~ MOSTEK

Z80 MICROCOMPUTER SYSTEMS

- Operations Manual

780 MACRO ASSEMBLER
~ VERSION 2.1
MACRO-80







MOSTEK MACRO-80

280 MACRO ASSEMBLER

VERSION 2.1

MK78165






MOSTEK MACRO-80

280 MACRO ASSEMBLER

TABLE OF CONTENTS

SECTION PARAGRAPH TITLE PAGE
NUMBER NUMBER NUMBER
1 OVERVIEW AND OPERATION 02
1-1 INTRODUCTION 02
1-5 REFERENCES 03
1-6 DEFINITIONS 03
1-18 CONVENTIONS USED IN THIS MANUAL ou
1-20 USING THE ASSEMBLER o4
1-23 ASSEMBLER OPTIONS 05
1-25 ASSEMBLY LISTING OUTPUT 06
1-30 CROSS REFERENCE LISTING 06
1-33 OBJECT OUTPUT 07
1-35 ERROR MESSAGES 07
1-38 ADVANCED OPERATIONS 07
1-40 SAMPLE ASSEMBLY SESSION 08
2 ASSEMBLY LANGUAGE SYNTAX
2-1 INTRODUCTION 09
2-3 DELIMITERS 09
2-5 LABELS 09
2-7 OPCODES 10
2-9 PSEUDO-0PS 10
2-11 OPERANDS 13
2-22 COMMENTS 18
2-24 ABSOLUTE MODULE RULES 19
2-26 RELOCATABLE MODULE RULES 19
2-32 GLOBAL SYMBOL HANDLING 20
2-37 GLOBAL SYMBOL RULES 21
3 MACRO CAPABILITY
3-1 INTRODUCTION 23
3-3 MACRO DEFINITION 23
3-11 MACRO CALLS AND MACRO EXPANSION 24
3-18 RECURSION 25
3-20 SUBSTITUTION BY VALUE (% OPERATOR) 26
3-23 PREDEFINED ARGUMENTS 26

02



3-25
3-30
3-32

sEEFEFEFEFE

I
EWNaF -
& a2 oo

APPENDIX A

FORMATION OF LABELS WITHIN A MACRO EXPANSION
LOCAL MACRO LABELS
MACRO RELATED PSEUDO-OPS

APPLICATIONS OF MACROS

INTRODUCTION

SPECIAL PURPOSE LANGUAGES
MACHINE EMULATION

DEVELOPMENT OF CROSS ASSEMBLERS
PROGRAM CONTROL STRUCTURES
OPERATING SYSTEM INTERFACE

MACRO-80 ERROR CODES

03

28
30
30

34
34
36
38
39
40



-
LI | I I
W N =

_-, e A A a0 OO EWN -

£ WN 2O

FrErEEFrFrrEErrErrErEEFEFEEESE

LIST OF FIGURES

TYPICAL DEVICE USAGE
SAMPLE LISTING
SAMPLE CROSS REFERENCE

MACRO LIBRARY FOR TRAFFIC CONTROL APPLICATION
TRAFFIC INTERSECTION

COMPLEX INTERSECTION

DEBUGGING MACRO

SAMPLE OUTPUT

STACK MACHINE OPCODE MACRO LIBRARY
A-D AVERAGING PROGRAM

3870 CROSS ASSEMBLER MACROS

PROGRAM CONTROL STRUCTURES VIA MACROS
SAMPLE USAGE OF CONTROL STRUCTURES
SAMPLE RUNS

I/0 SYSTEM DEFINITIONS:

MACRO DEFINITIONS FOR I/O FUNCTIONS
APPLICATION OF I/0O MACROS

o4



NN

wN -

LIST OF TABLES

MACRO-80 GENERIC OPERANDS
ALLOWED OPERATORS IN MACRO-80
RELOCATE RULES FOR OPERATORS



MOSTEK MACRO-80 OPERATIONS MANUAL

THIS PAGE INTENTIONALLY LEFT BLANK.

01






MOSTEK MACRO-80 OPERATIONS MANUAL

MOSTEK MACRO-80
280 MACRO ASSEMBLER

VERSION 2.1

COPYRIGHT 1978
MOSTEK CORPORATION
ALL RIGHTS RESERVED

MANUAL REVISION 1.5

SECTION 1

OVERVIEW AND OPERATION

1-1. INTRODUCTION.

1-2. The MOSTEK Z80 Macro Assembler (MACRO-80) is designed to run
under FLP-80D0OS Version 2.0 or above with 32K or more of RAM. MACRO-80
is the most powerful macro assembler in the microcomputer market. It

features:

1. optional arguments

2. default arguments

3. looping capability

4., global/local macro labels

5. nested/recursive expansions

6. integer/boolean variables

7. string manipulation

8. conditional expansion based on symbol definition
9. call by value facility

10. expansion of code producing statements only

1-3. MACRO-80 is an advanced upgrade from the FLP-80D0OS Assembler
(ASM). In addition to its macro capabilities, it provides for nested
conditional assembly, and it allows symbol lengths of any number of
characters. It supports global symbols, relocatable programs, a symbol
cross reference listing, and an unused symbol reference table.

1-4., Figure 1-1. shows the Assembler with typical device usage. The
source module is read from a disk file; the object output is directed
to a disk file; the assembly listing is directed to a line printer.
User 1interaction 1is via the <console device. Note that the Assenmbler

can interact with any dataset.

02



Figure 1-1. Typical Device Usage

e )
\_ J
)
LUN @ CONSOLE LUN |
INTERACTION
[
MACRO-80 LUN FFy ASSEMBLY
ASSEMBLER
FLEXIBLE
DISK LUN FFy
FILE OBJECT
OUTPUT

FLEXIBLE

DISK
FILE



MOSTEK MACRO-80 OPERATIONS MANUAL

1-5. REFERENCES.

AID-80F Operations Manual, MK78569
SYS-80F Operations Manual, MK78576
FLP-80D0OS Operations Manual, MK78557

1-6. DEFINITIONS.

1-7. SOURCE MODULE - the user's source prodram. FEach source module is
assembled into one object module by the Assembler. The end of a source
module is defined by an EOT character (ASCII 0O4) on input (standard
end-of-file) or an END statement.

1-8. OBJECT MODULE - the object output of the Assembler for one source
module. The object module <contains 1linking information, address and
relocating information, machine code, and checksum information for use
by the FLP-80DOS Linker. The object module is in ASCII. A complete
definition of the MOSTEK object format is given in Appendix B of the
FLP-80D0OS Operations Manual. The object module is typically output to
a disk file with extension OBJ.

1-9. LOAD MODULE - the binary machine code of one complete progran.
The load module is defined in RAM as an executable program or on disk
as a binary file (extension BIN). It is created by the linker from one
or more object modules.

1-10. LOCAL SYMBOL - a symbol in a source module which appears in the
label field of a source statement.

1-11. INTERNAL SYMBOL - a symbol in a source (and object) module which
is to be made known to all other modules which are linked with it by
the Linker. An internal symbol is also called global, defined, public,
Or commone. Internal symbols are defined by the GLOBAL pseudo-op. An
internal symbol must appear in the 1label field of the same source
module. Internal symbols are assumed to be addresses, not constants,
and they will be relocated when linked by the Linker.

1-12. EXTERNAL SYMBOL - a symbol which 1is used in a source (and
object) module but which is not a local symbol (does not appear in the
label field of a statement). External symbols are defined by the
GLOBAL pseudo-op. External symbols may not appear in an expression
which uses operators. An external symbol is a reference to a symbol
that exists and is defined as internal in another program module.

1-13. GLOBAL DEFINITION - both internal and external symbols are

defined as GLOBAL in a source module. The Assembler determines which
are internal and which are external.

03



MOSTEK MACRO-80 OPERATIONS MANUAL

1-14. POSITION INDEPENDENT - a program which can be placed anywhere in
memory. It does not require relocating information in the object
module.

1-15. ABSOLUTE - a program which has no relocating information in the
object module. An absolute program which is not position independent
can be loaded only in one place in memory in order to work properly.

1-16. RELOCATABLE - a program which has extra information in the
object module which allows the Linker to place the program anywhere in
memory.

1-17. LINKABLE - a program which has extra information in the object
module which defines internal and external symbols. The Linker uses
the information to connect, resolve, or link, external references to
internal symbols.

1-18. CONVENTIONS USED IN THIS MANUAL.

1-19. All user input is underlined. Those items which must be entered
exactly as shown are upper case. Those items which are variable are
lower case. The symbol (CR) stands for carriage return.

1-20. USING THE ASSEMBLER.

1-21. The MACRO-80 Assembler is resident on a FLP-80DOS diskette. The
user first prepares his source module using the FLP-80DOS Editor. Then
the source file may be assembled via the following command:

SMACRO dataset S [TO dataset L [,dataset O ]] (CR)
where dataset S = source input dataset
dataset L = assembly listing output dataset (optiona
dataset 0 = object output dataset (optional)

1-22. Dataset S 1is always a diskette file. Dataset L and dataset O
are optional. If not given, dataset L defaults to the same disk unit
and file name as dataset S, but the extension is LST. Dataset 0, if
not given, defaults to the same disk unit and file name as dataset L,
but the extension is OBJ.

EXAMPLE
SMACRO DK1:MYFILE TO CP:(CR)

- the user has selected to assemble file MYFILE on

o4



MOSTEK MACRO-80 OPERATIONS MANUAL
disk unit 1. The listing is to be directed to the

Centronics line printer device. The object will be
directed to disk unit 1 on file MYFILE.ORJ.

1-23. ASSEMBLER OPTIONS

1-24. The Assembler allows the user to select the following options
from the console when the Assembler outputs the message:

MOSTEK MACRO-80 ASSEMBLER V2.1. OPTIONS?

C - cross reference listing - prints a symbol cross reference table at
the end of the assembly listing.

E - error exit - if any errors occur in pass 1 of the Assembler, they
will be printed and pass 2 will not be done.

F - normal operation of pass 1 and pass 2 of the Assembler (default),
switch off option E.

K - no listing - suppresses the assembly listing output. All errors
will be output to the console device.

L listing - the assembly listing will be output (default)

N - no object output - suppresses object output from the Assembler.

0 - object output - the object output will be produced (default).
Q - quit - return to Monitor.
R - redefine opcodes - allows normal Z80 opcodes to be redefined by

macros (default off).

U - unused symbols - a list of unused symbols will be printed at the
start of the assembly listing.

V - switch off option U (default).

If no options are to be selected, the user enters a carriage return
only.

EXAMPLE
OPTIONS?NU(CR)

- the user has selected no object output and
an unused symbol listing.

05



MOSTEK MACRO-80 OPERATIONS MANUAL

1-25. ASSEMBLY LISTING OUTPUT

1-26. Figure 1-2. shows a sample Assembler listing output. The title
(defined by the TITLE pseudo-op) 1is printed at the top of each page.
The page number is in decimal notation. Three names appear in the
second line at the top of each page. The first name 1is that of the
source module; the second is the name of the object module; the third
is that defined by the NAME pseudo-op. The key following the names is
REL for a relocatable program and ABS for an absolute program.

1-27. Columns in the listing are automatically assigned by the
Assembler. The LOC column defines the program address of the obJject
code in hexadecimal. For relocatable programs, LOC is the relative

offset from the start of the programe. For absolute programs, LOC is
the absolute address of the object <code. The OBJ.CODE column defines
the assembled Z80 opcode in hexadecimal. It is preceded by a quote (')
if the statement contains a relocatable label. It is followed by a
guote if the object code contains a relocatable address.

1-28. The STMT-NR heading defines two statement number columns. The
column on the right defines a running statement number for all lines of

the assembled progranm. The cross reference listing always refers to
this number. The column on the left appears in programs with included
files (INCLUDE pseudo-op) and/or macro expansions. Statement numbers

are printed in decimal. The rest of each listing line is the source
statement. If +the line exceeds an 80 <column width, then the source
line is overflowed to the next line in the listing. The value of each
equated symbol (EQU pseudo-op) is printed with an equal sign (=) next
to it.

1-29. The number of 1lines printed per page of assembly 1listing is in
address OBH of the Assembler. The number of characters per line of
listing is in address OCH of the Assembler. Either of these values may
be changed by the user. The default 1is 60 lines per page, 80
characters per line.

1-30. CROSS REFERENCE LISTING.

1-31. Figure 1-3. shows a cross reference listing, which is selected
by option 'C'. The NAME column on the left hand side shows each symbol
name used in the program in alphabetical order. The TYPE column

indicates the type of the variable:
D variable defined by DEFL pseudo-op
E external variable
I internal variable

06



o

UKE 1-2. SAMPLE LISTING MOSTEK MACRO-80 ASSEMBLER V2.0 EAGE

OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG1D2 FIG1D2 FIG1D2 REL
1 TITLE FIGURE 1-2. SAMPLE LISTING
2 SHIFT2 MACRO #REG #N #KIND ;GENERALIZED SEIFT MACRO
1 3 MLOCAL L%,L2,13,L4,L5,1L6,L7 ;LOCAL MACRO LABEL
2 4 N1 DEFL #N-1 ;GET NUMBER OF BITS TO SHIFT
3 5 NL DEFL '%N1'[4,1] +PREPARE FOE CONDITIONAL |
b4 6 AND A ;RESET CARRY BIT FOR SHIFT
5 7 MIF ('%ZN1'<='0007').AND.('%ZN1'>='C001") THEN
L#NL
6 8 MERROR ' N>7 OR N<1 !
7 9 MEXIT
8 10 L7 #KIND #REG ;SHIFT REGISTER NUMERER CF BITS
9 11 L6 #KIND #REG ;SPECIFIED BY #N PARAMETER
10 12 L5 #KIND #REG
11 13 L4 #KIND #REG ;THE TYPE OF SHIFT IS SHOWN
12 14 L3 #KIND #REG ;BY THE #KIND PARAMETER
13 15 L2 #KIND #REG
14 16 L1 #KIND #REG
15 17 MEND
=0005 19 BB EQU 5 ;DEFINE NBR OF BITS TO SHIFT
J0 20 SHIFT2 A BB SRL
1 21 MLocar n1,L2,L3,1L4,L5,L6,L7 ;LOCARL MACRO LAEE
=0004 2 22 N1 DEFL BB-1 ;GET NUMBER CF BITS TC SHITT
=0034 3 23 NL DEFL 'C0O04'[4,1) ;PREPARE FOR CONDITIONAL JUNP
JO A7 4 24 AND A ;RESET CARRY BIT FOR SHIFT
=FFFF 5 25 MIF ('0004'<='0007"').AND.('0004"'>="0001") THE
N Lu
01 CB3F 11 26 L4 SRL A ; THE TYPE OF SHIFT IS SHOWN
03 CB3F 12 27 L3 SRL A ;BY THE SRL PARAMETEP
05 CB3F 13 28 L2 SRL A
07 CB3F 14 29 11 SRL A
15 30 MEND
09 22 32 SHIFT2 A 'BB-2' RR
1 33 MrLocar n.1,L2,L3,L4,L5,L6,L7 ;LOCAL MACRO LABEI
=0002 2 34 N1 DEFL BB-2-1 ;GET NUMBER OF RBITS TO SHIFT
=0032 3 35 NL DEFL '0002'(4,1] ;PREPARE FOR CONDITICNAL JUMI
09 A7 4 36 AND A ;RESET CARRY BIT FOR SHIFT
=FFFF 5 37 MIF ('0002'<='0007"').AND.('0002'>="'0001") THI
N L2
OA CB1F 13 38 L2 RR A
0C CB1F 14 39 L1 RR A
15 49 MEND
14
i0E 24 42 SHIFT2 L '2*BB' RL ;SHOULD GENERATE AN ERROR
1 43 MLOCAL L1,L2,L3,L4,L5,L6,L7 ;LOCAL MACRO LABE
=0009 2 44 N1 DEFL 2*BB-1 ;GET NUMBER OF BITS TO SHIFT
=0039 3 45 NL DEFL '0009'([(4,1] ;PREPARE FOR CONDITIONAL JUH
JOE A7 4 46 AND A ;RESET CARRY RIT FOR SHIFT
=0000 5 47 MIF ('C009'<='0007"').AND.('0009'>="'0001"') TH
N 19
6 L8 MERROR ' N>7 OR N<1 !
k***ERR SA * ke k Kk Kk ok k k ok k ok ok Kk Kk *
7 49 MEXIT
JOF 26 51 END

ASS2 FIG1D2 FIG1D2 FIG1D2 REL ERRORS : 1



FIGURE 1-3. SAMPLE CROSS REF

NAME TYP VALUE DEF

BB 0005 19
N1 D 0009 L4y
NL D 0039 45
SHIFT2 M 1604 2

REFERENCES
22 34
22* 23
47
23* 25
20 32

44
25

35*
42

25

37

3yx*

45*

35

47

MOSTEK MACRO-80 ASSEMBLER
PASS2 FIG1D3 FIG1D3 FIG1D3 REL

37

37

yyg=

V2.0 PAGE

45



MOSTEK MACRO-80 OPERATIONS MANUAL

M macro name

U undefined symbol

blank absolute value, not global

' relocatable value, not global
2 multiply defined variable

1-32. The VALUE column shows the 16-bit value of the symbol. The DEF
column shows the statement number in which 'the symbol is defined.
REFERENCES defines each statement number in which the symbol is used.
A reference marked with an asterisk means the variable is used as a
'target operand' in the statement. For example:

LD (NN),A

SET NBIT,B
- the references of NN and NBIT are marked by an
asterisk (*) in the cross reference listing.

1-33. OBJECT OUTPUT.

1-34. The object output of the Assembler can be loaded by an Intel
hexadecimal loader for non-linkable programs. Extra information is
inserted into the object output for linkable and relocatable programs
for using the MOSTEK Linker. For a complete discussion of the object
format, see Appendix B in the FLP-80DOS Operations Manual.

1-35. ERROR MESSAGES.

1-36. Any error which 1is found is denoted in the assembly listing. A
message 1is printed immediately after the statement which is in error.
An asterisk is printed under the location in the statement where the
error was detected. All the error codes for this Assembler are defined
in Appendix A of this manual.

EXAMPLE
H2: LC A,B
*****ERR 41 BAD OPCODE *

1-37. Several errors abort the Assembler when they are encountered.

Abort errors are output only to the <console device and control is
immediately returned to the Monitor. Abort errors may occur during

pass 1 or pass 2.

1-38. ADVANCED OPERATIONS.

07



MOSTEK MACRO-80 OPERATIONS MANUAL

1-39. Several source modules may be assembled together to form one
object module. The INCLUDE pseudo-op may be used several times in one
module to properly sequence a set of source modules.

EXAMPLE
NAME MYFILE ;name of final object module

INCLUDE FILE"
INCLUDE FILE2
INCLUDE FILE3
END

- the object module named MYFILE will be built by the
assembly from FILE1 + FILE2 + FILES3.

1-40. SAMPLE ASSEMBLY SESSION

1-41. Assume that the file to be assembled 1is named PROG1. The
diskette on which PROG1 exists is in disk unit 1 (DK1). The object
output of the Assembler is to be directed to file PROG1.0BJ on disk
unit 1. The assembly listing is to be directed to a line printer
(LP:). A cross reference table is to be printed.

EXAMPLE
SMACRO DK1:PROG1 TO LP:(CR)

- - - - - — - - o - ——

MOSTEK MACRO-80 ASSEMBLER V2.1. OPTIONS? C(CR)

- user selects a printed cross reference table

- indication that assembly is done and control is
returned to the Monitor.

08



MOSTEK MACRO-80 OPERATIONS MANUAL
SECTION 2

ASSEMBLY LANGUAGE SYNTAX

2-1. INTRODUCTION.

2-2. An assembly language program (source module) consists of labels,
opcodes, pseudo-ops, operands, and comments in a sequence which defines
the user's program. The assembly language conventions for MACRO-80 are
described below.

2-3. DELIMITERS.

2-4. Labels, opcodes, operands, and pseudo-ops must be separated from
each other by one or more spaces or tab characters (ASCII 09). The
operands must be separated from each other by commas. Operands in a
macro call or macro definition statement may be separated from each
other by one or more spaces or tab characters. The 1label may be
separated from the opcode by a colon, only, if desired.

EXAMPLE
label opcode operands comment
LAB1 LD A,B s LOAD REGISTER A WITH B

2-5. LABELS.

2-6. A label may have any number of characters in it. The first six
characters are decoded unigquely; any remaining characters are
identified by a 'hash code'. This means that it is possible toc use
labels longer than 6 characters which appear different but are multiply
defined by the Assembler. For example, 'ALABEL65' and 'ALABEL56' would
be identified as the same label.

2-6A. The first character of a label must be alphabetic (A-2). The
remaining characters may be alphanumeric (A-Z, 0-9), question mark (?),
or underline (_). Note that this 1s more restrictive than the
FLP-80DOS ASM Assembler. A label may start in any column if
immediately followed by a colon (:). It does not reguire a colon if
started in column one.

EXAMPLE
allowed not allowed

09



MOSTEK MACRO-80 OPERATIONS MANUAL

—— - —— - - ———— - — - —

LABEL1 1LABY4 (starts with a number)
HERE? AD%DC (contains illegal character)

2—70 OPCODES-

2-8. There are 74 generic opcodes (such as LD), 25 operand key words
(such as A), and 693 legitimate combinations of opcodes and operands in
the Z80 instruction set. The full set of these opcodes is documented
in the 'Z80 CPU Technical Manual'. The MACRO-80 Assembler allows one
other opcode which is not explicitly shown in the Technical Manual:

IN F,(C) ;SET CONDITION BITS ACCORDING TO THE CONTENTS
;OF THE PORT DEFINED BY THE C-REGISTER

2-9. PSEUDO-0OPS.

2-10. Pseudo-ops are used to define assembly time parameters.
Pseudo-ops appear like Z80 opcodes in the source module. Several
pseudo-ops require a label. The following pseudo-ops are recognized by
the Assembler:

ORG nn - origin - sets the program counter to the value of the
expression nn. Each origin statement in a program must
be greater than the first origin of the program to assure
proper linking.

label EQU nn - equate - sets the value of the label to nn in the progr
where nn is an expression; it can occur only once for any
label.

label DEFL nn - define label - sets the value of a label to nn in the

program, where nn 1s an expression; it may be repeated in
the program with different values for the same label.

At any point in the program, the label assumes the last
previously defined value. DEFL has certain other very
useful properties associated with its use in macros.

(See Section 3 of this manual).

DEFM m,m,Me .. - define message - defines the contents of successive
bytes of memory according to m. m is composed of a
sequence of either strings of characters surrounded
by gquotes or constants, each separated
by one comma. Strings and constants may
be mixed. The maximum length of the message is 63 bytes.
The number of bytes allocated to a constant depends
on its value. For example, the constant OAF3H will

10



f0OSTEK MACRO-80

DEFB n,n,nNee..

DEFW nn,nn,NNeee

DEFS nn

END nn

OPERATIONS MANUAL

have 2 bytes allocated to it, and OEFH will have

one byte allocated. Symbols and expressions are

not allowed in operands in the DEFM statement.

The delimiting guote characters are required on a
character string. A guote

may be placed in a message by a sequence of 2 quotes
('*). Example: DEFM 5H,'TEXT1',20414E4420H, 'TEXT2'

- define byte - defines the contents of successive bytes
starting at the current program counter address to be n,
where n is any expression.

- define word - defines the contents of successive
two-byte words to
be the value of expressions nn. The least significant
byte of each expression is located at the current
program counter address.
The most significant byte is located at the program
counter address plus one.

- define storage - reserves nn bytes of memory starting

at the current program counter, where nn is an expression.
When loaded, these bytes are not overwritten, i.e., they
will contain what was previously in memory. This pseudo-op
cannot be used at the start or end of a program to

reserve storage.

- end statement - defines the last statement of a program.
The END statement is not required. The expression nn is
optional and represents the transfer address (starting
execution address) of the program. Note that for binary
files the transfer address must be the same as the
starting address'.

GLOBAL symbol,symbol,... - define global symbol - any symbol which

NAME symbol

PSECT op

is to be made known among several separately assembled
modules must appear in this type of statement. The
Assembler determines if the symbol is internal (defined
as a label in the program), or external (used in the
program but not defined as a label).

- module name - This pseudo-op defines the name of the
program (source and object). The name is placed in the
heading of the assembly listing and is placed in the first
record of the object module to identify it. This
pseudo-op is designed primarily to facilitate future
compiler design. The name of a module defaults to

6 blanks.

- program section - may appear only once at the start
of a source module. This pseudo-op defines the
program module attributes for the following

operands:

11



MOSTEK MACRO-80

IF nn
or COND nn

ENDIF
or ENDC

INCLUDE dataset

LIST nn

ELIST nn

CLIST nn

NLIST

EJECT

OPERATIONS MANUAL

REL - relocatable program (default)

ABS - absolute program. No relocating
information is generated in the object
module. The module will be linked where
it is origined.

- conditional assembly - if the expression nn is
true (non-zero), the pseudo-op is ignored.

If the expression is false (zero), the assembly
of subsequent statements is disabled until

an ENDIF statement is encountered. IF pseudo-ops
can be nested to a level of 11.

- end of conditional assembly - re-enables
assembly of subsequent statements.

- include source from another dataset -

allows source statements from another dataset to be
included within the body of the given progranm.

If a file name only is specified, then the file

is searched for first on DKO:, then on DK1:.

If the dataset cannot be opened properly, then
assembly is aborted. The source module to be
included must not end with an END pseudo-op
(otherwise, assembly would be terminated). The
source module must end with an EOT character

(O4H), which is true for all FLP-80DOS ASCII datasets.
The INCLUDE pseudo-op cannot be nested, it

cannot be followed by a comment on the same line,
and it cannot appear in a macro definition.

- list all assembled statements (default on), where
nn is an expression. If nn = 0 then the listing
is turned off. Otherwise it is turned on.

- list expanded statements from macro expansions -
if the expression nn = 0, then only the

macro call statements will appear in the

assembly listing. Otherwise, all expanded
statements from macro calls will appear in

the assembly listing (default on).

- list only code-producing statements from

macro expansions - if the expression nn = 0,
then only code-producing statements in the macro
expansions will be listed. Otherwise all
statements in each macro expansion will be
listed in the assembly listing (default on).

- turn off assembly listing. This is provided
for compatibility with the FLP-80D0OS ASM.

- eject a page of the assembly listing.

12



MOSTEK MACRO-80 OPERATIONS MANUAL

TITLE s - print a title 's' at the top of each page
of the listing. The title may be up to 32
characters in length.

2-11. OPERANDS.

2-12. There may be 2zero, one, or more operands in a statement
depending upon the opcode or pseudo-op used. Operands in the Assembler
may take the following forms:

2-13. GENERIC OPERAND. Table 2-1 summarizes the generic operands in
the MACRO-80 Assembler.

2-14. CONSTANT. The constant must be in the range 0 thru OFFFFH. It
may be in any of the following forms:

Decimal - this is the default mode of the Assembler. Any
number may be denoted as decimal by following it
with the letter 'D'. E.g., 35, 249D

Hexadecimal - must begin with a number (0-9) and end with the
letter 'H'. E.g., OAF1H

Octal - must end with the letter 'Q' or '0'. E.g. 377Q, 2770
Binary - must end with the letter 'B'. E.g., 011011B

ASCII - letters enclosed in gquote marks will be converted
to their ASCII equivalent value. E.g., 'A' = 41H

2-16. LABEL. Labels cannot be defined by labels which have not yet
appeared in the user progranm. This is an inherent 1limitation of a two
pass assembler.

EXAMPLE not allowed allowed
L EQU H I EQU 7
H EQU I H EQU I
I EQU 7 L EQU H

13



MOSTEK MACRO-80 OPERATIONS MANUAL
TABLE 2-1.

MACRO-80 GENERIC OPERANDS

A A register (Accumulator)
B B register

C C register

D D register

E E register

F F register (flags)

H H register

L L register

AF AF register pair

AF' AF' register pair

BC BC register pair

DE DE register pair

HL HL register pair

SP Stack Pointer register
S Program Counter

I I register (interrupt vector MS byte)
R Refresh register

IX IX index register

IY IY index register

NZ not zero

Z Zero

NC not carry

C carry

PO parity odd/not overflow
PE parity even/overflow

P sign positive

M sign negative

14



MOSTEK MACRO-80 OPERATIONS MANUAL

2-17. EXPRESSION. MACRO-80 recognizes a wide range of expressions in
the operand field of a statement. All expressions are evaulated left
to right constrained by +the hierarchies shown in Table 2-2.
Parentheses may be used to ensure correct expression evaluation. The
symbol 'S$' is used to represent the value of the program counter of the
current instruction. Note that enclosing an expression wholly in
parentheses indicates a memory address. Integer two's complement
arithmetic 1is used throughout. The negative (2's complement) of an
expression or guantity may be formed by preceding it with a minus sign.
The one's complement of an expression may be formed by preceding it
with the '.NOT.' operator.

2-18. In doing relative addressing, the current value of the progranm
counter may or may not be subtracted from the label, at the
programmer's discretion:

JR LOOP
JR LOOP-S
-will both jump relative to the label 'LOOP°'.

2-19. The allowed range of an expression depends on the context of its
use. An error message will be generated if this range is exceeded
during its evaluation. In general, the limits on the range of an
expression are 0 thru OFFFFH. The range of a jump relative instruction
(JR or DJNZ) is -126 bytes and +129 bytes. The Assembler monitors the
number of items in an expression. If an expression is too long, an
error message will be output. For relocatable programs the Assembler
outputs relocation information in the object module for those addresses
which are to be relocated by the Linker. Expressions are determined to
be relocatable addresses or non-relocatable constants according to the
rules shown in Table 2-3.

15



MOSTEK MACRO-80 OPERATIONS MANUAL
TABLE 2-2.

ALLOWED OPERATORS IN MACRO-80

OPERATOR HIERARCHY RELOCATE RULE RANGE
___________________________________ \
.RES. -——— -—— -

.DEF. -—- 1 operand must be a symbol
unary + 1 1

unary -

** 1 2

* 2 2

/ 2 2 operand 2 not = 0

+ 3 3

- 3 4

.EQ. or = 4 5 string handling allowed
.LT. or < 4 5

.GT. or > 4 5

.LE. or <= or =< 4 5

«.GE. or >= or =>4 5

.NE. or <> or >< 4 5

.ULT. 4 5

.UGT. 4 5

«AND. 5 2

.OR. 6 2

«XOR. 6 2

.MOD. 6 2

.NOT. 6 1

«SHR. 6 2 operand 2 < 16

«SHL. 6 2 operand 2 < 16

[m,n] -——— -—- operand must be a string

For relocate rules see Table 2-3.

16



MOSTEK MACRO-80 OPERATIONS MANUAL

TABLE 2-3.

RELOCATE RULES FOR OPERATORS

—— - - — - ———— -

relocatable
relocatable

absolute

<operand 1> op <operand 2> Relocate rule
1 2 3 4 5
NOT * / + - >
relocatable ERR ERR ERR ABS ABS
absolute ABS ERR REL REL ABS
relocatable ERR ERR REL ERR ABS
absolute ABS ABS ABS ABS ABS

absolute

where ABS
REL
ERR

The following table shows the rules for

denotes absolute result
denotes relocatable result
denotes error condition.

relocatable and absolute programs.

(rule number)
(mnemonic)

global symbols used in

relocatable programs absolute progranms
nn = rel nn = abs nn = rel = abs
REL ERR REL REL

REL ABS REL ABS

GS EQU nn
LS EQU nn
where

GS denotes a global symbol
LS denotes a non-global symbol
nn is an expression

REL

means relocatable result

ABS means absolute result
ERR denotes error condition

17



MOSTEK MACRO-80 OPERATIONS MANUAL

«.RES. - reset overflow - appearance of this operator anywhere in an
expression forces any overflow indication to be unconditionally reset.
.NOT. - one's complement.

** - exponentiation operator.

Relational operators (= > < etc.) can be used with character strings.

This facility is useful when using macros to define a higher level
language.

.ULT. - unsigned less than.
«UGT. - unsigned greater than.
.SHR. - shift first operand right by number of bits designated in

second operand.

«.SHL. - shift first operand left by number of bits designated by the
second operand.

.DEF. - defined symbol operator - returns the value zero (false) if
the symbol following the operator is not defined. Returns true (not
zero) if the symbol is defined.

2-20. STRING EXPRESSIONS. The operator [,] extracts a substring from
a given string. This is most useful in macros in which strings can be
passed as arguments. Note that the Assembler does not support string
variables. The general form of a string expression is:

stringlm,n]) or string(m]

where string is any character string enclosed by quotes,
[ and ] are delimiters,
m is an integer which represents the starting
column number, and
n is an integer which represents the number of
columns to be accessed.

2-21. If the integer n is not present, then n is assumed to be equal
to the remaining number of columns in the given string.

EXAMPLE
'ABCDEF'[3,2] is equivalent to 'CD'
*ABCDEF'[3] is equivalent to 'CDEF'

2-22. COMMENTS.

18



MOSTEK MACRO-80 OPERATIONS MANUAL

2-23. A comment 1is defined as any set of characters following a
semicolon in a statement. A semicolon which appears in quotes in an
operand is treated as an expression rather than a comment starter.
Comments are ignored by the Assembler, but they are printed in the
assembly listing. Comments can begin in any column. Note that the
Assembler also treats as comments any statements with an asterisk (*)
in column one.

2-24. ABSOLUTE MODULE RULES.

2-25. The pseudo-op 'PSECT ABS' defines a module to be absolute. The
program will be loaded in the exact addresses at which it is assembled.
This 1is wuseful for defining constants, a common block of global
symbols, or a software driver whose position must be known. This
method can be used to define a list of global constants as follows:

EXAMPLE
PSECT ABS ;ABSOLUTE ASSEMBLY
GLOBAL AA
AR EQU OE3H
GLOBAL AX
AX EQU OAF3H
END

2-26. RELOCATABLE MODULE RULES.

2-27. Programs default to relocatable if the 'PSECT ABS' statement is
not used or if 'PSECT REL' is used.

2-28. Only those values which are 16-bit address values will De
relocated. 16-bit constants will not be relocated.

EXAMPLE
AR EQU OA13H ;ABSOLUTE VALUE
LD A,(AA) ;AR NOT RELOCATED
AR EQU S ;RELOCATABLE VALUE
LD HL, (AR) ;AR WILL BE RELOCATED UPON LINKING

2-29. Relocatable gquantities may not be used as 8-bit operands. This
restriction exists because only 16-bit operands are relocated by the
Linker.

EXAMPLE
LAB EQU $ sRELOCATABLE VALUE

19



MOSTEK MACRO-80 OPERATIONS MANUAL

DEFB LAB ;NOT ALLOWED

LD A,(IX+LAB) ;NOT ALLOWED
LD A,(LAB) :;ALLOWED

LD HL,LAB ;ALLOWED

2-30. Labels eguated to labels which are constants will be treated as
constants. Labels equated to labels which are relocatable addresses
will be relocated.

EXAMPLE
B8 EQU 20H sCONSTANT
c8 EQU B8 sCONSTANT
LD A,(C8) ;C8 WILL NOT BE RELOCATED
AR EQU S sRELOCATABLE ADDRESS
BR EQU AR ;RELOCATABLE
LD A,(BR) ;BR WILL BE RELOCATED
2-31. External symbols in a relocatable program are marked

relocatable, except for the first usage. The code for external symbols
is actually a backward link list through the object code.

2-32. GLOBAL SYMBOL HANDLING.

2-33. A global symbol is a symbol which is known by more than one
module. A global symbol has its value defined in one module. It can
be used by that module and by any other module which is linked with it
by the Linker. A global symbol is defined as such by the GLOBAL
pseudo-op.

2-34. An internal symbol is one which is defined as global and also
appears as a label in the same progran. The symbol value 1s thus
defined for all programs which use that symbol. An external symbol is
one which 1is defined as global but does NOT appear as a label in the
same prografm.

EXAMPLE

GLOBAL SYM1 sDEFINE GLOBAL SYMBOL

CALL SYM1

END

- SYM1 is an external symbol

EXAMPLE

GLOBAL SYM1 ;DEFINE GLOBAL SYMBOL

SYM1 EQU S
LD A,(SYM1)

20



MOSTEK MACRO-80 OPERATIONS MANUAL
END
- SYM1 is an internal symbol. Its value
is the address of the LD instruction.

2-35. If these two programs were assembled and then linked by the
Linker, then all global symbol references from the first program would
be ‘'resolved'. This means that each address in which an external
symbol was used would be modified to the value of the corresponding
internal symbol. The linked programs would be equivalent (using our
example) to one program written as follows:

EXAMPLE
CALL SYM1

L]

SYM1 EQU $
LD A, (SYM1)
END

2-36. Global symbols are used to allow large programs to be broken up
into smaller modules. The smaller modules are used to ease
programming, facilitate changes, or allow programming by different
members of the same team.

2-37. GLOBAL SYMBOL RULES.

2-38. An external symbol cannot appear in an expression which uses
operators.
EXAMPLE

GLOBAL SYM1 ;EXTERNAL SYMBOL

CALL SYM1 ;0K

LD HL, (SYM1+2) ; NOT ALLOWED

2-39. An external symbol is always considered to be a 16-bit address.
Therefore, an external symbol cannot appear in an instruction requiring
an 8-bit operand.

EXAMPLE
GLOBAL SYM1 ;EXTERNAL SYMBOL
CALL SYM1 ;0K
LD A,SYM1 ;NOT ALLOWED

21



MOSTEK MACRO-80 OPERATIONS MANUAL

2-40. An external symbol cannot appear in the operand field of an EQU
or DEFL statement.

2-41. For a set of modules to be linked together, no duplication of

internal symbol names is allowed. That is, an internal symbol can be
defined only once in a set of modules to be linked together.

22



MOSTEK MACRO-80 OPERATIONS MANUAL
SECTION 3

MACRO CAPABILITY

3-1. INTRODUCTION.

3-2. MACRO-80 offers the most advanced macro handling capability in
the microcomputer industry. Macros provide a means for the user to
define his own opcodes or to redefine existing opcodes. A macro
defines a body of text which will be inserted automatically into the
source program at each occurrence of a macro call. Parameters
associated with a macro provide a capability for making changes in the
macro at each call. The following paragraphs describe how to use the
macro facility.

3-3. MACRO DEFINITION.

3-4. The body of text to be used as a macro is given in the macro
definition. Each definition begins with a MACRO pseudo-op and ends
with an MEND pseudo-op. The general form is:

label opcode operands comment
name: MACRO #p1,#p2,...,#DN0 ;comments (optional)
. body of macro goes here

label: MEND

3-5. The name 1is required, and it must obey all the usual rules for
forming labels (recall that the colon is optional if the name starts in
column one). If the name is a 7280 opcode (e.g., LD, EXX), then the 'R’
option must be selected at the start of the Assembler to permit
redefinition of opcodes by macros.

3-6. There can be any number of parameters from 0 to 99, each starting
with the symbol '#°'. The rest of the parameter name follows normal
symbol rules. Parameter names are not entered into the symbol table.
Parameters are separated from each other by single commas, or one oOr
more blanks, or one or more tab characters.

3-7. The label on the MEND statement is optional, but if one is given
it refers to the next program address upon expansion of the macro.

23



MOSTEK MACRO-80 OPERATIONS MANUAL

3-8. Each statement between the MACRO and MEND statements is entered
into a temporary macro file. The only restriction on these statements
is that they do not 1include another macro definition (nested
definitions are not allowed) or an INCLUDE statement. They may include
macro calls. The depth of nested calls is limited only by available
memory space for buffering.

3-9. The statements of the macro body are not assembled at definition
time, so they will not define labels, generate code, or cause errors.
Exceptions are the Assembler commands such as LIST which are processed
whenever they are encountered. Within the macro body text, the formal
parameter names may occur anywhere that an expansion-time substitution
is desired. This also applies to comments and quoted strings.
However, no substitution of parameters 1is performed for comments
defined by an asterisk in column one.

3-10. Macros must be defined before they are called. Once defined, a
macro cannot be redefined within the same program. If a macro 1is
called by another macro, then its definition must precede the «calling
macro's definition.

3-11. MACRO CALLS AND MACRO EXPANSION.

3-12. A macro is called by using its name as an opcode at any point
after the definition. The general form is:

label opcode operands comment
label name S1,S2,e0¢,SN ;comment (optional)

3-13. The label is optional and will be assigned to the current value
of the program counter. The name must be a previously defined macro.
There may be any number of argument strings s1 thru sn, separated by
any number of blanks or tabs or single commas. The comma can be used
as a place holder to pass null arguments to the macro expansion. All
arguments are passed. If too few are passed, the remaining arguments
assume the value of null (no characters in the argument string). If
there are too many arguments, the extras may be accessed by the MNEXT
pseudo-op (described below).

3-14. The position of each string in the list corresponds to the
position of the macro parameter name it is to replace. Thus, the third
string in a macro call statement will be substituted for each
occurrence of the third parameter name.

3-15. Each string 'may be of any length and may contain any characters.
Quotes around the string are optional; they are required if the string
contains delimiters or the quote character itself. The guote character
is represented by a sequence of two successive quote characters at the

24



MOSTEK MACRO-80 OPERATIONS MANUAL

inner level. The outer level of quotes, if present, will not occur in
the substitution, i.e., they are stripped from the argument. The null
string, represented by two successive quote characters, may be used in
any parameter position.

3-16. After processing the macro call statement, +the Assembler
switches its input from the source file to the macro file. Each
statement of the macro body is scanned for occurrences of parameter
names. For each occurrence found, the corresponding argument string
from the macro call statement is substituted. After substitution, the
statement is assembled normally.

3-17. Default arguments may be specified in the parameter list by use
of an equal sign (=). The call to the mac¢ro must specify comma place
holders for each default argument to be substituted (otherwise the null
argument will be substituted).

EXAMPLE
MAC1 MACRO #A=DE, #B=HL, #C=BC

MEND

MAC1 ;EXPANSION WITH NO ARGUMENTS

. sALL ARGUMENTS WILL DEFAULT TO NULL
MEND

MAC1 ree ;EXPANSION TO USE DEFAULT ARGUMENTS
. ;DEFAULT ARGUMENTS WILL BE

. ; USED FOR PARAMETERS #A, #B, AND #C
MEND

3-18. RECURSION.

3-19. Macros may include calls to other macros, including themselves.
The definition statements of a macro which <c¢alls other macros nmust
follow the definition statements of those macros. A macro which
directly calls itself (or indirectly by calling a second macro which
calls the first macro) 1is said to be recursive. Each recursive call
causes a new expansion of the macro, possibly with different
parameters. In order to prevent the macro from being called endlessly,
conditional assembly can be used to inhibit a recursive call when
certain conditions are met. A recursion of greater than 255 calls will
generate an error.

25



MOSTEK MACRO-80 OPERATIONS MANUAL

3-20. SUBSTITUTION BY VALUE (% OPERATOR).

3-21. Symbol values can be expanded within a macro by preceding the
symbol name with a percent sign (%). The symbol must appear as the
label of a DEFL statement. The value of the symbol is expanded to 4
decimal digits when the macro is called.

3-22. The value of an argument may be substituted by value by using
the DEFL statement and the % operator. In this case, some symbol is
equated to the parameter via the DEFL pseudo-op. The value of the
symbol is then expanded to four decimal digits by using the % operator.
This facility can be used only within a macro.

The DEFL statement within a macro also has the characteristic that it
can be expanded just like a macro parameter. The symbol defined by the
DEFL pseudo-op can be preceded by a # sign elsewhere in the macro
definition to expand its value as ASCII characters. See the example
below.

EXAMPLE

MAC1 MACRO #N

N1 DEFL #N-1

NL DEFL 'ZN1[4,1] ;GET ONE-DIGIT ASCII NUMBER
JP L#NL

L1 e

L2 L

L3 LA N

Ly MEND

BB EQU 4
MACH BB ;EXPANSION

N1 DEFL 3

NL DEFL '0003"'[4,1]
JP L3

L1 LN )

L2 L N

L3 e e 0

Ly MEND

3-23. PREDEFINED ARGUMENTS.

3-14. The following predefined arguments are unigque symbols and may be
used anywhere in the macro definition.

%NEXP - expands to a four decimal digit representation of the number of
the expansion of any macro. Thus, the first expansion of any macro

26



MOSTEK MACRO-80 OPERATIONS MANUAL
Yields %ZNEXP = 0001, the second yields %NEXP = 0002, etc.

EXAMPLE
MAC1 MACRO
DEFW %ZNEXP
MEND

MAC1 ) 1ST EXPANSION
DEFW 0001

MEND

MAC1 s2ND EXPANSION
DEFW 0002

MEND

%NARG - expands to a four decimal digit representation of the number of
aguments passed to the macro expansion.

EXAMPLE
MAC1 MACRO #A , #B, #C

LD A,%ZNARG
MEND
MAC1 1,2 ;EXPANSION
LD A,0002
MEND

#PRM - expands to the last used argument. Note that the first

parameter of the macro must be expanded explicitly before #PRM is used.
Alternatively, the MNEXT pseudo-op can be used to access the first
parameter. See the discussion of MNEXT, below.

EXAMPLE

MACT MACRO #A,#B
LD HL, #A
LD DE, #PRM
LD BC,#4B
LD IY,#PRM
MEND
MAC1 SYM1,SYM2 ;EXPANSION
LD HL,SYM1
LD DE,SYM1
LD BC,SYM2
LD IY,SYM2
MEND

ZNPRM - expands to a two decimal digit representation of the position
namber of the 1last used argument. This shows the position of an
argument in the argument 1list.

EXAMPLE
MAC1 MACRO #A,#B
LD HL, #B

27



MOSTEK MACRO-80 OPERATIONS MANUAL

1D A,7NPRNM

MEND

MACA1 SYM1,SYM2 sEXPANSION
LD HL,SYM2

LD A,02

MEND

%ZNCHAR - expands to a two decimal digit representation of the number of
characters in the last used argument.

EXAMPLE

MAC1 MACRO #7A #B

P1 DEFL $ s #A
DEFB %NCHAR
DEFM '#A'

P2 DEFL $ ;#B
DEFB %NCHAR
DEFM ‘4B
MEND
MAC1 A BCDE ;EXPANSION

P1 DEFL S ;A
DEFB 01
DEFM ‘A’

P2 DEFL $ ;BCDE
DEFB o4
DEFM 'BCDE"
MEND

3-25. FORMATION OF LABELS WITHIN A MACRO EXPANSION.

3-26. There are three ways of forming wunique 1labels within a macro
expansion.

3~-27. PREDEFINED ARGUMENT %NEXP. The current expansion number will be
expanded as four decimal digits, which may be appended to a character
or set of characters to form a unigue label.

EXAMPLE
MAC1 MACRO #A
L%ZNEXP LD HL, #A
MEND
MACAH SYHM sEXPANSION 1
L0001 LD HL,SYM
MEND
MACA1 SYM2 sEXPANSION 2
L0002 LD HL,SYM2
MEND

28



MOSTEK MACRO-80 OPERATIONS MANUAL

3-28. SUBSTITUTION OF PARAMETER. Unique labels may be formed by using
a parameter as part of the label. A passed argument then defines a
label or set of unigque labels for the given expansion.

EXAMPLE
MACA1 MACRO #A
L#A DEFM ‘A MESSAGE'
M#A DEFB 9
MEND
MAC1 FST sEXPANSION
LFST DEFM 'A MESSAGE'
MFST DEFB 9
MEND
MAC1 SND ;EXPANSION 2
LSND DEFM 'A MESSAGE'
MSND DEFB S
MEND

3-29. DOT OPERATOR (.). Symbols in a macro definition may have a dot
as the first <character. The dot 1in every symbol will be replaced by
the label specified in the macro call statement during macro expansion.
Labels formed by the dot operator may also be used in MGOTO, MIF, and
MNEXT statements.

EXAMPLE
MACA1 MACRO sMACRO DEFINITION
L1 LD HL,.L2
.L2
.LAB
MEND
M1 MAC1 ;THE MACRO CALL
M1L1 LD HL,M1L2
M1L2
M1LAB
MEND

Note that the dot operator can be used with a parameter 1if the two
items are separated by another character.

EXAMPLE
MAC1 MACRO #A sMACRO DEFINITION
LD HL,.L#A

LN 4

+L#A

29



MOSTEK MACRO-80 OPERATIONS MANUAL

MEND

M4 MAC1 25 ;MACRO CALL
LD HL,M4L25

M4L25
MEND

3-30. LOCAL MACRO LABELS.

3-31. Local macro labels are allowed only in the MGOTO, MIF, and MNEXT
statements. Local macro labels must follow normal symbol rules. They
may not be formed by use of predefined arguments, substitution of
parameters, or by use of the dot operator. Each local macro label will
be in effect only during the current expansion of the current macro.
They are in effect from the time of declaration via the MLOCAL

pseudo-op through the MEND pseudo-op. They may not be redefined or
respecified within one macro. Local declarations of the same symbol in
nested or recursive macro calls are allowed. Local macro labels are

not placed in the symbol table; they are used merely as pointers for
the MGOTO, MIF, and MNEXT statements. A local macro label nmust be
declared before it is used. The format for declaring local macro
labels is:

MLOCAL mlabeli1,mlabel22,...
- where mlabel1, mlabel2, etc., are labels which only
appear in the macro body. The MLOCAL statement may not
have a label on it.

EXAMNPLE
MAC1 MACRO #A ,#B
MLOCAL 1L1,L2,L3
MIF '"#A'="'IF' THEN L1 ELSE L3
L1 MIF '#B'='' THEN L2 ELSE L3
L2 MERROR BAD IF STATEMENT
L3 MNOP
MEND

3-32. MACRO RELATED PSEUDO-OPS.

3-33. In the following discussion, mlabel, mlabel1, and mlabel2 refer
to local macro labels or labels formed by using the dot operator (.).
The symbol nn refers to any valid expression. Brackets [ ] refer to
optional parameters.

3-34. MNEXT nn [ THEN mlabel?1 ] [ ELSE mlabel2 ]

30



MOSTEK MACRO-80 OPERATIONS MANUAL

- moves the argument pointer according to the expression nn in the
argument list. A move to the left can be achieved by a negative value,
to the right by a positive value. The argument may then be accessed by

the #PRM predefined argument. If the argument pointer leaves the
argument list and if the ELSE clause is present, then a jump to mlabel?2
is performed. Otherwise the next statement in sequence is processed.
EXAMPLE
MAC1 MACRO #A,#B
MLOCAL 1L1L1,L2
L1 MNEXT 1 ELSE L2
DEFB #PRM
MGOTO L1
L2 MEND
MAC1 1,2,3 sEXPANSION
MLOCAL 1L11,L2
L1 MNEXT 1 ELSE L2
DEFB 1
MGOTO L1
L1 MNEXT 1 ELSE L2
DEFB 2
MGOTO L1
L1 MNEXT 1 ELSE L2
DEFB 3
MGOTO L1
L1 MNEXT 1 ELSE L2
L2 MEND

3-35. MGOTO mlabel
- continues the expansion at the specified macro label.

EXAMPLE
See the EXAMPLE for the MNEXT pseudo-op.

3-36. MIF nn THEN mlabelt1 [ ELSE mlabel2)

- if the expression nn evaluates to true (non-zero), then expansion is

continued at the mlabel1 macro label. If the expression 1is false
(equals zero) and the ELSE <clause is present, expansion continues at
the mlabel2 macro label. Otherwise expansion continues at the next

statement in the macro.

EXAMPLE
MACH MACRO #A
MLOCAL L1,L2
MIF '#A'="THEN' THEN L1 ELSE L2
L1 DEFM '#A"'
L2 MEND

31



MOSTEK MACRO-80 OPERATIONS MANUAL

MAC1 THEN sFIRST EXPANSION

MLOCARL 1L1,L2

MIF '"THEN'='THEN' THEN L1 ELSE L2
L1 DEFM 'THEN'
L2 MEND

MAC1 ELSE

MLOCAL 1L1,L2

MIF 'ELSE*'='THEN' THEN L1 ELSE L2
L2 MEND

3-37. MNOP

- no operation is performed. This pseudo-op <can be used to define a
local macro 1label at this point in the macro body. This is useful
because the local macro labels will not appear in the assembly listing
if the CLIST O pseudo-op is used.

3-38. MEXIT

- terminates the current macro expansion.

EXAMPLE

MAC1 MACRO #A
MLOCAL L1
MIF '#A'="'THEN' THEN L1
MEXIT

L1 MNOP
LD A,1
MEND
MAC1 ELSE
MLOCAL L1
MIF 'ELSE'='THEN' THEN L1
MEXIT

3-39. MERROR text

- prints the 1line of text like an error message with error number 5A
called out.

EXAMPLE
MAC1 MACRO
MLOCAL L1,L2,L3
MNEXT 1 ELSE L2
L1 e o 0
MGOTO L3
L2 MERROR ARGUMENTS REQUIRED
L3 MEND
MACA

MLOCAL 1L1,L2,L3
MNEXT 1 ELSE L2

32



MOSTEK MACRO-80 OPERATIONS MANUAL

L2 MERROR ARGUMENTS REQUIRED
*****ERR SA % %k % %k d ok ok ok kok Kk

L3 MEND
3‘“0. MEND

- marks the end of a macro.
3-41., MLOCAL 1label1,label2,...

- defines local macro labels.

33






MOSTEK MACRO-80 OPERATIONS MANUAL
SECTION 4

APPLICATIONS OF MACROS

4-1. INTRODUCTION.

U‘2.

The MACRO-80 Assembler provides a powerful tool for microcomputer
systems development. Five areas of applications are discussed
below to show how the macro facility can be used to simplify
program development:

1. Use of macros in implementing special-purpose languages.
2. Emulation of non-standard machine architectures.

3. Development of cross-assemblers.

4. Implementation of additional control structures.

5. Operating systems interface macros.

4-3. As macros are developed by a team of programmers, it is important
to document each macro and its usage for each member of the team. The
examples below should be studied for both their procedural content and
the method of documenting them.

4-4., SPECIAL PURPOSE LANGUAGES.

4-5. A wide variety of microcomputer designs can be broadly classed as
‘controller' designs. In these designs, the microcomputer is the
controlling element in sequencing and decision-making as real-time
events are sampled and directed. An example of this is a traffic
control system. In this situation, it is useful to define a 'language'
via macros which suits the particular application. After the macros
are defined, an application programmer can use them as primitive
language elements. If properly defined, the application language is
easily programmed and can allow considerable machine independence.
Further, the macros can incorporate debugging facilities to aid the
application programmer.

4-6. In the traffic system defined here, the following hardware
elements are present:

1. central and corner traffic lights which display green,
vyellow, red, or are off completely.

2. pushbutton switches for pedestrian crosswalks.

3. road treadles for sensing the presence of an automobile
at an intersection.

4., a central controller box.

34



MOSTEK MACRO-80 OPERATIONS MANUAL

4-7. The central controller box contains a microprocessor connected
through external logic to relays which control the 1lights and to
latches which hold sensor input information. The controller also

contains a time-of-day clock which counts hours from 0 through 23. The
program which is run on the microprocessor is contained in PROM and is
tailored to each intersection for traffic control.

4-8., We first define a set of macros to perform simple traffic-control
functions via the system. These are shown in Figure 4-1. The systen
is configured such that the central traffic light is controlled by the
microprocessor port number 0 (given by LIGHT). The time-of-day clock
is read from port 3 (given by CLOCK). The north-south direction of the
traffic 1light is controlled by the high order 4 bits of output port 0,
and the east-west direction is controlled by the low order 4 bits of
port 0. When either of these fields is set to 0, 1, 2, or 3, then the
light in that direction is turned off or set to red, yellow, or green,
respectively. Thus, the SETLITE macro sets the specified direction to
the appropriate color.

4-9, The TIMER macro uses the cycle time of the microprocessor (one
cycle = 400 nanoseconds) to construct an inline timing loop, based on
the number of seconds delay regquested.

4-10. Additional macros are provided for automobile treadles and
pedestrian pushbuttons. For treadles (macro TREAD?) the sensors are
attached to port 1 of the microprocessor (TRINP). The treadles require
a 'reset' operation which is performed via port 1 (TROUT). At any
intersection, the treadles are numbered <clockwise from north from O
through a maximum of 7. £Each sensor and reset position of the treadle
port corresponds to one bit position of port 1. Thus treadle #0 sensor
is read from bit 0 of port 1 and reset via bit 0 of port 1. The TREAD?
macro is used to sense the presence of a latched value for treadle #TR
and, if on, the sensor is reset with control transferring to the label
given by #IFTRUE.

4-11. Latched pedestrian pushbuttons are processed by the macro PUSH?.
A latched pushbutton is sensed on input port 0 (CWINP) as a sequence of
1's and 0's in the least significant positions, corresponding to the
switches at the intersection. Thus, 1f there are four pedestrian
pushbuttons, bits 0, 1, 2, and 3 corresponds to these switches. A set
bit in any of these positions indicates that a button has been pushed.
All the crosswalk latches are reset whenever input port 0 is read.

4-12. Figure 4-2 shows a program written in the macros for controlling
a rather simple intersection. Here, the lights are merely sequenced
in proper fashion for traffic control.

4-13. Figure 4-3 shows a more complex intersection control ©progranm.
In this case, heavy traffic normally occurs in an East-West direction.
Light traffic from a residential section occurs in a North-South
direction. Here, the lights favor traffic in the East-West direction
until an automobile treadle or a pedestrian pushbutton is activated.

35



~e

.
4

FIGURE 4-1
NLIST

J Kk g Kk Kk koK vk ok Kok de ok ko kK Kk ok sk de ok ke ke ke ke ok ke ke ek ok %k sk ke ok ke ek ok ok ke ok

.
’

MACRO LIBRARY FOR TRAFFIC CONTROL APPLICATION

dd koo odkodk Kok ok k ok ok Kk ok ok ok ks ke ke ok gk ke k ok ok k ke ok ke ke ok %k %k ke %k Kk ke ok ke ke ok Kk ok

Ne We Ne Ne Ne Ne Ne Ne Ne No

WO NG Ne NS Ne NC Ne e We VO Ne Ne Ne Ne Ne We e Ne N [o Ne Ne o

THIS LIBRARY CONTAINS SEVERAL MACROS WHICH
DEFINE A LANGUAGE FOR A TRAFFIC CONTROL APPLICATION.
THE LANGUAGE IS DEFINED AS FOLLOWS:

SETLITE DIR,COLOR
- SET THE COLOR LIGHT IN THE DIRECTION SHOWN
WHERE COLOR IS OFF, RED, YELLOW, OR GREEN AND
DIRECTION IS 'NS' FOR NORTH-SOUTH OR 'EW® FOR
EAST-WEST.

TIMER SECONDS
- DELAY THE NUMBER OF SECONDS SHOWN

CLOCK LOW,HIGH,LABEL
- TRANSFER CONTROL TO THE 'LABEL' IF
THE CURRENT HOUR (0-23) IS BETWEEN 'LOW°
AND 'HIGH'.

RETRY LABEL
- TRANSFER CONTROL TO ‘'LABEL'.

TREAD? TR,LABEL
- INTERROGATE TREADLE NUMBER 'TR' AND
IF THE INPUT IS SET, RESET IT AND TRANSFER
CONTROL TO 'LABEL'.

PUSH? LABEL

- CHECK IF ANY PUSHBUTTON HAS BEEN PUSHED.
IF SO, TRANSFER CONTROL TO 'LABEL'.

INPUT PORTS FOR LIGHT AND CLOCK

LIGHT EQU 0 ;TRAFFIC LIGHT CONTROL
CLOCK EQU 3 ;24 HOUR CLOCK (0-23)

’
.
4
.

CONSTANTS FOR TRAFFIC LIGHT CONTROL

BITSNS EQU 4 s NORTH-SOUTH BITS

BITSEW EQU 0 ;EAST-WEST BITS

OFF EQU 0 ;TURN LIGHT OFF

RED EQU 1 sRED LIGHT

YELLOW EQU 2 ;YELLOW LIGHT

GREEN EQU 3 ;GREEN LIGHT

; SET LIGHT IN DIRECTION #DIR (NS, EW) TO #COLOR (OFF,
; RED, YELLOW, GREEN)

SETLITE MACRO #DIR,#COLOR

LD A,#COLOR.SHL.BITS#DIR ;READY COLOR BITS
OUT (LIGHT) ,A ;OUTPUT TO LIGHT



MEND
; TIMER FOR NUMBER OF SECONDS TO DELAY
TIMER MACRO #SECOND

LD BC,1000*#SECOND ;SECONDS TIMES MSECS
LZNEXP PUSH BC ;SAVE IT

LD B,191 sMILLISECOND COUNTER
KZNEXP DJNZ K7ZNEXP ; LOOP FOR ‘1 MSEC

POP BC

DEC BC ;DECREMENT MSEC COUNT

LD A,B ;CHECK FOR END OF SECONDS

OR C

JR NZ,L%ZNEXP ; LOOP FOR MORE
; ARRIVE HERE AFTER APPROXIMATE DELAY OF 'SECONDS'

MEND

’
; CHECK CLOCK AND JUMP TO #IFTRUE IF TIME IS BETWEEN #LOW AND #HIGH
CLOCK? MACRO #LOW,#HIGH,#IFTRUE

MLOCAL L2

IN A, (CLOCK) sREAD CLOCK
; IF UPPER LIMIT NOT INPUT, DON'T CHECK IT

MIF '#HIGH'='' THEN L2

Cp #HIGH ;EQUAL OR GREATER?

JR NC,F%ZNEXP ;IF SG, SKIP OUT
L2 MNOP

Cp #LCW ;LESS THAN LOW VALUE?

JP NC,#IFTRUE ;IF SO, EXIT TO LABEL
FZNEXP

MEND

; RETRY BY GOING TO '#LABEL'
RETRY MACRO #LABEL

JP #LABEL
MEND
TRINP EQU 1 ; TREADLE INPUT PORT

TROUT EQU 1 ;TREADLE OUTPUT PORT

; CHECK IF TREADLE '#TR' HAS BEEN SENSED. IF SO, RESET
; AND EXIT TO LABEL '#IFTRUE'.

TREAD? MACRO #TR,4#IFTRUE

IN A, (TRINP) ;CHECX FOR TREADLE SET
AND 1.SHL.4TR ;CHECK FOR THIS TREADLE
JR Z,FZNEXP ;IF NOT, SKIP OUT
LD A,1.SHL.#TR ;ELSE RESET THE BIT
ouT (TROUT) ,A ;TO CLEAR IT
JP #IFTRUE ;EXIT VIA LABEL
FZNEXP
MEND
CWINP EQU 0 ;PEDESTRIAN PUSHBUTTON PORT

; JUMP TO LABEL '#IFTRUE' IF ANY PUSHBUTTON PUSHED.
; READING THE PORT CLEARS ALL INPUT.
PUSH? MACRO #IFTRUE



IN A,(CWINP) ;READ PUSHBUTTONS

AND (1.SHL.CWCNT)-1 ;BUILD MASK

JP NZ,#IFTRUE ;IF ANY SET, EXIT VIA LABEL
CONTINUE ON FALSE CONDITICN

MEND

tk gk ok dok ok ok ok kk k Kk k dkh ok k ko ks ke ke ke ke ke ke ke ke ke ok bk ke ke ok ke ok ke ke k k ok ke ok ok

END OF MACRO LIBRARY

ek d d ok k Kk k kk ok ok ok ok ko kk ke ok k ok ok ok ke ke ko ke ok ok sk ok ok ke ke ke ke ok ok ok ok ok ok ok ok

LIST



FIGURE 4-2 TRAFFIC INTERSECTION

L0C O0OBJ.CODE
0000

129

10
0000" 15
ooo0u 16
0008 17
0016 21
001A 22
0028 23
002C 24
0030 25
003E 29
0042 30
0050 31
0053 32

1

138
139

144
148
152

167
171
183
187
191

206
210
222
225

Ne Ne e we Ne Ne N

~e

N Ne Ne

YCLE

MOSTEK MACRO-80 ASSEMBLER
STMT-NR SOURCE-STMT PASS2 FIGU4D2 FIG4UD2 FIG4UD2 REL

V2.0 PAGE

TITLE FIGURE 4-2 TRAFFIC INTERSECTION

SIMPLE INTERSECTION EXAMPLE WHERE THE TRAFFI
LIGHTS ARE MERELY SET AND RESET IN THE PROPE!

SEQUENCE.

INCLUDE THE MACRO LIBRARY IN

THE ASSEMBLY

INCLUDE FIGU4D1

FIGURE 4-1
LIST
ELIST 0

START OF CONTROL

TIMER 20
CHANGE LIGHTS

SETLITE
TIMER 3
SETLITE
SETLITE
TIMER 15

CHANGE BACK

SETLITE EW,

TIMER 3

RETRY CYCLE

END

SETLITE NS,
SETLITE EW,

NS,

NS,
EW,

;NO LIST EXPANSIONS

GREEN
RED
;DELAY 20 SECONDS

YELLOW

;DELAY 3 SECONDS
RED
GREEN

;DELAY 15 SECONDS
YELLOW

;3 SECONDS
;GO LOOP FOR MORE



JRE 4-3 COMPLEX INTERSECTION MOSTEK MACRO-80 ASSEMBLER V2.0 FPAGE 1
STMT-NR SOURCE-STMT PASS2 FIG4D3 FIG4D3 FIGHUD3 REL

B
'F

13
1A
27
34
3B

3E
42
50
54
58

66
73

80

i83
191

oL
)98

OBJ.CODE

=0004
=0000
=0001

=0000"

=0013"

1}

003E"

=0065"

=0083"

=0094"

129
10

14

15

18
19

21

22
23
24
25
26

29
30
31
32
33
34
36

37
38

40

43

44

45

48

49
50

1

Ul E Ww

138
139

143

144

158
162

167

168
174
183
192
202

207
208
212
224
228
232
245

246
255

265

270

271

283

288

289
293

TITLE FIGURE 4-3 COMPLEX INTERSECTION

CWCNT EQU 4
LULLO EQU O
LULL1 EQU 1

;4 CROSSWALK SWITCHES
;NAME FOR TREADLE ZERO
;NAME FOR TREADLE ONE

’

; INCLUDE MACRO LIBRARY

.
’

INCLUDE FIG4D1
; FIGURE 4-1
LIST
ELIST 0 ;NO LIST EXPANSIONS
; START OF PROGRAM FOR CONTROL ...
CYCLE ;ENTER HERE FOR EACH MAJOR CY
CLE OF THE LIGHTS
CLOCK? 2,5,NIGHT ;BETWEEN 2 AND 5 AM?
; NOT BETWEEN 2 AND 5 AM, SO PROCESS
; EAST-WEST GETS MAJOR TRAFFIC FLOW
SETLITE NS,RED
SETLITE EW,GREEN
SAMPLE ; SAMPLE THE RUTTONS AND TREA
DLES
PUSH? SWITCH ;ANYONE THERE?
TREAD? LULLO,SWITCH ;ANY CARS?
TREAD? LULL1,SWITCH
CLOCK? 2,,NIGHT ;PAST 2AM?
RETRY SAMPLE ;NO, LOOP FOR ANOTHER SAMPLE
SWITCH ;SOMEONE IS WAITING, CHANGE T
HE LIGHTS
SETLITE EW,YELLOW ;SLOW THEM DOWN
TIMER 3 ;3 SECONDS
SETLITE EW,RED ; STOP THEM
SETLITE NS,GREEN ;LET NORHT-SOUTH GO
TIMER 23 ;FOR A WHILE
DONE? ; IS ALL THE TRAFFIC THRCUGH
ON NORHT-SOUTH?
TREAD? LULLO,NOTDONE ;CHECK THE TREADLES
TREAD? LULL1,NOTDONE
; NEITHER TREADLE IS SET, CYCLE FOR ANOTHKER LOOP
RETRY CYCLE
NOTDONE sWAIT 5 SECONDS AND TRY AGAI
TIMER 5
RETRY DONE?
; .
NIGHT / sTHIS IS NIGHTTIME, FLASH TH
LIGHTS
SETLITE EW,OFF ; TURN OFF
SETLITE NS,OFF



FIGURE 4-3 COMPLEX INTERSECTION MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE

LOC OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIGA4D3 FIG4UD3 FIGUD3 REL
009C 51 297 TIMER 1 ;WAIT WITH OFF
O00AA 52 309 SETLITE EW,YELLOW ;CAUTION ON

00AE 53 313 SETLITE NS,RED s STOP ON

00B2 54 317 TIMER 1 sDELAY

00CO 55 329 RETRY CYCLE ;GO AROUND AGAIN

00C3 56 332 END



MOSTEK MACRO-80 OPERATIONS MANUAL

When the lights <change to allow North-South flow, all traffic must be
allowed to clear the lanes before a change to East-West can be done
again. During early morning hours, the lights merely flash yellow in
the East-West direction and red the in North-South direction. In the
program shown, each major cycle of the traffic light enters as 'CYCLE"'
where the time of day is tested. If between 2 and 5AM, then control
transfers to 'NIGHT' where the lights are merely flashed. Otherwise,
the treadles and pedestrian pushbuttons are sampled until a change is
required.

4-14. Macro-based languages of this sort <can easily incorporate
debugging facilities. 1In this example, a debugging flag (DEBUG) is set
for use in the macro shown in Figure 4-4. The debug flag, when set,
allows trace information to be output to the console device rather than
code to activate the system. Here calls to MOSTEK's FLP-80DOS are
shown to produce the trace output shown in Figure 4-5. After debugging
is complete, the DEBUG flag can be reset and Assembly done once more
for the final system. This idea can be extended to the other macros in
the system to simulate operation of the systenm.

4-15. In this application of macros, a simple to use 'language' was
developed for a specific use to ease programming and debugging of a
final system employing the microprocessor.

4-16. MACHINE EMULATION.

4-17. A second application of macros is found in 'emulation' of a
machine operation code set which 1is different from +the given
microprocessor. In this case, after the machine to be emulated 1is
defined, a set of macros are written to emulate the opcodes. Each
macro assumes the name of an opcode, and the macro body contains
instructions which perform the same function as the opcode on the
emulated machine. After the macros are defined, then a program can be
written using these opcodes which expand to the given microprocessor
instructions but which emulate the operation of the new machine.

4-18. In this example, a new machine is defined as an analog sensing
and control element in a larger electronic environment. The new
machine 1is based around a 16-bit word 1length and it is a 'stack
machine', in which data can be 1loaded to the top of a 'stack' of data
elements, automatically pushing existing elements deeper onto the
stack. Arithmetic operations are performed on the topmost stack
elements, automatically absorbing the stacked operands as the
arithmetic is performed. The opcodes of the new machine are defined as
follows:

SIZ n -reserves n 16-bit elements for the maximum size of the
operand stack. This operation code must be provided at
the beginning of the progranm.

36



LOC O0BJ.CODE

=FFFF
=0000
=0000

=0000
=0003

=0004
=0000

=0000
=0001
=0002
=0003

STMT-NR

-

K N Y
WN =2 O0OWOoOJOUT &FW

0 o

14
15

18
19

22
23
24
25

30
31

33
34
35
36
37
38
39
40
41
42
43

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1
SOURCE-STMT PASS2 FIG4D4 FIGUD4 FIGUDH REL

FIGURE 4-4 DEBUGGING MACRO

THIS MACRO DEFINITION IS THE SAME AS FIGURE 4-
EXCEPT THAT A DEBUGGING FACILITY HAS REEN ADDEI

Ne Ne Ne we No

; DEFINITIONS FOR DEBUG PROCESSING

TRUE EQU OFFFFH ;TRUE VALUE
FALSE EQU  .NOT.TRUE ;FALSE VALUE

DEBUG DEFL FALSE sINITIALLY FALSE

’

INPUT/OUTPUT PORTS FOR TRAFFIC LIGHT CONTROL

Ne we Ne

LIGHT EQU 0 s TRAFFIC LIGHT

CLOCK EQU 3 ;24 HCUR CLOCK (0-23)
; BIT POSITIONS FOR TRAFFIC LIGHT CONTROL
BITSNS EQU 4 ;s NORHT-SOUTH

BITSEW EQU © sEAST-WEST
; CONSTANT VALUES FOR LIGHT CONTROCL
OFF EQU O
RED EQU 1
YELLOW EQU 2
GREEN EQU 3

» SET LIGHT MACRO WITH DEBUGGING INFO
SETLITE MACRO #DIR,#COLOR
MIF .NOT.DEBUG THEN L1
; DEBUGGING, PRINT INFO ON CONSOLE
LD HL,MS%NEXP
LD E,1
GLOBAL PTXT
CALL PTXT
JR LZNEXP
MS%ZNEXP DEFM '#DIR CHANGING TO #COLOR',ODE,OAH,3

LZNEXP MEXIT

L1 MNOP
LD A,#COLOR.SHL.BITS#DIR ;READY COLOR
0UT (LIGHT),A ;OUTPUT IT
MEND



NS
EW
NS
NS
EW
EW
NS
EW

FIGURE

SAMPLE

CHANGING
CHANGING
CHANGING
CHANGING
CHANGING
CHANGING
CHANGING
CHANGING

TO
TO
TO
TO
TO
TO
TO
TO

'4"5.
OUTPUT

GREEN
RED
YELLOW
RED
GREEN
YELLOW
GREEN
RED

01



MOSTEK MACRO-80 OPERATIONS MANUAL

RDM i -reads the analog signal from input port i (0, 1, 2, or
3) to the top of the stack, automatically pushing the
stack down.

WRM i -writes the digital value from the top of the stack to
the D-A output port given by i (0, 1, 2, or 3). The
value at the top of the stack is removed.

DUP -duplicates the item at the top of the stack.

SUM -the top two elements of the stack are added, both
operands are removed from the stack, and the resulting
sum is placed on the top of the stack.

LSR n -performs a logical shift of the topmost stack
element to the right by n bits (1, 2, «e., 15),
replacing the original operand by the shifted
result. Note that LSR n performs a division of
the topmost stack value by the divisor 2 to the
nth power.

JMP a -branches directly to the program address given by the
label a.
4-19. Each of these opcodes can be emulated by using macros to define

them in terms of the given microprocessor instructions. The complete
definition of the macros is shown in Figure 4-6.

4-20. The SIZ macro sets the program origin (hence, it must be the
first opcode wused in a program), and the stack area 1is reserved.
Double bytes of storage are reserved since a 16-bit word size is
assumed.

4-21. In the following macros, the stack top is assumed to be in the
HL register pair. Each operation which pushes the stack of the
emulated machine <causes the element in the HL register pair to be
pushed onto the memory area designated as STACK.

4-22. The DUP opcode simply pushes the HL register pair to the memory
stacke. In the case of the SUM opcode, it 1is assumed that the
programmer has loaded two values to the stack to be summed. Thus, the
HL register pair contains the most recently 1loaded value, and the
memory stack contains the next-to-most recently stacked value. The POP
DE operation loads the second operand into the DE register pair, ready
for adding to HL. The result goes into the HL register pair because
the top of the stack of the emulated machine is located in the HL
register pair.

4-23. The LSR macro generates a loop which shifts the HL register pair
right the spescified number of times.

4-24., The RDM and WRM opcodes are implemented by 'memory mapped' I/O

37



H FIGURE 4-6
NLIST

.
4
% % d d ke dk k ok Kk dok sk ok ke k d ki sk ke ke ok ke ek ki ke k ko k ke ko kR ok ke ok ok ok ok

; STACK MACHINE OPCODE MACRC LIBRARY

kKX hkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkdhkhkkhhkkhkkhkdhkhkhkkhkkkxk

; SET THE PROGRAM ORIGIN AND CREATE A STACK
SIZ MACRO #SIZE
ORG 0
LD SP,STACK ;SET STACK POINTER
Jp STACK ;GET PAST STACK
DEFS 2*#SIZE ;SET UP STACK AREA
STACK MEND
’
; DUPLICATE TOP OF STACK
’
DUP MACRO
PUSH HL
MEND
; ADD THE TOP TWO STACK ELEMENTS
;
SUM MACRO
POP DE ;TOP OF STACK TO DE
ADD HL,DE ;ADD AND PUT INTO HL
MEND
; LOGICAL SHIFT RIGHT BY #LEN
LSR MACRO #LEN
LD B,#LEN ;COUNT OF SHIFTS
LZNEXP XOR A sRESET CARRY
RR H ;ROTATE H INTO CARRY
RR L ;ROTATE L WITH CARRY
DINZ LZNEXP ;LOOP FOR TOTAL COUNT
MEND
; JUMP TO A LABEL
’
JMP MACRO #A
Jp #A
MEND

DEFINITION OF ADC INPUTS AND DAC OUTPUTS VIA
MEMORY MAPPED I/O

.
r
.
’
.
4
.
14

.
’

ADCO EQU 1080H +A-D CONVERTER O
ADC1 EQU 1082H ;A-D CONVERTER 1
ADC2 EQU 1084H ;A-D CONVERTER 2
ADC3 EQU 1086H A-D CONVERTER 3
DACO EQU 1090H ;D-A CONVERTER O
DAC1 EQU 1092H ;D-A CONVERTER 1



DAC2 EQU 1094H ;D-A CONVERTOR 2

DAC3 EQU 1096H ;D-A CONVERTER 3

; READ A-D CONVERTER NUMBER #NUM

RDM MACRO #NUM
PUSH HL ;CLEAR THE STACK
LD HL,(ADC#NUN) ;READ VIA MEMORY MAP
MEND

WRITE D-A CONVERTER NUMBER #NUM

ST Ne Ne ne e

RM MACRO #NUN
LD (DAC#NUM) ,HL sWRITE VIA MEMORY MAP
POP HL ;RESTORE STACK
MEND

dde ke ko k ok kk ok ok k ke k ok ok ko ko k ok ke ok ok ko ko k ok kk ok ok ke ok ok ok ok ok ok ok

; END OF MACRO LIBRARY

Fdk ke ok ok kok ok ok ok ok ok k ok ok ok k ok sk ok K sk ok ke ke sk ok vk ke ok k k ok ok ok ke ok ke %k ke ok ke k% ok ok ke ok

LIST



MOSTEK MACRO-80 OPERATIONS MANUAL

operations. That is, locations 1080H +through 1087H are intercepted
external to the given microprocessor and treated as external read
operations. Thus a load of HL from 1080H and 1081H is treated as a
read from A-D device 0, rather than from RAM. This applies also to
devices ADC1, ADC2, and ADC3. Similarly, the D-A output values are
written to locations 1090H through 1097H for devices DACO through DAC3.

4-25. Figure U4-7 shows a sample program written for the enmulated
machine. In this case, the machine is <connected to four temperature
sensors via ADCO through ADC3. The program continuously reads the four
input values and computes their average value by summing and dividing
by four. The average value is sent to DACO where it is used to set
environmental controls.

4-26. The program begins by reserving 20 elements for the stack, which
are more than enough. The program then cycles through 'LOOP', where
the values are read and processed. The four RDM operations read the
four temperature sensors, placing their data values on the top of the
stack. The three SUM operations which follow perform pairwise addition
of the temperature values, producing a single sum at the top of the
stack. To obtain the average value, the LSR opcode is applied to
perform a division by 4. The resulting average is then sent to DACO
using the WRM opcode. Control then transfers back to 'LOOP' and the
operation is repeated.

4-27. As in the previous example, debugging statements could be added
to the macro to perform an emulation without the ADC and DAC hardware.
These statements could take the form of additional macros used to print
out values as the program is executed.

4-28. DEVELOPMENT OF CROSS-ASSEMBLERS.

4-29. Macros can be written to assemble another microprocessor's
instruction set. The resultant object code may be used directly or may
have to be translated to a different format by a utility program. Each
opcode of the new machine is used as a macro name. Parameters are used
if the opcode uses operands. The macro can decode the operands to
produce the correct machine code. If any of the new machine's opcodes
are the same as the 7280 opcodes, then the 'R' option must be used when
the Assembler is executed.

4-30. Consider a portion of the 3870 microcomputer instruction set
given in Figure 4-8. The corresponding macros to produce the correct
object code are shown. Note that in this implementation, programs
formed by the resultant cross-assembler must be non-linkable. This
restriction exists because of the way in which the FLP-80DOS Linker
processes external reference addresses. That 1is, such addresses are
produced by the MACRO-80 Assembler with least significant byte first,

38



FIGURE 4-7 A-D AVERAGING PROGRAM

1ocC

0000

0000
0C2E"
0032
0036
003A

003E
0040
oou2

o044

004D

0051
0054

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1

CBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG4D7 FIGUD7 FIGUD7 REL
1 TITLE FIGURE 4-7 A-D AVERAGING PKOGRAM
; AVERAGE THE VALUES WHICH ARE READ FROM A-D CONV]
S
; 0 THROUGH 3, WRITE THE RESULTING VALUE To THEE
5 D-A CONVERTER O, THEN LOOP FOR MORE.
; INCLUDE MACRO LIBRARY
9 INCLUDE FIGUD6
H FIGURE u4-6
82 91 LIST
10 92 ELIST O sNO LIST EXPANSICNS
12 9y SIZ 20 ; RESERVE 20 LEVELS FOR ST
13 100 LOOP RDM O sREAD ADCO
14 104 RDM 1 sREAD ADC1
15 108 RDM 2 sREAD ADC2
16 112 RDM 3 sREAD ADC3
; ALL FOUR VALUES ARE STACKED, SUM THEMNM
20 119 SUM ;ADC3+ADC?2
21 123 SUM s (ADC3+ADC2)+ADC1
22 127 SUM s C(ADC3+ADC2)+ADC1)+ADCO
s SUM IS AT TOP OF STACK, DIVIDE BY 4
25 133 LSR 2 s;SHIFT RIGHT BY 2 = DIVIDI!
u
26 140 WRM O s WRITE RESULT TC DACO
27 144 JMP LOOP ;sREPEAT THE PROCESS
28 147 END



FIGURE 4-8
3870 CROSS ASSEMBLER MACROS
THESE MACROS ARE EXAMPLES WHICH COULD BE
EXTENDED TO PRODUCE A 3870 CROSS ASSEMBLER
RUNNING UNDER MACRO-80.

REGISTER DEFINITION

; EQU OCH
. EQU ODH
) EQU OEH
)CI MACRO #ADDR ;LOAD DATA COUNTER
DEFB 2AH,(#ADDR.SHR.8).AND.OFFH,#ADDR.AND.OFFH
MEND
AS MACRO #R ;ADD TO SCRATCHPAD
MLOCAL LERR
MIF #R.UGT.O0EH THEN LERR
DEFB OCCH.OR.#R
MEXIT
LERR MERROR *** QUT OF RANGE ***
HMEND
SL MACRO #N sSHIFT LEFT
MLOCAL 1L1,1L2,L3
MIF #N=4 THEN L1 ELSE L2 ;CHECK RANGE OF OFERAND
L1 MNOP
DEFB 15H
MEXIT
L2 MIF #N=1 THEN L3
MERROR *** QUT OF RANGE ***
L3 MNOP
DEFB 13H
MEND
LI MACRO #0P ;LOAD IMMEDIATE
DEFB 20H
DEFB #0P.AND.OFFH
MEND

LISL MACRO #A
MLOCAL LERR

MIF #A.UGT.7 THEN LERR
DEFB 68H.0OR. #A
MEXIT

LERR MERROR *** QUT OF RANGE **x*
MEND

BR7 MACRO #AA
MLOCAL LERR
DEFB 8FH
MIF (4#ARAR-$>128).0R.(#AA-$<0) THEN LERR ;CHECK RANGE
DEFB #RAA-S
MEXIT

LERR MERROR *** QUT OF RANGE **x*

MEND



BF MACRO #T,4#AR
MLOCAL LERR

MIF #T.UGT.OFH THEN LERR ; CHECK RANGE
DEFB 90H.OR.#T
AZNEXP EQU #AA-S

MIF (A%ZNEXP>128).0R.A%ZNEXP<0) THEN LERR ;CHECK RANGE
DEFB AZNEXP
MEXIT
LERR MERROR *** QUT OF RANGE ***
MEND



MOSTEK MACRO-80 OPERATIONS MANUAL

while the 3870 requires most significant byte first. Note also that
cross-assemblers developed under MACRO-80 must follow the 780
conventions for forming constants and expressions.

4-31. PROGRAM CONTROL STRUCTURES.

4-32. Macros can be used to provide program-control statements which
resemble those found in many high-level languages. Figure U4-9 shows a
set of macros which define a simple language for performing 16-bit
integer operations. The following paragraphs describe each type of
statement allowed in a program written around these macros.

4-33., LET var1 = var2 or LET var1 = var2 <op> var3

The LET statement allows a variable to be set equal to another variable
or to the result of an operation performed on two variables. The
allowed operations are addition (<op> = +), subtraction (-),
multiplication (*), and division (/). The blanks between the operands
are required.

4-34, TEST var1 <relop> var2 THEN label?1 ELSE label?2

The TEST statement allows two variables to be compared as being equal
(=), less than (<) or greater than (>). If the result is true, then a
branch is made to labell. Otherwise a branch is made to label2. The
ELSE-clause is optional. If it is not present and a false condition is
encountered, then the next statement in sequence will be processed.

4-35. DCL var1 INIT n

The DCL statement declares variables used in the program. Note that
all variables must be declared. The initial value n is optional and
defaults to zero.

4-36. DO var1 = var2 TO var3

The DO statement, together with the ENDDO statement, allows writing of
loops. The value of var?1 is initially set to var2. Each pass through
the loop increments var1 until it equals the value of var3. DO loops
may be nested, but the program stack must always be balanced between
the DO and ENDDO statements.

4-37. ENDDO

This signals the end of a DO loop.

U—38. READ VarT,Varz,...

This statement reads and converts to binary sequences of two

39



FIGURE 4-9

Ne

.
4
Je vk d ode kK b sk ok ok ek kb sk sk ke ok ok ke %k % ok ok sk ok ok e %k ok k ko ko ok ok ok ok ke ok ok

H PROGRAM CONTROL STRUCTURES VIA MACROS

d d dk ok ok Kk vk ke de sk ke sk b Kk sk %k sk sk ok kK vk %k sk vk e de gk ks %k bk ke %k ok ok ok ko ko ke ok ok ok ke

PRINT messajge

Ne Ne N

AhkhkhkhkhkhkhAhkhkhk kA hkhkrAhkhkhkhkhkdkhk Ak hkhk Ak Ak Ak hkkkkhkhkhkhhkhkdkhkkhki

PRINT MACRO #A
GLOBAL PTXT

LD E,CHNL+1 ;CHANNEL NBR
LD HL,MS%ZNEXP
CALL PTXT
JR L%ZNEXP
MSZNEXP DEFM ‘#A' ,O0DH,0AH,3H
LZNEXP
MEND

.
’

IR R R R EEE RS EREEEEEEEEEEREEREE SRR R RS ERERRER SRR EEEEEESEEE]
.

r’

; LET var1 = var2 <op> var3

.

’

AAA KA AR AAAKR AR AR AR A KA Ak ok khkhdkkk ok kdkkkdkkdkkhkhhdhkxkkhkkkx

LET MACRD #h #B #C #D #E
Mrocar 1rvi1,L2,L3,L4,L5,LS,LERR
MIF '#B'='=' THEN L1 ELSE LERR ;SYNTAX CHECK
L MNOP
LD HL,(#C) ;GET VAR2
MIF '#D'='' THEN LS ;IF NO OPERATOR, DO ASSIGNMENT
LD DE, (#E) ;GET VAR3
MIF '#D'='+' THEN L2 ;CHECK OPERATOR
MIF '#D'='-"' THEN L3
MIF '#D'='*' THEN L4
MIF '#D'='/"' THEN L5
MERROR  ****x TLLEGAL OPERATOR ****x*
MEXIT
L2 MNOP
ADD HL,DE
MGOTO LS
L3 MNOP
OR A
SBC HL,DE
MGOTO LS
L4 MNCP ;MULTIPLY BY SEVERAL ADDITIONS
LD A,D ;CHECK FOR MULT BY ZERO
OR E
JR NZ,I%NEXP
LD HL,O ;IF SO, ZERO RESULT
JP KZNEXP
IZNEXP DEC DE ;CHECK FOR MULT BY ONE
LD A,D
OR E
JR Z,K%ZNEXP ;YES, JUST PUT IN VALUE
LD BC,(#C) ;GET VAR2
LZNEXP ADD HL,BC
DEC DE

LD A,D ;CHECK FOR END



INEXP

ZRR

ZNEXP
ZNEXP

S
ZNEXP

N

OR
JR

MGOTO

MERROR
MEXIT

MNOP
LD
OR
JR
PRINT
JR
LD
OR
SBC
INC
JR
DEC
LD
LD
MNOP
LD
MEND

E
NZ,L%ZNEXP

LS

* % %k * %k BAD SYNTAX * Kk k Kk Kk

A,D ;CHECK FOR DIVIDE BY ZERO
E

NZ ,C%ZNEXP

'*** OVERFLOW ERROR'

ZZNEXP

BC,O0 sRESULT

A ;RESET CARRY

HL,DE s SUBTRACT UNTIL DGCNE

BC

NC,D%NEXP ; LOOP UNTIL NEGATIVE
BC s CORRECT THE RESULT

L,C ;PUT INTO HL

H,B

(#A),HL ;SAVE IN VAR1

edk dk d ok Kk ok ok ok ok ok ok ke ok dk k kR ke ke k% sk ok ko ok ke ke ke %k ok ok ko k% ke k ke ke ko ke ok

s TEST var1 <op> var2 THEN label1 [ ELSE label2 ]

»
4

khkhhkhkhkhkhhkdhhkhkhkkkhkhkkdhkhkhkkkhkhkdkhkhkhkhkkdhkdhkhkhkhkkhkkhkdhkhkkkkhk kkkkkhkrkxk

[EST

L1

L2
L3
Ly

L5
L6

LERR
LCONT

LZNEXP

L7

MACRO
MLOCAL
MIF
MNOP
LD

LD

OR
SBC
MIF
Jp
MGOTO
MIF
MNOP
JP
MGOTO
MIF
HNOP
JR

JP
MGOTO

MERROR
MEXIT

MNOP
MIF

MNOP
JP

#A #B #C #D #E #F #G
t1,L2,.3,14,L5,16,L7,L8, LERR,LCONT
'#D'="THEN' THEN L1 ELSE LERR s SYNTAX CHECK

HL,(#R) ;GET VAR1
DE, (#C) ;GET VAR2

A

HL,DE ; SUBTRACT FOR COMPARE

'#B'='=' THEN L2 ELSE L3 ;CHECK OPERATCR
Z,#E ;IF EQUAL (TRUE), DO JUMP

LCONT

'#B'='<' THEN L4 ELSE 15

C,#E ;IF LESS THAN, JUMP

LCONT

'"#B'='>' THEN L6 ELSE LERR

Z,L%NEXP ;IF EQUAL TO THEN FALSE
NC,#E ;IF GREATER THAN, JUMP

LCONT

* Kk Kk *k Kk BAD SYNTAX * k % % Xk

'#F'='ELSE' THEN L7 ELSE 18 ;CHECK FOR IF CLAUSE

#G ;JUMP TO FALSE LABEL



MEXIT
L8 MNOP
MEND

.
4

Fhkkhkkkhkhkhkdhkhkkhkkdkhkkhkhkdhkhkhkhkhkkhkhkdkdkkkhkhkdkdkkdhkdhkkhkkhhkhhdhhkxk

DCL var INIT n

Ne Ne Ne

d vk gk ok kk Kk dkk ok kk ko kok ke k ok ok ok ok %k ke kv b gk ok %k ok k vk ok sk ok ok ok kb ke ok ke ke ok ok

DCL MACRO #A #B #C
MLOCAL 1L1,L2,L3
MIF '#B'='INIT' THEN L1 ELSE L2
L1 MIF '#C'="'"' THEN L2
#A DEFW #C ;DECLARE VARIABLE
MEXIT
L2 MNOP
#A DEFW 0 ;DEFAULT TO ZERO
MEND

.
4
Yk ke de ke ke ke k ok Ak Kk d gk ke h ok ki ke ok sk ok kb kg kb kb ke ke %k ok ok %k %k ok

.
’

; DO var1 = var2 TO var3
;
I E S S S S SRR EREE S SRR EETE R R R ER SRR R RS SRR EREREEEREREESEREXESR]

DO MACRO #A #B #C #D #E
MLOCAL L1,L2,LERR
MIF '#B'='=' THEN L1 ELSE LERR sSYNTAX CHECK
L1 MIF '#D'='TO"' THEN L2
LERR MERROR  ***** BAD SYNTAX ****x*
MEXIT
L2 HMNOP
LD HL,(#C) ;GET VAR2
LD DE, (#E) ;GET VARS3
LD IX,L7%ZNEXP ;GET LOCP BACK LABEL
LZNEXP LD (#R) ,HL ;SET VAR1
PUSH HL ;PUSH VALUES ONTO STACK
PUSH DE
PUSH IX
MEND

.
4
khkhkhkhkkkkhkhkhkhkhkhkkhkkhkkhkhkhkkhkhkkhkhkhkAhkhkhkhhkhkkhkkhkhkhkhkhrkkh
.

’

; ENDDO

’

FhAAA Ak hkh kA rA XAk hkAAT Ak A Ak h Ak hhkkdkhkdkkkkdkkhkdhkhkkkhkhdhhkhkhkx

ENDDO MACRO

POP IX ; LOOP ADDRESS

POP DE ;FINAL VALUE

POP HL ;CURRENT VALUE

INC HL s INCREMENT VAR

PUSH HL

OR A ;CHECK IT

SBC HL,DE

POP HL

JR Z ,KKZNEXP ;LAST TIME THRU

JR NC,L%NEXP ;IF DONE, SKIP OUT
KKZNEXP JP (IX) ;ELSE LOOP

LZNEXP
MEND



e d de ke ok de ok Kk ok ok ok ke k ok Kk ok ke ke ko ko ke ok ke ok ek %k sk ok ke ok ke ke ko ke %k ok ke ke ok k ke ke ke ok ok

READ var1,var2,...

T % gk Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k k ok ok ok ke ok ok ok ok ok ke ok ok k% ok ok ke ke

(EAD MACRO #A
MLOCAL L1,L2

» #A FIRST TIME USAGE OF PARAMETER
GLOBAL ECHO,ASBIN

LD E,CHNL
L1 MNOP

CALL ECHO ;READ A CHARACTER

LD A,D ; PREPARE TO CONVERT

CALL ASBIN ; CONVERT

AND OFH

RLCA

RLCA

RLCA

RLCA

PUSH AF

CALL ECHO ;GET NEXT ONE

LD A,D

CALL ASBIN

AND OFH

LD L,A sSAVE IT

POP AF

OR L

LD L,A

LD H,O

LD (#PRM) ,HL ;SAVE RESULT
LNZNEXP CALL ECHO ;GET NEXT INPUT CHAR

LD A,D ;CHECK CHARACTER

Cp 0DH ;CARRIAGE RETURN?

Jp Z ,PZNEXP ;YES, SKIP OUT

Cp ! ; COMMA?

JR NZ ,LN%ZNEXP ;NO, LOOP FOR ANOTHER

MNEXT 1 THEN L1 ELSE L2 ;CHECK FOR MORE ARGS
L2 MNOP

PZNEXP

CALL CRLF

MEND
;******************************************f******
; WRITE var1,var2, ...
:*t***********************************************
WRITE MACRO #A , #B
; #A FIRST TIME USAGE OF PARAMETER

MLOCAL L1

GLOBAL PTXT,CRLF,PADDO

LD E,CHNL+1 ;OUTPUT CHANNEL
L1 MNOP

LD HL ,MS#PRM ;OUTPUT MESSAGE

CALL PTXT

LD HL, (#PRM)

CALL PADDO sWRITE OUT IN HEX

JR L#PRM

MS#PRM DEFHM '#PRM = °



DEFB 3
L#PRHM
MNEXT 1 THEN 11
CALL CRLF
MEND

.
4
% J sk k %k K K ok dk vk sk de %k e ke ok sk %k Kk sk dk R e % %k vk sk dk ok Stk ke ek ok ko ke ke k ke ok ke ke ok

.
’
; GOTO label
.
14
IS S RS SRS EREEEREEEEEEEE RS EEEEEEEEEEREEESREESESESERERE]
GOTO MACRO #A
JP #A
MEND
.
4
dedkohkkkhhk ok ok k ok ko k Kk kdkhh ok hk ok ok k ok hdhk ok dk ok k ok kg ok ke ok de ke ok ko ok %k ok ok

; EXIT
kR kAR Rk Ak Ak Ak Ak k Ak ke Ak ko Rk ok k ok Rk
EXIT MACROD

GLOBAL JTASK

LD A,1

JP JTASK

MEND

d kK k ke ok ok vk ok ok ok ok ok ok ok Kk ke ke k ks Kk ko %k e sk sk Ak ok ke k% e sk ok ke ke ke ok ok ok kK

; END OF MACRO LIBRARY

khkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhAkkhkhkhkhkhkhkkodhkkdhkhhdkhkdkkkdhkdhkkdkhkdkkkkknh

LIST



MOSTEK MACRO-80 OPERATIONS MANUAL

hexadecimal characters, placing them into the variables var1, var2,
etCe.

L"'39- WRITE Var1,Var2,-..

This statement writes each variable in the list in the form 'name =
value', where name is the name of the variable and value is its value
in four hexadecimal digits.

4-40. PRINT 'message'

This macro prints a message of any length on the console.

4-41. GOTO label

This macro transfers control to the specified label.

u-42. EXIT

This macro transfers control back to the FLP-80DOS Monitor.

4-43, Figure 4-10 shows two simple programs which demonstrate use of
these macros. The first program calculates n numbers in a Fibonacci
series where n is a number input from the console keyboard. The second
program generates n X n combinations of addition, subtraction,

multiplication, and division, where n 1is read from the <console
keyboard. Figure 4-11 shows sample output from the programs.

4-44. OPERATING SYSTEM INTERFACE.

4-45, The fifth area where macros are useful is 1in providing
systematic and simplified mechanisms for access to operating system
functions. These macros can allow easy use of the operating systenm's

I/0 facilities, service routines, and system support routines.

4-47. In this example, a set of macros are shown which provide access
to FLP-80DOS I/0 facilities. Use of these macros can eliminate a large
portion of the drudgery of assembly language programming. Furthermore,
the macros reduce programming errors and provide for some checking of
parameters associated with the operating system calls. It is assumed
in this discussion that the user is acquainted with Section 9 of the
FLP-80DOS manual (IOCS).

4-47. Figure 4-12 shows a file which has definitions of each IOCS
related parameter. This file is included in programs which use IOCS to
provide a set of standard symbols for use 1in the macros and in the
program itself. (The file is called IODEF).

4-48. The set of macros shown in Figure 4-13 allows a simplified

40



FIGURE 4-10.

LocC

0000

0000

0000
0002
0005
0008
Q00A"

001F

001F

0021
0024
0025
0028
002A
002B
002C
002D
002E
002F
0032
0033
0036
0038
0039
003A
003B
003C
003E
go41!
o044
0045

OBJ.CODE

=0000

1E01
210A00"
CDFFFF
1815
454E5445
522032290
48455820
44494749
54530D0A
03
=001F"

1E00

CDFFFF
7A
CDFFFF
E60F

07

07

07

07

F5
CD2200"
7A
CD2600"
E60QF

6F

F1

B5

6F

2600
22EBOQOQ’
CD3000"
7A

FEOD

STMT-NR

269

9

AN EWN - F

1

276

278

283
284
285
286
287
288
289

290
291
292
293

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
SOURCE-STMT PASS2 FIG410 FIGU10 FIG410 REL

TITLE FIGURE 4-10.
SAMPLE USAGE OF CONTROL STRUCTURES

INCLUDE MACRO DEFINITIONS

Ne Ne Ne Ne Ne

INCLUDE FIG4D9
; FIGURE 4-9
LIST

CHNL EQU 0

PROGRAM 1 ... GENERATE UP TO N FIRONACCI NUMBI
WHERE N IS READ FROM THE CONSOLE KEYBCARD

Ne We Ne N

PRINT 'ENTER 2 HEX DIGITS'
GLOBAL PTXT

LD E,CHNL+1 sCHANNEL NBR
LD HL,MS0001

CALL PTXT

JR L0001

MS0001 DEFM 'ENTER 2 HEX DIGITS',ODH,OAHK,3H

L0001
MEND
READ N
MLOCAL L1,12
; N FIRST TIME USAGE OF PARAMETER
GLCBAL ECHO,ASBIN
LD E,CHNL
L1 MNOP
CALL ECHO ;READ A CHARACTFEK
LD A,D s PREPARE TO CONVERT
CALL ASBIN s CONVERT
AND OFH
RLCA
RLCA
RLCA
RLCA
PUSH AF
CALL ECHO ;GET NEXT ONE
LD A,D
CALL ASBIN
AND OFH
LD L,A ;SAVE IT
POP AT
OR L
LD L
LD H
' LD (N),HL ; SAVE RESULT
LN00O2 CALL ECHO sGET NEXT INPUT CEAR
LD A,D s CHECK CHARACTER
Cp ODH sCARRIAGE RETURN?



E 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 2

OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL
CALEQO' 28 320 JP Z,P0002 ;YES, SKIP OUT
FE2C 29 321 Cp e ;COMMA?
20F3 30 322 JR NZ,LNOOO2 s NO, LOOP FOR ANCTHER
31 323 MNEXT 1 THEN L1 ELSE 12 ;CHECK FOR MORE AR
32 324 12 MNOP
=004E" 33 325 P0002
CDFFFF 34 326 CALL CRLF
35 327 MEND
16 328 LET COUNT = ONE
1 329 MLOCAL L1,12,13,L4,L5,LS,LERR
=FFFF 2 330 MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CHECK
3 331 11 MNOP
2ADF0O0O" 4 332 LD HL, (ONE) ;GET VAR2
=FFFF 5 333 MIF *'='' THEN LS ;IF NO OPERATCR, DO ASSIGNM
ENT
57 334 LS MNOP
b'22E900" 58 335 Z0003 LD (COUNT),HL ;SAVE IN VAR?
59 336 MEND
/ 17 337 LET A = ONE
1 338 MLOCAL L1,L2,L3,L4,L5,L5,LERR
=FFFF 2 339 MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CHECK
3 340 L1 MNOP
7 2ADFOQO’ 4 341 LD HL, (ONE) ;GET VAR2
=FFFF 5 342 MIF ''='' THEN LS ;IF NO CFERATCR, DO ASSIGNM
ENT
57 343 LS MNOP
A'22E300" 58 344 Z0o0OO4u LD (A) ,HL ;SAVE IN VAR1
59 345 MEND
D 18 346 LET B = TWO
1 347 MLOCAL L1,1L2,L3,L4,1L5,L5,LERR
=FFFF 2 348 MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CHECK
3 349 L1 MNOP
D 2AE100' 4 350 LD HL, (TWO) ;GET VAR2
=FFFF 5 351 MIF ''='" THEN LS ;IF NO OPERATCR, DO ASSIGNH
ENT
57 352 1S MNOP
0 '22E500" 58 353 Z0005 LD (B),HL ;SAVE IN VAR
53 354 MEND
)3 19 355 WRITE A,B
; A FIRST TIME USAGE OF PARAMETER
2 357 MLOCAL L1
3 358 GLOBAL PTXT,CRLF,PADDO
>3 1E01 4 359 LD E,CHNL+1 ;OUTPUT CHANNEL
5 360 L1 MNOP
55 217300° 6 361 LD HL,MSA ;OUTPUT MESSAGE
58 CD0600" 7 362 CALL PTXT
5B 2AE300° 8 363 LD HL, (RA)
6E CDFFFF 9 364 CALL PADDO ;WRITE OUT IN HEX
71 1805 10 365 JR LA
73'41203D20 11 366 MSA DEFM 'A = '
77 03 12 367 DEFB 3
=0078" 13 368 LA
14 369 MNEXT 1 THEN L1
5 370 11 MNOP
78 218600 6 371 LD HL,MSB ;OUTPUT MESSAGE
78 CD6900" 7 372 CALL PTXT
7E 2AE500' 8 373 LD HL,(B)



FIGURE 4-10.
LOC OBJ.CODE

0081 CD6FO00’
0084 1805
0086'42203D20
008A 03

=008B"'

008B CD4Fro0Q’

008E"
=FFFF

008E 2AE300'
=0000

0091 ED5BE500'
=FFFF

0085 19

0096 '22E700"

0099

0099 2AESQ0'

009C EDSBEBOO'

00AQO B7

00A1 ED52
=0000
=0000
=FFFF

O0A3 2803
00AS5 D2DA0OO’

=00A8"
=0000

00AS8

00OA8 1E01

OOAR 21B80O0O'
00AD CD7COO0'
00BO 2AE700°
00B3 CD8200"
00B6 1805

STMT-NR
9 374
10 375
11 376
12 377
13 378
14 379
15 380
16 381
21 383
1 384
2 385
3 386
4 387
5 388
6 389
7 390
14 391
15 392
16 393
57 394
58 395
59 396
22 397
1 398
2 399
3 400
4 401
5 402
6 403
7 404
8 405
11 406
15 407
16 408
17 409
18 410
19 411
24 412
25 413
26 414
30 415
31 416
23 417
2 419
3 420
4 421
5 422
5 423
7 424
8 425
9 426
10 427

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 3
SCURCE-STMT PASS2 FIG410 FIG410 FIGU10 REL

CALL PADDO sWRITE OUT IN HEX
JR LB
MSB DEFM 'B ="
DEFB 3
LB
MNEXT 1 THEN L1
CALL CRLF
MEND
LAB1 LET C = A + B
MLOCAL L1,L2,L3,L4,L5,1S,LERR
MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CH
L1 MNOP -
LD HL, (A) ;GET VAR2
MIF '+'='' THEN LS ;IF NO OPERATCR, DO A
MENT
LD DE,(B) ;GET VAR3
MIF ‘'+'='+' THEN L2 ;CHECK OPERATOR
L2 MNOP

ADD HL,DE
MGOTO LS
LS MNOP
20007 LD (C),HL sSAVE IN VAR1
MEND
TEST COUNT > N THEN DONE
MLocar on1,r2,L3,L4,1.5,.6,1.7,18,LERR,LCONT
MIF 'THEN'='THEN' THEN L1 ELSE LERR ;SYN'
HECK
L1 MNOP
LD HL,(COUNT) GET VAR1
LD DE, (N) sGET VAR2
OR A
SBC HL,DE s SUBTRACT FOR COMPARE
MIF '>'='=' THEN L2 ELSE L3 ;CHECK OPERAI
L3 MIF '>'='<' THEN L4 ELSE 15
L5 MIF '>'='>' THEN L6 ELSE LERR
L6 MNOP
JR Z,L000¢8 ;IF EQUAL TO THEN FALSE
JP NC,DONE ;IF GREATER THAN, JUNP
MGOTG LCONT
LCONT MNOP

10008
MIF ''=‘'ELSE' THEN L7 ELSE L8 :CHEC
LAUSE
L8 MNOP
MEND
WRITE C
; C FIRST TIME USAGE OF PARAMETER
MLOCAL L1
GLOBAL PTXT,CRLF,PADDO
LD E,CHNL+1 ;OUTPUT CHANNEL
L1 MNOP
LD HL,MSC ;OUTPUT MESSAGE
CALL PTXT
LD HL, (C)
CALL PADDO ;WRITE CUT IN HEX
JR LcC



JRE 4-10.
OBJ.CODE

3'43203D29
> 03

=00BD"
> CD8COO"
0

=FFFF

0 2AE900°
=0000

3 ED5BDFOO’
=FFFF

7 19

'8'22E900"
B
=FFFF
B 2AE500"
=FFFF
CE'22E300"
21
=FFFF
D1 2AE700°
=FFFF
D4'22E500"
D7
D7 C38E00"
DA"
‘DA 3E01
iDC C3FFFF
)DF
=FFFF

=00090
JDF'0100

STMT-NR
11 428
12 429
13 430
14 431
15 432
16 433
24 434
1 435
2 436
3 437
4 438
5 439
6 440
7 441
14 442
15 443
16 L4y
57 445
58 L4ub
59 447
25 448
1 449
2 450
3 451
4 452
5 453
57 454
58 455
59 456
26 457
1 458
2 u5¢9
3 460
4 461
5 462
57 U463
58 464
59 465
27 4656
1 467
2 468
29 470
1 471
2 472
3 473
4 474
3 476

1

1 477
2 478
3 479
4 480
5 481

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE
SOURCE-STMT PASS2 FIG410 FIG410 FIGU10 REL

MSC DEFM 'C = '
DEFB 3
LC
MNEXT 1 THEN L1
CALL CRLF
MEND
LET COUNT = COUNT + ONE

MLOCAL L%,L2,L3,L4,L5,LS,LERR
MIF '='='=' THEN L1 ELSE LERR ;SYNTAX
L1 MNOP
LD HL, (COUNT) ;GET VAR2
MIr ‘'+'='' THEN LS ;IF NO OPERATCR, DO
MENT
LD DE, (ONE) ;GET VAR3

MIF '+'='+' THEN L2 ;CHECK CPERATOR
L2 MNCP
ADD HL,DE
MGOTO LS
Ls MNOP
20010 LD (COUNT) ,HL ;SAVE IN VAR1
MEND
LET AR = B
MLocar n1,.2,1.3,1L4,1L5,LS,LERR
MIF ‘'='='="' THEN L1 ELSE LERR ;SYNTAX
MNOP
LD HL, (B) ;GET VAR2
MIF ''='' THEN LS ;IF NO OPERATCR, DO
ENT

[
—_

LS MNOP
20011 LD (A),HL »SAVE IN VAR1
MEND
LET B = C
MLOCAL L1,L2,L3,L4,L5,LS,LERR
MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX
L1 MNOP
LD HL, (C) ;GET VAR2
MIF *''='' THEN LS ;IF NO OPERATCR, DO
ENT
LS MNOP
20012 LD (B),HL ;SAVE IN VARA1
MEND
GOTO LAB1
JP LAB1
MEND

DONE EXIT
GLOBAL JTASK
LD A,1
JP JTASK
MEND

DCL ONE INIT 1

MLOCAL L1,L2,L3
MIF ‘'INIT'='INIT' THEN L1 ELSE L2
L1 MIF '1'='"' THEN L2
ONE DEFW 1 ;DECLARE VARIABLE
MEXIT

N

CHECK

ASSIGN

(@]
ja oy
3]
(@]
~

ASSIGHNM

CHECK

ASSIGNY



FIGURE 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE

LoC 0OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIGW10 FIG410 FIGL10 REL
00E"1 32 482 DCL TWO INIT 2
1 483 MLOCAL L1,L2,L3
=FFFF 2 484 MIF 'INIT'='INIT' THEN L1 ELSE L2
=0000 3 485 L1 MIF ‘*2'='' THEN L2
00E1'0200 4 486 TWO DEFW 2 ;DECLARE VARIABRLE
5 487 MEXIT
00E3 33 488 DCL A
1 489 MLOCAL L1,L2,L3
=0000 2 480 MIF ''=°'INIT' THEN L1 ELSE L2
6 491 L2 MNOP
00E3'0000 7 492 A DEFW O ;DEFAULT TO ZERO
8 493 MEND
00ES5 34 494 DCL B
1 495 MLOCAL L1,L2,L3
=0000 2 496 MIF *'='INIT' THEN L1 ELSE L2
6 497 12 MNOP
00E5'0000 7 498 B DEFW O ;DEFAULT TO ZERO
8 499 MEND
00E7 35 500 DCL C
17 501 MLOCAL L1,L2,L3
=0000 2 502 MIF ''='INIT' THEN L1 ELSE L2
5 503 L2 MNOP
00E7'0000 7 504 C DEFW 0 ;DEFAULT TO ZERC
8 505 MEND
00E9 36 506 DCL COUNT
1 507 MLOCAL L1,L2,L3
=0000 2 508 MIF '"'='INIT* THEN L1 ELSE L2
6 509 L2 MNOP
00ES'0000 7 510 COUNT DEFW © ;DEFAULT TO ZERC
8 511 MEND
00EB 37 512 DCL N
1 513 MLOCAL L1,L2,L1L3
=0000 2 514 MIF ''='INIT' THEN L1 ELSE L2
6 515 L2 MNOP
00EB'0000 7 516 N DEFW O sDEFAULT TO ZERO
8 517 MEND



~NOU v

3D

40

RE 4-10.

OBJ.CODE

101
21F700°
CDAEOO"
1817
454E5445
52205457
4F204845
58204449
47435453
ODOAO3
=010E"

1E00

CDhu4200"
7A
cb3400"
E60F

07

07

07

07

F5
cb1101!
7A
CD1501"
E6OF

6F

F1

B5

6F

2600
22EB0O"
CD1FO1"
74

FEOD
CA3DO1!
FE2C
20F3

=013D"
CDBEOO"

STMT-NR

NNV FEWN

WOWooJdJoWmE W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
L6

524
525
526
527
528
529
530

531
532
533
534

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 6

SOURCE-STNMT PASS2 FIG410 FIGH10 FIGH10 REL

£ Ne we Ne we

00pP

MS0022

10022

PROGRAM 2 ... GENERATE N BY N CALCULATIONS FOR
ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION
WHERE N IS INPUT FROM THE CONSOLE KEYEOARD.

PRINT 'ENTER TWO HEX DIGITS'
GLOBAL PTXT

LD E,CHNL+1 ;CHANNEL NBR
LD HL,MS0022

CALL PTXT

JR L0022

DEFM 'ENTER TWO HEX DIGITS',O0DH,O0ORH,3H

MEND
READ N
MLOCAL L1,L2

; N FIRST TIME USAGE OF PARAMETER

L1

LNOO23

L2
P0023

GLOBAL ECHO,ASBIN
LD E,CHNL

MNOP
CALL ECHO ;READ A CHARACTER
LD A,D ;PREPARE TO CONVERT
CALL ASBIN ; CONVERT

AND CFH

RLCA

RLCA

RLCA

RLCA

PUSH AF

CALL ECHO ;GET NEXT ONE

LD A,D

CALL ASBIN

AND OFH

LD L,A ;SAVE IT

POP AF

OR L

LD L,A

1D H,0

LD (N),HL ; SAVE RESULT

CALL ECHO ;GET NEXT INPUT CHAR
LD A,D ;CHECK CHARACTER
CP ODH ;CARRIAGE RETURN?
JP Z,P0023 ;YES, SKIP OUT

CP v, ; COMMA?

’
JR NZ,LN0023 ;NO, LOOP FOR ANCTHER
MNEXT 1 THEN L1 ELSE L2 ;CHECK FOR MORE .
MNOP

CALL CRLF

MEND

TEST N = ZERO THEN LOOP

mrocar n.1,L2,L3,L4,1L5,L6,L7,L8,LEKR,LCONT



FIGURE 4-10.
L0C 0BJ.CODE

=FFFF

0140 2AEBOO’

0143 ED5B6502'

0147 B7

0148 ED52
=FFFF

014A CAEDOO'

=014D"
=0000

014D

J g

FFF
FFF

x

014D 2ADFOO’
0150 EDS5BEBOJ'
0154 DD215801"
0158'226702"

015B ES5
015C D5
015D DDES5
015F
=FFFF
=FFFF

015F 2ADFQO°
0162 ED5BEBOO’
0166 DD216A01"
016A'226902"
016D E5

016E D5

016F DDES

0171

=FFFF

0171 2A6702"
=0000

0174 ED5B6902°
=FFFF

0178 19

0179'226802"

STMT-NR
2 571
3 572
4 573
5 574
5 575
7 576
8 577
9 578

10 579

24 5890

25 581

26 582

30 583

31 584

47 585
1 586
2 587
3 588
7 583
8 590
9 591

10 592

11 593

12 594

13 595

14 596

15 597

48 598
1 599
2 600
3 601
7 602
8 603
S 604

10 605

11 606

12 607

13 608

14 609

15 610

49 611
1 612
2 613
3 614
4 615
5 616
6 617
7 618

14 619

15 620

16 621

57 622

58 623

53 624

MOSTEK MACRO-80 ASSEMBLER

V2.0 PLGE 7

SOURCE-STMT PASS2 FIG410 FIG410 FIGLH10 REL

L1

L2

LCONT

Loo2y

L8

L1
L2

L0025

L1
L2

10026

L1

L2

LS
20027

MIF 'THEN'='THEN' THEN L1 ELSE LERR ;SY

MNOP

LD HL, (N)

LD DE, (ZERO)
OR A

SB3C HL,DE
MIF =t ==
JP Z,LOOF
MGOTO LCONT
MNOP

THEN L2 ELSE 13

HECK

;GET VAR
sGET VAR2

s SUBTRACT FOR COMPARE
; CHECK OPERI
;IF EQUAL (TRUE), DO JU!

MIF *'='ELSE' THEN L7 ELSE L8 ;CHE
LAUSE

MNOP

MEND

DO I = ONE TO N

MLOCAL L1,1L2,LERR

MIF '='='=' THEN L1 ELSE LERR ; SYN

MIF 'TO'='TO’
MNQOP

LD HL, (ONE)
LD DE, (N)

LD IX,L0025
LD (I),HL
PUSH HL

PUSH DE

PUSH IX

MEND

DO J = ONE TO N
MLOCAL L1,1L2,LERR

THEN L2

;GET VAR2

;GET VAR3

sGET LOOP BACK LABEL
;SET VAR1

;PUSH VALUES ONTC STACK

MIF '='='=' THEN L1 ELSE LERR FSYINT
MIF 'TO'='TO' THEN L2

MNOP

LD HL, (ONE) sGET VAR2

LD DE, (N) ;GET VAR3

LD IX,L00256 ;GET LOOP BACK LABEL

LD (J),HL ;SET VAR1

PUSH HL
PUSH DE
PUSH IX
MEND

LET ADD =1 + J

;PUSH VALUES ONTO STACK

MLOCAL L1,L2,L3,L4,15,L5,LERER

MIF ‘'='='=' THEN L1 ELSE LERR ;;SYNTAX CHE

MNOP

LD HL,(I) ;GET VAR2

MIF '+'='' THEN LS ;IF NC OPEEATCR, DO AS
MENT

LD DE, (J) ;GET VAR3

MIF '+'='+' THEN L2 ;CHECK OPERATOR

MNOP

ADD HL,DE
MGOTO LS
MNOP

LD (ADD) ,HL
MEND

;SAVE IN VAR1T



IRE 4-10.
0BJ.CODE

=FFFF

2 2RA6702°
=0000

F ED5B6902"
=0000
=FFFF

B7
ED52

£ w

(e}

'226D02"

=FFFF

9 2A6702'
=0000

O

ED5B6902"
=0000
=0000
=FFFF

30 7A

31 B3

22 2006

34 210000

37 C3R901"

JA'1B

3B 7A

9C B3

9D 280A

9F EDu4B6702"

A3'09

A4 138

A5 7A

A6 B3

A7 20FA
=01R9"

A9'226F02"

AC

=FFFF

IAC 2A6702°
=0009

STMT-NR
50 625
1 626
2 627
3 628
4 629
5 630
6 631
7 632
8 633
17 634
18 635
19 0636
20 637
57 638
58 639
59 640
51 641
1 642
2 643
3 644
L 645
5 646
6 647
7 648
8 649
9 650
21 651
22 652
23 653
24 654
25 655
26 656
27 657
28 658
29 659
30 660
31 661
32 662
33 663
34 664
35 665
36 666
37 667
38 668
57 669
58 670
59 671
52 672
1 673
2 674
3 675
b 676
5 677

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 8

SOURCE-STMT PASS2 FIG410 FIG410 FIG410 REL

L1

L3

LS
20028

La

I0029

L0029

K0029

LS
20029

L1

LET SUB =1 - J
MLOCAL L1,L2,L3,L4,L5,LS,LERR

MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CHECK

MNOP

LD HL,(I) ;GET VAR2

MIF '-'='' THEN LS ;IF NO OPERATOR, DO ASSIGN
MENT

LD DE, (J) ;GET VAR3

MIF '-'='+' THEN L2 ;CHECK OPERATOR

MIF '-'='-' THEN L3

MNOP

OR A

SBC HL,DE

MGOTO LS

MNOP

LD (SUB) ,HL ;SAVE IN VAR

MEND

LET MUL =1 * J
MLOCAL 1L1,L2,L3,L4,1L5,LS,LERR

MIF ‘'='='=' THEN L1 ELSE LERR ;SYNTAX CHECK

MNOP

LD HL, (1) ;GET VAR2

MIF **'='' THEN LS ;IF NO OPERATOR, DO ASSIGN
MENT

LD DE, (J) ;GET VARS3

MIF '*'='+' THEN Lz ;CHECK OPERATOR

MIF '*'='-' THEN L3

MIF **'='*' THEN L4

MNOP s MULTIPLY BY SEVERAL ADDITION
S

LD A,D ;CHECK FOR MULT BY ZERO

OR E

JR NZ,1I0029

LD HL,O ;IF SO, ZERO RESULT

JP K0029

DEC DE ;CHECK FOR MULT BY ONE

LD A,D

OR E

JR Z,K0029 sYES, JUST PUT IN VALUE

LD BC,(I) ;GET VAR2

ADD HL,BC

DEC DE

LD A,D ;CHECK FOR END

OR E

JR NZ,L0029

MGOTO LS

MNOP

LD (MUL) ,HL ;SAVE IN VAR1

MEND

LET DIV =1 / J
MLocar r1,L.2,L3,L4,L5,LS,LERR

MIF '='='=' THEN L1 ELSE LERR ;SYNTAX CHECk
MNOP

LD HL,(I) ;GET VAR2

MIF */'='' THEN LS ;IF NO OPERATCR, DO ASSIG

MENT



FIGURE 4-10. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE

LOC O0BJ.CODE STMT-NR SOURCE-STMT PASS2 FIG410 FIGU10 FIG410 REL
01AF EDS5B6902' 6 678 LD DE, (J) sGET VAR3
=0000 7 679 MIF *'/'='+' THEN L2 ;CHECK OPERATOCR
=0000 8 680 MIF ‘'/'='-' THEN L3
=0000 9 681 MIF ‘'/'='*' THEN L4
=FFFF 10 682 MIF '/'='/' THEN L5
43 683 L5 MNOP
01B3 7A Ly e84 LD A,D ;CHECK FOR DIVILDE RBY ZE
0184 B3 45 685 OR E
01B5 2021 46 686 JR NZ,C0030
01B7 47 687 PRINT '*** QOVERFLOW ERROR'
1 688 GLOBAL PTXT
01B7 1E01 2 689 LD E,CHNL+1 ; CHANNEL NBR
01B9 21C101"° 3 690 1D HL,MS0031
01BC CDF300' 4 691 CALL PTXT
01BF 1815 5 692 JR L0031
01C1'2RA2A2A20 6 693 MS0031 DEFM '*** OVERFLOW ERROR',0DH,O0AH,3H
4F564552
464CLHEST
20455252
4F520D0OA
03
=01D56" 7 694 L0031
8 695 MEND
01D6 180C 48 696 JR 20030
01D8'010000 49 697 C0030 LD BC,0 s RESULT
01DB'B7 50 698 D0030 OR A ;RESET CARRY
01DC ED52 51 699 SBC HL,DE ; SUBTRACT UNTIL DONE
01DE 03 52 700 INC BC
01DF 30FA 53 701 JR NC,D0030 ;LOOP UNTIL NEGATIVE
01E1 0B 54 702 DEC BC ;CORRECT THE RESULT
01E2 69 55 703 LD L,C ;PUT INTO EL
01E3 60 56 704 LD H,B
57 705 LS MNOP
01E4'227102" 58 706 20030 LD (DIV),HL ;SAVE IN VAR
59 707 MEND
01E7 53 708 WRITE ADD,SUB,MUL,DIV
; ADD FIRST TIME USAGE OF PARAMETER
2 710 MLOCAL L1
3 711 GLOBAL PTXT,CRLF,PADDO
01E7 1EO01 4 712 LD E,CHNL+1 ;CUTPUT CHANNEL
5 713 L1 MNOP
01ES 21F701° 6 714 LD HL,MSADD ;OUTPUT MESSAGE
01EC CDBDO1" 7 715 CALL PTXT
O01EF 2A6B02' 8 716 ‘ LD HL, (ADD)
01F2 CDB400" g 717 CALL PADDO sWRITE OUT IN HEX
01F5 1807 10 718 JR LADD
O1F7'41444420 171 719 MSADD DEFM 'ADD = '
3D20
C1FD 03 12 720 DEFB 3
=01Fz" 13 721 LADD
14 722 MNEXT 1 THEN L1
5 723 L1 MNOP
01FE 210C02" 6 724 LD HL,MSSUB ;OUTPUT MESSAGE
0201 CDEDO1' 7 725 CALL PTXT
0204 2A6D02° 8 726 1D HL,(SUB)
0207 CDF301" 9 727 CALL PADDO sWRITE OUT IN HEX
020A 1807 10 728 JR LSUB



.GURE 4-10.
)C 0BJ.CODZ

20C'53554220
3D20
212 03
=0213"

213 212102°
216 CD0202°
219 2A6F02°
21C CDo802"
21F 1807
221'4D554C20

3D20
227 03

=0228"

1228 213602°
122B CD1702"
J22E 2A7102°
)231 CD1DO2'
234 1807
236 '44485620

3D20
)23C 03

=023D"

023D CD3EO1!

0240

0240 DDE1
0242 D1
0243 E1
o244 23
0245 E5
0246 B7
0247 ED52
0249 E1
024A 2802
024C 3002
024E'DDE9

=0250"

0250

0250 DDE1
0252 D1
0253 E1
0254 23
0255 E5
0256 B7
0257 ED52
0259 E1
025A 2802
025C 3002
025E'DDE9

=0260"

STMT-NR
11 729
12 730
13 731
14 732
5 733
6 734
7 735
8 736
9 737
10 738
11 739
12 740
13 741
14 742
5 743
6 744
7 745
8 746
9 747
10 748
11 749
12 750
13 751
14 752
15 753
16 754
54 755
1 756
2 757
3 758
4 759
5 760
6 761
7 762
8 763
9 764
10 765
11 766
12 767
13 768
55 769
1 770
2 771
3 772
4 773
5 774
6 775
7 776
8 777
9 778
10 779
11 780
12 781

13 782

MOSTEXK MACRO-80 ASSEMBLER

V2.0 PAGE

SOURCE-STMT PASS2 FIGU10 FIGH10 FIGU10 REL

HSSUB DEFH
DEFB
LsSUB

MNEXT 1 THEN L1

L1 MNOP
LD
CALL
LD
CALL
JR
MSMUL DEFHM
DEFB
LMUL

MNEXT 1 THEN L1

L1 MNOP
LD
CALL
LD
CALL
JR
MSDIV DEFM
DEFB
LDIV

MNEXT 1 THEN L1

CALL
MEND

ENDDO

pPOP
POP
POP
INC
PUSH
OR
SBC
POP
JR
JR
KK0033 JP
L0033
MEND

ENDDO

POP
POP
POP
INC
PUSH
OR
SBC
POP
JR
JR
KKoO034 JP
LOoO3u
MEND

'SUB =

3

HL,MSMUL
PTXT
HL, (MUL)
PADDO
LMUL
'MUL = ¢

3

HL,MSDIV
PTXT
HL, (DIV)
PADDO
LDIV
‘DIV = !

3

CRLF

IX

DE

HL

HL

HL

A

HL,DE

HL
Z,KK0033
NC,L0033
(IX)

IX

DE

HL

HL

HL

A

HL,DE

HL
Z,KK0034
NC,L0034
(IX)

s OUTPUT MESSAGE

sWRITE OUT IN HEX

;OUTPUT MESSAGE

;WRITE OUT IN HEX

; LOOP ADDRESS
sFINAL VALUE

s CURRENT VALUE
s INCREMENT VAR

;CHECK IT

; LAST TIME THRU
;IF DONE, SKIF OUT
;ELSE LOOCP

;LOOP ADDRESS
;FINAL VALUE

; CURRENT VALUE
;INCREMENT VARA1

;CHECK IT
;LAST TIME THRU

;IF DONE, SKIP OUT
sELSE LOOP

10



FIGURE 4-10.
LOC O0BJ.CODE

0260

0260 3E01

0262 C3DDO0OO'

0265

=0000

0265'0000

0267

=0000

0267'0000

0269

=00090

0269'0000

026B

=0000

026B'0000

026D

=0000

026D'0000

026F

=00090

026F'0000

0271

=0000

0271'0000

0273

STMT-NR

5

(o)) o)) o o)) (e, (S,] w
EWN -2

CVONON2FONdAIAN aAaWOdAN ANOTIOON 2220 ~JdJAN O JOAN-2OVOIAN -~ ©

(o)}

783
784
785
786
787

789
790
791
792
793
794
795
796
797
798
799
800
801

802

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE

SOURCE-STMT PASS2 FIG410 FIG4H10 FIGH10 REL

L2
ZERO

L2
ADD

L2
SUB

L2
MUL

L2
DIV

EXIT

GLOBAL JTASK
LD A,

JP JTASK
MEND

DCL ZERO

MLOCAL 1L1,L2,L3

MIF ''='INIT' THEN L1 ELSE L2
MNOP

DEFW O ;DEFAULT TO ZERO
MEND

DCL I

MLOCAL 11,L2,L3

MIF ''='INIT' THEN L1 ELSE L2
MNOP

DEFW O ;DEFAULT TO ZERC
MEND

DCL J

MLOCAL L1,L2,L3

MIF *''='INIT' THEN L1 ELSE L2
MNOP

DEFW O ;DEFAULT TO ZEROC
MEND

DCL ADD

MLOCAL 11,L2,L3

MIF *''='INIT' THEN L1 ELSE L2
MNOP

DEFW O ;DEFAULT TO ZEROC
MEND

DCL SUB

MLOCAL L1,L2,L3

MIF ''='INIT' THEN L1 ELSE L2
MNOP

DEFW 0O ;DEFAULT TO ZERO
MEND

DCL MUL

MLOCAL L1,12,L3

MIF **'='INIT' THEN 11 ELSE 12
MNOP

DEFW O ;DEFAULT TO ZERO
MEND

DCL DIV

MLOCAL L1,L2,L3

MIF ''='INIT' THEN L1 ELSE L2
MNOP

DEFW O ;DEFAULT TO ZERO
MEND

END



FIBONACCI SERIES:

COMBINATIONS:

ENTER

04

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

L | | | (| | {1 T | Y O A

ENTER 2 HEX DIGITS

07

NSO NSRS NP NOR

0001
0003
0005
0008
000D
0015
0022
0037

FIGURE 4-11.

SAMPLE RUNS

B =

TWO HEX DIGITS

0002
0003
ooou
0005
0003
0004
0005
0006
ooou
0005
0006
0007
0005
0006
0007
0008

SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB

L L (£ O | | T {1 1

0000
FFFF
FFFE
FFFD
0001
0000
FFFF
FFFE
0002
0001
0000
FFFF
0003
0002
0001
0000

0002

MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL
MUL

L | | T | {1 O | O O [ A

0001
0002
0003
0004
0002
o004
0006
0008
0003
0006
0009
0o0o0C
0004
0008
000C
0010

01

DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV

0001
0000
0000
0000
0002
0001
0000
0000
0003
0001
0001
0000
0004
0002
0001
0001



® MO Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ve N

’

FIGURE 4-12.
NLIST

THESE DEFINITIONS ARE FOR THE CONVENIENCE COF THE USER WRITING
IOCS-BASED PROGRAMS. THESE DEFINITIONS MAY BE CHANGED TO SUIT

THE USER, BUT BEWARE OF POSSIBLE CONFLICT WITH SYSTEM PROGRAMS

AND ROUTINES INCLUDING THIS FILE. THE USER MAY ALSC ADD ADDITIONAL
DEFINITIONS, ESPECIALLY IN THE ERROR CODE SECTION (ERRC)

THIS FILE IS GENERALLY USED AS AN INCLUDED FILE:
INCLUDE IODEF

I/0 SYSTEM DEFINITIONS

VECTOR DISPLACEMENTS

LUNIT EQU 0 ;DEFB 1 BYTE
DVCE EQU 1 ;DEFM 2 BYTE
UNIT EQU 2 ;DEFM 1 BYTE
FNAM EQU 4 ;DEFM 6 BYTE
FEXT EQU 10 ;DEFM 3 BYTE
VERS EQU 13 ;DEFB 1 BYTE
USER EQU 14 ;DEFB 1 BYTE
RQST EQU 15 s;DEFB 1 BYTE
FMAT EQU 16 ;DEFB 1 BYTE
sHADDR EQU 17 ;DEFW 2 BYTE
ERRA EQU 19 ;DEFW 2 BYTE
CFLGS EQU 21 ;DEFB 1 BYTE
SFLGS EQU 22 ;DEFB 1 BYTE
ERRC EQU 23 ;DEFB 1 BYTE
sPBFFR  EQU 24 ;DEFB 1 BYTE
UBFFR EQU 25 ;DEFW 2 BYTE
USIZE EQU 27 ;DEFW 2 BYTE
s NREC £QU 29 ;DEFB 1 BYTE
;s HSCR EQU 30 ;DEFS 10 BYTE

8 BYTE

;s ISCE EQU 40 ;DEFS

’
.
’

.
’

OPRRQ EQU

REQUEST CODES

0 ;OPEN READ
OPWRQ EQU 1 ;OPEN WRITE
CLRQ EQU 2 ;CLGSE
RDRQ EQU 3 ;s READ
WRRQ EQU 4 ; WRITE
RWRQ =QU 5 ;REWIND
INRQ EQU 6 sINITIALIZE
ERRQ EQU 7 ;ERASE
; FORMAT CODES
BYTE EQU 00H sBYTE I/0 THRU ACCUMULATOR
LINE EQU 10H sASCII LINE I/O, TERMINATED BY CR/LF
LBUF EQU 20H ;LOGICAL BUFFER, LENGTH IN USIZE

BIN EQU 30H ;BINARY RAM IMAGE

’

Ne Ne Ne

CFLGS CODES



OUNT
CHO
RET
DRW
RRPR
PAR

SFLGS

‘NOP
'NOPW
INON
.0F

ERROR

[NVOP
JUPFIL
*NF
IOTIME
NOPEN
EOFERR
4

; ASCII

ETX
EOT
BEL
HT
LF
FF
DEL

.
' 4

EQU
EQU
EQU
EQU
EQU
EQU

CODES

EQU
EQU
EQU
EQU

W= 5N -

N Oy

O FEN A

CODES FOR ERRC

EQU
EQU
EQU
EQU
EQU
EQU

SPECIAL

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

LIST

s MOUNT/DISMOUNT

sAUTC ECHO FOR CONSOLE DEVICES

; IMMEDIATE RETURN REQUESTED
;READ AFTER WRITE

;ERROR PRINT

;STRIP PARITY

;UNIT OPEN

;UNIT OPEN FOR WRITE
;UNIT ON

;END OF FILE DETECTED

1 ;INVALID OPERATION
2 ;DUPLICATE FILE

4 ;FILE NOT FOUND

7 ;I0 TIME OUT

8 sFILE NOT OPEN

9 ;ATTEMPT TO READ PAST END OF
CHARACTERS

03H

O4H

07H

09H

OAH

OCH

ODH

7FH

FILE



NLIST

FIGURE 4-13.

hhkhhkkdkhrdkhkhkkhkhkdkhrdhkhkhkhkhkrkhk Ak hrhkhkbkhkhkhkhkdrhrkhhkhkhkhkhkhkhxhkkhkkhkkx

IOMAC

MACRO DEFINITIONS FOR I/O FUNCTIONS

khhkhkhkhkhkrkhkhdkhkhkhrhkrhhkdhkhkhbkhkhbkhkrhhrhkhkhkhhkhdhkhhhkdkdhkhddhdhhhk

VECTOR

L1

L2
L3

Lu

L5
L6

L7
L8
L9
L10

L11
L12

OPENR

L7
L6

L3

Ly
L5

L2
L1

OPENW

MACRO
MLOCAL
DEFB
DEFNM
DEFM
DEFM
DEFB
MIF
DEFB
MGOTO
DEFB
DEFW
MIF
DEFB
MGOTO
DEFB
DEFB
MIF
DEFW
MGOTO
DEFW
MIF
DEFW
MGOTD
DEFW
DEFB
DEFW
MEND

MACRO
GLOBAL
MLOCAL
MIF

LD

LD

MIF

LD
MGOTO
LD
CALL
LD

AND
MIF

JP

LD

JP
MEND

MACRO
GLOBAL
MLOCAL

#LUN,#DEV="'DKO"' ,#NAME=" S HEXT="
t1,L2,13,14,15,1L6,L7,L8,1L9,L10,L11,L12
#LUN

'#DEV'

'#NAME’

'#EXT'

0,0,0

'#FMAT'='"' THEN L1 ELSE L2
BYTE+4

L3

#FMAT

0,0

'#CFLGS'="'"'" THEN L4 ELSE L5

0

L6

#CFLGS

0,0,0

'#UBFFR'='"' THEN L7 ELSE L8

0

L9

#UBFFR

'#USIZE'="'""' THEN L10 ELSE L11
0

L12

#USIZE

0

0,0,06,0,0,0,0,0,0

#VECTOR,#ERR, #ERRPR
JIOCS,JTASK
L1,1.2,L3,L4,1L5,L6,L7
'#VECTOR'="'"' THEN L6 ELSE L7
IY,#VECTOR

(IY+RQST),0PRRQ

'#ERRPR'="'"' THEN L3 ELSE L4
(IY+CFLGS),0

L5

(IY+CFLGS) ,#ERRPR

JIOCS

A, (IY+ERRC)

A

'#ERR'='"' THEN L1 ELSE L2
NZ , #ERR

A,

NZ,JTASK

#VECTOR,#ERR, #ERRPR
JIOCS,JTASK
L1,L2,L3,L4,L5,L6,L7

', #FMAT,4CFLGS, #UB



MIF '#VECTOR'='' THEN L6 ELSE L7

7 LD IY,#VECTOR
5 LD (IY+RQST),0PWRQ
nIF '#ERRPR'='"' THEN L3 ELSE L4
3 LD (IY+CFLGS),0
MGOTO 15
) LD (IY+CFLGS) ,#ERRPR
5 CALL JIOCS
LD A, (IY+ERRC)
AXD A
MIF '#ERR'='' THEN L1 ELSE L2
2 JP NZ ,#ERR
MEXIT
A LD A,1
JP NZ,JTASK
MEND

:LOSE MACRO #VECTOR, #ERR, #ERRPR, #EOQT
MLOCAL 1LnL1,L2,L3,L4,L5,L6,L7,L8,L9

MIF '#VECTOR'='"' THEN L8 ELSE 19
L9 LD IY,#VECTOR
L8 MIF '#EQT'='"' THEN L6 ELSE L7
L7 LD (IY+RQST),WRRQ

LD (IY+FMAT) ,BYTE

1D A,EOT

CALL JIOCS
Lé LD (IY+RQST),CLRQ

MIF '#ERRPR'='' THEN 13 ELSE L4
L3 LD (IY+CFLGS),O0

MGOTO L5
L4 LD (IY+CFLGS) ,#ERRPR
L5 CALL JIOCS

LD A,(IY+ERRC)

AND A

MIF '#ERR'='"' THEN L1 ELSE L2
L2 JPp NZ,#ERR
L1 LD A

JP NZ,JTASK

MEND

PARSE MACRO #VECTOR, #ERR
GLOBAL JTASK,PTXT
MLOCAL 11L1,L2,L3

LD IY,#VECTOR
LD A,6 ; CSIPAR
CALL JTASK ;CALL VIA TASK
MIF '#ERR'='' THEN L1 ELSE L2
L1 MNOP
JR Z,I%ZNEXP ;IF NO ERRORS, SKIP
LD HL,MSZNEXP ;GET SYNTAX ERROR MESSAGE
LD E,1 ;PRINT ON LUN 1
CALL PTXT
LD A,1 sRETURN TO MONITOR
JP JTASK
MSZNEXP DEFM 'SYNTAX ERROR'

IZNEXP
MGOTO L3



L2 JP NZ,3ERR

L3 MNOP
LD A,(IY+DVCE)
CP L L}
JR NZ,L7%ZNEXP
LD (IY+DVCE),'D’
LD (IY+DVCE+1),'K"'
LZNEXP EQU S
MEND
READ MACRO #VECTOR,#ERR, #ERRPR ;READ BYTE AT A TIME
MLOCAL 1L9%,L2,L3,L4,L5,L6,L7
MIF '#VECTOR'=""' THEN L7
LD IY,4VECTOR
L7 LD (IY+RQOST),RDRQ ;READ REQUEST
MIF '#ERRPR'='' THEN L3 ELSE L4
L3 LD (IY+CFLGS),0
MGOTO L5
Ly LD (IY+CFLGS),#ERRPR
L5 CALL JIOCS
LD D,A ;SAVE CHARACTER FOR BYTE MODE
LD A, (IY+ERRC) ;CHECK FOR ERROR
AND A
MIF '‘#ERR'='' THEN L1 ELSE L2
L2 JP NZ,#ERR ;RETURN VIA ERROR EXIT
L1 . LD A,
JP NZ,JTASK ;RETURN TO MONITOR
LD A,D ;RESTORE BYTE FOR BYTE I/O
MEND
WRITE MACRO #VECTOR,#ERR,#ERRPR ;WRITE
MLOCAL 1L1,L2,L3,L4,L5,L6,L7
MIF '#VECTOR'="'"' THEN L7
LD IY,#VECTOR
L7 LD (IY+RQST),WRRQ WRITE REQUEST
MIF '#ERRPR'='"' THEN L3 ELSE L4
L3 LD (IY+CFLGS),0
MGOTO L5
L4 LD (IY+CFLGS),#ERRPR
L5 CALL JIOCS
LD A, (IY+ERRC) ;CHECK FOR ERROR
AND A
MIF '#ERR'='' THEN L1 ELSE L2
L2 ~JP NZ ,#ERR ;RETURN VIA ERROR EXIT
L1 LD A,1
: JP NZ,JTASK ;RETURN TO MONITOR
MEND

Y

~e

LIST



MOSTEK MACRO-80 OPERATIONS MANUAL

approach to creating and calling IOCS related functions. Each is
described below.

4-49, VECTOR 1lun,device,filename,file extension,format,cflgs,ubffr,usize

This macro creates an IOCS parameter vector with several default
parameters supplied. Use of this macro eliminates the need to write
out a complete parameter vector definition using DEFB, DEFW, and DEFM
pseudo-ops in the program. The user calls the macro and specifies the
logical wunit number (LUN), device mnemonic and unit number (DEV), file
name (NAME), and file extension (EXT). Optionally, the wuser may
specify the format (FMAT), control flags (CFLGS), user buffer address
(UBFFR), and user buffer size (USIZE). The following defaults are
applied:

LUN = OFFH

DEV = DK1:

NAME = blanks

EXT = blanks

FMAT = 0 (byte I/0)
CFLGS = 0

UBFFR = 0

USIZE = 0

All of the regquired bytes for the parameter vector are allocated when
the macro is expanded.

4-50. OPENR vector name,error abort address,error print flag

This macro performs an open-for-read request via the vector specified
in the first parameter. If the vector is not specified, then it is
assumed that the IY register is pointing to the proper vector. If any
errors were encountered, then exit is made via the error-abort address

(second parameter), which is optional. If the error-exit address is
not specified, then the macro returns control to the Monitor in case of
an error. The third parameter, error-print flag, defaults to zero but

can be set to 16H to force error printing via IOCS (this is the CFLGS
parameter).

4-51. OPENW vector name,error-abort address,error-print flag
This macro performs an open for write request via the vector specified
in the first parameter. All other operations are identical to OPENR.
4-52. CLOSE vector name,error abort address,error print flag

This macro performs a close function via the vector specified in the
first parameter. All other operation is identical to OPENR.

4-53. PARSE vector name,error abort address
This macro provides a call to CSISYN and CSIPAR via the system routine

41



MOSTEK MACRO-80 OPERATIONS MANUAL

JTASK. Entry is with the HL register pair pointing to the dataset
specification to be checked and parsed. The validity of the dataset
specification 1is first checked, then it 1is parsed into the vector
specified by the £first parameter of the call to the macro. If any
errors are found, then return is made via the second parameter. If
this parameter is not given, then a message is printed (SYNTAX ERROR)
and control is returned to the Monitor. If no errors are found and the
device type is not given, then the device is defaulted to DKO.

4-54. EXIT

This macro returns control to the Monitor.

4-55, Figure 4-14 shows a typical program written using these macros.
This program reads a dataset and prints it on the console output device
(TT:). The dataset 1is specified in the Monitor command line which
calls up this program. Upon entry to the program, the DE register pair
points to the dataset specification. After initializing the stack
pointer and interrupt mode, the dataset specification pointer is placed
into the HL register pair. The dataset is parsed into INPUT, the input
vector. The dataset is then opened. The output dataset is opened for
write. This dataset is specified in the vector OUTPUT, which appears

later in the progranm. Then a series of read/write operations are
performed in byte I/0 mode. The end of the data is specified by an
ASCII O4H (end-of-file). When this <character is read, the input

dataset 1is closed and the program is terminated. (Closing the output
dataset, the console device, is not necessary here).

42



‘RE 4-14. MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 1
OBJ.CODE STMT-NR SOURCE-STMT PASS2 FIG414 FIG414 FIGU14 REL

1 TITLE FIGURE 4-14.

APPLICATION OF I/O MACROS

THIS PROGRAM READS A DATASET IN BYTE I/C
AND COPIES IT TO THE CONSOLE DEVICE (TT:).
TO EXECUTE THE PROGRAM:

SVIEW DATASET(CR)

INCLUDE IOCS DEFINITIONS

N® Ne We Ne Ne Ne Ne N® Ne Ne Ne N

0 14 INCLUDE IODEF
; FIGURE 4-12.
100 114 LIST

INCLUDE I/O MACROS

e Ne o

10 18 118 INCLUDE IOMAC
’ FIGURE 4-13.
172 290 LIST
21 293 CLIST O ;CODE LISTING ONLY

START OF PROGRAMNM

Ne we wNe we

00 312101° 26 298 LD SP,STACK ;SET STACK POINTER

03 ED5E 27 299 IM 2 ; INTERRUPT MODE FOR Z80
05 FB 28 300 EI ;ENABLE INTERRUPTS

06 EB 29 301 EX DE ,HL ;HL POINTS TO DATASET SPEC

; PARSE THE DATASET INTO THE INPUT VECTOR

07 31 303 PARSE INPUT

07 FD212101" 3 306 LD IY,INPUT

OB 3EQ6 4 307 LD A,6 ;CSIPAR

0D CDFFFF 5 308 CALL JTASK ;CALL VIA TASK

10 2819 8 311 JR Z,10001 ;IF NO ERRORS, SKIP

12 211F00" 9 312 LD HL,MS0001 ;GET SYNTAX ERROR MFESSAGE
15 1E01 10 313 LD E,1 s PRINT ON LUN 1

i17 CDFFFF 11 314 CALL PTXT

1MA 3E01 12 315 LD A, ;RETURN TO MONITCR

11C C30E00" 13 316 JP JTASK

J1F'53594E54 14 317 MS0001 DEFM 'SYNTAX ERROR'

41582045
52524F52

J2B FD7E01 19 321 LD A,(IY+DVCE)

J2E FE20 20 322 Cp 't

J30 2008 21 323 JR NZ,L0001

J32 FD360144 22 324 LD (IY+DVCE),'D"

)36 FD360243B 23 325 LD (IY+DVCE+1), 'K’

; OPEN THE INPUT DATASET. ANY ERRORS ABORT THE PROGFE
M.

03A 33 329 OPENR INPUT,,ERRPR
03A FD212101" 4 333 L7 LD IY,INPUT

03E FD360FO00 5 334 L6 LD (IY+RQST),0PRRQ



FIGURE 4-14.
LOC O0BJ.CODE

0042 FD361510
0046 CDFFFF
0049 FD7E17
oo4C A7

004D 3E01
004F C21D0OO°

0052

0052 FD215101"
0056 FD360F01
005A FD361500
005E CD4700"
0061 FD7E17

ooe4 A7

0065 C26800"
=0068"
=0068"

0068

0068 FD212101"°
006C FD360F03
0070 FD361510
0074 CD5FOO'
0077 57

0078 FD7E17
007B A7

007C 3E01

007E C25000°
0081 7A

0082 FEO4
0084 281A

0086

0086 FD215101"
008A FD360FO0H4
008E FD361500
0092 CD7500"
0095 FD7E17
0098 A7

0099 3E01

009B C27F00'
009E 18Cs8

00AQ"

00RO FD212101°
00A4 FD360FO02
00A8 FD361500
00AC CD9300"°
O0AF FD7E17
00B2 A7

00B3 3EO01

00B5 C29C00"
00B8 3E01

STMT-NR
9 336
10 337
11 338
12 339
15 341
16 342
35 345
4 349
5 350
7 352
10 354
11 355
12 356
14 358
36 360
39 363
40 364
3 367
4 368
8 370
9 371
10 372
11 373
12 374
15 376
16 377
17 378
42 381
43 382
45 384
3 387
4 388
6 390
9 392
10 393
11 394
14 396
15 397
46 399
50 403
3 406
9 408
11 410
14 412
15 413
16 414
19 416
20 417
51 419

SOURCE-S

Ly
15

L1

; OPEN CONSOLE OUTPUT DRIVER.

L7
L6
L3
L5

L2
CONTINUE

; READ B
LooOP

L7
L4
LS

L1
; CHECKX
5 WRITE

L7
L3
L5

L1

MOSTEXK MACRO-80 ASSEMBLER V2.0 PAGE 2

TMT PASS2 FIGU414 FIGL14 FIGHIL REL
LD (IY+CFLGS) ,ERRPR

CALL JIOCS

LD A, (IY+ERRC)

AND A

LD A,1

JP NZ,JTASK

IGNORE ANY ERRORS
OPENW OUTPUT,CONTINUE

1D IY,OUTPUT

LD (IY+RQST),OPWRQ

LD (IY+CFLGS),0

CALL JIOCS

LD A, (IY+ERRC)

AND A

JP NZ,CONTINUE

YTES FROM INPUT DATASET. ABORT IF ERRORS
READ INPUT,,ERRPR

LD IY,INPUT

LD (IY+RQST),RDRQ ;READ REQUEST

LD (IY+CFLGS) ,ERRPR

CALL JIOCS

LD D,A ;SAVE CHARACTER FOR BYTE
LD A,(IY+ERRC) ;CHECK FOR ERROR

AND A

LD A,

JP NZ,JTASK s RETURN TO MONITOR

LD A,D ;RESTORE BYTE FOR BYTE I,
FOR END OF FILE BYTE

Ccp OuH

JR Z,DONE ;IF S0, DONE
BYTE TO THE CONSOLE DEVICE
WRITE OUTPUT

LD IY,0UTPUT

LD (IY+RQST),WRRQ
LD (IY+CF1GS),0

sWRITE REQUEST

CALL JIOCS

LD A,(IY+ERRC) ;CHECK FOR ERROR

AND A

LD A,1

Jp NZ,JTASK ;RETURN TO MONITOR
JR LOOP ;LOOP FOR MORE BYTES

; END OF FILE FOUND, CLOSE THE INPUT DATASET

’

DONE
Lo
L6
L3
L5

L1

CLOSE INPUT

LD IY,INPUT

LD (IY+RQST),CLRQ
LD (IY+CFLGS),0

CALL JIOCS

LD A, (IY+ERRC)
AND A

LD A,1

JP NZ,JTASK
LD A,



sURE 4-14.

.

3A

3D

21"
21
22
25

2B
2E
31
32
36
37
3R
13C
I13E
13F

151"
151
152
155

15B
15E
161
162
166
167
'16A
116C
116E
J16F

0181

0BJ.CODE

C3B600"

=0121"

FF
444B30
20202020
2020
202020
000000
ou
00000000
00
000000
0000
0000

00
00000000
00000000
00000000
00000000
0000

FF
545430
20202020
2020
202020
000000
o4
00000000
00
000000
0000
0000

00
00600000
00000000
00000000
00000000
0000

STMT-NR
52 420
56 424
57 425
61 429
2 431
3 432
4 433
5 43y
6 435
10 437
11 438
13 440
16 442
18 44y
22 447
25 449
26 450
64 454
2 456
3 457
4 458
5 459
6 L60
8 462
11 464
13 466
16 468
18 470
22 473
25 475
26 476
68 481

MOSTEK MACRO-80 ASSEMBLER V2.0 PAGE 3
SOURCE-STMT PASS2 FIGU414 FIGUL1T4 FIGHI4 REL

JP JTASK sRETURN TO MONITOR
; DEFINE STACK AREA
DEFS 100

STACK

; DEFINE I/O VECTOERS

INPUT VECTOR OFFH,,,,Ou4H
DEFB OFFH
DEFM 'DKO'®
DEFM °
DEFM '
DEFB 0,0,0
L2 DEFB Ou4H
L3 DEFW 0,0
Ly DEFB 0
L6 DEFB 0,0,0
L7 DEFW 0
L10 DEFW ©
L12 DEFB 0
DEFW 0,0,0,0,0,0,0,0,0
; (FMAT IS BYTE I/0 WITH 4 SECTORS PER DISK ACCESS)
OUTPUT VECTOR OFFH,TTO,,,.,
DEFB OFFH
DEFM 'TTO'
DEFM '
DEFM !
DEFB 0,0,0
L1 DEFB BYTE+4
L3 DEFW 0,0
Ly DEFB 0
L6 DEFB 0,0,0
L7 DEFW ©
L10 DEFW O
L12 DEFB 0
DEFW 0,0,0,0,0,0,0,0,0

; (THE EXTRA COMMAS ARE REQUIRED TO DEFAULT THE
; FILENAME AND EXTENSION TO BLANKS)

END






MOSTEK MACRO-80 OPERATIONS MANUAL
APPENDIX A

MACRO-80 ERROR CODES

3F RELOCATABLE USE - A relocatable value was used in an 8-bit operand.
The user should assure that relocatable quantities are used only for
16-bit operand values (addresses).

40 BAD LABEL - An invalid label was specified. A label must start with
an alphabetic character (A-Z) and may contain only alphanumeric
characters (A-Z, 0-9) or question mark (?) or wunderline (_). A 1label
may start in any column if followed by a colon. It does not require a
colon if started in column one.

41 BAD OPCODE - An invalid 7280 opcode or pseudo-op or an undefined
macro name was specified.

42 BAD OPERAND - An invalid operand or combination of operands was
specified for a given opcode.

43 BAD SYNTAX - The specification of an operand or expression was
invalid.

44 UNDEFINED - A symbol was used in an operand which was not defined in
the program, either locally or as an external symbol.

45 MULTIPLE DEF - A symbol was defined more than once in the same
programe.

46 MULTIPLE PSECT - A PSECT pseudo-op was used more than once oOr was
defined after the first code-producing statement of the program. The
PSECT pseudo-op should be used only once at the beginning of a program.

47 MEMORY OVERFLO - This means that not enough memory exists in the
system to assemble the given progranm. This <can occur because the
program contains too many symbols, macro parameters, Or macro expansion
arguments.

48 EXTERNAL USAGE - An external symbol was used in an expression or the
operand of an EQU or DEFL pseudo-~-op. The user should assure that an
external symbol is not used in these situations.

49 not used.

4A UNBAL QUOTES - An uneven number of quote characters (') occurred in
an operand.

4B LABEL REQUIRED - A label was not used in a statement that required
it. A label is required for EQU, DEFL, and MACRO statements.

43



MOSTEK MACRO-80 OPERATIONS MANUAL

4C OVERFLOW - In evaluating an expression, the value of the expression
exceeded 65536 (0FFFFH). The wuser should check the expression for
validity. Alternatively, the .RES. operation may be used to ignore
the overflow condition and only the 1least significant 16 bits of the
expression will be used.

4D OUT OF RANGE - The final value of an operand was found to be out of
the range allowed for the given opcode. For example, the valid range
of the JR instruction is -126 through +129.

4UE BAD DIGIT - An invalid digit was found in a number.
4F not used.
50 not used.
51 not used.

52 MULTIPLE NAME - The NAME pseudo-op was used more than once in the
same program.

53 NESTED INCLUDE - An included file contained another INCLUDE
pseudo-op. The wuser should assure that the INCLUDE pseudo-op is not
used in the body of an included module.

54 EXPR TOO BIG - The -expression evaluator stack reached its 1limit.
The user should reduce the complexity of the expression in the
statement which caused the error.

55 not used.

56 NUMBER TOO LARGE - A constant in an operand was too large in value
for the given operation.

57 OUT OF RANGE - The value of either operand in the string operand [,]
was found to be out or range. The limits are 1 and 63.

58 TOO MANY IFS - The nesting of conditional assembly pseudo-ops (IF
and ENDIF, or COND and ENDC) was too large or unmatched. The maximum
level of nesting is 11, and each IF (COND) statement must be matched by
an ENDIF (ENDC) statement.

59 STRING TOO BIG - The size of the substring in a sequence of
substring operations exceeded the available space. The user should
reduce the number of substring expressions within the statement or
macro body.

5A MERROR INDICATION - This error code 1is output when an MERROR
statement is expanded in a macro.

5B BAD THEN/ELSE - A THEN-clause or ELSE-clause operand was incorrectly
specified. The operand must be a 1local macro label defined by an
MLOCAL pseudo-op.

4y



MOSTEK MACRO-80 OPERATIONS MANUAL

5C TOO MANY PARMS - The maximum number of parameter substitutions in
calling a macro was exceeded. Maximum is 99.

5D BAD MACRO STMT - A macro pseudo-op was used outside of a macro body.
S5E INCLUDE IN MAC - An INCLUDE statement was used inside a macro body.
5F LABEL USAGE - The usage of a label in a macro expansion was not

allowed.

60 NO MEND STMT - A macro was defined without an MEND statement.

u5









MOSTEK.
Z80-F8 S e

3870 pcie

1215 W. Crosby Rd. * Carrollton, Texas 75006 * 214/242 0444
In Europe, Contact: MOSTEK Brussels
150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: (32) 02/660-2568/4713

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed to be accurate and
reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is
granted under any patents or patent rights of Mostek.

PRINTED IN USA January 1979 ' . Copyright 1979_by Mostek Corporation
Publication No. MK79635 . All rights reserved



