i

5

R

e

:

COMPUTERS

MNICRO

=
#
=
=
-
=
bl
=
.
>
&
e
E
%

Publication Number 6500-104

MCS6500

ICROCOMPUTE

PRy 5 < irvrm B W

FAMILY

Aw LMive = ® 4

HARDWARE MANUAL

JANUARY 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
©MO0S TECHNOLOGY, INC. 1976
“All Rights Reserved”

MOS TECHNOLOGY, INC.
950 Rittenhouse Road
Norristown, PA. 19401 Revision A

PREFACE

The MOS Technology, Inc. MCS6500 Microcomputer System offering combines
the best features of second generation families into a product line that is both
a price and performance leader. A growing array of products and a unique micro-
processor family provide the customer with answers to the complex design prob-
lems confronting today's programmers and designers.

Integrated circuit fabrication techniques have moved microprocessors to the
forefront of complex, sophisticated components. The MCS6500 family benefits
from an advanced but proven process technology; N-Channel, Silicon Gate, and De-
pletion Loads are the key elements providing the high performance character-
istics obtainable in the single supply 5-volt system usage of the MCS6500 family.

The N~Channel, Silicon Gate technology is enhanced by use of Depletion Loads
which provides greater speed, lower power and smaller chip size than previous
processing approaches. Ion Implementation techniques are basic elements in pro-
viding control and stability of all processing parameters necessary to achieve
the electrical characteristics of the MCS6500 product line. These character-
istics provide a price/performance combination which establishes the MCS6500
family as the product offering best meeting the economic and technical demands
of today's system designs.

A word of explanmation is in order regarding the MCS6500 product line, since
the concept of "Microprocessor Family" is indeed unique to the industry. It is
helpful to understand the basic product structure of the MCS6500 family.

The MCS650X Series represents the Microprocessor Family. Within this
family will exist a series of 8-bit devices offering a wide range of options and
capabilities for the customer. For the single—appliéation customer, a varied
selection of devices is at his disposal in choosing the one that best meets his

specific needs. The "Microprocessor Family" concept has an even greater impact

-ii-

to the user who has a variety of applications, each of which can best be served
by a specific member of the family. It is important to this user that all of

the different microprocessors he selects maintain compatibility--both hardware

2}
o

(from the standpoint of bus and electrical specifications) and software. The
MCS650X product line is the first microprocessor family to achieve such a level
of compatibility because it was indeed conceptualized as a totally software and
hardware compatible family of microprocessors offering a range of performance

The MCS6501 and MCS6502 are the
first two 40-pin members of the MCS650X family, each offering 65K bytes of
addressable memory. The MCS6503, MCS6504 and MCS6505 are the first 28-pin
versions with various options of addressing capability and control functions
from which to choose.

The MCS652X Series represents Peripheral Input/Output devices, the first
being the MCS6520 which is a direct replacement for the Motorola MC6820 Periph-
al Interface Adapter (PIA). Subsequent members of this series will include
devices with expanded I/0 capabilities.

The MCS653X Series represents combinational devices--those consisting of
various tradeoffs in RAM, ROM, I/0, and Timing. The first of these is the
MCS6530 which contains 1K bytes of ROM, 64 bytes of RAM, an‘Interval Timer and
16 I/0 lines. Subsequent products in this series will provide the customer with
different combinations and new implementations of I/0, Timing and Memory.

The MCS654X Series represents Read Only Memories specifically tailored to
meet the needs of large program storage required in many of the applications of
the MCS6500 family of products. The first of these will be a 16K (2K x 8) ROM,
the MCS6540.

All of the MCS6500 product lines outlined utilize the same fabrication
techniques and meet identical electrical specifications. With this family of
compatible products the designer of today has at his disposal the elements
necessary to develop a system configured to meet the most demanding tasks.

Complementing the MCS6500 family is a selection of Random Access Memories
totally compatible with the microcomputer family. The first of these will be
the MCS6102, a 2102 equivalent, and the MCS6111, a 2111 equivalent.

To allow for minimum I/0 cost and maximum user flexibility, all of the

MCS6500 products are compatible with the M6800 bus structure.

-iii-

Chapter 1 of this manual introduces the reader to the MCS6500 Microcomputer
System. It includes an introduction to terminology, an explanation of system
components of a general microcomputer system, and then discusses the components
of the MCS6500 Product Family.

Chapter 2 is applications-oriented, with a discussion of system configura-
tion, the I/0 port, handshaking and specific examples on interrupt prioritizing,
interfacing with peripherals, direct memory addressing techniques, and control
of memories in the system.

Chapter 3 is directed at the important task of bringing up a system. It
takes the reader through a step~-by~step procedure in analyzing, statically and
dynamically, the basic elements of the system to assist the user in a smooth

transition from a conceptual system to an operational one.

-iv-

TABLE OF CONTENTS

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

1.0 Designing with Microcomputer Systems.

1.1 Introduction to Microcomputer Systems .

1.1.1 Organization of a Microcomputer System.
1.1.2 Basic Operation . .

1.1.3 Addressing Terms and Concepts .

1.1.3.1 Bit . . . e e e e e
1.1.3.2 Address Space C e s e e e e e e e e
1.1.3.3 The Address Page. . . . « . « « « . .
1.1.4 System Components .

1.1.4.1 Clock Generator .

1.1.4.2 Program Memory. . « o« + + s = s + o« &
1.1.4.3 Data Memory . .

1.1.4.4 Input/Output Dev1ces

1.1.4.5 The Microprocessor.

1.2 Introduction to the MCS650X Microprocessor Family .

1.2.1 The MCS6501 .
1.2.2 The MCS6502 .
1.2.3 The MCS6503, MCS6504 and MCS6505.

1.3 MCS6500 System Concepts .

us Structure . .
rocessor Interrupts. .
Applications for Interrupts .
Interrupt Prioritizing. .
System Interconnect for Interrupts‘
Interrupt Servicing . .
Interrupt Request (IRQ) . .
Non-Maskable Interrupt (NMI).
System Reset.

B
P

.

o« o
WWwwLwwwwww
e o o e o e
e o o e o ®
P wnN -

e e e e

WNhNMNDNNDNDNDDNDDND

=

O O \WCo00Oo OO &

=
N

12

. 14
. 14

. 15

. 15
. 16
. 20
. 22
. 22
. 23
. 25
. 27
. 27

1.4 The MicroprocCesSOrS. « « « « « o o o o & &

The MCS6501. . v ¢« v ¢ ¢ ¢ ¢ o o « o &

Introduction . . . e e e e s

The MCS6501 Plnouts
Vee, Vss--Supply Lines .
ABOO - ABl15--Address Bus .,
DBO - DB7--Data Bus. ..
R/W--Read/Write. . . . « « « « .
DBE--Data Bus Enable
VMA--Valid Memory Address. e e e e s
BA--Bus Available. + . . .
RDY--Ready . e e e .
NMI—-Non-Maskable Interrupt. o« e s e e
10 IRQ--Interrupt Request
11 RES--Reset . e e e s

The MCS6502. e e e
Product Characterlstlcs. v e e . .

.

.

.

.

\DG)\IC\U‘IJ-\WND—‘

1
2
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.

SYNC Signal. « v o ¢« v 4 ¢« 4 ¢ o o o o o W

S.0--Set Overflow. .
The MCS6503, MCS6504 and MCSGSO5 .

el ol el el el el el el el e e
-b-b b #~#~¥~¢~D~$~£~£~P~D~b~b~£~¥~b-bmb

.1
.1.
1.
.1.
.1.
1
1.
1.
1.
.1.
1.
.1.
.1.
.1.
.2
.2.
.2,
2.
<2
.3

1.5 Peripheral Interface Device--MCS6520 .

Bus Buffers (DBB).

1.5.3

of Microprocessors . ¢ s e e e e e
1.5.3.1 Data Bus (DO-D7) v v « v v ¢ o« &+ « o « o &
1.5.3.2 Enable (E) «v ¢ ¢ ¢ v ¢« ¢ ¢« o o o o« o« o o
1.5.3.3 Read/Write (R/W) . . . e e e .
1.5.3.4 Chip-Select Lines (CS1, CSZ CSB) . e e
1.5.3.5 Register-Select Lines (RS, RS1).
1.5.3.5.1 Reading the Peripheral A I/0 Port.
1.5.3.5.2 Reading the Peripheral B I/0 Port.
1.5.3.6 Reset(RES) .
1.5.3.7 1Interrupt Réduest L1ne (IRQA IRQB)
1.5.3.7.1 Control of TROA. e e e e e .,
1.5.3.7.2 Control of TRQB. « + + & + + &« & o &

-vi-

1
2 Device Timing--Requirements and Generatlon .
3
4

1.5.1 1Introduction . . e e s e e e

1.5.2 Organization of the MCS6520 e e e e e
1.5.2.1 Data Input Register.

1.5.2.2 Control Registers (CRA and CRB) .
1.5.2.3 Data Direction Registers (DDRA, DDRB). .
1.5.2.4 Peripheral Output Registers (ORA, ORB)

1.5.2.5 Interrupt Status Control . . .
1.5.2.6 Peripheral Interface Buffers (A, B) and Data

Interface Between MCS6520 and the MCS650X Famllv

30

30
30
32
32
32
34
36
36
36
37
37
38
38
40
41
41
41
44
44
47

50

50
51
54
54
55
55
55

55

56
56
56
56
56
58
59
59
63
63
63
64

1.5.4 1Interface Between MCS6520 and Peripheral Devices.
1.5.4.1 Perlpneral i/0 Ports. P
1.5.4.,1.1 Peripheral A I/0 Port (PAQ—PA7) . . .
1.5.4.1.2 Peripheral B I/0 Port (PB@-PB7)
1.5.4.2 1Interrupt Input/Peripheral Control Lines (CAl
CA2, CBL, CB2Z). . « « « v « « o &« = . .
1.5.4.2.1 Perlpheral A Interrupt Input/Perlpheral
Control Lines {CBL, CB2). « v v « v « & « &

1.5.4.2.2 Peripheral B Interrupt Input/Peripheral
Control Lines (CBL, CB2). . « « « v o & «
1.5.5 Summary of MCS6520 Operation. . . . + « « « .« .
1.5.5.1 Control Register Operation. . . . c e e e
1.5.5.2 MCS6520 Operation in MC6500 Systems e v e

1.6 Peripheral Interface/Memory Device--MCS6530 . . .
1.6.1 Introduction. . C e e e e e e e e e e
1.6.2 Pinout Degcription.
1 Reset (RES) v v v 4 &+ o o o o o o o o o o o
2 Input Clock . « ¢ ¢ ¢ ¢ ¢ ¢ o & o o o o o o
3 Read/Write (R/W). « o v v v o o o v o o o o &
.4 Interrupt Request (IRQ) . . . « « « « « « .« .
5 Data Bus (D-D7) + « v ¢ « o« « o o o o o o o
6 Peripheral Data Ports . . . +« « « « « « « « .
7 Address Lines (A0-A9) ¢« « ¢« + ¢ . .
Internal Organization « « « « « & « .« &
1 ROM--1K Byte (8K Bits). . « « v ¢ v ¢ o « o .
2 RAM--64 Bytes (512 Bits). . « « « v « « « . .
.3 Internal Peripheral Registers

4 Interval TIMET. + « o o o o o o o o o o o o
Addressing. e h e e s e e e e e e e
1 One-Chip Addre531ng e a e e e s e e e e e e
.2 Seven-Chip Addressing « . ¢ .
3 I/0 Register—-Timer Addressing.

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 The System Configuration Task
2.2 Input/Output Techniques « « « . « . .

1 The General Purpose Imput/Output (I/0) Port . .
2

3 Configuring the General Purpose I/0 Port. . . .
.3.1 Assignment of Outputs « . .
3.2
A

Assignment of Inputs. . . « « + & o & o o « .
Power-On Considerations . . « « « & & « & « o &

-vii-

The Special Purpose Peripheral Interface Device .

. 64

&l

. v

. 65
. 65

66

67

. 67

67

. 70

.71

71
/i

.71

71
73
73
73
73
73
74
74
74
76

. 76
. 76

78

. 80

80
80

84

85

. 85
. 85
. 87

88
88
90

2.2.5 Handshaking. C e e e e e e e e e 94
2.2.5.1 Handshaking on Data Transfers from the Processor 94
2.2.5.2 Handshaking on Data Transfers into the Processor 95
2.3 Configuring the Interface Between the Microprocessor

and the Support Chips. 99
2.3.1 Assignment of Addresses in the MCS6500 System. . 99
2.3.1.1 ROM Address Assignment « . « 102
2.3.1.2 RAM Address Assignment 102
2.3.2 Additional Address Assignment Techniques 104
2.3.3 InterruptsS « « + + « 4 4+ ¢ 4 v 4 4 e 4 e e e e . . 104
2.3.3.1 Interrupt Prioritizing 106
2.3.3.2 Example 1: Selecting the Interrupt Vector . . . 106
2.3.3.3 Example 2: Using the Processor Software Power . 108
2.3.4 The Application of RDY to Controlling the Mem-

ory Interface. 108
2.3.4.1 Interface Slow PROMs e . « .« . . 108
2.3.4.2 Direct Memory Address (DMA) Technlques B B
2.3.4.3 Counirol of Dynamic RAMs in the MCS6500 System. . 113
2.3.5 Hold-Time Control--MCS6501 117
2.4 Additional System Considerations 119
2.4.1 Peripheral Interface Devices . « « 119
2.4.2 RAM. . . . e e e e e e e e . . . 119
2.4.3 ROM. . “ e e e . . .
2.5 Evaluating System Performance. 121
CHAPTER 3 BRINGING UP THE MCS6500
3.0 Introduction to Microcomputer Testing. 123
3.1 Static TeSting « « « & « « « o 4 4 o o 4 e 4 e e . . 124
3.1.1 Introduction + o v v v v v v v 4 4 e e e e e e . . 124
3.1.2 Single Cycle Execution . . . « v v o & v « « . . . 124
3.1.3 Single Instruction Execution 127
3.2 Dynamic Testing. . . + « v v v & & 4 4 o 4« « . . . 130
3.2.1 Introduction . . + v v ¢ v v v 4 4 4 4 e e 130
3.2.2 Externally Induced LoopsS «. + « « « « « o + + « . . 130
3.2.3 Software LOOPS + v v v v « v o 4 v 4 4 v e . . . 132

-viiji-

3.3 System Diagnosis Using Hardware Programmer

3.3.1 KIM Keyboard Input Monitor
3.3.2 TIM--Teletype Input Monitor.
3.3.3 MDT--Microcomputer Development Terminal.

3.4 Microprocessor Start-Up Procedure.

A Introduction . . « v & & + ¢« 4« 4 . .
A System Power--Step 1

. Basic System Timing--Step 2.
A System Reset~-Step 3 + «+ « « . .

Static Analysis of System Details. . .
Dynamic Analysis of System Details . .

WWWWWWWwWw
N S N S N N N N
.

I S S S S N

NN

.4.2.1 Address Bus Verification
4.4,2.2 Data Bus Verification.
A Detailed Component Check

APPENDIXA 0.

-1X-

Aids.

133

. 135

136
138

139

139
139
140
140
144
145
145
146

148

LIST OF FIGURES

CHAPTER 1 THE MCS6500 MICROCOMPUTER SYSTEM

e el el e e
OO~ U Wl

=
[
o

1.11
1.12
1.13
1.14
1.15
1.16
1.16a
1.16b
1.17
1.18
1.19
1.20
1.21

= e
NN RN
U W N

.26a
1.26b
1.27a
1.27b
1.28a
1.28b
1.29

Organization of Microcomputer System. « « « « o« .
Address Bus and Relation to Memory Field.
Portion of Read Only Memory Matrix. . . . « « & & « « « « &
Pinout Comparison: MOS Technology MCS6501, Motorola MC6800
Clock and Read/Write Timing Table (1 MHz Operation)
Two-Phase Clock Timing. .« « « ¢ ¢ o o o o o o o « s o o «
Timing for Reading Data from Memory of Peripherals.
lelﬁg for W.L.LLJ.I.I.E Data to u.cmux._y orT LCL.LPI.LC.I.G].D. e s e s e
Interrupt Wire OR'd Hardware Configuration from Peripheral
Interface Devices to Microprocessor
Sequence to Service IRQ . « . & ¢ o &« ¢ ¢ o o o o o s o o
MCS650X Internal Architecture . . . ¢ + + « ¢ v o ¢ o « o &
MCS6501 Pinout Designations . ¢« . + « v & & « o « o o« o« o
MCS650X System Timing Diagram e e e
Examples of Interrupt Recognition by MCS650X e e e e e e
MCS6502 Pinout Designation. . . . « . « . . . e e e
MCS6502 Time Base Generation--Crystal Controlled .« e e e
MCS6502 Parallel Mode Crystal Controlled Oscillator
MCS6502 Series Mode Crystal Controlled Oscillator . .
MCS6502 Time Base Generator--RC Network

MCS6502 SYNC Signal . « ¢« v & v v v v v v o 4« o o o o s
Functional Features of MCS6503, MCS6504, MCS6505.
MCS6503, MCS6504, MCS6505 Pinout Designations
MCS6503, MCS6504, MCS6505 Time Base Generation Crystal
Controlled. « c & o 5 s s s e s e .
MCS6503, MCS6504, MCS6565 Time Base Generation RC Network .
Basic MCS6520 Interface Diagram e e
MCS6520 Pinout Designations Peripheral Interface Adaptor. .
MCS6520 Internal Architecture . . « + o o+ ¢« « & & o o o »
Microprocessor Interface Timing--Read
Microprocessor Interface Timing--Write.
Peripheral A Interface Timing « . « . ¢« ¢ ¢« & « o« &
Peripheral B Interface Timing . . « . ¢« « « « & ¢« + & o« &
Peripheral I/0 Port A Buffer. . . . + ¢ v ¢« ¢« v v ¢« « « o &
Peripheral I/0 Port B Buffer. « « ¢ o o o
Control Register Bit Designations « . . « « .+ .« .

13
17
18
18

10
L

24
26
29

. 33

35
39
42
43

. 43

43
43
45

. 46
. 48

. 49
. 49

50
52
53
57
57
60
61
62
62

. 67

. .

0 oMW

B R R b e e e
WWWWWWWWWww
N U ™ WN R RO

Control of Interrupt Inputs CAl, CBl., N
Control of CAZ {CBZ) as Imterrupt Imputs (Bit 5 = "{")
Control of CA2 Qutput Modes « v ¢« v + « « &
Control of CB2 OQutput Modes « . .
MCS6530 Pinout Designation. « « + ¢« ¢ o o o o« o o &
MCS6530 Internal Architecture « « .+ . . .
Basic Elements of Interval Timer.
Example of Interrupt Generated by Interval Timer. .
MCS6530 One-Chip Address Encoding Diagram
MCS6530 Seven-Chip Addressing Scheme.
Addressing Decode for I/0 Register and Timer. . . .

CHAPTER 2 CONFIGURING THE MICROCOMPUTER SYSTEM

DN DN DN
. o .

LW W
[opi)

O 00~ O

NN NMDDDDNNDNNDDN
N

Control of Lo
MCS6520 Cont

ntrol QF Trangsistor Driven Solenoids.

MCS6520 Control of PNP Transistor Driving Solenoid C011 .

ow Order Bit of MCS6520 Output Register .
)

MCS6520 Controlling Both Power and Drivers of Solenoid Cell

MCS6520 Driving TTL Buffers
MCS6520 Controlling Solenoids with Enable Slgnal and TTL
Interface « « ¢« v ¢« ¢ v ¢ 4 e e e e e e s e e e e
Write Handshake Sequence. . . « « « « ¢ + ¢ o+ « o &
Read Handshake Sequence . . + +« = « o o & & &« &« + &
Organization of Microcomputer System.

Example of "AND" Function Using High Order Address Lines.

Typical Address Assignments . . « « « ¢« « &« o « « &
Page Zero Chip-Select Addressing Scheme
Selecting the Interrupt Vector. « « « « « .
Using MCS6520 for Jump Indirect Interrupt Routines.

.

Priority Encoder Connected to Low Order Bits of MCS6520 .

Priority Encoder to Peripheral Interface Scheme . .

.

Software Program to Implement Interrupt from above Hardware

Configuration c e e e e e e e e
Interfacing Scheme for Slow PROMs C e e e e e e e
Logic Used to Generate Bus Available Signal for DMA

Applications. . . « . .+
Control Logic for Refresh Signal for Dynamlc RAMs .
Timing Analysis of Data Hold Time

-Xi-

68
68
69
69
72
75
77

70
717

81
82
83

. 89

91
93
93
93

94

97

98
100
101
103
105
107
109
110
111

111
114

114
116
118

CHAPTER 3 BRINGING UP THE MCS6500

WWWwWwWwwWwwwwww

o
80\\.)14-\(»)[\)'—'

o))
(o

~ o~
o)

.7b

(o]

Suggested Static Test Control Logic.

Single Cycle Timing. . . « ¢« v ¢« ¢ « ¢ & o« o o & &
Microprocessor Single Cycle Data Trap.

Single Instruction Execution . . + ¢« « « & & o« « &
Suggested Configuration for Dynamic Reset Testing.
MCS6501 Clock Timing Signals

Improper Clocks. . « « &+ ¢ v v ¢ v v ¢ o o 4 o o W
Proper Clocks. « « v v v o v ¢ o v v o o o v o o
Address Lines in MCS650X Systems . .+ « + ¢ &« « o &
Proper Address Lines . . « « +v ¢« v 4 ¢ 4 4 4 0 s
Excess Address Line Loading. . . « « « « &« « & « .
The Data Bus in MCS650X Systems. . + « &« « & o« o«

-xii-

. 125

126
128
129
131
141
141

. 141

142

. 142

142
143

CHAPTER 1

THE MCS6500 MICROCOMPUTER SYSTEM

The past several years have seen the development of an exciting new concept
in electrical design. Conventional system design is rapidly being revolution-
ized by the large-scale, single-chip programmable microprocessor. The micro-
‘computer started out as a relatively simple, difficult-to-use programmable
device capable of handling simple control or computational problems. However,
it has since matured into a powerful, inexpensive, easy-to-use device capable
of controlling all but the most complex of systems.

Three primary attributes of microprocessor-based systems are bringing
about this revolution. They are:

1. Microprocessors allow a significant reduction in overall systems cost
for products currently in production. Re-designing their products
around the microprocessor is permitting many manufacturers to develop
or maintain a price advantage over competitors.

2. The reduction in cost of microcomputer systems is opening up vast new
markets for microprocessors. A great number of systems which were
simply impossible or were at best impractical, are being designed and
marketed today using the modern, low-cost microprocessors.

3. At the same time the price of microprocessors is dropping, the cap-
ability is rapidly expanding. This also allows them to be designed
into more systems than ever before.

Anyone contemplating a new design or trying to reduce cost in an existing

design must ask himself if a microprocessor will solve his problem.

The success of the microprocessor is based on the fact that it allows the
design engineer and programmer to apply their expertise in solving a multitude
of design problems using cost effective ICs. A small number of large inte-
grated circuits can be configured to solve design problems from the simplest to

the most complex.

If the same integrated circuits are used to solve a multitude of unique
designs, the first question one must ask is, '"What makes them unique?'" The
answer is: Programming. Although many different designs may share common hard-
ware, each has its own unique program. This brings us to another very important
characteristic of microcomputers. The integrated circuit which makes each sys-
tem unique is the '"Read-Only Memory'" (ROM) which stores the system program. It
is relatively easy for the integrated circuit manufacturer to establish the
particular pattern which uniquely defines the data in a ROM. As a result, the
typical charge for '"designing" a ROM is generally less than 10% of the cost of
designing a totally custom logic chip. Further, the user benefits from high
volume standard product which is still unique for his own application due to the

"customization" of one element of his system.

1.0 DESIGNING WITH MICROCOMPUTER SYSTEMS 7

It will probably surprise many designers who are approaching the subject
of microcomputer design for the first time when they discover that designing a
system around a microprocessor is much the same as designing around conventional
logic. The total approach is the same; the process differs only in the imple-
mentation of each step.

A brief examination of the system design process will help to put micro-
computer design in perspective and will also assist in clarifying the purpose
of this manual. One can expect to perform the following steps in designing a
system:

1. Define the requirements of the system. What functions should it
perform?

. Define basic system components.

2
3. Complete design details.
4

5. Finalize design and begin production.
Step 1 is true for any system and, in general, for any product. Step 2 is

the first point of de rocessor based designs. It is at this
time that the designer must consider the possibility of using a microprocessor
in his system. For the very cost-—sensitive application he must look very care-
fully at total systems cost. Can a microprocessor do the job within the price
constraints imposed? At the other end of the design spectrum, the system de-
signer must evaluate the capability of microprocessors to assure himself that
the available devices can in fact perform the required function. Will a micro-
processor be fast enough to run the system? Will it take more than one proces-
sor?

The purpose of this manual is to teach the designer how to effectively con-
figure a microprocessor-based system and to evaluate the performance of the sys-
tem. After this step, the design will be completed by development of the system
program. Implementation of the system program is discussed in the Programming

Manual.

-3-

1.1 INTRODUCTION TO MICROCOMPUTER SYSTEMS

1.1.1 Organization of a Microcomputer System

Figure 1.1 illustrates the basic organization of a microcomputer
system. It is important that the designer understand the operation of each
component as well as the operation of each data path in the system. Each
of these is discussed separately below. 1In addition, the following discus-
sion describes the operation of the overall system and the use of the vari-

ous signal paths.

+

1.1.2 Basic Operation

The microcomputer is a system which can be characterized as very
simple in its detail and very complex in its overall operation. It
carries out rather complex tasks by performing a large number of simple
operations. Control of the system is primarily the responsibility of the
processor. By putting out addresses to program memory, it controls the
sequence of operations performed and by interpreting and executing the
instructions which it receives from the program memory, it controls the
actual operations carried out by the system. The processor is by far the
most complex device in the system. For this reason, it is important to
overall system cost that this part stay the same for many different appli-
cations. 1In this way, the relatively high development cost can be shared
by thousands of users. In addition, those thousands of users can all bene-
fit from the economics of large-scale production.

The processor causes the system to perform the desired operations by
reading the first instruction in the program, and performing the very simple
task dictated by the specific pattern of bits in this instruction (referred
to as "executing" that instruction). It then goes on to the next instruc-
tion in the program and executes it. This simple operation of fetching an
instruction and executing it is performed over and over, each time on the
next instruction in sequence. In this way the program instructs the pro-

cessor to bring about the desired system operation.

1.1.3 Addressing Terms and Concepts

Before entering into a detailed discussion of the system operation,
it would be useful to define a few terms and to introduce a few concepts
concerning addressing. This should assist in an understanding of the

detailed discussions which follow.

-4-

1/0 PORT

/A\
ZYYVITITY
PROGRAM DATA PERIPHERAL
MEMORY MEMORY INTERFACE
(ROM) (RAM) DEVICE
+ [} £ 7S 7% }A ﬁ A
] | ,
— L)
. 2D
] \V4 \V4 A4 .
) >
WRITE ﬁ
ENABLE < $ B +
CLOCK
| @ | MICROPROCESSOR Lo |
GENERATOR INTERRUPTS
= OTHER
CONTROL
€ SIGNALS

Organization of Microcomputer System
FIGURE 1.1

-5-

R T

ADDRESS
BUS

DATA
BUS

1.1.3.1 Bit

The term "Bit'" is a general term referring to anything that can be
assigned to binary value, i.e., anything that can be given a value of 0 or
1. Thus, an eight-bit data bus is a set of 8 lines which can be assigned a
value of logic O or logic 1. On these lines, the logic values are repre-
sented by two different voltages or currents. Similarly, a 16-bit binary
display can be built with 16 individual lamps. The logic 1 is represented
by the lamp being on.

In this text, reference is made to an 8-bit data bus, a 16-bit
address bus, 4 bits of data, 8-bit registers, etc. In all cases, defini-

tion of a bit remains the same.

1.1.3.2 Address Space

The concept of an address space is very useful in understanding
microcomputer systems. The term "address space' refers to the total set of
addresses which the microprocessor can generate. For example, if a pro-
cessor had only 4 address lines, it could generate the addresses 0 - 15
(binary 0000 to binary 1111). This would not be adequate for any microcom-
puter operation and, consequently, the typical processor has between 12 and
16 address lines. Since each line can assume a value of 0 or 1, these de-
vices can usually address from 4,096 to 65,536 separate addresses. Figure
1.2 contains a pictorial representation of the address space available in
a typical 8-bit microcomputer with sixteen address lines. 1In addition to
the general address space, this figure introduces the PAGE concept dis-

cussed below.

1.1.3.3 The Address Page

The concept of a PAGE in memory is very important in 8-bit micro-
computer systems. The internal organization of an 8-bit processor is
around 8-bit registers, 8-bit parallel data paths, etc. Most arithmetic
operations, logic operations, etc. take place on 8 bits of data at a time.
Likewise, the 16-bit counter which determines which instruction is being
executed is actually divided into two 8-bit busses. One contains bits 0 - 7
(low order address bits) and the other contains bits 8 to 15 (high order
address bits). With this in mind, one can think of the address space shown
in Figure 1.2 as consisting of 256 blocks, each consisting of 256 specific

et il

address locations. Each of these blocks is referred to as a "PAGE

BINARY ADDRESS DECIMAL HEXADEC IMAL ADDRESSABLE
Address Code MEMORY FIELD
High Order Low Order WORD
Page Byte
15 14 13 12 11 10 9 8 5 4 3210 NUMBER Number Number (65536 Bytes)
0 0 0 O 0 0000 0 00 00 T T 1T TT1T1
0 1 00 01 1 O T O A
l Lrrrrrrryl
Tirrrr 1]
0 0 0 0 0 0 0 0 11 1111 255 00 FF SRR
0000 000 1 00 0000 256 01 00 e
1 O T T T T
|| : : [
AT T
1
I
| I I
1 111 1110 11 1111 | 65279 FE FF by b
I N
11 1 1 1 1 0000 65280 FF 00 Cr T
11 1 1 1 1 1 0001 65281 FF 01 EEEEEE
l =2 T T T T I I I~
| NN
11 1 1 11 1 1 11 1111 65535 FF FF Cll 1
D7 Do
— J
DATA BUS

Address Bus and Relation to Memory Field

FIGURE 1.2

of memory. The high order 8 bits of the address (ADH) therefore indicates
in which page the address is located, and the low order 8 bits (ADL) indi-
cates a specific address on that page.

The first page in memory (ADH = 00) is referred to as page zero.

The next higher order page (ADH = 0l) is referred to as page 1, etc.

1.1.4 System Components

The block diagram in Figure 1.1 shows the basic components which
comprise all microcomputer systems. Each of these blocks may consist of
one or more integrated circuits and, in fact, the functions may be com-
bined into single chips. However, the basic operation of each remains the

same.

1.1.4.1 Clock Generator

The clock generator produces a continuous waveform which is
normally used to control all signal transitions within the system. t acts
as the "heart" of the system. In the typical microcomputer system the
address bus will change during one half of the clock cycle and the data
will be transferred during the second half. In addition to interpreting
the address, data and control lines, the processor and support chips must
also examine the system clock to know when to put out data or when to latch

in data generated by another device.

1.1.4.2 Program Memory

The program memory stores the sequence of instructions which com-
prises the system program. Like any memory, this unit puts a pattern of
1's and 0's on the data bus in response to the address on the address bus
input. Each unique address selects a set of 8 binary bits and places this
data on the data bus. Note that it does not matter where the address is
generated or where the data is used; the memory simply obeys the rule that,
given an address, it will put the corresponding 8 bits of data on the data
bus.

A unique characteristic of most microprocessor-based systems is
that the program is usually stored in "READ-ONLY" memories. The data is

stored in a fixed pattern of bits in the memory. Figure 1.3 shows a sec-

- A -~ - e e A o 8 an ™A T XT AL £ oA\
ion of a semiconductor READ-ONL Mewory {(ROM).

Portion of Read Only Memory Matrix
FIGURE 1.3

Since the data is stored in the physical configuration of the device, the
data will not be lost when power is disconnected from the chip. In addi-
tion, it is only necessary to insert the device intoc its socket to pro-
vide the system program. The term "Read-Only Memory" refers to the fact
that, in system operation, it is impossible for the processor to cause data
to be stored in the device. The processor can only "READ" the data stored
in the device during the manufacturing process. "READING" a memory in-
volves the simple process of supplying an address to the device to obtain

the corresponding 8 bits of data on the data bus.

1.1.4.3 Data Memory

For temporary storage of input data, the results of arithmetic
operations, etc., the microcomputer uses a Read/Write Memory, commonly re-
ferred to as a RAM (Random Access Memory). The processor can store data

in the RAM (called "WRITING" the RAM), or it can read back the data it has

stored. As in the ROM, each address corresponds to eight memory cells.
However, in a RAM the data must be placed intc the mEemOYy by thé processor

and is stored in cross-coupled latches. Turning off the power to the chip

will cause the loss of all data stored there. The data is said to be

yolatile." Data in a ROM is not lost when power is disconnected from the
device; the data is therefore referred to as 'non-volatile."

"WRITING" data into a RAM takes place when the Write-Enable signal
goes to the write state. At this time the data on the data bus will be
stored into the eight memory cells corresponding to the address on the ad-
dress bus. The processor can READ this same data by supplying the proper

address and keeping the Write-Enable line in the Read state.

1.1.4.4 Input/Output Devices

The Input/Output Devices are the circuits which interface the
printer, keyboard, displays, etc. to the processor. These allow the pro-
cessor to read data from the keyboard, to test the state of sensors and
switches, and to display or to print the results of internal operations.

No matter where data is generated, it must be in the form of 1's
and 0's before the processor can work with it. Likewise, actions to be
initiated by the processor must be triggered by 1's and 0's transferred by
the processor to a set of output lines.

The transfer of data from the processor to an output device is
usually accomplished by "WRITING" the data out in much the same manner as
the processor writes data into RAM. Each set of 8 input or output lines
(referred to as "PORT'") is given an address and the processor simply writes
data to that address. For each "1" written out to the peripheral port an
output is set high and for each "0," the corresponding output is set low.

Although the basic concept of peripheral control is simple, the
actual implementation of these interfaces can involve many sophisticated
techniques designed to allow the processor to maximize its ability to con-
trol peripherals and perform internal operations concurrently. ‘These tech-

niques are discussed in detail in Chapter 2 of this manual.

1.1.4.5 The Microprocessor

At first glance it may seem strange to discuss the support chips
in the microprocessor-based system before mentioning the processor. How-
ever, this approach is necessitated by the fact that most of the inputs and
outputs on the processor are aimed at properly controlling the support chips
and peripheral devices discussed above.

The address bus, the bi-directional data bus and the Write-Enable
iine allow the processor to exercise direct control over the rest of the

system. The address bus puts out addresses to control the source or

-10-

destination of data transfers. These addresses are derived from various
sources within the processor. During the fetch of instructions from pro-
gram memory, the addresses are usually derived from a counter which con-

trols execution o

Fh

sequential instructions. Addresses for data transfers
between the processor and RAM are usually derived directly from the program
or are calculated from the data in the program and data in internal regis-
ters.

The bi-directional data bus serves as a path for transferring data
into and out of the processors. The direction of the data transfer is de-
termined by the Write-Enable line.

Another special function found in modern microcomputer systems is
the interrupt. This function allows the peripheral devices to directly
affect the operation of the processor. When the interrupt signal is gener-
ated, the processor usually completes its current instruction and then,
under program control, will respond to the interrupt. The importance of
this function is that it allows the processor to execute the system program
without requiring the system program to monitor the status of the peripheral
device. The software which handles the operation of each peripheral will

be executed only when required.

-11-

1.2 INTRODUCTION TO THE MCS650X MICROPROCESSOR FAMILY

The initial MOS Technology, Inc. microprocessor offering consists of the
MCS6501, which is MC6800 compatible; the MCS6502, which has clock drivers on-
chip; and three 28-pin processors, the MCS6503, MCS6504, and MCS6505. All of
these devices are aimed at a specific range of applications. Therefore, it is
important to develop an understanding of the capabilities of each and the dif-
ferences between them.

The MCS6501 has application in existing M6800 systems where conversion to
the MOS Technology, Inc. processor is to be performed. This processor requires
the full high-level two-phase clocks of the M6800 system. The MCS6502 is ex-
pected to find application in all new designs which require a full 16-bit ad-
dress bus. However., in the small cost-sensitive system., the 28-pin processors
can represent a savings in both processor cost and printed circuit board area.
The MCS6503, MCS6504, and MCS6505 will find application in all new designs where

the system will operate within the addressing limits.

1.2.1 The MCS6501

The MCS6501 is the first member of the microprocessor family to be
introduced. It is designed to be pin compatible with the M6800 and there-
fore conversion from the MC6800 to the MOS Technology, Inc. MCS6501 re-
quires only that the system be reprogrammed. This allows the M6800 user
to take full advantage of the software power (addressing modes, etc.) of
the MCS650X processor family.

Although the conversion process is fairly simple, it is important to
keep in mind the differences between the MC6800 and the MCS65061. The pins
on the MCS6501 all do the same general function as those on the MC6800 but
the function performed may differ somewhat in detail. Figure 1.4 contains
a detailed, pin-for-pin comparison of these two processors. A thorough
understanding of this table, along with an understanding of the MCS650X
software will allow the system designer to perform the conversion with very
little difficulty. The MCS6501 provides a full 16-bit address bus, 8-bit

data bus and two interrupts.

-12-

MOTOROLA MOS TECHNOLOGY MOTOROLA MOS TECHNOLOGY
PIN # 6800 6501 PIN # 6800 6501

1 Vss Vss 21 Vss Vss
2% Halt Ready 22 Al2 Al2

#1 (in) #1 (in) 23 Al3 Al13

IRQ IRQ 24 AlL Al
S* VMA VMA 25 Al5 Al5
6 NMI NMI 26 D7 D7

BA BA 27 D6 D6

8 vdd vdd 28 D5 D5

9% AG AP 29 D4 D4

10 Al 30 D3 D3

11 A2 A2 31 D2 D2

12 A3 A3 32 Dl D1

13 A4 A4 33 D@ D@

14 A5 A5 34 R/W R/W

15 A6 A6 35 N.C. N.C.

16 A7 A7 36 ‘DBE DBE

i7 A8 A8 37 92 (in) @2 (in)

18 A9 A9 38* N.C. N.C.

19 Al0 Al0 39% TSC

20 All All 40 Reset Reset

* DIFFERENCES
PIN # MOTOROLA 6800 MOS TECHNOLOGY 6501

2 Halt - Stops processor after Ready - Stops Processor during
completing current instruction. current instruction. Address
Address Bus in off state. Bus reflects current address

being read.

5 VMA - Signal determines when VMA - No need for Valid Memory
address from processor is Address Signal. All addresses
Valid. are valid at all times. This

pin is internally tied to Vdd
and can be used as a VMA signal
in high state.

9 Address Bus uses Tri-State Address Bus uses TTL level
Output Buffers. Output Drivers.

38 No Connection

39 T7.S.C. - Three-State Control N.C. - No need for TSC since

Controls all Three-State
Buffers, Address Bus and
Data Bus.

Address is not Three-State and
DBE Controls Three-State of
Data Bus.

Pinout Comparison
MOS TECHNOLOGY INC. MCS6501, MOTOROLA MC6800
FIGURE 1.4

-13-

1.2.2 The MCS6502

The second member of the processor family is a 40-pin device which
provides all the features of the MCS6501, along with an "on-the-chip'" oscil-
lator and clock drivers. This device should be used in all new designs
which require the capability of the 40-pin processors. The clock drivers
can be driven with a single TIL level square wave or with the internal
oscillator. The frequency of operation of the internal oscillator can be
set by attaching an R-C combination to the chip and, if the clock stability
is required, by attaching a crystal between the oscillator and ground.
This feature totally eliminates the problems encountered in generating
MC6800 type clock signals. |

As in the MCS6501, the MCS6502 provides a full 16-bit address bus,
8-bit bi-directional data bus and two interrupts. In addition, the MCS6502
provides a sync signal which indicates those cycles in which the processor

is fetching an operation code from program memory.

1.2.3 The MCS6503; MCSA504 and MCSA505

Three 28-pin versions of the processor are available. These three
differ in the number of address lines and the number of interrupts provided.
Having all three options available allows the designer to tailor his pro-
cessor to his particular application.

The MCS6504 provides a total of 13 address pins and can, therefore,
address a full 8K bytes in its memory space. However, this part provides
only one interrupt request input, IRQ. The non-maskable interrupt (WMI) is
not included in the pinouts of this device.

The MCS6503 and MCS6505 provide one less address line. In the
MCS6503, this address line is replaced with a second interrupt input, NMI.
In the MCS6505, this address line is replaced by the RDY signal. All other
functions on these processors are the same. The details of each of these
pins are discussed in the following sections.

The operation of the various busses, control signals, etc. is ex-
actly the same on all MCS650X products with all processors obeying the sys-—

tem specifications discussed in Section 1.3 of this manual.

-14-

1.3 MCS6500 SYSTEM CONCEPTS

1.3.1 Bus Structure

The MCS6500 microcomputer system is organized around two primary
busses. Each bus consists of a set of parallel paths which can be used to
transfer binary information between the devices in a system. The first
bus, known as the ADDRESS BUS, is used to transfer the address generated by
the processor to the address inputs of the memory and peripheral interface
devices. The processor is the only source of addresses in a normal system,
so this bus is referred to as 'unidirectional." The address bus consists
of 16 lines on the MCS6501 and MCS6502. This allows the processor to
access (READ or WRITE) up to a total of 65,536 memory words, registers, etc.
In the MCS6503, MCS6504, and MCS6505, the address bus contains fewer lines;
therefore, they operate with a smaller "address space." This is discussed
in detail in Section 1.1.3.

The data bus in the MCS6500 microcomputer system consists of an 8-bit
bi-directional data path. These lines transfer data from the processor to
the selected memory word, etc. during a WRITE operation and from memory
into the processor during a READ operation. All data and all instructions
are transmitted on the data bus.

The direction of the data transfers is controlled by the READ/WRITE
(R/W) line on the processor. This line performs the Write Enable function
described in Section 1.1.4.3. As long as the R/W line is high (> 2.4V DC),
all data transfers will take place from memory to the processor (READ opera-
tion). This line will go low only when the processor is going to WRITE data
out to memory.

As in most microcomputer systems, the timing of all data transfers
is controlled by the system clock. The clock itself is actually two non-
overlapping square waves. This two-phase clock system can best be thought
of as two alternating positive-going pulses. This text will refer to the
clocks as Phase One and Phase Two. A Phase One clock pulse is the positive
pulse during which the address lines change and a Phase Two clock pulse is
the positive pulse during which the data is transferred. The timing of the
signals on the Address Bus, Data Bus, and R/W line are shown in Figures 1.5
through 1.8. All signal transitions are specified with respect to the

Phase One and Phase Two clock signals.

-15-

In particular, the address lines and the R/W line will stabilize during
Phase One, and all data transfers will take place during Phase Two.

The specific timing specifications for operating at a 1 MHz clock
rate are also given in Figure 1.5. Note that the sequence of operations
will be the same for all processors. However, these timing specifications
will change for devices which are specified to operate faster than 1.0 MHz.
The address is guaranteed to be stable 300 nanoseconds after the leading
edge of Phase One, and the data must be stable 100 nanoseconds before the
trailing edge of Phase Two. At 1.0 MHz operation, this allows the memory
devices approximately 575 ns to make data available on the data bus. Al-
though there are many factors which determine the actual data and address
generated within the system, it is important to keep in mind that the
basic operation shown in Figures 1.6, 1.7 and 1.8 does not change. These
figures specify the system bus discipline which applies to all MOS Technol-

0gy, Inc. processors and support chips.

Through the generation of processor interrupt signals, the peri-
pheral devices (printers, keyboards, etc.) can request service from the
processor. Although this technique is relatively simple in concept, the
proper generation and control of interrupts is one of the most important
problems which the designer will face. Total system capability can be
greatly expanded if the processor is required to execute the peripheral
software only when it is absolutely necessary. This is the goal of a well-
planned interrupt structure. The interrupt structure is very much a sys-
tems sophistication problem since it is the entire system which must pro-
perly respond to the interrupt inputs. In fact, the actual signals to
which the system must respond are usually applied to the inputs of a peri-
pheral interface device. In this device, the interrupts are enabled, dis-
abled and latched until the interrupt is processed. The peripheral inter-
face device generates signals which meet the requirements of the processor
interrupt inputs.

There are two interrupt input lines to the microprocessor, Eia
(Interrupt Request) and NMI (Non-Maskable Interrupt).

€juiremenis of the two interrupt inputs ditter, they will

Qlammnn 1. .
villc Ll L

be discussed separately below. The response of the processor to these in-

puts is very similar, however, after the interrupt is recognized. For this

-16-

_L‘[-

CHARACTERISTIC SYMBOL MIN. TYP, MAX. UNIT
Cycle Time —_ —
4 Teve 1.0 us Hsec
Clock Pulse Width @1 PWH @1 430

(Measured at Vce-0.2v) @2 PWH (2 430 - - nsec
Rise and Fall Times

(Measured from 0.2V to Vce-0.2V) Tps Tp —_ _— 25 nsec
Delay time between Clocks .

(Measured at 0.2V) Ty 0 - - nsec
CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

i { |

Read/Write Setup Time from'MCS650X Trws . 100 300 s
Address Setup Time from MCS650X Tips -- 200 300 ns
Memory Read Access Time TR T - -- 500 ns

T o= (T, -~ T - tr) ACC

cYc Aps T “psu T °F
Data Stability Time Period TDSU 100 - - ns
Data Hold Time TH 10 30 - ns
Enable High Time for DBE Input TEH 430 - - ns
Data Setup Time from MCS650X TMDS 150 200 ns

Clock and Read/Write Timing Table (1MHz Operation)

FIGURE 1.5

g TCYC -
r-_—- PWH@; ——:T
VCC - 0.2V
9
! L 0.2V
—m={Tp -— />\TD -
vce - 0.2V ' X
02
1 0.2V
TFF_ ——D[IR PWHO) —=
Two Phase Clock Timing
FIGURE 1.6
> TCYC -
-vcc - 0.2V
01 /
———a]
—» — TR
02 / \
L 2.0V
- TRWS —B»)
2.0V 2.4V
R/W
2.4V
- g
ADDRESS 2.0V \\\
FROMMPU 08V __ N\\WN 0.4V
e~ TADS —m»} 2.0V 24V
DATA FROM 0.4V
MEMORY 0.8V
nd— TACC ————————m— TDSU —i» TH jt—

FIGURE 1.7

-18-

< TcYC g

/ vce - 0.2V /
01 02V

- 4 P
> |
\ 7 vce -0.2V A
02 / \
~
t— TRWS —p»|

RW oy N

It
ADDRESS 2.0V
FROM MPU 8.0V \ \

- e —
2.0V
[€—TADS —P =
DATA —
FROM MPU 0.8V
t— TMDS —P —3| TH let—

L~

Timing for Writing Data to Memory or Peripherals
FIGURE 1.8

-19-

reason, the internal operation of the processor during interrupt servicing
is discussed in the detailed analysis of the processor chip. Instead, this
section will concentrate on the system level considerations which are re-

quired to assure proper operation of the interrupt structure.

1.3.2.1 Applications for Interrupts

One of the most important tasks facing the microcomputer system
designer is the determination of those signals which will cause processor
interrupts and those operations which will take place in response to these
interrupts. A detailed discussion of these considerations is included in
Chapter 2 of the manual; however, a few examples of interrupt-driven opera-
tions will be presented here to help the designer develop an understanding

for why this technique is used extensively in microcomputer systems.

Example 1--A Fully-Decoded Keyboard

The problem of data entry is solved in many systems by a key-
board. 1In small systems, the interpretation of the binary code associated
with each key can be determined by the processor. However, in large data
terminals, the keyboard usually includes an encoder which generates the
unique code corresponding to each key. When a key is closed, the corre-
sponding code is placed on the output pins and a strobe signal is generated
to indicate that a key has been pressed.

The keyboard represents a perfect candidate for interrupt-
driven operation. The interrupts occur relatively infrequently and the
operation to be performed is relatively simple. The keyboard strobe line
is connected directly to an interrupt input on a peripheral interface de-
vice. Each time a strobe signal is generated, an interrupt occurs, the
processor reads the data on the peripheral port into memory, analyzes this
data and then returns to the program that was in process. If no keys are
pressed, the processor spends no time at all in servicing the keyboard.

Without the interrupts, the processor would have to read the
keyboard data into memory periodically in order to detect an active key.
This operation would be performed about every fifty to one hundred milli-
seconds. In addition to detecting an active key, the processor must make
sure that each separate activation of a key is detected once and only once.
2.2.5 and 1.3.2. 6. This software iec much
more complex than the simple interrupt routine. Another drawback of non-

interrupt processing is that the processor is required to spend a periodic

-20-

portion of its time on the keyboard. In many systems, this is not a prob-
lem, but in large terminals, etc., the time spent checking for keyboard
strobes could be better spent in other operations. The designer must,
therefore, ask himself if the system under development is such that the
processor can perform the keyboard strobe checking function while stiil

completing its other tasks.

Example 2--A Scanned Display

Although time is a major factor in determining the necessity of
interrupts, the interrupt technique can also be extremely useful when per-
forming parallel operations. A prime example of this can be found in a
system which contains a digital display and/or printer.

A digital display is usually "scanned" such that each digit is
driven for a short period of time in sequence. The entire display is
scanned at a rate which the eye cannot detect. However, it can be noted
here that the display requires scan-related attention from the processor
at fixed intervals. It is very difficult for the processor to calculate
repetitive time intervals while it is performing its normal system program
routines. The processor would much prefer to run the system program with-
out consideration for the display time intervals, only executing the display
software when it is required.

A solution to the above problem is the generation of processor
interrupts at fixed intervals using an external counter or clock. Each
time an interrupt occurs, the data for the next digit in the display is
placed on an output port. The processor then returns to the program it had
been executing.

Both of the operations described above represent solutions to
system problems. Events which happen very infrequently and events which
must be performed in parallel with other events or in parallel with the
main system program should be seriously considered as candidates for inter-
rupts. Additional considerations are described in Chapter 2 of this manual;
however, it is important to note here that the typical system may have
several sources of interrupts, each with its own timing and each with its

own set of operations which must be performed in response to the interrupts.

-21-

1.3.2.2 Interrupt Prioritizing

After a careful analysis of the total system and a determination
of all the sources of interrupts, the designer must ask himself, "What hap-
pens if more than one interrupt source requires attention at one time?" A
priority level must be established between the various interrupt sources.
Which ones must be taken care of within a very short period? Which ones
can be put off for a while? This prioritizing and the technique for select-
ing among several concurrent interrupts is very important to the system
operation and should be established early in the system development process.

The MCS650X-based system can employ several hardware methods of
determining the highest priority active interrupt. These usually involve
using a special "priority encoder" which allows the processor to go di-
rectly to the software which services the highest priority interrupt.

After this is complete, it will go to the next higher priority and execute
that software. However, the MCS650X family provides a much less expensive
method of interrupt prioritizing. This is the '"polled" interrupt. With
this technique, each time an active interrupt source is detected, the pro-
cessor executes a ''polled" interrupt program that interrogates the highest
priority interrupt, then the next highest and so on until an active inter-
rupt is located. The program services that interrupt and returns to the
"polled" interrupt program and continues to interrogate the next highest
priority interrupt until all have been interrogated or clears the interrupt
disable to allow nested interrupts. The ''polled" interrupt program is al-
ways executed when an interrupt occurs so that all interrupts that occur
concurrently will be serviced in order of priority level.

Several hardware techniques for prioritizing interrupts are dis-
cussed in Chapter 2 of this manual. The next section, however, describes

the system interconnect which allows use of the simple '"polled" interrupt.

1.3.2.3 System Interconnect for Interrupts

In the simple "polled'" interrupt technique for prioritizing inter-
rupts, the interrupt software actually determines the highest priority
active interrupt. The Eia or NMI interrupt request signals simply cause
the processor to jump to the polling software.

For this rfeason, it is pussible Lo "OR" the various interrupt
signals together to form the signal for the processor. Any active inter-

rupt source will then cause the processor to do the interrupt polling and

-22-

servicing operation. Provision for generation of this OR function is pro-
vided in the MCS6500 family peripheral interface devices. Since these
peripheral adapters perform many of the enabling and latching functions
necessary for proper interrupt servicing, the peripheral adaptor interrupt
output then provides the actual signal which interrupts the processor.
These interrupt outputs can be "WIRE-OR'd" by connecting them all together
and then connecting this single line to the processor. This input should
then be pulled to +5V with a resistor. Any one of the interrupt outputs
on the peripheral adaptors can then pull this interrupt low. This simple

configuration is shown in Figure 1.9.

1.3.2.4 Interrupt Servicing

Although a great deal has been said previously about the process
of establishing interrupts and determining just what happens in response to
an interrupt, it would be useful to detail the sequence which takes place

wTThan an
=

.
1 Pt ale Vol -tol et o mi. -
Wiloli il il Lil

the processor.
basis for understanding of the details of the processor interrupt inputs.
An interrupt request is signaled by a GND (< 0.4V) signal on the

t request input. This interrupt will be recognized after the pro-
cessor completes the instruction which it is currently executing. The next
step is to store enough of the contents of the intermal processor registers
to assure that the processor can resume execution of the program which was
interrupted. 1In particular, the Program Counter and the Processor Status
Register are stored in a series of memory locations specified by another
internal register, the Stack Pointer. As discussed in Chapter 9 of the
Programming Manual, saving the contents of the Program Counter and Proces-—
sor Status register uniquely defines, in memory, the state of the micro-
processor at the time the interrupt occurred. The processor then goes to
two fixed locations in memory to determine the address low and address high
of the interrupt software.

The operation to this point is automatic and is determined by the
internal processor logic. After the processor has properly set the address
bus, execution of the interrupt program commences. Everything which occurs
subsequently is determined by the system software.

The total interrupt software described above will consist of a com-

plex combination of polling and interrupt servicing routines. However, unless

-23.

MCS650X

el

+5V

3Ka RESISTOR

MCS6520

MCS6520

MCS6530

S

-

Y

PERIPHERAL
INTERFACE
DEVICES

Interrupt Wire OR’d Hardware Configuration

from Peripheral Interface Devices to Microprocessor

FIGURE 1.9

-24-

1/0 PORTS

a hardware prioritizing scheme is used, the actual system interconnections

will not become any more complex than that shown in Figure 1.9.

1.3.2.5 Interrupt Request (IRQ)

- . <
H

> 1 1 F Teams + =
+2, the twec interrupt lines for the micro-

’-..I
(V8]

. de K I
As stated din Section 1.

processor are IRQ and NMI. The requirements for proper operation of the

maskable Interrupt Request input (IRQ) are more stringent than for the

second interrupt input, NMI. This is due primarily to the fact that NMI
T

. - .
is edge-sensitive. With the IRQ input, t

>

1. 211

he processor will be interrupted
any time the signal on IRQ is GND (< 0.4V) and the internal Interrupt Dis-
able flag is cleared. The Interrupt Disable flag (I) is a single bit in
the internal Processor Status Register. The details of this register are
described in Section 3.2 of the Programming Manual.

In the processing of interrupt request from the Eﬁa input, the I
flag is extremely important. This is the element which assures that an
interrupt will be recognized and serviced only once for each request and
only when an interrupt is desired. This is described in detail below.

Figure 1.10 details the sequence of operations which should take
place during the servicing of an Tﬁa interrupt. A positive or negative
transition of the signal from the peripheral device (printer, keyboard,
etc.) is detected on the edge-sensitive inputs to the peripheral interface
device. If the interrupt is enabled within the peripheral interface de-
vice, the interrupt request output (TEE) on this chip will go low. The
interrupt condition is latched within the peripheral interface device to
allow sufficient time for the processor to poll the interrupt sources,
assuring that the interrupt signal will not be cleared before the polling
can be completed. This latch is reset by the processor as it executes the
software associated with that interrupt. Details of this operation are
described in Section 1.4.1.2.10

The Interrupt Disable flag (I) is set automatically when the pro-
cessor recognizes an interrupt. This assures that this same interrupt will
not be recognized again. Resetting this flag can be performed manually
with an instruction in the program or automatically with a "Return from
Interrupt" instruction. It is very important that "I" not be cleared before
the interrupt input is reset. Performing the "Clear I" instruction too

early in the program can cause this same interrupt to be recognized again.

-25-

24V

IRQ
FROM PERIPHERAL INTERFACE
DEVICE TO MICROPROCESSOR

INTERRUPT J |
FLAG (1)

| |
J L

-~ ~
~

r INTERRUPT REQUEST INTERRUPT FLAG (D) IS SET HIGH AND

i UPON COMPLETION OF
| RECOGNIZED AFTER | THE INTERRUPT REQUEST IS SERVICED
' I
i !

INTERRUPT ROUTINE iRQ
SHOULD BE RESET BEFORE
SIS RESET TO AVOID
DOUBLE INTERRUPTING.

COMPLETION OF CURRENT BY THE MPU.

T L A T]
MU IYSTRUTHICH.

Sequence to Service IRQ
FIGURE 1.10

-26-

The processor will then proceed to service this as if it were a new inter-

rupt.

1.3.2.6 Non-Maskable Interrupt (NMI)

3

- 1 3 "} 4 - I A e
The NMI input to the processor is edge-sensitive. To cause an

interrupt to occur, there must be a negative transition of the signal on
the NMI input. This negative transition will cause a single interrupt to

occur. After servicing the interrupt, the processor will ignore this input

.
until the

[
-
s

I signal goes high (> +2.4V) and then back to ground.

The response to an NMI interrupt signal cannot be disabled within
the processor. After the processor completes the instruction being exe-
cuted, it will recognize the interrupt and will proceed to service the
interrupt as described in the previous section. The proper discipline to

employ in all interrupts is for the interrupt signal to be latched until

ot

he processor completes servicing the interrupt. This method of operation
is assured if all the interrupts are connected to the interrupt inputs of
the peripheral interface devices in the family.

Processing of multiple interrupts in a polled interrupt structure
requires that all of the interrupts be polled before executing a "Return
from Interrupt' instruction. This is necessitated by the "WIRE-OR" tech-
nique for combining the interrupts, since no knowledge exists of which line

he interrupts is left unserviced, it will hold

t

went to ground. If ome of
the NMI signal to ground, disabling the interrupts from all other sources
since it is necessary for the ﬁﬁf'signal to go high (> 2.4V) and back low
again for an interrupt to occur. This is not true for the fﬁahinput since
this latch is level-sensitive. Performing a "Return from Interrupt" before
all IRQ interrupt sources are serviced will simply cause another IRQ inter-

rupt to occur,

1.3.3 System Reset

One of the basic system control functions is the system RESET signal.
Whether this signal is generated automatically by external power-on circuitry
or manually from a push-button switch, the system components must obey a
fixed set of rules to assure proper system operation. This is particularly

true for the peripheral interface devices.

-27-

In the MCS650X-based systems, an assumption is made that RESET pins
on all peripheral interface devices and on the processor will be held low
during power-on until the supply voltages and the clocks have stabilized.
This procedure assures that the peripheral pins will remain in a known
state until the entire system is initialized and the processor is ready to
assume control of the output lines, i.e., is ready to run the system pro-
gram.

It should be mentioned that in the entire set of microcomputer
chips, the contents of latches, registers, etc. is totally random after
power is applied. On the peripheral output pins, random data can be
disastrous. The only way to force these lines to a known condition is to
apply the RESET signal. The designer can then make sure that the known
condition will not cause spurious operations in the peripheral devices.

The effect of RESET on the peripheral chips is discussed in the analysis
of each chip.

In the processor, the single register which must be placed
in a known state is the program counter. This is the register which se-
lects the instructions to be executed. The RESET input causes the program
counter to go to the first instruction in the system program. The specific
details of this operation are discussed in Section 1.4.1.2.11.

There is one other very important function performed by the RESET
input on the peripheral interface devices. Although the recognition of the
processor interrupt signals is automatic and does not depend on software,
the sequence of operations performed by the processor to totally service an
interrupt is determined by the program. Until the various internal regis-
ters in the processor have been initialized, the processor is not ready to
respond properly to any external interrupts. For this reason, it is im-
portant that the system RESET disable all external interrupt signals until
they are enabled by the processor. The programmer can then make sure that

the system has been properly initialized before the interrupts are enabled.

-28-

ADDRESS
BUS

«— REGISTER SECTION

CONTROL SECTION —xow—p

RES IRQ Nmi
ABp < [] INDEX :
N
REGISTER K~ L TLEORGRl‘CJ”
Y -t
ABl -
YYVY
AB2 - INDEX
REGISTER K
X -
B f——————
AB3 g— RDY
—
2 K
A S [| éc SP%AH(‘:JT -
3 REGISTER | _
= (S) ‘ 1
ABS] Z
-4
= INSTRUCTION
z 2 DECODE
AB6 -g—] d < :
o
ALU b
AB7 <= -)
=
= =
- =) Z |t —
ABS < ACCUMULATOR = TIMING
= A €| CONTROL
AB9 g [~
-
= A A (6501)
Z 0| r— 6 (IN)
ABI0 <t— (] PCL P ¥ e
- 02
[< 95 (IN)
ABI1 <] G PCH — ‘ - u (6501)
PROCESSOR 0 (IN)
K= L{ STATUS CLOCK IC;’_;)UCK o
ABI2 g E REGLSTER GENERATOR T (6502.3.4.5)
INPUT
. |—>
LDAi‘\l']gl\-l ¢ our (6501)
"
ABI3 <g—] ¢ L) C,
1 L—— = p0ur (6501)
ABl4 L———> R/W
-
K— DBE
DATA BUS INSTRUCTION
ABIS <] BUFFER |« REGISTER
LAAAAA AL U AAAAA A AL N
» DBY
= DBI
LEGEND: o o2
ﬂ » DB3 DATA
=8 BIT LINE > D4 BUS
—» DBS
I =1 BIT LINE > DB6
» DB7

NOTE: 1. CLOCK GENERATOR IS NOT INCLUDED ON MCS6501.

2. ADDRESSING CAPABILITY AND CONTROL OPTIONS VARY WITH
EACH OF THE MCS650X PRODUCTS.

MCS650X Internal Architecture
FIGURE 1.11

-29-

1.4 THE MICROPROCESSORS
1.4.1 The MCS6501

1.4.1.1 Introduction

The members of the MCS650X microprocessor family contain very
similar internal architectures. A block diagram of this architecture is
shown in Figure 1.11. This section begins with an analysis of this block
diagram, discussing the function of the various registers, data paths, etc.
A detailed discussion of the operation of the various pins on the chip fol-
lows.

The internal organization of the processor can be split into two
sections. In general, the instructions obtained from program memory are
executed by implementing a series of data transfers in one section of
the chip (register section). The control lines which actually cause the
data transfers to take place are generated in the other section (control
section). Instructions enter the processor on the data bus, are latched
into the instruction register, and are then decoded along with timing sig-
nals to generate the register control signals.

The timing control unit keeps track of the specific cycle being
executed. This unit is set to "T0" for each instruction fetch cycle and
is advanced at the beginning of each Phase One clock pulse. Each instruc-
tion starts in TO and goes to Tl, T2, T3, etc. for as many cycles as are
required to complete execution of the instruction. Each data transfer,
etc., which takes place in the register section is caused by decoding the
contents of both the instruction register and the timing counter.

Additional control lines which affect the execution of the instruc-
tions are derived from the Interrupt logic and from the Processor Status
register. The Interrupt logic controls the prccessor interface to the
interrupt inputs to assure proper timing, enabling, sequencing, etc. which
the processor recognizes and services.

The Processor Status register contains a set of latches which
serve to control certain aspects of the processor operation, to indicate
the results of processor arithmetic and logic operations, and to indicate
the status of data either generated by the processor or transferred into
the processor from outside.

Since the real work of the processor is carried on in the register
section of the chip, a detailed study will be made of this section. The

components are:

-30-

* Data Bus Buffers

* Input Data Latch (DL)

* Program Counter (PCL, PCH)
Accumulator (A)

* Arithmetic Logic Unit (ALU)

% Stack Pointer (S)

* Index Registers (X, Y)

* Address Bus Latches (ABL, ABH)

* Processor Status Register (P)

At 1 MHz, the data which comes into the processor from the program
memory, the data memory, or from peripheral devices, appears on the data
bus during the last 100 nanoseconds of Phase Two. No attempt is made to
actually operate on the data during this short period. Instead, it is
simply transferred into the input data latch for use during the next cycle.
The data latch serves to trap the data on the data bus during each Phase
Two pulse. It can then be transferred onto one of the internal busses and
from there into one of the internal registers. For example, data being
transferred from memory into the accumulator (A) will be placed on the in-
ternal data bus and will then be transferred from the internal data bus
into the accumulator. If an arithmetic or logic operation is to be per-
formed using the data from memory and the contents of the accumulator, data
in the input data latch will be transferred onto the internal data bus as
before. From there it will be transferred into the ALU. At the same time
the contents of the accumulator will be transferred onto a bus in the reg-
ister section and from there into the second input to the ALU. The results
of the arithmetic or logic operation will be transferred back to the accumu-
lator on the next cycle by transferring first onto the bus and then into
the accumulator. All of these data transfers take place during the Phase
One clock pulse.

The program counter (PCL, PCH) provides the addresses which step
the processor through sequential instructions in the program. Each time
the processor fetches an instruction from program memory, the contents of
PCL is placed on the low order eight bits of the address bus and the con-
tents of PCH is placed on the high order eight bits. This counter is

incremented each time an instruction or data is fetched from program memory.

-31-

The accumulator is a general purpose 8-bit register which stores
the results of most arithmetic and logic operations. In addition, the accu-
mulator usually contains one of the two data words used in these operations.

All logic and arithmetic operations take place in the ALU. This
includes incrementing and decrementing of internal registers (except PCL
and PCH). However, the ALU cannot store data for more than one cycle. If
data is placed on the inputs to the ALU at the beginning of one cycle, the
result is always gated into one of the storage registers or to external
memory during the next cycle. Each bit of the ALU has two inputs. These
inputs can be tied to various internal busses or to a logic zero; the ALU
then generates the SUM, AND, OR, etc. function using the data on the two
inputs.

The stack pointer (S) and the two index registers (X and Y) each
consist of 8 simple latches. These registers store data which is to be
used in calculating addresses in data memory. The specific operation of

aarh Af +h
alli CI Y

Ao~ Sa A 4 A : $ el o Do. S
1w ALD UWULDLUDODCTU LU W L L

etail in the Programming Manual.
The address bus buffers (ABL, ABH) consist of a set of latches and
TTL compatible drivers. These latches store the addresses which are used

in accessing the peripheral devices (ROM, RAM, and I/0).

1.4.1.2 The MCS6501 Pinouts

Figure 1.12 shows a diagram of the MCS6501 microprocessor with the
various pins designated. These pins and their use in microcomputer systems

are discussed separately below.

1.4.1.2.1 Vec, Vss—-Supply Lines

The Vcc and Vss pins are the only power supply connections to
the chip. The supply voltage on pin 8 is +5.0 V DC * 5%. The absolute

limit on the Vecec input is +7.0 V DC.

1.4.1.2.2 AB00-AB15--Address Bus

The address bus buffers on the MCS650X family of microprocessors
are push/pull type drivers capable of driving at least 130 pf and 1 stan-
dard TTL load.

The address bus will always contain known data as detailed in
Appendix A. The addressing technique involves putting an address on the

address bus which is known to be either in program sequence, on the same

-32.

Vss —11 40] «¢—— RES
RDY __ g 2 39 b N.C.
91 (IN) —p»] 3 38 «———NC.
RQ —] 4 30— 92N
VMA @—— [3 5 36 T] ««——— DBE
NMI —p] 6 35 M3 N.C.
BA «—— []7 3] ——» R/W
vce —l s 33 M DB
AB0 19 32 DBI
ABI — 10 Mcs6s01 31 DB2
AB2 —u 30 [k DB3
<>
AB3 12 29 [DB4
AB4 13 28 1 DB5
ABS { 14 27 '_‘J> DB6
-

AB6 s 26 [DB7
AB7 e 25 [AB15
ABS 7 24] . AB14
AB9 18 23 AB13
AB10 i 22 [AB12
AB11 20 21 Vss

N.C.=NO CONNECTION

* VMA IS CONNECTED INTERNALLY TO Vcc. THE VMA SIGNAL IS NOT REQUIRED
ON THE MCS6501 AS ON THE MC6800, SINCE THE MCS6501 ALWAYS PUTS OUT
KNOWN ADDRESSES ON THE ADDRESS BUS.

MCS6501 Pinout Designations
FIGURE 1.12

~-33-

page in program memory or at a known point in RAM. A brief study of Appen-
dix A will acquaint the designer with the detailed operation of this bus.

The various processors differ somewhat in the number of address
lines provided. 1In particular, the MCS6504 provides thirteen address lines
(ABOO - AB12) and the MCS6503 and MCS6505 provide twelve (ABOO - AB1l1). As
a result, the MCS6504 can address 8,192 bytes of memory and the MCS6503 and
MCS6505 can address 4,096 bytes. This total address space should prove to
be more than sufficient for the small, cost-sensitive systems where these
devices should find their greatest application. \

The specific timing of the address bus is exactly the same for
all the processors. The address is valid 300 ns (at 1 MHz clock rate) into
the @1 clock pulse and stays stable until the next @1 pulse. This specifi-
cation will only change for processors which are specified to operate at a
higher clock rate. Figure 1.13 details the relation of address bus to
other critical signals.

Becausc of the reduced number of address lines on the 28-pin
processors, it is possible to write a program which attempts to access non-
existent memory address space, i.e., the address bits 13, 14, or 15 set to
logic "1." These upper address bits in the program will be ignored and the
program will drop into existing address space. This assumes proper memory
management when using devices of large addressing capability such that the
addressed memory space will fit within the constraints of a device with

smaller available memory addressing capability.

1.4.1.2.3 DBO-DB7--Data Bus

The processor data bus is exactly the same for the processors
currently available and for the software-compatible processors which will
be introduced in the near future. All instructions and data transfers be-
tween the processor and memory take place on these lines. The buffers driv-
ing the data bus lines have full "three-state' capability. This is neces-
sitated by the fact that the lines are bi-directional.

Each data bus pin is connected to an input and an output buffer,
with the output buffer remaining in the "floating'" condition except when
the processor is transferring data into or out of one of the support chips.
All inter-chip data transfers take place during the Phase Two clock pulse.

During Phase One the entire data bus is "floating."

-34.-

-Si-

4.75V

vss

o JUUUUHIUUUUUL

L
f
|
I

JUIUuiiniuiuiu vyl

r

READY /

|
I
|
|

R/W &
ADDRESS BUS I II—I
DATA BUS | l I l I

I
|
|
I
|
|
RESET |
|
|
|
|
I
I
I

oy

guutiuy o ol

TUUUUUUUULIL UL JUUL
- UUUUUU UL LU LU

|

I
|
|
I
I
I

Z

I
|
|
SYNC** x\\\ :
I
I

START-UP SEQUENCE

*BA IS AVAILABLE ON MCS6501 ONLY
*%SYNC IS AVAILABLE ON MCS6502 ONLY

I
I

NORMAL ACTIVITY

MCS650X System Timing Diagram

FIGURE 1.13

The data bus buffer is a push/pull driver capable of driving
130 pf and 1 standard TTL load at the rated speed. At a 1 MHz clock rate,
the data on the data bus must be stable 100 ns before the end of Phase Two.
This is true for transfers in either direction. Figure 1.13 details the

relationship of the data bus to other signals

1.4.1.2.4 R/W--Read/Write

The Read/Write line allows the processor to control the direc-
tion of data transfers between the processor and the support chips. This
line is high except when the processor is writing to memory or to a peri-
pheral interface device.

All transitions on this line occur during the Phase One clock
pulse (concurrent with the address lines). This allows complete control
of the data transition which takes place during the Phase Two clock pulse.

The R/W buffer is similar to the address buffers. They are
capable of driving 130 pf and one standard TTL load at the rated speed.

Again, Figure 1.13 details the relative timing of the R/W line.

1.4.1.2.5 DBE--Data Bus Enable

On the MCS6501, a data bus enable signal is provided to allow
external enabling of the data bus. This line is connected directly to the
Phase Two input clock signal for any normally operating system and is de-
tailed in Figure 1.13.

The DBE signal affects only the data bus buffers. It does not
affect processor timing and has no effect on the address of the R/W lines.

This input is provided primarily for use in systems which use
non—-family devices for either the memory or the peripheral interface func-
tions. 1In particular, it allows the data bus to be enabled for a period
longer than the Phase Two clock pulse for systems requiring greater proces-
sor hold time on the data bus. This application is covered in greater de-

tail in Chapter 2.

1.4.1.2.6 VMA--Valid Memory Address

As mentioned above, the MCS650X family of microprocessors always
puts known addresses on the address bus and, as a result, does not require a

VMA signal. However, to remain pin-compatible with the MC6800, the VMA pin

-36-

is connected internally to the Vcc power supply. This assures operation in
systems in which VMA is part of the chip-select function. This pin is not

available on the 28-pin processors.

1.4.1.2.7 BA--Bus Available

The bus available signal is provided on the MCS6501 to signal to
a DMA controller, etc. that the processor is stopped and that the data and
address busses can be used for other than processor program execution.

This operation is similar to that of the MC6800 bus available
signal except that much less time is required to stop the MCS6501 since the
MC6800 requires completion of the current instruction before stopping. If
no write operation takes place during the cycle in which the RDY signal
goes low, the BA will go high (> 2.4V) during Phase Two of the same cycle.
In general, BA will go high during the first Phase Two pulse during which
the R/W line is high. For the current processors, the maximum time is
3-1/2 cycles.

1.4.1.2.8 RDY--Ready

The RDY input delays execution of any cycle during which the RDY
line is pulled low. This line should change during the Phase One clock
pulse. This change is then recognized during the next Phase Two pulse to
enable or disable the execution of the current internal machine cycle.

This execution normally occurs during the next Phase One clock; timing is
shown in Figure 1.13. .

The primary purpose of the RDY line is to delay execution of a
program fetch cycle until data is available from memory. This has direct
application in prototype systems employing light-erasable PROMs or EAROMs.
Both of these devices have relatively slow access times and require imple-
mentation of the RDY function if the processor is to operate at full speed.
Without the RDY function a reduction in the frequency of the system clock
would be necessary.

The RDY function will not stop the processor in a cycle in which
a WRITE operation is being performed. If the RDY line goes from high to
low during a WRITE cycle the processor will execute that cycle and will

ot~ - +h
-

£ DA A~Avra~1
a8n sSTCp in tine NLAU

A
icac

-37-

1.4.1.2.9 NMI--Non-Maskable Interrupt

The NMI input, when in the interrupted state, always interrupts
the processor after it completes the instruction currently being executed.

This interrupt is not ''maskable,"

i.e., there is no way for the processor
to prevent recognition of the interrupt.

The NMI input responds to a negative transition. To interrupt
the processor, the NMI input must go from high (> +2.4V) to low
(< +0.4V). 1t can then stay low for an indefinite period without affecting
the processor operation and without another interrupt. The processor will
not detect another interrupt until this line goes high and then back to low.

The NMI signal must be low for at least two clock cycles for the interrupt

to be recognized, whereupon new program count vectors are fetched.

1.4.1.2.10 IRQ--Interrupt Request

The interrupt request (fia) responds in much the same manner as
NMI. However, this function can be enabled or disabled by the interrupt
inhibit bit in the processor status register. As long as the I flag (inter-
rupt inhibit flag) is a logic 1, the signal on the Eﬁa pin will not affect
the processor. |

The Eﬁa pin is not edge-sensitive. Instead, the processor will
be interrupted as long as the I flag is a logic"0" and the signal on the
Tia input is at GND. Because of this, the Tia signal must be held low un-
til it is recognized, i.e., until the processor completes the instruction
currently being executed. If I is set when Eﬁa'goes low, the interrupt will
not be recognized until I is cleared through software control. To assure
that the processor will not recognize the interrupt more than once, the I
flag is set automatically during the last cycle before the processor begins
executing the interrupt software, beginning with the fetch of program count.

The final requirement is that the interrupt input must be
cleared before the I flag is reset. If there is more than one active
interrupt driving these two lines (OR'ed together), the recommended pro-
cedure is to service and clear both interrupts before clearing the T flag.
However, if the interrupts are cleared one at a time and the I flag is re-
set after each, the processor will simply recognize any interrupts still
active and will process them properly but more slowly because of the time

required to return from one interrupt before recognizing the next. If the

-38-

procedure recommended above is followed, each interrupt will be recognized
and processed only once. Figure 1.14 provides several examples of inter—
rupts, microprocessor recognition of each interrupt (IRQ and NMI), and pro-

cessor selection of interrupts during overlapped requests.

Tﬁl—lr‘lﬁﬁl—lﬁﬁﬁﬁj—\Lﬁmr—l—l

UL UUUL UYL UYL

IRQ 1 3 9

NMI 5 7 12
INTERRUPT 2 4 6 8 10 11 13
MASKBIT | S

Examples of Interrupt Recognition by MCS650X
FIGURE 1.14

Each major event affecting the microprocessor is numbered in

the figure with the corresponding explanations below.

Event
Number System Activity

1. Processor is executing from main program and IRQ goes
to low state.

2, Upon completion of current instruction, the processor
recognizes the interrupt, stores the contents of PC
and P onto the stack and then sets I during the fetch
of the interrupt vector.

3. After servicing the interrupt, IRQ should be reset
before resetting the interrupt mask bit to avoid
double interrupting.

4. Before the processor resumes normal main program exe-
cution the interrupt mask bit will be reset low.

5. NMI now goes low, signalling a non-maskable interrupt

request.

-30-

Event

Number

10.

11.

12.

13.

System Activity

The NMI interrupt is recognized and serviced in the
same manner as IRQ.

The processor has resumed normal operation when NMI
again goes low requesting an interrupt.

The interrupt mask bit is set high in response to
the NMI request.

Here IRQ has gone low to signal an interrupt request.
This request is ignored since the NMI interrupt is
being serviced and the interrupt mask is set.

The interrupt mask bit is reset after servicing the NMI
interrupt.

The processor is now able to recognize the IRQ signal,
which is still low, and does so by setting the inter-
rupt mask bit.

During the servicing of IRQ, ﬁﬁf'goes from high to low.
The processor then completes the current instruction
afid abandons the IRQ interrupt to service NMI. NMI

is serviced regardless of the state of the interrupt
mask bit.

After completing the NMI interrupt routine, the pro-
cessor will resume execution of the IRQ routine, even
though IRQ has subsequently gone high.

1.4.1.2.11 RES--Reset

The RES line is used to initialize the microprocessor from a

power-down condition.

During the power-up time this line is held low, and

writing from the microprocessor is inhibited. When the line goes high, the

microprocessor will delay 6 cycles and then fetch the new program count vec-

tors from specific locations in memory (PCL from location FFFC and PCH from

location FFFD). This is the start of the user's code. It should be assumed

that any time the reset line has been pulled low and then high, the internal

states of the machine are unknown and all registers must be re-initialized

during the restart sequence. Timing for the reset sequence is shown in

Figure 1.13.

-40-

1.4.2 The MCS6502

1.4.2.1 Product Characteristics

The MCS6502 is very similar to the MCS6501 described in detail in

the previous section. It provides a full 16-pin address bus and therefore
addresses a full 65,536 words in memory. It also has the same data bus,
R/W and RDY available on the MCS 6501.

Figure 1.15 illustrates the pin configuration of the MCS6502.

The differences between the two devices are as follows:

1. The MCS6502 has the oscillator and clock driver on-chip, thus
eliminating the need for an external high-level two-phase
clock generator.

2. The MCS6502 generates a SYNC signal instead of the bus avail-
able (BA) signal. The SYNC signal is described in detail be-
low.

3. Pin 5, corresponding to the MC6800 VMA signal, is not connec-
ted.

4. The internal data bus enable function is connected directly to
the phase two clock on the chip. Therefore pin 36 on the
MCS6502 is not connected.

1.4.2.2 Device Timing--Requirements and Generation

The MCS6501, in maintaining total bus compatibility with the
MC6800 product family, requires a 5-volt two-phase clock. The MCS6502,
however, can be used with an externally generated time base consisting of
either a TTL level single-phase clock, crystal oscillator or RC network.

Figures 1.16 and 1.17 show the configuration for setting the fre-
quency of oscillations with a crystal or with an RC network.

Figure 1.16 displays the crystal mode of operation in which the
frequency of oscillation is set by the crystal operating in conjunction
with the RC network. Figure 1.17 displays the same interconnects as in the

crystal mode of time base generation, with the crystal removed from the

-41-

Vss —
RDY ——p [
91 (OUT) @— (]
RQ — (]
N.C. =
N e [
SYNC a——]
vcc]
ABg -
ABl1 -
AB2 -
AB3]
AB4 -
ABS % -
-
AB6 —
AB7 -
ABS (-
AB9]
AB10 / (.
AB11 kr_‘:

10

11

12

13

14

15

16

17

18

19

20

MCS6502

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25

24

22

21

guuduud
___/l

,»—~V/—~,f‘\~_,——~————-\(——

gOoouooguudubnu

MCS6502 Pinout Designation

N.C. = NO CONNECTION

FIGURE 1.15

-42.

:

'

—) ««—— RES

92 (OUT)
S.0.

$o (IN)
N.C.
N.C.
R/W
DB¢
DB1
DB2
DB3
DB4
DB5
DB6
DB7
AB15
AB14
AB13
AB12

Vss

7404
39 _l DO—Y—(D——; SYSTEM (2)2
Cs I

MCS6502

37 A /\ ‘/\v | -~
37 Qo (IN)
[J CRYSTAL 39 Q5 (OUT)
Vcc

Parallel Mode Crystal Controlled Oscillator
FIGURE 1.16a

7404
39 1 Do—.-4>_.. SYSTEM 0,
C
37 - PIN
T WV B e
ZS | D 39 @, (0UT)
CRYSTAL
Vee 17‘7‘7
MCS6502 Series Mode Crystal Controlled Oscillator

MCS6502

FIGURE 1.16b

Time Base Generation - Crystal Controlled
FIGURE 1.16

39 I SYSTEM (2)2
Cs
PIN
37 37 0, (N)
39 @, (0UT)
MCS6502 Time Base Generator — RC Network

FIGURE 1.17

-43-

circuit. Values of the feedback resistor, RF’ and feedback capacitor, CF’
will be different for the crystal mode versus the RC mode. While the de-
tail specifications for values of RF and CF are found in the data sheet for
the MCS6502, clock timing can be generated by use of combinations of RF in
the range of 0 to 500K ohms and CF in the range of 2 to 12 pf. The reader
is referred to the MCS6502 data sheet for a detailed description of the
application of RC networks and crystal oscillators for generation of the
time base in these modes of operatiom.

The MCS6500 bus discipline described in Section 1.3.1 is appli-
cable wherever the oscillator is located. For data transfers to be properly
carried out between the processor and the various support chips in the sys-
tems, the timing of the clocks controlling the internal processor opera-
tions must be very close to that of the phase two clock out of pin 39 of
the processor with no more than two TTL delays for clock buffering. It is
important in systems which drive the clock generators with a TTL square
wave that this input waveform not be used to control the peripheral chips
unless care is taken to assure proper timing of the phase two clock being

used in these support chips.

1.4.2.3 SYNC Signal
In the MCS6502, a SYNC signal is provided to identify those cycles

in which the processor is doing an OP CODE fetch. The SYNC line goes high
during phase one of an OP CODE fetch and stays high for the remainder of
that cycle. If the RDY line is pulled low during the phase one clock pulse
in which the SYNC line went high, the processor will stop in its current
state. It remains in that state until the RDY line goes high. In this
manner, the SYNC signal can be used to control RDY to cause single-instruc-
tion execution. This application is discussed in detail in Chapter 2.

Figure 1.18 contains a timing diagram for this signal.

1.4.2.4 S.0.--Set Overflow

This pin sets the overflow flag on a negative transition from
TTL one to TTL zero. This is designed to work with a future I/0 part and
should not be used in normal applications unless the user has programmed

for the fact the arithmetic operations also affect the overflow flag.

-44-

' D)

R/W

SYNC

1.

o~

JUuuuruuuguuuuy

During a microprocessor write cycle, R/W signal low, the
SYNC pulse does not occur.

. The R/W signal goes high to signal the beginning of a

microprocessor read cycle.

At the beginning of the read cycle a SYNC pulse will be

be generated. This pulse will last for one cycle time. The
SYNC pulse indicates that the microprocessor is reading an

OP CODE from the memory field. 1In this case the SYNC pulse is
high for one cycle as the processor reads the OP CODE.

. The processor outputs another SYNC pulse indicating it has

completed the previous instruction and is fetching another

OP CODE. 1In this case three more cycles are needed to complete
this instruction before the next SYNC pulse is generated. The
SYNC pulse is aperiodic in that its generation is a function of
the program and the resultant lengths of the instructions and
addressing modes.

MCS6502 SYNC Signal
FIGURE 1.18

-45-

-97-

The ooeration of each function is exactly the same as on the MCS6502.

Features MCS6503 MCS6504 MCS6505
Addressing 4096 Bytes 8192 Bytes 4096 Bytes
Capability (ABOO - AB11) (ABOO - AB12) (ABOO - AB11)
Interrupt o
Request IRQ, NMI IRQ IRQ
Capability
- - RDY
Single Phase

"Ready" Signal

Single Phase

TTL Level @, (IN),

Single Phase

TTL Level @y (IN),

or Crystal or RC

Other Control
Signals

Timing
Signals TTL Level @;(IN),
Required or Crystal or RC or Crystal or RC
RES, R/W RES, R/W RES, R/W

Functional Features of MCS6503, MCS6504, MCS6505
FIGURE 1.19

Figure 1.20 illustrates the pin designation for the three proces-
sors, indicating the tradeoffs that exist between control signals and ad-
dressing capability due to pinout constraints. Like the MCS6502, the 28-
pin microprocessors also have the on-the-chip oscillator and clock drivers.
Figures 1.21 and 1.22 display the circuitry necessary to generate the time
base in the crystal mode and RC network mode respectively. Specific de-
tails on the values of feedback resistance, RF and feedback capacitance,

CF’ can be found in the appropriate data sheet.

-47-

-8#—

RES O
Vs
RQ O
NMI O
vcc
ABp [
AB1 [
AB2 [T
Ab3 [
AB4 [
ABS [
AB6 O
AB7 O

ABS [

1 28[1 ¢ (OUT).
2 2701 9o (IN)
3 26[1 R/W

4 2501 DBY

5 24[1 DB1

6 237 DB2

7 2217 DB3

8 217 DB4

9 207 DBS
10 191 DB6

1 18] DB7
12 171 AB11
13 16 1 AB10
14 157 ABY
MCS6503

RESO 1 28 1 92 (OUT)
T vssO 2 270 0o (IN)
RQ O 3 26 1 R/W
veed 4 253 DB9
ABp O 5 24 O DBI
AB1 (] 6 23 [0 DB2
AB2[] 7 22 [J DB3
AB3 [] 8 21 [] DB4
AB4 [9 20 [J DBS
AB5 []10 19 O DB6
AB6 []11 18 [J DB7
AB7 (]12 17 [ABI2
ABS []13 16 [ABI11
AB9 []14 15 [AB10
MCS6504

MCS6503, MCS6504, MCS6505 Pincut Designations

FIGURE 1.20

RES O
vss O
RDY O
RQ O
vece O
ABO® [
AB1
AB2 [
AB3 [
AB4 [
ABS []
AB6 [
AB7 O
ABS8 [

O 00 NN N AW N -

Y
(=]

11

28
27
26
25
24
23
22
21
20
19
18
17
16
15

DoooogooooudJguuy

MCS6505

92 (OUT)
0o (IN)
R/W
DB§
DBI1
DB2
DB3
DB4
DB5
DB6
DB7
AB11
AB10
AB9

7404

28 l SYSTEM 0,
Ce
T K

+JVV\/! PIN

N7 A TN

_—T r i 27 Qo (IN)
? [] CRYSTAL 28 9, (our)
Ve

27

MCS6503,4,5 Parallel Mode Crystal

Controlled Oscillator

7404
28 _T. Do+({>———> SYSTEM 0,

Cr l%(
27 PIN
J7 Y M 1 27 Qo (IN)
7’? 28 05 (ouT)
o Lo o
CRYSTAL
Vee 77

7

MCS6503,4,5 Series Mode Crystal
Controlled Oscillator

MCS6503, MCS6504, MCS6505 Time Base Generation
Crystal Controlled
FIGURE 1.21

28

SYSTEM 0,

PIN
27 Qo (IN)
28 0, (our)

MCS6503, MCS6504, MCS6505 Time Base Generation
RC Network
FIGURE 1.22

-49-

MICROPROCESSORS

1.5 PERIPHERAL INTERFACE DEVICE — MCS6520

1.5.1 Introduction

The MCS6520 is a direct pin for pin replacement for the Motorola
MC6820 Peripheral Interface Adapter, the "PIA". As such, it meets all of
the "PIA" electrical specifications and is totally hardware compatible
with the MC6820.

The MCS6520 is an I/0 device which acts as an interface between
the microprocessor and peripherals such as printers, displays, keyboards,
etc. The prime function of the MCS6520 is to respond to stimulus from
each of the two worlds it is serving. On the one side, the MCS6520 is
interfacing with peripherals via two eight-bit bi-directional peripheral
data ports. On the other side, the device interfaces with the micropro-
cessor through an eight-bit data bus; this is the same data bus discussed
at length in Section 1.3.1. It is, therefore, simplest to view the basic

function of the MCS6520 as in the block diagram of Figure 1.23.

r : \

K> CONTROL
PERIPHERAL

8 BIT 8 BIT
DATA BUS <) K> DATA PORT
DEVICES —

MCS650X 3 MCS6520 "~ PRINTERS,
DISPLAYS, ETC.

8 BIT
CONTROL <__> Q DATA PORT

K> CONTROL

- ! J

Racin MOCASIN Imtovfare Dinovam
A0 AVE NSNS S & ek S ELE AN AL g el Mt -
FIGURE 1.23

-50-

In addition to the lines described above, the MCS6520 provides four

=h

interrupt input/peripheral control lines and the logic necessary for
simple, effective control of peripheral interrupts. No external logic
is required for interfacing the MCS650X microprocessor to most peripheral

devices.

The functional configuration of the MCS6520 is programmed by the

microprocessor during systems initialization. Each of the peripheral

data lines is programmed to act as an input or output and each of the four
control/interrupt lines may be programmed for one of four possible control
modes. This allows a high degree of flexibility in the overall operation
of the interface.

Some of the m

*

Compatibility with the MCS650X microprocessors.

%

Eight-bit bi-directional data bus for communication with
the microprocessor.

* Two eight-bit bi-directional ports for interface to
peripherals.

* Two programmable control registers.
* Two programmable Data Direction Registers.

* Four individually controlled interrupt input lines -
two usable as peripheral control outputs.

* Handshake control logic for input and output peripheral
operation.

o

High impedance three-state and direct transistor drive
peripheral lines.

* Program controlled interrupt and interrupt mask capability.

1.5.2 Organization of the MCS6520

Figure 1.25 contains a block diagram of the MCS6520 showing the
internal registers and data paths and the various inputs and outputs on
the device. This section contains a general description of the internal
organization of the device along with a discussion of how the various

registers affect one another. The following sections discuss the details

-51-

Vss
AAQ
PAl
PA2
PA3
PA4
PAS
PA6
PA7
PBY
PB1
PB2
PB3
PB4
PB5
PB6
PB7
CB1
CB2

vcc

A

noononoononononnnnn

13

14

15

16

17

18

19

i

20

[

MCS6520

40{—) <4¢—— CAl

39] --—» CA2

38] ———» IRQA

37: —————bfi@

36] ~¢—————— RSP

35 44— RSl

34] ««— RES

33 \ D@
321 D1
31 D2
LU . D3
- & <> ot
28] D5
27{1 D6
261 3 . D7

2571 «@——— ENABLE

4[] -—CS2

23] 4-—CS3

221] -4——CS1

211 4————-R/w

MCS6520 Pinout Designations Peripheral Interface Adaptor

FIGURE 1.24

-52-

IRQA INTERRUPT STATUs [®— CAl
CONTROL A
{ ikl oY)
CONTROL
3
:AV REGéiTRA DATA DIRECTION
(CRA) i REGISTER A
i ™ (DDRA)
D1 <] -
D2 DATA BUS JL
3431 BUFFERS OUTPUT BUS > PAg
(DBB) > PAI
D5 <at—p PERIPHERAL
D6 <> OUTPUT PERIPHERAL [PA2
D7 ::) REGISTER A > INTERFACE > PA3
- PAG
- PA7
DATA INPUT
REGISTER
(DIR) > iﬁ?
PERIPHERAL
:J1>‘ OUTPUT > PERIPHERAL [> PB2
REGISTER B INTERFACE {3 PB3
(ORB) BUFFER > PB4
B L« PBS
lat—» PB6
CS1 —
2 —
s N
RSO SELECT INPUT BUS
RSt —e AND E:z DATA DIRECTION
RIW —» R/W CONTROL REGISTER B
ENABLE —p» CONTROL | —>)| REGISTER B (DDRB)
RESET — o (CRB)
INTERRUPT STATUS [®— CBI
IRQB & CONTROL B <> CB2

MCS6520 Internal Architecture

FIGURE 1.25

-53.

of the inputs and outputs on the chip, along with a detailed discussion of
the operation of each register. The final section discusses the MCS6520
from an operational viewpoint, describing the interaction of the register
bits, input/output lines, etc.

The MCS6520 is organized into two independent sections referred to
as the "A Side" and the "B Side." Each section consists of a Control Regis-
ter (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA,
ORB), Interrupt Status Control and the buffer necessary to drive the Periph-

eral Interface busses.

1.5.2.1 Data Input Register

When the microprocessor writes data into the MCS6520, the data
which appears on the data bus during the Phase Two clock pulse is latched
into the Data Input Register. It is then transferred into one of six in-
ternal registers of the MCS6520 after the trailing edge of Phase Two. This
assures that the data on the peripheral output lines will not "glitch,"
i.e., the output lines will make smooth transitions from high to low or from
low to high and the voltage will remain stable except when it is going to

the opposite polarity.

1.5.2.2 Control Registers (CRA and CRB)

Figure 1.29 illustrates the bit designation and functions in the
Control Registers. The Control Registers allow the microprocessor to con-
trol the operation of the interrupt lines (CAl, CA2, CBl, CB2), and periph-
eral control lines (CA2, CB2). A single bit in each register controls the
addressing of the Data Direction Registers (DDRA, DDRB) and the Output Reg-
isters (ORA, ORB) discussed below. In addition, two bits (bit 6 and 7) are
provided in each control register to indicate the status of the interrupt
input lines (CAl, CA2, CB1, CB2). These interrupt status bits (ﬁﬁi&,iﬁﬁg)
are normally interrogated by the microprocessor during the interrupt serv-
ice program to determine the source of an active interrupt. These are the
interrupt lines which drive the interrupt input (IRQ, NMI) of the micro-
processor. The other bits in CRA and CRB are described in the discussion
of the interface to the peripheral device (Section 1.5.4).

The various bits in the control registers will be accessed many
times during a program to allow the processor to enable or disable inter-
rupts, change operating modes, etc. as required by the peripheral device

being controlled.

-54.-

1.5.2.3 Data Direction Registers (DDRA, DDRB)

The Data Direction Registers allow the processor to program each
line in the 8-bit Peripheral I/0 port to act as either an input or an out-
put. Each bit in DDRA controls the corresponding line in the Peripheral A
port and each bit in DDRB controls the corresponding line in the Peripheral
B port. Placing a "0" in the Data Direction Register causes the correspond-
ing Peripheral I/0 line to act as an imput. A "1" causes it to act as an
output.

The Data Direction Registers are normally programmed only during
the system initialization routine which is performed in response to a Reset
signal. However, the contents of these registers can be altered during
system operation. This allows very convenient control of some peripheral

devices such as keyboards.

1.5.2.4 Peripheral Output Registers (ORA, ORB)

The Peripheral Output Registers store the output &
pears on the Peripheral I/0 port. Writing an "0" into a bit in ORA causes
the corresponding line on the Peripheral A port to go low (< 0.4V) if that
line is programmed to act as an output. A "1" causes the corresponding
output to go high. The lines of the Peripheral B port are controlled by
ORB in the same manner.

Addressing of these registers is discussed in Section 1.5.3.4.

1.5.2.5 Interrupt Status Control

The four interrupt/peripheral control lines (CAl, CA2, CBl, CB2)
are controlled by the Interrupt Status Control (A, B). This logic inter-
prets the contents of the corresponding Control Register, detects active
transitions on the interrupt inputs and performs those operations necessary
to assure proper operation of these four peripheral interface lines. The

operation of these lines is described in detail in Section 1.5.4.2.

1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB)

The Buffers which drive the peripheral I/0 ports and the data bus
provide the current and voltage drive necessary to assure proper system

operation and to meet the device specifications.

-55-

1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors

The MCS6520 interfaces to the microprocessor with an 8-bit bi-direc—
tional data bus, 3 chip-select lines, 2 register-select lines, 2 interrupt

request lines, read/write line, enable line and reset line.

1.5.3.1 Data Bus (D0-D7)

The 8-bit, bi-ditrectional data bus allows the transfer of data be-
tween the microprocessor and the MCS6520. The data bus output drivers are
3-state devices that remain in the high impedance state except when the
microprocessor reads data from the peripheral adapter. This data bus is

the same as discussed in Section 1.3.1, "Bus Structure."

1.5.3.2 Enable (E)

The Enable input is the only microprocessor interface timing input
on the peripheral interface device. All data transfers into and out of the
MCS6520 are controlled by this signal. In mormal operation, this input
should be connected to the phase two clock signal. 1In the case of the
MCS6501, this is the @2 clock generated external to the microprocessor
chip. For on-chip oscillator products (MCS6502, MCS6503, MCS6504 and
MCS6505), the enable pulse becomes $2(OUT).

1.5.3.3 Read/Write (R/W)

This signal is generated by the microprocessor to control the di-
rection of data transfers on the data bus. A low (< 0.4V) on this line
enables the input buffers (microprocessor Write) and data is transferred
from the microprocessor to the MCS6520 under control of Enable input if the
device has been chip-selected. A high on the R/W line allows the MCS6520
to transfer data to the data bus buffers. The data bus buffers are enabled
when the proper chip-select and Enable signals are present. Figure 1.26

illustrates the Read/Write timing.

1.5.3.4 Chip Select Lines (CS1, CS2, CS3)

These three inputs allow the microprocessor to select the proper
peripheral interface device. CS1 and CS2 must be high and CS3 must be low
for selection of the device. Data transfers are then performed under con-
trol of the Enable and R/W signals. These lines are normally connected to
the address lines on the microprocessor, either directly or through address

decoders.

-56-

— 180 1l

ENABLE J/ \ /
\ 04V
P 300 - —
ADDRESS B
— |<—20
DATA BUS
PERIPHERAL
DATA (A OR B)
k-— 700 —

Microprocessor Interface Timing - Read
FIGURE 1.26a

— 470—>‘

24V

2.4V

04V

24V

ENABLE J' '\ / 04V

— 180 jt— P 100 jesf—

ADDRESS >(
130 |je—

READ/WRITE f

—P 20
DATA BUS

e 100 let—
PERIPHERAL
DATA (A OR B)

*NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Microprocessor Interface Timing - Write
FIGURE 1.26b

-57-

24V

04V

24V

04V

24V

064V

24V

04V

As described in Sectionm 1.5.5.2, a single bit in each Control Reg-
ister (CRA and CRB) controls access to the Data Direction Register or the
Peripheral interface. If bit 2 in the Control Register is a "1,'" a Periph-
eral Qutput register (ORA, ORB) is selected, and if bit 2 is a "0," the
Data Direction Register is selected. Internal registers are selected by
the Register Select lines (RS@, RS1) and the Data Direction Register Access

Control bit as follows:

Data Direction
Register Access
Control Bit
RS1 RS CRA-2 CRB-2 Register Selected

0] @ 1 - Peripheral Interface A (See
Section 1.5.3.5.1)

))) - Data Direction Register A
- - Control Register A

- 1 Peripheral Interface B (See
Section 1.5.3.5.2)

1 @ -) Data Direction Register B

- - Control Register B

If the programmer wishes to write the data into DDRA, ORA, DDRB,
or ORB, he must first set bit 2 in the proper Control Register. The de-
sired register can then be accessed with the address determined by the
address interconnect technique used. (See Chapter 2, Section 2.3.1 for a

discussion of addressing in MCS650X systems.)

1.5.3.5 Register Select Lines (RSQ), (RS1)

These two register select lines are used to select the various reg-
isters inside the MCS6520. These input lines are used in conjunction with
internal control registers to select a particular register that is to be
accessed by the microprocessor. These lines are normally connected to
microprocessor address output lines. These lines operate in conjunction
with the chip-select inputs to allow the microprocessor to address a single
8-bit register within the microprocessor address space. This register may
be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/0 port.

The processor can write directly into the Control Registers (CRA,
CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output

Registers (ORA, ORB). In addition, the processor can directly read the

-58-

contents of the Control Registers and the Data Direction Registers. Access-—
ing the Peripheral Output Register for the purpose of reading data back into
the processor operates differently on the ORA and the ORB registers and

therefore are discussed separately below.

1.5.3.5.1 Reading the Peripheral A I/0 Port

The Peripheral A I/0 port consists of 8 lines which can be pro-

grammed to act as inputs or outputs. When programmed to act as outputs,

|=e

each line reflects the contents of the corresponding bit in the Periph
Output Register. When programmed to act as an input, these lines will go
high or low depending on the input data. The Peripheral Output Register
(ORA) has no effect on those lines programmed to act as inputs. The 8
lines of the Peripheral A I/0 port therefore contain either input or output
data depending on whether the line is programmed to act as an input or an
output. Figure 1.27a illustrates the interface timing.

orming a Read operation with R51 = G, RS0 = O and the Data
Direction Register Access Control bit (CRA-2) = 1, directly transfers the
data on the Peripheral A I/0 lines into the processor (via the data bus).

he input and output data. The processor must be

This will contain both t
programmed to recognize and interpret only those bits which are important
to the particular peripheral operation being performed.

Since the processor always reads the Peripheral A I/0 port pins
instead of the actual Peripheral Output Register (ORA), it is possible for
the data read into the processor to differ from the contents of the Periph-
eral Output Register for an output line. This is true when the I/0 pin is
not allowed to go to a full +2.4V DC when the Peripheral Output register
contains a logic 1. In this case, the processor will read a @ from the

Peripheral A pin, even though the corresponding bit in the Peripheral Out-

put register is a 1.

1.5.3.5.2 Reading the Peripheral B I/0 Port

Reading the Peripheral B I/0 port yields a combination of input
and output data in a manner similar to the Peripheral A port. However,
data is read directly from the Peripheral B Output Register (ORB) for those
lines programmed to act as outputs. It is therefore possible to load down
the Peripheral B Output lines without causing incorrect data to be trans-
ferred back into the processor on a Read operation. Figure 1.27b illus-

trates the timing.

-59-

-09_

ENABLE

ADDRESS

READ/WRITE

DATA BUS

PERIPHERAL
DATA

CA2

CAl

CA2

180

Vay 4

1)

1 f |

Py /

&4 100 | «—
L

27

~—P120

X

1.0us

(AC5=AC3=1,AC4=0)
PULSE OUTPUT MODE

—»| 1.0us -

— 2.0us |“"

/

(AC5=1,AC3=AC4=0)
HANDSHAKE MODE

NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Peripheral A Interface Timing
FIGURE 1.27a

-'[9-

ENABLE / \ / \ / \ /
! 180 et
ADDRESS ' X
. 130 -
R/W /
100 feg—
DATA BUS
|
—3m{ 20
PERIPHERAL DATA AND
CB2 (NORMAL OUTPUT MODE)
ol 1.0us peg— —p! 1.0us |<—
CB2 (PC5 = BC3 = 1, BC4 = §)
(PULSE OUTPUT MODE)
— 1.0us jeef— —J 1.0ps fell—
CB1
—P 2.0us

CB2 (BC5=1,BC3 =BC4=0)
(HANDSHAKE MODE)

NOTE: ALL TIMES SPECIFIED ARE IN nSEC FOR 1MHZ OPERATION.

Peripheral B Interface Timing
FIGURE 1.27b

PULL-UP

I
|
I
PASSIVE |
RESISTOR :

FROM
CHIP

OUTPUT MODE

Peripheral I/O Port A Buffer

OUTPUT

INPUT

FIGURE 1.284

|
+5V ‘
|
i
-—I———{I |
] ' ourpur
FROM ‘ L,
CHIP ‘
—B»—{ = |
s
— |
A1 |
= |
MCS6520 |
_______ |
OUTPUT MODE

Peripheral I/O Port B Buffer

INPUT

FIGURE 1.28B

-62-

1

MCS6520

L

INPUT MODE

|
l
|
l
I
|
I
|
I
|
|
l

— RESISTOR PULL-UP

TO
CHIP

REMAINS IN CIRCUIT

INPUT MODE
— NOPULLUP

IN CHIP

The details of the Peripheral A and Peripheral B ports will be
discussed in the next section under the discussion of the interface between

the MCS6520 and the Peripheral Devices.

1.5.3.6 Reset (RES)
The active low Reset line resets the contents of all MCS6520 reg-
isters to a logic zero. This line can be used as a power-—on reset or as a

master reset during system operation.

1.5.3.7 Interrupt Request Line (IRQA, IRQB)
The active low Interrupt Request lines (IRQA and IRQB) act to

interrupt the microprocessor either directly or through external interrupt
priority circuitry. These lines are ''open source" (no load device on the
chip) and are capable of sinking 1.6 milliamps from an externmal source.
This permits all interrupt request lines to be tied together in a "wired-OR"
1figu 1. The "A" and "B" in the titles of these lines correspond to

the "A" peripheral port and the 'B" peripheral port. Hence each interrupt
request line services one peripheral data port.

Each Interrupt Request line has two interrupt flag bits which can
cause the Interrupt Request line to go low. These flags are bits 6 and 7
in the two Control Registers. These flags act as the link between the
peripheral interrupt signals and the microprocessor interrupt inputs. Each
flag has a corresponding interrupt disable bit which allows the processor
to enable or disable the interrupt from each of the four interrupt inputs
(CAl, CA2, CB1l, CB2).

The four interrupt flags are set by active transitions of the sig-
nal on the interrupt input (CAl, CA2, CBl, CB2). Controlling this active
transition is discussed in the next section under the discussion of the

interface between the MCS6520 and the peripheral device.

1.5.3.7.1 Control of IRQA

Control Register A bit 7 is always set by an active transition
of the CAl interrupt input signal. Interrupting from this flag can be dis-
abled by setting bit O in the Control Register A (CRA) to a logic 0. Like-
wise, Control Register A bit 6 can be set by an active transition of the
CA2 interrupt input signal. Interrupting from this flag can be disabled by

setting bit 3 in the Control Register to a logic 0.

-63-

Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Out-~
put Register A" operation. This is defined as an operation in which the
proper chip-select and register-select signals are provided to allow the

processor to read the Peripheral A I/0 port.

1.5.3.7.2 Control of IRQB

Control of Eﬁag is performed in exactly the same manner as that
described above for Eﬁazl Bit 7 in CRB is set by an active transition on
CBl; interrupting from this flag is controlled by CRB bit (). Likewise, bit
6 in CRB is set by an active transition on CB2; interrupting from this flag
is controlled by CRB bit 3.

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B

Output Register" operation.

SUMMARY :

IRQA goes low when CRA-7 = 1 and CRA-O = 1 or when CRA-6 = 1 and
CRA-3 = 1.

IRQB goes low when CRB-7 = 1 and CRB-0 = 1 or when CRB-6 = I and
CRB-3 = 1.

The use of these interrupt flags and interrupt disable bits is
discussed in more detail in Section 1.5.4.

It should be stressed at this point that the flags act as the
link between the peripheral interrupt signals and the processor interrupt
inputs. The interrupt disable bits allow the processor to control the

interrupt function.

1.5.4 Interface Between MCS6520 and Peripheral Devices

The MCS6520 provides 2 8-bit bi-directional ports and 4 interrupt/
control lines for interfacing to peripheral devices. These ports and the
associated interrupt/control lines are referred to as the "A" side and the
and the "B" side. Each side has its own unique characteristics and will

therefore be discussed separately below.

1.5.4.1 Peripheral I/0 Ports

The Peripheral A and Peripheral B I/0 ports allow the microproces-—
sor to interface to the input lines on the peripheral device by loading
data into the Peripheral Output Register. They also allow the processor to

interface with the peripheral device output lines by reading the data on

-64-

the Peripheral Port input lines directly onto the data bus and into the

internal registers of the processor.

1.5.1.1.1 Peripheral A I/0 Port (PA@-PA7)

As discussed in Section 1.5.2.3. each of the Peripheral I/0 lines
can be programmed to act as an input or an output. This is accomplished by
gsetting a "1" in the corresponding bit in the Data Direction Register for
those lines which are to act as outputs. A "0" in a bit of the Data Direc-
tion Register causes the corresponding Peripheral I/0 lines to act as an
input.

The buffers which drive the Peripheral A I/0 lines contain
"passive" pull-ups as shown in Figure 1.28a. These pull-up devices are
resistive in nature and therefore allow the output voltage to go to Vdd for
a logic 1. The switches can sink ; full 1.6 ma, making these buffers cap-
able of driving one standard TTL load.

In the input mode, the pull-up devices shown in Figure 1.28a are
still connected to the I/0 pin and still supply current to this pin. For

this reason, these lines represent one standard TTL load in the input mode.

1.5.4.1.2 Peripheral B I/0 Port (PB@-PB7)

The Peripheral B I/0 port duplicates many of the functions of
the Peripheral A port. The process of programming these lines to act as an
input or an output has been discussed previously. Likewise, the effect of
reading or writing this port has been discussed. However, there are sev-
eral characteristics of the buffers driving these lines which affect their
use in peripheral interfacing. These will be discussed below.

The Peripheral B I/0 port buffers are push-pull devices as shown
in Figure 1.28b. The pull-up devices are switched "OFF" in the "0" state
and "ON" for a logic 1. Since these pull-ups are active devices, the logic
"1" voltage is not guaranteed to go higher than +2.4V. They are TTL com-—
patible but are not CMOS compatible.

However, the active pull-up devices can sink up to 1 ma at 1.5V.
This current drive capability is provided to allow direct connection to
Darlington transistor switches. This allows very simple control of relays,
lamps, etc.

Because these outputs are designed to drive transistors directly,
the output data is read directly from the Peripheral Output Register for

those lines programmed to act as inputs.

-65-

The final characteristic which is a function of the Peripheral B
push-pull buffers is the high-impedance input state. When the Peripheral B
I1/0 lines are programmed to act as inputs, the output buffer enters the high
impedance state. These inputs will then have an impedance of greater than

1 megohm.

1.5.4.2 Interrupt Input/Peripheral Control Lines (CAl, CA2, CB1l, CB2)

The four interrupt input/peripheral control lines provide a number
of special peripheral control functions. These lines greatly enhance the

power of the two general purpose interface ports (PA@-PA7, PB@-PB7).

1.5.4.2.1 Peripheral A Interrupt Input/Peripheral Control Lines (CAl, CA2)

CAl is an interrupt input only. An active transition of the
signal on this input will set bit 7 of the Control Register A to a logic 1.
The active transition can be programmed by the microprocessor by setting a
"@" in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set

on a negative transition of the CAl signal or a "1" if it is to be set on

I

positive transition. Note: A negative transition is defined as a trans-
ition from a high (> 2.4V) to a low (< 0.4V), and a positive transition is
defined as a transition from a low to a high voltage.

Setting the interrupt flag will interrupt the processor through
IRQA if bit @ of CRA is a 1 as described previously.

CA2 can act as a totally independent interrupt input or as a
peripheral control output. As an input (CRA, bit 5 = @) it acts to set the
interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selec-
ted by bit 4 of CRA.

These control register bits and interrupt inputs serve the same
basic function as that described above for CAl. The input signal sets the
interrupt flag which serves as the link between the peripheral device and
the processor interrupt structure. The interrupt disable bit allows the
processor to exercise control over the system interrupts.

In the Output mode (CRA, bit 5 = 1), CA2 can operate indepen-
dently to generate a simple pulse each time the microprocessor reads the
data on the Peripheral A I/0 port. This mode is selected by setting CRA,
bit 4 to a "0" aud CRA, it 3 Lo a "1." This puise output can be used to
control the counters, shift registers, etc. which make sequential data

available on the Peripheral input lines.

-66-

A second output mode allows CA2 to be used in conjunction with
CAl to "handshake" between the processor and the peripheral device. On the
A side, this technique allows positive control of data transfers from the
peripheral device into the microprocessor. The CAl input signals the pro-
cessor that data is available by interrupting the processor. The processor
reads the data and sets CA2 low. This signals the peripheral device that
it can make new data available. This technique is discussed in detail in

2.

Chapte

[

The final output mode can be selected by setting bit 4 of CRA to
a 1. In this mode, CA2 is a simple peripheral control output which can be
set high or low by setting bit 3 of CRA to a 1 or a @ respectively.

The operation of CAl and CA2 is summarized in the next section.

1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2)

CBl operates as an interrupt input only in the same manner as
CAl. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB.
Likewise, the CB2 input mode operates exactly the same as the CA2 input
modes. The CB2 output modes, CRB, bit 5 = 1, differ somewhat from those of
CA2. The pulse output occurs when the processor writes data into the Periph-
eral B Output Register. Also, the "handshaking" operates on data transfers
from the processor into the peripheral device.

The operation of CBl and CB2 is summarized in the next section.
A more detailed discussion of handshaking on the Peripheral B I/0 port is

contained in Chapter 2 of this manual.

1.5.5 Summary of MCS6520 Operation

1.5.5.1 Control Register Operation

7 6 5 4 3 2 1)
CRA | IRQAL | IRQA2 CA2 Control DDRA CAl Control
’ - n | AcCesS | r———t—
7 6 5 4 3 2 1 [
CRB| 1IRQB1l | IRQB2 CB2 Control DDRB CB2 Control
p -~ N | ACCESS | emm——

Control Register Bit Designations
FIGURE 1.29

-67-

CRA (CRB)
Active Transition IRQA (IRQB)
Bit 1 Bit O of Input Signal* Interrupt Outputs
0 0 negative Disable--remain high
Enabled--goes low when bit 7
. in CRA (CRB) is set by active
0 1 negative transition of signal on CAl
(CB1)
1 0 positive Disable--remain high
1 1 positive Enable--as explained above
*Note 1: Bit 7 of CRA (CRB) will be set to, a logic 1 by an active
transition of the CAl (CBl) signal. This is independent
of the state of Bit 0 in CRA (CRB).
Control of Interrupt Inputs CAl, CB1
FIGURE 1.30
CRA (CRB)
Active Transition TRQA (IRQB)
Bit 5 Bit 4 Bit 3 of Input Signal* Interrupt Output
0 0 0 negative Disable--remains high
Enabled--goes low when bit 6
i in CRA (CRB) is set by active
0 0 1 negative transition of signal on CA2
(CB2)
0 1 0 positive Disable--remains high
0 1 1 positive Enable--as explained above
*Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active

transition of the CA2 (CB2) signal.

This is independent

of the state of Bit 3 in CRA (CRB).

Control of CA2 (CB2) as Interrupt Inputs (Bit 5= “0")

FIGURE 1.31a

-68-

CRA
Bit 5 Bit 4 Bit 3 Mode Description

CA2 is set high on an active
transition of the CAl interrupt
input signal and set low by a

1 0 0 "Handshake" microprocessor '""Read A Data"
on Read operation. This allows posi-

tive control of data transfers

CLLLILICL ~ Lo vicilsiClio

from the peripheral device to
the microprocessor.

CA2 goes low for ome cycle
after a '"Read A Data' opera-
1 0 1 Pulse Output tion. This pulse can be used
to signal the peripheral de-
vice that data was taken.

1 1 0 Manual Output CA2 set low

1 1 1 Manual Output CA2 set high

Control of CA2 Output Modes
FIGURE 1.31b

CRB
Bit 5 Bit 4 Bit 3 Mode Description

CB2 is set low on microproces-
sor '"Write B Data' operation

and is set high by an active
"Handshake" transition of the CBl interrupt
on Write input signal. This allows posi-
tive control of data transfers
from the microprocessor to the
peripheral device.

CB2 goes low for one cycle after
a microprocessor “Write B Data”

1 0 1 Pulse OQutput operation. This can be used to
signal the peripheral device
that data is available.

1 1 0 Manual Output CB2 set low

1 i 1 Manual Output CB2 set high

Control of CB2 Output Modes
FIGURE 1.31c

-69-

1.5.5.2 MCS6520 Operation in MC6500 Systems

A brief review of the overall operation of the MCS6520 should
serve to tie together many of the details discussed previously.

During the system initialization routine which is executed in
response to the processor RESET signal, the microprocessor will write
a pattern of 1's and @'s into the Data Direction Registers. This will
determine those lines which are to act as inputs and those which are to
act as outputs.

This pattern will usually be fixed for the system operation.
Therefore, the next step would be to set the various operating modes,
active transitions, etc. which are controlled by the Control Registers.

At the same time the Data Direction Register Access Control Bit can be
set to a 1 to allow the processor to control the Peripheral Ports during
system operation.

The interrupts will normally remain disabled until the entire
system is initialized. At this time, the interrupts are enabled and full
system operation begins.

During system operation, the microprocessor will interrogate the
switches, sensors, etc. in the peripheral device by reading the data on the
Peripheral Input lines. Binary or decimal data may be transferred into the
microprocessor in the same way. At the same time the various lights, motors,
solenoids, etc. on the peripheral device are controlled by writing data into
the appropriate bits of the Peripheral Output Registers. The entire sequence
of operations is determined by the programmer to control a particular periph-
eral device in a defined manner. The various registers, gates, etc. in the
Interface Device act primarily as a link between the internal processor oper-
ations and the various inputs and outputs on the peripheral devices being

controlled.

-70-

1.6 PERIPHERAL INTERFACE/MEMORY DEVICE — M(CS6530
1.6.1 Introduction

The MCS6530 is designed to operate in conjunction with the MCS650X
Microprocessor. It is comprised of a mask programmable 1024 x 8 ROM, a
64 x 8 RAM, two 8 bit bi~directional ports capable of directly inter-
facing the Microprocessor unit and peripheral devices and a programmable
interval timer with interrupt, capable of timing in various intervals
from 1 to 262,144 clock periods.

The I/0 configuration, the interval timer and interrupt capability
are under software control.

* 8 bit bi-directional Data Bus for communication with
the microprocessor unit. ‘

*# Two 8 bit bi-directional ports for direct interface to
peripherals.

* Two I/0 Peripheral Data Direction Registers

* Programmable Interval Timer from 1 to 256 x 1024 clock
periods.

* Programmable Interval Timer Interrupt
*# C MOS Compatible Peripheral Lines

Peripheral Pins with Direct Transistor Drive Capability

¥ %

Three-State Data Pins

* Up to 7K contiguous ROM with no external decoding
#* 1024 x 8 ROM

* 64 x 8 Static RAM

1.6.2 Pinout Description

Figure 1.33 is the pinout diagram of the MCS6530.
1.6.2.1 Reset (RES)

During system initialization a Logic "0" on the RES
input will cause a zeroing of all I/0 registers. This in turn wiil cause
all I/0 buses ﬁo act as inputs thus protecting external components from
possible damage and erroneous data while the system is being configured
under software control. The Data Bus Buffers are put into an OFF-STATE
during Reset. Interrupt is disabled when reset. The ﬁﬁg-signal must

be held low for at least one clock period when reset is required.

-71-

R/W

AS

A4

A3

= 3

g
-

noonaononnnan

e

10

11

12

13

14

;
a

CS2/PB5 <@—=[118

—j20

40
39
38
37
36
35
34
33

32

30
29
28

27

_/

U

J .

guoooopogogooooopopouougdl
U\

o

MCS6530 Pinout Designation

FIGURE 1.32

PAl

PA2
PA3

PA4
PAS
PA6
PA7
DB¢
DB1
DB2
DB3
DB4
DBS
DB6
DB7
PBQ
PB1

PB2

PB3

1.6.2.2 Input Clock

The input clock is a system Phase Two clock which can be either a

low level clock (VIL < 0.4, VIH > 2.4) or high level clock (VIL < 0.2,
_ +.3
VIH = Vce _.2).

1.6.2.3 Read/Write (R/W)

The R/W signal is supplied by the microprocessing unit and is used
to control the transfer of data to and from the microprocessing unit and
the MCS6530. A high on the R/W pin allows the processor to read (with pro-
per addressing) the data supplied by the MCS6530. A low on the R/W pin
allows a write (with proper addressing) to the MCS6530.

1.6.2.4 Interrupt Request (IRQ)

The Eﬁﬁ'pin is an interrupt pin from the interval timer. This
same pin, if not used as an interrupt, can be used as a peripheral I/0 pin
(PB7). When used as an interrupt, the pin should be set up as an input by
the data direction register. The pin will be normally high with a low indi-
cating an interrupt from the MCS6530. An external pull-up device is not
required; however, if collector-OR'd with other devices, the internal pull-

up may be omitted with a mask option.

1.6.2.5 Data Bus (D0-D7)
The MCS6530 has eight bi~directional data pins (DO-D7). These

pins connect to the system's data lines and allow transfer of data to and
from the microprocessor unit. The output buffers remain in the off state

except when a Read operation occurs.

1.6.2.6 Peripheral Data Ports

The MCS6530 has 16 pins available for peripheral I/0 operations.
Each pin is individually software programmablé to act as either an input or
an output. The 16 pins are divided into 2 8-bit ports, PAQ-PA7 and PBO-PB7.
PB5, PB6 and PB7 also have other uses which will be discussed in Section
1.6.4. The pins are set up as an input by writing a "0" into the corre-
sponding bit in the data direction register. A "1" into the data direction
register will cause its corresponding bit to be an output. When in the input
mode, the peripheral output buffers are in the "1" state and a pull-up device
acts as less than one TTL load to the peripheral data lines. On a Read

operation, the microprocessor unit reads the peripheral pin. When the

-73-

peripheral device gets information from the MCS6530 it receives data stored
in the data register. The microprocessor will read correct information if
the peripheral lines are greater than 2.0 volts for a "1" and less than 0.8
volts for a "0" as the peripheral pins are all TTL compatible. Pins PAO
and PBO are also capable of sourcing 3 ma at 1.5V, thus making them capable

of Darlington drive.

1.6.2.7 Address Lines (A0-A9)

There are 10 address pins. In addition to these 10, there is the
ROM SELECT pin. The above pins, A0O-A9 and ROM SELECT, are always used as
addressing pins. There are 2 additional pins which are mask programmable
and can be used either individually or together as CHIP SELECTS. They are
pins PB5 and PB6. When used as peripheral data pins they cannot be used as

chip selects.

1.6.3 Internal Organization

A block diagram of the internal architecture is shown in Figure 1.33,
The MCS6530 is divided into four basic sections, RAM, ROM, I/0 and TIMER.
The RAM and ROM interface directly with the microprocessor through the sys-
tem data bus and address lines. The I/0 section consists of 2 8-bit halves.
Each half contains a Data Direction Register (DDR) and an I/0 Register.

The DDR controls the peripheral output buffers. A "1" written into the DDR
sets up the corresponding peripheral buffer as an output buffer. By this,
it is meant that anything then written into the I/0 Register will appear on
that corresponding peripheral pin. A "O" writtem into the DDR inhibits the
output buffer from transmitting data from the I/0 Register. The output
buffer remains in the high state making it ready to receive data on the
peripheral lines.

It should be noted that the microprocessor, when reading the I/0
Register, is in fact reading the Peripheral Pin and not the I/0 Register.
The only way the I/0 Register data can be changed is by a microprocessor
Write operation. The Register is not affected by the data on the Periph-

eral Pin.

1.6.3.1 ROM--1K Byte (8K Bits)
The 8K ROM is in a 1024 x 8 configuration. Address lines A0-A9,

as well as RS$ are needed to address the entire ROM. With the addition of

-74-

oo DATA
DI <a—~ ~g—sps| DIRECTION
D2 =2 pata CONTROL
D3 €3 puc REGISTER
D4 <P pyFFER
D5 —P
D6 <<—p> Y
D7 > ¢—P= REGISTER
A
CS1¥* ———ppm i
CS2% —— CHIP
92 —= SELECT « PA7
R/W —p= R/W «—> PAG
RES ——» PERIPHERAL [€%
DATA = PAS
< BUFFER [© > PA4
64X8 A — PA3
RAM “— — PA2
<&—P pA]
<—P pAQ
250 IKX8
> ROM »
<« [NTERVAL
TIMER
A p| ADDRESS ‘ IRQ
Al g— PB7**
A2 p»| DECODERS o e
A3 — PERIPHERAL «
-t —®> PB5
A4 — DATA 5 PB4
AS) o ——— BUFFER | = PB3
A6 ——> B
et—3 PB2
A7 ——>
t—> PB]
A8 <€— pRg
A9 t—
1/0
t—® REGISTER
B
DATA
DIRECTION
CONTROL
#CS1/CS2 ARE MASK OPTIONS IN PLACE OF PB6/PB5 REGISTER
*¥PB6 MAY BE USED AT IRQ B

MCS6530 Internal Architecture
FIGURE 1.33

-75-

CS1 and CS2, up to seven MCS6530s may be addressed, giving 7168 x 8 bits of

contiguous ROM.

1.6.3.2 RAM--64 Bytes (512 Bits)
A 64 x 8 static RAM is contained on the MCS6530. It is addressed
by AO0-A5 (Byte Select), RSO, A6, A7, A8, A9 and, depending on the number

of chips in the system, CS1 and CS2.

1.6.3.3 Internal Peripheral Registers

There are four internal registers, two data direction registers
and two peripheral I/0 data registers. The two data direction registers (A
side and B side) control the direction of data into and out of the periph-
eral pins. TFor example, a "1" loaded into data direction register A, posi-
tion 3 sets up peripheral pin PA3 as an output. If a "0" had been loaded
instead, PA3 would be configured as an input. The two data I/O registers
are used to latch data from the data bus during a Write operation until the
by the microprocessor unit.
Although during a Read operation the microprocessor unit reads the periph-
eral pin, the address is the same as the register. For those pins pro-

grammed as outputs by the data direction registers, the data on the pins

will be the same as that in the I/0 register.

1.6.3.4 1Interval Timer

The Timer section of the MCS6530 contains three basic parts: pre-
liminary divide down register, programmable 8-bit register and interrupt
logic. These are illustrated in Figure 1.34.

The interval timer can be programmed to count up to 256 time
intervals. Each time interval can be either 1T, 8T, 64T or 1024T incre-
ments, where T is the system clock period. When a full count is reached,
an interrupt flag is set to a logic "1." After the interrupt flag is set
the internal clock begins counting down to a maximum of -255T. Thus, after
the interrupt flag is set, a Read of the timer will tell how long since the
flag was set up to a maximum of 255T.

When writing to the timer, the high order 8 bits of the timer are
written by the system data bus. If a count of 52 time intervals were to be
counted, 0 0 1 1 0 1 0 0 would be written into the timer section. The time
intervals of 1, 8, 64 or 1024T are decoded from address lines AP and Al at

this same time., Address line A3, if high during this write operation,

-76-

256 Intervals

A
o)

u6 u5 u4 u3 uz ul uq"

TYVVVYY

Al A
vy

PROGRAMMABLE
REGISTER

DIVIDE DOWN

t— 0 2

YYYYYYY

Dg D5 D4 D3 D Dy Dy

i

R/W —p

INT.
FLAG

—L—>D7

I
X
RQ

1T, 8T, 64T, or 1024T = Intervals

Basic Elements of Interval Timer

FI/"YY

-77-

1.34

enables the interrupt flag onto pin PB7. PB7 should be programmed as an

input if it is to be used as an interrupt pin. PB7 goes low when an inter-

rupt occurs. When the timer is read prior to the interrupt flag being set,

the number of time intervals remaining will be read, i.e., 51, 50, 49, etc.
Should the timer be read when interrupt occurs, the value read

would be 1 1 1 1111 1. After interrupt, the timer register decrements

at a divide by "1" rate of the system clock. If after interrupt, the timer

is read and a value of 1 1 1 001 0 0 is read, the time since interrupt is

28T. The value read is in two's complement.

11100100

00011011

00011100 = 28.

Value read

Complement
ADD 1

Thus, to arrive at the total elapsed time, merely do a two's complement add
to the original time written into the timer. Again, assume time written as
00110100 (=52). With a divide by 8, total time to interrupt is

(52 x 8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T, assum-
ing the value read after interrupt was 11100 1 0 0.

After interrupt, whenever the timer is written or read the inter-
rupt is reset. However, the reading or writing of the timer at the same
time interrupt occurs will not reset the interrupt flag.

Figure 1.35 illustrates an example of interrupt.

When reading the timer after an interrupt, A3 should be low so as
to disable the Tﬁa pin. This is done so as to avoid future interrupts until

after another Write timer operation.

1.6.4 Addressing

Addressing of the MCS6530 offers many variations to the user for
greater flexibility. The user may configure his system with RAM in lower
memory, ROM in higher memory, and I/0 registers with interval timers between
the extremes. There are 10 address lines (A0-A9). In addition, there is
the possibility of 3 additional address lines to be used as chip-selects and
to distinguish between ROM, RAM, I/0 and interval timer. Two of the addi-
tional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins
can also be PB5 and PB6. Whether the pins are used as chip-selects or
peripheral I/0 pins is a mask option and must be specified when ordering

the part. Both pins act independently of each other in that either or both

-78-

@ ® ®
95 IN _m J i L I2I I 3 |4$J213L-J214|-5F|4‘5| |416| ilsoo' Isml

i
WRITET _J L

IRQ _l

SHOULD THE PROGRAMMABLE TIMER REGISTER BE READ AT THE
TIMES NOTED ON THE DIAGRAM ABOVE, IT WOULD CONTAIN:

(D Data written into interval timer is 001100100 = 52,0 A divide by 8 pre-scale is used.
@ oo011001 = 25,4 52 - %ﬁi -1=52-26-1=25

® 00000000 = 0, s2-° HE L1=s2.51-1=0

@ Interrupt has occurred at §2 pulse #16

@ 10101100 Two; complement = 01010100 = 8410 84 + (52x8) = 50010

Example of Interrupt Generated by Interval Timer
FIGURE 1.35

-79-

pins may be designated as a chip-select. The third additional address line
is RSO. The MCS6502 and MCS6530 in a 2-chip system would use RSO to dis-
tinguish between ROM and non~ROM sections of the MCS6530. With the ad-
dressing pins available, a total of 7K contiguous ROM may be addressed with
no external decode. Below is anvexample of a 1-chip and a 7-chip MCS6530

Addressing Scheme.

1.6.4.1 One-Chip Addressing

Figure 1.36 illustrates a l-chip system decode for the MCS6530.

1.6.4.2 Seven—Chip Addressing

In the 7-chip system the objective would be to have 7K of contigu-
ous ROM, with RAM in low order memory. The 7K of ROM could be placed be-
tween addresses 65,536 and 1024. For this case, assume Al13, Al4 and Al5
are all 1 when addressing ROM, and 0O when addressing RAM or I/0. This
would place the 7K ROM between Addresses 65,535 and 57,367. The 2 pins
designated as chip-select or I/0 would be masked programmed as chip-select
pins. Pin RSO would be connected to address line A10. Pins CS1 and CS2
would be connected to address lines All and Al2 respectively. See Figure
1.37.

The two examples shown would allow addressing of the ROM and RAM;
however, once the I/0 timer has been addressed, further decoding is necs-
sary to select which of the I/0 registers are desired, as well as the cod-

ing of the interval timer.

1.6.4.3 I/0 Register—-Timer Addressing

Figure 1.38 illustrates the addressing decoding for the internal
elements and timer programming. Address line A2 distinguishes I/0 regis-
ters from the timer. When A2 is low and I/0 timer select is high, the I/O
registers are addressed. Once the I/0 registers are addressed, address
lines Al and A decode the desired register.

When the timer is selected Al and A@ decode the divide by matrix.
This is discussed further in the Timer Section. In addition, Address A3 is

used to enable the interrupt flag to PB7.

-80-

A8

A7

A6

AS
A4
A3
A2
Al
AP

r_IU

/O TIMER SEL.
@

INT. TIMER SEL.

A3
INTERVAL

Al piMER

A9

y

A

[1]

I/O SEL.

Al /o
A9

r--""" ittt [[

RAM SEL.
AS

A4

A3 RAM
A2

Al

AP

A. Xindicates mask programming
i.e. ROM select = CS1eRSO
RAM select = CS19RSOPA9®AT#A6
1/0 TIMER SELECT = CS16RSO®A9®ASeA79AG
B. Notice that A8 is a don’t care for
RAM select
C. CS2 can be used as PBS5 in this example.

MCS6530 One Chip Address Encoding Diagram
FIGURE 1.36

ROM SEL.

A9

A8

A7

A6

AS
A4
A3
A2
Al
AP

The addressing of the ROM select, RAM select and I/0 Timer select lines

would be as follows:

Cs2 Csl RSO

Al2 A1l Al10 A9 A8 A7 A6

MCS6530 #1, ROM SELECT 0 0 1 X X X X
RAM SELECT 0 0 0 0 0 0 0

I1/0 TIMER 0 0 0 1 0 0 0

MCS6530 #2, ROM SELECT 0 1 0 X X X X
RAM SELECT 0 0 0 0 0 0 1

1/0 TIMER 0 0 0 1 0 0 1

MCS6530 #3, - ROM SELECT 0 1 1 X X X X
RAM SELECT 0 0 0 0 0 1 0

I/0 TIMER 0 0 0 1 0 1 0

MCS6530 #4, ROM SELECT 1 0 0 X X X X
RAM SELECT 0 0 0 0 0 1 1

I/0 TIMER 0 0 0 1 0 1 1

MCS6530 #5, ROM SELECT 1 0 1 X X X X
RAM SELECT 0 0 0 0 1 0 0

1/0 TIMER 0 0 0 1 1 0 0

MCS6530 #6, ROM SELECT 1 1 0 X X X X
RAM SELECT 0 0 0 0 1 0 1

1/0 TIMER 0 0 0 1 1 0 1

MCS6530 #7, ROM SELECT 1 1 1 X X X X
RAM SELECT 0 0 0 0 1 1 0

1/0 TIMER 0 0 0 1 1 1 0

* RAM select for MCS6530 #5 would read = Al2-Al

-
b
.
o
o
s
<o
>
~
=)}

MCS6530 Seven Chip Addressing Scheme
FIGURE 1.37

-82-

~£8-

READ ROM

WRITE RAM

READ RAM

WRITE DDRA

READ DDRA

WRITE DDRB

READ DDRB

WRITE PER. REG. A

READ PER. REG. A

WRITE PER. REG. B

READ PER. REG. B

WRITE TIMER
+ 1T W/IRQ to PB7
+.8T WO/IRQ to PB7
+ 64T W/IRQ to PB7
+ 1024T WO/IRQ to PB7

READ TIMER
DISABLE IRQ TO PB7

READ INTERRUPT FLAG

ADDRESSING DECODE

ROM SELECT RAM SELECT I/0 TIMER SELECT

R/W

O O 0O 0O 0 0 0 o O O &
O O O 0O 0O O O O Kk = O
N e T = S S - B = T

o o o o
o o ©o o
R

-

Addressing Decode for I/O Register and Timer
FIGURE 1.38

H O H O M O FH O K O K

o O O ©

=

3

b T T - - I I T o T o

o B O =

o

%

©C O © O O O O O M M M

T SR S

A

CcC O O © K = K = M X M-

H © = O

o

CHAPTER 2

CONFIGURING THE MICROCOMPUTER SYSTEM

2.1 THE SYSTEM CONFIGURATION TASK

The first part of any microprocessor-based design effort is the system con-
figuration task. 1In fact, this probably requires more creativity from the de-
signer than any other part of the design effort. The goal of the system con-
figuration effort is the generation of a list of components which will make up
the system, a detailed interconnect diagram and a detailed description of the
total system operation. This includes a definition of how the processor will
control the peripheral devices as well as a definition of the internal opera-
tions to be performed. This does not include detailed implementation of the
design such as laying out printed circuit boards and writing programs, but does
involve enough analysis of the total operation to assure that the system will
operate properly after all the hardware and software is assembled.

The technically based selection of components and the definition of the
general operation of the system must be based on consideration of two factors.
These are:

1. System speed requirements

2. System input/output requirements
Both of these factors are interrelated. Therefore, it will usually be necessary
to define an I/0 configuration and then verify that the processor can operate at
the speed required by the peripheral devices. If there appears to be any diffi-
culty with the I/0 operation, this structure must be re-defined and re-analyzed.

In addition to the speed requirements of the I/0 devices, there are also
general speed requirements for the internal processor operations (arithmetic
operations, data manipulation, etc.). This speed requirement is usually some-
what more flexible than that associated with I/0 but it should be defined along
with any other system requirements. The ultimate test of system speed must wait
for the generation of both the hardware and the program; however, the system
requirements and capability must be analyzed very early in the system develop-
ment process to assure that no problems will arise during the last stages of the

design.

-84-

2.2 INPUT/OUTPUT TECHNIQUES
2.2.1 The General Purpose Input/Output (I/0) Port

Although the concept of the I/0 port was introduced briefly in Sec-
tion 1, and the operation of two MCS6500 family devices which provide gen-
eral purpose I/0 capability has been discussed in Sections 1.5 and 1.6,
little has been said about what factors must be considered when configur-
ing an I/0 structure using these devices.

The general purpose I/0 port consists of eight lines, each of which
can act as either an input or am output. As an input, each line can detect
the state of one switch or can detect one bit of data. As an output, each
line can control one light, solenoid, etc. or can provide onme bit of data
to a peripheral device. If this technique is used in peripheral control,
the operation of each line is totally defined in the system program.

For most systems, the general purpose interface device provides more
than adequate speed and flexibility to solve the entire peripheral inter-
face problem. Usually, a cost savings can be realized because of the re-
duced component cost and the necessity of stocking only one type of inter-
face device. 1In addition, use of the general purpose peripheral interface
device allows the designer to tailor the operation of the interface device
to fit the problem at hand.

The ultimate component selection must be preceded by a study of each
section of the system input/output structure and a study of the overall sys-
tem performance. Ultimately, the set of general purpose and special purpose
peripheral interface devices selected for a system must be chosen to mini-

mize total cost while assuring satisfactory system performance.

-85-

Processor speed is a function of two things. The first is simply the num-
ber of instructions required to perform the desired operations. The second is
the percentage of processor time required to service interrupts. The typical
system may employ several interrupt signals which occur at fixed intervals. At
times, these may be combined with other interrupts being generated by a periph-
eral device. It is important that the total service time for these interrupts
does not exceed that allowable and that the time available to the processor for
executing the main program is sufficient to allow the system to operate at its
required speed.

During the system configuration ﬁrocess, detailed system programs need not
be generated. However, it will be necessary to write small portions of the
software to verify the speed of execution and to assure proper operation of the
total system.

This chapter will discuss special techniques for the control of the various
components which may be included in a microcomputer system, as well as techniques
for controlling peripheral devices which are attached to the system. A discus-
sion of programming techniques which can be used to optimize the total system

performance is contained in the Programming Manual.

2.2.2 The Special Purpose Peripheral Interface Device

The special purpose, dedicated I/0 device must also be considered in
any microcomputer design. These devices are designed to completely handle
a single well-defined problem; for example, driving a particular printer,
handling a particular type of communications line or driving a scanned dis-
play. These special purpose devices are designed to totally handle their

particular task with very little help from the processor.

-86-

The primary advantage of this type of interface device is that it
requires an absolute minimum amount of attention from the processor. The
major disadvantage of special purpose I/0 is increased component cost. The
total production volume for these devices is less than that of the more
universal I/0 chips and also the total chip size is usually greater.

The use of special purpose peripheral control devices will not be
discussed in this manual. Instead, a detailed study will be made of the
more general problem of configuring the 8-bit bi-directional peripheral
port. In addition, this chapter will cover some special techniques which

can greatly enhance the power of this type of interface device.

2.2.3 Configuring the General Purpose I/0 Port

The 8-bit peripheral control port included on the MCS6520 and the
MCS6530 allows each line to be programmed to act as an input or an output.
This is accomplished when the processor writes a pattern of 1's and 0's
into the data direction register. Writing a 1 causes the pin to become an
ouipui, and writing a O causes it to act as an input. Although this opera-
tion is normally performed only during system initialization, the ability
to do so under program control allows some very important peripheral con-
trol techniques. An example of this is described below.

The process of configuring the general purpose I/0 port involves
first examining the peripheral devices to analyze the various control in-
puts, switches, sensors, data signals, etc. which must be handled by the
microprocessor to properly control the device. Fach function must then be
assigned to a line on the I/0 port. The ultimate goal of this process is
the creation of a list of I/0 pins, the function of each pin, and an indi-
cation of whether each pin is to be an input or an output.

Since each line is capable of operating as an input or am output,
and since there is very little to differentiate one line from any other,
the actual assignment can be made fairly late in the system development
cycle after consideration of software techniques and printed circuit board
layout. 1In fact, software considerations may be the only thing which dic-
tates that a signal be connected to one pin or another.

Developing a thorough understanding of the software in the MCS6500
systems will require a detail study of the Programming Manual. However,
several operations which can be performed by the processor and which affect

the assignment of inputs and outputs will be discussed briefly here.

-87-~

2.2.3.1 Assignment of Outputs

A major factor in the assignment of output pins can be the ability

of the MCS650X processor to increment and decrement memory. Since the TI/0

port is treated as a location in memory, this incrementing and decrementing
can be used to rapidly set and clear the low order bit in this memory loca-

tion. This is illustrated in Figure 2.1.

Note that this does not affect anything but the low order bit if
it is used properly as shown. This operation can be performed more rapidly
than several other software techniques which can be used to affect a single
bit. Therefore, control of a single indicator, data line, etc. can be
greatly enhanced by putting it on the low order bit of an I/0 port. This
is the reason the low order bit of both the MCS6530 peripheral ports (PAO
and PB0O) provide the ability to drive transistors directly. In many appli-
cations, a simple transistor attached to one of those pins would provide
very convenient control of a motor, lamp, etc.

The ability of the microprocessor to shift data in memory can be
another very important factor in the assignment of outputs. Operations
which require sequential strobe signals can be controlled conveniently by
shifting a single high (or low) signal from pin to pin under software con-
trcl. The specific choice of pins can greatly enhance the ease with which

this signal is controlled.

2.2.3.2 Assignment of Inputs

In general, the processor deals with the input data from switches,
keyboards, etc. by reading the data on the I/0 port into the internal regis-
ters of the processor (usually the accumulator) and using the resulting con-
dition of flags in the Processor Status Register to control the program
which is executed. During this transfer process, the N flag in the Proces-
sor Status Register is set equal to the high order bit (bit 7) of the word
read from the I/0 port. This N flag can then be used to cause the processor
to execute different sections of the program (See the Programming Manual,
Chapter 4, for a detailed discussion of Branching). Likewise, by perform-
ing certain instructions, the V flag in the Processor Status Register can
be set equal to bit 6 on the I/0 port. This flag can then be used to
affect the program which is executed.

This operation of setting the internal flags from bits 6 and 7 of

the memory word means that making these two lines inputs on an I/0 port

-88-

MCS6520 DATA REGISTER

1

LOADED INTO
VOLTAGE ON OUTPUT
MCS6520 ——®0]1|0]0]|1|0]0]1 PINS OF MCS6520

MICROPROCESSOR
l———» HIGH ()2.4V)

———®» LOW ({04V)
- LOW

2

AFTER
DECREMENT —»o0|1|0/0|1]0]|0}0O

OPERATION

— 10w
> LOW

3

AFTER
SUBSEQUENT —w»iol1l0j0]1]0]0]1

INCREMENT
OPERATION I

HIGH
— LOW
P LOW

Control of Low Order Bit of MCS6520 Output Register
FIGURE 2.1

-89-

will allow very convenient testing of the condition of the switches,
sensors, etc. attached to these inputs. If more than two input signals are
to be attached to a port, the additional inputs should be placed on bit 5,
then bit 4 and so on. The processor can then perform operations which
shift the lower order bits into bit 7 one at a time and sets the N flag
equal to this bit. After each shift the N flag can be used to determine
the actual program which is to be executed. (See the Programming Manual
for a discussion of the Shift instructions.)

From the above example, one should conclude that the assignments
which the designer makes will be very much a function of the software tech-
niques which will be employed in controlling each line. It is very import-
ant that the designer be familiar with these techniques and that he docu-
ment the techniques which he has in mind when making the assignments. This
is particularly important when the system program is to be written by some-
one else. Also, it is important that those doing the system development
work constantly review the I/0 structure to optimize the software in-

volved as the system program is written.

N

.2.4 Power-On Considerations

Chapter 1, Section 1.3.3 discusses the operation of the system RESET
function. Reference is made to the fact that this can be used to assure
that all I/0 lines come up in a known state when power is applied to the
chip. Although this is a very important function, the designer must assure
himself that this RESET state does not adversely affect the peripheral
devices. This section describes some of the problems which can be encoun-
tered when the system is reset and discusses several techniques which can
be used to assure smooth power-up operation.

The I/0 lines of the MCS6530 and MCS6520 all enter the input state
when the reset line goes to GND (< 0.4V). For the MCS6530 I/0 lines, and
for the Peripheral A port on the MCS6520, these pins will go to +5V DC (Vdd).
This is due to the output structure on these pins. When these lines are in
the input state, the output switch becomes an open circuit but the pull-up
device continues to supply current to the pin.

Figure 2.2 shows a peripheral port which is configured to drive two
solenoids. These solenoids can be controlled properly after the system is

initialized; however, when the manual reset switch is activated, both I/0

-an.

PERIPHERAL

: INTERFACE
FROM DEVICE

RATODNADDNNT OONT
WALCINVL INVC LDV

MCS6520

+V +V
» SOLENOID COILS
—— 8 ~ O
= QUTPUT [11} [|

VWW—

MCS6520 Control of Transistor Driven Sclenoids

FIGURE 2.2

-01-

a—F \

lines enter the input state, the transistors saturate (close) and the sole-
noids are activated. This can be catastrophic in most mechanical subsys-
tems, so it is important that this potential condition be understood and
prevented. Figure 2.3 shows two satisfactory solutions to this problem.
The first, Figure 2.3a, requires that a "0" be written into the output line
by the processor to actuate the solenoids. This assures that the solenoids

he manual reset

(V)

will not be powered simultaneously when t witch is pressed.
However, it does introduce another potential problem. When the reset line
on the peripheral interface device goes low (< 0.4V), the contents of both
the Peripheral Data register and the Data Direction register are cleared to
zeros. If the Data Direction register is set to 1's, both solenoids will
immediately actuate due to the O stored in the Peripheral Data register.
This can be avoided completely if the system software first sets the bits

in the Peripheral Data register to a 1 and then sets the Data Direction
register to a 1. The I/0 pin will go high when the reset switch is actuated
and will simply stay high through the initialization routine.

Figure 2.3b illustrates a solution which may be more applicable to a
large system or a complex peripheral. In this approach, a separate output
line is used to apply power to the peripheral device. The power to the
entire peripheral or to just the critical elements is kept off until the

entire system is initialized and is ready to run the system program.

On the MCS6520 Peripheral B port, the I/0 lines are open circuit
(high impedance) in the input state. As a result, the configuration in
Figure 2.2 will not cause the same problem on the MCS6520 Peripheral B port
as would be expected on the MCS6530. 1In the input state, the I/0 pin is
incapable of sourcing any more than a few microamps.

However, if one were to use a solenoid driver as shown in Figure 2.4,
the TIL input structure on the drivers would interpret the high-impedance
state as a logic 1 and would actuate the solenoids. Both the solutions in
Figure 2.3 would be satisfactory in this case. However, the transistors
are connected to the TTL buffer. 1In addition, the extra output shown in
Figure 2.3b, controlling power to the peripheral device, could actually be
used to enable the solenoid drivers if an enable input is available to

these devices. This configuration is illustrated in Figure 2.5.

«02.

MCS6520 Control of
PNP Transistor Driving
Solenoid Coil

FIGURE 2.54A

MCS6520 Controlling
Both Power and Drivers

of Solenoid Cell
FIGURE 2.3B

MCS6520 Driving
TTL Buffers

FIGURE 2.4

—» 8 OUTPUT +V
I LINES
> P/
PERIPHERAL —3 JV\/\/
INTERFACE |—3m }\
DEVICE |— 3
———— o
LL]
—®——— SOLENOID +V
COIL e
SOLENOID
COIL
Lt
+V
8 OUTPUT "J POWER CONTROL
LINES \AAV TRANSISTOR
—J
—» Prrh (FrTf SOLENOID
PERIPHERAL }—3 n Jd CELLS
INTERFACE |—3
DEVICE | — g1 I/
—— AN\~
B ~
+V
L
S
- SOLENOID
COILS
PERIPHERAL —
INTERFACE - [\ I/ Vv
DEVICE — e
MCS6520 > 4 | j l\lnf]
TTL =
BUFFERS
X
| O

-Q3.

+V +V

SOLENOID COILS
L d I i LA l
8
pERIPHERAL {3 OUTPUT
INTERFACE LINES
DEVICE
MCS6520

]

ENABLE SIGNAL

L

T

GATES

MCS6520 Controlling Solenoids with Enable Signal and TTL Interface
FIGURE 2.5

2.2.5 Handshaking
The MCS6520 provides both interrupt control and data transfer con-

trol capability. The technique for controlling the transfer of data be-

tween the processor and a peripheral device is referred to as handshaking.
In this procedure, each device (the processor or peripheral) is capable of
signalling the other that its operation is complete. The sequence differs
somewhat for transfers into or out of the processor, so they will be dis-

cussed separately below.

2.2.5.1 Handshaking on Data Transfers from the Processor

The transfer of data out of the processor into a peripheral device
is performed by first writing the data into the data register within the
MCS6520. This data then appears on the peripheral output lines where it

can be read by the peripheral device for storage, display, etc.

Control of this data transfer by handshaking requires first that
the processor signal the peripheral device that data is available on the
I/0 port. The peripheral device then reads this data and signals to the
processor that the data has been taken and that new data can be made avail-
able. The processor then makes new data available and the cycle is re-
peated.

As described in Chapter 1, the Peripheral B Interface Port on the
MCS6520 is designed to perform handshaking on WRITE operations. The CB2
peripheral control line can be programmed to act as an output which goes
low each time the processor writes data onto the Peripheral B I/0 port.
This is the signal which is used to tell the peripheral device that data is
available on these output lines.

The CB2 output line will stay low until the peripheral device sig-
nals the processor that the data is taken. This is accomplished by inter-
rupting the processor through the CBl interrupt input.

takeg nlace durine the "WPITF‘" h

The sequence which tak place durin o £l XITE" hands

operation described above is shown in Figure 2.6.

2.2.5.2 Handshaking on Data Transfers into the Processor

The Peripheral A I/0 port on the MCS6520 is designed to handshake
on data transfers from the peripheral device into the processor. In this
sequence, the peripheral device must signal the processor that data is
available and the processor must signal back that data was taken. This is
basically the same sequence as that performed in the previous opefation.
The CAl interrupt input is used to interrupt the processor to indicate that
there is data available on the Peripheral A I/0 port. The peripheral de-
vice must then hold that data there until the processor reads it into its
internal registers. When the processor reads the Peripheral A I/0 port,
the CA2 peripheral control line goes low to signal to the peripheral device
that the data has been taken and new data can be made available. This en-
tire sequence is shown in Figure 2.7.

The handshaking operations described above can be an extremely
powerful technique for interfacing data storage devices or, in general, any
device which must transfer blocks of data and which has a variable re-

sponse time. If the processor cannot predict the speed with which the

-05.

peripheral takes data, for instance, it must rely on the peripheral to
signal that it has done so.

Initiating the data transfer sequence is usually accomplished
through a set of I/0 lines separate from the port which is transferring
the data. However, once the sequence is under way, the processor must
deal with the peripheral device only when an interrupt has occurred.
This allows the processor to execute the primary system program while

still servicing these peripheral devices.

-06-

ENABLE -]
1
ADDRESS x X

—
T
—

T

(LS

X
T

R/W 1

Y
~

2\
DATA BUS \ / {§

{ Cm
PERIPHERAL 3X o
DATA 5
CB2 4 6
—f %
- = \/
UDI1 >
1. Processor puts out address of peripheral device and changes R/W
signal to write enable (low).
2. During phase two processor puts out data on Data Bus.
3. Data from the processor is accepted by the MCS6520 on the
falling edge of the enable clock.
4. Peripheral Interface device now begins the handshake by signaling the
peripheral device that data is available to read on the output port.
5. When the external peripheral device reads the data on the output
port it will respond by a change in CBl.
6. This change in CBl is followed by a positive transition of CB2

signalling the processor that data was accepted.

Write Handshake Sequence
FIGURE 2.6

-07-

ENABLE J r ‘—I

PERIPHERAL D(o
DATA s
CAl 2 >< o

{ ¢
IRQ 4 e
ADDRESS s x
R/W 5

g —

6 rmnm——

DATA BUS £ / \

) —e

r {
A
CA2 3/// 7

New Data is put out by peripheral device.

The peripheral interface device is signaled by CAl that the
new data is ready to be read at the input port.

3. CA2 is put in the high state.

The processor is signalled that new data is ready to be read
by a low level on the IRQ line.

The processor begins servicing the Interrupt request and during
the routine the processor will put out the read signal and the
Address of the Peripheral Interface device.

The Peripheral interface will transfer the new data from the peripheral
device to the microprocessor through the data bus.

When Data has been transferred the peripheral device will be signaled
by CA2 going low.

Read Handshake Sequence

FIGURE 2.7
-98-

2.3 CONFIGURING THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE SUPPORT CHIPS.
The system block diagram (Figure 2.8) shows the basic data paths which al-

low the MCS6500 system to operate. Data Bus, Address Bus, R/W signal, etc. are
shown as simple connections between the various chips in the system. Although
these data paths will exist in any system, no matter how complex, each element
of the microprocessor interface must be examined to assure that each chip is
properly driven with signals which meet all specifications for the device, to
assure that the inter-chip timing is proper and to assure that the overall sys-

tem is operating as required.

2.3.1 Assignment of Addresses in the MCS6500 System

The only method which the microprocessor has for selecting between
the various RAMs, ROMs, etc. in a system is through the address output
lines. For this reason, the designer must use these lines very carefully
to achieve minimum system cost and to assure satisfactory system perfor-
mance.

Before looking at how the address 1ines can be configured to minimize
total system cost or program execution time, the designer should understand
how the binary value associated with each address line is related to the
total address space available to the microprocessor and how the AND func-
tion of various address lines can be used to select large blocks of ad-
dresses. Figure 2.9 illustrates the state of the three high-order address
lines for the entire address space available to the MCS650X. Note that the
highest order address line is a logic 1 for exactly half of the available
address. The AND function of the two highest order address lines is a
logic 1 for one-fourth of the available addresses, and so forth. Figure 2.9
also illustrates several AND functions derived from the three highest order
address lines. Each is true for a different block of the available ad-
dresses.

Generation of the AND function of various high order address lines
is extremely important because of the chip select techniques employed on
the processor support chips. As described in Chapter 1, Section 1.5.2.4,
the MCS6520 has three chip-select lines. The entire chip is selected for

reading or writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low

-99.

SANIT V1VA TOULNOD

* OPTIONAL

(WOYd ¥0 WOY) (Wva) SAIIATA
A9VIOLS AOVIOLS NVID0Ud [~ FOVAIALNI
NVIN0Ud A0 VIVd W IVIIHINAd
g w0 m Y
+ATTIOUINOD +JTTTOULNOD m
WOud (Wvy) v
\/ > ;\/r m mm m
< « aQ
=] =) m
— Py
2
¢ m <
< m 4> ‘I-\
w = q
D rd
Y i
x>l =
¢ g 2 TOUINOD
< "DAXA 'O0dd
\Z Y |
& —
M S ~ YATI0UINOD
Q sfe—» 2 8 - »
[75] w) —
0o (SEN) 2 VId
: @
]
S a 4
E m SANIT VLVAd TOYINOD
S *la °
(T059) DNAS

Organization of Microcomputer System

FIGURE 2.8

-100-

MICROPROCESSOR HIGH ORDER ADDRESS LOGIC “AND” FUNCTION

ADDRESS ADDRESS ADDRESS LINE AHeAH-1 AHeAH-1AH2
SPACE LINEAH LINE AH-1 AH2
0 0 0 0 0
A 0 A A
0
1
1
0 1
1 0
()}
0
1
I ,
0 i i
1 0 0
A 0
()}
1
1 Y Y
0 1 0 0
1 0 1 0
0 0
0 1
1 1
\J i i
1 1 1 1

Example of “AND” Function Using High Order Address Lines
FIGURE 2.9

-101-

(< 0.4V). Selection of the address lines which enable the various chips
in the system is a very basic but very important part of the system con-
figuration task.

It is important to note here that very few microprocessor-based sys-
tems actually require that the processors be able to access a full 65,536
words. In fact, most systems can be programmed in less than 2,000 words
for program and data memory. The full address space is made available pri-
marily because it allows the configuration of systems with an absolute
minimum of separate decoding chips between the processor and the support
chips. It is possible to assign any block of address to each type of chip
(RAM, ROM, peripheral interface chips, etc.) in the system. However, each
of the assigned addresses must be mutually exclusive. Only one of the sup-

port chips should be selected for every address used in the system program.

2.3.1.1 ROM Address Assignment
The assignment of ROM addresses is dictated by the fact that the

interrupt and RESET vectors must be located in the 6 high-order words in
memory. These are fixed vectors and must be stored permanently in these
locations. For this reason, the program memory (usually ROM) is usually
assigned the high order addresses. In fact, the recommended procedure is
to use AL5 {Al2 for MCS6504 and All for MCS6503 and MCS6505) to select
program ROM.

2.3.1.2 RAM Address Assignment

There are several factors which determine the location of the RAM
in an MCS650X-based system. Data stored in memory under control of the in-
ternal processor Stack Pointer will always go into Page One (ADH = 01).
Also, the entire set of Page Zero addressing modes relies on there being
data storage RAM in Page Zero. For this reason, the RAM in a MCS650X-based
system should be placed in the low order addresses in memory.

With the RAM in low order memory and the ROM in high order memory,
the peripheral interface devices must go somewhere in between. This is
accomplished in Figure 2.10 by using Al5 - Al4 to select ROMs, Al5 to select RAM,
aﬁa Al5 + Ald to select all peripheral interface devices. This allows dif-
ferentiation between the types of support chips. The addressing structure

can be completed by allowing for selection of each chip in the groups.

-102-

Cs
Al5 ROM
Al4 Cs
Al3
A12
All
A10
A9 RAM
Cs
MICRO
PROCESSOR cs1
CS2 | Mcs6520
Cs3
A0 [¢+ csi
152 |mcsss20
Cs3
cst
A0 ¢ €S2 | MCS6520
THRU +- CS3
A9
- — - P ¢
Y YYYYYYY
A0 A9 Al5
N v

TO ADDITIONAL MCS6520’s AND MEMORY

Typical Address Assignments
FIGURE 2.10

-103-

The addresses which select the various registers, peripheral
ports; etc. within the peripheral interface devices normally used will not
be sequential. For this reason, it is normally recommended that the tech-
nique shown in Figure 2.10 be used to differentiate between the peripheral
interface chips. This allows selection of 12 devices with no decoding in a
MCS6501~ or MCS6502-based system, up to nine MCS6520 devices in a MCS6504—

based system, and up to eight devices in a MCS6503 and MCS6505-based system.

2.3.2 Additional Address Assignment Techniques

In many systems, the techniques illustrated above may not represent
the best solution to the system problem. This is particularly true if pro-
gram execution speed is a primary consideration. The time required to
access the peripheral devices can be reduced by putting these devices in
Page Zero. The entire set of Page Zero addressing modes can then be used

PR P =

ddition, the polling of the MCS6520 control

- P L T
LU aLledd Liese ueviies., 111

o

registers during interrupt servicing can be facilitated greatly by putting
the control registers in sequential addresses. These registers can then be
accessed using the Page Zero, Indexed addressing mode described in the Pro-
gramming Manual. The address interconnect which allows this is shown in
Figure 2.11. Note that this implementation requires external address de-
coding chips but for the system requiring it, this incremental cost will
result in higher operating speeds.

The system designer must become familiar with the addressing lines
and their effect on the address space available to the processor. Even
more important, there is a significant relationship between software and
hardware in microprocessor systems and a full understanding of both can
allow optimization of the trade—off between speed and cost for the system

under design.

2.3.3 Interrupts

The basic concept of interrupts is introduced in Chapter 1, Section
1.3.2 of this manual. However, little is said there about the hardware and

software techniques which are required to assure proper implementation of

~-104-

ROM
— &
RS1
RSO
cs1 MCS6520
cs2
*— cs3
AlS ——
Aldp===== > * RS
Al3f----- > ® RSO
Al2p====- > csl MCS6520
All f=meem1 > . s2
AlQO}t—=--- F ’__aﬁ
A9 fkemeee -
A8 L __ .
A7 > J [y RSI
MCSSOX g | o - RS
AS | ____ > cs1 MCS6520
A4 - 9 ¢ CS2
A3 | -) . . ’ 1 C_S3
A2
Al — g] RS1
AO | | * RSO
10F8 cst MCS6520
DECODER (3 Cs2
o Cs3
RAM
e CSi
* CS2
Y LLLL
TO OTHER
6520’s

Page Zero Chip Select Addressing Scheme
FIGURE 2.11

-105-

the interrupt system. This section is designed to introduce the designer

to the details of interrupts and interrupt servicing techniques.

2.3.3.1 Interrupt Prioritizing

Chapter 1 makes reference to various techniques for hardware
prioritizing of interrupts to allow more rapid servicing of interrupts.

The goal of this hardware is to allow the processor to go directly to the
program which services the highest priority active interrupt without taking
the time to poll each interrupting device.

All hardware prioritizing techniques are based on the "priority
encoder" shown in Figure 2.12. This device has eight inputs which are
assigned a priority level from one to eight and generates a three-bit bi-
nary code corresponding to the highest priority active input signal.

The generation of this three-bit code is in reality a trivial task
for the designer. However, relating this code to the address of the corre-
sponding interrupt service routine is much more difficult and represents an
opportunity for creativity on the part of the designer. Several solutions
will be illustrated here todemonstrate what can be done. These are cer-
tainly not assumed to be the only solutions. Each system must be considered
separately to assure that the implementation chosen is as close to optimum

as possibie.

2.3.3.2 Example 1: Selecting the Interrupt Vector

The final step of interrupt response within the processor is the
fetching of an interrupt vector from two fixed addresses in memory. The
interrupt vector located in these fixed addresses identifies the address of
the software which the processor executes to poll the interrupting devices.
Instead of pointing to the polling routine, it would be much faster to go
directly to the software which actually services the interrupt. This re-
quires a unique vector for each interrupt.

The technique illustrated in Figure 2.12 assumes that the inter-
rupt vectors are located in ROM at addresses below that normally assigned
to the interrupt vector. The decoder detects the fact that the processor
is reading FFFE or FFFF. At this time the address inputs AD1, AD2 and AD3
into the ROM are driven from the priority encoder. Instead of accessing

FFFE or FFFF, the interrupt vector will come from two addresses selected by

-106-

AlS
Al4
Al3
Al2
All
Al0
A9
A8
A7
A6
AS
A4
A3
A2
Al

A0

MICROPROCESSOR

Cs

2K X8
ROM

<

— -
———
—
——
——-——
- \ &
—— —
- t
——
-
.—-’
— - 9
-—.;
- o
> l
L
-
QUAD
2INPUT - —
DATA |P——
_L SELECT
PRIORITY
ENCODER
o
4'
P

AAA

INTERRUPT INPUTS

3
AA

Selecting ihe Interrupt Vector
FIGURE 2.12

-107-

the priority encoder. The actual hardware involved is quite simple and the

interrupt response time is an absolute minimum.

2.3.3.3 Example 2: Using the Processor Software Power

These several solutions to the vectored interrupt problem take ad~
vantage of certain instructions which can be performed by the processor.
The first of these uses an instruction called the Jump Indirect. This in-
struction causes the processor to begin executing the program located at
that address contained in two sequential memory locations.

As in Example 1, the three-bit output from the priority encoder
becomes part of the address of the interrupt software. If the output of
the priority encoder is connected to the inputs of a peripheral interface
device, the processor can then perform a Jump Indirect operation using the
address on the two peripheral I/0 ports. This is shown in Figure 2.13.

Another solution which takes advantage of the processor software
is shown in Figure 2.14. Once again the output of the priority encoder is
connected to the inputs of a peripheral I/0 port. However, in this ap-
proach, the priority encoder is connected to the low order bits and the
other bits can be used as control or input lines for other functions.

In this method, the three bits from the priority encoder will be-
come part of an address established in memory. This address will then be
used in a Jump Indirect instruction as before. This operation is detailed

in Figure 2.15,

2.3.4 The Application of RDY to Controlling the Memory Interface

The ability to stop the microprocessor can be extremely important
when using memory devices which are not directly compatible with the
MCS650X family.

The RDY line on the MCS6501, MCS6502 and MCS6505 can be used to stop
the processor in any '"mon write" cycle, i.e., any cycle in which the pro-
cessor is not attempting to write data into memory. The processor can be
stopped for any number of clock cycles, from one cycle for interfacing with
slow memories to many cycles for DMA applications and for single cycle exe-

cution.

2.3.4.1 Interfacing Slow PROMs

One of the principal applications of RDY is in the control of

light-erasable PROMs or EAROMs. These devices generally have longer access

-108-

MICROPROCESSOR

‘P
-
73

Lﬁ»
-
'

&
w

- 1N

kfk%kr&&g

%
=

Yy

PERIPHERAL
INTERFACE
DEVICE
MCS6520

RSO

PA7

L TO
__ _p» | FIXED
> ADDRESS
. DATA FOR
. INTERRUPT
L . SOFTWARE

PA6

PAS

PA4
PA3

PA2

PA1

PAO

NOTE: CONNECTING THE ADDRESS LINES AS
SHOWN PUTS THE TWO MCS6520 1/0
PORTS IN SEQUENTIAL ADDRESSES.

.|IL

PRIORITY
ENCODER

k

TERERY:

S/

INTERRUPT INPUTS

Using MCS6520 for Jump Indirect Interrupt Routines

FIGURE 2.13

-109-

AlS
Al4
Al3
Al2
All
Al0
A9
A8
A7
A6
AS
A4
A3
A2
Al
A0

MICRO
PROCESSOR

VTHHHHHHH

PERIPHERAL
INTERFACE
DEVICE
MCS6520

PA7
PA6
PAS
PA4
PA3
PA2
PA1
PAO

RSO
RS1

PB7

PR
| PBS 5 TO OTHER
PB4 o, PERIPHERAL
| PB3 DEVICES
PB2 > INPUTS OR
| PB1 > OUTPUTS
PBO
e
{
’
—
4,
-t
-
—elf——
PRIORITY
ENCODER

REYRERY

\

/

INTERRUPT INPUTS

Priority Encoder Connected to Low Order Bits of MCS6520.
FIGURE 2.14 «

-110-

MICRO
PROCESSOR

Al

e
-- -3
-~
S

A9

——

PERIPHERAL PA7 |

INTERFACE PA6

DEVICE
(MCS6520)

RSP
RS1

PAS
PA4

PA3

PA2
PAl
PAQ

INTVEC -—

—— | TO OTHER

——= | PERIPHERAL

——3 | DEVICES INTERRUPT INPUTS

r'e Y
> TYYYYYY

— PRIORITY
- ENCODER
-

Priority Encoder to Peripheral Interface Scheme

PHA
TXA
PHA
LDA
AND
TAX
LDA

STA

INX
LDA

STA

FIGURE 2.14 b

IPA AO
{#fOE

VEC TAB,X

JMP1

VEC TAB,X

JMP1+1

(JMP1)

Receive Interrupt Vector

Read PIA Port
Clear PIA
Transfer Acc. to X index reg.

Load Acc. from Interrupt Vector
Table stored in memory

Set Low Order Address Byte
of Interrupt Vector

Increment X Index Register

Load Acc. from Interrupt Vector
Table

Set high order Address Byte
of Interrupt Vector

Go to Interrupt Service
Software

Software Program to Implement Interrupt from above Hardware Configuration

FIGURE 2.15

-111-

times than that required by the microprocessor when operation at 1 MHz
clock frequency and are incapable of making data available on the data bus
within 100 nanoseconds of the end of the Phase Two clock pulse. The Phase
Two clock pulse is used to latch data or instructions on the data bus;
therefore, if the data is not available at the correct time, the processor
must be held up for one full cycle. The instruction will then be latched
on the following Phase Two pulse. Execution of the instruction will then
proceed during the next cycle. Suggested logic for performing this func-
tion is shown in Figure 2.16.

Note that the data present on the data bus during the $2 clock
pulse after RDY goes high is the data that will be used in the instruction

execution which takes place during the following cycle.

2.3.4.2 Direct Memory Address (DMA) Techniques

Transfer of data from peripheral storage devices into the micro-
computer data memory (RAM) can normally be handled one byte at a time under
éﬁntrol of the microprocessor. However, in large data terminals, control
systems, etc. the primary data storage device may be a high-speed tape or
disk. 1In systems such as these, the data transfer from the storage device
into memory must be performed at speeds greater than the processor can
handle. The control of the transfer must be performed outside of the pro-
cessor in a separate controller and the peripheral device must gain direct
access to the system RAM.

Direct Memory Access requires primarily that the processor have no
need to access the memory involved. This is generally assured by stopping
the processor completely. The DMA controller must then gain access to the
R/W line and both the address and data busses on the memory unit.

Provision for stopping the processor is available on the MCS6501,
MCS6502 and MCS6505. This is accomplished by pulling the RDY line on the
processor to GND (< 0.4V), The processor will stop in the first non-write
cycle with the data bus in the high-impedance state. After the processor
has stopped, the DMA contrcller must provide the address and data for the
memory and must control R/W if data is being transferred into memory.

Providing addresses for the memories can be accomplished by gating
addresses from either the DMA controller or the microprocessor into the

memories. This can be accomplished very easily with a Quad 2-input data

-112-

selector. During the DMA operation, the addresses fed to the memories are
those generated by the DMA controller. After the DMA operation is complete,
the input select signal to the data selector is inverted and the addresses
generated by the processor once again determine which memory word is being
accessed. The R/W line to the memories can be controlled in the same way
as the address lines.

The data bus must be controlled in a somewhat different manner.
This is necessitated by the fact that these lines are "bi-directicnal"; the
data bus pins on the processor and the support chips act as both an input
and an output. The output buffers in each of these chips are capable of
entering a high impedance state to allow any of the devices to drive the
bus during data and instruction transfers. For this reason, a bi-direc-
tional, "three-state" bus extender is required to interface the DMA con-
troller to the system data bus. The logic necessary to provide full address
bus and data bus control fbr DMA applications is shown in Figure 2.17.

The MCS6501 provides a Bus Available output to signal the DMA con-
troller that the processor has stopped and that the DMA controller can pro-
ceed to access memory for reading and writing data. This signal will g0
high during the Phase Two clock in the first Read cycle (R/W = 1) which
follows RDY going low. This will occur immediately if RDY is pulled to GND
(< 0.4V) during a Read cycle. The discussion of the processors in Section 1
describes this in detail.

The MCS6502, MCS6503, MCS6504 and MCS6505 do not make available
the Bus Available signal. However, these processors still stop in the
first non-write cycle. For this reason, the logic shown in Figure 2.17

should be used to generate a Bus Available signal for the DMA controller.

2.3.4.3 Control of Dynamic RAMs in the MCS6500 System

For systems which must contain a large quantity of Read/Write
memory (RAM), the 4096-bit dynamic RAMs can provide the required storage
with a minimum number of parts. Currently available dynamic RAMs are cap-
able of storing four times as much data as similar static devices. How-
ever, there is one major drawback to these devices--they must be refreshed
periodically. For most devices currently available, this refresh period is

about 2 milli ds

-113-

—> “J—K> FLIP-FLOP
—

ADDRESS — PROM ADDRESS ___._J P

LINES — DETECTION o
— ¢

¢ 1 CLOCK T

Interfacing Scheme for Slow PROM’s

FIGURE 2.16
SSD” TYPE
R/W FLIP-FLOP
RDY 4>)o—— D QM
PHASE 2 dc 0

Logic Used to Generate Bus Available Signal for DMA Applications
FIGURE 2.17

-114-

BA

requires 32 Read operations which can be performed all at once every 2
milliseconds, or 1 approximately every 64 microseconds.

Unless a separate controller is used to perform this refresh
operation, the use of dynamic memories can be very detrimental to system
performance.

As with any Direct Memory Access, the processor must be stopped to
assure that the processor and the DMA controller are not attempting to
access the memories concurrently. The RDY input provides this capability.
A counter operating directly from the system clock will provide a very con-
venient refresh signal. Each time the counter goes through a count of 63,
a "refresh request'" pulse is generated. The actual memory refresh opera-
tion must take place during a Read operation with the processor stopped for
1 cycle. Determining when the processor has stopped is exactly the same
problem as in DMA operations. The MCS6501 will generate a Bus Available
pulse when the processor has stopped. In the other processors, the control-
ler must pull the RDY line low and must then examine the R/W line to deter—
wine when the processor is in a Read cycie.

The specific operation performed during the refresh cycle is a
function of the devices being used. However, it should be noted the time
available for refreshing the memory is "N - 1/2" cycles, where N is the
number of cycles that the processor is stopped. This formula is based on
the fact that the first half cycle is lost due to the fact that BA does not
go high until @2 in the MCS6501 and that the state of the R/W line cannot
be considered valid until @#2. Control of the memory address lines must be
returned to the processor at the beginning of $1 if the memories are to
have a full cycle to make valid data available on the data bus. This leaves
one-half cycle available to perform the refresh operation if the processor
is stopped for one cycle. A full 1-1/2 cycles can be made available by
stopping the processor for two cycles. This latter implementation is more
compatible with most dynamic RAMs currently available.

As described above, a primary problem in the implementation of
dynamic RAM systems is knowing when the processor has stopped. A full one-
half cycle is required in the implementations described above. The MCS6502,
however, provides a signal which can be used to predict that the processor

will stop in the very next cycle. This is the SYNC signal. It is impossible

-115-

for a Write operation to immediately follow an instruction fetch cycle.
This allows the memory refresh controller to assume control of the address
lines at the beginning of that cycle instead of after the trailing edge of
@1.

The RDY iine is pulled low on 1 and the processor is guaranteed .
to stop. Control of the address lines is returned to the processor on the
next 1 and RDY is set high at the same time. The result is the refresh
logic had a full 1 cycle to refresh the memories and the processor lost only
1 cycie of execution time. A suggested configuration for this control logic

is shown in Figure 2.18.

: REFRESH
REFRESH | 1 GRANT
REQUEST D— D Q D (10 RDY AND

SYNC v:

CONTROL)

02 y S—

Control Logic for Refresh Signal for Dynamic RAMS
FIGURE 2.18

-116-

2.3.5 Hold-Time Control--MCS6501

The data bus hold time required by the MCS6500 family parts is de-
fined in Chapter 1. Each chip in the system requires that the data on the
data bus be held for 10 nanoseconds past the trailing edge of the Phase Two
clock pulse. Also, each device is guaranteed to hold data for this length
of time to assure proper operation of the other devices in the system.

This only assures that the family parts will work together. Operating with
other RAMs and peripheral devices requires that a careful study be made of
the timing requirements. This section discusses techniques for properly
interfacing RAMs which require more than 10 ns hold time guaranteed by the '
processor. These techniques are applicable primarily to the MCS6501 since
this device uses the input clocks and the DBE input.

The data which is to be written into memory is actually available on
the inputs to the processor data bus buffers from the beginning of the Phase
One clock pulse. This data is normally gated onto the bus during Phase Two.
However, if greater hold time is required, the designer can take advantage
of the fact th