
MOTOROLA DIGITAL SIGNAL PROCESSING
DEVELOPMENT SOFTWARE

MOTOROLA DSP
SIMULATOR REFERENCE MANUAL

Motorola, Incorporated
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive West
Austin, TX, 78735-8598

This document contains information on a new product. Specification and information
herein are subject to change without notice. Motorola reserves the right to make changes
without further notice to any products described in this document to improve reliability,
function, or design. Motorola does not assume any liability arising out of the application
or use of any product or circuit described herein, neither does it convey any license under
its patent rights or the rights of others. Motorola is a registered trademark of Motorola,
Inc. Motorola, Inc. is an Equal Employment/Affirmative Action Employer.

© Copyright Motorola, Inc. 1995. All rights reserved.

ASM56000, SIM56000, ASM96000, SIM96000, ASM56100, and SIM56100 are trade-
marks of Motorola.

IBM, XT, AT, and PC-DOS are trademarks of International Business Machines Corpora-
tion.

MS-DOS is a trademark of Microsoft Corporation.

VAX and VMS are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Macintosh and MPW are trademarks of Apple Computer.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL v

TABLE OF CONTENTS

TABLE OF CONTENTS

Chapter 1
DSP SIMULATOR

1.1 INTRODUCTION . 1-1

1.2 FEATURES . 1-1

1.3 OPERATING ENVIRONMENT . 1-2

1.4 RUNNING THE SIMULATOR . 1-3

1.5 USER INTERFACE . 1-3

1.6 COMMAND ENTRY . 1-4

1.7 DISPLAY MODES . 1-5

Chapter 2
SIMULATOR COMMANDS

2.1 COMMAND OVERVIEW . 2-1

2.1.1 Memory/Register Modification . 2-1

2.1.2 File I/O . 2-1

2.1.3 Simulation Execution Control . 2-1

2.1.4 C Source Code Debug Commands . 2-2

2.1.5 Miscellaneous Tasks. 2-2

2.2 COMMAND SYNTAX . 2-2

2.2.1 Expanded Syntax for Command Parameters . 2-3

2.3 COMMAND SUMMARY . 2-5

2.3 .1 ASM: Single Line Interactive Assembler. 2-8

2.3 .2 BREAK: Set, Modify, or Clear Breakpoint. 2-10

2.3 .3 CHANGE: Change Register or Memory Value 2-13

2.3 .4 COPY: Copy a Memory Block. 2-15

2.3 .5 DEVICE: Multiple Device Simulation . 2-16

2.3 .6 DISASSEMBLE: Object Code Disassembler . 2-17

2.3 .7 DISPLAY: Display Register or Memory . 2-18

Table of Contents
Simulator Commands

vi DSP SIMULATOR REFERENCE MANUAL MOTOROLA

2.3 .8 DOWN: Move Down the C Function Call Stack.2-20

2.3 .9 EVALUATE: Evaluate an Expression .2-21

2.3 .10 FINISH: Step Until End of Current Subroutine.2-22

2.3 .11 FRAME: Select C Function Call Stack Frame .2-23

2.3 .12 GO: Execute DSP Program. .2-24

2.3 .13 HELP: Simulator Help Text .2-25

2.3 .14 HISTORY: Disassemble Previously Executed Instruction2-26

2.3 .15 INPUT: Assign Input File .2-27

2.3 .16 LIST: List Source File Lines. .2-29

2.3 .17 LOAD: Load DSP Files or Configuration .2-30

2.3 .18 LOG: Log Commands, Session, Profile. .2-31

2.3 .19 MORE- Enable/Disable session paging control.2-33

2.3 .20 NEXT: Step Over Subroutine Calls or Macros.2-34

2.3 .21 OUTPUT: Assign Output File. .2-35

2.3 .22 PATH: Specify Default Pathname .2-37

2.3 .23 QUIT: Quit Simulator Session .2-38

2.3 .24 RADIX: Change Input or Display Radix .2-39

2.3 .25 REDIRECT: Redirect stdin/stdout/stderr for C Programs2-40

2.3 .26 RESET: Reset Device or State .2-41

2.3 .27 SAVE: Save Simulator File .2-42

2.3 .28 STEP: Step Through DSP Program .2-43

2.3 .29 STREAMS: Enable/Disable Handling of I/O for C Programs.2-44

2.3 .30 SYSTEM: Execute System Command .2-45

2.3 .31 TRACE: Trace Through DSP Program .2-46

2.3 .32 TYPE: Display the Result Type of C Expression.2-47

2.3 .33 UNLOCK: Unlock Password Protected Device Type.2-48

2.3 .34 UNTIL: Step Until Address. .2-49

2.3 .35 UP: Move Up the C Function Call Stack .2-50

2.3 .36 VIEW: Select Display Mode. .2-51

2.3 .37 WAIT: Wait Specified Time .2-52

2.3 .38 WASM: GUI Assembly window .2-53

2.3 .39 WATCH: Set, Modify, View, or Clear Watch Item2-54

2.3 .40 WBREAKPOINT: GUI Breakpoint window. .2-55

2.3 .41 WCALLS: GUI C Calls Stack window .2-56

2.3 .42 WCOMMAND: GUI Command window .2-57

2.3 .43 WHERE: GUI C Calls Stack window .2-58

Table of Contents
Device I/O and Peripheral Simulation

MOTOROLA DSP SIMULATOR REFERENCE MANUAL vii

2.3 .44 WINPUT: GUI File Input window. 2-59

2.3 .45 WLIST: GUI list window . 2-60

2.3 .46 WMEMORY: GUI Memory window . 2-61

2.3 .47 WOUTPUT: GUI File Output window . 2-62

2.3 .48 WREGISTER: GUI Register window . 2-63

2.3 .49 WSESSION: GUI session window . 2-64

2.3 .50 WSOURCE: GUI Source window . 2-65

2.3 .51 WSTACK: GUI Stack window . 2-66

2.3 .52 WWATCH: GUI watch window . 2-67

2.4 DEBUGGING C PROGRAMS . 2-68

2.4.1 C Debug Features. 2-68

2.4.2 C Expressions. 2-68

2.4.3 Restrictions . 2-69

2.4.4 Compiling a Program for Debugging. 2-69

2.4.5 C Debugging Commands . 2-69

Chapter 3
DEVICE I/O AND PERIPHERAL SIMULATION

3.1 INTRODUCTION . 3-1

3.2 I/O FILE CONTENTS . 3-1

3.2.1 I/O File Repeat Punctuation . 3-1

3.2.2 I/O COMMENT . 3-2

3.2.3 I/O File Timing Information . 3-2

3.2 .4 I/O File Peripheral Data . 3-3

3.2 .5 I/O File Port Data . 3-4

3.2 .6 I/O File Memory Data . 3-5

3.2 .7 I/O File Pin or Pin Group Data . 3-7

3.2 .8 Terminal Input of Data Values . 3-8

Chapter 4
SIMULATOR MEMORY CONFIGURATION

4.1 INTRODUCTION . 4-1

4.2 SIMULATOR DEFAULT MEMORY CONFIGURATION 4-1

Chapter 5
EXPRESSIONS

5.1 INTRODUCTION . 5-1

5.2 MEMORY SPACE SYMBOLS . 5-1

Table of Contents
DSP Object Module Format

viii DSP SIMULATOR REFERENCE MANUAL MOTOROLA

5.3 REGISTER NAME SYMBOLS .5-1

5.4 ASSEMBLER DEBUG SYMBOLS .5-2

5.5 CONSTANTS .5-4

5.5.1 Numeric Constants . 5-4

5.6 OPERATORS .5-5

5.6.1 Unary operators: . 5-5

5.6.2 Arithmetic operators: . 5-5

5.6.3 Bitwise operators (binary): . 5-6

5.6.4 Shift operators (binary): . 5-6

5.6.5 Relational operators: . 5-6

5.6 .6 Logical operators: .5-7

5.7 OPERATOR PRECEDENCE .5-7

Chapter 6
DSP OBJECT MODULE FORMAT

6.1 INTRODUCTION .6-1

6.2 RECORD DEFINITIONS .6-2

Chapter 7
C LIBRARY FUNCTIONS

7.1 INTRODUCTION .7-1

7.2 SIMULATOR OBJECT LIBRARY ENTRY POINTS7-2

7.2 .1 dspt_masm_xxxxx: Assemble DSP Mnemonic .7-4

7.2 .2 dspt_unasm_xxxxx: Disassemble DSP Mnemonics7-5

7.2 .3 dsp_exec: Execute Single Device Clock Cycle .7-6

7.2 .4 dsp_findmem: Get Map Index for Memory Prefix 7-7

7.2 .5 dsp_findpin: Get Pin Number for Pin Name. .7-8

7.2 .6 dsp_findport: Get Port Number and Mask for Port Name7-9

7.2 .7 dsp_findreg: Get Peripheral and Register Index for Register Name . . .7-10

7.2 .8 dsp_free: Free a Device Structure. .7-11

7.2 .9 dsp_fmem: Fill Memory Block with a Value .7-12

7.2 .10 dsp_init: Initialize a Single DSP Device Structure7-13

7.2 .11 dsp_ldmem: Load DSP Memory from OMF File7-14

7.2 .12 dsp_load: Load All DSP Structures from State File7-15

7.2 .13 dsp_new: Create New DSP Device Structure .7-16

7.2 .14 dsp_path: Construct Filename. .7-17

7.2 .15 dsp_rapin: Read DSP Analog Pin State .7-18

Table of Contents
C Library Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL ix

7.2 .16 dsp_rmem: Read DSP Memory Location . 7-19

7.2 .17 dsp_rpin: Read DSP Pin State . 7-20

7.2 .18 dsp_rport: Read DSP Port State. 7-21

7.2 .19 dsp_rreg: Read a DSP Device Register . 7-22

7.2 .20 dsp_save: Save All DSP Structures to State File 7-23

7.2 .21 dsp_startup: Initialize DSP Structures . 7-24

7.2 .22 dsp_unlock: Unlock Password Protected Device Type. 7-25

7.2 .23 dsp_wapin: Write DSP Analog Pin State . 7-26

7.2 .24 dsp_wmem: Write DSP Memory Location . 7-27

7.2 .25 dsp_wpin: Write DSP Pin State . 7-28

7.2 .26 dsp_wport: Write DSP Port State . 7-29

7.2 .27 dsp_wreg: Write a DSP Device Register . 7-30

7.2 .28 sim_docmd: Execute Simulator User Interface Command 7-31

7.2 .29 sim_gmcmd: Get Command String from Macro File. 7-32

7.2 .30 sim_gtcmd: Get Command String from Terminal 7-33

7.3 SIMULATOR EXTERNAL MEMORY FUNCTIONS 7-34

7.3 .1 dsp_alloc: Allocate Simulator Program Memory 7-35

7.3 .2 dspl_xmend: End DSP External Memory Access 7-36

7.3 .3 dspl_xmfree: Free DSP Device External Memory 7-37

7.3 .4 dspl_xminit: Initialize DSP Device External Memory 7-38

7.3 .5 dspl_xmload: Load DSP External Memory from State File. 7-39

7.3 .6 dspl_xmnew: Create New External Memory Structure 7-40

7.3 .7 dspl_xmrd: Read DSP External Memory Location 7-41

7.3 .8 dspl_xmsave: Save DSP External Memory to State File 7-42

7.3 .9 dspl_xmstart: Start DSP External Memory Access. 7-43

7.3 .10 dspl_xmwr: Write DSP External Memory Location 7-44

7.4 SIMULATOR SCREEN MANAGEMENT FUNCTIONS 7-45

7.4 .1 simw_ceol: Clear to End of Line . 7-46

7.4.2 simw_ctrlbr: Check for CTRL-C Signal . 7-46

7.4.3 simw_cursor: Move Cursor to Specified Line and Column 7-46

7.4.4 simw_endwin: End Simulator Window . 7-46

7.4.5 simw_getch: Non-translated Keyboard Input . 7-46

7.4.6 simw_gkey: Translated Keyboard Input . 7-47

7.4.7 simw_putc: Output Character to Terminal . 7-47

7.4.8 simw_puts: Output String to Terminal. 7-47

7.4.9 simw_redo: Repaint Screen With Output From Device 7-47

Table of Contents
Device-Dependent Information

x DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.4.10 simw_redraw: Redraw Screen After Scroll Count 7-48

7.4.11 simw_refresh: Screen Update After Buffering Output 7-48

7.4.12 simw_scrnest: Increase Screen Buffering One Level 7-48

7.4.13 simw_unnest: Decrease Screen Buffering One Level 7-48

7.4.14 simw_winit: Initialize Window Parameters . 7-48

7.4.15 simw_wscr: Write String and Perform Logging 7-49

7.5 NON-DISPLAY SIMULATOR .7-50

7.5 .1 Creating a New Device .7-51

7.5.2 Loading Program Code or Device State . 7-51

7.5 .3 Executing Device Cycles .7-52

7.5.4 Testing Breakpoint Conditions. 7-52

7.6 MULTIPLE DEVICE SIMULATION .7-53

7.6.1 Allocation and Initialization of Multiple Devices 7-53

7.6.2 Interleaving Multiple DSP Simulations. 7-53

7.6 .3 External Memory Definition .7-54

7.6.4 Multiple DSP Pin Interconnections . 7-54

7.6 .5 Multiple DSP Simulator Display .7-55

7.7 RESERVED FUNCTION NAMES .7-56

7.8 SIMULATOR GLOBAL VARIABLES .7-57

7.9 MODIFICATION OF SIMULATOR GLOBAL STRUCTURES 7-58

Chapter 8
DEVICE-DEPENDENT INFORMATION

8.1 INTRODUCTION .8-1

8.2 SIMULATOR NAMES .8-1

8.3 DEVICE NAMES .8-1

8.4 C OBJECT LIBRARIES .8-1

8.5 OPERATING MODES .8-2

8.6 PERIPHERAL I/O .8-2

8.7 MODIFICATION OF DEVICE GLOBAL STRUCTURES 8-3

Chapter 9
GRAPHICAL USER INTERFACE

9.1 INTRODUCTION .9-1

9.1.1 Target Audience . 9-1

9.1.2 Host System Requirements . 9-1

9.1.3 Platform Specifics . 9-2

Table of Contents
Graphical User Interface

MOTOROLA DSP SIMULATOR REFERENCE MANUAL xi

9.1.4 Graphical Interface Functions Overview . 9-4

9.2 FILE menu . 9-11

9.2.1 FILE//PATH//... 9-11

9.2.2 FILE//LOAD//MEMORY . 9-12

9.2.3 FILE//SAVE//MEMORY... 9-13

9.2 .4 FILE//SAVE//STATE . 9-15

9.2.5 FILE//LOAD//STATE. 9-15

9.2.6 FILE//INPUT//OPEN . 9-16

9.2.7 FILE//INPUT//PIN . 9-17

9.2.8 FILE//INPUT//ADDRESS . 9-17

9.2.9 FILE//INPUT//CLOSE . 9-18

9.2.10 FILE//OUTPUT/OPEN . 9-19

9.2.11 FILE//OUTPUT//CLOSE . 9-20

9.2.12 FILE//IO STREAMS//... 9-20

9.2.13 FILE//IO REDIRECT//... . 9-20

9.2.14 FILE//LOG//COMMANDS . 9-21

9.2.15 FILE//LOG//SESSION. 9-22

9.2.16 FILE//LOG//PROFILE . 9-23

9.2.17 FILE//LOG//CLOSE. 9-24

9.2.18 FILE//MACRO. 9-24

9.2.19 FILE//ABOUT . 9-25

9.2.20 FILE//PREFERENCES . 9-26

9.2.21 FILE//EXIT . 9-26

9.3 DISPLAY menu . 9-26

9.3.1 DISPLAY//DISPLAY//ACTIVE. 9-27

9.3.2 DISPLAY//DISPLAY//MEMORY . 9-28

9.3.3 DISPLAY//DISPLAY//REGISTERS. 9-29

9.3.4 DISPLAY//DISPLAY//STACK . 9-29

9.3.5 DISPLAY//DISPLAY//VERSION . 9-30

9.3.6 DISPLAY//DISPLAY//OFF . 9-30

9.3.7 DISPLAY//DISASSEMBLE//FROM PC. 9-30

9.3.8 DISPLAY//DISASSEMBLE//MEMORY BLOCK 9-30

9.3.9 DISPLAY//HISTORY. 9-31

9.3.10 DISPLAY//LIST . 9-32

9.3.11 DISPLAY//EVALUATE . 9-32

9.3.12 DISPLAY//CALL STACK. 9-34

Table of Contents
Graphical User Interface

xii DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.13 DISPLAY//RADIX. 9-34

9.3.14 DISPLAY//DEVICE . 9-35

9.3.15 DISPLAY//PATH . 9-35

9.3.16 DISPLAY//INPUT FILES . 9-36

9.3.17 DISPLAY//OUTPUT FILES . 9-36

9.3.18 DISPLAY//REDIRECTED IO STREAMS. 9-36

9.3.19 DISPLAY//IO STREAMS STATUS . 9-37

9.3.20 DISPLAY//LOG FILES. 9-37

9.3.21 DISPLAY//BREAKPOINTS . 9-38

9.3.22 DISPLAY//WATCH//SHOW . 9-38

9.3.23 DISPLAY//WATCH//ADD. 9-39

9.3.24 DISPLAY//WATCH//OFF . 9-39

9.3.25 DISPLAY//TYPE . 9-40

9.3.26 DISPLAY//MORE. 9-40

9.3.27 DISPLAY//VIEW//REGISTER . 9-41

9.3 .28 DISPLAY//VIEW//ASSEMBLY. .9-42

9.3.29 DISPLAY//VIEW//SOURCE. 9-42

9.4 MODIFY menu .9-43

9.4.1 MODIFY//CHANGE REGISTER . 9-43

9.4.2 MODIFY//CHANGE MEMORY . 9-44

9.4.3 MODIFY//COPY MEMORY . 9-44

9.4.4 MODIFY//RADIX//SET DEFAULT . 9-45

9.4.5 MODIFY//RADIX//SET DISPLAY. 9-45

9.4.6 MODIFY//DEVICE//SET DEFAULT. 9-46

9.4.7 MODIFY//DEVICE//CONFIGURE . 9-46

9.4.8 MODIFY//DEVICE//UNLOCK . 9-47

9.4.9 MODIFY//UP, MODIFY//DOWN . 9-47

9.5 EXECUTE menu .9-48

9.5.1 EXECUTE//GO . 9-48

9.5.2 EXECUTE//STEP . 9-49

9.5.3 EXECUTE//NEXT . 9-49

9.5.4 EXECUTE//TRACE . 9-49

9.5.5 EXECUTE//UNTIL . 9-50

9.5.6 EXECUTE//FINISH . 9-50

9.5.7 EXECUTE//BREAKPOINTS//SET . 9-51

9.5.8 EXECUTE//BREAKPOINTS//CLEAR . 9-52

Table of Contents
Index

MOTOROLA DSP SIMULATOR REFERENCE MANUAL xiii

9.5.9 EXECUTE//BREAKPOINTS//ENABLE, DISABLE 9-53

9.5.10 EXECUTE//WAIT . 9-53

9.5.11 EXECUTE//STOP . 9-54

9.5.12 EXECUTE//RESET... . 9-54

9.6 WINDOWS menu . 9-55

9.6.1 WINDOW//ASSEMBLY . 9-56

9.6.2 WINDOWS//SOURCE . 9-57

9.6.3 WINDOWS//REGISTER . 9-58

9.6.4 WINDOWS//MEMORY . 9-59

9.6.5 WINDOWS//STACK . 9-60

9.6.6 WINDOWS//CALLS . 9-60

9.6.7 WINDOWS//WATCH. 9-61

9.6.8 WINDOWS//LIST FILE . 9-62

9.6.9 WINDOWS//INPUT. 9-63

9.6.10 WINDOWS//OUTPUT. 9-63

9.6.11 WINDOWS//BREAKPOINTS . 9-63

9.6.12 WINDOWS//COMMAND. 9-64

9.6.13 WINDOWS//SESSION . 9-65

9.6.14 WINDOWS//CASCADE (Windows only). 9-67

9.6.15 WINDOWS//TILE (Windows only). 9-67

9.7 THE TOOL BAR . 9-68

9.7.1 GO Button . 9-68

9.7.2 STOP Button. 9-68

9.7.3 STEP Button . 9-68

9.7.4 Next Button . 9-68

9.7.5 FINISH Button. 9-69

9.7.6 Device Button . 9-69

9.7.7 REPEAT Button . 9-69

9.7.8 RESET Button. 9-69

INDEX

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 1-1

Chapter 1
DSP SIMULATOR

1.1 INTRODUCTION

The DSP Simulator program is a software tool for developing programs and algorithms for
Motorola Digital Signal Processors (DSPs). This program exactly duplicates the functions
of supported Motorola DSP chips, including all on-chip peripheral operations, all memory
and register updates associated with program code execution, and all exception
processing activity. The device’s pipelined bus activity is exactly simulated. This enables
the Simulator to provide the user an accurate measurement of code execution time, which
is so critical in DSP applications.

The Simulator executes object code which can be generated using either the device
Macro Assembler program or the Simulator’s internal single-line assembler. The object
code is loaded into the simulated device’s memory map. The entire internal and external
memory space of the DSP is simulated. During program debug the user can display and
change any of the device’s registers or memory locations. Instruction execution can
proceed until a user-defined breakpoint is encountered, or in single-step mode, stopping
after a specified number of instructions or cycles have executed.

1.2 FEATURES

Summary of Simulator features:
• Multiple device simulation
• Source level symbolic debug of assembly and C source programs
• Conditional or unconditional breakpoints
• Program patching using a Single-Line Assembler/Disassembler
• Instruction and Cycle timing counters
• Session and/or Command Logging for later reference
• Input/Output ASCII files for device peripherals
• Help file and Help line display of Simulator commands
• Macro command definition and execution
• Display Enable/Disable of Registers and Memory
• Hexadecimal/Decimal/Binary calculator

DSP Simulator
Operating Environment

1-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

1.3 OPERATING ENVIRONMENT

The minimum hardware requirements for the DSP Simulator include:
• IBM AT * 386 or better) with 2 Mb of RAM
• PC-DOS / MS-DOS** v3.0 or later.
• IBM,AT and PC-DOS are trademarks of International Business Machines.
• MS-DOS is a trademark of Microsoft Corp.

The Simulator supports all of the external memory maps of the DSP. It is compiled with a
Compiler which supports extended and virtual memory on the PC. The file readme.mem
will contain additional information for configuration of the PC to support the memory
management.

Floppy diskette drives are adequate for small simulations. However, due to the virtual
memory paging scheme and since many of the INPUT and OUTPUT commands
reference disk files, a fixed disk drive is highly recommended.

If your simulation involves many assigned disk files, the operating system’s limit of the
number of open files may be reached. This will cause the simulation to slow down while
files are closed and then reopened for accesses. In order to reduce the chance of this
situation occurring, it is recommended that your operating system’s CONFIG.SYS file be
modified with the following MS-DOS configuration commands:

BUFFERS = 32
FILES = 20

These commands increase the number of disk memory buffers and the maximum number
of files that can be open at one time.

DSP Simulator
Running the Simulator

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 1-3

1.4 RUNNING THE SIMULATOR

The format for invoking the Simulator is:

SIMDSP [macro command filename]

Although the name simdsp is used throughout this manual for example purposes, the
actual name of the Simulator is device dependent. For example, the DSP56000 and
DSP56001 devices use the Simulator named sim56000 , while the DSP56116 device
uses sim56100 . See Chapter 8, Simulator Names for the actual name used for your
device Simulator.

The macro command filename is an optional parameter. The macro command file should
contain a sequence of commands that the user wishes to execute upon Simulator start-
up and prior to command entry from the keyboard. If an incorrect command is
encountered in the macro command file, the macro command will terminate and
command entry will be enabled from the keyboard. Macro command files can be nested
(a macro command file can call another macro command file) to any level.

If you do not specify a suffix in the macro command file name, the Simulator will assume
the suffix ".cmd".

EXAMPLES

 SIMDSP
Invoke the Simulator. Begin keyboard command input immediately (no macro file).

 SIMDSP STARTUP
Invoke the Simulator and run the macro file named "STARTUP.CMD".

 SIMDSP SETUP.N5
Invoke the Simulator and run the macro file named "SETUP.N5".

 SIMDSP SETUP5.
Invoke the Simulator and run the macro file named "SETUP5.".

1.5 USER INTERFACE

The bottom three screen lines function as the command line, an error message line, and
a help line.

As each valid command is accepted from the command line, it and its results are scrolled
into the display screen. The last 100 lines of display screen entry are available for review
at any time by typing Pg Up (Ctrl-T), Pg Dn (Ctrl-V), Up-Arrow (Ctrl-U) or Down-Arrow
(Ctrl-N).

DSP Simulator
Command Entry

1-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

1.6 COMMAND ENTRY

Upon entry into the Simulator, several of the available commands are displayed on the
help line. The remaining commands can be reviewed by pressing the SPACE bar when
the cursor is at the start of the command line.

 The Simulator requires a minimum number of key strokes to recognize a Simulator
command. The minimum number of required characters for each command is shown
highlighted on the help line. A command can be specified by typing the required
characters followed by a space or by typing the entire command word followed by a
space.

Entering the command key strokes followed by a space will activate the help line for that
particular command. The help line shows the syntax for the remainder of the command.
Additional help and examples of the current instructions can be obtained by typing a
question mark at any point during the command entry.

Any text following a semicolon on the command line is considered to be a user comment.
This provides the user a means of documenting session display.

Command execution begins when the user types the ENTER or CARRIAGE RETURN
key. If the entered command is not one of the predefined Simulator commands, the
Simulator interprets the command as a macro file name and executes the macro file.
Macro command files can be created by logging command entries. This procedure is
explained in the documentation of the Simulator LOG command.

Command line editing is supported for command entry corrections. The cursor can be
moved on the command line by using the Left-Arrow (Ctrl-L) and Right-Arrow (Ctrl-R)
keys. The grey Back-Arrow (Ctrl-H) key on the upper right of the keyboard will backspace
and delete the previous character. The Del (Ctrl-K) key will delete the following character.
The Ins (Ctrl-O) key can be used to toggle between insert and overwrite modes of
character entry. The ESC key will clear the command line.

The CONTROL-C or CONTROL-BREAK keys can be used to abort the execution of a
Simulator command.

Once a valid command is entered it is stored in a holding buffer for repeated execution.
To execute the previous valid command the user need only type the ENTER or
CARRIAGE RETURN key.

The previous ten commands can also be recalled for editing or execution by typing Ctrl-
B or Ctrl-F . Ctrl-B moves backward through the circular list of ten previous commands;
Ctrl-F moves forward through the list.

DSP Simulator
Display Modes

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 1-5

1.7 DISPLAY MODES

The Simulator supports three display modes - register, assembly and source. These
modes determine the Simulator display at the termination of commands which initiate
device cycle execution. The register display mode causes the display of register and
memory locations enabled by the DISPLAY command. The assembly display mode
causes the display of one full screen of disassembled instructions containing the
instruction at the current execution address. The source display mode causes the display
of one page of the original source file which contains the source line associated with the
current execution address. In both the assembly and source display modes the position
of the current execution address is marked by => in the left margin.

The source display mode requires symbol and line information in the object file that will
normally be the result of assembling with the -g option of the assembler. See the
assembler manual for instructions on the use of the -g option.

A display mode can be selected either by the Simulator VIEW command, or by toggling
among the display modes using the Ctrl-W key entry (hold down Ctrl and press w). In
addition, Simulator commands which display registers or memory, or otherwise create
display to the register display window will select the register display mode; and the
Simulator LOAD and LIST commands will switch from the register display mode to the
source display mode.

Chapter 2
SIMULATOR COMMANDS

2.1 COMMAND OVERVIEW

There are a total of twenty-five Simulator commands. These can be grouped into four
functional categories: memory/register modification , file I/O , simulation execution
control , and miscellaneous tasks . An additional group of fourteen commands is avail-
able in the GUI version of the Simulator for windows control .

2.1.1 Memory/Register Modification

There are eight memory/register modification commands. These allow the user to AS-
SEMBLE (ASM) DSP instructions, CHANGE register or memory locations, COPY a block
of memory to a new location, DISASSEMBLE code stored in the simulated DSP memory
space, DISPLAY registers and memory values, DISPLAY the Simulator revision number
or memory configuration, or RESET the device registers or memory space. The HISTORY
command disassembles and displays the previous thirty-two instructions that were exe-
cuted by the device. A WATCH list may be used to display a variable whenever single
stepping or program execution is halted

2.1.2 File I/O

There are five file I/O commands available which allow the user to INPUT peripheral or
memory location values from a file, OUTPUT peripheral or memory location values to a
file, LOAD macro-assembler object module files or previous simulation state files, LOG
Simulator commands, session display output or DSP program execution profile, and
SAVE Simulator memory to an object module file or the Simulator state to a state file.

2.1.3 Simulation Execution Control

There are seven simulation execution control commands. These allow the user to specify
BREAK conditions, to GO until a break condition is met, to STEP a specified number of
instructions or cycles before displaying register and memory changes, or to TRACE a
specified number of instructions or cycles displaying register and memory changes at
each step. The NEXT instruction operates essentially the same as the STEP instruction,
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-1

Simulator Commands
Command Syntax
except that if the instruction being executed calls a subroutine or macro, execution con-
tinues until return from the subroutine or macro. The UNTIL instruction has the effect of
setting a temporary breakpoint at a specified address, executing until a breakpoint is en-
countered, then clearing the temporary breakpoint. The FINISH instruction proceeds until
an RTS instruction is encountered for the current subroutine.

2.1.4 C Source Code Debug Commands

There are seven C source code debug commands available. The user may use WHERE
to display the C function call stack. The user can then use UP, DOWN and FRAME to
traverse the call stack. The user may REDIRECT data from stdin/stdout/stderr to files
when STREAMS are enabled and the user may also display the data TYPE of a variable,
function or C expression.

2.1.5 Miscellaneous Tasks

There are eleven miscellaneous task commands available which allow the user to create
a new DEVICE and specify the device type, EVALUATE expressions in five different ra-
dices, get HELP for command line entry, define a default PATH name for storage of tem-
porary files, QUIT a simulation session, specify the default numerical RADIX used during
expression evaluation and data entry or data display, execute a SYSTEM command, or
WAIT a specified number of seconds before proceeding to the next instruction. The LIST
command displays a specified source file when symbolic debug is in effect. The VIEW
command allows selection of the Simulator display mode - Source, Assembly or Register.
The UNLOCK command provides password enabling of unannounced device types.

2.2 COMMAND SYNTAX

The command descriptions in Section 2.3 each begin with a command syntax line show-
ing the general form of the command. The command syntax line contains special punctu-
ation to indicate command keywords, required or optional fields, repeated fields, and im-
plied actions. The following is a description of the special punctuation within the syntax
line:

Square brackets [] enclose optional command parameters. The brackets themselves are
not entered as a part of the command. For example, in the "WAIT [count(seconds)]" com-
mand the count parameter is optional.

The slash / is used to separate alternate command parameters. The user may only enter
one of the parameters in the list. The slash is not entered as a part of the command. For
example, when entering the "LOG [c/s/p] filename" command, log c filename and log s
filename are valid entries, but not log c s filename .
2-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Syntax
Parentheses () surround a description of an implied action. This is only included to help
the user understand the action of the command. Neither the parentheses nor the descrip-
tion within are entered as part of the command. For example, when entering the “COPY”
command, copy p:0..10 x:5 is a valid entry. The from and to words in the command syn-
tax line are only an explanation of the direction of data transfer.

Three consecutive periods (...) indicate that the preceding field may optionally be repeat-
ed. For example, when entering the “DISPLAY” command, multiple registers can be spec-
ified for display on the same command line.

Capitalized WORDS indicate command keywords. Command keywords must be entered
exactly as shown. The portion of the command keyword shown in

BOLDFACE represents the minimum portion of the keyword that the user must type. The
portion of a keyword not in boldface may be typed if desired, but is not required by the
Simulator. The Simulator will type out the remainder of the keyword for you if you type the
boldface characters followed by a space.

Other command parameters, shown in the command syntax line in lower case (but not
within parentheses), are used in place of the expanded definitions shown in Section 2.2.1.

2.2.1 Expanded Syntax for Command Parameters

The following expanded definitions apply to the parameters shown on the command syn-
tax line in lower case (but not within parenthesis):

addr = An address may be specified as a source file line number or as a symbol
name if a previously loaded COFF object file contains symbolic debug infor-
mation - see Chapter 5, Assembler Debug Symbols. Otherwise a memory
space designator must be used. Use the Simulator’s "help mem" command
to obtain a list of the valid memory space prefixes.

addr_block =addr..location/addr#count

bn = (break number) decimal integer constant in the range 1 to 99.

break_action =H(halt)/In(increment CNTn)/N(note)/S(show)/X [command]

count = positive integer expression in range 1 to $7fffffff.

dev_num = dv0 ..dv31

dev_type = see Chapter 8, Device Names

expression =any arithmetic expression valid for the assembler. In addition, the register
names can be used in the expression.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-3

Simulator Commands
Command Syntax
c_expression =any expression valid in the current C program. A c_expression must be
enclosed in curly braces.

file = any valid pathname for the operating system in use

ioradix = -RD(decimal)/-RF(float or fractional)/-RH(hexadecimal)/-RU(unsigned)

location = integer expression. It will be mapped into the device address range. For ex-
ample, -1 translates to the maximum address.

mode = device operating mode in the form Mn. See Chapter 8, Operating Modes for
a list of valid operating modes for the device.

pathname = any valid pathname for the operating system in use

periph = Valid peripheral names are displayed by the Simulator help periph com-
mand.

pin = Valid pin names are displayed by the Simulator help pin command. A pin
name may optionally be preceded by pin: in order to resolve conflicts that
may exist between pin and register names or constants.

pin_block = pin..pin

port = Valid port names are displayed by the Simulator help port command

reg = Valid register names are displayed by the Simulator display all command.
A register name may optionally be preceded by reg: in order to resolve con-
flicts that may exist between register and pin names or constants.

reg_block = reg..reg

reg_group = periph/all

topic = on-line help topic keywords
2-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3 COMMAND SUMMARY

The following is a summary list showing the syntax of the Simulator commands. A detailed
description of each command is presented in the remainder of Section 2.3.

Memory/Register Modification

ASM [B(byte wide)] [(beginning at) addr] [assembler_mnemonic]
CHANGE [reg[_block]/addr[_block] [expression]]...
COPY (from) addr[_block] (to) addr
DISPLAY [ON/OFF/R/W/RW] [reg[_block/_group]/addr[_block]]...
DISPLAY V(version)
DISASSEMBLE [B(byte wide)] [addr[_block]]
HISTORY
RESET S(state)/D(device) [mode]
WATCH [#n] [radix] reg|addr|expression|c_expression
WATCH [#n] OFF

File I/O

INPUT [#n] [T(timed)] addr/port/periph/pin[_group] OFF/TERM/file [ioradix]
INPUT [#n] pin (from)[dev_num:]pin
INPUT [#n] addr (from)[dev_num:]addr
LOAD [S(state)|M(memory-only)|D(debug symbols-only)] (from) file
LOG [OFF] [C(commands)/S(session) [file [-A/-O/-C]]]
LOG [OFF] V(source display status line)
OUTPUT [#n] [T] addr/port/periph/pin[_group] TERM/file [ioradix/-RS] [-A/-O/-C]
OUTPUT [#n] [T] addr/port/periph/pin[_group] OFF
OUTPUT [#n] [T] history OFF /TERM/file [-A/-O/-C]
OUTPUT [#n] [T] ehistory OFF /TERM/file [-A/-O/-C]
SAVE S(state)/addr_block... file [-A/-O/-C]

Simulation Execution Control

BREAK [#bn] [expression] [break_action]
BREAK [#bn] R(read)/W(write)/RW(access) reg/addr[_block] [break_action]
BREAK [#bn[,bn,...]] OFF/E(enable)/D(disable)
BREAK [#bn] DR(dma read)/DW(write)/DRW(access) addr[_block] [break_action]
FINISH
GO [(from)location/R(reset)] [(to break number)#bn] [(occurrence):count]
NEXT [count] [LI(lines)/IN(instructions)] [H(halt at breakpoints)]
STEP [count] [CY(cycles)/LI(lines)/IN(instructions)] [H(halt at breakpoints)]
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-5

Simulator Commands
Command Summary
TRACE [count] [CY(cycles)/LI(lines)/IN(instructions)] [H(halt at breakpoints)]
UNTIL addr [H(halt at breakpoints)

C Source Code Debug

DOWN [n]
FRAME [#n]
REDIRECT STDIN OFF/file
REDIRECT STDOUT/STDERR OFF/file [-A/-O/-C]
REDIRECT OFF
STREAMS [E(enable)/D(disable)]
TYPE {c_expression}

GUI Windows

WASM [OFF]
WBREAKPOINT [OFF]
WCALLS [OFF]
WCOMMAND [OFF]
WHERE [[+/-]n]
WINPUT [OFF]
WLIST [win_num] OFF/file
WMEMORY [win_num] space [addr]
WMEMORY [win_num] [OFF]
WOUTPUT [OFF]
WREGISTER [win_num] [OFF]
WSESSION [OFF]
WSOURCE [OFF]
WSTACK [OFF]
WWATCH [win_num] [#wn] [radix] reg|addr|expression
WWATCH [win_num] [#wn] [OFF]

Miscellaneous
DEVICE [dev_num[dev_type/ON/OFF/X]]
EVALUATE [B(binary)/D(decimal)/F(float)/H(hex)/U(unsigned)] expression
HELP [command/reg/topic]
LIST [+/-/./addr]
PATH [pathname]
PATH + [pathname]
PATH -
2-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
QUIT [E(enable)] [D(disable)]
RADIX [B(binary)/D(dec)/F(float)/H(hex)/U(unsigned)] [reg[_block]/addr[_block]]...
SYSTEM [system_command [parameter_list]]
WAIT [count(seconds)]
UNLOCK dev_type password
VIEW [A(assembly)/S(source)/R(register)]
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-7

Simulator Commands
Command Summary
2.3.1 ASM: Single Line Interactive Assembler

ASM [B(byte wide)] [(beginning at)addr] [assembler_mnemonic]

The asm command invokes a single-line DSP assembler program allowing the user to
create or edit DSP object code programs in memory using assembly language mnemon-
ics. The assembler mnemonic is immediately converted into the proper machine language
code and stored in memory. The source line entry is not saved.

The addr parameter is optional. The beginning address can be in any of the memory maps
of the DSP. Use the Simulator’s “help mem” command to obtain a list of the valid memory
space prefixes. If no address is specified the Simulator begins assembly in the p (pro-
gram) memory space using the current program counter value as the beginning address.
The pr memory designation specifies the special bootstrap ROM area of the DSP.

An interactive mode of the asm will be initiated if no assembler mnemonic is specified on
the command line. Invoking this mode causes the object code at the beginning address
to be disassembled and displayed on the screen. The user may optionally enter a new
assembler mnemonic on the command line. Subsequent or previous memory locations
can be disassembled by typing, respectively, Up-Arrow (Ctrl-U) or Down-Arrow (Ctrl-N).
The assembler is called when the carriage return key is entered. If the new instruction
cannot be assembled correctly an error message is displayed on the error line and the
cursor is placed at the point of error. Typing the ESC key causes the interactive asm com-
mand to terminate.

The b (byte-wide) parameter takes one byte from each memory word starting at the spec-
ified address to build up the instruction word to be displayed. Similarly the assembled
mnemonic instruction is divided into bytes and stored in successive words.

2.3.1.1 GUI Interactive Assembler

If the interactive assembler is invoked with the GUI version of the Simulator, a di-
alog box displays the original instruction at the specified location. To change the
instruction and display the next, type the new instruction and click [OK]. To exit the
interactive assembler, click [CANCEL]. Any new instruction which has been typed
before clicking [CANCEL] will not be written to the current location.

Figure 2-1 Interactive Assembler Dialog Box

The SESSION and COMMAND windows will be written to during interactive as-
sembler operations. Both windows display the original asm command, the SES-
SION window displays each change as it is applied.
2-8 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
EXAMPLES

asm p:$50
Start interactive assembler at program memory address 50 hex.

asm x:0 move r0,r1
Assemble single instruction at x memory address 0.

asm
Start assembler at current program counter value.

asm lab_d+5
Start assembler at symbolic address lab_d+5.

asm myfile.asm@7
Start assembler at the address corresponding to myfile.asm line 7

asm b y:$040100

Perform byte-wide assembly from address $40100 in y memory. Each byte of the instruc-
tion is stored in successive locations, so two or three locations are required to store each
16- or 24-bit instruction. Even if assembled into program memory, this code cannot be ex-
ecuted directly; it is intended for use with code similar to the byte-wide loader in the ROM
bootstrap code.

Byte-wide assembly may be used interactively (as in this example) or to assemble a single
instruction.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-9

Simulator Commands
Command Summary
2.3.2 BREAK: Set, Modify, or Clear Breakpoint

BREAK [#bn] [expression] [break_action]
BREAK [#bn] R(read)/W(write)/RW(access) reg/addr[_block] [break_action]
BREAK [#bn[,bn,...]] OFF/E(enable)/D(disable)
BREAK [#bn] DR(dma read)/DW(write)/DRW(access) addr[_block] [break_action]

The break command can be used to set, modify, or clear a breakpoint condition and to
specify the action that occurs if the breakpoint condition is true. The break command has
four possible forms as indicated by the four command syntax lines above. The first form
causes a break condition if the evaluated expression is non-zero. The second form caus-
es a break condition if a selected register or memory location is accessed by the core. The
third form permits a breakpoint, or list of breakpoints, to be selectively enabled, disabled
or deleted. The fourth form causes a break condition if a selected memory location is ac-
cessed by a DSP dma controller. It is valid only for devices with on-chip dma controllers.

The break_number parameter is optional. The break_number can be specified if the user
wishes to assign a specific breakpoint number to a breakpoint definition or wants to modify
or delete an existing breakpoint. The break_number should be a positive decimal integer
constant in the range 1-99. If the user does not specify a breakpoint number, the Simulator
automatically assigns the lowest unused number.

A breakpoint expression can be any logical expression that is valid for the DSP Macro As-
sembler. The following is a list of operators that may be used in the breakpoint expression:

< less than
&& logical "and"
<= less than or equal to
|| logical "or"
== equal to
! logical "negate"
>= greater than or equal to
& bitwise "and"
> greater than
| bitwise "or"
!= not equal to
~ bitwise one’s complement
+ addition
^ bitwise "exclusive or"
- subtraction
<< shift left
/ division
>> shift right

See Chapter 5 for more detailed information on expression evaluation.
2-10 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
The breakpoint expression usually involves comparison of register or memory values. Any
register name may be used in an expression. There are also two special flag variables
that may be referenced in the breakpoint expression:

eof Is TRUE if an end-of-file condition occurs in an input file assigned to a pe-
ripheral or memory location.

jump Is TRUE if a "jump" change of flow occurs during code execution.

The Simulator can take various actions when a breakpoint is met during DSP program ex-
ecution. If no break_action parameter is entered, the default action is to halt program sim-
ulation and display all enabled registers and memory blocks. Alternative Simulator actions
can be specified by entering one of the following break_action parameters:

H Halt execution. This is the default.
In Increment counter variable CNTn (n=1..4).
N Note - display the breakpoint expression and continue.
S Show the enabled register/memory set and continue.
X Execute a Simulator command at breakpoint. Device execution

commands, such as trace or go, will not execute.

One other very useful form of breakpoint expression breaks at an address only when the
opcode from that memory location is being decoded for next cycle execution. Other forms
of the breakpoint expressions which check the value of the pc register or check for a read
of a p memory location are less definitive due to the pipelined prefetch of the device. This
special form of breakpoint is selected if the breakpoint expression is a single P memory
address.

If the ".cld" file contains symbolic debug line number information, breakpoint addresses
may be specified using a line_number or filename@line_number designation.

If the ".cld" file contains C symbolic debug information, breakpoint expressions can in-
clude any valid C expression for the program.

EXAMPLES

break
Display all currently enabled breakpoints.

break off
Remove all breakpoints.

break #1,3,5..9 off
Remove breakpoints numbers 1, 3 and 5 through 9.

break pc>=$500
Halt DSP program simulation and display enabled registers and memory when the pro-
gram counter register is greater than or equal to hexadecimal 500.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-11

Simulator Commands
Command Summary
break (lc<10)&&(pc>100)
Halt if the loop counter is less than 10 and the program counter is greater than 100.

break jump n
Display breakpoint message if a jump change of flow occurs during execution.

break eof||pc>$fff
Halt if an end of file condition occurs in an assigned peripheral input file or if the program
counter is greater that hexadecimal FFF.

break r0==r1
Halt when the value of register r0 equals the value of register r1.

break lc>0&&jump i1
Increment variable cnt1 if a jump occurs and the loop counter is greater than 0.

break r r0
Halt if register r0 is accessed for a read operation.

break p:100
Halt if the execution address is p:100.

break w lc
Halt if the loop counter register is written during code execution.

break 10 x evaluate h r0
Set a breakpoint at the address corresponding to line 10 of the current source file. Execute
the Simulator command "evaluate h r0" when the breakpoint occurs.

break myfile.asm@20
Set a breakpoint at the address corresponding to line 20 of source file myfile.asm.

break r xdat..xdat+50
Halt if a read occurs from one of the 50 addresses beginning at the address associated
with the symbol xdat .

break rw p:30..40 s
Display enabled registers and memory and continue program simulation if any program
memory location from decimal 30 to 40 is accessed.

break #1..10 d
Disable breakpoints numbers 1 through 10.

break {j==2}
Halt if the C expression "j==2" is true.

break e
Enable all breakpoints.
2-12 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.3 CHANGE: Change Register or Memory Value

CHANGE [register[_block]/addr[_block] [expression]]...

The change command can be used to change the value of a register, memory location,
block of registers, or block of memory. A register block is represented by two register
names separated by two periods. For example, r0..r3 means registers r0 through r3. A
memory block can be specified by either start_addr#count or start_addr..end_location.
For examples: p:5#20 means 20 locations beginning from program memory location 5;
p:5..20 means program memory locations 5 through 20.

The expression can be a simple constant value or a complex expression with multiple op-
erators and operands. A more extensive discussion of valid expressions is presented in
Chapter 5.

Multiple register names, memory locations and expressions can be specified in the same
command line. Each specified destination must be followed by the value or expression to
be assigned to it.

An interactive mode of register/memory display and change can be initiated by specifying
a single register or memory location without an associated expression. In this mode each
register or memory location can be examined and optionally modified. Subsequent or pre-
vious memory locations or register names can be examined and changed by typing, re-
spectively, Up-Arrow (Ctrl-U) or Down-Arrow (Ctrl-N). Typing the ESC key causes the
interactive change command to terminate.

2.3.3.1 GUI Interactive Change Mode

If interactive change mode is entered with the GUI version of the Simulator, a dia-
log box displays the original value of the specified location, preceded by a semico-
lon ‘;’. To change the location and display the next, type the new value before the
semicolon and click [OK]. The old contents appearing after the semicolon may, but
need not, be deleted. To exit interactive change mode, click [CANCEL]. Any new
value which has been typed before clicking [CANCEL] will not be written to the cur-
rent location.

Figure 2-2 Interactive Change Dialog Box

The SESSION and COMMAND windows will be written to during interactive
change operations. Both windows display the original change command, the SES-
SION window display each change as it is applied.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-13

Simulator Commands
Command Summary
EXAMPLES

change pc
Display register values individually starting with the program counter and prompt the user
for new values.

change xi:$55
Display internal x memory location hexadecimal 55 and prompt the user for a new value.

change p:$20 $123456
Change p memory address hexadecimal 20 to hexadecimal 123456.

change xdat $234
Change x memory address corresponding to symbolic label xdat to hexadecimal 234.

change xdat..xdat+5 35
Change memory block beginning at the address corresponding to symbolic label xdat and
ending at xdat +5 to decimal value 35.

change r0..r3 0 pi:$30..$300 0 x:$fffe $55 pc 100
Change registers r0 through r3 to 0, internal p memory addresses hexadecimal 30
through 300 to 0, x memory address hex fffe to hex 55 and the program counter to 100
decimal.
2-14 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.4 COPY: Copy a Memory Block

COPY (from) addr[_block] (to) addr

The copy command copies memory blocks from one location to another. The source and
destination memory maps may be different. This allows the user to move data or program
code from one memory map to another or to a different address within the same memory
map.

EXAMPLES

copy pi:$100..$500 x:$500
Copy the internal program memory values located from hexadecimal 100 through hexa-
decimal 500 to x memory starting at hexadecimal 500.

copy x:0#100 p:0
Copy one hundred memory locations beginning at x memory location 0 to p memory be-
ginning at location 0.

copy lab_1#100 lab_2
Copy one hundred memory locations beginning at the memory location corresponding to
symbolic label lab_1 to memory beginning at the address corresponding to symbolic label
lab_2 .

copy xdat..xdat+40 ydat
Copy 40 memory locations beginning at the address corresponding to symbolic label xdat
to the block beginning at address corresponding to symbolic label ydat .

copy p:0..20 p:40
Copy p memory locations 0 through 20 to p memory locations 40 through 60.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-15

Simulator Commands
Command Summary
2.3.5 DEVICE: Multiple Device Simulation

DEVICE [dev_num [dev_type/ON/OFF/X]]

The device command allows the user to create a new device for multiple DSP simula-
tions. It also allows the user to switch to a simulated device for command execution and
display, to list the current status of all devices, to disable or enable a device, or to delete
a device.

The dev_num parameter specifies one of 32 possible devices. The current device num-
ber is displayed as the Simulator command line prompt. The number is in the form DVn,
where the n can be a decimal value 0 to 31.

If the dev_type parameter is used, it will allocate and initialize a device structure of the
specified type to be simulated by device dvn. If the device number is specified, but no de-
vice type, subsequent commands and display will reference the new device number. If the
device does not exist, it will be created with a default device type and made active. Non-
disclosed devices must be unlocked with the Simulator unlock command prior to use with
the device command.

The ON parameter makes the specified device active during commands which cause de-
vice execution (go , step or trace). During execution cycles, each active device executes
a single clock cycle in turn. Device to device pin interconnections specified by the input
command are updated following each cycle for active devices.

The OFF parameter makes the specified device inactive. It does not otherwise change the
state of the selected device.

The X parameter discards the device structures allocated for a device. If you specify this
command for the currently displayed device, the Simulator will switch to another device
before discarding the structures. The Simulator needs at least one allocated device in or-
der to have the required structures for the display window, so deletion of the last device
is not allowed.

EXAMPLES

device
Display a list of all devices and their current status. Also display the list of possible device
types.

device dv9
Switch to device dv9 . If it doesn’t exist, create a device dv9 with the default device type.

device dv1 on
Enable device dv1 cycle execution. If it doesn’t exist, create it with the default type.

device dv0 56116
Create device dv0 and initialize it for device type 56116.
2-16 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.6 DISASSEMBLE: Object Code Disassembler

DISASSEMBLE [B(byte wide)] [addr[_block]]

The disassemble command allows the user to review DSP object code in its assembly
language mnemonic format. Invalid opcodes are disassembled to a define constant (DC)
mnemonic.

The b (byte-wide) parameter constructs the instruction words by taking one byte from
each word of memory, starting from the specified address.

EXAMPLES

disassemble
Disassemble the next 20 instructions beginning with instruction pointed to by the program
counter. Repeatedly entering this command will result in consecutive 20 instruction blocks
being disassembled.

disassemble pr:0..20
Disassemble program bootstrap rom memory address block 0 to 20.

disassemble lab_1..lab_2
Disassemble memory address block beginning at the address corresponding to symbolic
label lab_1 and ending at lab_2 .

disassemble xdat#20
Disassemble 10 instructions beginning at the address corresponding to symbolic label
xdat .

disassemble 7
Disassemble instructions beginning at the address corresponding to line 7 in the current
source file.

disassemble test.asm@8
Disassemble instructions beginning at the address corresponding to line 8 in the source
file test.asm .

disassemble x:$50#10
Disassemble 10 instructions starting at x memory map hex 50.

disassemble b y:$1000#$40
Disassemble 40 instructions starting at address y:$1000. The instruction words are con-
structed by taking one byte from each location; thus depending on the target processor,
two or three locations are required to hold each instruction word.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-17

Simulator Commands
Command Summary
2.3.7 DISPLAY: Display Register or Memory

DISPLAY [ON/OFF/R/W/RW] [reg[_block/_group]/addr[_block]]...
DISPLAY V(version)

The display command allows the user to examine the contents of a register group and or
memory block. It can also be used to enable, conditionally enable, or disable particular
registers or memory locations for automatic display when executing debug commands, or
to display the memory configuration or Simulator version number. The display radix for
each register and memory location can be individually specified using the radix com-
mand. The default display radix is hexadecimal.

Entering the display command with the single parameter v will initiate display of the Sim-
ulator version number. The Simulator version number display shows the revision number
and date of the Simulator.

EXAMPLES

display v
Display Simulator version number and date of release.

Entering the display command with no parameters will cause the display of all enabled
registers and memory blocks. Registers and memory blocks can be enabled or disabled
by entering the command with one of the "enable" keywords - ON, OFF, R, W, or RW -
prior to the register and memory list. The enable keywords have the following meaning:

ON Always display the following registers and memory locations.

OFF Never display the following registers and memory locations.

R Display the following registers and memory locations if they were accessed
for a read operation since the last display occurred.

W Display the following register and memory locations if they were
accessed for a write operation since the last display occurred.

RW Display the following register and memory locations if they were accessed
for read or write operations since the last display occurred.

The R, W, and RW functions cause accumulation of a list of accesses from display to dis-
play. All accesses to register locations can be saved. The memory lists only store a max-
imum of 16 memory accesses (for each memory space). If more than 16 locations were
accessed since the previous display, only the last 16 will be stored. Register and memory
locations that have been accessed for a write operation are shown highlighted on the dis-
play.
2-18 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
EXAMPLES

display on
Enable all registers for display

display on pi:0..20 xi:30..40
Display enable internal p memory address block 0 to 20 and internal x memory address
block 30 to 40.

display off
display on core ssi0
Disable all display, then enable display of the DSP core registers and the SSI0 peripheral
registers.

display w r0..r3 x:0..100
Display conditionally (if they are written) registers r0 through r3 and x memory locations
0 through 100.

Entering the display command with a register or memory list, but without one of the "en-
able" keywords, will cause immediate display of the listed registers and memory locations
without affecting their "enable" status.

The peripheral names can be used in the display list to enable or display all the registers
associated with that peripheral. The valid peripheral names for the selected device can be
obtained by using the Simulator’s "help periph" command. The name all can be used to
enable or display all registers of the selected device.

EXAMPLES

display
Display all currently enabled registers and memory.

display p:0..300
Immediate display of p memory addresses 0 through 300.

display test.asm@7
Immediate display of memory location corresponding to line 7 of source file test.asm .

display xdat
Immediate display of memory location corresponding to symbolic label xdat .

display all
Immediate display of all registers plus the enabled memory locations.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-19

Simulator Commands
Command Summary
2.3.8 DOWN: Move Down the C Function Call Stack

DOWN [n]

The down command is used to move down the call stack. It can be used in conjunction
with the where , frame , and up commands to display and traverse the C function call
stack.

After entering a new call stack frame using down, that call stack frame becomes the cur-
rent scope for evaluation. In other words, for C expressions, the evaluate command acts
as though this new frame is the proper place to start looking for variables.

EXAMPLES

down
Move down the call stack by one stack frame.

down 2
Move down the call stack by two stack frames.
2-20 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.9 EVALUATE: Evaluate an Expression

EVALUATE [B(binary)/D(dec)/F(float)/H(hex)/U(unsigned)] expression/{c_expression}

The evaluate command is used as a calculator for evaluating arithmetic expressions or
for converting values from one radix to another. The result of the expression evaluation is
displayed in the specified radix. If a radix is not specified in the evaluate command line,
the current default radix (specified by the radix command) will be used.

An expression consists of an arithmetic combination of operators and operands. An oper-
and can be a register name, a memory location, or a constant value.

The order of evaluation of an expression’s operators will be associated from left to right.
Parentheses can be used to force the order of evaluation of the expression. A more ex-
tensive discussion of the expressions which are valid for the evaluate command is pre-
sented in Chapter 5.

When values held in the DSP’s registers or memory spaces are used in an expression
that involves a multiply operator, the display radix (specified by the radix command) will
determine whether the operation executed is a floating point or integer multiply.

EXAMPLES

evaluate r0+p:$50
Add the value in r0 register to the value in program memory address hexadecimal 50 and
display the result using the default radix.

evaluate b $345
Convert hexadecimal 345 to binary and display the result.

evaluate lab_d
Display the address of the location associated with symbolic label lab_d .

evaluate {count}
Display the value of the C variable count .

evaluate h %10101010&p:r0
Calculate the bitwise AND of the program memory address specified by the value in r0
register and the binary value 10101010 and display the result in hexadecimal.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-21

Simulator Commands
Command Summary
2.3.10 FINISH: Step Until End of Current Subroutine

FINISH

The finish command executes instructions until a return-from-subroutine (RTS) instruc-
tion is executed within the current subroutine. The Simulator simply steps, checking if any
instruction is a RTS. If so, that RTS is executed, and instruction execution halts immedi-
ately afterward. While stepping, if a branch to subroutine or jump to subroutine instruction
is encountered, tests for the RTS instruction are suspended until execution resumes at
the address following the subroutine call.

EXAMPLES

finish
Finish the current subroutine, continuing from the current address until an RTS is execut-
ed.
2-22 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.11 FRAME: Select C Function Call Stack Frame

FRAME [#n]

The frame command is used to select the current call stack frame. It can be used in con-
junction with the where , down , and up commands to display and traverse the C function
call stack.

After entering a new call stack frame using frame , that call stack frame becomes the cur-
rent scope for evaluation.

EXAMPLES

frame #2
Select call stack frame number two.

frame #0
Select call stack frame number zero (innermost frame).

The frame command executes instructions until a return-from-subroutine (RTS) instruc-
tion is executed within the current subroutine. The Simulator simply steps, checking if any
instruction is a RTS. If so, that RTS is executed, and instruction execution halts immedi-
ately afterward. While stepping, if a branch to subroutine or jump to subroutine instruction
is encountered, tests for the RTS instruction are suspended until execution resumes at
the address following the subroutine call.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-23

Simulator Commands
Command Summary
2.3.12 GO: Execute DSP Program

GO [(from)location/R(reset)] [(to break number)#bn] [(occurrence):count]

The go command initiates simulated execution of DSP code. The Simulator fetches, de-
codes, and executes instructions in the exact manner as the processor. The go command
will pass control to the Simulator until a breakpoint is reached, a control-c character is en-
tered on the keyboard, or an illegal instruction is encountered.

Invoking the command with no parameters will start simulation from the current program
counter value. If an address or reset parameter is included, the instruction pipeline, in-
struction counter, and cycle counter will be cleared before program simulation. The reset
(R) parameter causes a simulation of the reset sequence in the processor. The device
registers are reset and execution begins at the reset exception address.

The optional #bn parameter may be used to cause the code execution to halt only if that
particular breakpoint condition occurs. All other breakpoint conditions are ignored.

The optional :count parameter may be used to cause the code execution to halt only if the
breakpoint has occurred a specified number of times. If #bn is not specified, then simula-
tion will stop if count number of breakpoint conditions have occurred.

Ctrl-C will always abort the Simulator go command, even if specified breakpoint condi-
tions have not occurred.

EXAMPLES

go
Start program simulation from the current instruction. Stop at the first occurrence of any
breakpoint.

go $100
Start program simulation at program memory address hex 100 after clearing the instruc-
tion pipeline. Stop at the first occurrence of any breakpoint.

go r
Clear the Simulator pipeline and start program simulation at the reset vector. The simu-
lated machine state is also reset according to the processor reset sequence.

go #5
Continue execution from the current instruction. Halt on the first occurrence of breakpoint
number 5.

go #5 :3
Continue execution from the current instruction. Halt on the third occurrence of breakpoint
number 5.

go lab_d #5 :3
Start from symbolic address lab_d after clearing the Simulator pipeline. Halt on the third
occurrence of breakpoint number 5.
2-24 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.13 HELP: Simulator Help Text

HELP [command/reg/topic]

The help command provides syntax and examples of Simulator commands, descriptions
of device register bit fields, and help on other topics related to device or Simulator opera-
tion.

If no keyword is entered the Simulator displays a summary of the possible help topics. If
the keyword is a command name the Simulator displays a summary of that command’s
parameters along with a brief description and examples. If the keyword is a register name
the Simulator displays the specified register’s contents along with the help text associated
with the register.

The topic keywords below provide on-line help for the described topics:

io : list of on-chip io registers and their addresses

int : list of interrupt vector addresses for the device

periph : list of peripheral names

pin : list of pin names and numbers, and the current pin states

port : list of port names

mode : initial chip operating mode summary

map : memory map descriptions for various omr settings

mem : memory names with block addresses

sym : display program symbol table names and values

reg : display register size, register and peripheral index

stack : display of values on the device stack

EXAMPLES

help
Display a summary of all available commands and their parameters.

help asm
Display a summary of the assemble command and its parameters.

help omr
Display the contents of the DSP’s Operating Mode Register.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-25

Simulator Commands
Command Summary
2.3.14 HISTORY: Disassemble Previously Executed Instruction

HISTORY

The history command disassembles and displays the previous 32 instructions executed
by the device. The instructions are displayed in the order that they were executed, with
the most recent instruction appearing at the bottom of the list. The last instruction in the
list has been fetched and decoded by the device and will enter the execute phase in the
next device cycle. It is in the same state as instructions that are disassembled and dis-
played at the end of each trace display.

A typical use for this command would be to determine the sequence of instructions that
terminated in a user-defined breakpoint. The user would set the breakpoint condition us-
ing the break command, then issue the go command. When the break condition is met,
instruction execution halts and the currently enabled registers are displayed. The user can
then issue the history command to view the last 32 instructions that executed prior to the
breakpoint.

The device execution history can also be logged continuously to an output file using the
Simulator output command. See the documentation of the output history form of the
output command.
2-26 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.15 INPUT: Assign Input File

INPUT [#n] [T(timed)] addr/port/periph/pin[_group] OFF/TERM/file [ioradix]
INPUT [#n] pin (from)[dev_num:]pin
INPUT [#n] addr (from)[dev_num:]addr

The input command retrieves data for a peripheral, memory location, or device pin from
the specified source. The valid peripheral and port names for the selected device can be
obtained by using the Simulator’s "help periph" and "help port" commands.

The input source may be a disk file or the user’s terminal. Use of the keyword TERM
assigns input from the terminal. The source may provide data only or time-data pairs. Use
of the keycharacter T specifies the time-data pair format. The input data is in ascii. The
data value may be expressed in hexadecimal, decimal, or floating point for memory and
peripheral name assignments, as one of 5 input values (0,1,n,p or X) for assignment to
individual digital pins, or as single precision floating point values for analog input pins.

The data default input radix may be specified by using -RD,-RF,-RH or -RU following the
filename. Hexadecimal input is the default for addr, port and periph data values. Input an-
alog pin data files must be assigned with the -RF radix designator, and the file data must
be single precision floating point values. The time value is always expressed in decimal.
Chapter 3 contains an extensive description of the input file format.

A special feature, which uses the second form of the command, allows input to a device
pin from another device pin without having to store the data in a disk file. The source pin
may optionally be preceded by a device number to allow pin to pin connections during
multiple device simulations.

Assignment to a memory address causes all subsequent reads of that memory address
to reference the input source. This method may be used to simulate the user’s unique
memory mapped peripherals or to short-circuit the simulation of the on-chip peripherals.

The third form of the command causes the Simulator to read the memory location of the
specified source device (specified by dvn:addr) each time the destination memory ad-
dress is accessed for a read. This enables simulation of interconnection of multiple devic-
es via dual-port memory. The source device must exist (create it with the Simulator de-
vice command) prior to issuing this form of the input command.

If a filename suffix is not specified, the Simulator will assume ".io" for a non-timed input
file and ".tio" for a timed input file.

EXAMPLES

input xe:$800 xfile -rd
Get values for external memory location x:800 from input file "xfile.io". The data values
are stored in decimal form in the input file.

input ssi0 hfile
Get values for the SSI0 peripheral from input file "hfile.io".
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-27

Simulator Commands
Command Summary
input d15..d0 dfile
Get values for pins D15 through D0 from input file "dfile.io".

input d15..d0 dfile
Get values for pins D15 through D0 from input file "dfile.io".

input irqb dv1:pb0
Input values for the current device’s irqb pin from device dv1’s pb0 pin.

input t irqa term
Input time and data pairs from the terminal for the device IRQA pin.

input x:500 dv5:x:3000
Input data for memory reads of x:500 of the current device from device number 5 address
x:3000.

input #2 x:$800 xfile -rd
Get values for external memory location x:800 from input file "xfile.io". The data values
are stored in decimal form in the input file. Input assignment number 2 is explicitly re-
placed due to the #2 in this command form.

input #2 off
Input assignment number 2 is explicitly deleted by index number.

input mic micfile -rf
Input untimed analog pin data for the mic analog pin from the file "micfile.io".
2-28 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.16 LIST: List Source File Lines

LIST [+/-/./addr]

The list command displays source lines or disassembled instructions from the specified
source file, or beginning at the specified address.

The current display mode determines whether a source file or assembly mnemonics will
be displayed. If the Simulator is in the register display mode, this command will switch it
to the source display mode and display the source file lines associated with the specified
address or line number. If the display mode is already source or assembly, the display
mode is not altered. The assembly display mode displays disassembled instructions cor-
responding to the specified address or line number.

The next or previous pages of the currently displayed source file may be selected by spec-
ifying + or - rather than a specific address or line number. In addition, the source or as-
sembly associated with the current execution address may be selected by specifying. (pe-
riod) or by using the list command without a parameter.

EXAMPLES

list 20
List source or assembly corresponding to line 20 of the current source file.

list test.asm@20
List source or assembly corresponding to line 20 of the source file test.asm .

list test.asm
List source or assembly corresponding to line 1 of the source file test.asm .

list +
Display the next page of the current source file or assembly.

list .
Display source or assembly corresponding to the current execution address.

list -
Display the previous page of the current source file or assembly.

list test.asm
List source or assembly corresponding to line 1 of the source file test.asm .

list lab_1
List source or assembly corresponding to symbolic address lab_1 .
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-29

Simulator Commands
Command Summary
2.3.17 LOAD: Load DSP Files or Configuration

LOAD [S(state)|M(memory-only)|D(debug symbols-only)] (from) file

The load command can be used to load DSP object module format (.lod) files or DSP
COFF (.cld) files into the Simulator memory or to load a previously saved simulation state
file.

If only a file parameter is specified, then the Simulator assumes that the file is an object
file. The object file may be in either the special ASCII OMF format described in Chapter
3, or in the DSP COFF format generated by the DSP Macro-Assembler. The OMF format
file can be created using the Simulator save command or with a text editor. A directory
path may be specified with the filename. If no filename suffix is specified, the Simulator
will search first for a OMF format ".lod" file, then for a COFF format ".cld" file. Loading a
COFF format file replaces the Simulator’s symbolic debug information unless the M op-
tion, described in the examples below, is specified.

If the S keycharacter is specified, the Simulator will load filename as a Simulator state
file. The Simulator state file can be created using the Simulator save s command. Loading
the Simulator state changes the entire setup of the Simulator to the previous definition
saved in the state file. If no filename suffix is specified, ".sim" is assumed.

If the M keycharacter is specified, the Simulator will load object file filename , .cld or .lod,
without modifying the Simulator’ s symbolic debug information.

If the D keycharacter is specified, the Simulator will load only the symbolic debug informa-
tion from the object file filename . The device memory contents are not altered. Only the
COFF format files (.cld suffix) are supported by this option.

EXAMPLES

load \source\testloop.obj
Load the OMF format "testloop.obj" file from directory "source".

load \source\testloop.cld
Load the COFF format "testloop.cld" file from directory "source", including the memory
contents and any symbolic debug information contained in the file.

load lasttest
Load the OMF format "lasttest.lod" file from current directory.

load d test.cld
Load the symbolic debug information from the COFF format "test.cld" file, ignoring the
memory contents of the file.

load m test.cld
Load the COFF format "test.cld" file, ignoring any symbolic debug information in it.

load s lunchbrk
Load "lunchbrk.sim", replacing the entire current Simulator state.
2-30 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.18 LOG: Log Commands, Session, Profile

LOG [OFF] [C(commands)/S(session)/P(profile) [file [-A/-O/-C]]]
LOG [OFF] V(source display status line)

The log command allows the user to record command entries only, to record all session
display output, or to record an analysis of DSP program execution. Recording of com-
mands only is useful as a method of generating macro command files. Recording all ses-
sion display output provides a convenient way for the user to review the results of an ex-
tended sequence of commands. Since the output log files are in ascii format, they can
easily be printed or reviewed using an editor program. Recording a program profile assists
in the analysis of program structure and execution characteristics.

Entering the log command with no parameters will cause the Simulator to display the cur-
rently opened log filenames. The keyword OFF is used to terminate logging. The C and S
keycharacters are used to specify whether the logfile will contain only commands (C), or
all session output (S). A keycharacter -A, -O, or -C may be specified to select append,
overwrite, or cancel if the filename already exists. As a default, the user will be prompted
during command execution. The V keycharacter enables logging of the source display
status line to a session log file. It is primarily intended for testing the Simulator display.

The P keycharacter specifies that a program execution profile is to be created. The pro-
gram to be profiled must be loaded before issuing the ’log p ’ command. Both memory and
symbols must be loaded. Information is gathered as program execution is simulated, and
the profile output files are written when the profiling is terminated with the command ’log
off p ’.

The suffixes ".cmd" and ".log" are added, respectively, to the commands-only or session
filename if no other suffix is specified. For profile logging, two suffixes are used, a ".log"
file which contains plain text which may be printed on any 80-column printer, and a ".ps"
file which is formatted for a postscript printer.

In multiple device simulations, there is a separate session log file associated with each
simulated device, but there is only a single command log associated with the entire mul-
tiple device simulation. If a device type is changed using the device command, the user
interface information associated with the discarded device type, including the session log
file name, is cleared; so it is best to specify the log s command following the device com-
mand for a particular device.

EXAMPLES

log
Display currently opened log files.

log s \debugger\session1
Log all display entries to filename "session1.log" in directory "\debugger"

log c macro1 -a
Log all commands to filename "macro1.cmd". Append if it already exists.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-31

Simulator Commands
Command Summary
log off c
Terminate command logging.

log off
Terminate all logging.

log v
log s session1
Log source display status line and all display entries to "session1.log"

load px41v17.cld
log p px41v17 -o

Load memory and symbols for program px41v17 and log the program profile in files
px41v17.log and px41v17.ps. Overwrite these files without warning if they already exist.
Note that the program(s) to be profiled must have been loaded before this log command
is issued.
2-32 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.19 MORE- Enable/Disable session paging control.

MORE [OFF]

The more command allows the user to enable or disable the paging of data on the session
window. This is particularly useful when displaying large amounts of data and you wish to
examine the data page by page.

The paging feature is turned off by default and data will scroll vertically across the screen
when it is larger than the size of the screen.

EXAMPLES

more

Turn on session display paging control.

more off

Disable session display paging control (reset or default state).
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-33

Simulator Commands
Command Summary
2.3.20 NEXT: Step Over Subroutine Calls or Macros

NEXT [count] [LI(lines)/IN(instructions)] [H(halt at breakpoints)]

The next command functions the same as the STEP command, except that if the next in-
struction to be executed calls a subroutine or begins execution of a macro, all the instruc-
tions of the subroutine or macro are executed before stopping to display the enabled reg-
isters. In order to recognize macros, the symbolic debug information for the program code
must be loaded. The debug information is included in the COFF format .cld files generated
using the assembler’s -g option.

The optional count value enables repeating of the next command the specified number
of times before execution terminates.

As the default, all breakpoints are ignored while the next command is executing. The h
option enables halting at breakpoints.

As the default, the command executes the next instruction if viewing the assembly or reg-
ister screens, and the next line if viewing the source screen. The li and in options permit
source line or instruction increments to be specified explicitly.

EXAMPLES

next
Step over subroutine calls or macros; or otherwise just advance one instruction or source
line, depending on the display mode, and display the enabled registers and memory
blocks.

next li
Step over subroutine calls or macros; or otherwise just advance one source line and dis-
play the enabled registers and memory blocks.

next in
Step over subroutine calls or macros; or otherwise just advance one assembly instruction
and display the enabled registers and memory blocks.

next 10
Execute the equivalent of 10 next instructions, halting to display the enabled registers and
memory blocks only after the tenth invocation.

next 10 li
Execute the equivalent of 10 next li instructions, halting to display the enabled registers
and memory blocks only after the tenth invocation.

next 10 h
Execute the equivalent of 10 next instructions, halting to display the enabled registers and
memory blocks after the tenth invocation, or if any breakpoint is encountered.
2-34 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.21 OUTPUT: Assign Output File

OUTPUT [#n] [T] addr/port/periph/pin[_group] TERM/file [ioradix/-RS] [-A/-O/-C]
OUTPUT [#n] [T] addr/port/periph/pin[_group] OFF
OUTPUT [#n] [T] history TERM /file/OFF [-A/-O/-C]
OUTPUT [#n] [T] ehistory TERM /file/OFF [-A/-O/-C]

The output command stores data from a peripheral, memory location, or device pin to the
specified destination. The valid peripheral and port names for the selected device can be
obtained by using the Simulator’s "help periph" and "help port" commands.

The output destination may be a disk file or the user’s terminal. Use of the keyword
TERM assigns output to the terminal. The Simulator can store data only or time-data
pairs. Use of the keycharacter T specifies the time-data pair format. The output data is in
ascii. The data value may be expressed in hexadecimal, decimal, or floating point for
memory and peripheral name assignments, in pin data form (0,1,H,L,n,p,X) for assign-
ment to individual digital pins, or as single precision floating point for assignment to indi-
vidual analog pins with the -RF radix designator.

The output radix for the data value is specified using -RD, -RF,-RH,-RU or -RS following
the filename. The -RF radix, when specified for a single output pin, will output the analog
single precision floating point value associated with the pins analog function. The -RS ra-
dix is valid only for output memory locations. It interprets values written to the specified
memory location to be the address of a null terminated character string in the same mem-
ory space. The character string will be displayed or written to an output file. This string
radix is provided primarily for use when debugging programs created with the C Compiler.

The output time value is always expressed in decimal. Chapter 3 contains a thorough de-
scription of the output file format. A keycharacter -A, -O, or -C may be specified to select
append, overwrite, or cancel if the filename already exists. As a default, the user will be
prompted during command execution.

Assignment to a memory address causes all subsequent writes of that memory address
to store data in the output file.

If a filename suffix is not specified, the Simulator will attach ".io" to a non-timed output file
and ".tio" to a timed output file.

The third form of the output command creates a continuous log of the device execution
addresses and disassembled opcodes. The output format is similar to the output gener-
ated by the Simulator history command.

The fourth form of the command, which specifies ehistory , is an extended version of the
output history command. Additional execution history information is logged to the output
file, including device wait state cycles and bus arbitration cycles and indication of other
stall conditions. The extra information is preceded by double asterisks in the log file. Only
one of output history or output ehistory may be active.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-35

Simulator Commands
Command Summary
EXAMPLES

output x:$0 xfile -rd
Store values written to memory location x:0 in output file "xfile.io". The data values will be
stored in decimal.

output ssi0 ssi0file -a
Store values from the SSI0 peripheral to output file "ssi0file.io".
Append to the file if it already exists.

output a15..a0 afile
Store output values for address pins a15 through a0 to output file "afile.io".

output #2 t bg term
Output time and data pairs from the device BG pin to the terminal. Output assignment
number 2 is explicitly replaced by this command.

output #2 off
Output assignment number 2 is explicitly turned off by index number reference.

output spkp spfile -rf
Output untimed single precision floating point values for the analog pin spkp to the output
file "spfile.io".

output xdat1 xfile
Store values written to memory location associated with the symbolic label xdat1 to the
output file "xfile.io". The data values will be stored in the default hexadecimal radix.

output history hisfile
Store device execution history to output file "hisfile.io".

output ehistory hisfile
Store extended device execution history to output file "hisfile.io".
2-36 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.22 PATH: Specify Default Pathname

PATH [pathname]
PATH + pathname[,pathname,...]
PATH -

The path command defines the default pathname for storage of Simulator temporary files,
log files, macro command files, object files, and peripheral I/O files. If no pathname is
specified in the command line, the current default pathname is displayed. The user may
still override the default path by explicitly specifying a pathname as a prefix to the filename
in any of the commands which reference a file.

Alternate source pathnames may be specified using the "path +" form of the command.
Each time the command is issued, the specified pathname, or comma-separated list of
pathnames, is added the current list. When searching for files, the Simulator will search
first using the default pathname specified for the current device, then in each of the alter-
nate source pathnames, in the order that they were specified.

The third form of the command, "path -", deletes the entire list of alternate source path-
names.

EXAMPLES

path \sim
Define the default working directory for Simulator files as "\sim".

path \sim\day2
Define the default working directory for Simulator files as "\sim\day2".

path + ..\src
Add pathname "..\src" to the list of alternate source pathnames.

path + ..\src,..\src2
Add pathnames "..\src" and "..\src2" to the list of alternate source pathnames.

path -
Clear the list of alternate source pathnames.

path
Show the default working directory and help file directory for the current device, and the
list of alternate source pathnames.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-37

Simulator Commands
Command Summary
2.3.23 QUIT: Quit Simulator Session

QUIT [E(enable)/D(disable)]

The quit command passes control back to the operating system after closing all log files,
input and output files, and macro files.

quit enable and quit disable control the action taken by the Simulator if an error occurs
during the execution of a macro command. quit enable specifies that the macro command
is aborted and the Simulator quits immediately with a non-zero exit status. quit disable
specifies that the Simulator does not exit.

EXAMPLES

quit

Close all currently open files and return to the Operating System.

quit e

Specify that errors in a macro command will cause the Simulator to exit with a non-zero
status. The Simulator does not exit when this command is issued.
2-38 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.24 RADIX: Change Input or Display Radix

RADIX [B(binary)/D(dec)/F(float)/H(hex)/U(unsigned)] [reg[_block]/addr[_block]]...

The radix command allows the user to change the default number base for command en-
try or for display of registers and memory locations. Hexadecimal constants may always
be specified by preceding the constant by a dollar sign ($). Likewise, a decimal value may
be specified by preceding the constant with a grave accent (‘), and a binary value may be
specified by preceding the constant with a percent sign (%). The Simulator, by default,
uses decimal input radix and hexadecimal display radix when it is initially invoked. This
means that decimal constants may be entered without typing a preceding grave accent.
Changing the default input radix allows the user to enter constants in the chosen radix
without typing the radix specifiers before each constant.

Specifying a list of register and/or memory locations following the radix specifier will set
the display radix of the registers and memory. This does not affect the default input radix.

EXAMPLES

radix
Display the default input radix currently enabled.

radix h
Change default input radix to hexadecimal. Hexadecimal constant entries no longer re-
quire a preceding dollar sign, but any decimal constants will require a preceding grave ac-
cent.

radix f x:0..10 x0 y0 a b
Change the display radix for the specified registers and memory blocks to floating point.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-39

Simulator Commands
Command Summary
2.3.25 REDIRECT: Redirect stdin/stdout/stderr for C Programs

REDIRECT STDIN OFF/file
REDIRECT STDOUT/STDERR OFF/file [-A/-O/-C]
REDIRECT [OFF]

The redirect command is used to redirect the stdin/stdout/stderr for C programs. It allows
the user to redirect stdin from a file, and redirect stdout/stderr to files.

EXAMPLES

red irect
Display the redirect list, which shows each of the three streams that can be redirected,
along with where they are being redirected to.

red irect stdin input
Redirect the C stdin (standard input) stream from the file input.cio (.cio is the default ex-
tension).

red irect stdout output.txt
Redirect the C stdout (standard output) stream to the file output.txt.

red irect stderr errors
Redirect the C stderr (standard error) stream to the file errors.cio.

red irect stdout output -o
Redirect the C stdout stream to the file output.cio, overwriting the file if it already exists.

red irect stdout output -a
Redirect the C stdout stream to the file output.cio, appending to the end of the file if it al-
ready exists.

red irect stdout output -c
Redirect the C stdout stream to the file output.cio, but don’t redirect if the file already ex-
ists.

NOTE: No I/O processing or handling of redirection occurs if the streams option has been
disabled. See the help page for streams for more information.
2-40 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.26 RESET: Reset Device or State

RESET S(state)/D(device) [mode]

The reset command can be used to reset the device registers (D) or the entire Simulator
state (S). It can also be used to select the operating mode that the device will be set to in
response to a simulated hardware reset sequence. The mode parameter specifies the
DSP operating mode in the form Mn (n=decimal digit). See Chapter 8, Operating Modes
for a list of the device dependent valid operating modes.

EXAMPLES

reset d
Reset all device registers to the defined reset conditions.

reset d m0
Reset the device registers and select operating mode 0 as the default operating mode fol-
lowing subsequent hardware reset sequences.

reset s
Reset the entire Simulator state to the start-up condition. All breakpoints are cleared, the
memory is initialized, and all logging and I/O files are closed.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-41

Simulator Commands
Command Summary
2.3.27 SAVE: Save Simulator File

SAVE S(state)/addr[_block]... filename [-A/-O/-C]

The save command allows creation of a Simulator state file from the current Simulator
state, or creation of an object module format file or a COFF format file from specified mem-
ory blocks.

If S is specified as the second parameter, a Simulator state file is created. It contains the
entire simulation state, including memory contents, breakpoint settings, and the current
pointer position of any open files. This file is in an internal format that is efficient for the
Simulator to store and load (see the load s command description). The default suffix for
a Simulator state filename is ".sim".

If memory blocks are specified (instead of S), the specified memory areas are stored in
object format so the file can be reloaded with the Simulator load command. The default
object format is the OMF format described in Chapter 6. The suffix for an OMF file ".lod",
will be appended to the filename if no suffix is explicitly specified. If the COFF file suffix,
".cld", is specified explicitly in the filename, the memory contents will be stored in the DSP
COFF object file format. The Simulator does not store symbolic debug information in the
output COFF object file.

A keycharacter -A, -O, or -C may be specified to select append, overwrite, or cancel if the
filename already exists. As a default, the user will be prompted during command execu-
tion. Appending is not a valid option for state files.

EXAMPLES

save p:0..$ff x:0..$20 session1 -a
Save all three memory maps to OMF file "session1.lod".
If the file already exists, append to it.

save s lunchbrk
Save the Simulator state to filename "lunchbrk.sim".

save s lunchbrk.b -c
Save the Simulator state to filename "lunchbrk.b".
If the file already exists, cancel this command.
2-42 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.28 STEP: Step Through DSP Program

STEP [count] [CY(cycles)/LI(lines)/IN(instructions)] [H(halt at breakpoints)]

The step command allows the user to execute count instructions or clock cycles before
displaying the enabled registers and memory blocks. This command gives the user a
quick way to specify execution of a number of instructions without having to set a break-
point. It is similar to the trace command except that display occurs only after the count
number of cycles or instructions have occurred.

As the default, all breakpoints are ignored while the step command is executing. The h
option enables halting at breakpoints.

As the default, the command steps in instruction increments if viewing the assembly or
register screens, and in source line increments if viewing the source screen. The li and in
options permit source line or instruction increments to be specified explicitly.

EXAMPLES

step
Step one instruction or source line, depending on the display mode, and display the en-
abled registers and memory blocks.

step li
Step one source line, regardless of the display mode, and display the enabled registers
and memory blocks.

step $50
Execute hex 50 instructions or source lines, depending on the display mode, then stop
and display the enabled registers and memory blocks at the end of the hex 50th instruc-
tion.

step $50 in h
Execute hex 50 instructions, regardless of the display mode, then stop and display the en-
abled registers and memory blocks at the end of the hex 50th instruction. Halt if a break-
point is encountered during the execution.

step 20 cy
Execute 20 clock cycles and display the enabled registers and memory blocks at the end
of the 20th clock cycle.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-43

Simulator Commands
Command Summary
2.3.29 STREAMS: Enable/Disable Handling of I/O for C Programs

STREAMS [ENABLE/DISABLE]

The streams command is used to enable and disable the handling of input and output on
the host side for C programs. By default, it is enabled. When enabled all input and output
that is done in the C program running on the DSP is handled on the host side. So for ex-
ample, when an fopen() call is made in the C program running on the DSP call, the host
software intercepts the call and does the fopen() on the host side.

EXAMPLES

str eams e
Enable handling of C input/output. All input/output calls done in a C program running on
the DSP will be handled by the host software (e.g. fopen(), fwrite(), printf(), etc.).

str eams d
Disable handling of C input/output.
2-44 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.30 SYSTEM: Execute System Command

SYSTEM [-C(continue immediately)] [system_command [parameter_list]]

The system command allows the user to execute an operating system command in two
modes. If a system_command and optional parameter list are included in the command
line, the specified command is executed. The Simulator is re-entered immediately after
execution of the system command. If the command line does not contain a
system_command, then a mode is entered in which multiple system commands may be
entered. Return to the Simulator occurs when the user enters EXIT on the operating sys-
tem command line.

Operating System commands invoked from within the Simulator will not be logged to the
screen buffer for review.

When a system command is specified on the system command line, the user is prompted
to “Hit return to continue...” before control returns to the Simulator. This allows the user to
inspect the command output before it is destroyed.

The command argument “-C” (continue immediately) causes control to return to the Sim-
ulator without prompting the user. This may be useful in macro commands, allowing sys-
tem commands to be used without requiring operator intervention.

EXAMPLES

system dir
Execute the system "dir" command and immediately return to the Simulator.

system dir *.io
Execute the system "dir *.io" command

system
dir *.io
del he.io
exit
Leave the Simulator temporarily. Execute the system "dir *.io" and "del he.io" commands.
Return to the Simulator when the system "exit" command is executed.

system -c del e:\temp*.lod
Delete the specified temporary files and continue without issuing the continuation prompt.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-45

Simulator Commands
Command Summary
2.3.31 TRACE: Trace Through DSP Program

TRACE [count] [CY(cycles)/LI(lines)/IN(instructions)] [H(halt at breakpoints)]

The trace command gives a snap shot of the enabled registers and memory after each
instruction or clock cycle during program simulation. Execution terminates after count
number of cycles or instructions. The h parameter causes tracing to halt at breakpoints;
the default operation ignores breakpoints while tracing.

As the default, all breakpoints are ignored while the trace command is executing. The h
option enables halting at breakpoints.

As the default, the command traces in instruction increments if viewing the assembly or
register screens, and in source line increments if viewing the source screen. The li and in
options permit source line or instruction increments to be specified explicitly.

EXAMPLES

trace
Execute one instruction or source line, depending on the display mode, then stop and dis-
play the enabled registers and memory blocks.

trace li
Execute one source line, regardless of the display mode, then stop and display the en-
abled registers and memory blocks.

trace 20
Execute 20 instructions or source lines, depending on the display mode, and display the
enabled registers and memory blocks after each trace execution. Ignore breakpoints.

trace 20 in
Execute 20 instructions, regardless of the display mode, and display the enabled registers
and memory blocks after each instruction. Ignore breakpoints.

trace 20 h
Execute 20 instructions and display the enabled registers and memory blocks after each
instruction. Halt if a breakpoint is encountered.

trace 10 cy
Execute 10 clock cycles and display the enabled registers and memory blocks after each
clock cycle.
2-46 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.32 TYPE: Display the Result Type of C Expression

TYPE {c_expression}

The type command is used to display the result type of a C expression. If result of the
expression is a storage location (e.g. just a variable name, or an element of an array), it
will display the address of the storage location, in addition to its data type.

EXAMPLES

type {count}

Display the type and location of the variable count.

type {0.5+i}

Display the type of the given expression.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-47

Simulator Commands
Command Summary
2.3.33 UNLOCK: Unlock Password Protected Device Type

UNLOCK dev_type password

The unlock command provides password enabling for simulation of unannounced device
types. Once unlocked, the device type may be selected for simulation using the Simulator
device command.

EXAMPLE

un lock 56001 x51-234
Enable device type 56001 for simulation using the password x51-234.
2-48 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.34 UNTIL: Step Until Address

UNTIL addr [H(halt at breakpoints)]

The until command sets a temporary breakpoint at the specified line or address, then
steps until that breakpoint. It then clears the temporary breakpoint and displays the en-
abled registers and memory blocks in the same manner as the step command.

The addr parameter may be expressed as a line number in the program source file. Spec-
ification of a line number is valid only if the symbolic debug information has been loaded
from a COFF format .cld file. The debug information is generated using the assembler’s -
g option. Line numbers may be specified as filename@line_number for a line number in
a particular file or simply by line_number for line numbers in the currently displayed file.

As the default, all breakpoints are ignored while the until command is executing. The h
option enables halting at breakpoints.

EXAMPLES

until 20
Go until the instruction associated with line 20 in the current file is reached.

until p:$50
Go until the instruction at hexadecimal address p:50 is reached. Ignore breakpoints.

until p:$50 h
Go until the instruction at hexadecimal address p:50 is reached. Do not ignore break-
points.

until lab_2
Go until the instruction at label lab_2 is reached.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-49

Simulator Commands
Command Summary
2.3.35 UP: Move Up the C Function Call Stack

up [n]

The up command is used to move up the call stack. It can be used in conjunction with the
where, frame, and down commands to display and traverse the C function call stack.

After entering a new call stack frame using up , that call stack frame becomes the current
scope for evaluation. In other words, for C expressions, the evaluate command acts as
though this new frame is the proper place to start looking for variables.

EXAMPLES

up
Move up he call stack by one stack frame.

up 3
Move up the call stack by three stack frames.
2-50 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.36 VIEW: Select Display Mode

VIEW [A(assembly)/S(source)/R(register)]

The view command changes the Simulator display mode. There are three display modes:
assembly, source and register. See section 1.7 on page 1-5 for a description of the display
modes.

If the view command is entered with a parameter, the specified display mode is selected.
When no parameter is entered, the display mode cycles to the next display mode in the
order source - assembly - register. The same results can be obtained by typing ctrl-w.

EXAMPLES

view
Cycle to next display mode among source, assembly and register modes.

view s
Select source display mode.

view a
Select assembly display mode.

view r
Select register display mode.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-51

Simulator Commands
Command Summary
2.3.37 WAIT: Wait Specified Time

WAIT [count(seconds)]

The wait command pauses for count seconds or until the user types CTRL-C before con-
tinuing to the next command. If the wait command is entered without a count parameter,
the command will only terminate if the user types a key.
2-52 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.38 WASM: GUI Assembly window

WASM [OFF]

Wasm is a GUI command that opens an assembly window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

wasm

Open an assembly window for the current device.

wasm off

Close the assembly window for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-53

Simulator Commands
Command Summary
2.3.39 WATCH: Set, Modify, View, or Clear Watch Item

WATCH [#wn] [radix] reg/addr/expression/{c_expression}

WATCH [#wn] OFF

The watch command is used to add, modify, view, and clear watch items. Watch items are
on a watch list that gets displayed every time the user does a trace, or a breakpoint is hit.
Additionally, any time a user types watch without any parameters, the watch list is dis-
played.

EXAMPLES

watch r0

Add register r0 to the watch list.

watch x:0

Add x:0 to the watch list.

watch {(count+1)%total}

Add the given C expression to the watch list.

watch h {count/2}

Add the given C expression to the watch list, with display radix hex.

watch b {flag}

Add the given C variable to the watch list, with display radix binary.

watch r0+x:0

Add the expression r0+x:0 to the watch list.

watch

Display the watch list.

watch #3 off

Remove item number three from the watch list.

watch off

Remove all items from the watch list.
2-54 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.40 WBREAKPOINT: GUI Breakpoint window

WBREAKPOINT [OFF]

Wbreakpoint is a GUI command that opens a breakpoint window. Multiple device windows
may be opened for debugging simulations with multiple DSPs.

EXAMPLES

wb reakpoint

Open a breakpoint window for the current device.

wb reakpoint off

Close the breakpoint window for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-55

Simulator Commands
Command Summary
2.3.41 WCALLS: GUI C Calls Stack window

WCALLS [OFF]

Wcalls is a GUI command that opens a C call stack window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

wcalls

Open a C call stack window for the current device.

wcalls off

Close the C call stack window for the current device.
2-56 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.42 WCOMMAND: GUI Command window

WCOMMAND [OFF]

Wcommand is a GUI command that opens a command window. Multiple device windows
may be opened for debugging simulations with multiple DSPs.

EXAMPLES

wco mmand
Open a command window.

wco mmand off
Close the command window for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-57

Simulator Commands
Command Summary
2.3.43 WHERE: GUI C Calls Stack window

WHERE [[+/-]n]

Where is a GUI command that displays the C function Call Stack. Multiple device windows
may be opened for debugging target systems with multiple DSPs.

EXAMPLES

where
Display the call stack.

where 3
Display the three innermost frames in the call stack.

where -5
Display the five outermost frames in the call stack.
2-58 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.44 WINPUT: GUI File Input window

WINPUT [OFF]

Winput is a GUI command that opens an input window. Multiple device windows may be
opened for debugging simulations with multiple DSPs.

EXAMPLES

winput
Open an input window for the current device.

winput off
Close the input window for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-59

Simulator Commands
Command Summary
2.3.45 WLIST: GUI list window

WLIST [OFF]

Wlist is a GUI command that opens a list window. Multiple device windows may be
opened for debugging simulations with multiple DSPs.

EXAMPLES

wl ist lfile.1st
Open a list window with the text file lfile.1st displayed.

wl ist win2 lfile.1st
Open a list window with a window number of 2 with text lfile.txt displayed. If list window 2
already exists, replace the contents with lfile.1st.

wl ist win2 off
Close list window number 2.

wl ist off
Close all open list windows.

wl ist win3
Open a list window with a window number of 3 with no text file displayed.
2-60 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.46 WMEMORY: GUI Memory window

WMEMORY [OFF]

Wmemory is a GUI command that opens a memory window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

wmemory pi
Open a memory window for the internal program (pi) memory space for the current device.

wmemory xi 0
Open a memory window for the xi memory space containing address 0 for the current de-
vice.

wmemory win3 x
Open a memory window for memory space x with a window number of 3 for the current
device.

wmemory off
Close all memory windows for the current device.

wmemory win3 off
Close memory window 3 for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-61

Simulator Commands
Command Summary
2.3.47 WOUTPUT: GUI File Output window

WOUTPUT [OFF]

Woutput is a GUI command that opens a file output window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

woutput
Open an output window for the current device.

woutput off
Close the output window for the current device.
2-62 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.48 WREGISTER: GUI Register window

WREGISTER [win_num] [OFF]

Wregister is a GUI command that opens a register window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

wregister
Open a register window for the current device.

wregister win3
Open a register window with a window number of 3 for the current device.

wregister off
Close all register windows for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-63

Simulator Commands
Command Summary
2.3.49 WSESSION: GUI session window

WSESSION [OFF]

Wsession is a GUI command that opens a session window. Multiple device windows may
be opened for debugging simulations with multiple DSPs.

EXAMPLES

wsession
Open a session window for the current device.

wsession off
Close the session window.
2-64 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.50 WSOURCE: GUI Source window

WSOURCE [OFF]

Wsource is a GUI command that opens a source code window. Multiple device windows
may be opened for debugging simulations with multiple DSPs.

EXAMPLES

wsource
Open a source window for the current device.

wsource off
Close the source windows for the current device.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-65

Simulator Commands
Command Summary
2.3.51 WSTACK: GUI Stack window

WSTACK [OFF]

Wstack is a GUI command that opens a device stack window. Multiple device windows
may be opened for debugging simulations with multiple DSPs.

EXAMPLES

wst ack
Open a stack window for the current device.

wst ack off
Close the stack window for the current device.
2-66 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Command Summary
2.3.52 WWATCH: GUI watch window

WWATCH [win_num] [#n] [OFF]

Wwatch is a GUI command that opens a watch window. Multiple device windows may be
opened for debugging simulations with multiple DSPs.

EXAMPLES

wwatch r0

Open a watch window for the current device with the register r0 displayed. If the window
already exists, add r0 to the list of watched items.

wwatch x:$100
Open a watch window for the current device with the memory location x:$100 displayed.
If the window already exists, add x:$100 to the list of watched items.

wwatch r2+3
Open a watch window for the current device with the expression r2+3 displayed. If the win-
dow already exists, add r2+3 to the list of watched items.

wwatch win2 r0
Open a watch window for the current device with a window number of 2 with the register
r0 displayed. If the window already exists, add r0 to the list of watched items.

wwatch off
Close all watch windows for the current device.

wwatch win3 off
Close watch window 3 for the current device.

wwatch #2 off
Remove watch element #2 from first watch window’s list of watched elements.

wwatch win4 @2 off
Remove watch element #2 from watch window 4’s list of watched elements.
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-67

Simulator Commands
Debugging C Programs
2.4 DEBUGGING C PROGRAMS

The Simulator software is capable of loading programs compiled with the Motorola Opti-
mizing C Compiler, and also has features which aid in the process of debugging such pro-
grams. This section provides background information on what features are available, and
gives examples of the commands that implement these features. The main thrust of this
section is the tutorials at the end, which give practical examples of how the debugging fea-
tures might be used. No special mode needs to be entered to debug C programs, and all
of the familiar Simulator capabilities are available while debugging C programs.

2.4.1 C Debug Features

The features available for debugging C programs include:

• Step line by line through C programs.
• Examine and change the value of C variables.
• Evaluate complex C expressions, including the ability to call C

functions from the command line.
• Set breakpoints based on C expressions.
• Add C variables and expressions to a watch list.
• Examine and traverse the C function call stack, examining local

variables and parameters at each level of the stack.
• Redirect C input and output.
• Determine the type and location of a C variable.

2.4.2 C Expressions

C expressions may be used as arguments to the break , evaluate , type , and watch com-
mands. Expressions must be surrounded by the left and right curly braces ({ and }). This
is so that expressions can have spaces in them yet will still be considered a single param-
eter to a command. Any valid C expression can be used between the braces, with the ex-
ception of expressions that contain things mentioned in the following section on
restrictions. For information on what makes up a valid C expression, consult a manual on
the C programming language.

In addition to supporting basic C expressions, a new operator (#) has been added. This
new operator is used to “create” an array from a pointer or another array. The syntax of
the operator is:

name#size

where “name” is the name of a pointer or array in the C program, and “size” is a constant
integer greater than zero indicating what size array to make. So for instance, if “vals” is a
pointer to a group of integers, “vals#10” is an array of the first 10 integers. This can be
useful for display purposes. This operator can be used to make single dimensional arrays
only. Attempting something like “(name#size1)#size2” will make a one dimensional array
with “size2” elements.

One final addition to C expressions is the ability to use DSP registers in expressions by
2-68 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Simulator Commands
Debugging C Programs
prefixing them with a dollar sign ($) in the C expression. For registers that are greater than
the size of a “long” variable, the upper bits are truncated. So for example, if “$a” were
specified in the 56000 software, only the lower 48 bits of register A would be used.
PLEASE NOTE: The $ in non-C_expression evaluation is used to designate a hexadeci-
mal value.

2.4.3 Restrictions

To improve usability, an effort has been made to have the fewest possible restrictions, and
although some remain, they are very reasonable. The first restriction is that string literals
are not supported in expressions. This would have required allocating some portion of the
DSP memory for debugging purposes, possibly interfering with the user’s code. The other
restriction is on type casts. Only forms of type casting such as the following are allowed:

(type)

(type *)

(enum enumeration_tag)

([struct|union|enum] structure/union/enumeration_tag *)

In these examples, “type” includes both basic C types, and types that were defined with
typedef in the C program.

2.4.4 Compiling a Program for Debugging

To use the C debugging features included in the User Interface program, the C program
being loaded into the DSP must have been compiled using the “compile with debugging
information” flag available in the Compiler. For the Motorola Optimizing C Compilers, this
flag is “-g”. By default the Motorola Optimizing C Compilers compile programs with opti-
mization turned on. This will not be affected by compiling with debugging turned on. Since
optimization can change the order in which portions of programs execute, along with elim-
inating variables, placing variables into registers, etc., you may experience strange be-
havior when debugging programs that have been optimized. When compiling with the “-
alo ” flag, this strange behavior might be considerably more noticeable. If this is the case,
compile with the “-fno-opt ” flag, which disables optimization.

2.4.5 C Debugging Commands

Certain commands (where, up, down, frame, streams, redirect, and type) exist specifically
for debugging C programs, while other commands (break, evaluate, finish, go, next, step,
trace, until and watch) are useful in debugging C programs, but are also used in assembly
language debugging.

To eliminate duplicated functionality, the evaluate command is used in C debugging as
the change, display, and evaluate commands would be used in assembly language de-
bugging. For instance, to display a C variable, evaluate that variable. To change the value
of a C variable, evaluate an expression that has an assignment to that variable. Evaluate
is used just as it would be for an assembly language expression to evaluate and display
MOTOROLA DSP SIMULATOR REFERENCE MANUAL 2-69

Simulator Commands
Debugging C Programs
the result of a C expression. In addition to the result, the type of the result is displayed.
For example when evaluating an expression that involves long integer variables, the result
type displayed would be “long.”
2-70 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 3-1

Chapter 3
DEVICE I/O AND PERIPHERAL SIMULATION

3.1 INTRODUCTION

The DSP on-chip peripherals are simulated on a cycle by cycle basis by the SIMDSP pro-
gram. The Simulator input and output commands provide a method of assigning file or
terminal I/O to each peripheral, as well as to individual memory locations and individual
or groups of device pins. This chapter describes the file formats used by the input and
output commands.

3.2 I/O FILE CONTENTS

All file information is represented in ASCII, so the I/O files can be conveniently edited or
printed. The file may contain repeat punctuation, comments, timing information, peripher-
al data, pin data, or memory data.

3.2.1 I/O File Repeat Punctuation

The Simulator provides a way to specify repeated input or output data values and se-
quences. A single data value can be repeated by specifying #count following the data
item. A group of data items can be indicated by enclosing the group in parentheses. The
entire group can then be repeated by placing #count immediately following the closing
parenthesis. The parentheses can be nested. A closing parenthesis without a following
repeat count will cause the data sequence within the parentheses to repeat forever.

Timed values can appear within a repeat group, but in this case, the relative time mode
(+time) should be used.

EXAMPLES

1FF#20
Repeat the untimed data item 1FF twenty times.

(+5 CC +10 33)#5
Repeat the sequence of timed data pairs +5 CC +10 33 five times.

(CC354 CC333 C7000)
Repeat the untimed data sequence CC354 CC333 C7000 forever.

Device I/O and Peripheral Simulation
I/O File Contents

3-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

(1#5 0#5)
Repeat the untimed data sequence 1 1 1 1 1 0 0 0 0 0 forever.

3.2.2 I/O COMMENT

Any information following a semicolon and up to the end-of-line is considered to be a user
comment and is not interpreted as input data or timing.

EXAMPLE

FFC 333 972 ;next three p memory data words

The first three data values are applied to the device. The information following the semi-
colon is a user comment.

3.2.3 I/O File Timing Information

If the T keycharacter is specified in the input or output command, then the assigned file
will contain cycle timing information preceding each piece of I/O data. The timing informa-
tion relates to the Simulator cycle counter value (cyc register) at the time when the data
transfer occurs. The timing information is always expressed in decimal. If the timing infor-
mation is preceded by a plus sign (+), it indicates a relative number of cycles from the pre-
ceding specified timing value; otherwise it indicates the exact value of the Simulator cyc
register at the time of the transfer.

Device I/O and Peripheral Simulation
I/O File Contents

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 3-3

3.2.4 I/O File Peripheral Data

Each DSP peripheral can have an assigned input or output file. General information that
applies to all peripheral files appears below. For more information concerning a specific
DSP peripheral see Chapter 8, Peripheral I/O.

The peripheral data value can be represented in hexadecimal, decimal, binary or floating
point. The default input radix can be specified in the input command; the output radix can
be specified by the output command.

Floating point input can be expressed in the usual methods. For example, 0.5, 5e-1, and
5.0E-1 are all acceptable data input values. If a data value contains a decimal point, the
data will be input as a floating point value, overriding the input radix specification. Like-
wise, a data value preceded by $ will always be input as hexadecimal, a value preceded
by ‘ will always be input as decimal, and a data value preceded by % will be input in binary.

Untimed peripheral input data values will be applied only during cycles when the periph-
eral function is enabled. Some peripherals retrieve data from the input file when the pe-
ripheral would normally receive new data; other peripherals retrieve the data each cycle.
See Chapter 8, Peripheral I/O for specific peripheral information. The final specified data
value will remain applied to the peripheral indefinitely. The repeat punctuation and repeat
count can be used to specify durations of longer than one cycle.

Timed peripheral input data values will be applied to the peripheral at the time intervals,
or at the exact Simulator cycles indicated by the timing information within the file. If the
first timing information in the file is a relative value, (timing preceded by +) the Simulator
will wait until the peripheral function is enabled before applying the data.

If a lower case letter t is placed in a data position of the input file, the user will be prompted
for the next input data value as described in Section 3.2.8.

Storage of data to the peripheral output file will begin when the peripheral is enabled. In
the timed output mode, the Simulator cycle count and a data value are stored each time
the peripheral output changes. In the untimed output mode, a data value and a following
repeat count are stored each time the data changes.

Device I/O and Peripheral Simulation
I/O File Contents

3-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

3.2.5 I/O File Port Data

When assigned to a DSP port, the input file data value represents the value applied to all
the pins of the port. The least significant port bit maps to the least significant bit of the data
value. General information that applies to all port files appears below. For more informa-
tion concerning a specific DSP port see Chapter 8, Peripheral I/O.

A port is simply some convenient grouping of device pins. Untimed data applied to a port
is retrieved each clock cycle, with one exception: the data bus ports retrieve new data
from an assigned input file only once for each memory fetch. See Chapter 8, Peripheral I/
O for information on a specific ports.

The port data value can be represented in hexadecimal, decimal, binary or floating point.
The default input radix can be specified in the input command; the output radix can be
specified by the output command.

 Floating point input can be expressed in the usual methods. For example, 0.5, 5e-1, and
5.0E-1 are all acceptable data input values. If a data value contains a decimal point, the
data will be input as a floating point value, overriding the input radix specification. Like-
wise, a data value preceded by $ will always be input as hexadecimal, a value preceded
by ‘ will always be input as decimal, and a data value preceded by % will be input in binary.

Timed port input data values are applied to the port at the specified relative time intervals
(+time), or at the exact Simulator cycle indicated by the timing information within the file.

If a lower case letter t is placed in a data position of the input file, the user will be prompted
for the next input data value as described in Section 3.2.8.

Storage of data to a port output file will occur any time a write operation occurs to the port.
In the timed output mode, the Simulator cycle count and a data value are stored each time
a word is written. In the untimed output mode, a single data value is stored each time a
word is written. No tristate information is stored in the port output data.

Device I/O and Peripheral Simulation
I/O File Contents

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 3-5

3.2.6 I/O File Memory Data

When assigned to a memory location, the input file data value supplies the value that is
read when the Simulator references that memory location. The least significant memory
bit maps to the least significant bit of the data value.

The input data value can be in decimal, binary, hexadecimal, or floating point form. The
Simulator will interpret the data based on the input radix specified in the input command.
The default input radix is hexadecimal. If a data value contains a decimal point, the data
will be input as a floating point value, overriding the input radix specification. Likewise, a
data value preceded by $ will always be input as hexadecimal, a value preceded by ‘ will
always be input as decimal, and a data value preceded by % will be input in binary.

Untimed memory input data values will be applied each time the device performs a read
operation on the memory location. In other words, the input file acts like a stack of input
data; each successive data value is retrieved from the "stack" file when a read operation
occurs.

Timed input data values are applied to the memory location at the specified relative time
intervals (+time), or at the exact Simulator cycle indicated by the timing information within
the file. If the first timing information in the file is a relative value (+time) the Simulator will
wait until the first read of that memory location before getting the first data value. Other-
wise the data application occurs at the exact specified cycle.

If a lower case letter t is placed in a data position of the input file, the user will be prompted
for the next input data value as described in Section 3.2.8.

Storage of data to a memory output file will occur any time a write operation occurs to the
memory location. In the timed output mode, the Simulator cycle count and a data value
are stored each time a word is written. In the untimed output mode, a single data value is
stored each time a word is written.

The output data value can be in decimal, binary, hexadecimal, floating point or string form.
The output radix is specified in the output command. The default output radix is hexadec-
imal. The string form of output data uses the value written to the memory location as the
starting address in the same memory space of a zero terminated ASCII character string.
The character string is written to the output file.

EXAMPLES

The following untimed memory input file will cause the data sequence 7FFF 7F3F 5D3C
7FC3 to appear during consecutive reads of the specified memory location.
7FFF 7F3F 5D3C 7FC3

The following untimed memory input file will cause the data sequence 1FF 0 to appear
repeatedly during consecutive reads of the specified memory location.
(1FF 0)

Device I/O and Peripheral Simulation
I/O File Contents

3-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

The following timed memory input file will cause the data sequence 0.5 0.3 to alternate in
the specified memory location 10 cycle intervals.
(+10 0.5 +10 0.3)

The following timed memory input file will cause 1C3 to appear in the specified memory
location at cycle 2000, and 1CF to appear at cycle 2005.
2000 1C3 2005 1CF

Device I/O and Peripheral Simulation
I/O File Contents

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 3-7

3.2.7 I/O File Pin or Pin Group Data

When assigned to a pin or pin group, the input file data value supplies the zero (0 or L),
one (1 or H), a negative pulse within a single cycle(N), a positive pulse within a single cy-
cle(P), or a tristate (X) value to be applied to the pin or to each pin in the group, with the
first specified pin mapping to the least significant bit of the data value. Each data word
must contain as many characters (0, 1, L, H, N, P, or X) as there are pins in the group.

If an analog input file is assigned to a device analog pin, the input command must specify
the floating point radix with the -rf radix designator in the input command. Likewise, an
analog output pin file must be specified with the -rf radix designator in order to generate
floating point output for the pin rather than the digital pin values described in the preceding
paragraph. Floating point io files may only be assigned to a single analog pin.

Untimed pin input data values will be applied to the specified pin each Simulator clock cy-
cle.

Timed pin input data values will be applied to the specified pin at the specified relative time
intervals (+time), or at the exact Simulator cycle indicated by the timing information within
the file.

If a lower case letter t is placed in a data position of the input file, the user will be prompted
for the next input data value as described in Section 3.2.8.

Storage of pin data to an output file will occur any time the pins data value changes, in-
cluding changes to tristate, 1, 0, H or L. In the timed output mode, the Simulator cycle
count and a data value are stored each time a word is written. In the untimed output mode,
a single data value is stored each time a word is written.

The Simulator also provides a special mode that allows pin data input to be received from
the output of another pin without the necessity of an intermediate disk file.

EXAMPLES

The following untimed Reset pin input file will cause the Reset pin to go low for two cycles,
then back high.
0 0 1

The following timed IRQA pin input will cause the IRQA pin to go low at cycle 12000, then
back high at cycle 12010.
12000 0 12010 1

The following timed IRQB pin input will cause the IRQB pin to go low after 200 cycles and
stay low for 20 cycles. The sequence is repeated 9 times.
(+200 0 +20 1)#9

Device I/O and Peripheral Simulation
I/O File Contents

3-8 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

3.2.8 Terminal Input of Data Values

There are two levels of terminal data input capability provided by the Simulator. If the in-
put command specifies term as the input filename, the Simulator enters an editor which
allows creation of an input data file without leaving the Simulator. The data file is given a
temporary name, termxxxx.io or termxxxx.tio (xxxx=0000-9999), and is saved on the
disk at the termination of the input command. The entire contents of the input file may be
specified in this manner, including any of the valid fields specified in Chapter 3.

A second level of terminal data input allows the user to be prompted any time the next
input data value is needed. This method is triggered if the lower case letter t is encoun-
tered in the data field of the input file. This is only valid for the data field, not for the time
field. Each time a t is encountered, the user will be prompted for a single data value from
the terminal. The Simulator will read the input data using the radix specified in the input
command. Hexadecimal is the default input radix. If the user just types the return key at
the prompt, without entering a data value, the previous data value will be repeated. If the
user types the esc key at the prompt, an end-of-file status will be simulated and the pre-
vious data value will repeat forever.

EXAMPLES

The following untimed IRQA pin input file will prompt the user for a new input value every
45 clock cycles.
(t#45)

The following untimed memory file input data will prompt the user for the third and fifth val-
ues that are read from the specified memory location.
ffcc c1000 t ab12 t 6444

The following timed port input file will prompt the user for port input data at cycle 566 and
800 after alternating the input data sequence 5555 3333 three times at ten cycle intervals.
(+10 5555 +10 3333)#3 566 t 800 t

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 4-1

Chapter 4
SIMULATOR MEMORY CONFIGURATION

4.1 INTRODUCTION

Simulation of a specific DSP device configuration can be selected using the DEVICE com-
mand. The internal memory attributes are determined by the selected device configura-
tion. External memory accesses are also determined by the device configuration, but the
effects of writing external RAM, ROM or peripherals can be totally controlled by the user.
The Simulator package provides total flexibility for the user to define external memory re-
sponses by supplying the C language source code for the external memory functions. The
source code used as a default is contained in the file simvmem.c . The external memory
access function requirements are described fully in Chapter 7.

4.2 SIMULATOR DEFAULT MEMORY CONFIGURATION

The Simulator will contain the predefined memory map of the default device type as the
default memory configuration. The DSP can be configured to exit its reset state in a pre-
defined operating mode. Once the Simulator is active the operating mode can be changed
under program control by changing the value of the device Operating Mode Register
(OMR). When the Simulator is invoked, the mode pins will be configured for the default
operating mode (See Chapter 8, Operating Modes). The operating mode that the device
simulates following a simulated hardware reset can be selected using the Simulator RE-
SET command.

The full external memory map of the device is, by default, RAM memory. The large exter-
nal memory space is simulated using a virtual memory technique which automatically
pages memory blocks to disk if the operating environment fails to allocate the required
space in memory.

The on-chip bootstrap and data ROM areas can be modified using the Simulator
CHANGE or ASM commands. The bootstrap ROM is specified by using PR: as the mem-
ory space designator. For example, ASM PR:0 will begin assembly in the bootstrap ROM
at location 0. The data ROMs can be specified by XR: or YR:. Loading an assembler out-
put file with the Simulator load can also modify the bootstrap ROM or data ROM areas.
The ROM areas can be reinitialized using the Simulator RESET S command.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 5-1

Chapter 5
EXPRESSIONS

5.1 INTRODUCTION

The Simulator allows an expression to be used in most places where a constant is valid.
For example, an expression can take the place of the start and stop location in the spec-
ification of an address range. An expression is a combination of symbols, constants, op-
erators, and parentheses. Expressions follow the conventional rules of algebra and bool-
ean arithmetic.

Expressions may contain any combination of integers, floating point numbers, memory
space symbols and register symbols.

5.2 MEMORY SPACE SYMBOLS

The Simulator evaluator interprets a memory space symbol followed by an expression as
the contents of a memory location. Use the Simulator’s "help mem" command to obtain a
list of the valid memory space prefixes and their corresponding address ranges. The fol-
lowing expression is converted to an integer constant in the address range of the DSP.
Some memory space symbols, such as p: or x: , require the evaluator to first read the de-
vice Operating Mode Register (OMR). Others, such as xi: or pr: , refer to an exact memory
location regardless of the chip operating mode.

5.3 REGISTER NAME SYMBOLS

The Simulator evaluator interprets a register symbol as the contents of that register. A list
of valid register names can be obtained using the Simulator "help reg" command.

NOTE: Some hexadecimal constants, such as a0 or d1, may also be valid register names
for the selected DSP. It is necessary to precede such hexadecimal constants by a dollar
sign ($) to distinguish them from registers of the same name.

Expressions
Assembler Debug Symbols

5-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

5.4 ASSEMBLER DEBUG SYMBOLS

The Simulator load command processes the symbol and line number information present
in a COFF format object file (.cld file) which has been generated with the assembler’s -g
option. If symbol information has been loaded, the evaluator will accept symbol names or
source file line numbers and translate them into an associated memory address.

In general a symbol name may be referenced in the Simulator just as it was defined in the
original source file, except that symbol names which conflict with a Simulator register
name must be preceded by the @ character. A symbol name may be further delimited by
specifying a containing section name in the form section_name@symbol_name, with the
@ character being used as the separator. The section name global may be used for the
global section. If a symbol is specified without a preceding section name, the evaluator
assumes the section containing the current pc.

Line numbers may be expressed simply as a decimal integer preceded by the @ charac-
ter when referring to a line in the current source file. If an address field is being specified
in a command, the line number’s preceding @ character may be omitted. A line number
in a particular source file may be expressed in the form source_filename@line_number.

Below are valid forms of symbol names and line numbers:

symbol_name - translates to the address associated with symbol_name

Example: change pc lab_d

@symbol_name - translates to the address associated with symbol_name

Example: disassemble @start_1

section_name@symbol_name - translates to the address associated with
symbol_name in section section_name

Example: display sec3@xdata

@section_name@symbol_name - translates to the address associated with
symbol_name in section section_name

Example: display @sec3@xdata

line_number - translates to the address associated with line_number in the cur-
rent source file.

Example: break 30

Expressions
Assembler Debug Symbols

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 5-3

@line_number - translates to the address associated with line_number in the cur-
rent source file.

Example: change pc @30

source_filename@line_number - translates to the address associated with
line_number in the named source file.

Example: change pc test.asm@30

@source_filename@line_number - translates to the address associated with
line_number in the named source file.

Example: change pc @test.asm@30

source_filename - translates to the address associated with the first line in the
named source file.

Example: list test.asm

@source_filename - translates to the address associated with the first line in the
named source file.

Example: list @test.asm

Expressions
Constants

5-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

5.5 CONSTANTS

Constants represent quantities of data that do not vary in value during the execution of a
program.

5.5.1 Numeric Constants

The numeric constants can be in one of three bases:

Binary - Binary constants consist of a percent sign (%) followed by a string of bi-
nary digits (0,1).

Example: %11010

Hexadecimal - Hexadecimal constants consist of a dollar sign ($) followed by a
string of hexadecimal digits (0-9,A-F or a-f).

Example: $12FF, $12ff

Decimal - Decimal constants can be either floating point or integer. Integer decimal
constants consist of a string of decimal (0-9) digits. Floating point constants are in-
dicated either by a preceding, following, or included decimal point or by the pres-
ence of an upper or lower case ’E’ followed by the exponent. The special constants
inf and nan can be used in floating point expressions to represent the IEEE floating
point values of infinity and not-a-number for DSP devices which operate with IEEE
floating point values.

Example: 12345(integer)
6E10(floating point)
.6(floating point)
2.7e2(floating point)

A constant can be written without a leading radix indicator if the input radix is changed us-
ing the RADIX directive. For example, a hexadecimal constant can be written without the
leading dollar sign ($) if the input radix is set to hex . The default input radix is decimal.
See the RADIX directive for more information.

Expressions
Operators

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 5-5

5.6 OPERATORS

Some of the Evaluator operators can be used with both floating point and integer values.
If one of the operands of the operator has a floating point value and the other has an in-
teger value, the integer will be converted to a floating point value before the operator is
applied and the result will be floating point. If both operands of the operator are integers,
the result will be an integer value. Similarly, if both the operands are floating point, the re-
sult will be a floating point value.

Operators recognized by the Assembler include the following:

5.6.1 Unary operators:

minus (-)
negate (~) - Integer only

logical negate (!) - Integer only

The unary negate operator will return the one’s complement of the following operand.

The unary logical negation operator will return an integer 1 if the operand following it is 0
and will return a 0 otherwise. The operand must have an integer value.

5.6.2 Arithmetic operators:

addition (+)
subtraction (-)
multiplication (*)
division (/)
mod (%)

The divide operator applied to integer numbers produces a truncated integer result.

The mod operator applied to integers will yield the remainder from the division of the first
expression by the second. If the mod operator is used with floating point operands, the
mod operator will apply the following rules:

Y % Z = Y if Z = 0
= X if Z <> 0

where X has the same sign as Y, is less than Z, and satisfies the relationship:

Y = i * Z + X

where i is an integer.

Expressions
Operators

5-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

5.6.3 Bitwise operators (binary):

AND (&) - Integer only
inclusive OR (|) - Integer only
exclusive OR (^) - Integer only

Bitwise operators cannot be applied to floating point operands.

5.6.4 Shift operators (binary):

shift right (>>) - Integer only
shift left (<<) - Integer only

The shift right operator causes the left operand to be shifted to the right (and zero-filled)
by the number of bits specified by the right operand.

The shift left operator causes the left operand to be shifted to the left by the number of bits
specified by the right operand. The sign bit will be replicated.

Shift operators cannot be applied to floating point operands.

5.6.5 Relational operators:

less than (<)
greater than (>)
equal (==) or (=)
less than or equal (<=)
greater than or equal (>=)
not equal (!=)

Relational operators all work the same way. If the indicated condition is true, the result of
the expression is an integer 1. If it is false, the result of the expression is an integer 0. For
example, if D has a value of 3 and E has a value of 5, then the result of the expression
D<E is 1, and the result of the expression D>E is 0. Each operand of the conditional op-
erators can be either floating point or integer. Test for equality involving floating point val-
ues should be used with caution, since rounding error could cause unexpected results.

Relational operators are primarily intended for use with the Simulator BREAK command.

Expressions
Operator Precedence

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 5-7

5.6.6 Logical operators:

Logical AND (&&)
Logical OR (||)

The logical AND operator returns an integer 1 if both of its operands are non-zero; other-
wise, it returns an integer 0.

The logical OR operator returns an integer 1 if either of its operands is non-zero; otherwise
it returns an integer 0.

The types of the operands may be either integer or floating point.

Logical operators are primarily intended for use with the Simulator BREAK command.

5.7 OPERATOR PRECEDENCE

Expressions are evaluated with the following operator precedence:

1. parenthetical expression (innermost first)
2. unary minus, unary negate, unary logical negation
3. multiplication, division, mod
4. addition, subtraction
5. shift
6. less than, greater than, less or equal, greater or equal
7. equal, not equal
8. bitwise AND
9. bitwise EOR
10. bitwise OR
11. logical AND
12. logical OR

Operators of the same precedence are evaluated left to right. All integer results (including
intermediate) of expression evaluation are 32-bit, truncated integers. Valid operands in-
clude numeric constants, memory addresses, or register symbols. The logical, bitwise,
unary negate, unary logical negation and shift operators cannot be applied to floating point
operands. That is, if the evaluation of an expression (after operator precedence has been
applied) results in a floating point number on either side of any of these operators, an error
will be generated.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 6-1

Chapter 6
DSP OBJECT MODULE FORMAT

6.1 INTRODUCTION

The DSP COFF object module format, which is produced by the DSP Macro Cross-As-
semblers beginning with release 4.0, is described in full in the assembler reference man-
ual. The COFF format object files can also be produced using the Simulator save com-
mand by specifying the ".cld" suffix for the output file. The ASCII object module format
(OMF) produced by the Simulator save command and by versions of the DSP Assembler
prior to release 4.0 is also referred to as the ".lod" format in reference to the default ".lod"
suffix of the filename. The remainder of this chapter describes the ".lod" format object
files.

The ".lod" OMF is an ASCII file consisting of variable-length text records. Records may be
defined with a fixed number of fields or contain repeating instances of a given field (such
as instructions or data). Fields within the records are separated by whitespace characters
(blank, tab, form feed, newline). The general format for a DSP OMF record is illustrated
below ("ws" is whitespace).

_<TYPE><ws><field1><ws><field2><ws>...<fieldn>

Every record starts with a type definition field; this field begins with an underscore (_)
character. For records with repeating fields, the underscore character indicates where
one record ends and another begins. A scanning program would examine the first char-
acter of each field looking for the underscore character. If found, the program would know
it had encountered a new record and would use the remainder of the field to determine
the record type. The type definition may be upper or lower case, although the assembler
guarantees upper case output.

The only exception to this processing is when a comment occurs in the object file as a
result of an IDENT or COBJ assembler directive. Comments in the object file are brack-
eted by newline characters and thus appear on a line by themselves. Since the location
of comment fields in an OMF record is well defined, scanning software need only look for
an opening and closing newline sequence to determine the bounds of a comment.

The assembler will fill lines in the object file to a maximum of 80 characters, using the min-
imum white space (one blank or newline) to delimit fields. Records with repeating fields
may be of arbitrary length.

DSP Object Module Format
Record Definitions

6-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

6.2 RECORD DEFINITIONS

There are six DSP OMF record types defined. The record types are START, END, DATA,
BLOCKDATA, SYMBOL, and COMMENT; currently DATA records are used for both code
and data.

Start Record

Format: _START <Module id> <Version> <Rev #> <Device #> <Asm Version>
<Comment>

The START record begins an assembler object module file. The information contained in
the record corresponds to the parameters in the first valid IDENT directive encountered in
the assembler input. If no IDENT directive is given, the assembler uses the input file name
(without extension) as the module name, supplying zero for version and revision numbers
and an empty comment field (which appears as a blank line in the object file).

The module id field conforms to the definition of a legal assembler symbol, that being a
series of up to eight ASCII characters starting with an alphabetic character and followed
by alphanumeric characters or the underscore (_). The version and revision numbers are
ASCII numeric values corresponding to the expressions found in the IDENT directive. The
device number and assembler version fields indicate the target device number and the
version number of the assembler that created the object module.

End Record

Format: _END <Entry point address>

The END record terminates an object module file. The only field in the record contains an
address which is the result of the expression in an END directive. If no END directive was
encountered in the assembler source, the address is the result of the expression found in
the first valid ORG assembler directive with a reference to runtime program memory
space (P). The address is in ASCII hex format; it contains only the hex digits 0-F, with no
special radix characters such as a leading ’0X’ or trailing ’H’. Use the Simulator’s "help
mem" command to obtain a list of the valid memory space prefixes and the address range
for each memory space.

Data Record

Format: _DATA <Memory space> <Address> <Code/data> ...

The DATA record is used to load values based on the specifier in the memory space field.
The space specifier consists of one to three characters representing the memory space
to be loaded. Use the Simulator’s "help mem" command to obtain a list of the valid mem-
ory space prefixes.

DSP Object Module Format
Record Definitions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 6-3

The characters may be upper or lower case, although the assembler guarantees upper
case output. The address is an ASCII hex value indicating where to begin loading in the
specified memory space. It contains only hex digits 0-F, with no leading or trailing radix
characters.

A variable number of ASCII hex values to load follows the starting address. These values
are in the same format as the load address, that being hex digits only with no radix indi-
cator. The list ends when a field is read with an underscore in the first character position,
signaling the start of a new record.

In the case of DATA records with an L space memory specifier, the data values will be
paired high:low such that the first data value in the pair will be loaded into the X memory
space and the second data value will be loaded into Y memory space.

BlockData Record

Format: _BLOCKDATA <Mem space> <Addr> <Count> <Value>

The BLOCKDATA record provides a shorthand method for loading repeated data values,
as might appear in a block constant storage (BSC) assembler directive. This makes the
object file more compact, but requires more work on the part of the loading software.

The space specifier consists of one to three characters representing the memory space
to be loaded. Use the Simulator’s "help mem" command to obtain a list of the valid mem-
ory space prefixes.

The characters may be upper or lower case, although the assembler guarantees upper
case output. The address is an ASCII hex value indicating where to begin loading in the
specified memory space. It contains only hex digits 0-F, with no leading or trailing radix
characters.

The count field specifies the number of times the following value is to be loaded into con-
secutive memory locations starting at the load address. The count value has the same for-
mat and range as the starting address, and should be interpreted as an unsigned integer.
The value field contains the value to be loaded. It has the same format and range as the
values in a standard DATA record (hex digits 0-F).

Symbol Record

Format: _SYMBOL <Mem space> < <Symbol> <Address> > ...

The SYMBOL record contains information about symbols (labels) found in the assembler
source file. SYMBOL records are created at the end of assembly as the result of a SY-
MOBJ directive or the SO assembler option.

The space specifier consists of one to three characters representing the memory space
to be loaded. Use the Simulator’s "help mem" command to obtain a list of the valid mem-
ory space prefixes.

DSP Object Module Format
Record Definitions

6-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

An arbitrary number of symbol/address pairs follows the memory space attribute. The
symbol field conforms to the definition of a legal assembler symbol, that being a series of
up to eight ASCII characters starting with an alphabetic character and followed by alpha-
numeric characters or the underscore (_). The address is an ASCII hex value indicating
the address at which the symbol was defined. It contains only hex digits 0-F, with no lead-
ing or trailing radix characters.

Comment Record

Format: _COMMENT
<Comment>

The COMMENT record puts a comment into the object file; it is produced via the COBJ
assembler directive. The comment text appears on a line by itself in the object file; it is
delimited by newline characters.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-1

Chapter 7
C LIBRARY FUNCTIONS

7.1 INTRODUCTION

The SIMDSP Simulator package includes several object code libraries of Simulator func-
tions that were used to create the Simulator. The libraries allow the user to build his own
customized Simulator and integrate it with his unique project. Section 7.2 documents each
Simulator entry point that is available to the user.

The Simulator package includes the source code for many of the SIMDSP functions, in-
cluding the code that defines the DSP external memory accesses, the code for the main
entry point, the code for the terminal I/O functions, and example code for a non-display
version of the Simulator. The source code can be modified to create a Simulator custom-
ized for a particular application. Section 7.3 provides a description of the external memory
access functions. Section 7.4 provides a description of the terminal I/O functions.

Object libraries are supplied which support display or non-display versions of the Simula-
tor. The user may choose to eliminate the user interface functions altogether and control
the simulation directly through lower level function calls. Topics concerning the non-dis-
play version of the Simulator are discussed in section 7.5.

Simulation of multiple DSP devices is fully supported by the DSP library functions. Sec-
tion 7.6 discusses topics related to simulating and interconnecting multiple DSP devices.

Section 7.7 provides a description of the public function names used by the Simulator.

Section 7.8 gives a description of the global variables used by the Simulator.

Section 7.9 describes modifications that can be made to the Simulator global structures.

C Library Functions
Simulator Object Library Entry Points

7-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2 SIMULATOR OBJECT LIBRARY ENTRY POINTS

The following is a quick reference list of the higher level Simulator entry points provided
in the Simulator object libraries. The prefix indicates whether or not the function is avail-
able in the non-display version of the Simulator. Function names beginning with the prefix
dsp_ or dspt_ are available to both the display and non-display versions of the Simulator,
while function names beginning with sim_ are only available when using a display version
of the Simulator. The dspt_ prefix indicates a device dependent function. The _xxxxx suf-
fix on these indicate a device family number. Lower level Simulator functions, which have
a prefix of dspl_ , siml_ or dsptl_ , are not intended for direct access by the user’s pro-
gram. They are not described in this document. The higher level functions listed below are
described in detail in Sections 7.2.1 through 7.2.30.

dspt_masm_xxxxx(mnemonic,ops,err); Assemble mnemonic string to ops
dspt_unasm_xxxxx(ops,sr,omr,sdbp); Disassemble DSP opcodes
dsp_exec(devn); Execute one clock cycle for DSP device
dsp_findmem(devn,memname,map); Get map index for memory prefix
dsp_findpin(devn,pinname,pinnum); Get pin number for pin name
dsp_findport(devn,portname,pnum,pmask); Get port number and mask for port name
dsp_findreg(devn,regname,pval,rval); Get peripheral and register index for register
dsp_fmem(devn,map,addr,blocksz,val); Fill memory block with a value
dsp_free(devn); Free memory allocated for a DSP device
dsp_init(devn,mode); Initialize selected device and mode
dsp_ldmem(devn,filename); Load device memory from filename
dsp_load(filename); Load all device states from filename
dsp_new(devn,device_type); Create new DSP device
dsp_path(path,base,suffix,new_name); Create filename from path, base and suffix
dsp_rapin(devn,pin_number,val); Read output analog pin state from device
dsp_rmem(devn,map,addr,mem_val); Read dsp memory map address to mem_val
dsp_rpin(devn,pin_number); Read output pin state from device
dsp_rport(devn,port,data,force); Read output port state from device
dsp_rreg(devn,periphn,regn,regval); Read DSP peripheral register to regval
dsp_save(filename); Save the state of all devices to filename
dsp_startup(); Initialize Simulator structures
dsp_unlock(device_type,password); Unlock password protected device type
dsp_wapin(devn,pin,value); Write device analog input pin with value
dsp_wmem(devn,map,addr,val); Write DSP memory map address with val
dsp_wpin(devn,pin,value); Write device input pin with value
dsp_wport(devn,port,mask,data,force); Write device port with data and force value
dsp_wreg(devn,periphn,regn,regval); Write DSP peripheral register with regval
sim_docmd(devn,command_string); Perform Simulator command on DSP device

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-3

sim_gmcmd(devn,command_string); Get command string from macro file
sim_gtcmd(devn,command_string); Get command string from terminal

C Library Functions
Simulator Object Library Entry Points

7-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.1 dspt_masm_xxxxx: Assemble DSP Mnemonic

int dspt_masm_xxxxx(mnemonic,ops,error_ptr)
char *mnemonic; /* Pointer to assembler mnemonic string */
unsigned long *ops; /* Where to put the words of assembled opcode */
char **error_ptr; /* Will point to error message if an error occurs */

This function invokes the single line assembler to assemble a DSP mnemonic. It returns
one of the following integer codes:

-1 An error occurred. The user supplied error pointer will point to a message
that explains the error.

0 The line mnemonic provided was a comment

1 The mnemonic assembled correctly and required 1 word of code. The code
will be in the ops[0] location.

2 The mnemonic assembled correctly and required 2 words of code. The first
word will be in placed in ops[0], the second in ops[1].

3 The mnemonic assembled correctly and required 3 words of code. The first
word will be in placed in ops[0], the second in ops[1], the third in ops[2].

Note that the xxxxx in the function name should be replaced by a device family number.
It should be 56k for the 56000 family devices, 56100 for the 56100 family devices, and 96k
for the 96000 family devices.

EXAMPLE

/* Assemble the instruction "move r0,r1" */
unsigned long opcodes[3];
char *error_ptr;
int retval;
retval=dspt_masm_56k("move r0,r1",&opcodes[0],&error_ptr);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-5

7.2.2 dspt_unasm_xxxxx: Disassemble DSP Mnemonics

int dspt_unasm_xxxxx(ops,return_string,sr,omr,gdbp)
unsigned long *ops; /* Pointer to opcodes to be disassembled */
unsigned long sr; /* Value of device status register */
unsigned long omr; /* Value of device operating mode register */
char *gdbp; /* Return value reserved for use by debugger*/
char *return_string; /* Pointer to return character buffer */

This function disassembles ops[0] (and possibly ops[1] and ops[2] if ops [0] requires a
second or third word) and places the disassembled mnemonic in the return_string buffer
supplied by the user. If correct disassembly requires a device status register and/or oper-
ating mode register value, the values should be provided in the sr and omr parameters.
The gdbp parameter is a pointer reserved for use by the symbolic debugger, and should
be NULL for other applications.

The mnemonic may require as many as 120 characters of return buffer. The function re-
turns the number (1 to 3) of words consumed by the disassembly. It returns 0 for illegal
opcodes and a return string containing a DC directive.

Note that the xxxxx in the function name should be replaced by a device family number.
It should be 56k for the 56000 family devices, 56100 for the 56100 family devices, and 96k
for the 96000 family devices.

EXAMPLE

/* Disassembly of the opcode representing NOP */
unsigned long ops[3]; /*Instruction words to be disassembled.*/
char return_string[120]; /*The return mnemonic goes here.*/
int numwords; /*Number of operands used by disassembler.*/
ops[0]=0L;
ops[1]=0L;
ops[2]=0L;
numwords=dspt_unasm_56k(ops,return_string,0L,0L,NULL);
/* Now numwords==1, return_string=="nop"*/

C Library Functions
Simulator Object Library Entry Points

7-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.3 dsp_exec: Execute Single Device Clock Cycle

dsp_exec(device_index)
int device_index; /* DSP device index to be affected by command */

This function executes a single DSP device cycle and updates the selected dsp device
structure. All device inputs, outputs and registers are updated as a result of this call. In
addition, it tests user-defined breakpoint conditions and clears the device’s executing
status flag if a breakpoint occurs. It also calls the functions which handle cycle by cycle I/
O from assigned input or output files.

EXAMPLE

/*Execute 1000 cycles on a device*/
int devn;
int cycles;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* allocate new device */
for(cycles=0;cycles<1000;cycles++) dsp_exec(devn);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-7

7.2.4 dsp_findmem: Get Map Index for Memory Prefix

dsp_findmem(device_index,memory_name,memory_map)
int device_index; /* DSP device index to be affected by command */
char *memory_name; /* memory space name */
enum memory_map *memory_map; /* return memory map type */

This function searches the dt_var.mem structure for a match to the memory_name string
provided in the function call. If a match is found, dsp_findmem returns the memory map
maintype structure value through the memory_map parameter and 1 as the function re-
turn value; otherwise it just returns 0 as the function return value.

For a list of memory names use the Simulator help mem command.

EXAMPLE

#include "coreaddr.h"
int devn;
enum memory_map map;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findmem(devn,"p",&map) /* Get memory map index for "p" memory */

C Library Functions
Simulator Object Library Entry Points

7-8 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.5 dsp_findpin: Get Pin Number for Pin Name

dsp_findpin(device_index,pin_name,pin_number)
int device_index; /* DSP device index to be affected by command */
char *pin_name; /* pin name */
int *pin_number; /* return pin index */

This function searches the dt_var.xpin structures for a match to the pin_name string pro-
vided in the function call. If a match is found, dsp_findpin returns the pin number through
the pin_number parameter and 1 as the function return value; otherwise it just returns 0
as the function return value.

Use the Simulator’s "help pin" command to produce a list of the valid pin names.

EXAMPLE

int devn;
int pinnum;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findpin(devn,"reset",&pinnum); /* Get index for "reset" pin */

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-9

7.2.6 dsp_findport: Get Port Number and Mask for Port Name

dsp_findport(device_index,port_name,port_number,mask_val)
int device_index; /* DSP device index to be affected by command */
char *port_name; /* port or peripheral name */
int *port_number; /* return memory map index */
unsigned long *mask_val; /* Pin mask for this port or peripheral name */

This function searches the dt_var.xport structure and the dt_var.periph structures for a
match to the port_name string provided in the function call. If a match is found,
dsp_findport returns the port number through the port_number parameter, the port mask
value through the mask_val parameter, and 1 as the function return value; otherwise it
just returns 0 as the function return value.

The Simulator "help port" and "help periph" commands may also be used to produce a list
of valid port and peripheral information.

EXAMPLE

int devn;
int pnum;
unsigned long pmask;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findport(devn,"portb",&pnum,&pmask); /* Get info for "portb" */

C Library Functions
Simulator Object Library Entry Points

7-10 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.7 dsp_findreg: Get Peripheral and Register Index for Register Name

dsp_findreg(device_index,reg_name,periph_number,reg_number)
int device_index; /* DSP device index to be affected by command */
char *reg_name; /* register name */
int *periph_number; /* return peripheral index */
int *reg_number; /* return register index */

This function searches the dt_var.periph structures for a match to the reg_name string
provided in the function call. If a match is found, dsp_findreg returns the peripheral index
through periph_number , the register number through the reg_number parameter and 1
as the function return value; otherwise it just returns 0 as the function return value.

You may also use the Simulator "help reg" command to obtain a list of the valid
periph_num and reg_num values, and reg_val size for each register.

EXAMPLE

int devn;
int regnum;
int pnum;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
ok=dsp_findreg(devn,"pc",&pnum,®num); /* Get index for "pc" register */

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-11

7.2.8 dsp_free: Free a Device Structure

dsp_free(device_index)
int device_index; /* DSP device index to be affected by command */

This function frees all allocated memory associated with a device structure and closes any
open files associated with the device structure.

EXAMPLE

/* Create three new device structures, then get rid of device 2. */
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */
dsp_free(1); /* Free structure previously allocated for device 1 */

C Library Functions
Simulator Object Library Entry Points

7-12 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.9 dsp_fmem: Fill Memory Block with a Value

dsp_fmem(device_index,memory_map,address,block_size,value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory start address to write */
unsigned long block_size; /* Number of locations to write */
unsigned long *value; /* Pointer to value to write to memory location */

This function writes a memory block of selected DSP memory.

The memory_map parameter is a memory type that selects the appropriate dt_memory
structure from dt_var.mem for the selected device. These structures are describe in the
simdev.h file which is included with the Simulator. The memory_map parameter can be
obtained with the function dsp_findmem by using the memory name as a key. Use the
Simulator help mem command for a list of valid memory names. The memory_map enum
is memory_map_ concatenated with a valid memory name. As an example,
memory_map_pa refers to off chip pa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should
be at the value location and the most significant word at the value+1 location.

If the memory address selects an external memory location, the dspl_xmwr function will
be called. The dspl_xmwr function is provided in source form in the file simvmem.c and
can be modified to simulate special external memory characteristics.

EXAMPLE

/* Write 300 locations beginning at p:$200 with the value 4 */
int devn;
unsigned long address, memval, blocksize;
address=0x200L;
blocksize=300;
memval=4L;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_fmem(devn,memory_map_p,address,blocksize,&memval);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-13

7.2.10 dsp_init: Initialize a Single DSP Device Structure

dsp_init(device_index)
int device_index; /* DSP device index to be affected by command */

This function initializes a device to the same state that existed following the dsp_new() call
which created it. It is equivalent to performing the Simulator RESET S command. All mem-
ory spaces are cleared, the registers are reset, breakpoints and input/output file assign-
ments are cleared.

EXAMPLE

dsp_startup();
dsp_new(0,"56116"); /* Create new dsp structure */
.
. /* Other Simulator commands */
.
dsp_init(0); /* Reinitialize device 0 */

C Library Functions
Simulator Object Library Entry Points

7-14 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.11 dsp_ldmem: Load DSP Memory from OMF File

int dsp_ldmem(device_index,filename)
int device_index; /* DSP device index to be affected by command */
char *filename; /* Full pathname of OMF format file to be loaded */

This function loads the memory space of a specified dsp device from an object file. The
file may be created as the output from the DSP MACRO ASSEMBLER, or by using the
Simulator save command, and may be either COFF format or ".lod" format. In order to
specify a COFF format file, the filename suffix must be ".cld". A filename with any other
suffix is assumed to be in ".lod" format.

This is a lower level function that does not invoke the user interface modules for pathname
and automatic .lod suffix extension. The entire pathname must be specified. The function
returns 1 if the load is successful, 0 if an error occurred loading the file.

EXAMPLE

/* Create DSP device structures for a three device simulation. */
int devn;
int err;
dsp_startup();
for (devn=0;devn<3;devn++)
dsp_new(devn,"56116"); /* Create new dsp structures */
/* Load device 1 with a program named filter2.lod .*/
err=dsp_ldmem(1,"filter2.lod");

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-15

7.2.12 dsp_load: Load All DSP Structures from State File

int dsp_load(filename)
char *filename; /* Full name of State File to be loaded */

This function loads the Simulator state of all devices from a specified Simulator state file.
It is not necessary to allocate the device structures prior to calling dsp_load . This function
does not invoke the user interface modules for pathname and automatic .sim suffix ex-
tension; the entire filename must be specified.

EXAMPLE

int err;
dsp_startup();
err=dsp_load("lunchbrk.sim");

C Library Functions
Simulator Object Library Entry Points

7-16 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.13 dsp_new: Create New DSP Device Structure

dsp_new(device_index,device_type)
int device_index; /* DSP device index to be affected by command */
char *device_type; /* Name corresponding to DSP device type */

This function creates a new dsp structure that represents a DSP device and initializes it.
It will be necessary to use the dsp_unlock() function call prior to dsp_new() if the selected
device type is password protected.

EXAMPLE

/* Create DSP device structures for a three device simulation. */
int devn;
dsp_startup();
for (devn=0;devn<3;devn++)
dsp_new(devn,"56116"); /* Create new dsp structures */

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-17

7.2.14 dsp_path: Construct Filename

dsp_path(path_name,base_name,suffix,new_name)
char *path_name; /* Directory pathname */
char *base_name; /* Base filename to be appended to path_name */
char *suffix; /* Suffix string to be appended to base_name */
char *new_name; /* Pointer to return buffer for constructed pathname */

This function concatenates the user-provided pathname, base name and suffix. If the
base_name begins with a pathname separator or with a device designator, the
path_name will not be prepended to the base_name. If the base_name already ends with
’.’ and some suffix, the suffix will not be appended.

EXAMPLE

/* Load a file named filter2.lod from the current working directory for device 0. */
#include "simcom.h"
#include "simdev.h"
extern struct dev_const dv_const; /* Simulator device structures */
char newfn[80];
dsp_startup();
dsp_new(0,"56116"); /* Create new dsp structure */
dsp_path(dv_const.sv[0]->pathwork,"filter2","lod",newfn);
dsp_ldmem(0,newfn); /* Load file into dsp device 0 */

C Library Functions
Simulator Object Library Entry Points

7-18 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.15 dsp_rapin: Read DSP Analog Pin State

int dsp_rapin(device_index,pin,retvf)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to read */
float *retvf; /* Pointer to floating point (single precision) return value */

This function reads a DSP analog device pin value. It is only valid for device pins which
are defined as having analog values, such as codec output pins; other pins will return 0.0
as the analog value. The function return value will be DSP_PINVAL_L and a floating point
value returned in retvf if found; or DSP_ERR if there is an error condition. Use the Simu-
lator’s "help pin" command to produce a list of the valid pin names and each pin’s corre-
sponding pin index. The device pin number can also be obtained by using the pin name
as a key and calling the function dsp_findpin . The DSP_PINVAL return values are de-
fined in the simdev.h file.

EXAMPLE

int devn;
int pinnum;
int err;
float aval;
dsp_startup();
devn=0;
dsp_new(devn,"56156"); /* Allocate structure for device 0, a 56156 */
dsp_findpin(devn,"spkp",&pinnum); /* Get pin number for pin named spkp */
err=dsp_rapin(devn,pinnum,&aval); /* Read value of device 0 pin spkp*/

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-19

7.2.16 dsp_rmem: Read DSP Memory Location

int dsp_rmem(device_index,memory_map,address,return_value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to read */
unsigned long *return_value; /* Memory value (or values) will be returned here */

This function reads the contents of a selected dsp memory location and writes it to
return_value . If the memory_map implies a two word value, the least significant word will
be returned to return_value; the most significant word will be returned to the
return_value+1 location. This function also returns a flag that indicates whether or not the
memory location exists. It returns 1 if the location exists, 0 otherwise.

The memory_map parameter selects the appropriate dt_memory structure from
dt_var.mem for the selected device. These structures are describe in the simdev.h file
which is included with the Simulator. The memory_map parameter can be obtained with
the function dsp_findmem by using the memory name as a key. Use the Simulator help
mem command for a list of valid memory names. The memory_map enum is
memory_map_ concatenated with a valid memory name. As an example,
memory_map_pa refers to off chip pa memory on the 96002 device.

This function calls the function dspl_xmrd() if the address indicates an external memory
location. The dspl_xmrd() function is provided in source form in the file simvmem.c and
can be modified to simulate special external memory characteristics.

EXAMPLE

/* Read X memory location 100 from device 0. */
unsigned long address;
unsigned long memval;
int devn;
int ok;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
address=100L;
ok=dsp_rmem(devn,memory_map_x,address,&memval);

C Library Functions
Simulator Object Library Entry Points

7-20 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.17 dsp_rpin: Read DSP Pin State

int dsp_rpin(device_index,pin)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to read */

This function reads a dsp device pin value. The return value may be DSP_PINVAL_L,
DSP_PINVAL_H, DSP_PINVAL_F, DSP_PINVAL_0, or DSP_PINVAL_1 indicating low
output, high output, floating, low input or high input pin state. Use the Simulator’s "help
pin" command to produce a list of the valid pin names and each pin’s corresponding pin
index. The device pin number can also be obtained by using the pin name as a key and
calling the function dsp_findpin . The DSP_PINVAL return values are defined in the sim-
dev.h file.

EXAMPLE

int devn;
int pinnum;
int pin_value;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findpin(devn,"rw",&pinnum); /* Get pin number for pin named rw */
pin_value=dsp_rpin(devn,pinnum); /* Read value of device 0 pin rw */

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-21

7.2.18 dsp_rport: Read DSP Port State

dsp_rport(device_index,port,data,force)
int device_index; /* DSP device index to be affected by command */
int port; /* Port number to read */
unsigned long *data; /* Return port data value goes here */
unsigned long *force; /* Return port forcing state goes here */

This function reads a DSP device port state. It returns two values. The value returned in
the data parameter contains the current pin data state for all pins in the port. In the case
of input pins, this is the last value written to the input pin; in the case of output pins the
data state is the last data written to the port by the device. The value returned in the force
parameter indicates which port bits are actually being driven as outputs by the device.

The port parameter acts as the index to the dev_var.xportval array. A list of port names
and the corresponding port index can be obtained using the Simulator’s "help port" and
"help periph" commands. The port index can also be determined by using the port name
as a key when calling dsp_findport .

EXAMPLE

int devn;
int portnum;
unsigned long portbdata, portbforce;
unsigned long portmask;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findport(devn,"portb",&portnum,&portmask);
dsp_rport(devn,portnum,&portbdata,&portbforce);

C Library Functions
Simulator Object Library Entry Points

7-22 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.19 dsp_rreg: Read a DSP Device Register

dsp_rreg(device_index,periph_num,reg_num,reg_val)
int device_index; /* DSP device index to be affected by command */
int periph_num; /* DSP peripheral number */
int reg_num; /* DSP register number */
unsigned long *reg_val; /* Return register value goes here */

This function reads a selected register from the regval array in a DSP dev_periph struc-
ture. Registers which return more than one word as the register value will return the least
significant word in reg_val[0].

Use the Simulator "help reg" command to obtain a list of the valid periph_num and
reg_num values, and reg_val size for each register. Also, dsp_findreg can be used to
obtain the peripheral and register number by using the register name as a key.

EXAMPLE

int devn;
int periph_num, reg_num;
unsigned long regval;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
if (dsp_findreg(devn,"pc",&periph_num,®_num))
 dsp_rreg(devn,periph_num,reg_num,®val);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-23

7.2.20 dsp_save: Save All DSP Structures to State File

int dsp_save(filename)
char *filename; /* Full name of State File to be saved */

This function saves a DSP device structure to a simulation state file. This function does
not invoke the user interface functions which provide pathname and .sim suffix extension,
so the entire filename must be specified. The function returns 1 if the save is successful,
0 if an error occurs when saving the file. This function will call the function dspl_xmsave
as one of the steps of saving the DSP structure.

EXAMPLE

int ok;
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */

/* Save device 0 and 1 to state file lunchbrk.sim . */
ok=dsp_save("lunchbrk.sim");

C Library Functions
Simulator Object Library Entry Points

7-24 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.21 dsp_startup: Initialize DSP Structures

int dsp_startup();

This function initializes DSP structures. It should be called once (and only once) at the first
of your program prior to any calls to dsp_new .

EXAMPLE

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-25

7.2.22 dsp_unlock: Unlock Password Protected Device Type

dsp_unlock(device_type, password)
char *password; /* Pointer to string containing password */
char *device_type; /* Name corresponding to DSP device type */

This function provides the password for protected device types. It must be used prior to
the dsp_new function call if the device type is password protected.

EXAMPLE

/* Create a device simulation of the password protected 56001 device */
int devn;
dsp_startup();
 dsp_unlock("56001","x51-234"); /* provide password for device */
devn=0;
 dsp_new(devn,"56001"); /* Create new dsp structures */

C Library Functions
Simulator Object Library Entry Points

7-26 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.23 dsp_wapin: Write DSP Analog Pin State

int dsp_wapin(device_index,pin,value)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to write*/
float value; /* Input value for specified pin */

This function writes a selected DSP device pin with a single precision floating point input
value. Use the Simulator’s "help pin" command to produce a list of the valid pin names
and each pin’s corresponding pin index. The device pin number can also be obtained by
using the pin name as a key and calling the function dsp_findpin .

EXAMPLE

#include "simcom.h"
#include "simdev.h"
/* Write the reset pin of device 0 with a high level. */
int devn;
int pinnum;
float pinval;
dsp_startup();
devn=0;
dsp_new(devn,"56156"); /* Allocate structure for device 0, a 56156 */
dsp_findpin(devn,"mic",&pinnum); /* Get pin number for pin named mic */
pinval=0.709;
dsp_wapin(devn,pinnum,pinval);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-27

7.2.24 dsp_wmem: Write DSP Memory Location

dsp_wmem(device_index,memory_map,address,value)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to write */
unsigned long *value; /* Pointer to value to write to memory location */

This function writes a selected dsp memory location.

The memory_map parameter is selects the appropriate dt_memory structure from
dt_var.mem for the selected device. These structures are describe in the simdev.h file
which is included with the Simulator. The memory_map parameter can be obtained with
the function dsp_findmem by using the memory name as a key. Use the Simulator help
mem command for a list of valid memory names. The memory_map enum is
memory_map_ concatenated with a valid memory name. As an example,
memory_map_pa refers to off chip pa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should
be at the value location and the most significant word at the value+1 location.

If the memory address selects an external memory location, the dspl_xmwr function will
be called. The dspl_xmwr function is provided in source form in the file simvmem.c and
can be modified to simulate special external memory characteristics.

EXAMPLE

int devn;
unsigned long address, memval;
address=200L;
memval=0L;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_wmem(devn,memory_map_p,address,&memval);

C Library Functions
Simulator Object Library Entry Points

7-28 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.25 dsp_wpin: Write DSP Pin State

int dsp_wpin(device_index,pin,value)
int device_index; /* DSP device index to be affected by command */
int pin; /* Pin number to write*/
int value; /* Input value for specified pin */

This function writes a selected dsp device pin with a value DSP_PINVAL_L,
DSP_PINVAL_H, DSP_PINVAL_F, DSP_PINVAL_N, or DSP_PINVAL_P indicating low,
high, floating, negative pulse, or positive pulse. Use the Simulator’s "help pin" command
to produce a list of the valid pin names and each pin’s corresponding pin index. The device
pin number can also be obtained by using the pin name as a key and calling the function
dsp_findpin . The DSP_PINVAL values are defined in the simdev.h file

EXAMPLE

#include "simcom.h"
#include "simdev.h"
/* Write the reset pin of device 0 with a high level. */
int devn;
int pinnum;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_findpin(devn,"reset",&pinnum); /* Get pin number for pin named reset */
dsp_wpin(devn,pinnum,DSP_PINVAL_H);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-29

7.2.26 dsp_wport: Write DSP Port State

dsp_wport(device_index,port,mask,data,force)
int device_index; /* DSP device index to be affected by command */
int port; /* Port number to write */
unsigned long mask; /* Pin mask for this port */
unsigned long data; /* Port data value */
unsigned long force; /* Port forcing state */

This function forces data on a DSP device port from outside the device. The value sup-
plied in the data parameter contains the new input data to be written to the port. The value
supplied in the force parameter indicates which port bits are actually being driven as in-
puts to the device. The value supplied in the mask parameter specifies which pins in the
port are to be affected by this write; the other pins in the port remain in their previous state.

The port parameter acts as the index to the dev_var.xportval array. A list of port names
and the corresponding port index can be obtained using the Simulator’s "help port" and
"help periph" commands. The port index and mask value can also be obtained by using
the port name as a key when calling dsp_findport .

This function call can be paired with the dsp_rport function to simulate a port to port con-
nection between devices.

EXAMPLE

/* Write portb of device 1 from portb of device 0 */
 int portnum;
unsigned long portbdata, portbforce;
unsigned long portmask;
dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_findport(0,"portb",&portnum,&portmask);
dsp_rport(0,portnum,&portbdata,&portbforce)
dsp_wport(1,portnum,portmask,portbdata,portbforce)

C Library Functions
Simulator Object Library Entry Points

7-30 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.27 dsp_wreg: Write a DSP Device Register

dsp_wreg(device_index,periph_num,reg_num,reg_val)
int device_index; /* DSP device index to be affected by command */
int periph_num; /* DSP peripheral number */
int reg_num; /* DSP register number */
unsigned long *reg_val; /* Value to be written to register */

This function writes a selected register in the a DSP structure.

Use the Simulator "help reg" command to obtain a list of the valid periph_num and
reg_num values, and reg_val size for each register. Also, the function dsp_findreg can
be used to obtain the peripheral and register number by using the register name as a key.

If a register requires more than one word to represent the data value the least significant
word should be at reg_val, with more significant words at reg_val+1, etc.

EXAMPLE

int devn;
int periph_num, reg_num;
unsigned long regval;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
regval=100L;
if (dsp_findreg(devn,"pc",&periph_num,®_num))
 dsp_wreg(devn,periph_num,reg_num,®val);

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-31

7.2.28 sim_docmd: Execute Simulator User Interface Command

sim_docmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* User interface command to be executed */

This function executes any Simulator command that the Simulator normally accepts from
the terminal. SIMDSP normally calls sim_gtcmd() to get a valid command string from the
terminal, then calls sim_docmd to execute it. The device_index determines which dsp de-
vice (in a multiple dsp simulation) is affected by the command execution. The devices are
numbered 0,1,2...n-1 in an n-device system, so be very careful, for example, to use 0 for
the device_index parameter in a single device system.

If the command_string begins macro execution the selected device structure in_macro
flag will be set by sim_docmd. SIMDSP retrieves valid commands from the macro file by
calling sim_gmcmd() as long as the in_macro flag is set. The commands are still execut-
ed by sim_docmd, whether they come from the terminal or a macro file.

Commands which initiate device cycle execution (such as go or trace) will set the device
structure sim_var.stat.executing flag. SIMDSP executes device cycles until the execut-
ing flag is cleared by an execution breakpoint.

EXAMPLE

int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Allocate structure for device 0, a 56116 */
sim_docmd(devn,"change pc $40"); /* Change device 0 pc register to $40 */
sim_docmd(devn,"break r p:$80"); /* Set a breakpoint for device 0 */
sim_docmd(devn,"go"); /* Begin execution of device 0 */

C Library Functions
Simulator Object Library Entry Points

7-32 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.2.29 sim_gmcmd: Get Command String from Macro File

sim_gmcmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* Pointer to return buffer for command line */

This function reads the next Simulator command string from a macro file. The
sim_docmd() function will normally determine that a command is a macro, open the macro
file and set the device structure sim_const.in_macro flag. The sim_gmcmd() function re-
turns the next line from the open macro file each time it is called. It will clear the in_macro
flag at the end of macro execution or if an invalid macro command is processed. The
command_string buffer should be at least 80 characters.

EXAMPLE

/* Execute the macro command file startup.cmd on dsp device structure 0. */
#include "simcom.h"
#include "simusr.h"
extern struct sim_const sv_const; /* Simulator device structures */
char command_string[80];
int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Create new dsp structure */
sim_docmd(devn,"startup"); /* Begin the startup macro */
while (sv_const.in_macro){
 sim_gmcmd(devn,command_string); /* Get command string from macro file */
 sim_docmd(devn,command_string); /* Execute command string */
 }

C Library Functions
Simulator Object Library Entry Points

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-33

7.2.30 sim_gtcmd: Get Command String from Terminal

sim_gtcmd(device_index,command_string)
int device_index; /* DSP device index to be affected by command */
char *command_string; /* Pointer to return buffer for command line */

This function gets the next command string from the terminal in an interactive mode. The
command line editing, command expansion and on-line help functions are invoked by this
terminal command input function. The command string is fully checked for errors prior to
returning. The command_string buffer should be at least 80 characters.

EXAMPLE

/* Get and execute Simulator commands for device 0 until a go type command is */
/* entered. */
#include "simcom.h"
#include "simusr.h"
extern struct sim_const sv_const; /* Simulator device structures */
char command_string[80];
int devn;
dsp_startup();
devn=0;
dsp_new(devn,"56116"); /* Create new dsp structure */
while (!sv_const.sv[devn]->stat.executing){ /* Check for go */
 sim_gtcmd(devn,command_string); /* Get command */
 sim_docmd(devn,command_string); /* Execute command */
 }

C Library Functions
Simulator External Memory Functions

7-34 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3 SIMULATOR EXTERNAL MEMORY FUNCTIONS

The following sections describe functions which are provided in source code form in the
Simulator package in the file simvmem.c . These functions define all the operations asso-
ciated with reading, writing or storing dsp external memory locations. The Simulator mem-
ory allocation function is also included in this module since the representation of external
memory is implemented with a virtual memory technique that is integrated with the mem-
ory allocation service. The external memory functions, with the exception of dsp_alloc ,
would not normally be called directly from the user’s code. They are referenced from other
Simulator functions, such as dsp_load or dsp_rmem , described in Section 7.2. The fol-
lowing is a reference list of the external memory functions:

dsp_alloc(num_bytes); Allocate Simulator Program Memory
dspl_xmend(devn,map); End DSP External Memory access
dspl_xmfree(devn); Free DSP Device External Memory
dspl_xminit(devn); Initialize DSP Device External Memory
dspl_xmload(devn,fp); Load DSP External Memory from State File
dspl_xmnew(devn); Create New External Memory Structure
dspl_xmrd(devn,map,add,val,fetch); Read DSP External Memory Location to val
dspl_xmsave(devn,fp); Save DSP External Memory to State File
dspl_xmstart(devn,map); Start DSP External Memory access
dspl_xmwr(devn,map,add,val,store); Write DSP External Memory with val

The external memory access functions are provided in source form so that the external
memory map attributes can be customized. This is especially useful for multiple dsp sim-
ulations in which complex configurations such as dual-port memory may be required. The
functions in simvmem.c simulate the entire external memory space of up all dsp devices.

C Library Functions
Simulator External Memory Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-35

7.3.1 dsp_alloc: Allocate Simulator Program Memory

void *dsp_alloc(numbytes)
unsigned int numbytes; /* Size of memory block needed in bytes */

This function must return a character pointer to the requested number of bytes of memory.
It is not necessary for the memory to be cleared. A simple version could just call malloc().
The Simulator will not recover if the dsp_alloc() call fails, so an exit() must occur within
dsp_alloc() if the requested memory cannot be allocated.

EXAMPLE

/* Allocate memory for a new structure. */

void *dsp_alloc();
struct new_struct{
 char buf[1000];
 int bufindex;
 } *newp;
newp=(struct new_struct *) dsp_alloc(sizeof(struct new_struct));

C Library Functions
Simulator External Memory Functions

7-36 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3.2 dspl_xmend: End DSP External Memory Access

dspl_xmend(device_index,memory_map)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */

The core simulation calls this function during the last clock cycle of each external memory
access. The memory map parameter will be a memory designator as returned by
dsp_findmem . Use the Simulator help mem command for a list of valid memory names.
The memory_map enum is memory_map_ concatenated with a valid memory name. As
an example, memory_map_pa refers to off chip pa memory on the 96002 device.

C Library Functions
Simulator External Memory Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-37

7.3.3 dspl_xmfree: Free DSP Device External Memory

dspl_xmfree(device_index)
int device_index; /* DSP device index to be affected by command */

This function must free any memory that has been allocated to represent the external
memory space of a selected device. Note that this function should not be called directly
by the user’s code. It is called as one of the steps in freeing an entire device structure by
dsp_free().

EXAMPLE

/* Free external memory of dsp device structure 0. */
int devn;
devn=0;
dspl_xmfree(devn);

C Library Functions
Simulator External Memory Functions

7-38 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3.4 dspl_xminit: Initialize DSP Device External Memory

dspl_xminit(device_index)
int device_index; /* DSP device index to be affected by command */

This function must initialize the values in any structures used to represent the external
memory of a dsp device. The Simulator commands reset s and load s will call
dspl_xminit() in the processes of initializing or reloading the Simulator state.

EXAMPLE

/* Initializing external memory for device 1 */
int devn;
devn=1;
dspl_xminit(devn);

C Library Functions
Simulator External Memory Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-39

7.3.5 dspl_xmload: Load DSP External Memory from State File

int dspl_xmload(device_index,fp)
int device_index; /* DSP device index to be affected by command */
FILE *fp; /* Pointer to file opened in text read mode ("r") */

This function must restore external memory from a Simulator state file. Note that this func-
tion should not be called directly by the user’s code. The dspl_xmload() call is the last step
of the dsp_load() function which loads a Simulator state file. The file pointer provided to
dspl_xmload will have been opened with fp=fopen(filename,"r") and the remainder of the
Simulator state will have already been restored from the state file. The steps used to re-
store the external memory should complement the steps used to save external memory
in the dspl_xmsave() function. The return value of dspl_xmload() should be 1 if success-
ful, 0 if an error occurred. The dsp_load() function will close the file following the
dspl_xmload() call.

EXAMPLE

/* Call of dspl_xmload() from dsp_load() */
int status;
FILE *fp;
fp=fopen(filename,"r");
./* Loading of other Simulator state structures */
.
status=dspl_xmload(devn,fp);

C Library Functions
Simulator External Memory Functions

7-40 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3.6 dspl_xmnew: Create New External Memory Structure

dspl_xmnew(device_index)
int device_index; /* DSP device index to be affected by command */

This function must create and initialize the external memory for a device. Note that this
function should not be called directly by the user’s code. The dsp_new() function calls
dspl_xmnew() as part of the process of creating a new dsp device structure.

EXAMPLE

/* Call to dspl_xmnew() from dsp_new() */
dspl_xmnew(devn);

C Library Functions
Simulator External Memory Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-41

7.3.7 dspl_xmrd: Read DSP External Memory Location

int dspl_xmrd(device_index,mem_map,address,return_value,fetch)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to read */
unsigned long *return_value; /* Memory value will be returned here */
int fetch; /* Flag indicating that a dsp fetch is in progress */

This function must return the value of a dsp device’s external memory location. The Sim-
ulator calls dspl_xmrd() when a dsp device reads an external memory location, or when
the Simulator user interface reads the location for display purposes. This function also re-
turns a flag value of 1 if the memory location exists, 0 if it doesn’t exist. The fetch param-
eter indicates to dspl_xmrd() whether or not the read is being executed by the dsp de-
vice. If fetch=1, the dsp device is fetching the memory location during execution of a de-
vice cycle. If fetch=0, dspl_xmrd() is being called from some other source not associated
with device cycle execution (for example, from the memory display routines). Although the
fetch parameter is not used in the version of dspl_xmrd() provided in the file simvmem.c ,
it is provided to enable special processing that should only occur when the device cycle
simulation is taking place. The memory map parameter will be a value representing the
memory space being accessed. Use the Simulator help mem command for a list of valid
memory names. The memory_map enum is memory_map_ concatenated with a valid
memory name. As an example, memory_map_pa refers to off chip pa memory on the
96002 device.

EXAMPLE

/* Read "pe" memory location $5000 of device 2 */

unsigned long address;
int devindex;
unsigned long retval;
int ok;
int fetch;
address=0x5000L;
devindex=2;
fetch=0;
ok= dspl_xmrd(devindex,memory_map_pe,address,&retval,fetch);

C Library Functions
Simulator External Memory Functions

7-42 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3.8 dspl_xmsave: Save DSP External Memory to State File

int dspl_xmsave(device_index,fp)
int device_index; /* DSP device index to be affected by command */
FILE *fp; /* Pointer to file opened in write mode */

This function must save the external memory state to a Simulator state file. The
dspl_xmsave() call is the last step of the dsp_save() function which saves a Simulator
state file. The file pointer provided to dspl_xmsave will have been opened with
fp=fopen(filename,"w+") and the remainder of the Simulator state will have already been
saved to the state file. The return value of dspl_xmsave() should be 1 if successful, 0 if an
error occurred. The dsp_save() function will close the file following the dspl_xmsave() call.

EXAMPLE

/* Call of dspl_xmsave() from dsp_save() */
int status;
FILE *fp;
fp=fopen(filename,"w+");
./* Saving of other Simulator state structures */
.
status=dspl_xmsave(devindex,fp);

C Library Functions
Simulator External Memory Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-43

7.3.9 dspl_xmstart: Start DSP External Memory Access

dspl_xmstart(device_index,memory_map)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */

The core simulation calls this function during the first clock cycle of each external memory
access. The memory map parameter will be a value as returned by dsp_findmem . Use
the Simulator help mem command for a list of valid memory names. The memory_map
enum is memory_map_ concatenated with a valid memory name. As an example,
memory_map_pa refers to off chip pa memory on the 96002 device.

C Library Functions
Simulator External Memory Functions

7-44 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.3.10 dspl_xmwr: Write DSP External Memory Location

int dspl_xmwr(device_index,mem_map,address,value,store)
int device_index; /* DSP device index to be affected by command */
enum memory_map memory_map; /* memory designator */
unsigned long address; /* DSP memory address to write */
unsigned long value; /* Value to be written to memory location */
int store; /* Flag indicating that a device store is in effect */

This function must store a value to a dsp device’s external memory location. The Simula-
tor calls dspl_xmwr() when a dsp device writes an external memory location, or when the
Simulator user interface alters the location. The store parameter will indicate if the refer-
ence is from the dsp device (store=1) during simulation of device cycle execution, or some
other source (store=0) not related to device cycle execution. For example, the CHANGE
memory Simulator command will set the parameter store to 0. The store parameter is
not used in the dspl_xmwr function provided in the file simvmem.c , but is available to
the user if modifications are made to the simvmem.c file for special external memory pro-
cessing. The memory map parameter will be a value representing the memory space be-
ing accessed. Use the Simulator’s "help mem" command to obtain a list of the valid mem-
ory space prefixes.

EXAMPLE

/* Write value of 3 to "xe" memory location 5 of device 2 */

unsigned long address;
int devindex;
int ok;
unsigned long newval;
int store;
address=5L;
devindex=2;
newval=3L;
store=0;
ok= dspl_xmwr(devindex,memory_map_xe,address,newval,store);

C Library Functions
Simulator Screen Management Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-45

7.4 SIMULATOR SCREEN MANAGEMENT FUNCTIONS

The following sections describe functions which are provided in source code form in the
Simulator package in the file scrmgr.c . These functions define all the operations associ-
ated with Simulator terminal I/O. The code includes conditionally compiled sections for
MSDOS, UNIX, and VMS. The code is provided to allow customization of the Simulator
terminal I/O for a particular environment. The user may, for example, wish to redefine the
control characters used by the Simulator so that they map to some particular terminal.

The following is a quick reference list of the Simulator screen management functions:

simw_ceol(); Clear to end of line
simw_ctrlbr(); Check for CTRL-C signal
simw_cursor(line,column); Move cursor to specified line, column
simw_endwin(); End the Simulator display
simw_getch(); Non-translated keyboard input
simw_gkey(); Translated keyboard input
simw_putc(c); Output character to terminal
simw_puts(line,column,text,flag); Output string to terminal at line and column
simw_redo(device); Repaint screen with output from device
simw_redraw(count); Redraw screen after scrolling count
simw_refresh(); Screen update after buffering output
simw_scrnest(); Nest output buffering another level
simw_unnest(); Pop output buffering one level
simw_winit(); Initialize window parameters
simw_wscr(string,commandflag); Write string and perform logging functions

C Library Functions
Simulator Screen Management Functions

7-46 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.4.1 simw_ceol: Clear to End of Line

simw_ceol()

This function must clear the display from the current column to the end of line, then return
the cursor to the previous position.

7.4.2 simw_ctrlbr: Check for CTRL-C Signal

simw_ctrlbr()

This function must check for the occurrence of a CTRL-C signal from the terminal. If the
CTRL-C signal occurs, it sets a flag for the active breakpoint dsp (defined by
sv_const.breakdev). It returns the sim_var.stat.CTRLBR flag for the current device. This
allows the program to select the device that will halt in response to the CTRL-C signal from
the keyboard in a multiple device simulation.

7.4.3 simw_cursor: Move Cursor to Specified Line and Column

simw_cursor(line,column)

This function must move the cursor to the specified line and column and update the
sim_const.curline and sim_const.curclm variables.

7.4.4 simw_endwin: End Simulator Window

simw_endwin()

This function is normally called when returning to the operating system level from the Sim-
ulator. It must terminate any special processing associated with terminal I/O for the Sim-
ulator and clear the display.

7.4.5 simw_getch: Non-translated Keyboard Input

simw_getch()

This function gets a single character in a non-translated mode from the terminal. It is not
used much by the Simulator - only when returning from the execution of the system com-
mand prior to the time when the Simulator’s special terminal I/O processing is reinitialized.

C Library Functions
Simulator Screen Management Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-47

7.4.6 simw_gkey: Translated Keyboard Input

simw_gkey()

This function gets a keystroke from the terminal and maps it to one of the accepted inter-
nal codes used by the Simulator. The internal codes are defined in simusr.h . This func-
tion should not output the character to the terminal. This function is a good candidate for
modification if you want to change the set of input control characters used by the Simula-
tor.

7.4.7 simw_putc: Output Character to Terminal

simw_putc(c)
char c;

This function outputs the character in the variable c at the current cursor and column po-
sition. It advances and updates the sim_const.curclm variable. This function is not used
often by the Simulator, and it is not very time critical when it is used, so the Simulator im-
plementation is just to call simw_puts() after creating a temporary string from the charac-
ter c.

7.4.8 simw_puts: Output String to Terminal

simw_puts(line,column,text,flag)
int line; /* Move cursor to this line for output */
int column; /* Move cursor to this column for output */
char *text; /* Text string to be output */
int flag; /* 0=non-bold, 1=bold on/off by {}, 2=all bold */

This function outputs a string to the terminal at the specified line and column. Highlighting
of output can be enabled either by setting the flag parameter to 2 or by enclosing text in
curly braces and setting the flag parameter to 1.

7.4.9 simw_redo: Repaint Screen With Output From Device

simw_redo(device)
int device; /* Use screen buffer from this device to repaint screen */

This function repaints the screen from a device screen buffer. It is normally only called
when re-entering the Simulator following a system command, after loading the device
state with the load s filename command, or after switching devices in a multiple device
simulation with the device command.

C Library Functions
Simulator Screen Management Functions

7-48 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.4.10 simw_redraw: Redraw Screen After Scroll Count

simw_redraw(count)
int count; /* Number of lines to scroll before repainting the screen */

This function scrolls up or down count lines in the display buffer, then redisplays the text
in the buffer at that position. This function only displays the text that is in the scrolling por-
tion of the display.

7.4.11 simw_refresh: Screen Update After Buffering Output

simw_refresh()

The Simulator buffers screen output in implementations other than MSDOS in order to de-
crease the time spent repainting the screen. This provides a fixed display effect for con-
secutive trace commands. The simw_refresh() function will take care of refreshing the
screen following buffering of screen output. It also resets the sim_const.scrnest variable
to 0 to coincide with the non-buffered status of the screen following the refresh.

7.4.12 simw_scrnest: Increase Screen Buffering One Level

simw_scrnest()

This function increments a counter to signify the screen output buffering level. The com-
panion simw_unnest() and simw_refresh() functions provide the output buffering oper-
ations for the Simulator. The sim_const.scrnest variable is incremented each time this
function is called.

7.4.13 simw_unnest: Decrease Screen Buffering One Level

simw_unnest()

This function decrements the sim_const.scrnest variable each time it is called. If the
screen buffering level drops below one, simw_unnest() will call simw_refresh() to update
the screen.

7.4.14 simw_winit: Initialize Window Parameters

simw_winit()

This function initializes any screen or keyboard parameters that are required for the Sim-
ulator terminal I/O environment. It is called whenever the Simulator is entered from the
operating system level, which includes the initial Simulator entry and re- entry following
the system command.

C Library Functions
Simulator Screen Management Functions

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-49

7.4.15 simw_wscr: Write String and Perform Logging

simw_wscr(text,command_flag)
char *text; /* Text string to write to screen */
int command_flag; /* Flag 1=string is a command, 0= not a command */

This function outputs the string to the terminal above the command line after scrolling the
display up one line. It also takes care of writing the text string to the proper log files spec-
ified by the Simulator log s or log c commands.

C Library Functions
Non-Display Simulator

7-50 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.5 NON-DISPLAY SIMULATOR

The Simulator package contains object libraries which support both display and non- dis-
play versions of the Simulator. The library nwsim contains functions available to the non-
display version of the Simulator. The library wwsim contains functions that may only be
used in a display version of the Simulator. For each device type there are also display and
non-display device-specific libraries named wwxxxxx and nwxxxxx where the xxxxx is
the device number (see Chapter 8, C Object Libraries).

The source code contained in snwdsp.c can be linked with the nwxxxxx and nwsim librar-
ies to create a non-display version of the Simulator. Elimination of the user interface func-
tions cuts the code size of the Simulator almost in half. However, all of the functions listed
in Section 7.4 and sim_docmd() , sim_gmcmd() and sim_gtcmd() described in Section
7.2, are sacrificed.

The remainder of the functions in Section 7.2 and all of the functions in Section 7.3 are
available in the non-display Simulator libraries.

Some major features of the Simulator are eliminated by the loss of the sim_docmd() func-
tion. In particular, there are no low-level entry points provided to set a breakpoint or to as-
sign input or output files to DSP peripheral functions. However, the basic functions re-
quired to create a device, load a program, execute the code, and test or modify device
registers are all still available. In addition, the dsp_save() function provides the capability
to save the state of the non-display version. The state file can later be reloaded by a dis-
play version of the Simulator for visual examination of the registers and memory contents.

The following sections cover several topics that concern the non-display version of the
Simulator. Section 7.5.1 deals with creating a new device. Section 7.5.2 describes how
to load a program or state file. Section 7.5.3 describes how to execute device cycles. Sec-
tion 7.5.4 describes how to test breakpoint conditions.

C Library Functions
Non-Display Simulator

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-51

7.5.1 Creating a New Device

The simcom.h file defines the maximum number of DSP devices in the constant
DSP_MAXDEVICES. A new device can be created and numbered from 0 to
DSP_MAXDEVICES-1. The structures are allocated by calls to the dsp_new() function
described in Section 7.2.13.

EXAMPLE

The following C source code illustrates the steps necessary to create 3 DSP devices.

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */

7.5.2 Loading Program Code or Device State

The display version of the Simulator provides the high level sim_docmd() function inter-
face. It allows the user to simply execute the high level load or load s Simulator com-
mands to load program code or a Simulator state file. The non-display version of the Sim-
ulator makes use of the lower level function calls, dsp_ldmem() and dsp_load() , to ac-
complish the same results. They are described in Section 7.2. The major difference from
their high-level counterparts is that no file-name expansion is provided in the lower level
calls.

The program code loaded by the dsp_ldmem() function may be any COFF format or OMF
format file. The OMF format is created as the output of versions of the macro assembler
prior to release 4.0 and of the Simulator save command. It is described in Chapter 6. The
COFF format files are the output of the macro assembler beginning with release 4.0, or
those saved by the Simulator save command with the suffix ".cld".

The Simulator state loaded by the dsp_load() function may have previously been saved
by a display or non-display version of the Simulator. The formats are the same.

The dsp_save() function is provided as a low-level entry point that saves the Simulator
state for a non-display version of the Simulator. It is the same function that is called during
execution of the high level save s command, which is only available in the display version.
The only limitation is that the full save filename must be specified. No automatic expan-
sion is done for the working path or filename suffix as in the higher level Simulator calls.
The dsp_save() function is described in Section 7.2.

C Library Functions
Non-Display Simulator

7-52 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.5.3 Executing Device Cycles

After creating a new device - as described in Section 7.5.1 - and loading a program or
state file - as described in Section 7.5.2 - the Simulator is ready to execute the program
code.

Execution will begin at the start address specified in the load file, or continue from the pre-
vious location in a Simulator state file. The user’s code may select a new execution ad-
dress by writing register "pc" using the dsp_wreg function.

The Simulator will advance the device state by one clock cycle each time the dsp_exec
function is called. The device pin states are updated each clock cycle, and can be exam-
ined or changed using the dsp_rpin , dsp_wpin , dsp_rport , or dsp_wport functions.

7.5.4 Testing Breakpoint Conditions

The display version of the Simulator provides a way to specify breakpoint conditions that
are evaluated each time dsp_exec is called. If the breakpoint condition is met, the Simu-
lator displays the enabled registers and clears the device structure sim_var.stat.execut-
ing flag (assuming the breakpoint action is halt).

The non-display Simulator does not provide a way to specify breakpoint conditions. It is
up to the user’s code to examine device registers or memory conditions and decide
whether or not to continue cycle execution. The device registers and memory can be ex-
amined using the dsp_rreg and dsp_rmem functions. The example program snwdsp.c
simply checks the Simulator cycle counter for device 0 and terminates execution after
some number of cycles.

Another variable that may be particularly useful in breakpoint testing is dev_var.flg_stat.
It maintains bit flags which signal end-of-instruction (DSP_GEOI), end of repeat cycle
(DSP_GEOR), and illegal opcode (DSP_GILLEG). The bit flag definitions are defined in
simdev.h .

C Library Functions
Multiple Device Simulation

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-53

7.6 MULTIPLE DEVICE SIMULATION

The SIMDSP Simulator initially simulates a single dsp device; but additional devices can
be created using the device command. Device to device pin connections or device to de-
vice memory map connections can be specified with the Simulator input command. The
following sections describe some details about the way the Simulator handles multiple de-
vice simulation. Section 7.6.1 describes the required steps which allocate and initialize
multiple dsp structures. Section 7.6.2 describes the method of interleaving device exe-
cution in order to maintain multiple device synchronization. Section 7.6.3 describes simu-
lation of the external memory space of the dsp devices. Section 7.6.4 describes multiple
device pin connections. Section 7.6.5 describes display of device output in the multiple
device environment.

7.6.1 Allocation and Initialization of Multiple Devices

Most of the higher level Simulator functions require a device index as one of the parame-
ters. The Simulator uses the device index to select a previously allocated DSP structure.
The DSP structures are allocated dynamically by calling the dsp_new function for each
device. The device type is also selected in the dsp_new function call. In the display ver-
sion of the Simulator, the device command handles the details of calling dsp_new . The
proper sequence of instructions necessary to allocate three DSP devices is shown below.

dsp_startup();
dsp_new(0,"56116"); /* Allocate structure for device 0, a 56116 */
dsp_new(1,"56116"); /* Allocate structure for device 1, a 56116 */
dsp_new(2,"56116"); /* Allocate structure for device 2, a 56116 */

7.6.2 Interleaving Multiple DSP Simulations

The dsp_exec function executes a single DSP clock cycle and updates the selected DSP
device structure. In order to simulate simultaneous multiple DSP execution, dsp_exec
should be called for every device before proceeding to the next clock cycle. The simdsp
Simulator executes a single clock cycle for each active dsp device, then halts if any active
device has cleared its sim_var.stat.executing flag. It allows Simulator commands, such as
register or memory modifications, on the viewed device until a command sets the execut-
ing flag again. The device which causes a breakpoint becomes the viewed device by de-
fault, but the viewed device can be changed with the device command without changing
the status of any device. A particular device can be halted by setting the CTRLBR flag in
its sim_var.stat structure. This has the same effect as typing CTRL-C at the keyboard
while a device is running. It breaks device execution at the end of the current instruction.
Note that it is not mandatory to wait for the sim_var.stat.executing flag to be set to begin
device execution, or to halt if the executing flag is clear. These are just convenience fea-
tures for the Simulator user interface. Device cycle execution can be advanced in single
cycle increments at any time by calling dsp_exec .

C Library Functions
Multiple Device Simulation

7-54 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.6.3 External Memory Definition

The Simulator package contains the C source file simvmem.c which contains all the ex-
ternal memory access functions used by the SIMDSP Simulator. These functions are de-
scribed in detail in Section 7.3. The functions, as written, will automatically simulate the
entire external memory space of all DSP devices, assuming that the operating system can
allocate enough memory to store the device structures for the devices.

The user may wish to modify the simvmem.c functions in order to define special external
memory configurations. The functions can be modified, for example, to simulate the re-
sponse of dual-port RAM or special memory-mapped peripherals. Another good reason
to modify the external memory functions is to increase the speed of the simulation. If the
user’s simulation only requires some minimum amount of external memory, then the vir-
tual memory management functions provided with the Simulator are probably overkill.

7.6.4 Multiple DSP Pin Interconnections

The dsp_exec function will automatically update the DSP device pin states by one clock
cycle change each time it is called. The display version of the Simulator will also retrieve
or send data to assigned I/O files as defined by the input and output commands. The
input command supplies a method of connecting device pins back to other device pins
on the same device as well as to device pins on another device.

The device pin states for any device can be examined or written using the dsp_rpin and
dsp_wpin functions described in Section 7.2. Simulation of pin to pin connection simply
requires reading the state of the output pin each cycle with dsp_rpin and writing it to the
input pin with dsp_wpin . A bidirectional pin connection requires reading and writing both
pins. The Simulator maintains separate buffers for input and output data for each pin, so
there is no problem writing a pin, even if it is defined as an output. The input value will be
stored, but will only be used if the pin is subsequently reconfigured as an input.

An entire port state can be read or written using the dsp_rport and dsp_wport functions
described in Section 7.2. The port and pin states are derived from the same storage vari-
ables in the device structure. The dsp_rport, dsp_wport, dsp_rpin, and dsp_wpin func-
tions just provide a convenient method of retrieving the data from this structure.

C Library Functions
Multiple Device Simulation

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-55

7.6.5 Multiple DSP Simulator Display

The Simulator display functions are contained in the source file scrmgr.c in the Simulator
package. This code supports a virtual screen for each simulated dsp.

The supplied display code uses a single window. The lines above the command line form
a scrollable region in which session output is displayed. The command line, error line and
help line are the three bottom lines of the display. Each allocated device contains screen
buffer memory which saves the previous 100 lines of output which is written to a device’s
scroll region. The terminal screen update is inhibited unless the sim_const.viewdev value
matches the device index, but the output is always placed in the device’s screen buffer.
The screen can be completely refreshed from a selected device screen buffer by execut-
ing the simw_redo function.

The device command allows the user to switch the displayed device. When it switches to
a new device, it refreshes the entire screen from the device’s display buffer.

C Library Functions
Reserved Function Names

7-56 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.7 RESERVED FUNCTION NAMES

The public function names used in the Simulator all begin with the prefixes dsp or sim .
Functions which begin with sim are only available when a display version of the Simulator
is created. Functions which begin with dsp are available to both display and non display
versions. The screen management functions all begin with simw_ . In general, functions
which begin with dsp_ or sim_ are higher level functions available for direct reference
from the user’s code; those beginning with dspl_ or siml_ are meant only for internal use
by the Simulator. The higher level functions and the screen management functions are
documented in Sections 7.2, 7.3, and 7.4. The public function names are listed in the file
named global.sym which is included with the distribution.

C Library Functions
Simulator Global Variables

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 7-57

7.8 SIMULATOR GLOBAL VARIABLES

In order to reduce conflicts with user variable names, the Simulator global variables have
been grouped together into several large structures. In general, the structure names be-
ginning with s are used defined in simusr.h and are only used in the display version of
the Simulator; while those beginning with d are defined in simdev.h and are used by both
the display and non-display versions of the Simulator. The prefixes st_ and dt_ are used
for structure names of device-type structures, that is structures which must be defined for
each device type. The prefixes sim_ and dev_ are used for structure names of general
device or simulation structures.

Global variable names may have a prefix dx_ , dv_ , sx_ , or sv_ . The prefix dx_ is used
for variables of dt_ structures. The prefix dv_ is used for variables of dev_ structures. The
prefix sx_ is used for variables of st_ structures. The prefix sv_ is used for variables of
sev_ structures. A list of Simulator global variables is included in the distribution file
named global.sym.

C Library Functions
Modification of Simulator Global Structures

7-58 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

7.9 MODIFICATION OF SIMULATOR GLOBAL STRUCTURES

The source file simglob.c , which is included in the Simulator package, contains the global
structures sv_const and dv_const . There are some useful modifications, described be-
low, that can be made to the constant definitions at the beginning of simglob.c . The sim-
glob.c module must then be recompiled and relinked using the make file provided with
the Simulator package. In addition to these, there may be device-specific modifications
that can be made to the Simulator (see Chapter 8, Modification of Device Global Struc-
tures).

DSP_MAXDEVICES This define constant determines the maximum number of devices
that can be allocated using the Simulator’s device command. As a default
it is set to 32.

DSP_CMDSZ This define constant determines the size of the previous com-
mand stack. The Simulator commands are stored in the stack and can be
reviewed using the ctrl-f and ctrl-b key entries. As a default the previous
command stack size is set to 10.

DSP_HISTSZ This define constant determines the size of the execution history
buffer, which stores device instructions as the Simulator executes. The buff-
er is used by the Simulator history command, and has a default size that
can save 32 instruction words.

DSP_WINSZ This define constant determines the size of the screen buffer that
is maintained and displayed by the scrmgr.c functions. It specifies the num-
ber of display lines that will be allocated for each device as they are created
with the Simulator device command. The user can use the ctrl-u , ctrl-t ,
ctrl-v , and ctrl-d key sequences to review display lines that have scrolled
off the screen. This constant should not be set to a value smaller than the
number of lines in the display window.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 8-1

Chapter 8
DEVICE-DEPENDENT INFORMATION

8.1 INTRODUCTION

The preceding chapters describe Simulator information that common to all of the dsp Sim-
ulator programs. This chapter describes information relating to the Simulator that is
unique for each dsp family Simulator. Each family Simulator contains several device types
that can be selected for simulation. Additional documentation for each device type is avail-
able using the Simulator help command.

8.2 SIMULATOR NAMES

There are several Simulators covered by this document. The Simulator names are, in
general, the prefix "sim" followed by the family device number. As examples, Simulator
names are sim56000 for devices in the DSP56000 family, sim96000 for devices in the
DSP96000 family, and sim56100 for devices in the DSP56100 family.

8.3 DEVICE NAMES

The Simulator device command, with no additional parameters, will provide a list of de-
vice types available in the Simulator. These device types can be used as a parameter of
the device command, or as a parameter of the dsp_ new function call, to create the de-
vice structures necessary for simulation of the selected device. There may be additional
non-disclosed devices available to the Simulator. It is necessary to specify an associated
password using the Simulator unlock command before a non-disclosed device will appear
in the list of device types and is available for selection. The dsp_unlock function call pro-
vides similar functionality to the unlock command.

8.4 C OBJECT LIBRARIES

The Simulator software includes object libraries that enable you to rebuild the Simulator.
A separate set of display and non-display libraries are provided, so you have the option
of generating a non-display version of the Simulator. The libraries with the prefix "ww", fol-
lowed by the family device number, contain the display version of the object modules. The
libraries with the prefix "nw", followed by the family device number, contain the non-dis-

Device-Dependent Information
Operating Modes

8-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

play versions of the same object modules. In addition, the libraries with the prefix "cm",
followed by the family device number, contain object modules required by both the display
and non-display versions of the Simulator. As an example, relinking the display version of
the sim56100 Simulator requires libraries ww56100 and cm56100 ; a non-display version
of the Simulator requires the libraries nw56100 and cm56100 .

8.5 OPERATING MODES

The reset command allows specification of the device operating mode. The Simulator on-
line help command "help mode" can be used to list the valid operating modes for the se-
lected device.

8.6 PERIPHERAL I/O

The device peripherals may have special I/O capabilities enabled by the Simulator input
and output commands. As an example, the SCI peripheral of the 56000 device will ac-
cept the strings "idle" and "break" from the attached input file. The special I/O capabilities
are documented in the on-line help for each peripheral. Use the command help followed
by the peripheral name to obtain help for the specified peripheral. Note that these special
modes just supplement the pin-data i/o capability that exists for all device pins. For a de-
scription of pin-data i/o see I/O File Pin or Pin Group Data on page 3-7

Device-Dependent Information
Modification of Device Global Structures

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 8-3

8.7 MODIFICATION OF DEVICE GLOBAL STRUCTURES

The device types available to the simulation are defined in the source module named with
the prefix "dsp" followed by the device family name. As an example, the file dsp56100.c
contains the global structures dx_56116 and sx_56116 , which define device-specific in-
formation about the DSP56116 device in the 56100 family. You may wish to modify this
module to define a new device type that can then be created by the Simulator’s device
command. The basic idea is to create a new device type and definition by modifying a pre-
vious definition in the "dsp" file. As an example, using the 56116 device in the file
dsp56100.c, the procedure would be:

Make a copy of dsp56100.c and name it something else. Modify the makefile file
to include this new module name for compilation and linking in the same
manner that makefile handles the dsp56116 .

In the new file, rename the dx_56116 structure to some name other than
dx_56116, and put a pointer to this new structure in the dx_all array in
the file simglob.c .

In the new dt_var structure, change the device type name to some name other
than "56116" - this is in the first member of the dt_var structure

In the new file, change the sx_56116 structure to some name other than sx_56116,
and put a pointer to this new structure in the sx_all array in the file sim-
glob.c .

After the above steps are completed, lower level structures and define constants in the
new module can be modified to change such parameters as on-chip memory size, number
of peripherals, or number and names of pins. Continuing with the 56116 example, below
is a list of the lower level structures and define constants associated with the 56116 that
may be changed in the new file:

DSP_PI_SIZE_116 This define constant determines the size of the on-chip program
memory.

DSP_PR_SIZE_116 This define constant determines the size of the on-chip bootstrap
rom memory.

DSP_XI_SIZE_116 This define constant determines the size of the on-chip X data
memory.

DSP_XP_SIZE_116 This define constant determines the size of the on-chip X memo-
ry-mapped peripheral register space.

Device-Dependent Information
Modification of Device Global Structures

8-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

dx_periph_56116 This structure can be modified to add peripherals to or remove
peripherals from the newly defined device. If you modify this structure, you
must also modify the sx_periph_56116 structure in a similar manner. The
file portb100.c is provided in source form with the Simulator package as a
model to be used when creating new peripheral structures.

bootrom This is the default initialization data for the on-chip bootstrap rom.
It is loaded at start-up and in response to the reset s command. You can
also change the contents of the bootstrap rom with the Simulator asm , load ,
and change commands.

xpin This structure determines the names assigned to device pins, as
well as the order in which the pins are displayed in output pin lists. It also
provides a cross-reference from the pin name to the physical bit and storage
port in which the Simulator maintains the pin data. The portindex cross-ref-
erence is an offset to the proper dev_xpval structure from the xportval
pointer in the dev_var structure. Each pin has a primary name and a possi-
ble alternate peripheral function pin name. You may modify the names or
delete or add dt_xpin structures from this array, but do not change the port-
index and pinmask members of the dt_xpin structures.

mem_56116 This array of dt_memory structures can be modified to change
parameters associated with the DSP56116 memory attributes. The name
member is the memory name used by the Simulator commands to reference
the memory space. The memsize member determines the size of arrays al-
located for on-chip memory. The memattr member determines whether the
memory is located on or off chip and whether it is ram or rom. The romval
pointer can point to initialization data for the memory space. If it is NULL, the
memory space will be initialized to zero at start-up and in response to the
reset s command. Although you may change the memory names, memory
size, memory attributes, and initialization data, do not add or delete
dt_memory structures from the mem_56116 array.

pval This array of dt_xpidata structures is used by the Simulator to ini-
tialize the input pin data in the dev_var.xportval structures at Simulator start-
up and in response to the reset s command.

xports This array of dt_xpid structures determines port names that can
be used in the Simulator input and output commands. These names are in
addition to the peripheral names that are specified in the individual periph-
eral modules. The port names are just a convenient way to specify a sub-
group of pins within a single physical port for input and output operations.

Device-Dependent Information
Modification of Device Global Structures

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 8-5

dx_56116 This structure is mostly a conglomeration of the other substruc-
tures defined within the module for this device type. The only member of this
structure that should be modified is devname , which will be used to specify
the new device type in the Simulator device command

mem_dispfw56116 This structure provides display field width information for the dif-
ferent memory spaces defined in the mem_56116 defined previously.

hlp_56116 This structure provides the help pointers that will be used by the
Simulator when help is requested for this device type.

sx_periph_56116 This structure points to display information for the registers of
each peripheral; the actual display information is defined locally in each pe-
ripheral module. The file portb100.c is provided in source form with the
Simulator package as a model to be used when creating new peripheral
structures.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-1

Chapter 9
GRAPHICAL USER INTERFACE

9.1 INTRODUCTION

9.1.1 Target Audience

This chapter is intended to be read by those who will use the Graphical User Interface
(GUI) version of the development system. It describes the use of the GUI for the DSP Sim-
ulator. Each operation is described, with illustrations of the windows, dialog boxes, and
expected outputs which result from the operation. Important features are indicated on
each illustration.

9.1.2 Host System Requirements

The graphic interface version of the DSP Simulator requires the following minimum sys-
tem configuration:

9.1.2.1 SUN workstation

Any SPARCstation 2, with at least xxMb of free disk space.

9.1.2.2 Hewlett Packard workstation

Any HP workstation, with at least xxMb of free disk space.

9.1.2.3 IBM PC

A 80386 system or better with a math coprocessor, minimum 8Mb ram, color SVGA dis-
play at 800 by 600 resolution or better, at least xxMb free disk space. Preferred configu-
ration is 80486 DX system or better, 8Mb ram. A high resolution SVGA (1280 by 1024)
17” display will give a more productive working environment.

Graphical User Interface
Introduction

9-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.1.3 Platform Specifics

The operation of the Simulator under the graphic interface varies slightly from one plat-
form to another. This is in the area of certain windows and dialog boxes supplied by the
platform itself. In all aspects of the Simulator itself, operation, although not the details of
appearance, is consistent across the platforms.

Although this section addresses some of the relevant differences between the platforms,
it is assumed that the reader is familiar with his own environment. Although there are fre-
quent references to window operations, no attempt is made to teach the windows or any
other system.

After this introductory section, all screen illustrations are taken from the WINDOWS sys-
tem.

9.1.3.1 General Window Behavior

Under Windows, all the Simulator windows are constrained within the area of the main
window. To use the whole screen, the main window must be maximized. When one of the
open windows is minimized, it appears as an icon within the main window.

Dialog boxes, however, appear in the center of the screen and are not bound by the main
window. They may be moved as desired, some can be re-sized, none can be minimized,
and all must be dismissed before any other operation may be performed.

Under motif, the windows are not bound by the main window. They may use the whole
screen without restriction. When a window is opened, an icon appears in the main win-
dow. When a window is minimized, by clicking in the ‘down triangle’ in the top left corner,
it becomes an icon at the right of the screen. These icons are not labelled, so use the icons
in the main window (which are labelled) to choose which window to reopen.

Figure 9-3. Main window for Sun SPARCstation 2

Minimize with
the down triangle.

Click with right
mouse button to
drop menu.

Icons represent
active windows Use
to reopen mini-
mized windows or
bring hidden win-
dows to front.

Click on title bar
with right mouse
button to drop
window control
menu to exit win-
dow.

Graphical User Interface
Introduction

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-3

9.1.3.2 File Chooser

The dialog box supplied by the platform for the purpose of selecting a file or directory var-
ies significantly in appearance, although not in overall function. All have the same basic
features:

• Drive selection (built into the ***X file structure)

• Parent and sub-directory selection

• List of files in current directory

• Accept selection or cancel operation

• A space to type a file name directly

Figure 9-4. SUN File Chooser Dialog Box

Figure 9-5. WINDOWS File Chooser Dialog Box

Pin if required.

Scroll horizontally
through directories -
parents to left,
subs to right.

Select a directory in
one column gives list
of files/dirs in next. Enter file name

if desired.

Scroll through
list of files and
directories.

Type name or
wildcard filter.

[OK] to open,
[CLOSE] to dismiss.

Open folder is
current directory;
above is path,
below is

Select drive.

sub-directories.

Scroll through
files or directories.

Click on required file.

Select files to view
from pull-down list.

Graphical User Interface
Introduction

9-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.1.3.3 Multiple Operations

Many operations may need to be performed several
times in succession. These include setting breakpoints,
specifying display radix for various memory areas, etc.
To avoid navigating the menus each time, the dialog
box may be retained for (say) setting the next break-
point.

Under Windows, such dialog boxes have three buttons
- usually labelled [OK], [APPLY], [CANCEL]. Clicking on
[OK] performs the operation and dismisses the dialog
box, [APPLY] retains it for further operations. When the dialog box is no longer needed, it
must be dismissed by using [OK] on the last operation, or [CANCEL]. No other GUI oper-
ations can be performed until the dialog box has been dismissed.

Under Motif, the same effect is achieved in a different way. There is
only one button, [APPLY], which does what the dialog box requires,
and then usually dismisses it. The dialog box can be made (semi) per-
manent by clicking on the pin in the top left corner, so it will not be dis-
missed after clicking the [APPLY] button. The dialog box may then be
used as many times as required; click on the pin again to unpin it, and
the window closes. To dismiss the dialog box, double-click on the pin, i.e. ‘pin and re-
lease’, and the dialog box closes.

9.1.3.4 Multiple Selections

Many dialog boxes permit the selection of several items from the list. This is handled dif-
ferently on different platforms.

On Windows or the HP, a click with the left mouse button selects one item and clears any
previous selection. Click and drag selects a range of consecutive items; the list scrolls
when the drag reaches the end of the window. To add to an existing selection, hold the
control key while clicking or click/dragging the extra items.

On the SUN, click or click and drag with the left button to make a selection and clear any
previous selection; use the middle button to add to an existing selection.

9.1.4 Graphical Interface Functions Overview

The GUI provides a graphical interface to the debugger for the Motorola families of DSP
devices. Versions support both the software DSP Simulator and the ADS emulation sys-
tems.

Graphical User Interface
Introduction

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-5

The GUI consists of a set of tools - menus, dialog boxes, windows and buttons. Using
these tools, the user selects the desired operation, and the interface generates the appro-
priate commands for the development system. These commands are passed to the de-
bugger via the COMMAND window, and the output and other information displayed in the
SESSION and other windows. The user may also enter commands directly into the COM-
MAND window, so retaining direct control over the debugging process if desired.

These features provide full control over the development process. The menus provide the
control functions, the dialog boxes gather additional information as necessary, and the
windows display information, and also provide facilities to modify certain items such as
register and memory values.

This section describes in general terms the range of features offered by the GUI. It is in-
tended to provide a brief overview without going into great detail on any subject. Refer-
ences are included to the appropriate sections for further study.

9.1.4.1 Structure

The GUI provides an interface to the command line Simulator, generating commands
from the user actions, and interpreting the responses.

Figure 9-6. GUI Interface to Simulator

Expression Evaluator

Parser

G U I Commands

Interface Layer

Simulator Engine

Assembler/Disassembler

Graphical User Interface
Introduction

9-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.1.4.2 Starting the Simulator

At system start-up, the main window opens. This
provides the menu for the system, and the button
bar for convenient access to frequently-used oper-
ations.

Other windows may also open. This is controlled
by the Preferences item in the File menu. If
checked, the positions of the windows are saved
on exit, so the GUI starts with the required win-
dows already open.

Running under Microsoft Windows, the main win-
dow is the whole work area. All windows are held
within its bounds. To use the whole screen, it is necessary to maximize the main window,
and similarly, when the main window is minimized, all the other windows go with it. On
other platforms, the daughter windows are free to use any area of the screen. An icon rep-
resenting each open window appears on the main window, which can be used to find a
window hidden behind others, or reopen a minimized window.

9.1.4.3 File Access Paths

The debugger makes use of two types of path for creating and accessing files. The main
path is used for created files (assuming no path is explicitly specified with the file name),
and is the first place searched for an input file. This is known as the WORKING DIREC-
TORY.

ALTERNATE SOURCE PATHS are also searched, in turn, if an input file is not found in
the working directory. Thus object files may be stored in one directory, and sources in an-
other, and each may be accessed easily.

These paths are set up with Path... in the File menu.

9.1.4.4 Loading Object Files

The development system can load object files in COFF and OMF formats into simulated
memory. These files may be produced by the DSP assembler and C compiler, with file
types ‘.CLD’ and ‘.LOD’. COFF files may contain symbolic debugging information in addi-
tion to the object code, permitting the use of variable names and labels during the debug
session. Use the FILE menu, LOAD option, to load the program into memory. If the source
files are present (that is, in the object directory or one of the directories set up with FILE/
/PATH), the SOURCE window displays the source code around the current instruction.

Figure 9-7. Simulator Main Window

Graphical User Interface
Introduction

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-7

9.1.4.5 Examining and Changing Memory

After loading the program, you can look at the program in memory. The ASSEMBLY win-
dow (Windows menu, Assembly option) lists the memory contents, disassembled. Sym-
bolic references are included if symbolic data was loaded from a COFF file. The ASSEM-
BLY window also permits editing the program with assembler instructions, and one way
of setting and clearing breakpoints. As the program executes, the ASSEMBLY window au-
tomatically refreshes to display the area around the PC.

In addition, the MEMORY window displays a block of memory as numeric values (Win-
dows menu, Memory option). You can control the radix used to display each memory lo-
cation (Modify menu, Radix option) individually. So if one location is a counter, it can dis-
play in decimal, if another is a bit mask, binary or hexadecimal might be more suitable.
The MEMORY window can be re-sized to display more or less memory (the number of
columns adjusts to use the width given), scrolled to cover the whole memory address
range. Click on a location to modify an individual memory location. Several MEMORY win-
dows may be opened, to display different memory areas concurrently.

To initialize a block of memory to the same value in each location, as in clearing a buffer,
use the Modify menu, Memory option.

9.1.4.6 Examining and Changing Registers.

The registers can also be monitored with the REGISTER window (Window menu, Regis-
ter option). All registers can be displayed, scroll to locate those you want. Registers can
also be modified, as with the MEMORY window; see also Modify menu, Register option.

9.1.4.7 Program Execution - The Tool Bar

The tool bar provides convenient control of program execution. The green light allows pro-
gram execution to proceed until interrupted, the red light interrupts it. STEP executes ei-
ther an instruction, or a line of code, depending on whether the source information is avail-
able. NEXT is the same as STEP, except on meeting a call to a subroutine (or function, if
you speak C). STEP treats the function like the rest of the code, and stops after each in-
struction in the function. NEXT treats the function as one instruction, and stops after it is
finished.

9.1.4.8 Device Selection

The debugger can support multiple DSP devices, up to 32 depending on the configuration.
Each device may be configured as part of this session, or excluded.

Graphical User Interface
Introduction

9-8 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

The DEVICE button selects which DSP processor is affected by user commands at any
given time - which device’s memory bank is displayed in this MEMORY window, which
device’s register is being changed, which device is affected by this breakpoint. This is
called the DEFAULT DEVICE. The DEVICE entry in the MODIFY menu can configure and
turn devices ON or OFF; when instructions are executed, all devices which are on will ex-
ecute in turn.

9.1.4.9 Breakpoints

Program execution is controlled by the breakpoints. There are several ways of specifying
breakpoints. The SOURCE window displays the source code for the executing program;
double-click on a line of code to set (or clear) a breakpoint. There is no indication given in
the SOURCE window, but the COMMAND window shows the command to set the break-
point (or clear it), and the corresponding address in the ASSEMBLY window will be high-
lighted blue to show the position of the breakpoint. Similarly, a double-click in the ASSEM-
BLY window will set or clear a breakpoint on any instruction, not just the start of a line of
code.

These are HALT breakpoints - the program is halted and control returns to the user. With
the Execute menu, breakpoints can have several other actions associated with them. For
example, incrementing a counter (four are available) lets you know how many times a
piece of code was executed, a note can be written to the SESSION window record the
event that the breakpoint was executed, or a selection of registers, memory locations, and
expressions (values which may never have been calculated by the program during its nor-
mal execution, but which may be useful for you to know) can be displayed to the SESSION
window. All this is set up by Breakpoint in the Execute menu.

So far all the breakpoints have been associated with program locations. It is also possible
to place breakpoints in the data, so that when a specific register or memory location (or
memory block) is accessed - wherever the PC is at the time - the breakpoint occurs and
the specified action is performed. It is even possible to specify an expression as the break-
point condition, so that, for example, if a pointer ever gets past the end of a buffer, the
breakpoint occurs.

It is possible to set multiple breakpoints on a single location or event, to specify multiple
actions - say increment a counter, display some values, and halt - at the same time.

So now we can load a program, look at and change the memory and registers, patch the
program, execute all or part of the program, set breakpoints to interrupt execution when
certain events occur, and we can monitor program activity with the MEMORY, REGIS-
TER, ASSEMBLY and SOURCE windows.

9.1.4.10 Simulated Input and Output

DSP programs do not usually exist in isolation. We need to be able to simulate interaction
with the electrical world outside the device. This is handled by Input and Output in the File
menu.

Graphical User Interface
Introduction

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-9

Input associates a data file with some part of the device. Every time that entity is read, the
value returned to the program is provided by the data file. Input from a file can be associ-
ated with a memory location, a group of device pins, a port, or a peripheral. So, for exam-
ple, every time the program reads location X:$FFE0, the value returned is taken from the
file.

This simulated input may be intended to represent a data stream, so that each access
gets the next item. In this situation, time is not a consideration, and each access just gets
the next data item. Each entry in the file can be read once, and only once, and cannot be
skipped.

However, DSP devices frequently operate in the world of real time. It may be necessary
to provide input, not on the basis of ‘next in line’, but ‘what should be input at this time ’.
To allow this, simulated real time is maintained in the form of a cycle count. This cycle
count may be used as the basis for simulated input with TIMED INPUT. Here the data file
contains not single items of data, but time/data pairs. These are interpreted as “at or after
this cycle count, return this data value”. That value will remain in effect, and may be read
many times or never, until the cycle count in the next time/data pair. At that time, the new
data value will be available for input until it, too, is superseded by the next value.

Simulated output is similar. When a value is written to the specified location, pin, port, etc.,
a record is written to the output file. This may be pure data, or time/data pairs. Although
intended to simulate output, this technique can also be used to provide a record of values
written to a particular location.

Simulated input also provides for communication between multiple devices in a simula-
tion. Device pins may be tied together, so the value returned when reading a pin depends
on the state of another pin on the same or another DSP device. Similarly, memory loca-
tions may be connected, so the value read from one location may be provided by the value
stored in another.

9.1.4.11 Stream File Support

Support is also provided for the basic C stream files, STDIN, STDOUT and STDERR. A
C program running on the DSP device may use these files, and the IO will be handled by
the host. See File menu, Stream to enable and disable stream IO, and File menu, Redirect
to redirect the streams to files on the host system. If stream support is disabled, or the file
accessed has not been redirected, the request is ignored. Output is discarded, no input is
returned.

9.1.4.12 COMMAND and SESSION Windows

There are two windows which are involved in most GUI operations. These are the COM-
MAND and SESSION windows.

Graphical User Interface
Introduction

9-10 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Most GUI operations generate commands for the debugger. These commands are
passed to the debugger, and stored in a history buffer which is displayed in the COM-
MAND window. Stored commands may be retrieved, edited and re-executed. A command
entry line permits commands to be entered manually, and a help line gives the syntax of
the command being entered. There is only one COMMAND window, shared among all the
devices in use.

The SESSION window is, in effect, the main screen for the current device. Whenever the
debugger generates output, it is written to the SESSION window. When a command is ex-
ecuted, it is echoed in the SESSION window. When an error is detected, it is reported in
the SESSION window. The Display menu basically causes information to be output to the
SESSION window.

9.1.4.13 Command and Session Log Files

All activity in the COMMAND and SESSION windows may be recorded to a log file. See
LOG in the FILE menu.

All commands entered through the COMMAND window (manually or from the GUI) may
be written to a log file. This can serve as a record of the command input to a session, but
it can also be used as command input itself. A MACRO file is an ASCII text file containing
ADS/Simulator commands, which can be read and executed. A command log is one way
of creating such files. See Macro in the File menu.

All activity in the SESSION window can be logged as a permanent record of a debugging
session. Thus all the breakpoint data, memory and register values output to the SESSION
window, may be examined and analyzed later.

Although there is only one SESSION window, each device has its own output buffer. The
SESSION window displays the buffer for the current device; activity on any other device
will be recorded in its own buffer (and possibly also written to its own SESSION log file),
and displayed when that device becomes the current device.

9.1.4.14 Save Files

At the end of a development session (or indeed any other convenient time), all or part of
the system status may be saved.

The entire debugger configuration - all memory and register contents, counters, display
settings, breakpoints, etc., may be saved to a Simulator status file. This may be reloaded
later, and development may proceed from where it was interrupted. This is handled by
Save State and Load State in the File menu.

Memory contents may be saved as COFF or OMF object modules. These files will contain
any patches applied during the session. See Save... in the File menu.

Finally the window positions may be saved on exit. See Preferences in the File menu. The
next time the debugger is used, the windows will open where they were left.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-11

9.2 FILE menu

The File menu handles all operations associated
with file handling. The operations covered are:

•Set File Access Paths. Specifies a primary directory as the
default for all file operations, and alternate paths for file
read operations. Separate paths are maintained for each
DSP device.

•Load and Save operations for loading object modules into
memory, writing selected memory areas out into object
modules, and saving and reloading the entire status of the
development system.

•Simulate Input and Output for the development system.
Provides simulated data for a program, and saves output
produced by a program.

•IO Streams and IO Redirect provide a basic stream I/O
environment for C programs running on the development
system. Stream IO may be enabled or disabled, and the
basic stream files STDIN, STDOUT, STDERR redirected
to files on the development host.

•Command and Session windows may be logged to files.

•Commands in a Macro file may be executed.

•About displays the version of the program, and claims and
acknowledges copyright.

•Preferences controls the saving of window positions.

•Exit the debugger.

9.2.1 FILE//PATH//...

A separate file search path is maintained for each de-
vice. FILE//PATH//SET sets the default directory, re-
ferred to as the WORKING DIRECTORY, for all file ac-
cesses for the current device (see MODIFY//DEVICE).
FILE//PATH//ADD sets the ALTERNATE SOURCE
PATHS for the current device.

On all file operations, the working directory specified in FILE//PATH//SET is used as the
initial directory in the file open dialog box.

Graphical User Interface
FILE menu

9-12 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

The alternate source path is used if a command is typed directly into the command win-
dow, or a file name is typed into a dialog box, specifying a file name without a path. In this
case, an output file will be created in the working directory, and an input file will be
searched for, initially in the working directory, and if not found there, in each alternate
source directory in turn until found.

FILE//PATH//CLEAR... removes all alternate source directories specified by FILE//PATH/
/ADD. All future file accesses for this device will only use the working directory.

Figure 9-8. FILE//PATH/SET, ADD dialog Box

9.2.2 FILE//LOAD//MEMORY

The FILE//LOAD//MEMORY... menu items read object mod-
ules in OMF or COFF format into the DSP memory for the
current device (see MODIFY//DEVICE//SET DEFAULT).
Complementary functions FILE//SAVE//MEMORY... are
available to preserve memory contents in OMF or COFF files
which may themselves be loaded.

If MEMORY COFF load is selected, a dialog box gives the
choice of loading memory, debug symbols or both. Other-
wise, the operation is identical for both OMF and COFF files.

Adjust dialog box
size for number of
columns shown and
length of list.

Use ‘>’ and ‘<‘ buttons
to scroll horizontally
through directory levels.

Shows path before leftmost
column. Click to open pull-
down list and select a direc-
tory from list.

Dialog menus to select
device, directory list order,
previously-visited directo-
ries.

Displays currently
selected directory.
May also click and
enter path directly.

Single click and
SELECT sets path to
last selected directory.

Single click and OPEN
(or double click) lists
directories available in
last selected directory.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-13

Figure 9-9. FILE//LOAD//COFF, OMF dialog Box

9.2.3 FILE//SAVE//MEMORY...

FILE//SAVE//MEMORY... menu items save contents of
memory into DSP COFF or ASCII OMF files which may later
be reloaded with the Simulator or in any other environment
where such files may be used.

A dialog box is used to specify which area of memory is to be
written, by specifying the memory space (p, x, y, etc.) and the
address range. A separate operation is required for each
memory space to be saved.

FILE//SAVE complements FILE//LOAD//MEMORY.

Initial dialog box is only used
with COFF files to select the
class of data to be loaded,
before starting the file search
dialog box.

Select from load-
ing memory,
debug symbols,
or both.
Usual operation is
to load both.
Might load sym-
bols only after
loading patched
memory saved
after previous
debug session.

May enter
name of load file
manually if
desired, [OK] to
load.

Click to open file
access dialog box.

Load OMF file opens file
chooser dialog box directly.

Select drive from
pull-down list.

May type file
name directly.
May include
drive and path
or use path
shown in rest of
dialog box.

build path from list
by double-click.

Select desired file type from
pulldown list to specify which
files are displayed in list.

Double-click on
required file or Single-
click and [OK] to load.

Graphical User Interface
FILE menu

9-14 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Figure 9-10. FILE//SAVE//COFF, OMF dialog Box

Both the OMF and COFF
options open the SAVE
MEMORY dialog box.

Select the required
memory space from
the pull-down list.

Tab to (or click on) the
address range fields
and enter the memory
range to be saved. ‘$’
prefix = hexadecimal.

Click here to enter the required
file name manually. Device and
path may be specified. If omitted,
will use working directory or
alternate source path.

Enter file name
directly to specify
new file name.

Double-click on
required file or Sin-
gle-click and [OK] to
save. Another dialog
box will open to
confirm existing file
is to be replaced. Select desired file type from

pulldown list to specify which
files are displayed in list.

Select drive from
pull-down list.

Select directories
from list by double-
click to build path.

Or click to
open file
chooser.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-15

9.2.4 FILE//SAVE//STATE

 - see FILE//LOAD//STATE

9.2.5 FILE//LOAD//STATE

the LOAD and SAVE STATE menu items allow the state of
the entire Simulator to be saved and later reloaded. This in-
cludes the state of all DSP devices in the system, their device
type, and for those devices which are enabled, the entire
contents of memory, registers, counters, status registers, pe-
ripheral registers, etc. Additionally, the state of the GUI is
saved, including the command history buffer, and the ses-
sion output buffer for each device.

This may be used in several ways. A protracted development
session may be saved before a break, and reloaded after the

interruption to be continued where it was left off. Alternatively, if a particular part of a pro-
gram is proving troublesome, the state may be saved just before the problem area, sim-
plifying the setup for repeated attempts to isolate the problem. Or a set of standard rou-
tines and data areas may be pre-loaded in a Simulator state file, making it easy to set up
the environment for testing some new code

The dialog boxes for LOAD//STATE and SAVE//STATE are identical in layout and opera-
tion. Only the titles differ.

Figure 9-11. FILE//LOAD STATE, SAVE STATE dialog Box

Enter file name man-
ually if desired. State
files use extension
‘.SIM’.

Select drive from
pull-down list.

Select desired file type from pulldown list
to specify which files are displayed in list.

Select directories
from list by double-
click to build path.

Double-click on
required file or
Single-click and
[OK] to save. On
SAVE, another
dialog box will
open to confirm
existing file is to
be replaced.

Graphical User Interface
FILE menu

9-16 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.2.6 FILE//INPUT//OPEN

FILE//INPUT//OPEN reads data from the terminal or a file to pro-
vide simulated input for a peripheral, port, pin or memory loca-
tion in the default device. Whenever the program reads the
specified object, the value returned is determined by the data
file.

The data file may contain data only, in which case each access
to the object will return the next value in the data file. Alternative-

ly, the file may contain time/data pairs. In this case, each pair specifies the value to input
at or after the specified cycle count. Repeated accesses will return the same value until
the simulated cycle count reaches the time specified in the next time/data pair.

Figure 9-12. FILE//INPUT//OPEN dialog Box

Specify type of
object to receive
data.

Select default radix used in
data file. Radix specifiers
may also be used in file.

Depending on type of object
selected, other fields will be acti-
vated to enter relevant details.

Click here for
timed data
file. Default is
data only.

May specify file
name manually.
Default file type
is ‘.IO’ for data
only, ‘.TIO’ for
timed data.

Select data from
file or entered at
terminal.

Specify Input #
for this input file.
Next available
number is offered.

Click to open
file chooser.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-17

9.2.7 FILE//INPUT//PIN

INPUT PIN provides a logical connection to a pin on the default
DSP device from another DSP device pin - either on the same
or a different device. Thus when a DSP device reads a pin which
has been connected, the value returned depends on the state of
the specified source pin.

Note that all FILE//INPUT reference numbers must be unique.
Using INPUT # 1 for INPUT//PIN will close any INPUT//..... set

up previously with INPUT # 1.

Figure 9-13. FILE//INPUT//PIN dialog Box

9.2.8 FILE//INPUT//ADDRESS

INPUT ADDRESS provides a logical connection from a memory
location in one DSP device to another memory location - either
in the same or a different device. Thus when a DSP device reads
a memory location which has been linked with another location,
the value returned depends on the contents of the source loca-
tion.

Note that all FILE//INPUT reference numbers must be unique.
Using INPUT # 1 for INPUT//ADDRESS will close any INPUT//..... set up previously with
INPUT # 1.

Select output pin
on selected device.

Select which of
the active
devices pro-
vides the pin
output.

Select input pin on
current device from
pull-down list.

Specify Input #
for this pin-to-
pin connection.
Next available
number is
offered initially.

Graphical User Interface
FILE menu

9-18 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Figure 9-14. FILE//INPUT//ADDRESS dialog Box

9.2.9 FILE//INPUT//CLOSE

INPUT//CLOSE closes all or selected simulated inputs to the de-
fault device.

A dialog box opens, offering all of the currently open input num-
bers for the default device.

Select the inputs to be closed, using the appropriate combina-
tion of mouse clicks, <CTRL>-CLICK, and CLICK-AND-DRAG.

Then close all selected inputs by clicking [OK].

Figure 9-15. FILE//INPUT//CLOSE dialog Box

Select source
memory location
on selected device.

Select source
device from
pull-down list.

Select target memory
space for current device
from pull-down list and
enter address.

Specify reference num-
ber for this memory-
to-memory connec-
tion. Next available
number is offered.

Select a sin-
gle INPUT
number with
a click.

All INPUTS set up
for the current
device are listed in
the scroll box. Select
those to be closed.

Select a
range by
click and
drag.

Select multiple individual
input numbers by clicking
on the first one, then
<CTRL>-CLICK to select
additional input numbers.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-19

9.2.10 FILE//OUTPUT/OPEN

FILE//OUTPUT writes a single data item from the default device to
a file or to the session window (terminal). The data item may be a
single memory location, a port, a range of pins, a peripheral, or ex-
ecution history. A separate output file must be established for
each data item to be written.

A record is output each time a data item is written or when a pin
changes state.

HISTORY writes a record to the file for each instruction execution. EXTENDED HISTORY
writes a record for each execution cycle. The last record in the file is always the next in-
struction to be executed.

The output record contains a record number, the optional timing field containing the cycle
number, and the data value. For the history file, the data comprises the PC, the instruction
word(s) in hexadecimal, and the disassembled instruction.

Figure 9-16. FILE//OUTPUT//OPEN dialog Box

Select
data to
file or ses-
sion win-
dow.

Enter file
name for file
output.
Default exten-
sion is .IO for
untimed data,
.TIO for
timed data.

Click to
open file
chooser

Select radix
to be used
for data out-
put. Not
available
for History
output.

Depending on type of
object selected, appropri-
ate fields will be activated
to enter relevant details.

First select type of
data to be written.

Set Output
File No.
First avail-
able no. is
offered.

Check to write
timing infor-
mation to file.

Graphical User Interface
FILE menu

9-20 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.2.11 FILE//OUTPUT//CLOSE

OUTPUT//CLOSE closes all or selected outputs from the default
device.

A dialog box opens, offering all of the currently open output num-
bers for the default device.

Select the outputs to be closed, using the appropriate combina-
tion of mouse clicks, <CTRL>-CLICK, and CLICK-AND-DRAG.

Then close all selected outputs by clicking [OK].

See FILE//INPUT//CLOSE for close dialog box usage illustration.

9.2.12 FILE//IO STREAMS//...

FILE//IO STREAMS enables or disables stream I/O for C pro-
grams running on the current device. The standard stream files
are supported - STDIN, STDOUT, and STDERR. Any references
by C programs to these files may be redirected to files on the host.
See FILE//IO REDIRECT.

Stream file handling may be configured independently for each
device. By default streams handling is enabled.

If a C program attempts to access a stream file while it is not en-
abled and redirected, the access is ignored. Output is discarded, and a standard value is
supplied as input.

9.2.13 FILE//IO REDIRECT//...

FILE//IO REDIRECT//STREAM redirects the selected stream on
the current device to a file on the host. Each stream file may be
assigned individually; unwanted streams do not have to be redi-
rected.

Streams may be redirected whether stream support is enabled or
disabled; however, for the redirection to be effective, stream oper-
ations must be enabled. Disabling stream support while a stream
is redirected does not terminate the redirection. It merely makes it

ineffective until streams are enabled again.

FILE//IO REDIRECT//OFF ends redirection of one or more streams for the current device.
Only streams which have previously been redirected may be selected.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-21

Figure 9-17. FILE//IO REDIRECT//... Dialog Boxes

9.2.14 FILE//LOG//COMMANDS

FILE//LOG//... menu items control the creation of files
containing a record of a debugging session. Recording
may be started and terminated at any time during the ses-
sion.

Selecting FILE//LOG//COMMANDS opens the Open Log
File dialog box. If an existing file is selected for logging,
an action confirmation box opens, with options to append
to the existing file, overwrite it, or cancel the operation.

The command log file has two main purposes. Its obvious
purpose is to record a development session. In addition, the log file may also be used in
the GUI as a macro file (see FILE//MACRO), when all the commands recorded in the log
file will be executed. This file is a standard ASCII text file, and may be modified with any
text editor as desired.

Note that nearly all GUI operations, including menu operations and window interaction,
result in commands executed in the COMMAND window, and will thus be stored in the log
file

Select stream
to redirect.

Enter file name
manually or...

... Click to
open File
Chooser.

Select stream(s) to
close. Only redi-
rected streams are
offered. Then click
[OK] to close.

Graphical User Interface
FILE menu

9-22 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

.

Figure 9-18. FILE//LOG//COMMANDS dialog Box

9.2.15 FILE//LOG//SESSION

FILE//LOG//SESSION logs the SESSION window for the
active device (see MODIFY//DEVICE//SET DEFAULT) to
a file. Logging may be started and stopped at any time. A
separate log file may be established for each device. The
SESSION window need not to be open for the session log
to be written.

Selecting FILE//LOG//SESSION opens the Open Log File
dialog box. If an existing file is selected for logging, an ac-
tion confirmation box opens, with options to append to the
existing file, overwrite it, or cancel the operation.

Everything output to the SESSION window while in REGISTER mode (see DISPLAY//
VIEW//REGISTER) is written to the session log file. Changed values and error messages
displayed in red in the SESSION window are enclosed in braces ({}).

Enter file name manually if desired.
Command log files use extension ‘.SIM’.
Use wildcards to specify which files are
shown in file list.

Select drive from
pull-down list.

Select desired file type from
pulldown list to specify which
files are displayed in list.

Select directories
from list by double-
click to build path.

Double-click on
required file or
Single-click and
[OK] to open log.
Another dialog
box will open to
confirm if existing
file is to be
replaced.

Specify action to be
taken if file selected or
entered already exists.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-23

Using the LIST FILE window, the session log can be viewed without closing the log first,
bypassing the limit on the session buffer size. However, anything written to the SESSION
window after opening the LIST FILE window will not be accessible in that window

Selecting LOG//SOURCE DISPLAY STATUS writes an additional line to the SESSION
log. This requires that the SOURCE window must be tracking the source, or the SESSION
window must be set to VIEW SOURCE in the DISPLAY menu...

Figure 9-19. FILE//LOG//SESSION dialog Box

9.2.16 FILE//LOG//PROFILE

Use FILE//LOG//PROFILE to create a profile or analysis
of a program executing on the Simulator. Before opening
the profile log, it is necessary to load the program to be
profiled from a COFF (.cld) file, loading both memory and
symbols.

The dialog box is similar to those used for other log files.

The profiler provides a detailed analysis of all aspects of
instruction execution from the time it is turned on until it is
turned off again. Two output files are produced, a ’.log’ file

which is a text file suitable for any printer, and a ’.ps’ file, a postscript file containing the
same information as the ’.log’ file, which produces a better formatted printout when printed
on a postscript printer with the appropriate font support.

Enter file name manually if
desired. Session log files use exten-
sion ‘.LOG’. Use wildcards to spec-
ify which files are
shown in file list.

Select drive from
pull-down list.

Select desired file type from
pulldown list to specify
which files are displayed in
list.

Select directories
from list by double-
click to build path.

Double-click on
required file or
Single-click and
[OK] to open log.
Another dialog
box will open to
confirm action if
file already exists.

Specify action to be
taken if file selected or
entered already exists.

Graphical User Interface
FILE menu

9-24 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

The program profile includes an analysis of the program composition - number and per-
centage of each type of instruction in the program, and a similar analysis of the instruc-
tions executed. Other features include an analysis of subroutine interaction during pro-
gram execution, a full breakdown of the use of addressing modes with each type of in-
struction, even the run time of the program in clock cycles. A description of the profile log
file appears in appendix A.

9.2.17 FILE//LOG//CLOSE

Use FILE//LOG//CLOSE to close all or any of the current-
ly open log files for the current device. The Close Log File
dialog box offers a list of log files which may be closed;
click the check boxes as required and clock [CLOSE] to
close the log(s). The check box for any log which is not
currently active is shown shaded.

Figure 9-20. FILE//LOG//CLOSE dialog Box

9.2.18 FILE//MACRO

FILE//MACRO reads and executes a file containing commands for the
Simulator. These commands are documented in the Simulator Com-
mands chapter.

The MACRO file is a standard ASCII text file, and may be created or ed-
ited with any text editor. The default file extension is ‘.CMD’.

Command log files created with FILE//LOG//COMMAND may be submit-
ted as MACRO command files.

Note: only log files
for the current
default device will
be closed.Click check boxes to

select log activity to
be closed.

Log activity
not checked
will remain
active.

Check box is
drawn shaded if
log is not active.

Graphical User Interface
FILE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-25

As the commands are read from the MACRO file, they are displayed in the COMMAND
window, executed, and echoed in the SESSION window, along with any output generated.
Commands which affect an individual device will execute on the current device, unless the
command specifies a particular device. Thus a single command file may be executed re-
peatedly, if required, for a number of devices by selecting a different device before each
execution.

Macro file execution may be aborted by EXECUTE//STOP or the STOP light button on the
tool bar.

9.2.19 FILE//ABOUT

FILE//ABOUT displays an information panel which identifies the product
name and version, that Motorola has copyright on the product, and ac-
knowledges copyright of software incorporated into the product. This no-
tice is displayed during start-up, and closes automatically if not dismissed
within three seconds.

Figure 9-21. FILE//ABOUT dialog Box

Click to
dismiss.

Graphical User Interface
DISPLAY menu

9-26 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.2.20 FILE//PREFERENCES

The preferences dialog box provides the option to save the window posi-
tions on exit. Thus when restarting the Simulator, all windows will be re-
stored to their positions on exit.

This may be used in two main ways.

If left checked permanently, each session will start with the windows po-
sitioned as they were left at the end of the last session.

Alternatively, if you prefer the windows to start arranged the same way
each time, arrange the windows, check the save box, and exit. Restart
and clear the check box. Each time the debugger is started the windows

will be arranged the way they were saved.

Figure 9-22. FILE//PREFERENCES dialog Box

9.2.21 FILE//EXIT

This option will exit the debugger. The exit dialog box pops up to make
sure you intended to exit. This dialog box is also activated by other exit
procedures.

Figure 9-23. FILE//EXIT dialog Box

9.3 DISPLAY menu

The Display menu controls the SESSION window. Most of the options cause output to the
SESSION window, a few control the way it operates.

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-27

Note that each device has its own session buffer. Make the intended device the current
device before performing any Display menu operations intended to relate to that device.

Most of the facilities offered by the Display menu may be obtained in other ways with the
dedicated windows. However, the SESSION window does have one advantage - the op-
tion to write all SESSION output to a log file.

As all output from the Display menu is sent to the SESSION window for the current device,
if the description of any Display menu item does not specify where the output goes, it is
assumed to be the appropriate SESSION window.

Features provided:
•Display selected registers & variables

•View memory as instructions

•View last 32 executed instructions

•List source file in SESSION window

•Calculate assembler and C expressions

•Display C call stack frames

•Set default input and display radix

•Display device configuration and supported types

•Display working directory and alternate source paths

•Display simulated input assignments

•Display simulated output assignments

•List stream IO redirection

•IO stream support enabled/disabled

•List log file assignments

•List breakpoints

•Control expression display at breakpoints

•Display the type of a C expression

•Suspend SESSION window output when full

•Select operating mode of SESSION window

9.3.1 DISPLAY//DISPLAY//ACTIVE

Write the enabled registers and memory locations to the
SESSION window. See DISPLAY//DISPLAY//MEMORY D/
/D//REGISTERS, and D//D//WATCH. This is the same dis-
play as presented in the SESSION window whenever pro-
gram execution stops.

The initial setting is all registers and no memory displayed.

Graphical User Interface
DISPLAY menu

9-28 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Note that DISPLAY//DISPLAY//... is hardware oriented and intended to monitor the DSP
processor memory and registers. DISPLAY//WATCH//... provides a similar facility which
is also able to monitor program variables and expressions.

Figure 9-24. DISPLAY//DISPLAY//ACTIVE Output

9.3.2 DISPLAY//DISPLAY//MEMORY

Controls the display of memory areas either immediately or
as part of the post-execution display.

Post-execution display may be unconditional or conditional
on the way in which memory has been accessed during ex-
ecution.

Figure 9-25. DISPLAY//DISPLAY//MEMORY Dialog Box

Command to dis-
play memory as
well as registers.

Register display.
MODIFY//RADIX/
/DISPLAY sets out-
put radix.

Memory display
requested in
command
above.

Select display mode:

ON - Always display after
execution.

OFF - Do not display.

R, W, RW - Display after
execution ONLY IF loca-
tion has been accessed as
specified.

Immediate - Display now.

Enter mem-
ory range to
display.

Select mem-
ory space
from list.

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-29

9.3.3 DISPLAY//DISPLAY//REGISTERS

Controls the display of registers either immediately or as
part of the post-execution display.

Post-execution display may be unconditional or conditional
on the way in which registers have been accessed during
execution.

OFF cancels conditional and unconditional display.

Figure 9-26. DISPLAY//DISPLAY//REGISTERS Dialog Box

9.3.4 DISPLAY//DISPLAY//STACK

Output the stack to the SESSION window. The entire stack
is output, with the current top-of-stack marked and the ac-
tive stack area highlighted in red.

Figure 9-27. DISPLAY//DISPLAY//STACK Output

Select display mode:

ON - Always display after
execution.

OFF - Do not display.

R, W, RW - Display after exe-
cution ONLY IF location has
been accessed for...

Immediate - Display now.

Select registers
with CLICK,
CLICK/DRAG,
CTRL-CLICK.

Top of Stack pointer.

Active stack
highlighted red.

All 16 stack levels displayed.

Graphical User Interface
DISPLAY menu

9-30 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.5 DISPLAY//DISPLAY//VERSION

Displays debugger version number and production date.

Figure 9-28. DISPLAY//DISPLAY//VERSION Output

9.3.6 DISPLAY//DISPLAY//OFF

Cancels all memory and register display at end of execu-
tion.

Figure 9-29. DISPLAY//DISPLAY//OFF Output

9.3.7 DISPLAY//DISASSEMBLE//FROM PC

9.3.8 DISPLAY//DISASSEMBLE//MEMORY BLOCK

DISPLAY//DISASSEMBLE//
... reads the specified mem-
ory area, disassembles it
and writes it to the SESSION

window.

DISASSEMBLE//FROM PC reads memory starting with the
PC address, fills SESSION window and stops. Each subse-
quent use continues from last location decoded.

Figure 9-30. DISPLAY//DISASSEMBLE//MEMORY Dialog Box

Note - STEP executed,
but no register or mem-
ory display.

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-31

DISASSEMBLE//MEMORY writes the entire area specified. This could easily be larger
than the SESSION window, or even the device buffer. Scroll to view if it is too large for the
SESSION window; use DISPLAY//MORE//ON to pause if it is too large for the device buff-
er. If no end address is specified, the window is filled, but there is no automatic continua-
tion the next time Disassemble Memory is used.

.

Figure 9-31. DISPLAY//DISASSEMBLE//... Output

9.3.9 DISPLAY//HISTORY

DISPLAY//HISTORY disassembles and displays the last 32 instruc-
tions executed. The last instruction displayed is the instruction
about to be executed.

This can be useful to determine exactly how the program reached a
breakpoint.

If a longer trace is required, see FILE//OUTPUT//OPEN and select HISTORY. This will
write a continuous execution trace until closed.

Figure 9-32. DISPLAY//HISTORY Output

Up to 32 instructions output.

Displayed in order of execution.

Resize or scroll to view.

Last instruction is next to execute.

Graphical User Interface
DISPLAY menu

9-32 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.10 DISPLAY//LIST

Displays the source file for the executing program in the SESSION
window. As execution proceeds, source display tracks PC.

Step to Next / Previous Page with [APPLY] (1 page = SESSION win-
dow size). Revert to PC with Current Page.

If Address is a number, it is interpreted as line number in source file.
To specify a memory address, include memory space, as p:$001F.

Figure 9-33. DISPLAY//LIST FILE Dialog Box

Figure 9-34. DISPLAY//LIST FILE Output

9.3.11 DISPLAY//EVALUATE

Evaluate DSP assembler expressions and C expressions and write
the result to the session window.

C expressions display the type of the expression and the value, in
the specified format or the normal format for the expression type if
‘All’ is selected.

DSP assembler expressions may be displayed in any type. Selecting ‘All’ gives a selection
of interpretations depending on the expression itself.

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-33

C expressions are evaluated in the context of the current stack frame by default - that is,
the value displayed is that which would have been returned if the expression had been
included in the program at the current execution point. C expressions can be evaluated in
the context of any of the functions on the call path to the current function. See MODIFY//
UP, MODIFY//DOWN, and the CALL STACK window to select an alternative evaluation
context.

Figure 9-35. DISPLAY//EVALUATE Dialog Box

Figure 9-36. DISPLAY//EVALUATE Output

Enter
expression
to evaluate.
Enclose C
expression
in {}.

Select radix
for display

Expression is echoed, evaluated, and
the result displayed.

C expressions in brackets {}.

C expressions display type of expres-
sion, but can print in any format.

DSP assembler expressions print in
selected format, or ‘All’ gives a selec-
tion depending on the expression.

Graphical User Interface
DISPLAY menu

9-34 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.12 DISPLAY//CALL STACK

Displays summary information about call stack frames. The dialog
box initially offers to display the entire call stack; a selection can be
made to display only the specified number of innermost or outer-
most frames.

Figure 9-37. DISPLAY//CALL STACK Dialog Box

Figure 9-38. DISPLAY//CALL STACK Output

9.3.13 DISPLAY//RADIX

Displays the default radix, used for all numbers input without an ex-
plicit radix specifier. This applies whether the number being input is
a register or memory contents value, or a memory address. It is not
affected by any Display Radix.

The initial default radix is Decimal.

Figure 9-39. DISPLAY//RADIX Output

Innermost - start at current
function and work back
toward main().

Outermost - start at main()
and work toward current
function.

Dialog opens
with no. of call
frames on stack.
Reduce if
desired. Increas-
ing gives error
message.

Frames are listed in
order selected - from
inner or outer end

.....which was called
with these parameters

.....In function.....Address of next instruc-
tion to execute.....

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-35

9.3.14 DISPLAY//DEVICE

Displays the status of each possible DSP device and lists the device
types supported.

Configure each device with MODIFY//DEVICE//CONFIGURE.

Figure 9-40. DISPLAY//DEVICE Output

9.3.15 DISPLAY//PATH

Displays the search paths in the SESSION window.

Paths are established with FILE//PATH//SET and FILE//PATH//
ADD.

There are two types of path.

The Working Directory is the main directory, created with FILE//
PATH//SET. It is used as the initial directory for all file chooser box-

es. Also, whenever a file is created, and the file name is specified without a directory, the
file is created in the working directory.

The Alternate Source Paths are only used when opening a file for read access, when a
file name is specified without a directory. The working directory is searched first, then
each of the alternate source directories in turn.

Status of each
possible device
is listed.

Supported DSP
family mem-
bers are listed.

Graphical User Interface
DISPLAY menu

9-36 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Figure 9-41. DISPLAY//PATH Output

9.3.16 DISPLAY//INPUT FILES

 - see DISPLAY//OUTPUT FILES

9.3.17 DISPLAY//OUTPUT FILES

Displays the file assignments for simulated input and output for the
current device.

See FILE//INPUT//... and FILE//OUTPUT//... for assignment proce-
dures.

Figure 9-42. DISPLAY//INPUT FILES Output

9.3.18 DISPLAY//REDIRECTED IO STREAMS

- see DISPLAY//IO STREAM STATUS

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-37

9.3.19 DISPLAY//IO STREAMS STATUS

IO stream redirection supports stream IO for C programs running on
a DSP device. STDIN, STDOUT, and STDERR are supported.

Support may be enabled or disabled (see FILE//IO STREAMS//...),
and each of the stream files may be individually assigned to a file on
the development host (see FILE//IO REDIRECT//...).

DISPLAY//IO STREAMS STATUS indicates whether stream sup-
port is enabled or disabled, DISPLAY//REDIRECTED IO
STREAMS lists the stream files and the assignments to files on the
host.

Figure 9-43. DISPLAY//IO STREAMS Output

9.3.20 DISPLAY//LOG FILES

All activity in the COMMAND and SESSION windows may be writ-
ten to log files. There is only one COMMAND log, but may be a
SESSION log for each device. If command activity for different de-
vices is to be logged separately, the old command log must be
closed before the command log for the new device can be opened.

DISPLAY//LOG FILES displays a summary of the logging status.

Figure 9-44. DISPLAY//LOG FILES Output

Use of
FILE//IO REDIRECT
to redirect STDOUT.

STREAM STATUS.

REDIRECTED IO STREAMS.

From “FILE//LOG//...”
to open the log files

Note: any log file not listed is closed.
From “DISPLAY//LOG”
to show open log files.

Graphical User Interface
DISPLAY menu

9-38 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.21 DISPLAY//BREAKPOINTS

Displays all breakpoints set for the current device, listing the break-
point number, its location, and the action to be performed.

The breakpoint location is listed exactly as entered when the break-
point was set.

Figure 9-45. DISPLAY//BREAKPOINTS Output

9.3.22 DISPLAY//WATCH//SHOW

DISPLAY//WATCH displays the value of expressions whenev-
er execution is interrupted.

The expression to display is specified with DISPLAY//WATCH/
/ADD, and may be reviewed with DISPLAY//WATCH//SHOW.

The expression may be specified using register names and as-
sembler labels. If the expression is enclosed in brackets {}, it is
interpreted as a C expression, using C variable names. Use
MODIFY//UP and //DOWN to navigate the call stack and select
the evaluation context for the expressions.

DISPLAY//WATCH//SHOW displays the watch list

Figure 9-46. DISPLAY//WATCH//SHOW Output

Break at line 191 in
source, halt.

Break on executing
address $3D9, halt.

Break on writing to
register m7, halt.

Break when expression is non-zero, i.e. TRUE.
NOTE (i.e message) to SESSION window.

List expres-
sions with
reference
numbers.

Value of expression
is output. Note
when ‘i’ goes out of
scope (masked by
another ‘i’), the
expression cannot be
evaluated.

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-39

9.3.23 DISPLAY//WATCH//ADD

DISPLAY//WATCH//ADD adds expressions to the watch list. Symbolic references are in-
terpreted as assembler labels and register names, unless the expression is a C expres-
sion in brackets {}. The value of the expression is displayed by DISPLAY//WATCH//
SHOW, or when execution terminates.

When a C variable goes out of scope, the expression can no longer be evaluated. Use
MODIFY//UP and //DOWN to select an evaluation context.

Figure 9-47. DISPLAY//WATCH//ADD Dialog Box

9.3.24 DISPLAY//WATCH//OFF

Removes a DISPLAY//WATCH expression from the list. As the dialog box only lists the
reference numbers, it may be helpful to use DISPLAY//WATCH//SHOW first.

Figure 9-48. DISPLAY//WATCH//OFF Dialog Box

Enter expression
for watch list.

Select radix
for display.

Select watch expres-
sions to remove. Use
CLICK, CTRL-CLICK
and CLICK/DRAG.

Graphical User Interface
DISPLAY menu

9-40 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.25 DISPLAY//TYPE

Displays the type of a C variable or expression. Use MODIFY//UP
or //DOWN to select the evaluation context.

Figure 9-49. DISPLAY//TYPE Dialog Box

Figure 9-50. DISPLAY//TYPE Output

9.3.26 DISPLAY//MORE

DISPLAY//MORE freezes the SESSION window when it is full un-
til the user responds. Useful when the output from an operation
may be longer than the session buffer.

Figure 9-51. DISPLAY//MORE Dialog Box

Graphical User Interface
DISPLAY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-41

9.3.27 DISPLAY//VIEW//REGISTER

The DISPLAY//VIEW commands control the type of informa-
tion displayed in the SESSION window.

REGISTER mode is used to view the output buffer for the
current device. This displays the breakpoint memory and
register information, commands, error messages, output
from the Display menu, etc. This can be considered the nor-
mal mode for this window.

Figure 9-52. SESSION Window - Register View

Register View shows
commands entered
for device and output.

At break, all enabled
registers are output.
No memory enabled
here. Changed values
in red.

Break instruction dis-
played.

Graphical User Interface
DISPLAY menu

9-42 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.3.28 DISPLAY//VIEW//ASSEMBLY

 - See DISPLAY//VIEW//SOURCE

9.3.29 DISPLAY//VIEW//SOURCE

Use the SESSION window to view the ‘p’ memory space as
assembly instructions, or to view the program source. The
display scrolls to view the entire memory area or source
code.

This display does not use the 100-line device output buffer,
and is not limited to a scrolling region of 100 lines.

At each break in execution, the window refreshes in the
area of the PC, marking the current instruction with the ar-
row symbol, ‘=>’.

The display is very similar to the ADDRESS and SOURCE
windows. However, the SESSION window cannot be used
to view, set or clear breakpoints.

Figure 9-53. SESSION Window, Assembly View

Graphical User Interface
MODIFY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-43

9.4 MODIFY menu

The Modify menu examines and alters many as-
pects of the development system:

•Change Register: change one or more registers to the
same new value.

•Change a single memory location or a block of memory
to the same new value.

•Copy a single location or a block of memory to another
location or block. The destination memory block may but
need not be in the same memory space as the source.

•Specify the DEFAULT RADIX and the DISPLAY
RADIX. The default radix is used for all input numbers
which do not include an explicit radix specifier. The initial
default radix is decimal. The display radix specifies how
each memory location and register is to be displayed. The
initial display radix is hexadecimal.

•Select the current device and set the device type (e.g. set
DV05 to be type 56001).

•Select a stack frame from the C call stack as the context
for C expression evaluation.

9.4.1 MODIFY//CHANGE REGISTER

MODIFY//CHANGE REGISTER changes the value of one or more reg-
isters on the current device.

A dialog box is opened which offers all the registers on the current de-
vice in a scrolling list.

Registers may
be selected by a single click to se-
lect one register, or click-and-drag
to select a continuous range of reg-
isters. The list scrolls automatically
when the dragging reaches either
end of the scroll list. Use the con-
trol key to add to an existing selec-
tion; CTRL-CLICK adds one regis-
ter, CTRL-CLICK-DRAG adds a
range of resisters. Enter a new val-
ue in the value field, and click [OK]
to change all selected registers.

Figure 9-54. MODIFY//CHANGE REGISTER Dialog Box

Select one or
more registers.

Enter new value to
apply to all
selected registers.

Click to update all
selected registers.

Graphical User Interface
MODIFY menu

9-44 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.4.2 MODIFY//CHANGE MEMORY

MODIFY//CHANGE MEMORY changes a range of memory locations in
one address space on the current device to a new value. All locations
are changed to the same value.

Note that addresses are frequently specified in hexadecimal. Use the
‘$’ radix specifier for hexadecimal, or set the default radix to hexadeci-
mal (MODIFY//RADIX//SET DEFAULT).

Figure 9-55. MODIFY//CHANGE MEMORY Dialog Box

9.4.3 MODIFY//COPY MEMORY

MODIFY//COPY MEMORY copies one block of memory to another.
The source and destination memory maps may, but need not, be the
same.

Enter the memory block by selecting the source memory space, and
entering the start and end addresses. Enter the destination of the copy

with the memory space and start address. The copy will wrap around to the start of mem-
ory if it reaches the end.

Figure 9-56. MODIFY//COPY MEMORY Dialog Box

Select memory
space from pull-
down list. Enter new

value for entire
address range
specified.

Enter start and
end of address
range.

Select source
memory space
from pull-down
list.

Enter source
start and end
addresses.

Select destination
address space and
enter starting
address.

Graphical User Interface
MODIFY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-45

9.4.4 MODIFY//RADIX//SET DEFAULT

MODIFY//RADIX//SET DEFAULT specifies the radix used
on all input fields unless the input value includes a radix op-
erator. The radix operators are listed in the table below. Note
the Radix Operator is used as a prefix to the input value.

The initial default radix is Decimal.

Figure 9-57. MODIFY//RADIX//SET DEFAULT Dialog Box

9.4.5 MODIFY//RADIX//SET DISPLAY

MODIFY//RADIX//SET DISPLAY specifies the radix used
when registers or memory locations are displayed. Each reg-
ister or memory location may have its own display radix.
Thus a location which contains a counter may be set to dis-
play in decimal, a bitmask may display in binary, etc.

Figure 9-58. MODIFY//RADIX//SET DISPLAY Dialog Box

Click on radix to
be used for all
input values -
numeric and
address.

Click on the
radix to be
applied to
all selected
locations.

Select one
or more reg-
isters from
scrolling
list if
required.

Enter end
address to
apply radix
to address
range.

Enter start
address to
set radix for
one word.

Select mem-
ory space
from pull-
down list.

Note that the radix may be applied to a selection of
registers or a block of memory or both at once.

Graphical User Interface
MODIFY menu

9-46 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.4.6 MODIFY//DEVICE//SET DEFAULT

MODIFY//DEVICE//SET DEFAULT selects a DSP device as
the current target device. All device-oriented operations will
be applied to this device until another device is selected

.

Figure 9-59. MODIFY//DEVICE//SET DEFAULT Dialog Box

9.4.7 MODIFY//DEVICE//CONFIGURE

MODIFY//DEVICE//CONFIGURE allows information to be spec-
ified about the DSP devices in use. If a device is not specified,
the current default device is assumed:
•TYPE - Which particular member of the DSP family is in use. This
automatically adds a device to the system. Initially only Device 0 is
considered part of the system.

•ON - Device is turned on, able to execute instructions.

•OFF - Device is temporarily unable to execute instructions. Memory and
register contents is retained.

•Remove - Device is no longer considered to be part of the system. All data
is lost.

Figure 9-60. MODIFY//DEVICE//CONFIGURE Dialog Box

Select a device
from the pull-
down list and
click [OK].

Select device to
configure.
Default is cur-
rent default
device.

Select type of
configuration to
be performed.

Select DSP type
from list when
Type selected
above.

Graphical User Interface
MODIFY menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-47

9.4.8 MODIFY//DEVICE//UNLOCK

The development system may contain hidden device types.
A password is required to activate such devices. A password
is not required for devices which are not hidden.

Figure 9-61. MODIFY//DEVICE//UNLOCK Dialog Box

9.4.9 MODIFY//UP, MODIFY//DOWN

Modify UP and DOWN are used to select the context to be used for
evaluating C expressions with DISPLAY//EVALUATE, DISPLAY//
WATCH, and the WATCH window. The potential problem arises be-
cause of the rules of scope for C. Since each function can have its
own variable, say ‘i14’, it may be necessary to specify which func-
tion’s ‘i14’ is to be referenced.

As each function is called, a stack frame is created, containing the variables belonging to
that function. The stack frame for the current function is stack frame 0, the calling function
has frame 1, and so on back to the main program, at frame (say) 7.

DISPLAY//EVALUATE returns the value which would be returned at the current execution
point. If a variable in a calling function is required for the expression which is masked by
an identical variable in the current function, the required variable is inaccessible. Hence
the need to be able to select the required stack frame for the evaluation context.

 MODIFY//UP shifts the evaluation context towards the main program by increasing the
frame number, MODIFY//DOWN shifts towards the current function by decreasing it.

MODIFY//UP and //DOWN work similarly with the WATCH window and DISPLAY//
WATCH. If an expression cannot be evaluated because it is ‘Out of Scope’ select the orig-
inal context to evaluate the expression again.

Figure 9-62. MODIFY//UP Dialog Box

Enter device
type to unlock.

Enter password, click
[OK]. If valid, the device
type appears in selec-
tion lists.

UP increases the call
frame number towards
the main program.DOWN decreases the call

frame number towards the
current function (frame 0).

Graphical User Interface
EXECUTE menu

9-48 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.5 EXECUTE menu

The Execute menu controls the execution of pro-
grams on the target device:

•Go lets the program run until a breakpoint or other event
interrupts execution. Options are available to specify the
execution start address and the way that breakpoints (if set)
are to be handled.

•Step executes a specified number of instructions, cycles,
or lines of code. If a function call is executed, Step follows
the execution through the function.

•Trace executes a specified number of instructions,
generating a trace of each instruction executed. After each
instruction execution the enabled registers and memory
locations are output to the SESSION window.

•Next executes a specified number of instructions or lines
of code, skipping over all function calls.

•Finish executes to the end of the current function,
terminating after the RTS instruction is executed.

•Until specifies a temporary breakpoint and executes until
that (or optionally, any other) breakpoint is met.

•Breakpoints allows the setting and clearing of
breakpoints. A breakpoint is an event (e.g. executing a
particular instruction, expression value non-zero) and an
action (e.g. increment counter, stop execution).

•Wait pauses, either indefinitely, until a timer has expired,
or the user cancels the wait. This is useful in Macro files to
freeze the screen for examination.

•Stop stops execution and returns control to the user.

•Reset is used to reset the device registers, to change the
mode of a device, or to reset the entire Simulator state.

9.5.1 EXECUTE//GO

EXECUTE//GO opens the GO dialog box to control program execution.
There are options controlling the starting address and the way breakpoints
(if any have been set) are to be handled. These options are summarized in
the illustration below.

The program is allowed to run free from the specified starting point until it
is stopped by one of several events. These include user action (EXECUTE/
/STOP, STOP LIGHT button), until the program hits a breakpoint specified

to stop program execution, or until the program executes an instruction which ends exe-
cution, such as STOP or an illegal instruction).

Graphical User Interface
EXECUTE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-49

During execution, the bottom line of the
main display shows program progress, with
the executing device, the PC, and the cycle
count, updated every 1,000 cycles.

Figure 9-63. Execution Cycle Count Display

Figure 9-64. EXECUTE//GO Dialog Box

9.5.2 EXECUTE//STEP

 - see EXECUTE//TRACE

9.5.3 EXECUTE//NEXT

 - see EXECUTE//TRACE

9.5.4 EXECUTE//TRACE

EXECUTE//STEP executes a specified number of cycles, instructions or
lines of code. If a function call is encountered, counting of instructions (etc.)
will continue during execution of the function.

EXECUTE//NEXT does not offer cycles as an execution option, and called
functions are not counted in the execution steps.

Select from:
1) Proceed from next
address OR speci-
fied address.
2) Reset device
before proceeding.

IF Address is
selected above, may
enter start address
here. If blank, pro-
ceed from next
address.

Specify how many times to
encounter breakpoint before
stopping (i.e. stop on 4th
time breakpoint is executed).

Select target breakpoint
from pull-down list.

IF breakpoints have been estab-
lished, may select a target break-
point. If selected, all other STOP
breakpoints will be ignored.

Graphical User Interface
EXECUTE menu

9-50 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

EXECUTE//TRACE outputs all enabled registers and
memory locations after each instruction execution.

A check box is provided to control breakpoint operation.
If left blank, breakpoints will not halt program execution.

At end of execution, the SESSION window displays the
values of all registers, memory locations, and expres-
sions which have been enabled (DISPLAY//DISPLAY//
REGISTER, DISPLAY//DISPLAY//MEMORY, DISPLAY//
WATCH).

Figure 9-65. EXECUTE//STEP Dialog Box

9.5.5 EXECUTE//UNTIL

EXECUTE//UNTIL executes the program to a specified location. The loca-
tion may be specified as a program line number, an address, or a label.
This sets a temporary breakpoint which is cleared when execution termi-
nates.

Line numbers and labels may only be used if debug information has been
loaded from a COFF file (see FILE//LOAD//MEMORY COFF).

Figure 9-66. EXECUTE//UNTIL Dialog Box

9.5.6 EXECUTE//FINISH

Program executes until the end of the current function. The RTS instruction
is executed before execution stops. Breakpoints are handled as normal.

If a function is called during a Finish operation, it executes as normal, but
the exit from that function does not end execution.

Enter target location:
- p:$1234 is an address.
- 20 - line 20 in current
 source module.
- file@20 - line 20 in
 module ‘file’.
- mode5 - label ‘mode5’
 in current module.

Leave clear to ignore
breakpoints before
specified location is
reached. Check to
halt.

Graphical User Interface
EXECUTE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-51

9.5.7 EXECUTE//BREAKPOINTS//SET

Set breakpoint and specify action to be taken when breakpoint is
met.

Available options will vary with DSP type, type of breakpoint and
action selected.

Breakpoints are enabled when set, and may be disabled. Break-
points are listed in the BREAKPOINT window, and are indicated
in the ASSEMBLY window with blue highlighting on the address
when enabled.

More than one breakpoint may be set on the same location, so that more than one action
may be taken.

When the dialog box opens, the first available breakpoint number is offered. Breakpoint
numbers do not have to be consecutive, and may be allocated for convenience. For ex-
ample, it may be convenient to allocate breakpoints so that one function uses breakpoints
1 to 10, another uses 11 to 20, and so on. The BREAKPOINT window (see WINDOWS//
BREAKPOINT) will then list all the breakpoints in function A together, etc.

Figure 9-67. EXECUTE//BREAKPOINT//SET Dialog Box

Set break-
point num-
ber. Initially
set to first free
number.

Specify action to be
taken when break-
point is met.
Options are:
- Halt execution.
- Note: Display
 breakpoint expre-
 ssion.
- Show: Display
 enabled registers &
 memory.
- Increment: speci-
 fied counter.
- Command: Exe-
 cute specified com-
 mand on break.

Specify single memory location or memory block.
For EXECUTE breakpoints, use a single location,
and make sure the address is the first word of the
instruction.

Select type of
access. Available
options will
vary.

Select break-
point type -
memory access,
register access,
or expression
value non-zero.

Enter a valid DSP
Macro Assembler
expression or C
expression in braces
{}. Breaks when
value non-zero.

Select register
from list.

Graphical User Interface
EXECUTE menu

9-52 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

An execute breakpoint location may also be specified
by source line number. The source module name may
be omitted if there is only one source module.

Figure 9-68. Setting Breakpoint by Line Number

9.5.7.1 Break Processing

During program simulation, breakpoints are checked after each instruction. If a breakpoint
condition is found, that is a specified address is accessed in the specified way, or the ex-
pression is true, etc., the breakpoint count is checked. If not set, the breakpoint action is
taken. If set, and this is the specified occurrence of the breakpoint, the action is taken.
Otherwise, program execution continues.

9.5.8 EXECUTE//BREAKPOINTS//CLEAR

 Removes a breakpoint. Select the breakpoint or breakpoints from
the pull-down list, and click [OK] to clear. CLEARed breakpoints
can only be reinstated by recreating with EXECUTE//BREAK-
POINT//SET.

Figure 9-69. EXECUTE//BREAKPOINT//CLEAR Dialog Box

Select breakpoint(s).

Click [OK] to clear.

View details of breakpoints in
BREAKPOINT window.

Graphical User Interface
EXECUTE menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-53

9.5.9 EXECUTE//BREAKPOINTS//ENABLE, DISABLE

Breakpoints may be disabled and enabled. DISABLE temporarily
deactivates the selected breakpoints, ENABLE reinstates them.

While disabled, they have no effect on DSP program execution,
and do not cause any of the actions associated with the break-
point.

The dialog boxes for disable and enable are identical in appear-
ance and operation apart from the title. Only the Enable dialog box
is shown here.

Figure 9-70. EXECUTE//BREAKPOINTS//ENABLE Dialog Box

9.5.10 EXECUTE//WAIT

The WAIT command pauses for a number of seconds, or forever if no
count specified. Pause may be ended by pressing the [Cancel] button, or
hitting <enter>.

Wait is useful in macro files (FILE//MACRO), where it freezes the display
while details are examined.

Figure 9-71. EXECUTE//WAIT Dialog Box

Only disabled
Breakpoints are
listed. Select
those to enable. BREAKPOINT window

also shows disabled status
of breakpoints.

Enter wait time
in seconds or
check ‘Forever’

Click to terminate wait

Graphical User Interface
EXECUTE menu

9-54 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.5.11 EXECUTE//STOP

EXECUTE//STOP interrupts execution of the DSP program or macro exe-
cution. Control is returned to the user interface.

It may be used to regain control of a program which has failed to reach a
breakpoint as expected, is looping or is in some other way running out of
control.

Any temporary breakpoint set by EXECUTE//UNTIL is cleared.

9.5.12 EXECUTE//RESET...

EXECUTE//RESET//DEVICE resets the device registers for the
current device. In addition, the operating mode for the device may
be specified.

The device mode is selected with the radio buttons. Once set to a
mode, that mode is the initial state for future reset operations.

This operation is analogous to a device reset caused by the RE-
SET pin. The RESET button in the main window performs a RE-
SET//DEVICE operation, but does not set the device operating

mode.

EXECUTE//RESET//STATE resets the entire Simulator state to the start-up condition.
Memory is initialized, breakpoints are cleared, and all simulated I/O and logging is
stopped.

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-55

9.6 WINDOWS menu

The WINDOWS menu provides access to the win-
dows which allow monitoring and control of the de-
velopment process. These windows display infor-
mation such as the contents of registers and mem-
ory, are updated automatically at each break in
execution, and may be moved and re-sized to pro-
vide a convenient working environment.

Many of the windows are multi-function, for exam-
ple the ASSEMBLY window, which displays the
code in the vicinity of the PC, permits editing the
code with the single-line assembler, and sets and
clears breakpoints.

Some windows may be opened many times. With
some of the windows, such as the BREAKPOINT
window, which lists the breakpoints which have
been set in a particular DSP device, a window may
be opened for each device. The MEMORY win-
dow, however, which displays a block of memory
and may be scrolled through the entire address
range of the memory space chosen, may be
opened as many times as desired to show different
memory areas at the same time.

Table 1: Summary of Window Functions

Window Function Notes

ASSEMBLY Display and edit memory contents, set and clear
breakpoints, follow program execution.

One per Device

SOURCE Display source program. One per Device

REGISTER Display and modify register contents. Registers
arranged in alphabetical order and grouped by periph-
eral.

Multiple

MEMORY Display and edit contents of memory. Memory type
may be selected, scroll bars access entire range of
selected bank of memory.

Multiple

STACK Display stack contents. Indicates current top of stack.
Max 15 entries.

One per Device

CALLS Display C function call stack. One per Device

Graphical User Interface
WINDOWS menu

9-56 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.6.1 WINDOW//ASSEMBLY

Opens the ASSEMBLY window for the current device. If it is already open,
but hidden or minimized, it is restored and brought to the front.

Figure 9-72. ASSEMBLY Window

WATCH Display expressions selected for Watching. Erase with
double-click.

Multiple

LIST FILE Examine any text file. Multiple

INPUT Display simulated input assignments. One per device

OUTPUT Display simulated output assignments. One per device

BREAKPOINTS Display breakpoints set in code. Enable and disable
with double-click.

One per Device

COMMAND Display command history. Retrieve, edit and re-submit
commands. Command help. Error message display.

One, shared for all
functions

SESSION Echo commands submitted to Emulator/Simulator and
Display output. Each device has its own buffer, only
currently selected device is shown.

One, switched
between devices and
functions

TILE Arrange open windows in tile pattern. PC only

CASCADE Arrange open windows in cascade pattern. PC only

Table 1: Summary of Window Functions

Window Function Notes

Adjust width of columns
by dragging the gap
between labels.

Double click
on address or
label field to
set or clear
breakpoints.
Enabled
breakpoints
display BLUE.

Operands are decoded and
interpreted as symbolic refer-
ences when appropriate.

Click on a mnemonic
field, type in new instruc-
tion, <CR> to store and
step to next instruction.

If debug information loaded, near-
est label is shown with offset.

Next instruction
is highlighted in
RED.

Binary is disassembled and
listed. Illegal opcodes are
listed as numeric constants.

Enter start of
memory to
display. May
use filenames,
line numbers,
labels and
addresses.

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-57

The ASSEMBLY window displays the memory in the vicinity of the program counter, PC.
The scroll bar gives access to the full program memory. As the program executes, the dis-
play is updated at each break in execution. The next instruction to be executed is always
displayed, highlighted in red.

Breakpoints may be cleared, and Halt breakpoints set by a double-click on an address or
label field. Enabled breakpoints are displayed in blue.

9.6.2 WINDOWS//SOURCE

The SOURCE window displays the source code for the executing program.
The source code may reside in the directory containing the object module,
or any or the directories specified in the path (see FILE//PATH...). The win-
dow automatically tracks the PC, displaying the corresponding source line
highlighted in red. The scroll bar may be used to scan the whole source file,

but the display will revert to the current line with each execution step.

A halt execution breakpoint may be set with the SOURCE window. Double-click on a
statement to set or clear the breakpoint. The breakpoint is added to the breakpoint list,
displayed in the breakpoint window and highlighted blue in the ASSEMBLY window. The
presence of the breakpoint is not indicated in the SOURCE window.

If no source code is available for the executing code, the window shows a message giving
the current PC, and indicating that no source is available.

Figure 9-73. SOURCE Window (no source)

Figure 9-74. SOURCE Window (source file present)

Current instruction
highlighted in red.

Scroll through whole pro-
gram. Display reverts to cur-
rent line after execution.

Double-
click on a
statement
to set a
breakpoint.

Single line display
summarizes status.

Graphical User Interface
WINDOWS menu

9-58 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.6.3 WINDOWS//REGISTER
The REGISTER window displays and modifies a group of registers for the
current device. To display registers for another device, first make that the
current device and open the REGISTER window. Multiple windows may be
opened for each device.

A dialog box allows the selection of the register set to be displayed. Each
register window may display the registers for the core or any one peripheral.

Figure 9-75. Register window peripheral group selection

The selected registers (core registers or registers for the specified peripheral) are ar-
ranged in alphabetical order. The window may be resized and scrolled to select which reg-
isters are displayed. To display registers which are not conveniently displayed in one win-
dow at the same time, open another window and adjust each one to the required range of
registers.

The display is updated each time the device enters user mode and returns to debug
mode.

Figure 9-76. REGISTER Window

To change a register, click on it once, type in the new value, and store the value with
<CR>. The new value will be displayed in red, and the next register will be highlighted for
modification.

Displays registers for core or
peripheral for Current Device.

Scroll to view desired registers.

Single click on a value
to select. Type new
value and <CR> to
change. Highlights red
and selects next value
to change.

Register value displayed
in hexadecimal or radix set
as display radix. Enter val-
ues in specific radix or
default radix. (see MOD-
IFY//RADIX//...)

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-59

9.6.4 WINDOWS//MEMORY

The MEMORY window displays and optionally changes the contents of
memory. Each memory window displays a contiguous block of memory from
one of the address spaces. Select the address space from pull-down list in
the dialog box.

Figure 9-77. WINDOWS//MEMORY Dialog Box

Resize the window to adjust the size of the memory area displayed. The columns in the
display adjust automatically to fit the width available. The full range of the memory space
selected may be viewed with the scroll bar.

To change memory, click on a location, enter the new value, and store with <CR>. The
next location is selected for modification.

Figure 9-78. MEMORY Window

MEMORY window
displays one memory
space for a device.

Open multiple win-
dows for other
devices, address
spaces or discontig-
uous memory
ranges. Enter new values in

Default Radix of use

Click on a location
to select. Type new
value and <CR> to
save and select next
location.

Values shown
in Display
Radix.

Graphical User Interface
WINDOWS menu

9-60 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.6.5 WINDOWS//STACK

The STACK window displays the hardware stack. May be re-sized and
scrolled to view as much or as little as required.

Figure 9-79. STACK Window

The hardware stack is used by the subroutine call instructions, interrupt handling and by
some other instructions. In C functions, the return address is put on the stack by the JSR
instruction, but then removed and incorporated into the C stack frame. Thus the return ad-
dress only uses the hardware stack temporarily. Different conventions may be used by as-
sembler programs.

9.6.6 WINDOWS//CALLS

The CALLS window tracks C function calls. Each function call adds another
stack frame, each return removes one. Entry #0 is the most nested function,
that is the top entry on the stack, the highest number is the main() function.

Each entry has a nesting level number, the PC return address (i.e. the ad-
dress after the function call), and the name of the function. The top level rep-

resents the entry to the debug monitor, and so indicates the next instruction to be execut-
ed.

The call stack also indicates the context to use for evaluating C expressions. As each
function may have its own copy of a named variable, it may be necessary to indicate which
instance is required. A double-click on a stack level selects it as the expression context
for DISPLAY//EVALUATE. See also MODIFY//UP and MODIFY//DOWN.

Drag gaps to
adjust column
width

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-61

Figure 9-80. CALLS Window

9.6.7 WINDOWS//WATCH

The WATCH window displays the values of any expression. This can be the
contents of a memory location or register, or any arbitrary value which need
not be calculated during program execution at all. C expressions may be
used, enclosed in braces {}.

Symbolic references may be used if symbols have been loaded from the ob-
ject module.

The values are re-calculated and output at each break in execution.

A C expression which refers to C variables can only be evaluated in the context in which
the watch is established - that is while all the variables used in the expression are in
scope. So if one (or more) of the variables in an expression goes out of scope (either be-
cause a function call or return from a function), the value is replaced with the message
“Expression out of scope”. When all elements of the expression are back in scope, the
value is again displayed.

Shows one entry for
each call to reach
current location

#0 indicates next
instruction to execute
in current function

Double-click on a
stack frame to select as
EVALUATE context

Note PC address format
0xHHHH is hexadecimal

See also MODIFY//UP
and MODIFY//DOWN

P-space address is
address of next instruc-
tion to execute in calling
function.

Graphical User Interface
WINDOWS menu

9-62 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

An expression which has gone out of scope because of function a call may be evaluated
and displayed by selecting the stack frame for the evaluation context. See MODIFY//UP
and MODIFY//DOWN. The stack frame assignment remains in effect only until the next
instruction is executed. An expression out of scope because of function exit cannot be
evaluated until the function is next invoked, as its variables no longer exists.

Figure 9-81. WINDOWS//WATCH Dialog Box

9.6.8 WINDOWS//LIST FILE

Views any ASCII file without leaving the development environment.

A standard File Chooser dialog box is opened. Select an ASCII file for view-
ing. The LIST FILE window is opened, showing the start of the file. The line
number appears at the start of each line. The window may be re-sized and
scrolled to view the whole file.

Note that the whole file is read when the window is opened, which may take
some time with large files.

You may open as many LIST FILE windows as you wish. This may be a convenient way
of scanning source files, SESSION window log files (which may be viewed without first
closing the log), etc.

Figure 9-82. LIST FILE Window

Select window number.
Multiple WATCH win-
dows may be opened for
each device.

Enter expression.
Enclose C expressions
in brackets {}.

Select display
radix for
expression. C
expressions
default to type
of expression.

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-63

9.6.9 WINDOWS//INPUT

Displays all simulated input which has been assigned for the current device.
An INPUT window may be opened for each device.

Figure 9-83. INPUT Window

9.6.10 WINDOWS//OUTPUT

Displays all simulated output which has been assigned for the current de-
vice. An OUTPUT window may be opened for each device.

Figure 9-84. OUTPUT Window

9.6.11 WINDOWS//BREAKPOINTS

Displays and enables and disables breakpoints set for the current device. A
BREAKPOINT window may be opened for each device.

Breakpoints may be set and cleared by:
• Double-click on ASSEMBLY window address field

• Double-click on source line in SOURCE window

• EXECUTE//BREAKPOINT//SET or //CLEAR menu

Graphical User Interface
WINDOWS menu

9-64 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

Breakpoints set by clicking on the source window are identified by the line number. Break-
points set by clicking on the ASSEMBLY window have the address. Breakpoints which
have been disabled are marked with the word ‘disabled’; all other breakpoints listed are
enabled.

Figure 9-85. BREAKPOINT Window

9.6.12 WINDOWS//COMMAND

The COMMAND window provides the main interface between the user inter-
face and the rest of the system:

• User may enter commands directly.

• All commands generated by the GUI are entered via the COMMAND window.

• The command history is displayed and may be retrieved, edited and re-submitted.

• Summary help is available for all commands.

• Commands executed may be written to a log file - see FILE//LOG//COMMANDS.

The command history buffer holds the last ten commands. If the last command is repeated
exactly, the duplicate is not stored. The default size of ten commands may be changed
during installation.

Breakpoints listed
for current device
only. Those not
disabled are
enabled.

Breakpoint
address dis-
played as
entered. Note
source line
breakpoints.

Double-click to enable
or disable breakpoint.

Required action indicated by
letter:
h - Halt.
i - Increment counter.
s - Show registers & memory in
SESSION.
n - Note breakpoint.
x - execute command.

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-65

Figure 9-86. COMMAND Window

9.6.13 WINDOWS//SESSION

The SESSION window provides the main output from the development sys-
tem. The Display menu directs most of its output to the SESSION window,
and controls its operation.

Items output to the SESSION window include:
• All commands input via the COMMAND window are echoed.

• All output from commands is displayed.

• Output from many Display menu operations.

• Views of source code and assembly code.

• Registers and memory locations enabled for display at breakpoints and after execution.

• Error messages are sent to the SESSION window.

The last 100 lines written to the SESSION window may be viewed with the scroll bar. The
size of this buffer may be set during installation. Some operations may write more than
100 lines to the SESSION window. The Display menu has a MORE feature, which pauses
the display every ‘windowful’, allowing the display to be examined, before accepting the
next section of output. See DISPLAY//MORE...

One command
window handles
all commands for
the system.

Summary help
lists commands.
Type a space to
cycle through
commands.
Type portion in
red and a space,
command is
completed and
help gives syn-
tax for that com-
mand.

If history is edited, original
command is always restored.
When executed, the new com-
mand is added to history.

Click and type
commands
directly into
command
window.

Click on history
line to select,
<CR> to execute.
May edit first.

Use scroll bar to
view command
history.

Prompt is
current
device
No. Command abbreviations shown in red.

Graphical User Interface
WINDOWS menu

9-66 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

There is only one SESSION window, but a separate output buffer for each device. Output
from each device is written to its own buffer, but only activity for the current device is dis-
played in the SESSION window. When another device is made the current device, the
SESSION window is refreshed with the buffer for that device.

Output to the session window may be logged to a file - see FILE//LOG//SESSION. A sep-
arate log file may be established for each device.

Figure 9-87. SESSION Window

Window title
shows current
device.

Initial setting: Dis-
play all registers and
no memory.

Memory locations and reg-
isters output at break
selected by DISPLAY//
DISPLAY menu.

Values changed since
last output displayed in
red. Error messages also
in red.

Commands
echoed in
SESSION
window.

Enlarge or maxi-
mize window to
display more of
the device buffer.

Scroll bar to
review out-
put buffer.

Graphical User Interface
WINDOWS menu

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-67

9.6.14 WINDOWS//CASCADE (Windows only)

9.6.15 WINDOWS//TILE (Windows only)

The Microsoft Windows environment has two features to arrange windows
tidily, Tile and Cascade.

TILE divides the main window into roughly equal areas and places one open
window in each tile. All windows are visible, but not all are large enough to
be useful.

CASCADE makes all the windows the same size, but usually larger than
TILE, and staggers so that the top window can be seen, and the title bar of
all other windows is visible.

Both of these techniques simplify the process of locating a window lost on
the desktop under other windows.

Figure 9-88. TILED and CASCADED Windows

TILED window CASCADED window

Graphical User Interface
The Tool Bar

9-68 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

9.7 THE TOOL BAR

The Tool Bar is located in the main win-
dow just below the menu bar. It comprises
a number of buttons providing a conve-
nient way of performing frequently-used
functions.

9.7.1 GO Button

The GO button starts program execution from the next address. All breakpoints
will be acknowledged.

This button is equivalent to EXECUTE//GO from current address, with no target
breakpoint.

9.7.2 STOP Button

The STOP button interrupts DSP program execution and returns control to the
user. The message ‘SIMULATION ABORTED’ appears in the SESSION win-
dow.

The STOP button may also be used to stop execution of a macro command file. A dialog
box confirms execution has been terminated.

This button is equivalent to EXECUTE//STOP.

9.7.3 STEP Button

The STEP button executes one execution step. If the source window is open,
tracking the program source, STEP executes one line of code. Otherwise, STEP
executes one instruction. On encountering a JSR instruction, STEP proceeds
with the first instruction of the function, and steps through it.

This button is equivalent to EXECUTE//STEP with a count of 1.

9.7.4 Next Button

The NEXT button executes one execution step. If the source window is open,
tracking the program source, NEXT executes one line of code. Otherwise,
NEXT executes one instruction. On encountering a JSR instruction, NEXT al-
lows the function to execute, and stops after the RTS instruction.

This button is equivalent to EXECUTE//NEXT with a count of 1.

Graphical User Interface
The Tool Bar

MOTOROLA DSP SIMULATOR REFERENCE MANUAL 9-69

9.7.5 FINISH Button

FINISH allows the current function to execute to completion. Control returns to
the user after executing the RTS instruction. It is not affected if another function
is encountered during a FINISH operation, execution continues to the end of the
current function.

FINISH is equivalent to EXECUTE//FINISH.

9.7.6 Device Button

The DEVICE button opens the ‘Set Default Device’ dialog
box. This selects the current default device, to which all
commands will be directed until further notice. This button
cannot be used to configure, or enable and disable devices.

The DEVICE button is equivalent to MODIFY//DEVICE//SET DE-
FAULT.

9.7.7 REPEAT Button

The REPEAT button repeats the last command in the history buffer, listed in the
COMMAND window.

This button is equivalent to clicking on the last command in the history buffer in
the COMMAND window and pressing <CR>.

9.7.8 RESET Button

The RESET button generates a reset command for the current device.

It is equivalent to EXECUTE //RESET, with the device mode unchanged.

INDEX

MOTOROLA DSP SIMULATOR REFERENCE MANUAL I-1

— A —

abort . 1-4
addr .2-3, 2-8
addr_block . 2-3
ASM 2-1, 2-8, 4-1
ASSEMBLE 2-1
assembler

single-line1-1, 2-8

— B —

Back-Arrow 1-4
Binary . 5-4
binary 2-21, 2-39, 5-4
block . 2-1
BLOCKDATA6-2, 6-3
bn (break number) 2-3
bootstrap ROM 2-8
BREAK 2-1, 2-10, 2-26, 5-6, 5-7
break_action 2-3
break_number 2-10
breakpoint

actions 2-11
break_number 2-10
clear 2-10, 2-41, 7-13
continue 2-11
expression 2-10
halt . 2-11
history . 2-26
jump . 2-11
memory access 2-10
modify . 2-10

off . 2-11
register access 2-10
save . 2-42
set . 2-10
special variables 2-11
testing 7-6, 7-31, 7-52

— C —

c_expression 2-4
CHANGE2-1, 2-13, 4-1, 7-44
character entry

insert . 1-4
overwrite 1-4

.cld 2-30, 2-42, 7-14

.cmd 1-3, 2-31, 7-32
COBJ . 6-1
command

log . 2-33
command entry

command line 1-3
command line editing 1-4, 7-33
expansion 7-33
from macro file . .1-3, 1-4, 7-31, 7-32
from terminal . .1-4, 7-31, 7-33, 7-46
optional parameters 2-2

command execution
enter . 1-4
finish . 2-22
go mode 7-31
list . 2-29
macros . . . 1-3, 1-4, 2-31, 7-31, 7-32
next . 2-34

Index

I-2 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

repeating commands 1-4
step mode 2-1, 2-43
trace mode 2-1, 2-26, 2-46, 7-31, 7-48
unlock . 2-48
until . 2-49
view . 2-51

commands
asm . 2-8
break 2-10, 5-6
change 2-13
copy . 2-15
device . 2-16
disassemble 2-17
display . 2-18
down . 2-20
evaluate 2-21
finish . 2-22
frame . 2-23
go . 2-24
help . 2-25
history . 2-26
input . 2-27
list . 2-29
load 2-30, 7-51
log . 2-31
next . 2-34
output . 2-35
overview 2-1
path . 2-37
quit . 2-38
radix . 2-39
redirect 2-40
reset 2-41, 4-1
save . 2-42
step . 2-43
streams 2-44
summary 2-5
syntax . 2-2
system2-45, 7-46, 7-47
trace . 2-46
type . 2-47
until 2-48, 2-49

view . 2-51
wait . 2-52
wasm . 2-53
watch . 2-54
wbreakpoint 2-55
wcalls . 2-56
wcommand 2-57
winput . 2-59
wlist . 2-60
wmemory 2-61
woutput 2-62
wregister 2-63
wsession 2-64
wsource 2-65
wstack . 2-66
wwatch 2-67

COMMENT 6-4
comment

from dspt_masm 7-4
in command line 1-4
in i/o file 3-2
in i/o files 3-1
in object file 6-1, 6-2

CONFIG.SYS 1-2
configuration

custom external memory 7-34, 7-54
default . 4-1
device . 4-1
operating environment 1-2

constants
binary 2-39, 5-4
block . 6-3
decimal 2-39, 5-4
hexadecimal 2-39, 5-1, 5-4

CONTROL-BREAK 1-4
CONTROL-C 1-4
COPY 2-1, 2-15
count . 2-3
Ctrl-B . 1-4
CTRLBR . 7-53
CTRL-C 2-24, 2-52, 7-46, 7-53

MOTOROLA DSP SIMULATOR REFERENCE MANUAL I-3

Ctrl-F . 1-4
Ctrl-H . 1-4
Ctrl-K . 1-4
Ctrl-L . 1-4
Ctrl-N 1-3, 2-8, 2-13
Ctrl-O . 1-4
Ctrl-R . 1-4
Ctrl-T . 1-3
Ctrl-U 1-3, 2-8, 2-13
Ctrl-V . 1-3
Ctrl-W . 1-5

— D —

DATA . 6-2
DC . 2-17
DEVICE2-2, 2-16
DISASSEMBLE2-1, 2-17
display

at breakpoint 2-11
command2-1, 2-18
configuration 2-18
immediate 2-18
memory 2-18
radix specification 2-18
register 2-13
registers 2-18

display modes 1-5
DOWN2-2, 2-20
Down-Arrow 2-13
dsp_alloc . 7-35
dsp_exec . 7-6
dsp_findmem 7-7
dsp_findpin 7-8
dsp_findport 7-9
dsp_findreg 7-10
dsp_fmem 7-12
dsp_free . 7-11
DSP_GEOI 7-52
DSP_GEOR 7-52
DSP_GILLEG 7-52

dsp_init . 7-13
dsp_ldmem 7-14, 7-51
dsp_load 7-15, 7-51
dsp_new 7-25, 7-51
dsp_path . 7-17
dsp_rapin 7-18
dsp_rmem 7-19
dsp_rpin 7-20, 7-54
dsp_rport 7-21, 7-54
dsp_rreg . 7-22
dsp_save 7-23, 7-51
dsp_startup 7-24
dsp_unlock 7-25
dsp_wapin 7-26
dsp_wmem 7-27
dsp_wpin 7-28, 7-54
dsp_wport 7-29, 7-54
dsp_wreg . 7-30
dspl_xmend 7-36
dspl_xmfree 7-37
dspl_xminit 7-38
dspl_xmload 7-39
dspl_xmnew 7-40
dspl_xmrd 7-41
dspl_xmsave 7-42
dspl_xmstart 7-43
dspl_xmwr 7-44
dspt_masm_xxxxx 7-4
dspt_unasm_xxxxx 7-5

— E —

END . 6-2
eof . 2-11
ESC . 1-4, 2-13
EVALUATE 2-2, 2-21
executing 7-6, 7-31, 7-52
EXIT . 2-45
expression

breakpoint 2-10
evaluation 2-13, 2-21

I-4 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

syntax 2-3, 2-4

— F —

features . 1-1
file

logging commands 2-31
logging session 2-31

file i/o
assign input file 2-27
assign output file 2-35
comands 7-32
commands 1-3, 2-1, 7-31
comments in file 6-1
default path specification 2-37
eof . 2-11
filename 7-17
initialization 7-13
memory 3-5, 7-51
object module . 2-30, 2-42, 6-1, 7-14
pin data 2-27, 3-7
pin to pin 3-7
port data values 3-4
prompt for input data value . 3-7, 3-8
prompt for input value 3-5
relative time values 3-5
repeat punctuation 3-1
simulation state file 2-30
state file 2-42, 7-15, 7-23, 7-39, 7-42, 7-

51
timed data values 3-2, 3-3, 3-4, 3-5, 3-7

filename . 2-4
filename suffixes

.cld 2-30, 2-42, 7-14

.cmd 1-3, 2-31

.io 2-27, 2-36, 3-8

.lod 2-30, 2-42, 7-14

.log . 2-31

.sim 2-30, 2-42, 7-15, 7-23

.tio . 3-8
FINISH 2-2, 2-22
Floppy diskette 1-2

FRAME 2-2, 2-23

— G —

global variables 7-57
GO . 2-1, 2-24

— H —

hardware requirements 1-2
HELP 2-2, 2-25
HISTORY 2-1, 2-26

— I —

IDENT . 6-1
in_macro 7-31, 7-32
Initialization

of a particular device 7-13
of external memory 7-38

initialization
by dsp_new 7-16
dsp_init 7-13
of external memory 7-40
of window parameters 7-48
simulator state 2-41

INPUT 2-1, 2-27
Ins . 1-4
interactive

assembly 2-8
memory change 2-13
register change 2-13

interrupt
input file 3-7, 3-8
pin data input 3-7

.io . 2-27, 2-35

— J —

jump . 2-11

— L —

left-arrow . 1-4

MOTOROLA DSP SIMULATOR REFERENCE MANUAL I-5

LIST .2-2, 2-29
LOAD .2-1, 2-30
location . 2-4
.lod 2-30, 2-42, 7-14
LOG .2-1, 2-31
.log . 2-31
logging

profile . 2-31

— M —

macro command file
execution 7-31, 7-32
generation with log command 1-4, 2-31
nesting . 1-3
path specification 2-37
specified in command line 1-4
suffix . 1-3
termination1-3, 2-38

macro command files
specified in command line 1-3

malloc . 7-35
memory

access functions 7-1, 7-36, 7-41, 7-43,
7-44, 7-54

allocation 7-35
block . 2-13
breakpoints 2-10
change 2-13
conditional display 2-18
copy . 2-15
default configuration 4-1
display 2-13, 2-18
display at breakpoint 2-11
external memory 4-1
free7-11, 7-37
initialization2-41, 7-38
initialize 7-13
input file 2-1, 2-27, 3-5
internal memory 4-1
load 2-30, 7-14
load from state file 7-39

map . 2-8
memory space symbols 5-1
modification commands 2-1
output file 2-1, 2-35
radix2-18, 2-27, 2-35, 2-39
read . 7-19
save . 2-42
save to state file 7-42
state file 2-42
timed input data 3-5
timed output data 3-5
untimed input data 3-5
untimed output data 3-5
virtual memory scheme 4-1
write 7-12, 7-27

multiple dsp simulation
device index 7-31
halting 7-46
interleaving execution 7-53

— N —

NEXT . 2-1, 2-34
non-display simulation

executing device cycles 7-52
library file 7-50
loading program code 7-51
testing breakpoint conditions . . 7-52

nwsim . 7-50
nwxxxxx . 7-50

— O —

object module
format . 6-1
loading 2-30, 7-14
saving 2-42

OMF . 6-2
OUTPUT 2-1, 2-35

— P —

PATH . 2-2, 2-37

I-6 DSP SIMULATOR REFERENCE MANUAL MOTOROLA

pathname . 2-4
peripheral

display . 2-19
end of file signal 2-11
input file 2-27
output file 2-35

pin . 2-4
.ps . 2-31

— Q —

QUIT . 2-2

— R —

RADIX 2-2, 2-39
radix

command 2-39
default 2-18, 2-21
display2-18, 2-21, 2-39
evaluation 2-21, 5-4
input 3-3, 3-4
input file 2-27
output file 2-35

REDIRECT 2-2, 2-40
reg . 2-4
reg_block . 2-4
reg_group . 2-4
register

access flags 2-18
block . 2-13
breakpoint expressions 2-11
breakpoint when accessed 2-10
change 2-13
conditional display 2-18
cycle counter 3-2
display 2-1, 2-18
display radix 2-39
help . 2-25
in expressions2-3, 2-21, 5-1
interactive display and change . 2-13
modification commands 2-1
names . 5-1

program counter 7-52
read function 7-22
write function 7-30

RESET 2-1, 2-41
revision 2-18, 6-2
Right-Arrow 1-4

— S —

SAVE 2-1, 2-42
screen buffer 1-3, 7-48
scrmgr.c 7-45, 7-55
.sim 2-30, 2-42, 7-15, 7-23
sim_docmd 7-31
sim_gmcmd 7-32
sim_gtcmd 7-33
simvmem.c 7-34, 7-54
simw_ceol 7-46
simw_ctrlbr 7-46
simw_cursor 7-46
simw_endwin 7-46
simw_getch 7-46
simw_gkey 7-47
simw_putc 7-47
simw_puts 7-47
simw_redo 7-47, 7-55
simw_redraw 7-48
simw_refresh 7-48
simw_scrnest 7-48
simw_unnest 7-48
simw_winit 7-48
simw_wscr 7-49
SPACE . 1-4
START . 6-2
state file

create 2-30, 2-42, 7-23, 7-42
load 2-30, 7-39
suffix . 2-42

STEP . 2-43
STREAMS 2-2, 2-44
streams . 2-40

MOTOROLA DSP SIMULATOR REFERENCE MANUAL I-7

SYMBOL . 6-3
symbols . 2-31
SYSTEM 2-2, 2-44, 2-45

— T —

temporary files
path 2-2, 2-37
termxxxx.io 3-8
termxxxx.tio 3-8

terminal
i/o functions 7-1
input file 2-27
input file data 3-8
output file 2-35

.tio .2-27, 2-35
topic . 2-4
TRACE . 2-46
TYPE .2-2, 2-47

— U —

UNLOCK 2-2, 2-48
UNTIL 2-2, 2-49
UP . 2-2
Up-Arrow . 2-13

— V —

version number 2-18
VIEW .2-2, 2-51

— W —

WAIT .2-2, 2-52
WASM . 2-53
WATCH2-1, 2-54
WBREAKPOINT 2-55
WCALLS . 2-56
WCOMMAND 2-57
WHERE2-2, 2-58
WINPUT . 2-59
WLIST . 2-60

WMEMORY 2-61
WOUTPUT 2-62
WREGISTER 2-63
WSESSION 2-64
WSOURCE 2-65
WSTACK . 2-66
WWATCH 2-67
wwsim . 7-50
wwxxxxx . 7-50

	SIMULATOR REFERENCE MANUAL
	TABLE OF CONTENTS
	DSP SIMULATOR
	SIMULATOR COMMANDS
	DEVICE I/O AND PERIPHERAL SIMULATION
	SIMULATOR MEMORY CONFIGURATION
	EXPRESSIONS
	DSP OBJECT MODULE FORMAT
	C LIBRARY FUNCTIONS
	DEVICE-DEPENDENT INFORMATION
	GRAPHICAL USER INTERFACE
	INDEX

