MOSTEK.

Z80 MICROCOMPUTER SOFTWARE

Operations Manual

- MITE-80
MULTIPLE INDEPENDENT
TASK EXECUTIVE

MOSTEK MITE-80 OPERATION MANUAL

Publication No. MK 79726

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER
1 GENERAL DESCRIPTION
1.1 INTRODUCTION 1-1
1.1.1 FEATURES 1-1
1.1.2 SOFTWARE CONFIGURATION 1-1
1.2 REFERENCE DOCUMENTS 1-2
1.3 DEFINITION OF SYMBOLS USED IN THIS MANUAL 1-2
1.4 PRODUCT OVERVIEW 1-2
1.4.1 MITE-80 1-3
1.4.2 MITE-80 DEBUG 1-3
1.4.3 MITE-80 MACROS 1-3
1.4.4 MITE-80 EQUATES 1-3
1.4.5 MITE-80 TIMER HANDLER 1-3
1.4.6 MITE-80 MEMORY POOL MANAGER 1-3
1.4.7 MITE-80 SYSTEM LINKAGES 1-4
1.5 DOCUMENT FORMAT 1-4
2 FUNCTIONAL DESCRIPTION

2.1 OVERVIEW 2-1
2.2 TASK IDENTIFICATION 2-1
2.3 MESSAGE IDENTIFICATION 2-1
2.4 TASK COMMUNICATION 2-1
2.5 PRIORITY 2-2
2.6 TASK STATES 2-2
2.6.1 RUNNING TASK 2-2
2.6.2 READY TASK 2-2
2.6.3 WAITING TASK 2-2
2.7 MESSAGE QUEUING 2-3
2.7.1 SPECIFIED PRIORITY 2-3

2.7.2 TASK PRIORITY 2-3

11

TABLE OF CONTENTS

SECTION PARAGRAPH PAGE
NUMBER NUMBER TITLE NUMBER
2 2.7.3 LIFO QUEUING 2-3
2.7.4 FIFO QUEUING 2-3
2.8 THEORY OF OPERATION 2-4
2.8.1 OVERVIEW 2-4
2.8.2 CONTEXT SWITCHING 2-4
2.9 METHODS OF TASK COMMUNICATION 2-4
2.9.1 TRANSMITTING MBs 2-4
2.9.1.1 M8SN 2-4
2.9.1.2 M8RCV 2-4
2.9.1.3 MBRET 2-5
2.9.1.4 MBFWD 2-5
2.9.1.5 M8RES 2-5
2.9.1.6 M8CAN 2-5
2.9.1.7 M8FIND 2-5
2.9.2 EVENT POSTING 2-5
2.9.2.1 MBWINT 2-5
2.9.2.2 M8PINT 2-5
2.10 REGISTER USAGE 2-6
2.11 STACK USAGE 2-6

3 DATA STRUCTURES
3.1 INTRODUCTION 3-1
3.2 TASK CONTROL BLOCK (TCB) 3-1
3.2.1 STRUCTURE 3-1
3.2.1.1 STAT 3-2
3.2.1.2 PRIO 3-3
3.2.1.3 LINK 3-3

302-1-4 MPTR 3-3

SECTION
NUMBER

PARAGRAPH
NUMBER

3.2.1.5
3.2.1.6
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6

4.1
4.1.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2
4.5
4.5.1
4.5.2
4.6

TABLE OF CONTENTS

TITLE

SPTR
NAME
MESSAGE BLOCK (MB)
STRUCTURE
STAT
PRIO
LINK
RPTR
SPTR
DATA

SYSTEM SERVICES

INTRODUCTION
OVERVIEW

M8SN - SEND MESSAGE
FORMAT
DESCRIPTION

MBSNW - SEND MESSAGE & WAIT
FORMAT
DESCRIPTION

M8BRSN - RESEND MESSAGE
FORMAT
DESCRIPTION

MBRSNW - RESEND MESSAGE & WAIT
FORMAT
DESCRIPTION

M8RCV - RECEIVE MESSAGE

PAGE
NUMBER

3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-7

4-1
4-1

4-3
4-3

4-3
4-3
4-4
4-4
4-4
4-4

4-4
4-5

iv

SECTION
NUMBER

TABLE OF CONTENTS

PARAGRAPH

NUMBER TITLE

4.6.1 FORMAT

4.6.2 DESCRIPTION

4.7 MBRCVW - RECEIVE MESSAGE & WAIT
4.7.1 FORMAT

4.7.2 DESCRIPTION

4.8 MBFWD - FORWARD MESSAGE
4.8.1 FORMAT

4.8.2 DESCRIPTION

4.9 MBFWDW - FORWARD MESSAGE & WAIT
4.9.1 FORMAT

4.9.2 DESCRIPTION

4.10 MBRET - RETURN MESSAGE
4.10.1 FORMAT

4.10.2 DESCRIPTION

4.11 MBRETW - RETURN MESSAGE & WAIT
4.11.1 FORMAT

4.11.2 DESCRIPTION

4.12 MBCAN - CANCEL MESSAGE
4.12.1 FORMAT

4.12.2 DESCRIPTION

4.13 MBFIND - FIND RECEIVER
4.13.1 FORMAT

4.13.2 DESCRIPTION

4.14 MBWINT - WAIT FOR INTERRUPT
4.14.1 FORMAT

4.14.2 DESCRIPTION

4.15 MBPINT - POST INTERRUPT
4.15.1 FORMAT

4.15.2 DESCRIPTION

PAGE
NUMBER

4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-6
4-7
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-10

SECTION
NUMBER

PARAGRAPH
NUMBER

5.1

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.3

5.3.1
5.3.2
5.3.3
5.4

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.5

5.5.1
5.5.2

TABLE OF CONTENTS

TITLE

USING THE SYSTEM SERVICES
OVERVIEW
ESTABLISHING A TASK

DESCRIPTION

EXAMPLE A

EXAMPLE B

PROGRAMMING NOTES
CANCELLING A TASK

DESCRIPTION

EXAMPLE

PROGRAMMING NOTES
SENDING A MESSAGE

DESCRIPTION

EXAMPLE A

EXAMPLE B

EXAMPLE C

EXAMPLE D

PROGRAMMING NOTES
RECEIVING A MESSAGE

DESCRIPTION

EXAMPLE A

PAGE
NUMBER

5-1

5-1
5-1

5-2
5-3
5-3

5-3
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-6

5-6

vi

SECTION
NUMBER

PARAGRAPH
NUMBER

5.5.3
5.5.4
5.6

5.6.1
5.6.2
5.6.3
5.7

5.7.1
5.7.2
5.7.3
5.8

5.8.1
5.8.2
5.8.3

6.1

6.2

6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.1.1
6.4.1.2

TABLE OF CONTENTS

TITLE

EXAMPLE B
PROGRAMMING NOTES
FORWARDING A MESSAGE.

DESCRIPTION
EXAMPLE
PROGRAMMING NOTES
CANCELLING A MESSAGE
DESCRIPTION
EXAMPLE
PROGRAMMING NOTES
‘ISR PROCESSING
DESCRIPTION
EXAMPLE
PROGRAMMING NOTES

MITE-80 DEBUG
INTRODUCTION

SOFTWARE CONFIGURATION

COMMAND FORMATS
COMMAND IDENTIFIERS
COMMAND OPERANDS
COMMAND TERMINATORS

DETAILED COMMAND DESCRIPTIONS
B COMMAND, BREAKPOINT COMMAND

FORMATS
DESCRIPTION

PAGE
NUMBER
5-6
5-7
5-7
5-7
5-8
5-8
5-9
5-9
5-9
5-9
5-9
5-9
5-10
5-10

6-1
6-2

6-5

6-10
6-10
6-11
6-11
6-11

SECTION
NUMBER

TABLE OF CONTENTS

PARAGRAPH

NUMBER TITLE

6.4.2 C COMMAND, COPY MEMORY BLOCKS
6.4.2.1 FORMAT

6.4.2.2 DESCRIPTION

6.4.2.3 EXAMPLES

6.4.3 D COMMAND, DISPLAY HISTORY TABLE
6.4.3.1 FORMATS

6.4.3.2 DESCRIPTION

6.4.3.3 EXAMPLE

6.4.4 E COMMAND, EXECUTE A USER'S PROGRAM
6.4.4.1 FORMATS

6.4.4.2 DESCRIPTION

6.4.4.3 EXAMPLES

6.4.5 F COMMAND, FILL MEMORY COMMAND
6.4.5.1 FORMAT

6.4.5.2 DESCRIPTION

6.4.5.3 EXAMPLES

6.4.6 H COMMAND, HEXADECIMAL ARITHMETIC
6.4.6.1 FORMAT

6.4.6.2 DESCRIPTION

6.4.6.3 EXAMPLES

6.4.7 J COMMAND, SNAP SHOT COMMAND
6.4.7.1 FORMATS

6.4.7.2 DESCRIPTION

6.4.7.3 EXAMPLE

6.4.8 K COMMAND, SERVICE BREAKPOINT COMMAND
6.4.8.1 FORMATS

6.4.8.2 DESCRIPTION

6.4.8.3 EXAMPLES

PAGE
NUMBER

6-13
6-13
6-13
6-13
6-14
6-14
6-14
6-15
6-16
6-16
6-16
6-16
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-19
6-21
6-21
6-21
6-23

viii

SECTION
NUMBER

TABLE OF CONTENTS

PARAGRAPH

NUMBER TITLE

6.4.9 L COMMAND, LOCATE 8 OR 16 BIT DATA PATTERN
6.4.9.1 FORMATS

6.4.9.2 DESCRIPTION

6.4.9.3 EXAMPLE

6.4.10 M COMMAND, DISPLAY AND UPDATE MEMORY
6.4.10.1 FORMAT

6.4.10.2 DESCRIPTION

6.4.10.3 EXAMPLE

6.4.11 M COMMAND, TABULATE MEMORY

6.4.11.1 FORMAT

6.4.11.2 DESCRIPTION

6.4.11.3 EXAMPLES

6.4.12 0 COMMAND, SET OFFSET CONSTANT
6.4.12.1 FORMAT

6.4.12.2 DESCRIPTION

6.4.12.3 EXAMPLE

6.4.13 P COMMAND, DISPLAY AND/OR MODIFY PORTS
6.4.13.1 FORMAT

6.4.13.2 DESCRIPTION

6.4.13.3 EXAMPLE

6.4.14 Q COMMAND, QUIT

6.4.14.1 FORMAT

6.4.14.2 DESCRIPTION

6.4.14.3 EXAMPLE

6.4.15 R COMMAND, DISPLAY CPU REGISTERS
6.4.15.1 FORMATS

6.4.15.2 DESCRIPTION

6.4.15.3 EXAMPLES

PAGE
NUMBER

6-24
6-24
6-24
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-26
6-26
6-27
6-27
6-27
6-27
6-27
6-27
6-27
6-28
6-28
6-28
6-28
6-28
6-29
6-29
6-29
6-29

SECTION
NUMBER

PARAGRAPH
NUMBER

6.4.16
6.4.16.1
6.4.16.2
6.4.16.3
6.4.17
6.4.17.1
6.4.17.2
6.4.18
6.4.18.1
6.4.18.2
6.4.18.3
6.4.19

7

7.1

7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
71.2.7
7.3
7.3.1
7.3.1.1
7.3.1.2

TABLE OF CONTENTS

TITLE

V COMMAND, VERIFY MEMORY
FORMAT
DESCRIPTION
EXAMPLES
W COMMAND, WALK THROUGH A PROGRAM
FORMAT
DESCRIPTION
X COMMAND, DUPLICATE OQUTPUT TO PRINTER DEVICE
FORMAT
DESCRIPTION
EXAMPLE
PROGRAMMING NOTES

CONFIGURATION REQUIREMENTS
OVERVIEW
MEMORY REQUIREMENTS
MITE-80 NUCLEUS
USER TASKS
UTILITIES
DEVICE DRIVERS
TASK CONTROL BLOCK
MESSAGE BLOCK
STACK
TCB MACROS
MTCB MACRO
FORMAT
EXAMPLE A

PAGE

6-30
6-30
6-30
6-30
6-31
6-31
6-31
6-32
6-32
6-32
6-32
6-33

7-1

7-1
7-1
7-2

7-2
7-2
7-3

7-3
7-3
7-4

ix

NUMBER

SECTION
NUMBER

PARAGRAPH
NUMBER

7.3.1.3
7.3.1.4
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.4

7.5
7.5.1
7.5.2

8.1

8.1.1
8.1.2
8.1.3
8.2

8.3

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4

8.4.1
8.4.2
8.4.3
8.4.4

TABLE OF CONTENTS

TITLE

EXAMPLE B
PROGRAMMING NOTES
ETCB MACRO
FORMAT
EXAMPLE A
EXAMPLE B
TASK INSTALLATION
STACK INSTALLATION
EXAMPLE
PROGRAMMING NOTES

MEMORY POOL MANAGER

INTRODUCTION

FEATURES

SOFTWARE CONFIGURATION

POOL CONFIGURATION
CALLING CONVENTIONS
MSMMAL - ALLOCATE MEMORY

FORMAT

DESCRIPTION

EXAMPLE A

EXAMPLE B

PROGRAMMING NOTES
MSMMDE - DEALLOCATE MEMORY

FORMAT

DESCRIPTION

EXAMPLE A

PROGRAMMING NOTES

PAGE
NUMBER

7-5
7-5
7-6
7-6
7-7
7-7
7-8
7-8
7-10
7-10

8-1

8-1
8-2

8-3
8-3
8-3
8-4
8-4
8-4

8-5
8-5
8-5
8-6

SECTION
NUMBER

PARAGRAPH
NUMBER

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.6

9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.2.1.4
9.2.1.5
9.2.1.6
9.2.1.7
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.4.2

TABLE OF CONTENTS

TITLE

M8POOL - MACRO
FORMAT
DESCRIPTION
EXAMPLE A
EXAMPLES B

POOL CONSTRUCTION

TIMER HANDLER
INTRODUCTION
FEATURES
SOFTWARE CONFIGURATION
MEMORY
CALLING CONVENTIONS
TIMER MESSAGE BLOCK
STAT
PRIO
LINK
RPTR
SPTR
RQST
PERO
USING THE TIMER
FORMAT
DESCRIPTION
EXAMPLE
MTHTCB MACRO
FORMAT
DESCRIPTION

X1

PAGE
NUMBER

8-6
8-6
8-6
8-7
8-7
8-8

9-1

9-1
9-2
9-2
9-2
9-3
9-3

9-4
9-4

9-5
9-5
9-5

9-6
9-7

9-8

Xii

SECTION
NUMBER

10

APPENDIX A

PARAGRAPH
NUMBER

9.4.3
9.4.4
9.5
9.5.1
9.5.2
9.6
9.7

10.1
10.2
10.2.1
10.2.1.1
10.2.2
10.2.2.1
10.2.3
10.2.3.1
10.2.3.2
10.3
10.3.1
10.3.2
10.4
10.4.1
10.4.2
10.5
10.5.1

TABLE OF CONTENTS

TITLE

EXAMPLE A
EXAMPLE B
ETHTCB MACRO
FORMAT
DESCRIPTION
INSTALLATION
PROGRAMMING NOTES

MITE-80 SYSTEM FILES
INTRODUCTION
FILE LIST
TCB QUEUE HEADER-M8TCBQ.OBJ
USING M8TCBQ.0BJ
LINKER MODULE-MBOLNK.OBJ
USING M8OLNK.O0BJ
SYSTEM EQUATES-M80SYS.EQU
USING M80SYS.EQU
EXAMPLE
SYSTEM MACROS-M80SYS.MAC
USING MB0SYS.MAC
EXAMPLE
SYSTEM EXECUTABLE MACROS-MBOESY.MAC
USING MBOESY.MAC
EXAMPLE
MITE-80 DEBUG-M80DDT.BIN[X]
EXAMPLE

MITE-80 SYSTEM EQUATES

PAGE
NUMBER

9-8
9-9
9-9
9-9
9-10
9-11
9-11

10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-5

xiii

LIST OF TABLES

TABLE TITLE PAGE

NO. NO.
6-1 MNEMONICS RECOGNIZED BY MITE-80 DEBUG 6-8
6-2 MITE-80 SERVICE CALL LABELS RECOGNIZED BY

MITE-80 DEBUG 6-9

1-1

SECTION 1
GENERAL DESCRIPTION
1.1 INTRODUCTION

MITE-80 is the MOSTEK Multiple Independent Task Executive Z80 software package. It
provides the basic services for managing the CPU's resources in an orderly
fashion. MITE-80 accommodates MDX applications requiring real-time multiple
asynchronous event handling.

1.1.1 FEATURES
The highlighted features of MITE-80 are:

Simplistic data structures.

Fast context switching between tasks.

Up to 127 priority levels for task execution.

Message queuing by several options.

Handles unlimited number of tasks.

Accommodates interrupt driven device handlers.

Can be stored in RAM, EPROM, and/or ROM.

A DEBUG version for assistance in application development.
Memory Pool Manager and Timer Handler.

1.1.2 SOFTWARE CONFIGURATION
MITE-80 is designed to work with the following minimum hardware:

MOSTEK MDX-CPU CARD.
MITE-80 DEBUG is designed to work with either a MOSTEK Development System having a

FLP-80D0OS software package or an MDX Card system having a FLP-80DOS/MDX software
package. Refer to the FLP-80DOS/MDX Operation Manual for the MDX Cards required.

1.2 REFERENCE DOCUMENTS

FLP-80 DOS Operation Manual MK79668
FLP-80 DOS Operation Manual MK78557
MDX-CPUI Operation Manual MK79612
Micro Components Data Book MK79801

1.3 DEFINITION OF SYMBOLS USED IN THIS MANUAL

The following conventions are used throughout this manual:

1. Most hexadecimal numbers are identified by the character
'H' following the hexadecimal numbers.

2. aaaa indicates any hexadecimal number.

3. <CR> Stands for "carriage return".

4. A1l user input is underlined.

1.4 PRODUCT OVERVIEW

The MITE-80 software package is provided on a floppy diskette in IBM 3740 single
density format. The files can be read using a MOSTEK FLP-80D0S system software
package. The MITE-80 software package contains the following files:

MITE-80

MITE-80 DEBUG

MITE-80 MACROS

MITE-80 EQUATES

TIMER HANDLER

MEMORY POOL MANAGER
MITE-80 SYSTEM LINKAGES

A brief overview of each file follows:

1-3

1.4.1 MITE-80

The MITE-80 program is the multi-tasking nucleus which provides the capability for
controlling multiple real-time tasks. In providing this control MITE-80 uses two
data structures; a Task Control Block and a Message Block. User tasks communicate
with each other through MITE-80 by a series of system services.

1.4.2 MITE-80 DEBUG

The MITE-80 DEBUG program provides the facility for interactively debugging Z80
prograns executing under MITE-80. The various commands allow for displaying and
modifying memory and CPU registers, for executing programs, for setting break-
points on tasks and services, and for displaying Task Control Block and Message
Block contents. MITE-80 DEBUG includes a special version of MITE-80 which con-
tains loopdetect logic and certain integrity checks.

1.4.3 MITE-80 MACROS

A macro file is provided to aid the user in defining and developing MITE-80 Task
Control Blocks (TCB) and memory pools. The macros create a TCB from user
specified parameters. The macros will also generate code which will install the
TCB into the MITE-80 system.

1.4.4 MITE-80 EQUATES

An equate file is provided to facilitate using MITE-80. The file includes globals
for all of the MITE-80 system entry points and data structures and defines the
entries in each data structure.

1.4.5 MITE-80 TIMER HANDLER

A Timer Handler 1is provided for control over the MK3882 Counter Timer Circuit
(CTC) Chip. The timer can be used for applications requiring event time delays or
for event watchdog alerts. The timer executes as a MITE-80 task. A maximum time
duration of 13.9 minutes in increments of 12.8 milliseconds is provided. The time
increment is a user-configurable parameter.

1.4.6 MITE-80 MEMORY POOL MANAGER
A Memory Pool Manager is provided as a way to allocate and deallocate memory
blocks. The user can configure an area of memory into up to 252 memory pools,

1-4

with each pool consisting of a unique memory block size. A macro is provided to
aid the user in configuring the pools.

1.4.7 MITE-80 SYSTEM LINKAGES

A system linkage file is provided which contains linkage addresses for the debug
version of MITE-80. The user can link unique application programs to MITE-80DEBUG
with this file. ‘

1.5 DOCUMENT FORMAT

The following sections detail the areas of functional description, data
structures, system services, configuration requirements, and debug usage.

2-1

SECTION 2

FUNCTIONAL DESCRIPTION

2.1 OVERVIEW

‘This section provides an operational overview of MITE-80.

2.2 TASK IDENTIFICATION

An application 1is divided into modules, with each module being a defined
processing chore. Each module can be identified as a task within MITE-80. All
the tasks share memory and compete for the CPU's processing time. MITE-80
allocates the CPU's time based on information provided about each task. Each task
is uniquely identified by a Task Control Block (TCB). The TCB contains task
information of status, priority, link to next TCB, message queue pointer, stack
pointer, and a task name.

2.3 MESSAGE IDENTIFICATION

Each task is a defined process which may produce intermediate and/or final results
required by other tasks. The means by which this data is moved throughout MITE-30
is with a Message Block (MB). An MB is used to pass data to another task or to
request service of another task. Each MB is constructed by the task that needs to
send information to another task. MITE-80 passes these messages from task to task
based on information provided in the MB and in the service call. The MB contains
message information of status, priority, queuing, sending task identification,
receiving task identification, and any optional data that the sending task may
need to provide the receiving task.

2.4 TASK COMMUNICATION

A1l inter-task communication is performed by a message block. These messayge
blocks are used to pass results to another task, to initiate an I/0 request, to
create a task, and for any other user-to-user or user-to-system communication.
MITE-80 provides several system services which the user can use within each task

2-2

for communicating between tasks. The services include the facilities to send,
receive, forward, return, wait for, and cancel messages.

2.5 PRIORITY

A priority field is part of both the TCB and MB data structures. MITE-80 uses
these priority fields to determine the order of processing importance. The TCB's
priority defines the task's level of execution. The MB's priority defines the
message's level of importance in a message queue. The priority value ranges from
0 to 126, with O being the highest priority and 126 being the lowest priority.
Task priority levels O thru 15 are normally reserved for system tasks but may be
used by high priority user tasks. Each TCB can be assigned a different priority
level and any number of TCBs can have the same priority level. The determination
of a TCB's priority is dependent on the application requirement's urgency to
process the task. Each MB can be assigned a different priority level and any
number of MBs can have the same priority level. The determination of an MB's
priority is dependent on the application's requirement. In most cases the MB's
priority level will be identical to the sending task's TCB priority level.

2.6 TASK STATES

A task can be in any one of three possible states; running, waiting, or ready. At
any instant of time there is only one task running; all other tasks are either
waiting or ready.

2.6.1 RUNNING TASK
The running task is the task currently using the CPU's resources. The running
task was the current highest priority ready task.

2.6.2 READY TASK

A ready task is a task that would be running, but is not because a higher priority
task is running. Each ready task must become the current highest priority ready
task before MITE-80 will re-allocate the CPU's resources to it.

2.6.3 WAITING TASK
A waiting task is a task that has requested a system service and has specified

the "wait" option. When the event has satisfied the wait option, the waiting task
then becomes a ready task.

2.7 MESSAGE QUEUING

The queuing of MB's by MITE-80 is accomplished by two algorithms; message priority
and queue type. The priority and the queue type each have two user-specifiable
options. For the priority, either specified priority or task priority can be
used. And for queue type, either LIFO or FIFO can be used. Both the priority and
queue type option are specified in the MB by the task prior to calling a MITE-80
service.

2.7.1 SPECIFIED PRIORITY

A specified priority is a priority level specified by the MB's issuing task. The
specified priority can be any priority level of 0 to 126. The higher the priority
level (the Tower the number), the higher the MB will be placed in the receiving
task's message queue.

2.7.2 TASK PRIORITY

A task priority is a priority level specified by MITE-80 when the MB, with a
priority of 127, is issued by the task. MITE-80 will take the issuing task's TCB
priority value and place it in the MB's priority field. The MB's priority level
will then be the same as the issuing task's priority. This feature is only valid
for the Send Message services.

2.7.3 LIFO QUEUING
LIFO is a Last-In-First-Out queuing concept. The MB is placed at the top of all
MB's having the same priority level within the MB's receiving task message queue.

2.7.4 FIFO QUEUING

FIFO is a First-In-First-Out queuing concept. The MB is placed at the bottom of
all MB's having the same priority level within the MB's receiving task message
queue.

2-4

2.8 THEORY OF OPERATION

2.8.1 OVERVIEW

MITE-80 determines which task gets current use of the CPU resources based on
information contained in each of the TCBs within the system. The task whosée TCB
jdentifies it as in a ready state and is the current highest priority task will be
the running task.

2.8.2 CONTEXT SWITCHING

Whenever an external event happens or whenever an MB is processed by a MITE-80
service, MITE-80 will re-evaluate which task should be the running task. If it is
determined that the running task is still the highest priority ready task, the CPU
resources are returned to the running task to continue processing. If it 1is
determined that a higher priority task is now a ready task, the lower priority
running task will become ready. The higher priority ready task will then become
the running task. This task switching is known as context switching. Whenever
context switching occurs, MITE-80 performs a CPU register image save and restore
operation. The running task's appropriate main or full Z-80 registers are all
pushed onto its stack. The ready task's stack is popped to restore its task's
Z-80 registers. MITE-80 then gives the CPU resources to the higher priority ready
task which then becomes the new running task.

2.9 METHODS OF TASK COMMUNICATION

Communication between tasks can occur either by the transmitting of MBs or by the
posting of an interrupt event.

2.9.1 TRANSMITTING MBs
MITE-80 provides several services which are task callable and allow for the
transmitting of an MB between tasks; M8SN, M8RCV, MBRET, M8FWD and M8CAN.

2.9.1.1 M8SN
This service is a Send Message service which allows a task to send an MB to
another task.

2.9.1.2 M8RCV
This service is a Receive Message service which allows a task to receive an MB

from its MB queue.

2.9.1.3 M8RET
This service is a Return Message service which allows a task that has received an
MB to return that MB to the sending task.

2.9.1.4 MBFWD
This service is a Forward Message service which allows a Task to send an MB to
another task without altering the MB's sender and receiver pointers.

2.9.1.5 M8RSN
This service is a Resend Message service which allows a task which has previously
sent a message to a task to resend that message with a minimum of overhead.

2.9.1.6 M8CAN
This service is a Cancel Message service which allows a task that has previously
sent an MB to now cancel, or kill, that MB in the receiving task's MB queue.

2.9.1.7 M8FIND
This service is a Find Message service which allows a task to find another task
given the other task's name.

Further information on these and other MITE-80 services is outlined in Section 4,
System Services.

2.9.2 EVENT POSTING
MITE-80 provides a service for the waiting and posting of interrupt events; MSWINT
and M8PINT.

2.9.2.1 MBWINT

This service is a Wait for Interrupt service which allows a device driver to
create a wait until interrupt process is complete. The task will become a waiting
task.

2.9.2.2 MBPINT
This service is a Post after Interrupt service which allows an Interrupt Service

2-6

Routine or another task to post an interrupt process completion state. The
waiting task will become a ready task.

2.10 REGISTER USAGE

A task can use all of the Z-80 registers or only the main set consisting of PC,
SP, A, B, C, D, E, F, H, L, IX, and IY. The task's TCB contains a register usage
designation. When a context switch is required of this task, MITE-80 will PUSH or
POP the appropriate registers as specified in the task's TCB.

2.11 STACK USAGE

Each task has its own stack. When a task becomes a running task, MITE-80 will POP
the task's specified registers off the task's stack before CPU control is given to
the task. When the task transitions to a wait or ready state, MITE-80 will PUSH
the task's specified registers onto the task's stack before the next task is
allowed to run. Each task must allocate a stack area sufficient for its unique
task requirements (e.g. routine nesting levels) and task registers used.

3.1 INTRODUCTION

SECTION 3

DATA STRUCTURES

3-1

This section defines the MITE-80 data structures of Task Control Block and Message

~ Block.

3.2 TASK CONTROL BLOCK (TCB)

The Task Control Block contains the task state information required by MITE-80 in

order to make resource allocation decisions.

have its own TCB. The TCB is 10 bytes in length.

3.2.1 STRUCTURE
The TCB's information is structured as:

Each task within the system must

Field # of

Bytes Offset Name | Field Data Type Source

1 1 0 STAT | Task status |Bit encoded User/MITE-80

2 1 1 PRIO | Task priority|Binary User

3 2 2 LINK | Next TCB Binary MITE-80
address

4 2 4 MPTR | Message Binary MITE-80
pointer

5 2 6 SPTR | Stack pointer|Binary User

6 2 8 NAME | Name of task |Binary or User

ASCII

3-2

Each of these fields is further defined as follows:

3.2.1.1 STAT
The Status byte (STAT) contains information which indicates task state, register
usage, and task's message state. The byte is user specified and is bit encoded as

follows:
Bit Name Bit Definition
WAIT 7 0 = if task not waiting for message
1 = if task is waiting for message
IWAT 6 0 = if task not waiting for an interrupt event
1 = if task is waiting for an interrupt event
-———- 5 0, reserved for future use
INTQ 4 0 = no interrupt has been posted since last
MBWINT call
1 = interrupt has been posted since last
MBWINT call
DBUG 3 0 = task running normally
1 = task currently being debugyed
MROB 2 0 = if task uses all registers
1 = if task uses only main register set
MHBS 1 0 = if message not sent yet
1 = if message sent but task has not yet run
TCBB 0 0 = if this is not a TCB
1=1f this is a TCB

3-3

3.2.1.2 PRIO

The Priority byte (PRIO) contains information which determines where in the TCB
queue this TCB is to be placed. The byte is user specified. The priority of an
active task should NEVER be modified. If the priority of an active task must be
changed, then the task should be cancelled and re-created. Priority level 0 is
reserved for MITE-80 system use and must NOT be specified in user tasks. User
tasks can have priority level assignments from 0 to 126 inclusive. The priority
byte is bit encoded as follows:

Bit Definition

7-1 00H

priority level of 0
to

FCH = priority level of 126

o
—
1]

always set for TCB

3.2.1.3 LINK

The Link word (LINK) is used by MITE-80 to implement a singly linked list of all
TCBs within the TCB queue. The terminator for the list is a null TCB with a
priority of 127. The null TCB is Tinked into the TCB queue by MITE-80 when the
TCB queue is created. The null TCB is provided by MITE-80. The Link word's
contents are maintained by MITE-80.

3.2.1.4 MPTR

The Message Pointer word (MPTR) is a message list head. All messages sent to this
TCB are Tlinked to this message list. All messages to be processed (receive
message) by this TCB are delinked from this message list, one MB at a time. The
message pointer is initialized to point to a null message block at task creation
time by MITE-80. The null message block is provided by MITE-80. The message
pointer word's contents are maintained by MITE-80.

3.2.1.5 SPTR

The Stack Pointer word (SPTR) is a pointer to the task's stack area. MITE-80 uses
the task's stack to maintain the context of the task. Whenever a context switch
occurs, the task registers (including the program counter) are saved on the stack
and the Stack Pointer is saved in the TCB's SPTR field. The task registers are
retrieved from the stack when the task regains control of the CPU resources. When
a task is created, it is the user's responsibility to set-up the TCB, initialize
the registers on the stack, and provide sufficient stack space for the new task.
Macros have been provided with the MITE-80 package to facilitate setting up the
TCB and stack.

The task registers are popped from the stack in the following order; HL', DE',
BC', AF', IY, HL, DE, BC, AF, IX, PC. If the task status byte (STAT) indicates
task register usage of "Main Registers Only" (MROB bit = 1), then the HL' through
AF' registers are not popped from the stack. MITE-80 assumes that these registers
do not exist on the stack. This option saves 8 bytes of stack space and reduces
system latency.

3.2.1.6 NAME

The task Name word (NAME) is used to identify the task. The task name can range
from OH to FFFFH. Since ASCII characters are included within this range, the
following allocation of task names is recommended: '

Range (HEX) Allocate For
0000 - IFFF User binary task names
2000 - 7FFF ASCII task names, both user and

system task names (e.g. LP
for Line Printer)

8000 - FFFF User binary task names

3-5

The task name is specified by the user for each user task. For binary task names,
byte 8 1is the least significant byte of task name and byte 9 1is the most
significant byte of task name. For ASCII task names, byte 8 is the first
character of task name and byte 9 is the second character of task name.

3.3 MESSAGE BLOCK (MB)

The Message Block contains message identity information required by MITE-80 in
order to route the MB from the issuing task to the recipient task. Each message
transmitted within the system must have its own MB. The MB is 8 bytes in length
with optional user data expanding its length as necessary to fulfill user
application requirements.

3.3.1 STRUCTURE
The MB's information is structured as follows:

Field | # of

Bytes |[Offset| Name | Field Data Type Source

1 1 0 STAT | Message status | User defined User

2 1 1 PRIO | Message Bit encoded User *
priority

3 2 2 LINK | Next MB address| Binary MITE-80

4 2 4 RPTR | Receiver Binary MITE-80
pointer

5 2 6 SPTR | Sender pointer |Binary User *

6 N 8 DATA | Data User defined User

* denotes fields for which the user may request MITE-80 to supply the value.

Each of these fields is further defined as follows:

3.3.1.1 STAT

The Status byte (STAT) is used by the receiving task to inform the sending task
information about how the message was handled. This byte is defined by the user.
The byte can be used for process status results, error conditions, message number
tagging, or for any use required by the application.

3.3.1.2 PRIO

The Priority byte (PRIO) contains information which determines where in the
receiving task's message queue the sending task's MB is to be placed. The byte is
user specified, but the calling task may request MITE-80 to insert a priority
value. The byte contains a priority value and a queuing directive. The priority
value can be assigned a Tlevel 0 to 127, and the queuing can be either LIFO or
FIFO. The priority byte is bit encoded as follows:

Bit Name Bit Definiton

PRIO 7-1 00H = npriority level of O
to

FCH = priority level of 126

FEH = indicates to MITE-80 to replace this
value with sending task's TCB
priority level.

FIFO 0 0 = LIFO queue at PRIO value in
message list

1 = FIFO queue at PRIO value in
message list

NOTE: On LIFO queue, MITE-80, sets the bit after the LIFO queuing operation. A
sending task priority of 127 (FEH) can only be specified when using a M8SN[W]
Service.

3.3.1.3 LINK

The Link word (LINK) is used by MITE-80 to implement a singly linked 1ist of all
MB's within the MB queue. The terminator for the list is a null MB with a
priority of 127. The null MB is linked onto the MB queue by MITE-80 when the MB
queue is created. The null MB is provided by MITE-80. The link word's contents
are maintained by MITE-80.

3.3.1.4 RPTR

The Receiver Pointer word (RPTR) is set to the address of the receiving task's TCB
by MITE-80 when the message is sent by the M8SN or M8SNW. The field is used by
the MBRSN and M8RSNW to determine the task to which a message is to be re-sent.

3.3.1.5 SPTR

The Sender Pointer word (SPTR) is used by MITE-80 for determining to which task
the MB is to be returned. The word is user specified, but the calling task may
request MITE-80 to insert the calling task's TCB address in this field. The user
can specify this word to return the MB to the sending task or to a different task.
If the word is zero when a M8SN or M8SNW service is called, MITE-80 will insert
the sending task's TCB address into this field.

3.3.1.6 DATA

The Data bytes (DATA) are used for transmitting user information between tasks.
The Data bytes are all user specified and are not affected by MITE-80. The DATA
field can be used for passing process directives, process results, I/0 vector
information, error codes, data blocks, or any user application requirement.

SECTION 4

SYSTEM SERVICES

4.1 INTRODUCTION

This section describes the MITE-80 Services callable from a user task.

4.1.1 OVERVIEW
The Services provided allow a user to perform the following:

A. Send and Receive message blocks.
B. Forward message blocks.

C. Return message blocks.

D. Cancel message blocks.

E. Find task control blocks.

F. Interrupt control handling.

G. Create and Cancel tasks.

4-1

4-2

The following table summarizes the Services:

SERVICE DESCRIPTION

M8SN Send a message to a task.

M8SNW Send a message to a task and wait for a message to be
available for the sending task.

M8RSN Resend a message to a task.

M8RSNW Resend a message to a task and wait for a message to
be available for the sending task.

M8RCV Receive a message if one is available for calling
task.

M8RCVW Receive a message, otherwise wait till one is avail-
able for calling task.

MSFWD Forward a message to a task.

M8FWDW Forward a message to a task and wait for a message to
be available for the forwarding task.

M8RET Return a message to the sending task.

MSRETW Return a message to the sending task and wait till a
message is available for calling task.

M8CAN Cancel a message sent to a task.

M8FIND Find the receiver address of the specified task name.

MBWINT Wait for an interrupt event to be posted.

M8PINT Post an interrupt event which is completed.

4.2 M8SN - SEND MESSAGE

4,2.1 FORMAT
The calling sequence is:

LD DE ,<message receiver address>
LD BC,<message block address>
CALL M8SN

4.2.2 DESCRIPTION

The M8SN Service will send an MB to a task and return to the calling task.
Registers BC must contain the address of the MB to be sent, and registers DE must
contain the address of the receiving task's TCB. The contents of registers DE are
loaded into the MB's RPTR field by the M8SN Service. The contents of the BC
registers are loaded into the SPTR field of the message if the SPTR field contains
a zero. CPU control will be immediately returned to the calling task if the task
is still the highest priority task ready to run. This service is also used to
install a task into the system by having registers DE contain the MITE-80 TCB
queue address (M8TCBQ) and registers BC contain the "to be installed" task's TCB
address.

4.3 M8SNW - SEND MESSAGE & WAIT

4.3.1 FORMAT
The calling sequence is:

LD DE,<message receiver address>
LD BC,<message block address>
CALL M8SNW

The Service will return:

HL = <message block address>

4.3.2 DESCRIPTION

The M8SNW Service will send an MB to a task and return to the calling task when an
MB is available. Registers BC must contain the address of the MB to be sent, and
registers DE must contain the address of the receiving task's TCB. The contents

4-4

of registers DE are loaded into the MB's RPTR field by the M8SN Service. The
contents of the BC registers are loaded into the SPTR field of the message if the
SPTR field contains a zero. CPU control will be returned to the calling task only
when an MB is available for the calling task. On return, registers HL will
contain the address of the MB to process. This service is equivalent to an M8SN
followed by a MBRCVM.

4.4 MBRSN - RESEND MESSAGE

4.4.1 FORMAT
The calling sequence is:

LD BC,<message block address>
CALL M8RSN

4.4.2 DESCRIPTION

The M8RSN Service will resend an MB to a task and immediately return to the
calling task. The MB to be resent is an MB that has its RPTR correctly specified.
Registers BC must contain the address of the MB to be resent. This Service is
similar to M8SN except that this Service uses the contents of the RPTR field of
the MB as the receiving task address. CPU control will be immediately returned
to the calling task if the task is still the highest priority task ready to run.

4.5 MBRSNW - RESEND MESSAGE & WAIT

4.5.1 FORMAT
The calling sequence is:

LD BC,<message block address>
CALL MBRSNW

The Service will return:
HL = <message block address>

4.5.2 DESCRIPTION
The MBRSNW Service will resend an MB to a task and return to the calling task

4-5

when an MB is available. The MB to be resent is an MB that has its RPTR correctly
specified. Registers BC must contain the address of the MB to be resent. This
Service is similar to M8SNW except that this Service uses the contents of the RPTR
field of the MB as the receiving task address. CPU control will be returned to
the calling task only when an MB is available for the calling task. On return,
registers HL will contain the address of the MB to process. This service is
equivalent to a MBRSN followed by a MBRCVW.

4.6 MBRCV - RECEIVE MESSAGE

4.6.1 FORMAT
The calling sequence is:

CALL M8RCV

The Service will return:

HL
Z Flag

<message block address> or 0000H

set if no message received or,
reset if a message received

4.6.2 DESCRIPTION

The M8RCV Service will get the next MB, if one is available, for this task to
process and immediately return to the calling task. If an MB is available for the
calling task, the Service will provide the MB's address; otherwise, an indication
ofno MB's available is given. CPU control will be returned to the calling task.
On return, registers HL will contain either the address of the next MB to process
or zeroes if no MB's are available. The Zero Flag will be reset if an MB is
received; otherwise, the flag will be set.

4.7 MBRCVW - RECEIVE MESSAGE & WAIT

4.7.1 FORMAT
The calling sequence is:

CALL M8RCVW

4-6

The Service will return:
HL = <message block address>

4,7.2 DESCRIPTION

The M8RCVW Service will return to the calling task only when an MB is available
for the task. On return, registers HL contain the address of the MB to be
processed. If no MB exists for the calling task, CPU control is given to the next
highest priority ready task.

4.8 M8FWD - FORWARD MESSAGE

4.8.1 FORMAT
The calling sequence is:

LD DE ,<message receiver address>
LD BC,<message block address>
CALL M8FWD

4.8.2 DESCRIPTION

The M8FWD Service will forward an MB to a task and return to the calling task. The
difference between M8FWD and M8SN is that M8FWD leaves the MB intact and does not
use or affect the MB's RPTR field. Registers BC must contain the address of the
MB to be forwarded, and registers DE must contain the address of the receiving
task's TCB, that is the "to be forwarded to" task. CPU control will be
immediately returned to the calling task if the task is still the highest priority
task ready to run. This Service is used to forward a receiver MB on to another
task without altering the MB being forwarded. Note that neither the RPTR or SPTR
fields are affected by this service.

4.9 MBFWDW - FORWARD MESSAGE & WAIT

4.9.1 FORMAT
The calling sequence is:

LD DE ,<message receiver address>
LD BC,<message block address>
CALL M8FWDW

4-7

The Service will return:
HL = <message block address>

4.9.2 DESCRIPTION

The MBFWDW Service will forward an MB to a task and return to the calling task
when an MB is available. The difference between M8FWDW and M8SNW is that M8FWDW
leaves the MB intact and does not use the MB's RPTR field. Registers BC must
contain the address of the MB to be forwarded, and registers DE must contain the
address of the receiving task's TCB, that is the "to be forwarded to" task. CPU
control will be returned to the calling task only when an MB is available for the
calling task. On return, registers HL will contain the address of the MB to
process. This Service is used to forward a received MB on to another task without
the MB being altered. This service is equivalent to an M8FWD followed by a
MBRCVW. Note that neither the RPTR or SPTR fields are affected by this service.

4.10 MBRET - RETURN MESSAGE

4.10.1 FORMAT
The calling sequence is:

LD BC,<message block address>
CALL M8RET

4,10.2 DESCRIPTION

The MBRET Service will return a received MB to the sending task. The Service is
normally used by a task that has received a MB, and has to return the MB to the
sender task. Registers BC must contain the address of the MB to be returned. CPU
~ control will return to the calling task if it is still the highest priority ready
-task. Note that neither the RPTR or SPTR fields are affected by this service.

4.11 M8RETW - RETURN MESSAGE & WAIT

4-8

4.11.1 FORMAT

The calling sequence is:
LD BC,<message block address>
CALL M8RETW

The Service will return:
HL = <message block address>

4,11.2 DESCRIPTION

The MSBRETW Service will return a received MB to the sending task and will get the
next MB, if available, for the calling task. This Service is normally used by a
task that has received an MB (either by M8RCV or M8RCVW), has processed the MB,
has to return the MB to the sender task, and needs to receive the next MB to
process. Registers BC must contain the address of the MB to be returned. On
return, registers HL contain the address of the next MB to be processed. If no MB
exists for the calling task, CPU control is given to the next highest priority
ready task. This Service is equivalent to M8RET followed by a MBRCVW. Note that
neither the RPTR or SPTR fields are affected by this service.

4.12 M8CAN - CANCEL MESSAGE

4.12.1 FORMAT
The calling sequence is:

LD DE ,<message receiver address>
LD BC,<message block address>
CALL M8CAN

The Service will return:

HL = <message block address> or 000OH
Z Flag = reset if service successful, or set if
unsuccessful

4.12.2 DESCRIPTION
The M8CAN Service will cancel an MB from a task's MB queue. Registers BC must

4-9

contain the address of the MB to be cancelled, and registers DE must contain the
address of the receiver's TCB. On return if the MB is cancelled, registers HL
will contain the address of the cancelled MB and the Zero Flag will be reset.
Otherwise, if the MB is not cancelled, registers HL will be zeroed and the Zero
Flag will be set. An unsuccessful cancel of an MB is a result of the MB not being
on the specified receiver's task MB queue.

This service can also be used for cancelling a task from the system by having
registers DE contain the MITE-80 TCB queue address and by having registers BC
contain the TCB address of the task to be cancelled.

4.13 M8FIND - FIND RECEIVER

4,13.1 FORMAT
The calling sequence is:

LD DE,<queue header>
LD BC,<name of entry>
CALL M8FIND

The Service will return:

HL = <receiver TCB address>, or 000O0H
Z Flag = reset if service successful, set if unsuccessful

4.13.2 DESCRIPTION

The M8FIND Service will search a queue for a match to an entry name and return the
address of entry if found. Registers DE must contain the address of the queue
header to be searched, and registers BC must contain the entry name to be searched
for. On return, registers HL will contain the address of the entry name's TCB and
the Zero Flag will be reset. Otherwise, if the search is unsuccessful, registers
HL will be zeroed and the Zero Flag will be set. This Service is used to find the
address of a receiving task.

4.14 MBWINT - WAIT FOR INTERRUPT

4-10

4.14.1 FORMAT
The calling sequence is:

CALL MBWINT

4.14.2 DESCRIPTION

The MBWINT Service is for use by device driver tasks. The driver task conditions
the device's Interrupt Service Routine (ISR) to interrupt when the current oper-
ation is complete: for example, at end of block, or on carriage return character
detection. The driver calls this Service which will place this task in an inter-
rupt wait state until the ISR posts a complete status (see M8PINT Service). This
service will return immediately if an ISR has already posted the calling task's
interrupt bit (INTQ).

4.15 MBPINT - POST INTERRUPT

4,15.1 FORMAT
The calling sequence is:

PUSH PC

PUSH IX

PUSH AF

PUSH BC

PUSH DE

PUSH HL

LD IX,<address of TCB to post>
JP MBPINT

4-11

4,15.2 DESCRIPTION

The M8PINT Service is for use by Interrupt Service Routines (ISR). This Service
is the complement to M8WINT Service. When an ISR completes the requested oper-
ation the ISR will normally jump to the MBPINT Service. The MBPINT service will
save the task's IY register contents on the task's stacks. MBPINT issues a RETI
for the ISR at operation completion time.

5-1

SECTION 5

USING THE SYSTEM SERVICES

5.1 OVERVIEW

This section provides information and examples on how to use the various MITE-80
system services. The areas covered include:

A. Establishing and Cancelling a Task.
B. Sending and Receiving MBs.

C. Tasks waiting states.

D. ISR processing.

5.2 ESTABLISHING A TASK

5.2.1 DESCRIPTION

To establish a task into the system a TCB must first be created. This is
accomplished by either constructing one 1in RAM, or by transferring a
pre-constructed one in ROM to RAM. The TCB's address is then sent to the MITE-80
TCB queue and is then placed in the TCB queue at the specified priority level.

5.2.2 EXAMPLE A
To configure a TCB whose address is NEWTCB into the system, and a TCB queue name
of M8TCBQ, the code sequence would be:

LD DE,M8TCBQ ;Set-up TCB Queue addr
LD BC,NEWTCB ;Set-up TCB addr
CALL M8SN ;PTace NEWTCB into system

On return from the system service the TCB is then configured into the system, and
the Task is available for use. Note that the Send Message Service, M8SN, is used
to establish a new TCB into the system. The TCB address replaces the MB address

5-2

and the TCB queue address is the message receiyer'addreSS.

Care must be taken when installing a task. If the "to be installed task" is of a
higher priority than the task installing it, then CPU control will be given to the
newly installed task.

5.2.3 EXAMPLE B

Prior to installing a task, its initial register values must be set-up on the
task's stack since MITE-80 pops the task's stack before CPU control is given to
the new task. If the task does not require any initial kegister value set-ups,
then these registers need not be initialized. However; the minimal stack set-up
requirement is the loading of the task's entry point into its stack's Program
Counter location.

For a task which uses only the main register set, has an entry point label of
UTSP, the code sequence to initialize the PC in the task's stack would be:

LD HL,UTASK ;UTASK ENTRY POINT
LD (UTSP+12) ,HL ; INIT UTASK'S SP PC LOCATION

5.2.4 PROGRAMMING NOTES

The TCB constructed MUST adhere to the TCB data structure.

The Task's TCB must NOT be changed once it is placed into the'TCB queue. If the
TCB has to be changed, then cancel the TCB, alter it, and send it again to the TCB

queue.

The task's stack must be initialized; at minimum the task's entry point must be
lToaded into its stack's PC Tocation, prior to installing the task.

Tasks should normally be installed using the M3SN service.

5-3

5.3 CANCELLING A TASK

5.3.1 DESCRIPTION

To cancel a task from the system the TCB's address must be known. The address can
be obtained by using the M8BFIND service to find the address by using the TCB's
name for comparison. Once found, the TCB address is then used to cancel the TCB
from the TCB queue.

5.3.2 EXAMPLE
To cancel a TCB whose name is AB from the system, and a TCB queue name of M8TCBQ,
the code sequence would be:

LD DE,M8TCBQ ;Set-up TCB queue addr

LD BC,'BA" ;Set-up TCB name

CALL M8FIND ;Find TCB address

JP L, TNIS ;Jump if TCB not in system
LD B,H ;Move TCB addr to BC

LD C,L 5

CALL M8CAN ;Cancel task 'AB'

A check is made after the M8FIND service call to assure that the TCB was still in
the system. On return from the M8CAN service the TCB has been cancelled and the
Task is no longer available for use.

5.3.3 PROGRAMMING NOTES

Care must be taken when cancelling a task:

If conditional cancelling is desired then the TCB must first be checked to assure
that the Task does not have a MB to process and that it is not waiting for a post
interrupt event.

If unconditional cancelling is desired then any unprocessed MBs for this TCB will
be LOST. Requeuing a task by means of the M8FWD Service will allow unprocessed
MBs to be found again.

5.4 SENDING A MESSAGE

5.4.1 DESCRIPTION

To send a message to a task a MB must first be created. This is accomplished by
either constructing one in RAM, or by transferring a pre-constructed one in ROM to
RAM. If the receiver's address is not known, the M8FIND service is used to find
the address. Once the MB is constructed several options exist in which to send
the MB to the receiver; send and immediate return, or send and wait for another
MB. Regardless of the option selected, the service will queue the MB at the
specified priority in the receiver Task's MB queue.

5.4.2 EXAMPLE A
To send a MB whose address is TMB2 to a receiver task MC whose TCB address is
MCTCBA the code sequence would be:

LD DE ,MCTCBA ;Set-up tasks MC's TCB addr
LD BC,TMB2 ;Set-up MB addr
CALL M8SN ;Send TMB2 to Task MC

In this example the calling task will retain CPU control if it is still the
highest priority ready task after sending the MB. The calling task can then
continue processing its other requirements.

5.4.3 EXAMPLE B
If in Example A further processing is to be suspended after sending the MB until
another MB is available for the sending task, then the code sequence would be:

LD DE ,MCTCBA ;Set-up tasks MC's TCB addr

LD BC,TMB2 ;Set-up MB addr
CALL M8SNW ;Send TMB2 and wait till another MB is
;available

In this exampleAthe calling task will retain CPU control only if another MB is
available for the calling task to process and if it is still the highest priority
. ready task after sending the MB. When a MB is available for the task, CPU control
will return to the instruction immediately following the call instruction and the
address of the next MB to process will be in registers HL.

5-5

5.4.4 EXAMPLE C
If in Example A the sending task wanted to send the MB to the last task to which
it had been sent, then the code sequence would be:

LD BC,TMB2 ;Set-up MB addr
CALL M8RSN ;Send TMB2 to Task MC

In this example the M8RSN service will retrieve the MCTCBA value from the MB's
RPTR field and set-up the DE registers. For MBs with their RPTR field already
initialized, this service can be used to minimize execution time and memory
overhead on service set-up requirements. The wait option, as shown in Example B,
is also available by using the M8RSNW service call.

5.4.5 EXAMPLE D
If in Examples A or B the receiver's TCB address was not known, the Find Receiver
Service could be used to get the value. The code sequence would be:

LD DE ,M3TCBQ ;Set-up TCB queue addr

LD BC,'BA' ;Set-up TCB name

CALL M8FIND ;Find TCB address

JP Z,TABNIS ;Jdump if TCB 'AB' not in system
EX DE ,HL ;Move TCB addr to DE

LD BC,TMB2 ;Set-up MB address

CALL M8SN (or M8SNW) ;Send TMBZ2 to Task AB

In this example the system TCB queue (M8TCBQ) is searched for Task's 'AB' address
before the Send message service is set-up and called. Also, a check is made on
return from the MSFIND service to assure that task AB's TCB is still in the
system.

5.4.6 PROGRAMMING NOTES
The MB constructed MUST adhere to the MB data structure.

The MB must NOT be changed once it is sent to the receiver. If the MB has to be
changed, then cancel the MB, alter it, and send it again to the receiver.

5-6

The wait option will suspend (wait state) the sending task if no MBs are currently
available for the sending task to process.

On return from the service with.a wait option specified, the MB address returned
is the highest priority MB to process, NOT necessarily the MB that was last sent
wfth the service call wait option. If a task must know which MB has been
received, then a MB tag numbering or process level status scheme in the MB's data
or STATUS field should be used.

5.5 RECEIVING A MESSAGE

5.5.1 DESCRIPTION

To receive a message from any task a receiving task must condition its TCB to
receive messages. If a task does not condition itself to receive messages, then
all MBs sent to the task will be queued in the task's MB queue. To receive
messages a task must request an MB from its queue everytime an MB is to be
processed. There are no service set-up requirements. Two options exist on the
service call: an immediate return regardless of whether or not an MB is available,
and a wait option until a MB is available. Regardless of the option selected, if
a MB is returned to the calling task it will be the highest priority MB in the
task's queue. The receiving task is responsible for returning the MB back to the
sending task, if required of the application.

5.5.2 EXAMPLE A
To receive a MB the code sequence would be:

CALL M8RCV ;Get next MB if available

In this example the calling task will retain CPU control. On return, register HL
will contain either zeros for no MB available, or the address of the MB to
process. Also, the Zero Flag is set if no MB is available.

5.5.3 EXAMPLE B
To receive an MB and return to caller only if an MB 1is available, the code
sequencewould be:

5-7

CALL M8RC VW ;Get next MB or'wait if none available

In this example the calling task will retain CPU control only if an MB is
available. Otherwise, the calling task will be suspended (wait state) until an MB
is available. When an MB is available for the task, the task will then be in a
ready state. On return the HL registers contain the address of the MB to process.
The MBRCVW service will generally be the first service call made by a MB
processing task.

5.5.4 PROGRAMMING NOTES
The MB received will be the highest priority MB from the calling task's MB queue.

An immediate knowledge of whether the MB was initially sent by the receiving task
or by another task can be determined. If the SPTR field does NOT match the
receiver Task's address, then the MB was sent to it by another task. If the SPTR
field DOES match the receiver task's address, the receiving task was the original
sender task of the MB.

A task CANNOT receive any messages to process until a Receive Message Service is
called. For MBs sent to tasks which have not yet called a receive message
service, their MBs will be queued in the task's MB queue.

5.6 FORWARDING A MESSAGE

5.6.1 DESCRIPTION

To forward a message to another task, the receiver's address must be known. If
theforward receiver's address is not known, the M8FIND service can be used to find
the address. Once the receivers address is known, it 1is placed in the DE
registers and the MB to be forwarded is left intact. The MB can then be forwarded
to the receiver task with one of the two options, either forward and immediate
return, or forward and wait for another MB. Regardless of the option selected,
the service will queue the MB at the specified priority in the forwarded receiver
task's MB queue. The forward service is used in applications where the MB
specified receiving task cannot process or handle the MB, and the MB is forwarded
on, intact, to another task for processing.

5-8

5.6.2 EXAMPLE
To forward an MB whose address is TMB2 to a receiver task MC whose TCB address is
MCTCBA, the code sequence would be:

LD DE,MCTCBA ; Set-up tasks MC's TCB addr
LD BC,TMB2 ; Set-up MB addr
CALL M8FWD ; Forward TMB2 to Task MC

In this example the calling task will retain CPU control if it is still the
highest priority ready task after forwarding the MB. The forwarding task can then
continue processing its other requirements. If the forwarding task only wanted
CPU control and another MB was available to process, then the MBFWDW service would
be called. Note that the received MB was left intact, thus a]]dwing the next
receiving task to return the MB to the original sender task. Any MB can be
forwarded any number of times before it is returned, if required by the
application, to the original sender task.

5.6.3 PROGRAMMING NOTES

The MB forwarded MUST remain intact (unmodified) if the MB is to be returned to
the original sender task.

The wait option will suspend (wait state) the forwarding task if no more MBs are
currently available for the forwarding task to process.

A forwarded MB will NOT be returned to the task forwarding the MB, since the MB's
fields of RPTR and SPTR (receiver and sender pointers) remain intact from the
original sender task.

The MB to be forwarded must NOT have a priority of 127 (FEH) since queue by task
priority only works for M8SN and M8SNW.

5.7 CANCELLING A MESSAGE

5.7.1 DESCRIPTION
To cancel a message sent to a task the receiver's TCB address and the "to be
cancelled" MB address must be known.

5.7.2 EXAMPLE
To cancel an MB whose address is‘TMBZ from a receiver whose TCB address is MCTCBA,
the code sequence would be:

LD DE,MCTCBA ;Set-up task's TCB addr
LD BC,TMB2 ;Set-up MB addr
CALL MBCAN

On return from M8CAN, a check should be made to verify that the MB was cancelled
from the receiver task's MB queue. If the Zero Flag is reset the cancel request
was successful; otherwise, the Zero Flag will be set to indicate an unsuccessful

request.
5.7.3 PROGRAMMING NOTES

Always check the Z Flag on return from the M8CAN Service to verify that the MB was
cancelled.

An unsuccessful cancel request indicates that the MB does not exist in receiver's
MB queue (which could mean that the message is currently being processed by the
receiver).

5.8 ISR PROCESSING

5.8.1 DESCRIPTION

Two services facilitate ISR processing; MBWINT AND M8PINT. MBWINT is for tasks
such as I/0 drivers which condition an ISR to start and execute until a
terminating event occurs (end of block, carriage return, character present, etc).
This will place the task into an interrupt wait state until an ISR process posts
the event being completed, MBPINT. The waiting task then becomes a ready task.

5-10

5.8.2 EXAMPLE
For a data entry driver to wait for an event of a character being entered, the
code sequence would be:

DEDRVR CALL M8RC VW ;Get next MB or wait if none
;available
Decode MB request command

LD HL,DBFFRC ;Driver buffer count addr

LD (HL),0 ;Initialize count to zero

LD HL,DBSPP ;Driver buffer starting pointer

LD (DBFFRP) ,HL ;Init buffer pointer to start addr

LD C,DEPRTI ;Get Data Entry Port Addr for
sInterrupt

LD A, INTE ;Get interrupt enable bit code

ouT (C),A ;Enable card's interrupt

CALL MBWINT ;Wait for character

; Data Entry Driver's ISR

DEDISR PUSH IX ;Save the registers
PUSH AF
PUSH BC
PUSH DE
PUSH HL
IN A, (DEINP) ;Input character
LD (DECTS),A ;Save in temp area
LD IX,DETCB ;Get Data Entry Driver TCB address
JP M8PINT ;Post "character in" event complete

5.8.3 PROGRAMMING NOTES

The posting interrupt event task MUST push the main register set, except for the
1Y register, before jumping to M8PINT.

5-11

Always JUMP to the M8PINT service.

If the wait and post interrupt services are used for non-driver ISR purposes, such
as a synchronization mechanism between task-task, then the wait and post processes
within these tasks MUST follow the same guidelines.

A task performing an M8WINT will be placed into an interrupt wait state until
another task or ISR process posts the event completion by an M8PINT service.

SECTION 6

MITE-80 DEBUG

6.1 INTRODUCTION

This section describes the functions and operation of MITE-80 DEBUG, a software
package which provides the user with a means of debugging programs running under
the control of MITE-80. MITE-80 DEBUG is a combination of 2 primary programs; a
modified MITE-80 and a modified DDT-80 (Designer's Development Tool 80). The
modified MITE-80 portion is the application version of MITE-80 with checkpoint
features added for debug purposes. The modified DDT-80 portion is the DDT-80
package of FLP-80DOS with additional commands added for MITE-80 service debug
purposes.

6.2 SOFTWARE CONFIGURATION

MITE-80 DEBUG is a program that is provided on a diskette, named M8ODDT.BIN[X],
where X is 16, 32, 48, or 64; the memory size in K (1024 bytes) of the debug
system. MITE-80 DEBUG is approximately 4000 bytes in size and resides at the top
of RAM as specified by [X]. In addition to program area, MITE-80 DEBUG uses 256
bytes of RAM for scratch RAM and temporary storage. This RAM resides at locations
FFOOH-FFFFH. An additional RAM area is used for a historical record of services
performed and requires 512 bytes of RAM (included in the 4000 bytes.)

The 256 byte RAM area is used by MITE-80 DEBUG for temporary storage, a push down
stack, and system data structures. This RAM also holds an image, or map, of all
“user's internal CPU registers, and a jump vector for all MITE-80 Services.

The 512 byte RAM area is used as a task history table. This table is a circular
list which contains the calling task registers, task address, and service name for
each MITE-80 service as it is entered or exited. This table provides a historical
trail of pertinent information as tasks utilize the MITE-80 services.

6-2

To preserve the state of the CPU for a user's program while debugging, MITE-80
DEBUG keeps an image or map of all the user's registers. This image or map is
referred to as the User Register Map. MITE-80 DEBUG installs or makes the CPU
registers equal to the user register map when control is transferred from MITE-80
DEBUG to a user program. MITE-80 DEBUG saves the user register map when MITE-80
DEBUG is commanded (breakpoint) to interrupt a user program. MITE-80 DEBUG allows
modification to this register map with the display and/or update memory command.
The user register map resides in the 256x8 RAM area, locations FFE6H thru FFFFH,
as follows:

Location User Register Location User Register
FFFF Program Counter (MSB) FFF2 F'
FFFE Progran Counter (LSB) FFF1 B
FFFD A FFFO c'
FFFC F FFEF D'
FFFB I FFEE E'
FFFA IF FFED H'
FFF9 B FFEC L'
FFF8 C FFEB IX (MSB)
FFF7 D FFEA IX (LSB)
FFF6 E FFES IY (MSB)
FFF5 H FFES8 IY (LSB)
FFF4 L FFE7 Stack Pointer (MSB)
FFF3 A' FFE6 Stack pointer (LSB)

6.3 COMMAND FORMATS

MITE-80 DEBUG operation is similar to that of DDT-80, and many of the commands are
identical to those of DDT-80. Further information on DDT-80 can be found in the
FLP-80DOS Operation Manual. Users who are already familiar with FLP-80D0S DDT-80
need only be concerned with the added commands and operational differences that
MITE-80 DEBUG provides. However, all of the commands are outlined in this section
with those commands identical to DDT-80 summarized. MITE-80 DEBUG recognizes
commands which consist of three parts:

1. A single letter identifer.

2. An operand, or operands separated by commas or blanks.

3. A terminator to either abort the command or cause it to be
executed.

In order to execute MITE-80 DEBUG, enter at the monitor level:
$MBODDTCR>

MITE-80 DEBUG will then prompt with a colon (:). Any of the MITE-80 DEBUG
commands may then be executed. MITE-80 DEBUG echos the command letter, prints a
space, and then waits for the user to key-in the appropriate operand(s) in the
format described below. A command is not executed until terminated by a carriage
return (or one of the special terminators described below for display and update
commands) and may be aborted at any time by a period. MITE-80 DEBUG automatically
supplies a line feed for the carriage return.

MITE-80 DEBUG may also be loaded and entered directly from DDT-80 by looking up
the track and sector address from a PIP directory command and wusing the
stand-alone loader in DDT-80 to load MITE-80 DEBUG. When using this method, the
entry point and 1load address for MITE-80 DEBUG can be determined from the
following table:

VERSION ENTRY POINT
16K 2B00
32K 6B00
48K ABOO
64K CBOO

6.3.1 COMMAND IDENTIFIERS
The following summarizes the 17 different single letter identifiers recognized as
command identifiers:

1.

o
]

Insert a breakpoint in the user's program (must be in RAM) which
transfers control back to MITE-80 DEBUG. This allows the user to
intercept his program at a specific point and examine memory and CPU
registers to determine if his program is working correctly.

2. C - Copy the contents of a block of memory to another location in
memory.

3. D - Display the history table of last Tasks executed and MITE-80 ser-
vices used.

4. E - Transfer control from MITE-80 DEBUG to a user's program.

5. F - Fill memory limits with an 8 bit data pattern.

6. H - Perform 16 bit hexadecimal addition and/or subtraction.

7. J - Snap shot a Task Control Block and/or a Message Block.

8. K - Breakpoint on a Task and/or a MITE-80 service.

9. L - Locate all occurrences of an 8 or 16 bit data pattern.

10. M - Display, update, or tabulate the contents of memory.

11. 0 - Set the offset constant.

12. P - Display and/or update the contents of an I/0 port.

13. Q - Quit MITE-80 DEBUG and return to the system Monitor.

14, R - Display the contents of the user registers.

6-5

15, V - Verify that 2 blocks of memory are equal.

16. W - Software single step (walk).

17. X - Duplicate output to printer device.
A1l of the above commands, with the exception of the D, J, K, and X commands, are
identical to the corresponding DDT-80 commands. A colon (:) prompt is used
instead of a period (.) as in DDT-80.

6.3.2 COMMAND OPERANDS

MITE-80 DEBUG command operands are described in this section. The user is
referred to the FLP-80DOS Operation Manual for additional information and
examples.

A command operand represents 4 hexadecimal digits; e.g. aaaa. MITE-80 DEBUG
allows arithmetic expressions (addition and/or subtraction). The 4 hexadecimal
digits, aaaa, can be calculated with a string of additions and/or subtractions.
The values in the string may be entered in one of the following forms:

1. 0-9, A-F hexadecimal digits

2. : a prefix of ":" before an alphacharacter specifies that the
next 1 or 2 characters are mnemonic and is equivalent to 4
hex digits

3. § represents current address +l1. This is valid for the M

command and is used to calculate relative jump displace-
ments.

4, L a prefix of "L" before a character specifies that the ASCII
value of the next 1 or 2 characters is to be used.

5. R a prefix of "R" specifies the relative address. This causes
the offset specified by the 'O' command to be added to the
number entered.

6. XXXXXX xxxxxx is 4 to 6 alphanumeric characters which represent a
MITE-80 Service call Tlabel which is to be used as the
comnand operand. This form 1is only valid for the 'K'
command.

An equal sign '=' may be entered at any time within the string to display the
operand value as 4 hexadecimal digits.

Examples of typical operands are:

1. A4F7F The operand value is equal to 4F7FH.

2. :PC The mnemonic PC is equivalent to address FFFEH and the
operand value is equal to the contents of FFFEH and
FFFFH.

3. 5038-5000 The operand value will be 38H.

4. 5038-5000=0038 The same as 3 except '=' was entered to display the

operand value.

5. 5038-% If current address = 5000H, then $=5001H and the operand
value equals 37H.

6. LAB=4241 Operand is equal to the ASCII value of 'AB'.
7. R100=1100 Assuming offset = 1000H.
8. M8SN The operand value is used to obtain the address of Send

Message Service.

A mnemonic is composed of 1 or 2 characters following a colon (:) and represents a
4 hexadecimal digit address. Table 6-1 lists the mnemonics recognized by MITE-80

6-7

DEBUG. Mnemonics are equivalent to a 4 hex digit address and the data at that
address may represent either a single or double byte value (marked by * in the
table). Table 6-2 lists the MITE-80 service call labels recognized by MITE-80
DEBUG. The labels are equivalent to 4 hex digits which represent the address of
the service. If a command requires more than one operand, those operands have to
be separated by either a blank or a comma.

6-8

TABLE 6-1

MNEMONICS RECOGNIZED BY MITE-80 DEBUG.

Unrecognized mnemonics are resolved with a value of zero.

MNEMONIC ADDRESS REPRESENTED DATA SAVED AT THAT ADDRESS
BY THE MNEMONIC

:PC* FFFE User's PC Register
:A FFFD User's A Register
:F FFFC Usér's F Register
I FFFB User's I Register
(IF FFFA User's IFF Register
:B FFF9 User's B Register
:C FFF8 User's C Register
:D FFF7 User's D Register
(B FFF6 User's E Register
:H FFF5 User's H Register
:L FFF4 User's L Register
:A! FFF3 User's A' Register
:F! FFF2 User's F' Register
:B! FFF1 User's B' Register
:C' FFFO User's C' Register
:D! FFEF User's D' Register
:E! FFEE User's E' Register
tH' FFED User's H' Register
L FFEC User's L' Register
(IX* FFEA User's IX Register
(IYy* FFE8 User's IY Register
:SP* FFE6 User's SP Register

* = 2 byte mnemonics

6-9

TABLE 6-2

MITE-80 SERVICE CALL LABELS RECOGNIZED BY MITE-80 DEBUG

Service Represents Service of

Label

M8SN Send a message to a task.

MBSNW Send a message to a task and wait for a message
to be available.

M8RSN Resend a message to a task.

MBRSNW Resend a message to a task and wait for a message
to be available.

M8RCV Receive a message if one is available for calling
task.

MBRCVW Receive a message, otherwise wait until one is
available.

MBFWD Forward a message to a task.

MSFWDW Forward a message to a task and wait for a mes-
sage to be available.

MSRET Return a message to the sending task.

MBRETW Return a message to the sending task and wait un-
til a message is available.

M8CAN Cancel a message sent to a task.

M8FIND Find the receiver address of the specified task
name.

MBWINT Wait for an interrupt event to be posted.

MBPINT Post an interrupt event which is completed.

MBENAI Enable CPU interrupts.

M8DISI Disable CPU interrupts.

6-10

6.3.3 COMMAND TERMINATORS

The command terminator immediately follows the operand(s) and signals MITE-80
DEBUG that the command has been entered. Depending on the terminator, MITE-80
DEBUG will do one of the following:

Terminator Action

1. <RETURN KEY> Carriage return. MITE-80 DEBUG will perform the
command entered.

2. N Carat or up arrow. This terminator is valid only
for the M and P commands. When updating a memory
lTocation (M) or a port (P), it signals MITE-80
DEBUG to display the contents of the location or
port just updated.

3. . Period. MITE-80 DEBUG will abort the command,
enter the command mode and be ready to accept
another command.

4, / Slash. This terminator is valid only for the

M command. This causes the data entered to
replace the old data, then return to the command
mode. If no data was entered, it is treated

as a carriage return.

NOTE--Anytime erroneous input is detected, a question mark (?) is printed and
MITE-80 DEBUG returns to the command mode.

6.4 DETAILED COMMAND DESCRIPTIONS

This section describes each MITE-80 DEBUG command in detail. The command format
is shown, followed by a description and examples. However, for those commands

6-11

which are identical to DDT-80, their sections are only highlighted and the user is
referred to FLP-80DOS Operations Manual for additional information and examples.
For the purpose of this section, the conventions used are:

1. aaaa,...,zzzz denotes 4 hexadecimal digit operand value.

2. t denotes the command terminator; carriage return, carat,
period, or slash.

30 underline denotes the portion of the command entered by
the user.
4, <CR> Denotes the carriage return character (ODH).

6.4.1 B COMMAND, BREAKPOINT COMMAND

The breakpoint command causes the setting of a "trap" or breakpoint within the
user's program. Upon encountering the breakpoint, the user's program will trans-
fer control back to MITE-80 DEBUG where the vregisters, I/0 ports, memory
contents,service call histogram, TCB's amd MB's may be inspected. Breakpoints may
be set only in RAM, not ROM.

6.4.1.1 FORMATS

:B aaaat Set breakpoint at address aaaa.
:B Raaaat Set breakpoint at relative address aaaaH.
:Bt Clear any previous breakpoint.

6.4.1.2 DESCRIPTION

The user types the command identifier B followed by the address where it is de-
sired to place a breakpoint. Upon entering carriage return MITE-80 DEBUG proceeds
to:

6-12

1. Remove any pre-existing breakpoint by restoring user's code.

2. Extract and save 3 bytes of the user's program at the breakpoint ad-
dress.

3. Place the 3 bytes at the breakpoint address with a breakpoint sequence.
(This sequence consists of a 3 byte JP instruction to return to the
breakpoint entry of MITE-80 DEBUG).

MITE-80 DEBUG then types a line feed and a colon ":" to return to the command
mode. The user may now initiate execution of his program by using the execute
command. When the address specified by the breakpoint command is encountered,
control is transferred to MITE-80 DEBUG where the following actions are taken.

1. The three bytes of user code replaced by the trap instruction are re-
stored.

2. All registers are recorded in RAM storage within MITE-80 DEBUG.

3. MITE-80 DEBUG types: the breakpoint address (Program Counter), and the
values of the A and F registers for short format output or all internal
CPU registers for long format output. If the offset command "0" had
been executed, the relative PC is also printed.

4, MITE-80 DEBUG waits for the user to enter a "." to return to command
mode or carriage return/line feed to begin "walking". (See W command)

A breakpoint can be cleared by executing its address or entering the B command
with no operands. If the user misses a breakpoint while executing a program, the
3 bytes of breakpoint code must be replaced by executing the address of the
inserted breakpoint (using E command). If the RESET Switch was used, then MITE-80
DEBUG must be reloaded along with the user program being debugged. The set break
point command and execute command are closely related and are normally used
together during the debug process for executing sections of a program and then

6-13

evaluating the registers for correct data.

There are certain characteristics of the MITE-80 DEBUG breakpoint facility which
the user should be aware of during debugging. The only difference between MITE-80
DEBUG and DDT-80 breakpoint is if the MITE-80 DEBUG package is loaded into RAM
instead of PROM, then care must be taken to not breakpoint within MITE-80 DEBUG
itself. Refer to the FLP-80DOS Operations Manual for common characteristics.

6.4.2 C COMMAND, COPY MEMORY BLOCKS

The copy command permits any block of memory data to be moved to any area of
‘memory. The move may be forward or backward and the new block may or may not
overlap with the original memory block.

6.4.2.1 FORMAT

:C aaaa,bbbb,cccct Copy memory locations aaaa through bbbb

inclusive to the memory block starting at ad-
dress cccc.

6.4.2.2 DESCRIPTION

The user enters the command identifier C followed by the starting address aaaa and
ending address bbbb of the block to be moved, followed by the starting address
cccc of the block receiving the data. The operands may be absolute or relative
and are separated by commas or blanks. Upon terminating with a carriage return,
MITE-80 DEBUG prints a line feed, performs the requested copy operation, and then
prints a colon ":" to indicate that it is ready to accept another command. The
data copied is not displayed.

6.4.2.3 EXAMPLES

:C 100,200,1200<CR> Copy memory Tocation 100H through 1300H.

:C 100,200,150<CR> Copy memory 1locations 100H 150H through 250H
(overlapping copy) .

6-14

:0 100<CR> Set relative offset to 100H.
:C RO,R100,R50<CR> This would be the same as the previous copy ex-
ample.

Entire programs or subroutines may be moved around in this way and still execute
properly in their new locations if they contain self relocating code (i.e. use
only relative jumps). Care should be taken to copy complete instructions on both
ends of the block when copying programs, and any relative branch instructions con-
tained within a block to be moved should not branch outside the block. If the
second operand entered (bbbb) is smaller than the first (aaaa), a question mark
prints out (?) and control returns to command mode.

If the MITE-80 DEBUG package is loaded into RAM instead of PROM, care must be
taken not to copy memory locations into the MITE-80 DEBUG memory locations.

6.4.3 D COMMAND, DISPLAY HISTORY TABLE

The History Table display command allows display of the history table of MITE-80
services most currently executed by a user program. The MITE-80 service, task
calling the service, type of action (exit or entry), and task's main register set
contents are displayed by this command. Tasks with a priority in the range 0 to
15do not have their service calls recorded in the history table.

6.4.3.1 FORMATS

Dt Display entire history table.

:D aaaat Display last aaaa history entries.

6.4.3.2 DESCRIPTION
The user enters the command identifier D for history display followed by an

6-15

optional 1 to 2 hex digits for the number of last history entries to be displayed.
Upon terminating with a carriage return, the specified number of Tast history
entries will be displayed with a heading to label the table's contents. The
maximum number of history entries is a user-specified system generation value.
For console devices having 24 display lines, the user should specify 22 entries
which result in a maximum hex value of 1l6H. For each MITE-80 service called
during the program execution, an entry into the history table will occur. When the
maximum number of table entries has been reached, the next entry will replace the
oldest entry in the table. The table will always contain the last 32 service
calls executed. Once the history table is displayed, a colon ':' will be
displayed to indicate that it is ready to accept another command.

6.4.3.3 EXAMPLE

:D 5LR>

ADDR TCB NAME PC IX AF BC DE HL SERVICE
AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa M8SN E
BF52 504C LP aaaa aaaa aaaa aaaa aaaa aaaa MBRCVW X
BF52 504C LP aaaa aaaa aaaa aaaa aaaa aaaa MBRCVW E
AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa M8SN X
AOOO 4241 AB aaaa aaaa aaaa aaaa aaaa aaaa MBRCWW E

The history table heading label and contents are:

ADDR is the TCB address of the calling task in hexadecimal.

TCB is the calling task name in hexadecimal.

NAME is the calling task name in ASCII, a non printable ASCII
character will be denoted by '.' (period).

PC is the program counter contents and represents the location

within the task calling the service.

6-16

IX-HL is the register contents of the task on entry to or exit from
the service.

SERVICE is the MITE-80 service called. The next character is the
direction between task and service, E indicates entry to serv-
ice, X indicates exit from service.

6.4.4 E COMMAND, EXECUTE A USER'S PROGRAM The execute command is used to begin ex-
ecution of all programs during debug sessions.

6.4.4.1 FORMATS
:E aaaat Transfer control to the program starting at address aaaa.

Et Transfer control to the address specified by PC in the
register map.

6.4.4.2 DESCRIPTION

To cause execution of a program, the user types the identifier E followed by the
desired entry address of the program. Upon terminating with a carriage return
MITE-80 DEBUG will Toad the user's internal registers from the saved register map
then transfer control to the program entry point. (It is therefore possible to
enter a program with preset values in the registers if desired.) Since the
register map 1is wused for saving internal registers when a breakpoint is
encountered, the contents of the register map reflects the effect of the last
instruction before the breakpoint was encountered. If no entry address is
specified after the E command, MITE-80 DEBUG will transfer control to the address
specified by PC in the user's register map.

6.4.4.3 EXAMPLES

:E 1200<CR> Execute the program starting at location 1200H.

6-17

To return control to MITE-80 DEBUG, the wuser's program must encounter a
breakpoint. If the RESET button is pressed, then the reloading of MITE-80 DEBUG
will be required in order to return to debugging.
$MBODDTLCR> (User pressed RESET and enters Monitor).
Enter MITE-80 DEBUG.
:M :PCLCR> Examine user's program counter (PC).
:PC 62FF 1220<CR> Set user's PC to 1220H.

:E<CR> Execute program starting at location 1220H.

The execute command may also be used together with the breakpoint command to ex-
ecute portions of programs while debugging.

6.4.5 F COMMAND, FILL MEMORY COMMAND
The fill command permits a block of memory to be filled with a data constant.

6.4.5.1 FORMAT

:F aaaa,bbbb,cct Fill memory locations aaaa through bbbb inclusive

with cc.

6.4.5.2 DESCRIPTION

The user enters the command identifier F followed by the starting address aaaa and
ending address bbbb, followed by the data cc. The operands are separated by com-
mas or blanks. Upon terminating with a carriage return, MITE-80 DEBUG prints a
Tine feed, performs the requested fill operation and then prints a colon ":" to
indicate that it is ready to accept another command.

6-18

6.4.5.3 EXAMPLES

:F 100,FFF ,5A<CR> Insert a 5A in every memory Tlocation between and
including 100H and FFFH.

:0 100<CR> Set relative offset to 100H.

:F RO,REFF,5A<CR> Fill same addresses as first fill example.

If the MITE-80 DEBUG program is loaded in RAM instead of PROM, then care must be
taken not to fill memory in its area.

6.4.6 H COMMAND, HEXADECIMAL ARITHMETIC
The arithmetic capability of MITE-80 DEBUG allows hexadecimal addition and sub-
traction.

6.4.6.1 FORMAT

:H +aaaa=bbbb+...+yyyy=zzzzt Perform hexadecimal arithmetic.

6.4.6.2 DESCRIPTION

The user enters the command identifier and then enters the arithmetic expression.
Only + and - are legal operations. If the sign of the first operand is omitted,
it is assumed +. The equal sign causes the 4 digit (least significant 4 digits)
result to be displayed. When the terminator is entered MITE-80 DEBUG returns to
accept another command. All operands may be absolute or relative (with 'R’
prefix).

6.4.6.3 EXAMPLES

:H 5000-4FFF=0001<CR> Subract 4FFFH FROM 5000H.

6-19

:H 5000+4FFF=9FFF<CR> Add 4FFFH to 5000H.

6.4.7 J COMMAND, SNAP SHOT COMMAND

The Snap Shot command allows the displaying of the MITE-80 queue structure of
TCB's and MB's along with their respective contents.

6.4.7.1 FORMATS

Wt Snap shot the entire queue.
:J Lxxt Snap shot the task named "xx".
:J aaaat Snap shot the hex task name aaaa

6.4.7.2 DESCRIPTION

The user enters the command identifier J for snap shot followed by an optional
operand which specifies the desired task to be snap shot. If the TCB name is
omitted, the entire TCB queue will be snap shot. For a specified task name snap
shot, the display will show the TCB's contents followed by all MBs and their
contents which exist in the TCB's MB queue. The MBs which are present in the
tasks queue are displayed in the order as they appear in the queue. The snap shot
tabulation may be stopped at any time by entering a period "." on the console or
temporarily suspended by entering a space " " on the console.

6.4.7.3 EXAMPLE
:J L1BKCR>

ADDR ST PR LINK MPTR SPTR NAME *** TCB ***
0104 05 05 56A7 0184 0178 4231 1B

6-20

PC IX

BC DE HL IY

07EF 0000 0000 0000 0000 0000 0000

ADDR ST PR LINK RPTR SPRT DATA *** MB ***
0184 00 03 2152 0004 0084 018E

ADDR ST PR LINK RPTR SPTR DATA *** MB ***
2152 00 09 FF2C 0104 157F 59AC

In this example a task whose name is '1B' is snap shot. The TCB contents are dis-
played along with the MB's present in the task's MB queue. The last MB will
always have its link point to the MITE-80 null MB, which is not displayed. This

is also true for the last TCB. The structure header labelling is as follows:

For

For

TCBs:

ADDR
ST

PR

LINK
MPTR
SPTR
NAME

PC-1Y
AIFI_HILI

MBs:

ADDR
ST
PR
LINK

is the Address in memory where the TCB is located.

is the Status field.

is the Priority field.

is the Link field.

is the Message Pointer field.

is the Stack pointer field.

is the Name field, in hex followed by the ASCII equivalent
characters. If non-printable characters exist, then a '.'
(period) will be displayed.

the register contents of the task, the main register set.

is the alternate register set.

is the Address in memory where the MB is located.
is the Status field.

is the Priority field.

is the Link field.

6-21

RPTR is the Receiver Pointer field.

SPTR is the Sender Pointer field.

DATA is the Data field, only the first 2 bytes of the field is dis-
played.

6.4.8 K COMMAND, SERVICE BREAKPOINT COMMAND

The Service Breakpoint command allows for the setting of a "trap" or breakpoint on
a specified task and MITE-80 Service. Upon encountering the service breakpoint,
the program will transfer control back to MITE-80 DEBUG where the registers, 1/0
ports, memory contents, service call history, TCBs and MBs many be inspected. The
service breakpoints may be set on tasks and/or services regardless of whether the
programs reside in RAM or ROM. Multiple breakpoints are allowed.

6.4.8.1 FORMATS

:K aaaa,bbbbt Breakpoint on MITE-80 service bbbb for task name
aaaa.

:K ,bbbbt Breakpoint on MITE-80 service bbbb for all tasks.

:K LALLt Breakpoint on all MITE-80 services for alltasks.

Kt Clear all previous service breakpoints.

6.4.8.2 DESCRIPTION

The user types the command identifier K followed by the task name and MITE-80
service where it is desired to place a breakpoint. The operands are separated by
commas or blanks. Upon entering carriage return, MITE-80 DEBUG proceeds to mark
the selected task and service as a breakpoint. Eash task name can have different
and multiple services specified as breakpoints.

MITE-80 DEBUG then types a line feed and a colon ":" to return to the command

6-22

mode. The user may now initiate execution of his program by using the execute 'E’
command. When the task name and the service specified by the breakpoint command
is encountered, control is transferred to MITE-80 DEBUG where the following
actions are taken:

1. A1l user registers are recorded in RAM storage within MITE-80 DEBUG.

2. MITE-80 DEBUG displays the same information as provided in the D com-
mand's history display: TCB address, task name, service, direction of
service process, task address, and task register contents.

3. MITE-80 DEBUG displays a colon ':' indicating it is ready for the next
command .

A service breakpoint can be cleared only by entering the K command without any
operands. The breakpoint is not cleared by execution of the trap.

There are certain characteristics of the K command breakpoint facility which the
user should be aware of during debugging:

1. The breakpoint all task feature is only valid on tasks whose priority is
greater than 15 (OFH). This is done so that the higher priority tasks,
such as system tasks like the timer handler, are not prevented from ex-
ecuting when required. If breakpointing on these higher priority tasks
is desired, then the breakpoint must be explicitly set for the task
name.

2. An error indication is given if the user attempts to breakpoint a task
name and/or service not in the system.

3. Tasks which are created after a :K ,bbbb type command will not break-
point.

6.4.8.3 EXAMPLES

6-23

For command inputs:

:K LAB ,M8SNW<LCR> breakpoint on M8SNW for task name 'AB'.

:K 4F27 ,MB8RCVLCR> breakpoint on MBRCV for hex task name 4F27.

:K LCD,ALL<CR> breakpoint on all services for task name 'CD'.
:K ,ALL<ZCR> breakpoint on all services for all tasks.

:K <CR>

For a session:

clear all breakpoints.

:K LAA,MBSNCR>

:E 0<CR>

% BREAK POINT, TCB=004E 4141 AA
ADDR TCB NAME PC IX AF BC DE HL SERVICE
004E 4141 AA 016A 0000 0000 014E 0OCE 0000 M8SN X

The table heading label and contents are:

ADDR
TCBNAME

PC

IX-HL

SERVICE

is the TCB address of the calling task, in hexadecimal.

is the calling task name in hexadecimal and ASCII, non-printable
ASCII character will be denoted by a '.' (period).

is the program counter contents and represents the Tlocation
within the task calling the service.

is the register contents of the task on entry to or exit from the
service.

is the MITE-80 service trapped on and the direction between
taskand service, E indicates entry to service, X indicates exit
from service.

6-24

6.4.9 L COMMAND, LOCATE 8 OR 16 BIT DATA PATTERN The locate command permits locat-
ing every occurrence of an 8 or 16 bit data pattern in a block of memory.

6.4.9.1 FORMATS

:L aaaa,bbbb,cct Locate and print the address of every occurrence of

cc from aaaa to and including bbbb.

:L aaaa,bbbb,cccct Locate and print the address of every occurrence of

the 16 bit pattern cccc from aaaa to and including
bbbb.

6.4.9.2 DESCRIPTION

The user enters command identifier L followed by the starting address aaaa and en-
ding address bbbb, followed by the data cc to be located. The operands are
separated by commas or blanks. Upon terminating with a carriage return, MITE-80
DEBUG prints a line feed, then every address between aaaa and bbbb which contains
cc is printed on the console. For 16 bit patterns, the address of the most
significant byte is displayed. When the operation is complete, MITE-80 DEBUG
prints a colon ":" to indicate that it is ready to accept another command.

6.4.9.3 EXAMPLE

:L 0,750,35<CR> Locate every occurrence of 35H from address OH thru
750H.

0052 35 Every Location containing 35H from OH thru 750H is

00F3 35 printed.

0542 35

0750 35

6.4.10 M COMMAND, DISPLAY AND UPDATE MEMORY
This command allows display and/or modification of specified memory locations or
the CPU registers.

6-25

6.4.10.1 FORMAT
:M aaaat

6.4.10.2 DESCRIPTION

The user enters the command identifier M. MITE-80 DEBUG collects the command and
prints a space. The user then enters the operand aaaa followed by a terminator.
MITE-80 DEBUG responds by printing the memory address on the next line. This is
followed by the contents of the particular address in hexadecimal. If the content
is to be changed, the new value is entered. The new value entered is an operand
as previously described except that the appropriate number of hexadecimal digits
(2 or 4) is selected.

6.4.10.3 EXAMPLE
If the memory location 5001H is to be changed to FFH:

:M 5001<CR>

5001 A3 FF<CR> one memory location was changed, therefore the least
significant 2 hex digits are used as the operand.

5002 A4 . The period exits the M command and will allow for an-

other command to be entered.
If the PC register is to be changed to 7F50H:

:M :PC<CR> The PC register is a 4 hex digit (16 bit) register,
therefore the least significant 4 hex diQHts are used as
the operand.

:PC 7F50 . Exit the M command.

For additional information and examples on the M Command, refer to the FLP-80DOS
Operation Manual, MK78557.

6-26

6.4.11 M COMMAND, TABULATE MEMORY
This command allows the user to display, but not change, a block of memory. Up to
16 values are printed per line.

6.4.11.1 FORMAT
:M aaaa,bbbbt tabulate memory Tocations aaaa through bbbb.

6.4.11.2 DESCRIPTION

The user enters the command identifier M followed by the starting (aaaa) and en-
ding (bbbb) addresses of the memory block separated by a comma or a blank. Upon
terminating with a carriage return MITE-80 DEBUG prints a line feed, and then
prints the contents of aaaaH to bbbbH inclusive with up to 16 values per line.
MITE-80 DEBUG then returns to the command mode. The tabulation inay be stopped at
any time by entering a period "." on the console. It may also be suspended by
depressing the space bar and resumed by depressing any other character key. When
the 'R' prefix is used, the relative address is printed before absolute.

6.4.11.3 EXAMPLES

:M 4100,4127<CR> display memory locations 4100H through 4127H inclusive.

4100 2B 90 12 20 00 B7 A5 21 10 94 04 20 CA B7 44 18 +.. seeleee o.D.
4110 81 11 34 21 07 94 17 45 12 55 A5 18 21 80 C5 55 ..4!...E.U..!..E
4120 90 OC A5 81 09 21 40 22!@"
MITE-80 DEBUG waiting for next command.
:0 4100<CR> set offset to 4100.
:M RO,R27<CR>
‘0000 4100 2B 90 12 20 00 B7 A5 21 10 94 04 20 CA B7 44 18 +.. veuleus .oD.

‘0010 4110 81 11 34 21 07 94 17 45 12 55 A5 18 21 80 C5 55 ..4!...E.U..!..E
‘0020 4120 90 OC A5 81 09 21 40 22!@"

6-27

6.4.12 0 COMMAND, SET OFFSET CONSTANT
The offset command is used to set a constant. This constant is added to any
operand entered with an 'R' prefix.

6.4.12.1 FORMAT

:0 aaaat set offset equal to aaaa.

6.4.12.2 DESCRIPTION

The user enters the command identifier O followed by the offset aaaa. Upon
terminating with a carriage return, MITE-80 DEBUG prints a lTine feed, saves the 16
bit offset, and then prints a colon ":" to indicate that it is ready to accept
another command. The offset can be cleared by entering the 0 command with no
operands. After the offset has been set, both relative and absolute addresses are
printed any time addresses are displayed and until the offset is cleared.

6.4.12.3 EXAMPLE
:0 1200<CR> Sets offset to 1200H.

6.4.13 P COMMAND, DISPLAY AND/OR MODIFY PORTS
This command allows the user to display and/or modify any of the possible 256 1/0
ports. The reader should note that some ports are output only and cannot be read.

6.4.13.1 FORMAT
:P aat Display port aa.

6.4.13.2 DESCRIPTION

The user enters the command identifier P followed by the port address aa and a
terminator. MITE-80 DEBUG responds by printing the port address and the value at
the port. If the value at the port is to be changed, the user enters the new
value. The new value entered is a 2 hexadecimal digit operand. When the user is

6-28

examining and/or modifying a port, the terminator signals the action MITE-80 DEBUG
is to take.

6.4.13.3 EXAMPLE

:P DI<CR> Program PIO Port 1AH (D1H) for BIT MODE.

D1 FF'Qf:? CFH sets 1A Control (DI1H) to BIT MODE. Port D1 is output
only.

D1 CF 7 Displays same port with new value.

DO 00 Aﬁij Qutput value AAH to Port DOH, then re-examine port.

DO AA . Exit the P command.

For additional information on terminator options and other examples, refer to the
FLP-80D0OS Operation Manual.

6.4.14 Q COMMAND, QUIT
The quit command is used to exit MBODDT and reboot the FLP-80DOS Monitor.

6.4.14.1 FORMAT
:Q

6.4.14.2 DESCRIPTION
The user enters Q to exit. The Monitor prints the reboot message.

6.4.14.3 EXAMPLE

:Q <CR> exit MITE-80 DEBUG.

6-29

MOSTEK FLP-80D0OS VX.X (DATE) Monitor reboot message
$ Enter Monitor (Monitor prompts with $).

6.4.15 R COMMAND, DISPLAY CPU REGISTERS
The display CPU registers command allows the user to examine the contents of all
user registers to the console.

6.4.15.1 FORMATS

Rt Print the contents of the CPU registers.

‘R 1t Print a heading to Tabel the CPU registers on one line,
on the next line print the contents of the CPU registers.

R 1,xt Print a heading to label the CPU registers and set the

long/short flag as follows: x=0 SHORT, x=1 LONG. Long
causes all registers to be printed after breakpoint and
single step. Short causes only PC and AF to be printed.
The LONG/SHORT FLAG remains set until changed by the 'R'
command.

6.4.15.2 DESCRIPTION

The user enters the command identifier R. If the user wants a heading to be
printed that labels the register contents, the operand of 1 needs to be entered.
If no heading is desired, then no operand is entered. If the 'O' command has been

used to set an offset, the relative PC is also printed.
6.4.15.3 EXAMPLES

:R <CR> Display contents of CPU registers.

AC00 0100 0104 CFB3 CO9A FFEE EDF6 9C3E C3DC FE9B D6ED F1BE FFB4
R 1<CR> Display contents of CPU registers with heading.

6-30

PC AF I IF BC DE HL A'F'B'C'"D'E' H'L" IX Iy S°P
A000 0181 0104 CFB3 0010 CO9A FFEE EDF6 C3DC FE9B D6EC FI1BE FFB4

For further information and examples, refer to the FLP-80D0S Operation Manual.
6.4.16 V COMMAND, VERIFY MEMORY

The Verify command allows for the comparing of two memory blocks to detect any
differences. ‘

6.4.16.1 FORMAT

:V aaaa,bbbb,cccct Compare memory Tlocation aaaa to bbbb with the

memory starting at cccc.

6.4.16.2 DESCRIPTION

The user enters command identifier V followed by the starting address aaaa and en-
ding address bbbb, followed by the starting address cccc of the second menory
block. The operands are separated by commas or blanks. Upon terminating with a
carriage return, every address from aaaa to bbbb is compared with the cor-
responding address starting at cccc. Any discrepancies are printed on the console
(address data address data). When the comparison is complete, MITE-80 DEBUG
prints a Tine feed and a colon ":" to indicate that it is ready to accept another
command.

6.4.16.3 EXAMPLES

:V 0,FF,1000<CR> Compare every location from OH to FFH inclusive with
0000 AA 1000 BB locations starting at 1000H. Al1 differences are dis-
0038 55 1038 54 played on the console.

6-31

6.4.17 W COMMAND, WALK THROUGH A PROGRAM

The walk command, also known as software single-step, allows stepping through a
program which is contained in RAM. The user's registers are saved and displayed
after each step.

6.4.17.1 FORMAT

:W aaaa,nn,xxxt ' Begin software single-step at address aaaa, for nn

steps, xxx = HD requests register heading.

6.4.17.2 DESCRIPTION

The user enters the command identifier W followed by the starting address aaaa,
the number of steps to take nn, and the options operand xxx. The operands are
separated by commas or blanks. Upon terminating with a carriage return, MITE-80
DEBUG begins "walking" through the user's program (RAM resident). After each step
the user's registers are displayed (See 'R' command). When nn steps have been
taken, MITE-80 DEBUG waits for the user to enter a carriage return, line feed,
space, or a period ".". A carriage return causes the next instruction to be
executed and wait again for input. A line feed causes a register heading to be
printed before the register print out. A space causes single stepping to continue
for 256 instructions or until another space is entered to stop stepping. If nn is
omitted, the default is 1. If aaaa is omitted, the last value of the user's
program counter (:PC) is used to begin "walking". The stepping may always be
stopped by entering any of the characters described above. When the "address
entered is relative, the PC' is also printed (relative PC).

Restrictions to W Command:
1. Only operates with programs in RAM.

2. Cannot CALL or RESTART to an address one or two locations prior to the
CALL or RESTART.

3. Walking through self-modifying code will generally not work.

6-32

6.4.18 X COMMAND, DUPLICATE OUTPUT TO PRINTER DEVICE The duplicate command allows
the duplicating of MITE-80 DEBUG output to console to also be outputted to the
printer. This command is useful when outputting a snap shot (J Command) or
history table (D Command) results.

6.4.18.1 FORMAT

Xt Duplicate output to printer device along with console de-
vice.
Xt Output to console device only.

6.4.18.2 DESCRIPTION

The user enters the command identifier X followed by the terminator of carriage
return. M8ODDT will then duplicate all console device output to the printer de-
vice as well if the console device was last designated for output only. If the
console device and printer device were last designated for output, then output
will be Timited to the console device only. The output duplicate capability is
useful for dumping large amounts of output from commands such as J (Snap Shot) or
D (History Table), or M (Memory). The X command would be entered just prior to
the command which will produce the large output, and then the X command is entered
again after output to limit output back to the console device. Oh loading MITE-80
DEBUG, the output is always defaulted to the console device. If output is given
to the printer device and the device is off-1line, the console device will beep for
5 seconds. If the user does not bring the printer device on-line within the 5
seconds, the output will be automatically switched to the console device.

6.4.18.3 EXAMPLE

Input Qutput (C = Console)
Device Device (P = Printer)
C ¢ B <CR> Remove all breakpoints.
C C :X <CR> Duplicate output to printer device.
C&P D 15<CR> Display last 21 (decimal) history table ent-

ries.

6-33
The history table 1is output to the printer
and console

C&P : X <CR> Limited output to console device.
C :K LTA,M8RETLCR> Breakpoint on MBRET for task name 'TA'.

6.4.19 PROGRAMMING NOTES

The following is a list of items in MITE-80 DEBUG that could affect a program the
user is writing and debugging:

The user stack pointer is set by MITE-80 DEBUG on power-up and reset (SP=FFAAH).

MITE-80 DEBUG uses 6 locations on the user's stack for temporary storage when
transferring control to a user program (E command). The user's stack is left
unaffected and the stack pointer points to the correct value. The user needs to
be aware that 6 locations past the stack pointer are used.

When a breakpoint (B or K command) has been entered and not encountered while
running the program, the user must press reset to regain control. MITE-80 DEBUG
must be reloaded into RAM if the reset button is used. The breakpoint must be
cleared by executing the address at which the breakpoint was inserted or by typing
"B"<CR>.

To clear a program of all breakpoints, the user must remember that MITE-80 DEBUG
has 2 different breakpoint commands, B and K, and that both must be individually
cleared.

6-34

MBODDT can be re-entered after depressing the RESET button if there was no disk in
drive 0 and the resident DDT-80 printed 'DSK ERR'. To re-enter M80DDT enter:

.E XBOBKCR>

Where X is 2, 6, A, or C for the 16K, 32K, 48K, and 64K version respectively of
MBODDT. This allows the use of the M, J, and D commands to examine the state of
MITE-80 immediately before the RESET button was depressed. NOTE: do NOT attempt
to execute from this point without rebooting.

7-1

SECTION 7

CONFIGURATION REQUIREMENTS

7.1 OVERVIEW

This section outlines the requirements for configuring a MITE-80 system. The
areas covered include memory requirements, initialization requirements, user
specified configuration parameters, and MITE-80 macros.

7.2 MEMORY REQUIREMENTS

In order to compute the memory required for a MITE-80 system, the user must first
itemize all the software modules which will comprise the system such as MITE-80
nucleus, user tasks, utilities, device drivers, TCBs, MBs, and stack areas.The
determination of RAM or ROM program residency must also be made. Specific MITE-80
memory requirements follow and are outlined in ROM for program requirements and in
RAM for volatile requirements. However, the ROM area can be a RAM area
requirement if the user's application is an all RAM configuration.

7.2.1 MITE-80 NUCLEUS
The MITE-80 nucleus requires the following memory area:

ROM
RAM

500 bytes
14 bytes

The ROM area provides the memory necessary for all of the system services. The
RAM area provides the memory necessary for the executive's current system state
information needs. MITE-80 can reside anywhere within the 64K address range of
the Z-80.

7.2.2 USER TASKS
User tasks are tasks which perform the user's application functions. These tasks

7-2

can reside in either RAM, or ROM, or a combination of both. Tasks are readily
identifiable to MITE-80 by their TCB. Tasks require MBs in order to communicate
to other tasks.

7.2.3 UTILITIES

Uti]ities are modules which are directly callable from a task. That is, an MB is
not required to be used either to communicate with the task or to identify it to
the system. Utilities perform a user specified function. Utilities can reside in
ROM, or RAM, or a combination of both.

7.2.4 DEVICE DRIVERS

Device drivers are tasks which provide interface and operation to a peripheral
device and the user's tasks. The drivers can reside in either RAM, or ROM, or a
combination of both. MOSTEK supplied drivers are tasks and follow the TCB and MB
rules. For user designed drivers, it is recommended that a task design approach
be followed since priority Tlevels can be easily changed as user application
development conditions change.

7.2.5 TASK CONTROL BLOCK

Each task residing within the MITE-80 system must have a TCB. TCBs must reside in
RAM. An initialization process or a task can construct or transfer a TCB from ROM
to RAM. The size of a TCB can vary from task to task. However, the minimum TCB
size is 10 bytes. Any additional TCB bytes are defined by and dependent on the
specific task.

7.2.6 MESSAGE BLOCK

A1l inter-task communication is performed using an MB. MBs must reside in RAM. A
task can construct or transfer an MB from ROM to RAM prior to calling a system
service. The size of an MB can vary from MB to MB. However, the minimum MB size
is 8 bytes. Any additional MB bytes are defined by and dependent on the specific
task's application. The total amount of RAM required is the total number of bytes
of all the MBs which will be active in a system at any given time. Care should be
taken when calculating the total MB memory size. MBs which are known will be
inactive while others are active until their process is complete can share the
same memory area. The resultant memory size can then be less than the total of
all MBs. The MB RAM size need only be as large as the maximum number of MBs

7-3

active at any given time.

7.2.7 STACK

Each task must have a stack area. The stack must reside in RAM. The size of each
stack is dependent on the task's needs for nesting levels. However, the minimum
stack size is 16 bytes. This area is used by MITE-80 for register saving on
context switching and for register saving during interrupt occurrences. Care
should be taken when calculating the total stack size. Tasks can not share stack
areas. The total stack size is the sum of all the individual task's stack sizes.

7.3 TCB MACROS

To assist the user in configuring TCBs, 2 macros are provided: MTCB and ETCB. The
MTCB macro will build a TCB from user specified parameters at the macro defined
location. ETCB macro will build a TCB from user specified parameters and will
also build code to transfer the TCB from ROM to RAM. This latter macro is recom-
mended for use during initialization processes as it will queue the TCB into the
MITE-80 system for the user. Both TCB macros require the use of MOSTEK's MACRO-80
Assembler.

7.3.1 MTCB MACRO
This macro builds a TCB from user specified parameters starting at the location
where the macro is used.

7.3.1.1 FORMAT

MTCB NAME,RS,PR,STKS,EP,[IX],[AF],[BC],[DE],[HL],[IY],[AF'],[BC']3[DE'],[HL']

7-4

The parameter fields are:

NAME the name of the task, in 2 ASCII characters beginning with a
non-numeric character or a valid decimal or hexadecimal constant.

RS the register set used in the task, M for main register set only,
or A for full (all) register set. If this parameter is omitted,
M is assumed.

PR the priority of the task. I[f this parameter is omitted, the
priority of the creating task is assumed.

STKS the stack size of the task, in hexadecimal or decimal.

EP the task entry point address.

IX-HL' initial values for registers IX through HL' (optional).

I[f any of the parameters are incorrectly specified, an error message will be
printed. The TCB will still be built with any valid parameters. For those para-
meters in error their field entries will have zeroes.

7.3.1.2 EXAMPLE A
For a task name of TA using the main register set, a priority of 25, a stack size
of 100 bytes, and which is to begin execution at the label "ENTRY", the macro
would be coded as:

MTCB TA,M,25,100,ENTRY

The resultant assembly code would be:

Assembly Code User Parameter TCB Field
DEFS 100-16 100,M Stack size wminus main register
set area.
T0001 DEFW O -- Initial main register set up
DEFW O --
DEFW 0 --
DEFW O --
DEFW O --
DEFW ENTRY ENTRY Task entry point

TCBTA DEFB 005H M Status

7-5

DEFB 033H 25 Priority (25 * 2 + 1)
DEFW 0OGOOH -- Link

DEFW 00OO0GH -- Message Pointer

DEFW TO00O1 -- Stack Pointer

DEFM 'TA' TA Task Name

7.3.1.3 EXAMPLE B

For a task name of 4F7CH using the entire register set, a priority of 65, a stack
size of 40H bytes and which begins at the label "BEGIN", the macro would be coded
as:

MTCB 4F7CH,A,65,40H,BEGIN

The resultant assembly code would be:

Assembly Code User Parameter TCB Field
DEFS (04CH-22 40H Stack size minus full set area
reserved

T0001 DEFW O

DEFW BEGIN BEGIN Task Entry Point

TCB4F7CH DEFB 0O01H A Status
DEFB 083H 65 Priority (65 * 2 + 1)
DEFW 0O00OQOH -- Link
DEFW 0O0OOOH -- Message Pointer
DEFW TO0001 -- Stack Pointer
DEFW 4F7CH 4F7CH Task Name

7.3.1.4 PROGRAMMING NOTES

The MTCB macro should not be used to define a TCB which will initially reside in
ROM.

7-6

If the task requires no pre-defined values in its registers prior to the task ex-
ecution, then these need not be concerned with the macro call. However, the
Program Counter (parameter EP, entry point) MUST be set-up in the macro call.

7.3.2 ETCB MACRO

This macro builds a TCB from user specified parameters and also creates code which
when executed will transfer the TCB from ROM to RAM. The code denerated can be
part of a user's initialization program. An initial Tasks stack contents are also
built from user specified parameters. To install a task defined by an ETCB macro,
the user must execute the macro (i.e. the ETCB macro generates the instructions
necessary to create and install the task).

7.3.2.1 FORMAT

ETCB,ADDR,NAME ,RS,PR,STKS,EP,[IX],[AF],[BC],[DE],[HL],[IY],[AF'],[BC'],[DE'],[HL"]

The parameter fields are:
ADDR address of RAM to load TCB ROM imaye.

NAME the name of the task, in 2 ASCII characters beginning with a
non-numeric character or a valid decimal or hexadecimal constant.

RS the register set used in the task, M for main register set only,
or A for full (all) register set. If this parameter is omitted,
M is assumed.

PR the priority of the task. If this parameter is omitted, the
priority of the creating task is assumed.

STKS the stack size of the task, in hexadecimal or decimal.

EP the task entry point address.

IX-HL' initial values for registers IX through HL' (optional).

7-7

If the task does not require initial values in the registers, then the optional
parameters need not be specified. If only certain registers require initial
values, only their values need be specified. However, the proper parameter
positions must be adhered to by using commas (,) to separate them, including any
non-specified ones.

If any of the parameters are incorrectly specifed an error message will be
printed. The TCB will still be built with any valid parameters. For those
parameters in error their field entries will have zeros. Also, entries which are
not specified will have their entry set to a default value of zero. Trailing
parameters, however, will NOT have their entries set to zero if they are omitted.

7.3.2.2 EXAMPLE A
For a task to be loaded at address 1000H and with a name of LT using the main
register set, a priority of 30, a stack length of 32, an entry point of LTEP, with
an initial register values of IX = IOVECT, BC = 4752H, and IY = IBUFF, the macro
would be coded as:

ETCB 1000H,LT,M,30,32,LTEP,IOVECT,,4752H,,,IBUFF

The resultant code generated by the macro will transfer the specified TCB and
stack contents from ROM to RAM starting at the RAM address specified by address
parameter. Once the TCB and stack are transfered into RAM, the TCB will be
installed into the MITE-80 TCB queue.

7.3.2.3 EXAMPLE B

Multiple ETCB macros can be defined in succession and will occupy the RAM area
immediately following the last RAM Tlocation used from the previous macro. A
task's TCB and stack area will occupy a RAM area different from the last defined
address contained in ADDR, then ADDR can be re-initialized with the new desired
RAM transfer address. An example follows:

7-8

ETCB 4000H, Task A
ETCB 3 L] L] Task B
ETCB 6000H,. « « « « & Task C

In the above code sequence, Task A's TCB and Stack contents will be transfered to
RAM starting at RAM Tlocation 4000H. Task B's TCB and stack contents will be
transferd to RAM starting at the next available RAM address after the end of Task
A's TCB. Task C's TCB and stack pointer will be transfered to RAM starting at RAM
location 6000H.

7.4 TASK INSTALLATION

The following procedures will serve as a guideline for those users electing to
install a task into the MITE-80 system with their own designed code as opposed to
the ETCB Macro generated code. A TCB must first be created either by direct
coding or by the use of the MTCB Macro. The TCB must then be transferred into
RAM.The TCB is then installed into the MITE-80 system by sending it to the MITE-80
TCB queue as follows:

LD DE,M8TCBQ ;MITE-80 TCB QUEUE ADDRESS
LD BC,<TCB Address> ;"TO BE INSTALLED" TASK'S TCB ADDR
CALL M8SN

Note that in this code sequence the MITE-80 Send Message Service 1is used to
install the task. The MB Address is the to be installed task's TCB address, and
the Receiver Pointer is the MITE-80 TCB Queue adddress (M8TCBQ).

Care must be exercised when installing a task. The task's stack must already be
installed in RAM (refer to STACK INSTALLATION paragraph which follows).

7.5 STACK INSTALLATION
The following procedures will serve as a guideline for those users electing to

install a task's stack with their own designed code as opposed to the ETCB Macro
generated code. The initial stack contents must be Toaded into the proper stack

locations in order to assure proper register set-up at task run time. This order
is important since MITE-80 pops the registers off the task's stack prior to
providing CPU control to the task. To assist the user, the following table
provides a referenced stack Tabel offset to the corresponding register position:

Stack Pointer Offset (Decimal)
Main Set Only Full Set Register Position
- +0 L'
- +1 H'
- + 2 E'
- +3 D'
- + 4 c'
- + 5 B!
- + 6 F!
- +7 A'
+ 0 + 8 IY least significant byte
+ 1 +9 IY most significant byte
+ 2 +10 L
+3 +11 H
+ 4 +12 E
+5 +13 D
+ 6 +14 C
+7 +15 B
+ 8 +16 F
+9 +17 A
+10 +18 [X least significant byte
+11 +19 IX most significant byte
+12 +20 PC least significant byte
+13 +21 PC most significan byte

Note that since the Z80 uses a push down stack concept, the initial stack pointer
(that is the initial value loaded into the Task TCB's SPTR field) will be pointing
to the IY registers least significant byte if only Main Register set is used, or
the L' register if the full register set is used.

7-10

If a task does not require any initial register values to be set-up, then the user
need not be concerned with their set-up procedures. However, the PC value is the
minimum stack installation the user MUST perform. The PC value will contain the
task's entry point. The entry point is the first location where CPU execution
will begin when MITE-80 gives CPU control to the task.

7.5.1 EXAMPLE

To initialize a stack with a PC of entry point TASKEP, main registers, and
registers BC = 407FH, the code sequence for stack pointer TASKSP installaton would
be:

LD HL , TASKEP ; TASK ENTRY POINT ADDRESS

LD (TASKSP+12) ,HL ;INITIALIZE PC STACK VALUE

LD HL ,0407FH s INITIAL BC VALUE

LD (TASKSP+6) ,HL s INITIALIZATION BC STACK VALUE

7.5.2 PROGRAMMING NOTES

When installing a task, the installing task should be of a higher priority than
the to be installed task, if the installing task wants immediate CPU control
returned.

A task's stack MUST be initialized before the task's TCB is installed.

Stack initialization at minimum MUST initialize the stack's initial PC value
(Entry Point).

8-1

SECTION 8

MEMORY POOL MANAGER

8.1 INTRODUCTION
This section describes how to configure and use the MITE-80 Memory Pool Manager
software module. This Memory Manager provides a way to allocate and deallocate
different size memory blocks from a various number of memory pools. Application
uses of memory pools are buffer areas, temporary storage, and Message Blocks or
TCBs.
8.1.1 FEATURES

A. Provides central control over memory pools.

B. Allows up to 252 pools.

C. Each pool can have a different size memory block.

D. Up to 256 bytes allowed per memory block.

E. Unlimited number of memory blocks allowed for each pool.
8.1.2 SOFTWARE CONFIGURATION
The Memory Manager operates as a user callable routine. It is re-entrant and can
be used by as many tasks as the user has configured into the MITE-80 system. The
routines are provided in relocatable object format, and as such can reside at any

user desired memory location. This module consists of the following programs:

A. MBMMAL - Allocate a block of memory from a given pool to the caller.

8-2

B. M8BMMDE - Deallocate a block of memory from the caller and return it
to the appropriate pool.

C. MPOOL - A system generation MACRO to assist the user in defining and
developing the desired number of pool's and the desired
block size within each pool. The macro requires the use of
MOSTEK's MACR0O-80 Assembler.

The amount of memory required by the Memory Manager is dependent on the number and
types of pools configured. The following equations can be used to calculate the

RAM and program memory sizes required of a specific user configuration:

For Program Memory:

Total Bytes = 121 + (3 x Number of Pools)

For RAM Area:

Total Bytes = (6 x Number of Pools)

+ (Pool #1 Block Size x Pool #1 Number of Blocks)
+ (Pool #2 Block Size x Pool #2 Number of Blocks)
+ (Pool #3 Block Size x Pool #3 Number of Blocks)
N .
+

(Pool #N Block Size x Pool #N Number of Blocks)

8.1.3 POOL CONFIGURATION

A memory pool is a contiguous area of memory. A Memory block is a contiguous area
of memory within the pool. Multiple blocks of the same memory size comprise a
memory pool. A memory block size can range from 4 to 256 bytes, and the number of
blocks within a pool is limited only by user allotted memory. Multiple pools are
permitted and each pool should have a different block size. However, all blocks
within a pool must have the same block size. The number of pools allowed is
Timited to 252 pools.

8.2 CALLING CONVENTIONS
The format, description, and examples of how to allocate and deallocate a memory
block from a user program are outlined in this section. Two user calls are
provided for memory pool access;

MBMMAL - allocate a memory block from a pool.

MBMMDE - deallocate a memory block back to a pool.

8.3 M8MMAL - ALLOCATE MEMORY

8.3.1 FORMAT
The calling sequence is:

LD BC,<Number of bytes desired>
CALL M8MMAL

The Service will return:

HL
Z flag

address of block or 000CH
reset if available, set if unavailable

8.3.2 DESCRIPTION

The M8MMAL Service will search for an available memory block from a pool whose
block size is equal to or greater than the caller's requesting size, and return
the address of the allocated memory block if one is available. The Service will
search all pools starting with the pool being closest in memory block size to the
request until an available block is found or until no more pools exist. Registers
BC must contain the number of bytes, in binary, desired to be allocated. On
return, registers HL will contain the starting address of the memory block
allocated to user, and the Zero Flag will be reset. Otherwise if no memory block
is available, then registers HL will be zeroed and the Zero Flag will be set. The
Memory Manager uses 10 bytes of the calling task's stack for register saving. All
registers are preserved with the exception of HL and the Zero Flag.

8-4

8.3.3 EXAMPLE A
To request a memory area of 32 bytes the code sequence would be:

LD BC,00020H ;Set-up memory request for 32 bytes
CALL M8MMAL ;Request memory block allocation
JR Z,NBA ;dump if no block available

Note in this example that on return the Zero Flag was checked for block
availability.

8.3.4 EXAMPLE B
To request a memory area of 253 bytes the code sequence would be:

LD BC,000FDH
CALL MBMMAL
JR Z ,NBA

8.3.5 PROGRAMMING NOTES

The stack of the calling task MUST have 10 bytes available for use by the M8MMAL
Service. '

It is recommended that the calling task always check for memory block availability
on return from Service.

A Task using the allocated memory block MUST limit the use of the mewmory block to
the area within the requested size.

The address range of Memory Block allocated is the starting address (HL register
on return) plus the request size - 1.

8-5

8.4 MSMMDE - DEALLOCATE MEMORY

8.4.1 FORMAT
The calling sequence is:

LD HL,<allocated memory block address>
LD BC,<original number of bytes requested>
CALL M8BMMDE

The Service will return:
Z flag = reset (0) if deallocation successful, set if unsuccessful.

8.4.2 DESCRIPTION

The M8MMDE Service will return a memory block back to the proper memory pool. The
deallocated memory block will then be available for use by another task. Reyisters
HL must contain the memory block address allocated by the MBMMAL Service and the
BC registers must contain the original number of bytes requested when the M8MMAL
Service was called. On return the Zero Flag will be reset if the deallocation was
successful. Otherwise the Zero Flag will be set to indicate an unsuccessful
deallocation (this can result from a bad parameter being passed). The Memory
Manager uses 10 bytes of the calling task's stack for register saving. All
registers are preserved and restored with the exception of the Zero Flag.

8.4.3 EXAMPLE A
To Return an allocated memory area of 32 bytes at address 4CAOH, saved at
temporary location MBSAVE, the code sequence would be:

LD HL,(MBSAVE) ;Set-up allocated memory block address.
LD BC,00020H ;Set-up original byte count requested.
CALL M8MMDE ;Return memory block.

JR Z,DEFAIL ;Check if deallocation failed.

Note in this example that on return the Zero Flag was checked for deallocation
failure.

8-6

8.4.4 PROGRAMMING NOTES

The stack of the calling task MUST have 10 bytes available for use by the M8MMDE
Service.

It is recommended that the calling task always checks for deallocation failure on
return from Service.

A deallocation failure can occur from not providing the original allocated memory
block address and the original number of bytes requested from the M8MMAL Service.

8.5 M8POOL - MACRO
A macro is provided to assist the user in defining and developing memory pools.
The macro will produce the specified number of pools and blocks along with its
internal parameter requirements. The macro requires the use of the MOSTEK
MACR0-80 Assembler.

8.5.1 FORMAT

M8POOL Sizel,Blockl,Size2,Block2,Size3,Block3,...,SizeN,BlockN

Where: Sizel size of blocks for first pool

Blockl - number of blocks in first pool
Size2 - size of blocks for second pool
Block2 - number of blocks in second pool
Size3 - size of blocks for third pool
Block3 - number of blocks in third pool
SizeN - size of blocks for Nth pool
BlockN - number of blocks in Nth pool

8.5.2 DESCRIPTION
The M8POOL macro will produce the specified number of pools with their respective

block sizes all 1in one contiguous memory pool area. If multiple pools are
specified, then all of the pools will be located in one contiguous memory area.
The size parameters must be non-repeating, in ascending order, and in the range of
4 to 256. The block parameters must be a value greater than 0. If not, then the
size is ignored and that pool is not generated. Macro errors will result if
illegal conditions are specified.

8.5.3 EXAMPLE A
Correct use of macro is:

M8POOL 16,14,64,2,256,10

This will create 3 pools;

the first with 14 blocks of 16 bytes each,
the second with 2 blocks of 64 bytes each,
the third with 10 blocks of 256 bytes each.

Using the equation provided in the SOFTWARE CONFIGURATION Section, the total RAM
area required for these pools would be:

18 =6 x 3 for (6 x Number of Pools)
+ 224 =16 x 14 for (Pool #1 Block Size x Pool #1 Number of Blocks)
+ 128 = 64 x 2 for (Pool #2 Block Size x Pool #2 Number of Blocks)
+ 2,560 = 256 X 10 For (Pool #3 Block Size x Pool #3 Number of Blocks)
2,930 = Total RAM bytes required

8.5.4 EXAMPLES B
Incorrect uses of macro is:

M8POOL 16,4,64,2,32,12

The Size parameters are not in ascending order.

M8POOL 16,8,64

8-8

An invalid number of parameters is specified.
8.6 POOL CONSTRUCTION

To construct a pool or pools in a system, the user should follow this example
procedure:

INCLUDE MPOOL

ORG 04000H
mg8pOOL 16,12,32,4,64,8,128,8

The above sequence of code will create 4 pools starting at location 4000H.

9-1

SECTION 9

TIMER HANDLER

9.1 INTRODUCTION

This section describes how to configure and use the MITE-80 Timer-Handler Software
Module. The Timer Handler provides a means to time events using the MK3882 Counter
Timer Circuit (CTC) Chip. Application uses of the timer are event timeouts and
watchdog alert timeouts.

9.1.1 FEATURES
The Timer Handler features are:

A. Multiple timer handling capability.

B. User specified timer tick fate.

C. Control of 1 or multiple MK3882 CTC Chips.

D. Time range of 12.8 milliseconds to 13.98 minutes

E. Post interrupt event option on time-out occurrence.
F. Cyclic timer option on time-out occurrence.

9.1.2 SOFTWARE CONFIGURATION

The Timer Handler operates as a task executing under MITE-80. User tasks
communicate with the Timer Task by use of a Message Block (MB). The Handler is
provided in relocatable object format, and as such can reside at any user desired
memory location. This module is named M80TH. The module is re-entrant and can
control multiple CTC channels.

The macro file MB0SYS.MAC contains two macros to assist the user in defining the
Timer Handler's Task Control Block:

A. MIHTCB - a system generation macro to assist the user in defining
and developing the Timer Handler's TCB in RAM.

B. ETHTCB - a system generation macro to assist the user in defining
and developing the Timer Handler's TCB as a ROM based
skeleton which is copied RAM at execution time.

The Timer Handler requires an MK3882 CTC chip for timing purposes. The Timer
Handler can accommodate any number of CTC chips with from 1 to 4 timer channels
active within each chip. Each timer channel requires its own Timer Handler TCB
which can specify a different timer count rate. The tick rate is fixed at 12.8
milliseconds. This rate combined with 2 other user specified parameters (timer
rate and delay count) can produce a maximun delay time of 13.98 minutes. Ap-
plications requiring time delays greater than the maximum delay will have to use
an additional counter which is maintained and kept by the Task requiring the
capability.

9.1.3 MEMORY

The memory required by the Timer Handler is 195 bytes of program area and a
minimum 66 bytes of RAM area. The program area is for the timer initialization
and Timer Handler. The RAM area is for the timer handler's TCB and stack. Each
additional Timer Handler TCB requires 18 bytes of RAM plus 20 bytes for a stack.

9.2 CALLING CONVENTIONS

The format, description, and examples on how to set-up a timer MB and use of the
timer handler are outlined in this section.

9.2.1 TIMER MESSAGE BLOCK

Tasks requiring use of the Timer Handler communicate with it by an MB. The Timer
Handler MB format is:

9-3

Field| # of
Bytes | Offset| Name Field Data Type Source
1 1 0 STAT Status Binary User
2 1 1 PRIO - Priority Bit Encoded User
3 2 2 LINK Next MB Addr |Binary MITE-80
4 2 4 RPTR Timer Handler |Binary User
Pointer
5 2 6 SPTR Sender Pointer|Binary User
6 1 7 RQST Request Code |Bit Encoded User
7 1 8 PERD Period of Binary User
time

Field numbers 1 through 5 represent the standard MB format and fields 6 and 7 are
the timer handler's data field. Each field is further defined as follows:

9.2.1.1 STAT

The Status byte (STAT) is used by the Timer Handler for keeping record of the
remaining timer delay counts for this specific MB request. The user provides this
value, range of 0lH (for 1 tick) to FFH (for 255 ticks) and OOH (for 256 ticks),
and the timer handler will decrement the count once for each timer rate count.
The total delay time is:

Delay Time = Number of Delay Counts (STAT Field) x Timer rate count.

Refer to the MTHTCB MACRO paragraph of this section for information on the timer
rate count.

9.2.1.2 PRIO
The Priority byte (PRIO) contains user provided information on where in the timer

9-4

handler's message queue this MB is to be placed. Refer to Section 3, Data
Structures, for additional information on the Priority byte.

9.2.1.3 LINK
The Link word (LINK) is used by MITE-80 to link the MB into the task's message
block queue.

9.2.1.4 RPTR

The Receiver Point word (RPTR) is the task name the user has assigned the Timer
Handler TCB. For example; TH, TO, T1l, etc. This field contains the TCB address
of the Timer Handler.

9.2.1.5 SPTR
The Sender Pointer word (SPTR) is the task name of the sending task's TCB. This
field contains the TCB address of the sending task.

9.2.1.6 RQST

The Request Code byte (RQST) is the user-specified timer option which is to be
used for this timer service request. The Request Code determines what action the
Timer Handler is to take with the M8 when the STAT byte (delay count) becomes
zeroed, and what type of return service is to be used. There are 3 Request Code
options and are:

Request Code Time-0ut Action
OOH MBCAN and MBRET
01H MBCAN and M8PINT
02H M8PINT

Request Code OOH. When delay timeout occurs, this request code will cause the
Timer Handler to cancel the MB time request and return the MB to the sending task.

Request Code 0l1H. When delay time-out occurs, this request code will cause the
Timer Handler to cancel the MB time request and post an interrupt event complete
status for the sending task.

9-5

Request Code 02H. When delay time-out occurs, this request code will cause the
Timer Handler to RESET the MB's FIFO bit and to post an interrupt event complete
status for the sending task and will restart the delay time-out for the period
specified in the PERD field (Period). Tasks using this request code MUST perform
a MBWINT before delay time-out occurs. This sequence will be repeated every time
a delay time-out occurs until the sending task cancels the MB from the Timer
Handler's MB queue.

9.2.1.7 PERD

The Period byte (PERD) is required only if Request Code (RQST) of 02H is used.
This field is used by the Timer Handler to reload the STAT field (delay counts)
when delay time-out occurs. This user specified value is the new delay time-out
value to be used whenever the delay time-out occurs. The Period value range is
0lH, O2H, . . . , FFH, OOH.

The delay time is:
Delay Time = Period (PERD) x Timer Rate Count
9.3 USING THE TIMER TASK

To use the timer task, a using task must first construct an MB to be sent to the
Timer Task. This MB can either be contructed in RAM or already exist in ROM and
be transferred to RAM. The MB is sent to the Timer Task just as any MB is sent
between tasks. |

9.3.1 FORMAT
The calling sequence is:

LD DE,<Timer TCB address>
LD BC,<MB address>
CALL M8SN (or M8SNMW)

9-6

9.3.2 DESCRIPTION

The calling sequence is identical to that used for sending any MB to a task. The
M8SN or M8SNW Service can be used. CPU control will be returned to the calling
task if M8SN Service is used and it is still the highest priority ready task. Care
should be taken when specifying the time-out delay value since a tick down count
could occur moments after the MB is sent to the Timer Handler Task. An additional
delay count of 1 should be added to the desired delay time-out value to guarantee
a minimum delay (STAT or PERD fields).

9.3.3 EXAMPLE ‘
To use a timer service of return MB when a minimum delay time-out of 1 second
occurs (assume timer count rate of 51.2 milliseconds) the MB would be:

TMB DEFB 21 ; STAT
DEFB 03CH ; PRIO
DEFW 0OOOH ; LINK
DEFW TCBTH ; RPTR
DEFW EWTCB ; SPTR
DEFB O ; RQST

DELAY COUNT OF ABOUT 1 SECOND
OF 30

TIMER HANDLER TASK'S TCB
ERROR WATCHDOG TASK'S TCB
RETURN MESSAGE UPON TIME-OUT

The total delay time is:

n

Delay time = 21 x 51.2 = 1075.2 milliseconds.
The delay count of 21 was determined by:

1 second/51.2 milliseconds = 19.53 counts or 20 counts.
An additional 1 count (51.2 milliseconds) is added to guarantee a minimum timer
delay of 1.024 seconds and a maximum delay of 1.0752 seconds. The result is a
delay count of 21.

The program code sequence would be:

LD DE,TCBTH ; TIMER HANDLER TASK
LD BC,TMB ; TIMER MESSAGE BLOCK

CALL M8SN

9.4 MTHTCB MACRO

9-7

; SEND MB TO TIMER

A macro is provided to assist the user in defining and developing a RAM based

Timer Handler TCB. The macro will produce the specified timer parameters in the
proper TCB data structure. The macro requires the use of the MOSTEK MACRO-80 As-

sembler.

9.4.1 FORMAT

MTHTCB NAME,TICK,VECTOR ,PORT,PRIO, TMCNT

Where: NAME

TICK

VECTOR

PORT

PRIO

TMCNT

the name of the Timer Handler task in 2-3 ASCII characters
or a hexadecimal or decimal number.

the timer tick rate in binary from 01 (for 1 tick) to FFH
(for 255 ticks) and OOH (for 256 ticks) with each tick
equaling 12.8 milliseconds. Default value is 4 for 51.2
milliseconds.

the Timer Handler interrupt vector value (must be even).
Default Tabel is (NM)VECT.*

the port number for this Timer Handler in 2 hexadecimal
digits or a global label. Default label is (NM)PORT.

the priority level at which the Timer Handler task will
execute. Default value is (NM)PRIO.

the time constant used to load the CTC. Default is
(NM)MD25 for the MD series 2.5 MHz system (See CTC Tech-
nical Manual).

* NOTE--(NM) indicates the first two characters of the NAME parameter.

9-8

9.4.2 DESCRIPTION

The MTHTCB will produce a Timer Handler TCB from the user-specified parameters.
Each one of the parameters MUST be separated by a comma. The default value will
be used for any parameter which the user has NOT specified except for the NAME
field which will generate an error. A macro error message will result if any
illegal parameter value is specified. Care must be exercised when defining
multiple timer TCBs for the same CTC Chip. The CTC Chip rules for interrupt
vector addressing (offset from first channel) MUST be adhered to. Also, the user
MUST adhere to CTC Chip port addressing (offset from first channel). Refer to the
MK3882 Counter Timer Circuit Techinical Manual for further information.

9.4.3 EXAMPLE A

To configure a timer TCB of the name TH with a tick rate of 512 milliseconds,
vector of FOH, I/0 port of DCH, and at a priority of 8 for MD series 4.0 MHz, the
macro call would be:

MTHTCB TH,40,0FOH;ODCH,8,THMD40
The resultant TCB code would be:

DEFS 6

T0001 DEFS 10 ; STACK AREA
DEFW TCBTH ; TCB ADDRESS
DEFW MBOTH ; ENTRY POINT
DEFB OFOH ; VECTOR FOR 'TH' ISR
DEFB ODCH ; PORT FOR 'TH' CHANNEL
CALL TH?ISR

TCBTH DEFB 005H ; STAT
DEFB 011H ; PRIO OF 8
DEFW 0000H 3 LINK
DEFW 0000H ; MSG BLK POINTER
DEFW TO0O01 ; STACK POINTER
DEFW ‘TH' ; TIMER HANDLER NAME
DEFB 40 ; TICK COUNT OF 512 milliseconds
DEFB 40 5 CURRENT TICK COUNT
DEFB 200 ; CTC TIME CONSTANT

9-9

The characters specified in the NAME parameter are used to construct a label for
the TCB with the first 3 characters always being "TCB".

9.4.4 EXAMPLE B
To configure four Timer TCBs all working from the same CTC Chip whose vector
address is AOH and the port address is BCH with unique timer features as follows:

Timer O Timer 1 Timer 2 Timer 3
Name TO Tl T2 T3
Priority 5 10 30 15
Tick Rate .192 seconds .512 seconds 3.008 seconds|1.472 seconds

The macro calls would be:

MTHTCB THO,15,0A0H,0BCH,5
MTHTCB TH1,40,0A2H,0BDH,10
MTHTCB TH2,235,0A4H,0BEH,30
MTHTCB TH3,115,0A6H,0BFH,15

Note that in this example the Timers THO, TH1, TH2, and TH3 all adhere to the CTC
Chip's vector and I/0 port addressing offset rules.

9.5 ETHTCB MACRO

A macro is provided to assist the user in defining and developing a RAM based
Timer Handler TCB. The macro will produce the specified timer parameters in the
proper TCB data structure. The macro requires the use of the MOSTEK MACRO-80
Assembler.

9.5.1 FORMAT
ETHTCB ADDR,NAME,TICK,VECTOR,PORT,PRIO, TMCNT

9-10

Where: ADDR - the address at which the timer's TCB is to be installed.
(If this parameter is missing the TCB will follow the
previous 'E' type TCB in memory).

NAME - the name of the Timer Handler task in 2-3 ASCII characters
or a hexadecimal or decimal number.

TICK - the timer tick rate in binary from 01 (for 1 tick) to FFH
(for 255 ticks) and OO0H (for 256 ticks) with each tick
equaling 12.8 milliseconds. Default value is 4 for 51.2
milliseconds.

VECTOR - the Timer Handler interrupt vector value (must be even).
Default Tabel is (NM)VECT.*

PORT - the port number for this Timer Handler in 2 hexadecimal
digits or a global Tlabel. Default label is (NM)PORT.

PRIO - the priority level at which the Timer Handler task will
execute. Default value is (NM)PRIO.

TMCNT - the time constant wused to 1load the CTC. Default is

(NM)MD25 for the MD series 2.5 MHz system (See CTC Tech-
nical Manual).

* NOTE--(NM) indicates the first two characters of the NAME parameter.

9.5.2 DESCRIPTION

The ETHTCB will produce a Timer Handler TCB from the user specified parameters.
Each of the parameters MUST be separated by a comma. The default value will be
used for any parameter which the user has NOT specified except for the NAME field
which will generate an error. A macro error message will result if any illegal
parameter value is specified. Care must be exercised when defining multiple timer
TCBs for the same CTC Chip. The CTC Chip rules for interrupt vector addressing

9-11

(offset from first channel) MUST be adhered to. Also, the user MUST adhere to the
CTC Chip port addressing (offset from first channel). Refer to the MK3882 Counter
Timer Circuit Technical Manual for further information.

9.6 INSTALLATION

Once the Timer TCBs are contructed, they must be installed into the MITE-80 system
before any timer sevice request can be made. Installing the Timer Task can be
performed within a user's initialization task. The Timer TCBs can be installed
along with other TCBs as outlined in the M8TCB macro Section. If the TCB is
installed separately then the code sequence would be:

LD DE,M8TCBQ
LD BC,<Timer TCB Address>
CALL M8SN

Note that the Timer TCB must be in RAM and the Timer Handler's stack must contain
the Timer Task entry point in the Program Counter (PC) register locations within
the stack. The entry point value is loaded in the stack by the MTHTCB macro.

Since the ETHTCB is "self-installing" its TCB should NOT be installed as specified
above!

9.7 PROGRAMMING NOTES

When multiple timer Handlers are configured for the same CTC Chip, care MUST be
exercised when specifying the I/0 ports and vector addresses.

Add an additional count of 1 to the MBs STAT and PERD fields for timer rate count
padding, if the timer must run for at least the specified period.

10-1

SECTION 10

MITE-80 SYSTEM FILES

10.1 INTRODUCTION

A11 of the system files provided on the MITE-80 diskette are outlined in this
section. A majority of the files are provided in relocatable object format, while
other files are in Z80 Assembler source format.

10.2 FILE LIST

The filenames are as follows:

Filename Software Module
MITE80.0BJ MITE-80 nucleus, relocatable object.
M8TCBQ. 0BJ TCB Queue header, relocatable object.
M80TH. 0BJ Timer Handler, relocatable object.
MBOLNK. 0BJ MITE-80 DEBUG Linker module, absolute object.
M8MMGR. 0BJ Memory Pool Manager, relocatable object.
M80SYS. EQU System equates, source.
M8OSYS.MAC System macros, source.
M8OESY.MAC System executable macros, source.
M8ODDT.BIN[X] MITE-80 DEBUG, binary.(where X=16,32,48,64).

The system routines of MITE-80, MITE-80 DEBUG, Timer Handler, and Memory Pool
Manager have all been discussed in previous sections of this manual. The other
files are outlined as follows.

10.2.1 TCB QUEUE HEADER - M8TCBQ.OBJ

This file contains the initial MITE-80 Queue structure required to execute

10-2

MITE-80. It contains the null TCB to which all tasks are threaded.

10.2.1.1 USING M8TCBQ.OBJ

The MBTCBQ.OBJ file is used by linking this relocatable object file with the
application files. An example procedure follows:

$LINK APPL,...,M8TCBQ,... TO USYS

10.2.2 LINKER MODULE - MBOLNK.OBJ

This MITE-80 DEBUG 1ink file, MBOLNK.OBJ, provides the user application with the
required linkages for MITE-80 debugging. This absolute object file contains the
linkage addresses for debug purposes of all MITE-80 system services.

10.2.2.1 USING M8OLNK.OBJ

The MBOLNK.OBJ file is wused by 1linking this absolute object file with the
application object files. An example procedure follows:

. $LINK APPL,...,M80LNK,... TO USYS

10.2.3 SYSTEM EQUATES - M80SYS.EQU

A1l MITE-80 system equates that a user program would require are contained in one
file, MBOSYS.EQU. This file is provided as a development aid and has all global
and value equates for MITE-80 references defined. This file can be included in
every user program that has references to MITE-80 services and labels. The Tabels
defined in the M8B0SYS.EQU file are reserved as MITE-80 Tlabels. When developing
programs, the user must use ONLY these labels for MITE-80 references in order to
“prevent multiple defined label errors from occurring.

10-3

10.2.3.1 USING MBOSYS.EQU
The MBOSYS.EQU file can be used as an INCLUDE file in a user program. A listing
of MB0OSYS.EQU is provided at the end of this section.

10.2.3.2 EXAMPLE

INCLUDE ~ M80SYS.EQU sMITE-80 GLOBALS & EQUATES

GLOBAL ULAB1 ;USER REQUIRED
GLOBAL ULAB2 ;GLOBALS & EQUATES
ULAB3 EQU OAAH

10.3 SYSTEM MACRQOS - M80SYS.MAC

The system macro file, M8OSYS.MAC, contains all of the MITE-80 system macros in
280 assembler source format. The purpose and use of these macros has been
outTined in previous sections. All of the macros provided require the use of the
MOSTEK MACR0-80 Assembler. The macros provided in the M8OSYS.MAC file are:

MACRO PURPOSE REFER TO

MTCB builds a TCB and stack Section 7
M8POOL builds memory pool Section 8
MTHTCB builds timer TCB and stack Section 9

10.3.1 USING M80SYS.MAC

The MBOSYS.MAC file is used as an INCLUDE file in a user program.

10-4

10.3.2 EXAMPLE

INCLUDE M8OSYS.MAC ;MITE-80 SYSTEM MACROS
MTCB coccccvens ;TCB A DEFINED
MTCB ceccesenes ;TCB B DEFINED

10.4 SYSTEM EXECUTABLE MACROS - MBOESY.MAC

The system executable macro file, MBOESY.MAC, contains all of the MITE-80 system
nacros that create executable code. The file is provided in source form. The
macros provided in this file are:

MACRO PURPOSE REFER TO

ETCB Builds a TCB, stack Section 7
and installation code.

ETHTCB Builds Timer Handler TCB, Section 9

stack, and installation
code.

10.4.1 USING MBOESY.MAC
The MBOESY.MAC is designed to be used in an absolute program segment, and
generates executable code to transfer the TCB and stack structures from ROM/EPROM

to RAM.

10.4.2 EXAMPLE

PSECT ABS ; ABSOLUTE PROGRAM SEGMENT
ORG XXXXH ; XXXX=LOCATION OF EXECUTABLE TCBS
INCLUDE MBOESY.MAC ; MITE-80 SYSTEM EXECUTABLE MACROS

ETCB eeecees coes ; TCB A DEFINED

10-5

ETCB cececscccns ; TCB B DEFINED

10.5 MITE-80 DEBUG - M80ODDT.BIN[X]

The following binary executable files contain the respective MITE-80 DEBUG program
which will reside at the upper end of memory:

MBODDT.BIN[16] - 16K MITE-80 DEBUG SYSTEM
MBODDT.BIN[32] - 32K MITE-80 DEBUG SYSTEM
MBODDT.BIN[48] - 48K MITE-80 DEBUG SYSTEM
MBODDT.BIN[64] - 64K MITE-80 DEBUG SYSTEM

The user must load the application tasks to be debugged and then execute the ap-
propriate M80ODDT file for the particular user's debug system configuration.

10.5.1 EXAMPLE

$GET USYS<CR> - Application to debug

$MBODDTL x J<CR> - Execute MITE-80 DEBUG for system configuration x

APPENDIX A

MITE-80 SYSTEM EQUATES

MITE-80 EQUATES
STMT-NR SOURCE-STMT PASS2 M80SYS M80SYS M80SYS REL
COPYRIGHT 1979 MOSTEK CORP

LOC

MOSTEK MACRO-80 ASSEMBLER V2.2 PAGE

* % ¥ k¥ k k k k ¥ k k k %k ¥ k¥ k k k¥ k¥ ¥ k¥ k * %

*

TITLE: MITE-80 SYSTEM EQUATES

ID:

DATE:

PROGRAMM
PHIL MAT
R.E. LEE

VERSION 1.0

20-AUG-79
ERS:
HEWS

*

*

* ¥ *

*

*

*

* % k¥ k¥ k k¥ k k *x k¥ k k k k k¥ k k k¥ k¥ ¥ x¥ ¥ *¥ %

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36

GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL
GLOBAL

GLOBAL

CURTCB
CURPRI
CURNAM
M8TCBQ
NXTTCB
M8SN
MBS NW
M8RSN
MSRSNW
MBFWD
M8FWDW
M8RCV
MBRCVW
M8CAN
MSRET
MBRETW
M8F IND
MSWINT
M8PINT

RENTRY

1

MITE-80 EQUATES

LOC

=0000
=0000
=0001
=0002
=0003
=0006
=0007
=0001
=0000
=0002
=0004
=0004
=0006
=0006
=0008

=00FE

=00FE
=007F
=0001
=0004
=0078
=007D
=00C8

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54

58
59
60
61
62
63
64

STAT
TCBB:
MHBS :
MROB:
BKPT:
IWAT:
WAIT:

PRIO
FIFO:

LINK

RPTR

MPTR

SPTR

OPTR

NAME

NULPRI
; TIMER

THVECT

THPORT

THPRIO

THLOOP

THSD25

THMD25

THMD40

MOSTEK MACRO-80 ASSEMBLER V2.2 PAGE 2

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

STMT-NR SOURCE-STMT PASS2 M80SYS M8OSYS M80SYS REL

H NN C N0 W N =R O o

RPTR

SPTR

127%2

HANDLER TCB DEFAULTS

DEFL OFEH

DEFL O7FH

DEFL 1 »TIMER HANDLER PRIORITY
DEFL 4 ;TIMER LOOP CONSTANT

DEFL 123 ,3D 2.486 MHZ TIME CONSTANT
DEFL 125 ;MD 2.5 MHZ TIME CONSTANT

DEFL 200 ;MD 4.0 MHZ TIME CONSTANT

MOSTEK

Covering the full
ctrun§n of

3870 ap'&‘éﬁ?&‘?“e’

1215 W. Crosby Rd. ¢ Carroliton, Texas 75006 * 214/323-6000
In Europe, Contact: MOSTEK Brussels ’
150 Chaussee de la Hulpe, B1170, Belgium;
Telephone: 660.69.24

Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believed
to be accurate and reliable. However, no responsibility is assumed by Mostek for its use; nor for any mfrmgements of patents or other rights of third parties
resulting from its use. No license is granted under any patents or patent rights of Mostek.

Copyright 1980 by Mostek Corporation

PRINTED IN USA May 1980
All rights reserved

Publication No. MK79726

