
Monolithic ~~ n
Memories U1Jn.U

The Idealogic Exchange (~9-26)
Monolithic Memories Inc.
2175 Mission College Blvd.
Santa Clara, CA 95~54
(498)979-97~~

Dear PLEASM User,

PLEASM is the cousin of PALASM, as PROMs are akin to PALs.
PALASM and PLEASM constitute MMI's current Programmable logic
Support Software. Together, they demonstrate MMI's commitment to
providing total support for fusible link logic. By making these
tools available, we hope to encourage the design engineer to take
advantage of the flexibility offered by semi-custom logic in
general, and fusible link technology in particular.

As with PALASM, PLEASM is available for a variety of
computers and operating systems. Please check that you have the
correct disks or tapes for your particular machine.

By your order, you will have been enrolled in the
Exchange. To ensure that you will recieve new
announcements and any software updates, please fill
return the Purchace Registration Card located at the
this binder. For post-sale service, contact your
representative or Field Applications Engineer or
Software Services Group at MMI directly.

Idealogic
product

out and
front of

local MMI
call the

Be sure to back-up your PLEASM disks/tapes before proceeding
any further.

Also, please check the Errata sheet at the back for late
changes.

Thank you.

Very truly yours,

The Idealogic Exchange
Monolithic Memories Inc.

THE PLEASM MANUAL - FIRST RELEASE

To be· used with PLEASM Version 1.2

Date February 15, 1984

Prepared by the Software Services Group

Product Planning and Applications Department

Monolithic Memories, Inc.

(c) 1984 Copyright

All Rights Reserved.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

o Copyright Notices: page 0-1

COPYRIGHT

(C) Copyright 1984 Monolithic Memories, Inc. The copying
and distribution of this manual or the PLEASM software 1S
encouraged for the private use of the original purchaser provided
this notice is included in all copies. No commercial resale
or outside distribution rights are allowed by this notice.
This material remains the property of Monolithic Memories
Inc. All other rights reserved worldwide by Monolithic
Memories Inc., 2175 Mission College Blvd., Santa Clara, CA. 95050.

TRADEMARKS

The following are registered trademarks of MMI: PAL, HAL,
PLE. MMI also has the trademarks: PALASM, PLEASM.

The following are registered trademarks of Digital Equipment
Corporation: VAX, VMS, PDP, RSX.

IBM Corporation has the trademarks: IBM PC, PC DOS.

The Osborne PC is a trademark of the Osborne Computer
Corporation.

UNIX is a trademark of AT & T.

Intel/MDS is a registered trademark of Intel Corporation.

,CP/M is a trademark of Digital Research, Inc.

MS-DOS is a trademark of Microsoft.

SSFORTRAN is a trademark of Supersoft Inc.

DISCLAIMER

Monolithic Memories Inc. makes no representations or
warranties with respect to the contents within and specifically
disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Monolithic Memories Inc.
reserves the right to revise this publication and the product it
describes and to otherwise make changes to the product without
obligation of Monolithic Memories Inc. to notify any person or
organization of such revision or changes.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Table of Contents

Section: Title:

0

1

2
2.1
2.2

3
3.1
3.2

4

5

6

Copyright Notices

Introduction

PROMs vs. PLEs
The P.ROM as a Memory Element
The PROM as a Programmable Logic Element

Equipment needed and set-up functions
Load/Go system
Development system

Running PLEASM - command descriptions

PLEASM - An Example

The Syntax of PLEASM

APPENDIX TITLE

A PLEASM Implementation Notes

B

C

D

E

F

G

H

A.l VAX/VMS .
A.2 IBM PC

PROM/PLE Programmer Information

PLEASM Error Messages

PLE Design File Library

HELP!! and where to get it

User Customization

Source License Agreement

HIGH SPEED BIPOLAR PROMS FIND NEW APPLICATIONS AS
PROGRAMMABLE LOGIC ELEMENTS (PLEs) : Article Reprint

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

1. Introduction page 1-1

Introduction

PLEASM (Programmable Logic Element ASseMbler) is a software
package developed by Monolithic Memories Inc. used for designing
with PROM's as Programmable Logic Elements (PLE's) • PLEASM is a
FORTRAN IV program which assembles and simulates PLE Design
Specifications. It also generates programming formats for direct
download to PROM programmers and can therefore be regarded as
a tool that reduces the design-to-production time considerably.

~ Features:
- Assembles Logic or Arithmetic equations into a PROM

truth table.
Provides INTEL HEX and ASCII HEX programming formats
along with the hex check sum.
Programming formats can be directly downloaded to
standard PROM programmers.
Simulates the Function Table, in the design equations.
Reports design errors.

The purpose of this manual is to aid the user in running
PLEASM and getting to know and understand all its capabilities
It begins with an article that describes the wide range of PROM
applications and the motivation for developing a software tool to
aid in designing these applications.-The next section states the
system requirements for PLEASM. The next two sections give a
detailed account of how to run the program with an explanation of
what each of the options accomplish. This is strengthened by an
example where all the operations have been performed on an input
file that has the PLE specifications for basic logic gates. The
PLEASM syntax is described next. This is best understood if this
section is read in accompaniment with some of the design examples
that come with the PLEASM program. A detailed PLE applications
handbook will be available shortly.

The Appendix gives some machine specific information about
PLEASM along with details on PROM programmers, the PLE design
files supplied as examples, and user customization. An important
part of the Appendix is the section on the errors detected by
PLEASM. This should be very useful when creating your own PLE
designs.

The new PLEASM user should read Sections 3 to 5 initially
and then try to run the demonstration examples. Once the user is
ready to create his own design, Sections 2 and 6 will provide
ideas and details of the specification format. The Appendices
serve to provide additional supporting information on a number of
SUbtleties the user should be aware of in fully utilizing the
software.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

2. PROMs vs. PLEs page 2-1

PROMs ~ fl&S.
PROMs have grown steadily in size and speed since their

introduction in 1971, when Monolithic Memories introduced the
world's first lK bit bipolar PROM. Today, 16K and 32K PROMs are
readily available and their speeds have improved such that the
maximum address time (address to output) of these devices is down
to 60-70 nanoseconds, over the complete operating temperature
and VCC range. This means that PROMs can be used effectively in
both high speed memory and logic replacement applications.

The PROM implements a sum-of products boolean transfer
function in which any possible input (address) combination can be
transferred to any output variable (data out). Figure 1.1 shows
logical structure of a typical PROM. The input Fixed-AND array is
a decoder and the output Programmable-OR array is a decoder. It
is this decoder area that is field programmable to implement any
boolean transfer function.

Each output of the AND array is connected to an input of the
OR array by thin metal wire (e.g. nichrome, titanium-tungsten,
platinum-silicide) which can be selectively removed from the
circuit by passing a current through it. This is referred to as
"programming" or nblowingn a "fuse n •

~ ~ fRQM ~ a Memory Element

Because of their high speeds, bipolar PROMs are ideal for
use in systems requiring fast Address-to Data access times. PROM
applications can be found in both the data and control paths of a
system.

In data paths, PROMs are used mainly as storage elements to
implement different table look-up applications such as
trigonometric functions, signal processing coefficients,
bootstrapping and initialization programs, etc. In particular,
the PROM can be used to advantage in the design of digital
filters and Fast Fourier Transforms. In character generator
applications, the PROM user has the flexibility of modifying the
conventional fonts to his/her particular requirements.

In control paths, PROMs are used mainly to store
microprograms. Microprogrammed controllers may be simple PROM­
register finite state machines or they may be complex
microprogrammed CPUs, where the complete instruction set of the
system resides in PROM. It is thus possible, by using PROMs for
microprogramming, to use the same hardware to emulate the
characteristics of various processors.

Since most memory applications involve storing PROM memory
data in a temporary register before it is used (pipelining), this
has spawned a new generation of PROMs with on-board D-type edge­
triggered registers. These registered PROMs operate faster than
discrete PROM-register combinations, and the registered PROMs
also occupy less space.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

~

r-J

2. PROMs vs. PLEs page 2-2

7 ~ 7 ~ 7 ~ 7

rv V 'V
PROGR MM LE A AS

OR

r-oo..
1=(

A • Ie. 0 • '4

A • 8 • C • 0 • '3
A • I • C • D· '2

?< F\.I~CTION A • 8 • C • D· F1 F, F2 FJ F.

=::
:::::i

ADD"ISS "oj A, I A, "3 OU"'UT 0, 0, OJ 0.1
I I

:::::i 0 I 01 0 I 0 0 , ,
=< .=<
=<
::::<

, I , I :I I 0 o t , I ,
:I 1 0 i 1 o ! 0 t , I ,

I 3 i , I I I 0 o I , 1 .
• ! o , 0 : , I 0 t
5 ! 1 0 , i 0 I , t

=={ I • I 0 I 1 I t I 0 I , t

=<
=<
=<

, , , , 0 , ,
• I o I 0 I o I , I I ,
t 1 o I 0 . , , 1·

I '0 .0 ! 1 I 0 I , , ,
?<' " , I , I 0 ! , i , r , ..

I

::::< " o I 0 I
, I , i ,

-../ '3 ! , I o I , I I ,
FIXEO YY\iY

,. o I , I 1 I I

"
1 I I I 1 1 1 I

AND

Figure 1.1 Typical PROM structure Figure 1.2 Combinatorial functions
available in a 16x4 PROM

~ ~ fBQK aa A Proarammable Logic Element.

The PROM implements a sum-of-products boolean transfer
function so that'any function of x inputs and y outputs may be
generated in a PROM with x addresses and y data outputs. Figure
1.2 shows the combinational functions available in a 16 X 4 ·PROM.

The AND-OR structure of the PROM can be viewed as a two­
level logic circuit. The fixed AND plane contains all possible
input combinations. Each input combination is a product term and
it is connected to the output in the OR plane.

In terms of a PLE, a product term is the equivalent of an
AND gate equal .in size to the number of inputs. Each output is
equivalent to an OR gate connected to all the AND gates.
Programming a fuse blows this connection between the AND gate and
the OR gate. The PROM thus conveniently implements combinatorial
logic when a large number of input combinations are required or a
large number of product terms per output is desired.

Most applications of PLEs are in synchronous control systems
where they replace random logic or customise logic functions. In
data paths, they are used to generate complex functions such as
pseudo random number generators, ALU operations, multiplications,
reciprocals, etc.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

3.1 Equipment/Set-Up page 3-1

~ Equipment/Set-Up fQL Load/Go system

PLEASM should run with minimal modifications on the
following CPU's provided the m1n1mum system requirements
mentioned later in this section are satisfied.

Mainframe Computers
VAX-VMS, VAX-UNIX, or IBM.

Minicomputers
PDP-ll/RSX or PDP-ll/RT-ll

Microcomputers
IBM-PC/MS-DOS or the CP-M system on Radio Shack, Apple,

Kaypro or Osborne computers.

Other requirements are:

Removable Media 5.25" or S" disks, or tape.

Memory 64K bytes minimum.

One EIA RS232 serial communications port.

PROM programmers suggested :
DATA I/O Model 19 Programmer with Unipak.
DATA I/O Model 29 A with Unipak.
DIGELEC Model UP-S03 with FAM 12.
KONTRON Model MPP-80S

~ Equipment/Set-Up fQL Development system

For software development and user customization of the
program, the requirements presented earlier are necessary.

In addition, a FORTRAN compiler/linker and another disk
drive are necessary to create the executable version of the
program. The compiler recommended is the Supersoft FORTRAN
compiler which was used to develop and test the program on
microcomputers at Monolithic Memories Inc.

PLEASM is compatible with both FORTRAN IV LEVEL G and
FORTRAN 77 standards. Additionally, only standard FORTRAN
constructs are used to ensure portability to many computer
systems.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

4. Running PLEASM page 4-1

USER'S GUIDE ~ PLEASM(tm) = fLE Assembler version ~

To get started with PLEASM, turn the computer ON. Check
your directory to make sure you have the files mentioned in
Appendix A. Once this has been verified, run the program as
explained below with one of the example files. Our suggestion is
to start with the file P5000.TXT which contains the PLE Design
Specifications for the basic logic gates. Once the capabilities
of the program have been understood, you can work with any of the
other examples or attempt to create your own designs.

Using PLEASM;

Type the system's execute command to run the program.
PLEASM will respond ••••

MONOLITHIC MEMORIES PLEASM(tm) VERSION 1.2A
(C) COPYRIGHT 1984 MONOLITHIC MEMORIES

WHAT IS THE SOURCE FILENAME (d:fi1ename.ext) ?:P5000.TXT

At this point enter the name of the file containing the
specifications for the PLE being designed. If you are using this
package for the first time, we suggest you tryout one of the
design examples that was sent along with PLEASM. PLEASM next
prompts you for the name of the file you could have the output
sent to, defaulting to the console ••••

OUTPUT FILENAME - PRESS <ENTER> FOR NO OUTPUT FILE ?:~

If you press <enter>/<return> the output will be sent to the
console after each operation. At this point, the input.file is
read, and a count of lines and characters in the file is written
out to the screen. The next prompt is for the operation you want
performed and is ••••

E=ECHO INPUT S=SIMULATE T=TRUTH TABLE B=BRIEF TABLE
A=HEX TABLE I=INTEL HEX H=ASCII HEX C=CATALOG Q=QUIT

ENTER OPERATION CODE:~

You can now enter the appropriate operation code, IN UPPER
CASE!!.

The various options are briefly discussed below.

E ECHO INPUT - Prints the input PLE specifications file. Useful
as a ready reference while working interactively with PLEASM.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

4. Running PLEASM page 4-2

S SIMULATE - Exercises the logic values in the optional function
table in the logic equations provided. Errors in the function
table are detected along with fairly explicit diagnostic
messages. An important point to note is that all "don't care"
conditions are treated as low logic values.
This option can be successfully invoked only when a function
table is present in the input specifications.

T TRUTH TABLE - Prints out the entire binary truth table
the input variables in the PLE by substitutions into the
equations specified. The output has a tabular format for
reading. The program also provides a hex checksum for the
in the truth table at the end.

for all
Boolean
ease of
entries

B BRIEF TABLE - Prints out the truth table only for the used
input addresses in the PLE, again by substitutions into the
Boolean equations. The output is tabulated as before, this time
with a partial hex checksum corresponding to the possibly shorter
table.

A HEX TABLE - Prints out the entire truth table as before, except
the inputs and outputs are translated into hex. Also generates a
tabular format with a hex che9ksum.

I INTEL HEX - Generates the Intel Hex format for PROM programmers
for both 4- and 8-bit data downloading. The format is shown
below ••••

: AABBBBOOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDD

: --) Starting colon marker
AA --) Record Length in hex
BBBB --) Record starting address in hex
C •• C --) Data
DD --) Hex checksum

Here all data is sent in streams of 16 8-bit bytes starting at
OOOOH. 4-bit data is padded up with zeros in the most significant
four places. The checksum is the negative of the sum of all 8-bit
bytes starting at "AA" upto "DD", modulo 256. Transmission is
terminated by the string ":OOOOOOOlFF".

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

4. Running PLEASM page 4-3

H ASCII HEX SPACE - Generates the ASCII Hex format for PROM
programmers for 4- and 8-bit data downloading. The format is
shown below ••.•

A
BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB •
C

A --> Record start character (STX)
BB --> Data byte
C --> End of text character (ETX)

Data is sent in streams of 16 8-bit bytes separated by spaces. An
execute character, the ASCII period If.", is sent at the end of
each stream of data. 4-bit data is padded up with zeros in the
most significant 4 places. In addition, a hex checksum is passed
at the end of the transmission.

C CATALOG - Prints a one-line description of each option provided by
PLEASM. Always displays to the console.

CATALOG OF OPERATION CODES:

MONOLITHIC MEMORIES PLEASM(tm) VERSION 1.2A

PLEASM --PLE ASSEMBLER-- PROVIDES THE FOLLOWING OPTIONS :

C CATALOG
E ECHO INPUT
T TRUTH TABLE
B BRIEF TABLE
A HEX TABLE

S SIMULATE

I INTEL HEX
H ASCII HEX

Q QUIT

- PRINTS THE PLEASM CATALOG OF OPERATIONS
- PRINTS THE PLE DESIGN SPECIFICATIONS
- PRINTS THE ENTIRE TRUTH TABLE
- PRINTS ONLY USED ADDRESSES IN THE TRUTH TABLE
~ PRINTS THE TRUTH TABLE IN HEX FORM

- EXERCISES THE FUNCTION TABLE IN THE LOGIC
EQUATIONS

- GENERATES INTEL HEX PROGRAMMING FORMAT
- GENERATES ASCII HEX PROGRAMMING FORMAT

- EXITS PLEASM

Q QUIT - Exits the PLEASM program and prompts for restarting with
another input specifications file.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

5. PLEASM - An Example page 5-1

ENTER OPERATION CODE: E
(Echoes the input PLE Design Specifications file. This will
(help verify that the input file has been read in correctly.

PLE5P8
P5000
BASIC GATES
MMI SANTA CLARA, CALIFORNIA

01 = IO
02 = /10
03 = 10 * II * 12 * 13
04 = 10 + II + 12 + 13
05 = /IO + /Il + /I2 + /I3
06 = /IO * /Il * /I2 * /13
07 = IO : +: II :+: 12 : +: 13
08 = IO : *: II : *: 12 :*: 13

FUNCTION TABLE

IO II 12 13 01 02 03 04 05 06 07 08

OUTPUTS FROM BASIC GATES

· , · ,

· , · ,
· ,

PLE DESIGN SPECIFICATION
VINCENT COLI 10/03/82

BUFFER
INVERTER
AND GATE
OR GATE
NAND GATE
NOR GATE
EXCLUSIVE OR GATE
EXCLUSIVE NOR GATE

; INPUT
;0123 BUF INV AND OR NAND NOR XOR XNOR COMMENTS
-----------------~---

LLLL
HHHH
HLHL
LHLH

L
H
H
L

DESCRIPTION

H
L
L
H

L
H
L
L

L
H
H
H

H
L
H
H

H
L
L
L

L
L
L
L

H
H
H
H

ALL ZEROS
ALL ONES
ODD CHECKERBOARD
EVEN CHECKERBOARD

THIS EXAMPLE ILLUSTRATES THE USE OF PLEs TO IMPLEMENT THE BASIC GATES:
BUFFER, INVERTER, AND GATE, OR GATE, NAND GATE, NOR GATE, EXCLUSIVE OR
GATE, AND EXCLUSIVE NOR GATE.

NOTE ALSO THAT THREE-STATE OUTPUTS ARE PROVIDED WITH ONE ACTIVE LOW
OUTPUT ENABLE CONTROL (IE).

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

5. PLEASM - An Example page 5-2

ENTER OPERATION CODE: S
{ This option verifies that the output entries in the
(Function Table are correct for the given Boolean equations and
{input vectors. Any discrepancy between the expected output
(value as given in the Function Table and the output value as
{ computed from the Boolean equations is flagged as an error.
(
{ The following are acceptable input entries in ~he Function
(Table:
(
(
(
{

FUNCTION TABLE

H - High level
L - Low level
X - Irrelevant

10 II 12 13 01 02 03 04 05 06 07 08

OUTPUTS FROM BASIC GATES ,INPUT
,0123 BUF INV AND OR NAND NOR XOR XNOR

LLLL
HHHH
HLHL
LHLH

L
H
H
L

PASS SIMULATION

H
L
L
H

L
H
L
L

ENTER OPERATION CODE: T

L
H
H
H

H
L
H
H

H
L
L
L

L
L
L
L

H
H
H
H

COMMENTS

ALL ZEROS
ALL ONES
ODD CHECKERBOARD
EVEN CHECKERBOARD

{ Generates an exhaustive binary truth table for all the given
(inputs by sUbstitution in the Boolean equations.

BASIC GATES

ADD AO Al A2 A3 A4 01 02 03 04 05 06 07 08

0 L L L L L L H L L H H L H
1 H L L L L H L L H H L H L
2 L H L L L L H L H H L H L

29 H L H H H H L L H H L H L
30 L H H H H L H L H H L H L
31 H H H H H H L H H L L L H

HEX CHECK SUM = OOF48

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved

5. PLEASM - An Example page 5-3

ENTER OPERATION CODE: B
(Prints the truth table for only the used input and output
(pins.

BASIC GATES

ADD AO Al A2 A3 01 02 03 04 05 06 07 08
--

0 L L L L L H L L H H L" H
1 H L L L H L L H H L H L
2 L H L L L H L H H L H L

· · · · · · · · 13 H L H H H L L H H L H L
14 L H H H L H L H H L H L
15 H H H H H L H H L L L H

PARTIAL HEX CHECK SUM = 007A4

ENTER OPERATION CODE: A
(Generates the truth table with input and output vectors
(translated into hex.

BASIC GATES

ADD HEX ADDRESS HEX DATA

0 000 00B2
1 001 0059
2 002 005A · · · · · · · · 29 OlD 0059

30 OlE 005A
31 OIF 008D

HEX CHECK SUM = 00F48

ENTER OPERATION CODE: I
(Generates the Intel Hex programming format for downloading
(to a PROM programmer.

:10000000B2595A995A999A595A999A599A595A8D4C
:10001000B2595A995A999A595A999A599A595A8D3C
:OOOOOOOIFF

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

5. PLEASM - An Example page 5-4

ENTER OPERATION CODE: H
(Generates the ASCII Hex Space programming format for
(downloading to a PROM programmer, with the required <STX>,
(<SOH>, and <ETX> control characters delimiting the
(transmission.

ABAA
B2 59 SA 99 SA 99 9A 59 SA 99 9A 59 9A 59 SA 8D •
B2 59 SA 99 SA 99 9A 59 SA 99 9A 59 9A 59 SA 8D •
AC
OOF48

ENTER OPERATION CODE: Q
(Exits PLEASM and prompts for restarting with another input
(file.

RESTART PLEASM(Y/N) ?:

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

6. The syntax of PLEASM page 6-1

~ Design Specification;

The PLE Design Specification is the input file used
PLEASM. It is also the recommended data sheet format
describing the function of a PROM, once it has acquired
unique personality of a particular fuse pattern. This format
creating an input specifications file can be best understood
studying the examples that come along with this package.
format for the PLE Design Specification is :

with
for
the
for

by
The

Line 1 PLE part number, starting in column 1, followed by the
words ~ DESIGN S~ECIFICATION.

Line 2 User's part number followed by the designer's name and
the date, starting in column 1. This may be an identifier
that defines the application and is used for reference.

Line 3 Device Application name, starting in column 1.

Line 4 User's company name and address, starting in column 1.

Lines 2-4 are without fo~mal rules and are provided for
documentation purposes.

Line 5 Address pin list, prefixed by ~, starting in column 1.
The pin list should be ordered LSB first.

Line 6 Data pin list, prefixed by~, starting in column 1.
The pin list should be ordered LSB first.

The pin list is a sequence of symbolic names separated by
one or more spaces on one or more lines in the order of
the device pin numbers. Each symbolic name is unique
(except the unused pins which may have the same name).
All pins including power and ground must be named. Names
may use any printable characters except the operators
, ; " '.', I,', 1=', 1*', and 1+'. The pref ix 1/1 is used
to logically complement the name.

Line m EQUATIONS

The transfer function of the device is expressed in the
following form

SYMBOL = EXPRESSION

The following terms are used to construct the
equations:

SYf.1BOL Pin Name with optional prefix 1/'

EXPRESSION A sequence of SYMBOLS separated by
operators.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

6. The syntax of PLEASM page 6-2

OPERATORS (in hierarchy of evaluation)

Comment follows
Dot operator (pin list or arithmetic
operator follows)

ADD Address pins (Inputs)
DAT Data Pins (Outputs)

Delimiter, separates binary bits (MSB first)
= Equality (combinatorial)

BOOLEAN OPERATORS

/ Complement, prefix to a pin name
* AND (PRODUCT)
+ OR (SUM)

:+: XOR (EXCLUSIVE OR)
:*: XNOR (EXCLUSIVE NOR)

ARITHMETIC OPERATORS

.*. Multiply (Arithmetic multiplication)

.+. PLUS (Arithmetic addition)

Line n FUNCTION TABLE

The function table begins with the key word FUNCTION
X~~~~, starting in column 1 of a line following the
equation list. It is followed by a pin list which may
be in a different order and polarity from the pin list
in Lines 5 and 6. The pin list is followed by a line
of dashes (-'s) which is in turn followed by a list of
vectors, one vector per line. One state must be
specified for each pin name and optionally separated by
spaces.

A vector is a sequence of states listed in
the same order as the pin list and followed by an
optional comment. The vector list is followed by
another dashed line.

An important restriction is that blank lines
are not permitted in the body of the function table. To
separate logically distinct parts of the function
table, however, comments can be used. In other words,
blank lines are permitted with a semicolon (,) in the
first column. Additionally, comments can be placed in
this line. Extra blank lines might result in the
simulator scanning past the end of the function table
and detect "-" as an error symbol, resulting in failure
to pass simulation.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

6. The syntax of PLEASM page 6-3

A function table is optional and need be
present only for simulation to be performed. The
keyword FUNCTION ~A~L~, however, is necessary in the
input file. This should start in column 1, and should
follow the equation list.

Definition of Function Table States:

Symbol 1 Definition I Input I Output
-·----·----·---1- -··-·----------1-----------------------\---------------

II I HIGH LEVEL \ Drive High \ Test High
1 I I

L 1 LOW LEVEL 1 Drive Low I Test Low
1 I I

X 1 IRRELEVANT \ Don't Care Condition \ Do Not Test
\ I \

Line 0 DESCRIPTION (optional)

This begins with the keyword DESCRIPTIQN, starting in
column 1. The device operation and application are
described here. All the lines following the keyword
P~S~RIPTION are treated as comments. Even though the
lines following may be blank, the keyword DESCRIPTION
is nece~sary in the input file for assembly.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

6. The syntax of PLEASM page 6-4

An informal grammar for the input specifications file is given
below:

PLE_SPECIFICATIONS_FILE --> PLE_TYPE_LINE
PLE_PATTERN_LINE
APPLICATION_DESCRIPTION_LINE
COMPANY_INFORMATION_LINE
ADDRESS_PIN_LIST
DATA_PIN_LIST
EQUATION_LIST
FUNCTION TABLE
[FUNCTION_TABLE_PIN_LIST]
[FUNCTION_TABLE]
DESCRIPTION

[COMMENTS]

PLE_TYPE_LINE --> ~<PLE PART NUMBER> PLE DESIGN SPECIFICATIONS

PLE_PATTERN_LINE --> <REFERENCE NUMBER FOR APPLICATION, AUTHOR'S NAME>

APPLICATION_DESCRIPTION_LINE --> <APPLICATION NAME>

COMPANY_INFORMATION_LINE --> <COMPANY NAME AND ADDRESS>

ADDRESS_PIN_LIST --> ~ <PIN NAME LIST FOR INPUT PINS>

DATA_PIN_LIST --> ~ <PIN NAME LIST FOR OUTPUT PINS>

EQUATION_LIST --> <LIST OF BOOLEAN EQUATIONS>

FUNCTION_TABLE_PIN_LIST --> <LIST OF PINS TO BE SIMULATED>

FUNCTION_TABLE --> H!L!X <ENTRIES DEFINING LOGIC VALUES FOR THE PINS>

COMMENTS --> <COMMENTS DESCRIBING APPLICATION>

where, [••] denotes an optional expression,

< •• > denotes an informal representation for the expression,

, denotes a keyword,

and '! I denotes the "OR" operator.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

6. The syntax of PLEASM page 6-5

Important notes QD PLEASM input specifications;

1. The specifications file must contain the
rllN~~IQN Xb~LE and ~~S~RIPTION starting in column 1 for
to occur.

keywords
assembly

2. All responses to PLEASM prompts should be in upper
case.

3. The input specifications file should preferably be
entirely in upper case.

4. The number of characters in the file, the number of
lines in the file, and the number of characters in each line
should be within the limits set in the I/O initialization
package. The current limits set are 6000 chars/file, 250
lines/file, and 80 chars/line.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix A.I: PLEASM on the VAXII/VMS page A-I

~ PLEASM Qn ~ VAXll/VMS
The following files should be in your tape if you have the
Load/Go System :

PLEASM.EXE - This is the executable file that can be invoked to
assemble your input PLE specifications.

P5000.TXT through PSOI7.TXT - These are the example files
containing some applications. They are useful for
studying how the input file should be written, and
can be run with PLEASM to provide an on-line
demonstration of how the program works. Details on
the contents of these files can be "found in Appendix
D.

IOINIT.FOR - User customization package for array dimensions and
I/O.

If you have ordered the Development system, you should have in
addition the files :

PLEASM.FOR - This file contains the FORTRAN source for the PLEASM
program and can be compiled by any FORTRAN compiler
you have at your disposal.

IOLIB.FOR - This file contains the I/O features that make this
version of PLEASM compatible with that on the IBM­
PC. This will have to be linked in with the main
program during compilation.

Unloading X2YL Mag ~ under VAX/VMS

Helpful Hints:

- The volume is labelled PLEASM and is recorded in Files-II
format, 1600 BPI and 9-track mag tape.

- For the neophytes who wish to learn everything there is to
learn about mag tapes and more, Digital Equipment
Corporation has published The Magnetic Tape Users' Guide
(Order No. AA-MS39A-TE).

- Your tape drive goes by many different names. For example,
MTAO: or MSAO:. To list all devices on your installation,
type SH DEV M<cr> when you see the $ prompt.

Aftet loading your tape on the drive, when you see the $
prompt, type the following:

$ ALL MTAO: TAPE

Allocates space for TAPE on device MTAO:

$MOUNT/OVER=IDENT TAPE

(This mounts the tape and overrides any tape labels. Operator
(privileges are sometimes required to do this.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix A.l: PLEASM on the VAXll/VMS

$CREATE/DIR [.PLEASM)
$SET DEFAULT [.PLEASM)

Sets up the directory appropriately.

$COPY TAPE:*.*,* [)*

(This copies the tape files to your directory.

$DISMOUNT TAPE

(Dismounts tape and wraps things up.

page A-2

DISREGARD THIS MARKED SECTION IF YOU HAVE THE LOAD/GO SYSTEM 11
**

Compile and link the source program using the following sequence
of commands, to create the executable version

$ FORTRAN ~LEASM,IOLIB
$ LINK PLEASM,IOLIB

Using PLEASM:

Create your PLE Design Specification file using one of
your system's editors.

Then type the following:

$ RUN PLEASM

The program PLEASM should now run. At this point, refer
to Section 4. for step-by-step instructions on how to use the
program.

pumping a. rill fi.Q.m .tM VAX (VMS) tQ..the. l&ta lLO.1.

Cable Connections: •

The RS-232C cable that connects the VAX-II to the Data I/O
has lines 2 and 3 reversed. The only other pins that must be
connected are pins 1 and 7.

Operating Procedures:

1. Turn Data I/O power off.

2. Connect the Data I/O programmer to the modem and VT100
terminal as shown in Fig. A.l-l.

3. Turn the Data I/O programmer on.

4. Press the "SELECT" (Data I/O).

(c) Copyright Monolithic Memories Inc. 1984 ~ll Rights Reserved.

Appendix A.1: PLEASM on the VAX11/VMS page A-3

5. Enter "EB"(Data I/O)

6. Press the "STARTn(Data I/O).

7. Type "TY FILENAME.DAT" (VT100).

8. Press "RETURN" on the VT100.

9. Disconnect VT-100 terminal from the modem and Data I/O.

10. Reconnect Data I/O to VT-I00 as shown in Fig. A.I-2.

11. Press the "SELECTn (Data I/O).

12. Press the "SELECTn (Data I/O).

13. Enter "El n (Data I/O).

14. Press "START n '(Data I/O).

15. Use VT-I00 keyboard in order to communicate with the Data
I/O.

PROGRAMMER MODEM VT100

1-------1 1-------1 1-------1
PROTECTIVE GND. 1 1 0 1-------1 0 1 0 1-------1 0 1 PROTECTIVE GND •

SEND DATA

RECEIVE DATA

RTS

CTS

DSR

SIGNAL GND.

Fig.

. -------1 !-------, 1-------1
~ 2 0 1------- 0 2 0 -------1 0 2 1 SEND DATA
-------1 ------- 1-------1
.3 0 1------- 0 3 0 ------- 0 3 1 RECEIVE DATA
-------1 ------- -------1

4 0 1------- 0 4 0 ------- 0 4
-------1 -------1

5 0 1------- 0 5 0 ------- 0 5 1
-------1 1------- -------1

6 0 1-------1 0 6 0 ------- 0 6
-------1 1------- -------1

1 7 0 1-------1 0 7 0 ------- 0 7 SIGNAL GND.
1-------1 1------- -------1

A.l-l: Downloading from host (VAX-II) to Programmer.
(VAX talking to Programmer and VT100) •

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

· Appendix A.l: PLEASM on the VAXll/VMS page A-4

PROGRAMMER VT100

-------1 1-------1
PROTECTIVE GND. 1 0 1-----------··-----------1 0 1 PROTECTIVE GND.

-------1 1-------1
SEND DATA 2 0 -----------------------1 0 2 1 SEND DATA

RECEIVE DATA

RTS

CTS

DSR

------- 1-------1
3 0 -----------------------1 0 3 RECEIVE DATA

1------- 1-------1
1 4 0 ----------------------- 0 4 1 1------- -------1
1 5 0 ----------------------- 0 5 1------- -------1
1 6 0 1----------------------- 0 6 1
1-------1 -------1

SIGNAL GND. 1 7 0 1----------------------- 0 7 ! SIGNAL GND.
1-------1 -------1

Fig. A.1-2: Using Programmer as host

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix A.2: PLEASM on the IBM PC DOS 2.00 page A-S

Please note that for the IBM PC, system requirements are as
follows:

8088 based microprocessor system

- 64K bytes minimum of memory

- MS-DOS (PC-DOS) operating system

- Optional text printer

- I disk drive.

The IBM PC version comes with a diskette which contains the
following files:

Disk #1: PLEASM.EXE (if the Load/Go system has been ordered)
PLEASM.FOR (if the Development system was ordered)
PSOOO.TXT - PS017.TXT
PALCOM.EXE & PALSETUP.EXE

PLEASM.EXE is the executable version of PLEASM.
PLEASM.FOR is the FORTRAN source for the program.
PSOOO.TXT - PS017.TXT contain the example applications.
PALCOM.EXE is the program used for downloading.
PALSETUP.EXE allows the user to specify communications protocol

DISREGARD THIS MARKED SECTION IF YOU HAVE THE LOAD/GO SYSTEM 1'1

To create the executable version for the source program you have
to compile and link the source file using any FORTRAN
compiler/linker you have at your disposal. The one recommended is
the Supersoft FORTRAN compiler which was used during the
development and testing of this program. For this compiler the
sequence of commands to create the executable file would be (with
the compiler/linker in drive B: and the source in drive A:) :

A) B:SFOR PLEASM.FOR PLEASM.REL
A) B:CNV PLEASM.REL PLEASM.OBJ/R
A) B:LINK S+SEMU+@PLEASM.RSP,PLEASM,NUL,SFLIB+MLIB"

This creates the executable file PLEASM.EXE.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix A.2: PLEASM on the IBM PC DOS 2.00 page A-6

To use PLEASM on the IBM PC, two steps are necessary:

1. Create and edit the PLE Specification File.
2. Run PLEASM.

To run PLEASl\l with Disk #1 in drive A, type the following when
you see the A) prompt:

A)PLEASM

At this point, PLEASM begins running. For step-by-step
instructions on how to use the program, please refer to Section
4.

General:

1. Do NOT terminate the program abnormally by pressing
CTRL-C, CTRL-BREAK, etc. when you are sending the output to a
file rather that the screen. Use instead the QUIT option to
.terminate your session. If the session is terminated using CTRL­
C, this may result in lost files on your disk. This is because
your output file will not have been properly closed.

2. The approximate run-times for the programs vary
depending on the size of the PLE and the length of the input
specifications file. Simulation takes between 1 and 3 minutes,
while generating programming formats could take anywhere between
3 and 10 minutes.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

PROGRAMMER VENDOR LIST

Following is a list of- ,..lMI approved programmer vendors.
Although the list below is rno~tly for the San Francisco Bay Area
offices, you should be able to obtain information about their
regional sales offices by calling the telephone numbers listed.

1. Data I/O
473 Sapena Court/Suite 4
santa Clara, CA 95050

2. Structured Design
1700 Wyatt Drive/Suite 3
santa Clara, CA 95054

3. Kontron
630 Price Avenue
Redwood City, CA 94063

4. Stag
528-5 Weddell
Sunnyvale, CA 94029

5. Digelec
7335 E. Acoma Drive/Suite
Scottsdale, AZ 85260

6. Storey Systems
3213 N. Hwy 67/Suite 103
Mesquite, TX 75150

7. Varix
122 Spanish Village #608
Dallas, TX 75248-

8. Citel
3060 Raymond Street
Santa Clara, CA 95050

(408)727-0641

(408)988-0725

(415)361-1012

(408)745-1991

103
(602)991-7268

(214)270-4135

(214)620-0925

(408)727-6562

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix B: PROM/PLE Programmer Information page B-1

PROM/PLE Programmer Information:

~ ILQ Model ~ Programmer Hith llnifgk:

~ Features:

- Accepts PLE HEX programming format.

- Allows user limited communication via RS232 interface to
computer development system.

Using ~ ~ ILQ Model ~ ~ UniPak:

RS232 Serial Interface:

Prior to powering up the DATA I/O it is important that
the RS232 interface be connected to the host computer
correctly. The correct interface is described below:

l-lodel 19 Terminal Model 19 Terminal
----- -----

Gnd 1 ------1 1 1
Send 2 ------1(2) !

Rec 3 ------1(3) 1
RSend 4 ------!(4)!
CSend 5 ------1(5) 1

SGnd 7 ----:---1 7 1
----- -----

With Handshake

God
Rec
Send
CSend
RSend
SGnd

Gnd 1 1--------1 1 ! Gnd
Send 2 1--------1(2)! Rec

Rec 3 1--------!(3) 1 Send
SGnd 7 1--------1 7 1 SGnd

Without Handshake

Turn on the DATA I/O programmer. After it finishes its self
check routine, type the following key sequence on the DATA
I/O keyboard:

<LOAD>

<SELECT>
<01>
<START>

Select device type

Prepares DATA I/O to receive data via RS232
interface port

The DATA I/O Model 19 is now ready to accept data from the
computer development system. After the file is entered, the
data may be reviewed on the terminal by typing the following
on the DATA I/O:

<KEYBOARD>
<ENTER> Sends data to remote terminal

For additional information please refer to the DATA I/O
Model 19 users manual.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix B: PROM/PLE Programmer Information page B-2

~ lLQ Model ~A ~ UniPak:

~ Features:

- Accepts PLE HEX programming format.

Allows interactive communication via RS232 interface
to computer development system.

Using ~ ~ lLQ Model ZiA ~ OniPak:

RS232 Serial Interface:

Prior to powering up the DATA I/O it is important that
the RS232 interface be connected to the host computer
correctly. The correct interface is described below:

Model 29A Terminal Model 29A Terminal

Gnd 1 1------1 1 !
Send 2 ! ------! (2) !

Rec 3 1------1(3)1
RSend 4 1------! (4) 1
CSend 5 ! ------1 (5) !

SGnd 7 1------1 7 !
----- -----

With Handshake

Gnd
Rec
Send
CSend
RSend
SGnd

Gnd 1 1--------1 1 1 Gnd
Send 2 1--------1(2)1 Rec

Rec 3 1--------1(3)1 Send
SGnd 7 1--------1 7 1 SGnd

without Handshake

Turn on the DATA I/O programmer. After it finishes its self
check routine, type the following key sequence on the DATA
I/O keyboard:

<COpy> <DEVICE> <RAM> <FFCC> - Enter family and pin code

<SELECT> <F7> - Configure for HEX input format

<COpy> <PORT> <RAM> - Prepares DATA I/O to receive data
via RS232 interface port

The DATA I/O Model 29A is now ready to accept data from the
computer development system. After the file is entered, the
data may be reviewed on the terminal by typing the following
on the DATA I/O:

<COpy> <RAM> <PORT> - Send data to remote
terminal

Interactive communication may be achieved by typing on the
DATA I/O:

<SELECT> <FB> - Enable output port for
interactive communication

For additional information please refer to the DATA I/O
Model 29A users manual.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix B: PROM/PLE Programmer Information page B-3

DIGELEC Model UP-803 ~ rAM ~

~ Features:

- Accepts PLE HEX programming format.

- Allows limited communication via RS232 interface
to computer development system.

Using ~ pIGELEC Model UP-803 ~ ~ l2L

RS232 Serial Interface:

Prior to powering up the DIGELEC it is important that the
RS232 interface be connected to the host computer
correctly. The correct interface is described below:

Model UP-803 Terminal

Gnd
TXD
RXD
RTS
CTS
DSR

1 1------1 1 ! Gnd
2 1------1(2)! RXD
3 1------1(3)! TXD
4 1 ------ 1 (4) 1 CTS
5 1------1(5)1 RTS
6 1------1(6)1 DTR
7 1------1 7 1 SGnd

Insure that the lab
switch is set, the
serial communication
switch setting is
used, matching baud
rates are used, and
ASCII HEX format is SGnd

DTR 20 1------120 !DSR specified.

Turn on the DIGELEC programmer. Prepare the DATA TRANSFER
function of the UP-803 as follows:

SOURCE SERIAL INPUT

DESTINA'I'ION RAM

DESTINATION INITIAL ADDRESS XXXX

BLOCK LENGTH YYYY (FFFF if unknown)
Press the <EXECUTE> key on the UP-803.

The DIGELEC Model UP-803 is now ready to accept data from
the computer development system. After the file is entered,
the data may be reviewed on the remote terminal by selecting
the following on the DIGELEC:

SOURCE RAM

DESTINA'I'ION SERIAL OUTPUT

Press the <EXECUTE> key on the UP-803.

For additional information on the use of the DIGELEC Model
UP-803 please refer to the users manual.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix B: PROM/PLE Programmer Information page B-4

KONTRON Model MPP-80S

~ Features:

- Accepts PLE Intel HEX programming format.

- Allows limited communication via RS232 interface
to computer development system.

Using ~ KONTRON Model MPP-806:

2S232 Serial Interface:
Prior to powering up the KONTRON it is important that the
R6232 interface be connected to the host computer
correctly. The correct interface is described below:

Model MPP-80S Terminal

Gnd
TXD
RXD

SGnd

1 1------1 I 1 Gnd
2 1------1(2)! RXD
3 !------1(3)! TXD
7 1------1 7 ! SGnd

The baud rate, parity,
and number of start/stop
bits should be the same
for the programmer and
terminal.

Turn on the KONTRON programmer. Prepare the DATA TRANSFER
function of the MPP-80S by performing the following:

- Select proper device type

- Press the white <IN> key

- Press the grey <A> key

(Select input port)

(Select port A)

- Enter <40> for Intel HEX format

- Press the grey <ENTER> key

The KONTRON Model MPP-80S is now ready to accept data from
the computer development system. After the file is entered,
the data may be reviewed on the remote terminal by selecting
the following on the KONTRON:

- Press the white <OUT> key

- Press the grey <A> key

- Enter output format desired

- Press the grey <ENTER> key

(Select output port)

(Select port A)

For additional information on the use of the KONTRON model
MPP-80S please refer to the users manual.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix C: PLEASM Error Messages page C-l

PLEASM Error messag~

PLEASM detects and reports the following errors encountered while
running the program. These include incorrect file naming, syntax
errors in the input specifications file, and errors in
simulation.

1. Non-existent filename specified in response to the query
for the name of the source file.

DISK I/O ERROR - MAYBE WRONG FILENAME 111

2. Open file named in response to query for the name of the
output file.

DISK I/O ERROR - MAYBE WRONG FILENAME 11?

3. Input file size in number of characters exceeds the
maximum dimensions specified in the initialization subroutine.
See Appendix I for details.

TOO MANY CHARACTERS IN INPUT FILE

This will probably lead to a run-time error with an output
message appropriate to your system.

4. Keyword FUNCTION ~~~ missing in input specifications.

*** KEYWORD nFUNCTION TABLE" MISSING. ASSEMBLY TERMINATED

5. Keyword DESCRIPT!QN missing in input specifications.

*** KEYWORD nDESCRIPTION n MISSING. ASSEMBLY TERMINATED

6. Invalid PLE name in line 1 of the input specifications.

PLE PART TYPE PLE$$$$ IS INCORRECT

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix C: PLEASM Error Messages page C-2

7. Number of pin nan!es specified in the address list exceeds
the number of input pins available in the PLE being used.

*** TOO MANY PIN NAMES IN INPUT PIN LIST ***

8. Number of pin names specified in the data list exceeds
the number of output pins available in the PLE being used.

*** TOO MANY PIN NAMES IN OUTPUT PIN LIST ***

9. A pin name specified in the equations or in the function
table pin list does not match any of the names declared in the
address and data pin lists.

ERROR SYMBOL = $$$$$$$$

10. The "SIMULATE" option has been invoked without a function
table being present in the input specifications.

FUNCTION TABLE MUST BE SUPPLIED IN ORDER TO PERFORM SIMULATION

11. The number of pin names in the function table pin list
exceeds the number of pins being used in the PLE.

*** TOO MANY PIN NAMES IN FUNCTION TABLE PIN LIST ***

12. A symbol other than H(high), L(low), or X(don't care) has
been entered in the function table.

ERROR SYMBOL **$** IN LINE $$$ OF FUNCTION TABLE

13. Simulation error caused by an entry in the function table
(expected) not agreeing with that evaluated from the Boolean
equations (actual).

FUNCTION TABLE ERROR IN LINE $$$ PIN = $$$$$$$$ EXPECTED $ ACTUAL $

The offending line in the function table is then printed out with
a question mark in place of the incorrect entry.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix C: PLEASM Error Messages page C-3

14. Overall count of function table errors if there are one
or more simulation errors.

ERRORS IN FUNCTION TABLE = $$$$

15. PLEASP-1 could not generate HEX programming formats for the
PLE being used.

PLEASM DOES NOT SUPPLY HEX PROGRAMMING FORMAT FOR $$$$ BY $$ PLEIS

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix D: PLE Design File Library page D-l

PLE DESIGN LIBRARY

PAT i I TITLE I PLE TYPE 1
___ - 1_-. _________________ -______ • ____ • _____________ 1 _. _ I
.. - -....... - --..... - -- - . -. -- -.-.--- - .. -.- -. - --- -.. -- -.·-----------\----------1
pscce I BASIC GATES I PLESPS I

-------\---1----------\
PSOOl I MEMORY ADDRESS DECODER I PLE8PS \

-------1---1----------
P5002 \ 6-BIT TRUE/INVERT AND CLEAR/SET LOGIC FUNCTION 1 PLE8PS

-------1---1----------
P5003 1 EXPANDABLE 3-TO-8 DEMULTIPLEXER 1 PLESPS

------- -----------------_ .. ------- ···_-------------1----------
P5004 DUAL 2:1 MULTIPLEXER \ PLE10P4

-- - - _. - -... --- - -- -- - - - - --- ----------- 1----------
1 PSOOS QUAD 2:1 MULTIPLEXER \ PLEIOP4
1----- - - - - - - - - - . - - - - - - - - - ,. - -. --.. -_. --- 1----------
1 PS006 HEXADECIMAL TO SEVEN SEGMENT DECODER I PLESPS
1------- --- ----------
1 P5007 S-BIT BINARY TO BCD CONVERTER PLESP8
1------- -.------.--.------------------------------ ----------
1 P5008 4-BIT BCD TO GRAY CODf: CONVERTER PLE5P8
I· - - - - - - - -' - - -.--.-------- ----------
1 P5C09 I 4-BIT GRAY CaDI-: ')'0 BCD CONVERTER PLESP8
1- • - - - - - • - •.• - - - - - .• - - - - - .- • - - - - - - - - - - - - - --.------- -.----.-----.--- ----------

P5C10 S-BIT PRIORITY ENCODER PLE8P4

PSC11 4-BIT MAGNITUDE COMPARATOR PLE8P4

PS012 6-BIT MAGNITUDE COMPARATOR PLE12P4

PS013 4-BIT MULTIPLIER PLE8P8

PSCl4 PARTIAL PRODUCTS ADDER PLEIOP4

PSC1S PARTIAL PRODUCTS ADDER PLE8P4

F50l6 PARTIAL PRODUCTS ADDBR PLE12PS

PSC17 PARTIAL PRODUCTS ADDER PLE12P8

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix D: PLE Design File Library page D-2

PSOOO.TXT
THIS EXAl-1PLE II.,l,lISTRATES 'rHE USE OF PLEs TO IMPLEMENT THE BASIC
GATES: BUFFER, INVERTER, AND GATE, OR GATE, NAND GATE, NOR GATE,
EXCLUSIVE OR GATE, A~~ EXCLUSIVE NOR GATE.
NOTE ALSO THAT THREE-STATE OUTPUTS ARE PROVIDED WITH ONE ACTIVE
LOW OUTPUT ENABLE CONTROL (/E).
PLEASM GENERATES THE PROM TRUTH TABLE FROM THE LOGIC EQUATIONS
AND SIMULATES THE FUNCTION TABLE IN THE LOGIC EQUATIONS.

PS001.TXT
THIS PLE8PR PROVIDES A SINGLE CHIP ADDRESS DECODER FOR USE WITH
MANY POPULAR 8-BIT MICROPROCESSORS SUCH AS THE Z80 AND 8080. THE
FIVE: ~;SB ADDRESS LINES (AII-A1S) AND THE MEMORY REQUEST LINE
</MREQ) FROM THE Z80 MICROPROCESSOR ARE DECODED TO PRODUCE EIGHT
ACTIVE LOW CHIP ENABLES (/CEI-/CE8) TO SELECT A RANGE OF 2K BYTES
FROM A BANK OF' EIGHT 2Kx8 STATIC RAMS. THIS BANK OF STATIC RAMS
WILL OCCUpy THE LOWEST 16K BYTES OF ADDRESS SPACE LEAVING THE
UPPER 48K BYTE SPACE AVAILABLE FOR OTHER MEMORIES AND I/O. THE
PLE8P8 HAS THREE ADDITIONAL INPUTS WBICH CAN BE RESERVED FOR
FUTURE SYSTEM EXPANSION.

PS002.TXT
THIS PLf:flPf: IS A 6-BIT TRUE/COMPLEMENT AND CLEAR/SET LOGIC
FUNCTIONS. THE CONTROL LINES (II AND 12) SELECT ONE OF FOUR
LOGIC FUNCTIONS FOR THE 6-BIT INPUT DATA (D1-D6) AND THE 6-BIT
OUTPUT FUNCTION (Y1-Y6). WHEN II IS FALSE (I1=LOW) THE FUNCTION
IS INVERT IF 12 IS FALSE (I2=LOW) OR TRUE IF 12 IS TRUE
(I2=HIGH). WHEN II IS TRUE (I1=HIGH) THE FUNCTION IS CLEAR IF 12
IS FALSE (I2=LOW) OR SET IF 12 IS TRUE (I2=HIGH).
THE PLE8PB ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE LOW
OUTPUT ENABLE CONTROLS (/E1 AND /E2) .

II

L
L
H
H

PS003.TXT

12

L
H
L
H

D1-D6

D
D
X
X

YI-Y6

/0
D
H
L

OPERATION

INVERT
TRUE
CLEAR
SET

THIS PLE5Pf: IMPLEMENTS A 3-TO-8 DEMULTIPLEXER. THE DEVICE WILL
DEMUL~IPLEX THREE SELECT SIGNALS (S2-S0) INTO EIGHT OUTPUTS (Y7-
YO) USING THE INPUT DJ WITH POLARITY SfLECT PO. THIS CHIP ALSO
I-:P.S CASCADABLE CAPABILITY AND THREE-STATE OUTPUTS.
~l~ ASSIGNMENTS:

1. PO

2. 01

HIGH INDICATES OUTPUT IS ACTIVE HIGH. LOW INDICATES
OUTPUT IS ACTIVE LOW.
DATA INPUT (DEMULTIPLEXING INPU'l') • ACTIVE LOW IF PO
IS LOW.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix D: PLE Design File Library page D-3

3. S2-S0 SELECT PINS. S2 IS THE MOST SIGNIFICANT BIT. ACTIVE
HIGH REGARDLESS OF PO.

4. Y7-YO OUTPU'I'S. CAN BE ACTIVE HIGH OR ACTIVE LOW DEPENDING
ON PO. ACTIVE LOW IF PO IS LO~.

PS004.TXT
THE DEVICE: WILL SWITCH BETWEEN TWO PAIRS OF 2-BIT INPUTS (A, B
AND C, D), AS DETERMINED BY THE TWO SELECT LINES (SX, SZ), FOR
OUTPUT THROUGH TWO PAIRS OF 2-BIT OUTPUTS (X AND Z). THREE-STATE
OUTPUTS ARE ALSO PROVIDED WITH TWO ACTIVE LOW ENABLE PINS (/El
AND /E2). THE FUNCTIONS OF THE DEVICE ARE SUMMARIZED IN THE
FJ'ABLE BELOW:

SE:LECT I NPUFJ' A, B INPU'!' C, D OUTPUT X, Z
LINES

S S A A B B C C D D X X Z Z
X Z 1 2 1 2 1 2 1 2 1 2 1 2 FUNCTION ---------_ .•. -- -~, -' •..• -- ---- - -- ---.... -..... --- - .. -
L L Al A2 X X Cl C2 X X Al A2 CI C2 SELECT A,
L H Al A2 X X X X Dl D2 Al A2 01 02 SELECT A,
H L X X Bl B2 Cl C2 X X Bl B2 Cl C2 SELECT
H H X X Bl B2 X X 01 02 Bl B2 Dl D2 SELECT

PSOOS.TXT
THIS IS AN EXAMPLE OP A QUAD 2-TO-I MULTIPLEXER IMPLEMENTED IN A
PLEI0P4. THE DEVICE FUNCTION IS TO SWITCH BETWEEN TWO 4-BIT
INPUTS (AI-A4 AND BI-B4) TO ONE 4-BIT OUTPUT (ZI-Z4) AS
DF:'l'ERf.lINED BY 'JlWO INPU'l' SgLECT LINES (S2 ,SI). THE PLEI0P4 ALSO
FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE LOW ENABLE PINS (/El
AND /E2). THE FUNCTION IS SUMMARIZED BELOW:

SELECT INPUT A I NPUFJ' B OUTPUT Z
LINES

S S A A A A B B B B Z Z Z Z
1 2 1 2 3 4 1 2 3 4 1 2 3 4 FUNCTION

B,
S,

--------........................ - --............ - ---------.-.-.... _ - -----.. _ _ ..
L L X X X X X X X X L L L L SELECT ALL LOWS
L H Al A2 A3 A4 X X X X Al A2 A3 A4 SELECT AI-A4
H L X X X X Bl B2 B3 B4 Bl B2 B3 B4 SELECT BI-B4
H H X X X X X X X X H H H H SELECT ALL HIGHS

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

n
D
(:

D

Appendix D: PLE Design File Library page D-4

PS006.TXT
THIS EXA1JJPLF. I1.1.USTRATES THE USE OF A PLESP8 AS A HEXADECIMAL '1'0
SEVEN SEGMENT DECODER. THE DEVICE DECODES A 4-BIT BINARY INPUT
(D,C,B,A) INTO THE SEVEN SEGMENT OUTPUTS NEEDED TO DRIVE AN LED
DISPLAY. NOTE THAT THIS DESIGN IS AN IMPROVEMENT FROM THE 74LS47
SINCE ALL SIXTEEN HEXADECIMAL DIGITS (O-F) CAN BE DISPLAYED. A
LAMP TEST IS PROVIDED TO ILLUMINATE ALL SEVEN SEGMENTS AND THB
DECIMAL POINT (IF DP IS CONNECTED) BY BRINGING LAMP TEST HIGH
(LT=HIGH) REGARDLESS OF THE OTHER BINARY INPUTS. THREE-STATE
OUTPUTS ARE ALSO PROVIDED WI'l'B ONE: ACTIVE LOW ENABLE PIN (IE).

INPUT
DIGIT ! LT D C B A

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G

L L L L L
L L L L H
L L L H L
L L L H H
L L H L L
L L H L H
L L H H L
L L H H H
L H L L L
L H L L H
L H L H L
L H L H H
L H H L L
L H H L H
L H H H L
L H H H H
H X X X X

! S:E~GMENT

ON

, ABCDEF
BC
ABDEG
ABCDG
BCDFG
ACDFG
ACDEFG
ABC
ABCDEFG
ABCFG
ABCEFG
CDEFG
ADEF
BCDEG
ADEFG
AEFG
ABCDEFG

~ OLANK TEST OF DISPLAY

PS007.TXT

OUTPUT
DISPLAY

o
1
2
3
4
5
6
7
8
9
A
b
C
d
E
F
8 *

THIS S-BIT BINARY TO 2-DIGIT BCD CONVERTER IS IMPLEMENTED IN A
PLESP8. THE DEVICE ACCEPTS A S-BIT BINARY INPUT (BI) AND
CONVER'1'S '1'HIS IN/I'O TWO 4-BIT BINARY CODED DECIl'lAL (BCD) OUTPUTS
(Bl AND BO). THREE-STA'l'E OUTPUTS ARE ALSO PROVIDED WITH ONE
ACTIVE LOW ENABLE PIN (IE).

PSOOS.TXT
THIS PLE5PS WILL CONVERT A 4-BIT BCD INPUT (B3-BO) INTO A 4-BIT
GRAY CODE REPRESENTATION (G3-GO) FOR OUTPUT.

PS009.TXT
THIS PLESP8 WILL CONVERT A 4-BIT GRAY CODE INPUT (G3-GO) INTO A
4-BIT BINARY REPRESENTATION (B3-BO) FOR OUTPUT.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendi'x D: PLE Design File Library page D-s

PsOIO.TXT
THIS 8-BIT PRIORITY ENCODER SCANS FOR THE FIRST BIGH INPUT LINE
(17-10) FROM 17 (WHICB HAS THE BIGHES'l' PRIORITY) TO 10 (WHICH liAS
THE LOWES 'I' PRIORITY) • IT WILL GENERATE A BINARY ENCODED OUTPUT
(52-SO) WHICH WILL POINT TO 'l'HE HIGHEST PRIORITY INPUT WHICH IS
AT A HIGH STATE. IF NO INPUT LINES ARE HIGH (I7-IO=LOW), THEN THE
BINARY E~CODED OUTPUTS WILL BE ZERO (S2-S0=LOr1) AND THE ENABLF:
OUTPUT WILL BE HIGH (EN=HIGH) INDICATING A CARRY OUT TO THE NEXT
PRIORITY ENCODER. THE OUTPUT ENABLE WILL BE LOW (EN=LOW) IF ANY
OF' 'l'HE I NPU'l' LINES ARE HIGH. THE PLE8P4 ALSO HAS THREE-STATE
OUTPUTS WITH TWO ACTIVE-LOW OUTPUT ENABLE CONTROL PINS (lEI AND
IE2) •

PsOIl.TXT
THIS PLI-:8P4 COMPARES 'l'WO 4-BIT NUMBERS (A3-AO AND B3-BO) TO
ESTABLISH IF THEY ARE EQUAL (A = B => EQ=H), NOT EQUAL (A NOT =
B => NE=B), LESS THAN (A < B => LT=H), OR GREATER THAN (A > B
=> GT=H) AND REPORTS THE COMPARISON STATUS ON THE OUTPUTS (EQ,
NE, LT, GT) AS ILLUSTRATED IN THE OPERATIONS TABLE BELOW.
THE PLE8P4 ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE-LOW
OUTPUT ENABLE CONTROL PINS (lEI AND IE2) •

INPUT "NUMBERS
A3-AO B3-BO

A =]a
A NOT = B
A < B
A > B

PsOI2.TXT

COMPARISON STATUS
EQ NE LT GT

H L L L
L H X X
L H H L
L Ii L H

OPERATION

COMPARE A EQUAL TO n
COMPARE A NOT EQUAL TO B
COMPARE A LESS THAN B
COMPARE A GREATER THAN B

THIS PLE12P4 COMPARES TWO 6-BIT NUMBERS (As-AO AND Bs-BO) TO
ESTABLISH IF THEY ARE EQUAL (A = B => EQ=H), NOT EQUAL (A NOT =
B => NE=H), LESS THAN (A < B => LT=H), OR GREATER THAN (A > B
=> GT=H) AND REPORTS THE COMPARISON STATUS ON THE OUTPUTS (EQ,
NE, LT, GT) AS ILLUSTRATED IN THE OPERATIONS TABLE BELOW.
THE PLE12P4 ALSO FEATURES THREE-STATE OUTPUTS WITH TWO ACTIVE-LOW
OUTPUT ENABLE CONTROL PINS (lEI AND IE2) •

INPUT NUI",BERS
As-AO Bs-BO

A = B
A NOT = B
A < B
A > B

COMPARISON STATUS
EQ NE LT GT

H L L L
L H X X
L H H L
L H L H

OPERATION

COMPARE A EQUAL TO n
COMPARE A NOT EQUAL TO B
COMPARE A LESS THAN B
COMPARE A GREATER THAN B

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix D: PLE Design File Library page D-6

P50l3.TXT
THIS PLE8PR PERFORMS 4-BIT LOOK-UP TABLE MULTIPLICATION. THE
DEVICE: ACCEPTS T~JO 4-BIT OPERANDS (X3-XO AND Y3-YO) TO PRODUCE
THE 8-BIT PRODUCT (57-SO) v THE PLE8P8 ALSO HAS THREE-STATE
OUTPUTS WITH TWO ACTIVE-LOW OUTPUT ENABLE CONTROL PINS (lEI AND
IE2) •

X3 X2 Xl XO
X Y3 Y2 Yl YO

S7 S6 55 S4 S3 S2 SI SO

P5014.TXT
THIS PLEIOP4 PERFORMS THE PARTIAL PRODUCTS REDUCTION FOR A
WALLACE TREE ADDER. FIVE ROWS OF 2-BIT NUMBERS (AI-AO, BI-BO,
CI-CO, Dl-DO, AND EI-EO) ARE ADDED TO PRODUCE A 4-BIT SUM (P3-
PO) •

P5015.TXT

Al AO
Bl BO
Cl CO
Dl DO

+ El EO

P3 1'2 PI PC

THIS PLE8P4 PERFORMS THE PARTIAL PRODUCTS REDUCTION FOR A WALLACE
TREE ADDER. SEVEN ROWS OF I-BIT NUMBERS (A, B, C, D, E, F, AND
G) ARE ADDED TOGETHER TO PRODUCE A 3-BIT SUM.

P5016.TXT

A
B
C
D
E
F

+ G

P2 PI PO

THIS PLE12P8 PERFORMS THE PARTIAL PRODUCTS REDUCTION FOR A
WALLACE TREE ADDER. FOUR ROWS OF 3-BIT NUMBERS (A2-AO, B2-BO,
C2-CO, AND D2-DO) ARE ADDED TOGETHER TO PRODUCE A 5-BIT SUM (P4-
PO) •

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix D: PLE Design File Library

PS017.TXT

A2 Al AO
B2 Bl BO
C2 Cl CO

+ D2 Dl DO

P4 P3 P2 PI PC

page D-7

THIS PLE12P8 PERFORMS THE PARTIAL PRODUCTS REDUCTION FOR A
WALLACE TREE ADDER. THREE ROWS OF 4-BIT NUMBERS (A3-AO, B3-BO,
AND C3-CO) ARE ADDED TOGETHER TO PRODUCE A 6-BIT SUM.

A3 A2 Al AO
B3 B2 Bl BO

+ C3 C2 Cl CO

F5 P4 P3 P2 PI PO

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix E: HELP!! And where to get it page E-l

HELP!! AnQ where tQ ~ ~

Should you encounter any problems with PLEs or PLEASM, write or
call:

The IdeaLogic Exchange
Mail-Stop (08-26)
Monolithic Memories Inc.
2175 Mission College Blvd.
Santa Clara, CA 95050

Tel: (408)970-9700

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix F: User Customization page F-l

Input/Output:

Prior to running the program, the user has access to an I/O
package which can be used to specify I/O unit numbers and array
sizes without having to recompile the program. The variables
associated with this I/O routine are explained below ••••

CPG(6000)

LLN(250)

CLN(250)

- Maximum number of characters permitted in
specifications file

the input

input Maximum number of lines permitted in
specifications file

the

Maximum number of characters permitted per line in

CONINP - The
CONOUT - The
FILINP - The
FILOUT - The

the input file
Logical Unit Number
Logical Unit Number
Logical Unit Number
Logical Unit Number

for <READ>'s from the console
for <WRITE>'s to the console
for <READ>'s from a named file
for <WRITE>'s to a named file

The Data Set Reference Numbers for INPUT and OUTPUT files are
then assigned as variables at the begining of the program, as
follows ••••

INPUT
INPUT
OU'1.'PU'l'
OU'l'PUT
OU'l'PUr:f'

PLI:: Df.:SJG:N SPECIFICATION
OPERATION CODES
ECHO AND TRUTH TABLE
HEX AND BINARY PROGRAMMING· FORMATS
PROMPTS AND ERROR MESSAGES

RPD=FILINP
ROC=CONINP
POF=CONOUT
PDF=CONOU'l'/f'ILOU'll
PMS=CONOUT/FILOUT

~I'O p~rforril tbt- ctlstomization corresponding to your needs,
need to have access to the source code which means that
should have the Development system. These changes can
reduce the memory requirements and facilitate I/O.

you
you

help

The dimension of arrays CPG, LLN, and CLN
by making the appropriate changes in
located at the top of the source code.
reduce memory requirements, since the
allocat~o during compilation.

can be modifed
the subroutine IOINIT
This could be done to

arrays are statically

The logical unit numbers for the console are fixed for any given
system and must be changed accordingly. For example, the
logical unit number for reading from the console with VAX/VMS
FORTRAN is 5 and for writing to the console is 6. These numbers
are different with Supersoft FORTRAN used on the IBM-PC.

The logical unit numbers for writing and reading to and from
files can be normally allocated to be between 0 and 19 excluding
those reserved for the console.

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

Appendix G: Source License Agreement page G-1

(c) Copyright Monolithic Memories Inc. 1984 All Rights Reserved.

HIGH SPEED BIPOLAR PROMS FIND NEW APPLICATIONS
AS PROGRAMMABLE LOGIC ELEMENTS (PLEs)

Vincent J. Coli and Frank Lee
Product Planning and Applications

Monolithic Memories Inc.
2175 Mission College Boulevard
Santa Clara, California 95050

(408) 970-9700

Classic applications for bipolar
PROMs include instruction storage for
microprogram control store and
software for microprocessor programs.
However, due to a new design
methodology and state of the art
performance, PROMs are finding
increasing numbers of applications as
Programmable Logic Elements (or
PLEs). This paper will cover the
architecture, applications, and
software support for PLEse

Fuse-programmable Logic Famil ies

A typical combinatorial Boolean
equation can be written in sum-of­
product form, which consists of
several AND gates summed at an OR
gate. In general, a set of
combinatorial Boolean equations with
n inputs (IO,Il, ••. ,In-l) and
produces m outputs (OO,Ol, ••• ,Om-l)
can be generated through one level of
AND gates followed by one level of OR
gates. Custom logic functions can be
defined using programmable logic.

INPUTS ----.-~I A~:YI r----~I A~~YII---- OUTPUTS

FIGURE 1. Structure of programmable
Log ic Dev ices.

Fuse-programmable devices
normally consist of two levels of
logic -- AND-array and OR-array -- as
suggested above. There are three
basic types of fuse-programmable
dev~ces -- PROM (programmable Read
Only Memory), PLA (Programmable Logic
Array), and PAL (Programmable Array
Logic). Which arrays are fuse
programmable distinguish these three
types of devices.

PLAs offer the greatest
flexibility since both the AND and OR
arrays are programmable. This
flexibility comes with the cost of
lower performance, higher power
dissipation, and generally higher
price.

A PAL device has only the AND­
array programmable; the OR array is
fixed. Each output has an OR gate
associated with it which sums a fixed
number of product terms (AND
combinations). Statistically there
is only a limited number of product
terms in any equation. So the
flexibility of a PLA is normally not
needed. This is a compromise between
flexibility and cost and performance.

The OR-array is programmable in
a PROM, but the fixed AND-array
consists of all combinations of
literals for each of the input
variables. For example, there are 32
product terms available in a PROM
with 5 inputs a,b,c,d,e
(corresponding to words 0 through 31
in the PROM memory):

/a*/b*/c*/d*/e
/a*/b*/c*/d* e
/a*/b*/c* d*/e

a* b* c*/d* e
a* b* c* d*/e
a* b* c* d* e

(Word 0)
(Word 1)
(Word 2)

(Word 29)
(Word 30)
(Word 31)

where .#*.# rep~esents the Boolean AND
operator and .#/.# represents the
Boolean NOT or inverter operator.
The fuses in the OR-array are
programmed to select the desired AND
combinations.

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294

PROGRAMMABLE
ARRAY LOGIC

PROGRAMMABLE
LOGIC ARRAY

PROGRAMMABLE
LOGIC ELEMENT ©

PROGRAMMABLE AND ARRAY
PAL FIXED OR ARRAY

PLA BOTH ARRAYS
PROGRAMMABLE

PLE FIXED AND ARRAY
PROGRAMMABLE OR ARRAY

FIGURE 2. Structural differences
between PLA, PAL, and PLE (PROM).
Note that the PALs and PLEs
complement each other. The PAL has
many input terms while the PLE is
rich in product terms.

The existence of all
combinations of literals for all
inputs make it possible to define
functions which cannot be implemented
in a PLA or a PAL. For example, a 5-
input Exclusive-OR (XOR) function can
~~ implemented using 16 product
terms. This may exceed the number of
product terms available in a PAL and
will consume too many product terms
in 'a PLA, but can be constructed
quite efficiently in a PROM. It is
important to realize that any
combination of inputs can be decoded
in a PROM as long sufficient input
pins are rrrovided since a PROM
provides 2 product terms (where n

.is the number of inputs). Another
way of looking at this is that PROMs
store the logic transfer function in
a memory. The fixed AND-array (or
AND-plane) consists of the row and
column decoders while the fuses in
the OR-array (or OR-plane) are the
bits in the memory. In a memory, a
fuse blown versus a fuse intact
distinguishes a HIGH from a LOW.

FIXED AND
PlANE

SIZE:" x.2"

Po

P2
~~~ PROGRAMMABLE n x m PROM 

OR PLANE 2" PRODUCT TERMS. 
SIZE: 2" x m 

Pt'-1 

FIGURE 3. Block diagram of a PROM 
viewed as a PLE. Notice that the PLE 
provides many (2n where n is the 
number of inputs) product terms. A 
by-product of this is programmable 
output polarity; either Active High 
or Active Low output polarity is 
available'. 

Due to this special 
characteristic of abundant product 
terms, PROMs are also often used as 
'logic devices. In this paper, PROMs 
are referred to as PLEs (Programmable 
Logic Elements). 

Advantages of ~ 

PLEs provide a cost-effective 
solution for many applications. Here 
are just some of the advantages of 
PLEs: 

1) Customizable Logic The 
designer is limited to standard 
functions if SSI/MSI devices are 
used. The designer can create his 
own logic chips using PLESe 

2} Design Flexibility 
Modification of design is possible 
even without redesigning the PC 
board. For example, the address 
space of a microprocessor-based 
system can be reconfigured by merely 
programming a new PLE if the decoding 
is implemented in PLE. This feature 
comes in handy if you want to upgrade 
a system which originally uses 64K 
Dynamic RAMs to now use state-of-the­
art 256K Dynamic RAMs. 

3} Reduce Errors - Errors are 
sometimes unavoidable and often times 
qu i te expen s i v e. P r og r a mmab 1 e 
devices make it easier and less 
expensive to correct errors. 

4) Reduction of Printed Circuit 
Board Space - PLEs save PC board 
space since several SSI/MSI functions 
can be integrated into a single 
package. 

S} Fast Turnaround Time - With 
existing commercial programmers and 
development software support, a 
prototype of the custom tailored PLE 
will be ready in just a few minutes. 

A G .... eat Performer-! 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294 



PtE Applications 

Appl ica tions of PLEs include 
random logic replacement, 
decoder/encoders, code converters, 
custom AtUs, error.detection-and 
correction, look-up tables (both 
trigonometric and arithmetic), data 
scaling, compression arithmetric like 
Wallace Tree adders, distributed 
arithmetic, and residue arithmetic. 

Several levels of random logic 
chips can be replaced by one PLE. As 
discussed earlier, PLEs can implement 
logic in sum of products form. 

Despite the existence of 
dedicated encoders and decoders, many 
of these functions are application 
dependent. A standard 3-to-8 
decoder/demultiplexer (74Sl38) can be 
used for decoding applications. - But 
the decoding scheme may require 
se~eral 3-to-8 decoder/demultiplexers 
and additional SSI OR-gates. On the 
other hand, a PLE can be customized 
to perform the required decoding 
function with no additional gates. 
Simple decoders, such as those used 
for decoding memory chip selects 
from address lines can be implemented 
in a PLE with 5 to 10 inputs. More 
complex decoding may require 8 to 12 
inputs. 

FIGURE 4. PLE address decoding 
application. The PLE select one of 
eight 2Kx8 Static RAMs by decoding 
several microprocessor address lines. 

PLEs offer a very flexible 
solution for code conversion 
applications. Translations of codes 
such as from ASCII to EBCIDIC, Binary 
to BCD (Binary Coded Decimal), or BCD 

·to Gray code can be implemented in 
PLEse The 745184 Binary-To-BCD 
Converter is actually a 32x8 PROM. 

... 
A. 

0, .. 
... 

FIGURE 5. Two examples of PLE code 
converters. The second example 
illustrate~ how to use two inputs as 
code select lines so that four 
converters qan be provided in one 
PLE. 

Standard ALUs (such as the 
74Sl8l) may not provide a very 
specialized function which a 
particular system requires. In this 
case a PLE is again a good 
alternative. Although the PLE may be 
slower than a dedicated ALU, the 
presence of this specialized function 
is critical. For example, a 4-bit 
ALU can be constructed in a PLE with 
12 inputs (A3-AO, B3-BO, 13-IO, Cin) 
and 8 outputs (F3-FO, /G, /P, Cout, 
A=B). Any 8 functions can be 
implemented. 

A B 

-(7-
p 

I---·<:o~t 

~------~--~A=8 

F 
FIGURE 6. Block diagram for a 4-bit 
ALU which can be implemented in PLE. 

Data scaling is another PLE 
application. A dedicated multiplier 
is not required if the scaling factor 
is a constant; the prescaled result 
can be stored in a PLE. Fixed-bit 
multipliers are typically implemented 
in PLESe 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (4 t 5) 364-4294 



Column compression technique 
(also called Wallace Tree 
Compression) is used when expanding 
an array of several smaller parallel 
multipliers to perform' large 
wor d 1 eng th' mu 1 t ip 1 ica t ion. These 
smaller multipliers will generate 
partial products (intermediate 
results) which must be added together 
according to bit significance in 
order to calculate the final 
wordlength multiplication. Many 
levels of 2-input bus adders can be 
used to add these partial products, 
but the carry propagation delays may 
be too long. However, partial 
product adders implemented irr PLEs 
can do compression of many levels 
without passing carries. Thus, the 
summation will be much faster. 

. I 

• ... 114' ·s556.~ WrTW ~ 0RGANIz£.D 
1 .... ·\AlAIoUICE-l1I£E··CONFIGUR ... "O ... C ..... SAIl.. 
RI6MT ~JO' ~ IrATE Of' ~ 5b .. 50 
MlA.T\P\.'CATIOWIl EVERY MICR06ECONP ...• 

Group Code Recoder (GCR) is an 
encoding/decoding scheme used for 
error detection on disk. During a 
WRITE operation, each a-bit word is 
divided into two 4-bit nibbles. Both 
nibbles are then encoded into 5-bit 
codes before ,being recorded onto 
disk. Both 5-bit codes are decoded 
back to the original 4-bit nibbles 
and then combined during a READ 
operation. PLEs are exceptionally 
useful in mapping the 4-bit data to 
the 5-bit code and back. 

It GCR 
Encoder 

It 

"t G,c.~ 

1)ecod~r 

,-

Exclusive-OR gates, being half 
adders, are very prevalent in Error 
Detection and Correction (EDC) 
schemes. Many 55! chips are required 
to implement this function while PLAs 
and PALs may not provide sufficient 
product terms. PLEs are again an 
ideal so 1 u tion. 

A~A3 

Ao. A1 

00 01 11 10 

00 0 (0 0 (0 
01 (0 0 (0 0 

11 0 0) 0 0) 
10 8 0 8 0 

b. 

FIXED AND PLANE 

1 

2 

4 
5 
6 

9 
10 
11 
12 
13 
14 
15 

!tttt! 
q. 

a. 

AO A1 A2 A3 + AO Al A2 A3 
+ AQ A1 A2 A3 + AQ A1 A2 A3 

+ AO Al A2 A3 + AO Al A2 A3 

+ AO A1 A2 A3 + AQ Al A2 A3 

c. 
PROGRAMMABLE 

OR PLANE 

--: 
~;;-. 

f 1 

FUSE BLOWN 

FUSE INTACT 

UNPROGRAMMED OUTPUT 
ALWAYS HIGH 

FIG URE a. Ex c 1 u s i v e - 0 R gat esc a n be 
implemented in PLEs very efficiently. 
A 4-input XOR gate (a) maps into a 
checkerboard pattern in a Karnaugh 
Map (b) and requires eight products 
terms (c). The PLE implementation is 
shown in (d). An a-input XOR gate 
requires sixteen product terms. 

~ !bra/lel-fo. 
.!Jrbl r;1I~'{tl 

-1 

f .fertet I- fo- ~ 
76rtJ//e1 Gn..-t'*'1 

FIGURE 7. GCR encoder/decoder block diagram. 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294 



In many applications, the speed 
of the converging series used to 
generate the trigonometric functions 
is too slow and the accuracy obtained 
by direct look-up requires too much 
hardware. A good compromise between 
speed and hardware is to store an 
approximation to the function in a 
PLE. Then use this approxima tion as 
a starting point for an iterative 
algorithm (such as Newton-Raphson) to 
obtain additional accuracy. High­
speed division, multiplication, and 
square root calculations can be 
performed in a similar mann~r. 

looku~ 
'PLt:: 

! 
rnu/ ... rolexer " l' 
re.~'isku· 

.L 

llero.-tt 01\ 

O'fratCofl5 

FIGURE 9. PLE look-up tables and 
iteration loops -can be used to 
generate very accurate tr igonometr ic 
and ar ithmetic functions. An 
approximation to t~e function is 
stored in a PLE and additional 
accuracy is gained using iteration 
operations.' 

Distributed arithmetic is used 
for performing convolution operations 
without using multiplier/ 
accumulators. If the coefficients 
are constant, a look-up table for 
convolution can be stored in a PLE, 
thus replacing the multiplier. 

Residue arithmetic (also called 
Carry-Independent arithmetic) is a 
technique used to perform very fast 
integer arithmetic. High speed is, 
achieved by using numbers in residue, 
representation so that the sequential 
delay of carries on digits of higher 
significance is eliminated. A 
residue number ing system (RNS) is 
determined using an optimum moduli 
when designing the system. 
Conversion to and from residue 
representation are basic mapping 
functions which can be conveniently 
done in PLE. Also, since operations 
in residue arithmetic are performed 
using modulo addition and 
multiplication without carries, these 
operations can also be done using 
PLESe In general, residue arithmetic 
should only be used for arithmetic 
which requires intensive operations. 

INTEGER 

i 

INTEGER 

FIGURE 10. Architecture of a system 
based on RNS. An integer number is 
converted to RNS representation using 
PLEs, then the RNS arithmetic can be 
performed using PLEs, and finally the 
RNS result is converted back to 
integer representation again using 
PLESe 

Detailed application sessions on 
these topics are included in the 
Monolithic Memories PLE Handbook. 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294 



Restrictions 

The basic restrictions for using 
PLEs to replace SSI/MSI parts are: 

1) Since a memory element has a 
product term for every combination of 
literals of all the input terms, 
static hazard is normally 
unavoidable. For example, there are 5 
inputs available in a 32x8 PROM. In 
order to generate a function like: 

f = a* b* c* d 

The actual implementation inside the 
PROM will be: 

f = a* b* c* d*/e + a* b* c* d* e 

If a=b=c=d=HIGH, according to the 
first equation, we shall expect f to 
remain HIGH independent of e 
changing. In the actual PROM 
implementation, there will be no 
hazard if e stays either HIGH or LOW. 
But if e changes, depending on 
whether e or /e will occur first, 
there exists the possibility that 
both product terms in the second 
equation will be LOW momentarily, 
which may cause a static logic hazard 
(HIGH to LOW to HIGH) for f. This 
hazard is commonly called a "glitch". 
Static hazards are not a problem for 
many applications, like those offered 
in this paper, but extreme care must 
be taken if the output of a PLE is 
used to strobe another device. 

ADDRESS 

00 
01 
02 

oc 
00 
OE 
OF 
10 
11 
12 

10 
lE 
1F 

e deb a 

o 0 
o 0 
o 0 

o 1 
o 1 
o 1 
o 1 
1 0 
1 0 
1 0 

1 1 
1 1 
1 1 

o 0 
o 0 
o 1 

1 0 
1 0 
1 1 
1 1 
o 0 
o 0 
o 1 

1 0 
1 1 
1 1 

o 
1 
o 

o 
1 
o 
1 
o 
1 
o 

1 
o 
1 

f 

o 
o 
o 

o 
o 
o 
1 <'" 
o 
o 
o 

o 
o 
1 <-

FIG U RE 11. T his T rut h Tab 1 e 
graphically illustrates the possible 
glitch (HIGH to LOW to HIGH hazard) 
for the function f = a * b * c * d 
implemented in a 32x8 PROM. Address 
OF and IF contain a l'while all other 
locations contain a 0 for output f. 
If address input e should change, the 
PROM decoders could momentarily 
select a location containing a O. 

2) Although PROMs (or PLEs) are 
available with registered outputs, 
internal feedback from the outputs 
and buried registers are not yet 
available in PROMs. External 
connections from some outputs to 
inputs must be made for applications 
which require feedback (such as in 
state machines). However Reg istered 
PROMs without feedback are useful for 
pipelining (overlap instruction fetch 
and execution) in order to increase 
system throughput. 

PLEASM Software Support 

Monolithic Memories has 
developed a software tool to assist 
in designing and programming PROMs as 
PLESe This package called "PLEASM" 
(PLE Assembler) is available for 
several computers including the 
VAX/VMS and IBM PC/DOS. PLEASM 
converts design equations (Boolean 
and arithmetic) inta truth tables and 
formats compatible with PROM 
programmers. A simulator is also 
provided to test a design using a 
Function Table before actually 
programming the PLE. The PLEASM 
operators are listed below and the 
PLEASM catalog of operations is given 
on the next page. A sample PLE 
Design Specification (source code for 
PLEASM) with PLEASM outputs is given 
in FIGURE 12. PLEASM may be 
requested through the Monolithic 
Memories IdeaLogic Exchange. 

Comment follows 
Dot operator (Key operator or 
arithmetic follows) 

ADD Address pin names follow (inputs) 
OAT Data pin names·follow (outputs) 

Deliminator, separates binary 
bits (MSB first) 

= Equality (nonregistered) 
:= Equality (registered, replaced 

by after the clock) 
/ Complement, prefix to a pin name 
* AND (product) 
+ OR (sum) 

:+: XOR (Exclusive OR) 
:*: XNOR (Exclusive NOR) 

multiplication) 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294 



n 
0 l'LE5P8 3 PLE DESIGN SPECIFICATION BASIC GATES 

P5000 VINCENT COLI 10/03/82 .ADD 10 11 12 13 14 
"C BASIC GATES .DAT 01 02 03 04 05 06 07 08 
C MMI SANTA CLARA, CALIFORNIA 
rot- .ADD 10 II 12 13 14 t'D .., .DAT 01 02 03 04 05 06 07 08 ADD AO Al A2 A3 A4 01 02 03 04 05 06 07 08 

"TI -----------------------------------------------
QJ 0 L L L L L L H L L H H L L 
.., 01 ... 10 BUFFER 1 H L L L L H L L H H L H H 

!1> 2 L H L L L L H L H H L H H 
02 ;z /10 INVERTER 3 H H L L L H L L H H L L L - 4 L L H L L L H L H H L H H 

:J 03 • 10 * II * 12 * 13 * 14 AND GATE 5 H L H L L H L L H H L L L 
n 6 L H H L L L H L H H L L L 

• 04 .. 10 + II + 12 + 13 + 14 OR GATE 7 H H H L L H L L H H L H H 
8 L L L H L L H L H H L H H 

VI 05 .. /10 +/11 + /12 + /13 + /14 NAND GATE 9 H L L H L H L L H H L L L 

"" 10 L H L H L L H L H H L L L 

0 06 = /10 * /11 * /12 * /13 * /14 NOR GATE 11 H H L H L H L L H H L H H 
12 L L H H L L H L H H L L L 

""0 07 = 10 : +: 11 : +: 12 :+: 13 :+: 14 EXCLUSIVE OR GATE 13 H L H H L H L L H H L H H .., 
14 L H H H L L H L H H L H H 

n 08 10 : *: 11 : *: 12 : *: 13 : *: 14 J EXCLUSIVE NOR GATE 15 H H H H L H· L L H H L L L 
t'D 16 L L L L H L H L H H L H H 

~ 
17 H L L L H H L ·L H H L L L 

FUNCTION TABLE 18 L H L L ·H L H L H H L L L 

!D 19 H H L L H H L L H H L H H 
10 11 12 13 14 01 02 03 04 05 06 07 08 20 L L H L H L H L H H L L L' 

• 21 H L H L H H L L H H L H H 
iINPUT - OUTPUTS FROM BASIC GATES 22 L H H L H L H L H H L H H 

~ ;01234 BUF INV AND OR NAND NOR XOR XNOR COMMENTS 23 H H H L H H L L H H L L L 

--------------------------------------------------------------------- 24 L L L H H L H L H H L L L 
a. LLLLL L H L L H H L L ALL ZEROS 25 H L L H H H L L H H L H H 

~ HHHHH H L H H L L H H ALL ONES 26 L H L H H L H L H H L H H 

0 HLHLH H L L H H L H H ODD CHECKERBOARD 27 H H L H H H L L H H L L L 

0 LHLHL L H L H H L L L EVEN CHECKERBOARD 28 L L H H H L H L H H L H H 

a. --------------------------------------------------------------------- 29 H L H H H H L L H H L L L 
30 L H H H H L H L H H L L L 

n 31 H H H H H H L H H L L H H 

rot- DESCRIPTION ----------------------~------------------------
~ THIS EXAMPLE ILLUSTRATES THE USE OF PLEs TO IMPLEMENT THE BASIC GATES: HEX CHECK SUM = 00F3C 
n BUFFER, INVERTER, AND GATE, OR GATE, NAND GATE, NOR GATE, EXCLUSIVE OR this » GATE, AND EXCLUSIVE NOR GATE. FIGURE l2b. Truth Table. PLEASM generates 

\0 NOTE ALSO THAT THREE-STATE OUTPUTS ARE PROVIDED WITH ONE ACTIVE LOW truth table which can be used for verifying your 

~ OUTPUT ENABLE CONTROL (jE) • design. 
0 
0\ PLEASM GENERATES THE PROM TRUTH TABLE FROM THE LOGIC EQUATIONS AND 

N SIMULATES THE FUNCTION TABLE IN THE LOGic EQUATIONS. 

• -~ -. 32 D9 DA 19 DA 19 lA D9 DA 19 lA D9 1A D9 DA 19 
VI DA 19 1A D9 1A'D9 DA 19 1A D9 DA 19 DA 19 lA CD 
"-

UJ FIGURE l2a. PLE Design Specif ica tion. This is the 
OOF3C 

0\ 
~ source code for PLEASM. PLEASM generates the FIGURE l2c. PLEASM also generates this ASCII Hex 
I truth table and programming formats from the programming format with Hex check sum. Control 
~ equations. PLEASM also exercises the Function characters are included so that the information 
N 
\0 Table in the equations and reports er rors. can be down loaded directly to a PROM prog rammer. 
~ 



ECHO (E) - Prints the PLE Design 
Specification. 
SIMULTE (S) - Exercises the 
Function Table in the equations. 
TRUTH TABLE (T) - Prints the entire 
truth table. 
BRIEF TABLE (B) - Prints only used 
address in the truth table. 
HEX TABLE (H) - Prints the truth 
table in Hex form. 
INTEL HEX (I) - Generates Intel Hex 
programming format. 
ASCII HEX (A) - Generates ASCII Hex 
programming format. 
SHORT HEX (P) - Generates ASCII Hex 
programming format without ~paces. 
BHLF (L) - Generates BHLF programming 
format. 
BNPF (N) - Generates BNPF programming 
format. 
CATALOG (C) - Prints the PLEASM 
catalog of operations. 
OUIT (0) - Exists PLEASM. 

PLE Family 

Monolithic'Memories carries a 
family of fast PROMs which can be 
used as Memory or PLE devices. Since 
the critical parameter for logic 
applications is speed, our series of 
fast PROMs have worst-case memory 
access times (or propagation delays) 
ranging from l5ns for small PROMs to 
40ns for large PROMs. The Logic 
Symbols for four of the PLEs are 
given in FIGURE 13 and a summary of 
the PLE family is given below: 

PLE No. I Inputs I Outputs I Type 

PLE5P8 5 8 nonreg 
PLE8P4 8 4 nonreg 
PLE8P8 8 8 nonreg 
PLE9P4 9 4 nonreg 
PLE9P8 9 8 nonreg 
PLElOP4 10 4 nonreg 
PLElOP8 10 8 nonreg 
PLEllP4 11 4 nonreg 
PLEllP8 11 8 nonreg 
PLE12P4 12 4 nonreg 
PLE12P8 12 8 nonreg 
PLE9R8 9 8 reg 
PLElOR8 10 8 reg * 
PLEllR8 11 8 reg * 

nonreg=NonRegistered and reg=Registered 
* Several versions available. 

Summary 

There are many interesting 
applications for high-speed PROMs are 
PLEse A software package called 
"PLEASM" is available as a 
development tool. 

Acknowledgements 

Several of the designs discussed in 
this paper were proposed by our good 
fr iend and colleague Ul r ik Mueller, 
who is now studying Computer Science 
in his native country Denmark and our 
MMI Pal Zahir Ebrahim. Special 
thanks also go to Ranjit Padmanabhan 
for writing the PLEASM simulator. 

References 

1. "PLE Programmable Logic Element 
Handbook", Monolithic Memories, Inc. 
(available May 1984) 

2. "PAL programmable Array Logic 
Handbook", 3.rd edition, J. Birkner, 
v. Coli, Monolithic Memories, Inc. 

3. "Systems Design Handbook", 
Monolithic Memories, Inc •. 

4. "Bipolar LSI 1984 Databook", 5th 
edition, Monolithic Memories, Inc. 

5. "PROMs and PLEs: An Application 
Perspective", Z. Ebrahim, Monolithic 
Memories Application Note AN-126. 

6. "An Introduction to Arithmetic for 
Digital Designers", S. Waser, M. J. 
Flynn, Holt, Rinehart & Winston, 
N.Y., 1982. 

PLE5P8 

PLE11P4 

FIGURE 13. 
Symbols. 

PLE10P4 

PLE12P4 

Four Sample PLE Logic 

Computer Faire, Inc. • 570 Price Ave. • Redwood City, CA 94062 • (415) 364-4294 


