AAAAAAA

¢ Twin CODEC Expansion Board

for the DSP56000
Application Development System

@ MOTOROLA HN

Motorola Digital Signal Processors

Twin CODEC Expansion Board
for the DSP56000
Application Development System

Prepared by Ralph Weir
DSP Applications
East Kilbride, Scotland
Eric Cheval
DSP Applications
Austin, Texas

Motoroia reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Mctorola does not assume any liability arising out of the application or use of
any product or circuit described herein; neither does it convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgicaf implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorcla product couid create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the pant. Motorola and ® are registered trademarks of
Moterola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1992 APR12/D

G

INTRODUCTION

The CODEC is an integrated analog-to-digital converter (ADC), digital-to-analog
converter (DAC), and filter intended for use in telecommunications applications. It
has been designed for a sample rate of 8 kHz, the standard telecommunications
sampling frequency, and has a serial interface that may be used in a time-division
multiplexed (TDM) system.

The filter implemented in the CODEC tailors the incoming analog signal for
transmission through a telephone channel. It has a bandpass characteristic, cutting
off at 300 Hz and 3.4 kHz; this also performs the anti-aliasing function for the ADC.

This application report describes a twin CODEC board designed to facilitate the
development of telecommunication applications around the DSP56000 Family
members. The board is intended for any situation where a DSP module is required to
link two analog lines, as in the case of a line repeater or a telephone handset; it can
also be used to develop applications requiring a single CODEC.

The CODEC board is designed to interface directly to the DSP, using the
synchronous serial interface (SSI). The SSl is capable of generating all signals
required for a serial CODEC, creating an interface with no glue logic. Itis possible to
create systems with many CODECSs, all under the controt of the DSP using the SSl
communications link. The board described here is a simple example of such a
system.

Various software routines are available, giving the DSP the ability to make
conversion between the various data formats available from CODECs (linear, A-law,
and Mu-law are the three main formats). It is essential that data be in a linear format
before DSP processing. The conversion routines are listed in Appendix E; for more
details, consult application note ANE408 or the Dr. BuB bulletin board. Printed circuit
board (PCB) artwork for the expansion board is included in Appendix F.

DSP56000/DSP56001 SSI

The DSP56000 SSI is a powerful serial interface that may be used with many
existing serial CODECs, COFIDECs {monocircuits), and serial ADCs/DACs. It is
also a suitable medium for building serial networks of DSPs based on a TDM access
protocol. A complete description of the interface can be found in DSP56000UM/AD
Rev.2 DSP56000/DSP56001 Digital Signal Processor User's Manual, Section 7. A
short description of the interface is presented in the following paragraphs.

The SSI is a six-pin interface that may be configured for synchronous or
asynchronous exchange, continuous or gated clock, and normal or network mode.

MOTOROLA 1

Clocks may be generated internally and output or may be input from the external
host system. The six pins are not necessarily used in afl configurations, and unused
lines may remain as general-purpose /0.

Like every DSP56000/DSP56001 on-chip peripheral, the SSI is a full-duplex,
double-buffered, memory-mapped peripheral, mapped into the peripheral area at
the top of internal X-memory.

DATA REGISTERS

The SSI interface inputs and outputs the data using two 24-bit data registers
mapped at X:$FFEF:

Write-Only Transmit Data Register (TX)

The transmit shift register is associated with the TX register. The transmit shift
register shifts out the data written to the TX register onto the STD pin; when empty, it
reads the data in the TX register if any is available. (A transmitter underrun error will
occur if no fresh data is present.) The DSP may be programmed for an interrupt
when the transfer occurs or may poll the SSI status flags.

Read-Only Receive Data Register (RX)

The receive shift register is associated with the RX register. The receive shift register
formats the serial data read from the SRD pin; when full, it transfers the data to the
RX register and sets a flag to indicate data is available. (It the datain the RX register
is unread by the time the receive shift register is again full, a receiver overrun error
will occur.) Unused bits are written as zeros. The DSP may be programmed for an
interrupt when the transfer occurs or may poll the SSI status flags.

CONTROL REGISTERS

Four control registers are associated with the SSI:
1. Control Register A (CRA)
2. Control Register B (CRB)
3. SSI Status Register (SSISR)
4. Time Slot Register (TSR)

2 o MOTOROLA

CRA (16 Low Bits of X:$FFEC; Read/Write)

This register controls clock and frame sync generation, word length, and number of
words per frame.

15 14 13 12 11 10] 8 7 6 5 4
PSR | WL1 | WLO | DC4 | BC3 | DC2 | DC1 | DCO | PM7 | PME | PM5 | PM4 | PM3 | PM2 | PM1 | PMO

PSR - Prescaler Range
PSR = 1 enables a divided-by-8 prescaler in the clock generator.

WL1~WL0O — Word Length Controi
Selects the number of bits per word (00 for 8-bit data).

DC4-DCO — Frame Rate Divider Controi
Controls the frame divider rate in network mode. In normal mode, these bits
control the word transfer rate.

PM7-PMO0 — Prescale Modulus Select
Selects the divide ratio for the clock generator.

According to the DSP crystal clock frequency and the required SSi clock rate, the
various standard telecommunications frequencies may be generated. The
following table details the values of PM7—PMO for this; note that if the prescaler is
used, these values should be divided by 8.

Maximum
FOSC (MHz) Bit Clock 128 kHz 1.536 MHz 1.544 MHz 2.048 MHz 2.56 MHz
16.384 4.096 32 287 2.65 2 1.6
18.432 4,608 36 3 2.99 2.25 1.8
20.48 512 40 3.33 R 25 2

When the frame sync has to be generated by the DSP on pins SC1 and SC2, bits
DC4-DCO0 of CRA and the FSL bit of CRB have to be configured accordingly. For the
MC145503 monocircuit, S3C2 may be connected directly to TDE/RDE; since these
lines should be high during word exchange, the FSL bit in CRB should be cleared.

The CODEC TDE line should be cycled at 8 kHz to provide the sampling rate clock.
This defines DC4-DCO for a single CODEC in normal mode, according to the
selected bit clock (SCK). Note that the value for a twin CODEC system is based on
cycling TDE at 16 kHz when the line is gated between two devices; thus, the
DC4-DCO0 value shouid be hatved.

MOTOROLA 3

CRB (16 Low Bits of X:$FFED; Read/Write; Cleared by RESET)

This register controls interrupts from the SSI, enabling of the SSI, and clock frame
sync formats. It also contains the control bits for serial control lines SC0-SC2.

RIE — Receive interrupt Enable
Enables the RX interrupt; the DSP will be interrupted if data is read from the SSI

RX register.

TIE — Transmit Interrupt Enable
Enables the TX interrupt; the DSP will be interrupted if data is written to the TX

register for SS1 transmission.

RE — Receive Enable
Enables the SSI receiver. If this bit is not set, the SSI will never receive any data.

TE — Transmit Enable
Enables the SSI transmitter. If this bit is not set, the SSI will never transmit any

data.

MOD — Mode Select
Selects normal mode when clear, network mode when set.

GCK — Gated Clock Control
Selects continuous clock when clear, gated clock when set.

SYN — Synchronous/Asynchronous
Selects asynchronous mode when clear, synchronous mode when set.

FSL1 and FSLO — Frame Sync Length Flags 1 and 0
Selects frame sync length — word length when clear, bit length when set.

SHFD — Shift Direction Flag
Transmit shift register shifts MSB first when clear.

SCKD — Clock Source
Selects external clock when clear, internal clock when set.

SCD2, SCD1 and SCDO — Serial Control Direction Flags 2, 1 and 0
Controls the direction of the SC2, SC1 and SCO lines; clear for input.

OF1 and OF0 — Serial Output Flags 1 and 0
Qutput data for SC1 and SCC when configured as an output.

4 MOTOROLA

e

SR (8 Low Bits of X:$FFEE; Read-Only)
The SR provides status information to the DSP.

RDF — Receive Data Fuli
Set when the RX register contains valid received data which may be read by the

DSP.

TDE — Transmit Data Empty
Set when the TX register is empty and ready to receive another word for
transmission. Note that this does not mean the the last word has been fully
transmitted since the SSI port is a buffered interface.

ROE — Receiver Qverrun Error
Set when the DSP overwrites valid, but unread, data in the RX register. This
condition would occur if the SSI was receiving a stream of serial data, and, for
some reason, the DSP did not read one word. This condition may be used to
provide an aiternative interrupt to the DSP or may be polled to check for the error
condition.

TUE — Transmitter Underrun Error
Set when a frame sync occurs but the SSI has no data to transmit. This condition
may cause an error with many serial devices; it may be used to switch to the
transmit exception interrupt vector or may be polled to detect the error.

RFS — Receive Frame Sync
Set when a received frame occurs during the reception of a word when in network
mode. This indicates the first time slot.

TFS — Transmit Frame Sync
Set when a received frame occurs during the transmission of a word when in
network mode. This indicates the first time slot.

IF1 and IFO — Serial Input Flags 1 and 0
These flags contain the data on the SC1 and SCO lines when configured as input.
They are latched from SC1 and SCO during reception of the MSB of each incoming
word.

TSR (X:$FFEE)
This 8-bit write-only time slot register is used in network mode; it behaves like an

alternative TX data register that is written during unused time slots. In this case,
rather than transmitting data, the STD pin will be three-stated during that time siot.

MOTOROLA 5

PORT C

Some or all of the lines allocated from port C to the SSI must be configured as
dedicated on-chip peripheral pins by setting the corresponding bits of the port C i)
control register (PCC).

PCC (X:$FFE1; Read/Write)

The port C iines are used as follows:

PC3 SCO Bidirectional Serial Control Line
PC4 SC1 Bidirectional Serial Control Line
PC5 SC2 Bidirectional Frame Sync /0
PC6 SCK Bidirectional Serial Clock

PC7 SRD Input Receive Data

PC8 STD Qutput Transmit Data

Initializing the SSI

The recommended procedure for SS| initialization is as follows:

1. Reset the device. This can be a hardware reset, performed by driving the RESET
pin low (power-on reset), or a software reset, performed by executing the RESET
instruction, which resets the on-chip peripherals. e

2. Program the SSI control registers CRA and CRB by writing to their locations in
X-memory.

3. Configure at least one SSI pin as not general-purpose /O by setting the
corresponding control bit in the PCC register.

HARDWARE FOR THE CODEC BOARD

As the twin CODEC board is intended as a development tool for use in a wide variety
of appliications, a great deal of flexibility had to be built into the CODEC interface.
This flexibility has been achieved, but at the expense of the hardware simplicity,
which is possible when using the SSI.

The CODEC used for this board is the MC145503, one of the MC14550x range; the
variety available from this range allows the user to select a device with as few, or as
many, features as required. The MC145503 is the standard CODEC with the
addition of complete access to the on-chip op-amp; itis pin compatible with the older
MC14403 CODEC, which may be used equally well in the board.

8 MOTOROLA

‘,9‘
ey

CLOCK GENERATION

A clock and frame sync generator capable of supplying 2.048 MHz have been
included on the board. The frame sync generator is jumper configurable, allowing
either an 8-kHz or a 16-kHz frame sync for use in single and dual CODEC
applications, respectively.

A further option exists with the serial communications clock and frame sync signals,
they may be generated by the DSP. It is therefore possible to have split
communication rates, with transmission and reception clocks being generated by
the DSP (SSI asynchronous mode) and external clock, respectively, if required.

CODEC SELECTION

One of the more involved parts of the circuit is the CODEC selection circuitry. This
circuitry allows either of the two CODECs to be addressed; in many applications, it
would be possible to accomplish this using the serial control lines, SCO and SC1.
However, since these are multifunction lines, it is possibie that some applications will
require the use of them for frame synchronization or asynchronous clock inputs.
Thus, the board was not restricted to using them alone for CODEC selection.

A better solution allows the option of using one of the serial control lines or one of a
pair of unused port lines; the lines chosen were PBO and PC2. These lines were
chosen assuming that the user would not simultaneously require the use of all
features of all three peripherals; atleast one of the lines that may be used for CODEC
selection should be available. PC2 is the SCi serial clock line; since many SCI
applications do not use the synchronous mode, this line is almost always available.
On the other hand, PBO will always be used when the host port is required.

The CODEC select line must be synchronized to the serial data streams to prevent
data corruption. Additional circuitry is not required for SCO, the serial control line
used, since it is internally synchronized to the transmit frame sync signal; however,
PC2 and PB0O may change asynchronously with respect to the serial data streams
and thus require external synchronization. Synchronization is the function of U5B,;
this is a D-type that synchronizes the select line used to the rising edge of the
transmit frame sync. A 74F74 is recommended for use since other types (e.g.,
74HC74) wili introduce an excessive propagation delay, leading to data corruption.

A second complication results in the fact that some applications require separate
transmit and receive frame synchronization. This requirement has resulted in the
gating of the TDE and RCE signals with the select line separatety, allowing the option
of splitting the frame sync signals.

POWER SUPPLY

Since the CODEC board has been specifically designed to interface to the
application development system, power may be taken from this: however, =5 V must
be generated locally by using a 7660-V inverter.

MOTOROLA 7

JUMPER OPTIONS

The following is a list of the jumpers and their functions:

J1 - Seiects External Clock Generation (2.048 MHz)

J2 Selects External Frame Sync Generation

J3 Selects Synchronous Receive/Transmit Frame Sync
J4 Selects Synchronous Receive/Transmit Data Clocks

JS Disables DSP Receive Frame Sync
J6 Selects Operating Mode of CODECs
J7 Disables DSP Serial Clock

J8 Select either PC2 or PBO for CODEC Selection
J9 Select either SCO or the Output of J8 for CODEC Selection
J10 Select either 8-kHz or 16-kHz Frame Sync Generation

The jumper setting for the example software included in this document are detailed

in Figure 1.

55
DIN - 41612 96 - WAY CONNECTOR

S5
DIN - 41612 96 - WAY CONNECTOR

8 EX I A YT R
2 . -
o0 ® Z2HN: o
® 9 e
. -
o ; ©
L =
2

OOO00

CH2 IP CH2 OIF CH1 i CH1 OIP

1. ECLK_SIN.ASM
2. SIN_INT.ASM

SHl-ee oll=3
s Il o0 -

00 & 2 00
-Io Hlle
eolm ®

S g

OO0O0O

CH2 P CH2 O/P CH1 P CH1 OJ‘P

1. TWOTHRU.ASM
2. FILT ASM

Figure 1. Configuration of the Twin CODEC Board for Example Software

MOTOROCLA

APPENDIX A

TWIN CODEC EXPANSION BOARD SCHEMATICS

5V
4
3

g 910 T
PR cp
1 s 18 o
O sacass * 2 |, usa af->
cPr 3 %172 —Dco
5 nuled = T1
]
e¥ v
o
[
bl
[FLRY
i
18 ’ 85
VoD
7 Fon 1
A1 R, TCO 5 SAD S5-C18
81 w(._ [K}—{ma RGO STD86C17
-
rﬁ—i"! 3
680 ™
180 | A 8 . SCKS5C19
1 u 13 e J7
VAG RDC X = 50035-022
) 10 3 ol e §C135-C21
R4 VLS TOE | (U6 = &7
82 0"’()) B — 4 2 o $C255-C20
8 RCE &}—_.
WA 5 p
+5 V[MC145502
[l
8
>~
A Y
[XLR)
16
Voo
7
PDI 1
RS RE A TOD s
G i aicrn L I
TX-
P 3 12 »
680 | X+ TOC [o PC2 85-C23
1VAG U2 ROC b 12 o—{ PB0S5-A2S
s 10
LU TOE {14
4 arF [560 |—<{Rx0 RCE
(] WA
MC145503 5V
Vss
8
5V 581
$5-820
55832
ol
sy D 5 2
u7 | 10p |+
C1 0p
7660
= 10 o 1C2 Je3
= 3‘
. $5-B2
$5-B1¢
§5-821
$5-831

MOTOROLA

T g g4

APPENDIX B

TWIN CODEC EXPANSION BOARD PARTS LIST

ut2
U3
u4
us
U6
u7z

R1,5
R2,6
R3,7
R4.8
R9,11,12
R10

C1.23
CD

D1
X1

51,234
S5

10

MC145503 PCM CODEC
74HC04

74HC393

74F74

74HCO08

Maxim 7660

10 kQ
5.1 kQ
680 Q
560 Q
4.7 kQ
1 kQ

10 pF tantalum
0.1 uF (decouplers)

Schottky Diode
2.048 MHz Crystal

‘Square Pad' BNC Connectors
DIN41612 96-way connector

MOTOROLA

APPENDIX C
DEMO SOFTWARE FOR TWIN CODEC BOARD

Example 1

;***ﬂ*t*********i*ﬂi*tt***t*t********t*************ﬂ**t*t*t********

FILENAME: ECLK_SIN.ASM

: FUNCTION: CODE INITIALISES 851 TC INTERFACE TO A SINGLE CODEC, WITH

; SYNCHRONOUS Rx/Tx SECTIONS.

; Jl
;s J2
; J3
s J4
; JS

- ON
- ON
- ON
- ON
- OfF

Jb6 - -5V
J7 - OFF
J8 - OFF
J9 - OFF

; J10 SHOULD BE SET FOR 8KHz FRAME SYNC

{THIS IS THE POSITION AWAY FROM THE J10 LETTERING ON THE PCB)

;*****ﬁ********ﬁ***********************t********tt*tt*******t*tt***

include
org

‘\dsp\demo\ioequ’

p:540

;look for IOEQU.ASM

Wk doK e T ek ok ke ke K e e ok ok ok vk e ok e ok ok e ok e W e 9 O o ke ke ek ok o e ok ok o b ok ke R A ok Rk ke ok
’

; program code
;i***t*w**********tt*t&**##x*#*t***tt*********kt*tt*t***k#*i*r*****

start

; SETUP FOR EXTERNAL CLOCK

move
reset

movep
movep
movep

#M SR, r2

#0,%:M CRA

; set up r2 for often-used register

; PSR=0, WL=0 , DC4-0=%13 ,PM7-0=1
#S3200,x:M_CRB; RIE=0,TIE=0, RE,TE =1
#51f8,%x:M PCC ; set CC{8:3) as SSI pins

;****t******Y**********************ttii**********t*****************

; wait for transmission and reception
;t***f*ﬂ**t*t*ﬁ****************ii*titi*****x***tkk******ki*********

waitn
wtde

wrdf

MOTOROLA

T T e 4 e

jelr
movep
jelr
movep
Jmp

#M_TDE, x: (r2),wtde
®0, %:M TX

#M RDF, x: (r2),wrdf
x:M RX, x0

wait

; wait for tde

; write data to TX reg,
;s wait for rdf

; read data from RX reg.

1

Example 2

;***t*******************k**t*t*********t********t******************

o

FILENAME: SIN_INT.ASM WRITTEN : 13/4/88

-

~

FUNCTION: CODE INITIALISES SSI TO INTERFACE TO A SINGLE CODEC, WITH
SYNCHRONOUS Rx/Tx SECTIONS. DATA TRANSFERS USE FAST INTERRUPT

~

~

; J1 - ON J6 - =5V
; J2 - ON J7 - CFF
; J3 - ON JB - OFF
; J4 - ON J9 - OFF
; J5 = OFF

; JL0 SHOULD BE SET FOR 8KHz FRAME SYNC
(THIS IS THE POSITION AWAY FROM THE J10 LETTERING ON THE PCB)

PR LR 222 k222222 s s R R RS RS R RS R EREERERELEREREREEERERLEESES}S

include ‘\dsp\demo\icequ’ ;lock for IOEQU.ASM

AR A E A H AN KA A N TR AA R AR A AR AR T E R AR A AR AKAR A RAKRRKAAAKR AR T RAA AL

reset vector

AT

not neormally required for the ADS; however, this will allow the user to load and
run this file directly, without changing the PC from the ADS’ s default.

r
;
ek kA AR AT E R kTR kA Ak k ko kA AR R r kA A rd bk kb kA hbbhk kk Ak hKh
;

org p:500 e

reset jmp start

I H KR AF AR AR A A A A AR RAK T A A AR A r ko eh kT ok rkrr ek rkr kX wkdw

B
; interrupt routines
;*tt******rﬁt*ﬁ#**********x*********k*t*t***t***tt**ttt*ttttt****xt

org p:S0C
ssi_rx movep x:M RX,a

nop

org p:5$10
ssi_tx movep a, ®:M TX

nop

org p:540

;************#*k*t*t*ii*******t*#*********k*****kktk*kti**t*k****t*

; program cede
;***t*t**k*****t********ttét**kt***k***tt*k**********kt*kx*tktkt*t*

start move #M SR, r2 ; set up r2 for often~used register

reset

movep #53000,%:M IPR; enable SST interrupts on level 2

movep #0,x:M CRA : PSR=0, WL=0 , DC4-0=%13 ,PM7-0=1

movep #5£200,%x:M CRB; RIE=0,TIE=0, RE,TE =1

movep #51£8,x:M PCC ; set CC(B:3) as SSI pins

andi #5fe,mr ; enable interrupts e
wait Jmp wait ; wait for interrupt

12 MOTORGOLA

Example 3

PAGE 132,66,3,3

;*******i********itt******k**ﬁ*************t**‘ﬁ***************ﬁ*tt**

: FILENAME: TWOTHRU.ASM WRITTEN : 13/4/88

r

; HISTORY : THE BEGINNING

FUNCTION: CODE INITIALISES $SI TO INTERFACE TO TWO CODECS, WITH
SYNCHRCONOUS Rx/Tx SECTIONS. CODEC SELECTION 1S PERFORMED

USING PC2 OR PB0

DATA IS READ FROM EACH CODEC, AND OUTPUT TO THE SAME CODEC.

Se v

.

BOARD CONFIGURATION

.

; JL OFF Je -5V

5 J2 OFF J7 OFF

; J3 ON J8 END NEAREST PCB LETTERING
; J4 ON J9 END NEAREST PCB LETTERING
i J5 OFF J10 DCN’ T CARE

;****w*t**tx******t*t**********t********k*****t****ti***t********ﬁ*

include “\dspidemo\iocequ”’ ; look for IOEQU.ASM
org p:$40

'-t**tik****tt*kt*t*****xi**********‘k*i*****tt*t*t*******iii********

; program code
;ﬂ*rt*****t*t*ttt*****it***k***k******t*t*i*t*tt***t**i**t*******t*

start move #M SR, r2 ; set up r2 for often-used register
reset

; SETUP FOR INTERNAL CLOCK

movep #31301,x:M _CRA ; PSR=0 , WL=0 , DC4-0=513 ,PM7-0=1
movep #53234,x:M CRB ; RIE=(,TIE=0, RE,TE =1

movep #51f8,%:M PCC ; set CC{8:3) as 351 pins

movep #51,%x:M PBDDR ; port B as I/O lines

;************f*t*****ttt*k**k*t***tt***ﬁ********t******t*t*k*tx****

; wait for transmission and reception
;*i****ﬁttt*w*tt********tttt****k**t*********k***t***t*i*k***t*****

walt
wtdel jelr #M_TDE, x: {r2),wtdel ; walt for tde

bset #0,x:M PBD ; set PBC line for codec one

movep X0,x:M TX ; write data to TX reg.
wrdfl jelr #M_RDF, %: (r2) ,wrdfl ; walt for rdf

movep %:M _RX, x0 ; read data from RX reg.
wtde?2 jelr #M_TDE, x: (r2),wtde2 ; wait for tde

beclr #0,x:M PBD ; clear PBO line for codec twe

movep X1, %x:M TX ; write data to TX regq.
wrdf2 jelr #M_RDF, x: (r2),wrdfz ; wait for rdf

movep x:M RX, X1 ; read data from RX reg.

jmp wait

MOTOROLA 13

Example 4

PAGE 132,66,3,3
oPT MEX

;tt*rt*tt***t*tRWtiti'ﬂﬂ*************t*****t*********1*************

FILENAME: FILT.ASMWRITTEN : 13/4/88
HISTORY : THE BEGINNING

~

.~

FUNCTION: CODE INITIALISES SSI TO INTERFACE TO TWO CODECS, WITH
SYNCHRONOUS Rx/Tx SECTIONS. CODEC SELECTION IS PERFORMED

USING PC2Z COR PBO

DATA IS READ FROM EACH CODEC, AND QUTPUT TO THE SAME CODEC.

L -

-~

BOARD CONFIGURATION

i J1 CFF J6 -5v

;J2 OFF J7 OFF

; J3 CN J8 END NEAREST PCB LETTERING
;J4 CN J END NEAREST PCB LETTERING
; J5 OFF J1e DON’T CARE

;*t**t*****ﬁt**t*k*t*t**t*ti*t***********t*t**tt**txtttki**t******k

include ‘\dsp\demo\icequ’ ;lock for IOEQU.ASM
maclib ‘\dsp\macros\filter’

maclib *\dsp\macros\compand’

org p:540

FRAK IR AR KR Ak A kKA h Rk k kKR F A RKNKNA K KA A KA AN KA KA KA A TR H AN TN KRR IE kKK &K

; data for filters
’q**ttt‘kti*t***‘k*kk‘k*t************************xttt*k**l’**k**ki******

xfilt_ad equ 0 ; address for x filter storage
n_pts_x equ 32 ; humber of points in x filter
codx_op equ xfilt_ad+n_pts x ; temporary store for x filter cutput
yfilt_ad equ 128 ; address for y filter storage
n_pts_ y equ 99 ; number of points in y filter
cody_op equ yfilt _ad+n_pts_y ; temporary store for y filter output

AR SRR EREE RS SRS RS R SRR SRRt Rl AR R KRR R R R
v

; program code
;*********t****t*ttwt*r*t**#******tt*t*t***t*****t**ttrt*t******«*i

start move #M SR, r2 ; set up r2 for often-used register
move #4,omr ; set data ROM's on for log/linear data access
reset ; reset on-chip peripherals in case not already dene

; set up filter data

init_fir 0,4,n pts_x,xfilt_ad ;initialise filterl
init fir 3,7,n_pts_y,yfilt_ad ; initialise filter 2

14 MOTOROLA

: SETUP FOR SSI INTERNAL CLOCK, SET UP SSI

movep #51,x:M_PBDDR ; port B as I/0 lines

movep #51301,x:M CRA; PSR=0 , WL=0 , DC4-0=513 ,PM7-0=1
1@ movep #53234,x:M CRB ; RIE=0, TIE=C, RE,TE = 1

movep #S1£8,3:M_PCC ; set CC(B:3) as SSI pins

: transmit initial data for codecs

Wl iclr #M_TDE, x: (r2),wl ; wait for tde
bset #0,x:M PBD ; set PBO line for codec one
movep #5d5, x:M _TX ; write first data to TX reg.
w2 jelr #M_TDE, x: (r2),w2 ; wait for tde
belr #0, x:M PBD ; clear PBO line for codec two
movep #5d5, x:M TX ; write first data to TX reg.

-*****ttt********tttt***************************************t****t*
s

; wait for transmission and recepticn
‘-**w*t'k*k*t*ti'***t************t*********t**t*******i****ii*********

wait
belr #0,x:M PBD ; set PBO line for codec ane
wtdel jelr #M_TDE, x: (r2) ,wtdel ; wait for tde
movep xicodx_op,x:M TX ; write data to TX req.
wrdfl jelr #M_RDF, x: (r2) ,wrdfl ; wait fer rdf
movep x:M RX, x0 ; read data from RX req.
allin ; convert to linear data
fir filt rd,rd,n pts x ; filter using filter 1l
linal ; back to logarithmic data for o/p
move al, x:codx_op ; store
bset #0,x:M PBD ; clear PBO line for codec two
; wtde?2 jclr #M TDE, x: (r2}),wtde2 ; wait for tde
movep x:coedy _op,x:M TX ; write data to TX reg.
wrdf? jelr #M _RDF, x: (r2},wrdf2 ; wait for rdf
movep x:M RX, x0 ; read data from RX reg.
allin ; convert to linear for processing
fir filt r3,r7,n_pts_y ; filter in filter 2
linal ; back to log for output
move al,x:cody_op ; store
end Jrmp wait

;*********t*tk**ttttt********t**t*tk********itt*************t*******k***tt*****tt**

; filter coefficients
; FILT! is a LPF, 3dB cutoff at Z2KHz
s FILT2 is a BPF, 3dB points at 1.6KHz and 2.4KHz

;
-***k*t*******t*ﬂ**txt**********i**k***tk******t*************************t******k**
s

t o

MOTOROLA

FILT1

FIRG4 2

16

radix

BBE88R

Q
]

g

HEHEBBRREBEEKEERR

16
yixfilt ad

00C60B, 002157,003775,FFF959,FF9A4E, FFF841, 00C389,00232D
FEA110,FFBS1B, 0257F6, 007B50,FC1572, FF51F1, 06A75B, 00DAFS
F36611,FF0606,284888,40CD26,2848B8,FF0c06,F36611, C0DAF9
06A75B,FF51F1,FC1572,007B50,0257F6, FFBS1B,FEAL10,00232D
00C389,FFF841, FF3A4E, FFF959, 003775, 002157, 00060B

y:yfilt ad

000000, 000164, 000000, FFFAD4, 000000, 0009BF, 000000, FFFSBF
000000, 000000, 000000, 0018477, 000000, FFC5F6, 000000, 0051D8
00Q000, FFBATE, 0000C0, 0C0000, 000000, CO7BB3, 000000, FEFCOE
QC0000,014DD5, 000000, FEF9CS, 000000, 000000, 060000, 019ED4
000000, FCB7BA, 000000, 041DEB, 000000, FCCI11, 600000, 000000
000000,057118, 000000, F3C208, 000000, 12EAFE, 000000, E322E
000000, 1998C5, 000000, E8322E, 0000C0, 12EAFE, 200000, F3C20R
000000, 057118, 000000, 000000, 000000,FCCY911, 000000, 041DEB
000000, FCBTBA, 000C00, 019ED4, 600008, 000000, 000000, FEFICS

080006, 014DD5, 000000, FEFCOE, 000000, CO7B83, 000000, 000000 .

000000, FFBAYB, 000000, 0051D8, 000000, FFCEF6, 000000, 0018A7
000000, 000000, 00C000, FFFSBF, 000000, 0G09BF, 000000, FFFADY
0006000, 00016A, 000000

MOTOROLA

Example 5

-k*******tt************dfil'l't**t****it*******ﬂ********t************!'lttxttt*******91&*ttt
’

@ ; AM Modulator

This example uses the twin codec board to acquire two signals.
One is output without alteration, and also to modulate the second.

~ o w

BOARD CONFIGURATION

-~

; Jl ON J6 -5V
; J2 ON J7 OFF
: J3 ON J8 END NEAREST PCB LETTERING
; Ja ON J9 END NEAREST PCE LETTERING
;I3 OFF J10 END NEAREST PCB LETTERING

*******ﬁ**********i*************k***t***********t*‘kk**********t**t***t*t**t***********

include ‘*\dsp\demo\icequ’ ; look for IQEQU.ASM
maclib *\dsp\macros\compand’

; following is the reset vector
org p:0
jmp start

; these are the SSI interrupt vectors. Only one pair are used

org p:5c

jsr interpt

jsr interpt
= @ ; x memory reservations
P org X:
! outl ds 1 ; storage for data for codec cne o/p
S out2 ds 1 ; storage for data for codec two o/p
- inl ds 1 ; data received from codec 1
‘ 1 ; data received from codec 2

|
: 1‘ in2 ds
i
-*********i**************ii’**)\‘*l‘*k*********************************i*ﬂ*****x*
:

; Start of Pregram

; First Step - Initialisation of hardware and software
'-i-tk****x*i****tt*******k*t***********t*i**t*ﬁ**tt********t*****fﬁ*tt**x*****

org p:540

start reset ; clear out processor
movep #$128,x:M CRA; PSR=0 , WL=0, DC4-0=513 ,PM7-0=1
movep #5b200, x:M CRB ; enable Tx interrupt, external clock
movep #S1ff,x:M PCC; set CC(8:3) as SSI pins

F move #6, omr ; enable data RCM's

movep #52300,x:M BCR
movep #51,x:M PBDDR; port B as [/0 lines
movep #53000,x:M_IPR ; set SSI interrupts to level 2
move #2,sr : and enable interrupts

runtime Jmp runtime : and continue waiting for more data

‘ MOTOROLA

I R s s s R T E P S R E SRS RS FIESRSRRERR R R Xl R R LR SRR 2 808

;
; this is the interrupt routine
;***t*****i**t***t*ttx***********t*******tt***t*******i*i********ﬂ****t**t*t*

interpt jset
bset
movep
movep
rti

proc belr
movep
movep
andi

crdd jsr
rei

#0,x%:M PBD,proc
#0,x:M PBD
xioutl, X:M TX
X:M RX,x:1in2

#0,x:M_PBD
x:out2, X:M TX
X:M RX,x:inl
¥Sfe, mr
process

LR TR

if PBO line set, do frame processing
if not, set PBO line for cedec cne
and write output data to codec one
read input data read from codec two

if not, clear PBO line for ccdec two

and write output data to codec two'

read input data read from codec one

re—enable interrupts to allow I/0 during processing
process data

;***t***************i*************t***ttt**t*i**************k********t*******

; This routine performs signal processing tasks on the data

v
’

process move
move
allin
move
move
allin
move

mpy
linal
move
rts

18

x:inl,a
a,x:outl

al,y0
x:in2,a

al,x0
x0,vy0,a

al, x:out?2

L TR PR

. .

LT

~a

As an example, one channel is used to modulate the other
A AR KA A AR I AKX A A IR AR AT A N A A A NI A A A AR A AR AN AN AR AR AT A AR kA kA ARk Ak Ak ko xdrkw ok k&

read sample from channel 1
output to same channel

convert channell cdata to linear
and transfer for multiply

read sample from channel 2
convert channel 2 to linear
transfer pack for multiply

performmultiply for AMmodulation

convert result teo log format
output modulated result to channel 2

MOTOROLA

APPENDIX D
EXAMPLE FILTER DESCRIPTION

FILTER IMPLEMENTATION TECHNIQUES

The filters used as examples in the demo software are implemented around the
following two software macros. All are FIR filters, with different numbers of taps, and
were designed using a proprietary digital filter CAD system.

The macros were implemented to allow the rapid creation of different forms of FIR
filter. They cover both initialization and execution of the filter.

The first macro, INIT_FIR, is passed various parameters indicating to the assembler
which register to use for the filter, how many taps are in the filter, and what memory
area to use; it then initializes the DSP to perform this filter. Note that this generates
filters with symmetrical memory usage; i.e., if the filter uses the first 100 locations of
X-memory, it will also use the first 100 locations of Y-memory.

The second macro, FIR_FILT, performs one pass of the FiR filter algorithm. t must
be passed the register pair used for data and coefficient access.

MACRO — INIT_FIR

- @ ;**************************l’**tt****k****t***************ti’i****#*t*****************

; FIRFilter Initialisation macro

; Calling Procedure : init_fir coeff,data,points,address

; Parameters : coeff - number of coefficient address register set
in the range 0-7 (ie RO/NO/MO0 - R7/N7/M7}
data - number of data address register set

in the range 0-7 (ie RO/NO/MO =~ R7/N7/M7}
points - number of points in filter

address - ¥/Y memory area to be used for data
and coefficients

; Comments : coeff and data should not be in the same address reglster
group; ie one may be in group 0-3, the other group 4-7

This initialisation routine sets up the filter to use the same
locations in X & ¥ memory.

.
r
.
’
I
.
.
I
’
’
’
’
¢
’
.
.

;k**twtt*ﬂ**k*t*ttttt**kit**k*t***t*x****rt*******t*t*******i*********k**ttt***t****

init_fir MACRQ COEFF, DATA, POINTS, ADDRESS move
¥?ADDRESS, r\COEFF
move #?ADDRESS, r\DATA
move ¥2POINTS-1, m\COEFF
move ¥2POINTS-1, m\DATA
ENDM
MOTOROLA 19

MACRO — FIR_FILT

'-**k***ﬂ******************t*’rlit*l’t****t******9{**********************t*****
; FIR filter macro ; ; input linear data in al ; output result in al ; @
'-**t***tﬁ****i‘***’!i‘*****ﬁ*t*****k*******ﬁ’*I'R*tx****t**k*t****t**t*tk*******
fir_file MACRO CQEFF,DATA
move al, x0
clr a %x0,x: (DATA) + y: {COEFF}+,y0
rep #n_pts_1-1
mac x0,y0,a %x: (DATA) +, x0 y: (COEFF}+,y0 macr
x0,y0,a (DATA) -
ENDM
Filter 1

The first filter was implemented using the FDAS filter design package, available from
Momentum Data Systems. The filter was designed using the Parks-Maclellan
design methodology; the initial specification for the filter is as follows:

Sample Rate 8 kHz

Filter Type LPF

Upper Limit of Passband 1.4 kHz

Lower Limit of Stopband 2.1 kHz

Passband Ripple -0.1dB :
Stopband Ripple -78 dB e
Number of Taps 39

This gives the filter of Figure D-1(a); this transfer function has been evaluated using
extended floating-point arithmetic and is thus the closest achievable theoretically
ideal filter. However, few DSPs will work to this type of accuracy; the coefficients
must be truncated to fit in the word length of the processor used. In the case of the
DSP56000, the word length is 24 bits; Figure D-1(b) is the realizable transfer
function when the coefficients are quantized for this word length.

As can be seen, truncating the coefficients to 24 bits has had no serious effect on the

filter's transfer function. This is not always the case; for example, truncating the
coefficients to 16 bits significantly alters the stopband characteristics of the filter.

20 MOTOROLA

MAGNITUDE UERSUS FREQUENCY

L.000
e I \
g \
= \ !
= P
=] :
a
q |
: B
: .:t LL1) 2.0k t ':l J. 008 4. by
[O 1] 2+42 Re+s2 B9l Eved
FREQUENCY (HERTZ)

@ LOG MAGNITUDE(dB) VERSUS FREQUENCY

- \
- \
n L
3 i
I v
o :
]
-
H
z
u \
[
£
[}
=
-

- i‘\uf\ \\ (f\ [\ N

~i1a0ed

» a0 1. 080 2. 809 3. 000

[31 1] e b3 [L1 E] LI Eedd

FREQUENCY (HERTZ)
wiu PagS FILTER
PIR CRGUIRIRSLE) ONSION

ATOPSAND OUTOFF FREQUIDKY 2108, b MR OF TAFS!
Aerwh_Ind aane. a0 FILTIEDN OFSEOM L ANALYSTS
ML PR IES TN WEETE AYETEM
QUANTIZATION 48 SITE - PLOATINE SOINT FOMENTUM OATA SYETEFS, INC.

PASSSAMD ATPALE IN o8
ATORBAND NIFWLE TN -ull
FARBEANG CUTORFE FREGUENCY
ITOPEAND CLITOM* FRarduibey
DAL ING FREQUINCY

ALL FREQUEHCIEN IN HENTZ

- 1a%e
~Ta. aees

QUAHTIZATION 48 SITE - FLOATIMG POINT

LOM Sass FILTER
IR (EQUINIRALE) ONSION

NUMBER OF TAPE]
FILTEN CABLON b MMALYEIE
SYETEN
FOMENTUN DATA EYETEME, INC.

MOTOROLA

T ————— 1

Figure D-1(a). Theoretical Log and Magnitude Plots
Lowpass Filter

21

MAGNITUDE VERSUS FREQUENCY

L. 008

:

MAGNITUDE

.zee

L.

LOG MAGNITUDE(SB) VERSUS FREQUENCY

EPT T 1 R S—

—Shal}

LOG MAGNITUDE (dB)

wass T ven i P ENIY ’ P
e 502 E+03 o3 e

FREQUENCY (HERTZ)

- L.eed .00 J.e88 4. x99
e € o3 e+ea [2'E)
FREQUENCY (HERTZ>

PASIBAND RIPRLE IN -e8 Low rast FILTER
STOPRAND WIMWLE TN —em FIN (EQUIRISE) DESION
PadBRAtD CUTOFE FREQUEHCY
STOPRAD CUTDFF PRERUENCTY R OF TaRS: 3%
SATL_ING FEERAI FICTEN GESTGN § AWALYELS
AL FREQUENCIES IN ERTI SYSTEM
GUMITIZATION 24 SITS PIXED POINT FRAOTIONM. PONENTUN DATA SYSTENS, JNC.

LOW Sa33 FILTER
FIA (EQUIAIPMLE) DEATAN

MUNBER OF TaRS:
PAwLING FRESURNGY FILTER DEIIGN & mwaLTSLa
ALt PREQUENCIES IM MERTZ avaten

SUANTIZATION &4 SITS FINED POINT FRACT IOMM.

HOMENTUN DATA SYSTERS, INC.

22

Figure D-1(b). Realizable Log and Magnitude Plots
Lowpass Filter

MOTOROLA

@

Filter 2

The second filter was again implemented using the FDAS filter design package,
available from Momentum Data Systems. The filter was again designed using the
Parks Maclellan design methodology; the initial specification for the filter is as

follows:

Sample Rate

Filter Type

Upper Limit of Passband
Lower Limit of Passband
Upper Limit of Stopband
Lower Limit of Stopband
Passband Ripple
Stopband Ripple
Number of Taps

8 kHz
BPF
2.2 kHz
1.8 kHz
1.4 kHz
2.6 kHz
-0.1dB
-78 dB
69

This gives the filter of Figure D-2; the 24-bit version of the filter.

It should be noted that when using a CODEC, only approximately 78 dB of resolution
is available. These fitters were designed with that fact in mind; the DSP56000 will
support filters with cutoffs of —144 dB. In this application, such a filter would be

excessively powerful.

LOG MAGNITUDE{dB) VERSUS FREQUENCY

N

LOG MAGNITUDE (dB)

" Losen T T alees ERT) PR
) L 3 e €

FREQUENCY (HERTZ)

- 1ee0 BANG PASS FILTER

N -Te. nsas FIR (EQUIRLFMLE) OR31GH

PASSIAND CUTORF FREQUENCIES 189%. 84 aaie. o0
1408 30 EL I 3; aw

SA_ING FREQUENCY LTI L] FILTER DESIGH § b, 318

AL FREQUENCIES IN MERTZ | avaTem

QUANTIZATION 24 BLTS PIXED POINT FRACTIONAL

NOMENTURN OATA SYSTEHS, INC.

MAGNITUDE

MAGMITUDE UERSUS FREQUENCY

lllll 3. uen
E

FREQUENCY (HERTZ)

£ IN o8 L] BAND FASS FILTEW
IN ~om -Te. eeet FIR (EQUIRIPFLE) DESIGN

INT FRACT oMM

Figure D-2. Realizable Log and Magnitude Plots
Bandpass Filter

MOTOROLA

23

APPENDIX E

LOG/LIN CONVERSION ROUTINES

This program originally available on the Motorola DSP bulletin board.
It is provided under a DISCLAMER OF WARRANTY available from

Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.
Linear PCM to Companded CODEC Data Conversion Macros

Last Update 20 Apr 87 Version 1.0

linlog ident 1,0

’
’

’

..

~

-~

e me we

.

i oma e %

~

LT T

~

YRR TR

PORNEY

e

. These macros convert 13 bit, linear fractional data into 8 bit companded
. data suitable for transmission to CODEC D/A converters used in

telecommunications applications. Four companded formats are

; supported for the Motorola MC14400 CODEC series and similar devices.

Macro Calls: linsm - linear to sign magnitude conversion

with mu-law companding.

linmu - linear to mu-law companded conversion
without zero code suppression.

1ind3d4 - linear te mu-law companded conversion
with D3/D4 format zero code suppression.

linal ~ linear to a-law companded conversion
with CCITT (G7.12) format.

No macro arguments are reguired. However, these
macros assume that the scaling modes are off
{51=0, S50=0C).

Input data is a 56 bit number in accumulator a. Although any 56 bit
number may be used, the 13 bit linear fraction is assumed to be in

the most significant bits of al. Values outside this fractional range
are automatically converted to a maximum positive or negative companded

; value {dynamic range limiting).

Output data is in the 8 most significant bits of al. The 16 LSB's
of al are zero.

| Sign | Chord Number | Step Number {
| Bit | ! i
| 23 |_ 22 21 201 19 18 17 16|

; Alters Data ALU Registers

x1 x0
az al al a
B2 bl jolo] b

Alters Address Registers
r0

Alters Program Control Registers
pc sr

Uses 0 locations on System Stack

; Latest Revision - April 15, 1987

Tested and verified — April 20, 1987

24

MOTOROLA

6

v
i

linsm macro

_bhias equ

;
tfr
abs
add
move
rep
nerm
asl
asl
neg
asr
asr
asr
asl
ror
and
endm

!

linsm - linear to sign magnitude conversion

$008400 ;absolute bias = 33
a,b a,a ;save input sign, limit input data
a #_bias,x0 ;form input magnitude, get bias
x0,a #7,r0 ;add bias te magnitude, get chord bar
a,a ;limit again

® =2 Ko
oo op R oo 1 i
W

x0,a

;find chord number by normalizing
; biased magnitude to get step number
;isolate step number

b,b ;limit input again

r0,a2 sinvert sign bit, get chord number
scombine chord and step

;get sign bit
;combine sign, chord and step
;clear 16 LSB's

#<SEE, %0

; linmu — linear to mu-law conversion

i

linmu macro

_bias equ

;
tfr
abs
add
move
rep
norm
asl
asl
neg
asr
asr
asr
not
asl
ror
and
endm

5008400 ;absolute bias = 33

a,b a,a ysave input sign, limit input data
a #_bias,x0 ;form input magnitude, get bias
x0,a #7,r0 ;add bias to magnitude, get chord bar

a,a ;limit again

#7 ;find chord number by normalizing
rd,a ; biased magnitude to get step number
a ;isolate step number

a b,b ;limit input again

b rQ,a2 ;invert sign bit, get chord number

a ;combine chord and step

a

a

a ;invert 7 LSB's for mu-law

b ;get sign bit
a #<s$f£f, x0 ;combine sign, chord and step

x0,a sclear 16 LSB’'s

; 1ind3d4 - linear to mu-law conversion with zero code suppression

lind3d4 macro

_bias equ
tfr
abs
add
move
rep
norm
asl
asl
neg
asr

MOTOROLA

$008400 ;absolute bias = 33
a, b a,a ;save input sign, limit input data
a #_bias,x0 ;form input magnitude, get bias
x0,a #7,r0 :add pias to magnitude, get chord bar
a,a ;limit again
#7 ;find chord number by normalizing
r0,a ; biased magnitude to get step number
a ;isolate step number
a b,b ;limit input again
ho) rQ,a2 ;invert sign bit, get chord number
a ;combine chord and step

25

asr a
asr a
not a ;invert 7 LSB's for mu-law
asl b ;get sign bit
ror a #<S£f, x0 ;combine sign, chord and step
and x0,a #<502, x0 ;clear 16 LSB's @
teq x0,a ;suppress zero code
endm
: linal - linear to a-law conversion
linal macro
tfr a,b a,a ;save input sign, limit input data
move #1, a0 ;force to non-zero value
abs a #7,r0 ;form input magnitude, get chord bar
move a,a ;limit again
rep #6 :find chord number by normalizing
norm rQ,a ; magnitude to get step number
jnr <_ok ;jump if normalized
move (r0)- ;adjust for chord zero
_ok asl a ;isolate step number
asl a b,b ;limit input again
neg b rQ, a2 ;invert sign bit, get chord number
asr a scombine chord and step
asr a
asr a
asl b ;get sign bit
ror a ¥<SEEf, x0 ;combine sign, chord and step
and x0,a #<555, %0 jclear 16 LSB’'s
eor x0,a ;invert odd bits for a-law
endm
; This programoriginally available onthe Motorola DSP bulletin board.
; It is provided under a DISCLAMER OF WARRANTY available from 9

; Motorola DSP Operation, 6501 Wm. Canncn Drive W., Austin, Tx., 78735.

12

: Companded CODEC to Linear PCM Data Conversion Macros

; Last Update 20 Apr 87 Version 1.0

loglin ident 1,0

’
’
’

’

; similar devices.

; Macro Calls:

26

. These macros convert 8 bit companded data received from CODEC A/D

: converters used in telecommunications applications to 13bit, linear
fractional data. The internal mu/a-law lookup tables in the DSF56001
X data ROM are used to minimize execution time. Three companded
formats are supported for the Motorola MC14400 CODEC series and

smlin - sign magnitude to linear conversion
with mu-law companding.

mulin - mu~law companded to linear conversion.

allin - a-law companded to linear conversion
with CCITT (G7.12) format.

No macro arguments are required. However, these

macros assume that the scaling modes are off
(S1=0, s0=0).

MOTOROLA

Input data is in the 8 most significant bits of al. The remaining
bits of a are ignored.

.

.

P ;| Sign | Chord Number | Step Number i
ﬂi!’\ ;| Bit | !
;l_23_ _|1_ 22 21 20 | 1% 18 17 16|

Qutput data is in the 56 bit accumulator a. The linear fraction is
in the 13 most significant bits of al and the 11 least significant

bits are zero.

N e N

~

Alters Data ALU Registers

; x1 %0
; a2 al al a
H b2 bl b0 b

: Alters Address Registers
H rd

; Alters Program Control Registers
; pc sr

; Uses 0 locations on System Stack

-

; Latest Revision - April 15, 1987
; Tested and verified - April 20, 1987

~

smlin - sign magnitude to linear conversion

AT TR

smlin macre

_shift equ 580 ishift constant
o _mutable equ $100 ;base address of mu-law table
not a al,b ;invert input bits, save input
1sl a #> shife,x0 ;shift out sign bit, get shift constant
lsr a #_mutable,xl :shift in zero, get table base
tfr xl,a al,xl :swap table base and offset
mac x1l,x0,a ;shift offset down and add te base
move a,rl ;move to address register
nop
; 1sl b x: (r0),a ;c=sign bit, lookup linear data
! neg a a,b ;a=negative result, b=positive result
! tes b,a ;1if pos sign, correct result

; endm
;
; mulin - mu-law to linear conversicn
H

mulin macro

_shift equ $8eC ;shift constant
_mutable equ $100 ;base address of mu-law table
move al,b ;save input
1sl a #> shift,x0 ;shift out sign bit, get shift constant
lsr a # mutable,xl ;shift in zero, get table base
tfr x1l,a al, =l ;swap table base and offset
mac x1,%x0,a ;shift offset down and add to base
move a,rQ ;move to address register
. nop
' lsl b %x:(x0),a ;c=sign bit, lookup linear data

MOTOROLA

neg a a,b ra=negative result, b=positive result

tcs b,a ;1f pos sign, correct result
endm
H
; allin - a-law to linear conversion @

r

allin macro

_shift equ $8Q ;shift constant

_atable equ $180 ;base address of a-law table
move al,b ;save input
1sl a #> shifeg,x0 ;shift out sign bit, get shift constant
lsr a #_atable, xl ;shift in zero, get table base
tfr x1l,a al,xl ;swap table base and offset
mac x1l,x0,a ;shift offset down and add to kase
move a,r0 ;move to address register
nop
1s1 b x:(rQ),a ;c=sign bit, lookup linear data
neg a a,b ;a=negative result, b=positive result
tcs b,a ;1f positive sign, correct result
endm

28

S

MOTOROLA

APPENDIX F
TWIN CODEC EXPANSION BOARD PCB ARTWORK

®

Ll
;:; :I: ;
[

. Figure F-1(a). PCB Artwork
@ Component Side

-]

000
000 -] o
00 L]
900 l ’
b9-$4 sobpge TWIN CODEC
T ° EXPANSION BOARD
e00
voo0 pdd oo
000 |
94 §°% o0d
.12 o0 8 L]

9 A

o

-] o900

- -}

!

a'

°°°°°°°§;I ass

' < EXPANSION BRD 6" ’ i

Figure F-1(b). PCB Artwork
Solder Side

MOTOROLA

o -

|
... 0000 ‘ Heoe o
90000008
o O
. . 0000 : HOOOOOSS
. [[I 11
® O 8 mececese
. . [Qes@dee
] S meccoee
o © 2000000
. . : Heoso s 0o
@ 00 e 000
. .. : ne 09000
® 000000
@ [... :
| ‘ EXPANSION BRD 6" » I

I i —_— CBA
zeee [B %\ +()
(o

O 1
1
S3 u2 c2 1 3
: g
u1 55
i U
® W]
me—oe CD Jd
oo
. C——
us [:] D Jz7
cD -
E—1:| goO
1 2z N D
U4
J8
Q o
X1 2 1 ua x| J0
B CcD
I" EXPANSION BRD 6" bl

Figure F-1(d). Screen Printing

30 MOTOROLA

B ————
B ———————
"
20—
B e ——————————————

Literature Distribution Centers:

USA: Motorola Literature Oistribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motoroia Ltd.; European Literature Centre; 88 Tanners Drive, Blakeiands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Matorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan. B

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Siticon Harbour Center, Na. 2 Dai King Street, Tai Po industrial Estate, 4
Tai Po, N.T., Hong Kong. L

L @ MOTOROLA
ATNI0T—0 PHINTED TILOA 415 MPERIALLTHE 0938 000 JSP (GAVAA APR12/D
00 P O

