

MC14500B
INDUSTRIAL CONTROL UNIT

HANDBOOK.

Authors
VemGregory

Brian DeUaRde

Principal Contribntors
Ray DiSilvestro
Terry Malarkey

Phil Smith

Mike Hadley

"Copyright 1977 by Motorola Inc.
All Rights Reserved

@ MOTOROI.A Senriconducf:or Producf:s Inc_

PREFACE

A large number of the problems found in controlling electronic and
electromechanical devices involve decision oriented tasks. In addition,
these decisions usually result in commands as simple as turning some­
thing on or off. Some examples are: Is the limit switch closed? Has the
timer interval ended? Turn 011 pump PI7 when relays A, B, and Care
closed. Send 20 pulses to the triac. Turn on the TlO: light. Count 60
pulses and start motor M I, and an infinity of like jobs.

There are, of course, many ways to solve these types of problems.
Originally, conceptually simple and easily maintained relays were used
extensively. However, relays are bulky, expensive, consume a great deal
of power, suffer in terms of long range reliability and also from the fact
that they do not lend themselves easily to system changes.

Next came solid state logic. These devices are quite small, have
become extremely inexpensive, consume afraction of the power of a relay
and have tremendous long term reliability while remaining conceptually
simple and easily maintainable. However, they still suffer from the fact
that, once in the system, they are not easily programmable and system
changes cannot be made quickly and inexpensively.

Computers alld microcomputers may also be used, but they telld to
overcomplicate the task and often require highly trained personnel to
develop and maintain the system.

A simpler device, designed to operate on inputs and outputs one-at-a­
time and configured to resemble a relay system, was introduced. These
devices became known to the controls industry as Programmable Logic
Controllers (PLC).

The Motorola MCI4500B Industrial Control Unit (ICU) is the
monolithic embodiment of the PLC's central architecture. Some of the
features of the Motorola MC14500B ICU are:

• 16 instructions.
• Easily programmed, uncomplicated, no fear of the urifamiliar.
• Easily learned, can be maintained by existing personnel.
• Uses external memory for versatile system design.
• Can be uniquely tailored to a user's particular requirements.
• Readily expandable to any size and complexity.
• Offers the advantages of programmability.
• B series CMOS lEDEC specification
• High noise immunity.
• Low quiescent current.

• 3-18 volt operation.
• Static operation.
• Wide range of clockfrequencies, typical I MHz operation @ VDD

= 5V with I instruction/clock period.
• instruction inputs-TTL compatible.
• Outperforms microprocessors for decision oriented tasks.
• Wide range of opplications, from relay ladder logic processing, to

moderate speed serial data manipulations, to the unloading of
overtaxed microprocessor based systems.

This handbook serves as a design and application manual/or the part.

ii

Table of Contents

Preracei

CHAPTER 1 - Introduction , 1

CHAPTER 2 - Basic Concepts , 9

CHAPTER 3 - Basic Programming and Instruction Set 15

CHAPTER 4 - Hardware Systems. .. 25

CHAPTER 5 - Demonstration System 31

CHAPTER 6 - Timing, Signal Conditioning and 110 Circuits 41

CHAPTER 7 - OEN and the IF-THEN Structure 55

CHAPTER 8 - IF-THEN-ELSE Structure 59

CHAPTER 9 - While Structure .. 63

CHAPTER 10 - Complete EnabUng Structures. .. 67

CHAPTER 11- Traffic Intersection Controller 75

CHAPTER 12 - Adding Jumps, Conditional Brancbing and Subroutines 87

CHAPTER 13 - Modularizing Hardware Systems 91

CHAPTER 14 - Arithmetic ROlitines 97

CHAPTER 15 - Translating to ICU Code tot

APPENDIX A - MCI4599B Addressable Latch 105

iii

CHAYfER 1 INTRODUCTION

The Motorola MC14500B is a single chip, one-bit static CMOS processor optimized
for decision-oriented tasks. The processor is housed jn a 16-pin package and features
16-four-bit instructions. Tht! instructions perform logical operations on data appearing on a
one-bit bidirectional data line and data in a one-bit accumulating Result Register within the
lCU. All operations are performed at the bit level. .

The ICU is timed by a single phase clock signal, generated by an internal oscillator that
uses one external resistor. Alternatively, the clock signal may be controlled by an external
oscillator. In either case, the clock signal is available for synchronization with other
systems. Each of the ICU's instructions execute in a single clock period. The clock
frequency may be varied over a wide range. At a clock frequency of 1 MHz, some 8300,
plus, instructions, may be executed in a 60 Hz power line half cycle.

In a system, the ICU may be used in conjunction with the complete line of over 100
standard B-series CMOS logic devices. This allows tailoring a system to an application, and
allows a judicious mix of customized hardware and software to be achieved.

As an initial example, Figure 1.1 shows a block diagram of a minimal ICU system
with four component blocks in addition to the ICU. The blocks are:
• The lCU, or central controller of the system.
• The memory, either permanent Read Only Memory (ROM) or temporary Random

Access Memory (RAM). Here, the steps of the program are stored, both individual
instructions and addresses of inputs and outputs.

Figur. 1.1 Basic ICU System

• The program counter, used to step the machine through the sequence of instructions.
• Inputs and outputs, each individually selected by the machine, from information

contained in the memory.
Note that this system can be expanded almost without bound, in terms of inputs and outputs,
so long as the memory is sufficiently wide to address the I/O structure.

There are functions for which one bit machines are poorly suited. These functions are
complex calculations or parallel word data processing. When there are many calculations, a
one-bit machine is at a disadvantage. When a job is dominated by calculations or data
logging,. a multi-bit processor is appropriate. When the task is decision and command
oriented, a one-bit machine is an excellent choice. The tasks that are mixed between
decisions and calculations will be decided upon by economics, the designer's familiarity
with alternatives, and how comfortable the designer is with the alternatives. Under some
circumstances, a combination of an MC6800 MPU and an MC14500B ICU may be the best
solution.

A functional diagram of the MC14500B is shown in Figure 1.2. Central to the ICU is
the Result Register, (RR), a one-bit accumulator that stores the results of Boolean manipula­
tions. These results are generated in the Logic Unit, (LU), which has as its inputs, signals
from external data and the RR. Instructions are presented to the chip on the 4 instruction
pins, (10, 11, 12, 13), and are latched into the Instruction Register, (IR), on the negative­
going edge of Xl.

RST~

Figure 12 MCI4500B Block Diagram

2

Ar-@JMP
A~ATN

ArB FLGO

A~FLGF

The instructions, listed in Figure 1.3, are decoded in the Control Logic (CTL), sending
the appropriate logic commands to the LU. Further decoding is also perfonned in the CTL to
send a number of output flags (JMP, RTN, FLGO, FLOF) to pins 9 through 12. These are
used as external control signals and remain active for a full clock period after the negative­
going edge of Xl.

I nstruction Code
!

Mnemonic Action

#0 0000 NOPO No change in registers. R ~ R. FlGO +-S1..
#1 0001 lO Load Result Reg. Data -+ RR
#2 0010 lOC Load Complement Data -+- RR
#3 0011 AND logical AND. RR • 0 RR
#4 0100 ANDC logical AND Compl.RR· 0 RR
#5 0101 OR logical OR. RR + 0'" RR
#6 0110 ORC logical OR Compl. RR + 0'" RR
#7 0111 XNOR Exclusive NOR. If RR = 0, RR +-1
#8 1000 STO Store. RR -+ Data Pin, Write +-1

#8 1001 STOC Store Compl. RR -+ Data Pin, Write +-1
#A 1010 lEN Input Enable. 0 -+IEN Reg.
#B lOll OEN Output Enable. 0'" OEN Reg.
#C 1100 JMP Jump. JMP Flag <- .n..
#0 1101 RTN Return. RTN Flag +-Jl.. Skip next Inst.
#E 1110 SKZ Skip next instruction if RR = 0

#F 1111 NOPF No change in Registers RR -+RR, FlGF +-Jl.

Figur. 1.3 MCI4500B Instruction Set

The timing signals are generated from an on-chip oscillator, (OSC), with the operating
frequency set via an external resistor connected between pins 13 and 14. Figure 1.4 shows
the relationship between frequency and resistor values. The resultant square wave output
appearing at pin 14 is used both within the leu and as a general system clock. Alternatively,
the system may be externally clocked at pin 13.

IOkLLLWIO~k~ll~-L-L~LUI~OO~k~ll-L~-L~~UIM~ll~-L~~

Rc. CLOCK FREQUENCY RESISTOR

Figure lA Typical Cloek Frequency Versus Resistor (RC)

3

Two internal latches, Input Enable Register, (mN), and Output Enable Register,
(OEN), control data transfers to and from the ICU. The mN acts to enable the data path to
the LU when in the high state. The OEN, in the high state, enables the Write signal. It
should be noted that both of these registers are set via the Data pin.

RST

Write

Data

13

12

11

10

VSS

Figure 1.5 Pin Assignment

V DD

RR
XI

X2

JMP

RTN

FLGO

FLGF

A Master Reset pin (RSl), active high, is provided to clear all registers and hold the
FLAG signals within the lCU at zero. The oscillator pin (Xl) is held in the high state when
RST is high. When RST goes low, the oscillator starts after a delay. In addition, the state of
RR is available at the buffered RR pin 15.

The ICU chip is housed in a 16-pin dual-in-line package, available in either plastic or
ceramic. The various temperature ranges and package types are as follows:

MC145OOBAL: Ceramic package; MIL temperature range
MC145OOBCL: Ceramic package, Commercial temperature range
MC145OOBCP: Plastic package, Commercial temperature range

Pin assignments are shown in Figure 1.5.
The maximum ratings and the electrical characteristics of the ICU are shown in Figure

1.6. These characteristics conform to JEDEC B-Series specifications governing CMOS­
B-Series devices which have a recommended supply voltage operating range from 5 to 15
Vdc. In electrically noisy industrial environments, supply voltages of 15 Vdc are recom­
mended to make best use of the excellent noise immunity characteristics of CMOS logic. In
addition to being able to work in conjunction with over 100 B-series devices, the ICU also
works with non-B-series CMOS parts. Refer to Motorola Semiconductor Data Library,
CMOS Volume 5/Series B, for further information regarding the many devices that are
compatible with the lCU.

The switching characteristics and explanatory waveforms are shown in Figures 1.7 and
1.8, respectively. All times are related to the pin 14 clock signal, Xl. At this printing, only
specifications for typical times, at VDD = 10 Vdc, were available. Refer to the MC14500B
data sheet for up-to-date specifications.

4

ELECTRICAL CHARACTERISTICS

VDD
Characteristic Symbol Vdc

Output Voltage ; "0" level VOL'
Vin = Von drO 10

"1" Level VOH
Vln c OorVDD 10

Input Voltage* "0" Level VIL
RST,D,X2

(Va = 9.0 or 1.0 Vdcl 10

"1" Level VIH
(Va c 1.0 or 9.0 Vde) 10

Input Voltage "0" Level VIL
10. II, 12, 13

(Va c 9.0 or 1.0 Vde) 10
"1" Level VIH

(Va = 1.0 or 9.0 Vdc) 10

Output Drive Current Source IOH
0, Write

(VOH c 9.5 Vde) 10

(VOL c 0.5 Vde) Sink IOL 10

Output Drive Current fAL Device) IOH
Outputs

(VOH c 9.5 Vde) Source IOH 10

(VOL = 0.5 Vde) Sink IOL 10

Output Drive Current (CL/CP Device) IOH
Other Outputs

(VOH = 9.5 Vdcl Source 10

(VOL = 0.5 Vde) Sink IOL 10

Input Current (RST) lin 15

Input Current (AL Device) lin 15

Input Current (CL/CP Device) lin 16

Input Capacitance (DATA) Cln -
Input Capacitance (All Other Inputs) Cln -

(Vin = 0)

Quiescent Current (At Device) 100 10
(Per Package)

Quiescent Currant (CL/CP Device) 100 10
(Per Package)

"Tlow"" -5SoC for AL Device. -40°C for CL/CP Device
Thigh = +1250 C lor A L Device, +850 C for CL/CP Device.

Noise Margin for both "1" and "0"
level = 2.0 Vde min @ VOO = 10 Vde

Figure 1.6

5

250

-tp Unit

Vdc
0

Vdc
10

Vde

4.50

Vdc
5.50

Vde

2.2

Vde
3.1

mAde

-6.0

6.0 mAde

mAde

-2.25 mAde

2.25 mAde

mAde

-2.25
2.25 mAde

150 ,.Ade

±O.ooool "Ade
±0.00001 ,.Adc

15 pF

5.0 pF

0.010 "Ade

0.010 "Ade

SWITCHING CHARACTERISTICS

VDD All Types

Characteristic Symbol Vdc

Propagation Delay Time
Xl toRR tdR 10

Xl to FLAGF, FLAGO, RTN, JMP 'dF 10

Xl to WRITE tdW 10

Xl to DATA tdO 10

RSTtoRR tdRRR 10

RST to Xl tdRX 10

RST to FLAGF, FLAGO, RTN, JMP tdRF 10

RST to WRITE, DATA 'dRW 10

Minimum Clock Pul •• Width, Xl PWC 10

Minimum Reset Pulse Width, RST PWR 10

Setup Time
Instruction tiS 10

DATA 'OS 10

Hold Time
Instruction tlH ·10

DATA tOH 10

IT A = 25°C; 'r = 'I = 20 n. for X and I inputs; CL = 50 pF for JMP, X, RR,
FLAGO, FLAGF; CL = 130 pF + 1 TTLIoad for DATA and WRITEJ

Figure 1.7

RST I
I
I

lEN \ RegIster

OEN I \ Register
I
I

RR I

:;j /4- 'dRRR

Typ

110

100

125

120

110

120

90
110

40

50

125

50

0

30

Unit

n.

n.

n.

ns

ns

ns

ns

n.

n.

ns

ns

ns

ns

ns

>---C)--CJ--
------:N70:cp~O:- NOP F NOP 0

4 bit
Instruction

I
FLAGO J /~ tdF _I k-I'L
~ ________________ 1~1 \~ __ _ FLAGF

Instructions NOPO, NOPF

RR. lEN, OEN remain unaffected

Figure 1.8 Timing Waveforms

6

(CLK)

(CLK)

LO.te. : 1~~
o-------JC11~. _t_IH ____ ~\

~tOH

lEN LO etc.

/

R.R· __ ~X !X~ __________________ __
lEN Register

(Internal)

-I f-'dR

\L-__ _
Instructions lO,lOC, AND, ANDC, OR, ORC, XNOR & lEN

Valid when RST "" L

STO I STO NOP OEN STO

~_:.R. __ ~S~T_O~~!_j~~t~ _______ \ ___ I_S_TOC_

I ~ ~'dO
OEN R.g'"., I \

(lnt.rnal) I 1.. ___ _

~W~RI~TE~~~~------------
Inst,"ctions STO, STOC, OEN

Valid when RST = L

Figure 1.8 Timing Waveforms (Continued)

7

SKZ JMP RTN JMP

~RS~T __ ~'---

I
I
I

J ~M~P~F~L~A~G~ ______________________ ~I I
\ tdRF~ (l

~~~ __________________ ~/I~----~\L. ____ ~ ____ ~ 
~N FLAG " 

SKP F/F I 
Interna! 

• Instructions Ignored. 

Instructions SKZ, .INIP, RTN 

RR. tEN, OEN remain unaffected. 

Figure 1.8 Timing Waveforms (Continued) 

8 



CHAPTER 2 BASIC CONCEPTS 

The block diagram in Figure 2.1 shows an example of a small leu-based PLC system. 
The components, in addition to the leu, are compose9 ofstandard CMOS parts, except for 
the memory. . . 

The ICU system operates on the principle of a stored program processor. A set of 
commands, called instructions, reside in the memory .of the leu system. Each command 
instructs the ICU system to perform one of 16 operations. 

The system "fetches" a command, and the necessary information to execute the 
command, from memory, then "executes" the command. After executing a command, the 
next sequential command is "fetched" from memory, and the process is repeated ad 
infinitum. 

LD & STO Commands 

A typical command might be, LOAD (abbreviated LD). This command instructs the 
ICU system to read the logic level (logic 1 or logic 0) of an input and store this information in 
the Result Register within the ICU. To use the LD command, the user programs the memory 
with the LD lnstruction and the address of the input to be sampled .. The operation of the 

t Bit I 
Data Bus 

.. or 
"I 
EI 
.~I 
.a. -. 

~ 
<{ 
Q 

.t: 

.a 
t 

4 bit 
Instruetlon 
(O~ Codel 

~ 
8 Inputs 

MC14516B 

Clock 

Lb 

Figure 2.1 Typical Small System Organization & Data Flow 

9 

1/0 
Address 



system is as follows: The system memory supplies the lCU with the LD instruction (the 
instruction is fetched), and supplies the input selector with the address of the input to be 
sampled. The logic level of the selected input is then transferred over the lCU's one bit data 
bus to the I bit Result Register. (See Figure 2.1). 

Another typical command is STORE (abbreviated STO). This command instructs the 
ICU system to transfer the data contained in its 1 bit Result Register to an output latch. To 
use the STO command, the user programs the memory with the STO instruction and the 
address of the output latch which is to receive the data. The operation of the system is as 
follows. The system memory supplies the ICU with the STO instruction and supplies the 
output devices with the address of the selected output latch. The data in the ICU's Result 
Register is then routed to this latch over the ICU's one bit data bus. (See Figure 2.2). 

Thus, data can be brought into the system, and also sent out of the system. 

Write 

MC14516B 

Clock 

g 
0 

t .. 
iii 

STO 

I .. 
I~ 

~ 
it 

Figure 2.2 System Operation of STO Instruction 

10 



SYSTEM COMPONENTS 
Memory 

The system memory (see Figure 2.3) contains the program which instructs the system 
to perform its assigned tasks. This program consists ofinstructions to the ICU in the form of 
4 bit operation codes (op-codes) and addresses. The addresses (in binary number form) 
route the data to and from the ICU's I-bit bidirectional data bus to the input and output 
.~es.! . 

ICU 

The lCU is the central control unit in the system. It controls the flow of data between its 
internal registers and its I-bit bidirectional data line, performs logical operations between 
data in its Result Register and data on its I-bit bidirectional data line, and sends control 
signals to the other system components to coordinate the operation of the system. 

Program Counter 

The program counter (PC) supplies the lCU system memory with the address of the 
command to be executed. The PC counts up sequentially in binary to its highest value and 
"wraps around" to zero and counts up again. This causes the sequence of commands in 
memory to be repeated creating what is known as a looping program. 

MC14512 

BA 

MC14516B 

Figure 2.3 Basic System 

11 

MC14599B 
or MC140998 



Input Selectors 

The input selectors are used to decide which of the inputs will be used in a particular 
operation. The leu system memory supplies the input selectors with the address of the 
input, then the selector demultiplexes this data onto the lCU's I-bit bidirectional data line 
for use by the lCU. Thus, one input is selected from the many inputs. 

Output Selectors 
The output latches are very similar to the input selectors except the data flow is 

reversed. When the leu receives a command to store its Result Register data, it transfers 
this data to its I bit bidirectional data line and signals the output latch with the WRITE 
control line. The output device then routes this data to the latch specified by the address 
coming from memory. 

The AND Instruction 

Before continuing with an example, one more instruction is required - the AND 
instruction. The operation of the AND instruction is as follows. The system memory 
supplies the leU with the AND instruction op-code and supplies the input selectors with the 
address of an input. The addressed input data is then demultiplexed onto the leU's 
bidirectional data line. The information on this line is then logically' 'ANDed" with the data 
which is residing in the Result Register. The result of this operation becomes the new 
content of the Result Register. Notice that the final content of the Result Register will be a 
logic I if and only if the previous content of the Result Register was a logic I and the input 
data was a logic 1. The truth table is: 

Example 

Input 

o 
o 
I 
I 

"AND" Initial Result = New Result 
Register Contents Register Contents 

o o 
I o 
o o 
1 1 

The basic systc;m of Figure 2.3 is well suited to solving problems presented in the form 
of relay ladders or solid state logic. Figure 2.4 shows the problem LOAD = A· B in both 
these forms. 

Thus, when A and B are closed (or a logical I), LOAD is energized (a logical 1). 
The leU solves this problem not once and once only, but once per program loop. Thus, 

if there are 1000 instructions in the program and the clock frequency is 500 KHz, the inputs 
will be sampled 500 times per second (every 2 mS) and the output will be energized or 
de-energized within 2 mS of an input changing. This is known as a looping control 
structure. 

12 



Line Return 

~AI--I --li~ r' '~l 
Figure 2.4A Relay ladder Rung 

A f"::::\ Load 
=B ___ ~~}---=O:: 

Figure 2.48 Solid State Equivalent of Figure 2AA 

Figure 2.4 load· A • B 

Figure 2.5 shows the leU program required to solve this problem. 

Of course, the sequence could just as readily have been: LD B; AND A; STO LOAD. 

Loads the state of Input A onto the 
ICU's Result Register (RR) 

Logically ANDs the state of input B 
with the data In the leu Result Register 
(which now contains A). The result of 
this operation becomes the new contents 
of the Result Register. 

Transfers the data In the RR to the 
output designated LOAD, thus activating 
or deactivating the load device 

Performs remainder of program Bnd 
loops back 

Figure 2.5 Example LOAD = A • 8 Program 

13 



14 



CHAPTER 3 BASIC PROGRAMMING 
AND INSTRUCTION SET 

Accumulating Result R~gister 
The reader will note that the AND instruction introduced the concept of an accumulat­

ing Result Register. In the execution of this instruction, the ICU logically performed an 
AND function on the data on its bidirectional data line with the data in its internal Result 
Register. The result of this operation became the new content of the Result Register. The 
point to be made here is that the Result Register always receives the result of any of the 
lCU's logical instructions. The Result Register therefore accumulates the logical result of 
each lCU logical instruction. This is analogous to an adding machine which always displays 
the subtotal after each operation. . 

Complement Instruction 

It is sometimes desirable to activate an output when one input is in the logic 0 state and 
another input is in the logic I state. This situation occurs in relay controlled systems where 
"normally closed" relays are used, and occurs in solid state logic systems where inverters 
are present. Figure 3.1 shows an example of this situation. 

The lCU instruction set is prepared for this event. Several logical "complement" 
instructions invert the logic level of the data on the ICU's bidirectional data line before 
operation on this data. 

~A~ 
Line Return 

Figure 3.1 Examples of Complemented Signals 

The LDC Instruction 

An example of one of these instructions is the load complement instruction, ab­
breviated (LDC). The operation of this instruction is as follows. The lCU system memory 
supplies the ICU with the LDC instruction and the input selectors with the address of the 
input to be used in the operation. The input selector then demultiplexes the data of the 
selected input to the ICU's bidirectional data line. The ICU complements this data and stores 
the result in its one bit Result Register. The Result Register will receive a logic 1 if the 
selected input was in the logic 0 state. Figure 3.2 shows an lCU program which solves the 
problem shown in Figure 3.1, using the LDC command. The reader should be convinced of 
the operation of this program before reading further. 

15 



~B~ ~ 
Line LOAD Return 

+ 
I LDC A I 

Loads the logical complement of the A input 

+ 
Into the Result Register. 

I AND B I 
Logically AND's the B Input with the content 
of the Result Register (which conte Ins the 

~ 
complement of the A input). The result of this 
operation becomes the new content of the Result 

I STO LOADI 
Register. 

Transfers the Result Register data to the output 
latch designated LOAD. 

Note that the STO Instruction will only transfer a logic 1 slgne' to the output fatch If the A signal Is logic O· 
and the B signal is logic 1. 

Figure 3.2 Using the LOe Command 

The ANDC Instruction 

Another example of a logical complement instruction is the "and complement" 
instruction abbreviated (ANDC). The operation of the ANDC instruction is as follows. The 
ICU system memory supplies the ICU with the ANDC instruction and the input selectors 
with the address of a selected input. The input selector then demultiplexes this data onto the 
ICU's one bit bidirectional data line. The leU complements this data and logically AND's 
this data with the data in the Result Register. The result of this operation becomes the new 
content of the Result Register. The Result Register will receive a logic 1 if the input selected 
was at logic zero and the Result Register previously contained a logic 1. 

With the addition of this instruction the leU is able to attack some more complicated 
"chain" calculations. Figure 3.3 shows one such example. Figure 3.4 shows an leU 
program which solves the problem depicted in Figure 3.3. 

In reviewing the operation of these instructions, the reader should be convinced that 
the load device will only receive a logic 1 signal if A = 1, B = 0, C = 1, and D = o. 

16 



A 

Figure 3.3 Example of a Chain Calculation 

Statement Operator Operand Comments 

#1 LD A Result Register +- A 
#2 ANDC B Result Register +- A· B 
#3 AND C Result Register +- A • B • C 
#4 ANDC D Result Register of- A • B • C • i5 
#5 STO LOAD Result Register: A • B • C • 5 -+ LOAD 

Figure 3.4 Program to Solve the Chain Calculation of Figure 3.3 

ORandORC 
In many cases, it is also desirable to activate an output when eitherinput is in the logic 1 

state. In this event, the "or" instruction, (OR), should be used. The operation of the OR 
instruction is as follows. The lCU system memory snpplies the OR instruction to the ICU 
and the address of the input to be used in the operation to the input selectors. The input 
selector then demultiplexes the addressed data onto the leu's bidirectional data line. The 
leu then logically OR's this data with the content of the leu's Result Register and returns 
the result of the operation to the Result Register. 

The leu also has an "or complement" instruction, abbreviated ORC, in the event 
complement logic is needed. The operation of this instruction is exactly like the OR 
instruction except the incoming data is complemented before the OR operation is per­
formed. Figure 3.5 shows some examples where the OR and ORC instructions may be used. 

t=:~ 
Line B Return 

A 

~ 
OR 

#1 LD A 
#2 OR B 
#3 STO LOAD 

Use of the OR instruction 

RR +-A 
RR+-A+B 
A + B : RR -+ LOAD 

~A~ 1 Ct1 
LINE B RETURN 

A 

~ OR 

#1 LD A 
#2 ORC B 
#3 STO LOAD 

Use of the ORC instruction 

RR +-A 
RR+-A+B 
A + B : RR -+ LOAD 

Figure 3.5 USB of the OR and ORC Instructions 

17 



In the example of using the OR instruction, the load device will receive a logic 1 signal 
if the Aor B or both inputs are in the logic 1 state. In the example of the ORC instruction, the 
load device receives a logic 1 signal ifthe A input is in the logic 1 state or the B input is in the 
logic 0 state. 

Use of Temporary Locations 

Many of the logic structures found in the controls industry are branches of several 
series relays, in parallel with another branch of series relays. Figure 3.6 shows an example 
of this structure. 

RELAY LADDER LOGIC SOLID STATE EQUIVALENT 

Figure 3.6 Series·Paraliel Combinations 

When dealing with this type of problem, it is not always possible to directly "chain" a 
series of LD, LDC, AND, ANDC, OR, and ORC instructions together to correctly evaluate 
the logic function required. In some cases, it may be necessary to temporarily store the 
intermediate results before processing the remainder of the problem. In these cases, the 
programmer must evaluate the series branches using LD, AND, and ANDC instructions as 
necessary to evaluate the expression and then store the result in a temporary location. The 
second series branch must then be evaluated and ORed with the data saved in the temporary 
location. The result of this operation should then be used to activate or deactivate the load 
device. Figure 3.7 shows a common error in programming this type of problem and Figure 
3.8 describes and the correct approach to the problem. Figure 3.8 shows the correct method 
for solving this problem by using a temporary storage location. 

tj~B~ 
LINE C D RETURN 

#1 LD A RR +-A 
#2 AND B RR+-A' B 

**ERROR 
#3 OR C RR+-A'B+C 
#4 AND 0 RR +- (A • B + C) 0 
#5 STO LOAD RR .... LOAD 

**Note that the final expression Incorrectly resulted in the D term being distributed 
across all other terms. For example, if A, Band C are logic 1 and the 0 Input is logic 0, 
the load device would receive a 10gic 0; this is incorrect because the load device should 
be activated when the A and B inputs are logic 1. 

Figure 3.7 Example of Incorrect Programming 

18 



f----l A b-Qj 
~ f----l LOAD Aeturn 

Line C 0 

#1 LD A RR +-A 

#2 AND B RR +-A· B 
#3 STO TEMP AR = A • B -+TEMP 

#4 LD C RR +-C 

#5 AND 0 RR+-C·D· 
#6 DR TEMP RR +-C' 0 + (TEMP = A • BI = A • B + C • 0 

#7 STO LOAD RR = A • B + C • 0 -+ LOAD 

In this program. the logical result of ANDing A and 8 is stored temporarily, then the logical 
AND of C and 0 is ORed with the data previously stored in the temporary location. The 
correct logical signal is then transferred to the load device. This example demonstrates 
the need for temporary storage locations before proceeding. 

Figure 3.8 Correct Method of Solving the Problem 

The XNOR Instruction 
The "exclusive nor" instruction, abbreviated (XNOR), is the final logical instruction 

in the ICU's repertoire of logical instructions. The XNOR instruction can be thought of as a 
"match" instruction. That is, whenever the input data is identical to the data in the Result 
Register, the new content of the Result Register will be a logic 1. Figure 3.9 shows the truth 
table for the XNOR function and Figure 3.10 an example using the XNOR function. Note 
the reduction in code that may result from the use of this instruction. 

Old New 
Result Result 

Input Register Register 
Data Data Data 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

Figure 3.9 XNOR Truth Table 

19 



EQUALS ~~ 

LINE 

#1 LD A 
#2 AND B 
#3 5TO TEMP 
#4 LDC A EQUALS LD A 
#5 ANDC B XNOR B 
#6 OR TEMP STO LOAD 
#7 5TO LOAD 

Figure 3.10 Example of use of XNOR Instruction 

The STOC Instruction 

When transferring a signal to activate a load device, it is very useful to be able to store 
the logical complement of an expression. The leu therefore has a "store complement" 
instruction, abbreviated (STOC). The STOC instruction is exactly like the store (STO) 
instrnction, except the logical complement of the Result Register is transferred to the output 
latch. It should be pointed out that the Result Register retains its original value (i.e. the 
STOC does not change the Result Register value, it merely transfers the complement of the 
Result Register to the bidirectional data line for routing to the output latches). This 
instruction is quite useful when dealing with negative logic or so called "low active" 
devices. Figure 3.Il shows an example usage of the STOC instruction. Figure 3 .12 shows a 
problem in both the relay ladder and logic formats. Figure 3.13 shows the problem reduced 
to code. 

:~D--------~ 
#1 LD A RR-A 
#2 AND B RR+-A'B 
#3 5TO TEMP A'B-+1EMP 
#4 LD e RR +-c 
#5 AND 0 RR +-c· D 
#6 OR TEMP RR+-C'D+A'B 
#7 sToe OUTPUT A • B + C • 0 --> OUTPUT 

Figure 3.11 Example of the STOC Instruction 

20 



LOAD ~A~_.tHC~G o E F I :k I 
RETURN 

LINE 

o 

G 

H 

Figure 3.12 Complex Problem 

#1 LO A RR .... A 

#2 AND B RR .... A· B 

#3 AND C RR .... A· B' C 

#4 STO TEMP A' B' C->TEMP 
#5 LO 0 RR <-0 

#6 ANOC E RR .... O ·e 
#7 AND F RR .... O· E' F 
#6 OR TEMP RR .... A·B·C+O·E·F 

119 AND G RR <- (A • B • C + 0 • E • F) • G 

#10 ANOC H RR <- (A • B • C + 0 • E • F) • G • H 
#11 STO TEMP (A • B • C + 0 • E' F) • G • H .... TEMP 

#12 LO RR<-I 
#13 ANOC RR <-I' J 
#14 OR TEMP RR .... (A • B • C + 0 • E . F) • G • H + 1 • J 
#15 STO LOAD fA • B • C + 0 • E . F) • G • H + 1 • J -> LOAD 

Figure 3.13 Complex Example Problem Code 

21 



The Enabling Instructions, lEN and OEN 

In addition to the lCU's logic instructions, the lCU provides two instructions for 
controlling the program flow in a looping control structure. The reader will remember that, 
in a looping control structure, each instruction is fetched from memory in sequential order. 
In some instances, it may be desirable to effectively' 'jump" over a certain section of the 
lCU program or to inhibit input data from effecting the system's output. 

lEN 

The first of these instructions is the "input enabling" instruction, abbreviated (lEN). 
The operation of the input enabling instruction is as follows. The lCU system memory 
supplies the ICU with the lEN instruction and the input selectors with the address of the 
selected input to be used. The input selector demultiplexes the data of the addressed input 
onto the ICU's bidirectional data line. The leu then latches the input data into its "input 
enabling" register. If the input enabling registeris loaded with a logic 0, all future input data 
will be interpreted as logic 0 until the lEN register is loaded with a logic 1 by another lEN 
instruction. This instruction can be used in a manner similar to the way" master contacts" 
are used in relay ladderlogic. Figure 3.14 shows an example usage of the lEN instruction. 

Note, (statement #5), that if the lEN register was loaded with a logic 0 the Result 
Register can only receive logic 0 data because only LD and AND instructions are used to 
decide if the load device will be activated. 

#1 LD 

#2 AND 
#3 AND 
#4 STO 
#5 lEN 

#6 LD 

#7 AND 

#8 STO 

#9 LD 
#10 AND 
#11 STO 
#12 ORC 
#13 lEN 
#14 LD 
#15 STO 

ABC 

HH 

~H o E 

A f---I 
B F G 

C 
W 
MC 
D 
E H 

X LINE 

F 

G 
y 

RESULT REGISTER} 
RESULT REGISTER 
H 

Forces a 1 into the result 
register, then forces a 1 
into the tEN register. 

Z 

Figure 3.14 Example of Using the lEN Instruction 

22 

w 

x 

RETURN 



Caution 

Care must be taken using the lEN instruction properly; remember that when the lEN 
register contains a logic 0 all input data for the lCU will be interpreted as logic O. This can be 
tricky. For example, assume the lEN register contains a logic O. If either an LDC or an ORC 
instruction is executed, the Result Register will receive a logic I regardless of the actual 
state of the inputs. Additional care must be takell to reload the lEN register with a logic I 
after executing the block/of code to be controlled by the lEN register. In the example of 
Figure 3.14, this is done in statements 12 and 13. Statement 12 forces the Result Register to 
logic I and statement 13 loads the lEN register from the Result Register. Notice that the 
Result Register data is "pinned out" on the MCI4500B and is here assumed to be 
connected to one of the inputs ofthe system. In most systems, this connection will be made. 

OEN 

The second lCU instruction for controlling the operati<!n of programs in a looping 
control structure is the "output enabling instruction," abbreviated OEN. The operation of 
the OEN instruction is as follows. The lCU system memory supplies the lCU with the OEN 
instruction and the input selectors with the address of a selected input. The input selectors 
then demultiplexes the data of the addressed input onto the lCU's bidirectional data line. 
The lCU then latches this data into its output enabling register (OEN). If a logic 0 is loaded 
into the OEN register, the WRITE control signal from the lCU is inhibited. Therefore, the 
output selectors cannot be instructed to receive new data and remain unchanged by STO and 

Start 

See Ch. 6·7 
for more discussion 
of Flow Charts & 
use of OEN. 

#1 LO A RR+-A 
#2 ANO B RR .... A· B 
#{J OEN RR OEN<-RR~A'B 

#4 STO Z 
} PULSE 

} TASK A 
#5 STOe Z 
#6 STO Z 

} PULSE 
#7 STOe Z 
#B LOC RR RR <- RR ~ A-:e 
#9 OEN RR OeN <-RR 
#10 STO Z 

} PULSe } TASK B 
#11 SToe Z 
#12 ORC RR RR <-1 
#13 OEN RR oeN <-RR ~ 1 
#14 STO Q 1 =RR-->Q 

End 

Figure 3.15 Example Use of the OEN Instruction 

23 



STOC instructions. The key point is that once the OEN register is loaded with a logic 0, the 
system outputs remain in their present state until the OEN register is loaded with a logic 1 by 
another OEN instruction. Then and only then can the system outputs be changed by STO 
and STOC instructions. Using the OEN instruction, the programmer can effectively 
"jump" over a block of code by conditionally setting the OEN register to logic 0, causing 
subsequent instructions to have no effect on the system outputs. The programmer can then 
set the OEN register back to logic 1 so that future ICU code will operate in normal fashion. 
Figure 3.15 shows an example use of the OEN instruction. In the example, the program 
again assumes that the Result Register (RR) is available as a system input. Chapters 7 
through 10 describe the OEN structures in greater detail. 

In the example of Figure 3 .15, if A and B are both true statements 4 through 7 send two 
pulses to output Z and statements 10 and Ii will not influence output Z effecting a 
"pseudo" branch around these instructions. If the tested condition fails, statements 4 
through 7 will have no effect on the output and statements 10 and 11 will send one pulse to 
output Z. Statements 12 and 13 return the OEN register to logic 1 so that the Q output will 
receive a logic 1, and future code will operate in normal fashion. Much more will be said 
about the use and advantages of an OEN instruction in Chapters 7, 8, and 9. 

Thus far, we have studied the LD, LDC, AND, ANDC, OR, ORC, XNOR, STO, 
STOC, lEN, and OEN instructions. Of the remaining five instructions, two are no operation 
(NOP) instructions and the other three are for optional use in larger systems which do not 
have a looping control structure. These will be discussed later. 

24 



CHAPTER 4 HARDWARE SYSTEMS 

The purpose of this chapter is to begin to acquaint systems designers with the 
components which are ushd in a basic ICU looping control system. The system illustrated 
was not specifically intended to be used in a practical design, however, it illustrates how the 
components, which comprise the building blocks of an ICU system, might be used. From 
this point, the system designer can delete, .augment or otherwise modify the system 
illustrated to his own particular needs. 

Figure 4.1 is a schematic diagram of a small ICU based system. The system has a 
looping control structnre (i.e. the program counter is never altered by any operation of the 
ICU.) 

System Features 

The scheme depicted on Figure 4.1 is a PLC-Iike system, deSigned to operate on the 
principle of a looping control structure. It has 8 inputs, 8 outputs and 8 additional outputs 
which can be "read" back by the lCU. These outputs can be used for temporary storage. 
The system memory is capable of holding two separate ICU programs; each individual 
program can be 256 ICU statements long. 

Program Counter 

The program counter is composed of two MCI4516B binary up-counters chained 
together to create 8 bits of memory address. This gives the system the capability of 
addressing 256 separate memory words. The counters are configured to count up on the 
rising edge of the ICU clock (CLK) signal and reset to zero when the ICU is reset. Notice 
that the program counter couut sequence cannot be altered by any operation of the ICU. This 
confirms that the system is configured to have a looping control structure. 

Memory 

The memory for this system is composed of one MCM7641 512-word by 8 bit PROM 
memory. Because the program counter is only 8 bits wide, only 256 words, (half of the 
memory), can be used at anyone time. However, by wiring the most significant bit of the 
memory's address high or low, the system designer can select between two separate 
programs with only a jumper option. This might be a desirable featnre if extremely fast 
system changes are required. Optionally, the designer could chain another counter chip or a 
single, divide-by-two of flip-flop to the program counter and use the additional memory 
space for more programming statements. If less than 256 program statements are needed 
and fast tum aronnd is not needed, a smaller memory may be more economical. 

Figure 4.2 shows the fonnat of each memory word. The most significant 4 bits contain 
the instruction operation code which is routed to the ICU. The 4 least significant bits are 
routed to the system's input selectors and output latches to address the system's inputs, 
outputs, and "readable" outputs. 

Memory Options 

There are, of course, many ways to configure the memory of an ICU system. 

25 



+5 V 

~" T T T I I T T T ":,;:. 
- CO P4 P3 P2 PI P4 P3 P2 PI 

~ 
PE U/D 

U/D PEF! 
R MC14516B'" CO CO MC14516S'" CI 

CLK i CLK 
R 

Q4 Q3 02 01 

~ T 0201 .u: I 

,-, : \ 

I II I I +5 v---o 1 A8A7A6A5A4A3A2AI~ JC= ~'~ MCM7641 _ 
_ CS4 CS2 

+5 V -

~:~f ~o'ooo'~r" ~ 
+5V 

b M 

02 II 10 -=.;:-
RR 

W 

\7 r"'!"""" X 2 
Rx 

~ L-.J 

I I I 
D I Z C 8 A 

MCI4512 

XO- - --- - -X7 

J 
System 
Inputs 

~ 

"'Pull Down Resistors on Each Input 

03 Reset 

MCI4500B 

XI D 

I T I I 
DWCWA2A1AO 
(V2) E 0 

MC14599B Reset 

00--- -- - -01 

11111111 
System 

Outputs & Scratch Bits 

Figure 4.1 A Minimal leU System 

26 

MC14040B 
for low 
cost, slow 
speed 
operation 

DW C WA2A1AO 
(VI) E 0 
Reset MC145998 

00- - - - - - -Q7 

11111111 
System 
Outputs 



Memory Word 

To the To Input Selectors 
leu & Output Latches 

Figure 4.2 Parallel Memorv Word Format 

Expansion 

Figure 4.3 shows a simple approach to expanding the I/O address capability of an ICU 
system. In this approach, the system memory is broken into two separate sections which 
share common address lines and bring their data out in parallel. The first of these memories 
is an N by 4 bit' 'instruction memory," used to hold only lCU instructions. The MCM7643 
I K by 4 bit PROM is capable of holding 1024 ICU instructions and would be a good choice 
for problems requiring moderate length programs. The second memory is an N word by M 
bit "address memory" used to hold the address of the operand for each ICU instruction. The 
MCM7641512 by 8 bit PROM is a good choice for this application. Two MCM764 1 , 512 
by 8 bit memories and one MCM7643 lK by 4 bit memory would comprise an lCU system 
memory capable of holding 1024 complete ICU program statements and be capable of 
addressing 256 inputs and 256 outputs. 

Nx4 
Instruction 

Memory 

TolCU 

NxM 
I/O Address 

Memory 

MCM7641 
512 x 8 PROM 

MCM7641 
512 x 8 PROM 

_M _ 

To Input Selectors 
& Outpu t Latches 

Figure 4.3 An Approach to I/O Address Expansion 

27 



Using 4-Bit Wide Memories 

It is also possible to "interlace" the instruction operation codes with the va addresses 
in the same memory. In this type of structure, the CLK signal will become the least 
significant address bit. When the clock signal is high, the memory supplies the ICU with an 
instruction which will be latched into the ICU on the falling edge of the CLK signal. The 
memory is then free to supply the Va sections of the ICU system with an address when the 
clock signal is low. Figure 4.4 shows this. Thus, a 4 bit wide memory may contain the 
instructions and addresses for 16 inputs and 16 outputs. This method is used in the 
demonstration system. Note that as the clock-high and clock-low signals are still used, there 
is no time penalty involved. 

r'~_ 

Instruction 

I/O Address 

Instruetlon 

''0 Address 

Instruction 

~ 

Figure 4.4 Interlaced Memory 

Hybrid Expansion 

It is also possible to interleave with 8 bit wide memory and thus create a 12 bit wide 
(4096) Va structure. See Figure 4.5. 

ClK: 1 
Latched when elK falls 

CLK: 0 

~Fl 
1--- 4 Bit -., ~----12 8it I/O Address ----.,,0011 

Figure 4.5 Interlaced 8 Bit Memory 

28 



Input/Output Structure 
The system shown in Figure 4.1 will be considered in more detail here. Figure 4.6 

shows the complete IiO map. 

Input Selectors 

The input selectors used are MC14512 8-channe! data selectors. In the example system 
of Figure 4.1, there is oilly I MCI4512 supplyiDg the "'system with 8 inputs. These inputs 
occupy addresses 0 through 7 (see Figure 4.6). The input selectors multiplex the addressed 
input onto the leu's bidirectional data during the CLK low phase of each ICU machine 
cycle for all instructions except the STO and Sl'OC instructions. The number of inputs can 
be expanded easily by adding additional address lines, the proper address decode, and 
timing. 

Output Latches 

The output latches are composed of MC14599B 8 bit (biilirectionaI data port) latches. 
In the example system of Figure 4.1, the MC14599B labeled Y 1 is used strictly as an output 
latch supplying the system with 8 outputs. These outputs occupy addresses 0 through 7. 
(See Figure 4.6.) The MCI4599 labeled Y2 is configured as a "readable" output latch. In 
this configuration the part can be thought of as an 8 bit RAM with the outputs of each 
location pinned out. Because this chip has the read/write feature implemented, it occupies 
space in both the input and output sections of the IiO address map. The assigned addresses 
are 8 through 15. 

The output selectors receive the data coming from the leu over the lCU's bidirectional 
data line. The information is transmitted during the clock low phase of a machine cycle 
when the ICU executes an STO or STOC instruction, provided the OEN register contains a 
logic I. The leu signals the output latches that a STO or STOC instruction is being 
executed. The addressed output latches then receive the data and retain its value until the 
latch is once again addressed and changed. Again, the number and configuration of the 
output latches can be expanded easily by adding additional address lines, the proper address 
decode and timing. 

15 

8 

7 

o 
15 

8 
7 

o 

MCI4599B output latch #Y2 
configured as read/write 
here is written to 

MC14599B output latch #Yl 
configured as write only 

MC14599B output latch #Y2 
configured as read/write 
here is read from 

MC14512 input 
selector 

Figura 4.6 1/0 Map 

29 

Output Addresses 
Write"" 1 
for STO & STOC 
instructions 

Input addresses 
Write "'0 
for LD, LDC, 
AND, ANDC, OR, 
ORC, XNOR, feN 
& DEN instruction 



I/O Options 
In the system shown in Figure 4.1, it may be more desirable to have more system inputs 

and less temporary storage bits. In this event, the designer can reconfigure the Y2 
MC 14599B to be a "write-only" output latch. This action would free 8 locations on the JiO 
address map for 8 more inputs; another MC14512 could be used. The system would then 
have 16 inputs and 16 outputs. The designer could create temporary storage bits by tying 
outputs back to inputs. The memory options description showed how memory, and there­
fore, I/O, may be expanded. 

Adding RAM 

If the system requires a large number of inputs, outputs and temporary storage bits, it 
may be more economical to put an N by I bit RAM on the data bus rather than using the 
output latches and input selectors to effect temporary storage bits. See Figure 4.7 .. 

ICU 

The MC14500B is the central control element within the system. It coordinates the 
actions of all the system's components. The system of Figure 4.1 was designed to use the 
looping control structure of the ICU. In this type of structure, the Result Register is usually 
tied to one of the system's inputs and in this example, the Result Register is returned to input 
Xo. The ICU's RESET line is connected to a latch, which is set or reset by two momentary 
contact switches, giving the system a HALT/RUN feature. Note that when the ICU is 
halted, the output latches are cleared to zero. 

Because the ICU is to be used in a looping control structure, the pulses created by the 
JMP and RTN instructions are not required. Also, the pulses created by the NOP instruc­
tions are not used. 

Notice that the lCU has NOP instructions of alii's or all O's. This was done because the 
unprogrammed states of PROM's are all O's or all I's. Therefore, in a looping control 
structure, the ICU can be allowed to sequence through these unprogrammed locations 
without affecting the logical operation of the system. 

Chapter 5 contains an example of an "interlaced" memory system and Chapter 12 
contains an example of a hybrid (parallel/interlaced) memory system with a scratchpad 
RAM. 

Temporary 
Storage 

Address 
From ROM 

Figure 4.7 Adding RAM to a System 

30 

Address 
From ROl'y'l 



CHAPTER 5 DEMONSTRATION SYSTEM 

General Description anf Capability 

This chapter describ~ a 16 input and 16 output PLC (Programmable Logic Controller) 
demonstration system featuring the Motorola MC14500B Industrial Control Unit as the 
main control element within the system. The system is primarily designed to be used as an 
educational tool to illustrate the simplicity and power ofthe Motorola MCI4500B leu. The 
system illustrates the power of the "looping control structure" found in PLC systems. 
Therefore, the jumping, conditional branching and subroutine capabilities available in the 
ICU are not implemented in the system. (However, the programmer will discover that those 
conventional program control techniques are not necessary, even when writing programs to 
solve complex control problems.) The unit may also be used as a model for a small system 
implementation. 

The system has 16 inputs and 16 outputs, each numbered from 0 to 15, and a RAM 
capable of holding 128 leu program statements. The user is able to examine or change the 
contents of any location in memory, and has the option of running or single-stepping 
programs. Alternatively, programmed PROM may be installed in the socket available, and 
the system run from the PROM. In addition, the demonstration unit displays on LED's, the 
content of the program counter, the 4 memory data lines, the content of the ICU's Result 
Register and the current phase of each machine cycle when loading and single-stepping 
programs. These features provide an easy means to understand the operation of the leu 
system and to verify and trouble-shoot ICU programs. 

Figure 5.1 shows the basic block diagram of the demonstration system. A schematic of 
the system is shown in Figure 5.7. 

Memory 

To reduce cost, a 4-bit wide memory rather than an 8-bit wide memory has been used. 
This means that the demonstration system is configured with "interlaced" memory such 
that alternate locations in the memory contain the instruction and its corresponding operand 
address. During the clock-high phase of a machine cycle, the memory supplies thelCU with 
an instruction which is latched into the leu when the clock signal falls. The address of the 
operand is found in the next memory location and is supplied to the I/O circuitry during the 
clock-low phase of the machine cycle. This address is used in the execution phase of the 
leu instruction. Therefore, the CLK signal is used as the least significant bit of the memory 
address. The 256 X 4 bit RAM installed in the demonstration unit will hold 128 complete 
8-bit ICU program statements. Most statements will result in a 4-bit op-code and a 4-bit 
operand address being loaded into memory. Note that not all leu instructions require a 
corresponding I/O address. In these cases, the I/O address location in memory may be left 
unprogrammed. 

In Figure 5.2 the progression from a normal Instruction-Operand in parallel, to 
Instruction-Operand in series, and to actual RAM Operation code is shown. Note that there 
is no difference in program time between the two structures, since both clock phases are 
used in each case. 

31 



PC 

__ S~I~h.!' _ -+---'W'v-o 

PE 

I/O QP·Code 
Address Light 

Light 

o 15 o 15 

Figure 5.1 Demonstration Syst9m Block Diagram 

32 



Instruction Operand Mnemonic Code OP Code in RAM 

LD Input #2 LD 0001 
#2 0010 

AND Input # 1 
AND 0011 
#1 0001 

SKZ IN/AI 
SKZ 1110 

OO,n't Care xxx X 

STO Output 'it 7 
5TO 1000 
#7 0111 

Figure 5.2 Interlaced Memory Structure of Demonstration System 

Program Counter 

The program counter supplies the memory of the ICU s..ystem with its most significant 
address bits. The least significant address bit is supplied by the clock (CLK) signal, as 
explained above. The program counter normally increments on the rising edge of each clock 
pulse, sequencing the ICU through the programmed instructions in memory. In a non­
jumping, non-branching system, the count sequence of the program counter is not altered by 
the ICU program statements. Therefore, the control program statements are executed in 
order, until the program counter "wraps around," and the sequence is repeated. This is 
known as a "looping control structure." 

The program counter can be thought of as a statement counter; for each unique count, 
the clock signal will be high and low, causing the memory to supply the ICU system with an 
instruction and its operand address. This constitutes I machine cycle and the completion of 
I ICU instruction. 

In the demonstration system, the NOPF instruction (which canses the FLAGF output to 
pulse for one clock cycle, when the NOPF instruction is encountered) is used to by-pass 
unprogrammed memory space, to avoid tediously coding to NOPO's and stepping through 
unused locations. This is done by using the FLAGF output from Pin 9 to preset the program 
counter to the setting of the program counter switches. Figure 5.3 is an illustration of this, 
with the program counter toggle switches to zero. 

n & AND 
o AND 

\ ~fo 
GOPF 

INPUT # 1 
INPUT #2 
INPUT #3 
INPUT #4 
OUTPUT # 1 
Causes the prograro counter 
to be preset to zero 

Unprogrammed Locations 
In Memory 

Assume the program starts at location zero in memory and the 
program counter toggle switches are set to zero. 

Figure 5.3 

33 



ICU and Input/Output System 

The MCI4500B operates synchronously with a single phase clock which divides the 
leu machine cycle into two phases. The first phase (CLKHIGH) is the "fetch" phase­
the ICU fetches an instruction from the memory. When the clock signal falls from the high 
level, the instruction is latched into the leu's instruction register. Then, during the second 
phase, (CLK LOW), the instruction is executed. 

There are three types of I/O related instructions-logical, input, and output. During the 
execution phase of input or logical instructions the operand of the instruction is demulti­
plexed onto the lCU's data bus by the input data selectors. The memory supplies the input 
selectors with the address of the bit to be used in the operation. During the execution phase 
of an output instruction, the ICU puts the data in its Result Register (or its complement) on 
its data bus and raises the (WRITE) control line. The data bit is then multiplexed to an output 
line where it is latched on the rising edge of the clock signal. The memory supplies the 
address of the output latch, to which, the data is to be routed. 

Display Lights 

The Program Counter lights show, in binary, the current count of the program counter. 
These lights can be used to determine which ICU statement is currently being executed 
when single stepping, and are also useful in keeping track of ICU statements when loading 
program. 

The memory data lights show the content of the memory location currently addressed 
by the program counter and the clock signal. After data has been loaded into memory, it is 
displayed by the memory data lights. The lights are also useful in verifying programs 
entered in memory. This can be done by resetting the ICU, then single stepping through the 
memory locations with the single step push-button and observing the memory data lights. 

The OP-CODE and I/O ADDRESS lights actually reflect the state of the clock (CLK) 
signal. The OP-CODE light indicates that the clock is high and the I/o ADDRESS light 
indicates that the clock is low. These lights are very useful when loading programs into 
memory. The lights indicate to the user whether the operation code of an instruction or the 
operand address should be entered. The lights also indicate the state of the system, (Fetch or 
Execute), when single stepping programs. 

The Result Register light indicates the content of the Result Register. This is useful in 
understanding the operation of the leu logical instructions in the single-step mode. 

Functional Switches 

RAM!PROM selects which memory, the RAM or the PROM, will be enabled for use 
by the ICU. 

RUN/SINGLE STEP selects which mode the ICU will operate in when the ICU's 
RESET line is pulled to logic zero. 

DATA switches setthe data, either instruction op-codeor I/O address, tobe loaded into 
the memory. 

PROGRAM COUNTER switches set the memory location to which the data is sent. 
LOAD loads the data selected by the data switches into the RAM location indicated by 

the program counter display lights and the op-code, I/O address lights. Mter loading data 
into RAM, the data entered will be displayed by the data display lights. 

SINGLE STEP advances the ICU's clock (CLK) one half cycle per depression. (Le. 
the single step push button toggles the clock signal.) The present state of the CLK signal is 
indicated by the op-code and I/O address lights. (op-code light --> CLK = I, I/O address 
light --> CLK = 0.) 

34 



LOAD PC enters the data selected by the program counter switches, into the program 
counter. After loading the program counter, the value loaded will be displayed by the PC 
display lights. 

RUN latches the lCU's RESET line to logic zero. The leu will then sequence through 
the program in memory or the program may be "single stepped" using the single step push 
button. 

HALT/RESET latch~ the leu's RESET line higli. resetting the lCU. In addition, the 
system's output latches and program counter are cleared to zero. 

Example Problem 
The following example shows a typical problem that the lCU may be used to solve. 

The example illustrates how a problem is reduced to code, and how, using the demonstration 
system. the code is entered into memory, verified, and executed. The example problem 
illustrates how an leu program solves a typical relay ladder logic network, shown in Figure 
5.4. In this problem the load device is to be activated if relay A and relay B are closed or if 
relay C is closed. For the purpose of illustration relays A, B, and C will be represented by 
switches and the load device activation will be indicated by an LED. 

For this problem the following assignments are made: 
INPUT # 6 IS TIED TO LOGIC I SWITCH # 6 IS ALWAYS HIGH 
INPUT # I REPRESENTS RELAY A SWITCH # I 
INPUT # 2 REPRESENTS RELAY 8 SWITCH # 2 
INPUT # 3 REPRESENTS RELAY C SWITCH # 3 
OUTPUT # 1 REPRESENTS THE LOAD DEVICE LED # 1 

LlNE~~0RETURN 
LOAD 

C 

Figura 5A 

Figure 5.5 shows an lCU program which will implement this function and the code to be 
loaded into memory. The" A" portion of Figure 5.5 shows the lCU interpretation, the "8" 
portion shows the programming steps. 

CAUTION: Note that input zero (0000) is reserved for the Result Register. Therefore, 
input zero must not be used; if violated, improper system operation will result. 

Explanation of Program 
Statement # I loads the lEN register with a logic 1. If the lEN register contained a 

logic 0, all future input data for the logical instructions would be interpreted as logic o. 
Statement # 2 loads the OEN register with alogic 1 to enable the output instructions. If 

the OEN register contained a logic 0, the WRITE strobe from the leu would be inhibited 
and the output latches could not be signalled to activate the load. 

35 



A: leu tntepretation 

Instruction Operand Notes 

1 START lEN lOGIC 1 Enable the input register 
2 OEN lOGIC 1 Enable the output register 
3 lD A Load the state of switch A into the Result Register 
4 AND B Logically "AND" switches A and B 
5 OR C Logically "OR" A • B with switch C 
6 STO lOAD Transfer the result to the load to activate/deactivate it 
7END NOPF Causes the program to repeat th is sequence 

8: Programming Steps 

Op-Code 
Program Clock 1/0 Address 
Counter State Hex4·Bits Binary Notes 

PC= 0 1 ClK High A 1010 lEN Instruction 

ClK low 0 0110 Address of Logic 1 i.e. Input #6 
PC= 1 1 ClK High B 1011 DEN Instruction 

ClK low 0 0110 Address of Logic 1 i.e. Input # 6 
PC= 2 1 ClK High 1 0001 lD Instruction 

ClK low 1 0001 Address of A i.e. Input # 1 

PC= 3 1 ClK High 3 0011 AND Instruction 
ClK Low 2 0010 Address of B i.e. Input # 2 

PC=4 1 ClK High 5 0101 OR Instruction 
ClK Low 3 0011 Address of C i.e. Input #3 

PC= 5 1 ClK High 8 1000 STO Instruction 
ClK low 0 0001 Address of load i.e. Output # 1 

PC=6 {ClK High F 1111 NOP Instruction 

elK low xxxx No Address needed 

*Don't Care 

Figure 5.5 Solution to Typical Problem 

Statement # 3 loads the Result Register with the state of switch A. 
Statement # 4 logically AND's the state of switch B with the contents of the Result 

Register; this result is then returned to !lie Result Register. The Result Register will now 
contain a logic 1 if and only if switches A and B were both high. 

Statement # 5 logically OR's the state of switch C with the content of the Result 
Register; this result is then returned to the Result Register. The Result Register will now 
contain a logic I if and only if switches A and B were high or switch C was high. 

36 



Statement # 6 stores the content of the Result Register in the output latch. If the Result 
Register contained a logic I, the output latch would receive a logic I to activate the load. 
The STO instruction does not alter the content of the Result Register. 

Statement # 7 creates a pulse on pin # 9 of the ICU chip. This signal is used to preset 
the program counter to the beginning ofthe program. The entire sequence is then repeated. 

The following is a ~etailed procedure for entering, verifying, single stepping and 
running the example program. 

I. Entering the program to RAM. 
A. Set the RAM/ROM and RUN/SINGLE STEP switches to RAM and SINGLE 

STEP RESPECTIVELY. 
B. Set all the PC switches to zero. 
C. Press the HALT/RESET push button. This resets the PC to zero, resets the ICU, 

the output latches and sets the CLK signal high. The OP-CODE light will 
indicate that the CLK signal is high and an instrUction should be loaded into 
memory. 

D. Set the data switches to hex A (OP-CODE ofthe first instruction), binary 1010 
and press the LOAD push button. The 1010 pattern will be displayed by the data 
lights. 

E. Press the SINGLE STEP push button once. This toggles the CLK. The I/O 
address lights will indicate that the CLK is low and an I/O address should be 
loaded into memory. 

F. Set the data switches to hex 6 (ADDRESS of switch six), binary 0110 and press 
the LOAD push button. 

G. Press the SINGLE STEP push button once. Note the PC has incremented and the 
CLK is high indicating the next complete statement should be entered. 

H. Set the data switch to the bit pattern of the next piece of data to be entered-
lOll in this case. 

I. Press the LOAD push button. 
1. Press the SINGLE STEP push button once. 
K. REPEAT STEPS H, I, 1 UNTIL THE ENTIRE PROGRAM HAS BEEN 

ENTERED. 
L. NOTE: The NOPF instruction does not require that an I/O address be entered in 

memory. The I/O address location in memory for this instruction may he left 
unprogrammed. 

M. Press the HALT/RESET push button. 
STOP 

2. Verifying the program entered in RAM. 
A. Press the HALT/RESET push button. The PC will be reset to zero, the CLK will 

be high and the first piece Of data entered, (1010), will be displayed by the data 
lights. 

B. Press the SINGLE STEP push button once. The second piece of data entered, 
(0110), will be displayed by the data lights. The entire program may be verified 
by sequencing through memory with the single step feature, while observing the 
data display lights. The PC lights and the OP-CODE and I/O address light will 
aid in keeping track of particular lCU statements. 

C. Press the HALT/RESET push button. 
STOP 

37 



3. Single stepping the program. 
Set switch # 6 and switch # 3 high. Setting these switches high will cause light # 1 to 
activate on the (CLK LOW) phase of the 6th (STO) instruction. 
A. Press the HALT/RESET push button. 
B. Press the RUN push button. 

The processor may now be sequenced through the program entered in memory 
by using the single step feature. Each depression of the SINGLE STEP push 
button advances the CLK 1/2 cycle. The display lights will aid in understanding 
the operation of the system as it is single stepped. 

C. Press the HALT/RESET push button. 
STOP 

4. Running the program. 
A. Press the HALT/RESET push button. 
B. Set the RUN/SINGLE STEP switch to RUN. 
C. Press the RUN push button. 

Switch # 6 should be set high. This enables the lEN and OEN registers. The reader 
will now note that light # 1 is activated when switches 1 and 2 are both high or when switch 
# 3 is high. The processor may be halted by pushing the HALTIRESET push button. The 
following Figure 5.6 is a program the reader may implement as an exercise. (The ANDC 
and aRC instruction will be useful). Figure 5.7 is the schematic of the system, with the 
major areas partitioned and labeled. 

Figura 5.6 Reader's Problem 

38 



Figure 5.7 leu Demonstration Unit Schematic 



Address 

00000000&&&&&>&&& 
A7 AS AS A4 A3 A2 A1 AD A7 AS A5 A4 A3 A2 A1 AD 

L--_________ -----, Load 

I~@": 
Op 

o 
Code 

I/O o 
Addr. 

Instructions & 
I/O Addresses 

@ @ RU<!b ~ 
Reset Sgl Step 

6 RO~ 
Reg. RAM 

Sgl Load 

© @ 
Step Data 

Figure 5.8 feU Demonstration Unit Pane. 

Outputs 

0000000000000000 
Inputs 

Figure 5.9 1/0 Simulator 

40 



CHAPTER 6 TIMING, SIGNAL 
CONDITIONING, AND I/O CIRCUITS 

The ICU can make rise of a variety of circuits to do timing information gathering and 
distribution of information. This chapter is an assortnient of such circuits. 

Timing 

Nearly all control tasks have a timing function. An importantfeature of the MCI4500B 
system is the ease with which any number of timers and timing functions can be incorpo­
rated into a system. 

In art lCU system, timing can be implemented with either software or hardware. 
Software timing requires the nse of Incrementation or Decremelitation routines, which are 
described in Chapter 14. Hardware timers can be quite simple; a variety of them will be 
described. They all tend to have one thing in common - an output is used to start a time 
interval, and an input to the lCU system is used to monitor the timer output so that the ICU 
will "know" when the interval has ended. A typical timer is shown in Figure 6.1. 

Rest of leu System 

Figure 6.1 A Typical Hardware Timer 

No mention has been made of the kind of timer used since a variety of choices are 
available: motor timers, clocks, timer delay relays, and both analog and digital timers. The 
following examples are in order of increasing complexity. 

The code required to control and use the analog timer in Figure 6.2 is short and simple. 

Output 

Figure 6.2 CMOS Monostable Time. 

41 



Assume that the time interval is to start whenever" A" and "B" are both high and the timer 
is quiescent. Only four instructions are required. 

LD 
AND 
ANDC 

STO 

A 
B 
INPUT 

OUTPUT 

LOADS THE A SIGNAL 
ANDB WITIIA 
AND WITH INPUT, THE TIMER'S OUTPUT, 
TO VERIFY THAT TIMER IS NOT RUNNING. 

OUTPUT SIGNAL TO START THE TIMER 

On the next pass through the program, the input signal will be at the I level and a 0 will 
be stored at the output, which ends the timer's start pulse. Also notice that, although A . B is 
a simplistic starting condition, in actual practice, the condition for starting the timer might 
be very complex. 

In industrial applications, simple timers are often inadequate for the actual task. 
Typically, one needs control time delays as well as interval timing. In Figure 6.3, a few of 
the commonly-used delay functions are depicted and have the following relationships: 

Turn On Delay 

Tum on l.,J, X seconds after A goes high. 

Turn OtT Delay 

Tum off V, Y seconds after B goes low., 

Delay On - Delay OtT 

Thm on W, X seconds after Crises. 
Tum off W, Z seconds after C falls. 

The coding for the functions is as follows: 

Turn-On Delay 
X Start = A . U . TX 
Store U = TX . U 

assume lEN = OEN = 1 

LD 
ANDC 
ANDC 
STO 
LD 
ANDC 
OEN 
STO 
XNOR 
OEN 

A 
U 
TX 
X START 
TX 
U 
R 
U 
R 
R 

Delay-OnIDelay-OtT 

Turn-Off Delay 
Y Start = V . V . TY 
V Store = V· TY 

LD 
AND 
ANDC 
STO 
LD 
AND 
OEN 
STO 
XNOR 
OEN 

V 
B 
TY 
Y START 
TY 
V 
R 
V 
R 
R 

This function simply chains the Tum-On Delay and Tum-Off Delay codes into a single 
routine. 

42 



A est of 1 CU System 

ABC u v w 

Digital Timing 

TX 

TV 

TZ 

AJ 
u ~xsoc.J 
BI~ ____________ __ 
v--:---------, !--vsec--lL-__ _ 

C~~--------­
~1·~----__ zsoc--------~~~1 

w 
f--xsec~ L 

Figure 6.3 Complex Timing Waveforms 

A simple and straight forward method of digital timing is shown in Figure 6.4. A single 
four bit CMOS up/down counter is used, although any number of these devices may be 
cascaded to form counters for very long time intervals. The counter shown is used in the 
count down mode. At rest, the counter's reset line is held high. When a time interval is to be 
started, the reset signal is removed and a pulse is put on the counter's parallel enable pin, 
(PE), which loads the counter with the time set by the digital switches. From this point on, 
the circuit works like an analog timer, with its output taken from the CO pin. This pin will go 
to the high state during the timed interval and fall when the interval terminates. The ICU 

43 



Inputs 

Rest of leu System 

Co 
Ulo 

MC14510 
MC14516 

T 11 i 1 
Figure 6.4 Simple Digital Timer 

monitors the CO signal and reapplies the reset signal when the interval has ended. A possible 
code sequence for this set of tasks is listed below. 

Assume that a Flag "T" is set to 1 by previous code execution whenever the digital 
timeris required to operate. The timer will be started whenever the timeris at reset (" END" 
= 0) and T = 1. T will be set to 0 when the interval starts to insure that two intervals do not 
overlap. 

START LD 
ANDC 
OEN 
STOC 
STO 
STOC 
STOC 
ORC 

FIN OEN 

T 
END 
RR 
RESET 
LOAD 
LOAD 
T 
RR 
RR 

TEST START FLAG 
TEST TIMER RESET 
ENABLE OUTPUTS 
REMOVE TIMER RESET 
START LOAD PULSE 
REMOVE LOAD PULSE 
CLEAR T 
RR GETS 1 (RR + RR = I) 
ENABLE OUTPUTS 

Assume that the time interval should be started if A . B = I. The result will be used as 
Output Enable to control the start of the timing sequence. 

LD 
AND 
OEN 
STOC 
STO 
STOC 

A 
B 
R 
RT 
PE 
PE 

LOAD A 
RESULT IS NOW A . B 
OUTPUT ENABLED IF A . B = 1 
REMOVE COUNTERS RESET 
PULLPEIDGH 
RESTORE PE LOW 

44 



With the timer operating, the end of the interval is detected by finding CO signal low. 
The OEN should be restored for use by other routines. As follows, XNOR R will force a 1 
into the Result Register, which is then used to load OEN. 

XNOR 
OEN 

RR 
RR 

Multiple Interval Timing 

FORCE RR = 1 
OEN = 1 

It is frequently neCessary to time a number of different intervals in a controller, with no 
two intervals running simultaneously. This means that a number of different sources can be 
used to load a digital timer, as shown in Figure 6.5. The switches shown are coded switches. 
The isolation diodes are required in order to "OR" the switch outputs into the data inputs. 

Rest of leu System 

4 

PE 

FlgUfe 6.5 Multiplelnte ... 1 Timer 

Control By Time-Of-Day 

Many users want to control loads by time-of-day and/or day-of-week. An example is a 
retail store which is open two nights a week and wants to control lighting, heating, air 
conditioning and a security system in conformity with the store's schedule. The store has a 
"morning routine" which turns on air conditioning, lights and removes the security system 
at the proper times. The "morning routine" does not operate on Sunday when the store will 
be closed. 

Such applications require a clock system which has a coded output that will be read by 
an ICU routine. When the lCU determines that clock time matches a key stored in the ICU's 
memory, a single pass will be made through a routine which sets or clears output bits as 
programmed .. At the end of the single pass, a flag is set, thereby telling the ICU that the task 
is completed. This flag will be cleared as part of the "housekeeping" when a subsequent 
routine is started. The flag condition is part of the key for starting the routine. 

The whole concept for a time-of-day control is one of enabling a block of code when 
certain conditions have been met. An example of such a routine is shown in Figure 6.6. 

45 



(lEN = OEN = 1) 

Start 

Key;;; Time >---, 
? 

; 
r-____ t _____ , 
I Instructions for I 
: this Routine or , 

L __ ~'.:"~~~r~o! __ J 
I 
I 

End 

Key"" K1· K2 ....... KN; 
code for time of day. 

FLAG bit Indicates this 
routine started 

Old F LAG Indicates other 
routines started 

Start 

End 

LD Kl 
AND K2 

AND KN 
ANDC FLAG 
OEN RR 
STO FLAG 
STOC OLD FLAG 

Instructions for 
this routine 

ORC RR 
OEN AR 

Figure 6.6 Time·of·Day Routine 

MeMOS RELIABILITY AND DEVICE 
HANDLING PROCEDURES 

Confident use of a family of components requires assurance of the reliability of a 
component under normal operating conditions and the ability of the device to survive 
abnormal conditions that may occur. CMOS, and specifically Motorola McMOS, has 
achieved the high confidence level for equipment usage that has been enjqyed by many 
other semiconductor products. 

RELIABILITY 
Figure 6.7 shows the composite failure rate of commercial ceramic and plastic 

packaged McMOS integrated circuits as a function of temperature. Note that CMOS 
devices dissipate little power and work nominally close to ambient temperature. This 
feature adds to CMOS reliability. The data shown represent over 40 million equivalent 
device hours and give failure rates to the factory set of test limits. This standard of failure is 
more severe than a catastrophic failure rate. 

46 



25 
O. 1 

0.01 

0.00 1 

0.000 1 

27 29 33 35 37 

V~D -}O V 

rz::75%/l000.HOURS 

'" 1\ 0.00022%/1000 HOURS 

'" \ 
1'\ 0.000011%/1000 HO 

0.00001 
URS 

130120110100 90 BO 70 60 50 40 30 20 10 o 

TEMPERATURE °c 

This device contains circuitry to protect the inputs against damage due to high static volt­
ages Dr electric fields; however. it is advised that normal precautions be taken to avoid 
application of any voltage higher than maximum rated voltages to this high impedance 
circuit. For proper operation it Is recommended that Vin and Vout be constrained to the 
range VSS" (Vln or Vout)" VOO. 

Unused Inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or 
VOOI. 

Figure 6.7 - Failure Rate of 
Commercial MeMOS Integrated Circuits 
(Ceramic and Plastic Packaged Devices) 

HANDLING PRECAUTIONS 
All McMOS devices have diode input protection against adverse electrical environ­

ments such as static discharge. The following statement is included on each data sheet: 

Unfortunately, there can be severe electrical environments during the process of 
handling. For example, static voltages generated by a person walking across a common 
waxed floor have been measured in the 4 to 15 kV range (depending on humidity, surface 
conditions, etc.). These static voltages are potentially disastrous when discharged into a 
CMOS input considering the energy stored in the capacity ( =300 pF) of the human body at 
these voltage levels. 

47 



Present McMOS gate protection structures can genemlly protect against overvoltages. 
This is usually sufficient except in the severe cases. Following are some suggested handling 
procedures for McMOS devices, many of which apply to most semiconductor devices. 

1. All MOS devices should be stored or transported in materials that are somewhat 
conductive. MOS devices must not be inserted into conventional plastic 
"snow" or plastic trays. 

2. All MOS devices should be placed on a grounded bench surface and operators 
should ground themselves prior to handling devices, since a worker can be 
statically charged with respect to the bench surface. 

3. Nylon clothing should not be worn while handling MOS circuits. 
4. Do not insert or remove MOS devices from test sockets with power applied. 

Check all power supplies to be used for testing MOS devices to be certain there 
are no voltage transients present. 

S. When lead straightening or hand soldering is necessary, provide ground straps 
for the appamtus used. 

6. Do not exceed the maximum electrical voltage ratings specified by the data 
sheet. 

7. Double check test equipment setup for proper polarity of votlage before conduct­
ing parametric or functional testing. 

8. Cold chambers using C02 for cooling should be equipped with baffles, and 
devices must be contained on or in conductive material. 

9. All unused device inputs should be connected to VDD or Vss. 

When external connections to a PC board address only an input to a CMOS integrated 
circuit, it is recommended that a resistance 10 kO or greater be used in series with the input. 
This resistor will limit accidental damage if the PC board is removed and wiped across 
plastic, nylon carpet or inserted into statically charged plastic "snow". 

The input protection circuit, while adding some delay time, provides protection by 
clamping positive and negative potentials to VDD and Vss, respectively. Figure 6.8 shows 
the internal circuitry for the diode-resistor protection. 

The input protection circuit consists of a series isolation resistor Rs, whose typical 
value is 1.5 k~, and diodes Dl and D2, which clamp the input voltages between the power 
supply pins VDD and Vss. Diode D3 is a distributed structure resulting from the diffusion 
fabrication of Rs. 

Input o--+ ..... 'VV'_-+-~ 04 

All present Motorola integrated circuits have the above diode 
protection with the exception of the MC14049 and MCl4050. 

Figure 6.8 - Schematic Diagram, Diode-Resistor Input Protection 

48 



Isolating Inputs 

Many applications require electrical isolation between a signal source and the control 
logic. There are four usual way,s of doing so: Optical isolators, transformer and capacitive 
coupling and relay contacts. The relay contacts are simply used as a switch closure to the 
logic supply or to ground. The other schemes require more discussion. 

Optical Isolated Inpu" 

Figure 6.9 shows two typical examples of opto isolation. 

+vn---------------~r_~------------~----------~ 

tnpu"O 

curren.!.! O>------lf----l 

Ground O~-----l~ 

+vo---------------~~--------------~------~>--~ 

tnpu~~ 
curr9n.,!c.J~ 

L ______ J 

Ground O>------~l 

Figure 6.9 Optically Isolated Inputs 

Transformer Coupled Inputs 

Transformer coupling is used, most often, for detecting the phase or amplitude of a 
power line derived signal. Figure 6.10 shows a voitage level-sensing scheme. Figure 6.11 
has a connection for detecting the phase of an AC signal. 

Ac::J11 

Figure 6.10 Amplitude Detection of AC Signal 

49 



:JII 

Figure 6.11 Phase Detection of AC Signals 

Capacitively Coupled AC Signals 

For convenience or economy, a designer can sometimes replace a transformer with a 
capacitor. Figure 6.12 shows the way this might be done. The capacitive divider technique 
might be preferred for true ratioing of voltages up to the zener value. 

Voo 

AC 5ig ,>----ll-----~--_'VIIV_---_I 

Vz';;Vr;>o 

Gnd >----------i Note: The diode also 
give open input protection 

Zener Clamped Capacitive Input 

AC 51g »----lI-----.----'\IIIIr--~_I 

Gnd )>-------.1 
Capacitive Divider Input 

Figure 6.12 Capacitive Input Schemes 

50 



Sampling Inputs 

It is possible that a signal might change status during a loop of a program. If an initial 
sample of a signal and a later sample of the same signal were of different values, some 
undesired result might be obtained. The simple avoidance of this problem is to sample all 
the variables at the beginning of a program and to store them in temporary stores. Whenever 
the values are needed l*er in the program, the.tempgrary store contents should be used in 
lieu of the input signal( The rule is: 

Only sample an input signal once in any program. 

OUTPUT CONDIT10NING 

High Current 

Figure 6.13 shows an interface between a low impedance load and an MC14599B ICU 
output device. The MCI413 interface ports will drive 300 rnA loads when saturated, with 
Vee up to SOV. Inrush currents of 600 rnA may be handled.by the MCI413, which allows 
incandescent lamp loads of 300 rnA to be driven without derating for inrush. The interual 
diodes are useful for damping inductive load switching transients. 

MC14599B 

07 no 01 02 Q3 04 05 Q6 

1 11 12 13 14 15 16 17 

Load 

2.7 k 

00 01 02 03 04 05 06 
Typical -=-
Section 

Figure 6.13 High CUrrent Output Buffers 

Relay Driving 

A typical interface to a machine must often be made using electromechanical relay 
contacts for loading switching. This occurs because the original wiring of the machine was 
desigried before electronic control was contemplated. As shown· on Figure 6.14, the 
MC 1413 can also serve as a relay coil driver. 

51 



LED Driving 

Signal 
from 
ICU 

System 

Pins 
1·7 

+28 V 

9 _S~:;~i:ci~3 
Detail 
Pin. 

1/7 10·16 
MC1413 

Figure 6.14 Driving Relays 

load 
Relav 

Driving LED's or opto-couplers is much like driving a relay load, except that an 
external current limiting resistor is used to control the current through the LED, coupler or 
solid-state-switch. See Figure 6.15. High-efficiency LEDs can be driven directly from 
CMOS circuits. 

+v +v 

R ~ +V -2.0 
I 

Signal Pins ~ Pins ~ I~' LED, Switch 
from 1·7 10·16 
ICU 

or Coupler 

System 8 

117 
MC14137 

Figure 6.15 Driving LED loads 

Driving Thyristors (SCRs & Triacs) 

There are many different means for driving thyristors. One of the simplest and most 
reliable will be shown here. The method uses pulse transformers and is called the "picket 
fence" technique. The name is due to the scope trace of a pulse transformer's secondary 
voltage when the primary is pulsed many times each millisecond. • 

Given an adequate supply voltage and a resistive load, a triac or SCR will usually tum 
on when driven by a single gate pulse. However, combinations of low voltage and reactive 
loads can keep a device from reaching the on (latched), state. The picket fence approach is 
to supply a train of gate pulses so that the SCR or triac will latch on during the first pulse time 
when sustaining conditions are met. This allows the devices to turn on as close to zero 
crossings of load voltage as possible. Additionally, the technique is quite economical. 

There are three key parameters to satisfy: Minimum pulse width, maximum pulse 
width and gate currerit requirements. Additionally, a check of the insulation specifications 
of pulse transformers is in order. 

52 



Minimum pulse width and thyristor gate current numbers are obtained from device 
data sheets. After defining minimum pulse width, a rule-of-thumb is to exceed the 
minimum, say by a factor of two. The maximum pulse width requirement is dependent upon 
the volt-second-product (VSP) of the transformer. The importance of VSP is to insure that 
the pulse transformer will not saturate, the driver will not bum up, and a current limiting 
resistor need not be used. 

The maximum pulhe width as a function of supply voltage is: 

PWMAX = vVSP seconds 
supply . 

An lCU system that has a clock period of four times PWMAX can pulse a triac driver by 
storing a "I" in the driver and removing it three clock periods later: 

(RR = I, OEN = I) 
STO TRIAC 
NOP DON'T CARE 
NOP DON'T CARE 
STOC TRIAC 

This code would need to be repeated many times; to conserve memory space, a 
subroutine could be called over and over, to make a picket fence gate drive effective. As 
shown on Figure 6.1, the output of a pulse oscillator is "ANDed" with the ICU output. 

MC 

4 

5 

9 

9 

B 

AC 

Rl • C~ PW 
R2 • C"" Pulse Space 

Figure 6.16 Picket Fence Triac Firing 

53 



Adding Hysteresis to Inputs by Using Outputs 

A simple, but useful, trick in an ICU system is to add hysteresis to an input signal, 
under program control. In Figure 6.17, the input pin on an MC14512 device can be an input 
and an output signal. The ICU reads the input signal, stores the result in the output (positive 
feedback) and then reads the input again. 

LD 
STO 
LD 

INPUT 
OUTPUT 
INPUT 

Gang Transfer of Outputs 

While looping through a program, the ICU addresses each output bit in a sequential 
manner. If a particular controller configuration requires that all output bits be available 
simultaneously, then the output values can be stored in additional latches or flip-flops. A 
simple routine can be added to the program to strobe the lCU outputs into the latches. The 
latch outputs are then available to the rest of the system. The strobe, or pulse-generating 
routine is: 

START 

STOP 

End of Program 

ORC 
STO 
STOC 

RR 
PULSE 
PULSE 

FORCERR TO 1 
PULSE GOES HIGH 
PULSE GOES LOW 

Often, one wants to return to the top of the program immediately after completing the 
last written instruction. Usually, there is a pulse output on the MCI4500B device that is not 
being used in the system. For example, if FLAG 0 is not being used elsewhere in the system, 
then it can simply be OR'd with the program counter's reset signal. 

In other words, the PC will jump to 0 whenever a FLAG 0 instruction (Nap 0) is 
executed. The Nap commands do not need an address (operand); hence, the ROM's 
operand field can be AND'ed with NaP's (FLAG pulses) to generate user defined functions. 

A 

Figure 6.17 Adding Input Signal Hysteresis 

54 



CHAPTER 7 OEN AND 
THE IF-THEN STRUCTURE 

The OEN Instruction 

The Output Enable (OEN) instruction is the most unusual and powerful instruction in 
the MCI4500B. This is the instruction that makes the looping, (as opposed to jumping), 
program flow powerful aiid practical. 

All the concepts required to exploit the OEN's power are shown in Figure 7 .1. The four 
important ideas are: 

1. If the OEN register holds a I, the ICU can write to output or memory devices. If 
OEN holds a 0, the WRITE pulse carinot be generated and no output device or 
memory content will change. OEN thus controls whether or not the leu system 
is "working" at any moment. 

2. Any input signal can be directly loaded into the OEN register. An input can be 
wired to the supply or ground to give an addressable 1 or O. The Result Register 
output can also be used as an input signal. 

3. The physical connection allowing the Result Register to be addressed as an input 
is so useful it should always be utilized. 

4. A block of instructions can be used that calculates whether or not a subsequent 
block of code is to be executed. As this result resides in the Result Register, the 
Output Enable Register should be loaded with OEN RR. 

IF-THEN (OEN Step 1) 

In this section, the Output Enable instruction (OEN) will be used to simplify the logic 
controlling the program's execution. The title IF-THEN implies exactly what we want to do. 
If a condition is satisfied TIIEN a block of code will be enabled. If not, the code should be 
disabled (ignored) so it cannot change the state of any output or internally stored bits. 

For example, if overtemperature switch OTS is closed (= I), sound horn H, turn off 
oven power OP, and turn on oven temperature light OTL. The leu routine is as follows: 

I START 
2 

3 
4 
5 
6 
7 END 

LD 
OEN 

STO 
STOC 
STO 
ORC 
OEN 

OTS LOAD SWITCH STATE 
RR ENABLE OUTPUTS IF I 

IN RESULT REGISTER 
H TURN ON HORN 
OP TURN OFF POWER 
OTL TURN ON LIGHT 
RR FORCE RR TO I (RR + RR = 1) 
RR ENABLE OUTPUTS 

The first two statements disabled the outputs if the overtemperature switch was not 
closed. Two statements are nsed, one to load the state of OTS into the Result Register, the 
other to enable the output or WRITE signal. 

This is an example of a conditional program. The program can affect outputs only 
when the OEN register has a stored 1. Otherwise, nothing is changed by the leu's execution 
of the seven instructions. The same number of clock cycles are used in either case. This is an 

55 



Data 

MC145DOB r-----------------------------, I ~_t I 

I Enabling : 
: Register I 
I I 

I 0 Q In 

I 
I 
I 
I 
I 
I 
I 

QEN I W 

DEN 
Instruction 

Result 
Register 

STO or 
STOC 

Instruction 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I RR 

I I 
I I L _____________________________ J 

When this Connection 
Exists, Result Register 
Loads Output Enabling 

Register with Instructions 
OEN RR 

Any Il1put in 
Loads Output 

Enabling Register 
with Instruction 

OEN'N 

Write pulse output when 
store or store-complement 
instruction is used AND 
output enabled (OEN - 0 

D 

o 
I I 
I I 

Flow of 
Looping 
Program 

Block of 
Enebling InstructIons 

Enabled 
Block of 
Instructions 

Block of 
Enabling Instructions 

Enabled Block 
of Instructions 

Figura 7.1 Output Enable Concepts 

example of an IF-TIlEN block of code. The last two statements re-enable OEN for use by 
other blocks or sections of code. Figure 7.2 shows a flow chart representation of this 
IF-THEN block. The instructions that are executed in each block are written beside the 
blocks. 

It is important to notice that when the IF test fails, nothing happens. This distinguishes 
IF-TIlEN blocks from other code or the flow chart structures we will examine in other 
chapters. 

To Review: IF-THEN code blocks ask a question. If the question is answered yes (OEN 
= 1), the code following the question is enabled and the programs section is enabled. 
Otherwise, the code following is not workable because the WRITE pulse is not produced by 
the leu when OEN = O. 

56 



Start 

1. ·LD OTS (RR <-OTS) 
2. OEN RR (OEN <-RR) 

3. STO H (H<-RR) 
4. STO OTL (OTL +- RR) 
6. STOC FP (FR<-RR) 

6. ORC RR (RR <-1) 
7. OEN RR (OEN <-RR) 

End 

figure 7.2 An If·Then Program Block 

There is no restriction on the structure of the block of code or instructions enabled by 
the IF question in an IF-THEN structure. The block can contain other IF-THEN structures, 
as shown in Figure 7 :3, or any of the other two program structures to be described in the next 
two chapters. 

Start 

r---------
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

N 

I 
I 
I 
I 
I 
I 
I 
I L ________ _ _________ J 

End 

Start 

End 

Figure 7.3 The Instruction Block May Be Complex 

57 



58 



CHAPTER 8 THE IF-THEN-ELSE 
STRUCTURE (OEN STEP 2) 

In the IF-THEN an;angement of Chapter 7; we~w that an action could be taken if a 
condition was satisfied. For example, if the limit switc6 is closed, tum off the motor. There 
is no statement about what is to happen if the switch is /lOt closed; The IF-THEN-ELSE has 
the alternate action instructions not provided for in the IF-THEN structure. 

The IF-THEN-ELSE structure is shown in Figure 8.1. A question is asked, if the 
answer is "no," block B's instructions are enabled and executed. We can see now that if 
block B contains no instructions, we once again have the simple IF-THEN structure. Once 
again, the output enable OEN is used. The "A" block is enabled by loading the OEN 
register from the Result Register (assuming RR = 1). To enable B, the complement of RR is 
stored, to be recalled later to either enable or not enable B. Thus the IF-THEN-ELSE 
sequence is as follows: 

1. Resolve the enabling condition. 
2. Store the complement of the result in some temporary location ("TEMP"). 
3. Load the Output Enable Register OEN from the Result Register RR. 
4. Do the A Block. 
5. Load the Output Enable Register from "TEMP." 
6. Do the B Block. 
7. Restore the OEN's condition to enable (OEN = 1) to allow subsequent code to be 

enabled. 

Start 

Figure 8.1 IF·THEN·ELSE 

59 



An example follows: 
A simple IF-THEN-ELSE usage is to "turn on" a load if a condition exists, and to 

"turn off" the load otherwise. Such a function can be directly done, without the IF­
THEN-ELSE structure. However, it is the enabling logic that is to be illustrated, not the 
control function. 

The example is illustrated in Figure 8.2. The motor M is to run if the A and B contacts 
are both closed. Otherwise, themotoris nottorun. If A . B = I, thenM = 1, elseM = O. To 
start the routine, assume lEN = 1 (input enabled). 

START IA. LD A RR ~ A 
lB. ANDC B RR ~ A . B 
2. STOC TEMP TEMP = A . Ii = A + B 

NOTICE: THE RESULT REGISTER STILL CONTAINS THE ENABLE CONDI­
TION AND ITS COMPLEMENT ENABLE IS IN "TEMP" 

3. OEN RR ENABLE "RUN" CODE 
4. STO M THE MOTOR RUNS 
5. OEN TEMP OEN ~ TEMP 
6. STO M THE MOTOR STOPS 
7A. ORC RR RR ~ RR + RR = I 
7B. OEN RR OEN ~ 1 

In this example, the executable blocks consisted of single store instructions, which 
took advantage of the fact that the Result Register RR contained a 1 in the first "block" if 
the motor was to run, and a 0 in the second "block" if the motor was to stop. 

LD 
ANDC 
STO 

A RR~A 
B RR~A·B 
M M~A· Ii 

= ~.f-__ -::I/lI(f[_,--_-{&:·rurn 

Figure 8.2 Function for IF-THEN-ELSE 

60 



It would have been six instructions briefer, but our example would be lost. The extra 
statements will allow us to write very complex programs in a straight forward and organized 
fashion. Notice, in Figure 8.3, that a "block" of instructions in our IF-THEN-ELSE 
structure could contain other IF-THEN or IF-THEN-ELSE structures. In that case, we 
wonld say the structures were "nested". 

Start 

'""'-'II!I-------- IF·THEN-ELSE Question 

.... 1-1--- IF Block Is an IF·THEN 

""'1---\--/--- Nested IF-THEN auestion 

... -+-+-+-- X Block of Instructions 

--------'1 .... 1---- ~~~~!I·~~~-~~eN-ELsE 

""'-<i!l---if---- Nested IF-THEN-ELSE Question 

.... -f-r---- y Instructfon Block 

I 
I 
I 

Z Instruction Block 

________ .J 

End 

Figure 8.3IF-THEN·ELSE With Nested Structures 

61 



62 



CHAPTER 9 THE WIllLE STRUCTURE 

The WHILE structure is the last of three program structures required to write programs 
powerful enough to handle problems of any complexity.. The WHILE structure allocates the 
entire power of the machifte to a single section of the problem while some condition exists. 

The WHILE structUre is flow charted as shown in Figure ~U. 
In this chart, we see. that after leaVing the Executable Block, the program returns to the 

while condition test. Each machine or computer can have its own unique way to return the 
program to the test question. In general, these are two ways of doing so: Mter leaving the 
executable block, reset the program counter to the entry of the while test question, or, 
disable the execution of the other blocks of code and let the program counter step through 
the non-executable instructions until the program loops back to this while test. 

The first method, jumping the program counter back, is the most common, fastest and 
most costly. It will be discussed at the end of this chapter. The second method is less 
expensive, in that hardware to jump the program counter is not required. It does require a 
clear understanding of programming requirements and hence, will now be discussed in 
detail. 

Test for the While condition. 

If the Whlle condition Is 
satIsfied, the executable block 
Is used and the program 
goes back to the While 
Cond1tlon Test. 

If the While Test fails, 
the other code In the 
program Is used. 

Loop back to top of program, 
which will lead back to the 
While Condition Test. 

Figure 9.1 The WHilE Strur.ture 

63 



Let's call the two ways of implementing the WHILE structure the Jump-Back-While 
and the Loop-Around-While. Both accomplish the purpose that only one block of code is 
executable during the time the while condition is satisfied. The Loop-Around-While then 
puts a condition on the rest of the program: NO code outside the WHILE structure can be 
executable if the WHILE is enabled. The means of doing this is provided by the OEN 
instruction which can let the program counter step through instructions without affecting 
any outputs or memory. This means that the programming problem is one of using OEN to 
disable other code if a WIDLE block is active. 

A way of doing this is to count the number of WHILES in a flow chart and assign a 
unique number to each one. A number called STATE is maintained in memory or temporary· 
storage locations. A while block is enabled only when the blocks' number agrees with 
STATE. STATE can only be changed by the instructions in the enabled block, or by 
conditions external to the program, such as timers or other input signals. The Traffic 
Control application in Chapter 11 is a good example of time being a factor in STATE. 

When the Loop-Around-While is used, each while structure's test for enabling the 
following code tests STATE as part of the while test. This is the same as implementing the 
WHILE as on IF'TIIEN-ELSE .• 'IF the WHILE test condition is satisfied, enable the while 
block, ELSE enable another block of code. Chapter 10 treats this possibility in detail. 

The Jump-Back-While uses two jumps to build the While structure. The first jump is a 
conditonal jump that can move the program counter past the while block if the while test 
fails. It is at the bottom of the While question block. The second jump is written at the 
bottom of the executable block and jumps the program counter back to the While question. 
This jump is not conditional. See Figure 9.2. 

An example of a program with a Jump-Back-While is listed next. With this program 
we want to rnn a pump until a tank is full. During the pumping time, we want no other action 
to take place. A flag switch, FS, will close, (FS = I), when the tank is full. 

1 START LD FS LOAD FLOAT SW SIGNAL 
2 SKZ SKIP NEXT INST IF FS = O. 
3 JMP NEXT JUMP TO NEXT 
4 STO PUMP TURN ON PUMP 
5 IMP START JUMP BACK TO START 
6 NEXT STOC PUMP TURN OFF PUMP 
7 NEXT INSTRUCTION 

Instruction 1 loads the FS signal into the ICU Result Register. If the switch is open, 
instruction 2 will cause instruction 3 to be ignored. Instructions 1-3 comprise the While 
question. The executable block is instructions 4 and 5, which drives the pump and jumps the 
program counter back to instruction 1. Instruction 6 turns off the pump when the while 
condition fails. Mter instruction 6, the program counter steps through the balance of the 
program. The Jump-Back-While is easy to write. Aside from cost, it has a very important 
limitation: Only one block - the While block - can be executed if the While condition is 
satisfied. 

The Loop-Around-While has two important advantages. First, jumping hardware is not 
required. Second - and unique to this structure - two or more completely independent 
programs can run simultaneously in a single leU system. The cost is slower speed of 
execution and a more complex set of block enabling conditions. 

64 



From Previous Block 

Conditional 
Jump 

I .... f----+----Uncondltlonal 
L ___ ..J Jump 

To Next Block 

Figure 9.2 Jump - Back - While Structure 

65 



66 



CHAPTER 10 COMPLETE ENABLING 
STRUCTURES 

We have seen three important program structures: IF-THEN, IF-THEN-ELSE and 
WHILE. It is possible to wnte any program of interest using these three structures. To do so, 
we must realize that any of these three structures may be used at anyplace within a block of 
executable instructions. This will lead to nesting. Often, to keep complex programs under 
control, one will want to draw flow charts. . 

The flow charts will be most useful if they are conceived as modules that are linked 
together. Each module has one starting point and one ending point. They are linked by 
joining the end of one module to the start of another. Thus, the modules will link into one 
long chain. When the program finishes with the last module, it-simply goes back and starts 
the first module again. 

The flow chart should follow a single vertical line. This makes it convenient and easy 
to add or remove modules when developing programs. This concept is shown in Figure 
10.1. For convenience, the flow chart can be drawn as a colunm which is continued in an 
adjoining colunm. This conforms with realistic paper dimensions, as shown in Figure 10.2. 

~ Program Counter -= 0 

Program Counter Resets ~ 

~ Program Counter at End 

Figure 10.1 A Master Flow Chart Showing Looping and Structured Blocks 

67 



IF·THEN~ 

ELSE 

WHILE 

IF·THEN 

Figure 10.2 A Structured looping Program 

68 

IF·THEN·ELSE 

If·THEN 



Structured flow charting and programming is a technique for organizing solutions to 
problems or algorithms. This approach can be used with any programming language or 
hardware set. Hence, control programs which are structured are convertible between, say, a 
large Fortran program to the MCI4500B, in either direction. 

In the MC14500B, one wants to examine the structure to see if WHILES are present. If 
WHILES are present, then no other statements are tg.!;Je executed until the program exits 
WHILE block. This may 6e accomplished in two ways: by using the JUMP instruction from 
Chapter 12, or by disabling all other code during the time a WHILE block is active. If there 
are only a few WHILES iIi the program, then it is easy to "FLAG'; each WHILE and enable 
blocks only if no WHILES are active. Otherwise, the state counter technique from the last 
chapter is recommended. An example of the WHILE test will be shown next, and the "state 
enable" technique will be shown in the Traffic Controller of Chapter II. 

Example 

Shuttle Motor Problem 
A motor driven carrier, on a weaving machine, shuttles between a left and a right hand 

stop each of which have limit switches. When a limit switch closes, the drive motor stops. 
After a T second pause, the motor runs in the opposite direction until the other limit switch 
closes, whereupon the cycle repeats. 

The various signals have the following designations and characteristics: 

LLS 
RLS 
TO 
TI 
MR 
ML 

The Task 

LEFf LIMIT SWITCH 
RIGHT LIMIT SWITCH 
TIMER OUTPUT 
TIMER INPUT 
MOTORRlGHT 
MOTORLEFf 

o = SWITCH CLOSED 
o = SWITCH CLOSED 
1 = TIMING 
1 = START INTERVAL 
1 = RUN TO RIGHT 
I = RUN TO LEFf 

Document an lCU control system for the shuttle motor. 

Solution 

We notice that the motor direction is controlled by the last limit switch that closed. So a 
one bit location called LAST will be used to "remember" the last limit switch closed. 
Arbitrarily, we will say that LAST = 1 when the last switch closed was the left limit switch 
LLS. 

The YO and timer connections to the ICU system are shown in Figure 10.3, and Figure 
lOA shows a structured flow chart for the shuttle motor's control. The flow chart uses all 
three of the structures we have examined. Both the THEN and the ELSE branches of the 
IF-THEN-ELSE port contain nested IF-THEN structures. So the problem is a good example 
of what one is likely to have to do in conditionally enabling different blocks of code. 

69 



+v 

~ 
Other 
Inputs 

Figure 10.3 Shuttle Motor Signal Connections 

'-y---J 
Other 

Outputs ML MR 

In writing code for a flow chart, one often has best results by starting on the innermost 
structure. So let's look at the instructions for the IF-THEN, which looks for the right limit 
switch closure. 

IF RIGHT LIMIT SW CLOSED 
THEN LAST GETS 0 

TIMER START GETS PULSED 
START LDC RLS RR +-- RLS 

STOC LAST LAST +-- RLS 
STO TI TIMER PULSE ON 
ANDC RR CLEAR RR TO ZERO 

END STO TI TIMER PULSE OFF 

This is direct execution. If the same structure were to be coded using Output Enable 
instructions it would like like: 

START 

END 

LDC 
OEN 
STOC 
STO 
STOC 
ORC 
OEN 

RLS 
RR 
LAST 
TI 
TI 
RR 
RR 

RR +-- RLS 
OEN ENABLE BY RR = I 
CHANGE LAST 
PULSE TIMER ON 
END TIMER PULSE 
FORCERR TO 1 
RESTOREOEN 

This block of code is probably ENABLED by using the OEN instruction ahead, so we 
do not want to use OEN within the block. The direct method is preferred. 

However, other ways of writing code for this block are possible, forexampie, using the 
Skip If Zero instruction. 

START 

END 

LDC 
SKZ 
STOC 
SKZ 
STO 
ANDC 
STO 

RLS 

LAST 

TI 
RR 
TI 

70 

RR +-- RLS 
SKIP NEXT IF ZERO 
LAST +-- 0 
SKIP NEXT IF ZERO 
TIMER PULSED ON 
RR FORCE TO ZERO 
TIMER PULSED OFF 



WHIL~ ~. 

While Tlm~r Is 
Non·Zero the 
Motor Is Stopped 

} Motor Run. Right 

IF-THEN 
lE AT LIM. SW. Closed 
THEN LAST = 0 

Start Timer 

} Motor Runs Left 

IF-THEN 
'iFLTITM. SW. Closed 
THEN LAST- 1 

Start Timer 

IF-THEN-ELSE 

!f LAST = 1 

THEN 
-Motor Runs Flight 

ELSE 

Looks for Right 
Limit sw. Closure 

~otor Runs Left 
Limit sw. Closure 

Figure 10.4 Structured Flow Chart for Shuttle Motor Control 

71 



Many ways of writing short blocks of code are possible. Again, direct methods are 
preferable. 

Now, let's look at code for the IF-THEN-ELSE block that controls the motor's run 
direction. OEN is I and the block is enabled when we start. 

OEN= 1 
IF-THEN-ELSE 
IF LAST = 1 

THEN MOTOR RUNS RIGHT 
IFRLS=O 

THEN LAST 0, TIMER STARTS 
ELSE MOTOR RUNS LEFT 

IFLLS=O 
THEN LAST = 1, TIMER STARTS 

Noting on the flow chart that the IF-THEN-ELSE structure is active whenever TO = 0, 
we can combine TO into the branching decision of this structure. 

START LDC 
AND 
OEN 
STO 
STOC 

TO 
LAST 
RR 
MR 
ML 

LOAD TO 
RR = LAST' TO 
OEN ~ LAST· TO 
RUN RIGHT ON 
RUN LEFT OFF 

INNER IF-THEN BLOCK FROM BEFORE FOR MTR RT 

LDC 
ANDC 
OEN 
STOC 
STO 

TO 
LAST 
RR 
MR 
ML 

LOAD TO 
RR = LAST' TO 
OEN +- LAST . TO 
RUN RIGHT OFF 
RUN LEFT ON 

INNER IF-THEN BLOCK FROM BEFORE FOR MTR LFT 

We have now" collapsed" the code and flow chart to the simpler form shown in Figure 
10.5. One of the points of this section is that the "work" is not in writing code, but in 
understanding, organizing and documenting a problem and a solution procedure or al­
gorithm. When a problem and its solution are well understood, flow charting and documen­
tation are often expedited by the immediate writing of code. 

72 



OEN TO 
LDC TO 
STO MR 
STO ML 

LOC TO 
AND LAST 
OEN RR 

STO MR 
STOC ML 

LOC RLS 
STOC LAST 
STO TI 
ANoe RR 
STO TI 

LOC TO 
ANoe LAST 
OEN RR 

STOC MR 
ST ML 

LDC LLS 
STOC LAST 
STOC TI 
ANDC RR 
STO TI 

Figure 10.5 Final Structured Flow Chart and Motor Control Coda 

73 



74 



CHAPTER 11 TRAFFIC INTERSECTION 
CONTROLLER 

In this chapter, many of the concepts previ'OuslY··~xamined are consolidated in an 
example of a traffic intersection controller. The controller is developed around the 16 
input/16 output demonstration system that was described in Chapter 5. This example 
illustrates the power of the lCU's instruction set and exemplifies the new concept of 
branching code that is fetched and executed entirely sequentially, thus, eliminating the need 
for conventional branching or jumping by modifying the contents of program counter. 

State Diagram of the Controller 

One of the many ways to visualize a problem or task is by means of a state diagram. 
This method presents the maximum information, regarding the task, in very compact form. 
Figures 11.1 and 11.2 depict the controller states in simplified and complete diagrams, 
tespecti vel y. . 

(h) 

101 

/ 

000 

\/ 
//\(b) 

(d) 

./' \ /(1) 
\ 

~"" 
(f) • "Smart" Mode Onlv 

100 

Figure 11.1 Traffic Controller - Simplified State Diagram 

75 



As shown in the figures, the traffic controller has 8 separate states. The conditions for 
leaving a state and advancing to another are shown as labels for the lines connecting each 
state pair on Figure 11.2. Priority is assigned in the following manner: if there are several 
paths that can be taken upon leaving a state the controller will advance to the nearest 
neighboring state, following a clockwise path around the outside of the state diagram circle. 
For example, if the controller were in State 0 and in its "smart" mode, (to be described 
later), and if there are "North-South" and "East-West" traffic requests, but no left turn 
request, the controller would advance directly to State 3, skipping States 1 and 2. 

Features of the Intersection Controller 

The intersection to be controlled consists of a mitior highway (North-South) and a 
minor cross street (East-West). The N-S highway has left-turn arrows operating simultane­
ously. The controller can operate in either of two modes: sequenced (dumb) and responsive 
(smart). The mode of operation is selected by a switch on the demonstration unit. 

In the sequenced mode, the controller "steps" through each state (clockwise path around 
the state diagrams). In this mode, the sequence is repeated endlessly, without regard to 
traffic build-up. 

In the responsive mode, the controller will "rest" with the N-S green light on and 
"answer" requests for left turns and E-W traffic. After servicing these requests, the 
controller returns to the N-S green state. If many requests are made simultaneously, the 
controller selects which request has priority. Each request will be serviced once in each 
cycle. This is done so that no request will be denied because of a large amount of traffic in a 
high priority direction. 

The controller also has various time delays, (N-S Green time, etc.) that are programm­
able by switches. Other features are a hard-wired constraint that ifN-S green is off and N-S 
yellow is off, N-S red must be on. A similar condition exists in the east-west directions; 
also, a hard-wired "flash all reds" function when the ICU is in the reset mode. 

Intersection Controller Flow Chart 

The state diagram is a universal, generalized representation of the task. The flow chart 
is a more specific representation that allows design tradeoffs between system hardware and 
software to be resolved. Figure 11.3 is the complete flow chart for the implementation of the 
controller. Table 11.1 lists and describes the input/output function and the mnemonic terms 
assigned to the controller system. 

The resultant program for the controller consists of eleven IF-THEN structures. Each 
IF-THEN structure implements one of the arrows and states shown on Figures 11.1 & 11.2. 
In any of the structures, the IF part tests to see if the conditions exist for entering a new state. 
The THEN parts change Flag bits to indicate which new state the controller has entered. 
Next, the THEN parts execute the time and output-state code that corresponds to the new 
state. 

The Flag bits B2, Bland BO signify which state the controller is occupying. For 
instance, if B2, Bland BO equal binary 0, 1 and 1, respectively, the controller is in State 3 
(01 h). During start-up, or after a reset, the conroller proceeds from State O. 

Intersection Controller Software 

Table 11.2 is the controller software, based on the flow chart of Figure 11.3. 

76 



TMZ (MOD + LR) 

t t t.,. Requ." 
Sequence Mode 

Red Overlap Time Elapsed 

TMrZ (MOtD + "f + I~t:we" Requ"" 

Left Turn Request 

Sequence Mode 

North-South Green Time Elapsed 

Figure 11.2 Complete State Diagram with Conditional linkages 

77 



e 

Change flag bits from SO to 51 
(0, 0, 0) -I> (0, 0, 1); Multiple~ 
in left turn time from thumb­
wheel switches, pulse parallel 
enable of timer chip, tllm left 
turn arrow on, 

Change flag bits from SO to 53 
(0, D. 0) -I> (0,1, 1); Multiple~ 
in the North-South green time 
from the thumbwheel switches, 
pulse parellel enable qf tfmer 
chip,lurn North-Soulh green on. 

Change flag bits from SO to 56 
(0,0,0) --+- (1, 1, 0); Multiplex 
In the East-West green time from 
the thumbwheel switches, pulse 
perellel enable of timer chip, 
turn East-West green on. 

o 

Change fla!.J bits from 51 to 52 
(0, O. 1) ...... (0, " 0); Turn left 
turn arrow off; MultipleK In the 
red overlap time from the thumb 
wheel switches, pulse the parallel 
enable of the timer chip. 

Change flag bits from 52 to S3 
(0,1,0) -+ (0,1,1); Multiplex 
In the North-South green time 
from the thumbwheel switches, 
pulse the parallel enable of the 
timer chip, turn the North-South 
green light on, 

Change the flag bits from S3 to 54 
(0.1,1) 4 (1, D, OJ; TUrn the North­
South yellow on, and the North­
South green off; MultipleJ( In the 
yellow time from the thumbwheel 
switches, pulse the paralfer eneble 
of the timer chip. 

Figure 11.3 Flow Chart 

78 



Change flag bits from 54 to 55 
(1.0,0) -+ (1,0,1); Turn the 
North-South y"now off; MultI­
plex in the red overlap time 
from the thumbwheel switches, 
pulse the parallel enable of the 
timer chip_ 

Change flag bits from 55 to S6 
(1. D. t) -+(1, 1.0); Turn East­
West green light on; Multiplex 
in the East-Wast green tIme 
from the thumbwheel switches. 
pulse the parallel enable of the 
timer chlp_ 

Change the flag bits from 55 to 51 
(1.0, 1) -+ (0. 0,1); Turn left turn 
arrow on; Multiplex in the left turn 
tima from the thumbwheel switches, 
puIs. the parallel enable of the timer 
chip_ 

Change flag bits from 56 to 57 
11.1,0) -+ (1,1,1); Turn East-
West yellow on. turn East-West 
green off; Multiplex In the vellow 
time from the thumbwheel switches. 
pulae the parallet enable of the timer 
chip. .. 

Change the flag bits from 57 to SO 
(1, 1, 1) -+(0, 0, 0); Turn East-West 
yellow off; Multiplex in the red over­
lap time from the thumbwheel 
switches, pulse the parallal enable 
of the timer chip. 

Figure 11.3 Flow Chart (continued) 

79 



Table 11.1 Intersection Controller Input/Output Listing 

ICU Inputs 

Input # Name Function 

0 RR The pinned out Result Register is connected to this Input so the ICU can condI-
tionally load the lEN and OEN register, and manipulate the result register 
content. 

1 LR Signal indicating that a request for a left turn has been made. 
2 MOD Selects the mode of operation the intersection will function in MOD = 1 smart; 

MOD = 0 sequence. 
3 TMz This Is the (low active) carry out of the timer chip. the monitoring of this 

input determines when time has elapsed. 
4 Inputs 4, 5, and 6 are tied to outputs 8, 9, and 10 respectively. The soltware 
5 uses these three bits as flags to determine which block of code will be Uactlve" 
6 I as the ICU .equences through the Instructions in memory. 
7 NSR Signal indicates that a request for the North-South green light has been made. 
8 EWR Signal indicates that a request for the East-West green light has been made. 

ALL SIGNALS ARE HIGH ACTIVE UNLESS OTHERWISE SPECIFIED 

ICU Outputs 

Output # Name Function 

0 LeftTMR Multiplexes the left turn time to the inputs of the down counter. 
1 PE Parallel enable of the down counter. 
2 ARROW Left tum arrow light. 
3 NSGRNTMR Multiplexes the North-South green time to the Inputs of the down counter. 
4 NSG North-5outh grean light. 
5 EWGRNTMR Multiplexes the East-West green time to the input of the down counter. 
6 EWG East..west green light. 
7 EWY East-West yellow light, 
8 Outputs 8, 9, and 10 are tied to Inputs 4, 5, and 6 respectively. The software 

uses these three bits as flags to determine which block of code wfll be active as 
the ICU sequences through the instruction in memory. 

11 NSY North-5outh yellow light. 
12 YTMR Multiplexes the yellow time to the inputs of the down counter. 
13 REDSFTMR Multiplexes the red overlap time to the inputs of the down counter. 

Table 11.2 Intersection Controller Program 

Memory Op I/O Mnemonic Symbolic 
Location Code Address OpCod. Address Comment 

00 7 0 XNOR RR Force RR to 1 
01 A 0 lEN RR Enable Input 

IF THEN BLOCK \al 

02 1 1 LD LR Load LR 
03 6 2 ORC MOD OR with MOD -
04 4 4 ANDC BO AND with BO 
05 4 5 ANDC B1 AND with B1 
06 4 6 ANDC 82 AND with B2 
07 4 3 ANDC TMZ AND with TMZ (Low Active) 
08 B 0 OEN RR Enable II R = 1 
09 8 8 STO BO Change State to SI 
OA 8 0 STO LEFTMR Enable Left Time SW 
OB 8 1 STO PE Pulse Timer Loed 
OC 9 1 STOC PE Pulse Off 
OD 9 0 STOC LEFTMR Disable LeltTime SW 
OE 8 2 STO ARROW TUrn On Left Arrow 

80 



IF-THEN BLOCK Cb) 

Memory Op I/O Mnemonic Symbolic 
Location Code Address OpCode Address Comment 

OF 1 7 LD NSR Code in this Block follows Com· 
10 6 8 ORC EWR ments in Block (a) 

11 4 ,1 ANDC LR 
12 3 )2 AND .MOD 
13 4 '3 ANDC TMZ 
14 4 4 ANDC BO 
15 4 '5 ANDC Bl ., 
16 4 6 ANDC B2 
17 B 0 OEN RR 

18 8 8 STO 80 
19 8 9 STO Bl 
lA 8 3 STO NSGRNTMR 
lB 8 1 STO PE 
lC 9 1 STOC PE 
10 9 3 STOC NSGRNTMR 
IE 8 4 STO NSG 

IF-THEN BLOCK (el 

Memory Op I/O Mnemonic Symbolic 
Location Cod. Address OpCode Address Comment 

IF 2 4 LoC BO logic Flow is same as Block fal 
20 4 5 AN DC 81 
21 4 6 AN DC 82 
22 3 ·2 AND MOD 
23 3 8 AND EWR 
24 4 1 ANoC LR 
25 4 7 ANDC NSR 
2B 4 3 AN DC TMZ 
27 8 0 OEN RR 
28 8 9 STO Bl 
29 8 A STO 82 
2A 8 5 STO EWGRNTMR 
2B 8 1 STO PE 
2C 9 1 STOC PE 
20 9 6 SToC EWGRNTMR 
2E 8 6 STO EWG 

IF-THEN BLOCK Cd) 

Memory Op I/O Mnemonic Symbolic 
Location Code Address OpCode Address Comment 

2F 1 4 Lo 80 See Block (a) for Comments 
30 4 5 ANDC Bl 
31 4 6 ANoC 82 
32 4 3 ANoC TMZ 
33 B 0 OEN RR 
34 9 8 STOC 80 
35 8 9 STO Bl 
36 9 2 STOC ARROW 
37 8 0 STO REDSFTMR 
38 8 1 STO PE 
39 9 1 STOC PE 
3A 9 0 STOC REDSFTMR 

81 



IF·THEN BLOCK leI 

3S 2 4 LOC BO Form Same as Block lal 
3C 3 5 AND Bl 
3D 4 6 ANDC 82 
3E 4 3 ANDC TMZ 
3F B 0 OEN RR 
40 8 8 STD BO 
41 8 3 STO NSGRNTMR 
42 8 1 STO PE 

U 
9 1 STOC PE 

44 9 3 STOC NSGRNTMR 
45 8 4 5TO NSG 

IF·THEN BLOCK III 

Memory Op 1/0 Mnemonic Symbolic 
Location Code Address OpCode Address Comment 

46 1 8 LD EWR See Block lal 
47 5 1 OR LR 
48 6 2 ORC MOD 
49 4 3 ANDC TMZ 
4A 3 4 AND BO 
4B 3 5 AND Bl 
4C 4 6 ANDC B2 
4D B 0 OEN RR 
4E 9 8 STOC BO 
4F 9 9 STOC Bl 
50 8 A STO B2 
51 8 B STO NSY 
52 9 4 STOC NSG 
53 8 C 5TO Y1MR 
54 8 1 5TO PE 
55 9 1 STOC PE 
56 9 C STOC Y1MR 

IF·THEN BLOCK 191 

Memorv Op I/O Mnemonic Symbolic 
Location Code Address OpCode Address Comment 

57 2 4 LDC 80 Same Structure as Block (a) 
58 4 5 ANDC 81 
59 3 6 AND 82 
5A 4 3 ANDC TMZ 
58 8 0 OEN RR 
5C 8 8 STO BO 
5D 9 8 STOC NSY 
5E 8 D STD REDSFTMR 
SF 8 1 STO PE 
60 9 1 STOC PE 
61 9 D STOC RED5FTMR 

82 



IF-THEN BLOCK (hI 

62 1 8 LD EWR Structure or Block fal Repeated 
63 6 2 ORC MOD 
64 4 3 ANDC TM2 
65 3 4 AND 80 
66 4 ,5 ANDC 81 
67 3 )6 AND ' 82 
68 B '0 OEN RR 
69 9 8 STOC 80 
6A 8 ,9 STO 81 
68 8 6' 5TO EWG 
6C 8 5 STO EWGRNTMR 
60 8 1 5TO PE 
6E 9 1 STOC PE 
6F 9 5 STOC EWGRNTMR 

IF-THEN BLOCK iii 

Memorv Op 110 Mnemonic Symbolic 
Location Code Address OpCode Address Comment 

70 1 4 LD 80 Structure repeats again. 
" 

71 4 5 ANDC 81 
72 3 6 AND 82 
73 4 3 ANDC TM2 
74 3 2 AND MOD 
75 3 1 AND LR 
76 4 8 ANDC EWR 
77 8 0 OEN RR 
78 9 A STOC 82 
79 8 2 5TO ARROW 
7A 8 0 5TO LEFTTMR 
7B 8 1 STO PE 
7C 9 1 STOC PE 
70 9 0 STOC LEFTTMR 

IF-THEN BLOCK iii 

7E 2 4 LDC BO And again . .. 
7F 3 5 AND Bl 
80 3 6 AND B2 
81 4 3 ANDC TM2 
82 B 0 OEN RR 
83 8 8 5TO BO 
84 8 7 5TO EWY 
85 9 6 5TOC EWG 
86 8 C 5TO YTMR 
87 8 1 5TO PE 
88 9 1 STOC PE 
89 9 C STOC YTMR 

83 



IF·THEN BLOCK (kl 

Memory Op 1/0 Mnemonic Symbolic 
Location Code Address OpCode Address 

BA I 4 LO BO 
86 3 5 AND 81 
8C 3 6 AND 62 
80 4 3 ANDC fMZ 
BE 6 0 OEN RR 
BF 9 B STOC 60 
90 9 9 STOC 81 
91 9 A STOC 62 
92 9 7 STOC EWY 
93 B D STO REDSFTMR 
94 8 1 STO PE 
95 9 1 STOC PE 
96 9 0 STOC REDSFTMR 
97 F X NOPF No Address 

97 F X NOPF 

FF F X NOPF 
97 0 X NOPO 

FF 0 X NOPO 

INTERSECTION CONTROLLER HARDWARE 

Display Board 

Comment 

Start Last Block 

End Last 610ck & Prog. 
Flag F can be used to r&set program 
counter after last instruction If Flag 
F resets PC 

or 
the balance of ROM will contain 
NOP's when the rest of the loea· 
tions are unprogrammed and the 
program will automatlcallv loop 
around to the first instruction. 

The traffic intersection display board is controlled by the lCU and the control program 
located in the demonstration board ROM. Two 16-wire cables interface the display board to 
the lCU system inputs and outputs. The display uses a separate power supply. The display 
board has a "hard wired" flash feature where the red lights flash in both directions when the 
ICU is in the reset state. The display bolird has three request buttons which are used to 
simulate traffic conditions. When the request button has been pushed, the request is latched 
and displayed by an LED. The request light will go off after the request has been serviced 
(Le. that particular direction gets a green light). 

Timing 
There are five different time intervals in the traffic controller, each settahle by a 

thumbwheel switch. The intervals are: N-S Green Time, E-W Green Time, N-S Left Turn 
Time, Common Yellow Time and Red Overlap Time. The Red Overlap"or Red Safety 
interval allows the last car traveling on Yellow to clear the intersection before the next 
direction starts a Green interval. During red overlap or clearance time, all red lights are on. 

When a state is entered, a common counter is loaded with the state of the proper 
thumbwheel switch. The thumbwheel switches are connected by diodes to a common four 
wire bus used to load a down counter. When a particular time is to be used, an ICU output is 
sent high to drive the common line of one of the switches. The counter's load pin is then 
pulsed by another ICU system output, and the switch's common line is returned to a low 
state. (See the section on timers, Chapter 6). The switches and the counter/timer are on the 
Display Board shown in Figure 11.4. 

84 



00 
<A 

~=:j~~====~ NI' 

3 AO 2 

6 51 MC14D43B 
a"", 

AFlFlOW 1'1-8 

uewl'l 
.WG 

N-SR-auln 

a·w"'-tu"1 

Modi 
sw 

ewv !wo 
000 

'W" 

Figure 11 A Traffic Intersection Controller 

Smllrl' 

Mod'~ 
C.mb 

'" MOD 
i'iif. 
NI. 

D ..... v 
Syltam 
Slgnll 

,w. 
I.&FTMA 

" ARROW 
NSCiRNTMI'!: 
.. G 
eWORNTMR ,w. 
'WV 
NIV 
VTMR 
FlEDSI"TMR ,....,. 

o_ S,... 
ConnKlion 

" .. 
13 

" " 00 o. 
O. 
O • 
04 a. 
DO 
07 
011 
012 
0," 

I!R!'t 

On Dlmo svac-n Jam ..... ' 
OB_14 
09 -I" 
01Q-U. 
FIfI-tO 



86 



CHAPTER 12 ADDING JUMPS, CONDITIONAL 
BRANCHES,ANDSUBROUT~ 

In some control applications, it may be advantagebus to have a control structure like 
that of a conventional processor, rather than a looping control stl1lc!Ure. Jumping can reduce 
execution time and reduce software complexity. Having the capability to call subroutines 
also helps to modularize the software. It should be pointed out that subroutines can be 
implemented in a looping control structure; however, the overhead required (additional 
processing steps) may be disadvantageous in some cases. An lCU system can be readily 
designed to incorporate a jumping, conditional branching and subroutine capability. 

The ICU has three program control instructions which are intended for the purpose of 
adding jumping, conditional jumping and subroutine capabilities to an ICU system. These 
instructions cause the ICU to take the appropriate action and provide the necessary control 
signals to external logic circuits that actually perform the address modifications. 

Program Control Instructions 
JUMP, (Mnemonic: IMP). The JMP instruction generates a one clock period pulse on the 
JMP pin of the ICU, beginning on the falling edge of the CLK signal. This pnlse can be used 
to gate the jump address into the program counter. 

SKIP IF RR = 0, (Mnemonic: SKZ). U the Result Register contains a logic 0 at the time the 
SKZ instruction is executed, the next instruction is ignored by the lCU. (i.e. no action is 
taken.) 

Together the JMP and SKZ instructions give the lCU a conditional branch capability. 
See Figure 12.1. 

To add subroutines to the ICU, a Last In, First Out Memory (LIFO "stack") is 
required. If the subroutine feature is required, the most economical method of implement­
ing this feature is to have a LIFO stack in which the top location of the stack is a 
parallel-loadable counter, where the outputs of the top location (counter) are available as 
address lines. Figure 12.2 diagrams this situation. There are a number of excellent LSI 
CMOS parts available which exactly implement the function shown in Figure 12.2. 

The ICU does not have a JSR (jump to subroutine) instruction; however, both of the 
NOP instructions create control signal pulses and either could be used as a JSR instruction. 
This pulse can be used to signal the program stack to perform the "push" (store binary 
states) operation while the address of the subroutine is parallel-loaded into the top location 
of the stack. 

LD 
SKZ 
JMP 

BIT 

BITSET 

LDC 
SKZ 
JMP 

BIT 

BITSET 

CODE FOR BRANCH IF CODE FOR BRANCH IF 
BIT IS SET BIT = 0 

Figure 12.1 Conditional Branching 

87 



CLK 

Parallel 
Loadable 

Top Location 
In Stack Is a 

Counter 

Control ~~:'o~~n8 Push 
{ 

.,.JM_P ___ --i~ Parallel Load 

Signals 
From ;.:.RT-'N ___ --i~ Pop 
ICU 

Figure 12.2 Block Diagram of Subroutine Structure 

Memory 
Address 

Program Stack 
(LIFO) 

The lCU does provide a return (RTN) instruction. The RTN instruction creates a one 
clock period pulse on the RTN pin of the leu. This pulse can be used to signal the program 
stack to perform the "pop" (return binary states) operation. After executing an RTN, the 
next instruction is ignored by the leu. This is done because popping the stack returns the 
address of the JSR instruction to the top location in the stack. If this instruction was not 
skipped, the machine would be trapped in an infinite loop. 

Figure 12.3 shows a schematic diagram of an ICU system with a parallel/interlaced 
memory structure, scratchpad RAM and a program stack. The system was designed to 
address 7 blocks of YO ports, with each YO block containing 256 inputs and 256 outputs, 
thereby providing a total of 1792 inputs and 1792 outputs. This system has 1024 by 1 bit 
scratchpad locations, a program stack which is 12 bits wide by 16 locations deep and the 
capability of holding 4096 leu statements. 

88 



·....,..n_.a.._ ... r .... _iIII._"" ... "' __ .dD_ 
....... ' ... ~-"".T""httffll''IM:I.'Qlp,......_J1_ 
1110lIl01.""""''''''' "'._II ____ U_.... .~ .. ;.,..<1-"Lj 
.AI •• no ....... " ........... __ 'or",.ay_" ftoII _ 1 I __ . 1I .•. _tlm.., ...... d." ........ ,..I,. .... """',.. 1'1-__ n.~I""".I""I.IP .. O ... _. 
"cw.rnulr ... _ .""..,.......mlngNdenl ....... 'JUMI' • 
• aU'ROUTINU 1/1. !lite ,flOM. N .... "' .. m.C .. " ..... 
,_."'. U ... f "'.dlll$l ..... __ .... AO.IId_ LIII.' 

I A II 

I ...... h ..... RA.. .... __ • _____ ..1 I l!= _______ ~ 
"' ............ -.n.formA' ... :2A3. 

Figure 12.3 leu B_ System wi1h Subroutine Capability 

I 
OJ u I 

I 
I 

I 
L_ ,~.:.-::~~ __ ~'j 



90 



CHAPTER 13 MODULARIZING 
HARDWARE SYSTEMS 

MC14500B ICU systems can be built in a variety of sizes, all of which depend upon 
specific applications. Many users will want to configure "standard" systems that can be 
used for a span of applications or end products. Others may want to expand a starter system 
into a large system. Concepts which highlight opportunities for economy and system 
partitioning are the subject of this chapter. 

Stand-Alone Single-Card Systems 

An lCU system, described earlier, had 16 I/O lines; 8 Inputs and 8 Outputs. Without 
changing any logic, one more input and another output device can be added, making a small 
system with 32 I/O lines. 

The minimal system had 4 I/O address bits in memory. As the WRITE signal was used 
to differentiate between Input and Output, the 4 address bits can code 2' = 16 inputs and 16 
outputs. Increasing I/O past 32 lines, requires more memory bits for addressing. As 
memories are made in width multiples of 4 bits, the next practical number of address bits 
will be 8, which will handle 256 inputs and 256 outputs. This is more than adequate for the 
majority of applications. The next four bit increment of memory width takes us to 12 address 
bits, enough to code 4096 each of input and output. Let us now examine systems that have4, 
8 and 12 bits of I/O addressing. 

The previously described ICU system used a 4 bit J{O address from a four bit wide 
memory. The memory words alternated Operator/Operand/Operator/Operand/ ... or 
Instruction/Address/Instruction/Address/ ... , which is of course, the same thing. The 
reason for this interleaving is to put a small program into the smallest ROM, 256 X 4 bits. 
The MCl 4500B was conceived to work with either an interleaved structure of Op-codes and 
Addresses or to have both appear on a single word of memory. The interleaved technique 
uses the Pin 14 clock as the least significant bit of ROM address, where as the single wider 
word uses the LSB of the program counter as the lowest ROM address bit. 

Useful ROM organizations are shown in Figure 13.1. The configurations shown are 
not exhaustive, but represent the most popular choices. A ROM configuration, once 
chosen, is not readily changed. The choice is based upon the number of I/O signals plus 
storage bits that will require addressing. 

System Partitioning 

With 8 address bits plus WRITE, one quickly suspects that it is difficult to place a 
whole system on a single board. The next question is how should the system be partitioned 
between circuit boards? It seems advantageous to partition the system in two ways: by 
generic types of I/O devices, e.g. Triacs, Darlingtons, etc; or by "Feature Cards"; cards 
which can contain a small ROM and the I/O devices necessary to support a small optional 
function, such as pedestrian walk signals in a traffic controller. These possibilities will be 
discussed in turn. 

91 



Even 

Odd 

even 

Odd 

j.- 4 Bits--l 

Op Code 

I/O Address 

Op Code 

I/O Address 

A Minimal System 
ROM for 32110 

Even 

Odd 

even 

Odd 

1---4 Bits--l--8 Blts--1 

--------
Op Code I/O Addre .. 

Op Code I/O Address 

Op Code I/O Addres. 

Op Code I/O Addres, 

~ 

B 8 Bit "0 Address 
for 5121/0 

1---88its---l"OOiI 

X1 

even Op Code 

Odd 

even Op Code 

Odd 

4 

4 4 

~------__ yr-------J 
12 Bits for 

110 Addressing 

These four bits represent the 
four most signIficant bits of 
I/O Addrau and must be 
latched when X 1 falls. 

X1 

Figure 13.1 ROM Organizations for MC14500B System 

92 



I/O Cards by Circuit Type 

Some of the different type devices one will use in different applications are input 
isolators, output opto isolators, Darlington and saturated switch drivers, LED drivers and 
SCR's or Triaes. Circuits for these different device types are described in the Interface 
Circuits section in Chapter 6; Here, we are concerned with enabling cards in an efficient 
manner. ) . ~~ 

Figure 13.2 shows a scl/eme for decoding board/chip ~nables for a system with 8 I/O 
address bits. The drawing shdws all the lines, except Data, that need.be bussed to I/O boards 
in a system. A Board Enable signal, BE, activates a group ofl6 inputs or outputs. As is used 
to split the block into groups of 8, or to the device level. The Ao to AI lines are used by all 
I/O devices to identify 1 of 8 bits. An Input Board for such a system is shown on Figure 13.3 
and an Output Board is on Figure 13.4. 

To make such a system practical, one wants a means of interfacing the CMOS bus to 
the "real world." Figure 13.5 shows the nonnal card edge split to accept two edge 
connectors. The system signals travel on a mother board to the small board-mounted edge 
connector on the left. The second edge connector is connected to a wire bundle tied to the 
system's connection to the outside world, such as a barrier strip. The signal conditioning 
could be any or all of the methods described in Chapter 6. 

The LED status bit indicators are not detailed, as their design is common and 
straightforward. The convenience of the bit indicators, their low cost and the common usage 
of their feature suggest they should be considered for any modular system design. 

I/O/RAM Address from ROM 

\07 

a c B 

:01 \07 0 
C B 

:01 MC14028B MCt4028B 

~8 
BEN 
~o 

BEN 

1 of 8 Selected 
Active High 

1 of 8 Selected 
Active High 

Each Line Usable to 
Enable Blocks of 16 I/O's 

10f2 
Coded 
Binary 

10fS 
Coded 
Binary 

Selects 1 of 16 

Figure 13.21/0 Card Enables for 8 Bit Address 

93 

WRITE MR 
and 

WRi'fE 

Select I/O 



lMn 
Typical 

All 
Lines 

z 

AO A1 A2 Data 

AO Al A2 0 W Aa 

Signal Conditioning for 16 Input Signal. 
(See Chapter 6) 

1/3 MC14023B 

Ff=)-NC 

Figure 13.3 A 16 Input Board 

Signal Conditioning for 16 Input Signal. 
(See Chapter 6) 

Figure 13.4 A 16 OUfput Board 

94 

A3 Reset 



o o 

) 1 1 1 1 1 I. 1 ~J 
, LE D Bit Status Indicators 

I Signal Conditioning 

1/0 Device I/O Device 

Bus Signals Connector for 

! I I/O Slgnol. 

: : k- BUI System Motherboard 

Figure 13.5 Possible Mechanical 1/0 Card Arrangement 

Feature Cards 

The MCI4500B lCU was defined in such a way that ROM could be disabled, (or not 
present), in a system and the "missing instructions" would be interpreted as NOP's (code 0 
or F). This assumes the instruction lines do not "float," but are tied to + V or ground 
through high value (> lOOk) resistors. This provides for another way to modularize an ICU 
system. ROM can be placed on a card together with the VO devices required to perform a 
function. The ROM is addressed from the central program counter and enabled by an enable 
decoder. 

If the "feature card" is installed in t/le. system, the feature card's ROM is enabled 
during some interval of the program count and the ROM controls the system. All other 
ROM's in the system are, of course, disabled at this time. If the feature card is missing from 
the system, the program counter increments through the states assigned to the feature's 
program, but receiving no instructions, the lCU does "NOP's" until some ROM that is in 
the system furnishes the lCU with instruction codes. The only restriction to the use of a 
feature card is that of" Jumping" the program counter off the feature ROM's enabled block. 
Users who write such a jumping command must therefore exactly understand the implica­
tions of their code. 

95 



% 



CHAPTER 14 ARITHMETIC ROUTINES 

Occasionally, in a decision oriented controller,spme arithmetic may be required for 
timirig, parts counting ot part of the enabling routine for some control functions. A nUcleus 
of arithmetic coding follows. Programs which do large amounts of arithmetic can be 
assembled by buildingVi!th the listed routines. 

Binary Addition 

Binary addition is an operation involving five bits: two bits to be added or operands, 
carry-in and carry-out bits and a sum bit. About 12 operations are required to do a one bit 
add. Addition, as well as other more complex functions, can be sent to a companion 
microprocessor or calculator. For example, if addition were the only arithmetic function, 
relegating the task to a CMOS adder might be appropriate. If the percentage of processing 
time required for addition is small, it is generally more economical to do the task completely 
with the ICU system. This is an instance of effective usage of the ICU's sub routine 
capabilities. 

The code for single bit add with carry follows. 

Cout 

Sum 
A 

+B Cin 

LD Cin 
XNOR B 
XNOR A 
STO SUM 

LD B 
OR Cin 
AND A 
lEN B 
OR Ci 
STO CARRYout 

ORC RR 
lEN RR 

ONE BIT ADD WITH CARRY 

Cout 

1+: +- Ci (sum 
GENERATING THE SUM 
S = A$(B$C) 
= A Ef) (ifEIrC) . 
SIMILAR TO GENERATING PARITY 

Co = A·B + A·Ci + B·Cin 
= A·(B + Cin) + B·Cin 
RR +- A·(B + Cin) 
ACTUALLY PERFORMS B· Cin 

RR = A·(B + Cin) +B·Cin ~ Co 

RESTORES THE lEN MASK 

97 



Incrementation 

Adding 1 to a stored number, or incrementing by 1, is perhaps the simplest and most 
common arithmetic function. It is used in parts counting, measuring frequency, etc. 

In the code below we operate upon a single bit position at a time. For the Nth sum bit 
the variables' name is Sn. The carry in for the Nth Sn bit is denoted Cn. The carry out for the 
next bit position is denoted (n+ I). Notice that incrementing is analogous to forcing the 
initial carry in to I and adding zero to the number to be incremented. When the routine, 
starts, Carry is set to 1 if the incrementation is to start. Otherwise, the initial value for Carry 
is o. 

~C"I And 

. +Bn +- + Cn 
Sn 

Sn = BnEB Cn 
Cn+ I = (Bn EBCn)· Bn 

LD Bn 
XNOR Cn 
STOC Sn 
AND Bn 
STO Cn+l 

The routine is repeated N times for an N bit incrementation. 

Counting Rising Edges 

As a matter of practicality, counting rising signal edges is a simple and straightforward 
method of incrementing a sum. 

98 



OLD (STORED) 

The code is: 
START LD 

XNOR 
OR 
STOC 
LD 

END STO 

NEW 

NEW 
OLD 
QLD 
CARRY 
NEW 

. OLD 

OLD (STORED) ,NEW 

+ 

COMPARE OLD/NEW; 1 IF EQUAL 
1 IF OLD .wAS,ffiGH 
CARRY ZERO .iF NO RISING EDGE 

PUT NEW IN OLD FOR NEXT TEST 

Notice that NEW is sampled twice. To avoid this, use a Temp Store, e.g. 

START LD NEW 
STO TEMP 
ANDC OLD 
STO CARRY CARRY GETS RESULT 
LD TEMP AVOIDS 2nd SAMPLING 

END STO OLD 

Magnitude Comparison 

The Algorithm: Magnitude comparison compares two binary numbers to see which is 
greatest or if they are equal. Only three results are possible. 

To compare two binary words, it is convenient to start with the most significant bits. In 
each bit position a comparison is made to see if the bits are identical. If they are, continue to 
the next bit position. If the bits are different, set EQUAL to 0 and set a flag indicating that 
the word wi th the 1 is greatest. 

Three variables or flags are used, AGTR, BGTR and EQU. These correspond to A 
Greatest, B Greatest, and Equal. Initially set AGTR = 0, BGTR = 0 and EQ = 1. 

START 

NTH BIT 

END NTH BIT 
N-I ST BIT 

ORC 
STO 
STOC 
STOC 

OEN 
LD 
XNOR 
STO 
OR 
STOC 
LD 
OR 
STOC 
OEN 

Assume lEN = OEN = 1 

RR 
EQ 
AGTR 
BGTR 

EQ 
AN 
BN 
EQ 
AN 
BGTR 
EQ 
BN 
AGTR 
EQ 

FORCERRTO I 
!NIT EQ 
INIT AGTR 
INIT BGTR 

ENABLE IF EQ = 1 
LOAD NTH A BIT 
COMPARE TO NTH B BIT 
NEW VALUE TO EQ 
BGTR = EQ + AN 
STORE NEW BGTR 
LOADEQ 
AGTR = EQ + AN 
STORE NEW AGTR 
ENABLE IF EQ 1 

REPEAT FOR EACH BIT POSITION 

99 



leu System 
~ ________________ ~A~ __________________ ~ 

Outputs 

Flgur. 14.1 ROM for I·Blt Add 

Look-Up Tables 

The processor overhead "expense" of a 1 bit add shows the need for a better 
implementation. One answer is a LOOK-UP TABLE as shown on Table 14.1. The 
operands and operator in an arithmetic expression are used as the address to a ROM. The 
ROM supplies the answer to the input pins in an lCU system. 

As an example, a "1 bit ADD with Carry" will be examined. There are three operands 
- A, B and Carry-In; the operator is Add; the results are Carry-Out and Sum. 

The ROM organization is summarized in Table 14.1. The binary addition of three 
single-bit operands can only result in 23=8 possible outcomes. The sum and carry outputs 
of the ROM are simply the known results of any possible combination. The operator, ADD 
"vectors" (points) the lCU to the addition look-up table in system memory. The Look-Up 
ROM needs, at the most, 16 bits! The Look-Up Table idea can be extended to nearly any 
type function. Look-Up Tables for sine values, as an example, have long been standard 
semiconductor parts. 

Tabl. 14.1 The ROM Look·up Tabl. 
ADDRESS DATA 

Operator Operand Operand Operand Result Result 
(Add) (A) (B) (CI) (Sum) (CO) 

1 0 0 0 0 0 
1 0 0 1 1 0 
1 0 1 0 1 0 
1 0 1 1 0 1 
1 1 0 0 1 0 
1 1 0 1 0 1 
1 1 1 0 0 1 
1 1 1 1 1 1 

ROM Add ..... ____ ..J) \.. ROM Content-' 

Note that Operator (Add) "" 0 could easify "vector" the ROM to a Subtract Table 

lOO 



CHAPTER 15 TRANSLATING 
ICUCODE 

Repacing combinatorial logic with an lCU system is very simple and straightforward. 
All that is involved is the Writing of the short codes which describe.the logic devices. Logic 
functions and their associated codes are depicted in the following diagrams. 

AND j:[y N i 

NAND ~ N I 

OR J[> N I , 

NOR J[>-N I 

XOR ~ 
XNOR 

101 

Lo A 
AND N 
STO Z 

Lo A 
AND N 
STOC Z 

Lo A 
OR N 
STO Z 

Lo A 
OR N 
STOC Z 

Lo A 
XNOR B 
STOC Z 

Lo A 
XNOR B 
STO Z 

"" Load A 
And each Input In turn 
Store In Z 

Load A 
And each Input In tum 
Store complement In Z 

Load A 
Or each 'nput In turn 
Store In Z 

Load A 
Or each Input In turn 
Store compo in Z 

l.oad A 
Compare to B 
Store compo In Z 

Load A 
XNOR B 
Store In Z 



~ INVERTER ----~ 

lD A load A 
STOC A 1 Store In A 1 

o FLIP FLOP 

SA FLIP FLOP 

SINGLE lATCH 

JK FLIP FLOP 

01---

Notice: This code Is never required 
as the leu can load and store complements. 

To clock on rising edgfls. clock is stored in 
old el.K to compare with current eLK. 

Start 

End 

lD 
STO 
lD 
STO 
ANDC 
OEN 
lD 
ST 
ORC 
OEN 

lD S 
ANDC R 
STO Q 

OLD ClK 
TEMP 
ClK 
OLDCLK 
TEMP 
RR 
D 
Q 

RR 
RR 

lOADS _ 
AND WITH R 

RR "" eLK· OLD eLK 
ENABLE STORE 

RESTORE OEN 
IF NO Q CHANGE 

a=-O'ST+Q'ST 

lD 
AND 
STO 
lD 
ANDC 
OR 
STO 

o 
ST 
TEMP 
Q 

ST 
TEMP 
Q 

LOADD 
AND WITH STROBE 
STORE IN TEMP 
LOADQ __ _ 

AND WITH STROBE 
OR WITH TEMP 
STORE IN Q 

0." + 1 = an • K + an • J. 
CLOCK ON RISING EDGES, CLOCK STORED IN OLD CLK. 

Start 

End 

LD 
STO 
LD 
STO 
ANDC 
OEN 
LD 
ANDC 
STO 
LDC 
AND 
OR 
STO 
ORC 
OEN 

102 

OLDCLK 
TEMP 
CLK 
OLDCLK 
TEMP 
1'1 
Q 

K 
TEMP 
Q 

J 
TEMP 
o 
R 
R 

t MOVE OLD CLK 
r TO TEMP. 
I FIND RISING 
r EDGE. 
t ENABLE OUTPUT 
r IF EDGE FOUND. 

} AND QWITH 
KCOMP. 
STORE IN TEMP. 

} AND Q COMPo 
WITHJ, _ 
OR WITH Q. K 
STORE NEwn. 
RE ENABLE 
OUTPUTS. 



Reducing Boolean Equations to ICU Code 

The following procedure is a straightforward way of writing ICU Code for evaluating 
Boolean expressions. One temporary storage location, "TEMP", is used. It is generally 
possible to avoid the use of "TEMP", however, the code will not be as easy to read. 

Procedure: 

1. Reduce the Boolean expression. The result will be a "Sum of Products" form 
(e.g.,A· B +C' D· E+" ·+X· y. Z) oraproductofsumsform(e.g., (A + B) . (C+ 
D + E)' ... '(X + Y + Z). 

2. Use the Sum of Products Procedure or Product of Sums Procedure, both below. 

Sum of Products Procedure 

A. Factor common terms from the Sum of Products Expression, giving an Expres­
sion in the form 

J . K . L (A . B . C + D . E + ... + X . Y . Z). 
The distributed term (J . K . L) which was factored from the Sum of Products 
form will be used as an "INPUT ENABLE TERM". That is, if the INPUT 
ENABLE TERM is not 1 or true, then everything following will be evaluated as 
o or FALSE. 

B. Evaluate the INPUT ENABLE TERM and store in INPUT ENABLE. 
START ORC RR SETRRTO I 

END 

lEN RR ENABLE INPUT 
LD J LOAD 1st ELEMENT 
AND K AND WITH NEXT 

AND 
lEN 

L 
RR 

AND WITH LAST 
STORE RESULT in lEN 

C. Reduce the fIrst INNER TERM and store in "TEMP". 
START LD A RR GETS A 

AND B AND WITH B 
AND C AND WITH C 

END STO TEMP STORE IN TEMP 

D. Reduce the next INNER TERM and/or with TEMP, store result in TEMP. 
START LD D RR GETS D 

AND E AND WITH E 
OR TEMP 

END STO TEMP 
TEMP now has A . BC . + DE, providing lEN = 1. If lEN = 0, TEMP = O. 

E. Repeat D. for all the remaining inner terms. 

F. The Sum of Products value is now in the Result Register and stored in TEMP. To 
unconditionally enable the lCU for other routines, restore lEN and OEN to the 
I's state. 
START ORC RR RR GETS I 

lEN RR lEN GETS 1 
END OEN RR OEN GETS 1 

103 



Product of Sums Procedure 

A. Factor common terms from the Produce of Sums form, giving an expression in 
the form 

(J + K + L) (A + B + C) . (D + E) ..... (X + y + Z). 

B. The distributed term which was factored out will be used as an "INPUT 
ENABLE TERM" . 
START LD J RRGETSJ 

OR K OR WITHK 
OR L OR WITHL 

END lEN RR lEN GETS RR 

C. Reduce the first INNER TERM and store in "TEMP". 
START LD A RR GETS A 

OR B OR WITHB 
OR C OR WITHC 

END STO TEMP STORE IN TEMP 

D. Reduce the next INNER TERM, and with TEMP, store result in TEMP. 
START LD D RR GETS D 

OR E OR WITHE 
AND TEMP 

END STO TEMP 

E. Repeat D. for each of the other INNER TERMS. 

F. The evaluated product of sums is in RR and stored in TEMP. The following 
routine will completely enable the lCU for other uses. 
START ORC RR RRGETS 1 

lEN RR lEN = I 
END OEN RR OEN = I 

104 



APPENDIX A. THE MC14S99B 8-BIT ADDRESSABLE LATCH 

The MC14599B Is an 8 bit eddressable latch capable of reading 
previously stored data. The device has a chip enable Input for 
easy address expansion, buffered Qutputs, and a master reset 
pin for system clean. 

WD 

CE 

W/i'! 

Date 

Control 
Logic 

Reset 

Features 
... Parallel Buffered Output 
• Bidirectional Addressable Input/Output 
-.. Master Reset 
• WRITE/READ Control 
... Write Disabfe 
... Chip Enable 
... B Series CMOS 

8 
Latches 

MC14599B Block Diagram 

105 



MC14599B Truth Tabl. 

Inputs 

R CE WD 
1 X X 

0 0 X 

0 1 X 

0 1 1 

0 1 0 

x == Don't Care 

NC = No Change 

Z :::: Open Circuit 

W 

X 

X 

0 

1 

1 

ON = State of Addressed Cell 

01 

Reset 

Data 

Write Disable 

AO 

AI 

(MSB)A2 

Chip Enable 

VSS 

Internal States &: Data 
Addressed 

Latch 

0 

NC 

NC 

NC 

Data 

MC14599B 

106 

Other DatB 
latches Pin 

0 Z 

NC Z 

NC ON 
(Output) 

NC Z 

NC Input 

Voo 
06 

05 

04 
Q3 

02 

01 

00 

WRITE/READ 




