
DSP56100

16-BIT
DIGITAL SIGNAL PROCESSOR

FAMILY MANUAL

Motorola, Inc.
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive, West
Austin, Texas 78735-8598

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Order this document by DSP56100FM/AD

Motorola reserves the right to make changes without further notice to any products herein to im-

prove reliability, function or design. Motorola does not assume any liability arising out of the appli-

cation or use of any product or circuit described herein; neither does it convey any license under its

patent rights nor the rights of others. Motorola products are not authorized for use as components

in life support devices or systems intended for surgical implant into the body or intended to support

or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola

shall determine availability and suitability of its product or products for the use intended. Motorola

and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Oppor-

tunity /Affirmative Action Employer.

OnCE is a trade mark of Motorola, Inc.

 Motorola Inc., 1994

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

DSP56100 FAMILY INTRODUCTION

1 - 1

SECTION 1

DSP56100 FAMILY INTRODUCTION

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

1 - 2

DSP56100 FAMILY INTRODUCTION

MOTOROLA

1.1 INTRODUCTION . 1-3

1.2 DSP56100 FAMILY FEATURES . 1-4

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

DSP56100 FAMILY INTRODUCTION

1 - 3

1.1 INTRODUCTION

The

DSP56100 Family Manual

 (see Figure 1-1) provides a description of the components

that are common to all DSP56100 family processors and includes a detailed description

of the basic DSP56100 family instruction set. The

DSP56156 User’s

Manual

and

DSP56166 User’s

Manual

provide a brief overview of the core processor and a detailed

descriptions of the memory and peripherals that are chip specific.

Figure 1-1 DSP56100 Family Product Literature

A

 DSP561xx User’s

Manual

 and a

DSP561xx Technical Data Sheet

 will be available for

any future DSP56100 family member.

Family Manuals
• architecture
• instructions

Device Manuals
• peripherals
• memories

Specifications
• electrical
• mechanical

Products

DSP56166UM/AD

DSP56166
User’s Manual

DSP56156UM/AD

DSP56156
User’s Manual

16-bit

DSP56166

16-bit

DSP56156

DSP56166
Technical Data

DSP56166/D

DSP56156
Technical Data

DSP56156/D

DSP561xxUM/AD

DSP561xx
User’s Manual

16-bit

DSP561xx

DSP561xx
Technical Data

DSP561xx/D

DSP56100

Family Manual

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 FAMILY FEATURES

1- 4

DSP56100 FAMILY INTRODUCTION

MOTOROLA

1.2 DSP56100 FAMILY FEATURES

The DSP56100 family consists of programmable CMOS 16-bit Digital Signal Processor

core composed of a 16-bit arithmetic DATA ALU (DALU), Address Generation Unit

(AGU), Program Controller Unit (PCU), and their associated DSP instruction set.

Table 1-1 gives a description of the DSP Core features.

Table 1-1 DSP Core Feature List

The block diagram of the core processor used in the DSP56100 family is shown in Figure

1-2.

• Up to 30 Million Instructions per Second (MIPS) at 60 MHz.– 33.3 ns instruction cycle

• Single-cycle 16 x 16-bit parallel multiply-accumulate

• 2 x 40-bit accumulators with extension byte

• Fractional and integer arithmetic with support for multiprecision arithmetic

• Highly parallel instruction set with unique DSP addressing modes

• Nested hardware DO loops including infinite loops

• Two instruction LMS adaptive filter loop

• Fast auto-return interrupts

• Three external interrupt request pins

• Three 16-bit internal data buses and three 16-bit internal address buses

• Programmable access time on the external bus

• On-chip peripheral registers memory mapped in data memory space

• Off-chip peripheral space with programmable access time memory mapped in data memory space

• Low power wait and stop modes

• On-Chip Emulation (OnCE) for unobtrusive, processor speed independent debugging

• Operating frequency down to DC

• Single power supply

• Low power (HCMOS)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 FAMILY FEATURES

MOTOROLA

DSP56100 FAMILY INTRODUCTION

1 - 5

Figure 1-2 DSP56100 Family Core CPU Block Diagram

The amount and type of on-chip memory varies from chip to chip within the family and so

is not discussed here. However, the architecture allows up to 64K words each (128k total)

of program memory and data memory to be addressed.

The peripherals and options that can be incorporated on-chip include:

• A Byte-wide Host Port

• Synchronous Serial Ports

• General Purpose I/O Pins

• Timer With External Access

•

∑∆

 Codec

• On-chip Oscillator

• Interrupt Request Pins

Other peripherals will be designed for new DSP56100 Family members.

XAB1

XAB2

PAB

XDB

PDB

GDB

4

ADDRESS

P
O

R
T

 A

PROGRAM CONTROL UNIT

MODx/IRQx

ON-CHIP
PERIPHERALS

HOST, SSI0, SSI,
TIMER, PI/O,
CODEC, ETC.

INTERNAL DATA
BUS SWITCH

AND BIT
MANIPULATION

UNIT

EXTERNAL
ADDRESS

BUS
SWITCH

BUS
CONTROL

EXTERNAL
DATA BUS
SWITCH

BOOTSTRAP
ROM

PROGRAM
RAM

DATA
RAM

PROGRAM
ADDRESS

GENERATOR

PROGRAM
DECODE

CONTROLLER

PROGRAM
INTERRUPT

CONTROLLER

DATA ALU
16x16+40 - 40-BIT MAC

TWO 40-BIT ACCUMULATORS

CLOCK
AND PLL

EXTAL

RESET

16 BITS

DATA

8

ADDRESS
GENERATION

UNIT

OnCE

SXFC
CLKO

HOST INTERFACE

NOT PART OF THE
CORE

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 FAMILY FEATURES

1- 6

DSP56100 FAMILY INTRODUCTION

MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 CPU ARCHITECTURE OVERVIEW 2 - 1

SECTION 2

CPU ARCHITECTURE OVERVIEW

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

2 - 2 CPU ARCHITECTURE OVERVIEW

MOTOROLA

2.1 INTRODUCTION . 2-3

2.2 DSP56100 BLOCK DIAGRAM . 2-3

2.2.1 Data Buses . 2-3

2.2.2 Address Buses . 2-3

2.2.3 Internal Bus Switch . 2-4

2.2.4 Bit Manipulation Unit . 2-4

2.2.5 Data ALU (DALU) . 2-4

2.2.6 Address Generation Unit (AGU) . 2-4

2.2.7 X Data Memory . 2-6

2.2.8 Program Memory . 2-6

2.2.9 Bootstrap Memory . 2-6

2.2.10 Program Control Unit (PCU) and System Stack (SS) 2-6

2.2.11 External Bus Interface . 2-7

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 CPU ARCHITECTURE OVERVIEW 2 - 3

2.1 INTRODUCTION

The heart of the DSP56100 architecture is a 16-bit multiple-bus processor designed spe-

cifically for real-time digital signal processing (DSP). The overall architecture is presented

and detailed block diagrams of the Data ALU and Address ALU architecture are de-

scribed.

2.2 DSP56100 BLOCK DIAGRAM

The major components of the CPU are:

• Data Buses

• Address Buses

• Data ALU

• Address ALU

• Program Control and System Stack

An overall block diagram of the CPU architecture is shown in Figure 2-1.

2.2.1 Data Buses

Data movement on the chip occurs over three bidirectional 16-bit buses: the X Data Bus

(XDB), the Program Data Bus (PDB), and the Global Data Bus (GDB). Data transfer be-

tween the Data ALU and the X Data Memory occurs over the XDB when one memory ac-

cess is performed, over the XDB and the GDB when two simultaneous memory reads are

performed. All other data transfers occur over the GDB. Instruction word pre-fetches take

place in parallel over the PDB. The bus structure supports general register to register, reg-

ister to memory, memory to register, and memory to memory data movement and can

transfer up to three 16-bit words in the same instruction cycle. Transfers between buses

are accomplished through the Internal Bus Switch.

As a general rule, when reading any 8-bit register, the unused bits in the most significant

byte are zero filled and any unused or reserved bits are read as zero.

2.2.2 Address Buses

Addresses are specified for internal X Data Memory on two unidirectional 16-bit buses, X

Address Bus One (XAB1) and X Address Bus Two (XAB2). Program memory addresses

are specified on the bidirectional Program Address Bus (PAB).

When external memory spaces have to be addressed, a single 16-bit unidirectional ad-

dress bus driven by a three input multiplexer can select: XAB1, XAB2, or the PAB. One

instruction cycle is needed for each external memory access. There is no speed penalty

if only one external memory space is accessed in an instruction and if no wait states are

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 BLOCK DIAGRAM

2 - 4 CPU ARCHITECTURE OVERVIEW

MOTOROLA

inserted in the external bus cycle. If two or three external memory spaces are accessed

in a single instruction, there will be a one or two instruction cycle execution delay, respec-

tively, or more if wait states are inserted on the external bus. A bus arbitrator controls ex-

ternal accesses, making it transparent to the user.

2.2.3 Internal Bus Switch

Transfers between buses are accomplished in the Internal Bus Switch. The internal bus

switch is similar to a switch matrix and can connect any two internal buses without adding

any pipeline delays.

2.2.4 Bit Manipulation Unit

The bit manipulation unit performs bit manipulation and bit field manipulation on memory

words and register data. It is capable of testing and/or changing a user selected set of bits

within a byte.

2.2.5 Data ALU (DALU)

The Data ALU performs all of the arithmetic and logical operations on data operands. The

Data ALU consists of four 16-bit input registers, two 32-bit accumulator registers, two 8-

bit accumulator extension registers, an accumulator shifter, an output shifter, one data

bus shifter/limiter, and a parallel single cycle non-pipelined Multiply-Accumulator (MAC)

unit. Data ALU registers may be read or written by the XDB and GDB as 16-bit operands.

The Data ALU is capable of multiplication, multiply-accumulate with positive or negative

accumulation, addition, subtraction, shifting, and logical operations in one instruction cy-

cle. Data ALU arithmetic operations generally use fractional 2’s complement arithmetic.

Some signed/unsigned and integer operations are also possible. Data ALU source oper-

ands may be 16, 32 or 40 bits and may originate from input registers and/or accumulators.

ALU results are always stored in one of the accumulators. The upper 16-bits of an accu-

mulator can be used as a multiplier input. Arithmetic operations always have a 40-bit re-

sult and logical operations are performed on 16-bit operands yielding 16-bit results in one

of the two accumulators. Refer to Section 3 for a detailed description of the Data ALU ar-

chitecture.

2.2.6 Address Generation Unit (AGU)

The AGU performs all address storage and effective address calculations necessary to

address data operands in memory. This unit operates in parallel with other chip resources

to minimize address generation overhead. The AGU can implement three types of arith-

metic: linear, modulo, and reverse carry. The Address ALU contains four Address Regis-

ters (R0-R3), four Offset Registers (N0-N3), and four Modifier Registers (M0-M3). The

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 BLOCK DIAGRAM

MOTOROLA

 CPU ARCHITECTURE OVERVIEW 2 - 5

Address Registers are 16-bit registers which may contain address or data. Each Address

Register may be output to the PAB and XAB1. R3 may be accessed for output to XAB2

16

ON-CHIP

 I/O

PERIPHERALS

ON-CHIP

MEMORY

ON-CHIP

 I/O

PERIPHERALS

ON-CHIP

MEMORY

SSH SSL

31 0
0

15

SP

6 0

PROGRAM
CONTROL

UNIT

LA LC

PC MR CCR OMR

15 0 15 0

15 015 0

m0

m1

m2

n0

n1

n2

r0

r1

r2

m3 n3 r3

ALU

ADDRESS GENERATION UNIT

OnCE

INT. DATA BUS SWITCH
AND BIT MANIPULATION

DATA
ALUSHIFTER/LIMITER

X1 X0 Y1 Y0 A2 A1 A0 B2 B1 B0

COND. GEN.

A
C

C
U

 S
H

IF
T

E
R

MR

16 x 16 → 40 BIT

MAC ALU

control bus

S
H

IF
T

E
R

XAB1

XAB2

PAB

XDB

PDB

GDB

16

16

16

16

16

16

16

16

8

16

16

8

GDB

SR

Figure 2-1 Architecture of the 16-Bit DSP CPU

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 BLOCK DIAGRAM

2 - 6 CPU ARCHITECTURE OVERVIEW

MOTOROLA

when R0, R1, or R2 are output to XAB1. The modifier and offset registers are 16-bit reg-

isters which are normally used to control updating of the address registers. Offset regis-

ters can also be used as 16-bit data general purpose registers.

AGU registers may be read or written by the GDB as 16-bit operands. The AGU can gen-

erate two 16-bit addresses every instruction cycle: one for either the XAB1 or PAB and

one for XAB2. The ALU can directly address 65536 locations on the XAB and 65536 lo-

cations on the XAB2 bus - a total capability of 131,072 16-bit data words. Refer to Section

4 for a detailed description of the AGU architecture.

2.2.7 X Data Memory

The On-Chip X Data Memory addresses are received from the XAB1 and XAB2 and data

transfers occur on the XDB and GDB.

Two

 reads

or

one

 write can be performed during

one instruction cycle on the internal data memory. The on-chip peripherals occupy the top

64 locations in the X data memory space (X:$FFC0-X:$FFFF). X memory may be expand-

ed off-chip for a total of 65,536 addressable locations.

2.2.8 Program Memory

The On-Chip Program Memory addresses are received from the program control logic

(usually the program counter) or from the address ALU on the PAB. The first 64 locations

of the program memory are reserved for interrupt vectors. The program memory may be

expanded off-chip for a total of 65,536 addressable locations.

2.2.9 Bootstrap Memory

A program bootstrap ROM is only read by the program controller while in the bootstrap

mode, during which, the on-chip program RAM is defined as write-only.

2.2.10 Program Control Unit (PCU) and System Stack (SS)

The Program Control Unit performs instruction prefetch, instruction decoding, hardware

loop control and exception processing. It contains six, 16-bit directly addressable regis-

ters. They are the:

1. Program Counter (PC),

2. Loop Address (LA),

3. Loop Count (LC),

4. Status Register (SR),

5. Operating Mode Register (OMR),

6. Stack Pointer (SP).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 BLOCK DIAGRAM

MOTOROLA

 CPU ARCHITECTURE OVERVIEW 2 - 7

The System Stack is a separate internal RAM 15 locations “deep” which stores the PC

and the SR for subroutine calls and long interrupts. The stack will also store the LC and

the LA in addition to the PC and SR registers for program looping.

2.2.11 External Bus Interface

A common address bus is used to access external Data Memory, Program Memory, or

I/O devices when required. Separate select lines control access to the memory spaces.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 BLOCK DIAGRAM

2 - 8 CPU ARCHITECTURE OVERVIEW

MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 DATA ALU 3 - 1

SECTION 3

DATA ALU

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

3 - 2 DATA ALU

MOTOROLA

3.1 OVERVIEW AND ARCHITECTURE . 3-3

3.1.1 Data ALU Input Registers (X1, X0, Y1, Y0) . 3-4

3.1.2 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0) 3-4

3.1.3 Multiply-Accumulator (MAC) and Logic Unit . 3-6

3.1.3.1 Multiply-Accumulator (MAC) Array and Logic unit 3-7

3.1.3.2 ZB Multiplexer . 3-7

3.1.3.3 Multiplier Control Recoder (REC) . 3-8

3.1.3.4 Extension Adder (EXA) . 3-8

3.1.4 Accumulator Shifter (AS) . 3-8

3.1.5 Output Shifter (OS) . 3-9

3.1.6 Data Shifter/Limiter . 3-9

3.1.6.1 Scaling . 3-9

3.1.6.2 Limiting . 3-9

3.2 THE DATA ALU ARITHMETIC AND ROUNDING 3-10

3.2.1 Data Representation . 3-10

3.2.2 Fractional Arithmetic . 3-11

3.2.3 Integer Arithmetic . 3-12

3.2.4 Multiprecision Arithmetic Support . 3-14

3.2.5 Rounding Modes . 3-15

3.2.5.1 Convergent Rounding . 3-15

3.2.5.2 Two’s Complement Rounding . 3-18

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

MOTOROLA

 DATA ALU 3 - 3

3.1 OVERVIEW AND ARCHITECTURE

This Section describes the structure and the operation of the Data ALU registers and

hardware in addition to describing the data representation, rounding, and saturation

arithmetic used within the Data ALU.

The major components of the Data ALU are

• Data ALU Input Registers

• Data ALU Accumulator Registers

• A parallel single cycle non-pipelined Multiply-Accumulator (MAC) Unit

• An Accumulator Shifter (AS)

• An Output Shifter (OS)

• A Data Shifter/Limiter (S/L)

A block diagram of the Data ALU architecture is shown in Figure 3-1 and a functional

block diagram is shown in Figure 3-2.

Figure 3-1 Data ALU Architecture Block Diagram

8

LSP(0:15)
MSP(0:15)
EXT(0:7)

EXA
(0:7)

MSA(0:15)

X1 X0 Y1 Y0 A2 A1 A0 B2 B1 B0

CONDITION
GENERATOR

A
C

C
U

 S
H

IF
T

E
R

MR

MULTIPLY -

ACCUMULATOR

AND LOGIC

O
U

T
P

U
T

S
H

IF
T

E
R

 (
O

S
)

LSA(0:15)

Z
B

(0
:1

5
)

Z
B

(0
:1

5
)

MUX

MUX

NON
MULTIPLY
CONTROL

SB(0:15)

S/L

XD(0:15)

L

GD(0:15)

DXB2(0:15)

DXB1(0:15)

8

15

15

16

16

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

3 - 4 DATA ALU

MOTOROLA

3.1.1 Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are 16-bit latches which serve as input registers for the data ALU.

Each register may be read or written by the XDB as well as the GDB. X0, X1, Y0, and Y1

may be read over the XDB. They may be treated as four independent 16-bit registers or

as two 32-bit registers called X and Y which are developed by concatenating X1:X0 and

Y1:Y0 respectively (where X1 and Y1 are the most significant words and X0 and Y0 are

the least significant words in X and Y respectively).

These Data ALU input registers are used as source operands for most data ALU opera-

tions and allow new operands to be loaded for the next instruction while the register con-

tents are used by the current instruction.

3.1.2 Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)

A1, A0, B1 and B0 are 16-bit latches which serve as data ALU accumulator registers. A2

and B2 are 8-bit latches which serve as accumulator extension registers. Each register

may be read or written by the XDB as a word operand. A1 and B1 may be read or written

by the GDB. When A2 or B2 is read, the register contents occupy the low-order portion

(bits 7-0) of the word; the high-order portion (bits 16-8) is sign-extended. When A2 or B2

is written, the register receives the low-order portion of the word; the high-order portion is

not used.

The accumulator registers are treated as two 40-bit registers A (A2:A1:A0) and B

(B2:B1:B0) for data ALU operations. These accumulator registers receive the

EXT:MSP:LSP portion of the Multiply-Accumulator unit output and supply a source accu-

mulator of the same form. Most data ALU operations specify the 40-bit accumulator reg-

isters as source and/or destination operands

The accumulator registers are treated as two 40-bit registers A (A2:A1:A0) and B

(B2:B1:B0) for data ALU operations. These accumulator registers receive the

EXT:MSP:LSP portion of the Multiply-Accumulator unit output and supply a source accu-

mulator of the same form. Most data ALU operations specify the 40-bit accumulator reg-

isters as source and/or destination operands.

When one accumulator is used as a multiplier input, only the upper portion (A1 or B1)

can be specified. This upper portion can also be directly used as an address register for

fast effective address computation.

Automatic sign extension of the 40-bit accumulators is provided when the A or B register

is written with a smaller size operand. This can occur when writing A or B from the X data

bus or with the results of certain data ALU operations (such as Tcc or TFR). If a word

operand is to be written to an accumulator register (A or B), the MSP portion of the accu-

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

MOTOROLA

 DATA ALU 3 - 5

mulator is written with the word operand, the LSP portion is zeroed and the EXT portion

is sign-extended from MSP. No sign extension is performed if an individual 16-bit register

(A1, A0, B1, or B0) is written.

The extension registers A2 and B2 offer protection against 32-bit overflow. When the

result of an accumulation crosses the MSB of MSP (bit 15 of A1 or B1), the extension bit

of the status register (E bit) is set. Up to 255 overflows or underflows are possible using

this extension byte, after which the sign is lost beyond the MSB of the EXT register, set-

ting the overflow bit (V bit) in the status register.

It is also possible to saturate the accumulator on a 32-bit value automatically after every

accumulation. This is done by setting the saturation bit in the Operating Mode Register

(OMR). The highest dynamic range of the machine is limited to 32 bits then, and the lim-

iting bit (L bit) in the status register is set by the saturation.

Figure 3-2 Data ALU Functional Block Diagram

<<4;<<1;pass;>>1;>>4;>>16

Accumulator Shifter

A1 A0A2

B1 B0B2

X1

Y1

X0

Y0

X Data Bus

G Data Bus

40 bits

16 bits

MAC UNIT

&

LOGIC UNIT

40 bits

Shifter/Limiter

<<1;pass;>>1

Saturate

16 bits

16 bits
Saturate

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

3 - 6 DATA ALU

MOTOROLA

The detection of the overflow logic is also used to saturate an accumulator out of the

shifter/limiter register while reading A or B accumulators over the XDB or transferring

them to any data ALU register. The content of A or B is not affected in that case (except

when the same accumulator is specified as source and destination); only the value trans-

ferred over the XDB is limited to a full-scale positive or negative 16-bit value ($7FFF or

$8000), respectively. This overflow protection is performed after the contents of the

accumulator have been shifted according to the scaling mode defined in the status regis-

ter. When limiting occurs, the L bit flag in the status register is set and latched. Note that

only when an entire 40 bit accumulator register (A or B) is specified as the source for a

parallel data move over the XDB will shifting and limiting be performed. Shifting and lim-

iting are not performed when A0, A1, A2, B0, B1, or B2 are individually specified.

3.1.3 Multiply-Accumulator (MAC) and Logic Unit

The MAC and logic unit is the main arithmetic processing unit of the DSP and performs

all of the calculations on data operands. The MAC unit accepts up to three input oper-

ands and outputs one 40-bit result of the form Extension:Most Significant Product: Least

Significant Product (EXT:MSP:LSP). The operation of the MAC unit occurs indepen-

dently and in parallel with XDB, GDB, and PDB activity. The Data ALU registers provide

pipelining for both data ALU inputs and outputs. Latches are provided on the MAC unit

input to permit writing an input register which is the source for a Data ALU operation in

the same instruction. All ALU operations occur in one instruction cycle. The inputs of the

multiplier can come from the X and Y registers (X1, X0, Y1, Y0) as well as from the MSP

of each accumulator (A1, B1). The multiplier executes 16 x 16-bit parallel signed/

unsigned fractional and signed integer multiplies.

For fractional arithmetic, the 31-bit product is added to the 40-bit contents of either the A

or B accumulator. The 40-bit sum is stored back in the same accumulator. This multiply/

accumulate is a single cycle operation (no pipeline). Integer operations always generate

a 16-bit result located in the accumulator MSP portion (A1 or B1). Full precision integer

operations are possible using an ASR instruction after any fractional MPY or MAC.

If a multiply without accumulation is specified in the instruction, the MAC clears the accu-

mulator and then adds the contents to the product. The results of all arithmetic instruc-

tions are valid (sign extended and zero filled) 40-bit operands in the form EXT:MSP:LSP,

A2:A1:A0, or B2:B1:B0 (except during integer operations). When a 40-bit result is to be

stored as a 16-bit operand, the LSP can simply be truncated or it can be rounded into the

MSP. The rounding performed is either convergent rounding (Round to the nearest

even) or twos-complement rounding. The type of rounding is specified by the rounding

bit in the status register. The bit in the accumulator which is rounded is specified by the

scaling mode bits in the status register.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

MOTOROLA

 DATA ALU 3 - 7

The major components of the MAC unit are

• Multiply-Accumulator Array

• ZB Multiplexer

• Multiplier Control Recoder

• Extension Adder

• Logic unit

3.1.3.1 Multiply-Accumulator (MAC) Array and Logic unit

The multiply-accumulator array is a 16 X 16-bit asynchronous, parallel multiply-accumu-

lator with 40-bit accumulation. The MAC array is based on the modified Booth’s algo-

rithm. The MAC array is used in all arithmetic operations. The array performs signed and

unsigned arithmetic with a fractional data representation and signed arithmetic with an

integer data representation. The MAC array also performs rounding if specified in the

DSP instruction. The type of rounding is specified by the scaling mode bits and the

rounding bit in the status register.

Three input operands are received on six internal data buses AS2, AS1, AS0, EB, ZB,

and MB. The AS2:AS1:AS0 data bus is the 40-bit source accumulator bus and repre-

sents the EXT:MSP:LSP portion of the source accumulator. The AS2:AS1:AS0 bus is

the output of the accumulator shifter. The ZB data bus is a 16-bit input operand used in

most data ALU operations and represents the multiplicand in multiplication operations.

The MB data bus is a 16-bit input operand which represents the multiplier in multiplica-

tion operations. The ZB and MB buses are concatenated (ZB:MB) to form a 32-bit input

bus for long word operands. The EB bus is concatenated with the ZB and MB buses

(EB:ZB:MB) to form a 40-bit input bus for addition or subtraction of the two full accumula-

tors.

The logic unit in the MAC array performs the logical operations AND, OR, EOR, and

NOT on data ALU registers. The logic unit is 16 bits wide and operates on data in the

MSP portion of the accumulator. The LSP and EXT portions of the accumulator are not

affected.

3.1.3.2 ZB Multiplexer

The ZB Multiplexer sign extends, by one bit, the data coming into the MAC over the ZB

bus. This sign bit can be cleared by the ZB Multiplexer to obtain an unsigned format for

these operands. The ZB Multiplexer may also invert data coming into the MAC as

required.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

3 - 8 DATA ALU

MOTOROLA

3.1.3.3 Multiplier Control Recoder (REC)

The multiplier control recoder directs the operation of the MAC array and performs multi-

plier operand recoding for the modified Booth’s algorithm multiplication. The MB bus is

the input to the multiplier control recoder. Data-independent multiplier control line gener-

ation is performed in the REC for most non-multiplication instructions. For example, the

multiplier control output for a data ALU addition would be a multiplication by +1 opera-

tion. For other data ALU operations, the multiplier control recoder generates control line

constants that do not correspond to a valid multiplier control word. The least significant

recoder outputs a zero control word and the most significant recoder provides all the

functions in these cases.

3.1.3.4 Extension Adder (EXA)

EXA is an 8-bit adder which serves as an extension accumulator for the MAC array. The

primary source operand is the AS2 internal data bus from the accumulator shifter. For

multiply-accumulate operations, the second source operand is an update constant gen-

erated from the carry and overflow outputs of the MAC array. For 40-bit additions or sub-

tractions, the EB internal data bus is used as the second source operand. This allows the

two accumulators to be added and subtracted from each other. The extension adder out-

put is the EXT portion of the MAC unit output and is the sum of the source operands.

3.1.4 Accumulator Shifter (AS)

The accumulator shifter is an asynchronous parallel shifter with a 40-bit input and a 40-

bit output. The source accumulator shifting operations are:

1. No Shift (Unmodified)

2. 1-Bit Left Shift (Arithmetic) ASL

3. 1-Bit Right Shift (Arithmetic) ASR

4. 4-Bit Right Shift (Arithmetic) ASR4

5. 4-Bit Left Shift (Arithmetic) ASL4

6. 16-Bit Right Shift (Arithmetic) ASR16

7. Force to zero

The shifter also performs a 15-bit arithmetic shift to the right during integer multiply-accu-

mulate (IMAC) instructions. The shifter is implemented immediately before MAC accu-

mulator input. The accumulator shifter output can be inverted or forced to zero and

linkages are provided to shift into and out of the condition code carry (C) bit. The accu-

mulator shifter outputs to the AS2, AS1, and AS0 buses in the internal ALU.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OVERVIEW AND ARCHITECTURE

MOTOROLA

 DATA ALU 3 - 9

3.1.5 Output Shifter (OS)

The Output shifter is an asynchronous parallel shifter with 40-bit input and a 40-bit out-

put. This shifter operates a 15-bit left shift on the result of the integer operations IMPY/

IMAC before storing the shifters result into an accumulator. The shifted result is then

available in the A1 or B1 MSP for other arithmetic or logical operations.

3.1.6 Data Shifter/Limiter

The data shifter/limiter provides special post processing on data ALU accumulator regis-

ters when they are read out to the XDB or to other registers. It consists of a shifter fol-

lowed by a limiting circuit.

3.1.6.1 Scaling

The data shifter is capable of shifting data one bit to the left or right as well as passing

the data unshifted. It has a 16-bit output and a limiting output indicator. The data shifter is

controlled by the scaling mode bits in the status register. These mode bits permit

dynamic scaling of fixed point data using the same program code which permits block

floating point algorithms to be implemented in a regular fashion. FFT routines would typ-

ically use this feature to selectively scale each butterfly pass.

3.1.6.2 Limiting

Saturation arithmetic is provided to selectively limit overflow when reading a data ALU

accumulator register. Limiting is performed on the data shifter output. If the contents of

the selected source accumulator can be represented in the destination operand size

without overflow, the data limiter is disabled and the operand is not modified. If the con-

tents of the selected source accumulator cannot be represented without overflow in the

destination operand size, the data limiter will substitute a “limited” data value having

maximum magnitude and the same sign as the source accumulator. The value of the

accumulator is not changed. The limited data values are shown in Table 3-1

 Table 3-1 Saturation by the Shifter/limiter

The E bit is the extension bit of the status register (SR) which is defined Section 5.3.6.

Note that during the TFR2 instruction, the limiting is performed on 32 bits when the accu-

mulator is written to a register.

E bit MSB of A2/B2 Output of the limiter

0 x unchanged

1 0 $7FFF

1 1 $8000

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 10 DATA ALU

MOTOROLA

3.2 THE DATA ALU ARITHMETIC AND ROUNDING

The DSP56100 family supports the two’s-complement representation of binary numbers.

In this format, the sign bit is the MSB of the binary word, which is set to zero for positive

numbers and set to one for negative numbers. Unsigned numbers are only supported by

instructions dedicated to multiple precision.

3.2.1 Data Representation

Three modes of format adjustments are supported by the 16-bit DSP:

1.

Two’s complement fractional.

 In this format, the N bit operand is represented

using the 1.[N-1] format (1 signed bit, N-1 fractional bits). Such a format can

represent numbers between -1 and +1-2

-[N-1]

2.

Unsigned fractional.

Unsigned binary numbers may be thought of as positive

only. The unsigned numbers have nearly twice the magnitude of a signed number

of the same length. An unsigned fraction, D, is a number whose magnitude

satisfies the inequality:

 0.0

≤

 D < 2.0

Examples of unsigned fractional numbers are 0.25, 1.25, and 1.999. The binary

word is interpreted as having a binary point after the most significant bit (MSB).

The most positive number is $FFFF or {1.0 + (1 - 2

-[N-1]

)} = 1.99996948 (for

N=16 bits). The smallest positive number is zero ($0000).

3.

Two’s complement integer.

This format is used by two instructions, the integer

multiply and multiply-accumulate (IMPY/IMAC). Using this format, the N-bit

operand is represented using the N.0 format (N integer bits). Such a format can

represent numbers between -2

-[N-1]

and [2

[N-1]

-1].

The operand is written to the most significant accumulator register (A1 or B1) and its

most significant bit is automatically sign extended through the accumulator extension

register to maintain alignments of the binary point when a word operand is written to A or

B. The least significant accumulator register is automatically cleared. See Figure 3-3 for

more details on bit weighting and operand alignments

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

MOTOROLA

 DATA ALU 3 - 11

.

3.2.2 Fractional Arithmetic

Figure 3-4 shows the Multiply-Accumulation implementation for fractional arithmetic. The

multiplication of two 16-bit signed fractional operands gives a 32-bit signed fractional

intermediate result with the LSB always set to zero. This intermediate result is added to

one of the 40-bit accumulators. If rounding is specified in the MPY or MAC instruction

(MACR or MPYR), the intermediate result will be rounded to 16 bits before being stored

back to the destination accumulator

-2
0

2
-15

-2
0

2
-15

2
-16

2
-31

2
0

2
-15 2-16 2-31

-2
8

 -2
15

2
0

-2
15

2
14

2
0

16-bit word operand
 X0,X1,Y0,Y1,A1,B1

32-bit long word
 operand

40-bit word operand
 A,B

Fractional 2’s Complement Representation

Integer 2’s Complement Representation

16-bit word operand
 X0,X1,Y0,Y1,A1,B1

16-bit word result
in A1,B1

unused

Figure 3-3
Bit Weighting and Alignments for Operands in

Fractional and Integer Representation

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 12 DATA ALU

MOTOROLA

.

3.2.3 Integer Arithmetic

Figure 3-5 shows the Multiply and Multiply-Accumulate operations for integer arithmetic

and Figure 3-6 describes the implementation of the Integer Multiply-Accumulate. The

multiplication/multiply-accumulate of two 16-bit signed integer operands (IMPY/IMAC)

gives a 16-bit signed integer result in the MSP (A1 or B1). EXT (A2 or B2) is sign

extended and the LSP (A0 or B0) is unchanged. Since A0 and B0 remain unchanged by

integer arithmetic instructions, these two registers can be used as two additional data

ALU registers when using IMAC, IMPY, INC24, DEC24, CLR24, SWAP, and EXT

instructions. Full precision 40-bit integer operations are possible using a fractional MPY

or a series of MACs followed by an ASR instruction.

CAUTION

Overflow control and rounding are

not

 performed during inte-

ger multiplication and integer multiply-accumulate.

Integer arithmetic is optimized for new address generation using the multiplier. For

example, when an address register Rn has to be updated to Rn + x0*y0 before fetching

new data from memory, the following sequence of code can be used:

 move Rn,a ;a=Rn
imac x0,y0,a ;a1=Rn+x0*y0
move x:(a1),b ;b1=X:<Rn+x0*y0>

Figure 3-4 Fractional Arithmetic

ss

0

16 bits 16 bits

31 bits

ss

40 bits

EXP MSP LSP

Signed Fractional
Input Operands

Signed
Intermediate

Multiplier Result

Signed Fractional
Mac Output

Input Operand 1 Input Operand 2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

MOTOROLA

 DATA ALU 3 - 13

Figure 3-5 Integer Arithmetic (IMPY/IMAC)

Signed Integer
 Output

31 bits

ss

16 bits 16 bits

unchanged EXP MSP

Signed Integer
Input Operands

Signed
Intermediate

Multiplier Result

16 bits

0s

16 bits

S Ext.

Input Operand 1 Input Operand 2

Figure 3-6 IMAC Implementation

Multiply

16.0 16.0

31.1

=

39.1

=

39.1

>>15

Accumulator Shifter

Output Shifter

<<15

Accumulate

16. 0S. ext.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 14 DATA ALU

MOTOROLA

3.2.4 Multiprecision Arithmetic Support

A set of data ALU operations is provided in order to facilitate multi-precision multiplica-

tions. When these instructions are used, the multiplier accepts some combinations of

signed twos-complement format and unsigned format. These instructions are:

1.

MPY/MAC su:

multiplication and multiply-accumulate with signed times

unsigned operands

2.

MPY/MAC uu:

multiplication and multiply-accumulate with unsigned times

unsigned operands

3.

DMACss:

multiplication with signed times signed operands and 16-bit

arithmetic right shift of the accumulator before accumulation

4.

DMACsu:

multiplication with signed times unsigned operands and 16-bit

arithmetic right shift of the accumulator before accumulation

5.

DMACuu:

multiplication with unsigned times unsigned operands and 16-

bit arithmetic right shift of the accumulator before accumulation

Figure 3-7 shows how the DMAC instruction is implemented inside the Data ALU and

Figure 3-8 illustrates the use of these instructions in the case of a double precision multi-

plication. The signed x signed operation is used to multiply or multiply-accumulate the

two upper, signed, portions of two signed double precision numbers. The unsigned x

signed operation is used to multiply or multiply-accumulate the upper, signed, portion of

one double precision number with the lower, unsigned, portion of the other double preci-

sion number. The unsigned x unsigned operation is used to multiply or multiply-accumu-

late the lower, unsigned, portion of one double precision number with the lower,

unsigned, portion of the other double precision number.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

MOTOROLA

 DATA ALU 3 - 15

3.2.5 Rounding Modes

The DSP56100 family implements two types of rounding: convergent rounding and two’s

complement rounding. The type of rounding is selected by the OMR rounding bit (R bit).

3.2.5.1 Convergent Rounding

This is the default rounding mode. Convergent rounding is also called round-to-nearest

even number. It prevents the introduction of a bias normally produced by rounding down

if the number is odd (LSB=1) and rounding up if the number is even (LSB=0). Figure 3-9

shows the four possible cases for rounding a number in the A1 or B1 register. If the Least

Significant Portion (LSP) of a number is less than half ($<8000) of the bit to be rounded

(LSB), the number is rounded down and if the LSP of the number is greater than half of

the LSB (>$8000) the number is rounded up. If the LSP is exactly equal to half of the

LSB ($8000) and the LSB of the MSP is odd, the number is rounded up whereas if the

LSB of the MSP is even, the number is rounded down i.e., truncated. This technique

eliminates the bias in truncation rounding.

Block diagrams of the rounding implementations for the cases of no scaling, scaling

down and scaling up are shown in Figure 3-9, Figure 3-10, and Figure 3-11, respectively.

Scaling modes require that the zero detect hardware and LSB Even gate have one of

three forms since the LSB moves with the scaling mode.

Multiply

1.15 1.15

1.31

=

25.15 +

=

9.31

9.31

>>16

Accumulator Shifter

Accumulate

Figure 3-7 DMAC Implementation

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 16 DATA ALU

MOTOROLA

32 bits

64 bits

B0B1A0A1A2

X0X1

Y1 Y0

XLXH

YH YL

X

=

S Ext

+

+

+

XL x YL

XH x YL

YH x XL

XH x YH

Signed X Unsigned

Signed X Signed

Unsigned X Unsigned
mpyuu x0,y0,a

move a0,b0

dmacsu x1,y0,a

macsu y1,x0,a

move a0,b1

dmacss x1,y1,a

Figure 3-8 Double Precision Multiplication

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

MOTOROLA DATA ALU 3 - 17

Figure 3-9 Convergent Rounding

XX..X XX...XX0100 011XXX...XX XX..X XX...XX0100 0000...0000

XX..X XX...XX0100 1110XX...XX XX..X XX...XX0101 0000...0000

XX..X XX...XX0101 1000...0000 XX..X XX...XX0110 0000...0000

XX..X XX...XX0100 1000...0000 XX..X XX...XX0100 0000...0000

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

CASE I: A0<0.5 (<$8000), then round down (add zero and A1)

Before Rounding After Rounding

CASE II: A0>0.5 (>$8000), then round up (add 1 to A1)

Before Rounding After Rounding

CASE III: A0=0.5 (=$8000) and LSB of A1=0 (even), then round down (add zero to A1)

Before Rounding After Rounding

CASE IV: A0=0.5 (=$8000) and LSB of A1=1(odd), then round up (add 1 to A1)

Before Rounding After Rounding

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 18 DATA ALU MOTOROLA

.

3.2.5.2 Two’s Complement Rounding

When twos-complement rounding is selected by setting the rounding bit in the OMR, one

is added to the bit to the right of the rounding point (bit 15 of A0 when no-scaling; bit 0 of

A1 when scaling down; bit 14 of A0 when scaling up) before the bit truncation during a

rounding operation. Figure 3-12 shows the two possible cases.

Accumulator

Add Rounding
Constant

XX

1000000000000000000000000000000000000000

0

Zero
Detect

LSB even

Force LSP to zero

Figure 3-10 Convergent Rounding Implementation – No Scaling

Accumulator

Add Rounding
Constant

XX

000000000000000000000000000000 100000000

0

Zero
Detect

LSB even

Force LSP to zero

Figure 3-11 Convergent Rounding Implementation – Scale Down

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

MOTOROLA DATA ALU 3 - 19

Once the rounding bit has been programmed in the OMR, there is a delay of one instruc-

tion cycle before the new rounding mode becomes active.

XX..X XX...XX0100 011XXX...XX XX..X XX...XX0100 0000...0000

XX..X XX...XX0100 1110XX...XX XX..X XX...XX0101 0000...0000

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

A2 A1 A0

39 31 15 0

CASE I: A0 < 0.5 (<$8000), then round down

Before Rounding After Rounding

CASE II: A0

≥ 0.5 (

≥$8000), then round up

Before Rounding After Rounding

Figure 3-12 Two’s Complement Rounding (No-scaling)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

THE DATA ALU ARITHMETIC AND ROUNDING

3 - 20 DATA ALU MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 1

SECTION 4

ADDRESS GENERATION UNIT (AGU)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

4 - 2 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

4.1 INTRODUCTION . 4-3

4.2 ADDRESS REGISTER FILE (Rn) . 4-3

4.3 OFFSET REGISTER FILE (Nn) . 4-3

4.4 MODIFIER REGISTER FILE (Mn) . 4-4

4.5 TEMPORARY ADDRESS REGISTER . 4-4

4.6 AGU STATUS REGISTER . 4-5

4.7 PC RELATIVE ADDRESSING UNIT . 4-6

4.8 SECONDARY OFFSET ADDER UNIT . 4-6

4.9 MODULO ARITHMETIC UNIT . 4-6

4.10 ADDRESSING MODES . 4-7

4.11 ADDRESS MODIFIER TYPES . 4-12

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 3

4.1 INTRODUCTION

The major components of the AGU are:

• Address Register Files

• Offset Register Files

• Modifier Register Files

• Address Arithmetic Unit Containing:

– Temporary Address Register

– Local Status Register

– PC Relative Addressing Unit

– Secondary Offset Adder Unit

– Modulo Arithmetic Unit

– Address Output Multiplexer

A block diagram of the AGU is shown in Figure 4-1.

4.2 ADDRESS REGISTER FILE (Rn)

The Address Register File consists of four, sixteen-bit registers. The file contains the ad-

dress registers R0-R3 which usually contain addresses used as pointers to memory. Each

register may be read or written by the Global Data Bus. High speed access to the XAB1

and XAB2 buses is required to allow maximum access time for the internal and external

X Data Memory and Program Memory. Each address register may be used as an input to

the modulo arithmetic unit for a register update calculation. Each register may be written

by the Global Data Bus or by the output of the modulo arithmetic unit.

R2, R3 and Temp may be used as inputs to a separate offset adder for an independent

register update calculation. This special update calculation occurs during parallel, dual

reads (using R3) and during offset by absolute immediate offsets (using R2+$xx).

CAUTION

Due to pipelining, if an address register (M, N, or R) is changed
with a MOVE instruction, the new contents will not be available for
use as a pointer until the second following instruction.

4.3 OFFSET REGISTER FILE (Nn)

The Offset Register File consists of four, sixteen-bit registers. The file contains the offset

registers N0-N3 and usually contains offset values used to update address pointers. Each

offset register may be read or written by the Global Data Bus. Each offset register is read

when the same number address register is read and used as an input to the modulo arith-

metic unit.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MODIFIER REGISTER FILE (Mn)

4 - 4 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

4.4 MODIFIER REGISTER FILE (Mn)

The Modifier Register File consists of four, 16-bit registers. The file contains the modifier

registers M0-M3 and usually specifies the type of arithmetic used to modify an address

register during address register update calculations. Each modifier register may be read

or written by the Global Data Bus. Each modifier register is read when the same number

address register is read and used as an input to the modulo arithmetic unit. Each modifier

register is preset to $FFFF during a processor reset.

4.5 TEMPORARY ADDRESS REGISTER

The temporary address register, Temp, is a 16-bit register which provides for:

r0

r1

r2

r3

temp

RB(0:15)

m0

m1

m2

m3

n0

n1

n2

n3

MB(0:15)

n3 only

NB(0:15)

UB(0:15)

XAB2(0:15) PAB(0:15)XAB1(0:15)

PDB(0:15)

GDB(0:15)

ctrl ctrlctrlctrl Address
Arithmetic

Unit

Modifier
Register
File

Offset
Register
File Address Register

File

Figure 4-1 AGU Block Diagram

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AGU STATUS REGISTER

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 5

1. temporary storage for an absolute address loaded from the Program Data Bus,

2. the immediate data loaded from the Global Data Bus,

3. Address Register Indirect with Immediate Displacement addressing mode,

4. the contents of A1 or B1 registers used by the Accumulator Register Indirect

Addressing mode, or

5. the output of the modulo arithmetic unit.

The modulo arithmetic unit output is loaded into the Temp register during the pre-update

cycle of the indexed by offset addressing mode, of the pre-decrement addressing mode,

and during the LEA instruction. In each of these addressing modes, an address register

is accessed, updated by the modulo arithmetic unit, and stored in Temp in one instruction

cycle. In the following cycle, the content of Temp is used to address the X memory. For

all absolute addressing modes, the address of the operand is written into Temp and then

used to address X: or P: memory.

4.6 AGU STATUS REGISTER

The 3-bit local status register in the AGU, which cannot be accessed by the user, will be

updated after every register update; i.e., only those addressing modes that update the ad-

dress register regardless of memory access type.

Updating of the local status register is as follows:

sr_v

←

set if the modulo circuit performed a wrap, clear otherwise.

sr_z

←

set if the result of the address update is zero, clear otherwise.

sr_n

←

set if the result of the address update is negative, clear otherwise.

The CHKAAU instruction will copy the AGU status register to SR as follows:

V

←

sr_v

Z

←

sr_z

N

←

sr_n

During double parallel reads, only the update of the address register used for the first par-

allel read (not r3) will affect the local status register.

Note:

Only the V, Z, N bits of SR will be changed.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PC RELATIVE ADDRESSING UNIT

4 - 6 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

4.7 PC RELATIVE ADDRESSING UNIT

The PC Relative Addressing Unit performs the PC relative address computation with sign

extension done on the program address offset. The result is gated onto the Program Ad-

dress Bus by a control signal from the program controller.

4.8 SECONDARY OFFSET ADDER UNIT

The Secondary Offset Adder Unit is used for an address update calculation during double

data memory read instructions, or for the addition of address register and immediate dis-

placement.

4.9 MODULO ARITHMETIC UNIT

The Modulo Arithmetic Unit contains one 16-bit full adder (called the offset adder) which

may add one, subtract one, or add the contents of the respective signed offset register N

to the contents of the selected address register. A second full adder (called the modulo

adder) adds the summed result of the first full adder to a modulo value M or minus M,

where M is stored in the respective modifier register. A third full adder (called the reverse

carry adder) adds the constant one, minus one, the offset N (stored in the respective offset

register) to the selected address register with the carry propagating in the reverse direc-

tion, from the most significant bit to the least. The offset adder and the reverse carry adder

are in parallel and share common inputs. Test logic determines which of the three

summed outputs of the full adders is output to the address register file or temporary reg-

ister.

The modulo arithmetic unit can update one address register, Rn, during one instruction

cycle. It is capable of performing linear, reverse carry, and modulo arithmetic. The con-

tents of the selected modifier register specifies the type of arithmetic required in an ad-

dress register update calculation. The modifier value is decoded in the modulo arithmetic

unit and affects the unit’s operation. The modulo arithmetic unit’s operation is data-depen-

dent and requires execution cycle decoding of the selected modifier register contents.

Note that for dual reads, there is no modulo capability for an R3 update, linear arithmetic

will be used.

The output of the offset adder gives the result of linear arithmetic (e.g. Rn+1; Rn+N) and

is selected as the modulo arithmetic unit’s output for linear arithmetic addressing modifi-

ers. The reverse carry adder performs the required operation for reverse carry arithmetic

and its output is selected as the modulo arithmetic unit’s output for reverse carry address-

ing modifiers. Reverse carry arithmetic is useful for 2

k

 point FFT addressing. For modulo

arithmetic, the modulo arithmetic unit will perform the function (Rn+N) modulo M where N

can be one, minus one, or the contents of the offset register Nn. If the modulo operation

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 7

requires wraparound for modulo arithmetic, the summed output of the modulo adder will

give the correct updated address register value; otherwise, if wraparound is not neces-

sary, the output of the offset adder gives the correct result.

The test logic will determine which output address to select. If the contents of the respec-

tive modifier register, M, specify linear or reverse carry arithmetic, the output of the mod-

ulo arithmetic unit will be the output of the offset adder or reverse carry adder,

respectively. If M specifies a modulo value (modulo arithmetic) the output of the modulo

arithmetic unit will be based on the results or both the offset and modulo adders.

The modulo arithmetic unit is also used in a special way during execution of the NORM

instruction. For the NORM instruction, the modulo arithmetic unit computes three values:

Rn, Rn-1 and Rn+1. Depending on the result of the Data ALU operation, one of the three

is selected for the register update. (See the NORM instruction in Appendix A)

4.10 ADDRESSING MODES

The DSP56100 family instruction set contains a full set of operand addressing modes. All

address calculations are performed in the Address Generation Unit to minimize execution

time and loop overhead.

Addressing modes specify whether the operand(s) is in a register or memory and provide

the specific address of the operand(s). An effective address in an instruction will specify

an addressing mode, and for some addressing modes, the effective address will further

specify an address register. In addition, address register indirect modes require additional

address modifier information which is not encoded in the instruction. The address modifier

information is specified in the selected address modifier register(s). All memory referenc-

es require one address modifier and the dual X memory reference requires one or two ad-

dress modifiers. The definition of certain instructions implies the use of specific registers

and the addressing modes used.

Address register indirect modes require an offset and a modifier register for use in ad-

dress calculations. These registers are implied by the address register specified in an ef-

fective address in the instruction word. Each offset register Nn and each modifier register,

Mn, is assigned to an address register, Rn, having the same register number, n, forming

a triplet. Thus the assigned triplets are M0;N0;R0, M1;N1;R1, M2;N2;R2, and M3;N3;R3.

The address register Rn is used as the address register, the offset register, Nn, is used

to specify an optional offset and the modifier register Mn is used to specify an addressing

mode modifier.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

4 - 8 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

The addressing modes are grouped into three categories: register direct, address register

indirect, and special. These addressing modes are described below and summarized in

Table 4-1.

4.10.1 Register Direct Modes

These effective addressing modes specify that the operand is in one (or more) of the 10

Data ALU registers, 12 address registers or 7 control registers.

4.10.1.1 Data or Control Register Direct

The operand is in one, two, or three Data ALU register(s) as specified in a portion of the

data bus movement field in the instruction. This addressing mode is also used to specify

a control register operand for special instructions. This reference is classified as a register

reference.

4.10.1.2 Address Register Direct

The operand is in one of the 12 address registers (Rn, Mn, and Nn) specified by an effec-

tive address in the instruction. This reference is classified as a register reference.

CAUTION

Due to pipelining, if an address register (Mn, Nn, or Rn) is changed with a
MOVE instruction, the new contents will not be available for use as a pointer
until the second following instruction.

4.10.2 Address Register Indirect Modes

The effective address in the instruction specifies the address register Rn and the address

calculation to be performed. These addressing modes specify that the operand(s) is in

memory and provide the specific address of the operand(s). When an address register is

used to point to a memory location, the addressing mode is called address register indi-

rect. The term indirect is used because the operand is not the address register itself, but

the contents of the memory location pointed to by the address register. A portion of the

data bus movement field in the instruction specifies the memory reference to be per-

formed. The type of address arithmetic used is specified by the address modifier register,

Mn.

4.10.2.1 No Update (Rn)

The address of the operand is in the address register Rn. The contents of the Rn register

are unchanged. The Mn and Nn registers are ignored. This reference is classified as a

memory reference.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 9

4.10.2.2 Postincrement by 1 (Rn)+

The address of the operand is in the address register Rn. After the operand address is

used, it is incremented by 1 and stored in the same address register. The type of arith-

metic used to increment Rn is determined by Mn. The Nn register is ignored. This refer-

ence is classified as a memory reference.

4.10.2.3 Postdecrement by 1 (Rn)-

The address of the operand is in the address register Rn. After the operand address is

used, it is decremented by 1 and stored in the same address register. The type of arith-

metic used to increment Rn is determined by Mn. The Nn register is ignored. This refer-

ence is classified as a memory reference.

4.10.2.4 Postincrement by Offset Nn (Rn)+Nn

The address of the operand is in the address register Rn. After the unsigned operand ad-

dress is used, the contents of the Nn register are added to Rn and stored in the same ad-

dress register. The content of Nn is treated as a 2’s complement number and can there-

fore be interpreted as signed or unsigned. The contents of the Nn register are unchanged.

The type of arithmetic used to increment Rn is determined by Mn. This reference is clas-

sified as a memory reference.

4.10.2.5 Indexed by Offset Nn (Rn+Nn)

The address of the operand is the sum of the contents of the address register Rn and the

contents of the address offset register Nn. This addition occurs before the operand can

be accessed and therefore requires an extra instruction cycle. The content of Nn is treated

as a 2’s complement number and can therefore be interpreted as signed or unsigned. The

contents of the Rn and Nn registers are unchanged. The type of arithmetic used to add

Nn to Rn is determined by Mn. This reference is classified as a memory reference.

4.10.2.6 Predecrement by 1 -(Rn)

The address of the operand is the contents of the address register Rn decremented by 1.

Before the operand address is used, it is decremented (subtracted) by 1 and stored in the

same address register. The type of arithmetic used to increment Rn is determined by Mn.

The Nn register is ignored. This reference is classified as a memory reference.

4.10.3 PC Relative Modes

In the PC relative addressing modes used in the BRA and DO instructions, the address

of the operand is obtained by adding a displacement, represented in two’s complement

format, to the value of the program counter (PC). The PC always points to the address of

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

4 - 10 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

the next instruction, so PC relative addressing with zero displacement will produce the ad-

dress of the next sequential instruction in program memory.

4.10.3.1 Long Displacement PC Relative

This addressing mode requires one word of instruction extension. The address of the op-

erand is the sum of the contents of the PC and the extension word. This reference is clas-

sified as a register reference.

4.10.3.2 Short Displacement PC Relative

The short displacement occupies 8 bits in the instruction operation word. The displace-

ment is first sign extended to 16 bits and then added to the PC to obtain the address of

the operand. This reference is classified as both a register reference and a memory ref-

erence.

4.10.3.3 Address Register PC Relative

The address of the operand is the sum of the contents of the address register Rn and the

PC. The Mn and Nn registers are ignored. This reference is classified as a register refer-

ence.

4.10.4 Special Address Modes

The special address modes do not use an address register in specifying an effective ad-

dress. These modes specify the operand or the address of the operand in a field of the

instruction or they implicitly reference an operand.

4.10.4.1 Upper Word of Accumulator

This addressing mode uses the contents of either A1 or B1 to address an operand in

memory. No update is performed. It is available for single parallel memory moves. This

reference is classified as an X memory reference.

4.10.4.2 Immediate Data

This addressing mode requires one word of instruction extension. The immediate data is

a word operand in the extension word of the instruction. This reference is classified as a

program reference.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 11

4.10.4.3 Immediate Short Data

The 8-bit operand is in the instruction operation word. The 8-bit operand is used for the

ANDI, DO, ORI, and REP instructions in addition to the immediate move to register in-

struction. This reference is classified as a program reference.

4.10.4.4 Absolute Address

This addressing mode requires one word of instruction extension. The address of the op-

erand is in the extension word. This reference is classified as both a memory reference

and a program reference.

4.10.4.5 Absolute Short Address

For the Absolute Short addressing mode the address of the operand occupies 5 bits in the

instruction operation word and is zero extended. This reference is classified as both a

memory reference and a program reference.

4.10.4.6 Short Jump Address

The operand occupies 8 bits in the instruction operation word. The address is zero extend-

ed to 16 bits and is unsigned. This reference is classified as a program memory reference.

4.10.4.7

I/O Short Address

For the I/O short addressing mode the address of the operand occupies 5 bits in the in-

struction operation word and is one’s extended. I/O short is used with the bit manipulation

and move peripheral data instructions. This reference is classified as an X memory refer-

ence.

4.10.4.8 Implicit Reference

Some instructions make implicit reference to the program counter (PC), system stack

(SSH, SSL), loop address register (LA), loop counter (LC), or status register (SR). The

registers implied and their use are defined by the individual instruction descriptions (see

Appendix A). This reference is classified as both a register reference and a program ref-

erence.

4.10.4.9 Indexed by Short Displacement

This addressing mode uses one extension word which contains the 8-bit short index and

precedes the opcode word. The index requires an extra instruction cycle and always in-

dexes address register R2. This addressing mode is available for MOVEM and MOVEC

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS MODIFIER TYPES

4 - 12 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

instructions as well as single parallel memory moves. This reference is classified as an X

memory reference.

4.10.5 Addressing Modes Summary

Table 4-2 contains a summary of the addressing modes discussed in the previous para-

graphs.

4.11 ADDRESS MODIFIER TYPES

The DSP56100 family Address Generation Unit supports linear, modulo, and bit-reversed

address arithmetic for all address register indirect modes. Address modifiers determine

the type of arithmetic used to update addresses. Address modifiers allow the creation of

data structures in memory for FIFOs (queues), delay lines, circular buffers, stacks, and

bit-reversed FFT buffers. Data is manipulated by updating address registers (pointers)

rather than moving large blocks of data. The contents of the address modifier register, Mn,

defines the type of address arithmetic to be performed for addressing mode calculations,

and for the case of modulo arithmetic, the contents of Mn also specifies the modulus. All

address register indirect modes may be used with any address modifier type. Each ad-

dress register Rn has its own modifier register Mn associated with it.

4.11.1 Linear Modifier

The address modification is performed using normal 16-bit (modulo 65,536) two’s com-

plement linear arithmetic. A 16-bit offset Nn, or immediate data (+1, -1, or a displacement

value) may be used in the address calculations. The range of values may be considered

as signed (Nn from -32,768 to +32,767) or unsigned (Nn from 0 to +65,536). There is no

arithmetic differences between these two data representations. Addresses are normally

considered unsigned, data is normally considered signed.

4.11.2 Reverse Carry Modifier

The address modification is performed by propagating the carry in the reverse direction,

i.e., from the MSB to the LSB. This is equivalent to bit-reversing the contents of Rn and

the offset value Nn, adding normally, and then bit-reversing the result. If the (Rn)+Nn ad-

dressing mode is used with this address modifier, and Nn contains the value 2

k-1

 (a power

of two), then postincrementing by Nn is equivalent to bit-reversing the k LSBs of Rn, in-

crementing Rn by 1, and bit-reversing the k LSBs of Rn again. This address modification

is useful for 2

k

 point FFT addressing. The range of values for Nn is 0 to +32,767. This al-

lows bit-reversed addressing for FFTs up to 65,536 points.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS MODIFIER TYPES

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 13

As an example, consider a 1024 point FFT with real data stored in one section of data

RAM and imaginary data stored in another section of data RAM. Then Nn would contain

the value 512 and postincrementing by +N would generate the address sequence 0, 512,

256, 768, 128, 640, … This is the scrambled FFT data order for sequential frequency

points from 0 to 2

π

. For proper operation the reverse carry modifier restricts the base ad-

dress of the bit reversed data buffer to an integer multiple of 2

k

, such as 1024, 2048, 3072,

etc. The use of addressing modes other than postincrement by Nn is possible but may not

provide a useful result.

4.11.3 Modulo Modifier

The address modification is performed modulo M, where M is permitted to range from 2

to +32,768. Modulo M arithmetic causes the address register value to remain within an

address range of size M defined by a lower and upper address boundary. The value M-1

is stored in the modifier register Mn, thus allowing a modulo size range from 2 to 32,768.

The lower boundary (base address) value must have zeroes in the k LSBs, where 2

k

 > M,

and therefore must be a multiple of 2

k

. The upper boundary is the lower boundary plus the

modulo size minus one (base address plus M-1).

For example, to create a circular buffer of 24 stages, M is chosen as 24 and the lower ad-

dress boundary must have its 5 LSBs equal to zero (2

k

 > 24, thus k > 5). The Mn register

is loaded with the value 23 (M-1). The lower boundary may be chosen as 0, 32, 64, 96,

128, 160, etc. The upper boundary of the buffer is then the lower boundary plus 23.

The address pointer is not required to start at the lower address boundary and may begin

anywhere within the defined modulo address range. In fact, the initial location of Rn de-

termines the lower and upper boundaries. The upper and lower boundaries are not explic-

itly needed. If the address register pointer increments past the upper boundary of the buff-

er (base address plus M-1) it will wrap around to the base address. If the address decre-

ments past the lower boundary (base address) it will wrap around to the base address

plus M-1.

If an offset Nn is used in the address calculations, the 16-bit value Nn must be less than

or equal to M for proper modulo addressing. This is because a single modulo wrap around

is detected. If Nn is greater than M, the result is data dependent and unpredictable except

for the special case where Nn=L*(2

k

), a multiple of the block size, 2

k

, where L is a positive

integer. Note that the offset Nn must be a positive two’s complement integer. For this case

the pointer Rn will be incremented using linear arithmetic to the same relative address L

blocks forward in memory. For the normal case where Nn is less than or equal to M, the

modulo arithmetic unit will automatically wrap the address pointer around by the required

amount. This type of address modification is useful in creating circular buffers for FIFOs

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS MODIFIER TYPES

4 - 14 ADDRESS GENERATION UNIT (AGU)

MOTOROLA

 Operand Reference
Uses Mn

 Addressing Mode Modifier S C D A P X XX

Register Direct

Data or Control Register No X X X
Address Register Rn No X
Address Modifier Register MnNo X
Address Offset Register Nn No X

Address Register Indirect

No Update No X X
Postincrement by 1 Yes* X X X
Postdecrement by 1 Yes X X
Postincrement by Offset Nn Yes* X X X
Indexed by Offset Nn Yes X
Predecrement by 1 Yes X

PC Relative

Long Displacement No X
Short Displacement No X X
Address Register No X X

Special

Upper word of accumulator No X
Immediate Data No X
Immediate Short Data No X
Absolute Address No X X
Absolute Short Address No X X
Short Jump Address No X
I/O Short Address No X
Implicit No X X X
Indexed by short displacement No X

 Where:
S = System Stack Reference
P = Program Memory Reference
C =Program Controller Register Reference
X = X Memory Reference
D = Data ALU Register Reference
XX = Double X Memory Read
A = Address ALU Register Reference

*note: M3 is not used for updating R3 in the second read in the X memory

Table 4-1 DSP56100 Family Addressing Modes

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS MODIFIER TYPES

MOTOROLA

 ADDRESS GENERATION UNIT (AGU) 4 - 15

(queues), delay lines, and sample buffers up to 32,768 words long. It is also used for dec-

imation, interpolation, and waveform generation. The special case of (Rn)+Nn with

Nn=L*(2

k) is useful for performing the same algorithm on multiple buffers, for example im-

plementing a bank of parallel filters. The range of values for Nn is -32,768 to +32,767 al-

though all values are not useful when modulo addressing as described above.

4.11.4 Wrap-Around Modulo Modifier
The address modification is performed modulo M, where M may be any power of 2 in the

range from 21 to 215. Modulo M arithmetic causes the address register value to remain

within an address range of size M defined by a lower and upper address boundary. The

lower boundary (base address) value must have zeroes in the k LSBs, where 2k = M, and

therefore must be a multiple of 2k. The upper boundary is the lower boundary plus the

modulo size minus one (base address plus M-1).

For example, to create a circular buffer of 32 stages, M is chosen as 32 and the lower ad-

dress boundary must have its 5 LSBs equal to zero (2k = 32, thus k = 5). The Mn register

is loaded with the value $001F. The lower boundary may be chosen as 0, 32, 64, 96, 128,

160, etc. The upper boundary of the buffer is then the lower boundary plus 31.

The address pointer is not required to start at the lower address boundary and may begin

anywhere within the defined modulo address range (between the lower and upper bound-

aries). If the address register pointer increments past the upper boundary of the buffer

(base address plus M-1) it will wrap around to the base address. If the address decre-

ments past the lower boundary (base address) it will wrap around to the base address

plus M-1. If an offset Nn is used in the address calculations, the 16-bit value Nn is required

to be less than or equal to M for proper modulo addressing since multiple wrap around is

not supported. The range of values for Nn is -32,768 to +32,767.

This type of address modification is useful for decimation, interpolation, and waveform

generation since the multiple wrap-around capability may be used for argument reduction.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESS MODIFIER TYPES

4 - 16 ADDRESS GENERATION UNIT (AGU) MOTOROLA

4.11.5 Address Modifier Type Encoding Summary
Table 4-2 contains a summary of the address modifier types discussed in the previous

paragraphs.

16-bit Modifier Reg. (M0-M3)
MMMMMMMMMMMMMMMM Address Calculation Arithmetic

0000000000000000 Reverse Carry (Bit Reversed)
0000000000000001 Modulo 2
0000000000000010 Modulo 3

.

.
0111111111111110 Modulo 32767
0111111111111111 Modulo 32768

1000000000000000 Reserved
.

1111111111111110 Reserved
1111111111111111 Linear (Modulo 65536)

where MMMMMMMMMMMMMMMM = 16-bit Modifier Reg. Contents

Table 4-2 Addressing Mode Modifier Summary

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 1

SECTION 5

PROGRAM CONTROL UNIT (PCU)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

5 - 2 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

5.1 INTRODUCTION . 5-3

5.2 PROGRAM COUNTER (PC) . 5-3

5.3 STATUS REGISTER (SR) . 5-4

5.3.1 Carry (Bit 0) . 5-4

5.3.2 Overflow (Bit 1) . 5-4

5.3.3 Zero (Bit 2) . 5-4

5.3.4 Negative (Bit 3) . 5-4

5.3.5 Unnormalized (Bit 4) . 5-5

5.3.6 Extension (Bit 5) . 5-6

5.3.7 Limit (Bit 6) . 5-6

5.3.8 Sticky Bit (Bit 7) . 5-6

5.3.9 Interrupt Masks (Bits 8,9) . 5-7

5.3.10 Scaling Mode (Bits 10,11) . 5-7

5.3.11 Reserved Status (Bits 12,13) . 5-8

5.3.12 ForeVer Flag (Bit 14) . 5-8

5.3.13 Loop Flag (Bit 15) . 5-8

5.4 LOOP COUNTER (LC) . 5-8

5.5 LOOP ADDRESS REGISTER (LA) . 5-8

5.6 SYSTEM STACK (SS) . 5-9

5.7 STACK POINTER (SP) . 5-9

5.7.1 Stack Pointer (Bits 0,1,2,3) . 5-10

5.7.2 Stack Error Flag - SE (Bit 4) . 5-10

5.7.3 Underflow Flag - UF (Bit 5) . 5-11

5.7.4 Unimplemented Stack Pointer Register bits . 5-12

5.8 OPERATING MODE REGISTER (OMR) . 5-12

5.8.1 Operating Mode Bits (Bits 0,1) . 5-13

5.8.2 Bus Arbitration Mode Bit (Bit 2) . 5-14

5.8.3 Saturation Bit (Bit 4) . 5-14

5.8.4 Rounding Bit (Bit 5) . 5-15

5.8.5 Stop Delay Bit (Bit 6) . 5-15

5.8.6 Clock Out Disable Bit (Bit 7) . 5-15

5.8.7 Reserved Operating Mode Register Bits (Bits 3 and 8-15) 5-15

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 3

5.1 INTRODUCTION

The PCU performs program address generation (instruction prefetch), instruction decod-

ing, hardware DO-loop control, and exception processing. The programmer views the

PCU as consisting of six registers and a hardware system stack (SS) as shown on Fig-

ure 5-1. In addition to the standard program flow-control resources, such as a program

counter (PC), complete status register (SR), and SS, the PCU features registers (loop

address LA and loop counter LC) dedicated to supporting the hardware DO loop instruc-

tion.

5.2 PROGRAM COUNTER (PC)

This 16-bit register contains the address of the next location to be fetched from Program

Memory Space. The PC may point to instructions, data operands or addresses of oper-

ands. References to this register are always inherent and are implied by most instruc-

tions. This special purpose address register is stacked when program looping is initiated,

when a branch or a jump to subroutine is performed, and when interrupts occur except

for fast interrupts (refer to Section 7.3.4.1).

Figure 5-1 Program Control Unit Block Diagram

16 bit 16 bit

16 bit 16 bit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

SSH SSL

SP

MRPC

LCLA

CCR

16 bit

16 bit 16 bit

6 bit

OMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STATUS REGISTER (SR)

5 - 4 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

5.3 STATUS REGISTER (SR)

The status register is a 16-bit register consisting of an 8-bit Mode register (MR) and an 8-

bit Condition Code register (CCR). The MR register is the high-order 8 bits of the status

register; the CCR register is the low-order 8 bits.

The MR bits are only affected by processor reset, exception processing, the DO,

ENDDO, RTI, and SWI instructions and by instructions which directly reference the MR

register (e.g., ANDI, ORI).

During processor reset, the interrupt mask bits of the

mode register will be set, the scaling mode bits, loop flag, sticky bit, and the for-

ever flag will be cleared.

 The CCR is a special purpose control register which defines

the current user state of the processor at any given time. The CCR bits are affected by

data ALU operations, one address ALU operation (CHKAAU), bit field manipulation

instructions, parallel move operations, and by instructions which directly reference the

CCR register. The CCR bits are not affected by data transfers over XDB except if data

limiting occurs when reading the A or B accumulators.

During processor reset, all CCR

bits are cleared.

 The standard definition of the CCR bits is given below. Refer to Appen-

dix A, Section A.3 for the complete CCR bit computation rules. The SR register is

stacked when program looping is initialized when a jump or branch to subroutine (JSR,

BSR) is performed, and when interrupts occur, except for fast interrupts (refer to Section

7.3.4.1). The status register format is shown in Figure 5-2 and is described below.

5.3.1 Carry (Bit 0)

The carry (C) bit is set if a carry is generated out of the most significant bit of the result

for an addition. Also set if a borrow is generated in a subtraction. The carry or borrow is

generated out of bit 39 of the result. The carry bit is also modified by bit manipulation,

rotate, and shift instructions. Otherwise, this bit is cleared. This bit is cleared on hard-

ware reset.

5.3.2 Overflow (Bit 1)

The overflow (V) bit is set if an arithmetic overflow occurs in the result. This indicates that

the result is not representable in the accumulator register and the accumulator register

has overflowed. Otherwise, this bit is cleared.

5.3.3 Zero (Bit 2)

The zero (Z) bit is set if the result equals zero. Otherwise, this bit is cleared.

5.3.4 Negative (Bit 3)

The negative (N) bit is set if the most significant bit 39 of the result is set. Otherwise, this

bit is cleared.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STATUS REGISTER (SR)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 5

5.3.5 Unnormalized (Bit 4)

The unnormalized (U) bit is set if the two most significant bits of the MSP portion of the

result are the same. Cleared otherwise. The MSP portion is defined by the scaling mode

and the U bit is computed as follows;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF FV * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

Carry
Overflow

Zero
Negative

Unnormalized
Extension

Limit
Sticky Bit

Interrupt Mask
Scaling Mode

Reserved
Reserved

ForeVer Flag
Loop Flag

Figure 5-2 Status Register Format

S1 S0 Scaling Mode U Bit Computation

0 0 No scaling U = (Bit 31 xor Bit 30)
0 1 Scale down U = (Bit 32 xor Bit 31)
1 0 Scale up U = (Bit 30 xor Bit 29)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STATUS REGISTER (SR)

5 - 6 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

The result of calculating the U bit in this fashion is that the definition of a positive normal-

ized number, p, is 0.5 < p < 1.0 and the definition of a negative normalized number, n, is

-1.0 < n < -0.5.

5.3.6 Extension (Bit 5)

The extension (E) bit is cleared if all the bits of the integer portion of the 40-bit result are

all the same; that is, the bit patterns 00…00 or 11…11. Set otherwise. The integer por-

tion is defined by the scaling mode and the E bit is computed as follows:

If E is cleared, then the low-order fraction portion contains all the significant bits - the

high order integer portion is just sign extension. In this case, the accumulator extension

register can be ignored. If E is set, it indicates that the extension accumulator is in use.

5.3.7 Limit (Bit 6)

The limit (L) bit is set if the overflow bit V is set or if the data shifter/limiters perform a lim-

iting operation. The limit bit is also set by the saturation of the 32-bit result when the sat-

uration bit of the operating mode register is set. Not affected otherwise. The L bit is

cleared only by a processor reset or an instruction which specifically clears it. This allows

the L bit to be used as a latching overflow bit. Note that L is affected by data movement

operations which read the A or B accumulator registers onto the XDB or GDB.

5.3.8 Sticky Bit (Bit 7)

The Sticky (S) bit is set only on moves of the form F, X:<> (move from accumulator to

data memory) under the following conditions:

if no scaling

set_S=bit 30 XOR bit 29

if scaling down

set_S=bit 31 XOR bit 30

if scaling up

set_S=bit 29 XOR bit 28

This test is performed on two bits of the source accumulator.

S1 S0 Scaling Mode Integer portion

0 0 No scaling Bits 39,38,…,32,31
0 1 Scale down Bits 39,38,…,33,32
1 0 Scale up Bits 39,38,…,31,30

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STATUS REGISTER (SR)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 7

This bit is a sticky bit in the sense that once set, it can only be reset by a MOVE to the

status register SR or an ANDI #xx,SR. This bit is especially useful for attaining maximum

accuracy on input data of a block floating point FFT (see Application note APR4/D,

Implementation of Fast Fourier Transforms on Motorola’s Digital Signal Processors

).

5.3.9 Interrupt Masks (Bits 8,9)

The interrupt mask bits I1 and I0 reflect the current priority level of the processor and

indicate the interrupt priority level (IPL) needed for an interrupt source to interrupt the

processor. The current priority level of the processor may be changed under software

control. The interrupt mask bits are set during processor reset.

5.3.10 Scaling Mode (Bits 10,11)

The scaling mode bits S1 and S0 specify the scaling to be performed in the Data ALU

shifter/limiter and the rounding position in the Data ALU multiply-accumulator (MAC).

The scaling modes are shown below.

The shifter/limiter scaling mode affects data read from the A or B accumulator registers

out to the XDB. Different scaling modes may be used with the same program code to

allow dynamic scaling. This allows block floating point arithmetic to be performed. The

scaling mode also affects the MAC rounding position to maintain proper rounding when

different portions of the accumulator registers are read out to the XDB. This provides

consistent rounding in block floating point arithmetic. The scaling mode bits are cleared

at the start of a long interrupt service routine. The scaling mode bits are also cleared dur-

ing a processor reset.

I1 I0 Exceptions Accepted Exceptions masked

 0 0 IPL 0,1,2,3 None
 0 1 IPL 1,2,3 IPL 0
 1 0 IPL 2,3 IPL 0,1

 1 1 IPL 3 IPL 0,1,2

S1 S0 Rounding bit Scaling Mode

0 0 15 No Scaling
0 1 16 Scaling Down
1 0 14 Scaling up
1 1 — Reserved

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

LOOP COUNTER (LC)

5 - 8 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

5.3.11 Reserved Status (Bits 12,13)

These bits are reserved for future expansion and will read as zero during DSP read oper-

ations. They should be written with zero for future compatibility.

5.3.12 ForeVer Flag (Bit 14)

The ForeVer flag (FV) bit is set when a DO FOREVER program loop is in progress and

enables the detection of the end of a program loop. The FV flag, like the loop flag is

restored when terminating a DO FOREVER program loop. Stacking and restoring the FV

flag when initiating and exiting a DO FOREVER program loop, respectively, allows the

nesting of program loops. The FV flag is cleared at the start of a long interrupt service

routine. The FV flag is also cleared during a processor reset.

5.3.13 Loop Flag (Bit 15)

The loop flag (LF) bit is set when a program loop is in progress and enables the detection

of the end of a program loop. LF and FV are the only status register bits which are

restored when terminating a program loop. Stacking and restoring the loop flag when ini-

tiating and exiting a program loop, respectively, allow the nesting of program loops. The

loop flag is cleared at the start of a long interrupt service routine. The loop flag is also

cleared during a processor reset.

5.4 LOOP COUNTER (LC)

The loop counter is a special 16-bit counter used to specify the number of times to repeat

a hardware program loop. This register is stacked by a DO instruction and unstacked by

end of loop processing or by execution of a BRKcc or an ENDDO instruction. When the

end of a hardware program loop is reached, the contents of the loop counter register are

tested for one. If the loop counter is one, the program loop is terminated and the LC reg-

ister is loaded with the previous LC contents stored on the stack. If the loop counter is

not one, it is decremented by one and the program loop is repeated. The loop counter

may be read under program control. This allows the number of times a loop has been

executed to be determined during execution. Note that if LC=0 during execution of the

DO instruction, the loop will not be executed and the program will continue with the

instruction immediately after the loop end of expression. LC is also used in the REP

instruction.

5.5 LOOP ADDRESS REGISTER (LA)

The loop address register indicates the location of the last instruction word in a program

loop. This register is stacked by a DO instruction and unstacked by end of loop process-

ing or by execution of an ENDDO instruction. When the instruction word at the address

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SYSTEM STACK (SS)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 9

contained in this register is fetched, the content of LC is checked. If it is not one, the LC

is decremented, and the next instruction is taken from the address at the top of the sys-

tem stack; otherwise the PC is incremented, the loop flag is restored (pulled from stack),

the stack is purged, the LA and LC registers are pulled from the stack and restored, and

instruction execution continues normally. The LA register is a read/write register written

into by a DO instruction and is read by the system stack for stacking the register. The LA

register can be directly accessed by some instructions.

5.6 SYSTEM STACK (SS)

The system stack is a separate internal RAM, 15 locations “deep”, and divided into two

banks: High (SSH) and Low (SSL) each 16 bits wide. SSH stores the PC or LA contents;

SSL stores the LC or SR contents.

The PC and SR registers are pushed on the stack for subroutine calls and long inter-

rupts. These registers are pulled from the stack for subroutine returns using the RTS

instruction and for interrupt returns that use the RTI instruction. The system stack is also

used for storing the address of the beginning instruction of a hardware program loop as

well as the SR, LA, and LC register contents just prior to the start of the loop. This allows

nesting of DO loops.

Up to 15 long interrupts, 7 DO loops, or 15 JSRs or combinations of these can be accom-

modated by the Stack. Care must be taken when approaching the stack limit. When the

Stack limit is exceeded the data to be stacked will be lost and a non-maskable Stack

Error interrupt will occur. The stack error interrupt occurs after the stack limits have been

exceeded.

5.7 STACK POINTER (SP)

The stack pointer register (SP) is a 6-bit register that indicates the location of the top of

the system stack and the status of the stack (underflow, empty, full, and overflow condi-

tions). The stack pointer is referenced implicitly by some instructions (DO, REP, JSR,

RTI, etc.) or directly by the MOVEC instruction. The stack pointer register format is

shown in Figure 5-3 and is described below. Note that the stack pointer register is imple-

mented as a 6-bit counter which addresses (selects) a fifteen location stack with its four

least significant bits. The possible stack values are shown in Figure 5-4 and are

described below.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STACK POINTER (SP)

5 - 10 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

Table 5-1 Stack Pointer Values

5.7.1 Stack Pointer (Bits 0,1,2,3)

The stack pointer (SP) points to the last used place on the stack. Immediately after hard-

ware reset these bits are cleared (SP=0), indicating that the stack is empty.

Data is pushed onto the stack by incrementing SP by one then writing the item at stack

location SP. An item is pulled off the stack by copying it from location SP and then decre-

menting SP by one.

5.7.2 Stack Error Flag - SE (Bit 4)

The Stack Error flag (SE) indicates that a stack error has occurred and the transition of

SE from 0 to 1 causes the priority level 3 stack error exception (see Chapter 14).

5 4 3 2 1 0

Stack Pointer

Stack Error Flag

Underflow Flag

UF SE P3 P2 P1 P0

Figure 5-3 SP Register Format

UF SE P3 P2 P1 P0 CAUSE

1 1 1 1 1 0 ← Stack Underflow condition after double pull.
1 1 1 1 1 1 ← Stack Underflow condition.
0 0 0 0 0 0 ← Stack Empty (reset). Pull causes underflow.
0 0 0 0 0 1 ← stack location 1.

0 0 1 1 1 0 ← Stack location 14.
0 0 1 1 1 1 ← Stack location 15 (stack full). Push causes overflow.
0 1 0 0 0 0 ← Stack overflow condition.
0 1 0 0 0 1 ← Stack Overflow condition after double push.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STACK POINTER (SP)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 11

When the stack is completely full, the Stack pointer reads 001111, and any operation

that pushes data to the stack will cause a stack error exception to occur and the stack

register will read 010000 (or 010001 if an implied double push occurs).

Any implied pull operation with SP=0 will cause a Stack Error exception (See chapter

14), and the SP will read all ones (or 111110 if an implied double pull occurs). As shown

in Figure 5-4, the SE bit is set.

Note:

When SP=0 (stack empty), instructions which read stack without SP post-decre-

ment and instructions which write stack without SP pre-increment do not cause a

stack error exception. i.e. DO SSL, xxxx; REP SSL; MOVEC or MOVEP when SSL

is specified as a source or destination.

5.7.3 Underflow Flag - UF (Bit 5)

The Underflow flag (UF) is set when a stack underflow occurs. See Figure 5-4.

When the user explicitly writes the SP register with the UF set and the SE cleared, and

follows this operation with an implicit stack operation that increments/decrements the

stack pointer, the Underflow flag will be cleared by the implicit operation. As long as the

SE

 was

not

 set. If the Stack Error

was

 set, the Underflow flag will not change state (the

“sticky” effect). In this way, when a stack error does occur, the reason for the error,

underflow or overflow, is preserved. Some examples are given below as illustrations:

Example 1:

move #$20,sp ; set underflow flag, clear stack error flag

move anything,ssh ; implicit SP increment

move sp,x:out ; read SP, it should be $01

In this example, the implicit SP increment cleared the Underflow flag because the Stack

Error flag was cleared.

Example 2:

move #$30,sp ; set underflow flag, set stack error flag

move anything,ssh ; implicit SP increment

move sp,x:out ; read SP, it should be $31

In this example, the implicit SP increment did not clear the UF because SE was set.

Example 3:

move #$2F,sp ; set underflow flag, clear stack error flag

move anything,ssh ; implicit SP increment

move sp,x:out ; read SP, it should be $10

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OPERATING MODE REGISTER (OMR)

5 - 12 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

In this example, the implicit SP increment produced a stack overflow error, setting Stack

Error and clearing the Underflow flag (to show an overflow error).

While the Stack Error flag is set, implicit SP increments/decrements will not affect the

Underflow or Stack Error flags in any way (this is the “sticky” effect) even if decrementing

when the 4 LSBs of SP are’0’ or incrementing when the 4 LSBs of SP are’1’.

Example 4:

move #$10,sp ; clear underflow flag, set stack error flag

move ssh,destin. ; implicit SP decrement

move sp,x:out ; read SP, it should be $1F

In this example, the implicit SP decrement did not set the Underflow flag to denote

underflow because the Stack Error flag was set.

Example 5:

move #$3F,sp ; set underflow flag, set stack error flag

move anything,ssh ; implicit SP increment

move sp,x:out ; read SP, it should be $30

In this example, the implicit SP increment did not clear the Underflow flag to denote over-

flow because the Stack Error flag was set.

5.7.4 Unimplemented Stack Pointer Register bits

Any unimplemented stack pointer register bits are reserved for future expansion and will

read as zero during DSP read operations.

5.8 OPERATING MODE REGISTER (OMR)

The operating mode register (OMR) is a 16-bit register which defines the current chip

operating mode of the processor. The OMR bits are only affected by processor reset and

by instructions which directly reference the OMR.

During processor reset the chip operating mode bits will be loaded from the external

Mode Select pins. The operating mode register format is shown in Figure 5-4 and is

described below.

Note:

When a bit of the OMR is changed by an instruction, a delay of one instruction cycle

is necessary before the new mode comes into effect.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OPERATING MODE REGISTER (OMR)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 13

5.8.1 Operating Mode Bits (Bits 0,1)

The chip operating mode bits MB and MA indicate the bus expansion mode of the DSP

when an external bus extension exists. These bits are loaded from the external Mode

Select pins MODB and MODA respectively on processor reset. After the DSP leaves the

RESET state, MB and MA may be changed under program control. The Operating

Modes are shown below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OMR

Operating Mode
Bus Arbitration Mode

Reserved
Saturation
Rounding
Stop Delay
Clockout Disable
Reserved

* * * * * * * * CD SD R SA * MC MB MA

Figure 5-4 Operating Mode Register Format

MB MA Chip Operating Mode Comments

0 0 Special Bootstrap 1 Bootstrap from an external byte-wide memory
located at P:$C000.

0 1 Special Bootstrap 2 Bootstrap from the Host port or SSI0

1 0 Normal Expanded Internal PRAM enabled; External reset at P:$E0000

1 1 Development Expanded Int. program memory disabled; Ext. reset at P:$000.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OPERATING MODE REGISTER (OMR)

5 - 14 PROGRAM CONTROL UNIT (PCU)

MOTOROLA

5.8.2 Bus Arbitration Mode Bit (Bit 2)

The bus operating mode bit MC indicates the bus arbitration mode of the DSP when an

external bus extension exists. This bit is loaded from the external Mode Select pin

MODC on processor reset. After the DSP leaves the RESET state, MC may be changed

under program control. The Bus Operating Modes are shown below and more details are

given in Section 7 and Section 15.

5.8.3 Saturation Bit (Bit 4)

The Saturation bit (SA), when set, selects automatic saturation on 32 bits for the results

going to the accumulator. This saturation is done by a special saturation circuit inside the

MAC unit. The purpose of this bit is to provide a saturation mode for 16-bit algorithms

which do not recognize or cannot take advantage of the extension accumulator.

The saturation logic operates by checking three bits of the 40-bit result: two bits of the

extension byte (exp[7] and exp[0]) and one bit on the MSP (msp[15]). The result

obtained in the accumulator when SA =1 is shown in Table 5-2:

Table 5-2 Actions of the Saturation Mode (SA=1)

This bit is cleared by processor reset.

The scaling bits are ignored by this saturation logic and the two saturation constants

$007FFFFFFF and $FF80000000 are not affected by the scaling mode. In the same

way, the rounding of the saturation constant (during MPYR, MACR, RND) is independent

of the scaling mode: $007FFFFFFF is rounded to $007FFF0000 and $FF80000000 to

$FF80000000.

MC Bus Arbitration Mode

0 Slave
1 Master

exp[7] exp[0] msp[15] result in accumulator

0 0 0 unchanged
0 0 1 $00 7FFF FFFF
0 1 0 $00 7FFF FFFF
0 1 1 $00 7FFF FFFF

1 0 0 $FF 8000 0000
1 0 1 $FF 8000 0000
1 1 0 $FF 8000 0000
1 1 1 unchanged

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OPERATING MODE REGISTER (OMR)

MOTOROLA

 PROGRAM CONTROL UNIT (PCU) 5 - 15

CAUTION

The saturation mode is

ALWAYS

 disabled during the execution of the fol-
lowing instructions: DMACsu, DMACuu, MACsu, MACuu, MPYsu, MPYuu,
and ASL4. The instruction ASL4 A (or B) can be followed by a MOVE A,A
(or B,B) for proper operation when the saturation mode is turned on. How-
ever, the “V” bit of the status register will never be set by the saturation of
the accumulator during the MOVE A,A (or B,B). Only the “L” bit will then be
set. If the “V” bit needs to be tested by the program, ASL4 has to be substi-
tuted by a repetition of four ASLs.

5.8.4 Rounding Bit (Bit 5)

The Rounding bit (R)selects between convergent rounding and twos-complement round-

ing. When set, two’s-complement rounding (always round up) is used.

This bit is cleared by processor reset.

5.8.5 Stop Delay Bit (Bit 6)

The Stop Delay bit (SD) is used to select the delay that the DSP needs to exit the STOP

mode. Refer to Section 7.5 for more details.

This bit is cleared by processor reset.

5.8.6 Clock Out Disable Bit (Bit 7)

When the Clock out Disable bit (CD) is cleared in the OMR, a clock out signal comes out

of the CLKO pin. Setting the CD bit will disable the signal coming out of the CLKO pin

one instruction cycle after the bit has been set. This bit can be set by the user program

when radiation sensitive applications do not need the clock out signal.

This bit is cleared by processor reset.

5.8.7 Reserved Operating Mode Register Bits (Bits 3 and 8-15)

These operating mode register bits are reserved. They will read as zero during DSP read

operations and should be written as zero to ensure future compatibility.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OPERATING MODE REGISTER (OMR)

5 - 16 PROGRAM CONTROL UNIT (PCU) MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET AND EXECUTION 6 - 1

SECTION 6

INSTRUCTION SET AND EXECUTION

Fetch F1 F2 F3 F3e F4 F5 F6 …
Decode D1 D2 D3 D3e D4 D5 …
Execute E1 E2 E3 E3e E4 …
Instruction
Cycle: 1 2 3 4 5 6 7 …

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

6 - 2 INSTRUCTION SET AND EXECUTION

MOTOROLA

6.1 INTRODUCTION . 6-3

6.2 INSTRUCTION GROUPS . 6-3

6.2.1 Arithmetic Instructions . 6-3

6.2.2 Logical Instructions . 6-4

6.2.3 Bit Field Manipulation Instructions . 6-5

6.2.4 Loop Instructions . 6-5

6.2.5 Move Instructions . 6-6

6.2.6 Program Control Instructions . 6-6

6.3 INSTRUCTION FORMATS . 6-6

6.4 INSTRUCTION EXECUTION . 6-7

6.4.1 Instruction Processing . 6-7

6.4.2 Memory Access Processing . 6-8

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 INSTRUCTION SET AND EXECUTION 6 - 3

6.1 INTRODUCTION

As indicated by the programming model in Chapter 5, the DSP architecture can be

viewed as three functional units operating in parallel (Data ALU, AGU and PCU). The

goal of the instruction set is to keep each of these units busy each instruction cycle. This

achieves maximum speed and minimum use of program memory.

This section introduces the DSP instruction set and instruction format. The complete

range of instruction capabilities combined with the flexible addressing modes provide a

very powerful assembly language for digital signal processing algorithms. The instruction

set has also been designed to allow efficient coding for future high-level DSP language

compilers. Execution time is enhanced by the hardware looping capabilities.

6.2 INSTRUCTION GROUPS

The instruction set is divided into the following groups:

• Arithmetic

• Logical

• Bit Field Manipulation

• Loop

• Move

• Program Control

Each instruction group is described in the following sections. Detailed information on

each instruction is given in Appendix A.

6.2.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data ALU.

They may affect all of the condition code register bits. Arithmetic instructions are register-

based (register direct addressing modes used for operands) so that the Data ALU opera-

tion indicated by the instruction does not use the XDB or the GDB. Optional data trans-

fers may be specified with most arithmetic instructions. This allows for parallel data

movement over the XDB and over the GDB during a Data ALU operation. This allows

new data to be prefetched for use in following instructions and results calculated by pre-

vious instructions to be stored. These instructions execute in one instruction cycle. The

following are the arithmetic instructions.

ABS Absolute Value
ADC Add Long with Carry
ADD Add
ASL Arithmetic Shift Left
ASL4 4 Bit Arithmetic Shift Left*
ASR Arithmetic Shift Right

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION GROUPS

6 - 4 INSTRUCTION SET AND EXECUTION

MOTOROLA

ASR4 4 Bit Arithmetic Shift Right*
ASR16 16 Bit Arithmetic Shift Right*
CLR Clear an Accumulator
CLR24 Clear 24 MSBs of an Accumulator
CMP Compare
CMPM Compare Magnitude
DEC Decrement Accumulator
DEC24 Decrement upper word of Accumulator
DIV Divide Iteration*
DMAC Double (Multi) precision oriented MAC*
EXT Sign Extend Accumulator from bit 31*
IMAC Integer Multiply-Accumulate*
IMPY Integer Multiply*
INC Increment Accumulator
INC24 Increment 24 MSBs of Accumulator
MAC Signed Multiply-Accumulate
MACR Signed Multiply-Accumulate and Round
MPY Signed Multiply
MPYR Signed Multiply and Round
MPY(su,uu) Mixed mode Multiply*
MAC(su,uu) Mixed mode Multiply-Accumulate*
NEG Negate
NEGC Negate with Borrow*
NORM Normalize*
RND Round
SBC Subtract Long with Carry
SUB Subtract
SUBL Shift Left and Subtract
SWAP Swap MSP and LSP of an Accumulator*
Tcc Transfer Conditionally*
TFR Transfer Data ALU Register (Accumulator as destination)
TFR2 Transfer Accumulator (32 bit Data Alu register as destination)*
TST Test an accumulator
TST2 Test an ALU data register*
ZERO Zero Extend Accumulator from bit 31*

*These instructions do not allow parallel data moves.

6.2.2 Logical Instructions

The logical instructions perform all of the logical operations within the Data ALU. They

may affect all of the condition code register bits. Logical instructions are register-based

as are the arithmetic instructions above. Optional data transfers may be specified with

most logical instructions. This allows for parallel data movement over the XDB and over

the GDB during a Data ALU operation. This allows new data to be prefetched for use in

following instructions and results calculated in previous instructions to be stored. With

the exceptions of ANDI or ORI the destination of all logical instructions is A1 or B1.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION GROUPS

MOTOROLA

 INSTRUCTION SET AND EXECUTION 6 - 5

These instructions execute in one instruction cycle. The following are the logical instruc-

tions.

AND Logical AND
ANDI AND Immediate Program Controller Register*
EOR Logical Exclusive OR
LSL Logical Shift Left
LSR Logical Shift Right
NOT Logical Complement
OR Logical Inclusive OR
ORI OR Immediate Program Controller Register*
ROL Rotate Left
ROR Rotate Right

*These instructions do not allow parallel data moves.

6.2.3 Bit Field Manipulation Instructions

This group tests the state of any set of bits within a byte in a memory location or a regis-

ter and then sets, clears, or inverts bits in this byte. Bit fields which can be tested include

the upper byte and the lower byte in a 16 bit value. The carry bit of the condition code

register will contain the result of the bit test for each instruction. These instructions are

read-modify-write type operations and require two instruction cycles. The following are

the bit field manipulation instructions.

BFTSTL Bit Field Test Low
BFTSTH Bit Field Test High
BFCLR Bit Field Test and Clear
BFSET Bit Field Test and Set
BFCHG Bit Field Test and Change

6.2.4 Loop Instructions

The loop instructions control hardware looping by initiating a program loop and setting up

looping parameters, or by “cleaning” up the system stack when terminating a loop. Initial-

ization includes saving registers used by a program loop (LA and LC) on the system

stack so that program loops can be nested. The address of the first instruction in a pro-

gram loop is also saved to allow no-overhead looping. The end address of the DO loop is

specified as PC relative. The following are the loop instructions.

DO Start Hardware Loop
DO FOREVER Hardware Loop for ever
ENDDO Disable Current Loop and Unstack Parameters
BRKcc Conditional Exit from Hardware Loop

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION FORMATS

6 - 6 INSTRUCTION SET AND EXECUTION

MOTOROLA

6.2.5 Move Instructions

The move instructions perform data movement over the XDB and over the GDB. Move

instructions do not affect the condition code register except the limit bit L if limiting is per-

formed when reading a Data ALU accumulator register. AGU instructions are also

included among the following move instructions. These instructions do not allow optional

data transfers. In addition to the following move instructions, there are parallel moves

which can be used simultaneously with many of the other instructions.

LEA Load Effective Address
MOVE Move Data with or without register transfer – TFR(3)
MOVE(C) Move Control Register
MOVE(I) Move Immediate Short
MOVE(M) Move Program Memory
MOVE(P) Move Peripheral Data
MOVE(S) Move Absolute Short

6.2.6 Program Control Instructions

The program control instructions include branches, jumps, conditional branches and

jumps and other instructions which affect the PC and system stack. Program control

instructions may affect the condition code register bits as specified in the instruction.

The following are the program control instructions.

Bcc Branch Conditionally
BSR Branch to Subroutine (PC relative)
BRA Branch
BScc Branch to Subroutine Conditionally
DEBUG Enter Debug Mode
DEBUGcc Enter Debug Mode Conditionally
Jcc Jump Conditionally
JMP Jump
JSR Jump to Subroutine
JScc Jump to Subroutine Conditionally

 NOP No Operation
REP Repeat Next Instruction
REPcc Repeat Next Instruction Conditionally
RESET Reset Peripheral Devices
RTI Return from Interrupt
RTS Return from Subroutine
STOP Stop Processing (low power stand-by)
SWI Software Interrupt
WAIT Wait for Interrupt (low power stand-by)

6.3 INSTRUCTION FORMATS

Instructions are one or two words in length. The instruction and its length are specified by

the first word of the instruction. The next word may contain information about the instruc-

tion itself or about an operand for the instruction. The assembly language source code

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION EXECUTION

MOTOROLA

 INSTRUCTION SET AND EXECUTION 6 - 7

for a typical one word instruction is shown below. The source code is organized into four

columns.

Opcode Operands X Bus Data G Bus Data

MAC X0,Y0,A X:(R0)+,X0 X:(R3)+,Y0

The Opcode column indicates the Data ALU, AGU, or PCU operation to be performed.

The Operands column specifies the operands to be used by the opcode. The X Bus Data

and G Bus Data columns specify optional data transfers over the X Bus and the address-

ing modes to be used. The Opcode column must always be included in the source code.

The DSP offers parallel processing using the Data ALU, AGU and PCU. For the instruc-

tion word above, the DSP will perform the designated ALU operation (Data ALU), up to

two data transfers specified with address register updates (AGU), and will also decode

the next instruction and fetch an instruction from program memory (PCU) all in one

instruction cycle. When an instruction is more than one word in length, an additional

instruction execution cycle is required. Most instructions involving the Data ALU are reg-

ister-based (all operands are in Data ALU registers) and allow the programmer to keep

each parallel processing unit busy. An instruction which is memory-oriented (such as a

bit field manipulation instruction) or that causes a control flow change (such as a branch/

jump) prevents the use of parallel processing resources during its execution.

6.4 INSTRUCTION EXECUTION

Instruction execution is pipelined to allow most instructions to execute at a rate of one

instruction every clock cycle. However, certain instructions will require additional time to

execute. These include instructions which are longer than one word, instructions which

use an addressing mode that requires more than one cycle, instructions which make use

of the global data bus more than once, and instructions which cause a control flow

change. In the latter case a cycle is needed to clear the pipeline.

6.4.1 Instruction Processing

Pipelining allows the fetch-decode-execute operations of an instruction to occur during

the fetch-decode-execute operations of other instructions. While an instruction is exe-

cuted, the next instruction to be executed is decoded, and the instruction to follow the

instruction being decoded is fetched from program memory. If an instruction is two words

in length, the additional word will be fetched before the next instruction is fetched. The

illustration below demonstrates pipelining; F1, D1 and E1 refer to the fetch, decode and

execute operations, respectively, of the first instruction. Note, the third instruction con-

tains an instruction extension word and takes two cycles to execute.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION EXECUTION

6 - 8 INSTRUCTION SET AND EXECUTION

MOTOROLA

Each instruction requires a minimum of 12 clock phases to be fetched, decoded, and

executed. A new instruction may be started after four phases. Two word instructions

require a minimum of 16 phases to execute and a new instruction may start after eight

phases.

6.4.2 Memory Access Processing

One or more of the DSP memory sources (X data memory and program memory) may

be accessed during the execution of an instruction. Each of these memory sources may

be internal or external to the DSP. These address buses (XA1, XA2, and PAB) and three

data buses (XD, program data, and Global Data) are available for internal memory

accesses during one instruction cycle but only one address bus and one data bus are

available for external memory accesses (when an external bus is available). If all mem-

ory sources are internal to the DSP, one or more of the two memory sources may be

accessed in one instruction cycle (i.e., program memory access or program memory

access plus an X memory reference). However, when one or more of the memories are

external to the DSP, memory references may require additional instruction cycles. With

internal program memory and one internal data memory, memory references will not

require any additional instruction cycles (i.e. X memory references will take one instruc-

tion cycle). When program memory is external and the data memory is internal, no addi-

tional instruction cycles are required for all types of operand references. If the data

memory is also external, an additional cycle is necessary when the external data mem-

ory is accessed (i.e., when X memory references are specified). If each memory source

is external to the DSP, one additional cycle is required when one data memory is

accessed i.e., when a X memory reference is specified).

F1 F2 F3 F3e F4 F5 F6 …
D1 D2 D3 D3e D4 D5 …

E1 E2 E3 E3e E4 …
Instruction
Cycle: 1 2 3 4 5 6 7 …

Figure 6-1 Instruction Pipelining

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 PROCESSING STATES 7 - 1

SECTION 7

PROCESSING STATES

STOP

WAIT

EXCEPTION

NORMAL

RESET

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

7 - 2 PROCESSING STATES

MOTOROLA

7.1 INTRODUCTION . 7-3

7.2 NORMAL PROCESSING STATE . 7-3

7.2.1 Instruction Pipeline . 7-3

7.2.2 Summary of Pipeline Related Restrictions . 7-8

7.2.2.1 DO Instruction Restrictions . 7-8

7.2.2.2 Restrictions Near the End of DO Loops . 7-8

7.2.2.3 ENDDO Instruction Restrictions . 7-9

7.2.2.4 RTI and RTS Instruction Restrictions . 7-9

7.2.2.5 SP and SSH/SSL Register Manipulation Restrictions 7-9

7.2.2.6 Rn, Nn, and Mn Register Restrictions . 7-9

7.2.2.7 Fast Interrupt Routine Restrictions . 7-10

7.3 EXCEPTION PROCESSING (INTERRUPT PROCESSING) 7-10

7.3.1 Interrupt Types . 7-12

7.3.2 Interrupt Arbitration . 7-12

7.3.3 Interrupt Instruction Fetch . 7-13

7.3.4 Interrupt Instruction Execution . 7-13

7.3.4.1 Fast Interrupt . 7-14

7.3.4.2 Long Interrupt . 7-15

7.3.4.3 Case of the REP Instruction . 7-16

7.3.5 Interrupt Sources . 7-16

7.3.5.1 Hardware Interrupt Sources . 7-17

7.3.5.2 Software Interrupt Sources . 7-20

7.3.5.3 Stack Error Interrupt . 7-22

7.3.6 Interrupt Priority Structure . 7-22

7.3.6.1 Interrupt Priority Levels (IPL) . 7-23

7.3.6.2 Exception Priorities within an IPL . 7-24

7.4 RESET STATE PROCESSING . 7-24

7.5 WAIT STATE PROCESSING . 7-25

7.6 STOP STATE PROCESSING . 7-28

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 PROCESSING STATES 7 - 3

7.1 INTRODUCTION

The DSP56100 family is always in one of five processing states: normal, exception,

reset, wait, and stop. These states are described in the following paragraphs.

7.2 NORMAL PROCESSING STATE

The normal processing state is associated with instruction execution. Details on normal

processing of the individual instructions can be found in Appendix A. Instructions are

executed using a three stage pipeline which is described in the following paragraphs.

7.2.1 Instruction Pipeline

The 16-bit DSP instruction execution is performed in a three level pipeline allowing most

instructions to execute at a rate of one instruction every instruction cycle. However, cer-

tain instructions will require additional time to execute. These include instructions which

are longer than one word, instructions which use an addressing mode that requires more

than one cycle, and instructions which cause a control flow change. In the latter case a

cycle is needed to clear the pipeline.

Instruction pipelining allows overlapping the execution of instructions such that the fetch-

decode-execute operations of a given instruction occurs concurrently with the fetch-

decode-execute operations of other instructions. Specifically, while an instruction is exe-

cuted, the next instruction to be executed is decoded, and the instruction to follow the

instruction being decoded is fetched from program memory. Only one word is fetched

per cycle so that if an instruction is two words in length, the additional word will be

fetched before the next instruction is fetched. Figure 7-1 demonstrates pipelining. F1,

D1, and E1 refer to the fetch, decode, and execute operations, respectively, of the first

instruction. The third instruction contains an instruction extension word and takes two

instruction cycles to execute. Although it takes three instruction cycles for the pipeline to

fill and the first instruction to execute, an instruction usually executes on each instruction

cycle thereafter.

Summarizing; each instruction requires a minimum of 3 instruction cycles (12 clock

phases) to be fetched, decoded, and executed. This means that there is a delay of three

instruction cycles on power up to fill the pipe. A new instruction may be started immedi-

ately following the previous instruction. Two word instructions require a minimum of four

instruction cycles to execute (three cycles for the first instruction word to move through

the pipe and execute and one more for the second word to execute) and a new instruc-

tion may start after the second cycle of the preceding instruction.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

7 - 4 PROCESSING STATES

MOTOROLA

Figure 7-1 Instruction Pipelining

The pipeline is normally transparent to the user. However, it will affect program execution

in some situations. These situations are instruction sequence dependent and are best

described by case studies. Most of these restricted sequences occur because (1) all

addresses are formed during instruction decode or (2) contention for an internal resource

such as the status register (SR) occurs. If the execution of an instruction depends on the

relative location of the instruction in a sequence of instructions, there is a pipeline effect.

To test for a suspected pipeline effect, compare between the execution of the suspect

instruction (1) when it directly follows the previous instruction and (2) when four NOPs

are inserted between the two. If there is a difference, it is due to a pipeline effect. The 16-

bit DSP assembler is designed to flag instruction sequences with potential pipeline

effects so that the user can decide if the operation will be as expected.

Case 1:

 The following two examples show similar code sequences, the first with no pipe-

line effect and the second with a pipeline effect.

1) No pipeline effect:

ORI #xx,CCR ;Changes CCR at the end of execution time slot

Jcc xxxx ;Reads condition codes in SR in its execution time slot

The Jcc will test the bits modified by the ORI without any pipeline effect in the code seg-

ment above.

2) Instruction which started execution during decode:

ORI #03,OMR ;Sets MA, MB bits at execution time slot

MOVE x:$100,a ;Reads internal RAM instead of external RAM

There is a pipeline effect in example 2 because the address of the move is formed at its

decode time before the ORI changes the MA and MB bits (which change the memory

map) in the ORI’s execution time slot. The following code produces the expected results

of reading the external RAM:

ORI #03,OMR ;Sets MA, MB bits at execution time slot
NOP ;Delays the MOVE so it will read the updated OMR
MOVE x:$100,a ;Reads external RAM

Case 2:

One of the more common sequences where pipeline effects are apparent is:

Instruction
Cycle 1 2 3 4 5 6 7 . . .

Fetch F1 F2 F3 F3e F4 F5 F6 . . .
Decode D1 D2 D3 D3e D4 D5 . . .
Execute E1 E2 E3 E3e E4 . . .

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

MOTOROLA

 PROCESSING STATES 7 - 5

 .
 .
MOVE #xxxx,Rn ;Move a number into register Rn (n=0-7).
MOVE X:(Rn),A ;Use the new contents of Rn to address memory.
 .
 .

In this case, before the first MOVE instruction has written Rn during its execution cycle,

the second MOVE has accessed the old Rn and therefore will use the old contents of Rn.

This is because the address for indirect moves is formed during the decode cycle. This

overlapping instruction execution in the pipeline causes the pipeline effect. One instruc-

tion cycle should be allowed after a register has been written by a MOVE instruction

before the new contents are available for use by another MOVE instruction. The proper

instruction sequence is:

 .
 .
MOVE X0,Rn ;Move a number into register Rn.
NOP ;Execute any instruction or instruction sequence not using Rn
 .
 .
MOVE X:(Rn),A ;Use the new contents of Rn.

Case 3:

A situation related to Case 2 can be seen in the boot ROM program. At the end

of the bootstrap operation, the OMR is changed to Mode #2 and then the program that

was loaded is executed. This process is accomplished in the last three instructions which

are shown below:

_BOOTEND
MOVEC #2,OMR ; Set the operating mode to 2

; (and trigger an exit from
; bootstrap mode).

ANDI #$0,CCR ; Clear SR as if RESET and
; introduce delay needed for
; Op. Mode change.

JMP <$0 ; Start fetching from PRAM, P:$0000

The JMP instruction generates its jump address during its decode cycle. If the JMP

instruction followed the MOVEC, the MOVEC instruction would not have changed the

OMR before the JMP instruction formed the fetch address. As a result, the jump would

fetch the instruction at P:$0000 of the bootstrap ROM (MOVE #$FFC0,R2). The OMR

would then change due to the MOVEC instruction and the next instruction would be the

second instruction of the downloaded code at P:$0001 of the internal RAM. However, the

ANDI instruction allows the OMR to be changed before the JMP instruction uses it and

the JMP fetches P:$0000 of the internal RAM as intended.

Case 4

: An interrupt has two additional control cycles which are executed in the interrupt

controller concurrently with the fetch, decode, and execute cycles (see Section 7.3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

7 - 6 PROCESSING STATES

MOTOROLA

“Exception Processing” and Figure 7-2). During these two control cycles, the interrupt is

arbitrated by comparing the interrupt mask level with the interrupt priority level (IPL) of

the interrupt and either allowing or disallowing the interrupt. Therefore, if the interrupt

mask is changed after an interrupt is arbitrated and accepted as pending but before the

interrupt is executed, the interrupt will be executed regardless of what the mask was

changed to. The following examples show that

the old interrupt mask is in effect for

up to four additional instruction cycles after the interrupt mask is changed

. Note

that all instructions shown in the examples here are one word instructions; however, one

two-word instruction can replace two one-word instructions except where noted.

Program flow with no interrupts after interrupts are disabled:

 .
 .
ORI #03,MR ;disable interrupts
INST 1
INST 2
INST 3
INST 4

 .
 .

Possible variations in program flow which may occur after interrupts are disabled:

ORI #03,MR ORI #03,MR ORI #03,MR ORI #03,MR
II INST 1 INST 1 INST 1
II+1 II INST 2 INST 2
INST 1 II+1 II INST 3

←

 See note 1
INST 2 INST 2 II+1 II
INST 3 INST 3 INST 3 II+1
INST 4 INST 4 INST 4 INST 4

Note 1: INST 3 may be executed at that point only if the preceding instruction (INST 2)

was a single-word instruction.

Note 2: II = Interrupt Instruction from maskable interrupt.

The following program flow WILL NOT occur because the ORI instruction becomes

effective after a pipeline latency of four instruction cycles:

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

MOTOROLA

 PROCESSING STATES 7 - 7

 .
 .
ORI #03,MR ; Disable interrupts.
INST 1
INST 2
INST 3
INST 4

 II ; Interrupts disabled.
 II+1 ; Interrupts disabled.
 .

 .

Program flow without interrupts after interrupts are re-enabled:

 .
 .
ANDI #00,MR ;enable interrupts
INST 1
INST 2
INST 3
INST 4
 .
 .

Program flow with interrupts after interrupts are re-enabled:

 .
 .
ANDI #00,MR ;Enable interrupts
INST 1 ;Uninterruptable
INST 2 ;Uninterruptable
INST 3 ;II fetched
INST 4 ;II+1 fetched
II
II+1
 .
 .

The DO instruction is another instruction which begins execution during the decode cycle

of the pipeline. As a result, there are a number of restrictions concerning access conten-

tion with the program controller registers which are accessed by the DO instruction. The

ENDDO instruction has similar restrictions. Appendix A contains additional information

on the DO and ENDDO instruction restrictions.

Case 5:

 A resource contention problem can occur when one instruction is using a regis-

ter during its decode while the instruction executing is accessing the same resource.

One example of this is:

MOVEC X:$100,SSH
DO #$10,END

The problem occurs because the MOVEC instruction loads the contents of X:$100 into

the SSH during T3 of its

execute

 cycle. The DO instruction that follows pushes the stack

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

7 - 8 PROCESSING STATES

MOTOROLA

(LA

 →

 SSH, LC

 →

 SSL) during T3 of its

decode

 cycle. Therefore the two instructions try

writing to the SSH simultaneously and conflict.

7.2.2 Summary of Pipeline Related Restrictions

A summary of the instruction sequences that cause pipeline effects is given in the follow-

ing paragraphs. Additional information concerning the individual instructions can be

found in Appendix A.

7.2.2.1 DO Instruction Restrictions

The DO instruction must not be immediately preceded by any of the following instruc-

tions:

• BFCHG/BFCLR/BFSET LA, LC, SSH, SSL or SP

• MOVEC/MOVEM to LA, LC, SSH, SSL or SP

• MOVEC/MOVEM from SSH

7.2.2.2 Restrictions Near the End of DO Loops

Proper DO loop operation is guaranteed if no instruction starting at address LA-2, LA-1

or LA specifies the program controller registers SR, SP, SSL, LA, LC or (implicitly) PC as

a destination register; or specifies SSH as a source or destination register. Also, SSH

can not be specified as a source register in the DO instruction itself.

These restricted instructions include:

- at LA-2, LA-1 and LA:

• DO

• BFCHG/BFCLR/BFSET LA, LC, SR, SP, SSH, or SSL

• BFTST SSH

• MOVEC/MOVEM/MOVEP from SSH

• MOVEC/MOVEM/MOVEP to LA, LC, SR, SP, SSH, or SSL

• ANDI/ORI MR

- at LA:

• any two word instruction

• Jcc, Bcc, JMP, BRA, JScc, BScc, JSR, BSR

• REP, RESET, RTI, RTS, STOP, WAIT

Other restrictions:

• DO SSH,xxxx

• JSR/JScc/BSR/BScc to (LA), if Loop Flag is set

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NORMAL PROCESSING STATE

MOTOROLA

 PROCESSING STATES 7 - 9

7.2.2.3 ENDDO Instruction Restrictions

The ENDDO instruction must not be immediately preceded by any of the following

instructions:

• BFCHG/BFCLR/BFSET LA, LC, SR, SSH, SSL or SP

• MOVEC/MOVEM to LA, LC, SR, SSH, SSL or SP

• MOVEC/MOVEM from SSH

• ANDI/ORI MR

7.2.2.4 RTI and RTS Instruction Restrictions

The RTI instruction must not be immediately preceded by any of the following instruc-

tions:

• BFCHG/BFCLR/BFSET SR, SSH, SSL or SP

• MOVEC/MOVEM to SR, SSH, SSL or SP

• MOVEC/MOVEM from SSH

• ANDI MR, ANDI CCR

• ORI MR, ORI CCR

The RTS instruction must not be immediately preceded by any of the following instruc-

tions:

• BFCHG/BFCLR/BFSET SSH, SSL or SP

• MOVEC/MOVEM to SSH, SSL or SP

• MOVEC/MOVEM from SSH

7.2.2.5 SP and SSH/SSL Register Manipulation Restrictions

In addition to all the above restrictions concerning SP, SSH, and SSL, the following

instruction sequences are illegal:

• BFCHG/BFCLR/BFSET SP

• MOVEC/MOVEM/MOVEP from SSH or SSL

and

• MOVEC/MOVEM to SP

• MOVEC/MOVEM/MOVEP from SSH or SSL

Also the instruction MOVEC SSH,SSH is illegal.

7.2.2.6 Rn, Nn, and Mn Register Restrictions

If an address register (R0-R3, N0-N3, or M0-M3) is changed with a move type instruction

(LUA, Tcc, MOVE, MOVEM, MOVEC or parallel move), the new contents will not be

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 10 PROCESSING STATES

MOTOROLA

available for use as a pointer until the second following instruction. This restriction does

not apply to registers updated as part of an indirect addressing mode.

7.2.2.7 Fast Interrupt Routine Restrictions

BRKcc, DO, SWI, STOP, and WAIT may not be used in a fast interrupt routine.

7.3 EXCEPTION PROCESSING (INTERRUPT PROCESSING)

Exception processing in a digital signal processing environment is primarily associated

with transfer of data between DSP memory or registers and a peripheral device. When

an interrupt occurs, a limited context switch must be performed with minimum overhead.

When a hardware interrupt is received, it is synchronized on instruction boundaries so

that the first two interrupt instruction words can be inserted into the instruction stream.

Suppose that the interrupt is stored in the interrupt pending latch during the current

instruction fetch cycle. During the next cycle, which is the decode cycle of the current

instruction, the PC will be updated to fetch the next instruction. However, in the following

cycle, which is the execution cycle of the current instruction, the address placed on the

program address bus (PAB) comes from the appropriate interrupt start address, rather

than from the PC. Note that the PC is frozen until exception processing terminates.

Figure 7-2 illustrates the effect of the interrupt controller, which is simply to insert two

instruction words into the processor’s instruction stream.

The following one-word instructions are aborted when they are fetched in the cycle pre-

ceding the fetch of the first interrupt instruction word — REP, REPcc, BRKcc, STOP,

WAIT, RESET, RTI, RTS, Jcc, Bcc, JMP, BRA, BScc, JScc, JSR, and BSR.

Two-word instructions are aborted when the first interrupt instruction word fetched will

replace the fetch of the second word of the two word instruction. Aborted instructions are

re-fetched again when program control returns from the interrupt routine. The PC is

adjusted appropriately prior to the end of the decode cycle of the aborted instruction.

If the first interrupt word fetch occurs in the cycle following the fetch of a one-word

instruction not listed above or the second word of a two-word instruction, that instruction

will complete normally prior to the start of the interrupt routine.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA

 PROCESSING STATES 7 - 11

The following cases have been identified where service of an interrupt might encounter

an extra delay:

1. If a long interrupt routine is used to service an SWI then the processor priority

level is set to 3. Thus, all interrupts except for other level three interrupts are

disabled until the SWI service routine terminates with an RTI (unless the SWI

service routine software lowers the processor priority level).

2. While servicing an interrupt, the next interrupt service will be delayed according

to the following rule:

After the first interrupt instruction word reaches the instruction decoder, at least

three more instructions will be decoded before decoding the next first interrupt

instruction word. If any one pair of instructions being counted is the REP in-

struction followed by an instruction to be repeated then the combination is

counted as two instructions independently of the number of repeats done.

Sequential REP combinations will cause pending interrupts to be rejected and

can not be interrupted until the sequence of REP combinations ends.

3. The following instructions are not interruptable: BRKcc, SWI, STOP, WAIT, and

RESET.

4. The REP and REPcc instructions and the instruction being repeated are not in-

terruptable.

Int. Ctr cyc1 i i*

Int. Ctr cyc2 i i

Fetch n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4

Decode n2 n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4

Execute n1 n2 n3 n4 ii1 ii2 n5 n6 n7 n8 ii3

Instruction
decode Order 1 2 3 4 5 6 7 8 9 10 11

 i = interrupt request

 ii = interrupt instruction word

 n = normal instruction word

 * subsequent interrupts are enabled at this time

Figure 7-2 Interrupt Pipeline Action

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 12 PROCESSING STATES

MOTOROLA

5. Instructions using a Read-Modify-Write bus access cannot be interrupted dur-

ing their bus access.

During an interrupt instruction fetch, two instruction words are fetched, the first from the

interrupt starting address and the second from the interrupt starting address +1 loca-

tions.

7.3.1 Interrupt Types

Two types of interrupt routines may be used: fast and long. The fast routine consists of

the two automatically inserted interrupt instruction words. These words can contain any

un-restricted single two-word instruction or any two one-word instructions (see Appendix

A - section A.8 “Instruction Sequence Restrictions” for a list of restrictions). Fast interrupt

routines are never interruptable.

CAUTION

Status is not preserved during a fast interrupt routine; therefore, instructions
which modify status should not be used at the interrupt starting address and
interrupt starting address +1.

If one of the instructions in the fast routine is a jump or branch to subroutine, then a long

interrupt routine is formed. The long interrupt routine should be terminated by an RTI.

Long interrupt routines are interruptable by higher priority interrupts.

7.3.2 Interrupt Arbitration

External interrupts are internally synchronized with the processor clock (this takes up to

three T cycles) before their interrupt pending flags are set. Each separate external inter-

rupt and internal interrupt has its own independent flag. After each instruction is exe-

cuted in normal processing mode, all interrupts are arbitrated. This includes all hardware

interrupts that have been latched into their respective interrupt pending flags and all

internal interrupts. During arbitration, each interrupt’s IPL is compared with the interrupt

mask in the SR and the interrupt is either allowed or disallowed. The remaining interrupts

are prioritized according to the priority shown in Table 7-5 and the highest priority inter-

rupt is chosen. The interrupt vector is then calculated so that the Program Interrupt Con-

troller can fetch the first interrupt instruction. Interrupt arbitration and control occurs

concurrently with the fetch-decode-execute cycle and takes two instruction cycles. Inter-

rupts from a given source are not buffered. The interrupt pending flag for the chosen

interrupt is not cleared until the second interrupt vector of the chosen interrupt is being

fetched. A new interrupt from the same source will not be accepted for the next interrupt

arbitration until that time.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA

 PROCESSING STATES 7 - 13

The internal “interrupt acknowledge” signal is used to clear the edge-triggered interrupts’

flags, the Stack Error, Illegal Interrupt and SWI. Peripheral interrupt requests that need a

read/write action to some register DO NOT receive this signal, and those interrupts will

remain pending until their registers are read/written. Also, level-triggered interrupts will

not be cleared. Note that the acknowledge signal will be generated after generation of

the interrupt vectors, and not before.

However, the first instruction word of the next interrupt service will reach the decoder

only after the decoding of at least four instructions following the decoding of the first

instruction of the previous interrupt.

7.3.3 Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address which points to

the first instruction word of a two-word fast interrupt routine. This address is used for the

next instruction fetch, instead of the PC, and the interrupt instruction fetch address + 1 is

used for the subsequent instruction fetch. While the interrupt instructions are being

fetched, the PC is inhibited from being updated. After the two interrupt words have been

fetched, the PC is used for any following instruction fetches.

After the interrupt instructions have been fetched, they are guaranteed to be executed.

This is true even if the instruction that is currently being executed is a change of flow

instruction (i.e., JMP, JSR, etc.) that would normally ignore the instructions in the pipe.

After the interrupt instruction fetch, the PC will point to the instruction that would have

been fetched if the interrupt instructions had not been substituted.

7.3.4 Interrupt Instruction Execution

Interrupt instruction execution is considered to be “fast” if neither of the instructions of the

interrupt service routine causes a change of flow. A jump or branch to subroutine within a

fast interrupt routine forms a long interrupt which is terminated with an RTI instruction to

restore the PC and SR from the stack and return to normal program execution. Reset is

a special exception which will normally contain only a JMP instruction at the exception

start address. At the programmer’s option, almost any instruction can be used in the fast

interrupt routine. The restricted instructions include SWI, STOP, and WAIT. Figure 7-3,

Figure 7-4, Figure 7-5 show the fast and the long interrupt service routines. Notice that

the fast interrupt executes only two instructions and then automatically resumes execu-

tion of the main program where it left off whereas the long interrupt must be told to return

to the main program by executing an RTI instruction.

7.3.4.1 Fast Interrupt

Figure 7-3 illustrates the effect of a fast interrupt routine in the stream of instruction

fetches.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 14 PROCESSING STATES

MOTOROLA

Figure 7-4 shows the sequence of instruction fetches between two fast interrupts. Note

that there is a total of four fetches between the two interrupt fetches (two after the first

interrupt and two preceding the second interrupt). The requirement for these four fetches

establishes the maximum rate at which the DSP will respond to interrupts, namely one

interrupt every six instructions.

The sequence:

REP #N
Instruction

is counted as 2 instructions regardless the value of N.

Execution of a fast interrupt routine always follows the following rules:

1. No JSR or BSR located at either of the two interrupt vector addresses. If Jscc

or Bscc are used, the interrupt remains a fast interrupt if the condition is false.

2. The processor status is not saved.

3. The fast interrupt routine may (but should not) modify the status of the normal

instruction stream.

4. The fast interrupt routine may contain any single two-word instruction or any

two one-word instructions except SWI, STOP, and WAIT.

Int. Ctr cyc1 i i*

Int. Ctr cyc2 i i

Fetch n3 n4 ii1 ii2 n5 n6 n7 n8 ii3 ii4

Decode n2 n3 n4 f1 f2 n5 n6 n7 n8 f3 f4

Execute n1 n2 n3 n4 f1 f2 n5 n6 n7 n8 f3

Instruction
decode Order 1 2 3 4 5 6 7 8 9 10 11

 f = fast interrupt instruction word (non-control-flow-change)

 i = interrupt request

 ii = interrupt instruction word

 n = normal instruction word

 * subsequent interrupts are enabled at this time

Figure 7-3 Fast Interrupt Pipeline Action

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA

 PROCESSING STATES 7 - 15

5. The PC, which contains the address of the next instruction to be executed in

normal processing, remains unchanged during a fast interrupt routine.

6. The fast interrupt returns without an RTI.

7. Normal instruction fetching resumes using the PC following the completion of

the fast interrupt routine.

8. A fast interrupt is not interruptable.

9. The primary application is to move data between memory and I/O devices.

7.3.4.2 Long Interrupt

A jump to subroutine instruction within the fast interrupt routine forms a long interrupt

routine. Execution of a long interrupt routine always follows the following rules:

1. A JSR, BSR, JScc or BScc with true condition to the starting address of the in-

terrupt service routine is located at one of the two interrupt vector addresses.

2. During execution of the jump to subroutine instruction, the PC and SR are

stacked. The interrupt mask bits of the SR are updated to mask interrupts of the

same or lower priority. The Loop Flag and Scaling Mode bits are reset.

3. The first instruction word of the next interrupt service (of higher IPL) will reach

the decoder only after the decoding of at least four instructions following the de-

coding of the first instruction of the previous interrupt.

4. The interrupt service routine can be interrupted i.e., nested interrupts are sup-

ported.

5. The long interrupt routine can be any length and should be terminated by an

RTI, which restores the PC and SR from the stack.

Figure 7-4 illustrates the effect of a long interrupt routine on the instruction pipeline. A

short JSR (that is, a JSR with 8-bit absolute address) is used to form the long interrupt

routine. For this example, word 4 of the long interrupt routine is an RTI. A subsequent

interrupt is shown to illustrate the non-interruptible nature of the early instructions in the

long interrupt service routine. In this example, the interrupts are reenabled, not because

sr4 was an RTI, but because it was the fourth instruction decoded after ii1 was decoded

and found to be a JSR instruction.

Either one of the two instructions of the fast interrupt can be the JSR instruction that

forms the long interrupt. Notice that if the first fast interrupt vector instruction is a short

JSR, the second instruction is never used.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 16 PROCESSING STATES

MOTOROLA

7.3.4.3 Case of the REP Instruction

A REP instruction is treated as a single two-word instruction regardless of how many

times it repeats the second instruction of the pair. Instruction fetches are suspended and

will be reactivated only after the loop counter is decremented to one

See Figure 7-5 for an example of interrupt service when the instruction that receives the

internal interrupt service request is the REP instruction (n3 in Figure 7-5). During the

repeated executions of the instruction that follows the REP instruction (n4), instruction

fetches are suspended. The fetches will be reactivated only after the loop counter is dec-

remented to one. During the execution of n4, no interrupts will be serviced. When LC

finally reaches one, the fetches are reinitiated and the interrupt can be serviced. In Fig-

ure 7-5 it can be seen that n5 (loaded into the instruction latch from the backup instruc-

tion latch) is decoded and executed as well as n6 before the first interrupt vector.

Sequential REP operations will cause pending interrupts to be rejected and can not be

interrupted until the sequence of REP operations ends. The reason that REP operations

are not interruptable is that the instruction being repeated is not refetched. While that

instruction is repeating, no instructions are fetched or decoded and an interrupt can not

be inserted.

7.3.5 Interrupt Sources

Exceptions may originate from any of the 32 vector addresses listed in Table 7-1 The

corresponding interrupt starting addresses for each interrupt source are shown. Interrupt

starting addresses are internally-generated addresses which point to the first instruction

of the fast interrupt service routine. The interrupt starting address for each interrupt is an

address constant for minimum overhead. Thirty-two interrupt starting address locations

are provided. These addresses are located in the first 64 locations of program memory.

When an interrupt is serviced, the instruction at the interrupt starting address is fetched

first. If it is known a priori that certain interrupts will not be used, those interrupt vector

locations can be used for program or data storage.

The 32 interrupts are prioritized into four levels. Level 3 is the highest priority level and is

not maskable. Levels 0-2 are maskable. The interrupts within each level are prioritized

according to a predefined priority that is discussed in the next sub-section. The level

three interrupts - Reset, Illegal Instruction, Stack Error and SWI, are discussed individu-

ally.

7.3.5.1 Hardware Interrupt Sources

There are two types of hardware interrupts in the DSP: internal and external. The internal

interrupts include all of the on-chip peripheral devices (Host Interface, SSIs and Timer).

Each internal interrupt source is latched and serviced if it is not masked. When it is ser-

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA

 PROCESSING STATES 7 - 17

Int. Ctr cyc1 i i*

Int. Ctr cyc2 i i

Fetch n3 n4 ii1 ii2 sr1 sr2 sr3 sr4 sr5 n5 ii1

Decode n2 n3 n4 JSRf – sr1 sr2 sr3 RTI – n5

Execute n1 n2 n3 n4 JSRf NOP sr1 sr2 sr3 RTI NOP

Instruction
decode Order 1 2 3 4 5 6 7 8 9

Int. Ctr cyc1 i*

Int. Ctr cyc2 i

Fetch sr5 n5 ii1 ii2 n6 n7 n8 n9

Decode RTI – n5 ii1 ii2 n6 n7 n8

Execute sr3 RTI NOP n5 ii1 ii2 n6 n7

Instruction
decode Order 8 9 19 11 12 13 14

 i = interrupt request
 ii = interrupt instruction word
 JSRf = fast JSR (JSR with 8-bit absolute address)
 n = normal instruction word
sr = service routine word
 * subsequent interrupts are enabled at this time

instruction after the RTI is always fetched but not
decoded when RTI has been recognized

Figure 7-4 Long Interrupt Pipeline Action

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 18 PROCESSING STATES MOTOROLA

viced, the interrupt is cleared. Each internal hardware source has independent enable

control and priority level control.

The external hardware interrupts include RESET, IRQA, and IRQB. The RESET interrupt

is level sensitive and is the highest level interrupt (priority 3). The IRQA and IRQB inter-

rupts can be programmed to be level sensitive or edge sensitive. The level sensitive

interrupts will not be cleared automatically when they are serviced and therefore must be

cleared by other means to prevent multiple interrupts. The edge sensitive interrupts are

latched as pending on the high-to-low transition of the interrupt input and automatically

cleared when the interrupt is serviced. IRQA and IRQB interrupts can be programmed to

one of three maskable priority levels: level 0, 1, or 2. Additionally, both of these interrupts

have independent enable control.

When the IRQA or IRQB interrupts are disabled in the IPR register, the pending request

will be ignored regardless of whether the interrupt input was defined as level sensitive or

edge sensitive. If the interrupt is defined as edge sensitive, its edge detection latch will

remain in the reset state as long as (1) the interrupt is disabled or (2) if the interrupt is

defined as level sensitive. If the level sensitive interrupt is disabled while the interrupt is

pending, the pending interrupt will be cancelled. However, if the first instruction of the

interrupt has been fetched, it will not be cancelled.

Int. Ctr cyc1 i i

Int. Ctr cyc2 i% i*

Fetch n3 n4 n5 n6 ii1 ii2 n7 n8 n9

Decode n2 REP – n4 n4 n5 n6 ii1 ii2 n7 n8

Execute n1 n2 REP NOP n4 n4 n5 n6 ii1 ii2 n7

Instruction
decode Order 1 2 3 4 5 6 7 8 9 10 11

 i = interrupt request
 ii = interrupt instruction word
 n = normal instruction word
 n3 = REP #2 instruction
 n4 = instruction being repeated twice
 n5 = instruction that waits in the backup instruction latch
% interrupt rejected at this time
 * subsequent interrupts are enabled at this time

Figure 7-5
Example of Interrupt Service when

Interrupt is Presented to REP Instruction

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA PROCESSING STATES 7 - 19

Table 7-1 Interrupt Sources

Interrupt service starts by fetching the instruction word in the first vector location and is

considered finished when the fetch of the instruction word in the second vector location

happens. In the case of an edge-triggered interrupt, the internal latch is automatically

cleared when the second vector location is fetched. The fetch of the first vector location

DOES NOT GUARANTEE that the second location will be fetched. Figure 7-6 illustrates

one case where the second vector location is not fetched. In Figure 7-6 the SWI instruc-

tion “discards” the fetch of the first interrupt vector to ensure that the SWI vectors will be

fetched. Instruction n4 is decoded as a SWI while ii1 is being fetched. Execution of the

Interrupt
Starting
Address IPL Interrupt Source

$0000 3 Hardware RESET
$0002 3 Illegal Instruction
$0004 3 Stack Error
$0006 3 Reserved
$0008 3 SWI
$000A 0-2 IRQA
$000C 0-2 IRQB
$000E 0-2 Reserved
$0010 0-2 SSI0 Receive Data with Exception Status
$0012 0-2 SSI0 Receive Data
$0014 0-2 SSI0Transmit Data with Exception Status
$0016 0-2 SSI0 Transmit Data
$0018 0-2 SSI1 Receive Data with Exception Status
$001A 0-2 SSI1 Receive Data
$001C 0-2 SSI1 Transmit Data with Exception Status
$001E 0-2 SSI1 Transmit Data
$0020 0-2 Timer Overflow
$0022 0-2 Timer Compare
$0024 0-2 Host DMA Receive Data
$0026 0-2 Host DMA Transmit Data
$0028 0-2 Host Receive Data
$002A 0-2 Host Transmit Data
$002C 0-2 Host Command (default)
$002E 0-2 Available for Host Command
$0030 0-2 Available for Host Command
$0032 0-2 Available for Host Command
$0034 0-2 Available for Host Command
$0036 0-2 Available for Host Command
$0038 0-2 Available for Host Command
$003A 0-2 Available for Host Command
$003C 0-2 Available for Host Command
$003E 0-2 Available for Host Command

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 20 PROCESSING STATES MOTOROLA

SWI requires that ii1 be discarded and the two SWI instructions (ii3 and ii4) be fetched

instead.

CAUTION

On all level sensitive interrupts, the interrupt must be externally released be-
fore interrupts are internally re-enabled or the processor will be interrupted
repeatedly until the interrupt is released.

7.3.5.2 Software Interrupt Sources

There are two software interrupt sources - Illegal Instruction Interrupt (III) and Software

Interrupt (SWI).

7.3.5.2.1 Illegal Instruction Interrupt

III is a non-maskable interrupt (IPL 3) which is serviced immediately following the execu-

tion of the ILLEGAL instruction or the attempted execution of an illegal instruction (any

undefined operation code). Illegal instruction interrupts are fatal errors. Only a long inter-

rupt routine should be used for the III routine. As shown in Figure 7-7, if a fast interrupt is

chosen, everything being frozen after the decode of n5 (II), this same instruction will be

decoded again after execution of the two fast interrupt words. Execution will therefore

loop forever between the illegal instruction and its fast interrupt routine. Even when a

long interrupt is used, no RTI or RTS should be used at the end of the interrupt routine,

since return from the illegal instruction interrupt to the main code will result in decoding

Int. Ctr cyc1 i i*

Int. Ctr cyc2 i i*

Fetch n3 n4 n5 ii1 ii3 ii4 sw1 sw2 sw3 sw4

Decode n2 n3 SWI -- -- -- JSR -- sw1 sw2 sw3

Execute n1 n2 n3 SWI NOP NOP NOP JSR -- sw1 sw2

Instruction
decode Order 1 2 3 4 5 6 7

 i = interrupt request
 i* = interrupt request generated by SWI
 ii1 = 1st vector of interrupt i
 ii3 = 1st SWI vector (1-word JSR)
 ii4 = 2nd SWI vector
 n = normal instruction word
 n4 = SWI

 sw = instructions pertaining to the SWI long interrupt routine

Figure 7-6 Software Interrupt Mechanism

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA PROCESSING STATES 7 - 21

the illegal instruction again. During the illegal instruction interrupt service, the JSR

located in the III vector will normally stack the address of the illegal instruction. The user

may examine the stack (using MOVE SSH,dest) to locate the offending illegal instruc-

tion. The ILLEGAL instruction is useful for triggering the illegal interrupt service to see if

the III routine is capable of recovery from illegal instructions.

There are two cases in which the stacked address will not point to the illegal instruction:

1. If the illegal instruction is one of the two instructions at an interrupt vector loca-

tion, and is fetched during a regular interrupt service, the processor will stack

the address of the next sequential instruction in the normal instruction flow (the

regular return address of the interrupt routine that had the illegal opcode in its

vector).

2. If the illegal instruction follows a REP instruction (see Figure 7-8), the DSP will

effectively execute the illegal instruction as a repeated NOP, the interrupt vec-

tor will then be inserted in the pipeline. The next instruction will be fetched but

not decoded or executed. The processor will stack the address of the next se-

quential instruction (i.e., n8 in Figure 7-8) which is two instructions after the il-

legal instruction.

In DO loops, if the illegal instruction is in the LA location, and the instruction preceding it

(i.e. at LA-1) is being interrupted with a normal interrupt, the LC will be decremented as if

the loop had reached the LA instruction. When the interrupt service ends and the instruc-

tion flow returns to the loop, the illegal instruction will be refetched (since it is the next

sequential instruction in the flow). The loop state machine will again decrement LC

because the LA instruction is being executed. At this point, the illegal instruction will trig-

ger the illegal instruction interrupt. Notice that the loop state machine decremented LC

twice in one loop due to the presence of the illegal opcode at the LA location. This is a

special condition that only happens during this situation.

7.3.5.2.2 Software Interrupt

SWI is a non-maskable interrupt (IPL 3) which is serviced immediately following the soft-

ware interrupt instruction execution. A long interrupt service routine is usually used. The

difference between a SWI and a JSR instruction is that the SWI sets the interrupt mask

to prevent interrupts with an IPL below three from being serviced. Masking out lower

level interrupts makes the SWI very useful for setting breakpoints in monitor programs.

The JSR instruction does not affect the interrupt mask.

7.3.5.3 Stack Error Interrupt

The stack error interrupt is non-maskable (IPL 3). An overflow or underflow of the stack

causes a stack error interrupt (see Section 5 for additional information on the stack error

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

7 - 22 PROCESSING STATES MOTOROLA

flag). The stack error interrupt is caused by a non-recoverable error condition and is vec-

tored to P:$0002. Since the stack error is non-recoverable, a long interrupt should be

used to service the interrupt and the service routine should not end in an RTI. Executing

a RTI instruction “pops” the stack which has already been corrupted.

7.3.6 Interrupt Priority Structure

Four levels of interrupt priority are provided. Interrupt priority levels (IPLs) numbered 0,

1, and 2, are maskable with level 0 as the lowest level. Level 3 (the highest level), is non-

maskable. The only level 3 interrupts are Reset, Illegal Instruction, Stack Error and SWI.

The interrupt mask bits (I1, I0) in the status register reflect the current processor priority

level and indicate the interrupt priority level needed for an interrupt source to interrupt the

processor (see Table 7-2). Interrupts are inhibited for all priority levels less than the cur-

rent processor priority level. However, level 3 interrupts are not maskable and therefore

can always interrupt the processor.

Int. Ctr cyc1 i i

Int. Ctr cyc2 i

Fetch n3 n4 n5 n6 - - ii1 ii2 n5

Decode n2 n3 n4 II -- -- -- ii1 ii2 II -

Execute n1 n2 n3 n4 NOP -- -- -- ii1 ii2 NOP

Instruction
decode Order 1 2 3 4 5 6 7

 i = interrupt request
 ii = interrupt instruction word
 II = Illegal Instruction
 n = normal instruction word

Figure 7-7
Infinite Looping on Fast Illegal Instruction Interrupt Processing

i1
i2

n3
n4

n5=II
n6

P memory

P:$0004

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EXCEPTION PROCESSING (INTERRUPT PROCESSING)

MOTOROLA PROCESSING STATES 7 - 23

Table 7-2 Status Register Interrupt Mask Bits

7.3.6.1 Interrupt Priority Levels (IPL)

The interrupt priority level for each on-chip peripheral device and for each external inter-

rupt source (IRQA, IRQB) can be programmed under software control. Each on-chip or

external peripheral device can be programmed to one of the three maskable priority lev-

els (IPL 0, 1, or 2). Interrupt priority levels are set by writing to the Interrupt Priority Reg-

ister shown in Figure 7-9. This read/write register specifies the interrupt priority level for

each of the interrupting devices (HOST, SSIs, Timer, IRQA, IRQB). In addition, this reg-

ister specifies the trigger mode of both external interrupt sources and it is used to enable

or disable the individual external interrupts. This register is cleared on RESET. Table 7-3

defines the interrupt priority level bits. Table 7-4 defines the external interrupt trigger

mode bits.

Int. Ctr cyc1 i i

Int. Ctr cyc2 i

Fetch n3 n4 n5 n6 n7 - - ii1 ii2 n8

Decode n2 n3 n4 REP II -- -- -- ii1 ii2 n8

Execute n1 n2 n3 n4 REP NOP -- -- -- ii1 ii2

Instruction
decode Order 1 2 3 4 5 6 7 8

 i = interrupt request
 ii = interrupt instruction word
 II = Illegal Instruction
 n = normal instruction word

Figure 7-8 Repeated Illegal Instruction

I1 I0 Exceptions Exceptions
 Permitted Masked

0 0 IPL 0,1,2,3 None
0 1 IPL 1,2,3 IPL 0
1 0 IPL 2,3 IPL 0,1
1 1 IPL 3 IPL 0,1,2,

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

RESET STATE PROCESSING

7 - 24 PROCESSING STATES MOTOROLA

Table 7-3 Interrupt Priority Level Bits

Table 7-4 External Interrupt Trigger Mode Bits

7.3.6.2 Exception Priorities within an IPL

If more than one exception is pending when an instruction is executed, the interrupt with

the highest priority level is serviced first. When multiple interrupt requests with the same

IPL are pending, a second fixed priority structure within that IPL determines which inter-

rupt is serviced. The fixed priority of interrupts within an IPL and the interrupt enable bits

for all interrupts are shown in Table 7-5 The interrupt enable bits for the HOST, SSIs,

and TM are located in the control registers associated with their respective on-chip

peripherals.

7.4 RESET STATE PROCESSING

The reset processing state is entered in response to the external RESET pin being

asserted (a hardware reset). Upon entering the reset state:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TL TL S1L S1L S0L S0L HL HL * * IBL IBL IBL IAL IAL IAL
1 0 1 0 1 0 1 0 * * 2 1 0 2 1 0

IRQA IPL
IRQA mode
IRQB IPL
IRQB mode
Reserved
HOST IPL
SSI0 IPL
SSI1 IPL
TM IPL

*Read as zero and written with zero for future compatibility.

Figure 7-9 Interrupt Priority Register IPR (Addr X:$FFDF)

xxL1 xxL0 Enabled IPL

0 0 No -
0 1 Yes 0
1 0 Yes 1
1 1 Yes 2

IxL2 Trigger Mode

0 Level
1 Negative Edge

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

WAIT STATE PROCESSING

MOTOROLA PROCESSING STATES 7 - 25

1. internal peripheral devices are reset, and their pins revert to general-purpose

I/O pins.

2. the modifier registers are set to $FFFF.

3. the interrupt priority register is cleared.

4. the BCR is set to $43FF, thereby inserting 31 wait states in all external memory

accesses.

5. the stack pointer is cleared.

6. the loop flag, forever flag, scaling mode are cleared in the MR register, the in-

terrupt mask bits are set, and all CCR bits are cleared.

7. the OMR bits CD (Clockout Disable), SD (Stop delay), R (Rounding), SA (Sat-

uration) are cleared.

The DSP remains in the reset state until RESET is deasserted. Upon leaving the reset

state:

1. the chip operating mode bits of the OMR are loaded from the external mode se-

lect pins (MODA, MODB, MOBC).

2. program execution begins at program memory address $E000 in normal ex-

panded mode or at $0000 in all other operation modes. The first instruction

must be fetched and then decoded before executing. Therefore, the first in-

struction is executed two instruction cycles after the first instruction fetch. Two

NOPs are executed in the two instruction cycles before the first instruction is

executed.

The internal peripheral devices (HI, SSI0, SSI1, and ports A, B, and C) can be reset by

several methods – hardware (HW) reset, software (SW) reset, individual (I) reset, and

stop (ST) reset. Depending on the type of reset, the registers of these devices will be

affected differently (see SECTIONS 8,9,10,11,12 for additional information on the inter-

nal peripherals).

7.5 WAIT STATE PROCESSING

The wait processing state is a low power consumption state entered by execution of the

WAIT instruction. In the wait state, the internal clock is disabled to all internal circuitry

except the internal peripherals. All internal processing is halted until an unmasked inter-

rupt occurs or the DSP is reset. The bus arbitration circuits (BR, BG, and BB pins)

remain active during the Wait state if the DSP was in the slave mode (MC=0) before

entering the WAIT state. The wait state is one of two low power states.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

WAIT STATE PROCESSING

7 - 26 PROCESSING STATES MOTOROLA

Figure 7-10 shows a WAIT instruction being fetched, decoded, and executed. It is

fetched as n3 in this example and during decode is recognized as a WAIT instruction.

The following instruction (n4) is aborted and the internal clock is disabled from all internal

circuitry except the internal peripherals. The processor stays in this state until an inter-

rupt or reset is recognized. The response time is variable due to the timing of the inter-

rupt with respect to the internal clock. Figure 7-10 shows the result of a fast interrupt

bringing the processor out of the wait state. The two appropriate interrupt vectors are

fetched and put in the instruction pipe. The next instruction fetched is n4 which had been

aborted earlier. Instruction execution proceeds normally from this point on.

Figure 7-11 shows an example of the WAIT instruction being executed at the same time

that an interrupt is pending. Instruction n4 is aborted as before. There is a five instruction

cycle delay caused by the WAIT instruction and then the interrupt is processed normally.

The internal clocks are not turned off and the net effect is that of executing eight NOP

instructions between the execution of n2 and ii1.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

WAIT STATE PROCESSING

MOTOROLA PROCESSING STATES 7 - 27

Table 7-5 Exception Priorities within an IPL

Priority Exception Enabled by Control Control
Register Register
Bit No. Address

Highest Hardware RESET — — —

Illegal Instruction Interrupt — — —

Stack Error — — —

Lowest SWI — — —

Level 3 (Non-maskable)

Level 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt) IRQA 0, 1 X:$FFDF
mode bits

IRQB (External Interrupt) IRQB 3, 4 X:$FFDF
mode bits

Host Command Interrupt HCIE 2 X:$FFC4

Host/DMA RX Data Interrupt HRIE 0 X:$FFC4

Host/DMA TX Data Interrupt HTIE 1 X:$FFC4

SSI0 RX Data with RIE 15 X:$FFD1
Exception Status

SSI0 RX Data RIE 15 X:$FFD1

SSI0 TX Data with TIE 14 X:$FFD1
Exception Status

SSI0 TX Data TIE 14 X:$FFD1

SSI1 RX Data with RIE 15 X:$FFD9
Exception Status

SSI1 RX Data RIE 15 X:$FFD9

SSI1 TX Data with TIE 14 X:$FFD9
Exception Status

SSI1 TX Data TIE 14 X:$FFD9

Timer Overflow Interrupt OIE 9 X:$FFEC

Timer Compare Interrupt CIE 10 X:$FFEC

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

7 - 28 PROCESSING STATES MOTOROLA

During the wait state, the BR/BG/BB circuits remain active if the DSP was in the slave

mode. Before BR is asserted (see Table 7-6), all Port A signals are driven. The control

signals are deasserted, the data signals are inputs and the address signals remain as

the last address read or written. When BG is asserted, all signal are three-stated (high

impedance). Immediately after BR is deasserted, the R/W, PS/DS, and TS signals are

driven high — all other signals remain three-stated. During the first T0 clock state follow-

ing the exit from the wait state, control signals PS/DS, TS are again driven — the data

and address signals remain three-stated. During first external access, all signals return

to their normal operating mode.

Table 7-6 BR/BG During WAIT (Slave Mode)

7.6 STOP STATE PROCESSING

The stop processing state is the lowest power consumption state and is entered by the

execution of the STOP instruction. In the stop state, all circuits are powered down except

Int. Ctr cyc1 i

Int. Ctr cyc2 i*

Fetch n3 n4 - ii1 ii2 n4 n5 n6

Decode n2 WAIT - ii1 ii2 n4 n5

Execute n1 n2 WAIT - ii1 ii2 n4

Instruction
decode Order 1 2 3 4 5 6

 i = interrupt request

 ii = interrupt instruction word

 n = normal instruction word

Figure 7-10 WAIT Instruction

Before BR While BG After BR After Return to After 1st
Signal Asserted Asserted Deasserted Normal State External Access

PS/DS Output Hi-Z Hi-Z Output Output

TS Output Hi-Z Hi-Z Output Output

R/W Output Hi-Z
Output

Output Output

Data I/O Hi-Z Hi-Z Hi-Z I/O

Address Output Hi-Z Hi-Z Hi-Z Output

(Read)

from Wait State

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

MOTOROLA PROCESSING STATES 7 - 29

for (1) the ED register, (2) the PLL when it is enabled, and (3) the CLKO circuitry when

clockout is used. If the PLL and CLKO circuitry are not being used when the STOP

instruction is executed, they will be powered down; however, the input buffer used to

square EXTAL will still be active but will not dissipate power if the EXTAL pin is

grounded. The chip clears all peripherals and external interrupts (IRQA, IRQB) when

entering the stop state. Stack errors that were pending, remain pending. The priority lev-

els of the peripherals remain as they were before the stop instruction was executed. The

on-chip peripherals are held in their respective individual reset states while in the stop

state.

All activity in the processor is halted until one of the following actions occurs:

1. A low level is applied to the IRQA pin.

2. A low level is applied to the RESET pin.

Either of these actions will gate on the oscillator and, after a clock stabilization delay,

clocks to the processor and peripherals will be re-enabled. The clock stabilization delay

period is determined by the stop delay (SD) bit in the OMR.

The STOP sequence is composed of eight instruction cycles called STOP cycles. These

are differentiated from normal instruction cycles because the fourth cycle is stretched an

indeterminate period of time while the four phase clock is turned off.

Int. Ctr cyc1 i

Int. Ctr cyc2 i*

Fetch n3 n4 - ii1 ii2

Decode n2 WAIT - ii1 ii2

Execute n1 n2 WAIT - ii1

Instruction
decode Order 1 2 3 4 5

 i = interrupt request
 ii = interrupt instruction word
 n = normal instruction word

Interrupt Synchronized and
Recognized as Pending

5 Instruction Cycle Delay

Figure 7-11 Simultaneous Wait Instruction and Interrupt

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

7 - 30 PROCESSING STATES MOTOROLA

The STOP instruction is fetched in STOP cycle 1 of Figure 7-12, decoded in STOP cycle

2 (which is where it is first recognized as a stop command) and executed in STOP cycle

3. The next instruction (n4) is fetched during STOP cycle 2 but is not decoded in STOP

cycle 3 because, by that time the STOP instruction prevents the decode. The processor

stops the clock and enters the stop mode. The processor will stay in the stop mode until

it is restarted.

Figure 7-13 shows the case of the IRQA signal being asserted to exit the stop state. If

the exit from stop state was caused by a low level on the IRQA pin then the processor

Figure 7-12 STOP Instruction Sequence

Fetch n3 n4 - n4

Decode n2 STOP -

Execute n1 n2 STOP -

STOP
cycle count 1 2 3 4 5 6 7 8 (9)

IRQA

Clock Stopped
resume stop cycle count 4, in-
terrupts enabled

524KT or 28T cycle
count started

Fetch n3 n4 - n4

Decode n2 STOP -

Execute n1 n2 STOP -

STOP
cycle count 1 2 3 4 5 6 7 8 (9)

IRQA

Clock Stopped
resume stop cycle count 4, in-
terrupts enabled

524KT or 28T cycle
count started

Figure 7-13 STOP Instruction Sequence Followed by IRQA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

MOTOROLA PROCESSING STATES 7 - 31

will service the highest priority pending interrupt. If no interrupt is pending then the pro-

cessor resumes at the instruction following the STOP instruction that caused the entry

into the stop state.

An IRQA deasserted before the end of the STOP cycle count will not be recognized as

pending. If IRQA is asserted when the STOP cycle count completes, then an IRQA inter-

rupt will be recognized as pending and arbitrated with any other interrupts if the IRQA

was defined as level sensitive.

Specifically, when IRQA is asserted, the internal clock generator is started and begins a

delay determined by the SD bit of the OMR. If the internal clock oscillator is used, the SD

bit should be set to 0 which enables a delay count of 524K T cycles (i.e., [219-4]T cycles)

to allow the clock oscillator to stabilize. If a stable external clock is used, the SD bit may

be set to 1 which enables a 28 T (i.e., [25-4]T) cycle delay.

The following description assumes that SD=0 (the 524K T counter is used). During the

524K T count, interrupts are ignored until the last few count cycles. At this time, the inter-

rupts are synchronized. At the end of the 524K T cycle delay period, the chip restarts

instruction processing, the 4th stop cycle is completed (interrupt arbitration occurs at this

time) and stop cycles 5,6,7, and 8 are executed (it takes 17T from the end of the 524K T

delay to the first instruction fetch). If the IRQA signal is released (pulled high) after 4T

minimum but less than 524K T cycles, no IRQA interrupt will occur and the instruction

fetched after STOP cycle 8 will be the next sequential instruction (n4 in Figure 7-14). An

IRQA interrupt will be serviced (as shown in Figure 7-13) if (1) the IRQA signal had previ-

ously been initialized as level sensitive, (2) it is held low from the end of the 524K T cycle

delay counter to the end of stop cycle count 8, and (3) no interrupt with a higher interrupt

level is pending. If IRQA is not asserted during the last part of the STOP instruction

sequence (6,7, and 8), and no interrupts are pending, the processor will refetch the next

sequential instruction (n4). Since in Figure 7-13 the IRQA signal is asserted, the proces-

sor will recognize the interrupt and then fetch and execute the instructions at P:$0008

and P:$0009 which are the IRQA interrupt vector locations.

To ensure servicing IRQA immediately after leaving the STOP state, the following steps

must be taken before the execution of the STOP instruction:

1. Define IRQA as level sensitive.

2. Define IRQA priority as higher than the other sources and higher than the pro-

gram priority.

3. Ensure that no stack error is pending.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

7 - 32 PROCESSING STATES MOTOROLA

4. Execute the STOP instruction and enter the STOP state.

5. Recover from the STOP state by asserting the IRQA pin and holding it asserted

for the whole clock recovery time. If it is low, the IRQA vector will be fetched.

6. The exact elapsed time for clock recovery is unpredictable, the external device

that asserts IRQA must wait for some positive feedback, like a specific memory

access or a change in some predetermined I/O pin, before deasserting IRQA.

The STOP sequence totals 524K T cycles (i.e., [219-4]T cycles) if SD=0 or 28 T cycles (if

SD=1) in addition to the period with no clocks from the STOP fetch to the IRQA vector

fetch (or next instruction). However, there is an additional delay if the internal oscillator is

used. An indeterminate period of time is needed for the oscillator to begin oscillating and

then stabilize its amplitude. The processor will still count 524K T cycles but the period of

the first oscillator cycles will be irregular so an additional period of approximately 20,000

T should be allowed for this to happen. If an external oscillator is used and it is already

stabilized, no additional time need be provided.

If the STOP instruction is executed when the IRQA signal is asserted, the clock genera-

tor will not be stopped, but the 4-phase clock will be disabled for the duration of the 524K

T cycle (or 28 T cycle) delay count. This means that in this case the STOP looks like a

524K + 32 T cycle (or 28T+ 32T cycle) NOP, since the STOP instruction itself is 8

instruction cycles long (32 T).

A stack error interrupt pending before entering the STOP state is not cleared and will

remain pending. During the clock stabilization delay, all peripheral and external interrupts

are cleared and ignored except stack error. If the on-chip peripherals have interrupts

enabled in (1) their respective control registers and (2) in the interrupt priority register,

then interrupts will be immediately pending after the clock recovery delay and will be ser-

viced before continuing with the next instruction. If peripheral interrupts must be dis-

abled, the user should disable them either with the control registers or with the interrupt

priority register before the STOP instruction is executed.

If the RESET pin had been used to restart the processor (see Figure 7-14), the 524K T

cycle delay counter would not have been used, all pending interrupts would be dis-

carded, and the processor would immediately enter the RESET processing state. The

stabilization time required for the clock (RESET should be asserted for this time) is only

50 T for a stabilized external clock but is the same 550,000 T for the internal oscillator.

These stabilization times are recommended times and are not imposed by internal timers

or time delays. The DSP fetches instructions immediately when it exits reset. If the user

wishes to use the 524K T (or 28 T) delay counter, it can be started by asserting IRQA for

a short time (about 2 clock cycles) to exit the stop state.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

MOTOROLA PROCESSING STATES 7 - 33

When in the stop state, the Port A bus is “frozen”. The state of each pin immediately

before executing the STOP instruction will be held until the DSP leaves the stop state.

Port A is not three-stated and the BR/BG/BB circuits are not operational. However, Port

A will remain three- stated if BG was asserted (in the slave mode) before the STOP com-

mand was executed. One way to release the Port A bus for use while the DSP is in the

STOP state is to use a Port B or Port C pin to assert BR (in the slave mode) before exe-

cuting the STOP instruction.

Fetch n3 n4 - n4

Decode n2 STOP -

Execute n1 n2 STOP -

STOP
cycle count 1 2 3 4 5 6 7 8 (9)

RESET

Clock Stopped
processor leaves RESET state

enter RESET state

Figure 7-14 STOP Instruction Sequence Recovering with RESET

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

STOP STATE PROCESSING

7 - 34 PROCESSING STATES MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 BUS OPERATION 8 - 1

SECTION 8

BUS OPERATION

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

8 - 2 BUS OPERATION

MOTOROLA

8.1 INTRODUCTION . 8-3

8.2 SYNCHRONOUS BUS OPERATION . 8-3

8.3 BUS HANDSHAKE AND ARBITRATION . 8-5

8.3.1 Bus Arbitration signals . 8-5

8.3.2 Bus Arbitration between Two DSPs . 8-6

8.3.3 Bus Arbitration between a DSP56156 and an MC68020 8-7

8.3.4 Bus Arbitration with External Bus Arbitrator . 8-9

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 BUS OPERATION 8 - 3

8.1 INTRODUCTION

DSP56100 family external bus timing is defined by the operation of the Address Bus,

Data Bus, and Bus Control pins described in the User’s Manual for each of the DSPs in

the DSP56100 family. The external bus is designed to interface with a wide variety of

memory and peripheral devices, from high speed static RAMs to slower memory

devices. Figure 8-1 shows a static RAM design using 15 ns memories.

Figure 8-1
Example of SRAM Connection to a 60 MHz DSP56156 Using One Wait-State

External bus timing is controlled by the TA control signal and by the Bus Control Regis-

ters (BCR). The BCR and TA control the bus interface signal timing. Wait state insertion

is controlled by the BCR to provide fixed bus access timing, and by TA to provide

dynamic bus access timing. The number of wait states is determined by the TA input or

by the BCR, whichever is longer.

8.2 SYNCHRONOUS BUS OPERATION

A synchronous external bus cycle consists of at least 4 internal clock phases. Each syn-

chronous external memory access requires the following procedure:

1. The external memory address is defined by Address Bus A0-A15 and Memory

Reference signal PS/DS. These signals change in the first phase of the exter-

nal bus cycle. Memory Reference signal PS/DS has the same timing as the

Address Bus and may be used as an additional address line. The Address sig-

nals and PS/DS are also used to generate chip select for the appropriate

memory chips. Chip select changes the memory devices from low power

standby mode to active mode and begins the read access time. This allows

slower memories to be used since the chip select signals are address based

rather than read or write enable based.

Program
and
data

memory
64K x 4 bits

D0-D15

A0-A14

PS/DS

E

WR WE

OE

DSP56156

A0-A14

D0-D15
CS

TA

MCM6209-15

RD

A15

Vcc

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SYNCHRONOUS BUS OPERATION

8 - 4 BUS OPERATION

MOTOROLA

2. When the Address lines and PS/DS are stable, data transfer is enabled by the

Transfer Strobe TS signal. TS is asserted to qualify the Address signals and

PS/DS as stable and to perform the read or write data transfer. TS is asserted

in the second phase of the bus cycle.

3. Wait states are inserted into the bus cycle controlled by a wait state counter or

by TA, whichever is longer. The wait state counter is loaded from the BCR. If

the wait state number determined by these two factors is zero, no wait state is

inserted into the bus cycle and TS is deasserted in the fourth phase. If the wait

state number determined is W, then W wait states are inserted into the instruc-

tion cycle. Each wait state introduces one clock cycle delay (two phases

each). TA is sampled by the DSP on every rising edge of T2.

4. When Transfer Strobe TS is deasserted at the end of a bus cycle, the data is

latched in the destination device. At the end of a read cycle, the DSP latches

the data internally. At the end of a write cycle, the external memory latches the

data. The Address signals remain stable until the first phase of the next exter-

nal bus cycle to minimize power dissipation. The PS/DS signal is set high dur-

ing periods of no bus activity and the data signals are three-stated.

MCM6290-20
16Kx16bits

Synchronous
RAM

data

address
PS/DS

R/W

TS

OSC
50 MHz

16-bit
DSP

CLK
CLK

CLK*

EXTAL

DLE

D0-D15

A0-A12

A13

SWE

G

TA

AWE0

AWE1

E1

E0

A0-A12

D0-D15

Figure 8-2
MCM6290 16K x 16 Synchronous SRAM Used in 50 MHz 16-bit DSP System

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

MOTOROLA

 BUS OPERATION 8 - 5

Figure 8-2 shows an example of a 50 MHz 16-bit DSP connected to a 16K x 16-bit, 20

ns, synchronous RAM. Note that the PS/DS control signal is used as an additional

address line allowing a single external memory device to be used to store both program

(8k words) and data (8k words) memory.

8.3 BUS HANDSHAKE AND ARBITRATION

Bus transactions are governed by a single bus master. Bus arbitration determines which

device becomes the bus master. The arbitration logic implementation is system depen-

dent, but must result in at most one device becoming the bus master (even if multiple

devices request bus ownership) at any given time.

8.3.1 Bus Arbitration signals

Three signals are provided for bus arbitration. These signals are:

BR

 Bus Request: Input in the slave mode; output in the master mode

In the master mode, this output is asserted by the DSP requesting the bus to

indicate that the DSP wants to use the bus. The output is held asserted until the

DSP no longer needs the bus. This includes when the DSP is the bus master

as well as when it is not actively using the bus but retains bus mastership.

In the slave mode, this input is asserted by an external device to indicate to the

DSP that the external device wants control of the external bus. In the slave

mode, when BR is asserted, the DSP always relinquishes the bus.

BG

Bus Grant: Output in the slave mode; input in the master mode

In the master mode, this input is asserted by the bus arbitration controller to sig-

nal the DSP that the DSP is the bus master-elect. BG is valid only when the bus

is not busy. The Bus Busy signal is described below.

In the slave mode, this output pin is asserted by the DSP in response to a bus

request BR. When BG is asserted, the DSP no longer drives the bus.

BB

 Bus Busy: Output when bus master; input when not bus master

This pin is asserted by the device (bus master) that received bus ownership

from the bus arbitration controller. The master holds BB asserted for the dura-

tion of its bus possession. When asserted, BB indicates that the DSP is driving

the bus. BB deasserted indicates that the DSP is not driving the bus. BB may

be used as a three-state enable control for external address, data and bus con-

trol signal buffers.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

8 - 6 BUS OPERATION

MOTOROLA

The BB input is monitored by the DSP when it is the potential bus master (i.e.,

after BG has been asserted). The DSP will become bus master when BB is

deasserted.

Note:

A DSP which is programmed as a

bus master

 comes out of reset

without pos-

session of the bus

. A DSP which is programmed as a

bus slave

 comes out of

reset

with possession of the bus

.

8.3.2 Bus Arbitration between Two DSPs

Figure 8-3 shows two DSPs sharing the same external bus. The three bus arbitration

pins BR, BG, and BB allow for direct connection without external logic. The bus arbitra-

tion is explained below.

The two DSPs in Figure 8-3 share a common clock and common hardware reset cir-

cuitry. DSP-1 leaves the reset state in the master mode (MC tied high) while DSP-2

leaves the reset state in the slave mode (MC tied low).

Figure 8-4, Figure 8-5, and Figure 8-6 show the bus arbitration between the two proces-

sors.

When DSP-1 needs the bus for an external access, BRm is asserted during T0. BGm is

sampled by DSP-1 during the clock’s falling edge. When BGm is asserted by DSP-2,

address

data

BRs
BGs
BBs
MC

Shared
External
Memory

Slave
Mode

BRm
BGm

BB

MC

CLK
RESET

control

DSP-1 DSP-2

VCC

Master
Mode

Figure 8-3 Bus Arbitration Between Two 16-bit DSPs

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

MOTOROLA

 BUS OPERATION 8 - 7

DSP-1 starts sampling BB on the clock’s falling edge and starts a bus cycle on the

clock’s first rising edge after BB is sampled and recognized. DSP-1 then assumes bus

mastership by asserting BB. DSP-1 deasserts BRm when BGm has been received and

the external bus is released. BRm is deasserted during T0. BB remains asserted as long

as DSP-1 drives the bus.

When DSP-2 receives a bus request on its BR input, it will three-state its A0-A15, D0-

D15, TS, R/W, PS/DS pins at the earliest possible time while deasserting the BB pin. It

then asserts BG and its BB pin becomes an input. When the BR input is deasserted,

DSP-2 deasserts BG and DSP-2 regains bus control after sampling and recognizing BB

as deasserted.

When the master wishes to “park” on the bus (i.e., remain master even when it is not

making external accesses) it can set the RH bit in the BCR. This causes BR to remain

asserted until the RH bit is cleared. Bus parking is illustrated in Figure 8-5.

8.3.3 Bus Arbitration between a DSP56156 and an MC68020

Figure 8-7 shows a DSP in the master mode sharing the same external bus with an

MC68020. The three bus arbitration pins BR, BG, and BB allow direct connection without

external logic. The bus arbitration is explained below.

After hardware RESET, the DSP is set in the master mode (MC is tied is to VCC).

T0 T1 T2 Tw T2 Tw T2 Tw T2 Tw T2 Tw T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

DSP-1

CLK

DSP-2

CLK

BR

BG

BB

slave drives the bus master drives the

bus

slave samples BR
slave samples BR

master samples BG

master gets on the

bus

slave recognizes BR

slave grants the bus
master recognizes BG

master samples
master
recognizes BB high

BB high

Figure 8-4 Master Requests and Gets the Bus for One Access

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

8 - 8 BUS OPERATION

MOTOROLA

When the DSP needs the bus for an external access, it asserts BR. When BGm is

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0

DSP-1

CLK

DSP-2

CLK

BR

BG

BB

slave drives the bus

slave deasserts BG

slave gets on the

bus

slave samples
BR

slave recognizes
BR master samples master recognizes

BGBG

master gives
up bus

slave samples
BB high

slave recognizes
BB high

Figure 8-5 Slave Gets the Bus Back After One Master Access

Figure 8-6 Bus Parking by the Master

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2

DSP-1

CLK

DSP-2

CLK

BR

BG

BB

slave drives the bus master drives the

bus

slave samples BR Master asserts BR even if no access

master samples BG

master gets on the

bus

RH set by

Master

Slave grants

 the bus

This pattern repeats each

time the master accesses

the bus while RH=1; BB

will stay asserted as long

as DSP owns the bus.

slave recognizes BR

master samples BB high

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

MOTOROLA

 BUS OPERATION 8 - 9

asserted by the MC68020, the DSP starts a bus cycle after sampling BB and BB is deas-

serted. The DSP assumes bus mastership by asserting BB and then deasserts BR if it

only wants the bus for one cycle. BR remains asserted for a series of consecutive exter-

nal accesses or when the bus request hold bit (RH) of the BCR register is set. BB

remains asserted as long as the DSP drives the bus and as long as BG remains

asserted. When BG is deasserted, BB is deasserted at the end of the last external bus

access.

When the MC68020 receives a bus request on its BR input, it will assert BG at the earli-

est possible time. BG will not be asserted until the end of a read-modify-write operation.

BG will be deasserted by the MC68020 when the new bus master has asserted BGACK.

8.3.4 Bus Arbitration with External Bus Arbitrator

Systems that include several devices that can become bus master require external cir-

cuitry to assign priorities to the devices. This circuitry allows only the device with the

highest priority to become bus master when two or more devices attempt to become bus

master simultaneously. Figure 8-8 shows an example of bus arbitration with several

DSPs and other CPUs.

Bus arbitration is handled by a central bus arbitrator, using individual request/grant lines

to each potential bus master. The arbitration protocol can operate in parallel with bus

transfer activity allowing fast bus acquisition. The arbitration sequence occurs as follows:

1. All candidates for bus ownership assert their respective BR signals as soon as

address

data

Shared
External
Memory

control

DSP56156 MC68020

BR
BG
BGACK

BR
BG
BB

MC

16-bit

DSP

Master

Vcc

Figure 8-7 Bus Arbitration Between a DSP56156 and an MC68020

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

8 - 10 BUS OPERATION

MOTOROLA

they need the bus.

2. The arbitration logic designates a bus master-elect by asserting the BG signal

for that device.

3. The master-elect tests BB to insure that the previous master has relinquished

the bus. If BB is deasserted, then the master-elect takes control of the bus. If a

higher priority bus request occurs before the BB signal was deasserted, then

the arbitration logic may replace the current master-elect with the higher prior-

ity candidate (Figures 15-8 and 15-9 show the arbitration timing). However,

only one BG signal is allowed be asserted at any one time.

4. The new bus master begins its bus transfers after BB is asserted.

5. At anytime, the arbitration logic can signal the current bus master to relinquish

the bus by deasserting BG. A DSP56156 bus master releases its ownership

(deasserts BB) after completing the current external bus access and after rec-

ognizing BG is deasserted. If BG is not deasserted, the DSP56156 bus master

does not deassert BR, remains bus master, and continues to assert BB. If an

instruction is executing a Read-Modify-Write external access, the DSP will

only relinquish the bus after completing the whole Read-Modify-Write

sequence.

The DSP56156 has one control bit (RH) to permit software control of the BR and one

status bit (BS) to verify whether it owns the bus mastership. If the RH bit in the BCR reg-

ister is set, the DSP holds its BR signal asserted as long as requests for bus transfers

DSP56156 #1 CPU

BUS ARBITER

BR1 BR2 BRn BGnBG2BG1

BBnBB2BB1

DSP56156 #2

Figure 8-8 Bus Arbitration Between Several 16-bit DSPs and Other Processors

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

MOTOROLA

 BUS OPERATION 8 - 11

are pending. As long as the RH bit is set, BR will remain asserted. This situation is called

“bus parking” and allows the current bus master to use the bus repeatedly without re-

arbitration.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

BUS HANDSHAKE AND ARBITRATION

8 - 12 BUS OPERATION

MOTOROLA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

DSP56100 FAMILY ON-CHIP PLL

9 - 1

SECTION 9

DSP56100 FAMILY ON-CHIP PLL

x xd

∫

Φ

VCO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

9 - 2

DSP56100 FAMILY ON-CHIP PLL

MOTOROLA

9.1 INTRODUCTION . 9-3

9.2 ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR0 9-4

9.2.1 PCR0 Feedback Divider Bits (YD7-YD0) Bits 0-7 9-4

9.2.2 PCR0 Input Divider Bits (ID3-ID0) Bits 8-11 . 9-5

9.2.3 PCR0 Power Divider Bits (PD3-PD0) Bits 12-15 9-5

9.3 ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1 9-5

9.3.1 PCR1 Reserved Bits — Bits 0-9 . 9-5

9.3.2 PCR1 CLKO Select Bits (CS1-CS0) Bits 10 and 11 9-5

9.3.3 PCR1 Phase Select Bit (PS) Bit 12 . 9-6

9.3.4 PCR1 PLL Power Down Bit (PLLD) Bit 13 . 9-6

9.3.5 PCR1 PLL Enable Bit (PLLE) Bit 14 . 9-6

9.3.6 PCR1 Voltage Controlled Oscillator Lock Bit (LOCK) Bit 15 9-7

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

DSP56100 FAMILY ON-CHIP PLL

9 - 3

9.1 INTRODUCTION

The DSP56100 Family does not contain an on-chip oscillator. An external system clock

must be provided through the EXTAL input pin. The on-chip phase locked loop (PLL) can

be used to generate the DSP5616 core system clock or it can be bypassed allowing the

DSP5616 core to directly use the clock provided on the EXTAL pin.

Figure 9-1 shows the general block diagram of the on-chip frequency synthesizer.

The 4-bit divider ID3-ID0 defines the resolution of the PLL and divides the incoming clock

rate fed to the PLL. The eight down counter bits YD7-YD0 control down counting in the

PLL feedback loop causing it to divide by the value YD+1 (any number between 1 and

256) which effectively multiplies the frequency out of the PLL. The VCO output can be di-

vided down by any power of 2 between 2

0

 and 2

15

 before entering the core using the 4-

bits PD3-PD0 of the control register PCR1. The system frequency on the DSP core is con-

trolled by the frequency control bits of the PLL control register PCR0 as follows:

Fosc = {Fext

÷

[ID+1]}x[YD+1]

÷

 (2

PD

)

where ID is the value contained in ID3-ID0, YD is the value contained in YD7-YD0, and

PD is the value contained in PD3-PD0. Fext is a squared and delayed version of the clock

signal applied to the EXTAL input pin.

Note:

The STOP instruction does not power down the PLL if the PLL is enabled

(PLLD=0) when entering the STOP mode. STOP will power down the ID register if

the PLL is disabled (PLLD=1) when entering the STOP mode. (see Section 9.3.4).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR0

9 - 4

DSP56100 FAMILY ON-CHIP PLL

MOTOROLA

Figure 9-1 DSP56100 Family Frequency Synthesizer
Block Diagram and Control Registers

9.2 ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR0

The Clock Synthesis Control Register PCR0 is a 16-bit read/write register used to direct

the operation of the on-chip clock synthesis. The PCR0 controls the frequency program-

ming of the PLL. The PCR0 control bits are described in the following sections.

All PCR0 bits of are cleared by DSP hardware. Software reset does not affect this register.

9.2.1 PCR0 Feedback Divider Bits (YD7-YD0) Bits 0-7

The eight feedback divider bits YD7-YD0 control the down counter in the feedback loop,

causing it to divide by the value YD+1 where YD is the value contained in the eight bits.

Changing these bits requires a time delay for the Voltage Controlled Oscillator (VCO) to

lock again.

EXTAL

8-bit PLL Down Counter

PHASE

COMP.

PLLE=1

PLLE=0

On-chip Frequency Synthesis Control/Status Registers

15 14 13 12 11 10 9 8
LOCK PLLE PLLD PS CS1 CS0 * * READ-WRITE

PLL CONTROL
REGISTER (PCR1)
ADDRESS $FFDC

Fosc

YD7-YD0

VCOFilter

CLKO ÷ 2

Internal Phase PH0

CS1-CS0

100KΩ

1000pF

÷ 1 to ÷ 256

PD3-PD0

÷ 20 to ÷ 215

4-bit Power Of 2 Divider

7 6 5 4 3 2 1 0
* * * * * * * *

15 14 13 12 11 10 9 8
PD3 PD2 PD1 PD0 ID3 ID2 ID1 ID0 READ-WRITE

PLL CONTROL
REGISTER (PCR0)
ADDRESS $FFDB

7 6 5 4 3 2 1 0
YD7 YD6 YD5 YD4 YD3 YD2 YD2 YD0

ID3-ID0

÷ 1 to ÷ 16

4-bit Divider

SXFC VDDS

XCF 0.01µF

GNDS

0.1µF

PS=0 PS=1

*: Reserved bits

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1

MOTOROLA

DSP56100 FAMILY ON-CHIP PLL

9 - 5

The LOCK bit is cleared any time a new value is written to the YD bits.

The resulting DSP core system clock must be within the limits specified by the technical

data sheet. The frequency of the VCO should also remain higher than the minimum value

specified in this data sheet.

9.2.2 PCR0 Input Divider Bits (ID3-ID0) Bits 8-11

The four input divider bits are used to divide the input clock frequency by any number be-

tween 1 and 16. The output of the divider is used as input for the phase comparator of the

PLL. If ID is the value contained in the four bits, the input clock to the PLL is divided by

ID+1.

Any time a new value is written to the ID bits, the LOCK bit is cleared.

9.2.3 PCR0 Power Divider Bits (PD3-PD0) Bits 12-15

The four power divider bits are used to divide the VCO output clock frequency by any pow-

er of two between 2

0

 and 2

15

 (i.e., 1, 2, 4, 8, 16, 32, …, 16384, or 32768). The output of

the divider can be used as the operating clock for the DSP core, as shown in Figure 9-1.

Writing to the PD bits does not affect the LOCK condition of the PLL.

The PD bits can be used to switch the DSP core back and forth from a high MIPS rate to

a very low speed, low power mode without having to wait and check for the PLL to lock

on a new frequency.

9.3 ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1

The Clock Synthesis Control Register PCR1 is a 16-bit read/write register used to direct

the operation of the on-chip clock synthesizer. The PCR1 control bits are described in the

following sections.

All PCR1 bits are cleared by DSP hardware. Software reset does not affect this register.

9.3.1 PCR1 Reserved Bits — Bits 0-9

These bits are reserved and should be written as zero by the user.

9.3.2 PCR1 CLKO Select Bits (CS1-CS0) Bits 10 and 11

The two CLKO Select bits CS1-CS0 enable one of three possible clocks to be output to
the CLKO pin when the CD bit in the OMR register is cleared (see Figure 9-1). After hard-
ware reset, the internal DSP core clock PH0 (phase zero) is output to the CLKO pin. PH0
is a delayed version of the DSP core master clock, Fosc. Changing the value of the two
bits CS1-CS0 according to Table 9-1, Fext or Fext/2 can be selected to be output on CL-
KO. Fext is a squared and delayed version of the signal applied to the EXTAL input pin.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1

9 - 6

DSP56100 FAMILY ON-CHIP PLL

MOTOROLA

9.3.3 PCR1 Phase Select Bit (PS) Bit 12

This bit is used to select the DSP core clock when the PLL output is not selected

(PLLE=0). When this bit is cleared, a squared version of EXTAL is selected as Fosc.

When this bit is set, the output of the ID divider is selected as Fosc.

9.3.4 PCR1 PLL Power Down Bit (PLLD) Bit 13

When the PLLD bit is set, the on-chip PLL is powered down. When this control bit is

cleared, the on-chip PLL is turned on. This bit should not be set when the PLLE bit is set.

If the PLL has to be turned off before entering the STOP mode, the following sequence

will have to be executed before the STOP instruction:

- Clear the PLLE bit (switch back to EXTAL)

- Set the PLLD bit (power down the PLL)

- Execute the STOP instruction.

Setting the PLLD bit clears the LOCK bit. Setting the PLLD bit powers down the complete

PLL block including the PD and YD registers.

9.3.5 PCR1 PLL Enable Bit (PLLE) Bit 14

When the PLLE bit is set, the DSP5616 core system clock is generated by the on-chip

PLL. Table 9-2 summarizes the function of the three bits — PLLE, PLLD and PS. The

state of the PLL is defined by the PLLD bit. When the PLLD bit is set, the PLL is in the

power down mode. When the PLLD bit is cleared, the PLL is in the active mode. Before

turning the PLL off, the PLLE bit should be cleared in order to by-pass the PLL. The PLL

can then be put in power down mode by setting PLLD.

If the output frequency of the PLL has to be changed by re-programming the YD bits while

the PLL output is used by the core (PLLE=1; PLLD=0), the following sequence of opera-

tions should be performed:

- Clear the PLLE bit to switch back to EXTAL

Table 9-1 CLKOUT Pin Control

CS1 CS0 CLKO

0 0 PH0

0 1 Reserved

1 0 Fext

1 1 Fext/2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1

MOTOROLA

DSP56100 FAMILY ON-CHIP PLL

9 - 7

- Program the YD bits (only after clearing PLLE)

- Wait for the LOCK bit to be set

- Set PLLE after the LOCK bit is tested high.

9.3.6 PCR1 Voltage Controlled Oscillator Lock Bit (LOCK) Bit 15

This status bit shows whether the Voltage Controlled Oscillator (VCO) has locked on the

desired frequency or not. When the LOCK bit is set, the VCO has locked; when the LOCK

bit is cleared, the VCO has not locked yet. This bit is cleared when setting the PLLD bit

and when changing the value of ID or YD bits. The LOCK bit is not cleared when clearing

the PLLE bit without changing the values of PLLD, YD, or ID.

This bit is read-only and cannot be written by the DSP core.

Table 9-2 PLL Operations

PLLE PLLD PS Fosc PLL Mode

0 0 0 Fext Active

0 1 0 Fext Power Down

0 0 1 Fext

÷

[ID+1] Active

0 1 1 Fext

÷

[ID+1] Power Down

1 0 x {Fext

÷

[ID+1]}x[YD+1]

÷

 (2

PD

) Active

1 1 x Reserved —

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ON-CHIP CLOCK SYNTHESIS CONTROL REGISTER PCR1

9 - 8

DSP56100 FAMILY ON-CHIP PLL

MOTOROLA

Figure 9-2

On-Chip Frequency Synthesizer Programming Model Summary

.

On-chip Frequency Synthesis Control/Status Register (PCR1) ADDRESS X:$FFDC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LOCK PLLE PLLD PS CS1 CS0 ** ** ** ** ** ** ** ** ** **

LOCK 0 PLL unlocked

1 PLL locked

PLLE PLLD 00 PLL active but not used as Fosc

01 PLL powered down

10 PLL active and used as Fosc

11 Reserved

PHASE 0 Squared EXTAL selected as Fosc if PLLE=0

SELECT 1 Squared EXTAL/ID selected as Fosc if PLLE=0

CS1-CS0 00 PH0 output to CLKO when enabled by the CD bit (bit 7) of the OMR

CLKO 01 reserved

Select 10 Fext output to CLKO when enabled by the CD bit (bit 7) of the OMR

11 Fext/2 output to CLKO when enabled by the CD bit (bit 7) of the OMR

EXTAL

8-bit PLL Down Counter

PHASE

COMP.

PLLE=1

PLLE=0

Fosc

YD7-YD0

VCOFilter

CLKO ÷ 2

Internal Phase PH0

CS1-CS0
÷ 1 to ÷ 256

PD3-PD0

÷ 20 to ÷ 215

4-bit Power of two Divider

On-chip Frequency Synthesis Control/Status Register (PCR0) ADDRESS X:$FFDB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PD3 PD2 PD1 PD0 ID3 ID2 ID1 ID0 YD7 YD6 YD5 YD0 YD3 YD2 YD1 YD0

ID3-ID0

÷ 1 to ÷ 16

4-bit Divider

PD3-PD0 $0 Divide the VCO output clock by 1 (20) 8 Divide the VCO output clock by 256 (28)

Clock $1 Divide the VCO output clock by 2 (21) 9 Divide the VCO output clock by 512 (29)

Output $2 Divide the VCO output clock by 4 (22) A Divide the VCO output clock by 1024 (210)

Divider $3 Divide the VCO output clock by 8 (23) B Divide the VCO output clock by 2048 (211)

$4 Divide the VCO output clock by 16 (24) C Divide the VCO output clock by 4096 (212)

$5 Divide the VCO output clock by 32 (25) D Divide the VCO output clock by 8192 (213)

$6 Divide the VCO output clock by 64 (26) E Divide the VCO output clock by 16384 (214)

$7 Divide the VCO output clock by 128 (27) F Divide the VCO output clock by 32768 (215)

ID3-ID0 $0 Divide the input clock by 1 8 Divide the input clock by 9

Input $1 Divide the input clock by 2 9 Divide the input clock by 10

Clock $2 Divide the input clock by 3 A Divide the input clock by 11

Divider $3 Divide the input clock by 4 B Divide the input clock by 12

$4 Divide the input clock by 5 C Divide the input clock by 13

$5 Divide the input clock by 6 D Divide the input clock by 14

$6 Divide the input clock by 7 E Divide the input clock by 15

$7 Divide the input clock by 8 F Divide the input clock by 16

YD7-YD0

VCO

Down $YD Multiplies by YD+1

Counter

value

PS=0 PS=1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 1

SECTION 10

ON-CHIP EMULATION (OnCE)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

10 - 2 ON-CHIP EMULATION (OnCE)

MOTOROLA

10.1 INTRODUCTION . 10-3

10.2 EMULATION AND TEST PINOUT . 10-3

10.3 ONCE CONTROLLER AND SERIAL INTERFACE 10-5

10.4 OnCE BREAKPOINT LOGIC . 10-9

10.5 TRACE/STEP MODE . 10-11

10.6 METHODS OF ENTERING THE DEBUG MODE 10-12

10.7 PIPELINE INFORMATION . 10-14

10.8 PAB HISTORY BUFFER . 10-15

10.9 SERIAL PROTOCOL DESCRIPTION . 10-18

10.10 DSP56100 TARGET SITE DEBUG SYSTEM REQUIREMENTS . . . 10-20

10.11 USING THE OnCE . 10-21

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 3

10.1 INTRODUCTION

The purpose of this Section is to describe a set of circuits which will be used for hardware/

software emulation and debug on the DSP56100 family. OnCE provides a means of inter-

acting with the DSP and any memory mapped peripherals non-intrusively so that a user

may examine registers, memory or on-chip peripherals. To achieve this, special circuits

and dedicated pins on the DSP are used to avoid sacrificing any user accessible on-chip

resource. A key feature of the special OnCE pins is to allow the user to insert the DSP into

his target system yet retaining debug control, especially in the cases of devices specified

without external bus. The need for a costly cable which brings out the footprint of any chip

on traditional emulator systems is eliminated.

Figure 10-1 illustrates a block diagram of the Emulation and test serial interface.

10.2 EMULATION AND TEST PINOUT

10.2.1 Debug Serial Input/OnCE Status 0 (DSI/OS0)

The DSI/OS0 pin, when input, is the pin through which serial data or commands are pro-

vided to the OnCE controller. The data received on the DSI pin is recognized only when

the DSP has entered the debug mode of operation. Data is always shifted into the OnCE

serial port most significant bit (MSB) first on the falling edge of the OnCE serial clock,

DSCK. When an output, this pin in conjuction with the OS1 pin, provides information about

the chip status when debug mode cannot be entered in response to an external request.

The DSI/OS0 pin is an output when not in Debug Mode (i.e., until the acknowledge signal

is issued to the Command Controller). When switching from output to input, the pin is

three-stated. In order to avoid any possible glitches, an external pull-down resistor should

be attached to this pin. During hardware reset, this pin is defined as an output and it is

driven low.

10.2.2 Debug Serial Clock/OnCE Status 1 (DSCK/OS1)

The DSCK/OS1 pin, when an input, is the pin through which the serial clock is supplied to

the OnCE controller. The serial clock provides pulses required to shift data into and out of

the OnCE serial port. Data is shifted into the chip via the DSI pin on the falling edge of

DSCK and is shifted out of the chip via the DSO pin on the rising edge of DSCK. When

an output, this pin, in conjunction with the OS0 pin, provides information about the chip

status when debug mode cannot be entered in response to an external request. The

DSCK/OS1 pin is an output when not in Debug Mode (until the acknowledge signal is is-

sued to the Command Controller). When switching from output to input, the pin is first

three-stated. In order to avoid any possible glitches, an external pull-down resistor should

be attached to this pin. During hardware reset, this pin is defined as output and it is driven

low.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

EMULATION AND TEST PINOUT

10 - 4 ON-CHIP EMULATION (OnCE)

MOTOROLA

Table 10-1 shows the status of the chip as a function of the two output pins OS0:OS1.

Table 10-1 Function of OS1:OS0

10.2.3 Debug Serial Output (DSO)

The DSO pin, while in debug mode, is the serial output that permits reading the data con-

tained in one of the OnCE controller registers as specified by the last command received

from the external command controller. Data is shifted out of the chip via the DSO pin on

the rising edge of DSCK. An acknowledgment pulse will be sent on the DSO pin when:

1. the chip enters the OnCE mode (external, DR, hardware breakpoint, software

breakpoint or trace) to indicate that the chip is ready to accept OnCE com-

mands. This pulse is 3T long.

2. a “do nothing” operation (no go, no exit) is selected to indicate that the input

command register is ready to receive a new command. This pulse is 4T long.

3. the requested data (before a read) is available to indicate that the serial shift

registers are ready to receive clocks to start transmitting data to the DSO pin.

This pulse is 4T long.

OnCE
Controller

and
Serial

Interface

Breakpoint and
Trace Logic

Pipeline
Information

PAB

FIFO

Breakpoint Register
and

Comparator

DSCK/OS1

DSI/OS0

DR

DSO

PILBPDB GDB

PAB

XAB

Note: PILB = Program Instruction Latch Bus

Figure 10-1 OnCE Block Diagram

OS1 OS0 Status

0 0 Normal state
0 1 STOP or WAIT mode
1 0 DSP busy state (external accesses with wait state)
1 1 reserved

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ONCE CONTROLLER AND SERIAL INTERFACE

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 5

4. the shift registers are ready to receive clocks to receive data (before a write)

from the DSI pin. This pulse is 4T long.

5. the shift registers have finished shifting in the new data (after a write) to indi-

cate that the input command register is now ready to receive new instruction.

This pulse is 4T long.

6. an instruction has completed execution (go, no exit; repeat an instruction).

This pulse is 4T long.

Data is always shifted out the OnCE serial port most significant bit (MSB) first on the rising

edge of DSCK. When not in debug mode, the DSO pin is driven high. During hardware

reset this pin is driven high.

10.2.4 Debug Request Input (DR)

The DR input is an active low pin that provides a means of entering the debug mode of

operation from the external command controller. This pin, when asserted, will cause the

DSP to finish the current instruction being executed, save the instruction pipeline informa-

tion, enter the debug mode and wait for commands to be entered from the debug serial

input line.

10.3 ONCE CONTROLLER AND SERIAL INTERFACE

The OnCE Controller and Serial Interface contains the following blocks: input shift regis-

ter, bit counter, OnCE decoder and the status/control register. Figure 10-2 illustrates a

block diagram of the OnCE serial interface.

10.3.1 OnCE Input Shift Register (OISR)

The OISR is an 8-bit shift register that receives the serial data from the DSI line. The data

is clocked into the register on the falling edge of the clock applied to the DSCK pin. After

the 8th bit is received the OISR will stop shifting in new data. The latched data will be used

as input for the OnCE Decoder. The data is always shifted into the OISR most significant

bit (MSB) first.

10.3.2 OnCE Bit Counter (OBC)

The OBC is a 4-bit counter (0…15) associated with shifting in and out the data bits. The

OBC is incremented by the falling edges of the DSCK. The OBC is cleared at reset and

whenever the DSP acknowledges that the Debug Mode has been entered. The OBC sup-

plies two signals to the OnCE Decoder: one indicating that the first 8 bits were shifted-in

(so a new command is available) and the second indicating that 16 bits were shifted-in

(the data associated with that command is available) or that 16 bits were shifted-out (the

data required by a read command was shifted out).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ONCE CONTROLLER AND SERIAL INTERFACE

10 - 6 ON-CHIP EMULATION (OnCE)

MOTOROLA

10.3.3 OnCE Decoder (ODEC)

The ODEC is the supervisor of the entire OnCE activity. It receives as input the 8-bit com-

mand from the OISR, two signals from OBC (one indicating that 8 bits have been received

and the other that 16 bits have been received), and one signal indicating that the DSP has

halted. The ODEC generates all the strobes required for reading and writing the selected

OnCE registers.

10.3.4 OnCE Status and Control Register (OSCR)

The (OSCR is a 16-bit register used to select the events that will put the chip in Debug

Mode. Breakpoints may be disabled or enabled on one memory space. The Trace Mode

of operation is also selected through OSCR.

OSCR is shown in Table 10-2 and the control bits are described in the following para-

graphs.

BIT7

SER_OUT (DSO)

SER_IN (DSI)

CLK_IN (DSCK)

Status and Control
Register
(OSCR)

OnCE
Decoder
(ODEC)

Bit Counter
(OBC)

BIT7

STR

STW

REGREAD REGWRITE

MODE SELECT

ISDEBUG

ISBKPT

ISSWDBG

ISHWDBG

ISTRACE

(DR)

8-bit register

4-bit counter

16-bit register

OnCE Input
Shift Register

(OISR)

BIT15

Note: ISxxxx = Interrupt Service xxxx

Figure 10-2 OnCE Controller and Serial Interface

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ONCE CONTROLLER AND SERIAL INTERFACE

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 7

Table 10-2 OnCE Status and Control Register (OSCR)

10.3.4.1 OSCR Breakpoint Enables (BE0-BE1) Bit 0-1

These control bits enable or disable the breakpoint logic and select the type of memory

operations (read; write; access) upon which the breakpoint logic operates. These bits are

cleared on hardware reset.

10.3.4.2 OSCR Breakpoint Selection (BS0-BS1) Bits 2-3

These control bits select if the Breakpoints will be recognized on program memory fetch,

program memory access, X memory access or second X memory read. These bits are

cleared on hardware reset

.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ControlStatus

* * * * * TO HBO SBO * * * TME BS1 BS0 BE1 BE0

BE1 BE0 Selection

0 0 Breakpoint disabled
0 1 Breakpoint enabled on memory write
1 0 Breakpoint enabled on memory read
1 1 Breakpoint enabled on memory access

BS1 BS0 Selection

0 0 Breakpoint on program memory fetch (fetch of the first word of instructions which

are actually executed; not of those which are killed, not of those which are the sec-

ond word of two-word instructions, and not of jumps which are not taken)

0 1 Breakpoint on any program memory access (any MOVEM instructions, fetches of

instructions which are executed and of instructions which are killed, fetches of sec-

ond word of two-word instructions, and fetches of jumps which are not taken

1 0 Breakpoint on first X memory (xab1) access

1 1 Breakpoint on second X memory (xab2) read

(xab2 cannot be used to write data into the X memory)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ONCE CONTROLLER AND SERIAL INTERFACE

10 - 8 ON-CHIP EMULATION (OnCE)

MOTOROLA

The decoding scheme for BS(1:0) and BE(1:0) is as follows:

10.3.4.3 OSCR Trace Mode Enable (TME) Bit 4

This control bit, when set, enables the Trace Mode. When the Trace Mode is enabled, the

chip will enter the Debug Mode whenever the execution of an instruction is completed and

the Trace Counter is zero. This bit is cleared on hardware reset.

10.3.4.4 OSCR (Reserved) Bits 5-7

These bits are reserved for future use and read as zero. Reserved bits should be written

as zero for future compatibility.

10.3.4.5 OSCR Software Breakpoint Occurrence (SBO) Bit 8

This read-only status bit is set when the debug mode has been entered by a DEBUG or

DEBUGcc instruction. It is used by the external command controller to determine how the

debug mode was entered. This bit is cleared when leaving the debug mode and is also

cleared on hardware reset.

10.3.4.6 OSCR Hardware Breakpoint Occurrence (HBO) Bit 9

This read-only status bit is set when a OnCE hardware breakpoint occurs. It is used by

the external command controller to determine how the debug mode was entered. This bit

is cleared when leaving the debug mode and it is also cleared on hardware reset.

Function BS(1:0) BE(1:0)

disable XX 00

program fetch 00 01
program fetch 00 10
program fetch 00 11

any program write or fetch 01 01
any program read or fetch 01 10
any program access or fetch 01 11

XAB1 write 10 01
XAB1 read 10 10
XAB1 access 10 11

disable 11 01
XAB2 read 11 10
XAB2 read 11 11

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OnCE BREAKPOINT LOGIC

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 9

10.3.4.7 OSCR Trace Occurrence (TO) Bit 10

This read-only status bit is set when the debug mode of operation is entered from a dec-

rement to zero of the trace counter and the trace mode has been armed. This bit is cleared

on reset and when leaving the debug mode.

10.3.4.8 OSCR Reserved – Bits 11-15

These bits are reserved for future use and read as zero. Reserved bits should be written

as zero for future compatibility.

10.4 OnCE BREAKPOINT LOGIC

Other processors traditionally set a breakpoint in program memory by replacing the in-

struction at the breakpoint address with an illegal instruction which causes a breakpoint

exception. This technique is limiting in that breakpoints can only be set in RAM at the be-

ginning of an opcode and not on an operand. Using such techniques, breakpoints can

never be set in data memory.

On the other hand, by using address comparators, breakpoints may be set on program

memory opcodes or any data memory location. This significantly increases the program-

mer’s ability to monitor what the program is doing real-time.

The breakpoint logic can be enabled for Program memory breakpoints or for Data memory

breakpoints. It contains an address latch, a register that stores the breakpoint address, a

comparator and a counter. Figure 10-3 illustrates a block diagram of the OnCE Breakpoint

Logic.

10.4.1 OnCE Breakpoint Logic Operation

The address comparator register is useful in halting a program at a specific point to ex-

amine/change registers or memory. Using the address comparator to set breakpoints en-

ables the user to set breakpoints in RAM or ROM while in any operating mode.

The address comparator will cause a logic true signal when the comparison of its value is

equal to the address on the bus. The breakpoint counter is then decremented if greater

than zero. If the breakpoint counter is equal to zero, it is not decremented and a break-

point occurs.

Conditional jump addresses produced by the instruction pipeline that are equal to the pro-

gram address being monitored are only valid if the conditional jump instruction occurs,

otherwise the conditional jump address is ignored. Program memory address breakpoints

occur after the opcode or operand is executed and the breakpoint counter has been dec-

remented to zero.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

OnCE BREAKPOINT LOGIC

10 - 10 ON-CHIP EMULATION (OnCE)

MOTOROLA

Data memory address breakpoints also occur after the execution of the instruction which

formed the data memory address and the breakpoint counter has decremented to zero.

The breakpoint registers are controlled by the debug status and control register (OSCR).

10.4.2 Breakpoint Counter

The breakpoint counter is a 16-bit counter that is useful for stopping at the nth iteration of

a program loop or when the nth occurrence of a data memory access occurs. This infor-

mation significantly decreases algorithm debug and provides a means of checking hot

spots in program segments as well as peripheral or data memory accesses.

The breakpoint counter becomes a powerful tool when debugging real-time fast interrupt

sequences such as servicing an A/D or D/A convertor or stopping after a specific number

of host transfers have occurred. The breakpoint counter is cleared by reset.

10.4.3 OnCE Memory Address Latch (OMAL)

The Memory Address Latch (OMAL) is a 16-bit register that latches the PAB, XAB1, or

XAB2 on every cycle.

BREAKPOINT
COUNTER

MEMORY
ADDRESS LATCH

COMPARATOR

BREAKPOINT
CONTROL

PABXAB1

T3

T0

EWER

SER_IN
SER_OUT
CLK_IN

T3T2
BE

BKPT

BREAKPOINT
ADDRESS REGISTER

SER_IN
SER_OUT
CLK_IN

BKCTR

RESET

BKCTW

LD

DEC

COUNT 0

ISBKPT

OMAL OMBAR

OMAC

OMBC

XAB2

Figure 10-3 Breakpoint Logic

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

TRACE/STEP MODE

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 11

10.4.4 Memory Breakpoint Address Register (OMBAR)

The Memory Breakpoint Address Register (OMBAR) is a 16-bit register that stores the

memory breakpoint address. OMBAR is available for read/write operations only through

the OnCE serial interface. Before enabling breakpoints, OMBAR must be loaded by the

command controller.

10.4.5 Memory Address Comparator (OMAC)

The Memory Address Comparator (OMAC) is a 16-bit comparator that compares the cur-

rent memory address (stored by OMAL) with Memory Address Register (OMBAR). If

OMAC is equal to OMAL then the comparator delivers a signal indicating that the break-

point address has been reached.

10.4.6 Memory Breakpoint Counter (OMBC)

The Program Memory Breakpoint Counter (OMBC) is a 16-bit counter which is loaded

with a value equal to the number of times minus one that a program or data memory ad-

dress should occur before a breakpoint is acknowledged. On each occurrence the counter

is decremented. When the counter has reached the value of zero and a new occurrence

takes place, a signal is generated and, if breakpoints are enabled in OSCR, the chip will

enter the Debug Mode. OMBC is available for read/write operations only through the

OnCE serial interface. Before enabling Memory Breakpoints, OMBC must be loaded by

the command controller.

10.5 TRACE/STEP MODE

When in the special trace mode, the DSP will not cause an interrupt exception but instead

will enter the debug operation mode and wait for further instructions from the debug serial

port. Single or multiple instructions can be traced.

10.5.1 Trace Counter

The trace mode has a 16-bit counter associated with it so that more than one instruction

may be executed before returning back to the debug mode of operation. The objective of

the counter is to allow the user to take multiple instruction steps in real-time with no inter-

ference from the debug mode. This feature helps the software developer debug sections

of code which do not have a normal flow or are getting hung up in infinite loops. The trace

counter also enables the user to debug areas of code which are time critical.

To enable the trace mode of operation the counter is loaded with a value, the program

counter is set to the start location of the instruction(s) to be executed real-time, the trace

mode is selected in the debug status register (OSCR) and the DSP exits the debug mode

by executing the appropriate command issued by the external command controller. Upon

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

METHODS OF ENTERING THE DEBUG MODE

10 - 12 ON-CHIP EMULATION (OnCE)

MOTOROLA

exiting the debug mode the counter is decremented after each execution of an instruction.

Interrupts are serviceable and all instructions executed including fast interrupt services

will decrement the trace counter. Upon decrementing to zero the DSP will re-enter the de-

bug mode, the trace occurrence bit in the debug status/control register (OSCR) will be set

and the debug serial output pin DSO will be toggled to indicate that the DSP OnCE port

is requesting service.

Note:

The trace count should be loaded with one less than (i.e., N-1) the number of in-

structions that the user wants to execute (e.g., to single step one instruction, the

trace counter is loaded with a zero).

The Trace counter is cleared by hardware reset. Figure 10-4 illustrates a block diagram

of the Trace Counter logic.

10.6 METHODS OF ENTERING THE DEBUG MODE

Entering the Debug Mode is acknowledged by the chip by toggling the DSO line for 3 T

cycles. This informs the external command controller that the chip has entered the Debug

Mode and is waiting for commands. There are seven ways in which the Debug Mode may

be entered. They are:

1. External Request During Hardware Reset

2. External Request During Normal Activity

3. External Request During STOP

4. External Request During WAIT

5. Software Request During Normal Activity

6. Enabling Trace Mode

7. Enabling Breakpoints

10.6.1 External Request During Hardware Reset

Holding the DR line asserted during the assertion of RESET will cause the chip to enter

the Debug Mode. After receiving the acknowledge, the command controller must deassert

the DR line. Note that in this case the chip does not perform any fetch or memory access

before entering the Debug Mode.

10.6.2 External Request During Normal Activity

Holding the DR line asserted during the normal chip activity will cause the chip to finish

execution of the current instruction and then enter the Debug Mode. After receiving the

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

METHODS OF ENTERING THE DEBUG MODE

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 13

acknowledge the command controller must deassert the DR line. Note that in this case

the chip completes execution of the current instruction and stops after the newly fetched

instruction enters the instruction latch. This process is the same for any newly fetched in-

struction including instructions fetched during interrupt processing or instructions that will

be killed by the interrupt processing.

10.6.3 External Request During STOP

Asserting DR when the chip is in the stop state (i.e., it has executed a STOP instruction)

causes the chip to exit the stop state and enter the Debug Mode. The chip will wake up

from the stop state normally (finish executing STOP) and halt after the next instruction en-

ters the instruction latch. After receiving the acknowledge, the command controller must

deassert DR. Note that in this case the chip completes the execution of the STOP instruc-

tion and halts after the next instruction enters the instruction latch.

10.6.4 External Request During WAIT

Asserting DR when the chip is in the wait state (i.e. has executed a WAIT instruction)

causes the chip to exit wait state and enter the Debug Mode. The chip will wake up from

the wait state normally (finish executing WAIT) and halt after the next instruction enters

the instruction latch. After receiving the acknowledge, the command controller must deas-

sert DR. Note that in this case the chip completes execution of the WAIT instruction and

halts after the next instruction enters the instruction latch.

10.6.5 Software Request During Normal Activity

Upon executing the DEBUG or DEBUGcc instructions (with condition true for DEBUGcc),

the chip will enter Debug Mode after the instruction following the DEBUG/DEBUGcc in-

struction has entered the instruction latch.

TRACE
COUNTEREND OF

SER_IN
SER_OUT
CLK_IN

TRCTR

RESET

TRCTW

LD

DEC

COUNT 0

ISTRACE

INSTRUCTION

Figure 10-4 Trace Counter Logic

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PIPELINE INFORMATION

10 - 14 ON-CHIP EMULATION (OnCE)

MOTOROLA

10.6.6 Enabling Trace Mode

When the chip is operating in Trace Mode and the Trace Counter reaches a value of zero,

the chip will enter the Debug Mode

after

 completing execution of the instruction that

caused the Trace Counter to decrement. Only those instructions that are actually execut-

ed may cause the Trace Counter to decrement i.e. a killed instruction (instruction discard-

ed during the interrupt process) will not decrement the Trace Counter and will not cause

the chip to enter the Debug Mode.

10.6.7 Enabling Breakpoints

The chip will enter the Debug Mode

after

 completing execution of the instruction that

caused the Breakpoint Counter to decrement when:

1. operating in the Trace Mode when the Breakpoint Counter has reached zero

or

2. when operating in Normal Mode with the Breakpoint mechanism enabled and

the Breakpoint Counter has reached zero.

In the case of

breakpointing on:

1.

Program memory addresses

, the breakpoint will be acknowledged immedi-

ately after the execution of the instruction accessed at the specified address.

2.

Data memory addresses

 the breakpoint will be acknowledged after the com-

pletion of the instruction following the instruction that caused the access at the

specified address.

10.7 PIPELINE INFORMATION

The previous chip pipeline state must be reconstructed to resume normal chip activity

when returning from the Debug Mode. Figure 10-5 illustrates a block diagram of Pipeline

Information Registers. Only the PDB register and the PIL register are used to reconstruct

the pipeline as it was before debug. the PAB History Buffer, PAB Register for Fetch and

PAB Register for Decode are only used for status information. When loading a one word

instruction into the PDB and issuing a GO command, the hardware internally transfers the

PDB to the PIL and then executes the instruction. When loading a two word instruction,

the first word is loaded into the PDB. As the second word is loaded to the PDB, the first

word is automatically transferred to the PIL and then execution takes place.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PAB HISTORY BUFFER

MOTOROLA

 ON-CHIP EMULATION (OnCE) 10 - 15

10.7.1 OnCE PDB Register (OPDBR)

The PDB Register (OPDBR) is a read/write, 16-bit latch that stores the value of the Pro-

gram Data Bus generated by the last Program Memory access of the DSP before the De-

bug Mode is entered. OPDBR is available for read/write operations only through the serial

interface. This register is affected by the operations performed during the Debug Mode

and must be restored by the command controller when returning to normal mode.

10.7.2 OnCE PIL Register (OPILR)

The OPILR is a read only 16-bit latch that stores the instruction present in the Instruction

Latch when the Debug Mode is entered. OPILR is available for read operations only

through the serial interface. If a write is selected for this register, i.e., R/W = 0 and RS4-

RS0 = 01011, then zeros will be shifted into the OPILR. This register is affected by the

operations performed during the Debug Mode and must be restored by the command con-

troller when returning to normal mode. Since there is no direct write access to this register,

this task is accomplished by writing the OPDBR first and then the data from OPDBR is

latched in OPILR.

10.7.3 OnCE GDB Register (OGDBR)

The OGDBR is a read only 16-bit latch that stores the value of the Global Data Bus. OGD-

BR is available for read operations only through the serial interface. OGDBR is required

as a means of passing information between the chip and the command controller. OGD-

BR will be mapped on the X internal IO space at address $FFFF. Whenever the command

controller needs information such as a register or memory value it will force the chip to

execute an instruction that brings that information to the OGDBR. Then, the contents of

the OGDBR will be delivered serially to the command controller by the command “READ

GDB REGISTER”.

10.8 PAB HISTORY BUFFER

To ease the debugging activity and keep track of the program flow, a First-In-First-Out,

read only, buffer is provided. It stores the addresses of the last five instructions that were

executed as well as the addresses of the last fetched instruction and of the instruction cur-

rently in the instruction latch.

Figure 10-6 illustrates a block diagram of the Program Address Bus FIFO.

10.8.1 OnCE PAB Register for Fetch (OPABFR)

The OPABFR is a read only 16-bit latch that stores the address of the last instruction that

was fetched before the Debug Mode was entered. OPABFR is available for read opera-

tions only through the serial interface. This register is not affected by the operations per-

formed during the Debug Mode.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PAB HISTORY BUFFER

10 - 16 ON-CHIP EMULATION (OnCE)

MOTOROLA

10.8.2 OnCE PAB Register for Decode (OPABDR)

The 16-bit OPABDR stores the address of the instruction currently in the Instruction Latch.

This is the instruction that would have been decoded if the chip would not have entered

the Debug Mode. OPABDR is available for read operations only through the serial inter-

face. This register is not affected by the operations performed during the Debug Mode.

10.8.3 OnCE PAB FIFO

The FIFO is implemented as a circular buffer containing five 16-bit registers and one 3-bit

counter. All registers have the same address but any read access to the FIFO will cause

an increment of the counter thus pointing to the next FIFO register. The registers are se-

rially available for read to the command controller through their common FIFO address.

The FIFO is not affected by the operations performed during the Debug Mode except for

the FIFO pointer increment when reading the FIFO. Figure 10-6 illustrates a block dia-

gram of the Program Address Bus FIFO.

Caution

To ensure FIFO coherence, a complete set of five reads of the FIFO must be

performed. This is necessary due to the fact that each read increments the

FIFO pointer thus causing it to point to the next location. After five reads the

pointer will point to the same location as before starting the read procedure.

T3GDBR

SER_OUT
CLK_IN

GDB SHIFT
REGISTER

GDB

T3PDBW

SER_IN
SER_OUT
CLK_IN

PDB SHIFT
REGISTER

OPDBR

PDB

T3PIIBR

SER_OUT
CLK_IN

PILB SHIFT
REGISTER

OPILR

PIIDB

PDBR

OGDBR

Figure 10-5 Pipeline Information Registers

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

PAB HISTORY BUFFER

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 17

READ DECODE ADDRESS
DECODE ADDRESS

(OPABDR)

PAB

CIRCBUFWR

CIRCBUFINC

PAB
REGISTER #0

PFSHRWPFSHRR

SER_OUT
CLK_IN

PAB FIFO
SHIFT REGISTER

CIRCBUFRD

PAB
REGISTER #1

PAB
REGISTER #2

PAB
REGISTER #3

PAB
REGISTER #4

CIRCBUFDEC

CIRCULAR
POINTER

DECODER

READ DECODE ADDRESS
DSP FETCH ADDRESS

(OPABFR)

Figure 10-6 Program Address Bus FIFO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SERIAL PROTOCOL DESCRIPTION

10 - 18 ON-CHIP EMULATION (OnCE) MOTOROLA

10.9 SERIAL PROTOCOL DESCRIPTION

 In order to permit an efficient means of communication between the command controller

and the DSP chip, the following protocol has been adopted. Before starting any debugging

activity, the command controller has to wait for an acknowledge from the chip which in-

forms the command controller that it has entered the Debug Mode. Note that in case of a

breakpoint, trace or software DEBUG/DEBUGcc instruction, the acknowledge itself is the

one that initiates the debug session. The command controller communicates with the chip

by sending 8-bit commands that may be accompanied by 16-bit data. After sending a

command, the command processor starts waiting for the chip to acknowledge execution

of the command. The command processor may send a new command only after the chip

has acknowledged execution of the previous command.

10.9.1 OnCE Commands

There are two type of commands: read commands (when the chip will deliver required da-

ta) and write commands (when the chip will receive data and will write it in one of the on

chip resources). The commands are 8 bits long and have the format shown in Figure 10-7.

10.9.1.1 OnCE Register Select (RS4-RS0) Bits 0-4

The Register Select bits define which register is source(destination) for the read(write) op-

eration.

7 6 5 4 3 2 1 0

R/W GO EX RS4 RS3 RS2 RS1 RS0

Figure 10-7 OnCE Command Format

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SERIAL PROTOCOL DESCRIPTION

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 19

10.9.1.2 OnCE Exit Command (EX) Bit 5

Bit 5 in the OnCE command word is the exit command. To leave the OnCE mode and re-

enter the normal operating mode, both the EX and GO bits must be asserted in the OnCE

input command register. There are three exit conditions:

1. If EX and GO are set, the chip will leave the Debug Mode, execute the DSP

instruction in the pipeline and then resume normal operation. If the register

select bits are set to $1F (RS4-RS0 = 11111) then the last instruction (the in-

struction in the PILB) is re-executed.

2. If EX is set without GO, then when the OnCE has finished writing the instruc-

tion latch (PILB) register, the OnCE state machine will get another command

instead of leaving the OnCE mode.

3. If EX is set without GO, then when the OnCE is finished writing the PDB

(PILB) register, the OnCE state machine will get another command instead of

leaving the OnCE mode.

There is no acknowledgment on the DSO pin when the chip leaves the OnCE mode fol-

lowing a GO or an EX.

RS4-RS0 Register Selected

00000 Debug Status/Control (OSCR)
00001 Memory Breakpoint Counter (OMBC)
00010 Reserved
00011 Trace Counter (OTC)
00100 Memory Breakpoint Address (OMBAR)
00101 Reserved
00110 Reserved
00111 Reserved
01000 Global Data Bus (Transfer) Register (OGDBR)
01001 Program Data Bus (OPDBR) Register
01010 Program Address Bus (OPABFR) Latch for Fetch
01011 Instruction Latch (OPILR)
01100 Clear Breakpoint Counter
01101 Reserved
01110 Clear Trace Counter
01111 Reserved
10000 Reserved
10001 Program Address Bus FIFO and Increment Counter
10010 Reserved
10011 Program Address Bus (OPABDR) Latch for Decode
101xx Reserved
11xx0 Reserved
11x0x Reserved
110xx Reserved
11111 No Register Selected

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP56100 TARGET SITE DEBUG SYSTEM REQUIREMENTS

10 - 20 ON-CHIP EMULATION (OnCE) MOTOROLA

10.9.1.3 OnCE Go Command (GO) Bit 6

If GO is set, execute instruction. There is no acknowledgment on the DSO pin when the

chip leaves the OnCE mode following a GO or an EX.

10.9.1.4 OnCE Read/Write Command (R/W) Bit 7

10.10 DSP56100 TARGET SITE DEBUG SYSTEM REQUIREMENTS

A typical debug environment consists of a target system where the DSP resides in the

user defined hardware. The debug serial port interfaces to the command convertor over

a six wire link consisting of the four debug serial lines, a ground and reset wire. The reset

wire is optional and is only used to reset the DSP and its associated circuitry.

The command controller acts as the medium between the DSP target system and a host

computer. The host computer interfaces to the controller using a standard RS232 three

wire cable or the Application Development System parallel bus. A jumper option on the

command controller board will select which method of communications will be used. This

allows a variety of different host computers to communicate with the controller circuit. The

controller circuit provides several important functions. It acts as a serial debug port driver,

host computer command interpreter, and DSP controller. The DSP acts as a slave when

in the debug mode and provides data only upon request. The controller issues commands

based on the host computer inputs from a user interface program which communicates

with the user.

EX Action

0 Remain in Debug Mode
1 Leave Debug Mode

GO Action

0 Inactive (no action taken)
1 Execute DSP instruction

R/W Action

0 Write the data associated with the command into the register specified by RS4-RS0

1 Read the data contained in the register specified by RS4-RS0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 21

10.11 USING THE OnCE

The following notations are used:

Commands require eight clocks

ACK = Wait for acknowledge on DSO line

CLK = Issue 16 clocks to read out data from selected register

10.11.1 Begin Debug Activity

Debug activity begins on an instruction boundary after the DR pin is asserted, a DEBUGcc

opcode is executed, a trace countdown occurs, or a breakpoint register countdown oc-

curs. If the instruction executing when the DR pin is asserted is a REP instruction or the

instruction following a REP instruction, then the debug activity will begin after the instruc-

tion following the REP instruction finishes being repeated. The first ACK indicates that the

OnCE controller is ready to receive commands and data. Most of the Debug activities will

have the following beginning:

 ACK

1. Save pipeline information:

a. Send command READ PDB REGISTER

b. ACK

c. CLK

d. Send command READ OPILR

e. ACK

f. CLK

2. Read PAB FIFO and fetch/decode info (this step is optional):

a. Send command READ PAB address for fetch

b. ACK

c. CLK

d. Send command READ PAB address for decode

e. ACK

f. CLK

g. Send command READ FIFO REGISTER (and increment pointer)

h. ACK

i. CLK

j. Send command READ FIFO REGISTER (and increment pointer)

k. ACK

l. CLK

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

10 - 22 ON-CHIP EMULATION (OnCE) MOTOROLA

m. Send command READ FIFO REGISTER (and increment pointer)

n. ACK

o. CLK

p. Send command READ FIFO REGISTER (and increment pointer)

q. ACK

r. CLK

s. Send command READ FIFO REGISTER (and increment pointer)

t. ACK

u. CLK

10.11.2 Displaying a Specified Register

1. Send command WRITE PDB REGISTER and GO (no EX)

(ODEC selects PDB as destination for serial data.)

2. ACK

3. Send the 16-bit opcode: “MOVE reg, x:OGDB

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

generates PRNEW and releases the chip from the “halt” state and the contents of

the register specified in the instruction is loaded in the GDB REGISTER. The

PRCYC1 signal (an internal signal) that marks the end of the instruction brings the

chip again in the “halt” state and an acknowledge is issued to the command

controller)

4. ACK

5. Send command READ GDB REGISTER

(ODEC selects GDB as the source for serial data and an acknowledge is issued to

the command controller)

6. ACK

7. CLK

10.11.3 Displaying X Memory Area Starting from Address xxxx

This command uses Rn to minimize serial traffic.

1. Send command WRITE PDB REGISTER and GO (no EX).

(ODEC selects PDB as destination for serial data.)

2. ACK

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 23

3. Send the 16-bit opcode: “MOVE R0,x:OGDB”

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

generates PRNEW and releases the chip from the “halt” state and the contents of

R0 are loaded in the GDB REGISTER. The PRCYC1 signal that marks the end of

the instruction brings the chip again to the “halt” state and an acknowledge is

issued to the command controller)

4. ACK

5. Send command READ GDB REGISTER

(ODEC selects GDB as the source for serial data and an acknowledge is issued to

the command controller)

6. ACK

7. CLK

(The command controller generates 16 clocks that shift out the contents of the

GDB register. The value of R0 is thus saved and will be restored before exiting the

Debug Mode)

8. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

9. ACK

10.Send the 16-bits of opcode: “MOVE #$xxxx,R0”

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

generates PRNEW so the PILR is loaded with the opcode. An acknowledge is

issued to the command controller)

11.ACK

12.Send command WRITE PDB REGISTER and GO (no EX).

 (ODEC selects PDB as destination for serial data.)

13.ACK

14.Send the 16-bits of the 2nd word of: “MOVE #$xxxx,R0” (the xxxx field) where xxxx

is the address to be read.

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

releases the chip from the “halt” state and the instruction starts execution. The

PRCYC1 signal that marks the end of the instruction brings the chip again to the

“halt” state and an acknowledge is issued to the command controller)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

10 - 24 ON-CHIP EMULATION (OnCE) MOTOROLA

15.ACK

16.Send command WRITE PDB REGISTER and GO (no EX).

(ODEC selects PDB as destination for serial data.)

17. ACK

18.Send the 16-bit opcode: “MOVE X:(R0)+,x:OGDB”

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

generates PRNEW and releases the chip form the “halt” state and the contents of

X:(R0) are loaded in the GDB REGISTER. The PRCYC1 signal that marks the end

of the instruction brings the chip again in the “halt” state and an acknowledge is

issued to the command controller)

19.ACK

20.Send command READ GDB REGISTER

(ODEC selects GDB as source for serial data and an acknowledge is issued to the

command controller)

21.ACK

22.CLK

23.Send command NO SELECTION and GO (no EX).

(ODEC releases the chip from the “halt” state and the instruction is executed once

again (in a “REPEAT-like” fashion. The PRCYC1 signal that marks the end of the

instruction brings the chip again to the “halt” state and an acknowledge is issued

to the command controller.)

24.ACK

25.Send command READ GDB REGISTER

(ODEC selects GDB as source for serial data and an acknowledge is issued to the

command controller.)

26.ACK

27.CLK

28.Repeat from step 23 until the entire memory area is examined. At the end of the

process R0 has to be restored.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

MOTOROLA ON-CHIP EMULATION (OnCE) 10 - 25

10.11.4 Returning from Debug Mode to Normal Mode

There are two cases for returning from the debug mode. In case 1, control will be returned

to the program that was running before debug was initiated and in case 2, the registers

will be changed to jump to a different program. There is no acknowledgment on the DSO

pin when the chip leaves the OnCE mode following a GO, EX. This is a special case of

the “write a register” option.

10.11.4.1 Case 1: Returning from Debug Mode to Normal Mode

1. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects the PDB register as destination for serial data. Also ODEC selects

the on-chip PAB register as source for the PAB bus. After the PAB was driven an

acknowledge is issued to the command controller)

2. ACK

3. Send the 16-bits of the saved PILB (instruction latch) value.

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

generates PRNEW so the entire chip loads the opcode. An acknowledge is issued

to the command controller)

4. ACK

5. Send command WRITE PDB REGISTER (GO, EX).

(ODEC selects PDB as destination for serial data.)

6. ACK

7. Send the 16-bits of the saved PDB value.

(After all 16-bits have been received, the PDB register drives the PDB. ODEC

releases the chip form the “halt” state and the Debug Mode bit in OSCR is cleared.

The chip continues to execute instructions until a Debug Mode condition occurs)

10.11.4.2 Case 2: Jump to a New Program (Go from Address $xxxx).

1. Send command WRITE PDB REGISTER (no GO, no EX).

(ODEC selects PDB as destination for serial data.)

2. ACK

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

USING THE OnCE

10 - 26 ON-CHIP EMULATION (OnCE) MOTOROLA

3. Send 16 bits of the opcode of a two word jump instruction instead of the saved PIL

(instruction latch) value.

(After all the 16-bits have been received, the PDB register drives the PDB. ODEC

causes the DSP to load the opcode. An acknowledge is issued to the command

controller.)

4. ACK

5. Send command WRITE PDB REGISTER (GO, EX).

(ODEC selects PDB as destination for serial data.)

6. ACK

7. Send 16 bits of the target absolute address ($xxxx). The chip will resume fetching

from the target address (you do not have to worry about the pipeline). Note that the

trace counter will count this instruction so the current trace counter may need to be

corrected if the trace mode enable bit in the OSCR has been set.

(e. g., After 16 bits have been received, the PDB register drives the PDB. ODEC

releases the chip from the “halt” state and the Debug Mode bit in OSCR is cleared.

The chip executes first the jump instruction and will then fetch the instruction from

the target address. The chip continues to execute instructions from that address

until a Debug Mode condition occurs.)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 APPLICATION DEVELOPMENT TOOLS 11 - 1

SECTION 11

APPLICATION DEVELOPMENT TOOLS

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

11 - 2 APPLICATION DEVELOPMENT TOOLS

MOTOROLA

11.1 SOFTWARE . 11-3

11.2 MACRO CROSS ASSEMBLER . 11-3

11.3 LINKER/LIBRARIAN . 11-4

11.4 SIMULATOR PROGRAM . 11-4

11.5 HARDWARE . 11-5

11.6 HARDWARE FEATURES . 11-7

11.7 SOFTWARE FEATURES . 11-8

11.8 OPERATING ENVIRONMENT . 11-8

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SOFTWARE

MOTOROLA

 APPLICATION DEVELOPMENT TOOLS 11 - 3

11.1 SOFTWARE

All software support products run on the following platforms — IBM



 PC, Macintosh



,

and SUN



workstation. The software, written in C, consists of an assembler, linker, and

simulator which are marketed as an integrated product.

11.2 MACRO CROSS ASSEMBLER

The ASM56100 Macro Cross Assembler program is a full-featured macro cross assem-

bler that translates one or more source fields containing DSP instruction mnemonics,

operands, and assembler directives into relocatable object modules that are relocated

and linked by the Motorola DSP Linker in the Relocation mode. In the Absolute mode,

the assembler will generate absolute executable files. The assembler recognizes the full

instruction set and all addressing modes of the DSP56100 family.

This assembler offers the usual complement of features found in modern assemblers,

such as conditional assembly, file inclusion, nested macros with support for macro librar-

ies (via the MACLIB directive), and modular programming constructs ordinarily found

only in higher level languages.

The unique architecture and parallel operation of the DSP demands special purpose

facilities and programming aids which this assembler readily provides. These include

built-in functions for common transcendental math computations such as sine, cosine,

log, and square root functions; arbitrary expressions and modulo operations; and direc-

tives to define circular and bit-reversed data buffers. Moreover, the assembler incorpo-

rates extensive error checking and reporting to indicate programming violations peculiar

to the digital signal processing environment or stemming from the advanced features of

the DSP. These include errors for improper nesting of hardware DO loops and improper

address boundaries for circular data buffers and bit-reversed buffers.

The assembler also generates source code listings which include numbered source

lines, optional titles and subtitles, optional instruction cycle counts, symbol table and

cross-reference listings, and memory use reports.

To summarize, features of the assembler are:

• Produces relocatable object modules compatible with the DSP linker program in
the Relocation mode

• Produces absolute executable files compatible with the Simulator program
(SIM56100) in the Absolute mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of the
DSP

• Modular programming features including local labels, sections, and external
definition/reference directives

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

LINKER/LIBRARIAN

11 - 4 APPLICATION DEVELOPMENT TOOLS

MOTOROLA

• Nested macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcendental
math operations

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

11.3 LINKER/LIBRARIAN

The linker relocates and links relocatable object modules from the Macro Cross Assem-

bler to create an absolute executable file which can be loaded directly into the

DSP56100 simulator or converted to Motorola S-record format for PROM burning.

The librarian utility will merge into a single file multiple separate relocatable object mod-

ules. This facilitates not having to reassemble known bug-free routines every time the

mainline program is assembled.

11.4 SIMULATOR PROGRAM

The SIM56100 Simulator program is a software tool for developing programs and algo-

rithms for the DSP. This program exactly emulates all of the functions (except for the

OnCE) of the DSP including all on-chip peripheral operations, the entire internal and

external memory space, all memory and register updates associated with program code

execution, and all exception processing activity. This enables the Simulator program to

provide an accurate measurement of code execution time which is so critical in digital

signal processing applications.

The Simulator program executes DSP object code generated by the Linker or the Simu-

lator’s internal single-line assembler. The object code is loaded into the simulated DSP

memory map. Instruction execution can proceed until a user-defined breakpoint is

encountered; or in single-step mode, stopping after each instruction has been executed.

During program debug, the registers or memory locations may be displayed or changed.

The Simulator package includes linkable object code libraries of simulator functions that

were used to create the simulator. The libraries allow a customized simulator to be built

and integrated with unique system simulations. Source code for some of the functions,

such as the terminal I/O functions and external memory accesses, is provided to allow

close simulation of the particular application.

To summarize, features of the Simulator program are:

Summary of simulator features:
• Multiple device simulation

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HARDWARE

MOTOROLA

 APPLICATION DEVELOPMENT TOOLS 11 - 5

• Source level symbolic debug of assembly source programs

• Conditional or unconditional breakpoints

• Program patching using a Single-Line Assembler/Disassembler

• Instruction and Cycle timing counters

• Session and/or Command Logging for later reference

• Input/Output ASCII files for device peripherals

• Help file and Help line display of Simulator commands

• Macro command definition and execution

• Display Enable/Disable of Registers and Memory

• Hexadecimal/Decimal/Binary calculator

11.5 HARDWARE

Each DSP56100 family member has an Application Development System (ADS). All of

these are essentially identical in operation and features. The differences that do exist are

due to the specific nature of each chip. While the example here is the DSP56156, all

DSP56100 family ADS’s operate in essentially the same way. Upgrading an ADS to run

a different Motorola DSP is done by purchasing and plugging in a new Application Devel-

opment Module (see Figure 11-1).

The DSP56156 ADS is a four component system which acts as a development tool for

designing, debugging, and evaluating real-time DSP56156 target system equipment.

The ADS simplifies evaluation of the user’s prototype hardware/software product by

making all of the essential DSP56156 timing and I/O circuitry easily accessible. The ADS

takes full advantage of the On-Chip Emulation (OnCE) circuits of the DSP to allow the

user to control the target non-intrusively.

 An IBM PC, Macintosh II, or SUN acts as the medium between the user and the DSP

hardware. The four components consist of an Application Development Module (ADM)

which contains a DSP56156 processor and control circuitry, a HOST-BUS interface

board for controlling up to 8 ADMs, a command convertor board which interacts with the

target OnCE serial debug port, and a software program which interacts with the user and

controls the ADM(s) and/or target system.

DSP algorithm development is simplified with features such as multiple file I/O capability

to the target under DSP56156 program control and immediate access to a hex/fractional

arithmetic calculator. The ADS is fully compatible with the DSP56100CLASx design-in

software package and may act as an accelerator for testing DSP56156 algorithms.

DSP56156 programs may be executed in real-time or by single/multiple stepping through

instructions.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HARDWARE

11 - 6 APPLICATION DEVELOPMENT TOOLS

MOTOROLA

As many as 99 conditional and/or unconditional software breakpoints may be placed in

ADM program memory. A hardware breakpoint range may be set to halt program execu-

tion whenever a program or data address falls within the specified range. All breakpoints

may have actions associated with them or may cause an immediate halt and display of

enabled registers.

Figure 11-1 illustrates the ADS being used as a hardware evaluation tool or software

accelerator. The ADM card has a 10 pin connector which provides an access point for

the command convertor OnCE interface.

Figure 11-2 illustrates the ADS being used as an emulator where the user has a defined

User Application CircuitsDSP56156
37 pin

Host Computer
Interface Card

(Host Computer)
IBM PC,
Macintosh
Sun 3

OnCE Command Convertor

Application Development Module (ADM)

Interface
Cable

Host Computer
Interface Card OnCE Command Convertor

DSP56156
OnCE
Serial
Interface

Target DSP56156
System(Host Computer)

IBM PC,
Macintosh
Sun

37 pin
Interface
Cable

Figure 11-1 Application Development

Figure 11-2 Target Circuit Emulation

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HARDWARE FEATURES

MOTOROLA

 APPLICATION DEVELOPMENT TOOLS 11 - 7

target system and needs to debug the hardware or software without any special target

footprint cable which could be intrusive or limiting. Here the user must provide an access

point for the 10 pin OnCE interface cable. This may be a simple 2 row x 5 set of test

points.

The ADM hardware, as illustrated in Figure 11-3, provides up to 64K words of user-con-

figurable high-speed SRAM with no wait states required on the external bus of the

DSP56156. There are also sockets for 2K to 8K words of user-program EPROM on the

external bus. The ADM provides easy access to all DSP56156 pins via a 96-pin Euro-

card male connector as well as a 96 pin Berg male stake connector. This enables the

user to design full-speed application circuits which may be connected to the DSP using

standard Euro-card prototype boards.

Emulation of a target system is made easy by disconnecting the command convertor

board from the ADM and connecting the 10 pin OnCE serial port cable to the target sys-

tem. This allows the user to control the target system non-intrusively so that real-time

execution may achieved at the maximum clock frequency of the DSP56156.

11.6 HARDWARE FEATURES

• Full speed operation

• Multiple ADM support with programmable

• ADM addressing 8K Words of Configurable Static RAM expandable to

64K words.

DSP56156 Reset/
Clock/

Mode Control

2-8K

EPROM

16-64K

SRAM

96-pin
Expansion
Connector

Port B

Port C

OnCE

Figure 11-3 Application Development Module

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SOFTWARE FEATURES

11 - 8 APPLICATION DEVELOPMENT TOOLS

MOTOROLA

• 2K Words of EPROM with sockets expandable to 64K words.

• Stand-Alone operation of ADM after initial development.

• Full support of program/data memory maps.

• 96 pin Connector provides access to all DSP56156 pins.

• OnCE Command Convertor card for non-intrusive Real Time Emulation.

• Special peripheral connectors available for easy access to DSP

peripherals.

• 3V emulation support in target environments

11.7 SOFTWARE FEATURES

• Single/Multiple stepping through DSP56156 object programs.

• Conditional or unconditional software and hardware breakpoints.

• Program patching using a Single-Line Assembler/Disassembler.

• Session and/or Command Logging for later reference.

• Loading and Saving of files to/from ADM Memory.

• Macro command definition and execution.

• Display Enable/Disable of Registers and Memory.

• Debug commands which support Multiple DSP56156 development.

• Hexadecimal/Decimal/Binary Fractional calculator.

• System commands from within ADS User Interface Program.

• Multiple Input/Output file access from DSP56156 object programs.

• On-line help screens for each command and DSP56156 register.

• Compatible with the DSP56100CLASX Assembler and Simulator

11.8 OPERATING ENVIRONMENT

The minimum hardware requirements for the DSP56156ADS User Interface Program

include: IBM PC-DOS/MS-DOS v3.x, 4.x, or 5.x; Macintosh II with 1 Mbyte of RAM and

running Mac OS 4.2 or later; or SUN-4 running BSD 4.2 with SUNOS 4.1.2 or Solaris 2.x.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 ADDITIONAL SUPPORT 12 - 1

SECTION 12

ADDITIONAL SUPPORT

Dr. BuB Electronic Bulletin Board

Audio
Codec Routines
DTMF Routines

Fast Fourier
Transforms

Filters
Floating-Point

Routines
Functions

Lattice Filters
Matrix Operations

Reed-Solomon
Encoder

Sorting Routines
Speech

Standard I/O Equates
Tools and Utilities

M
o

to
ro

la
 D

S
P

 N
e
w

s

M
o

to
ro

la
 F

ie
ld

 A
p

p
li
c
a
ti

o
n

 E
n

g
in

e
e
rs

D
e
s
ig

n
 H

o
tl

in
e
 –

 1
-8

0
0
-5

2
1
-6

2
7
4

D
S

P
 A

p
p

li
c
a
ti

o
n

s
 A

s
s
is

ta
n

c
e
 –

 (
5
1
2
)

8
9
1
-3

2
3
0

D
S

P
 M

a
rk

e
ti

n
g

 I
n

fo
rm

a
ti

o
n

 –
 (

5
1
2
)

8
9
1
-2

0
3
0

D
S

P
 T

h
ir

d
-P

a
rt

y
 S

u
p

p
o

rt
 I

n
fo

rm
a
ti

o
n

 –
 (

5
1
2
)

8
9
1
-3

0
9
8

D
S

P
 U

n
iv

e
rs

it
y
 S

u
p

p
o

rt
 –

 (
5
1
2
)

8
9
1
-3

0
9
8

D
S

P
 T

ra
in

in
g

 C
o

u
rs

e
s
 –

 (
6
0
2
)

9
9
4
-6

9
0
0

Motorola DSP Product Support

DSP56100CLASx Assembler/Simulator

C Language Compiler

DSP56156ADSx Application Development System

Motorola
DSP
ola

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

12 - 2 ADDITIONAL SUPPORT

MOTOROLA

12.1 INTRODUCTION . 12-3

12.2 THIRD PARTY SUPPORT . 12-3

12.3 MOTOROLA DSP PRODUCT SUPPORT . 12-4

12.4 SUPPORT INTEGRATED CIRCUITS . 12-6

12.5 MOTOROLA DSP NEWS . 12-7

12.6 MOTOROLA FIELD APPLICATION ENGINEERS 12-7

12.7 DSP APPLICATIONS HELP LINE – (512) 891-3230 12-7

12.8 DESIGN HOTLINE – 1-800-521-6274 . 12-7

12.9 DSP MARKETING INFORMATION – (512) 891-2030 12-7

12.10 DSP THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098 . 12-7

12.11 DSP UNIVERSITY SUPPORT – (512) 891-3098 12-7

12.12 DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274 . . . 12-8

12.13 Dr. BuB ELECTRONIC BULLETIN BOARD . 12-8

12.14 REFERENCE BOOKS AND MANUALS . 12-18

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 ADDITIONAL SUPPORT 12 - 3

12.1 INTRODUCTION

This section is intended as a guide to the DSP support services and products offered by

Motorola. This includes training, development hardware and software tools, telephone

support, etc.

12.2 THIRD PARTY SUPPORT

User support from the conception of a design through completion is available from Motor-

ola and third-party companies as shown in the following list:

Motorola Third Party

Design

Data Sheets Data Acquisition Packages

Application Notes Filter Design Packages

Application Bulletins Operating System Software

Software Examples Simulator

Prototyping

Assembler Logic Analyzer with

Linker DSP561xx ROM Packages

C Compiler Data Acquisition Cards

Simulator DSP Development System

Application Development Cards

System (ADS) Operating System Software

In-Circuit Emulator Debug Software

Cable for ADS

Design

Application Development Data Acquisition Packages

Verification

System (ADS) Logic Analyzer with

In-Circuit Emulator DSP561xx ROM Packages

Simulator Data Acquisition Cards

DSP Development System

Cards

Application-Specific

Development Tools

Debug Software

Specific information on the companies that offer these products is available by calling the

DSP third party information number given in Section 12.10.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA DSP PRODUCT SUPPORT

12 - 4 ADDITIONAL SUPPORT

MOTOROLA

The following is a partial list of the support available for the DSP561xx. Additional

information on DSP56100 family members can be obtained through Dr. BuB or the

appropriate support telephone service.

12.3 MOTOROLA DSP PRODUCT SUPPORT

• DSP56100CLASx Design-In Software Package which includes:

Relocatable Macro Assembler

Linker

Simulator (simulates single or multiple DSP561xxs)

Librarian

• DSP561xx Applications Development System (ADS)

• Support Integrated Circuits

• DSP Bulletin Board (Dr. BuB)

• Motorola DSP Newsletter

• Motorola Technical Service Engineers (TSEs)
See your local telephone directory for the Motorola Semiconductor Sector sales
office telephone number.

• Design Hotline

• Applications Assistance

• Marketing Information

• Third-Party Support Information

• University Support Information

12.3.1 DSP56100CLASx Assembler/Simulator

12.3.1.1 Macro Cross Assembler and Simulator Platforms

1. IBM



 PCs and clones using an 80386 or upward compatible processor

2. Macintosh



 computers with a NU-BUS



 expansion port

3. SUN computer

12.3.1.2 Macro Cross Assembler Features

• Production of relocatable object modules compatible with linker program when in
relocatable mode

• Production of absolute files compatible with simulator program when in absolute
mode

• Supports full instruction set, memory spaces, and parallel data transfer fields of
the DSP561xx

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA DSP PRODUCT SUPPORT

MOTOROLA

 ADDITIONAL SUPPORT 12 - 5

• Modular programming features: local labels, sections, and external definition/ref-
erence directives

• Nested macro processing capability with support for macro libraries

• Complex expression evaluation including boolean operators

• Built-in functions for data conversion, string comparison, and common transcen-
dental math functions

• Directives to define circular and bit-reversed buffers

• Extensive error checking and reporting

12.3.1.3 Simulator Features

• Simulation of all DSP56100 family DSPs

• Simulation of multiple DSP56100 family DSPs

• Linkable object code modules:

–Nondisplay simulator library

–Display simulator library

• C language source code for:

–Screen management functions

–Terminal I/O functions

–Simulation examples

• Single stepping through object programs

• Conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Instruction, clock cycle, and histogram counters

• Session and/or command logging for later reference

• ASCII input/output files for peripherals

• Help-line display and expanded on-line help for simulator commands

• Loading and saving of files to/from simulator memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Hexadecimal/decimal/binary calculator

12.3.2 Application Development Systems

• Application Development Systems (ADS) are available for all family members. Up-
grading an ADS to run a different Motorola DSP is done by purchasing and plug-
ging in a new Application Development Module.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SUPPORT INTEGRATED CIRCUITS

12 - 6 ADDITIONAL SUPPORT

MOTOROLA

12.3.2.1 DSP561xxADSx Application Development System Hardware Features

• Full-speed operation

• Multiple application development module (ADM) support with programmable ADM
addresses

• User-configurable RAM for DSP561xx code development

• Expandable monitor ROM

• 96-pin Euro-card connector making all pins accessible

• In-circuit emulation capabilities using OnCE

• Separate berg pin connectors for alternate accessing of serial or host/DMA ports

• ADM can be used in stand-alone configuration

• No external power supply needed when connected to a host platform

• 3V emulation support in target environments

12.3.2.2 DSP561xxADSx Application Development System Software Features

• Full-speed operation

• Single/multiple stepping through DSP561xx object programs

• Up to 99 conditional or unconditional breakpoints

• Program patching using a single-line assembler/disassembler

• Session and/or command logging for later reference

• Loading and saving files to/from ADM memory

• Macro command definition and execution

• Display enable/disable of registers and memory

• Debug commands supporting multiple ADMs

• Hexadecimal/decimal/binary calculator

• Host operating system commands from within ADS user interface program

• Multiple OS I/O file access from DSP561xx object programs

• Fully compatible with the DSP56100CLASx design-in software package

• On-line help screens for each command and DSP561xx register

12.4 SUPPORT INTEGRATED CIRCUITS

• DSP56ADC16 16-bit, 100-kHz analog-to-digital converter

• DSP56401 AES/EBU processor

• DSP56200 FIR filter

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA DSP NEWS

MOTOROLA

 ADDITIONAL SUPPORT 12 - 7

12.5 MOTOROLA DSP NEWS

The Motorola DSP News is a quarterly newsletter providing information on new products,

application briefs, questions and answers, DSP product information, third-party product

news, etc. This newsletter is free and is available upon request by calling the marketing

information phone number listed below.

12.6 MOTOROLA FIELD APPLICATION ENGINEERS

Information and assistance for DSP applications is available through the local Motorola

field office. See your local telephone directory for telephone numbers or call (512)891-

2030.

12.7 DSP APPLICATIONS HELP LINE – (512) 891-3230

Design assistance for specific DSP applications is available by calling this number.

12.8 DESIGN HOTLINE – 1-800-521-6274

This is the Motorola number for information pertaining to

any

 Motorola product.

12.9 DSP MARKETING INFORMATION – (512) 891-2030

Marketing information including brochures, application notes, manuals, price quotes, etc.

for Motorola DSP-related products are available by calling this number.

12.10 DSP THIRD-PARTY SUPPORT INFORMATION – (512) 891-3098

Information concerning third-party manufacturers using and supporting Motorola DSP

products is available by calling this number. Third-party support includes:

 Filter design software

 Logic analyzer support

 Boards for VME, IBM-PC/XT/AT, MACII, SPARC, HP300

 Development systems

 Data conversion cards

 Operating system software

 Debug software

Additional information is available on Dr. BuB and in DSP News.

12.11 DSP UNIVERSITY SUPPORT – (512) 891-3098

Information concerning university support programs and university discounts for all

Motorola DSP products is available by calling this number.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274

12 - 8 ADDITIONAL SUPPORT

MOTOROLA

12.12 DSP TRAINING COURSES – (602) 897-3665 or (800) 521-6274

Training information on the DSP56100 family members is available by writing:

Motorola SPS Training and Technical Operations

Mail Drop EL524

P. O. Box 21007

Phoenix, Arizona 85036

or by calling the number above. A technical training catalog is available which describes

these courses and gives the current training schedule and prices.

12.13 Dr. BuB ELECTRONIC BULLETIN BOARD

Dr. BuB is an electronic bulletin board providing free source code for a large variety of

topics that can be used to develop applications with Motorola DSP products. The software

library includes files including FFTs, FIR filters, IIR filters, lattice filters, matrix algebra

routines, companding routines, floating-point routines, and others. In addition, the latest

product information and documentation (including information on new products and

improvements on existing products) is posted. Questions concerning Motorola DSP

products posted on Dr. BuB are answered promptly.

Dr. BuB is open 24-hour a day, 7 days per week and offers the DSP community informa-

tion on Motorola’s DSP products, including:

• Public domain source code for Motorola’s DSP products including the DSP56000
family, the DSP56100 family and the DSP96002

• Announcements about new products and policies

• Technical discussion groups monitored by DSP application engineers

• Confidential mail service

• Calendar of events for Motorola DSP

• Complete list of Motorola DSP literature and ordering information

• Information about the Third-Party and University Support Programs.

To logon to the bulletin board, follow these instructions:

1. Set the character format on your modem to 8 data bits, no parity, 1 stop bit,

then dial (512) 891-3771. Dr. BuB will automatically set the data transfer rate

to match your modem (9600, 4800, 2400, 1200 or 300 BPS).

2. Once the connection has been established, you will see the Dr. BuB login

prompt (you may have to press the carriage return a couple times). If you just

want to browse the system, login as guest. If you would like all the privileges

that are normally allowed on the system, enter new at the login prompt.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

MOTOROLA

 ADDITIONAL SUPPORT 12 - 9

3. If you open a new account, you will be asked to answer some questions such

as name, address, phone number, etc. After answering these questions, you

will have immediate access to all features of the system including download

privilege, electronic mail and participation in discussion groups.

4. You will have an hour of access time for each call (upload and download time

doesn’t count against you) and you can call as often as you like. If you need

more time on line, just send an electronic mail request to the system operator

(sysop).

The following is a partial list of the software available on Dr. BuB.

12.13.1 Audio

rvb1.asm 1.0 Easy-to-read reverberation routine 17056

rvb2.asm 1.0 Same as RVB1.ASM but optimized 15442

stereo.asm 1.0 Code for C-QUAM AM stereo decoder 4830

stereo.hlp 1.0 Help file for STEREO.ASM 620

dge.asm 1.0 Digital Graphic Equalizer code from 14880

12.13.2 Benchmarks

Appendix B.1 through B.2.26 DSP56116 (DSP56100 Family) Benchmarks 44436

Appendix B.3 through B.3.9 DSP56116 (DSP56100 Family) Benchmarks 6329

12.13.3 Codec Routines

loglin.asm 1.0 Companded CODEC to linear PCM data 4572
conversion

loglin.hlp Help for loglin.asm 1479

loglint.asm 1.0 Test program for loglin.asm 2184

loglint.hlp Help for loglint.asm 1993

linlog.asm 1.1 Linear PCM to companded CODEC data 4847
conversion

linlog.hlp Help for linlog.asm 1714

12.13.4 DTMF Routines

clear.cmd 1.0 Explained in read.me file 119

data.lod 1.0 421

det.asm 1.0 Subroutine used in IIR DTMF 5923

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

12 - 10 ADDITIONAL SUPPORT

MOTOROLA

dtmf.asm 1.0 Main routine used in IIR DTMF 10685

dtmf.mem 1.0 Memory for DTMF routine 48

dtmfmstr.asm 1.0 Main routine for multichannel DTMF 7409

dtmfmstr.mem 1.0 Memory for multichannel DTMF routine 41

dtmftwo.asm 1.0 10256

ex56.bat 1.0 94

genxd.lod 1.0 Data file 183

genyd.lod 1.0 Data file 180

goertzel.asm 1.0 Goertzel routine 4393

goertzel.lnk 1.0 Link file for Goertzel routine 6954

goertzel.lst 1.0 List file for Goertzel routine 11600

load.cmd 1.0 46

tstgoert.mem 1.0 Memory for Goertzel routine 384

sub.asm 1.0 Subroutine linked for use in IIR DTMF 2491

read.me 1.0 Instructions 738

12.13.5 Fast Fourier Transforms

sincos.asm 1.2 Sine-Cosine Table Generator for FFTs 1185

sincos.hlp Help for sincos.asm 887

sinewave.asm 1.1 Full-Cycle Sine wave Table Generator 1029
Generator Macro

sinewave.hlp for sinewave.asm 1395

fftr2a.asm 1.1 Radix 2, In-Place, DIT FFT (smallest) 3386

fftr2a.hlp Help for fftr2a.asm 2693

fftr2at.asm 1.1 Test Program for FFTs (fftr2a.asm) 999

fftr2at.hlp Help for fftr2at.asm 563

fftr2b.asm 1.1 Radix 2, In-Place, DIT FFT (faster) 4290

fftr2b.hlp Help for fftr2b.asm 3680

fftr2c.asm 1.2 Radix 2, In-Place, DIT FFT (even faster) 5991

fftr2c.hlp Help for fftr2c.asm 3231

fftr2d.asm 1.0 Radix 2, In-Place, DIT FFT (using 3727
DSP56001 sine-cosine ROM tables)

fftr2d.hlp Help for fftr2d.asm 3457

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

MOTOROLA

 ADDITIONAL SUPPORT 12 - 11

fftr2dt.asm 1.0 Test program for fftr2d.asm 1287

fftr2dt.hlp Help for fftr2dt.asm 614

fftr2e.asm 1.0 1024 Point, Non-In-Place, FFT (3.39ms) 8976

fftr2e.hlp Help for fftr2e.asm 5011

fftr2et.asm 1.0 Test program for fftr2e.asm 984

fftr2et.hlp Help for fftr2et.asm 408

dct1.asm 1.1 Discrete Cosine Transform using FFT 5493

dct1.hlp 1.1 Help file for dct1.asm 970

fftr2cc.asm 1.0 Radix 2, In-place Decimation-in-time 6524
complex FFT macro

fftr2cc.hlp 1.0 Help file for fftr2cc.asm 3533

fftr2cn.asm 1.0 Radix 2, Decimation-in-time Complex FFT 6584
macro with normally ordered input/output

fftr2cn.hlp 1.0 Help file for fftr2cn.asm 2468

fftr2en.asm 1.0 1024 point, not-in-place, complex FFT 9723
macro with normally ordered input/output

fftr2en.hlp 1.0 Help file for fftr2en.asm 4886

dhit1.asm 1.0 Routine to compute Hilbert transform 1851
in the frequency domain

dhit1.hlp 1.0 Help file for dhit1.asm 1007

fftr2bf.asm 1.0 Radix-2, decimation-in-time FFT with 13526
block floating point

fftr2bf.hlp 1.0 Help file for fftr2bf.asm 1578

fftr2aa.asm 1.0 FFT program for automatic scaling 3172

12.13.6 Filters

fir.asm 1.0 Direct Form FIR Filter 545

fir.hlp Help for fir.asm 2161

firt.asm 1.0 Test program for fir.asm 1164

iir1.asm 1.0 Direct Form Second Order All Pole 656
IIR Filter

iir1.hlp Help for iir1.asm 1786

iir1t.asm 1.0 Test program for iir1.asm 1157

iir2.asm 1.0 Direct Form Second Order All Pole 801
IIR Filter with Scaling

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

12 - 12 ADDITIONAL SUPPORT

MOTOROLA

iir2.hlp Help for iir2.asm 2286

iir2t.asm 1.0 Test program for iir2.asm 1311

iir3.asm 1.0 Direct Form Arbitrary Order All 776
Pole IIR Filter

iir3.hlp Help for iir3.asm 2605

iir3t.asm 1.0 Test program for iir3.asm 1309

iir4.asm 1.0 Second Order Direct Canonic IIR Filter 713
 (Biquad IIR Filter)

iir4.hlp Help for iir4.asm 2255

iir4t.asm 1.0 Test program for iir4.asm 1202

iir5.asm 1.0 Second Order Direct Canonic IIR Filter 842
with Scaling (Biquad IIR Filter)

iir5.hlp Help for iir5.asm 2803

iir5t.asm 1.0 Test program for iir5.asm 1289

iir6.asm 1.0 Arbitrary Order Direct Canonic IIR 923
Filter

iir6.hlp Help for iir6.asm 3020

iir6t.asm 1.0 Test program for iir6.asm 1377

iir7.asm 1.0 Cascaded Biquad IIR Filters 900

iir7.hlp Help for iir7.asm 3947

iir7t.asm 1.0 Test program for iir7.asm 1432

lms.hlp 1.0 LMS Adaptive Filter Algorithm 5818

transiir.asm 1.0 Implements the transposed IIR filter 1981

transiir.hlp 1.0 Help file for transiir.asm 974

12.13.7 Floating-Point Routines

fpdef.hlp 2.0 Storage format and arithmetic 10600
representation definition

fpcalls.hlp 2.1 Subroutine calling conventions 11876

fplist.asm 2.0 Test file that lists all subroutines 1601

fprevs.hlp 2.0 Latest revisions of floating-point lib 1799

fpinit.asm 2.0 Library initialization subroutine 2329

fpadd.asm 2.0 Floating point add 3860

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

MOTOROLA

 ADDITIONAL SUPPORT 12 - 13

fpsub.asm 2.1 Floating point subtract 3072

fpcmp.asm 2.1 Floating point compare 2605

fpmpy.asm 2.0 Floating point multiply 2250

fpmac.asm 2.1 Floating point multiply-accumulate 2712

fpdiv.asm 2.0 Floating point divide 3835

fpsqrt.asm 2.0 Floating point square root 2873

fpneg.asm 2.0 Floating point negate 2026

fpabs.asm 2.0 Floating point absolute value 1953

fpscale.asm 2.0 Floating point scaling 2127

fpfix.asm 2.0 Floating to fixed point conversion 3953

fpfloat.asm 2.0 Fixed to floating point conversion 2053

fpceil.asm 2.0 Floating point CEIL subroutine 1771

fpfloor.asm 2.0 Floating point FLOOR subroutine 2119

durbin.asm 1.0 Solution for LPC coefficients 5615

durbin.hlp 1.0 Help file for DURBIN.ASM 2904

fpfrac.asm 2.0 Floating point FRACTION subroutine 1862

12.13.8 Functions

log2.asm 1.0 Log base 2 by polynomial 1118
approximation

log2.hlp Help for log2.asm 719

log2t.asm 1.0 Test program for log2.asm 1018

log2nrm.asm 1.0 Normalizing base 2 logarithm macro 2262

log2nrm.hlp Help for log2nrm.asm 676

log2nrmt.asm 1.0 Test program for log2nrm.asm 1084

exp2.asm 1.0 Exponential base 2 by polynomial 926
approximation

exp2.hlp Help for exp2.asm 759

exp2t.asm 1.0 Test program for exp2.asm 1019

sqrt1.asm 1.0 Square Root by polynomial 991
approximation, 7 bit accuracy

sqrt1.hlp Help for sqrt1.asm 779

sqrt1t.asm 1.0 Test program for sqrt1.asm 1065

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

12 - 14 ADDITIONAL SUPPORT

MOTOROLA

sqrt2.asm 1.0 Square Root by polynomial 899
approximation, 10 bit accuracy

sqrt2.hlp Help for sqrt2.asm 776

sqrt2t.asm 1.0 Test program for sqrt2.asm 1031

sqrt3.asm 1.0 Full precision Square Root Macro 1388

sqrt3.hlp Help for sqrt3.asm 794

sqrt3t.asm 1.0 Test program for sqrt3.asm 1053

tli.asm 1.1 Linear table lookup/interpolation 3253
routine for function generation

tli.hlp 1.1 Help for tli.asm 1510

bingray.asm 1.0 Binary to Gray code conversion macro 601

bingrayt.asm 1.0 Test program for bingray.asm 991

rand1.asm 1.1 Pseudo Random Sequence Generator 2446

rand1.hlp Help for rand1.asm 704

12.13.9 Lattice Filters

latfir1.asm 1.0 Lattice FIR Filter Macro 1156

latfir1.hlp Help for latfir1.asm 6327

latfir1t.asm 1.0 Test program for latfir1.asm 1424

latfir2.asm 1.0 Lattice FIR Filter Macro 1174
 (modified modulo count)

latfir2.hlp Help for latfir2.asm 1295

latfir2t.asm 1.0 Test program for latfir2.asm 1423

latiir.asm 1.0 Lattice IIR Filter Macro 1257

latiir.hlp Help for latiir.asm 6402

latiirt.asm 1.0 Test program for latiir.asm 1407

latgen.asm 1.0 Generalized Lattice FIR/IIR 1334
Filter Macro

latgen.hlp Help for latgen.asm 5485

latgent.asm 1.0 Test program for latgen.asm 1269

latnrm.asm 1.0 Normalized Lattice IIR Filter Macro 1407

latnrm.hlp Help for latnrm.asm 7475

latnrmt.asm 1.0 Test program for latnrm.asm 1595

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

MOTOROLA

 ADDITIONAL SUPPORT 12 - 15

12.13.10 Matrix Operations

matmul1.asm 1.0 [1x3][3x3]=[1x3] Matrix Multiplication 1817

matmul1.hlp Help for matmul1.asm 527

matmul2.asm 1.0 General Matrix Multiplication, C=AB 2650

matmul2.hlp Help for matmul2.asm 780

matmul3.asm 1.0 General Matrix Multiply-Accumulate, 2815
C=AB+Q

matmul3.hlp 1.0 Help for matmul3.asm 865

12.13.11 Reed-Solomon Encoder

readme.rs 1.0 Instructions for Reed-Solomon coding 5200

rscd.asm 1.0 Reed-Solomon coder for DSP56000 simulator 5822

newc.c 1.0 Reed-Solomon coder coded in C 4075

table1.asm 1.0 Include file for R-S coder 7971

table2.asm 1.0 Include file for R-S coder 4011

12.13.12 Sorting Routines

sort1.asm 1.0 Array Sort by Straight Selection 1312

sort1.hlp Help for sort1.asm 1908

sort1t.asm 1.0 Test program for sort1.asm 689

sort2.asm 1.1 Array Sort by Heapsort Method 2183

sort2.hlp Help for sort2.asm 2004

sort2t.asm 1.0 Test program for sort2.asm 700

12.13.13 Speech

lgsol1.asm 2.0 Leroux-Gueguen solution for PARCOR 4861
(LPC) coefficients

lgsol1.hlp Help for lgsol1.asm 3971

durbin1.asm 1.2 Durbin Solution for PARCOR 6360
(LPC) coefficients

durbin1.hlp Help for durbin1.asm 3616

adpcm.asm 1.0 32 kbits/s CCITT ADPCM Speech Coder 120512

adpcm.hlp 1.0 Help file for adpcm.asm 14817

adpcmns.asm 1.0 Nonstandard ADPCM source code 54733

adpcmns.hlp 1.0 Help file for adpcmns.asm 9952

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Dr. BuB ELECTRONIC BULLETIN BOARD

12 - 16 ADDITIONAL SUPPORT

MOTOROLA

g722.zip 1.11 G.722 Speech Processing Code 235864
(pkzip file for PC)

g722.tar.Z 1.11 G.722 Speech Processing Code 339297
(Compressed tar file for Unix)

12.13.14 Standard I/O Equates

ioequ16.asm 1.1 DSP56100 Standard I/O Equate File 10329

ioequ.asm 1.1 Motorola Standard I/O Equate File 8774

ioequlc.asm 1.1 Lower Case Version of ioequ.asm 8788

intequ.asm 1.0 Standard Interrupt Equate File 1082

intequlc.asm 1.0 Lower Case Version of intequ.asm 1082

12.13.15 Tools and Utilities

srec.c 4.10 Utility to convert DSP56000 OMF format 38975
to SREC.

srec.doc 4.10 Manual page for srec.c. 7951

srec.h 4.10 Include file for srec.c 3472

srec.exe 4.10 Srec executable for IBM PC 22065

sloader.asm 1.1 Serial loader from the SCI port for the 3986
DSP56001

sloader.hlp 1.1 Help for sloader.asm 2598

sloader.p 1.1 Serial loader s-record file for download 736
to EPROM

parity.asm 1.0 Parity calculation of a 24-bit number in 1641
accumulator A

parity.hlp 1.0 Help for parity.asm 936

parityt.asm 1.0 Test program for parity.asm 685

parityt.hlp 1.0 Help for parityt.asm 259

dspbug Ordering information for free debug 882
monitor for DSP56000/DSP56001

12.13.16 Current DSP56200 Related Software

p1 1.0 Information on 56200 Filter Software 6343

p2 1.0 Interrupt Driven Adaptive Filter Flowchart. 10916

p3 1.0 “C” code implementation of p2 25795

p4 1.0 Polled I/O Adaptive Filter Flowchart 10361

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

MOTOROLA

 ADDITIONAL SUPPORT 12 - 17

p5 1.0 “C” code implementation of p4 24806

p6 1.1 Interrupt Driven Dual FIR Filter Flowchart. 9535

p7 1.0 “C” code implementation of p6 28489

p8 1.0 Polled I/O Dual FIR Filter Flowchart 9656

p9 1.0 “C” code implementation of p8 28525

12.14 REFERENCE BOOKS AND MANUALS

A list of DSP-related books is included here as an aid for the engineer who is new to the

field of DSP. This is a partial list of DSP references intended to help the new user find

useful information in some of the many areas of DSP applications. Many books could be

included in several categories but are not repeated.

12.14.1 General DSP

ADVANCED TOPICS IN SIGNAL PROCESSING
 Jae S. Lim and Alan V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

APPLICATIONS OF DIGITAL SIGNAL PROCESSING
 A. V. Oppenheim
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978

DISCRETE-TIME SIGNAL PROCESSING
 A. V. Oppenheim and R. W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989

DIGITAL PROCESSING OF SIGNALS THEORY AND PRACTICE
 Maurice Bellanger
 New York, NY: John Wiley and Sons, 1984

DIGITAL SIGNAL PROCESSING
 Alan V. Oppenheim and Ronald W. Schafer
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

DIGITAL SIGNAL PROCESSING: A SYSTEM DESIGN APPROACH
 David J. DeFatta, Joseph G. Lucas, and William S. Hodgkiss
 New York, NY: John Wiley and Sons, 1988

FOUNDATIONS OF DIGITAL SIGNAL PROCESSING AND DATA ANALYSIS
 J. A. Cadzow
 New York, NY: MacMillan Publishing Company, 1987

Document ID Version Synopsis Size

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

12 - 18 ADDITIONAL SUPPORT

MOTOROLA

HANDBOOK OF DIGITAL SIGNAL PROCESSING
 D. F. Elliott
 San Diego, CA: Academic Press, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 John G. Proakis and Dimitris G. Manolakis
 New York, NY: Macmillan Publishing Company, 1988

MULTIRATE DIGITAL SIGNAL PROCESSING
 R. E. Crochiere and L. R. Rabiner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983

SIGNAL PROCESSING ALGORITHMS
 S. Stearns and R. Davis
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

SIGNAL PROCESSING HANDBOOK
 C.H. Chen
 New York, NY: Marcel Dekker, Inc., 1988

SIGNAL PROCESSING – THE MODERN APPROACH
 James V. Candy
 New York, NY: McGraw-Hill Company, Inc., 1988

THEORY AND APPLICATION OF DIGITAL SIGNAL PROCESSING
 Rabiner, Lawrence R., Gold and Bernard
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975

12.14.2 Digital Audio and Filters

ADAPTIVE FILTER AND EQUALIZERS
 B. Mulgrew and C. Cowan
 Higham, MA: Kluwer Academic Publishers, 1988

ADAPTIVE SIGNAL PROCESSING
 B. Widrow and S. D. Stearns
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

ART OF DIGITAL AUDIO, THE
 John Watkinson
 Stoneham. MA: Focal Press, 1988

DESIGNING DIGITAL FILTERS
 Charles S. Williams
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

DIGITAL AUDIO SIGNAL PROCESSING AN ANTHOLOGY
 John Strawn
 William Kaufmann, Inc., 1985

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

MOTOROLA

 ADDITIONAL SUPPORT 12 - 19

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and Peter Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL FILTERS: ANALYSIS AND DESIGN
 Andreas Antoniou
 New York, NY: McGraw-Hill Company, Inc., 1979

DIGITAL FILTERS AND SIGNAL PROCESSING
 Leland B. Jackson
 Higham, MA: Kluwer Academic Publishers, 1986

DIGITAL SIGNAL PROCESSING
 Richard A. Roberts and Clifford T. Mullis
 New York, NY: Addison-Welsey Publishing Company, Inc., 1987

INTRODUCTION TO DIGITAL SIGNAL PROCESSING
 Roman Kuc
 New York, NY: McGraw-Hill Company, Inc., 1988

INTRODUCTION TO ADAPTIVE FILTERS
 Simon Haykin
 New York, NY: MacMillan Publishing Company, 1984

MUSICAL APPLICATIONS OF MICROPROCESSORS (Second Edition)
 H. Chamberlin
 Hasbrouck Heights, NJ: Hayden Book Co., 1985

12.14.3 C Programming Language

C: A REFERENCE MANUAL
Samuel P. Harbison and Guy L. Steele
Prentice-Hall Software Series, 1987.

PROGRAMMING LANGUAGE - C
American National Standards Institute,
ANSI Document X3.159-1989
American National Standards Institute, inc., 1990

THE C PROGRAMMING LANGUAGE
Brian W. Kernighan, and Dennis M. Ritchie
Prentice-Hall, Inc., 1978.

12.14.4 Controls

ADAPTIVE CONTROL
 K. Astrom and B. Wittenmark
 New York, NY: Addison-Welsey Publishing Company, Inc., 1989

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

12 - 20 ADDITIONAL SUPPORT

MOTOROLA

ADAPTIVE FILTERING PREDICTION & CONTROL
 G. Goodwin and K. Sin
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

AUTOMATIC CONTROL SYSTEMS
 B. C. Kuo
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987

COMPUTER CONTROLLED SYSTEMS: THEORY & DESIGN
 K. Astrom and B. Wittenmark
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL CONTROL SYSTEMS
 B. C. Kuo
 New York, NY: Holt, Reinholt, and Winston, Inc., 1980

DIGITAL CONTROL SYSTEM ANALYSIS & DESIGN
 C. Phillips and H. Nagle
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

ISSUES IN THE IMPLEMENTATION OF DIGITAL FEEDBACK COMPENSATORS
 P. Moroney
 Cambridge, MA: The MIT Press, 1983

12.14.5 Graphics

CGM AND CGI
 D. B. Arnold and P. R. Bono
 New York, NY: Springer-Verlag, 1988

COMPUTER GRAPHICS (Second Edition)
 D. Hearn and M. Pauline Baker
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1986

FUNDAMENTALS OF INTERACTIVE COMPUTER GRAPHICS
 J. D. Foley and A. Van Dam
 Reading MA: Addison-Wesley Publishing Company Inc., 1984

GEOMETRIC MODELING
 Michael E. Morteson
 New York, NY: John Wiley and Sons, Inc.

GKS THEORY AND PRACTICE
 P. R. Bono and I. Herman (Eds.)
 New York, NY: Springer-Verlag, 1987

ILLUMINATION AND COLOR IN COMPUTER GENERATED IMAGERY
 Roy Hall
 New York, NY: Springer-Verlag

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

MOTOROLA ADDITIONAL SUPPORT 12 - 21

POSTSCRIPT LANGUAGE PROGRAM DESIGN
 Glenn C. Reid - Adobe Systems, Inc.
 Reading MA: Addison-Wesley Publishing Company, Inc., 1988

MICROCOMPUTER DISPLAYS, GRAPHICS, AND ANIMATION
 Bruce A. Artwick
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985

PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS
 William M. Newman and Roger F. Sproull
 New York, NY: McGraw-Hill Company, Inc., 1979

PROCEDURAL ELEMENTS FOR COMPUTER GRAPHICS
 David F. Rogers
 New York, NY: McGraw-Hill Company, Inc., 1985

RENDERMAN INTERFACE, THE
 Pixar
 San Rafael, CA. 94901

12.14.6 Image Processing

DIGITAL IMAGE PROCESSING
 William K. Pratt
 New York, NY: John Wiley and Sons, 1978

DIGITAL IMAGE PROCESSING (Second Edition)
 Rafael C. Gonzales and Paul Wintz
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1977

DIGITAL IMAGE PROCESSING TECHNIQUES
 M. P. Ekstrom
 New York, NY: Academic Press, Inc., 1984

DIGITAL PICTURE PROCESSING
 Azriel Rosenfeld and Avinash C. Kak
 New York, NY: Academic Press, Inc., 1982

SCIENCE OF FRACTAL IMAGES, THE
 M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen,
 D. Saupe, and R. F. Voss
 New York, NY: Springer-Verlag

12.14.7 Motorola DSP Manuals

MOTOROLA DSP LINKER/LIBRARIAN REFERENCE MANUAL
Motorola, Inc., 1992.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

12 - 22 ADDITIONAL SUPPORT MOTOROLA

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL
Motorola, Inc., 1992.

MOTOROLA DSP SIMULATOR REFERENCE MANUAL
Motorola, Inc., 1992.

MOTOROLA DSP56000/DSP56001 USER’S MANUAL
Motorola, Inc.,1990.

MOTOROLA DSP56100 FAMILY MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP56156 USER’S MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP56166 USER’S MANUAL
Motorola, Inc.,1992.

MOTOROLA DSP96002 USER’S MANUAL
Motorola, Inc.,1989.

12.14.8 Numerical Methods

ALGORITHMS (THE CONSTRUCTION, PROOF, AND ANALYSIS OF
PROGRAMS)
 P. Berliout and P. Bizard
 New York, NY: John Wiley and Sons, 1986

MATRIX COMPUTATIONS
 G. H. Golub and C. F. Van Loan
 John Hopkins Press, 1983

NUMERICAL RECIPES IN C - THE ART OF SCIENTIFIC PROGRAMMING
 William H. Press, Brian P. Flannery,
 Saul A. Teukolsky, and William T. Vetterling
 Cambridge University Press, 1988

NUMBER THEORY IN SCIENCE AND COMMUNICATION
 Manfred R. Schroeder
 New York, NY: Springer-Verlag, 1986

12.14.9 Pattern Recognition

PATTERN CLASSIFICATION AND SCENE ANALYSIS
 R. O. Duda and P. E. Hart
 New York, NY: John Wiley and Sons, 1973

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

MOTOROLA ADDITIONAL SUPPORT 12 - 23

CLASSIFICATION ALGORITHMS
 Mike James
 New York, NY: Wiley-Interscience, 1985
Spectral Analysis:

STATISTICAL SPECTRAL ANALYSIS, A NONPROBABILISTIC THEORY
 William A. Gardner
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 E. Oran Brigham
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988

THE FAST FOURIER TRANSFORM AND ITS APPLICATIONS
 R. N. Bracewell
 New York, NY: McGraw-Hill Company, Inc., 1986

12.14.10 Speech

ADAPTIVE FILTERS – STRUCTURES, ALGORITHMS, AND APPLICATIONS
 Michael L. Honig and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1984

DIGITAL CODING OF WAVEFORMS
 N. S. Jayant and P. Noll
 Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984

DIGITAL PROCESSING OF SPEECH SIGNALS
 Lawrence R. Rabiner and R. W. Schafer
 Englwood Cliffs, NJ: Prentice-Hall, Inc., 1978

LINEAR PREDICTION OF SPEECH
 J. D. Markel and A. H. Gray, Jr.
 New York, NY: Springer-Verlag, 1976

SPEECH ANALYSIS, SYNTHESIS, AND PERCEPTION
 J. L. Flanagan
 New York, NY: Springer-Verlag, 1972

SPEECH COMMUNICATION – HUMAN AND MACHINE
 D. O’Shaughnessy
 Reading, MA: Addison-Wesley Publishing Company, Inc., 1987

12.14.11 Telecommunications

DIGITAL COMMUNICATION
 Edward A. Lee and David G. Messerschmitt
 Higham, MA: Kluwer Academic Publishers, 1988

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

REFERENCE BOOKS AND MANUALS

12 - 24 ADDITIONAL SUPPORT MOTOROLA

DIGITAL COMMUNICATIONS
 John G. Proakis
 New York, NY: McGraw-Hill Publishing Co., 1983

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 A - 1

APPENDIX A

PRELIMINARY

DSP56100 FAMILY INSTRUCTION SET

• Bit Field

Manipulation

BFTSTL

BFTSTH

BFCLR

BFSET

BFCHG

• Loop

DOLoop

DO FOREVER

ENDDO

BRKcc

• Move

LEA

MOVE

MOVE(C)

MOVE(I)

MOVE(M)

MOVE(P)

MOVE(S)

• Arithmetic

ABS

ADC

ADD

ASL

ASL4

ASR

ASR4

ASR16

CLR

CLR24

CMP

CMPM

DEC

DEC24

DIV

DMAC

EXT

IMAC

IMPY

INC

INC24

MAC

MACR

MPY

MPYR

MPY(su,uu)

MAC(su,uu)

NEG

NEGC

NORM

RND

SBC

SUB

SUBL

SWAP

Tcc

TFR

TFR2

TST

TST2

ZERO

• Logical

AND

ANDI

EOR

LSL

LSR

NOT

OR

ORI

ROL

ROR

• Program

Control

Bcc

BSR

BRA

BScc

DEBUG

DEBUGcc

Jcc

JMP

JSR

JScc

 NOP

REP

REPcc

RESET

RTI

RTS

STOP

SWI

WAIT

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

A - 2

MOTOROLA

A.1 INTRODUCTION . A-3

A.1.1 Instruction Guide . A-3

A.2 NOTATION . A-4

A.3 ADDRESSING MODES . A-8

A.3.1 Addressing Mode Modifiers . A-11

A.4 CONDITION CODE COMPUTATION . A-12

A.5 DESCRIPTIONS . A-17

A.6 INSTRUCTION TIMING . A-226

A.7 FUNCTIONAL SUMMARY . A-236

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 A - 3

A.1 INTRODUCTION

This appendix contains detailed information about each instruction in the DSP56100 family instruction set.

An instruction guide is presented first to help in understanding the individual instruction descriptions. This

is followed by sections on notation and addressing modes. Since the move instruction is a parallel move

with an ALU NOP, the parallel moves are grouped with the MOVE instruction. The instructions are then de-

scribed in alphabetical order.

A.1.1 Instruction Guide

The following information is included in each instruction description with the goal of making each description

self-contained:

Name and Mnemonic: The mnemonic is highlighted in bold type for easy reference.

Assembler Syntax and Operation: For each instruction syntax the corresponding operation is symbolically

described. If there are several operations indicated on a single line in the operation field, those operations

do not necessarily occur in the order shown but are generally assumed to occur in parallel. If a parallel data

move is allowed it will be indicated in parenthesis in both the assembler syntax and operation fields. If a

letter in the mnemonic is optional it will be shown in parenthesis in the assembler syntax field.

Description: A complete text description of the instruction is given together with any special cases and/or

condition code anomalies which the user should be aware of when using that instruction.

Example: An example of the use of the instruction is given. The example is shown in the DSP56100 assem-

bler source code format. Most arithmetic and logical instruction examples include one or two parallel data

moves to illustrate the many types of parallel moves that are possible. The example includes a complete

explanation which discusses the contents of the registers referenced by the instruction (but not those refer-

enced by the parallel moves) both before and after the execution of the instruction. Most examples are de-

signed to be easily understood without the use of a calculator. The contents shown in registers are in hexa-

decimal format.

Condition Codes: The status register is depicted with the condition code bits which can be affected by the

instruction highlighted in bold type. Not all bits in the status register are used. Those which are reserved are

indicated with a double asterisk and are read as zeros.

Instruction Format: The instruction fields, the instruction opcode and the instruction extension word are

specified for each instruction syntax. When the extension word is optional it is so indicated. The values

which can be assumed by each of the variables in the various instruction fields are shown under the instruc-

tion fields heading. Note that the symbols used in decoding the various opcode fields of an instruction are

completely arbitrary. Furthermore, the opcode symbols used in one instruction are completely independent

of the opcode symbols used in a different instruction.

Timing: The number of oscillator clock cycles required for each instruction syntax is given. This information

provides the user a basis for comparison of the execution times of the various instructions in oscillator clock

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NOTATION

A - 4

MOTOROLA

cycles. Please refer to Table A-1 and the section entitled “

Instruction Timing

” for a complete explanation

of instruction timing including the meaning of the symbols “aio”, “ap”, “ax”, “ax2”, “ea”, “jx”, “mv”, “mvb”,

“mvc”, “mvm”, “mvp”, “rx”, “wio”, “wp”, and “wx”.

Memory: The number of program memory words required for each instruction syntax is given. This informa-

tion provides the user a basis for comparison of the number of program memory locations required for each

of the various instructions in 16-bit program memory words. Please refer to Table A-1 and the section enti-

tled “

Instruction Timing

” for a complete explanation of instruction memory requirements including the

meaning of the symbols “ea” and “mv”.

A.2 NOTATION

Each instruction description contains symbols used to abbreviate certain operands and operations. Table

A-1 lists the symbols used and their respective meanings.

Table A-1 Instruction Description Notation

Data ALU Registers Operands

Xn Input register X1 or X0 (16 bits)
Yn Input register Y1 or Y0 (16 bits)
An Accumulator registers A2, A1, A0 (A2 - 8 bits, A1 and A0 - 16 bits)
Bn Accumulator registers B2, B1, B0 (B2 - 8 bits, B1 and B0 - 16 bits)
X Input register X = X1:X0 (32 bits)
Y Input register Y = Y1:Y0 (32 bits)
A Accumulator A = A2:A1:A0 (40 bits) *
B Accumulator B = B2:B1:B0 (40 bits) *

 * Note: In data move operations, shifting and limiting is performed when this register is specified as a
source operand. When specified as a destination operand, sign extension and possibly zero-
ing are performed.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NOTATION

MOTOROLA

 A - 5

Table A-1 Instruction Description Notation (continued)

Address ALU Registers Operands

Rn Address registers R0 thru R3 (16 bits)
Nn Address offset registers N0 through N3 (16 bits)

Program Controller Registers

PC Program counter register (16 bits)
MR Mode register (8 bits)
CCR Condition code register (8 bits)
SR Status register = MR:CCR (16 bits)
OMR Operating mode register (8 bits)
LA Hardware loop address register (16 bits)
LC Hardware loop counter register (16 bits)
SP System stack pointer register (6 bits)
SSH Upper portion of the current top of the stack (16 bits)
SSL Lower portion of the current top of the stack (16 bits)
SS System stack RAM = SSH:SSL (15 locations by 32 bits)

Address Operands

ea Effective address
eax Effective address for X bus
xxxx Absolute address (16 bits)
xx Short jump address (8 bits)
aa Absolute short address (5 bits, zero extended)
ee 6 bit PC relative signed address
AA 6-bit absolute signed address
pp I/O short address (5 bits, one’s extended)
<…> Specifies the contents of the specified address
X: X memory reference
P: Program memory reference

Miscellaneous Operands

S,Sn Source operand register
D,Dn Destination operand register
D[n] Bit n of D destination operand register
#xx Immediate short data (8 bits)
#xxxx Immediate data (16 bits)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NOTATION

A - 6

MOTOROLA

Table A-1 Instruction Description Notation (continued)

Unary Operators

x The over bar is the negation operator
PUSH Push specified value onto the system stack (SS) operator
PULL Pull specified value from the system stack (SS) operator
READ Read the top of the system stack (SS) operator
PURGE Delete the top value on the system stack (SS) operator
| | Absolute value operator

Binary Operators

+ Addition operator
- Subtraction operator
* Multiplication operator
�÷,/ Division operator
+ Logical inclusive OR operator
|,• Logical AND operator
⊕ Logical exclusive OR operator
→ “Is transferred to” operator
: Concatenation operator
SS System stack RAM = SSH:SSL (15 locations by 32 bits)

Addressing Mode Operators

<< I/O short addressing mode force operator
< Short addressing mode force operator
> Long addressing mode force operator
Immediate addressing mode operator
#> Immediate long addressing mode force operator
#< Immediate short addressing mode force operator

Mode Register (MR) Symbols

LF Loop Flag bit indicating when a DO loop is in progress
FV ForeVer flag bit indicating when a DOFOREVER loop is in progress

S1,S0 Scaling Mode bits indicating the current scaling mode
I1,I0 Interrupt Mask bits indicating the current interrupt priority level

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

NOTATION

MOTOROLA

 A - 7

Table A-1 Instruction Description Notation (continued)

Condition Code Register (CCR) Symbols (standard definitions)

S Sticky set during moves from accumulators to memory according to its
definition (see Section 5.3 and A.4)

L Limit bit indicating arithmetic overflow and/or data shifting/limiting
E Extension bit indicating if the integer portion of A or B is in use
U Unnormalized bit indicating if the A or B result is unnormalized
N Negative bit indicating if bit 39 of the A or B result is set
Z Zero bit indicating if the A or B result equals zero
V Overflow bit indicating if arithmetic overflow has occurred in A or B
C Carry bit indicating if a carry or borrow occurred in A or B result

Instruction Timing Symbols

aio The time required to access an I/O operand
ap The time required to access a P memory operand
ax The time required to access an X memory operand
axx The time required to access X memory operands for double read
ea The time or number of words required for an effective address calculation
eab The time required for an effective address calculation for branch instructions
jx The time required to execute part of a jump-type instruction
mv The time or number of words required for a move-type operation
mvb The time required to execute part of a bit manipulation instruction
mvc The time required to execute part of a MOVEC instruction
mvm The time required to execute part of a MOVEM instruction
mvp The time required to execute part of a MOVEP instruction
rx The time required to execute part of an RTI or RTS instruction
wp The number of wait states used in accessing external P memory
wx The number of wait states used in accessing external X memory

Other Symbols

() Optional letter, operand or operation
(…) Any arithmetic or logical instruction which allows parallel moves
EXT Extension register portion of an accumulator (A2 or B2)
LS Least significant
LSP Least significant portion of an accumulator (A0 or B0)
MS Most significant
MSP Most significant portion of an accumulator (A1 or B1)
r Rounding constant
S/L Shifting and/or limiting on a Data ALU register
Sign Ext Sign extension of a Data ALU register
Zero Zeroing of a Data ALU register

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

A - 8

MOTOROLA

A.3 ADDRESSING MODES

The addressing modes are grouped into three categories — register direct, address register indirect and

special. These addressing modes are summarized in Table A-2. All address calculations are performed in

the Address ALU to minimize execution time and loop overhead. Addressing modes specify whether the

operands are in registers, in memory or in the instruction itself (such as immediate data) and provide the

specific address of the operands.

The register direct addressing mode can be subclassified according to the specific register addressed. The

data registers include X1, X0, Y1, Y0, X, Y, A2, A1, A0, B2, B1, B0, A, and B. The control registers include

SR, OMR, SP, SSH, SSL, LA, LC, CCR, and MR.

Address register indirect modes use an address register Rn (R0-R3) to point to locations in X and P mem-

ory. The contents of the Rn address register is the effective address of the specified operand, except in the

“indexed by offset” mode where the effective address is (Rn+Nn). Address register indirect modes use an

address modifier register Mn to specify the type of arithmetic to be used to generate the ea. If an addressing

mode specifies an address offset register, the given address offset register is used to update the corre-

sponding address register. The Rn address register may only use the corresponding address offset register

Nn and the corresponding address modifier register Mn. For example, the address register R0 may only use

the N0 address offset register and the M0 address modifier register during actual address computation and

address register update operations. This unique implementation is extremely powerful and allows the user

to easily address a wide variety of DSP oriented data structures. All address register indirect modes use at

least one set of address registers (Rn, Nn, and Mn), and the double X memory read uses two sets of ad-

dress registers, one for the first X memory read and one for the second X memory read. Only R3:N3 can

be used for this second X memory read and R3 is updated only using the linear arithmetic.

The special addressing modes include immediate and absolute addressing modes as well as implied refer-

ences to the program counter (PC), the system stack (SSH or SSL), and program (P) memory.

Addressing modes may also be categorized by the ways in which they may be used. Table A-3 shows the

various categories to which each addressing mode belongs. The following classifications will be used in the

instruction descriptions.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

MOTOROLA

 A - 9

Table A-2 DSP56100 Family Addressing Modes

 Operand Reference
Uses Mn

 Addressing Mode Modifier S C D A P X XX

Register Direct

Data or Control Register No X X X
Address Register Rn No X
Address Modifier Register Mn No X
Address Offset Register Nn No X

Address Register Indirect

No Update No X X
Postincrement by 1 Yes* X X X
Postdecrement by 1 Yes X X
Postincrement by Offset Nn Yes* X X X
Indexed by Offset Nn Yes X
Predecrement by 1 Yes X

PC Relative

Long Displacement No X
Short Displacement No X X
Address Register No X X

Special

Upper word of accumulator No X
Immediate Data No X
Immediate Short Data No X
Absolute Address No X X
Absolute Short Address No X X
Short Jump Address No X
I/O Short Address No X
Implicit No X X X
Indexed by short displacement No X

 Where:
S = System Stack Reference
P = Program Memory Reference
C =Program Controller Register Reference
X = X Memory Reference
D = Data ALU Register Reference
XX = Double X Memory Read
A = Address ALU Register Reference

*note: M3 is not used for updating R3 in the second read in the X memory

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

A - 10

MOTOROLA

Table A-3 DSP56100 Family Addressing Mode Encoding

The address register indirect addressing modes require that the offset register number be the same as the

address register number. The assembler syntax “Nn” supports this feature. The assembler syntax “N” may

be used instead of “Nn” in the address register indirect memory addressing modes. If “N” is specified, the

offset register number is the same as the address register number.

Addressing
Categories

Assembler
Addressing Mode U P M A Syntax

Register Direct

Data or Control Register X (Table A-1)
Address Register X Rn
Address Offset Register X Nn
Address Modifier Register X Mn

Address Register Indirect

No Update X X (Rn)
Postincrement by 1 X X X X (Rn)+
Postdecrement by 1 X X (Rn)-
Postincrement by Offset Nn X X X X (Rn)+Nn
Indexed by Offset Nn X X (Rn+Nn)
Predecrement by 1 X X -(Rn)

Special

Upper word of accumulator X X (A1) or (B1)
Immediate Data X #xxxx
Absolute Address X X xxxx
Immediate Short Data #xx
Short Jump/Branch Address X AA or ee
Absolute Short Address X aa
I/O Short Address X pp
Implicit X
Indexed by short displacement X X R2+xx

Where:

Update Mode (U) The Update Addressing mode is used to modify registers without
any associated data move

Parallel Mode (P) The Parallel Addressing mode is used in instructions where two
effective addresses are required

Memory Mode (M) The Memory Addressing mode is used to refer to operands in
memory using an effective addressing field

Alterable Mode (A) The Alterable Addressing mode is used to refer to alterable or writ-

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

ADDRESSING MODES

MOTOROLA

 A - 11

A.3.1 Addressing Mode Modifiers

The addressing mode selected in the instruction word is further specified by the contents of the address

modifier register Mn. The addressing mode update modifiers (M0-M3) are shown in Table A-4. There are

no restrictions on the use of modifier types with any address register indirect addressing mode.

Table A-4 Addressing Mode Modifier Summary

16-bit Modifier Reg. (M0-M3)
MMMMMMMMMMMMMMMM Address Calculation Arithmetic

0000000000000000 Reverse Carry (Bit Reversed)
0000000000000001 Modulo 2
0000000000000010 Modulo 3

0111111111111110 Modulo 32767
0111111111111111 Modulo 32768

1000000000000000 Reserved

1111111111111110 Reserved
1111111111111111 Linear (Modulo 65536)

where MMMMMMMMMMMMMMMM = 16-bit Modifier Register Contents

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

A - 12

MOTOROLA

A.4 CONDITION CODE COMPUTATION

The condition code portion of the status register consists of 8 defined bits:

C — Carry

V — Overflow

Z — Zero

N — Negative

U — Unnormalized

E — Extension

L — Limit

S — Sticky

The C,V,Z,N,U,E, and S bits are true condition code bits that reflect the condition of the result of a data ALU

operation. These condition code bits are not affected by address ALU calculations or by data transfers (ex-

cept for the S and L bits) over the XDB, GDB data buses. The L bit is a latching overflow bit which indicates

that an overflow has occurred in the Data ALU or that limiting has occurred when reading a Data ALU reg-

ister. This limiting occurs as the result of a data bus move operation with limiting accumulator data through

the data shifter/limiters. The S bit is a latching bit useful in implementing block floating point FFT algorithms.

When a move to X memory from an accumulator is made, the S bit is set to indicate that scaling should be

implemented on the next FFT pass.

The standard definition of the condition codes is given below. Exceptions to these are given in Table A-5.

C (Carry) Set if a carry is generated out of the most significant bit of the result for an addition.
Also set if borrow is generated in a subtraction. The carry or borrow is generated out
of bit 39 of the result. Clear otherwise.

V (Overflow) Set if an arithmetic overflow occurs in the 40 bit result. This indicates that the result
is not representable in the accumulator register and the accumulator register has
overflowed. Cleared otherwise. In Saturation Mode, an arithmetic overflow occurs
in the 32 bit result. This indicates that the result is not representable in the accumu-
lator register without the extension part. The accumulator register has overflowed.
Cleared otherwise.

Z (Zero) Set if the result equals zero. Cleared otherwise.

N (Negative) Set if the most significant bit, bit 39, of the result is set. Cleared otherwise.

U (Unnormalized) Set if the two most significant bits of the MSP portion of the result are the same.
Cleared otherwise. The MSP portion is defined by the scaling mode and the U bit is
computed as follows:

S1 S0 Scaling Mode U bit Computation

 0 0 No scaling U = (Bit 31⊕ Bit 30)
 0 1 Scale down U = (Bit 32 ⊕ Bit 31)
 1 0 Scale up U = (Bit 30 ⊕ Bit 29)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

MOTOROLA

 A - 13

E (Extension) Cleared if all the bits of the integer portion of the result are the same; that is, the bit
patterns 00…00 or 11…11. Set otherwise. The integer portion is defined by the scal-
ing mode and the E bit is computed as follows:

If E is cleared, then the low-order fractional portion contains all the significant bits and
the high order integer portion is sign extended. In this case, the accumulator exten-
sion register can be ignored. This flag is meaningless if saturation has occurred (the
saturation flag is set, SAT=1).

L (Limit) Set if the overflow bit V is set. Also set if the data shifter/limiters perform a limiting
operation. In Saturation Mode, the L limit is set by the saturation of the 32 bit result.
Not affected otherwise. The L bit is latched once it is set. The L bit is cleared only by
the processor reset or an instruction that explicitly clears it. The L bit is affected by
data movement operations which read the accumulator registers.

S (Sticky) Set on moves of accumulators to X memory. This can happen when using a MOVE
instruction or in a parallel move. The S bit is computed according to scaling modes
as follows:

Note:

The S bit is a “sticky” bit in the status register. It is cleared only
during reset, ANDI operation, or a move to the status register.

S1 S0 Scaling Mode Integer Portion

 0 0 No scaling Bits 39,38,…,32,31
 0 1 Scale down Bits 39,38,…,32
 1 0 Scale up Bits 39,38,…,32,31,30

S1 S0 Scaling Mode Integer Portion

 0 0 No scaling S=Bit 30 ⊕ Bit 29
 0 1 Scale down S=Bit 31 ⊕ Bit 30
 1 0 Scale up S=Bit 29 ⊕ Bit28

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

A - 14

MOTOROLA

Figure A-1 details how each instruction affects the condition codes. The convention for the notation that is
used in the condition code register representation is:

* set according to the standard definition by the result of the operation

— not affected by the operation

0 cleared

1 set

U undefined, meaningless

? set according to the special computation definition by the result of the operation.

Note that the condition code computation shown in Table A-5 may differ from that defined in the opcode
descriptions. This indicates that the standard definition may be used to generate the specific condition code
result. For example, the Z flag computation for the CLR instruction is shown below as the standard definition
while the opcode description indicates that the Z flag is always set. Table A-5 gives the chip implementation
viewpoint while the opcode description gives the user viewpoint.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

MOTOROLA

 A - 15

Table A-5 Condition Code Computations

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

A - 16

MOTOROLA

Note 1 V — Set if an arithmetic overflow occurs in the 40 bit result. Also set if the most significant

Instruction S L E U N Z V C Notes

LSL * * — — ? ? 0 ? 9,10,11

LSR * * — — ? ? 0 ? 9,10,12

LEA — — — — — — — —

MAC * * * * * * * —

MACxx — * * * * * * —

MACR * * * * * * * —

MOVE * * — — — — — —

MOVE(C) * ? ? ? ? ? ? ? 14

MOVE(I) — — — — — — — —

MOVE(M) * * — — — — — —

MOVE(P) * * — — — — — —

MOVE(S) * * — — — — — —

MPY * * * * * * * —

MPYxx — * * * * * * —

MPYR * * * * * * * —

NEG * * * * * * * *

NEGC — * * * * * * *

NOP — — — — — — — —

NORM — * * * * * ? — 1

NOT * * — — ? ? 0 — 9,10

OR * * — — ? ? 0 — 9,10

ORI — ? ? ? ? ? ? ? 7

REP — * — — — — — —

REPcc — — — — — — — —

RESET — — — — — — — —

RND * * * * * * * —

ROL * * — — ? ? 0 ? 9,10,11

ROR * * — — ? ? 0 ? 9,10,12

RTI — ? ? ? ? ? ? ? 13

RTS — — — — — — —

SBC * * * * * * * *

STOP — — — — — — — —

SUB * * * * * * * *

SUBL * * * * * * ? * 1

SWAP — — — — — — — —

SWI — — — — — — — —

Tcc — — — — — — — —

TFR — — — — — — — —

TFR2 — * — — — — — —

TFR3 * * — — — — — —

TST 0 * * * * * 0 0

TST2 — * * * * * 0 0 24

 WAIT — — — — — — — —

 ZERO — * * * * * * —

Instruction S L E U N Z V C Notes

ABS * * * * * * * —

ADC — * * * * * * *

ADD * * * * * * * *

AND * * — — ? ? 0 — 9,10

ANDI — ? ? ? ? ? ? ? 2

ASL * * * * * * ? ? 1, 3

ASL4 — ? * * * * ? ? 15,16

ASR * * * * * * 0 ? 4

ASR4 — * * * * * 0 ? 17

ASR16 — * * * * * 0 ? 18

BFCHG — * — — — — — ? 5

BFCLR — * — — — — — ? 6

BFSET — * — — — — — ? 5

BFTSTH — * — — — — — ? 5

BFTSTL — * — — — — — ? 6

Bcc — — — — — — — —

BRA — — — — — — — —

BRKcc — — — — — — — —

BScc — — — — — — — —

BSR — — — — — — — —

CHKAAU — — — — ? ? ? — 21,22,23

CLR * * * * * * 0 —

CLR24 * * * * * ? 0 — 19

CMP * * * * * * * *

CMPM * * * * * * * *

DEC * * * * * * * *

DEC24 * * * * * ? * * 19

DIV — * — — — — ? ? 1,8

DMAC — * * * * * * —

DO — * — — — — — —

DOFOREVER — — — — — — — —

DEBUG — — — — — — — —

DEBUGcc — — — — — — — —

ENDDO — — — — — — — —

EOR * * — — ? ? 0 — 9, 10

 EXT — * * * * * * —

ILLEGAL — — — — — — — —

IMAC — * ? ? * ? ? — 19,25,26

IMPY — * ? ? * ? ? — 19,25,26

INC * * * * * * * *

INC24 * * * * * ? * * 19

Jcc — — — — — — — —

JMP — — — — — — — —

JScc — — — — — — — —

JSR — — — — — — — —

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONDITION CODE COMPUTATION

MOTOROLA

 A - 17

bit of the destination operand is changed as a result of the left shift. Cleared otherwise.

Note 2 All? bits — Cleared if the corresponding bit in the immediate data is cleared and if the op-
erand is the CCR. Not affected otherwise.

Note 3 C — Set if bit 39 of source operand is set. Cleared otherwise.

Note 4 C — Set if bit 0 of source operand is set. Cleared otherwise.

Note 5 C — Set if all bits specified by the mask are set. Cleared otherwise. Ignore bits which are
not set in the mask.

Note 6 C — Set if all bits specified by the mask are cleared. Cleared otherwise. Ignore bits which
are not set in the mask.

Note 7 All? bits — Set if the corresponding bit in the immediate data is set and if the operand is the
CCR. Not affected otherwise.

Note 8 C — Set if bit 39 of the result is cleared. Cleared otherwise.

Note 9 N — Set if bit 31 of the result is set. Cleared otherwise.

Note 10 Z — Set if bits 16-31 of the result are zero. Cleared otherwise.

Note 11 C — Set if bit 31 of the source operand is set. Cleared otherwise.

Note 12 C — Set if bit 16 of the source operand is set. Cleared otherwise.

Note 13 All? bits — Set according to value pulled from the stack.

Note 14 All? bits — If SR is specified as a destination operand, set according to the corresponding
bit of the source operand. If SR is not specified as a destination operand, L is set if data
limiting occurred. All? bits are not affected otherwise.

Note 15 V — Set if an arithmetic overflow occurs in the 40 bit result. Also set if bit 5 through 39 are
not the same.

Note 16 C — Set if bit 36 of source operand is set. Cleared otherwise.

Note 17 C — Set if bit 3 of source operand is set. Cleared otherwise.

Note 18 C — Set if bit 15 of source operand is set. Cleared otherwise.

Note 19 Z — Set if the 24 most significant bits of the destination result are all zeroes.

Note 20 In Saturation mode, only bits 31-32 of the result are examined for saturation.

Note 21 V — Set if the result of the last address ALU update performed a modulo wrap. Cleared if
the result of the last address ALU did not perform a modulo wrap.

Note 22 Z — Set if the result of the last address ALU update is 0. Cleared if the result of the last
address ALU is positive.

Note 23 N — Set if the result of the last address ALU update is negative. Cleared if the result of the
last address ALU is positive.

Note 24 (L,E,U should be set to 0)

Note 25 U,E — Will not be set correctly by this instruction

Note 26 V — Set to zero regardless of the overflow

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 17

A.5 DESCRIPTIONS

The following section describes each instruction in the DSP56100 family instruction set in complete detail.

The format of each instruction description is given in the Instruction Guide at the beginning of Appendix A.

Instructions which allow parallel moves include the notation “(parallel move)” in both the Assembler Syntax

and the Operation fields. The example given with each instruction discusses the contents of all the registers

and memory locations referenced by the opcode — operand portion of that instruction though not those ref-

erenced by the parallel move portion of that instruction. Please refer to the “

Parallel Move Descriptions

”

which follow the MOVE instruction description for a complete discussion of parallel moves including exam-

ples which discuss the contents of all the registers and memory locations referenced by the parallel move

portion of an instruction.

Whenever an instruction uses an accumulator as both a destination operand for a Data ALU operation and

as a source for a parallel move operation, the parallel move operation will use the value in the accumulator

prior to execution of any Data ALU operation.

Whenever a bit in the Condition Code Register is defined according to the standard definition as given in

Section A.4 entitled

 “Condition Code Computation”

, a brief definition will be given in normal text in the

Condition Code section of that instruction description. Whenever a bit in the Condition Code Register is de-

fined according to a special definition for some particular instruction, the complete special definition of that

bit will be given in the Condition Code section of that instruction in bold text to alert the user to any special

conditions concerning its use.

The definition and thus the computation of both the E (Extension) and U (Unnormalized) bits of the Condition

Code Register (CCR) varies according to the scaling mode being used. Please refer to the section entitled

“Condition Code Computation”

 for complete details.

Note:

 The signed integer portion of an accumulator

is not

 necessarily the same as either the A2 or B2 ex-

tension register portion of that accumulator. The signed integer portion of an accumulator is defined accord-

ing to the scaling mode being used and can consist of the most significant 8,9 or 10 bits of an accumulator.

Please refer to the

“Condition Code Computation”

 section for complete details.

DESCRIPTIONS

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 18 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

|D|

→

D (parallel move) ABS D (parallel move)

Description:

Take the absolute value of the destination operand D and store the result in the destination

accumulator.

Example:

ABS A X:(R0)+,X1 ;take ABS. value, move data into X1, update R0

Explanation of Example:

Prior to execution, the 40-bit A accumulator contains the value
$FF:FFFF:FFF2. Since this is a negative number, the execution of the ABS instruction
takes the two’s complement of that value and returns $00:0000:000E.

Note:

For the case in which the D operand equals $80:0000:0000 (-256.0), the ABS instruction will cause
an overflow to occur since the result cannot be correctly expressed using the standard 40-bit, fixed
point, two’s complement data representation. Data limiting does not occur i.e., A is not set to the
limiting value of $7F:FFFF:FFFF but remains unchanged.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note:

The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled

“Condition Code Computation”

 for complete details.

ABS Absolute Value ABS

A After Execution

00 0000 000E

A2 A1 A0

A Before Execution

FF FFFF FFF2

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 19

Instruction Format:

ABS D (parallel move)

Opcode:

Instruction Fields:

Please see the “

X Memory Data Move

” description in the parallel move section for de-

tails on the m, RR, HHH, and W data fields.

D F

A 0

B 1

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

ABS Absolute Value ABS

1 m R R H H H W 0 1 1 1 F 0 0 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 20 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

S + C + D

→

D (no parallel move) ADC S,D (no parallel move)

Description:

Add the source operand S and the carry bit C of the condition code register to the destina-

tion operand D and store the result in the destination accumulator. Long words (32 bits)

may be added to the (40-bit) destination accumulator.

Note:

The carry bit is set correctly for multiple precision arithmetic using long word operands if the exten-
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 31 of the destina-
tion accumulator (A or B).

Example:

; 64 bit addition: Y1:Y0:X1:X0 + B2:B1:B0:A1:A0 = B2:B1:A1:A0

ADD X,A ;add 32-bit LS words;
ADC Y,B ;add 32-bit MS words with carry

Explanation of Example:

 This example illustrates long word double precision (64-bit) addition using the
ADC instruction. Prior to execution of the ADD and ADC instructions, the 64-bit value
$0000:0001:8000:0000 is loaded into the Y and X registers (Y:X), respectively. The other
double precision 64-bit value $0000:0001:8000:0000 is loaded into the B and A accumula-
tors (B:A), respectively. Since the 32-bit value loaded into the A accumulator is automati-
cally sign extended to 40 bits and the other 32-bit long word operand is internally sign ex-
tended to 40 bits during instruction execution, the carry bit will be set correctly after the ex-
ecution of the ADD X,A instruction. The ADC Y,B instruction then produces the correct MS
40-bit result. The actual 64-bit result is stored in B1:B0:A1:A0.

ADC Add Long with Carry ADC

A Before Execution

FF 8000 0000

A2 A1 A0

B Before Execution

00 0000 0001

B2 B1 B0

A After Execution

FF 0000 0000

A2 A1 A0

B After Execution

00 0000 0003

B2 B1 B0

8000 0000

X1 X0
(X1:X0 not affected by the operation)

0000 0001

Y1 Y0
(Y1:Y0 not affected by the operation)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 21

Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result is zero. Cleared otherwise
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 39 of A or B result

Note:

The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled

“Condition Code Computation”

 for complete details.

Instruction Format:

ADC S,D

Opcode:

Instruction Fields:

Timing:

2 oscillator clock cycles

Memory:

1 program word

ADC Add Long with Carry ADC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 0 0 0 F 0 1 J

15 12 11 8 7 4 3 0

S,D J F

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 22 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

S + D

→

D (parallel move) ADD S,D (parallel move)

Description:

Add the source operand S to the destination operand D and store the result in the destina-

tion accumulator. Words (16 bits), long words (32 bits) and accumulators (40 bits) may be

added to the destination accumulator.

Note:

The carry bit is set correctly using word or long word source operands if the extension register of
the destination accumulator (A2 or B2) is the sign extension of bit 31 of the destination accumulator
(A or B). The carry bit is always set correctly using accumulator source operands.

Example:

:
ADD X0,A X:(R0)+,X0 X:(R3)+,X1 ;16-bit add, update X1,X0,R0,R3

:
:

ADD X0,A A,X:(R1)+ ;16-bit add, save accumulator
:

Explanation of Example:

 Prior to execution, the16-bit X0 register contains the value $FFFF and the 40-
bit A accumulator contains the value $00:0100:0000. The ADD instruction automatically ap-
pends the 16-bit value in the X0 register with 16 LS zeros, sign extends the resulting 32-bit
long word to 40 bits and adds the result to the 40- bit A accumulator. Thus, 16-bit operands
are added to the MSP portion of A or B (A1 or B1) because all arithmetic instructions as-
sume a fractional, two’s complement data representation. Note that 16-bit operands can be
added to the LSP portion of A or B (A0 or B0) by loading the 16-bit operand into X0 or Y0,
forming a 32-bit word by loading X1 or Y1 with the sign extension of X0 or Y0 and executing
an ADD X,A or ADD Y,A instruction.

ADD Add ADD

After Last Execution

00 00FF 0000

A2 A1 A0

Before Last Execution

00 0100 0000

A2 A1 A0

 FFFF

X0

 FFFF

X0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 23

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 39 of A or B result

Note:

The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled

“Condition Code Computation”

 for complete details.

Instruction Format:

ADD S,D (parallel move)

Opcode:

Instruction Fields:

Please see the “

X Memory Data Move

” description in the parallel move section for

details on the m, RR, HHH, and W data fields. See the “

Dual X Memory Read

” de-

scription in the parallel move section for details on the mm, KKK, and rr data fields.

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

ADD Add ADD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 0 0 F J J J

15 12 11 8 7 4 3 0

0 1 1 m m K K K 0 r r u F u u u

15 12 11 8 7 4 3 0

S,D J J J F
B,A 0 0 0 0
A,B 0 0 0 1
X,A 0 1 0 0
X,B 0 1 0 1
Y,A 0 1 1 0
Y,B 0 1 1 1
X0,A 1 0 0 0

S,D J J J F
X0,B 1 0 0 1
Y0,A 1 0 1 0
Y0,B 1 0 1 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

S,D u u u u F
X0,A 0 0 0 0 0
X0,B 0 0 0 0 1
Y0,A 0 0 0 1 0
Y0,B 0 0 0 1 1
X1,A 0 0 1 0 0
X1,B 0 0 1 0 1
Y1,A 0 0 1 1 0

S,D u u u u F
Y1,B 0 0 1 1 1

B,A 1 1 0 0 0
A,B 1 1 0 0 1

one parallel operation two parallel reads

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 24 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

S

•

D[31:16]

→

 D[31:16] (parallel move) AND S,D (parallel move)

where • denotes the logical AND operator

Description:

Logically AND the source operand S with bits 31-16 of the destination operand D and store

the result in bits 31-16 of the destination accumulator. This instruction is a 16-bit operation.

The remaining bits of the destination operand D are not affected.

Example:

AND X0,A (R2)-N2 ;AND X0 with A1, update R2 using N2
:

Explanation of Example:

Prior to execution, the 16-bit X0 register contains the value $FF00 and the 40-
bit A accumulator contains the value $00:1234:5678. The AND X0,A instruction logically
AND’s the 16-bit value in the X0 register with bits 31-16 of the A accumulator (A1) and
stores the 40-bit result in the A accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared

AND Logical AND AND

After Execution

00 1200 5678

A2 A1 A0

Before Execution

00 1234 5678

A2 A1 A0

 FF00

X0

 FF00

X0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 25

Instruction Format:

AND S,D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

AND Logical AND AND

1 m R R H H H W 0 1 1 0 F 1 J J

15 12 11 8 7 4 3 0

S,D J J F
X0,A 0 0 0
X0,B 0 0 1
Y0,A 0 1 0
Y0,B 0 1 1
X1,A 1 0 0
X1,B 1 0 1
Y1,A 1 1 0
Y1,B 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 26 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

#xx • D → D (no parallel move) AND(I) #xx,D

where • denotes the logical AND operator

Description: Logically AND the 8-bit immediate operand (#xx) with the contents of the destination control

register D and store the result in the destination control register. The condition codes are

affected only when the condition code register (CCR) is specified as the destination oper-

and.

Restrictions: The ANDI #xx,MR instruction cannot be used immediately before an ENDDO or RTI in-

struction and cannot be one of the last three instructions in a DO loop (at LA-2, LA-1 or LA).

The ANDI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:
:

AND #$FE,CCR ;clear carry bit C in cond. code register
:

Explanation of Example: Prior to execution, the 8-bit condition code register (CCR) contains the value
$31. The AND #$FE,CCR instruction logically AND’s the immediate 8-bit value $FE with
the contents of the condition code register and stores the result in the condition code reg-
ister.

ANDI AND Immediate ANDI

SR Before Execution

 xx31

MR:CCR

SR After Execution

 xx30

MR:CCR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 27

Condition Codes Affected:

For CCR operand:
S — Cleared if bit 7 of the immediate operand is cleared
L — Cleared if bit 6 of the immediate operand is cleared
E — Cleared if bit 5 of the immediate operand is cleared
U — Cleared if bit 4 of the immediate operand is cleared
N — Cleared if bit 3 of the immediate operand is cleared
Z — Cleared if bit 2 of the immediate operand is cleared
V — Cleared if bit 1 of the immediate operand is cleared
C — Cleared if bit 0 of the immediate operand is cleared

For MR and OMR operands:
The condition codes are not affected using these operands

Instruction Format:

AND(I) #xx,D

Opcode:

Instruction Fields:: #xx = 8-bit Immediate Short Data — i i i i i i i i

Timing: 2 oscillator clock cycles
Memory: 1 program word

ANDI AND Immediate ANDI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 1 E E 0 i i i i i i i i

15 12 11 8 7 4 3 0

D E E
MR 0 1
CCR 1 1
OMR 1 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 28 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ASL D (parallel move)

Operation:

Description: Arithmetically shift the destination operand D one bit to the left and store the result in the

destination accumulator. The MS bit of D prior to instruction execution is shifted into the car-

ry bit C and a zero is shifted into the LS bit of the destination accumulator D.

Example:

ASL A (R3)- ;multiply A by 2, update R3

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $A5:0123:0123.
Execution of the ASL A instruction shifts the 40-bit value in the A accumulator one bit to the
left and stores the result back in the A accumulator. The C bit of CCR (bit 0) is set by the
operation because bit 39 of A was set prior to the instruction execution. The V bit of CCR
(bit 1) is also set because bit 39 of A has changed during the instruction execution. The U
bit of CCR (bit 4) is set because the result is unnormalized, the E bit of CCR (bit 5) is set
because the signed integer portion of the result is in use, and the L bit of CCR (bit 6) is also
set because an overflow has occurred.

ASL Arithmetic Shift Accumulator Left ASL

0 (parallel move)

D2 D1 D0

C

 0300

SR=MR:CCR

0373

SR=MR:CCR

After Execution

4A 0246 0246

A2 A1 A0

Before Execution

A5 0123 0123

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 29

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if bit 39 of A or B result is changed due to left shift
C — Set if bit 39 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

ASL D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

ASL Arithmetic Shift Accumulator Left ASL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 1 1 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 30 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ASL4 D (no parallel move)

Operation:

Description: Arithmetically shift the destination operand D four bits to the left and store the result in the

destination accumulator. Bit 36 of D (bit 4 of D2) prior to instruction execution is shifted into

the carry bit C and zeros are shifted into the four LS bits of the destination accumulator D.

Example:

ASL4 A ;scaled four times to the left

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $B5:0123:0123.
Execution of the ASL4 A instruction shifts the 40-bit value in the A accumulator four bits to
the left and stores the result ($50:1230:1230) back in the A accumulator.The C bit of CCR
(bit 0) is set by the operation because bit 36 of A was set prior to the instruction execution.
The V bit of CCR (bit 1) is also set because bit 39 of A has changed during the instruction
execution. The U bit of CCR (bit 4) is set because bit 31 and 30 of the result are equal, the
E bit of CCR (bit 5) is set because the signed integer portion of the result is in use, and the
L bit of CCR (bit 6) is also set because an overflow has occurred.

Warning: The saturation mode is ALWAYS disabled during execution of ASL4, even when the satu-

ration bit (SA) of the OMR is set.

ASL4 A (or B) can be followed by a MOVE A,A (or B,B) for proper operation when the sat-

uration mode is turned on. However, the “V” bit of the status register will never be set by

the saturation of the accumulator during the MOVE A,A (of B,B). Only the “L” bit will then

be set. If the “V” bit needs to be tested by the user program, ASL4 has to be substituted by

a repetition of four ASLs.

Refer to Sections 5.3 and 5.8 for more details.

ASL4 4-bit Arithmetic Shift Accumulator Left ASL4

0

D2 D1 D0

C

36

 0300

SR=MR:CCR

0373

SR=MR:CCR

After Execution

50 1230 1230

A2 A1 A0

Before Execution

B5 0123 0123

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 31

Condition Codes Affected:

L — Set if overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if bit 35 through 39 of A or B are not the same before the shift
C — Set if bit 36 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

ASL4 D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

ASL4 4-bit Arithmetic Shift Accumulator Left ASL4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 0 1 1 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 32 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ASR D (parallel move)

Operation:

Description: Arithmetically shift the destination operand D one bit to the right and store the result in the

destination accumulator. The LS bit of D prior to instruction execution is shifted into the car-

ry bit C and the MS bit of D is held constant.

Example:

:
ASR B X:-(R3),R3 ;divide B by 2 (unless B is -1), update R3, load R3

Explanation of Example: Prior to execution, the 40-bit B accumulator contains the value
$A8:A864:A865. Execution of the ASR B instruction shifts the 40-bit value in the B accu-
mulator one bit to the right and stores the result back in the B accumulator. The C bit of
CCR (bit 0) is set by the operation because bit 0 of A was set prior to the instruction exe-
cution. The N bit of CCR (bit 3) is also set because bit 39 of the result in A is set. The E bit
of CCR (bit 5) is set because the signed integer portion of B is used by the result.

ASR Arithmetic Shift Accumulator Right ASR

C (parallel move)

D2 D1 D0

 0300

SR=MR:CCR

0329

SR=MR:CCR

After Execution

D4 5432 5432

B2 B1 B0

Before Execution

A8 A864 A865

B2 B1 B0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 33

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared
C — Set if bit 0 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

ASR D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program words

ASR Arithmetic Shift Accumulator Right ASR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 1 1 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 34 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ASR4 D (no parallel move)

Operation:

Description: Arithmetically shift the destination operand D four bits to the right and store the result in the

destination accumulator. Bit 3 of D prior to instruction execution is shifted into the carry bit

C and the 4 MS bits of D are set to the MSB of D prior to instruction execution.

Example:

ASR4 B

Explanation of Example: Prior to execution, the 40-bit B accumulator contains the value
$A8:A864:A86C. Execution of the ASR4 B instruction shifts the 40-bit value in the B accu-
mulator four bit to the right and stores the result back in the B accumulator. The C bit of
CCR (bit 0) is set by the operation because bit 3 of B was set prior to the instruction exe-
cution. The N bit of CCR (bit 3) is also set because bit 39 of the result in B is set. The E bit
of CCR (bit 5) is set because the signed integer portion of B is used by the result.

ASR4 4-bit Arithmetic Shift Accumulator Right ASR4

C

D2 D1 D0

3

 0300

SR=MR:CCR

0329

SR=MR:CCR

After Execution

FA 8A86 4A86

B2 B1 B0

Before Execution

A8 A864 A86C

B2 B1 B0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 35

Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared
C — Set if bit 3 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

ASR4 D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program words

ASR4 4-bit Arithmetic Shift Accumulator Right ASR4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 0 1 1 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 36 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ASR16 D (no parallel move)

Operation:

Description: Arithmetically shift the destination operand D 16 bits to the right and store the result in the

destination accumulator. The MS bit of D0 (bit 15 of D), prior to instruction execution, is

shifted into the carry bit C and the MS bits of D are signed extended.

Example:

ASR16 A

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value
$A8:A864:A864. Execution of the ASR16 A instruction shifts the 40-bit value in the A accu-
mulator 16 bits to the right and stores the result back in the A accumulator. The C bit of
CCR (bit 0) is set by the operation because bit 15 of A was set prior to the instruction exe-
cution. The N bit of CCR (bit 3) is also set because bit 39 of the result in A is set. The U bit
of CCR (bit 4) is set because bit 31 and bit 30 of the result are equal.

ASR16 16-bit Arithmetic Shift Accumulator Right ASR16

C (no parallel move)

D2 D1 D0

15

 0000

SR=MR:CCR

0019

SR=MR:CCR

After Execution

FF FFA8 A864

A2 A1 A0

Before Execution

A8 A864 A864

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 37

Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared
C — Set if bit 15 of A or B was set prior to instruction execution

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

ASR16 D (parallel move)

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program words

ASR16 16-bit Arithmetic Shift Accumulator Right ASR16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 1 1 1 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 38 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(<bit field> of destination) → (<bit field> of destination) BFCHG #iiii,X:<aa>
(<bit field> of destination) → (<bit field> of destination) BFCHG #iiii,X:<pp>
(<bit field> of destination) → (<bit field> of destination) BFCHG #iiii,X:<ea>
(<bit field> of destination) → (<bit field> of destination) BFCHG #iiii,D

Description: Test up to 8 bits grouped within a byte of the destination operand, complement them and

store the result in the destination memory location. The bits to be tested are selected by an

immediate 16-bit hexadecimal number in which every bit set is to be tested and changed.

The bits to be tested need to be located in the same byte (low byte for bits 0-7; middle byte

for bits 4-11; high byte for bits 8-15). This instruction performs a read-modify-write opera-

tion on the destination memory location or register and requires two destination accesses.

This instruction is very useful for performing I/O bit manipulation.

Example:

BFCHG #$0310,X:<<$FFE2 ;test and change bits 4,8,9 in I/O Port B Data Register

Explanation of Example: Prior to execution, the 16-bit X memory location X:$FFE2 (I/O Port B Data
Register) contains the value $0010. Execution of the instruction tests the state of the bits
4,8,9 in X:$FFE2, does not set the carry bit C in CCR because all of these bits were not set,
and then complements the bits.

Condition Codes Affected:

For destination operand SR:
— Changed if specified in the field

For other destination operands:
L — Set if data limiting occurred during 40-bit source move
C — Set if the all bits specified by the mask are set

Warning: Bit field instructions should always be used with a mask different from zero.

BFCHG Test Bit Field and Change BFCHG

Before Execution

X:$FFE2 0010

0000

SR=MR:CCR

After Execution

X:$FFE2 0300

0000

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 39

Instruction Format and Opcode:
BFCHG #iiii,X:<aa>
BFCHG #iiii,X:<pp>

BFCHG #iiii,X:<ea>

“—” = don’t care

BFCHG #iiii,DDDDD

Instruction Fields for second word: BBB Field active
100 upper byte (bit 8-15)

 010 middle byte (bit 4-11)
001 lower byte (bit 0-7)

 iiiiiiii = 8-bit immediate short data (mask)

Timing: 4 + mvb oscillator clock cycles
Memory: 2 program words

BFCHG Test Bit Field and Change BFCHG

B B B 1 0 0 1 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 1 P p p p p p

15 12 11 8 7 4 3 0

P Destination

0 X:<aa>5 bit Absolute
 Short Address (aaaaa)
1 X:<pp>5 bit I/O Short

Address = ppppp

RR Destination

00 X:(R0)
01 X:(R1)
10 X:(R2)
11 X:(R3)

B B B 1 0 0 1 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 1 — — — R R

15 12 11 8 7 4 3 0

B B B 1 0 0 1 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 40 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 → (<bit field> of destination) BFCLR #iiii,X:<aa>
0 → (<bit field> of destination) BFCLR #iiii,X:<pp>
0 → (<bit field> of destination) BFCLR #iiii,X:<ea>
0 → (<bit field> of destination) BFCLR #iiii,D

Description: Clear up to 8 bits grouped within a byte of the destination operand and store the result in

the destination memory location. The bits to be cleared are selected by an immediate 16-

bit hexadecimal number in which every bit set is to be cleared. The bits to be cleared need

to be located in the same byte (low byte for bits 0-7; middle byte for bits 4-11; high byte for

bits 8-15). This instruction performs a read-modify-write operation on the destination mem-

ory location or register and requires two destination accesses. This instruction is very use-

ful for performing I/O bit manipulation.

Example:

BFCLR #$0310,X:<<$FFE2 ;test and clear bits 4,8,9 in I/O Port B Data Register

Explanation of Example: Prior to execution, the 16-bit X memory location X:$FFE2 (I/O Port B Data
Register) contains the value $7F95. Execution of the instruction tests the state of the bits
4,8,9 in X:$FFE2, clear the carry bit C in CCR because not all these bits were set, and then
clears the bits.

Condition Codes Affected:

For destination operand SR:
— Cleared as defined in the field and if specified in the field

For other destination operands:
L — Set if data limiting occurred during 40-bit source move
C — Set if the all bits specified by the mask are set

Clear if the not all bits specified by the mask are set

Warning: Bit field instructions should always be used with a mask different from zero. If the mask is

zero, the instruction essentially executes two NOPs.

BFCLR Clear Bit Field BFCLR

Before Execution

X:$FFE2 7F95

0000

SR=MR:CCR

After Execution

X:$FFE2 7C85

0000

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 41

Instruction Format and Opcode:
BFCLR #iiii,X:<aa>
BFCLR #iiii,X:<pp>

BFCLR #iiii,X:<ea>

“—” = don’t care

BFCLR #iiii,DDDDD

Instruction Fields for second word: BBB Field active
100 upper byte (bit 8-15)

 010 middle byte (bit 4-11)
001 lower byte (bit 0-7)

 iiiiiiii = 8-bit immediate short data

Timing: 4 + mvb oscillator clock cycles
Memory: 2 program words

BFCLR Clear Bit Field BFCLR

B B B 0 0 1 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 1 P p p p p p

15 12 11 8 7 4 3 0

P Destination

0 X:<aa>5 bit Absolute
 Short Address (aaaaa)
1 X:<pp>5 bit I/O Short

Address = ppppp

RR Destination

00 X:(R0)
01 X:(R1)
10 X:(R2)
11 X:(R3)

B B B 0 0 1 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 1 — — — R R

15 12 11 8 7 4 3 0

B B B 0 0 1 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 42 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

1 → (<bit field> of destination) BFSET #iiii,X:<aa>
1 → (<bit field> of destination) BFSET #iiii,X:<pp>
1 → (<bit field> of destination) BFSET #iiii,X:<ea>
1 → (<bit field> of destination) BFSET #iiii,D

Description: Set up to 8 bits grouped within a byte of the destination operand and store the result in the

destination memory location. The bits to be set are selected by an immediate 16-bit hexa-

decimal number in which every bit set is to be tested and set. The bits to be set need to be

located in the same byte (low byte for bits 0-7; middle byte for bits 4-11; high byte for bits

8-15). This instruction performs a read-modify-write operation on the destination memory

location or register and requires two destination accesses. This instruction is very useful for

performing I/O bit manipulation.

Example:

BFSET #$F400,X:<<$FFE2 ;test and set bits 10,12,13,14,15 in I/O Port B
;Data Register

Explanation of Example: Prior to execution, the 16-bit X memory location X:$FFE2 (I/O Port B Data
Register) contains the value $8921. Execution of the instruction tests the state of bits
10,12,13,14,15 in X:$FFE2, does not set the carry bit C in CCR because all these bits were
not set, and then sets the bits.

Condition Codes Affected:

For destination operand SR:
— Set as defined in the field and if specified in the field

For other destination operands:
L — Set if data limiting occurred during 40-bit source move
C — Set if the all bits specified by the mask are set

Warning: Bit field instructions should always be used with a mask different from zero. If the mask is

zero, the instruction essentially executes two NOPs.

BFSET Set Bit Field BFSET

Before Execution

X:$FFE2 8921

0000

SR=MR:CCR

After Execution

X:$FFE2 FD21

0000

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 43

Instruction Format and Opcode:
BFSET #iiii,X:<aa>
BFSET #iiii,X:<pp>

BFSET #iiii,X:<ea>

“—” = don’t care

BFSET #iiii,DDDDD

Instruction Fields for second word: BBB Field active
100 upper byte (bit 8-15)

 010 middle byte (bit 4-11)
001 lower byte (bit 0-7)

 iiiiiiii = 8-bit immediate short data

Timing: 4 + mvb oscillator clock cycles
Memory: 2 program words

BFSET Set Bit Field BFSET

B B B 1 1 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 1 P p p p p p

15 12 11 8 7 4 3 0

P Destination

0 X:<aa>5 bit Absolute
 Short Address (aaaaa)
1 X:<pp>5 bit I/O Short

Address = ppppp

RR Destination

00 X:(R0)
01 X:(R1)
10 X:(R2)
11 X:(R3)

B B B 1 1 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 1 — — — R R

15 12 11 8 7 4 3 0

B B B 1 1 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 1 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 44 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

<bit field> of destination BFTSTH #iiii,X:<aa>
<bit field> of destination BFTSTH #iiii,X:<pp>
<bit field> of destination BFTSTH #iiii,X:<ea>
<bit field> of destination BFTSTH #iiii,D

Description: Test high up to 8 bits grouped within a byte of the destination operand. The bits to be tested

are selected by an immediate 16-bit hexadecimal number in which every bit set is to be test-

ed. The bits to be tested need to be located in the same byte (low byte for bits 0-7; middle

byte for bits 4-11; high byte for bits 8-15). If all the bits tested were high, the C condition bit

is set. This instruction is very useful for performing I/O flag polling.

Example:

BFTSTH #$0310,X:<<$FFE2 ;test high bits 4,8,9 in I/O Port B Data Register

Explanation of Example: Prior to execution, the 16-bit X memory location X:$FFE2 (I/O Port B Data
Register) contains the value $0FF0. Execution of the instruction tests the state of bits 4,8,9
in X:$FFE2 and sets the carry bit C in CCR because all these bits were set.

Condition Codes Affected:

L — Set if data limiting occurred during 40-bit source move
C — Set if the all bits specified by the mask are set

WARNING: Bit field instructions should always be used with a mask different from zero. If the mask is

zero, the instruction essentially executes two NOPs.

BFTSTH Test Bit Field High BFTSTH

Before Execution

X:$FFE2 0FF0

0000

SR=MR:CCR

After Execution

X:$FFE2 0FF0

0001

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 45

Instruction Format and Opcode:
BFTSTH #iiii,X:<aa>
BFTSTH #iiii,X:<pp>

BFTSTH #iiii,X:<ea>

“—” = don’t care

BFTSTH #iiii,DDDDD

Instruction Fields for second word: BBB Field active
100 upper byte (bit 8-15)

 010 middle byte (bit 4-11)
001 lower byte (bit 0-7)

 iiiiiiii = 8-bit immediate short data

Timing: 4 + mvb oscillator clock cycles
Memory: 2 program words

BFTSTH Test Bit Field High BFTSTH

B B B 1 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 1 P p p p p p

15 12 11 8 7 4 3 0

P Destination

0 X:<aa>5 bit Absolute
 Short Address (aaaaa)
1 X:<pp>5 bit I/O Short

Address = ppppp

RR Destination

00 X:(R0)
01 X:(R1)
10 X:(R2)
11 X:(R3)

B B B 1 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 0 1 — — — R R

15 12 11 8 7 4 3 0

B B B 1 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 46 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

<bit field> of destination BFTSTL #iiii,X:<aa>
<bit field> of destination BFTSTL #iiii,X:<pp>
<bit field> of destination BFTSTL #iiii,X:<ea>
<bit field> of destination BFTSTL #iiii,D

Description: Test low up to 8 bits grouped within a byte of the destination operand. The bits to be tested

are selected by an immediate 16-bit hexadecimal number in which every bit set is to be test-

ed. The bits to be tested need to be located in the same byte (low byte for bits 0-7; middle

byte for bits 4-11; high byte for bits 8-15). If all the bits tested were low, the C condition bit

is set. This instruction is very useful for performing I/O flag polling.

Example:

BFTSTL #$0310,X:<<$FFE2 ;test low bits 4,8,9 in I/O Port B Data Register

Explanation of Example: Prior to execution, the 16-bit X memory location X:$FFE2 (I/O Port B Data
Register) contains the value $18EC. Execution of the instruction tests the state of bits 4,8,9
in X:$FFE2 and sets the carry bit C in CCR because all these bits were cleared.

Condition Codes Affected:

L — Set if data limiting occurred during 40-bit source move
C — Set if the all bits specified by the mask are cleared

WARNING: Bit field instructions should always be used with a mask different from zero. If the mask is

zero, the instruction essentially executes two NOPs.

BFTSTL Test Bit Field Low BFTSTL

Before Execution

X:$FFE2 18EC

0000

SR=MR:CCR

After Execution

X:$FFE2 18EC

0001

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 47

Instruction Format and Opcode:
BFTSTL #iiii,X:<aa>
BFTSTL #iiii,X:<pp>

BFTSTL #iiii,X:<ea>

“—” = don’t care

BFTSTL #iiii,DDDDD

Instruction Fields for second word: BBB Field active
100 upper byte (bit 8-15)

 010 middle byte (bit 4-11)
001 lower byte (bit 0-7)

 iiiiiiii = 8-bit immediate short data

Timing: 4 + mvb oscillator clock cycles
Memory: 2 program words

BFTSTL Test Bit Field Low BFTSTL

B B B 0 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 1 P p p p p p

15 12 11 8 7 4 3 0

P Destination

0 X:<aa>5 bit Absolute
 Short Address (aaaaa)
1 X:<pp>5 bit I/O Short

Address = ppppp

RR Destination

00 X:(R0)
01 X:(R1)
10 X:(R2)
11 X:(R3)

B B B 0 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 0 1 — — — R R

15 12 11 8 7 4 3 0

B B B 0 0 0 0 0 i i i i i i i i

0 0 0 1 0 1 0 0 0 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 48 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then PC+label → PC Bcc xxxx
else PC+1 → PC Bcc ee

If cc, then PC+Rn → PC Bcc Rn
else PC+1 → PC

Description: If the specified condition is true, program execution continues at location PC+displace-

ment. The PC contains the address of the next instruction. If the specified condition is false,

the program counter (PC) is incremented and program execution continues sequentially.

Short displacement (6 bit signed value), long displacement (16 bit signed value) and ad-

dress register PC relative addressing modes may be used. The 6-bit data is signed extend-

ed to form the effective address.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Restrictions: — A Bcc instruction used within a DO loop cannot begin at the address LA within
that DO loop.

— A Bcc instruction cannot be repeated using the REP instruction.

— Not allowed between addresses P:$0 and P:$40.
Example:

BNN R2 ;jump to P:(PC+R2) if not normalized

Explanation of Example: In this example, program execution is transferred to the address P:(PC+R2) if
the result is not normalized. If the specified condition is not true, no jump is taken and the
program counter is incremented by one.

Bcc Branch Conditionally Bcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 49

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Format and Opcode:

Bcc xxxx

“—” = don’t care

Instruction Fields: xxxx = 16-bit signed relative branch address

Timing: 4+ jx oscillator clock cycles Memory: 2 program words

Instruction Format and Opcode:

Bcc aa

Instruction Fields: ee = 6-bit signed relative short branch address

Timing: 4 + jx oscillator clock cycles Memory: 1 program word

Instruction Format and Opcode:

Bcc Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

Instruction Fields: cc = 4-bit condition code = cccc

Bcc Branch Conditionally Bcc

x x x x x x x x x x x x x x x x

0 0 0 0 0 1 1 1 — — 1 1 c c c c

15 12 11 8 7 4 3 0

0 0 1 0 1 1 c c c c e e e e e e

15 12 11 8 7 4 3 0

0 0 0 0 0 1 1 1 R R 1 0 c c c c

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 50 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

PC+label → PC BRA xxxx
BRA aa

PC+Rn → PC BRA Rn

Description: Branch to the location in program memory at location PC+displacement. The PC contains

the address of the next instruction. Short displacement (8 bit signed value), long displace-

ment (16-bit signed value) and address register PC relative addressing modes may be

used. The 8-bit data is signed extended to form the effective address.

Restrictions: — A BRA instruction used within a DO loop cannot begin at the address LA within that DO

loop.

— A BRA instruction cannot be repeated using the REP instruction.

— Not allowed between addresses P:$0 and P:$40.

Example:

BRA R2 ;jump to P:(PC+R2)

Explanation of Example:
In this example, program execution is transferred to the address P:(PC+R2)

Condition Codes Affected:

The condition codes are not affected by this instruction.

BRA Branch BRA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 51

Instruction Format and Opcode:

BRA xxxx

“—” = don’t care

Instruction Fields: xxxx = 16-bit signed relative branch address

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

BRA aa

Instruction Fields: aa = 8-bit signed relative short branch address

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

BRA Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1program word

BRA Branch BRA

x x x x x x x x x x x x x x x x

0 0 0 0 0 0 0 1 0 0 1 1 1 1 — —

15 12 11 8 7 4 3 0

0 0 0 0 1 0 1 1 a a a a a a a a

15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 R R

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 52 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then LA+1→PC; SSL(LF,FV) → SR; SP-1 → SP; BRKcc

SSH → LA; SSL → LC; SP-1 → SP

else PC+1 → PC

Description: Exit conditionally the current hardware DO loop before the current loop counter (LC) equals

one. It also terminates the DO FOREVER loop. If the value of the current DO loop counter

(LC) is needed, it must be read before the execution of the BRKcc instruction. Initially, the

PC is updated from the LA, the loop flag (LF) and the ForeVer flag (FV) are restored and

the remaining portion of the status register (SR) is purged from the system stack. The loop

address (LA) and the loop counter (LC) registers are then restored from the system stack.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Restrictions: Due to pipelining and the fact that the BRKcc instruction accesses the program controller reg-

isters, the BRKcc instruction must not be immediately preceded by any of the following instructions:

MOVEC to LA, LC, SR, SSH, SSL or SP

MOVEC from SSH

ORI MR

ANDI MR

Also, the BRKcc instruction cannot be the next to last instruction in a DO loop (at LA-1). It cannot be the

only instruction of a DO loop.

BRKcc Exit Current DO Loop Conditionally BRKcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 53

Example:

DO Y0,END_LP ;exec. loop ending at END_LP (Y0) times
:

MOVEC LC,A ;get current value of loop counter (LC)
CMP Y1,A ;compare loop counter with value in Y1
BRKNE ;go to first instruction after Do loop if LC not equal to Y1

: ;
: ;
: ;(last instruction word in DO loop)

END_LP MOVE #$123456,X1 ;(first instruction AFTER DO loop)

Explanation of Example:

This example illustrates the use of the BRKcc instruction to terminate the cur-
rent DO loop. The value of the loop counter (LC) is compared with the value in the Y1 reg-
ister to determine if execution of the DO loop should continue. Note that the BRKcc instruc-
tion updates certain program controller registers and automatically jumps past the end of
the DO loop. Thus, no JMP/BRA instruction needs to be included after the BRKcc to trans-
fer program control to the first instruction past the end of the DO loop.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Format:

BRKcc

Opcode:

Instruction Fields:

cc = 4-bit condition code = cccc

Timing:

2 oscillator clock cycles when cc not true; 8 oscillator clock cycles when cc true

Memory:

1 program word

BRKcc Exit Current DO Loop Conditionally BRKcc

0 0 0 0 0 0 0 1 0 0 0 1 c c c c

15 12 11 8 7 4 3 0

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 54 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

If cc, then SP+1

→

 SP BScc xxxx
PC

→

 SSH
SR

→

 SSL
PC+xxxx

→

 PC
else PC+1

→

 PC

If cc, then SP+1

→

 SP BScc Rn
PC

→

 SSH
SR

→

 SSL
PC+Rn

→

 PC
else PC+1

→

 PC

Description:

If the specified condition is true, program execution continues at location PC+displace-

ment. The PC contains the address of the next instruction. If the specified condition is false,

the program counter (PC) is incremented and program execution continues sequentially.

Long displacement (16 bit signed value) and address register PC relative addressing

modes may be used.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,

⊕

denotes the logical Exclusive OR operator

Restrictions:

— A BScc instruction used within a DO loop cannot begin at the address LA within that
DO loop.

— A BScc instruction used within a DO loop cannot specify the loop address LA as its tar-
get.

— A BScc instruction cannot be repeated using the REP instruction.

— Not allowed between addresses P:$0 and P:$40.

BScc Branch to Subroutine Conditionally BScc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 55

Example:

BSLS R2 ;jump to subroutine at P:(PC+R2) if limit set

Explanation of Example:

In this example, program execution is transferred to the subroutine at address
P:(PC+R2) if the limit bit is set. If the specified condition is not true, no jump is taken and
the program counter is incremented by one.

Condition Codes Affected:

The condition codes are not affected by this instruction.

Instruction Format and Opcode:

BScc xxxx

“—” = don’t care

Instruction Fields:

xxxx = 16-bit signed relative branch address

Timing:

4 + jx oscillator clock cycles

Memory:

2 program words

Instruction Format and Opcode:

BScc Rn

Timing:

4 + jx oscillator clock cycles

Memory:

1 program words

Instruction Fields:

cc = 4-bit condition code = cccc

BScc Branch to Subroutine Conditionally BScc

x x x x x x x x x x x x x x x x

0 0 0 0 0 1 1 1 — — 0 1 c c c c

15 12 11 8 7 4 3 0

0 0 0 0 0 1 1 1 R R 0 0 c c c c

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 56 INSTRUCTION SET

MOTOROLA

Assembler Syntax: Operation:

SP+1

→

 SP BSR xxxx
PC

→

 SSH
SR

→

 SSL
PC+xxxx

→

 PC

SP+1

→

 SP BSR Rn
PC

→

 SSH
SR

→

 SSL
PC+Rn

→

 PC

Description:

Branch to subroutine in program memory at location PC+displacement. The PC contains

the address of the next instruction. Long displacement (16 bit signed value) and address

register PC relative addressing modes may be used.

Restrictions:

— A BSR instruction used within a DO loop cannot begin at the address LA within that DO

loop.

— A BSR instruction used within a DO loop cannot specify the loop address LA as its tar-

get.

— A BSR instruction cannot be repeated using the REP instruction.

— Not allowed between addresses P:$0 and P:$40.

Example:

BSR R2 ;jump to P:(PC+R2)

Explanation of Example:

In this example, program execution is transferred the subroutine at address P:(PC+R2)

Condition Codes Affected:

The condition codes are not affected by this instruction.

BSR Branch to Subroutine BSR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 57

Instruction Format and Opcode:

BSR xxxx

“—” = don’t care

Instruction Fields:

xxxx = 16-bit signed relative branch address

Timing:

4 + jx oscillator clock cycles

Memory:

2 program words

Instruction Format and Opcode:

BSR Rn

Timing:

4 + jx oscillator clock cycles

Memory:

1 program words

BSR Branch to Subroutine BSR

x x x x x x x x x x x x x x x x

0 0 0 0 0 0 0 1 0 0 1 1 1 0 — —

15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 1 0 0 1 0 1 0 R R

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 58 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

Affects V, Z and N bit of CCR according to last Address ALU result CHKAAU (no parallel move)

Description:

Update the V, Z, and N flags in the CCR according to the result of the address calculation.

Only alterable addressing modes will give meaningful flag updates. When the last address

ALU operation was performed on a double read, the update of the CCR is done according

to the result on the first address ALU register.

Example:

CHKAAU

Explanation of Example:

see above description.

Condition Codes Affected:

N — Set if bit 15 (MSB) of the result of the address calculation with linear or modulo

modifier is set. Cleared otherwise.

Z — Set if result of the address calculation equals zero. Cleared otherwise.

V — Set if overflow occurred out the MSB during address calculation with linear modifi-

er. Set if wraparound occurred during address calculation with modulo modifier.

Cleared otherwise.

Notes:

1. When CHKAAU is used after a double parallel memory read, the first memory read

(i.e., the read not addressed by R3) will affect the flags.

2. When CHKAAU is used after an LEA, the condition codes will not be affected.

CHKAAU Check Address ALU Result CHKAAU

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 59

Instruction Format:

CHKAAU

Opcode:

Timing: 2 oscillator clock cycles
Memory: 1 program word

CHKAAU Check address ALU result CHKAAU

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 60 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 → D (parallel move) CLR D (parallel move)

Description: Clear the destination accumulator. This is a 40-bit clear instruction.

Example:

CLR A A,X0 ;save A into X0 before clearing it

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.
Execution of the CLR A instruction clears the 40-bit A accumulator to zero.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
E — Always cleared
U — Always set
N — Always cleared
Z — Always set
V — Always cleared

CLR Clear Accumulator CLR

After Execution

00 0000 0000

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 61

Instruction Format:

CLR D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

CLR Clear Accumulator CLR

1 m R R H H H W 0 0 0 0 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 62 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 → bit 16-39 of D (parallel move) CLR24 D (parallel move)

Description: Clear the 24 MS bit of the destination accumulator. This is a 24-bit clear instruction.

Example:

CLR24 A X:(B1),X1 ;clear 24 MS bit of A; update X1

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.
Execution of the CLR24 A instruction clears the 24 MS bits of the accumulator A.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
E — Always cleared
U — Always set
N — Always cleared
Z — Always set
V — Always cleared

CLR24 Clear 24 MS-bits of Accumulator CLR24

After Execution

00 0000 789A

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 63

Instruction Format:

CLR24 D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

CLR24 Clear 24 MS-bits of Accumulator CLR24

1 m R R H H H W 0 1 0 1 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 64 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D - S (parallel move) CMP S,D (parallel move)

Description: Subtract the two operands and update the condition code register. The result of the sub-

traction operation is not stored.

Note: This instruction subtracts 40-bit operands. When a word is specified as S, it is sign extended and
zero filled to form a valid 40-bit operand. In order for the carry to be set correctly as a result of the
subtraction, D must be properly sign extended. D can be improperly sign extended by writing A1
or B1 explicitly prior to executing the compare so that A2 or B2, respectively, may not represent the
correct sign extension. This note particularly applies to the case where it is extended to compare
16-bit operands such as X0 with A1.

Example:

CMP Y0,A X0,X:(R1)+N1 ;comp. Y0 and A, save X0

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $00:0020:0000
and the 16-bit Y0 register contains the value $0024. Execution of the CMP Y0,A instruction
automatically appends the 16-bit value in the Y0 register with 16 LS zeros, sign extends the
resulting 32-bit long word to 40 bits, subtracts the result from the 40-bit A accumulator and
updates the condition code register leaving accumulator A unchanged.

CMP Compare CMP

After Execution

00 0020 0000

A2 A1 A0

Before Execution

00 0020 0000

A2 A1 A0

 0024

Y0

0024

Y0

 0319

SR=MR:CCR

 0300

SR=MR:CCR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 65

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

CMP S,D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

CMP Compare CMP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 0 1 F J J J

15 12 11 8 7 4 3 0

S,D J J J F
B,A 0 0 0 0
A,B 0 0 0 1
X0,A 1 0 0 0
X0,B 1 0 0 1
Y0,A 1 0 1 0

S,D J J J F
Y0,B 1 0 1 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 66 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

|D| - |S| (parallel move) CMPM S,D (parallel move)

Description: Subtract the two operands and update the condition code register. The result of the sub-

traction operation is not stored.

Note: This instruction subtracts absolute values (magnitude) of 40-bit operands. When a word is specified
as S, it is sign extended and zero filled to form a valid 40-bit operand. In order for the carry to be
set correctly as a result of the subtraction, D must be properly sign extended. D can be improperly
sign extended by writing A1 or B1 explicitly prior to executing the compare so that A2 or B2, respec-
tively, may not represent the correct sign extension. This note particularly applies to the case
where it is extended to compare 16-bit operands such as X0 with A1.

Example:

CMPM Y0,A X:(B1),X1 ;comp. |Y0| and |A|, update X1

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $00:0006:0000
and the 16-bit Y0 register contains the value $FFF7. Execution of the CMPM Y0,A instruc-
tion automatically appends the 16-bit value in the Y0 register with 16 LS zeros, sign extends
the resulting 32-bit long word to 40 bits, takes the absolute value of the resulting number,
subtracts the result from the absolute value of the 40-bit A accumulator and updates the
condition code register leaving the accumulator A unchanged.

CMPM Compare Magnitude CMPM

After Execution

00 0006 0000

A2 A1 A0

Before Execution

00 0006 0000

A2 A1 A0

 FFF7

Y0

FFF7

Y0

 0019

SR=MR:CCR

 0000

SR=MR:CCR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 67

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

CMPM S,D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

CMPM Compare Magnitude CMPM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 1 1 F J J J

15 12 11 8 7 4 3 0

S,D J J J F
B,A 0 0 0 0
A,B 0 0 0 1
X0,A 1 0 0 0
X0,B 1 0 0 1
Y0,A 1 0 1 0

S,D J J J F
Y0,B 1 0 1 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 68 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Enter the debug mode DEBUG

Description: Enter the debug mode and wait for OnCE commands.

Condition Codes Affected:
 Not affected

DEBUG Enter Debug Mode DEBUG

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 69

Instruction Format:

DEBUG
Opcode:

Timing: 4 oscillator clock cycles
Memory: 1 program word

DEBUG Enter Debug Mode DEBUG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 70 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then enter the debug mode DEBUGcc

else PC+1 → PC

Description: If the specified condition is true, enter the debug mode and wait for OnCE commands. If

the specified condition is false, continue with the next instruction.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Example: The following is an example on conditional breakpoint setting using Debugcc:

DEBUGcc Enter Debug Mode Conditional DEBUGcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

By replacing the MAC instruction by
a JSR instruction as follows:

:
ASR4 A
JSR Break
ADD X1,A
:
:

Break DEBUGcc
MAC X0,Y1,A
RTS

A conditional breakpoint can be set
on the MAC instruction of the fol-
lowing sequence of code:
:
ASR4 A
MAC X0,Y1,A
ADD X1,A

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 71

Condition Codes Affected:
 Not affected

Instruction Format:

DEBUGcc
Opcode:

Instruction Fields:

cc = 4-bit condition code = cccc

Timing: 4 oscillator clock cycles
Memory: 1 program word

DEBUGcc Enter Debug Mode Conditional DEBUGcc

0 0 0 0 0 0 0 0 0 1 0 1 c c c c

15 12 11 8 7 4 3 0

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 72 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D-1 → D (parallel move) DEC D (parallel move)

Description: Decrement by one the destination accumulator. This is a 40-bit decrement instruction.

Example:

DEC A A,X0 ;save A into X0 before decrementing it

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.
Execution of the DEC A instruction decrements by one the 40-bit A accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

DEC Decrement Accumulator DEC

After Execution

12 3456 7899

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 73

Instruction Format:

DEC D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

DEC Decrement Accumulator DEC

1 m R R H H H W 0 1 1 0 F 0 1 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 74 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D2:D1-1 → D2:D1 (parallel move); DEC24 D (parallel move)
D0 is unchanged

Description: Decrement by one the 24 MS bits of the destination accumulator.

Example:

DEC24 A X:(B1),X1 ;Decrement 24 MS bit of A; update X1

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.
Execution of the DEC24 A instruction decrements by one the 24 MS bit of the accumulator
A.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if the 24 most significant bit of the result are all zeroes
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

DEC24 Decrement 24 MS-bit of Accumulator DEC24

After Execution

12 3455 789A

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 75

Instruction Format:

DEC24 D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

DEC24 Decrement 24 MS-bit of Accumulator DEC24

1 m R R H H H W 0 1 1 0 F 0 1 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 76 INSTRUCTION SET MOTOROLA

Assembler Syntax:

DIV S,D (parallel move)

Operation:

Description: Divide the destination operand D (dividend) by the source operand S (divisor) and store the

result in the destination accumulator D. The 32-bit dividend must be a positive fraction

which has been sign extended to 40-bits and is stored in the full 40-bit destination

accumulator D. The 16-bit divisor is a signed fraction and is stored in the source op-

erand S. Each DIV iteration calculates one quotient bit using a nonrestoring fractional divi-

sion algorithm (see the description on the next page). After execution of the first DIV in-

struction, the destination operand holds both the partial remainder and the formed quotient.

The partial remainder occupies the high order portion of the destination accumulator D and

is a signed fraction. The formed quotient occupies the low order portion of the destination

accumulator D (A0 or B0) and is a positive fraction. One bit of the formed quotient is shifted

into the LSB of the destination accumulator at the start of each DIV iteration. The formed

quotient is the true quotient if the true quotient is positive. If the true quotient is negative,

the formed quotient must be negated. Valid results are obtained only when |D| < |S| and

the operands are interpreted as fractions. Note that this condition ensures that the mag-

nitude of the quotient is less than one (i.e., is fractional) and precludes division by zero.

The DIV instruction calculates one quotient bit based on the divisor and the previous partial

remainder. To produce an N-bit quotient, the DIV instruction is executed N times where N

is the number of bits of precision desired in the quotient, 1< N<16. Thus, for a full precision

(16 bit) quotient, 16 DIV iterations are required. In general, executing the DIV instruction N

times produces an N-bit quotient and a 32-bit remainder which has (32 - N) bits of precision

and whose N MS bits are zeros. The partial remainder is not a true remainder and must be

corrected due to the nonrestoring nature of the division algorithm before it may be used.

Therefore, once the divide is complete, it is necessary to reverse the last DIV operation and

restore the remainder to obtain the true remainder.

The DIV instruction uses a nonrestoring fractional division algorithm which consists of the following opera-
tions:

1. Compare the source and destination operand sign bits: An exclusive OR operation is performed on

bit 39 of the destination operand D and bit 15 of the source operand S;

DIV Divide Iteration DIV

If D[39] ⊕ S[15] = 1 then

C; D1+ S → D1

D2 D1 D0

else

C; D1 - S → D1

D2 D1 D0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 77

2. Shift the partial remainder and the quotient: the 40-bit destination accumulator D is shifted one bit

to the left. The carry bit C is moved into the LSB (bit 0) of the accumulator;

3. Calculate the next quotient bit and the new partial remainder: The 16-bit source operand S (signed

divisor) is either added to, or subtracted from, the MSP portion of the destination accumulator (A1

or B1) and the result is stored back into the MSP portion of that destination accumulator. If the result

of the exclusive OR operation described above was a “1” (i.e., the sign bits were different), the

source operand S is added to the accumulator. If the result of the exclusive OR operation was a “0”

(i.e., the sign bits were the same), the source operand S is subtracted from the accumulator. Due

to the automatic sign extension of the 16-bit signed divisor, the addition or subtraction operation

correctly sets the carry bit C of the condition code register with the next quotient bit.

Example: (4 Quadrant division, 16-bit signed quotient, 32-bit signed remainder)

ABS A A,B ;make dividend positive, copy A1 to B1
MOVE B,X:$0 ;save rem. sign in X:$0
EOR Y0,B ;quotient sign in N bit of CCR
ANDI #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$10 ;form a 16-bit quotient
DIV Y0,A ;form quotient in A0, remainder in A1
TFR A,B ;save quotient and remainder in B1,B0
JPL SAVEQ ;go to SAVEQ if quotient is positive
NEG B ;complement quotient if N bit set

SAVEQ TFR Y0,B B0,Y1 ;save quotient in Y1, get signed divisor
ABS B ;get absolute value of signed divisor
ADD A,B ;restore remainder in B1
BFTSTL #$8000,X:$0 ;test sign of remainder
BCS DONE ;go to DONE if remainder is positive
MOVE #$0,B0 ;clear LS 16 bits of B
NEG B ;complement remainder if negative

DONE …

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the 40-bit, sign extended

fractional dividend D (D = $00:0E66:D7F2 = 0.112513535656035 (approx.)) and the 16-bit

Y0 register contains the 16-bit, signed fractional divisor S (S = $1234 = 0.1422119). Since

|D| < |S|, the execution of the divide routine given above stores the correct 16-bit signed

DIV Divide Iteration DIV

After Execution

00 121E 6544

A2 A1 A0

Before Execution

00 0E66 D7F2

A2 A1 A0

00 2452 6544

B2 B1 B0

00 0000 0000

B2 B1 B0

6544 1234

Y1 Y0

0000 1234

Y1 Y0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 78 INSTRUCTION SET MOTOROLA

quotient in the 16-bit Y1 register (A/Y0 = 0.7911072 = $6544 = Y1). The partial remainder

is restored by reversing the last DIV operation and adding back the absolute value of the

signed divisor in Y0 to the partial remainder in A1. This produces the correct LS16 bits of

the 32-bit signed remainder in the 16-bit B1 register. Note that the remainder is really a 32-

bit value which has 16 bits of precision. Thus, the correct 32-bit remainder is $0000:2452

which is approximately 0.000004329718649.

Note: The divide routine used in the example above assumes that the sign extended 40-bit signed frac-

tional dividend is stored in the A accumulator and that the 16-bit signed fractional divisor is stored

in the Y0 register. This routine produces a full 16-bit signed quotient and a 32-bit signed remainder.

This routine may be greatly simplified for the case in which only unsigned operands are used to pro-

duce a 16-bit positive quotient and a 32-bit positive remainder, as shown below.

1 Quadrant division, 16-bit unsigned quotient, 32-bit unsigned remainder

ANDI #$FE,CCR ;clear carry bit C (quotient sign bit)
REP #$10 ;form a 16-bit quotient and remainder
DIV X0,A ;form quotient in A0, remainder in A1
ADD X0,A ;restore remainder in A1

This last routine assumes that the 40-bit positive, fractional, sign extended dividend is stored in the

A accumulator and that the 16-bit positive, fractional divisor is stored in the X0 register. After exe-

cution, the 16-bit positive fractional quotient is stored in the A0 register while the LS 16-bits of the

32-bit positive fractional remainder are stored in the A1 register.

DIV Divide Iteration DIV

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 79

Condition Codes Affected:

L — Set if overflow bit V is set
V — Set if the MS bit of the destination operand is changed as a result of the

 instruction’s left shift operation
C — Set if bit 39 of the result is cleared

Instruction Format:

DIV S,D (parallel move)
Opcode:

“—” = don’t care

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

DIV Divide Iteration DIV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 — — 0 F 1 D D

15 12 11 8 7 4 3 0

S,D D D F

X0,A 0 0 0
X0,B 0 0 1
Y0,A 0 1 0
Y0,B 0 1 1

S,D D D F

X1,A 1 0 0
X1,B 1 0 1
Y1,A 1 1 0
Y1,B 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 80 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S1*S2+[D>>16] → D (no parallel move) DMAC(ss,su,uu) S1,S2,D (no parallel move)

Description: Multiply the two 16-bit source operands S1 and S2 and add the product to the destination

accumulator D which has been previously shifted 16 bits to the right. The multiplication can

be performed on signed numbers (ss), unsigned numbers (uu), or mixed (unsigned x

signed, (su)) numbers. This instruction is optimized for multiprecision multiplication sup-

port.

Example:

:
DMACsu Y1,X0,A X0,A ;save A into X0 before decrementing it
:

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.
Execution of the DMACsu Y1,X0,A multiplies the 16-bit signed value in Y1 by the 16-bit un-
signed value in X0, adds the result of the product to the accumulator A after A has been
shifted right and writes the final result in the accumulator A.

Warning: The saturation mode is ALWAYS disabled during execution of DMAC, even when the sat-

uration bit (SA) of the OMR is set. Refer to Section 5.8.3 for more details.

Condition Codes Affected:

L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

DMAC Double (Multi) Precision DMAC
Multiply-Accumulate with 16-bit Right Shift

 FFFF

X0

After Execution

00 00E0 3388

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

 0067

Y1

 FFFF

X0

 0067

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 81

Instruction Format:

DMAC(ss,su,uu) S1,S2,D (no parallel move)
Opcode:

Instruction Fields:

“—” = don’t care

Timing: 2 oscillator clock cycles
Memory: 1 program word

DMAC Double (Multi) Precision DMAC
Multiply-Accumulate with 16-bit Right Shift

0 0 0 1 0 1 0 1 1 0 s 1 F s Q Q

15 12 11 8 7 4 3 0

S1,S2,D QQ F

Y0,X0,A 0 0 0
Y0,X0,B 0 0 1
Y1,X0,A 0 1 0
Y1,X0,B 0 1 1

S1,S2,D QQ F

X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

Arithmetic ss

ss 0 –
su 10
uu 11

Note: For DMACsu, the order of S1, S2 is
significant; S1 will always be the signed op-
erand (i.e., Y0,Y1, X1).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 82 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:
SP+1→SP; LA →SSH; LC→SSL; X:<ea> →LC DO X:(Rn),expr
SP+1→SP; PC→SSH; SR→SSL; offset-1+PC→LA
1→ LF

SP+1 → SP; LA → SSH; LC→ SSL; #xx → LC DO #xx,expr
SP+1→SP; PC→SSH; SR→SSL; offset-1+PC→LA
1→ LF

SP+1 → SP; LA → SSH; LC→ SSL; S → LC DO S,expr
SP+1→SP; PC→SSH; SR→SSL; offset-1+PC→LA
1→ LF

End of Loop:

SSL(LF) → SR; SP-1 → SP
SSH → LA; SSL → LC; SP-1 → SP

Description: Begin a hardware DO loop that is to be repeated the number of times specified in the in-

struction’s source operand and whose range of execution is terminated by the destination

operand (shown above as “expr”). No overhead other than the execution of this DO instruc-

tion is required to set up this loop. DO loops can be nested and the loop count can be

passed as a parameter. During the first instruction cycle, the current contents of the Loop

Address (LA) and the Loop Counter (LC) registers are pushed onto the system stack. The

DO instruction’s source operand is then loaded into the Loop Counter (LC) register. The LC

register contains the remaining number of times the DO loop will be executed and can be

accessed from inside the DO loop subject to certain restrictions. If LC equals zero, the DO

loop is not executed. If immediate short data is specified, the 8 LS bits of LC are loaded

with the 8-bit immediate value and the eight MS bits of LC are cleared.

During the second instruction cycle, the current contents of the Program Counter (PC) reg-

ister and the Status Register (SR) are pushed onto the system stack. Stacking LA, LC, PC,

and SR permits nesting DO loops. The DO instruction’s destination address (shown as off-

set which is derived from “expr”) is then loaded into the Loop Address (LA) register after

having been added to the PC. This 16-bit operand is located in the instruction’s 16-bit rel-

ative address extension word as shown in the opcode section. The value in the Program

Counter (PC) register pushed onto the system stack is the address of the first instruction

following the DO instruction (i.e., the first actual instruction in the DO loop). This value is

read (i.e., copied but not pulled) from the top of the system stack to return to the top of the

loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set. This results in the PC being re-

peatedly compared with LA to determine if the last instruction in the loop has been fetched.

If LA equals PC, the last instruction in the loop has been fetched and the Loop Counter (LC)

is tested. If LC is not equal to one, it is decremented by one and SSH is loaded into the PC

to fetch the first instruction in the loop again. If LC equals one, the “end of loop” processing

begins.

DO Start Hardware Do Loop DO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 83

When executing a DO loop, the instructions are actually fetched each time through the loop.

Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO loops are

nested, the end of loop addresses must also be nested and are not allowed to be equal.

The assembler generates an error message when DO loops are improperly nested. Nested

DO loops are illustrated in the example.

Note: The assembler determines the offset needed to calculate the address to be loaded into LA at exe-

cution time. This offset is calculated by evaluating the end of loop expression “expr” and subtracting

the address of the next instruction following the DO instruction. This is done to accommodate the

case where the last word in the DO loop is a two word instruction. Thus, the end of loop expression

“expr” in the source code must represent the address of the instruction AFTER the last instruction

in the loop as shown in the example.

During the “end of loop” processing, the Loop Flag (LF) from the lower portion (SSL) of SP

is written into the Status Register (SR), the contents of the Loop Address (LA) register are

restored from the upper portion (SSH) of SP-1, the contents of the Loop Counter (LC) are

restored from the lower portion (SSL) of SP-1 and the Stack Pointer (SP) is decremented

by two. Instruction fetches now continue at the address of the instruction following the last

instruction in the DO loop. Note that LF is the only bit in the Status Register (SR) that is

restored after a hardware DO loop has been exited.

Note: The Loop Flag (LF) is cleared by a hardware reset.

Restrictions: The “end of loop” comparison described above actually occurs at instruction fetch time. That

is, LA is being compared with PC when the instruction at LA-2 is being executed. Therefore, instructions

which access the program controller registers and/or change program flow cannot be used in locations LA-

2, LA-1, or LA.

Proper DO loop operation is not guaranteed if an instruction starting at address LA-2, LA-1, or LA specifies

one of the program controller registers SR, SP, SSL, LA, LC, or (implicitly) PC as a destination register. Sim-

ilarly, the SSH program controller register may not be specified as a source or destination register in an in-

struction starting at address LA-2, LA-1, or LA. Additionally, the SSH register cannot be specified as a

source register in the DO instruction itself and LA cannot be used as a target for jumps to subroutine (i.e.,

BSR, JSR, BScc, or JScc to LA). A DO instruction cannot be repeated using the REP instruction.

DO Start Hardware Do Loop DO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 84 INSTRUCTION SET MOTOROLA

The following instructions cannot begin at the indicated position(s) near the end of a DO loop:

At LA-2, LA-1 and LA DO

MOVEC from SSH

MOVEC to LA, LC, SR, SP, SSH or SSL

ANDI MR

ORI MR

Two word instructions which read LC, SP, or SSL

At LA-1 ENDDO, BRKcc

Single word instructions which read LC, SP, or SSL

At LA any two-word instruction* RESET

Bcc, Jcc RTI

BRA, JMP RTS

BScc, JScc STOP

 BSR, JSR WAIT

REP, REPcc

*This restriction applies to the situation in which the DSP Simulator’s single line assembler is used to change

the last instruction in a DO loop from a one-word instruction to a two-word instruction.

Other Restrictions DO SSH,xxxx

BSR, JSR to (LA) whenever the Loop Flag (LF) is set

BScc, JScc to (LA) whenever the Loop Flag (LF) is set

A DO instruction cannot be repeated using the REP instruction.

Notes: Due to pipelining, if an address register (R0-R3, N0-N3 or M0-M3) is changed using a move-type

instruction (LUA, Tcc, MOVE, MOVEC, MOVEP, or parallel move), the new contents of the desti-

nation address register will not be available for use during the following instruction (i.e., there is a

single instruction cycle pipeline delay). This restriction also applies to the situation in which the last

instruction in a DO loop changes an address register and the first instruction at the top of the DO

loop uses that same address register. The top instruction becomes the following instruction be-

cause of the loop construct.

DO Start Hardware Do Loop DO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 85

Similarly, since the DO instruction accesses the program controller registers, the DO instruction must not

be immediately preceded by any of the following instructions:

Immediately before DO MOVEC to LA, LC, SSH, SSL or SP

MOVEC from SSH

Example:

DO #cnt1, END1 ;begin outer DO loop
:

DO #cnt2, END2 ;begin inner DO loop
:
:

MOVE A,X:(R0)+ ;last instruction in inner loop
END2 : ;(in outer loop)

ADD A,B X:(R1)+,X0 ;last instruction in outer loop
END1 : ;first instruction after outer loop

Explanation of Example: This example illustrates a nested DO loop. The outer DO loop will be executed

“cnt1” times while the inner DO loop will be executed (“cnt1” * “cnt2”) times. Note that the

labels END1 and END2 are located at the first instruction past the end of the DO loop, as

mentioned above, and are nested properly.

Condition Codes:

LF — Set when a DO loop is in progress
L — Set if data limiting occurred

Note: If A or B is specified as a source operand, the accumulator value is optionally shifted according to

the scaling mode bits in the status register. If the data out of the shifter indicates that the accumu-

lator extension is in use, the 16-bit data is limited to a maximum positive or negative saturation con-

stant. The shifted and limited value is loaded into LC, although A or B remain unchanged.

DO Start Hardware Do Loop DO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 86 INSTRUCTION SET MOTOROLA

Instruction Format and Opcode:

DO X:(Rn), expr

“—” = don’t care

DO #xx, expr

DO Start Hardware Do Loop DO

Relative Address Displacement Extension

0 0 0 0 0 0 0 0 1 1 0 — — — R R

15 12 11 8 7 4 3 0

RR Rn

00 R0
01 R1
10 R2
11 R3

Relative Address Displacement Extension

0 0 0 0 1 1 1 0 i i i i i i i i

15 12 11 8 7 4 3 0

iiii = immediate 8-bit
short data = iiiiiiii

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 87

DO S,expr

Note: • For DO SP, expr
The actual value that will be loaded into the Loop Counter (LC) is the value of the Stack Pointer
(SP) before the execution of the DO instruction, incremented by one. Thus, if SP = 3, the execu-
tion of the DO SP, expr instruction will load the Loop Counter (LC) with the value LC = 4.

• For DO SSL, expr
The Loop Counter (LC) will be loaded with its previous value which was saved on the stack by
the DO instruction itself.

• If A or B is specified as a source operand, the accumulator value is optionally shifted according
to the scaling mode bits in the status register. If the data out of the shifter indicates that the accu-
mulator extension is in use, the 16-bit data is limited to a maximum positive or negative saturation
constant. The shifted and limited value is loaded into LC, although A or B remain unchanged.

Instruction Field for the second word:

 expr = 16-bit PC Relative Address

Timing: 10 + mv oscillator clock cycles if the DO argument equals zero;
otherwise it is 6 + mv oscillator clock cycles

Memory: 2 program words

DO Start Hardware Do Loop DO

Relative Address Displacement Extension

0 0 0 0 0 1 0 0 0 0 0 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 88 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

SP+1→SP; LA →SSH; LC→SSL DO FOREVER expr
SP+1→SP; PC→SSH; SR→SSL; expr-1+PC→LA
1→ LF; 1→FV

Description: Begin a hardware DO loop that is to be repeated for ever and whose range of execution is

terminated by the destination operand (shown above as “expr”). No overhead other than

the execution of this DO FOREVER instruction is required to set up this loop. DO FOREV-

ER loops can be nested. During the first instruction cycle, the current contents of the Loop

Address (LA) and the Loop Counter (LC) registers are pushed onto the system stack. The

loop counter (LC) register is pushed onto the stack but is not updated by this instruction.

During the second instruction cycle, the current contents of the Program Counter (PC) reg-

ister and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC,

PC, and SR registers permits nesting DO FOREVER loops. The DO FOREVER instruc-

tion’s destination operand (shown as “expr”) is then loaded into the Loop Address (LA) reg-

ister after having been added to the PC. This 16-bit operand is located in the instruction’s

16-bit relative address extension word as shown in the opcode section. The value in the

Program Counter (PC) register pushed onto the system stack is the address of the first in-

struction following the DO FOREVER instruction (i.e., the first actual instruction in the DO

FOREVER loop). This value is read (i.e., copied but not pulled) from the top of the system

stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. This re-

sults in the PC being repeatedly compared with LA to determine if the last instruction in the

loop has been fetched. If LA equals PC, the last instruction in the loop has been fetched

and SSH is loaded into the PC to fetch the first instruction in the loop again. The loop

counter (LC) register is then decremented by one without being tested. This register can be

used by the programer to count the number of loops already executed.

When executing a DO FOREVER loop, the instructions are actually fetched each time

through the loop. Therefore, a DO FOREVER loop can be interrupted. DO FOREVER loops

can also be nested. When DO FOREVER loops are nested, the end of loop addresses must

also be nested and are not allowed to be equal. The assembler generates an error mes-

sage when DO FOREVER loops are improperly nested. Nested DO loops with one DO

FOREVER loop are illustrated in the example.

Note: The assembler determines the offset needed to calculate the address to be loaded into LA at exe-

cution time. This offset is calculated by evaluating the end of loop expression “expr” and subtracting

the address of the next instruction following the DO instruction. This is done to accommodate the

case where the last word in the DO FOREVER loop is a two word instruction. Thus, the end of loop

expression “expr” in the source code must represent the address of the instruction after the last

instruction in the loop as shown in the example.

DO FOREVER Start Infinite Loop DO FOREVER

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 89

The loop counter (LC) register is never tested by the DO FOREVER instruction and the only way of

terminating the loop process is to use either the ENDDO or BRKcc instructions. LC is decremented

every time PC=LA so that it can be used by the programmer to keep track of the number of times

the DO FOREVER loop has been executed. If the programer wants to initialize LC to a particular

value before the DO FOREVER, care should be taken to save it before if the DO loop is nested. If

so, LC should also be restored immediately after exiting the nested DO FOREVER loop.

Restrictions: The “end of loop” comparison described above actually occurs at instruction fetch time. That

is, LA is being compared with PC when the instruction at LA-2 is being executed. Therefore, instructions

which access the PCU registers and/or change program flow cannot be used in locations LA-2, LA-1 or LA.

Proper DO FOREVER loop operation is not guaranteed if an instruction starting at address LA-2, LA-1, or

LA specifies one of the program control unit registers SR, SP, SSL, LA, or (implicitly) PC as a destination

register. Similarly, the SSH register may not be specified as a source or destination register in an instruction

starting at address LA-2, LA-1, or LA. Additionally, the SSH register cannot be specified as a source register

in the DO FOREVER instruction itself and LA cannot be used as a target for jumps to subroutine (i.e., BSR,

JSR, BScc, or JScc to LA). A DO FOREVER instruction cannot be repeated using the REP instruction.

The following instructions cannot begin at the indicated position(s) near the end of a DO FOREVER loop:

At LA-2, LA-1, and LA DO

MOVEC from SSH

MOVEC to LA, SR, SP, SSH or SSL

ANDI MR

ORI MR

Two word instructions which read SP, or SSL

At LA-1 ENDDO, BRKcc

Single word instructions which read SP, or SSL

At LA Any two-word instruction* RESET

Bcc, Jcc RTI

BRA, JMP RTS

BScc, JScc STOP

 BSR, JSR WAIT

REP, REPcc

*This restriction applies to the situation in which the DSP Simulator’s single line assembler is used to change

the last instruction in a DO FOREVER loop from a one-word instruction to a two-word instruction.

Other Restrictions BSR, JSR to (LA) whenever the Loop Flag (LF) is set
BScc, JScc to (LA) whenever the Loop Flag (LF) is set

DO FOREVER Start Infinite Loop DO FOREVER

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 90 INSTRUCTION SET MOTOROLA

Note: Due to pipelining, if an address register (R0-R3, N0-N3 or M0-M3) is changed using a move-type

instruction (LEA, Tcc, MOVE, MOVEC, or parallel move), the new contents of the destination ad-

dress register will not be available for use during the following instruction (i.e., there is a single in-

struction cycle pipeline delay). This restriction also applies to the situation in which the last instruc-

tion in a DO loop changes an address register and the first instruction at the top of the DO loop uses

that same address register. The top instruction becomes the following instruction because of the

loop construct.

Similarly, since the DO instruction accesses the PCU registers, the DO instruction must not be immediately

preceded by any of the following instructions:

Immediately before DO MOVEC to LA, SSH, SSL or SP

MOVEC from SSH

Example:

DO #cnt1, END1 ;begin outer DO loop
:

DO FOREVER,END2 ;begin inner DO loop
:
:
:

BEQ REM
ENDDO ;ENDDO if not EQ
ENDDO ;ENDDO for leaving outer loop
BRA END1 ;Branch to (END1) out of upper loop

REM :
:

BRKNN ;conditional exit of DO FOREVER; branch to END2 exiting
; loop

:
MOVE A,X:(R0)+ ;last instruction in inner loop

END2 : ;first instruction in outer loop
ADD A,B X:(R1)+,X0 ;last instruction in outer loop

END1 : ;first instruction after outer loop

Explanation of Example: This example illustrates a nested DO loop with one DO FOREVER loop. The

outer DO loop will be executed “cnt1” times while the inner DO FOREVER loop will be ex-

ecuted till the ENDDO or BRKNN are executed. Note that the labels END1 and END2 are

located at the first instruction past the end of the DO loop, as mentioned above, and are

nested properly.

DO FOREVER Start Infinite Loop DO FOREVER

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 91

Condition Codes Affected:

LF — Set when a DO loop is in progress

Instruction Format:

DO FOREVER expr
Opcode:

Timing: 6 oscillator clock cycles
Memory: 2 program words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

DO FOREVER Start Infinite Loop DO FOREVER

Relative Address Displacement Extension

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 92 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

SSL(LF,FV) → SR; SP-1 → SP ENDDO
SSH → LA; SSL → LC; SP-1 → SP

Description: Terminate the current hardware DO loop before the current loop counter (LC) equals one.

It also terminates the DO FOREVER loop. If the value of the current DO loop counter (LC)

is needed, it must be read before the execution of the ENDDO instruction. Initially, the loop

flag (LF) and the ForeVer flag (FV) are restored from the system stack and the remaining

portion of the status register (SR) and the program counter (PC) are purged from the sys-

tem stack. The loop address (LA) and the loop counter (LC) registers are then restored from

the system stack.

Restrictions: Due to pipelining and the fact that the ENDDO instruction accesses the program controller

registers, the ENDDO instruction must not be immediately preceded by any of the following instructions:

Immediately before ENDDO MOVEC to LA, LC, SR, SSH, SSL or SP

MOVEC from SSH

ORI MR

ANDI MR

Also, the ENDDO instruction cannot be the next to last instruction in a DO loop (at LA-1).

Example:

DO Y0,NEXT ;exec. loop ending at NEXT (Y0) times
:

MOVEC LC,A ;get current value of loop counter (LC)
CMP Y1,A ;compare loop counter with value in Y1
JNE ONWARD ;go to ONWARD if LC not equal to Y1
ENDDO ;LC equal to Y1, restore all DO registers
JMP NEXT ;go to NEXT

ONWARD : ;LC not equal to Y1, continue DO loop
: ;(last instruction in DO loop)

NEXT MOVE #$123456,X1 ;(first instruction AFTER DO loop)

Explanation of Example: This example illustrates the use of the ENDDO instruction to terminate the cur-

rent DO loop. The value of the loop counter (LC) is compared with the value in the Y1 reg-

ister to determine if execution of the DO loop should continue. Note that the ENDDO in-

struction updates certain program controller registers but does not automatically jump past

the end of the DO loop. Thus, if this action is desired, a JMP/BRA instruction (i.e., JMP

NEXT as shown above) must be included after the ENDDO instruction to transfer program

control to the first instruction past the end of the DO loop.

Condition Codes Affected:
The condition codes are not affected by this instruction.

ENDDO End Current DO Loop ENDDO

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 93

Instruction Format:

ENDDO
Opcode:

Timing: 2 oscillator clock cycles
Memory: 1 program word

ENDDO End Current DO Loop ENDDO

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 94 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S ⊕ D[31:16] → D[31:16] (parallel move) EOR S,D (parallel move)

Description: Logically Exclusive OR the source operand S with bits 31-16 of the destination operand D

and store the result in bits 31-16 of the destination accumulator. This instruction is a 16-bit

operation. The remaining bits of the destination operand D are not affected.

Example:

EOR Y1,B (R2)- ;Exclusive OR Y1 with B1, update R2
:

Explanation of Example: Prior to execution, the 16-bit Y1 register contains the value $0003 and the 40-

bit B accumulator contains the value $00:0005:6789. The EOR Y1,B instruction logically

exclusive OR’s the 16-bit value in the Y1 register with bits 31-16 of the B accumulator (B1)

and stores the 40-bit result in the B accumulator. Note that the lower word of the accumu-

lator, B0, and the extension byte, B2, are not affected by the operation.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared

EOR Logical Exclusive OR EOR

After Execution

00 0006 6789

B2 B1 B0

Before Execution

00 0005 6789

B2 B1 B0

 0003

Y1

 0003

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 95

Instruction Format:

EOR S,D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

EOR Logical Exclusive OR EOR

1 m R R H H H W 0 0 1 1 F 1 J J

15 12 11 8 7 4 3 0

S,D J J F
X0,A 0 0 0
X0,B 0 0 1
Y0,A 0 1 0
Y0,B 0 1 1
X1,A 1 0 0
X1,B 1 0 1
Y1,A 1 1 0
Y1,B 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 96 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

bit 31 of D → [bit 39-32] of D EXT D (no parallel move)

Description: Sign Extend the Destination accumulator from the most significant bit of the upper word (bit

31 of D). The LS word of the destination accumulator is not affected.

Example:

EXT A

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $FF:6432:0000.

Since bit 31 of A is cleared, the execution of the EXT instruction clears the extension bits

32-39 and returns $00:6432:0000 in A which is a positive value.

Condition Codes Affected:

E — Always cleared
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared

EXT Sign Extend Accumulator EXT

A After Execution

00 6432 0000

A2 A1 A0

A Before Execution

FF 6432 0000

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 97

Instruction Format:

EXT D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

EXT Sign Extend Accumulator EXT

0 0 0 1 0 1 0 1 0 1 0 1 F 0 1 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 98 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Begin Illegal instruction exception routine ILLEGAL (no parallel move)

Description: Normal instruction execution is suspended and Illegal Instruction exception processing is

initiated. The interrupt priority level (I1, I0) is set to 3 in the status register if a long interrupt

service routine is used. The purpose of the Illegal interrupt is to force the DSP into an illegal

instruction exception for test purposes. If a fast interrupt is used with the ILLEGAL instruc-

tion, an infinite loop will be formed (an illegal instruction interrupt normally returns to the il-

legal instruction) which can only be broken by a hardware reset. Therefore, only long inter-

rupts should be used. Exiting an ILLEGAL instruction is a fatal error, the long exception rou-

tine should indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA-1 is being inter-

rupted, then LC will be decremented twice due to the same mechanism that causes LC to

be decremented twice if JSR, REP,… are located at LA.

Since REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt not

being taken until after completion of the REP. After servicing the interrupt, program control

will return to the address of the second word following the ILLEGAL instruction. Of course,

the ILLEGAL interrupt service routine should abort further processing, and the processor

should be reinitialized.

Example:

ILLEGAL

Explanation of Example: see above description.

Condition Codes Affected:

The condition codes are not affected by this instruction.

ILLEGAL Illegal Instruction Interrupt ILLEGAL

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 99

Instruction Format:

ILLEGAL

Opcode:

Timing: 8 oscillator clock cycles
Memory: 1 program word

ILLEGAL Illegal Instruction Interrupt ILLEGAL

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 100 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(S1*S2+[D>>15])<15 → D2:D1; IMAC S1,S2,D (no parallel move)

sign extend D2; leave D0 unchanged

Description: Integer Multiply the two 16-bit signed integer source operands S1 and S2 and add the prod-

uct to the upper word (D1) of the destination accumulator D leaving the lower word (D0)

unchanged. A 15-bit shift as opposed to a 16-bit shift is required because of the inherent

fractional nature of the multiplier. This is discussed more fully in Section 3.2.3.

Note: No overflow control or rounding are performed during integer multiply-accumulate instruc-

tions. The result is always a 16-bit signed integer result which is sign extended to 24 bits.

Example:

:
MOVE R0,A ; initialize A
IMAC Y0,X0,A ; update A
MOVE X:(A1),B ; use A1 as memory pointer
:

Explanation of Example: Prior to execution, the 16-bit accumulator register A1 contains a 16-bit signed

integer value ($0008). The data ALU registers X0 and Y0 contains respectively two 16-bit

signed integer values $0003 and $0004. Execution of the IMAC X0,Y0,A instruction integer

multiplies X0 and Y0 and accumulates the result in A1. A0 remains unchanged and A2 is

sign extended.

IMAC Integer Multiply-Accumulate IMAC

 0003

X0

After Execution

00 0014 789A

A2 A1 A0

Before Execution

00 0008 789A

A2 A1 A0

 0004

Y0

 0003

X0

 0004

Y0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 101

Condition Codes Affected:

E — Not defined
U — Not defined
N — Set if bit 39 of the result is set
Z — Set if the 24 MS bits of the result equal zero

Instruction Format:

IMAC S1,S2,D
Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

IMAC Integer Multiply-Accumulate IMAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 1 0 1 0 F Q Q Q

15 12 11 8 7 4 3 0

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 102 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(S1*S2)<15 → D2:D1; IMPY S1,S2,D (no parallel move)
sign extend D2; leave D0 unchanged

Description: Integer Multiply the two 16-bit signed integer source operands S1 and S2 and store the

product in the upper word (D1) of the destination accumulator D leaving the lower word (D0)

unchanged.

Note: No overflow control or rounding are performed during integer multiply instructions. The re-

sult is always a 16-bit signed integer result which is sign extended to 24 bits.

Example:

:

IMPY Y0,X0,A ; form product
MOVE A1,R0 ; initialize pointer
:

Explanation of Example: Prior to execution, the 16-bit accumulator register A1 contains a 16-bit signed

integer value ($0008). The data ALU registers X0 and Y0 contain respectively two 16-bit

signed integer values $003 and $004. Execution of the IMPY X0,Y0,A instruction integer

multiplies X0 and Y0 and stores the result $C in A1. A0 remains unchanged and A2 is sign

extended.

IMPY Integer Multiply IMPY

 0003

X0

After Execution

00 000C 789A

A2 A1 A0

Before Execution

00 0008 789A

A2 A1 A0

 0004

Y0

 0003

X0

 0004

Y0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 103

Condition Codes Affected:

E — Not defined
U — Not defined
N — Set if bit 39 of the result is set
Z — Set if the 24 MS bits of the result equal zero

Instruction Format:

IMPY S1,S2,D
Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

IMPY Integer Multiply IMPY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 1 0 0 0 F Q Q Q

15 12 11 8 7 4 3 0

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 104 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D+1 → D (parallel move) INC D (parallel move)

Description: Increment by one the destination accumulator. This is a 40-bit increment instruction.

Example:

INC A A, X0 ;save A into X0 before incrementing it

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.

Execution of the INC A instruction increments by one the 40-bit A accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if result equals zero
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

INC Increment Accumulator INC

After Execution

12 3456 789B

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 105

Instruction Format:

INC D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

INC Increment Accumulator INC

1 m R R H H H W 0 0 1 0 F 0 1 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 106 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D2:D1+1 → D2:D1 (parallel move); INC24 D (parallel move)
D0 is unchanged

Description: Increment by one the 24 MS bit of the destination accumulator.

Example:

INC24 A X:(B1),X1 ;Increment 24 MS bits of A; update X1

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $12:3456:789A.

Execution of the INC24 A instruction increments by one the 24 MS bits of the accumulator

A.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of the result is in use
U — Set if result is unnormalized
N — Set if bit 39 of the result is set
Z — Set if the 24 most significant bit of the result are all zeroes
V — Set if overflow has occurred in result
C — Set if a carry (or borrow) occurs from bit 39 of the result

INC24 Increment 24 MS-bit of Accumulator INC24

After Execution

12 3457 789A

A2 A1 A0

Before Execution

12 3456 789A

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 107

Instruction Format:

INC24 D (parallel move)
Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

INC24 Increment 24 MS-bit of Accumulator INC24

1 m R R H H H W 0 0 1 0 F 0 1 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 108 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then label → PC Jcc xxxx
 else PC+1 → PC

If cc, then Rn → PC Jcc (Rn)
 else PC+1 → PC

Description: If the specified condition is true, program execution continues at the effective address spec-

ified in the instruction. If the specified condition is false, the program counter (PC) is incre-

mented and program execution continues sequentially. Long displacement (16-bit signed

value) and address register addressing modes may be used.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Restrictions: — A Jcc instruction used within a DO loop cannot begin at the address LA within that DO

loop.

— A Jcc instruction cannot be repeated using the REP instruction.

Example:

JNN (R2) ;jump to P:(R2) if not normalized

Explanation of Example: In this example, program execution is transferred to the address P:(R2) if the

result is not normalized. If the specified condition is not true, no jump is taken and the pro-

gram counter is incremented by one.

Jcc Jump Conditionally Jcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 109

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Format and Opcode:

Jcc xxxx

“—” = don’t care
Instruction Fields:xxxx = 16-bit absolute target address

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

Instruction Format and Opcode:

Jcc Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

Instruction Fields:

cc = 4-bit condition code = cccc

Jcc Jump Conditionally Jcc

x x x x x x x x x x x x x x x x

0 0 0 0 0 1 1 0 — — 1 1 c c c c

15 12 11 8 7 4 3 0

0 0 0 0 0 1 1 0 R R 1 0 c c c c

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 110 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

label → PC JMP xxxx
Rn → PC JMP (Rn)

Description: Jump to the location in program memory at the location given by the instruction’s effective

address. Long displacement (16-bit signed value) and address register addressing modes

may be used.

Restrictions: — A JMP instruction used within a DO loop cannot begin at address LA within that DO

loop.

— A JMP instruction cannot be repeated using the REP instruction.

Example:

JMP (R2) ;jump to P:(R2)

Explanation of Example: In this example, program execution is transferred to the address P:(R2).

Condition Codes Affected:

The condition codes are not affected by this instruction.

JMP Jump JMP

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 111

Instruction Format and Opcode:

JMP xxxx

“—” = don’t care

Instruction Fields: xxxx = 16-bit signed absolute branch address

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

Instruction Format and Opcode:

JMP Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

JMP Jump JMP

x x x x x x x x x x x x x x x x

0 0 0 0 0 0 0 1 0 0 1 1 0 1 — —

15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 1 0 0 1 0 0 1 R R

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 112 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then SP+1 → SP JScc xxxx
PC → SSH
SR → SSL
xxxx → PC

 else PC+1 → PC

If cc, then SP+1 → SP JScc Rn
PC → SSH
SR → SSL
Rn → PC

 else PC+1 → PC

Description: If the specified condition is true, program execution continues at the location in program

memory given by the instruction’s effective address. If the specified condition is false, the

program counter (PC) is incremented and program execution continues sequentially. Long

displacement (16-bit signed value) and address register addressing modes may be used.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Restrictions: — A JScc instruction used within a DO loop cannot begin at address LA within that DO
loop.

— A JScc instruction used within a DO loop cannot specify the loop address LA as its tar-
get.

— A JScc instruction cannot be repeated using the REP instruction.

JScc Jump to Subroutine Conditionally JScc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 113

Example:

JSLS R2 ;jump to subroutine at P:(R2) if limit set

Explanation of Example: In this example, program execution is transferred to the subroutine at address
P:(R2) if the limit bit is set. If the specified condition is not true, no jump is taken and the
program counter is incremented by one.

Condition Codes Affected: The condition codes are not affected by this instruction.

Instruction Format and Opcode:

JScc xxxx

“—” = don’t care
Instruction Fields: xxxx = 16-bit absolute branch address

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

Instruction Format and Opcode:

JScc Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

Instruction Fields:

cc = 4-bit condition code = cccc

JScc Jump to Subroutine Conditionally JScc

x x x x x x x x x x x x x x x x

0 0 0 0 0 1 1 0 — — 0 1 c c c c

15 12 11 8 7 4 3 0

0 0 0 0 0 1 1 0 R R 0 0 c c c c

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

Mnemonic c c c c

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic c c c c

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 114 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

SP+1 → SP JSR xxxx
PC → SSH
SR → SSL
xxxx → PC

SP+1 → SP JSR AA
PC → SSH
SR → SSL
AA → PC

SP+1 → SP JSR Rn
PC → SSH
SR → SSL
Rn → PC

Description: Jump to subroutine in program memory at the location given by the instruction’s effective

address. Short displacement (8 bit unsigned value), long displacement (16-bit absolute

address) and address register addressing modes may be used.

Restrictions: — A JSR instruction used within a DO loop cannot begin at address LA within that DO

loop.

— A JSR instruction used within a DO loop cannot specify the loop address LA as its tar-

get.

— A JSR instruction cannot be repeated using the REP instruction.

Example:

JSR R2 ;jump to absolute address pointed to by R2

Explanation of Example: In this example, program execution is transferred the subroutine at address
P:(R2)

Condition Codes Affected:

The condition codes are not affected by this instruction.

JSR Jump to Subroutine JSR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 115

Instruction Format and Opcode:

JSR xxxx

“—” = don’t care

Instruction Fields: xxxx = 16-bit signed absolute branch address

Timing: 4 + jx oscillator clock cycles
Memory: 2 program words

Instruction Format and Opcode:

JSR AA

Instruction Fields: AA…A = 8-bit unsigned absolute short branch address

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

Instruction Format and Opcode:

JSR Rn

Timing: 4 + jx oscillator clock cycles
Memory: 1 program word

JSR Jump to Subroutine JSR

x x x x x x x x x x x x x x x x

0 0 0 0 0 0 0 1 0 0 1 1 0 0 — —

15 12 11 8 7 4 3 0

0 0 0 0 1 0 1 0 A A A A A A A A

15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 1 0 0 1 0 0 0 R R

15 12 11 8 7 4 3 0 RR Rn

00 R0
01 R1
10 R2
11 R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 116 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

ea

→

D (no parallel move) LEA ea,D

Description:

The address calculation specified is executed and the resulting effective address is stored

in the destination register. The source address register and the update mode used to com-

pute the updated address are specified by the effective address (ea). Note that the source

address register specified in the effective address is not updated. All update addressing

modes may be used.

Note:

 This instruction is considered to be a move-type instruction. Due to pipelining, the new contents of
the destination address register (R0-R3 or N0-N3) will not be available for use during the following instruc-
tion (i.e., there is a single instruction cycle pipeline delay).

Example:

LEA (R0)+N0,R1 ;update R1 using (R0)+N0

Explanation of Example:

Prior to execution, the 16-bit address register R0 contains the value $0003, the

16-bit address register N0 contains the value $0005 and the 16-bit address register R1 con-

tains the value $0004. Execution of the LEA (R0)+N0,R1 instruction adds the contents of

the R0 register to the contents of the N0 register and stores the resulting updated address

in the R1 address register. The contents of both the R0 and N0 address registers are not

affected.

Condition Codes Affected:

The condition codes are not affected by this instruction.

LEA Load Effective Address LEA

R1 0004

N0 0005

Before Execution

R0 0003

R1 0008

N0 0005

After Execution

R0 0003

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 117

Instruction Format:

LEA ea,Rn

Opcode:

Instruction Fields

:

Timing:

4 oscillator clock cycles

Memory:

1 program word

LEA Load Effective Address LEA

0 0 0 0 0 0 0 1 1 1 T T M M R R

15 12 11 8 7 4 3 0

0 0 0 0 0 0 0 1 1 0 N N M M R R

15 12 11 8 7 4 3 0

TT Destination

00 R0
01 R1
10 R2
11 R3

NN Destination

00 N0
01 N1
10 N2
11 N3

Instruction Format:

LEA ea,Nn

Opcode:

MMRR Effective Address

00RR Rn
01RR (Rn)+
10RR (Rn)-
11RR (Rn)+Nn

RR Source

00 R0
01 R1
10 R2
11 R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 118 INSTRUCTION SET

MOTOROLA

Assembler Syntax:

LSL D (parallel move)

Operation:

Description:

Logically shift bits 31-16 (D1) of the destination operand D one bit to the left and store the

result in the destination accumulator upper word D1. The MS bit of D1 (bit 31 of D) is shifted

into the carry bit C prior to instruction execution and a zero is shifted into the LS bit of the

D1 (bit 16 of D).

Example:

LSL A (R3)- ;multiply A1 by 2, update R3

Explanation of Example:

Prior to execution, the 40-bit A accumulator contains the value $A5:8123:0123.

Execution of the LSL A instruction shifts the16-bit value in the A1 accumulator one bit to

the left and leaves A2 and A1 unchanged. The C bit of CCR (bit 0) is set by the operation

because bit 31 of A was set prior to the instruction execution.

LSL Logical Shift Left LSL

unch. unchanged 0 (parallel move)

D2 D1 D0

C

 0000

SR=MR:CCR

0001

SR=MR:CCR

After Execution

A5 0246 0123

A2 A1 A0

Before Execution

A5 8123 0123

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 119

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
N — Set if bit 31 of A or B result is set
Z — Set if A1 or B1 result equals zero
V — Always cleared
C — Set if bit 31 of A or B was set prior to instruction execution

Instruction Format:

LSL D (parallel move)

Opcode:

Instruction Fields:

Please see the “

X Memory Data Move”

 description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

LSL Logical Shift Left LSL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 1 1 F 0 1 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 120 INSTRUCTION SET

MOTOROLA

Assembler Syntax:

LSR D (parallel move)

Operation:

Description:

Logically shift bits 31-16 (D1) of the destination operand D one bit to the right and store the

result in the destination accumulator upper word D1. The LS bit of D1 (bit 16 of D) prior to

instruction execution is shifted into the carry bit C and zero is shifted into the MS bit of D1(bit

31 of D).

Example:

:
LSR B X:-(R3),R3 ;divide B1 by 2, update R3, load R3

Explanation of Example:

Prior to execution, the 40-bit B accumulator contains the value

$A8:0001:A865. Execution of the LSR B instruction shifts the 16-bit value in the B1 register

one bit to the right and stores the result back in the B1 register. The C bit of CCR (bit 0) is

set by the operation because bit 0 of A1 was set prior to the instruction execution. The Z bit

of CCR (bit 2) is also set because the result in A1 is zero.

LSR Logical Shift Right LSR

0

unch. unchanged C (parallel move)

D2 D1 D0

 0300

SR=MR:CCR

0305

SR=MR:CCR

After Execution

A8 0000 A865

B2 B1 B0

Before Execution

A8 0001 A865

B2 B1 B0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 121

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Always cleared
Z — Set if A1 or B1 result equals zero
V — Always cleared
C — Set if bit 16 of A or B was set prior to instruction execution

Instruction Format:

LSR D (parallel move)

Opcode:

Instruction Fields:

Please see the “X

 Memory Data Move”

 description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing:

2 + mv oscillator clock cycles

Memory:

1 program words

LSR Logical Shift Right LSR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 1 1 F 0 1 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 122 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

D + S1 * S2

→

 D (one parallel move) MAC (+)S2,S1,D (one parallel move)
D + S1 * S2

→

 D (two parallel reads) MAC S1,S2,D (two parallel reads)
D + S1 * S2

→

 D D

→

 X:(Rn)+Nn S

→

 D MAC S1,S2,D D,X:(Rn)+Nn S,D

Description:

Multiply the two signed 16-bit source operands S1 and S2 and add/subtract the product to/

from the specified 40-bit destination accumulator D. The “-” sign option is used to negate

the specified product prior to accumulation. This option is not available when two parallel

read operations are performed. The instruction that accesses D is particularly useful for im-

plementing the Least Mean Square (LMS) adaptive filter algorithm (see Appendix B).

Example:

MAC X1,Y1,A X:(R2)+,Y1 X:(R3)+,X1

Explanation of Example:

Prior to execution, the 16-bit X1 register contains the value $4000, the 16-bit

Y1 register contains the value $F456 and the 40-bit A accumulator contains the value

$00:1000:0000. Execution of the MAC X1,Y1,A instruction multiplies the 16-bit signed val-

ue in the X1 register by the 16-bit signed value in Y1 and adds the resulting 32-bit product

to the 40-bit A accumulator and stores the result ($00:0A2B:0000) into the accumulator A.

In parallel, X1 and Y1 are updated with new values fetched from the data memory and the

two address registers R2 and R3 are post incremented by one.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note:

The definition of the E and U bits varies according to the scaling mode being used. Please refer to

Section A.4 entitled “

Condition Code Computation

” for complete details.

MAC Multiply-Accumulate MAC

 4000

X1

After Execution

00 0A2B 0000

A2 A1 A0

Before Execution

00 1000 0000

A2 A1 A0

 3FFF

X1

 F456

Y1

 F454

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 123

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

MAC Multiply-Accumulate MAC

1 m R R H H H W 1 k 1 0 F Q Q Q

15 12 11 8 7 4 3 0

0 1 1 m m K K K 1 x x 0 F 1 Q Q

15 12 11 8 7 4 3 0

0 0 0 1 0 1 1 1 R R D D F Q Q Q

15 12 11 8 7 4 3 0

Sign k
+ 0
- 1

Instruction Format: MAC S1,S2,D D,X:(Rn)+Nn S,D (one memory write,

Opcode: one data register move)

Instruction Format: MAC S1,S2,D (two parallel reads)

Opcode:

Instruction Format: MAC (+)S2,S1,D (one parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Write and Register Data Move” description in the

parallel move section for details on the RR and DD data fields.

Instruction Fields: Please see the “Dual X Memory Data Read” description in the parallel move sec-

tion for details on the mm and KKK data fields.

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

One Or Two Parallel Operation Two Parallel Reads

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
X0,Y0,A 0 0 0
X0,Y0,B 0 0 1
X0,Y1,A 0 1 0
X0,Y1,B 0 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 124 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D + S1 * S2 + r → D (one parallel move) MACR (+)S2,S1,D (one parallel operation)
D + S1 * S2 + r → D (two parallel reads) MACR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands S1 and S2, add/subtract the product to/from

the specified 40-bit destination accumulator D, and round the result using the specified

rounding. The rounded result is stored in the destination accumulator. Refer to the round

instruction for more complete information on the convergent rounding process. The “-” sign

option is used to negate the specified product prior to accumulation. This option is not avail-

able when two parallel reads are performed. The default sign option is “+”.

Example:

MACR -X0,Y1,A A0,X0

Explanation of Example: Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-

bit Y1 register contains the value $F456 (-0.0911255) and the 40-bit A accumulator con-

tains the value $00:1000:1234 (0.125002169981599). Execution of the MACR-X0,Y1,A in-

struction multiplies the 16-bit signed value in the X0 register by the 16-bit signed value in

Y1 and substracts the resulting 32-bit product to the 40-bit A accumulator, rounds the result

and stores the result ($00:15D5:0000) into the accumulator A (-X0 * Y1 + A =

0.170562744140625). In parallel, A0 is saved into X0 before the result is stored in A. In this

example, the default rounding (convergent rounding) is performed.

MACR Multiply-Accumulate and Round MACR

 4000

X0

After Execution

00 15D5 0000

A2 A1 A0

Before Execution

00 1000 1234

A2 A1 A0

 1234

X0

 F456

Y1

 F454

Y1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 125

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format: MACR (+)S1,S2,D (one parallel operation)

Opcode:

“—” = don’t care

Instruction Fields:

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

MACR Multiply-Accumulate and Round MACR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

one parallel operation 1 k 1 1 F Q Q Q

15 12 11 8 7 4 3 0

two parallel reads 1 — — 1 F 1 Q Q

15 12 11 8 7 4 3 0

Sign k
+ 0
- 1

Instruction Format: MACR S1,S2,D (two parallel reads)

Opcode:

One Parallel Operation Two Parallel Reads

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
X0,Y0,A 0 0 0
X0,Y0,B 0 0 1
X0,Y1,A 0 1 0
X0,Y1,B 0 1 1

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 126 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D + S1 * S2 → D (S1 unsigned, S2 unsigned) MACuu S1,S2,D (no parallel move)
D + S1 * S2 → D (S1 signed, S2 unsigned) MACsu S1,S2,D (no parallel move)

Description: Multiply the two 16-bit source operands S1 and S2 and add the product to the specified 40-

bit destination accumulator D. One or two of the source operands can be unsigned. This

mixed arithmetic multiply-accumulate does not allow a parallel move and can be used for

multiple precision multiplications.

Example:

MACuu X1,Y1,A
MACsu X1,Y1,A

Explanation of Example: The 16-bit X1 register contains the value $FFFF and the 16-bit Y1 register

contains the value $0062.

Execution of the MACuu X1,Y1,A instruction multiplies the 16-bit unsigned value in the X1

register by the 16-bit unsigned value in Y1, then adds the result to the accumulator A and

stores the unsigned result back into the accumulator A.

Execution of the MACsu X1,Y1,A instruction multiplies the 16-bit signed value in the X1 reg-

ister by the 16-bit unsigned value in Y1, then adds the result to the accumulator A and

stores the signed result back into the accumulator A.

Warning: The saturation mode is always disabled during execution of MAC(su,uu), even when the

saturation bit (SA) of the OMR is set. Refer to Section 5.8.3 for more details.

MAC(su,uu) Mixed Multiply-Accumulate MAC(su,uu)

 FFFF

X1

After MACuu Execution

00 10C3 FFC3

A2 A1 A0

Before MACuu Execution

00 1000 0000

A2 A1 A0

 0062

Y1

After MACsu Execution

C4 10C3 FEFF

A2 A1 A0

Before MACsu Execution

00 10C3 FFC3

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 127

Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

MAC(uu) S1,S2,D
MAC(su) S1,S2,D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

MAC(su,uu) Mixed Multiply-Accumulate MAC(su,uu)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 1 1 1 0 F s Q Q

15 12 11 8 7 4 3 0

 Arithmetic s

 su 0
 uu 1

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
Y0,X0,A 0 0 0
Y0,X0,B 0 0 1
Y1,X0,A 0 1 0
Y1,X0,B 0 1 1

Note: For MACsu, the order of S1, S2 is sig-
nificant; the signed value will be taken from
S1 while the unsigned value will be taken
from S2.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 128 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

one move MOVE (one parallel operation)
two memory reads MOVE (double memory read)
one parallel memory move plus MOVE (memory access, register move)
one data register move
#xxxx → D (see Move(C) instruction) MOVE #xxxx,D

Description: This instruction is equivalent to a Data ALU NOP with a parallel data move as described in

Section A.4 entitled “Parallel Move Descriptions”. Refer to that section for more informa-

tion.

When a 40-bit accumulator (A or B) is specified as a source operand S, the accumulator

value is optionally shifted according to the scaling mode bits S0 and S1 in the system status

register (SR). If the data out of the shifter indicates that the accumulator extension register

is in use and the data is to be moved into a 16-bit destination, the value stored in the des-

tination D is limited to a maximum positive or negative saturation constant to minimize trun-

cation error. Limiting does not occur if an individual 16-bit accumulator register (A1, A0, B1,

or B0) is specified as a source operand instead of the full 40-bit accumulator (A or B). This

limiting feature allows block floating point operations to be performed with error detection

since the L bit in the condition code register is latched (i.e., sticky).

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16-bit

source data to be moved into that accumulator is automatically extended to 40 bits by sign-

extending the MS bit of the source operand (bit 15) and appending the source operand with

16 LS zeros. Note that the automatic sign-extension and zeroing features may be circum-

vented by specifying the destination register to be one of the individual 16-bit accumulator

registers (A1 or B1).

Example:

MOVE X0,A1 ;move X0 to A1 without sign extension or zeroing

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value

$FF:FFFF:FFFF and the 16-bit X0 register contains the value $1234. Execution of the

MOVE X0,A1 instruction moves the 16-bit value in the X0 register into the 16-bit A1 register

without automatic sign extension and without automatic zeroing.

MOVE Move Data MOVE

After Last Execution

FF 1234 FFFF

A2 A1 A0

Before Last Execution

FF FFFF FFFF

A2 A1 A0

 1234

X0

 1234

X0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 129

Condition Codes Affected:

S — Set according to standard definition of the S bit.
L — Set if data limiting has occurred during parallel move

Instruction Format and Opcode:

MOVE (one parallel move)

Instruction Format and Opcode:

 MOVE (double memory read)

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields. See the “Dual X Memory Read” de-

scription in the parallel move section for details on the mm, KKK, and rr data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

Instruction Format and Opcode:

 MOVE X:(R2+xx),D ;for W=0 -or- MOVE S,X:(R2+xx) ;for W=1

“—” = don’t care

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the HHH and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 2 program words

MOVE Move Data MOVE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 0 1 0 0 0 1

15 12 11 8 7 4 3 0

0 1 1 m m K K K 0 r r 1 0 0 0 0

15 12 11 8 7 4 3 0

— — — — H H H W 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 B B B B B B B B

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 130 INSTRUCTION SET MOTOROLA

Thirty two Data ALU instructions provide the capability of specifying an optional parallel operation. This par-

allel operation can be a data bus movement over the X Data Bus with optional address register update, an

address register update without data bus movement or a Data ALU register transfer.

Eight major Data ALU instructions provide the capability of dual X memory read with address register up-

date. These Data ALU instructions have been selected for optimal performance on frequently used DSP

algorithm critical loops.

Two Data ALU instructions, MPY and MAC, provide the capability of one parallel X memory read plus one

Data ALU register transfer. These two instructions allow for very high performance adaptive transversal fil-

tering.

Seven types of parallel moves are permitted, including register to register moves, register to memory moves

and memory to register moves. However, not all addressing modes are allowed for each type of memory

reference. Addressing mode restrictions which apply to specific types of moves are noted in the individual

move operation descriptions. The following section contains detailed descriptions about each type of paral-

lel move operation.

The symbols used in decoding the various opcode fields of an instruction or parallel move are completely

arbitrary. Furthermore, the opcode symbols used in one instruction or parallel move are completely inde-

pendent of the opcode symbols used in a different instruction or parallel move.

Parallel Move DescriptionsParallel
Move

Parallel
Move

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 131

Operation: Assembler Syntax:

(…) (…)
where (…) refers to any arithmetic or logical instruction.

Description: All Data ALU operations can be performed without any parallel move.

Example:

:

ADD X0,A ;add X0 to A (no parallel move)

:

Explanation of Example: This is an example of an instruction which allows parallel moves but doesn’t

have one.

Condition Codes Affected:

The condition codes are not affected by this type of parallel move.

Instruction Format:

(…)

Opcode:

Instruction Fields: (defined by Data ALU instruction)

Timing: mv oscillator clock cycles
Memory: mv program words

No Parallel Data MoveParallel
Move

Parallel
Move

0 1 0 0 1 0 1 0 Data ALU Opcode

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 132 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S → D (…) S,D (…);

where (…) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the source register S to the destination register D.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination accumu-

lator, that same accumulator or portion of that accumulator may not be specified as a destination D in the

parallel data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 40-bit

A accumulator as its destination, the parallel data bus move portion of the instruction may not specify A0,

A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the instruction specifies the 40-

bit B accumulator as its destination, the parallel data bus move portion of the instruction may not specify B0,

B1, B2, or B as its destination D. That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register, that same

register or portion of that register may be used as a source S in the parallel data bus move operation. This

allows data to be moved in the same instruction in which it is being used as a source operand by a Data

ALU operation. That is, duplicate sources are allowed within the same instruction.

Note: The MOVE A,B operation will result in a 16-bit positive or negative saturation constant being stored

in the B1 portion of the B accumulator if the signed integer portion of the A accumulator is in use.

The opposite is true for the MOVE B,A instruction.

Example:

MACR -X0,Y0,B A,X1

Explanation of Example: Prior to execution, the 16-bit X1 register contains the value $0003 and the 40-

bit accumulator A contains the value $01:0008:789A. Execution of the parallel move portion

of the instruction, A,X1, moves the contents of A1 into the X1. Limiting is performed by the

shifter limiter because the data stored in A before instruction execution is using the integer

portion of A. The example assumes no scaling is selected in the MR register.

Register to Register Data MoveParallel
Move

Parallel
Move

 0003

X1

After Execution

01 0008 789A

A2 A1 A0

Before Execution

01 0008 789A

A2 A1 A0

 7FFF

X1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 133

Condition Codes:

S — Set according to the standard definition of the S bit.

L — Set if data limiting has occurred during parallel move

Instruction Format:

(…) S,D

Opcode:

Instruction Fields:

Timing: mv oscillator clock cycles
Memory: mv program words

Register to Register Data MoveParallel
Move

Parallel
Move

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 1 0 0 I I I I Data ALU Opcode

15 12 11 8 7 4 3 0

S,D I I I I

X0,F 0000
Y0,F 0001
X1,F 0010
Y1,F 0011
A,X0 0100
B,Y0 0101
A0,X0 0110
B0,Y0 0111
F,F 1000
F,F 1001
A,X1 1100
B,Y1 1101
A0,X1 1110
B0,Y1 1111

F is the accumulator which is not used by the
parallel Data ALU operation.
(in the case of no Data ALU operation, A is chosen)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 134 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(…); ea → Rn (…) ea

where (…) refers to any arithmetic or logical instruction which allows such parallel operations.

Description: Update the specified address register according to the specified effective addressing

mode. Two update addressing modes may be used (postdecrement by one; postincrement

by the offset register).

Example:

RND B (R3)+N3 ;round value in B into B1, R3+N3 → R3

Explanation of Example: Prior to execution, the 16-bit address register R3 contains the value $0007

and the 16-bit address offset register N3 contains the value $0004. Execution of the parallel

move portion of the instruction, (R3)+N3, updates the R3 address register according to the

specified effective addressing mode by adding the value in the R3 register to the value in

the N3 register and storing the 16-bit result back in the R3 address register.

Condition Codes Affected:
The condition codes are not affected by this type of parallel operation.

Address Register UpdateParallel
Move

Parallel
Move

Before Execution

R3 0007

After Execution

R3 000B

N3 0004 N3 0004

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 135

Instruction Format:

(…) ea

Opcode:

Instruction Fields:

Timing: mv oscillator clock cycles
Memory: mv program words

Address Register UpdateParallel
Move

Parallel
Move

0 0 1 1 0 z R R Data ALU Opcode

15 12 11 8 7 4 3 0

RR Rn

00 R0
01 R1
10 R2
11 R3

ea z

(Rn)- 0
(Rn)+Nn 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 136 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(…) X:<ea> → D (…) X:<ea>,D
(…) S → X:<ea> (…) S,X:<ea>

where (…) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. Two indirect addressing modes may

be used (postincrement by one and postincrement by the offset register) as well as a spe-

cial addressing mode using the upper word of the accumulator which is not used by the

Data ALU operation.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination accumu-

lator, that same accumulator or portion of that accumulator may not be specified as a destination D in the

parallel data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 40-bit

A or B accumulator as its destination, the parallel data bus move portion of the instruction may not specify

A0/B0, A1/B1, A2/B2, or A/B as its destination D. That is, duplicate destinations are not allowed within the

same instruction.

Exceptions: — DEC24, INC24, CLR24, OR, AND, NOT, EOR, LSL, LSR, ROL, and ROR allow the
lower portion of the accumulator (A0 or B0) to be the destination of the parallel move
even if this accumulator is used by the Data ALU operation because these instructions
only affect the MS 16 or 24 bits of the accumulator.

— TST, CMP, CMPM allow both the accumulator and its lower portion (A and A0, B and
B0) to be the parallel move destination even if this accumulator is used by the Data ALU
operation. These instructions do not have a true destination.

If the opcode-operand portion of the instruction specifies a given source or destination register, that same

register or portion of that register may be used as a source S in the parallel data bus move operation. This

allows data to be moved in the same instruction in which it is being used as a source operand by a Data

ALU operation. That is, duplicate sources are allowed within the same instruction.

Example:

MOVE #$100,R2
MOVE #4,X1
ASL A X1,X:(R2)+ ; A*2 → A; save X1 in X:(R2); increment R2

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the value $100

and the 16-bit X memory location X:$0100 contains the value $0000. Execution of the parallel move portion

of the instruction, X1,X:(R2)+ uses the R2 address register to move the contents of the X1 register into the

16-bit X memory location X:$1000. R2 is then incremented by one.

X Memory Data MoveParallel
Move

Parallel
Move

Before Execution

R2 0100

After Execution

R2 0101

X:$100 0000 X:$100 0004

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 137

Condition Codes Affected:

S — Set according to the standard definition of the S bit.
L — Set if data limiting has occurred during parallel move

Note: The MOVE A,X:<ea> or MOVE B,X:<ea> operation will result in a 16-bit positive or negative satu-
ration constant being stored in the specified 16-bit X memory location if the signed integer portion
of the A accumulator or B accumulator, respectively, is in use.

Instruction Format:

(…) X:<ea>,D
(…) S,X:<ea>

Opcode and instruction Fields:

Timing: mv oscillator clock cycles Memory: 1 program word

Instruction Format:

(…) X:(F1),D
(…) S,X:(F1)

Opcode and instruction Fields:

Timing: mv oscillator clock cycles Memory: mv program words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

X Memory Data MoveParallel
Move

Parallel
Move

1 m R R H H H W Data ALU Opcode

15 12 11 8 7 4 3 0

Reg. W
read S 0
write D 1

HHH S,D HHH S,D

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

ea m
(Rn)+ 0
(Rn)+Nn 1

where “RR” refers to an Address Register R0-R3

0 1 0 1 H H H W Data ALU Opcode

15 12 11 8 7 4 3 0

Reg. W
read S 0
write D 1

HHH S,D HHH S,D

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

F1 is the upper word of the accumulator which
is not used by the parallel Data ALU operation

(in case of no Data ALU operation, A1 is chosen as F)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 138 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(…) X:(R2+xx) → D (…) X:(R2+xx),D
(…) S → X:(R2+xx) (…) S,X:(R2+xx)

where (…) refers to any arithmetic or logical instruction which allows parallel moves.

Description: Move the specified word operand from/to X memory. The indirect addressing mode on R2

indexed by a short (8 bits) signed displacement value is used. The 8-bit signed value is sign

extended to 16 bits before being added to R2. For example, X:(R2+$F0) and X:(R2-$10)

will access the same memory location.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination accumu-

lator, that same accumulator or portion of that accumulator may not be specified as a destination D in the

parallel data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 40-bit

A accumulator as its destination, the parallel data bus move portion of the instruction may not specify A0,

A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of the instruction specifies the 40-

bit B accumulator as its destination, the parallel data bus move portion of the instruction may not specify B0,

B1, B2, or B as its destination D. That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register, that same

register or portion of that register may be used as a source S in the parallel data bus move operation. This

allows data to be moved in the same instruction in which it is being used as a source operand by a Data

ALU operation. That is, duplicate sources are allowed within the same instruction.

Example:

MOVE #4,X1
ASL A X1,X:(R2+$64) ; A*2 → A; save X1 in X:(R2+$64)

Explanation of Example: Prior to execution, the 16-bit R2 address register contains the value $100 and

the 16-bit X memory location X:$0100 contains the value $0000. Execution of the parallel

move portion of the instruction, X1,X:(R2+$64) moves the contents of the X1 register into

the 16-bit X memory location X:$164. R2 is not affected by the instruction.

X Memory Data Move with short displacementParallel
Move

Parallel
Move

Before Execution

R2 0100

After Execution

R2 0100

X:$164 0000 X:$164 0004

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 139

Condition Codes Affected:

S — Set according to the standard definition of the S bit.
L — Set if data limiting has occurred during parallel move

Note: The MOVE A,X:(R2+xx) or MOVE B,X:(R2+xx) operation will result in a 16-bit positive or negative

saturation constant being stored in the specified 16-bit X memory location if the signed integer por-

tion of the A or B accumulator, respectively, is in use.

Instruction Format:

(…) X:(R2+xx),D
(…) S,X:(R2+xx)

Opcode and instruction Fields:

“—” = don’t care
BB…B = the 8-bit signed displacement

Timing: mv oscillator clock cycles

Memory: mv program words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

X Memory Data Move with short displacementParallel
Move

Parallel
Move

Reg. W
read S 0
write D 1

HHH S,D HHH S,D

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

— — — — H H H W Data ALU OPCODE

0 0 0 0 0 1 0 1 B B B B B B B B

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 140 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(MPY or MAC) D → X:(Rn)+Nn S → D (MPY or MAC) D,X:(Rn)+Nn S,D

Description: In parallel with a MPY or a MAC, move the accumulator which is not used as a destination

by the MPY or MAC into the X memory location specified by the indirect postincrement by

offset addressing mode, and update this accumulator with the value contained in one of the

four Data ALU registers. This parallel memory move with register data move is optimized

for adaptive digital transversal filtering.

Note: The X memory write operation will result in a 16-bit positive or negative saturation constant being

stored in the specified 16-bit X memory location if the signed integer portion of the A or B accumu-

lator is in use.

Example:

MAC Y0,X1,B A,X:(R1)+N1 X1,A

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $01:0008:789A,

the 16-bit X memory location X:$(R1) contains the value $1234 and the 16-bit X1 register

contains the value $0003. Execution of the parallel move portion of the instruction,

A,X:(R1)+N1 X1,A moves the 16-bit limited positive saturation constant $7FFF into the

X:(R1) memory location and then moves the contents of X1 into A. N1 is also added to R1.

Condition Codes Affected:

S — Computed according to the standard definition
L — Set if data limiting has occurred during parallel move

X Memory Data Write and Register Data MoveParallel
Move

Parallel
Move

 0003

X1

After Execution

00 0003 0000

A2 A1 A0

Before Execution

01 0008 789A

A2 A1 A0

 0003

X1

 1234

X:(R1)

 7FFF

X:(R1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 141

Instruction Format:

(MPY or MAC) D,X:(Rn)+Nn S,D

Opcode and instruction Fields:

Timing: mv oscillator clock cycles
Memory: mv program words

X Memory Data Write and Register Data MoveParallel
Move

Parallel
Move

0 0 0 1 0 1 1 k R R D D Data ALU

15 12 11 8 7 4 3 0

D k
B 0
A 1

S DD

X0 00
Y0 01
X1 10
Y1 11

where “RR” refers to an Address Register R0-R3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 142 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

(…) X:<ea> → D1 X:<ea> → D2 (…) X:<ea>,D1 X:<ea>,D2

where (…) refers to a limited set of arithmetic instructions which allow double parallel
reads (MOVE, MAC(R), MPY(R), ADD, SUB, TFR)

Description: Move two 16-bit word operands from X memory. Note that two independent effective ad-

dresses can be specified where one of the effective addresses uses the Address Registers

(R0-R2) while the other effective address must use address register R3. Two parallel ad-

dressing modes may be used for each effective address. In that case, address update on

R3 is only performed using linear arithmetic (the value of M3 is ignored). D1 and D2 may

not specify the same register since duplicate destinations are not allowed within the same

instruction.

Note: The second X data memory parallel read never accesses on-chip peripherals. If the value

addressed by R3 reaches the last 64 locations of the X data memory, external memory will

be accessed.

Example:

MPYR X1,Y0,A X:(R0)+,Y0 X:(R3)+N3,X1

Explanation of Example: Prior to execution, the 16-bit X1 register contains the value $0003, the 16-bit

Y0 register contains the value $1234. Execution of the parallel move portion of the instruc-

tion, X:(R0)+,Y0 X:(R3)+N3,X1, moves the 16-bit value in the X memory location X:(R0)

into the register Y0, moves the 16-bit X memory location X:(R3) into the register X1, postin-

crements by one the 16-bit value in the R0 address register and linearly updates R3 using

the address offset register N3. The contents of the N3 address offset register are not affect-

ed.

Dual X Memory Data ReadParallel
Move

Parallel
Move

After ExecutionBefore Execution

X:(R0)

X1

Y0

X:(R0)

X1

Y0

X:(R3) X:(R3)

FFF4 FFF4

4321 4321

0003

1234

4321

FFF4

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 143

Condition Codes:
The condition codes are not affected by this instruction.

Instruction Format:

(…) X:<ea>,D1 X:<ea>,D2

Opcode and instruction Fields:

Timing: mv oscillator clock cycles
Memory: mv program words

Dual X Memory Data ReadParallel
Move

Parallel
Move

0 1 1 m m K K K X r r u OPCODE

15 12 11 8 7 4 3 0

ea ea mm
(Rn)+ (R3)+ 00
(Rn)+ (R3)+N3 01
(Rn)+Nn (R3)+ 10

(Rn)+Nn (R3)+N3 11

where: “rr” refers to Address Register R0, R1, R2 for the first read
(R3 has to be used for the second read).

D1 D2 K K K

F X0 0 0 0
Y0 X0 0 0 1
X1 X0 0 1 0
Y1 X0 0 1 1
X0 X1 1 0 0
Y0 X1 1 0 1
F Y0 1 1 0
Y1 X1 1 1 1

Bits X and u are part of the opcode.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 144 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

X:<ea>

→

 D MOVE(C) X:<ea>,D
S1

→

 X:<ea> MOVE(C) S,X:<ea>
#xxxx

→

 D MOVE(C) #xxxx,D

S

→

 D MOVE(C) S,D

X:(R2+xx)

→

 D MOVE(C) X:(R2+xx),D
S

→

 X:(R2+xx) MOVE(C) S,X:(R2+xx)

Description:

Move the contents of the specified source (control) register S to the specified destination

or move the specified source to the specified destination (control) register D. The control

registers S and D consist of the Address ALU modifier registers and the program controller

registers in addition to the Data ALU registers. These registers may be moved to or from

any other register or memory space.

If the system stack register SSH is specified as a source operand, the system stack pointer (SP) is postdec-

remented by 1 after SSH has been read. If the system stack register SSH is specified as a destination op-

erand, the system stack pointer (SP) is preincremented by 1 before SSH is written. This allows the system

stack to be efficiently extended using software stack pointer operations.

When a 40-bit accumulator (A or B) is specified as a source operand, the accumulator value is optionally

shifted according to the scaling mode bits S0 and S1 in the system status register (SR). If the data out of

the shifter indicates that the accumulator extension register is in use and the data is to be moved into a 16-

bit destination, the value stored in the destination is limited to a maximum positive or negative saturation

constant to minimize truncation error. If the data is to be moved into a 16-bit destination and the accumulator

extension register is in use, the value is limited to a maximum positive or negative saturation constant whose

LS 16 bits are then stored in the 16-bit destination register. Limiting does not occur if an individual 16-bit

accumulator register (A1, A0, B1, or B0) is specified as a source operand instead of the full 40-bit accumu-

lator (A or B). This limiting feature allows block floating point operations to be performed with error detection

since the L bit in the condition code register is latched.

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16- bit source data to be

moved into that accumulator is automatically extended to 40 bits by sign-extending the MS bit of the source

operand (bit 15) and appending the source operand with 16 LS zeros. Whenever the OMR or SP registers

are source operands to be moved into a 40-bit accumulator, they are first zero extended to form a 16-bit

operand. Note that for 16-bit source operands both the automatic sign-extension and zeroing features may

be disabled by specifying the destination register to be one of the individual 16-bit accumulator registers (A1

or B1).

Note:

Due to pipelining, if an address register (R, N, or M) is changed using a move type instruction, the
new contents of the destination address register will not be available for use during the following instruction
(i.e., there is a single instruction cycle pipeline delay).

MOVE(C) Move Control Register MOVE(C)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 145

Restrictions:

— A MOVE(C) instruction used within a DO loop which specifies SSH as the source op-
erand or LA, LC, SR, SP, SSH, or SSL as the destination operand cannot begin at ad-
dress LA-2, LA-1, or LA within that DO loop.

— A MOVE(C) instruction which specifies SSH as the source operand or LA, LC, SSH,
SSL, or SP as the destination operand cannot be used immediately before a DO in-
struction.

— A MOVE(C) instruction which specifies SSH as the source operand or LA, LC, SR,
SSH, SSL, or SP as the destination operand cannot be used immediately before an
ENDDO instruction.

— A MOVE(C) instruction which specifies SSH as the source operand or SR, SSH, SSL,
or SP as the destination operand cannot be used immediately before an RTI instruc-
tion.

— A MOVE(C) instruction which specifies SSH as the source operand or SSH, SSL, or
SP as the destination operand cannot be used immediately before an RTS instruction.

— A MOVE(C) instruction which specifies SP as the destination operand cannot be used
immediately before a MOVE(C), MOVE(M), or MOVE(P) instruction which specifies
SSH or SSL as the source operand.

— A MOVE(C) SSH, SSH instruction is illegal and cannot be used.

Example:

MOVE(C) LC,X0 ; move LC into X0

Explanation of Example

Prior to execution, the 16-bit loop counter (LC) register contains the value

$0100 and the 16-bit X0 register contains the value $3210. Execution of the MOVE(C)

LC,X0 instruction moves the contents of the 16-bit LC register into the 16-bit X0 register.

MOVE(C) Move Control Register MOVE(C)

Before Execution

 LC 0100

After Execution

 LC 0100

X0 3210 X0 0100

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 146 INSTRUCTION SET

MOTOROLA

Condition Codes Affected:

For D = SR operand:

S — Set according to bit 7 of the source operand
L — Set according to bit 6 of the source operand
E — Set according to bit 5 of the source operand
U — Set according to bit 4 of the source operand
N — Set according to bit 3 of the source operand
Z — Set according to bit 2 of the source operand
V — Set according to bit 1 of the source operand
C — Set according to bit 0 of the source operand

For D1 and D2

≠

SR operand:

S — Set according to the standard definition of the S bit
L — Set if data limiting has occurred during move

MOVE(C) Move Control Register MOVE(C)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 147

Opcode and Instruction Fields:

“—” = don’t care

Timing:

2 + mvc oscillator clock cycles

Memory:

1 + ea program words

MOVE(C) Move Control Register MOVE(C)

0 0 1 1 1 W D D D D D 0 M M R R

15 12 11 8 7 4 3 0

0 0 1 1 1 W D D D D D 1 q 0 R R

15 12 11 8 7 4 3 0

Extension Word t

16-bit long address 0
16-bit long data 1

ea q

(Rn+Nn) 0
-(Rn) 1

x x x x x x x x x x x x x x x x

0 0 1 1 1 W D D D D D 1 t 1 0 —

15 12 11 8 7 4 3 0

ea MM

(Rn) 00
(Rn)+ 01
(Rn)- 10
(Rn)+Nn 11

D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

where “RR” refers to an Address Register R0-R3

Reg. W

 read S 0
 write D 1

0 0 1 1 1 W D D D D D 1 Z 1 1 —

15 12 11 8 7 4 3 0 ea Z

 (A1) 0
 (B1) 1

S/D S/D S/DS/D

Instruction Format: MOVE(C) X:<ea>,D
MOVE(C) S,X:<ea>

Instruction Format: MOVE(C) X:<ea>,D
MOVE(C) S,X:<ea>

Instruction Format: MOVE(C) X:<A1,B1>,D
MOVE(C) S,X:<A1,B1>

Instruction Format: MOVE(C) #xxxx,D or MOVE(C) X:xxxx,D or MOVE(C) S,X:xxxx

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 148 INSTRUCTION SET

MOTOROLA

Instruction Format:

MOVE(C) S, D

Opcode and Instruction Fields

:

Timing:

2 oscillator clock cycles

Memory:

1 program word

MOVE(C) Move Control Register MOVE(C)

0 0 1 0 1 0 d d d d d D D D D D

15 12 11 8 7 4 3 0

D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

ddddd=DDDDD

D1 D D D
S ddddd S ddddd S ddddd S ddddd

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 149

Instruction Format:

MOVE(C) X:(R2+xx),D
MOVE(C) S,X:(R2+xx)

Opcode and Instruction Fields:

“—” = don’t care

Timing:

2+mvc oscillator clock cycles

Memory:

2 program words

MOVE(C) Move Control Register MOVE(C)

D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

0 0 1 1 1 W D D D D D 0 — — — —

0 0 0 0 0 1 0 1 B B B B B B B B

15 12 11 8 7 4 3 0

Reg. W

read S1 0
write D1 1

D D D D
S ddddd S ddddd S ddddd S ddddd

“xx” refers to a 8-bit data BBBBBBBB

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 150 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

#xx

→

 D MOVE(I) #xx,D

Description:

The 8-bit signed immediate operand is stored in the low byte of destination register D after

having been sign extended.

Example:

MOVE(I) #<$84,X1 ; equivalent to MOVE #

<−

$7C,X1

Explanation of Example:

Prior to execution, X1 contains the value $FFFF. Execution of the instruction
moves the value $FF84 into X1.

MOVE(I) Move Immediate Short MOVE(I)

Before Execution

FFFF

X1

After Execution

FF84

X1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 151

Condition Codes:

The condition codes are not affected by this instruction.

Instruction Format:

MOVE(I) #xx,D

Opcode and Instruction Fields

:

Timing:

2 oscillator clock cycles

Memory:

1 program word

MOVE(I) Move Immediate Short MOVE(I)

0 0 1 0 0 0 D D B B B B B B B B

15 12 11 8 7 4 3 0
Destination DD

X0 00
Y0 01
X1 10
Y1 11

“xx” refers to a 8-bit data BBBBBBBB

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 152 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

P:<ea> → D MOVE(M) P:<ea>,D
S→ P:<ea> MOVE(M) S,P:<ea>

P:(R2+xx) → D MOVE(M) P:(R2+xx),D
S→ P:(R2+xx) MOVE(M) S,P:(R2+xx)

P:<ea> → X:<ea> MOVE(M) P:<ea>,X:<ea>
X:<ea> → P:<ea> MOVE(M) X:<ea>,P:<ea>

Description:

Move the specified operand from/to the specified program memory location. The source and destination

registers S and D may be selected Data ALU registers.

When a 40-bit accumulator (A or B) is specified as a source operand S, the accumulator value is optionally

shifted according to the scaling mode bits S0 and S1 in the system status register (SR). If the data out of

the shifter indicates that the accumulator extension register is in use and the data is to be moved into a 16-

bit destination, the value stored in the destination is limited to a maximum positive or negative saturation

constant to minimize truncation error. Limiting does not occur if an individual 16-bit accumulator register (A1,

A0, B1, or B0) is specified as a source operand instead of the full 40-bit accumulator (A or B). This limiting

feature allows block floating point operations to be performed with error detection since the L bit in the con-

dition code register is latched.

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16-bit source data to be

moved into that accumulator which is automatically extended to 40 bits by sign-extending the MS bit of the

source operand (bit 15) and appending the source operand with 16 LS zeros. Note that for 16-bit source

operands both the automatic sign-extension and zeroing features may be disabled by specifying the desti-

nation register to be one of the individual 16-bit accumulator registers (A1 or B1).

Example:

MOVE(M) P:(R2+N2),A0 ;move P:(R2) into the LS word of A (A0), update R2 with N2

Explanation of Example: Prior to execution, the 16-bit (A0) register contains the value $0123 and the 16-

bit program memory location P:(R2) contains the value $0116. Execution of the MOVE(M)

P:(R2),A0 instruction moves the 16-bit program memory location P:(R2) into the 16-bit A0

register. R2 is then post incremented by N2.

MOVE(M) Move Program Memory MOVE(M)

 0116

P:(R2)

0116

P:(R2)

After Execution

A5 0246 0116

A2 A1 A0

Before Execution

A5 8123 0123

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 153

Condition Codes Affected:

L — Set if data limiting has occurred during the move

Instruction Format:

MOVE(M) S,P:<ea>
MOVE(M) P:<ea>,D

Code and Instruction Fields:

Timing: 2 + mvm oscillator clock cycles
Memory: 1 program words

MOVE(M) Move Program Memory MOVE(M)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 0 0 0 1 W R R 0 M M H H H

15 12 11 8 7 4 3 0
ea MM

(Rn) 00
(Rn)+ 01
(Rn)- 10
(Rn)+Nn 11

where “RR” refers to an Address Register R0-R3

HHH S,D HHH S,D

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

Reg. W

read S 0
write D 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 154 INSTRUCTION SET MOTOROLA

Instruction Format:

MOVE(M) P:<ea>,X:<ea>
MOVE(M) X:<ea>,P:<ea>

Code and Instruction Fields:

Timing: 2 + mvm oscillator clock cycles
Memory: 1 program word

MOVE(M) Move Program Memory MOVE(M)

0 0 0 0 0 0 1 W R R 1 1 m m R R

15 12 11 8 7 4 3 0

where “RR” refers to Address Register R0-R3

Reg. W

read S 0
write D 1

S D
ea ea mm
(Rn)+ (Rn)+ 00
(Rn)+ (Rn)+Nn 01
(Rn)+Nn (Rn)+ 10

(Rn)+Nn (Rn)+Nn 11

Note: Bits 0, 1, and 2 refer to the destination effective address
while bits 3, 6, and 7 refer to the source effective ad-
dress.

Where S and D must use
different registers.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 155

Instruction Format:

MOVE(M) S,P:(R2+xx)
MOVE(M) P:(R2+xx),D

Code and Instruction Fields:

“—” = don’t care

Timing: 4 + mvm oscillator clock cycles
Memory: 2 program words

MOVE(M) Move Program Memory MOVE(M)

HHH S/D HHH S/D

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

0 0 0 0 0 0 1 W — — 0 — — H H H

0 0 0 0 0 1 0 1 B B B B B B B B

15 12 11 8 7 4 3 0

Reg. W

 read S 0
write D 1

“xx” refers to a 8-bit data BBBBBBBB

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 156 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

X:<pp> → D MOVE(P) X:<pp>,D

X:<ea> → X:<pp> MOVE(P) X:<ea>,X:<pp>

S → X:<pp> MOVE(P) S,X:<pp>

X:<pp> → X:<ea> MOVE(P) X:<pp>,X:<ea>
Description: Move the specified operand from/to the specified X I/O peripheral. The I/O Short Absolute

Addressing mode is used for the I/O peripheral address. Only the (Rn)+ and (Rn)+Nn ad-

dress register indirect addressing modes are allowed.

When a 40-bit accumulator (A or B) is specified as a source operand S, the accumulator

value is optionally shifted according to the scaling mode bits S0 and S1 in the system status

register (SR). If the data out of the shifter indicates that the accumulator extension register

is in use and the data is to be moved into a 16-bit destination, the value stored in the des-

tination is limited to a maximum positive or negative saturation constant to minimize trun-

cation error. Limiting does not occur if an individual 16-bit accumulator register (A1, A0, B1,

or B0) is specified as a source operand instead of the full 40-bit accumulator (A or B). This

limiting feature allows block floating point operations to be performed with error detection

since the L bit in the condition code register is latched.

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16-bit

source data to be moved into that accumulator is automatically extended to 40 bits by sign-

extending the MS bit of the source operand (bit 15) and appending the source operand with

16 LS zeros. Note that for 16-bit source operands both the automatic sign-extension and

zeroing features may be disabled by specifying the destination register to be one of the in-

dividual 24-bit accumulator registers (A1 or B1).

Example:

MOVE(P) A,X:<$FFE2 ;initialize Port B Data Register

Explanation of Example: Prior to execution, the 16-bit, X Memory-mapped Port B Data Register (PBD)

contains the value $FFFF. Execution of the MOVE(P) A,X:<$FFE2 instruction moves the

value $0024 contained in A into the 16-bit Port B Data Register (PBD), resulting in pins PB2

and PB5 remaining set while all other pins of port B are cleared (the example assumes that

all port B pins are programmed as output).

MOVE(P) Move Peripheral Data MOVE(P)

Before Execution

X:$FFE2 FFFF

A 0024

After Execution

X:$FFE2 0024

A 0024

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 157

Condition Codes Affected:

S — Set according to the standard definition of the S bit
L — Set if data limiting has occurred during move

Opcode and Instruction Fields:

Timing: 4 + mvp oscillator clock cycles
Memory: 1 program word

MOVE(P) Move Peripheral Data MOVE(P)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

Reg. W

read S 0
write D 1

0 0 0 1 1 0 0 W H H 1 p p p p p

15 12 11 8 7 4 3 0

0 0 0 0 1 1 0 W R R m p p p p p

15 12 11 8 7 4 3 0

S,D HH

X0 00
Y0 01
A 10
B 11

where “RR” refers to an Address Register R0-R3

ea m

(Rn)+ 0
(Rn)+Nn 1

pp = 5-bit absolute address = ppppp

Instruction Format:

MOVE(P) X:<pp>,D
MOVE(P) S,X:<pp>

Instruction Format:

MOVE(P) X:<ea>,X:<pp>
MOVE(P) X:<pp>,X:<ea>

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 158 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

X:<aa> → D MOVE(S) X:<aa>,D

S → X:<aa> MOVE(S) S,X:<aa>

Description: Move the specified operand from/to the lower 32 memory locations in X Data memory. The

5-bit Absolute short address is zero extended

When a 40-bit accumulator (A or B) is specified as a source operand S, the accumulator

value is optionally shifted according to the scaling mode bits S0 and S1 in the system status

register (SR). If the data out of the shifter indicates that the accumulator extension register

is in use and the data is to be moved into a 16-bit destination, the value stored in the des-

tination is limited to a maximum positive or negative saturation constant to minimize trun-

cation error. Limiting does not occur if an individual 16-bit accumulator register (A1, A0, B1,

or B0) is specified as a source operand instead of the full 40-bit accumulator (A or B). This

limiting feature allows block floating point operations to be performed with error detection

since the L bit in the condition code register is latched.

When a 40-bit accumulator (A or B) is specified as a destination operand D, any 16-bit

source data to be moved into that accumulator is automatically extended to 40 bits by sign-

extending the MS bit of the source operand (bit 15) and appending the source operand with

16 LS zeros. Note that for 16-bit source operands both the automatic sign-extension and

zeroing features may be disabled by specifying the destination register to be one of the in-

dividual 24-bit accumulator registers (A1 or B1).

Example:

MOVE(S) A,X:<$10 ;initialize X:$0

Explanation of Example: Prior to execution, X:$10 contains the value $FFFF. Execution of the instruc-

tion moves the value $0024 into the memory location

MOVE(S) Move Absolute Short MOVE(S)

Before Execution After Execution

A

X:$0010 X:$0010

A0024

FFFF

0024

0024

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 159

Condition Codes Affected:

S — Set according to the standard definition of the S bit
L — Set if data limiting has occurred during move

Instruction Format:

MOVE(S) X:<aa>,D
MOVE(S) S,X:<aa>

Opcode and Instruction Fields:

Timing: 2 + mvs oscillator clock cycles
Memory: 1 program word

MOVE(S) Move Absolute Short MOVE(S)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 1 0 0 W H H 0 a a a a a

15 12 11 8 7 4 3 0
S,D HH

X0 00
Y0 01
A 10
B 11

where “aa” refers to a 5-bit absolute address

Reg. W

read S 0
write D 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 160 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

 + S1 * S2 → D (one parallel move) MPY (+)S1,S2,D (one parallel move)
 S1 * S2 → D (two parallel reads) MPY S1,S2,D (two parallel reads)
 S1 * S2 → D D→ X:(Rn)+Nn S → D MPY S1,S2,D D,X:(Rn)+Nn S,D

Description: Multiply the two signed 16-bit source operands S1 and S2 and store the product in the

specified 40-bit destination accumulator D. The “-” sign option is used to negate the spec-

ified product. This option is not available when two parallel reads are performed. The de-

fault sign option is “+”. The instruction which accesses D is particularly useful for imple-

menting the Least Mean Square (LMS) adaptive filter algorithm (see Appendix B).

Example:

MPY X1,Y1,A A,X1 ; multiply X1 by Y1, save A in X1 first

Explanation of Example: Prior to execution, the 16-bit X1 register contains the value $4000 (0.5), the 16-

bit Y1 register contains the value $F456 (-0.0911255) and the 40-bit A accumulator con-

tains the value $00:1000:0000 (0.125). Execution of the MPY X1,Y1,A instruction multiplies

the 16-bit signed value in the X1 register by the 16-bit signed value in Y1 and stores the

result ($FF:FA2B:0000) into the accumulator A (X1 * Y1 = -0.045562744140625). In paral-

lel, A has been saved into X1.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow (result) has occurred
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

MPY Signed Multiply MPY

 4000

X1

After Execution

FF FA2B 0000

A2 A1 A0

Before Execution

00 1000 0000

A2 A1 A0

 1000

X1

 F456

Y1

 F454

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 161

Instruction Fields:

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

MPY Signed Multiply MPY

1 m R R H H H H 1 k 0 0 F Q Q Q

15 12 11 8 7 4 3 0

0 1 1 m m K K K 1 x x 0 F 0 Q Q

15 12 11 8 7 4 3 0

0 0 0 1 0 1 1 0 R R D D F Q Q Q

15 12 11 8 7 4 3 0

Sign k
+ 0
- 1

Instruction Format: MPY S1,S2,D D,X:(Rn)+Nn S,D (one memory write,

Opcode: one data register move)

Instruction Format: MPY S1,S2,D (two parallel reads)

Opcode:

Instruction Format: MPY (+)S2,S1,D (one parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Instruction Fields: Please see the “X Memory Data Write and Register Data Move” description in the

parallel move section for details on the RR and DD data fields.

Instruction Fields: Please see the “Dual X Memory Data Read” description in the parallel move sec-

tion for details on the mm and KKK data fields.

One Or Two Parallel Operation

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

Two Parallel Reads

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
X0,Y0,A 0 0 0
X0,Y0,B 0 0 1
X0,Y1,A 0 1 0
X0,Y1,B 0 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 162 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

 + S1 * S2 + r → D (one parallel move) MPYR (+)S1,S2,D (one parallel move)
 S1 * S2 + r → D (two parallel reads) MPYR S1,S2,D (two parallel reads)

Description: Multiply the two signed 16-bit source operands S1 and S2, round the result using the spec-

ified rounding and store it in the specified 40-bit destination accumulator D. Refer to the

round instruction for more complete information on the convergent rounding process. The

“-” sign option is used to negate the specified product. This option is not available when two

parallel reads are performed. The default sign option is “+”.

Example:

MPYR -X0,Y1,A A0,X0 ; multiply X0 by Y1 and negate the product, first save A0 in X0

Explanation of Example: Prior to execution, the 16-bit X0 register contains the value $4000 (0.5), the 16-

bit Y1 register contains the value $F456 (-0.0911255) and the 40-bit A accumulator con-

tains the value $00:1000:1234 (0.125002169981599). Execution of the MPYR -X0,Y1,A in-

struction multiplies the 16-bit signed value in the X0 register by the 16-bit signed value in

Y1, rounds the result and stores the result ($FF:FE8B:0000) into the accumulator A (-X0 *

Y1 = -0.011383056640625). In parallel, A0 is saved into X0 before the result is stored in A.

In this example, the default rounding (convergent rounding) is performed.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

MPYR Signed Multiply and Round MPYR

 4000

X0

After Execution

FF FE8B 0000

A2 A1 A0

Before Execution

00 1000 1234

A2 A1 A0

 1234

X0

 F456

Y1

 F454

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 163

“—” = don’t care

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

MPYR Signed Multiply and Round MPYR

one parallel operation 1 k 0 1 F Q Q Q

15 12 11 8 7 4 3 0

two parallel reads 1 — — 1 F 0 Q Q

15 12 11 8 7 4 3 0

Sign k
+ 0
- 1

Instruction Fields: Please see the “Dual X Memory Data Read” description in the parallel move sec-

tion for details on the mm and KKK data fields.

Instruction Format: MPYR S1,S2,D (two parallel reads)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Instruction Format: MPYR (+)S2,S1,D (one parallel move)

Opcode:

One Parallel Operation

S1,S2,D QQQ F
Y0,X0,A 1 0 0 0
Y0,X0,B 1 0 0 1
Y1,X0,A 1 0 1 0
Y1,X0,B 1 0 1 1
Y0,X1,A 1 1 0 0
Y0,X1,B 1 1 0 1
Y1,X1,A 1 1 1 0
Y1,X1,B 1 1 1 1

S1,S2,D QQQ F
X0,X0,A 0 0 0 0
X0,X0,B 0 0 0 1
X1,X0,A 0 0 1 0
X1,X0,B 0 0 1 1
A1,Y0,A 0 1 0 0
A1,Y0,B 0 1 0 1
B1,X0,A 0 1 1 0
B1,X0,B 0 1 1 1

Two Parallel Reads

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
X0,Y0,A 0 0 0
X0,Y0,B 0 0 1
X0,Y1,A 0 1 0
X0,Y1,B 0 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 164 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S1 * S2 → D (S1 unsigned, S2 unsigned) MPYuu S1,S2,D (no parallel move)
S1 * S2 → D (S1 signed, S2 unsigned) MPYsu S1,S2,D (no parallel move)

Description: Multiply the two 16-bit source operands S1 and S2 and store the product to the specified

40-bit destination accumulator D. One or two of the source operands can be unsigned. This

mixed arithmetic multiply does not allow a parallel move and can be used for multiple pre-

cision multiplications.

Example:

MPYuu X1,Y1,A
MPYsu X1,Y1,A

Explanation of Example: The 16-bit X1 register contains the value $FFFF and the 16-bit Y1 register

contains the value $0062.

Execution of the MPYuu X1,Y1,A instruction multiplies the 16-bit unsigned value in the X1

register by the 16-bit unsigned value in Y1 and stores the unsigned result into the accumu-

lator A.

Execution of the MPYsu X1,Y1,A instruction multiplies the 16-bit signed value in the X1 reg-

ister by the 16-bit unsigned value in Y1and stores the signed result into the accumulator A.

Warning: The saturation mode is always disabled during execution of MPY(su,uu), even when the

saturation bit (SA) of the OMR is set. Refer to Section 5.8.3 for more details.

MPY(su,uu) Mixed Multiply MPY(su,uu)

After MPYuu Execution

00 00C3 FFC3

A2 A1 A0

Before MPYuu Execution

00 1000 0000

A2 A1 A0

After MPYsu Execution

FF FFFF FFC3

A2 A1 A0

Before MPYsu Execution

00 00C3 FFC3

A2 A1 A0

X1

Before Execution After Execution

Y1 Y1

X1FFFF

0062

FFFF

0062

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 165

Condition Codes Affected:

E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used.
Please refer to Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

MPY(uu) S1,S2,D
MPY(su) S1,S2,D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

MPY(su,uu) Mixed Multiply MPY(su,uu)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 1 1 0 0 F s Q Q

15 12 11 8 7 4 3 0

S1,S2,D QQ F
X1,Y0,A 1 0 0
X1,Y0,B 1 0 1
X1,Y1,A 1 1 0
X1,Y1,B 1 1 1

S1,S2,D QQ F
Y0,X0,A 0 0 0
Y0,X0,B 0 0 1
Y1,X0,A 0 1 0
Y1,X0,B 0 1 1

Arithmetic s

 su 0
 uu 1

Note: For MPYsu, the order of S1, S2 is sig-
nificant; the signed value will be taken from
S1 and the unsigned value will be taken from
S2 (i.e., MPYSU Y1, X0, A is legal whereas
MPYSU X0, Y1, A is illegal).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 166 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 - D → D (parallel move) NEG D (parallel move)

Description: The destination operand D is substracted from zero and the result is stored in the destina-

tion accumulator.

Example:

NEG B X1,X:(R3)+ ;0-B → B, save X1, update R3

Explanation of Example: Prior to execution, the 40-bit B accumulator contains the value $00:1234:5678.

The NEG B instruction takes the two’s complement of the value in the B accumulator and

stores the 40-bit result back in the B accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
C — Set if a borrow is generated from the MSB of the result.
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

NEG Negate Accumulator NEG

A After Execution

FF EDCB A988

A2 A1 A0

A Before Execution

00 1234 5678

A2 A1 A0

 0300

SR=MR:CCR

 0309

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 167

Instruction Format:

NEG D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

NEG Negate Accumulator NEG

1 m R R H H H W 0 1 1 0 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 168 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 - D → D (no parallel move) NEGC D (no parallel move)

Description: The destination operand D is substracted from zero along with the C bit of the condition

code register (CCR) and the result is stored in the destination accumulator.

Example:

NEGC B

Explanation of Example: Prior to execution, the 40-bit B accumulator contains the value $00:1234:5678.

The NEGC B instruction substracts from zero the value in the B accumulator along with the

carry bit C of CCR and stores the 40-bit result back in the B accumulator.

Condition Codes Affected:

E — Set if the signed integer portion of A or B is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero. Cleared otherwise
V — Set if overflow has occurred in A or B result
C — Set if a borrow is generated from the MSB of the result.

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

NEGC Negate Accumulator with Carry NEGC

A After Execution

FF EDCB A987

A2 A1 A0

A Before Execution

00 1234 5678

A2 A1 A0

 0301

SR=MR:CCR

 0309

SR=MR:CCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 169

Instruction Format:

NEGC D

Opcode:

Instruction Fields:

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

NEGC Negate Accumulator with Carry NEGC

0 0 0 1 0 1 0 1 0 1 1 0 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 170 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

PC+1 → PC NOP

Description: Increment the program counter (PC). Pending pipeline actions, if any, are completed. Ex-

ecution continues with the instruction following the NOP.

Example:

NOP increment the program counter

Explanation of Example:

The NOP instruction increments the program counter (PC) and completes any pending

pipeline actions.

Condition Codes Affected:
The condition codes are not affected by this instruction.

NOP No Operation NOP

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 171

Instruction Format:

NOP

Opcode:

Instruction Fields: none

Timing: 2 oscillator clock cycles
Memory: 1 program word

NOP No Operation NOP

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 172 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

If E • U • Z = 1, then ASL D and Rn - 1

→

 Rn NORM Rn,D
else if E = 1, then ASR D and Rn + 1

→

 Rn
else NOP

where E denotes the logical complement of E, and
where • denotes the logical AND operator

Description:

Perform one normalization iteration on the specified destination operand D, update the

specified address register Rn based upon the results of that iteration, and store the result

back in the destination accumulator. This is a 40-bit operation. If the accumulator extension

is not in use and the accumulator is unnormalized and the accumulator is not zero, the des-

tination operand is arithmetically shifted one bit to the left and the specified address register

is decremented by one. If the accumulator extension register is in use, the destination op-

erand is arithmetically shifted one bit to the right and the specified address register is incre-

mented by one. If the accumulator is normalized or zero, a NOP is executed and the spec-

ified address register is not affected. Since the operation of the NORM instruction depends

on the E, U, and Z condition code register bits, these bits must correctly reflect the current

state of the destination accumulator prior to executing the NORM instruction. Note that the

L and V bits in the condition code register will be cleared unless they have been improperly

set up prior to executing the NORM instruction.

Example:

REP #$1F ;maximum number of iterations (31) needed
NORM R3,A ;perform 1 normalization iteration

Explanation of Example:

Prior to execution, the 40-bit A accumulator contains the value $00:0000:0001

and the 16-bit R3 address register contains the value $0000. The repetition of the NORM

R3,A instruction normalizes the value in the 40-bit accumulator and stores the resulting

number of shifts performed during that normalization process in the R3 address register. A

negative value reflects the number of left shifts performed while a positive value reflects the

number of right shifts performed during the normalization process. In this example, thirty

left shifts are required for normalization.

NORM Normalize Accumulator Iteration NORM

 0000

R3

FFE2

R3

After Execution

00 4000 0000

A2 A1 A0

Before Execution

00 0000 0001

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 173

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if overflow has occurred in A or B result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if bit 39 is changed as a result of a left shift

Note:

The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “

Condition Code Computation

” for complete details.

Instruction Format:

NORM Rn,D

Opcode:

Instruction Fields:

Timing:

2 oscillator clock cycles

Memory:

1 program word

NORM Normalize Accumulator Iteration NORM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 0 1 0 1 0 0 1 0 F 0 R R

15 12 11 8 7 4 3 0

D F

A 0
B 1

Rn RR

R0 00
R1 01
R2 10
R3 11

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 174 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

D[31:16]

→

D[31:16] (parallel move) NOT D (parallel move)

where the bar over the D (D) denotes the logical NOT operator

Description:

Take the one’s complement of bits 31-16 of the destination operand D and store the result

back in bits 31-16 of the destination accumulator. This is a 16-bit operation. The remaining

bits of D are not affected.

Example:

NOT A A,X:(R2)+ ;save A1 and take the 1’s complement of A1

Explanation of Example:

Prior to execution, the 40-bit A accumulator contains the value $00:1234:5678.

The NOT A instruction takes the one’s complement of bits 31-16 of the A accumulator (A1)

and stores the result back in the A1 register. The remaining A accumulator bits are not af-

fected.

Condition Codes Affected:

L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared

NOT Logical Complement NOT

 0300

SR=MR:CCR

0308

SR=MR:CCR

After Execution

00 EDCB 5678

A2 A1 A0

Before Execution

00 1234 5678

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 175

Instruction Format:

NOT D (parallel move)

Opcode:

Instruction Fields:

Please see the “

X Memory Data Move

” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

NOT Logical Complement NOT

1 m R R H H H W 0 1 1 0 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 176 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

S + D[31:16]

→

 D[31:16] (parallel move) OR S,D (parallel move)

where + denotes the logical inclusive OR operator

Description:

Logically inclusive OR the source operand S with bits 31:16 of the destination operand D

and store the result in bits 31-16 of the destination accumulator. This instruction is a 16-bit

operation. The remaining bits of the destination operand D are not affected.

Example:

OR Y1,B B,X:(A1) ;save B1, OR Y1 with B
:

Explanation of Example:

Prior to execution, the 16-bit Y1 register contains the value $FF00 and the 40-

bit B accumulator contains the value $00:1234:5678. The OR Y1,B instruction logically

OR’s the 16-bit value in the Y1 register with bits 31:16 of the B accumulator (B1) and stores

the 40-bit result in the B accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared

OR Logical Inclusive OR OR

After Execution

00 FF34 5678

B2 B1 B0

Before Execution

00 1234 5678

B2 B1 B0

 FF00

Y1

 FF00

Y1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 177

Instruction Format:

OR S,D (parallel move)

Opcode:

Instruction Fields:

Please see the “

X Memory Data Move

” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing:

2 + mv oscillator clock cycles

Memory:

1 program word

OR Logical Inclusive OR OR

1 m R R H H H W 0 0 1 0 F 1 J J

15 12 11 8 7 4 3 0

S,D J J F
X0,A 0 0 0
X0,B 0 0 1
Y0,A 0 1 0
Y0,B 0 1 1
X1,A 1 0 0
X1,B 1 0 1
Y1,A 1 1 0
Y1,B 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 178 INSTRUCTION SET

MOTOROLA

Operation: Assembler Syntax:

#xx + D

→

D OR(I) #xx,D

where + denotes the logical inclusive OR operator

Description:

Logically OR the 8-bit immediate operand (#xx) with the contents of the destination control

register D and store the result in the destination control register. The condition codes are

affected only when the condition code register (CCR) is specified as the destination oper-

and.

Restrictions:

The ORI #xx,MR instruction cannot be used immediately before an ENDDO or RTI instruc-

tion and cannot be one of the last three instructions in a DO loop (at LA-2, LA-1, or LA). The

ORI #xx,CCR instruction cannot be used immediately before an RTI instruction.

Example:

OR #$8,MR ;set scaling mode bit S1 to scale up

Explanation of Example:

Prior to execution, the 8-bit mode register (MR) contains the value $03. The

OR #$8,MR instruction logically OR’s the immediate 8-bit value $8 with the contents of the

mode register and stores the result in the mode register.

ORI OR Immediate ORI

SR Before Execution

 0300

MR:CCR

SR After Execution

 0B00

MR:CCR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 INSTRUCTION SET A - 179

Condition Codes Affected:

For CCR operand:

S — Set if bit 7 of the immediate operand is set
L — Set if bit 6 of the immediate operand is set
E — Set if bit 5 of the immediate operand is set
U — Set if bit 4 of the immediate operand is set
N — Set if bit 3 of the immediate operand is set
Z — Set if bit 2 of the immediate operand is set
V — Set if bit 1 of the immediate operand is set
C — Set if bit 0 of the immediate operand is set

For MR and OMR operands:

The condition codes are not affected using these operands

Instruction Format:

OR(I) #xx,D

Opcode:

Instruction Fields::

#xx = 8-bit Immediate Short Data — i i i i i i i i

Timing:

2 oscillator clock cycles

Memory:

1 program word

ORI OR Immediate ORI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

0 0 0 1 1 E E 1 i i i i i i i i

15 12 11 8 7 4 3 0

D E E
MR 0 1
CCR 1 1
OMR 1 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 180 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

LC→ TEMP; X:(Rn) → LC REP X:(Rn)
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; #xx → LC REP #xx
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; S, → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

Description: Repeat the single word instruction immediately following the REP instruction the specified

number of times. The value specifying the number of times the given instruction is to be

repeated is loaded into the 16-bit loop counter (LC) register. The single word instruction is

then executed the specified number of times, decrementing the loop counter (LC) after

each execution until (LC) = 1. When the REP instruction is in effect, the repeated instruction

is fetched only one time and it remains in the instruction register for the duration of the loop

count. Thus, the REP instruction is not interruptible. The current loop counter (LC) value is

stored in an internal temporary register. If LC is set equal to zero, the instruction is not re-

peated. The instruction’s effective address specifies the address of the value which is to be

loaded into the loop counter (LC).

If the A or B accumulator is specified as a source operand, the accumulator value is option-

ally shifted according to the scaling mode bits S0 and S1 in the system status register (SR).

If the data out of the shifter indicates that the accumulator extension is in use, the value to

be loaded into the loop counter (LC) register will be limited to a 16-bit maximum positive or

negative saturation constant to minimize the error due to truncation. The resulting values

are then stored in the 16-bit loop counter (LC) register.

If the system stack register SSH is specified as a source operand, the system stack pointer

(SP) is postdecremented by 1 after SSH has been read.

Restrictions:

The REP instruction can repeat any single word instruction except the REP instruction itself and any instruc-
tion that changes program flow. The following instructions are not allowed to follow a REP instruction:

Immediately after REP DO, BRKcc Bcc, Jcc DEBUG, DEBUGcc
JCLR BRA, JMP WAIT
BScc, JScc BSR, JSR
REP, REPcc RTI
RTS STOP
SWI Tcc

Also, a REP instruction cannot be the last instruction in a DO loop (at LA). The assembler will generate an
error if any of the above instructions are found immediately following a REP instruction.

REP Repeat Next Instruction REP

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 181

Example:

:
REP X0 ;repeat (X0) times
MAC X1,Y1,A X:(R1)+,X1 X:(R3)+,Y1 ;X1 * Y1 + A, w A, update X1,Y1

:

Explanation of Example: Prior to execution, the 16-bit X0 register contains the value $0100 and the
16-bit loop counter (LC) register contains the value $0000. Execution of the REP X0 instruction takes the
16-bit value in the X0 register and stores it in the 16-bit loop counter (LC) register. Thus, the single word
MAC instruction immediately following the REP instruction is repeated $100 times.

Condition Codes Affected:

L — Set if data limiting occurred using A or B as source operands

REP Repeat Next Instruction REP

 0100

X0

0100

X0

After Execution

 0100

LC

Before Execution

 0000

LC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 182 INSTRUCTION SET MOTOROLA

Instruction Format and Opcode:

REP X:(Rn)

“—” = don’t care

REP #xx

REP Repeat Next Instruction REP

0 0 0 0 0 0 0 0 1 1 1 — — — R R

15 12 11 8 7 4 3 0 Rn RR

R0 00
R1 01
R2 10
R3 11

0 0 0 0 1 1 1 1 i i i i i i i i

15 12 11 8 7 4 3 0
#xx: immediate 8-bit

short data = iiiiiiii

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 183

REP S

Timing: 6 + mv oscillator clock cycles if the argument equals zero;

otherwise it is 4 + mv oscillator clock cycles

Memory: 1 program words

REP Repeat Next Instruction REP

0 0 0 0 0 1 0 0 0 0 1 D D D D D

15 12 11 8 7 4 3 0

S D D D D D

X0 0 0 0 0 0

Y0 0 0 0 0 1

X1 0 0 0 1 0

Y1 0 0 0 1 1

A 0 0 1 0 0

B 0 0 1 0 1

A0 0 0 1 1 0

B0 0 0 1 1 1

S D D D D D

SR 0 1 0 0 1

OMR 0 1 0 1 0

SP 0 1 0 1 1

A1 0 1 1 0 0

B1 0 1 1 0 1

A2 0 1 1 1 0

B2 0 1 1 1 1

S D D D D D

R0 1 0 0 0 0

R1 1 0 0 0 1

R2 1 0 0 1 0

R3 1 0 0 1 1

M0 1 0 1 0 0

M1 1 0 1 0 1

M2 1 0 1 1 0

M3 1 0 1 1 1

S D D D D D

SSH 1 1 0 0 0

SSL 1 1 0 0 1

LA 1 1 0 1 0

LC 0 1 0 0 0

N0 1 1 1 0 0

N1 1 1 1 0 1

N2 1 1 1 1 0

N3 1 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 184 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Repeat next instruction until cc is true REPcc

Description: Repeat the single word instruction immediately following the REPcc instruction until the

specified condition is true. The instruction immediately following will not be executed if the

condition is true on entry. No new value is loaded into the 16-bit loop counter (LC) register.

When the REPcc instruction is in effect, the repeated instruction is fetched only one time

and it remains in the instruction register until the specified condition is true. Thus, the

REPcc instruction is not interruptible.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

Restrictions:

The REPcc instruction can repeat any single word instruction except the REPcc instruction itself and any
instruction that changes program flow. The following instructions are not allowed to follow a REPcc instruc-
tion:

Immediately after REPcc DO Bcc, Jcc DEBUG, DEBUGcc
JCLR BRA, JMP Tcc
BScc, JScc BSR, JSR
BRKcc Tcc
REP, REPcc RTI
RTS STOP
SWI WAIT
move to SSH any write to memory

REPcc Repeat Next Instruction Conditionally REPcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 185

Also, a REPcc instruction cannot be the last instruction in a DO loop (at LA). The assembler will generate
an error if any of the above instructions are found immediately following a REP instruction.

Example:

REPNR ;rep until normalized
NORM R1,A

Explanation of Example: This example illustrates a conditional REP instruction. The NORM instruction

will be repeated until the accumulator A is normalized.

Condition Codes:
The condition codes are not affected by this instruction.

Instruction Format and Opcode:
REPcc expr

Instruction Field for the second word:

cc = 4-bit condition code = CCCC

Timing: 4 oscillator clock cycles when condition true on entry
6 oscillator clock cycles when condition false on entry

Memory: 1 program word

REPcc Repeat Next Instruction Conditionally REPcc

0 0 0 0 0 0 0 1 0 1 0 1 c c c c

15 12 11 8 7 4 3 0

Mnemonic C C C C

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic C C C C

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 186 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Reset the Interrupt Priority Register and all on-chip peripherals RESET

Description: Reset the Interrupt Priority Register and all on-chip peripherals. This is a software reset

which is not equivalent to a hardware reset since only on-chip peripherals and the interrupt

structure are affected. The processor state is not affected and execution continues with the

next instruction. All interrupt sources are disabled except for the trace, stack error, and re-

set interrupts.

Restrictions:

A RESET instruction cannot be the last instruction in a DO loop (at LA).

Example:

RESET ;reset all on-chip peripherals and IPR, set I1,I0

Explanation of Example: Execution of the RESET instruction resets all on-chip peripherals and the In-

terrupt Priority Register (IPR).

Condition Codes Affected:
The condition codes are not affected by this instruction.

RESET RESET On-Chip Peripherals RESET

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 187

Instruction Format:

RESET

Opcode:

Instruction Fields: none

Timing: 4 oscillator clock cycles
Memory: 1 program word

RESET RESET On-Chip Peripherals RESET

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 188 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D + r → D (parallel move) RND D (parallel move)

Description: Round the 40-bit value in the specified destination operand D and store the result in the

MSP portion of the destination accumulator (A1 or B1). This instruction uses the rounding

technique selected by the R bit in the Operating Mode Register (OMR). When the R bit in

OMR is cleared (default mode), the convergent rounding is selected. When the R bit of

OMR is set, the twos-complement rounding is selected. The value of the rounding constant

added is determined by the scaling mode bits S0 and S1 in the system status register (SR).

Refer to Section 3.2.5 for more information about the rounding modes.

Example:

RND A B,Y1 ;round A accumulator into A1, zero A0, save B1 first

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $00:1236:789A

for Case I, the value $00:1236:8000 for Case II and the value $00:1235:8000 for Case III.

Execution of the RND A instruction rounds the value in the A accumulator into the MSP por-

tion of the A accumulator (A1) and then zeros the LSP portion of the A accumulator (A0).

The example is given assuming that the convergent rounding is selected. Note that case II

is the special case that distinguishes convergent rounding from the twos complement

rounding.

RND Round Accumulator RND

After Execution

00 1236 0000

A2 A1 A0

Before Execution

00 1236 789A

A2 A1 A0

After Execution

00 1236 0000

A2 A1 A0

Before Execution

00 1236 8000

A2 A1 A0

After Execution

00 1236 0000

A2 A1 A0

Before Execution

00 1235 8000

A2 A1 A0

I

II

III

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 189

Condition Codes:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

RND D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

RND Round Accumulator RND

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 0 1 0 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 190 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ROL D (parallel move)

Operation:

Description: Rotate bits 31-16 of the destination operand D one bit to the left and store the result in the

destination accumulator. Bit 31 of D prior to instruction execution is shifted into the carry bit

C and the value in the carry bit C prior to instruction execution is shifted into bit 16 of the

destination accumulator D. This instruction is a 16-bit operation. The remaining bits of the

destination operand D are not affected.

Example:

ROL A (R3)- ;rotate A1 left one bit, update R3

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value

$FE:0000:1234. Execution of the ROL A instruction shifts the 16-bit value in the A1 register

one bit to the left, shifting bit 31 into the carry bit C, rotating the carry bit C into bit 16, and

storing the result back in the A1 register.

ROL Rotate Left ROL

unch. unchanged (parallel move)

D2 D1 D0

C

 0001

SR=MR:CCR

0000

SR=MR:CCR

After Execution

FE 0001 1234

A2 A1 A0

Before Execution

FE 0000 1234

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 191

Condition Codes:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared
C — Set if bit 31 of A or B was set prior to instruction execution

Instruction Format:

ROL D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

ROL Rotate Left ROL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 1 1 F 0 1 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 192 INSTRUCTION SET MOTOROLA

Assembler Syntax:

ROR D (parallel move)

Operation:

Description: Rotate bits 31-16 of the destination operand D one bit to the right and store the result in the

destination accumulator. Bit 16 of D prior to instruction execution is shifted into the carry bit

C and the value in the carry bit C prior to instruction execution is shifted into bit 31 of the

destination accumulator D. This instruction is a 16-bit operation. The remaining bits of the

destination operand D are not affected.

Example:

ROR B (R2)+N2 ;rotate B1 right one bit, update R2

Explanation of Example: Prior to execution, the 40-bit B accumulator contains the value $00:0001:1234.

Execution of the ROR B instruction shifts the 16-bit value in the B1 register one bit to the

right, shifting bit 16 into the carry bit C, rotating the carry bit C into bit 31, and storing the

result back in the B1 register.

ROR Rotate Right ROR

unch. unchanged (parallel move)

D2 D1 D0

C

 0000

SR=MR:CCR

0005

SR=MR:CCR

After Execution

FE 0000 1234

B2 B1 B0

Before Execution

FE 0001 1234

B2 B1 B0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 193

Condition Codes:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
N — Set if bit 31 of A or B result is set
Z — Set if bits 31-16 of A or B result are zero
V — Always cleared
C — Set if bit 16 of A or B was set prior to instruction execution

Instruction Format:

ROR D

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

ROR Rotate Right ROR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 1 1 F 0 1 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 194 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

SSH → PC; SSL → SR; SP-1 → SP RTI

Description: Pull the program counter (PC) and the status register (SR) from the system stack. The pre-

vious program counter and status register are lost.

Restrictions:
Due to pipelining in the program controller and the fact that the RTI instruction accesses certain program
controller registers, the RTI instruction must not be immediately preceded by any of the following instruc-
tions:
Immediately before RTI MOVE(C) to SR, SSH, SSL, or SP

MOVE(C) from SSH
ANDI MR or ANDI CCR
ORI MR or ORI CCR

An RTI instruction cannot be the last instruction in a DO loop (at LA).
An RTI instruction cannot be repeated using the REP instruction.
Example:

:
RTI ;pull PC and SR from the system stack

:

Explanation of Example: The RTI instruction pulls the 16-bit program counter (PC) and the 16-bit status

register (SR) from the system stack and updates the system stack pointer (SP).

Condition Codes Affected:

S — Set according to the value pulled from the stack
L — Set according to the value pulled from the stack
E — Set according to the value pulled from the stack
U — Set according to the value pulled from the stack
N — Set according to the value pulled from the stack
Z — Set according to the value pulled from the stack
V — Set according to the value pulled from the stack
C — Set according to the value pulled from the stack

RTI Return from Interrupt RTI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 195

Instruction Format:

RTI

Opcode:

Timing: 4 + rx oscillator clock cycles
Memory: 1 program word

RTI Return from Interrupt RTI

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 196 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

SSH → PC; SP-1→ SP RTS

Description: Pull the program counter (PC) from the system stack. The previous program counter is lost.

The status register (SR) is not affected.

Restrictions:

Due to pipelining in the program controller and the fact that the RTS instruction accesses certain program

controller registers, the RTS instruction must not be immediately preceded by any of the following instruc-

tions:

Immediately before RTS MOVE(C) to SSH, SSL, or SP
MOVE(M) to SSH, SSL, or SP
MOVE(P) to SSH, SSL, or SP
MOVE(C) from SSH
MOVE(M) from SSH
MOVE(P) from SSH

An RTS instruction cannot be the last instruction in a DO loop (at LA).
An RTS instruction cannot be repeated using the REP instruction.

Example:

RTS ;pull PC from the system stack

Explanation of Example: The RTS instruction pulls the 16-bit program counter (PC) from the system

stack and updates the system stack pointer (SP).

Condition Codes Affected:
The condition codes are not affected by this instruction.

RTS Return from Subroutine RTS

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 197

Instruction Format:

RTS

Opcode:

Timing: 4 + rx oscillator clock cycles
Memory: 1 program word

RTS Return from Subroutine RTS

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 198 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D - S - C → D (parallel move) SBC S,D (parallel move)

Description: Subtract the source operand S and the carry bit C of the condition code register from the

destination operand D and store the result in the destination accumulator. Long words (32

bits) may be subtracted from the (40-bit) destination accumulator.

Note: The carry bit is set correctly for multiple precision arithmetic using long word operands if the exten-
sion register of the destination accumulator (A2 or B2) is the sign extension of bit 31 of the destination ac-
cumulator (A or B).

Example:

; 64 bit substraction: Y1:Y0:X1:X0 - B2:B1:B0:A1:A0 = B2:B1:B0:A1:A0

SUB X,A ;subtract LS words
SBC Y,B ;subtract MS words with carry

Explanation of Example: This example illustrates long word double precision (64-bit) subtraction using

the SBC instruction. Prior to execution of the SUB and SBC instructions, the 64-bit value

$0000:0001:8000:0000 is loaded into the Y and X registers (Y:X), respectively. The other

double precision 64-bit value $0000:0003:0000:0000 is loaded into the B and A accumula-

tors (B:A), respectively. Since the 32-bit value loaded into the A accumulator is automati-

cally sign extended to 40-bits and the other 32-bit long word operand is internally sign ex-

tended to 40-bits during instruction execution, the carry bit will be set correctly after the ex-

ecution of the SUB X,A instruction. The SBC Y,B instruction then produces the correct MS

40-bit result.

SBC Subtract Long with Carry SBC

A Before Execution

00 0000 0000

A2 A1 A0

B Before Execution

00 0000 0003

B2 B1 B0

A After Execution

00 8000 0000

A2 A1 A0

B After Execution

00 0000 0001

B2 B1 B0

8000 0000

X1 X0
(X1:X0 not affected by operation)

0000 0001

Y1 Y0
(Y1:Y0 not affected by operation)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 199

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero. Cleared otherwise
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 39 of A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format:

SBC S,D (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2+mv oscillator clock cycles
Memory: 1 program word

SBC Subtract Long with Carry SBC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 0 1 F 0 1 J

15 12 11 8 7 4 3 0

S,D J F

X,A 0 0
X,B 0 1
Y,A 1 0
Y,B 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 200 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Enter the STOP processing state and stop the clock oscillator STOP

Description: Enter the STOP processing state. All activity in the processor is suspended until the RESET

or IRQA pin is asserted. The STOP processing state is a low-power standby mode.

During the STOP state, port A is in an idle state with the control signals held inactive (i.e.,

PS/DS=VCC etc.), the data pins (D0-D23) are high impedance, and the address pins (A1-

A15) are unchanged from the previous instruction. If the bus grant was asserted when the

STOP instruction was executed, port A will remain three-stated until the DSP exits the

STOP state.

When the exit from the stop state is caused by a low level on the RESET pin, then the pro-

cessor will enter the reset processing state. The time to recover from the STOP state using

RESET will depend on a clock stabilization delay controlled by the SD bit in the OMR.

When the exit from the stop state is caused by a low level on the IRQA pin, then the pro-

cessor will service the highest priority pending interrupt and will not service the IRQA inter-

rupt unless it is highest priority. The interrupt will be serviced after an internal delay counter

counts 524,284 clock phases (i.e., [219-4]T) or 28 clock phases (i.e., [25-4]T) delay if the

stop delay (SD) bit in the OMR is set to one. During this clock stabilization count delay, all

peripherals and external interrupts are cleared and re-enabled/arbitrated at the start of the

17T period following the count interval. The processor will resume program execution at the

instruction following the STOP instruction that caused the entry into the stop state after the

interrupts have been serviced or, if no interrupt was pending, immediately after the delay

count plus 17T. If the IRQA pin is asserted when the STOP instruction is executed the in-

ternal delay counter will be started. Refer to Section 7.6 for details on the STOP mode.

Restrictions:

— A STOP instruction cannot be used in a fast interrupt routine.

— A STOP instruction cannot be the last instruction in a DO loop (i.e., at LA).

— A STOP instruction cannot be repeated using the REP instruction.

Example:

STOP ;enter low-power standby mode

Explanation of Example: The STOP instruction suspends all processor activity until the processor is re-

set or interrupted as previously described. The STOP instruction puts the processor in a

low-power standby mode.

Condition Codes Affected:
The condition codes are not affected by this instruction.

STOP Stop Instruction Processing STOP

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 201

Instruction Format:

STOP

Opcode:

Instruction Fields: None

Timing: The STOP instruction disables internal distribution of the clock.

Memory: 1 program word

STOP Stop Instruction Processing STOP

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 202 INSTRUCTION SET MOTOROLA

Operation Assembler Syntax:

D - S → D (parallel move) SUB S,D (parallel move)
D - S → D (two parallel reads) SUB S,D (two parallel reads)

Description: Subtract the source operand S from the destination operand D and store the result in the

destination operand D. Words (16 bits), long words (32 bits) and accumulators (40 bits)

may be subtracted from the destination accumulator.

Note: The carry bit is set correctly using word or long word source operands if the extension register of
the destination accumulator (A2 or B2) is the sign extension of bit 31 of the destination accumulator (A or
B). The carry bit is always set correctly using accumulator source operands.

Example:

SUB X1,A X:(R2)+N2,X0 ;16-bit subtract, load X0, update R2

Explanation of Example: Prior to execution, the 16-bit X1 register contains the value $0003 and the 40-

bit A accumulator contains the value $00:0058:1234. The SUB instruction automatically ap-

pends the16-bit value in the X1 register with 16 LS zeros, sign extends the resulting 32-bit

long word to 40 bits, and subtracts the result from the 40-bit A accumulator. Thus, 16-bit

operands are subtracted from the MSP portion of A or B (A1 or B1) because all arithmetic

instructions assume a fractional, two’s complement data representation. Note that 16-bit

operands can be subtracted from the LSP portion of A or B (A0 or B0) by loading the 16-bit

operand into X0 or Y0, forming a 32-bit word by loading X1 or Y1 with the sign extension

of X0 or Y0, and executing a SUB X,A or SUB Y,A instruction.

SUB Subtract SUB

After Execution

00 0055 1234

A2 A1 A0

Before Execution

00 0058 1234

A2 A1 A0

 0003

X1

 0003

X1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 203

Condition Codes:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result
C — Set if a carry (or borrow) occurs from bit 39 of A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

Instruction Format: SUB S,D (parallel move)

Opcode:

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

SUB Subtract SUB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

1 m R R H H H W 0 1 0 0 F J J J

15 12 11 8 7 4 3 0

0 1 1 m m K K K 0 r r u F u u u

15 12 11 8 7 4 3 0

Instruction Format: SUB S,D (two parallel reads)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, W, and mm data fields.

Instruction Fields: Please see the “Dual X Memory Data Read” description in the parallel move sec-

tion for details on the mm and KKK data fields.

S,D J J J F
B,A 0 0 0 0
A,B 0 0 0 1
X,A 0 1 0 0
X,B 0 1 0 1
Y,A 0 1 1 0
Y,B 0 1 1 1
X0,A 1 0 0 0

S,D J J J F
X0,B 1 0 0 1
Y0,A 1 0 1 0
Y0,B 1 0 1 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

S,D u u u u F
X0,A 0 1 0 0 0
X0,B 0 1 0 0 1
Y0,A 0 1 0 1 0
Y0,B 0 1 0 1 1
X1,A 0 1 1 0 0
X1,B 0 1 1 0 1
Y1,A 0 1 1 1 0

One Parallel Operation Two Parallel Reads

S,D u u u u F
Y1,B 0 1 1 1 1

B,A 1 1 0 1 0
A,B 1 1 0 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 204 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D* 2 - S → D (parallel move) SUBL S,D (parallel move)

Description: Subtract the source operand S from two times the destination operand D and store the re-

sult in the destination accumulator. The destination operand D is arithmetically shifted one

bit to the left and a zero is shifted into the LS bit of D prior to the subtraction operation. The

carry bit is set correctly if the source operand does not overflow as a result of the left shift

operation. The overflow bit may be set as a result of either the shifting or subtraction oper-

ation (or both). This instruction is useful for efficient divide and decimation in time (DIT) FFT

algorithms.

Example:

SUBL B,A X:(R3)+,X1 ;A * 2 - B → A, updateX1 and R3

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $00:0000:2468

and the 40-bit B accumulator contains the value $00:0000:1234. The SUBL B,A instruction

subtracts the value in the B accumulator from two times the value in the A accumulator and

stores the 40-bit result in the A accumulator.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if limiting (parallel move) or overflow has occurred in result
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Set if overflow has occurred in A or B result or if the MSB of the destination

operand is changed as a result of the instruction’s left shift.
C — Set if a carry (or borrow) occurs from bit 39 of A or B result

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

SUBL Shift Left and Subtract Accumulators SUBL

After Execution

00 0000 369C

A2 A1 A0

Before Execution

00 0000 2468

A2 A1 A0

00 0000 1234

B2 B1 B0

00 0000 1234

B2 B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 205

Instruction Format:

SUBL S,D (parallel move)
Opcode:

Instruction Fields

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

SUBL Shift Left and Subtract Accumulators SUBL

1 m R R H H H W 0 1 0 0 F 0 0 1

15 12 11 8 7 4 3 0

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, W, and mm data fields.

 S,D F

 B,A 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 206 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

D1 ↔ D0 (no parallel move) SWAP D (no parallel move)

Description: Exchange MS word and LS words of destination accumulator. The extension register is not

affected by this instruction.

Example:

SWAP A

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value

$FE:0000:1234. Execution of the SWAP A instruction exchange the 16-bit value in the A1

register with the 16-bit value in the A0 register.

Condition Codes Affected:
 The condition codes are not affected by this instruction.

SWAP Swap Accumulator Words SWAP

After Execution

FE 1234 0000

A2 A1 A0

Before Execution

FE 0000 1234

A2 A1 A0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 207

Instruction Format:

SWAP D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

SWAP Swap Accumulator Words SWAP

0 0 0 1 0 1 0 1 0 1 1 1 F 0 0 1

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 208 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Begin SWI exception processing SWI

Description: Suspend normal instruction execution and begin SWI exception processing. The interrupt

priority level (I1,I0) is set to 3 in the status register (SR) if a long interrupt service routine is

used.

Restrictions:

— A SWI instruction cannot be used in a fast interrupt routine.

— A SWI instruction cannot be repeated using the REP instruction.

Example:

:
SWI ;begin SWI exception processing

Explanation of Example: The SWI instruction suspends normal instruction execution and initiates SWI

exception processing.

Condition Codes Affected:
The condition codes are not affected by this instruction.

SWI Software Interrupt SWI

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 209

Instruction Format:

SWI
Opcode:

Instruction Fields: none

Timing: 8 oscillator clock cycles
Memory: 1 program word

SWI Software Interrupt SWI

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 210 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

If cc, then S → D Tcc (S,D)

If cc, then S → D and R0 → Rn Tcc S,D R0,Rn

Description: Transfer data from the specified source register S1 to the specified destination accumulator

D1 if the specified condition is true. If a second source register R0 and a second destination

register Rn are also specified, transfer data from address register R0 to address register

Rn if the specified condition is true. If the specified condition is false, a NOP is executed.

When used after the CMP or CMPM instructions, the Tcc instruction can perform many use-
ful functions such as a “maximum value”, “minimum value”, “maximum absolute value”, or
“minimum absolute value” function. The desired value is stored in the destination accumu-
lator D. If address register R0 is used as an address pointer into an array of data, the ad-
dress of the desired value is stored in the address register Rn. The Tcc instruction may be
used after any instruction and allows efficient searching and sorting algorithms. Transfer-
ring A to A or B to B conditionally updates a register without affecting the ALU registers.

The term “cc” may specify the following conditions:

where: U denotes the logical complement of U,
+ denotes the logical OR operator,
• denotes the logical AND operator,
⊕ denotes the logical Exclusive OR operator

 Note: This instruction is considered to be a move-type instruction. Due to pipelining, if an address register
(R0-R3) is changed using a move-type instruction, the new contents of the destination address register will
not be available for use during the following instruction (i.e., there is a single instruction cycle pipeline delay).

Tcc Transfer Conditionally Tcc

“cc” Mnemonic Condition

CC (HS) — carry clear (higher or same) C=0
CS (LO) — carry set(lower) C=1
EC — extension clear E=0
EQ — equal Z=1
ES — extension set E=1
GE — greater than or equal N ⊕ V=0
GT — greater than Z+(N ⊕ V)=0
LC — limit clear L=0
LE — less than or equal Z+(N ⊕ V)=1
LS — limit set L=1
LT — less than N ⊕ V=1
MI — minus N=1
NE — not equal Z=0
NR — normalized Z+(U•E)=1
PL — plus N=0
NN — not normalized Z+(U•E)=0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 211

Example:

CMP X0,A ;compare X0 and A (sort for minimum)
TLT X0,A R0,R1 ;transfer X0 → A and R0 → R1 if X0 < A

Explanation of Example: In this example, the contents of the 16-bit X0 register are transferred to the 40-

bit A accumulator and the contents of the 16-bit R0 address register are transferred to the

16-bit R1 address register if the specified condition is true. If the specified condition is not

true, a NOP is executed.

Condition Codes Affected:
The condition codes are not affected by this instruction.

Instruction Format:

Tcc S1,D1 R0,Rn
Opcode:

Instruction Fields:

* Encoding used by the assembler when no Data ALU transfer is specified in the instruction
cc = 4-bit condition code = CCCC

Timing: 2 oscillator clock cycles
Memory: 1 program word

Tcc Transfer Conditionally Tcc

0 0 0 1 0 0 c c c c T T F h 0 h

15 12 11 8 7 4 3 0

S,D h0h F

X0,A 100 0
X0,B 100 1
Y0,A 101 0
Y0,B 101 1

TT Rn

00 R0
01 R1
10 R2
11 R3

S,D h0h F

A,A* 001 0
A,B 000 1
B,A 000 0
B,B 001 1

Mnemonic C C C C

CC(HS) 0 0 0 0

GE 0 0 0 1

NE 0 0 1 0

PL 0 0 1 1

NN 0 1 0 0

EC 0 1 0 1

LC 0 1 1 0

GT 0 1 1 1

Mnemonic C C C C

CS(LO) 1 0 0 0

LT 1 0 0 1

EQ 1 0 1 0

MI 1 0 1 1

NR 1 1 0 0

ES 1 1 0 1

LS 1 1 1 0

LE 1 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 212 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S → D (parallel move) TFR S,D (one parallel operation)
S → D (two parallel reads) TFR S,D (two memory reads)

Description: Transfer data from the specified source Data ALU register S to the specified destination

Data ALU accumulator D. TFR uses the internal Data ALU data paths and thus data does

not pass through the data shifter/limiters. This allows the full 40-bit contents of one of the

accumulators to be transferred into the other accumulator without data shifting and/or lim-

iting. Moreover, since TFR uses the internal Data ALU data paths, parallel moves are pos-

sible. The TFR instruction only affects the L or S condition code bits which can be set by

data movement associated with the instruction’s parallel move operations.

Example:

TFR X1,A X:(R0)+,Y1 X:(R3)+N3,X0 ;move X1 to A and
;update Y1, X0, R0, R3

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $B5:0123:0123

and the 16-bit X1 register contains the value $4000. Execution of the TFR X1,A instruction

moves the 16-bit value in X1 into the 40-bit A accumulator.

Condition Codes Affected:

S — Set according to the standard definition for the S bit
L — Set if data limiting has occurred during parallel move

TFR Transfer Data ALU Register TFR

 4000

X1

4000

X1

After Execution

00 4000 0000

A2 A1 A0

Before Execution

B5 0123 0123

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 213

Timing: 2 + mv oscillator clock cycles
Memory: 1 program word

TFR Transfer Data ALU Register TFR

1 m R R H H H W 0 0 0 1 F J J J

15 12 11 8 7 4 3 0

0 1 1 m m K K K 0 r r 1 F 0 D D

15 12 11 8 7 4 3 0

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, W, and mm data fields.

Instruction Format: TFR S,D (parallel move)

Opcode:

Instruction Format: TFR S,D (two parallel reads)

Opcode:

Instruction Fields: Please see the “Dual X Memory Data Read” description in the parallel move sec-

tion for details on the mm and KKK data fields.

S,D J J J F
B,A 0 0 0 0
A,B 0 0 0 1
X,A 0 1 0 0
X,B 0 1 0 1
Y,A 0 1 1 0
Y,B 0 1 1 1
X0,A 1 0 0 0

S,D J J J F
X0,B 1 0 0 1
Y0,A 1 0 1 0
Y0,B 1 0 1 1
X1,A 1 1 0 0
X1,B 1 1 0 1
Y1,A 1 1 1 0
Y1,B 1 1 1 1

S,D D D F
X0,A 0 0 0
X0,B 0 0 1
Y0,A 0 1 0
Y0,B 0 1 1

One Parallel Operation Two Parallel Reads

S,D D D F
X1,A 1 0 0
X1,B 1 0 1
Y1,A 1 1 0
Y1,B 1 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 214 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S → D (no parallel move) TFR(2) S,D (no parallel operation)

Description: Transfer data from the specified source accumulator S to the specified 32-bit destination

Data ALU register D. GDB and XDB are used for this transfer. The transferred data passes

through the shifter/limiter; therefore, the L condition code bit will be affected.

Example:

TFR(2) A,X ;move A to X1:X0

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $FF:FFFF:0123

and the 32-bit X1:X0 register contains the value $1234:5678. Execution of the TFR A,X in-

struction moves the 32-bit value in A into the 32-bit X (X1:X0) register. The L bit is not set.

Condition Codes Affected:

L — Set if data limiting has occurred

TFR(2) Two Word Data ALU Register Transfer TFR(2)

FFFF

X1

 1234

X1

0123

X0

After Execution

FF FFFF 0123

A2 A1 A0

Before Execution

FF FFFF 0123

A2 A1 A0

 4567

X0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 215

Instruction Format:

TFR(2) S,D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

TFR(2) Two Word Data ALU Register Transfer TFR(2)

0 0 0 1 0 1 0 1 0 0 0 0 F 0 0 J

15 12 11 8 7 4 3 0

S,D J F

A,X 0 0
B,X 0 1
A,Y 1 0
B,Y 1 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 216 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S1 → D1 X:<ea>, D2 TFR(3) S1,D1 X:<ea>,D2
S1 → D1 S2, X:<ea> TFR(3) S1,D1 S2, X:<ea>

Description: Transfer data from the specified source accumulator S to the specified 16-bit destination

Data ALU register D with the specified memory parallel move. The TFR(3) instruction can

affect the L condition code bit in two ways. The parallel move transfer goes through the

shifter/limiter to the XDB.The register transfer uses the GDB and therefore only goes

through a limiter and is not affected by the scaling mode.

Example:

TFR(3) A,X1 X:(R0)+,X0 ;move A1 to X1 and X:(R0) to X0, update R0

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value

$FF:FFFF:0123. Execution of the TFR(3) A,X1 X:(R0)+,X0 instruction moves the 16-bit val-

ue in A1 into the 16-bit X1 register and the 16-bit value located in X:(R0) into the 16-bit reg-

ister X0. R0 is then post-incremented by one.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during the data transfer or the parallel move

TFR(3) Transfer Data ALU Register TFR(3)

FFFF

X1

 1234

X1

6543

X0

After Execution

FF FFFF 0123

A2 A1 A0

Before Execution

FF FFFF 0123

A2 A1 A0

 5678

X0

6543

X:(R0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 217

Instruction Format:

TFR(3) S1,D1 X:<ea>,D2
TFR(3) S1,D1 S2, X:<ea>

Opcode and Instruction Fields: Please see the “X Memory Data Move” description in the parallel move

section for details on the m, RR, HHH, and W data fields.

Timing: 2 +mv oscillator clock cycles
Memory: 1 program word

TFR(3) Transfer Data ALU Register TFR(3)

Reg. W

read S2 0
write D2 1

0 0 1 0 0 1 m W R R D D F H H H

15 12 11 8 7 4 3 0

HHH D2,S2 HHH D2,S2

000 X0 100 A
001 Y0 101 B
010 X1 110 A0
011 Y1 111 B0

S1,D1 D D F
A,X0 0 0 0
B,X0 0 0 1
A,Y0 0 1 0
B,Y0 0 1 1

S1,D1 D D F
A,X1 1 0 0
B,X1 1 0 1
A,Y1 1 1 0
B,Y1 1 1 1

where “RR” refers to
an Address Register R0-R3

ea m
(Rn)+ 0
(Rn)+Nn 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 218 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S - 0 (parallel move) TST S (parallel move)

Description: Compare the specified source accumulator S with zero and set the condition codes accord-

ingly. No result is stored although the condition codes are updated.

Example:

TST A X:(R0)+N0,B ;set CCR bits for value in A, update B and R0

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $01:0203:0000

and the 16-bit condition code register (CCR) contains the value $0300. Execution of the

TST A instruction compares the value in the A register with zero and updates the condition

code register accordingly. The contents of the A accumulator are not affected.

Condition Codes Affected:

S — Computed according to the standard definition (see section A.4)
L — Set if data limiting has occurred during parallel move
E — Set if the signed integer portion of A or B result is in use
U — Set according to the standard definition of the U bit
N — Set if bit 39 of A or B result is set
Z — Set if A or B result equals zero
V — Always cleared
C — Always cleared

Note: The definition of the E and U bits varies according to the scaling mode being used. Please refer to
Section A.4 entitled “Condition Code Computation” for complete details.

TST Test Accumulator TST

 0300

SR=MR:CCR

0330

SR=MR:CCR

After Execution

01 0203 0000

A2 A1 A0

Before Execution

01 0203 0000

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 219

Instruction Format:

TST S (parallel move)

Opcode:

Instruction Fields: Please see the “X Memory Data Move” description in the parallel move section for

details on the m, RR, HHH, and W data fields.

Timing: 2+mv oscillator clock cycles
Memory: 1 program word

TST Test Accumulator TST

1 m R R H H H W 0 0 1 0 F 0 0 1

15 12 11 8 7 4 3 0

S F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 220 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

S - 0 (no parallel move) TST(2) S (no parallel move)

Description: Compare the specified source Data ALU register S with zero and set the condition codes

accordingly. No result is stored although the condition codes are updated.

Example:

TST(2) X1 ;set CCR bits for value in X1

Explanation of Example: Prior to execution, the 16-bit X0 register contains the value #$0203 and the 16-

bit condition code register (CCR) contains the value $0300. Execution of the TST(2) X0 in-

struction compares the value in the X0 register with zero and updates the condition code

register accordingly. The contents of the X0 register is not affected.

Condition Codes Affected:

U — Set if result is unnormalized
N — Set if bit 31 of A or B result is set
Z — Set if result equals zero
C — Always cleared

TST(2) Test Data ALU Register TST(2)

 0300

SR=MR:CCR

0310

SR=MR:CCR

Before Execution

 0203

X1

After Execution

0203

X1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 221

Instruction Format:

TST S

Opcode:

“—” = don’t care

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

TST(2) Test Data ALU Register TST(2)

0 0 0 1 0 1 0 1 0 0 0 1 — 1 D D

15 12 11 8 7 4 3 0

S DD

X0 00
Y0 01
X1 10
Y1 11

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 222 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

Disable clocks to the processor core and enter the WAIT processing state. WAIT

Description: Enter the WAIT processing state. The internal clocks to the processor core and memories

are gated off and all activity in the processor is suspended until an unmasked interrupt oc-

curs. The clock oscillator and the internal I/O peripheral clocks remain active. When an un-

masked interrupt or external (hardware) processor RESET occurs, the processor leaves

the WAIT state and begins exception processing of the unmasked interrupt or RESET con-

dition. The WAIT state is a low-power standby mode.

Restrictions:

— A WAIT instruction cannot be used in a fast interrupt routine.
— A WAIT instruction cannot be the last instruction in a DO loop (at LA).
— A WAIT instruction cannot be repeated using the REP instruction.

Example:

:
WAIT ;enter low power mode, wait for interrupt

:

Explanation of Example: The WAIT instruction suspends normal instruction execution and waits for an

unmasked interrupt or external RESET to occur.

Condition Codes Affected:
The condition codes are not affected by this instruction.

WAIT Wait for interrupt WAIT

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 223

Instruction Format:

WAIT

Opcode:

Instruction Fields: None

Timing: If an internal interrupt is pending during the execution of the WAIT instruction, the WAIT
instruction takes a minimum of 32T cycles to execute. If no internal interrupt is pending
when the Wait instruction is executed, the period that the DSP is in the wait state is the pe-
riod before the interrupt or reset causing the DSP to exit the wait state plus a minimum of
28T cycles to a maximum of 31T cycles (see the Technical Data Sheet).

Memory: 1 program word

WAIT Wait for interrupt WAIT

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

15 12 11 8 7 4 3 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

A - 224 INSTRUCTION SET MOTOROLA

Operation: Assembler Syntax:

0 → [bit 39-32] of D ZERO D (no parallel move)

Description: Zero Extend the destination accumulator from bit 32 to bit 39

Example:

ZERO A

Explanation of Example: Prior to execution, the 40-bit A accumulator contains the value $FF:6432:0000.

Execution of the ZERO instruction clears the extension bits 32-39 and returns

$00:6432:0000 in A.

Condition Codes Affected:

E — Always cleared
U — Set according to the standard definition of the U bit
N — Always cleared
Z — Set if A or B result equals zero
V — Always cleared

ZERO Zero Extend Accumulator ZERO

A After Execution

00 3456 0000

A2 A1 A0

A Before Execution

12 3456 0000

A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LF * * * S1 S0 I1 I0 S L E U N Z V C

CCRMR

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA INSTRUCTION SET A - 225

Instruction Format:

ZERO D

Opcode:

Instruction Fields:

Timing: 2 oscillator clock cycles
Memory: 1 program word

ZERO Zero Extend Accumulator ZERO

0 0 0 1 0 1 0 1 0 1 0 1 F 0 0 0

15 12 11 8 7 4 3 0

D F

A 0
B 1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

A - 226 INSTRUCTION SET

MOTOROLA

A.6 INSTRUCTION TIMING

This section describes how one can calculate the 16-bit DSP instruction timing manually

using the tables provided in this section. Three complete examples are presented to illus-

trate the “layered” nature of the tables. Alternatively, the user can obtain the number of

instruction program words and the number of oscillator clock cycles required for a given

instruction by using the 16-bit DSP simulator. This method of determining instruction tim-

ing information is much faster and much simpler than using the aforementioned tables.

The number of words per instruction is dependent on the addressing mode and the type

of parallel data bus move operation specified. The symbols reference subsequent tables

to complete the instruction word count.

The number of oscillator clock cycles per instruction is dependent on many factors, includ-

ing the number of words per instruction, the addressing mode, whether the instruction

fetch pipe is full or not, the number of external bus accesses and the number of wait states

inserted in each external access. The symbols reference subsequent tables to complete

the execution clock cycle count. The following is a list of these tables and their purpose.

• Table A-6 gives the number of instruction program words and the number of
oscillator clock cycles for each instruction mnemonic.

• Table A-7 gives the number of additional (if any) instruction words and
additional (if any) clock cycles for each type of parallel move operation.

• Table A-8 gives the number of additional (if any) clock cycles for each type of
MOVEC operation.

• Table A-9 gives the number of additional (if any) clock cycles for each type of
MOVEM operation.

• Table A-10 gives the number of additional (if any) clock cycles for each type of
MOVEP operation.

• Table A-11 gives the number of additional (if any) clock cycles for each type of
bit field manipulation (BFCHG, BFCLR, BFSET, BFTSTH, and BFTSTL)
operation.

• Table A-12 gives the number of additional (if any) clock cycles for each type of
branch/jump (Bcc, BRA, BSR, BScc, Jcc, JMP, JSR, and JScc) operation.

• Table A-13 gives the number of additional (if any) clock cycles for the RTI and
RTS instructions.

• Table A-14 gives the number of additional (if any) instruction words and
additional (if any) clock cycles for each effective addressing mode.

• Table A-15 gives the number of additional (if any) clock cycles for external data,
external program, and external I/O memory accesses.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

MOTOROLA

 INSTRUCTION SET A - 227

All tables are based on the following assumptions.

Assumptions:

1. All instruction cycles are counted in oscillator clock cycles.

2. The instruction fetch pipeline is full.

3. There is no contention for instruction fetches. Thus, external program instruction

fetches are assumed not to have to contend with external data memory accesses.

4. There are no wait states for instruction fetches done sequentially (as for non-

change-of-flow instructions), but they are taken into account for change-of-flow in-

structions which flush the pipeline such as BRA/JMP, Bcc/Jcc, RTI, etc.

In order to better understand and use the aforementioned tables, three examples are pre-
sented prior to the actual tables. These examples attempt to illustrate the “layered” nature
of the tables.

Example 1:

Arithmetic Instruction with 2 Parallel Reads

Problem:

Calculate the number of 16-bit instruction program words and the number
of oscillator clock cycles required for the instruction

MACR X1,Y0,A X:(R0)+,Y0 X:(R3)+,X1

where Operating Mode Register (OMR) = $02 (normal expanded memory map),
Bus Control Register (BCR) = $20,
R0 Address Register = $0052 (internal X memory), and
R3 Address Register = $0923 (external X memory).

Solution:

To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should per-
form the following operations:

1. Look up the number of instruction program words and the number of oscillator
clock cycles required for the opcode-operand portion of the instruction in Table A-6.
According to Table A-6, the MACR instruction will require 1 instruction program
word and will execute in (2 + mv) oscillator clock cycles. The term “mv” represents
the additional (if any) instruction program words and the additional (if any) oscillator
clock cycles that may be required over and above those needed for the basic
MACR instruction due to the parallel move portion of the instruction.

2. Evaluate the “mv” term using Table A-7.
The parallel move portion of the MACR instruction consists of an XX Memory
Read. According to Table A-7, the parallel move portion of the instruction will re-
quire mv = axx additional oscillator clock cycles. The term “axx” represents the
number of additional (if any) oscillator clock cycles that are required to access two
operands in the X memory.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

A - 228 INSTRUCTION SET

MOTOROLA

3. Evaluate the “axx” term using Table A-15.
The parallel move portion of the MACR instruction consists of an XX Memory
Read. According to Table A-15, the term “axx” depends upon where the referenced
X memory locations are located in the 16-bit DSP memory space. External X mem-
ory accesses require additional oscillator clock cycles according to the number of
wait states programmed into the 16-bit DSP Bus Control Register (BCR). Thus, as-
suming that the 16-bit Bus Control Register contains the value $20, external X
memory accesses require wx = 1 wait state or additional oscillator clock cycle. For
this example, the first X memory reference is assumed to be an internal reference
while the second X memory reference is assumed to be an external reference.
Thus, according to Table A-15, the XX memory reference in the parallel move por-
tion of the MACR instruction will require axx = wx = 1 additional oscillator clock cy-
cle.

4. Compute final results.
Thus, based upon the assumptions given for Table A-6 and those listed in the prob-
lem statement for Example 1, the instruction

MACR X1,Y0,A X:(R0)+,Y0 X:(R3)+,X1

will require 1instruction program word and will execute in
(2 + mv) = (2 + axx) = (2 + wx) = (2 + 1) = 3 oscillator clock cycles.

Note that if a similar calculation were to be made for a MOVEC, MOVEM, MOVEP, or one

of the bit field manipulation (BFCHG, BFCLR, BFSET, or BFTST) instructions, the use of

Table A-7 would no longer be appropriate. For one of these cases, the user would refer

to Table A-8, Table A-9, Table A-10, or Table A-11, respectively.

Example 2:

Jump Instruction

Problem:

Calculate the number of 16-bit instruction program words and the number
of oscillator clock cycles required for the instruction

JLC R2
where Operating Mode Register (OMR) = $02 (normal expanded memory map),

Bus Control Register (BCR) = $04,
R2 Address Register= $2000 (external P memory)

Solution:

To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should per-
form the following operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.
According to Table A-6, the Jcc instruction will require (1 + ea) instruction program
words and will execute in (4 + jx) oscillator clock cycles. The term “ea” represents
the number of additional (if any) instruction program words that are required for the

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

MOTOROLA

 INSTRUCTION SET A - 229

effective address of the Jcc instruction. The term “jx” represents the number of ad-
ditional (if any) oscillator clock cycles required for a jump-type instruction.

2. Evaluate the “jx” term using Table A-12.
According to Table A-12, the Jcc instruction will require jx = ea + (2 * ap) additional
oscillator clock cycles. The term “ea” represents the number of additional (if any) os-
cillator clock cycles that are required for the effective addressing mode specified in
the Jcc instruction. The term “ap” represents the number of additional (if any) oscil-
lator clock cycles that are required to access a P memory operand. Note that the “+
(2 * ap)” term represents the two program memory instruction fetches executed at
the end of a one-word jump instruction to refill the instruction pipeline.

3. Evaluate the “ea” term using Table A-14.
The JLC R2 instruction uses the “No update” effective addressing mode. According
to Table A-14, this operation will require ea = 0 additional instruction program words
and ea = 0 additional oscillator clock cycles.

4. Evaluate the “ap” term using Table A-15.
According to Table A-15, the term “ap” depends upon where the referenced P mem-
ory location is located in the 16-bit DSP memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro-
grammed into the 16-bit DSP Bus Control Register (BCR). Thus, assuming that the
16-bit Bus Control Register contains the value $04, external P memory accesses
require wp = 4 wait states or additional oscillator clock cycles. For this example,
the P memory reference is assumed to be an external reference. Thus, according
to Table A-15, the Jcc instruction will use the value ap = wp = 4 oscillator clock cy-
cles.

5. Compute final results.
Thus, based upon the assumptions given for Table A-6 and those listed in the prob-
lem statement for Example 2, the instruction

JLC R2

will require (1 + ea) = (1 + 0) = 1instruction program word
and will execute in (4 + jx) = (4 + ea + (2 * ap)) = (4 + ea + (2 * wp)) = (4 + 0 + (2 * 4))
= 12 oscillator clock cycles.

Example 3:

RTI Instruction

Problem:

Calculate the number of 16-bit instruction program words and the number
of oscillator clock cycles required for the instruction

RTI

where Operating Mode Register (OMR) = $02 (normal expanded memory map),
Bus Control Register (BCR) = $41, and
Return Address (on the stack) = $0100 (internal P memory).

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

A - 230 INSTRUCTION SET

MOTOROLA

Solution:

To determine the number of instruction program words and the number of
oscillator clock cycles required for the given instruction, the user should per-
form the following operations:

1. Look up the number of instruction program words and the number of oscillator clock
cycles required for the opcode-operand portion of the instruction in Table A-6.
According to Table A-6, the RTI instruction will require 1 instruction program word
and will execute in (4 + rx) oscillator clock cycles. The term “rx” represents the num-
ber of additional (if any) oscillator clock cycles required for an RTI or RTS instruc-
tion.

2. Evaluate the “rx” term using Table A-13.
According to Table A-13, the RTI instruction will require rx = (2 * ap) additional os-
cillator clock cycles. The term “ap” represents the number of additional (if any) os-
cillator clock cycles that are required to access a P memory operand. Note that the
term “(2 * ap)” represents the two program memory instruction fetches executed at
the end of an RTI or RTS instruction to refill the instruction pipeline.

3. Evaluate the “ap” term using Table A-15.
According to Table A-15, the term “ap” depends upon where the referenced P mem-
ory location is located in the 16-bit DSP memory space. External memory accesses
require additional oscillator clock cycles according to the number of wait states pro-
grammed into the 16-bit DSP Bus Control Register (BCR). Thus, assuming that the
16-bit Bus Control Register contains the value $0041, external P memory accesses
require wp = 1 wait state or additional oscillator clock cycles. For this example, the
P memory reference is assumed to be an internal reference. This means that the
return address ($0100) pulled from the system stack by the RTI instruction is in in-
ternal P memory. Thus, according to Table A-15, the RTI instruction will use the val-
ue ap = 0 additional oscillator clock cycles.

4. Compute final results.
Thus, based upon the assumptions given for Table A-6 and those listed in the prob-
lem statement for Example 3, the instruction

RTI

will require one instruction program word and will execute in
(4 + rx) = (4 + (2 * ap)) = (4 + (2 * 0)) = 4 oscillator clock cycles.

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

MOTOROLA

 INSTRUCTION SET A - 231

Table A-6 Instruction Timing Summary

Note 1:

 The STOP instruction disables the internal clock oscillator. After clock turn-on, an internal counter
counts some 65,536 cycles before enabling the clock to the internal DSP circuits.

Mnemonic Instruction Osc. Notes
Program Clock
Words Cycles

ABS 1 2+mv
ADC 1 2
ADD 1 2+mv
AND 1 2+mv
ANDI 1 2
ASL 1 2+mv
ASL4 1 2
ASR 1 2+mv
ASR4 1 2
ASR16 1 2
BFCHG 2 4+mvb
BFCLR 2 4+mvb
BFSET 2 4+mvb
BFTSTH 2 4+mvb
BFTSTL 2 4+mvb
Bcc 1+ea 4+jx
BRA 1+ea 4+jx
BRKcc 1 2/8 3
BScc 1+ea 4+jx
BSR 1+ea 4+jx
CHKAAU 1 2
CLR 1 2+mv
CLR24 1 2+mv
CMP 1 2+mv
CMPM 1 2+mv
DEBUG 1 4
DEBUGcc 1 4
DEC 1 2+mv
DEC24 1 2+mv
DIV 1 2
DMAC 1 2
DO 2 6/10+mv 4
DOFOREVER 2 6
ENDDO 1 2
EOR 1 2+mv
EXT 1 2
ILLEGAL 1 8
IMAC 1 2
IMPY 1 2
INC 1 2+mv
INC24 1 2+mv
Jcc 1+ea 4+jx
JMP 1+ea 4+jx
JScc 1+ea 4+jx

Mnemonic Instruction Osc. Notes
Program Clock
Words Cycles

JSR 1+ea 4+jx
LEA 1 4
LSL 1 2+mv
LSR 1 2+mv
MAC 1 2+mv
MACR 1 2+mv
MAC(uu,su) 1 2
MOVE 1+ea 2+mv
MOVE(C) 1+ea 2+mvc
MOVE(I) 1 2
MOVE(M) 1+ea 2+mvm
MOVE(P) 1 4+mvp
MOVE(S) 1 4+mvp
MPY 1 2+mv
MPYR 1 2+mv
MPY(su,uu) 1 2
NEG 1 2+mv
NEGC 1 2
NOP 1 2
NORM 1 2
NOT 1 2+mv
OR 1 2+mv
ORI 1 2
REP 1 4/6+mv 5
REPcc 1 4/6 6
RESET 1 4
RND 1 2+mv
ROL 1 2+mv
ROR 1 2+mv
RTI 1 4+rx
RTS 1 4+rx
SBC 1 2+mv
STOP 1 n/a 1
SUB 1 2+mv
SUBL 1 2+mv
SWAP 1 2
SWI 1 8
Tcc 1 2
TFR 1 2+mv
TFR(2) 1 2
TFR(3) 1 2+mv
TST 1 2+mv
TST(2) 1 2
WAIT 1 n/a 2
ZERO 1 2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

A - 232 INSTRUCTION SET

MOTOROLA

Note 2:

The WAIT instruction takes a minimum of 16 cycles to execute when an internal interrupt is pend-
ing during the execution of the WAIT instruction.

Note 3:

 BRKcc executes in 8 clock cycles if cc is true. Otherwise it executes in 2 clock cycles.

Note 4:

 The DO instruction executes in 10 clock cycles if the DO argument is equal to zero. In that case,
the loop is skipped. Otherwise it executes in 6 clock cycles.

Note 5:

 The REP instruction executes in 6 clock cycles if the argument is equal to zero. In that case, the
repetition is skipped. Otherwise it executes in 4 clock cycles.

Note 6:

 REPcc executes in 6 clock cycles if cc is true on entry. Otherwise it executes in 4 clock cycles.
When the condition becomes true, 4 additional clock cycles are necessary to exit the REP.

Table A-7 Parallel Data Move Timing

Table A-8 MOVEC Timing Summary

Table A-9 MOVEM Timing Summary

Note that the “ap” term present in Table A-9 represents the wait states spent when ac-

cessing the program memory during DATA read or write operations and does not refer to

instruction fetches.

+ mv + mv
Parallel Move operation Words Cycles Comments

No Parallel Data Move 0 0
I Immediate Short Data 0 0
R Register to Register 0 0
U Address Reg. Update 0 0
X: X Memory Move 0 ax
X: R X Memory and Register ea ea+ax
X: X: XX Memory Read 0 axx

+ mvc
MOVEC Operation Cycles Comments

Immediate → Register 2
Register ↔ Register 0

X Memory ↔ Register ea + ax

+ mvm
MOVEM Operation Cycles Comments

Register ↔ P Memory 4 + ea + ap

X Memory ↔ P Memory 4 + ea + ap

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

MOTOROLA

 INSTRUCTION SET A - 233

Table A-10 MOVEP Timing Summary

Table A-11 Bit Field Manipulation Timing Summary

where BFxxx = BFCHG, BFCLR, or BFSET

and BFTSTx = BFTSTH or BFTSTL

Table A-12 Branch/Jump Instruction Timing Summary

where Bxxx = Bcc, BRA, BScc, and BSR

Jxxx = Jcc, JMP, JScc, and JSR

The one word branch instructions using the 6-bit signed address, as well as all one-word

jump instructions, execute

two

 program memory fetches to refill the pipeline which is rep-

resented by the “+ (2 * ap)” term.

For all other branch instruction, another instruction cycle (two clock cycles) is necessary

to compute the new PC address from the relative address.

All two-word jumps execute

three

 program memory fetches to refill the pipeline but one

of those fetches is sequential (the instruction word located at the jump instruction 2nd

word address+1). If the jump instruction was fetched from program memory using wait

states, another “ap” should be added to account for that third fetch.

+ mvp
MOVEP Operation Cycles Comments

Register ↔ Peripheral aio

X Memory ↔ Peripheral ea + ax + aio

+ mvb
Bit Manipulation Operation Cycles Comments

BFxxx Peripheral 2 * aio
BFxxx X Memory ea + (2 * ax)

BFTSTx Peripheral aio
BFTSTx X Memory ea + ax

+ jx
Branch/Jump Instruction Operation Cycles Comments

 Bxxx eab + (2 * ap)
 Jxxx ea + (2 * ap)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

A - 234 INSTRUCTION SET

MOTOROLA

Table A-13 RTI/RTS Timing Summary

The term “2 * ap” comes from the two instruction fetches done by the RTI/RTS instruction

to refill the pipeline.

Table A-14 Addressing Mode Timing Summary

Operation + rx Cycles Comments

 RTI 2 * ap
 RTS 2 * ap

+ ea + ea +eab
Effective Addressing Mode Words Cycles Cycles

Address Register Indirect

No Update 0 0 2
Postincrement by 1 0 0 —
Postdecrement by 1 0 0 —

Post addition by Offset Nn 0 0 —
Indexed by Offset Nn 0 2 —
Predecrement by 1 0 2 —

Special

Immediate Data 1 2 —
Absolute Address 1 2 2

Immediate Short Data 0 0 —
Short Branch Address 0 — 0

Absolute Short Address 0 0 —
I/O Short Address 0 0 —

Implicit 0 0 —
Indexed by short displacement 1 2 —

Acc. Indirect Address 0 2 —

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INSTRUCTION TIMING

MOTOROLA

 INSTRUCTION SET A - 235

Table A-15 Memory Access Timing Summary

where wx = external X memory access wait states

wp = external P memory access wait states

where wx and wp are programmable from 0-31 wait states in the Port A Bus Control Reg-

ister (BCR).

Access X Mem P Mem I/O + ax + ap + aio + axx
Type Access Access Access Access Cycle Cycle Cycle

X: Int – – 0 – – –
X: Ext – – wx – – –
P: – Int – – 0 – –
P: – Ext – – wp – –
IO: – – Int – – 0 –
X:X: Int:Int – – – – – 0
X:X: Int:Ext – – – – – wx
X:X: Ext:Ext – – – – – 2+2*wx
X:X: I/O:I/O – – – – – 2
X:X: I/O:Int – – – – – 2
X:X: I/O:Ext – – – – – 2+2*wx

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

A - 236 INSTRUCTION SET

MOTOROLA

A.7 FUNCTIONAL SUMMARY

Table A-16 Dual Read Instructions

DSP56100 Family

DATA ALU
 OPERATION

DOUBLE
EFFECTIVE
 ADDRESS

DOUBLE
DESTINATION

Oper. Reg. Read1 Read2 Dest1 Dest2

MOVE

(Rn)+ (R3)+ F X0

MAC/R
MPY/R

X1,Y1,F
X1,Y0,F
X0,Y1,F
X0,Y0,F

(Rn)+Nn (R3)+ Y0 X0

(Rn)+ (R3)+N3 X1 X0

(Rn)+Nn (R3)+N3 Y1 X0

n=[0,2]

F = 0

→

 A
F = 1

→

 B

X0 X1

ADD
SUB
TFR

X1,F
X0,F
Y1,F
Y0,F

Y0 X1

F Y0

Y1 X1

ADD

F,F

SUB

F,F

TFR

F,F

Table A-17 LMS Instruction

DSP56100 Family

DATA ALU
 OPERATION

DOUBLE
TRANSFER

Oper. Reg. TRANSFER1 TRANSFER2

MAC
MPY

X0,X0,F F (Rn)+Nn X1 F

X1,X0,F
n=[0,2]
F = 0

→

 A
F = 1

→

 B
F= Opposite accumulator

X0 F

A1,Y0,F Y1 F

B1,X0,F Y0 F

Y0,X1,F

Y1,X1,F

Y1,X0,F

Y0,X0,F

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

MOTOROLA

 INSTRUCTION SET A - 237

Table A-18 Data ALU Instructions with One Parallel Operation

DSP56100 Family

DATA ALU
 OPERATION

PARALLEL MEMORY
READ or WRITE

Oper. Reg.

Effective Address

Dest/Source

MAC
MPY

+X0,X0,F
+X1,X0,F
+A1,Y0,F
+B1,X0,F
+Y0,X1,F
+Y1,X1,F
+Y1,X0,F
+Y0,X0,F

(Rn)+
(Rn)+Nn
(F1)
(R2+xx)

X1
X0
Y1
Y0
A0
B0
A
B

ONE ADDRESS UPDATE

ADD
SUB
TFR
OR/AND
EOR
CMP/CMPM

X1,F
X0,F
Y1,F
Y0,F

Effective Address

(Rn)-

(Rn)+Nn

PARALLEL REGISTER
TRANSFER

Source Destination

X0 F

ADD
SUB

X,F
Y,F

X1 F

Y0 F

MOVE

Y1 F

SBC

X,F
Y,F

A X0

A X1

CMP/CMPM
SUBL, TFR
ADD, SUB

F,F B Y0

B Y1

RND
TST
ABS
INC/INC24
DEC/DEC24
CLR/CLR24
NEG
ASL/ASR
NOT
ROL/ROR
LSL/LSR

F F F

A0 X0

A0 X1

B0 Y0

B0 Y1

No Transfer

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

A - 238 INSTRUCTION SET

MOTOROLA

Table A-19 Bit Field Manipulation Instructions

DSP56100 Family

OPERATION OPERAND COMMENTS

BFTSTH #iiii,
BFTSTL #iiii,
BFCHG #iiii,
BFSET #iiii,
BFCLR #iiii,

X:(Rn) n=[0,3]

X:<aa> First 32 words of X
memory 5 bit address

X:<pp> Last 32 words of X
memory 5 bit address

X1,X0,Y1,Y0,
R0,R1,R2,R3,
N0,N1,N2,N3
M0,M1,M2,M3
A2,B2,A1,B1,
A0,B0,A,B
SR,OMR,SP,SSH,
SSL,LA,LC

Table A-20 Effective Address Update

DSP56100 Family

OPERATION SOURCE
ADDRESS
REGISTER

DESTINATION
REGISTER

LEA

(Rn)
(Rn)+
(Rn)-
(Rn)+Nn
n=[0,3]

R0,R1,R2,R3
N0,N1,N2,N3

Table A-21 JUMP/BRANCH Instructions

DSP56100 Family

OPERATION OPERAND COMMENTS

JSR
JMP
Jcc
JScc

(Rn) n=[0,3]

$xxxx 16-bit absolute
 address

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

MOTOROLA

 INSTRUCTION SET A - 239

BSR
BRA
Bcc
BScc

(Rn) n=[0,3]

$xxxx 16-bit absolute
 address

JSR

AA 8-bit absolute
address [0,256]

BRA

aa 8-bit PC relative
address
 [-128,+127]

Bcc

ee 6-bit PC relative
address
 [-32,+31]

Table A-22 REP and DO Instructions

DSP56100 Family

OPERATION OPERAND COMMENTS

REP
DO

X:(Rn) n=[0,3]

#xx 8-bit immediate
 short data

X1,X0,Y1,Y0,
R0,R1,R2,R3,
N0,N1,N2,N3
M0,M1,M2,M3
A2,B2,A1,B1,
A0,B0,A,B
SR,OMR,SP,SSH,
SSL,LA,LC

REPcc

16 conditions

DO FOREVER

Table A-21 JUMP/BRANCH Instructions

DSP56100 Family

OPERATION OPERAND COMMENTS

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

A - 240 INSTRUCTION SET

MOTOROLA

Table A-23 Short Immediate Move Instructions

DSP56100 Family

OPERATION DESTINATION COMMENTS

MOVE(I) #xx,

X1
X0
Y1
Y0

immediate short 8 bit
signed data
(data is put in the
LSByte)

Table A-24 MOVE Program and Control Instructions

DSP56100 Family

OPERATION Source/Dest. Dest./Source COMMENTS

MOVE(M)

P:(Rn)
P:(Rn)+
P:(Rn)-
P:(Rn)+Nn
P:(R2+xx)

A, A0, B, B0
X0, X1, Y0, Y1

MOVE(M)

X:(Rn)+
X:(Rn)+Nn

P:(Rn)+
P:(Rn)+Nn

MOVE(C)

X:(Rn)
X:(Rn)+
X:(Rn)-
X:(Rn)+Nn
X:(Rn+Nn)
X:-(Rn)
X:#xxxx
#xxxx
X:(A1)
X:(B1)
X:(R2+xx)

All registers X:#xxxx

:

Long 16-bit
absolute address

#xxxx

:

Long 16-bit
immediate
data

MOVE(C)

All registers All registers

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

MOTOROLA

 INSTRUCTION SET A - 241

Table A-25 MOVE Absolute Short and
MOVE Peripheral Instructions

DSP56100 Family

OPERATION Source/Dest. Dest./Source COMMENTS

MOVE(S)

X:<aa> A, B,
X0, Y0

First 32 word of X
memory
5 bit address

MOVE(P)

X:<pp> A, B,
X0, Y0

Last 32 word of X
memory
5 bit address

X:(Rn)+
X:(Rn)+Nn

Table A-26 Transfer with Parallel MOVE Instruction

DSP56100 Family

OPERATION REGISTER TRANSFER PARALLEL MOVE

Source Destination Source/Dest. Dest./Source

TFR(3)

A
B

X0, X1,
Y0, Y1

X:(Rn)+
X:(Rn)+Nn

X0,X1,Y0,Y1,
A0, B0, A, B

Table A-27 Register Transfer without Parallel MOVE Instruction

DSP56100 Family

OPERATION SOURCE DESTINATION

TFR(2)

A
B

X
Y

Table A-28 Register Transfer Conditional MOVE Instruction

DSP56100 Family

OPERATION Data ALU Address Register

Tcc

A, F
B, F
Y0, F
X0, F

R0,R0

R0,Rm

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

A - 242 INSTRUCTION SET

MOTOROLA

Table A-29 Conditional Program Controller Instructions

DSP56100 Family

OPERATION

BRKcc

DEBUGcc

Table A-30 Logical Immediate Instructions

DSP56100 Family

OPERATION DESTINATION COMMENTS

ORI #xx,
ANDI #xx,

CCR
MR
OMR

8 bit immediate data

Table A-31 Double Precision Data ALU Instructions

DSP56100 Family

DATA ALU
 OPERATION

Operation sign unsigned

DMAC

Y1, X0 F
X1, Y1, F
X1, Y0, F
X0, Y0, F

MPY(su,uu)
MAC(su,uu)

Y1, X0, F
X1, Y1, F
X1, Y0, F
X0, Y0, F

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

MOTOROLA

 INSTRUCTION SET A - 243

Table A-32 Integer Data ALU Instructions

DSP56100 Family

DATA ALU OPERATION

Operation

IMAC
IMPY

X0,X0,F
X1,X0,F
A1,Y0,F
B1,X0,F
Y0,X1,F
Y1,X1,F
Y1,X0,F
Y0,X0,F

Table A-33 Division Instruction

DSP56100 Family

DATA ALU OPERATION

Operation

DIV

X1,F
X0,F
Y1,F
Y0,F

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FUNCTIONAL SUMMARY

A - 244 INSTRUCTION SET

MOTOROLA

Table A-34 Other Data ALU Instructions

DSP56100 Family

 OPERATION

Norm

Rn,F n=[0,3]

TST2

X1,X0,Y1,Y0 Test data registers

ADC

X,F
Y,F

CHKAAU

Set V,N,Z according to last address
ALU operation

ZERO

F Zero F from bit 32 to 39

EXT

F Sign extend F from bit 31 to 39

SWAP

F Swap F1 and F0

NEGC

F Negate with borrow

ASL4

F

ASR4

F

ASR16

F Move A, A0 arithmetic

Table A-35 Special Instructions

DSP56100 Family

OPERATION

WAIT

STOP

ENDDO

RESET

RTS

RTI

SWI

DEBUG

NOP

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

 B - 1

APPENDIX B

DSP56100 BENCHMARKS

T T T

T T

P1 P3P2 P4

T T T

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECTION CONTENTS

B - 2

MOTOROLA

B.1 INTRODUCTION . B-3

B.2 FIRST SET OF BENCHMARKS . B-5

B.2.1 Real Multiply . B-5

B.2.2 N Real Multiplies . B-5

B.2.3 Real Update . B-5

B.2.4 N Real Updates . B-6

B.2.5 Real Correlation Or Convolution (FIR Filter) . B-6

B.2.6 Real * Complex Correlation Or Convolution (FIR Filter) B-7

B.2.7 Complex Multiply . B-7

B.2.8 N Complex Multiplies . B-8

B.2.9 Complex Update . B-8

B.2.10 N Complex Updates . B-9

B.2.11 Complex Correlation Or Convolution (Complex FIR) B-9

B.2.12 Nth Order Power Series (Real) . B-10

B.2.13 2nd Order Real Biquad IIR Filter . B-10

B.2.14 N Cascaded Real Biquad IIR Filters . B-11

B.2.15 N Radix 2 FFT Butterflies . B-13

B.2.16 LMS Adaptive Filter . B-14

B.2.17 FIR Lattice Filter . B-24

B.2.18 All Pole IIR Lattice Filter . B-25

B.2.19 General Lattice Filter . B-26

B.2.20 Normalized Lattice Filter . B-27

B.2.21 [1x3][3x3] Matrix Multiply . B-28

B.2.22 [NxN][NxN] Matrix Multiply . B-29

B.2.23 N Point 3x3 2-D FIR Convolution . B-30

B.2.24 Signed 16 Bit Result Divide . B-32

B.2.25 Signed Integer Divide . B-33

B.2.26 Multiply 32-bit Fractions . B-34

B.3 SECOND SET OF BENCHMARKS . B-35

B.3.1 Sine Wave Generation Using Double Integration Technique B-35

B.3.2 Sine Wave Generation Using Second Order Oscillator B-36

B.3.3 IIR Filter Using Cascaded Transpose BIQUAD Cell B-37

B.3.4 Find the Index of a Maximum Value in an Array B-39

B.3.5 Proportional Integrator Differentiator (PID) Algorithm B-40

B.3.6 Reed Solomon Main Loop . B-41

B.3.7 N Double Precision Real Multiplies . B-42

B.3.8 Double Precision Autocorrelation . B-42

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

MOTOROLA

 B - 3

B.1 INTRODUCTION

Appendix B consists of a set of DSP Benchmarks intended to highlight the DSP56100 family performance

in various applications, show examples of programming techniques, and provide code fragments for user

application programs. Additional code will be put on the Dr. Bub Electronic Bulletin Board System as it be-

comes available. The following table lists these Benchmark programs and provides an overview of the pro-

gram’s performance.

The assembly language source is organized into 5 columns as shown below.

Label Opcode Operands Data Bus Data Bus Comment

FIR MAC X1,X0,A X:(R0)+,X1 X:(R3)+,X0 ;Do each tap

The Label column is used for program entry points and end of loop indication. The Opcode column indicates

the Data ALU, Address ALU or Program Controller operation to be performed. The Operands column spec-

ifies the operands to be used by the opcode. The Data Bus specifies an optional data transfer over the Data

Bus and the addressing mode to be used. The Comment column is used for documentation purposes and

does not affect the assembled code. The Opcode column must always be included in the source code. For

each benchmark, the number of program words and instruction cycles are given.

The following equates are used in the benchmark programs.

page 132
opt cc

;define section
AD EQU 0
BD EQU $100
bd EQU $100
C EQU $200
c EQU $200
D EQU $300
N EQU 100
AR EQU $300
AI EQU $400
OUTPUT EQU $500
output EQU $FFF1
INPUT EQU $501
input EQU $FFF1
W EQU 0
w EQU 0
H EQU 0
XM EQU 0
state equ 0
ntaps equ $10

k equ 0
n equ 32
p equ 10
mask equ 10
image equ $40
dividend equ .25
divisor equ .5
paddr equ 0
qaddr equ 4
w1 equ 0
w2 equ 10
s equ 0
tablebase equ 0
lpc equ 8
frame equ 0
cor equ $100
shift equ $80 ;shift constant
table equ $180 ;base address
of a-law table

org p:$40

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

INTRODUCTION

B - 4

MOTOROLA

Program Program
Benchmark Length Length Page

in Icyc in Words Number

B.2.1 Real Multiply 3 3 B-4
B.2.2 N Real Multiplies 2N 11 B-4
B.2.3 Real Update 4 4 B-4
B.2.4 N Real Updates 3N 14 B-5
B.2.5 N Term Real Convolution (FIR) 1N 9 B-5
B.2.6 N Term Real*Complex Convolution 2N 15 B-6
B.2.7 Complex Multiply 6 6 B-6
B.2.8 N Complex Multiplies 4N 14 B-7
B.2.9 Complex Update 7 7 B-7
B.2.10 N Complex Updates 6N 18 B-8
B.2.11 N Term Complex Convolution (FIR) 4N 14 B-8
B.2.12 Nth Order Power Series 1N 13 B-9
B.2.13 2nd Order Real Biquad Filter 12 12 B-9
B.2.14 N Cascaded 2nd Order Biquads 5N 23 B-10
B.2.15 N Radix 2 FFT Butterflies 10N 13 B-12
B.2.16 Adaptive LMS FIR 2N+19 22 B-13
B.2.17 FIr Lattice Filter 4N+7 10 B-23
B.2.18 All Pole Iir Lattice Filter 3N+11 14 B-24
B.2.19 General Lattice Filter 4N+12 15 B-25
B.2.20 Normalized Lattice Filter 5N+11 15 B-26
B.2.21 [1x3][3x3] Matrix Multiply 21 21 B-27
B.2.22 [NxN][NxN] Matrix multiply N3+7N2 25 B-28
B.2.23 3x3 2-D FIR Kernel 12 44 B-29
B.2.24 Signed 16 Bit Result Divide 36 18 B-31
B.2.25 Signed Integer Divide 32 B-32
B.2.26 Multiply 32/48-bit Fractions 4+8 B-33

B.3.1 Wave Generation Double Integration 2N 15 B-34
B.3.2 Wave Generation 2nd Order Oscillator 4N 16 B-35
B.3.3 Cascaded Transpose BIQUAD Cell 8N 15 B-36
B.3.4 IIR nth Order Direct Form II Canonic 2N 11 B-37
B.3.5 Find Index Of A Max Value In Array 3N 10 B-38
B.3.6 PID Algorithm 5 5 B-39
B.3.7 Reed Solomon Main Loop 18N 17 B-40
B.3.8 N Double Precision Real Multiplies 9N 18 B-41
B.3.9 Double Precision Autocorrelation 19 B-41

Table B-1 Benchmark Overview

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 5

B.2 FIRST SET OF BENCHMARKS

B.2.1 Real Multiply

;c = a * b
; Prog Icyc
; words Cycles

MOVE X:(R0)+N0,X1 X:(R3)+N3,X0 ;1 1
MPYR X1,X0,A ;1 1
MOVE A,X:(R1) ;1 1

;_______
;Totals 3 3

;

B.2.2 N Real Multiplies

;c(I) = a(I) * b(I), I=1,…,N

opt cc
MOVE #AD,R0 ;2 2
MOVE #BD,R3 ;2 2
MOVE #C,R2 ;2 2
MOVE X:(R0)+,Y0 X:(R3)+,X0 ;1 1
DO #N,END_DO2 ;2 3

 MPYR Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1
MOVE A,X:(R2)+ ;1 1

END_DO2 ;_______
; Totals 11 2N+10
;

B.2.3 Real Update

;d = c + a * b

opt cc
MOVE X:(R0)+N0,X1 X:(R3)+N3,X0 ;1 1
MOVE X:(R2),A ;1 1
MACR X1,X0,A ;1 1
MOVE A,X:(R1) ;1 1

;_______
; Totals 4 4
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 6

MOTOROLA

B.2.4 N Real Updates

;d(I) = c(I) + a(I) * b(I), I=1,…,N
opt cc
MOVE #AD,R0 ;2 2
MOVE #BD,R3 ;2 2
MOVE #C,R2 ;2 2
MOVE #D,R1 ;2 2
MOVE X:(R0)+,Y0 X:(R3)+,X0 ;1 1
DO #N,END_DO4 ;2 3
MOVE X:(R2)+,A ;1 1
MACR Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1
MOVE A,X:(R1)+ ;1 1

END_DO4 ;_______
; Totals ;14 3N+12
;

B.2.5 Real Correlation Or Convolution (FIR Filter)

;c(n) = SUM(I=0,…,N-1) {a(I) * b(n-I)}

opt cc
MOVE #AD,R0 ;2 2
MOVE #BD,R3 ;2 2
CLR A X:(R0)+,Y0 ;1 1
MOVE X:(R3)+,X0 ;1 1
REP #N ;1 2
MAC Y0,X0,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1
RND A ;1 1

;_______
; Totals 9 1N+9
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 7

B.2.6 Real * Complex Correlation Or Convolution (FIR Filter)

;cr(n) + jci(n) = SUM(I=0,…,N-1) {(ar(I) + jai(I)) * b(n-I)}
;cr(n) = SUM(I=0,…,N-1) {ar(I) * b(n-I)}
;ci(n) = SUM(I=0,…,N-1) {ai(I) * b(n-I)}

opt cc
MOVE #AR,R0 ;2 2
MOVE #AI,R1 ;2 2
MOVE #BD,R3 ;2 2
CLR A X:(R0)+,X1 ;1 1
CLR B X:(R1)+,Y1 ;1 1
MOVE X:(R3)+,X0 ;1 1
DO #N,END_DO6 ;2 3
MAC X0,X1,A X:(R0)+,X1 ;1 1
MAC X0,Y1,B X:(R1)+,Y1 X:(R3)+,X0 ;1 1

END_DO6
RND A ;1 1
RND B ;1 1

; _______
; Totals 15 2N+14
;

B.2.7 Complex Multiply

opt cc
MOVE X:(R0)+,Y1 X:(R3)+,X1 ;1 1 ar br
MPY Y1,X1,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1 ar*br, ai, bi
MACR -Y0,X0,A ;1 1 ar*br-ai*bi
MPY Y1,X0,B A,X:(R2)+ ;1 1 ar*bi
MACR Y1,X0,B ;1 1 ar*bi+ai*br
MOVE B,X:(R2)+ ;1 1

; ________
; Totals 6 6
;

X memory
ar
ai

br
bi

cr
ci

’

r0

r3

r2

cr + jci = (ar + jai)*(br + jbi)
cr = ar*br - ai*bi
ci = ar*bi + ai*br

Y1 = ar X1 = br
Y0 = ai X0 = bi

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 8

MOTOROLA

B.2.8 N Complex Multiplies

; cr(I) + jci(I) = (ar(I) + jai(I)) * (br(I) + jbi(I)), I=1,…,N
; cr(I) = ar(I) * br(I) - ai(I) * bi(I) Y1=ar X1=br
; ci(I) = ar(I) * bi(I) + ai(I) * br(I) Y0=ai X0=bi

opt cc
MOVE #AD,R0 ;2 2
MOVE #C-1,R2 ;2 2
MOVE #BD,R3 ;2 2
MOVE X:(R2),B ; dummy move!
MOVE X:(R0)+,Y1 X:(R3)+,X1 ;1 1 ar;br
DO #N,END_DO8 ;2 3
MPY Y1,X1,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1 ar*br, ai, bi
MACR -Y0,X0,A B,X:(R2)+ ;1 1 ar*br-ai*bi
MPY Y0,X1,B A,X:(R2)+ ;1 1 ai*br
MACR Y1,X0,B X:(R0)+,Y1 X:(R3)+,X1 ;1 1 ar*bi+ai*br, ar

END_DO8
MOVE B,X:(R2)+ ;1 1

; _______
; Totals: 14 4N+11
;

B.2.9 Complex Update

opt cc
MOVE X:(R2)+,A ;1 1 cr
MOVE X:(R0)+,Y1 X:(R3)+,X1 ;1 1
MAC Y1,X1,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1 cr+ar*br,ai,bi
MACR -Y0,X0,A X:(R2)+,B ;1 1 cr+ar*br ai*bi
MAC Y1,X0,B A,X:(R1)+ ;1 1 ci+ar*bi
MACR Y0,X1,B ;1 1 ci+ar*bi+ai*br
MOVE B,X:(R1)+ ;1 1

; ________
; Totals 7 7
;

X memory
ar
ai

br
bi

cr
ci

dr
di

r0

r3

r1

dr + jdi = cr + jci + (ar + jai)*(br + jbi)
dr = cr + ar*br - ai*bi
di = ci + ar*bi + ai*br

Y1 = ar X1 = br
Y0 = ai X0 = bi r2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 9

B.2.10 N Complex Updates

opt cc
MOVE #AD,R0 ;2 2
MOVE #BD,R3 ;2 2
MOVE #D-1,R1 ;2 2
MOVE #C,R2 ;2 2
MOVE X:(R1),B ; dummy in B
MOVE X:(R0)+,Y1 ;1 1 ar
DO #N,END_DOA ;2 3
MOVE X:(R2)+,A X:(R3)+,X0 ;1 1 cr,br
MAC Y1,X0,A X:(R0)+,Y0 X:(R3)+,X1 ;1 1 cr+ar*br, ai, bi
MACR -Y0,X1,A B,X:(R1)+ ;1 1 cr+ar*br ai*bi
MOVE X:(R2)+,B ;1 1 ci
MPY Y1,X1,B A,X:(R1)+ ;1 1 ci+ar*bi, dr
MACR Y0,X0,B X:(R0)+,Y1 ;1 1 ci+ar*bi+ai*br

END_DOA
MOVE B,X:(R1)+ ;1 1

; _______
; Totals 18 6N+13
;

B.2.11 Complex Correlation Or Convolution (Complex FIR)

; cr(n) + jci(n) = SUM(I=0,…,N-1) {(ar(I) + jai(I)) * (br(n-I) + jbi(n-I))}
; cr(n) = SUM(I=0,…,N-1) {ar(I) * br(n-I) - ai(I) * bi(n-I)} Y1=ar X1=br
; ci(n) = SUM(I=0,…,N-1) {ar(I) * bi(n-I) + ai(I) * br(n-I)} Y0=ai X0=bi

opt cc
MOVE #AD,R0 ;2 2
MOVE #BD,R3 ;2 2
CLR A X:(R0)+,Y1 ;1 1 ar
CLR B X:(R3)+,X1 ;1 1 br
DO #N,END_DOB ;2 3
MAC Y1,X1,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1 ar*br, ai, bi
MAC Y1,X0,B ;1 1 ar*bi
MAC Y0,X1,B X:(R0)+,Y1 X:(R3)+,X1 ;1 1 ar*bi+ai*br, ar
MAC -Y0,X0,A ;1 1 ar*br-ai*bi

END_DOB
RND A ;1 1
RND B ;1 1

; _______
; Totals 14 4N+11
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 10

MOTOROLA

B.2.12 Nth Order Power Series (Real)

; c = SUM(I=0,…,N) {a(I) * b**I} = [[[a(n) *b+a(n-1)] *b+a(n-2)]*b+a(n-3)]…

opt cc
MOVE #BD,R1 ;2 2
MOVE #AD,R0 ;2 2
MOVE X:(R1),Y0 ;1 1 b
MOVE Y0,X0 ;1 1
MOVE X:(R0)+,A ;1 1 a(n)
MOVE X:(R0)+,B ;1 1 a(n-1)
DO #N/2,END_DOC ;2 3
MAC A1,Y0,B X:(R0)+,A ;1 1 a(n-2)
MAC B1,X0,A X:(R0)+,B ;1 1 a(0)+a(1)*b

END_DOC
RND A ;1 1

;_______
; Totals 13 1N+12
;

B.2.13 2nd Order Real Biquad IIR Filter

; w(n)/2 = x(n)/2 - (a1/2) * w(n-1) - (a2/2) * w(n-2)
; y(n)/2 = w(n)/2 + (b1/2) * w(n-1) + (b2/2) * w(n-2)

; DHigh Memory Order - w(n-2), w(n-1)
; DLow Memory Order - (a2/2), (a1/2), (b2/2), (b1/2)

; this version uses two pointers
opt cc
MOVE #-1,N0 ;2 2
ORI #$08,MR ;1 1
RND A X:(R3)+,X1 ;1 1 X1=a2/2
MOVE X:(R0)+,X0 ;1 1 X0=wn-2
MAC Y1,X0,A X:(R0)+N0,Y1 X:(R3)+,X1 ;1 1 y1=wn-1
MAC Y1,X1,A X1,X:(R0)+ ;1 1 a=wn
MOVE X:(R3)+,X1 ;1 1 x1=b2/2
MAC X1,X0,A A,X:(R0)+ ;1 1
MOVE X:(R3)+,X1 ;1 1 X1=b1/2
MACR Y1,X1,A ;1 1

MOVE A,X:<<output ;1 1
; _______
; Totals 12 12
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 11

B.2.14 N Cascaded Real Biquad IIR Filters

; w(n)/2 = x(n)/2 - (a1/2) * w(n-1) - (a2/2) * w(n-2)
; y(n)/2 = w(n)/2 + (b1/2) * w(n-1) + (b2/2) * w(n-2)

; D High Memory Order - w(n-2)1,w(n-1)1,w(n-2)2,w(n-1)2,…
; D Low Memory Order - (a2/2)1,(a1/2)1,(b2/2)1,(b1/2)1,(a2/2)2,…

; this version uses two pointers

opt cc
ORI #$08,MR ;1 1
MOVE #W,R0 ;2 2
MOVE #C,R3 ;2 2
MOVE #-1,N0 ;2 2
movep x:<<input,A ;1 5
RND A X:(R3)+,X1 ;1 1 X1=a2/2
MOVE X:(R0)+,Y0 ;1 1 Y0=wn-2
DO #N,END_DOE ;2 3
MAC Y0,X1,A X:(R0)+N0,Y1 X:(R3)+,X1 ;1 1 y1=wn-1
MACR Y1,X1,A Y1,(R0)+ ;1 1
MOVE X:(R3)+,X1 ;1 1 X1= b2/2
MAC Y0,X1,A A,X:(R0)+ ;1 1
MOVE X:(R3)+,X1 ;1 1 X1=b1/2
MAC Y1,X1,A X:(R0)+,Y0 X:(R3)+,X1 ;1 1

END_DOE ;_______
; Totals 18 6N+14
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 12

MOTOROLA

;this version uses three pointers

opt cc
ORI #$08,MR ;2 2
MOVE #W,R0 ;2 2
MOVE #C,R3 ;2 2
MOVE #C+2,R1 ;2 2
MOVE #2,N3 ;2 2
MOVE #4,N1 ;2 2
MOVE #-1,N0 ;2 2
MOVEP X:<<input,A ;1 2 ;a=x
MOVE X:(R0)+,Y0 X:(R3)+,X0 ;1 1 ;y0=w-2
DO #N,END_DOF ;2 3
MAC Y0,X0,A X:(R0)+N0,Y1 X:(R3)+N3,X0 ;1 1 ;w-1;a1/2
MACR Y1,X0,A Y1,X:(R0)+ ;1 1 a=w
MOVE X:(R1)+N1,X0X:(R3)+,X1 ;1 1 ;x0=b2/2
MAC Y0,X0,A A,X:(R0)+ ;1 1 ;a=w+b2/2w-2
MAC Y1,X1,A X:(R0)+,Y0 X:(R3)+,X0 ;1 1 ;a=y; next w-2

END_DOF ;_______
; Totals 23 5N+20
;

X memory
w(n-2)
w(n-1)

a2/2
a1/2
b2/2
b1/2

r0

r3

r1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 13

B.2.15 N Radix 2 FFT Butterflies

; Decimation in time (DIT), in-place algorithm

; Twiddle Factor Wk= wr - jwi = cos(2

π

k/N) -j sin(2

π

k/N) pointed by R1
; which must be saved on each pass.

; xr = ar + wr * br - wi * bi
; xi = ai + wi * br + wr * bi
; yr = ar - wr * br + wi * bi = 2 * ar - xr
; yi = ai - wi * br - wr * bi = 2 * ai - xi

opt cc
move x:(r1)+,y0 x:(r3)+,x1 ;y0=wr; x1=br
move x:(r0),b ;b=ar
move x:(r1)+n1,y1 ;y1=wi

; save r1, update r1 to point last bi/yi

do #n,end_bfly ;2 3
mac y0,x1,b x:(r3)+,x0 ;1 1 b=ar+wrbr
macr -y1,x0,b a,x:(r1)+ ;1 1 b=xr
move x:(r0)+,a ;1 1 a=ar
subl b,a b,x:(r2)+ ;1 1 a=2ar-xr=yr
move x:(r0),b ;1 1
move a,x:(r1)+ ;1 1 b=ai
mac y1,x1,b x:(r3)+,x1 ;1 1 b=ai+wibr
macr y0,x0,b x:(r0)+,a x:(r3)+,x0 ;1 1 b=xi;a=ai
subl b,a b,x:(r2)+ ;1 1 a=2ai-xi=yi
move x:(r0),b ;1 1 b=ar

end_bfly
move b,x:(r1)+n1 ;1 1 save last yi

; save r1, update r1 to point twiddle factors _______
; Totals 13 10N+4
;

X=A+BW
k

Y=A-BW
kB

A

W
k

-

+

X memory
ar/xr
ai/xi

br/yr
bi/yi

cos(2πk/N)
-sin(2πk/N)

r0,r2

r3,r1

r1

yi/ai/yr/ar xi/ai/xr/ar

wr -wibi br

X0 X1 Y0 Y1

A B

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 14

MOTOROLA

B.2.16 LMS Adaptive Filter

;Notation and symbols:
; x(n) - Input sample at time n.
; d(n) - Desired signal at time n.
; y(n) - FIR filter output at time n.
; H(n) - Filter coefficient vector at time n. H={c0,c1,c2,…,ck,…,c(N-1)}
; X(n) - Filter state variable vector at time N. X={x(n),x(n-1),….,x(n-N+1)}
; Mu - Adaptation gain.
; N - Number of coefficient taps in the filter.
; True LMS Algorithm Delayed LMS Algorithm
; Get input sample Get input sample
; Save input sample Save input sample
; Do FIR Do FIR
; Get d(n), find e(n) Update coefficients
; Update coefficients Get d(n), find e(n)
; Output y(n) Output y(n)
; Shift vector X Shift vector X

; System equations:
; e(n)=d(n)-H(n)X(n) e(n)=d(n)-H(n)X(n) (FIR filter and error)
; H(n+1)=H(n)+uX(n)e(n) H(n+1)=H(n)+uX(n-1)e(n-1) (Coefficient update)

;References:

;“Adaptive Digital Filters and Signal Analysis”, Maurice G. Bellanger Marcel Deker,
; Inc. New York and Basel

;“The DLMS Algorithm Suitable for the Pipelined Realization of Adaptive Filters”,
;Proc. IEEE ASSP Workshop, Academia Sinica, Beijing, 1986

;Note:
;The sections of code shown describe how to initialize all registers, filter an input
;sample and do the coefficient update. Only the instructions relating to the filtering
;and coefficient update are shown as part of the benchmark. Instructions executed
;only once (for initialization) or instructions that may be user application dependent
;are not included in the benchmark.

T T T T

c(0)

x(n)

c1)

x(n-1)

c(k)

x(n-K)

c(N-1)

x(n-N+1)

y(n)

e(n)d(n)

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 15

; Implementation of the true LMS on the DSP56100 family

;Memory map:

opt cc
move #XM,r0 ;start of X
move #N-1,m0 ;mod 4
 move #-2,n0 ;adjustment for filtering
move m0,m2 ;mod N
movep x:<<input,y0 ;get input sample
move #H,r3 ;2 2 coefficients
clr a y0,x:(r0)+ ;1 1 save x(n)
move x:(r3)+,x1 ;1 1 get c0
rep #N-1 ;1 2 do fir
mac y0,x1,a x:(r0)+,y0 x:(r3)+,x1 ;1 1
macr y0,x1,a ;1 1 last tap
movep a,x:<<output ;output fir if desired

;(Get d(n), subtract fir output, multiply by “u”, put the result in x0.
;This section is application dependent.)

move #H,r3 ;1 1 coefficients
move r3,r2 ;1 1 coefficients
move x:(r0)+,y0 ;1 1 get x(n)
move x:(r3)+,a ;1 1 a=c0
do #ntaps,_coefupdate ;2 3 update coef.
macr x0,y0,a x:(r0)+,y0 x:(r3)+,x1 ;1 1
tfr x1,a a,x:(r2)+ ;1 1 copy c,

_coefupdate
move x:(r0)+n0,y0 ;1 1 update r0
move x:(r3)-,y0 ;1 1 update r3

; ________
; Totals: 18 3N+17
;

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0
c1
c1
.

c(N-1)

r0

r3,r2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 16

MOTOROLA

; Implementation of the delayed LMS on the DSP56100 family

; Delayed LMS algorithm with matched coefficient and data vectors
; Algorithm runs in 2N (2 coeffs processed in each 4 cycle loop)

; Register Usage:
; Data Sample is stored in Y0 and Y1.
; Coefficient is stored in X1
; Loop Gain * Error is stored in X0.
; FIR operation done in B.
; Coeff update operation done in A.

; FIR sum = a = a +c(k)

old

*x(n-k)

; c(k)

new

= b = c(k)

old

 -mu*e

old

 *x(n-k-1)

opt cc
move #state,r0 ;2 2
move #ntaps,m0 ;2 2
move #-2,n0 ;2 2
move #1,n1 ;2 2
move #c+1,r3 ;2 2
move #c,r1 ;2 2

clr b x:(r0)+,y0 ;1 1 y0 = x(n)
move x:(r0)+,y1 x:(r3)+,x1 ;1 1 y1=x(n-1)

do #ntaps/2,end_lms ;2 3
mac y0,x1,b a,x:(r1)+n1 x1,a ;1 1
macr x0,y1,a x:(r0)+,y0 x:(r3)+,x1 ;1 1
mac x1,y1,b a,x:(r1)+n1 x1,a ;1 1
macr y0,x0,a x:(r0)+,y1 x:(r3)+,x1 ;1 1

end_lms
move a,x:(r1)+ ;1 1
move (r0)+n0 ;1 1

; _______
; Totals: 22 2N+19

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0
c1
c1
.

c(N-1)

r0

r3

r1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 17

; Implementation of the double precision true LMS on the DSP56100 family

; Memory map:

opt cc
move #XM,r0 ;start of X
move #N-1,m0 ;mod 4
move #-2,n0 ;adjustment for filtering
move #2,n3
move m0,m2 ;mod N
movep x:<<input,y0 ;get input sample

move #H,r3 ;1 1 ;coefficients
clr a y0,x:(r0)+ ;1 1 ;save x(n)
move x:(r3)+n3,x1 ;1 1 ;get c0
rep #N-1 ;1 2 ;do fir
mac x1,y0,a x:(r0)+,y0 x:(r3)+n3,x1 ;1 1 ; mac; next x
macr x1,y0,a ;1 1 ;last tap
movep a,x:<<output ;output fir if desired

;(Get d(n), subtract fir output, multiply by “u”, put the result in x0. This section is
;application dependent.)

move #H,r3 ;1 1 ;coefficients
move r3,r2 ;1 1 ;coefficients
move x:(r0)+,y0 ;1 1 ;get x(n)
move x:(r3)+,a ;1 1 ;a1=c0h
move x:(r3)+,a0 ;1 1 ;a0=col

 do #ntaps,_coefupdat ;2 3 ;update coef.
 mac x0,y0,a x:(r0)+,y0 ;1 1

move x:(r3)+,b ;1 1 u e(n) x(n)+c
move x:(r3)+,b0 ;1 1 ;b0=next c()l
move a1,x:(r2)+ ;1 1 ;save next c()h
tfr b,a a0,x:(r2)+ ;1 1 ;copy c

_coefupdat
move x:(r0)+n0,y0 ;1 1 ;update r0
move (r3)- ;1 1 ;update r3
move (r3)- ;1 1

;_______
; Totals: 21 6N+17
;

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0h
col
c1h
c1l
.

r0

r2,r3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 18

MOTOROLA

; Implementation of the double precision delayed LMS on the DSP56100 family

; Delayed LMS algorithm with matched coefficient and data vectors
; Algorithm runs in 4N (2 coeffs processed in each 8 cycle loop)
; Register Usage:
; Data Sample is stored in Y0 and Y1.
; Coefficient is stored in X1
; Loop Gain * Error is stored in X0.
; FIR operation done in B.
; Coeff update operation done in A.
; FIR sum = a = a +c(k)

old

*x(n-k)

; c(k)

new

= b = c(k)

old

 -mu*e

old

 *x(n-k-1)

opt cc
move #state,r0 ;2 2
move #ntaps,m0 ;2 2
move #-2,n0 ;2 2
move #1,n1 ;2 2
move #c,r3 ;2 2
move #c-2,r1 ;2 2

clr b x:(r0)+,y0 ;1 1 y0 = x(n)
move x:(r0)+,y1 x:(r3)+,x1 ;1 1 y1= x(n-1) x1=c0h

do #ntaps/2,end_lms2 ;2 3
mac y0,x1,b a,x:(r1)+n1 ;1 1
tfr x1,a a0,x:(r1)+n1 ;1 1 a1=ckh
move x:(r3)+,a0 ;1 1 a0=ckl
macr x0,y1,a x:(r0)+,y0 x:(r3)+,x1 ;1 1 x1=c(k+1)h
mac x1,y1,b a,x:(r1)+n1 ;1 1
tfr x1,a a0,x:(r1)+n1 ;1 1
move x:(r3)+,a0 ;1 1
macr y0,x0,a x:(r0)+,y1 x:(r3)+,x1 ;1 1

end_lms2
move a,x:(r1)+ ;1 1
move a0,x:(r1)+ ;1 1
move (r0)+n0 ;1 1

; _______
; Totals: 27 4N+20

X memory
x(n)

x(n-1)
.
.

x(n-N+1)

c0h
col
c1h
c1l
.

r0

r1,r3

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 19

;---
;

The complete code for a true LMS that executes in two instruction cycles per tap is shown below.

; A brief description of how the algorithm is derived precedes the LMS code. Note that the coefficients
; stored to memory are saturated (should overflow occur), whereas the coefficients used in the FIR
; filter are not
; saturated. Therefore, the coefficients stored to memory, and the coefficients used in the FIR filter
; calculation,
; are not guaranteed to be the same. This should not be a problem in designs where the echo gain
; is guaranteed
; to be less than one.
;---

opt cc,cex
page 132,66
section FAST_LMS

n_tap equ 16
org x:$0100

ref_buf dsm n_tap ;Ref_buf is a modulo n_tap buffer, containing
;a reference signal.

coeff ds n_tap ;Note: Coefficients are stored in reverse order

ref_ptr dc ref_buf ;data pointer for reference buffer
scaled_error dc 0 ;scaled error sample from last call of echo_input
norm_factor dc 0.1 ;scale factor for error signal

org p:0
jmp Test_EC
org p:$0100

;---
;
; The following pseudo code is for the “standard” LMS echo canceller algorithm.
; y(n) = estimate of echo at time sample n.
; x(n) = reference input signal at time n.
; input (n) = input signal (containing echo signal) at time n.
; c(n,k) = k’th coefficient at time n.
;
; /* initialize N coefficients at time 0 to 0 */
;
; for (k = 0 to n-1) {
; c(0,k) = 0;
; }
;
; /* LMS follows, do forever */
;
; n = 0;
; do forever {
; y(n) = 0;
;
; for (k=0 to N-1) {
; y(n) = y(n) + c(n,k)*x(n-k); /* FIR filter */
; }
;
; error(n) = input(n) - y(n);
;
; for (k = 0 to N-1) {
; c(n+1,k) = c(n,k) + delta*error(n)*x(n-k) ; /* Coefficient Update */
;
; }
;
; n = n+1;
; }
;---
-

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 20

MOTOROLA

;---
; The following is equivalent to the above (i.e., given the same input signals, the error signal and
; coefficients will follow the exact same trajectories. Note the calculations are run from the back of
; the filter to the front. This saves two registers. Also note that the calculation order of the coefficient
; and the FIR filter has been reversed.
;
; /* initialize N coefficients at time -1 to 0 */
;
; for (k = 0 to N-1) {
; c(-1,k) = 0;
; }
;
; error (-1) = 0 ;The initial error must be set to zero.
;
; /* LMS follows, do forever */
;
; n = 0;
; do forever {
;
; y(n) = 0;
;
; for (k = N-1 to 0) {
; c(n,k) = c(n-1,k) + delta*error(n-1)*x(n-1-k); /* Coefficient */
; }
;
; for (k= N-1to 0) {
; y(n) = y(n) + c(n,k)*x(n-k); /* FIR filter */
; }
;
; error(n) = input(n) - y(n);
;
; n = n+1;
;
; }
;---
; Note that the two “for” loops in the do forever loop can now be combined.
;---
;
; /* initialize N coefficients at time -1 to 0 */
;
; for (k = 0 to N-1) {
; c(-1,k) = 0;
; }
;
; error(-1) = 0;
;
; /* LMS follows, do forever */
;
; n = 0;
; do forever {
;
; y(n) = 0;
;
; for (k = N-1 to 0) {
; c(n,k) = c(n-1,k) + delta*error(n-1)*x(n-1-k); /* Coefficient */
; y(n) = y(n) + c(n,k)*x(n-k); /* FIR filter */
; }
;
; error(n) = input(n) - y(n);
;
; n = n+1;
;
; }
;---

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 21

;---
;
; Echo Canceller Routine (Fast LMS)
;
; Upon Entry
; x1 should contain newest reference sample
; y1 should contain newest input sample
;
; Upon Exit
; b will contain echo cancelled output
;
; Note that the coefficients are stored in reverse time order.
;---

FAST_LMS:

move #+1,n1

move #n_tap-1,m0
move #-1,m1
move m1,m3

move x:ref_ptr,r0 ;r0 is the get reference signal pointer

move #coeff,r3 ;r3 is the get coefficient pointer
move r3,r1 ;r1 is the put coefficient pointer

move x:(r0),y0 ;y0 contains the oldest reference sample
move x1,x:(r0)+ ;store newest reference sample in reference register

clr b x:(r3)+,a ;fetch first coefficient, and clear b for FIR
move x:scaled_error,x0 ;x0 is the scaled error sample

do #n_tap,end_fir_update

macr x0,y0,a x:(r0)+,y0 x:(r3)+,x1
mac a1,y0,b a,x:(r1)+n1 x1,a

end_fir_update

neg b
move r0,x:ref_ptr ;store get reference pointer
add y1,b ;b = EC output = input - echo_estimate

move x:norm_factor,x0
move b,y0
mpyr y0,x0,a
move a,x:scaled_error

move b,x:output_port

rts

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 22

MOTOROLA

;---
;
; Test shell follows
; Remote signal is an impulse train, period greater than echo span
; Input is the resulting echo signal
;
;---

org x:$1000

output_port ds 1 ;write output to D/A

org x:$0400

Remote_signal dc 0.8
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0

org c:$0420

echo_input dc 0.0
dc 0.0
dc 0.2
dc 0.4
dc 0.7
dc 0.4
dc 0.2
dc 0.1
dc 0.0
dc -0.1
dc -0.2
dc -0.1
dc 0.0
dc 0.1
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0
dc 0.0

remote_get dc remote_signal
input_get dc echo_input

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 23

org p:

Test_EC
move #0 ,x0
move #-1,m0
move #coeff,r0
rep #n_tap
move x0,x:(r0)+ ;zero coefficients

move #$ffff,x0
do x0,end_test_loop

move x:remote_get,r0
move #19,m0
move x:input_get,r1
move #19,m1
move x:(r0)+,x1
move x:(r1)+,y1
move r0,x:remote_get
move r1,x:input_get

jsr FAST_LMS

end_test_loop
nop
nop

debug

endsec
end

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 24

MOTOROLA

B.2.17 FIR Lattice Filter

;Lattice filter benchmarks. N refers to the number of “k” coefficients in the lattice filter.
;Some filters may have other coefficients other than the “k” coefficients but their

; number may be determined from k

.

; move #state,r0 ;point to state variable storage
move #N,m0 ;N=number of k coefficients
move #k,r1 ;point to k coefficients
move #N-1,m1 ;mod for k’s
move #0,n0
opt cc

movep x:<<input,b ;get input

move b,x:(r0)+ ;1 1 save 1st state
move x:(r1)+,x0 ;1 1 get k
do #N,end_elat ;2 3
move x:(r0)+n0,a b,y0 ;1 1 get s;copy t
macr x0,y0,a x:(r0)+n0,x1 ;1 1 t*k+s, copy s

 macr x1,x0,b x:(r1)+,x0 ;1 1 ;s*k+t, nxt k
move a,x:(r0)+ ;1 1 ;sv st

end_elat
move x:(r0)-,y1 ;1 1
move x:(r1)-,x0 ;1 1
movep b,x:<<output ;output

; _______
; 10 4N+7
;

K1

x(n)

S1

T

K2

S2

T

K3

S3

T

Sx

K

S

T

S’

t’t

SINGLE SECTION X memory
S1
S2
S3
Sx

K1
K2
K3

r0

r1

FIR LATTICE FILTER

The equations are:

t’ = s*t + t ; t’→ t
s’ = t*k + s’

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA

 B - 25

B.2.18 All Pole IIR Lattice Filter

opt cc
move #k+N-1,r0 ;point to k
move #N-1,m0 ;number of k’s-1
move #-1,n1
move n1,n3
movep x:<<input,a ;get input sample
move #state,r3 ;2 2 pt to x()
move x:(r0)-,y1 ;1 1 y1=k3
move x:(r3)+,x1 ;1 1 x1=s3
macr -x1,y1,a x:(r0)+n0,y1 ;1 1 a=in-k3s3;y1=k2
move x:(r3)-,x1 ;1 1 x1=s2
do #n-1,endlat ;2 3
macr -x1,y1,a b,x:(r3)+ ;1 1 a=a-s2k2=t2;update s3
move x:(r3)+,b a,x1 ;1 1 b=s2
macr x1,y1,b x:(r0)+n0,y1 x:(r3)+n3,x1 ;1 1 b=s2+t2k2;get s1,k1

endlat
move b,x:(r3)+ ;1 1 sv 2nd last s
move x:(r0)+,y1 ;1 1 update r0
move a,x:(r3)+ ;1 1 save last s
movep a,x:<<output ; output

; ________
; Total: 14 3N+12
;

-K3

x(n)

-K2

S2

T T

t’t

SINGLE SECTION X memory
S3
S2
S1

K1
K2
K3

r3

r0

ALL POLE IIR LATTICE FILTER

The equations are:

t’ = t-s*k ; t’→ t
s’ = t*k + s’

K2

-K1

S1

T

K1

-K

s

K

s’

T

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 26 MOTOROLA

B.2.19 General Lattice Filter

opt cc
move #k,r0 ;point to coefficients
move #2*N,m0 ;mod 2*(# of k’s)+1
move #-1,n3
movep x:<<input,a ;get input sample
move #state,r3 ;2 2 ;pto filter states
move x:(r0)+,y1 ;1 1 ;get first k
move x:(r3)-,x1 ;1 1 ;first s

 do #N,el ;2 3 ;do filter
 macr -y1,x1,a b,x:(r3)+ ;1 1 ;t-k*s, save s

move x:(r3)+,b a,x1 ;1 1 ;get s again
 macr x1,y1,b x:(r0)+,y1 x:(r3)+n3,x1 ;1 1 ;t’*k+s,get k& s
el
 move b,x:(r3)+ ;1 1 ;s 2nd to1st st
 clr a a,x:(r3)+ ;1 1 ;s first state

move x:(r3)+,x1 ;1 1 ;get last state
 rep #N ;1 2 ;do fir taps
 mac y1,x1,a x:(r0)+,y1 x:(r3)+,x1 ;1 1

macr y1,x1,a x:(r3)+,x1 ;1 1 finish, adj pointer
movep a,x:<<output ;_______output sample

; Totals: 15 4N+13
;

-K3

x(n)

-K2

S2

T T

t’t

SINGLE
SECTION

X memory

K3
K2
K1
W3
W2
W1
W0

S3
S2
S1

r0

r3

GENERAL LATTICE FILTER

The equations are:

t’ = t-s*k ; t’→ t
s’ = t*k + s’

output = Σ s’*w

K2

-K1

S1

T

K1

-K

s

K

s’

T

S3

w3 w2 w1

w

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA B - 27

B.2.20 Normalized Lattice Filter

opt cc
move #c,r0 ;point to coefficients
move #3*N,m0 ;mod on coefficients
move #0,n3
movep x:<<input,a ;get input sample
move #state,r3 ;2 2 pt to state
move x:(r0)+,y1 a,x1 ;1 1 get first Q
do #n,endnlat ;2 3
mpy x1,y1,a x:(r0)+,y0 x:(r3)+n3,x0 ;1 1 ;q*t; get k & s
macr -x0,y0,a b,x:(r3)+ ;1 1 ;q*t-k*s,save s
mpy y0,x1,b a,x1 ;1 1 ;k*t, set t’
macr y1,x0,b x:(r0)+,y1 ;1 1 ;k*t+q*s, get q

endnlat
move b,x:(r3)+ ;1 1 ;sv scnd lst st
move a,x:(r3)+ ;1 1 ;save state
clr a x:(r3)+,x1 ;1 1 ;clr acc
rep #n ;1 2 ;do fir taps

 mac x1,y1,a x:(r0)+,y1 x:(r3)+,x1 ;1 1
 macr x1,y1,a x:(r3)+,x1 ;1 1 rnd, adj pointer

movep a,x:<<output ;______ output sample
; Totals: 15 5N+12
;

x(n)

t’
t

SINGLE
SECTION

X memory

q2
k2
q1
k1
q0
k0
w3
w2
w1
w0
Sx
S2
S1
S0

r0

r3

The equations are:

t’ = t*q - s*k ; t’→ t
u’ = t*k + s’*q

output = Σ u’*w

-K

s

K

u’

T

w

q

q

u

-K2

s2

K2

T

w3

q2

q2

-K1

s1

K1

T

w2

q1

q1

-K0

s0

K0

T

w1

q0

q0

w0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 28 MOTOROLA

B.2.21 [1x3][3x3] Matrix Multiply

opt cc
move #AD,r3 ;2 2 point to mat a
move #bd,r0 ;2 2 point to vec b
move #2,m0 ;2 2 addrb mod 3
move #c,r2 ;2 2 point to vec c
move x:(r0)+,y0 x:(r3)+,x0 ;1 1 y0=a11;x0=b1
mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 a11*b1
mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +a12*b2
macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +a13*b3
move a,x:(r2)+ ;1 1 store c1
mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 a21*b1
mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +a22*b2
macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +a23*b3
move a,x:(r2)+ ;1 1 store c2
mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 a31*b1
mac y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +a32*b2
macr y0,x0,a ;1 1 +a33*b3→ c3
move a,x:(r2)+ ;1 1 store c3

; _______
; Totals: 21 21
;

c1
c2
c3

a11 a12 a13
a21 a22 a23
a31 a32 a33

a11
a12
a13
a21
a22
a23
a31
a32
a33

b1
b2
b3

c1
c2
c3

b1
b2
b3

X=

X memory
r3

r0

r2

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA B - 29

B.2.22 [NxN][NxN] Matrix Multiply

;The matrix multiplications are for square NxN matrices.

;All the elements;are stored in “row major” format. i.e. for the array A:

opt cc
move #AD,r0 ;2 2 point to A
move #bd,r3 ;2 2 ;point to B
move #c,r2 ;2 2 ;output mat C
move #N,b ;2 2 ;array size
move b,n3 ;1 1

do #N,erows ;2 3 do rows
do #N,ecols ;2 3 do columns
move x1,r0 ;1 1 copy row A
move r1,r3 ;1 1 copy col B
clr a x:(r0)+,y0 ;1 1
move x:(r3)+n3,x0 ;1 1 clr sum & pipe
rep #N-1 ;1 2 sum
mac y0,x0,a x:(r0)+,y0 x:(r3)+n3,x0 ;1 1
macr y0,x0,a x:(r3)+,y1 ;1 1 finish, next col

 move a,x:(r2)+ ;1 1 ;save output
ecols

add x1,b ;1 1 next row A
move b,x1 ;1 1
move #bd,r1 ;2 2 first element B

erows
; _______
; Total: Words: Cycles:
; 25 ((8+(N-1))N+7)N+12)

; N
3

+7N
2

+6N+8
;

a11
.

a1k
.

ak1
.

aN1
.

b11
.
.

c11

X

=

X memory
r3

r0

r2

c11 .. c1k .. c1N
.
ck1 .. ckk .. ckN
.
cN1 .. cNk .. cNN

b11 .. b1k .. b1N
.
bk1 .. bkk .. bkN
.
bN1 .. bNk .. bNN

a11 .. a1k .. a1N
.
ak1 .. akk .. akN
.
aN1 .. aNk .. aNN

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 30 MOTOROLA

B.2.23 N Point 3x3 2-D FIR Convolution

;The two dimensional FIR uses a 3x3 coefficient mask:

;
;The image is an array of 512x512 pixels. To provide boundary conditions for the FIR filtering, the
;image is surrounded by a set of zeros such that the image is actually stored as a 514x514 array. i.e.
;

;
;The image (with boundary) is stored in row major storage. The first element of the
;array image is image(1,1) followed by image(1,2). The last element of the first row is image(1,514)
;followed by the beginning of the next column image(2,1). These are stored sequentially in the array
; “im” in d memory.
;
;Image(1,1) maps to index 0, image(1,514) maps to index 513,
;Image(2,1) maps to index 514 (row major storage).
;
;Although many other implementations are possible, this is a realistic type of image environment
;where the actual size of the image may not be an exact power of 2.
;Other possibilities include storing a 512x512image but computing only a 511x511
;result, computing a 512x512 result without boundary conditions but throwing away the pixels on
;the border, etc.

; r0 → image(n,m) image(n,m+1) image(n,m+2)
; r1 → image(n+514,m) image(n+514,m+1 image(n+514,m+2)
; r2 → image(n+2*514,m) image(n+2*514,m+2) image(n+2*514,m+3)
; r3 → FIR coefficients
; b → output image

c11 c12 c13
c21 c22 c23
c31 c32 c33

0 0 0

0 0

0 image 0
area

0 0 0

514
512

514

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA B - 31

opt cc
move #mask,r3 ;2 2 pt to coef.
move #-8,n3 ;2 2
move #image,r0 ;2 2 top boundary
move #image+514,r1 ;2 2 left of first pixel
move #image+2*514,r2 ;2 2 left of 2nd row

move #512,y1 ;2 2
move #-1,n1 ;2 2 adjust.
move n1,n2 ;1 1

move #output,b ;2 2 output image
move x:(r0)+,y0 ;1 1 y0=im(1,1)
move x:(r3)+,x0 ;1 1 x0=c11

do y1,rows ;2 3
do y1,cols ;2 3
mpy y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 im(1,1)*c11
mac y0,x0,a x:(r0)+n0,y0 x:(r3)+,x0 ;1 1 +im(1,2)*c12
mac y0,x0,a x:(r1)+,y0 x:(r3)+,x0 ;1 1 +im(1,3)*c13
mac y0,x0,a x:(r1)+,y0 x:(r3)+,x0 ;1 1 +im(2,1)*c21
mac y0,x0,a x:(r1)+n1,y0 x:(r3)+,x0 ;1 1 +im(2,2)*c22
mac y0,x0,a x:(r2)+,y0 x:(r3)+,x0 ;1 1 +im(2,3)*c23
mac y0,x0,a x:(r2)+,y0 x:(r3)+,x0 ;1 1 +im(3,1)*c31
mac y0,x0,a x:(r2)+n2,y0 x:(r3)+n3,x0 ;1 1 +im(3,2)*c32
macr y0,x0,a x:(r0)+,y0 x:(r3)+,x0 ;1 1 +im(3,3)*c33
move a,x:(b1) ;1 2
inc24 b ;1 1

cols
; adjust pointers for frame boundary

move #2,n1 ;2 2
move n1,n2 ;1 1
inc b x:(r0)+,x1 ;1 1 adj r0
inc b x:(r1)+n1,x1 ;1 1 adj r1
move (r2)+n2 ;1 1 adj r2
move x:(r0)+,x1 ;1 1 preload
move #-1,n1 ;2 2 ;adjust.
move n1,n2 ;1 1

rows ;________

; Totals: 44 12N
2

+13N+22
; Kernel: 12
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 32 MOTOROLA

B.2.24 Signed 16 Bit Result Divide

;This is a routine for a 4 quadrant divide (i.e., a signed divisor and a signed dividend)

;which generated a 16-bit signed quotient and a 32-bit signed remainder. The

;quotient is stored in the lower 16 bits of accumulator a, a0, and the remainder in

;the upper 16 bits a1. The true (restored) remainder is stored in b1. The original

;dividend must occupy the low order 32 bits of the destination accumulator, a, and

;must be a POSITIVE number. The divisor must be larger than the dividend so that a

;fractional quotient is generated.

opt cc
abs a a,b ;1 1 make dividend positive
move b,x:$0 ;2 2 save rem. sign in x:$0
eor x0,b ;1 1 quo. sign in N bit of CCR
andi #$fe,ccr ;1 1 clear carry bit C (quotient sign bit)
rep #$10 ;1 2 form a 16-bit quotient
div x0,a ;1 1 form quot. in a0, remainder in a1
tfr a,b ;1 1 save remainder and quot. in b1,b0
jpl savequo ;1 2 go to savequo if quot. is positive
neg b ;1 1 complement quotient if N bit is set

savequo
tfr x0,b ;1 1 get signed divisor
move b0,x1 ;1 1 save quo. in x1
abs b ;1 1 get abs value of signed divisor
add a,b ;1 1 restore remainder in b1
bftstl #$8000,x:$0 ;2 2 test if remainder is positive
beq <done1 ;1 2 branch if positive
move #$0,b0 ;1 1 prevent unwanted carry
neg b ;1 1 complement remainder

done1 ;end of routine.
; ;________
; total 19 37
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

MOTOROLA B - 33

B.2.25 Signed Integer Divide

;Registers usex: a,b,x0
;Output: Quotient → a0

opt cc
move #dividend,a ;2 2 sign ext A2
move a2,a1 ;1 1 and A1
move #dividend,a0 ;2 2 move into A
asl a ;1 1 prep divide
move #divisor,x0 ;2 2 divisor into x0
abs a a,b ;1 1 dividend pos
andi #$fe,ccr ;1 1 clr the carry
rep #$10 ;1 2 16bit quotient
div x0,a ;1 1 form quot. a0
eor x0,b ;1 1 save sign in N
bpl <done2 ;1 2
neg a ;1 1 comp.bit is set

done2 nop ;finished
;_______

; total 15 32
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

FIRST SET OF BENCHMARKS

B - 34 MOTOROLA

B.2.26 Multiply 32-bit Fractions

;This routine will execute the multiplication of two 32-bit FRACTIONAL numbers that
;are already stored in memory as follows:

; r0 → X:$Paddr P0
; X:$Paddr P1
; r3 → X:$Qaddr Q0
; X:$Qaddr Q1

;The initial 32-bit numbers are:
; P = P1:P0 (16:16 bits)
; Q = Q1:Q0 (16:16 bits)

;The result, R, is a 64 bit number that is stored in the two
;accumulators A and B as follows:
; R = R3:R2:R1:R0
; = A1:A0:B1:B0 (32:32bits)
; = A2:A1:A0:B1:B0 (sign extended)

opt cc
move #paddr,r0 ;2 2 init pointer for P
move #qaddr,r3 ;2 2 init pointer for Q
nop
:
move x:(r0)+,y0 x:(r3)+,x0 ;1 1 P0,Q0
move x:(r0)+,y1 x:(r3)+,x1 ;1 1 P1,Q1
mpyuu x0,y0,a ;1 1
move a0,b0 ;1 1 b0=P0*Q0=R0
dmacsu x1,y0,a ;1 1 a=P0*Q1+a1
macsu y1,x0,a ;1 1 a=a+ P1*Q0
move a0,b1 ;1 1 b1=R1
dmacss x1,y1,a ;1 1 a=P1*Q1+ a1=R3:R2

;_______
; total 4+8 4+8
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

MOTOROLA B - 35

B.3 SECOND SET OF BENCHMARKS

B.3.1 Sine Wave Generation Using Double Integration Technique

opt cc
clr b ;1 1
move #$4000,a ;2 2
move #0,n1 ;2 2

move #$4532,x1 ;2 2
move #$1,r1 ;2 2
move x0,y0 ;1 1

do y1,loop1 ;2 3
mac x0,b1,a b,x:(r1)+n1 ;1 1
mac -y0,a1,b ;1 1

loop1
move b,x:(r1) ;1 1

; _______
; 15 2N+14
;

T T

x0

sin(w
0
t)

a

a= Stored initial value
which is the desired tone
amplitude

x0 = 2*sin(πFs/F0)
F0 = Oscillation Frequency
Fs = Sampling Frequency

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

B - 36 MOTOROLA

B.3.2 Sine Wave Generation Using Second Order Oscillator

opt cc
clr a ;1 1
move #$4000,x1 ;2 2

move #$6d4b,x0 ;2 2
move #$1,r1 ;2 2
move #0,n1 ;2 2

do y1,loop2 ;2 3
mac -x1,x0,a x1,x:(r1)+n1 ;1 1
neg a ;1 1
mac x1,x0,a ;1 1
tfr x1,a a,x1 ;1 1

loop2
move x1,x:(r1) ;1 1

;______
; 16 4N+13
;

T T

x0

sin(w
0
t)

a

a= Stored initial value
which is the desired tone
amplitude

x0 = 2*cos(2πFs/F0)
F0 = Oscillation Frequency
Fs = Sampling Frequency

-

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

MOTOROLA B - 37

B.3.3 IIR Filter Using Cascaded Transpose BIQUAD Cell

opt cc

move #w1,r0

move #w2,r1
move #N-1,m0
move m0,m1
move #0,n0
move #0,n1
move #c,r3
ori #08,mr
move x:(r0)+n0,b x:(r3)+,x0 ;1 1 b=w1;x0=b0/2
asr b ;1 1 b=w1/2

movep x:<<input,y0 ;1 2 y0=x

do #N,end_lp ;2 3
macr y0,x0,b x:(r1)+n1,a x:(r3)+,x0 ;1 1 b=y/2;get w2,b1/2
asr a b,y1 ;1 1 a=w2/2;y1=y
mac x0,y0,a x:(r3)+,x0 ;1 1 a=x*b1/2+w2/2,get a1/2
macr x0,y1,a x:(r3)+,x0 ;1 1 a=w1/2;get b2/2
mpy x0,y0,a a,x:(r0)+ ;1 1 a=x*b2/2;save w1
move x:(r3)+,x0 b,y0 ;1 1 y0=y;get a2/2
macr y1,x0,a x:(r0)+n0,b x:(r3)+,x0 ;1 1 a=w2/2

;get next w1, next b0/2
asr b a,x:(r1)+ ;1 1 b=w1/2; save w2

end_lp
movep y0,x:<<output ;1 2 output y

; ______
; 14 8N+9

T

x(n)
y(n)

T

w1(n)

w2(n)

- a2

- a1

b2

b1

b0

1 + a1 z
-1

 + a2 z
-2

b0 + b1 z
-1

 + b2 z
-2

H(z) =

N
EQUATION:
y(n) = b0*x(n) + w1(n-1)
w1(n) = b1*x(n) - a1*y(n) + w2(n-1)
w2(n) = b2*x(n) - a2*y(n)

IMPLEMENTATION:
y(n)/2 = b0/2*x(n) + w1(n-1)/2
w1(n)/2 = b1/2*x(n) - a1/2*y(n) + w2(n-1)/2
w2(n)/2 = b2/2*x(n) - a2/2*y(n)

w11(n-1)
w12(n-1)

.

.
w21(n-1)
w22(n-1)

.

.
b1(0)/2
b1(1)/2

- a1(1)/2
b1(2)/2

- a1(2)/2
.
.

X memory

r3

r0

r1

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

B - 38 MOTOROLA

IIR Filter Using The Nth Order Direct Form II Canonic

;The equation of the filter becomes:

; wn = a0*xn - a1*wn-1 - a2*wn-2........... - aN*wn-N
; yn = b0*wn +b1*wn-1 + b2*wn-2...........+ bN*wn-N

opt cc
move #c,r3
move #(N*2+1), m3
move #w,r0
move #N,m0
move #0,n0

movep x:<<input,y0 ;1 2 y0=xn
clr a x:(r3)+,x1 ;1 1 x1=a1
rep #N ;1 2
mac y0,x1,a x:(r0)+,y0 x:(r3)+,x1 ;1 1
macr y0,x1,a x:(r3)+,x1 ;1 1 a=wn, x1=b0
clr a a,x:(r0)+n0 ;1 1
move x:(r0)+,y0 ;1 1 y0=wn
rep #N ;1 2
mac y0,x1,a x:(r0)+,y0 x:(r3)+,x1 ;1 1
macr y0,x1,a ;1 1 a=yn

movep a,x:<<output ;1 2 output y
; ;
; 11 2N+13 filter loop
;

T

x(n)
y(n)

T

w(n-1)

w(n-2)

w(n-1)
w(n-2)
w(n-3)

.

.

.
w(n-N)

a0
- a1

.

.
b0
b1
..

X memory

r3

r0

T

w(n-N)

- a2

- a1

a0

- aN

w(n)

b2

b1

b0

bN H z()

b
i
z i–

i 0=

N

∑

a
i
z i–

i 0=

N

∑
--------------------=

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

MOTOROLA B - 39

B.3.4 Find the Index of a Maximum Value in an Array

opt cc
move #AD,r0 ;2 2
move #-2,n1 ;2 2
clr a x:(r0)+,b ;1 1

do #N,end_lp3 ;2 3
cmpm b,a b,y1 ;1 1

; tle y1,a r0,r1 ;1 1
move x:(r0)+,b ;1 1

end_lp3
nop
lea (r1)+n1,r1 ;1 2

;
; 11 3N+10
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

B - 40 MOTOROLA

B.3.5 Proportional Integrator Differentiator (PID) Algorithm

;The PID is the most commonly used algorithm in control applications

;y(n) = y(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

opt cc
move #k,r3 ;
move #s+2,r0 ;
move #-1,n0 ;
move #2,m0 ;r0 mod 3

movep x:<<input,x0 ; x(n) in x0

move x:(r0)+,b x:(r3)+,y0 ;1 1
mac x0,y0,b x:(r0)+,y0 x:(r3)+,x1 ;1 1
mac y0,x1,b x:(r0)+,y0 x:(r3)+,x1 ;1 1
macr y0,x1,b x0,x:(r0)+n0 ;1 1
move b,x:(r0) ;1 1

movep b,x:<<output ;y(n) in b
;
; 5 5
;

T T

x(n)
y(n)

T

x(n-1)

x(n-2)

k2

k1

k0

y(n)=y(n-1) + k0 x(n) + k1 x(n-1) + k2 x(n-2)

k0
k1
k2

x(n-1)
x(n-2)
x(n)

X memory
r3

r0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

MOTOROLA B - 41

B.3.6 Reed Solomon Main Loop

;DSP56100 family
;n3=n1=-1

opt cc
do #28,loopn ;2 3
move x:(r0)+n0,y1 ;1 1 ;Get from interleave
move x:(r3)+n3,a ;1 1 ;,get P4;
eor y1,a b,x:(r1)+n1 ;1 1 ;alpha(a) store p2
move a,n1 ;1 1 ;Move ALPHA for table lookup
move x:tablebase,b ;2 2 ;tableptr in b
add b,a y1,x:(r2)+ ;1 1 ;table index (a);store sample
tfr x0,b x:(a1),y1 ;1 1 ;table entry y1;g1+base (b)
add y1,b ;1 1 ;table ptr(b)
tfr y0,a x:(b1),x1 ;1 1 ;alpha1(x1);g2+base(a)
add y1,a x:(r3)+,b ;1 1 ;table ptr(a);P3(b)
eor x1,b x:(a1),y1 ;1 2 ;p4(b),alpha2(a)
move x:(r1)-,a ;1 1 ;p2(a)
eor y1,a b,x:(r3)+n3 ;1 1 ;p3(a), store p4
move x:(r1),b ;1 1 ;p1(b)
eor x1,b a,x:(r3)+ ;1 1 ;Add ALPHA2+P2, s new P1
move n1,x:(r1)+ ;1 1 ;store p1

loopn ; ______
; 17 3+28*18

P1 P3

G1

input

P2

G2

P4

ALPHA1
ALPHA2

ALPHA

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

SECOND SET OF BENCHMARKS

B - 42 MOTOROLA

B.3.7 N Double Precision Real Multiplies

opt cc
move #AD,r0 ;2 2
move #BD,r3 ;2 2
move #c,r1 ;2 2

;
move x:(r0)+,y0 x:(r3)+,x0 ;1 1
do #N,end_loop ;2 3
move x:(r0)+,y1 x:(r3)+,x1 ;1 1
mpyuu x0,y0,a ;1 1
move a0,x:(r1)+ ;1 1
dmacsu x1,y0,a ;1 1
macsu y1,x0,a ;1 1
move a0,x:(r1)+ ;1 1
dmacss y1,x1,a ;1 1
move x:(r0)+,y0 x:(r3)+,x0 ;1 1
move a0,x:(r1)+ ;1 1
move a,x:(r1)+ ;1 1

end_loop ;______
; 19 10*N+10

B.3.8 Double Precision Autocorrelation

; N: speech frame size
; p: LPC order

;DSP56100 family

opt cc
move #cor,r1 ;2 2
move #frame,r2 ;2 2
do #lpc+1,_loop1 ;2 3
move r2,r3 ;1 1
clr b ;1 1
move #frame,r0 ;2 2
lua (r2)+,r2 ;1 2
move lc,x1 ;1 1
move #>N-(p+1),a ;2 2
add x1,a x:(r0)+,y0 x:(r3)+,x0 ;1 1
rep a ;1 2
mac y0,x0,b x:(r0)+,y0 x:(r3)+,x0 ;1 1
move b0,x:(r1)+ ;1 1
move b1,x:(r1)+ ;1 1

_loop1 ;______

; 19 (p+1)
2
(N-p/2)+14(p+1) +5

;example: N=160 ; p=8
;
; DSP56100 family: 12,767 cycles at 25ns → 0.32ms (1.56% of 20ms)
;

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA

SEMICONDUCTOR FAMILY MANUAL ADDENDUM

DSP56100

Order this document by:
DSP56100FMAD/D

©1996 MOTOROLA, INC.

16-BIT DIGITAL SIGNAL PROCESSOR FAMILY

This document, containing changes, additional features, further explanations, and
clarifications, is an addendum to the original document listed below:

Document Name:

DSP56100 Family Manual

Order Number:

DSP56100FM/AD

Revision:

0

Change the following:

Page A-40 - For the BFCLR instruction, under “

Explanation of Example:

” change the phrase
on the last portion of the last sentence to read “clears the carry bit C in CCR because not all

these bits were

clear

, and then clears the bits.”

Page A-40 - For the BFCLR instruction, under C condition code bit definition listed under the
title “

For other destination operands:

” change the definition to read:

C



Set

 if all the bits specified by the mask are clear.

Clear

 if

not

 all the bits specified by the mask are clear.

Pages A-48 (Bcc instruction), A-50 (BRA instruction), A-54 (BScc instruction), and A-56 (BSR
instruction) under “

Restrictions

” remove the last item (“



Not allowed between addresses
P:$0 and P:$40.”).

Page A-147 - For MOVE(C) instructions using the instruction format:

MOVE(C) X:<A1,B1>,D
MOVE(C) S,X:<A1,B1>

change the box that appears as:

to the following:

ea Z

(A1) 0

(B1) 1

ea Z

(A1) 1

(B1) 0

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters can and do vary in different applications. All operating parameters, including “Typical”, must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part.

OnCE, Motorola, and are registered trademarks of Motorola, Inc.

USA/Europe

:

Motorola Literature Distribution
P.O. Box 20912
Phoenix, Arizona 85036
1 (800) 441-2447

MFAX

:

RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609

Hong Kong

:

Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-2662928

Japan

:

Nippon Motorola Ltd.
Tatsumi-SPD-JLDC
Toshikatsu Otsuki
6F Seibu-Butsuryu-Center
3-14-2 Tatsumi Koto-Ku
Tokyo 135, Japan
03-3521-8315

How to reach us:

Internet

:

http://motserv.indirect.com/dsp/DSPhome.html

Pages A-153, A-155, A-157, and A-159 - In the table that defines the value of W, add a second
line as shown below:

Page A-232 - Change Table A-9 to the following:

Reg. W

read S 0

write D 1

Table A-9

MOVEM Timing Summary

MOVEM Operation + mvm Cycles Comments

Register

 ↔

 P Memory
X Memory

 ↔

 P Memory
4 + ea + ap
4 + ea + ax + ap

F
re

e
s
c

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	DIGITAL SIGNAL PROCESSOR FAMILY MANUAL
	INTRODUCTION
	CPU ARCHITECTURE OVERVIEW
	DATA ALU
	ADDRESS GENERATION UNIT (AGU)
	PROGRAM CONTROL UNIT (PCU)
	INSTRUCTION SET AND EXECUTION
	PROCESSING STATES
	BUS OPERATION
	DSP56100 FAMILY ON-CHIP PLL
	ON-CHIP EMULATION (OnCE)
	APPLICATION DEVELOPMENT TOOLS
	ADDITIONAL SUPPORT
	DSP56100 FAMILY INSTRUCTION SET
	DSP56100 BENCHMARKS
	ERRATA

