
MICROCOMPUTER SOFlWARE

Reference Manual

ANSI BASIC
VERSION 5.3

MOSTEK ANSI BASIC
Version 5.3

Reference Manual
Copyright 1980 BY MOSTEK CORPORATION

Publication no. MK79708

INTRODUCTION

C.HAPTER 1
CHAPTER 2
CHAPTER 3

APPENDIX A
APPENDIX B
APPENDIX C
APPEN DIX D
APPENDIX E
APPENDIX F
APPENDIX G

ANSI BASIC Reference Manual

CONTENTS

General Information About ANSI BASIC
ANSI BASIC Commands and Statements
ANSI BASIC Functions

New Features in ANSI BASIC, Release 5.3
ANSI BASIC Disk 1/0
Assembly Language Subroutines
Converting Programs to ANSI BASIC
Summary of Error Codes and Error Messages
Mathematical Functions
ASCII Character Codes

Introduction

ANSI BASIC is the most extensive implementa~ion of BASIC
available for the 8080 and Z80 microprocessors. In its
fifth major release (Release 5.3), ANSI BASIC meets the
ANSI qualifications for BASIC, as set forth in document
BSRX3.60-1978.

MOSTEK ANSI BASIC is an extensive implementation of
Microsoft BASIC for the Z80 microprocessor. Its features
are comparable to the BASICs found on minicomputers and
mainframes. MOSTEK ANSI BASIC is among the fastest
microprocessor BASICs available. Designed to operate on
MOSTEK Development Sys~ems running on FLP-80DOS V2.1,
MDDOS or FLP-80DOS/MDX with 48K bytes or more of memory,
BASIC provides a sophisticated software development tool.

ANSI BASIC is implemen~ed as an interpreter and is highly
suitable for user interactive processing. Programs and
data are stored in a compressed internal format to maximize
memory utilization. In a 64K system, 28K of user's program
and data storage area are available.

MOSTEK ANSI BASIC is equivalent to Microsoft Extended Disk
BASIC with ~he following exceptions:

1. The default record size for Random files in MOSTFK
ANSI BASIC is 124 bytes.

2. The MOSTEK FLP-80DOS dataset specification (see
section 1 of the FLP-80DOSV2.1 Operations Manual) is used
in filename specifications for the BASIC commands OPEN,
KILL, NAME, MERGE, LOAD, SAVE and RU~ as illustrated in the
following examples:

a) Open the random file NEWFIL on disk unit 1, as
number 2.

OPEN "R",2,"DK1:NEWFIL"

b) Load the program file OLDFIL from disk unit O.

3. The
statements is
one and six.

LOAD "OLDFIL"

file number used in the OPEN and CLOSE
restricted to an integer express~on between
MOSTEK ANSI BASIC allows up to 6 files to be

open at cne time.

I

There are significant differences between the 5.3 release
of ANSI BASIC and the previous releases (release 5.1 and
earlier). If you have programs written under a previous
release of ANSI BASIC, check Appendix A for new features in
5.3 that may affect execution.

The manual is divided into three large chapters plus a
number of appendices. Chapter 1 covers a variety of
topics, largely pertaining to information representation
when using ANSI BASIC. Chapter 2 contains the syntax and
semantics of every command and statement in ANSI BASIC,
ordered alphabetically. Chapter 3 describes all of ANSI
BASIC's intrinsic functions, also ordered alphabetically.
The appendices contain information on compatibility with
previous versions; plus lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

II

MOSTEK

Z80 MICROCOMPUTER SYSTEMS

ANSI BASIC SOFTWARE INTERPRETER

FEATURES

• Meets ANSI standard on BASIC (x3.60-1978)

• Direct access to CPU 1/0 Ports

• Ability to read or write any memory location (PEEK, POLE)

• Arrays with up to 255 dimensions

• Dynamic allocation and de-allocation of arrays

• IF ••• THEN ••• ELSE AND IF ••• GO TO (both if's may be nested)

• Direct (immediate) execution of statements

Error trapping, with error messages in English

III

Four variable types: Integer, string, real and double precision real

• Long variable names significant up to 40 characters

• Full PRINT USING capabilities for formatted output

• Extensive program editing facilities

• Trace facilities

• Can call any number of assembly language subroutines

• Boolean (logical) operations

• Supports up to 6 sequential and random access files on floppy disk

• Variable record length in random access files

• Complete set of file manipulation statements

• Occupies only 23k bytes, not including operating system

• Supports console and line printer 1/0

• Allows console output to be redirected to the line printer

• WHIlE ••• WEND structured construct

IV

LANGUAGE COMMANDS SUMMARY

Commands:

AUTO CLEAR CaNT DELETE EDIT
FILES LIST LLIST LOAD MERGE
NEW NULL RENUM RESET RUN
SAVE SYSTEM TRON TROFF WIDTH

Program Statements:

CALL CHAIN COMMON DEFDBL DEF FN
DEFINT DEFSNG DEFSTR DEFUSR DIM
END ERASE ERROR FOR ••• NEXT GOSUB ••• RETURN
GOTO IF ••• TH EN (E L S E) IF ••• GOTO LET ON ERROR GOTO
ON ••• GOSUB ON ••• GOTO OPTION BASE POKE RANDOMIZE
REM RESUME STOP SWAP WAIT
WHILE ••• WEND

Input/Output Statements:

CLOSE DATA FIELD GET INPUT
INPUT# KILL LINE INPUT LINE INPUT# LPRINT
LPRINT USING LSET NAME OPEN OUT
PRINT PRINT USING PRINT# PRINT# USING PUT
READ RESTORE RESET RSET WRITE
WBITE#

Operators:

= + * / ,..
\ > < <=

>= <> MOD NOT AND
OR XOR IMP EQU

Arithmetic Functions:

ABS ATN CDBL CINT COS
CSNG EXP ERR ERL FIX
FRE INT lOG RND SGN
SIN SQR TAN USB VARPTR

String Functions:

ASC CHRS HEXS INSTR LEFTS
LEN MIDS aCTS RIGHTS SPACES
SPCS STRS VAL

Input/Output Functions:

CVI CVS CVD DSKF EOF
INP INPUTS LaC LOF LPOS
MKDS MKIS MKSS PEEK pas
TAB

CHAPTER 1

GENERAL INFORMATION ABOUT ANSI BASIC

1.1 INI1IA1IZAIlQH

To enter ANSI BASIC the user types the word BASIC as a
Monitor command in FLP-80DOS V2.1, then the sign-on message
is printed on the console as shown below:

SBASIC

ANSI BASIC VS.3 COPYRIGHT MOSTEK CORP. 1979

The sign-on message is followed by the number of free bytes
which represent the amount of space available for BASIC
program and string variable storage. The user may now
enter BASIC commands or statements. To exit BASIC and
return to the FLP-80DOS Monitor the user simply enters the
SYSTEM command which reboots the operat~ng system. The
system functions performed by the following BASIC
statements are of particular interest to the user.

a) RESET

The RESET command should be issued anytime a new diskette
is inserted and the user wishes to continue executing
BASIC disk 1/0 statements. This guarantees that the proper
sector and track maps are in memory during file operations
on the newly inserted diskette. When entering BASIC from
the Monitor the RESET command is automatically executed by
BASIC.

b) LPRINT AND LLIST

The LPRINT and LLIST statements in BASIC output data to
logical unit 5 of the FLP-80DOS operating system. Logical
unit S is defined during the operating system SYSGEN
(System Generation) procedure.· Logical unit 5 is
typically assigned to the system output listing device
(CP:). Prior to execution of BASIC the user may reassign
logical unit 5 to a different device (e.g., TT:) using the
Monitor ASSIGN command (see section 2 of the FLP-80DOS
V2.1 Operations Manual). Version 2.1 or higher of
FLP-80DOS is required in ANSI BASIC.

c) POKE 30,1 To redirect console output during program
execution to the listing device execute the BASIC command
POKE 30,1. This is convenient in cases such as when the
output of PRINT statements is needed in the line printer.
To return the console output to logical unit 1, execute
POKE 30,0 •

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-2

When ANSI BASIC is initialized, it types the prompt "Ok".
"Ok" means ANSI BASIC is at command level, that is, it is
ready to accept commands. At this point, ANSI BASIC may be
used in either of tw~ modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a
complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement[:BASIC statement •••] <carriage return>

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of 255
c!haracters.

In MOSTEK ANSI BASIC, it is possible to extend a
logical line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets you continue
typing a logical line on the next physical line without
entering a <carriage return>.

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers. must be in the range 0
to 65529~ A period (.) may be used in EDIT, LIST, AUTO and
DELETE commands to refer to the current line.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-3

The ANSI BASIC character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in ANSI BASIC are the upper case
and lower case letters of the alphabet.

The numeric characters in
through 9.

ANSI B.ll,.SIC are the digits 0

The following special characters and terminal keys are
recognized by ANSI BASIC:

+

*
/

(
)

%

$

[
]
,

Blank
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon

& Ampersand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
@ At-sign
_ Underscore

<rubout> Deletes last character typed.
<escape> Escapes Edit Mode subcommands.

See Section 2.16.
<tab> Moves print position to next tab stop.

Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.
bcommands.

See Section 2.16.
<tab> Moves print position to next tab stoP.

Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-4

The following control characters are in ANSI BASIC:

Control-A

Control-C

Control-G

Control-H

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

Enters Edit Mode on the line being typed.

Interrupts program execution and returns to
ANSI BASIC command level.

Rings the bell at the terminal.

Backspace. Deletes the last character typed.

Tab. Tab stops are every eight columns.

Halts program
continues. A
output.

output
second

while execution
Control-O restarts

Retypes the line that is currently being
typed.

Suspends program execution.

Resumes program execution after a Control-So

Deletes the line that is currently being
typed.

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.
A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of
string constants:

"HELLO"
"$25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants

2. Fixed Point
constants

Whole numbers between -32768 and
+32767. Integer constants do not
have decimal points.

Positive or negative real numbers,
i.e., numbers that contain decimal
points.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-5

3. Floating Point
constants

4. Hex constants

5. Octal constants

Positive or negative numbers repre­
sented in exponential form (similar
to scientific notation). A
floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The exponent must be in
the range -38 to +38.
Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

Hexadecimal numbers with the prefix
&H. Examples:

&H76
&H32F

Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

Numeric constants may be either single precision or double
precision numbers. With double precision, the numbers are
stored with 16 digits of precision, and printed with up to
16 digits.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-6

A single Itrecision constant is any numeric constant
has:

1 • seven or fewer di~its, or

2. exponential form using E, or

3. a trailing exclamation point (!)

A double precision constant is any numeric constant
has:

1. eight or more digits, or

2. exponential form using C, or

3. a trailing number sign (#)

Examples:

46.8
-1.09E-06

3489.0
22.5!

345692811
-1.09432D-06
3489.0#
7654321.1234

that

that

Variables are names used to represent values that are used
in a BASIC ~rogram. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

ANSI BASIC variable names may be any length, however, up to
40 characters are significant. The characters allowed in a
variable name are letters, numbers and the decimal point.
The first character must be a letter. Special type
declaration characters are also allowed -- see below.

A variable name may not be a reserved word, however embedded
reserved words are allowed. If a variable begins with FN,
it is assumed to be a call to a user-defined function.
Reserved words include all ANSI BASIC commands, statements,
function names and operator names.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-7

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: AS = "SALES REPORT". The
dollar sign is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

Numeric variable names may declare integer, single or double
precision values. The type declaration characters for these
variable names are as follows:

% Integer variable

Single precision variable

Double precision variable

The default type for a numeric variable name is single
precision.

Examples of ANSI BASIC variable names follow.

PI#
MINIMUM!
LIMIT%
N$
ABC

declares a double precision value
declares a single precision value
declares an integer value
declares a string value
represents a single precision value

There is a second method to declare variable types.
ANSI BASIC statements DEFINT, DEFSTR, DEFSNG and DEFDBL
may be included in program to declare the types for certain
variable names. These statements are described in detail in
Section 2.10.

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with integers or
integer expressions. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimensional
array, T(1,4) would reference a value in a two-dimensional
array, and so on.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-8

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)
Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation is returned to this
degree of precision.
Examples:

10 D# = 6#/7 The arithmetic was performed
20 PRINT D# in double precision and the
RUN result was returned in D#

.8571428571428571 as a double precision value.

10 D = 6#/7
20 PRINT D
RUN

.857143

The arithmetic was performed
in double precision and the
result was returned to D (single
precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integer~ and return an integer result~
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point value is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-9

5. If a double precision variable is assigned a single
precision value, only the first seven digits,
rounded, of the converted number will be valid.
This is because only seven digits of accuracy were
supplied with the single precision value. The
absolu.te value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.
Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN

2.04 2.039999961853027

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by ANSI BASIC may be divided
into four categories:

1. }\ri th metic

2. Bela tional

3. logical

4. Functional

The arithmetic operators, in order of precedence, are:

*,/

+,-

Exponentiation

Negation

Multiplication, Floating
Point Division

Addition, Subtraction

x y

-x
x*y
X/Y

X+Y

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-10

To change the order in which the operations
use parentheses. Operations within
performed first. Inside parentheses, the
operations is maintained.

are performed,
parentheses are
usual order of

Here are some sample algebraic expressions
counterparts.

and their BASIC

A1g~£~si~ ~AQ~g§§i~D
X+2Y

X- 1.
z

XI
z

X.:tI
z

2 Y
(X)

Y
X

z

X(-Y)

llA~I~ ~AQ£~§§i.QD
X+Y*2

X-Y/z

X*y/z

(x+y)/z

X*(-Y) Two consecutive
operators must
be separated by
parentheses.

Two additional operators are available: Integer division and
modulus arithmetic.

Integer division is denoted by the baskslash (\). The
operands are rounded to integers (must be in the range
-32768 to 32767) before the division is performed, and the
quotient is truncated to an integer. For example:

10\4 = 2
25.68\6.99 = 3

The ~recedence of integer division is
multiplication and floating point division.

just after

Modulus arithmetic is denoted by the operator MOD. It gives
the integer value that is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-11

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2]~la!i2nal Q~~~a!2~2

Relational operators are used to compare two values~ The
resul t of the comparison is ei th er "true" (-1) or . "false"
(0). This result may then be used to make a decision
regarding program flow. (See IF, Section 2.25.)

.Q.e~J;;:~.s2j;]~J.al1.211 ISl.§1SlS]XJ2J;;:Sl.§~1.211

= Equality X=Y

<> Inequali ty X<>y

< Less than X<Y

> Greater than X>Y

<= Less than or equal to X<=y

>= Greater than or equal to x>=y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.29.)
When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)<O GOTO 1000
IF I MOD J <> 0 THEN K=K+1

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-12

Logical operators perform tests on multiple relations, bit
manipulation, or 300lean operations. The logical operator
returns a bitwise result which is either "true" (not zero)
or "false" (zero). In an expression, logical opera tions are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of
precedence.

NO'I

AN])

OR

XOR

IMP

EQV

X NOT X
1 0
o 1

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

X
1
1
o
o

y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

Y
1
o
1
o

X AND Y
1
o
o
o

X OR Y
1
1
1
o

X XOR Y
o
1
1
o

X IMP Y
1
o
1
1

X EQV Y
1
o
o
1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.25). For

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-13

example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as ° or -1,
logical operators return 0 or -1. The given operation is
performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine 110 port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-1

NOT X=-(X+1)

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8

4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 = binary 1010, so 1010 OR 1010
1010 (10)

-1 = binary 1111111111111111 and
-2 = binary 1111111111111110,
so -1 OR -2 = -1. The bit
complement of sixteen zeros is
sixteen ones, which is the

=

two's complement representation of -1.

The two's complement of any integer
is the bit complement plus one.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-14

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. ANSI BASIC
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN (sine) • All of ANS I BASIC's
intrinsic functions are described in Chapter 3.
ANSI BASIC also allows "user defined" functions that are
written by the programmer. See DEF FN, Section 2.9.

Strings may be concatenated using +. For example:

10 A$="FILE" : BS="NAME"
20 PRINT AS + B$
30 PRINT "NEW " + A$ + B$
RUN
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a
time from each string and comparing the ASCII cod~s. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the lower code number precedes the
higher. If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" < "AB"
"FILENAME" = "FILENAME"
"X€," > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

GENERAL INFORMATION ABOUT ANSI BASIC Page 1-15

If an incorrect character is entered as a line is being
typed, it can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
ANSI BASIC will automaticallY replace the old line with the
new line.

More sophisticated editing capabilities are provided in the
EDIT command, see Section 2.14.

To delete the entire program that is currently residing in
memory, enter the NEw command. (See Section 2.40.) NEW is
usuallY used to clear memory prior to entering a new
program.

If ANSI EASIC detects an error tha~ causes program execution
to terminate, an error message is printed.
For a complete list of ANSI BASIC error code£ and error
messages see Appendix E.

CHAPTER 2

ANSI BASIC COMMANDS AND STATEMENTS

All of the ANSI BASIC commands and statements are described
in this chapter. Each descriPtion is formatted as follows:

Format:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program segments
that demonstrate the use of the instruction.

Wherever the format for a statement or command is given, the
following rules apply:

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle
brackets (< » are to be supplied by the user.

3. Items in square brackets ([]) are optional.

4. All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

5. Items followed by an ellipsis (•••) may be repeated
any number of times (up to the length of the line).

ANSI BASIC COMMANDS AND STATEMENTS Page 2-2

Format:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>11

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C is typed, BASIC returns to
command level.

AUTO 100,50

AUTO

Generates line numbers 100,
150, 200 •••

Generates line numbers 10,
20, 30, 40 •••

ANSI BASIC COMMANDS AND STATEMENTS Page 2-3

2.2 ~Al1

Format:

Purpose:

Remarks:

Example:

C~LL <variable name>[«argument list»]

To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an assembly language subroutine.
(See also the USR function, Section 3.42)
<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the assembly language
subroutine.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-4

2.3 £;H.8IN

Forma t:

Purpose:

Rem arks:

CHAIN [MERGE] <filename>[,[<line number exp>]
[, ALL1 [, DELET E<range>]]

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN "PROG1"

<line number exp> is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN "PROG1",1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN "PROG1",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE "OVRLAY",1000

After an overlay is
desirable to delete
be brought in. To
option. Example:

brought in, it is usually
it so that a new overlay may

do this, use the DELETE

CHAIN MERGE "OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-5

NOTE: The Microsoft BASIC compiler does not support
the ~LL, MERGE, and DELETE options to CHAIN. If
you wish to maintain compatibility with the
BASIC compiler, it is recommended that COMMON be
used to pass variables and that overlays not be
used.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-6

2. 4 ~1Etdl

Format:

Purpose:

Remarks:

NOTE:

Examples:

CLEAR [, [<expression 1)] [, <expression2)] J

To set all numeric variables to zero and all
string variables to null; and, optionally, to
set the end of memory and the amount of stack
space.

<expression1) is a memory location which, if
specified, sets the highest location available
for use by ANSI BASIC.

<expression2) sets aside stack space for BASIC.
The default is 1000 bytes or one-eighth of the
available memory, whichever is smaller.

In previous versions of ANSI BASIC, <expression1)
set the amount of string space, and
<expression2) set the end of memory. ANSI BASIC,
release 5.3 and later, allocateS string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR,32768,2000

ANSI BASIC COMMANDS AND STATEMENTS Page 2-7

Format:

Purpose:

Remarks:

Example:

CLOSE[[#J<file number>[,[#]<£il~ number ••• >]]

To conclude I/O to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See Appendix B.

BASIC COMMANDS AND STATEMENTS Page 2-8

Format:

Purpose:

Remarks:

Example:

COMMON <list of variables>

To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, tho.ugh it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending "()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),GS
110 CHAIN "PROG3",10

•

ANSI BASIC COMMANDS AND STATEMENTS Page 2-9

2.7 ~QBl

Format:

Purpose:

Remarks:

Example:

CONT

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

EX9cution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
3tring).

CONT is usuallY used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
r9sumed with CaNT or a direct mode GCTO, which
resumes execution at a specified line, number.

CONT is invalid if the program has been edited
during the break.

See example Section 2.61, STOP.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-10

Format:

Purpose:

Remarks:

Example:

DATA <list of constants>

To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.53)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
~it on a line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Secti~n 2.57).

See examples in Section 2.53, READ.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-11

Format:

Purpose:

Remarks:

DEF FN<name>[«parameter list»]=<function definition>

To define and name a function that is written by
the user.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited ~o one line. Variable names that
~ppear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition mayor may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the curren~
value of the variable is used.

The variables in the parameter list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
User-defined functions may be numeric or string.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to ~he calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

ANSI BASIC COMMANDS AND STATEMENTS

Example:

410 DEF FNAB(X,Y)=X~3/Y~2

420 T=FNABCI,J)

Line 410 defines the function
function is called in line 420.

Page 2-12

FNAB. The

ANSI BASIC COMMANDS AND STATEMENTS Page 2-13

Format:

Purpose:

Remarks:

Examples:

DEF<type> <range of letters>
where <type> is INT, SNG, DBL, or STH

To declare variable types as integer, single
precision, double precision, or string.

that the variable
letter(s) specified

However, a type
takes precedence

the typing of a

A DEFtype statement declares
names beginning with the
will be that type variable.
declaration character always
over a DEFtype statement in
variable.

If no type declaration statements are
encountered, ANSI BASIC assumes all variables
without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with
the letters L, M, N, 0, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-14

Format:

Purpose:

Remarks:

Example:

DEF USR[<digit>]:<integer expression>

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USF routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer ~xpression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USB statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USRO=24000
210 X=USRO(y A 2/2.89)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-15

Format:

Purpose:

Remarks:

Examples:

DELETE[<line number>] [-<line number>]

To delete program lines.

ANSI BASIC always returns to command level after
a DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

DELETE 40

DELETE 40-100

DELETE-40

Deletes line 40

Deletes lines 40 through
100, inclusive

Deletes all lines up to
and including line 40

ANSI BASIC COMMANDS AND STATEMENTS Page 2-16

Format:

Purpose:

Remarks:

Example:

DIM (list of subscripted variables>

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript is used
that is greater than the maximum specified, a
"Subscript out of range" error occur~. The
minimum value for a subscript is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.45).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)
20 FOR I=O TO 20
30 READ A(I)
40 NEXT I

ANSI BASIC COMMANDS AND STATEMENTS Page 2-17

2.14 E.Qll

Format:

Purpose:

Remarks:

EDIT <line number>

To enter Edit Mode at the specified line.

In Edit Mode, it is possible to edit portions of
a line without retyping the entire line. Upon
entering Edit Mode, ANSI BASIC types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
when a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcommands may be categorized
according to the following functions:

1 •

2.

3.

4.

5.

6.

Moving the cursor

Inserting text

Deleting text

Finding text

Replacing text

Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbi trary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape (or Altmode)
key.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-18

1. Moving the Cursor

Space Use the space bar to move the cursor to the
right. [ilSpace moves the cursor i spaces to
the right. Characters are printed as you space
over them.

Rubout In Edit Mode, [ilRubout moves the cursor i
spaces to the left (backspaces). Characters are
printed as you backspace over them.

2. Inserting Text

I

x

I<text>S inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout or Delete key on the
terminal may be used to delete characters to the
left of the cursor. If an attempt is made to
insert a character that will make the line
longer than 255 characters, a bell (Control-G)
is typed and the character is not printed.

TheX subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an Insert command had been given. When
you are finished extending the line, type Escape
or Carriage Return.

3. Deleting Text

D

H

[i] D deletes i characters to the right of the
cursor. The deleted characters are echoed
between backslashes, and the
positioned to the right of the
deleted. If there are fewer than
to the right of the cu rsor ,
remainder of the line.

H deletes all characters to the
cursor and then automatically
mode. H is useful for replacing
the end of a line.

cursor is
last character

i characters
iD deletes the

right of the
enters insert
statements at

4. Finding Text

S The subcommand [i]S<ch> searches for the ith
occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of

ANSI BASIC COMMANDS AND STATEMENTS Page 2-19

the line. All characters passed over during the
search are printed.

K The subcommand [i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The cursor is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

5. Replacing Text

C The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

6. Ending and Restarting Edit Mode

<cr>

E

Q

L

A

Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

The E subcommand has the same effect as Carriage
Return 7 except the remainder of the line is not
printed.

The Q subcommand returns to ANSI BASIC command
level, ~l!h2Y1 saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the line, still
in Edit Mode. L is usuallY used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If ANSI BASIC receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

ANSI BASIC COMMANDS AND STATEMENTS

When a Syntax Error
execution of a program,
enters Edit Mode at the
error. For example:

10 K = 2(4)
RUN
?Syntax error in 10
10

Page 2-20

is encountered during
ANSI BASIC automatically
line that caused the

When you finish editing the line and type
Carriage Return or the E subcommand, ANSI BASIC
reinserts the line, which causes all variable
values to be lost. To preserve the variable
values for examination ,first exit Edit Mode
with the Q subcommand. ANSI BASIC will return to
command level, and all variable values will be
preserved.

To enter Edit Mode on the line you are currently
typing, type Control-A. ANSI BASIC responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have just entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
a t the curren t line. (The line number
symbol "." always refers to the current
line.)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-21

Format: END

Purpose:

Remarks:

Example:

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. ANSI BASIC always returns
to command level after an END is executed.

520 IF K)1000 THEN END ELSE GOTO 20

ANSI BASIC COMMANDS AND STATEMENTS Page 2-22

Forma t:

Purpose:

Itemarks:

NOTE:

Example:

ERASE <list of array variables>

To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support
ERASE.

450 ERASE A,B
460 DIM B(99)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-23

When an error handling subroutine is entered,
the variable ERR contains the error code for the
~rror, and the variable ERL contains the line
number of the line in which the error was
detected. The ERR and ERL variables are usuallY
used in IF ••• THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN •••
Otherwise, use

IF ERR = error code THEN •••

IF ERL = line number THEN •••

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
ANSI BASIC error codes are listed in Appendix E.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-24

Format:

Purpose:

Remarks:

ERROR <integer expression>

1) To simulate the
error; or 2) to
defined by the user.

occurrence of an ANSI BASIC
allow error codes to be

The value of <integer expression> must be
greater than 0 and less than 255. If the value
of <integer expression> equals an error code
already in use by ANSI BASIC {see Appendix E)the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any used by ANSI BASIC's error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
ANSI BASIC.) This user-defined error code may
then be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, ANSI BASIC
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

Example 1: LIST
10 S = 10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in direct mode:

Ok
ERROR 15
String too long
Ok

(yoU type this line)
(ANSI BASIC types this line)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-25

Example 2:

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

ANSI BASIC COMMANDS AND STATEMENTS Page 2-26

Format:

Purpose:

Remarks:

Example:

NOTE:

FIELD[#J<file number>,<field width> AS <string variable> •••

To allocate space for variables in a random file
buffer.

To get data out of a random buffer after a GET
or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> is the number of
characters to be allocated to <string variable>~
For ,example,

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADDS. FIELD does NOT place any
data in the random file buffer. (See LSET/BSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 124.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same
time.

See Appendix B.

QQ n21 y§~ ~ I1E1Q~£ Ya~i~~l~ g~m~ in an lli£QI
Q~ 1~I §1a1~ID~n!. Once a variable
FIELDed, it points to the correct place
random file buffer. If a subsequent

name is
in the

INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to
string space.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-27

2.20 I11.E~

Format:

Purpose:

Remarks:

Example:

FILES <disk unit number>

To print on the console the names of files
re~iding on the specified disk unit.

<disk unit number> is a digit ranging from 0-3
1epending on the number of disk units sysgened
into the system. The file name, extension and
user number of each dataset in that disk unit
are printed on the console.

FILES
STRTRK.BAS[1]
CHl\SE .BAS[1]
OK

FILES
EDIT
PIP
OK

1
.BIN[1]
.BIN[1]

PIP .BIN[ll
ELIZA .BAS[1]

HANG
ASM

.BAS[1]

.BIN[1]

BASIC. BIN [1]

LANDER.BAS[1]
TEST .BAS[1]

ANSI BASIC COMMANDS AND STATEMENTS Page 2-28

Format:

Purpose:

Remarks:

FOR <variable>=x TO y [STEP zl

•

NEXT [<variable> 1 [, <var iable> •••]
where x, y and z are numeric expressions.

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (y). If it is not greater,
ANSI BASIC branches back to the statement after
the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR ••• NEXT loop. If STEP is not specified,
the increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the loop, and
the loop is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step.

FOR ••• NEXT loops may be nested, that is, a
FOR ••• NEXT loop may be placed within the context
of another FOR ••• NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used ~or
all of them.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-29

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match ~he most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

Example 1: 10 K=10
20 FOR 1=1 TO K STEP 2
30 PRINT Ii
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20
3 30
5 40
7 50
9 60

Ok

Example 2: 10 J=O

Example 3 :

20 FOR 1=1 TO J
30 PRINT I
40 NEXT I

In this example, the
because the initial
the final value.

10 1=5
20 FOR 1=1 TO 1+5
30 PRINT Ii
40 NEXT
RUN

1 2 3 4 5 6 7
Ok

8

loop does not execute
value of the loop exceeds

9 10

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set. (Note:
Previous versions of A~SI BASIC set the initial
value of the loop variable before setting the
final value; i.e., the above loop would have
executed six times.)

ANSI BASIC COMMANDS AND STATEMENTS Page 2-30

2.22 ~'&1

Format:

Purpose:

Remarks:

Example:

GET [#l<file number>[,<record number>]

To read a record from a random disk file into a
r3.ndom buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) is read into
the buffer. The largest possible record number
is 32767.

See Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-31

Format:

Purpose:

Remarks:

Example:

GOSUB <line number>

•

RETURN

To branch to and return from a subroutine.

<line number> is the first
subroutine.

line of the

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
ANSI BASIC to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE":
50 PRINT" IN":
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-32

Format:

Purpose:

Remarks:

Example:

GO TO <line number>

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST
10 RE}\.D R
20 PRINT "R =";R,
30 A = 3.14*R"'2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12
Ok
RUN
R = 5
R = 7
R = 12
?Out of data
Ok

in

AREA
AREA
AREA

10

= 78.5
= 153.86
= 452.16

ANSI BASIC COMMANDS AND STATEMENTS Page 2-33

Format:

Format:

Purpose:

Remarks:

IF <expression> [,]THEN <statement(s» 0 <line number>
[ELSE <statement(s» 0 <line number>]

IF <expression> GOTO <line number>
[ELSE <statement(s» 0 <line number>]

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a line number. If the
result of <expression) is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if
present, is executed. Execution continues with
the next executable statement.

IF ••• THEN ••• ELSE statements
Nesting is limited only by the
line. For example

may be
length

nested.
of the

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF ••• THEN statement is followed by a
number in the direct mode, an "Undefined
error results unless a statement with
specified line number had previously
entered in the indirect mode.

line
line"

the
been

ANSI BASIC COMMANDS AND STATEMENTS Page 2-34

NOTE: When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN •••

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

Example 1: 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2: 100 IF(I<20)*(I)10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if
greater than 10 and less than 20. If I

I is
is in

this range, DB is calculated and execution
branches to line 300. If I is not in this
range, execution continues with line 110.

Example 3: 210 IF IOFLAG THEN PRINT AS ELSE LPRINT AS

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG is zero, output goes to the line
printer, otherwise output goes to the terminal.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-35

2.26 lEg]:!

Format:

Purpose:

Remarks:

INPUT[;] [<"prompt string">;]<list of variables>

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

If INPUT is immediately followed by a
then the carriage return typed by
input data does not echo a carriage
feed sequence.

semicolon,
the user to
return/line

The data that is entered is assigned to
variable(s) given in <variable list>.
number of data items supplied must be the
as the number of variables in the list.
items are separated by commas.

the
The

same
Data

The variable names in the list may be numeric or
string Variable names (including subscripted
Variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

too few
(numeric

Responding to INPUT with too many or
items, or with the wrong type of value
instead of string, etc.) causes the
"?Redo from start" to be printed. No

messsage
assignment
acceptable of input values is made until

response is given.
an

If there is only one variable in the INPUT list
then responding with only a carriage return
causes the variable to be assigned the value of
zero if its type is numeric, or a blank if its
type is string.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-36

Examples: 10 INPUT
20 PRINT
30 END
RUN
? 5

x
X "SQUARED IS" X~2

(The 5 was typed in by the user
in response to the question mark.)

5 SQUARED IS 25
Ok

LIST
10 PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A=PI*R~2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-37

Format:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If ANSI BASIC is scanning the sequential data
file for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-38

2.28 K111

Format:

Purpose:

Remarks:

Example:

KILL <filename>

To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "DATA1"

See also Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-39

2.29 1EI

Forma t:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>

To assign the value of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET D=12
120 LET E=12"2
130 LET F=12"4
140 LET SUM=D+E+F

•

or

110 D=12
120 E=12 2
130 F=12"4
140 SUM=D+E+F

•

ANSI BASIC COMMANDS AND STATEMENTS Page 2-40

2.30 liliE lli.f.YI

Forma t:

Purpose:

Remarks:

Example:

LINE INPUT [;] [<"prompt string">;] <string variable>

To input an entire line (up to 254
to a string variable, without
1elimiters.

characters)
the use of

The prompt string is a string literal that is
printed at th~ terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a
catriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
~NSI BASIC will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

See Example, Section 2.31, LINE INPUT#.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-41

Format:

Purpose:

Remarks:

Example:

LINE INPUT#<file number>,<string variable>

To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

<file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned.· LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT# reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
ANSI BASIC program saved in ASCII mode is being
read as data by another program.

10 OPEN "0",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";CS
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "I",1,"LIST"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4
LINDA JONES 234,4 MEMPHIS
Ok

MEMPHIS

ANSI BASIC COMMANDS AND STATEMENTS Page 2-42

2.32 11.§I

Format 1:

Format 2:

Purpose:

Remarks:

LIST [<line number>]

LIST [<line number>[-[<line number>]]]

To list all or part of the program currently in
memory at the terminal.

ANSI BASIC always returns to command level after
a LIST is executed.

Format 1: If <line number> is omitted,
program is listed beginning at the lowest
number. (Listing is terminated either by
end of the program or by typing Control-C
interrupted by Control-S.) If line number
included then only the specified line will
listed.

the
line
the
and
is
be

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered lines are
listed.

2. If only the second number is specified, all
lines from the beg~nning of the program
through tha t line are .listed.

3. If both numbers are specified, the entire
range is listed.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-43

Examples:
Format 1:

LIST

LIST 500

Format 2:

Lists the program currently
in memory.

Lists line 500.

LIST 150- Lists ~ll lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-44

Format~

Purpose:

Remarks:

Example:

LLIST [<line number>[-[<line number»)]

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a 132-character wide printer.

ANSI BASIC always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

See the examples for LIST, Format 2.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-45

2.43 1QA12

Format:

Purpose:

Remarks:

Example:

LOAD <filename)[,Rl

To load a file from disk into memory.

<filename) is the name that was used when the
file was SAVEd.

LOAD closes all open files and deletes all
v~riables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LO~.D with the "P" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "STRTRK",R

ANSI BASIC COMMANDS AND STATEMENTS Page 2-46

Format:

Purpose:

Remarks:

NOTE:

LPRINT [<list of expressions>]
LPRINT USING <"format string">;<list of expressions>

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line print~r. See Section 2.48 and
Section 2.49.

LPRINT assumes a 132-character-wide printer.

LPRINT and LLIST are not included in
implementations of ANSI BASIC.

all

ANSI BASIC COMMANDS AND STATEMENTS Page 2-47

2.36 1~gI AND R~EI

Format:

Purpose:

Remarks:

Examples:

NOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKIS, MKSS, MKDS functions, Section 3.27.

150 LSET AS=MKS~(AMT)
160 LSET DS=DESC(S)

See also Appendix B.

LSET or RSET may also be used with
string variable to left-justify or
a string in a given field. For
program lines

110 A$=SPACES(20)
120 RSET A$=NS

a non-fielded
right-justify
example, the

right~justify the string NS in a 20-character
field. This can be very handy for formatting
printed output.

ANSI BASIC C8MMANDS AND STATEMENTS Page 2-48

Format:

Purpose:

Remarks:

Example:

MERGE <filename>

To merge a specified disk file into the
currently in memory.

<filename> is the name used when the
SAVEd. The file must have been SAYEd

program

file was
in ASCII

format. If not, a "Bad file mode" error occurs.

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on
jisk into the program in memory.)

ANSI BASIC always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

ANSI BASIC COMMANDS AND STATEMENTS Page 2-49

2.38 111Q~

Format:

Purpose:

Remarks:

Example:

MIDS«string exp1>,n[,m])=(string exp2>
where nand m are integer expressions and
<string exp1> and (string exp2> are string
expressions.

To replace a portion of one string with another
string.

The characters in <string exp1>, beginning at
position n, are replaced by the characters in
<string exp2). The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of (string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string exp1>.

10 A$="KANSAS CrrY, :10"
20 MIDS(AS,14)="KS"
30 PRINT AS
RUN
KANSAS CITY, KS

MIDS may also be used as a function that returns
a substring of a given string. See Section
3.26.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-50

Format:

Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>

To change the name of a disk file.

<old filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

ANSI BASIC. COMMANDS AND STATEMENTS Page 2-51

Format: NEW

Purpose:

Remarks:

To delete the program currently in memory and
clear all variables.

~EW is entered at command level to clear memory
before entering a new proqram. ANSI BASIC alway~
returns to command level after a NEW is
ex ecu ted.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-52

2.41 H!111

Format:

Purpose:

Remarks:

Example:

NULL <integer expression>

To set the number of nulls to be printed at the
end of each line.

For 10-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is o.

Ok
NULL 2
Ok
100 INPUT X
200 IF X<50 GOTO 800

Two null charactars will be printed after each
line.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-53

Format:

Purpose:

Remarks:

NOTE:

Example:

ON ERROP GOTO <line number>

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a jump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined line"
error results. To disable error trapping,
execute an ON ERROR GOTO O. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that apx;:ears in an
error trapping subroutine causes ANSI BASIC to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

execution of an error
BASIC error message is

If an error occurs during
handling subroutine, the
printed and execution
trapping does not occur
handling subroutine.

terminates. Error
within the error

10 ON ERROR GOTO 1000

ANSI BASIC COMMANDS AND STATEMENTS Page 2-54

Format:

Purpose:

Remarks:

Example:

ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

Te branch to one of several specified line
numbers, depending on the value returned when an
expression is evaluated.

The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in ~he list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON ••• GOSUB statement, each line number in
the list must be the first line number of a
subroutine.

If the value of <expression> is negative, zero
or greater than the number of items in the list,
an "Illegal function call" error occurs.

100 ON L-1 GOTO 150,300,320,390

ANSI BASIC COMMANDS AND STATEMENTS Page 2-55

Format:

Purpose:

Remarks:

NOTE:

Example:

OPEN <mode>,[#l<file number>,<filename>,[<reclen>l

To allow I/O to a disk file.

A disk file must be OPENed before any disk
operation can be performed on that file.
allocates a buffer for I/O to the file
determines the mode of access that will be
with the buffer.

<mode> is a string expression whose
character is one of the following:

o specifies sequential output mode

I specifies sequential input mode

I/O
OPEN

and
used

first

R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and is used to refer other disk I/O
statements to the file.

<filename> is a string expression containing a
name that conforms to your operatinq system's
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record length for random
files. The default record length is 124 bytes.

A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

10 OPEN "I",2,"INVEN"

See also Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-56

Format:

Purpose:

Remarks:

OPTION BASE n
where n is 1 or 0

To declare the
subscripts.

minimum value for

The default base is O. If the statement

OPTION BASE 1

array

is executed, the lowest value an array subscript
ma.y have is one.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-57

2.46 Q1!I

Format:

Purpose:

Remarks:

Example:

OUT I,J
where I and J are integer expressions in the
range 0 to 255.

To send a byte to a machine output port.

The integer expression I is the port number, and
the integer expression J is the data to be
transmitted.

100 OUT 32,100

ANSI BASIC COMMANDS AND STATEMENTS Page 2-58

Format:

Purpose:

Remarks:

Example:

POKE I,J
where I and J are integer expressions

To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. I must be in the range
of 0 to 255.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.29.

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE &H5AOO,&HFF

ANSI BASIC COMMANDS AND STATEMENTS Page 2-59

2.48 REIHl

Format:

Purpose:

Remarks:

PRINT [<list of expressions>]

To output data at the terminal.

If <list of expressions> is omitted, a blank
line is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

£~lnl £Q§i11Qn§
The position of each printed item is determined
by the punctuation used to separate the items in
the list. ANSI BASIC divides the line into print
zones of 14 spaces each. In the list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.

If the list of expressions terminates without a
comma or a semicolon, a
printed at the end of the
line is longer than the
BASIC goes to the next
continues printing.

carriage return is
line. If the printed
terminal width, ANSI

physical line and

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, 10~(-6) is output as
.000001 and 10~(-7) is output as 1E-7. Double
precision numbers that can be represented with
16 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, 10~(-16) is output as
.0000000000000001 and 10~(-17) is output as
1D-17.

,

ANSI BASIC COMMANDS AND STATEMENTS Page 2-60

A question mark may be used in place of the word
PRINT in a PRINT statement.

Example 1: 10 X=5
20 PRINT X+5, X-5, X*(-5), X~5

30 END
RUN

10 0 -25
Ok

3125

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Example 2: LIST

Exampl~ 3 :

10 INPUT X
20 PRINT X "SQUARED IS" X~2 "AND";
30 PRINT X "CUBED IS" X~3
40 PRINT
50 GOTO 10
Ok

RUN
? 9

9 SQUARED IS 81 AND 9 CUBED IS 729
? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261
?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FOR X = 1 TO 5
20 J=J+5
30 K=K+10
40 ?J:K;
50 NEXT X
Ok

RUN
5 10 10 20 15 30 20 40 25 50

Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of
the word PRINT.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-61

Format:

Purpose:

Remarks
and
Examples:

PRINT USING <"format string");<list of expressions)

Ta print strings or numbers using a specified
format.

<list of expressions) is comprised of the string
expressions or numeric expressions that are to
be printed, separated by semicolons. <"format
string"), enclosed in quotation marks, is
comprised of special formatting characters.
These formatting characters (see below)
jetermine the field and the format of the
printed strings or numbers.

when PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

"!" Specifies that only the first character in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is longer
than the field, the extra characters are
ignored. If the field is lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK":B$="OUT"
30 PRINT USING "!";A$;B$
40 PRINT USING "\ \";AS;BS
50 PRINT USING"\ \";.ll.$;BS;"!!"
RUN
LO
LOOKOUT
LOOK OUT ! !

ANSI BASIC COMMANDS AND STATEMENTS Page 2-62

"&" Specifies a variable length string field. When
the field is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOK":B$="Ol,JT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN
LOUT

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.

PRINT USING "##.##;".78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-63

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#.# ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The SS specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with S$.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "$$###.##";456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**$##.##";2.34
***$2.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (AAAA) format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

ANSI BASIC COMMANDS AND STATEMENTS Page 2-64

%

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##~~~A";234.56

2.35E+02

PRINT USING ".####~AAA_";888888

.8889E+06

PRINT USING "+.##"AM"";123
+.12E+03

An underscore in the format string
next character to be output as
character.

PRINT USING "_!##.##_!";12.34
!12.341

causes the
a literal

The literal character itself may be an
Qnderscore by placing " __ " in the format string.

If the number to be
specified numeric
printed in front of
causes the number to
sign will be printed
number.

the printed is larger than
field, a percent sign is

the number. If rounding
exceed the field, a percent
in front of the rounded

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##";.999
%1.00
If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-65

Format:

Purpose:

Remarks:

PRINT#<filenumber>, [USING<"format string">i]<list of exps>

To write data. to a sequential disk file.

<file number> is the number used when the file
was OPENed for output. <"format string"> is
comprised of formatting characters as described
in Section 2.49, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric
should be delimited by semicolons.
PRINT#1,AiBiCiXiYiZ

expressions
For example,

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let AS="CAMERA" and BS="93604-1".
The statement

PRINT#1,AS;BS

would write CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,ASi","iBS

The image written to disk is

CAMERA,93604-1

ANSI BASIC COMMANDS AND STATEMENTS

which can be read back
variables.

into two

If the strings themselves contain
semicolons, significant leading blanks,
returns, or line feeds, write them
surrounded by explicit quotation
CHRS(4).

Page 2-66

string

commas,
carriage
to disk

marks,

For example, let AS="CAMERA, AUTOMATIC" and
BS=" 93604-1". The statement
PRINT#1,AS;BS

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,AS,BS

would input "CAMERA" to AS and
"AUTOMATIC 93604-1" to BS. To separate these
strings properly on the disk, write double
quotes to the disk image using CHRS(34). The
statement

PRINT#1,CHRS(34);AS;CHRS(34);CHRS(34);BS;CHRS(34)

writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,AS,BS

would input "CAMERA, AUTOMATIC" to
" 93604-1" to BS.

JI. S and

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING"SS###.##,"iJ;KiL

For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-67

2.51 £.Ql

Format:

Purpose:

Remarks:

Example:

PUT [#]<file number>[,<record number>]

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767.

See Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-68

2.52 RA1LQOMIZE

Format:

Purpose:

Remarks:

Example:

RANDOMIZE [<expression>]

To reseed the random number generator.

If <expression> is
program execution
printing

omitted, ANSI BASIC suspends
and asks for a value by

Random Number Seed (0-65529)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

10 RANDOMIZE
20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
RUN
Random Number Seed (0-65529)? 3 (user types 3)

.88598 .484668 .586328 .119426 .709225
Ok
RUN
Random Number Seed (0-65529)7 4 (user types 4
for new sequence)

.803506 .162462 .929364 .292443 .322921
Ok
RUN
Random Number Seed (0-65529)? 3 (same sequence
as first RUN)

.88598 .484668 .586328 .119426 .709225
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-69

Format:

Purpose:

Remarks:

Example 1:

READ <list of variables>

To read values from a DATA statement and assign
them to variables. (See DATA, Section 2.9.)

A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more
DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statment. If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statementCs), an
OUT OF DATA message is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement(s), subsequent
READ statements will begin reading data at the
first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from
the RESTORE statement (see
2.57)

the start, use
RESTORE, Section

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values
DATA statements into the array
execution, the value of A(1) will be
so on.

from the
A. After
3.08, and

ANSI BASIC COMMANDS AND STATEMENTS

Example 2: LIST
10 PRINT "CITY", "STATE", " ZIP"
20 READ CS,SS,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY STATE ZIP
DENVER, COLORADO 80211
Ok

Page 2-70

This program READs string and numeric data from
the DATA statement in line 30.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-71

2.54 REl1

Format:

Purpose:

Remarks:

Example:

REM <remark>

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

In MOSTEK ANSI BASIC, remarks may be added
to the end of a line by preceding the
remark with a single quotation mark instead of
:REM.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

•

or, with MOSTEK ANSI BASIC version:

120 FOR 1=1 TO 20
130 SUM=SUM+V(1)
140 NEXT I

'CALCULATE AVERAGE VELOCITY

ANSI BASIC COMMANDS AND STATEMENTS Page 2-72

Format:

Purpose:

Remarks:

NOTE:

Examples:

RENUM [[<new number>] [, [<old number>] [,<increment>]]1

To renumber p~ogram lines.

<new number> is the first line number to be used
in the new sequence. The default is 10. <old
number> is the line in the current program where
renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON ••• GOTO,
ON ••• GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined line xxxxx in yyyyy" is
printed. The incorrect line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro­
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-73

Format:

Purpose:

Remarks:

RESET

To close all disk files and write the directory
information from a diskette to memory before any
disk I/O operation begins.

Always execute ~he RESET command when changing
disket~es on a disk unit. The RESET command is
executable both in direct and indirect mode. It
can be used to access a database residing in more
than one diskette.

In MOSTEK ANSI BASIC, RESET initializes all disk
units. When ANSI BASIC is entered all disks are
automatically initialized.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-74

2.57 R~~I.QRE

Format:

Purpose:

Remarks:

Example:

RESTORE «line number>]

To allow DATA statements to be reread from a
specified point.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> is specified, the next READ statement
accesses the first item in the specified DATA
statement.

10 READ A,B,C

20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

ANSI BASIC COMMANDS AND STATEMENTS Page 2-75

2.58 RE.§.1!l1,E

Formats:

Purpose:

Remarks:

Example:

RESUME
RESUME 0
RESUME NEXT
RESUME <line number>

To continue program execution after an error
recovery procedure has been performed.

Anyone of the four formats shown above may be
used, depending upon where execution is to
resume:

RESUME
or

RESUME a

RESUME NEXT

Execution resumes at the
statement which caused the
error.

Execu~ion resumes at the
statement immediately fol­
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error" message
to be printed.

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

•

ANSI BASIC COMMANDS AND STATEMENTS Page 2-76

2.59 ~.Yli

Format 1:

Purpose:

Remarks:

Example:

Format 2:

Purpose:

Remarks:

Example:

RUN [<line number>]

To execute the program currently in memory.

If <line number> is specified, execution begins
on that line. Otherwise, execution begins at
the lowest line number. BASIC always returns
to command level after a RUN is executed.

RUN

RUN <filename>[,R]

To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEd.

RUN closes all open
current contents of
designated program.
option, all data files

RUN "NEWFIL",R

See also Appendix B.

files and deletes
memory before loading
However, with the
remain OPEN.

the
the
"R"

.

ANSI BASIC COM~ANDS AND STATEMENTS Page 2-77

Format:

Purpose:

Remarks:

Examples:

SAVE <filename)[,A 0 ,P]

To save a program file on disk.

<filename) is a quoted string that conforms to
your operating system's requirements for
filenames. If <filename> already exists, then
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCII format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII
format file, and some operating system commands
such as LIST may require an ASCII format file.

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE"COM2",A
SAVE"PROG",P

See also Appendix B.

ANSI BASIC COMMANDS AND STATEMENTS Page 2-78

Format:

Purpose:

Remarks:

Example:

STOP

To terminate ,program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CaNT command (see Section 2.7).

10 INPUT A,B,C
20 K=AA2*5.3:L=BA3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-79

Format:

Purpose:

Remarks:

Example:

SWAP <variable>,<variable>

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST

10 AS=" ONE" : BS=" ALL"
20 PRINT AS CS BS
30 SWAP AS, BS
40 PRINT AS CS BS
RUN
Ok

ONE FOR ALL
ALL FOR ONE

Ok

CS="FOR"

ANSI BASIC COMMANDS AND STATEMENTS Page 2-80

2.62 ~X§I.E.M

Format:

Pu rpose:

Remarks:

SYSTEN

To return to the operating system from BASIC.

All opened files are closed and the operating
system is rebooted from DKO: •

ANSI BASIC COMMANDS AND STATEMENTS Page 2-81

2.63 I~QliLI~Qrr

Format:

Purpose:

Remarks:

Example:

TRON
TROFF

To trace the execution of program statements.

As an aid in debugging, the TRON statement
(executed in either the direct or indirect mode)
enables a trace flag that prints each line
number of the program as it is executed. The
numbers appear enclosed in square brackets. The
trace flag is disabled with the TROFF statement
(or when a NEW command is executed).

TRON

Ok
LIST
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT JiK;L
50 K=K+10
60 NEXT
70 END
Ok
RUN
[10] [20] [30] [40] 1 10 20
[50] [60] [30] [40] 2 20 30
[50] [60] [70]
Ok
TROFF
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-82

Format:

Purpose:

Remarks:

CAUTION:

Example:

WAIT <port number>, I[,J]
where I and J are integer expressions

To suspend program execution while monitoring
the status of a machine input port.

The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read
at the port is exclusive OR'ed with the integer
expression J, and then AND'ed with I. If the
result is zero, ANSI BASIC loops back and reads
the data at the port again. If the result is
nonzero, execution continues with the next
statement. If J is omitted, it is assumed to be
zero

It is possible to enter an infinite loop with
the WAIT statement, in which case it will be
necessary to manually restart the machine.

100 wAIT 32,2

ANSI BASIC COMMANDS AND STATEMENTS Page 2-83

Format:

Purpose:

Remarks:

Example:

WHILE <expression>

[<loop statements>]

WEND

To execute a series of statements in a loop as
long as a given condition is true.

If <expression> is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. BASIC then returns to
the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If
it is not true, execution resumes with the
statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE. An
unmatched WHILE statement causes a "WHILE
without WEND" error, and an unmatched WEND
statement causes a "WEND without WHILE" error.

90 'BUBBLE SORT ARRAY AS
100 FLIPS=1 'FORCE ONE PASS
110 WHILE FLIPS
115 FLIPS=O
120 FOR 1=1 TO J-1

THRU LOOP

130 IF AS(I»AS(I+1) THEN
SWAP AS(I),AS(I+1):FLIPS=1

140 NEXT I
150 WEND

ANSI BASIC COMMANDS AND STATEMENTS Page 2-84

2.66 .kll~I.H

Format:

Purpose:

Remarks:

Example:

WIDTH [LPRINTl <integer expression)

To set the printed line width in number of
characters for the terminal or line printer.

If the LPRINT option is omitted, the line width
is set at the terminal. If LPRINT is included,
the line width is set at the line printer.

<integer expression) must have a
range 15 to 255. The default
characters.

value in the
width is 72

If <integer expression) is
is "infinite," that is,
carriage return. However,
cursor or the print head,
LPOS function, returns to
255.

255, the line width
BASIC never inserts a
the position of the

as given by the POS or
zero after position

10 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-85

2.67 HEllE

Format:

Purpose:

Remarks:

Example:

WRITE[<list of expressions)]

To output data at the terminal.

If <list of expressions) is omitted, a blank
line is output. If <list of expressions) is
included, the values of te expressions are
output at thee terminal. The expressions in the
list may be numeric and/or string expressions,
and they must be separated by commas.

When the -printed items are output, each item
will be separated from the last by a comma.
Printed strings will be delimited by quotation
marks. After the last item in the list is
printed, BASIC inserts a carriage return/line
feed.

WRITE outputs numeric values using the same
format as the PRINT statement, Section 2.48.

10 A=80:B=90:C'$="THAT'S ALL"
20 WRITE A,B,CS
RUN

80, 90,"THAT'S ALL"
Ok

ANSI BASIC COMMANDS AND STATEMENTS Page 2-86

2.68 HEIlE!

Format:

Purpose:

Remarks:

Example:

WRITE#<fi1e number>,<list of expressions>

To write data to a sequential file.

<file number> is the number under which the file
was OPENed in "0" mode. The expressions in the
list are string or numeric expressions, and they
must be separated by commas.

The difference between WRITE# and PRINT# is that
WRITE# inserts commas between the the items as
they are written to disk and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit
delimiters in the list. A carriage return/line
feed sequence is inserted after the last item in
the list is written to disk.

Let AS="CAMERA" and BS="93604-1". The
statement:

WRITE#1,AS,BS

writes the following image to disk:

"CAMERA","93604-1"

A subsequent INPUT# statement, such as:

INPUT#1,AS,BS

would input "CAMERA" to AS and "93604-1" to BS.

CHAPTER 3

ANSI BASIC FUNCTIONS

The intrinsic functions provided by ANSI BASIC are presented
in this chapter. The functions may be called from any
program without further definition.

Arguments to functions are always enclosed in parentheses.
In the formats given for the functions in this chapter, the
arguments have been abbreviated as follows:

X and Y Represent any numeric expressions

I and J Represent integer expressions

XS and YS Represent string expressions

If a floating point value is supplied where an integer is
required, ANSI BASIC will round the fractional portion and use
the resulting integer.

ANSI BASIC FUNCTIONS Page 3-2

Format:

Action:

Example:

Format:

Action:

Example:

ABS(X)

Returns the absolute value of the expression X.

PRINT ABS(7*(-5»
35

Ok

ASC(XS)

Returns
of the
Appendix
"Illegal

a numerical value that is the ASCII code
first character of the str ing XS. (See
L for ASCII codes.) If XS is null, an
function call" error is returned.

10 XS = "TEST"
20 PRINT ASC(X$)
RUN

84
Ok
See the CHRS function
conversion.

for ASClI-to-string

ANSI BASIC FUNCTIONS Page 3-3

3.3 alB

Formq.t:

Acti.on:

Example:

3. 4 ~IHl1

Format:

Action:

Example:

ATN(X)

Returns the arctangent of X in radians. Result
is in the range -pi/2 to pi/2. The expression X
may be any numeric type, but the evaluation of
ATN is always performed in single precision.

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.24905

Ok

CDBL(X)

Converts X to a double precision number.

10 A = 454.67
20 PRINT A;CDBL(A)
RUN

454.67 454.6700134277344
Ok

ANSI BASIC FUNCTIONS Page 3-4

Format:

Action:

Example:

3. 6 ~.lHl

Format:

Action:

Example:

CHRS (I)

Returns a string whose one element has ASCII
code I. (ASCII codes are listed in Appendix G.)
CHRS is commonly used to send a special
character to the terminal. For instance, the
BEL character could be sent (CHRS(7» as a
preface to an error message, or a form feed
could be sent (CHRS(12» to clear a CRT screen
and return the cursor to the home position.

PRINT CHRS(66)
B
Ok

See the ASC function
conversion.

CINT(X)

for ASClI-to-numeric

Converts X to an integer by rounding the
fr~ctional portion. If X is not in the range
-32768 to 32767, an "Overflow" error occurs.

PRINT CINT(45.67)
46

Ok

See the CDBL and CSNG functions for converting
numbers to the double precision and single
precision data type. See also the FIX and INT
functions, both of which return integers.

ANSI BASIC FUNCTIONS Page 3-5

Format:

Action:

Example:

Format:

Action:

Example:

COS(X)

Returns the cosine of X
calculation of COS (X) is
precision.

10 X = 2*COS(.4)
20 PRINT X
RUN

1.84212
Ok

CSNG(X)

in radians. The
performed in single

Converts X to a single precision number.

10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN
975.3421 975.342

Ok

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types.

ANSI BASIC FUNCTIONS Page 3-6

Format:

Action:

Example:

Format:

Action:

Example:

CVI«2-byte string»
CVS{<4-byte string»
CVD{<8-byte string»

Convert string values to numeric values.
Numeric values that are read in from a random
disk file must be converted from strings back
into numbers. CVI converts a 2-byte string to
an integer. CVS converts a 4-byte string to a
single precision numb&r. CVD converts an 8-byte
string to a double precision number.

•

•
70 FIELD #1,4 AS N$, 12 AS BS, •••
BO GET #1
90 Y=CVS(N$)

•

•
See also MKI$, MKS$, MKD$, Section 3.25 and
Appendix B.

DSKF«disk unit number»

Returns the number of free sectors available in
the specified disk unit.

100 IF DSKF(O)=O THEN 900
110 PUT #1

ANSI BASIC FUNCTIONS Page 3-7

3. 11 .£;.QI

Format:

Action:

Example:

3. 12 E.l!:

Format:

Action:

Example:

3.13 II!

Format:

Action:

Examples:

EOF«file number»

Returns -1 (true) if the end of a sequential
file has been reached. Use EOF to test for
end-of-file while INPUTting, to avoid "Input
past end" errors.

10 OPEN "I",1,"DATA"
20 c=o
30 IF EOF(1) THEN 100
40 INPUT #1,M(C)
50 C=C+1:GOTO 30

EXP(X)

~eturns e to the power of X. X must be
<=87.3365. If EXP overflows, the "Overflow"
error message is displayed, machine infinity
with the appropriate sign is supplied as the
result, and execution continues.

10 X = 5
20 PRINT EXP (X-1)
RUN

54.5982
Ok

FIX(X)

Returns the truncated integer part of X. FIX(X)
is equivalent to SGN(X)*INT(ABS(X». The major
difference between FIX and INT is that FIX does
not return the next lower number for negative X.

PRINT FIX(58.75)
58

Ok
PRINT FIX(-58.75)
-58
Ok

ANSI BASIC FUNCTIONS Page 3-8

3.14 ERE

Format:

Action:

Example:

Forma t:

Action:

Example:

FRE(O)

FRE(X$)

Arguments to FRE are dummy arguments. If the
argument is 0 (numeric), FRE returns the number
of bytes in memory not being used by ANSI BASIC.
If the argument is· a string, FRE returns the
number of free bytes in string space.

PRINT FRE(O)
14542

Ok

HEX$(X)

Returns a string which represents the
hexadecimal value of the decimal argument. X is
rounded to an integer before HEX$(X) is
evaluated.

10 INPUT X
20 AS = HEX$(X)
30 PRINT X "DECIMAL IS " AS " HEXADECIMAL"
RUN
? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

See the OCTS function for octal conversion.

ANSI BASIC FUNCTIONS Page 3-9

3.16 IJlE

Forma t:

Action:

Example:

3.17 IJlg.!!l~

INP(I)

Returns the byte read from port I. I must be in
the range 0 to 255. INP is the complementary
function to the OUT statement, Section 2.46.

100 A=INP(255)

Format: INPUT$(X[,[#lYl)

Action: Returns a string of X characters, read from the
terminal or from file number Y. If the terminal
is used for input, nc characters will be echoed
and all control characters are passed through
except Control-C, which is used to interrupt the
execution of the INPUTS function.

Example 1: 5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL

Example 2:

10 OPEN"I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEXS(ASC(INPUTS(1,#1»);
40 GOTO 20
50 PRINT
60 END

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 XS=INPUTS(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

•

ANSI BASIC FUNCTIONS Page 3-10

3.18 lll~I.B

Format:

Action:

Example:

3.19 III I

Format:

Action:

Examples:

INSTR([I,]XS,YS)

Searches for the first occurrence of string YS
in X$ and returns the position at which the
match is found. Optional offset I sets the
position for starting the search. I must be in
the range 0 to 255. If I>LEN(X$) or if XS is
null or if YS cannot be found, INSTR returns O.
If YS is null, INSTR returns I or 1. XS and YS
may be string variables, string expressions or
string literals.

10 XS = "ABCDEB"
20 YS = "B"
30 PRINT INSTR(XS,YS)iINSTR(4,XS,YS)
RUN

2 6
Ok

INT(X)

Returns the largest integer <=X.

PRINT INT(99.89)
99

Ok
PRINT INT(-12.11)
-13
Ok

See the FIX and CINT functions which also return
integer values.

ANSI BASIC FUNCTIONS Page 3-11

3.20 1}.;rI~

Forma t:

Action:

Example:

Format:

Action:

Example:

LEFTS(XS,I)

Returns a string comprised of the leftmost I
characters of XS. I must be in the range 0 to
255. If I is greater than LEN(XS), the entire
string (XS) will be returned. If 1=0, the null
string (length zero) is returned.

10 AS = "ANSI BASIC"
20 BS = LEFTS(AS,5)
30 PRINT BS
BASIC
Ok

Also see the MIDS and RIGHTS functions.

LEN(XS)

Returns the number of characters in XS.
Non-printing characters and blanks are counted.

10 XS = "PORTLAND, OREGON"
20 PRINT LEN(XS)

16
Ok

ANSI BASIC FUNCTIONS Page 3-12

3.22 1Q~

Format:

Action:

Example:

3.23 1Q.E

Format:

Action:

Example:

Format:

Action:

Example:

LOC«file number»

With random disk files, LOC returns the current
record number to be used if a GET or PUT
(without a record number) is executed. With
sequential files, LOC returns the number of
sectors (124 byte blocks) read from or written
to the file since it was OPENed.

200 IF LOC(1»50 THEN STOP

LOF«file number»

Returns the number of records in the file.

IF LOF(1)=~ THEN 900

LOG(X)

Returns the natural logarithm of X. X must be
greater than zero.

PRINT LOG(35/7)
1.86075

Ok

ANSI BASIC FUNCTIONS Page 3-13

3.25 1I:Q'§

Format:

Action:

Example:

3.26 111122

Format:

Action:

Example:

LPOS(X)

Returns the current position of the line printer
print head within the line printer buffer. Does
not necessarily give the physical position of
the print head. X is a dummy argument.

100 IF LPOS(X)60 THEN LPRINT CHRS(13)

MIDS(XS,I [,J])

Returns a string of length J characters from XS
be~inning with the Ith character. I and J must
be in the range 0 to 255. If J is omitted or if
there are fewer than J characters to the right
of the Ith character, all rightmost characters
beginning with the Ith character are returned.
If I)LEN(XS), MIDS returns a null string.

LIST
10 AS="GOOD "
20 BS="MORNING EVENING 1I.FTERNOON"
30 PRINT AS;MIDS(BS,9,7)
Ok
RUN
GOOD EVE~ING

Ok

Also see the LEFTS and RIGHTS functions.

ANSI BASIC FUNCTIONS Page 3-14

Format:

Action:

Example:

3.28 Q£;;l..i

Format:

Action:

Example:

MKIS«integer expression»
MKSS«single precision expression»
MKDS«double precision expression»

Convert numeric values to string values. Any
numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKIS converts an integer
to a 2-byte string. MKSS converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte
string.

90 AMT=(K+T)
100 FIELD #1, 8 AS DS, 20 AS N$
110 LSET DS = MKSS(AMT)
120 LSET N$ = AS
130 PUT #1

•
•

See also CVI, CVS, CVD, Section 3.9 and Appendix
B.

OCTS(X)

Returns a string which represents the octal
value of the decimal argument. X is rounded to
an integer before OCTS(X) is evaluated.

PRINT OCTS(24)
30

Ok

See the HEXS
conversion.

function for hexadecimal

ANSI BASIC FUNCTIONS Page 3-15

Format:

Action:

Example:

3.30 RQ~

Format:

Action:

Example:

PEEK(I)

Returns the byte (decimal integer in the range 0
to 255) read from memory location I. I must be in
the range 0 to 65536. PEEK is the complementary
function to the POKE statement, Section 2.47.

A=PEEK(&H5AOO)

PO S (I)

Returns the current cursor position. The
leftmost position is o. X is a dummy argument.

IF POS(X»60 THEN PRINT CHRS(13)
Also see the LPOS function.

ANSI BASIC FUNCTIONS Page 3-16

3.31]I~HI~

Format:

Action:

Example:

3.32 liND

Format:

Action:

Example:

RIGHTS(XS,I)

Returns the rightmost I characters of string XS.
If I=LEN(XS), returns XS. If 1=0, the null
string (length zero) is returned.

10 AS="DISK ANSI BASIC"
20 PRINT RIGHT$(AS,8)
RUN
ANSI BASIC
Jk

Also see the MIDS and LEFTS functions.

RND[(X)]

Returns a random number between 0, and 1. The
same sequence of random numbers is generated
each time the program is RUN unless th~ random
number gener~tor is reseeded (see RANDOMIZE,
Section 2.52). However, X<O always restarts the
same sequence for any given X.

X>O or X omitted generates the next random
number in the sequence. X=O repeats the last
number generated.

10 FOR 1=1 TO 5
20 PRINT INT(RND*100);
30 NEXT
RUN

24 30 31 51 5
Ok

ANSI BASIC FUNCTIONS Page 3-17

3.33 ~riH

Format:

Action:

Example:

3.34 21li

Forma t:

Action:

Example:

SGN(X)

If X>O, SGN(X) returns 1.
If X=O, SGN(X) returns o.
If X<O, SGN(X) returns -1.

ON SGN(X)+2 GOTO 100,200,300 branches to 100
X is negative, 200 if X is 0 and 300 if X is
positive.

SIN(X)

Returns the sine of X in radians.
calculated in single
COS(X)=SIN(X+3.14159/2).

PRINT SIN(1.5)
.997495

Ok

SIN(X) is
precision.

ANSI BASIC FUNCTIONS Page 3-18

Format:

Action:

Example:

Format:

Action:

Example:

SPACES(X)

Returns a string of spaces of length X. The
expression X is rounded to an integer and must
be in the range 0 to 255.

10 FOR I = 1 TO 5
20 XS = SPACES(I)
30' PRINT X$;I
40 NEXT I
RUN

1

Ok

2
3

4
5

Also see the SPC function.

SPC (I)

Prints I blanks on the terminal. SPC may only
be used with PRINT and LPRINT statements. I
must be in the range 0 to 255.

PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

Also see the SPACES function.,

ANSI BASIC FUNCTIONS Page 3-19

3.37 ~QB

Format:

Action:

Example:

3.38 ~lE2

Format:

Action:

Example:

SOR(X)

Returns the square root of X. X must be)=0.

10 FOR X
20 PRINT
30 NEXT
RUN

10
15
20
25

Ok

STRS(X)

= 10 TO 25 STEP 5
X, SQR(X)

3.16228
3.87298
4.47214
5

Returns a string representation of the value of
X.

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STRS(N» GOSUB 30,100,200,300,400,500

~lso see the VAL function.

ANSI BASIC FUNCTIONS Page 3-20

Formats:

Action:

Example:

3.40 l.ali

Format:

Action:

Example:

STRING$(I,J)

STRING$(I,X$)

Returns a string of length I whose characters
~ll have ASCII code J or the first character of
X S.

10 X$ = STRINGS(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------­
Ok

TAB(I)

Spaces to position I on the terminal. If the
current print position is already beyond space
I, TAB has no effect. Space 0 is the leftmost
position, and the rightmost position is the
width minus one. I must be in the range 0 to
255. TAB may only be used in PRINT and LPRINT
statements.

10 PRINT "NAME" TAB(25) "AMOUNT"
20 READ AS,BS
30 PRINT A$ TAB(25) BS
40 DATA "G. T. JONES" ,"$25.00"
RUN
NAME AMOUNT

G. T. JONES
Ok

$25.00

PRINT

ANSI BASIC FUNCTIONS Page 3-21

3.41 IAli

Forma t:

Action:

Example:

3.42 Y~.E

Format :

Action:

Example:

TAN(X)

Returns the tangent of X in radians. TAN (X) is
calculated in single precision. If TAN
overflows, the "Overflow" error message is
displayed, machine infinity with the appropriate
sign is supplied as the result, and execution
continues.

10 Y = Q*TAN(X)/2

USR[<digit>1 (X)

Calls the user's assembly language subroutine
with the argument X. <digit> is in the range of
0-9 and corresponds to the digit supplied with
the DEF USR statement for that routine.
If <digit> is omitted, USRO is assumed.
See Appendix C.

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

•

ANSI BASIC.FUNCTIONS Page 3-22

3.43 y.a1

Format:

Action:

Example:

VAL(XS)

Returns the numerical value of string XS. If
the first character of XS is not +, -, ~, or a
digit, VAL(XS)=O.

10 READ NAMES,CITYS,STATES,ZIPS
20 IF VAL(ZIPS)<90000 OR VAL(ZIPS»96699 THEN
PRINT NAMES TAB(25) "OUT OF STATE"
30 IF VAL(ZIPS»=90801 AND VAL(ZIPS)<=90815 THEN
PRINT NAMES TAB(25) "LONG BEACH"

See the STRS function for numeric to string
conversion.

ANSI BASIC FUNCTIONS Page 3-23

Format 1:

Format 2:

Version:

Action:

NOTE:

Example:

VARPTR«variable name»

VARPTR(#<file number»

Disk

Format 1: Returns the address of the first byte
of data identified with <variable name>. A
value must be assigned to <variable name> prior
to execution of VARPTR. Otherwise an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array), and
the address returned will be an integer in the
range 32767 to -32768. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(O» is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2: Returns the starting address of the
disk IIO buffer assigned to <file number>.

100 X=USR(VARPTR(Y»

APPENDIX A

New Features in ANSI BASIC, Release 5.3

The execution of BASIC programs written under MOSTEK BASIC
release 5.1 or earlier, and Microsoft BASIC, release 4.51 or
earlier may be affected by some of the new features in
ANSI BASIC. Before attempting to run such programs, check
for the following:

1. New reserved words: CAll, CHAIN, COMMON, WHILE,
WEND, WRITE, OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values
results in rounding, as opposed to truncation.
This affects not only assignment statements (e.g.,
I%=2.5 results in I%=3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the 5th position, A(1.5) yei1ds A(2), and X=11.5
MOD 4 yields 0 for X).

3. The body of a FOR ••• NEXT loop is skipped if the
initial value of the loop times the sign of the
step exceeds the final value times the sign of the
step. See Section 2.21.

4. Division by zero and overflow no longer produce
fatal errors. See Section 1.8.1.2.

5. The RND function has been changed so that RND with
no argument is the same as RND with a positive
argument. The RND function generates the same
sequence of random numbers with each RUN, unless
RANDOMIZE is used. See Sections 2.52 and 3.32.

6. The rules for PRINTing single precision and double
precision numbers have been changed. See Section
2.48.

7. If the argument to ON ••• GOTO is out of range, an
error message results and execution halts.

8. String space is
first argument
will be ignored.

allocated dynamically, and the
in a two-argument CLEAR statement

See Section 2.4.

Page A-2

9. Responding to INPUT with too many or too few items,
or with the wrong type of value (numeric instead of
string, etc.), or with a carriage return causes the
message "?Redo from start" to be printed. No
assignment of input values is made until an
acceptable response is given, except when only one
variable is given in the INPUT list. See Section
2.26.

10. There are two new field formatting characters for
use with PRINT USING. An ampersand is used for
variable length string fields, and an underscore
signifies a literal character in a format string.

11. If the expression supplied with the WIDTH statement
is 255, BASIC uses an "infinite" line width, that
is, it does not insert carriage returns. WIDTH
LPRINT may be used to set the line width at the
line printer. See Section 2.66.

12. The at-sign and underscore are no longer used as
editing characters.

13. Variable names are significant up to 40 characters
and can contain embedded reserved words. However,
reserved words must now be delimited by spaces. To
maintain compatibility wltn earlier versions of
BASIC, spaces will be automatically inserted
between adjoining reserved words and variable
names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line
length is close to 255 characters.

14. BASIC programs may be saved in a protected binary
format. See SAVE, Section 2.60.

APPENDIX B

ANSI BASIC Disk 1/0

Disk 1/0 procedures for the beginning ANSI BASIC user are
examined in this appendix. If you are new to ANSI BASIC or
if you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

Wherever a filename is required in a
statement, use a name that conforms
system's requirements for filenames.

disk command or
to your operating

Here is a review of the commands and statements used in
program file manipulation.

SAVE "filename"[,A]

LOAD "filename"(,R]

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before LOADing. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files.

RUN "filename"[,R]

MERGE "filename"

KILL "filename"

Page B-2

RUN "filename" loads the program- from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open.

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and BASIC returns
to command level.

Deletes the file from the disk.
"filename" may be a program file, or a
sequential or random access data file.

NAME To change the name of a disk file,
execute the NAME statement, NAME
"oldfile" AS "newfile". NAME may be
used with program files, random files,
or sequential files.

If you wish to save a program in an encoded
use the "Protect" option with the SAVE
'example:

SAVE "MYPROG",P

binary format,
command. For

A program saved this way cannot be listed or edited.

l.v~~~ A~~ ~X2 ~~2~ 2i ~1§~ ~A~A iile~ ~A1 mA~ ~~ £~~A~~g
An~ A££~§§~g ~y An ali~I ~A~I~ E£Q~~Am: §~Y~n!i~l iil~§ ~ng
~ngQm A£~~§§ f11~§~

Page B-3

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored, one item after another
(sequentially), in the order it is sent and is read back in
the same way.

The statements and functions that are used with sequential
files are:

OPEN

CLOSE

PRINT#
PRINT# USING

EOF LaC

INPUT# W RI TE #
LINE INPUT#

The following program steps are required to create a
sequential file and access the data in the file:

1. OPEN the file in "0" mode.

2. Write data to the file
using the PRINT# statement.
(WRITE# may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reOPEN it in "I" mode.

4. Use the INPUT# statement to
read data from the sequential
file into the program.

OPEN "O",#1,"DATA"

PRINT#1,AS;BS;CS

CLOSE #1
OPEN "I",#1,"DATA"

INPUT#1,XS,YS,Z$

Page B-4

Program B-1 is a short program that creates a sequential
file, "DATA", from information you input at the terminal.

10 OPEN "O",#1,"DATA"
20 INPUT "N.AME";NS
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT";DS
40 INPUT "DATE HIRED";HS
50 PRINT#1,N$;",";DS;",";HS
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? ~UDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78
NAME? SUPER MANN
DEPARTMENT? MAINTEN~NCE
DATE HIRED? 08/16/78
NAME? etc.

PROGRAM B-1 - CREATE A SEQUENTIAL DATA FIL~

Page B-5

Now look at Program B-2. It accesses the file "DATA" that
was created in Program B-1 and displays the name of everyone
hi red in 1 9 78 •

10 OPEN "I",#1,"DATA"
20 INPUl#1,N$,D$,H$
30 IF RIGHTS(H$,2)="78" THEN PRINT NS
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

Program B-2 reads, sequentially, every item in the file.
When all the data has been read, line 20 causes an "Input
past end" error. To avoid getting this error, insert line
15 which uses the EOF function to test for end-of-file:

15 IF ECF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement.
For example, the statement

PRINT#1,USING"####.##,";A,B,C,D

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the disk file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was OPENed. A sector is a 124-byte block
of data.

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "a" mode and start writing data. As soon
as you open a sequential file in "0" mode, you destroy its
current contents. The following procedure can be used to
add data to an existing file called "NAMES".

Page B-6

1. OPEN "NAMES" in "I" mode.
2. OPEN a second file called "COPY" in "0" mode.
3. Read in the data in "NAMES" and write it to "COPY".
4. CLOSE "NAMES" .and KILL it.
5. Write the new information to "COPY".
6. Rename "COPY" as "NAMES" and CLOSE.
7. Now there is a file on disk called "NAMES" that

includes all the previous data plus the new data
you just added.

Program B-3 illustrates this technique. It can be used to
create or add onto a file called NAMES. This program also
illustrates the use of LINE INPUT# to read strings with
embedded commas from the disk file. Remember, LINE INPUT#
will read in characters from the disk until it sees a
carriage return (it does not stop at quotes or commas) or
until it has read 255 characters.

Page B-7

10 ON ERROR GOTO 2000
20 OPEN "I",#1,"NAMES"
30 REM IF FILE EXISTS, WRITE IT TO "COPY"
40 OPEN "0",#2,"COPY"
50 IF EOF(1) THEN 90
60 LINE INPUT#1,AS
70 PRINT#2,AS
80 GOTO 50
90 CLOSE #1
100 KILL "NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT "ADDRESS? ";AS
150 LINE INPUT "BIRTHDAY? ";B$
160 PRINT#2,NS
170 PRINT#2,A$
180 PRINT#2,BS
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO "NAMES"
210 NAME "COPY" AS "NAMES"
2000 IF ERR=53 AND ERL=20 THEN OPEN "0",#2,"COPY":RESUME 120
2010 ON ERROR GOTO 0

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

The error trapping routine in line 2000 traps a "File
not exist" error in line 20. If this happens,
statements that copy the file are skipped, and "COPY"
created as if it were a new file.

does
the
is

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are used with random files
are:

OPEN

PUT

MKIS
MKSS
MKD$

B.3.2.1

FIELD

CLOSE

CVI
CVS
CVD

Page B-8

LSET/RSET GET

LOC

The following program steps are required to create a random
file.

1.

2.

3.

4.

OPEN the file for random
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Use LSET to move the data
into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
"make" functions: MKIS to
make an integer value into a
st~ing, MKS$ for a single
precision value, and MKD$ for
a double precision value.

Write the data from
the buffer to the disk
using the PUT statement.

OPEN "R",#1,"FILE",32

FIELD #1 20 AS NS,
4 AS AS, 8 AS P$

LSET NS=X$
LSET AS=MKSS(AMT)
LSET PS=TEL$

PUT #1,CODE%

Look at P~ogram B-4. It takes information that is input at
the terminal and writes it to a random file. Each time the
PUT statement is executed, a record is written to the file.
The two-digit code that is input in line 30 becomes the
record number.

Do not use
variable in
statement.
pointer for
point into
instead of
buffer.

10 OPEN "B"#1,"FILE"

NOTE

a FIELDed string
an INPUT or LET

This causes the
tha t variable to
string space

the random file

20 FIELD #1,20 AS NS, 4 AS AS, 8 AS PS '
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT "NAME";XS
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TELS:PBINT
70 LSET NS=X$
80 LSET AS=MKS$(AMT)
90 LS£T P$=TELS
100 PUT #1,C8DE%
110 GOTO 30

PROGRAM B-4 - CREATE A RANDOM FILE

Page B-9

The following program steps are required to access a random
file:

1. OPEN the file in "B" mode.

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

NOTE:
In a program that performs both
input and output on the same random
file, you can often use just one
OPEN statement and one FIELD
statement.

OPEN "P",#1,"FILE",32

FIELD #1 20 AS N$,
4 AS AS, 8 AS PS

3. Use the GET statement to move
the desired record into the
random buffer.

GET #1,CODE%

Page B-10

4. The data in the buffer may
now be acessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD

PRINT NS
PRINT CVS(AS)

for double precision values.

Program B-5 accesses the random file "FILE" that was created
in Program 8-4. By inputting the three-digit code at the
terminal, the information associated with that code is read
from the file and displayed.

10 OPEN "R",#1,"FILE"
20 FIELD #1, 20 AS NS, 4 AS AS, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT NS
60 PRINT USING "SS###.##";CVS(AS)
70 PRINT PS:PRINT
80 GOTO 30

I PROGRAM B-5 - ACCESS A RANDOM FILE

The LOC function, with random files, returns the
record number." The current record number
last record number that was used in a GET or PUT
For example, the statement

IF LOC(1»SO THEN END

"current
is the

statement.

ends program execution if the current record number in
file#1 is higher than 50.

Program B-6 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHRS(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the apprbpriate subroutine.

Page B-11

PROGRAM B-6 - INVENTORY

120 OPEN"R",#1,"INVEN.DAT",39
125 FIELD#1,1 AS FS,30 AS DS, 2 AS QS,2 AS RS,4 AS PS
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION<1)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION NUMBER":GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840

270 IF ASC(FS)<>255 THEN INPUT"OVERWRITE";AS:IF A$_<>"Y" THEN RETURN
280 LSET FS=CHRS(O)
290 INPUT "DESCRIPTION";DESCS
300 LSET DS=DESCS
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET QS=MKIS(Q%)
330 INPUT "REORDER LEVEL";R%
340 LS£T RS=MKIS(R%)
350 INPUT "UNIT PRICE";P
360 LSET PS=MKSS(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(FS)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###"iPART%
430 PRINT DS
440 PRINT USING "QUANTITY ON HAND #####";CVI(QS)
450 PRINT USING "REORDER LEVEL #####"iCVI(RS)
460 PRINT USING "UNIT PRICE SS##.##"iCVS(PS)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(FS)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT DS:INPUT "QUANTITY TO ADD "iA%
520 Q%=CVI(QS)+A%
530 LS£T QS=MKIS(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(FS)=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT DS
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(QS)
620 IF (Q%-S%)<O THEN PRINT "ONLY"iQ%;" IN STOCK":GOTO 600
630 Q%=<;%-S%
640 IF Q%=<CVI(RS) THEN PRINT "QUANTITY NOW"iQ%i" REORDER LEVEL"iCVI(RS)
650 LSET QS=MKIS(Q%)
660 PUT#1,PART%

670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR 1=1 Te 100
710 GET#1,I

Page B-12

720 IF CVI(QS)<"CVICRS) THEN PRINT DS;" QUANTITY";CVI(Q$) TAB(50) "REORDER LEV
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER"JPART%
850 IF(PART%<1)OR(PART%>100) THEN PRINT "BAD PART NUMBER":GOTO 840 ELSE GET#1
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";BS:IF BS<>"Y" THEN RETURN
920 LSET FS=CHRS(255)
930 FOR 1=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

APPENDIX C

Assembly Language Subroutines

All versions of ANSI BASIC have provisions for interfacing
with assembly language subroutines. The USB function allows
assembly language subroutines to be called in the same way
BASIC's intrinsic functions are called.

Memory space must be set aside for an assembly language
subroutine before it can be loaded. During initialization,
enter the highest memory location minus the amount of memory
needed for the assembly language subroutine(s). BASIC uses
all memory available from its starting location up, so only
the topmost locations in memory can be set aside for user
subroutines.

When an assembly language subroutine is called, the stack
pOinter is set up for 8 levels (16 bytes) of stack storage.
If more stack space is needed, BASIC's stack can be saved
and a new stack set up for use by the assembly language
subroutine. BASIC's stack must be restored, however, before
returning from the subroutine.

The assembly language subroutine may be loaded into memory
by means of the system monitor. or the BASIC POKE statement,
Through FLP-80DOS use ASM to assemble the routine, and LINK
to create the binary file, then use the GET command to load
the routine at a hgiven address.

Page C-2

In MOSTEK ANSI BASIC, the format of the USR function is

USR[<digit>](argument)

where DIGIT> is from 0 to 9 and the argument is any numeric
or string expression. <digit> specifies which USB r6utine
is being called, and corresponds with the digit supplied in
the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed. The address given in the DEF USR
statement determines the starting address of the subroutine.

When the USR function call is made, register A contains a
value that specifies the type of argument that was given.
The value in A may be one of the following:

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [H,L] register pair points
to the Floating Point Accumulator (FAC) where the argument
is stored.

If the argument is an integer:

FAC-3 contains the lower 8 bits of the argUment and
FAC-2 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-3 contains the lowest 8 bits of mantissa and

Page C-3

FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is
the sign of the number (O=positive, 1=negative).
FAC is the exponent minus 128, and the binary
point is to the left of the most significant
bit of the mantissa.

If the argument is a double precision floating point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the
to 3
string
255) •
8 bits

argument is a string, the [D,E] register pair
bytes called the "string descriptor." Byte 0
descriptor contains the length of the string
Bytes 1 and 2, respectively, are the lower and

of the string starting address in string space.

points
of the
(0 to
upper

CAUTION: If the argument is a string literal in the
program, the string descriptor will point to program text.
Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string
literal in the program. Example:

AS = "ANSI BASIC"+""

This will copy the string literal into string space and will
prevent alteration of program text during a subroutine call.

Usually, the value returned by a USR function is the same
type (integer, string, single precision or double precision)
as the argument that was passed to it. However, calling the
MAKINT routine returns the integer in [H,L] as the value of
the function, forcing the value returned by the function to
be integer. To execute MAKINT, use the following sequence
to return from the subroutine:

MAKINT EQU
PUSH
L1)
EX
RET

2DB8H
HL
HL,MAKINT
(SP),HL

iMAKINT address in BASIC 5.3
;save value to be returned
iget address of MAKINT routine
isave return on stack and
;return

Also, the argument of the function, regardless of its type,
may be forced to an integer by calling the FRCINT routine to
get the integer value of the argument in [H,L]. Execute the
following routine:

FRCINT EQU
LD
PUSH
LD
JP

2D56H
HL,SUB
HL
HL,FRCINT
(HL)

SUB: • • • • •

iFRCINT address in BASIC 5.3
;get address of subroutine
iplace on stack
iget address of FRCINT

Page C-4

ANSI BASIC user function calls may also be made with the CALL
statement. The calling sequence used is the same as that in
Microsoft's FORTRAN, COBOL and BASIC compilers.

A CALL statement with no arguments generates a simple "CALL"
instruction. The corresponding subroutine should return via
a simple "RET." (CALL and RET are zao instructions, see a
Z80 reference manual for details.)

A subroutine CALL with arguments results in a somewhat more
complex calling sequence. For each argument in the CALL
argument list, a parameter is passed to the subroutine.

That parameter is the address of the low
argument. Therefore, parameters always occupy
each, regardless of type.

byte of the
two bytes

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present.).

2. If the number of parameters is greater than 3, they
are passed as follows:
1. Parameter 1 in HL.

2. Parameter 2 in DE.

3. Parameters 3 through n in· a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subroutine must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. There are no checks for
the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system
subroutine which will perform this transfer. This argument
transfer routine is named SAT (located in the FORTRAN
library, FORLIB.REL), and is called with HL pointing to the
local data area, BC pointing to the third parameter, and A
containing the number of arguments to transfer (i.e., the
total number of arguments minus 2). The subroutine is

Page C-5

responsible for saving the first two parameters before
calling AT. For example, if a subroutine expects 5
parameters, it should look like:

SUBR:

P 1 :
P2:
P3:

LD
EX
LD
LD
lD
CALL

(P1),HL
DE,HL
(P2),HL
A,3
HL,P3
AT

;SAVE PARAMETER 1

;SAVE PARAMETER 2
;NO. OF PARAMETERS LEFT
;POINTER TO LOCAL AREA
;TRANSFER THE OTHER 3 PARAMETERS

[Body of subroutine]

RET
DEFS
DEFS
DEFS

2
2
6

;RETURN TO CALLER
iSPACE FOR PARAMETER 1
iSPACE FOR PARAMETER 2
iSPACE FOR PARAMETERS 3-5

A listing of the argument transfer routine AT follows.

00100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800
01900
02000
02100
02200
02300

;
; [B,C]
; [H,L]
i [A 1

AT:

AT1:

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE # OF PARAMS TO XFER (TOTAL-2)

ENTRY
EX
LD
LD
LD
INC
LD
INC
EX
LD
INC
LD
INC
LD
DEC
JR
RET

AT
DE,HL
H,B
L,C
C,(HL)
HL
B,(HL)
HL
DE,HL
(HL) , C
HL
(HL),B
HL
DE,HL
A
NZ,AT1

iSAVE [H,L] IN [D,El

i [H,L] = PTR TO PARAMS

;[B,C] = PARAM ADB
i[H,L] POINTS TO LOCAL STORAGE

;STORE PARAH IN LOCAL AREA
;SINCE GOING BACK TO AT1
;TRANSFERRED ALL PARAMS?
;NO, COpy MORE
;YES, RETURN

Page C-6

When accessing parameters in a subroutine, don't forget that
they are ~21n~~.~ to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in n~m~~~, ~Y2~,
and 1~ng1h with the parameters
expected by the subroutine.
This applies to BASIC
subroutines, as well as those
written in assembly language.

Assembly language subroutines can be written to handle
interrupts. All interrupt handling routines should save the
stack, register A-L and the PSW. Interrupts should always
be re-enabled before returning from the su~routine., since
an interrupt automatically disables all further interrupts
once it is received. The user should be aware of which
interrupt vectors are free in the particular version of
BASIC that has been supplied.

APPENDIX D

Converting Programs to ANSI BASIC

If you have programs written in a BASIC other than ANSI BASIC, some
minor adjustments may be necessary before running them with ANSI BASIC.
Here are some specific things to look for when converting BASIC
programs.

Delete all statements that are used to declare the length of strings.
A statement such as DIM AS(I,J), which dimensions a string array for J
elements of length I, should be converted to the ANSI BASIC statement
DIM AS(J).

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for
ANSI BASIC string concatenation.

In ANSI BASIC, the MIDS, RIGHTS, and LEFTS functions are used to take
substrings of strings. Forms such as AS(I) to access the Ith
character in AS, or AS(I,J) to take a substring of AS from position I
to position J, must be changed as follows:

Q1h~£ ~AS1~

XS=AS(I)
XS=AS(I,J)

XS=MIDS(AS,I,1)
XS=MIDS(AS,I,J-I+1)

If the substring reference is on the left side of an assignment and XS
is used to replace characters in AS, convert as follows:

Q~h~£ Ra~l~

AS(I)=XS
AS(I,J)=XS

MIDS(AS,1,1)=XS
MIDS(AS,I,J-I+1)=X$

Page D-2

Some BASICs allow statements of the form:

10 LET B=C=O

to set Band C equal to zero. ANSI BASIC would interpret the second
equal sign as a logical operator and set B equal to -1 if C equaled o.

Instead, convert this statement to two assignment statements:

10 C=O:B=O

Some BASICs use a backslash (\) to separate multiple statements on a
line. With ANSI BASIC, be sure all statements on a line are separated
by a colon (:).

Programs using the MAT functions available in some BASICs must be
rewritten using FOR ••• NEXT loops to execute properly.

BS 9

CN 17

DD 10

FC 5

APPENDIX E

Summary of Error Codes and Error Messages

Subscript out of
An array element
subscr ipt that
the array, or
subscripts.

Can't continue

range
is referenced either with
is outside the dimensions
with the wrong number

a
of
of

An attempt is made to continue a program
that:
1. has halted due to an error,
2. has been modified during a break in

execution, or
3. does not exist.

Redimensioned array
Two DIM statements are given for the same
array, or a DIM statement is given for an
array aft~r the default dimension of 10 has
been established for that array.

Illegal function call
A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:
1 • a negative or unreasonably large

subscript
2. a negative or zero argument with LOG
3. a nega ti ve argument to SQR
4. a nega ti ve mantissa with a non-integer

exponent

5. a call to a USR function for which the
starting address has not yet been given

6. an improper argument to MIDS, LEFTS,
RIGHTS, INP, OUT, WAIT, PEEK, POKE, TAB,
SPC, STRING$, SPACES, INSTR, or
ON ••• GOTO.

ID 12

NF 1

aD 4

OM 7

as 14

OV 6

SN 2

ST 16

TM 13

Illegal direct

A statement that is illegal in direct mode is
entered as a direct mode command.

NEXT without FOR
A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

Out of data
A READ statement is executed when there are
no DATA statements with unread data remaining
in the program.

Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated.

Out of string space
String variables exceed the allocated amount
of string space. Use CLEAR to allocate more
string space, or decrease the size and number
of strings.

Overflow
The result of a calculation is too large to
be represented in ANSI BASIC's number format.
If underflow occurs, the result is zero and
execution continues without an error.

Syntax error
A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).

String formula too complex
A string expression is
complex. The expression
into smaller expressions.

Type mismatch

too long or too
should be broken

A string variable name is assigned a numeric
. value or vice versa; a function that expects

a numeric argument is given a string argument
or vice versa.

Page [-2

RG

UF

UL

/0

3

18

8

11

Return without GOSUB
A RETURN statement is encountered for
there is no previous, unmatched
statement.

Undefined user function

which
GOSUB

A USR function is called before the function
definition (DEF statement) is given.

Undefined line
A line reference in
IF ••• THEN ••• ELSE or
nonexistent line.

Division by zero

a GOTO,
DELETE is

GOSUB,
to a

A division by zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the result of the involution, and
execution continues.

19 No RESUME
An error trapping routine is entered but
contains no RESUME statement.

20 RESUME without error

21

A RESUME statement is encountered before an
error trapping routine is entered.

Unprintable error
An error message is not available
error condition which exists.
usually caused by an ERROR with an
error code.

for the
This is

undefined

22 Missing operand
An expression contains an operator with no
operand following it.

23 Line buffer overflow
An attempt is made to input a line that has
too many characters.

26 FOR without NEXT
A FOR was encountered without a matching
NEXT.

29 WHILE without WEND
A WHILE statement does not have a matching
WEND.

Page E-3

30 WEND without WHILE
A WEND was encountered without a matching
WHILE.

50 Field overflow
A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error
An internal malfunction has occurred in Disk
ANSI BASIC. Report to Mostek the conditions
under which the message appeared.

52 Bad file number
A statement or command references a file with
a file number that is not OPEN or is out of
the range of file numbers specified at
initialization.

53 File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

54 Bad file mode

55

57

An attempt is made to use PUT, GET, or oLaF
with a sequential file, to LOAD a random file
or to execute an OPEN with a file mode other
than I, 0, or R.

File already open
A sequential output mode
file that is already
given for a file that is

OPEN is issued for a
open; or a KILL is
open.

Disk I/O error
An I/O error occurred on a
operation. It is a fatal error,
operating system cannot recover
error.

disk
i.e.,
from

I/O
the
the

58 File already ~xists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk full
All disk storage space is in use.

Page E-U

62 Input past end

63

An INPUT statement is executed after all the
data in the file has been INPUT, or for a
null (empty) file. To avoid this error, use
the EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record
is either greater than the maximum
(32767) or equal to zero.

number
allowed

64 Bad file name

66

An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename
with too many characters).

Direct statement in file
A direct statement is
LOADing an ASCII-format
terminated.

encountered while
file. The LOAD is

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all 255 directory
entries are full.

Page E-5

APPENDIX F

Mathematical Functions

Functions that are not intrinsic to ANSI BASIC may be calculated as
follows.

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE CCTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

SEC(X)=1/COS(X)

CSC(X)=1/SIN(X)

COT(X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X*X+1»

ARCCOS(X)=-ATN (X/SQR(-X*X+1»+1.5708

ARCSEC(X)=ATN(X/SQR(X*X-1»
+SGN(SGN(X)-1)*1.5708

ARCCSC(X)=ATN(X/SQR(X*X-1»
+(SGN(X)-1)*1.5708

ARCCOT(X)=ATN(X)+1.5708

SINH(X)=(EXP(X)-EXP(-X)/2

COSH(X)=(EXP(X)+EXP(-X»/2

TANH(X)=EXP(-X)/EXP(X)+EXP(-X»*2+1

SECH(X)=2/(EXP(X)+EXP(-X»

CSCH(X)=2/(EXP(X)-EXP(-X»

COTH(X)=EXP(-X)/(EXP(X)-EXP(-X»*2+1

ARCSINH(X)=LOG(X+SQR(X*X+1»

ARCCOSH(X)=LOG(X+SQR(X*X-1)

ARCTANH(X)=LOG«1+X)/(1-X»/2

ARCSECH(X)=LOG«SQR(-X*X+1)+1)/X)

ARCCSCH(X)=LOG«SGN(X)*SQR(X*X+1)+1)/X

ARCCOTH(X)=LOG«X+1)/(X-1»/2

APPENDIX G

ASCII Character Codes

ASCII ASCII ASCII
Code Character Code Character Code Character

000 NUL 043 + 086 V
001 SOH 044 , 087 W
002 STX 045 088 X
003 ETX 046 • 089 Y
004 EDT 047 / 090 Z
005 ENQ 048 0 091 [

006 ACK 049 1 092 \
007 BEL 050 2 093]

008 BS 051 3 094
,..

009 HT 052 4 095 -
010 LF 053 5 096 •
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 101 e
016 DLE 059 . 102 f ,
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j

021 NAK 064 6) 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 0

026 SUB 069 E 112 p

027 ESCAPE 070 F 113 q

028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 II 077 M 120 x
035 # 078 N 121 y
036 S 079 0 122 z
037 % 080 P 123 {

038 & 081 Q 124 ,
039 082 R 125 }

040 (083 S 126 -
041) 084 T 127 DEL
042 * 085 U

ASCII codes are in decimal.
l

LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

INDEX

ABS 3-2
Addition • 1-9
ALL 2-4, 2-8
Arctangent • 3-3
Array variables 1-7, 2-8, 2-16
Array s • • 1-7, 2-22
ASC 3-2
ASCII cedes • 3-2, 3-4, G-1
ASCII forma t 2-48, 2-77
Assembly language subroutines 2-3, 2-14, 2-47, 3-21,

3-23, C-1
ATN • • • • • 3-3
AUTO 1-2, 2-2

Boolean operators • 1-12

CALL • 2-3, C-4
Carriage return 1-3, 2-35, 2-40 to 2-41,

2-84 to 2-86
CDBL • 3-3
CHAIN • • 2 -4, 2-8
Character set 1-3
CHRS 3-4
CINT • • 3-4
CLEAR 2-6, A-1
CLOSE • • • • 2-7, B-3, B-8
Command level • 1-1
COMMON • 2-4, 2-8
Concatenation 1-14
Constants • 1-4
CONT • • 2-9, 2-40
Control characters • 1-4
Control-A 2-20
COS 3-5
CSNG • • 3-5
CVD • • 3-6, B-8
CVI 3-6, B-8
CVS • • • 3-6, B-8

DATA • 2-10, 2-74

DEF FN • • • • 2-11
DEF USR 2-14, 3-21
DEFDBL • • • 1-7, 2-13
DEFINT 1-7, 2-13
DEFSNG • • • • 1-7, 2-13
DEFSTR 1-7, 2-13
DEINT • • C-1
DELETE 1-2, 2-4, 2-15
DIM • 2-16
Direct mode • • 1 - 1 , 2-33, 2-53
Division • 1-10
Double precision • • • 1-3, 2-15, 2-59, 3-3, A-1
DSKF 3-6

EDIT • • • 1-2, 2-17
Edi t mode • • • 1-4, 2-17
END • • 2-7, 2-10, 2-21, 2-31
EOF 3-7, B-3, B-5
ERASE 2-22
ERL • • 2-23
ERR 2-23
ERROR • • • 2-24
Error codes • 1-15, 2-24 to 2-25, E-1
Error messages • • 1-15, E-1
Error trapping • 2-24 to 2-25, 2-53, 2-75,

B-7
Escape • 1-3, 2-18
EXP 3-7
Exponentiation 1-10 to 1-11, 3-7
Expressions • 1-9

FIELD 2-26, B-8
FILES • 2-27
FIX • • • • • 3-7
FOR ••• NEXT 2-29, A-1
FRCINT • • • • • C-1, C-4, D-4
FRE • • 3-8
Functions • • • 1-14, 2-13, 3-1, F-1

GET • 2-28, 2-31, A-3, B- 8,
GI VABF C-1 to C-2
GOSUB • • 2-31
GOTO 2-32 to 2-33

HEXS • • • • 3-8
Hexadecimal • 1-5, 3-8

IF ••• GOTO 2-33
IF ••• THEN • • 2-23, 2-33
IF ••• THEN ••• ELSE 2-33
Indirect mode • • • • • • 1-1
INP • 3-9
INPUT • • 2-9, 2-26, 2-35, A-2, B-9

INPUTS • • 3-9
INPUT# • • 2-37, B-3
INSTR • • • • • • • 3-10
INT • 3-7, 3-10
Integer • • 3-4, 3-7, 3-10
Integer division • 1-10
Interrupts C-6

KILL • • • • • 2-38, B-2

LEFTS • • • 3 -11
LEN 3-11
LET • • • 2-26, 2-39, B-9
Line feed • 1-2, 2- 35, 2-40 to 2-41,

2-85 To 2-86
LINE INPUT • 2-40
LINE INPU'I# • • • 2-41, B-3
Line numbers 1-1 to 1-2, 2-2, 2-72
Line printer • • • • • 2-44, 2-46, 2-84, 3-13,

A-2
Lines • • • • 1-1
LIST • • • • • • • 1-2, 2-42
LLIST • 2-44
LOAD • • • • • • • 2-45, 2-77, B-1
LaC • • • • 3-12, B-3, B-5, B-10
LOF • • • • • • • 3-12
LOG 3-13
Logical operators • 1-12
Loops • • 2-28, 2-82
LPOS • • • • • 2-84, 3-13
LPRINT 2- 46, 2-83
LPRINT USING • 2-46
LSET • • 2-47, B-8

MAKINT • • • • C-1, C-3
MERGE • • 2-4, 2-48, B-2
MIDS • • • 2-49, 3-13, D-1
MKDS • • • • 3-14, B-8
MKIS • • • • • • • • 3-14, B-8
MKSS • • 3-14, B-8
MOD operator • • • • • • 1-10
Modulus arithmetic • 1-10
Multiplication • • 1-10

NAME • • • • • • • • 2-50
Negation • 1-10

NEW • 2-7, 2 -51
NULL · · 2-52
Numeric constants 1-4
Numer ic variables 1-7

aCTS 3-14
Octal • • • 1-5, 3-14
ON ERROR GOTO • · 2-53
ON ••• GOSUB • 2-54
ON ••• GOTO 2-54, A-1
OPEN · 2-7, 2-27, 2-55, B-3,

B-8
Operators 1-9, 1-11 to 1-14
OPTION BASE 2-56
OUT · 2-57
Overflow • • 1 -11 , 3-7, 3 -21, p, -1
Overlay 2-4

Paper tape · 2-52
PEEK • 2-58, 3-15
POKE 2-58, 3-15
pas • • 2-84, 3-15
PRINT 2-59, 11.-1
PRINT USING • · 2-61, A-2
PRINT# · 2.65, B-3
PRINT# USING . 2.65, B-3, B-5
Protected files • · 2-77, A-2, B-2
PUT · 2-26, 2-67, B-8

Random files . 2-26, 2-30, 2-38, 2-47,
2-55, 2-67, 3-12, 3-14,
B-7

Random numbers • · 2-68, 3-16
RANDOMIZE 2-68, 3-16, A-1
READ • • • • 2-69, 2-74
Relational operators 1-11
REM · 2-71
RENUM 2-4, 2 -23, 2-72
RESET · 2-73
RESTORE · 2-74
RESUME 2-75
RETURN • • 2-31
RIGHTS · 3-16
RND • · 2-68, 3-16, A-1
RSET · • · 2-47, B-8
Rubout 1-3, 1-15, 2-18
RUN 2-76 to 2-77, B-2

SAVE · • 2-45, 2-76 to 2-77, B-1
Sequential files . 2-37 to 2-38, 2-41, 2-55,

2-65, 2-85, 3-6, 3-12, B-3

SGN
SIN
Single
SPACES
SPC
SQR
STOP
STRS

precision

.'

• •

String constants
String functions

String cperators
String space
String variables •
STRINGS
Subroutines
Subscripts
Subtraction
SWAP
SYSTEM

TAB
Tab
TAN
TROFF
TRON

USR
USRLOC

•

VAL
Variables
VARPTR

WAIT
WEND
WHILE
WIDTH
WIDTH LPRINT
WRITE
WRI TE #

•

•

•

3-17
3-17
1-5, 2-15, 2 -59 ~ 3-5, A-1
3-18
3-18
3-19
2-9, 2-21, 2-31, 2-78
3-19
1-4
3-6, 3-10 to 3 -11, 3-13 ,
3 -16, 3-19, 3-22
1-14
2-6, 3 -8, A-1, B-9
1-7, 2-13, 2-40 to 2-41
3-20
2-3, 2-31, 2-54, C-1
1-6, 2-16, 2-57
1-10
2-79
2-80

3-20
1-3 to 1-4
3-21
2-81
2-81

2-14, 3-21, C-1
C-2

3-22
1-6
3-23

2-82
2-83
2-83
2-84, A-2
2-84, A-2
2-85
2-86, B-3

MOSTEI{® zso ~F8Coveringthe full
spectrum of

3870 microcomputer
applications.

1215 W. Crosby Rd. • Carrollton, Texas 75006· 214/323-6000
In Europe. Contact: MOSTEK Brussels

150 Chaussee de la Hulpe. B1170. Belgium;
Telephone:. 660.69.24

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished byMostek in this publication is believed
to be accurate and reliable. However. no responsibility is assumed by Mostek for its use: nor for any infringements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights of Mostek.

PRINTED IN USA March 1980

Publication No. MK79708
STD No. 8023-79708-0505

Copyright 1980 by Mostek Corporation
All rights Reserved

