
. MOSTEI(®
MICROCOMPUTER SYSTEMS

Operations Manual

M/OS-80
FLEXIBLE DISK

. OPERATING SYSTEM

. .
~"' !

MOSTEK MICRO SYSTEMS
M/OS-80

FLOPPY-DISK OPERATING SYSTEM
OPERATIONS MANUAL

APRIL, 1981

(c) 1980, 1981 Mostek Corporation
ALL RIGHTS RESERVED

Portions of this document have been reprinted with the permission
of InfoSoft Systems, Incorported, (c) 1978, 1979, 1980 InfoSoft
Systems, Inc.

Table of Contents

Page
Preface•... 2

1.0.0 Introduction to M/OS-80 ••••••••••••••••••••••••• 3

1.1.1 Basic concepts •••••••••••••••••••••••••••••••••• 4
1 • 1 .2 Warnings ...••..•.••.•..•...........•..•.•..•.... 4

1 • 2. 0 Opera ti on ••.....•••.•••.•••••.•••.•.•...•...•... 6
1.2.1 Startup I Cold Bootstrap •••••••••••••••••••••••• 6
1.2.2 Operator Command Functions •••••••••••••••••••••• 8
1.2.3 Console Input Functions ••••••••••••••••••••••••• 9
1.2.4 Disk Selection and LOGIN ••••••••••••••••••••••• 10
1.2.5 File Naming Conventions •••••••••••••••••••••••• 11
1.2.6 Command Syntax ••••••••••••••••••••••••••••••••• 14
1.2.7 System Errors •.•..••••........•••••...•••••••.• 15
1.2.8 Other Non-specific Problems •••••••••••••••••••• 17
1.2.9 Hardware Configuration ••••••••••••••••••••••••• 20

2.0.0 Console Commands and utilities ••••••••••••••••• 21
2.1.0 Utilities Summary •••••••••••••••••••••••••••••• 21
2.2.0 Built-In Function Summary •••••••••••••••••••••• 22
2.3.0 Individual Console Command Descriptions •••••••• 23

3.0.0 M/OS-80 Internal Operations •••••••••••••••••••• 79
3.1.0 Structure 80
3.1.1
3.1.2
3.1.3
3.1.4
3.1. 5

3.2.0
3.2.1
3.2.2
3.2.3

3.3.0
3.3.1
3.3.2
3.3.3

System Organization ••••••••••••••••••••••••• 80
Memory Structure •••••••••••••••••••••••••••• 81
Disk structure ••.•.••.•.•••.•••.•.•••...•••. 83
Boot Structure •••••••••••••••••••••••••••••• 84
Command Structure ••••••••••••••••••••••••••• 85

Programming .•..•••••.••...•..•...•.••••..•..... 86
Programmer Facilities ••••••••••••••••••••••• 86
Character Devices ••••••••••••••••••••••••••• 88
Disk Files •••••••••••••••••••••••••••••••••• 98

Special Operations •••••••••••••••••••••••••••• 108
User Control Block ••••••••••••••••••••••••• 108
CDOS and CPIM Compatability •••••••••••••••• 109
Direct IOSYS Operations •••••••••••••••••••• 110

3.4.0 M/OS-80 System Calls •••••••••••••••••••••••••• 111
3.4.1 Summary of System Calls •••••••••••••••••••• 111
3.4.2 System Calls Function Details •••••••••••••• 116
3.4.3 System Calls Extended Function Details ••••• 133

APPENDIX A DDT

APPENDIX B - System Setup

4/23/81 Page 1

Preface

This manual describes the Mostek operating system (M/OS-80
version 2). M/OS-80 is Mostek's answer to the growing need for a
general-purpose operating system that can take advantage of the
wide variety of pre-written applications packages available for
microprocessor-based computers. Although newly enhanced and
updated, this new offering has several years of field experience
and has proven itself in a number of diverse areas.

Many of the concepts and techniques used may be familiar to the
experienced user; however, expertise is not required to use this
system. Using M/OS-80 does require some simple understanding of
running computer programs and how files are referenced: i.e.,
what a file looks like, how to erase old files, and how to keep
proper duplicate copies (backups) of program and data files.

This manual consists of 3 sections:

I - System Startup, Conventions, and Operations
II - Console Commands
III - Programmer's Facilities and Concepts

The first section contains that basic information one needs to
run the system. Discussions of basic concepts, system operation,
disk handling, operator instructions, file conventions, and
command syntax are found here. In addition there is an
explanation of system errors and recovery procedures.

The second section is an alphabetical reference to the commands
available to the operator. Starting with a table of contents
and keyword index, it is intended to be referenced only for
commands the operator actually needs, although it pays to skim
this section to be aware of what is available.

The third section is for the programmer, especially the machine­
level programmer. Here the individual system calls that are used
by all applications programs are listed and explained. Included
in this section is a chart that describes the inter-system com­
patibility of M/OS-80 and various other operating systems.

4/23/81 Page 2

Section 1 - System Startup, Conventions and Operation

1.1.0 Introduction to M/OS-BO

M/OS-BO is a disk operating system designed to make user computer
interaction as simple and self-explanatory as possible. By using
simple names and options, a user can call up a program, tell the
program what files to use, what to do with them, and where to put
the results. The system allows disk and other devices to look
identical for simple sequential operations while still providing
for full random use of disk files. A set of standard commands is
provided and the user can add commands if desired. For program
development, a set of sUb-systems is available to allow user
programming: these include FORTRAN, BASIC, PASCAL and Assembler.
For normal use, many packaged applications are available from
many sources.

M/OS-BO is "upwards"-compatible with the popular BOBO operating
system, CPIM (tm - Digital Research). M/OS-BO will run virtually
all standard CP/M version 1.4 programs. Programs written for
other similar systems, such as Cromemco's cnos, are also
generally compatible.

As a rule, however, if a program is designed to provide system­
level support for a particular system it is not likely to work.
Programs that fall into this category are those of a highly­
specific nature usually dealing with disk structure or file­
directory manipulation. Examples of these are SYSGEN or MOVCPM.
Neither of these CP/M programs will function as they do in a CPIM
system. There are programs designed to replace these in M/os-Bo
which perform the same or, in some cases, additional functions.
Programs written specifically for M/OS-BO will not work on CP/M
systems if the system calls not supported ~ CPIM are used or if
the enhanced features of the CP/M calls are used. -- -- -- -- --- --
When attempting to decide if a program will or will not work,
first determine if the program was written to operate on a spe­
cific version of CP/M or some other operating system. If it is
designed to run under CP/M version 1.4 it will virtually always
work. If it does not, please notify MOSTEK micro systems or your
local MOSTEK Field Applications Engineer with the details of the
problem.

Programs written for the FLPBO-DOS operating system will only
work if they are written in BASIC or FORTRAN and make no opera­
ting system-dependent CALLs. As a general rule, .BIN files are not
compatible. There is a utility program called XFLP provided to
move data files, BASIC SOURCE (ASCII) files, FORTRAN SOURCE
(ASCII) files, and other non-.BIN files. Assembly-language source
files can be moved but they must be modified to conform to the
new operating system and then be re-assembled. FORTRAN programs
must also be re-compiled.

CP/M is a trademark of Digital Research, Inc.
CDOS is a trademark of Cromemco, Inc.

4/23/B1 Page 3

Section 1 - System Startup, Conventions and Operation

1.1.1 BASIC CONCEPTS

- Operating system:

- Boot:

The program (M/OS-80) that handles all physical In­
put/Output and sets the conditions for user programs.

The system program designed to bring the system up from
a reset or power-up condition to a fully operational
state.

- System or Boot Disk:
A disk that contains the system boot program to be run
by the disk hardware when the computer is first started.

- Operator Interface:
The program (OPI) that has control when the computer is
waiting for directions concerning what to do next.

- Command:
Any program that runs directly on the computer under
the operating system. Commonly-used commands are built
into the operator interface. Any other program of file
type .COM can be a command. User programs can either be
commands or run as sub-programs under language commands.
An example of this would be a user application written
in BASIC.

1.1.2 WARNINGS

Precautions the user should take to minimize the chance of damage
to a disk or data are as follows:

1) Whenever changing diskettes, log-in the new diskette
either by doing a "log-in" (Control-C) or by following
the directions of a program that requests disk changing.

2) Run "XSTAT" to verify the directory occasionally.

3) BE CAREFUL WITH DISKS. Diskettes are magnetic media and
need special care. Observe the storage and handling
warnings supplied with the diskettes.

4) NEVER leave a diskette loaded in a disk drive when POWER
IS TURNED OFF or ON. Occasionally, random information
will get written to the disk while the power supply is
switching on or off.

4/23/81 Page 4

Section 1 - System Startup, Conventions and Operation

5) Assume that a disk will be damaged occasionally or that
data will be lost by human or machine error. For this
reason, maintain adequate archives of back-up pro­
grams and data. The cost of diskettes and 15 minutes
for copying is greatly overshadowed by the time and
expense taken to recover weeks of lost data or programs.

4/23/81 Page 5

Section 1 - System Startup, Conventions and Operation

1.2.0 M/OS-BO OPERATION --

1.2.1 SYSTEM START-UP I COLD BOOTSTRAP -- ---
Starting M/OS-BO from "power-off" or after program failure con­
sists of pressing the RESET button on the front panel or starting
at the disk boot PROM (EOOOH). The MOSTEK computer system has two
PROMs which initialize the system console and bootstraps the
disk. Operation of this operating system is not guaranteed on any
other than MOSTEK computer systems.

Place bootstrap
right-most drive
Matrix-SDT.

disk in system drive "A" which is the
in a Matrix or the only drive in a

2) Press the reset switch or start system at EOOOH using
DDT monitor.

3) After approximately 1B seconds M/OS-BO will boot up, and
show:

MOSTEK M/OS-BO VERSION 02.xx - xx.xx

A.

The system is now running.

The version number shown indicates which revision of the
operating system is currently in use. The first four digits
describe the major software revision level and the last four
indicate the hardware configuration.

It is suggested that a master boot disk, which· is write-protect­
ed, be kept in a safe place in case the working boot disk is
damaged. To prepare a backup Master System Disk, perform the
startup functions as described above and copy the master to a
blank diskette as follows:

1) Load drive B: with a new diskette. Make sure the write­
protect tab is in place. If there is doubt as to the
contents of the blank diskette, use FORMAT to erase and
re-initialize it.

2) Enter the command:

COpy IV B:=A:

When asked to mount the disks to be copied to and from,
type RETURN.

4/23/B1 Page 6

Section 1 - System Startup, Conventions and Operation

3) When completed, the COPY program will have moved all
files and system programs over to the new disk and then
verified that operation. At this time, remove the copy
from drive B and use that as the master disk. Store the
master in a safe place after removing the write-protect
sticker. The disk system hardware will not write to any
disk which has this notch uncovered.

4/23/81 Page 7

Section 1 - System Startup, Conventions and Operation

1.2.2 OPERATOR COMMAND FUNCTIONS

Once the system is running, all user interaction will be with
the OPerator Interface (OPI). This RAM-resident operating system
routine performs all required functions by using internal subrou­
tines and/or system command programs loaded in from disk into the
user area.

OPI's prompt, shown by the system while running, is the current
disk identifier (one letter, A through 0) followed by a period:

e.g., "A."

Operating System Commands may be typed any time this prompt is
displayed on the cursor line.

The current disk is indicated by the disk identifier as discussed
above. The current or default disk is the disk drive from which
files and programs will be taken when no specific disk identifier
is given as part of a filename. The current disk may be
changed by using the command:

d:(return) [As per section 1.2.4.]

While typing a command, the input mode is active and certain
editing control characters are usable. These characters, as
described in section 1.2.3, allow correction of errors while
typing command lines.

The OPI program itself must be available for certain functions.
OPI can either be memory-resident or left disk-resident and be
loaded only between user functions. If the system cannot find
OPI.COM when it is needed, it will ask the operator to specify
which disk it is on and then load from the proper disk if not
currently loaded.

NOTE:
The M/os-80 system disk supplied may have all system
utilities "system-protected". That is, the attribute
byte is set so that users cannot inadvert~ntly erase or
damage the vital system files. This also causes all such
listings to be "hidden" on DIR listings. The space that
system files take up is also not included in any DIR
listing not listing such files. To see system-attribute
files type:

"DIR *.* SIt

4/23/81 Page 8

Section 1 - System Startup, Conventions and Operation

1.2.3 CONSOLE INPUT FUNCTIONS

While typing a command, the input mode is active and certain
special control characters are usable. A control character is
shown by:

AL (Up-arrow followed by the letter).

To type a control character, press CONTROL first and hold it like
a shift key, then type the letter.

ACTION DESIRED CONTROL KEY

Delete the current character - Backspace
and backspace cursor. - Underscore

- RUBout
- DELete

Delete the current character and echo. _ AX

Cancel the current line. _ AU

Begin new line without terminating
current line. _ AE

Retype line after many corrections. _ AR

Terminate a line. - Return (or AM)

Return to Operator Interface ("Log-in") _ AC

Fig. 1.2.3.1 Control Characters and Their Functions

* Use "backspace-cursor" on display terminals, and "backspace­
and-echo" on printing terminals which have no backspace.
There are some additional special "control(A)" keys. These
control printed output to the printer and console:

Sends all console output also to printer.
occurrence reverses current action.

Each

AS _ Stop all processing until another key is struck.
This will work whenever device input or output is
attempted. Can be used to pause 110 on long output
listings.

If output is sent to the printer with one of these functions and
the printer is off, all processing will stop until another Ap is
pressed or the printer is made ready.

4/23/81 Page 9

Section 1 - System Startup, Conventions and Operation

1.2.4 DISK SELECTION AND LOG-IN

*** READ CAREFULLY ***

Disk-drive Identification:

The M/OS-80 system names the disk drives by single characters:
"A", "B", "C" ••• for all known drives; up to "0" for a maximum
of fifteen (15). The current drive is named to simplify use
of the system. Whenever a command is given or executed, the
current disk drive is implied unless otherwise specified (in
the filename).

Current Disk Selection: The command to select a current disk is
the disk specifier:

d: (disk letter, colon)

e.g., "A:" selects drive A
"C:" selects drive C.

When a disk unit is first selected, the diskette mounted is
logged in, so that the system knows what free space is on the
diskette. Whenever ~ diskette is changed, the ~ ~ MUST be
logged in ~ typing AC (CONTROL-C). This is essential. If
not performed, the old disk will still be logged in and the
system will improperly write in the ~ disk directory.
(This precaution is advised, regardless of the safeguards
built into the system to trigger automatic log-in.)

M/OS-80 is different from CPIM in the area of login. When M/OS-80
is passed a control-C from the operator, it logically logs off
all disks. M/OS-80 does not at that time perform any physical
disk IIO as is the case with CP/M. Only when the next requested
disk IIO occurs does it get the required directory information
and log the new disk in. This permits the user to have empty
drives when control-C is struck. M/OS-80 also does not require
the system area to be filled in on any but the system disk. That
system disk may be removed after boot provided that the program
OPI.COM is available on some disk in the system.

4/23/81 Page 10

Section 1 - System Startup, Conventions and Operation

1.2.5 FILE NAMING CONVENTIONS

When referring to devices, symbolic names are used, as shown
below: (square brackets refer to optional values)

, For
IOBYTE

DEVICE NAMES

3-character name, colon [optional' number 0 through 7]
i.e., XXX:[H] eg., CON: or PUN: 1

DEVICE NAME RANGE REMARKS

Console CON: 0 •• 7 Control terminal
Reader RDR: 0 •• 3
Punch PUN: o •• 3
Printer LST: 0 •• 1 Either will work

PRT: 0 •• 1
Dummy DUM: Bit bucket or EOF

Fig. 1.2.5.1 Device File Names

the optional trailing number to have any effect, the
device function must be implemented in the system in use.

Disk Filenames

For disk files, a more complex name that explicitly specifies
the disk unit and the file is required. A general or ambiguous
name is possible for cases which need to match a set of simi­
lar or related names, such as finding all files of the same
extension or all files beginning with a particular letter.

Specific File References

(File name - FNAME):

Optional Disk Drive Specifier
File Name
Optional File Type

Format: [d:]x[xxxxxxx][.x[xx]]
Example: FILE or A:FILE.ASM

(A:,B:,C: •••)
(1 •• 8 characters)
(period, 1 •• 3 char.)

A filename or type can contain any printable character
except: .,;: = ? , /

Although lower-case characters may be used by special
user programs, all system functions convert lower case
to upper case. If a specific disk drive is not speci­
fied, the current drive is implied.

4/23/81 Page 11

section 1 - System Startup, Conventions and Operation

General File Reference (Gname)

A general filename may be used where a number of files are the
target of some action. This non-specific filename is made by
substituting a match character (* or?) for any character in a
filename:

An "*,, (asterisk) will match anything to the right of it (in the
same field), and "?" (question mark) will match any single char­
acter in its position.

Example: A general filename can be used to erase (ERA) more than
one file in a group.

. matches EVERYTHING

FIL??X matches FIL.AX not FIL 1A.X
FILA.QX
FIL1.XX, etc.

?80.A* matches F80.ASM not F80.M
L80.A
Q80.ABS

FILE TYPE ----
The optional 1-to 3 character file type is used to denote the
contents of a file. The file type is, in effect, a descriptive
suffix to the file name. The choice of the characters is usually
up to the user. Some programs assume the filename given has a
specific type. This allows one file name to describe the same
file in various forms.

For example:

If some assemblers are given the name DATAPGM, they will
use:

4/23/81 Page 12

DATAPGM.MAC for the input file,
DATAPGM.REL for the object output file, and
DATAPGM.PRN for the list output file.

Section 1 - System Startup, Conventions and Operation

.;;,.SU..;;..G;;..;G"",E;,;;;S,-"T,;;;;ED;;.. _FI_L_E _TY_P_E_S

.$$$ Temporary

.ABS - Non-executable core image

.ASM - *8080 assembler source

.ASP - *AS/Pascal source

.BAK - *Editor back-up

.BAS - *BASIC source

.C - *"C" source

.CMD - *Batch command file
• COM Executable command program (Binary form)
.DOC - *Documentation text
.FOR - *FORTRAN source
.HEX - *Intel hex format (ASCII)
.LIB - *Source library
.MAC - *8080/Z80 macro assembler source
.PAS - *Pascal source
.PRN - *Print-out
.REL - *Relocatable module
.RLB Relocatable library
.SYS - System image
.TXT - *Text file
.Z80 - *Z80 assembler source

(* are ASCII files)

Fig. 1.2.5.2 - Suggested File Types

4/23/81 Page 13

Section 1 - System Startup, Conventions and Operation

1.2.6 COMMAND SYNTAX

Requesting OS to perform an action requires typing a command to
the Operator Interface which then processes it and calls the
command. Any command that OPI does not recognize directly is as­
sumed to be an executable module on disk. In these cases, OPI
attempts to find a .COM file of the same name on disk. When the
system decides that a command is a request for a disk-resident
program, the following sequence takes place:

1) First, the disk specified by the name is searched.
If no disk is specified, the current disk is used.

2) If the program is not found on the current disk,
the master disk is searched as if it were a li-
brary. This is disk A until changed by a DCOM
command.

If the command is recognized as built-in, or the program is
found, the program's executable module is called into memory and
the remainder of the command line is passed to the loaded pro­
gram as control information.

A command starts with the command name. If a command program is
specified, then a disk specifier is allowed (A: through 0:) but
no file type is allowed. The rest of the line depends upon the
command but the following forms are standard:

- Any options are preceded by a slash (/), which ends
the name.

- Where assignment functions are taking place,
(or destination) filename = Source filename"
form used.

"Output
is the

- Commas, equal signs or blanks may separate names.
Blanks are generally ignored except to denote separa­
tion of names.

- All letters are translated into upper case.

In the command descriptions the symbols used are:

fname Specific file reference, i.e., no match
characters

gname - General file reference (ref: 1.2.4),i.e.,?
and * all owed

[-]
<->
WORD
{-}
(ret)

- Optional value
- Description of value
- (Underlined) exactly as shown
- Choice of values
- RETURN

Unless otherwise noted, all commands are terminated by a RETURN.

4/23/81 Page 14

Section 1 - System Startup, Conventions and Operation

1.2.7 SYSTEM ERRORS

If a disk failure or error occurs, M/OS-80 will print a full
error message giving:

Failure Code
Failure Message
Drive
Logi cal block
Device Status

(2 HEX DIGITS)
(Text, if standard message)
(A •• 0)
(6 HEX DIGITS)
(2 HEX DIGITS)

A typical message could look like:

I Disk error 82, Drive B: Block 000034, Status 01
I ---> Disk will not home <---
I Enter R(etry), I(gnore), E(rror return), AC(ancel) *

The cursor will wait at * for an operator response.

Valid operator responses are:

AC Return to OPI and login, thus terminating
any active task.

R Retry disk I/O operation.

I Ignore error and return to program with
I/O OK message.

E Accept error and return to program with
I/O Error flagged.

Other Reject and continue waiting for correct
operator response.

NOTE - The operator will be notified only after the disk
driver has already done ten internal retries.

4/23/81 Page 15

Section 1 - System Startup, Conventions and Operation

Certain errors have standard messages as described in the follow­
ing table.

81 - Disk not ready.
82 - Disk will not home.
83 - 'Seek position.
84 - Read error.
85 - Write error.
86 - Read-after-write Error.
87 - Illegal block number. *
88 - Illegal command. *
89 - Disk is write-protected. **

Fig. 1.2.7.1 Standard Disk Error Messages

Errors 81 through 86 may be remedied by the operator once correc­
tive action has been performed. For example, after closing a
diskette drive door or putting the disk in right-side up, the
operator may type R for RETRY so that the system can attempt the
disk I/O operation again.

* These errors are due to a non-changing situation.
Retry will make no difference, especially since this
can only occur due to program or system error.

** This error is due either to a true hardware write­
protect tab, or changing a disk at an improper time.
If the hardware tab is the problem, it may be
replaced and Retry attempted. Otherwise, only
AC (Control C) will be effective.

The MOSTEK DCF PROM disk controller returns a status code
is shown in the disk error message as described above.
following bit table is provided to decode that status byte •

BIT Error if One (set)

7 Invalid drive, track or sector.
6 Disk unit not ready.
5 Track seek error.
4 Sector not found.
3 CRC error.
2 Data lost.
1 Disk is write-protected.
o Attempt to read a deleted sector.

Fig. 1.2.7.2 DCF Disk Error Bit Decode Table

(From Para. 11-10 of the FLP80-DOS Operations Manual)

4/23/81 Page 16

which
The

Section 1 - System Startup, Conventions and Operation

1.2.8 OTHER NON-SPECIFIC PROBLEMS --
Other situations that may occur in M/OS-BO which may appear to be
errors are outlined below with the recommended solution.

1) System will not boot. No messages on console. No disk
activity.

System disk in drive "A" (DKO: under FLP-BODOS)?
System disk inserted correctly?
Console terminal connected?
System functiorial otherwise?

Remove all disks from system and hit reset.
Hit return on the console.
If DDT monitor prompt (.) does not appear, recheck
hardware.
If DDT monitor prompt appears, mount system disk
making sure of correct orientation (label side
away from drive door latch). Hit reset. Type RETURN
on CRT. If no disk activity (LED on drive "A"
does not light), recheck disk hardware. Consult
MOSTEK.

2) System will not boot. ".DSK ERR" message appears.

DDT monitor/boot PROM program has detected an invalid
disk condition. Check:

System disk in drive "A" (formerly DKO:)? "A" is
not the left drive as in some CP/M systems. In
MOSTEK computers drive "A" is always the RIGHT
drive. Your installation may have strapped the
drives differently.

System diskette oriented correctly? (Label side up
or right depending on orientation of drives).

All cables completely attached? Matrix disk cables
leading to RMDFSS enclosure may have worked loose.

Check for complete system power. Some individual
units are connected separately to the line power
and have individual power switches. Make sure all
units are on.

4/23/B1 Page 17

Section 1 - System Startup, Conventions and Operation

3) System will not boot. "OS.BIN[255] NOT FOUND"message
appears.

The PROM monitorlboot program could not find the
system boot program on disk mounted in drive "A".
For some reason the system area of the disk you are
using is either blank, (has never had WRTSYS move
the system boot) or has been damaged such that the
system could not accurately read track O.

4) System takes 1B seconds to boot.

This is normal. M/OS-BO is considerably more
complex than CPIM and takes longer to boot. This
boot process is only repeated during power-up and
will not occur after the initial boot is completed.

5) System boots but nothing is shown in the DIR listing.
Unable to put additional files on system disk due to
lack of room even though there is less than 240K show­
ing on DIR listing.

This is normal. The system files needed by M/OS-BO
are marked by the OS with a special "s" (System)
attribute which prevents them from being seen on a
normal DIR listing. These files also have the "P"
attribute set so that they cannot be erased. To see
the total listing of files on a system disk, type:

DIR *.* S

6) Cannot seem to erase all files on a disk initialized
using FLP-BODOS PIP FORMAT.

This is normal. Since the directory areas of the
two disks are completely different, residual infor­
mation such as the OS.BIN and OS.CRS left on the
FLPBO-DOS diskette appear as directory data (al­
though scrambled) to M/OS-BO. Some of those char­
acters indicate to M/OS-BO that there are protected
directory entries and they cannot be deleted. To
correctly initialize a disk use M/OS-BO FORMAT.

4/231B1 Page 1B

Section 1 - System Startup, Conventions and Operation

7) Some of the directory entries on an old CPIM disk show
several hundred K of file space although those files
are known to be considerably smaller.

Some CPIM implementations did not clear a byte
marked as RESERVED in the directory FCB. Since
M/OS-80 uses those bytes to indicate larger direc­
tories for higher-density disks, those erroneous
bytes can cause some unusual-looking directory
entries. Since M/OS-80 recognizes this problem, the
file will be treated as if it were the correct
size. To repair the directory entry, copy the file
to itself. A correct directory will be created in
the process.

8) The system has the DCF PROMs that came with the MDX-FLP
board but not the DDT PROM. The system will not boot.

Both the PROMS are necessary for the system to
boot. The DCF PROM supplied with the DDT PROM is
not the same as the DCF PROM supplied with the FLP
board.

9) Files created by a BASIC or COBOL program seem to have
multiple duplicate directory entries. When these files
are XFERed only part of the file is moved.

Broken extents are is caused by a higher-level
language's ability to create disjointed directories
in a random record file. In order to use XFER to
properly handle such files, data must be written to
all records of the file thus creating one contin­
uous contiguous directory (which may have several
connected extents).

To save these types of files, the COpy program must
be used.

10) Some characters on the ADDS CRT terminal print as
asterisk (*).

To ensure that parity errors are not detected, be
sure to set the internal switch on the ADDS to
ignore parity. The disable parity switch is found
inside the ADDS CRT, not on the back.

4/23/81 Page 19

Section 1 - System Startup, Conventions and Operation

1.2.9 Hardware Configuration

M/OS-BO can be run on a variety of MOSTEK configurations. A
summary of the required parameters of those configurations is
described below:

Memory - 32-64 K RAM - MDX DRAM-32A X 2 or SDB-BO + RAMBO.

Console 1/0 - MOX-EPROM/UART
or SDB-BO UART-driven console
or MOX-SIO (Channel A)

Disk 1/0 - MDX-FLP or FLPBO floppy disk controller.

Firmware - DDT-DCF PROM set (UART or SIO Console).

Printer - MDX-PIO or SDB-BO parallel port
or MOX-SIO (Channel B)

Processor - MDX-CPU1, CPU2, or SDB-BO.

Fig. 1.2.9.1 Required Hardware Configuration

Note: Systems must be configured with either MO or SD
boards, not both.

The PROM supplied with the MDX-FLP (DCF) is not sufficient to
boot the system nor does it provide a monitor/debugger. The
DCF/DDT PROM set supplied with Matrix Development systems is
required for proper M/OS-BO operation.

If the system is to be configured as a UART Console, PIO Printer
with 64K of RAM then part number 779B4-1 should be used. If the
system is already running 64K FLP-BODOS, then 779B4-2 should be
ordered as the correct EPROMs are already in place. If the memory
in use is less than. 64K, the Console is SIO-driven, or the
Printer is SIO driven, then 779B4-3 must be ordered.

Consult Appendix B "System Setup" for further explaination.

For more detail on M/OS-BO internals, consult Section 3.0 -
System Structure.

4/231B1 Page 20

Section 2 - Console Commands and utilities Summary

Section 2.0.0 ~ Console Commands and Utilities Summary

This section describes each of the built in commands and program
utilities which are provided in the M/OS-BO package.

The following tables summarize the utilities and commands
discussed.

COPY
DISKRD
DSKDUMP
DUMP
EDIT
ERASE
FORMAT
LABEL
LOAD
PRINT
SORTDIR
SPLIT
SPOOL
STRIP
SXFER
WRTSYS
XDIR
XFER
XFLP
XSTAT

Disk-to-disk copy
Disk read-only test
Absolute disk dump
File dump
File editor
Conditional file erase
Initialize a diskette
Set or alter disk labels
Load Intel Hex or .COM files
Printer file list
Prepare sorted directory file
Split large text files into smaller pieces
Start print spool task
Strip parity, nulls & rubouts from text file
Single disk file transfer
Write system boot to disk
Extended directory
File copy or concatinate
Move ASCII files from FLPBO-DOS diskettes
Directory sizing & validator

Fig. 2.0.1 ~ Utilities (.COM files)

COpy
DISKRD
DUMP
EDIT
ERASE
FORMAT
LABEL
LOAD
PRINT
SORTDIR
SPLIT
SPOOL
STRIP
SXFER
WRTSYS
XDIR
XFER
XFLP
XSTAT

[<destination>:=<source>:]
[d:]
[<file>]
[<file>]
<gname>

[<disk: <command>=<value>]
<file>
<file> [/<options>] [<title>]
<outfile>=<gname>
<file> [<max size (IN k»]
<file>
<file>
<gname>
d:[file]=d:[file]
[d:]
[[/<opts>] <file>=<file>[,<file>,<file> •••]]
<FLPBO-DOS filename>
[d:]

Fig. 2.0.1 Command Syntax Summary

4/231B1 Page 21

section 2 - Console Commands and utilities Summary

@

ATRIB
DBAT
DCOM
DDT
DIR
ERA
GTOD
OPIRES
OPINRES
OREV
PAUSE
REN
SAVE
TYPE

Batch monitor.
Set file atributes.
Set batch default disk.
Set default command disk.
Return to debug monitor.
Directory listing.
Erase file.
Set or read time of day.
Make OPI resident.
Make OPI non-resident.
Report the revision, system version, and OPI.
Wait until key is pressed.
Rename a file.
Save memory image on a file.
Print a file on the console.

Fig. 2.0.3 Built-in Function Summary

@

ATRIB
DBAT
DCOM
DDT
DIR
ERA
GTOD
OPIRES
OPINRES
OREV
PAUSE
REN
SAVE
TYPE

[<file> <Parm 1> <Parm 2> ••••]
<general file reference> <attributes>
d.:
d:

<gname> [S]
< gname >
[date]

[/B]
<gname>=<gname>
fname <number of 256-byte pages>
<gname>

Fig. 2.0.4 Built-in Function Syntax

4/23/81 Page 22

@ (BATCH)

NAME: @ - Batch monitor

SYNTAX: @
or
@ [lAB ••] <fname> [<parm1> <parm2> ••• <parm9>]

OPTIONS: IA •• H - Specify disk for batch file.

DESCRIPTION:
The Batch monitor provides a means where a number of
console commands may be stored in a file and executed
sequentially by the Operator Interface. Any command that
is typed into OPI may be put into a file built by a text
editor. If the sequence of commands is to be used only
once, then a temporary file can be built by BATCH.

- Note - for convenience, the actual command used is
n@" (at-sign).

- BATCH has two modes:

Local Mode: Where the commands are typed in, immediately
before use, and only used once.

File Mode: Where commands are taken from an ASCII file,
with type .CMD. Parameters may be used in the file and
an actual parameter from the command line is substi­
tuted for each formal parameter of the same number.

- ·To STOP a batch sequence, type RETURN on the key­
board during the initiation of a command.

Local mode: ----The local mode is indicated by not specifying
name. BATCH will prompt with a (!) and
operator to enter the commands. A blank
terminate the command entry.

a file­
allow the
line will

e.g., @ (return) (indicate local)
DIR *.* (return)

! TYPE HELLO (return)
! (return) (blank line)

4/23/81 Page 23

@ (BATCH)

FILES:

ALSO SEE:

File mode:
In file mode, BATCH takes its commands from a file with
the name specified by the first name on its command line
and with type .CMD. If the file does not exist on the
current disk, the DB AT disk is searched for the file.

Parameters are inserted wherever An appears. (Two
separate characters, up-arrow, followed by digit of
0 •• 9) Parameter 0 (AD) is the command filename. 1 •• 9
are specified in the command line. If an A (up-arrow) is
needed in a command, use AA (only one is passed on).

When the command line is given, normally each word
after the filename is a parameter. Complex parameters,
including spaces, may be enclosed in single quotes
(I). If not enough parameters are given, then the
missing parameters are replaced with null strings. If
parameters are given, they are ignored.

Options:
The letter option /d (d=A •• H) allows the user to specify
the disk on which the batch work file will be written.
This is normally the "A" disk. The DBAT command may be
used to change this default assignment thus allowing for
systems with an "A" disk which is write-protected or
full. The disk assigned to hold the batch command file
must not be removed until the batch is completed.

Batch command files may contain a command that calls
another Batch file and return to the previous Batch file
after the lower level file is completed. Otherwise, pro­
cessing will stop when the second file is exhausted. The
nesting level is limited to a maximum of 128 commands
pending at anyone time.

On lower level batches, the disk-select (/d) option is
ignored.

The @ command is
reloaded. Batch
separate work
"$$$$.CMD" on the

built-in to OPI,
files must have
batch file is
DBAT: disk.

and requires OPI be
the type: .CMD. A

created with name

DBAT - Assign location of Batch work file.
STARTUP.CMD - Auto-start batch file (at boot time).

4/23/81 Page 24

@ (BATCH)

MESSAGES:
BATCH FILE ERROR can be caused by:

- Write-protected disk in "A" (or as specified).
- Requested Batch file could not be found.

PARAMETER ERROR: ""',, is followed by other than "',0 •• 9.

DIRECTORY FULL: While creating work file.

DISK FULL: While writing work file.

WARNINGS:
- BATCH logs in all disks at its start.
- Maximum of 128 commands may be active. Do not

count non-evaluated second-level batches.

4/23/81 Page 25

ATRIB

NAME: ATRIB - SET FILE ATTRIBUTES

SYNTAX: ATRIB <general file reference> <attributes>

ATRIB gname {+PRWSU}
ATRIB gname 0

- Set file attributes
- Clear file attributes

DESCRIPTION:

FILES:

MESSAGES:

M/OS-80 files may be assigned attributes or type
information to provide additional protection and
flexibility. Possible attributes are:

P - Permanent
R - Read-protected
W - Write-protected
S - System
U - User
+ - Add new attributes

Permanent files cannot be renamed or erased.

To SET attributes, give all appropriate letters:
"PRW" would set all matched files to permanent,
and write-protected.

To ADD more attributes to those already present,
e.g., "ATRIB *.COM +R"

would add read-protection to all ".COM" files.

e.g. ,
read,

use "+",

To REMOVE all attributes, use a general name, with
attribute of "0" (zero).

e.g., "ATRIB *.COM 0"

Read or write-protected files are respectively pro­
hibited from being read or written to. However, both
types can be erased, and read-protected files can be
executed. Read-protected files can only be executed (if
the type is also .COM). They cannot be dumped or typed.

Attributes "s" and "U" are for file identification.
Commands DIR and XDIR skip files of type "S", unless
the "S" option is specified.

ATRIB is a built-in command.

??? - If an unknown letter is specified for an
attribute.

4/23/81 Page 26

COpy

NAME: COpy - Disk-to-disk image copy.

SYNTAX: COpy <output disk>:=<source disk>:

COPYIV <output disk>:=<source disk>:

DESCRIPTION:

FILES:

MESSAGES:

COPY moves all sectors from source disk to output disk.
This includes the system, directory, and data areas.
Unformatted portions of un initialized disks cannot be
successfully copied but the system can be instructed to
ignore the resultant errors, thus permitting recovery of
a partially damaged diskette.

The program requests mounting of both disks to check
for compatible disk directory areas and density. Disks
of different density or number of sides cannot be copied
due to the different placement of directory information.
Use XFER IV B:=A:*.* to copy all files from drive A to
drive B and use WRTSYS B:=A: to copy the system area if
necessary. Check warnings concerning disjointed files in
XFER documentation.

If both disk drives specified are the same, then a
single disk copy is done with appropriate "Change to
disk xxxx" messages.

Ie. COPY IV A:=A:

If the IV option is requested, a second pass is made
which verifies the two disks to be the same, sector for
sector.

Copy will copy any type of IBM 3740 format disks, not
just M/OS-80 disks.

COPY. COM.

» Compare error «

Load SOURCE disk

- Bad block written,
read original.

or could not

- Program requesting input disk.

Load DESTINATION disk - Program requesting output disk.

Incompatible disks

COPY completed

Beginning VERIFY

- Disks are not of the same size
and type.

- Copy pass done.

- Starting verify pass.

4/23/81 Page 27

DBAT

NAME: DBAT - Set batch default disk.

SYNTAX: DBAT d:
Directs batch operations to use disk 'd'
for: a) Work file ($$$$.cmd),

b) .CMD file searches.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

WARNINGS:

This command controls the batch function (@) in OPI,
instructing it where to look for files.

DBAT is built-in to OPI.

@ - Batch processor.

111 - If no disk specified.

If a non-existent disk is entered, the current disk
will be used.

4/23/81 Page 28

NAME:

SYNOPSIS:

DeOM

DeOM - Set default command disk.

DeOM d:

Directs OPI to use disk 'd' as master disk for command
program searches.

DeOM

Directs OPI not to search for commands if they do not
exist on the current disk.

DESCRIPTION:

FILES:

WARNINGS:

When a command program is run from OPI, the current disk
is searched first, then the library disk is searched.
DeOM is used to designate which disk will be considered
the "library" or master disk, (the last disk to be
searched.) DeOM with no parameter inhibits the library
search.

OPI, if
library
OPI will

non-resident, will also be loaded off of the
disk. If the library search is inhibited, then

always be loaded off of the current disk.

DeOM is built-in to OPI.

If a non-existent disk is entered, the current disk
will be used.

4/23/81 Page 29

DDT

NAME: DDT - Enter Designer's Development Tool

SYNOPSIS:
DDT

Enter DDT monitor mode.

DESCRIPTION:

WARNINGS:

DDT is a PROM-resident routine designed to permit in­
teractive debugging of relative and absolute ZSO prog­
rams. Standard commands allow displaying and modifying
memory and CPU registers, setting breakpoints, and
executing programs. Mnemonics are used to represent zSO
registers, thus simplifying the command language.

See Appendix A for a detailed description of this
function.

DDT is a PROM-based debugger originally designed for
use in FLP-SODOS systems. As such, there is no direct
support for MiaS-SO system calls.

4/23/S1 Page 30

NAME:

SYNOPSIS:

DIR - Directory Listing

DIR
or
DIR <gname> [S]

DIR

DESCRIPTION:
If no filename is given, *.* is assumed, which will
display all files, of all types. Files of type "S" will
not be listed unless a name is given and a second para­
meter of "S" is given.

The listing format is:

Name Type Size/Extents Attributes (2 across)

If disk is labeled the disk name is printed:

Disk label is
Following the label (if present) is the summary line:
Total files (total extents) •••••• Total Kbytes

DIR Lists disk files with size (in Kbytes) and
of directory entries used, with a summary of
space used printed at the end.

number
total

The summary is always printed. If the listing is
cancelled prior to completion, the summary will include
only those files actually listed.

Pressing SPACE will pause the listing.
cancel the listing.

RETURN will

Extents:
- Each 16 Kbytes, 1 extent, of each file takes one
directory entry, of which there is a maximum of 64
(normally) •

- A labeled disk may have more than 64
Run LABEL to see if the disk has been
for more than 64 directory entries'.

entries.
labeled

Attributes:
Shown as:

P - Permanent
R - Read-protected
S - System

W - Write-protected
U - User

4/23/81 Page 31

DIR

FILES:

ALSO SEE:

WARNINGS:

DIR is a built-in command

LABEL
XDIR
ATTRIB

- To see size of directory.
- To obtain a multi-column sorted listing.
- To get more detailed information

attributes.
on

"DIR • COM" will act as if no name was typed. Use "DIR
?COM" or "DIR ??" to get files with no name, only a
type. If this fails, use DSKDUMP to fix the directory.

The amount of space listed in the summary does not
include the amount of space (if any) taken up by the
system-attribute files not listed.

4/23/81 Page 32

DISKRD

NAME: DISKRD - Disk Read-only Test.

SYNTAX: DISKRD [<disk>:]

DESCRIPTION:

FILES:

MESSAGES:

Reads all specified sectors of specified disk unit or
current unit if none specified.

Disk driver error messages will print block address of
error.

The file DISKRD.COM is the program.

The map printed by the program is:

Disk "d"
"h" "t" 1 •••••••••• 1 •••••••••• 1 ••••••

I \ I
I 10 sectors per group
-----Track being tested

------------Head being tested

Periods indicate successful sector read. If an error
occurs, respond to the disk-error message block.

If the "E" option is given as a response to the disk
drive error message, an "." is printed. If the "I"
option is chosen, a "." is printed.

4/23/81 Page 33

DSKDUMP

NAME: DSKDUMP - Dump Disk Block in Hex.

SYNTAX: For direct DISK operations:
DSKDUMP d: where: d is disk A •• O

or

For FILE operations:
DSKDUMP fname

Program requests BLOCK:

Responses are:
("n" indicates
N
(return)

a hex number of up to 6 digits)
- Increment and display next block.
- Increment and display next block.
- Decrement and display next block.
- Selects block to display. n

nI - Indicates an interleaved read is to
be done (only if not a file).

Mn, v ••• - MODIFY buffer at offset value "n",

Q
with values specified by "v".

- Terminates program.
- Terminates program.
- SHOW contents of buffer.

"'C
S
W
Wn
Xn

- WRITE buffer back where read from.
- WRITE buffer to indicated block.
- Select eXtent indicated.

DESCRIPTION:
DSKDUMP allows reading or modifying sectors of a file or
d"isk sectors directly. Each block (sector) requested is
read into a 128-byte buffer which is then displayed. The
buffer may be modified, re-displayed and written back
to the disk to the same or another sector.

The prompt "BLOCK:" requests a command, which may be a
disk block in hex or a single-letter command.

For a normal (IBM format) disk, blocks may be 0
7B8(hex). Entering a block number causes that
of the file to be read into the working buffer
displayed on the screen.

thru
block

and

For non-file direct-disk 1/0, the value may be suffixed
with "I" to indicate an interleaved read is to be done,
e.g., 351 would get block 35(hex) interleaved, or the
first block of the directory on a standard IBM format
disk. The block read will be displayed. To stop the
display, press any key.

4/23/81 Page 34

FILES:

MESSAGES:

DSKDUMP

If a command letter is given instead of the hex value,
various operations may be performed. The commands are:

"W" - Write buffer to disk.
"M" - Modify buffer area.
ItS" - Show buffer area.

No change is written to the disk until a "W" is done. On
entry, DSKDUMP will login the disk. On AC or Q (exit)
after editing a file, the file will be closed.

The command formats are:

Write: W - Writes buffer back where it was read from.

Modify:

Show:

Extent:

NOTE:

WI - Writes buffer back to given block.

e.g. W23 writes to block 23
W35I writes to block 35 interleaved

M#,<value>[,<value> •••]

The first hex value is offset in the block
to start modifying. Each value is put in
successive locations. A value may be either
a hex value or a character string ('ABCDE'
would enter 5 bytes). All lower-case letters
are converted to upper case.

e.g.
M20,23,"ABC",10 enters into 20H •• 24H the
bytes: 23H,41H,42H,43H,10H.

S displays the contents of the buffer. It can
be used to review a block after modifying it
and before writing it out.

Xn allows changing the 16K-byte extent DSKDUMP
is working on. Xn only has meaning when a file
is being examined. Extents are numbered start­
ing at O.

To examine the disk directory as if it were a
file, use SYS.DIR as the filename.

DSKDUMP.COM is the program.

File not found - No input file.
I/O error - Either past EOF or I/O error.

4/23/81 Page 35

DUMP

NAME: DUMP - Dump file in HEX.

SYNTAX: DUMP <fname>

DESCRIPTION:

FILES:

WARNINGS:

DUMP prints the file in hex with corresponding codes
for each character. The ASCII code is shown where the
character is printable or "." where it is not a print­
able character. Only the low 7 bits are checked for
the ASCII display.

Press any key to stop the dump.

DUMP. COM is the program.

Some terminals decode certain ASCII character sequences
as control codes and may attempt to perform the function
while DUMP is displaying the ASCII equivalent of the HEX
codes DUMPed, causing unpredictable results on the CRT
screen.

Like any program, DUMP may over-run the through-put
capability of the CRT terminal, thus causing a "torn" or
otherwise scrambled display.

4/23/81 Page 36

EDIT

NAME: EDIT - Teletype Text Editor

SYNTAX: EDIT start the editor.

EDIT <filename> will start the editor with a current
file.

COMMAND SUMMARY: (see description for details)

Normal control keys (unless changed by command):

Edit

KILL line - "'u
RUBout char - RUBOUT
TAB column - TAB or "'I

Functions: 1 <string> or 111

A/<str> APPEND to current line.
B BOTTOM of text.
C/<str1>I<str2>

DII
F/<str>
1/<str>

I (cr)

L/<str>
M11

Pfl
R/<str>
T

- CHANGE str1 to str2 on current
line.

- DELETE "N" lines.
FIND line with string FIRST.
INSERT string as new line before
current line.
BULK INSERT, adds lines until
• return is entered.
LOCATE line containing string.

- MOVE "N" lines (+ or -) from
current line.
PRINT "N" lines from current line.
REPLACE current line with string.
TOP of text.

Return only - Line with only return, does "M1".

Control Functions:

QUIT
KILL (char)
RUBO (char)-

Return to OS.
Sets line kill to given character.
Sets character delete to given
character.

TABK (char) - Sets key to act as tab.
LIST List whole text.
MODE (number)

- Set lines to be typed after each
edit function.

PAGE - Display 15 lines.
DEFAULT VALUES

KILL="'U, RUBO=BS ("'H), MODE=1,
TAB=TAB ("'I)

4/23/81 Page 37

EDIT

File Functions:

FILE <name>­
LOAD
SAVE

READ <name>-

Define file to work on.
Load file into text area.
Rename old disk version to .BAK and write
contents of text area to disk.
Read file into text area, before current
line.

DESCRIPTION:
The TTY Editor is a simple line-oriented text editor.'
The editor takes an ASCII text file from the disk,
accepts console commands to modify the text, and then
puts the modified text back to the disk. It is de­
signed to work with any teletype-like terminal (or
smarter).

The editor deals with a sequence of lines. A pointer is
kept at the current line. All commands deal with the
current line or act before the current line. The po­
sition of the current line can be modified, or moved up
or down. Specific lines can be found by searching
for lines containing match strings.

There are two types of commands:
(a) Commands that require a number.
(b) Those that require a text string.

There are two sets of command words:
(a) Single letter.
(b) Four letter.

The common commands are single letters.
have a single character or space after
word, or letter.

Command entry and correction:

All
the

commands
command

Commands are typed from the terminal, and terminated by
a return. There are three special functions:

(a) Kill a line (initially control-U).
(b) Rubout one character (initially the RUBOUT

key).
(c) Tab to the next tabulation field.

When a character is backed up, the deleted character is
echoed. The TAB key (or control-I) is used for tab
columns, especially for formatting program text.
Tab columns are every eight characters (1, 9, 17,
25 •••).

4/23/81 Page 38

EDIT

The KILL, TABK and RUBO commands can be used to
change the initially set keys for these functions. The
new value is entered as the decimal number of the ASCII
character.

Starting the Editor:

The command "EDIT" to OS will start
running. The command "EDIT filename" will
editor and specify a current file.

the editor
start the

File functions:

The editor maintains all available user memory as one
large text buffer. File operations act primarily from
the "current file".

LOAD

SAVE

- LOAD fills the text buffer from the
current file.

- SAVE dumps the whole text buffer to
the current file. When a SAVE is
done, the old current file is re­
named with the fil e type ". BAK" •
This keeps one backup version of any
set of changes.

FILE <filename> - The current filename is either set
when the editor is started in the
OS command line or by using the
command "FILE filename".

READ <filename> - Text files can be included in the
middle of the text by using the
"READ filename" command. The whole
file, as indicated, is inserted
before the current line.

Current line motion and display:

The current line and following text is displayed
after every modification. The number of lines to dis­
play is set by "MODE number". The current line can
be shifted to the top ("T") or bottom ("B") of the
text, or it can be moved a set number of lines (ltM
lines"). Printing without moving the cursor is done by
using the command: IIp lines". The commonly needed "ad­
vance and print" can be done by simply pressing return.
This allows stepping through the text.

4/23/81 Page 39

EDIT

MODE 1 - Numer of lines to display.
T - Top of text.
B - Bottom of text.
MI - Move I lines.
PI - Print I lines.
(ret) - Advance and print next line.

Text insert:

Major text additions are done by typing "I" immediately
followed by return. Text can be typed until done, then
terminated with a line containing only ".return". The
text is always inserted before the current line. Single
line inserts are done by typing "I/text".

I(ret)
• (ret)
I/(text) (ret)

Text changes:

- Bulk Insert •
- Exit Bulk insert.
- Single line insert.

Deleting text can be done using "D lines". The current
line can be replaced by typing "R/text". Text can be
added to the end of the current line using append:
"A/text". Text within a line can be changed by using
the change ("C") command. The text to be changed is
preceded with a delimiter character. The same char­
acter marks the end of the old text. The new text fol­
lows and is terminated by a return.

DI
R/text (ret)
A/text (ret)
C/old/new(ret)

Example:

- Delete I lines.
- Replace current line with text.
- Append text to current line.
- Change old text within a line

new text.

THIS IS THN TEXT

.C/THN/THE (return)
THIS IS THE TEXT

to

4/23/81 Page 40

FILES:

WARNINGS:

EDIT

Search for line:

The current line can be moved to a new line by searching
for a specific text string. The FIND first ("F") com­
mand is for lines starting with the search text, while
the LOCATE ("L") command will find a line with the
search text anywhere in the line.

F/text
L/text

- Find the next line with the text FIRST.
- Locate the next line with the text

anywhere.

Example:

Line 1:
Line 2:

F/FIRST (return)
L/FIRST (return)

Parameters & controls:

This is the FIRST line.
FIRST PART OF THIS LINE

Will find line 2.
Will find line 1.

"QUIT" will exit the editor, BUT remember to do a SAVE
first in order to save the modified text. The line-kill,
character-delete or tab characters can be set using
"KILL fl", "RUBO fl" or "TABK H". The "fl" is the ASCII
code of the key to be used, i.e. true backspace is 8.

"MODE fl" sets the number of lines to
change. "LIST" lists the whole text,
system function control-P (toggle
listing can be sent to the printer.

EDIT.COM is the program.

print
and by
printer

after
using

on) ,

any
the
the

The file type must be specified for any file being
edited.

(1) The editor functions abnormally with lines over 72
characters long.

(2) The CHANGE, LOCATE and FIND commands translate
search strings to upper-case before the search, so
a lower-case item will never be found.

4/23/81 Page 41

ERASE

NAME: ERA - Erase files.

SYNTAX: ERA <gname>

ERA *.COM
ERA *.BAS

- erases all command files.
- erases all BASIC programs.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

Erase all files whose name matches.

'ERA *.*, will clear the disk directory after confirming
the request with a single character 'Y' or 'y'. ERA
will not erase any files which have been given
a 'P' attribute.

Erased files can be recovered using DSKDUMP if it is
done immediately after the ERA command completes. To
recover an erased file, enter DSKDUMP using SYS.DIR as
the filename. Next, page through the directory until you
see the FCB(s) for the file erroneously erased. Change
the first byte, (which should be E5 for erased files,)
to 00 and re-write the block. Remember to find all
extents for files with multiple extents and perform this
same operation. Do not attempt to do this if any files
have been changed, added, or moved because alteration of
the directory in this manner would cause a serious
cross-allocation of file blocks.

ERA is a built-in command.

ERASE - Conditional erase.
ATRIB - Permanent (erase-protected) files.

Erase Cancelled - output after ERA *.* and 'Are you
sure?' N.

4/23/81 Page 42

ERASE

NAME: ERASE - Erase selected files.

SYNTAX: ERASE <gname> - Erases files whose name matches after
operator acknowledgment.

Responses:

Y

Control-C

Other

- Erase the file whose name is
displayed.

- Exit ERASE.

- Leave file and proceed to next
file.

DESCRIPTION:

FILES:

MESSAGES:

ERASE will remove all files whose name
general name given. Before each file is
name is displayed for the operator to ask
should be removed:

- A single character is expected.

matches
erased,

if the

- tyt will cause the file to be erased.
- Control-C will exit the ERASE program.

the
the

file

- Any other character will cause the file to be
left alone.

Erased files can be recovered using DSKDUMP if it is
done immediately after the ERA command completes. To
recover an erased file, enter DSKDUMP using SYS.DIR as
the filename. Next, page through the directory until you
see the FCB(s) for the file erroneously erased. Change
the first byte, (which should be E5 for erased files,)
to 00 and re-write the block. Remember to find all
extents for files with multiple extents and perform this
same operation. Do not attempt to do this if any files
have been changed, added, or moved because alteration of
the directory in this manner would cause a serious
cross-allocation of file blocks.

ERASE.COM is the program.

"Cannot erase" - Problem with disk, since file was
found on search, yet the system could not find it for
the erase.

tlFile not Foundtt - If a file is erase-protected (attri­
bute tlptt) then file will not be seen by erase program
and thereby not erased.

4/23/81 Page 43

FORMAT

NAME: FORMAT - Initialize M/OS-80 Diskettes.

SYNTAX: FORMAT

DESCRIPTION:
FORMAT is used to write 3740 sector marks and clear all
existing data on floppy disks. It should be used on all
new diskettes to ensure that all directory areas are
cleared and that all areas can be read later.

Note: Be sure to cover the diskette write-protect notch
(if present) before attempting to initialize any
diskette.

Once the program has started the following dialog takes
place:

Mostek MDX Formator (FORMAT 00.02)
Drive to be formatted (A ••• D)?

The operator then types a letter to indicate which drive
will contain the disk to be formatted.

The system responds:

To format disk in drive (n)
Load disk and

-- Press return to format, Press E to exit

Once the system has identified the drive as to density
and number of sides, the following dialog takes place:

Whole (w) or Partial (p)?

At this point the system is attempting to determine if
the entire diskette is to be formatted or just a part.
To format an entire disk, type w. To format a segment of
the disk, type p.

If w is typed, the system proceeds to format the disk.
If p is typed, the message:

Enter Starting track (in decimal) >

is printed on the console. At this time the operator is
requested to enter the beginning track location to begin
formatting the diskette. The upper limit is dependent on
the density of the drive but with single-density drives
and diskettes this limit is 77.

4/23/81 Page 44

FILES:

FORMAT

Once the Starting Track has been established, the system
types:

Enter Number of tracks to format (in decimal) >
[tracks left: nn], press return for all

on the console device. At this time the operator is
requested to enter the number of tracks to format from
the point specified in the starting track prompt. If the
operator hits return at this point all remaining tracks
from the starting track to the end of the disk will be
formatted.

During the formatting process, the track being formatted
is printed on the console device as follows:

(000) 123456789 (010) 123456789 (020) 123456789

Once all tracks have been formatted, the message:

-- Diskette completed --

To format disk in drive (n)
Load disk and

-- Press return to format, Press E to exit --

is printed.

If desired, the process can be repeated on the same or
another disk. To repeat, hit return. To end the program
and return to the operating system, hit the letter E.

FORMAT. COM

4/23/81 Page 45

GTOD

NAME: GTOD - Get time of day, and set time of day.

SYNTAX: GTOD
Report current date and time. Time is only shown if
not zero.

GTOD mm/dd/yy hh.mm.ss
Sets date and time as specified.

GTOD mm/dd/yy
Sets date as specified.

DESCRIPTION:

FILES:

MESSAGES:

GTOD is used to set the date and time for printing and
general informational purposes. The date items are
separated by slashes (I), and the time items by
periods (.). Date and time are separated by a space.

The date is required, but time is optional. If the time
is not entered, it will be set to 0.0.0.

GTOD.COM is the program.

Hit return to continue - given to allow synchronization
with a clock.

4/23/81 Page 46

NAME: LABEL - Set and Determine Disk Label.

SYNTAX: LABEL
To report mounted labels.

LABEL?
To get a summary of commands.

LABEL <disk>:<command>=<value>
To set label.

LABEL

Command
& value Description Default

N=<name>
C=<cluster>

Set disk name (1 •• 8 chars) none
Set disk cluster size 8
(In blocks)

S=<size> Set directory size 64
;(number of entries)

B=<begin> Set directory beginning 52
location (on disk)

P=<password> Set disk password (1 •• 3 chars) none

DESCRIPTION:
Normal M/OS-80 floppy disks have 64 files with file
allocation in 8-block (1K-byte clusters). For many
small files, double-density disks or business applica­
tions, a disk label provides additional information
about the disk to the system. The label contains the
name of the disk, the revised cluster size and the size
of the directory. Since the label is the first entry in
the directory, it should only be written on a clean
disk.

The command "LABEL" will display all known information
about all disk units.

Number of disks: NN
« for each disk »

Cluster size:
Beginning of Dir.
Size of Dir.
Name of Disk

4/23/81 Page 47

LABEL

FILES:

MESSAGES:

WARNINGS:

The command "LABEL d:xx=<value>" will set the label
on the specified disk to the given value. For a full
list of label parameters, type "LABEL 1" and the program
will list all options. For example, LABEL B:N=TEST1
will name the disk in B to "TEST1".

LABEL logs in the disk after changing the label to
update the OS with the new label. Various disk parame­
ters can be set or reset; however, changing file values
on a disk containing files may cause improper access to
previous data and should be done only with extreme care.

Certain values are most effective if set following these
guidelines:

Cluster size: 8 minimum, other values: 16,32,64, 128
max.

Directory size: Steps of 4, from 32 to 252, with 4
entries per block and an integer number of clusters.

LABEL. COM is the program.

Must have directory entry 1 clear -

When setting a new label, the first directory entry
must be clear for the label. LABEL should only be
used on freshly-initialized disks.

LABEL's disk report does not force each disk to be
logged in or report if disk is logged in; hence, disk
name may be incorrect if disk was just changed.

Re-labeling an old disk for a larger directory may open
a section of disk that contained data, but as directory
will be garbage - use DSKDUMP to clean up the extra
entries.

Various disk parameters can be set or reset; however,
changing file values on a disk containing files may
cause improper access to previous data. In partic­
ular, changing the start of the directory or the
file cluster size will cause problems.

4/23/81 Page 48

LOAD

NAME: LOAD - LOAD A PROGRAM INTO MEMORY

SYNTAX: LOAD <filename>

DESCRIPTION:

ALSO SEE:

FILES:

LOAD is used to bring .COM (binary image) and .HEX
(INTEL Hex) files into the transient program area. No
attempt is made to execute the file brought in, as in
the implied run command. Control is returned to M/OS-SO
and the operator once the operation is completed. OPI
must be resident when using this program (See OPIRES).
To make room for the loaded program, LOAD relocates
itself at the top of the transient program area prior to
actual execution.

If the filename to be loaded is entered without exten­
sion, LOAD will search the disk directory for a file
with a .COM extension, and next for a .HEX extension. If
neither are found, LOAD will report "File not Found" and
reenter the operating system. Files with other than .HEX
or .COM extensions cannot be loaded. If any other exten­
sion is used, an invalid extension error will be re­
ported.

When a .COM file is loaded, the loading range will be
displayed. These addresses are the memory locations
where the file was placed in memory. If a .HEX file is
loaded, the execution-begin address and range of the
loaded program is displayed as well as the first and
last load addresses. If an attempt is made to load a
program into a memory location occupied by the LOAD
program or M/OS-SO, the highest address available to the
user will be displayed with an error message. LOAD will
not load a program which has addresses below SOH.

DDT Appendix for further information on debugging pro­
grams once loaded.

LOAD.COM is the program.

EXAMPLE 1: A.LOAD TEST.COM
Loading File TEST.COM
Loading Range 0100 to 07FF

A. (System prompt)

4/23/S1 Page 49

LOAD

EXAMPLE 2: A.LOAD TEST.HEX

MESSAGES:

Loading File TEST.COM
Execution Address is 0187
Loading Range 0130 to 0400

A. (System prompt)

Invalid Extension
Only .COM and .HEX files can be loaded.

Attempted to Overlay onto LOAD Program -
The file being loaded attempted to overlay LOAD
program's RAM area. LOAD runs just below M/OS-80
at the top of the transient program area (TPA).

Attempted to Load in Memory below 80H -
Memory below 80H must be preserved for system use.

Invalid Record Encountered -
An invalid record in a Hex file was encountered.
INTEL Hex format rules were violated.

Checksum Error -
A checksum error in a Hex file was encountered.

No End-of-File -
The Hex file did not contain an End-of-File record.

Attempted to Read Past End-of-File -
An End-of-File record was encountered in the middle
of a file.

Highest Memory Available to User XXXX -
When a program attempts to load into memory beyond
the available transient program area, this message
advises of that upper limit.

WARNING: OP! must be resident (See:OPIRES).

4/23/81 Page 50

NAME:

SYNTAX:

OPI

OPI - Operator Interface.

OPI is the program that contains the commands:
DIR HALT SAVE
ERA @ OPIRES
REN DB AT OPINRES
TYPE OREV PAUSE
DDT DCOM ATRIB

OPI starts all user programs and is returned to after a
user program completes.

DESCRIPTION:

FILES:

MESSAGES:

WARNINGS:

For general use, OPI may be made RAM-resident with the
resultant loss of about 3k of user space.

OPI.COM is the program.

Program not found - Could not find the program requested.
Load error - Program was too big to load.
??? - Built-in function error.

OPI must be available or the system WILL NOT RUN !!

4/23/81 Page 51

OPINRES

NAME: OPINRES - Make OPI Non-resident.

SYNTAX: OPINRES - Forces Operator Interface to become non-RAM­
resident.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

OPI is normally loaded as a program between command
program executions, thus requiring it to be on a cur­
rently-loaded disk at all times. OPI may be made RAM­
resident for ease of use or made non-resident to save
space.

The commands @ (batch) and OREV require OPI to be RAM­
resident. In addition, the SAVE command requires that
OPIRES be executed prior to the SAVE. OPIRES must be
done before the step that creates the user area that
SAVE wants to write to disk. If OPI is not RAM-resident
at that time, SAVE is disabled.

OPINRES is built into OPI.

OPI, OPIRES

??? - If OPI is already non-resident.

4/23/81 Page 52

OPIRES

NAME: OPIRES - Make OPI resident.

SYNTAX: OPIRES - Forces Operator Interface to become RAM-resi­
dent.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

OPI is normally loaded as a program between command
program executions, thus requiring it to be on a cur­
rently-loaded disk at all times. OPI may be made RAM­
resident for ease of use or made non-resident to save
space.

The commands @ (batch) and OREV require OPI to be RAM­
resident. In addition, the SAVE command requires that
OPIRES be executed prior to the SAVE. OPIRES must be
done before the step that creates the user area that
SAVE wants to write to disk. If OPI is not RAM-resident
at that time, SAVE is disabled.

OPIRES is built into OPI.

OPI, OPINRES

??? - If OPI is already resident.

4/23/81 Page 53

OREV

NAME: OREV - Report the revision, system version, serial
number and OPI version number being run.

SYNTAX: OREV
Operator Interface (OPI 02.xx)
MOSTEK M/OS-80 Version (02.xx-xx.xx)
Serial Number xxxx

DESCRIPTION:

FILES:

Reports the version number of the system, the serial
number and operator interface being run using the
following format:

1. Major OS Version #

AA.BB
I I

I
I

2. OS Revision #--------------

- XX.yy
I I

I I
I I

I I
I I

I I
3. M/OS-80 Configuration I I

Version # ------------------- I
I

4. M/OS-80 Configuration I
Revision # ------------------

OREV is built-in to OPI, but requires OPI to be re­
loaded.

4/23/81 Page 54

PAUSE

NAME: PAUSE - Pause until a key is pressed.

SYNTAX: PAUSE
Put the system into a wait state until key pressed.

PAUSE/B
Put the system into a wait state and ring the console
bell until key pressed.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

Used to sound the bell and/or wait for operator checking
during a batch operation. To stop the batch, press
RETURN TWICE - once to exit PAUSE and once to stop the
batch processor.

PAUSE is built into OPI.

@ (Batch)

"Strike any key to continue."

4/23/81 Page 55

PRINT

NAME:

SYNOPSIS:

PRINT - Print text file with titles & control.

PRINT filename [/<options>] [title]

Optional specifiers are control options & title.

B - Bend

C - Center

D - Date

- If width is specified, then bend ex­
cess characters to next line (other­
wise chop off rest of line).

- Center heading within margins given.

- Output date at right side of heading.

D+ - Date/time - Output date and time on heading.

F - Form-feed - Use form-feed to force top-of-page
(instead of using LF's).

Ln - Lines

Mn - Margin

N - None

- Lines per page (Default = 66).

- Will set a left margin indent of n
characters.

- No formatting (i.e., no paging / same
as LOWO). Over-rides all options ex­
cept /U.

T - Terminal - Send output to terminal (instead of
to list device).

U - User

Wn - Width

- Use user-defined options (over-rides
all other options).

- Width of page (Default = O:Don't Care
if line too long for printer).

Options are run together after the slash, i.e. /W72B
will cause 72-column-wide printing with bending.

DESCRIPTION:
Specified text file is sent to the printer with given
controls.

The whole filename must be specified, including type. If
page width is specified, each page is limited to given
width, by truncating or bending (B).

If paging is specified, a title line and 1 blank line
precedes the text and 6 blank lines follow on each page.
Pages may also be triggered by form-feed (AL) or the
alternate AK.

4/23/81 Page 56

WARNINGS:

Tabs
all

PRINT

are expanded at 8 character stops (1,9,17 •••)
other control characters are printed as AI.

and

Defaults:

If no options are specified, default options are:

IL66WO

User-set defaults:

The user may build standard options into the
PRINT. COM file by filling them in after 103H &
specifying IU as the option, as follows:

A.DSKDUMP PRINT.COM (return)
Block: 0 (return)
Block: M3,t/ ••• enter print options here t
Block: W
Block: Q

A.PRINT TEXT.FIL IU (return)

Using the user options totally overrides any
other options.

Ie - centering is uneven.

4/23/81 Page 57

REN

NAME: REN - Rename a file.

SYNTAX: REN <gname>=<gname>

Rename <new file name>=<old file name>

DESCRIPTION:

FILES:

MESSAGES:

This function renames all files matching the old name
with the new name. If a specific is used, a search is
made for the existence of the new name. If any are
found, no renaming will take place. However, once re­
naming has started, no further tests are made; thus,
duplicate directory entries may be formed when the
matched characters in new name are placed in the old­
name.

e.g., REN *.Z80=*.ASM (ok)
REN SALLY.ASM=*.ASM (bad)

If no specific drive is mentioned, the default drive is
used. If a specific drive is mentioned in the new
filename, then that drive is assumed on the old filename
regardless of drive specified or default drive. If no
drive is specified on the new filename and a drive
other than the default drive is mentioned on the old
filename, a "File not found" error will occur.

REN is a built-in command.

File
that

already exists - If rename could
is already in the directory.

cause a name

File not found -File to be renamed cannot be found.

4/23/81 Page 58

SAVE

NAME: SAVE - Save the contents of the user area.

SYNTAX: SAVE fname <Number of 256-byte pages>

REQUIRES:

Save memory from the user area, N pages (256 bytes
each).

OPIRES before the user area contents are created.

DESCRIPTION:

FILES:

ALSO SEE:

MESSAGES:

NOTE:

The user area starts at 100(HEX) and ends at the bottom
of M/OS-80. Since most system functions preserve the
user area, programs can be saved on disk if done
immediately. If the saved file is given the extension
.COM and it is an executable module, it could become a
user command-program.

The high 2 digits of the highest hex address to be saved
are the number of pages when converted to decimal.

e.g., SAVE TEST.COM 17 Saves 100H
where 17
is 11(hex).

to 11FFH
(decimal)

SAVE overlays any prior file of the same name, and will
continue past a disk error.

SAVE is a built-in command.

OPIRES - SAVE will only work when OPI is
before the save is requested.

??? - If OPI is non-resident,
- or size is missing
- or pages >256 (>64k)
- or cannot create output file
- or disk full during write

resident

Bad disk block over-written - Allows SAVE to be used to
cover a bad spot on the disk. Save gives an error
message and continues.

The syntax for SAVE is different than the incorrect
syntax used in CPIM systems. The M/OS-80 SAVE command
conforms to the CPIM command line syntax of:

OPERATOR <filename> <parameter>

4123/81 Page 59

SORTDIR

NAME: SORTDIR - produce a sorted directory as a file.

SYNTAX: SORTDIR <outfile>=<gname>

DISK SORTED DIRECTORY LIST (rev 00.02)
DISKNAME: enter disk 1 name (Use : . (colon) on drive

letter ie. B:Somename)

searching disk:

DISKNAME: enter

searching disk:

DISKNAME: (ret)
Filenames will
nn file - done

DESCRIPTION:

d

disk 2 name

d

be sorted.

(Use: (colon) on drive
letter ie. B:Somename)

SORTDIR will search the directory of a number of
disks (1 or more) and build a file of the file­
names found, sorted in alphabetical order. Each name
will be tagged by the name of the disk on which it was
found.

SORTDIR is used for two purposes:

1) Building documentation of a multi-disk set.
2) Used as the starting point for a @ (Batch) CMD file.

The output file format is:
(,)filename(spaces).(period) filetype (tab) «) diskname (»

For a one-disk list, remove the disk name by:
1) Use a disk name of "_" (dash).
2) Replace "(tab)<->" by null, using the editor.

To allow multi-disk sorts of different types:
If the first 2 characters of a disk name is: (letter)
(colon), then that disk will be switched to next.

4/23/81 Page 60

MESSAGES:

WARNINGS:

SORTDIR

A sample of the program run is:
SORTDIR B:ZIP=*.DOC
DISK SORTED DIRECTORY LIST (rev 00.02)
DISKNAME: M/OS-BO Manual
searching disk: b

DISKNAME: (ret)
filenames will be sorted

12 file - done

ZIP contains:

,OSCMD1
,OSCMD2
,OSCMD3
,OSCMD4
,OSCMD5
,OSCMD6
,OSCMD7
,OSCMDB
,OSHW1
,OSINTRO
,OSOPER1
,OSOPER2

.DOC

.DOC
• DOC
.DOC
.DOC
• DOC
.DOC
.DOC
.DOC
.DOC
.DOC
• DOC

:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>
:<M/OS-BO Manual>

Since disks will probably be switched in a multi-disk
sort, it is advisable to specify a specific output disk,
i.e., A:OUT instead of just OUT, with A being the
current disk.

4/231B1 Page 61

SPLIT

NAME: SPLIT - Split a large text file into pieces.

SYNTAX: SPLIT filename [nn]

Where nn is the maximum size of each segment in K bytes.
If no size is given, 16K segments are created.

DESCRIPTION:

FILES:

WARNINGS:

Splits the text into· smaller files starting a new file
wherever: a "(return)(line feed)I(return)(line feed)" is
found or when the segment is bigger than nn kilobytes.

Each subfile is named the same as the original with a
suffixed serial digit(s): 0, 1, 2 ••• 9, 10, 11, 12 •••
FILE.ASM will generate FILE1.ASM, FILE2.ASM •••

The original file is not disturbed.

The serial number of the segment is added to the end
of the filename. The name must contain a maximum of
7 characters to allow up to 9 splits, and a maximum of
6 characters if there can be more than 9 splits.

Creates the new files with parity low, no rubouts or
nulls, and all control characters other than return,
line feed, and tab are printed as Al (two characters
in the output file).

SPLIT.COM is the program.

The recognized control characters do not include escape
(A[) or formfeed (AL).

If files that
given segment
the directory
greater due to

have been created from SPLIT exceed the
by one or more bytes (due to the text),
entry for that file will show to be 1K

the allocation of an additional cluster.

4/23/81 Page 62

NAME:

SYNTAX:

SPOOL

SPOOL - control print spooling.

SPOOL
SPOOL d:filename
SPOOL *

- Gives instructions on running SPOOL.
- Starts the specified file printing.
- Stops any spool print in progress.

DESCRIPTION:

MESSAGES:

WARNINGS:

The print spooler is a system feature that allows the
printer to output a file to the system list device while
the system continues with other functions.

The file must remain on the disk while it is being
printed and must contain all its own page handling.
Any ASCII file may be spool-printed, but direct printer
activity cannot occur while a spool-print is active.

File not found - The file must either be on the A: disk
or the disk must be specified.

SPOOLER takes only partial control of the printer. Other
programs that use the printer may also send data to the
printer driver resulting in a mix of characters printed.
Control P is, however, de-activated.

4/23/81 Page 63

STARTUP

NAME: STARTUP.COM - Auto-start Command file.
STARTUP.CMD - Auto-start batch file.

DESCRIPTION:

ALSO SEE:

WARNINGS:

If the file "STARTUP.COM" exists on the boot disk,
it will automatically be run as a program with a blank
command line. If the file "STARTUP.CMD" exists on
the boot disk, it will be automatically started as a
batch stream using Batch (@) unless STARTUP.COM is
present.

STAND-ALONE SYSTEMS
Since startup is intended for use in implementing stand­
alone systems, the user control-C is totally disabled
when either the startup program (STARTUP. COM) or
command file (STARTUP.CMD) is started, thus locking the
user into the running program. Note that the normal
"stop batch" capability, by pressing return, is also
inactive while AC is inactive.

When return is made to the Operator Interface, control-C
is re-enabled so normal login sequences can be effected.

@ - BATCH

- For STARTUP.CMD, the "A" disk must be write-enabled.

- If STARTUP.COM is run, then STARTUP.CMD will not be.

4/23/81 Page 64

SXFER

NAME: SXFER - Single disk file transfer.

SYNTAX: SXFER <gname> [1M]

Mostek single file transfer (SXFER 00.03)
Insert * SOURCE * disk, press return

SXFER will find all files that match the general name
given. If 1M option is requested, the operator is promp­
ted to verify that each file of the general set is to be
transferred or passed over.

Insert * OUTPUT * disk, press return

SXFER will report files output as they are written.

****** COpy COMPLETED *******

DESCRIPTION:

FILES:

SXFER is a file-transfer utility especially designed for
single-disk systems like the Mostek Matrix-80/SDT. This
program is different from XFER or COPY since files are
moved one by one, based on the filename. The source and
output disks may be of different size or density.

The program is set up to use as much memory as is avail­
able and will load partial files to fill memory on each
pass.

There are three stages to the program:

1) Find all files that match the general name given.
If the MAYBE option (1M) is given, the operator will be
asked which of the matched files are actually to be
moved.

2) Load source disk and load into RAM memory as many
files as will fit.

3) Load
loaded

Passes
files

output disk and write to disk all
in the previous load pass.

2 and 3 will alternate until all
have been copied to the output disk.

SXFER.COM is the program.

that was

specified

4/23/81 Page 65

SXFER

MESSAGES:
The SXFER program has a large number of messages which
fall into a number of similiar categories:

- Status reports, indicating an action taking place.

- Normal error,
condition.

indicating disk full or similiar

- Absurd error, indicating a condition
shouldn't happen.

All messages use the following insertions:
ffff - a file name

that

tttt - a type of transfer (New, Partial, Full,
xxxx)

nnnn - a record or file count
eeee - a system error code

Status reports:

There are nn files
to be transferred.

An indication of total files

- ffff - tttt load of nnnn records
- ffff - tttt dump of nnnn records

Indicates that file ffff was loaded for input, either
tttt is a partial or a full load and nnnn records were
loaded.

Normal errors:

*** Input position error [file ffff at nnnnJ

Could not
(if nnnn
blocks) :
be copied

position file for input, either a null file
is zero) or an incomplete file (missing
the former can be ignored, the latter cannot

properly.

** COULD NOT CREATE FILE - DIRECTORY FULL **
** Sorry - this is a fatal condition **

** File write error (eeee) **
** Sorry - this is a fatal condition **

Indicates the output disk is full or had a write error,
and no more files can be written.

-4/23/81 Page 66

WARNINGS:

** Could
could not

SXFER

not open [ffff] - File from file
be found on input disk ???

** Could not open [ffff]

*** Output position error [file ffff at nnnn]

list

On output, means a partially copied file could not
be found when the second part was to be written.

** Unable to close ffff (eee)
The file could not be found when it was time to
close it.

It is advisable to be careful about switching disks
since it is possible to put the wrong disk in at the
wrong time and wipe out a good file.

SXFER performs no verification and no temporary file
cycle, so if an old file on the output disk is to be
kept it must be renamed prior to the SXFER copy
operation.

4/23/81 Page 67

TYPE

NAME: TYPE - Type file to console

SYNTAX: TYPE <gname>

DESCRIPTION:

FILES:

MESSAGES:

The first file matching the general name will be print­
ed, in ASCII, at the console. Tabs will be expanded into
spaces. During the display, RETURN will cancel the list­
ing. Space will pause the listing until another space
key is pressed.

Non-printable characters are expanded to Al format,
except for return, line feed, and tab. Returns without
following line feeds have a line feed inserted.

TYPE is a built-in command.

File not found - No matching file could be found.

4/23/81 Page 68

WRTSYS

NAME: WRTSYS - System Writer.

SYNTAX: WRTSYS[/S]
{<output disk reference>}:={<input disk >}:
{<filename> } {<filename> }

Either side of the action can be a file or a disk refer­
ence.
/S indicates a single disk system, and requests changing
disks.

DESCRIPTION:

FILES:

WRTSYS is used to copy or initialize the System Boot re­
sident image on tracks 0 and 1 of a diskette. The copy
is verified after copying. The program will move the
System Boot system image from a file to the disk
system area, from the system area to a file, or from
disk system area to disk system area.

In any case, WRTSYS logs in both disks and properly
determines the size of the system region. It then reads
or writes as much of this region as necessary.

Examples:

WRTSYS A:=B: Put the System Boot on disk A from
disk B.

WRTSYS ZXOS16.SYS=A: Copy System Boot from disk A to a
file ZXOS16.sys.

WRTSYS A:=OS16.SYS Copy System Boot from a file to disk
A (when setting up a new boot
disk).

WRTSYS requires '.SYS' as the file type when a file­
name is given, i.e., WRTSYS B:=NAME.SYS.

WRTSYS allows writing from a file on one disk to the
system area of another on the same drive, by specifying
'/S' on the command line (the standard procedure for
MOSTEK MATRIX-80/SDT systems). WRTSYS will pause after
reading in the source file, and before writing, to
allow changing disks.

The file WRTSYS.COM is the program.

4/23/81 Page 69

WRTSYS

MESSAGES:

WARNINGS:

ILLEGAL DEVICE SPECIFICATION - Input or output request
is invalid.

WRTSYS done and verified - Function completed norm­
ally.

Put new disk in "A" drive, press return
Single disk WRTSYS disk
swap.

Input/output errors:

OPEN ERROR - Input file not found.

CREATE ERROR - Could not create output file.

READ ERROR - Error on reading input source.

WRITE ERROR - Error on writing output.

RE-READING ERROR - Error on reading for verify.

VERIFY ERROR - Data written fails to verify.

WRTSYS requires at least twice the size of the system
region plus room for program and current running M/OS-80
system.

4/23/81 Page 70

XDIR

NAME: XDIR - Extended sorted directory listing.

SYNTAX: XDIR - Display all non-system files.
XDIR <gname> - Display all non-system files matched.
XDIR <gname> S - Display all files matched.

Format:
<Filename> <Kbytes in file> (3 or 4 across)

Final message:
nnn entry{s) listed, nnnK disk space used.

DESCRIPTION:

FILES:

WARNINGS:

XDIR will display a sorted directory-file listing. It
gives a multi-column display that accounts for the
terminal display problem by pausing when the screen is
filled.

XDIR will normally NOT show system-type files, but will
do so if a second parameter of'S' is present.

The program may be tailored for different-sized term­
inals by changing the lines and columns counters:

DSKDUMP XDIR.COM
block: 0 (ret)
block: M3,rr,cc(ret)
block: W
block: Q

Where: rr is the number of rows to
display, usually screen length-2.
cc is the number of columns of
Standard is: 16,4

XDIR.COM is the program

be used by the XDIR
The value is in hex.
names to display.

XDIR properly collects incomplete file extents, but
bases its size calculation on total records as if all
extents were full.

It does not show file attributes, as there is no room
on the screen.

4/23/81 Page 71

XFER

NAME: XFER - File transfer.

SYNTAX: XFER (return)
or

XFER [/<options>] <disk>=<gname>
- Move all matching file(s) (rom one disk to

another.
XFER [/<options>J <fname>=<fname>

- Move a single file to a new file.
XFER [/<options>] <fname>=<fname>,<fname> •••

- Append multiple files to make a new file.
XFER/V B:=A:*.*

- To copy a whole disk:

Options:

IA - Do an ASCII file transfer.
IC - COMPARE without moving.
IE - EXIT on compare failure.

(from drive A to B)

IF - FILTER out illegal ASCII characters(implies S&A).
II - IGNORE ASCII eof (AZ).
1M - MAYBE transfer a file (if operator says yes).
IR - Transfer a READ-protected file.
IS - STRIP all rubouts and nulls, and parity (implies A).
IT - Expand TABS (implies A).
IV - VERIFY after moving.
IX - Print HEX address of comparison failure.
IZ - Don't print transfer size statistics.

DESCRIPTION:
XFER is the general file-transfer utility. It allows
moving files from disks or devices to other (or the
same) disks or devices. Files are moved by first copying
to a temporary file, then when completed and verified,
removing any older file of the same name, and renaming
the new file.

Files are assumed to be binary unless the "A" (ASCII)
option is specified.

The MAYBE option (1M) allows a general filename to be
individually selected by asking the operator if each
file is to be copied. The answer may be either:

N - No, skip it.
Y - Yes, copy it.
R - Remaining. Copy it and all following files.

All options must precede file specifications, start
with a slash (I), and end with a space.

4/23/81 Page 72

XFER

When ASCII data is transferred, parity (bit 7-
MSB) is automatically stripped and the end-of-file is
indicated by A Z (SUB). Stripping is important when
ASCII files are appended so that the whole data block
(128 bytes) is not transferred.

The file-compare option ("C") is a compare without copy.
It is used to compare two files for identical contents.

If the "T" (TAB) option is specified, ASCII format is
assumed and tabs are expanded. This option is used
primarily to create printer listings.

The IGNORE and FILTER options may be used together to
restore a destroyed text file. It will strip all non­
printable characters except return, line feed, tab, form
feed or alternate form feed (AK), and restore a proper
end-of-file marker.

Local mode: ----
If no file is indicated, the program responds with an
exclamation point (!) to prompt for multiple com­
mands. Each command is processed as it is entered.
A null line will indicate no more commands are to be
entered. Any options should be placed at the beginning
of the line on which they are required. Since XFER
does a login before each command, disks may be changed
between local commands.

Examples:
XFER/T PRT:=XFER.z80 Print file.

XFER/A PGM.ASM=PART1.Z80,PART2.Z80 Append 2 source files

XFER B:=A:DUMP.COM Copy between disks

or

XFER ret
! ITA PRT: =XF

JUNK=RDR:
(return)

Disk-to-disk transfers and general filenames may be used.
New disk in B
Old disk in A

e.g., xfer/v b:=*.asm will move all assembler files

xfer/v b:=a:*.* will move ALL files

4/23/81 Page 73

XFER

FILES:

The disk specifier must be on the left side, and the
general name can only be on the right side. General
renames cannot be done while transferring. To do
this, use the REN command after transferring. If
transferring and verifying a general filename, any veri­
fy failure will stop XFER and wait for operator
response.

Files may be appended together to make one larger file.
Appending of files is indicated by putting more than
one source filename separated by commas (file1, file2, ...) .
When appending text or other ASCII files, it is
ESSENTIAL that the "A" option is indicated so that the
end-of-file is indicated by AZ (SUB), and the whole
data block (128 bytes) is not transferred. General
filenames cannot be used while appending.

XFER.COM is the program.

MESSAGES:
- "<filename> OPEN ERROR" indicates the source file
cannot be found or the output disk is full, or is an
unreported write-protected disk.

- "<filename> WRITE ERROR" or "<filename> CLOSE ERROR"
indicates the disk is full.

- No ambiguous files matched - No files matched gen­
.eral files name.

- Illegal output filename - General name as an output
name.

- Failed compare - compare or verify pass failed.

- Length compare error - one file is the prefix of the
other, but they are of different lengths.

- File specification error - bad command line (no =,
etc.).

- Cannot append to an ambiguous file.

- Cannot erase old file - Transfer was completed and
verified but the old file is write-protected and cannot
be removed.

4/23/81 Page 74

WARNINGS:

XFER

Use of a tempOrary output file allows assurance that a
file will not be removed until its replacement is
verified; however, it also takes twice as much disk
space.

If Verify is not requested when performing a copy, and
the receiving disk fills up before the entire file is
copied, then the copy will not be completed although no
error message will be shown.

If the file being transferred has broken extents, only
the first extents that are marked as filled will be
transferred.

Broken extents are built when creating a file using
"Random" record I/O. References to records beyond the
last allocated cluster cause the operating system to
create enough extents to cover the missing area. These
extents are not filled in with allocated clusters until
the records skipped over in those extents are referenced
by reading or writing. This concept seemingly creates
very large files on the disk which may have no more than
a few actually allocated clusters thus very little real
data.

The transfer program (XFER) will copy down to the first
null cluster in the extent and will continue to other
extents only if the cluster count is 80.

4/23/81 Page 75

XFLP

NAME: XFLP Copy a file from FLP80-DOS to M/OS-80

SYNTAX: XFLP <filename>

DESCRIPTION:

NOTE:

XFLP is designed to permit those applications and data
files written on Mostek FLP8o-DOS diskettes to be copied
over to M/OS-80 disks. XFLP expects the FLP80-DOS disk
to be mounted in the "B" drive and the M/OS-80 disk to
be mounted in drive ttA". Only a singlE' file of specific
filename may be transferred at one time.

When attempting to copy files up from FLP80-DOS, make
sure to get a directory listing of the FLP-80DOS disk
prior to entering M/OS-80.

Only ASCII files or programs or binary files that are of
a data nature may be successfully transferred. tt .BIN"
modules may be copied but their ability to execute under
M/OS-80 is doubtful unless they are specifically written
for use in a CP/M or M/OS-80 system. .BIN files are
renamed to .COM when transferred. Higher level language
programs in their ASCII form must be re-compiled under
the M/OS-80 (CP/M) version of the compiler before they
can work.

MESSAGES: SYNTAX ERROR IN COMMAND LINE Self Explanatory

FLP-80DOS FILE NOT FOUND

NO CP/M DIRECTORY SPACE FOUND

FLP-80DOS FILE ACCESS ERROR

Self Explanatory

Self Explanatory

Error returned by
disk controll'er.

FLP-80DOS DIRECTORY ACCESS ERROR Error returned by
disk controller.

ERROR IN EXTENDING CP/M FILE

END OF CP/M DISK AREA

4/23/81 Page 76

Could not build
additional directory
spaces on CP/M
disks.

CP/M disk full.

XSTAT

NAME: XSTAT - Disk status

SYNTAX: XSTAT
or
XSTAT <disk>:

DESCRIPTION:

This command prints:
a) The total, used and free space on disk.
b) The size of user RAM memory.
c) The total and free number of directory entries.
d) Disk and directory parameters.
e) Invalid conditions in the directory.

The whole report format is:
1) Disk label is 1 ••••••••••• 1 Version 2.xx
or
Disk is Unlabeled

2) Directory type: Standard

3) User memory size:
4) Total disk space:
5) Disk space used:
6) Disk space remaining:
7) Cluster size:
8) Sectors/track:

nn Kbytes
xxx Kbytes
xxx Kbytes
xxx Kbytes

xx
xx

9) Total Sectors: xxxxx

No files on disk
or

errors: xxH Not allocated
xxH Linked Cluster <orig-file> <curr-file>
<curr-file> Null File

10) Directory Entries Used: xxx
11) Directory Entries Remaining: xxx
12) Disk Status Completed.

XSTAT prints the names of any NULL (empty) files.

The Total disk space may be used to determine the type
of disk being used, which is useful on dual-(switch­
able) density disk systems. For example, a standard IBM
8" disk has normally 243 Kbytes.

XSTAT runs a validation on the disk directory to see
if any cross-linked files have occurred. These
can be caused by forgetting control-C (AC) when

4/23/81 Page 77

XSTAT

MESSAGES:

FILES:

changing disks.

The errors that XSTAT reports refer to cluster numbers
(II in hex) that are the internal segments of
disk space that M/OS-80 allocates to each file.

Possible directory error messages are:

IIH NOT ALLOCATED

Operator still has not pressed control-C, (so far no
damage has occurred).

IIH LINKED CLUSTER <file1> <file2>

The same disk cluster has been allocated to both
files. The effect of this is that one file has been
written over an older file. The more recent of the
two is still unmolested - delete the older one. It is
safest to delete both, since it may be impossible to
tell which file is undamaged. ASCII files can be checked
out by "TYPEing" or DUMPing them.

XSTAT.COM is the program.

4/23/81 Page 78

3.0.0 M/OS-80 Internal OPerations

M/OS-80 is an operating system for disk-based z80 MOSTEK MDX or
SD microcomputer systems. The function of an operating system is
to define certain functional conventions and provide programmers
with generalized inputloutput routines to be used in advanced
general-purpose microcomputer systems development. These com­
prehensive sets of programs and routines allow a program to
ignore details of device operation and merely specify a device
symbolically. The system is supported at two levels: the resident
operating system and the loadable extended file features.

The resident operating system consists of 3 major sections:

IOSYS
DOS
OPI

- Device 1/0 System.
- Disk Operating System.
- Operator Interface.

The operator interface (OPI) is described in detail in Section 2.
The normal sequence of system operations uses OPI to invoke a
user program. Once loaded, the user program passes all system re­
quests to DOS. IOSYS is considered internal to DOS, but is
retained for compatibility reasons.

M/OS-80 makes use of the MOSTEK Disk Controller Firmware (DCF)
and Designer's Development Tool (DDT) PROMs. These PROMS are
designed to boot the system and provide a minimum operator inter­
face in case of system failure. Starting at EOOO (hex) and ex­
tending to EFFF (hex), these two 2716 (2K) PROMs are constantly
part of the system address space. It is extremely inadvisable to
make direct reference to these PROMs in any software written for
M/OS-80 because future releases of M/OS-80 may not use these
PROMs.

Unlike FLP-80DOS, M/SO-80 cannot be easily modified to support
alternate consoles or other peripheral devices. Unlike CPIM with
its user-written BIOS, M/OS-80 has a distinctly different 1/0
structure which does not lend itsef to easy modification by
users. There is no MOVCPM program to rebuild various sized sys­
tems. Requests for modification need to be directed to MOSTEK.

4/23/81 - Page 79

3.1.1 - Structure: System Organization

M/OS-BO is a RAM/Disk-resident operating system that is loaded
from disk when a cold boot sequence is initiated. During system
configuration, the memory location of M/OS-BO is fixed, an~ the
bootstrap loader is automatically set-up to load M/OS-BO
properly.

The system resides in high memory above user programs. By defined
use of low memory (0-100H) all user programs call M/OS-BO
through a standard sequence which is transparent to actual memory
size. Additional memory simply expands the available user
area.

The system consists of 9 parts:

RAM Memory areas:

Top -> BIOS - Device Driver System.

DOS - Disk Operating System.

OPI - Operator Interface Linkage.

User Area - User Program Region.

o -> Low Memory - Special Reserved Space.

Allocation of Disk Areas:

o -> Bootstrap Loader

M/OS-BO Resident Image

Disk File Directory

Remaining-> User File Region

These system segments work together to handle all standard
disk and character-device I/O for the user. The functions are
described in detail later in this manual.

4/231B1 - Page BO

IOSYS -

3.1.2 - Structure: Memory Structure

The Input lOut put System performs the various
1/0 functions for the character-devices
printer, punch, reader) and for the disk
program which does all of its own file
functions or does not use the disk might
IOSYS.

primitive
(console,

devices. A
management
need only

DOS The Disk Operating Subsystem performs all of the disk­
oriented features of M/OS-BO including managing disk
files (creating, opening, reading, and writing). In
addition, M/OS-BO DOS is responsible for calling user
programs, editing console input, allowing user control
over 1/0, and many other functions.

opr The Operator Interface is the set of routines that the
operating system uses to communicate with the user. This
sUb-system permits the user to specify which of several
system functions to perform. To execute one of these
system functions, OPI invokes a user or system program
based on the command line and passes parameters from
the command onto the program.

Those commands which invoke system-level RAM-resident
programs are referred to as built-in commands. If a
command is not recognized as being one of the built-in
system functions, M/OS-BO tries to find and execute
a disk-resident .COM module corresponding to the com­
mand. Any programs invoked are loaded into the user
area as described in the "User Area" section below •

OPI can be totally RAM-resident or may be reloaded
between user programs, see the OPIRES and OPINRES com­
mands. If OPI is non-resident, a small OPI linkage
table is left resident in RAM.

User Area ------The RAM location where most user programs are actually
run is referred to as the User Area. It starts at
100(hex) and can extend as high as the bottom of the
Operator Interface (OPI). All system-external commands
and user command programs are run here. Built-in com­
mands generally do not modify this area; however, if
OPI is non-resident, it will always use the low section
of this area. Bootstrapping also uses the lower 3K of
the user area.

4/231B1 - Page 81

3.1.2 - Structure: Memory Structure

Low memory =
From 0 to OFF(hex) , (the first 256 locations in
memory) are reserved for special purposes by the sys­
tem, although some selected locations are available to
the user. (See section 3.6 - System Calling Conventions)

4/23/81 - Page 82

3.1.3 - Structure: Disk Structure

Bootstrap loader -
Loads the system initially from a boot disk.

M/OS-80 resident image -
A copy of M/OS-80 on disk, to be loaded when the
system is first powered up.

Disk File Directory -
The section of the disk used by M/OS-80 to keep track of
the files in the user area of the disk. OPI allows the
user to list the contents of the directory using the
"DIR" command. One entry is required for each file
section (called an "extent") of up to 16K bytes, and,
by default, a maximum of 64 entries are allowed, thus
limiting a single file to 256K bytes.

An extended directory size may be defined using the
'LABEL' utility which permits placing more than 64 files
on a single disk. The directory may also be directly
accessed by opening pseudo-file 'SYS.DIR'.

User Files -----The remainder of the disk is used for actual program
or data files as described in the directory. A file
consists of a sequence of 128-byte blocks. The disk is
managed in clusters of eight or more blocks. Different
sized disks may use clusters of more than 8 blocks. A
block size of 8 gives 1K-byte (character) clusters,
while using 16 blocks per cluster gives 2K-byte clus­
ters.

A minimum-sized file consists of at least one 1K cluster
even though not all blocks have been written to. Each
file has one directory entry for each 16K bytes with
each extent holding 16 entries.
When a file is opened, created, or closed, the proper
file extent must be specified so the appropriate di­
rectory entry is accessed.

Block

o
1 •• 51
52 •• 67
68 •••

Disk map

Bootstrap
M/OS-80 Memory Image
Directory (2K:64 entries)
Files

Cluster

0 •• 1
2 •• 240

Directory blocks number 0 •• 63 (in a standard 64-entry
directory)

4/23/81 - Page 83

3.1.4 - Structure: Boot Structure

M/OS-80 has an extended boot structure when compared to CP/M. The
firmware cold starts from the system region of the boot disk,
by having the boot PROM load block O. This block contains a
bootstrap program that loads the system proper, from the
system area of the disk.

First, the system initalizes all basic devices, especially the
boot disk. At this point, the system is actually running; how­
ever, no user program is active. The newly booted software then
chains to a program called "SYSTEM. COM" which contains the
system to be actually run. This program module is brought in
from disk, initializes its special devices, and then loads the
Operator Interface from "OPI.COM". OPI is self-relocating and
will move itself into high memory if it has been specified as
RAM-resident at boot time.

The system region must contain a proper
SYSTEM. COM and OPI.COM must exist on the "A"
modules must match at revision level for the
successfully.

system
disk, and

system to

image,
these
boot

Boot functionality cannot be changed by users in the field.
Requests for changes in boot structure need to be directed to
Mostek factory personnel.

4/23/81 - Page 84

3.1.5 - Structure: Command Structure

A M/OS-BO command is a program that is designed to be loaded
starting at 100H and stored on the disk as a memory image in a
file with type • COM. Program (.COM) files may be either a
MOSTEK-supplied system utility or a user program. Any filename
is legal as a command; however, built-in names will not be
recognized as user programs because the operator interface pre­
defines them. Examples are :ATRIB, BYE, DIR, ERA, REN, SAVE,
TYPE, etc.

The operator interface will pass the user command line
command program. The invoked program neea not use the
line lor M/OS-BO itself, although most will use both.

For ease of programming, the first two arguments in the
line will be pre-formatted into standard file control
(FCBs) at 5CH and 6CH by the console processor. The rest
command line, after the command name, will be placed

Standard format for the command line is:

A.<Program name>
I ,.

I I
M/OS-BO .COM filename
prompt

For example:

(Arguments)
[/J[<operand>[/J<operand>J

\
\

User (system) program
parameters

to a
command

command
blocks
of the

at BaH.

To use the XFER utility to copy all files from drive A to drive
B:

A.XFER IV B::a:*.*

The IV is seen as the operand "V" and the B::A:*.* is interpreted
as another operand. The user program itself decodes that portion
of the command line.

If a name which not does match a .COM file on the current or
library disk is used as the program name, a "Program Not Found"
message is printed.

4/231B1 - Page 85

3.2.1 - Programming: Programmer Facilities

System Calling Conventions

M/OS-80 reserves low memory (O-OFFH) for internal uses. M/OS-80
resides in high memory with OPI and BIOS. The user is allocated
all memory from 100H to below M/OS-80 for unspecified uses.

A program is always loaded and starts execution at 100H. Once
started, it can do whatever it wants; however, if it destroys
M/OS-80 or BIOS it will have no way to use the disk or recover
the operating system without the operator intervening.

M/OS-80 is entered through two special locations in low memory:

JMP 0 is used for returning to OPI and the operator or
the next step in a batch.

CALL 5 is the normal system request call.

Standard conventions, when M/OS-80 is called thru CALL
5, are discussed in section 3.12.

The region from 0-100H has the following data of
specific interest to a program:

4/23/81 - Page 86

0 •• 2
3
5 •• 7
6 •• 7
08H •• 4FH
30H-32H
38H-3AH
40H-5BH
5CH •• 6BH
6CH •• 7BH
80H •• OFFH

System return entry.
IOBYTE for device re-assignment.
System call entry.
Pointer to top of user area.
Reserved for interrupt vectors.
DEB breakpoint.
Illegal address trap.
Reserved for system.
User FCB 1.
User FCB 2.
User buffer.

3.2.1 - Programming: Programmer Facilities

User Memory Size and Stack Position

The two system entries (locations 0 and 5) are also used to
supply the user program with special information. The system
return entry is also the start of the BIOS entry vector and
the system call entry is the first location in M/OS-SO which is
one byte above the highest available user memory.

The following section of code will supply the user with the
system's lower boundary (the user's upper boundary).

LD HL,(6)
DEC HL

;GET CONTENTS OF LOCATION 6
;HL:=TOP OF USER MEMORY

Command Line at Program Start

The user file control blocks (FCBs) UFCB1 and UFCB2 and user
buffer (location OSOH) are reserved for the user. They may, how­
ever, contain specific information from the operating system
when a user program is started. These FCBs and buffers are used
to pass the command line that OPI was given to start the program.

When a program is invoked,
command line by OPI, and the
locations for the program.

pre-processing is done
results are placed in

on the
special

1) The whole command line, translated to upper case, is
placed in the user buffer starting at S1H and terminated
with a null (0) byte. The buffer starts with the char­
acter after the command file name, which is either a
space or a name terminator (/,=,etc.) The length is
placed in SOH.

2) The first two filenames are pre-scanned and placed in
user FCB 1 & 2 (at 5CH and 6CH respectively), ready for
use to access disk files as per FCB conventions (des­
cribed later).

UFCB 2 is not a full FCB and will be
UFCB 1 is used. Similarly, any disk

out the command line if the disk

Note that user
destroyed if user
1/0 will wipe
buffer is not saved elsewhere.

3) The disk IIO buffer is also pre-set to SOH.

4/23/S1 - Page S7

3.2.2 - Programming: Character Devices

M/OS-80 has
with physical
version with
(*).

Supported Character Devices

a set of system calls for direct interaction
character devices. Those supported in the current
links to actual hardware are noted with an asterisk

(Function) (Call numbers)
* Console Input 1 , 6, 10, 11 , 80H
* Console Output 2,6,9
* Terminal Control 82H,8EH,9DH

Reader Input 3
Punch Output 4

* List Output 5
Clock Read and Set 8FH,90H,91H,92H

These are all considered ASCII character devices which return 7-
bit data, high bit clear and use control-Z (1AH) to indicate end­
of-file.

Character I/O Format

When output goes to Console, horizontal tabs (HT,9) are
expanded with an eight-character-wide tab field (i.e., tab stops
are 1,9, 17, 25, 33 •••). Tabs sent to punch or list are left as
the TAB (9) character.

Whenever character device output is occurring, the console input
is periodically tested for ready status. Normally no action is
taken other than loading any character on the keyboard into a
single character buffer. There are a couple of special char­
acters that can affect functioning:

CONTROL-S (A S) will pause any output until a
continue is indicated by pressing any key. If Con­
trol-C ,(AC) is pressed, an abort will occur.

4/23/81 - Page 88

3.2.2 - Programming: Character Devices

There are 3 controls for console/printer "daisy chaining" which
cause all console output to be printed on the printer as well as
the console:

CONTROL-P (Ap), when input, will toggle state of con­
sole/printer link but never be passed to a program.

CONTROL-T (AT/ DC4/ 20/ 14H), on output, will turn on
the link if transmitted from the console.

CONTROL-W (AW/ ETB/ 23/ 17H), on output, will turn off
the link if transmitted from the console.

For example, even though characters are being output one at a
time, "AE(TAB)(AT)BC(AW)D" will produce "AE BCD" on console
and "BC" on printer. These functions may be disabled by using
the console options function (9DH). (See Section 3.12)

Console Line Buffered Input/Output

For the console, line-buffered I/O is available by way of the
M/OS-80 system call:

Function

output
Input

Code (Decimal)/(Hex)

9/09H
10/0AH

Output buffering displays a sequence of text characters until a
"$" terminator is found.

4/23/81 - Page 89

3.2.2 - Programming: Character Devices

Input-buffered I/O fills a text buffer with characters from
the keyboard until the buffer is full or a return is entered
and allows character backspacing and other control characters:

CONTROL-E Physical new line only, not terminate input.

RETURN (Ctrl-M) Terminate input.

CONTROL-R
rections).

Repeat what has been typed (minus any cor-

CONTROL-U Delete current line.

CONTROL-X Delete with ECHO (for hard-copy terminals).

BACKSPACE (Ctrl-H), UNDERSCORE, RUBout or DELete -
Delete previous character and back up cursor (for CRT
terminals).

CONTROL-C Abort back to system.

CONTROL-P Toggle console/printer link.

All non-defined control characters will echo ("L) where "L" is
the equivalent control letter.

To use buffered input,
previously initialized.
buffer:

a buffer is passed with maximum
The following diagram illustrates

IMax chars/Actual chars/ ••• Buffer / I

o 1 2 ••• •• n

size
the

The actual length is filled in by M/OS-80. A null (0) byte
will be placed after the last byte (but not added in the count).
If too many characters are typed, M/Os-80 will return with
maximum = actual, but with no null byte at the end. A termin­
ating return will not be in the buffer but it will be echoed to
the console; however, no line feed will be sent.

Non-Echoed Console Input

Many advanced programs require the ability to selectively decide
what is echoed back to the terminal. There are two functions and
a console option that provide for this:

4/23/81 - Page 90

(Action)
Non-echoed input
Raw input/output
Disable echoing

(Function)
80H
6
9DH(bit 4 & 6)

3.2.2 - Programming: Character Devices

The non-echoed input is function 80H. It is the
function for this requirement. This program option
used where buffered input is being used, but echoing is
for password entry or other similiar functions.

primary
may be
disabled

Raw or unformatted I/O is performed through function call 6. This
call is used for both input and output based on the value of
user register E. Again the character is un-echoed but with this
function the OS performs no buffering or decoding of the charac­
ters as they are read thus permitting various control characters
such as control-C or control-S to pass without alteration or
other system action.

The console-options.control is to allow extended use of the
standard console input functions. By changing the options, the
operations performed by the system at end-of-line and while
echoing can be tailored to a program's needs.

Changing the console options is done in two stages. A mask is
passed to determine what values will be changed, and the new
values of just those bits are passed.

Register (E) has a mask of the bits to be changed (bit=1 if the
option is to be changed). Register (D) has the new values of
options (bit=1 if the option is to be set, bit=O if the option is
to be reset).

Bit Bit
number value

7
6
5
4
3
2
1
o

80H
40H
20H
10H
8
4
2
1

Meaning

Disable print output toggle (AW/ AT).
No echo on input (func. 1 & 10).
Reserved
Reserved
No echo of RETURN (func 1 & 10).
Enable ESCAPE as end of line.
Disk read after write (driver-optional).
Control-P flag proper.

4/23/81 - Page 91

3.2.2 - Programming: Character Devices

Abort (control-C) Control

The Control-C character is usually used to abort or abnormally
exit a program and return to OPI. It is not always desirable to
allow the user to exit a program improperly. Three states of
Control-C processing may be specified, using function 82H:

(DE value) (Action)

Ignore control-C. -1 (OFFFFH)
Address
o

Go to user exit on control-C.
Normal system action (abort).

Disabling control-C will cause it to be totally ignored. An
address will become a routine which is jumped to on a control-C.
The user must supply the return to the program through a jump
instruction.

User-defined abort addresses are reset upon returning to OPI or
when chaining; HOWEVER, when disabled, it is not re-enabled
until done so by a user program. Disabling AC also keeps Batch
from being aborted by (CR) return. AC is enabled only after
hitting systm reset or redefining the appropriate bits as shown
above.

Printer Spooling

Printer spooling is a system feature to allow printing
other functions are continuing. M/OS-80 then prints from
specified file until the contents are all printed.

while
the

Starting a spool consists of taking a disk file to be
opening it like any other input file, calling function
passing the opening file control block. (Details on
are in section 3.8.)

printed,
85H, and

disk files

(DE) Contains:

FCB address
o
1

4/23/81 - Page 92

Action:

Start printing file described
stop any prior spool being printed
Get status of spool

A= 0, not active; -1, active

3.2.2 - Programming: Character Devices

Clock Functions

The system allows a clock feature, providing the clock hardware
is available. The date function may be used regardless of
hardware provided the GTOD function is used to set the correct
date. The date function is Day, Month, Year (from 1900). The time
function is seconds, minutes and 24-hour hours. All of the
values are stored in BCD packed form, e.g., 12 minutes will show
as 12H, not OCH.

(Function)

8FH
90H
91H
92H

(Action)

Set date
Read date
Set time
Read time

Registers

B=Day, D=Mon, E=Year-1900
A=Day, B=Mon, C=Year-1900
B=Sec, D=Min, E=Hour (24-hr time)
A=Sec, B=Min, C=Hour

4/23/81 - Page 93

3.2.2 - Programming: Character Devices

Terminal Control and Cursor Setting

MIaS-SO allows for standard control of a display terminal by
including a terminal driver in the 1/0 system and having a
system call (SEH) to set the cursor or allow for the func­
tions. The functions listed may not be available on all
terminals. Included in the effort to allow standard use of
display terminals wherever possible, all MIaS-SO terminal
drivers respond to Form Feed (control-L) to clear the screen.
Since not all terminals do so, special conversions are in the
drivers. The current version of MIaS-SO is sysgened for the
Hazeltine 1500.

For those terminals that have cursor (arrow) key
feature is provided that, when enabled, converts the
to the standard cursor-motion control keys. To enable
pad M/O$-80 requires a program to call function
option (0,13) on entry, and option (0,14) on
cursor pad will remain enabled until disabled.

Set CRT cursor: D-column (1 •• SO) , E-row (1 •• 24)

pads, a
key pad

the cursor
SEH, with

exi-c. The

Special functions:
if E=O then D denotes special function:

(For switch functions, on-odd, off-even)

O-Clear
1-Home
2-Backspace
3-Right
4-Up
5-Down
6-Clr eol
7-Clr eos
S-Highlight
9-Low light

10-Normal lite
11-Keyboard on
12-Keyboard off
13-Cursor pad on
14-Cursor pad off
15-Protect on
16-Protect off
17-Blink on
1S-Blink off
19-Line send

Cursor pad translates:

Left-"'A
or "'H

Up-"'W

Down-"'Z
or "'J

20-Page send
21-Aux send
22-Del char
23-Insert char
24-Del line
25-Insert line

Right-"'D

This feature means that a program expecting a LEFT cursor
function should have turned on the cursor pad and be looking for
a control-A; similarly, up would be control-W. The alternate keys
for left and down are respectively back-space and line feed.

4/23/S1 - Page 94

3.2.2 - Programming: Character Devices

Math Functions (Multiply/ Divide)

16-bit unsigned multiply and divide (not 2's complement)
functions are provided for programmer convenience.

(Function)

89H

8AH

Action

DE := DE*HL

HL := HL/DE
DE := HL mod DE (remainder)

Device Lockup

All abort (AC) and printer (Ap, AT, AW) functions are external
to the actual device driver routines so that if a device is not
ready, the system will lock up; ego pressing (Ap) with
printer off will stop everything until the printer is readied.

If the device in question is set up with a ready status
function, then the toggle can be reversed using another control-P
(Ap) or the sequence control-S, control-C (ASAC) can be used to
exit the program and return back to OPI.

The sequence Control-S, Control-E (ASAE) can be used to skip the
current input/ output operation as if the device returned or
accepted the character.

If the device has no ready status function, then the system
will just hang until the device finishes its operation. For
example, in this case AS will have no effect if the paper tape
reader is out of tape and the driver does not do a time-out.

4/23/81 - Page 95

3.2.2 - Programming: Character Devices

IOBYTE

In order to add additional character-devices to the system, an
"IOBYTE" patterned after INTEL'stm is provided, but not normally
implemented in the I/O system. It is normally in location 3,
but should be accessed through the provided system calls. A
single byte is used to specify which physical device is to
connect to which logical character device:

(NOTE:
M/OS-80
eight.)

BIT I 7 6 I 5 I 4 3 I 2 I 1 I a I
(---=--) () (---:---) (---.---)

I -I 1 I
PRINTER PUNCH READER CONSOLE

The INTELtm form only provides four consoles, but since
is oriented toward an eight-user system, it provides

INTEL is a trademark of INTEL Corporation.

4/23/81 - Page 96

3.2.2 - Programming: Character Devices

M/OS-BO Character 1/0 Implementations

The current release of M/OS-BO provides the user with a single
CRT terminal which has the control codes for the Hazeltine 1500
installed. Users should experience no difficulty when using other
terminals as long as the system calls which control system func­
tions are avoided. The system console is connected to an MDX­
EPROM/UART asyncronous serial port or through the SDB-BO UART
serial port. Console connections are the same as those for FLP­
BODOS.

The system printer is connected through the MOX-PIO or through
the SDB-BO parallel port. The standard Centronics interface is
supported.

M/OS-BO has provisions for both a reader and a punch device;
however, there are no firmware or software connections to these
in the present release. There is also no current support for a
hardware clock, although calls to M/OS-BO will support the time­
of-day and date functions. Time and date are set by using the
GTOD function and remain constant until reset.

Virtually all system functions in M/OS-BO will not over-run any
character 1/0 device running at 19.2 K Baud. If over-run problems
are encountered with a particular terminal, it is recommended
that the X-ON/X-OFF protocol be used. M/OS-BO recognizes this
start-stop system and will effectively stop all 1/0 until the
terminal has cleared the system for additional data. Operations
running in DDT may over-run a terminal at 19.2 to 4800 baud
during the memory display. DDT does not support X-ON/X-OFF.
Remember that X-OFF is the character Control-S (AS) and that the
operating system treats the automatic AS as if it came from the
keyboard.

Note that all MOSTEK UART devices send ASCII data in eight-bit
form and ignore parity. Since some software routines set parity
as a software flag, these non-standard characters could pass
through to the UART and be transmitted as valid eight-bit values.
Make sure that the terminal that is used is set to IGNORE parity
also to avoid problems. The ADDS series of CRTs display charac­
ters with incorrect parity as an asterisk (*).

4/23/81 - Page 97

3.2.3 - Programming: Disk Files

M/OS-BO's power is derived from its management of the system's
disk resources. The disk is divided into regions called "FILES".
The user supplies a filename to the system which, in turn, builds
a file control block (FCB) that the user then refers to whenever
the file needs to be accessed.

FILE STRUCTURE

A file consists of a sequence of 12B-byte blocks, uniquely
described by a filename. The disk is managed in clusters of 1024
(1K) or more bytes each. As a file is written, the system
allocates clusters for the file's data and stores pointers to the
clusters being used in the file's directory entry on disk. When
a file is read or written sequentially, the system automatically
handles all functions related to the internal structure of the
directory.

In a standard floppy directory, each file has one directory entry
for each 16K bytes or 128 blocks. Each directory entry is called
an "extent". For dataset creation, deletion, renaming or
sequential access, the extents are rtreated as a cohesive whole
but for random access each extent acts as an independent file.
For random access, the proper file extent must be specified by
OPENs and CLOSEs so the appropriate directory entry is accessed.
If the file structure is unlike that of M/OS-80, block random
functions may be used (as when reading or writing to FLP-80DOS
diskettes).

FILE CONTENTS

The data in a file may be ASCII coded or eight-bit binary. A
hard end-of-file exists in the last block of a file. If the
file is ASCII text, the file does not have to be an even number
of blocks. To handle uneven blocks, a system convention of
ASCII character (SUB) (Control-Z (1AH» is used to denote the
logical end of file. If the file is exactly an even number of
blocks, then a hard end-of-file will occur and no 1A bytes are
inserted into trailing blocks.

4/23/81 - Page 98

3.2.3 - Programming: Disk Files

FILE ACCESS

Steps:

1) Determine Filename
2) Setup File Control Block (FCB) for File
3) Open an Old File

or
Create a new file

4) Read andlor Write From the File
5) Close the File.

To access a file in M/OS-SO a system File Control Block must be
created. The File Control Block (FCB), connects the logical
description with the hardware or physical description. The FCB
describes the name and disk drive to be used for the file. The
CREATE (call 22) function is used to create the FCB for a new
file.

The next step in the use of a M/OS-SO file is to OPEN (call 15)
the file specified by the FCB just created. In the process of
opening a file, the system fills in the FCB with an almost iden­
tical disk file directory entry for that file. In addition, the
directory entry clusters are allocated for the file and other
information pertaining to the size of the file.

Once a file has been opened, various calls can be used to write
to various areas of the file. Most 1/0 functions to and from the
disk require the use of an FCB to direct the file access process
and to restrict that access to areas pertaining to that one file.

FILENAMES

A "FILENAME" specifies:
1) a disk unit,
2) a file name of 1 to S characters

and 3) a type of 0 to 3 characters.

Any alphanumeric characters may be used except: star (*), ques­
tion mark (7), slash (I), period (.), comma (,), colon (:), or
space. All system functions convert lower-case characters to
upper case, but the system allows any characters once the file
control block has been created.

4/23/S1 - Page 99

3.2.3 - Programming: Disk Files

Building ~ File Control Block

The user can specify a file in a command line, in a program by a
character string and convert it to an FCB, or directly format the
name as a File Control Block (FCB). For ease of programming, the
first two file names given in a command line are pre-formatted
into standard user FCB's by the console processor (at 5CH & 6CH).

A system call (function 86H) is provided to build an FCB from a
name-string terminated by a slash (/), equal sign (=), comma (,)
or any non-printing character. Lower-case letters are translated
to upper case and a "*" is replaced by "7"s to fill out the
name for general file searches.

The final result is a FCB initialized as below:

a
1 •• 8
9 •• 11
12 •• 14
32

disk specifier (a-current, 1-A, 2-B •••)
filename (left justified)
filetype (left justified)
zeroed
zeroed

File Control Block Layout

Sequential FCB: Length 33 bytes
Random FCB: Length 36 bytes

FCBDK Disk descriptor
FCBFN File name
FCBFT File type
FCBEX File extent

a
1 •• 8
9 •• 11
12 •• 13

Reserved 14

(a-current, 1-A,2-B,3-C,4-D)
(left justified)
(left justified)
(Initially a incremented by
for each 16 Kbytes of file)

1

FCBRC Record count 15 (Total number of 128-byte
blocks)

FCBMP Cluster Allocation 16 •• 31
Map

up to 16 Allocated
(-1,1 •• 254)

Clusters

------ the preceding 32 bytes are saved in directory-----

FCBNR Next record

FCBRR Random record

4/23/81 - Page 100

32 (Next record to read or write)
(0 •• 127).

33 •• 35 (3 byte-record pointer)

3.2.3 - Programming: Disk Files

FCB USE --
All M/OS-80 file calls denote the file by passing the FCB address
(in DE) to M/OS-80.

DISK BUFFER

All disk operations are handled by using a common 128-byte disk
buffer which is set initially at 80H, but may be moved using
function call 26. The directory search functions (17/18) use the
disk buffer as do all readlwrite operations.

DISK SELECTION

The "CURRENT" disk function allows a program physical device
independence. Whenever a file is OPENed or CREATEd, the first
byte of the FCB indicates either a specific disk (A=1, B=2 •••)
or the current disk (0).

The "A" disk is the initial state of the M/OS-80 file manager and
results after a M/OS-80 reset (call 13H). Other drives may be
selected (call 14H), deselected (call 12H) or ejected (call 8CH).
Since SA800 disk drives do not have the eject feature, M/OS-80
gives an operator message and waits for appropriate operator
action.

The current status of the disk system may be queried. The
current disk is returned by M/OS-80 call 25. The disks that
are logged-in is returned by M/OS-80 call 24, with one bit set
for each active drive. Least significant bit is drive "A".

If a disk is labeled, the current disk label may be read using
M/OS-80 call 95H. Register DE is the address of an FCB which will
be filled in with the label of the disk specified by the disk
byte of the FCB. This label name was the most-recently-filled-in
name. The disk should be tested to see if it is logged in to
ensure proper return of label name.

OPENING AND CREATING FILES

Before any processing can be done on a file, and after the FCB
has been created, it is necessary to OPEN or CREATE the file. If
a file exists previously, then it may be opened; otherWise, it
must be created. If an old file exists, but its contents are to
be totally replaced with new contents, it is effectively a new
file. For this new file situation, it is advisable to delete any
prior file, and then create the file as if it never existed.

Another method used by several M/OS-80 utilities is to delete any
file with the same name but with a .BAK extension, rename any

4/23/81 - Page 101

3.2.3 - Programming: Disk Files

file with the same name and extension to name.BAK and create a
new file. This naming process provides a level of backup that
will add additional system security.

DATA TRANSFERS

Each time the file is accessed, the system will read from or
write to the next record in the file, switching to the next
extent as required. If the file has been modified, then the
previous extent will be closed, and the next one will be created
if it does not exist. During normal sequential processing, file
extents are transparent to the user.

Data Transfer Function Calls are:

(function)
20
21

98H
99H

33
34
35
36

(action)
Read sequentially
Write sequentially

Read without advance
Write without advance

Random read.
Random write.
Determine file size.
Determine random record.

• Require random FCB.

The simple read/write sequential functions are used for most
processing. The disk buffer is set to point to the data buffer in
memory, and the function is called. The read/write without­
advance provide a simple means for updating data files by not
changing the next-record value, thus allowing reading and
re-writing data in a random fashion. Random I/O of this type
requires the program to do its own extent processing (see below).

Random access to files is accomplished by providing a random FCB,
where the last 3 bytes of the FCB are a 24-bit block number
(see FCB block layout: bytes 33-35) which indexes into the file.
For most purposes, only the first 2 bytes need be main­
tained, as that covers 65,536 records, or eight megabytes, the
current system maximum. This random-record pointer may either be
totally maintained by the program and incremented for simple
sequential processing, or sequential and random processing
may be interleaved. Interleaved sequential/random processing
can be done by using the Determine Random Record function (36)
to convert the sequential FCB's extent and next-record number
into a proper random-record pointer.

Appending to a file may be done by using Determine File
function (35) to set the random-record pointer and FCB to
to the next record after end-of-file.

4/23/81 - Page 102

Size
point

3.2.3 - Programming: Disk Files

EXTENT PROCESSING

For program-directed extent processing, the program must handle
switching extents by closing the current extent, changing
the extent number, opening or creating a next extent and
adjusting the next record number.

During sequential processing, M/OS-BO OPENs the next extent be­
fore a read or after a write. The effect is that the data buffer
may not still contain the data after a write, since it may have
been used for a directory access when the next extent was
created or OPENed. This is only a problem for direct/random
access or if a write buffer is used after an extent change.

Sequence of DOS file Operations

M/OS-BO system call numbers are shown by <HH> in hex

(Name string)
1
1
V
[FCB format]
1 <B6>
1

------> [FCB]
1
1

(Command line)
1
1
V
[Operator Interface]
1

1

<--------------

--«<-----\
1 1 1 1 1
V 1 V V V
[Find File] 1 [Delete File]---->[Create File] [Open File]
1
1<17>
1
V <---­
[Find] 1
[Next] 1
[File] 1
1<1B> A

V 1

-------1

1
1

V

<19>

[Rename File]
<23>

<22> \
\

<15> I 1
I 1

v v 1

---->0<-----------1
I \ [Switch]

I \ [Extent]
I \ A

[Write] [Read]
[Block] [Block]

1<21> 1<20>
1 I
V <----1 1

[Close File]-----------I
<16>

4/231B1 - Page 103

3.2.3 - Programming: Disk Files

DIRECTORY PROCESSING

The directory may be directly accessed in two ways:
(1) SEARCH/SEARCH NEXT functions
(2) As the file "SYS.DIR"

Searching the directory consists of building an FCB containing a
name and extent value (bytes 0 •• 12). The extent value may be a
question mark (?) if any extent is desired. First, the SEARCH
call is used (M/Os-80 call 17) to initialize the search se­
quence, and to return the first matching file. Use the SEARCH
NEXT call (M/OS-80 call 18) to return subsequent matching files.
Each subsequent call will return either a found file (A regis­
ter = 0 •• 3) or a file-not-found indication (A=255,-1).

The file found is in the directory block contained in the data
buffer. Each directory block can hold 4 entries, so the specific
file entry is both pointed to by "HL" within the buffer and
indicated by the file number in "A".

While a standard directory has 64 entries, a larger directory
may have been specified, so if a SEARCH/SEARCH NEXT scheme is
used, provisions must be made for more than 64 entries. Up to 255
entries may occur (0 •• 254).

DIRECTORY AS ! FILE

Another way of handling the directory is to OPEN the file
"SYS.DIR". While the directory is not actually a file, using
SYS.DIR as an FCB name will cause the system to create an FCB
that looks like the directory. SYS.DIR is a write-protected
"file", and cannot be renamed or deleted.

FILE NUMBERS

Each time the directory is accessed by a program, either to
OPEN, CLOSE, or CREATE a file, or on a file search, the system
returns to the user the file number of the file in the disk
directory. This number is the number of the file from the start
of the directory block, and is 0 •• 3.

To determine where the entry is in a buffer containing the
directory block, use:

entry address:=(buffer address+16*(file number mod 4»
If buffer is 80H, and "A" has the file number 1 then:

80H+16*(1 mod 4) -> 80H+16*1 = 90H

Therefore OgOH is the address of directory entry one in the
buffer.

4/23/81 - Page 104

3.2.3 - Programming: Disk Files

PROGRAM CHAINING

This function allows one program to call another program (M/OS-80
call 88H). OPI uses PROGRAM CHAIN to start a user program.

It is the responsibility of both programs to cooperate on
passing data. The user FCBs and buffer are ideal places for
storing inter-program common data. The data buffer and abort exit
are reset on chaining, just like normal program startup. The
default system buffer location is 080H.

The user program abort address is reset when chaining unless
disabled, in which case it will remain disabled after the chained
program receives control. When chaining, a return code may be
passed to the next program. This return code is defined by M/OS-
80 call 93H, and will be 0 if not set by the previous program.
The return code is in the "A" register upon entry to the chained
program.

FILE ATTRIBUTES

Files may have attributes set to protect the file from normal
access. Attribute functions include:

3 active attributes:
W-write protect,
P-permament,
R-read protect

2 informational attributes:
U-user
S-system

M/OS-80 call 94H is used to set file attributes:

DE=fcb with general filename to match
B=new attributes

bit order is: [PWRU/SOO+]

Bit 7 = P - Permanent
Bit 6 = W - Write-protect
Bit 5 = R - Read-protect
Bit 4 = U - User number (not implemented)
Bit 3 = S - System file
Bit 2 = Reserved
Bit 1 = Reserved - Big disk
Bit 0 = + - Add flag.

if "+" is set then new attributes are OR'd with
old attributes.

4/23181 - Page 105

3.2.3 - Programming: Disk Files

Files that have W or R attributes set use the high 2 bits of
the first byte of the FCB to save that information (bit 7=W, bit
6=R). These bits are set by the file OPEN and are tested
by the READ/WRITE functions. The lower bits of the first byte
are not changed because they specify the disk.

FILE/DIRECTORY MANAGEMENT (DELETE and RENAME)

Files may be deleted (M/OS-SO call 19) or renamed (M/OS-SO call
23). No permanent files will be affected. Either function
allows a general filename, although no rename will occur if the
new name matches any current filename on the disk (as of the
beginning of the RENAME).

The RENAME FCB is a special form: the first 16 bytes are the
old filename and the second 16 bytes are the new name.

These functions return (in the "A" register) the file number of
the last file renamed or deleted, or a -1 if no files were
affected.

DIRECT DISK FUNCTIONS

For special purposes, it is desirable to directly access the
disk without M/OS-SO file management. There are three functions
for this purpose:

Function Action

SBH
S3H
S4H

Home disk
Read block
Write block

Registers

B=disk (0-current,1-A •••)
B=disk
ADE=block

The disk is specified as the current disk (B=O) or as a specifi~
disk (B=1 ••• S). When reading or writing, straight logical blocks
may be specified or standard interleaving may be used, by setting
the most significant bit of the B-register. The logical block is
specified as starting at 0, and placed in the DE register pair.
A 24-bit number is allowed; however, for floppy disks, the "A"
register may be zeroed.

4/23/S1 - Page 106

3.2.3 - Programming: Disk Files

CHANGING THE BOTTOM OF THE SYSTEM

The user is allowed to load special function modules and make
them part of the system by declaring a new system bottom with
function 97H. By relocating the bottom of the system, M/OS-SO
allows the system to tell each program where the top of its
memory is, and will protect the special module until it is
unloaded.

The new bottom is set by passing the high byte of the address in
register "E". If the address is higher then the original system
bottom (at boot time), then the original value will be reset.

(E) has high byte of new bottom
e.g.,

To set bottom to 5100H then pass 51H
To reset bottom, then pass OFFH

The first nine bytes after system bottom ie: 5100H (5100-510SH)
are reserved for M/OS-SO. The user must not use this area.

4/23/S1 - Page 107

3.3.1 - Special Operations: User Control Block

M/OS-SO handles all disk & console requests by retaining some
information in a User Control Block (UCB) and determining the
remaining information at access time. A system call (M/OS-SO
call S1H) returns the address of the UCB pointer. If the
pointer is re-directed to a different UCB when re-scheduling
is required, M/OS-SO will resume processing another user.
However, the user program must specify to the system that M/OS-SO
is to retain the userts stack inside M/OS-SO and not switch to
its own stack, as is normally done. This is done by setting
the UCB.URSKQ:= OFFH. The stack should allow at least so bytes
more for M/OS-SOts use. A further switch is provided to tell the
user that the disk driver should not be interrupted and
hence to inhibit re-scheduling.

Using M/OS-SO call S1H returns the address of the User register
(URREG), so after the call, BC contains as below.

BC+O
+2
+3
+5
+7
+9

UCB (2)
SCHSW (1)
SDVT (2)
SDT (2)
SYSBOT (2)
OPILINK(2)

User Control Block Pointer
Reschedule Switch
System Device Table
System Disk Table
Bottom of System Area
OPI Linkage Table

(ED. The current version of M/OS-SO does not support multiple
users.)

4/23/S1 - Page 10S

3.3.2 - Special Operations: CDOS and CPIM Compatibility

M/OS-SO is an independent product of MOSTEK. However, because of
the availability of programs for CPIM, great care has been
taken to assure that all normal programs for CPIM Version 1.4
will run on M/OS-SO. In addition, many programs written for CP/M
version 2.2 will also work. Programs written for Cromemco's CDOS
will also work on M/OS-SO due to the structure shared by the two
systems.

MOSTEK Corporation does not claim, state or imply any approval of
MOSTEK or M/OS-SO by Digital Research or Cromemco, and does not
make any claims or warranties as to the suitability of any
product produced for CP/M or CDOS to be run with M/OS-SO.

M/OS-SO and CDOS have significant extensions beyond CPIM, all
of which are distinguished from CPIM BDOS calls by the call
function beginning greater than or equal to 12S (SO Hex).

WARNING:

No program that "knows" about internal features of CPIM
reasonably be expected to run under M/OS-SO. This means
thing beyond the normal M/OS-SO call at 5 and the branch
pointed to by O.

can
any­

table

MOSTEK has performed acceptance testing on a wide variety of
application programs including several compilers, interpreters,
word processors, editors and data base management systems. For a
updated list of those programs, contact your local MOSTEK Field
Applications Engineer.

CPIM is a trademark of Digital Research, Pacific Grove, Ca.
CDOS is a trademark of Cromemco, Mountain View, Ca.

4/23/S1 - Page 109

3.3.3 - Special Operations: Direct BIOS Operations

For those programmers who cannot use the normal calls, as pro­
vided by the operating system through location 5, the following
information is provided. Many CP/M programs use this method,
although somewhat crude, to communicate with the operating
system.

The I/O system starts with an internal branch table to provide
CP/M compatibility (see section 3.10). The table is reached via
the jump at 0: the address at 1 •• 2 points to the start of the
table.

JP
(1) -> JP

JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP

RBOOT
WBOOT
CSTAT
CIN
COUT
LOUT
POUT
RIN
HOME
SELDSK
SETTRK
SET SEC
SETBUFF
READ
WRITE
LRDY
SECTRN

4/23/81 - Page 110

USER ABORT
CONSOLE STATUS
CONSOLE INPUT
CONSOLE OUTPUT
LIST OUTPUT
PUNCH OUTPUT
READER INPUT
HOME CURRENT DISK

(RETURN IN A)
(RETURN IN A)
(FROM C)
(FROM C)
(FROM C)
(FROM A)

SELECT DISK (FROM C)
SET TRACK (FROM BC)
SET SECTOR (FROM BC)
SET I/O BUFF ADDRESS (FROM BC)
READ DISK (RETURN STAT IN A)
WRITE DISK (RETURN STAT IN A)
LIST STATUS (RETURN STAT IN A)

3.4.1 - M/OS-80 System Calls - Summary

Code
Hex Dec

OH 0
1H 1

2H 2
3H 3

4H 4
5H 5

6H 6

7H 7
8H 8

9H 9
OAH 10

OBH 11
OCH 12

ODH 13
OEH 14

OFH 15

10H 16

11H 17

12H 18

13H 19

14H 20

15H 21

16H 22

17H 23

FUNCTION CODE SUMMARY - BY NUMBER
Particulars

Function (in -> out)

System Reset
Read Console (with echo)-> A=char

Write Console E=char
Read Reader -> A=char

Write Punch E=char
Write List E=char

Unformatted Console I/O E=out chari E=-1 -> A=input
character.

Read IIO byte -> A=I/O byte
Set I/O byte E=I/O byte

Print Console Buffer DE=Buff adr
Read Console Buffer DE=buff adr

Check Console Status -> A=255, if ready
Deselect Current Disk

Reset Disk System
Select Current Disk E=(A=O,B=1 ••)

Open File DE=Address of FCB -> A=-1
or File number

Close File DE=Address of FCB -> A=-1
or File number

Search Dir. for File DE=Address of FCB -> A=-1
or File number

Search Dir. for Next File
DE=Address of FCB -> A=-1
or File number

Delete File DE=Address of FCB -> A=-1
or File number

Read Next Record DE=Address of FCB -> A=O-
ok, or 1,2

Write Next Record DE=Address of FCB -> A=O-
ok, or 1,2,-1

Create File DE=Address of FCB -> A=-1
or File number

Rename File DE=FCB(old,new) -> A=-1 or
File num

4/23/81 - Page 111

3.4.1 - M/OS-80 System Calls - Summary

FUNCTION CODE SUMMARY - BY NUMBER (Cont.)
Code Particulars

Hex Dec Function (in -> out)

18H 24 Login Vector -> A=bit vector (disk
A=lsb)

19H 25 Current Disk -> A=disk number
1AH 26 Set Buffer Address DE=New buffer address

1BH 27 Allocation Vector -> BC=Address of map,
DE=clusters,
A=sectors/cluster

lCH 28 Write Protect Disk
1DH 29 Get W/P Vector -> A = W/P vector

1EH 30 Set File Name Attrib DE=FCB wI atrib set
21H 33 Random Read DE=random FCB -> A=O-ok, or

1,3,4,6

22H 34 Random Write DE=random FCB -> A=O-ok, or
1,3,4,5,6

23H 35 Determine File Size DE=random FCB -> A=-1 or
File num

24H 36 Determine Random Record DE=random FCB

80H 128
81H 129

82H 130

83H 131
84H 132

85H 133
86H 134

88H 136

89H 137
8AH 138

8BH 139
8CH 140

8DH 141

Read Console (no echo)
Get User Register

Set User Ctrl-C

Read Logical Block
Write Logical Block

Spool Control
Format Name to FCB

Chain to Program

Multiply
Divide

Home Driver
Eject Diskette

Get Version,Ser.no.

4/23/81 - Page 112

-> A=char
BC=AURREG,SW,SDVT,SDT,SYSBOT

DE=abort,0-normal,-1=dis­
able

DE=blk, b=disk (msb if IL)
DE=blk, b=disk (msb if IL)

DE=Spooler FCB
DE=FCB, HL=string

DE=FCB

DE*HL -> DE
(HL/DE)->DE (HL mod DE)->DE

B=disk
E=disk

-> B=major rev.1 C=minor
rev. H=Sub-Maj./L=Sub-Minor
DE=Serial Number

3.4.1 - M/OS-BO System Calls - Summary

Code
Hex Dec

BEH 142
BFH 143

90H 144
91H 145

92H 146
93H 147

94H 14B
95H 149

96H 150
97H 151

FUNCTION CODE SUMMARY - BY NUMBER (Cont.)

Function

Set CRT Function
Set Date

Read Date
Set Time

Particulars
(in -> out)

D=col ,E=row or D=spec,E=O
B=day, D=mon, E=yr-1900

-> A=day, B=mon, C=yr-1900
B=sec, D=min, E=hr (24)

Read Time -> A=sec, B=min, C=hr (24)
Set Program Return Code A =code

Set File Attributes
Read Disk Label

Turn Motors Off
Set System Bottom

DE=fcb, B=atrib(PWRU/Sxx*)
DE=fcb

E=Hi byte of address

9BH 152 Read WIO Advance DE="FCB
or 1,2

-> A=O-ok,

99H 153 Write W/O Advance

9AH 154 Test Block Allocated

9qH 156 Directory Listing
9DH 157 Set Console Options

9FH 159 Get Master Disk

AOH 160 Mount Disk
A1H 161 Dis-mount Disk

DE="FCB
or 1,2,-1

DE=FCB to match
E=options byte

-> A=master disk

E=disk
E=disk

-> A=O-ok,

4/23/B1 - Page 113

3.4.1 - M/OS-80 System Calls - Summary

SYSTEM CONTROL FUNCTIONS BY CATEGORY:

GENERAL SYSTEM FUNCTIONS

HEX DECIMAL FUNCTION

0 0 Return to System

81H 129 Get user register
89H 137 Multiply
8AH 138 Divide
8DH 141 Get Version number
97H 151 Set System Bottom

CONSOLE 1/0 FUNCTIONS:

1 1 Get Console (and echo)
6 6 Getl Put Console (rawl no echo)
OAH 10 Input Buffered Line from Console
OBH 11 Test Console Character Ready
80H 128 Get Console (no echo)
2 2 Put Console
9 9 Print Buffer to Console
82H 130 Set User Control-C Handling
8EH 142 Set Cursor or Terminal Function
9DH 157 Set Console Options
3 3 Get Reader
4 4 Put Punch
5 5 Put List
7 7 Get 110 byte
8 8 Set 1/0 byte

DATE AND TIME: -------
8FH 143 Set Date
90H 144 Read Date
91H 145 Set Time
92H 146 Read Time

DISK FUNCTIONS:

1AH 26 Set Disk Buffer
88H 136 Chain to Program
86H 134 Format FCB from String
93H 147 Set Program Return Code

4/23/81 - Page 114

3.4.1 - M/OS-BO System Calls - Summary

DISK SELECT:

OCH 12 Deselect Current Disk
ODH 13 Reset DOS Select A Drive
OEH 14 Select Disk
1CH 28 Write Protect Disk
1DH 29 Get Write/Protect Vector
8CH 140 Eject Disk
96H 150 Turn Motors Off
AOH 160 Mount Disk
A1H 161 Dis-mount Disk

DIRECTORY MAINTENANCE:

11H 17 Search Directory
12H 18 Search Next Entry
17H 23 Rename Files
1EH 30 Set File Name Attributes
94H 148 Set File Attributes
9CH 156 Directory Listing

DISK STATUS FUNCTIONS:

1BH 24 Disk Login Vector
19H 25 Current Disk
1BH 27 Disk Cluster Allocation Map
95H 149 Read Disk Label
9FH 159 Get Master Disk

FILES:

OFH 15 Open File
10H 16 Close File
13H 19 Delete Files
16H 22 Create File

FILE DATA FUNCTIONS: ----
14H 20 Read File Block
15H 21 Write File Block
21H 33 Random Read
22H 34 Random Write
23H 35 Determine File Size
24H 36 Determine Random Record
98H 152 Read Without Advance
99H 153 Write Without Advance
9AH 154 Test Current Record Allocated

DIRECT DISK ACCESS:

BBH 139 Home Disk Drive
83H 131 Read Logical Block
84H 132 Write Logical Block

4/23/81 - Page 115

3.4.2 - M/OS-80 System Calls - Function Details

M/OS-80 SYSTEM FUNCTION CALLS

M/OS-80 System Calls are designed to permit the systems-level
programmer to directly interface with the various primitive func­
tions of the operating system. These calls permit direct inter­
action with the various hardware devices attached to the system.
To use them, a thorough understanding of the operating system and
the hardware devices is usually necessary, as well as a fairly
high level of understanding of assembly language.

All calls require that the system function code be loaded into
system register C. The application program requesting the op­
erating system service then makes a CALL to location 5. The
operating system will then perform the function(s) as requested
and return (if necessary) to the application. The application
will not receive control again until the operating system has
completed the requested function.

Additional parameters passed to and from the operating system are
passed in the other registers. Details of that protocol are shown
below:

Title:

Function Details

Format

Function code in decimal, and hex. Function
Description.

Entry parameters: Registers passed to function.

Return Parameters: Registers or information passed from function.

Example: Example of function use.

For purposes of this manual, the Z80 register set is noted by
enclosing the register or register pair in braces [] to indicate
that the register(s) specified contain the passed information.
Registers enclosed in parenthesis indicate that the registers
indicated contain the address of the passed information.

For example, [HL] would indicate the register pair HL contains
the parameter while (HL) would indicate that the register pair HL
contains the address of the parameter.

4/23/81 - Page 116

3.4.2 - M/OS-80 System Calls - Function Details

Q ~ System Return

Returns control to the system.

Entry parameters: None.

Return Parameters: None. (Does not return).

Example: LD C,O
CALL 5

--OR ... -

JP a ;Return to OS.

1 - Get Console Character (and echo)

Entry parameters:

Return Parameters:

Example:

2 - Put Console

Gets a character at console keyboard. If no
character is ready, function waits until char­
acter is available.

None.

Register [AJ is returned with character
(ASCII) •

LD C,1
CALL 5

[A] = Character

Sends a character to the console output de­
vice, expands tabs and controls printer
daisy-chain.

Entry Parameters: [E] has character to output.

Return Parameters: None.

Example: LD C,2
LD E,' A'
CALL 5

output 'A'

4/23/81 - Page 117

3.4.2 - M/OS-80 System Calls- Function Details

1 .:. Get Reader
Gets character from "reader"
present). If none ready,xthen
until character ready.

device (if
system waits

Return Parameters: If Zero flag clear,
input at end of file:

then [A] has character
Z=set, A=1AH (control-

Example:

4 - Put Punch

Entry parameters:

Example:

Z).

LD
CALL
CP
JP

C,3
5
1AH
Z,EOF

If the reader driver supports binary then:

LD C,3
CALL 5
JP Z,EOF

Sends a character to punch device, with no
processing.

Register [E] has character to output.

LD c,4
LD E,'A'
CALL 5

Sends a character to list device, with no
processing.

Entry Parameters: Register [E] has character to output.

Example:

4/23/81 - Page 118

LD
LD
CALL

C,5
E, 'A'
5

3.4.2 - M/OS-SO System Calls - Function Details

~ ~ Put/Get Console Unconditionally.

Format (1): Gets a character from the console
device without echo.

Format (2): Send character to console without
processing.

Format (1) : (Input)
Entry Parameters: [E] has OFFH (255).
Return Parameters: [A] has character input.

Format (2): (Output)
Entry Parameters: [E] has character to output not equal to OFFh

Example (Format 1):(INPUT)
LD c,6
LD E,OFFh
CALL 5

A = character input

Example (Format 2):(OUTPUT)
LD c,6
LD E, 'B'
CALL 5 output 'B' to console

Returns the current value of the I/O Byte
in [A].

Return Parameters: [A] has I/O Byte.

Example: LD C,7
CALL 5

A = I/O Byte

Sets a new value for the I/O Byte.

Entry Parameters: [E] has I/O Byte value.

Example: (To
LD
LD
CALL

select
C,S
E,3

5

console 3)

4/23/S1 - Page 119

3.4.2 - M/OS-80 System Calls - Function Details

i ~ ~ Buffer to Console.

Sends a character string to the
The string is terminated by a '$'
Standard console processing is
expansion and printer daisy chain.

console.
character.
done: tab

Entry Parameters: (DE) has address of string ended by '$'.

Example: LD C,9
LD DE, STRING
CALL 5

•••

STRING: DEFM 'THIS IS A STR $'

4/23/81 - Page 120

3.4.2 - M/Os-80 System Calls - Function Details

OAH/10 ~ Input Buffered Line from Console.

Reads a line of text from the console,
allowing editing until termination by RETURN
or LINE FEED. The call expects a buffer that
starts with 2 length bytes, the first holding
the maximum length; the second holding the
returned true length. The buffer can have
up to 255 characters. The character position
after the last character in the string is
zeroed. Input terminates either on a term­
inator or when buffer is filled. If the buf­
fer is filled, then no final null is placed.

The terminator character is echoed with a
RETURN, but no following LINE FEED is
sent. The terminator may be an ESCAPE,
and the RETURN echo may be suppressed.

See: Set Console Options (9DH).

buffer format:

I full len I returned len I x I x I x I •••••

Entry Parameters: (DE) has address of line buffer where format
is as above.

Example: LD C,10
LD DE,BUFF
CALL 5
• ,
LD C,2 add line feed
LD E,10 10 is ASCII line feed
CALL 5
LD A, (BUFF+1)

LD

BUFF:

. , get length of text entered
HL,BUFF+2

DEFB
DEFS

point to start of data

80,0
80

4/23/81 - Page 121

3.4.2 - M/OS-BO System Calls - Function Details

OBH/11 ~ Test Console Character Ready.

Tests console ready to see if any characters
are waiting. The waiting character may be a
control-S or control-P and hence not re­
turn character ready, yet cause the related
action to be affected.

Return Parameters: If no character ready then [A] has zero (0).

Example:

If character waiting then [A] has OFFH
(255).

LD
CALL
OR
JP

C,11
5
A
Z,NOTRDY ; not ready

; ready

OCH/12 ~ Deselect Current Disk. Return CP/M Version.

Deselect current disk and clear all related
disk-status and data buffers. Return CP/M
Version in register pair HL. Value returned in
HL is always 002FH in this version.

Entry parameters: None.

Return Parameters: [HL] has 002F for version number.

Example: LD C,12
CALL 5

ODH/13 ~ Reset DOS/Select! drive.

Reset all DOS disk functions. Returns disk
buffer to BOH. Clears all disk buffers. As­
sures that DOS is initialized for any new
disks to be loaded.

Entry parameters: None.

Return Parameters: None.

Example:

4/23/B1 - Page 122

LD C,13
CALL 5

3.4.2 - M/OS-80 System Calls - Funotion Details

OEH/14 - Select Current Disk.

Select current disk, which is used for disk
operations, when no specific disk is speci­
fied. No disk activity takes place until the
disk is actually accessed. If a disk higher
than those in the system is requested, then no
ohange in the current disk occurs.

Entry Parameters: [E] has disk number (O-A,1-B, •••)

Return Parameters: None.

Example:

OFH/15 = Open File.

LD E,1
LD C, 14
CALL 5

;Select Drive B

The file described by the File Control Block
(FCB) passed in DE is opened for access. The
file must already exist to be opened. The FCB
must be setup as described in section 3.8 A
file must be either opened or created be­
fore it may be accessed.

Entry Parameters: (DE) has address of FCB of existing file.

Return Parameters: If no file found then [AJ has OFFH (255); else
[AJ has directory block number of file found
(0 •• 3). There is one directory block number
(starting at 0) for every four directory
entries. The (DE) register pair points to the
directory entry in RAM memory.

4/23/81 - Page 123

3.4.2 - M/OS-80 System Calls - Function Details

10H/16 ~ Close File.

The file described by the File Control Block
(FCB) pointed to by the DE register pair is
closed and the disk directory updated. If the
file cannot be found, an error code is re­
turned. Files must be closed so that RAM FCB
information can be posted to the disk direc­
tory.

Entry Parameters: (DE) has address of FCB of existing opened
file.

Return Parameters: [AJ has -1 (255) if no file found or [AJ has
file number of file found (0 •• 3). See OPEN
(above) for explanation of file numbers.

11H/17 ~ Search Directory

The disk directory is searched for the first
occurrence of the file name specified in the
FCB addressed by the register pair DE.

The FCB passed can have match characters so
that the SEARCH/SEARCH NEXT call can return
successive files with similar names. The
match character "1" (3FH) can be in the disk
file attribute byte (FCB+O), the name
(+1 •• +8), the file type (+9 •• +11), or the
extent byte (+12). The name and type matching
is simple ASCII string matching. If disk byte
contains "1", then all ASCII characters
will match regardless of letter. This will
return a set of files with ambiguous names. If
the extent byte contains "1", then all ex­
tents will be returned.

NOTE: This call and the next call (Find Next Direc­
tory) will return directory entries whether
they have been erased or not. Files are marked
as being erased by replacing the attribute
byte (FCB+O) with an OE5H.

Entry Parameters: (DE) has FCB with search argument as described
above.

Return Parameters: [AJ has -1 (255) if no file found, or [AJ has
the file number of file the found (0 •• 3). See
OPEN for discussion of file numbers.

4/23/81 - Page 124

(HL) has address of file directory entry in
disk buffer.

3.4.2 - M/OS-80 System Calls - Function Details

12H/18 ~ Search Next Entry.

Search Next is used to f~nd the next directory
entry for the FCB name described in the Search
Directory call (11H) described above. Also see
NOTE above.

Entry parameters: None required. No system calls may come
between this call and previous call 11H or
12H.

Return Parameters: Same as 11H Search directory call except
starts at next entry after last search next.

13H/19 ~ Delete Files.

Deletes all files whose names match the FCB
pOinted to by the DE register pair. The FCB
may contain match characters as described in
Search Directory (11H) above.

Entry Parameters: (DE) has address of FCB of files to delete.

Return Parameters: [A] has file number of last file deleted, or
-1 (255) if no files found.

14H/20 ~ Read File Block.

Read the file block (128 bytes) indicated by
the FCB next-record byte into the current
disk buffer. After reading, advance the FCB to
point to the next record. At the start of
reading, if necessary, open a new extent. To
read sequentially, the next-record byte must
be initialized to zero before the requesting
read.

Entry Parameters: (DE) has address of FCB of an opened file.

Return Parameters: [A] has: O-Read completed.
1-End of file sensed.
2-Read attempted on unwritten clus­

ter (Random-access files only).

4/23/81 - Page 125

3.4.2 - M/OS-80 System Calls -Function Details

15H/21 - Write File Block.

Write the file block (128 bytes) indicated by
the FCB next-record byte. After writing,
advance the FCB to point to the next record
and, if necessary, create a new extent. To
write sequentially, the next-record byte must
be initialized to zero before the start of
writing.

Entry Parameters: (DE) has address of FCB of an open file.

Return Parameters: [A] has: a-Write completed.
1-Extent error (error on writing).
2-0ut of disk space.

-1-(255) Out of directory space on
creating new extent.

16H/22 - Create File. - --
The file described by the File Control Block
(FCB) passed in the register pair (DE) is
created and initialized for access. The file
cannot already exist, and the directory is
checked. The FCB must be setup as described in
section 3.8. A file must be either opened
or created before it may be accessed.

Entry Parameters: (DE) contains address of an FCB of non-exist­
ing file.

Return Parameters: [A] has -1 (255) if file exists, or if no
directory room or file number of file created.
See OPEN for discussion of file numbers.

4/23/81 - Page 126

3.4.2 - M/OS-80 System Calls - Function Details

17H/23 ~ Rename Files.

Renames all files whose names match the FeB
given. The FCB may contain match characters,
in which case search is done first to test
for possible duplicate name creation.

Entry Parameters: (DE) has address of FCB of files to rename.
The first FCB contains old name, and the FCB
contains the new name. (Requires two contig­
uous FCBs)

Return Parameters: [A] has file number of last file deleted, or
-1 (255) if no files found.

18H/24 ~ Disk Login Vector.

The -call returns a bit vector of disks cur­
rently active. Each bit indicates a logged-in
disk with least significant bit (LSB)
indicating disk A.

Entry parameters: None.

Return Parameters: [A] has bits for active drives, [HL] has ex­
tended drives.

[A] [HL]
DEBA MLKJ IHGF

19H/25 ~ Get Current Disk.

The call returns the number of current disk,
A:O, B:1, ••• etc.

Entry parameters: None.

Return Parameters: [A] has current disk.

4/23/81 - Page 127

3.4.2 - M/OS-80 System Calls - Function Details

1AH/26 ~ Set Disk Buffer.

Set the RAM memory address of the buffer to
be used for disk data operations and for
directory search calls. Internal directory
functions use special system buffers, not
this user buffer. The initial location of this
buffer is 080H

Entry Parameters: (DE) has address of disk buffer.

Return Parameters: None.

1BH/27 ~ Disk Cluster Allocation Map.

Returns the starting address of the disk al­
location map (bit map). Allocation maps are
for system program use. For big direc­
tories, the argument returned contains the
buffer pointer for the disk bit map. Bit maps
return size information about the disk format
that helps in displaying a disk directory.

Entry Parameters: None.

Return Parameters: (BC) returns address of RAM bit map (1 bit per
cluster). [DE] returns number of clusters. [A]
returns number of sectors per cluster. (HL)
also returns address of RAM bit map.

1CH/28 - Write-Protect Disk. - --
Sets the current disk to logical write-pro­
tected. Allows a program to totally inhibit
write access to a disk. Holds until the disk
is logged in again.

Entry Parameters: None.

Return Parameters: None.

4/23/81 - Page 128

3.4.2 - M/OS-80 System Calls - Function Details

1DH/29 - Get Write-Protect Vector.

Returns the write-protect bit-vector. The bit
order is the same as function 24. The vector
bits are set either by the system directory
mechanism when it finds the disk has been
changed without a proper login, or by a
program using function 28.

The vector format for disks are as follows:
L: /HGFE/DCBA/
H: /xONM/LKJI/

Return Parameters: [HL] has write-protect bits.

1EH/30 ~ Set File Attributes.

Allows an alternate file attribute function to
system function 94h. The high bits of the
first 2 bytes of the file type (FCB+9,+10)
are used to set/reset or the write-protect
attribute and system attributes of the files
whose name matches the FCB given.

Entry Parameters: (DE) has address of FCB with requested at­
tribute set.

Return Parameters: [A] returns file number of files found or -1
(255) if no files found. See OPEN for
discussion of file numbers.

4/23/81 - Page 129

3.4.2 - M/OS-80 System Calls - Function Details

21H/33 = Random Read

Provides a means for random file access
without any additional file processing. A
random FCB is required. (See section 3.2.3)
The random record pointer in the FCB
(FCB+33,+34,+35) is set to the record to be
read and this function is called. No change
is made to the record pOinter; however, next
record pointer and extent may be changed
as required to position within the file.

For sequential reading, the random record
pointer must be incremented by the user. To
mix random and sequential reading and
writing, function 36H should be used after
sequential accesses to reset the random
record pOinter for future random reads.

Entry Parameters: (DE) has address of opened random FCB set to
record to be read.

Return Parameters: [A] has:

4/23/81 - Page 130

0- Read OK.
1- Reading unwritten data.
3- Cannot close current extent.
4- Seek to unwritten extent.

3.4.2 - M/OS-80 System Calls - Function Details

22H/34 - Random Write.

Provides a means for random file access
without any additional file processing. A
random FCB is required. (See section 3.2.3)
The random record pointer in the FCB
(FCB+33,+34,+35) is set to the record to be
written and this function is called. No
change is made to the record pOinter; however,
the next record pointer and extent may be
changed as required to position within the
file.

For sequential writing, the random record
pOinter must be incremented by the user. To
mix random and sequential reading and
writing, function 36H should be used after
sequential accesses to reset the random
record pointer for future random reads.

Entry Parameters: (DE) has address of opened random FCB set to
record to be read.

Return Parameters: [A] returns: 0- Write OK.
3- Cannot close current extent.
4- Seek to unwritten extent.
5- Directory full.
6- Disk full.

4/23/81 - Page 131

3.4.2 - M/OS-80 System Calls - Function Details

23H/35 ~ Determine File Size.

Provides a means of appending to a file. A
random FCB is required. (See section 3.8)
The random record pointer in the FCB (FCB+33,
+34, +35) is set to the record past the
last record in the file. Writing may proceed
from this point by just writing normally.

For text files, the last previous record
should be read and writing started at the
logical end-of-file marker (control-Z).

Entry Parameters: (DE) has address of random FCB for an open
file.

Return Parameters: FCB random-record pointer set.

24H/36 ~ Determine Random Record.

Provides a means for mixing sequential and
random file access. The record pointer is set
based on the next record pointer and extent.
A random FCB is required. (See section 3.8.)

To mix random and sequential reading
writing, this function should be used
sequential accesses to reset the
record pointer for random accesses.

and
after

random

The function is also useful while reading or
writing a file sequentially to determine the
random record pointer for use in building an
index file.

Entry Parameters: (DE) has address of random FCB for an open
file.

Return Parameters: FCB random-record pointer set.

4/23/81 - Page 132

3.4.3 - M/OS-80 System Calls - Extended Function Details

80H/128-Get console (no echo)

Inputs character from the console, without
echoing it back to the CRT.

Entry parameters: None.

Return Parameters: [A] has character input.

Example: LD C,128
CALL 5

81H/129 ~ Get User Register

Returns a pointer to the system user reg­
ister. User registers are primarily used for
system programs.

(I of bytes)
(BC) -> URREG (2)

SCHSW (1)
SDVT (2)
SDT (2)
SYSBOT (2)
OPILINK(2)

Entry Parameters: None.

Return Parameters: (BC) has address of URREG.

Example: LD
CALL

c,81H
5
BC=ADDRESS OF URREG

82H/130 ~ Set User Control-C Handling

This call controls the system's response to
the user pressing control-C. Section 3.7 des­
cibes the feature in detail.

Entry Parameters: [DE] has:

Example:

o - Restore normal system action.
-1 - Disables Control-C fun~tion. (OFFFFH).
Other - Set cntl-C routine address.

LD
LD
CALL ...

c,82H
DE,UCTRLC
5

UCTRLC: ; USER CONTROL-C ROUTINE

4/23/81 - Page 133

3.4.3 - M/OS-80 System Calls - Extended Function Details

83H/131 ~ Read Logical Block.

This function reads a logical block from the
disk without regard to any file structure.
Therefore, logical blocks can be used to read
disks created with other operating systems.
When the function is invoked, the DE register
pair should contain the block number desired.
Data is read from the disk 1/0 buffer. In
summary, Read Logical Block allows direct disk
access without standard file processing.

Entry Parameters: [B] has Drive number (O-Current, 1=A, 2=B •••)
For block interleaving, set high bit in reg.
B. [ADE] has Block O •• xxxxxx (24-bit number).

Return Parameters: [A] Returns:
O-OK
1-1/0 error
2-Illegal request
3-Illegal block number

84H/132 ~ Write Logical Block.

This function writes a logical block from the
disk without regard to any file structure.
Therefore, logical blocks can be used to write
to disks created with other operating systems.
When the function is invoked, the DE register
pair should contain the block number desired.
Data is written from the disk 1/0 buffer. In
summary, Write Logical Block allows direct
disk access without standard file processing.

Entry Parameters: [B] has Drive number (O-Current, 1=A:,
2=B: •••) For block interleaving, set bit 7 in
[B]. [ADE] has Block O •• xxxxxx (24-bit num­
ber) •

Return Parameters: [A] Returns:

4/23/81 - Page 134

O-OK
1-I/0 error
2-Illegal request
3-Illegal block number

3.4.3 - M/OS-80 System Calls - Extended Function Details

85H/133 ~ Print Spooling Control.

Controls the printer spooler, thereby allowing
simultaneous printing and other processing.
The spooler can be either stopped or start­
ed, or queried under system control. Printer
calls (function 5) cannot be used properly
while the spooler is active.

Starting the spooler requires passing an
opened FCB to this function.

To test if a system has a spooler installed,
the status call may be called with [A] = 2. If
no spooler exists, then [A] will not change,
otherwise it will be either 0 or -1.

Entry Parameters: (DE) has: FCB of spool file (to start spooler)
[A] has: 0 - to stop spooler

1 - to get status

Return Parameters: After status call only:
[A] returns:
o - not active
-1 - active

86H/134 ~ Format FCB From String.

Formats
This is

a standard FCB from a text string.
used to setup an FCB from scratch.

The filename will be terminated by the first
occurrence of: space, non-printing character,
equal sign (=), slash (I) or comma (,).

Entry Parameters: (DE) has address of where FCB is to be built.
(HL) has address of string with filename.

Return Parameters: None.

Example: LD c,86H
LD DE,FCB
LD HL,STR
CALL 5

FCB: DEFS 33
STR: DEFM t<gname>t

DEFB 0
; <gname>=name.ext

4/23/81 - Page 135

3.4.3 - M/OS-80 System Calls - Extended Function Details

88H/136 ~ Chain to Program.

Allows one program to chain to another. The
standard system region from 5CH to OFFH is
not modified. If control-C was disabled by
the chaining program, then control-C will
remain disabled; however, if the prior pro­
gram set a control-C routine, it will be
reset. If the program will not fit into avail­
able RAM, the system returns to the operator
with the message "Load error". The
"chained-to" program will receive whatever
return code was set into the A register; if
none was set, [A] will have zero.

Entry Parameters: (DE) has address of FCB containing filename of
program to run.

Return Parameters: [A] returns -1 if file not found.

Example: LD c,88H
LD DE,PGMN
CALL 5

; ONLY RETURNS HERE ON ERROR
•••

89H/137 ~ Multiply.

PGMN: DEFB 0
NOTE FCB FORMAT OF NAME

DEFM "NEWPROGCOM"

Provides a basic 16-bit unsigned multiply
routine.

Entry Parameters: [DE] has multiplicand.
[HL] has multiplier.

Return Parameters: [DE] returns [DE] • [HL].

Example:

4/23/81 - Page 136

LD
LD
LD
CALL

DE,20
HL,10
c,89H
5

HERE DE=200

3.4.3 - M/OS-BO System Calls - Extended Function Details

BAH/13B ~ Divide.

Provides a basic 16-bit unsigned divide rou­
tine.

Entry parameters: [DE] has integer divisor.
[HL] has integer dividend.

Return Parameters: [HL] returned with [HL]/[DE].

Example:

[DE] returned with remainder ([HL] mod [DE]).

LD
LD
LD
CALL

DE,3
HL,10

c,BAH
5

HERE [DE]=1 AND [HL]=3

BBH/139 ~ Home Disk Drive.

Forces disk heads to return to home position.

Entry Parameters: [B] has drive number (O=current, 1 = A:,2 = B: ...) .
Return Parameters: None.

BCH/140 ~ Eject Disk.

Request removal of disk indicated. Either
physically ejects disk or requests operator
to remove it, depending on disk hardware
features.

Entry Parameters: [E]=disk (O=current, 1=A, 2=B •••).

Return Parameters: None.

4/23/B1 - Page 137

3.4.3 - M/OS-80 System Calls - Extended Function Details

8DH/141 - Get Version and Serial Numbers.

Returns the version and serial numbers of the
system. Can be used by programs to check
that required features are available.

Return Parameters: [B] has Major Version number.
[C] has Minor Version number.
[H] has Sub-Major Version number.
[L] has Sub-Minor Version number.
[DE] has Serial Number.

Example: LD C,8DH
CALL 5
; B=2, C=34 ,H=01, L=OO

For current version 02.34 - 01.00

8EH/142 - Set Terminal Function.

Provides a hardware-independent way of con­
trolling an advanced CRT terminal. Section 3.7
has further details.

Entry Parameters: [D] has column and [E] has row to set cursor.
-or-

O-clear
4-up
8-highlight

12-keyboard off
16-protect off
20-page send
24-del line

[E] has 0 and [D] has special function.

(For switch functions, on=odd, off=even) Spe­
cial functions (in [D])

1-home
5-down
9-10w light

13-cur. pad on
17-blink on
21-aux send
25-insert line

2-backspace
6-clr eol

10-normal light
14-cur. pad off
18-blink off
22-del char

Cursor pad translates:

up- A W
Left-AA Right-AD

Down_AZ

3-forespace
7-clr eos

11-keyboard on
15-protect on
19-1ine send
23-insert char

4/23/81 - Page 138

3.4.3 - M/OS-SO System Calls - Extended Function Details

SFH/143 = Set Date.

Allows a program to set the date stored in the
system. All input is in BCD.

Entry Parameters: [B] has Day
[D] has Month
[E] has Year (1900+)

90H/144 = Read Date

Allows a program to read the date stored in
the system. All output is in BCD.

Return Parameters: [A] has Day
[B] has Month
[C] has Year (1900+)

91H/145 = Set Time.

Allows a program to set the time stored in the
system. All input is in BCD.

Entry Parameters: [B] has Seconds
[D] has Minutes
[E] has Hours (24-hr time)

92H/146 = Read Time.

Allows a program to set the time stored in the
system. All output is in BCD.

Return Parameters: [A] has Seconds
[B] has Minutes
[C] has Hours (24-hr time)

4/23/S1 - Page 139

3.4.3 - M/OS-80 System Calls - Extended Function Details

93H/147 ~ Set Program Return Code.

Sets a return code that gets passed to the
next program on a chain function by way of
[A]. The chained-to program will find that [A]
contains the return code upon entry.

Entry Parameters: [A] has return code.

Example: LD C,93H
LD A,10
CALL 5

; NEXT LINK WILL PLACE 10 IN "A"

94H/148 ~ Set File Attributes.

Allows setting file
access to a file.
attributes.

Bit: Attribute:

7 - (p) Permanent

attributes to restrict
Section 3.8 details the

6 - (W) Write-protected
5 - (R) Read-protected
4 - (U) User file
3 - (S) System file
2 - (.) n/a
1 - (.) n/a
o - (+) Add attributes, instead of replace

Entry Parameters: (DE) has address of FCB of files in which to
set attributes.
[B] has new attributes with bits (PWRU/Sxx+).

4/23181 - Page 140

3.4.3 - M/OS-80 System Calls - Extended Function Details

95H/149 ~ Read Disk Label.

Places the disk label for the current disk
into the FCB provided. It also places the
directory type flags into A.

Directory type flag:
bit 7 - (S) Sub-directory

6 - (D) Double-sided disk
5 - (.) n/a
4 - (.) n/a
3 - (L) Disk has a label
2 - (.) n/a
1 - (R) Big directory required by hardware
o - (B) Big Directory

Entry Parameters: (DE) has address of FCB which will be filled
in with the disk name.

Return Parameters: [A] returns directory type flags.

96H/150 ~ Turn Motors Off.

Allows turning the motors off on the current
disk. Hardware determines how motors are
affected.

97H/151 ~ Set System Bottom.

Allows a user program to load a special dri­
ver or common section of code and then
adjust the operating system bottom-end to
include the new code. The function requires
that the new bottom be below the original
system bottom and to be on a page (256-byte)
boundary. Note that the first nine bytes of
the new system bottom are reserved for use by
the system.

An address of OFFFFH will cause the system
bottom to be reset to the original value.

Entry Parameters: [E] has high byte of the address of the new
system bottom.

4/23/81 - Page 141

3.4.3 - M/OS-80 System Calls - Extended Function Details

98H/152 = Read File Block Without Advance.

Read the file block indicated by the FCB next­
record byte. After reading, no change is made
to the FCB. This function is designed to
allow random reading. The next record byte
must be set to the proper value and the proper
extent must be opened before reading. If ex~

tents must be switched, then the old extent
must be closed before opening the new one.

Entry Parameters: (DE) has FCB of an open file.

Return Parameters: [A] Returns:
O-OK.
1-End-of-File sensed.
2-Date being read from an unwritten extent.

99H/153 = Write File Block Without Advance.

Write the file block indicated by the FCB
next-record byte. After writing, no change is
made to the FCB. This function is designed
to allow random writing. The next-record byte
must be set to the proper value and the proper
extent must be opened or created before
writing. If extents must be switched, then
the old extent must be closed before opening
the new one.

Entry Parameters: (DE) has FCB of an open file.

Return Parameters: [A] has:
o - OK.

4/23/81 - Page 142

1 - Extent error (error on writing).
2 - Out of disk space.
-1 - (255) Out of directory space on creating

new extent.

3.4.3 - M/OS-80 System Calls - Extended Function Details

9AH/154 - Test File BI~ck Allocated.

Test if the file block specified is allocated.
The current block of the FCB passed in DE is
tested.

Entry Parameters: (DE) has address of the FCB of an open file.

Return Parameters: [A] returns:
a-Block allocated

-1-Block not allocated

9CH/156 ~ Directory Listing.

Display a standard directory listing for
files matched by the FCB passed.

THIS FUNCTION IS ACTIVE ONLY IF OPI IS RESI­
DENT (see OPIRES); otherwise the error "DIR
function not active" is displayed.

Entry Parameters: (DE) has address of the FCB of file match
request.

9DH/157 ~ Set Console Options.

Allows setting certain special characteristics
for console activity. Affects functions
1,2,6,9,10. Reference paragraph 3.7.

Option bit
7 - Disable print output toggle (AW!"'T)
6 - No echo on any input
5 - n/a
4 - n/a
3 - No echo of RETURN as terminator
2 - Enable ESCAPE as line terminator
1 - Disk read after write
a - Control-P Flag

The function allows changing only certain
options by having a change-mask of bits to be
changed and a new value for those bits as
separate values.

Entry Parameters: [E] has mask of bits to change.
[D] has new values of changed bits.

4/23/81 - Page 143

3.4.3 - M/OS-80 System Calls - Extended Function Details

9FH/159 - Get Master Disk.

Returns the current values for the command
library master (DCOM) and the batch file mas­
ter (DBAT). The indicated commands are used
to set these values (DCOM or DBAT).

The returned values are A=O, B=1, etc.

Return Parameters: [A] has master disk (DCOM).
[B] has batch master (DBAT)

AOH/160 - Mount Disk.

Requests the specified disk be mounted.

Entry Parameters: [E] has disk number (A=O •••).

Return Parameters: [A] returns:
O-OK.

-1-Disk already mounted.
-2-1/0 error on mount.

A1H/161 - Dismount Disk.

Requests the specified disk be dismounted.
The disk will always be logically dismounted
for the caller; however, in a multi-user sys­
tem, the disk will only be physically dis­
mounted after all users have dismounted it.

Entry Parameters: [E] has disk number (A=O •••)

Return Parameters: [A] returns:

4/23/81 - Page 144

O-OK or, in multi-user systems, bit vector of
users logged on the disk. (bit O-user 1,bit 1-
user 2 •••).

Appendix A
DDT-80 Debug System

Appendix A - Designers' Development Tool

DDT-80 DEBUG SYSTEM --

4.0 INTRODUCTION

This section describes the functions and operation of DDT-80
(Designer's Development Tool 80) which is provided with the M/OS-
80 system. The DDT software provides a complete facility for
interactively debugging relative and absolute z80 programs. Stan­
dard commands allow displaying and modifying memory and CPU
registers, setting breakpoints, and executing programs. Mnemonics
are used to represent Z80 registers, thus simplifying the command
language.

SOFTWARE CONFIGURATION

DDT-80 is a program that resides in EPROM (located from EOOOH to
E7FFH). In addition to the EPROM, DDT uses 256 bytes of RAM which
resides at locations FFOOH - FFFFH.

The scratchpad
push-down stack
an image (or
Figure 4-1 is a

RAM is used by DDT for temporary storage and a
(for return address, etc.). This RAM also holds
map) of all the user's internal CPU registers.
detailed memory map of the scratchpad RAM.

An important concept in DDT is preservation of the user's inter­
nal CPU registers. The state of the user program under CPU con­
trol is described by the contents of these registers and is kept
in an image or map RAM area. This map is referred to as the User
Register Map throughout this documentation. DDT installs or
makes the CPU registers equal to the user register map when
control is transferred from DDT to a user program (as in the E
command discussed in paragraph 4.13). DDT-80 saves the user
register map when DDT is commanded to interrupt a user program
(breakpoint command discussed in paragraph 4.11). DDT allows
modification of this register map with the display and/or update
memory command (M command, discussed in paragraph 4.17). The
user register map resides in the scratchpad at locations FFE6H
thru FFFFH as shown in Figure 4.1.1. Figure 4.1.2 shows the data
paths between the user register map and the CPU registers along
with the modification path between DDT and the User Register Map.

4/2/81 Page A-1

Page Al.5

FIGURE 4.1.1 DI1I' USER REGISTER MAP

MEMORV
LOCATION

FFFF PC

FFFE

FFFO

FFFC

FFFB

FFFA

FFF9

FFF8

FFF7

FFF6

FFF5

FFF4

FFF3

FFF2

FFF1

FFFO

FFEF

FFEE

FFEO

FFEC

FFEB

FFEA

FFE9

FFE8

FFE7 SP

FFE6

USER
REGISTER

PROGRAM

COUNTER

A

F

I

IF

B

C

0

E

H

L

A'

F'

B'

C'

0'

E'

H'

L'

IX'

IV

STACK

POINTER

MSB

LSB

MSB

LSB

MSB

LSB

MSB

LSB

FIGURE 4.1.2 Dill' Dl\TA PATHS

USER
CPU REGISTERS REGISTER MAP

PC PC FFFF

A
jl

RESTORE REGISTERS, A
TRANSFER CONTROL 1\

\f TO USER'S PROGRAM V
(ECOMMAND)

SAVE REGISTERS,

;1- INTERCEPT THE 1\
\f USER'S PROGRAM V

(BCOMMAND)
SP SP FFF6

~~

DISPLAY AND/OR

NOTE: DURING 'W' & 'S' COMMAND,
UPDATE

THE REGISTERS ARE SAVED
(MCOMMAND)

AND RELOADED AFTER EVERY
INSTRUCTION STEP.

'"<.7

DDT

Page Al.6

Appendix A - Designers' Development Tool

4.2 COMMAND SUMMARY

To invoke DDT, type the following command while in M/OS-BO com­
mand mode:

A.DDT(CR)

CONSOLE INTERACTION:

(CR)

• or cntl-U

COMMANDS:
B aaaa

C aaaa,bbbb,cccc

E aaaa

F aaaa,bbbb,cc

H

L aaaa,bbbb,cccc

M aaaa, bbbb

0 aaaa

P aa

Q

R a,b

V aaaa,bbbb,cccc

W aaaa,bb

prompt character

terminate a command

abort

Insert a breakpoint in user's program.

Copy memory aaaa thru bbbb to cccc and
above.

Execute user program.

Fill memory aaaa thru bbbb with data
byte cc.

Perform hexadecimal arithmetic.

Locate all occurrences of data cccc in
memory aaaa thru bbbb.

Display, update, or tabulate memory or
registers.

Set offset constant for relocatable
programs.

Display and update port.

Quit - return to Monitor.

Display user registers.

Verify that two blocks of memory are
identical.

Single step starting at address aaaa
for bb steps.

NOTE: Commas may be replaced with blanks. All entries upper-case
ASCII.

TABLE 4.2.1

4/2/81 Page A-2

Appendix A - Designers' Development Tool

4.3 CONVENTIONS

Hexadecimal numbers are denoted by the number followed by a
subscript H. E.g., OAF3H. If the first digit of the hexadecimal
number is a letter (A-F), the hexadecimal number must be
preceded by a zero (0). In a command sequence, user input is
underlined. (CR) means carriage return. Bracketed items [J in a
command line are optional. Items in a command line which must be
entered exactly as they appear are shown as upper case. Items in
a command line which are variables are shown as lower case.

4/2/81 Page A-3

Appendix A - Designers' Development Tool

4.4 PREPARATION

Create, assemble, and link your program as would be normally
done.

You should now be ready to debug a binary file which has your z80
program on it. To debug the program, use the LOAD program to get
the program loaded into RAM.

Where file is the name of the binary .COM file created by
the LINK process or INTEL Hex file created by older
assemblers or the LINK process.

Then execute DDT:

The dot C.) indicates that DDT is ready to accept commands.

4.5 DESCRIPTION __ OF __ DD __ T ~CO~MM~A~N~D~S

COMMAND FORMAT.

DDT recognizes commands which consist of three parts:

1. A single-letter command.
2. An operand or operands separated by commas or blanks.
3. A terminator to either abort the command or cause it

to be executed.

Example
.~ ~ 102 (CR)

(Parts:) 1 • 2. 3.

In the command mode DDT prompts on the user console with a dot
(.). The user may enter any single-letter command. A space is
then printed on the console by DDT. The user may then enter any
required operands and a terminator. Operands are separated from
each other by a space or a comma. The terminator may be a car­
riage return, dot (.) or control-U. Carriage return causes execu­
tion of the command. A dot or control-U aborts the command, and
the user is prompted again.

4/2/81 Page A-4

Appendix A - Designers' Development Tool

4.6 OPERANDS

Operands are separated from each other by a space or comma. An
operand may take anyone of the following forms:

Hexadecimal number. Leading zeros need not be entered. The last
four digits are used for the value entered for address values.
The last two digits are used for data values.

ASCII literal value. Any characters preceded by the letter "L"
are converted to their ASCII equivalent value. E.G., LA(=41H),
LAB(=4142H).

A hexadecimal number preceded by the char­
acter "R" causes the offset specified by the 0 command to be
added to the number. A relative address is identified by an
apostrophe next to it. E.g., (assuming offset = 100H) RO(=100H),
R4FF(=FFH).

Relative Address.

The offset and relative address functions are useful when debug­
ging modules of a program which have been relocated by the Linker.

Program Counter. The character "$" is used to
current address. It is used with the M command
relative branch displacements.

represent the
to calculate

Added or subtracted numbers. Hexadecimal numbers may be added to
or subtracted from each other to represent an operand. E.g., A =
A (=14H), 5A = A - 10 (=54H).

Equal Sign. An equal sign (=) may be entered at any
display the current value of an operand as 4 hexadecimal
E.g., 5A = A - 10 = 0054, LAC = 4143.

time to
digits.

Mnemonic. A mnemonic consists of one or two characters follow­
ing a colon (:). Mnemonics are used to represent z80 CPU regis­
ters. Table 4.1.1 lists all the allowed mnemonics in DDT and
their meanings.

4/2/81 Page A-5

Appendix A - Designers' Development Tool

TABLE 4.6.1 MNEMONICS RECOGNIZED BY DDT-BO

Unrecognized mnemonics are resolved with a value of zero.

ADDRESS REPRESENTED DATA SAVED AT THAT ADDRESS
MNEMONIC BY THE MNEMONIC

:PC* FFFE User's PC Register

:A FFFD User's A Register

:F FFFC User's F Register

:1 FFFB User's I Register

:IF* FFFA User's IFF Register

:~ FFF9 User's B Register

:C FFFB User's C Register

:D FFF7 User's D Register

:E FFF6 User's E Register

:H FFF5 User's H Register

:L FFF4 User's L Register

:A'* FFF3 User's A' Register

:F'* FFF2 User's F' Register

:B'* FFF1 User's B' Register

:C'* FFFO User's C' Register

:D'* FFEF User's D' Register

:E'* FFEE User's E' Register

:H'* FFED User's H' Register

:L'* FFEC User's L' Register

:IX* FFEA User's IX Register

:IY* FFEB User's IY Register

:SP* FFE6 User's SP Register

* = two-byte mnemonics

4/2/B1 Page A-6

Appendix A - Designers' Development Tool

4.7 OPERAND EXAMPLES

4F7F

:PC

5038-5000

The operand value is equal to 4F7FH.

The mnemonic PC is equivalent to the save
location of the user's program counter.

The operand value is 38H,

5038-5000=0038 The same as above except "=" was entered
to display the operand value.

5038-$

5038-$=0036

305038

305038=5038

LAB=4142

LA=2041

R100=1100

If current address = 5000H, then $=5002H
and the operand value equals 36H for
relative instructions.

The same as above except the equal sign
was entered.

More than 4 digits entered,
only the last 4 have meaning.
value = 5038H.

therefore
Operand

The same as above except the equal sign
was entered.

Operand is equal to the ASCII value of
"AB".

Operand is equal (LSB) to ASCII value of
, A' •

Assumes offset = 1000.

4/2/81 Page A-7

Appendix A - Designers' Development Tool

~.8 COMMAND TERMINATORS

The command terminator immediately follows the
signals DDT that the command has been entered.
terminator, DDT will do one of the following:

operand(s) and
Depending on the

Terminator

(CR)

. or CNTL-U

/

4.9 SPECIAL KEYS

Action

Carriage return. DDT executes the
entered command.

Period or CNTL-U. DDT aborts the
command. The user is prompted for
another.

Carat or up arrow. This terminator is
valid only for the M and P commands. To
examine the previous memory location or
port relative to the location just exam­
ined.

Slash. This terminator is valid only for
the M command. This causes the data
entered to replace the old data and then
return to the command mode. If no data
was entered, it is treated as a period.

Several keys have special meaning in DDT:

period (.)

space bar

4.10 ERRORS

Memory printouts on the console (L, M, or
V commands) may be aborted by entering a
period. Single stepping (W command) may
also be aborted this way. DDT then en­
ters the command mode.

The space bar may be used to start and
stop single stepping (W command).

When erroneous inputs are detected, a question mark (?) is
printed and DDT returns to the command mode.

4/2/81 Page A-8

Appendix A - Designers' Development Tool

4.11 ~ COMMAND, BREAKPOINT COMMAND

FORMAT

Set breakpoint at memory address aaaa •

• B (CR) Clear previous breakpoint.

OVERVIEW.

When the breakpoint command is used, a "trap", which consists of
three bytes, is placed ipto the user's program. The original
program bytes are automatically saved. The user then uses the E
(execute) command to start execution of the program. When the
trap is encountered, DDT is signalled and execution is stopped.
The CPU registers are then transferred to DDT and printed out on
the user console. To resume execution of the program, the user
must use the E (execute) command again or the W (single step)
command.

DESCRIPTION.

The user types the command identifier B followed by the address
where it is desired to place a breakpoint "trap". DDT proceeds
to remove any pre-existing breakpoint, extracts and saves 3 bytes
of the user's program at the breakpoint address, and places a 3-
byte trap into the address. DDT then returns to the command
mode. The user may start program execution via the E (execute)
command. When the breakpoint trap is encountered, execution is
stopped and control is transferred back to DDT. DDT then re­
stores the three bytes of user code at the breakpoint address,
reads all the target CPU registers and prints them out (see R­
register command).

DDT then waits for the user to enter one of the following
characters:

1. Period (.) returns DDT to the command mode.

2. Carriage return causes one program instruction to be
stepped. After the instruction is executed, the
target registers will be printed again and DDT will
wait for user input.

3. Line feed has the same effect as carriage return, but
a heading to identify the registers will be printed
out.

4/2/81 Page A-9

Appendix A - Designers' Development Tool

4. Space bar starts automatically single stepping. Single
stepping will continue for 256 steps or until the
space bar is pressed again. The user can thus start
and stop single stepping of his target program. (See
W-Step command).

NOTE: The contents of the registers reflect the effect of the
last instruction before the breakpoint was encountered.

One breakpoint can be set at a time before execution is begun. a
breakpoint can be reset by entering the B command with no oper­
ands. A breakpoint at a specific address can be cleared by
executing that address.

There are certain characteristics of the DDT breakpoint facility
which the user should be aware of during debugging.

1. The trap sequence used by DDT-BO is as follows:
JP DDT Jump to DDT Breakpoint Processor

2. Since DDT replaces three bytes of the user program, a break­
point should be set such that when the user program is exe­
cuted, control can only be transferred to the first byte of
the trap sequence of an instruction. For example, in the
following sequence:

L1 JR NZ, L3-$

L2 LD A,O

L3 LD B,OF

A breakpoint should not be set at L2 because when the branch
condition at L1 is met, control would be transferred to the
third byte of the trap sequence.

3. No error indication is given if one attempts to set a
breakpoint in ROM.

4. After a breakpoint has been set, it can be changed simply by
entering a new breakpoint. The act of entering a new
breakpoint automatically clears the previous breakpoint.

5. When a breakpoint is encountered in a user program, DDT-BO
saves the state of interrupts (through IFF) in the :IF
register. The state of interrupts is restored or set accord­
ing to the contents of :IF when control is transferred to the
user program.

6. Breakpoint will not work in areas where executable code is
modified by the program.

4/2/B1 Pag.e A-10

Appendix A - Designers' Development Tool

EXAMPLE

.,g 24E (CR)
-Set a breakpoint at location 24EH •

• 0 100 (CR) -----Set offset •

• ,g R4F3 (CR)
-Set breakpoint at relative address 4F3H (=5F3H absolute).

4/2/81 Page A-11

Appendix A - Designers' Development Tool

4.12 C-COPY MEMORY BLOCKS COMMAND

FORMAT •

• C aaaa,bbbb,cccc (CR) Copy locations aaaa through bbbb
inclusive to the memory block
starting at address cccc.

DESCRIPTION.

The user enters the command identifier C followed by the starting
address aaaa and ending address bbbb of the block to be moved,
followed by the starting address cccc of the block receiving the
data. The operands may be absolute or relative and are separated
by commas or blanks. Upon terminating with a carriage return,
DDJ performs the requested copy operation, and returns to the
command mode. The copy command permits any block of memory data
to be moved to any area of memory. The move may be forward or
backward and the new block mayor may not overlap with the or­
iginal memory block. Entire programs or subroutines may be moved
around in this way. Care should be taken to copy complete in­
structions on both ends of the block when copying programs, and
any relative jump instructions contained within a block to be
moved should not jump outside the block. If the second operand
entered (bbbb) is smaller than the first (aaaa), a question mark
(?) is printed and control returns to the command mode.

EXAMPLE •

. f 100,200,1200(CR)

• C 100,200,150(CR)

.Q 100(CR)

• C RO,R100,R50 (CR)

4/2/81 Page A-12

Copy memory locations 100H through
200H inclusive to locations 1200H
through 1300H •

Copy locations, 100H through 200H
inclusive to locations 150H through
250H. (overlapping copy)

Set relative offset to 100H •

This would be the same as the
previous example.

Appendix A - Designers' Development Tool

4.13 E-EXECUTE COMMAND

FORMAT.

DESCRIPTION.

Transfer control to the program
starting at address aaaa.

Transfer control to the address
specified by register:PC.

To cause execution of a program, the user types the identifier E
followed by the desired entry address of his program. Upon
typing carriage return, DDT loads the Z80 CPU registers and then
transfers control to the program entry point. The contents of
the register map reflect the effect of the last instruction
before the breakpoint was encountered. If no entry address is
specified after the E command, DDT will transfer control to the
address specified by the :PC register (program counter).

EXAMPLE •

• E 1200(CR) Execute the program starting at
location 1200H.

To return control to DDT, the user's program must encounter a
breakpoint (see B-Breakpoint Command) •

• !1 :PC (CR)

• PC 62FF 1220(CR)
.§ (CR)

Examine
(PC) •

user's program

Set user's PC to 1220H
1220H

counter

The execute command may be used together with the breakpoint
command to execute portions of programs while debugging.

4/2/81 Page A-13

Appendix A - Designers' Development Tool

4.14 F-FILL MEMORY COMMAND

FORMAT:
.F aaaa,bbbb,cc (CR) Fill memory locations aaaa through

bbbb inclusive with cc.

DESCRIPTION.

The user enters the command identifier F followed by the starting
address aaaa and ending address bbbb, followed by the data cc.
The operands are separated by commas or blanks. Upon terminating
with a carriage return, DDT performs the requested fill operation
and then prints a "." to indicate that DDT is ready to accept
another command.

Example
.F 100,1FF,5A (CR)

• 0 100(CR) . E RO,RFF,5A(CR)

4/2/81 Page A-14

Insert a 5A in every memory
location from 100H 1FFH •
Set offset to 100H •

Fill same addresses as first
example.
DDT waiting for next command.

Appendix A - Designers' Development Tool

4.15 H-HEXADECIMAL ARITHMETIC

FORMAT •

• H +aaaa-bbbb+ ••• +yyyy=zzzz(CR) Perform hexadecimal
arithmetic.

DESCRIPTION.

The user enters the command identifier and then enters the arith­
metic expression. Only + and - are legal operations. If the
sign of the first operand is omitted, it is assumed +. The equal
sign causes the 4 digit (least significant 4 digits) result to be
displayed. When the terminator is entered, DDT returns to accept
another command.

EXAMPLES •

• H 5000-4FFF=0001(CR)
. g 5000+4FFF=9FFF (CR)

Subtract 4FFFH from 5000H •
Add 4FFFH to 5000H.

The Equal sign caused the 4-
digit result to be printed. DDT
waiting for next command.

4/2/81 Page A-15

Appendix A - Designers' Development Tool

4.16 L-LOCATE DATA PATTERN COMMAND

FORMAT •

• L aaaa,bbbb,cccc(CR) Locate and print the address of
every occurrence of cccc from aaaa
to and including bbbb.

DESCRIPTION.

The user enters the command identifier L followed by the starting
address aaaa and ending address bbbb followed by the data cccc
to be located. Upon terminating with a carriage return, DDT
prints every address between aaaa and bbbb which contains cccc.
If cccc is less than 100H, then a one-byte comparison is made.
If ccc is greater than or equal to 100H, then a two-byte com­
parison is made. The data to be located should be entered with
the most significant two digits of data followed by the least
significant two digits of data (if location 1000H contained 13
and location 1001H contained 92, the user would enter 9213 as the
data to locate).

EXAMPLE:

.bi O,750,35(CR)

0052 35

OOF3 35

0542 35

0750 35

~ O,750,35FF (CR)

OOF3 35

0145 35

4/2/81 Page A-16

Locate every occurrence of 35H
between address ° and 750H.

Every location between 0 and 750H
containing 35H is printed.

Locate
byte
750H.
high.

every occurrence of the 2-
value FF35H between 0 and
Note that. the value is low-

Every address where FF35 is found
is printed out.

The location previous to the loca­
tion printed out contains the least
significant two digits.

Appendix A - Designers' Development Tool

4.17 M-DISPLAY AND UPDATE MEMORY OR REGISTER COMMAND

FORMAT:

.M aaaa(CR)

DESCRIPTION.

The user enters the command identifier M and the operand aaaa
followed by a carriage return. DDT prints the memory address or
mnemonic on the next line, followed by the contents of that
particular address in hexadecimal. If the contents are to be
changed, the new value is entered. Any number of digits may be
entered, but only the least significant two (or four) digits are
accepted.

Terminators. When the user is examlnlng and/or modifying a
register or memory location, the accompanying terminator signals
the action DDT is to take. The possible operand (new value
entered) and terminator combinations are:

Terminator

(CR)

/

aa.

A aa

aa/

Meanings

No operand entered, display next
address or register.

No operand entered, display
previous address or register.

No operand entered, exit to command
mode.

Operand aa entered but "." aborts
command with no change to value at
address.

Operand aa entered, change value at
address to aa and display same
address with the new value aa
displayed.

Operand entered, change value at
address to aa then exit to command
mode.

4/2/81 Page A-17

Appendix A - Designers' Development Tool

Memory display. Memory locations are accessed as follows:

~ 16A(CR) Examine memory location 016AH.

016A 3F(CR)

016A 3F 34FFA

016A FF (CR)

016B 92 .!.

It contains 3FH. Do not change,
step to next location.

Change contents of 016A to FFH and
display same location. Note that
only the last 2 digits typed are
stored in 016A (the entry 34 was in
error) •

New contents displayed, step to
next.

DDT waiting for next command.

When accessing relative memory locations, the user
offset with the "0" command and uses the "R" prefix
memory address. Assuming the offset was set to 1000:

sets
with

the
the

'0000 1000 xx. The relative address, absolute
address and data re-printed out.

DDT waiting for next command.

Register display. The user may examine and change his CPU regis­
ters. They may either be initialized prior to program execution
or after a breakpoint has been encountered in the program to be
debugged. The contents of the user's registers may be accessed
through the use of the mnemonics discussed in paragraph 4.6 •

• M :A(CR)

:A 18 25(CR)

:PC 0010 .!.

• M :PC(CR)

:PC 0010 .!.

4/2/81 Page A-18

Examine user's accumulator.

Change register A to 25H, examine
next location.

User's PC Register,
command mode •

return to

Examine user's PC (program counter)
register.

Return to command mode.

DDT waiting for next command.

Appendix A - Designers' Development Tool

When resuming execution of the user's program, these new values
will be inserted into the user's Z80 CPU registers.

Relative branches. A special feature of DDT allows the user to
conveniently compute relative addresses used in relative branch
instructions. The value of the symbol "$" is defined as the
value of the current location and only has meaning during display
and update commands.

This example shows the entering of a jump relative instruction at
location OH to branch to location 38H •

• M O(CR) Examine location OH •

• 0000 20 18(CR) Insert first byte of jump (JR 38H-$)

.0001 F8 38-$=0036~ Compute and display relative dis­
placement for branch from OH to 38H •

• 0001 36 ~ Branch displacement of 36 shown.

DDT waiting for next command.

It should be noted that the maximum allowed displacement value
for forward branches is 7FH and for backward is 80H. It is
simple to determine if the relative branch is within its range by
examining the most significant two digits of the computed dis­
placement. For forward branches, the most significant two digits
should be OOH and for backward branches, the most significant two
digits should be FFH.

4/2/81 Page A-19

Appendix A - Designers' Development Tool

4.18 M-TABULATE MEMORY COMMAND

FORMAT

.~ aaaa,bbbb(CR) Display memory location aaaa through
bbbb.

DESCRIPTION.
The user enters the command identifier M followed by the starting
(aaaa) and ending (bbbb) address of the memory block. Upon
terminating with a carriage return, DDT prints a line feed, and
then prints the contents of aaaaH to bbbbH inclusive, with up to
16 values per line. DDT then returns to the command mode. The
tabulation may be stopped at any time by entering "." on the
console. When the 'R' prefix is used, the relative address is
printed before absolute.
EXAMPLE

.~ 4100,4127(CR)

4100 2B 90 12 20
4110 81 11 34 21
4120 90 OC A5 81

:0 4100(CR)
.B: RO,R27(CR)

Display memory locations
through 4127H inclusive.

00 B7 A5 21
07 94 17 45
09 21 40 22

10 94 04 20
12 55 A5 18

set offset to 4100

CA B7 44 18
21 80 C5 55

4100H

'0000 4100 2B 90 12 20 00 B7 A5 21
'0010 4110 81 11 34 21 07 94 17 45
'0020 4120 90 OC A5 81 09 21 40 22

10 94 04 20 CA B7 44 18
12 55 A5 18 21 80 C5 55

4/2/81 Page A-20

Appendix A - Designers' Development Tool

4.19 O-SET OFFSET CONSTANT COMMAND

FORMAT:

.0 aaaa(CR) Set offset constant to aaaa.

DESCRIPTION.

The user enters the command identifier 0 followed by the offset
aaaa. Upon terminating with a carriage return, DDT saves the 16-
bit offset. After the offset has been set, both relative and
absolute addresses are printed anytime addresses are displayed
and until the offset is cleared. The offset can be cleared by
entering the 0 command with no operands.

EXAMPLE:

.0 200(CR) Set offset

.g RO=0200(CR) Display value of offset
DDT waiting for next command.

4/2/81 Page A-21

Appendix A - Designers' Development Tool

4.20 P-DISPLAY AND UPDATE PORTS COMMAND

FORMAT.

DESCRIPTION.
The user enters the command identifier P followed by the port
address aa and a carriage return. DDT responds by printing the
port address and the value at that port. If the value at that
port is to be changed, the user enters the new value. The new
value entered is a two-digit hexadecimal operand. When the user
is examining and/or modifying a port, the terminator signals the
action DDT is to take. The possible operand (new value entered)
and terminator combinations are:

Terminator.

(CR)

aa.

aa(CR)

EXAMPLE:

.R. E2(CR)

E2 00 12(CR)

E3 15 .!..

4/2/81 Page A-22

Meaning

No operand entered, display next port.

No operand entered, display previous port.

No operand entered, return to command mode.

Operand aa entered, but "." aborts command
with no change to the port.

Operand aa entered, change the port value
to aa and step to display the value at the
next port.

User displays port E2H.

User changes value to 12H.

Return to command mode.

DDT waiting for next command.

Appendix A - Designers' Development Tool

4.21 Q-QUIT COMMAND

FORMAT

DESCRIPTION:
This
mente
back
image

command does not function properly in the M/OS-80
It should not be used. It is possible, however,

into M/OS-80 by entering the following command if
of the operating system has not be contaminated.

environ­
to jump

the RAM

4/2/81 Page A-23

Appendix A - Designers' Development Tool

4.22 R-DISPLAY CPU REGISTERS COMMAND

FORMAT

.B. (CR)

. B. 1(CR)

• R 1,a(CR)

DESCRIPTION.

Print the contents of the CPU registers •

Print a heading to label the CPU
on one line. On the next line,
contents of the CPU registers •

registers
print the

Print a heading to label the CPU registers
and set the long/short flag. LONG causes
all registers to be printed after break­
point and single step. SHORT causes only
PC and AF to be printed. The LONG/SHORT
FLAG remains set until changed by the 'R'
command.

The user enters the command identifier R. If the user wants a
heading to be printed that labels the register contents, an
operand of 1 is entered. If no heading is desired, then no
operand is entered. If the '0' command has been used to set an
offset, the relative PC is also printed (PC'). The second oper­
and is optional and has the following meaning:

a=O - Short form. Only the z80 program counter and AF
register will be displayed.

a=1 - Long form. All CPU registers will be displayed.

Note that "a" remains set to the value entered during all follow­
ing commands until it is reset.

Example:

.R(CR)
AOOO 0100 0104 CFB3 C094 FFEE EDF6 9C3E C3DC FE9B D6EB F1BE FFB4

.R HCR) ---PC AF IIF BC DE HL A'F' B'C D'E H'L' IX IY SP
AOOO 0181 0104 CFB3 0010 C09A FFEE EDF6 C3DC FE9B D6EC F1BE FFB4

4/2/81 Page A-24

Appendix A - Designers' Development Tool

PC contains AOOOH
A contains 01H
F contains 81H

Bit
7 6 5 4 3 2 1 0

F = 1 0 0 0 0 0 0 1
S Z X H X P/V N C

S = sign flag

Z = zero flag

X = indeterminate flag

H = half carry (for BCD operations)

P/V = parity or overflow flag

N = BCD add//subtract flag

C = carry flag

I contains 01H
IF contains 04 (Bit 3 = 1 implies IFF = 1)
IY contains F1BEH
SP contains FFB4H

4/2/81 Page A-25

Appendix A - Designers' Development Tool

4.23 V-VERIFY MEMORY COMMAND

FORMAT

.V aaaa,bbbb,cccc(CR) Compare memory location aaaa to
bbbb with the memory starting at
cccc.

DESCRIPTION.

The user enters command identifier V followed by the starting
address aaaa and ending address bbbb, followed by the starting
address cccc of the second memory block. The operands are sep­
arated by commas or blanks. Upon terminating with a carriage
return, every address from aaaa to bbbb is compared with the
corresponding address starting at cccc. Any discrepancies are
printed on the console ("address data address data"). When the
comparison is complete, DDT is ready to accept another command.
Printing of addresses may be aborted by entering a period (.)
from the user console at any time.

Example:

.J.. 0,FF,1000(CR)

. Q 100(CR)

• J.. RO,RFF,R1000(CR)

'0000 0100 BC '1000 1100 CC

4/2/81 Page A-26

Compare every location from 0 to
FFH inclusive with locations be­
ginning at 1000H •

Set offset •

Compare relative address.

Relative and absolute address is
printed for non-matched loca­
tions.

Appendix A - Designers' Development Tool

4.24 W WALK THROUGH A PROGRAM COMMAND.

The walk command, also known as software single-step, allows
stepping through a program which is contained in RAM. The user's
registers are saved and displayed after each step.

FORMAT •

• W aaaa,nn,xxx(CR) Begin software single-step at
address aaaa, for nnH steps, xxx
= HD requests register heading,
xxx = DIS requests disassembly
(AIM-Z80B required for DIS) •

• W Raaaa,nn,xxx(CR) Relative address.

DESCRIPTION.

The user enters the command identifier W followed by the starting
address aaaa, the number of steps to take nn, and the options
operand xxx. The operands are separated by commas or spaces.
Upon terminating with a carriage return, DDT begins "walking"
through the user's program (RAM-resident). After each step, the
user's register are displayed (See 'R' command). When nn steps
have been taken, DDT waits for the user to enter a carriage
return, line feed, space, or ".". A carriage return causes the
next instruction to be executed and wait again for input. A line
feed causes the register heading to be printed before executing
the next instruction. A space causes single stepping to continue
for 256 instructions or until another space is entered to stop
stepping. If nn is omitted, the default is 1. If aaaa is omit­
ted, the last value of the user's program counter (:PC) is used
to begin "walking". The stepping may always be stopped by enter­
ing any of the characters described above. When the address
entered is relative, the 'PC is also printed (relative PC).

Restrictions to W command.

1. Only operates with programs in RAM.

2. Cannot CALL OR RESTART to an address one or two
locations before the CALL or RESTART.

3. Walking through self-modifying code is not allowed.

4/2/81 Page A-27

Appendix B
System Setup

APPENDIX B - SYSTEM SETUP

The following sections describe how to make use of your M/OS-BO
system diskettes. M/OS-BO is provided on diskette in three ver­
sions:

MK779B4-1 - (One Diskette, 2 EPROMS)
64K RAM M/OS-BO, UART Console, PIO Printer, DCF (Disk
Controller Firmware EPROM MK6286) and DDT (Designer's
Debugging Tool EPROM MK6293) EPROMS for UART operation.

MK779B4-2 - (One Diskette)
As above, but sold without EPROMS. This version is
designed for those sites with existing 64K/UART Con­
sole/PIO Printer systems.

MK779B4-3 - (Two Diskettes, 3 EPROMs)
Diskette 1: 32K M/OS-BO, UART Console, PIO Printer as
bootable system. 48K, 56K and 64K systems on disk to
provide alternate configurations.

Diskette 2: As above, but with SIO Console, SIO Printer
as bootable system. In addition to 4BK, 56K and 64K
versions of SIO/SIO, a SIO/PIO system in all memory
sizes shown is also provided.

M/OS-BO MK779B4-3 is provided with three EPROMS so that
either the SIO or UART console system can be
implemented.

EPROMs located at EOOO Hex:
DDT (UART) EPROM - MK6293
DDT (SIO) EPROM - MK6247

EPROM located at EBOO Hex.
DCF (FLP1) EPROM - MK62B6 (Used in either SIO or UART
systems.

Note: EPROMS provided are designed for MD systems only.

Appendix B Page 1

APPENDIX B - SYSTEM SETUP

In order to use the M/OS-80 operating system for your particular
hardware system, you may have to make some changes to your system
diskette. All MK77984-3 M/OS-80 operating systems are provided
with both UART (Universal Asynchronous Receiver/Transmitter) and
SIO (Serial Input/Output) console drivers. Console drivers are
those software routines that establish communication between the
operating system, the operator, and the CRT terminal hardware
attached as the primary means of communication to the system.
Currently, M/OS-80 will only work if one of these two means of
inputloutput (UART or SIO) is used by your hardware system.
Virtually all packaged systems sold by MOSTEK support a UART
console. Examples of packaged systems are AID-80F (discontinued),
MATRIX-80/SDS, and MATRIX-80/SDT. For those newer sites, es­
pecially those using the MD-type boards, the MDX-SIO console
driver is provided. If your system ~ ~ type of console 1/0
other than SIO or UART, please do not attempt to use M/OS-80
without contacting the MOSTEK applications group first.

If your system is one of the MOSTEK. packaged development
you should have MK77984-2. This version will boot up
UART version of M/OS-80 without alteration.

systems
the 64K

The following pages will help you select the correct system for
your particular combination of hardware. The first step in the
system selection process is the determination of your hardware
configuration. If you own one of the packaged systems as des­
cribed below, use the data as it applies to your system as a
guide. The actual strapping of the individual boards is covered
in a later section for those MDX users who are configuring their
own systems. Board strapping for packaged systems is performed,
for the most part, at the factory and should be left in (or
restored to) that condition. As ~ rule, however, if your system
is currently running the FLP-80DOS operating system now, you
Should not have to change any hardware strapping.

System Control ROMS

In order for any configuration of M/OS-80 to work, you need the
appropriate system EPROMs. For UART Console/PIO Printer systems,
such as the AID-80F or SDE Matrix Systems, the required EPROMS
are no different than the EPROMs required for FLP-80DOS. If you
are currently running FLP-80DOS, you do not need to be concerned.
However, if you have purchased a separate MDX-FLP disk controller
board, the EPROMs supplied with that board may not be sufficient
for M/OS-80 to operate unless they contain the full DCF (Disk
Controller Firmware) and DDT (Designer's Debugging Tool), which
is a two EPROM set. To get these EPROMs, contact MOSTEK via your
Sales Office, MOSTEK FAE (Field Applications Engineer) or through
the Micro Systems Applications Group at the factory. If you are
using either an SIO console or a non-PIO printer, you will need
the special SIO EPROMs.

Appendix B Page 2

APPENDIX B - SYSTEM SETUP

Memory Configurations:

The next step in system configuration is determining how much RAM
memory your system has and how it is arranged. Again, if you are
using a packaged AID-80F (SD-based) or MATRIX-80/SDS (SDE-based)
development system, the amount of system RAM is usually set at
the factory at 64K bytes. Most early MATRIX-80/SDT (MD-based)
systems were shipped with 48K but later versions were upgraded to
64K. Customer-configured systems may vary from 32K and up.

Since there are so many possible RAM configurations, it is best
if the following rules be applied to any RAM configuration for
any system - MD, SD, or SDE.

64K Systems:

Since the previously discussed DCF/DDT EPROMs, which reside at
EOOO Hex, take up 4K of the address space, active system RAM
cannot overlay this area. To ensure that this does not occur,
check the RAM-card documentation for correct strapping. In MD
systems, an alternate bipolar PROM can be supplied for the DRAM-
32 card which, if correctly strapped, will mask out the area in
conflict with the EOOO EPROMs. SD and SDE cards can be strapped
to perform this masking function.

The 64K in question must extend from locations 0 through FFFF Hex
with all areas except the ROMs at EOOO Hex mapped as RAM. The 256
byte scratchpad RAM located at FFOO Hex must, if present, also be
deactivated if it conflicts with other RAM areas. There is still
a need for RAM in that area but the 64K configuration should
already have that area covered.

56K, 48K, and 32K Systems:

These systems map their RAM up to but not past the DCF/DDT PROMs
located at EOOO Hex. The requirement for a scratchpad RAM at
location FFOO Hex is still present and that RAM cannot be
deactivated.

Appendix B Page 3

APPENDIX B - SYSTEM SETUP

Console and Printer Configurations:

There are three general configurations for M/oS-BO on the system
diskettes. They are setup as follows:

Name: Console Driver: Printer Driver:

MOS-UPnn UART PIO

MOS-SPnn SIO PIO

MOS-SSnn SIO SIO

The last two numbers (nn) refer to the memory configuration.
There are four memory sizes for each of the above systems. These
are: 32K, 4BK, 56K, and 64K. A 64K system designed to run on a
UART Console with a PIO Printer would be called: MOS-Up64. It is
necessary, therefore, to determine which type of Console and
Printer driver you are using. Once this has been determined, note
the port addresses required for each as shown below.

Address/Control port strapping:

PIO DO-D3 Hex (J4 Pin 5-6, 9-10)

UART DC and DD Hex (J4 Pin 5-6)

Functional Strapping:

PIO Direction: J3 Pin 1-2, 3-4, 5-6, 19-20, 21-22
Centronics Printer requires: U2 74LS242

MDX-EPROM/UART :Set baud rate with switch UB
Typical settings - Position: 1 2 3 4 X=Closed, -=Open
---------------------------1-------1-------------------

19200 baud
9600 baud X -
1200 baud - X
300 baud - X - X

MDX-SI01 RS232 (DCE) J3 Pin 1-2, 5-6, 9-10, 13-14, 17-1B, 21-22
Baud Rate : (A)JB (no Jumpers = 19200)

(B)JB 9-10 = 9600
XMIT and REe frequency sources:

Pin 1-2 (E12), 5-6 (E10), 11-12 (E7)

Appendix B Page 4

APPENDIX B - SYSTEM SETUP

MDX-SI02
Address: (J9 Pin 5-6)
Channel A: DC and DD Hex for Console
Channel B: DE and DF Hex for Printer (As required)

RS232 (DCE):
Channel A: J3:Pin 1-2, 11-18, 12-17, 13-20,

14-21, 15-22, 16-19
Channel B: J4:Pin 1-2, 11-18, 12-17, 13-20,

14-21, 15-22, 16-19

Baud Rate: Channel A:J8 Pin 7-8 (9600)
Channel B:J8 Pin 15-16 (9600)

Various other strapping options can be determined by consulting
the appropriate documentation manuals. The options specified
above, however, are known to function with M/OS-80 with the
appropriate (SIO or UART) EPROMs.

Appendix B Page 5

APPENDIX B - SYSTEM SETUP

Configuration Worksheet

Memory Configuration:

RAM: 64K Starting At: 0000 Ending At: FFFF Hex
(Must notch out area for EPROMS at EOOO to EFFF Hex)

RAM: 56K Starting At: 0000 Ending at: DFFF Hex

RAM: 4BK Starting At: 0000 Ending At: BFFF Hex

RAM: 32K Starting At: 0000 Ending At: 7FFF Hex

(Choose one)

Scratchpad RAM at FFOO Hex? (Yes/No)
(Required for systems less than 64K)

ROM: (EPROMs) 4K Starting At: EOOO Hex Ending At: EFFF Hex
(Required - DCF/DDT, UART or SIO versions available)

Firmware:

DDT EPROM? (YIN) DCF EPROM? (YIN)
(Both must be present)

Peripheral Controllers

Console Driver: UART
(Choose one)

Printer Driver: PIO
(Choose one)

--

System name selection:

MOS- (Prefix is constant)

(YIN) SIO __ _

(YIN) SID __ _

MOS-cpmm.COM

(YIN)

(YIN)

c - Console: One of: S=SIO driver or U for UART driver.

p - Printer: One of: P=PIO driver or S for SIO driver.

mm - Memory size in K. One of: 32,4B,56,64.

IE: 56K M/OS-BO, SIO Console, PIO Printer=MOS-SP56.COM

Appendix B Page 6

APPENDIX B - SYSTEM SETUP

System Setup

Fill in
gathered

the configuration worksheet with the
about the system.

data you have

If you
based)
I

have a functioning MATRIX-80/SDT, 64K MATRIX-80/SDS (SDE­
or a 64K AID-80F, you may proceed immediately to:

"EPROMs installed, System Functional"---->
I
System Identification ~ Begin:
I
t
UART Systems: Go to: UART Systems Begin -------------->
I
t
SIO Systems: (Begin)
-I-
t
Find the EPROMs shipped with your M/OS-80 package numbered MK6247
and MK6286 (DDT/DCF respectively).
I
t
Mount these two EPROMs in appropriate sockets addressed as
described below. The DDT EPROM MK6247 is to be addressed at EOOO
hex and the DCF EPROM MK6286 is to be addressed at E800 hex.
These EPROMS can either be mounted on one of the CPU boards, the
UMC card, the EPROM/UART card, or some other appropriate
ROM/EPROM card. See hardware strapping notes for details of
typical configurations.
I
t
Find the
SIO-PlO) •
I
t

diskette marked: M/OS-80 MK77984-3 disk #2 (SIO-SIO
Put the other diskette away as it is not to be used.

Perform any other system preparations as necessary to get system
into a functional state. See hardware strapping notes for
additional details. Also consult various operations manuals as
required. Ensure that the console baud rate matches the baud rate
set on the SIO card.
I
t
Power up the system. Place the diskette selected above into drive
"A" which is the drive strapped as device O. To ensure documen­
tation compatibility, ensure that this is the right-most drive in
a two-drive system (when viewed from the front).
I
t
For
(cr)
I
t

two megahertz (2Mhz) systems, (as are most
on the console connected to SIO port A.

Continue with:SIO Configuration Setup (next page)

systems) type

Appendix B Page 7

APPENDIX B - SYSTEM SETUP

I SIO Configuration Setup (cont.)
t
M/OS-80 Should now begin to boot up. This process takes several
seconds (more than 10).
I
t
The signon message should appear on the screen. If this message
is garbled, check baud rate, parity settings, and bit-counts.
I
t-> Problems? ---------> Go to: In Case of Difficulty Section.
I
t
You have now booted the 32K, SIO ConsolelSIO Printer version of
M/OS-80.
I
\

\
-------------> Go to: Custom System Selection Section

Appendix B Page 8

APPENDIX B - SYSTEM SETUP

UART Systems Begin:
-I-
t
If you did not order EPROMs for your UART/PIO system goto:---->'"

Find the ROMs (EPROMs) shipped with your M/OS-80 package that are '\
labeled UART DCF/DDT. There Should be two of these ROMs. t
I
t
Mount these two ROMs in appropriate sockets in place of the DCF
ROM presently on the system. These replacement ROMS can be moun
ted either on one of the CPU boards, the UMC card, the EPROM/UART
card, or some other appropriate ROMIEPROM card. Make sure to
strap these EPROMslROMs at location EOOO hex. See hardware strap
ping notes for details of typical configurations.
I £/ t /'
EPROMs installed, System Functional (Begin) <--------------~
I
t
Find the diskette marked: M/OS-80 MK77984-3 Disk #1.
Put the other diskette away as it is not to be used.
I
t
Perform any other system preparations as necessary to get system
into a functional state. See hardware strapping notes for
additional details. Also consult various operations manuals as
required. Ensure that the console baud rate matches the baud rate
set on the EPROM/UART card. This step should not be necessary
for a already-functioning system.
I
t
Power up the system. Place the diskette selected above into drive
"A" which is the drive strapped as device O. To ensure documenta­
tion compatibility, ensure that this is the right-most drive in a
two-drive system.
I
t
Type (cr) on the console connected to the UART.
I
t
M/OS-BO Should now begin to boot up. This process takes several
seconds (more than 10).
I
The signon message should appear on the screen. If this message
is garbled, check baud rate, parity settings, and bit-counts.
I
You have now booted the 32K, UART Console/PIO Printer version of
M/OS-80.
\
\--------> Go to: Custom System Selection Section. (next page)

Appendix B Page 9

APPENDIX B - SYSTEM SETUP

Custom System Selection Section:
I
t
You should have already booted a 32K version of M/OS-80 for your
particular console. If you have not, go back to the beginning.
The prompt on the console should be:

Mostek M/OS-80 Version 02.3n-nn.nn
Serial Number nnnnnn
A.

The cursor should be just after the period. The signon message
should be just above the "A." as shown.
I
I
t
Using your
determine
choose an
correspond

Hardware Configuration Worksheet prepared previously,
the correct name for the system you need. Remember to
appropriate Console, Printer,and memory size to

with the hardware in question.
I
t
Type DIR MOS*.COM on the console.
I
t
A listing of the various system files on the disk should appear.
IE:

DIR MOS*.COM

MOS-UP32.COM 9/1
MOS-UP48.COM 9/1
MOS-UP56.COM 9/1
MOS-Up64.COM 13/1

4 entries listed, 40K disk space used

This
The
I
t

is an example of a listing for the UART system
SIO version is very similar.

disk (//1) •

If the name you have derived from the configuration worksheet
does not appear on the disk, re-check the name syntax and
diskette mounted. Not all combinations are provided. For example,
a UART Console/UART Printer system is not provided.
I
t
Continue with: Custom System Selection Section: (next page)

Appendix B Page 10

APPENDIX B - SYSTEM SETUP

Custom System Selection Section: (cont.)
I
I
t
Perform the following step first to prevent loss of data. This is
somewhat tedious in a single drive system, but must be done to
ensure no loss of data.
I
t
1\
I Dual Drive Systems:
I t
I Mount a blank disk in Drive B. (Left drive).
I I
t t
I Type: COpy IV B:=A: (cr)
I I
I t
I
I
I
I
I
I
I
I
I
I
\

When asked
When asked
I
t

to mount Source Disk type:(cr).
to mount Destination Disk type:(cr).

System
(right
I

should now copy then entire diskette on drive
drive) to the diskette on drive B.

t
Proceed to ERASE step.------------------------>

Single Drive Systems:
I
t
Type: COpy IV A:=A: (cr)
I
t

A

When asked to mount Source Disk mount the disk selected
above, type (cr).
When asked to mount Destination Disk mount the blank
disk as discussed above, type (cr).
I
t
System should now copy the entire diskette on drive A
(right drive) to the blank diskette alternately mounted
on drive A.
I
t
Note: Be very careful when changing disks.
I
t
Proceed to ERASE step.

Appendix B Page 11

APPENDIX B - SYSTEM SETUP

ERASE Step:
I
t
This step will erase the current system file (SYSTEM. COM) and
replace it with the system file of your choice. If you do not
erase the old file prior to copying over it, the system will
create a new directory entry and allocate new clusters at the end
of the diskette. This will degrade system performance during the
boot process.

It is also necessary to un-protect the SYSTEM. COM file prior to
attempting to ERAse this file.
I
t
Type: A.ATRIB A:SYSTEM.COM Q(cr)
I
Type: A.ERA A:SYSTEM.COM (cr)
I
t
The replacement name used in the next step is the name chosen
from the system configuration worksheet.
I
t
Type:
I
I
I
I
t
I

A.XFER/V A:SYSTEM.COM=A:MOS-xxnn.COM (cr)
1\\
I \ Memory Size (32,48,56,64)
\ Printer (SIO=S/PIO=P)
Console (SIO=S/UART=U)

xx and nn are values from the system configuration worksheet pre­
viously discussed.
I
t
At this point, you should now have a diskette which will boot up
with the desired Console, Printer, and size.
I
t
To boot this system,
already be there),
(cr).
I
t

mount this diskette in drive A (it should
hit RESET on the front panel, and type

Backup this disk using COpy IV. See M/OS-80 Operations Manual for
details of this backup operation.
I
t
End.

Appendix B Page 12

APPENDIX B - SYSTEM SETUP

In Case of Difficulty

Consult the M/OS-BO manual for additional details of various
system-oriented problems that may be encountered. The following
suggestions may help you decide what areas are causing you
difficulty.

If the system does not boot at all:

Check system functionality: disks, terminals, boards
etc. Be sure of the strapping, memory configurations,
board and EPROM addressing.

Will the system enter DDT monitor? If it will, boot
problems must involve the disk controller, disk drives,
cabling, strapping etc. If it will not, suspect a more
CPU-oriented problem in the jump-on-reset strapping,
EPROMs in use and their addressing, or the RAM area
strapping and configuration.

If the system tries to boot but cannot.

Consult M/OS-BO manual for suggestions.

Appendix B Page 13

1215 W. Crosby Rd.· Carrollton. Texas 75006. 214/323-6000
In Europe. Contact: MOSTEK Brussels

270-272 Avenue de Tervuren (BTE21). B-1150 Brussels. Belgium;
Telephone: 762.18.80

Mostek rel8lVu the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed
to be accurste and reliable. However. no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties
multing from its use. No license is granted under any patents or patent rights of Mostek. .

PRINTED IN USA May 1981
Publication No. 4420064

Copyright 1981 by Mostek Corporation
All rights Reserved

