MOTOROLA Order by AN1780/D

Semiconductor Application Note (Motorola Order Number)
Rev. 0, 11/98

DSP563xx HI32 As A PCI Agent Contents

llan Naslavsky 1 Introduction ... 1-2

Leonid Smolyansky 1.1 Application FILES........cccccvevnrrunnes 1-2
1.2 DSP56301ADM Installation......... 1-2

. L 1.3 Host-side Application Installation 1-3
The Host Interface (HI32) is a fast 32-bit wide parallel host 1.4 Development Environment........ 123

port that can directly connect to the host bus. The HI32 is a 2 Basics of HI32 PCI Usage ... 2-1
standard peripheral on DSP563xx family derivatives, such as | 2.1 The DSP56301ADM Board.......... 2-1

the DSP56301 and DSP56305. It supports a variety of stan- 2.2 BOOT .. 2-1
. . . 2.3 PCIFile Formatc..ccooevennnnne 2-4
dard buses and provides a glueless connection with a number 24 PCI Configuration............... 4
Of induStry_Standard microcomputers5 microprocessor87 2.5 Reset ISSUCS..oovvviviiieeiiiciiiiieeeee, 2-5
DSPs, and DMA controllers. The HI32 runs in three different |3 Data and Control Flow 31
modes: 3.1 DSP Side: Status Bits Polling
EXamplesccooevvevereneneeeeneene 3-1
* Peripheral Component Interconnect (PCI) mode 3.2 Host-Side Transfers: Status
. : POIlINg ..coooveiiiiciniicicccan 3-2
Universal bus (UB) mode 33 32-Bit and Non-32-Bit Mode
* General-Purpose 1/0 (GPIO) mode SUPPOTt w.eovereerieieesee s
. .. . 3.4 DMA Usage...
This application note considers only the PCI mode of the 35 Interrupts.......

HI32. It includes an example with a DSP56301 runningona |36 Data Handling
DSP56301ADM board, which is part of the Motorola appli- 3.7 PCl-to-DSP Address Mapping....3-15

cation development system. It focuses on a Data Scatter and | 3-8 ~Data Format Conversion............. 3-15
Gather application. which is an example of PCI bus master- 3.9 Control FIow.....cccccovvvveecvrnnenee. 3-17
pp i p 3.10 Transaction Termination............. 3-19

ing with the HI32. This application has a graphical user inter- |3 11 pcCI Master Burst Generation......3-21

face (GUI), which is described in Chapter 4. Once the 4 Application Sample 4-1
DSP56301ADM board and the host-side application are 4.1 Scatter and Gather Mechanism.....4-1
installed as described, you can start the software and run the ig Applic?ﬁon WOrkflow ..ccccvovsen 3‘2
application. The Scatter and Gather application enables abus | 47 el gl
master device to access system memory for read (gather) and | 45 Virtual Device Driver (VxD)......4-15
write (scatter) transactions on non-consecutive locations with | 4.6 DSP Side......ccoocoveurvvecerirreiencenens 4-16
a variable number of transfers—all with minimal host inter- APPENDIXES:
vention. A Source Codeccceeuerueeneee A-1
A.1 Assembly Program..........c.cc.c.... A-1
You can download a READIVE file, with installation directions | A2 Virtual Device Driver Code.......... A7
and a compressed ZIP-format file containing the application | A.3 Virtual Device Driver C Header
files, Hl 32_AS_A PCl _AGENT. ZI P, at the following loca- File..ooiiiiciiicccecce A-15
tion: B Referencesceveereeneenene B-1

htt p: //ww. not. com SPS/ DSP/ Docunent at i on/
appnotes. ht ml / AN1780/ H 32_AS A PCl _AGENT. ZI P
Before you start the application, consult Chapter 3 for the
necessary details on data and flow control. Note that Appen-
dix A presents a print-out of the source code.

=
]
(=]
<
O
a
©
(%]
@
N
®
T

@ MOTOROLA
© Motorola, Inc., 1998

Introduction

1

Introduction

This section gives instructions on installing applications resources. Once the DSP56301 ADM and the
host-side (PC) application are installed, you can run the application.

1.1 Application FILES

Accompanying this application note is a READVE file with installation directions and a compressed
ZIP-format file, H 32_AS_A PCl _AGENT. ZI P, containing the following files:

* HI 32. ASM DSP56301 assembly code for the Scatter and Gather application

e HI 32. PCl : ASCII file with HI 32. ASMassembled code formatted for downloading through
the PCI bus to the DSP56301 ADM with the sample application

e H 32VXD. VXD: Windows 95 virtual device driver for the DSP56301 ADM board

¢ H 32VXD. C: Source C-code to Windows 95 Virtual Device Driver for the DSP56301ADM
board

* H 32VXD. H: C-header file for Windows 95 virtual device driver for the DSP56301 ADM
board

* DSP56301ADM | NF: Windows 95 plug and play installation file for the DSP56301ADM
board

* Hi 32. EXE: Application graphical user interface (GUI) for Windows 95
* DATA. TXT: Sample output data for the Scatter and Gathering application

1.2 DSP56301ADM Installation

A DSP56301ADM board Windows 95 INF file is provided with this application note for plug and play
installation. To install the board and corresponding driver, follow these steps:

1.

Have the DSP56301ADM on-board FLASH memory burnt with the Phase I boot code as
described in Section 2.2.1. Assure that the selected operation mode is correct (e.g., Bootstrap from
byte-wide memory - Mode 1 for the DSP56301 and Mode 9 for the DSP56305). Refer to
Appendix B for documentation on DSP56301 ADM board operation.

2. Copy files DSP56301ADM | NF and HI 32VXD. VXD to any directory on any disk you wish to
provide to Windows upon request.

3. Turn OFF the PC.

4. Plug in the DSP56301 ADM board to the PCI connector.

5. Turn ON the PC.

6. Windows identifies new hardware and prompts you for instructions; among the options, choose to
provide the disk.

7. Provide the path to the directory containing the DSP56301ADM | NF and HI 32VXD. VXD files.

8. Press OK and Windows installs the driver.

1-2 HI32 as a PCI Agent Motorola

Introduction

You can check the board installation through the Windows system manager, under ADSBOARDS
class. For further information on operational systems plug and play support, refer to specific documen-

tation.

1.3 Host-side Application Installation

To install the host-side application, follow these steps:

1. Copy files H 32. EXE, Hl 32. PCI and DATA. TXT to any directory chosen as the working
directory.

2. Execute the HI 32. EXE file to launch a graphical user interface, as described in Section 4.4.

Refer to Section 4.4.1 for instructions on application usage.

1.4 Development Environment

The software part of the application described in this document was developed in the following envi-
ronment:

Note:

DSP56301-side:

— Environment: Motorola DSP Development Environment (refer to Appendix B)
VxD:

— Environment: Microsoft Developer Studio™ 97

— C/C++ Compiler: Microsoft Visual C++01, version 5.0

— Main Library: Vireo Software VtoolsD™ | version 2.01

Graphical user interface:

— Environment: Microsoft Developer Studio™ 97

— C/C++ Compiler: Microsoft Visual C++01, version 5.0

— Main Library: Microsoft Foundation Classes

Neither of the Development Environment items is necessary for running the application.

Motorola

1-3

Introduction

1-4 HI32 as a PCI Agent Motorola

Basics of HI32 PCI Usage

2 Basics of HI32 PCI Usage

The Host Interface (HI32) provides a fast 32-bit wide parallel host port that can directly connect to the
host bus. It is designed for the DSP56300 family, and it is one of the peripherals of the DSP56301 and
DSP56305 family derivatives. It supports a variety of standard buses and provides a glueless
connection with a number of industry-standard microcomputers, microprocessors, DSPs, and DMA
controllers. The HI32 supports three classes of interfaces:

* Peripheral Component Interconnect (PCI) bus (PCI Specification Revision 2.1) — In the PCI
mode, the HI32 is a dedicated, bidirectional, target (slave) / initiator (master) parallel port with
a 32-bit wide data path. In this mode, the HI32 can directly connect to the PCI bus.

* Universal bus interface — In the universal bus (UB) mode, the HI32 is a dedicated,
bidirectional slave-only parallel port that is up to 24 bits wide. In this mode, the HI32 can
directly connect to 8-bit data buses, 16-bit data buses (e.g., ISA), and 24-bit data buses (e.g.,
DSP56300 core-based DSP Port A bus).

* General-purpose I/O (GPIO) port — Programming the DSP control register enables the
DSP56300 core to control the host port pin functionality and polarity. Unused host port pins
can be programmed by the DSP56300 core as general-purpose I/O pins. The HI32 provides up
to 24 general-purpose 1/O pins.

This application note considers only the PCI mode of the HI32.

2.1 The DSP56301ADM Board

The DSP56301 application development board (DSP56301 ADM) is part of the Motorola application
development system (ADS), which is the development environment for Motorola DSP chips. The
DSP56301ADM board contains a DSP56301 chip and additional hardware for application
development and test, including the PCI connector. See Section 1.2 for DSP56301 ADM installation
instructions.

2.2 BOOT

The DSP56301 operation modes include bootstrap from a host PCI bus through the HI32, in
32-bit-wide mode. The DSP core-to-PCI frequency ratio is as follows:

frequency gy, / frequencype; > 5/3

To guarantee proper HI32 operation in a 33 MHz PCI environment, a DSP core frequency greater than
55 MHz is needed. This is true at any time, including an initial boot through PCI. Unless the
application can guarantee that the DSP begins bootstrapping at a secure frequency, the HI32 operation
is unreliable until the correct internal frequency is achieved. Generally, to guarantee operation at the
correct frequency (regardless of the clock oscillator used on board), a dual-phase boot approach is
recommended. A Phase I boot should be done from on-board resources, which programs the PLL to
the proper frequency so that the Phase II boot can be performed from the host PCI.

An additional advantage of the dual-boot approach is that the HI32 PCI configuration space subsystem
ID and subsystem vendor ID registers can be set before an external configurator (PCI Host) reads
them. This enables the external configurator to refer to the PCI subsystem identification, apart from

Motorola 2-1

Basics of HI32 PCI Usage

the vendor and device identification, while performing PCI system enumeration/configuration. The
PLL and the HI32 PCI configuration space is preset while PCI mode is not configured in the HI32
DCTR register. The HI32 responds with retry to any host access while not in PCI mode (HM = $0 or
$5 in DCTR). The HI32 PCI mode should be configured between the Phase I and the Phase II boots.
Figure 2-1 charts this dual-phase boot.

Figure 2-1 Dual-Phase Boot Flowchart

System Reset

y

Phase I: boot from on-board resources

y

Set OMR for boot from PCI and branch to bootstrap program

Y

Phase II: boot from PCI (application code)

!

Run Application

2.2.1 Phase |: Boot From On-Board Resources

The Phase I boot is performed from on-board 24- or 8-byte wide memory or SCI, according to the
several operation modes present in the processor. The DSP hardware automatically starts executing the
bootstrap program according to the configuration of the MODA-D pins. Example 2-1 shows Phase I

boot code:
Example 2-1 Phase | Boot Code
I NOLLDE "i oequ. asni ; X Menory Mapped |/ O Equat es
I NOLLDE "i nt equ. asm ; Interrupt Equates
PLLINT EQU $750012 ; PLL Initialization Wrd - 78.4 MZ for a 33M&
; external crystal
PO _CP_MIE BEQU $00000C ; PA node configuration MO D A =[1100]
BOOT_START EQJ $f f 0000 ; Sarting address of bootstrap code
SR EQJ <syst em dependent - val ue>; S DR Val ue
S W EQU <syst em dependent - val ue>; S VR Val ue
; PLL programmi ng
novep #PLL_IN T, x: MPCTL
; H32 Self-Gonfiguration: Subsystem|D and Subsystem Vendor 1D
nove #0, x0 ; set constant
novep #>$500000, x: M DCTR ; Set Self Gonfiguration Mde
rep #4

2-2 HI32 as a PCI Agent Motorola

Basics of HI32 PCI Usage

novep x0, x: M DPAR ; set register pointer to SDRSVMD
novep #9 DR x: M DPMC ; set SDRval ue
novep #SM D, x: M DPAR ; set SMMDvalue and wite SDRR S D
novep x0, x: M DCTR ; personal software reset
j set #M ACT, x: M DBR * ; wait for HACT = 0
; Transition to the Phase || Boot
nove om,a
and #$FFFFFO, a
or #PA _CP_MIE a ; set PA node
nove a, onm
jnp BOOT_START ; go to the bootstrap code start

As this example shows, the Phase I boot comprises the following steps:

1. Program the DSP internal PLL to achieve the minimum required DSP frequency for safe
HI32-PCI operation.

2. Program the HI32 configuration space while the HI32 is in Self-Configuration mode.! In this step,
the Subsystem ID and Subsystem Vendor ID registers are programmed in case the system requires
them. In a self-configured system, other configuration space registers can also be programmed,
completing the self-configuration process. In a system with an external PCI configurator, any
other configuration space register programmed while the HI32 is in Self-Configuration mode may
be overwritten by the external configurator. The first four values written to HI32 configuration
space are irrelevant to the external configurator, which overwrites those values during its
configuration procedure.

3. Transition correctly to the Phase II boot from the host PCI bus through the HI32. This includes
changing the Chip Operation mode bits in the OMR Register to the corresponding value and
branching to the bootstrap program for the Phase II boot.

2.2.2 Phase ll: Application Code Download From the PCI Bus

The second phase of the proposed dual-phase boot is a second run of the chip’s bootstrap program, this
time in Host Bootstrap PCI Chip Operation mode. In this mode, the HI32 operates as a PCI target
(slave) with a 32-bit data transfer format.The bootstrap program reads one 32-bit word for the number
of program words to be downloaded, followed by another 32-bit word with the address of the location
to which the program should be downloaded, and then as many 32-bit words as are specified in the
first word received. Each 32-bit downloaded word contains a 24-bit DSP word in its three Least
Significant Bytes. The Most Significant Byte of the 32-bit word is ignored. At the end of the
downloading, the program runs, starting from the specified address.

The host can stop the downloading by setting the Host Flag 0. In this case, the downloaded code
executes from the starting address already specified. Section 3.9.2 addresses host flag usage.

Note: For details on bootstrap modes and procedures, refer to the DSP user’s manual for your
device.

1. See Section 2.4.1 for a broader explanation of Self-Configuration mode.

Motorola 2-3

Basics of HI32 PCI Usage

2.3 PCI File Format

When using the sample drive/application provided in Appendix A, the program code to be
downloaded must be stored in an ASCII-data file with the following format:

* Each line contains a single 32-bit word in hexadecimal base.

* The 24-bit DSP word is right-aligned, zero extended, and mapped to a 32-bit word.

* The first line contains the number of program words in the program code (i.e. the number of
lines in the file minus two).

¢ The second line contains the destination DSP address of the code to be downloaded, which is
also the starting address at which execution begins after the bootstrap program executes.

» Every subsequent line contains only one program word, corresponding to a one 24-bit
hexadecimal program word for the DSP56301.

The HI 32. PCl file provided with this application note presents this format.

2.4 PCI Configuration

HI32 configuration as a PCI agent requires programming of the HI32 Configuration Space registers.
This is achieved either by the HI32 Self-Configuration procedure or by an external configurator or by
a combination of both.

2.4.1 Self-Configured Systems

The HI32 Self-Configuration mode enables the interface to be configured as a PCI agent in systems
without an external configurator. It also enables the setting of some system-related PCI Configuration
Space fields (e.g., Subsystem ID) that may be needed by some systems, regardless of whether there is
an external configurator. Example 2-2 shows sample code that performs HI32 self-configuration.

Example 2-2 Self-Configuration Sample Code

I NOLLDE "i oequ. asn
I NOLLDE "i nt equ. asni

novep
nove

novep
novep
novep
novep
novep
novep
novep
j set

#>$500000, x: M DCTR
#%$0, x0

#OOWR _DATA x: M DPAR
X0, x: M CPAR
#OLAT_DATA x: M DPAR
#BVA DATA, x: M DPAR
#3 DR DATA x: M DPMC
#5V D _DATA x: M DPAR
X0, x: M DCTR

#M ACT, x: MDER *

; X Menory Mapped |/ O Equat es
; Interrupt Equates
; H@S Sel f Gonfiguration

; wite to GOWR

dumy wite to (QOCRHCR D
wite to QAT

; wite to CBVA

; witeto CID
; personal software reset

;wait for HACT = 0

HI32 as a PCI Agent Motorola

Basics of HI32 PCI Usage

Note that writes to HI32 Configuration Space registers in Self-Configuration mode occur sequentially.
That is, all the configuration space registers in the sequence must be written, and none can be skipped.
Table 2.1 shows this sequence. Each write to DPAR accesses a register.

Table 2.1 Self-Configuration Mode Sequence

Sequential DPAR Write Register
1 CSTR/CCMR
3 CHTY/CLAT
4 CBMA
5 CSID

2.4.2 Externally-Configured Systems

When PCI mode is set (HM = $1 in DCTR), an external configurator (e.g., a host computer) can
configure the HI32 as a PCI agent. During configuration, the host examines HI32 Configuration Space
registers for resource requirements and writes the HI32 configuration space with the corresponding
assigned resources and additional configuration settings.

We recommend that you do not directly change the configuration settings using the HI32 Self
Configuration mode (Section 2.4.1) unless it is guaranteed that the host can handle the new settings.
The host itself can safely make such changes during an interaction between the host configuration
software and the device driver.

The self-configuration procedure can be used to program Subsystem ID and Subsystem Vendor ID
prior to or concurrently with configuration space accesses by an external configurator. While the HI32
is not in PCI mode, any PCI access is retried by the HI32.

2.5 Reset Issues
Following are some considerations on host and DSP reset events:

» The HI32 reset (HRST pin) is decoupled from the DSP general reset (RESET pin). The
functionality of each of these pins is as follows:

— HRST: Immediately floats PCI pins, resets the PCI state machines, and resets all
configuration space registers. It does not affect the data paths.

— RESET: Completes the current PCI transaction, switches to HI32 mode 0, clears all the
FIFOs, and resets all DSP-side and host-side memory space status bits. It does not affect
PCI state machines or the configuration space registers.

* The data status is reset only by a DSP general reset in order to maintain consistency of the data
status both on the DSP side and on the host side. Since all the FIFOs are cleared by this reset,
a DSP-host handshake should be accomplished to guarantee that data is not lost (if the
application requires it).

* The host-side reset (HRST) does not reset the data status bits because a host-side reset does
not necessarily require a DSP-side reset. Therefore, the data in the FIFO should not be deleted.
If the data in the FIFOs must be cleared by a host-side reset, this reset should be achieved by
interaction between the host and the DSP applications (e.g., via the host commands
mechanism).

Motorola 2-5

Basics of HI32 PCI Usage

2-6 HI32 as a PCI Agent Motorola

Data and Control Flow

3 Data and Control Flow

All data transfers through the HI32 are performed via three data FIFOs:
* Master DSP-to-host data FIFO (DSP Master Transmit/Host Master Receive Data FIFO
DTXM/HRXM), for DSP master operation.

* Slave DSP-to-host data FIFO (DSP Slave Transmit/Host Slave Receive Data FIFO
DTXS/HRXS), for DSP slave operation.

* Host-to-DSP data FIFO (DSP Receive/Host Transmit Data FIFO DRXR/HTXR) for both
master and slave operation.

Data synchronization between the DSP and host sides of the HI32 (data handshake) is achieved by
status bit polling, specific interrupts, or DMA requests. The relevant status bits that are polled on the
DSP side to synchronize data between the DSP and host sides of the HI32 are enumerated here:

* Slave operation:

— PCI Slave Transmit Data Request (STRQ) bit: indicates (when set to 1) that the DSP
Slave Transmit Data FIFO (DTXS) is not full and can be written.

— PCI Slave Receive Data Request (SRRQ) bit: indicates (when set to 1) that the DSP
Receive Data FIFO (DRXR) is not empty and slave data can be read.

* Master operation:

— PCI Master Transmit Data Request (MTRQ) bit: indicates (when set to 1) that the DSP
Master Transmit Data FIFO (DTXM) is not full and can be written.

— PCI Master Receive Data Request (MRRQ) bit: indicates (when set to 1) that the DSP
Receive Data FIFO (DRXR) is not empty and master data can be read).

3.1 DSP Side: Status Bits Polling Examples

In Example 3-1, both the SRRQ and STRQ bits in the DSR register are polled, and corresponding
duplex slave data transfers occur between the DSP56300 core and the DRXR and DTXS data FIFOs.

Note: When data is written to a peripheral device, there is a two-cycle pipeline delay until any status
bits affected by this operation are updated. See the DSP56300 Family Manual for details on a
device’s pipeline restrictions.

Example 3-1 Duplex Slave Data Transfers With Polling

READ brclr #M SRRQ x: MDER VR TE_

novep X: MDRR x: (r0) + ; Read data fromH FO
VR TE_ brclr #M STRQ x: M DER READ

novep y: (rl)+ x: MDIXS ; Wite data to FIFO

In Example 3-2, the MRRQ bit in the DPSR register is polled, and master data reads by the DSP56300
core occur from the DRXR FIFO.

Example 3-2 Master Data Receive With Polling

do #N BND_ ; Read N words
READ brclr #M MRRQ x: M DPSR READ
novep x: MDRR x: (r0) + ; Read data fromH FO

Motorola 3-1

Data and Control Flow

In Example 3-3, the MTRQ bit in the DPSR register is polled, and master data writes by the 56300
core occur to the DTXM FIFO.

Example 3-3 Master Data Transmit With Polling

do #N BND_ : Wite Nwords
WR TE_ brclr #M MRQ x: M DER VR TE_
novep y: (r1)+ x: MDDXM ; Wite data to FIFO
nop ; NCPs are pl aced due to
nop ; a two cycl e pipeline del ay

The NOP instructions in this last example are inserted because of pipeline restrictions and can be
replaced by any other useful instructions.

In Example 3-4, both the SRRQ bit in the DSR register and the MRRQ bit in the DPSR register are
polled, and corresponding mixed master/slave data reads by the DSP56300 core occur from the DRXR
data FIFO.

Example 3-4 Mixed Master/Slave Data Transfers With Polling

SREAD brclr #M SRRQ x: M D8R MREAD

novep x: MDRR x: (r0)+ ; Read sl ave data
MREAD brelr #M MRRQ x: M DR SREAD

novep x: MDRR y: (r1)+ ; Read naster data

If the DTXS or DTXM data FIFO is empty (for example, after the personal software reset), then the
corresponding FIFO can be filled without STRQ or MTRQ status bit polling.

3.2 Host-Side Transfers: Status Polling
Three status bits in the HSTR register reflect the status of the HTXR and HRXS FIFOs:

* PCI Host Transmitter Ready (TRDY) bit: indicates (when set to 1) that the Host Transmit
Data FIFO (HTXR) is empty and can accept writes from the host.

e PCI Host Transmit Data Request (HTRQ) bit: indicates (when set to 1) that the Host Transmit
Data FIFO (HTXR) is not full and can accept writes from the host.

* PCI Host Receive Data Request (HRRQ) bit: indicates (when set to 1) that the Host Slave
Receive Data FIFO (HRXS) is not empty and can be read by the host.
Note: These bits address HI32 slave data only.

In the PCI mode, these bits should not necessarily be polled. If the corresponding FIFO is not ready,
the HI32 hardware inserts wait states.

3.2.1 Host Side: Status Bit Polling Examples

The pseudo code examples in this section illustrate polling of the host-side status bit. Example 3-5
shows HTRQ polling for HI32 slave host-to-DSP data transfers, and Example 3-6 shows HRRQ
polling for HI32 slave DSP-to-host data transfers.

Example 3-5 HTRQ Polling (Pseudo Code)

Wit For HIRQ Set ; FIFOis not full
Wite HIXR ; send Data

3-2 HI32 as a PCI Agent Motorola

Data and Control Flow

Example 3-6 HRRQ Polling (pseudo code)

Wit For HRRQ Set ; FAIFOis not enpty
Wite HRXS : read Data

The TRDY bit has two additional applications:

+ If TRDY is set to one, the data written from the host processor to the HTXR is immediately
transferred to the DSP side of the HI32. This has many applications. For example, if the host
processor issues a host command that causes the DSP56300 core to read the DRXR, the host
processor is guaranteed that the data it transfers to the HI32 is received by the DSP56300 core
(see Example 3-7).

* High-speed data transfers (no wait states): if TRDY is set in PCI data transfers with HTFZ£$0
(i.e., not in 32-bit mode), the HI32 does not insert wait states into the next six data transfers
written by the host to the HTXR. If TRDY is set in PCI data transfers with HTF=S$0 (i.e.,
32-bit mode), the HI32 does not insert wait states into the next three data phases written by the
host to the HTXR.

Example 3-7 TRDY Polling: Host Command

Host S de (pseudo code):

Vei t_For_TRDY Set ; guarantees that DRRis enpty
Wite HIXR ; send Message
Wite HOR Wth_HC Set ; send Host Conmand

CeP S de (Host Command I nterrupt Service Routine):

HC ISR
novep x: MDRR x0 ; read Message
jsr <HLONG | SR ; SRRQpolling is not necessary
; because protocol guarantees data
;integrity

3.3 32-Bit and Non-32-Bit Mode Support

The DSP-side status bits should be tested for each transferred word (non-32-bit mode) or part of word
(32-bit mode).

3.4 DMA Usage

The DMA Request Source bits in the DMA Control registers (DRS4-DRS0) encode the source of
DMA requests that trigger the DMA transfers. For example, Table 3-1 shows the HI32-related DMA
request source encoding for the DSP56301. The DMA controller can transfer data to/from the HI32 at
a maximum rate of one word every two internal DSP clock cycles. To guarantee proper operation,
DMA should service the HI32 under the following restrictions:

DMA should not service the DRXR FIFO in master/slave mixed mode because the master or
slave data may be fetched by the DMA channel(s) in the wrong order.

e The DMA data transfers should not be concurrent with the DSP56300 core data transfers
to/from the same HI32 data FIFO.

The DMA Transfer mode should be set to word transfer triggered by request because the DMA
controller should access the HI32 data register only when it is ready—i.e., according to the
corresponding DMA request.

Motorola 3-3

Data and Control Flow

Table 3-1HI32-Related DMA Request Source Encoding (for the DSP56301)

DMA Request Source Bits DRS4...DRS0 Requesting Device
11100 HI32 Slave Receive Data
11101 HI32 Master Receive Data
11110 HI32 Slave Transmit Data
11111 HI32 Master Transmit Data

3.4.1 Slave Operation
The slave transmit data DMA request is generated under the following conditions:

¢ The DMA channel is programmed to handle slave transmit data.
e The HI32 is in PCI mode.
e The DTXS is not full.

The slave receive data DMA request is generated under the following conditions:

* The DMA channel is programmed to handle slave receive data.
* The HI32 is in PCI mode.
* The DRXR contains slave data.

Example 3-8 shows DMA initialization for non 32-bit slave transmit data transfers.

Example 3-8 DMA Initialization: Slave Transmit (Non 32-Bit)

novep #>9 ave_Tx_ptr, x: M DER)

novep #>M DIXS, x: M CDRD

novep #>\Wér d_Num x: M DO ; VWord_Num=PA_Vérd Num- 1
novep #>$8ef 250, x: M DORD

DORD Bits:

CE=1: DVA enabl ed

D E=0: DWVAinterrupt disabled;

DM 2: 0] =001: Triggered by request, word transfer
DPR1:0]=11: Priority Level 3 (highest)

DOON=0: conti nuous node di sabl ed

CRY 4: 0] =11110: H32 Save Transmt Data

8D=0: three dinensional node di sabl ed

DAM 5: 3] =100: destination address - no update
DAM 2: 0] =101: source address - post-increnent by 1
OO 1: 0] =00: desti nati on nenory space - X

[sq 1: 0] =00: source nenory space - X

Example 3-9 shows DMA initialization for 32-bit slave receive data transfers. Here the number of
words transferred by the DMA is twice the number of words transferred by the HI32 as a PCI master.
All 16-bit words (half words of the 32-bit words) are saved in DSP memory in the big-endian order as
shown in Table 3-2. (Slave Rx_ptr should point to Address+1). Note that this organization is
achieved via DMA three-dimensional addressing mode. The usage of DMA linear addressing results
in data organized in DSP memory in /ittle-endian order. Consult Appendix B for references on DMA
usage.

3-4 HI32 as a PCI Agent Motorola

Data and Control Flow

Example 3-9 DMA Initialization: Slave Receive (32-Bit, Big Endian Order)

novep #>9 ave Rx_ptr, x: M DDRD
novep #>M DRR x: M DSRO
novep #>(Wor d_Nunx<12), x: M DO ; VWord Nim= (2 * PA_Wrd Nunm) + 1
novep #- 1, x: M DOR2
novep #3, x: M DCR3
novep #>$8ee640, x: M DR
DORD Bits:

DE=1: DVA enabl ed

D E=0: DVA interrupt disabl ed;

DM 2: 0] =001: Triggered by request, word transfer
DPR 1:0]=11: Priority Level 3 (highest)

DOON=0: cont i nuous node di sabl ed

DRY 4: 0] =11100: H 32 3 ave Receive Data

DBD=1: three di nensi onal node enabl ed

DAM 5: 3] =100: source address - no update

DAM 2: 0] =100: dest. address - three-di nensi onal (DOR2/ 3)
DDF 1: 0] =00: destination nenmory space - X

D059 1: 0] =00: source nenory space - X

Table 3-232-Bit Data Big Endian Order

Memory

Address Address

Address+1 Address+2 Address+3

DMA 2 1 4 3
Transfer
Order

DSP Data

word1[31:16] word1[15:0] word2[31:16] word2[15:0]

PCI Data

word1[31:0] word2[31:0]

3.4.2 Master Operation

The master transmit data DMA request is generated under the following conditions:

* The DMA channel is programmed to handle master transmit data.
* The HI32 is in PCI mode.
*» DTXM is not full.
The master receive data DMA request is generated under the following conditions:
* The DMA channel is programmed to handle master receive data.
* The HI32 is in PCI mode.

e DRXR contains master data.

Example 3-10 shows DMA initialization for 32-bit master transmit data transfers. Here the number of
words transferred by the DMA is twice the number of words transferred by the HI32 as a PCI master.
All 16-bit words (half words of the 32-bit words) are saved in the DSP memory in the little endian
order as shown in Table 3-3 (Mast er _Tx_pt r should point to Address).

Motorola

3-5

Data and Control Flow

Example 3-10 DMA Initialization: Master Transmit (32-Bit, Little Endian Order)

novep #>Master _Tx_ptr, x: MBS0
novep #>M DIDXM x: M CDRD
novep #>\Wr d_Num x: M DG ; Vord Nm= (2 * PA_Vérd Nun) + 1
novep #>$8ef a50, x: M DCRD
; DORO Bits:

; DE=1: DVA enabl ed

; DE=O: DVAinterrupt disabled;

; DIM 2:0] =001: Triggered by request, word transfer
; DPR1:0]=11: Priority Level 3 (highest)

; DOON=O: conti nuous node di sabl ed

; DRY4:0]=11111: H 32 Master Transnmit Data

; DBD=0: three di nensional node disabl ed

; DAM 5: 3] =100: destination address - no update

; DAM 2: 0] =101: source address - post-increment by 1
; DD 1: 0] =00: destination nenory space - X

; D89 1: 0] =00: source nenory space - X

Table 3-332-Bit Data Little Endian Order

Memory

Address Address+1 Address+2 Address+3
Address

DMA 1 2 3 4
Transfer
Order

DSP Data

word1[15:0] word1[31:16] word2[15:0] word2[31:16]

PCI Data word1[31:0] word2[31:0]

3.4.3 32-Bit And Non-32-Bit Mode Support

For 32-bit mode data transfer, two consecutive DMA requests per one PCI word are generated: first for
two least significant bytes of the 32-bit word and then for the two most significant bytes. The
corresponding DMA channel can be programmed to transfer parts of the 32-bit word in ‘little endian’
or ‘big endian’ order (see Example 3-9). For a non-32-bit mode data transfer, one DMA request per
PCI word is generated.

3.5 Interrupts

To simplify data handling, the HI32 supplies four separate interrupt service requests: Master Receive,
Master Transmit, Slave Receive and Slave Transmit. Data transfer interrupts can be either short or
long. A long interrupt executes if one of the interrupt instructions fetched is a JSR-type instruction. If
more than one interrupt request is pending when an instruction executes, the interrupt source with the
highest interrupt priority level (IPL) is serviced first. When multiple interrupt requests with the same
IPL are pending, a second fixed-priority structure within that IPL determines which interrupt source is
serviced. The fixed priority of interrupts sources within an IPL is shown in the user’s manual for each
DSP56300 family device.

3-6 HI32 as a PCI Agent Motorola

Data and Control Flow

Any interrupt request can be disabled during the long interrupt in one of two ways:

* Clearing the corresponding interrupt enable bit in the DCTR or DPCR register
» Masking the interrupt in the SR register

To prevent an additional interrupt request, it should be disabled before the actual interrupt service (i.e.,
before the corresponding data register access).

Section 3.5.1 and Section 3.5.2 elaborate on the generation conditions of HI32 data transfer interrupt
requests.

3.5.1 Slave Operation
The slave transmit data interrupt request is generated under the following conditions:
* The HI32 is in PCI mode.
* The STRQ status bit is set in the DSR.
* The Slave Transmit Interrupt Enable (STIE) bit is set in the DCTR.

* The HI32 Interrupt Priority Level (HPL1-HPLO in IPRP) is higher than the interrupt masking
level defined by bits 11-10 in the SR.

The slave receive data interrupt request is generated under the following conditions:
» The HI32 is in PCI mode.
» The SRRQ status bit is set in the DSR.
* The Slave Receive Interrupt Enable (SRIE) bit is set in the DCTR.

» The HI32 Interrupt Priority Level (HPL1-HPLO in IPRP) is higher than the interrupt masking
level defined by bits 11-10 in the SR.

Example 3-11 shows how slave transmit and receive data transfer interrupts are handled.

Example 3-11 Slave Data Transfers Interrupt Handling

; H32 S ave Receive Data short interrupt

org p: 1 _HSR
novep x: MDRR x: (r0)+ ; Read data fromH FO
nop

; H32 Save Transmit Data short interrupt

org p: | _HST
novep y: (rl)+ x: MDIXS ; Wite data to FIFO
nop

; Set interrupt priority and masking levels (initialization part of the code)
nove #$0, sr ; 11-10 = $0
novep #$3, x: M| PRP ; HPL1- HPLO=$3

3.5.2 Master Operation
The master transmit data interrupt request is generated under the following conditions:

» The HI32 is in PCI mode.
* The MTRQ status bit is set in the DPSR.

Motorola 3-7

Data and Control Flow

e The Master Transmit Interrupt Enable (MTIE) bit is set in the DPCR.

e The HI32 Interrupt Priority Level (HPL1-HPLO in IPRP) is higher than the interrupt masking
level defined by bits 11-10 in the SR.

The master receive data interrupt request is generated under the following conditions:

e The HI32 is in PCI mode.
* MRRAQ status bit is set in the DPSR.
* The Master Receive Interrupt Enable (MRIE) bit is set in the DPCR.

* The HI32 Interrupt Priority Level (HPL1-HPLO in IPRP) is higher than the interrupt masking
level defined by bits 11-10 in SR.

Example 3-12 shows how master transmit data transfer long interrupts are handled. Here the interrupt
service is disabled after N data transfers.

Example 3-12 Master Data Transfers Interrupt Handling

; H32 Master Transmit Data long interrupt (initialization part of the code)

org p: 1 _HPMD
jsr M _ ; call interrupt service
nop

; Set interrupt priority and nasking | evel s
nove #$0, sr ; 11-10 = $0
novep #$3, x: M| PRP ; HPL1- HPLO=$3

; H32 Master Transmit Data |ong interrupt
; (stop interrupt generation after Ntransfers)

M _ nove rl,a

cnp #N a

jlt READ

bel r #M MM E, x: M DPCR ; clear interrupt enable
READ novep y: (rl)+ x: MDDXM ; Wite data to FIFO

3.5.3 32-Bit And Non-32-Bit Mode Support

For 32-bit mode data transfers, two separate interrupt requests are generated: first for the two least
significant bytes of the 32-bit word, and then for the two most significant bytes. For non-32-bit mode
data transfers, one interrupt per word is generated.

3.6 Data Handling

3.6.1 DSP-to-Host Data Path

The data path between the DSP and the Host is composed of two FIFOs:

* DSP Master Transmit/Host Master Receive Data FIFO (DTXM/HRXM), for DSP master
operation;
* DSP Slave Transmit/Host Slave Receive Data FIFO (DTXS/HRXS), for DSP slave operation.

3-8 HI32 as a PCI Agent Motorola

Data and Control Flow

Table 3-4 summarizes the configurations for this path.
Table 3-4DSP to Host Data Path Summary

HI32 Master/Slave 32-/24-bit wide FIFO FIFO’s Depth See Figure
MASTER 24: FC[1:0[m#Z 0 DTXM/HRXM 8 Figure 3-1
MASTER 32: FC[1:0] =0 DTXM/HRXM 4 Figure 3-2

SLAVE 24: HRF #0 DTXS/HRXS 6 Figure 3-3
SLAVE 32: HRF =0 DTXS/HRXS 3 Figure 3-4
Figure 3-1 DSP-To-Host Data Path (Master, 24-Bit Wide)

DSP DMA Bus
DSP Global Data Bus
24 4

{24
A 4

DTXM

'

<

.

HRXM

i24

data transfer command converter

isz
<

Host Bus

(FC[1:0] % 0)

Motorola 3-9

Data and Control Flow

Figure 3-2 DSP-To-Host Data Path (Master, 32-Bit Wide)

DSP DMA Bus
DSP Global Data Bus
« 24 { 24

A 4

DTXM

<

XX PX XX

—
X PXPX X

HRXM

A 32
v
data transfer command converter (FC[1:0] =0)

i32
< >

Host Bus

Figure 3-3 DSP-To-Host Data Path (Slave, 24-Bit Wide)

DSP DMA Bus
DSP Global Data Bus
24 24

A

v

A

HRXS
24

data transfer command converter (HRF[1:0] # 0)
32

v

Host Bus

A
v

3-10 HI32 as a PCI Agent Motorola

Data and Control Flow

Figure 3-4 DSP-To-Host Data Path (Slave, 32-Bit Wide)

DSP DMA Bus
DSP Global Data Bus
< 24 Y { 24

A 4
DTXS

—
[1

A 32
v
data transfer command converter (HRF[1:0] = 0)

isz
< >

Host Bus

<

XXX

HRXS

HRXS and HRXM accesses are extended as follows:

Note:

If the HI32 is the PCI target in a read transaction from the HRXS while it is empty and the
TWSD bit in the HCTR register is cleared, the HI32 inserts PCI wait states to extend the
current data phase until the data is transferred from the DSP side to the HRXS. Up to eight
wait states can be inserted before a target-initiated transaction termination (disconnect or
retry) is generated.

If the HI32 is the target in a read transaction from the HRXS while it is empty and the TWSD
bit in HCTR register is set, the HI32 generates a target-initiated transaction termination
(disconnect or retry).

If the HI32 is the active PCI master in a write transaction and the MWSD bit in the DPCR is
cleared, it inserts wait states to extend the current data phase if it cannot guarantee the
completion of the next data phase. The HI32 asserts the HIRDY pin and completes the current
data phase under one of the following circumstances:

— It can complete the next data phase (HRXM is not empty).

— It has determined to terminate the transaction due to time-out, master abort, or target
disconnect.

— It has determined to terminate the transaction due to burst completion.

If the HI32 is the active PCI master in a write transaction and the MWSD bit in the DPCR is
set, the HI32 does not insert wait states. If it cannot guarantee the completion of the next data
phase (HRXM is empty), the HI32 completes the current data phase and terminates the
transaction.

The HI32 does not initiate the transaction as a PCI master if it cannot guarantee the
completion of at least one data phase.

Motorola

3-11

Data and Control Flow

The HI32 has separate master and slave DSP-to-host FIFOs for data retention, as illustrated in the
following scenario:

* The HI32 transmits to the host as a master, using DTXM/HRXM.

* The HI32 is interrupted by another master and temporarily becomes a slave, responding to the
new master using DTXS/HRXS.

» After the response is complete, the HI32 resumes the original transmission as a master, using
DTXM/HRXM. Any data previously inserted into this FIFO remains intact during the slave
transmission, so the HI32 can resume as a master from exactly where it stopped.

3.6.2 Host-to-DSP Data Path

The data path between the host and the DSP is implemented by the DSP Receive/Host Transmit Data
FIFO (DRXR/HTXR) for both master and slave operation. Table 3-5 summarizes the configuration
possibilities for this path.

Table 3-5Host-to-DSP Data Path Summary

HI32 Master/Slave 32-/24-bit wide FIFO FIFO’s Depth See Figure
MASTER 24: FC[1:0] Z0 DRXR/HTXR 6 Figure 3-5
MASTER 32: FC[1:0] =0 DRXR/HTXR 3 Figure 3-6

SLAVE 24: HTF #0 DTXS/HRXS 6 Figure 3-5
SLAVE 32: HTF =0 DRXR/HTXR 3 Figure 3-6

Figure 3-5 Host-To-DSP Data Path (24-Bit Wide)
DSP DMA Bus

X
DSP Global Data Bus

<
24 ¢ I 24

DRXR

T

<

T

HTXR

I.

data transfer command converter (HTF[1:0] Z O)
(FC[1:0] # 0)
} 32

Host Bus

3-12 HI32 as a PCI Agent Motorola

Data and Control Flow

Figure 3-6 Host-To-DSP Data Path (32-Bit Wide)

DSP DMA Bus
* DsP Global Data Bus

<
24 JF 24

DRXR

—

0

—

HTXR

=

data transfer command converter (HTF[1:0] = 0)

(FC[1:0] = 0)
T

Host Bus

<

O|O|O)

HTXR accesses are extended as follows:

If the HI32 is the PCI target in a write transaction to the HTXR while it is full and the TWSD
bit in the HCTR register is cleared, the HI32 inserts PCI wait states to extend the current data
phase. Wait states are inserted until the data is transferred from the HTXR to the DSP side. Up
to eight wait states can be inserted before a target-initiated transaction termination (disconnect
or retry) is generated.

If the HI32 is the target in a write transaction to the HTXR while it is full and the TWSD bit in
the HCTR register is set, the HI32 generates a target-initiated transaction termination
(disconnect or retry).

If the HI32 is the active PCI master in a read transaction and the MWSD bit in the DPCR
register is cleared, the HI32 inserts wait states to extend the current data phase if it cannot
guarantee the completion of the next data phase. The HI32 asserts the HIRDY pin and
completes the current data phase under one of the following circumstances:

— It can complete the next data phase (HTXR is not full).

— It has determined to terminate the transaction due to time-out, master abort, or target
disconnect.

— It has determined to terminate the transaction due to burst completion.

If the HI32 is the active PCI master in a read transaction and the MWSD bit in the DPCR
register is set, the HI32 does not insert wait states. If it cannot guarantee the completion of the
next data phase (HTXR is full), the HI32 completes the current data phase and terminates the
transaction.

Motorola

3-13

Data and Control Flow

Note: The HI32 does not initiate the transaction as a PCI master if it cannot guarantee the
completion of at least one data phase.

The HI32 uses the same FIFO to transmit master and slave data on the Host-to-DSP data path.
Simultaneous slave and master data transfers on the host-to-DSP data path must use the same data
format (see Section 3.8). Unless the HI32 acts only as a master or only as a slave for data transfers via
the DRXR/HTXR FIFO, the application must manage data in the FIFO so that master and slave data
can be distinguished. It must also manage data in the FIFO so that data simultaneously transferred
from different external masters can be distinguished.

3.6.2.1 Management of Mixed Master/Slave Data

Mixed slave and master data in the DRXR/HTXR FIFO is handled through the synchronization
mechanism (polling, interrupt or DMA) chosen for control of the data flow. Two guidelines must be
followed to guarantee proper operation:

* Polling and interrupt techniques should be used in any combination for distinguishing master

and slave data.

* DMA should be used only for non-mixed data (slave-only or master-only) present in the

DRXR/HTXR FIFO.

One way to manage mixed master/slave data is to use host commands and host flags for inter-process
communication, as discussed in Section 3.9.5, "Example: Master/Slave Data Mixing Management."

3.6.2.2 Management of Mixed Multiple External Masters Data

This section describes the use of the Receive Buffer Lock Enable (RBLE) bit and the Host Data
Transfer Complete (HDTC) bit. These bits prevent mixing of data from different external PCI masters
in the DRXR/HTXR FIFO (see Table 3-6). The RBLE bit can guarantee only that the data from
different external masters is not mixed in the HTXR/DRXR FIFO. It cannot guarantee that the slave
data (written by an external master) and master data (read by the HI32 as master) are not mixed. The
master and slave data are separated by polling the MRRQ and SRRQ bits or by interrupts.

With RBLE set, the data transfer from the host to the DSP is not complete until the DRXR FIFO has
been emptied by DSP core reads from the DSP side.

Table 3-6 Managing Multiple Master Data in the DRXR/HTXR FIFO

Event Status Description

A personal software reset of RBLE =0

the HI32 is performed HDTC =0

The core sets RBLE, then enters RBLE =1 * With RBLE is set, the DRXR/HTXR FIFO is protected
PCI mode (HM = $1) HDTC =0 from containing data from more than one external master

transactions can now be made to it.
« No data transfer has completed, so HDTC = 0.

write burst at any time. In terms of external masters only,
the DRXR/HTXR FIFO is locked and exclusive write

3-14

HI32 as a PCI Agent

Motorola

Data and Control Flow

Table 3-6 Managing Multiple Master Data in the DRXR/HTXR FIFO (Continued)

Event Status Description
An external PCl master performsa | RBLE = 1 » All the data of the transaction has not yet been read by
write transaction into the HDTC =0 the DSP core, so HDTC is still zero.

DRXR/HTXR FIFO. The burst
completes but data remains in the
FIFO (the DSP may have read

» The HI32 issues a target retry to any external master that
attempts to initiate a new burst to the DSP (whether or
not the same master sent the just-completed burst to the

some of it from DRXR, but it has DSP)

not yet read all the data out of the '

FIFO).

The core reads all remaining data | RBLE =1 » All the data of the transaction has been read by the DSP
from the DRXR/HTXR FIFO. HDTC =1 core, so HDTC = 1. Since the reads from DRXR can be

done by an interrupt handler or by DMA, some core
control code may not be notified when the DRXR/HTXR
FIFO empties. Therefore, HDTC = 1 alerts the core
control code of the empty status.

» Since the core control code has not acknowledged the
receipt of this status, the HI32 continues to issue a target
retry to any external master, which attempts to initiate a
new burst to the HTXR.

Core clears HDTC by writing it “1”. | RBLE =1 * The core acknowledges that the PCI transaction is fully
HDTC =0 received and fully read out of the HTXR/DRXR FIFO.
Thus, a new transaction into the HTXR can be accepted
if an external master initiates it.

3.7 PCI-to-DSP Address Mapping

While the HTXR FIFO occupies 16377 (16K - 7) words of the PCI memory space, all the memory
writes to HTXR are transferred to the DRXR register as an output stage of the HTXR/DRXR FIFO. It
is the user’s responsibility to define where the DRXR data is to be sent.

Some applications require dynamic PCI-to-DSP address mapping as a function of a PCI transaction
start address used for an HTXR register write. This mapping can be done in different ways, for
example:

* Host commands: Host commands can be sent before an HTXR access, defining the address
where DRXR data is to be written (either by the core or DMA).

* Address insertion feature: The DSP can read the PCI transaction address used for host-to-DSP
writes (through the HTXR) if the address insertion feature is enabled. This feature is
controlled by the TAE bit in the DPCR register. The first word (2 words in the 32-bit mode)
placed in the host-to-DSP FIFO (HTXR/DRXR) is really the PCI address. Software can use
this datum to define where DRXR data should be written in DSP memory.

3.8 Data Format Conversion

Since the PCI bus is 32 bits wide but the DSP internal registers/buses are 24 bits wide, the format
(width and alignment) of the data transferred between the HI32 and another PCI agent is
programmable. Data width and alignment are programmed for master, slave, and each data path
independently through the following bits:

Motorola 3-15

Data and Control Flow

* For master operation — DSP Data Transfer Format Control (FC[1:0]) bits in the DSP PCI
Master Control (DPMC) Register

* For slave operation — Host Transmit Data Transfer Format (HTF[1:0]) bits and the Host
Receive Data Transfer Format (HRF[1:0]) bits in the HI32 Control Register (HCTR)

For all available data format options, refer to the user’s manual for your device.

3.8.1 Slave Data Format Control

To switch between 32-bit and non-32 bit HI32 slave data width/alignment, change the Host
Transmit/Receive Data Transfer Format (HTF[1:0],HRF[1:0]) bits in the HI32 Control Register
(HCTR) from the host side. This can be done only after the HI32 is in personal software reset (PSR)
state and before the first use of the corresponding FIFO. For each of the three data paths, the
HTXR/DRXR, DTXS/HRXS, DTXM/HRXM data format can be changed independently. Table 3-7
and Table 3-8 present two possible approaches to switching the HI32 slave between 32-bit and
non-32-bit modes on the fly.

Table 3-7HINTA Signaling

DSP Host

The DSP core clears HI32 mode (HM) bits and waits
until the HACT bit is zero (personal software reset).

The DSP asserts HINTA by setting the HINT bit in
DCTR to notify host that the HI32 is in personal software
reset (PSR) state. Note that the HI32 initiates PSR by
clearing HM, but it is not actually in the PSR state until
HACT is zero.

The host receives the interrupt and switches HTF/HRF
to the desired mode.

The host sends any host command (e.g. HC#1).

An interrupt service routine resulting (ISR) from the host
command (HC#1) clears the HINT bit in the DCTR,
causing HINTA deassertion.

Table 3-8Host Flag / Host Command Handshaking

DSP HOST

HF3, which is used as PSR status to host, is initially
clear. Note that HF[5:3] are written from the DSP side of
the HI32, and HF[2:0] are written from the host side.

The host clears HFO, thus notifying the core of
a slave data format change status, sends a host com-
mand (e.g. HC#2) to request Personal Software Reset
(PSR), and waits for HF3 -> 1.

3-16 HI32 as a PCI Agent Motorola

Data and Control Flow

Table 3-8Host Flag / Host Command Handshaking (Continued)

DSP HOST

The DSP receives host command (HC#2). Then the ISR
resulting from the host command initiates PSR (clears
HM[2:0] and waits for HACT -> 0). The ISR sets HF3
and then waits for HFO -> 1.

Host reads HF3 = 1, changes HTF/HRF to the desired
mode, and then sets HFO.

The DSP reads HFO = 1, clears HF3, and exits the ISR.

3.8.2 Master Data Format Control

The HI32 master data width/alignment is controlled from the DSP side, using the Format Control bits
(DPMC(FCJ1:0])). The 32-bit to non-32-bit modification of FC[1:0] is subject to the same restriction
as the HTF/HRF. However, since the DSP can change both the FC[1:0] and HM[1:0] bits,
inter-processor communication is not needed in this case.

Note: If master and slave data are mixed in the host-to-DSP FIFO, data of the same width and
alignment should be used for master and slave transfers.

3.9 Control Flow

The use of host commands, host flags, slave data, semaphores, the HINTA signal, or any combination
of them enables a flexible implementation of control protocol between the host and the DSP. Table
3-7 demonstrates use of the HINTA signal. This section discusses other control flow considerations.

3.9.1 Host Commands

HI32 host commands are a powerful way to control the DSP through the PCI bus by enabling the user
to define up to 128 programmable interrupt service routines (ISRs), which are set up by the host upon
writing to the HCVR. A host command interrupt can be generated as a Non-Maskable Interrupt by
setting the Host Non-Maskable Interrupt (HNMI) bit in the HCVR. The interrupt is then processed

with the highest priority, regardless of the current HI32 interrupt priority and HCIE bit status in the
DCTR.

3.9.2 Host Flags

The HI32 host flags are general-purpose flags for DSP-host intercommunication:

* HF[2:0] for host-to-DSP signalling: written by the host in the HCTR and read by the DSP in
the DSR

* HFJ[5:3] for DSP-to-host signalling: written by the DSP in the DCTR and read by the host in
the HSTR

Motorola 3-17

Data and Control Flow

Figure 3-7 illustrates the use of host flags.

Figure 3-7 Host Flags Usage

DSP writes DSP reads
DCTR DSR
HF5 HF4 HF3 HF2 HF1 HFO
HSTR HCTR
Host reads Host writes

3.9.3 Slave Data

By polling the TRDY bit in the HSTR, the host can synchronize host commands with HI32 slave data
to be handled by the corresponding ISR. Refer to Section 3.2 for TRDY usage.

3.9.4 Semaphores

One common use of semaphores is to ensure unique access to the HI32 by an external master. With the
HI32 in PCI mode, unique access is achieved by an external master using the HLOCK signal to
perform a bus lock (locking the entire PCI bus) or a resource lock (locking a given PCI target or a
portion of its memory). The latter method is preferred because it allows more efficient use of the bus.

Locking is a two-tier process. The HLOCK signal updates the semaphore without interference. Then
the new semaphore value guarantees the current owner exclusive access to the protected resource. The
coding of the semaphore is implementation-dependent. A zero value in the semaphore can indicate that
the shared resource (in this case, the HI32) is available. In the remainder of this discussion, it is
assumed that this method is used. Locking works as follows:

Setting the semaphore: A master is granted the bus and, noting that HLOCK is not asserted,
can assert HLOCK to lock the bus or resource. This is done in the transaction the master uses to
read the semaphore to prevent another master from changing the semaphore before this master
can write an update to the semaphore. During each transaction it makes as the lock owner, the
locking master must actually deassert HLOCK during the address phase and assert it during the
data phase(s). If HLOCK is asserted during an entire burst to a locked target (or any target, if
the entire bus is locked), the target notices that the initiator is not the locking master and issues
aretry to this initiator. The locking master (or operating system task within a master) writes its
signature code into the semaphore if the semaphore is currently zero. At the end of the burst,
this master unlocks the bus by deasserting HLOCK. If the semaphore is already non-zero, the
locking master must try the semaphore again later and re-check for zero.

Accessing resource: If the locking master becomes the new semaphore owner, it can now
exclusively access the semaphore-protected resource.

Releasing the resource: When the semaphore owner finishes using the protected resource, it
must clear the semaphore in the same way that it set it, except that the semaphore is cleared
instead of written with a signature value.

3-18

HI32 as a PCI Agent Motorola

Data and Control Flow

3.9.5 Example: Master/Slave Data Mixing Management

Example 3-13 shows how to solve the master/slave data mixing problem using a combination of host
commands and host flags. In this example, the following definitions apply:

* Host Command 1 (HC1) - host requests HTXR

* Host Command 2 (HC2) - host clears HF3

* Host Command 3 (HC3) - host releases HTXR

* Host Flag 3 (HF3) - DSP acknowledges HTXR grant

Table 3-8 shows an additional example of host flag/host command handshaking.

Example 3-13 Master/Slave Data Mixing Management
1. The host sends HC1, requesting the DSP to empty the HTXR/DRXR FIFO.

2. The DSP receives HC1. The DSP may be the active PCI master. HC1’s ISR sets software flag
HostRequestedHTXR.

3. The MARQ ISR checks HostRequestedHTXR. If HostRequestedHTXR=0, start the next read
transaction as PCI master. If HostRequestedHTXR=1, do not start read transaction, mask MARQ
interrupt, empty DRXR, set DCTR(HF3), then RTI. HostRequestedHTXR does not affect the
HI32-master transactions transferring data from the DSP to the PCIL.

4. The host checks HSTR(HF3). If HSTR(HF3)=0, do not write to HTXR. If HSTR(HF3)=1, send
HC2 (to clear HF3), write to HTXR. When host finishes the data write, send HC3, releasing the
HTXR/DRXR FIFO.

5. The DSP receives HC2. HC2’s ISR clears DCTR(HF3).

6. The DSP receives data, then HC3. HC3’s ISR waits for the DRXR/HTXR FIFO to empty, enables
MARQ interrupt, and clears HostRequested HTXR.

3.10 Transaction Termination

Several HI32 status bits (in DPSR) can identify the cause of a PCI master transaction termination. In
addition, specific interrupts are available for these bits or groups of them. Status bit polling or interrupt
service routines or a combination of both can ascertain the cause of the termination. For the interrupts,
the order of the internal priority levels guarantees the correct identification. Table 3-9 summarizes the
status bits, the corresponding interrupts, and a handling policy for each case. Table 3-10 shows
terminations generated by the HI32 and their possible causes.

Note: After the cause of a PCI termination is identified according to DPSR status bits and before a
new PCI transaction is initiated (by writing to the DPAR), these bits must be cleared in order
to accurately reflect the cause of the next possible termination. These bits are cleared by
writing “1” to them.

Motorola 3-19

Data and Control Flow

Table 3-9Handling Terminations

Event Status Bit in Interrupt . .
DPSR Handling Policy
Finished PCI Master Address Master Identify termination cause according to status bits. Ini-
transaction Request (MARQ) Address Inter- | tiate a new PCI master transaction or resume prema-

rupt

turely terminated one.

Successfully

Master Data Trans-

No interrupt

HI32 can initiate a new PCIl master transaction.

Target Retry

Target Retry
(TRTY)

Completed ferred (MDT) defined
Transaction
Master Abort Master Abort Transaction Do not access the same target anymore.
(MAB) Abort
Interrupt
Target Abort Target Abort (TAB)
Target Target Disconnect Transaction Update address and burst length and resume transac-
Disconnect (TDIS) Termination tion.
Interrupt
Time Out Time Out (TO)

Repeat terminated transaction.

Table 3-10HI132-Generated Terminations

Termination

Possible Causes

Master Abort « Target does not respond within 5 PCI clocks.
e Master access with reserved command.
Master Termination ¢ BL counter expired.

e Transaction terminated by target (disconnect, retry, abort).
¢ MWSD=1 and w.s. are needed to complete data phase.
e MTT set by core.

Target Retry

¢« HTXR is locked for memory write accesses with RBLE=1.

» HI32is accessed in non-PCI mode (HM=$0,$5).

* |IAE=1 and there is not enough space for address insertion in HTXR.
e TWSD=1 and w.s. are needed to complete first data phase.

« First data phase cannot be completed with < 8 w.s.

e HDTC=1.

« Locked by another master (HLOCK).

3-20

HI32 as a PCI Agent

Motorola

Data and Control Flow

Table 3-10HI32-Generated Terminations (Continued)

Termination Possible Causes

Target Disconnect » Initiated personal software reset.
» Data phase cannot be completed with < 8 w.s.
 TWSD=1 and w.s. are needed to complete data phase.

» Last memory location is reached (different cases for configuration and memory
spaces).

» Accessed with not aligned address (HAD[0:1] != 00).

Target Abort * Not supported.

3.11 PCI Master Burst Generation

To enable the HI32 for operation as a PCI master, you must configure the host-side and DSP-side HI32
registers, including the setting of the Bus Master Enable bit (BM in CCMR). Note that any changes to
the Data Format Control must be made when the HI32 is in Terminate and Reset mode, and not in PCI
mode.

After PCI configuration, the PCI bus arbiter must grant mastership to the HI32 (HGNT must be
asserted) just prior to the initiation of each burst transaction. Usually the arbiter asserts HGNT after the
HI32 requests bus mastership via HREQ assertion. The following example describes the steps
performed by the code executed by the DSP56300 core for each PCI burst.

Example 3-14 Transmit Burst

Housekeeping: before beginning a burst, check DPSR (DSP-side PCI Status Register) for reports of
any previously occurring special conditions (errors, time-outs, etc.) to ensure that they are dealt with as
desired.

Prepare for the first data phase:

1. Ifneeded, flush the DTXM/HRXM (master transmit) FIFO. Flush this FIFO if there is a likelihood
that it contains undesired residual data from a previous burst (either an uninitiated burst or a
prematurely-terminated burst that is not to be resumed). To flush this FIFO:

* Wait until MARQ = 1 in the DPSR
» Set the CLRT bit in the DPCR
* Wait until CLRT = 0 (now DTXM can be written)

2. Write data to DTXM (DSP-side Master Transmit register), which is the input of the master
transmit FIFO, using one of the handshake methods (interrupt, polling, or DMA).

Set up and initiate the address phase:

3. Wait until the MARQ bit in the DPSR is set (PCI Master Address Request). This indicates that no
previous burst is still in progress (the MARQ interrupt can also be used).

4. Write to the DPMC (DSP-side PCI Master Control register):
* DSP master data width and alignment Format Control (FC[1:0]).

Motorola 3-21

Data and Control Flow

Note:

PCI Burst Length (BL[5:0]). Note that if the MACE bit in the DPCR register is clear (PCI
Master Access Counter Enable), the burst length is unlimited, and BL is ignored.

PCI Transaction Address high half (AR[31:16]).

FC[1:0] can be changed to a new value only when the HI32 is in Terminate and Reset mode
HM]2:0] =000, in DCTR, and HACT = 0 in DSR, that is, in personal software reset (PSR)
state. The data transfer format used when the HI32 is read as a PCI slave (target) is specified
by HRF[1:0] in the HCTR, which applies to the DTXS/HRXS FIFO (see Section 3.8.2).

5. Write to DPAR (DSP-side PCI Address Register), a write trigger that initiates the burst:

PCI Command type (C[3:0]), which is used for the HC/HBE[3:0] pins during the address
phase. Use one of the supported PCI write command types.

Byte Enabling (BE[3:0]), which is used for the HC/HBE[3:0] pins during the data phases.

A zero bit value results in a logic low (asserted) pin value. Note that while the HI32 drives the
byte lane enable pins (HBE[3:0]) to the target during the burst, it actually drives the data bytes
to the target according to the format control FC[1:0] in DPMC.

PCI Transaction Address low half (AR[15:0]). Note that the burst order specified by AR[1:0]
has no effect on HI32 operations. The DMA or code run by the core must perform the
necessary addressing to obtain data items that it writes to the master transmit FIFO.

Complete any remaining data phases:

6. Repeat step 2 until the entire burst is complete (this is automatic if DMA 1is used):

For efficient use of the PCI bus, DTXM should be written often enough to prevent additional
PCI wait states (the transaction is terminated if MWS = 1 and wait states must be inserted by
the HI32).

An unlimited length burst (see Step 4) can be terminated using the MTT (Master Transaction
Termination) bit in the DPCR.

If DMA is used, the DMA Transfer mode is typically DTM[2:0] = 001 in DCRn (transfer one
word for each DMA trigger and disable DMA at the end of the block).

7. If'the burst is prematurely terminated (by a target retry, target disconnect, master latency time-out,
etc.), the hardware does not automatically restart or “resume” the burst. In such a case, it is the
responsibility of the core software to explicitly perform this function. Note that when a burst is
“resumed”, a new and separate burst is actually used to resume the dataflow. A typical procedure
would be:

Note:

If the TAB, TRTY, or MAB status bit is set in the DPSR, the transaction should be initiated
again with the same address and burst length by writing the DPAR with its previous value.

If the MDT bit is cleared (not all the master data was transferred) at the end of a transaction
initiated by the HI32, the RDCQ and RDC[5:0] bits in the DPSR should be used to calculate
the burst length of the next transaction to the same target required to complete the data transfer
of the original transaction. This burst length should be calculated using the formula:

BL[5:0] = RDJ5:0] + RDOQ

The address of this new transaction is calculated according to the new burst length.

If the Master Access Counter is disabled (MACE is cleared in the DPCR), the RDC[5:0] and
RDCQ bits are not valid.

3-22

HI32 as a PCI Agent Motorola

Data and Control Flow

For a receive burst as a PCI master, the process is the same as for the transmit case, except for the
following items shown in Example 3-15.

Example 3-15 Receive Burst

Note:

Step 1 is not applicable.

For Steps 2 and 6, use DRXR (DSP-side master/slave Receive Register), MRRQ (Master
Receive Request)—or, if needed, MRIE or a master receive data DMA trigger.

If polling is used in Step 2, it must be performed after Steps 3-5 are complete in order to give
data a chance to arrive from the PCI bus into the HTXR/DRXR (receive) FIFO.

When the HI32 is written as a PCI slave, the data transfer format is specified by HTF[1:0] in
the HCTR. HTF should comply with FC[1:0] in terms of the resultant HTXR/DRXR FIFO
length. An HI32 FIFO is effectively half as long when used in a 32-bit PCI mode versus a
non-32-bit PCI mode. If there is no such compliance, then a personal software reset (PSR)
must be performed on the HI32 before the HTXR/DRXR FIFO length is changed. Such
demand is not relevant if the HTXR/DRXR is used only for the master or only for the slave
transfers.

Step 5:
— Use a PClI read (versus write) command type.

— The burst order again has no effect on HI32 operations. The core code or DMA must
perform addressing for routing received data.

Motorola

3-23

Data and Control Flow

3-24 HI32 as a PCI Agent Motorola

Application Sample

4 Application Sample

This chapter presents a Data Scatter and Gather application as an example of PCI bus-mastering with
the HI32. In this application, the HI32 connects a DSP56301 chip to a host PC through the PCI bus.
The hardware platform is a DSP56301 ADM board plugged into a standard PCI connector.! The appli-
cation integrates three levels of software:

» DSP program that runs on a DSP56301
* Device driver (Windows 95 Virtual Device Driver)

* Host application (Windows 95 Application operated with a graphical interface).

Note: All driver-related files, source code, executable files, and VxD type files are provided on an as
is basis as an example of implementation. They have not passed exhaustive verification and
validation on all PC platforms. It is the user’s responsibility to resolve any Windows 95
software-related problems. Motorola provides technical support only for DSP56300-related
issues.

4.1 Scatter and Gather Mechanism

The Scatter and Gather Mechanism enables a bus master device to access system memory for read
(gather) and write (scatter) transactions on non-consecutive locations with a variable number of trans-
fers—all with minimal host intervention. The information defining these transactions is listed in the
Scatter and Gather Table (SGT), which is determined by the host. Each transaction is represented in
the SGT by a single Scatter and Gather command entry (SGCE). The following sections detail the
SGT, the SGCE, and their implementation for the application described in this chapter.

1. Refer to Section 1.3 for graphical user interface (GUI) installation guidelines.

Motorola 4-1

Application Sample

4.1.1 Implementation of the Scatter and Gather Procedure

The Scatter and Gather procedure implemented in this example consists of four steps, which are sum-
marized in Figure 4-1. Figure 4-2 shows the Scatter and Gather Mechanism workflow according to
this flowchart.

Figure 4-1. Scatter and Gather Procedure Flowchart

STEP 1: The host creates a Scatter and Gathe
Table (SGT) in host memory and writes a single
entry to the DSP, corresponding to the
gathering of the SGT. The HI32 reads this
single entry as slave

—

R

STEP 2: HI32 performs the PCl master
transaction corresponding to the single entry
read in the previous step, copying the SGT
from host memory to DSP memory;

.

STEP 3: HI32 performs as PC| master all
the transactions defined in the SGT (read
or write transactions)

_

—

STEP 4: HI32 interrupts the host to tell that the
process was completed

4.1.2 Scatter and Gather Table

The Scatter and Gather Table (SGT) describes a list of data blocks in PC memory to be read from or
written to sequential locations in DSP memory. These data blocks can be scattered in many differ-
ent areas of host memory.

Every PCI master transaction performed by the HI32 follows the prescription of a Scatter and Gather
command entry (SGCE). Such a command is an entry in the SGT comprising two 32-bit words in host
memory. For each of these words, only the 24 least significant bits are valid, resulting in two 24-bit
words in DSP memory. These two words are the values written to the DPMC and DPAR registers on
the HI32 DSP side to initialize the PCI master transaction, as shown in Figure 4-3. These two words
determine:

* The transactions type (read/write)
* Host memory address of the data block
* Length of the data block

4-2 HI32 as a PCI Agent Motorola

Application Sample

* Byte enable bits
« HI32 (PCI Master) data transfer format

A zero SGCE (two consecutive zero words) signals the end of the SGT.

Figure 4-2. Scatter and Gather Mechanism

PC Memory

%44

SGT execution, read transactions (gather)

DSP Memory
N
7 \
7 \\
| NN
f\
/
Y1 . SGCE_N
~ SGCE_1
read by HI32 master (STEP 2) SGCE_0
SGCE_N SGCE_SGT
SGCE_1
SGCE_0
| SGCE_SGT written to HI32 slave (STEP 1)

V//) Distributed data to be gathered from system memory

Gathered data in DSP memory

Figure 4-3. Scatter and Gather Command Entry

Host MEMORY DSP MEMORY
wordl == == = ord] |
word2 = == == == ’ word?2

—_ v
Y
32 bits 24 bits

Scatter and Gather command entry

DPMC
-

~y
W oear

Motorola

4-3

Application Sample

In this example, the transaction referred to in step 2 of the implementation flowchart always reads 64
words (32 SGCEs) even if the SGT contains less valid SGCEs. The zero SGCE signals that subsequent
SGCEs are not valid. In practice, there is no limitation on SGT size.

A valid SGT for this implementation presents values in the following range:

* Burst Length: the same burst length is used for all the transactions in the SGT and is
user-determined in a range from 1 to 64 dwords'.

* The number of read transactions lies between 1 and 16; the same range, 1 to 16, is valid for the
number of write transactions. No relation between the number of read and write transactions is
required, although a number of writes greater than the number of reads may imply in garbage
writing in the host memory (this example performs buffer comparison at the end of the Scatter
and Gather procedure; this garbage may be identified by the routine as a fail scenario).

» The Data Transfer Format (FC bits) is the 32-bit data mode (FC=3$0) for the SGT transactions
(step 3) and 24-bit (FC=8$1) for the SGT load transaction (step 2).

* Byte Enable bits are always zeroes, enabling all four data lanes.

In practice, these parameters may differ from those used in the example discussed here. Also, they may

vary from one SGCE to another.

4.2 Application Workflow

Table 4-1 outlines the workflow in the three software levels of the application, in correspondence to

several events.

Table 4-1. Application Workflow

PRESSED (GUI)

Event Host (Application) Host (VxD) DSP
e System RESET (Host | « INACTIVE « INACTIVE « Dual-Phase Boot: runs
+ DSP) phase 1, enters PCI
download mode
¢ Run Application (GUI | « Launches GUI * INACTIVE * Waits for data in PCI
Launching) . Gets HI32 download mode
Configuration (Base
Address, and Interrupt
Number)
* Load VxD button * Loads VXD * Loaded; * Waits for data in PCI

e Searches for HI32
Device Node in
registry and gets HI32
Configuration

download mode

1. A dword is a 32-byte word.

4-4 HI32 as a PCI Agent

Motorola

Application Sample

Table 4-1. Application Workflow (Continued)

Event Host (Application) Host (VxD) DSP
* Download DSP Code ¢ Readscodefromcode | » IDLE * Downloads code from
button PRESSED File (*.pci) and host through
(GUI) calculates checksum DRXR/HTXR FIFO
¢ Writes code to DSP ¢ Calculate checksum
through the HI32 and send value to host
¢ Waits for checksum
value from DSP and
shows
PASSED/FAILED
message
» BURST/READS/ ¢ Number of IDLE ¢ Waits for host

WRITES sliders
moved (GUI)

transactions and burst
length determined

commands

e Scatter_Gather button
PRESSED (GUI)

¢ Reads data from
output buffer data file
and fills corresponding
output buffer with it

e Sends SGT
parameters (defined
via GUI) to VxD

* Waits for PCl interrupt
from DSP

* Locks buffers and
SGT pages in host
memory

* Builds SGT in host
memory

* Sends to DSP host
command

¢ Sends one Scatter
and Gathering entry
(SGCE_SGT) to DSP

* Waits for PCI interrupt

¢ Receives host
command and enters
Download SGT mode

« Reads one Scatter
and Gathering entry
as PCl slave
(SGCE_SGT)

¢« Reads SGT as PCI
master

« Begins Scattering and
Gathering Procedure

e Scattering and
Gathering Procedure
Done (by DSP)

* Waits for PCI interrupt
from DSP

* Waits for PCI interrupt
from DSP

e Interrupts host through
PCl interrupt line

* HI32 PCl interrupt
occurred

* Receives signal from
VxD that DSP PCI
interrupt occurred

e Compares input data
versus output data
and shows result

» Catches DSP PCI
interrupt

e Sends host command
to DSP acknowledging
the interrupt

» Signals the application
that HI32 PCl interrupt
occurred

¢ Waits for host
commands

* Deasserts PCI
Interrupt line upon
receiving
acknowledge from
host

* Dump Host Buffers e Dumps input buffer, * IDLE e Waits for host
button PRESSED output buffer and SGT commands
(GUI) to file

* Host Side Registers ¢ Reads corresponding IDLE e Waits for host
Get button PRESSED HI32 register’s value commands
(GUI) and shows it

» Host Side Registers e Gets user-defined IDLE e Waits for host
Set button PRESSED register’s value and commands
(GUI) writes it to the register

e OK button PRESSED « Exits (GUI closed) e Unloaded « Waits for host

(GUI)

commands

Motorola

4-5

Application Sample

4.3 Data Flow

The Data Scatter and Gather mechanism for our application uses two data buffers in the host memory
and one data buffer in the DSP memory, as Figure 4-4 shows. Each host memory buffer is composed
of four 4Kbyte pages (1K dwords), while each page is considered as four 1/4K dword data blocks. The
VxD locks the physical memory pages corresponding to both input and output buffers in order to guar-
antee data consistency for HI32 master accesses. An additional host memory page is locked for hold-
ing the SGT. The DSP buffer size is 2K x 24-bit words, and every two 24-bit words hold one 32-bit
host word: the 16 least significant bits of the host word in the 16 least significant bits of the first 24-bit
word and the 16 most significant bits of the host word in the 16 least significant bits of the second
24-bit word.

Data flow is defined by the user-determined values for Burst Length (BL), Read Transactions (RD)
and Write Transactions (WR).

For each of the RD read transactions or WR write transactions, a separate SGCE is defined in the SGT.
According to each SGCE, the DSP initiates PCI master transactions to access the first BL dwords of
the host memory data block (specified by the SGCE).

For a read transaction, the HI32 reads the BL first words of the corresponding data block. For a write
transaction, data is written to the BL first words of the corresponding data block.

The DSP memory buffer is accessed sequentially. For a given read transaction, the BL words read by
the HI32 are written in 2 x BL 24-bit words in DSP memory, immediately after the last word corre-
sponding to the previously read SGCE.Write transactions access the DSP memory buffer in the same
sequential way.

For the maximum BL value (64) and maximum allowed number of read/write transactions (16), the
size of DSP buffer is: 16 x 64 x 2 = 2K DSP words.

No transformation is done on data, i.e. the HI32 master dummy task moves the host output buffer data
to the host input buffer, through the DSP buffer.

4-6

HI32 as a PCI Agent Motorola

Application Sample

4.4 Host Side

Assuming that the DSP56301 ADM board and the host-side application are already installed on the
host (Section 1.2 and Section 1.3) executing H/32. EXE file runs the host-side application. A graphical
user interface, as described in Section 4.4.1, is launched.

Figure 4-4. Scatter and Gather Example Data Flow

Host MEMORY

1K word
addresses 4Kbytes (page)
<
S DSP MEMORY
Output Buffer Data ,\Q‘\\
File (read via GUl) 0\5 gathering N\
&
&
N
0"”0 > 2K-words
\OOQ
scattering J
|
\\ N 24 bits
| N (16 LSB valid)
|
|
|
Memory Data Dump | data block
| (1/4K words)
I
|
l
| N
N
| \
! } 1K x 32-bit words |
/
/
e
~

—_ —

Host MEMORY PAGE (4Kbytes)

Motorola 4-7

Application Sample

4.4.1 Graphical User Interface

The user controls the host-side application through a graphical user interface (GUI), shown in Figure
4-5, which has the following features:

L]

Device selection

VxD loading

DSP code download

DSP host-side registers access
Basic debugging features
SGT parameters adjustment
HI32 Slave loop-back mode

Basic error messages

The following paragraphs describe the controls available through the GUI.

4411

Figure 4-5. Graphical User Interface

HI32 - DSP563xx PCl Host Interface

—HOST SIDE REGISTERS

[S

- HI32 MODES
wete [| [EEAEE| || Seatter Gather || Slave Loop Back
HovR | | EEEET| | Ammmm=== [| BuRsT
Wl [] A [T READS
HSTR | | [EET] g [] WRITES
HRxS | | [GET] Output Buffer Data; [DATA bt
Diowwnload O5SP Code | hi32. pci | Dump HOST Buffers | | DUMP bt

Load W=D

YEMDOR ID: 1057 DEWYICE ID: 1801

ok,

Initialization: Load VxD

Pressing the Load VxD button loads the HI32VXD. VXD virtual device driver. The application sends
the Motorola Vendor ID number (1057) and user-defined Device ID numbers to the VxD, which pro-
ceeds with its initialization procedure as described in Section 4.5 . The Device ID number must be
entered by the user (1801 for DSP56301, 1802 for DSP56305).

4-8

HI32 as a PCI Agent

Motorola

Application Sample

Figure 4-6. Loading HI32VXD.VXD

LoadVeD w YENDOR ID: 1067 DEVICE ID: | 1801 |

Press this button to load HI32VXD.VXD Enter Device ID number in this field

4.4.1.2 Download DSP Code

The Download DSP Code button downloads DSP code from the host to the DSP. The code must be in
a file in the host disk directory from which the GUI is run. The application expects a file in the format
described in Section 2.3. The file’s name is typed into the corresponding edit box (see Figure 4-7).

Figure 4-7. Downloading Code to The DSP

Download DSP Code | | hi32 poi

[
[1 : v [I

Download DSP Code button

*.pci file to be downloaded

On the DSP side, the code is loaded through the Mode 4 bootstrap routine, host Bootstrap PCI Mode
(32-bit-wide), corresponding to the second phase of a dual-phase boot, as described in Section 2.2.2.

4.4.1.3 Host-Side Registers

You can read the HI32 host-side registers HCTR, HCVR, HSTR, and HRXS by pressing the corre-
sponding Get buttons. You can write a user-determined value to registers HCTR, HCVR and HTXR
by entering the desired values into the associated edit boxes and pressing their Set buttons (Figure
4-8). Note that the registers are read-only when the Get buttons are pressed, so a value displayed is the

value that was current the last time the Get button was pressed, which is not necessarily the current
value for that register.

Figure 4-8. Getting and Setting HI32 Host Side Registers

~HOST SIDE REGISTERS
| _HETR » GET| SET|
Ve
Read/Write Values - — —| —HEWR » GET| SET|
| THT® T oooooom| SET
_ L H5TR | GET|
Read Only Values (
T~ 4 HExS | 00305773 | GET
b_ |
Get Buttons Set Button

Motorola 4-9

Application Sample

4.41.4 Scatter and Gather

The application permits you to configure, through three sliders, some parameters of the Data Scatter
and Gather to be performed by the HI32 (see Figure 4-9).

* The number of Read Transactions to be performed.
* The number of Write Transactions to be performed.

* The Burst Length for the transactions.

As described in Section 4.1, the range of Read/Write Transactions lies between 1 to 16, while the
Burst Length range is between 1 to 64 dwords. The default values are one-word burst, one read trans-
action, and one write transaction.

Figure 4-9. Setting Scatter and Gather Parameters

A BURST

/_'r‘l’.!lllllllllllllll | HE.&.DS

Number of Read Transactions Slider

Burst Length Slider

Wi SR WwRITES
")

Number of Write Transactions Slider

Once Scatter and Gather parameters are determined, you can start the procedure by pressing the
Scatter_Gather button (Figure 4-10). This button fills the output buffer with data read from the output
buffer data file and then passes the Scatter and Gather parameters to the driver.

Figure 4-10. Starting Scatter and Gather Procedure

P Scatter Gather

Scatter_Gather button

1 .a

4.4.1.5 Output Buffer Data File

Before the beginning of the Scatter and Gather procedure, the 4K dwords of the output buffer are filled
with data read from the output buffer data file, defined by the user (Figure 4-11). This file must be in
the * pci format described in Section 2.3.

Figure 4-11. Output Buffer Data File

Output Buffer Data: [DATARE w

data file to be copied to output buffer

4-10 HI32 as a PCI Agent Motorola

Application Sample

4.4.1.6 Dump Host Buffers

Pressing the Dump HOST Buffers button copies the host memory output and input buffers, as well as
the SGT, to the file defined in the edit box (Figure 4-12). The whole block copied presents a total of
nine pages (1 page = 4Kbytes):

* Four pages of output buffer
» Four pages of input buffer
* One page of SGT

Each line of the file has the following format:
aaaaaaaa: VvVVVVvVVV XXXXXXXX YYYYYYVY ZZZ7777Z
Where:

* aaaaaaaa: Line offset in block;

o vvvvwwwy... zzzzzzzz; four dwords, from offset aaaaaaaa to aaaaaaaa + 4.

Figure 4-12. Host Memory Data Dump

‘Dump HOST Buffers | | DUMP.tt « |

...

name of file to
receive host
Press to dump buffers buffers data dump

4.4.1.7 Slave Loop Back Mode

An additional work mode of the application is the Slave Loop Back Mode. In this mode, the HI32 is a
PClI target (slave) and the DSP runs in a loop reading slave data from the input FIFO (DRXR/HTXR)
and writing read data to the slave output FIFO (DTXS/HRXS). The DSP enters this mode upon receiv-
ing the corresponding host command, which the host sends after you press the Slave Loop Back Mode
button (Figure 4-13).

Figure 4-13. Slave Loop Back Mode Button

/]JVSLEI'-.-'E! Loop Back ‘
—

niiqQrT

Press to put DSP in Slave Loop Back Mode

Motorola 4-11

Application Sample

4.4.1.8 Messages

The GUI presents a message box in which the application reports on events (see Figure 4-14). These
messages, their meaning, and the suggested actions to be taken once they are shown are summarized in

Figure 4-2.

Load =D
X

N\

Press this button to load HI32VXD.VXD

YENDOR 1D

Figure 4-14. Messages Box

1057

Table 4-2. Messages Summary

DEVICE ID:

1801]

Enter Device ID number in this field

Message

Reason

Suggest Next Action

VxD Loaded: Bus Mastering
Enabled by CM

When the Load VxD button is
pressed, this message is shown in
case the VxD successfully loads
and finds the Bus Master Enable bit
already asserted by the Windows
Configuration Manager (enabling
bus mastering).

Go ahead!

VxD Loaded: Bus Mastering Dis-
abled by CM. VxD Successfully
Set it

When the Load VxD button is
pressed, this message is shown in
case the VxD successfully loads
and finds the Bus Master Enable bit
NOT asserted by the Windows Con-
figuration Manager (Bus Mastering
disabled). VxD has then asserted
this bit, enabling bus mastering.

Go ahead!

VxD Loaded: Bus Mastering Dis-
abled by CM. VxD Could Not Set
it

When the Load VxD button is
pressed, this message is shown in
case the VxD successfully loads
and finds the Bus Master Enable bit
NOT asserted by the Windows Con-
figuration Manager (Bus Mastering
disabled). VxD has then FAILED to
assert this bit. Bus Mastering is dis-
abled.

A system error should have occurred.
Check your installation and
DSP56301ADM board PCI connec-
tions. The application can be used
only in its Slave Loop Back Mode,
since Bus Mastering is disabled.

Device Node:
<DEVICE_NODE_ID> NOT
FOUND

When the Load VxD button is
pressed, this message is shown in
case the VxD successfully loads
and cannot find any installed board
containing the Motorola device iden-
tified by <DEVICE_NODE_ID>.

Check the DEVICE ID number pro-
vided through the GUI.

Be sure there is ANY board containing
a Motorola’s device identified by
<DEVICE_NODE_ID> installed on
ANY PCI connector.

VxD FAILED to be loaded

When the application is run, this
message is shown in case VxD
loading failed.

Check whether HI32VXD.VXD exists
in directory C:\WINDOWS\SYSTEM.

4-12

HI32 as a PCI Agent

Motorola

Application Sample

Table 4-2. Messages Summary (Continued)

Message

Reason

Suggest Next Action

CheckSum OK

When the Load Code to DSP button
is pressed, this message is shown
in case the checksum calculated by
the host matches that read from the
DSP (code successfully down-
loaded).

Go Ahead!!

Loop Back Mode Entered

Shown if Slave Loop Back Mode
Button was pressed and DSP pro-
gram entered this mode

Write to HI32 slave by setting the
HTXR register and filling the FIFO;
then read the written values by getting
the HRXS register value.

SGT Passed

This message is shown if, at the end
of a Scatter and Gather run, the out-
put and input buffers contents are
equal.

Dump buffers to <DUMP_FILE>.

SGT Failed: <n> errors

This message is shown if, at the end
of a Scatter and Gather run, the out-
put and input buffers are different.
<n> stands for the number of differ-
ent dwords found.

This message occurs if the number of
write transactions is greater than that
of read transactions, since the DSP
can write garbage on the extra writes.
If this is the case, dump buffers to
<DUMP_FILE> and check errors.
Alternatively, check the DSP56301
ADM board PCI connections.

Memory dumped to file:
<DUMP_FILE>

After the Dump Host Buffers but-
ton is pressed, this message
acknowledges the copying of the
host buffers to the <DUMP_FILE>
file.

<DUMP_FILE> file can be inspected
with any text editor.

Failed to load to PC

When the Load Code to DSP but-
ton is pressed, this message is
shown in case the application can-
not read the <DSP_CODE> file.

Check if file <DSP_CODE> exists in
the same directory from where the
application was run;

Check also if its format complies with
* pci format.

CheckSum FAILED

When the Load Code to DSP but-
ton is pressed, this message is
shown in case the checksum calcu-
lated by the host does not match
that read from the DSP.

Verify that the DSP56301ADM board
is configured to the correct bootstrap
mode.

Cannot write file: <DUMP>

After the Dump Host Buffers but-
ton is pressed, this message is
shown in case the file <DUMP> can-
not be written.

Check your PC file system.

Motorola

4-13

Application Sample

4.4.1.9 Usage Example
Figure 4-15 shows a typical action flow for GUI usage.

Figure 4-15. Usage Action Flow Example

Run HI32.EXE —® GUllaunched [———®= Determine Device ID

Troubleshoot according to Messages
Description and RETRY

Press LoadVxD button

VxD successfully loaded

Define DSP Code file Press LoadVxD button

4 Troubleshoot (Table 4-2) "

Define SGT parameters

Y

Define data files

¢

Press Scatter_Gather button

Y

S and G Finished (message shown)

Press Dump HOST Buffers button

v

Data files available for inspection

¢

4-14 HI32 as a PCI Agent Motorola

Application Sample

4.5 Virtual Device Driver (VXD)

This section describes the services provided by the Virtual Device Driver (VxD), which interacts with
the HI32. The Numbered Comment references in the following paragraphs address VXD’s source
code. All VxD source code is available in Appendix A.

Note:

To simplify the driver coding, error checking is done in the VxD, and status communication
between the host application and the VxD is minimal. You can add these features using the
same DevicelOControl API structure already implemented for the VXD services

The VxD provides the following services to the application:

Note:

HI32 PCI configuration retrieval — Configuration Manager services obtain the necessary
HI32 information to operate the HI32 as a PCI agent:

— HI32 Memory Space Base Address (Numbered Comment: 3);
— HI32 Interrupt Request Number (IRQ) (Numbered Comment: 5).

The linear address corresponding to the HI32 Memory Space Base Address (physical) is
locked to guarantee consistency of host application accesses to these addresses (Numbered
Comment: 4). In requests to the Configuration Manager, the VxD refers to the HI32 via a
Device Node Handle, which is obtained by searching the Windows 95 registry device tree for
the device node corresponding to the HI32 Vendor and Device IDs (Numbered Comment: 2).

The driver does not use Subsystem ID and Subsystem Vendor ID, which might be set at Phase
I Boot, for device identification. You can add this feature for more specific drivers by minor
modifications to the VxD code.

HI32 Scatter and Gather control — The host applications provides the user-defined Scatter
and Gather parameters to the driver, which immediately begins its Scatter and Gather
procedure (refer to Section 4.1):

— Locks buffer and SGT pages in memory to guarantee address consistency (Numbered
Comment: §8).

— Builds the SGT in host memory according to received parameters ((Numbered Comment:
9).
— Sends Scatter and Gather host command (Numbered Comment: 10).

— Writes a single SGCE to DSP (SGCE_SGT, corresponding to the SGT) (Numbered
Comment: 11).

— Waits for HI32 PCI Interrupt.

HI32 PCI interrupt service — The VxD registers itself with the Windows Configuration
Manager to service the HI32 IRQ previously retrieved from the Configuration Manager
(Numbered Comment: 6). Once the HI32 IRQ occurs, the VXD services the interrupt by
(Numbered Comment: 1):

— Clearing the IRQ.
— Acknowledging the interrupt to the DSP through Deassert HINTA host command.

— Signaling the event to the host application.

Motorola

4-15

Application Sample

The host application and the VxD exchange data and control messages through the DevicelOControl
API. Two functions are implemented in the VxD discussed here:

L]

Get HI32 Memory Space Base Address (Numbered Comment: 7)
Scatter and Gather (Numbered Comment: 8)

4.6 DSP Side

Upon completion of the dual-phase boot, the DSP program calculates a checksum of the downloaded
code and writes this value to PCI Slave Output FIFO to be read by the host. The DSP then waits for
host commands interrupts through which all available tasks are performed. Figure 4-16 shows the
DSP program flowchart. The numbers in parentheses in the flowchart refer to assembly numbered
comments. The same reference is explicitly given in the following paragraphs. All assembly code is
available in Appendix A.

4.6.1 Host Command Interrupt Service Routines(ISRs)

The host controls the DSP operation through the following host commands:

Download SGT — This host command begins downloading of the SGT from host memory.
As described in Section 4.1, the DSP reads through a slave HI32 a single SGCE (SGCE_SGT)
corresponding to the SGT data and then reads the SGT itself through a master HI32. This host
command’s ISR initializes DMA channel 2 to service HI32 while reading the SGT and
returns. PCI terminations are handled by the Master Address ISR (Section 4.6.3).

(Numbered Comments: 1 to 7)

Deassert HINTA — The host sends this host command to acknowledge catching the HI32 PCI
interrupt. Upon receiving this host command, the DSP deasserts the HINTA line.

(Numbered Comments: 35 to 37)

Slave Loop Back Mode — On receiving this host command, the DSP reads six words from the
HI32 Input FIFO (written via the GUI) and writes these six words to the HI32 Slave Output
FIFO, which also can be read via the GUL

(Numbered Comments: 8 to 11)

4.6.2 DMA Interrupt Service Routines

L]

DMA Channel 2 — DMA Channel 2 is used for SGT downloading. Once DMA Channel 2
completes data transfers, the interrupt occurs.The corresponding ISR configures DMA for the
next steps of the Scatter and Gather Procedure as follows:

— Calculates the number of 24-bit words to be read from the Master Input DRXR FIFO and
programs DMA Channel 1 to service corresponding PCI data transfer requests.

— Calculates the number of 24-bit words to be written to the Master Output DTXM FIFO
and programs DMA Channel 0 to service corresponding PCI data transfer requests.

— Enables DMA Channel 1 operation.
(Numbered Comments: 29 to 34)

DMA Channel 1 — DMA Channel 1 is used for the read transactions of the Scatter and Gather
Procedure (gathering). Once DMA Channel 1 finishes transferring gathered data from the
HI32 Receive FIFO to the DSP memory buffer, the corresponding interrupt occurs. In the ISR,

4-16

HI32 as a PCI Agent Motorola

Application Sample

DMA Channel 0 is enabled for servicing HI32 master write transactions, according to the
configuration done in DMA Channel 2 ISR.

(Numbered Comments: 27 and 28)

DMA Channel 0 — The DMA Channel 0 is used for the write transactions of the Scatter and
Gather Procedure (scattering). Once DMA Channel 0 finishes transferring data to the HI32
Master Transmit FIFO, the corresponding interrupt occurs. The Scatter and Gather Procedure
is over, however, only when the Master Address Interrupt is disabled. This is done in the
Master Address ISR after the last SGCE is handled. DMA Channel 0 ISR polls the MAIE bit
until it is disabled and then asserts the HI32 PCI interrupt line (HINTA), signaling the host
that the Scatter and Gather Procedure is completed. Note that the MAIE bit is used here as a
flag: it is cleared by Master Address ISR (Section 4.6.3) when the HI32 as a master has
transferred all the data.

(Numbered Comments: 24 to 26)

4.6.3 Master Address Interrupt Service Routine

The Master Address Interrupt occurs whenever the master address request (MARQ) status bit in the
DPSR register is set, meaning that the HI32 is not currently a PCI transaction initiator and thus that a
PCI master transaction can be initiated. The Master Address Interrupt occurs when the HI32 is first
configured to the PCI mode or completes a PCI master transaction. The initiation of all Scatter and
Gather transactions, including the SGCE that downloads the main SGT, are handled through this inter-
rupt. When the HI32 as a master has transferred all the data, this ISR clears the MAIE bit.

(Numbered Comments: 12 to 23)

Motorola

4-17

Application Sample

Figure 4-16. DSP Software Flowchart

-

Master Address Interrupt ISR |

Y

| Handle Termination Cause (12 to 21) |

(DUAL-PHASE BOOT)

Y

Generate CHECKSUM and
Send to host (b)

Y

Wait for Interrupts (c)

RTI (22,23)

host COMMAND ISRs

Loop Back Mode (8 to 10) Deassert HINTA (35) Download SGT

Y

RTI (11) RTI (36) Read one SGCE

as PCI SLAVE (1to 3)

Y

Initiate Read SGT
as PCI MASTER (4 to 6)
(DMA #0)

Wiait for end of S and G (24) Enable DMA#0 | Initiate S and G (29 t0 33) |
for WR SGCES (27)

Assert HINTA (25)
| |

4-18 HI32 as a PCI Agent Motorola

Source Code

A Source Code

This appendix lists the DSP assembly code and equates and the Virtual Device Driver (VxD) C source
code, for the software part of this application example. The numbered comments (in bold typeface) in
the assembly program as well as in the VXD source code correspond to the indices referred to in

Sections 4.5 and 4.6.

A.1 Assembly Program

; BQUATES

START equ $100 ; main programstarting address
HOBT_COMVAND F7 equ $f 6 ; Host Gom routines starting address
HCST_COMVAND F9 equ $f8 ; Host Gom routines starting address
HCBT_COMVAND FB equ $fa ; Host Gom routines starting address
HBT_ GCOMWAND FF - equ $fe ; Host Gom routines starting address
SGI_LNG SAVE equ $300

SGI AID equ $400 ; SGT Address

S AVE BUF ADD equ $500

SNAE S&CE ADD equ $600 ; 1st single SAE Address

VR BASE ACD equ $700 ; Buffer address for VR TE (x nen)

: MMCRCB

; PA personal reset, H32 PAd-node, HJE set
SRESET MACRO

novep #>$000000, x: MDCTR HW3$0 (Personal s/w reset)

nop

nop

j set #M HACT, x: M DER * ; wait for personal reset
novep #>$000000, x: M DPCR

novep #>$100001, x: M DCTR ; HVE$L (PA) \HOE$L
BENOM

; PA personal reset, H32 PA-node, MAE and HJ E set
MRESET MCRO

novep #>$000000, x: M DCTR ; HVE$O (Personal s/w reset)
nop

nop

j set #M HACT, x: MDER * ; wait for personal reset
novep #>$040010, x: M DPCR cMCE=1, MNE=1

novep #>$100001, x: M DCTR ; HW$1 (PA) ,HIES1
ENDM

; start of programarea

; interrupt vector space area start

org p: | _RESET ; Har dwar e RESET
jnp >START

dup (1 _I NTEND *+1) ;fill vector space
jmp <

endm

Motorola

Source Code

org P 1_HMA
jsr <Mbst er _Address_| SR
nop

org P 1 _DVRO
jsr <dna_int_0
nop

org P 1_Dw
j sr <dna_int_1
nop

org P.1_Dw2
jsr <dna_int_2
nop

; interrupt vector space area end

org p: (1 _I NTEND+1)
dup (START-1 _I NTEND 1) ;fill wth nops
nop
endm
Host Commands

org P. HOST_GOMVAND F7
jsr 9 ave Reset

org P: HOST_GOMVAND F9
jsr Deassert _H NTA

org P. HOST_GOMVAND FB
jsr Downl cad_SGT

org P. HOST_GOMVAND FF
jsr Loop_Back

nove #30, sr ; enable interrupts
novep #$000003, x: M | PRP : H32s | PL=2
novep #$03e000, x: M | PRC ; DMA's IPL=2, channels #1 and #2

; IPL =1, channel #0
;a. PA personal reset, H32 PA-node, HJE set

SRESET
;b. sumup checksumand sends to HXBT
nove #0,r1l
clr a
clr b
do #t he_end, | oopl
nove p:(rl)+ bl
add b, a
nop

A-2 HI32 as a PCI Agent Motorola

Source Code

| oopl

nop

nop
nop

wai t_for_request

brclr
novep
nop
nop
nop

#M STRQ x: MDSR wai t _f or_request
al, x: MDIXS

;C. wait for interrupts

Jnp *
nop

; Wite data to FIFO

i:b\AnI oad_SGT
;1. get single SE (two comand words) fromDRXR as slave, for SGI' downl oad;

clr b

brclr #M SRRQ x: MDER *
novep x: MDRR bl

brclr #MSRRQ x: MDER *
novep x: M DRXR b0

;2. wite single S@E to nenory

nove #S NQE S&E ADD, r 0
clr a

nove b1, p: (r0) +

nove bO, p: (r0) +

nove ao, p: (r0)+

nove ao, p: (r0) +

nove #S NQE S&E ADD, r 0

; Read first data fromH FO

; Read second data fromF FO

; 3. save schedul e I ength (DPMD for future DVA pr ogr ammi ng

;4. program DVA2 to service Master data (SGT downl oad)

nove b0, p: SGT_LNG SAVE

novep #SGI_ADD, x: M DR
novep #>M DRR x: M DER2
nove #$3f, a0

novep a0, x: M DA

;5. H32 PA Gonfiguration as MASTER (MN Enabl ed)

MRESET

;6. configure and enabl e DVA #2

novep #>$ceeac8, x: M DOR2

;7. return frominterrupt

nop
rti

initialize DVA #2 destinati on address

; 64 transfers - 24bit node

; configure and enabl e DVA #2

;8. PA personal reset, H32 PA-node, HJE set

SRESET
bel r #$4, x: M DPCR
nove #SLAVE BUF_ADD, 15

;9. read 6 words fromlnput F FO

; disable Master Address Interrupt

Motorola

A-3

Source Code

read

do
brclr
novep
novem
nop
nop

#6, read

#M SRRQ x: MR *
x: MDRXR bl

b1, p: (r5)+

;10. wite 6 words to S ave Qutput H FO

_wit

nove
do
brclr
novem
novep
nop

e

#I AVE BUF ADD r5
#6, wite

#M STRQ x: MDSR *
p: (r5)+ bl

b1, x: M DIXS

;11. return frominterrupt

rti

Read data fromF FO

; Wite data to FIFO

i\zast er _Address I SR

012,

Anal yze Master Address Interrupt Cause (termination cause/ first transaction)

clr a
:13. Transacti on succeeded, handl e next SXE
j set #M MDT, x: M DPSR process_schedul e_entry
; 14. Master abort, fatal
j set #M MAB, x: MDPSR fat al
; 15. Target abort
j set #M TAB x: MDPSR target _ab dis_or_to
;16. Target retry
j set #MTRTY, x: MDPSR target _retry
; 17. Time out
j set #MTQ x: MDPSR target_ab dis_or_to
;18. Hrst SAE
jclr #MTO S, x: M DPSR process_schedul e_entry
;19. Handl e Target Abort CR Target D sconnect (R Tine Qut
target_ab dis or_to
clr b
nove p:-(r0),y0 ; get current DPMC
clr a
nove y0, bl
and #$3f 0000, b nask BL field
asr #%$10, b, b BLis nowin Bl
nove p:-(r0),yl ; get current DPAR
novep x: MDPSR al
asr #$10, a, a put ROC field in Al
jelr #M RDOQ x: M DPSR rdcq_zero
add #$1, a ; add one if RDOQis set
rdcqg_zero
nove (ro)+
nove al, x0 ; X0 contai ns updated RDC
nove yl, al
and #$00f fff, a nask address LSBs
asr #$10, a, a
nove y0, al
and #BOOf fff, a nask address MsBs
asl #$10, a, a ; A2 Al contains 32-bit addr
sub x0, b ; BL contains n. of done tran
asl #$2, b, b ; x4, for address alignenent
add b, a updat ed address in A
asr #%10, a, a : address’ MSBs in Al
A-4 HI32 as a PCI Agent Motorola

Source Code

clr b

; buildi ng new DPMC

nove y0, b0

asr #$16, b, b

i nsert #$006028, x0, a
i nsert #$00202E, b0, a
nop

nove al, p:(r0)

; bui | di ng new DPAR

nove y1, b0

asr #%$10, b, b

asl #$10, a, a

i nsert #$008028, b0, a
nop

nove al, p:-(r0)
jnp <process_schedul e_entry

;20. Handl e Target Retry
target _retry
; clear DPSR status hits

nove X: MDPSR b
or #3$000f €0, b
nove b1, x;: MDPSR

bel r #0, x: M DPAR
jnp <end_of _i nterrupt_process
;21. Handle one SXE
process_schedul e_entry

; get old DPMC
: FCbhits in BO

; updated DPMCin Al
; get old DPAR
; BEand Chits in BO

; address’ LSBs in Al
; updated DPARin Al

; process updated transfer

; repeat current transaction

read first field : DPAR

; test for END command

; | F schedul e NOT fi ni shed
; disable Master Address Interrupt

clr a

nove p: (r0)+ al

; verify if it’s the end of schedule or illegal command
tst a

nop

nop

j ne <cont i nue_process

bel r #$4, x: M DPCR

jnp <end_of _i nterrupt_process

cont i nue_process
; read rest of schedule entry

nove p: (r0)+ a0
clear DPSRstatus bits

nove x:MDPSR b

or #$000f e0, b

nove b1, x: M DPSR
; initiate trasnsaction

novep a0, x: M DPMC

novep al, x: MDPAR

;22. BEnd of Interrupt
end_of _i nterrupt _process
nop
rti
;23. Fatal event - NMaster Abort Termination
fatal
bel r #$4, x: M DPCR
nop
rti

ana_i nt_0O

; read second field :DPMC

; disable Master Address Interrupt

;24. wait until Master Address Interrupt is D SABLED ---> SGT done

Motorola

A-5

Source Code

br set #$4, x: MDPCR * ;pol | disable Master Address Interrupt Enabl e bit
; 25, assert H NTA

bset #6, x: M DCTR
;26. return frominterrupt

nop

rti

;27. configure and enabl e DVA #0
novep #>$cef a52, x: M DORD
;28. return frominterrupt

nop
rti
dma_int_2
nove #>SGT_ ADD r0 ; O points to SGI''s 1st SAE
;29. Proccess data for programming DVA to service SGT transactions
clr b
nove p: SGT_LNG SAVE, b0
nove #SGT_ADD r1
asl #3,b,b
and #$00003f , b
add #1,b
asr #1,b,b
nop
nove bl, n3 ; now NB has the nunber of PA transactions
clr a #0, x0
clr b #0, yO
nove #$10000, bl
do n3, _rd entry
nove p:(rl)+ a0 ; get entry DPAR
nove p:(rl)+ al
bt st #17, a0
nop
nop
brkcc ; end loop if end of SGI
br set #16,a0, wite
and #$3f 0000, a ; mask BL field
add b, a
asr #$f , a, a :2*BLis nowin Al
add X0, a
nop
nove a, x0
bra < end w
_wite
and #$3f 0000, a ; mask BL field
add b, a
asr #%f,a a ; 2* BLis nowin Al
add y0, a
nop
nove a, yo
_end_wr
nop
nop
_rd entry
clr a
; 30. Program DVA channel #1
novep #>WR BASE ADD, x: M [DRL ; initialize DMA #1 destination address
novep #>M DRR x: M DSRL

A-6 HI32 as a PCI Agent Motorola

Source Code

nove X0, a0

dec a

nop

novep a0, x: M bl ;initialize DVA #1 counter
; 31. Program DVA channel #0

novep #>M DXV x: M DORD ; H32 is master

novep #>WR BASE ADD, x: M DSRO ; initialize DVMA #0 source address

nove y0, a0

dec a

nop

novep a0, x: M DA ; initialize DVA#0 counter
;32. H32 PA onfiguration as MASTER (MN Enabl ed)

MRESET
; 33. Enabl e DVA channel #1

novep #>%$ceeac8, x: M DORL ; configure and enabl e DVA #1
;34. return frominterrupt

nop

rti

Deassert _H NTA
;35. Deassert H32 PA interrupt |ine (HNTA

bcl r #6, x: M DCTR
;36. return frominterrupt

nop

rei

;37. End G Code

9 ave_Reset
SRESET
;return frominterrupt
nop
rti

A.2 Virtual Device Driver Code

/! H32VXD.c - nmain nodul e for WD H 32VXD
#define DEMCE MAN
#include “hi 32vxd. h”
#undef DEM CE MA N

Decl are_M rtual _Devi ce(H 32vXD

OMOONH G H 32Logi cal Gonfiguration;// Buffer for H32 s Logical Qonfiguration
/1 performed by the Gonfigurati on Manager

| RHANDLE H 32_| RHandl g; /1 Handl e for virtual IRQ

VA D HA/nt _ THNK H 32_1 nt _Thunk; /1 Thunk for interrupt handl er

QONH GRET Ret Val ue;

DNRD Zer 0

DNXORD TRY;

DNRD S at us;

PCHAR | DL,

HAR I C2[23] ;

Motorola A-7

Source Code

WLAONG si ze;

DNRD H 32MengpaceF rst Page,// Physi cal Page Add of Base Add of H 32 Menory Space
H 32Mengpaceli nAddr; // Linear Page Add of Base Add of H 32 Menory Space

HANDLE H 32Mengpaceli nAdLocked;// Locked Lin Page Add of Base Add of H 32 Mem Space

/1 Handl e of H 32 Base Addr, to be passed to App

CEVNDE H 32Devi ceNode; /1 points to ADE56301/ H 32 devi ce node in Wn95 Reg

PVa D Physi cal Addr ess; /1 Generic Physical Address, for address mani pul ation

DNRD SGIPhysi cal Addr ess; /1 SGTI Physical Address, for building SGr

DNRD SGILi nAddr ; /1 SGI-page Linear Address

DNRD NoCF Tr ansRD, // Nunber of Read Transactions

DNRD Nod TransVlR~ // Nunber of Wite Transactions

D/MRD BurstLength; // Burst Length for each Transaction

D/MRD BurstLengthS, // Burst Length for each Transaction SH FTED

DNRD Tabl eLength; // SGI Tabl e Length

DWRD Cevl O

DWRD Venl D

aHAR cbeviO 5] ;

HAR cvenl O 5];

D/NRD data, datal , dat ah, i ; /1 for manipul ation

DNRD i ndex; /] for SGTI

DNORD HIXRAddr ess;

DWORD* HSTRAddr ess;

DWORD* HCVRAddr ess;

DNRD Qut Buf f er Li near Address,// Linear Address of buffer to be Gathered (1st pg)

Qut Buf f er LockedLi nAddr ess, // Locked Lin Addr of buffer to be Gathered (1st pg)
Qut Buf f er PhysAddress;// Physical Addr of buffer to be Gathered (1st pg)
HANDLE GonmonEvent ; /1 Handl e of Synchroni zation Event between App/ VD
DNRD Message; /1 Message sent by the app
LEEEIEEPTEEE T e e e i iirrng
/1 Gontrol Messages Handl i ng

Defi neCont rol Handl er (SYS DYNAM C DEM CE IN'T, hSysDynami cDevi cel nit);
Def i neCont rol Handl er (SYS DYNAM C DEM CE EX T, hSysDynami cDevi ceExit) ;
Def i neCont rol Handl er (V82_DEVI CH GOONTRAL, hVB2Devi cei ocontrol);

BOOL _ cdecl Gontrol D spat cher (
DVCRD dwCont r ol Message,
DWRD BBX,
DWRD EDX,
D/RD ES,
DI/RD HD
DWRD ECX)

START_CGONTROL_DI SPATCH
ON_SYS DYNAM C DRV CE | N T(OnSysDynani cDevi cel ni t) ;
ON_SYS DYNAM C DRVl CE_EX T(OnSysDynani cDevi ceExi t) ;
QN V32_DEVI CH OOONTROL(OnVB2Devi cei ocontrol) ;

END GONTRCL_DI SPATCH

return TRE
}

LEEEEEEEPTEEE e e e e e e i irrrng
/] Check if BMbit in Gonfiguration Space is set
BOO. BM sSet (DEVNCZE Node)

A-8 HI32 as a PCI Agent Motorola

Source Code

DNMRDF Gonf Buf ;

/1 read CSTR GOMR

Gonf Buf = 0O;

QONF GG _Gal | _Enuner at or _Funct i on(Node, 0, 0x4, &onf Buf , 4, 0) ;
TRY = (D/ORD) Conf Buf ;

if (TRY & 0x00000004) // BMbit

{

return TRUE
}
el se
{

return FALSE
}

}
TETTEEEEEET P i e e i i i iirr
/1 Set BMbit in Gonfigurati on Space
BOOL Set BM DEVNCLE Node)
{
DNRD* Gonf Buf ;
/1 read CSTR GOMR
Gonf Buf = 0;
QONF GG _Gal | _Enuner at or _Funct i on(Node, 0, 0x4, &onf Buf , 4, 0) ;
TRY = (D/ORD) onf Buf ;
TRY = (TRY | 0x00000004); // set BMbit
1 TRY = (TRY & Oxfffffffb); // reset BMbit
onf Buf = TRY:
Ret Val ue = QONH QMG Gal | _Enuner at or _Funct i on(Node, 1, 0x4, &onf Buf , 4, 0) ;
if (RetVal ue = (R SUTCESS)

{

return TRUE
}
el se
{

return FALSE
}

}

RNy NNy,
/1 Search Registry Tree function

VA D Sear chHWIT ee(DEVWNE Node, DEVNODE* Tar get Node)

{
DEWCCE Child, Sibling;

if (Node == 0)

{
QONH GMG Locat e_DevNode(&\bde, NULL, 0);

if (Node = 0)
return;

QONFl GG _Get_Devi ce_| D S ze(&si ze, Node, 0);
if (IDL=nal | oc(size+l))
QONH GG _Get _Devi ce_| M Node, | DL, si ze+1, 0) ;
if (strncnp(lDL, 102, strlien(IlR)))
{
}

Motorola A-9

Source Code

el se

*Tar get Node = Node;

}
if (CONFI VG Get_Chil d(&hild, Node, 0) !'= CR SUTESS
return;
el se
{
Sear chHAIT ee(Chi | d, Tar get Node) ;
while (AONFIGG Get_S bling(&ibling, Child, 0) == (R SUXCESS)
{
Sear chHWIT ee(S bl i ng, Tar get Node) ;
Ghild = Sbling;
}
}

}

NNy
/1 Interrupt Handl er
BAQ. _ stdcall H32_Int_Handl er (WHANDLE hW | RHANDLE hl RQ

{
1
11
1
/1 tell VA to clear the interrupt
WA D Phys BEQ (hIRQ;
/1 signal app
if (GommonEvent)
_VWWN32_Set Wn32Event (GommonEvent) ;
/1 send Host Conmand
HOVRAAdr ess= (DACRDY) (H 32Mengpaceli nAdLocked) + Ox6;
*HOVRAddr ess = 0x000000f 9;
return TRE
}

LHLEEELLEEEE TR i rn i rn i i i i irnn
/1 Initial
BOOL Initial ()
{
/] struct to pass to VA Mirtualize |RQ
struct VP CD | RQ Descriptor | Ryesc;
/11
/12
/11
/1 Get device node IDfor H32 device ID
Sear chHATT ee((DEVNCDE) NLLL, &H 32Devi ceNbde) ;
/1l Gt H32 Logi cal Qonfiguration Record
Ret Val ue = QONFI GMG Get_ Al | oc_Log_Qonf (&H 32Logi cal Gonfi gurati on, H 32Devi ceNode, 0) ;
/11
/13
/11

11
/11 3a
11

A-10 HI32 as a PCI Agent Motorola

Source Code

i f (RetValue = CR | NVALI D CEVNCDE)

return FALSE
111
/11 3b check if BVbit is ste
111
H 32Mengpacer r st Page = (DARD) H 32Logi cal Gonfi gurati on. dMenBase[0] >> 12;
/! Reserve one page’s |inear add
H 32Mengpaceli nAddr = (DNMRD) PageReser ve(PR SYSTEM 1, PR FI XBD);
/1 Cormt reserved |inear addresses to physical
PageCommi t Phys(H 32MenSpaceLi nAddr >> 12,1, H 32MenSpaceHi r st Page,
PCINCR| PCVWR TEABLE | PC LSER);
111
/11 4
111
/1 Lock linear pages
H 32Men$paceli nAdLocked = (VA D¥) Li nPagelLock(H 32MengpaceLi nAddr
>> 12, 1, PAGEMAPA.CBRAL);
/1 AIl up the structure to pass to VMWD Mrtualize |IRQ
/Il ITRQto virtualize
111
/115
111
| RYesc. VI D | RQ Nunbber = (DARD) H 32Logi cal Gonfi gurati on. bl RERegi sters[0] ;
/1 Hags
| RYesc. D pti ons = 0x17;
/1 set address of handl er
| R¥esc. MD Hv Int_Proc =
(D/MRD) VP D Thunk_HWnt (H 32_Int_Handl er, &H 32_Int_Thunk);
/1 The other callbacks are not used.
| RY¥esc. MD Mrt_Int_Proc = 0;
| RY¥esc. MD EQ _Proc = 0;
| RYesc. VI D Mask_Change Proc = 0;
| R@esc. MDIRET Proc = O;
111
/11 6
111

/1 Now pass the structure to V(D WM returns the | RQ handl e.
H32 IRHandle = VM D Mrtual i ze | RY & RPesc);

/1 unnmask | RQ
VP D Physi cal | y_Uhnask(H 32_I RGandl e) ;
return TRUE

}
TEEETEEPEEET P i e i rn i i i rrnng g
/1l Gontrol Messages Handl ers

BAO. SysDynami clevi cel nit ()

{

/1 Initial ();
CommonEvent = O;
return TRUE

}

BAO. SysDynami cDevi ceExi t ()

Motorola A-11

Source Code

{
i f (ComonBvent)
_VWVN32_d oseVxDHandl e(GommonEvent) ;
if (Satus == 0)
{
VPl D Physi cal | y_Mask(H 32_| RgHandl e) ;
VP (D Force_Defaul t_Behavi or (H 32_I RGandl €) ;
Li nPagelhLock(Qut Buf f er LockedLi nAddress, 9, PAGEMAPACRAL);
Li nPagelhLock(H 32MengpaceLi nAdLocked, 1, PACEVAPG.CBAL);
}
}
return TRE
}
D/MRD OnVB2Devi cei ocont r ol (P GCTLPARANS p)
{
struct VM D IRQ Descriptor | RYesc;// struct to pass to VA Mrtualize | RQ
sw tch (p->dioc_| Q| Gode)
{
case D OC CPEN
case D QC A CHHANDLE
return O;
/1 user defined nessages
case H 32_USER MESSACE
GommonBEvent =% (HANDLE*) p- >di oc_| nBuf ;
i f (CormonEvent)
{
Message = ((DMORDF) (p->di oc_I nBuf))[1] ;
sw tch (Message)
{
/11
17
/11

/] Initialization Message

casel:
VenlD = ((DNMRDF) (p->dioc_InBuf))[2];
DeviD = ((DANORD*) (p->dioc_InBuf))[3];
strepy (102, "PAN\VEN");
_ultoa(VenlD cVenlD 16);
strcat (12, cVenl D;
strcat (IR, "&DEV ");
_ultoa(DeviD cDeviD 16);
strcat (12, cDevlD;
// run initialization procedure and return val ues to app
Satus = 0;
if (Initial())
{

A-12 HI32 as a PCI Agent Motorola

Source Code

111
/11 8
11

111
1179
11

((DNORD¥) (p->dioc_QutBuf))[1] =
(DIRD) &H 32MengpaceLi nAdLocked;
if (BMsSet(H 32Devi ceNode))

{ Satus = (Satus | BMSET BY QV;
LI se
{
Satus = (Satus | BMNOI_SET BY QV);
if (SetBVH 32Devi ceNode))
{ Satus = (Satus | BMSET BY VXD ;
LI se
{
Satus = (Satus | BMNOT_SET BY VXD ;
}
}
}
el se
{

Satus = (Satus | DEVNCDE NOT | ;
((DNORDF) (p->dioc_QutBuf))[1] =
} (DNCRD) 0;
((DNRDY) (p->di oc_QutBuf))[0] = (DMRD) & at us;
*p->di oc_bytesret = 2*si zeof (DNRD);

return O;

/1 Scatter/Gather Handling
case2:

/1 Lock Data Buffers

/1 Get Buffer Linear Address from App

Qut Buf f er Li near Addr ess= ((DIMRD*) (p->di oc_I nBuf))[2];

/1 Lock Linear Pages: 4 for INbuf, 4 for QJI buf, 1 for SGI=9

Qut Buf f er LockedLi nAddr ess= Li nPageLock(Qut Buf f er Li near Addr ess
>> 12,9, PAEVAPA.CBAL);

/1 Retrieve correspondent Physical Address

GopyPageTabl e(Qut Buf f er Li near Addr ess>> 12, 1, &hysi cal Address, 0) ;

Qut Buf f er PhysAddr ess=(((DARD) Physi cal Address & Oxf f f f f 000)
| (QutBuf ferLinear Address & OxOfff));
/1 get SGT linear add
SGILi nAddr = Qut Buf f er Li near Addr ess + 0x8000;// 9th page
/1 Retrieve correspondent Physical Address
QopyPageTabl e(SGILi nAddr>> 12, 1, &hysi cal Address, 0) ;
SGIPhysi cal Addr ess=(((DAORD) Physi cal Address & Oxf f f f f 000)
| (SGILinAddr & OxOfff));

/1 Build SGI

i ndex = 0;

NoCF TransRD= ((DWORD¥) (p->di oc_InBuf)) [3];
NoCF TransVR= ((DWCRD¥) (p->di oc_I nBuf)) [4] ;

Motorola

A-13

Source Code

Bur st Lengt h= ((DAMCRD*) (p->di oc_I nBuf))[5] ;
BurstLengt hS = BurstLength - 1;

Bur st Lengt hS = Bur st Lengt hS << 16;

Tabl eLengt h = 2*(No(F TransRD + No(F TransWR) ;
/1 build READ entri es

dat a= (DACRD) Qut Buf f er PhysAddr ess;

datal = data & Ox0000f fff;

dat ah= data & Oxff ff 0000;

for (i=0;i <NoCF TransRD; i ++)

{
/1 Retrieve correspondent Physical Address
/1 1Kbyte step (/4 K dwords)
QopyPageTabl e((Qut Buf f er Li near Address + i *0x400) >> 12,
1, &hysi cal Address, 0);
Qut Buf f er PhysAddr ess =(((DIMRD) Physi cal Address & Oxf f f f f 000)
| ((QutBufferLi near Address + i*0x400) & OxOfff));
dat a= (DAORD) Qut Buf f er PhysAddr ess;
datal = data & Ox0000f fff;
dat ah= data & Oxf fff0000;
data= 0x00060000 | datal;
*((DANORDF) SGTLI nAddr + i ndex) = dat a;
i ndex++;
data= datah >> 16;
data= BurstlLengthS | data;
*((DNORDF) SGILi nAddr + i ndex) = dat a;
i ndex++;
}

/1 build WRTE entries
dat a= (DNCRD) Qut Buf f er PhysAddr ess;
datal = data & Ox0000f fff;
dat ah= data & Oxff ff 0000;
for (i=0;i <Nod TransVR i ++)
{
/1 Retrieve correspondent Physical Address
/1 1kbyte step (/4 K dwords)
QopyPageTabl e((Qut Buf f er Li near Addr ess + 0x4000 +
i *Ox400) >> 12, 1, &hysi cal Address, 0) ;
Qut Buf f er PhysAddr ess =(((DIRD) Physi cal Addr ess&0xf f f f f 000)
| ((QutBufferLi near Address + 0x4000 + i *0x400) & OxOfff));
dat a= (DAORD) Qut Buf f er PhysAddr ess;
dat al = data & Ox0000ffff;
dat ah= data & Oxf fff0000;
data= 0x00070000 | datal;
*((DNORDF) SGTLI nAddr + i ndex) = dat a;
i ndex++;
data= datah >> 16;
data= BurstlLengthS | data;
*((DNORDF) SGTLI nAddr + i ndex) = dat a;
i ndex++;

}

//add zero SAE to the end of the SGI (signal s end of sgt)
*((DAORDF) SGTLI nAddr + i ndex) = O;

i ndex++;

*((DNORDF) SGTLI nAddr + i ndex) = O;

/1 now programH 32 to downl oad SGI'

data = (DNMRD) SGIPhysi cal Addr ess;

datal = data & Ox0000f fff;

dat ah= data & Oxff f f 0000;

data= 0x00060000 | datal;

A-14 HI32 as a PCI Agent Motorola

Source Code

111

/11 10

111
/1 send Host Conmand
HOVRAddr ess= (DANCRDY) (H 32Mengpaceli nAdLocked) + 0x6;
HSTRAddr ess= (DAORD¥) (H 32MengpaceLi nAdLocked) + 0x5;
*HOVRAddr ess = 0x000000f b;

111

/11 11

111
/1 send first word
HIXRAddr ess= (DAORDY) (H 32MengpaceLi nAdLocked) + 0x100;
do {} while (!(*HSTRAddress & 0x00000002)); // HIRQbit
*HIXRAddr ess = dat a;
data= datah >> 16;
data= Ox7f0000 | data; // FC=01 (24b-node) , 64 dw burst
/1 send second word
do {} while (!(*HSTRAddress & 0x00000002)); // HIRQbit
*HIXRAddr ess = dat a;
/1 Return Val ues to App
((DNRDY) (p->di oc_Qut Buf))[0] =(DWORD) &Qut Buf f er Li near Addr ess;
((DNRDY) (p->di oc_Qut Buf))[1] = (DNRD) &t Buf f er PhysAddr ess;
*p->di oc_bytesret = 2*si zeof (DNRD);
return O;

} /1 swtch (Message)

} /1 if (ConmonEvent)
return O;

defaul t:
return-1;

} /] swtch (p->dioc_| QI Qode)
return O;

A.3 Virtual Device Driver C Header File

I/ H32VD h - header file for VD H 32VXD

#i ncl ude <vtool sc. h>

#defi ne H 32VXD_Myj or 1

#defi ne H 32vXD M nor 0

#defi ne H 32VXD Devi cel D UNDEH NED DEM CE I D
#def i ne H 32VXD I ni t _QO der UNDEF NED | N T_GRDER
#def i ne H 32_USER MESSAGE 1

#def i ne BV SET_BY QM 0x00000001

#def i ne BV NOT_SET_BY QM 0x00000002

#def i ne BM SET_BY VXD 0x00000004

#def i ne BVINOI_SET_BY VXD 0x00000008

#def i ne DEVNCCE NOT_FOUND 0x00000010

Motorola A-15

Source Code

A-16 HI32 as a PCI Agent Motorola

References

B References

The following specifications, manuals, and application notes may contain data pertinent to this
application. You can access them at the indicated Web sites:
* http://www.pcisig.com
— PCI Local Bus Specification. revision 2.1
* http://www.mot.com/SPS/DSP/documentation/DSP56300.html
— DSP56300 Digital Signal Processor Family Manual
— DSP56301 Digital Signal Processor User's Manual
— DSP56301 Digital Signal Processor Data Sheet
* http://www.mot.com/SPS/DSP/documentation/appnotes.html

— DSP56300 Assembly Code Development Using the Motorola Toolsets (Application Note
: APR30/D)

— Using the DSP56300 Direct Memory Access Controller (Application Note : APR23/D)
* http://www.mot.com/SPS/WIRELESS/dsptools/index.htm

— DSP Software Development Tools

— DSP Development Boards

Motorola B-1

References

B-2 HI32 as a PCI Agent Motorola

Document Order Number: AN1780/D

OnCE and Mfax are registered trademarks of Motorola, Inc. Microsoft™ and Microsoft Visual C++5 are registered

trademarks of Microsoft Corporation. Microsoft Developer Studio™ 97 is a trademark of Microsoft corporation.
VtoolsD™ is a trademark of Vireo Software.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and (4] are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed: Asia/Pacific: Japan:

Motorola Literature Distribution Motorola Semiconductors H.K. Ltd. Nippon Motorola Ltd

P.O. Box 5405 8B Tai Ping Industrial Park SPD, Strategic Planning Office141
Denver, Colorado 80217 51 Ting Kok Road 4-32-1, Nishi-Gotanda

1(800) 441-2447 Tai Po, N.T., Hong Kong Shinagawa-ku, Japan

1 (303) 675-2140 852-26629298 81-3-5487-8488

Motorola Fax Back System (Mfax™): Technical Resource Center: Internet:

TOUCHTONE (602) 244-6609 1 (800) 521-6274 http://www.motorola-dsp.com/

1 (800) 774-1848

RMFAXO@email.sps.mot.com DSP Helpline

dsphelp@dsp.sps.mot.com

@ MOTOROLA

