
111•=
ICltttCtt&\\1111T81tS

1\\l£lttt£tt1\\l'llTlltS

i\\l(lttt(tt&\\1111T81tS

i\\1£1ttt£tti\\1111Tlltl

KIM-I USER MANUAL

Publications Number 6500-ISB

KIM-1

MICROCOMPUTER MODULE

lJSER MANUAL

AUGUST 1976

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for informational
purposes only and is subject to change without notice.

Second Edition
© MOS TECHNOLOGY, INC. 1976

"All Rights Reserved"

MOS TECHNOLOGY, INC.

950 Rittenhouse Road

Norristown, PA 19401

CHAPTER 1

CHAPTER2

CHAPTER3

CHAPTER4

CHAPTERS

TABLE OF CONTENTS

YOUR KIM-1 MICROCOMPUTER MODULE

GETTING STARTED

2.1 Parts Complement

2.2 A Few Words of Caution!

2.3 First Steps

2.4 Let's Try a Simple Problem

2.5 Adding an Audio Tape Unit

2.6 Adding a Teleprinter

THE KIM-1 SYSTEM

3.1 KIM-1 System Description

3.2 KIM-1 Memory Allocation

3.3 KIM-1 Operating Programs

OPERATING THE KIM-1 SYSTEM

4.1 Using the Keyboard and Display

4.2 Using the Audio Tape Unit

4.3 Using the Teleprinter

LET'S TRY A RE.AL APPLICATION

1

5

5

6

6

9

12

17

21

21

34

40

43

43

47

50

55

5.1 Defining the Interface 55

5.2 Writing the Program 58

5.3 Entering the Program 65

5.4 Executing the Program 66

5.5 Program Debugging and Modification 67

ii

CHAPTER6

CHAPTER 7

EXP.ANDING YOUR SYSTEM

6.1 Memory and I/O Expansion

6.2 Interrupt Vector Management

WARRANTY .AND SERVICE

7.1 In-Warranty Service

7.2 Out-of-Warranty Service

7.3 Policy on Changes

7.4 Shipping Instructions

iii

71

71

75

79

79

80

80

80

CHAPTER2

CHAPTER 3

CHAPTER 5

CHAPTER6

LIST OF FIGURES

2-1 KIM MODULE

2-2 Power Supply Connections

2-3 Audio Tape Unit Connections

2-4 TTY Connections

3-1 KIM-1 Block Diagram

3-2 Detailed Block Diagram

3-3 Control and Timing

3-4 lK x 8 RAM Memory

3-5 Keyboard and Display

3-6 Keyboard Detail

3-7 TTY Interface

3-8 Audio Tape Interface

3-9 Application Connector

3-10 Expansion Connector

3-11 Memory Block Diagram

3-12 Memory Map

3-13 Special Memory Addresses

3-14 Flow Chart

5-1 Speaker Application

5-2 Assembly Language Listing

5-3 Square Wave Output

5-4 Machine Language Code Table

5-5 Key Sequence: Enter Program

6-1 4K Expansion

6-2 65K Expansion

6-3 Vector Selection

iv

7

8

13

18

24

25

26

27

28

29

30

31

32

33

37

38

39

41

57

60

62

63

65

73

74

78

LIST OF APPENDICES

APPENDIX A KIM-1 Parts List A-1

APPENDIXB KIM-1 Parts Location B-1

APPENDIXC In Case of Trouble C-1

APPENDIXD Suggested Power Supply D-1

APPENDIXE Audio Tape Format E-1

APPENDIXF Paper Tape Format F-1

APPENDIXG 6502 Characteristics G-1

APPENDIXH 6530 Characteristics H-1

APPENDIX I KIM-1 Program Listings I-1

v

CHAPTER 1

YOUR KIM-1 MICROCOMPUTER MODULE

Congratulations and welcome to the exciting new world of micro­

computers! As the owner of a KIM-1 Microcomputer Module, you now have at

your disposal a completely operational, fully tested, and very capable

digital computer which incorporates the latest in microprocessor tech­

nology offered by MOS Technology, Inc. By selecting the KIM-1 module,

you have eliminated all of the problems of constructing and debugging a

microcomputer system. Your time is now available for learning the opera­

tion of the system and beginning immediately to apply it to your specific

areas of interest. In fact, if you will follow a few simple procedures

outlined in this manual, you should be able to achieve initial operation

of your KIM-1 module within a few minutes after unpacking the shipping

container.

Your KIM-1 module has been designed to provide you with a choice of

operating features. You may choose to operate the system using only the

keyboard and display included as part of the module. Next, you may add

a low cost audio cassette tape recorder to allow storage and retrieval

of your programs. Also, you may add a serial interfaced teleprinter to

the system to provide keyboard commands, hard-copy printing, and paper

tape read or punch capability.

At the heart of your KIM-1 system is an MCS 6502 Microprocessor

Array operating in conjunction with two MCS 6530 arrays. Each MCS 6530

provides a total of 1024 bytes of Read-only Memory (ROM), 64 bytes of

Random Access Memory (RAM), 15 Input/Output pins, and an Interval Timer.

Stored permanently in the ROM's of the MCS 6530 arrays are the monitor

and executive programs devised by MOS Technology, Inc. to control the

various operating modes of the KIM-1 system.

The KIM-1 system is intended to provide you with a capable micro­

computer for use in your "real-world" application. Accordingly, the

system includes a full 1024 bytes of RAM to provide data and program

storage for your application program. In addition, you are provided

with 15 bidirectional input/output pins to allow interface control of

your specific application. Finally, one of the interval timers included

in the system is available for generation of time base signals required

by your application.

Your KIM-1 system comes to you complete with all components mounted

and tested as a system. You need not worry about timing signals (we've

included a lMHz crystal oscillator on the module), interface logic or

levels between system components, or interface circuitry to peripheral

devices. In fact, you need only apply the indicated power supply voltages

to the designated pins to achieve full operation of your KIM-1 system.

We recommend that you read all of this manual before applying power

to or attempting to operate your KIM-1 module. In the order presented,

you will find:

Chapter 2 - "hints and kinks" to help you achieve initial
system operation

Chapter 3 - a more detailed description of the KIM-1 system
hardware and software

Chapter 4 - operating procedures for all system modes

Chapter 5 - an example of a typical application program
using all of the features of the KIM-1 system.

2

At some future time, you may find it desirable to expand the KIM-1

system to incorporate more memory, different types of memory, or addi­

tional input/output capability. Again, we have tried to make system

expansion as simple as possible with all required interface signals

brought out to a special connector on the module. Watch for:

Chapter 6 - a guide to system expansion for increasing
both memory and input/output capability

Despite our best efforts to provide you with a fully operable

and reliable system, you might encounter some difficulties with your

KIM-1 module. If so, refer to:

Chapter 7 - some guidance on warranty and service
procedures for your KIM-1 module

Following the basic text of this manual, you will find a series of

Appendices intended to provide you with detailed information on certain

specialized subjects of interest to you in understanding the operation

of the KIM-1 system.

Lastly, since this manual cannot presume to provide all of the

technical information on the hardware or programming aspects of the

MCS 6502 microprocessor array, we are including with your KIM-1 system

two additional manuals for your reference. The Hardware Manual defines

the various elements of the system, their electrical and interface

characteristics, and the basic system architecture and timing. The

Programming Manual provides the detailed information required to write

effective programs using the MCS 6502 instruction program set.

So much for introductory comments! Now lets get started and see

if we can get your KIM-1 Microcomputer Module doing some real work for you.

3

CHAPTER 2

GETTING STARTED

This chapter is intended to guide you through the first important

steps in achieving initial operation of your KIM-1 Microcomputer Module.

We will ask you to perform certain operations without explanation at this

time as to why they are being done. In later sections of this manual,

full explanations will be offered for every operating procedure.

2.1 PARTS COMPLEMENT

After unpacking the shipping container for your KIM-1, you should

have located the following items:

3 Books - KIM-1 Users Manual
Hardware Manual
Programming Manual

1 Programming Card

1 System Schematic

1 KIM-1 Module

1 Connector (Already mounted on the Module)

1 Hardware Packet

1 Warranty Card

You may wish to save the shipping container and packing material

should you need to return your KIM-1 module to us at some future date.

5

2.2 A FEW WORDS OF CAUTION

WARNING

Your KIM-1 module includes a number of MOS integrated circuits. All such

circuits include protective devices to prevent damage resulting from

inadvertant application of high voltage potentials to the pins of the

device. However, normal precautions should be taken to prevent the appli­

cation of high voltage static discharges to the pins of an MOS device.

Immediately before removal of the packing material from your KIM-1 module,

you should develop the following precautionary habits:

1. Discharge any static charge build up on your body by touching a

ground connection before touching any part of your KIM-1 module.

(This precaution is especially important if you are working in a

carpeted area)

2. Be certain that soldering irons or test equipment used on the

KIM-1 module are properly grounded and not the source of

dangerously high voltage levels.

On a different subject, after unpacking your KIM-1 module, you will

note the presence of a potentiometer. This adjustment has been set at

the factory to insure correct operation of the audio cassette interface

circuits. It should never be necessary for you to change the position of

this potentiometer.

2.3 FIRST STEPS

After unpacking the KIM-1 module, locate the small hardware packet

and install the rubber pads provided. The rubber pads are located at the

bottom of the module (see attached sketch) and act both to lift the card

off your work surface and to provide mechanical support for the module

while you depress keys.

6

Place the module such that the keyboard is to your lower right and

observe that two connector locations extend from the module to your left.

The connector area on the lower left is referred to as the Application

connector (A). You will note that a 44 pin board edge connector is

already installed at this location. The connector area to the upper

left is for use by you for future system expansion and is referred to

as the Expansion connector (E).

fg]

lg)

BOTTOM
VIEW

la

(g)

KIM-I Module
FIGURE 2:1

7

TOP
VIEW

rrm rn
ODD
ODDO
DODD
DODD
DODD
DODO

Remove the (A) connector from the module and connect the pins as

shown in the sketch.

(A) +5
vcc +5 v.

(± 5%)
1.2 A.

VBB +12
+12v.

vss (± 5%)
0.1 A.

--

Power Supply Connections
FIGURE 2.2

Reinstall the (A) connector making certain that the orientation is

correct.

Note 1: The +12 volt power supply is required only if you
will be using an audio cassette recorder in your system.

Note 2: The jumper from pin A-K to Vss (Pin A-1) is essential
for system operation. If you expand your system later,
this jumper will be removed and we'll tell you what to
do to pin A-K.

Note 3: If you don't have the proper power supplies already
available, you may wish to construct the low cost
version shown with schematic and parts list in
Appendix D. In any event, your power supply must
be regulated to insure correct system operation and
must be capable of supplying the required current
levels indicated in the sketch.

8

Now, recheck your connections, turn on your power supplies, and

depress ~ (reset). You should see the LED display digits light

as your first check that the system is operational. If not, recheck

your hookup or refer to Appendix C (In Case of Trouble).

2.4 LETS TRY A SIMPLE PROGRAM

Assuming that you have completed successfully all of the steps thus

far, a simple program now can be tried.to demonstrate the operation of

the system and increase your confidence that everything works properly.

We'll be using only the keyboard and display on the module for this

example. (In the next two sections we'll worry about the teleprinter

and the audio cassette).

For our first example, we will add two 8 bit bina~y numbers together

and display the result. We presume that you are familiar with the hex­

adecimal representation of numbers and the general rules for binary arith­

metic.

First check and be sure that the slide switch in the upper right

corner of the keyboard is pushed to the left (SST Mode is OFF). Now

proceed with the following

Press Keys

IAD I
CTI CD [QJ CiJ
loA I

Ow
Ci:] mw
8 [QJ[QJ
8 [I] ITJ
8 [QJ [!]
0 mm
0 mm
0 mm
[£] ITJ ITJ
[£] mm
[£] mm
8 CD CTI
8 wm
[£] ITJ [TI

key sequence:

See On DisEla~

xx xx xx
0002 xx
0002 xx
0002 18
0003 AS
0004 00
0005 65
0006 01
0007 85
0008 FA
0009 A9
OOOA 00
OOOB 85
OOOC FB
OOOD 4C
OOOE 4F
OOOF lC

9

Step ti

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

What you have just done is entered a program and stored it in the

RAM at locations 0002 through OOOF. You should have noticed the purpose

of several special keys on your keyboard:

I ADI - selects the address entry mode

IDAI - selects the data entry mode

~ - increments the address without
changing the entry mode

~ To0 - 16 entry keys defining the hex
code for address or data entry

You've noticed as well that your display contains 6 digits. The

four on the left are used to display the hex code for an address. The

two on the right show the hex code for the data stored at the address

shown. Therefore, when you pressed ~ (step 1) and ~ ~ [D [3J
(step 2), you defined the address entry mode, selected the address 0002,

and displayed the address 0002 in the four left-most display digits.

Incidentally, when we show an "x" in the display chart, we mean that we

don't know what will be displayed and we "don't care."

Next you pressed I DA I (step 3) followed by G [!] (step 4). Here,

you have defined the data entry mode and entered the value 18 to be

stored at your selected address 0002. Of course, the 18 then was dis­

played in the two right-most digits of your display.

You remained in the data entry mode but began to press ~ followed

by a two digit number (steps 5 to 17). Note that each depression of the

~key caused the address displayed to increase by one. The hex keys

following the 8 key continued to enter the data field of the display.

This procedure is merely a convenience when a number of successive address

locations are to be filled.

If you made any mistakes in pressing the keys, you should have noticed

that correcting an error is simply a matter of reentering the data until

the correct numbers show on the display.

10

The program you have entered is a simple loop to add two 8 bit

binary numbers together and present the result on the display. For a

progranuner, the listing of the program entered might appear as follows:

PO INTL = $FA
POINTH = $FB
START $1C4F
0000 VALl
0001 VAL2
0002 18 PROG CLC
0003 AS 00 LDA VALl
0005 65 01 ADC VAL2
0007 85 FA STA POINTL
0009 A9 00 LDA 1100
OOOB 85 FB STA POINTH
OOOD 4C 4F lC JMP START

Stated in simple terms, the program will clear the carry flag (CLC),

load VALl into the accumulator (LDA VALl), add with carry VAL2 to the

accumulator (ADC VAL2), and store the result in a location POINTL (STA

POINTL). A zero value is stored in a location POINTH (LDA 1100 and STA

POINTH) and the program jumps to a point labelled START (JMP START).

This pre-stored program will cause the display to be activated and will

cause the address field of your display to show the numbers stored in

locations POINTH and POINTL. Note that the result of the addition has

already been stored in location POINTL.

The hex codes appearing next to the address field of the listing are

exactly the numbers you entered to store the program. We refer to these

as machine language codes. For example, 4C is the hex code for the JMP

instruction of the microprocessor. The next two bytes of the program

define 1C4F (START) as the jump address.

As yet, you are not able to run the program because you have not yet

entered the two variables (VALl and VAL2). Lets try an actual example:

Press Keys See On DisElay SteE II

~ OOOF lC 17A
C2::J CQJ CD CD OOFl xx 17B
~ CQJ CQJ OOFl 00 18
~ OOFl 00 19
~IT!wuu 0000 xx 20
CM::! wCLJ 0000 02 21
I + I 0LI:J 0001 03 22
~ ~ 0002 18 23

11

Steps 17A, 17B, and 18 insure that the binary arithmetic mode is

selected.

Steps 19 to 21 store the hex value 02 in location 0000 (VALl). Step

22 stores the hex value 03 in location 0001 (VAL2). Now we are ready to

run the program. In step 23, the lqol key causes the program to execute

and the result, 05, appears in the right two digits of the address display.

Although the problem appears trivial, it illustrates the basic principles

of entering and executing any program as well as providing a fairly high

assurance level that your KIM-1 module is operating properly.

You should try one more example using your stored program. Repeat

steps 17A to 23 but substitute the value FF for VALl and VAL2 at locations

0000 and 0001. Now when you press the 1°0 1 key, your display should read:

OOFE xx

The answer is correct because:

FF = 1111 1111

+ FF = 1111 1111

FE 1111 1110

Try some more examples if you wish and then let's move on to the rest

of the system.

2.5 ADDING A TAPE RECORDER

In the previous section, you entered and executed a program. If you

turn off the power supplies to the system, your program-is lost since the

memory into which you stored your program is volatile. If you require

the same program again, you would have to repower the system and reenter

the program as in the previous example.

The KIM-1 system is designed to work with an audio cassette tape

recorder/player to provide you with a medium for permanent storage of your

programs or data. The cassette with recorded data may be reread by the

system as often as you wish. In this section, you will connect the audio

cassette unit to the system and verify its operation.

12

The recording technique used by the KIM-1 system and the interface

circuits provided have been selected to insure trouble-free operation

with virtually any type and any quality level audio cassette unit. (We

have demonstrated correct operation with a tape unit purchased for less

than $20.00 from a local discount outlet). In addition, tapes recorded

on one unit may be played back to the system on a different unit if

desired. We recommend, of course, that you make use of the best equip­

ment and best quality tapes you have available.

In selecting a tape unit for use with your KIM-1 system, you should

verify that it comes equipped with the following features:

1. An earphone jack to provide a source of recorded
tape data to the KIM-1 system.

2. A microphone jack to allow recording of data from
the KIM-1 system on the tape.

3. Standard controls for Play, Record, Rewind, and Stop.

Note: You should avoid certain miniaturized tape equipment intended

for dictating applications where the microphone and speaker are enclosed

within the unit and no connections are provided to external jacks. If

such equipment is used, you will have to make internal modifications to

reach the desired connection points.

To connect your tape unit to the KIM-1 module, turn off the power

supplies and remove the connector (A) from the module. Add the wires

shown in the sketch:

1

L

p

MIC
AUDIO DATA OUT (LO)

vss

- EARPHONE
AUDIO DATA IN

1---~AUDIO DATA OUT (HI)

Audio Tape Unit Connections
FIGURE 2.3

13

TAPE
UNIT

Keep the leads as short as possible and avoid running the leads near

sources of electrical interference. The connections shown are for typical,

portable type units. The Audio Data Out (LO) signal has a level of approx­

imately 15 mv. (peak) at pin M. Should you desire to use more expensive

and elaborate audio tape equipment, you may prefer to connect the high

level (1 volt peak) audio signal available at pin P to the "LINE" input

of your equipment.

Return the connector (A) to its correct position on the KIM-1 module

and turn on the power supplies. To verify the operation of your audio

cassette equipment, try the following procedures:

1. Reenter the sample program following the procedures
outlined in the previous section (2.4). Try the
sample problem again to be sure the system is
working correctly.

2. Install a cassette in your tape equipment and REWIND
to the limit position.

3. Define the starting and ending address of the program
be stored and assign an identification number (ID) to
the program.

Press Ke;y:s See On DisEla;y: SteE ti

GQJ xx xx xx 1
~ CQ:J CD CLJ OOFl xx 2
Lill ~~ OOFl 00 3
QQ] OOFl 00 4
o=::J CU CD c:::LJ 17F5 xx 5
CQAJ r::::g::::J CQ=:J 17F5 00 6
~ [Q::Ju=J 17F6 00 7
~ CLJCQJ 17F7 10 8
G:::J LQ::JCQ:J 17F8 00 9
~ ~cu 17F9 01 10
~ 17F9 01 11
CCJITJ~CTI 1800 xx 12

You will recall that the program we wish t~ store on tape was

to

loaded

into locations 0000 to OOOF of the memory. Therefore, we define a start­

ing address for recording as 0000 and store this in locations 17F5 and

17F6 (Steps 4 to 7). We define an ending address for recording as one

more than the last step of our program and stored the value 0010

(= OOOF + 1) in locations 17F7 and 17F8 (Steps 8,9). Finally we pick

an arbitrary ID as 01 and store this value at location 17F9 (Step 10).

Note that before we use the audio cassette unit for recording

or playing back, we must put 00 in location OOFl (Steps 1,2 and 3).

14

The starting address of the tape recording program is 1800. In Steps

11 and 12 we set this address value into the system. If we were to press

~' the system would proceed to load data on to the magnetic tape. But

first, we'd better start the tape~

4. Select the Record/Play mode of the tape recorder. Wait a
few seconds for the tape to start moving and now:

Press ~

5. The display will go dark for a short time and then will
relight showing:

0000 xx

6. As soon as the display relights, the recording is finished
and you should STOP the tape recorder.

Now, you should verify that the recording has taken place correctly.

This can be proven by reading the tape you have just recorded. Proceed

as follows:

1. Rewind the tape cassette to its starting position.

2. Turn off the system power supplies and then later,
turn them back on.

This has the effect of destroying your previously stored program

which you already have recorded on tape.

3. Prepare the system for reading the tape as follows:

Press Keys See On DisElay Step II

~
[AQJ xx xx xx 1
c::ii::J c:o:::::J CE:::] o:::J OOFl xx 2
CQ6:J ~LQJ OOFl 00 3
~ OOFl 00 4
CO CTI CCI CD 17F9 xx 5
~ 17F9 xx 6

c:Do=J 17F9 01 7
~ 17F9 01 8
CL] CLl r::::IJ o::J 1873 xx 9
[QQJ (Dark) 10

15

The KIM-1 system is now looking for tape input data with the ID

label 01. Recall that this is the same ID label we assigned when we

recorded the program.

4. If your tape unit has a volume control, set the control
at approximately the half way point.

5. If your tape unit has a tone control, set the control

for maximum treble.

6. Now, turn on the tape using the PLAY mode. The tape
will move forward and the system will accept the recorded
data. As soon as the data record (ID=Ol) has been read,
the display should relight showing:

0000 xx

You may now stop the tape unit. If the display relights and shows;

FFFF xx

this means that the selected record has been located and read but that an

error has occurred during the reading of the data. In this case, press

the ~ key and repeat the read tape procedures from the beginning. If

the FFFF still shows on the display, repeat the entire recording and play­

back procedures checking each step carefully. If the problem persists,

refer to Appendix C, (In Case of Trouble).

If the tape continues to run and the display does not relight, this

means that the system has been unsuccessful in reading any data back from

the tape. In this case, repeat the entire recording and playback proce­

dures checking each step carefully. If the problem persists, refer to

Appendix C, (In Case of Trouble).

7. Assuming that you have read the tape successfully, you
now may verify that the program has been restored to
memory by trying a sample problem. (02 + 03 = 05)

NOTE: The KIM-1 interface circuits for the audio tape system
are designed so that you do not require special test
equipment to set up correct operating levels. If you
have followed the procedures indicated, the tape system
should work without the need of any adjustments by you.

16

2.6 ADDING A TELEPRINTER

If you have access to a serial teleprinter, you may add such a unit

to the KIM-1 system with very little effort. One of the more commonly

available units of this type is the Teletype Model 33ASR which we will

use for the purposes of illustration in this section. However, if you

have available different equipment, you may use the information presented

here as a guide to connecting your specific unit. In any case, we recom­

mend you follow the directions offered by the equipment manufacturer in

his instruction manual to effect the desired wiring and connection options.

The KIM-1 provides for a 4 wire interface to the TTY. Specifically,

the "20 MA loop" configuration should be used and you should check that

your TTY has been wired for this configuration. If not, you may easily

change from "60 MA loop" to "20 MA loop" configurations following the

manufacturers directions. The KIM-1 has been designed to work properly

only with a teleprinter operating in full duplex mode. Check the

literature supplied with your teleprinter if you are unsure if your

unit is properly configured. You are not restricted to units with specific

bit rates (10 CPS for TTY) since the KIM-1 system automatically adjusts

for a wide variety of data rates (lOCPS, 15CPS, 30CPS, etc.).

To connect the TTY to the system, proceed as follows:

1. Turn off system power and remove connector (A) from

the module.

2. Add the wires shown in the sketch to connector (A) and

to the appropriate connector on the TTY unit.

17

TTY
DATA
OUT

TTY
DATA
IN

I
+5V. (A) TS J2

PRINTER RETURN -· • r---,
I

22.MA)

7 8 ~
I

6 7 I
PRINTER I • • L---..J

RETURN TTY ASR 33 -· • ,..---,
I

2~MA)
3 5 I

I
4 6 I

I -· • L---.J

KIM

TS J2

' OR
T

PICK
ONE ~~--- ;}KB

l EXTERNAL SWITCH
EITHER MODE

I

TO SELECT

JUMPER FOR TTY OPERATION

TTY Connections
FIGURE 2.4

3. The jumper wire from A-21 to A-V is used to define for the
KIM-1 system that a teleprinter will be used as the only
input/display device for the system. If you expect to use
both TTY and the KIM-1 keyboard/display, you should install
the switch shown instead of the jumper. Now, the switch,
when open, will allow use of the keyboard and display on
the KIM-1 module and, when closed, will select the tele­
printer as the input/display device. (Of course, you may
use a clip-lead instead of the switch if you desire).

4. Be sure pins A-21 and A-V are connected.
nector (A) and return power to the system.

Reinstall con­
Turn-on the TTY.

5. Press the ~ key on the KIM-1 module then press

the~ key on the TTY. This step is most important
since the KIM-1 system adjusts automatically to the
bit rate of the serial teleprinter and requires this
first key depression to establish this rate.

18

If everything is working properly you should immediately observe a

message being typed as follows:

KIM

This is a prompting message telling you that the TTY is on-line and the

KIM-1 system is ready to accept commands from the TTY keyboard.

Should the prompting message not be typed press the ~ key on the

KIM-1 keyboard and then the @ key on the TTY. If the "KIM" message

still is not typed, recheck all connections and the TTY itself and try

again. If the problem persists, refer to Appendix C, (In Case of Trouble).

6. Assuming that the TTY is operable, you may now try a simple
group of operations to verify correct system operation:

Press Keys

@@@®
lWACT1
(!)@(!)

©©0
@
@

See Printed

KIM
xxxx xx
0002
0002 xx

18.
0003 xx

AS.
0004 xx
0003 A5

KIM
xxxx xx

Step II

1
2
3
4
5
6
7
8

9

Step 1 shows the "KIM" prompting message. In Step 2, an address

(0002) is selected followed by a space key in Step 3. The address cell

0002 together with the data stored at that location (xx) is printed.

Step 4 shows the "modify cell" operation using the(!) key and the hex

data keys preceding. Step 5 shows the incrementing to the next address

cell (0003) after the (!) key. Note that the modification of cell 0002

also occurs. Steps 6 and 7 show the modification of data in cell 0003

and the incrementing to cell 0004. Step 8 shows the action of thee key

in backing up one cell to 0003 where we can see from the printout that

the correct data (AS) has been stored at that location. Step 9 shows the

reaction to the® key in resetting the system and producing a new "KIM"

prompting message. Note, by the way, that in this example you have

repeated a portion of the program entry exactly as you did in Section 2.4

but this time using the TTY.

19

So much for now! If all of the operations have occurred properly,

you may be certain that your TTY and KIM-1 module are working together

correctly. We will describe in detail all of the other operations pos­

sible with the TTY in a later section of the manual.

If you have reached this point without problems, you now have

completed all of the required system tests and may be confident that

the KIM-1 module and your peripheral units are all working correctly.

Our next task is to learn more about the KIM-1 system and its operating

programs.

20

CHAPTER3

THE KIM-1 SYSTEM

Up to this point you have been engaged in bringing up your KIM-1

system and verifying its correct operation. Now it's time to learn more

about the various parts of the KIM-1, how the parts work together as a

system, and how the operating programs control the various activities of

the system. The diagrams included in this section together with your

full sized system schematic will be helpful in understanding the elements

of your KIM-1 module.

3.1 KIM-I SYSTEM DESCRIPTION

Figure 3-1 shows a complete block diagram of the KIM-1 system. You

should note first the presence of the MCS 6502 Microprocessor Array which

acts as the central control element for the system. This unit is an 8

bit microprocessor which communicates with other system elements on three

separate buses. First, a 16 bit address bus permits the 6502 to address

directly up to 65,536 memory locations in the system. Next, an 8 bit,

bidirectional data bus carries data from the 6502 array to any memory

location or from any memory location back to the 6502 array. Lastly, a

control bus carries various timing and control signals between the 6502

array and other system elements.

21

Associated with the 6502 array is a 1 MHz crystal which opera~es with

an oscillator circuit contained on the 6502 array. This crystal control­

led oscillator is the basic timing source from which all other system

timing signals are derived. In particular, the ~2 signal generated by

the 6502 array and used either alone, or gated with other control signals,

is used as the system time base by all other system elements.

The 6502 microprocessor is structured to work in conjunction with

various types of memory. In the KIM-1 system, all memory may be consid­

ered to be of the Read-only (ROM) or Read/Write (RAM) variety. The ROM

portion of the memory provides permanent storage for the operating progams

essential to the control of the KIM-1 system. You will note the inclusion

of two devices, labelled 6530-002 and 6530-003. Each of these devices

include a 1024 byte (8 bits per byte) ROM with different portions of the

operating program stored permanently in each ROM.

RAM type memory is available at three locations in the system.

Again, each of the 6530 arrays include 64 bytes of RAM primarily used for

temporary data storage in support of the operating program. In addition,

a separate 1024 byte RAM is included in the KIM-1 system and provides

memory storage for ·user defined application programs and data.

Input/output controls for the system also are included within the

6530 arrays. Each 6530 array provides 15 I/O pins with the microprocessor

and operating program defining whether each pin is an input pin or output

pin, what data is to appear on the output pins, and reading the data appear­

ing on input pins. The I/O pins provided on the 6530-002 are dedicated to

interfacing with specific elements of the KIM-1 system including the key­

board, display, TTY interface circuit, and audio tape interface circuit.

The 15 I/O pins on the 6530-003 are brought to a connector and are avail­

able for the user to control a specific application.

22

Finally, each 6530 array includes an interval timer capable of count­

ing a specific number of system clocks to generate precise timing gates.

The exact time interval is preset under program control. The interval

timer on the 6530-003 array is available for a user defined application

program and is not required by the operating programs.

Figure 3-1 shows a major block labelled Control Logic. Included

under this category are an address decoder used for generation of chip

select signals for the 6530 arrays and the static RAM. Also included is

the logic required to debounce the keys for system reset (RS key) and pro­

gram stop (ST key). Lastly, special logic is included to allow operation

of the system in a "single instruction" mode to facilitate program de­

bugging.

Figure 3-1 shows the keyboard/display logic interfacing with the 1/0

pins of the 6530-002. Also shown are the interface circuits for trans­

mission of data to and reception of data from the TTY and audio tape units.

Figure 3-2 shows the detailed interconnections between the MCS 6502

and the two MCS 6530 arrays.

Figure 3-3 shows detailed logic and schematics for the control logic.

Figure 3-4 shows a detailed schematic of the static RAM.

Figure 3-5 and 3-6 show the detailed schematic of the keyboard and

display logic and circuits.

Figure 3-7 details the schematic of the TTY interface circuits.

Figure 3-8 details the schematic of the audio tape cassette interface

circuits.

Figures 3-9 and 3-10 provide a summary of all signals available on

either the Application connector or the Expansion Connector.

The fold-out system schematic shows all of the elements of the system

connected together and all signals appearing on the module connectors.

You may refer to the Hardware Manual included with your KIM-1 module

for additional details on the operating characteristics of the 6502 and

6530 arrays as well as detailed information on system timing.

23

6502 V"- ... CONTROL
MPU [\.. LOGIC ,,.

• ~ A

-I\ ~
v I\..

KEYBOARD
6530-002 AND

DISPLAY
REMOTE,... .____ --"' /' ... V""

~ ,/ v ~ rV 1\,- "V

KEYBOARD

IO (/)
TTY KYBD (/) I~ -- m

~ <(
TTY KYBD RTN

I "' •c11-.1\ TTY
IS\ m _, a::~ INTERFACE TTY PTR co 0 0 llJ <(

I a:: J: ... a.. TTY PTR RTN IS\ z
1ffi fl) m 0 :::> 0 0 a.. m

(/)

fl) :::>
fl) m AUDIO OUT (HI) •
w --!\ A --..
a:: <(

L::> AUDIO TAPE 0 ... -v v AUDIO OUT(LO) _
0 ,~ INTERFACE

--..
<(

6530-003 AUDIO IN

~ -'\ /' ..
APPLICATION I/O BUS (15 I/O LINES))I ,____....,

-v v "V

......_ _a.

.....-- -v IK·8 RAM

~ MEMORY
"\I
--!\
-,/

'? ·v v
EXPANSION CONNECTOR

KIM-I Block Diagram
FIGURE 3.1

24

0::
0
u
w z z
0
u

z
0
....
<(
u
..J
a.
a.
<(

~

~~Fr~
>

0
0:

R(:y 2

UI 01
3

MPS 6502 IRQ
4

NMI
6

SYNC 7

R/W 34

37
0 - N ~ V ~ W ~ 00 m Q = ~ ~ ! ~ O - N ~ ¢ ~ W ~ I-

XTAL
m ~02 39
< ~ < < < < < ~ ~ < < < ~ ~ ~ ~ c o o o o o a o

i111111j11~11111~l1111111~l

~

~
m
~

~

I
0 m
m c
~ I - 0 m

c (/) (/) - :::> :::> m m
(/)

:::> ..J (/) m (/) 0
w 0::
0:: ~ I-
c ~ z
c 0
~ c u

I

J
t~~~~fil~~ ~~i~i~Ufil~filfil~filfilfildtl ~ "'

~ v ~ ~ - 0 ~ ~

~~~t!;~~~ ' .., .., 

EXPANSION CONNECTOR 

> 

"' 

IB 

.--'2--
~ 
r-!-L 
t-E-
t-'-'---1 
~ 
i----J!.-.., 
~ 
~ 
~ 

16 

~ 
i---E-1 
~ 
~ 
~ 
~ 
i--E--1 
~ 

3 

9 

18 

~ 
rJ-1---
i---J2-
rE-
~ 
t---".'!-
t---1'----
t---2---
r-L 
..__2___ 

~ 
r--R-
t--2!-
t----2-9--
~ 
~ 
i---£l-
~ 

16 

3 

9 

Detailed Block Diagram 
FIGURE 3.2 

25 

CONTROL 
LOGIC 

~ 
"' 

~ ,;, :;; N <t .. "' I'-

"' " "' "' "" "" "" KG 

lllllJ 
( 

K5 RS PAO 
2 

ABO PAI 40 

ABI PA2 
39 

AB2 PA3 
3B 

KEYBOARD 
AB3 PA4 

37 a 
AB4 PA5 

36 
DISPLAY 

AB5 PA6 
35 

AB6 PSI 
24 

AB7 
23 

PB2 

ABB PB3 
22 

AB9 P84 
21 

RST 

DBO U2 
DB I MPS 
DB2 6530-002 
DB3 

DB4 

D85 

DB6 PB5 19 

17 TAPE a DB? P87 

0 2 PBO 
25 TELETYPE 

R/W PA7 
34 

10 T 
vcc 

KS RS 4 

ABO 

ABI 

AB2 
PAO 

2 
A-14 

AB3 
PA I 

40 
A- 4 a: 

AB4 
PA2 39 A-3 

0 
I-

AB5 
PA3 

3B 
A-2 (.) 

AB6 37 w 
PA4 A-5 z 

AB? 
PA5 36 A-6 ~ ABB 
PA6 35 A-7 (.) 

AB9 
PA? 34 A-B 

DBO 
PBO 25 A-9 z 

DBI 
PBI 24 A-10 0 

DB2 23 A-11 
j:: 

P82 ct 
DB3 

PB3 
22 

A-12 ~ 
DB4 

PB4 
21 A-13 

...J a.. 
085 

PB5 
19 A-16 a.. 

OB6 17 ct 
U3 PB7 A-15 

OB? 

RST MPS 
02 6530-003 
R;W 

vcc r l 
IK RAM 

_.-- RAM- R/W 

--i= 
R/W 

K0 



N 
0 
IC> 
<D 

SYNC~-----...-------------------------------~ 

-lRQ 

ROY 

NMI 

RST 

--------
R3 ~ 

vcc 
~ R4 _... ... w..,-. RI 

~ 14 1Jo 
~---__,,__.__. ...... ___ ~ 
,_.§.. u 2 5 ._!.--

055 6 µ ~ 
SST- SLIDE SWITCH 

0 LOCATED ON KEYBOARD 
CLOSED= SST 

7 

1~ j~ 

6 

I U26 
I 

5 4 

A 

R7 

vcc 

FROM U2 
PrN 4 

RS 

'l --

•._--11 \------ill~ ...... 
-Rl2 >Rl3 
~ R24 _:25 _,?> 

.....__--r<>~ RS KEYS LOCATED 

VCC ON KEYBOARD 

ABIO ~-... --+--+---ll--1--t--+------------+----------, 
ABll .. -=-._-+--f---ll--1--+-+------------+--------, 

ABl2 ~-._--+--+---ll--+--+--+------------t-------, 

( Pl N 3 ) 0 I .. =-._-+--f---ll--1--+-+------------. 

R53 

rm--i ~8 
<PIN 31 > xTAL a._ .... -4-4-l~~~+-+----4~T ... --1w---.,Jo, 

HIP c: vcc 
XI T 02 -

R/W ... ~!---+--+--+-+-+--+-~--. 

v 
l 

U16 v 
Ul6 

-vNco,..,!::::: 
i!. Ji i!. iL .1 .1 

?$4 

5 

~ 
6 

> ~ 
I I 

I.LI I.LI 

10 

U1 
( U151 

< ~ 
~ 
:1; 
<C N I"' 
a::,~ -s;~ ~ 

IN 
I 

I.LI 

::> >- IC) co 
I I I I 

I.LI I.LI I.LI I.LI 

EXPANSION CONNECTOR 

CONTROL BUS 

Control and Timing 
FIGURE 3.3 

26 

I.LI 
..J 
ID 
<l z 
I.LI 

12 13 14 15 
D C B A 16 ---.,Jr:JV lC C 

U 4 74LS 145 

lo1 06 05 04 03 02 01 ooh 
97654321 

J:LL.LLIQUID 
I I I I I J. 

<l <l, <l <l <l .... 

APPLICATION CONNECTOR 



H 

H 

H 

.......... 

......, 

H 
(/) u ~ 
(/) u '(/) ..... 
> > u a:: 

t--1 

R39 t 9 
10 
13 
3 

.r- ' ' , , 

CONTROL BUS 

10 

D OUT 12 9 14 
U-5 
(6102) D IN II 

13 
12 12 14 

U-6 
(6102) 11 

4 
12 5 14 

U-7 
(6102) 11 

I 

12 2 14 
U-8 
( 6102) II 

IO 

12 9 13 
U-9 
(6102) II 

13 
12 

U-lO 
1213 

(6102) 11 

4 
12 5 13 

U-1.l 
(6102) II 

I 

12 2 13 
U-12 
(6102) 11 

cJ) U> ,._ <O IC) 'Ir ~ N - & 
<( <( <( <( <( <( <( <( <( <( 

~ IC) <O - N I'- <O I() ~ U> 

I 2 
16~ 

, ' Ir , '' , Ir ' ' , Ir , Ir • Ir , Ir ,. 

ADDRESS BUS 

1Kx8 RAM Memory 
FIGURE 3.4 

27 

e --

J 

11 _.... 

J 

6_...._ 

J 

3 ...... 

J 

a ..... 

J 

I~ 

J 

6 --

J 

3 ..... 

J 

5 

4 

6 
15 

,., ' , Ir , ' , ' , , , 
S N~•IOCOl'­
ID ID ID CD0 CD CD CD CD 
0 0 0 0 0 0 0 

DATA BUS 



::> 
m 

u 24 ( 74145) 
...J PBI ~A 
ct PB2 ~B 
~ PB3 ~C 
it PB4 ~ 0 ro N - o <t in U> ,.._ IX> <JI 

0000 0 0 0 0 0 0 

~ ~4 3 21~1 I---rI~IT.=---7 ........,..__I ----.-Io_____,~________.,16 t 
Q. R41 R42 R43 R44 < R45 : 6 

vyc < 

...J 
ct 
0:: 
w 
I 
Cl. 

0:: 
w 
Cl. 

PAG 

1 I... ... I ... t R R R 
19 20 21 

~~ ~~ 

u 21 I 
SG 

UIS lJ 19 u 20 

>R28 
R32 

> 
R29 R31 R30 

> 
R27 

> 
3 

U26 
8 6 10 4 12 

2 I 

R R 
22 23 

I I ~ /_/ 
I I ~ I I 
U22 u 23 

SA 

R26 

2 

COL G IN 
~-+~~~~~~--~~-+~~~+--~~-+-~~--+-~~-+~~~o--~~~--<A-W 

1---+~~~~~~~~~-wo--~~+--~~-t--~~-+-~~-+~~~1--~C~O~L-F--'IN"'--IA-IS 

z 
0 

I­
<( 

~-+~~~~~~~~~~--~--<--~~-+-~_~--+-~~---+~~~o--~C~O~L~E~IN"--'·A- 20 ~ 
1---+~~~~~~~~~~~~~~~~----~~-+-~~-+~~~1--~C~O=L~D:.....;,.;.IN~A-22 ~ 

COL C IN <( 
l---+~~~~~~~~~~~~~~~~~~~---~~-+~~~1----'-"'----'"'--IA-Y 

PAS 

PA4 

PA 3 

PA2 

PAI 1---+~~~~~~~~~~~~~~~~~~~~~~--.~~~1---C_O_L_B~IN'--iA-lg 

PA0 l---+~~~~~~~~~~~~~~~~~~~~~~~~~--4.__~C~O~l~A--'IN"'--IA-21 

ROW3 1----t1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--IA-V 

Keyboard and Display 
FIGURE 3.5 

28 



(6) 
ST 

(8) 
RS 

ST RS 

(12) (2) (4) (9) (14) (3) (5) 
PA6 PA5 PA4 PA3 PA2 PAI PA0 

2 4 6 8 10 12 14 
I 0 3 O 5 0 7 0 9 0 11 O 13015 
0 0 0 0 0 0 0 0 

GO ST 

AD DA 

c D 

8 9 

4 5 

0 I 

SST 
RS CJo N 

PC + 

E F 

A 8 

6 7 

2 3 

Keyboard Detail 
FIGURE 3.6 

29 

.-----33GG (10) 
\60N 

SST l? 
..__----25TT (II) 



CONT 
TTY 

I/O 

N P85 
0 
0 
6 
M 
LO c.o 

0 
t-

PA7 
CJ) 
::) 

m 

_J 
<( 
0:: 
LL.I 
::c: 
a.. 
0:: 
LL.I 
0.. 

PB0 9 

AND TAPE 

CONTROL 

U16 

9 

U15 

12 

8 
U26 

vcc 

1' 
TTY 

R47 

CR6 
TTY 

TTY liJterface 
FIGURE 3.7 

30 

A-A 

TTY KYBD 
RTRN (+) A-R 

R49 ex 
0 
t-

RETURN 0 
PATH UJ z z 

R48 0 
CR7 

0 

6.2 v. A-S - TTY PTR z 
RTRN (+) 0 

~ 
<( 

KYBD 0 
A-T :J 

Q. 
Q. 
<( 

C5 CR5 

A-I 

-

PTR A-U 



vcc 

Cl) 
::> 
m 

..J 
c( 

10 
8 

U15 
0: 
w 9 
:I: CON 0.. 

0: 
w 
0.. 

II 
U26 

13 

C14 

7 

R51 

R40 

Rl6 
vcc 

8 

10 

R15 

U27 

LM565 CR2 

2 

Audio Tape Interface 
FIGURE 3.8 

31 

-
AUDIO OUT (LO) A-M 

0: 
AUDIO OUT (HI) 0 

A-P .... 
0 
w 
z 
z 
0 
0 

+ 12 v. A-N z 
0 

C7 .... CR4 <l 
0 

AUDIO ...J 
A-L 0.. 

CR3 IN 0.. 
<l 

+II V. 

C6 

vcc 
CRI 

RS 
Rl4 



22 KB Col D 

21 KB Col A 

20 KB Col E 

19 KB Col B 

18 KB Col F 

17 KB Row 0 

16 PBS 

15 PB7 

14 PA0 

13 PB4 

12 PB3 

11 PB2 

10 PBl 

9 PB0 

8 PA7 

7 PA6 

6 PAS 

5 PA4 

4 PAl 

3 PA2 

2 PA3 

1 vss GND 

~ 

y 

x 
w 
v 
u 
T 

s 
R 

p 

N 

M 

L 

K 

J 

H 

F 

E 

D 

c 
B 

A 

Application Connector 
FIGURE 3.9 

32 

KB Row 1 

KB Col c 
KB Row 2 

KB Col G 

KB Row 3 

TTY PTR 

TTY KYBD 

TTY PTR RTRN(+) 

TTY KYBD RTRN(+) 

AUDIO OUT HI 

+12v 

AUDIO OUT LO 

AUDIO IN 

DECODE ENAB 

K7 

K5 

K4 

K3 

K2 

Kl 

K0 

VCC +5v 



22 VSS GND 

21 vcc +s 
20 

19 

18 

17 SST OUT 

16 K6 

lS DB0 

14 DBl 

13 DB2 

12 DB3 

11 DB4 

10 DBS 

9 DB6 

8 DB7 

7 RST 

6 NMI 

s RO 

4 IRQ 

3 01 

2 RDY 

1 SYNC 

~ 

y 

x 
w 

v 
u 

T 

s 
R 

p 

N 

M 

1 

K 

J 

H 

F 

E 

D 

c 
B 

A 

Expansion Connector 
FIGURE 3.10 

33 

RAM/R/W 

02 

PLL TEST 

R/W 

R/W 

02 

ABlS 

AB14 

AB13 

AB12 

ABll 

ABlO 

AB9 

ABS 

AB7 

AB6 

ABS 

AB4 

AB3 

AB2 

ABl 

AB0 



3.2 KIM-1 MEMORY ALLOCATION 

It has been stated that the 6502 microprocessor array included in 

the KIM-1 system is capable of addressing any of 65,536 memory locations. 

Obviously, we have not included that much memory in your KIM-1 system and 

this section is intended to detail for you exactly what memory locations 

are included in the system and where they are located (their exact 

addresses). 

Each byte of memory in the system is understood to include 8 bits. 

Also, you should note that any addressable location in the system may be 

performing any one of four functions: 

1. A ROM byte - read-only memory in which we have stored the 
operating program. 

2. A RAM byte - read/write memory for storage of variable data. 

3. An 1/0 location - these locations include both direction 
registers which define the 1/0 pins to be either input pins 
or output pins, and the actual data buffer locations contain­
ing the data to be transmitted on output pins or the data 
read from input pins. Any I/O location may be viewed as a 
read/write memory location with a specific address. 

4. An Interval Timer location - a series of addresses are 
reserved for each interval timer in the system. Again, you 
may write to the timer to define its counting period or read 
from the timer to determine its exact state. 

Figure 3-11 shows a block diagram detailing all memory blocks in the 

KIM-1 system. Figure 3-12 provides a memory map showing all addressable 

locations included in the system and their relationship to each other. 

Note also the areas in the memory map indicated as available for expansion. 

(Section 6 of the manual provides more detail on the subject of memory 

expansion). Finally, Figure 3-13 provides a complete listing of all impor­

tant memory locations and will be referenced frequently by you when writing 

your application programs. 

34 



Referring to Figure 3-12, note that the memory map shows a block of 

8192 address locations all existing in the lowest address space within 

the possible 65,536 address locations. This address space is further 

divided into eight blocks of 1024 locations each. Each 1024 block is 

further divided into four pages of 256 locations each. The "K" 

reference defines a specific block of 1024 locations and refers to the 

"K" number of the address decoder included within the system control 

logic. The "page" reference defines a specific group of 256 addresses. 

A total of 32 pages (O to 31) are included in the 8192 address locations. 

The hex codes for certain addresses are shown at strategic locations in 

the memory map. 

Beginning from the highest address location of the 8192, note that 

the first 1024 block (K7) is assigned to the ROM of the 6530-002 and the 

second 1024 block (K6) is assigned to the ROM of the 6530-003. The entire 

operating program of the KIM-1 system is included in these two blocks. 

Next in order, a portion of the KS block is dedicated to the RAM, 

I/O, and Timer locations of the two 6530 arrays. An expanded view of 

this address space is shown in Figure 3-12. Note that the RAM addresses 

for the 6530-002 (Hex 17EC to 17FF) are reserved for use by the operating 

program and should not appear in a user generated application program. 

The same is true for the I/O and Timer locations of the 6530-002 which 

also are reserved for use by the operating programs. 

The next four blocks in order (K4, K3, K2, Kl) are reserved for 

additional memory in an expanded system. In Section 6, the methods for 

adding memory will be discussed. 

Finally, the lowest 1024 address locations (KO) are assigned to the 

static RAM included within the KIM-1 system. You should note that within 

this block, Page 0 and Page 1 have special significance. Page 1 is used 

as the system stack onto which return addresses and machine status words 

are pushed as the system responds to interrupts and subroutine conunands. 

Page 0 has significance for certain of the special addressing modes avail­

able when progranuning for the 6502 microprocessor array. 

35 



Figure 3-12 shows an expanded view of Page 0 and Page 1. Note that 

17 addresses (OOEF to OOFF) are reserved for use by the operating program 

and must never appear in the user generated application program. Also, 

note the comment that a maximum of eight locations may be required on the 

stack (Page 1) to service operating program interrupts. 

In summary, the user generated application program may make use of 

the following areas of memory: 

1. All of Page 0 except OOEF to OOFF 

2. All of Page 1 (remember that the stack will extend an 
extra 8 bytes deep to accommodate the operating program). 

3. All of Page 2 and Page 3. 

4. In Page 23: 

- All I/O locations from 1700 to 173F 

- All 64 bytes of RAM from 1780 to 17BF 

- An additional 44 bytes of RAM from 17CO to 17EB 

36 



~ ~ 
1024 1024 

BYTE BYTE 

ROM ROM 
6502 
MPU IFFF IBFF 
ARRAY 

TO TO 

ICOO 1800 

6530-002 6530-003 

0 (},. 

K 
~ ~ 

... 

ADDRESS BUS (AB0-ABl5) 

j v 
64 64 

BYTE BYTE 

RAM RAM 

17FF 17BF 

TO TO 

17CO 1780 

6530-002 6530-003 

.() 

v 
DATA 

('). 

~ 
BUS (DB0- DB7) 

Memory Block Diagram 
FIGURE 3.11 

"'J 
-v-1 

v \.1 ~ 
I/O 6 I/O & 1024 

TIMER TIMER BYTE 

RAM 

177F 173F 03FF (E) 

TO TO TO 

1740 1700 0000 

6530-002 6530-003 8 x 6102 

0 T'> I). 

Q -...1 v -"'\ 
~ 



II K" 

K7 

K6 

K4 

K3 

K2 

Kl 

K0 

PAGE 

31 
30 
29 
28 

27 
26 
25 
24 

23 
22 
21 
20 

19 

18 
17 
16 

15 
14 
13 
12 

11 
10 
9 
8 

7 
6 
5 
4 

3 
2 
I 
0 

AVAILABLE 
FOR 

EXPANSION 

+ 
KIM 
ROM 

6530-002 

KIM 
ROM 

6530-003 

t----- _, 
STACK t------
PAGE 0 

FFFF 

.11 

I 
2000 HEX I 
FFF I 

I 
I 

I 

I 
ICOO I 
I BFF I 

I 
1800 I 
17FF 

I 
I 

I 

I 
I 

I 

LZQQ_ _____ _ 

1400 
13FF 

DECODED 
FOR 4K 
EXPANSION 

I 
I 

I 
I 

I 
I 

I 

I / 
I / 

0400 / / 
03FF I / 

0200/// 
OIFF / 

64 BYTE 
RAM 
6530-002 

64 BYTE 
RAM 
6530-003 

I/O 8 
TIMER 
6530-002 

I/O 8 
TIMER 
6530-003 

STACK 

PAGE I 

PAGE 0 

0000 _______ ...__ ___ _ 

Memory Map 
FIGURE 3.12 

38 

17FF } KIM RAM 
17E7 
17E6 

l7CO APPLICATION 17BF 
RAM 

1780 

177F } 

1740 

KIM I/O 

173F } APPLICATION 
I/O 

1700 

OIFF I 
STACK 
POINTER 
INITIALIZED 

OOFF I 
OOEF 
OOEE 

17 BYTES 
RESERVED 
FOR KIM 



ADDRESS 

OOEF 

OOFO 

OOFl 

OOF2 

OOF3 

OOF4 

OOF5 

1700 

1701 

1702 

1703 

1704 

l 
170F 

17F5 

17F6 

17F7 

17F8 

17F9 

17FA 

17FB 

17FC 

17FD 

17FE 

17FF 

1800 

1873 

lCOO 

17F7 

17F8 

AREA 

t 
Machine 
Register 
Storage 
Buffer 

! 
t 

Application 
I/O 

t 
Interval Timer 

l 
t 

Audio Tape 
Load & Dump 

! 
l 

Interrupt 
Vectors 

! 
+ Audio Tape 

+ 
STOP dy +SST 

~ 
.6. 

Paper Tape 
DumP. (Q) • 

LABEL 

PCL 

PCH 
p 

SP 

A 

y 

x 

PAD 

PADD 

PBD 

PBDD 

SAL 

SAR 

EAL 

EAR 

ID 

NMIL 

NMIH 

RSTL 

RSTH 

IRQL 

IRQH 

DUMPT 

LOADT 

EAL 

EAH 

FUNCTION 

Program Counter - Low Order Byte 

Program Counter - High Order Byte 

Status Register 

Stack Pointer 

Accumulator 

Y-Index Register 

X-Index Register 

6530-003 A Data Register 

6530-003 A Data Direction Register 

6530-003 B Data Register 

6530-003 B Data Direction Register 

6530-003 Interval Timer 
(See Section 1.6 of 
Hardware Manual) 

Starting Address - Low Order Byte 

Starting Address - High Order Byte 

Ending Address - Low Order Byte 

Ending Address - High Order Byte 

File Identification Number 

NMI Vector - Low Order Byte 

NMI Vector - High Order Byte 

RST Vector - Low Order Byte 

RST Vector - High Order Byte 

IRQ Vector - Low Order Byte 

IRQ Vector - High Order Byte 

Start Address - Audio Tape Dump 

Start Address - Audio Tape Load 

Start Address for NMI using KIM 
"Save Machine" Routine (Load in 
17FA & 17FB) 

Ending Address - Low Order Byte 

Ending Address - High Order B_y_te 

Special Memory Addresses 
FIGURE 3.13 

~9 



3.3 KIM-I OPERATING PROGRAMS 

Figure 3-14 shows a simplified flow chart of the KIM-1 operating 

programs. This section provides a brief explanation of these programs 

to assist you in understanding the various operating modes of the 

system. 

First, you should note that when power is first applied to your 

KIM-1 module and the ~(reset) key is depressed, control of the system 

automatically is assumed by the operating program. This is true, as well, 

for any succeeding depression of the reset key. 

For each depression of the reset key, the system is initialized. 

At this time, stack pointer values are set, the I/O configuration is 

established, and essential status flags are conditioned. Next the 

program determines whether the system is to respond to TTY inputs or 

is to operate with the keyboard and display on the KIM-1 module. 

If the TTY mode has been selected, the program halts and awaits a 

first key depression from the TTY (the Rubout Key). Upon receipt of this 

key depression, the program automatically performs a bit rate measurement 

and stores the correct value for use in receiving and decoding succeeding 

data transfers from the TTY. Note that this bit rate measurement is per­

formed after each depression of the reset key. 

The program will proceed innnediately to a routine causing the 

prompting message ("KIM") to be typed on the TTY. Now, the program halts 

at the loop called "Get Character". As each key is depressed on the TTY, 

the coded data is accepted and analyzed in the routine called "Execute Key". 

The various keys depressed will cause the program to branch to the appro­

priate subroutines required to perform the desired operation. Upon com­

pletion of the individual key executions, the program returns to the "Get 

Key" loop and awaits the next key depression. 

40 



NM I (ST) 

SAVE MPU 
REGISTERS 

PRINT 
KIM 

GET 
CHARACTER 

TTY 

EXECUTE 
KEY 

KB 

KB 

HEX 

G 
SPACE 
CR 
LF 
RO 
Q 

L 

PROCESS 
G/RUN KEYS 

EXIT 

RST (RS) 

INITIALIZE 

TTY 

BIT RATE 
MEASURE MEN 

KB 

DISPLAY 
CELL 

NO KEY 

DISPLAY 
CELL 

NO KEY 

GET KEY 

RUN EXECUTE 
KEY 

DISPLAY 
CELL 

NO KEY 

Flow Chart 
FIGURE 3.14 

41 

HEX 
GO 
PC 
AD 
DA 

+ 

IRQ 

y 
USER OPTION 

1873 HEX 

AUDIO-TAPE 
LOAD MEM 
FROM TAPE 

1800 HEX 

AUDIO-TAPE 

DUMP MEM 
TO TAPE 

(0-F) 



Exit from the TTY processing loop will occur in response to: 

1. A depression of the reset key, 

2. A depression of the G key which initiates execution of 
the application program, or 

3. A change in the mode from TTY to Keyboard/Display. 

If, after system reset and initialization, the Keyboard/Display 

mode (KB) is determined to be in effect, the program will proceed dir­

ectly to display, and keyboard scan routines. The program will cause the 

display scan to occur continuously ("Display Cell") until one of the keys 

on the keyboard is depressed (AK?). Key validation is performed during 

an additional scan cycle. If the key is truly depressed (not noise), the 

program proceeds to the routine called "Get Key" in which the exact key 

depressed is defined. Next, the program moves to the "Execute Key" 

routine where branches to appropriate execution routines will be per­

formed. Finally, after key execution, the program returns to the "Display 

Cell" routine and waits for the key to be released. When no key is de­

pressed, the program returns to the normal "Display Cell" routine and 

awaits the next key depression. 

In either the TTY or KB modes, the audio tape load or dump routines 

may be executed using appropriate commands from the selected keyboards. 

In either case, completion of the tape load or dump routine allows the 

program to return to the "Start" position which will, as usual, activate 

the KIM-1 display or cause the "KIM" prompting message on the TTY. 

You should note the use of the Stop key to activate the non-maskable 

interrupt input (NMI) of the 6502 microprocessor array. Depression of 

this key causes an unconditional termination of program execution, a 

saving of machine status registers on the stack, and a return to the 

control of the operating program. 

A second interrupt input is available and referred to as IRQ. This 

interrupt may be defined by the user and will cause the program to jump to 

any location defined by the user in his program. 

42 



CHAPTER4 

OPERATING THE KIM-1 SYSTEM 

Now that you have a better idea of what is included in your KIM-1 

system and haw it operates, its time to provide you with detailed pro­

cedures for all of the operations you can perform with the system. We 

will separate our operating procedures into three areas giving specific 

direction for the use of the KIM-1 keyboard and display, the audio tape 

recorder, and the serial teleprinter (TTY). 

4.1 USING THE KIM- I KEYBOARD AND DISPLAY 

A brief study of your keyboard shows a total of 23 keys and one 

slide switch. First, let's list the purpose of each key: 

~To 0 - Sixteen keys used to define the hex code 
of address or data 

selects the address entry mode 

selects the data entry mode 

increments the address by +l but does 
not change the entry mode 

recalls the address stored in the Program 
Counter locations (PCH, PCL) to the display 

causes a total system reset and a return to 
the control of the operating program 

IGol - causes program execution to begin starting 
at the address shown on the display 

~ - terminates the execution of a program and 
causes a return to the control of the 
operating program 

43 



You have seen in an earlier chapter that the six digit display in­

cludes a four digit display of an address (left four digits) and a two 

digit display of data (right two digits). 

Using only the KIM-1 keyboard and display, you may perform any of 

the following operations: 

1. Select an Address 

Press jAol followed by any four of the hex entry keys. 
The address selected will appear on the display. If an 
entry error is made, just continue to enter the correct 
hex keys until the desired address shows on the display. 
Regardless of what address is selected, the data field of 
the display will show the data stored at that address. 

2. Modify Data 

After selecting the proper address, press !oAI followed by 
two hex entry keys which correctly define the data to be 
stored at the selected address. The data entered will 
appear in the data field of the display to indicate that 
the desired code has already been entered. 

Note that it is possible for you to'~select an address of 
a ROM memory cell or even the address of a memory cell that 
does not exist in your system. In these cases, you will not 
be able to change the data display since it is clearly not 
possible for the system to write data to a ROM cell or a 
non-existent memory location. 

3. Increment the Address 

By pressing the ~ key the address displayed is auto­
matically increased by +l. Of course, the data stored at 
the new address will appear on the display. This operation 
is useful when a number of successive address locations must 
be read or modified. Note that the use of the 8 key will 
not change the entry mode. If you had previously pressed 
the ~ key, you remain in the address entry mode and a 
previous depression of the joAI means you remain in the 
data entry mode. 

44 



4. Recall Program Counter 

Whenever the NMI interrupt pin of the 6502 microprocessor 
array is activated, the program execution in progress will 
halt and the internal registers of the 6502 are saved in 
special memory locations before the control of the system 
is returned to the operating program. In the KIM-1 system, 
the NMI interrupt may occur in response to a depression of 
the §] key (stop) or, when operating in the Single Step 
mode, atter each program instruction is executed following 
the depression of the @:§] key. 

The ~ key allows you automatically to recall the value 
of the Program Counter at the time an interrupt occurred. 
You may have performed a variety of operations since the 
interrupt such as inspecting the contents of various 
machine registers stored at specific memory locations. 
However, when you press the ~ key, the contents of the 
Program Counter at the time ot the interrupt are recalled 
to the address field of the display. You now may continue 
program execution from that point by pressing the IGol key. 

5. Execute a Program 

Select the starting address of the desired program. Now, 
press the @:§] key and program execution will commence 
starting with the address appearing on the display. 

6. Terminate a Program 

The §] key is provided to allow termination of program 
execution. As mentioned earlier, the §] key activates 
the NMI interrupt input of the 6502 microprocessor array. 

Note: The §] key will operate correctly only if you 
store the correct interrupt vector at locations 17FA and 
17FB. For most of your work with the KIM-1 system, you 
should store the address lCOO in these locations as follows: 

45 



Now, when the NMI interrupt occurs, the program will return to 

location lCOO and will proceed to save all machine registers before 

returning control to the operating program. 

You should remember to define the NMI vector each time the power 

to the system has been interrupted. A failure of the system to react 

to the §] key means you have forgotten to define the NMI vector. 

7. Single Step Program Execution 

In the process of debugging a new program, you will find 
the single step execution mode helpful. To operate in 
this mode, move the SST slide switch to the ON position 
(to your right). Now, depress the IGoJ key for each 
desired execution of a program step. The display will 
show the address and data for the next instruction to 
be executed. Note that in the course of stepping 
through a program, certain addresses will appear to 
be skipped. A program instruction will occupy one, two, 
or three bytes of memory depending upon the type of 
instruction. 1n single instruction mode, all of the 
bytes involved in the execution of the instruction are 
accessed and the program will halt only on the first 
byte of each successive instruction. 

Note: SST mode also makes use of the NMI interrupt of the 
6502 microprocessor array. Again, the NMI vector must be 
defined as described in (6) above if the SST mode is to 
work correctly. 

This covers all of the standard operations you may perform from the 

KIM-1 keyboard. Using combinations of the operations described, you may 

wish to perform certain specialized tasks as follows: 

1. Define the IRQ Vector 

You will recall that a separate interrupt input labelled 
IRQ is available as an input to the 6502 microprocessor 
array. If you wish to use this feature, you should enter 
the address to which the program will jump. The IRQ 
vector is stored in locations 17FE and 17FF. 

2. Interrogate Machine Status 

We have mentioned that after an NMI interrupt in response 
to the §] key or during the SST mode, the contents of 
various machine registers are stored in specific memory 
locations. If you wish to inspect these locations, their 
addresses are: 

46 



PCL 
PCH 

OOEF 
OOFO 
OOFl 
OOF2 
OOF3 
OOF4 
OOFS 

Status Register (P) 
Stack Pointer (SP) 
Accumulator (A) 
Y Index Register 
X Index Register 

4.2 USING THE AUDIO TAPE RECORDER 

There are two basic operations possible when working with your audio 

tape system. You may transfer data from the KIM-1 memory and record it 

on tape. Or, you may read back a previously recorded tape, transferring 

the data on tape into the KIM-1 memory. 

Recording on Audio Tape 

The procedure for recording on audio tape requires that you 

perform the following steps: 

1. Clear decimal mode by entering 00 in location OOFl. 
Define an identification number (ID) for the data 
block you are about to record. This two digit number 
is loaded into address 17F9. Don't use ID= 00 or 
ID = FF. 

2. Define the starting address of the data block to be 
transferred. This address is to be loaded into 
locations: 

17F5 = Starting Address Low (SAL) 
17F6 = Starting Address High (SAR) 

3. Define the ending address as one greater than the 
last address in the data block to be recorded. The 
ending address is to be loaded into locations: 

17F7 End Address Low (EAL) 
17F8 = End Address High (EAR) 

As an example, assume you wish to record a data block from 

address 0200 up to and including address 03FF. (All of Pages 2 and 3). 

You wish to assign an ID number of 06 to this block. Using the KIM-1 

keyboard, you should load the data shown into the addresses indicated 

so that: 
OOFl 00 (Clear Decimal Mode) 
17F5 00 (SAL) 
17F6 02 (SAR) 
17F7 00 (EAL) } 03FF + 1 17F8 = 04 (EAR) 
17F9 06 (ID) 

47 



Note that the ending address must be greater than the starting 

address for proper operation. 

4. Assuming that you are using a new cassette on which 
no data has been stored previously, insert the 
cassette in the unit and rewind the tape to its 
start position. 

5. Select the starting address of the tape record program. 
This address is 1800. 

6. Select the Play/Record mode of the audio unit and allow 
several seconds for the tape to begin to move. 

7. Press the @£] key and the recording process will begin. 
The display will be blanked for a period and then will 
relight showing 0000 xx. This means that the data 
block selected has been recorded. 

8. You may now stop the tape or allow some additional 
seconds of blank tape and then stop the unit. 

Loading Data From Audio Tape 

The procedure for loading data from an audio tape into the 

KIM-1 memory requires that you perform the following steps: 

1. Clear decimal mode by entering 00 in location OOFl. 
Define the ID number of the data block to be loaded 
from tape. The ID number is loaded into address 17F9. 

2. Select the starting address of the Tape Load program. 
This address is 1873HEx· 

3. Press the ~ key. The KIM-1 system is now waiting 
for the appearance of data from the tape unit. 

4. Load the cassette and, presuming you do not know where 
on the tape the data block is recorded, rewind the tape 
to its starting position. Check the volume control 
setting. 

5. Start the audio tape unit in its Play mode and observe 
that the tape begins to move. 

6. Wait for the KIM-1 display to relight showing 0000 xx. 
This means the data block has been loaded successfully 
from the tape into the KIM-1 memory. If the display 
relights with FFFF xx, the correct data block has been 
found but there has been an error detected during the 
read operation. If the tape continues to run and the 
display never relights, the system has not been 
successful in finding the data block with the specific 
ID number you requested. 

48 



7. If in step (1), you had selected an ID= 00, the ID 
number recorded on the tape will be ignored and the 
system will read the first valid data block encountered 
on the tape. The data read from the tape will be 
loaded into memory address as specified on the tape. 

8. If, in step (1), you had selected an ID= FF, the ID 
number recorded on the tape will be ignored and the sys­
tem will read the first valid data block encountered on 
the tape. In addition, the data block will be loaded 
into successive memory locations beginning at the 
address specified in locations 17F5 and 17F6 (SAL, SAR) 
instead of the locations specified on the tape. 

Special Operations with Audio Tape 

The KIM-1 system causes data to be recorded on audio tape with 

a specific format as detailed in Appendix E. Each recorded data block is 

preceeded by a group of synchronizing characters together with an identi­

fication code to define the specific block. Data blocks may be of arbi­

trary length. 

With a little care, there is no reason for you not to include a 

number of recorded data blocks on the same tape. If you are recording 

blocks in sequence and have not rewound the tape between blocks, you need 

only specify the parameters of each new block (ID, SAL, SAR, EAR, EAL) and 

proceed with recording the new block. 

If the tape has been rewound, you will need to know the ID 

number of the last recorded data block. Rewind the tape to its starting 

point and set up the parameters required to read the last recorded data 

block. After reading this block, stop the tape and you may now proceed 

to add a new block or blocks to the tape. 

If you wish, you may add voice messages between the recorded 

data blocks on the tape. The KIM-1 system will ignore these audio 

messages when the tape is read back. Of course, you will need to install 

an earphone or speaker in parallel with the KIM-1 audio tape data input 

pin in order to hear the voice messages. 

We do not recommend that you attempt to record data blocks in 

areas of the tape which have been used previously for recorded data. 

Variations in tape speed and block lengths can result in overlapping of 

recorded data which may be read incorrectly by the KIM-1 system. 

49 



4. 3 USING A SERIAL TELEPRINTER 

The addition of a serial teleprinter (such as the Teletype Model 

33ASR) to work with the KIM-1 system permits a variety of special opera­

tions to be performed. In all cases, you define desired operations by 

depressing the proper keys while simultaneously producing a hard-copy 

printed record of each operation. If your teleprinter is equipped 

with a paper tape reader/punch, you may generate or read paper tapes 

using the KIM-1 system. Using the serial teleprinter, you may perform 

the following operations: 

Select an Address 

Type four hex keys (0 to F) to define the desired address. 

Next, press the I SPACE I bar. 

The printer will respond showing the address code selected 

followed by a two digit hex code for data stored at the selected 

address location: 

Type: 

Printer Responds: 

1234 I SPACE I 
1234 AF 

showing that the data AF is stored at location 1234. 

Modify Data 

Select an address as in the previous section. Now type two hex 

characters to define the data to be stored at that address. Next type 

the 0 key to authorize the modification of data at the selected address: 

Type: 1234 I SPACE I 
Printer Responds: 1234 AF 

Type: 6D (!) 

Printer Responds: 1235 B7 

Note that the selected address (1234) has been modified and the system 

increments automatically to the next address (1235). 

Note: Leading zero's need not be entered for either address 
or data fields: For example: 

EF I SPACE I selects address OOEF 

E I SPACE I selects address OOOE 

A (!) enters data OA 

0 enters data 00 (etc.) 

50 



Step to Next Address 

Type e to step to the next address without modifying the 

current address: 

See Printed: 1234 AF 

Type: @ 
Printer Responds: 1235 B7 

Type: e 
Printer Responds: 1236 C8 (etc.) 

SteE to Preceeding Address 

Type (0 to step back to the preceeding address: 

See Printed: 1234 AF 

Type: (0 
Printer Responds: 1233 9D 

Type: e 
Printer Responds: 1232 8E (etc.) 

Abort Current Operation 

Type @ to terminate the current operation. The prompting 

message will be printed ("KIM") indicating that a new operation may 

proceed: 

Type: 1264 ® T 

Printer Responds: KIM 
xx xx xx 

Type: 1234 SPACE I 
Printer Responds: 1234 AF 

In the example, the@ 

address selection. 

key is used to correct an erroneous 

Note: The ® key must be depressed after each depression 
of the KIM-1 reset key in order to allow the operating 
program to define the serial bit rate for the tele­
printer. 

51 



Load Paper Tape 

Paper Tapes suitable for use with the KIM-1 system are generated 

using the format shown in Appendix F. To read such a tape into the KIM-1 

system, proceed as follows: 

1. Load the punched paper tape on to the tape mechanism 

2. Type (0 

3. Activate the paper tape reader 

The paper tape will advance and data will be loaded into addresses 

as specified on the tape. A printed copy of the data read will be generated 

simultaneously with the reading of the paper tape. 

Check-sums are generated during the reading of the paper tape 

and are compared to check-sums already contained on the tape. A check­

sum error will cause an error message to appear in the printed copy. 

Punch Paper Tape 

The KIM-1 system can be used to punch paper tapes having the 

format described in Appendix F. The procedures for generating these 

tapes is as follows: 

1. Define the starting address and ending address of the 
data block to be punched on the paper tape. 

2. Load blank paper tape on the punch unit and activate 
the punch. 

Type: 0000 I .SPACE I 
See Printed: 17F7 xx 

Type: 000 
See Printed: 17F8 xx 

Type: ®®0 
See Printed: 17F9 xx 

Type: ®®® I SPACE 

See Printed: 0200 xx 

52 



You have now loaded the ending address (03FF) into address 

locations 17F7 (EAL) and 17F8 (EAH). The starting address (0200) is 

selected as shown. 

3. Now type@ 

The paper tape will advance and punching of the data 
will proceed. Simultaneously, a printed record of 
the data will be typed. 

List Program 

A printed record of the contents of the KIM-1 memory may be 

typed. The procedure is the same as for punching paper tape except that 

the punch mechanism is not activated. 

Execute Program 

To initiate execution of a program using the TTY keyboard, the 

following procedures should be followed: 

1. Enter the starting address of the program 

2. Type@ 

For example, to begin program execution from 
address location 0200: 

Type: 

See Printed: 

Type: 

@@@ I SPACE I 
0200 xx 

© 
Program execution begins from location 0200 and will 
continue until the ~ or ~ keys of the KIM-1 
module are depressed. The single step feature may 
be employed while in the TTY mode. 

53 





CHAPTER 5 

LET'S TRY A REAL APPLICATION 

It is not practical in this manual to describe every possible 

application or progralllilling technique. However, now that you have become 

familiar with the basic elements and operating procedures of the KIM-1 

system, this section will show you how to apply what you have learned in 

a simple but realistic application example. 

Our example will involve the generation of a variable frequency 

square wave which will be connected to a speaker to produce an audible 

tone. The frequency.of the tone will be selected using a set of seven 

toggle switches. We will proceed through the example by defining the in­

terface, writing and entering the program, and executing the program. 

Finally, we will study a series of program debugging techniques which 

will be useful to you for any new program you may write. 

5.1 DEFINING THE INTERFACE 

You will recall that a group of 15 I/O pins are brought to the 

Application connector from the 6530-003 array. The logic and circuit 

details concerning these I/O pins are described in Appendix H and in 

Section 1. 6 of the Hardware Manual ("Peripheral Interface/Memory 

Device - - MCS 6530"). 

55 



For our application example we will use eight of these I/O pins. 

One pin (PA0) will be used as an output line to supply a square wave to 

a driver circuit and speaker. The other seven I/O pins (PAl to PA7) are 

defined as input points with a SPST toggle switch connected to each. 

Figure 5-1 shows the circuit configuration for this example. Note that 

the remaining seven I/O pins (the PB port) are not used for this problem. 

For the switches connected to the input pins, we would like the sense 

of the switch to be defined as a logic "O" when open and a logic "l" when 

closed. By connecting the switches to ground, we are producing exactly 

the opposite sense and must remember to complement the switch states with 

software when we write our program. Also, we must define now that the 

switch at PAl is to be the LSB (least significant bit) and the switch at 

PA7 is to be the MSB (most significant bit) of the seven bit binary word 

formed by all seven switches. In this way, the state of the switches can 

define a binary number from zero (all switches open) to 127DEC (all switches 

closed). 

56 



A-8 A-7 A-6 A-5 A-2 A-3 A-4 A-14 ~APPLICATION 
--~--~-.~~..--~-.-~--.~~..--~-.-~-. CO~ECTOR 

PA7 PA6 PA5 PA4 PA3 PA2 PA I PA0 4- PORT A 

A-15 

EJ 

--+5V. 

3.3t< 

3.3K 

A-16 A-13 A-12 A-11 A-10 A-9 ~APPLICATION 
CONNECTOR I PB!! I PB4 I PB3 I PB2 I PBI I PB0 , _PORT B 

(THE B PORT IS NOT USED IN THIS EXAMPLE APPLICATION) 

Speaker Application 
FIGURE 5.1 

57 



5.2 WRITING THE PROGRAM 

Having defined the interface for our application, we may proceed now to 

write our program. The effort proceeds in four stages: 

1. Generate a flow chart 

2. Generate assembly language code 

3. Analyze the program 

4. Generate machine language code 

START 
FLOWCHART l 

Initialization 

(Define I/O) 

Toggle PA</J 
--"" -,.. 

(Speaker Output) 

i 
Read Seven Switches 

& Complement 

Delay 

Delay Defined by 
Switch Settings 

58 



Briefly, our flow chart shows a first step of system initialization. 

During this step, we must define the I/O configuration of the system in 

that pin PA0 becomes the output to the speaker and that pins PAl to PA7 

become inputs from the seven switches. 

After initialization, a loop is set up which begins by inverting the 

state of PA0 (Toggle PA0). Next, the state of the switches is read and 

the data is complemented to produce the correct "sense" from the switches. 

The value so read is used to define a delay before returning to the start 

of the loop and again toggling the state of PA0. A little thought will 

show that this loop will produce a square wave with a frequency determined 

by the setting of the seven switches. 

Assembly Language Program 

Our next task is to convert the simple flow chart into a 

program. The program is first written in "Assembly Language". You should 

refer to your Programming Manual to become familiar with all of the pos­

sible 6502 instructions (especially see Appendix B; Instruction Summary). 

Figure 5-2 shows the application example programmed in assembly language. 

59 



LABEL 

INIT 

START 

READ 

DE-LAY 

PADD 

PAD 

OPCODE 

LDA 

STA 

INC 

LDA 

EOR 

LSR 

TAX 

DEX 

BPL 

BMI 

=$1701 

=$1700 

OPERAND 

11$01 

PADD 

PAD 

PAD 

//$FF 

A 

DELAY 

START 

MACHINE 
CYCLES 

2 

4 

6 

4 

2 

2 

2 

2 

3,2 

3 

COMMENTS 

Define I/O O=Input l=Output 

PADD = PORT A DATA DIRECTION REG. 

Toggle PA0, PA1-PA7 Inputs 
not affected 

READ switches into accumulator 

Complement switch value 

Shift Accumulator 1 bit to right 

Transfer final count into X-Index 

Delay by an amount specified 

By the count in the X-Index 

Go To START 

Define absolute address of 
Data Direction Reg. A 

Define absolute address of 
Data Reg. A 

Assembly Language Listing 
FIGURE 5.2 

60 



You will note that each line of the program is broken into 

several fields: 

A label field permitting you to assign a "name" to 
a specific location in the program. 

- An Operation Code field (Op Code) in which the exact 
instruction to be executed is defined. 

- An Operand Field where the exact data required by the 
instruction is defined together with certain symbols 
defining addressing modes or data formats. Symbols 
encountered generally in MOS Technology, Inc. manuals 
are: 

# Immediate Addressing 

$ Hex Code 

@ Octal Code 

% Binary Code 

ASCII literal 

Equates a label to a value 

- A Machine Cycle field defining the total number of 
machine cycles required to execute an instruction. 
(This information is derived from Appendix B of 
the. Programming Manual). 

- A Cormnent Field where the prograrmner may define the 
intent of specific program steps. 

Program Analysis 

The inclusion of the "machine cycle" information of the program 

chart (Figure 5-2) allows us to analyze the exact timing relationships 

involved in our program example. Note that the KIM-1 system operates 

from a fixed frequency (1 MHz) oscillator with each machine cycle being 

lµs. Therefore, an instruction like "INC PAD" which requires 6 machine 

cycles will be executed in a 6µs period. 

61 



By counting the total machine cycles occurring between each 

toggle of PA0, an equation for the square wave frequency can be developed. 

The actual frequency is determined by the position of the seven switches, 

the number of machine cycles between each toggle of PA0, and the basic 

clock rate (1 MHz) of the KIM-1 system. Figure 5-3 shows the waveform 

of the PA0 square wave and the derived equations for.computing the 

exact frequency. 

PA0 

T= 23+(CNT•5) USEC - .. - -
T=2C23+(CNT·5).J USEC -

I 
FREQ= - = 

T 

106 
46+10· CNT CPS 

---

NOTE: CNT EQUALS THE VALUE IN X- INDEX 
WHICH WAS CALCULATED FROM THE 
SEVEN SWITCHES 0 :S CNT S 127 

Square Wave Output 
FIGURE 5.3 

62 



Machine Language Coding 

Our next problem is to convert our assembly language program 

into a program written in "machine language". The quickest and most 

foolproof method for accomplishing this conversion is by using the 

MOS Technology, Inc. Assembler (available for use on the time share 

services of United Computing Systems, Inc.). If you choose not to 

use this method, you will need to convert your source program to 

machine code using "paper-and-pencil" techniques. 

You should proceed by constructing a table similar to that 

shown in Figure 5-4. 

ADDRESS 

0200 

0202 

0205 

0208 

\IJ20B 

\IJ20D 

02\IJE 

020F 

0210 

{il212 

0214 

INSTRUCTION SOURCE CODE 

BYTE 1 BYTE2 

A9 01 

SD 01 

EE 00 

AD 0\IJ 

49 FF 

4A 

AA 

CA 

10 FD 

30 Fl 

BYTE3 LABEL OPCODE 

INIT LDA 

17 STA 

17 START INC 

17 READ LDA 

EOR 

LSR 
' TAX 

DELAY DEX 

BPL 

BMI 

Machine Language Code Table 
FIGURE 5.4 

OPERAND 

/1$01 

PADD 

PAD 

PAD 

If $FF 

A 

DELAY 

START 

The source code contained in your assembly language program 

(Figure 5-2) is entered into the table first. A column is provided to 

allow you to define the specific address at which an instruction is 

located. The Instruction column provides space for defining one, two, 

or three byte instructions. (Please refer to Appendix B of the Program­

ming Manual or to your Programming Card for specific Op Codes). 

63 



As an example, the first source instruction is LDA #$01 which, 

when translated, means load the accumulator with the byte stored in the 

next program location (hex 01). This is the "immediate" addressing 

mode defined by the "#" symbol. The Op Code for LDAll is A9. This 

value is entered in the first column under the heading, Instruction. 

The next column contains the hex 01 value defined by the source state­

ment. The initial address for the program is inserted in the "Address" 

column as 0200 (an arbitrary selection). The total instruction LDA #$01 

now occupies address locations 0200 and 0201. 

The next available address is 0202 which is inserted in the 

"Address" column for the next source instruction. In this manner, you 

will proceed through all of the source statements decoding each and 

entering one, two, or three bytes of machine code as required in the 

"Instruction" column. The "Address" column will contain the address of 

the first byte of machine code (the Op Code) for each source statement. 

In cases where the operand of the source statement is a symbol, 

the address to which the symbol has been equated should be filled in as 

the proper machine code. For example, the source statement "INC PAD" 

requires the incrementing of data stored at a location "PAD" defined in 

our assembly programs to have the address: PAD = 1700. Therefore, the 

address 1700 is entered as the second and third bytes of the source 

statement "INC PAD". (See Figure 5-4). Note also that when entering 

an address, such as 1700, the low order byte (00) is entered first and 

immediately after the Op Code and the high order byte (17) is entered 

next as the third byte of the instruction. 

When dealing with branch instructions (BPL, BMI, etc.), you 

will need to calculate the exact value of the offset which may be either 

positive (branch forward) or negative (branch backward). You should refer 

to Section 4.1.1 of the Programming Manual to explore "Basic Concept of 

Relative Branching." As an example, the source statement "BMI START" (See 

Figures 5-2 and 5-4) requires a branch backward by (-15) locations to the 

address labelled "START" (from address 0213 backward to 0205 inclusive). 

64 



(The 2's complement of the -15 displacement is FlHEX which you should 

insert at location 0212). Had the branch been to a forward location 

the positive value of the offset would be inserted rather than the 2's 

complement value. 

5.3 ENTERING THE PROGRAM 

With the program now reduced to machine language code, you may enter 

the program address and data codes listed in Figure 5-4 following the 

procedures detailed in Section 2.4. The procedure for entering the program 

is as follows: 

Press Keys See On Dis:elay 

JAo 1 mm mm 0200 xx 

ioA\ w ITJ 0200 A9 

G:J [TI[!] 0201 01 

G:J [TI[Q] 0202 8D 

G:J [Q] [!] 0203 01 

G:J wQJ 0204 17 

D [TI [TI 0205 EE 

w ITJ[Q] 0206 00 
G:J wITJ 0207 17 

G:J ww 0208 AD 

G:J [QJ [Q] 0209 00 
G:J ww 020A 17 

G:J ITJw 020B 49 

G:J [£]IT] 020C FF 

G:J mw 020D 4A 

D [AJ[A] 020E AA 

LJ ww 020F CA 

G:J ww 0210 10 

G:J [£] CQ] 0211 FD 

G:J UJ[Q] 0212 30 

LJ IT] ITJ 0213 Fl 

Key Sequences: Enter Program 
FIGURE 5.5 

65 



5.4 EXECUTING THE PROGRAM 

With the program entered, you may proceed to program execution. 

First, if the NMI vector has not been defined previously, enter the 

vector as follows: 

Press Keys See Displayed 

17FA xx 

17FA 00 

17FB lC 

This procedure insures that the ~ key will be effective in 

terminating the program. Now, select the starting address of your 

program (0200) and begin execution as follows: 

Press Keys See Displayed 

0200 A9 

(Dark) 

The program will now execute. If your seven selector switches all 

are open, you will probably hear no sound from the speaker because the 

square wave frequency is too high. If all selector switches are closed, 

you will hear in the speaker the lowest frequency that can be generated 

with the program as currently written. You may experiment with other 

combinations of switch settings to hear a variety of tones from the 

speaker. 

Depression of the ~ key will cause the program execution to stop 

(the tone will terminate) and the KIM-1 display will relight. The display 

will show the address and data for the next instruction to be executed 

(probably 020F or 0210 since this is the delay loop where the program 

spends most of its running time). 

66 



5.5 PROGRAM DEBUGGING AND MODIFICATION 

If your program did not execute correctly, you would follow a 

debugging procedure involving the following steps: 

Step 1: List the Program 

First make sure you have entered the program steps 

correctly. Select the starting address ( jAoI~ ~~ ~) 

and observe that the correct data (A9) is displayed. Now, using 

the~ key, step through the remaining program locations check­

ing for the correct data stored in each location. 

Step 2: Single Step the Program 
i 

Follow the procedures listed in Section 5-4 for program 

execution but before depressing the jGol key, place the SST 

slide switch in the ON position. Now, press the laol key and 

the first instruction will be executed. The display will 

relight indicating that the operating program is again in 

control of the system. The address displayed will be the 

address of the first byte of the next instruction to be 

executed. You may press the jaol key again to execute the 

next instruction or you may choose to investigate changes in 

the contents of machine registers stored in selected memory 

locations (See Figure 3-13). The procedure detailed in Figure 5-6 

gives a good indication of the various operations you may wish 

to perform in the SST mode. 

Step 3: Check the I/O Operations 

If program entry has been verified and program execution 

in the SST mode appears to be normal, you may wish to verify the 

correct operation of your specific I/O configuration. 

You should recall that writing to or reading from any 

I/O port is the same as reading from or writing to any other 

memory location in the system. Therefore, if you select the 

address of an I/O port, the KIM-1 display will show you the hex 

code for the data being read from that address and thus, directly 

indicate the state of each I/O pin in the port. For example, the 

67 



address of the I/O port used for your sample program is 1700. 

Press I Aof [Q [2J 0 [£] and the display will show the hex 

code corresponding to the settings of your selector switches. 

If you change the positions of your selector switches, you will 

see the hex code change in the data field of the display. 

Now, leave the same address (1700) selected and press 

the I oAf key. If you press any of the hex keys [£] to [!], 
you will write the data to the I/O port (1700). Sinc'e seven 

of the pins of this I/O port are defined as inputs, only one 

(PA0) will act as an output and will respond to the data 

entered by you from the keyboard. Try alternating rapidly 

between the [£] and [!:] keys and you should hear clicking in 

the speaker indicating that you are successfully toggling 

the PA(J pin. 

This concept of using the KIM-1 keyboard and display 

to exercise and verify the operation of I/O ports is a 

generally useful technique for debugging the hardware 

portions of most specific applications. 

68 



Press Keys See Displayed 

IAolITJwww 
I SST )(I~ 

0200 A9 

0200 A9 

IAolITJwww 
GJ 
GJ 
@ 

IA01mmcom 
o::J 
o::J 
!Kl 
!Go I 

IA01mmmm 
CR] 

!Go I 

0202 SD 

0205 EE 

0208 AD 

020B 49 

020D 4A 

020E AA 

OOF3 xx 

OOF4 xx 

OOF5 00 

020E AA 

020F CA 

OOF3 00 

OOF4 xx 

OOF5 00 

020F CA 

0210 10 

OOF5 FF 

0210 10 

0212 30 

0205 EE 

SST Mode: Sample Operation 
FIGURE 5.6 

69 

Comments 

Select first instruction address 

Set SST to ON; All selector 
switches open 

Accumulator now loaded with $01 

PADD now loaded 

PA0 now toggled 

Switch values (PA1-PA7) now 
loaded 

Accumulator now complemented 

Accumulator now right shifted 
1 Bit 

Display Accumulator 

Display Y - INDEX 

Display X - INDEX 

Restore PC (TAX will 
execute next) 

Accumulator now loaded in 
X-INDEX 

Display Accumulator 

Display Y-INDEX 

Display X-INDEX (A=O+X) 

Restore PC 

DEX now completed 

Display X-INDEX (X<O) 

Restore PC 

No branch (Result of DEX 
not positive) 

Branch (Result of DEX is 
negative). 





CHAPTER6 

EXPANDING YOUR SYSTEM 

In earlier sections you have learned that the MCS 6502 Microprocessor 

Array is capable of directly addressing up to 65,536 locations (bytes) of 

memory. (Usually abbreviated to 65K where "K" for the remainder of this 

section is to mean 1024 memory locations). In this section, we will 

discuss first the techniques for adding memory or I/O locations to the 

system and next, the proper handling of interrupt vectors in an expanded 

system. 

6.1 MEMORYANDI/OEXPANSION 

In the KIM-1 system, the management of input/output data is handled 

exactly the same as transfers to or from any other memory location in the 

system. There are no instructions dealing specifically with input/output 

transfers. Instead, transfer of data is accomplished by reading from or 

writing to registers connected to the data bus and to I/O pins in specific 

1/0 interface devices (such as the 6530 array). These registers have a 

specific address in the system just as does any other memory location. 

Therefore, when we speak of expanding the memory of the KIM-1 system, we 

are defining the methods for expanding both the real memory (RAM, ROM, 

PROM, etc.) as well as the 1/0 ports since they are both treated exactly 

alike as far as address assignments are concerned. 

71 



The first and most easilly implemented memory expansion is the 

addition of up to 4K of memory space. You will recall that 

the lowest 8K memory locations are defined by an address decoder included 

on the KIM-1 module, (Device U4 on the schematic). The eight outputs 

of this decoder (K0 to K7) each define a lK block of addresses in the 

lowest 8K of the memory map. Three of the outputs (K5, K6, K7) are 

used to select ROM, RAM, I/O and Timer locations on the two 6530 arrays 

while a fourth (K0) is used to select the 1024 locations of the static 

RAM memory. The remaining four outputs (Kl, K2, K3, K4) are not used 

on the KIM-1 module but instead, are brought out to the Expansion connector 

for use as chip selects for memory or I/O additions. 

Figure 6-1 shows the proper method for deriving the four chip select 

signals for the additional 4K of memory. Note that one of input pins of 

the decoder (D) was brought out to the Application Connector. It was 

this pin which we asked you to connect to ground in Chapter 2 of this 

manual. As long as this point remains connected to ground, the decoder 

will always select the lowest 8K addresses of the memory field regardless 

of the state of AB13, AB14, and AB15. 

If you wish to expand the memory and I/O address space beyond the 

lower 8K addresses, you must arrange to de-select the lower 8K memory 

block while selecting some other 8K block. One suggested method for 

expanding beyond the lower 8K space is shown in Figure 6-2. 

Note that the three high order address bits (AB13, AB14, AB15) are 

connected to a decoder. The eight outputs of the decoder act to divide 

the total 65K memory space into eight blocks of 8K each (8K0, 8Kl, etc.). 

Now, the 8K0 output may be returned as the fourth input (D) to the de­

coder (U4) on the KIM-1 module causing the proper selection and de-selec­

tion of this block within the total address space. The remaining seven 

outputs (8Kl to 8K7) may be used to select and de-select the additional 

decoders shown in Figure 6-2. You need add only as many decoders (one 

for each 8K block of memory) as you need for your desired memory expansion. 

72 



A word of caution is in order when you decide to add memory to your 

system. You have noticed the inclusion of the line receivers for the 

ABlO, ABll, and AB12 signals, (See Figure 6-2). These devices are 

included because of loading limitations placed on the address bus lines 

of the 6502 array (Each such line is capable of driving one standard 

TTL load and 130pf of capacity. See Appendix G). 

0 Kf) 
U4 
74LS145 I K 

2 K2 

3 K3 
ABIO 

A 4 K4 
ABI I K5 B 5 
ABl2 c 6 K6 

0 7 K7 

I K x 8 RAM ON 
KIM-I BOARD 

} 2- 6530 DEVICES 
ON KIM-I BOARD 

- vl'f)N-
~~~~ 

AVAILABLE FOR 4K
EXPANSION (PULL-UP REQ'D)

4K Expansion
1'1GURE 6.1

73

(\J

CD
<t

CD
<t

Q
CD
<t

U4
74LS145 2 K2

3 K3

---1A 4 K4
-----+---"""8 5 K 5

._.--1---+---IC 6 K6

c._D ____ 7_,K7
}

2-6530
DEVICES

[T S R N 1 • ' •• (Alf K F E D C 8 J
T (4 K MEMORY

.-----t--+---+----------------__J OR I/0)

M JCE) p

(3 LINE RECEIVERS
TYPE 8795 SUGGESTED)

----o ~
t- A I SKI

H-B 2 8K2

C 3 l-8K3
.--+-+~-1D J 41-SK4

51- SK5

74142

__ __,A

l _____.s
.... --+---+-----I c

'---"f-----+--.. -1----""" D

74145

O~""'
I~
2 .filQ
3 iJiL!_ 8 K MEMORY
4~ OR I/O

5 ..!ill-
6 ._!ili. 61- SK6

71 8K7 ____ _. 7~ ----- ~

NOTE:

PULL UP RESISTOR IS
REO'D IF 74145'S
ARE USED.

---1A
-----+-----1 B

---+---+------of c
'--+---i------+-----' D

74145

__ __,A

---+----B
._.--+---+---IC

'-----+---l--------+----ID

74145

o~""'
I~
2 K18

3 ~ SK MEMORY
4~ >OR I/O
5 K21

6~
7~

~ ...
~
~
~ >SK MEMORY
~ OR I/O

~
~
KG 5 ~ + VECTOR SELECT

----~ (SEE 6.2)

65K Expansion
FIGURE 6.2

74

Before deciding how to expand your system, we recommend a careful study

of all of the loading limitations of the KIM-1 signals since almost

certainly you will require additional buffering circuits if correct

operation is to be achieved.

6.2 INTERRUPT VECTOR MANAGEMENT

We have referred several times in earlier sections to the interrupt

features of the 6502 Microprocessor Array. We suggest now a careful

reading of Section 9 of the Programming Manual for the subject "Reset

and Interrupt Considerations".

In summary, there are three possible types of interrupt: Reset, NMI,

and IRQ. Each will occur in response to an activation of one of the three

pins of the 6502 array (RST, NMI, IRQ). In response to these inputs, the

6502 array will fetch the data stored at a specific pair of addresses and

load the data fetched into the program counter. The addresses are hardware

determined and not under the control of the programmer. The specific

addresses for each type of interrupt are:

FFFA, FFFB - NMI Vector

FFFC, FFFD - RST Vector

FFFE, FFFF - IRQ Vector

You will note that these addresses define the highest six locations in

the 65K memory map.

In the KIM-1 system, three address bits (AB13, AB14, AB15) are not

decoded at all. Therefore, when the 6502 array generates a fetch from

FFFC and FFFD in response to a RST input, these addresses will be read

as lFFC and lFFD and the reset vector will be fetched from these locations.

You now see that all interrupt vectors will be fetched from the top 6

locations of the lowest 8K block of memory which is the only memory block

decoded for the unexpanded KIM-1 system.

75

It is typical in any system to store the interrupt vectors in ROM

so that they are immediately available after power-on. However, it is

desirable that for the NMI and IRQ interrupts, the programmer be allowed

to define as a variable the exact vecto.r to which these interrupts will

direct the system. Accordingly, the NMI and IRQ vector locations contain

an indirect jump instruction referencing a RAM location into which the

programmer will store the specific vector for the two types of interrupt.

In the KIM-1 system, locations 17FA and 17FB contain the actual NMI vector

and 17FE with 17FF contain the actual IRQ vector. The RST vector is not

handled in this manner and always directs the system to the first step

of the power-on initialization routine.

But what happens if we expand our memory above the lowest SK block

included in the KIM-1 system? Recall that we now must use AB13, AB14,

and AB15 to decode the additional address locations of the memory. By so

doing, the interrupt vector locations are no longer located in the K7 memory

block since the decoder (U4) is de-selected in response to the addresses

generated by the 6502 array in fetching the interrupt vectors (FFFA for

example). We would have the same problem even in an unexpanded system

if we wished to use a RST vector and initialization routine different

than what the KIM-1 system provides and if the RST vector was to be

located in a lK block lower than K7 (K0 for instance).

The solution to this dilemma is to generate logically a special

signal for interrupt select. Referring to Figure 6-2, a special signal

called "Vector Select" is created to define the highest lK memory block

(K65). The fetch of any interrupt vector will cause this signal to

go low "Select". Assuming that the K65 state is not used to select RAM,

this signal may be "wire-or'd" with any one of the other "K" signals

(K0 to K64) to define exactly which lK block is to contain the interrupt

vectors.

76

As an example, assume that you have connected the K65 "Vector Select"

line to the K0 line. When a RST occurs, the 6502 array generates a fetch

from locations FFFC and FFFD. These addresses cause K65 to be selected

which, in turn, accesses the K0 field of the memory and causes the actual

fetch of the RST vector from locations 03FC and 03FD. (Had you chosen to

connect K65 to K7, the fetch of the reset vectors would occur from

locations lFFC and lFFD). •r

In this way, the highest six addresses of any lK block of memory may

be used to supply the interrupt vectors for the system. If desired, a

switch could be installed to allow you to select different areas of memory

as the source locations for the interrupt vectors. (By the way, we

selected the 75145 type decoders in Figure 6-2 specifically to allow the

"wire-or" of K65 with any other K. This is possible because the 75145

decoder is provided with open-collector outputs which allows "wire-or"

of several states using an external load resistor.)

An even simpler arrangement using the "Vector Select" approach is

shown in Figure 6-3. Here, the KIM-1 system is assumed to have only the

lower 8K of memory in place. The address decoder (U4) is de-selected

using the AB15 signal which becomes "true" whenever an interrupt vector

fetch is initiated by the system. The same signal (AB15) is inverted and

"wire-or'd" through a switch to the K0 or the K7 chip select lines. Now,

depending upon the position of the switch, interrupt vectors will be

fetched from the top 6 addresses of either block K0 or K7. K0 in the

KIM-1 system is the RAM and K7 is the ROM in the 6530-002 array (the

operating program). In this way, you may have two different sets of inter­

rupt vectors in your system and may select which set is to be used with a

simple switch.

77

A815

~;;..._--..... --+~ i t< RAM IN PAGE 0-3
U4

O K0
Kl

74LSl45 I K2 2
3 K3

ABIO A 4 K4
ABll 8 5 K5
ABl2 c 6 K6

D 7 K7 l-'-'-''-----t----~6530-002 {ROM) WHICH
----- CONTAINS KIM- I MONITOR

KIM-I

IK
+5V

IK

VECTOR SELECT

7405 OR 7406

Vector Selection
FIGURE6.3

78

CHAPTER 7

WARRANTY AND SERVICE

Should you experience difficulty with your KIM-1 module and

be unable to diagnose or correct the problem, you may return the unit

to MOS Technology, Inc. for repair.

7.1 IN-WARRANTY SER VICE

All KIM series Microcomputer Modules are warranted by

MOS Technology, Inc. against defects in workmanship and materials

for a period of ninety (90) days from date of delivery. During the

warranty period, MOS Technology, Inc. will repair or, at its option,

replace at no charge components that prove to be defective provided

that the module is returned, shipping prepaid, to:

KIM Customer Service Department
MOS Technology, Inc.
950 Rittenhouse Road
Norristown, Pennsylvania 19401

This warranty does not apply if the module has been damaged by accident

or misuse, or as a result of repairs or modifications made by other than

authorized personnel at the above captioned service facility.

No other warranty is expressed or implied. MOS Technology, Inc. is

not liable for consequential damages.

79

7.2 OUT-OF-WARRANTY SERVICE

Beyond the ninety (90) day warranty period, KIM modules will be

repaired for a reasonable service fee. All service work performed by

MOS Technology, Inc. beyond the warranty period is warranted for an

additional ninety (90) day period after shipment of the repaired module.

7.3 POLICY ON CHANGES

All KIM series. modules are sold on the basis of descriptive

specifications in effect at the time of sale. MOS Technology, Inc.

shall have no obligation to modify or update products once sold.

MOS Technology, Inc. reserves the right to make periodic changes or

improvements to any KIM series module.

7.4 SHIPPING INSTRUCTIONS

It is the customer's responsibility to return the KIM series

module with shipping charges prepaid to the above captioned service

facility.

For in-warranty service, the KIM module will be returned to the

customer, shipping prepaid, by the fastest economical carrier.

For out-of-warranty service, the customer will pay for shipping

charges both ways. The repaired KIM module will be returned to the

customer C.O.D. unless the repairs and shipping charges are prepaid

by the customer.

Please be certain that your KIM module is safely packaged when

returning it to the above captioned service facility.

80

ITEM

1.
2.
3.
4.
s.
6.
7.
8.
9.
10.
11.
12.
13.
14.
lS.
16.
17.
18.
19.
20.
21.
22.
23.
24.
2S.
26.
27.
28.
29.
30.
31.
32.
33.
34.
3S.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
so.
51.
52.
53.
S4.
SS.
S6.
57.

APPENDIX A

Ul
U2
U3

PART

US through Ul2
U18 through U23
U2S
U27
U28
U24
U13 & Ul4
UlS
Ul6
Ul7
U26
CRl,2,3,4,&8
CR5, CR6
CR7
Q7
Ql through Q6
R24 & R2S
Rl,2,3,4, & 6
R34 & R50
R12-R17, R41-R46
R3S through R40
R18-R23, R47
R33
RS2
R51
R7,R8,R9,Rl0&Rll
R48, R49
R26 through R32
VRl

QTY.

1
1
1
8
6
1
1
1
1
2
1
1
1
1
s
2
1
1
6
2
s
2
12
6
7
1
1
1
s
2
7
1

C2, C3, C6 3
Cl, C4 2
cs 1
C7,C8,ClS,Cl6,Cl7 S
C9, ClO, Cll 3
Cl2 1
Cl3 1
Cl4 1

Xl

Cl8
R53
U4

1
1
1
1
6
1
1
1
1
1
1
1
2
1
1
1
1

A-1

DESCRIPTION

6502 Microprocessor
6530 ROM RAM I/O Chip-02
6S30 ROM RAM I/O Chip-03
6102 RAM SOOns Acc,~ns
7 SEG .3" Red Display
SS6 Timer IC
S6S Phase Lock Loop
311 Comparator
7414S BCD Decoder IC
7412S TRI STATE Buffer
7400 Quad Nand IC
7404 Hex Inverter IC
7406 Hex Inv. O/C IC
7438 Quad Nand O/C IC
20 MA. SOv Diode - IN914
lA SOv Diode - IN4001
6.2v ~ Z. Diode - IN473S
NPN Transistor B>20, ·vcE>12 - 2N5371
PNP Transistor B>20, VCE>6 - 2N537S
47Kn ±10% !.iw Resistor
3.3Kn ±10% ~ Resistor
2.2Kn ±10% !.iw Resistor
1.0Kn ±10% ~ Resistor
S60n ±10% ~ Resistor
22on ±10% ~ Resistor
47n ±10% ~ Resistor
S Meg. ±10% ~ Resistor
30Kn ±S% ~ Resistor
lOKQ ±5% ~ Resistor
lSOQ ±S% ~
82Q ±5% ~
SKn Potentiometer
.22±10% uf .>12 wv. cap
luf+80-10%>12WV Cap
.33 uf±10%>12WV Cap
.luf+80-10%>12WV Cap
.0068uf±l0%>12WV
.047uf±10%>12WV
.022uf±l0%>12WV
.001uf±l0%>12WV
44 Pin Edge Conn. (Vector #R644)
1 MHz XTAL
PCB.
24 Key KBD
Rubber Pads
Shipping Bag (Static Free)
Shipping Box
Hardware Manual
Software Manual
KIM Manual
Warranty Card
Wall Chart
#2 x ~ SS Screws (Keyboard)
Program Card
lOpf CAP
330K ~ Resistor
74LS145 BCD Decoder lC

APPENDIXB

KIM-1 PARTS LAYOUT

B-1

APPENDIXC

IN CASE OF TROUBLE

SYMPTOM: Display Not Lit

1. Test +5 volt power supply. Using a VOM check for +5

volts between Pin E-21 and E-22. Also check for +5

volts between Pin A-A and Pin A-1. KIM-1 power supply

should be set at +5v ± 5%.

2. Test KB/TTY option wiring (Figure 2-4). Pin A-21 should

not be connected to Pin A-V.

3. Make sure decoder is enabled. See Figure 2-2 and insure

that Pin A-K is connected to ground.

4. Depress the reset key and check all other keys to insure

that no key is stuck.

5. Place a VOM between Pin E-21 (+5v) and Pin E-7 (Reset).

Alternately depress and release the reset key checking to

see if the voltage swings from (>4v) to (<lv).

6. Test Pin E-V (02) with an oscilloscope and insure 1 MHz

operation.

SYMPTOM: Cannot Dump to Audio Tape
Cannot Load From Audio Tape

1. Test +12 volt power supply. Using a VOM check for +12

volts between Pin A-N (+12v) and Pin A-1 (GND). Set

power supply to +12v t 5%. (See Figure 2-2).

2. Check volume control on the tape recorder (Set at half

way point).

C-1

SYMPTOM:

3. Make sure that you are using the proper tape output pin.

See Figure 2-3.

4. Check the tape interface circuit by disconnecting the

tape recorder and shorting Pin A-P (Audio Out High) to

Pin A-L (Audio In). Set up KIM-1 monitor to dump a

section of memory. Using an oscilloscope observe data

at Pin E-X (PLL TEST). See Appendix E for correct data

format and calibration procedure.

5. Record voice on a section of tape and play it back to insure

that the tape recorder is working. Connect another tape

recorder to the system or try another cassette.

6. Make sure Status Register (Location OOFl) has been loaded

with data value "00".

7. Make sure Tone Control is set to High.

TTY Interface Problems

1. Make sure that Pin A-21 is connected to Pin A-V (Figure 2-4)

to allow TTY operation.

2. Compare the connections on Figure 2-4 with interface

schematics in your TTY manual (or any other serial

teleprinter).

3. Depress the reset key on the KIM-1 keyboard followed by

a rub out character from the TTY.

C-2

llOVAC

9

12.6VRMS
3A.

I A 50PIV
IN4001

2 A.
f50PIV

~
'\.

"'

3300uf

500uf

Suggested Power Supply

+

HEAT SINK
BOT. VIEW

BOT. VIEW

.I uf

-
.luf

QI LM309 5 V. REG IA

+ 5 V. 1.2 A.

>
"'C
"'C
tTi z

GNO
0 -><
0

50mA

Q2 LM78Ll2 REG

APPENDIX E

AUDIO TAPE FORMAT

Data is stored out onto your audio cassette recorder in a specific

format designed to insure an error free recovery. In the unlikely event

that a playback error does occur, several "ERROR DETECTION" methods are

incorporated to warn you of this condition.

Data is transmitted to the tape recorder in the form of serial

"ASCII" encoded characters (seven data bits plus Parity bit). Data

retrieved from the memory is converted into this form by separating each

byte into two half bytes. The half bytes are then converted into their

ASCII equivalents.

Each record transmitted begins with a leader of one hundred "SYN"

characters (ASCII 16) followed by a* character (ASCII 2A). During

playback, this pattern allows your micro-computer to detect the start of

a valid data record and synchronize to the serial data stream. Following

the*, the record identification number (ID), and starting address low

(SAL) and the starting address high (SAR) are transmitted. The data

specified by the starting (SAL, SAR) and ending limits (EAL, EAR) is

transmitted next followed by a "/" character (ASCII 2F) to indicate the

end of the data portion of the record. Following the "/" two "CHECK-SUM"

bytes are transmitted for comparison with a calculated check-sum number

during playback to further insure that a proper data retrieval has taken

place. Two "EOT" characters (ASCII 04) mark the end of record transmission.

E-1

Each transmitted bit begins with a 3700 hertz tone and ends with

a 2400 hertz tone. "Ones" have the high to low frequency transition

at one-third of the bit period. "Zeros" have the transition at two­

thirds of the period. During playback the 565 phase locked loop locks

to, and tracks these two frequencies producing (through the 311

comparator) a logic "l" pulse of one-third the bit period for a "One".

A pulse two thirds the bit period is likewise produced for a "Zero".

Your microcomputer uses a software controlled algorithm for converting

this signal into eight bit data words.

The frequency shift keyed phase lock loop method of data recovery

is relatively insensitive to amplitude and phase variations. The "FREE

RUNNING" frequency of the phase lock loop has been adjusted at the factory

to a frequency half way between the two data frequencies (called the Center

Frequency). This adjustment is accomplished by strapping Pin A-P (Audio

Out High) to Pin A-L (Audio In). A program starting at address 1A6BHEX

provides the center frequency reference that allows the loop to be

adjusted by potentiometer VRl. Pin E-X (PLL TEST) is monitored with a

voltmeter while the pot is rotated until the voltmeter reading is at the

transition point between a logical "l" (+Sv) and "O" (GND).

THIS ADJUSTMENT HAS BEEN FACTORY PRESET AND SHOULD ONLY REQUIRE

ADJUSTMENT DUE TO COMPONENT REPLACEMENT!

E-2

7.452 Msec. ----------...

_J -------' I---- 9 PULSES ~1 .. 6 PULSES ~1 .. 6 PULS ES --.j

l --------'
~-IBIT-~~

,.__ 1 o~ ;svN" I * j:r o FALlsA3 .- o~r-TA_-.___.l.._1__.lc_K LjCK_H IE_oT_._IE_o~_._ __ "_

~ I RECORD ---------1~.i

Audio Tape Format
FIGURE E-1

E-3

LOGIC
(QJ)

LOGIC
(I)

APPENDIXF

PAPER TAPE FORMAT

The paper tape LOAD and DUMP routines store and retrieve data in

a specific format designed to insure error free recovery. Each byte

of data to be stored is converted to two half bytes. The half bytes

(whose possible values are 0 to FHEX) are translated into their ASCII

equivalents and written out onto paper tape in this form.

Each record outputted begins with a ";" character (ASCII 3B) to

mark the start of a valid record. The next byte transmitted (18HEX) or

(2410) is the number of data bytes contained in the record. The record's

starting address High (1 byte, 2 characters), starting address Lo (1 byte,

2 characters), and data (24 bytes, 48 characters) follow. Each record is

terminated by the record's check-sum (2 bytes, 4 characters), a carriage

return (ASCII OD), line feed (ASCII '/JA), and six "NULL" characters

(ASCII 0'/J).

The last record transmitted has zero data bytes (indicated by ;0'/J).

The starting address field is replaced by a four digit Hex number repre­

senting the total number of data records contained in the transmission,

followed by the records usual check-sum digits. A "XOFF" character ends

the transmission.

;180000FFEEDDCCBBAA0099887766554433221122334455~7788990AFC

;0000010001

F-1

During a "LOAD" all incoming data is ignored until a ";" character

is received. The receipt of non ASCII data or a mismatch between a

records calculated check-sum and the check-sum read from tape will cause

an error condition to be recognized by KIM. The check-sum is calculated

by adding all data in the record except the ";" character.

The paper tape format described is compatible with all other

MOS Technology, Inc. software support programs.

F-2

APPENDIXG

6502 CHARACTERISTICS

The MCS 6502 is supplied with an internal clock generator. The

frequency of this clock is crystal controlled.

Address Bus (Ao-A15)

These outputs are TTL compatible, capable of driving one standard

TTL load and 130pf.

Data Bus (Do-D7)

Eight pins are used for the data bus. This is a bi-directional bus,

transferring data to and from the device and peripherals. The

outputs are tri-state buffers capable of driving one standard

TTL load and 130pf.

Ready (RDY)

This input signal allows the user to single cycle the microprocessor

on all cycles except write cycles. A negative transition to the low

state during or coincident with phase one (~1) will halt the micro­

processor with the output address lines reflecting the current

address being fetched. This condition will remain through a

subsequent phase two (~ 2) in which the Ready signal is high. This

feature allows microprocessor interfacing with low speed PROMS as

well as fast (max. 2 cycle) Direct Memory Access (DMA). If Ready

is low during a write cycle, it is ignored until the following

read operation.

G-1

Interrupt Request (IRQ)

This TTL level input requests that an interrupt sequence begin

within the microprocessor. The microprocessor will complete the

current instruction being executed before recognizing the request.

At that time, the interrupt mask bit in the Status Code Register

will be examined. If the interrupt mask flag is not set, the

microprocessor will begin an interrupt sequence. The Program

Counter and Processor Status Register are stored in the stack.

The microprocessor will then set the interrupt mask flag high

so that no further interrupts may occur. At the end of this

cycle, the program counter low will be loaded from address FFFE,

and program counter high from location FFFF, therefore trans­

ferring program control to the memory vector located at these

addresses. The RDY signal must be in the high state(for control

to the memory vector) located at these addresses. The RDY signal

must be in the high state for any interrupt to be recognized.

A 3K~ external register should be used for proper wire-OR operation.

Non-Maskable Interrupt (NMr)

A negative going edge on this input requests that a non-maskable

interrupt sequence be generated within the microprocessor.

NMI is an unconditional interrupt. Following completion of the

current instruction, the sequence of operations defined for IRQ

will be performed, regardless of the state of the interrupt mask flag.

The vector address loaded into the program counter, low and high,

are locations FFFA and FFFB respectively. The instructions

loaded at these locations causes the microprocessor to branch to

a non-maskable interrupt routine in memory.

NMI also requires an external 3K~ resistor to Vee for proper

wire-OR operations.

G-2

Inputs IRQ and NMI are hardware interrupts lines that are sampled

during 02 (phase 2) and will begin the appropriate interrupt

routine on the 01 (phase 1) following the completion of the

current instruction.

Set Overflow Flag (S.O.)

SYNC

This TTL level input signal allows external control of the

overflow bit in the Status Code Register.

This output line is provided to identify those cycles in which

the microprocessor is doing an Op Code fetch. The SYNC line

goes high during 01 of an Op Code fetch and stays high for the

remainder of that cycle. If the RDY line is pulled low during

the ~l clock pulse in which SYNC went high, the processor will

stop in its current state and will remain in the state until

the RDY line goes high. In this manner, the SYNC signal can be

used to control RDY to cause single instruction execution.

RESET

This input is used to reset or start the microprocessor from a

power down condition. During the time that this line is held

low, writing to or from the microprocessor is inhibited. When

a positive edge is detected on the input, the microprocessor

will immediately begin the reset sequence.

After a system initialization time of six clock cycles, the mask

interrupt flag will be set and the microprocessor will load the

program counter from the memory vector locations FFFC and FFFD.

This is the start location for program control.

After Vee reaches 4.75 volts in a power up routine, reset must

be held low for at least two clock cycles.

When the reset signal goes high following th~se two clock cycles,

the microprocessor will proceed with the normal reset procedure

detailed above.

G~

[

APPENDIXH

6530 CHARACTERISTICS

The MCS 6530 is designed to operate in conjunction with the MCS 650X

Microprocessor Family. It is comprised of a mask programmable 1024 x 8

ROM, a 64 x 8 static RAM, two software controlled 8 bit bi-directional

data ports allowing direct interfacing between the microprocessor unit

and peripheral devices, and a software programmable interval timer

with interrupt, capable of timing in various intervals from 1 to 262,144

clock periods.

PAO PA7 PBO PB7

l l~
~ . h •• ,- - - --, .. ----..

DATA 1/0 PERIPHERAL INTERVAL PERIPHERAL 1/0
CONTROL REGISTER DATA BUFFER TIMER DATA BUFFER -- REGISTER
REGISTER A - A B - B

A

~ II' II ·~ ,, •• •• ,, ,, ••
·~

.. .. n ,, • ,
DATA ADDRESS CHIP 64 x 8 IK X 8 DATA
BUS DECODER SELECT RAM ROM CONTROL
BUFFER· R/W REGISTER

B

I~ I~ .. ______ ~ I

·~ ~ .. ·~ -------'' , -DO DI AO A9 CSI C S2 OJ2 R/W RES

MCS 6530 Block Diagram
FIGURE H.1

H-1

]

!-----'

Reset (RES)

During system initialization a Logic "O" on the RES input will

cause a zeroing of all four I/O registers. This in turn will

cause all I/O buses to act as inputs thus protecting external

components from possible damage and erroneous data while the

system is being configured under software control. The Data

Bus Buffers are put into an OFF-STATE during Reset. Interrupt

capability is disabled with the RES signal. The RES signal must

be held low for at least one clock period when reset is required.

Input Clock

The input clock is a system Phase Two clock which can be either

a low level clock (VIL < 0.4, VIH > 2.4) or high level clock

(VIL< 0.2, VIH =Vee~:~).

Read/Write (R/W)

The R/W signal is supplied by the microprocessor array and is used

to control the· transfer of data to and from the microprocessor array

and the MCS 6530. A high on the R/W pin allows the processor to

read (with proper addressing) the data supplied by the MCS 6530.

A low on the R/W pin allows a write (with proper addressing) to

the MCS 6530.

Interrupt Request (iRQ~

The IRQ pin is an interrupt pin from the interval timer. This

same pin, if not used as an interrupt, can be used as a peripheral

I/O pin (PB7). When used as an interrupt, the pin should be set

up as an input by the data direction register. The pin will be

normally high with a low indicating an interrupt from the MCS 6530.

H-2

Data Bus (Dr;6-D7)

The MCS 6530 has eight bi-directional data pins (D0-D7). These

pins connect to the system's data lines to allow transfer of data

to and from the microprocessor array. The output buffers remain

in the off state except when a Read operation occurs.

Peripheral Data Ports

The MCS 6530-002, MCS 6530-003 both have 15 pins available for

peripheral I/O operations. Each pin is individually software

programmable to act as either an input or an output. The 15

pins are divid~d into 2 8-bit ports, PA0-PA7 and PB0-PB7. PB6

was used as a chip select and is not available to the user. The

pins are set up as an input by writing a "O" into the corresponding

bit of the data direction register. A "l" into the data direction

register will cause its corresponding bit to be an output. When in

the input mode, the peripheral output buffers are in the "l" state

and a pull-up device acts as less than one TTL load to the peripheral

data lines. On a Read operation, the microprocessor unit reads the

peripheral pin. When the peripheral device gets information ,from

the MCS 6530 it receives data stored in the data register. The

microprocessor will read correct information if the peripheral lines

are greater than 2.0 volts for a "l" and less than 0.8 volts for a

"O" as the peripheral pins are all TTL compatible. Pins PA0 and PB0

are also capable of sourcing 3 ma at l.Sv, thus making them capable

of Darlington drive. Pin PB7 has no internal pull-up (to allow

collector-oring with other devices).

Address Lines (Ar;6-A9)

There are 10 address pins. In addition to these 10, there is the

ROM SELECT pin. The above pins, A0-A9 and ROM SELECT, are always

used as addressing pins. There are 2 additional pins which are mask

programmable and can be used either individually or together as

CHIP SELECTS. They are pins PBS and PB6. When used as peripheral.

data pins they cannot be used as chip selects. PBS was used as a

data pin while PB6 was used as a chip select and is not available

to the user.

H-3

A block diagram of the internal architecture is shown in Figure H-1.

The MCS 6530 is divided into four basic sections, RAM, ROM, I/O and TIMER.

The RAM and ROM interface directly with the microprocessor through the

system data bus and address lines. The I/O section consists of 2 8-bit

halves. Each half contains a Data Direction Register (DDR) and an I/O

Register.

ROM lK Byte (8K Bits)

The 8K ROM is in a 1024 x 8 configuration. Address lines A0-A9,

as well as RSO are needed to address the entire ROM. With the

addition of CSl and CS2, seven MCS 6530's may be addressed, giving

7168 x 8 bits of contiguous ROM.

RAM 64 Bytes (512 Bits)

A 64 x 8 static RAM is contained on the MCS 6530. It is addressed

by A0-AS (Byte Select), RS0, A6, A7, A8, A9 and CSl.

Internal Peripheral Registers

There are four internal registers, two data direction registers

and two peripheral I/O data registers. The two data direction

registers (A side and B side) control the direction of the data

into and out of the peripheral pins. A "l" written into the Data

Direction Register sets up the corresponding peripheral buffer pin

as an output. Therefore, anything then written into the I/O Register

will appear on thqt corresponding peripheral pin. A "O" written into

the DDR inhibits the output buffer from transmitting data to or from

the I/O Register. For example, a "l" loaded into data direction

register A, position 3, sets up peripheral pin PA3 as an output.

If a "O" had been loaded, PA3 would be configured as an input and

remain in the high state. The two data I/O registers are used to

latch data from the Data Bus during a Write operation until the

peripheral device can read the data supplied by the microprocessor

array.

H-4

During a read operation the microprocessor is not reading the I/O

Registers but in fact is reading the peripheral data pins. For

the peripheral data pins which are programmed as outputs the

microprocessor will read the corresponding data bits of the I/O

Register. The only way the I/O Register data can be changed is by

a microprocessor Write operation. The I/O Register is not affected

by a Read of the data on the peripheral pins.

Interval Timer

1. Capabilities

The KIM-1 Interval Timer allows the user to specify a preset count

of up to 25610 and a clock divide rate of 1, 8, 64 or 1024 by writing

to a memory location. As soon as the write occurs, counting at the

specified rate begins. The timer counts down at the clock frequency

divided by the divide rate. The current timer count may be read at

any time. At the user's option, the timer may be programmed to generate

an interrupt when the counter counts down past zero. When a count of

zero is passed, the divide rate is automatically set to 1 and the

counter continues to count down at the clock rate starting at a count

of FF (-1 in two's complement arithmetic). This allows the user to

determine how many clock cycles have passed since the timer reached

a count of zero. Since the counter never stops, continued counting

down will reach 00 again, then FF, and the count will continue.

2. Operation

a. Loading the timer

The divide rate and interrupt option enable/disable are programmed

by decoding the least significant address bits. The starting count for

the timer is determined by the value written to that address.

H-5

Writing to Address Sets Divide Ratio To InterruEt CaEabilitl Is

1704 1 Disabled

1705 8 Disabled

1706 64 Disabled

1707 1024 Disabled

170C 1 Enabled

170D 8 Enabled

170E 64 Enabled

170F 1024 Enabled

b. Determining the timer status

After timing has begun, reading address location 1707 will provide

the timer status. If the counter has passed the count of zero, bit 7

will be set to 1, otherwise, bit 7 (and all other bits in location 1707)

will be zero. This allows a program to "watch" location 1707 and

determine when the timer has timed out.

c. Reading the count in the timer

If the timer has not counted past zero, reading location 1706 will

provide the current timer count and disable the interrupt option;

reading location 170E will provide the current timer count and enable

the interrupt option. Thus the interrupt option can be changed while

the timer is counting down.

If the timer has counted past zero, reading either memory location

1706 or 170E will restore the divide ratio to its previously programmed

value, disable the interrupt option a~d leave the timer with its current

count (not the count originally written to the timer). Because the timer

never stops counting, the timer will continue to decrement, pass zero,

set the divide rate to 1, and continue to count down at the clock

frequency, unless new information is written to the timer.

H-6

d. Using the interrupt option

In order to use the interrupt option described above, line PB7

(application connector, pin 15) should be connected to either the

IRQ (Expansion Connector, pin 4) or NMI (Expansion Connector, pin 6)

pin depending on the desired interrupt function. PB7 should be

programmed as in input line (it's normal state after a RESET).

NOTE: If the programmer desires to use PB7 as a normal I/O line,

the programmer is responsible for disabling the timer

interrupt option (by writing or reading address 1706)

so that it does not interfere with normal operation

of PB7. Also, PB7 was designed to be wire-ORed with

other possible interrupt sources; if this is not desired,

a 5.lK resistor should be used as a pull-up from PB7 to

+5v. (The pull-up should NOT be used if PB7 is connected

to NMI or IRQ.)

H-7

APPENDIX I

KIM-I PROGRAM LISTINGS

CARD ~~ LDC
:3
4
C" ._.

6
7
:::
9

1 (I
11
12
1:3
14
15
16
17
1 ·=· ·-·
19
20
21
22

24
25

.-,-;t
c.1·

.:::o
31
·:··=· ·-•L-

.-.-:ii
:.• I

40
41
42
43
44
45
46
47
4::::
49
50
51
c:-~. -•c.

CODE CARD
666666
6
6
666666
6 6
6 6
6E.666E.

CDPYF.:IGHT

555555
5
C"
·..J

555555
C" . ..)

5
555555

000000
0 0
0 0
0 0
(I 0
0 0
000000

MOS TECHNOLOGY, INC
DATE OCT 1:3 1975 REV D

:33:33:33
3
3

333:333
'=' ._.
:3

333333

000000
0 0
(I 0
0 0
0 0
0 0
000000

6530-003 IS AN AUDIO CASSETT TAPE
RECORDER ENTENSION OF THE BASIC
KIM MONITOR

IT FEATURES TWO BASIC ROUTINES
LOADT-LOAD MEM FROM AUDIO TAPE
DUMPT-STOR MEM ONTO AUDIO TAPE

I G~mF.:E IIt

PAt::iE 2

000000
0 0
0 0
0 0
0 0
0 0
000000

333:333
....
.:;..
.-,
.:;..

3:33:333
:3
:3

33:3:33:3

LOPDT
ID=OO
ID=FF
ID=01-FE

IGN. ID USE SA FDR START ADDR
IGN.ID USE ADDR ON TAPE

DUMPT
ID=OO
ID=FF
ID=01-FE
:SAL
SAH
EAL
EAH

SHOULD NOT BE USED
SHOULD NOT BE USED
NORMAL ID RANGE
LSB STARTING ADDRESS
MSB
LSB ENDING ADDRESS
MSB

CARD ~~ LDC
54
C"C"

·-··-· 56
57

60
61

64
.- C"

'='·-'

.-
b{

.:::·=· v•-•

69 0000
70
71
?;=: 0 OEF
7:::: OOFO
74 001="1
75 OOF2
76 OOF="3
77 OOF4
7:3 OOF5

82 OOF6
83 0 OF?
:34 0 OF:::
:::5 OOF·:=t
::::E. 0 OFFt
B7 OOFB
88 OOFC
B9 OOFD
90 OOFE
'31 OOFF

94

.::,-, -· (

0100
17E7
17EE:
17E9
17EC

1 00 17F2
101 17F3
1 02 17F4
1 03 1 ?F5
1 04 17F6
1 05 17F7

CODE CARD

EOUATES
SET UP FOR 6530-002 I/O

SAD =$1740 E.s::::o A DATA
PADD =$1741 6530 A DATA DIRECTION
SBD =$1742 E.5:30 B DATA
PBDD =$1743 6530 B DATA DIRECTION
cu:::1T =$1744 DI'•,•' B'r' 1 TIME
CLK8T =$1745 DIV E:·,.· :3 TIME
CLK64T =$1746 DI'•,•' E:··,· 64 TIME
CLKKT =$1747 DI'·/ E''··· 'I 1024 TIME
CLKPDI =$1747 READ TIME OUT
CLKPDT =$1746 READ TIME

+=$00EF
MPU REG. SAVX AREA IN PAGE 0

PCL •=•+1 PPDGPAM Ct·1T 1_01 .•. 1

PCH •=•+1 PPDGPAM CtH HI
PREG •=•+1 CURREt·1T STATUS: REG.
SP USER •=•+1 CUP~·ENT STACK POitH
ACC •=•+1 ACCUMULATOi:;:'.
\'PEG •=•+1 I t·rn E::-=:
'.:·::REG •=•+1 ;:-:: I t--tDE:=<

KIM FIXED AREA IN PAGE 0

CHb::H I +=++ 1
CHKSUM +=++1
INL +=++1 INPUT BUFFER
INH +=++1 INPUT BUFFER
POINTL +=++1 LSB OF OPEN CELL
POINTH +=++1 MSB OF OPEN CELL
TEMP +=++1
Tt1P:=<: +=++ 1
CHAR
MODE

KIM FIXED AREA IN PAGE 23

CH~<L

CHKH CH~<S:UM

BIT

PAGE 3

+=U 7E7
•=•+1
•=•+1
•=•+3
•=•+6

Ct·ffL3 0 +=++ 1
CtHH3 0 +=++ 1

VOLATILE EXECUTION BLOCK
TT\' DELA'r'

TIMH +=++1
SAL +=++1
SAH +=++1
EAL +=++1

TT'l DELA\'

LOW STAPTING ADDRESS
HI STARTING ADDRESS
LOW ENDitiG ADDRESS

CAF.:D ~~ LDC
1 06 17F8
1 07 17F9
1 08
109
110
111 17FA
112 17FC
113 17FE
114

CODE

PAGE 4

CARD
EAH +=++1 HI ENDING ADDRESS
ID +=++1

INTERRUPT VECTORS

t'IMI V'
RSTV
IRG!V

+=++2 STOP VECTOR <STOP=1C00)
+=++2 RST VECTOR
+=++2 iRQ VECTOR <BRK= 1C00)

PAl'.:iE 5

CARD .. LDC CODE CARD ,.

116 1800 •=$1800
117
118 HHT VOLATILE D<ECUTIDN BLDCI<
119 DUMP MEM TD TAPE
120
121 1800 A9 AD DUMPT LDA ~~$AD LOAD ABS:DLUTE INS:T
122 1802 8D EC 17 S:TA VEB
123 1805 20 32 19 .J:S:R IN TV EB
124
125 1808 A9 2""' ,. LDA =~$27 TUF.:N OFF DATAIN PB5
126 180A 8D 42 17 S:TA S:BD
127 180D A9 BF LDA ~~$BF CONVERT PB? TD OUTPUT
128 180F 8D 4·-:-·-· 17 S:TA PBI•D
129
130 1812 A2 64 LD:=< ~~$64 100 CHARS:
131 1814 A9 16 DUMPT1 LDA ~~$16 :S:YN CHAR ... S:
132 1:31 E· 20 ?A 19 .JS:R DU TC HT
1 ·-=-·-=-..... _. 1819 CA DE>=:
1:34 181A DO F·-· C• BNE DUMPT1
1:35
136
1 .-.-. .;. ,. 181C A9 2A LDA ==/. S:TART CHAR
1 ~:::8 181E 20 ?A 1 '3 .J:S:R DUTCHT
1 :~:·3
140 1821 AD F9 17 LDA ID OUTPUT ID
141 1:=:24 20 61 1 '3 ._l:S: i;;: DUTBT
142
143 1 :::27 AD F5 17 LDA :S:AL OUTPUT S:TART I ~iG
144 182A 20 5E 1 '3 ._IS:R DUTBTC ADDRESS:
145 1:::2n AD F6 17 LDA :S:AH
146 18::::0 20 5E 1 '3 .JSR DUTBTC
147
148 1 :=::3:~: AD ED 17 DUMPT2 LDA VEB+l CHECI< FDR LA:S:T
149 1 ::::3€1 CD F7 17 CMP EAL DATA BYTE
150 18:~:·3 AD EE 17 LI•A VEB+2
151 183C ED F·-· ·=- 17 S:BC EAH
1 c:-·-· / ·JC. 183F 90 24 BCC DUMPT4
153
154 1841 A'3 2F LDA· == .•" · OUTPUT END OF DATA CHR
155 184:::: 20 ?A 1 '3 ._l:S:R DUTCHT
156 i::::46 AD E? 17 LDA CHl<L LAS:T .BYTE HAS: BEEN
157 1849 20 61 19 ._I S:F.: OUT BT OUT PUT NOl.~I OUTPUT
15:3 184C AD E8 17 LDA CHl<H CHl<S:UM
159 184F 20 E0 1 19 JS:R DUTBT
160
161
162 1852 A2 02 LD:=-=: ~~$02 2 CHAR··· S:
1E.3 1854 A'3 04 DUMPT:3 LDA ~~$04 EDT CHAR
164 1:::56 20 ?A 19 .JSR DUTCHT
165 1859 CA DEX
166 185A DO F8 BNE DUMPT3
167

PAGE 6

CARD .. LDC CODE CAFW ..
16:=: 1:35C A9 00 LDA ~~$ 00 DIS:PLA'r' 0000
lt=.9 1::::5E :=:5 FA S:TA PO INTL FOF~ NORMAL E:•nT
170 1:360 1::.c:-·-··-· FB :S:TA POHHH
171 18E.2 4C 4F 1C .JMP S:TART
1 "?·::O

I'--

17:3 1:365 20 EC 17 DUMPT4 .JS:F.: VEE: DATA B'r'TE OUTPUT
174 1 E:E.:3 20 SE 19 .J:S:F.: OU TB TC
175
176 1 :36.B 20 EA 19 .Jsr;:: INCVEB
177 1:36E 4C .-.. -. .,:.:;, 1 :3 .Jt·1P DUMPT2
1 ?:::
17·3 LOAD MEMORY FROM TAPE
1 :30
1 :31
1:32 1:371 OF 1 '3 TAB • l.1.IDRD LDAD12
1.-.. -. 1-:,.:;, 1 ·:i?·'j ,_., ·-· A9 :=:r1 LDADT LDA ~=~J;8I1 HHT VOLATILE E>::ECUT I ON
1:34 1:375 :::rr EC 17 S:TA 1

•••
1EB BLOCK l.1.IITH S:TA AB:s:.

U35 1 ·=·"?·=· ._., ,_, 20 :32 19 JS:R INTVEB
1 :::E.
1 ·-·? Or 1 :::?E: A'3 4C LDA ~~~1:4c: ._IUMP T'r'PE RTPN
1 s::: 1 :::?D :3Ir EF 17 :S:TA VEB+3
1 :::·:;. 1:~:::::0 AD 71 1 .-.

·=- LIIA TAB
190 1 ::::::::::: ::::n FO 17 :S:TA VEB+4
191 t::::::E. AD 72 1 .-. . ;:. LDA TAB+l
1 q·-· -· c. 1 ::::=:·~ ::::n I=' 1 17 :S:TA '·/EB+5
1 ·::m::::

194 1::::::c: A9 07 LIIA ~~~1~07 PE:S:ET PB5=0 r::DATA HD
195 t:::t:E :3D 42 17 :S:TA S:BD
1 '36
1 '37 1 ::::91 A'3 FF' SYNC l_DA ~~$FF CLERF.: :S:A'·l::< FOR S'r'NC APER
1 '3!:: 1 :39:3 :::n E9 17 :S:TA S:A\·1 :=·=:

199
200 t:::9E. 20 41 1A S:'r'NC1 .J'S:R FWB IT GET A BIT
201 1:::9•:_::. 4E E9 17 L:S:R :S:A~l>=: SHil='T BIT INTO CHAP
;=: 02 1:::·:=-c: OD E9 17 ORA SA'·I>=:
20:~: t:::9F :::r1 E9 17 :S:TA :S:A\·•:x:
;:::04 t:::A2 AD E9 17 LDA :S:A• ... •;:.:: GET MEl.1.I CHAP
205 1:3A5 C9 16 CMP ~~$1 E. :S:'r't·i CHAF.'
;:::06 1:::A? DO ED Bt·iE S:'ltiC 1
207
20:::: t:::A·::a A2 OA LU::·=: ~~$0A TEST FOP 1 0 :S:'r'M CHAf''.S:
209 18AB 20 24 1A :S:'·i'MC2 .J:S:P t;;:DCHT
210 1:3AE c·::i 16 CMP ~~~:61E·

211 1:3BO DO DF BME SYNC IF MDT 10 CHAP PE-:S:Yl'K
212 1::::E:2 CA DE::<
213 18B3 DO F6 BNE :S:Yt·iC2
214
215
21E. 1 :::E:5 20 24 1A LOADT4 ._ISP ~DCHT LOOK FDF.~ :S:TAPT OF
217 1BBB C9 2A CMP ~~ .. ·. DATA CHAP
21::: 1::::BA l='O 06 BEGI LDAD11
;::: 19 1BBC C'3 16 CMP ~~~:£ 1 E· lF MOT • SHOULD BE :S:'r' t-i

CARii ~~ LDC CODE
220 18BE DO D1
221 18CO FO F:;:
222

CARD
BNE
BEG!

·=-·=··:· I-._._, 18C2 20 F3 19 LDAD11 JSR
224 18C5 CD FQ 17 CMP
.-, ·IC"
C.C·-' 18C8 FO OD BEQ
22E· 18CA AD F9 17 LDA

18CD C9 00 CMP
.-.. -.. -.
C.1::.C• 18CF FO 06 BEQ
22·3 18D1 C9 FF CMP
230 18D3 FO 17 BEQ
2:31 18D5 DO 9C BNE
.-.. -..-. c. ,~ .. c.
·:··:··:· I-·-··-·
2::::4
.-.--.c:-1::. .:, •. _ .•

2:~:E.
.-.. -.. ...,
c. -:.· (

240

18D7
HHIA
t::::DD
18EO
18E:;:
t::::E6
18E9

E~O F:;: 19
20 4C 19
::rn ED 17
20 F3 19
20 4C 19
::rn EE 17
4C Ft: 18

LDADT5 .JSR
._l:S:P
:S:TA
JSR
._I:~: F.'.
S:TA
._lt•1 p

241 18EC 20 F3 19 LDADT6 JSR
242 18EF 20 4C 19 JSR
243 18F2 20 F3 19 JSR
244 18F5 20 4C 19 JSR
;~45

246
247 18F8 A2 02 LDADT7 LDX
248 18FA 20 24 1A LDAD13 JSR
249 18FD C9 2F CMP
250 18FF FO 14 BEQ
2 51 1 9 0 1 2 0 0 0 1 A ._ISP
252 1904 DO 23 BNE
253 1906 CA
254 1907 DO Fl
255
25E.
.-.c:--,
c. ·-''

25 13'
260

1909 C::O 4C 19
1 ·:,i OC 4C EC 1 7
190F 20 EA 19
1912 4C i=::;: t::::

DE>=:
BNE

·-' :s:P
._IMP

LOAD 12 ._I SR
._lt·1P

261 1915 20 F3 19 LDADT8 JSR
262 1918 CD E7 17 CMP
263 191B DO OC BNE
264 191D 20 F3 19 JSR
265 1920 CD E8 17 CMP
266 1923 DO 04 BNE
267 1925 A9 00 LDA
268 1927 FO 02 BEQ

270 1929 A9 FF
271 192B 85 FA

CARD ~~ LDC CODE
272 1 '32D :::5 FB
273 192F 4C 4F 1C
274

LDADT9 LDA
LDAD10 STA

CARD
STA
._IMP

S'r'NC
LDADT4

RDBYT
ID
LDADT5
ID
~~$ 0 0
LDADT5

LDADT6
LDADT

RDBYT
CHl<T
VEB+1
RDBYT
CHl<T
VEB+2
LDADT7

RDBYT
CH~::T

RDBYT
CHl<T

RDCHT

LOADT8
PACl<T
LDADT9

CHl<T
•.,.'EB
I t·iCVEB
LDADT7

RDBYT
CHKL
LDADT9
RDB'r'T
CHl<H
LDADT9

LDAD10

PO INTL

POI NTH
START

PAGE

READ ID FROM TAPE
COMPARE WITH REQUESTED ID

DEFAULT 00 READ RECORD
A ~l 'r' l.1.I A 'r'

DEFAULT FF IGNOR SA ON
TAPE

1::;iET ·s:A FF.:OM TAPE

SAV:=·=: IN VEB+ 1 , 2

GET SA BUT IGNORE

GET 2 CHAF<:S
GET CHAP C·=:":i
LOOK FOR LAST CHAR

CDNVEF.:T TO HE:=<
Y=l MON-HE>=: CHA~·

COMPUTE CHECl<SUM
SAVX DATA IN MEMORY
INCREMENT DATA POINTER

END OF DATA CDMPA~E CHKSUM

t·m F.:t1 AL E:=·=: I T

EF.:ROR E~< IT

PAGE

7

8

PAGE 9

CAF.:D .. LDC CODE CARD ..
27E.
·::-"?"?
I- I I S:UBF.:OUT I MES: FDLLOl.~I

27:3
27'3 S:UB TO MOVE SA TD VEB+1,2
280
2:31 19:32 AD F5 17 INT'v'EB LDA SAL
282 19:35 8D ED 17 :s:TA VEB+1 .-.. -.. -. C.•=r-:.· 1938 AD F6 17 LDA S:AH
2:34 19~:B 8D EE 17 :S:TA 1•••1EB+2
2:::5 19:3E A'3 60 LDA ~~$60 F.:TS 1 r-rs·T
2!36 1940 :::r1 EF 17 S:TA '·IEB·+<3
287 1·34:3 A9 00 LDA ~~$ 00 CLERF.: CHl<S:UM A~:EA
2:3:3 1945 8D E7 17 STA CHKL
2:3•3 1948 :::r• E8 17 S:TA CHKH
2.90 194B 60 F.:TS:
291
292 COMPUTE CHl<S:UM FOF.: TAPE LOAD
293 RHi US:ES: \' TO :S:A\·1:=< A
294
295 194C A·-· Q CHl<T TA\'
296 194D 1 ·-· ·=· CLC
·=-·::.? L. ... I 1'34E 6D E7 17 ADC CHl<L
·=··::.!=J
L,;. ... -· 1'351 :::r• E7 17 S:TA CHl<L
·=- ·::.·::. L.. 1'354 AD E8 17 LDA CHKH
:300 1957 69 00 ADC ~~~1; 0 0
301 1·35•3 8D E:3 17 STA CHKH
302 195C 13:3 T'lA
3 0:3 195D 60 RTS:
:3 04
:3 05 OUTPUT Dt'IE B\TE us:E y
306 TO :S:A\·':=-=: B'r'iE
307
::::0:3 195E 20 4C 19 OU TB TC ._i S:F.: CHl<T r::OMP CHi<::S:UM
:3 09 1961 A'-. ·=- OUTBT Ti=t'l .s:A··.•'>=: DATA BYTE
:310 1'36:2 4R LS:P A SHIFT OFF LS:D
::.::i 1 19E.:~: 4A LS:P A
:312 1964 4A LS:R A
:::: 1 :::: 1965 4A LSR A
:314 l '3E.6 20 6F 1 •3 .JSP l-IE:=<:DUT OUT PUT t·ED
:::~ 15 1969 13::: T'lA
316 1'36A 20 E.F 19 JS:R HE>::OUT OUT PUT LS:D
:;: 17 196D ·~::: T'lA
:3H:: 196E 60 FHS:
319
::::20 CDi'iVEF.:T LS:D OF A TO ASCII
.:::21 wrn OUTPUT TD TAPE
.:::2,~

::::2:::: 1961= 2·;.r OF 1-1E:=<DUT mm ~~$OF

:324 1971 C9 OA CMP ~~$0A

:325 1·:;.7:3 1 .-.
·=- CLC

::::2E. 1'374 30 o;:: BMI HD=:!
.-, .-.-,
-=· c.1· 1'37E. E. '3 O? ADC ~=~f; 07

CARD ~~ LDC CODE
328 1978 69 ~u

:3:3 0
:3::::1
:3::::2

CARD
ADC

OUTPUT TD TAPE ONE ASCII
CHAR USE SUB/S ONE + ZRD

333 197A BE E9 17 DUTCHT STX SAVX
334 197D 8C EA 17
335 1980 AO 08
336 1982 20 9E 19 CHTl
337 19::::5 4A
338 1986 BO 06
339 1988 20 9E 19
340
341
342

344
::::45
346
.;:47

::::so
351

--·C'·-·
·=-··-' =·
354
.-.c:-c:­
.:, .. _, -·
:;:5E,
::::57

35•3
360
361

19::::B
1 ·:H::E
1991
1994
1995
1997
199A
199D

199E
19AO
19A1
19A4
1 ·;.11=i6
19A::::
19AB
19AD
19BO
19B3

4C 91 19
20 C4 19 CHT2
;;:::o C4 19 CHT3
·=•C• ._ .. _,

DO EB
AE E9 17
AC EA 17
60

Ai=: 09 Ot-lE
4·=· ,_,

2C 47 1 ·7 Ot-lE1
10 FB
A9 7E
::::ri 44 17
A9 A7
8D 4;;::: 17
2C 47 17 Dt-1E2
10 FB

363 19B5 A9 7E
364 1987 8D 44 17
::::65 19BA A9 27
366 19BC SD 42 17
367 19BF CA
368 19CO DO DF
369 19C2 6::::
370 19C:::: 60
371
·:::72

374

376 19C4 A2 06 ZRD
:::77 19C6 4:=:
378 19C7 2C 47 17 ZRDl
379 19CA 10 FB

:S:T'i
LD'l
._ISR
LSF.:
BCS
._ISP
._IMP
._l:~:F.:

.JSF.:
DEY
BNE
LD:=<
LD'"t"
RTS

A
CHT2
Ot-1E
CHT3
ZF.:O
ZF.:O

CHTl

OUTPUT 1 TD TAPE

STAF.:T BIT

GET DATA BIT

DATA BIT=1

DATA BIT=O

9 PULSES 138 MICRDSEC EACH

LD:=·=:
PHA
BIT
BPL
LDA
STA
lDA
:~:TA

BIT
BPL
LDA
-~:TA

LDA
STA
DE:=·=:
Bt'IE
PLA
RTS

CL KR DI
Dt-lE1

CLK1T

~:BD

CLKRDI
m1E2

CLK1T

SBD

DUTF'UT 0 TD TAPE

SAV>=: A
WAIT FDF.: TIME OUT

SET PB7=1

F<:ESET PB?= 0

6 PULSES 207 MICRDSEC EACH

LD'.=<
PHA
BIT
BPL

Clb::F.:DI
ZF.:D 1

PAGE 10

CAPD ,. LDC
19CC
19CE
1 '3D1
19D::::
19D6
19D9
19DB
19DD
19EO
19E2

CODE
A9 C3
::rn 44 1 7
A9 A7
::rn 4C:: 1 7
::::c 4 7 17
1 0 FB
A9 C3
BD 44 17
A9 ;::?
8D 42 17

390 19E5 CA
391 19E6 DO DF
392 19E8 6:::
393 19E'3 60
394

396

CAf':D

ZF.:02

LDA
S:TA
LDA
S:TA
BIT
BPL
LDA
STA
L.DA
:~:TA

DE>=:
Bt·iE
PLA
i:;::r~:

SBD
CLKPDI
2PD2

CLK1T

SBD

ZPDl

:~:ET PB7= 1

RE~:ET F'B7=0

SUB TD INC VEB+1,2

397 19EA EE ED 17 INCVEB INC './EB+1
398 19ED DO 03 BNE I t·1C'.,.'E 1

'·/EB+2 399 19EF EE EE 17 INC
400 19F2 60 INCVE1 RTS
401
402
4 n:::

404
405
406
407
4 o:::
409
410
411
412

19F3
19F6
19F9
1 '3FC
19FF

•::: 0 E:4 1 A
20 00 1A
2 0 c'4 1 A
20 00 1A
60

413 1AOO c·:::i ~:o

414 1 AO;::: ::: 0 1 E
415 1A04 C9 47
416 1A06 1 0 1 A
4 1 7 1 AO::: C9 4 0
418 1AOA 30 0:3
419
420
4;:;: 1
4;:::2
4;::3
424
4;:;:5
426
4 .-,...,

i:: i

1AOC
1AOD
1AOF
1A10
1Al1
1A12
1A1 ·:.:;:
1A15
1A16

1 ·=· ·-·
69 09
2A
;:::A
2A
;::A
AO 04
;::A
;:::E E9 17

4 2::: 1A1 '3 ::::::
429 1A1A DO i=-9
430 1A1C AD E9 17
431 1A1F AO 00

SUB TO READ BYTE FROM TAPE

F.'DBYT ._i:~:F.·

_I ~:R

PDBYT;:: .JSR
JSh::
fHS:

RDCHT
PAC KT
PDCHT
PAC KT

PACK A=ASCII INTO SAVX
AS: HE'.=< DATA

PAC~<T CMF'
BMI
CMP
BPL
CMF'
BMI
CLC
ADC

PACKT1 POL
F.:OL
POL
ROL
LD'r'

F'ACVT2 POL
i:<:OL
DE'r'
Bt·1E
LDA
LD'r'

~~$3 0
PACt:::T3

F'ACKT3
~~:IA 0
F'AO:::T 1

~~$09

A
A
A
A
~~$04

A

PACVT2

l=O VALID HEX CHAR

PAGE 11

LDC
1A\:·1
1A2;:'.'.
lA2::::

60
c:::::
60

CODE CAPD
PT:~:

PACKT3 I t·ff'
Y= 0 \·'AL ID HE::<
V= 1 NOT HE>::

PAGE 12

CARD ~~

4 :::.:=:
433
434
435
4:::6
437

GET 1 CHAR FROM TAPE AND RETURN
WITH CHAR IN A USE SAVX+1 TD RSM CHAR

4:~:9 1 A24 <::E EB 1 7
I

1 A~::? A2 o:::::
1A29 c'O 4 1 1A
1 A,:'.C 4E EA 1 7

I

l A.:'.'.F OD EA 1 7
I

lA:::2 ::rn EA 1 7
rn:=:s CA
1 A36 DO F 1

1 A3::::: AD EA 1 7
I

1ATB ::?A
1A3C 4A
1 A::: D AE EB 17
1A4 (I 60

PDCHT :~:T::-::

LD::-:'.
F.:DCHT 1 -I ~:p

I_ ~:F.:

OPA
::TA
DE:O<
Br·iE

LDA
F: OL
LSP
l_D::<
j:;::r:~:

:s: A 1·l >=: + ;~
~~$ o:::::
RDB IT
SA 11/'.:-:'.+ 1
:~:A'./ ::·:: + 1
·~~: A \·I '.:-:; + 1

PDCHT 1

.~:AV>::+ 1
A
A
SA 1v1 '.:-::+;~

f::'EAD ::::: BIT:~:

GET NEXT DATA BIT
i:;:·IGl-!T ~:HIFT CHAR
OF: I r·i ~:I Gl·i B IT
F:EPLACE CHAi:;::

MO\.'E CHAP ItHD A
SHIFT OFF PAi:;:'ITY

440
441
44.::
443
444
44':::;
446
447
44:'.::
44'3
450
451
452
453
454
455
456
457
45:::::
4':::~9

460
461
46,:::
463
464
465
466
4.:_:,'(

THIS SUB GETS ONE BIT FROM
TAPE A~D RETURNS IT IN SIGN OF A

46:::::
469
470
4?1
472
473
474
475

1A41 2C 42 17 RDBIT BIT
1A44 10 FB BPL
1A46 AD 4~ 17 LDA
1A49 AO FF LDY
1A4B ec 46 17 STY

1A4E
1A50
1A51

1A'::';3
1A56

lAS:::::
1A59
1A5C
1A5E

1A61

AO 14 LDY
32 RDBIT3 DEY
DO FD BNE

2C 42 17 RDBIT2 BIT
30 FB BMI

;a SEC
ED 46 17 SBC
AO FF LDY
SC 4~ 17 STY

AO 07
4 76 1A63 ::;::;::::

LD\'
RDBIT4 DEY

IH·iE 4 77 1A64 DO FD

479 1A66 49 ~F
480 1A68 29 80
4::::i 1A6A 60

EDR
At-iD
PT:~:

~:BD

i:;::DB IT
Cl_KPDT
~~:t;FF

CLK64T

F'DB IT::::

S:BD
PDBIT2

CL~:::RDT
~~$FF

CL~<64T

F.:DBIT4

~~·f;FF

~~'f;::::: 0

WAIT FOR END OF START BIT

GET START BIT TIME
A=::'.:56-Tl
~:ET UP TI MER

DELAY 100 MICROSEC

WAIT FDR NEXT START BIT

(256-f1)-(256-T2)=T2-T1

SET UP TIMER FOR NEXT BIT

DELAV 50 MICROSEC

COMPLEMENT SIGN OF A
MASK ALL EXCEPT SIGN

CARD ~~ LDC
483
4S4
4::;:5
4::::6

4:::9
490
491
492
493
494
495
49t-=.

497
49::::
499
500
501
5 Of:
51:i::::
504
505
506
507
so~::

509
510
511
512

514
515
516
517
51::::
519
520

1A6B
1A6D
1A?O
1A72

1A75
1A7:::
lA?A
1A?C
1A?F
1A:::: 1

1A:::4
1AS?
1Ae9
1AffB
tA:::E
1A90
1 A93

1A96
lBFA
lBFC
lBFE

A9
::::D
A9
::rn

2C
1 0
A9
ff[I

A9
::::D

2C
1 0
A'3
:=:r1
A9
::::D
4C

6B
6B
6B

CODE

.-,-,
~.-

4;::-: 17
BF
4·:· ·-· 1 -· (

47 17
i::-B
9A
44 17
A?
4:· '- 17

47 17
FB
9A
44 17
·-1""":' _c. ..
4·:· ·'- 17
·~c:-

{._I lA

lA
lA
lA

CARD

DI AGt-ilJ s· TI CS:
MEMOr;;:\'
PLLCAL

PLLCAL OUTPUT 166 MICROSEC
PULSE STP HiG

PLLCAL LDA
S:TA
LDA
STA

PLL1 BIT
BPL
LDA
STA
LDA
~:TA

F'LLE: BIT
BPL
LDA
STA
LDA
STA
._IMP

~~~f;;~7 

SBD 
~~:f.;BF 

F'BDD 

CLKPDI 
PLLl 
~~ 154 
cu:::1T 
~~$A? 

~:BD 

CLKPDI 
PLL2 
~~ 154 
CLV1T 
~~~1;27 

:~:RD

PLLl

TURN OFF DATIN PBS=l
CONVERT PB? TO OUTPUT

WAIT 166 MICRO SEC

[JUTPUT PB?=l

PB?=O

INTEPRUPTS PAGE 27

+=++$0164
NMIP27 .WORD PLLCAL
RSTP27 .WORD PLLCAL
IRQP27 .WORD PLLCRL

RESERVED FOR TEST

PAGE 1 ·:· ·-·

CARD ~~ LDC
522
c:- ·::-·-:.
·-· L-·_.1

524
5;=:5
52E·
527
c:-.-•• -·.
._.IC•;:t

52·::i
530
531
c-.-.. -,
·-•·::..•c.
5:::::3

C' .-.C"
--··~·-·
5:3E.
5:;:7
C"·-··-· --•·::..•c•
5::::·3
540
541
542

CODE CAFUI

666666
E·
6
666666
6 6
E· 6
E.E.E.6E·E·

555555
5
5
555555

5
c:"

·-'
555555

000000
0 0
0 0
0 0
(I 0
0 0
000000

PAGE 14

:3 3 ::-=: :3 :=: :::: (I 0 00 (I 0.
:3 0 (I
.-.
.j 0 0

:3:::::3:3:3:3 0 0
:3 (I 0
:::: 0 0

:~:~~: :~: :3 :::: :3 0 0000 0

000000 222222
0 0 .-. c.
0 0 2
0 0 222222
0 0 .-. c.
0 0 2
000000 ,::s·-··-·-~·::r·-· '- c. c. c. '- c.

CAfU1 ~~ LDC
545
546
547
54:::
549
550
551
c::-c:-·-1
·-··-•1::.
C't:'·-·
._1._1.:.1

554
C" c:"C"

·-··-'·-'
55E.
c:' c:-;r
._1._1 i

559
560
561
5E·2

564
SE.5
5E.E.
SE.7

570
571

57:~:

574
c--,c
_ ·-·'
57E.
577

57•3
s::::o

CODE CAPD

KIM

COP'/PIGHT
MOS TECHNOLOGY INC.
DATE OCT 13 1975 PEV E

: TT'/ I tHERFACE
:KEYBOAPD INTEPFACE
:7 SEG 6 DIGIT DISPLAY

PAGE 15

T T'l C t•lD :~: :
G GDD<EC
CR OPEN NEXT CELL
LF OPEN PREV. CELL

MOD IF\' OPEt·~ CELL
SP OPEN NEW CELL
L LOAD <OBJECT FORMAT>
Q DUMP FROM OPEN CELL ADDR TD HI LIMIT
RD RUB OUT - RETURN TD START <KIM)

<<ALL ILLE~AL CHAR ARE IGNORED>>

KE'r'BOAPD CMD:~::

ADDR SETS MODE TD MODIFY CELL ADDPEiS
DATA SETS MODE TO MODIFY DATA IN OPEN CELL
STEP INCREMENTS TO NEXT CELL
RST SYSTEM RESET
RUt"i GOE:=<EC
STOP $1COO CAN BE LOADED INTO NMIV TD

USE STOP FEATURE
PC DI :~:PLA\' PC

CLOCK IS NOT DISABLED IN SIGMA 1

CAPD ~~

5:3:3
s::::·::a
590
591
592
59:3
5·34
595
5'316
5•37
5·3:3
599
600
601
602
6 0:3
604
605
61)6
607
60S
609
610
611
.:.12
E· 1~:
614
615
616
617

619
620
621
E.22
62:3
624
E.,~5

62E.
6l~7

629
6:30
6:31

6_:34
E .. 35

LDC
lCOO

lCOO
1C02
1C 0:3
1C05
1C06
1C0:3
1COA
1COB
!COD
1COF
1C11
1C13
1C14
1C16
1C19

1C1C
1C1F

1C22
1C24
1c:25
1C27

1C2A
1C2C
1C2F
1 C:31
1C34
1C36
1C:38
1C:3A
1C3B
1C:3D
1C3F
1C42
1C45
1C47
1C4A
1C4C

.-.c:-I=-·-'

.:.:3

.-.c-
·=··-· .:.:::
•:SC' ·-··-· ,-.C"
·=-·-·
6::::
:35
.-.c-
-=··-·
:34
:36
BA
:::.:.
20
4C

6C
6C

A2
9A
:::E,
i~O

A9
f:D
A9
2C
DO
30
A9
1 ·=· ·-·
i==-=i _, -·
90
EE
AC
10
::rn
A2
20

CODE CAPD

i=·:·
. ·-· ::;:AVE

Fl
SAVE!

EF
FA

FO
FB
F4 SA 1·lE2
F5

F2
::::::: 1E
4F 1C

FA 17 tH1IT
FE 17 I F.:OT

FF F.:ST

i:-·-.
~ ·=-
:::~:: lE

FF DETCF'S
i=·:· ·-· 17
01
40 1 7' DET1
19
F9
FC

DET:3
01
03
F·:· ·-· 17
40 17 DET2
i=·:· .• _1

F·=· . '-- 17
o·::
E.A 1E

PAGE 16

+=$1COO

STA ACC l<IM EMTPV 'o,•'IA STOP (MMD
PLA OF.' BRI< (IRG!)
STA PREG
PLA r< I t1 Et~TRV 1•••1 IA .JS:F.'. (A LOST)
STA PCL
STA POitHL
PLA
S:TA PCH
STA PDHffH
S:T'r' 'r'REG
sn=: >=:~:EG

T :S:>=:
:s:r::·=: S:PU:SER
.JSR HUTS
._lr•1P START

._IMP i::r·iM I'./) t·mt·i-MA:S:t<ABLE I t'ffEPPUPT TRAP

._IMP (IRG!'•,·') ItHERF.:UPT TRAP

LD:=< ~~$FF t< IM Et·iTR'r' VIA R:ST
T:=-:;:s:
:S:T:=·~ S:PUS:ER
._ISP HUTS:

LDA ~~$FF COUMT STAf:O'.T BIT
STA CNTH:30 ZEPD CtiTH3 0
LDA ~~$ 01 MASK HI OJ;;:DER BITS
BIT SAD TE:S:T
BME ·s:TART VE'lBD ::;:::;:1 .. .1 TE:S:T
BMI DET1 STAF.:T BIT TEST
LDA ~~$FC

cu: THE: LOOP CO UM TS:
ADC ~~$ 01 THE ::;:TAPT BIT TIME
F.:CC DET;=:
Ir·K: CtHH30
LD'r' SAD CHECK FOR nrn OF :START BIT
BPL DET3
:S:TA Ct·iTL3 0
LD>=: ~~~1; o:::
._I s:R (:iET5 GET r:;;:E:S:T OF THE CHAP

TE:S:T CHAP HEF.'E

MAKE TTV/KB SELECTION

PAGE 17

CARii .. LDC CAi:;rn "
E.::::E. 1C4F START .J:S:R INIT1
E.::::7 1cc- LDA ~~$01

6:3:3 BIT SAD
E.:3•3 Bl'iE TT'll<B
640 l i_.:_. -· .:::F 1E .JSR ci::::LF PRT CR l_F
641 1C5C A"-· c. OA Lii::·~ ~~$OR T'r'PE OUT l<I M
642 1C5E 20 :::: 1 1E .JSR PF~TST
E.4:3 1C61 4C AF 1D ._IMP SHDl.1.11
644
645 1C64 A9 00 CLEAR LDA ~~$0 0
646 1C66 ,-.c-

C•·J F::: STA INL CLEAR INPUT BUFFEF.~
647 1C6:3 :35 F·::i STA UiH
E.4:::: 1C6A 20 SA 1E READ ·-' :~~~~ GETCH GET CHAR
649 1C6D C9 01 CMP ~~$01

650 1C6F FO 06 BEG! TT'r'l<B
651 1C71 20 AC 1F .JSR PACI<
E.52 1C74 4C DB 1D ._IMP SCA~1
E.5:~:

654 t1AH1 RDTINE FOR ~<E'r' BOAPD
... C"C'
t::•·-'"-' AMD DISPLA~··
.- c: .-
t::•·-''=•
.- C'-
t:• ·-' ... 1C77 20 19 1F TTYk:B .JSR SCA MD IF A=O r·m KE\'
65::: 1C7A DO n·-=· ·-· Br-iE START
E.5·3 1C7C A9 01 TT'll<Bl LDA ~~$ 01
660 1C?E 2C 40 17 BIT SAit
661 1C:31 FO cc BEQ STAfH
662 1c::::~: ;;::o 19 1F .JSF.: SCAMD
E.6:::: 1C86 FO F4 BEG! TT'll<Bl
664 1c:::::3 20 1 ·::i 1F ._1:::;:p SCA ND
.- .- C"
l::·I::··-· 1C:::B FO EF BEG1 TTYl<B1
E·E·E·
.... --1::1 '=• (1c:::n 20 6A 1F GETI< .J:SR GET~~E'·t

E.6::: 1C90 C9 15 CMP ~~$15

E.E.·:.=:t 1C92 10 BB BPL START
670 1C94 C9 14 CMP ~~$14

671 1C96 FO 44 BEG! PCCMD DI :s:PLA'l PC
E.?2 1c:·3::: C'3 1 (I CMP ~~ ~1; 1 0 ADDR MDDE=l
E,7·3 1C'::iA FO ;~c: BEG! ADDRM
674 1C9C C9 1 1 CMP ~~$1 1 DATA MDDE=l
E.75 1C9E FO 2c: BEQ DAT AM .- -.,.
l::• ... I:· 1CAO C9 1 .-. c. CMP ~~i; 12 STEP .---t::• { { 1C'i2 FO 2F BEG! STEP
E.7:3 1CA4 C9 1 ·-=· ·-· CMP ~~~t1~::: 1":Ur·1
E1 ? 1~ 1CA6 i=o :::: 1 BEG! GOV
6:::0 1CA::: OA DATA ASL A SHIFT CHAF.: HffD HIGH
6:31 1CA'3 OA A:S:L A DP DER tHBBLE
E.:::2 1CAA OA ASL A
E.::::;: 1CAB OA ASL A
6:::4 1CAC .-it:"

·=··-.I FC ·:TA TEMP :S:TOF.:E rn TEMP
E.!::5 1CAE A·=· ,_ 04 LD'.:-:: ~~$04

f,::::E, 1CBO A4 FF DATA1 LD'r' MODE TEST MODE 1=ADDP
E.:::7 1CB;;:: DO OA Bt·1E ADI•f:!: MDDE=O DATA

CARD ~~ LDC CODE
6:::::::: 1CB4 Bl FA
6::::9 1CB6 06 Fr:
690 1CB:::: 2A
6''.H 1CB9 91. FA
692 1CBB 4C C3 1C

694 1CBE OA
695 1CBF 26 FA
696 1CC1 26 FB
6'37 1CC3 CA
698 1CC4 DO EA
699 1CC6 FO 08
700

CAPD
LDA
ASL
POL
:;:TA
_IMP

ADDP A:~:I_

POL
F.:OL

DATA2 DE:=<
Bt·iE
BEO

701 ice:::: A9 01 ADDF:'.M LDA
702 1CCA DO 02 BNE
703
704 1CCC A9 00 DATAM LDA
705 1CCE 85 FF DATAM1 STA
706 1CDO 4C 4F 1C DATAM2 JMP
707
708 1CD3 20 63 1F STEP
709 1CD6 4~ 4F 1C
710
711 1CD9 4C c:::: 1D GO'.,.'

71:3

._1::;:i:;:·
_IMP

<POINTL),y GET DATA
TEMP SHIFT CHAR
A SHIFT DATA
<PDINTL),/ STORE OUT DATA
DATA2

A
F'OitHL
F'OltHH

DATA1
DAT AM::=:

~~:f; 01
DATAM1

~~:f;O 0
MODE
~:TAPT

I tK:PT
:~:TAi::::T

GOE>=:EC

SHIFT CHAR
:~:HI FT ADDP
:s:H I FT ADDt:;:' HI

DD 4 TI t1E:~:
E:=< IT HEPE

714
715

DISPLAY F'~ BY MOVING
PC TO F·orr-n

716
717 1CDC A5 EF
71 :::: 1 CDE ::=;5 FA
719 1CEO AS FO
720 1CE2 85 FB
721 1CE4 4C 4F 1C
-;i.-•. -.
f L:.. c.
-,.-.. -.
f c. .:.1

724

F'CCMD LDA
STA
LDA
-~:TA

._IMP

F'CL
POHHL
PCH
POHHH
:::TART

LOAD PAPER TAPE FROM TTY

725 1CE7 20 SR 1E LOAD -' ~:i:;:: 13ETCH
~~ 'I;J B
!__DAD

LOOK FOR FIRST CHAR
SM ICDLOt-i 7;:::6 1CEA C9 3B

727 1CEC DO F9
728 1CEE A9 00
729 1CFO 85 F7
730 1CFE: ·=:s F6
7J1
7J2 1CF4 20 9D 1F
733 1 C:F7 AA
7J4 1CF8 20 91 1F
-:---.c::-
1 ·.) -·'

7J6 1CFB 20 9D 1F
737 lCFE 85 FB
-:---.,-.
, . . ,:1•=: 1D0 0 '31 1 F

739 1D03 2 9D 1F

CMF'
Bt·iE

UJADS LDA
::TA
::TA

_i .:: F:
TA'=·='.
_i ::i:;::

_I ~:P

S:TA
J':::~·

_i~:p

CHKSUM
CHf<H I

C)ETBYT

GETf:'/T
POHHH

13ETBYT

1:3t::T B\'TE Ct"H
SA'.,.'E It"i =·= If-iDE:=<
COMPUTE CHf=:~:UM

GET AD DP ES:: HI

13ET ADD RE SS LO

PAGE 1 ·=· ·-·

CA;:;:'.D ~~ LDC CODE
74 0 1D06 ·:::s FA
7 4 1 1 Do:::: 2 0 9 1 1 F
74i~

743 1 DOB :::A
744 lDOC FO OF
745
746
·747
748
749
750
751
-,i::-.-.
f ,_, ~::.

-;;c:-.-1
f ·-' .:1
·754
""':' c: c:-
1 _1._1

75·3
760

1 DOE
1D 11
1D13
1D16
1D19
1D1A
1D1C

1D1D
1D20
1D;:::2
1D24
1D27
1D29

20 '3D 1F
91 FA
;;:·o 91 1F
c:O 63 1F
CA
DO F;:::
E:::

20 9[1 1F
CS F6
DO 17
2 0 9D 1 F
CS F7
D 0 13

761 1 D2B :::A
762 1D2C DO B9
?.:=.:~:

?E,4
?E.5 -- .- .-(t:1t::1
....., .- --.
(l:r {

770
771
772
77·-::1
I I ·-'

1D,:::E A2 OC
1D30 A9 ;:::?
1 D32 :::D 42 1 7
1D3S 20 31 1E
1D3::: 4C 4F 1C

1D3B 20 9D 1F
1D3E A2 11
1D40 DO EE

CAPD
STA
._l~:p

T::<A
BEO

LDAD2 J ~:F.·

:~:TA

J~:R

j ~:F.:

DD<
Bt·iE
I t·f:<

LOAD:::: ._l:S:F.:
CMP
Bt·E
._L~:R

CMP
f:t·iE

T::-::A
Bt-~E

LOAD? L D::<
LOAD::=: LDA

STA
_1-~:F.:

_IMP

LDADE1 ._l~F.·

LOADEP LD::<
Bt-iE

PO INTL
CHI<

LOAD3
IF CtH=O DDtH
GET At·f·t' DATA

GETBYT GET DATA
CPOINTL),y STORE DATA

CHI<
INCPT NEXT ADDRESS

LOA De'.

(3ETB'r'T
CHt<H I
LDADE1
GETB'r'T
CH~::::s:UM

LDADEP

LOAD

:s:BD
PRT:S:T
:S:TAPT

GETB'lT
~~'f.; 11
LOAD:::

::-:;: 1 DATA RECDF.:D
><= 0 LAST PECO PD
COMPAi:;:·E CH~::S:UM

:=<-OFF KIM

DI:S:ABLE DATA Hi

DUMM\'
::-::-iJFF EPP ~:::IM

774 DUMP TO TT'r'
-, ..., C"
i" ,. ·--'

77.::.
777

FF.:OM OPEN CELL ADDRESS
TO LIMHL,LIMHH

??::: 1 D4;::: A9 0 0
779 1D44 :::s F::::
?:::o 1D46 ::::s F9
?!:: 1 1 D4::: A9 0 0
?::=:2 1 D4A es F6

DUt·"IP LDA
STA
:S:TA

DUt·1P 0 LDA
:~:TA

STA

785 1D4E 20 2F 1E DUMP1 JSR
786 1DS1 A9 3B LDA
787 1D53 20 AO 1E JSP
788 1D56 AS FA LDA
789 1D58 CD F? 17 CMP
790 1D5B AS FB LDA
·791 1D'.':)D ED F::=: 17 SBC

~~$ 0 0
I t-11_
I t·iH
~~$ 0 (I
CH~<H I
CHt<:S:UM

CPLF

DUTCH
POI t-HL
EAL
POI t"HH
EAH

CLEAR F.:ECORD COUNT

CLEAJ:;;: CHV:S:UM

F'PHH CF.: LF
PPitH SMICOLOt-1

TEST POINT GT DP ET
HI LIMIT GO TO EXIT

PAGE 19

CAPD ~~ LDC CODE
792 1D60 90 18

794 1D6c: A9 00
795 1D64 20 3B 1E
796 1D67 20 CC 1F
797 1D6A 20 1E 1E

7'39 1 D6D AS F6
800 1D6F 20 3B 1E
::::01 1D7c: AS F?
802 1D74 20 3B 1E
803 1D77 4C 64 1C
B04

CAPD
BCC

LDA
J .';·r.;::
J :::r.;::
.J~:i:;:·

LDA
_!.~:1:;:·

LDA
_ISP
JMF'

805 1D7R A9 18 DUMP4 LDA
806 1D7C AA TA~

807 1D7D 20 JB 1E JSR
808 1D80 20 91 1F JSR
::=:09 1D:::3 20 1E 1E _IS:R
:::: 1 0
::::11 1D:::6 AO 00 DUMP2 LD\'
812 1D88 Bl FA LDA
813 1D8A 20 3B 1E JSP
:::: 14 1II :::D ::;: 0 91 1 F _l.~:r.;:•

815 1D90 20 63 1F JSR
816 1D93 CA DEX
817 1D94 DO FO BNE

819 1D96 AS F6 LDA
:::: 2 0 1 D ·:;.::: ;:;: 0 ::n: 1 E _I ~:p

:::21 1D9B AS F7 LDA
822 1D9D 20 3B 1E JSR
823 1DAO E6 F8 INC
824 1DA2 DO 02 BNE
825 1DA4 E6 F9 INC
826 1DA6 4C 48 1D DUMP3 JMP
.-,,-1'-:'I
•=1c1·

::::::o
:::31

:::34

1DA9
1DAC
1DAF
1DBC::
1DB5
1DB7
1DB9
1DBC
1DBF

2 0 CC 1 F ~:PACE

20 ;::F 1E SHOl.il
20 1 E 1E :S:HO!.i.11
2 0 9E 1 E
AO 00
Bl FA
20 TB 1E
20 9E 1E
4C 64 1C

838 1DC2 20 63 1F PTRN
839 1DC5 4C AC 1D
:::40

._I s: F.:

._i"~ r.;::

_I :~:P

._l:~:p

LD'r'
LDA
._ISF.:
._l:~:r.;::

JMF'

.J ·~: F.:

._I MP

841 1DC8 A6 F2
::M;:: 1 D CA 9A

GOE::<EC LD>::
r·:::~:

843 1DCB AS FB LDA

DUMF'4

;;·I; 0 0

PPTB\T
OF'Et-1
PRTPtH

CHK 1-I I
PF.'Tf:\'T
C H k" ::. U 1··1
pi:;::Tf:'r'T
CLE AP

F·r.;:·TB'/T
CHV
F'fnr-·rn

PRINT LAST RECORD
0 B'r'TE:::

pi:;::It·lT CH~::-::UM

FOR i_A::T r.;::i::cmrn

0 RINT 24 BYTE CNT
::A\·'E FC I r·mi::::-::

;;J;()O PRINT ,:;:4 BYTE:::
(POINTL),y GET DATR
PRTBYT PRINT DATA
CHK COMP CHKSUM
INCPT INCPEMENT POINT

DUr·1f'2

CHKHI
PRTB'fT
CHKSUM
F'RTB\'T
I r·iL
DUMP3
I t·iH
DUMF'O

OPEN
CRLF
PRTPtH
DUT:S:P

PF.: I r·lT CHf::::::UM

INCREMENT RECORD CNT

DF'Hi t·iEl.1J CELL
P F.'. ItH C F.: L F

PPT :~:PACE

~;:I;C10 F'PHH DATA :S:F·ECIFIED
<POINTL),y BY POINT RD= LDA EXT
Pf;=:TB'/T
OUT~:F'

CLEAR

HK:PT
SHOl.1!

S:PUS:EP

POitHH

Pi:;::T ~:PACE

PROGRAM RUNS FROM

PAGE ;:;:o

PA(5E 21

CARD .. LDC CODE CARD ..
844 1DCD 4:3 PHA OPEN CELL ADDRE:S::S:
:345 1DCE A5 FA LDA POI NTL
~346 1DDO 4:3 PHA
:=:47 1DD1 AS Ft LIIA PREG
848 1DD:3 48 PHA
:34•3 1DD4 A6 F5 LD>=: ;:.::RE(5 i:;;:E:S:TORE REG:S:
850 1DD6 A4 F4 LD'-i"' YREG
:::51 1DD8 A5 F .. :. ·-· LDA ACC
;352 1DDA 40 RTI
85:3 ;
::::54 1DDB c·::i 20 SCAN CMP ~=$2 0 OPEN CELL
855 1DDD FO CA BEQ :S:PACE
:356 1DDF C9 7F CMP ~~$7F ~UB OUT (I< IM)
:=:57 1DE1 FO 1B BEG! STV
:358 1DE:3 C9 OD CMP ~~$OD NE:>~T CELL
:::5·3 1DE5 FO DB BEt:;:! RTRN
~::.:. 0 1DE7 c·::i OA CMP ~~$0A F'REV CELL
:::61 1DE9 FO 1C BEG! FEED
:::6;~ 1DEE: C'3 2E CMP ~= ... · . MODIFV CELL
:36:3 1DED FO ::=~E. BEG! MODIFY
:::t.4 1DEF c·;i 47 CMP ~= .··G GO E~'=:EC
:::65 1DF1 FO D5 BEQ GOEXEC
:::6E, 1DF:3 c:·:=- 51 CMP ~= .. · ,~ DUMP FROM OPEN CELL TO HI LIMIT
~::67 1DF5 FO OA BEG! DUMP\·'
:36:3 1DF7 C9 4C CMP ~= .. · L LOAD TAPE
!36'3 1DF9 FO 09 BEG! LOAD'./
:::70 1DFB 4C 6A 1C .JMP READ IG~mRE ILLEGAL CHAf:::
:::71
:::7:=: 1DFE 4C 4F 1C s:r• ... • ._IMP S:TART
~37:3 1E01 4C 4·-· c:. 1D DU MPV _IMP DUMP
:374 1E04 4C E7 1C LO ADV .JMP LOAI1
•::S-,C" -· ,. ·-'
:::76 1E07 :~::3 FEEII SEC
::::77 1E08 Ac-·-' FA LDA PO INTL DEC I1DUBLE BYTE
·=·?·=· '-'I '-' 1EOA E9 01 :s:E:c: ~~$01 AT PO INTL AND POHffH
:::?·::- 1EOC ,-,c:-

•:1._1 FA ·s:TA POI ~ffL
:=:f:O !EOE BO n·=-- ,_ BCS FEED!
::::;:: 1 1E10 C6 FF.: DEC POI NTH
::::::C'. 1E12 4C AC 1D FEED1 ._IMP S:HOl.1.I
::::=::~:

:3;::4 1E15 AO 00 MODIF'l LD'r' ~~$0 0 GET CONTPHS: OF INPUT BUFF
:::;::s 1E17 AS F8 LDA H1L IML AND :S:TOP It-1 LDC
~::~3E. 1E19 91 FA :S:TA (POitHu,y SPECIF I EI1 E:'"f' POHH
:::::::? 1E1B 4C c:2 1D ._IMF· F.:T F.:1'1
:::::::::
:::8 13 E~m OF MAIN LINE

PAGE 22

CAF.:D .. LDC CODE CARD ..
891 :S:UBF":OUT I MES FOLLO!J.1
::~·;.;~

:::·::-::::
:394
:3•35 ::~UB TD PF.:Hff PD Hffl, PO HffH
:3'3E.
:::·37 1E1E A5 FE: PRTPMT LDA POI NTH
:3•3:3 1E20 ;:: 0 :3 E: 1E .J:S:F<: PPTBYT
:::·3·3 1E2:3 20 91 1F .J:S:F.' CHV
900 1E26 A5 FA LDA POIMTL
'3 01 1E2:3 20 :=:B 1E .J:SF.: PPTB'r'T
902 1E2B 20 '31:1. 1F .JS:R CHK
90:=: 1E2E 60 PT:S:
904
905 PF.'IMT S:TF.: I MG OF ASCII CHAP FF<:OM
906 TOP+::-:; TO TOP
90?
·30:::: 1E2F A<:: 07 CF<:LF LD>~ ~~$07

909 1 E:=:1 BD D5 1F PRT~~T LDA TOP,:•=:
910 1 E:=:4 E:O AO 1E YS:R DUTCH
91 1 1E:=:7 CA DE:=<
912 1 E:=:::: 1 0 F7 BPL PF.:T:ST :STOP ON I NDE>< ZEF":O
91 :3 1E3A 60 PRTl F":T:S
914
915 PPHH 1 HD~ BYTE A·=-· . .::. Tl.o.ID A:S:CI I CHAR ... :S
916
91.? lE:=:B 1-1C'

C•·-' FC PPTB'r'T :STA TEMP
·::-1 :3 1E:3D 4A LS:R A :S:HIFT CHAR Rir::iHT 4 BIT:S:
'319 1E3E 4A L:SR A
920 1E:3F 4A L:S:P A
921 1E40 4A L:SP A
'322 1E41 ;:: 0 4C lE .JSR HD=:TA CONVERT TO HE:=< AND PF<:HH
'3i~:::: 1E44 AS FC LDR TEMP 1::;ET IJTHER HALF
'324 1E46 ;:;: 0 4C lE JS:F.: HE:=·=:TA cot·1VEF":T TO HE>='. Ar·rn PPil'H
•::. ·=·C" .. ·~·-' 1E49 AS FC LDA TEMP F<:E:S:TOF<'E BYTE IN A At·rn t;;:ETUPM
132E· 1E4B 60 i:<:r:s:
1327
•32::: 1E4C 2'3 OF HE>::TA flt·~D ~~~I; OF MA:S:~::: HI 4 BI rs:
1::,·:11::. -· '- -· 1E4E c:·::i OA Ct·1P :~$ 08
13::.:o 1E50 1 ·=· '-·' CLC
'3'] 1 1E51 :3 0 02 1H'1I HD::TA1
·;.:;:2 lES::.=: ~·=i -· -· 07 ADC ~~~±: 07 ALPHA HE>=:
·3:::::;: 1E55 f.~~ ::::o HD::TA1 ADC ~~:1::;:0 DEC HE>=:
934 1E57 4C Ft I) 1E _IMP OUTCH F'i::;'.ItH CHAP
1=='~:5

·::e:;:E. GET 1 CHAt;;: F~·OM TT'r'
13·~:7 ~·ETur;::M Fl;;:OM SUB 1.i.II TH CHAP Hi A
·;.:~::=: • ... • I :S PPE:S:EPVED At-i[t \' PETUF<·t·iED = FF , .. ,

939
940 1E5A :=:E. FD GETCH :S:T>< TMP'.=< :S:AVE :=-::. PEG
941 1E5C A2 o::: LD::·=: ~= :f; 0 ::: s:ET UP ·=· ,_, BIT CtH
942 1E5E A'31 01 LDA ~~$ 01

PAGE ·::-·:· ._.._ .
.CAPD .. LDC CODE CAPII ...

94:3 1E60 2C 40 17 GE Tl BIT :S:AD
944 1 EE.:3 DO 22 BNE GETE.
945 1E65 30 F9 BMI GET1 '1.i.IAIT FOi''. STAF.:T BIT
946 1E67 ;=: 0 D4 1E ._l:~:R DELAY DELA'r' 1 BIT
947 1E6A 20 EB 1E 13ET5 ._ISP DEHALF DELAY 1 ... -. .•" c. BIT TIME
94::: 1E6D AD 40 17 GET2 LDA :S:AD GET :3 BI T:S:
94•3 1E70 2 13 BO At·m ~~:1;:3 0 MAS~:~ OFF LOl.iJ DPDER BITS
950 1E72 46 FE L:S:F.'. CHAP SHIFT f<'. I GHT CHAPACTER
951 1E74 05 FE OPA CHAF<'.
':=t52 1E76 :::5 FE STA CHAP
·:;.5:3 1E7:=: 20 [14 1E ._ISP DELA'·1' DELA'l 1 BIT TIME
954 1E7B CA DD{
13'55 1E7C DO EF BNE GET2 GET NE::<:T CHAF.'.
'35E. 1E7E .::~ 0 EB 1E .JS!<: DEHALF E:=<IT THIS FHM
'357
~;-5::: 1EB1 A6 Fii LD>=: TMP'.:-:;
'35':=t 1 EB:3 FIS FE LDA CHAP
'360 1E:::5 2A RDL A SHIFT OFF PAR! T'l
'361 1EB6 4A LSR A
·::-.:.2 1E:::7 60 GET6 F.:TS
·:;.E.:3
964 I t·1 IT I AL I ZAT I ON FOP SIGMA
·::-E.5
·::it.E. 1 E :::::: A2 01 HUTS LD>~ ~~$ 01 SET ~:::B MODE TD ADDF.:
'367 1E:::A :::E. FF :s:r::-:: MODE
·:=-6:3
969 1E:3C A2 00 INIT1 LD:,:: ~~$0 0
970 tE:::E :3E 41 17 :S:T:>=: PADD FOR SIGMA USE SADD
'371 1E91 Fr=· L.. :::w LD:=-=: ~~:t;:3F
•:a?·=·
-· I '- 1E9:3 :::E 4·:. ·-· 17 :s:r::< PBIID FOR SIGMA u:s:E :S:BDD
·37:3 1E'36 A·-· c. 07 LD::-=: ~~~f, 0 7 Et-1ABLE DATA IM
974 1E9:3 :3E 42 17 :s:r::-:: S.BD OUTPUT
975 1E9B It:3 CLII
'37E. 1E'3C 7:3 SEI
l3'i'7 1E'3D E.O PTS
'37C:
C.f'?•::.
... I -· PRINT 1 CHAF.: CHAF.:=A
·3:30 ;:-:: 1-:::·

·~ PF.'.ESERVEU ')·' RETURNED = FF
9:::1 OUT SP PRHffS 1 SPACE
·3:32
·:::-:::.·::: 1E9E A9 20 OU TSP LDA ~~:1:2 (I

·3:::4 1EAO :::5 FE DUTCH STA CHAF<:
·::i:::s 1EA2 :=:6 FD :s:r:=-~ TMPX
·::-:::6 1EA4 20 D4 1E .JSR DELA'l 1(I ... ··11 BIT CODE S'r'~iC
·3:37 1EA7 AD 42 1.7 LDA SBD :S:TAF.:T BIT
·3:::::: 1EAA 29 FE AND ~~$FE

•3:::·3 1EAC SD 42 17 STA :S:BD
990 1EAF 20 D4 1E ._l:S:R DEL AV
991 1EE:2 A·-· c. o::: LD:>=: ~~ ~t; o:=:
·::.·::,·=· i- 1EB4 AD 42 17 DUT1 LDA :S:BD DATA BIT
•3•:=-:3 1EB7 2'3 FE At·m ~~$FE

'394 1EB9 46 FE LSF.: CHAP

PAGE 24

CARD .. LDC CODE CARD ,.
·::s·::ts 1EBB E.·3 00 ADC ~~$(I (I

131::i6 1EBD ::::D 42 17 STA SBD
'3'37 1ECO 20 D4 1E ._ISP DELA\'
·::r·::i:::: 1EC3 CA DD=:
999 1EC4 DO EE BME DUT1

1000 1EC6 AD 4·=· ·- 17 LDA :s:BD STOP BIT
1001 1 EC'3 09 01 oi::::A ~~$01

1002 1ECB ::::D 42 17 :S:TA :S:BD
1003 l.ECE 20 D4 lE _ISf': DELA'r' :s:TOP E: IT
1 004 1EDl A6 FD LD::< TMP>=: PESTDPE In DE>=:
1005 1ED3 .:.o i:;ns
1006
1007 DELAY 1 BIT TIME
10 o:::: AS DETEPMH1D B'r' DETCPS
1(I09
1010 1ED4 AD F·:· ·-· 17 DELA'/ LDA Ct·iTH3 0 T!-i IS: LOOP :s:I MULATES THE
1011 1ED7 ::::r1 F4 17 STA TIMH DETCP:S: ·~:ECT I Ot-1 i=1t·~D 1 .• JI LL DI'.:: LA 'r'
101;=: lEDA AD F2 17 LDA CMTL:30 1 BIT TIME
1013 1EDD 3::: DE2 :s:EC
1 014 1EDE E9 01 DE4 :S:BC ~~:t;Ot

1 015 1EEO BO 03 BC:S: DE:3
1016 1EE2 CE F4 17 DEC TIMH
1017 1EE5 AC F4 17 DE3 LDY TIMH
101:::: 1EE8 10 F·:· ·-· BPL DE2
1019 1EEA 60 PT'S:
1020
1 Of~l DELA\' HALF BIT TIME
1 Oc::"2 1EEB AD F:3 17 DE HALF LDA CNTH30 DOUBLE PIGHT :s:HI FT IJF DELAY
1023 1EEE ::::n F4 17 :s:TA TIMI-I COt·E:TAtH FOF<: A DI\.' E' , I 2
1024 1EF1 AD F2 17 LDA C t·iT L3 0
1025 1EF4 4A LSF.: A
1026 1EF5 4E F4 17 LSP TIMH
1 027 1EF:3 9 (I E·:· -·-· BCC DE2
1 02:3 1EFA 09 ::::o IJPA ~~~I;::::o

1029 lEFC BO EO BCS DE4
10:30
1 0:31 :s:UB TD DETEF.:M I t·iE IF l<E\' n:
1 0:32 DEPF.:E:SSED oi:;;: COMDITIDt·1 OF :s:s1.i.1
1 03:3 KEY nor DEF' OP TTY MODE A = 0
10:34 ~:::EY DEF' DP l<B MODE A r·mr ZERO
1 035
1036
1037 lEFE AO 0:3 f W LD'r' ~~~I; o:~: :::: i:;::o1.i1s
1 (13:3 1FOO A2 01 LD::< ~~·f.01 DIGIT (I
10:39
1040 1F 02 A9 FF Dl'iEl<EY LDA ~~$FF

1041 1F 04 :::E 4·-· c:. 17 Al<l ~s:T:=·~ :S:BD OUTPUT DIGIT
1042 1F07 E·-· _,:a IW·=: GET t·1:,=:T nri::;Ir
1043 1F0:3 EO ·-· I !'f>~
1044 1F09 2D 40 17 AMD SAD I!'WUT SEGMEt·~r:s:

1045 1FOC ::::=: DEY
1046 1FOD DO F5 BME Al< 1

PAGE 25

CARD .. LDC CODE CARD ..
1047
1 04::: 1FOF AO 07 LD')' ~~$07

104'3 1F11 :3C 4·-· c. 17 :S:T'"i' :S:BD
1050
1051 1F14 09 :30 DF.:A ~=!:&:30

1 (15;:: 1F16 49 FF EDR ~~~l;FF

105:3 1F1::: 60 RT:S:
1054
1055 SUB OUTPUT TD 7 SEGMENT DISPLAY
1056
1057 1F19 AO 00 :S:CAt·m LD'r' ~:$0 0 GET DATA SPECIFIED
1 05::: 1F1B Bl FA LDA (POHffU .. ,

' I
BY PDHff

1059 1F1D ::::5 F'3 :S:TA INH SET UP DIS:PLAY BUFFER
1060 1F1F A9 7F SCAt·iDS LDA ~~ ~:&7F CHAt"H3E SEG
1 061 1F21 8D 41 17 STA PADD TD OUTPUT
1062
1063 1F24 A·=· L. 09 LD:,=: ~~!:& 09 HHT DIGIT NUMBEP
1064 1F26 AO 0:3 LDY ~:$ 0:3 OUTPUT ·-:. ._. BYTES:
1065
106E. 1F2:3 B'3 F:::: 00 S:CAl'm1 LDA I NL, 'l GET BVTE
1067 1F2B 4A LSF.: A GET M:S:D
i 068 1F2C 4A LSR "A
1069 1 F;::D 4A L:S:F.: A
1070 1F2E 4A L:S:F.: A
1071 1F2F 20 4:3 1F ._IS:F.: CON VD OUTPUT CHAR
1072 1 i= :32 E":, '-· F·-· 0 0 (I LDA INL, Y GET B'iTE AGAIN
107:3 1F::::5 2'3 OF AND ~:$OF GET L:S:D
1074 1F:37 ;:: 0 4:::: 1F ._l:S:P. CONVD OUTPUT CHAR
1075 1F::::A :38 DEY :S:ET UP FOR t·D-<T B'lTE
1076 1FTB DO EB BNE :S:CAND1
1077 1F:3D 8E 42 17 :s:r:=-=: S:BD ALL DIGITS: OFF
1 07::: 1F40 A9 00 LDA W&OO CHANGE :S:EG
1079 1F42 SD 41 17 :S:TA PADD TO INPUTS:
1o:::0 1F45 4C FE 1E ._IMP Al< GET At·1Y k:EY
1o:::1
1 o:::;:: COl'1VEF.:T AND DI :S:PLm·· HE:=<:
1 o:::::::: USED B,'f' SCAND 'ONLY
1 0:::4
1085 1F4:3 :::4 FC CONVD :S:T'r' TEMP :~:AVE

10:36 1F4A A·=· ,_, TA'r' US:E CHAF.: A:S: I NDE:>{
1 0:::7 1F4B B9 E7 1F LDA TABLE,\' LOOK UP CONVERS:I Dt"i
1 o:::::: 1F4E AO 00 LDY ~:$ 0 0 TURN OFF :S:Ef3MENTS:
1089 1F50 ~::c: 40 17 STY S:AD
1 o·::io 1F5:3 :::E 42 17 :s:T:>=: S:E:D OUTPUT DIGIT ENABLE
1091 1F56 :::D 40 17 :~;TA SAD OUT PUT S:EGMENT:S:
1092
109:3 1F59 AO 7F LDY ~=:E7F DELAY 500 C'lCLE:S: APPRO:>{.
1094 1F5B :::::::: CDl'NDl DE\'
1095 1F5C DO FD BME CONVD1
1096
1097 1F5E E·-· ·=- I t·i ~< 1::;ET NE:>=:T DIGIT NUM
1098 1F5F E·=· ·-· IN>=: ADD 2

CAPD ~~ LDC CODE
1099 1F60 A4 FC
1100 1F6;:: 60
1101
11 02
11 o::::
11 04
11 05
11 06
1107
11 o:::
11 09
111 0
1 1 1 1
1112
111::::
1114
1115
1116
111 7
111 :::
1119
112 0
1121
1122
112::::
1124
1125
1126
1127
11 ;:::::
1129
11:::: 0
11:::: 1
11:::: ;::
1133
11 34
11 :::s
1136
1137
11 :::::::
11 ::.:9
1140
1141
1142
114 :::
1144
1145
1146
1147
114:::
1149
115 0

1F63
1F65
1F67
1F69

1F6A
1F6C
1F6E
1F71
1F73
1F75
1F77
1F79
1F7A
1F7C
1F7D
1F7F
1 F::: 0
1 F:::2
1 F:::::::
1F:::5
1 F:::6
1F:::7
1 F:::::::
1 F:::A
1 F:::rB
1 F:::D
1 F::::E
1F90

1F91
1F92
1 F'34
1F96
1F9:::
1F9A
1F9C

E6
DO
E6
60

A2
AO
20
DO
EO
DO
A9
60
AO
OA
BO
c::::
1 0
~::A

2·~

4A
AA
9:::
1 (I

1 ·=· ·-·
69
CA
DO
60

1.:. ,_,
.- c::-

f::1 ,_I

.-. c:"
·=· ·~·'

A5
69
,-IC° 1:1 ._t

60

FA
02
FB

:=: 1
I) 1
02
07
.-,-,
C. I

F5
15

FF

o::::

FA

OF

I)::::

07

FA

F7
F7
F6
00
F6

1F

CAF.:D
LD\'
l?TS

TEMP F.:E:~:TDPE 'r'

SUB TD INCPEMENT POINT

I t·lCPT I t·lC PDHHL
I t·lCPT2
PDHHH

Bt·lE
I t·lC

I t·lCF'T2 PT:~:

GETKE'r'
1::;ETKE5

KE\' I t·l
KE\' I t·l 1

KEY I t·l2

~<EY IN:::

KEY I t·i4

CHK

GET KEY FROM KEY BOARD
RETURN WITH A=KEY VALUE
A GT. 15 THEN ILLEGAL DR NO KEY

LD>=: ~~$21

LD\' ~~$ 01
._l:~:R Dt"lEKE'r'
Bt·lE KE\' I t·l
CF''.=< ~~;1;27

Bt·IE "i::iETKE5
LDA ~~·E; 15
PTS
LD'r' ~~$FF

A:~:L A
Bc:s: VE\' I t·l2
I t·f/
BPL KE'r'It-11
T>::A
At-iD ~~$OF

LS:P A
TA>=:
T\'A
BPL KE'r'ItN
Cl_C
ADC ~~$ 07
DE><
Bt·1E KE\' I t·l3
F:T:s:

STAPT AT DIGIT 0
1:_:iET 1 F.:m.1

A=O no KEY
TE:s:T FOF.: DIGT 2

15=r-i0 ~:::E'r'

SHIFT LEFT
Ut-lT IL \'=~=::E Y t·iU M

MASK M:S:D
DI\.' B\' 2

MULT (X-1) TIMES A

SUB TD COMPUTE CHECK SUM

CLC
ADC CHK:S:UM
:s:TA CHK:~:UM

LDA CH~=:·H I
ADC
:~:TA

F.' T:~:

~~:l 0 0
CH~=::H I

GET 2 HEX CHAP~s At-JD PACK
I t-n D I ~-1 L A t·rn I t·l H

F'Al::iE 26

CAi:;::D ~~ LDC
1151
1152
1153
1154
11 S5
1156
1157
115::::
1159
1.160
l 161
.16;::.:
163
164
165

.166
l 167
116:::
1169
1170
1171
1172
1173
1174
1175
1176
1177
117:::
1179
11:::0
1 l ::: 1
11 :::2
11 :::3
11 :::4
11 :::s
1 i:::: 6
1 i::::7
11 ::::=.::
1 i::::9
1190
11 91
119;:=_:

1F9D
1FA0
1FA3
1FA6
1 FA9
lFAB

1FAC
lFAE
1FBO
1 FBc~
lFB4
1FB6
1FB:::
1FB9
1FBB
lFBC
lFBD
lFBE
1FBF
1FC1
1FC2
1FC4
1FC6
1FC7
1FC9
1FCB

1FCC
1FCE
1FDO
1FD;:;:
1FD4

CODE

;:;:: 0 SA 1E
20 AC lF
;:=_: 0 ':i !='i lE
;:: I) AC 1 I=

AS F·=· !_I

60

C9 JO
30 1B
C9 47
1 0 17
C9 40
::: 0 03
1 ·=· ·-·
69 09
;.::A
;::.:A
:::A
2A
AO 04
2A
2tS Fe
;:=_:6 F'3
::::::
DO F:::
A9 00
ti 0

AS F·=· ·-·
,-, c:"

1:1 ·-· FA
AS F9
.-, c;

·=' ·-· FB
60

Cfir;:•[I

GETB\'T

PACV

HD=J~UM

HE'.:<ALF'

UPDATE

UF'DAT1

UPDAT2

OPU1

PAGE

~ PRESERVED Y RETURNED = 0
NON HEX CHAP WILL BE LOADED AS NEAREST HEX EQU

-1::F: GET CH
.JS~: PACK
._1::1:;:: (3ETCH
_I ::i:;;: PAC~<

LDA INL
PTS

SHIFT CHAR IN A INTO
H1L Ar·rn HiH

CMF' ~~$:~: 0 CHECK FOP HE'.=<
BMI UF'DAT2
CMP ~~$47 rmT HE>=: D<I T
BPL UF'DAT2
CMF' ~~$4 0 CO!"i\.'EPT TO HE'.=<
BMI UPDATE
CLC
1=tDC ~~ $1) 9
F. 01_ A
F.'OL A
F.:OL A
F.:OL A
LD\' ~~$ 04 SHIFT INTO l/O BUFFER
i:;::oL A
i:;::oL It-il
POL I r·iH
DE\'
Bi·iE UF'DAT1
LDA ~~$I) (I

PT:S:

LDA I t·iL MOVE l/O BUFFEP TD POINT
:::TA POitHL
LDA HiH TPANSFER INH- F'OINTH
::TA PDitHH
Fn:::

END OF SUBROUTINES

CARD ~~ LDC
1194
1195
1196
1197
1197
1197
11 '3'7
1197
1197
1197
1197
1197
1198
119:::
11 ·::i:::
1198
1198
119'3'
1200
1201
1202
1202
1202
1202
1202
1202
1202
1202
120:3
1204
1204
1204
1204
1204
·1204
1204
1204

1FD5
1FD6
1FD7
1FD:3
1FD9
1FDA
1FDE:
1FDC
1FDD
1FEO
1FE1
1FE2
1FE5
1FE6

1FE7
1FE:3
1FE9
1FEA
1FEB
1FEC
1FED
1FEE

1FEF
1FFO
1FF1
1FF2
1FF3
1FF4
1FF5
1FF6

CARD ~~ LDC
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

1FF7
1FFA
1FFC
1FFE

00
00
00
00
00
00
OA
OD
4D
20
1 .-.

·=-c---.
·-'C.
20
1 .-.

·=-

BF
:::E,
DB
CF
E6
ED
FD
.-,""":' 1:1 ..

FF
EF
F7
!=C
B9
DE
F9
Fl

1C
22
1F

CODE CARD

TABLES

TOP

49 4B

~·=-- '- 45

TABLE HEX TD 7 SEGMENT
0 1 2 3 4 5 6 7

8 9 A B C D E F
.BYTE $FF,$EF,$F7,$FC,$B9,$DE,$F9,$F1

CODE CAj:;::D

INTERRUPT VECTORS

+=·I; 1FFA
1C t"iM I Et'ff • 1 .•. 1or.rn l'H-1IT
1C RSTEtH . l.1.!0PD r;;:sT
1.C IPOEtH • l.i.IORD IPG!T

• Hrn

END OF MOS/TECHNOLOGY 650X ASSEMBLY VERSION 4
NUMBER OF ERRORS = o, NUMBER OF WARNINGS = 0

PA1;iE 28

PAGE 29

:S:'lMBDL TABLE

:S:\'MBOL. •.,,'ALUE LIME DEFH~EII CRDSS:-F.'.EFEF~ENCES

ACC OOF3 -:ii .-
i t::•

c-.-,...,
·-··=· .. ::::51

ADDF.: 1CBE 694 E.::::7
ADDf<·~1 1c:t:::: 701 67:3
Al< lEFE 1037 1 o:::o
A~0:: 1 1F04 1041 1046
CHAR OOFE 90 950 951 '352 959 9:::4 994
CHK 1F91 1 141 7::::4 ?·:11::.

I ·-''-' 741 74::: :=: o::: :314 :::·3·3 902
CHl<H 1 ?E:::: 1~-:S -· (1 s::: 265 2:::·3 ·=··::.·::. L.. .. · ::::o 1
CHKHI OOF6 1::.·:1 ._ . .__ 7:~:0 ...,C"C" .. ·-'·-· 7:32 7•::.•::.

I .. • .. • :319 1144 1146
CHl<L 17E7 96 15E. 262 2::::::: ·=··::,7

I--· I 2·::-:3
CHKSUM OOF7 :=::::: 72'3 -,C"O

.. ·-··-· ?::::::: ::: 01 :321 1142 114:3
CHKT 194C 295 2::::4 .-,.-,...,

c. .:.• .. 242 244 25E· :::: 0:3
CHT1 1 ·:=-:::.::2 ::::::::E. :344
CHT2 19:3E :341 :3:::::::
CHT3 1991 ::::42 :340
CL.ERP 1C64 645 :30:::: :3:36
CL~::KT 1747 .- C" o._. ••••
cu::r;rn1 1747 E.E. .-.c.-c-.:. .. _ .. _. :361 :3'?::: :::::::4 4·~::: 505
CLKF.'DT 1746 .- ~

t::•r"° 459 471·
cu:::1 T 1744 E.2 :35:3 364 :;::::: 1 .-.. -.-,

.:,11:11' 501 50:::
CLK64T 1746 64 461 47:3
CLK:3T 1745 6:~: ••••
CtHH::::o 17F3 1 01 613 E.22 1 01 0 1022
cnTL30 17F2 100 -.e

l::•C.·-· 1012 1 024
COt-1'./D 1F4::: 1085 1 071 1074
COt-1\.'D1 1F5B 1094 1 095
CF.'LF 1E2F '3'0:3 640 -,.-.c-

'(·~·-' :32'=-='
DATA 1CA8 .:.::: 0 ••••
DATAM lCCC 704. .- -C'

I:· { ·-'

DATAM1 1CCE 705 702
DATAM2 1CDO 706 i==·::a·~ -· ... -·
DATA1 1CBO 6:::6 E.·;.c:
DATA2 1CC:3 6 137 .:: ·::.·-· -· -· c.
DEHALF lEEB 1022 1347 ·:;t5E.
DELAY 1ED4 1010 ·:,t4E. 953 ·::i::::E. 990 •::.•::.7 •I 1 oo::::
DE TC PS 1C2A E.12 ••••
DET1 1 C:31 615 617
DET2 1C42 62:3 621
DET:3 1C:3A 619 624
DE2 1EDD 101 :3 101 :3 1 027
DE:3 1EE5 1017 1015
DE4 1EDE 1 014 102'3
DUMP 1D42 77:3 .-.-, ·:.

·:a (·-·
DUMPT 180 0 121 ••••
DUMPT1 1:314 1::::1 1:34
DUMPT2 1 :3:3:~: 14:3 177
DUMPT:3 1:354 1 E.:3 166
DUMPT4 1865 1 -=--· (.,:. 1 C" .-, ·-'C.
DUMPV 1E01 .-.-, .-.

C•(. .:1 :::67
DUMPO 1D48 7:31 :::26
DUMPl 1D4E 785 ••••

SYMBOL VALUE LINE DEF I MED CROSS-REFERENCES

DUMP2 1 DS6 ::: 1 1 ::::17
DUMP:::: 1DA6 ~::;~El :::;::~4

DUMF'4 lD?A :::os 7':=t:::
E:AH 1 7F:::: 1 06 151 ?91
EAL 1?F7 1 05 149 "?:::'~

FEED 1EO? ::::7E1 :::61
FEED1 1E12 :::::::2 :::::: 0
GETB'r'T 1F9D 1 154 7:;:2 7:;:E1 7:;:9 74;::, ?54 -:it::"-:S

(·-' .. 770
GET CH 1E5A 940 64::: -:s·-·C" •. c:,._1 1 154 1 156
1::;En:: 1c:::D .- .- -t:1t::1 { ••••
1::iET~::E'r' 1F6A 1 1 14 .- .- -t:•t::1 {

1::;ETl<ES 1F6C 1 1 15 1 1 19
GET1 1E60 943 945
1:3ET2 1E6D 94:::: '=='':;5
GETS 1E6A 947 r_:,;::7
GET6 1E:::7 13'E,2 944
GOE:=< EC 1 DC::: ::::4 1 ?1 1 :::i:,5
1:;0\11 1CD9 71 1 E,'('•3
HD=: ALP 1FB::: 1 170 ••••
HE:=<t·iUM 1Ff:4 1 16::: ••••
HE><OUT 196F ·-:1·:1·-:1

·-·''-·-· ::::1.4 316
HE:=-::TA 1E4C I==-~~::: '322 ·::i:::4
HE'.•::TA 1 1E55 ·~3::: '331
HE:=< 1 1 ·37:::: :~:2:::: ~:.: ;~ t":1

ID 17F9 1 O? 14 0 224 22E·
It·KPT 1F6J 1 1 04 70::: 749 ::: 15 1:::3:::
It-lCPT2 1F69 1 1 07 1 1 05
I t·lC'·.·'EB 1.9EA :3'37 176 .-·,c-.-,

1:. -'·=·
I t·lC'·.·'E 1 1 '3F2 400 3·3::::
I t·lH OOF9 1-rC'

·== ·-' E147 7::10 ::;;~5 1 059 l 1-=>·::i
I -· 1 1::::7

ItHTS 1 E:::::: ·::ct.E. 600 609
ItHT1 1E::::c 969 t.:;:E.
I t·lL OOF::: ::::4 646 "77 1:,

I I -· ::::;:'.:3 :=::::5 1 066 1 072 1 1 c:- .-. _11:1 1 1 ...,,-,
(·=· 1 185

ItH'.,.'EB 1932 2:::: 1 1.-,.-,
i::_.;.1 185

IPG!Hff lFFE 1215 ••••
I F<:G!P2? 1BFE 519 ••••
!ROT 1C1F 604 1215
IRG!V 17FE 1 1 ·:· ·-· 604
~::E'r' I !'l lF?A 1 1 ·-··-· c.c. 1 1 1?
VE\'It-41 lF?C 1 1 ·-··-· c. .;.. 1 126
~<E'r' I !'12 1 F:::2 1 127 1 124
KE'l IM:::: 1F:3A 1 1 :::::::: 1 136
~:: E 'l I tN lF:::D 1 1::::5 1 1 ·-··-· .,: . .::.
LOAD 1CE7 -,.-.C"

1' c_._I 727 7.:.2 :::74
LDADEF.'. 1D3E ?71 75'3
LOAD El 1D3B 7?0 """!'C' ...

.. _11::1

LOADS lCEE -:s--•• -.
I C.C• • •••

LDADT 1,-,...,.-, 1:1 .. . ;.1 1 ·::.·:· ·-··-· 2::::1
LDADT4 H::BS 216 221
LDADT5 U3D7 =··-=··-::1 L...·-'·-' 225 22::::
LDADT6 1:::EC 241 2::::0
LDADT7 1BFe i::4 7 2:3·:;. 25'3
LOAD Te 1915 261 E:50
LOADT9 1929 c::? o 252 2E.:::: 26E·

:~:'r'MBDL VALUE LIME DEF I MED CRDS:S:-~'.EFERHK:ES:

LDADV 1E04 :374 :=:6':=t
LDAD10 192B 271 26:3
LOAD11 1BC2 22:3 21 ::::
LDAD12 190F 25::: 1B2
LDAD13 lE:FA 24:3 254
LOAD2 1DOE 746 751
LOAD:3 1D1D 754 744
LOAD? 1D2E 7E.4 ••••
LDADB 1D30 '"""'I.- C"

(p._1 772
MODE OOFF 91 6E:E, 705 ,367
MODIFY 1E15 ::::::4 :::6::::
NMIE~ff 1FFA 121 :3 ••••
NMIP27 lBFA 517 ••••
t·iMIT 1C1C 6 0:3 1213
MM!\.' 17FA 1 11 60:3
OME 199E :;:5:;: :~::3E· :::::3•3
Dt"1El<E"r" 1F02 1040 1116
Dt"1E 1 19A1 ::::55 :35E. ~:E.:::

Dt"1E2 19BO :361 ::::E.C~

DPH1 1FCC 11 :35 7·:.;.E. .-.. -.. -.
'=•C.C•

OUTBT 1961 :3 09 141 15.7 159
DUTBTC 195E :;:o::: 144 146 174
DUTCH 1EAO 984 7:37 ·:H 0 9:34
DUTCHT 197A :::::::::::: 1::::2 1 .-.. -, .::,. ·:a 155 164
DUT:S:P 1E9E 13::::3 :=::31 :::::::5
OUT1 1EB4 ·3·32 ·3·3·3
PACI< 1FAC 1 164 651 1155 1 157
PACl<T 1A 00 4 l. :3 251 405 407
PACl<T1 1AOF 421 41B
PACYT2 1A15 426 4:•q

'- -·
PACVT3 1A22 4:3.:3 414 416
PADD 1741 5•3 970 1061 1 079
PBDD 174:3 61 12:3 496 '372
PCCMD 1CDC 717 671
PCH OOFO ..,. ·'j

I ·-• 594 71 '3
PCL OOEF 72 591 717
PL LC AL 1A6B 49:3 517 51:3 51'3
PLL1 1A75 49:3 499 51 1
PLL2 1A:34 505 506
PDHiTH OOl='B •::S"?

'-'I 170 272 5'35 6'3E. 720 ...,,-,..., .. . :,.,· 790 :::4:3 :::::31 :::97
1106 1 18:3

POIMTL OOFA :::6 169 271 5'32 .;~:•1::S - ·-··-· 691 E.·35 71 ~3 740 747 ...,,=-·=-
(·-··-·

:312 ·=-·-=··:· ._ .. _ .. _. :345 ,::....,"'?
'-' (I ~37'3 :=::36 900 105:3 1 l 04 11 :36

PREG OOF1 74 5:=:'3 :::47
PRTB'r'T 1E:3B 917 7•35 :30 0 ::: 02 ::: 07 :31 :3 :320 .-.. -.. ::.

C•C. L.. ::::34 :::·3::: 901
PPTPMT 1E1E :::·37 ?•::.'7

I -· I 80'3 ::::;:I)
PRTS:T 1 E:31 90'3 642 ?E.7 '312
PRT1 1E:3R '31~: ••••
RDBIT 1A41 457 200 441 45:3
RDBIT2 1A5:3 467 4E.:3
RirJ::I T:3 1A50 464 465
RDBIT4 1A63 476 477
i:=:'.DB'r'T 191=':3 404 .-.. ::..-.

C.L-·::J ·=··:··:1 L-·-'·-· 2:;:E. 241 24:3 261 264
RDB"r"T2 1 '3F'3 406 ••••
RDCHT 1A24 439 ;::09 21E. 248 404 406
~'.DCHT1 1A29 441 44E.

S'r'MBOL VALUE LI t·iE DEFH1ED CF.:o:ss-F.:EFEPEMCES

PEAD 1C6A E.4::: :::70
PST 1C22 606 1214
PSTEt"ff 1FFC 1214 ••••
F.::S:TP27 1BFC 51 ::: ••••
F.:STV 17FC 1 12 ••••
PTF.:t·i 1DC2 :::::.:::::: :::5·3 ::::::7
SAD 1740 1:'1-1

·-··=· 615 t:.c.·::.:: E.::.=:::=: 660 94:3 948 1 044 1 0::::9 1 091
SAH 17F6 1 04 145 2:::::;:
:S:AL 17F5 1 o:::: 14:3 2:::1
SAVE 1COO 5:::7 ••••
:S:AVE 1 1C05 590 ••••
:S: A 1•••1 E 2 1 COF 5 1~E. ••••
:S:A'·.··>=: 1 7E9 ·~::: 19:3 201 202 ;:::o·::: ::: 04 :~~:3:3 :::::::4 :345 :::::46 4·:•7 ,_,

430 439 442 443 444 44::: 451
:s:BD 1742 60 126 195 ::::60 :~:E,t:. -;:::::;: :;:::::;::- 457 467 494 50:3

51 0 - - '374 ·::-:::·7 9:::9 ·~·==-;~ ·3·3i:. 1 000 1 oo;::: 1 041 (I:• t:•

1 049 1 077 1 090
SCAt·i 1DDB :::54 E152
SCAt·iD 1F1 9 1 057 E.57 E1E.2 664
:s:CAt"HC 1F1 F 1 060 ••••
s:cmrn1 1F28 1 066 1 076
SHDl.o.I 1 DAC :::2·::- :::~;:I~ ::::::::2
:S:HDl.o.11 1DAF :::::::: 0 643
SPACE 1DA9 ·=··=··=· '-''--'-' :::ss
:S:PU:S:EF.: OOF2 ~c:-

{ ·-· 5·31·~ E, o::! :::41
:s:TAJ;;:T 1C4F E.::.::E. 171 .-,...,.-, c. •.. ,:. 601 616 ,::.5::: 661 E.E,'3 '?06 709 721

7E.::: .-,-,.-, ·=· •. c.
:s:TEP 1CD:3 708 t=--:S-:S

-· (f

STV 1DFE :::72 .-.c:--:r
1:•·-• f

S'r't·iC 1891 1 ·=t7
-· I 21 1 220

S'r'nC 1 1 :396 200 ;:::06
S'r't·iC2 1SAB 209 21::.::
TAB 1 :::71 1:::2 1:::9 191
TABLE 1FE7 1;:::02 1 0:::7
TEMP OOFC :::::: 6B4 E.:::·3 917 1:;t;~::.:: 1::-;=:5 1 0:35 1 099
TIMH 17F4 1 02 1 01 1 1 016 1 017 1 02·::: 1 o;::6
TMP:=-~ OOFD :=:·;.. 940 ;:,.s:::: ·~::::5 1 004
TOP 1FD5 1 1 q""? -· (909
TT'r'~<B 1C77 .- C"-:S 1:: •. _1 ,. .:.:31~ 650
TTYl<B1 1C7C E.5'3 f.E.::::-C"

t::•t•·-'
UPDATE 1FBB 1 1 -,.-,

(.::. 1 169
UPDAT1 1FC1 1 177 1 181
UPDAT2 1FCB 1 1 ·=··-=· ·-··-· 1 165 1 16?
1·/EE: 17EC '3'=.t 1 ·:--:;.

'-'- 14;:: 150 1 -,.-, , . . :.. 184 1 ·=·1:1 ·-··-· 19 0 1 q·:· -· '- 2::.::s 2:~:;::
.-.C"-,
C·-• I 2~:::::2 2:34 2:::E. :::·:=t? :~:·3·3

::.;i:;;:EG OOF4 77 5·37 :::4·~

'/PEG OOF5 -,,-,
f •:1 5'3E. :::so

ZF.'.D 19C4 ::.::?E. :341 :~:42

ZF.:01 1 ·~c:7 :;:7;3 :37·~ 391
ZRD2 19D6 ~:.:::::4 :3:::~~

INSTRUCTION COUNT

ADC
Ar·m
ASL
BCC
BCS
BEG!
BIT
BMI
BME
BPL
BF.~K

B'./C
r·· ··=-·::.
CLC
CLD
CLI
CL'./
CMF'
c:P:=·::
CP'l
DEC
DE>=:
DEY
EDP
Ir-JC
I r·1::-=:
I t·1'r'
._IMP
._1:5:p
LDA
LD:=<
LD'l
LSP
t·mP
DPA
PHA
PHP
F'LA
PLP
RDL
PTI
RT:S:
:s:r:c
:S:EC
SEI1
:S:E I
:5:TA
ST:=<
:S:T\'
TA>=:
TAY
TS>=:
T:=<A
T:O-:::s:
T\'A

•• :s:\'MBOL:s:
.. LPiES =
·5:TOF'

1 ·-=· ·-·
9
7
4
c:-

I -
2E,
12

9
44
15

0
0
0
:::
1
0
0

:3:::
1
(I

·=· '-

14
-:=:
·=· '-..., ,.
c:-
·-' .-,
c.

:::: 1
1 15
1 o:::

2':=t
.-.C" c.._1

22
0
6
c:-
·-'
0
c:-
·-'
0

1 ·=· ·-·
1

2;:;
c:-_,
::=:

0
1

::: 1
14

7
I

·-:1 ·-·
·:1 ·-·
1

:-=: -
2
4

= 204 <LIMIT = 400)
1242 <LIMIT = 1500)

0

~~ BYTES = 1690 <LIMIT = 4096)
•• >=:i?EFS = 646 <LIMIT= 90CU

MOS TECHNOLOGY, INC.
VALLEY FORGE CORPORATE CENTER

950 RITTENHOUSE ROAD, NORRISTOWN, PA. 19401

TEL: (215) 666-7950 TWX: 510/660/4033

	000
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	A-01
	B-01
	C-01
	C-02
	D-01
	E-01
	E-02
	E-03
	F-01
	F-02
	G-01
	G-02
	G-03
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07_08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	I-25
	I-26
	I-27
	I-28_29
	I-30
	I-31
	I-32
	I-33
	I-34
	back

