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“An adaptive
control system
measures a
certain
performance
rating of the
system (or plant)
to be controlled.”

SECTION 1

Introduction

This section shows how Motorola DSP56000/
DSP56001 digital signal processors can be used to
solve real-time digital control problems. After review-
ing the relevant basic theory of adaptive control, we
look at a number of implementations.

1.1 History of Adaptive
Control

Computerized industrial process control has advanced
by leaps and bounds over the last ten years in hard-
ware and methods. The development of new
microcontrollers and digital signal processors (DSPs)
has given rise to important changes in regulation sys-
tem design. The capabilities and low cost of the latest
DSPs make them ideal for a wide range of regulation
applications. Further, and despite the fact that analog
regulators still enjoy wide popularity, DSPs offer higher
performance than their analog predecessors.

Very few of the microcontroller-based digital regula-
tors developed to date fully exploit the key
advantages of microprocessor technology. Most de-
signers seem content to emulate the behavior of
traditional PID analog regulators. Sad though it may
be, this is indeed an accurate reflection of industrial
reality, in many cases.Unfortunately, conventional PID
controllers, whether analog or digital, are only efficient
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where the system to be controlled (the plant) — or
rather the model of that system represented within the
controller — is characterized by constant parameters
applicable at all operating points. And yet, most com-
plex industrial systems are characterized by
parameters that vary with the system operating point
[REN-88], thus failing to meet the basic assumption
just stated. Two examples are heat exchangers (such
as those used in the production of textile fibers) and in-
ternal-combustion engines. In such cases, a control
signal generated by a conventional PID controller (i.e.
one for which the parameters are computed once and
for all on the basis of a constant-parameter system
model) will inevitably give rise to progressively more
degraded operation of the overall control loop as the
errors between controller and actual process parame-
ters increase. This can only be corrected by modifying
the controller coefficients . . . Which brings us to adap-
tive control.

1.2 Theory of Adaptive
Control

Together or separately, microcontrollers and DSPs
enable us to design higher performance regulation
systems using more sophisticated digital control al-
gorithms, many of which have already been
developed under and tested in industrial conditions
[I[RV-86]. Adaptive control represents an advanced
level of controller design. It is recommended for sys-
tems operating in variable environments and/or
featuring variable parameters.

1-2
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Although adaptive control has only been around for
a few years, it has already been successfully em-
ployed in a number of industrial applications. The
basic principles were published by Kalman, in 1958,
for the stochastic approach, and later by Whitaker
for the deterministic approach. However, the tech-
nigue was not viable for two reasons:

« The solutions proposed at the time were not
very “robust”.

¢ The hardware (computers) required for
implementation were either unavailable or far
too expensive.

Currently, however, the technique is rapidly gaining
new supporters. This is largely a result of recent
work that has improved algorithm robustness
[SAM-83 and IRV-83] and of the development of mi-
crocontrollers and/or DSPs which make it possible
to support and implement the new algorithms.

Adaptive control is a set of techniques for the au-
tomatic, on-line, real-time adjustment of control-
loop regulators designed to attain or maintain a
given level of system performance where the con-
trolled process parameters are unknown and/or time-
varying. The use of microcontrollers and/or DSPs in
control loops offers the following advantages:

» Wide range of alternative strategies for controller
design and mathematical modelling,Freedom to
use regulation algorithms that are more complex
and offer higher performance than PID

¢ Technique is suitable for process control
applications involving time delays
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« Automatic estimation of process models for
different operating points

¢ Automatic adjustment of controller parameters

¢ Constant control system performance in the
presence of time-varying process characteristics

« Real-time diagnostic capability

Adaptive control is based entirely on the following hy-
pothesis: the process to be controlled can be
mathematically modelled and the structure of this
model (delay and order) is known in advance. The de-
termination of the structure of a parametric system
model is thus a vital step before going on to design an
adaptive control algorithm. The identification tech-
nique should be selected by a specialist in automatic
control. The capabilities of the adaptive control algo-
rithm depends, to a large extent, on the faithfulness
with which the model represents the system and its
behavior. The chief advantage, in practical terms, of
adaptive control appears to be the capability to ensure
quasi-optimal system performance in the presence of
a model with time-varying parameters.

Once the model and its structure have been identi-
fied, the next step is to select a control strategy.
This choice depends in part on the nature of the
problem (regulation or tracking) and on the system
characteristics (minimum phase or not). The num-
ber of options available depends on the extent of
our advance knowledge of these characteristics.
The aim is to select a strategy yielding a satisfactory
control law in the case where the system model and

1-4
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its environment are fully determined. The strategies
most commonly encountered in adaptive control are:

¢ For minimum-phase systems (or for systems where
the non-minimum phase is fully determined):
“minimum-variance control”  or “control using
reference models”

« For non-minimum-phase systems: “pole-placement
control”  or “quadratic-criterion optimal control”

The adaptive control algorithm is then designed in
accordance with the structure of the system model
and the selected control strategy. As a rule, the
adaptive control algorithm can be seen as a combi-
nation of two algorithms. An identification algorithm
uses measurements made on the system and gen-
erates information (a succession of estimates) for
input to a control law computation algorithm. This
second algorithm determines, at each instant, the
adaptive controller parameters and the control to be
applied to the system. This type of adaptive con-
trol is termed indirect . However, the breakdown
into two parts is not always apparent. For example,
no control law computation algorithm is required at
all if the parameters characterizing the adaptive
controller are directly identified. This is known as di-
rect adaptive control

We will look first at adaptive control based on a di-
rect scheme using a reference model . There are
two main reasons for this choice: first, this type of
control is relatively easy to implement; second, it has
already found practical applications in industrial sys-
tems [LAN-84], [DAH-82].

MOTOROLA 1-5



A discussion follows on an adaptive control system
based on an indirect scheme which, to date, judging
from our bibliographic research, offers the best sys-
tem response. This type of control was introduced
by Clarke [CLA-84]. It produces optimal control over
any system, with or without time delays and irre-
spective of whether the inverse is stable or
unstable. This scheme is known as generalized
predictive control

/ Disturbance
Output
Reference Adaptive —>® Plant :
input controller \ o
Desired
performances
A
Comparison | _ | Adjustment iy
. rating
system system measure

Figure 1-1 Basic principles of adaptive control

The performance rating of a system is measured and compared to the design
goal. The adaptive system modifies the parameters of the adaptive controller
in order to maintain the performance rating close to the desired value.

The basic principle underlying adaptive control
systems is relatively simple (see Figure 1-1). An
adaptive control system measures a certain per-
formance rating of the system (or plant) to be
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controlled. Starting with the difference between the
desired and measured performance ratings, the
adjustment system modifies the parameters of the
adaptive controller (or regulator) and the control
law in order to maintain the system performance
rating close to the desired value(s).

Note that, in order to design and correctly adjust (or
tune) a good controller, we must specify the desired
performance of the regulation loop and determine
the dynamic process model describing the relation
between variations in control signals and output.
This means we must determine the representation
model which, in turn, means that we must establish
the system's order and time delay.

The literature on adaptive control includes hun-
dreds of papers on different approaches to the
problem. As a result, engineers who are not special-
ists in adaptive control theory often find it very
difficult to determine which approach they should
use to solve a given problem. The aim of this appli-
cation note is to introduce the reader to the two
main principles of adaptive control identified to date
and to guide the design engineer in the selection of
control strategies applicable to a given situation.

The two principles selected for discussion were cho-
sen on the basis of the goal of any design project,
namely the determination of a real-time control law
applicable to a given process. The total number of
operations required to parameterize the control law
is assumed to be one of the criteria most important to
the design engineer. It is true that for high-speed in-
dustrial systems using microcontrollers — such as
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automotive Anti-lock Braking Systems (ABS) and ac-
tive suspensions, to name but two — the total
number of operations assigned to the control algo-
rithm cannot be very high. Given their internal
structure (Von Neumann), conventional microcon-
trollers only have a limited real-time computation
capability, thus directly limiting the complexity of the
control algorithms.

The architecture of Motorola DSP56000/DSP56001
devices features a multi-bus processor that is highly
parallel (extended Harvard architecture) and spe-
cially designed for real-time digital signal
processing. In view of their computational power,
these devices can be used to implement sophisti-
cated control algorithms and thus to control high-
speed industrial systems.

Apart from the fact that digital signal processing is
now widely employed, the chief advantages of Mo-
torola DSP56000/DSP56001 controllers can be
summarized as follows:

« Lower system component costs because a single
DSP56000/DSP56001 controller can replace not
only the microcontroller but also the components
required for 3-D lookup tables to digitally map
model characteristics (as in the case of injection
systems, active suspensions, etc.).

Further savings can be achieved by using digital
techniques (e.g. an observation model) to
replace expensive Sensors.

The computations performed by DSP56000/
DSP56001 devices are more accurate than

1-8
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microcontroller interpolation between the inputs
of a 3-D LUT (lookup table).

¢ A single DSP56000/DSP56001 controller can
analyze and process several input parameters
at a time.

Each Motorola DSP56000/DSP56001 device is
both a high-speed microcontroller and a powerful
digital signal processor. The DSP56001 program
RAM can accommodate 512 words of 24 bits. The
RAM can be loaded, following a clear, from a 2K x
8-bit EPROM or from a host processor. For mass-
produced products, the DSP56000 offers a pro-
gram ROM of 3.75K words of 24 bits which can be
factory programmed for stand-alone applications.

Apart from the amount of memory space allocated
to the program field, the DSP56000 and DSP56001
controllers are identical, with two separate memory
spaces for data. A further feature is multiplication
with accumulation of previous values, a capability
much used by real-time control algorithms. A
DSP56000/DSP56001 controller can multiply two
24-bit numbers, add the 48-bit result to the contents
of the 56-bit accumulator, and simultaneously ac-
cess the two data memory fields, all in a single
instruction cycle.

For fast input/output, DSP56000/DSP56001 devic-
es feature three peripheral devices in the same
package, namely: a host processor interface (HI), a
synchronous serial interface (SSI), and a serial com-
munications interface (SCI). When the SCI is not
required for communications, the baud rate genera-
tors can be used as timers. Depending on the way
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in which the peripherals are configured, DSP56000/
DSP56001 can offer up to 24 1/O lines. These fea-
tures make DSP56000/DSP56001 controllers ideal
for a wide range of real-time control applications
where their processing power can be used to advan-
tage. Applications include: disk drives, motor
control, automotive active suspensions, active noise
control, robotics, etc. ]
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SECTION 2

d”—lva)+

Numerical Domain
Representation

2.1 Parametric Models

For any continuous, mono- or multi-variable physical
system, the search for a suitable parametric model —
whether by empirical methods or on the basis of experi-
mental data — leads to the use of linear differential
equations to represent the process to be identified. These
equations are of the form:

dMu@) ,

dtn

l dtn—l

~ora Y = BO om B U Eqn. 2-1

In nature, no system is rigorously linear in the mathe-
matical sense. However, most processes approach
linear behavior over a limited operating range.

Contrary to non-parametric models (finite impulse re-
sponse), parametric models depend on a specific
structure. The parametric model characterizes the dy-
namic behavior of a physical system in terms of its
transmittance or transfer function. This may be de-
duced using a z-transform. Applying such a transform
to expression Eqn. 2-1, we obtain:

MOTOROLA
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-d -m
G@) = Y@) _ ° (bg* .- +bpz ) _z%eY Eqn. 2-2
U@ 1+ alz‘1 o+ anz‘n Az
where:
. (al,. . .,an) and (bo,. . .,bm) represent the
parameters of the sampled model
« d represents the time delay (for i < d then, bj = 0)
* n determines the order of the model (n = m)
e U (z) is the model input
e Y (z) is the model output
The most widely used parametric model is illustrat-
ed in Figure 2-1:
b(k)
Uk ——— a98(a”h) Y(K)

NG|

Figure 2-1  Parametric model description in terms of process input and output
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with:
« g-1 is the time delay operator.
«A(gl)=1+a1qgl+ . .+apg1
» B(q-1) = bo+. . .+bmq-1

« b(k) represents all noise sources expressed in
terms of their equivalent effect on output.

The model described by equation Eqn. 2-2 is known
in the literature as the polynomial parametric model.
Expression Eqn. 2-2 is solely in terms of the pro-
cess input and output. The model can also be
represented as a first-order differential equation by
converting expression Eqn. 2-1. This representa-
tion is known as the parametric state model and is
defined in accordance with equation Eqn. 2-3.
Throughout the remainder of this application note
we will assume that polynomial B(g-1) is of the
same degree as polynomial A(g-1).

Xe1 = PEX+ QLU
_ Eqn. 2-3
Y, = CIX, a

where:
» Xk is the state vector of dimension ((n+d) x 1)
* P s the state matrix of dimension ((n+d) x (n+d))
e Q Is the input vector of dimension ((n+d) x 1)
« C is the output vector of dimension (1 x (n+d))

e n is the order of the system
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The relation between these two representations of
the parametric model is given by:

L _ o
'10 0 d (vector from Eqn. 2-2)
Q 0
P=|-a, Q=|bo| c=[10 0] Egn. 24
0 0
1
00 0 b,

While it is true that the parametric model approxi-
mates the behavior of the physical system, one must
be cautious when it comes to the physical interpre-
tation of the parameters contributing to the model's
structure.

The purpose of the parametric model is to approxi-
mate as closely as possible the behavior of the
system by ensuring the closest possible match be-
tween predicted and observed output. This is done,
moreover, within the limits of an accuracy vs. sim-
plicity trade-off that the automatic control specialist
defines when choosing the parametric model to
generate the control law.

The advantages of the parametric model approach
lie in its structure:

« It enables us to describe, sufficiently accurately,
the dynamics of an arbitrary physical process
using fewer parameters that are required by the
non-parametric model (finite impulse response).

2-4

MOTOROLA



e It is relatively simple to implement on the
controller. Using a well-known property of the z-
transform (time delay theorem), we can proceed
from the polynomial parametric model to the
difference equation of the following form:

Y(K) = by U(k—d) + ... +b U(k-n—d)-a; V(k—1) - ... —a, D¥(k-n) +e(K)

Egn. 2-5

with: e e (k) representing the generalized or
residual noise

ee(k)=b(k).(1+a1qg-1l+ ..+ang1)

Given that we now have the time-history of the input
and output signals, we can readily predict the model
output values. This important point is widely used in
modern regulation theory.The state parametric
model is useful for describing multivariable systems.

The chief drawback of the parametric model is the
difficulty of determining the order of the system. If
the designer underestimates the process order,
model predictions will not match actual system be-
havior. On the other hand, if the designer
overestimates the order, the increased complexity of
the model will mean longer computation times. This
same comment also applies to the estimation of pure
time delays. The automatic control specialist must
therefore pay careful attention to this phase of the
modelling procedure. With most industrial systems,
we do not have access to the states values, which is
a major handicap for the state parametric model.
There are state observer technigues allowing the

MOTOROLA
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state estimation, but having a heavy penalty in
terms of computation time.

2.2 Adaptive Control
Techniques

Consider the two adaptive control techniques ap-
plied to a closed-loop physical system as shown in
Figure 2-2:

Disturbance
d(t)

Input
') Proposed +
Adaptive + Plant _ Output
-~ Controller y(K)
u(k) G(2)

Figure 2-2  Adaptive controller in closed loop

This system will be used to measure the performance of the adaptive controller
as it works to maintain (or equal) the desired response in the presence of a
disturbance.

In these examples, G(z), the plant transfer function,
is defined as follows:

21 II(b0 + blz‘l) _ Y@

G(z) = = 2 i
1+ alz‘1 + azz—2 @ Ean. 2-6
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The nominal values for the process parameters are:

bg = 0.039
h =0.031
a; = -1.457
ay= 0.527

The performance of the adaptive controls present-
ed here will be evaluated on the basis of the
system's capacity to equal the closed-loop re-
sponse (Figure 2-2) with the desired performance.
Before going on to make the different comparisons,
we must first define the standard (input and output)
signals to be used with the simulated system and
the desired closed-loop performance. The input and
disturbance signals are shown in Figure 2-3. Note,
these signals will be assumed to be fixed through-
out the remainder of this section.

Reference signal: R(t)

Disturbance signal: D(t)

i

Magnitude
Magnitude

0 I5 I 1IO I 15 0
Time (sec.)

T T T
5 10

Time (sec.)

15

Figure 2-3  Standard input and disturbance signals

Noise free representation of the reference input and disturbance signals

MOTOROLA
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In order to characterize the dynamic response of
the uncorrected (i.e. without regulation) simulated
system, we apply the input signal defined in Figure
2-3. The system dynamic response is illustrated in
Figure 2-4.

Output signal in open loop

2
S17
2
501
©
=

-1

-2 T T

0 5 10 15
Time (sec.)

Figure 2-4  Dynamic response in open loop

Dynamic response of the uncorrected system
when it has been excited by the reference signal of
Figure 2-3.

The function of the different regulators presented in
the following pages is to improve the dynamic be-
havior of the simulated system. Two constraints are
imposed on these regulators. These constraints will
be used, at first, to determine the desired perfor-
mance of the closed-loop system. The constraints
are defined as follows:
« In order to respond more rapidly to variations in the
reference value and/or the level of disturbance, we

require that the simulated system have a settling
time of no more than 2.5 seconds.

2-8
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» During the dynamic response, the variation in the
output signal of the simulated system shall be set
for an overshoot of 70% relative to the final value.

The desired system dynamic response is illustrated
in Figure 2-5 (without disturbance):

Desired output signal in closed loop
2
o 14
©
2
5 01
3]
=
1 4
-2 T T
0 5 10 15
Time (sec.)

Figure 2-5 Desired dynamic response in closed loop

Dynamic response without disturbance of the closed
loop system.

Toillustrate and compare the performance of the dif-
ferent adaptive controllers, we introduce, for each
method of adaptive regulation, a variation in the ref-
erence value (R(t), Figure 2-3), followed, as soon as
the closed-loop system response has stabilized, by
a disturbance (D(t), Figure 2-3). The impact of the
disturbance is then monitored. ]

MOTOROLA 2-9






“The main
advantage of
generalized
predictive
control is that
the control is
always stable
irrespective of
the nature of the
system to be
regulated (the
plant). “

SECTION 3

Adaptive Control and
Adaptive Controllers

3.1 Adaptive Control Using
Reference Models

3.1.1 Introduction

An adaptive controller may be of conventional de-
sign or it may be more complex in structure,
including adjustable coefficients such that their tun-
ing, using a suitable algorithm, either optimizes or
extends the operating range of the process to be
regulated. The different methods of adaptive control
differ as to the method chosen to adjust (or tune) the
control coefficients.

This section discusses adaptive control using paral-
lel-serial reference models which, along with self-
tuning control, are the only control schemes to have
found practical applications to date. The adaptive
control scheme using parallel reference models (i.e.
located in parallel on the closed-loop system) was
originally proposed by Whitaker in 1958. The version
proposed at the time offered a solution to the tracking
problem, but not the regulation problem. Note that a
tracking problem is defined when the reference value
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(r(k)) varies and when no disturbances (d(k)) are
present in the output (y(k)). A regulation problem is
defined when the reference value is zero or steady
and when there is a disturbance in the output such
that its effect must be reduced by the control (u(k)).

The parallel model structure is suitable for solving
the tracking problem and is demonstrated by the
fact that the model requires reasonable control sig-
nals; the structure is not suitable for solving
regulation problems and is demonstrated by the
fact that, in this case, the model requires unreason-
able control signals. We obtain unreasonable
control signals because the estimated error (differ-
ences between the output of the parallel reference
model and that of the system) converges to zero
during a single sampling interval. To attenuate the
control signal, a serial reference model (i.e. in se-
ries with the estimated error) can be added to the
general structure. This imposes a converge-to-zero
requirement, with a chosen dynamic response, that
is less severe than in the previous case [IRV-85].
Let us now look at this adaptive control method us-
ing parallel-serial reference models more closely.

3.1.2 Closed-Loop System

An adaptive control system comprises not only a
feedback-type control loop (or inner loop) including
an adaptive controller, but also an additional, or out-
er, loop acting on the controller parameters in order
to maintain system performance in the presence of
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variations in the process parameters. This second
loop also has a feedback-loop-type structure, the
controlled variable being the performance of the
control system itself. The arrangement is schemat-
ically shown in Figure 3-1.

where: e ep represents the parallel estimated error
* es represents the serial estimated error

This type of adaptive scheme offers the advantage
of being able to accommodate separately both
tracking and regulation problems. This is because
the desired performance of the controlled system
are defined by a parallel model for a tracking prob-
lem and by a serial model for a regulation problem.

. Parallel Reference | Yref(K)
Model
®s[seri epy .
Serial Reference
Model L+
Y
Identification
Algorithm
Adaptive Plant
> Controller » G(2) .
“ / T 1 y (k)

Figure 3-1 Adaptive control using reference models in closed loop

Note that this system not only has a feedback type control loop that includes an
adaptive controller but also an outer loop that acts on the controller to maintain
performance in the presence of disturbances.
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3.1.3 Control Law

The dynamic behavior of the simulated system is
defined by a parametric model. We recall that its
general structure is given by the relation:

A YK = g9 B(g L) k) Eqn. 3-1

where:

e n =2 (order)

e d =1 (time delay)

*Alql)=1+a1q1l+a2q2

* B(q"1) = bo + b1.q-1
The order of polynomials A(g-1) and B(g-1) and
also the time delay of the parametric model enable
us to correctly dimension the control law. To bring
us nearer to the formulation of the adaptive control

law, we first consider the case where the system
parameters are known.

3.1.3.1 Known System Parameters

With the objectives of tracking and regulation being
independent, we can formalize their respective
equations as:  A: Regulation (r(k) = 0).

The problem here is to determine a control (u(k))
that will eliminate an initial disturbance (d(k)) with a
dynamic response defined by the relation:

AlahDrk+d) = 0 Egn. 3-2
with:
o d = 1
e n=2 (order)
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Ar(gl)=1+ar1.g1l +ar2.92 Eqgn. 3-3

The polynomial Ar(g-1) is determined by the design
engineer to be asymptotically stable for order n.
The polynomial represents the serial (or regulation)
model. B: Tracking (d(k) = 0).

The problem here is to determine a control (u(k))
such that the system output (y(k)) satisfies a rela-
tion of the form:

Ap(q_l) ¥ (k +d) = Bp(q—l) [R(K) Eqn. 3-4

where:
e n =2 (order)
e d =1 (time delay)
« Ap(q1) =1 +ap1.q-l +ap2q?
* Bp(q-1) = bpo + bp1.9-1

This corresponds to tracking a trajectory defined by
the following reference model:

-d -1
9B,

Eqgn. 3-5
Ax@™)

-1y =
Gy =

In general, one may assume that there is some link
between the tracking dynamic response Ap(q-l)
and the regulation dynamic response Ar(g-1). How-
ever, in this application note, and for the sake of
simplicity, we shall assume identical dynamic re-
sponse to a variation in either load or reference
value, i.e. we shall assume Ap(g-1) = Ar(g-1). We
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shall further assume a reference model such that
the output is described by the relation:

Ap(q_l) Ovref(k +d) = Bp(q—l) (R(K) Eqgn. 3-6

Under these conditions, the aims to be achieved by
the control signal can be expressed in the form:

egk+d) = Ap(q—l) OY(k+d)—Yref(k +d)] =0
Eqgn. 3-7
The control law, with a parallel-serial reference

model, can be deduced by minimizing the following
guadratic criterion:

Jk+d) = e2(k+d) = [Ap(q—l) Y (k +d) — Yref(k + d)]] 2

Eqgn. 3-8

In the case of unit time delay (d = 1), we can deter-
mine the control law directly by minimizing criterion
Eqgn. 3-8 relative to u(k). The problem may be differ-
ent, however, if the pure time delay of the controlled
system is equal to or greater than twice the sam-
pling period. In order to obtain a causal regulator,
i.e. one such that u(k) is of the form:

UK) = FY(), Y(k=1), oo ,Uk-1),...)
Eqgn. 3-9
We must first rewrite the process output prediction
in terms of the quantities measurable at time k and
prior to time k. The prediction can be expressed in
the form:
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Ap(q‘l) ¥(k+d) = Fy(Y(k), Yk-1),........., UK),U(k -1),...)
Eqgn. 3-10

In the literature, an expression of this form is known
as a “d-step-ahead predictive model”. An expres-
sion such as Eqn. 3-10 can be obtained directly
using the general polynomial identity:

A = Agh s +a @ REY  Egn. 311

where: » S(q-1)=1+s1.qg1+...+sd-1.g-0+1
* R(@1)=ry+r1.gl+...+m1.qn*1

This relation yields a unique solution for polynomi-
als S(g-1) and R(g-1) when the degree of S(g-1) is
d-1. Polynomials S(g-1) and R(g-1) can be ob-
tained either recursively or by dividing polynomial
Ap(a-1) by polynomial A(g-1). Polynomial S(g-1)
then corresponds to the quotient while q'd.R(q-l)
corresponds to the remainder. Multiplying both
sides of Eqn. 3-11 by y(k+d) and taking into account
expression Eqgn. 3-1, we obtain:

A vk +d) = R Ov(k) + B@ ) (a7 (UK
Egn. 3-12

This can be rewritten in the form:

A(a™D DY(k+ d) = R@@™) DY(K) + by LU(K) + Bg(a™) UGk~ 1)
Eqgn. 3-13

where:  B(q-1).S(q-1) = bo + g-1.Bs(q-1)
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Substituting Eqgn. 3-13 into criterion expression
Eqgn. 3-8, we obtain:

Ik +d) = [RE™) DY(K) + by LU(K) + B@™) (Uk—1) ~A (g™ Drref(k + )] 2

Eqgn. 3-14
The criterion can now be minimized by determining
the control u(k) for which:

dJ(k+d) _ 0 Eqgn. 3-15
oU(Kk)

Combining this with expression Egn. 3-14, we
obtain:

8J(k +d)_
3U(k)

bg LIR(@™) DY(K) + by U(K) +By(ah) (U —1) - A (q~h) Dvref(k +d)] = 0

Eqgn. 3-16
Now, using expression Eqn. 3-6, we obtain the re-
quired control in the form:

U(K) = b—lo [B,@™) (R ~R@™) OY(K) ~By(a™) LUk -1)]

Eqgn. 3-17
where polynomials Bp(g-1), R(g-1) and Bs(g-1) are
defined by:

Bp(q-1) = bpo + bp1.g-1
R(g-1)=(ap1-a1) +(ap2-a2).q-l=ro+r1.q-1
Bs(q-1) = b1 = bso
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The control expressed in relation Egn. 3-17 thus
has the property of reducing criterion Eqn. 3-8 to
zero while independently meeting the requirements
of both tracking and regulation.

In other words, in the case of regulation (r(t) = 0),
criterion expression Egn. 3-8 represents a mini-
mum-variance condition on the process output.
Physically, this criterion implies minimizing the
mean energy of the “filtered error” expression in re-
lation Eqn. 3-7.

The equations presented in this section were made
possible by the fact that we knew the parameters of
the controlled process. Let us now look at the case
where these process parameters are unknown.

3.1.3.2 Unknown System Parameters

In the adaptive case, the structure of the controller
is the same as for known system parameters, ex-
cept that we replace the fixed parameters by
variable ones. With the role of the adaptive, or out-
er, loop being to determine the correct values of
these parameters, the self-tuning controller equa-
tion can be derived from Eqn. 3-17 and written as:

UK = === (1B TR - Rek, a4 DY) - Bg(k, a7 (k- 1)
bo(K)

Eqgn. 3-18
where:  by(k), ro(k),. . ., bs1(k), .. ., are the controller
parameter estimates at time k
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By defining the tuning vector 6(k) and the measure-
ment vector W(k) by the following expressions:

6T = [ B Bsg® 7ol 7109
Eqgn. 3-19

WK = [Uuk) Uk-1) YK Yk-1)]

The controller equation can be rewritten in the form:

By(@™) (RK) = 87(k) B¥(K) Eqn. 3-20

The next step is to determine the recursive param-
eter-vector self-tuning algorithm.

3.1.4 Determination of Controller
Parameters

The self-tuning controller parameters are deter-
mined by recursive minimization of a least-squares
type criterion starting from asymptotic stability con-
ditions dictated by the model-process error. The
aim then is to estimate the parameter vector at time
k in such a way that it minimizes the sum of the
squares of the filtered errors between the process
and the model over a time-horizon of k measure-
ments. This is expressed by the relation:
k k
3,00 = 3 e20) = Y [Ay@H aY) - Yref()]?
i=1 i=1
Egn. 3-21
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This same condition can also be expressed in the
form:

k
300 = Y [By@H) RO-8TOIMNZ  Eqn 322
i=1

The values of 8(k) which minimize criterion Eqn. 3-22
are obtained by determining the value of 8(k) which
cancels in the expression:

30,0

6é(k) = Egn. 3-23

Applying relation Egn. 3-23 to relation Eqn. 3-22,

we obtain:
5J1(k) k ) .
e i - )—0"( i =
58(K) i:zl[q’(l) E[Bp(q ) [R(i) () W@ = 0

Eqn. 3-24

From equation Eqn. 3-24 we have:

k -1k
8(k) = { S W) EwT(i)] 0y Bya™) RO 0¥)
i=1 i=1

Eqgn. 3-25
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In the previous expression, we now let:

k
809 = FI9 Oy By(a) RO OW() Eqn. 3-26
i=1

k -1
where: -1y = {z Wi D(,UT(/)]
i=1

Expression Eqn. 3-25 corresponds to the non-re-
cursive least-squares algorithm. To obtain a
recursive algorithm, we recompute the optimal val-
ue of B(k+1) for the minimization condition J(k+1)
and express 6(k+1) as a function of 6(k). This
yields:

Bk +1) = B(K) + F(k + 1) W(k) Ceg(k +1)  Eqn. 3-27

where: F-L(k+ 1) = F-1(k) + Wk + 1) 0w (k + 1)

Here, F(k+1) represents the estimator tuning gain.
This is an important variable since it gives us an in-
dication of the quality of estimation (covariance of
parameter estimates).

It has been shown elsewhere [LJU-83] that if k (ex-
periment time) increases, the 6(k) estimates tend
towards constants. In this case, the variance of the
estimates tends towards zero (F(k+1) = 0). The
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least-squares algorithm briefly presented here has
progressively less effect on new measurement val-
ues. This is acceptable if the process is unvarying
in time. However, this is not the case in this applica-
tion note since the system parameters are explicitly
assumed variable. This problem can be resolved by
modifying the J1(k) criterion. We need to arrange
for the criterion to “forget” earlier measurement val-
ues by adding a suitable weighting factor. When
this is done, the criterion to be minimized becomes:

k
LW =y K- 22() Eqn. 3-28
i=1

where: A represents the weighting, or “forgetting
factor" (0 <1< 1)

The thus modified least-squares algorithm is detailed
in APPENDIX A. The main difference between algo-
rithms is which variables are contained in vector
Y(K). In the literature, this quantity is referred to as
the “measurement vector”  while eg(Kk) is termed
the “post-prediction tuning error”.

In order to ensure the stability of the overall system,
the recursive least-squares identification algorithm
must meet the following three conditions:

e The rapid decrease in the prediction error
(eg(k)) must occur during the periods when 6(k),
the unknown parameter of the system to be
identified, is constant.

MOTOROLA
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« Irrespective of any variations in the domain
bounded by 6(k), the adjusted parameter 6(k) of
the identifier must remain within the appropriate
bounded domain.

* The variation 6(k) - 6(k-1) in the estimated
parameter must decrease at the same time as
the prediction error eg(k). If eg(k) is below a
certain threshold, then 6(k) - 6(k-1) must be
zero.

These conditions can only be met by making further
changes to the recursive least-squares algorithm.
Several authors [IRV-85 and BOD-87] have already
tackled this problem. We have used their results to
improve the robustness of the controller parameter
estimation algorithm.

3.1.5 Comment

The use of a control strategy based on an output-
signal minimum-variance criterion theoretically re-
quires that the system to be regulated (the plant)
have a stable inverse (i.e. bg > bq). It is therefore
important to have some prior knowledge of the na-
ture of the plant, and its behavior over its entire
operating range. Parametric identification is used to
determine not only the structure of the representa-
tion model (order and time delays), but also the
nature of the system to be regulated (i.e. whether it
is a minimum-phase system or not). Note also that
this type of controller can be used to define tracking
and regulation performance totally independently.

The main disadvantage of a control strategy using
a minimum-variance criterion applied to the variable
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to be regulated is that it always leads to a direct
adaptive scheme. This presents a problem for the
other control strategies where the control law pa-
rametering is broken down into two distinct steps,
namely:

e Estimation of parameters of the system
representative model, and

 Adjustment of controller parameters using
system parameters.

This method of breaking down control law parame-
tering leads to an indirect adaptive scheme. Note,
however, that it can be an advantage to have a
means of monitoring system dynamic response in
real time. Thus, the estimation of process parame-
ters can be used for diagnostics, monitoring, etc.
Let us now look at this indirect adaptive scheme
more closely.

3.2 Generalized Predictive
Control

3.2.1 Introduction

The adaptive control scheme presented in the pre-
vious section is useful when the system to be
controlled has a stable inverse. This leads to inves-
tigations to see if other control schemes, associated
with the least-squares identification method, can
generate stable control signals irrespective of the
nature of the system to be controlled. Given that the
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minimization of the mean tracking error energy
(Egn. 3-21) is not sufficient to ensure control stabil-
ity in the case of a so-called “non-minimum phase
system”, it seems fairly natural to investigate what
happens if one introduces a control weighting term
into the expression for the criterion to be minimized
[SAM-83]. This is expressed by the relation:

k
3300 = 3 [A@™) DY) - Yref()] % + a LU(k)?
i=1

Eqgn. 3-29

where: «a is the strictly positive weighting term

An improvement in this criterion has been suggest-
ed on the basis of the following observation. A car
driver does not need to have a complex mathemat-
ical model in mind in order to be able to drive. All he
needs is the ability to recall a set of images of pos-
sible trajectories produced by a corresponding set
of control actions on the car steering wheel. Given
the driver's view of the road to be followed, the hu-
man control algorithm chooses the control action
(or signal) that will produce the vehicle trajectory
closest to the desired trajectory [IRV-85].

From this we conclude, in other words, that to ob-
tain a robust control scheme, we can use the
predictions obtained from the identification of the
system to be controlled and minimize a least-
squares criterion involving the difference between
the predicted desired trajectory and the predicted
trajectories in response to the control signals. This
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criterion has been formulated by Clarke [CLA-84]
and is expressed in the form:

Ny—l N,-1

W=y [Yref(yk +i+d)—Y(k+i+d)]2+ Y o A UGk + 1)2
i-0 i=0

Egn. 3-30
where:

e Y(k+i+d) isthe output prediction with Ny

 Yrefis the predicted output of the reference
model over horizon Ny

« U(k+i) represents the predicted control over Ny
* Ny determines the horizon on the outputs

e Nu determines the horizon on the control
 «a is the control weighting factor

« A represents the differentiation operator
@=1q7%)

Thus, the control weighting term (a) ensures control
stability in all cases where the system has an unsta-
ble inverse, provided the time delay is greater than
unity. The differentiation operator (A) enables us to
obtain a control that is free of static error in the vari-
able to be controlled (Y) relative to the reference
trajectory (Yref).

On the basis of our bibliographic research, general-
ized predictive control is considered to be the best
control technique currently available. This is why
we chose to discuss it in detail in this application
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note and why we made it the subject of our simula-
tion studies. An industrial application of this
technique is described in [LIM-89].

Processing of

Controller
r Parameters

Adaptive
Controller

r(k) ]

A

»| Parallel Reference | Y'€f(k)
Model
< Identification
- Algorithm -
A /
- Plant .
u(k) G(2) 0

the main disadvantage
control law.

Figure 3-2 Generalized predictive control using closed loop

Note the presence of an additional loop to perform system identification on the
process. The advantage is that the process parameters would be accessible with

that there is an increase time in the computation of the

3.2.2 Closed-Loop System

As with all adaptive control systems, the system
discussed in this section features not only a con-
ventional servo-type feedback loop, but also an
additional loop designed to identify the on-line pro-
cess and determine the parameters to be adjusted
on the basis of the process parameters. The ar-
rangement is schematically shown in Figure 3-2.
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The main advantage of this indirect adaptive
scheme is that it gives access to the process pa-
rameters, which is important for monitoring,
diagnostics, and the like. The main disadvantage is
the increased computation time required to param-
eter the control law.

3.2.3 Control Law

3.2.3.1 Definition of Parametric Model

The parametric model required to formulate the
control law was defined earlier on. Recall that the
mathematical structure is of the form:

Ak ahyovw = g9 Bk g UK Egn. 331

where: A(k,q-1) and B(k,q-1) are the polynomials
estimated by the identifier at each sampling
interval.

In the remainder of this application note, we will
simplify the mathematical notation by omitting the »
symbols (indicating estimated variables) and the (k)
portion of the different terms indicating that the vari-
able is estimated at each sampling interval k.Te.

3.2.3.2 Definition of System Output
Prediction

The prediction of the parametric model output —
which is to say the probable behavior of the process
output between time k1 and some future time kj —
is deduced using a j-step-ahead prediction model.
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The general expression for such a model is:
1= Ej(q‘l) gL m+qd EFj(q‘l) Eqn. 3-32

where:

e j=1.ki

* kj is the given future time-horizon

« FaD) =fy+... + fkj-1)j.q K+

cE=1+..+ ej-l.q-f"l
This expression is known as a Diophantine equa-
tion. The expression for the predicted model output
can be deduced by multiplying the two sides of
equation Eqn. 3-30 by Ej.A, then substituting the ex-

pression for Ej.A(g-1).A from equation Eqn. 3-32.
This gives:

(1-qd R v = g4 E@™) BE™) k)

Eqgn. 3-33
The expression for the predicted model output can
now be rewritten in the form:

Yk+]) = Fa™) V(K + G;(@™h) (A UGk —d +))

Eqgn. 3-34
where:  G{q-1) = E(q-1).B(g-1)
The sequence of predicted parametric model out-
puts can now be represented by vector Y. Note that
for all future sampling intervals smaller than or equal
to the system time delay (i.e. for j < d), the Y(k+j) val-
ues can be computed using the input and output
data available up to time k. For sampling intervals
greater than the system time delay (i.e. for j > d),
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we need to know the future control U(k+j). These
assumptions form the basis of generalized predic-
tive control.

3.2.3.3 Determination of Polynomials
Fi(a1) and Gj(a1)

In Section 3.1.3.1 we showed that we could obtain
the polynomials S(g-1) and R(g-1) by simple divi-
sion. The disadvantage, however, of this technique
is that it is very time consuming. Clarke proposes a
recursive method for the determination of polynomi-
als Fj(g-1) and Ej(g-1). This is the solution we have
adopted. Readers interested in this reformulation of
the polynomials in recursive form should refer to the
bibliography, and particularly to [BOD-87], [CLA-
85], and [AST-84]. Note, the control algorithm en-
coded in Motorola DSP56000/DSP56001 digital
signal processors is based on the same solution.

3.2.3.4 Determination of Control Law

Above, we derived an expression (Eqn. 3-34) for
predicting the behavior of the process output signal.
The behavior of the reference model output signal,
on the other hand, is predicted by expression (Egn.
3-35). We must now solve this equation from sam-
pling time (k+d) to the chosen time-horizon
(k+d+N-1).

Yref(k +d) = —A;(q‘l) DVref(k +d—1) + Bp(q-l) [R(K)
Eqgn. 3-35
where: A;(q—l) =a,gl+. . +a, "
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_Yref

Determining the output of the parallel reference
model at a future time is not difficult since the poly-
nomials Ap and Bp are known and are constant at
each sampling time. The sequence of reference
model outputs from sampling time (k+d), can be ex-
pressed in vector form as follows:

= [Yref(k+d)...... Yref(k +d + N-1)] Eqgn. 3-36

Recall that the parallel reference model plays the
same role as that defined for the adaptive controller
of a parallel-serial model (Section 3.1 ). In order to
compare the performance of the two adaptive regu-
lators, we choose the same structure (n=2and d =
1) for the parallel model and the same dynamic
response.

The prediction error at future time k+j is given by:

e(k+j) = Yref(k +j) - Y(k+]) Eqn. 3-37

Proceeding as previously described, let us now de-
fine the prediction error vector:

e = [e(k+d)...... e(k+d+N-1)] Eqgn. 3-38
Thus:
e = Yref-Y Eqgn. 3-39

We saw earlier that at time k, certain elements of
vector Y are functions of known and unknown data.
Among the unknowns, we can define the predicted
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control vector (U) as follows:

U = [AUK)...... A.U(k+N-1)] Eqn. 3-40

A clever decomposition of expression Eqn. 3-39 en-
ables us to separate the terms that depend on
known data at time k and those that are unknown at
time k, such as vector U. We thus obtain:

e = Yref-GU-f Eqgn. 3-41

where: G is a triangular matrix of dimension N.N

The elements of G are generated by reformulating
the Diophantine equation in recursive form.

kgo 0 L] L] L] L] Oﬁ
91 9% ) Eqgn. 3-42
Q = L] L] L] L] L]
L] L] L] 0
¥gN gN_l [ . L] [ gog
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The elements of vector f are the components of the
part of the prediction depending on known data at
time k. This vector can be written in the form:

Fald D) D09 +alGy(a™) - g | i (k-1)

Faa @Y +a” 06y, 47 -gg-gy (7] B UK-1)

I—h
1

Fa.n_1@hH o +aN.

Gy, N 1@ -9g-9; Loy N @ UK-1)

Egn. 3-43
The control vector, U, can be determined by mini-
mizing criterion J4(k) as expressed in equation Eqn.
3-40. In vector form, this criterion is given by:

Jy=ele+amT U Eqn. 3-44

It can be shown that this criterion has a simple opti-
mal solution for:

U=[cTmwG+an T qyref- Eqn. 3-45

Control u(k) is computed from Au(k) using the fol-
lowing expression:

UK) = U(k—1)+A UK —1) Eqn. 3-46

The power of generalized predictive control can be
gauged from the fact that it allows us to reduce the
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control prediction time-horizon. The only difficulties
are the mathematical problems posed by the inver-
sion of matrix (GT.G + a.l) of dimension N.N and the
associated computation times. But this can be over-
come by defining a control prediction time-horizon
such that Ny < N and an output prediction time-ho-
rizon such that Ny = N. This reduces the number
of columns of matrix (GT.G) so that we can now
write:

AIZU(k+Nu):AEU(k+Nu+1): ...... =0

3.2.4 Comment

The main advantage of generalized predictive con-
trol is that the control is always stable irrespective
of the nature of the system to be regulated (the
plant). Thus, without making any changes to the
control law obtained by minimizing criterion Eqn. 3-
40, generalized predictive control can readily con-
trol systems with an unstable inverse matrix.

The approach suffers, however, from one serious
drawback. The weighting factor ‘a’ plays a determin-
ing role in system dynamic response, enabling us to
obtain reasonable control signals for trajectory track-
ing or for attenuating the effects of disturbance. This
is not, however, very satisfactory since ‘a’ defines the
dynamic response of the loop system in a fashion
that is difficult to determine in advance. In our study,
the only way we found of approaching the desired
performance through the adjustment of a was by iter-
ative trial and error. This is a step backwards
compared to the asymptotic performance of adaptive
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control using parallel-serial reference models where
the desired dynamic response was explicitly con-
tained in polynomials Ap and Ay. Worse still, when
the parameters of an industrial system vary from one
operating point to another, weighting factor a must
be modified to match the variation in the process dy-
namic response.

This is not to say that generalized predictive control
is not promising, but rather that further improve-
ments are still required. Irving [IRV-85], for
instance, proposes generalized predictive control
with dual parallel-serial reference models — one to
attenuate tracking and/or regulation dynamic re-
sponse, the other to moderate control dynamic
response. ]
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"The
identification
algorithm in this
program and the
one which
follows is a
slightly more
complex
algorithm but it
enables us to
avoid the
problem of
divergent real-
time estimated
parameters
while ensuring
improved
parameter
tracking during

transitions."
]

SECTION 4

Implementation

and Simulation of
Adaptive Controllers
Using Reference
Models

4.1 Implementation

The scheme for adaptive control using parallel-serial
reference models presented in Section 3.1 has been
used to implement an adaptive controller on Motorola
DSP56000/DSP56001 digital signal processors. The
controller logic is programmed in assembler using a
Motorola DSP56000CLASA macro cross-assembler.

The following pages present listings of the linked
adaptive control program and the object code gener-
ated by the macro cross-assembler. Note that the
identification algorithm in this program and the one
which follows is a slightly more complex algorithm but
it enables us to avoid the problem of divergent real-
time estimated parameters while ensuring improved
parameter tracking during transitions.

The adaptive controller using parallel-serial reference
models presented requires about 5,000 instruction
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cycles from input signal acquisition (r(k), y(k)) to
control (u(k)) output. With the DSP56000/
DSP56001 devices running at 27 MHz, this repre-
sents a minimum sampling period of 410 ps.

4.1.1 Simulation

Using the same conventions for input signals (r(k))
and disturbance (d(k)) as in SECTION 2, Figure 4-1
shows the simulated system output signal (y(k)) and
the control (u(k)) generated by the adaptive controller
using parallel-serial reference models. In this simula-
tion, the subroutine “saturation” was not activated.

4.2 Generalized Prediction
Controllers

4.2.1 Implementation

The scheme for generalized prediction controller pre-
sented in Section 3.2 has been used to implement an
adaptive controller on a Motorola DSP56000 Digjital
Signal Processor. It is coded with C language using
the Motorola GNU 56K C compiler. This compiler of-
fers two important advantages: first it enables us to
insert assembly language code into the source code,
secondly, it allows us to generate an object code
when the compiling and linking have been completed.
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The following pages present a C language imple-
mentation of the Generalized Predictive Controller
and the Adaptive Controller with Parallel and Serial
Models.The identification algorithm takes about
3,100 instruction cycles. The control algorithm,
which is based on the theory of the prediction of the
output of the identified system (y(k)) at a given time
horizon (ny) and the prediction of the control (u(k))
also at a given time-horizon (nu) takes about 8,200
instruction cycles.

The generalized predictive controller presented in
Figure 4-2 requires about 12,000 instruction cycles
from input signal acquisition to control output. With
the DSP56001 running at 27 MHz, this represents a
minimum sampling period of 890 microseconds.

Control Signal: U(t) Output Signal Y(t) in Closed Loop
10 2
1_
O_ —
5
. q_) 0
I
-10-
.14
-20 — -2 ——
0 5 10 15 0 5 10 15
Time (sec.) Time (sec.)

Figure 4-1 Simulation results for adaptive controller using parallel-serial
reference models

Note the effects of the disturbance on the output signal in this closed loop.
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1
MOTOROLA GENEVA

Name: Pascal RENARD
Type: C_Program
Version: 1.1

Last Change:1 April 1992

Function: Generalized Predictive Controller
Device: DSP56000/1

File name: main.c

Conversion to GNU based C compiler

Based on Version 1.0 14 June 1990 Program
Ed Martinez

Motorola Inc.

Digital Signal Processing Operations

Austin, TX 78735

I

Global variables

These variables are declared at the global level. They will be accessed from
the different assembly language sections within the program

!
intYnew_u__asm("Ynew_u");
intYnew_y__asm(“Ynew_y");
int Ynew_r__asm("Ynew_r");

!

The following are variables that are defined later on using
in-ine assembly language. They are not available to the
¢ program directly.

Yiny $ffe0

Yin_r  $ffco

Yout_u $ffel

I
parallel parameters with the following structure:

bm([0].z-1 + bm[1].z-2

1+am[0].z-1 + am[2].z-2

typedef struct {
float am[2],om[2];
}e_param;

1
parallel model parameters

typedef struct {
float am[2],bm[2];
Ypara_param;

Figure 4-2 Generalized Predictive Controller described in Section 3.2 has a
sampling period of 890 us using a 27MHz DSP56001.(sheet 1 of 11)
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i
identification parameters
structure of the estimated model

theta[2].z-1 + theta[3].z-2

1 + theta[0].z-1 + theta[1].z-2
!
typedef struct {
intn,na;
float theta[4]/fi[4];

float pO,v_conv,tr_min,tr_max;
float eps,eps1,lambda,trace;
float diag[4],offdiag(7];
}estpartyp;

I
controller parameters

typedef struct {
float lambda2,du,u_low,u_high;
int nu,ny;
}r_param;

!
input and output signals

typedef struct {
float tab_du[7],ui[7], yi[4], ri[4], ymi[4];
}io_param;

!
pointer initializations

e_param ep,*pep = &ep;
estpartyp est,*pest = &est;
I_param rp,*prp = &m;
io_param iop,*piop = &iop;

!

main program

main ()
__asm(\nYin_y equ $ffe0");

__asm(\nYin_r equ $ffc0");
__asm(\nYout u equ $ffel”);

initialize(pest,prp,piop,pep);/* parameter initialization */

for ;) [* infinite loop */
{
__asm volatile (‘movep y:Yin_y,y0" ::: "y0"); /* Obtain system input */
Figure 4-2 Generalized Predictive Controller (sheet 2 of 11)
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__asmvolatile (‘move y0,Y:Ynew_y" ::: "y0");
__asm volatile ('movep y:Yin_r,y0" ::: "y0"); /* Obtain system reference */
__asmvolatile (‘move y0,y:Ynew_r"::: "y0");

datain_shift(piop,&Ynew_r,&Ynew_y); F(yi[l, rifl) data shift */
Is(piop,pest); [* identification */
gene_pre_com(piop,pest,pep,prp); /* control signal computing */
datau_shift(piop,prp); [* ui[] data shift */
saturation(piop,prp,&Ynew_u); [* saturation of ui[0] */

[* output of control signal */

__asm("'move y:Ynew_u,y0" ::: "y0"); /*output of control signal */
__asm("movep yO,y:Yout_u":: "y0");

datadu_shift(piop); *tab_dul[] data shift */
}

}

I
initialization

initialize(pest,prp,piop,pep)

estpartyp *pest;
r_param *prp;
io_param *piop;
€_param *pep;

inti; [* identification parameters initialization */
pest->n=4; [* number of parameter estimated */
pest->na=2; [* system order */

[* this parameter is proportional to variance of estimates */
pest->p0 = 1000.0;

pest->v_conv =0.1; [* convergence speed of estimates */
pest->tr_min =5.0; f* minimum of trace */

pest->tr_max = 15.0; F*maximum of trace used toavoid estimate divergence*/
pest->eps =0.0; /* output of serial model at time tk */

pest->epsl =0.0; * output of serial model at time tk-1 */
pest->lambda = 1.0; [*forgotten factor of identification algorithm */

pest->theta[0] =-1.936;  /* preset value for estmates */
pest->theta[1] = 0.937; P
pest->theta[2] = 0.0001;  /*"*/
pest->theta[3] =0.0001;  /"*

pest->fi[0] =-1.0; [* preset value for input matrix */
pest->fi[1] =-1.0; i)
pest->fi[2] = 0.5; [
pest->fi[3] = 0.5; [

for (i=0 ; i<=(pest->n)-1 ; i++)
pest->diag[i] = pest->p0; /* initialization of diagonal matrix */
for (i=0 ; i<=((pest->na)*4)-2 ; i++)
pest->offdiag[i] = 0.0;
[*initialization of upper-triangular matrix */
[* controller parameters initialization */

Figure 4-2 Generalized Predictive Controller

(sheet 3 0f 11)

4-6

MOTOROLA



prp->nu=3; * horizon on the control signal */

prp->ny = §; * horizon on the plant output */

prp->u_low =-5.0; [* negative saturation for control signal */
prp->u_high =5.0; [* positive saturation for control signal */
prp->lambda2 = 0.5; * weighting factor on control signal criterion */

[* /0 parameters initialization */
for (i=0 ; i<=((pest->na)*4)-2 ; i++)
piop->tab_dufi] = 0.0; [* vector of control signal variation */

for (i=0 ; i<=((pest->na)*4)-2 ; i++)
piop->ui[i] =-0.5; [* preset value on control signal*/

for (i=0 ; i<=(pest->n)-1 ; i++)
piop->yi[i] = -1.0; [* preset value on model output */

for (i=0 ; i<=(pest->n)-1 ; i++)
piop->ri[i] = -1.0;/* preset value on reference signal */

for (i=0 ; i<=(pest->n)-1 ; i++)
piop->ymi[i] = -1.0; [* presetvalue on parallel model output */

[* parallel model parameters initialization */

pep->am[0] =-1.294; [*presetvalueallowingtodefinedesiredperformance*/
pep->am[1] = 0.630; "

pep->bm[0] =0.181; P

pep->bm[1] = 0.155; [

}

rifl, yif] data shift
reference signal vector : rif]
plant output vector : yif]

datain_shift(piop,pnew_r,pnew_y)

io_param *piop;
float  *pnew_r*pnew._y;
{

piop->ri[1] = piop->ni[0];/* r(k-1) = r(k) */
piop->ri[0] = *pnew_r;/* r(k) = new_r(k) */
piop->Yi[1] = piop->yi[0];

piop->yi[0] = *pnew_y;

/

uif] data shift
control signal vector : uif]

datau_shift(piop,prp)
io_param *piop;
r_param *prp;

piop->ui[1] = piop->uif0];  /*u(k-1) = u(k) */

Figure 4-2 Generalized Predictive Controller (sheet 4 of 11)
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piop->ui[0] += prp->du; [ u(k) = u(k) + du(k) */

/

tab_du[] data shift
control signal variation vector : tab_duf]

datadu_shift(piop)
io_param *piop;

piop->tab_du[1] = piop->tab_du[0];  /*tab_du(k-1) = tab_du(k) */
piop->tab_du[0] = piop->Ui[0] - piop->Ui[1];/* tab_du(k) = u(K) - u(k-1)*/

}
/

saturation of control signal

saturation(piop,prp,pnew._u)
io_param *piop;

I_param *prp;

float *pnew_u;

if (piop->ui[0] < prp->u_low)
piop->ui[0] = prp->u_low; Fu(k) = u_low*
else
if (piop->ui[0] > prp->u_high)
piop->ui[0] = prp->u_high;  /*u(k) = u_high*/
*pnew_u = piop->ui[0];

}
/

identification by using a recursive method (see appendix : equation A-11)
This algorithm is based on the Bierman's and Thornton's theory. This sub-
routine computes the least squares estimate using the U-D method.
The recursion involves an inversion of matrix F(k) which is
not well-suitable from a numerical point of view. Another way to do the cal-
culations is to use the U-D algorithm. This method is based on a factorization
of Fas:F=U.D.UT, where D is diagonal (called diag[] in algorithm)
and U is upper-triangular matrix (called offdiagf] in algorithm).
This program gives estimates of the parameters of the process :

y(k) = - theta[0]*y(k-1) - theta[1]*y(k-2) + theta[2]*u(k-1) + the-
ta[3Jru(k-3) + e(k)
which has the same behaviour than the plant.

Is(piop,pest)
io_param *piop;
estpartyp *pest;
{

float  fj,vj,alphajajlast,pj,w,perr k[7];
int kf.ku,ij;

perr = piop->yi[0];
for (=0 ; i<=(pest->n)-1 ; i++)

Figure 4-2 Generalized Predictive Controller

(sheet 5 0f 11)
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perr -= pest->theta[i] * pest->fi[i]; /* calculate prediction error */
pest->epsl = pest->eps;
pest->eps = perr;
fj = pest->fi[0];
vj = pest->diag[0] *f;  /* calculate gain and covariance using U-D method */
k[0] = vj;
alphaj=1.0 +vj *fj;
pest->diag[0] = pest->diag[0)/alphaj/pest->lambda;
if (pest->n > 1)

kf=0;
ku=0;
for (=1 ; j<=(pest->n )-1 ; j++)

fj = pest->fif;

for (i=0 ; i<=j-1 ; i++)
{ [FE=fru*
kf=kf+1;

fj = fj + pest->fi[i] * pest->offdiag[kf];

vj = fj * pest->diag[j];/* v = D*f */

Kl = vj;

ajlast = alphaj;

alphaj = ajlast +vj * fj

pest->diag]j] = pest->diag][j] * ajlast/alphaj/(pest->lambda);
pj = -filajlast;

for (=0 ; i<=j-1 ; i++)

ku=ku+1;

w = pest->offdiag[ku] + K[i] * pj;
k(i] = k{i] + pest->offdiag[ku] * vj;
pest->offdiag[ku] = w;

}

}

for (i=0 ; i<=(pest->n)-1 ; i++)
pest->theta[i] += perr * K[i] / alphaj;/* update parameter estimates */
for (i=0 ; i<=(pest->n)-2 ; i++)
pest->fi[(pest->n)-1-i] = pest->fi[(pest->n)-2-i];/* updating of fi */
pest->fi[0] = -(piop->yi[0]);
pest->fi[(pest->na)] = piop->tab_dul[0];
pest->trace =0.0;
for (i=0 ; i<=(pest->n)-1 ; i++)
pest->trace += pest->diagf[i]; /* computing of the D matrix trace */
if (abs(pest->eps) - abs(pest->epsl)) < pest->v_conv)
[* test variation of prediction error */
if (pest->trace < pest->tr_max)  /*testif trace > trace_max */
pest->lambda = 0.9;
else pest->lambda = 1.0;
else if (pest->trace < pest->tr_min)  /*test if trace < trace_min */
{

for (i=0 ; i<=(pest->n)-1 ; i++)
pest->diag[i] = 1.005 * (pest->diagfi]);
pest->lambda = 0.9;

}
else pest->lambda = 1.0;

}
Figure 4-2 Generalized Predictive Controller (sheet 6 of 11)
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!
computing of control signal
main program

gene_pre_com(piop,pest,pep,prp)
io_param *piop;

estpartyp *pest;

e_param *pep;

r_param *prp;

float  f[10],y[5],du_futur[5],9[10][10],gtg[5][5];
int i

for (i=0 ; i<=(prp->ny)-1 ; i++)
fil=0.0; ¥ initialization */
for (i=0 ; i<=(prp->nu)-1 ; i++)

y[il=0.; [
du_futurfi] = 0.0; 'k
}

for (i=0 ; i<=(prp->ny)-1 ; i++)
for (=0 ; j<=(prp->ny)-1 ; j++)
oill=00; K"

for (i=0 ; i<=(prp->nu)-1 ; i++)
for (=0 ; j<=(prp->nu)-1 ; j++)
ggfiil=0.0; "4
prepare(prp,pest,piop,g.f);  /*initialise f[i] and g[il[j] */
square(g,gtg,prp); [* calculate gtg */
add_lambda(prp,gtg); F* calculate gtg + lambda2 */
do_y(g.fy.prp,pep,piop);/* calculate plant output prediction */
gauss(gtg,y,du_futur,prp);/* calculate y[i[*[gtg]-1 = du_futur{i] */
prp->du = du_futur[0];
}

!
calculate fi] and g[i][j] of the equation :

Y1 = gl * &/_par(+2] - ])

prepare(prp,pest,piop,g.f)
r_param *prp;

estpartyp *pest;
io_param *piop;

float  g[10][10],f10];

{

int i,jnn,nk,n1, delay;
float  rj,e[10],fk[4],w[12] par_a[4],par_b[3],ad[4],delta[2];
nl=pest->na+1;
nk=nl-2;
for (i=0 ; i<=(prp->ny)-1 ; i++)
€e[i]=0.0;

for (i=0 ; i<=(prp->ny)+(pest->na)-1 ; i++)
wii] =0.0;

for (i=0 ; i<=(pest->na)+1 ; i++)
f[i] = 0.0;

for (i=0 ; i<=(prp->ny)-1; i++)

Figure 4-2 Generalized Predictive Controller (sheet 7 of 11)
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for (=0 ; j<=(prp->ny)-1; j++)
oilll = 0.0;

for (i=1; i<=(pest->na) ; i++)

par_ali] = pest->theta[i-1];
par_a[0] =1.0;
for (i=0 ; i<=(pest->na)-1; i++)

par_bl[i] = pest->theta[i+(pest->na)];
deltal0] = 1.0
delta[1] =-1.0;
mul_pol(delta,0,1,par_a,0,pest->na,ad,0,n1);
for (=0 j<=(prp->ny)-1 ; j++)

if (j=0)
e[0]=1.0;
for (i=0 ; i<=n1-1; i++)
fk[i] = -ad[il;
else
{
1j = fk{C];

for (i=0; i<=n1-1; i++)
fK[i] = fk[i+1] - ad(i] * rj;
ef-1]=1;

mul_pol(e,0,j,par_b,0,(pest->na)-1,w,0,pest->na+j);
| delay=j;
if (_delay >=0)

{

fj_delay] = 0.0;
for (i=0 ; i<=n1-1; i++)
fli_delay] += kii] * piop->yifil;
for (=1 ; i<=nk ; i++)
f[_delay] += wij_delay+i] * (piop->tab_duli]);
for (i=0 ; i<=j_delay ; i++)
gli_delay]fi] = w{i_delay-i];
}

}
}

first call ===>ad(g-1) = a(g-1) * (1 - g-1)
second call ===>w(g-1) = e(g-1) * b(g-1)

mul_pol(matl,l1,h1,mat2,12,h2,resu,I3,h3)
float mat1[],mat2[],resuf];

int 11,h1,12,h2,I3,h3;
{ -
int ij;

for (i=13 ; i<=h3-I13 ; i++)
resufi] =0.0;
for (=11 ; i<=h1; i++)
for (=12 ; j<=h2 ; j++)
resufi+j] += matl[i] * mat2[j];

Figure 4-2 Generalized Predictive Controller (sheet 8 of 11)
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!
computing of ===> gtg

square(g,gtg,prp)
r_param *prp;

float  g[10][10],9tg[5][5];
{

int ikl;
for (k=0 ; k<=(prp->nu)-1 ; k++)

for (=0 ; I<=k ; [++)

{
gtgK][l] = 0.0; _
for (i=0 ; i<=(prp->ny)-1 ; i++)

gtg[K]ll += gl * ofilikl;
if (ki=]

}

I
add lambda2 to gtg
lambdaz2 is weighting factor of the control signal

add_lambda(prp,gtg)
I_param *prp;

float  gtg[5][5L

{

int i;
for (i=0 ; i<=(prp->nu)-1 ; i++)
gtg[il[] += prp->lambda2;
}

!
computing of the system output prediction

do_y(g,ty,prp,pep,piop)
I_param *prp;

e_param *pep;

io_param *piop;

float  f[10],y[5],9[10][10];
{

int ij;
float y par[12];
for (i=0 ; i<=(prp->ny)+1 ; i++)
y_parfi] =0.0;
y_par[1] = piop->ymi[Q];
y_par{0] = piop->ymi[1];
for (i=0 ; i<=(prp->nu)-1 ; i++)
{

ylil=0.0;
for (=0 ; j<=(prp->ny)-1 ; j++)
{

" gtglli = gtglKIl;

Figure 4-2 Generalized Predictive Controller
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y_par[j+2]=-pep->am[0]*y_parfj+1]-pep->am[1]*y_par]
+ pep->bm[0] * piop->ri[0] + pep->bm[1] * piop->ri[1];
YOIl += ofilil * (y_pari+2] - fll);
if (i=0)
{
piop->ymi[1] = piop->ymi[O];
piop->ymi[0] = y_par(2];

}
y_par[0] =y_par[1];
iuaarlll =y_parZ];

}
!
computing of ===> y[] = du_futur] * gtg[lll

gauss(gtg,y,du_futur,prp)

float  gtg[5][5].y[5].du_futur[5];
r_param *prp;
{
float  b[5][5],w[5],savel,sum,tab,big;
int ijiLkln;
char err,

err="1,

n = prp->nu;
for (i=0 ; i<=n-1 ; i++)

for (=0 ; j<=n-1; j++)
bl = gtgfil[il;
wiil =il

for (=0 ; i<=n-2 ; i++)
big = abs(bfi[i]);
= |;
il=i+1;
for (=il ; j<=n-1; j++)

ab = abs(bfj][i);

if (ab>big)
big = ab;
I=j;
}
if (big=0.0)
er="
else
{
if (I!=i)

{
for (=0 ; j<=n-1; j++)

savel = bl
b{IJi] = blIl;
b[iJ[j] = savel;
}

Figure 4-2 Generalized Predictive Controller
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savel = w[l];

w(l] = w(if;

wli] = savel,;

}

for (j=il; j<=n-1; j++)

{

t=bi][i] / b{[T;

for (k=il ; k<=n-1; k++)
b[](K] -= t * b[i][k];

w[j] -= t * wli];
}
}
}
if (b[n-1][n-1]=0.0)
err="t;
else
{
du_futur[n-1] = w[n-1] / b[n-1][n-1];
for (i=n-2 ; i>=0 ; i--)
{
sum = 0.0;
for (j=i+1 ; j<=n-1; j++)
sum += bli][j] * du_futurfj];
du_futuri] = (w[i] - sum) / b[il[i];
}
}
}
Figure 4-2 Generalized Predictive Controller (sheet 11 of 11)
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I
MOTOROLA GENEVA

Name : Pascal RENARD

Type: C_Program

Version : 1.0

Last Change : 07-June-90

Function : Adaptive Controller with Parallel and Serial Models
Device : DSP56000/1

File name : maincad.c

I
Global variables

These variables are declared at the global level. They will be accessed from
the different assembly language sections within the program

int Ynew_u__asm("Ynew_u");
intYnew_y _asm("Ynew_y");
int Ynew_r__asm("Ynew_r");

!

I
parallel model parameters

typedef struct {
float am[2],bm[2];
Ypara_param;
!
serial model parameters
!
typedef struct {
float epl,ep2,ep3,es,esp;
}serial_param;
1
identification parameters
!
typedef struct {
intn,na;
float theta[4],fi[4];
float p0,lambda;
float diag[4],offdiag[7];
}Is_param;

!
controller parameters

typedef struct {

float u_low,u_high;
}reg_param;

Figure 4-3  Adaptive Controller with Parallel and Serial Models described
in Section 3.1 has a sampling period of 410 us using a

27 MHz DSP56001.

(sheet 1 of 6)
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!
input and output signals

typedef struct {

}io_param;

float uil4], yi[4], ri[4], ymi[4];

!
pointer initializations

para_param pap,*ppap = &pap;
serial_param sep,*psep = &sep;
Is_param Isp,*plsp = &lsp;
reg_param rep,*prep = &rep;
io_param iop,*piop = &iop;

I
main program

main ()
__asm(\nYin_y equ $ffe0");

__asm(\nYin_r equ $ffc0");
__asm(\nYout u equ $ffel");

for (;;

__asmvolatile (‘move y0,Y:Ynew_y'
__asm volatile (‘movep y:Yin_r,y0" ::

datain_shift(piop,&Ynew_r,&Ynew_y;
mode!_par(ppap,piop);
model_ser(psep,ppap,piop);
identify(piop, plsp,ppap,psep);

saturate(piop,prep,&Ynew_u);
datals_shift(plsp,piop);

__asm("'move y:Ynew_u,y0" ::: "y0");
__asm("movep yO,y:Yout_u"::: "y0");

dataout_shift(piop,&Ynew_u);
}
}

initialize(plsp,prep,piop,ppap,psep);* parameter initialization */

[* infinite loop */

{
__asmvolatile ("movep y:Yin_y,y0" ::: "y0"); /* Obtain system input */

y0"); * Obtain system reference */
__asmvolatile (‘move y0,y:Ynew_r"::: "y0");

*(yill, ri]) data shift */

[* parallel model output */
[* serial model output */

[* identification */
regulate(prep,piop,plsp,ppap,&Ynew_u);/* control signal computing */

[* saturation of control signal */

[*1i[] data shift */

* output of control signal */

* output of control signal */

[* ui] data shift */

I
initialization

initialize(plsp,prep,piop,ppap,psep)

Is_param *plsp;

reg_param *prep;

io_param *piop;

Figure 4-3 Adaptive Controller (sheet 2 of 6)
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para_param *ppap;
serial_param *psep;

inti;

plsp->n=4; [* identification parameters initialization */
plsp->na=2;

plsp->p0 = 1000.0;

plsp->lambda = 0.98;

plsp->theta[0] = 0.02;
plsp->theta[1] = -0.001;
plsp->theta[2] = 0.33;
plsp->theta[3] = 0.305;

plsp->fi[0] = 1.0;
pisp->fi[1] = 1.0;
plsp->fi2] = 0.5;
plsp->fi[3] = 0.5;

for (i=0 ; i<=(plsp->n)-1 ; i++)
pisp->diagli] = plsp->p0;

prep->u_low =-5.0; [* controller parameters initialization */
prep->u_high =5.0;

for (i=0 ; i<=(plsp->n)-1 ; i++)* /O parameters initialization */
piop->uifi] =-0.5;
for (i=0 ; i<=(plsp->n)-1 ; i++)
piop->yi[i] = -1.0;
for (i=0 ; i<=(plsp->n)-1 ; i++)
piop->rifi] = -1.0;
for (i=0 ; i<=(plsp->n)-1 ; i++)
piop->ymi[i] = -1.0;

[=)

ppap->am[0] =-1.294; /* parallel model parameters initialization */
ppap->am[1] = 0.630;
ppap->bm[0] =0.181;
ppap->bm[1] = 0.155;

(SN

}

!
rif], yi[] data shift

datain_shift(piop,pnew_r,pnew_y)

io_param *piop;
float  *pnew_r,*pnew._y;
{

piop->ri[1] = piop->ni[0];/* ri_1=ri*/
piop->ri[0] = *pnew_r;/* ri = new_r */
piop->yi[1] = piop->yi[O];

piop->Yi[0] = *pnew_y;

Figure 4-3 Adaptive Controller (sheet 3 of 6)
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/
parallel model

model_par(ppap,piop)
para_param *ppap;
io_param *piop;

float yk_m;

yk_m = - ppap->am(0] * piop->ymi{0] - ppap->am(1] * piop->ymil]
+ppap->bm[0]* piop->r{0] + ppap->bm] * piop->riL);

piop->ymi[1] = piop->ymi[0];
piop->ymi[0] = yk_m;

I
serial model

model_ser(psep,ppap,piop)
serial_param *psep;
para_param *ppap;
io_param *piop;

psep->ep3 = psep->ep2;

psep->ep2 = psep->epl;

psep->ep1 = piop->ymi[0] - piop->yi[0];

psep->esp = psep->es;

psep->es = psep->epl + ppap->am[0] * psep->ep2 + ppap->am[1] * psep->ep3;
}

I
identification

identify(piop,plsp,ppap,psep)
io_param *piop;

Is_param *plsp;
para_param *ppap;
serial_param *psep;

{
float  fj,vj,alphaj,ajlast,pj,w,perr,k{7];
int kf.ku,ij;

perr = psep->es - ppap->bm[0] * piop->ri[0] - ppap->bm[1] * piop->ri[1];
for (i=0 ; i<=(plsp->n)-1; i++)
perr -= plsp->theta[i] * plsp->fili];
fj = plsp->fi[Q];
vj = plsp->diag[0] * j;
K[o] = vi;
alphaj = 1.0 + vj * fj;
plsp->diag[0] = plsp->diag[0] / alphaj / plsp->lambda;
if (plsp->n > 1)
{

kf=0;
ku=0;
for (=1 ; j<=(plsp->n )-1; j++)

Figure 4-3 Adaptive Controller (sheet 4 of 6)
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1=pep>fl];
for (i=0 ; i<=j-1 ; i++)

{
kf=kf+1;
=1+ plsp->fi[i] * plsp->offdiag[kf];

vj =1 * plsp->dlag;
k[]] =vj; .
ajlast = alphaj;
alphaj = ajlast + vj * fj;
plsp->diag[j] = p_Isp->di_ag[|] * ajlast / alphaj / (plsp->lambda);
pj = -fajlast,
for (i=0 ; i<=j-1 ; i++)

{
ku=ku+1;
w = plsp->offdiag[ku] + k[i] * pj;
K[i] += plsp->offdiag[ku] * vj;
plsp->offdiaglku] = w;
}

}

for (i=0 ; i<=(plsp->n)-1 ; i++)
plsp->thetali] += perr * K[i] / alphaj;
}

/

computing of control signal

/
regulate(prep,piop,plsp,ppap,pnew_u)
io_param *piop;

Is_param*plsp;

para_param *ppap;

reg_param *prep;

float *pnew_u;

*pnew_u = (ppap->bm[0*piop->ri[0] + ppap->bm[1]*piop->ri[1]

- plsp->theta[O]*piop->yi[0] - plsp->theta[1]*piop->yi[1]

- plsp->theta[3]*piop->ui[0]) / pisp->theta[2];
}

/

saturation of control signal

/
saturate(piop,prep,pnew_u)
io_param *piop;
reg_param *prep;

float *pnew_u;

if (piop->ui[0] < prep->u_low)

piop->ui[0] = prep->u_low;
else

if (piop->ui[0] > prep->u_high)

Figure 4-3 Adaptive Controller

(sheet 5 of 6)
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piop->ui[0] = prep->u_high;
Ynew_u = piop->ui[0];

}

i data shift

datals_shift(plsp,piop)
Is_param *plsp;
io_param *piop;
{
plsp->fi[1] = plsp->fi[0];
plsp->fi[0] = - piop->Yi[0];
[3] = plsp->fi[2];
2] = - piop->ui[0];

plsp->fi
pisp->fi[2]

}

I
uil data shift

dataout_shift(piop,pnew_u)

io_param *piop;

float *pnew_u;

{
piop->ui[1] = piop->ui[0];/* ui[] data shift */
piop->ui[0] = *pnew_u;

}

Figure 4-3 Adaptive Controller (sheet 6 of 6)
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"The unique
architecture of
Motorola
DSP56000/
DSP56001
devices enables
them to function
as both
powerful
microcontrollers
and as fast
digital signal

processors."
I

SECTION 5

Conclusion

5.1 Advantages of Adaptive
Control

Adaptive control using parallel-serial reference mod-
els is an effective method of regulation for industrial
systems with rapidly varying parameters (as a func-
tion of operating point) or slowly varying parameters
as a result of wear, etc. The main advantage of this
technique is that the target performance (specifica-
tions) for tracking and regulation can be explicitly
defined and incorporated into the parallel and serial
models respectively. We note also that this type of
regulation enables us to obtain quasi-optimal perfor-
mance and to comply faithfully with imposed
specifications, independent of any variations in the
process parameters. An industrial system featuring
this type of regulation may be expected of offer high
efficiency over its entire operating range. The disad-
vantage of the adaptive control using parallel-serial
reference models lies in the fact that the control signal
can become unreasonable according to the desired
performance in closed-loop.

Despite the fact that generalized predictive control
can be used to regulate any physical system, we saw
in Section 4.2 that this system suffers from a major
drawback. Thus, the control weighting factor (o) appli-
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cable to an industrial application where the system
dynamic response varies over the long term will
need to be modified from time to time by a person
with expert knowledge of automatic control theory.
This in itself significantly reduces the performance
of this method of adaptive regulation. A further
drawback is the fact that the regulation dynamic re-
sponse cannot be defined beforehand as in the
case of adaptive control using parallel-serial refer-
ence models. However, one may also expect to
achieve energy savings during transitions since the
basic principle of generalized predictive control is to
generate control signals that minimize the variance
of the output signal (y(k)) and the variance of the con-
trol signal (u(k)).

Until a few years ago, adaptive control was not very
popular with control engineers, first because the
processors (computers) were relatively slow, and
secondly because implementation was expensive.
In addition, the schemes available at the time were
not very robust. However, significant progress has
been made recently in the theory of physical sys-
tem identification and the synthesis of adaptive
control which, in turn, has increased the stability of
the overall method. In addition, microelectronics
has made rapid strides so that higher performance
tools are now available at lower unit cost than ever
before.
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5.2 Advantages of
DSP56000/DSP56001
Architecture

The unique architecture of Motorola DSP56000/
DSP56001 devices enables them to function as
both powerful microcontrollers and as fast digital
signal processors. The data memory spaces (X, Y)
can accommodate parallel implementations of con-
trol algorithms including adaptive controllers.
Control engineers used to open-loop type regula-
tion systems or to systems using a 3-D lookup table
can now use Motorola DSP56000/DSP56001 pro-
cessors to develop their own control algorithms
using either analytical equations or exact models.

Automotive engineering, telecommunications and
the television industry use a variety of electronic
control systems which will benefit greatly from digi-
tal signal processing. The internal design of
Motorola DSP56000/DSP56001 processors pro-
vides the processing power to solve a wide range of
control problems in these industries and many other
besides. |
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APPENDIX

The Least Mean-
Square Principle

A.1 Equation Formulation

Consider the following parametric model:

b(k)

d_, -1
UK) ——» 9 B(@7) > Y(K)
INCED

Figure A-1 Parametric Model Description in Terms of Process Input and Output

where: A(q-l) = 1+aj.qgl+...+anqgn
B(g-l) = bo+bigl+...+bngn

g-1 is the pure time-delay operator
V(k).q-1 = y(k-1))
d is the time delay

b(k) is white noise, including system
measurement noise
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The order and time delay of the model are assumed
to be known. The difference equations can be de-
duced from the following expression:

A(a™) (k) = B(g™) LK) + A(a™) Cb(k)

Eqn. A-1
whence:
y(k) = —a; Bk —1) —..—a, Bk —n) + by Ci(k —d)+
Egn. A-2

by Cu(k—d—1)+ ... +b Cu(k—d—n)+e(k)

where: e(k) is generalized or residual noise
e(k) = A(g-1).b(k)

Expression Eqn. A-2 can be restated using matrix
notation in the form:

y(k) = w(k) [B(k) + e(k) Egn. A-3
where:  W(k)=[y(k-1)...-y(k-n) ulk-d)...uk-d-n)]

OT(k)=[a1...an bo...bn]
8T(k) is the transpose of vector (k)

Using N input and output measurements, the above
expression can be generalized to yield:

Y =®MmM+E Eqn. A-4
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where: YT =[y(n+1)...y(N)]
qT=[az...an bo...bn]
ET=[e(n+1)...e(N)]

—y(n) eeeeee —y(l) uin—d+1) eee u(l-d)
¢ = . . . °

. . o .

—y(N—-1) eee —y(N-n) UN-—d) eee u(N-d-n)

A.2 Estimation Of Model
Parameters

If the previous values of the real system inputs and
outputs are known and if the model parameter vec-
tor (0) is assumed to be identical to the actual
system parameter vector, then the best possible
prediction of the model output is given by:

9(k) = w(k) [B(K) Ean. A5

Clearly, this represents the ideal case. The situation
is, however, quite different in practice: first, be-
cause measurements are contaminated by noise,
and second, because the model parameter vector
(0) differs from the actual system parameter vector.
This can be expressed as a prediction error or by
the error equation:

e(k) = y(k) —9(k) Eqn. A6
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The quality of the approximation of an actual sys-
tem by a model system can be expressed as the
variation in the prediction error around its mean val-
ue. Let us attempt to minimize this variation, by
choosing a criterion defined by:

N
c = Z e2(k) = ET [k Eqn. A-7
k=n+1

This can be re-expressed in the form:
c=(y—o)Qy-olb) Eqn. A-8

This criterion can be minimized as a function of the
parameter vector we seek in such a way that:

—[oT O] L BT r] T Cp[6— [T O] 2 DT ] = 0

Egn. A-9
The solution to the above expression is given by the
least-squares estimator. Thus:

Egn. A-10
8 = [oF Ob]~L DT [ "

This solution is used in situations where off-line pro-
cessing is a viable option. Vectors ® and Y contain
all system measurement pairs recorded to that
time. One might add that the more measurements
there are available, the more accurate the parame-
ter vector (8) estimates.

A4
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An alternative solution is to seek equations to com-
pute sequences of parameter vector (6(k))
estimates each time new measurement data be-
come available. This method leads to recursive
equations that are readily usable in on-line applica-
tions. A typical set of such equations is:

B = B(k—1) + F(k—1) O¥(k - 1) T (K)

_ iy _
F(k) = %(k) Fk—1) F)\(k(k)l) oWk —1) W T(k—1) [F(k— 1)
! L wT(k—1) Fk—1) Wk -1)

A

y(k) =BT (k- 1)W(k - 1)

rk) = =
1+WT(k-1) (F(k-1) D¥(k - 1)

Eqn. A-11
where:

c0<M(k)<1
c 0sA2(k) <2
« F0)>0

* Yk-1) is the system measurement vector
(i.e. the vector containing
measurement data acquired from the
system) which is updated at each
processing cycle

» [(k) represents the a priori tuning error.

* F(k-1), from Egn. A-11, represents the
tuning gain. The structure of this term is
quite general.
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Depending on the choice of sequences I1(k) and
12(k), we can obtain a self-tuning algorithm with:

« decreasing gain, for:
11(k) =12(k) = 1
(This option is used to identify stationary systems)

« forgetting factor, for:
12(k) = 1(k)
I2(k) =1
« constant trace, for:
11(k) = C.I2(k) whereC>0

(The last two options for A1(k) and Ap(k) are used
to identify systems that vary slowly in time.)

« constant gain, for:
A(k) =1
A2(k)=0

A.3 The Least-Squares
Estimator

In order to simplify the notation in the following, we
use the least-squares estimator (LSE) given by ex-
pression Eqn. A-10 and suitable for off-line
applications.

A.3.1 Is the LSE biased?

Recall that an estimator is said to be statistically un-
biased if: a1 — Egn. A-12

where:  EM[X] is the expected value of x
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This means that the mean value of the parameter
vector estimate converges to the true value of the
system parameter vector. For the LSE, we have:

Ey[8] = Eyl[eT Co] 10T ] = o+E,[[oT Co] L CoT [E]

Egn. A-13

From this we conclude that the LSE is biased, i.e. it
introduces an error into the estimate of vector 6.

A.3.2 How accurate is the LSE?

The quality of the estimates produced by an estima-
tor is determined by computing the variance of
vector 0 around its mean value, i.e. by computing
the variance-covariance matrix represented by
Cgo. The accuracy of the LSE is given by matrix el-
ements Cgjgj. The matrix is given by:

Cop = Eyl[8—0][6—0]T] Eqn. A-14
=EylloT o)L T EET o qoT oo

A.3.3 Conclusion
(concerning the bias and accuracy of the LSE)

An ideal estimator is characterized by zero bias and
minimum variance. Examination of expressions
Egn. A-14 and Eqn. A-13 reveals that the LSE suf-
fers from an unavoidable bias while the variance-
covariance matrix Cggis certainly not minimum.
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A.4 Improving The “LSE”

A.4.1 What is required to minimize
LSE bias?

The answer to this question is obtained by consid-
ering the case where the generalized noise e(k) has
the following properties:

Eyl®, E] =0
Eqn. A-15
EylE] =0

This amounts to saying that there must be no corre-

lation between e(k) and W(k) and that e(k) must
have a symmetrical distribution.

Applying these properties to expression Eqn. A-13,
we indeed come back to expression Eqn. A-12. The
mean value of the estimated vector is thus identical,
under these conditions, to that of the parameter
vector we seek.

A.4.2 What is required to minimize

LSE variance?
LSE variance can be minimized if the following
property is met:

2

[of (variance)

EyLET CE]
Egn. A-16
EM[ET (E] = o (covariance)

This amounts to saying that e(k) represents white
noise.
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Applying this property to expression Eqgn. A-14, the
LSE accuracy is given by:

_ _ Eqn. A-17
Cgp = a2[oT Op] L .

A.5 Conclusion

Unfortunately, the properties expressed by rela-
tions Eqn. A-15 and Egn. A-16— which should be
properties of the generalized noise e(k)—are not
met by the least-squares estimator. The very struc-
ture of the parametric model, illustrated in Figure A-
1, makes it impossible to obtain white noise for e(k)
since we set out with the equality:

e(k) = A(q™1) [b(k) Eqn. A-18

The non-correlation property expressed by relation
Egn. A-15 cannot be met because e(k) is correlated
with y(k) through the dynamic response of the mod-
el, A(g-1).

In summary, the simple LSE described above intro-
duces systematic errors into the estimated
parameters. In order to improve the quality of model
parameter estimates, other estimators must be
sought. The generalized least-squares estimator,
for instance, is based on the following principle:

If e(k) is white noise and uncorrelated with W(k),
then the above-mentioned properties can be met by
adding a filter to the generalized noise. This implies
that consideration must be given to changes in the
structure of the parametric model.
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Principles on which other estimators can be based
will not be discussed in this application note. Read-
ers interested in the methods of system
identification will find the answers in the relevant
journals. Three references of special interest are:
[FOU-86], [SAM-83], and [LJU-83]. [ ]
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