7 : 
>-+-+--+-r-+-+-+--f-+-+-+--+-+--+-+--+-+--+-+--+-+--+-+--+--+--+-+--+--+- 2 r-+--+--1 -+--+--t--1--+--+--+--t--1 

44W3 

ID 6 3 19 6 3 OF 6 4 IF 7 4 

428 4428 4428 5429 5 
ID 19 UF IF 

I I I 
I 

1 

42 6 2 
48 

I 

l 

+x? 

03521382 II 
1-42+--7 f--3+4-2f--10+3--1 11 

03 l 13 

N • • Z 

l 

257 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

I 

Addressing mode 

Symbol Function Details IMP IMM A DIR DIR,b DIR,X DIR,Y (DIR) (DIR,X) (DIR),Y 

op n :j:I: op n ll op n ll op n ll op n ll op n ll op n ll op n ll op n ll op n ll 

PHD M(S)-DPRH Saves the contents of the direct page register into the 

I s-s-1 stack 
M(S)-DPR, 
s-s-1 

PHG M(S)-PG Saves the contents of the program bank register into the I I 

s-s-1 stack. 

PHP M(S)-PSH Saves the contents of the program status register into the 
s-s-1 stack. 

l M(S)-PS, 
s-s-1 

PHT M(S)-DT Saves the contents of the data bank register into the i I 

s-s-1 stack. I 

PHX x=O Saves the contents of the index register X into the stack. 
M(S)-XH 
s-s-1 
MISl-x, 
s-s-1 

x=l 
M(S)-X, 
s-s-1 

PHY x=O Saves the contents of the index register Y into the stack. I 

M(S)-YH ! 
s-s-1 
M(S)-Y, 
s-s-1 I 
x=l 

i 

M(S)-Y, 
s-s-1 

PLA m=O Restores the contents of the stack on the accumulator A. 
i s-s+1 

A,-M(S) 
s-s+1 
AH-M(S) 

m=l 
s-s+1 
A,-M(S) 

PLB m=O Restores the contents of the stack on the accumulator B. 
s-s+1 
B,-M(S) 

s-s+1 
BH-M(S) 

m=l 
s-s+1 . 
B,-M(S) 

PLD s-s+1 Restores the contents of the stack on the direct page reg-
DPR,-M(S) ister. 
s-s+1 
DPRH-M(S) 

PLP s-s+1 Restores the contents of the stack on the processor status 
PS,-M(S) register 
s-s+1 
PSH-M(S) 

PLT s-s+1 Restores the contents of the stack on the data bank reg-
DT-M(S) ister 

PLX x=O Restores the contents of the stack on the index register X. 
s-s+1 
x,-M(S) 
s-s+1 
XH-M(S) 

x=l 

s-s+1 
x,-M(S) 

258 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode Processor status register 

L(DIR) LIDIR),Y ABS ABS,b ABS,X ABS,Y ABL ABL,X (ABS) L(ABS) (ABS,X) STK REL DIR,b,R A8S,b,R SR (SR),Y BLK 10 9 8 7 6 5 4 3 2 1 0 
--,-j -,--- ~+-,,-j 

op n # op n #op n # op n #op n # op n #op n # op n # op n # op n #op n # op n # op n # op n #op n # op n # op n # op n # IPL N v m x D I z c 
OB 4 1 

48 3 1 

08 4 1 

--
88 3 1 

DA 4 1 

5A 4 1 

68 5 1 N z 

42 7 2 N z 
68 

2B 5 1 

28 6 1 Value saved in stack. 

AB 6 1 N z 

FA 5 1 N z 

259 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addtessing mode 

Symbol Function Details IMP IMM A DIR DIR,b DIR,X DIR,Y (DIR) (DIR,X) (DIR),Y 

op n #op n # op n # op n # op n #op n # op n #op n # op n #op n # 

PLY x=O Restores the contents of the stack on the index register Y. 
s-s+1 
v,-M(S) 
s-s+1 
YH-M(S) 

x=l 
s-s+1 
Y,-M(S) 

PSH M(S)-A, B, X ... Saves the registers among accumulator, index register, 
(Note 6) direct page register, data bank register, program bank 

register, or processor status register, specified by the bit 
pattern of the second byte of the instruction into the stack. 

PUL A, B,X--·-M(S) Restores the contents of the stack to the registers among 
(Note 7) accumulator, index register. direct page register, data 

bank register, or processor status register, specified by 
the bit pattern of the second byte of the instruction. 

ALA m=O Rotates the contents of the accumulator A, n bits to the 89 6 3 
(Note 13) n bit rotate left left. 49+ 

~J 
I 

m=l 
n bit rotate left 

y b1I ulbo 1J 

AOL m=O Links the accumulator or the memory to C flag, and rotates 2A 2 1 26 7 2 36 7 2 
(Note 1) 

4iiN-llilj 
result to the left by 1 bit. 

~ 
2A 

m=l 

Y b,i Ibo 1-llilj 

ROA m=O Links the accumulator or the memory to C flag, and rotates 6A 2 1 66 7 2 76 7 2 
(Note 1) 

Lllil-~I u I bOJJ 
result to the right by 1 bit. 

~ 
6A 

m=l 

[llil-1 b1I Ibo~ 

RTI s-s+1 Returns from the interruption routine. 4011 1 
PS,-M(S) 
s-s+1 
PSH-M(S) 
s-s+1 
PC,-M(S) 
s-s+1 
PCH-M(S) 
s-s+1 
PG-M(S) 

RTL s-s+1 Returns from the subroutine. The contents of the program SB 8 1 
PC,-M(S) bank register are also restored. 
s-s+1 
PCH-M(S) 
s-s+1 
PG-M(S) 

ATS s-s+1 Returns from the subroutine. The contents of the program 60 5 1 
PC,-M(S) bank register are not restored. 
s-s+i 
PCH-M(S) 

SBC Acc. C-Acc-M-C Subtracts the contents of the memory and the borrow from E9 2 2 E5 4 2 F5 5 2 F2 6 2 El 7 2 Fl 8 2 
(Note 1,2) the contents of the accumulator. 

~ ~ '4217 IJ 42 B 3 42 9 3 4 210 3 
E9 E5 F5 F2 El Fl 

260 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode 
f--~--~·-~--~---~-~--~-~---~--T-·---

Processor status_~~~e~ _ 

L( DIR) L(DIR),Y ABS ABS,b ABS,X ABS,Y ABL ABL,X (ABS) L(ABS) (ABS,X) STK REL DIR,b,R ABS,b,R SR (SR),Y BLK 10 9 8 7 6 5 4 3 2 1 0 

1E 7 3 3E 8 3 

6E 7 3 7E 8 3 

7A 5 1 N z 

-···t·-··i-+--+·-+·-t-t-it--+-+-t--t-+-t--+-+-t--t-+-f-t-t--+--+--+--+--t-+-+-+---+-~-~-t 

EB 12 2 
+ 

2i1+i2 

FB 14 2 
+ 

311+4i2 

If restored the contents of PS, 
it becomes its value. And the 

other case is no change. 

N Z C 

N Z C 

- -+ --I- -+-t-+-+-t--+-+--+-+ -t-+--t-t-1-t-t-~ -+-t-+--+-+--+-+-t--+-+-++-+--+-+-+-t-+-+--+-+-1---~~~~~~~~~-t 

Value saved in stack., 

E7102F7112ED43 FD63F963EF64FF74 E3 5 2 F3 8 2 N V Z C 

~212342133426 4 428 4428 4428 5419 5 427342103 
E7 F7 ED FD F9 EF FF E3 F3 

261 



APPENDIX 8 

Series MELPS 7700 Machine Instructions 

Addressing mode 

Symbol Function Details IMP IMM A DIR DIR,b DIR,X DIR,Y (DIR) (DIR,X) (DIR),Y 

op n #op n # op n #op n # op n # op n # op n # op n # op n #op n # 

SEB Mb-1 Makes the contents of the specified bit in the memory "1". 04 8 3 
(Note 5) 

SEC c-1 Makes the contents of the C flag "1". 38 2 1 

SEI 1-1 Makes the contents of the I flag "1 ". 78 2 1 

SE0M m-1 Makes the contents of them flag "1". FS 2 1 

SEP PSb-1 Set the specified bit of the processOI" status register's low~ E2 3 2 
er byte (PSL) to "1". 

STA M-Acc Stores the contents of the aqcumulator into the memory. 85 4 2 95 5 2 92 7 2 81 7 2 91 7 2 
(Note 1) 

~ ~ 42 9 3 42 9 3 42 9 3 
85 95 92 81 91 

STP Stops the oscillation of the oscillator. DB 3 1 

STX M-X Stores the contents of the index register X Into the memory. 86 4· 2 96 5 2 

STY M-Y Stores the contents of the index register Y Into the memory. 84 4 2 94 5 2 

TAD DPR-A Transmits the contents of the accumulator A to the direct SB 2 1 
page register. 

TAS S-A Transmits the contents of the accumulator A to the stack pointer. IB 2 1 

TAX X-A Transmits the contents of the accumulator A to the Index AA 2 1 
register X. 

TAY Y-A Transmits the contents of the accumulator A to the Index AS 2 1 
register Y. 

TBD DPR-B Transmits the contents of the accumulator B to the direct 42 4 2 
page register. SB 

TBS S-B Transmits the contents of the accumulat0t B to the stack 42 4 2 
pointer. IB 

TBX x-e Transmits the contents of the accumulator B to the index 42 4 2 
register X. AA 

TBY Y-e Transmits the contents of the accumulator B to the Index 42 4 2 
register Y. AS 

TOA A-DPR Transmits the contents of the direct page register to the 7B 2 1 
accumulator A. 

TDB B-DPR Transmits the contents of the direct page register to the 42 4 2 
accumulator B. 7B 

TSA A-S Transmits the contents of the stack pointer to the accumulator A. 3B 2 I 

TSB e-s Transmits the contents of the stack pointer to the accumu- 42 4 2 
later s·. 3B 

TSX x-s Transmits the cOntents of the stack pointer to the Index BA 2 I 
register X. 

TXA A.._X Transmits the contents of the Index register X to the accu- SA 2 1 
mulator A. 

TXB e-x Transmits the contents of the Index register X to the accu- 42 4 2 
mutator B. BA 

TXS s-x Transmits the contents of the index register X to the stack 9A 2 1 
pointer. 

TXY Y-x Transmits the contents of the Index register X to the Index 9B 2 1 
register Y. 

TYA A-Y Transmits the contents of the index register Y to the accu- 98 2 1 
mulator A. 

TYB B-Y Transmits the contents of the index register Y to the accu- 42 4 2· 

mulator B. 98 

TYX x-Y Transmits the contents of the index register Y to the Index BB 2 I 
register X. 

WIT Stops the Internal clock. CB 3 1 

XAB A!;B Exchanges the contents of the accumulator A and the con- 69 6 2 
tents of the accumulator B. 28 

262 



APPENDIX B 

Series MELPS 7700 Machine Instructions 

Addressing mode Processor status register 

~-DIR)Y ABS ABSb Tf..~BS.v AB~- A-BL~ 0-:Bsl L(A-BS) (ABSX) -STK- -REL DrnbR 'ABSbf; sR'T8R)v'SL~ ~ 7 6 5 4~2 1-.. ·~ 
op n # op n :tt: op n # op n # op n # op] n # op n # op n # op n # op n # op n I# op n # op n # op n # op n # op n # op n # op n # IPL N V m x D I z C 

0C94 --: I ... ··1·:~ 
- t+ 1- t-++- --+-~-+-+-·+- -· t-- t·+++- . 

• 1 
1-+-+--+-·+~-+-+-+-+-+-+-·+-+-+-+-+-t-+-+-+-~1· I· -+-+-- -r- - --- -t ++-i-+-+-+--i··-j- +·-t-+-+-+-t-+-+-t-+-i-+-+-+-+-+-+-+-. f-1-+-+-I 

1-+-+-+-+~-+-t· t-+-+-· +-t·-t--t-+-+-+-+-r-+-t-+-+-+-+-+1-+-+-+-+- +-+--+--t-+-+-+-+-+-+--+-+-+-+-+-+-+-t-+-+-+-+-~-t-+-+--i--+-+-+--1-1 

• 1 
t-+-t-1-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-~-+-+-+-I-+-+-+-+-+-+-+- t-i-+-t-+-t-1-+-+-+-+-+-++-+-1-+-t-+-t-1-+-+-+-·+-+-+--L~--LL.'-l 

Specified flag be-
comes "1" 

1-+-++-+-+-+-f-+-t-1-+·++-1-+-++++++-·1-+-+-+-I-+· t-i-++-t·- - 83 5 2 93 B 2 -+-+-+-+-+-+-.-1·-. r:-':' ~ 8710 2 9711 2 SD 5 3 90 5 3 99 5 3 SF 6 4 9F 7 
! 

4212 3 4213 3 42 7 4· 42 7 4 42 7 4 42 8 5 42 9 427342103 
87 97 SD 9D 99 BF 9F 83 93 

I +-+f--t-!, -t-·+-+-+ +-t-+-+--+--+-·j-j -+--+-+-+-+-+-+-+-+-+-~-+-+·-+-+--+-+-+-< 

t-+-+--+-+-+-+-+-+-+-+--r-+-·-· ··t-+-+-+-+--+-+--+ ·1--t--t--1-+-t--t--+-t--+-+-+-t-+-+--t-+-+-+-+-+-+-+--r-T-+-t--+--t--t-+-+-+-+-+--+--+-+-+-+--+-i 
BE 5 3 

BC 5 3 

-t--+-+-~1-+-+--+-+-+-+-+·+-1-+-+-+-+-

t-+-+-+-+-t- t - . 

+-+-+-+-!-+-+-+-++-+--+-++-+-++ t-t-+- . 
. . i· 

t-+-+-- . - --1- +--
• 1 • 

.. +-+-+- -
-++-+-+-+-+-+-t-++-+-·+-+--+-+-+-+-+-+-+-i-+-1 -+-+-+--+-0 -+I _· 1--+-+-+--+-·H 

N • Z 

. .. t-+-t-i +-i -++- -+--+-+-+~+-+-+ ++i-+-+-·+-+-+-+·-t-+-+-+-1-+ ·+I · +-+-+·-+-+-+-+-+--+-+-+-+--+-+-+-+--+-+-+-+-< 
N • z • 

1-+-++-i - ··-+-+-+-+-+-+-+ t+-+-+--+-+-+-tf-+ 

l 
1-+-t-+- -+-+-+--+-+--+-+j··-t-J-i·-+-+-+-+-t-+-r-+-+-+-·+-+-+-+-+-t-+-+-+-+--+-+-+-+-+-+-+-+-t-+-+--+-+--+-+--+-+-+-+-t--+-+-+-+--+-·r·,. 

t-+-+--t-+--+-+-l-r'-+--+-+-+1-+-+-+-+-+-+-+--+--r-+--t-+~-+-+--t-+-+--+--+-+-t-+-+--t-+-+--+--+-+-+-+-t--t-+-+-+-+-+-t-+-+--+--t-+-Nt~ •t-+-t· z • 

I I N • • Z 

z 
t-++++- .. -t·+t·-i--t++ - t·t t-+-T-t- +++++ -t-j- ! 

I 

-1-i--·-r-+-+1-+-t--t--+-+-+-+-+-t-+-+--+-+--i-+-+--+--+-+-+-+-t--+-+-+-
i Ni• 

+ ·t-+-+-t-f-~·-1- t ·+- -+-t-i-++- -+-+-+-+--+-+--t--+-+-~--j--
N 

. +-++-· +-- . +-. ++-r-+-+-+-+-+-+· +-++-+-~-++-+-t-+-~-+-+-+-+--+--+-+-+-C-~-···· 
N z 

T N 

t--i-+--+-+-+-·+--+-+-+-+-+-+-+·t-t·+·-t--
I I t-+ 

I I ' +-++-t+++-i- -++-+-+-+-r-++-t-+-+-+-+-+-+-+ f +-+-t+- t-1 
I i N Z 

·l N Z 

N • z • 

1-+-+--+-+-+-+-+-+-+-+-+--+-+-t-+-+--+-+-+-+-+-+-+-+-+-+-+-t-+-+--+-t-+--+-+--+-+--+-+-+-+-+-+-+-+-+--+-+--+-+-+-+--+-+-•--+-+--f-j·+-+-

t-+-+-·+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~-+-+-+-+-+-+-+-+-r-+-+-+-r-+-+-+-+t-+-+-~-+-+-+-+-+-+-+-+-~~.+-t--t-+-f +-+-+-+-1·-t-+-1 
I N • • z • 

- t-, _J_,_~--t--i-+-t--· 1--j - 1-+++-i ++-+-t-
1 I I ••• N •• 

-+-+--t-+-+-+-+--t-+-+-+-+-+-t-+-+--t-+-+-+-+--t-+-+-+-+-+-t-+-+--t-+-+t-+-+--+-++-+-r·+-+-t-+-+--+-+-t··t·l·+-+-+-+--t--+--+-+-+-+--+-+-+-+--+ 
N • z • 

N • • Z 

.,. 
z • 

I 

J. T l l 
N • 

263 



APPENDIX 8 

Series MELPS 7700 Machine Instructions 

The number of cycles shown in the table is described in case of the fastest mode for each instruction. The number of cycles shown in the table is 
calculated for DPRL =O. The number of cycles in the addressing mode concerning the DPR when DPRL 4'0 must be incremented by 1. 
The number of cycles shown in the table differs according to the bytes fetched into the instruction queue buffer, or according to whether the memory 
read/write address is odd or even. It also differs when the external region memory is accessed by BYTE="H". 

Note 1 . The operation code at the upper row is used for accumulator A, and the operation at the lower row is used for accumulator B. 

Note 2. When setting flag m=O to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1. 

Note 3. The number of cycles increments by 2 when branching. 

Note 4. The operation code on the upper row is used for branching in the range of -128-+127, and the operation code on the lower row is used for 
branching in the range of -32768-+32767. 

Note 5. When handling 16-bit data with flag m=O, the byte in the table is incremented by 1. 

Note 6. 

T e of register A B x 
Number of c cles 

y 

2 
DPR DT 

2 I 
PG PS 

The number of cycles corresponding to the register to be pushed are added. The number of cycles when no pushing is done is 12. i1 indicates 
the number of registers among A, B, X, Y, DPR, and PS to be saved, while i2 indicates the number of registers among DT and PG to be saved. 

Note 7. 

Ty e of register A B ~X~+--_Y, __ D~P~R-+-~D~T-+ 
t--N-u~m~b_e_r_o_f ~c -c-le-s-t---3~-t-~3 3 3 4 3 

PS 
3 

The number of cycles corresponding to the register to be pulled are added. The number of cycles when no pulling is done is 14. i, indicates the 
number of registers among A, B, X, Y, DT, and PS to be restored, while b=1 when DPR is to be restored. 

Note 8. The number of cycles is the case when the number of bytes to be transfered is even. 
When the number of bytes to be transfered is odd, the number is calculated as; 

7+ (i/2) X7+4 

Note that, ( i/2) shows the integer part when i is divided by 2. 

Note 9. The number of cycles is the case when the number of bytes to be transfered is even. 
When the number of bytes to be transfered is odd, the number is calculated as; 

9 + (i/2) x 7 + 5 

Note that, (i/2) shows the integer part when i is divided by 2. 

Note 10. The number of cycles is the case in the 16-bit+8-bit operation. The number of cycles is incremented by 16 for 32-bit+16-bit operation. 

Note 11. The number of cycles is the case in the 8-bitX8-bit operation. The number of cycles is incremented by 8 for 16-bit X16-bit operation. 

Note 12. When setting flag x=O to handle the data as 16-bit data in the immediate addressing mode, the number of bytes increments by 1. 

Note 13. When flag m is 0, the byte in the table is· incremented by 1. 

264 



Symbol 

IMP 

IMM 

A 

DIR 

DIR, b 

DIR, X 

DIR, Y 

(DIR) 

(DIR, X) 

(DIR), Y 

L (DIR) 

L (DIR), Y 

ABS 

ABS, b 

ABS,X 

ABS, Y 

ABL 

ABL, X 

(ABS) 

L (ABS) 

(ABS, X) 

STK 

REL 

DIR, b, REL 

ABS, b, REL 

SR 

(SR), Y 

BLK 

c 
z 
I 

D 

x 

m 

v 
N 

IPL 

+ 

* 
/ 
/\ 
v 

APPENDIX B 

Series MELPS 7700 Machine Instructions 

Description 
- -----· ---~----------- ------------

Implied addressing mode 

Immediate addressing mode 

Accumulator addressing mode 

Direct addressing mode 

Direct bit addressing mode 

Direct indexed X addressing mode 

Direct indexed Y addressing mode 

Direct indirect addressing mode 

Direct indexed X indirect addressing mode 

Direct indirect indexed Y addressing mode 

Direct indirect long addressing mode 

Direct indirect long indexed Y addressing mode 

Absolute addressing mode 

Absolute bit addressing mode 

Absolute indexed X addressing mode 

I Absolute indexed Y addressing mode 

I 
Absolute long addressing mode 

Absolute long indexed X addressing mode 

Absolute indirect addressing mode 

Absolute indirect long addressing mode 

Absolute indexed X indirect addressing mode 

Stack addressing mode 

Relative addressing mode 

Direct bit relative addressing mode 

Absolute bit relative addressing mode 

Stack pointer relative addressing mode 

Stack pointer relative indirect indexed Y addressing 
mode 

Block transfer addressing mode 

Carry flag 

Zero flag 

Interrupt disable flag 

Decimal operation mode flag 

Index register length selection flag 

Data length selection flag 

Overflow flag 

Negative flag 

Processor interrupt priority level 

Addition 

Subtraction 

Multiplication 

Division 

Logical AND 

Logical OR 

Symbol Description t---V------··· -E-x-cl~;i-ve_O_R __________ _ 

Ace 

AccH 

AccL 

A 

XH 

XL 
y 

YH 

YL 

s 
PC 

PCH 

PCL 

PG 
OT 
DPR 

DPRH 

DPRL 

PS 

PSH 

PSL 

PSb 

M(S) 

n 

Negation 

Movement to the arrow direction 

Accumulator 

Accumulator's upper 8 bits 

Accumulator's lower 8 bits 

Accumulator A 

Accumulator A's upper 8 bits 

Accumulator A's lower 8 bits 

Accumulator B 

Accumulator B's upper 8 bits 

Accumulator B's lower 8 bits 

Index register X 

Index register X's upper 8 bits 

' Index register X's lower 8 bits 

Index register Y 

l 

Index register Y's upper 8 bits 

Index register Y's lower 8 bits 

Stack pointer 

Program counter 

Program counter's upper 8 bits 

Program counter's lower 8 bits 

Program bank register 

Data bank register 

Direct page register 

Direct page register's upper 8 bits 

Direct page register's lower 8 bits 

Processor status register 

Processor status register's upper 8 bits 

Processor status register's lower 8 bits 

Processor status register's b-th bit 

Contents of memory at address indicated by stack 
pointer 

b-th memory location 

Value of 24-bit address's upper 8-bit (A23 ,..._.A 16 ) 

Value of 24-bit address's middle 8-bit (A15 ~A8 ) 

Value of 24-bit address's lower 8-bit (A7,..._.A0 ) 

Operation code 

Number of cycte 

Number of byte 

Number of transfer byte or rotation 

Number of registers pushed or pulled 

265 



APPENDIX C 

Series MELPS 7700 Instruction Code Table 

INSTRUCTION CODE TABLE-1 

D3-D. 0 t-~ -0~~0010-+-~TI~ 0101 0110 i 0111 1000 1001 _1_0 __ 1_0-t-_1_0 __ 1 __ 1-+-----1----10----0-+l----1 __ 10 __ 1-+----l----ll----O---+----l----ll-I-~ 
adecimal -+--------+---~t------J--

notation 0 I 2 3 4 5 6 I 7 8 9 A B C D E F 

TAS 

0000 

0001 

ORA ORA SEB ORA ASL ORA 

0 BRK ~-
t ---lA,(~---- _ __ A,SR_ D_IR,b ~1~R -T-A __ ,L __ ( __ Dl __ R-t) ----+-A __ , __ IM __ M-+---D----A __ EC_',__, ---+---A __ B __ S, __ b-+, __ A __ ,A __ B __ S-+·- ABS ~~El_~ 

ORA 1 ORA ORA CLB ORA ASL ORA ORA CLB ORA ASL ORA 

ORA ASL SES ORA ASL ORA 
PHP PHD 

CLC 
A I BPL A,(DIR),YIA,( DIR) A,(SR),Y DIR,b A,DIR,X DIR,X A,LIDIR),Y 

r----+------~-R~ JSR AND BBS AND AOL AND 
A,ABS,Y 

AND 
~~- - ABS,b A,ABS,X ABS,X A,ABL.:'<i 

ROL BBS AND ROL AND 
0010 

0011 

2 PLP PLD 
ABS A,(DIR,X) ABL A,SR DIR b,R A DIR DIR A,L(DIR) A,IMM l A ABS,b Rj_ A,ABS ABS A,ABL 

AND AND AND BBC AND ROLA -N-----D---+----+---A----N __ D___,T_INC BBC J AND ROL AND 
SEC TSA BMI 

---+---+-----1--+---+---------+---'- -'--------'-- - ~--+-'-::'----- -- ---t----1 +---:- r-'-1 

0100 RTI Note 1 MVP PHA PHG 

----------+---- -

A,(DIR),Y A,(DIR) A,(SR),Y DIR,b R A,DIR X DIR,X AL(DIR),Y ' i:·~BSY A ABS,b R A,ABS,X ABS,X A,ABL,X 

EOR EOR EOR LSR EOR EOR LSR JMPJ EOR LSR EOR 

A,(DIR,X) A.SR _ -~Dl!l ~A L(DIR) ____ . A,lt:::1~M A -1-----+B~ AAB_S_i--3_13_~ __ A,ABL 
EOR : EOR EOR EOR LSR EOR EOR JMP EOR LSR EOR 

0101 

0110 

0111 

I------- -------

1000 

-------- ----+----

BVC , ___ ,__!_ · MVN CLI ~ PHY TAD ~ 
--------j - _ A~_A,(_[)lli) A,(SR)\ -- A,DIR,X~~-_x A,L(DIR),Yt-------- A_,~:rS,Y - ----r:· ---- - -ABL A,AB~~~~,x A,ABL,X 

ADC , ADC LDM ADC ROR ADC ADC ROR JMP ADC ROR ADC 
6 RTS ,J PER PLA RTL , 

A,(DIR,XJJ_ A,SR DIR A,DIR DIR A,L(DIR) A,IMM, A · (ABS)j A,ABS ABS A,ABL 

ADC ! ADC ADC LDM ADC ROR ADC ADC 1' JMP I ADC ROR ADC---i 
BVS SEI PLY TDA 

A,(DIR),Y A,(DIR) A,(SR),Y DIR,X A,DIR,X _[)l_~DIR),Y A,ABS,Y (ABS,X)r1A,ABS,X ABS,X A,ABL,X 

BRA STA BRA STA STY STA STX STA STY STA STX STA 
DEY Note 2 TXA l PHT 

REL A,(DIR,X) REL A,SR DIR A,DIR D_~(DIR) ABS ' A.ABS ABS A,ABL 

STA STA STA STY STA STX STA STA T LDM STA LDM ' STA 
1001 9 BCC i TYA I TXS I TXY l 

·· I I "' r~:~H ~~;) . ~:; '°::: •t::"' 0
::: "~:~ I H 1·~: '1- ::: ·::~"~;;' t::~· 

1010 A I I TAY TAX PLT 
t-------------t----+-----IM_M_,_'A __ .( __ D __ IR __ .X--t) I~~- DIR A DIRJ DIR A,L(DIR)t--_ A,l__MM ABS A.ABS ABS A,ABL 

LDA LDA LDA LDY LDA I LDX LDA LDA LDY LDA LDX LDA 
1011 B BCS CLV TSX TYX 

t------------t---+----A,(DIR),Y A,(DIR) A,(SR),Y DIR,X A_:_[)lf1.XJ DIR,Y_ A_L(DIR),Yt-------t,ABS-'-Y l--------+~-El_S,X A,ABS,X ABS,Y A,ABL X 

CPY CMP CLP CMP CPY CMPl DEC CMP CMP CPY CMP DEC CMP 
1100 c INY DEX WIT 

IMM A,(OIR,X) IMM A,SR DIR A,DIR DIR A,L(DIR) A,IMM ABS A.ABS ABS A,ABL 

CMP CMP CMP CMP DEC CMP CMP JMP CMP DEC CMP 
D BNE STP 

A,(OIR),Y A,(DIR) A.(SR) Y L(ABS) A,ABS,X ABS,X A,ABL,X 

CPX SBC SEP SBC 
E 

CPX SBC INC SBC 
PSH 

A,ABS I ABS ABS A,ABL 

F 1111 
JSR SBC l INC SBC 

PUL 
(ABS.XI A,ABS,X ABS,X A,ABL,X 

Note 1 : 4216 specifies the contents of the INSTRUCTION CODE TABLE-2. 
About the second word's codes, refer to the INSTRUCTION CODE TABLE-2. 

Note 2 : 8916 specifies the contents of the INSTRUCTION CODE TABLE-3. 
About the third word's codes. refer to the INSTRUCTION CODE TABLE-2. 

266 



APPENDIX C 

Series MELPS 7700 Instruction Code Table 

INSTRUCTION CODE TABLE-2 (The first word's code of each instruction is 4216) 

: 
D D 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 

\-.-~;-~-;;:,--~+----o-+--1--+--2--+--3--+---4--ti-5--ti--6---T----7---r--8---+--9--+--A--t----B---r--c-+--D---t---E-
1111 

----

F 

ORA 
0000 

1 ORAh;J_SL 

B,DIR B,L(DIR) 8,IMM B B,ABS B,ABL 
----+---+----!-----+-- -,----,------r----------r----1 
ORA ORA ORA DEC ORA ORA 

f-----+---- ----rB,_(D_IR_,x_,1 ___ ~ 
ORA ORA 1 ORA 

ORA ORA ORA ORA ORA 

0001 1 : I ~I TBS I 
B,(DIRl,Y B,(DIR) B,(SRl,Y ---t-B_,D_l_R_,X,__1 ____ 1 ~_LA(ND_IDR_I Y __ ~AA---'--JNBDS,Yt--_ROBL _____ B,ABS,X 

t----- t-----+--1 A~----r---;;;;,;oi--- AND I I - - - ' AND 
B,ABL,X 

AND 
0010 

0011 3 

I 
B,(DIR,Xl 1 B,SR 

----t----t------t-
ANO ANO AND 

B,DIR 

AND 

8,L(DIR) 

AND AND : INC I 
B,ABS 

ANO 

8,ABL 

AND 18,IMM B l 
I I TSB I 

B,(DIR),YB,(D_l_R_) Bj_~Fl)4 iB,DIR,X BL(OIRI Y _ B,ABS,vt B 1----r---tB_.A_B_S_.l<j_-ti __ -+-B,_A_B_L_,--JX 

I EOR EOR ----+-, _E_O_R-t--: ---j--1 _E_O_R--t-----t EOR I LSR I EOR ! EOR 

0100 4 I : PHB I I I I 
1----+----+----+-B,_( D_IR_,X__,1 ----+--8_,S_R-+-----+--B,_D_IR_j,___---+-B_,L_( D_IR_I+-----+ B, I MM i B --.---,-B_,A_B_S4J __ -r--B_,A_B_L_, 

EOR I EOR EOR EOR I EOR I EOR I I EOR I EOR 
0101 

I 
JI : ! TSO I .! llB,ABL,X 

--+---1---A-DC P.oc+- ' ADC I AOC i ADC I ROR --;-----i----rl-A--0-C---t : ADC "'"'"' ''·'°'T''"'' 1 8,DIR,X B,L(DIR)_.'I B.ABS,Y• , 1 B.ABS,xl 

0110 6 l(f)IOYll : I I PLBI I I I 
f--------t------t----+8~- B,SR_t------r1 _B~----r'B_,L_(_Dl_R_,_I -~IMM I B i __ B_,A_B_S4 __ __,j_B_,A_B_L_, 

Olll ? J ADC I ADC 
1 

ADC ADC ADC l ADC ! TDB i AOC ! ADC 

B,(DIRl,Y1B,(01RI B,(SR),Y B,DIR,X B,L(DIRl,Y 18,ABS,YI IB,ABS,XI IB,ABL,X 

II STA STA STA STA J ! j' I STA I I STA 

11 TXB I I 
IB,(DIR,X) B,SR B,DIR B,L(DIRI B,ABSl 8,ABL 
: STA I STA STA STA STA ---+--r-s-TA-1---i:----r----\-S-T-A-t----t-STA 

TYB I I 
B,(DIRl,Y B,(DIR) B,(SR),Y+-------+-B_,D_l_R_,X-+----- B,L(OIR).Y jB,ABS,YI ~ B,ABS,X B,ABL,X 

LDA LOA 1 LOA floA l LDA 1 ---r---t-L-D-A-+1---+--LD_A __ 

1000 

1001 

1010 A 
1 1 IB.L(DIR) TBY I s,IMM rnx 

1 
· I l----+----l---+-B,_(D_IR~,X---11--+---B'~~ ' El,P_IF1_1__ __ ,___-r-----t-;--;::-:-r---- ----r---i--B,_A_B_SJ_,__ ___ ~ 

B ~:~.YIB,~:~R) B,~;R~,Y B.~:~X1 
iB L~::)_.'I 1_.~_: __ : __ ,Y_,_ ______ _,_ __ ---i-----l--i-iB_,_~:_:_.x_t1 __ -tlB_.~_:_:_.x 1011 B 

>----+------+-

1100 c 

1101 0 

1110 E 

1111 F 

CMP CMP CMP CMP CMP I CMP I CMP 

8,(DIR,X) B,SR ---+B,DIR ____ B,L(DIR) B,IMM I B,A_B_S _ _,_ __ -+--1 B_,_AB_L~ 

: CMP CMP CMP CMP CMP CMP I I CMP CMP 

:B,(DIRl,Y B,(OIR) 8 (SR),Yt------~_f1_;''!<_11 
_____ 

1

8,L(DIRIJ B.ABS.tl B.ABS,X 8,ABL,X 

SBC I SBC SBC SBC SBC I SBC I SBC 
I I I 

B,(DIR,XI ~,SR __ _j_B,DIR B,L(DIR) ---+-B_,IM_Mj-+---+----1-----+-~ B,ABL 

SBC SBC i SBC i SBC I SBC I SBC ,I I SBC I ----tssc-i 
B,(DIR),YB,(DIRlB,(SRl,Y lB,DIR,4 B,L(DIR~ ls.ABS.YI B,ABS.1 B,ABL,X 

267 

I 
( 



APPENDIX C 

Series MELPS 7700 Instruction Code Table 

INSTRUCTION CODE T ABLE-3 (The first word's code of each instruction is 8916) 

D,-Do 

lladecimal 
notation 

oroo T ""' I oorn 1 oon "'"'1"'"' m
6
101: 0111 1000 : 1001 i 1010 1011 

O l ]213 4 1 5, 7 8]9!AIB 
I i l , 

1100 

c 

! 
1101 1 lllO 

D E 

0000 0 MPY I : MPY MPY I MPY I MPY : : MPY I 

1111 

F 

MPY 

ABL 
I I I I I ! 

!-------"------+----{~~-+~- DIR ~R) ' IMM ABS ' t--;;wy MPY I MPY ' MPY MPY : I MPY I MPY I I MPY : 
I I I I 1 : I : : 

(DIR),Y (_D_l_R_d (_S __ R_)_,Y_, ___ ~ l ___ t'L_(D_IR_) Y t ABS Y 1 1 1 ABSX 1 ASL X 
1------+----+---+-DIV -, DIV ~- I DIV r DIV ----- _ __, __ .:_ ___ __j_ __ t----r--'-__;_ 
.__ __ o_m_o_+--2-+---+(_D_IR_,_X+) ----~--Ju" I- r"' AA' j_,::ti -- __ ti ______ --- ;;~t-J-:~:-

0001 

1 DIV DIV I DIV 1 DIV I DIV , DIV 1 DIV 1 DIV 
0011 3 I i i I I : : 

](DIR),Y (DIR)-j(§_Rl2~ ____ ,_121_R,J<' L(DIR1 Y ABS Y ~----
1 
----r- __ f!-E3_8_.~_I __ ~_13_l:c_X 

r----010014 I i RLA I : : r : : +- : ' : +- I 

~--'-+H-1-:~'---; :ur--,-1'MM:J~~- c1-1-
: ----+-- --+----+----+----+ : t t---t .-~-~---· I I I I I I I : I I 

! I I - ' + + ' ... H n+m!--t Hrn r H t i 

1~- 1'·-+ )--1-_J __ ·-····-I rt 
1-------------+-+-----r--- - r -----l---- J I : +-----1 ~ -i-- -i-f----

1 : I I I : i 
I I L I i I ' ' 

l------f-------jf----f----f----1>--,-----+----11----1 -+---- : i ' 

----+---+-------t--,---1L-:~--+1-_,t--_iJ -+ I 1- I ~ 
I i I I I 

I I ' I 
1---+----+----+----+------+---f----+---+----~--+--- ----r---r ---+--i--

, I I 
: I I 

: I I : i 
<-------+----+----t---+-----+~----l-----+---+---'r-----+----+------+----+--f--+-----~~---i----r-----1 

l l i l 1 l 

268 



CONTACT ADDRESSES FOR FURTHER INFORMATION 

JAPAN 
Semiconductor Marketing Division 
Mitsubishi Electric Corporation 
2-3, Marunouchi 2-chome 
Chiyoda-ku, Tokyo 100, Japan 
Telex: 24532 MELCO J 
Telephone: (03) 218-3473 

(03) 218-3499 
Facsimile: (03) 214-5570 

Overseas Marketing Manager 
Kita-ltami Works 
4-1, Mizuhara, ltami-shi, 
Hyogo-ken 664, Japan 
Telex· 526408 KM ELCO J 
Telephone: (0727) 82-5131 
Facsimile: (0727) 72-2329 

HONG KONG =~·~·=ccc 
MITSUBISHI ELECTRIC (H.K) LTD 
25 Floor, Leighton Centre, 
77, Leighton Road. Causeway Bay. 
Hong Kong 
Telex: 
Telephone: 
Facsimile: 

60800 MELCO HX 
(5) 773901-3 
(5) 895-3104 

SINGAPORE=~ ---·-
MELCO SALES SINGAPORE PTE. 
LTD. 
230 Upper Bukit Timah Road # 03-
01 /15 
Hock Soon Industrial Complex 
Singapore 2158 
Telex: RS 20845 MELCO 
Telephone: 4695255 
Facsimile: 4695347 

TAIWAN·--= ... ~ 
MELCO-TAIWAN CO., Ltd 
1st fl., Chung-Ling Bldg., 
3G3, Sec. 2, Fu-Hsing S Road, 
Taipei R.0.C. 
Telephone: (02) 735-3030 
Facsimile: (02) 735-6771 
Telex 25433 CHURYO "MELCO­

TAIWAN" 

U.S.A.~~-­

NORTHWEST 
Mitsubishi Electronics America. Inc. 
1050 East Arques Avenue 
Sunnyvale, CA 94086 
Telephone: (408) 730-5900 
Facsimile: (408) 730-4972 

SAN DIEGO 
Mitsubishi Electronics America, Inc. 
11545 West Bernardo Court 
Suite 100 
San Diego CA 92128 
Telephone: (619) 592-1445 
Facsimile: (619) 592-0242 

DENVER 
Mitsubishi Electronics America, Inc. 
4600 South Ulster Street 
Metropoint Building. 7th Floor 
Denver, CO 80237 
Telephone· (303) 740-6775 
Facsimile: (303) 694-0613 

SOUTHWEST 
Mitsubishi Electronics America, Inc. 
991 Knox Street 
Torrance, CA 90502 
Telephone: (213) 515-3993 
Facsimile: (213) 217-5781 

SOUTH CENTRAL 
Mitsubishi Electronics America, Inc 
1501 Luna Road, Suite 124 
Carrollton, TX 75006 
Telephone: (214) 484-1919 
Facsimile· (214) 243-0207 

NORTHERN 
Mitsubishi Electronics America, Inc 
15612 Highway 7 +F 243 
Minnetonka, MN 55345 
Telephone: (612) 938-7779 
Facsimile: (612) 938-5125 

NORTH CENTRAL 
Mitsubishi Electronics America, Inc 
800 N. Bierman Circle 
Mt. Prospect, IL 60056 
Telephone: (312) 298-9223 
Facsimile: (312) 298-0567 

NORTHEAST 
Mitsubishi Electronics America, Inc. 
200 Unicorn Park Drive 
Woburn, MA 0180 t 
Telephone: (617) 932-5700 
Facsimile: (617) 938-1075 

MID-ATLANTIC 
Mitsubishi Electronics America, Inc. 
800 Cottonta1i Lane 
Somerset, NJ 08873 
Telephone: (201) 469-8833 
Facsimile: (201) 469-1909 

SOUTH ATLANTIC 
Mitsubishi Electronics America, Inc. 
2500 Gateway Center Blvd, Suite 300 
Morrisville. NC 27560 
Telephone (404) 368-4850 
Facsimile: (404) 662-5208 

SOUTHEAST 
Mitsubishi Electronics America, Inc 
Town Executive Center 
6100 Glades Roan # 21 o 
Boca Raton, FL 33433 
Telephone: (407) 487-7747 
Facsimile· (407) 487-2046 

CANADA 
Mitsubishi Electronics America, Inc 
6185 Ordan Drive, Unit ii 11 O 
Mississauga, Ontario, Canada L5T 2E1 
Telephone: (416) 670-8711 
Facsimile (416) 670-8715 

Mitsubishi Electronics America, Inc. 
300 March Road, Suite 302 
Kanata, Ontario, Canada K2K 2E2 
Telephone: (416) 670-8711 
Facsimile' (416) 670-8715 

WEST GERMANY 
Mitsubishi Electric Europe GmbH 
Headquarters: 
Gothear Str. 8 
4030 Rat1ngen 1, West Germany 
Telex 8585070 MED D 
Telephone: (02102) 4860 
Facsimile: (02102) 486-115 

Munich Office: 
ArabellastraBe 31 
8000 MUnchen 81, West Germany 
Telex· 5214820 
Telephone: (089) 919006-09 
Facsimile· (089) 9101399 

FRANCE 
Mitsubishi Electric Europe GmbH 
55, Avenue de Colmar 
92563 Rueil Malmaison Cedex 
Telex: 632326 
Telephone: 47087871 
Facsimile: 47513622 

ITALv--- --
Mitsubishi Electric Europe GmbH 
Centro Direzionale Colleoni 
Palazzo Cassiopea 1 

20041 Agrate Brianza I-Milano 
Telephone: (039) 636011 
Facsimile (039) 6360120 

SWEDEN ==c.=c.~ 
Mitsubishi Electric Europe GmbH 
Lastbilsvagen 6B 
5-19149 Sollentuna, Sweden 
Telex: 10877 {meab S) 
Telephone: (08) 960468 
Facsimile: (08) 966877 

U.K. 
Mitsubishi Electric (U.K.) Ltd. 
Travellers Lane 
Hatfield 
Herts AL 10 8X B, England, U.K 
Telephone: (0044) 7072 76100 
Facsimile· (0044) 7072 78692 

AUSTRALIA' 
Mitsubishi Electric Australia Pty. Ltd. 
73-75, Epping Road, North Ryde, 
P.O. Box 1567, Macquarie Centre, 
N.S.W., 21 t3, Australia 
Telex· MESYD AA 26614 
Telephone· (02) (888) 5777 
Facsimile· (02) (887) 3635 



MITSUBISHI SEMICONDUCTORS 
MELPS 7700 (SOFT WARE) USER'S MANUAL 

July. First Edition 1989 

Editioned by 

Committee of editing of Mitsubishi Semiconductor USER'S MANUAL 

Published by 

Mitsubishi Electric Corp., Semiconductor Marketing Division 

This book, or parts thereof, may not be reproduced in any form without permission 

of Mitsubishi Electric Corporation. 

©1989 MITSUBISHI ELECTRIC CORPORATION 



MITSUBISHI SEMICONDUCTORS 
MELPS 7700<SOFT WARE) 

"'MITSUBISHI ELECTRIC CORPORATION 
HEAD OFFICE MITSUBISHI DENKI BLDG MARUNOUCHI . TOKYO 100 TELEX J24532 CABLE MELCO TOKYO 

H-E0112-A Kl-8907 Printed in Japan (ROD) 
© 1989 MITSUBISHI ELECTRIC CORPORATION 

These products or technologies 
are subiect to Japanese and/or 
COCOM strategic restrictions, and 
diversion contrary thereto is 
proh1b1ted. 

New publication, effective Jul. 1989. 
Specifications subject to change without notice. 




