
···MOSTEI(@
zao MICROCOMPUTER SYSTEMS

Operations Manual

. ZSO MACRO ASSEMBLER -
VERSION 2.1
MACRO-SO

MOSTEK MACRO-80

Z80 MACRO ASSEMBLER

VERSION 2.1

MK78165

MOSTEK MACRO-80

zao MACRO ASSEMBLER

TABLE OF CONTENTS

SECTION PARAGRAPH
NUMBER NUMBER

TITLE

1

2

3

1-1
1-5
1-6
1-18
1-20
1-23
1-25
1-30
1-33
1-35
1-38
1-40

2-1
2-3
2-5
2-7
2-9
2-11
2-22
2-24
2-26
2-32
2-37

3-1
3-3
3-11
3-18
3-20
3-23

OVERVIEW AND OPERATION

INTRODUCTION
REFERENCES
DEFINITIONS
CONVENTIONS USED IN THIS MANUAL
USING THE ASSEMBLER
ASSEMBLER OPTIONS
ASSEMBLY LISTING OUTPUT
CROSS REFERENCE LISTING
OBJECT OUTPUT
ERROR MESSAGES
ADVANCED OPERATIONS
SAMPLE ASSEMBLY SESSION

ASSEMBLY LANGUAGE SYNTAX

INTRODUCTION
DELIMITERS
LABELS
OPCODES
PSEUDO-OPS
OPERANDS
COMMENTS
ABSOLUTE MODULE RULES
RELOCATABLE MODULE RULES
GLOBAL SYMBOL HANDLING
GLOBAL SYMBOL RULES

MACRO CAPABILITY

INTRODUCTION
MACRO DEFINITION
MACRO CALLS AND MACRO EXPANSION
RECURSION
SUBSTITUTION BY VALUE (% OPERATOR)
PREDEFINED ARGUMENTS

02

PAGE
NUMBER

02

02
03
03
04
04
05
06
06
07
07
07
08

09
09
09
10
10
13
18
19
19
20
21

23
23
24
25
26
26

4

3-25
3-30
3-32

4-1
4-4
4-16
4-28
4-31
4-44

APPENDIX A

FORMATION OF LABELS WITHIN A MACRO EXPANSION
LOCAL MACRO LABELS
MACRO RELATED PSEUDO-OPS

APPLICATIONS OF MACROS

INTRODUCTION
SPECIAL PURPOSE LANGUAGES
MACHINE EMULATION
DEVELOPMENT OF CROSS ASSEMBLERS
PROGRAM CONTROL STRUCTURES
OPERATING SYSTEM INTERFACE

MACRO-SO ERROR CODES

03

28
30
30

34
34
36
38
39
40

LIST OF FIGURES

1-1 TYPICAL DEVICE USAGE
1-2 SAMPLE LISTING
1-3 SAMPLE CROSS REFERENCE

4-1 MACRO LIBHARY FOR TRAFFIC CONTROL APPLICATION
4-2 TRAFFIC INTERSECTION
4-3 COMPLEX INTERSECTION
4-4 DEBUGGING MACRO
4-5 SAMPLE OUTPUT
4-6 STACK MACHINE OPCODE MACRO LIBRARY
4-7 A-D AVERAGING PROGRAM
4-8 3870 CROSS ASSEMBLER MACROS
4-9 PROGRAM CONTROL STRUCTURES VIA MACROS
4-10 SAMPLE USAGE OF CONTROL STRUCTURES
4-11 SAMPLE RUNS
4-12 I/O SYSTEM DEFINITIONS
4-13 MACRO DEFINITIONS FOR 1/0 FUNCTIONS
4-14 APPLICATION OF 1/0 MACROS

04

LIST OF TABLES

2-1 MACRO-SO GENERIC OPERANDS
2-2 ALLOWED OPERATORS IN MACRO-SO
2-3 RELOCATE RULES FOR OPERATORS

MOSTEK MACRO-80 OPERATIONS MANUAL

THIS PAGE INTENTIONALLY LEFT BLANK.

01

MOSTEK MACRO-SO OPERATIONS MANUAL

MOSTEK MACRO-BO

Z80 MACRO ASSEMBLER

VERSION 2.1

COPYRIGHT 1978
MOSTEK CORPORATION
ALL RIGHTS RESERVED

MANUAL REVISION 1.5

SECTION 1

OVERVIEW AND OPERATION

1-1. INTRODUCTION.

1-2. The MOSTEKZSO Macro Assembler (MACRO-BO) is designed to run
under FLP-80DOS Version 2.0 or above with 32K or more of RAM. MACRO-BO
is the most powerful macro assembler in the microcomputer market. It
features:

1. optional arguments
2. default arguments
3. looping capability
4. global/local macro labels
5. nested/recursive expansions
6. integer/boolean variables
7. string manipulation
8. conditional expansion based on symbol definition
9. call by value facility
10. expansion of code producing statements only

1-3. MACRO-80 is an advanced upgrade from the FLP-80DOS Assembler
(ASM). In addition to its macro capabilities, it provides for nested
conditional assembly, and it allows symbol lengths of any number of
characters. It supports global symbols, relocatable programs, a symbol
cross reference listing, and an unused symbol reference table.

1-4. Figure 1-1. shows the Assembler with typical device usage. The
source module is read from a disk file; the object output is directed
to a disk file; the assembly listing is directed to a line printer.
User interaction is via the console device. Note that the Assembler
can interact with any dataset.

02

o.
FLEXIBLE
DISK
FILE

Figure 1-1. Typical Device Usage

I1I11111111111

LUN 0

SOURCE
INPUT

CONSOLE
INTERACTION

MACRO-80

ASSEMBLER

o

LUN FFH
OBJECT
OUTPUT

o

LUN I

SOURCE
OUTPUT

FLEXIBLE

DISK

FILE

ASSEMBLY
LISTING

MOSTEK MACRO-BO OPERATIONS MANUAL

1-5. REFERENCES.

AID-80F Operations Manual, MK78569
SYS-80F Operations Manual, MK78576
FLP-80DOS Operations Manual, MK78557

1-6. DEFINITIONS.

1-7. SOURCE MODULE - the user's source pro~ram. Each source module is
assembled into one object module by the Assembler. The end of a source
module is defined by an EOT character (ASCII 04) on input (standard
end-of-file) or an END statement.

1-8. OBJECT MODULE - the object output of the Assembler for one source
module. The object module contains linking information, address and
relocating information, machine code, and checksum information for use
by the FLP-80DOS Linker. The object module is in ASCII. A complete
definition of the MOSTEK object format is given in Appendix B of the
FLP-80DOS Operations Manual. The object module is typically output to
a disk file with extension OBJ.

1-9. LOAD MODULE - the binary machine code of one complete program.
The load module is defined in RAM as an executable program or on disk
as a binary file (extension BIN). It is created by the Linker from one
or more object modules.

1-10. LOCAL SYMBOL - a symbol in a source module which appears in the
label field of a source statement.

1-11. INTERNAL SYMBOL - a symbol in a source (and object) module which
is to be made known to all other modules which are linked with it by
the Linker. An internal symbol is also called global, defined, public,
or common. Internal symbols are defined by the GLOBAL pseudo-ope An
internal symbol must appear in the label field of the same source
module. Internal symbols are assumed to be addresses, not constants,
and they will be relocated when linked by the Linker.

1-12. EXTERNAL SYMBOL - a symbol which is used in a source (and
object) module but which is not a local symbol (does not appear in the
label field of a statement). External symbols are defined by the
GLOBAL pseudo-ope External symbols may not appear in an expression
which uses operators. An external symbol is a reference to a symbol
that exists and is defined as internal in another program module.

1-13. GLOBAL DEFINITION - both internal and external symbols are
defined as GLOBAL in a source module. The Assembler determines which
are internal and which are external.

03

MOSTEK MACRO-80 OPERATIONS MANUAL

1-14. POSITION INDEPENDENT - a program which can be placed anywhere in
memory. It does not require relocating information in the object
module.

1-15. ABSOLUTE - a program which has no relocating information in the
object module. An absolute program which is not position independent
can be loaded only in one place in memory in order to work properly.

1-16. RELOCATABLE - a program which has extra information in the
object module which allows the Linker to place the program anywhere in
memory.

1-17. LINKABLE - a program which has extra information in the object
module which defines internal and external symbols. The Linker uses
the information to connect, resolve, or link, external references to
internal symbols.

1-18. CONVENTIONS USED IN THIS MANUAL.

1-19. All user input is underlined. Those items which must be entered
exactly as shown are upper case. Those items which are variable are
lower case. The symbol (CR) stands for carriage return.

1-20. USING THE ASSEMBLER.

1-21. The MACRO-80 Assembler is resident on a FLP-80DOS diskette.
user first prepares his source module using the FLP-80DOS Editor.
the source file may be assembled via the following command:

SMACRO dataset S [TO dataset L [,dataset 0]] (CR)

where dataset S = source input dataset

The
Then

dataset L = assembly listing output dataset (optiona
dataset 0 = object output dataset (optional)

1-22. Dataset S is always a
are optional. If not given,
and file name as dataset S,
not given, defaults to the
but the extension is OBJ.

EXAMPLE

diskette file. Dataset L and dataset 0
dataset L defaults to the same disk unit

but the extension is LST. Dataset 0, if
same disk unit and file name as dataset L,

SMACRO DK1:MYFILE TO CP:(CR)

- the user has selected to assemble file MY FILE on

04

MOSTEK MACRO-80 OPERATIONS MANUAL

disk unit 1. The listing is to be directed to the
Centronics line printer device. The object will be
directed to disk unit 1 on file MYFILE.OBJ.

1-23. ASSEMBLER OPTIONS

1-24. The Assembler allows the user to select the following options
from the console when the Assembler outputs the message:

MOSTEK MACRO-80 ASSEMBLER V2.1. OPTIONS?

C - cross reference listing - prints a symbol cross reference table at
the end of the assembly listing.

E - error exit - if any errors occur in pass 1 of the Assembler, they
will be printed and pass 2 will not be done.

F - normal operation of pass 1 and pass 2 of the Assembler (default),
switch off option E.

K - no listing - suppresses the assembly listing output.
will be output to the console device.

L - listing - the assembly listing will be output (default)

All errors

N - no object output - suppresses object output from the Assembler.

o - object output - the object output will be produced (default).

Q - quit - return to Monitor.

R redefine opcodes - allows normal Z80 opcodes to be redefined by
macros (default off).

U - unused symbols - a list of unused symbols will be printed at the
start of the assembly listing.

v - switch off option U (default).

If no options are to be selected, the user enters a carriage return
only.

EXAMPLE
OPTIONS?NU(CR)

- the user has selected no object output and
an unused symbol listing.

05

MOSTEK MACRO-80 OPERATIONS MANUAL

1-25. ASSEMBLY LISTING OUTPUT

1-26. Figure 1-2. shows a sample Assembler listing output. The title
(defined by the TITLE pseudo-op) is printed at the top of each page.
The page number is in decimal notation. Three names appear in the
second line at the top of each page. The first name is that of the
source module; the second is the name of the object module; the third
is that defined by the NAME pseudo-ope The key following the names is
REL for a re10catable program and ABS for an absolute program.

1-27. Columns in the listing are automatically assigned by the
Assembler. The LOC column defines the program address of the object
code in hexadecimal. For relocatable programs, LOC is the relative
offset from the start of the program. For absolute programs, LOC is
the absolute address of the object code. The OBJ.CODE column defines
the assembled zao opcode in hexadecimal. It is preceded by a quote (')
if the statement contains a re1ocatab1e label. It is followed by a
quote if the object code contains a relocatab1e address.

1-28. The STMT-NR heading defines two statement number columns. The
column on the right defines a running statement number for all lines of
the assembled program. The cross reference listing always refers to
this number. The column on the left appears in programs with included
files (INCLUDE pseudo-op) and/or macro expansions. Statement numbers
are printed in decimal. The rest of each listing line is the source
statement. If the line exceeds an 80 column width, then the source
line is overflowed to the next line in the listing. The value of each
equated symbol (EQU pseudo-op) is printed with an equal sign (=) next
to it.

1-29. The number of lines printed per page of assembly listing is in
address OBH of the Assembler. The number of characters per line of
listing is in address OCH of the Assembler. Either of these values may
be changed by the user. The default is 60 lines per page, 80
characters per line.

1-30. CROSS REFERENCE LISTING.

1-31. Figure 1-3. shows a cross reference listing,
by option 'C'. The NAME column on the left hand side
name used in the program in alphabetical order.
indicates the type of the variable:

D
E
I

variable defined by DEFL pseudo-op
external variable
internal variable

06

which is selected
shows each symbol

The TYPE column

URE 1-2. SAMPLE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 FAGE 2
OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG1D2 FIG1D2 FIG1D2 REL

)0

)0 A 7

=0005

=0004
=0034

=FFFF

01 CB3F
03 CB3F
05 CB3F
07 CB3F

09

09 A7

=0002
=0032

=FFFF

OA CB 1F
-OC CB1F

iOE

10E A7

=0009
=0039

=0000

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15

1
2
3
4
5

1 1
12
13
14
15

22
1
2
3
4
5

13
14
15

24
1
2
3
4
5

6

1
2 SHIFT2
3
4 N1
5 NL
6
7

8
9

10 L7
11 L6
12 L5
13 L4
14 13
15 12
16 L1
17

19 BB
20
21
22 N1
23 NL
24
25

26 L4
27 L3
28 L2
29 L1
30

32
33
34 N1
35 NL
36
37

38 L2
39 L1
40

42
43
44 N1
45 NL
46
47

48
~***ERR 5A **************

7 49
i

)OF 26 51

TITLE FIGURE 1-2. SAMPLE LISTING
MACRO #REG #N #KIND iGENERALIZED SEIFT MACRO
MLOCAL L1,L2,L3,L4,L5,16,L7 iLOCAL MACRO LABEL
DEFL #N-1 iGET NUMBER OF BITS TJ SHIFT
DEFL '%N1'[4,1] iPREPARE FOR CONDITIOXAL
AND A iRESET CARRY BIT FOR SHIFT
MIF ('%N1'<='0007').AND.('%N1')='0001') THEN

L#NL
MERROR' N)7 OR N<1
MEXIT
#KIND #REG iSHIFT REGISTER NUr:EER OF BITS
#KIND #REG iSPECIFIED BY #N PARAMETER
#KIND #REG
#KIND #REG iTHE TYPE OF SHIFT IS SHOWN
#KIND #REG iBY THE #KIND PARAMETER
#KIND #REG
#KIND #REG
MEND

EQU 5 iDEFINE NER OF EITS TO SHIFT
SHIFT2 A BB SRL
~LOCAL L1,L2,L3,L4,L5,L6,L7 iLOCA1 MACRO LABEL
DEFL BB-1 iGET NUMBER OF BITS TO SHIFT
DEFL '0004' [4,1] iPREPARE F:JR CONDITIONAL JUr1?
AND A iRESET CARRY BIT FOR SHIFT
lUF ('0004'<='0007').AND.('0004')='0001') THE

N L4
SRL A iTHE TYPE :JF SHIFT IS SHOwN
SRL A ;BY THE SPL PARAMETEP
SRL A
SRL 7\
MEN!)

SHIFT2 A 'BB-2' RR
MLOCAL L1,L2,L3,L4,L5,L6,L7 iLOCAL MACRO LABEl
DEFL BB-2-1 ;GET NUMBER OF BITS TO SHIFT
DEFL '0002' [4,1] iPREPARE FOR CONDITIONAL JUt11
AND A iRESET CARRY BIT FOR SHIFT
MIF ('0002'<='0007').AND.('0002')='0001') THi

RR A
RR A
MEND

N L2

SHIFT2 L '2*BB' RL iSHOULD GENERATE AN ERROR
MLOCAL L1,L2,L3,L4,L5,L6,17 iLOCAL MACRO LABE
DEFL 2*BB-1 iGET NUMBER OF BITS TO SHIFT
DEFL '0009' [4,1] iPREPARE FOR CONDITIONAL JUi1
AND A iRESET CARRY BIT FOR SHIFT
HIF ('0009'<='0007').AND.('0009')='0001') IH

N L9
MERROR' N)7 OR N<1
*
MEXIT

END

~SS2 FIG1D2 FIG1D2 FIG1D2 REL ERRORS 1

FIGURE 1-3. SAMPLE CROSS REF MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 3
NAME TYP VALUE DEF REFERENCES PASS2 FIG1D3 FIG1D3 FIG1D3 REL

BB 0005 19 22 34 44
N1 D 0009 44 22* 23 25 25 34* 35 37 37 44* 45

47
NL D 0039 45 23* 25 35* 37 45* 47
SHIFT2 M 1604 2 20 32 42

MOSTEK MACRO-80 OPERATIONS MANUAL

M macro name
undefined symbol U

blank

2

absolute value, not global
relocatable value, not global
multiply defined variable

1-32. The VALUE column shows the 16-bit value of the symbol. The DEF
column shows the statement number in which the symbol is defined.
REFERENCES defines each statement number in which the symbol is used.
A reference marked with an asterisk means the variable is used as a
'target operand' in the statement. For example:

LD (NN),A
SET NBIT,B

- the references of NN and NBIT are marked by an
asterisk (*) in the cross reference listing.

1-33. OBJECT OUTPUT.

1-34. The object output of the Assembler can be loaded by an Intel
hexadecimal loader for non-linkable programs. Extra information is
inserted into the object output for linkable and relocatable programs
for using the MOSTEK Linker. For a complete discussion of the object
format, see Appendix B in the FLP-80DOS Operations Manual.

1-35. ERROR MESSAGES.

1-36. Any error which is found is denoted in the assembly listing. A
message is printed immediately after the statement which is in error.
An asterisk is printed under the location in the statement where the
error was detected. All the error codes for this Assembler are defined
in Appendix A of this manual.

EXAMPLE
H2:

*****ERR 41 BAD OPCODE
LC A,B
*

1-37. Several errors abort the Assembler when they are encountered.
Abort errors are output only to the console device and control is
immediately returned to the Monitor. Abort errors may occur during
pass 1 or pass 2.

1-38. ADVANCED OPERATIONS.

07

MOSTEK MACRO-80 OPERATIONS MANUAL

1-39. Several source modules may be assembled together to form one
object module. The INCLUDE pseudo-op may be used several times in one
module to properly sequence a set of source modules.

EXAMPLE
NAME
INCLUDE
INCLUDE
INCLUDE
END

MYFILE
FILE1
FILE2
FILE3

;name of final object module

- the object module named MY FILE will be built by the
assembly from FILE1 + FILE2 + FILE3.

1-40. SAMPLE ASSEMBLY SESSION

1-41. Assume that the file to be assembled is named PROG1. The
diskette on which PROG1 exists is in disk unit 1 (DK1). The object
output of the Assembler is to be directed to file PROG1.0BJ on disk
unit 1. The assembly listing is to be directed to a line printer
(LP:). A cross reference table is to be printed.

EXAMPLE
SMACRO DK1:PROG1 TO LP:(CR)

MOSTEK MACRO-80 ASSEMBLER V2.1. OPTIONS? C(CR)

$

- user selects a printed cross reference table

•
•
•

indication that assembly is done and control is
returned to the Monitor.

08

MOSTEK MACRO-SO OPERATIONS MANUAL

SECTION 2

ASSEMBLY LANGUAGE SYNTAX

2-1. INTRODUCTION.

2-2. An assembly language program (source module) consists of labels,
opcodes, pseudo-ops, operands, and comments in a sequence which defines
the user's program. The assembly language conventions for MACRO-80 are
described below.

2-3. DELIMITERS.

2-4. Labels, opcodes, operands, and pseudo-ops must be separated from
each other by one or more spaces or tab characters (ASCII 09). The
operands must be separated from each other by commas. Operands in a
macro call or macro definition statement may be separated from each
other by one or more spaces or tab characters. The label may be
separated from the opcode by a colon, only, if desired.

EXAMPLE
label
LAB1

2-S. LABELS.

opcode
LD

operands
A,B

comment
;LOAD REGISTER A WITH B

2-6. A label may have any number of characters in it. The first six
characters are decoded uniquely; any remaining characters are
identified by a 'hash code'. This means that it is possible to use
labels longer than 6 characters which appear different but are multiply
defined by the Assembler. For example, 'ALABEL6S' and 'AL~BELS6' would
be identified as the same label.

2-6A. The first character
remaining characters may be
or underline (_). Note
FLP-80DOS ASM Assembler.
immediately followed by a
started in column one.

EXAMPLE

of a label must be alphabetic (A-Z).
alphanumeric (A-Z, 0-9), question mark
that this is more restrictive than

A label may start in any column
colon (:). It does not require a colon

allowed not allowed

09

The
(?) ,
the
if
if

MOSTEK MACRo-a a OPERATIONS MANUAL

LABEL1
HERE?

2-7. OPCODES.

1LAB4 (starts with a number)
AD%DC (contains illegal character)

2-8. There are 74 generic opcodes (such as LD), 25 operand key words
(such as A), and 693 legitimate combinations of opcodes and operands in
the Z80 instruction set. The full set of these opcodes is documented
in the 'Z80 CPU Technical Manual'. The MACRO-80 Assembler allows one
other opcode which is not explicitly shown in the Technical Manual:

IN F, (C) ;SET CONDITION BITS ACCORDING TO THE CONTENTS
;OF THE PORT DEFINED BY THE C~REGISTER

2-9. PSEUDO-OPS.

2-10. Pseudo-ops are used to define assembly time parameters.
Pseudo-ops appear like zao opcodes in the source module. Several
pseudo-ops require a label. The following pseudo-ops are recognized by
the Assembler:

ORG nn

label EQU nn

label DEFt nn

DEFM m,m,m •••

- origin - sets the program counter to the value of the
expression nne Each origin statement in a program must
be greater than the first origin of the program to assure
proper linking.

- equate - sets the value of the label to nn in the progr
where nn is an expression; it can occur only once for any
label.

- define label - sets the value of a label to nn in the
program, where nn is an expression; it may be repeated in
the program with different values for the same label.
At any point in the program, the label assumes the last
previously defined value. DEFL has certain other very
useful properties associated with its use in macros.
(See Section 3 of this manual).

- define message - defines the contents of successive
bytes of memory according to m. m is composed of a
sequence of either strings of characters surrounded
by quotes or constants, each separated
by one comma. Strings and constants may
be mixed. The maximum length of the message is 63 bytes.
The number of bytes allocated to a constant depends
on its value. For example, the constant OAF3H will

10

10STEK MACRO-80 OPERATIONS MANUAL

DEFB n,n,n •••

have 2 bytes allocated to it, and OEFH will have
one byte allocated. Symbols and expressions are
not allowed in operands in the DEFM statement.
The delimiting quote characters are required on a
character string. A quote
may be placed in a message by a sequence of 2 quotes
('I). Example: DEFM SH,'TEXT1',20414E4420H, 'TEXT2'

- define byte - defines the contents of successive bytes
starting at the current program counter address to be n,
where n is any expression.

DEFW nn,nn,nn ••• - define word - defines the contents of successive
two-byte words to

DEFS nn

END nn

be the value of expressions nne The least significant
byte of each expression is located at the current
program counter address.
The most significant byte is located at the program
counter address plus one.

- define storage - reserves nn bytes of memory starting
at the current program counter, where nn is an expression.
When loaded, these bytes are not overwritten, i.e., they
will contain what was previously in memory. This pseudo-op
cannot be used at the start or end of a program to
reserve storage.

- end statement - defines the last statement of a program.
The END statement is not required. The expression nn is
optional and represents the transfer address (starting
execution address) of the program. Note that for binary
files the transfer address must be the same as the
starting address.

GLOBAL symbol,symbol, ••• - define global symbol - any symbol which

NAME symbol

PSECT op

is to be made known among several separately assembled
modules must appear in this type of statement. The
Assembler determines if the symbol is internal (defined
as a label in the program), or external (used in the
program but not defined as a label).

- module name - This pseudo-op defines the name of the
program (source and object). The name is placed in the
heading of the assembly listing and is placed in the first
record of the object module to identify it. This
pseudo-op is designed primarily to facilitate future
compiler design. The name of a module defaults to
6 blanks.

- program section - may appear only once at the start
of a source module. This pseudo-op defines the
program module attributes for the following
operands:

1 1

MOSTEK MACRO-SO OPERATIONS MANUAL

IF nn
or COND nn

ENDlF
or ENDC

INCLUDE dataset

LIST nn

ELlST nn

CLIST nn

NLIST

EJECT

REL - relocatable program (default)
ABS - absolute program. No relocating
information is generated in the object
module. The module will be linked where
it is origined.

conditional assembly - if the expression nn is
true (non-zero), the pseudo-op is ignored.
If the expression is false (zero), the assembly
of subsequent statements is disabled until
an ENDlF statement is encountered. IF pseudo-ops
can be nested to a level of 11.

- end of conditional assembly - re-enables
assembly of subsequent statements.

- include source from another dataset -
allows source statements from another dataset to be
included within the body of the given program.
If a file name only is specified, then the file
is searched for first on DKO:, then on DK1:.
If the dataset cannot be opened properly, then
assembly is aborted. The source module to be
included must not end with an END pseudo-op
(otherwise, assembly would be terminated). The
source module must end with an EOT character
(04H), which is true for all FLP-80DOS ASCII datasets.
The INCLUDE pseudo-op cannot be nested, it
cannot be followed by a comment on the same line,
and it cannot appear in a macro definition.

- list all assembled statements (default on), where
nn is an expression. If nn = 0 then the listing
is turned off. Otherwise it is turned on.

- list expanded statements from macro expansions -
if the expression nn = 0, then only the
macro call statements will appear in the
assembly listing. Otherwise, all expanded
statements from macro calls will appear in
the assembly listing (default on).

- list only code-producing statements from
macro expansions - if the expression nn = 0,
then only code-producing statements in the macro
expansions will be listed. Otherwise all
statements in each macro expansion will be
listed in the assembly listing (default on).

- turn off assembly listing. This is provided
for compatibility with the FLP-80DOS ASM.

- eject a page of the assembly listing.

12

MOSTEK MACRO-80 OPERATIONS MANUAL

TITLE s - print a title's' at the top of each page
of the listing. The title may be up to 32
characters in length.

2-11. OPERANDS.

2-12. There may be zero, one, or more operands in a statement
depending upon the opcode or pseudo-op used. Operands in the Assembler
may take the following forms:

2-13. GENERIC OPERAND.
the MACRO-80 Assembler.

Table 2-1 summarizes the generic operands in

2-14. CONSTANT. The constant must be in the range 0 thru OFFFFH. It
may be in any of the following forms:

Decimal - this is the default mode of the Assembler. Any
number may be denoted as decimal by following it
with the letter 'D'. E.g., 35, 249D

Hexadecimal - must begin with a number (0-9) and end with the
letter 'H'. E.g., OAF1H

Octal - must end with the letter 'Q' or 'a'. E.g. 377Q, 2770

Binary - must end with the letter 'B'. E.g., 011011B

ASCII - letters enclosed in quote marks will be converted
to their ASCII equivalent value. E.g., 'A' = 41H

2-16. LABEL. Labels cannot
appeared in the user program.
pass assembler.

EXAMPLE not allowed

L EQU H
H EQU I
I EQU 7

be defined by labels which have not yet
This is an inherent limitation of a two

allowed

I EQU 7
H EQU I
L EQU H

13

MOSTEK MACRO-80 OPERATIONS MANUAL

TABLE 2-1.

MACRO-BO GENERIC OPERANDS

A A register (Accumulator)
B B register
C C register
D D re~ister
E E register
F F register (flags)
H H register
L L register

AF AF register pair
AFt AFt register pair
BC BC register pair
DE DE register pair
HL HL register pair

SP Stack Pointer register
$ Program Counter

I I register (interrupt vector MS byte)
R Refresh register

IX IX index register
IY I1 index register

NZ not zero
Z zero
NC not carry
C carry
PO parity odd/not overflow
PE parity even/overflow
P sign positive
M sign negative

14

MOSTEK MACRO-SO OPERATIONS MANUAL

2-17. EXPRESSION. MACRO-80 recognizes a wide range of expressions in
the operand field of a statement. All expressions are evaulated left
to right constrained by the hierarchies shown in Table 2-2.
Parentheses may be used to ensure correct expression evaluation. The
symbol '$' is used to represent the value of the program counter of the
current instruction. Note that enclosing an expression wholly in
parentheses indicates a memory address. Integer two's complement
arithmetic is used throughout. The negative (2's complement) of an
expression or quantity may be formed by preceding it with a minus sign.
The one's complement of an expression may be formed by preceding it
with the '.NOT.' operator.

2-18. In doing relative addressing, the current value of the program
counter mayor may not be subtracted from the label, at the
programmer's discretion:

JR LOOP
JR LOOP-$

-will both jump relative to the label 'LOOP'.

2-19. The allowed range of an expression depends on the context of its
use. An error message will be generated if this range is exceeded
during its evaluation. In general, the limits on the range of an
expression are 0 thru OFFFFH. The range of a jump relative instruction
(JR or DJNZ) is -126 bytes and +129 bytes. The Assembler monitors the
number of items in an expression. If an expression is too long, an
error message will be output. For relocatable programs the Assembler
outputs relocation information in the object module for those addresses
which are to be relocated by the Linker. Expressions are determined to
be relocatable addresses or non-relocatable constants according to the
rules shown in Table 2-3.

15

MOSTEK MACRO-SO OPERATIONS MANUAL

OPERATOR

.RES.

.DEF.

unary +
unary -

**

*
/

+

.EQ. or

.LT. or

.GT. or

.LE. or

.GE. or

.NE. or

.ULT.

.UGT.

.AND.

.OR.

.XOR.

.MOD.

.NOT.

.SHR.

.SHL.

[m, n]

TABLE 2-2.

ALLOWED OPERATORS IN MACRO-80

=
<
>
<= or =<
>= or =>
<> or ><

HIERARCHY

1

1

2
2

3
3

4
4
4

4
4

5

6
6
6
6

6
6

4
4
4

RELOCATE RULE

1

1

2

2
2

3
4

5
5
5
5
5
5
5
5

2

2
2
2
1

2
2

For relocate rules see Table 2-3.

16

RANGE

operand must be a symbol

operand 2 not = 0

string handling allowed

operand 2 < 16
operand 2 < 16

operand must be a string

MOSTEK MACRO-SO OPERATIONS MANUAL

TABLE 2-3.

RELOCATE RULES FOR OPERATORS

<operand 1) op <operand 2) Relocate rule
1 234
NOT * / +

5
)

relocatable relocatable ERR ERR ERR ABS ABS

relocatable absolute ABS ERR REL REL ABS

absolute

absolute

where

relocatable ERR ERR REL ERR ABS

absolute ABS ABS ABS ABS ABS

ABS denotes absolute result
REL denotes relocatable result
ERR denotes error condition.

(rule number)
(mnemonic)

The following table shows the rules for global symbols used in
relocatable and absolute programs.

relocatable programs
nn = rel nn = abs

GS EQU nn
LS EQU nn

REL
REL

ERR
ABS

where
GS denotes a global symbol
LS denotes a non-global symbol
nn is an expression
REL means relocatable result
ABS means absolute result
ERR denotes error condition

17

absolute programs
nn = rel nn = abs

REL
REL

REL
ABS

MOSTEK MACRO-80 OPERATIONS MANUAL

.RES. - reset overflow - appearance of this operator anywhere in an
expression forces any overflow indication to be unconditionally reset •

• NOT. - one's complement.

** - exponentiation operator.

Relational operators (= > < etc.) can
This facility is useful when using
language •

be used with character strings.
macros to define a higher level

• ULT. - unsiQned less than •

• UGT. - unsigned greater than •

• SHR. - shift first operand right by number of bits designated in
second operand •

• SHL. shift first operand left by number of bits designated by the
second operand •

• DEF. - defined symbol operator - returns the value zero (false) if
the symbol following the operator is not defined. Returns true (not
zero) if the symbol is defined.

2-20. STRING EXPRESSIONS. The operator [,] extracts a substring from
a given string. This is most useful in macros in which strings can be
passed as arguments. Note that the Assembler does not support string
variables. The general form of a string expression is:

string[m,n] or string[m]

where string is any character string enclosed by quotes,
and] are delimiters,

m is an integer which represents the starting
column number, and

n is an integer which represents the number of
columns to be accessed.

2-21. If the integer n is not present, then n is assumed to be equal
to the remaining number of columns in the given string.

EXAMPLE
'ABCDEF' [3,2] is equivalent to 'CD'
'ABCDEF'[3] is equivalent to 'CDEF'

2-22. COMMENTS.

18

MOSTEK MACRO-SO OPERATIONS MANUAL

2-23. A comment is defined as any set of characters following a
semicolon in a statement. A semicolon which appears in quotes in an
operand is treated as an expression rather than a comment starter.
Comments are ignored by the Assembler, but they are printed in the
assembly listing. Comments can begin in any column. Note that the
Assembler also treats as comments any statements with an asterisk (*)
in column one.

2-24. ABSOLUTE MODULE RULES.

2-25. The pseudo-op 'PSECT ABS' defines a module to be absolute. The
program will be loaded in the exact addresses at which it is assembled.
This is useful for defining constants, a common block of global
symbols, or a software driver whose position must be known. This
method can be used to define a list of global constants as follows:

EXAMPLE

AA

AX

PSECT
GLOBAL
EQU
GLOBAL
EQU
END

ABS
AA
OE3H
AX
OAF3H

2-26. RELOCATABLE MODULE RULES.

iABSOLUTE ASSEMBLY

2-27. Programs default to relocatable if the 'PSECT ABS' statement is
not used or if 'PSECT REL' is used.

2-28. Only those values which are 16-bit address values will be
relocated. 16-bit constants will not be relocated.

EXAMPLE
AA

AR

EQU
LD
EQU
LD

OA13H
A,(AA)
$
HL,(AR)

;ABSOLUTE VALUE
;AA NOT RELOCATED
;RELOCATABLE VALUE
;AR WILL BE RELOCATED UPON LINKING

2-29. Relocatable quantities may not be used as a-bit operands. This
restriction exists because only 16-bit operands are relocated by the
Linker.

EXAMPLE
LAB EQU $;RELOCATABLE VALUE

19

MOSTEK MACRO-80 OPERATIONS MANUAL

DEFB LAB ;NOT ALLOWED
LD A,(IX+LAB) ;NOT ALLOWED
LD A, (LAB) ; ALLOWED
LD HL,LAB ;ALLOWED

2-30. Labels equated to labels which are constants will be treated as
constants. Labels equated to labels which are relocatable addresses
will be relocated.

EXAMPLE
B8 EQU 20H ;CONSTANT
C8 EQU B8 ;CONSTANT

LD A,(C8) ;C8 WILL NOT BE RELOCATED
AR EQU $;RELOCATABLE ADDRESS
BR EQU AR ;RELOCATABLE

LD A,(BR) ;BH WILL BE RELOCATED

2-31. External symbols in a relocatable program are marked
relocatable, except for the first usage. The code for external symbols
is actually a backward link list through the object code.

2-32. GLOBAL SYMBOL HANDLING.

2-33. A global symbol is a symbol which is known by more than one
module. A global symbol has its value defined in one module. It can
be used by that module and by any other module which is linked with it
by the Linker. A global symbol is defined as such by the GLOBAL
pseudo-ope

2-34. An internal symbol is one which is defined as global and also
appears as a label in the same program. The symbol value is thus
defined for all programs which use that symbol. An external symbol is
one which is defined as global but does NOT appear as a label in the
same program.

EXAMPLE

EXAMPLE

SYM1

GLOBAL SYM1
CALL SYM1

;DEFINE GLOBAL SYMBOL

•
END

GLOBAL
EQU
LD

- SYM1 is an external symbol

SYM1 ;DEFINE GLOBAL SYMBOL
$
A,(SYM1)

20

MOSTEK MACRO-80 OPERATIONS MANUAL

END
- SYM1 is an internal symbol. Its value
is the address of the LD instruction.

2-35. If these two programs were assembled and then linked by the
Linker, then all global symbol references from the first program would
be 'resolved'. This means that each address in which an external
symbol was used would be modified to the value of the corresponding
internal symbol. The linked programs would be equivalent (using our
example) to one program written as follows:

EXAMPLE

SYM1

CALL SYM1
•
•

EOU
LD

END

$
A,(SYM1)

2-36. Global symbols are used to allow large programs to be
into smaller modules. The smaller modules are used
programming, facilitate changes, or allow programming by
members of the same team.

2-37. GLOBAL SYMBOL RULES.

broken up
to ease

different

2-38. An external symbol cannot appear in an expression which uses
operators.

EXAMPLE
GLOBAL
CALL
LD

SYM1 ;EXTERNAL SYMBOL
SYM 1 ;OK
HL,(SYM1+2) ;NOT ALLOWED

2-39. An external symbol is always considered to be a 16-bit address.
Therefore, an external symbol cannot appear in an instruction requiring
an 8-bit operand.

EXAMPLE
GLOBAL
CALL
LD

SYM1
SYM1
A,SYM1

;EXTERNAL SYMBOL
;OK
;NOT ALLOWED

21

MOSTEK MACRO-80 OPERATIONS MANUAL

2-40. An external symbol cannot appear in the operand field of an EQU
or DEFL statement.

2-41. For a set of modules to be linked together, no duplication of
internal symbol names is allowed. That is, an internal symbol can be
defined only once in a set of modules to be linked together.

22

MOSTEK MACRO-80 OPERATIONS MANUAL

SECTION 3

MACRO CAPABILITY

3-1. INTRODUCTION.

3-2. MACRO-80 offers the most advanced macro handling capability in
the microcomputer industry. Macros provide a means for the user to
define his own opcodes or to redefine existing opcodes. A macro
defines a body of text which will be inserted automatically into the
source program at each occurrence of a macro call. Parameters
associated with a macro provide a capability for making changes in the
macro at each call. The following paragraphs describe how to use the
macro facility.

3-3. MACRO DEFINITION.

3-4. The body of text to be used as a macro is given in the macro
definition. Each definition begins with a MACRO pseudo-op and ends
with an MEND pseudo-ope The general form is:

label opcode operands comment

name: MACRO #p1,#p2, ••• ,#pn ;comments (optional)
•

body of macro goes here
•

label: MEND

3-5. The name is required, and it must obey all the usual rules for
forming labels (recall that the colon is optional if the name starts in
column one). If the name is a zao opcode (e.g., LD, EXX), then the 'R'
option must be selected at the start of the Assembler to permit
redefinition of opcodes by macros.

3-6. There can be any number of parameters from 0 to 99, each starting
with the symbol '#'. The rest of the parameter name follows normal
symbol rules. Parameter names are not entered into the symbol table.
Parameters are separated from each other by single commas, or one or
more blanks, or one or more tab characters.

3-7. The label on the MEND statement is optional, but if one is given
it refers to the next program address upon expansion of the macro.

23

MOSTEK MACRO-80 OPERATIONS MANUAL

3-8. Each statement between the MACRO and MEND statements is entered
into a temporary macro file. The only restriction on these statements
is that they do not include another macro definition (nested
definitions are not allowed) or an INCLUDE statement. They may include
macro calls. The depth of nested calls is limited only by available
memory space for buffering.

3-9. The statements of the macro body are not assembled at definition
time, so they will not define labels, generate code, or cause errors.
Exceptions are the Assembler commands such as LIST which are processed
w~enever they are encountered. Within the macro body text, the formal
parameter names may occur anywhere that an expansion-time substitution
is desired. This also applies to comments and quoted strings.
However, no substitution of parameters is performed for comments
defined by an asterisk in column one.

3-10. Macros must be defined before they are called. Once defined, a
macro cannot be redefined withi~ the same program. If a macro is
called by another macro, then its definition must precede the calling
macro's definition.

3-11. MACRO CALLS AND MACRO EXPANSION.

3-12. A macro is called by using its name as an opcode at any point
after the definition. The general form is:

label opcode operands comment

label name s1,s2, ••• ,sn ;comment (optional)

3-13. The label is optional and will be assigned to the current value
of the program counter. The name must be a previously defined macro.
There may be any number of argument strings s1 thru sn, separated by
any number of blanks or tabs or single commas. The comma can be used
as a place holder to pass null arguments to the macro expansion. All
arguments are passed. If too few are passed, the remaining arguments
assume the value of null (no characters in the argument string). If
there are too many arguments, the extras may be accessed by the MNEXT
pseudo-op (described below).

3-14. The position of each string in the list corresponds
position of the macro parameter name it is to replace. Thus,
string in a macro call statement will be substituted
occurrence of the third parameter name.

to the
the third
for each

3-15. Each string 'may be of any length and may contain any characters.
Quotes around the string are optional; they are required if the string
contains delimiters or the quote character itself. The quote character
is represented by a sequence of two successive quote characters at the

24

MOSTEK MACRO-800PERATIONS MANUAL

inner level. The outer level of quotes, if present, will not occur in
the substitution, i.e., they are stripped from the argument. The null
string, represented by two successive quote characters, may be used in
any parameter position.

3-16. After processing the macro call statement, the Assembler
switches its input from the source file to the macro file. Each
statement of the macro body is scanned for occurrences of parameter
names. For each occurrence found, the corresponding argument string
from the macro call statement is substituted. After substitution, the
statement is assembled normally.

3-17. Default arguments may be specified in the parameter list by use
of an equal sign (=). The call to the maCro must specify comma place
holders for each default argument to be substituted (otherwise the null
argument will be substituted).

EXAMPLE
MAC1 MACRO

MEND

MAC1

MEND

MAC1

MEND

3-18. RECURSION.

#A=DE,#B=HL,#C=BC

, , ,

;EXPANSION WITH NO ARGUMENTS
;ALL ARGUMENTS WILL DEFAULT TO NULL

;EXPANSION TO USE DEFAULT ARGUMENTS
;DEFAULT ARGUMENTS WILL BE
; USED FOR PARAMETERS #A, #B, AND #C

3-19. Macros may include calls to other macros, including themselves.
The definition statements of a macro which calls other macros must
follow the definition statements of those macros. A macro which
directly calls itself (or indirectly by calling a second macro which
calls the first macro) is said to be recursive. Each recursive call
causes a new expansion of the macro, possibly with different
parameters. In order to prevent the macro from being called endlessly,
conditional assembly can be used to inhibit a recursive call when
certain conditions are met. A recursion of greater than 255 calls will
generate an error.

25

MOSTEK MACRO-80 OPERATIONS MANUAL

3-20. SUBSTITUTION BY VALUE (% OPERATOR).

3-21. Symbol values can be expanded within a macro by preceding the
symbol name with a percent sign (%). The symbol must appear as the
label of a DEFL statement. The value of the symbol is expanded to 4
decimal digits when the macro is called.

3-22. The value of an argument may be substituted by value by using
the DEFL statement and the % operator. In this case, some symbol is
equated to the parameter via the DEFL pseudo-ope The value of the
symbol is then expanded to four decimal digits by using the % operator.
This facility can be used only within a macro.

The DEFL statement within a macro also has the characteristic that it
can be expanded just like a macro parameter. The symbol defined by the
DEFL pseudo-op can be preceded by a # sign elsewhere in the macro
definition to expand its value as ASCII characters. See the example
below.

EXAMPLE
MAC1
N1
NL

L1
L2
L3
L4

BB

N1
NL

L1
L2
L3
L4

MACRO
DEFL
DEFL
JP · . .
• • • · . .
MEND

EOU
MAC1
DEFL
DEFL
JP
• • •
• • •
• • •
MEND

#N
#N-1
, %N 1 ' [4, 1]
L#NL

4
BB
3
'0003' [4,1]
L3

3-23. PREDEFINED ARGUMENTS.

;GET ONE-DIGIT ASCII NUMBER

iEXPANSION

3-14. The following predefined arguments are unique symbols and may be
used anywhere in the macro definition.

%NEXP - expands to a four decimal digit representation of the number of
the expansion of any macro. Thus, the first expansion of any macro

26

MOSTEK MACRO-80 OPERATIONS MANUAL

Yields %NEXP = 0001, the second yields %NEXP = 0002, etc.

EXAMPLE
MAC1 MACRO

DEFW
MEND

MAC1
DEFW
MEND
MAC1
DEFW
MEND

%NEXP

;1ST EXPANSION
0001

;2ND EXPANSION
0002

%NARG - expands to a four decimal digit representation of the number of
aguments passed to the macro expansion.

EXAMPLE
MAC1 MACRO

LD
MEND

#A, #B , #C
A,%NARG

MAC1
LD
MEND

1,2 ;EXPANSION
A,0002

#PRM - expands to the last used argument. Note that the first
parameter of the macro must be expanded explicitly before #PRM is used.
Alternatively, the MNEXT pseudo-op can be used to access the first
parameter. See the discussion of MNEXT, below.

EXAMPLE
MAC1 MACRO

LD
LD
LD
LD
MEND

MAC1
LD
LD
LD
LD
MEND

#A,#B
HL,#A
DE,#PRM
BC,#B
IY,#PRM

SYM1,SYM2
HL,SYM1
DE,SYM1
BC,SYM2
IY,SYM2

%NPRM - expands to a two decimal digit
number of the last used argument.
argument in the argument list.

EXAMPLE
MAC1 MACRO

LD
#A,#B
HL,#B

27

;EXPANSION

representation of the position
This shows the position of an

MOSTEK MACRO-BO OPERATIONS MANUAL

LD A,%NPRM
MEND

MAC1
LD
LD
MEND

SYM1,SYM2
HL,SYM2
A,02

iEXPANSION

%NCHAR - expands to a two decimal digit representation of the number of
characters in the last used argument.

EXAMPLE
MAC1
P1

P2

P1

P2

MACRO
DEFL
DEFB
DEFM
DEFL
DEFB
DEFM
MEND

MAC1
DEFL
DEFB
DEFM
DEFL
DEFB
DEFM
MEND

#A #B
$ i#A
%NCHAR
'#A'
$;#B
%NCHAR
'#B'

A BCDE ;EXPANSION
$;A
01
' A '
$;BCDE
04
'BCDE'

3-25. FORMATION OF LABELS WITHIN A MACRO EXPANSION.

3-26. There are three ways of forming unique labels within a macro
expansion.

3-27. PREDEFINED ARGUMENT %NEXP. The current expansion number will be
expanded as four decimal digits, which may be appended to a character
or set of characters to form a unique label.

EXAMPLE
MAC1 MACRO #A
L%NEXP LD HL,#A

MEND

MAC1 SYM iEXPANSION 1
LOO01 LD HL,SYM

MEND
MAC1 SYM2 iEXPANSION 2

LOO02 LD HL,SYM2
MEND

28

MOSTEK MACRO-80 OPERATIONS MANUAL

3-28. SUBSTITUTION OF PARAMETER. Unique labels may be formed by using
a parameter as part of the label. A passed argument then defines a
label or set of unique labels for the given expansion.

EXAMPLE
MAC1
L#A
M#A

LFST
MFST

LSND
MSND

MACRO #A
DEFM
DEFB
MEND

MAC1
DEFM
DEFB
MEND
MAC1
DEFM
DEFB
MEND

'A MESSAGE'
9

FST iEXPANSION
'A MESSAGE'
9

SND iEXPANSION 2
'A MESSAGE'
9

3-29. DOT OPERATOR (.). Symbols in a macro definition may have a dot
as the first character. The dot in every symbol will be replaced by
the label specified in the macro call statement during macro expansion.
Labels formed by the dot operator may also be used in MGOTO, MIF, and
MNEXT statements.

EXAMPLE
MAC1
.L1

.L2

.LAB

M1
M1L1

M1L2
M1LAB

MACRO
LD

MEND

MAC1
LD

•

MEND

iMACRO DEFINITION
HL,.L2

;THE MACRO CALL
HL,M1L2

Note that the dot operator can be used with a parameter if the two
items are separated by another character.

EXAMPLE
MAC1

• L#A

MACRO
LD . . .

#A ;MACRO DEFINITION
HL,. L#A

29

MOSTEK MACRO-SO OPERATIONS MANUAL

M4

M4L25

MEND

MAC1
LD
• • •

MEND

25 ;MACRO CALL
HL,M4L25

3-30. LOCAL MACRO LABELS.

3-31. Local macro labels are allowed only in the MGOTO, MIF, and MNEXT
statements. Local macro labels must follow normal symbol rules. They
may not be formed by use of predefined arguments, substitution of
parameters, or by use of the dot operator. Each local macro label will
be in effect only during the current expansion of the current macro.
They are in effect from the time of declaration via the MLOCAL
pseudo-op through the MEND pseudo-ope They may not be redefined or
respecified within one macro. Local declarations of the same symbol in
nested or recursive macro calls are allowed. Local macro labels are
not placed in the symbol table; they are used merely as pointers for
the MGOTO, MIF, and MNEXT statements. A local macro label must be
declared before it is used. The format for declaring local macro
labels is:

EXAMPLE

MLOCAL

MAC1

L1
L2
L3

mlabe11,mlabe12, •••
- where mlabe11, mlabe12,
appear in the macro body.
have a label on it.

#A,#B
L1,L2,L3

etc., are labels which only
The MLOCAL statement may not

MACRO
MLOCAL
MIF
MIF
MERROR
MNOP
MEND

'#A'='IF' THEN L1 ELSE L3
'#B'=" THEN L2 ELSE L3
BAD IF STATEMENT

3-32. MACRO RELATED PSEUDO-OPS.

3-33. In the following discussion, mlabel, mlabe11, and mlabe12 refer
to local macro labels or labels formed by using the dot operator (.).
The symbol nn refers to any valid expression. Brackets [) refer to
optional parameters.

3-34. MNEXT nn [THEN mlabe11] ELSE mlabe12]

30

MOSTEK MACRO-BO OPERATIONS MANUAL

moves the argument pointer according to the expression nn in the
argument list. A move to the left can be achieved by a negative value,
to the right by a positive value. The argument may then be accessed by
the #PRM predefined argument. If the argument pointer leaves the
argument list and if the ELSE clause is present, then a jump to m1abe12
is performed. Otherwise the next statement in sequence is processed.

EXAMPLE
MAC1

L1

L2

L1

L1

L1

L1
L2

MACRO
MLOCAL
MNEXT
DEFB
MGOTO
MEND

MAC1
MLOCAL
MNEXT
DEFB
MGOTO
MNEXT
DEFB
MGOTO
MNEXT
DEFB
MGOTO
MNEXT
MEND

3-35. MGOTO m1abe1

#A,#B
L1,L2
1 ELSE L2
#PRM
L1

1,2,3 iEXPANSION
L 1 ,L2
1 ELSE L2
1
L1
1 ELSE L2
2
L1
1 ELSE L2
3
L1
1 ELSE L2

- continues the expansion at the specified macro label.

EXAMPLE
See the EXAMPLE for the MNEXT pseudo-ope

3-36. MIF nn THEN m1abe11 [ELSE m1abe12)

- if the expression nn evaluates to true (non-zero), then expansion is
continued at the m1abe11 macro label. If the expression is false
(equals zero) and the ELSE clause is present, expansion continues at
the m1abe12 macro label. Otherwise expansion continues at the next
statement in the macro.

EXAMPLE
MAC1

L1
L2

MACRO
MLOCAL
MIF
DEFM
MEND

#A
L 1, L2
'#A'='THEN' THEN L1 ELSE L2
, #A '

31

MOSTEK MACRO-80 OPERATIONS MANUAL

MAC1 THEN ;FIRST EXPANSION
MLOCAL L1,L2
MIF 'THEN'='THEN' THEN L1 ELSE L2

L1 DEFM 'THEN'
L2 MEND

MAC1 ELSE
MLOCAL L 1 ,L2
MIF 'ELSE'='THEN' THEN L1 ELSE L2

L2 MEND

3-37. MNOP

- no operation is performed. This pseudo-op can be used to define a
local macro label at this point in the macro body. This is useful
because the local macro labels will not appear in the assembly listing
if the CLIST 0 pseudo-op is used.

3-38. MEXIT

- terminates the current macro expansion.

EXAMPLE
MAC1 MACRO #A

MLOCAL L1
MIF '#A'='THEN' THEN L1
MEXIT

L1 MNOP
LD A,1
MEND

MAC1 ELSE
MLOCAL L1
MIF 'ELSE'='THEN' THEN L1
MEXIT

3-39. MERROR text

- prints the line of text like an error message with error number SA
called out.

EXAMPLE
MAC1

L1

L2
L3

MACRO
MLOCAL
MNEXT
• • •
MGOTO
MERROR
MEND

MAC1
MLOCAL
MNEXT

L1,L2,L3
1 ELSE L2

L3
ARGUMENTS REQUIRED

L1,L2,L3
1 ELSE L2

32

MOSTEK MACRO-80 OPERATIONS MANUAL

L2 MERROR ARGUMENTS REQUIRED
*****ERR SA *************

L3 MEND

3-40. MEND

- marks the end of a macro.

3-41. MLOCAL labe11,labe12, •••

- defines local macro labels.

33

MOSTEK MACRO-80 OPERATIONS MANUAL

SECTION 4

APPLICATIONS OF MACROS

4-1. INTRODUCTION.

4-2.
The MACRO-80 Assembler provides a powerful tool for microcomputer
systems development. Five areas of applications are discussed
below to show how the macro facility can be used to simplify
program development:

1. Use of macros in implementing special-purpose languages.
2. Emulation of non-standard machine architectures.
3. Development of cross-assemblers.
4. Implementation of additional control structures.
5. Operating systems interface macros.

4-3. As macros are developed by a team of programmers, it is important
to document each macro and its usage for each member of the team. The
examples below should be studied for both their procedural content and
the method of documenting them.

4-4. SPECIAL PURPOSE LANGUAGES.

4-5. A wide variety of microcomputer designs can be broadly classed as
'controller' designs. In these designs, the microcomputer is the
controlling element in sequencing and decision-making as real-time
events are sampled and directed. An example of this is a traffic
control system. In this situation, it is useful to define a 'language'
via macros which suits the particular application. After the macros
are defined, an application programmer can use them as primitive
language elements. If properly defined, the application language is
easily programmed and can allow considerable machine independence.
Further, the macros can incorporate debugging facilities to aid the
application programmer.

4-6. In the traffic system defined here, the following hardware
elements are present:

1. central and corner traffic lights which display green,
yellow, red, or are off completely.
2. pushbutton switches for pedestrian crosswalks.
3. road treadles for sensing the presence of an automobile
at an intersection.
4. a central controller box.

34

MOSTEK MACRO-SO OPERATIONS MANUAL

4-7. The central controller box contains a microprocessor connected
through external logic to relays which control the lights and to
latches which hold sensor input information. The controller also
contains a time-of-day clock which counts hours from 0 through 23. The
program which is run on the microprocessor is contained in PROM and is
tailored to each intersection for traffic control.

4-8. We first define a set of macros to perform simple traffic-control
functions via the system. These are shown in Figure 4-1. The system
is configured such that the central traffic light is controlled by the
microprocessor port number 0 (given by LIGHT). The time-of-day clock
is read from port 3 (given by CLOCK). The north-south direction of the
traffic light is controlled by the high order 4 bits of output port 0,
and the east-west direction is controlled by the low order 4 bits of
port O. When either of these fields is set to 0, 1, 2, or 3, then the
light in that direction is turned off or set to red, yellow, or green,
respectively. Thus, the SETLITE macro sets the specified direction to
the appropriate color.

4-9. The TIMER macro uses the cycle time of the microprocessor (one
cycle = 400 nanoseconds) to construct an inline timing loop, based on
the number of seconds delay requested.

4-10. Additional macros are provided for automobile treadles and
pedestrian pushbuttons. For treadles (macro TREAD?) the sensors are
attached to port 1 of the microprocessor (TRINP). The treadles require
a 'reset' operation which is performed via port 1 (TROUT). At any
intersection, the treadles are numbered clockwise from north from 0
through a maximum of 7. Each sensor and reset position of the treadle
port corresponds to one bit position of port 1. Thus treadle #0 sensor
is read from bit 0 of port 1 and reset via bit 0 of port 1. The TREAD?
macro is used to sense the presence of a latched value for treadle #TR
and, if on, the sensor is reset with control transferring to the label
given by #IFTRUE.

4-11. Latched pedestrian pushbuttons are processed by the macro PUSH?
A latched pushbutton is sensed on input port 0 (CWINP) as a sequence of
1's and O's in the least significant positions, corresponding to the
switches at the intersection. Thus, if there are four pedestrian
pushbuttons, bits 0, 1, 2, and 3 corresponds to these switches. A set
bit in any of these positions indicates that a button has been pushed.
All the crosswalk latches are reset whenever input port 0 is read.

4-12. Figure 4-2 shows a program written in the macros for controlling
a rather simple intersection. Here, the lights are merely sequenced
in proper fashion for traffic control.

4-13. Figure 4-3 shows a more complex intersection control program.
In this case, heavy traffic normally occurs in an East-West direction.
Light traffic from a residential section occurs in a North-South
direction. Here, the lights favor traffic in the East-West direction
until an automobile treadle or a pedestrian pushbutton is activated.

35

;

FIGURE 4-1
NLIST

**
; MACRO LIBRARY FOR TRAFFIC CONTROL APPLICATION
**

THIS LIBRARY CONTAINS SEVERAL MACROS WHICH
DEFINE A LANGUAGE FOR A TRAFFIC CONTROL APPLICATION.

; THE LANGUAGE IS DEFINED AS FOLLOWS:

SETLITE DIR,COLOR
- SET THE COLOR LIGHT IN THE DIRECTION SHOWN
WHERE COLOR IS OFF, RED, YELLOW, OR GREEN AND

; DIRECTION IS 'NS' FOR NORTH-SOUTH OR 'EW' FOR
; EAST-WEST.

TIMER SECONDS
- DELAY THE NUMBER OF SECONDS SHOWN

CLOCK LOW,HIGH,LABEL

· ,
- TRANSFER CONTROL TO THE 'LABEL' IF
THE CURRENT HOUR (0-23) IS BETWEEN 'LOW'
AND 'HIGH'.

RETRY LABEL
- TRANSFER CONTROL TO 'LABEL'.

i TREAD? TR,LABEL
- INTERROGATE TREADLE NUMBER 'TR' AND
IF THE INPUT IS SET, RESET IT AND TRANSFER
CONTROL TO 'LABEL'.

PUSH? LABEL
- CHECK IF ANY PUSHBUTTON HAS BEEN PUSHED.

i IF SO, TRANSFER CONTROL TO 'LABEL'.
;

INPUT PORTS FOR LIGHT AND CLOCK

LIGHT EQU
CLOCK EQU

· CONSTANTS FOR ,
· ,
BITSNS EQU
BITSEW EQU

OFF EQU
RED EQU
YELLOW EQU
GREEN EQU

SET LIGHT IN
RED, YELLOW,

5ETL1TE MACRO
LD
OUT

0 iTRAFFIC LIGHT CONTROL
3 ;24 HOUR CLOCK (0-23)

TRAFFIC LIGHT CONTROL

4 iNORTH-SOUTH BITS
0 ;EAST-WEST BITS

0 iTURN LIGHT OFF
1 iRED LIGHT .., iYELLOW LIGHT "-

3 ;GREEN LIGHT

DIRECTION #DIR (NS, EW)TO #COLOR (OFF,
GREEN)

#DIR,#COLOR
A,#COLOR.SHL.BITS#DIR ;READY COLOR BITS
(LIGHT),A ;OUTPUT TO LIGHT

MEND
;
; TIMER FOR NUMBER OF SECONDS TO DELAY
TIMER MACRO #SECOND

LD BC,1000*#SECOND ;SECONDS TIMES MSECS
L%NEXP PUSH BC ;SAVE IT

LD B,191 ;MILLISECOND COUNTER
K%NEXP DJNZ K%NEXP ;LOOP FOR 1 MSEC

POP BC
DEC BC ;DECREMENT MSEC COUNT
LD A,B ;CHECK FOR END OF SECONDS
OR C
JR NZ,L%NEXP ;LOOP FOR MORE

ARRIVE HERE AFTER APPROXIMATE DELAY OF 'SECONDS'
MEND

;

; CHECK CLOCK AND JUMP TO #IFTRUE IF TIME IS BETWEEN #LOW AND #HIGH
CLOCK? MACRO #LOW,#HIGH,#IFTRUE

MLOCAL L2
IN A,(CLOCK) ;READ CLOCK

i IF UPPER LIMIT NOT INPUT, DON'T CHECK IT
MIF '#HIGH'=" THEN L2
CP #HIGH ;EQUAL OR ~REATER?

JR NC,F%NEXP ;IF SO, SKIP OUT
L2 I1NOP

CP #LOW ;LESS THAN LOW VALUE?
JP NC,#IFTRUE ;IF SO, EXIT TO LABEL

F%NEXP
}lEND

;
; RETRY BY GOING TO '#LABEL'
RETRY MACRO #LABEL

;
TRINP
TROUT
;

JP #LABEL
MEND

EQU
EQU

1
1

;TREADLE INPUT PORT
iTREADLE OUTPUT PORT

; CHECK IF TREADLE '#TR' HAS BEEN SENSED.
; AND EXIT TO LABEL '#IFTRUE'.

IF SO, RESET

TREAD? MACRO #TR,#IFTRUE
IN A,(TRINP)
AND 1.SHL.#TR
JR Z,F%NEXP
LD A,1.SHL.#TR
OUT (TROUT),A
JP #IFTRUE

F7.NEXP
MEND

iCHECK FOR TREADLE SET
;CHECK FOR THIS TREADLE
;IF NOT, SKIP OUT
iELSE RESET THE BIT
iTO CLEAR IT
iEXIT VIA LABEL

CWINP EQU o iPEDESTRIAN PUSHBUTTON PORT
;

i JUMP TO LABEL '#IFTRUE' IF ANY PUSHBUTTON PUSHED.
i READING THE PORT CLEARS ALL INPUT.
PUSH? MACRO #IFTRUE

IN
AND
JP

CONTINUE ON
MEND

A,(CWINP)
(1.SHL.CWCNT)-1
NZ,#IFTRUE

FALSE CONDITION

iREAD PUSHBUTTONS
iBUILD MASK
iIF ANY SET, EXIT VIA LABEL

.***
: END OF MACRO LIBRARY
~***

LIST

FIGURE 4-2 TRAFFIC INTERSECTION MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG4D2 FIG4D2 FIG4D2 REL

0000

0000'
0004
0008

0016
001A
0028
002C
0030

003E
0042
0050
0053

1

9

129 138
10 139

TITLE FIGURE 4-2 TRAFFIC INTERSECTION
;
; SIMPLE INTERSECTION EXAMPLE WHERE THE TRAFFI
; LIGHTS ARE MERELY SET AND RESET IN THE PROPE:

· ,
SEQUENCE.

; INCLUDE THE MACRO LIBRARY IN THE ASSEMBLY
· ,

;

· ,
;

INCLUDE FIG4D1
FIGURE 4-1

LIST
ELIST 0

; START OF CONTROL
;

;NO LIST EXPANSIONS

15 144 CYCLE
16 148

SETLITE NS,GREEN
SETLITE EW,RED

17 152

21 167
22 171
23 183
24 187
25 191

29 206
30 210
31 222
32 225

· ,
TIMER 20 ;DELAY 20 SECONDS

; CHANGE LIGHTS
· ,

· ,

· ,

SETLITE NS,YELLOW
TIMER 3 ;DELAY 3 SECONDS
SETLITE NS,RED
SETLITE EW,GREEN
TIMER 15 ;DELAY 15 SECONDS

CHANGE BACK

SETLITE EW,YELLOW
TIMER 3 ;3 SECONDS
RETRY CYCLE ;GO LOOP FOR MORE
END

JRE 4-3 CJ~PLEX INTERSECTION MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1

o

o

13
IA
n
34
3B

3E
42
50
54
58

66
73

80

183
191

)94
)98

OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG4D3 FIG4D3 FIG4D3 REl

=0004
=0000
=0001

=0000'

=0013'

=003£'

=0066'

=0083'

=0094'

TITLE FIGURE 4-3 COMPLEX INTERSECTION
;

3 CWCNT
4 LULLO
5 LULL1

EQU 4
EQU 0
EQU 1

INCLUDE MACRO LIBRARY

9

129 138
10 139

;
INCLUDE FIG4D1

FIGURE 4-1
LIST
ELIST 0

;4 CROSSWALK SWITCHES
;NAME FOR TREADLE ZERO
iNAME FOR TREADLE ONE

;NO LIST EXPANSIONS

START OF PROGRAM FOR CONTROL ••••
i

14 143 CYCLE ;ENTER HERE FOR EACH MAJOR CY
CLE OF THE LIGHTS

15 144 CLOCK? 2,5,NIGHT iBETWEEN 2 AND 5 AM?
NOT BETWEEN 2 AND 5 AM, SO PROCESS
EAST-WEST GETS MAJOR TRAFFIC FLOW

18 158 SETLITE NS,RED
19 162 SETLITE EW,GREEN

21 167 SAMPLE

22 168
23 174
24 183
25 192
26 202

29 207 SWITCH

30 208
31 212
32 224
33 228
34 232

;

i SAMPLE THE BUTTONS AND THEA
DLES

PUSH? SWITCH iANYONE THERE?
TREAD? LULLO,SWITCH ;ANY CARS?
TREAD? LULL1,SWITCH
CLOCK? 7."NIGHT iPAST 2AM?
RETRY SAMPLE ;NO, LOOP FOR ANOTHER SAMPLE

iSOMEONE IS WAITING, CHANGE T
HE LIGHTS

SETLITE
TIMER 3

EW,YELLOW iSLOW THEM DOWN

SETLITE EW,RED
SETLITE NS,GREEN
TIMER 23

i3 SECONDS
i STOP THEM
iLET NORHT-SOUTH GO
iFOR A WHILE

36 245 DONE? i IS ALL THE TRAFFIC THROUGH
ON NORHT-SOUTH?

37 246 TREAD? LULLO,NOTDONE ;CHECK THE TREADLES
38 255 TREAD? LULL1,NOTDONE

NEITHER TREADLE IS SET, CYCLE FOR ANOTHER LOOP
40 265 RETRY CYCLE

43 270 NOTDONE
44 271 TIMER 5
45 283 RETRY DONE?

i

48 288 NIGHT

49 289
50 293

/

SETLITE EW,OFF
SETLITE NS,OFF

iWAIT 5 SECONDS AND TRY AGAI:

;THIS IS NIGHTTIME, FLASH TH
LIGHTS

;TURN OFF

FIGURE 4-3 COMPLEX INTERSECTION MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG4D3 FIG4D3 FIG4D3 REL

009C
OOAA
OOAE
00B2
OOCO
OOC3

51 297
52 309
53 313
54 317
55 329
56 332

TIMER 1 iWAIT WITH OFF
SETLITE EW,YELLOW :CAUTION ON
SETLITE NS,RED :STOP ON
TIMER 1 ;DELAY
RETRY CYCLE ;GO AROUND AGAIN
END

MOSTEK MACRO-80 OPERATIONS MANUAL

When the lights change to allow North-South flow, all traffic must be
allowed to clear the lanes before a change to East-West can be done
again. During early morning hours, the lights merely flash yellow in
the East-West direction and red the in North-South direction. In the
program shown, each major cycle of the traffic light enters as 'CYCLE'
where the time of day is tested. If between 2 and SAM, then control
transfers to 'NIGHT' where the lights are merely flashed. Otherwise,
the treadles and pedestrian pushbuttons are sampled until a change is
required.

4-14. Macro-based languages of this sort can easily incorporate
debugging facilities. In this example, a debugging flag (DEBUG) is set
for use in the macro shown in Figure 4-4. The debug flag, when set,
allows trace information to be output to the console device rather than
code to activate the system. Here calls to MOSTEK's FLP-80DOS are
shown to produce the trace output shown in Figure 4-5. After debugging
is complete, the DEBUG flag can be reset and Assembly done once more
for the final system. This idea can be extended to the other macros in
the system to simulate operation of the system.

4-15. In this application of macros, a simple
developed for a specific use to ease programming
final system employing the microprocessor.

4-16. MACHINE EMULATION.

to use 'language' was
and debugging of a

4-17. A second application of macros is found in 'emulation' of a
machine operation code set which is different from the given
microprocessor. In this case, after the machine to be emulated is
defined, a set of macros are written to emulate the opcodes. Each
macro assumes the name of an opcode, and the macro body contains
instructions which perform the same function as the opcode on the
emulated machine. After the macros are defined, then a program can be
written using these opcodes which expand to the given microprocessor
instructions but which emulate the operation of the new machine.

4-18. In this example, a new machine is defined as an analog sensing
and control element in a larger electronic environment. The new
machine is based around a 16-bit word length and it is a 'stack
machine', in which data can be loaded to the top of a 'stack' of data
elements, automatically pushing existing elements deeper onto the
stack. Arithmetic operations are performed on the topmost stack
elements, automatically absorbing the stacked operands as the
arithmetic is performed. The opcodes of the new machine are defined as
follows:

SIZ n -reserves n 16-bit elements for the maximum size of the
operand stack. This operation code must be provided at
the beginning of the program.

36

LaC OBJ.CODE

=FFFF
=0000
=0000

=0000
=0003

=0004
=0000

=0000
=0001
=0002
=0003

MOSTEK MACRo-ao ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG4D4 FIG4D4 F!G4D4 REL

; FIGURE 4-4 DEBUGGING MACRO
;

1

; THIS MACRO DEFINITION IS THE SAME AS FIGURE 4-
; EXCEPT THAT A DEBUGGING FACILITY HAS BEEN ADDEI
;
; DEFINITIONS FOR DEBUG PROCESSING

7 TRUE EQU OFFFFH ;TRUE VALUE
a FALSE EQU .NOT.TRUE ;FALSE VALUE
9 DEBUG DEFL FALSE ;INITIALLY FALSE

;
;
; INPUT/OUTPUT PORTS FOR TRAFFIC LIGHT CONTROL
· ,

14 LIGHT
15 CLOCK

;

EQU 0
EQU 3

~

;TRAFFIC LIGHT
;24 HOUR CLOCK (0-23)

; BIT POSITIONS FOR TRAFFIC LIGHT CONTROL
18 BITSNS EQU 4 iNORHT-SOUTH
19 BITSEW EQU 0 ;EAST-WEST

;
; CONSTANT VALUES FOR LIGHT CONTROL

22 OFF EQU 0
23 RED EQU 1
24 YELLOW EQU 2
25 GREEN EQU 3

· ,
· ,
; SET LIGHT MACRO WITH DEBUGGING INFO
;

30 SETLITE MACRO #DIR,#COLOR
1 31 MIF .NOT.DEBUG THEN L1

; DEBUGGING, PRINT INFO ON CONSOLE
3 33 LD HL,MS%NEXP
4 34 LD E,1
5 35 GLOBAL PTXT
6 36 CALL PTXT
7 37 JR L%NEXP
8 38 MS%NEXP DEFM '#DIR CHANGING TO #COLOR',ODH,OAH,3
9 39 L%NEXP MEXIT

10 40 L1 MNOP
11 41 LD A,#COLOR.SHL.BITS#DIR ;READY COLOR
12 42 OUT (LIGHT),A ;OUTPUT IT
13 43 MEND

NS
EW
NS
NS
EW
EW
NS
EW

FIGURE 4-5.
SAMPLE OUTPUT

CHANGING TO GREEN
CHANGING TO RED
CHANGING TO YELLOW
CHANGING TO RED
CHANGING TO GREEN
CHANGING TO YELLOW
CHANGING TO GREEN
CHANGING TO RED

01

MOSTEK MACRO-80 OPERATIONS MANUAL

RDM i

WRM i

DUP

SUM

LSR n

JMP a

-reads the analog signal from input port i (0, 1, 2, or
3) to the top of the stack, automatically pushing the
stack down.

-writes the digital value from the top of the stack to
the D-A output port given by i (0, 1, 2, or 3). The
value at the top of the stack is removed.

-duplicates the item at the top of the stack.

-the top two elements of the stack are added, both
operands are removed from the stack, and the resulting
sum is placed on the top of the stack.

-performs a logical shift of the topmost stack
element to the right by n bits (1, 2, ••• , 15),
replacing the original operand by the shifted
result. Note that LSR n performs a division of
the topmost stack value by the divisor 2 to the
nth power.

-branches directly to the program address given by the
label a.

4-19. Each of these opcodes can be emulated by using macros to define
them in terms of the given microprocessor instructions. The complete
definition of the macros is shown in Figure 4-6.

4-20. The SIZ macro sets the program origin (hence, it must be the
first opcode used in a program), and the stack area is reserved.
Double bytes of storage are reserved since a 16-bit word size is
assumed.

4-21. In the following macros, the stack top is assumed to be in the
HL register pair. Each operation which pushes the stack of the
emulated machine causes the element in the HL register pair to be
pushed onto the memory area designated as STACK.

4-22. The DUP opcode simply pushes the HL register pair to the memory
stack. In the case of the SUM opcode, it is assumed that the
programmer has loaded two values to the stack to be summed. Thus, the
HL register pair contains the most recently loaded value, and the
memory stack contains the next-to-most recently stacked value. The POP
DE operation loads the second operand into the DE register pair, ready
for adding to HL. The result goes into the HL register pair because
the top of the stack of the emulated machine is located in the HL
register pair.

4-23. The LSR macro generates a loop which shifts the HL register pair
right the specified number of times.

4-24. The RDM and WRM opcodes are implemented by 'memory mapped' I/O

37

; FIGURE 4-6
NLIsr

**
; STACK MACHINE OPCODE MACRO LIBRARY
**

; SET THE PROGRAM ORIGIN AND CREATE A STACK

SIZ MACRO
ORG
LD
JP
DEFS

STACK MEND

. ,

#SIZE
o
SP,STACK ;SE1 STACK POINTER
STACK ;GET PAST STACK
2*#SIZE ;SET UP STACK AREA

DUPLICATE TOP OF STACK

DUP M,~CRO

PUSH
I1EN D

HL

ADD THE TOP TWO STACK ELEMENTS
;
SUM

;

MACRO
POP
ADD
MEND

DE
HL,DE

;TOP OF STACK TO DE
iADD AND PUT INTO HL

LOGICAL SHIFT RIGHT BY #LEN

LSR MACRO
LD

L7.NEXP XOR

;

RR
RR
DJNZ
MEND

#LEN
B,#LEN
A
H
L
L%NEXP

; JUMP TO A LABEL
;
JMP

i

MACRO
JP
MEND

#A
#A

iCOUNT OF SHIFTS
iRESET CARRY
;ROTATE H INTO CARRY
;ROTATE L WITH CARRY
iLOOP FOR TOTAL COUNT

iDEFINITION OF ADC INPUTS AND DAC OUTPUTS VIA
i MEMORY MAPPED 1/0
;
ADCO EQU 1080H ;A-D CONVERTER 0
ADC1 EQU 1082H iA-D CONVERTER 1
ADC2 EQU 1084H ;A-D CONVERTER 2
ADC3 EQU 1086H ;A-D CONVERTER 3

DACO EQU 1090H iD-A CONVERTER 0
DAC1 EQU 1092H ;D-A CONVERTER 1

DAC2
DAC3
;

EQU
EQU

1094H
1096H

;D-A CONVERTOR 2
;D-A CONVERTER 3

; READ A-D CONVERTER NUMBER #NUM
;
RDM

;

MACRO
PUSH
LD
MEND

#NUM
HL ;CLEAR THE STACK
HL,(ADC#NUM) ;READ VIA MEMORY MAP

; WRITE D-A CONVERTER NUMBER #NUM . ,
WRM MACRO

LD
POP
MEND

#NUM
(DAC#NUM),HL ;WRITE VIA MEMORY MAP
HL ;RESTORE STACK

**
; END OF MACRO LIBRARY
**

LIST

MOSTEK MACRO-80 OPERATIONS MANUAL

operations. That is, locations 1080H through 1087H are intercepted
external to the given microprocessor and treated as external read
operations. Thus a load of HL from 1080H and 1081H is treated as a
read from A-D device 0, rather than from RAM. This applies also to
devices ADC1, ADC2, and ADC3. Similarly, the D-A output values are
written to locations 1090H through 1097H for devices DACO through DAC3.

4-25. Figure 4-7 shows a sample program written for the emulated
machine. In this case, the machine is connected to four temperature
sensors via ADCO through ADC3. The program continuously reads the four
input values and computes their average value by summing and dividing
by four. The average value is sent to DACO where it is used to set
environmental controls.

4-26. The program begins by reserving 20 elements for the stack, which
are more than enough. The program then cycles through 'LOOP', where
the values are read and processed. The four RDM operations read the
four temperature sensors, placing their data values on the top of the
stack. The three SUM operations which follow perform pairwise addition
of the temperature values, producing a single sum at the top of the
stack. To obtain the average value, the LSR opcode is applied to
perform a division by 4. The resulting average is then sent to DACO
using the WRM opcode. Control then transfers back to 'LOOP' and the
operation is repeated.

4-27. As in the previous example, debugging statements could be added
to the macro to perform an emulation without the ADC and DAC hardware.
These statements could take the form of additional macros used to print
out values as the program is executed.

4-28. DEVELOPMENT OF CROSS-ASSEMBLERS.

4-29. Macros can be written to assemble another microprocessor's
instruction set. The resultant object code may be used directly or may
have to be translated to a different format by a utility program. Each
opcode of the new machine is used as a macro name. Parameters are used
if the opcode uses operands. The macro can decode the operands to
produce the correct machine code. If any of the new machine's opcodes
are the same as the Z80 opcodes, then the 'R' option must be used when
the Assembler is executed.

4-30. Consider a portion of the 3870 microcomputer instruction set
given in Figure 4-8. The corresponding macros to produce the correct
object code are shown. Note that in this implementation, programs
formed by the resultant cross-assembler must be non-linkable. This
restriction exists because of the way in which the FLP-80DOS Linker
processes external reference addresses. That is, such addresses are
produced by the MACRO-BO Assembler with least significant byte first,

38

FIGURE 4-7 A-D AVERAGING PROGRAM MOSTEK MACRO-BO ASSEMBLER V2.0 PAGE 1
LaC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG4D7 FIG4D7 FIG4D7 REL

0000

0000
002E'
0032
0036
a03A

003E
0040
0042

0044

004D
0051
0054

82
10

12
13
14
15
16

20
21
22

25

26
27
28

1

9

91
92

94
100
104
108
112

119
123
127

133

140
144
147

TITLE FIGURE 4-7 A-D AVERAGING PROGRAM
i
i AVERAGE THE VALUES WHICH ARE READ FROM A-D CONVl

S
i 0 THROUGH 3, WRITE THE RESULTING VALUE To THE
; D-A CONVERTER 0, THEN LOOP FOR MORE.
;
i INCLUDE MACRO LIBRARY . ,

i

;

LOOP

. ,
ALL

INCLUDE FIG4D6
FIGURE 4-6

LIST
ELIST 0

SIZ 20
RDM 0
RDM 1
RDM 2
RDM 3

FOUR VALUES ARE

SUM
SUM

iNa LIST EXPANSIONS

iRESERVE 20 LEVELS
iREAD ADCO
iREAD ADC1
;READ ADC2
iREAD ADC3

STACKED, SUM THEM

;ADC3+ADC2
;(ADC3+ADC2)+ADC1

FOR 5T

SUM i«ADC3+ADC2)+ADC1)+ADCO
i

SUM IS AT TOP OF STACK, DIVIDE BY 4
LSR 2 iSHIFT RIGHT BY 2 = DIVIDl

4
WR~l 0 iWRITE RESULT TO DACO
JMP LOOP iREPEAT THE PROCESS
END

FIGURE 4-8

3870 CROSS ASSEMBLER MACROS

THESE MACROS ARE EXAMPLES WHICH COULD BE
EXTENDED TO PRODUCE A 3870 CROSS ASSEMBLER
RUNNING UNDER MACRO-BO.

REGISTER DEFINITION

EQU OCH
EQU ODH
EQU aEH

)CI MACRO
DEFB
MEND

#ADDR iLOAD DATA COUNTER
2AH,(#ADDR.SHR.8).AND.OFFH,#ADDR.AND.OFFH

AS MACRO
MLOC.l'\L
MIF
DEFB
MEXIT
MERROR
11END

#R iADD TO SCRATCHPAD

LERR

SL

L1

L2

L3

LI

LERR
#R.UGT.OEH THEN LERR
OCOH.OR.#R

*** OUT OF RANGE ***

MACRO #N iSHIFT LEFT
MLOCAL L1,L2,L3
MIF #N=4 THEN L1 ELSE L2
MNOP
DEFB 15H
MEXIT
MIF #N=1 THEN L3
MERROR *** OUT OF RANGE ***
MNOP
DEFB 13H
MEND

MACRO
DEFB
DEFB
MEND

#OP ;LOAD IMMEDIATE
20H
#OP.AND.OFFH

LISL MACRO #11.
MLOCAL LERR
MIF #A.UGT.7 THEN LERR
DEFB 68H.OR.#A
MEXIT

LERR MERROR *** OUT OF RANGE ***
MEND

BR7 MACRO #AA
MLOCAL LERR
DEFB 8FH

;CHECK RANGE OF OPERA~D

MIF (#AA-$)128).OR.(#AA-$(0) THEN LERR iCHECK RANGE
DEFB #11.11.-$
MEXIT

LERR MERROR *** OUT OF RANGE ***
MEND

· ,
SF MACR8 #T,#AA

MLOCAL LERR
MIF #T.UGT.OFH THEN tERR ;CHECK RANGE
DEFB 90H.OR.#T

A%NEXP EQU #AA-$
MIF (A%NEXP)128).OR.A%NEXP<O) THEN LERR ;CHECK RANGE
DEFB A%NEXP
MEXIT

LERR MERROR *** OUT OF RANGE ***
MEND

MOSTEK MACRO-80 OPERATIONS MANUAL

while the 3870 requires most significant byte first. Note also that
cross-assemblers developed under MACRO-80 must follow the Z80
conventions for forming constants and expressions.

4-31. PROGRAM CONTROL STRUCTURES.

4-32. Macros can be used to provide program-control statements which
resemble those found in many high-level languages. Figure 4-9 shows a
set of macros which define a simple language for performing 16-bit
integer operations. The following paragraphs describe each type of
statement allowed in a program written around these macros.

4-33. LET var1 = var2 or LET var1 = var2 <op> var3

equal to another variable
on two variables. The

= +), subtraction (-),
blanks between the operands

The LET statement allows a variable to be set
or to the result of an operation performed
allowed operations are addition «op>
multiplication (*), and division (/). The
are required.

4-34. TEST var1 <relop> var2 THEN labe11 ELSE labe12

The TEST statement allows two variables to be compared as being equal
(=), less than «) or greater than (». If the result is true, then a
branch is made to labe11. Otherwise a branch is made to labe12. The
ELSE-clause is optional. If it is not present and a false condition is
encountered, then the next statement in sequence will be processed.

4-35. DCL var1 INIT n

The DeL statement declares variables used in the program. Note that
all variables must be declared. The initial value n is optional and
defaults to zero.

4-36. DO var1 = var2 TO var3

The DO statement, together with the ENDDO statement, allows writing of
loops. The value of var1 is initially set to var2. Each pass through
the loop increments var1 until it equals the value of var3. DO loops
may be nested, but the program stack must always be balanced between
the DO and ENDDO statements.

4-37. ENDDO

This signals the end of a DO loop.

4-38. READ var1,var2, •••

This statement reads and converts to binary sequences of two

39

· , FIGURE 4-9
NLIST

· ,
**
; PROGRAM CONTROL STRUCTURES VIA MACROS
**
· ,
; PRINT messa.ge

· ,
**
PRINT MACRO #A

PTXT GLOBAL
LD
LD
CALL
JR

E,CHNL+1 ;CHANNEL NBR
HL,MS%NEXP
PTXT
L%NEXP

MS%N£XP DEFM
L%NEXP

'#A' ,ODH,OAH,3H

I1END
;
**
;
; LET var1 = var2 <op) var3
;
**
LET MACR] #A #8 #C #D #E

MLOCAL L1,L2,L3,L4,L5,LS,LERR
MIF '#8'='=' THEN L1 ELSE LERR ;SYNTAX CHECK

L1 MNOP
LD HL,(#C) ;GET VAR2
MIF '#D'=" THEN L5 ;IF NO OPERATOR, DO ASSIGNMENT
LD DE, (#E) ;GET VAR3
MIF '#D'='+' THEN L2 ;CHECK OPERATOR
MIF '#D'='-' THEN L3
MIF '#D'='*' THEN L4
MIF '#D'='/' THEN L5
MERROR ***** ILLEGAL OPERATOR *****
MEXIr

L2 MNOP
ADD
MGOTO

L3 MNOP
OR
SBC
HGOTO

L4 MNOP
LD
OR
JR
LD
JP

I%NEXP DEC

L%NEXP

LD
OR
JR
LD
ADD
DEC
LD

HL,DE
LS

A
HL,DE
LS

;MULTIPLY BY SEVERAL ADDITIONS
A,D ;CHECK FOR MULT BY ZERO
E
NZ,I%NEXP
HL,O ;IF SO, ZERO RESULT
K%NEXP
DE ;CHECK FOR MULT BY ONE
A,D
E
Z,K%NEXP
BC,(#C)
HL,BC
DE
A,D

;YES, JUST PUT IN VALUE
iGET VAR2

;CHECK FOR END

OR E
JR NZ,L%NEXP

r.NEXP
MGOTO LS

~RR MERROR ***** BAD SYNTAX *****
MEXIT

:5 MNOP
LD A,D ;CHECK FOR DIVIDE BY ZERO
OR E
JR NZ,C%NEXP
PRINT '*** OVERFLOW ERROR'
JR Z%NEXP

7.NEXP LD BC,O iRESULT
%NEXP OR A :RESET CARRY

SBC HL,DE iSUBTRACT UNTIL DONE
INC BC
JR NC,D%NEXP iLOOP UNTIL NEGATIVE
DEC BC iCORRECT THE RESULT
LD L,C ;PUT INTO Hl
LD H,B

,S MNOP
:%NEXP lD (#A),HL ;SAVE IN VAR1

MEND

,***

; TEST var1 <op) var2 THEN labe11 [ELSE labe12]

<***
rEST

L1

L2

L3
14

L5
L6

MACRO
MLOCAL
MIF
MNOP
LD
LD
OR
SBC
MIF
JP
MGOTO
11IF
MNOP
JP
11GOTO
MIF
I'INOP
JR
JP
liGOTO

#A #B #C #D #E #F #G
L1,L2,13,L4,L5,L6,L7,L8,LERR,lCONT
'#D'='THEN' THEN L1 ELSE LERR ;SYNTAX CHECK

Hl, (#Pd iGET VAR1
DE,(#C) ;GET VAR2
A
HL,DE ;SUBTRACT FOR COMPARE
'#B'='=' THEN L2 ELSE L3 iCHECK OPERATOR
Z,#E iIF EQUAL (TRUE), DO JUMP
LCONT
'#B'='<' THEN L4 ELSE L5

C,#E
LCONT
'#B'=')'

iIF LESS THAN, JUMP

THEN L6 ELSE LERR

Z,L%NEXP iIF EQUAL TO THEN FALSE
NC,#E ;IF GREATER THAN, JUMP
LCONT

LERR HERROR ***** BAD SYNTAX *****
HEXIT

LCONT MNOP
L%NEXP

L7
MIF
HNOP
JP

'#F'='ELSE' THEN L7 ELSE L8 ;CHECK FOR IF CLAUSE

#G iJUMP TO FALSE LABEL

MEXIT
L8 MNOP

MEND . ,
**

i DCL var INIT n
i
**
DCL MACRO #A #B #C

MLOCAL L1,L2,L3
l'1IF '#B'='INIT' THEN L1 ELSE L2

L1 MIF '#C'=" THEN L2
#A DEFW #C iDECLARE VARIABLE

MEXIT
L2 MNOP
#A DEFW 0 iDEFAULT TO ZERO

MEND . ,
**
i
i DO var1 = var2 TO var3
i
**
DO

L1
LERR

L2

L%NEXP

MACRO
MLOCAL
MIF
MIF
11ERR OR
11EXIT

HNOP
LD
LD
LD
LD
PUSH
PUSH
PUSH
;'1 EN D

#A #B #C #D #E
L1,L2,LERR
'#B'='=' THEN L1 ELSE LERg
'#D'='TO' THEN L2
***** BAD SYNTAX *****

VAR2
VAR3

;SYNTAX CHECK

HL,(flC) ;GET
DE,(#E) iGET
IX,L%NEXP
(#A),HL

iGET LOOP BACK LABEL
;SET VAR1

HL iPUSH VALUES ONTO STACK
DE
IX

**

i ENDDO
;
**
ENDDO MACRO

POP
POP
POP
INC
PUSH
OR
SBC
POP
JR
JR

KK%NEXP JP
L70NEXP

MEND

IX iLOOP ADDRESS
DE iFINAL VALUE
HL iCURRENT VALUE
HL iINCREMENT VAH1
HL
A iCHECK IT
HL,DE
HL
Z,KK%NEXP ;LAST TIME THRU
NC,L%NEXP iIF DONE, SKIP OUT
(IX) iELSE LOOP

READ var1,var2, •••

. ***
(EAD MACRO

MLOCAL
: #A FIRST TIME

GLOBAL
LD

L1 MNOP
CALL
LD
CALL
AND
RLCA
RLCA
RLCA
RLCA
PUSH
CALL
LD
CALL
AND
LD
POP
OR
LD
LD
LD

LN%NEXP CALL
LD

L2
ProNEXP

CP
JP
CP
JR
MNEXT
MNOP

CALL
MEND

#A
L1,L2
USAGE OF PARAMETER
ECHO,ASBIN
E,CHNL

ECHO
A,D
ASBIN
OFH

AF
ECHO
A,D
ASBIN
OFH

:READ A CHARACTER
:PREPARE TO CONVERT
:CONVERT

:GET NEXT ONE

L,A :SAVE IT
AF
L
L,A
H,O
(#PRM),HL :SAVE RESULT
ECHO :GET NEXT INPUT CHAR
A,D :CHECK CHARACTER
ODH :CARRIAGE RETURN?
Z,P%NEXP iYES, SKIP OUT

, :COMMA?
NZ,LN%NEXP ;NO, LOOP FOR ANOTHER
1 THEN L1 ELSE L2 iCHECK FOR MORE ARGS

CRLF

**

i WRITE var1,var2, •••
i
**
WRITE MACRO
i #A FIRST TIME

MLOCAL
GLOBAL
LD

L1 MNOP
LD
CALL
LD
CALL
JR

MS#PRM DEFM

#A,#B
USAGE OF PARAMETER
L1
PTXT,CRLF,PADDO
E,CHNL+1 :OUTPUT CHANNEL

HL,MS#PRM ;OUTPUT MESSAGE
PTXT
HL,(#PRM)
PADDO iWRITE OUT IN HEX
L#PRM
'#PRM =

DEFB 3
L#PRM

MNEXT 1 THEN L1
CALL CRLF
MEND

;
**
;

GOTO label
;
**
GOTO

;

MACRO
JP
MEND

#A
#A

** . ,
EXIT

,
**
EXIT MACRO

GLOBIU
LD
JP
MEND

JTASK
A,1
JTASK

**
; END OF MACRO LIBRARY
**

LIST

MOSTEK MACRO-80 OPERATIONS MANUAL

hexadecimal characters, placing them into the variables var1, var2,
etc.

4-39. WRITE var1,var2, •••

This statement writes each variable in the list in the
v~lue', where name is the name of the variable and value
in four hexadecimal digits.

4-40. PRINT 'message'

This macro prints a message of any length on the console.

4-41. GOTO label

This macro transfers control to the specified label.

4-42. EXIT

form 'name =
is its value

This macro transfers control back to the FLP-80DOS Monitor.

4-43. Figure 4-10 shows two simple programs which demonstrate use of
these macros. The first program calculates n numbers in a Fibonacci
series where n is a number input from the console keyboard. The second
program generates n x n combinations of addition, subtraction,
multiplication, and division, where n is read from the console
keyboard. Figure 4-11 shows sample output from the programs.

4-44. OPERATING SYSTEM INTERFACE.

4-45. The fifth area where macros are useful is in providing
systematic and simplified mechanisms for access to operating system
functions. These macros can allow easy use of the operating system's
I/O facilities, service routines, and system support routines.

4-47. In this example, a set of macros are shown which provide access
to FLP-80DOS I/O facilities. Use of these macros can eliminate a large
portion of the drudgery of assembly language programming. Furthermore,
the macros reduce programming errors and provide for some checking of
parameters associated with the operating system calls. It is assumed
in this discussion that the user is acquainted with Section 9 of the
FLP-80DOS manual (IOCS).

4-47. Figure 4-12 shows a file which has definitions of each IOCS
related parameter. This file is included in programs which use IOCS to
provide a set of standard symbols for use in the macros and in the
program itself. (The file is called IODEF).

4-48. The set of macros shown in Figure 4-13 allows a simplified

40

FIGURE 4-10.
LOC OBJ.CODE

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

1 TITLE FIGURE 4-10.
;
; SAMPLE USAGE OF CONTROL STRUCTURES . ,
; INCLUDE MACRO DEFINITIONS

0000 7 INCLUDE FIG4D9
FIGURE 4-9

=0000

0000

0000 1E01
0002 210AOO'
0005 CDFFFF
0008 1815
000A'454E5445

001F

52203220
48455820
44494749
54530DOA
03

=001F'

001F 1EOO

0021 CDFFFF
. 0024 7A

0025 CDFFFF
0028 E60F
002A 07
002B 07
002C 07
002D 07
002E F5
002F CD2200'
0032 7A
0033 CD2600'
0036 E60F
0038 6F
0039 F1
003A 135
003B 6F
003C 2600
003E 22EBOO'
0041'CD3000'
0044 7A
0045 FEOD

269 276
;

9 278 CHNL . ,

LIST

EQU 0

PROGRAM 1 ••• GENERATE UP TO N FIBONACCI NUMB]
WHERE N IS READ FROM THE CONSOLE KEYBOARD

14 283
1 284
2 285
3 286
4 287
5 288

;

6 289 MS0001

7 290 L0001
8 291

15 292
1 293

PRINT 'ENTER 2 HEX DIGITS'
GLOBAL PTXT
LD E,CHNL+1 ;CHANNEL NBR
LD HL,MS0001
CALL PTXT
JR L0001
DEFM 'ENTER 2 HEX DIGITS',ODH,OAH,3H

MEND
READ N
MLOCAL L1,L2

; N FIRST TIME USAGE OF PARAMETER
3 295 GLOBAL ECHO,ASBIN
4 296 LD E,CHNL
5 297 L1 MNOP
6 298 CALL ECHO ;READ A CHARACTFR
7 299 LD A,D ;PREPARE TO CONVERT
8 300 CALL ASBIN ;CONVERT
9 301 AND OFH

10 302 RLCA
11 303 RLCA
12 304 RLCA
13 305 RLCA
14 306 PUSH AF
15 307 CALL ECHO ;GET NEXT ONE
16 308 LD A,D
17 309 CALL ASBIN
18 310 AND OFH
19 311 LD L,A ;SAVE IT
20 312 POP AF
21 313 OR L
22 314 LD L,A
23 315 LD H,O
24 316 LD (N),HL ;SAVE RESULT
25 317 LN0002 CALL ECHO ;GET NEXT INPUT CEAR
26 318 LD A,D ;CHECK CHARACTER
27 319 CP ODH ;CARRIAGE RETURN?

~E 4 -10.
OBJ.CODE

CA4EOO'
FE2C
20F3

=004£'
CDFFFF

=FFFF

2ADFOO'
=FFFF

+'22E900'

=FFFF

7 2ADFOO'
=FFFF

A'22E300'

D

=FFFF

D 2AE100'
=FFFF

,0' 22E500'

;3

33 1E01

S5 217300'
58 CD0600'
5B 2AE300'
6E CDFFFF
71 1805
73'41203D20
77 03

=0078'

78 218600'
7B CD6900'
7E 2AE500'

MOSTEK MACRO-BO ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

JP Z,P0002
CP ','

iYES, SKIP OUT
iCOMMA?

2

28 320
29 321
30 322
31 323

JR NZ,LN0002 iNO, LOOP FOR ANOTHER
MNEXT 1 THEN L1
MNOP

ELSE L2 iCHECK FOR MORE AR
32 324 L2
33 325 P0002
34 326
35 327
16 328

CALL CRLF
MEND
LET COUNT = ONE

1 329
2 330

MLOCAL L1,L2,L3,L4,L5,LS,LERR
MIF '='='=' THEN L1 ELSE LERR
MNOP

iSYNTAX CHE~K

3 331 L1
4 332
5 333

57 334 LS
58 335 Z0003
59 336
17 337

LD
MIF

MNOP

HL,(ONE) iGET VAR2
"=" THEN LS iIF NO OPERATCR,

ENT

LD (COUNT),HL iSAVE IN VAR1
MEND
LET A = ONE
MLOCAL L1,L2,L3,L4,L5,LS,LERR

DO ASSIGNM

1 338
2 339
3 340 L1
4 341

MIF '='='=' THEN L1 ELSE LERR iSYNTAX CHECK
MNOP
LD HL,(ONE) iGET VAR2

5 342 MIF "=" THEN LS iIF NO OPERATOR, DO ASSIGNM
ENT

57 343 LS
58 344 Z0004
59 345
18 346

I1NOP
LD (A),HL iSAVE IN VAR1
l1END
LET B = TWO

1 347
2 348

MLOCAL L1,L2,L3,L4,L5,LS,LERR

3 349 L1
4 350

MIF '='='=' THEN L1 ELSE LERR iSYNTAX CHECK
MNOP
LD

5 351 MIF

57 352 LS MNOP

HL,(TWO) iGET VAR2
"-" THEN LS iIF NO OPERATOR, DO ASSIGNM

ENT

58 353 Z0005 LD (B),HL iSAVE IN VAR1
59 354 MEND
19 355 WRITE A,B

i A FIRST TIME USAGE OF PARAMETER
2 357 MLOCAL L1
3 358 GLOBAL PTXT,CRLF,PADDO
4 359 LD E,CHNL+1 iOUTPUT CHANNEL
5 360 L1 MNOP
6 361 LD HL,MSA iOUTPUT MESSAGE
7 362 CALL PTXT
8 363 LD HL,(A)
9 364 CALL PADDO iWRITE OUT IN HEX

10 365 JR LA
11 366 MSA DEFM 'A =
12 367 DEFB 3
13 368 LA
14 369 MNEXT 1 THEN L1

5 370 L1 MNOP
6 371 LD HL,MSB iOUTPUT MESSAGE
7 372 CALL PTXT
8 373 LD HL,(B)

FIGURE 4-10.
LOC OBJ.CODE

0081 CD6FOO'
0084 1805
0086'42203D20
008A 03

=0083'

008B CD4FOO'

008E'

=FFFF

008E 2AE300'
=0000

0091 ED5BE500'
=FFFF

00 9 5 19

0096'22E700'

0099

=FFFF

0099 2AE900'
009C ED5BEBOO'
DOAO B7
aOA1 ED52

=0000
=0000
=FFFF

aOA3 2803
OOA5 D2DAOO'

00A8

=OOA8'
=0000

00A8 1E01

OOAA 21B800'
OOAD CD7COO'
OOBO 2AE700'
00B3 CD8200'
00B6 1805

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

3

9 374
10 375
11 376 MSB
12 377
13 378 LB
14 379
15 380
16 381 . ,
21 383 LAB1

1 384
2 385
3 386 L1
4 387
5 388

6 389
7 390

14 391 L2
15 392
16 393
57 394 LS
58 395 Z0007
59 396
22 397

1 398
2 399

3 400 L1
4 401
5 402
6 403
7 404
8 405

11 406 L3
15 407 L5
16 408 L6
17 409
18 410
19 411
24 412 LCONT
25 413 L0008
26 414

30
31
23

415 L8
416
417

CALL PADDO iWRITE OUT IN HEX
JR LB
DEFM 'B =
DEFB 3

MNEXT 1 THEN L1
CALL CRLF
MEND

LET C = A + B
MLOCAL L1,L2,L3,L4,L5,LS,LERR
MIF '='='=' THEN L1 ELSE LERR ;SYNTAX CE
;1NOP
LD HL,(A) ;GET VAR2
MIF '+'=" THEN LS iIF NO OPERATCR, DO A

MENT
LD DE,(B) ;GET VAR3
MIF '+'='+' THEN L2 iCHECK OPERATOR
MNOP
ADD HL,DE
MGJTO LS
MNOP
LD (C),HL iSAVE IN VAR1
MEND
TEST COUNT) N THEN DONE
MLOCAL L1,L2,L3,L4,L5,L6,L7,L8,LERR,LCONT
lilF 'THEN'='THEN' THEN L1 ELSE LERR iSYN'

HECK
MNOP
LD HL,(COUNT) ;GET VAR1
LD DE,(N) iGET VAR2
OR A
SBC HL,DE iSUBTRACT FOR COMPARE
MIF ')'='=' THEN L2 ELSE L3 iCHECK OPERA]
MIF ')'='<' THEN L4 ELSE L5
MIF ')' =')' THEN L6 ELSE LERR
MNJP
JR Z,L0008
JP NC,DONE

;IF EQUAL TO THEN FALSE
iIF GREATER THAN, JUMP

MGOTO LCONT
11 N OP

MIF "='ELSE' THEN L7 ELSE L8
LAUSE

I1NOP
MEND
WRITE C

;CHEC

2
3
4
5
6
7
8
9

i C
419
420
421
422 L1
423
424
425
426
427

FIRST TIME USAGE OF PARAMETER
MLOCAL L1

10

GLOBAL PTXT,CRLF,PADDO
LD E,CHNL+1 iOUTPUT CHANNEL
MNOP
LD
CALL
LD
CALL
JR

HL,MSC
PTXT
HL,(e)
PADDO
LC

;OUTPUT MESSAGE

;WRITE OUT IN HEX

IRE 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 FAGE 4
OBJ.CODE STMT-NR SOURCE-STl'IT PASS2 FIG410 FIG410 FIG410 REL

~' 43203D20 11 428 MSC DEFrl 'C =
~ 03 12 429 DEFB 3 ~

=OOBD' 13 430 LC
14 431 MNEXT 1 THEN L1

) CD8COO' 15 432 CALL CRLF
16 433 MEND

0 24 434 LET COUNT = COUNT + ONE
1 435 MLOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 436 MIF '='='=' THEN L1 ELSE LERR iSY~TAX CHECK
3 437 L1 ~!N OF

0 2AE900' 4 438 LD HL,(COUNT) iGET VAR2
=0000 5 439 MIF '+' =' , THEN LS ;IF NO OPEPATO~, 00 Assr:;N

MENT
3 ED5BDFOO' 6 440 LD DE,(ONE) iGET VAR3

=FFFF 7 441 MIF '+' =' +' THEN L2 iCHECK OPERATOR
14 442 L2 MNOP

7 19 15 443 Il.DD HL,DE
15 444 MGOTO LS
57 445 LS MNOP

'8'22E900' 58 446 Z0010 LD (COUNT) ,HL iSAVE IN VAR1
59 447 MEND

:B 25 448 LET A = B
1 449 MLOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 450 MIF
._, _._,

THEN L1 ELSE LERR iSYNI'AX CHECK - - -
3 451 L1 '1NOP

:B 2AE500' 4 452 LD HL, (B) iGEI' VAR2
=FFFF 5 453 M"";' ... ~ , , = ' , THEN LS iIF NO OPERATOR, DO l\Ssr:;NM

ENT
57 454 LS MNOP

:E'22E300' 58 455 Z0011 LD (A),HL iSAVE IN VAR1
59 456 MEND

) 1 26 457 LET B = C
1 458 MLOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 459 i1IF '=' = I =' THEN L1 ELSE LERR iSYNTAX CHECK
3 460 L1 MNOP

D 1 2AE700' 4 461 LD HL, (C) iGET VAR2
=FFFF 5 462 MIF ' '=' , THEN LS i I F NO OPERATOR, DO ASSIGN~

ENT
57 463 LS MNOP

D4'22E500' 58 464 Z0012 LD (B) , HL iSAVE IN VAR1
59 465 MEND

D7 27 466 GOTO LAB1
D7 C38EOO' 1 467 JP L.I\B 1

2 468 MEND
i

DA' 29 470 DONE EXIr
1 471 GLOBAL JTASK

'DA 3E01 2 472 LD A,1
IDC C3FFFF 3 473 JP JTASK

4 474 MEND

>OF 31 476 DCL ONE IN IT 1
1 477 MLOCAL L1,L2,L3

=FFFF 2 478 MIF 'INIT'='INIT' THEN L1 ELSE L2
=0000 3 479 L1 MIF ' 1 '=' , THEN L2

)DF'0100 4 480 ONE DEFW 1 iDECLARE VARIABLE
5 481 MExrT

FIGURE 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

OOE 1 32 482 DCL TWO INIT 2
1 483 MLOCAL L1,L2,L3

=FFFF 2 484 MIF 'INIT'='INIT' THEN L1 ELSE L2
=0000 3 485 L1 MIF '2' =' , THEN L2

00E1'0200 4 486 TWO DEFW 2 jDECLARE VARIABLE
5 487 MEXIT

00E3 33 488 DCL A
1 489 MLOCAL L1,L2,L3

=0000 2 490 MIF "='INIT' THEN L1 ELSE L2
6 491 L2 MNOP

00E3'0000 7 492 A DEFW 0 iDEFAULT TO ZERO
8 493 MEND

00E5 34 494 DCL B
1 495 MLOCAL L1,12,L3

=0000 2 496 MIF • '='INIT' THEN L1 ELSE 12
6 497 L2 MNOP

00E5'0000 7 498 B DEFW 0 jDEFAULT TO ZERO
8 499 MEND

00E7 35 500 DCL C
1 501 MLOCAL L1,L2,L3

=0000 2 502 MIF "='INIT' THEN L1 ELSE L2
6 503 L2 MNOP

00E7'0000 7 504 C DEFW 0 jDEFAULT TO ZERO
8 505 MEND

00E9 36 506 DCL COUNT
1 507 MLOCAL L1,L2,L3

=0000 2 508 MIF "='INIT' THEN L1 ELSE L2
6 509 L2 MNOP

00E9'0000 7 510 COUNT DEFW 0 jDEFAULT TO ZERO
8 511 MEND

aOEB 37 512 DeL N
1 513 MLOCAL L1,L2,L3

=0000 2 514 11IF ' '='INIT' THEN L1 ELSE L2
6 515 L2 MNOP

OOEB'OOOO 7 516 N DEFW a iDEFAULT TO ZERO
8 517 MEND

BE 4-10.
OBJ.COD£

) ,

) 1£01
1 21F700'
2 CDAEOO'
5 1817
7'454E5443

52205457
4F204845
58204449
47495453
ODOA03

=010~'

E

E 1EOO

o CD4200'
3 7A
4 CD3400'
7 E60F
9 07

IA 07
IB 07
IC 07
ID F5
IE CD1101'
21 7A
22 CD1501'
,5 E60F
27 6F
28 F 1
29 85
2A 6F
2B 2500
2D 22EBOO'
30'CD1F01'
33 7A
34 FEOD
36 CA3D01'
39 FE2C
3B 20F3

=013D'
3D CDBEOO'

40

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

6

PROGRAM 2 ••• GENERATE N BY N CALCULATIONS FOR
; ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISI8N

WHERE N IS INPUT FROM THE CONSOLE KEYBOARD.
;

44 524 LOOP
1 525
2 526
3 527
4 528
5 529
6 530 MS0022

7 531 L0022

PRINT 'ENTER TWO HEX DIGITS'
GLOBAL PTXT
LD E,CHNL+1 ;CHANNEL NBR
LD HL,MS0022
CALL PTXT
JR L0022
DEFM 'ENTER TWO HEX DIGITS',ODH,OAH,3H

8 532 MEND
45 533 READ N

1 534 MLOCAL L1,L2
i N FIRST TIME USAGE OF PARAMETER

3 536 GLOBAL ECHO,ASBIN
4 537 LD E,CHNL
5 538 L1 MNOP
6 539 CALL ECHO ;BEAD A CHARACTER
7 540 LD A,D ;PREPARE TO CONVERT
8 541 CALL ASBIN ;CONVERT
9 542 AND OFH

10 543 RLCA
11 544 RLCA
12 545 RLCA
13 546 RLCA
14 547 PUSH AF
15 548 CALL ECHO ;GET NEXT ONE
16 549 LD A,D
17 550 CALL ASBIN
18 551 AND OFH
19 552 LD L,A iSAVE IT
20 553 POP AF
21 554 OR L
22 555 LD L,A
23 556 LD H,O
24 557 LD (N),HL iSAVE RESULT
25 558 LN0023 CALL ECHO iGET NEXT INPUT CHAR
26 559 LD A,D iCHECK CHARACTER
27 560 CP ODH ;CARRIAGE RETURN?
28 561 JP Z,P0023 iYES, SKIP OUT
29 562 CP ',' iCOMMA?
30 563 JR NZ,LN0023 iNO, LOOP FOR ANOTHER
31 564 MNEXT 1 THEN L1 ELSE L2 iCHECK FOR MORE;
32 565 L2 MNOP
33 566 P0023
34 567 CALL CRLF
35 568 MEND
46 569 TEST N = ZERO THEN LOOP

1 570 MLOCAL L1,L2,L3,L4,L5,L6,L7,L8,LERR,LCONT

FIGURE 4-10.
LaC OBJ.CODE

=FFFF

0140 2AEBOO'
0143 ED5B6502'
0147 B7
0148 ED52

=FFFF
014A CAEDOO'

014D

=014D'
=0000

=FFFF
=FFFF

014D 2ADFOO'
0150 ED5BEBOO'
0154 DD215801'
0158'226702'
015B E5
015C D5
015D DDE5

015F

=FFFF
=FFFF

015F 2ADFOO'
0162 ED5BEBOO'
0166 DD216A01'
016A'226902'
016D E5
016E D5
016F DDE5

0171

=FFFF

0171 2A6702'
=0000

0174 ED5B6902'
=FFFF

0178 19

0179'226B02'

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

7

2 571

3 572 L1
4 573
5 574
6 575
7 576
8 577
9 578 L2

10 579
24 580 LCONT
25 581 L0024
26 582

30 583 L8
31 584
47 585

1 586
2 587
3 588 L1
7 589 L2
8 590
9 591

10 592
11 593 L0025
12 594
13 595
14 596
15 597
48 598

1 599
2 600
3 601 11
7 602 L2
8 603
9 604

10 605
11 606 L0026
12 607
13 608
14 609
15 610
49 611

1 612
2 613
3 614 L1
4 615
5 616

6
7

14
15
16
57
58
59

617
618
619 L2
620
621
622 LS
623 Z0027
624

MIF 'THEN'='THEN' THEN L1 ELSE LERR ;SY
HECK

MNOP
LD HL,(N)
LD DE, (ZERO)
OR A

;GET VAR1
;GET V.I\R2

SBC HL,DE
MIF '='='='
JP Z,LOOP
MGOTO LCONT

;SUBTRACT FOR COMPARE
THEN L2 ELSE L3 ;CHECK OPERj

;IF EQUAL (TRUE), DO JUI

MNOP

MIF "='ELSE' THEN L7 ELSE L8 ;CHE
LAUSE

MNOP
MEND
DO I = ONE TO N
MLOCAL L1,L2,LERR
MIF '='='=' THEN L1 ELSE LERR
MIF 'TO'='TO' THEN L2
MNOP

;GET VAR2
iGET VAR3
;GET LOOP BACK LABEL
iSET VAR1

iSYN

LD
LD
LD
LD
PUSH
PUSH
PUSH
MEND

HL,(ONE)
DE,(N)
IX,L0025
(I) , HL
H1 iPUSH VALUES ONTO STACK
DE
IX

DO J = ONE TO N
MLOCAL L1,L2,LERR
MIF '='='=' THEN L1 ELSE LEBR
MIF 'TO'='TO' THEN L2
MNOP
LD
1D
1D
LD

;GET VAR2
iGET VAR3
iGET LOOP BACK LABEL
;SET VAR1

iSYW

HL,(ONE)
DE,(N)
IX,L0025
(J),HL
HL PUSH

PUSH DE
PUSH IX

iPUSH VALUES ONTO STACK

MEND
LET ADD = I + J
MLOCAL L1,L2,L3,L4,L5,LS,LERB
MIF '='='=' THEN L1 ELSE LERR ;SYNTAX CHE
MNOP
LD
MIF

HL,(I) iGET VAR2
'+'=" THEN LS ;IF NO OPERATOR, DO AS

MENT
LD DE,(J)
MIF '+'='+'
11NOP
ADD HL,DE
MGOTO LS
MNOP
LD (ADD),HL
MEND

iGET VAR3
THEN L2 iCHECK OPERATOR

is,1I.VE IN VAR1

IRE 4-10. MOSTEK MACRO-BO ASSEMBLER V2.0 PAGE 8
OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

50 625 LET SUB = I - J
1 626 MLOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 627 MIF • _1_1_' THEN L1 ELSE LERR iSYNTAX CHECK - - -
3 628 L1 MNOP

~ 2A6702' 4 629 LD HL,(I) iGET VAR2 ~

=0000 5 630 MIF ,_, =' I THEN LS iIF NO OPERATOR, DO ASSIGN
ME NT

f ED5B6902' 6 631 LD DE, (J) i GET VAR3
=0000 7 632 MIF t _, =' +' THEN L2 iCHECK OPERATOR
=FFFF 8 633 MIF ,_ I = I _ I THEN L3

17 634 L3 MNOP
3 B7 18 635 OR A
4 ED52 19 636 SBC HL,DE

20 637 MGOrO LS
57 638 LS MNOP

6'226D02' 58 639 20028 LD (SUB),HL iSAVE IN VAR1
59 640 MEND

9 51 641 LET MUL = I * J
1 642 t1LOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 643 MIF '='='=' THEN L1 ELSE LERR iSYNTAX CHE2K
3 644 L1 MNOP

9 2A6702' 4 645 LD HL,(I) iGET VAR2
=0000 5 646 MIF t * 1=' I THEN LS iIF NO OPERATOR, DO ASSIGN

MENT
,C ED5B6902' 6 647 LD DE,(J) iGET VAR3

=0000 7 648 MIF '*' =' +' THEN L2 iCHECK OPERATOR
=0000 8 649 11IF 1*' = I _ t THEN L3
=FFFF 9 650 MIF . *. ==' *. THEN L4

21 651 L4 MNOP i MULTIPLY BY SEVERAL ADDITION
S

~O 7A 22 652 LD A,D iCHECK FOR MULT PY ZERO
~ 1 B3 23 653 OR E
~2 2006 24 654 JR NZ,I0029
~4 210000 25 655 1D HL,O iIF SO, ZERO RESULT
n C3A901' 26 656 JP K0029
1A'1B 27 657 10029 DEC DE iCHECK FOR MULT BY ONE
:JB 7A 28 658 LD A,D
9C 83 29 659 OR E
9D 280A 30 660 JR Z,K0029 iYES, JUST PUT IN V}\.LUE
9F ED4B6702' 31 661 LD BC,(I) iGET VAR2
A3'09 32 662 L0029 .1\ DD HL,BC
A4 1B 33 663 DEC DE
A5 7A 34 664 LD A,D iCHECK FOR END
A6 B3 35 665 OR E
A7 20FA 36 666 JR N2,L0029

=01A9' 37 667 K0029
38 668 MGOTO LS
57 669 LS r1NOP

A9'225F02' 58 670 20029 LD 01UL),HL iSAVE IN VAR1
59 671 MEND

AC 52 672 LET DIV = I / J
1 673 MLOCAL L1,L2,L3,L4,L5,LS,LERR

=FFFF 2 674 MIF '='='=' THEN L1 ELSE LERR iSYNTl\X CHECK
3 675 L1 MNOP

lAC 2A6702' 4 676 LD HL,(I) iGET VAR2
=0000 5 677 MIF '/ '=' , THEN LS iIF NO OPERATOR, DO ASSIG

ME NT

FIGURE 4-10.
LOC OBJ.CODE

01AF ED5B6902'
=0000
=0000
=0000
=FFFF

01B3 7A
01B4 83
01B5 2021
01B7

01B7 1E01
01B9 21C101'
01BC CDF300'
01BF 1815
01C1'2A2A2A20

4F564552
464C4F57
20455252
4F520DOA
03

=01D6'

01D6 180C
01DS'010000
01DB'B7
01DC ED52
01DE 03
01DF 30FA
01E1 OB
01E2 69
01E3 60

01E4'227102'

01E7

01E7 1E01

01E921F701'
01EC CDBD01'
01EF 2A6B02'
01F2 CDB400'
01F5 1807
01F7'41444420

3D20
01FD 03

=01 FE:'

01FE 210C02'
0201 CDEDO 1 '
0204 2A6D02'
0207 CDF301'
020A 1807

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

6
7
8
9

10
43
44
45
46
47

1
2
3
4
5
6

7
8

48
49
50
51
52
53
54
55
56
57
58
59
53

2
3
4
5
6
7
8
9

10
1 1

12
13
14

5
6
7
8
9

10

678
679
680
681
682
683 L5
684
685
686
687
688
689
690
691
692
693 MS0031

694 L0031
695
696
697 C0030
698 D0030
699
700
701
702
703
704
705 LS
706 Z0030
707
708

; ADD
710
711
712
713 L1
714
715
716
717
718
719 MSADD

720
721 LADD
722
723 L1
724
725
726
727
728

LD DE, (J) iGET VAR3
MIF '/'='+' THEN L2 iCHECK OPERATOR
MIF '/'='-' THEN L3
MIF '/'='*' THEN L4
MIF '/'='/' THEN L5
MNOP
LD A,D iCHECK FOR DIVIDE BY ZE
OR E
JR NZ,C0030
PRINT '*** OVERFLOW ERROR'
GLOBAL PTXT
LD E,CHNL+1 ;CHANNEL NBR
LD HL,MS'0031
CALL PTXT
JR L0031
DEFM '*** OVERFLOW ERROR',ODH,OAH,3H

MEND
JR Z0030
LD BC,O
OR A
SBC HL,DE
INC BC
JR NC,D0030
DEC BC
LD L,C
LD H,B
MNOP
LD (DIV),HL
MEND

iRESULT
;RESET CARRY
iSUBTRACT UNTIL DONE

iLOOP UNTIL NEGATIVE
iCORRECT THE RESULT
;PUT INTO HL

;SAVE IN VAR1

WRITE ADD,SUB,MUL,DIV
FIRST TIME USAGE OF PARAMETER

MLOCAL L1
GLOBAL PTXT,CRLF,PADDO
LD E,CHNL+1 ;OUTPUT CHANNEL
T1NOP
LD
CALL
LD
CALL
JR

HL,MSADD
PTXT
HL,(ADD)
PADDO
LADD

DEFf1 'ADD =

DEFB 3

MNEXT 1 THEN L1
MNOP

iOUTPUT MESSAGE

;WRITE OUT IN HEX

LD HL,MSSUB ;OUTPUT MESSAGE
CALL PTXT
LD HL,(SUB)
CALL PADDO ;WRITE OUT IN HEX
JR LSUB

:GURE 4-10. ~OSTEK MACRO-80 ASSEMBLER V2.0 PAGE 10
)C OBJ.CODE: STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 PEL

20C'53554220 1 1 729 MSSUB DEFM 'SUB =
3D20

212 03 12 730 DEFB 3
=0213' 13 731 LSU3

14 732 MNEXT 1 THEN L1
5 733 L1 MNOP

213 212102' 6 734 LD HL,MSMUL ;OUTPUT MESSAGE
216 CD0202' 7 735 CALL PTXT
219 2A6F02' 8 736 LD HL,(MUL)
21C CD0802' 9 737 CALL PADDO ;WRITE OUT IN HEX
21F 1807 10 738 JR LMUL
221'4D554C20 11 739 MSMUL DEFM 'MUL =

3D20
227 03 12 740 DEFB 3

=0228' 13 741 LMUL
14 742 MNEXT 1 THEN L1

5 743 L1 MNOP
)228 213602' 6 744 LD HL,MSDIV ;OUTPUT MESSAGE
>22B CD 1702 ' 7 745 CALL PTXT
)22E 2A7102' 8 746 LD HL,(DIV)
)231 CD1D02' 9 747 CALL PADDO ;WRITE OUT IN HEX
)234 1807 10 748 JR LDIV
)236 '44495620 11 749 MSDIV DEFM 'DIV =

3D20
)23C 03 12 750 DEFB 3

=023D' 13 751 LDIV
14 752 MNEXT 1 THEN L1

:l23D CD3E01' 15 753 CALL CRLF
16 754 MEND

0240 54 755 ENDDO
0240 DDE1 1 756 POP IX ;LOOP ADDRESS
0242 D1 2 757 POP DE ;FINAL VALUE
0243 E1 3 758 POP HL ;CURRENT VALUE
0244 23 4 759 INC HL iINCREMENT VAR1
0245 E5 5 760 PUSH HL
0246 B7 6 761 OR A iCHECK IT
0247 ED52 7 762 SBC HL,DE
0249 £1 8 763 POP HL
024A 2802 9 764 JR Z,KK0033 iLAST TIME THRU
024C 3002 10 765 JR NC,L0033 iIF DONE, SKIP OUT
024E'DDE9 11 766 KK0033 JP (IX) ;ELSE LOOP

=0250' 12 767 L0033
13 768 MEND

0250 55 769 ENDDO
0250 DDE1 1 770 POP IX ;LOOP ADDRESS
0252 D1 2 771 POP DE iFINAL VALUE
0253 E1 3 772 POP HL ;CURRENT VALUE
0254 23 4 773 INC HL ;INCREMENT 'yAR1
0255 E5 5 774 PUSH HL
0256 B7 6 775 OR A iCHECK IT
0257 ED52 7 776 SEC HL,DE
0259 E1 8 777 POP HL
025A 2802 9 778 JR Z,KK0034 iLAST TIME THRU
025C 3002 10 779 JR NC,L0034 iIF DONE, SKIP OUT
025E'DDE9 1 1 780 KK0034 JP (IX) iELSE LOOP

=0260' 12 781 L0034
13 782 MEND

FIGURE 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1 .
LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 PEL

0260 56 783 EXIT
1 784 GLOBAL JTASK

0260 3E01 2 785 LD A,1
0262 C3DDOO' 3 786 JP JTASK

4 787 MEND

0265 58 789 DCL ZERO
1 790 MLOC.I\L L1,L2,L3

=0000 2 791 MIF "='INIT' THEN L1 ELSE L2
6 792 L2 MNOP

0265'0000 7 793 ZERO DEFW 0 ;DEFAULT TO ZERO
8 794 MEND

0267 59 795 DCL I
1 796 r1LOCAL 11,L2,L3

=0000 2 797 MIF "='INIT' THEN L1 ELSE 12
6 798 L2 MNOP

0267'0000 7 799 I DEFW 0 ;DEFAULT TO ZERO
8 800 MEND

0269 60 801 DC1 J
1 802 MLOCAL L1,L2,L3

=0000 2 803 MIF "='INIT' THEN L1 ELSE L2
6 804 L2 i1NOP

0269'0000 7 805 J DEFW 0 ;DEFAULT TO ZERO
8 806 MEND

026B 61 807 DCL ADD
1 808 MLOCAL L1,L2,L3

=0000 2 809 MIF "='INIT' THEN L1 ELSE L2
6 810 L2 aNOP

026B'OOOO 7 811 ADD DEFW 0 ;DEFAULT TO ZERO
8 812 r1END

026D 62 813 DCL SUB
1 814 aLOCAL L1,L2,L3

=0000 2 815 MIF "='INIT' THEN L1 ELSE L2
6 816 L2 MNOP

026D'OOOO 7 817 SUB DEFW 0 ;DEFAULT TO ZERO
8 818 MEND

026F 63 819 DCL MUL
1 820 MLOCAL L1,L2,L3

=0000 2 821 MIF "='INIT' THEN L1 ELSE L2
6 822 L2 MNOP

026F'OOOO 7 823 MUL DEFW 0 ;DEFAULT TO ZERO
8 824 MEND

0271 64 825 DCL DIV
1 826 MLOCAL L1,L2,L3

=0000 2 827 MIF "='INIT' THEN L1 ELSE L2
6 828 L2 MNOP

0271'0000 7 829 DIV DEFW 0 ;DEFAULT TO ZERO
8 830 MEND

0273 65 831 END

FIGURE 4-11.

SAMPLE RUNS

FIBONACCI SERIES:

ENTER 2 HEX DIGITS
07
A = 0001 B = 0002
C = 0003
C = 0005
C = 0008
C = OOOD
C = 0015
C = 0022
C = 0037

COMBINATIONS:

ENTER TWO HEX DIGITS
04
ADD = 0002 SUB = 0000 MUL = 0001 DIY = 0001
ADD = 0003 SUB = FFFF MUL = 0002 DIY = 0000
ADD = 0004 SUB = FFFE MUL = 0003 DIY = 0000
ADD = 0005 SUB = FFFD MUL = 0004 DIY = 0000
ADD = 0003 SUB = 0001 MUL = 0002 DIY = 0002
ADD = 0004 SUB = 0000 MUL = 0004 DIV = 0001
ADD = 0005 SUB = FFFF MUL = 0006 DIY = 0000
ADD = 0006 SUB = FFFE MUL = 0008 DIV = 0000
ADD = 0004 SUB = 0002 MUL = 0003 DIV = 0003
ADD = 0005 SUB = 0001 MUL = 0006 DIY = 0001
ADD = 0006 SUB = 0000 MUL = 0009 DIY = 0001
ADD = 0007 SUB = FFFF MUL = oooe DIY = 0000
ADD = 0005 SUB = 0003 MUL = 0004 DIV = 0004
ADD = 0006 SUB = 0002 MUL = 0008 DIV = 0002
ADD = 0007 SUB = 0001 MUL = OOOC DIV = 0001
ADD = 0008 SUB = 0000 MUL = 0010 DIY = 0001

01

; FIGURE 4-12.
NLIST

; THESE DEFINITIONS ARE FOR THE CONVENIENCE OF THE USER WRITING
; IOCS-BASED PROGRAMS. THESE DEFINITIONS MAY BE CHANGED TO SUIT
; THE USER, aUT BEWARE OF POSSIBLE CONFLICT WITH SYSTEM PROGRAMS
; AND ROUTINES INCLUDING THIS FILE. THE USER MAY ALSO ADD ADDITIONAL
; DEFINITIONS, ESPECIALLY IN THE ERROR CODE SECTION (ERRC)
;
; THIS FILE IS GENERALLY USED AS AN INCLUDED FILE:

INCLUDE IODEF · ,
1/0 SYSTEM DEFINITIONS

· ,
VECTOR DISPLACEMENTS

;
LUNIT EQU 0
DVCE EQU 1
UNIT EQU 2
FNAM EQU 4
FEXT EQU 10
VERS EQU 13
USER EQU 14
RQST EQU 15
FriAT EQU 16
iHADDR EQU 17
ERRA EQU 19
CFLGS EQU 21
SFLGS EQU 22
ERRC EQU 23
;PBFFR EQU 24
UBFFR EQU 25
USIZE EQU 27
;NREC EQU 29
iHSCR EQU 30
;ISCR EQU 40

· ,
i REQUEST CODES
;
OPRRQ EQU 0
OPWRQ EQU 1
CLRQ EQU 2
RDRQ EQU 3
WRRQ EQU 4
RwRQ SQU 5
INRQ EQU 6
ERRQ EQU 7
;
;

· FORMAT CODES ,
;
BYTE EQU OOH
LINE EQU 10H
LBUF EQU 20H
BIN EQU 30H

CFLGS CODES
;

; DEFB 1 BYTE
;DEFM 2 BYTE
;DEFM 1 BYTE
iDEFM 6 BYTE
;DEFM 3 BYTE
;DEFB 1 BYTE
;DEFB 1 BYTE
iDEFB 1 BYTE
iDEFB 1 BYTE
;DEFW 2 BYTE
iDEF;..l 2 BYTE
iDEFB 1 BYTE
iDEFB 1 BYTE
;DEFB 1 BYTE
;DEFB 1 BYTE
iDEFH 2 BYTE
iDEFW 2 BYTE
;DEFB 1 BYTE
iDEFS 10 BYTE
;DEFS 8 BYTE

;OPEN READ
iOPEN WRITE
;CLOSE
;READ
iWRITE
iREWIND
;INITIALIZE
;ERASE

;BYTE 1/0 THRU ACCUMULATOR
;ASCII LINE 1/0, TERMINATED BY CR/LF
;LOGICAL BUFFER, LENGTH IN USIZE
;BINARY RAM IMAGE

8UNT
:HO
RET
DRW
RRPR
PAR

EQU
EQU
EQU
EQU
EQU
EQU

SFLGS CODES

NOP
!NOPW
[NON
;OF

EQU
EQU
EQU
EQU

1
2
4
8
16
32

1
2
4
8

: ERROR CODES FOR ERRC

[NVOP EQU
)UPF IL EQU
=NF EQU
IOTIME EQU
NOPEN EQU
EOFERR EQU

;

1
2
4
7
8
9

;MOUNT/DISMOUNT
;AUTO ECHO FOR CONSOLE DEVICES
;IMMEDIATE RETURN REQUESTED
;READ AFTER WRITE
;ERROR PRINT
;STRIP PARITY

;UNIT OPEN
;UNIT OPEN FOR WRITE
;UNIT ON
;END OF FILE DETECTED

;INVALID OPERATION
;DUPLICATE FILE
;FILE NOT FOUND
;10 TIME OUT
;FILE NOT OPEN
;ATTEMPT TO READ PAST END OF FILE

; ASCII SPECIAL CHARACTERS

ETX
EaT
BEL
HI'
LF
FF
CR
DEL
;
;

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LIST

03H
04H
07H
09H
OAH
OCH
ODH
7FH

FIGURE 4-13.
NLIST

**
IOMAC

MACRO DEFINITIONS FOR I/O FUNCTIONS
**
VECTOR

L1

L2
L3

L4

L5
L6

L7

L8
L9
L10

L11
L12

; . ,
OPENR

L7
L6

L3

L4
L5

L2
L1

; . ,
OPENW

MACRO
MLOCAL
DEFB
DEFM
DEFM
DEFM
DEFB
MIF
DEFB
MGOTO
DEFB
DEFW
11IF
DEFB
MGOTO
DEFB
DEFB
MIF
DEFW
MGOTO
DEFW
MIF
DEFW
MGOT'J
DEFW
DEFB
DEFW
MEND

MACRO
GLOBAL
MLOCAL
MIF
LD
LD
MIF
LD
MGOTO
LD
CALL
LD
.l\ND
MIF
JP
LD
JP
MEND

#LUN,#DEV='DKO',#NAME=' ,#EXT='
L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12
#LUN
'#DEV'
'#NAME'
'#EXT'
0,0,0
'#FMAT'=" THEN L1 ELSE L2
BYTE+4
L3
#FMAT
0,0
'#CFLGS'=" THEN L4 ELSE L5

° L6
#CFLGS
0,0,0
'#UBFFR'=" THEN L7 ELSE L8
o
L9
#UBFFR
'#USIZE'=" THEN L10 ELSE L11
o
L12
#USIZE
o
0,0,0,0,0,0,0,0,0

#VECTOR,#ERR,#ERRPR
JIOCS,JTASK
L1,L2,L3,L4,L5,L6,L7
'#VECTOR'=" THEN L6 ELSE L7
IY,#VECTOR
<IY +RQST) ,OPRRQ
'#ERRPR'=" THEN L3 ELSE L4
(IY+CFLGS),O
L5
(IY+CFLGS),#ERRPR
JIOCS
A,(IY+ERRC)
A
'#ERR'=" THEN L1 ELSE L2
NZ,#ERR
A,1
NZ,JTASK

MACRO #VECTOR,#ERR,#ERRPR
GLOBAL JIOCS,JTASK
MLOCAL L1,L2,L3,L4,L5,L6,L7

',#FMAT,#CFLGS,#UB

7
5

3

4
5

2

,1

:LOSE

[,9
L8
L7

L6

L3

L4
L5

L2
L1

; . ,

MIF
LD
LD
l1IF
LD
MGOTO
LD
CALL
LD
AND
MIF
JP
MEXIT
LD
JP
MEND

MACRO
MLOCAL
MIF
LD
MIF
LD
LD
LD
CALL
LD
MIF
LD
MGOTO
LD
CALL
LD
AND
MIF
JP
LD
JP
MEND

PARSE MACRO
GLOBAL
MLOCAL
LD
LD
CALL
MIF

L1 MNOP
JR
LD
LD
CALL
LD
JP

MS%NEXP DEFM
I%NEXP

' #VECTOR '=' , THEN L6 ELSE L7
IY,#VECTOR
(IY+RQST) ,OPWRQ
'#ERRPR' =' , THEN L3 ELSE L4
(IY+CFLGS),O
L5
(IY+CFLGS),#ERRPR
JIOCS
A, (IY+ERRC)
A
'#ERR' =' , THEN L1 ELSE L2
NZ,#ERR

A, 1
NZ,JTASK

#VECTOR,#ERR,#ERRPR,#EOT
L1,L2,L3,L4,L5,L6,L7,L8,L9
'#VECTOR'=" THEN L8 ELSE L9
IY,#VECTOR
'#EOT'=" THEN L6 ELSE L7
(IY+RQST) , WRRQ
(IY+FMAT),BYTE
A,EOT
JIOCS
<IY +RQST) ,CLRQ
'#ERRPR'=" THEN L3 ELSE L4
(IY+CFLGS),O
L5
(IY+CFLGS),#ERRPR
JIOCS
A,(IY+ERRC)
A
'#ERR'=" THEN L1 ELSE L2
NZ,#ERR
A,1
NZ,JTASK

#VECTOR,#ERR
JTASK,PTXT
L1,L2,L3
IY,#VECTOR
A,6 ;CSIPAR
JTASK ;CALL VIA TASK
'#ERR'=" THEN L1 ELSE L2

Z,I%NEXP ;IF NO ERRORS, SKIP
HL,MS%NEXP ;GET SYNTAX ERROR MESSAGE
E,1 ;PRINT ON LUN 1
PTXT
A,1 ;RETURN TO MONITOR
JTASK
'SYNTAX ERROR'

MGOTO L3

12 JP
13 MNOP

LD
CP
JR
lD
lD

l%NEXP EQU
MEND

;
READ

17

13

14
15

12
11

WRITE

17

13

14
15

12
11

;
;

MACRO
Ml0CAl
MIF
lD
lD
MIF
LD
MGOTO
lD
CAll
lD
LD
AND
MIF
JP
lD
JP
lD
MEND

MACRO
MLOCAl
MIF
lD
lD
MIF
lD
MGOTO
lD
CAll
lD
AND
MIF
JP
lD
JP
MEND

lIST

NZ,#ERR

A,(IY+DVCE) , ,
NZ,l%NEXP
(IY+DVCE),'D'
(IY+DVCE+1),'K'
$

#VECTOR,#ERR,#ERRPR ;READ BYTE AT A TIME
11,12,13,14,15,16,17
'#VECTOR'=" THEN 17
IY,#VECTOR
(IY+RQST),RDRQ ;READ REQUEST
'#ERRPR'=" THEN 13 ELSE 14
(IY+CFLGS),O
15
(IY+CF1GS),#ERRPR
JIOCS
D,A iSAVE CHARACTER FOR BYTE MODE
A,(IY+ERRC) iCHECK FOR ERROR
A
'#ERR'=" THEN 11 ELSE 12
NZ,#ERR iRETURN VIA ERROR EXIT
A,1
NZ,JTASK iRETURN TO MONITOR
A,D ;RESTORE BYTE FOR BYTE I/O

#VECTOR,#ERR,#ERRPR iWRITE
11,12,13,14,15,16,17
'#VECTOR'=" THEN 17
IY,#VECTOR
(IY+RQST),WRRQ ;WRITE REQUEST
'#ERRPR'=" THEN 13 ELSE 14
(IY+CF1GS),O
15
(IY+CF1GS),#ERRPR
JIOCS
A,(IY+ERRC) iCHECK FOR ERROR
A
'#ERR'=" THEN L1 ELSE L2
NZ,#ERR ;RETURN VIA ERROR EXIT
A,1
NZ,JTASK ;RETURN TO MONITOR

MOSTEK MACRO-SO OPERATIONS MANUAL

approach to creating and calling IOCS related functions.
described below.

Each is

4-49. VECTOR 1un,device,fi1ename,fi1e extension,format,cf1gs,ubffr,usize

This macro creates an IOCS parameter vector with several default
parameters supplied. Use of this macro eliminates the need to write
out a complete parameter vector definition using DEFB, DEFW, and DEFM
pseudo-ops in the program. The user calls the macro and specifies the
logical unit number (LUN), device mnemonic and unit number (DEV), file
name (NAME), and file extension (EXT). Optionally, the user may
specify the format (FMAT), control flags (CFLGS), user buffer address
(UBFFR), and user buffer size (USIZE). The following defaults are
applied:

LUN = OFFH
DEV = DK1:
NAME = blanks
EXT = blanks
FMAT = 0 (byte I/O)
CFLGS = 0
UBFFR = 0
USIZE = 0

All of the required bytes for the parameter vector are allocated when
the macro is expanded.

4-50. OPENR vector name,error abort address,error print flag

This macro performs an open-for-read request via the vector specified
in the first parameter. If the vector is not specified, then it is
assumed that the IY register is pointing to the proper vector. If any
errors were encountered, then exit is made via the error-abort address
(second parameter), which is optional. If the error-exit address is
not specified, then the macro returns control to the Monitor in case of
an error. The third parameter, error-print flag, defaults to zero but
can be set to 16H to force error printing via IOCS (this is the CFLGS
parameter).

4-51. OPENW vector name,error-abort address,error-print flag

This macro performs an open for write request via the vector specified
in the first parameter. All other operations are identical to OPENR.

4-52. CLOSE vector name,error abort address,error print flag

This macro performs a close function via the vector specified in the
first parameter. All other operation is identical to OPENR.

4-53. PARSE vector name,error abort address

This macro provides a call to CSISYN and CSIPAR via the system routine

41

MOSTEK MACRO-SO OPERATIONS MANUAL

JTASK. Entry is with the HL register pair pointing to the dataset
specification to be checked and parsed. The validity of the dataset
specification is first checked, then it is parsed into the vector
specified by the first parameter of the call to the macro. If any
errors are found, then return is made via the second parameter. If
this parameter is not given, then a message is printed (SYNTAX ERROR)
and control is returned to the Monitor. If no errors are found and the
device type is not given, then the device is defaulted to DKO.

4-54. EXIT

This macro returns control to the Monitor.

4-55. Figure 4-14 shows a typical program written using these macros.
This program reads a dataset and prints it on the console output device
(TT:). The dataset is specified in the Monitor command line which
calls up this program. Upon entry to the program, the DE register pair
points to the dataset specification. After initializing the stack
pointer and interrupt mode, the dataset specification pointer is placed
into the HL register pair. The dataset is parsed into INPUT, the input
vector. The dataset is then opened. The output dataset is opened for
write. This dataset is specified in the vector OUTPUT, which appears
later in the program. Then a series of read/write operations are
performed in byte I/O mode. The end of the data is specified by an
ASCII 04H (end-of-file). When this character is read, the input
dataset is closed and the program is terminated. (Closing the output
dataset, the console device, is not necessary here).

42

fRE 4-14.
OBJ.CODE

o

~O

00 312101'
:>3 ED5E
05 FB
06 EB

07
07 FD212101'
OB 3E06
OD CDFFFF
10 2819
12 211FOO'

115 1E01
i 17 CDFFFF
11A 3E01
) 1C C30EOO'
)1F' 53594E54

41582045
52524F52

)2B FD7E01
)2E FE20
)30 2008
)32 FD360144
)36 FD36024B

03A
03A FD212101'
03E FD360FOO

MOSTEK MACRO-SO ASSEMBLER V2.O PAGE
STMT-NR SOURCE-STMT PASS2 FIG414 FIG414 FIG414 REL

1

1

14

100 114

18 118

172 290

21 293

26
27
28
29

31
3
4
5
8
9

10
1 1
12
13
14

19
20
21
22
23

298
299
300
301

303
306
307
308
311
312
313
314
315
316
317

321
322
323
324
325

33 329

TITLE FIGURE 4-14.

; APPLICATION OF 1/0 MACROS
;
; THIS PROGRAM READS A DATASET IN BYTE 1/0

AND COPIES IT TO THE CONSOLE DEVICE (TT:).
TO EXECUTE THE PROGRAM:

;

· , $VIEW DATASET(CR)
· ,

; INCLUDE IOCS DEFINITIONS
;

· ,

· ,

INCLUDE IODEF
FIGURE 4-12.

LIST

i INCLUDE 1/0 MACROS
;

· ,

;

INCLUDE IOMAC
FIGURE 4-13.

LIST

CLIST 0 iCODE LISTING ONLY

START OF PROGRAM
i

i PARSE

MS0001

i OPEN

LD
1M
EI

SP,STACK
2

EX DE,HL
THE DATASET INTO
PARSE INPUT
LD IY,INPUT
1D A,6
CALL JTASK
JR Z,I0001
LD HL,MS0001
LD E,1
CALL PTXT
LD A,1
JP JTASK

;SET STACK POINTER
iINTERRUPT MODE FOR Z80
iENABLE INTERRUPTS
iHL POINTS TO DATASET SPEC
THE INPUT VECTOR

;CSIPAR
;CALL VIA TASK
iIF NO ERRORS, SKIP
iGET SYNTAX ERROR MESSAGE
iPRINT ON LUN 1

iRETURN TO MONITOR

DEFM 'SYNTAX ERROR'

LD
CP
JR
1D
LD

THE

A,(IY+DVCE) , ,
NZ,L0001
(IY+DVCE),'D'
(IY+DVCE+1), 'K'

INPUT DATASET. ANY ERRORS ABORT THE PROGE
M.

4 333 L7
5 334 L6

OPENR INPUT"ERRPR
1D IY,INPUT
LD (IY+RQST),OPRRQ

FIGURE 4-14.
LOC OBJ.CODE

0042 FD361510
0046 CDFFFF
0049 FD7E17
004C A7
004D 3E01
004F C21DOO'

0052
0052 FD215101'
0056 FD360F01
005A FD361500
005E CD4700'
0061 FD7E17
0064 A7
0065 C26800'

=0068'

=0068'
0068
0068 FD212101'
006C FD360F03
0070 FD361510
0074 CD5FOO'
0077 57
0078 FD7E17
007B A7
007C 3E01
007E C25000'
0081 7A

0082 FE04
0084 281A

0086
0086 FD215101'
008A FD360F04
008E FD361500
0092 CD7500'
0095 FD7E17
0098 A7
0099 3E01
009B C27FOO'
009E 18C8

OOAO'
OOAO FD212101'
OOA4 FD360F02
OOA8 FD361500
OOAC CD9300'
OOAF FD7E17
00B2 A7
00B3 3E01
DOB5 C29COO'
00B8 3E01

MOSTEK MACRO-8D ASSEMBLER V2.0 PAGE
STMT-NR SOURCE-STMT PASS2 FIG414 FIG414 FIG414 REL

9 336 L4 LD (IY+CFLGS),ERRPR
10 337 L5 CALL JIOCS
11 338 LD A,(IY+ERRC)
12 339 AND A
15 341 L1 LD A,1
16 342 JP Nt,JTASK

2

; OPEN CONSOLE OUTPUT DRIVER. IGNORE ANY ERRORS
35 345 OPENW OUTPUT,CONTINUE

4 349 L7 LD IY,OUTPUT
5 350 L6 LD (IY+RQST),OPWRQ
7 352 L3 LD (IY+CFLGS),O

10 354 L5 CALL JIOCS
11 355 LD A,(IY+ERRC)
12 356 AND A
14 358 L2 JP NZ,CONTINUE
36 360 CONTINUE

;
; READ BYTES FROM INPUT DATASET. ABORT IF ERRORS

39 363 LOOP
40 364 READ INPUT"ERRPR

3 367 LD IY,INPUT
4 368 L7 LD (IY+RQST),RDRQ iREAD REQUEST
8 370 L4 LD (IY+CFLGS),ERRPR
9 371 L5 CALL JIOCS

10 372 LD D,A iSAVE CHARACTER FOR BYTE
11 373 LD ~,(IY+ERRC) iCHECK FOR ERROR
12 374 AND A
15 376 L1 LD ~,1

16 377 JP NZ,JTASK iRETURN TO MONITOR
17 378 LD A,D iRESTORE BYTE FOR BYTE II

CHECK FOR END OF FILE BYTE
42 381 CP 04H
43 382 JR Z,DONE iIF SO, DONE

i WRITE BYTE TO THE CONSOLE DEVICE
45 384 WRITE OUTPUT

3 387 LD IY,OUTPUT
4 388 L7 LD (IY+RQST),WRRQ iWRITE REQUEST
6 390 L3 LD (IY+CFLGS),O
9 392 L5 CALL JIOCS

10 393 LD A,(IY+ERRC) ;CHECK FOR ERROR
11 394 AND A
14 396 L1 LD A,1
15 397 JP NZ,JTASK ;RETURN TO MONITOR
46 399 JR LOOP ;LOOP FOR MORE BYTES

;
; END OF FILE FOUND, CLOSE THE INPUT DATAS2T

50 403 DONE
3 406 L9
9 408 L6

11 410 L3
14 412 L5
15 413
16 414
19 416 L1
20 417
51 419

CLOSE INPUT
LD IY,INPUT
LD (IY+RQST),CLRQ
LD (IY+CFLGS),O
CALL JIOCS
LD A,(IY+ERRC)
.~ND A
LD A,1
JP NZ,JTASK
LD A, 1

;URE 4-14. MOSTEK MACRO-80 ASSEMBLER V2.0 PJI.GE 3
OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG414 FIG414 FIG414 REL

3A C3B600' 52 420 JP JTASK ;RETURN TO MONITOR

; DEFINE STACK AREA
3D 56 424 DEFS 100

=0121 ' 57 425 STACK . ,
; DEFINE 1/0 VECTORS

21' 61 429 INPUT VECTOR OFFH",,04H
21 FF 2 431 DEFB OFFH
22 444B30 3 432 DEFM 'DKO'
25 20202020 4 433 DEFM ,

2020
2B 202020 5 434 DEFM ,
2E 000000 6 435 DEFB 0,0,0
31 04 10 437 L2 DEFB 04H
32 00000000 1 1 438 L3 DEFW 0,0
36 00 13 440 L4 DEFB ° ,37 000000 16 442 L6 DEFB 0,0,0

i 3A 0000 18 444 L7 DEFW ° 13C 0000 22 447 L10 DEFW 0
13E 00 25 449 L12 DEFB ° 13F 00000000 26 450 DEFW 0,0,0,0,0,0,0,0,0

00000000
00000000
00000000
0000 . (FMAT IS BYTE 1/0 WITH 4 SECTORS PER DISK ACCESS) ,

151' 64 454 OUTPUT VECTOR OFFH,TTO""
151 FF 2 456 DEFB OFFH
152 545430 3 457 DEFM 'TTO'
155 20202020 4 458 DEFM

,
2020

15B 202020 5 459 DEFM
,

15E 000000 6 460 DEFB 0,0,0
161 04 8 462 L1 DEFB 8YTE+4
162 00000000 1 1 464 L3 DEFW 0,0
166 00 13 466 L4 DEFB ° 167 000000 16 468 L6 DEFB 0,0,0

,16A 0000 18 470 L7 DEFW 0
116C 0000 22 473 L10 DEFW ° 116E 00 25 475 L12 DEFB °)16F 00000000 26 476 DEFW 0,0,0,0,0,0,0,0,0

00000000
00000000
00000000
0000

; (THE EXTRA COMMAS ARE REQUIRED TO DEFAULT THE
FILENAME AND EXTENSION TO BLANKS)

0181 68 481 END

MOSTEK MACRO-BO OPERATIONS MANUAL

APPENDIX A

MACRO-80 ERROR CODES

3F RELOCATABLE USE - A relocatable value was used in an a-bit operand.
The user should assure that relocatable quantities are used only for
16-bit operand values (addresses).

40 BAD LABEL - An invalid label was specified. A label must start with
an alphabetic character (A-Z) and may contain only alphanumeric
characters (A-Z, 0-9) or question mark (?) or underline (_). A label
may start in any column if followed by a colon. It does not require a
colon if started in column one.

41 BAD OPCODE - An invalid zao opcode or pseudo-op or an undefined
macro name was specified.

42 BAD OPERAND An invalid operand or combination of operands was
specified for a given opcode.

43 BAD SYNTAX - The specification of an operand or expression was
invalid.

44 UNDEFINED - A symbol was used in an operand which was not defined in
the program, either locally or as an external symbol.

45 MULTIPLE DEF
program.

A symbol was defined more than once in the same

46 MULTIPLE PSECT - A PSECT pseudo-op was used more than once or was
defined after the first code-producing statement of the program. The
PSECT pseudo-op should be used only once at the beginning of a program.

47 MEMORY OVERFLO - This means that not enough memory exists in the
system to assemble the given program. This can occur because the
program contains too many symbols, macro parameters, or macro expansion
arguments.

48 EXTERNAL USAGE - An external symbol was used in an expression or the
operand of an EQU or DEFL pseudo-oPe The user should assure that an
external symbol is not used in these situations.

49 not used.

4A UNBAL QUOTES - An uneven number of Quote characters (0) occurred in
an operand.

4B LABEL REQUIRED - A label was not used in a statement that required
it. A label is required for EQU, DEFL, and MACRO statements.

43

MOSTEK MACRO-80 OPERATIONS MANUAL

4C OVERFLOW - In eva1uatin~ an expression, the value of the expression
exceeded 65536 (OFFFFH). The user should check the expression for
validity. Alternatively, the .RES. operation may be used to i~nore
the overflow condition and only the least si~nificant 16 bits of the
expression will be used.

4D OUT OF RANGE - The final value of an operand was found to be out of
the ran~e allowed for the ~iven opcode. For example, the valid ran~e
of the JR instruction is -126 throu~h +129.

4E BAD DIGIT - An invalid di~it was found in a number.

4F not used.

50 not used.

51 not used.

52 MULTIPLE NAME - The NAME pseudo-op was used more than once in the
same pro~ram.

53 NESTED INCLUDE An included file contained
pseudo-ope The user should assure that the INCLUDE
used in the body of an included module.

another INCLUDE
pseudo-op is not

54 EXPR TOO BIG - The expression evaluator
The user should reduce the complexity
statement which caused the error.

stack reached its
of the expression

limit.
in the

55 not used.

56 NUMBER TOO LARGE - A constant in an operand was too 1ar~e in value
for the ~iven operation.

57 OUT OF RANGE - The value of either operand in the strin~ operand [,]
was found to be out or ran~e. The limits are 1 and 63.

58 TOO MANY IFS - The nestin~ of conditional assembly pseudo-ops (IF
and ENDIF, or COND and ENDC) was too 1ar~e or unmatched. The maximum
level of nestin~ is 11, and each IF (COND) statement must be matched by
an ENDIF (ENDC) statement.

59 STRING TOO BIG
substrin~ operations
reduce the number of
macro body.

SA MERROR INDICATION

The size of the substrin~ in a sequence of
exceeded the available space. The user should

substrin~ expressions within the statement or

This error code is output when an MERROR
statement is expanded in a macro.

5B BAD THEN/ELSE - A THEN-clause or ELSE-clause operand was incorrectly
specified. The operand must be a local macro label defined by an
MLOCAL pseudo-oPe

44

MOSTEK MACRO-80 OPERATIONS MANUAL

5C TOO MANY PARMS - The maximum number of parameter substitutions in
calling a macro was exceeded. Maximum is 99.

5D BAD MACRO STMT - A macro pseudo-op was used outside of a macro body.

5E INCLUDE IN MAC - An INCLUDE statement was used inside a macro body.

5F LABEL USAGE - The usage of a label in a macro expansion was not
allowed.

60 NO MEND STMT - A macro was defined without an MEND statement.

45

MOSTEI(®
Z80. F8 Covering the full

spectrum of
3870. microcomputer

applications.

1215 W. Crosby Rd .• Carrollton, Texas 75006 • 214/242-0444
In Europe, Contact: MOSTEK Brussels

150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: (32) 02/660-2568/47.13

Mostek reserves the right to make changes in specijications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate and
reliable. However. no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is
granted under any patents or patent rights of Mostek.

PRINTED IN USA January 1979
Publication No. MK79635

Copyright 1979 by Mostek Corporation
All rights reserved

