
MOS'I'E1<
zao MICROCOMPUTER SYSTEM'

Programming Manual

Z80
PROGRAMMING

MANUAL-V2.0

Z80
PROGRAMMING MANUAL

V2.0
(MK78515)

i

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

1 Z80 CPU ARCHITECTURE 1-1
1-1 INTRODUCTION 1-1
1-3 CPU REGISTERS 1-1
1-5 SPECIAL PURPOSE REGISTERS 1-1
1-6 Program Counter (PC) 1-1
1-7 Stack Pointer (SP) 1-2
1-8 Two Index Registers (IX & IV) 1-2
1-9 Interrupt Page Address Register (I) 1-2
1-10 Memory Refresh Register (R) 1-3
1-11 ACCUMULATOR AND FLAG REGISTERS 1-3
1-12 GENERAL PURPOSE REGISTERS 1-3
1-13 ARITHMETIC & LOGIC UNIT (ALU) 1-3
1-15 INSTRUCTION REGISTER AND CPU CONTROL 1-4

2 Z80 INSTRUCTION SET 2-1
2-1 I NTR ODUC TI ON 2-1
2-3 INSTRUCTION SET FEATURES 2-1
2-4 ADDRESSING MODES 2-1
2-5 Immediate Addressing 2-1
2-6 Immediate Extended Addressing 2-1
2-7 Modified Page Zero Addressing 2-2
2-8 Relative Addressing 2-2
2-9 Extended Addressing 2-3
2-10 Indexed Addressing 2-3
2-13 Register Addressing 2-4
2-14 Implied Addressing 2-4
2-15 Register Indirect Addressing 2-4

2-16 Bit Addressing 2- 4
2-17 Stack Pointer Addressing 2-5
2-20 Subroutine Addressing 2-6
2-29 Subroutine Use of The Stack 2-7
2-32 Z80 STATUS INDICATORS (FLAGS) 2-8

i i

TABLE Of CONTENTS (Contd.)

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER

2 (contd.) 2-33 Flag Register 2-8
2-34 Carry Flag (C) 2-8
2-38 Add/Subtract Flag (N) 2-9
2-39 Parity/Over Flow Flag 2-9
2-47 Half Carry Flag (H) 2-10
2-48 Zero Flag (Z) 2-10
2-53 Sign Flag (S) 2-11
2-55 INTERRUPTS 2-11
2-56 Interrupt Types 2-11
2-57 Interrupt Enable - Disable 2-13
2-63 LOAD AND EXCHANGE INSTRUCTIONS 2-15
2-64 BLOCK TRANSFER AND SEARCH INSTRUCTIONS 2-15
2-69 ARITHMETIC AND LOGICAL INSTRUCTIONS 2-15
2-70 ROTATE AND SHIFT INSTRUCTIONS 2-16
2-71 B IT MAN I PULA TI ON I NSTR UCTI ONS 2-16
2-72 JUMP, CALL, AND RETURN 2-16
2-73 INPUT/OUTPUT INSTRUCTIONS 2-16
2-76 MISCELLANEOUS FEATURES 2-16
2-77 Z80 ASSEMBLY LANGUAGE SYNTAX 2-16
2-78 INTRODUCTION 2-16
2-87 LABELS 2-17
2-91 OPCODES 2-18
2-92 STANDARD OPERANDS 2-18
2-93 OPERAND NOTATION 2-19
2-95 COMMENTS 2-20
2-96 UPPER/LOWER CASE 2-20
2-97 OPCODES - DETAILED DESCRIPTIONS 2-20

2-98 I NTRODUCTI ON 2-20

APPENDIX A ALPHABETICAL LISTING OF Z80 OPCODES

SECTION
NUMBER

APPENDIX B

B

APPENDIX C

C

APPENDIX D

TABLE OF CONTENTS (Contd.)

PARAGRAPH
NUMBER TITLE

MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

B-1 INTRODUCTION

MOSTEK STANDARD Z80 OBJECT CODE FORMAT

C-1 I NTRODUC TI ON
C-4 DATA RECORD FORMAT (TYPE 00)
C-5 END-OF-FILE RECORD (TYPE 01)

C-6 INTERNAL SYMBOL RECORD (TYPE (2)

C-7 EXTERNAL SYMBOL RECORD (TYPE 03)

C-9 RELOCATING INFORMATION RECORD (TYPE
C-10 MODULE DEFINITION RECORD (TYPE 05)

REFERENCE TABLES

PAGE
NUMBER

B-1

C-1
C-1
C-1
C-2
C-2

04) C-3
C-3

iii

iv

FIGURE NO.

1-1

1-2

LIST OF FIGURES

TITLE

ZBO CPU Block Diagram
ZBO CPU Register Configuration

PAGE NO.

1-1

1-2

TABLE NO.

2-1

LIST OF TABLES

TITLE

Interrupt Enable/Disable Flip Flops

PAGE NO.

2-14

v

vi

PREFACE

This manual is designed tohelpthe user program the ZSO microcomputer in assembly

language. It also serves as a standard for the ZSO Assembly language.

It is assumed that the user has a background in logtc and some experi ence with
programming.

The manual consists mainly of a brief general description of the ZSO CPU architecture

from the programmer's point of view and a detailed description of the ZSO instruction
set. The description of the instruction set includes a description of the set's

main features, specific information about assembly language syntax, and detailed

descri pt ions of each of the ZsO opcodes. The manua 1 also conta ins several appendi ces.
Appendi x A ; s an alphabet; ca 1 1 i st of the ZsO opcodes. Appendi x B provi des

details of the Mostek assembler standard pseudo-ops. Appendix C describes the

Mostek standard ZSO object code format. Appendix D provides binary, hexadecimal,
and ASCII reference tables.

1-1

SECTION 1

zao CPU ARCHITECTURE

1-1. INTRODUCTION.

1-2. A block diagram of the internal architecture of the Z80 CPU is shown in Figure

1-1. The diagram shows all of the major elements in the CPU and it should be referred

to throughout the following description.

1-3. CPU REGISTERS.

Figure 1-1. zao CPU Block Diagram

INSTRUCTION

/'--"'- ~ECODE

'-r-~V< CPU
13 CONTROL

CPU AND
SYSTEM
CONTROL
SIGNALS

CPU
CONTROL

iii
+5V GND <I>

ALU

1-4. TheZ80 CPU contains 208 bits of R/Wmemorythatare accessibletothe programmer.

Figure 1-2 illustrates how this memory is configured into eighteen8-bit registers and

four 16-bit registers. All Z80 registers are implemented using static RAM. The

registers include a set of special purpose registers, two sets of accumulator and flag

registers, and two sets of six general purpose registers which may be used individually

as 8-bit registers or in pairs as 16-bit registers.

1-5. SPECIAL PURPOSE REGISTERS.

1-6. Program Counter (PC). The program counter holds the 16-bit address of the cur­

rent instruction bei ng fetched from memory. The PC is automat i ca lly incremented

after its contents have been transferred to the address lines. When a program jump

occurs, the new value is automatically placed in the PC, overriding the incrementer.

1-2

1-7. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current

top of a stack located anywhere in external system RAM memory. The external stack

memory is organized as a last-in first-out (LIFO) file. Data can be pushed onto

the stack from specific CPU registers or popped off of the stack into specific CPU

registers through the execution of PUSH and POP instructions. The data popped fromthe

stack is always the last data pushed onto it. The stack allows simple implementation

of multiple level 'interrupts, unlimited subroutine nesting and simplification of

many types of data manipulation.

Figure 1-2. Z80 CPU Register Configuration

MAIN REG SET
1\

ALTERNATE REG seT
1\

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A'

B'

D'

H'

INTERRUPT I MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGIS!ER IV

STACK POINTER SP

PROGRAM COUNTER PC

F'

C'

E'

l'

SPECIAL
PURPOSE
REGISTERS

} QOAAC PURPOSE
REGISTERS

1-8. Two Index Registers (IX & IV). The two independent index registers hold a 16-bit

base address that is used in indexed addressi ng modes. In this mode, an index

regi ster is used as a base to poi nt to a regi on in memory from whi ch data is to

be stored or retrieved. An additional byte is included in indexed instructions to

specify a displacement from this base. This displacment is specified as a two's

complement signed integer. This mode of addressing greatly simplifies many types of

programs, especially where tables of data are used.

1-9. Interrupt Page Address Regi ster (1). The Z80 CPU can be operated ina mode

where an indirect call to any memory location can be achieved in response to an interrupt.

The I Register is used forthis purposeto store the high order 8-bits of the indirect

address while the interrupting device provides the lower 8-bits of the address.

This feature allows interrupt routines to be dynamically located anywhere in memory

with absolute minimal access time to the routine.

1-3

1-10. Memory Refresh Register (R). The Z80 CPU contains a memory refresh counter

to enable dynami c memori es to be used with the same ease as stat i c memori es. Th is

7-bit register is automatically incremented after each instruction fetch. The data

in the refresh counter is sent out on the lower portion of the address bus along

with a refresh control signal while the CPU is decoding and executing the fetched

instruction. This mode of refresh is totally transparent to the programmer and does

not slow down the CPU operation. The programmer can load the R register for testing

purposes, but this register is normally not used by the programmer.

1-11. ACCUMULATOR AND FLAG REGISTERS. The CPU includes two independent 8-bit ac­

cumulators and associated 8-bit arithmetic or logical operations while the flag register

indicates specific conditions for 8 or 16-bit operations, such as indicating whether

or not the result of an ope rat ion is equal to zero. The programmer selects the

accumul ator and fl ag pai r that he wi shes to work with a s i ngl e exchange instruction

so that he may easily work with either pair.

1-12. GENERAL PURPOSE REGISTERS. There are two matched sets of general purpose

registers, each set containing six 8-bit registers that may be used individually as

8-bit registers or as 16-bit register pairs by the programmer. One set is called BC,

DE and HL while the complementary set is called BC I , DEI and HLI. At anyone time

the programmer can se 1 ect either set of regi sters to work wi th through a s i ngl e exchange

command for the entire set. In systems where fast interrupt response is required

one set of general purpose registers and an accumulator/flag register may be reserved

for handl ing this very fast routine. Only a simple exchange command need be executed

to go between the routines. This greatly reduces interrupt service time by eliminating

the requirement for saving and retrieving register contents in the external stack

during interrupt or subroutine processing. These general purpose registers are used

for a wide range of applications by the programmer. They also simplify programming,

especially inROM based systems where little external read/write memory is available.

1-13. ARITHMETIC & LOGIC UNIT (ALU).

1-14. The 8-bit arithmetic and logical instructions of the CPU are executed in the

ALU. Internally the ALU communicates "lith the registers and the external data bus on

the internal data bus. The type of functions performed by the ALU include:

Add

Subtract

Logical AND

1-4

Logical Or

Logical EXCLUSIVE OR

Compare

Left or right shifts or rotates (arithmetic and logical)

Increment

Decrement

Set bit

Reset bit

Test bit

1-15. INSTRUCTION REGISTER AND CPU CONTROL.

1-16. As each instruction is fetched from memory, it is placed in the instructio

register and decoded. The control section performs this function and then generate

and suppl ies all of the control signals necessary to read or write data from or t

the registers, controls the ALU and provides all required external control signals

2-1

SECTION 2

lSO INSTRUCTION SET

2-1. INTRODUCTION.

2-2. The l80 i nst ruct i on set of 158 i nst ruct ions can best be descri bed by fi rst

discussing in general the main features. These features include its addressing

modes; status and fl ags; interrupt modes; load and exchange instructions; block transfer

and search instructions; arithmetic and logical instructions; rotate and shift in­

s~ructions; bit manipulation instructi9ns; jump, call, and return instructi.ons; input/

output instruction; and miscellaneous instructions. Included in the discussion of

the addressing modes are descriptions of subroutines and subroutine use of the stack.

Followingthis general description of the instruction set, specific information about

the syntax of the assembly language is provided. Then each instruction is described

in detail in alphabetical order.

2-3. INSTRUCTION SET FEATURES.

2-4. ADDRESSING MODES. Most of the l80 instructions operate on data stored in internal

CPU registers, external memory or inthe I/O ports. Addressing refers to how the ad­

dress of this data is generated in each instruction. The following paragraphs gives

a brief summary of the types of addressing used in the Z80. Many instructions include

more than one operand (such as arithmetic instructions or loads). In these cases,

two types of addressing may be employed. For example, load can use immediate ad­

dressing to specify the destination.

2-5. Immediate Addressing. Inthis mode of addressingthe byte following the Op code

in memory contains the actual operand.

OP Code } one or two bytes

Operand

Examples of this type of instruction would be to load the accumulator with a constant,

where the constant is the byte immediately following the OP code.

2-6. Immediate Extended Addressing. This mode is merely an extension of immediate

addressing in that the two bytes following the OP code are the operand.

2-2

OP Code one or two bytes

Operand lower order

Operand high order

Examples of this type of instruction would be to load the HL register pair (16-

bit register) with 16 bits (2 bytes) of data.

2-7. Modified Page Zero Addressing. The Z80 has a special single byte call in­

struction to any of 8 locations in page zero of memory. This instruction (which

is referred to as a restart) sets the PC to an effective address in page zero.

The value of this instruction is that it allows a single byte to specify a com­

plete 16-bit address where commonly called subroutines are located, thus saving

memory space.

El one byte

Effective address is (b5 b4 b3 000)2

2-8. Relative Addressing. Relative addressing use one byte of data following the OP

code to specify a displacement from the existing program to which a program jump can
occur. This displacement is a signed two's complement number that is added to the ad­

dress of the OP code of the following instruction.

OP Code

Operand

Jump relative (one byte OP code)
)

8-bit two's complement displacement

added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while

only requiring two bytes of memory space. For most programs, relative jumps are by
far the most prevalent type of jump due to the proximity of related program seg­

ments. Thus, these instructions can significantly reduce memory space requirements.

The signed displacement can range between +127 and -128 from A+2. This allows for a

2-3

tota 1 di sp 1 acement of +129 to -126 from the jump re 1 at i ve OP code address. Another
major advantage is that it allows for relocatable code.

2-9. Extended Addressing. Extended Addressing provides for two bytes (16 bits)
of address to be included in the instruction. This data can be an address to which
a program can jump or it can be an address where an operand is located.

OP Code one or two
bytes

Low order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location in memory to
any other location, or load and store data in any memory location. When extended
addressi ng is used to specify the source or dest i nati on address of an operand, the
notation (nn) will be used to indicate the content of memory at nn, where nn is the
16-bit address specified in the instruction. This means that the two bytes of address
nn are used as a pointer to memory location. The use of the parentheses always means
that the value enclosed within them is used as a pointer to a memory location. For
example, (1200) refers to the contents of memory at location 1200.

2-10. Indexed Addressing. In this type of addressing, the byte of data following
the Op code contains a displacement which is added to one of the two index registers
(the Op code specifies which index register is used) to form a pointer to memory.
The contents of the index register are not altered by this operation.

OP Code

OP Code

Displacement

I~ two byte OP code

)
Operand added to index register to

form a pointer to memory.

2-11. An example of an indexed instruction would be to load the contents of the
memory location (Index Register + Displacement) into the accumulator. The displace­
ment is a signed two's complement number. Indexed addressing greatly simplifies
programs using tables of data since the index register can point to the start of any
table. Two index registers are provided since very often operations require two or
more tables. Indexed addressing also allows for relocatable code.

2-4

2-12. The two index registers in the ZBO are referred to as IX and IV. To in­

dicate indexed addressing the notation:

(IX+d) or (IY+d)

is used. Here d is the displacment specified after the OP code. The parentheses

indicate that this value is used as a pointer to external memory.

2-13. Register Addressing. Many of the ZBO OP codes contain bits of information

that specify which CPU register is to be used for an operation. An example of

register addressing would be to load the data in register B into register C.

2-14. Implied Addressing. Implied addressing refers to operations where the Op

code automatically implies one or more CPU registers as containing the operands.

An example is the set of arithmetic operations where the accumulator is always implied

to the destination of the results.

2-15. Register Indirect Addressing. This type of addressing specifies a 16-bit

CUP register pair (such as HL) to be used as a pointer to any location in memory.

This type of instruction is very powerful and it is used in a wide range of applications.

I OP Code lone or two bytes

An example of this type of instruction would be to load the accumulator with the

data in the memory location pointed to by the HL register contents. Indexed addressing

is actually a form of register indirect addressing except that a displacement is

added with indexed addressing. Register indirect addressing allows for very powerful

but simple to implement memory accesses. The block move and search commands in the

ZBO are extensions of this type of addressing where automatic register incrementing,

decrementing and comparing have been added. The notation for indicating register in­

direct addressing isto put parentheses around the name of the register that is to be

used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to memory

location. Often register indirect addressing is used to specify 16-bit operands.

In thi s case, the regi ster contents poi nt to the lower order port i on of the operand

while the register contents are automatically incremented to obtain the upper portion

of the operand.

2-16. Bit Addressing. The ZBO contains a large number of bit set, reset and test

instructions. These instructions allow any memory location or CPU register to be

2-5

specified for a bit operation through one of three previous addressing modes (register,

indirect and indexed) while three bits in the OP code specify which of the

eight bits is to be manipulated.

2-17. Stack Pointer Addressing. Memory locations may be addressed in the 16-bit

stack pointer register (SP). There are two stack operations which may be performed:

1. PUSH, which puts data into a stack,

2. POP, which retrieves data from a stack.

Note that the stack area must reside in read/write memory. The stack pointer is

i nit i ali zed to the top 1 ocat i on in the stack at the start of a program. In a stack

operation a 16-bit register pair is transferred to or from the stack.

2-18. For the PUSH operation the contents of the regi ster pai r are transferred to

the Stack:

SP

B

17A

1. The most significant 8-bits of data are stored at the memory address

less one than the contents of the stack pointer.

2. The least significant 8 bits of data are stored at the memory address

less two than the contents of the stack pointer.

3. The stack pointer is automatically decremented by two.

PUSH BC

stack before push Mem Addr stack after push
.- 00 01E"F 00

00 01FE 7A

00 01FD 40 ~SP

00 01FC 00

C B C

40 I 7A 40 I
2-19. For the POP ope rat i on, 16 bits of data are taken from the stack and placed

in the 16-bit register pair:

1. The second register of the pair (or the least significant byte of the pair)

is loaded from the memory address held in the stack pointer.

2. The first register of the pair (or the most significant byte of the pair)

2-6

is loaded from the memory address one greater than the address held in the

stack poi nter.

3. The stack pointer is automatically incremented by two.

POP HL

stack before POP stack after POP
00 01FF 00 P
7A 01FE 7A

SP 40 01FD 40
00 01FC 00

H L H L

IFF FF I 17A 40

2-20. Subroutine Addressing.

2-21. Subroutines are blocks of instructions that can be called during the execution

of a sequence of instructions. Subroutines can be called from main programs or from

other subroutines. A subroutine is entered by the CALL opcode as in:

CALL REWIND

2-22. Parameters such as those used by the macros are not used \'1ith subroutines.

When a calli nstruct ion is encountered duri ng execution of a program, the PC is

changed to the fi rst i nst ruct i on of the subrout i nee The subsequent address of the

invoking program is pushed on the stack. Control will return to this point when

the subroutine is finished. The processor continues to execute the subroutine until

it encounters a RET (return) instruction. At this point the return address is popped

off the stack into the PC, and the processor returns to the address of the instruct ion

following the CALL, to continue execution from that point.

2-23. Subroutines of any size can be invoked from programs or other subroutines of

any size, without restriction. Care must be taken when nesting subroutines (sub­

routines within subroutines) that pushes and pops remain balanced at each level.

If the processor encounters a RET with an un-popped push on the stack, the PC will be

set to a meaningless address rather than to the next instruction following the CALL.

2-24. Tradeoffs must be considered between:

1. Using a block of code repetitively in line, and

2-7

2. calling the block repetitively as a subroutine.

~-25. Program size can usually by saved by using the subroutine. If the repetitive

)lock contains N bytes and it is repeated on M occasions in the program,

1. MxN bytes would be used in direct programming, while

2. 3M (for CALLS)

+ n (for the block)

+ 1 (for the RET)

=3M+N+1 bytes would be required if using a subroutine.

2-26. For example, for a block of 20 bytes used 5 times, in-line programming would

require 100 bytes while a subroutine would require 36.

2-27. An added advantage of subrout i nes is that wi th careful nami ng, program structures

become clearer, easier to read and easier to debug and maintain. Subroutines written

for one purpose can be employed elsewhere in the programs requiring the same functions.

2-28. Subroutines differ from Macros in several ways:

1. Subroutine code is assembled into an object program only once although

it may be called many times. Macro code is assembled in line every

place the macro is used.

2. Registers and pointers required by a subroutine must be set up before

the CALL. No parameters are used and no argument st ri ng can be issued.

Macros, through their use of parameters, can modify the settings of

registers on each occurrence.

2-29. Subroutine Use Of The Stack. When a call to a subroutine is executed, the

contents of the program counter are pushed onto the stack automat i ca 11y. Recall

that the program counter contai ns the next memory address to be executed. After

the PC is pushed onto the stack, the start i ng address of the subrout i ne is placed

into the PC and then branch to the subroutine, a return instruction pops the address

off the stack into the PC, and control is transferred to the memory address after

the call. These operations are automatic when the CALL and RET instruct ions are

executed.

2-8

2-30. Notethat parameters can be passed to a subroutine because the stack and stack

pointer can be manipulated and updated by special Z80 instructions.

2-31. The save type of operat i on as descri bed for a subrout i ne also occurs for

external interrupts monitored by the CPU.

2-32. Z80 STATUS INDICATORS (FLAGS).

2-33. Flag Register. The flag register (F and F') supplies information to the user

regardi ng the status of the Z80 at any gi ven time. The bit pos i t ions for each

flag are shown below:

7 6 5 432 1 0

S Z X H X P/V N C

WHERE:

C = CARRY FLAG

N = ADD/SUBTRACT FLAG

P/V = PARITY/OVERFLOW FLAG

H = HALF-CARRY FLAG

Z = ZERO FLAG

S = SIGN FLAG

X = NOT USED

Each of the Z80 Flag Registers contains 6 bits of status information which are set

or reset by CPU operations. (Bits 3 and 5 are not used.) Four of these bits

are testable (C,P/V ,Z and S) for use with conditional jump, call or return instructions.

Two flags are not testable (H,N) and are used for BCD arithmetic.

2-34. Carry Flag (C). The carry bit is set or reset depending on the operation

bei ng performed. For ADD i nstructi ons that generate a carry and SUBTRACT i nstructi ons
that generate a borrow, the Carry Flag will be set. The Carry Flag is reset by an

ADD that does not generate a carry and a SUBTRACT that does not generate a borrow.

This saved carry facilitates software routines for extended precision arithmetic.

Also, the 'DAA' instruction will set the Carry Flag if the conditions for making

the decimal adjustment are met.

2-35. For instructions RLA, RRA, RL and RR, the carry bit is used as a link bet-

2-9

ween the LSB and MSB for any register or memory location. During instructions RLCA t

RLC sand SLA St the carry contains the last value shifted out of bit 7 of any

register or memory locations. During instructions RRCA t RRC St SRA sand SRL s the

carry contains the last value shifted out of bit a of any register or memory location.

2-36. For the logical instructions AND St OR sand XOR St the carry will be reset.

2-37. The Carry Flag can also be set (SCF) and complemented (CCF).

2-38. Add/Subtract Fl ag (N). Thi s fl ag is used by the decimal adjust accumul ator

instruction (DAA) to distinguish between ADD and SUBTRACT instructions. For all

ADD instructions t N will be set to a 1.

2-39. Parity/Overflow Flag. This flag is set to a particular state depending on

the operation being performed.

2-40. For arithmetic operations t this flag indicates an overflow condition when the

result in the Accumulator is greater than the maximum possible number (+127) or less

than the minimum possible number(-128). This overflow condition can be determined

by examining the sign bits of the operands.

2-41. For addition t operands with different signs will never cause overflow. When

adding operands with like signs and the result has a different sign t the overflow

flag is set. For example:

+120 = 0111 1000 ADDEND

+105 = 0110 1001 AUGEND

+225 = 1110 0001 (-95) SUM

The addi ng of the two numbers together has resulted ina number that exceeds +127

and the two positive operands cause a negative number (-95) which is incorrect. The

overflow flag is therefore set.

2-42. For subtraction t overflow can occur for operands of unlike signs. Operands

of like sign will never cause overflow. For example:

-127 0111 1111 MINUEND

(-) -64 1100 0000 SUBTRAHEND

+191 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative t glvlng an incorrect dif­

ference. Overflow is therefore set. Another method for predi ct i ng an overflow is

to observe the carry into and out of the sign bit. If there is a carry in and

no carry out t or if there is no carry in and a carry out t then overflow has occurred.

2-10

2-43. This flag is also used with

di cate the parity of the result.

the total is odd, ODD parity (P=O)

flagged (P=l).

logical operations and rotate instructions to in-

The number of 1 bi ts ina byte are counted. If

is flagged. If the total is even, EVEN parity is

2-44. During search instructions CPI, CPIR, CPO, and CPDR and block transfer in­

structions LDI, LDIR, LDD, and LDDR, the P/V flag monitors the state of the byte

count register (BC). When decrementing, the byte counter results in a zero value,

the flag is reset to 0; otherwise, the flag is a 1.

2-45. During LD A,I and LD A,R instructions, the P/V flag will be set with the

contents of the interrupt enable flip-flop (IFF2) for storage or testing.

2-46. When inputting a byte from an I/O device, IN r,(C), the flag will be adjusted

to indicate the parity of the data.

2-47. Half Carry Flag (H). The Half Carry Flag (H) will be set or reset depending on

the carry and borrow status between bits 3 and 4 of an 8-bit arithmetic operation. This

flag is used by decimal adjust accumulator instruction (DAA) to correct the resultofa

packed BCD add or subtract operation. The H flag will be set (1) or reset (0) ac­

cording to the following table:

H

1

a

ADD

There is

Bit 3 to

There is

from Bit

a carry from

Bit 4

no carry from

3 to Bit 4

SUBTRACT

There is a borrow from bit 4

There is no borrow from bit 4

2-48. Zero Flag (Z). The Zero Flag (Z) is set or reset if the result generated by

the execution of certain instructions is a zero.

2-49. For 8-bit arithmetic and logical operations, the Z flag will be set to a 1 if

the resulting byte in the Accumulator is zero. If the byte is not zero, the Z flag

is reset to O.

2-50. For compare (search) instructions, the Z flag will be set to a 111 if a com­

parison is made between the value in the Accumulator and the memory location pointed

to by the contents of the register pair HL.

2-11

2-51. When testing a bit in a register or memory location, the Z flag will contain

the complemented state of the indicated bit (see Bit b,s).

2-52. When inputting or outputting a byte between a memory location and an I/O device
,

(INI;IND:OUTI and OUTD), if the result of B-1 is zero, the Z flag is set; otherwise,

it is reset. Also for byte inputs from I/O devices using IN r,(C), the Z flag is

set to indicate a zero byte input.

2-53. Sign Flag (S). The Sign Flag (S) stores the state of the most significant

bit of the Accumulator (Bit 7). When the Z80 performs arithmetic operations on signed

numbers, bi nary two' s complement notat ion is used to represent and process numeri c

information. A positive number is identified by a 0 in bit 7. A negative number is

identified by a 1. The binary equivalent of the magnitude of a positive number is

stored in bits 0 to 6 for a total range of from 0 to 127. A negative number is

represented by the two's complement of the equivalent positive number. The total range

for negative numbers is from -1 to -128.

2-54. When inputting a byte from an I/O device to a register, IN r, (C), the S flag

will indicate either positive (S=O) or negative (S=l) data. The state of the four

testable flags is specified as follows:

FLAG ON CONDITION OFF CONDITION

Carry

Zero

Sign

Parity

C

Z

M (minus)

PE (even)

NC

NZ

P (plus)

PO (odd)

2-55. INTERRUPTS. The purpose of an interrupt is to allow peripheral devices to

suspend CPU operation in an orderly manner and force the CPU to start a peripheral

service routine. Usually this service routine is involvedwith the exchange of data,

or status and control information, between the CPU and the peripheral. Once the service

routine is completed, the CPU returns to the operation from which it was interrupted.

2-56. Interrupt Types.

Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When

this occurs, the CPU ignores the next instruction that it fetches and instead

does a restart to location 0066H. Thus, it behaves exactly as if it had re­

ceived a restart instruction but it is to a location that is not one of

the 8 software restart locations. A restart is merely a call to a specific address

in page a of memory.

2-12

Maskable

The CPU can be programmed to respond to the maskable interrupt in any

one of the possible modes.

Mode 0

This mode is identical to the SOSOA interrupt response mode. With this

mode, the interrupting device can place any instruction on the data bus and

the CPU will execute it. Thus, the interrupting device provides the next in­

struction to be executed instead of the memory. Often this will be a restart

instruction since the interrupting device only needs to supply a single byte in­

struction. Alternatively, another instruction such as a 3 byte call to any

location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more

than the normal number for the instruction. This occurs since the CPU automatically

adds 2 wait states to an interrupt response cycle to allow sufficient time to

implement an external daisy chain for priority control. After the application

of RESET the CPU will automatically enter interrupt Mode o.

Mode 1

When thi s mode has been sel ected by the programmer, the CPU wi 11 respond to

an interrupt by executing a restart to 1 ocat ion 003SH. Thus the response is

identical to that for a non-maskable interrupt except that the call location is

003SH instead of 0066H. Another difference is that the number of cye 1 es requ ired

to complete the restart instruction is 2 more than normal due to the two added

wa it states.

Mode 2

This mode is the most powerful interrupt response mode. With a single S

bit byte from the user, an indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16-bit starting addresses

for every interrupt servi ce rout i nee Th i s tabl e may be located anywhere in memory.

When an interrupt is accepted, a 16-bit poi nter must be formed to obtai n the des ired

interrupt service routine starting address from the table. The upper S bits of

thi s poi nter are formed from the contents of the I Regi ster. The I Regi ster must

have been previously loaded with the desired value by the programmer, i.e. LD I, A.

Note that a CPU reset clears the I register so that it is initialized to zero.

The lower ei ght bits of the poi nter must be suppl i ed by the interrupting devi ceo

Actually only 7 bits are required from the interrupting device as the least

significant bit must be a zero. This is required since the pointer is used to get

2-13

two adjacent bytes to form a complete 16-bit service routine starting address,

and the addresses must always start in even locations.

Interrupt

Service

Routine

Start i ng

Address

Table

lower order

high order

desired starting address

poi nted to by:

I REG 7 BITS FROM

CONTENTS PERIPHERAL 0

The first byte inthetable is the least significant (low order) portion of the

address. The programmer must obviously fill this table in with the desired

addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it

is stored in Read/Write Memory) to allow different peripherals to be serviced

by different service routines.

Once the interrupt i ng devi ce suppl i es the lower portion of the poi nter, the

CPU automatically pushes the program counter onto the stack, obtains the starting

address from the table and does a jump to this address. This mode of response

requires 19 clock periods to complete (7 to fetch the lower 8 bits from the

interrupting device, 6 to save the program counter, and 6 to obtain the jump

address) •

Note that the Z80 peripheral devices all include a daisy chain priority

interrupt structure that automatically suppl i es the programmed vector to the

CPU during interrupt acknowledge. Refer to the Z80 PIO, Z80 SIO, and Z80 CTC

manuals for details.

2-57. Interrupt Enable - Disable.

2-58. The Z80 CPU has two interrupt inputs, a software maskable interrupt and a

non-maskable interrupt. The non-maskable interrupt (NMI) can not be disabled by the

programmer and it will be accepted whenever a peripheral device requests it. This

interrupt is generally reserved from very important functions that must be servi ced

whenever they occur, such as an impending power failure. The maskable interrupt (INT)

can be selectively enabled or disabled by the programmer. This allows the programmer

to disable the interrupt during periods where his program has timing constants that

2-14

do not allow it to be interrupted. In the Z80 CPU there are enable flip flops (called

IFFI and IFF2) that are set or reset by the programmer using the Enable Interrupt

(EI) and Disable Interrupt (01) instructions. When the IFFI is reset, an interrupt

cannot be accepted by the CPU. Table 2-1 surrmarizes the effect of the different

instructions on the two enable flip flops.

2-59. There are two enable flip flops, called IFFI and IFF2•

IFFI IFF2

Actually disables interrupts

from being accepted.

The state of IFF 1 is used to actually

temporary storage 1 ocat i on for IFF 1.

sequently explained.

Temporary storage location

for IFF1•

inhibit interrupts while IFF2 is used as a

The purpose of storing the IFFI will be sub-

2-60. A reset to the CPU will force both IFFI and IFF2 to the reset state so that

interrupts are disabled. They can then be enabled by an EI instruction at any time

by the programmer. When anEI instruction is executed, any pending interrupt request

will not be accepted until after the instruction following EI has been executed.

This single instruction delay is necessary for cases when the following instruction is

a return instruction and interrupts must not be allowed until the return has been

completed. The EI instruction sets both IFFI and IFF2 to the enable state. When an

interrupt is accepted by the CPU, both IFFI and IFF2 are automatically reset, inhibiting

further interrupts until the programmer wishes to issue a new EI instruction. Note that

for all of the previous cases, IFFI and IFF2 are always equal.

2-61. The purpose of IFF2 is to save the status of IFFI when a non-maskable in­

terrupt occurs. When a non-maskable interrupt is accepted, IFFI is reset to prevent

further interrupts until reenabled by the programmer. Thus, after a non-maskable

interrupt has been accepted, maskable interrupts are disabled but the previous state

of IFF 1 has been saved so that the complete state of the CPU just pri or to the non­

maskable interrupt can be restored at anytime. When a Load Register A with Register I

(LD A,I) instruction or a Load Register A with Register R (LD A,R) instruction is

executed, the state of IFF2 is copied into the parity flag where it can be tested

or stored.

2-62. A second method of restori ng the status of IFF 1 is thru the execution of a Return

from Non-Maskable Interrupt (RETN) instruction. Since this instruction indicates that

the non-maskable interrupt service routine is complete, the contents of IFF2 are

2-15

now copied back into IFF1, so that the status of IFF1 just prior to the accept­
ance of the non-maskable interrupt will be restored automatically.

Action
CPU Reset
01

EI
LD A, I
LD A,R
Accept NMI
RETN
RET!
Accept INT

Table 2-1. Interrupt Enable/Disable Flip Flops

IFF1 IFF2
o 0

o 0

1 1

o o

IFF2 --> Parity flag
IFF2 --> Parity flag

IFF2 --> IFF1

11.11 indicates no change

2-63. LOAD AND EXCHANGE INSTRUCTIONS. These instructions move data to and from
regi sters, such as load B from D, load C from memory, store HL into memory, push
IX into stack, and exchange AF with AF'.

2-64. BLOCK TRANSFER AND SEARCH INSTRUCTIONS. This group includes several useful
instructions.

2-65. The load and increment instruction moves one byte of data from memory pointed
to by HL to another memory location pointed to by DE". Both register pairs are auto­
matically incremented and the byte counter (BC) is decremented. This instruction is
extremely valuable in moving blocks of data.

2-66. Another instruction repeats the load and increment instruction automatically
until the byte counter reaches zero. Thus, in one instruction, a block of data, up
to 64K bytes in length, can be moved anywhere in memory.

2-67. The compare and increment instruction compares the contents of the accumulator
with that of memory pointed to by HL. The appropriate flag bits are set, HL is
automatically incremented, and the byte counter is decremented.

2-68. The compare, increment, and repeat instruction repeats the above instruction
until either a match is found or the counter reaches zero.

2-69. ARITHMETIC AND LOGICAL INSTRUCTIONS. These instructions include all the adds

2-16

and subtracts, increments,compares, exclusive-ors, etc. TheZ80 features the indexed

addressing mode and double precision add with carry and subtract with carry.

2-70. ROTATE AND SHIFT INSTRUCTIONS. The Z80 included four rotate accumulator in­

structions and logical shifts and arithmetic shifts. There are also two rotate

digit instructions which are applicable to BCD arithmetic. With these adigit (4 bits)

can be rotated with two digits in a memory location.

2-71. BITMANIPULATION INSTRUCTIONS. There are three basic bit manipulation operations:

test bit, set bit, and reset bit.

2-72. JUMP, CALL, AND RETURN. The Z80 has numerous conditional and unconditional

jumps, calls, and returns. In addition, the Z80 has several jump relative instructions

using relative addressing.

2-73. INPUT/OUTPUT INSTRUCTIONS.

2-74. The Z80 allows for a standard common I/O routine for all devices by including I/O

instructions that use the C register to contain the 10 device address. Therefore one

I/O rout i ne can be used with devi ce address pl aced into regi ster C before enteri ng the

routine. Also instead of being restricted to inputting or outputting to and from the

accumul ator only, any regi ster can be used.

2-75. TheZSO has eight block tranfer I/O instructions which are sirnilartothe memory

block transfer instructions. HL is the memory pointer, C is the device pointer,

and B is the byte counter. Therefore, an I/O block transfer can handle up to 256 bytes.

Essentially, these commands are a processor implementation of direct memory access

(DMA), invoked by a software sequence.

2-76. MISCELLANEOUS FEATURES. The ZSO instruction set also includes a no-operation

instruction.

2-77. zao ASSEMBLY LANGUAGE SYNTAX.

2-78. INTRODUCTION.

2-79. The assembly language of the ZSO is designed to minimize the number of dif­

ferent opcodes corresponding to the set of basic machine operations and to provide

for a consistent description of instruction operands. The nomenclature has been defined

with special emphasis on mnemonic value and readability.

2-17

2-80. An assembly language program, or source program, consists of statements in a

sequence which defines the user's program. The statements consist of:

1. 1 abel s,

2. opcodes or pseudo-ops

3. operands, and

4. comments.

2-81. Certain rules define how assembly language statements are to appear. A state­

ment has four separate and distinct parts or fields.

LABEL OPCODE OPERANDS COMMENT

e.g.: LOOP: LD HL, VALUE ;GET VALUE

2-82. The first field is the LABEL field. The label is a name used to reference

the program counter, another label, or a constant.

2-83. The second field is the OPCODE field. It specifies the operation to be performed.

There are 74 Z80 opcodes and several pseudo-ops that are standard for the Z80. The

standard pseudo-ops are described in Appendix B.

2-84. Thethird field is the OPERAND field. It provides address or data information

for the OPCODE field. There may be zero or more operands in the operand field de­

pending on the requirements of the opcode field.

2-85. The fourth field is the COMMENT field. It is used to document a program.

The comment field may appear in a statement without the other fields. Comments are

ignored by an assembler, but they are printed in the assembly listing.

2-86. Each of the above parts, or fi e 1 ds, must be separated from each other by one

or more commas, tabs, or blanks. If more than one operand appears, they must be separated

from each other by one or more commas.

2-87. LABELS

2-88. A label is a symbol representing up to 16 bits of information and is used

to specify an address or data. By using labels effectively, the user can write as­

sembly language programs more rapidly and make fewer errors.

2-18

2-89. A label is composed of one or more characters. If more than 6 characters ar
used for the label, only the first 6 will be recognized by a standard assembler
The first character of a label must not be a number (0-9) or a restricted character
The remaining characters connot include a restricted character. The restricted char
acters are:

Control characters (0-2FH,7FH)
Space
I () * = , _ • /
: ; < = >

Note that single dollar sign ($) is reserved to represent the program counter.

2-90. A label can start in any column if followed by a colon (:). It does no
require a colon if started in column one.

2-91. OPCODES. The bulk of this manual describes the Z800pcodes. Opcodes are
to 4 characters long and describe Z80 instructions.

2-92. STANDARD OPERANDS. There may be zero or more operands present in a statemen
dependi ng upon the opcode used. An operand whi ch appears ina statement may tak
one of the following forms.

1. A generic operand, such as the letter A, which stands for the accumulator
2. A constant. The constant must be in the range 0 through OFFFFH. It can be i
the following forms:

Decimal - Any number may be denoted as decimal by foll owing it with th
letter ID I. E.g., 35,249D. However, the assembler will conside
any number which is undesignated as decimal.

Hexadecimal - must begin with a number (0-9) and end with the letter IHI
E.g., OAFlH

Octal - must end with the letter IQI or 10 1• E.g., 377Q, 2770
Binary - must end with the letter lB. e.g., 0110111B
ASCII - letters enclosed in quote marks will be converted to their ASCI

equivalent value. E.g., IAI = 41H

3. A 1 abe 1 whi ch appears elsewhere in the program. Note that 1 abe 1 s canno'
be defined by labels which have not yet appeared inthe user program for 2-pas
assemblers.

E. g. :

L EQU H

H EQU I

I EQU 7 IS NOT ALLOWED.

I EQU 7

H EQU I

L EQU H IS ALLOWED.

2-19

4. The symbol $ is used to represent the value of the program counter of the

current instruction.

5. Expressions. Expression evaluation capability is a function of the features

of a particular assembler. In general, arithmetic and logical expressions are al­

lowed, and parentheses may be used to assure correct evaluation.

2-93. OPERAND NOTATION. The following notation is used in the assembly language:

1) r specifies anyone of the following registers: A,B,C,D,E,H,L.

2) (HL) specifies the contents of memory at the location addressed by the contents

of the register pair HL.

3) n specifies a one-byte expression in the range 0 to 255. nn specifies a two

byte expression in the range 0 to 65535.

4) d specifies a one-byte expression in the range (-128,127).

5) (nn) specifies the contents of memory at the location addressed by the two-byte

expression nne

6) b specifies an expression in the range (0.7).

7) e specifies a one-byte expression in the range (-126,129).

8) cc specifies the state of the flags for conditional JR and JP instructions.

9) qq specifies anyone of the register pairs BC, DE, HL or AF.

10) ss specifies anyone of the following register pairs: BC, DE, HL, SP.

11) pp specifies anyone of following register pairs: BC,DE, IX, SP.

12) rr specifies anyone fo the following register pairs: BC, DE, IV, SP.

13) Specifies any of r,n, (HL, (IX+d), (IV+d).

14) dd specifies anyone of the following register pairs: BC, DE, HL, SP.

15) m specifies any of r, (HL), (IX+d), (IV+d).

The enclosing of an expression wholly in parentheses indicates a memory ad-

NOTE: dress. The contents of the memory address equivalent to the expression

value will be used as the operand value.

2-20

2-94. Indoing relative addressing, the current value of the program counter must be
subt racted from the 1 abe 1 if a branch is to be made to that 1 abe 1 address. E. g. :

JR NC,LOOP-$
••• will jump relative to 'LOOP'

2-95. COMMENTS. A comment is defined as any string of characters following a semi­
colon. Comments are ignored by an assembler, but they are printed on the assembly
listing. Comments can begin in any column:

this is a comment

2-96. UPPER/LOWER CASE.

NOTE: MOSTEK assemblers allow the user of lower case 1 etters for 1 abe 1 sand
comments.

2-97. OPCODES - DETAILED DESCRIPTIONS.

2-98. INTRODUCTION. This section describes each Z80 opcode (instruction) in detail.
The opcodes are presented in alphabetical order, one per page. Each instruction is
introduced by its mnemonic opcode and symbolic operands. Then follows a brief de­
scription, operation, valid operand combinations, machine code, detailed description,
condition bits affected, and one or more examples.

2-21

ADCA,s
Jperation. A ~ A + s + CY

=-ormat:

Opcode Operands

ADC A,s

rhe s operand is any of r,n, (HL),IX+d) or (IY+d) as defined for the analogous ADD

instruct i on. These vari ous poss i b 1 e opcode-operand combi nat ions are assembled as fol­

lows in the object code:

ADC A,r 11 I 0 : ° : ° :~:r* : : ~I
ADC A ,n 11>:a:a»:~ CE

I ~ ~ : ;n I

: : i ~ I
ADC A,(HL)

1
1:°:0»» ° I

8E
I

ADC A,(IX+d) II»»»> DO

11 :a : °
I

> > > :0 °
8E

I~ I i : d : : ; :~
ADC A, (I Y +d)

1
1»»>:°:1 FD

11 :a :a:a > > > :0 I 8E

I ~ : : >: : : : ·1
r i dent ifi es regi sters B,C ,0, E,H,L or A assembled as follows in the object code

ield above:

2-22

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The s operand, alongwith the Carry Flag (IIC II intheFregister) is added tothe contents
of the Accumulator, and the result is stored in the Accumul ator.

INSTRUCTION M CYCLES T STATES
ADC A,r 1 4
ADC A,n 2 7(4,3)
ADC A, (HL) 2 7(4,3)
ADC A, (IX+d) 5 19(4,4,3,5,3)
ADC A, (IY+d) 5 19(4,4,3,5,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwise
H: Set if carry from

Bit 3; reset otherwise
P/V: Set if overflow:

reset otherwise
N: Reset
C: Set if carry from

Bit 7; reset otherwise

Example:

If theAccumulator contains 16H, the Carry Flag is set, the HL register pair contains
6666H, and address 6666H contains 10H, after the execution of

ADC A,(HL)
the Accumulator will contain 27H.

2-23

ADCHL,ss
Operation: HL~HL+ss+CY

Format:

Opcode Operands
ADC HL,ss

11:1:1:0:1:1:0:1IED

I 0:1:5:S:1:0:1:0 I
Description:

The contents of register pair ss (any of register pairs DC, DE, HL or SP) are added

with the Carry Flag (C flag in the F register) to the contents of register pair HL,
and the result is stored in HL. Operand ss is specified as follows in the assembled

object code.
Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits affected:

S. Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwi se

H: Set if carry out of
Bit 11; reset otherwise

P/V: Set if overflow;

reset otherwi se
N: Reset
C: Set if carry from

Bit 15; reset otherwise

2-24

Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the Carry
Flag is set, after the execution of

ADC HL, BC

the contents of HL will be 765AH.

2-25

ADD A, (HL)

Operation: Af-- A + (HL)

Format:
Opcode Operands
ADD A,(HL)

I < 0: 0: a: 0: 1 : 1 : a I 86
Description:

The byte at the memory address specified by the contents of the HL register pair is
added to the contents of the Accumulator and the result is stored in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected:

Example:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

PjV: Set if overflow;
reset otherwise

N: reset
C: Set if carry from

Bit 7; reset otherwise

If the contents of the Accumulator are AOH, and the content of the register pair HL
is 2323H, and memory location 2323H contains byte 08H after the execution of

ADD A, (HL)
the Accumulator will contain A8H.

2-26

ADD A, (IX+d)
Operation: Af-- A + (IX+d)

Format:
Opcode
ADD

Operands
A, (I X+d)

\1 : 1 : a: 1 > > : a : 1 \ DO

11 : 0 : a : 0 : 0 : 1 : 1 : 0 \ 86

\.: : : : d: : : .1
Description:

The contents of the Index Register (register pair IX) is added to a displacemer
d to poi nt to an address in memory. The contents of thi s address is then added t

the contents of the Accumulator and the result is stored in the Accumulator.

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwise
H: set if carry from

Bit 3; reset otherwise
P/V: Set if overflow;

reset otherwise
N: Reset
C: Set if carry from

Bit 7; reset otherwise
Example:

If the Accumulator contents are llH, the Index Register IX contains 100(}i, and if th
content of memory location

2-27

l005H is 22H, after the execution of

ADD A, (IX+5H)

the contents of the Accumulator will be 33H.

2-28

ADD A, (IV +d)
Operation: A ~ A+(IY+d)

Format:

Opcode

ADD

Operands

A,(IY+d)

11;1;1;1;1;1;0;11 FD

11 : 0 : a : 0 : a : 1 : 1 : 0 I 86

I·: : : : d: : : ·1
Description:

The contents of the Index Register (register pair IY) are added to a displacem

d to poi nt to an address in memory. The contents of thi s address is then addl

to the contents of the Accumul ator and the result is stored in the Accumul ato

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected:

S: Set if result is negative;

reset otherwise

Z: Set if result is zero;

reset otherwi se

H: Set if carry from

Bit 3; reset otherwise

PjV: Set if overflow;

reset otherwi se

N: Reset

C: Set if carry from bit 7:

reset otherwi se

Example:

If the Accumulator contents are llH, the Index Register pair IY contains 10001
and if the content of memory

2-29

location l005H is 22H, after the execution of

ADD A,(IY+5H)

the contents of the Accumulator will be 33H.

2-30

ADDA,n
Operation: A~ A + n

Format.
Opcode Operands
ADD A,n

11 : 1 : 0 : 0 : 0 : 1 : 1 : 0 I C6

I ~: : : r : : : ~ I
Description:

The integer n is added to the contents of the Accumulator and the results are storE
in the Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected:

Example:

S: Set if result is negative;
reset otherwi se

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

P/V: Set if overflow;
reset otherwise

N: Reset
C: Set if carry from

Bit 7; reset otherwise

If the contents of the Accumulator are 23H, after the execution of
ADD A,33H

the contents of the Accumulator will be 56H.

2-31

ADDA,r
Operation: A ~ A + r

Format:
Opcode Operands
ADD A,r

11 : a : a ,10 : a : f r~1
Description:

The contents of register r are added to the contents of the Accumulator, and the result

is stored in the Accumulator. The symbol r identifies the registers A,B,C,D,E,H or
L assembled as follows in the object code:

Register r

A 111

B 000

C 001

0 010

E 011

H 100

L 101

M CYCLES: 1 T STATES: 4

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero:

reset otherwise

H: Set if carry from
Bit 3; reset otherwise

PjV: Set if overflow;

reset otherwi se
N: Reset
C: Set if carry from

Bit 7; reset otherwise

2-32

Example:

If the contents of the Accumul ator are 441-1, and the contents of regi ster Care lH

after the execution of

ADD A,C

the contents of the Accumulator will be 55H.

Operation: HL ~ HL + ss

Format:
Opcode
ADD

Operands
HL,ss

I 0: 0 : s : s : 1 : 0 : 0 : 1 I
Description:

2-33

ADDHL,ss

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are added
to the contents of register pair HL and the result is stored in HL. Operand ss is
specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M CYCLES: 3 T STATES: 11(4,4,3)

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Set if carry out of

Bit 11; reset otherwi se
PjV: Not affected

N: Reset
C: Set if carry from

Bit 15; reset otherwise

2-34

Example:

If register pair HL contains the integer 4242H and register pair DE contains l111H,

after the execution of

ADD HL,DE

the HL register will contain 5353H

2-35

ADDIX,pp

Operation: IX ~ IX + pp

Format:
Opcode Operands
ADD IX,pp

I 1 : 1 : ° : 1 : 1 : 1 ; 0 : 1 I DD

10;0;P;P;I;0;0;1 I
Description:

The contents of register pair pp (any of register pairs BC,DE, IX or SP) are added to
the contents of the Index Register IX, and the results are stored in IX. Operand
pp is specified as follows in the assembled object code.

Register
Pair
BC
DE
IX
SP

.EE.
00

01

10

11

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:
S; Not affected
Z: Not affected
H: Set if carry out of

Bit 11; reset otherwise
PjV: Not affected

N: Reset
C: Set if carry from

Bit 15; reset otherwise

2-36

Example:

If the contents of Index Reg; ster IX are 3333H and the contents of reg; ster pai r BC are
5555H, after the execution of

ADD IX,BC

the contents of IX will be 8888H.

)perat i on: 1 Y ~ 1 Y + rr

=-ormat:

Opcode
ADD

Operands
IY,rr

\1:1:1:1:1:1:0:11 FD

1 0 : 0 : r : r : 1 : 0 : 0 : 1 I

Description:

2-37

ADD IV, rr

The contents of register pair rr (any of register pairs BC,DE,IY or SP) are added
to the contents of Index Register IY, and the result is stored in IY. Operand rr is
specified as follows in the assembled object code.

Register
Pair rr
BC 00

DE 01

IV 10

SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Set if carry out of

Bit 11; reset otherwise
PjV: Not affected

N: Reset
C: Set if carry from

Bit 15; reset otherwise

2-38

Example:

If the contents of Index Register IV are 3333H and the contents of register pair
are 5555H, after the execution of

ADD IV,BC

the contents of IV will be 8888H.

Operation: A ~ A s

Format:
Opcode
AND

Operands
s

2-39

ANDs

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous
ADD instructions. These various possible opcode-operand combinations are assembled
as follows in the object code:

AND r 1 : 0: 1 : ° : ° : ~:r-71
AND n «1:°:°:«°1 E6

~ i i i n i i i i ~ I
AND (HL) «<0:0:<1:°1 A6

AND (IX+d) 1«°:«<°:11 DD

1<°:<°:°:<1:°1 A6

I ~ i i ; d i i i i· l
AND (IY+d) 1«1:1:«0:11 FD

1<°:<°:0:<1:°1 A6

I ~ i i : d i i i : ·1
*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field

above:

2-40

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

A logical AND operation, bit by bit, is performed between the byte specified by the s
operand and the byte contained in the Accumulator; the result is stored in the Ac­
cumulator.

INSTRUCTION
AND r
AND n
AND (HL)
AND (IX+d)
AND (IY+d)

M CYCLES
1
2
2
5
5

Condition Bits Affected:
S: Set if result is

reset otherwi s e
Z: Set if result is

reset otherwi se
H: Set

T STATES
4
7 (4,3)
7 (4,3)
19(4,4,3,5,3)
19(4,4,3,5,3)

negative;

zero:

P/V: Set if parity even;
reset otherwise

N: Reset
C: Reset

Example: If the B register contains 7BH (01111011) and the Accumulator conta,ins C3H
(11000011) after the execution of

AND B
the Accumulator will contain 43H (01000011).

Operation: Z ~ (HL)b

Format:

Opcode

BIT
Operands

b, (HL)

I < < 0 : a : < a : 1 : 1 I CB

10:1:~b7:1:1:01
Description:

2-41

BIT b, (HL)

After the execution of this instruction, the Z flag in the F register will contain

the complement of the indicated bit within the contents of the memory address pointed

to by the HL regi ster pai r. Operand b is specifi ed as foll ows in the assembled object

code:

Bit Tested b

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M CYCLES: 3 T STATES: 12(4,4,4)

Condition Bits Affected:

S: Unknown

Z: Set if specified bit is

0; reset otherwise

H: Set

P/V: Unknown

H: Reset

C: Not affected

2-42

Example:

If the HL register pair contains 4444H, and bit 4 in the memory location 4444H con­
tains 1, after the execution of

BIT 4, (HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 4444H will
still contain 1. (Bit 0 in memory location 4444H is the least significant bit.)

Operation: Z ~ (IX+d)b

Format:

Opcode

BIT
Operands

b,(IX+d)

I < 1 : 0 > : 1 : 1 : a : 1 I DO

11 : 1 : 0 : a : 1 : a : 1 : 1 I CB

I.: : : d: : : :. I
10:1:~b~:1:1:01

Description:

2-43

BIT b, (IX+d)

After the execution of this instruction, the Z flag in the F register will contain

the complement of the indicated bit within the contents of the memory location pointed

to by the sum of the contents of register pair IX (Index Register IX) and the two's

complement displacement integer d. Operand b is specified as follows in the assembled

object code.

Bit Tested b

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M CYCLES: 5 T STATES: 20(4,4,3,5,4)

2-44

Condition Bits Affected:

S: Unknown

Z: Set if specified bit is

0; reset otherwise

H: Set

PjV: Unknown

N: Reset

c: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location 2004H

contains 1, after the execution of

BIT 6, (IX+4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H

will still contain 1. (Bit 0 in memory location 2004H is the least significant bit).

Operation: Z f-- (IY+d)b

Format:

Opcode

BIT
Operands

b,(IY+d)

11 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

11 : 1 : 0 : 0 : 1 : a : 1 : 1 I CB

I·: : >: : : : ·1
10>:~b~:1:<11

Description:

2-45

BIT b, (IV+d)

After the execution of this instruction, the Z flag in the F register \~ill contain

the complement of the indicated bit within the contents of the memory location pointed

to by the sum of the contents of register pair IY (Index Register IY) and the two·s

complement displacement integer d. Operand b is specified as follows in the assembled

object code:

Bit Tested b

a 000

1 001

2 010

3 Oll

4 100

5 101

6 110

7 111

M CYCLES: 5 T STATES: 20(4,4,3,5,4)

2-46

Condition Bits Affected:

$: Unknown
Z: Set if specified bit is

0; reset other wise
H: Set

P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location 2004H
contains 1, after the execution of

BIT 6, (IY+4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H will
still contain 1. (Bit 0 in memory location 2004H is the least significant bit).

Operation: Z ~ rb

Format:

Opcode

BIT
Operands

b,r

11 : 1 ; a ; 0 ; 1 ; 0 ; 1 : 1 I CB

10: 1; +b:->; ~r~1
Description:

2-47

BIT b, r

After the execution of this instruction, the Z flag in the F register will contain

the compl ement of the i ndi cated bit with; n the contents of the r - regi ster. Operands b

and rare specified as foll ows in the assembled object code:

Bit Tested b register r -
0 000 B 000

1 001 C 001

2 010 0 010

3 all E all
4 100 H 100

5 101 L 101

6 110 A 111

7 111

M CYCLES: 2 T STATES: 8 (4,4)

Condition Bits Affected:

S: Unknown

Z: Set if specified bit is

o· , reset otherwi se

H: Set

P/V: Unknown

H: Reset

C: Not affected

2-48

Example:

If bit 4 in the B-register contains 1, after the execution of

BIT 4, B

the Z flag in the F register will contain 0, and bit 4 in the B register will still
contain 1. (Bit a in the B-register is the least significant bit.)

2-49

CALLcc, nn
O~eration: IF cc TRUE: (SP-l) ~PCH

(SP-2) ~PCL' PC ~ nn

Format:

O~code O~erands

CALL cC,nn

11 : 1 : ~ cc ~: 1 : 0 : 0 I

I·: : : n:: ;. I

I~: : : nI : : :·1
Note: The first of the two n operands in the assembled object code above is the least

significant byte of the two-byte memory address.

Descri~tion:

If condition cc is true, this instruction pushes the current contents of the Pro­

gram Counter (PC) onto the top of the external memory stack, then loads the operands

nn into PC to point to the address in memory where the first opcode of a subroutine

is to be fetched. (At the end of the subroutine, a Return instruction can be used to

returntothe original program flow by popping the top of the stack back into PC.) If

condition cc is false, the Program Counter is incremented as usual, and the program

continues with the next sequential instruction. The stack push is accomplished by

first decrementing the current contents of the Stack Pointer (SP), loading the high­

order byte of the PC contents into the memory address now poi nted to by SP; then

decrementing SP again, and loading the low-order byte of the PC contents into the

top of the stack. Note: Because this is a 3-byte instruction, the Program Counter

will h'ave been incremented by 3 before the push is executed. Condition cc is programmed

2-50

as one of eight status which corresponds to condition bits in the Flag RegistE

(register F). These eight status are defined in the table below, which also specifiE

the corresponding cc bit fields in the assembled object code:

CC Condition Relevant

Flag

000 NZ non zero Z

001 Z zero Z

010 NC non carry C

011 C carry C

100 PO parity odd P/V

101 PE parity even P/V

110 P sign positive S

111 M sign negative S

If cc is true:

M CYCLES: 5 T STATES: 17(4,3,4,3,3)

If cc is false:

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the C Fl ag in the F regi ster is reset, the contents of the Program Counter are

1A47H, the contents of the Stack Poi nter are 3002H, and memory 1 ocat ions have the

contents:

Location Contents

1A47H D4H

1A48H 35H

1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H

will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC,2135H

2-51

After the execution of this instruction, the contents of memory address 3001H will be

1AH, the contents of address 3000H wi 11 be 4AH, the contents of the Stack Poi nter

wi 11 be 3000H, and the contents of the Program Counter wi 11 be 2135H, poi nt i ng to the

address of the first opcode of the subroutine now to be executed.

2-52

CALL nn
Operation: (SP-1) ~ PCH, (SP-2) ~PCL' PC ~nn

Format:

Opcode

CALL

Operands

nn

I < < 0 : 0 : 1 : < 0 : 1 I CD

I·: : : n: : : : ~ I

I ~:I : n I : : : ~ I
Note: The fi rst of the two n operands in the assembled object code above is the 1 east

significant byte of a two-byte memory address.

Descri pt ion:

After pushi ng the current contents of the Program Counter (PC) onto the top of the

externa 1 memory stack, the operands nn are loaded into PC to poi nt to the address

in memory where the fi rst opcode of a subrout i ne is to be fetched. (At the end of

the subroutine, a RETurn instruction can be used to return to the original program

fl ow by poppi ng the top of the stack back into PC.) The push is accomp 1 i shed by

fi rst decrement i ng the current contents of the Stack Poi nter (regi ster pair SP),

1 oadi ng the hi gh-order byte of the PC contents into the memory address now poi nted

to by the SP; then decrementing SP again, and loading the low-order byte of the PC

contents into the top of stack. Note: Because this is a 3-byte instruction, the

Program Counter will have been incremented by 3 before the push is executed.

M CYCLES: 5 T STATES: 17(4,3,4,3,3,)

Condition Bits Affected: None

2-53

Example:

If the contents of the Program Counter are lA 47H, the contents of the Stack Poi nter

are 3002H, and memory locations have the contents:

Location

lA47H

lA48H

lA49H

Contents

CDH

35H

21H

Then if an instruction fetched sequence begins, the three-byte instruction CD3521H

will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of thi s instruction, the contents of memory address 300lH wi 11

be lAH, the contents of address 3000H wi 11 be 4ll.H, the contents of the Stack Poi nter

wi 11 be 300(}l, and the contents of the Program Counter wi 11 be 2135H, poi nt i ng to the

address of the first opcode of the subroutine now to be executed.

2-54

CCF
Operation: CY f-- CY

Format:
Opcode
CCF

I 0 : 0 : 1 : 1 : 1 : 1 : 1 : 1 I 3F

Description:

The c flag in the F register is inverted.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Previous carry will be copied

P/V: Not affected
N: Reset

C: Set if CY was 0 before
operation; reset otherwise

Operation: A - s

Format:
Opcode
CP

Operands
s

2-55

CPs

The s operand is any of r,n, (HL), (IX+d) or (IY+d), as defined for the analogous ADD
instructions. These various possible opcode-operand combinations are assembled as
follows in the object code:

CP r /1 : 0: 1 : 1 : 1 : ~r-+ I
CP n 1 : 1 : 1 : 1 : 1 : 1 : 1 : a \ FE

~: : : n: : : :.1
CP (HL) 1 : a : 1 : 1 : 1 : 1 : 1 : a I BE

CP (IX+d) 1 : < a : 1 : 1 : 1 : a > 1 DD

11 : a : 1 : 1 : 1 : 1 : 1 : a I BE

c: : : d: ; : : ~ I
CP (IY+d) 1 : 1 : 1 : 1 : 1 : 1 : a : 1 1 FD

1 : a : 1 : 1 : 1 : 1 : 1 : a I BE

.: : : d: : : : .\

*r i dent i fi es regi sters B ,C ,D, E ,H, L or A assembled as follows in the object code
field above:

2-56

Re9ister r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:
The contents of the s operand are compared with the contents of the Accumulator.
there is a true compare, a flag is set.

INSTRUCTION M CYCLES
CP r 1
CP n 2

CP (HL) 2

CP (I X+d) 5
CP (IY+d) 5

Condition Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwise

T STATES
4
7 (4, 3)
7 (4,3)
19(4,4,3,5,3)
19 (4, 4, 3 , 5, 3)

H: Set if there is a borrow from
Bit 4; reset otherwise

Example:

P/V: Set if overflow;
reset otherwi se

N: Set
C: Set if there is a borrow;

reset otherwise

If the Accumulator contains 63H, the HL register pair contains 600(}l and memor
location 6000H contains 6OH, the instruction

CP (HL)
will result in the P/V flag in the F register being reset.

Operation: A - {HL}, HL ~HL-l, BC ~BC-l

Format:
Opcode Operands
CPO

11 : 1 : 1 : 0: 1 : < 0 : 1 I ED

11 : 0 : 1 : 0: 1 : 0: 0 : 1 I A9

Description:

2-57

CPO

The contents of the memory 1 ocat i on addressed by the HL regi ster pai r is compared
with the contents of the Accumul ator. In case of a true compare, a condition bit
is set. The HL and the Byte Counter {register pair BC} are decremented.

M CYCLES: 4 T STATES: 16{ 4, 4,3,5}

Condition Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if A={HL};

reset otherwi se
H: Set if there is a borrow from

Bit 4; reset otherwise
P/V: Set if BC-l~O;

reset otherwi se
N: Set
c: Not Affected

Example:

If the HL register pair contains IIIIH, memory location IIIIH contains 3BH, the Ac­
cumulator contains 3BH, and the Byte Counter contains 000IH, then after the execu­
tion of

2-58

CPO

the Byte Counter will contain OOOOH, the HL register pair will contain lIlOH, the

f1 ag in the F regi ster wi 11 be set, and the P IV f1 ag in the F regi ster wi 11 bE

reset. There will be no effect on the contents of the Accumulator or address llllH.

2-59

CPDR
Operation: A - {HL}, HL ~ HL-l, BC f-- BC-l

Format:

Opcode Operands

CPDR

\1: 1: 1: a I 1: 1: 0: 1 I ED

11: 0: 1: 1: 1 : 0: 0: 1 I B9

Description:

The contents of the memory 1 ocat i on addressed by the HL regi ster pai r is compared

with the contents of the Accumulator. In case of a true compare, a condition bit

is set. The HL and BC {Byte Counter} register pairs are decremented. If decrement­

ing causes the BC to go to zero or if A={HL}, the instruction is terminated. If BC

is not zero and Ar(HL}, the program counter is decremented by 2 and the instruction

is repeated. Note that if BC is set to zero pri or to i nst ruct i on execut i on, the

instruction will loop through 641< bytes, if no match is found. Also, interrupts

will be recognized and two refresh cycles will be executed after each data comparison.

For BCrO and Ar{HL}:

M CYCLES: 5 T STATES: 21{4,4,3,5,5}

For BC=O or A={HL}:

M CYCLES: 4 T STATES: 16{4,4,3,5}

2-60

Condition Bits Affected:

S: Set if result is negati ve;

reset otherwise

Z: Set if A=(HL};

reset otherwise

H: Set if there is a borrow from

Bi t 4; reset otherwi se

P/V: Set if BC-110;

reset otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1Il8H, the Accumulator contains F3H, the Byte Counte

contains 0007H, and memory locations have these contents:

(1118H): 52H

(111 7H) : 0 [}f

(1116H) : F 3H

then after the execution of

CPDR

the contents of register pair HL will be Il15H, the contents of the Byte Counte

will be 00041-1, the P/V flag in the F register will be set, and the Z flag in the I

register will be set.

Operation: A - (HL), HL ~ HL+l, BC 4-- BC-l

Format:

Opcode Operands
CP I

\1:1;1;0;1;1;0;1\ ED

11 : 0 : 1 : ° : ° : ° : ° : 1 I Al

Description:

2-61

CPI

The contents of the memory 1 ocat i on addressed by the HL regi ster pai r are compared with
the contents of the Accumulator. In case of a true compare, a condition bit is set.

Then HL is incremented and the Byte Counter (register pair Be) is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if A=(HL);

reset otherwise
H: Set if there is a borrow from

Bit 4; reset otherwise
P/V: Set if BC-IrQ;

reset otherwi se
N: Set
C: Not affected

Example:

If the HL register pair contains ll11H, memory location ll11H contains 3BH, the Accumu­
lator contains 3BH, and the Byte Counter contains OOQIH, then after the execution of

2-62

cpr

the Byte Counter will contain o o o (}I , the HL register pair will contain 1112H, th

Z fl ag in the F regi ster wi 11 be set, and the P IV fl ag in the F regi ster wi 11 b

reset. There will be no effect on the contents of the Accumulator or address IlllH

Operation: A~ (HL), HL f-- HL+l, BC f--BC-l

Format:

Opcode Operands

CPIR

11:«0:«0:11 ED

11 : a : 1 : 1 : a : a : a : 1 I Bl

Description:

2-63

CPIR

The contents of the memory 1 ocat i on addressed by the HL regi ster pai r is compared

with the contents of the Accumulator. In case of a true compare, a condition bit

;s set. The HL is incremented and the Byte Counter (register pair BC) is decremented.

If decrementing causes the BC to go to zero or if A= (HL), the instruction is termi nated.

If BC is not zero and Ar(HL) the program counter is decremented by 2 and the instruction

is repeated. Note that if BC is set to zero before instruct ion execut ion, the

instruction will loop through 64K bytes, if no match if found. Also, interrupts will

be recogni zed and two refresh cycl es wi 11 be executed after each data compari son.

For BCrO and Ar(HL):

M CYCLES: 5 T STATES: 21(4,4,3,5,5)

For BC=O or A=(HL):

M CYCLES: 4 T STATES: 16(4,4,3,5)

2-64

Condition Bits Affected:

S: Set if result is negative;

reset otherwi se

Z: Set if A=(HL);

reset otherwise

H: Set if there is a borrow from

Bit 4; reset otherwise

P/V: Set if BC- VO ;

reset otherwise

N: Set

C: Not affected

Example:

If theHL register pair contains 1111H, the Accumulator contains F3H, the Byte Counter

contains 0007H, and memory locations have these contents:

(l1l1H) 52H

(1112H) OOH

(1113H) F3H

then after the execution of

CPIR

the contents of regi ster pair HL wi 11 be 1114H, the contents of the Byte Counter

wi 11 be 0004H, the P IV fl ag in the F regi ster wi 11 be set and the Z fl ag in the F

register will be set.

2-65

CPL
Operation: A ~A

Format:

Opcode
CPL

Description:

Contents of the Accumulator (register A) are inverted (lis complement).

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set
PjV: Not affected

N: Set

C: Not affected

Example:

If the contents of the Accumulator are 1011 0100, after the execution of

CPL

the Accumulator contents will be 0100 1011.

2-66

DAA
Operation:

Format:
Opcode
DAA

I 0 : 0 : 1 : 0 : 0 : 1 : 1 : 1 I 27
Descr.i pt ion:

This instruction conditionally adjusts the Accumulator for BCD addition and subtraction
operations. For addition (AOD, ADC, INC) or subtraction (SUB,SBC,DEC,NEG), the
following table indicates operation performed:

HEX HEX
VALUE VALUE NUMBER

C IN H IN ADDED C
BEFORE UPPER BEFORE LOWER TO AFTER

OPERATION DAA DIGIT DAA DIGIT BYTE DAA
(bit (bit
7-4) 3-0)

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0

ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
INC 0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1
1 0-2 a A-F 66 1
1 0-3 1 0-3 66 1

SUB 0 0-9 a 0-9 00 a
SBe a 0-8 1 6-F FA a
DEC 1 7-F a 0-9 AO 1
NEG 1 6-F 1 6-F 9A 1

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

Example:

S: Set if most significant bit

of Acc. is 1 after operation;
reset otherwi se

Z: Set if Acc. is zero after operation;
reset otherwise

H: See instruction
P/V: Set if Acc. is even parity after

operation; reset otherwise
N: Not affected
C: See instruction

2-67

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple decimal
arithmetic gives this result:

15
+27
42

But when the binary representations are added in the Accumulator according to standard
binary arithmetic,

0001 0101
+0010 0111

0011 1100 =3C

the sum is ambiguous. The OM instruction adjusts this result so that the correct
BCD representation is obtained:

0011

+0000

0100

1100

0110

0010 =42

2-68

DEC IX
Operation: IX ~IX -1

Format:
Opcode
DEC

Operands
IX

I < 1 : 0: < 1 : 1 : 0 : 1 I DO

I 0 : 0 : < 0 : 1 : 0 : 1 : 1 I 2B
Description:

The contents of the Index Register IX ar~ decremented.

M Cycles: 2 T STATES: 10 (4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 7649H, after execution of
DEC IX

the contents of Index Register IX will be 7648H.

2-69

DEelY
Operation: IY ~ IY -1

Format:
Opcode Operands
DEC IY

I < < 1: < < < 0: 11 FD

I 0: 0: < 0: 1 : 0: < 1 I 2B
Description:

The contents of the Index Register IY are decremented.

M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, then after the execution of
DEC IY

the contents of Index Register IY will be 7648H.

2-70

DEem
Operation: m f-- m-l

Format:

Opcode

DEC

Operands

m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous

INC instructions. These various possible opcode-operand combinations are assembled

as follows in the object code:

DE C r "--1 0 ...--: 0""--: ~-.-i -,-+~-..-: --r1 : ---"0 ;----'1 I

DEC (HL) I 0 : 0: 1 : < 0: 1 : 0 : 1 35

DEC (IX+d) 11: < 0 : < < 1 : a : 1 DO

I 0 : 0 : 1 : < 0: 1 : 0 : 1 35

[~: : : d: : : :~
DEC (IY+d) 11: 1: 1 : 1 : < 1 : 0 : 1 I FD

I 0 : 0 : 1 : 1 : 0 : 1 : 0 : 1 I 35

I.: : : d: : : :~ I
*r identifies register B,C,D,E,H,L or A assembled as follows in th object code field

above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The byte specified by the m operand is decremented.

I NSTRUCTI ON M CYCLES T STATES
DEC R 1 4
DEC (HL) 3 11 (4,4,3)
DEC (I X+d) 6 23 (4, 4,3,5, 4,3)
DEC (I Y+d) 6 23 (4, 4, 3, 5, 4,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero:

reset otherwise
H: Set if there is a borrow from

Bit 4, reset otherwise
PjV: Set if m was SOH before

operation; reset otherwise
N: Set
C: Not affected

Example:

If the D register contains byte 2AH, after the execution of
DEC D

register D will contain 29H.

2-71

2-72

DECss
Operation: ss f-- ss -1

Format:
Opcode Operands
DEC ss

100o;s;<1;0:1;11
Description:

The contents of register pair ss (any of the register pairs BC~DE~HL or SP) are
decremented. Operand ss is specified as follows in the assembled object code.

Pair ss
BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Example:

If register pair HL contains 1001H~ after the execution of

DEC HL

the contents of HL will be 1000H.

Jperat ion: IFF f- ~

Format:
apcode
Dl

I 1 : 1 ; 1 : 1 : a : a : 1 : 1 I F3

Description:

2-73

01

Dl disables the maskable interrupt by setting the interrupt enable flip-flops (IFF!
and IFF2). Note that this instruction disables the maskable interrupt during its
execution.

M CYCLE: 1 T STATES: 4

Condition Bits Affected: none

Example:

When the CPU executes the instruction
D1

the maskable interrupt is disabled. The CPU will not respond to an interrupt request
(1 NT) signa 1 •

2-74

DJNZ, e
Operation:

Format:

Opcode

DJNZ

Operand

e

10: 0: 0: 1: 0: 0: 0: 0\10

I ~: : :e- ~ : : :. 1
Description:

This instruction is similartothe conditional jump instructions except that a register

value is used to determine branching. The B register is decremented and if a non

zero value remains, the value of the displacement e is added to the Program Counter (PC).

The next instruction is fetched from the location designated by the new contents of

the PC. The jump is measured from the address of the instruction opcode and has a

range of -126 to +129 bytes. The assembler automatically adjusts for the twice

incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction to be

executed is taken from the location following this instruction

If Bra:

M CYCLES: 3 T STATES: 13(5,3,5)

IF B=O:

M CYCLES: 2 T STATES: 8(5,3)

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DJNZ instruction.
This routine moves a line from an input buffer (INBUF) to an output buffer (OUTBUF).

It move the
curs fi rst.

LD
LD
LD

LOOP: LD

LD
CP
JR
INC
INC
DJNZ

DONE:

2-75

bytes until it finds a CR, or until it has moved 80 bytes, whichever oc-

B,80
HL,Inbuf
DE ,Outbuf

A, (HL)

(DE),A
ODH

Z,DONE
HL
DE
LOOP - $

;Set up counter
;Set up pointers

;Get next byte from
;input buffer
;Store in output buffer
; Is it a CR?
;Yes finished
;Increment pointers

;Loop back if 80
;bytes have not
;been moved

2-76

EI
Dperat ion: IFF ~ 1

Format:
Dpcode
EI

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops(IFFl
and IFF2). Note that this instruction disables the maskable interrupt during its
execution.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

When the CPU executes instruction
EI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt Request
(INT) signal.

2-77

EX AF, AF'

Operation: AF ~ AF'

Format:
Opcode Operands
EX AF ,AF

I a : a : a : a : 1 ; a : a : a I 08
Description:

The two-byte contents of the register pairs AF and AF' are exchanged. (Note: register
pair AF consists of registers AI and Fl.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register pair
AF' is number 5944H, after the instruction

EX AF, AF'
the contents of AF will be 5944H, and the contents of AF' will be 9900H.

2-78

EX DE, HL
Operation: DE ~ HL

Format:
Opcode Operands
EX DE, HL

I < < < 0 : < 0 : < 1 I EB
Description:

The two-byte contents of register pairs DE and HL are exchanged.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

If the content of regi ster pai r DE is the number 2822H, and the content of the regi ster
pair HL is number 499AH, after the instruction

EX DE,HL
the content of regi ster pai r DE wi 11 be 499AH and the content of reg; ster pai r HL
2822H.

2-79

EX (SP), HL

Operation: H ~ (SP+1), L ~~ (SP)

Format:

Opcode Operands

EX (SP), HL

Description:

The low order byte contained in regi ster pai r HL is exchanged with the contents

of the memory address specified by the contents of register pair SP (Stack Pointer),

and the high order byte of HL is exchanged with the next highest memory address

(SP+ 1).

M CYCLES: 5 T STATES: 19(4,3,4,3,5)

Condition Bits Affected: None

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the memory

location 8856H contains the byte llH, and the memory location 8857H contains the

byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 2211H, memory location 8856H

containing the byte 12H, the memory location 8857H containing the byte 70H and the

Stack Pointer containing 8856H.

2-80

EX (SP), IX
Operation: IXH H (SP+l), IXL H (SP)

Format:

Opcode

EX

Operands

(SP),IX

11 : < 0 : < < 1 : 0 ; 1 I DD

11 : 1 : 1 : 0 : 0 : 0 : 1 : 1 I E3

Description:

The lm'l order byte in Index Register IX is exchanged with contents of the memory address

specified by the contents of register pair SP (Stack Pointer), and the high order

byte of IX is exchanged with the next highest memory address (SP+l).

M CYCLES: 6 T STATES: 23(4,4,3,4,3,5)

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0100H, the

memory location 0100H contains the byte 80H, and the memory location 0101H contains

byte 48H, then the instruction

EX (SP) ,IX

will result in the IX register pair containing number 4890H, memory location OlOOH

containing88H, memory location 0101H containing 39H and the Stack Pointer containing

0100H.

Operation: IVH H (SP+I), IVL H(SP)

Format:
Opcode
EX

Operands
(SP),IV

11 : 1 : 1 : 1 : 1 : 1 : a : 1 I FD

11 : I : 1 : 0 : a : 0 : 1 : 1 I E3
Description:

2-81

EX (SP), IV

The low order byte in Index Register IV is exchanged with the contents of the memory
address specified by the contents of register pair SP (Stack Pointer), and the high
order byte of IV is exchanged with the next highest memory address (SP+I).

M CVCLES: 6 T STATES: 23(4,4,3,4,3,5)

Condition Bits Affected: None

Example:

If the Index Register IV contains 3988H, the SP register pair contains OIOOH, the
memory location OIOOH contains the byte 90H, and memory location OIOIH contains byte
48H, then the instruction

EX (SP),IV
will result in the IV register pair containing number 4890H, memory location OIOOH
containing 88H, memory location OIOIH containing 39H, and the Stack Pointer con­
taining OIOOH.

2-82

HALT
Operation: CPU halted.

Format:

Description:

Opcode
HALT

HAL T stops execut i on of i nst ruct ions in the CPU. I nterrupts can be accepted when
the CPU is in the halt state.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: none

Example:

When the CPU executes the instruction
HALT

no further execution of instructions ~lill occur unless an interrupt occurs and is
accepted.

Operation: BC) ~ (BC),(DE)~(DE),(HL) ~(HL)

Format:

Opcode
EXX

Operands

11 : 1 : 0 : 1 : 1 : 0 : 0 : 1 I 09

Description:

2-83

EXX

Each two-byte value in register pairs BC, DE, and HL is exchanged with the two­
byte value in BC I ,DEI, and HLI, respectively.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

If the contents of register pairs BC, DE, and Hl are the numbers 445AH, 3DA2H, and
8859H, respectively, and the contents of register pairs BCI,DE I, and HLI are 0988H,
930OH, and O0E7H, respectively, after the instruction

EXX
the contents of the register pairs will be as follows: BC: 0988H; DE: 9300-1;
HL: 00E7H; BC I: 445AH; DEI: 3DA2H; and HLI: 8859H.

2-84

1M 0
Operation:

Format:
Opcode
1M

Operands
o

\ < < < 0: < < 0: 1 I ED

\0:<0:0:0:«01 46

Description:

The 1M 0 instruction sets interrupt mode O. In this mode the interrupting device
can insert any instruction on the data bus and allow the CPU to execute it.

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

)peration:

~ormat :

OPCODE
1M

Operands
1

\1:1:1:0:1:1:0:11 ED

I 0 : 1 : 0 : 1 : 0 : 1 : 1 : 0 1 56

)escri pt ion:

2-85

1M 1

fhe IMI instruction sets interrupt mode 1. In this mode the processor will respond
to an interrupt by executing a restart to location 0038H.

~ CYCLES: 2 T STATES: 8(4,4)

:ondition Bits Affected: None

2-86

1M2
Operation:

Format:

Opcode Operands

1M 2

1«<0:1;<0;11 ED

I ° : 1 : ° : 1 : 1 : 1 : 1 : 0 I 5E
Description:

The 1M 2 instruction sets interrupt mode 2. This mode allows an indirect call to

any location in memory. With this mode the CPU forms a 16-bit memory address.

The upper eight bits are the contents of the Interrupt Vector Register I and the lower

eight bits are supplied by the interrupting device.

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Operation: A f--(n)

Format:

Opcode

IN

Operands

A, (n)

I < < 0 : 1 : < 0 : < 1 I DB

I ~: : : n: : : : ~ I
Description:

2-87

IN A, (n)

The operand n is placed on the botton ha If (AO through A7) of the address bus to select

the I/O device at one of 256 possible ports. The contents of the Accumulator also

appear on the top half (A8 through A15) of the address bus at thi s time. Then one

byte fromthe selected port is placed on the data bus and written into the Accumulator

(register A) in the CPU.

M CYCLES: 3 T STATES: 11(4,3,4)

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the peripheral

device mapped to I/O port address 01H, then after the execution of

IN A,(OIH)

the Accumulator will contain 7BH.

2-88

IN r, (e)

Operation: r ~ (C)

Format:

Opcode Operands

IN r, (C)

\1:1:1:0:1>:0;11 ED

10 : 1 : ~r7 : ° : ° : ° I
Description:

The contents of register C are placed on the bottom half (AD through Al) of the ad­

dress bus to select the I/O device at one of 256 possible ports. The contents of

Reg; ster Bare pl aced on the top hal f (A8 through A15) of the address bus at thi s

time. Then one byte from the selected port is placed on the data bus and written

into register r in the cpu. Register r identifies any of the CPU registers shown

in the following table, which also shows the corresponding 3-bit "r" field for each.

The flags will be affected, checking the input data.

Reg r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

M CYCLES: 3 T STATES: 12(4,4,4)

2-89

Condition Bits Affected:
S: Set if input data is negative;

reset otherwise
Z: Set if input data is zero;

reset otherwi se
H: Reset

P/V: Set if parity is even;
reset otherwi se

N: Reset
C: Not affected

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 10H, and the byte
7BH is available at the peripheral device mapped to I/O port address 07H, then after
the execution of

IN D,(C)
register 0 will contain 7BH, and register B will contain lOH.

2-90

INC (HL)
Operat i on: (HL) ~ (HL)+ 1

Format:

Opcode
INC

Operands
(HL)

I 0 : 0 : 1 : < a > : a : a I 34
Description:

The byte conta i ned in the address specifi ed by the contents of the HL regi ster pai r
incremented.

M CYCLES: 3 T STATES: 11(4,4,3)

Condition Bits Affected:

Example:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Set if carry from
Bit 3; reset otherwise

PjV: Set if (HL) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

If the contents of the HL register pair are 343411, and the contents of address 34341

are 82H, after the execution of
INC (HL)

memory location 343411 will contain 83H.

2-91

INC (lX+d)
Operation: (IX+d) ~ (IX+d)+1

Format:
Opcode
INC

Operands
(IX+d)

\1 : 1 : 0 : < < 1 : 0 : 1 I DO

I 0 : 0 : 1 > : 0 : 1 : 0 : 0 I 34

I ~: : : d: : : :·1
Description:

The contents of the Index Register IX (register pair IX) are added to atwo's complement
displacement integer d to point to an address in memory. The contents of this
address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Set if carry from

Bit 3; reset otherwise
P/V: Set if (IX+d) was 7FH before operation;

reset otherwise
N: Reset
C: Not affected

2-92

Example:

If the contents of the Index Register pair IX are 2020H, and the memory location
2030H contains byte 34H, after the execution of

INC (IX+I0H)

the contents of memory location 2030H will be 35H.

2-93

INC (lY+d)
Operation: (IY+d) ~(IY+d)+1

Format:
Opcode Operands
INC (IY+d)

11 : 1 : 1 : 1 : 1 : 1 : 0: 1 I FD

I a : a : 1 : 1 : a : 1 : 0: a I 34

I ~: : : d: : : : ·1
Description:

The contents of the Index Register IY (register pair IY) are added to a two's complement
displacement integer d to point to an address in memory. The contents of this
address are then incremented.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwi se
H: Set if carry from

Bit 3; reset otherwise
P/V: Set if (IY+d) was 7FH before

operation; reset otherwise
N: Reset
C: Not Affected

2-94

Example:

If the contents of the Index Register pair IY are 2020H, and the memory location

2030H contain byte 34H, after the execution of

INC (IY+I0H)

the contents of memory location2030H will be 35H.

2-95

INC IX
Operation: IX f--IX +1

Format:

Opcode
INC

Operands
IX

11 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DO

1 0 : 0 : 1 : 0 : 0 : 0 : 1 : 1 I 23
Description:

The contents of the Index Register IX are incremented.

M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 330OH, after the execution of
INC I X

the contents of Index Register IX will be 3301H.

2-96

INC IV
Operation: IY ~ IY + 1

Format:
Opcode

INC

Operands
IY

11;1;1;1:1:1:0;1\ FD

I ° : a ; 1 : a : ° : a : 1 : 1 I 23
Description:

The contents of the Index Register IY are incremented.

M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If the contents of the Index Register are 2977H, after the execution of
INC IY

the contents of Index Register IY will be 2978H.

Operation: r f--r + 1

Format:
Opcode
INC

Operands
r

10: 0: ~r~: 1: 0: 01

Description:

2-97

INC r

Register r is incremented. r identifies any of the registers A,B, C,D,E,H or L,
assembled as follows in the object code.

Register r
A 111
B 000
C 001
0 010
E 011
H 100
L 101

~ CYCLES: 1 T STATES: 4

:onditions Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwi se
H: Set if carry from

Bit 3; reset otherwise
P/V: Set if r was 7FH before

operation; reset other wise
N: Reset
C: Not affected

2-98

Example:

If the contents of register Dare 28H, after the execution of
INC D

the contents of register D will be 29H.

Operation: ss ~ ss + 1

Format:
Opcodes
INC

Description:

Operands
ss

2-99

INC 55

The contents of register pair ss (any of register pairs BC, DE,HL or SP) are incre­

mented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Example:

If the register pair contains 10aOH, after the execution of
INC HL

HL will contain 1001H.

2-100

IND
Operation: (HL) f-- (C), B f-- B-1, HL f-- HL-1

Format:
Opcode
IND

/1:1:1:0:1:1:0;11 ED

11:°;1:°:1:°> :01 AA

Description:

The contents of register C are placed on the bottom half (AO through A7) of the ad­
dress bus to select the I/O device at one of 256 possible ports. Register B may be
used as a byte counter, and its contents are placed on the top half (A8 through A15)
of the address bus at this time. Then one byte from the selected port is placed on
the data bus and written to the CPU. The contents of the HL regi ster pai rare
placed on the address bus and the input byte written into the correspondi n9 1 ocat i on of
memory. Fi na lly the byte counter and regi ster pai r HL are decremented.

M CYCLES: 4 T STATES 16(4,5,3,4)

Condition Bits Affected:
S: Unknown
Z: Set if B-1=0;

reset other wise
H: Unknown

P/V: Unknown
N: Set
C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 10H, the
contents of theHL register pair are 1000H, and the byte 7BH is available at the

2-101

peripheral device mapped to I/O port address 07H, then after the execution of
IND

memory location 1000H will contain 7BH, the HL register pair will contain OFFFH,
and register B will contain OFH.

2-102

INDR
Operation: (HL) f-- (C), B f-- B-1, HL f-- HL-l

Format:

Opcode

INDR

11:1:1:°:1:1:°:1\ ED

11 : 0 : 1 : 1: 1: 0 : 1 : 0 I BA

Description:

The contents of register C are placed on the bottom half (AO through A7) of the ad­

dress bus to select the I/O device at one of 256 possible ports. Register B is

used as a byte counter, and its contents are placed on the top half (A8 though A15)

of the address bus at this time. Then one byte from the selected port is placed

on the data bus and written to the CPU. The content of the HL regi ster pai rare

placed on the address bus and the input byte is written into the corresponding location

of memory. Then HL and the byte counter are decremented. If decrementing causes B

to go to zero, the instruct i on is termi nated. If B is not zero, the PC is decremented

by two and the instruction repeated. Note that if B is set to zero prior to instruction

execut i on, 256 bytes of data wi 11 be input. A 1 so interrupts wi 11 be recogni zed

and two refresh cycles will be executed after each data transfer.

If BrO:

M CYCLES: 5 T STATES: 21(4,5,3,4,5)

If B=O:

M CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

Example:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown

N: Set
C: Unknown

2-103

If the contents of regi ster Care 07H, the contents of regi ster Bare 03H, the contents
of the HL register pair are 1000H, and the following sequence of bytes are available
at the peripheral device mapped to I/O port address 07H:

51H
A9H
03H

then after the execution of
INDR

the HL register pair will contain OFFDH, register B will contain zero, and memory
locations will have contents as follows:

Location
OFFEH
OFFFH
1000H

Contents
03H
A9H
51H

2-104

INI
Operation: (HL) f-- (C), B f-- B-1, HL ~ HL + 1

Format:

Opcode
INI

11:1:1:0:1:1:0:11 ED

I < 0 : 1 : 0 : 0 : 0 : 1 : 0 I A2

Description:

The contents of register C are placed on the bottom half (AO through A7) ·of the

address bus to select the I/O device at one of 256 possible ports. Register B may

be used as a byte counter, and its contents are placed on the top half (AS through

A15) of the address bus at this time. Then one byte from the selected port is placed

on the data bus and written to the CPU. The contents of the HL regi ster pai r are then

placed on the address bus and the input byte is written into the correspondi ng 1 ocat i on of

memory. Finally the byte counter is decremented and register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown

Z: Set if B-1=0;

reset otherwi se

H: Unknown

PlY: Unknown

N: Set

C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 10H, the contents of

the HL register pair are 1000H, and the byte 7BH is available at the peripheral device

mapped to I/O port address 07H, then after the execution of
INI

2-105

memory location 1000H will contain 7BH, the HL register pair will contain 1001H, and
register B will contain OFH.

2-106

INIR
Operation: (HL) ~ (C), B ~ B-1, HL ~ HL + 1

Format:

Opcode

INIR

11 : 1 : 1 : 0 : 1 : 1 : O. : 1 I ED

11 : 0 : 1 : 1 :0 : 0 : 1 : 0 I B2

Description:

The contents of register C are placed on the bottom half (AO through A7) of t

address bus to select the I/O device at one of 256 possible ports. Register B

used as a byte counter, and its contents are placed on the top half (A8 through Al

of the address bus at this time. Then one byte from the selected port is plac

on the data bus and written to the CPU. The contents of the HL regi ster pai r a

placed on the address bus and the input byte is written in the corresponding locati,

of memory. Then regi ster pai r HL is incremented, the byte counter is decremente,

If decrementing causes B to go to zero, the instruction is terminated. If B is nl

zero, the PC is decremented by two and the i nst ruct i on repeated. Note that if

is set to zero prior to instruction execution, 256 bytes of data will be inpu'

A 1 so interrupts will be recogni zed and two refresh cycl es wi 11 be executed aftl

each data transfer.

If B;O:

M CYCLES: 5 T STATES: 21(4,5,4,3,5)

If B=O:

M CYCLES: 4 T STATES: 16(4,5,4,3)

2-107

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 03H, the

contents of the HL register pair are 1000H, and the following sequence of bytes are

available at the peripheral device mapped to I/O port of address 07H:

51H

A9H

03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and memory

locations will have contents as follows;

Location Contents

1000H 51H

1001H A9H

1002H 03H

2-108

JP CC, nn

Operation: IF cc TRUE, PC ~ nn

Format:

Opcode

JP
Operands

cc, nn

11 : 1 :~cc~: 0 : 1 : 0 I

I·: : : n: : : :-1
I·: : : n: : : :·1

Note: The first n operand in this assembled object code is the low order byte of a

2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC (Program

Counter), and the program continues with the instruction beginning at address nn~

If condition cc isfalse, the Program Counter is incremented as usual, and the program

continues with the next sequential instruction. Condition cc is programmed as one

of ei ght status bits whi ch corresponds to condit i on bits in the Fl ag Regi ster (regi ster

F). These eight status bits are defined in the table below which also specifies

the corresponding cc bit fields in the assembled object code.

cc CONDITION RELEVANT

FLAG

000 NZ non zero Z

001 Z zero Z

010 NC no carry C

011 C carry C

100 PO parity odd PIV

101 PE parity even PIV
110 P sign positi ve S

111 M sign negative S

2-109

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address

1520 are 03H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU will

fetch from address 1520H the byte 03H.

2-110

JP (HL)
Operation: PC f-- HL

Format:
Opcode
JP

Operands
(HL)

\1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 I E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL registe
pair. The next instruction is fetched from the location designated by the new
contents of the PC.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the HL registe
pair are 480OH, after the execution of

JP (HL)
the contents of the Progam Counter will be 480OH.

Operation: PC f-- IX

Format:

Opcode

JP

Operands

(I X)

11 : 1 : 0 : 1 : 1 : 1 : 0: 1 I DO

11 : 1 : 1 ; a : 1 : 0: a : 1 I E9

Description:

2-111

JP (IX)

The Program Counter (regi ster pai r PC) is loaded with the contents of the I X Regi ster

Pair (Index Register IX). The next instruction is fetched from the location designated

by the new contents of the PC.

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:

If the contents of the Program Counter are laOa-!, and the contents of the I X Register

Pair are 4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 480a-!.

2-112

JP (IY)
Operation: PC f-- IV

Format:
Opcode
JP

Operands
(IV)

1<1:1:1»:0:11 FD

11 : 1 : 1 : 0 : 1 : 0 : 0 : 1 I E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the IV registE
pair (Index Register IV). The next instruction is fetched from the location designatE
by the new contents of the PC.

M CVCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the IV Registe
Pair are 480OH, after the execution of

JP (IV)
the contents of the Program Counter will be 480OH.

Operation: PC f-- nn

Format:
Opcode
JP

Operands
nn

11 > : 0 : a : a : a > > 1 C3

I·: : : n: : : : ·1
I·: : In: : : : ·1

2-113

JP nn

Note: The first operand in this assembled object code is the low order byte of a
2-byte address.

Description:

Operand nn is loaded into regi ster pai r PC (Program Counter) and poi nts to the ad­
dress of the next program instruction to be executed.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

2-114

JR e
Operation: PC f--PC + e

Format:

Opcode

JR

Operand

e

I 0 : 0 : 0 : 1 : 1: 0 : 0: 0 I 18

I. : : :e-~ : : :. I
Description:

This instruction provides for unconditional branching to other segments of a pro­

gram. The value of the displacement e is added to the Program Counter (PC) and the

next i nst ruct ion is fetched from the 1 ocat i on des i gnated by the new contents of the PC.

This jump is measured from the address of the instruction opcode and has a range of

-126 to +129 bytes. The assembler automatically adjusts for the twice incremented

PC.

M CYCLES: 3 T STATES: 12(4,3,5)

Condition Bits Affected: None

Example:

To jump forward 5 locations from address 480, the following assembly language statement

is used:

JR +5
The resulting object code and final PC value is shown below:

Location

480
481
482
483
484
485

Instruction

18
03

~ PC after jump

2-115

JR C, e
O~eration: IF C=O, continue

IF C=l, PC ~ PC + e

Format:

Oecode O~erands

JR C,e

10:0: «<0:0:01 38

1 ~: : :e-~ : : : ~ 1

Description:

Thi s instruction provi des for condit i ona 1 branchi ng to other segments of a program
depending on the results of a test on the Carry Flag. If the flag is equal to a
111, the value of the displacement e is added to the Program Counter (PC) and the
next instruction is fetched from the location designated by the new contents of the
PC. The jump is measured from the address of the instruction opcode and has a range
of -126 to'+129 bytes. The assembler automatically adjusts for the twice incremented
PC.

I f the fl ag is equal to a 10 1, the next i nst ruct i on to be executed is taken from the
location following this instruction.

If condition is met:

M CYCLES: 3 T STATES: 12(4,3,5)

If condition is not met;

M CYLCES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

2-116

Example:

The Carry Flag is set and it is required to jump back 4 locations from 480. Th
assembly language statement is:

JR C ,- 4
The resulting object code and final PC value is shown below:

Location
47C
47D
47E
47F
480
481

I nst ruct ion
~PC after jump

38

FA (2 1s complement-6)

Operation: If C=l, continue
If C=O, PC ~ PC + e

Format:
Opcode
JR

Operands
NC,e

I 0 : 0 : 1 : 1 : 0 : 0 : 0 : 0 I 30

Description:

2-117

JR Ne,e

This instruction provides for conditional branching to other segments of a program
dependi ng on the results of a test on the Carry Fl ago If the fl ag is equal to 10 1

the value of the displacement e is added to the Program Counter (PC) and the next
i nst ruct ion is fetched from the 1 ocat i on des i gnated by the new contents of the PC. The

jump is measured from the address of the instruction opcode and has a range of -126

to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the flag is equal to a 111, the next instruction to be executed is taken from the
location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12(4,3,5)

If the condition is not met:

M CYCLES: 7 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction. The as­
sembly language statement is:

2-118

JR NC,

The resulting object code and PC after the jump are shown below:

Location

480

481

Instruction

30 f-- PC after jump
00

Operation: If Z = 1, continue

Format:

If Z = 0, PC f- PC + e

Ope ode

JR
Operands

NZ,e

1 0 : 0 : 1 : 0 : 0 : 0 : 0 ;a 1 20

I·: ; r-2: : : :·1
Description:

2-119

JR NZ,e

This instruction provides for conditional branching to other segments of a program

depending on the results of a test on the Zero Flag. If the flag is equal to a

10 1, the value of the di sp 1 acement e is added to the Program Counter (PC) and the next

instruction is fetched from the location designated by the new contents of the PC.

The jump is measured from the address of the instruct i on opcode and has a range of

-126 to +129 bytes. The assembler automatically adjusts for the twice incremented PC.

If the Zero Flag is equal to a 111, the next instruction to be executed is taken from

the location following this instruction.

If the condition is met:

M CYCLES: 3 T STATES: 12, (4,3,5)

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back 4 locations from 480. The

assembly language statement is

2-120

JR NZ ,-4

The resulting object code and final PC value is shown below:
Location Instruction
47C ~PC after jump
470
47E
47F
480 20
481 FA (2' complement-6)

2-121

JRZ,e
Operation: If Z=O, continue

If Z=l, PC ~ PC ~ PC + e

Format:

O~code O~erands

JR Z,e

I 0 : 0 : 1 : 0 : 1 : a : 0 : 0 1 28

. .1 ~: : f- 2: : : : ·1
Descrl pt 1 on:

This instruction provides for conditional branching to other segments of a program de­

pending on the results of a test on the Zero Flag. If the flag is equal to a '1',

the value of the displacement e is added to the Program Counter (PC) and the next

instruction is fetched from the location designated by the new contents of the PC.

The jump is measured from the address of the i nst ruct ion opcode and has a range of

-126 to +129 oytes. The assembler automat i ca lly adjusts for the twi ce incremented PC.

If the Zero Flag is equal to a 'a', the next instruction to be executed is taken

from the location following this instruction.

If the conditon is met:

M CYCLES: 3 T STATES: 12(4,3,5)

If the condition is not met:

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forv.,tard 5 locations from address

300. The following assembly language statement is used:

2-122

JR Z, +5

The resulting object code and final PC value is shown below:
Location Instruction
300 28

301 03
302

303

304

305 ~ PC after jump

Operation: A ~ (BC)

Format:
Opcode
LD

Description:

Operands
A, (BC)

2-123

LD A, (Be)

The contents of the memory 1 ocat ion specifi ed by the contents of the BC regi ster pai r
are loaded into the Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H contains
the byte 12H, then the instruction

LD A, (BC)
will result in byte 12H in register A.

2-124

LOA, (DE)

Operation: A ~ (DE)

Format:

Opcode

LD

Description:

Operands

A, (DE)

The contents of the memory location specified by the register pair DE are loaded into

the Accumulator.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the DE regi ster pai r contai ns the number 30A2H and memory address 30A2H contai ns

the byte 22H, then the instruction

LD A, (DE)

Will result in byte 22H in register A.

Operation: A ~(nn)

Format:
Opcode
LD

Operands
A, (nn)

I a : 0 : 1 : 1 : 1 : 0 : 1 : a I 3A

I ~: : : n: : : :~ 1

I·: : : n: : : : ~ I
Description:

2-125

LD A, (nn)

The contents of the memory location specified by the operands nn are loaded into the
Accurnul ator. The fi rst n operand is the low order byte of a two-byte memory address.

M CYCLES: 4 T STATES: 13(4,3,3,3)

Condition Bits Affected: None

Example:

If the contents of nn is number 8832H, and the contents of memory address 8832H is
byte 04H, after the instruction

LD A, (nn)
byte 04H will be in the Accumulator.

2-126

LOA, I
Operation: A ~ 1

Format:
Opcode
LD

Operands
A, I

11:1:1:0:1:1:0:11 ED

I 0 : 1 : 0 : 1 : 0 : 1 : 1 : 1 I 57

Description:

The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M CYCLES: 2 T states: 9(4,5)

Condition Bits Affected:
S: Set if I-Reg. is negative;

reset otherwi se
Z: Set if I-Reg. is zero;

reset otherwise
H: Reset

PjV: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of
LD A, I

the accumulator will also contain 4AH.

2-127

LDA,R
Operation: A f- R

Format:
Opcode
LD

Operands
A,R

11:1:1:0:1:1:0:11 ED

I 0 : 1 : 0 : 1 : 1 : 1 : 1 : 1 I 5F

Description:

The contents of Memory Refresh Regi ster Rare loaded into the Accumu 1 ator.

M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected:
S: Set if R-Reg is negative;

reset otherwi se
Z: Set if R-Reg. is zero;

reset otherwi se
H: Reset

P/V: contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of
LD A,R

the Accumulator will also contain 4AH.

2-128

LD{8C),A
Operation: (BC) ~ A

Format:
Opcode
LD

Description:

Operands
(BC),A

The contents of the Accumulator are loaded into the memory location specified by the
contents of the register pair BC.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example: If the Accumulator contains 7AH and the BC register pair contains 1212Hm
the instruction

LD (BC),A
will result in 7AH being in memory location 1212H.

Operation: dd ~ nn

Format:
Opcode
LD

Operands
dd, nn

10:O>:d:O;0:0;11

I ~: : : n: : : : ·1
I·: : In: : : : ·1

Description:

2-129

LDdd, nn

The two-byte
the BC, DE,

integer nn
HL, or SP

is loaded into the the dd regi ster pair, where dd defi nes
register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

After the execution of
LD HL, 500(l-l

the contents of the HL register pair will be 500OH.

2-130

LD dd, (nn)
Operation: ddH ~ (nn+l), ddL f- (nn)

Format:

Opcode

LD

Operands

dd, (nn)

11:1:1:°:1:1:°:11 ED

10:I:d:d:l:0:l:ll

1-: : : n: : : : ·1
I·: : : n: : : : -I

Description:

The contents of address nn are loaded into the low order portion of register pair

dd, and the contents of the next hi ghest memory address nn+ 1 are loaded into the hi gh

order portion of dd. Register pair dd defines BC, DE, HL, or SP register pairs,

assembled as follows in the object code:

Pair dd

BC 00

DE 01

HL 10

SP 11

The fi rst n operand in the assembled object code above is the low order byte of

(nn).

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3,)

Condition Bits Affected: None

2-131

Example:

If Address 2130H contains 65H and address 2131H contains 78H after the instruction

LD BC, (2130H)

the BC register pair will contain 7865H.

2-132

LD(DE),A
Operation: (DE) ~A

Format:
Opcode
LD

Operands
(DE) ,A

I 0 : 0 : 0 : 1 : 0 : 0 : 1 : 0 I 12

.Description:

The contents of the Accumulator are loaded into the memory location specified by the
DE register pair.

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
AOH, the instruction

LD (DE),A
will result in AOH being in memory location 1128H.

Operation: (HL) ~ n

Format:
Opcode
LD

Operand
(HL),n

I 0 : a : 1 : 1 : a : 1 : 1 : a I 36

I·: : : n: : : : ·1

2-133

LD (HL),n

Description: Integer n is loaded into the memory address specifed by the contents
of the HL register pair.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction
LD (HL), 28H

will result in the memory location 4444H containing the byte 28H.

2-134

LD HL, (nn)

Operation: H ~ (nn+1), L ~ (nn)

Format:

Opcode

LD

Operands

HL, (nn)

10:0:1: 0:1: 0:1 :01 ~

\.: : : n: : : : .1
I·: : : n: : : : ·1

Description:

The contents of memory address nn are loaded into the low order portion of regist

pa i r HL (regi ster L), and the contents of the next highest memory address nn

are loaded into the high order portion of HL (register H). The first n operand

the assembled object code above is the low order byte of nne

M CYCLES: 5 T STATES: 16(4,3,3,3,3,)

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A1H after the instructior

LD HL, (45 45H)

the HL register pair will contain A137H.

Operation: (HL) ~r

Format:
Opcode
LD

Operands
(HL) ,r

10»>:0:~r~1
Description:

2-135

LD (HL),r

The contents of register r are loaded into memory location specified by the contents
of the HL register pair. The symbol r identifies register A, B, C, 0, E, H or
L, assembled as follows in the object code:

Register r
A = 111

B = 000
C = 001

o = 010

E = 011

H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If the contents of register pair HL specifies memory location 2146H, and the B register
contains the byte 29H, after the execution of

LD (HL), B
memory address 2146H will also contain 29H.

2-136

LD I,A
Operation: I ~A

Format:
apcode
LD

Operands
I,A

11 : 1 : 1 : a : 1 : 1 : a : 1 I ED

I a : 1 : a : a : a : 1 : 1 : 1 I 47

Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector Register,
I.

M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affect: None

Example:

If the Accumulator contains the number BIH, after the instruction
LD I,A

the Interrupt Vector Register will also contain BIH.

Operation: IXH ~ (nn+l), IXL ~(nn)

Format:

Opcode

LD

Operands

I X, (nn)

/1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 / DD

IO:O>:O:I:0>:oI2A

/.: : : n: : : : ~ I
/ ~: : : n: : : : ~ I

Description:

2-137

LD IX, (nn)

The contents of the address nn are loaded into the low order portion of Index Regi ster

IX, and the contents of the next highest memory address nn+l are loaded into the high order

portion of IX. The first n operand in the assembled object code above is the low

order byte of nn.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3,)

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the instruction

LD IX,(6666H)

the Index Register IX will contain DA92H.

2-138

LD IX,nn
Operation: IX ~ nn

Format:

Opcode Operands

LD IX,nn

11 : 1 : 0 : 1: 1 : 1 : 0 : 1 I DO

I a : 0 : 1 : 0: 0 : 0 : 0 : 1 I 21

I ~: : : n: : : :.\

\ ~: : : < : : :·1
Description:

Integer nn is loaded into the I ndex Reg; ster I X. The fi rst n operand in the assembled

object code above is the low order byte.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

the Index Register will contain integer 45A2H.

2-139

LD(lX+d), n

Operation: (IX+d) f-n

Format:
Opcode
LD

Operands
(IX+d), n

1 : 1: 0 : 1 : 1 : 1 : a : 1 I DD

a : 0: 1 : 1 : a : 1 : 1 : a I 36

~: : : d: : : > I
~: : : n: : : : ~ I

Description:

The n operand is loaded into the memory address specified by the sum of the contents of
the Index Register IX and the two's complement displacement operand d.

M CYLCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction
LD (I X+5H), 5AH

would result in the byte 5AH in the memory address 219FH.

2-140

LD (IX+d),r
Operation: (IX+d) (-r

Format:

Opcode

LD

Operands

(IX+d), r

11 : < 0 : < < 1 : 0 : 1 \ DD

10:<1:1:0:~r71

I ~: : : d: : : >1
Description:

The contents of regi ster rare loaded into the memory address speci fi ed by the contents

of Index Register IX summed with d, a two's complement displacement interger. The

symbol r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

2-141

Example:

If the C register contains the byte 1CH, and the Index Register IX contains 3100H,
then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into memory location 3106H.

2-142

LD IV, (nn)
Operation: IY ~nn

Format:
Opcode
LD

Operands
IV ,nn

11 : 1 : 1 : 1 : 1 : 1 : a : 1 I FD

I a : a : 1 : a : a : a : 0 : 1 I 21

I~: : In: : : :·1
I ~: : In: : : : .,

Description:

Integer nn is loaded into Index Register IY. The first n operand in the assembled
object code above is the low order byte.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:
After the instruction:

LD IY, 7733H
the Index Register IY will contain the integer 7733H.

Operation: IY f-(nn+l), IYL f-(nn)

Format:

Opcode

LD

Operands

IY,(nn)

11 : 1 : 1 : 1: 1: 1 : 0 : 1 I FD

I 0 : 0 : 1 : a: < 0 : 1 : 0 I 2A

[.: : :n; : : :~I

I ~: : : n: : : :~ I
Description:

2-143

LD IV, nn

The contents of address nn are loaded intothelm'J order portion of Index Register IY,

and the contents of the next hi ghest memory address nn+ 1 are loaded into the hi gh

order portion of IY. The first n operand in the assembled object code above is the low

order byte of nne

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the instruction

LD IY, (6666H)

the Index Register IY will contain DA92H.

2-144

LD (lY+d), n
Ope rat ion: (I Y +d) f-n

Format:
Opcode
LD

Operands
(I Y+D), n

11 : < 1 > > : 1 : a : 1 I FD

I a : 0 : 1 : 1 : a : 1 : 1 : a I 36

I·:: : d: : : :. I

I·: : : n: : : : ~ I
Description:

Integer n is loaded into memory location specified by the contents of the Index Register
summed with a displacement interger d.

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

If the Index Register IY contains the number A940H, the instruction
LD (IY+I0H), 97H

would result in byte 97H in memory location A950H.

Operat i on: (I Y+d) ~r

Format:

Opcode

LD

Operands

(IY+d), r

11:1:1:1:1:1:0:11 FD

10> > > : a : ~r}1
I~: : >: : : :~ I

Description:

2-145

LD (lY+d),r

The contents of regi ster rare loaded into the memory address speci fi ed by the sum of

the contents of the Index Register IY and d, a two's complement displacement integer.

The symbol r is specified according to the following table.

Register r
A = 111

B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

2-146

Example:

I f the C regi ster conta ins the byte 48H, and the Index Regi ster I Y conta ins 2AllH,

then the instruction

LD (I Y+4H), C

wi 11 perform the sum 2A11H + 4H, and wi 11 load 48H into memory 1 ocat ion 2A15H.

2-147

LO{nn),A

Operation: (nn) ~A

Format:
Opcode
LD

Operands
(nn) ,A

I 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 I 32

I ~: : : n: : : : ·1
I ~: : :n: : : : .\

Description:

The contents of the Accumulator are loaded into the memory address specified by the
operands nne The first n operand in the assembled object code above is the low order
byte of nne

M CYCLES: 4 T STATES: 13(4,3,3,3)

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A

D7H will be in memory location 3141H.

2-148

LD (nn),dd
Operation: (nn+l) ~ddH' (nn) ~ddL

Format:

Opcode
LD

Operands
(nn) ,dd

1:1:1:0;1:1:0:11 ED

O:I:d:d:O:O:l>1

< In::::~ I
~: : In: : : : ~ I

Description:

The low order byte of regi ster pai r dd is loaded into memory address nn ; the upper
byte is loaded into memory address nn+l. Register pair dd defines either BC, DE, HL,
or SP, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte of a two byte
memory address.

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction

LD (lOOOH),BC

will result in 44H in memory location 1000H, and 46H in memory location 1001H.

2-149

2-150

LO(nn), HL
Operation: (nn+1) ~H, (nn) f-L

Format:
Opcode
LD

Operands
(nn),HL

I 0 : 0 : 1 : 0 : 0 : a : 1 : 0 I 22

I·: : : n:: :·1
I·: : : n: : : :~ 1

Description.

The contents of the low order port i on of regi ster pai r HL (regi ster L) are loaded
into memory address nn , and the contents of the high order port i on of HL (regi ster
H) are loaded into the next highest memory address nn+1. The first n operand in the
assembled object code above is the low order byte of nne

M CYCLES: 5 T STATES: 17(4,3,3,3,3)

Condition Bits Affected: None

Example:

If the content of register pair HL is 483AH, after the instruction
LD (B229H), HL

address B229H will contain 3AH, and address B22AH will contain 48H.

2-151

LO{nn), IX

Operation: (nn+l) ~IXH (nn) ~ IXL

Format:
Opcode
LD

Operands
(nn) ,IX

11 : 1 : 0 : 1 : 1 : 1 : a : 1 I DO

1 a : 0 : 1 : 0 : 0 : 0 : 1 : 0 122

I ~: : : n: : : : .\

I ~: : : n i : : :. I

Description:

The low order byte in Index Register IX Is loaded into memory address nn ; the upper
order byte is loaded into the next hi ghest address nn+ 1. The fi rst n operand in the
assembled object code above is the low order byte of nne

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction
LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will contain 5AH.

2-152

LD (nn), IV
Operation: (nn+l) f-IYH, (nn) ~IYL

Forrnat:
Opcode
LD

Operands
(nn),IY

11 : 1 : 1 : 1 ; 1 : 1 : 0 : 1 I FD

I 0 : 0 : 1 : 0 : 0 : 0 : 1 : 0 I 22

I·: : : n: : : : ·1
I- : : : n: : : : ~ 1

Description:

The low order byte in Index Register IY is loaded into memory address nn ; the upper
order byte is loaded into memory location nn+l. The first n operand in the assembled
object code above is the low order byte of nne

M CYCLES: 6 T STATES: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction
LD 8838H,IY

memory 1 ocat i on 8838H wi 11 contai n number 74H and memory 1 ocat ion 8839H wi 11 conta in 41H.

2-153

LD R,A

Operation: R ~A

Format:

Opcode
LD

Operands
R,A

11 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED

I 0 > :a : 0 > : 1 : 1 > 14F

Description:

The contents of the Accumulator are loaded into Memory Refresh register R.

M CYCLES: 2 T STATES: 9(4,5)

Condition Bits Affected: None

Example:

If the Accumulator contains the number B4H, after the instruction
LD R,A

the Memory Refresh Register will also contain B4H.

2-154

LD r, (HL)
Operation: r f--(HL)

Format:
Opcode
LD

Operands
r,(HL)

10 ; 1 : ~r7 : 1 : 1 : a I

Description:
The eight-bit contents of memory location (HC) are loaded into register r, where r
identifies register" A,B,C,D,E,G or L, assembled as follows in the object code:

Register r
A = III

B = 000
C = 001
D = 010
E = 011

H = 100
L = 101

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H contains the

byte 58H, the execution of
LD C,(HL)

will result in 58H in register C.

Operation: r f--(IX+d)

Format:
Opcode
LD

Operands
r, (IX+d)

I < < 0 : 1 : 1 : 1 : 0 > I DO

10:<~r~:1>:01
I·: : : d: : : : ·1

Description:

2-155

LD r, (IX+d)

The operand (IX+d) (the contents of the Index Register IX summed with a displacement
integer d) is loaded into register r, where r identifies register A, B, C, 0, E, H or
L, assembled as follows in the object code:

Register r
A = 111

B = 000
C = 001
o = 010
E = 011

H = 100
L = 101

M CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

2-156

LD B, (I X+l9H)

will cause the calculation of the sum 25AFH + 19H, which points to memory locati

25C8H. If this address contains byte 39H, the instruction will result in regist

B also containing 39H.

2-157

LD r, (lY+d)
Operation: r ~(IY + d)

Format:
Opcode Operands
LD r, (I Y + d)

11;1:<1;1:1;0;11 FO

10:1:~r~:1>:01

I~: : : d: : : :~ I
Description:

The operand (IY+ d) (the contents of the Index Register IY summed with a displacement
integer d) is loaded into register r, where r identifies A, B, C, 0, E, H or L,
assembled as follows in the object code:

Register
A = 111
B = 000
C = 001
0 = 010
E = 011
H = 100
L = 101

[vi CYCLES: 5 T STATES: 19(4,4,3,5,3)

Condition Bits Affected: None

2-158

Example:

If the Index Register IY contains the number 25AFH, the instruction

LD B, (I Y+ 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory locati

25C8H. If this address contains byte 39H, the instruction will result in regist l

B also containing 39H.

Operat ion: r ~ n

Format:
Opcode
LD

Operands
r, n

10: a :~r~> > :0 I

I ~: : ;n: : : :. I
Description:

2-159

LD r, n

The eight-bit integer n is loaded into any register r, where r identifies register A, B,
C, 0, E, H or L, assembled as follows in the object code:

Register r
A = 111

B = 000

C = 001

o = 010

E = all

H = 100

L = 101

M CYCLES: 2 T STATES: 7(4,3)

Condition Bits Affected: None

Example:

After the execution of
LD E, A5H

the contents of register E will be A5H.

2-160

LD r, r'
Operation: r f-rl

Format:

Opcode

LD

Operands

r,r l

I 0> :~r~:~r~ I
Description:

The contents of any register rl are loaded into any other register r. Note: r,r l

identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in the

object code:

Register r,r l

A = 111

B = 000

C = 001

o = 010

E = 011

H = 100

L = 101

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Example:

I f the H regi ster conta ins the number 8AH, and the E regi ster conta ins 1 OH, the i nst ruct i on

LD H, E

would result in both registers containing 10H.

2-161

LD SP, HL
Operation: SP ~HL

Format:
Opcode
LD

Operands
SP,HL

11 : 1 : 1 : 1 : 1 : 0 : 0 : 1 I F9
Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

M CYCLES: 1 T STATES: 6

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction
LD SP ,HL

the Stack Pointer will also contain 442EH.

2-162

LD SP, IX
Operation: SP ~IX

Format:
Opcode
LD

Operands
SP,IX

11 : 1 : 0 : 1 : 1 : 1: 0: 1 I DD

11 : 1 : 1 : 1 : 1 : 0: 0: 1 I F9
Description:

The two byte contents of Index Register IX are loaded into the Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6}

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after instruction
LD SP,IX

the contents of the Stack Pointer will also be 98DAH.

2-163

LD SP, IV
Operat ion: SP (- IY

Format:
Opcode
LD

Operands
SP,IY

11:< 1:<I:I:0:IIFD

11 : 1 : 1 : 1 : 1 : 0 : 0 : 1 I f9

Description:

The two byte contents of Index Register IY are loaded into the Stack Pointer SP.

M CYCLES: 2 T STATES: 10(4,6)

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the instruction
LD SP, IV

the Stack Pointer will also contain A227H.

2-164

LDD
Operat ion: (DE) f- (HL), DE f- DE- 1, HL ~HL- 1, BC ~BC- 1

Format:

Opcode

LDD

Operands

11:1:1:0 :1:1:0 :1\ ED

11 : 0 : 1 : 0 : 1 : 0 : 0 : 0 I A8

Description:

This two byte instruction transfers a byte of data from the memory location addressed

by the contents of the HL register pair to the memory location addressed by the

contents of the DE register pair. Then both of these register pairs including

the BC (Byte Counter) register pair are decremented.

M CYCLES: 4 T STATES: lli(4,4,3,5)

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P IV: Set if BC- IrQ;

reset otherwi se

N: Reset

C: Not affected

2-165

Example:

If the HL register pair contains lll1H, memory location lll1H contains the byte

88H, the DE register pair contains 2222H, memory location 2222H contains byte 66H,
and the BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:

HL 1110H

(l1l1H) 88H
DE 2221H

(2222H) 88H
BC 6H

2-166

LDDR
Operation: (DE) ~ (HL), DE ~DE-l, HL ~HL-l, BC ~BC-l

Format:

Opcode

LDDR

Operands

11:1:1:°:1:1:0:11 ED

/1 : 0 : 1 : 1 : 1 : 0 : 0 : 0 1 B8

Description:

Th i s two-byte instruct i on transfers a byte of data from the memory 1 ocat i on addressed

by the contents of the HL regi ster pai r to the memory 1 ocat i on addressed by the

contents of the DE register pair. Then both of these register as well as the BC (Byte

Counter) are decremented. If decrementing causes the BC to goto zero, the instruction

is termi nated. If Be is not zero, the program counter is decremented by 2 and the

instruction is repeated. Note that if BC is set to zero prior to instruction execution,

the i nst ruct i on wi 11 loop through 64K bytes. A 1 so, interrupts wi 11 be recogni zed

and two refresh cycles will be executed after each data transfer.

For BCfO:

M CYCLES: 5 T STATES: 21(4,4,3,5,5)

For BC=O:

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

PjV: Reset

N: Reset

C: Not affected

2-167

Example:

If the HL register pair contains 1114-1, the DE register pair contains 2225H, the BC
register pair contains 0003H, memory locations have these contents:

(11141)
(1113H)
(1112H)

A5H
36H
88H

then after the execution of

LDDR

(2224-1)
(222 4-1)
(2223H)

C5H
59H
66H

the contents of register pairs and memory locations will be:

HL ll11H
DE 2222H
Be ooorn

(1114-1) A5H (2225H) A5H
(1112H) 36H (222 41) 36H
(1112H) 88H (2223H) 88H

2-168

LDI
Operation: (DE) ~ (HL), DE ~DE+1, HL ~HL+1, BC ~ BC-1

Format:

Opcode

LDI

Operands

11: 1: 1: 0: 1: 1: 0: 11 ED

11 : 0 > : a : 0 : 0 : 0 : 0 I AO

Description:

A byte of data is transferred from the memory location addressed by the contents of

the HL register pair to the memory location addressed by the contents of the DE

register pair. Then both these register pairs are incremented and the BC (Byte Counter)

register pair is decremented.

M CYCLES: 4 T STATES: 16(4,4,3,5)

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

PjV: Set if BC-1iO;

reset other wise

N: Reset

C: Not affected

2-169

Example:

If the HL Register pair contains 1111H, memory location 1111H contains the byte 88H,

the DE register pair contains 2222H, the memory location 2222H contains byte 66H, and
the BC register pair contains 7H, then the instruction

LDI
will result in the following contents in register pairs and memory addresses:

HL
(l1l1H)

DE
(2222H)

BC

1112H
88H

2223H
88H

6H

2-170

LDIR
Operation: (DE) ~(HL), DE ~ DE+l, HL ~ HL+l, BC ~ BC-l

Format:

Opcode

LDIR

Operands

11:1:1:0:1:1:0:11 ED

11 : 0 : 1 : 1 : 0 : a : a : alBa

Description:

This two byte instruction transfers a byte of data from the memory location addres

by the contents of the HL regi ster pai r to the memory 1 ocat i on addressed by the I

register pair. Then both these register pairs are incremented and the BC (By'

Counter) register pair is decremented. If decrementing causes the BC to go to zel

the instruction is terminated. If BC is not zero the program counter is decrementl

by 2 and the instruction is repeated. Note that if BC is set to zero priorto instru(

tion execution, the instruction will loop through 64K bytes. Also, interrupts wi'

be recogni zed and two refresh cycl es wi 11 be executed after each data transfel

For BC;EO:

M CYCLES: 5 T STATES: 21(4,4,3,5,5)

For BC=O:

M CYCLES: 4 T STATES: 16(4,4,3,5)

2-171

Condition Bits Affected:

$: Not affected
Z: Not affected
H: Reset

P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the BC
register pair contains 0003H, and memory locations have these contents:

{l1l1H}
{1112H}
{1113H}

88H
36H
A5H

then after the execution of

LDIR

{2222H}
{2223H}
{2224H}

66H
59H
C5H

the content s of reg; ster pa irs and memory 1 ocat ions wi 11 be:

HL 1114H
DE 2225H
BC OOOOH

{l1l1H} 88H {2222H} 88H
{1112H} 36H {2223H} 36H
{1113H} A5H {2224H} A5H

2-172

NEG
Operation: A r 0 -A

Format:
Opcode
NEG

11 : 1 : < a: 1 : 1 : 0 : 1 I ED

I 0 : 1 : 0: a : a > : a : 0 I 44

Description:

Contents of the Accumulator are negated (two's complement). This is the same
subtracting the contents of the Accumulator from zero. Note that 80H is left unchange

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected:
S: Set if result is negative;

reset other-wi se
Z: Set if result is zero;

reset otherwise
H: Set if there is a borrow from

Bit 4; reset otherwise
P/V: Set if Acc. was 80H before operation;

reset otherwise
N: Set
C: Set if Acc. was not 00-\ before

operation; reset otherwise

Example:

If the contents of the Accumulator are

1 001 1 000

after the execution of
NEG

the Accumulator contents will be

01101 000

2-173

2-174

NOP
Operation:

Format:
Opcode
NOP

Description:

CPU performs no operation during this machine cycle.

M CYCLES: 1 T STATES: 4

Condition Bits Affected: None

Operation: A f--A V s

Format:

Opcode
OR

Operands
s

2-175

ORs

The s operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous ADD

instructions. These various possible opcode-operand combinations are assembled as
follows in the object code:

1< 0: < I

a;~r~ OR r 1

OR n 1<1:1:«<1:0 F6

[~ ; : : n ~ ~ ~~
OR (HL) 11:°:«°:<1:° B6

OR (I X+d) 11:1:°:1:1:1:°:11 DO

11: 0: 1 : 1 : 0: 1 : 1 : ° I B6

I ~: i : d: : : i~ I
OR (IY+d) I 1 : 1 : 1 : 1 : 1 : 1 : ° : 1 I FD

11;0;1;1:0:1.: 1:01 B6

I ~ : i i d: i ~ : ·1
*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code field

above:

2-176

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

A logical OR operation, bit by bit, it performed between the byte specified by the
operand and the byte contai ned in the Accumul ator; the result is stored in tt

Accumul ator.
INSTRUCTION M CYCLES
OR r 1
OR n 2

OR (HL) 2

OR (IX+d) 5
OR (I Y+d) 5

Condition Bits Affected:
S: Set if result is negative:

reset otherwi se
Z: Set if result is zero;

reset otherwise
H: Set

PjV: Set if parity even;
reset otherwise

N: Reset
C: Reset

Example:

T STATES
4

7 (4,3)

7 (4,3)

19 (4, 4,3,5,3)

19 (4, 4, 3, 5, 3)

If the H register contains 48H (01001000) and the Accumulator contains 12H (00010010
after the execution of

OR H
the Accumulator will contain 5AH (01011010).

Operation: (C) ~ (HL), B f-B-l, HL ~ HL-l

Format:

Opcode

OTDR

11;1;1;0;1:1:0 :11 ED

11 : 0 : 1 : 1 : 1 : 0 : 1 : 1 I BB

Description:

2-177

OTDR

The contents of theHLregister pair are placed onthe address bus to select a location

in memory. The byte contained in this memory location is temporarily stored in the

CPU. Then, after the byte counter (B) is decremented, the contents of register C

are placed on the bottom half (AO through A7) of the address bus to select the I/O

devi ce at one of 256 poss i b 1 e ports. Regi ster B may be used as a byte counter, and

its decremented value is placed on the top half (AS through A15) of the address

bus at thi s time. Next the byte to be output is pl aced on the data bus and written

into the selected peripheral device. Then register pairHL is decremented and if the

decremented B register is not zero, the Program Counter (PC) is decremented by 2 and

the instruction is repeated. If B has gone to zero, the instruction is terminated.

Note that if B is set to zero prior to instruction execution, the instruction will

output 256 bytes of data. Also, interrupts will be recognized and two refresh cycles

will be executed after each data transfer.

If BfO:

M CLCLES: 5 T STATES: 21(4,5,3,4,5)

If B=O;

M CYCLES: 4 T STATES: lli(4,5,3,4)

2-178

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown

PlY: Unknown

N: Set

C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 03H, the contents of

the HL register pair are 1000H, and memory locations have the following contents:

Location Contents

OFFEH

OFFFH

1000H

then after the execution of

OTOR

51H

A9H

03H

the HL regi ster pai r wi 11 contai n OFFOH, regi ster B wi 11 contain zero, and a group of bytes

will have been written to the peripheral device mapped to I/O port address 07H in the

following sequence:

03H

A9H

51H

Operation: (C) ~(HL), B ~ B-1, HL ~HL + 1

Format:

Opcode

OTIR

1<1:<0:«0;11 ED

11 : 0 : 1: 1: 0: 0: 1 : 1 I B3

Description:

2-179

OTIR

The contents of the HL register pair are placed on the address bus to select a location

in memory. The byte contained in this memory location is temporarily stored in

the CPU. Then, after the byte counter (B) is decremented, the contents of regi ster C

are placed on the bottom half (AD through A7) of the address bus to select the I/O

device at one of 256 possible ports. Register B may be used as a byte counter, and its

decremented value is placed on the top half (A8 through A15) of the address bus at

this time. Next the byte to be output is placed on the data bus and written into the

se 1 ected peri phera 1 dev; ceo Then reg; ster pair HL is incremented. If the decremented

B regi ster is not zero, the Program Counter (PC) is decremented by 2 and the instruct; on ; s

repeated. If B has gone to zero, the i nst ruct ion is termi nated. Note that if B is set

to zero pri or to i nst ruct i on execut i on, the i nst ruct i on wi 11 output 256 bytes of

data. Al so, interrupts wi 11 be recogni zed and two refresh cycl es ~/i 11 be executed ,

after each data transfer.

IF B~O:

M CYCLES: 5 T STATES: 21(4,5,3,4,5)

If B=O:

M CYCLES: 4 T STATES: 16(4,5,3,4)

2-180

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown

P/V: Unknown
N: Set
C: Unknown

Example:

If the contents of register Care 07H, the contents of register Bare 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location
1000H
1001H
1002H

Contents
51H
A9H
03H

then after the execution of
OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group
of bytes will have been written to the peripheral device mapped to I/O port address
07H in the following sequence:

51H
A9H
03H

Operation: (C) ~r

Format!

Opcode Operands

OUT (C),r

1«««0:11 ED

10:<~r~:0:0:11
Description:

2-181

OUT (C), r

The contents of register C are placed on the bottom half (AO through A7) of the address

bus to select the I/O device at one of 256 possible ports. The contents of Register B

are placed on the top half (A8 through A15) of the address bus at this time. Then

the byte contained in register r is placed on the data bus and written into the selected

peripheral device. Register r identifies any of the CPU registers shown in the following

table, which also shows the corresponding 3-bit uru field for each which appears

in the assembled object code:

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

M CYCLES: 3 T STATES: 12 (4,4,4)

2-182

Condition Bits Affected: None

Example:

If the contents of regi ster Care 01H and the contents of regi ster 0 are 5AH, after

the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to I/O port

address 01H.

2-183

OUT (n), A
Operation: (n) f-A

Format:

Opcode

OUT

Operands

(n) ,A

11 : 1 : 0 : 1 : 0 : 0 : 1: 1 I D3

I .. : : : n: : : : -I
Description:

The operand n is pl aced on the bottom half (AO through A7) of the address bus to select

the I/O device at one of 256 possible ports. The contents of the Accumulator (reg­

isterA) also appear on the top half (A8 through A15) of the address bus at this time.

Then the byte contained in the Accumulator is placed on the data bus and written

into the selected peripheral device.

M CYCLES: 3 T STATES: 11(4,3,4)

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of

OUT 0IH,A

the byte 23H will have been written to the peripheral device mapped to I/O port

address 01H.

2-184

aUTO
Operation: (C) ~ (HL), B ~B-1, HL ~HL-1

Format:

Opcode

Description:

The contents of the HL register pair are placed on the address bus to select a location

in memory. The byte contained in this memory location is temporarily stored in the

CPU. Then, after the byte counter (B) is decremented, the contents of register Care

placed on the bottom half (AO through A7) of the address bus to select the I/O device

at one of 156 possible ports. Register Bmay be used as a byte counter, and its dec­

remented value is placed on the top half (A8 through A15) of the address bus at this

time. Next the byte to be output is placed on the data bus and written into the

selected peripheral device. Finally the register pair HL is incremented.

M CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown

Z: Set if B-1=0;

reset other wise
H: Unknown

P/V: Unknown
N: Set

C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 10H, the contents

2-185

of the HL reg; ster pa; rare lOOOH, and the contents of memory 1 ocat; on 1000H are

59H, after the execution of

OUTD
register B will contain OFH, the HL register pair will contain OFFFH, and the

byte 59H will have been written to the peripheral device mapped to I/O port address

07H.

2-186

OUTI
Operation: (C) ~(HL), B ~B-1, HL ~HL + 1

Format:

Opcode

oun

\1;1;1;0;1;1:0:11 ED

\1 : a > : 0 : a : 0 : 1 > I A3

Description:

The contents of theHL Register pair are placedonthe address bus to select a location

in memory. The byte contained in this memory location is temporarily stored in

the CPU. Then, after the byte counter (B) is decremented, the contents of regi ster

C are placed on the bottom half (AO through A7) of the address bus to select the

I/O device at one of 256 possible ports. Register B may be used as a byte counter,

and its decremented value is placed on the top half (A8 through A15) of the address

bu s. The byte to be output is placed on the data bus and wri tten into selected

peripheral device. Finally the register pair HL is incremented.

t"l CYCLES: 4 T STATES: 16(4,5,3,4)

Condition Bits Affected:

S: Unknown

Z: Set if B-1=0;

reset otherwi se

P/V: Unknown

N: Set

C: Unknown

Example:

If the contents of regi ster Care 07H, the contents of regi ster Bare 10H, the

contents of the HL register pair are 1000H, and the contents of memory address 1000H

are 59H, then after the execution of
OUTI

2-187

register B will contain OFH, the HL register pair will contain 1001H, and the byte
59H will have been written to the peripheral device mapped to I/O port address 07H.

2-188

POPIX
Operation: IXH ~ (SP+l), IXL ~ (SP)

Format:

Opcode

POP

Operands

IX

11 : 1 : ° > > > ; ° > I DD

11:1;1:°:°:°:°;11 E1

Description:

The top two bytes of the external memory LIFO (last-in, first -out) Stack are popped

into Index Register IX. The Stack Pointer (SP) register pair holds the 16-bit address

of the current "top" of the Stack. This instruction first loads into the low order
port i on of I X the byte at the memory 1 ocat ion correspondi ng to the contents of SP;

then SP is incremented and the contents of the corresponding adjacent memory location are

loaded into the high order portion IX. The SP is now incremented again.

M CYCLES: 4 T STATES: 14{4,4,3,3)

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location

1001H contains 33H, the instruction

POP IX

will result in Index Register IX containing 3355H, and the Stack Pointer containing

1002H.

Operation: IYH ~ (SP+l), IYL ~ (SP)

Format:

Opcode

POP
Operands
IY

\1: 1 : 1 : 1 : 1 : 1 : ° : 1 I FD

11:1:1:°;°:°:°;11 E1

Description:

2-189

POP IV

The top two bytes of the external memory LIFO (last-in, first-out) Stack are popped

into Index Register IV. The Stack Pointer (SP) register pair holds the 16-bit address

of the current "top" of the stack. This instruction first loads into the low order

port i on of I Y the byte at the memory 1 ocat ion correspondi ng to the contents of

SP; then SP is incremented and the contents of the correspondi ng adjacent memory 1 ocat i on

are loaded into the high order portion of IY. The SP is now incremented again.

M CYCLES: 4 T STATES: 14{4,4,3,3)

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and location

1001H contains 33H, the instruction
POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer containing

1002H.

2-190

POPqq
Operation: qqH r(SP+l), qqL ~ (SP)

Format:

Opcode

POP

Description:

Operands

qq

The top two bytes of the external memory LIFO (last-in, first-out) Stack are poppe,

into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit addres:

of the current IItop of the Stack. This instruction first loads into the low ordel

portion of qq, the byte at the memory location corresponding to the contents of SP

then SP is incremented and the contents of the corresponding adjacent memory locatior

are loaded into the high order portion of qq and the SP is now incremented again.

The operand qq defines register pair BC, DE, HL, or AF, assembled as follows in thE

object code:

Pair r -
BC 00

DE 01

HL 10

AF 11

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

2-191

Example:

If the Stack Pointer contains 100(}l, memory location 100(}l contains 55H, and location

1001H contains 33H, the instruction

POP HL

will result in register pair HL containing 3355H, and the Stack Pointer containing

1002H.

2-192

PUSHIX
Operation: (SP-2) ~ IXL (SP-l) ~ IXH

Format:

Opcode

PUSH

Operands

IX

11 : 1 : a : 1 : 1 : 1 : a : 1 I DD

11 : 1 : 1 : 0 : a : 1 : a ; 1 I E5

Description:

The contents of the IndexRegister IX are pushed into the external memory LIFO (last-in,

first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address

of the current IItopll of the Stack. This instruction first decrements the SP and

loads the high order byte of IX into the memory address now specified by the SP,

then decrements the SP again and loads the low order byte into the memory location

corresponding to this new address in the SP.

M CYCLES: 3 T STATES: 15(4,5,3,3)

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H, after the

instruction

PUSH IX

Memory address 1006H will contain 22H, memory address 1005H will contain 33H, and the

Stack Pointer will contain 1005H.

~eration: (SP-2) ~ IYL, (SP-l) ~IYH

Format:

Opcode

PUSH

Operands

IY

\1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

11 : 1 : 1 : 0 : 0 : 1 : 0 : 11 E5

Description:

2-193

PUSHIY

The contents of the Index Register IYare pushedintothe external memory LIFO (last-in,

first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address of

the current "top" of the Stack. This instruction first decrements the SP and loads

the hi gh order byte of I Y into the memory address now specified by the SP; then de­

crements the SP again and loads the low order byte into the memory location corresponding

to this new address in the SP.

M CYCLES: 4 T STATES: 15(4,5,3,3)

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H, after

the instruction

PUSH IY

Memory address 1006H will contain 22H, memory address 1005H will contain 33H, and

the Stack Pointer will contain 1005H.

2-194

PUSH qq

Operation: (SP-2) ~ qqL ' (SP-l) ~qqH

Format:

Opcode

PUSH

Description:

Operands

qq

The contents of the regi ster pair qq are pushed into the external memory LI FO (l ast-i n

first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit address 0

the current "top" of the Stack. This instruction first decrements the SP and load

the hi gh order byte of regi ster pai r qq into the memory address now specified by the SP

then decrements the SP agai nand loads the low order byte of qq into the memor.

location corresponding to this new address in the SP. The operand qq means registe

pair BC, DE, HL, or AF, assembled as follows in the object code:

Pair .9.9.
BC 00

DE 01

HL 10

AF 11

M CYCLES: 3 T STATES: 11(5,3,3)

Conditon Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H, aftel

the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain 33H, and thE

Stack Pointer will contain 1005H.

Operat ion: sb f- 0

Format:

Opcode

RES

Operands

b,m

2-195

R.ESb,m

Operand b is any bit (7 through 0) of the contents of the m operand, (any of r,

(HL), (IX+d) or (IY+d)) as defined for the analogous SET instructions. These various

possible opcode-operand combinations are assembled as follows in the object code:

RES b, r 11 : 1 : 0 : 0 : 1 : 0 : 1 > I CB

1< 0 :~b~: ~r71
RES b, (HL) 11 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

11:0:~b~:I:I:01
RES b,(IX+d) 11: 1: 0; 1; 1 > : 0; 1 I DO

11 : 1 : 0 : 0: 1 : 0 : 1 : 1 I CB

I~: : : d: : : :~ I
11:0:~b~»:01

RES b, (I Y +d) 11: 1 > : 1 : 1 > : 0 > I F 0

11 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

I.: ; : d : ::~ I
11 : 0 : ~ b7 : 1 : 1 : 0 I

2-196

Bit Reset b
a 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Description:

Bit b in operand m is reset.

INSTRUCTION
RES r
RES (HL)
RES (IX+d)
RES (I Y+d)

Condition Bits Affected: None

Example:

After the execution of
RES 6,0

Register
B

C
0

E
H

L
A

M CYCLES
4

4

6

6

r
000

001

010

011

100

101

111

T STATES
8(4,4)
15(4,4,4,3)
23(4,4,3,5,4,3)
23(4,4,3,5,4,3)

bit 6 in registerOwill be reset. (Bit a in registerD is the least significant bit.)

Operat i on: PC l f- (SP), PC H f- (SP+ 1)

Format:

Opcode

RET

11: 1 : 0 : 0 : 1 : 0 : 0 : 1 I C9

Description:

2-197

RET

Control is returned to the original program flow by popping the previous contents

of the Program Counter (PC) off the top of the external memory stack, where they

were pushed by the CAll instruction. This is accomplished by first loadingthelow-order

byte of the PC with the contents of the memory address poi nted to by the Stack

Pointer (SP), then incrementing the SP and loading the high-order byte of the PC with

the contents of the memory address now pointed to by the SP. (The SP is now incremented

a second time.) On the following machine cycle the CPU will fetch the next program

opcode from the location in memory now pointed to by the PC.

M CYCLES: 3 T STATES: 10(4,3,3)

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack Poi nter

are 2000H, the contents of memory location 2000H are B5H, and the contents of memory

location 2001H are 18H, then after the execution of

RET

the contents of the Stack Poi nter wi 11 be 2002H and the contents of the Program

Counter wi 11 be 18B5H, poi nt i ng to the address of the next program opcode to be

fetched.

2-198

Operation: IF cc TRUE: PCl ~ (SP), PCH ~ (SP+1)

Format:

Opcode

RET

Description:

Operand

cc

If condition cc is true, control is returned to the original program flow by popping

the previ ous contents of the Program Counter (PC.) off the top of the externa 1 memory stack,

where they were pushed by the CAll instruction. This is accomplished by first loading

the low-order byte of the PC with the contents of the memory address poi nted to

by the Stack Pointer (SP), then incrementing the SP, and loading the high-order byte

of the PC with the contents of the memory address now poi nted to by the SP (the

SP is now incremented a second time). On the following machine cycle theCPUwill

fetch the next program opcode from the 1 ocat ion in memory now poi nted to by the

PC. If condition cc is false, the PC is simply incremented as usual, and the program

continues with the next sequential instruction. Condition cc is programmed as one of

eight status which correspond to condition bits in the Flag Register (register F).

These ei ght status are defi ned in the tab 1 e be low, whi ch also specifi es the correspondi ng

cc bit fields in the assembled object code.

cc

000

001

010

011

100

101

110
111

Condition

NZ non zero

Z zero
NC non carry

C carry

PO pa rity odd

PE parity even

P sign positive
M sign negative

Relevant

Flag

Z

Z

C

C

PjV
PjV
S

S

2-199

If cc i s t ru e :

M CYCLES: 3 T STATES: 11(5,3,3)

If cc is false:

M CYCLES: 1 T STATES: 5

Condition Bits Affected: None

Example:

If the S fl ag in the F reg; ster is set, the contents of the Program Counter are

3535H, the contents of the Stack Pointer are 2000H, the contents of memory location

2000H are B5H, and the contents of memory 1 ocat i on 200lH are 18H, then after the

execution of
RET M

the contents of the Stack Poi nter wi 11 be 2002H and the contents of the Program Counter

wi 11 be 18B5H, poi nt ing to the address of the next program opcode to be fetched.

2-200

RETI
Operation: Return from interrupt

Format:
Opcode
RET!

11 : 1 : 1 : 0 : 1 : 1 : 0:1 I ED

I 0 : 1 : 0 : 0 : 1 : 1 : 0 : 1 I 4D

Description:

This instruction is used at the end of an interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET instruction)
2. To signal an I/O device that the interrupt routine has been completed. The RETI

instruction facilitates the nesting of interrupts allowing higher priority devices
to suspend service of lower-priority service routines. This instruction has
no effect on the IFFI and IFF2 flip flops.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B,connected in a daisy chain configuration
with A having a higher priority than B.

A B
+

yIEI lEO I I lEI lEO I
I INT

2-201

B generates an interrupt and is acknowledged. (The interrupt enable out t lEO t of

B goes low t blocking any lower priority devices from interrupting while B is being

serviced). Then A generates an interruptt suspending service of B. (The lEO of A

goes 'low' indicating that a higher priority device being serviced.) The A routine

is completed and a RET! is issued resetting the lEO of At allowing the B routine to

continue. A second RET! is issued on completion of the B routine and the lEO of B

is reset (high) allowing lower priority devices interrupt access.

2-202

RETN
Operation: Return from non-maskable interrupt

Format:

Opcode

RETN

11 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED

[0 : 1 : 0 : 0 : 0 : 1 : 0 : 1 I 45

Description:

Used at the end of a service routine for a non-maskable interrupt, this instruction

executes an unconditional return which functions identically to the RET instruction.

That is, the previ ous ly stored contents of the Program Counter (PC) are popped off

the top of the externa 1 memory stack; the low-order byte of PC is loaded with the contents

of the memory location pointed to by the Stack Pointer (SP), SP is incremented, the

high-order byte of PC is loaded with the contents of the rnemory location now pointed

to by SP, and SP is incremented again. Control is now returned tothe original program

flow: on the following machine cycle the CPU will fetch the next opcode from the

location in memory now pointed to by the PC. Also the state of IFF2 is copied

back into IFFI to the state it had prior to the acceptance of the NMI.

M CYCLES: 4 T STATES: 14(4,4,3,3)

Condition Bits Affected: None

Example:

If the contents of the Stack Poi nter are lOOOH and the contents of the Program Counter

are lA45H when a non-maskable interrupt (NMI) signal is received, the CPU will ignore

the next instruction and will instead restart to memory address 0066H. That is,

the current Program Counter contents of lA45H will be pushed onto the external stack

address of OFFFH and OFFEH, high order-byte first, and 0066H will be loaded onto the

2-203

Program Counter. That address begins an interrupt service routine which ends with

RETN instruction. Upon the execution of RETN, the former Program Counter contents are

popped off the external memory stack, low-order first, resulting in a Stack Pointer

contents again of lOOCl-l. The program flow continues where it left off with an opcode

fetch to address lA45H.

2-204

RLm

Operation:

Format:
Opcode
RL

m

Operands
m

The m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous RLC
instructions. These various possible opcode-operand combinations are specified as
follows in the assembled object code:

RL r

RL (HL)

RL (IX+d)

11 : 1 : 0 : a : 1 : 0 : 1 : 1 I CB

I 0 : 0 ; a : 1 : 0 : ~ r71
11 > : 0 : 0 : 1 : 0 : 1 > I CB

1 0 : 0 : 0 : 1 : 0 : 1 : 1 : 0 1 16

1 : 1 : 0 : 1 : 1 : 1 : 0 : liDO

1 > : 0 : 0 : 1 : 0 : 1 : 1 I CB

.: : : d: : : ;. I

o : 0 : 0 : < 0 > > : 0 116

2-205

RL (IY+d) 1 : 1 : 1 : 1 : 1 > : a : 1 I FD

1 : 1 : 0 : 0 : 1 : 0 : 1 > I CB

~: : : d: : : : ~ I
a : a : a : 1 : 0 : 1 : 1 : a I 16

*r identifies register B,C,D,E,H,L or A specified as follows in the assembled object
code above;

Register r
B 000
C 001
D 010
E all
H 100
L 101
A 111

Description:

The contents of the m operand are rotated 1 eft: the content of bi t a is copi ed
into bit 1; the previ ous content of bi t content of bi t 1 is copi ed into bit 2;
this pattern is continued throughout the byte. The content of bit 7 is copied into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag is
copied into bit a (Bit 0 is the least significant bit.)

INSTRUCTION M CYCLES T STATES
RL r 2 8(4,4)
RL (HL) 4 15(4,4,4,3)
RL (IX+d) 6 23(4,4,3,5,4,3)
RL (IY+d) 6 23(4,4,3,5,4,3)

2-206

Condition Bits Affected:

Exampl!:

S: Set if result is negative;
reset otherwi se

Z: Set if result is zero;
reset otherwi se

H: Reset
PjV: Set if parity even;

reset otherwise
N: Reset
C: Data from Bit 7 of

source register

If the contents of register D and the Carry Flag are

after the execution of
RL D

C 7 6 5 4 3

the contents of register D and the Carry Flag will be

C 7 6 5 4 3

2 1 o

1 1 1

2 1 o

Operation:

Format:
Opcode
RLA

Operands

10: 0 : 0 : 1 : a : 1 : 1 : 1 117

Description:

2-207

RLA

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this
pattern is continued throughout the regi ster. The content of bit 7 is copi ed into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag
is copied into bit O. Bit a is the least significant bit.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

PjV: Not affected
N: Reset
C: Data from Bit 7 or Acc.

2-208

Example:

If the contents of the Accumulator and the Carry Flag are

C 7 6 5 4 3 2 1 0

GI a 1 1 1 a 1 1 a

after the execution of
RLA

the contents of the Accumulator and the Carry Flag will be

C 7 6 5 4 3 2 1 a

GI 1 1 1 I 0 I 1 I 1 0 1

Operation:

Format:

Opcode

RLCA

Operands

I 0 : 0 : 0: 0 : 0 : 1 : 1 : 1 I 07

Description:

2-209

RLCA

The contents of the Accumulator (register A) are rotated left: the content of bit

o is moved to bi t 1; the previ ous content of bit 1 is moved to bit 2; thi s pattern

is continued throughout the register. The content of bit 7 is copied into the Carry

Flag (C flag in register F) and also into bit O. (Bit 0 is the least significant

bit.)

M CYCLES: 1 T STATES: 4

Conditi on Bits Affected:

S: Not affected

Z: Not affected

H: Reset

PjV: Not affected

N: Reset

C: Data from Bit 7 of Acc.

2-210

Example:

If the contents of the Accumulator are

after the execution of
RLCA

76543210

the contents of the Accumulator and Carry Flag will be

C 76543210

~[0 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I

operation:~ 7--- a ~
(HL)

Format:

Opcode

RLC

Operands

(HL)

I < < a : a : < a : < 1 I CB

I a : a : a : a : a : 1 : 1 : a I 06

Description:

2-211

RLe (HL)

The contents of the memory address specifi ed by the contents of regi ster pai r HL

are rotated 1 eft: the content of bit a is copi ed into bit 1; the previ ous content

of bit 1 is copi ed into bit 2; thi s pattern is continued throughout the byte. The

content of bit 7 is copied into the Carry Flag (C flag in register F) and also

into bit O. Bit a is the least significant bit.

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:

S: Set if result is negative;

reset otherwise

Z: Set if result is zero;

reset otherwise

H: Reset

P/V: Set if parity even;

reset otherwise

N: Reset

C: Data from Bit 7 of

source register

2-212

Example:

If the contents of the HL register pair are 2828H~ and the contents of memory location

2828H are

after the execution of

RLC (HL)

7 6 543 2 1 0

the contents of memory location 2828H and the Carry Flag will be

C 7 6 543 2 1 0

01 0 ! 0 1011 10 10 10 111

Operation:

Format:

Opcode

RLC

Operands

(IX+d)

I < 1 : a : 1 : 1 : 1 : a : 1 I DO

11 : 1 : a : a : 1 : a : 1 : 1 I CB

I·: : : d: : : :~ I
I a : a : a : a : a > > : 0 I 06

Description:

2-213

RLC(IX+d)

The contents of he memory address speci fi ed by the sum of the contents of the Index

Regi ster I X and a two I s complement di sp 1 acement i nterger d, are rotated 1 eft: the

contents of bit a is copied into bit 1; the previous content of bit 1 is copied

into bit 2; thi s pattern is continued throughout the byte. The content of bit

7 is copied into the Carry Flag (C flag in register F) and also into bit O. Bit

o is the least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;

reset otherwise

Z: Set if result is zero;

reset other wise

H: Reset

PjV: Set if parity even;

reset otherwise

N: Reset

C: Data from Bit 7 of

source register

2-214

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory

location 1002H are

after the execution of

RLC (IX+2H)

7 6 543 2 1 a

the contents of memory 1 ocat ion 1002H and the Carry Fl ag wi 11 be

C 7 6 543 2 1 a

010101011101010 111

Operation: L@}--17-- 0 ~
Format:

Opcode

RLC

(IY+d)

Operands

(I Y+d)

11:1:1:1:1:1:0:11 FD

11: 1: 0 : a : 1 : 0 : 1 : 1 \ CB

\.: : : d: : : : .\

I 0: 0: 0 : 0 : 0: 1 : 1 : a I 06

DescY'i pt ion:

2-215

RLe (IY+d)

The contents of the memory address specified by the sum of the contents of the Index

Register IY and a two's compliment displacement interger d are rotated left: the

content of bit a is copied into bit 1; the previous content of bit 1 is copied

into bit 2; this process is continued throughout the byte. The content of bit 7 is

copied into the Carry Flag (C flag in register F) and also into bit O. Bit a is the

least significant bit.

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative;

reset othenJi se

Z: Set if result is zero;

reset othenJi se

P/V: Set if parity even;

reset otherwise

N: Reset

C: Data From Bit 7 of

source register

2-216

Example:

If the contents of the Index Register IY are 1000H, and the contents of memory location

1002H are

after the execution of

RLC (I Y+2H)

7 6 543 2 1 0

the contents of memory 1 ocat ion 1002H and the Carry Fl ag wi 11 be

C 7 6 543 2 1 0

010101011101010 III

Operation:

Format:

Opcode

RLC

r

Operands

r

\1: 1: 0: 0 : 1 : 0; 1 : 1 I CB

I 0: 0: 0: 0: 0: ~r~1

)escri pt ion:

2-217

RLC r

:he ei ght-bit contents of regi ster r are rotated 1 eft: the content of bit 0 is

:opied into bit 1; the previous content of bit 1 is copied into bit2; this pattern

s cont i nued throughout the regi ster. The content of bit 7 is copi ed into the

:arry Flag (C flag in register F) and also into bit O. Operand r is specified

IS follows in the assembled object code:

Register r -
B 000

C 001

D 010

E 011

H 100

L 101

A 111

ote: Bit 0 is the least significant bit.

CYCLES: 2 T STATES: 8(4,4)

2-218

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Reset

P/V: Set if parity even;
reset otherwise

N: Reset
C: Data from Bit 7 of

source register

Example:

If the contents of register rare

76543210

after the execution of

RLC r

the contents of register r and the Carry Flag will be

C 76543210

Operation:

Format:

(HL)

Opcode Operands

RLD

11:1:1:0:1:1:0:11 ED

I 0 : 1 : 1 : 0 : 1 : 1 : 1 : 1 I 6F

Description:

2-219

RLD

The contents of the low-order four bits (Bits 3,2,1 and 0) of the memory location

(HL) are copi ed into the hi gh-order four bits (7,6,5 and 4) of that same memory

location; the previous contents of those high-order four bits are copied into the

low order four bits of the Accumulator (register A); and the previous contents of

the low order four bits of the Accumulator are copied into the low-order four bits

of memory location (HL). The contents of the high-order bits of the Accumulator

are unaffected. Note: (HL) means the memory location specified by the contents

of the HL register pair

M CYCLES: 5 T STATES: 18(4,4,3,4,3)

Condition Bits Affected:

S: Set if Acc. is negative after

operation; reset otherwise

Z: Set if Ace. is zero after

operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even

after operation; reset otherwise

N: Reset

C: Not affected

2-220

Example:

If the contents of the HL register pair are 5000H, and the contents of the Accumulator

and memory location 5000H are

7 6 5 4 3 2 1 0

Accumulator

7 6 5 4 3 2 1 0

0 0 1 I 1 I 0
1

0 1 0 1
1 I (5000H)

after the execution of

RLD

the contents of the Accumulator and memory location 5000H wi 11 be

7 6 5 4 3 2 1 0

Accumulator

7 6 543 2 1 0

(5000H)

Operation:

Format:
Opcode
RR

Operands
m

2-221

RRm

The m operand is any of r, (HL), (IX+d) , or (IY+d), as defined for the analogous
RLC instructions. These various possible opcode-operand combinations are specified
as follows in the assembled object code:

RR r

RR (HL)

RR (IX+d)

11 : 1 : 0 : a : 1 : 0 : 1 ; 1 I CB

a : 0 : 0 : 1 : 1 : ~ r~ I
1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

o : 0 : 0 : 1 : 1 : 1 : 1 : a I IE

1 > ;a : 1 : 1 : 1 : 0 > I DO

11 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

I ~: : : d: : : : ·1
I 0 : 0 : 0 > > : 1 : 1 : 0 I IE

2-222

RR (IY+d) \ a : 0 : 0 : 1 : 1 : 1 : 1 : a lIE

\1 : 1 : a : a : 1 : a : 1 : 1 I CB

I·: : : d: : : :~ I
I a :. 0 : a : 1 : 1 : 1 : 1 : a lIE

*r identifies registers B~C~D~E~H,L orA specified as follows in the assembled object
code above.

Register r -
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand iii are rotated ri ght: the contents of bit 7 is copi ed into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is con­
tinued throughout the byte. The content of bit a is copied into the Carry Flag (C
flag in register F) and the previous content of the Carry Flag is copied into bit 7.
Bit a is the least significant bit.

I NSTRUCTI ON M CYCLES T STATES
.j'#!

RR r 2 8(4,4)
RR (HL) 4 15(4,4,4,3)
RR (IX+d) 6 23(4,4,3,5,4,3)
RR (IY+d) 6 23(4,4,3,5,4,3)

2-223

Condition Bits Affected:

S: Set if result is negative;
reset otherwise

Z: . Set if result is zero;
reset otherwi se

H: Reset
P/V: Set if parity is even;

reset otherwi se
N: Reset
C: Data from Bit 0 of

source register

Example:

If the contents of the HL register pair are 4343H, and the contents of memory location
4343H and the Carry Flag are

7 6 543 2 1 0 C

111110111111 1 0 111~
after the execution of

RR (HL)

the contents of location 4343H and the Carry Flag will be

7 6 543 2 1 0 C

2-224

RRA

Operation: Lj 7-0~
A

Format:

Opcode

RRA

Operands

I 0 : 0 : 0 : 1 : 1 : 1 : 1 : 1 IIF

Description:

The contents of the Accumulator (register A) are rotated right: the content of bit 7

is copied into bit 6; the previous content of bit 6 is copied into bit 5; this

pattern is continued throughout the regi ster. The content of bit 0 is copi ed into

the Carry Flag (C flag in register F) and the previous content of the Carry Flag

is copied into bit 7. Bit 0 is the least significant bit.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

$: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

after the execution of
RRA

76543210 C

I 1 I 1 I 1 I 0 1 0 1 0 1 0 1 1 I ~

the contents of the Accumulator and the Carry Flag will be

76543210 C

2-225

2-226

RReA
Operation:

Format:

Opcode

RRCA

Description:

Operands

The contents of the Accumulator (registerA) are rotated right: the content of bit 7 is

copied into bit 6; the previous content of bit 6 is copied into bit 5; this pattern

is continued throughout the register." The content of bit a is copied into bit

7 and also into the Carry Flag (C flag in register F.) Bit a is the least significant

bit.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

PjV: Not affected

N: Reset

C: Data from Bit o of Acc.

2-227

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

10 :
0 0 1 0 : 0 : 0 : 1 I

After the execution of
RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

11 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 1 I

2-228

RRCm

Operation: y 7_0~
m

Format:

Opcode

RRC

Operands

m

The m operand is any of r,(HL), (IX+d) or (IY+d), as defined for the analogous RLC

instructions. These various possible opcode-operand combinations are specified as

follows inthe assembled object code:

RRC r

RRC (HL)

RRC (IX+d)

I < < 0 : 0: < a: < 1 \ CB

10: 0: 0: 0: I; ~r~1

11 : 1 : 0 : 0: 1 : 0 : 1 : 1 I CB

\ 0: 0: a : 0: 1 : 1: 1: a \ DE

11 : 1 : 0 : 1: 1 : 1 : 0 : 1 I DO

\1 : 1 : 0 : 0: 1 : 0; 1 : 1 \ CB

I·: : : < : : : ·1
I a : a : a : 0: 1 : 1 : 1 : a I OE

RRC {IY+d} [1 : 1 : 1 : 1 : 1 : 1 : a : 1 I FD

11 : 1 I, a : a : 1 : a : 1 : 1 I CB

Ie: : : d: : : :~ I
I a : a : a : a : 1 : 1 : 1 : a I OE

2-229

*r identifies registersB,C,D,E,H,L orA specified as follows in the assembled object

:ode above:

Register r

B 000

C 001

D 010

E all
H 100

L 101

A 111

lescri pt ion:

'he contents of operand m are rotated ri ght: the content of bi t 7 is copi ed into bi t 6;

he previous content of bit 6 is copied into bit 5; this pattern is continued throughout

he byte. The content of bit a is copi ed into the Carry Fl ag {C fl ag in the F

'egister} and also into bit 7. Bit a is the least ~ignificant bit.

INSTRUCTION M CYCLES T STATES

RRC r 2 8{4,4}

RRC (HL) 4 15{4,4,4,3)

RRC (IX+d) 6 23{4,4,3,5,4,3)

RRC (I Y+d) 6 23{4,4,3,5,4,3)

2-230

Condition Bits Affected:

Example:

S: Set if result is negative;
reset otherwise

Z: Set if result is zero;
reset otherwise

H: Reset
P/V: Set if parity even;

reset otherwise

N: Reset
C: Data from Bit 0 of

source regi ster

If the contents of register A are

after the execution of
RRC A

7 6 5 4 321 0

\01 0 \11 1 \01 0 \01 1 \

the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

\1 I 01 0 1111 I 0 10 I °l~

Operation:

Format:

Opcode
RRD

(HL)

Operands

11:1:1:0;1;1:0:11 ED

1 ° : 1 : 1 : ° : ° : 1 : 1 : 1 1 67

Description:

2-231

RRD

The contents of the low-order four bits (bits 3,2,1 and 0) of memory location (HL)

are copied into the low-order four bits of the Accumulator (register A); the previous

contents of the low-order four bits of the Accurnul ator are copi ed into the hi gh-order

four bits (7,6,5 and 4) of location (HL); and the previous contents of the high­

order four bits of (HL) are copied into the low-order four bits of (HL). The con­

tents of the hi gh-order bits of the Accumul ator are unaffected. Note: (HL) means

the memory location specified by the contents of the HL register pair.

M CYCLES: 5 T STATES: 18(4,4,3,4,3)

Condition Bits Affected:

S: Set if Acc. is negat i ve after

operation; reset otherwise

Z: Set if Acc. is zero after

operation; reset other wise

H: Reset

P/V: Set if parity of Acc.i seven after

operation; reset otherwi se

N: Reset

C: Not affected

2-232

Example:

If the contents of the HL register pair are 5000H, and the contents of the Accumulator

and memory location 5000H are

7 6 543 2 1 0

\1 I 0 I 0 I 0 I 0 11 I 0 I 0 I Accumulator

7 6 5 4 3 2 1 0

I 0 I 0 11 I 0 I 0 I 0 I 0 10 I (5000H)

after the execution of

RRD

the contents of the Accumu 1 ator and memory 1 ocat i on 5000H wi 11 be

7 6 543 2 1 0

I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Accumulator

7 6 5 4 3 2 1 0

I 0 11 I 0 I 0 I 0 I 0 11 I 0 I (5000H)

2-233

RSTp

Jperation: (SP-1) ~PCH , (SP-2) ~PCl ' PCH f-O, PCl ~P

rormat:

Opcode Operand

RST p

11:1:~t~> > > I
)escription:

fhe current Program Counter (PC) contents are pushed onto the external memory stack,

and the page zero memory location given by operand p is loaded into the PC. Program

:xecution then begins with the opcode in the address now pointed to by PC. The push

is performed by first decrementing the contents of the Stack Pointer (SP), loading the

hi gh-order byte of PC into the memory address now poi nted to by SP, decrementing SP

agai n, and 1 oadi ng the low-order byte of PC into the address now poi nted to by SP.

fhe ResTart instruction allows for a jump to one of eight addresses as shown in the

table below. The operand p is assembled into the object code using the corresponding

f state. Note: Si nce all addresses are in page zero of memory, the hi gh order

byte of PC is loaded with DOH. The number selected from the "p" column of the table

is loaded into the low-order byte of PC.

E- t
DOH 000

08H 001

10H 010

18H 011

20H 100

28H 101

30H 110

38H 111

:.1 CYCLES: 3 T STATES: 11(5,3,3)

2-234

Example:

If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 1101111)

the PC will contain 0018H, as the address of the next opcode to be fetched.

)peration: A f-A - s - CY

Format:
Opcode
SBC

Operands
A, s

2-235

SBe A,s

The s operand is any of r,n,(HL),(IX+D) or (IY+d) as defined for the analogous ADD
instructions. These various possible opcode-operand combinations are assembled as
follows in the object code:

SBC A,r

SBC A,n

SBC A, (HL)

SBC A,(IX+d)

SBC A,(IY+d)

I <O:O:I:I:~r71
11 : 1 : a : 1 : 1 : 1 : 1 : a I DE

I ~: : : n: : : : ·1
11 : a : a : 1 : 1 : 1 : 1 : a I 9E

11 : 1 : a : 1 : 1 : 1 : a : 1 I DO

11 : a : a : 1 : 1 : 1 : 1 : 0 I 9E

I·: : : d: : : : ~ I
11 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

11 : 0 : a : 1 : 1 : 1 : 1 : a I 9E

I·: : : d: : : : ·1
*r identifies registerB,C,D,E,H,L orA assembled as follows in the object code field

above:

2-236

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Descri~tion:

The s operand, along with the Carry Flag ("C" in the F register) is subtracted from
the contents of the Accumulator, and the result is stored in the Accumulator.

INSTRUCTION M CYCLES T STATES
SBC A,r 1 4
SBC A,n 2 7(4,3)
SBC A,(HL) 2 7(4,3)
SBC A, (I X+d)
SBC A, (IX+d)

5

5

19(4,4,3,5,3)
19(4,4,3,5,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero,

reset otherwi se
H: Set if there is a borrow from ,

Bit 4; reset otherwise
P/V: Set if overflow;

reset otherwi se
N: Set
C: Set if there is a borrow:

reset otherwise

Exam~le:

If theAccumulator contains 16H, the carry flag is set, the HL register pair contains
3433H, and address 3433H contains 05H, after the execution of

SBC A,(HL)
the Accumulator will contain 10H.

Operation: HL f--HL-ss-CY

Format:
Opcode
SBC

Operands
HL,ss

11;1;1;0;1;1;0:11 ED

10;1>:s:O:0>:01
Description:

2-237

SBe HL,ss

The contents of the register pair ss (any of register pairs BC,DE,HL or SP) and
the Carry Fl ag (C fl ag in the F regi ster) are subtracted from the contents of regi ster
pair HL and the result is stored in HL. Operand ss is speCified as follows in the
assembled object code.

Register
Pai r ss

BC 00
DE 01
HL 10
SP 11

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Set if there is a borrow from

Bit 12; reset other wise
P/V: Set if overflow;

reset otherwise
N: Set
C: Set it there is a borrow;

reset otherwise

2-238

Example:

I f the contents of the HL regi ster pair are 9999H, the contents of regi ster pa i
DE are IlllH, and the Carry Flag is set, after the execution of

SSC HL,DE

the contents of HL will be 8887H.

Operation: CY f-l

Format:
Opcode
SCF

I a : 0 : 1 : 1 : 0 : 1 : 1 : 1 I 37

Description:

The C flag in the F register is set.

M CYCLES: 1 T STATES: 4

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset

P/V: Not affected
N: Reset
C: Set

2-239

SCF

2-240

SET b,(HL)
Ope rat ion: (HL)b f-l

Format:
Opcode
SET

Operands
b,(HL)

11 : < 0 : 0: 1 : 0 : 1 : 1 I CB

11:1:~b~:1:1:01
Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of
register pair HL is set. Operand b is specified as follows in the assembled object
code:

Bit Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M CYCLES: 4 T STATES: 15(4,4,4,3)

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of
SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H is the
least significant bit.)

Operation: (IX+d)b ~ 1

Format:

Opcode
SET

Operands
b, (IX+d)

I < < a : < 1 : 1 : a : 1 I DD

11: 1: a : a : 1 : a : 1 : 1 I CB

I~: : : d: : : : ~ I
I < < ~ b ~: 1 : 1 : 0'1

Description:

2-241

SET b, (IX +d)

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the con­
tents of the IX register pair (Index Register IX) and the two's complement integer d
is set. Operand b is specified as follows in the assembled object code:

Bit Tested b

a 000
1 001
2 010
3 all
4 100
5 101
6 110

7 III

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected: None

2-242

Example:

If the contents of Index Register are 2000H, after the execution of

SET O,(IX+3H)
bit 0 in memory location 2003H \'/i11 be 1. (Bit 0 in memory location 2003H is the least

significant bit.)

Operation: (IY+d)b f--l

Format:
Opcode
SET

Operands
b,(IY+d)

1 : 1 : 1 > : 1 > : 0: 1 I FD

1 : 1 : 0 : 0 : 1 : 0 : 1: 1 I CB

~: : >: : : : ~ I
1 : 1 : ~b~: 1 >: 0 I

Description:

2-243

SET b, (IV+d)

Bit b (any bit, 7 through 0) in the memory 1 ocat i on addressed by the sum of the contents
of the IY register pair (Index Register IY) and the two's complement displacement d
is set. Operand b is specified as follows in the assembled object code:

Bit Tested b
0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M CYCLES: 6 T STATES: 23(4,4,3,5,4,3)

Condition Bits Affected: None

2-244

Example:

If the contents of Index Register IY are 2000H, after the execution of
SET 0, (I Y+3H)

bit a in memory 1 ocat i on 2003H wi 11 be 1. (Bit 0 in memory 1 ocat i on 2003H is the

least significant bit.)

2-245

SET b, r

Operation: rb f--1

Format:

Opcode

SET

Operands
b,r

I < 1 : a : a : 1 : a > > I CB

11:1:~b7:~r71
Description:

Bit b (any bit, 7 through 0) in register r (any of registers B,C,D,E,H,L or

set. Operands band r are specified as follows in the assembled object

Bit b
a 000
1 001

2 010
3 all
4 100
5 101

6 110
7 111

M CYCLES: 2 T STATES: 8(4,4)

Condition Bits Affected: None

Example:

After the execution of
SET 4,A

Register r
B 000

C 001

D 010
E 011

H 100
L 101
A 111

bit 4 in register A will be set. (Bit a is the least significant bit.)

code:
A) is

2-246

SLAm
Operation:

Format:

Opcode

SLA

n CY ~7 ~O ~O

Operands

m

The operand m is any of r,(HL),{IX+d) or (IY+d), as defined for the analogous RLC

instructions. These various possible opcode-operand combinations are specified as

follows in the assembled object code:

SLA r

SLA (HL)

SLA (IX+d)

\1 : 1: 0: 0: 1 : a : 1: 1 I CB

o : 0: 1: 0; 0: ~r~ 1

1 : 1 : a : 0: 1 : 0 : 1 : 1 I CB

a : 0: 1 : 0: 0 : 1 : 1 : a I 26

1 : 1 : a : 1: 1 : 1 : 0: 1 I DO

1 : 1: 0: 0: 1 : 0 : 1: 1 1 CB

I·: : : d: : : : ·1
I a : 0: 1 : 0: 0 : 1 : < a 1 26

SLA (IY+d) 11 : 1 : 1 : 1 : 1 : 1 : a : 1 I FD

11 : 1 : a : a > : a > > I CB

I~: : Id I I : I ~I
I a : a > : 0 : a > > :a I 26

2-247

Irr identifies registers B,C,D,E,H,L orA specified as follows in the asselilbled object

:ode field above:

Register r

B 000

C 001

0 010

E all
H 100

L 101

A III

Description:

~n arithmetic shift left is performed on the contents of operand m: bit a is reset,

the previ ous content of bit a is copi ed into bit 1, the previ ous content of bit 1

is copied into bit 2; this pattern is continued throughout; the content of bit 7

is copied into the Carry Flag (C flag in register F). Bit a is the least signifi­

cant bit.

INSTRUCTION M CYCLES T STATES

SLA r 2 8(4,4)

SLA (HL) 4 15(4,4,4,3)

SLA (IX+d) 6 23(4,4,3,5,4,3)

SLA (IY+d) 6 23(4,4,3,5,4,3)

2-248

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Reset

P/V: Set if parity is even;
reset otherwise

N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

after the execution of
SLA L

7 6 543 2 1 a

the contents of register L and the Carry Flag will be

C 7 6 543 2 1 a

lperat ion: r 7f m • 0 r-eJ

Opcode

SRA

Operands

m

2-249

SRAm

fhe m operand is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous RLC

instructions. These various possible opcode-operand combinations are specified as

~ollows in the assembled object code:

SRA r

SRA(HL)

SRA (IX+d)

11 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

lo:o:<o:I:~r~1
11 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

I 0 : 0: 1 : 0 : 1 : 1 : 1 : 0 I 2E

11 : 1 : 0 : 1 > > : 0 > I DO

\1 -: < 0 : 0 : 1 : 0 : 1 : 1 I CB

I ~: : : d: : : :~ I
I a : 0 : 1 : a > > : 1 : a I 2E

2-250·

SRA(IY+d) 1<1:1:1:1;1;0> I FD

11 : 1 : a : a : 1 : a : 1 : 11 CB

1 ~: : : d: : : : ·1
I a : a : 1 : a : 1 : 1 : 1 : a I 2E

*r means registers B,C,D,E,H,L or A specified as follows in the assembled object

code field above:

Register r

B 000

C 001

o 010

E all
H 100

L 101

A 111

An arithmetic shift right is performed on the contents of operand m: the content

of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5;

this pattern is continued throughout the byte. The content of bit a is copied into

the Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.

Bit a is the least significant bit.

INSTRUCTION M CYCLES T STATES

SRA r 2 8 (4, 4)

SRA (HL) 4 15(4,4,4,3)

SRA (IX+d)

SBR (IY+d)

6

6

23(4,4,3,5,4,3

23(4,4,3,5,4,3)

2-251

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwi se
H: Reset

P/V: Set if parity is even;

reset otherwise
N: Reset
C: Data from Bit 0 of

source register

Example:

If the contents of the Index Register IXarel000H, and the contents of memory location
1003H are

7 .6 5 4 3 2 1 0

11 I 0 I 1 I 1 I 1 I 0 0
1 0 I

after the execution of
SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

\1 \1 I 0 \1 11 11 I 0 I 0 IG

2-252

SRLm
Operation: 0 47 -..O.~

m

Format:

Opcode
SRL

Operands

m

The operand m is any of r, (HL), (IX+d) or (IY+d), as defined for the analogous

RLC instructions. These various possible opcode-operand combinations are specified

as follows in the assembled object code:

SRL r

SRL (HL)

SRL (IX+d)

11 : 1: 0: 0: 1 : 0: 1 : 1 I CB

10: 0; < < <~r71
\1 : 1 : 0 : 0: 1 : 0: 1 : 1 I CB

I 0 : 0: < < 1 : 1: 1 : 0 I 3E

11 : 1 : 0 : 1 : 1 : 1 : a : 1 I DO

11 : < 0: a : 1 : 0: < 1 I CB

I ~: : : d: : : :~ I
I a : 0: < < 1 : < 1 : a 13E

SRL (IY+d) \1:1:1;1:1;1;0;1 FD

\1 : 1 : a : a : 1 : a : 1 : 1 CB

\.: : : d: : : :~
I a : a : 1 : 1 : 1 : 1 : 1 : a 3E

2-253

*r identifies registersB,C,D,E,H,L orA specified as follows in the assembled object

code fields above:
Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

DescriEtion:

The contents of operand m are shifted right: the content of bit 7 is copied into bit
6; the content of bit 6 is copied into bit 5:
the byte. The content of bit a is copied into
Bit a is the least significant bit.

INSTRUCTION M CYCLES
SRL r 2
SRL (HL) 4
SRL (IX+d) 6
SRL (IY+d) 6

this pattern is continued throughout
the Carry Fl ag, and bit 7 is reset.

T STATES

8(4,4)
15(4,4,4,3)
23(4,4,3,5,4,3)
23(4,4,3,5,4,3)

2-254

Condition Bits Affected:
S: Set if result is negative;

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Reset

P IV: Set if parity is even;
reset otherwi se

N: Reset
C: Data from Bit 0 of

source regi ster

Example:

If the contents of register Bare

after the execution of
SRL B

7 6 5 4 3 2 1 0

the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

[0 11 I a 10 10 1111 11 I~

Operation: A f--A - s

Format:

apcode

SUB

Operands

s

2-255

SUBs

The s operand is any of r,n,(HL),(IX+d) or (IY+d) as defined for the analogousAOO

instruction. These various possible opcode-operand combinations are assembled as

follows in the object code:
SUB r r---Il r---c: a :r---a .----.: <-0 :r-1~~r _:r-1

SUB n 11 : < 0 : < a : < 1 : 0 06

I : : : n: : : :~
SUB (HL) \1 : a: 0 : 1 : 0 : < 1 : 0 96

SUB (IX+d) 11 : < 0 : 1 : 1 : < 0 > 00

11 : 0 : 0 : 1 : 0 : 1 : 1 : 0 I 96

I ~: : : d: : : : ~ I

SUB (IY+d) 11 > : 1 > : 1 > : 0 > I FO

11 : 0 : 0 > : 0 : 1 : 1 :a I 96

I·; : >: : : :~I
*r identifies registers B,C,O,E,H,L or A assembled as follows in the object code

field above:

2-256

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The s operand is subtracted from the contents of the Accumulator, and the result is
stored in the Accumulator.

INSTRUCTION r~ CYCLES

SUB r 1
SUB n 2
SUB (HL) 2
SUB (IX+d) 5
SUB (IY+d) 5

Condition Bits Affected:
S: Set if result is negative;

Example:

reset otherwise
Z: Set if result is zero;

reset otherwise
H: Set if there is a borrow

Bit 4; reset otherwise
PjV: Set if overflow;

reset otherwise
N: Set
C: Set if there is a borrow;

reset otherwise

from

T STATES
4
7(4,3)
7(4,3)
19(4,4,3,5,3)
19{4,4,3,5,3)

If the Accumulator contains 29H and register D contains 11H, after the execution of
SUB D

the Accumulator will contain 18H.

Operat ion: A f-A €a s

Format:

Opcode

XOR

Operands

s

2-257

XORs

The S operand is any of r,n,(HL),(IX+d) or (IY+d), as defined for the analogous

ADD instructions. These various possible opcode-operand combinations are assembled

as follows in the object code:

XOR r ;':::":'-"'11 :--'-0 : ~< -"--0: 1-'---: +--.-: r ~-.---.~ I

XOR n \1 : 1 : < 0 : < r: 1 : 0 I EE

I·: : : n: i : :. I
XOR (HL) I! :a > :a > > : < 0 I AE

XOR(IX+d) 11:1:0:1:1:1:0>1 DO

11 : 0 : 1 : 0 : < 1 : 1 : 0 I AE

I.: : : d: : : : ·1
XOR (I Y+d) 11 : 1 : 1 : 1 : 1 : 1 : 0 > I FD

11 : 0 : 1 : 0 : 1 : 1 : 1 : 0 I AE

I·: : : d: : : : ~ I
*r identifies registers B,C,D,E,H,L or A assembled as follows in the object code

field above.

2-258

Register r -
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is stored in the
Accumulator.

INSTRUCTION M CYCLES T STATES
XOR r 1 4
XOR n 2 7(4,3)
XOR (HL) 2 7(4,3)
XOR (IX+d) 5 19(4,4,3,5,3)
XOR (IY+d) 5 19(4,4,3,5,3)

Condit i on Bits Affected:
S: Set if result is negative;

reset otherwi se
Z: Set if result is zero;

reset otherwi se
H: Set

P IV: Set if parity even;
reset otherwi se

N: Reset
C: Reset

Example:

If the Accumulator contains 96H (10010110), after the execution of
XOR 50H (Note: 5DH = 01011101)

the Accumulator will contain CBH (11001011).

APPENDIX A

ALPHABETICAL LISTING OF ZSO OPCODES

I OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1
OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

1 TITLE Z80 OPCODE LISTING
; PSEUDO OPS
;

4 NAME OPCODES
10 5 ORG 0

6 PSECT REL

0 AA 8 DEFB OAAH
=0001' 9 L2 DEFL $

=55AA 10 L2 DEFL 55AAH
, 1 41424344 11 DEFM 'ABCD'
5 ' 12 NN DEFS 2
7 BBAA 13 DEFW OAABBH

=AABB 14 L1 EQU OAABBH
=0005 15 IND EQU 5
=0020 16 N EQU 20H
=0030 17 DIS EQU 30H

18 GLOBAL NN
=0000 19 IF 0

SHOULD NOT BE ASSEMBLED
21 LD A,B
22 ENDIF

=0001 23 IF 1 . SHOULD BE ASSEMBLED ,
9 78 25 LD A,B

26 ENDIF . TURN LISTING OFF ,
31 LIST

LISTING SHOULD BE ON

;
;

Z80 OPCODES
;

B 8E 38 ADC A, (HL)
C DD8E05 39 ADC A,(IX+IND)
F FD8E05 40 ADC A,(IY+IND)
2 8F 41 ADC A,A
3 88 42 ADC A,B
4 89 43 ADC A,C
5 8A 44 ADC A,D
6 8B 45 ADC A,E
7 8C 46 ADC A,H
8 8D 47 ADC A,L
9 CE20 48 ADC A,N
B ED4A 49 ADC HL,BC
D ED5A 50 ADC HL,DE
F ED6A 51 ADC HL,HL
1 ED7A 52 ADC HL,SP

;
3 86 54 ADD A,(HL)
4 DD8605 55 ADD A,(IX+IND)
7 FD8605 56 ADD A,(IY+IND)
A 87 57 ADD A,A
B 80 58 ADD A,B
C 81 59 ADD A,C
D 82 60 ADD A,D

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 2
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

002E 83 61 ADD A,E
002F 84 62 ADD A,H
0030 85 63 ADD A,L
0031 C620 64 ADD A,N
0033 09 65 ADD HL,BC
0034 19 66 ADD HL,DE
0035 29 67 ADD HL,HL
0036 39 68 ADD HL,SP
0037 DD09 69 ADD IX,BC
0039 DD19 70 ADD IX,DE
003B DD29 71 ADD IX,IX
003D DD39 72 ADD IX,SP
003F FD09 73 ADD IY,BC
0041 FD19 74 ADD IY,DE
0043 FD29 75 ADD IY,IY
0045 FD39 76 ADD IY,SP

;
0047 A6 78 AND (HL)
0048 DDA605 79 AND (IX+IND)
0048 FDA605 80 AND (IY+IND)
004E A7 81 AND A
004F AO 82 AND B
0050 A1 83 AND C
0051 A2 84 AND D
0052 A3 85 AND E
0053 A4 86 AND H
0054 A5 87 AND L
0055 E620 88 AND N

0057 CB46 90 BIT O,(HL)
0059 DDCB0546 91 BIT 0, (IX+IND)
005D FDCB0546 92 BIT O,(IY+IND)
0061 CB47 93 BIT O,A
0063 CB40 94 BIT O,B
0065 CB41 95 BIT O,C
0067 CB42 96 BIT O,D
0069 CB43 97 BIT O,E
006B CB44 98 BIT O,H
006D CB45 99 BIT O,L . ,
006F CB4E 101 BIT 1,(HL)
0071 DDCB054E 102 BIT 1,(IX+IND)
0075 FDCB054E 103 BIT 1,(IY+IND)
0079 CB4F 104 BIT 1,A
007B CB48 105 BIT 1,B
007D CB49 106 BIT 1,C
007F CB4A 107 BIT 1,D
0081 CB4B 108 BIT 1,E
0083 CB4C 109 BIT 1,H
0085 CB4D 110 BIT 1,L . ,
0087 CB56 112 BIT 2, (HL)
0089 DDCB0556 113 BIT 2,(IX+IND)
008D FDCB0556 114 BIT -.,(IY+IND)
0091 CBS7 115 BIT 2,A
0093 CB50 116 BIT 2,B
0095 CB51 117 BIT 2,C

OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 3
OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

7 CB52 118 BIT 2,D
9 CB53 119 BIT 2,E
B CB54 120 BIT 2,H
D CB55 121 BIT 2,L

;
F CB5E 123 BIT 3,(HL)
1 DDCB055E 124 BIT 3,(IX+IND)
5 FDCB055E 125 BIT 3,(IY+IND)
9 CB5F 126 BIT 3,A
B CB58 127 BIT 3,B
D CB59 128 BIT 3,C
F CB5A 129 BIT 3,D
1 CB5B 130 BIT 3,E
3 CB5C 131 BIT 3,H
5 CB5D 132 BIT 3,L

7 CB66 134 BIT 4, (HL)
9 DDCB0566 135 BIT 4,(IX+IND)
D FDCB0566 136 BIT 4,(IY+IND)
1 :::B67 137 BIT 4,A
3 CB60 138 BIT 4,B
5 CB61 139 BIT 4,C
7 CB62 140 BIT 4,D
9 CB63 141 BIT 4,E
B CB64 142 BIT 4,H
D CB6S 143 BIT 4,L

F CB6E 145 BIT 5, (HL)
1 DDCB056E 146 BIT 5,(IX+IND)
5 FDCB056E 147 BIT 5,(IY+IND)
9 CB6F 148 BIT 5,A
B CB68 149 BIT 5,B
D CB69 150 BIT 5,C
F CB6A 151 BIT 5,D
1 CB6E 152 BIT 5,E
3 CB6C 153 BIT 5,H
5 CB6D 154 BIT 5,L

7 CB76 156 BIT 6,(HL)
9 DDCB0576 157 BIT 6,(IX+IND)
D FDCB0576 158 BIT 6,(IY+IND)
1 CB77 159 BIT 6,A
3 CB70 160 BIT 6,B
5 CB71 161 BIT 6,C
7 CB72 162 BIT 6,D
9 CB73 163 BIT 6,E
B CB74 164 BIT 6,H

'D CB75 165 BIT 6,L

'F CB7E 167 BIT 7,(HL)
1 DDCB057E 168 BIT 7,(IX+IND)

15 FDCB057E 169 BIT 7,(IY+IND)
19 CB7F 170 BIT 7,A
IB CB78 171 BIT 7,B
'D CB79 172 BIT 7,C
If CB7A 173 BIT 7,D
1 CB78 174 BIT 7,E

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 4
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

0113 CB7C 175 BIT 7,H
0115 CB7D 176 BIT 7,L

;
0117 DC0500' 178 CALL C,NN
011A FC0500' 179 CALL M,NN
011D D40500' 180 CALL NC,NN
0120 CD0500' 181 CALL NN
0123 C40500' 182 CALL NZ,NN
0126 F40500' 183 CALL P,NN
0129 EC0500' 184 CALL PE,NN
012C E40500' 185 CALL PO,NN
012F CC0500' 186 CALL Z,NN

· ,
0132 3F 188 CCF

;
0133 BE 190 CP (HL)
0134 DDBE05 191 CP (IX+IND)
0137 FDBE05 192 CP (IY+IND)
013A BF 193 CP A
013B B8 194 CP B
013C B9 195 CP C
013D BA 196 CP D
013E BS 197 CP E
013F BC 198 CP H
0140 BD 199 CP L
0141 FE20 200 CP N

;
0143 EDA9 202 CPD
0145 EDB9 203 CPDR
0147 EDA1 204 CPI
0149 EDB1 205 CPIR

· ,
014B 2F 207 CPL

· ,
014C 27 209 DAA

· ,
014D 35 211 DEC (HL)
014E DD3505 212 DEC (IX+IND)
0151 FD3505 213 DEC (IY+IND)
0154 3D 214 DEC A
0155 05 215 DEC B
0156 OB 216 DEC BC
0157 OD 217 DEC C
0158 15 218 DEC D
0159 1B 219 DEC DE
015A 1D 220 DEC E
015B 25 221 DEC H
015C 2B 222 DEC HL
015D DD2B 223 DEC IX
015F FD2B 224 DEC IY
0161 2D 225 DEC L
0162 3B 226 DEC SP

· ,
0163 F3 228 DI

· ,
0164 102E 230 DJNZ DIS

;

OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 5
OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

6 FB 232 EI
;

7 E3 234 EX (SP),HL
8 DDE3 235 EX (SP),IX
A FDE3 236 EX (SP),IY
C 08 237 EX AF,AF'
D EB 238 EX DE,HL
E D9 239 EXX

· ,
F 76 241 HALT

· ,
0 ED46 243 1M 0
2 ED56 244 1M 1
4 ED5E 245 1M 2

· ,
6 ED78 247 IN A,(C)
8 DB20 248 IN A,(N)
A ED40 249 IN B,(C)
C ED48 250 IN C,(C)
E ED50 251 IN D,(C)
0 ED58 252 IN E,(C)
2 ED70 253 IN F,(C)
4 ED60 254 IN H,(C)
6 ED68 255 IN L,(C)

· ,
8 34 257 INC (HL)
9 FD3405 258 INC (IY+IND)
C DD3405 259 INC (IX+IND)
F 3C 260 INC A
0 04 261 INC B
1 03 262 INC BC
2 OC 263 INC C
3 14 264 INC D
4 13 265 INC DE
5 1C 266 INC E
6 24 267 INC H
7 23 268 INC HL
8 DD23 269 INC IX
A FD23 270 INC IY
C 2C 271 INC L
D 33 272 INC SP

· ,
E EDAA 274 IND
0 EDBA 275 INDR
2 EDA2 276 INI
4 EDB2 277 INIR

· ,
6 E9 279 JP (HL)
7 DDE9 280 JP (IX)
9 FDE9 281 JP (IY)
B DA0500' 282 JP C,NN
E FA0500' 283 JP M,NN
1 D20500' 284 JP NC,NN
4 C30500' 285 JP NN
7 C20500' 286 JP NZ,NN
A F20500' 287 JP P,NN
D EA0500' 288 JP PE,NN

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 6
LJC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

01CO E20500' 289 JP PO,NN
01C3 CA0500' 290 JP Z,NN

01C6 382E 292 JR C,DIS
01C8 182£ 293 JR DIS
01CA 302E 294 JR NC,DIS
01CC 202£ 295 JR NZ,DIS
01C£ 282£ 296 JR Z,DIS

· ,
01DO 02 298 LD (BC) ,A
01D1 12 299 LD (DE),A
01D2 77 300 LD (HL),A
01D3 70 301 LD (HL),B
01D4 71 302 LD (HL),C
01D5 72 303 LD (HL),D
01D6 73 304 LD (HL),E
0107 74 305 LD (HL),H
01D8 75 306 LD (HL),L
01D9 3620 307 LD (HL),N

01DB DD7705 309 LD (IX+IND),A
01D£ DD7005 310 LD (IX+IND) ,B
01£1 DD7105 311 LD (IX+IND),C
01£4 DD7205 312 LD (IX+IND),D
01£7 DD7305 313 LD (IX+IND),E
01£A D07405 314 LD (IX+IND),H
01EO D07505 315 LO (IX+INO),L
01FO 00360520 316 LO (IX+INO),N

;
01F4 F07705 318 LO (IY+IND),A
01F7 F07005 319 LO (IY+INO),B
01FA FD7105 320 LO (IY+INO),C
01FD FD7205 321 LO (IY+IND),D
0200 FD7305 322 LD (IY+IND),E
0203 FD7405 323 LD (IY+IND),H
0206 FD7505 324 LD (IY+IND),L
0209 FD360520 325 LD (IY+IND),N

· ,
0200 320500' 327 LD (NN) , A
0210 ED430500' 328 LD (NN),BC
0214 ED530500' 329 LD (NN),DE
0218 220500' 330 LD (NN),HL
021B DD220500' 331 LD (NN),IX
021F FD220500' 332 LD (NN),IY
0223 E0730500' 333 LD (NN),SP

· ,
0227 OA 335 LD A,(BC)
0228 1A 336 LD A,(DE)
0229 7E 337 LD A,(HL)
022A D07E05 338 LD A,(IX+IND)
022D FD7E05 339 LD A,(IY+IND)
0230 3A0500' 340 LD A,(NN)
0233 7F 341 LD A,A
0234 78 342 LD A,B
0235 79 343 LD A,C
0236 7A 344 LD A,D
0237 7B 345 LO A,E

OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 7
OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

,8 7C 346 LD A,H
:9 ED57 347 LD A,I
:B 7D 348 LD A,L
IC 3E20 349 LD A,N
E ED5F 350 LD A,R

,0 46 352 LD B,(HL)
,1 DD4605 353 LD B,(IX+IND)
·4 FD4605 354 LD B,(IY+IND)
,7 47 355 LD B,A
,8 40 356 LD B,B
.9 41 357 LD B,C
fA 42 358 LD B,D
,B 43 359 LD B,E

f"' 44 360 LD B,H . '-
.D 45 361 LD B,L
fE 0620 362 LD B,N

iO ED4B0500' 364 LD BC,(NN)
i4 010500' 365 LD BC,NN

i7 4E 367 LD C,(HL)
i8 DD4E05 368 LD C,(IX+IND)
iB FD4E05 369 LD C,(IY+IND)
;1£ 4F 370 LD C,A
iF 48 371 LD C,B
;0 49 372 LD C,C
i 1 4A 373 LD C,D
;2 4B 374 LD C,E
i3 4C 375 LD C,H
;4 4D 376 LD C,L
;5 OE20 377 LD C,N

;7 56 379 LD D,(HL)
i8 DD5605 380 LD D,(IX+IND)
;B FD5605 381 LD D,(IY+IND)
iE 57 382 LD D,A
iF 50 383 LD D,B
10 51 384 LD D,C
71 52 385 LD D,D
12 53 386 LD D,E
73 54 387 LD D,H
14 55 388 LD D,L
15 1620 389 LD D,N . ,
17 ED5B050Q' 391 LD DE,(NN)
IB 110500' 392 LD DE,NN

7E 5E 394 LD E,(HL)
7F DD5E05 395 LD E,(IX+IND)
32 FD5E05 396 LD E,(IY+IND)
35 5F 397 LD E,A
36 58 398 LD E,B
37 59 399 LD E,C
38 5A 400 LD E,D
39 5B 401 LD E,E
lA 5C 402 LD E,H

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 8
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

028B 5D 403 LD E,L
028C 1E20 404 LD E,N

· ,
028E 66 406 LD H,(HL)
028F DD6605 407 LD H,(IX+IND)
0292 FD6605 408 LD H,(lY+lND)
0295 67 409 LD H,A
0296 60 410 LD H,B
0297 61 411 LD H,C
0298 62 412 LD H,D
0299 63 413 LD H,E
029A 64 414 LD H,H
029B 65 415 LD H,L
029C 2620 416 LD H,N

;
029E 2A0500' 418 LD HL,(NN)
02A1 210500' 419 LD HL,NN

;
02A4 E047 421 LD I,A

· ,
02A6 DD2A0500' 423 LD IX,(NN)
02AA DD210500' 424 LD lX,NN

· ,
02AE FD2A0500' 426 LD lY,(NN)
02B2 FD210500' 427 LD IY,NN

· ,
02B6 6E 429 LD L, (HL)
02B7 DD6E05 430 LD L,(lX+lND)
02BA FD6E05 431 LD L,(lY+IND)
02BD 6F 432 LD L,A
02BE 68 433 LD L,B
02BF 69 434 LD L,C
02CO 6A 435 LD L,D
02C1 6B 436 LD L,E
02C2 6C 437 LD L,H
02C3 60 438 LD L,L
02C4 2E20 439 LD L,N

· ,
02C6 ED4F 441 LD R,A

· ,
02C8 ED7B0500' 443 LD SP,(NN)
02CC F9 444 LD SP,HL
02CO DDF9 445 LD SP,lX
02CF FDF9 446 LD SP,IY
02D1 310500' 447 LO SP,NN

· ,
02D4 EDA8 449 LDD
0206 EDB8 450 LODR
02D8 EOAO 451 LOl
02DA EDBO 452 LOlR

;
02DC ED44 454 NEG

· ,
02DE 00 456 NOP

;
02DF B6 458 OR (HL)
02EO DDB605 459 OR (IX+IND)

o OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 9
'" OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL
~

E3 FDB605 460 OR (IY+IND)
E6 B7 461 OR A
E7 BO 462 OR B
E8 B1 463 OR C
E9 B2 464 OR 0
EA B3 465 OR E
EB B4 466 OR H
EC B5 467 OR L
EO F620 468 OR N

· ,
EF EDBB 470 OTDR
F1 EDB3 471 OTIR

· ,
F3 ED79 473 OUT (C),A
F5 E041 474 OUT (C) , B
F7 E049 475 OUT (C),C
F9 E051 476 OUT (C),D
FB ED59 477 OUT (C),E
FD ED61 478 OUT (C),H
FF ED69 479 OUT (C),L
01 0320 480 OUT (N),A

· ,
03 EOAB 482 OUTD
05 EDA3 483 OUTI

· ,
07 F1 485 POP AF
08 C1 486 POP BC
09 01 487 POP OE
OA E1 488 POP Hl
DB ODE1 489 POP IX
DO FOE1 490 POP IY
OF F5 491 PUSH AF
10 C5 492 PUSH BC
11 05 493 PUSH DE
12 E5 494 PUSH Hl
13 00E5 495 PUSH IX
15 FOES 496 PUSH IY

· ,
17 CB86 498 RES O,(Hl)
19 DOCB0586 499 RES O,(IX+IND)
10 FOCB0586 500 RES O,(IY+INO)
21 CB87 501 RES O,A
23 CB80 502 RES O,B
25 CB81 503 RES O,C
27 CB82 504 RES 0,0
29 CB83 505 RES O,E
2B CB84 506 RES O,H
20 CB85 507 RES O,l

· ,
2F CB8E 509 RES 1,(Hl)
31 00CB058E 510 RES 1,(IX+IND)
35 FOCB058E 511 RES 1,(IY+INO)
39 CB8F 512 RES 1,A
3B CB88 513 RES 1, B
3D CB89 514 RES 1,C
3F CB8A 515 RES 1,0
41 CB8B 516 RES 1,E

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 10
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

0343 CB8C 517 RES 1,H
0345 CB8D 518 RES 1,L

· ,
0347 CB96 520 RES 2,(HL)
0349 DDCB0596 521 RES 2,(IX+IND)
034D FDCB0596 522 RES 2,(IY+IND)
0351 CB97 523 RES 2,A
0353 CB90 524 RES 2,B
0355 CB91 525 RES 2,C
0357 CB92 526 RES 2,D
0359 CB93 527 RES 2,E
035B CB94 528 RES 2,H
035D CB95 529 RES 2,L

· ,
035F CB9E 531 RES 3,(HL)
0361 DDCB059E 532 RES 3,(IX+IND)
0365 FDCB059E 533 RES 3,(IY+IND)
0369 CB9F 534 RES 3,A
036B CB98 535 RES 3,B
036D CB99 536 RES 3,C
036F CB9A 537 RES 3,D
0371 CB9B 538 RES 3,E
0373 CB9C 539 RES 3,H
0375 CB9D 540 RES 3,L

0377 CBA6 542 RES 4,(HL)
0379 DDCB05A6 543 RES 4,(IX+IND)
037D FDCB05A6 544 RES 4,(IY+IND)
0381 CBA7 545 RES 4,A
0383 CBAO 546 RES 4,B
0385 CBA1 547 RES 4,C
0387 CBA2 548 RES 4,D
0389 CBA3 549 RES 4,E
038B CBA4 550 RES 4,H
038D CBA5 551 RES 4,L

· ,
038F CBAE 553 RES 5, (HL)
0391 DDCB05AE 554 RES 5,(IX+IND)
0395 FDCB05AE 555 RES 5,(IY+IND)
0399 CBAF 556 RES 5,A
039B CBA8 557 RES 5,B
039D CBA9 558 RES 5,C
039F CBAA 559 RES 5,D
03A1 CBAB 560 RES 5,E
03A3. CBAC 561 RES 5,H
03A5 CBAD 562 RES 5,L

· ,
03A7 CBB6 564 RES 6,(HL)
03A9 DDCB05B6 565 RES 6,(IX+IND)
03AD FDCB05B6 566 RES 6,(IY+IND)
03B1 CBB7 567 RES 6,A
03B3 CBBO 568 RES 6,B
03B5 CBB1 569 RES 6,C
03B7 CBB2 570 RES 6,D
03B9 CBB3 571 RES 6,E
03BB CBB4 572 RES 6,H
03BD CBB5 573 RES 6,L

:> OPCODE lISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 11
... OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REl -

;
SF CBBE 575 RES 7,(Hl)
:1 DDCB05BE 576 RES 7,(IX+IND)
:5 FDCB05BE 577 RES 7,(IY+IND)
:9 CBBF 578 RES 7,A
:B CBB8 579 RES 7,B
:D CBB9 580 RES 7,C
:F CBSA 581 RES 7,D
D1 CBBB 582 RES 7,E
D3 CBBC 583 RES 7,H
D5 CBBD 584 RES 7,l

· ,
D7 C9 586 RET
D8 D8 587 RET C
D9 F8 588 RET M
DA DO 589 RET NC
DB CO 590 RET NZ
DC FO 591 RET P
DD E8 592 RET PE
DE EO 593 RET PO
DF C8 594 RET Z

;
EO ED4D 596 RETI
E2 ED45 597 RETN

;
E4 CB16 599 Rl (Hl)
E6 DDCB0516 600 Rl (IX+IND)
EA FDCB0516 601 Rl (IY+IND)
EE CB17 602 Rl A
FO CB10 603 Rl B
F2 CB 11 604 Rl C
F4 CB12 605 Rl D
F6 CB13 606 Rl E
F8 CB14 607 Rl H
FA CB15 608 Rl 1

· ,
FC 17 610 RlA

· ,
FD CB06 612 RlC (Hl)
FF DDCB0505 613 RlC (IX+IND)
03 FDCB0506 614 RlC (IY+IND)
07 CB07 615 RlC A
09 CBOO 616 RlC B
OB CB01 617 RlC C
OD CB02 618 RlC D
OF CB03 619 RlC E
1 1 CB04 620 RlC H
13 CB05 521 RlC 1

15 07 623 RlCA
· ,

16 ED6F 625 RlD
· ,

18 CB1E 627 RR (Hl)
1A DDCB051E 628 RR (IX+IND)
1E FDCB051E 629 RR (IY+IND)
22 CB1F 630 RR A

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 12
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

0424 CB18 631 RR B
0426 CB19 632 RR C
0428 CB1A 633 RR D
042A CB1B 634 RR E
042C CB1C 635 RR H
042E CB1D 636 RR L

· ,
0430 1F 638 RRA

· ,
0431 CBOE 640 RRC (HL)
0433 DDCB050E 641 RRC (IX+IND)
0437 FDCB050E 642 RRC (IY+IND)
043B CBOF 643 RRC A
043D CB08 644 RRC B
043F CB09 645 RRC C
0441 CBOA 646 RRC D
0443 CBOB 647 RRC E
0445 CBOC 648 RRC H
0447 CBOD 649 RRC L

• ,
0449 OF 651 RRCA

· ,
044A ED67 653 RRD

;
044C C7 655 RST 0
044D CF 656 RST 08H
044E D7 657 RST 10H
044F DF 658 RST 18H
0450 E7 659 RST 20H
0451 EF 660 RST 28H
0452 F7 661 aST 30H
0453 FF 662 RST 38H

· ,
0454 9E 664 SBC A, (HL)
0455 DD9E05 665 SBC A,(IX+IND)
0458 FD9E05 666 SBC A, (IY+IND)
045B 9F 667 SBC A,A
045C 98 668 SBC A,B
045D 99 669 SBC A,C
045E 9A 670 SBC A,D
045F 9B 671 SBC A,E
0460 9C 672 SBC A,H
0461 9D 673 SBC A,L
0462 DE20 674 SBC A,N

· ,
0464 ED42 676 SBC HL,BC
0466 ED52 677 SBC HL,DE
0468 ED62 678 SBC HL,HL
046A ED72 679 SBC HL,SP

;
046C 37 681 SCF

• ,
046D CBC6 683 SET O,(HL)
046F DDCB05C6 684 SET O,(IX+IND)
0473 FDCB05C5 685 SET O,(IY+IND)
0477 CBC7 686 SET O,A
0479 CBCO 687 SET O,B

o OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 13
C OBJ.CODE STMT-NR SOURCE-STHT PASS2 OPCODE OPCODE OPCODE REL

7B CBC1 688 SET O,C
7D CBC2 689 SET O,D
7F CBC3 690 SET O,E
91 CBC4 691 SET O,H
93 CBCS 692 SET O,L

;
85 CBCE 694 SET 1,{HL)
B7 DDCBOSCE 695 SET 1,(IX+IND)
BB FDCBOSCE 696 SET 1,(IY+IND)
BF CBCF 697 SET 1,A
91 CBC8 698 SET 1, B
93 CBC9 699 SET 1,C
95 CBCA 700 SET 1, D
97 CBCB 701 SET 1,E
99 CBCC 702 SET 1, H
9B CBCD 703 SET 1,L

;
9D CBD6 705 SET 2,(HL)
~F DDCBOSD6 706 SET 2,(IX+IND)
U FDCB05D6 707 SET 2,(IY+IND)
~7 CBD7 708 SET 2,A
~9 CBDO 709 SET 2,B
~B CBD1 710 SET 2,C
~D CBD2 711 SET 2,D
\F CBD3 712 SET 2,E
31 CBD4 713 SET 2,H
D CBDS 714 SET 2,L . ,
35 CBDE 716 SET 3,(HL)
n DDCB05DE 717 SET 3,(IX+IND)
~B FDCB05DE 718 SET 3,(IY+IND)
3F CBDF 719 SET 3,A
:1 CBD8 720 SET 3,B
:3 CBD9 721 SET 3,C
:5 CBDA 722 SET 3,D
:7 CBDB 723 SET 3,E
:9 CBDC 724 SET 3,H
:B CBDD 725 SET 3,L

;
:D CBE6 727 SET 4,(HL)
:F DDCB05E6 728 SET 4,(IX+IND)
)3 FDCBOSE6 729 SET 4,(IY+IND)
)7 CBE7 730 SET 4,A
)9 CBEO 731 SET 4,B
)B CBE1 732 SET 4,C
)D CBE2 733 SET 4,D
)F CBE3 734 SET 4,E
: 1 CBE4 735 SET 4,H
:3 CBES 736 SET 4,L

;
:5 CBEE 738 SET S,(HL)
:7 DDCB05EE 739 SET S,(IX+IND)
:B FDCB05EE 740 SET S,(IY+IND)
:F CBEF 741 SET S,A
'1 CBE8 742 SET 5,B
'3 CBE9 743 SET S,C
'5 CBEA 744 SET S,D

Z80 OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 14
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

04F7 CBEB 745 SET 5,E
04F9 CBEC 746 SET 5,H
04FB CBED 747 SET 5,L

· ,
04FD CBF6 749 SET 6,(HL)
04FF DDCB05F6 750 SET 6,(IX+IND)
0503 FDCB05F6 751 SET 6,(IY+IND)
0507 CBF7 752 SET 6,A
0509 CBFO 753 SET 6,B
050B CBF1 754 SET 6,C
050D CBF2 755 SET 6,D
050F CBF3 756 SET 6,E
0511 CBF4 757 SET 6,H
0513 CBF5 758 SET 6,L

· ,
0515 CBFE 760 SET 7,(HL)
0517 DDCB05FE 761 SET 7,(IX+IND)
051B FDCB05FE 762 SET 7,(IY+IND)
051F CBFF 763 SET 7,A
0521 CBF8 764 SET 7,B
0523 CBF9 765 SET 7,C
0525 CBFA 766 SET 7,D
0527 CBFB 767 SET 7,E
0529 CBFC 768 SET 7,H
052B CBFD 769 SET 7,L

· ,
052D CB26 771 SLA (HL)
052F DDCB0526 772 SLA (IX+IND)
0533 FDCB0526 773 SLA (IY+IND)
0537 CB27 774 SLA A
0539 CB20 775 SLA B
053B CB21 776 SLA C
053D CB22 777 SLA D
053F CB23 778 SLA E
0541 CB24 779 SLA H
0543 CB25 780 SLA L

0545 CB2E 782 SRA (HL)
0547 DDCB052E 783 SRA (IX+IND)
054B FDCB052E 784 SRA (IY+IND)
054F CB2F 785 SRA A
0551 CB28 786 SRA B
0553 CB29 787 SRA C
0555 CB2A 788 SRA D
0557 CB2B 789 SRA E
0559 CB2C 790 SRA H
055B CB2D 791 SRA L

· ,
055D CB3E 793 SRL (HL)
055F DDCB053E 794 SRL (IX+IND)
0563 FDCB053E 795 SRL (IY+IND)
0567 CB3F 796 SRL A
0569 CB38 797 SRL B
056B CB39 798 SRL C
056D CB3A 799 SRL D
056F CB3B 800 SRL E
0571 CB3C 801 SRL H

o OPCODE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 15
C OBJ.CODE STMT-NR SOURCE-STMT PASS2 OPCODE OPCODE OPCODE REL

73 CB3D 802 SRL L

75 96 804 SUB (HL)
76 DD9605 805 SUB (IX+IND)
79 FD9605 806 SUB (IY+IND)
7C 97 807 SUB A
7D 90 808 SUB B
7E 91 809 SUB C
7F 92 810 SUB D
80 93 811 SUB E
81 94 812 SUB H
82 95 813 SUB L
83 D620 814 SUB N

;
85 AE 816 XOR (HL)
86 DDAE05 817 XOR (IX+IND)
89 FDAE05 818 XOR (IY+IND)
8C AF 819 XOR A
8D A8 820 XOR B
8E A9 821 XOR C
8F AA 822 XOR D
90 AB 823 XOR E
91 AC 824 XOR H
92 AD 825 XOR L
93 EE20 826 XOR N . ,
95 828 END

APPENDIX B

MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

APPENDIX B

MOSTEK ASSEMBLER STANDARD PSEUDO-OPS

B-1. INTRODUCTION.

B-2. The following pseudo-ops are standard for ZSO assemblers from MOSTEK. Note

that other pseudo-ops may be allowed dependi ng on the features of apart i cul ar as­

sembler. For example, additional pseudo-ops may be required to handle conditional

assembly, global symbols, and macros.

B-2

DEFB n
Defi ne byte of memory.

Operation: (PC) <- m (static)

Format

Opcode Operands Machine Code

DEFB n ~n4

(no execution time)

Description: This pseudo-op reserves and defines one byte of memory to contain the
value n.

Example:

DEFB OAH

causes the current memory location to be defined with the value OAH.

B-3

label DEFL nn
Define 'label ' to have the value nn.

Operation: label ~ nn

Format:

Opcode Operand

1 abe 1 DEFL n n

(no execution time, no machine code)

Description: This pseudo-op assigns the value nn to the label which appears
in the label field. The same label can be defined any number
of times in a program using this pseudo-op.

Example:

LAB4: DEFL 050AH

The label 'LAB41 is defined to have the value 050AH.

B-4

DEFM's'
Define message

Operation: (PC) ~ Sl

Format:

Opcode

DEFM

(PC+1) ~S2

(PC+2) ~ S3

where sl is the fi rst ASCII character in stri ng s, s2 is the second
ASCII character, etc.

Operand Machine Code

IS I

(no execution time)

Descri pt ion: Thi s pseudo-op reserves and defi nes sequential bytes of memory to contai n

ASCII equivalents of the characters in the string s.

Example:

DEFM IABC I

wi 11 reserve 3 bytes of memory and cause them to be loaded with 41H,
42H,43H, respectively.

B-5

DEFSnn
Define storage

Operation: (PC) ~ (PC) + nn (static)

Format

Opcode Operand Machine code

DEFS nn

(no execution time)

Descri pt ion: Thi s pseudo-op causes nn bytes of memory to be defi ned as storage.

Example:

In the object module, these bytes are not loaded. In a load (binary)
module these bytes are loaded with meaningless data.

DEFS 40D

This causes 40 (decimal) memory locations to be defined as storage and
skipped in the object module.

6-6

DEFWnn

Define word of memory

Operatimn: (PC) ~ nn = 1

(PC+l) ~ nn (static)

Format

Ope ode Operand Machine code

DEFW nn nn + 1 (Lower byte)

nn (Upper byte)

Descri pt ion: Thi s pseudo-op reserves and defi nes two bytes of memory. The fi r

Example:

byte is defined to contain the least significant byte of the operand n
The next byte is defi ned to contain the most s i gni fi cant byte of t

operand nne

DEFW OAOOH

will define the current memory location to contain OOH and the ne

memory location to contain OAH

B-7

ENDs
End of assembly

Operation: terminates current assembler pass.

Format

Opcode Operand

END s

(no execution time, no machine code)

Description: This pseudo-op terminates the current assember pass. The operands s

is optional and is an expression which defines the starting execution
address of the program being assembled. The value of s is entered in
the end-of-file record in the object output of the assembler.

Example:

END OAAH

terminates the current assembler pass and causes OAAH to be defined as
the starting address of the program.

B-8

label EQU nn
Equate 'label' to value nne

Operation: label nn

Format:

Opcode Operand

label EQU nn

(no execution time, no machine code)

Description: This pseudo-op assigns the value nn to the label which appears in the
label field. The label can only appear once in the label field in a

program using this pseudo-oPe

Example:

LAB4: EQU 05H

The 1 abe 1 'LAB4' is defi ned to have the value 05H.

APPENDIX C

MOSTEK STANDARD Z80 OBJECT CODE FORMAT

C-1

APPENDIX C

MOSTEK STANDARD Z80 OBJECT OUTPUT DEFINITION

C-1. INTRODUCTION.

C-2. Each record of an object module begins with a delimiter (colon of dollar sign)
and ends with carriage return and line feed. A colon (:) is used for data records and
end-of-file record. A dollar sign ($) is used for records containing relocation
information and linking information. An Intel loader will ignore such information
and allow loading non-relocatable, non-l inkable programs. All information is in ASCII.

C-3. Each record is identified as a type. The type appears in the 8th and 9th
bytes of the record and can take the following values:
00 - data record
01 - end-of-file
02 - internal symbol
03 - external symbol
04 - relocation information
05 - module definition

C-4. DATA RECORD FORMAT (TYPE 00).
Byte 1 Colon (:) delimiter

2-3 Number of binary bytes of data in this record. The maximum is 32 binary
bytes (64 ASCII bytes).

4-5 Most significant byte of the start address of data.

6-7 Least significant byte of start address of data.

8-9 ASCII zeros. This is the IIrecord type ll for data.

10- Data bytes.

Last two bytes - Checksum of all bytes except the delimiter, carriage return, and line
feed. The checksum is the negative of the binary sum of all bytes in the record.

C-2

CRLF Carriage return, line feed.

C-5. END-Of-FILE RECORD (TYPE 01).
Byte 1 Colon (:) delimiter.

2-3 ASCII zeros.

4-5 Most significant byte of the transfer address of the program. This
transfer address appears as an argument in the I END I pseudo-op of a program.

It represents the starting execution address of the program.

6-7 Least significant byte of the transfer address.

8-9 Record type 01.

10-11 Checksum.

CRLF Carriage return, line feed.

C-6. INTERNAL SYMBOL RECORD (TYPE 02).

Byte 1 Dollar sign ($) delimiter.

2-7 Up to 6 ASCII characters of the internal symbol name. The name is left-

8-9

10-13

14-15

justified, blank filled.

Record type 02.

Address of the internal symbol, most significant byte first.

Binary checksum. Note that the ASCII letters of the symbol are converted

to binary before the checksum is calculated. Binary conversion is done

without regard to errors.

CRLF Carriage return, line feed.

C-3

C-7. EXTERNAL SYMBOL RECORD (TYPE 03).

Byte 1 Dollar sign ($) delimiter.

2-7 Up to 6 ASCII· characters of the external symbol name. The name is left

10-13

justified, blank filled.

Record type 03.

Last address which uses the external symbol. This is the start of a link

list in the object data records which is described below. The most signi­

ficant byte is first.

14-15 Binary checksum.

CRLF Carriage return, line feed.

C-S. The ASMB-SO Assembler outputs the external symbol name and the last address

in the program where the symbol is used. The data records which follow

contain a link list pointing to all occurrences of that symbol in the

object code.

1. The external symbol record shows the symbol ('LAB') and the last location in the

program which uses the symbol (212AH).

2. The object code at 212AH has a pointer which shows where the previous reference to

the external symbol occurred (200FH).

3. This backward reference list continues until a terminator ends the list. This

terminator is OFFFFH.

Thi s method is easy to generate and decode. It has the advantage of reduci ng the

number of bytes of object code needed to defi ne a 11 external references ina program.

C-9. RELOCATING INFORMATION RECORD (TYPE 04).

The addresses in the program which must be relocated are explicitly defined in these

records. Up to 16 addresses (64 ASCII characters) may be defined in each record.

C-4

Byte 1 Dollar sign ($) delimiter.

2-3 Number of sets of 2 ASCII characters, where 2 sets defi ne an address.

4-7 ASCII zeros.

8-9 Record type 04.

10- Addresses which must be relocated, most significant byte first.

Last two bytes - Binary checksum.

CRLF Carriage return, line feed.

C-10. MODULE UEFINITION RECORD (TYPE 05).

This record has the name of the module (defined by the 'NAME' pseudo-op) and a
loading information flag byte. The flag byte is determined by the 'PSECT '
pseudo-oPe

Byte 1 Dollar sign ($) delimiter.

2-7 Name of the module, left-justified, blank filled.

8.;.9 Record type 05.

10-11 Flag byte. When converted to binary, the flag byte is defined as follows:

Bit a - a for absolute assemblies
1 for relocatable assemblies

12-13 Binary checksum.

CRLF Carriage return, line feed.

APPENDIX D

REFERENCE TABLES

TABLE D-l. Hexadecimal to Decimal Conversion Table

HEXADECIMAL COLUMNS

6 5 4 3 2 1
HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC

0 0 0 0 0 0 0 0 0 0 0 0
1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2

3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5

6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,408 8 128 8 8

9 9,437,184 9 589,82r 9 36,864 9 2,304 9 144 9 9

A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13
E 14,680,064 E 917,504 E 57,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

° 123 456 7 o 1 2 3 456 7 o 123 4 5 6 7
BYTE BYTE BYTE

TABLE D-2. ASCII Character Set (7-Bit Code)

TABLE 0-4.
Table 0-3. Powers of 2 Powers of 2/Powers of 16 Conversion

2n n

256 8 20 = 160

512 9 24 = 161

1 024 10 28 = 162

2 048 11 212 = 163

4 096 12 216 = 164

8 192 13 220 = 165

16 384 14 224 = 166

32 768 15 228 = 167

65 536 16 232 = 168

131 072 17 236 = 169

262 144 18 240 = 1610

524 288 19 244 = 1611

1 048 576 20 248 = 1612

2 097 152 21 252 = 1613

4 194 304 22 256 = 1614

8 388 608 23 260 = 1615

16 777 216 24

TABLE 0-5. Powers of 16

16n n
1 0

16 1
256 2

4 096 3

65 536 4
1 048 576 5

16 777 216 6
268 435 456 7

4 294 967 296 8
68 719 476 736 9

1 099 511 627 776 10
17 592 186 044 416 11

281 474 976 710 656 12
4 503 599 627 370 496 13

72 057 594 037 927 936 14
1 152 921 504 606 846 976 15

MOSTEI(®
Z80 .F8Covering the full

spectrum of
3871"\ microcomputer

'IV applications.

1215 W. Crosby Rd. • Carrollton, Texas 75006 • 214/242-0444'
In Europe, Contact: MOSTEK Brussels

150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: (32) 02/660-2568/4713

Mostek reserves the rightto make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate an
reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license'
granted under any patents or patent rights of Mostek.

PRINTED IN USA October 1978
Publication No. MK78515

Copyright 1978 by Mostek Corporatior
All rights reserved

