
MOTOROLA
Semiconductor Application Note

AN1751/D
Rev. 01, 05/98

D
S

P
56

3x
x

P
or

t A
 P

ro
gr

am
m

in
g

d

Contents
Part 1: Configuration............... 1
1.1 Performance......................... 1
1.2 System Set-up...................... 2
1.2.1 DSP56300 to Memory

Connections 2
1.2.2 Memory Map 4
1.2.2.1 Address Attributes 5
1.2.2.2 Bus Control.......................... 7
1.2.2.3 DRAM Control Register8

Part 2: Accessing External
Devices 11

2.1 Simple SRAM Access Using
Move Instruction 11

2.1.1 Initialization....................... 11
2.1.2 Program 12
2.2 Overlapping External Memory

Space with Internal Core
Space 13

2.2.1 Initialization....................... 14
2.2.2 Program 15
2.3 Multiplexed Access Using

DMA.................................. 15
2.3.1 Address Attribute Register Bit:

BAM - Address Muxing.... 15
2.3.2 Initialization....................... 17
2.3.3 Program 18
2.4 Access to an 8-bit Peripheral

Using DMA and Packing
Mode.................................. 18

2.4.1 Address Attribute Register:
BPAC - Packing Mode 19

2.4.2 Initialization....................... 19
2.4.3 Program 22
2.5 Accessing DRAM and

SRAM Using DMA
Through Port A.................. 25

2.5.1 Initialization....................... 25
2.5.2 Program 29
2.6 Troubleshooting................. 31
2.7 Conclusions 31
2.8 References 31
DSP563xx Port A Programming
by Iantha Scheiwe

The DSP56300 expansion port, Port A, allows the DSP
programmer to expand memory space accessible to the DSP
core or to expand memory-mapped I/O. The interface is
straightforward, and external memory is easily and quickly
retrieved through the use of DMA or simple MOVE
commands. This application note describes:

• The hardware and software configurations require
to connect the DSP core to external SRAM and
DRAM

• Examples of moves to and from external memory

• Examples of DMA accesses

Part 1 Configuration
Part 1 of this application note describes system requirements
and the hardware configuration that you must establish
between the DSP and off-chip memory devices prior to
programming. Part 2 describes the programming required to
interface with SRAM and DRAM. The techniques used in
this application note to interface to external devices enable
you to interface to any device that uses Port A. The code in
this document was developed using the DSP56303EVM and
DSP56301ADM boards. You can use other DSP56300
Family EVMs, but the memory maps for each device may
vary. For complete timing information on the connections
between Port A and memory, see the external memory
interface (Port A) chapter in the DSP56300 Family Manual.

1.1 Performance
The speed of memory access through Port A depends largely
on the speed of the memory used in a system. Port A provides
a programmable number of wait states that correspond to the
specifications of the memory used. A minimum of one wait
state is required for external accesses. Any other timing
issues are determined by system constraints and delays.
© Motorola, Inc., 1998

System Set-up
The DSP56300 family devices contain between 8K and 34K of on-chip memory. In many applications
and systems, the core processor must access additional memory. Port A enables expansion of the
on-chip memory space to 12 M x 24 bits of external memory. The memory is easily accessible to the
core for processing large blocks of data. With this port, you can access a single piece of data using a
common MOVE instruction or transfer a large block into on-chip memory space for faster execution
using a DMA transfer. With DMA transfers, you can transfer data from external memory to internal
memory and to other peripherals, such as the SCI and ESSI.

1.2 System Set-up
In order to access external memory and peripheral devices through Port A, it is important to understand
pin set-ups as well as internal register configuration.

1.2.1 DSP56300 to Memory Connections
On the EVM and ADM boards, the memory connections are already made, if the proper jumpers are in
place. To access SRAM on the DSP56303EVM, J9 pins 2-3 must be connected. On the
DSP56301ADM, a jumper must be placed on JP1. Figure 1-1 depicts the DSP-to-SRAM memory
connection. SRAM is accessible on both EVM and ADM boards using the Address Attribute Register
0 (AAR0). However, you can also use Address Attribute Registers 1, 2, or 3 when configuring a
system.

Figure 1-1. DSP-to-SRAM Connection

DRAM is available on the DSP56301ADM board, but not on the DSP56303EVM. To access DRAM
on the ADM board, the jumper on JP2 must be set.

DSP563xx SRAM

A

D

AA

RD

WR

A

D

E

G

W

Motorola DSP563xx Port A Programming 1-2

System Set-up
For the DSP56301ADM, DRAM is accessible to Port A using the Address Attribute 3 (AAR3)
Register. Figure 1-2 depicts the DSP-to-DRAM memory connection.

Figure 1-2. DSP-to-DRAM Connection

Both the DSP56303EVM and DSP56301ADM boards have on-board Flash PEROM that you can
access using the Address Attribute 1 (AAR1) chip select. Figure 1-3 depicts the DSP-to-Flash
PEROM connection.

Figure 1-3. DSP-to-Flash PEROM Connection

On the DSP56303EVM, the code in flash memory is run at reset. Though the following sections do not
give an example of Flash PEROM usage, the program flash.asm is included with all
DSP563xxEVMs. This program allows you to download any desired program into the flash memory
so that it can be run at processor reset. Information on using flash.asm is given in each EVM/ADM
user’s manual.

DSP563xx DRAM

A

D

AA/RAS

RD

WR

A

D

RAS

G

W

CAS CAS

DSP563xx PEROM

A

D

WR

RD

AA

A

D

WE

OE

CE
Motorola Contents 1-3

System Set-up
1.2.2 Memory Map
To prevent overlap in the mapping of external devices or interference with internal core operations,
consult the memory map before initializing access to memory.

Figure 1-4 depicts the core memory map. Devices can be mapped anywhere in the external memory
spaces for X, Y, and Program (P) memory.

Figure 1-4. DSP56300 Core Memory Map

RESERVED
FOR INTERNAL

P-MEMORY

INTERNAL
P-MEMORY

192-Words
BOOTSTRAP ROM

INTERNAL
ICACHE 1K or 2K

$FFFFFF

$FF00C0

$FF0000

maximum
$00FFFF

$000000

PROGRAM X DATA Y DATA

EXTERNAL

P-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

INTERNAL Y-I/O

OR EXTERNAL

Y-MEMORY

RESERVED
FOR INTERNAL

Y-MEMORY

EXTERNAL

Y-MEMORY

INTERNAL

Y-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

INTERNAL X-I/O

OR EXTERNAL

X-MEMORY

RESERVED
FOR INTERNAL

X-MEMORY

EXTERNAL

X-MEMORY

INTERNAL

X-MEMORY
Motorola DSP563xx Port A Programming 1-4

System Set-up

t

to the
its

bits, in
bits
etting
ot
1.2.2.1 Address Attributes

This section describes how to map an external device to the DSP memory space. The Address
Attribute Register in Figure 1-5 sets up the memory access address and range for the external device.
It also defines whether you are using SRAM or DRAM. If Address Attributes are not initialized, the
DSP is not notified that a device is available in the external memory space. The Address Attribute line
acts as a chip select for the external device. Any combination of X, Y, and P external memory space
can be made available. For a complete explanation of each of the bits, see the DSP56300 Family
Manual. Only the bits used in the examples in this application note are explained. Part 2.3 explains the
Address Muxing option (BAM), and Part 2.4 explains the Packing mode option (BPAC).

Figure 1-5. Address Attributes Register (AAR0-AAR3)

Bit/Field Definitions:

• AARx[23:12], Address Compare (BAC)

AARx[11:8], Number Compare (BNC)

These two sets of bits are related. AARx[23:12]:BAC[11:0] define the memory address a
which you can access the external device. AARx[8:11]:BNC[3:0] define the range of the
address that is compared for external memory accesses. For example, to map a device
space from $100000 to $104000, set BAC[11:0] to $104 and BNC[3:0] to $A. The BNC b
act as a gatekeeper. When the address request is given, the BNC bits verify that the first
this case ten, match the memory space where the device is mapped externally. If those
pass the compare, the core is enabled to retrieve data from the external device. When s
up this address space, it is extremely important to make sure that external devices are n
overlapping.

11 10 9 8 7 6 5 4 3 2 1 0

BNC3 BNC2 BNC1 BNC0 BPAC BAM BYEN BXEN BPEN BAAP BAT1 BAT0

External Access Type

AA Pin Polarity

Program Space Enable

X Data Space Enable

Y Data Space Enable

Address Muxing

Packing Enable

Number of Address Bits to
Compare

23 22 21 20 19 18 17 16 15 14 13 12

BAC11 BAC10 BAC9 BAC8 BAC7 BAC6 BAC5 BAC4 BAC3 BAC2 BAC1 BAC0

Address to Compare
Motorola Contents 1-5

System Set-up

ram
ata
00000
 bits)

sp

ant to
e
• AARx[5], Y Space Enable (BYEN)

AARx[4], X Space Enable (BXEN)

AARx[3], Program Space Enable (BPEN)

When these bits are activated, access to external Y data space, X data space, and prog
space is enabled. You can map a device to be accessible in any combination of these d
spaces at a specified data range. If BYEN=0, BXEN=1, and BPEN=0, then access to $1
in X data space is allowed (if that address range is the one specified in the BAC and BNC
and a move to that address in Y or P space is rejected.

NOTE: The EVM boards have a contiguous memory space, so $100000 in X and $100000 in Y ace
actually are the same physical memory locations. Therefore, if both X and Y space are enabled
at $100000, a write to $100000 in Y space also appears in X space.

• AARx[2], Address Attribute (AA) Pin Polarity (BAAP)

This bit defines the device chip select (AA/RAS) as an active low or an active high pin. If it is
cleared, the pin is active low. If it is set, the pin becomes active high.

• AARx[1:0], External Access Type (BAT)

These bits determine the type of memory or peripheral device that is accessed. If you w
access a device other than memory, set the access type to SRAM (BAT[1:0] = 01) as th
default. See Table 1-1.

BAT1 BAT0 External Access Type

0 0 Reserved

0 1 Static RAM access

1 0 DRAM access

1 1 Reserved

Table 1-1. BAT1 and BAT0 External Access Types
Motorola DSP563xx Port A Programming 1-6

System Set-up

serted
apter

its
 states

 bits
ould
er for
1.2.2.2 Bus Control

The Bus Control Register (BCR) in Figure 1-6 defines the number of wait states required to access
each of the external devices in order to achieve proper operation. It also controls the arbitration pins.

Figure 1-6. Bus Control Register (BCR)

Bit/Field Definitions:

• BCR[20:16], Default Area Wait States (BDFW)

BCR[15:13], Area 3 Wait States (BA3W)

BCR[12:10], Area 2 Wait States (BA2W)

BCR[9:5], Area 1 Wait States (BA1W)

BCR[4:0], Area 0 Wait States (BA0W)

Each of these bit sets operates the same way. Each defines the number of wait states in
into an external access for memory setup time. The external memory interface (Port A) ch
in the DSP56300 Family Manual gives details on timing for memory devices. Each set of b
defines the wait states for a different external device. The area wait state bits define the
required for accessing the devices mapped by the Address Attribute registers. The BDFW
are inserted into each external access not defined by an attribute register. These bits sh
have a minimum value of one wait state, since the access type is SRAM (as stated earli
default devices), and SRAM memory access requires at least one wait state.

11 10 9 8 7 6 5 4 3 2 1 0

BA2W1 BA2W0 BA1W4 BA1W3 BA1W2 BA1W1 BA1W0 BA0W4 BA0W3 BA0W2 BA0W1 BA0W0

Area 0 wait states

Area 1 wait states

Area 2 wait states

23 22 21 20 19 18 17 16 15 14 13 12

BRH BLH BBS BDFW4 BDFW3 BDFW2 BDFW1 BDFW0 BA3W2 BA3W1 BA3W0 BA2W2

Area 3 wait states

Default area wait states

Bus State

Bus Lock hold

Bus Request hold
Motorola Contents 1-7

System Set-up

e
1.2.2.3 DRAM Control Register

The DRAM Control Register (DCR), shown in Figure 1-7, defines wait states for DRAM accesses,
refresh rates, and other DRAM requirements.

Figure 1-7. DRAM Control Register (DCR)

Bit/Field Definitions:

• DCR[23], Refresh Prescaler (BRP)

This read/write control bit controls a prescaler in series with the refresh clock divider. If this
bit is cleared, the prescaler is bypassed. However, if it is set, a divide-by-64 prescaler is
connected in series with the refresh clock divider. This bit is cleared during hardware reset.

• DCR[22:15], Refresh Rate (BRF)

These read/write bits control the refresh request rate. The rate can range from one to 256. If
enabled, a refresh request is generated each time the refresh counter reaches zero.

• DCR[14], Software Triggered Refresh (BSTR)

This read/write status bit generates a software-triggered refresh request. When set, a refresh
request is generated and executed to all DRAM banks. After the access is executed, the
DRAM controller hardware clears the BSTR bit. The refresh cycle length depends on the
BRW[1:0] bits.

• DCR[13], Refresh Enable (BREN)

When BREN is set, the refresh counter is enabled, and a refresh request is generated each tim
the refresh counter reaches zero. If it is cleared, the refresh counter is disabled, and software
can trigger a refresh request using the BSTR bit.

• DCR[12], Mastership Enable (BME)

This bit enables/disables the interface to a local DRAM for the DSP. If it is cleared, the RAS
and CAS pins are three-stated when mastership is lost. Therefore, you must connect an

11 10 9 8 7 6 5 4 3 2 1 0

BPLE BPS1 BPS0 BRW1 BRW0 BCW1 BCW0

In-page wait states

Out-of-page wait states

DRAM Page Size

Page logic Enable

23 22 21 20 19 18 17 16 15 14 13 12

BRP BRF7 BRF6 BRF5 BRF4 BRF3 BRF2 BRF1 BRF0 BSTR BREN BME

Mastership Enable

Refresh Enable

Software triggered Refresh

Refresh request rate

Refresh Prescaler

Reserved Bit
Motorola DSP563xx Port A Programming 1-8

System Set-up

RAM

his is

es by
external pull-up resistor to these pins. The DSP DRAM controller assumes a page fault each
time mastership is lost. A DRAM refresh then requires bus mastership. If BME is set, the RAS
and CAS pins are always driven from the DSP, and the DRAM refresh can be performed even
if the DSP is not the bus master.

• DCR[11], Page Logic Enable (BPLE)

If the BPLE bit is set, it enables the page logic. Each in-page identification causes the D
controller to drive only the column address. When BPLE is cleared, the page logic is disabled,
and the DRAM controller always accesses the external DRAM in out-of-page accesses. T
useful for low-power dissipation.

• DCR[9:8], DRAM Page Size (BPS)

BPS[1:0] defines the size of the external DRAM page. The internal page mechanism abid
these bits only if the page logic is enabled. Table 1-2 shows the encoding of these bits.

• DCR[3:2], Out-of-page Wait States (BRW)

The BRW[1:0] bits define the number of wait states that are inserted in each DRAM
out-of-page access. Table 1-3 shows the encoding of these bits.

BPS1 BPS0 Column Address Width DRAM Page Size

0 0 9 bits 512 words

0 1 10 bits 1K

1 0 11 bits 2K

1 1 12 bits 4K

Table 1-2. Encoding of Bits BPS1 and BPS0

BRW1 BRW0 DRAM External Access

0 0 4 w.s. for each out-of-page access

0 1 8 w.s. for each out-of-page access

1 0 11 w.s. for each out-of-page access

1 1 15 w.s. for each out-of-page access

Table 1-3. Encoding of Bits BRW1 and BRW0
Motorola Contents 1-9

System Set-up

ess.
• DCR[1:0], In-page Wait States (BCW)

These bits define the number of wait states that are inserted in each DRAM in-page acc
Table 1-4 shows the encoding of these bits.

For more information on calculating wait states for memory devices, see the DSP56300 Family
Manual.

BCW1 BCW0 DRAM External Access

0 0 1 w.s. for each in-page access

0 1 2 w.s. for each in-page access

1 0 3 w.s. for each in-page access

1 1 4 w.s. for each in-page access

Table 1-4. Encoding of Bits BCW1 and BCW0
Motorola DSP563xx Port A Programming 1-10

Simple SRAM Access Using Move Instruction

he
Part 2 Accessing External Devices
The following programming examples for accessing external devices using Port A begin with a basic
access to one memory location in external SRAM. An example in which the external memory space
overlaps with the internal memory space follows. Such overlaps should be avoided in practice, but we
include this example as an aid to troubleshooting code. The third example is a multiplexed access
using DMA. The DMA access is adjusted to show how to access an 8-bit device using Packing mode.
The last example uses DMA to access DRAM and SRAM.

2.1 Simple SRAM Access Using Move Instruction
This run exercises a single, generic access to external SRAM through Port A.

The following Port A options are used for this exercise:

• Clock Frequency = 68 MHz

• Packing mode disabled

• Address muxing disabled

• X space enabled; Y and P disabled

• 64 words of data from Y:$000000 to X:$500000

• SRAM using AAR0

• Transfer method: MOVE instruction

As Figure 2-1 shows, the code transfers 64 words of data from Y:$0 to X:$500000-$500040. The
transfer is done using a MOVE instruction in a DO loop.

Read the following register explanations before looking at the code.

2.1.1 Initialization
In setting up a transfer to Port A, initialize the Address Attributes and Bus Control registers. The
equates for this example are set up as follows. In addition to the AAR0 and BCR registers, set t

Figure 2-1. Data Transfer from Y to X Memory

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

RESERVED
FOR INTERNAL

X-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

RESERVED
FOR INTERNAL

Y-MEMORY

Transfer data from Y:$0 to X:$500000

INTERNAL
Y-MEMORY

INTERNAL
X-MEMORY
Motorola Contents 2-11

Simple SRAM Access Using Move Instruction

ng is

least

rts. In
.
PCTL (PLL Control Register) at the beginning of the program. If the code is running on the 66 MHz
DSP56303EVM, set PCTL to $040003 (68 MHz operation).

Since the SRAM on the DSP56303EVM connects to the AAR0 enable line, the code uses the AAR0
Register to access the SRAM. The DSP has four Address Attribute registers.

AAR0V1 EQU $500111
 ; SRAM access
 ; Address Attribute Register 0
 ; [23:12] = BAC[11:0] = $500 (Address to compare)
 ; [11:8] = BNC[3:0] = $C (Num of add to compare)
 ; [7] = BPAC = 0 (Packing disabled)
 ; [6] = BAM = 0 (Address muxing disabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 1 (X memory enabled)
 ; [3] = BPEN = 0 (P memory disabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 01 (SRAM access)

Note that BAC[11:0] = $500, which corresponds to the address where we want to store the data in
external memory. We are using only a small section of data (64 words), so we use all 12 bits on the
compare. Therefore, the BNC[1:0] value equals $C. If the first 12 bits match the address given, the
memory access can occur. DMA isn’t used, so Packing mode isn’t invoked. Also, Address Muxi
not needed. The code accesses only external X memory, so we enable that space and disable Y and P
memories. The SRAM is enabled using an active low signal.

BCRV EQU $012422
 ; Bus Control Register
 ; [23] = BRH = 0 bus request hold off
 ; [22] = BLH = 0 bus lock hold off
 ; [21] = BBS = 0 bus state
 ; [20:16] = BDFW[4:0] = 1 default area wait states
 ; [15:13] = BA3W[2:0] = 1 area 3 wait states
 ; [12:10] = BA2W[2:0] = 1 area 2 wait states
 ; [9:5] = BA1W[4:0] = 1 area 1 wait states
 ; [4:0] = BA0W[4:0] = 2 area 0 wait states

In the Bus Control Register, this access is given two wait states. All SRAM accesses require at
one wait state. The other areas are set to default values of one wait state each. With this code,
arbitration is not a concern. The most significant three bits, BRH, BLH, and BBS, remain at their
default value of zero.

2.1.2 Program
The code that actually invokes the transfer of data from internal to external memory has three pa
the first part, the main program defines data values. In the second part, it initializes the registers
Finally, it moves data from internal memory to external memory.
Motorola DSP563xx Port A Programming 2-12

Overlapping External Memory Space with Internal Core Space
 include ‘portaequ.asm’ ; this file holds equates for BCRV and AAR0
 org y:$0
; Assembly-Time Equates
START EQU $000400 ; start address for code
LINEAR EQU $FFFFFF ; set up linear addressing mode
; Address Equates
DATA_START EQU PATT
MEM_START EQU $500000
LOOP2 EQU $40

 org p:START
 nop
MAIN_INIT
 movep #PCTL,x:M_PCTL ; set PLL
 move #LINEAR,m0 ; linear addressing
SRAM_INIT
 movep #AAR0V1,x:M_AAR0 ; set up AAR0 as desired
 movep #BCRV,x:M_BCR ; set up Bus Control Register as desired
 move #LOOP2,n7 ; data is 64 words long
 move #MEM_START,r1 ; r1 points to address in external memory
 move #DATA_START,r0 ; r0 points to data start address
SRAM_ACCESS
 nop
 do n7,end_in
 move y:(r0)+,x0 ; xfer from Y to x0
 move x0,x:(r1)+ ; place x0 in external X memory
 nop
end_in
 nop
 jsr *
 end

The portaequ.asm file holds the AAR0 and BCR equates described earlier. Our data is 64 words
long, so LOOP2 = $40.

The main program starts by setting the PLL. It then sets the addressing mode to linear addressing. Now
the program is ready to start the SRAM access. It initializes the AAR0 and BCR Registers. It also
initializes loop counters and data pointers. Once initialization is complete, the program transfers the
data from Y:$0 to X:$MEM_START (defined to be $500000). It copies 64 data values to external X
memory.

This example is the simplest of transfers. It uses a MOVE instruction with only one external memory
device mapped to X memory. The next example is a variation on this example.

2.2 Overlapping External Memory Space with
Internal Core Space

This run exercises a seemingly generic memory access, but it accidentally accesses memory in internal
space, resulting in undesired operation.
Motorola Contents 2-13

Overlapping External Memory Space with Internal Core Space

e
al

n
 way
The Port A options for this exercise are as follows:

• Clock Frequency = 68 MHz

• Packing mode disabled

• Address Muxing disabled

• X space enabled; Y and P disabled

• 64 words of data from Y:$0 to X:$FFEFF2

• SRAM using AAR0

• Transfer method: move instruction

As Figure 2-2 shows, the code transfers 64 words of data from Y:$0 to X:$FFEFF2-$FFF032. Th
transfer is done using the MOVE instruction in a DO loop. The data is then moved back to intern
memory at X:$0.

2.2.1 Initialization
The data transfer begins somewhere in the $FFE000 range (the exact address given in the mai
program) using an SRAM access to X memory. The Bus Control Register is initialized the same
as in the first exercise. See Part 2.1.1.

Figure 2-2. Data Transfer from Y to X Memory

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

RESERVED
FOR INTERNAL

X-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

RESERVED
FOR INTERNAL

Y-MEMORY

Transfer data from Y:$0 to X:$FFEFF2

INTERNAL
Y-MEMORY

INTERNAL
X-MEMORY
Motorola DSP563xx Port A Programming 2-14

Multiplexed Access Using DMA

 are
ress

pear
he
xternal
AAR0V1 EQU $FFE311
 ; SRAM access
 ; Address Attribute Register 0
 ; [23:12] = BAC[11:0] = $FFE (Address to compare)
 ; [11:8] = BNC[3:0] = $B (Num of add to compare)
 ; [7] = BPAC = 0 (Packing disabled)
 ; [6] = BAM = 0 (Address muxing disabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 1 (X memory enabled)
 ; [3] = BPEN = 0 (P memory disabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 01 (SRAM access)

2.2.2 Program
This example is identical to the previous example, except for the Address Attribute initialization and
the starting memory address for the external data. Therefore, we provide only the code for the memory
start address in X memory and the loop count.

MEM_START EQU $FFEFF2
LOOP2 EQU $40

When these values are used in the code shown previously, the data does not transfer correctly. The
program is written to transfer 64 words of data from Y:$0 to X:$FFEFF2 -> X:$FFF032. However, on
the memory map external X memory does not begin until X:$FFF000. Therefore, the program
attempts to write 14 words of data to read-only internal X memory instead of to the external device
mapped to X:$FFE000. The processor does not halt execution to show an attempted write to the wrong
memory space; the data simply does not arrive there. If the data is read back to internal memory for
processing later on, or if it is sent to another device, the data is not complete. Therefore, when setting
up the external memory space, verify that the space is available and not overlapping other memory
device space.

2.3 Multiplexed Access Using DMA
Multiplexed access is supported on both the DSP56301 and DSP56305. The code presented in this
section exercises multiplexed access to SRAM. The parameters for this exercise are as follows:

• Clock Frequency = 68 MHz

• Packing mode disabled

• Address Muxing enabled

• P space enabled; Y and X disabled

• 64 words of data from Y:$0 to P:$200000

• SRAM using AAR0

• Transfer method: DMA

Address Muxing means that only the upper eight address bits are used, and the lower eight bits
allowed to sit idle for the transfer. Transfers work the same way as before, and you can use Add
Muxing if only eight address lines are required for addressing the data space.

2.3.1 Address Attribute Register Bit: BAM - Address Muxing
If the AARx[6], Address Muxing Bit (BAM) is set, the eight least significant bits of the address ap
on the A23-A16 pins (most significant portion of the external address bus). If the bit is cleared, t
address appears on the entire external address bus (A23-A0). This bit allows you to connect an e
Motorola Contents 2-15

Multiplexed Access Using DMA
peripheral to the MS bits of the address and thus decrease the load on the least significant pins of the
external address. This enables more efficient interface to external memories. This bit is ignored during
DRAM accesses.

Figure 2-3 shows how to connect two memory devices to the DSP using the same Address Attribute
chip select.The eight LS bits appear on the A23-A16 pins when Address Muxing is set in the Address
Attribute Register.

The EVM boards are not set up for Address Muxing (i.e. with different memories connected to the
same address line as diagrammed in Figure 2-3), so Address Muxing is simulated in this example. We
use the same memory setup as in previous examples, but when the external access occurs, only eight of
the address bits are used. As Figure 2-4 shows, this example sends data from Y:$0 to P:$200000 using
DMA.

Figure 2-3. Connections with Same Address Attribute Chip Select

Figure 2-4. Transfer from Y to X Memory

DSP563xx

Port A
LSMS

MEMORY 0 MEMORY 1

816

Both memories use the same
Address Attribute (AA) chip
select line, but they are mapped to
different memory space areas
in external memory.

Address Address

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

RESERVED
FOR INTERNAL

X-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

RESERVED
FOR INTERNAL

Y-MEMORY

DMA (channel 0) Transfer data from Y:$0 to P:$200000

INTERNAL
Y-MEMORY

INTERNAL
P-MEMORY
Motorola DSP563xx Port A Programming 2-16

Multiplexed Access Using DMA
2.3.2 Initialization
The code presented in this section uses DMA to access P memory in SRAM at $200000. Address
Muxing is enabled.

AAR0V1 EQU $200749
 ; SRAM access
 ; Address Attribute Register 0
 ; [23:12] = BAC[11:0] = $200 (Address to compare)
 ; [11:8] = BNC[3:0] = $7 (Num of add to compare)
 ; [7] = BPAC = 0 (Packing disabled)
 ; [6] = BAM = 1 (Address muxing enabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 0 (X memory disabled)
 ; [3] = BPEN = 1 (P memory enabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 01 (SRAM access)

DMA initialization follows. This application note does not cover the various modes of DMA access.
Instead, it covers only the bit settings required for the following examples. For more information on
DMA access modes, see the DMA Controller chapter in the DSP56300 Family Manual.

The program initiates one DMA transfer to transfer data to P memory. The DMA transfer is from
$000000 in Y memory to $200000 in P memory using DMA channel 0. The transfer is a priority level
1 transfer and the DMA interrupt is enabled. The interrupt tells the program when the transfer is
complete. DCO0V1 designates that the transfer sends 64 words to external memory. The DAM[5:0]
bits in the DCR0 Register indicate that the source and destination addresses increment by one after
each word transfer. The data also transfers continuously.

DSR0V1 EQU $000000
 ; DMA Source Address Register for channel 0
DDR0V1 EQU $200000
 ; DMA Destination Address Register for channel 0
DCO0V1 EQU $000040
 ; DMA Counter for channel 0
DOR0V1 EQU $000000
 ; DMA Offset Register for channel 0
DCR0V1 EQU $5B02D9
 ; DMA Control Register for channel 0
 ; [23] = DE = 0 DMA Operation disabled
 ; [22] = DIE = 1 DMA Interrupt enabled
 ; [21:19] = DTM[2:0] = 011 triggered by DE, DE=0@end
 ; [18:17] = DPR[1:0] = 01 priority level 1
 ; [16] = DCON = 1 Continuous mode enabled
 ; [15:11] = DRS[4:0] = 00100 Transfer done from chan 0
 ; [10] = D3D = 0 non 3-d mode
 ; [9:4] = DAM[5:0] = 101101 post inc. s/d by 1
 ; [3:2] = DDS[1:0] = 10 P memory destination
 ; [1:0] = DSS[1:0] = 01 Y memory source
Motorola Contents 2-17

Access to an 8-bit Peripheral Using DMA and Packing Mode
2.3.3 Program
 org p:START
 nop
MAIN_INIT
 movep #PCTL,x:M_PCTL ; set PLL
 move #LINEAR,m0 ; linear addressing
DMA_INIT
 nop
 movep #AAR0V1,x:M_AAR0 ; set up AAR0 as desired
 movep #BCRV,x:M_BCR ; set up Bus Control Register

 movep #DSR0V1,x:M_DSR0 ; setup DMA src add
 movep #DDR0V1,x:M_DDR0 ; setup DMA dest add
 movep #DCO0V1,x:M_DCO0 ; set DMA counter
 movep #DCR0V1,x:M_DCR0 ; initialize DMA control reg
DMA_XFER
 nop
 bset #23,x:<<M_DCR0 ; start DMA transfer
 bra *
 end

Since the DMA registers include address initialization, the MEM_START and DATA_START
addresses are not required in the main program. Instead of initiating an SRAM_INIT and
SRAM_ACCESS, this program executes DMA accesses.

The DMA_INIT routine initializes the bus and Address Attribute registers, followed by initialization
of the DMA registers. The DMA_XFER routine turns on the DMA access and waits for the transfer to
complete.

The code in this example gives a basic introduction to executing DMA transfers through Port A. The
only unusual setting is the Address Muxing Bit; the Address Muxing function is transparent during
execution.

2.4 Access to an 8-bit Peripheral Using DMA and
Packing Mode

This run exercises both a conventional DMA access to SRAM and an access using Packing mode.
Packing mode is generally used to access a byte-wide peripheral. The DMA access, if enabled,
accesses three byte-wide memory locations and places them in a single 24-bit location in internal
memory. Be careful to set the DMA specifications appropriately to handle the transfer.

The Port A options for this exercise are as follows:

• Clock Frequency = 68 MHz

• Packing mode enabled

• Address Muxing disabled

• X space enabled; Y and P disabled

• 153 words of data from Y:$0 to X:$E00000

• 51 words of packed data from X:$E00000 to X:$0

• SRAM using AAR0

• Transfer method: DMA
Motorola DSP563xx Port A Programming 2-18

Access to an 8-bit Peripheral Using DMA and Packing Mode

 word
ernal
 DMA

cess.
ory.
nsfer.
(153
 the
2.4.1 Address Attribute Register: BPAC - Packing Mode
The BPAC bit pertains only to DMA accesses into Port A from an external device. Suppose you want
to place an 8-bit peripheral on a DSP board and need to receive data from that peripheral: Access can
easily be set up using Port A without wasting data space in the on-chip memory. Turning on Packing
mode causes three external DMA accesses to the peripheral to be “packed” into one 24-bit data
in the on-chip memory. Packing is done automatically by hardware once you initialize it. The ext
memory should reside in the eight least significant bits of the external data bus. You must set up
with proper offsets and updates for this to operate correctly.

The exercise invokes two DMA transfers. The transfer on DMA channel 0 is a standard DMA ac
As Figure 2-5 shows, it takes 153 words from internal Y memory and places it in external X mem
When the first transfer is complete, it triggers an interrupt that in turn starts the second DMA tra
The second transfer (now on DMA channel 1) uses Packing mode and brings 51 words of data
bytes) back to internal memory and places it starting at X:$0. When the code finishes, compare
data at Y:$0 to the data at X:$0 to understand how Packing mode affects the data.

2.4.2 Initialization
Data is transferred to/from SRAM X memory at $E00000 using Packing mode.

AAR0V1 EQU $E00C91
 ; SRAM access
 ; Address Attribute Register 0
 ; [23:12] = BAC[11:0] = $E00 (Address to compare)
 ; [11:8] = BNC[3:0] = $C (Num of add to compare)
 ; [7] = BPAC = 1 (Packing enabled)
 ; [6] = BAM = 0 (Address muxing disabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 1 (X memory enabled)
 ; [3] = BPEN = 0 (P memory disabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 01 (SRAM access)

DMA initialization for the channel 0 transfer is almost identical to the initialization in the previous
Address Muxing example; the only differences are the addresses for data source and destination and
the length of the transfer.

Figure 2-5. DMA Transfers

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

RESERVED
FOR INTERNAL

X-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

RESERVED
FOR INTERNAL

Y-MEMORY

Pack

DMA (channel 0) Transfer data from Y:$0 to X:$E00000

INTERNAL
Y-MEMORY

INTERNAL
X-MEMORY

DMA channel 1
Motorola Contents 2-19

Access to an 8-bit Peripheral Using DMA and Packing Mode
DSR0V1 EQU $000000
 ; DMA Source Address Register for channel 0
DDR0V1 EQU $E00000
 ; DMA Destination Address Register for channel 0
DCO0V1 EQU $000099
 ; DMA Counter for channel 0
DCR0V1 EQU $5B02D1
 ; DMA Control Register for channel 0
 ; [23] = DE = 0 DMA Operation disabled
 ; [22] = DIE = 1 DMA Interrupt enabled
 ; [21:19] = DTM[2:0] = 011 triggered by DE, DE=0@end
 ; [18:17] = DPR[1:0] = 01 priority level 1
 ; [16] = DCON = 1 Continuous mode enabled
 ; [15:11] = DRS[4:0] = 00000 Transfer done from chan 0
 ; [10] = D3D = 0 non 3-d mode
 ; [9:4] = DAM[5:0] = 101101 post inc. s/d by 1
 ; [3:2] = DDS[1:0] = 00 X memory destination
 ; [1:0] = DSS[1:0] = 01 Y memory source

Initialization for channel 1 must account for the use of Packing mode, making the setup more
complicated. The source and destination registers are initialized in the same way. However, since
Packing mode is used, a two-dimensional DMA access is required.1 The first dimension of the access
refers to the amount of data transferred (51 words), while the second dimension uses the offset register
to update the pointer. We need to update the pointer by three each time, since we are using a 24-bit
peripheral to simulate an 8-bit peripheral, and three memory locations are accessed for each transfer.
When used in this way, the DCO Register is turned into a dual counter. Since 153 bytes are transferred,
but three are transferred at a time using Packing mode, we set the first dimensional counter to 51 or
$33. This value must be in the first 12 bits of the counter, designated as the DCOH value. The data
values are automatically grouped in threes by packing hardware, so we set the second counter, DCOL,
to zero. The offset register, DOR, must be set to $000003 since the values are taken in groups of three,
and the address pointer must be updated accordingly. This register automatically updates the DMA
pointer registers.

We must also initialize the DAM[5:0] bits in the DCR Register differently than for the channel 0 setup.
Since a 2-D transfer is executed, the control register must be notified of which offset register to use as
its address pointer update value. The source register must be updated by three each transfer, but the
destination should receive the data in contiguous memory locations. Thus, DAM[5:3] = 001 sets the
address mode to 2-D, and selects DOR1 as the offset select. DAM[2:0] = 101, which means that the
destination is updated by one for each transfer. DAM[2:0] is the same mode as used in the channel 0
transfer.

1. Refer to the application note entitled Using the DSP56300 Direct Memory Access Controller for more
information on DMA setup.
Motorola DSP563xx Port A Programming 2-20

Access to an 8-bit Peripheral Using DMA and Packing Mode
DSR1V1 EQU $E00000
 ; DMA Source Address Register for channel 1
DDR1V1 EQU $000000
 ; DMA Destination Address Register for channel 1
DCO1V1 EQU $033000
 ; DMA Counter for channel 1
DOR0V1 EQU $000003
DCR1V1 EQU $5B0280
 ; DMA Control Register for channel 1
 ; [23] = DE = 0 DMA Operation disabled
 ; [22] = DIE = 1 DMA Interrupt enabled
 ; [21:19] = DTM[2:0] = 011 triggered by DE, DE=0@end
 ; [18:17] = DPR[1:0] = 01 priority level 1
 ; [16] = DCON = 1 Continuous mode enabled
 ; [15:11] = DRS[4:0] = 00000 Transfer done from chan 0
 ; [10] = D3D = 0 non 3-d mode
 ; [9:4] = DAM[5:0] = 101000 post inc. d by 1, 2D s
 ; [3:2] = DDS[1:0] = 00 X memory destination
 ; [1:0] = DSS[1:0] = 00 X memory source
Motorola Contents 2-21

Access to an 8-bit Peripheral Using DMA and Packing Mode

table
2.4.3 Program
 org p:
DMA_INIT0
 nop
 bset #8,sr
 bclr #9,sr ; set interrupt masks
 movep #$00A000,x:<<M_IPRC ; set DMA interrupt priorities levels
 andi #$1C,eom ; set core-DMA priority to 00
 bclr #23,sr ; set core priority level

 movep #AAR0V1,x:M_AAR0 ; set up AAR0 as desired
 movep #BCRV,x:M_BCR ; set up Bus Control Register

 movep #DSR0V1,x:M_DSR0 ; setup DMA src add
 movep #DDR0V1,x:M_DDR0 ; setup DMA dest add
 movep #DCO0V1,x:M_DCO0 ; set DMA counter
 movep #DCR0V1,x:M_DCR0 ; initialize DMA control reg
DMA_XFER
 nop
 bset #23,x:<<M_DCR0 ; start channel 0 DMA xfer
 bra *
end_dma1
 nop
DMA_PACK
 nop
 bset #8,sr
 bclr #9,sr ; set interrupt masks
 movep #$00A000,x:<<M_IPRC ; set DMA interrupt priority levels
 andi #$1C,eom ; set core-DMA priority to 00
 bclr #23,sr ; set core priority level
DMA_INIT1
 movep #DSR1V1,x:M_DSR1 ; setup DMA src add
 movep #DDR1V1,x:M_DDR1 ; setup DMA dest add
 movep #DCO1V1,x:M_DCO1 ; set DMA counter
 movep #DOR0V1,x:M_DOR0 ; set DMA Offset Register
 movep #DCR1V1,x:M_DCR1 ; initialize DMA control reg
start_dma2
 nop
 bset #23,x:<<M_DCR1 ; start DMA pack transfer
 bra *
end_dma2
 nop
INTR_ROUT ; interrupt routine
 clr a
 inc a
 jsr DMA_PACK
END
 jsr *
 end

The DMA subroutines are similar to the Address Muxing DMA routines, since they too are performing
DMA accesses. This example shows that once Packing mode is initialized for the registers, the
program runs similarly to most DMA transfers—hardware does all the work. The interrupt jump
is shown next.
Motorola DSP563xx Port A Programming 2-22

Access to an 8-bit Peripheral Using DMA and Packing Mode
 xref START
 xref INTR_ROUT
 xref END
;
 ORG P:0
;
vectors JMP START ; Hardware RESET
;
 jmp *
.
.
.
;
 jsr INTR_ROUT ;- DMA Channel 0
;
 jmp END ;- DMA Channel 1
 NOP
;
 jmp *
 NOP ;- DMA Channel 2
;
.
.
.

Only the section of the table relevant to this example is shown. Notice that when the DMA channel 0
interrupt occurs, the code jumps to INTR_ROUT, which is an interrupt service routine that initiates the
Packing mode transfer routine, DMA_PACK. DMA_PACK transfers data using DMA channel 1.
When that transfer is complete, the interrupt directs program flow to the end of the program.

The comparison in Table 2-1 shows how the DMA transfer back to internal X memory takes only the
low eight bits of each word, treating the memory space as an 8-bit peripheral. It takes three consecutive
bytes and packs them into one word of data starting at X:$0.

Motorola Contents 2-23

Access to an 8-bit Peripheral Using DMA and Packing Mode
Memory
Address

Original Data Packed Data

X:$000000 000000 FFFFFF AAAAAA 555555 AAFF00 000055 000000 000000

X:$000004 800000 400000 200000 100000 000000 000000 800000 102040

X:$000008 080000 040000 020000 010000 020408 FFFF01 FFFFFF FFFFFF

X:$00000C 008000 004000 002000 001000 FFFFFF FFFFFF 7FFFFF EFDFBF

X:$000010 000800 000400 000200 000100 FDFBF7 56BAFE BAA945 A94556

X:$000014 000080 000040 000020 000010 4556BA 5555A9 555555 555555

X:$000018 000008 000004 000002 000001 555555 555555 555555 ...

... 7FFFFF BFFFFF DFFFFF EFFFFF

F7FFFF FBFFFF FDFFFF FEFFFF

FF7FFF FFBFFF FFDFFF FFEFFF

FFF7FF FFFBFF FFFDFF FFFEFF

FFFF7F FFFFBF FFFFDF FFFFEF

FFFFF7 FFFFFB FFFFFD FFFFFE

FEDCBA 123456 012345 EDCBA9

FEDCBA 123456 012345 EDCBA9

FEDCBA 123456 012345 EDCBA9

00AA55 00AA55 00AA55 ...

Table 2-1. Comparison of Original and Packed Data
Motorola DSP563xx Port A Programming 2-24

Accessing DRAM and SRAM Using DMA Through Port A

e
ible by
t pin

RAM
ey do
AR3

ample,
2.5 Accessing DRAM and SRAM Using DMA
Through Port A

The ADM boards have resident DRAM, so the example presented in this section can run on the ADM
boards. Also, you can remove the DRAM portion and then run the code on the DSP563xxEVM boards
if the PLL value is adjusted properly. The parameters for this exercise are as follows:

• Clock Frequency = 66 MHz

• Packing mode disabled

• Address Muxing disabled

• X space enabled; Y and P disabled

• 256 words of data from Y:$0 to X:$100000 DRAM

• 256 words of data from Y:$0 to X:$E00000 SRAM

• SRAM using AAR0

• DRAM using AAR3

• Transfer method: MOVE instruction and DMA

As Figure 2-6 shows, this example maps two external memory devices, SRAM and DRAM, to th
external memory space accessible by Port A. You can use multiple devices if the space access
each device does not overlap. Since the DSP56301ADM DRAM connects to the AA3 chip selec
on the DSP, Address Attribute Register AA3 initializes DRAM.

2.5.1 Initialization
DRAM is mapped to X memory at $100000. Packing mode and Address Muxing are disabled. S
is mapped to X memory at $E00000. While both memory devices are in the X memory space, th
not overlap at any point. Also, neither device is mapped into internal memory space. AAR0 and A
are initialized to a range of 2 M words. This range is much larger than the space used in this ex
but is acceptable since no other devices require use of the memory space.

Figure 2-6. SRAM and DRAM Mapped to External Memory

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL X-I/O

RESERVED
FOR INTERNAL

X-MEMORY

$FFFFFF
$FFFF80

$FFF000

$FF0000

maximum
$00FFFF

$000000

INTERNAL Y-I/O

RESERVED
FOR INTERNAL

Y-MEMORY

 SRAM Transfer data from Y:$0 to X:$E00000

INTERNAL
Y-MEMORY

INTERNAL
X-MEMORY

SRAM

DRAM

 DRAM Transfer data from Y:$0 to X:$100000

DMA (ch 0)

to X:$400

DMA (ch 3)

to X:$0
Motorola Contents 2-25

Accessing DRAM and SRAM Using DMA Through Port A
AAR0V1 EQU $E00311
 ; SRAM access Y:$0-> X:$E00000
 ; Address Attribute Register 0
 ; [23:12] = BAC[11:0] = $E00 (Address to compare)
 ; [11:8] = BNC[3:0] = $3 (Number of add to compare)
 ; [7] = BPAC = 0 (Packing disabled)
 ; [6] = BAM = 0 (Address muxing disabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 1 (X memory enabled)
 ; [3] = BPEN = 0 (P memory disabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 01 (SRAM access)
AAR3V1 EQU $100312
 ; DRAM access Y:$0 -> X:$100000
 ; Address Attribute Register 3
 ; [23:12] = BAC[11:0] = $100 (Address to compare)
 ; [11:8] = BNC[3:0] = $3 (Number of add to compare)
 ; [7] = BPAC = 0 (Packing disabled)
 ; [6] = BAM = 0 (Address muxing disabled)
 ; [5] = BYEN = 0 (Y memory disabled)
 ; [4] = BXEN = 1 (X memory enabled)
 ; [3] = BPEN = 0 (P memory disabled)
 ; [2] = BAAP = 0 (Active low enabled)
 ; [1:0] = BAT[1:0] = 10 (DRAM access)

The DRAM Control Register sets up wait states for DRAM accesses. The values in this register are
defined mostly by the choice of DRAM. The Bus Control Register value here is similar to that in
previous examples.

BCRV EQU $004042
 ; Bus Control Register
 ; [23] = BRH = 0 bus request hold off
 ; [22] = BLH = 0 bus lock hold off
 ; [21] = BBS = 0 bus state
 ; [20:16] = BDFW[4:0] = 00000 default area wait states
 ; [15:13] = BA3W[2:0] = 010 area 3 wait states
 ; [12:10] = BA2W[2:0] = 000 area 2 wait states
 ; [9:5] = BA1W[4:0] = 00010 area 1 wait states
 ; [4:0] = BA0W[4:0] = 00010 area 0 wait states
DCRV EQU $873A0A
 ; DRAM Control Register
 ; [23] = BRP = 1 refresh prescaler on
 ; [22:15] = BRF[7:0] = 00001110 refresh request rate
 ; [14] = BSTR = 0 software triggered refresh off
 ; [13] = BREN = 1 refresh enable
 ; [12] = BME = 1 mastership enable
 ; [11] = BPLE = 1 page logic enable
 ; [10] reserved
 ; [9:8] = BPS[1:0] = 10 DRAM page size (.5,1,*2K*,4)
 ; [7:4] reserved
 ; [3:2] = BRW[1:0] = 10 Out of page w.s. (4,8,*11*,15)
 ; [1:0] = BCW[1:0] = 10 In page w.s. (1-4 ws; 3 ws)

The transfers to SRAM and DRAM are done using the MOVE instruction. However, DMA accesses
transfer the data back to internal memory. The transfers are standard DMA transfers, so the setup is
similar to the setup described in Part 2.3.
Motorola DSP563xx Port A Programming 2-26

Accessing DRAM and SRAM Using DMA Through Port A
; SRAM Access DMA channel 0
DSR0V1 EQU $E00000
 ; DMA Source Address Register for channel 0
DDR0V1 EQU $000400
 ; DMA Destination Address Register for channel 0
DCO0V1 EQU $000100
 ; DMA Counter for channel 0
DOR0V1 EQU $000000
DCR0V1 EQU $5C02D0
 ; DMA Control Register for channel 0
 ; [23] = DE = 0 DMA Operation disabled
 ; [22] = DIE = 1 DMA Interrupt enabled
 ; [21:19] = DTM[2:0] = 011 triggered by DE, DE=0@end
 ; [18:17] = DPR[1:0] = 10 priority level 2
 ; [16] = DCON = 0 Continuous mode disabled
 ; [15:11] = DRS[4:0] = 00000 Transfer done from chan 0
 ; [10] = D3D = 0 non 3-d mode
 ; [9:4] = DAM[5:0] = 101101 post inc. s/d by 1
 ; [3:2] = DDS[1:0] = 00 X memory destination
 ; [1:0] = DSS[1:0] = 00 X memory source
; DRAM Access DMA channel 3
DSR3V1 EQU $100000
 ; DMA Source Address Register for channel 3
DDR3V1 EQU $000000
 ; DMA Destination Address Register for channel 3
DCO3V1 EQU $000100
 ; DMA Counter for channel 3
DOR3V1 EQU $000000
DCR3V1 EQU $5C02D0
 ; DMA Control Register for channel 3
 ; [23] = DE = 0 DMA Operation disabled
 ; [22] = DIE = 1 DMA Interrupt enabled
 ; [21:19] = DTM[2:0] = 011 triggered by DE, DE=0@end
 ; [18:17] = DPR[1:0] = 10 priority level 2
 ; [16] = DCON = 0 Continuous mode disabled
 ; [15:11] = DRS[4:0] = 00000 Transfer done from chan 3
 ; [10] = D3D = 0 non 3-d mode
 ; [9:4] = DAM[5:0] = 101101 post inc. s/d by 1
 ; [3:2] = DDS[1:0] = 00 X memory destination
 ; [1:0] = DSS[1:0] = 00 X memory source

Both MOVE and DMA transfers generate a DMA interrupt. In the Interrupt Priority Register C
(IPRC), the DMA channel 0 (SRAM) and DMA channel 3 (DRAM) interrupts are set to priority level
2. This priority level setting is arbitrary, since no other devices should be causing interrupts. If this
exercise were included in a larger program, we would set the interrupt priority as determined by
application requirements.
Motorola Contents 2-27

Accessing DRAM and SRAM Using DMA Through Port A
IPRCV1 EQU $082000
 ; Interrupt Priority Register C (includes DMA int)
 ; [23:22] = D5L[1:0] = 00 DMA5 Int Priority Level
 ; [21:20] = D4L[1:0] = 00 DMA4 IPL
 ; [19:18] = D3L[1:0] = 10 DMA3 IPL
 ; [17:16] = D2L[1:0] = 00 DMA2 IPL
 ; [15:14] = D1L[1:0] = 00 DMA1 IPL
 ; [13:12] = D0L[1:0] = 10 DMA0 IPL
 ; [11] = IDL2 = 0 IRQD mode
 ; [10:9] = IDL[1:0] = 00 IRQD IPL
 ; [8] = ICL2 = 0 IRQC mode
 ; [7:6] = ICL[1:0] = 00 IRQC IPL
 ; [5] = IBL2 = 0 IRQB mode
 ; [4:3] = IBL[1:0] = 00 IRQB IPL
 ; [2] = IAL2 = 0 IRQA mode
 ; [1:0] = IAL[1:0] = 00 IRQA IPL

The DSP56301ADM uses a faster external clock, so we set the PLL to a smaller value for 66 MHz
parts. In previous examples, the PLL value was set to $400003, which multiplied the external clock by
four. For the DSP56301ADM, we multiply the clock by two.
Motorola DSP563xx Port A Programming 2-28

Accessing DRAM and SRAM Using DMA Through Port A
2.5.2 Program
; Assembly-Time Equates
START EQU $000400 ; start address for code
LINEAR EQU $FFFFFF ; set up linear addressing mode
; Address Equates
DATA_START EQU PATT
MEM_STARTD EQU $100000 ; DRAM start address
MEM_STARTS EQU $E00000 ; SRAM start address
LOOP_NUM EQU $4
LOOP_PATT EQU $40

 org p:START
 nop
MAIN_INIT
 movep #PCTL,x:M_PCTL ; set PLL
 movep #DCRV,x:M_DCR ; set DRAM Control Register
 move #LINEAR,m0 ; linear addressing
DRAM_INIT
 nop
 movep #AAR3V1,x:M_AAR3 ; set up AAR3 as desired
 move #LOOP_PATT,n7 ; data pattern is 64 words long
 move #LOOP_NUM,n4 ; repeat data pattern
 move #MEM_STARTD,r1 ; r1 points to address in memory
DRAM_ACCESS
 nop
 do n4,end_dmem ; go through memory and fill with pattern
 nop
 move #DATA_START,r0 ; r0 points to data start address
 do n7,end_din
 move y:(r0)+,x0 ; xfer from y mem to temporary register
 move x0,x:(r1)+ ; xfer from temp reg to external X memory
end_din
 nop
end_dmem
 nop
SRAM_INIT
 nop
 movep #AAR0V1,x:M_AAR0 ; set up AAR0 as desired
 movep #BCRV,x:M_BCR ; set up Bus Control Register as desired
 move #LOOP_NUM,n4 ; repeat data pattern
 move #LOOP_PATT,n7 ; data pattern is 64 words long
 move #MEM_STARTS,r1 ; r1 points to address in memory
SRAM_ACCESS
 nop
 do n4,end_smem ; go through memory and fill with pattern
 nop
 move #DATA_START,r0 ; r0 points to data start address
 do n7,end_sin
 move y:(r0)+,x0 ; xfer from y mem to temporary register
 move x0,x:(r1)+ ; xfer from temp reg to external X memory
end_sin
 nop
end_smem
 nop

DMA_INIT3
 nop
 bset #8,sr
 bclr #9,sr ; unmask IPLs
 movep #IPRCV1,x:<<M_IPRC
 andi #$1C,eom
 bclr #23,sr ; core priority 1

Motorola Contents 2-29

Accessing DRAM and SRAM Using DMA Through Port A

s
iven to
is

le of
ory

n the
ts for
mory
 movep #DSR3V1,x:M_DSR3 ; setup DMA src add
 movep #DDR3V1,x:M_DDR3 ; setup DMA dest add
 movep #DOR3V1,x:M_DOR3 ; set up offset register
 movep #DCO3V1,x:M_DCO3 ; set DMA counter
 movep #DCR3V1,x:M_DCR3 ; initialize DMA control reg
DMA_INIT0
 nop
 movep #DCR0V1,x:M_DCR0 ; initialize DMA control reg
 movep #DSR0V1,x:M_DSR0 ; setup DMA src add
 movep #DDR0V1,x:M_DDR0 ; setup DMA dest add
 movep #DOR0V1,x:M_DOR0 ; setup DMA Offset Register
 movep #DCO0V1,x:M_DCO0 ; set DMA counter
 rts
DMA_XFER
 nop
 bset #23,x:<<M_DCR3 ; start DRAM DMA xfer
 bset #23,x:<<M_DCR0 ; start SRAM DMA xfer
 bra *

END
 nop
 jsr *

 include ‘intr_rout.asm’
 end

In this code, the DRAM access is first. The registers are initialized and then the access begins,
followed by the SRAM access. Finally, the DMA registers are initialized for DRAM and SRAM
access, and the two transfers start almost simultaneously.

Each access is similar to those previous examples, but here they are brought together in one program.
Notice that the DMA transfer for each device starts within one cycle of the previous transfer. Since
each channel has the same priority level as the other, the hardware initiates a “round-robin” tranfer. In
this mode, each DMA channel can transfer one piece of data, at which point the bus access is g
the other DMA channel. This alternation continues until each channel complets its transfer. In th
example, both channels transfer the same amount of data and finish their transfers within a cyc
each other. However, if the DRAM were transferring twice as much data as SRAM, the two mem
devices would work in the round-robin fashion until SRAM completed its transfer, at which point
DRAM would gain full control of the bus.

DMA_ENDSRAM
 move #$000001,y0
 move y0,y:$400
 jmp END
DMA_ENDDRAM
 move #$000002,y0
 move y0,y:$401
 bra *

The interrupt routines are short. The DRAM access initiates first and completes first. Thus, whe
interrupt is generated, a value is placed in Y memory for debugging purposes, and the core wai
the SRAM transfer to complete. When the SRAM transfer is complete, it places a value in Y me
for debugging purposes.
Motorola DSP563xx Port A Programming 2-30

References

the one

 Check

la’s
tems

, you
th the
2.6 Troubleshooting
If a program using Port A does not work properly, use the following list as a guideline for debugging.

• Check the address space where data is transferred externally. Does the address match
given in the AARx:BAC[11:0] and AARx:BNC[3:0] bits? Is the correct data space (X,Y,P)
enabled?

• Is the external access type (AARx:BAT[1:0]) set for either DRAM or SRAM? Is the pin
polarity for the device (AARx:BAAP) set correctly?

• Make sure that the number of wait states matches what is necessary for the system. Increase
wait states in the Bus Control Register or DRAM Control Register, if necessary.

• If using Packing mode, check DMA offset and counter registers. Make sure that
two-dimensional mode is being used and the counter is set correctly.

• Check the PLL value to make sure it is within operating range for the device.

If these are all correct, the problem probably lies in an area of code other than the Port A setup.
the program flow to ensure that registers are used properly.

2.7 Conclusions
As the examples in this application note show, external memory access using Port A on Motoro
DSP56300 family of devices is fast and straightforward. Port A is a necessary peripheral for sys
that require immediate access to off-chip memory. With six DMA channels available in the core
can execute transfers to and from external memory on demand. Using Port A in combination wi
DSP core and other peripherals provides a powerful system solution for wireless applications.

2.8 References
1. DSP56300 Family Manual, Motorola, 1995. Order this document by document order number

DSP56300FM/AD. Or download it from the Motorola Web site at
http://www.mot.com/SPS/DSP/documentation/DSP56300.html

2. DSP56301ADM User’s Manual, Motorola, 1995. Order this document by document order number
DSP56301ADMUM/AD. Or download it from the Motorola Web site at
http://www.mot.com/pub/SPS/DSP/LIBRARY/TOOLSDOC/ADS

3. DSP56303EVM User’s Manual, Motorola, 1996. Order this document by document order number
DSP56303EVMUM/AD. Or download it from the Motorola Web site at
http://www.mot.com/SPS/DSP/documentation/DSP56300.html
Motorola Contents 2-31

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which
may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. Motorola does not convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1 (800) 441-2447
1 (303) 675-2140

Motorola Fax Back System (Mfax™) :
TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAX0@email.sps.mot.com

Asia/Pacific :
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan :
Nippon Motorola Ltd
SPD, Strategic Planning Office
4-32-1, Nishi-Gotanda
Shinagawa-ku, Tokyo 141, Japan
81-3-5487-8488

Internet :
http://www.motorola-dsp.com/

OnCE and Mfax are registered trademarks of Motorola, Inc.

	Part 1 Configuration
	1.1 Performance
	1.2 System Set-up

	1.2.1 DSP56300 to Memory Connections
	Figure 1-1. DSP-to-SRAM Connection
	Figure 1-2. DSP-to-DRAM Connection
	Figure 1-3. DSP-to-Flash PEROM Connection
	1.2.2 Memory Map
	Figure 1-4. DSP56300 Core Memory Map
	1.2.2.1 Address Attributes
	Figure 1-5. Address Attributes Register (AAR0-AAR3)
	Table 1-1. BAT1 and BAT0 External Access Types
	1.2.2.2 Bus Control
	Figure 1-6. Bus Control Register (BCR)
	1.2.2.3 DRAM Control Register
	Figure 1-7. DRAM Control Register (DCR)
	Table 1-2. Encoding of Bits BPS1 and BPS0
	Table 1-3. Encoding of Bits BRW1 and BRW0
	Table 1-4. Encoding of Bits BCW1 and BCW0
	Part 2 Accessing External Devices
	2.1 Simple SRAM Access Using Move Instruction

	Figure 2-1. Data Transfer from Y to X Memory
	2.1.1 Initialization
	2.1.2 Program
	2.2 Overlapping External Memory Space with Internal Core Space

	Figure 2-2. Data Transfer from Y to X Memory
	2.2.1 Initialization
	2.2.2 Program
	2.3 Multiplexed Access Using DMA

	2.3.1 Address Attribute Register Bit: BAM - Address Muxing
	Figure 2-3. Connections with Same Address Attribute Chip Select
	Figure 2-4. Transfer from Y to X Memory
	2.3.2 Initialization
	2.3.3 Program
	2.4 Access to an 8-bit Peripheral Using DMA and Packing Mode

	2.4.1 Address Attribute Register: BPAC - Packing Mode
	Figure 2-5. DMA Transfers
	2.4.2 Initialization
	2.4.3 Program
	Table 2-1. Comparison of Original and Packed Data�
	2.5 Accessing DRAM and SRAM Using DMA Through Port A

	Figure 2-6. SRAM and DRAM Mapped to External Memory
	2.5.1 Initialization
	2.5.2 Program
	2.6 Troubleshooting
	2.7 Conclusions
	2.8 References

