

APR22/D

Application Conversion from the
DSP56100 Family to the DSP56300/600

Families

by
Tom Zudock

Motorola, Incorporated
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive West
Austin, TX 78735-8598

Mfax is a trademark of Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support
life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not
Listed:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
303-675-2140
1 (800) 441-2447

Mfax™:
RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609

Asia/Pacific:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-2662928

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan:
Nippon Motorola Ltd.
Tatsumi-SPD-JLDC
6F Seibu-Butsuryu-Center
3-14-2 Tatsumi Koto-Ku
Tokyo 135, Japan
81-3-3521-8315

Internet:
http://www.motorola-dsp.com

TABLE OF CONTENTS

SECTION 1 INTRODUCTION . 1-1
1.1 SCOPE. 1-2
1.2 TERMS AND DEFINITIONS . 1-2

SECTION 2 DSP56100 AND DSP56300/
DSP56600 DIFFERENCES . 2-1

2.1 ARCHITECTURE . 2-2
2.1.1 Memory Organization . 2-2
2.1.2 Data Arithmetic Logic Unit (Data ALU) 2-2
2.1.3 Hardware Stack . 2-3
2.2 ADDRESSING MODES . 2-3
2.3 INSTRUCTION SET. 2-5

SECTION 3 SOFTWARE CONVERSION . 3-1
3.1 CONVERTING UNSUPPORTED INSTRUCTIONS. 3-2
3.2 INSTRUCTION TRANSLATIONS . 3-2
3.2.1 ASL4, ASR4, ASR16 . 3-3
3.2.2 BFCHG . 3-3
3.2.3 BFCLR . 3-4
3.2.4 BFSET . 3-5
3.2.5 BFTSTH. 3-6
3.2.6 BFTSTL . 3-7
3.2.7 CHKAAU . 3-8
3.2.8 DEC24 . 3-8
3.2.9 EXT . 3-8
3.2.10 IMAC, IMPY . 3-9
3.2.11 INC24. 3-10
3.2.12 MAC, MACR, MPY, and MPYR with MSP as Source 3-10
3.2.13 NEGC . 3-11
3.2.14 REPcc . 3-11

MOTOROLA DSP56100 to DSP56300/600 Conversion iii

3.2.15 SWAP .3-12
3.2.16 SWI .3-13
3.2.17 TFR of an entire DALU register. .3-13
3.2.18 TFR2 .3-13
3.2.19 TFR3 .3-14
3.2.20 TST2 .3-14
3.2.21 ZERO .3-14
3.2.22 Immediate Short Data .3-15
3.3 EMULATIONS ISSUES SPECIFIC TO THE DSP56600.3-15
3.3.1 NORM Rn,D .3-15

iv DSP56100 to DSP56300/600 Conversion MOTOROLA

LIST OF TABLES

Table 2-1 Comparison of DSP56100 and DSP56300/600
 Addressing Modes . 2-4

Table 2-2 DSP56100, DSP56300, and DSP56600
Instruction Set Differences . 2-6

MOTOROLA DSP56100 to DSP56300/600 Conversion v

vi DSP56100 to DSP56300/600 Conversion MOTOROLA

SECTION 1

INTRODUCTION

This document summarizes information needed by a
user to estimate the effort required to convert an
application from the DSP56100 to the DSP56300/600
and the details involved in translating the software.

MOTOROLA DSP56100 to DSP56300/600 Conversion 1-1

Introduction

Scope

1.1 SCOPE

The Motorola DSP56100 family and DSP56300/600 families are similar in many
ways, but the parts are not fully compatible. Hence, using a DSP56300/600 in place of
a DSP56100 requires modification to the software and the hardware. This document
summarizes information needed by a user to estimate the effort required to convert
an application and the details involved in translating the software

There are many compatibility issues that are beyond the scope of this document. This
document focuses on differences that relate to software translation. Attempting to
include all the differences would distract from this intent. For details on any aspect
not included in this document, please refer to the DSP56100, DSP56300, and
DSP56600 family manuals. For details on peripherals or specifics for a given part in
the family, refer to the manual or data sheet for the DSP product of interest (e.g.,
DSP56302, DSP56303, DSP56603, etc.).

1.2 TERMS AND DEFINITIONS

Definitions for abbreviations or acronyms used throughout the document are
provided in the following list.

AGU Address Generation Unit

CCR Condition Code Register

Data
ALU

Data Arithmetic Logic Unit

DSP Digital Signal Processor

LSP Least Significant Portion

I/O Input/Output

MIPS Million Instructions Per Second

MSP Most Significant Portion

RAM Random Access Memory

ROM Read Only Memory

SR Status Register

1-2 DSP56100 to DSP56300/600 Conversion MOTOROLA

Introduction

Terms and Definitions

1-3 DSP56100 to DSP56300/600 Conversion MOTOROLA

Introduction

Terms and Definitions

1-4 DSP56100 to DSP56300/600 Conversion MOTOROLA

SECTION 2

DSP56100 AND DSP56300/DSP56600
DIFFERENCES

The primary difference in architecture between the
DSP56100 and the DSP56300/600 families lies in the
organization of data memory.

MOTOROLA DSP56100 to DSP56300/600 Conversion 2-1

DSP56100 and DSP56300/DSP56600 Differences

Architecture

Although there are more similarities than differences between the DSP56100 and the
DSP56300/600 families, some of the differences are fundamental and require careful
attention. In this section, the differences are organized into three categories: the
architecture, the addressing modes, and the instruction set. A brief examination of
these categories will help an engineer estimate the amount of effort that will be
required to translate an application.

2.1 ARCHITECTURE

2.1.1 Memory Organization

The primary difference in architecture between the DSP56100 and the DSP56300/600
families lies in the organization of data memory. DSP56100 family parts have a single
data memory, X memory, that supports dual accessed reads. In the DSP56300/600
family, data memory is divided into X and Y memory, which can be simultaneously
read or written. Since the DSP56300/600 does not allow dual read access to X or Y
memory individually, dual accesses to X memory in the DSP56100 software must be
split into accesses to X memory in parallel with accesses to Y memory.

The instruction width on the DSP56300/600 is 24 bits as opposed to 16 bits on the
DSP56100. If an application will require external RAM, the larger width of the
instructions must be accounted for in the external RAM. If the final application will
reside internal on ROM implementations, this is of little consequence.

2.1.2 Data Arithmetic Logic Unit (Data ALU)

The DSP56100 is a 16-bit machine while the DSP56300 is a 24-bit machine. To
generate bit-exact output using a DSP56300 family part, 16-bit Arithmetic mode must
be used. All of the code examples in this document assume that if the DSP56300 is the
target, it will be executing the code in 16-bit Arithmetic mode. The DSP56600 is a
16-bit machine, so this is not an issue.

Although Data ALUs provide the same register set, they differ in some of the
mathematical operations they provide. The DSP56100 Data ALU allows the Most
Significant Portion (MSP) of the accumulator to be used as an argument for an
integer multiply accumulate, whereas the DSP56300/600 does not. Shifting
capabilities also differ. The DSP56100 provides single bit shifting and shifting in
larger fixed increments (ASR4, ASR16, ASL4). The DSP56300/600 Data ALU includes

2-2 DSP56100 to DSP56300/600 Conversion MOTOROLA

DSP56100 and DSP56300/DSP56600 Differences

Addressing Modes

a barrel shifter, which allows shifting in any increment over the range of the
accumulator size. This also provides single cycle normalization, which is useful for
maintaining dynamic range efficiently. Finally, the DSP56100 supports bit-field
operations with immediate data. On the DSP56300/600, this must be performed
using logical ANDs, ORs, or individual bit-position operations (i.e., BCLR).

2.1.3 Hardware Stack

Both processor families provide a hardware stack to support nested DO loops,
subroutine calls, and interrupt processing. On the DSP56100, the stack is fifteen levels
deep while the DSP56300/600 provides sixteen levels. Additionally, the
DSP56300/600 supports stack extension. Because the DSP56300/600 provides
substantially more (Million Instructions Per Second) MIPS, it is possible that
applications executed on a single DSP56300/600 will be the consolidation of multiple
single DSP applications. This may result in a need for a single DSP56300/600 to
support more interrupts and increasingly complex software. Often, this software
requires more stack space. Stack extension fills that void.

2.2 ADDRESSING MODES

Although there are several subtle differences between the AGUs, the DSP56100
addressing mode that will need the most attention for conversion is upper word
accumulator addressing (e.g., X:(A1) or X:(B1)). As due compensation for lack of this
addressing mode, the DSP56300/600 has twice as many address register sets, eight
total. In the majority of cases (those using simple integer addition), an extra address
register provides a simple solution.

One distinct advantage of the DSP56300/600 is that it allows more address register
combinations for parallel memory accesses. When performing a parallel read on the
DSP56100, one of the address registers is required to be R3. On the DSP56300/600,
any of the R0–R3 registers may be used in parallel memory accesses with any of the
R4–R7 registers. The DSP56300/600 additionally supports multiple wrap around
modulo addressing. In this mode, if an index offset is used that is larger than the
buffer modulus (as dictated by the value in the Mn register), the address is properly
calculated as having wrapped around multiple times.

The table below summarizes differences in the addressing modes. It is a combination
of the tables taken from the DSP56100 and DSP56300/600 family manuals. Check the
notes below the table for a full description. The table clearly indicates that there are
far more new options with DSP56300/600 addressing modes (marked with an N)

MOTOROLA DSP56100 to DSP56300/600 Conversion 2-3

DSP56100 and DSP56300/DSP56600 Differences

Addressing Modes

than those that are unsupported (marked with a U). The modes common to both are
marked with B. Hence, there are sufficient options on the DSP56300/600 to work
around the unsupported DSP56100 addressing modes.

Table 2-1 Comparison of DSP56100 and DSP56300/600 Addressing Modes

Addressing Mode Operand Reference Syntax

S C D A P X Y L XY XX —

Register Direct

Data or Control Register U B B — — — — — — — —

Address Register Rn — — — B — — — — — — —

Address Modifier Register Mn — — U N — — — — — — —

Address Offset Register Nn — — — B — — — — — — —

Address Register Indirect

No Update — — — — B B N N N — (Rn)

Postincrement by 1 — — — — B B N N N U (Rn)+

Postdecrement by 1 — — — — B B N N N — (Rn)–

Postincrement by Offset Nn — — — — B B N N N U (Rn) + Nn

Postdecrement by Offset Nn — — — — N N N N — — (Rn) – Nn

Indexed by Offset Nn — — — — N B N N — — (Rn + Nn)

Predecrement by 1 — — — — N B N N — — –(Rn)

Short Displacement — — — — — B N N — — (Rn + displ)

Long Displacement — — — — — N N N — — (Rn + displ)

PC Relative — — — — — — — — — —

Short Displacement PC Relative — U — — B — — — — — (PC + displ)

Long Displacement PC Relative — U — — N — — — — — (PC + displ)

Address Register — U — U N — — — — — (PC + Rn)

Special

2-4 DSP56100 to DSP56300/600 Conversion MOTOROLA

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

2.3 INSTRUCTION SET

Translating DSP56100 software requires replacing unsupported instructions with
their DSP56300/600 equivalents. Additionally, some instructions supported on both
processors should be replaced with more efficient DSP56300/600 versions. For

Upper Word Accumulator — — — — — U — — — — —

Immediate Short Data — — — — B — — — — — —

Immediate Long Data — — — — B — — — — — —

Absolute Address — — — — B B N N — — —

Absolute Short Address — — — — U B N N — — —

Short Jump Address — — — — B — — — — — —

I/O short Address — — — — — B N — — — —

Implicit B B — — B — — — — — —

Note:

S = System Stack Reference
C = Program Control Unit Register Reference
D = Data ALU Register Reference
A = Address ALU Reference
P = Program Memory Reference
X = X Memory Reference
Y = Y Memory Reference
L = L Memory Reference
XY = XY Memory Reference
XX = XX Memory Reference
U = Unsupported by DSP56300/600
B = Supported by both the DSP56100 and the DSP56300/600
N = New on DSP56300/600 or unsupported by the DSP56100

Table 2-1 Comparison of DSP56100 and DSP56300/600 Addressing Modes
 (Continued)

Addressing Mode Operand Reference Syntax

S C D A P X Y L XY XX —

MOTOROLA DSP56100 to DSP56300/600 Conversion 2-5

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

example, repeated shift operations can be replaced by an instruction that uses the
barrel shifter.

The table that follows summarizes the differences in the instruction sets of all three
processors. The left column contains instructions that will need to be converted to
DSP56300/600 equivalents, while the right column shows additional instructions
provided by the DSP56300/600. Footnotes indicate additional information regarding
specific instructions.

Table 2-2 DSP56100, DSP56300, and DSP56600 Instruction Set Differences

DSP56100 Instructions
Unsupported or
Modified by the

DSP56300/600

Instructions Added by
Using the DSP56300/600

ADC1

ADDL

ADDR

ASL4

ASR4

ASR16

BCHG

BCLR

BFCHG

BFCLR

BFSET

BFTSTH

BFTSTL

BRCLR2

BRSET2

2-6 DSP56100 to DSP56300/600 Conversion MOTOROLA

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

BSCLR2

BSET

BSSET2

BTST

CLB

CHKAAU

CLR24

DEC1

DEC24

DIV1

DOR2

DOR FOREVER2

EXT

EXTRACT

EXTRACTU

IFcc

IFcc.U

IMAC

IMPY

INC24

INSERT

JCLR

Table 2-2 DSP56100, DSP56300, and DSP56600 Instruction Set Differences

DSP56100 Instructions
Unsupported or
Modified by the

DSP56300/600

Instructions Added by
Using the DSP56300/600

MOTOROLA DSP56100 to DSP56300/600 Conversion 2-7

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

JSCLR

JSET

JSSET

LRA

MAC3

MACR3

MACI

MACRI

MAX

MAXM

MERGE

MOVE X: X:

MOVE Y:

MOVE Y: R:

MOVE L:

MOVE X: Y:

MPY3

MPYR3

MPYI

MPYIR

NEG4

NEGC

Table 2-2 DSP56100, DSP56300, and DSP56600 Instruction Set Differences

DSP56100 Instructions
Unsupported or
Modified by the

DSP56300/600

Instructions Added by
Using the DSP56300/600

2-8 DSP56100 to DSP56300/600 Conversion MOTOROLA

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

Note: 1. The DSP56300/600 does not allow a parallel move with this instruction.
2. The DSP56600 does not support this instruction.
3. Some registers are not supported as arguments for this instruction on the DSP56300/600.
4. CCR behavior is not identical on both the DSP56100 and the DSP56300/600.

NORM2

NORMF

PFLUSH2

PFLUSHUN2

PFREE2

PLOCKR2

PUNLOCK2

PUNLOCKR2

REPcc

SUBR

SWAP

SWI

TFR(2)

TFR(3)

TRAP

TRAPcc

TST(2)

ZERO

Table 2-2 DSP56100, DSP56300, and DSP56600 Instruction Set Differences

DSP56100 Instructions
Unsupported or
Modified by the

DSP56300/600

Instructions Added by
Using the DSP56300/600

MOTOROLA DSP56100 to DSP56300/600 Conversion 2-9

DSP56100 and DSP56300/DSP56600 Differences

Instruction Set

2-10 DSP56100 to DSP56300/600 Conversion MOTOROLA

SECTION 3

SOFTWARE CONVERSION

This section examines unsupported DSP56100
instructions and provides a functionally equivalent
DSP56300/600 solution.

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-1

Software Conversion

Converting Unsupported Instructions

3.1 CONVERTING UNSUPPORTED INSTRUCTIONS

Converting unsupported instructions is the primary focus of the code conversion
effort. The approach taken is to maintain the functionality of the DSP56100 software
rather than fully emulate the unsupported DSP56100 instructions. This will maintain
efficiency, but requires the software engineer to examine the code being translated. Globally
replacing unsupported instructions with complete emulations would yield inefficient
software and emulate aspects of an unsupported instruction not required by the
DSP56100 code being converted.

As stated earlier in this document, all DSP56300 code portions must be executed
with the DSP56300 in 16-bit Arithmetic mode.

3.2 INSTRUCTION TRANSLATIONS

This section examines unsupported DSP56100 instructions and provides a
functionally equivalent DSP56300/600 solution. The intent is provide solutions for the
typical use of the DSP56100 instruction rather than support complete emulation (e.g.,
emulating all the condition codes). In short, the exact behavior of all the registers and
condition codes is not exactly duplicated in many cases. All of the emulation code is
written in macro form.

Since macros accept arguments, they are useful for instances in which different
arguments are used for the same instruction that needs to emulated. None of the
macros preserve registers that are destroyed performing the emulation. This approach was
chosen because it may introduce unnecessary inefficiency. For instance, the registers
used may be available. The software engineer may easily remedy this, if desired, by
using push and pop macros with a user-defined stack.

The software conversion engineer has options on how these emulation macros may
be used. First, they may be used directly in place of the unsupported instruction. This
will be the most inefficient approach, but it will require the minimum effort by the
software engineer. Second, they may serve as guides on the functionality that needs
to be supported to translate an instruction. The software engineer may then use a
variation of the emulation macro that is most efficient for that particular section of
code.

3-2 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations

3.2.1 ASL4, ASR4, ASR16

These DSP56100 instructions perform arithmetic shifts on an accumulator by fixed
amounts. The DSP56300/600 macro uses an immediate data value argument to
perform the desired shift.

;**

; Registers Destroyed: None

ASL4 MACRO D

 ASL #4,D,D ; Shift accum left 4 bits

 ENDM

;**

;**

; Registers Destroyed: None

ASR4 MACRO D

 ASR #4,D,D ; Shift accum right 4 bits

 ENDM

;**

;**

; Registers Destroyed: None

ASR16 MACRO D

 ASR #16,D,D ; Shift accum right 16 bits

 ENDM

;**

3.2.2 BFCHG

This DSP56100 instruction performs a test and change on bits specified by an 8-bit
mask. The DSP56300/600 macro will correctly perform the bit changes. Care has not
been taken to maintain the condition code behavior.

;**

; Registers Destroyed: A1

BFCHG MACRO MASK,D

 MOVE D,A1 ; Move target to accum

 EOR MASK,A ; Change bits from mask

 MOVE A1,D ; Move output to target

 ENDM

;**

If the mask itself only specifies changing one bit, this macro may be largely improved
by using a BCHG instruction. Note that the BCHG instruction takes a bit position as an
argument rather than the bit mask. The macro that follows is challenging to read since it

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-3

Software Conversion

Instruction Translations
contains many assembler functions and directives to convert the bit mask to a bit
position. An example of the resulting instruction is provided for clarification. The C
bit is correctly calculated by this macro.

;**

; Registers Destroyed: None

BFCHG_1 MACRO MASK,D

 DEFINE MVAL ["MASK",1,@LEN("MASK")]

 BCHG #@CVI(@L10(MVAL)/@L10(2)),D

 UNDEF MVAL

 ENDM

;

;**

Macro Usage:BFCHG_1 #$0008,X0

Actual Code:BCHG #$3,X0

3.2.3 BFCLR

This DSP56100 instruction clears the bits in a destination operand specified by an
8-bit mask. The DSP56300/600 macro will correctly perform the bit clearing. Care has
not been taken to maintain the condition code behavior.

;**

; Registers Destroyed: R7, A2, A1, A0, X0

BFCLR MACRO MASK,D

 MOVE MASK,R7 ; Make sure, right justified

 MOVE R7,A ; Move mask to accum

 NOT A ; Invert the mask

 TFR D,A A1,X0 ; X0=mask, A=target

 AND X0,A ; Clear bits from mask

 MOVE A1,D ; Move output to target

 ENDM

;**

This macro may be shortened if additional care is taken when using the macro. For
instance, if the MASK argument contains the forcing operator, then the move to R7 is
not needed to ensure integer alignment of the data. The first move would be of the
MASK to A.

If the mask itself only specifies clearing one bit, this macro may be further improved
by using a BCLR instruction. Note that the BCLR instruction takes a bit position as an
argument rather than the bit mask. The macro that follows is challenging to read since it
contains many Assembler functions and directives to convert the bit mask to a bit

3-4 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations
position. An example of the resulting instruction is provided for clarification. The C
bit behaves in the opposite fashion of that on the DSP56100. If the software following the
macro depends upon the state of the C bit, the conditional behavior needs to be
inverted (i.e., convert a BCS to BCC).

;**

; Registers Destroyed: None

BFCLR_1 MACRO MASK,D

 DEFINE MVAL ["MASK",1,@LEN("MASK")] ; Strip off # character

 BCLR #@CVI(@L10(MVAL)/@L10(2)),D ; Convert to bit pos and use

 UNDEF MVAL

 ENDM

;**

Macro Used:BFCLR_1 #$0008,X0

Actual Code:BCLR #$3,X0

3.2.4 BFSET

This DSP56100 instruction sets the bits in a destination operand specified by an 8-bit
mask. The DSP56300/600 macro will correctly perform the bit setting. Care has not
been taken to maintain the condition code behavior.

;**

; Registers Destroyed: A1

BFSET MACRO MASK,D

 MOVE D,A1 ; Move target to accum

 OR MASK,A ; Set bits from mask

 MOVE A1,D ; Move output to target

 ENDM

;**

If the mask itself only specifies clearing one bit, this macro may be improved by
using a BSET instruction. Note that the BSET instruction takes a bit position as an
argument rather than the bit mask. The macro that follows is challenging to read since it
contains many Assembler functions and directives to convert the bit mask to a bit
position. An example of the resulting instruction is provided for clarification. The C
bit is correctly calculated by this macro.

;**

; Registers Destroyed: None

BFSET_1 MACRO MASK,D

 DEFINE MVAL ["MASK",1,@LEN("MASK")] ; Strip off # character

 BSET #@CVI(@L10(MVAL)/@L10(2)),D ; Convert to bit pos and use

 UNDEF MVAL

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-5

Software Conversion

Instruction Translations
 ENDM

;**

Macro Used:BFSET_1 #$0008,X0

Actual Code:BSET #$3,X0

3.2.5 BFTSTH

This DSP56100 instruction tests the bits in a destination operand specified by an 8-bit
mask and sets the C bit of the Status Register (SR) if all of the bits in the destination
operand were set. Otherwise the C bit is cleared. This DSP56300/600 macro only
maintains the functionality of the C bit since that is the most likely usage of this instruction.

;**

; Registers Destroyed: A1

BFTSTH MACRO MASK,D

 TFR D,A ; Move target to accum

 AND MASK,A ; Clear bits not set in mask

 EOR MASK,A ; Clear bits set in mask, z=1 if all cleared

 ANDI #$FE,CCR ; Optional - Clear the C flag

 BNE _EXIT ; Optional - If Z flag not set, exit

 ORI #$01,CCR ; Optional - If Z flag set, set C flag

_EXIT

 ENDM

;**

This macro may be improved if the user may utilize the Z bit of the Condition Code
Register (CCR). Since the last three instructions of the macro use the state of the Z bit
to set the C bit, they may be potentially dropped if the state of the Z bit is used (i.e.,
for a conditional change of flow following the instruction).

If the mask itself only specifies testing one bit, this macro may be further improved
by using a BTST instruction. Note that the BTST instruction takes a bit position as an
argument rather than the bit mask. The macro that follows is challenging to read since it
contains many Assembler functions and directives to convert the bit mask to a bit
position. An example of the resulting instruction is provided for clarification. The C
bit is correctly calculated by this macro.

;**

; Registers Destroyed: None

BFTSTH_1 MACRO MASK,D

 DEFINE MVAL ["MASK",1,@LEN("MASK")] ; Strip off # character

 BTST #@CVI(@L10(MVAL)/@L10(2)),D ; Convert to bit pos and use

 UNDEF MVAL

 ENDM

3-6 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations
;**

Macro Used:BFTSTH_1 #$0008,X0

Actual Code:BTST #$3,X0

3.2.6 BFTSTL

This DSP56100 instruction tests the bits in a destination operand specified by an 8-bit
mask and sets the C bit of the SR if all of the bits in the destination operand were
clear. Otherwise the C bit is cleared. This DSP56300/600 macro only maintains the
functionality of the C bit since that is the most likely usage of this instruction.

;**

; Registers Destroyed: A1

BFTSTL MACRO MASK,D

 TFR D,A ; Move target to accum

 NOT A ; Invert the target

 AND MASK,A ; Clear bits not set in mask

 EOR MASK,A ; Clear bit set in mask, z=1 if all cleared

 ANDI #$FE,CCR ; Optional - Clear the C flag

 BNE _EXIT ; Optional - If Z flag not set, exit

 ORI #$01,CCR ; Optional - If Z flag set, set C flag

_EXIT

 ENDM

;**

This macro may be improved if the user may utilize the Z bit of the CCR. Since the
last three instructions of the macro use the state of the Z bit to set the C bit, they may
be potentially dropped if the state of the Z bit is used (i.e., for a conditional change of
flow following the instruction).

If the mask itself only specifies testing one bit, this macro may be further improved
by using a BTST instruction and an additional BCHG instruction. Note that the BTST
instruction takes a bit position as an argument rather than the bit mask. The macro that
follows is challenging to read since it contains many Assembler functions and
directives to convert the bit mask to a bit position. An example of the resulting
instruction is provided for clarification. The C bit behaves in the opposite fashion of that
on the DSP56100. If the software following the macro depends upon the state of the C
bit, the conditional behavior needs to be inverted (i.e., convert a BCS to BCC).

;**

; Registers Destroyed: None

BFTSTL_1 MACRO MASK,D

 DEFINE MVAL ["MASK",1,@LEN("MASK")] ; Strip off # character

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-7

Software Conversion

Instruction Translations
 BTST #@CVI(@L10(MVAL)/@L10(2)),D ; Convert to bit pos and use

 UNDEF MVAL

 ENDM

;**

Macro Used:BFTSTL_1 #$0008,X0

Actual Code:BTST #$3,X0

3.2.7 CHKAAU

This DSP56100 instruction affects the N, Z, and V bits of the SR based upon the result
of the address register calculation. On the DSP56300/600, a simple testing of the
resulting value will handle the N and Z bits only.

;**

; Registers Destroyed: A

CHKAAU MACRO S

 MOVE S,A

 TST A ; Set SR flags based on value

 ENDM

;**

3.2.8 DEC24

This DSP56100 instruction decrements by one the MSP of the accumulator specified.
The DSP56300/600 macro is self explanatory.

;**

; Registers Destroyed: None

DEC24 MACRO D

 SUB #1,D ; Decrement MSP by one

 ENDM

;**

3.2.9 EXT

This DSP56100 instruction sign extends the MSP of the specified accumulator. The
DSP56300/600 macro achieves the same result through arithmetic shifts.

;**

; Registers Destroyed: None

3-8 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations
EXT MACRO D

 ASL #8,D,D ; Shift out current extension

 ASR #8,D,D ; Sign extend LSP

 ENDM

;**

3.2.10 IMAC, IMPY

These DSP56100 instruction perform integer multiply accumulate and integer
multiply. The DSP56300/600 macros perform the calculation including the sign
extension of the result.

;**

; Registers Destroyed: LSP specified by argument D

IMAC MACRO S1,S2,D

 ASR #15,D,D ; LSP = fract val

 MAC S1,S2,D ; A = S1*S2+A in fract form

 ASR D ; A = S1*S2+A int form

 MOVE D\0,D ; Truncate and sign extend result

 ENDM

;**

;**

; Registers Destroyed: LSP specified by argument D

IMPY MACRO S1,S2,D

 MPY S1,S2,D ; A = S1*S2+A in fract form

 ASR D ; A = S1*S2+A int form

 MOVE D\0,D ; Truncate and sign extend result

 ENDM

;**

The IMAC and IMPY DSP56100 instructions support the MSP of the accumulator as a
source argument. Hence, the above macros may be modified to move the
accumulator source to a temporary register to be used in the DSP56300/600 MAC or
MPY instructions. The macro requires that the user specify the temporary Data ALU
register to be used so that it does not conflict with the second Data ALU included in
the original IMAC or IMPY instruction.

;**

; Registers Destroyed: Specified by TMP argument

IMAC_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP

 ASR #15,D,D ; LSP = fract val

 MAC TMP,S2,D ; A = S1*Y0+A in fract form

 ASR D ; A = S1*Y0+A int form

 MOVE D\0,D ; Truncate and sign extend result

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-9

Software Conversion

Instruction Translations
 ENDM

;**

;**

; Registers Destroyed: Specified by TMP argument

IMPY_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP

 MPY TMP,S2,D ; A = S1*S2+A in fract form

 ASR D ; A = S1*S2+A int form

 MOVE D\0,D ; Truncate and sign extend result

 ENDM

;**

3.2.11 INC24

This DSP56100 instruction increments the MSP of the specified accumulator. The
function of the macro is self-evident.

;**

; Registers Destroyed: None

INC24 MACRO D

 ADD #1,D ; Increment MSP by 1

 ENDM

;**

3.2.12 MAC, MACR, MPY, and MPYR with MSP as Source

The DSP56100 allowed the MSP of an accumulator to be used as a source for the
MAC, MACR, MPY, and MPYR instructions. Supporting them simply requires
moving the source accumulator to a temporary Data ALU register just prior to the
original DSP56100 instruction. The user must specify the temporary Data ALU
register used so that it does not conflict with second source in the original DSP56100
instruction.

;**

; Registers Destroyed: Specified by TMP argument

MAC_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP ; Move source to data reg

 MAC TMP,S2,D ; Perform mac

 ENDM

;**

;**

3-10 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations
; Registers Destroyed: Specified by TMP argument

MACR_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP ; Move source to data reg

 MACR TMP,S2,D ; Perform macr

 ENDM

;**

;**

; Registers Destroyed: Specified by TMP argument

MPY_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP ; Move source to data reg

 MPY TMP,S2,D ; Perform mpy

 ENDM

;**

;**

; Registers Destroyed: Specified by TMP argument

MPYR_AS MACRO S1,S2,D,TMP

 MOVE S1,TMP ; Move source to data reg

 MPYR TMP,S2,D ; Perfor mpyr

 ENDM

;**

3.2.13 NEGC

This DSP56100 instruction performs the mathematical function of 0 – C – D (zero
minus the Carry bit minus the accumulator value). The DSP56300/600 macro
achieves this by testing the C bit and incrementing it before the negation.

;**

; Registers Destroyed: None

NEGC MACRO D

 BCC _SKIP ; If carry clear, just negate

 INC D ; If carry set, increment first

_SKIP NEG D ; Perform negation

 ENDM

;**

3.2.14 REPcc

This DSP56100 instruction repeated an instruction until the specified condition code
(cc) was true. Translating this instruction should be carefully considered due to the

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-11

Software Conversion

Instruction Translations
repetitive nature of the instruction. Perhaps the most common form is REPNR. Such
instances should use CLB and NORMF for fast normalization on the DSP56300/600.
Other uses should be examined for efficient implementation using the DSP56300/600
instruction set. For completeness, a general purpose DSP56300/600 macro follows,
but is considerably more inefficient. Using the macro requires the condition be
specified, as well as the instruction to be repeated. Since most instructions have more
than one field, quotes will be required for the instruction argument.

;**

; Registers Destroyed: None

REPcc MACRO CC,INSTR

 DO FOREVER,_LOOP ; Do forever

 BRK\CC ; End the do if the condition is true

 INSTR ; Execute the instruction to repeat

 NOP ; NOP required for BRKcc near end of DO

 NOP ; NOP required for BRKcc near end of DO

_LOOP

 ENDM

;**

An improvement that is not simply converted into a macro, but may be utilized,
involves using a conditional branch on the opposite condition code. For instance, if the
original form was REPNE, the repeated instruction could be followed by a BREQ that
branches back to the instruction to be repeated. When the condition is satisfied, the
branch will not occur.

3.2.15 SWAP

This DSP56100 instruction simply swaps the MSP and LSP of the specified
accumulator. The DSP56300/600 macro uses a Data ALU register as an intermediate
location while the words are being swapped. The user may choose to use another less
often used register for temporary storage.

;**

; Registers Destroyed: X0

SWAP MACRO D

 MOVE D\1,X0 ; Move MSP to X0

 MOVE D\0,D\1 ; Move LSP to MSP

 MOVE X0,D\0 ; Move X0 reg to LSP

 ENDM

;**

3-12 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Instruction Translations
3.2.16 SWI

This DSP56100 instruction initiates SWI exception processing. The equivalent
DSP56300/600 processing is the TRAP instruction as shown in the macro.

;**

; Registers Destroyed: None

SWI MACRO

 TRAP

 ENDM

;**

3.2.17 TFR of an entire DALU register

This DSP56100 allows a transfer of the entire X or Y Data ALU register to an
accumulator. The DSP56300/600 macro supports this by following a transfer of the
MSP with sign extension with a move of the LSP to the accumulator.

;**

; Registers Destroyed: None

TFR_XY MACRO S,D ; Necessary only if S is X or Y.

 TFR S\1,D ; Move MSP and sign extend

 MOVE S\0,D\0 ; Move in LSP

 ENDM

;**

3.2.18 TFR2

This DSP56100 instruction allowed transfer of an entire accumulator to a full 32-bit
Data ALU register. The transfer also performed limiting on the resulting 32-bit value
if necessary.

;**

; Registers Destroyed: None

TFR2 MACRO S,D

 MOVE S\0,D\0 ; Move LSP of accum to data reg

 MOVE S,D\1 ; Move MSP to data REG, limit

 BLC _EXIT ; If no limit, no limit on data range LSP

 TST S ; Test the accum for GT or LT

 MOVE #$FFFF,D\0 ; Extend limit value to LSP, assume positive

 BGT _EXIT ; Exit if it was positive

 MOVE #$0,D\0 ; Else extend LSP for a negative limiting

_EXIT

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-13

Software Conversion

Instruction Translations
 ENDM

;**

3.2.19 TFR3

This DSP56100 instruction allows transfer of an accumulator to a Data ALU register
along with a memory read/write to/from another Data ALU register. This may be
supported on the DSP56300/600 by ensuring there are no conflicts on the XDB or
YDB. For instance:

MOVE A,X1 Y:(R0)+,Y0

Hence, translating this instruction must be handled on a case-by-case basis by the
software engineer since it is dependent upon the location of the data. If none of the
data has been moved to an alternate memory, then this is very similar to splitting a
parallel move into two move instructions.

3.2.20 TST2

This DSP56100 instruction provides testing of a Data ALU register for the purpose of
setting the CCR based on its contents. The DSP56300/600 macro simply moves the
Data ALU register to an accumulator where the TST instruction may be used.

;**

; Registers Destroyed: A2, A1, A0

TST2 MACRO S

 MOVE S,A ; Move data reg to accum

 TST A ; Test accumulator

 ENDM

;**

3.2.21 ZERO

This DSP56100 instruction ZERO extends the specified accumulator. The
DSP56300/600 macro accomplishes this by moving immediate data into the
extension portion of the specified accumulator.

3-14 DSP56100 to DSP56300/600 Conversion MOTOROLA

Software Conversion

Emulations Issues Specific to the DSP56600
;**

; Registers Destroyed: None

ZERO MACRO D

 MOVE #$0,D\2 ; Move zero to extension

 TST D ; Set condition codes

 ENDM

;**

3.2.22 Immediate Short Data

On the DSP56100, immediate short data is right justified when moved into a Data
ALU register. On the DSP56300/600, this data will be left justified. This may be
corrected by using the forcing operator recognized by the Assembler. The expense of
this difference is that the instruction becomes two words (the data is now full size).

DSP56100MOVE #3,X0

DSP56300/600MOVE#>3,X0

3.3 EMULATIONS ISSUES SPECIFIC TO THE DSP56600

Other than the instruction set differences specified earlier, there are few differences
between the DSP56300 and DSP56600 that need to be considered.

3.3.1 NORM Rn,D

The DSP56600 does not support the single iteration NORM instruction. Typically, the
NORM instruction is repeated to fully normalize an accumulator. In these instances,
using the CLB instruction followed by NORMF will provide the equivalent
normalized result.

DSP566100:REPNR

NORM R0,A

DSP56300/600CLBA,B

NORMF B1.A,A

There are a few issues to be aware of in this emulation. First, an additional
accumulator is required. Second, the address register is not updated as in the
DSP56100 code. If the address register is not used elsewhere in the code, this is of no
consequence. Otherwise, the result of the CLB instruction must be moved into the
address register. If the address register was nonzero before the DSP56100 NORM

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-15

Software Conversion

Emulations Issues Specific to the DSP56600
instruction was executed, the value in the address register must be added to the
result of the CLB instruction. This correction must be performed after the NORMF so
that the accumulator is normalized properly.

Another situation to address is a single iteration of the NORM instruction. Although
the occurrence of this is highly unlikely, it should be mentioned. An equivalent
emulation of this situation follows.

DSP56600:BNR <_SKIPNR

BES <_SHIFTRT

ASL A (R0)-

BRA <_SKIPNR

_SHIFTRT

ASR A (R0)+

_SKIPNR

In these situations, it is clearly most efficient to consider the specific situation. For
example, code may be reduced greatly if the address register is not of interest and the
direction of normalization, if needed, is known. Other reductions are simplifications
by case from the example above.

DSP56600:ASL A IFNN

MOTOROLA DSP56100 to DSP56300/600 Conversion 3-16

	Cover
	Table of Contents
	List of Tables
	Introduction
	Differences
	Software Conversion

