

MC141000 Series
PROGRAMMING

REFERENCE MANUAL

The information in this document has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed for
inaccuracies. Furthermore, such information does not convey to the pur­
chaser of the product described any license under the patent rights of
Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

© MOTOROLA INC., 1978

2

TABLE OF CONTENTS
INTRODUCTION ... 6

MC141 000/1200/1 099 Microcomputers
Microprogramming
MC141000 Family Support Products

MC141000 Microcomputer Resources 8
Functional Blocks
Status and Status Latch
Power Up and Initialize

Assembly Format .. 10
Coding Format
Input Format
Comments
Labels
Operands
Assembler Directives
Additional Documentation

Instruction Tables .. 11
Functional Listing
Alphabetical Listing

Machine Operation ... 13
ROM Array
Branch, Call and Return Operations
Random Access Memory (RAM)
Output Ports
Inputs
Arithmetic Logical Unit (ALU)
Instruction Decode

Instruction Details .. 18

Applications and Software Examples .. 34
BCD Addition
BCD Subtraction
LCD Display
LCD Display plus Keyboard
Expanding Number of R-Outputs
External RAM Storage

ILLUSTRATIONS
Figure 1 The MC141000 ... 6
Figure 2 EXORciser-Based Software Development System 7
Figure 3 MC141099-Based Software Development and Debug System 7
Figure 4 Motorola Custom Software and Debug Development System 7
Figure 5 Functional Block Diagram - MC141000/1200/1099 8
Figure 6 Internal BR, CALL and RETN Operations 13
Figure 7 BR, CALL and RETN Summary ... 14
Figure 8 RAM Addressing and BIT Selection .. 15
Figure 9 Output PLA Configured for Seven-Segment Display. .. 16

3

Table 1 Power Up and Initialize .. 9
Table 2 MC141 000/1200 Standard Instruction Set, Functional Listing 11
Table 3 MC141000/1200 Standard Instruction Set, Alphabetical Listing 12
Applications and Software Examples

BCD Addition and Subtraction Flowchart .. 35
LCD Display Hardware and Software ... 36
LCD Display Plus Keyboard Hardware .. 37
Software .. 38
Expanding the number of R-Outputs, Hardware
and Software .. 39
External RAM Storage Hardware and Software40

LIST OF ABBREVIATIONS
A Accumulator
ALU Arithmetic Logic Unit

CKI Constant and K-Input Logic
CL Call Latch

I(B) Bit Field of Instruction
I(C) Constant Field of Instruction
I(W) Branch Address of Instruction

Ki K inputs

LSB Least Significant Bit
LSD Least Significant Digit

MSB Most Significant Bit
MSD Most Significant Digit
M(X,V) RAM Memory Location = X Address (0 to 7), Y Address (0 to 15)
M(X,V,B) RAM Memory Bit Location (B = 0, 1,2, or 3)

a

PA
PB
PC
PLA
PLAIR

R
R(V)
RAM
ROM

S
SL
SRR

x

v

Output Register

ROM Page Address Register
ROM Page Buffer Register
Program Counter
Programmable Logic Array
PLA Input Register

R-Output Register
R-Output Latch Y
Random Access Memory (Read/Write)
Read Only Memory

Status
Status Latch
Subroutine Return Register

RAM X Address Register

RAM Y Address Register

4

5

INTRODUCTION

MC141000/1200/1099 Microcomputers

Figure 1. The MC141000 - A Single-Chip Microcomputer featuring CMOS Technology.

The MC141000 and MC141200 single-chip microcomputers are complete four-bit micro­
computers which contain read-only program memory, random-access memory, arithmetic logical unit,
buffered inputs, and output drivers.

Sheet.

The MC141200 has 16 outputs (R lines) in a 40-pin package.
The MC141000 is a limited pinout version with 11 R outputs in a 28-pin package.
Electrical and mechanical specifications can be found on the MC141 000 and MC141200 Data

The MC141099 is a 48-pin version of the MC141200, intended primarily as a design tool for
prototyping and debugging MC141 000/1200 systems prior to manufacture. As such, it is designed for
use with external programmable logic (PLA) and memory and does not have these functions on-chip.
The larger number of package pins permits interfacing with these external functions.

Microprogramming

If the standard instruction set, Page 11, is found to be inadequate to meet the requirements of
a specific application, the instruction set may be modified to a limited extent by redefining the
instruction-decode programmable logic array. Please consult the Motorola MOS Facility in Austin,
Texas for details.

6

MC14100 Family Support Products

To support the MC141000 micro­
computer family, Motorola offers a complete
hardware /software package for the development
of a user system through system simulation, Fig­
ure 2. The software package consists of a
cross-assembler, a loader and debugging
capability. The hardware consists of a dedicated
component board (MEX141000M) that interfaces
with Motorola's standard EXORciser*, permitting
its use as an MC141 00 system simulator. The sys­
tem runs under the control of the MOOS operating
system and provides powerful development and
debug capability prior to commitment to final prod­
uction masks.

The debug phase of program develop­
ment is expedited by use of the SIMULATOR
breakpoint, trace, and single-step features, and
the relative ease of program changes on a disk­
based development system. Detailed information
concerning this system is available in the
MC141000 CROSS-ASSEMBLER MANUAL and
the MC141000 SIMULATOR MODULE MANAUL.

A hardware approach to system de­
velopment and debug can be implemented with
the MC141099 processor. It is identical to the
MC141200 with the exceptions that the program
storage memory and output PLA are external, Fig­
ure 3. RAM, PROM or EPROM memory can be
used for program storage and a PLA decoder or
random logic can be used to simulate the output
PLA.

For those who prefer to purchase a turn­
key device, Motorola offers an in-house design,
programming and development capability. Figure
4 outlines a typical development program from
software specification to device production. Your
local sales representative can supply cost and
scheduling information for this service.

*EXORciser is a trademark of Motorola Inc.

7

Cable

Simulator Hardware

141000/1200
Simulator

Board

EXORciser

28 or 40 Pm

Plug ""'r--1

Terminal

User's
141000/1200

System

Figure 2 - EXORciser Based Software Development System

K INPUTS

R-OUTPUTS O-OUTPUTS

MC141000/1200
SIMULATOR

USER'S HARDWARE

Figure 3 - MC141099 Based Software Development
and Debug System

CHANGES

Figure 4 - Motorola Custom Software and Debug
Development Schedule

_6

CONSTANT &
K-INPUT

MULTIPLEXER

EXTERNAL
WITH MC141099 r-----'

I I
I
I

I

OUTPUT
PLA

I I L _____ .J

A Outputs

Figure 5 - Functional Block Diagram - MC141 000/1200/1099

MC141000 MICROCOMPUTER RESOURCES

FUNCTIONAL BLOCKS

Figure 5 shows a block diagram of the re­
sources available to the MC141000/1200/1099 pro­
grammer. They are:

A

ALU

KINPUTS

a OUTPUTS

PLA

PLAIR

RAM

The accumulator is used to store the result of an ALU
operation for subsequent operations.

The arithmetic logical unit perform calculation and
decision-making tasks.

The K lines are the data input port. Since there are only four
input lines, they are usually multiplexed under control of the
R lines using external hardware. The inputs are diode pro­
tected and have a pull-down resister of approximately 50 K
ohms; therefore, open inputs are read as a logic low.

The eight outputs of the PLA are connected to output drivers
which comprise the a-outputs. These output drivers may be
manufactured as open emitter, active sink, or push-pull at
the user's option.

The output programmable logic array is user-defined to
specify the state of each of the eight a-outputs for each of
the 32 possible PLAIR outputs.

The programmable logic array input register is a five-bit
latch which latches the four accumulator bits and output of
the status latch.

Variable data is stored in the 64-word, 4-bit per word Ran­
dom Access Memory. Data is accessed by decoding a 2-bit
file address (X register) and 4-bit word address (Y register).

ROM ARRAY

R OUTPUTS

S

SL

Y REGISTER

8

The user's instructions are mask programmed into the Read
Only Memory (ROM). Instructions are addressed by a page
address register (PA) and program counter (PC). A single
subroutine return register (SRR) and page buffer register
(PB) permit subroutine calls to any location within theHOM.

The output of the Y register is decoded to select one of the
R-output lines which can then be set or reset under program
control. The R lines are used as control lines to scan
keyboards and displays, perform handshakes, and inter­
face external logic. The R-outputs may be manufactured as
open emitter, active sink, or push-pull at the user's option.

All branches and subroutine calls are dependent on the
state of status logic. It may be set or reset on logical or
arithmetic operations and is set by the remainder of the
instructions.

The status latch latches the state ofthe status logic in order
to preserve it for subsequent a-output operations.

NOTE: Sand SL are NOT identical.

The Y register is a multipurpose register used to address a
word in a RAM file, to select an R output for manipulation by
subsequent instructions, or as a general purpose counting
and storage register.

Status and Status Latch

All program-modifying instructions (BRanch or CALL) are conditional on the state of the
status logic. If status is set, the BRanch or CALL is executed by jumping to the ROM address specified
by the operand field of the BRanch or CALL instruction and the contents of the page buffer register
(PB). If status is reset, the BRanch or CALL is not to be taken, and the instruction following the BRanch
or CALL is the next to execute. The BRanch or CALL takes six clock cycles (one instruction cycle) to
execute whether the status is set or reset.

The status logic is normally set. Whenever it is reset, the reset condition only lasts for one
instruction cycle and then returns to the set state. The only means to keep it reset for more than one
instruction cycle is to execute more than one instruction in series which causes it to reset in series.

The status latch takes the state of the status logic and saves it during the execution of a
YNEA instruction. Power on reset and INIT have no effect on the status latch. Therefore, a YNEA
instruction must be executed before a TDO instruction to ensure that the desired state of status latch is
placed into the PLA input register.

Power Up and Initialize

TABLE 1. Power Up and Initialize

PC PA PB CL PLAIR R OUTPUTS

Power Up 0 15 15 0 0 0

Initialize 0 K K 0 0 0

When power is applied, the registers shown in Table 1 are loaded as shown for power up. All
other internal registers and RAM come up in an arbitrary state.

After power is applied, the initialize (INIT) input may be used to reinitialize the processor.
Internally, INIT has a 50 K ohm pull-down resistor which holds the INIT line low. It must be held high for
a minimum of 6 full clock cycles and then returned to the low state. If a mechanical switch or other
mechanical device is used to control INIT, it may be necessary to include a method of contact
debounce to ensure a valid INIT pulse.

A valid INIT pulse will cause the registers to be loaded as shown in the table. The contents of
registers other than those shown will remain unchanged during initialize. Note that the PA and PB are
loaded with the 1 's complement of the K-input lines (Ka =MSB). This feature allows the MC141000 to
be initialized to the first instruction on any page by controlling the K-inputs during initialization. This is
useful where the same circuit may be used for several applications. Since the K-inputs have 50 K
pull-down resistors, they will be a 0 (unless driven from another device) and the 1 's complement (F) will
be loaded into PA and PB.

9

MOTOROLA MC141000 ASSEMBLY FORMAT

Coding Format

Users who choose to develop their own software should provide assembler-compatible code
conforming to the assembler input rules. The following syntax rules will allow user-generated source
code to be assembled on any of the Motorola MC141000 cross-assemblers.

Input Format

11 I 2 13 14 15 I 6 17 I 8 I 91 10 111 11211-31141151161171181191201 21 122123124125126127128129130 131 132 133 1

k Label Field * Operator *' Operand Field * Comment ~
Field Field

Labels

Labels are a maximum of six alphanumeric characters. (Columns 7, Band 9 are not used.)
The first character must be alphabetic. Labels may not contain imbedded blanks. Assembler
mnemonics and directives must not be used as labels.

Valid characters are:
A through Z
o through 9

=

Comments

An asterisk in column 1 indicates that the entire line is a comment.

Operands

Operands must be non-negative decimal constants or valid labels.

Assembler Directives

All versions ofthe Motorola MC141000 assembler support the following assembler directives
(pseudo-ops). Assembler directives must start in COL 10.

ORG

EJECT

PAGE

nnnn (Where nnnn is a decimal number) This causes the label 1* BL
assembler to place the machine code at offset nnnn.

Label 2 "BRANCH LONG" Causes two machine instruc­
tions to be generated. First an LOP to the page of
Label 2, than a BR to that label. Any number of ORGs may be used, but they must

always be in ascending order.

This causes the printer to go to top of form.

Similar to ORG but causes the next instruction to be
placed at location 00 of the next sequential ROM
page.

label 1* Call L Label 2 "CALL LONG" Causes two machine instructions to
be generated. First an LOP to the page of Label 2,
then a BR to that label.

*Optional

Several versions of the cross-assembler are in use at Motorola and some have more
extensive capabilities than those outlined above. For more information on source-code submittal,
please consult the Motorola MOS Facility, Austin, Texas.

Additional Documentation

Detailed hardware specifications for the MC141 000/1200/1 099 are available in the data
sheet, and information concerning the M6BOO EXORciser-based MC141000/1200 development!
debug system is contained in the MC141000 CROSS-ASSEMBLER MANUAL and the MC141000
SIMULATOR MODULE MANUAL. Your local distributor or Motorola sales representative can supply
documentation.

10

INSTRUCTION TABLES

The MC141000 microcomputer instruction set consists of 43 standard instructions. These
are summarized in Table 2, which lists the instructions by function, and Table 3, which lists the
instructions alphabetically.

TABLE 2. MC141000/1200 Instruction Set, Functional Listing

Function Mnemonic Condition Setting Status Action

ROM BR Always See Fiq. 7
Addressing CALL Always See Fig. 7

LOP Always I(C) ~ PB
RETN Always See Fig. 7

RAM X COM X Always X~X

Addressing LOX Always I(B) ~ X

Output CLO Always o ~ PLAIR
RSTR Always o ~ R(Y)
SETR Always 1 ~ R(Y)
TOO Always SL,A ~ PLAIR

Input KNEZ K-inputs not zero K ~ 0
TKA Always K~A

Internal CLA Always O~A

Oata TAM Always A ~ M(X,Y)
Transfer TAMIY Always A ~ M(X,Y), Y + 1 ~ Y

TAMZA Always A ~ M(X,Y), 0 ~ A
TAY Always A~Y

TCY Always I(C) ~ Y
TCMIY Always I(C) ~M(X,Yt, Y + 1 ~Y
TMA Always M(X,Y) ~ A
TMY Always M(X,Y) ~ Y
TYA Always Y~A

XMA
~,

Always M(X,Y)~A

Bit RBIT Always o ~ M(X,Y, B)
Manipulation SBIT Always 1 ~ M(X,Y, B)

TBIT1 Bit equal to 1 M(X,Y, B) = 1

Arithmetic A6AAC Carry A+6~A

A8AAC Carry A+8~A
A10AA Carry A + 10 ~A
AMAAC Carry M(X,Y) + A ~ A
CPAIZ Carry A+1~A
OAN Carry A-1~A

OMAN Carry M(X,Y) - 1 ~A
OYN Carry Y-1~Y

IA Always A+1~A

IMAC Carry M(X,Y) + 1 ~ A
IYC Carry Y+1~Y

SAMAN If no borrow M(X,Y) - A ~ A

Logical ALEC Accumulator less than or equal to constant A ~ (C)
ALEM Accumulator less than or equal to memory A ~ M(X,Y)
MNEZ Memory not equal to zero M(X,Y) ~ 0
YNEA V-register not e~ual to accumulator Y ~ A,S ~SL
YNEC V-register not equal to constant Y ~ (C)

11

TABLE 3. MC141000/1200 Standard Instruction Set, Alphabetical Listing

Opcode Mnemonic Description

0111 (C) ALEC If accumulator is less than or equal to I(C) field, status = 1.
00101001 ALEM If accumulator is less than or equal to M(X,V), status = 1.
00100101 AMAAC Add memory to accumulator. Accumulator = result, status = carry.
00000110 A6AAC Add 6 to accumulator. Accumulator = result, status = carry.
00000001 A8AAC Add 8 to accumulator. Accumulator = result, status = carry.
00000101 A10AAC Add 10 to accumulator. Accumulator = result, status = carry.
10 (W) BR Branch to label if status = 1.
11 (W) CALL Call subroutine if status = 1.
00101111 CLA Clear contents of accumulator.
00001011 CLO Clear PLA Input Register.
00000000 COMX Complement X-Register.
00101101 CPAIZ Complement accumulator, then add 1. If accumulator = 0, status = 1.
00000111 DAN Decrement accumulator. If no borrow, status = 1.
00101010 OMAN Load M(X, V) into accumulator and decrement. If no borrow, status = 1.
00101100 DVN Decrement V-register. If no borrow, status = 1.
00001110 IA Increment accumulator.
00101000 IMAC Load M(X, V) into accumulator and increment. Status = carry.
00101011 IVC Increment V-Register. Status = carry.
00001001 KNEZ If K-inputs not equal to zero, status = 1.
0001 (C) LOP Load page buffer with I(C) field.
001111 (B) LOX Load X-register with I(B) field.
00100110 MNEZ If M(X, V) not equal to zero, status = 1.
001101 (B) RBIT Reset bit I(B) of M(X,Y).
00001111 RETN Return from subroutine.
00001100 RSTR Reset R-line specified by V-register.
00100111 SAMAN Subtract accumulator from memory. Accumulator = result.

If no borrow, status = 1.
001100 (B) SBIT Set Bit I(B) of M(X,V).
00001101 SETR Set R-line specified by V-register.
00000011 TAM Transfer accumulator contents to M(X,V).
00100000 TAMIV Transfer accumulator contents to M(X,V), increment V-register.
00000100 TAMZA Transfer accumulator contents to M(X,V), zero accumulator.
00100100 TAV Transfer accumulator contents to V-register.
001110 (B) TBIT1 If bit I(B) of M(X,V) is one, status = 1.
0100 (C) TCV' Transfer I(C) field to V-register.
0110 (C) TCMIV Transfer I(C) field to M(X,V), increment V-register.
00001010 TOO Transfer status latch and accumulator to O-output' register.
00001000 TKA Tranfer K-inputs to accumulator.
00100001 TMA Transfer M(X, V) to accumulator.
00100010 TMV Transfer M(X, V) to V-register.
00100011 TVA Transfer V-register contents to accumulator.
00101110 XMA Exchange contents of M(X, V) and accumulator. .
00000010 VNEA If V-register is not equal to accumulator, status and status latch = 1.
0101 (C) VNEC If V-register is not equal to I(C) field, status = 1.

12

MACHINE OPERATION
The MC141000 microcomputer consists of 6 subsystems:

1) Read Only Memory (ROM)
2) Random Access Memory (RAM)
3) Output ports
4) Input port
5) Arithmetic Logical Unit (ALU)
6) The Instruction Decoder

The following sections will describe how each of these subsystems is controlled by the instruction set.
Every instruction occupies a single memory byte and is executed in one instruction cycle (6 clock
cycles).

ROM Array

The ROM consists of 8192 bits of mask-programmed memory organized as 1024 8-bit
instructions. It is divided into 16 pages of 64 instructions per page.

Instructions within ROM are addressed by the page address register (PA) which contains the
page number, and the program counter (PC) which contains the location of the instruction relative to
the beginning ofthe page. The PC is incremented prior to fetching the next instruction (unless diverted
by a BRanch or CALL) so each instruction is accessed in the numerical order of its address. A carry
from the PC is not added to the PA so the program will "wraparound" within the page rather than
executing the first instruction of the following page. Upon power up, the PC is set to zero and the PA
and PB are set to 15.

Branch, Call and Return Operations
- Figure 6

The normal sequence of in­
struction execution may be diverted by
branch (BR) or subroutine call (CALL)
instructions which are conditional on the
state of the status logic. If the status
equals one, the BR or CALL will be exe­
cuted. If the status is zero the instruction
following the BR or CALL will be exe­
cuted.

BR (Branch)

A successful BR causes the PC
to be loaded from the last six bits I (W) of
the BR instruction. If the call latch (CL) is
zero, the PA will also be loaded from the
PB; however, if the CL is one, the PAwili
not be altered.

A load page (LOP) instruction
can be used prior to a BR to cause pro­
gram control to be transferred anywhere
within the ROM.

Note: A BR within a subrolltine CALL is
limited to a short branch within the
same page in order to preserve
the subroutine return address. Figure 6 - Internal BR, CALL and RETN Operations

13

Status Call
Instruction Logic Latch Action

1 0 I(W) ~ PC, PB ~ PA

BR
(Branch) 1 1 I(W) ~ PC

0 *0 PC + 1 ~ PC, 1 ~ Status

1 0 PC + 1 ~SRR,I(W)~PC, PA~PB, 1 ~CL

CALL
(Call subroutine) 1 1 I(W) ~ PC, PA ~ PB

0 * PC + 1 ~ PC, 1 ~ Status Logic

RETN * 1 SRR ~ PC, PB ~ PA, 0 ~ CL
(Return from
subroutine) * 0 PC + 1 ~ PC, PB ~ PA

*
PA
PB
PC

CALL

Don't Care
Page Address Register
Page Buffer
Program Counter

SRR = Subroutine Return Register
CL = Call Latch
I(W) = 6 Least Significant Bits of a Call or BR

Figure 7 - BR, CALL and RETN Summary

The CALL instruction permits the use of subroutines in MC141000 programs. The successful
CALL instruction causes:

1) the PC to be incremented and stored in the subroutine return register (SRR)
2) the PC to be loaded from the six least significant bits of the CALL instruction
3) the call latch (CL) to be set to one
4) the PB to be exchanged with the PA

Since there is a single level of subroutine-return-address storage, nested subroutines are
not permitted. A CALL within a subroutine will cause the return PB to be loaded with the PA. Branch
instructions beyond the current page are not permitted within a subroutine since the PB is used as the
storage register for the subroutine return page address.

RETN

The return from subroutine instruction (RETN) causes the PC to be loaded from the SRR, the
PA to be loaded from the PB, and the CL to be reset.

BR and CALL Summary - Figure 7

The conditions imposed on Branch and Call instructions are:

1) they will only be executed when status is set
2) a long BR or CALL off the current page will result if the PB is loaded by an LDP instruction

prior to execution of the BR or CALL
3) only branches within the current page are allowed within a subroutine
4) instruction execution requires six clock cycles whether or not the BR or CALL was

successful

14

X Register Select

File 0 File 1 File 2 File 3

Y Register Word 0

Select Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15

1(8) = 3 l' J J
1(8) = 2
1(8) = 1
1(8) = 0

Figure 8. RAM Addressing and Bit Selection

Random Access Memory - RAM

RAM consists of 256 bits organized into 64 4-bit words. For purposes of addressing, the 4-bit
words are organized into four files of 16 4-bit words per file, Figure 8.

The X register is decoded to select one of the 4 RAM files; and the Y register is decoded to
address one of the 16 words in the selected file.

Instructions which can be used to select the RAM file are the LOX which loads the X register
from ROM, and the COMX instruction which complements the X register. The Y register can be loaded
from ROM (TCY) , from RAM, (TMY) , or the accumulator (TAY). The Y register can also be in­
cremented (IYC, TCMIY and TAMIY) and decremented (OYN).

Individual bits within the RAM can be set (S8IT), reset (R8IT), and tested (T8IT1) under
program control. The RAM word to be operated on is defined by the X and Y registers, and the 2-bit 8
field of the bit manipulation instruction selects the bit to be operated on.

Instructions which directly access RAM are:

ALEM­
AMAAC­
DMAN­
IMAC­
MNEZ­
SAMAN-

TAM­
TAMIY­
TAMZA-

TMA­
TMY­
XMA-

Accumulator less than or equal to memory
Add memory to accumulator, store result in accumulator
Load accumulator with decremented memory contents
Load accumulator with incremented memory contents
Compare for memory not equal to zero
Subtract the accumulator from the memory and store the result
in the accumulator
Transfer accumulator to memory
Transfer accumulator to memory, increment Y register
Transfer accumulator to memory, load the accumulator with
zero
Transfer memory to accumulator
Transfer memory to Y register
Exchange memory and accumulator

15

Since the Y register is an integral part of
the memory addressing scheme, Y register man­
ipulation instructions are important to RAM. The Y
register can be changed by the following instruc­
tions:

IYC­
DYN­
TAY­
TCY­
TMY­
TAMIY­
TCMIY-

Increment the Y register
Decrement the Y register
Transfer accumulator to Y register
Load the Y register with a constant
Transfer memory to Y register
Transfer accumulator to memory, increment to Y register
Transfer constant to memory, increment Y register

1234567 8 91011121314151617181920212223242526272829303132

Seven Segment
Display Output o Output Connections

To Seven Segment Display

0,

Figure 9 - Output PLA Configured for Seven-Segment Display

07

06

05

04
a Outputs

03

02

01

00

Output Ports

Two output ports (R and 0) are included in the microcomputer. The MC141000 has 11
R-outputs and the MC14200 has 16 R-outputs while both machines have eight O-outputs. The number
of R-outputs is the only difference between the MC141000 and the MC141200.

R-output lines are used primarily as control or "handshake" lines, and to mutiplex external
hardware. The R-output which is to be operated on is selected by a binary decode of the contents of
the Y register and is set by the SETR instruction and reset RSTR instruction.

The eight O-output lines are the decoded output of the contents of the 5-bit PLAIR. Since the
PLAIR is loaded from the A and the SL, these registers must be "set up" prior to an output operation.
The status latch can only be loaded by the YNEA (Y register not equal to accumulator) instruction
while the contents of the accumulator may be modified by numerous other instructions.

The 0 output instructions are:

TOO - Transfer data from the accumulator and status latch to the PLAIR
CLO - Clear PLAIR, i.e., load with zeros

In a typical application, the first four R lines might be used as digit selects for outputting a
four-digit decimal number using the PLA programmed as a seven-segment decode as shown in
Figure 9. The software needed to accomplish this task is shown in the application sections.

Inputs

The input lines consist of the four K-input lines and the initialize (IN IT) line. The two input
instructions are:

KNEZ - If the K input lines are not equal to zero, set the status logic to one

TKA - Transfer the contents of the four input lines to the accumulator

Operation of the INIT is described previously (Table 1).

16

Arithmetic Logical Unit (ALU)

The ALU is the calculating and decision-making portion of the MC141000 hardware and
consists of a 4-bit adder/comparator and the status logic.

The status logic will be selectively set or reset by add, subtract, increment, decrement,
compare and bit-test operations. Other instructions always set the status logic to a one.

The adder/comparator can add, subtract, compare two numbers, add +1, -1, 6, 8, and 10.

The arithmetic instructions are:

AMAAC- Add memory to accumulator, results
to accumulator. Carry to status

SAMAN- Subtract accumulator from memory,
results to accumulator. If no borrow,
one to status

IMAC- Load memory into accumulator, in-
crement accumulator. Carry to status

DMAN- Load memory into accumulator, dec-
rement accumulator. If no borrow,
one to status

IA- Increment accumulator, no status
effect

IYC- Increment Y register. Carry to status
DAN- Decrement accumulator. If no bor-

row, one to status
DYN - Decrement Y register. If no borrow,

one to status
A8AAC - Add 8 to accumulator, results to

accumulator. Carry to status
A 1 OAAC - Add 10 to accumulator, results to

accumulator. Carry to status
A6AAC - Add 6 to accumulator, results to

accumulator. Carry to status
CPAIZ - Complement accumulator incre­

ment. If zero, one to status

Instruction Decode

The instruction decode logic latches
every instruction fetched from ROM and config­
ures the internal logic to correctly execute the cur­
the current instruction. The MC141000 includes
within the instruction decode logic the capability of
modifying the standard instruction set. Typical
examples of useful nonstandard instructions are:

SRDY­
TDOIY-

TKM-

ANEM-

Set R-Output and decrement Y
Transfer A and SL to PLAIR and
increment Y
Transfer K inputs to memory and
increment the Y Register
A not equal to M(X, Y)

The factory should be consulted for fea­
sibility of specific instruction-set modifications.

17

The logical instructions are:

ALEM- If accumulator less than or equal to
memory, one to status

ALEC- If accumulator less than or equal to a
constant, one to status

KNEZ- If K-inputs not all zero, one to status
MNEZ- If memory not equal to zero, one to

status
TBIT1 - If the selected bit is one, one to status
YNEA- If Y register not equal to accumulator,

one to status and status latch
YNEC- If Y register not equal to a constant,

one to status

INSTRUCTION DETAILS

On the following pages, the MC141000 Instruction Set is described in detail. The descrip­
tions use the following format:

MNEMONIC

INSTRUCTION DEFINITION -

ACTION: Symbolically shows the instructions effect. One or more cases may be
shown here, depending on the instruction.

DESCRIPTION: Explains the instruction operation in detail.

STATUS: Shows the effect of the instruction on the status logic.

OPERATION: A diagramatic representation of the effect of the operation on pertinent
registers. Register contents BEFORE execution and AFTER execution are
shown. Any register not shown (with the exception of the PC) is unchanged
by the instruction. Where two conditions may result from execution of an
instruction, a diagonal line separates examples showing both results.

OPERATION CODE: The binary code, including field designations.

18

ALEC
IF ACCUMULATOR IS LESS THAN OR EQUAL TO CONSTANT, ONE TO STATUS.

ACTION: A < I(C) A = I(C) A > I(C)

DESCRIPTION:

STATUS:

OPERATION:

1~S 1~S O~S

If the contents of the accumulator are less than or equal to the C field of the
instruction, the status will be set to one; if not, the status is set to zero. If the
constant 15 is used, this instruction effectively becomes a no-op.

Set if A :::::; constant, reset if not.

Registers
A I(C) S

BEFORE 4 9/2 *
AFTER 4 9/2 1/0

OPERATION CODE: I ° I 1 I 1 I 1 I c I
L-----L_-.L.-_...L-----I ~SB I I I MSB

ALEM
IF ACCUMULATOR IS LESS THAN OR EQUAL TO MEMORY, ONE TO STATUS.

ACTION: A < M(X, Y) A = M(X, Y) A > M(X, Y)

DESCRIPTION:

STATUS:

OPERATION:

1~S 1~S O~S

If the contents of the accumulator are less than or equal to the contents of
RAM file X, word Y status is set, if not status is reset.

Set if A :::::; RAM contents, reset if not.

Registers
A M(X, Y) S

BEFORE 6 10/4 *
AFTER 6 10/4 1 / °

I 1 I ° I 1 I ° I ° I 1 I OPERATION CODE: L-I _0-----JII...--0 ---'-_....1.------JI...---.L-_--L..-_'---~

AMAAC
ADD MEMORY TO ACCUMULATOR. LOAD RESULT INTO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE: I
*Don't Care

A + M(X, Y) ~A
CARRY ~S

The contents of RAM file X, word Yare added to the contents of the
accumulator, and the result is loaded into the accumulator. The status is set if
a carry results from the addition and reset if there is no carry.

Set if carry, reset if not.

Registers
A M(X, Y) S

BEFORE 4/9 8 *
AFTER 12/1 8 0/1

° I ° 1 1 1 ° 1 ° 1 1 10 I 1 I
19

ADD SIX TO ACCUMULATOR.

ACTION: A+6~A

CARRY ~S

A6AAC

DESCRIPTION: Six is added to the accumulator. If a carry results, the status is set. This
instruction is commonly used for correction during BCD addition.

STATUS: Set on carry, reset if not.

OPERATION: Registers
A S

BEFORE 4/15 *
AFTER 10/5 0/1

I 0 I 0 I 0 I 1 I 1 I 0 I OPERATION CODE: 1-1 _o----JI'---0-.l-_.....L....._L...______L..._-'------L_~

ADD EIGHT TO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A+8~A

CARRY ~S

Add 8 to the accumulator. Set the status if a carry results.

Set on carry, reset if not.

Registers
A S

BEFORE 6/9 *
AFTER 14/ 1 0 / 1

OPERATION CODE: I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I

ADD TEN TO ACCUMULATOR.

ACTION: A + 10 ~A
CARRY ~S

A8AAC

A10AAC

DESCRIPTION: Ten is added to the accumulator. If a carry results, the status is set. This
instruction is commonly used for correction during BCD subtraction.-

STATUS: Set on carry, reset if not.

OPERATION: Registers
A S

BEFORE 3/9 *
AFTER 13/4 0/1

I 0 I 0 I 0 I 1 I 0 I 1 I OPERATION CODE:l L-_0----JI~0____L..._--'-_L...__---'-_ __'__'----___J

*Don't care
20

BR

BRANCH ON STATUS EQUALS ONE.

ACTION: BRANCH NO BRANCH

DESCRIPTION:

STATUS:

OPERATION CODE:

If

Then

S = 1
CL = 0
I(W) ~ PC
PB~PA

S = 1
CL = 1
I(W) ~ PC

S = 0
CL = Don't Care
PC+1~PC

If the status is zero, the next sequential instruction after the branch will be
executed and the program will not branch. If the status is set and the call
latch is one, the program counter is loaded from the W field of the instruction
and the program will branch within the page. Interpage branching is not
successful if CL = 1. If the status is set and the call latch is zero, the page
address will be loaded from the page buffer and the program counter will be
loaded from the instruction, permitting a branch to anywhere in ROM.
Execution of the BR instruction requires 6 clock cycles whether or not the
branch is successful.

Set.

1

I 0 1--1 M_S_B...a-' _____ W""----"....&.....-_I'--L_SB---'I

CALL

CALL SUBROUTINE ON STATUS EQUALS ONE.

ACTION:

DESCRIPTION:

STATUS:

.OPERATION CODE:

If

Then

S = 1
CL = 0
I(W) ~ PC
PC ~SRR
PB ~PA
1 ~CL

CALL
S = 1
CL = 1
I(W) ~ PC
PA~PB

NO CALL
S = 0

PC+1~PC

If the status is zero, the call is unsuccessful and the next sequential instruc­
tion after the call is executed. If the status is set and the call latch is one,
the program counter is loaded from the W field of the instruction and the
program will branch within the page and the return page may be lost. If the
status is set and the call latch is zero, the page address and the page buffer
are exchanged and the program counter is incremented, stored in the sub­
routine return register, and loaded from the W field of the instruction, per­
mitting a branch to anywhere in ROM.

Set.

'----1 _____ 1 --41 MSB I
W

ILSBI

21

CLEAR ACCUMULATOR.

ACTION:

DESCRIPTION:
STATUS:

OPERATION:

O~A

The accumulator is loaded with zero.
Set.

Registers
A S

BEFORE 7 *
AFTER ° 1

1
1

1 ° 1
1

1
1

1
1

1
1

1 OPERATION CODE: L-I _0 ---1....1 _0----1._---'--_...1...-.-----1._--'-_"------'

CLEAR PLAIR OUTPUT.

ACTION: ° ~ PLAIR

CLA

CLO

DESCRIPTION:

STATUS:

The five bits of the programmable logic array input register are set to zero.

Set.

OPERATION: Registers
PLAIR

BEFORE *
AFTER °

OPERATION CODE: I ° 1 ° 1 ° 1 ° 1 1 1 ° 1 1 1 1 I

COMPLEMENT X REGISTER.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

X~X

The contents of the X register are one's complemented.

Set.

Registers
X S

BEFORE 0/2 *
AFTER 3/1 1

1 ° 1 ° 1 ° I ° I ° 1 ° I OPERATION CODE: L...I _0_1-1 _0----L._-L-_L-----L._--L..---JL.-----I

*Oon't care
22

COMX

CPAIZ
COMPLEMENT AND INCREMENT ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A+1~A

Carry ~ S

The accumulator is complemented and incremented. If a carry results status
is set, no carry resets status.

Set on carry, reset if not.

Registers
A S

BEFORE 3/0 *
AFTER 13/0 0/1

I 1 I 0 I 1 I 1 I 0 I 1 I OPERATION CODE: L-I _O_L......I _0---'-_-1------IL......----L-_-L.----I1......-----I

DAN
DECREMENT ACCUMULATOR.

ACTION: A - 1 ~A

DESCRIPTION:

STATUS:

OPERATION:

1 - Borrow ~ S

The contents of the accumulator are decremented by one. If no borrow
results, the status is set to one. If the accumulator contains zero prior to
execution, status is reset and the accumulator is set to 15.

Set on no borrow, reset on borrow.

Registers
A S

BEFORE 9 / 0 *
AFTER 8 / 15 1 / 0

OPERATION CODE: I 0 I 0 I 0 I 0 I 0 I 1 I 1 I 1 I
OMAN

DECREMENTED MEMORY INTO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE: I
*Don't care

M(X, Y) - 1 ~ A
1 - Borrow ~ S

The contents of M(X, Y) are loaded into the accumulator and decremented.
The status is set only if M(X, Y) = 0, A = F. M(X, Y) is not modified by this
operation.

Set if no borrow, reset if borrow.

Registers
A M(X, Y) S

BEFORE * 4/0 *
AFTER 3/15 4/0 1 /0

0 I 0 I 1 I 0 I 1 I 0 I 1 I 0 I

23

DECREMENT Y REGISTER. DYN
ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

Y-1~Y

1 - Borrow ~ Status

The Y register is decremented by 1. If no borrow results, the status bit is set.
If Y = 0 prior to execution, a borrow will result and the status logic will be
reset. All other values of Y will result in status being set.

Set on no borrow, reset on borrow.

Registers
Y S

BEFORE 6/0 *
AFTER 5 / 15 1 / 0

o o 1 o 1 1 o o

IA

INCREMENT ACCUMULATOR.

ACTION: A + 1 ~A

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

The contents of the accumulator are incremented by one.

Set.

Registers
A S

BEFORE 5 / 15 *
AFTER 6/0 1

o o o o 1 1 1 o

IMAC

INCREMENTED MEMORY TO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

*Don't care

M(X, Y) + 1 ~ A
CARRY ~ S

The contents of RAM file X, word Yare loaded into the accumulator and
incremented. The status bit is set to one on a carry or to zero for no carry.

Set if carry, reset if no carry.

Registers
A M(X, Y) S

BEFORE * 2/15 *
AFTER 3/0 2/15 0/1

o o 1 o 1 o o o

24

INCREMENT Y REGISTER.

ACTION: Y + 1 ~ Y
CARRY ~S

lye

DESCRIPTION: The contents of the Y register are incremented by one. If a carry results, the
status bit is set to one.

STATUS: Set on carry, reset if no carry.

OPERATION: Registers
Y S

BEFORE 4/15 *
AFTER 5/0 0/1

I 1 I ° I 1 I ° I 1 I 1 I OPERATION CODE :1 I..-_0----ll_0--...L-_-'--_"---"-_-'-----..I~___I

KNEZ

IF K INPUTS ARE NOT EQUAL TO ZERO, SET STATUS.

ACTION: K = ° K f- °
1~S

DESCRIPTION: Compare the data on the four K input lines with zero. If the input data is not
zero, set the status bit.

STATUS: Set if K ~ 0, reset otherwise.

OPERATION: Registers
K S

BEFORE 7/0 *
AFTER 7/0 1 / °

I ° I ° ! 1 I ° ! ° I 1 I OPERATION CODE: 1..-1 _0 -.J!L...---0-"-_-'--_"-----'-_.....&.--_'-----'

LOAD THE PAGE BUFFER.

ACTION:

DESCRIPTION:

STATUS:

I(C) ~ PB

The C field of the instruction is loaded into the
page buffer register.

Set

OPERATION: Registers
I(C) PB

BEFORE 4 *
AFTER * 4

OPERATION CODE: 1 0 I 0 I 0 11 I C I
. LSB, , ,MSB

*Don't care
25

LOP

LOAD X REGISTER WITH A CONSTANT.

ACTION: I(B) ~ X

DESCRIPTION:

STATUS:

The B field of the instruction is loaded into the X register.

Set.

OPERATION: Registers
X I(B) S

BEFORE * 2 *
AFTER 2 * 1

1 1 1 1 1 1

I
OPERATION COD E :\ L..-_0 ______ 1"'--0 ______ 1"'---1 ----'--_""'-----'------I LSB~MSB I

IF MEMORY NOT EQUAL TO ZERO, ONE TO STATUS.

ACTION: M(X,Y) = ° M(X,Y) ~ °
O~S 1~S

LOX

MNEZ

DESCRIPTION: If the contents of memory file X, word Yare equal to zero, the status logic is
reset. If the contents of that memory location are not zero, the status is set.

STATUS: Reset if M(X, Y) = 0, set if M(X, Y) ~ 0.

OPERATION: Registers
M(X,Y) S

BEFORE 0/7 *

AFTER 0/7 0/1

OPERATION CODE: I ° I ° I 1 I ° I ° I 1 I 1 I ° I

RESET RAM BIT.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

*Oon't care

I

RBIT

° ~ M(X,Y, B)

The bit defined by the I(B) field of RAM file X, word Y, is reset to zero.
RAM bits are

I 3 I 2 I 1 I ° I
MSB LSB

Set.

Registers
M(X,Y) S I(B)

BEFORE 12/6 * 3

AFTER 4/6 1 *

° I ° I 1 I 1 I ° I 1 I LSB~MSB I
26

RETN
RETURN FROM SUBROUTINE.

ACTION:

DESCRIPTION:

STATUS:

IF
THEN

CL = 1
SRR ~ PC
PB ~PA
O~CL

CL = 0
PC+1~PC

PB ~PA

The RETN instruction loads the program counter from the subroutine return
register, loads the page address register from the page buffer and resets
the call latch.

Set.

OPERATION CODE: I 0 I 0 I 0 I 0 I 1 I 1 I 1 I 1 I

RSTR

RESET R OUTPUT LINE.

ACTION: 0 ~ R(Y)

DESCRIPTION:

STATUS:

OPERATION:

The R output line selected by the Y register is reset to zero.

Set.

Registers
R(Y) S

BEFORE * *
AFTER o 1

OPERATION CODE: I 0 I 0 I 0 I 0 I 1 I 1 I 0 I 0 I

SAM AN

SUBTRACT ACCUMULATOR FROM MEMORY. LOAD RESULT INTO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE: I

*Don't care

M(X,Y) - A ~A
1 - BORROW ~ S

The contents of the accumulator are subtracted from the contents of RAM
file X, word Y, and the result is loaded into the accumulator. If A is greater
than M(X,Y), the status bit is reset to zero, but if A is less than or equal to
M(X,Y), the status bit is set to one.

Set if no borrow, reset if borrow.

Registers
A M(X,Y) S

BEFORE 3/6 4 *

AFTER 1/14 4 1/0

0 I 0 I 1 I 0 I 0 I 1 I 1 I 1 I

27

SET RAM BIT.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

SET R OUTPUT LINE.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

I

SBIT

1 ~ M(X,Y, B)

The bit defined by the I(B) field of RAM file X, word Y is set to a one.
RAM bits are
I 3 I 2 I 1 I 0 I

MSB LSB

Set.

Registers
M(X,Y) I(B) S

BEFORE 10/14 2 *

AFTER 14/14 * 1

0 I 0 I 1 I 1 I 0 I
°1 LSB~MSB 1

1 ~ R(Y)

The R output line selected by the Y register is set to one.

Set.

Registers
R(Y) S

BEFORE * *
AFTER 1 1

SETR

OPERATION CODE: I 0 I 0 I 0 I 0 I 1 I 1 I ° I 1 I

TRANSFER ACCUMULATOR TO MEMORY.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A ~ M(X,Y)

The contents of the accumulator are stored in RAM file X, word Y.

Set.

Registers
A M(X,Y) S

BEFORE 6 * *
AFTER 6 6 1

I 0 I 0 I 0 I 0 1 1 I 1 I OPERATION CODE: 1,--_0 ____ 1 ___ 0 -I..._....a...-~_---'-_--i.-____ '"_---J

*Don't care
28

TAM

TAMIY

TRANSFER ACCUMULATOR TO MEMORY. INCREMENT Y REGISTER.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A ~M(X,Y), Y + 1 ~Y

The contents of the accumulator are stored in RAM file X, word Y.
The contents of the Y register are incremented.

Set.

Registers
Y A M(X,Y) S

BEFORE 5 3 * *
AFTER 6 3 3 1

I ° I ° I ° 1 ° 1 ° I OPERATION CODE :1 L-_O----l.I_0----L1_1 --L...._.....L.-_.L..------I._----L.._---'

TAMZA

TRANSFER ACCUMULATOR TO MEMORY. ZERO ACCUMULATOR.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A ~ M(X,Y), ° ~A
The contents of the accumulator are stored in RAM file X, word Y.
The accumulator is then loaded with zero.

Set.

Registers
A M(X,Y) S

BEFORE 8 * *
AFTER ° 8 1

OPERATION CODE: 1 ° I ° I ° I ° I ° I 1 I 0 I ° I

TRANSFER ACCUMULATOR TO Y REGISTER.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

A~Y

The contents of the accumulator are loaded into the Y register.

Set.

Registers
Y A S

BEFORE * 9 *
AFTER 9 9 1

OPERATION CODE: I ° I ° I 1 I ° I 0 I 1 I ° I 0 I

*Oon't care
29

TAY

TBIT1

TRANSFER ONE RAM BIT TO STATUS

ACTION: M(X,Y, B) ~ S

DESCRIPTION: If the bit selected by the I(B) field in RAM file X, word Y is a one, the status
logic is set to one. If it is zero, the status logic is reset to zero. RAM bits are
I 3 I 2 I 1 I 0 I

MSB LSB

STATUS: Set if bit = 1, reset if bit = O.

OPERATION: Registers
M(X,Y) B S

BEFORE 9/14 0 *

AFTER 9/14 * 1/0

OPERATION CODE: I 0 I 0 I 1 I 1 I 1 I 0 I B I
LSB I MSB

TRANSFER CONSTANT TO MEMORY. INCREMENT Y REGISTER.

ACTION: I(C) ~ M(X,Y)
Y + I~Y

TCMIY

DESCRIPTION: The ROM constant contained in the C field of the instruction, I(C), is loaded
into RAM file X, word Y. The Y register is incremented byone.

STATUS: Set.

OPERATION: Registers
Y M(X,Y) S ITCl

BEFORE 4 * * 9
AFTER 5 9 1 *

I LSB I
C

IMSBI I
OPERATION CODE: I 0 I 1 I 1 I 0

TCY
TRANSFER CONSTANT TO Y REGISTER.

ACTION: I(C) ~ Y

DESCRIPTION: The constant contained in the C field of the instruction, I(C), is loaded into
the Y register.

STATUS: Set.

OPERATION: Registers
Y S lie)

BEFORE * * 10
AFTER 10 1 *

OPERATION CODE: I 0 I 1 I 0 I 0 I LSB I
C

IMSBI I
*Oon't care

30

TRANSFER DATA TO OUTPUTS

ACTION: SL,A ~ PLAIR

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

The status latch and accumulator contents are loaded into the
programmable logic array input register. The 5-bit word selecting
one of the 32 possible output terms is:
I SL I As I A4 I A2 I A1 I

MSB LSB

Set.

Registers
SL A PLAIR S

BEFORE 1/0 4/7 */* *

AFTER 1/0 4/7 36/7 1

I 0 I ° I ° I 0 I 1 I 0 I 1 I 0 I

TRANSFER K INPUTS INTO ACCUMULATOR.

ACTION: K~A

DESCRIPTION: Data from the four K inputs is loaded into the accumulator.

STATUS: Set.

OPERATION: Registers
A S K

BEFORE * * 6
AFTER 6 1 *

OPERATION CODE: I ° I ° I 0 I 0 I 1 I ° I ° I 0 I

TRANSFER MEMORY TO ACCUMULATOR.

ACTION: M(X,Y) ~ A

TOO

TKA

TMA

DESCRIPTION:

STATUS:

The contents of RAM file X, word Y, are loaded into the accum'ulator.

Set.

OPERATION: Registers
A M(X,Y) S

BEFORE * 4 *
AFTER 4 4 1

I ° I 0 I 0 1 ° I 1 I OPERATION CODE: ,-I _o--...&-I _0--1...1 _1----L_---L-._.L...-.---L-_--L-----I

*Don't care
31

TMV
TRANSFER MEMORY TO Y REGISTER.

ACTION: M(X,Y) ~ Y

DESCRIPTION:

STATUS:

The contents of RAM file X, word Y, are transferred to the Y register.

Set.

OPERATION: Registers
Y M(X,Y) S

BEFORE * 11 *
AFTER 11 11 1

I °
,
° I ° I 1 I ° I OPERATION CODE: 1'--_0_''---0----'-,_1 ---'--_......1..-_-'-----'-_---'-_---'

TVA
TRANSFER Y REGISTER TO ACCUMULATOR.

ACTION: Y~A

DESCRIPTION: The contents of the Y register are loaded into the accumulator.

STATUS: Set.

OPERATION: Registers
Y A S

BEFORE 4 * *
AFTER 4 4 1

OPERATION CODE: I ° I ° I 1 I ° I ° I ° I 1 I 1 I

XMA
EXCHANGE MEMORY AND ACCUMULATOR.

ACTION: M(X,Y) ~A

DESCRIPTION:

STATUS:

The contents of RAM file X, word Y and the accumulator are exchanged.

Set.

OPERATION: Registers
A M(X,Y) S

BEFORE 11 5 *
AFTER 5 11 1

OPERATION CODE: I ° I ° I 1 I ° I 1 I 1 I 1 I °
,

*Don't care
32

YNEA
IF Y REGISTER =F- A, ONE TO STATUS AND STATUS LATCH.

ACTION:

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

Y~A
1~S

1 ~SL

Y=A
O~S

o ~SL
The contents of the accumulator and the Y register are compared. If they
are not equal, the status and status latch are set. This is the only instruction
which sets or resets the status latch, consequently if SL = 0, PLA terms
0-15 may be output, if SL = 1, PLA terms 16-31 may be output.

Set if Y ~ A, reset otherwise.

Registers
Y A S SL

BEFORE 12 8/12 * *

AFTER 12 8/12 1/0 1/0

0 0 0 0 0 0 1 0

YNEC
IF Y REGISTER #- CONSTANT, ONE TO STATUS.

ACTION: Y = I(C) Y ~ I(C)

DESCRIPTION:

STATUS:

OPERATION:

OPERATION CODE:

*Don't care

O~S 1~S

The contents ofthe Y register are compared with the C field ofthe instruction.
If they are equal, the status logic is reset to zero, if they are not equal, the
status logic is set to one.

Set if Y ¢ C, reset if Y = C.

Registers
I(C) Y S

BEFORE 4 4/3 *

AFTER 4 4/3 0/1

0 1
ILSBI

C
IMSBI I

o 1

33

APPLICATIONS AND SOFTWARE EXAMPLES

The following hardware and software examples illustrate how the MC141000 is used in
typical applications. The examples include BCD addition and subtraction, controlling a display,
monitoring a keypad, interfacing an external CMOS memory, and expanding the number of
R-Outputs.

34

BCD Addition and Subtraction Flowchart

ADD

INITIALIZE
Y (LSD) = 5

A (CARRY) = 0

A + 6~A
A~M (X, Y)

1~A

* * ** * * * ***** ** **** * * * * * ** * ** ** ** * * * * * * * ** * ** ** ** *
BCD ADDITION SUBROUTINE SUMS TWO 6-DlGIT BASE TEN
NUMBERS LOCATED IN Y=O(MSD) THRU Y=5(LSD) OF COMPLEMENTARY
X FILES. THE AUGEND IN X IS REPLACED BY THE SUM AND THE ADDEND IN
X-COMPLEMENT IS UNCHANGED. AN OVERFLOW CONDITION IS
INDICATED BY A CARRY=1 IN THE ACCUMULATOR ON RETURN.

ADD CLA CLEAR CARRY
TCY 5 ADDRESS LSD

ADD1 COMX COMPLEMENT X (ADDRESS ADDEND)
AMAAC ADDEND DIGIT + CARRY
COMX ADDRESS AUGEND
AMAAC ADD AUGEND TO ACCUMULATOR
BR CARRY BRANCH IF SUM CAUSES CARRY
ALEC 9 VALID NUMBER?
BR ADDOK YES, BRANCH

CARRY A6AAC SUM GREATER THAN 10, ADD CORRECTION
TAMZA UNITS TO MEMORY, ZERO ACCUMULATOR
IA CARRY = 1 TO ACCUMULATOR

ADD2 DYN DECREMENT Y UNTIL BORROW
BR ADD1 BRANCH ON NO BORROW
RETN RETURN ON BORROW

ADDOK TA,MZA SUM TO MEMORY, ZERO CARRY
BR ADD2 BRANCH TO ADDRESS NEXT DIGIT

35

SUBTRACT

IN ITIALIZE
Y (LSD) = 5

A (BORROW) = 0

A+10~A
A~M (X, Y)

1 ~A

A~M (X, Y)
O~A

* * * * ** * * *** * ** * ** ** * ** * * * * * * * * * * * * ** * * * ** **** * * ** ** * * * * * * * * * ** * * * * * * * * * * * * * **
BCD SUBTRACTION SUBROUTINE SUBTRACTS TWO 6-DIGIT BASE TEN
NUMBERS LOCATED IN Y=O (MSD) THRU Y=5 (LSD) OF
COMPLEMENTARY X FILES. THE MINUEND IN X IS REPLACED BY THE
DIFFERENCE AND THE SUBTRAHEND IN X-COMPLEMENT IS UNCHANGED.
AN UNDERFLOW CONDITION IS INDICATED BY A BORROW IN THE
ACCUMULATOR ON RETURN.
* * ** ** ** ** * *** ** ** * * * * * * * * * * ** * * * * ** ** ** * * *** * ** ** ** * * ** ** * * * * * * * * * * ** * * * * ** *

SUBT TCY 5 ADDRESS LSD AT Y=5
CLA CLEAR BORROW

SUBT1 COMX COMPLEMENT X REGISTER
AMAAC ADD SUBTRAHEND DIGIT TO ACCUMULATOR
COMX COMPLEMENT X
SAMAN SUBTRACT SUBTRAHEND FROM MINUEND
BR SUBOK BRANCH IF NO BORROW
A10AAC ADD CORRECTION FACTOR IF BORROW
TAMZA UNITS TO MEMORY, ACCUMULATOR = 0
IA SET BORROW = 1

SUBT2 DYN DECREMENT Y TO ADDRESS NEXT DIGIT
BR SUBT1 BRANCH IF NO BORROW
RETN RETURN TO CALLING ADDRESS

SUBOK TAMZA DIFFERENCE TO MEMORY, BORROW = 0
BR SUBT2 BRANCH TO ADDRESS NEXT DIGIT

MC14100

LCD Display Hardware and Software

BCD-7 Seg. Latch/Dec./Dr.

- LD 7) -

MC14543

4~ PH - -
A2 - -

A1

7; LD -
AO ~

MC14543

4) 0 4 PH -- -

7J - LD -
MC14543

4) PH --
Back plane Signal

(50-120 Hz
S uare Wave q

SUBROUTINE TO SCAN AN LCD DISPLAY. THREE DIGITS ARE ASSUMED
HERE, BUT UP TO SIXTEEN CAN BE ACCOMMODATED MERELY BY
CHANGING THE CONSTANT ON THE TCY INSTRUCTION.

THE DATA IS ASSUMED TO BE IN RAM FILE 0 WITH Y=O BEING THE LSD.

SCAN LOX 0
TCY 2

NEXT TMA
TOO
SETR
RSTR
DYN
BR NEXT
RETN

ADDRESS THE DATA

TRANSFER THE DATA TO
THE O-OUTPUTS

LATCH THE DATA INTO
THE LCD DRIVER

SELECT NEXT DIGIT, OR
IF DONE, RETURN

36

LCDs

BP

(MSD)

BP

BP

(LSD)

LCD Display Plus Keyboard Hardware

7-Seg. Latch/Dec./Drs. LCDs

<> MC14543 7)
LD PH - - BP - - -

(MSD)

~t

4~ 7~ MC14543 - vi yI
24 Key -X-V - LD PH -- - BP
Encoded - -

Keyboard -
--
--

4~
yI

MC14543

-

, I , I , It

4~ K8 K4 K2 K1

vi
MC14543

RO I"""- -
R1

R2

R3

R4 4) MC14543
R5

-
MC141000 0 4

\

4) MC14543

LD PH - BP - - -
(LSD)

~ 50 to 120 Hz
sa WAVE for
Backplane

37

Software

SUBROUTINE TO SCAN AN LCD DISPLAY AND A 24-KEY KEYBOARD. SIX
DIGITS ARE ASSUMED HERE, BUT UP TO FOURTEEN CAN BE
ACCOMMODATED MERELY BY CHANGING THE CONSTANT ON THE TCY
INSTRUCTION.

THE DISPLAY DATA IS ASSUMED TO BE IN RAM FILE 0 WITH Y=5 BEING
THE LSD.

IF Y=15 ON RETURN, NO KEY WAS DEPRESSED. IF A KEY WAS
DEPRESSED, THE Y VALUE WILL BE IN LOCATION 14 AND THE K-INPUTS
WILL BE IN LOCATION 15 UPON RETURN.

SCAN LOX 0 ADDRESS THE DISPLAY DATA.
TCY 5

NEXT TMA TRANSFER THE DATA TO THE O-OUTPUTS
TDO
SETR LATCH THE DATA INTO THE LCD DRIVER
KNEZ CHECK IF KEY DOWN, IFYES, GO TO KEY DOWN
BR KEYDN ROUTINE.
RSTR

NOKEY DYN SELECT NEXT DIGIT, OR IF DONE, RETURN
BR NEXT
RETN

KEYDN TVA TRANSFER Y VALUE TO ACCUMULATOR
TCY 14 SET Y = 14
TAMIY STORE CURRENT Y VALUE, INCREMENT Y
TKA TRANSFER K INPUTS TO ACCUMULATOR
TAM K INPUTS TO MEMORY AT Y = 15
TVA 15 TO ACCUMULATOR FOR DELAY

WAIT DYN DELAY 34*16=544 INSTRUCTION CYCLES TO
BR WAIT BE CERTAIN THE KEY IS DEPRESSED AND
DAN NOT DUE TO BOUNCE
BR WAIT
TKA K INPUTS TO ACCUMULATOR
SAMAN SUBTRACT NEW K INPUTS FROM PREVIOUS
TCY 14 ADDRESS STORED Y VALUE
TMY STORED Y VALUE TO Y REGISTER
RSTR RESET CURRENT R-LiNE
DAN DECREMENT K INPUTS DIFFERENCE
BR NOKEY BRANCH IF NOTZERO (K INPUTS WERE NOT SAME)
RETN VALID KEY DEPRESSION, RETURN

38

Expanding the number of R-Outputs, Hardware and Software

QO

Q1
0 3 3 ADR

Q2

MC141000 Q3
MC14099B

Q4
R9 DATA

Q5

R10 We Q6

Q

RESET

-

Note that R9 & D's are still usable for other functions except while executing SETQ or RSTQ
routines. This scheme is easily expandable to 32 Q's while dedicating only 4 R's, (for the WE lines) for
a net gain of 28 outputs. The output PLA would of course need to be coded appropriately.

***w**

ROUTINE TO EXPAND R-LiNES USING MC14099B 8-BIT ADDRESSABLE
LATCH. (NEW OUTPUTS WILL BE REFERRED TO AS a-LINES IN THE
ROUTINE AND THE ACCOMPANYING DIAGRAM)

CALLING SEaUENCE: (ASSUME THE NUMBER OF THE DESIRED a-LINE IS
IN THE ACC. THE USE OF R9 & R10 IS ARBITRARY. IT IS ASSUMED THAT
R10 HAS BEEN INITIALIZED TO A ONE AND SL TO A ZERO.)

CALL SETa
(OR)

CALL RSTa

SETa TDO ADDRESSES LATCH
TCY 9 SET DATA LINE = 1
SETR
BR CLOKIT

RSTa TDO ADDRESSES LATCH
TCY 9 SET DATA LINE = 0
RSTR

CLOKIT TCY 10 STROBE THE DATA INTO THE LATCH
RSTR
SETR
RETN

*
*

END

39

External RAM Storage Hardware and Software

-
U J:l, ["

VDD
R

4 6
P1 Q1

12 11
r--- P2 Q2

13 13
,....- P3 Q3

3 2
,..- P4 Q4 f---

30 1
R1 P5 W VDD

CLOCK CI v~~
151 5 5V

R4

Ll f
MC14516s

Binary Up/Down 4
CE1 m lJ 22

Counters I...- AO VDD

3
A1 Il i-o..- GND

7 1,0 ~ A2

1
A3

CO
25 4 6 27

Q1 A4

24 12 11 5
P2 Q2 A5

23 13 16
MC15101

6
02 P3 Q3 A6

19 3 2 7 16
03 P4 Q4 A7 D04

29 1 W 9 011 ~ RO PE D03
VDD 11 12

8 ...-- 012 D02 ~

Clock R CI VSS 1!!.. 013 ~
15

1 9 15

D01

15
014

~
,..-

OD P/W

18 20

36
R3

31
R2

7
LSB K1

8
K2

9
K4

10
MSB K8

VSS h -

THE FOLLOWING THREE SUBROUTINES ARE USED FOR INTERFACING
EXTERNAL DATA STORAGE RAM TO THE MC141000/1200.

• SUBROUTINE TO WRITE A SINGLE RAM LOCATION

SUBROUTINE TO SET EXTERNAL RAM ADDRESS

ADR TCY 0
TMA
TDO
SETR
RSTR
TCY
TMA
TDO
SETR
RSTR
RETN

FETCH LEAST SIGNIFICANT BYTE OF ADDRESS
FROM THE INTERNAL RAM AND OUTPUT IT
ON THE O-LiNES

LATCH THIS ADDRESS INTO THE EXTERNAL
MEMORY ADDRESS REGISTER

FETCH MOST SIGNIFICANT BYTE OF ADDRESS
FROM THE INTERNAL RAM AND OUTPUT IT
ON THE O-LiNES

LATCH THIS ADDRESS INTO THE EXTERNAL
MEMORY ADDRESS REGISTER

40

WRITE TCY 2
TMA
TDO
RSTR
SETA

FETCH THE DATA TO BE WRIDEN FROM THE
INTERNAL RAM AND OUTPUT IT ON THE
O-LiNES

WRITE THE DATA INTO THE EXTERNAL RAM

* SUBROUTINE TO READ A SINGLE RAM LOCATION

READ TCY 3
RSTR
TKA
TAM
SETR
RETN

ENABLE THE OUTPUT DATA BUS OF THE
EXTERNAL RAM

TRANSFER THE READ DATA INTO THE
INTERNAL RAM

DISABLE THE OUTPUT DATA BUS OF THE
EXTERNAL RAM

