

ROM Software Patching
on the Motorola DSP56304

by

Tom Zudock

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

 OnCE and Mfax are trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and

are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1998

Order this document by: APR33/D

MOTOROLA

DSP56304 ROM Software Patching

iii

TABLE OF CONTENTS

INTRODUCTION . 1-1

1.1 INTRODUCTION . 1-3
1.2 SCOPE. 1-3
1.3 CACHE BASICS AND RELEVANT INSTRUCTIONS 1-3

PATCHING. 2-1

2.1 OVERVIEW . 2-3
2.2 SINGLE INSTRUCTION REPLACEMENT. 2-3
2.3 SKIPPING MULTIPLE INSTRUCTIONS 2-5
2.4 INSERTING INSTRUCTIONS . 2-6

OPTIMIZATION . 3-1

3.1 INTRODUCTION . 3-3
3.2 MINIMIZING PATCHING IMPACT ON THE CACHE. 3-3
3.3 MULTIPLE PATCHES COVERED BY ONE CACHE

SECTOR ADDRESS RANGE . 3-3
3.4 DAISY-CHAINING PATCHES TOGETHER. 3-4

iv

DSP56304 ROM Software Patching

MOTOROLA

MOTOROLA

DSP56304 ROM Software Patching

v

LIST OF EXAMPLES

Example 2-1 ROM Filter Error . 2-3

Example 2-2 ROM Filter Patch. 2-4

Example 2-3 Multiple Instruction ROM Code . 2-5

Example 2-4 ROM Code Alteration . 2-5

Example 2-5 ROM Code . 2-6

Example 2-6 ROM Code Alteration . 2-6

Example 2-7 Patch Code . 2-7

Example 3-1 ROM Code . 3-5

Example 3-2 Patch Code Lines 1–44 . 3-6

Example 3-2 (Cont.) Patch Code Lines 45–88 . 3-7

Example 3-2 (Cont.) Patch Code Lines 89–104 . 3-8

vi

DSP56304 ROM Software Patching

MOTOROLA

SECTION 1

INTRODUCTION

1-2

DSP56304 ROM Software Patching

MOTOROLA

Introduction

1.1 INTRODUCTION .1-3
1.2 SCOPE .1-3
1.3 CACHE BASICS AND RELEVANT INSTRUCTIONS1-3

Introduction

Introduction

MOTOROLA

DSP56304 ROM Software Patching

1-3

1.1 INTRODUCTION

Although software is typically very robust before its introduction to a device’s ROM,
modifications must often be incorporated to software in ROM. On the Motorola
DSP56304, incorporation is achieved by enabling the patch mechanism and using the
cache to replace, skip, or insert portions of code in ROM.

1.2 SCOPE

In this application report, both simple and complex cases of patching ROM code are
discussed. Additionally, methods are presented that optimize the patching procedure to
minimize the impact on cache performance. Using the information presented within, a
software developer will be able to use the patching mechanism as is most appropriate
for the application at hand.

The following discussion outlines the straightforward procedure of patching ROM on
the DSP56304, including many potential challenges encountered in implementing
patches. Approaches are also laid out to optimizing the many aspects of implementing
patches.

1.3 CACHE BASICS AND RELEVANT INSTRUCTIONS

The cache on the DSP56304 is located in internal Program RAM. It must be enabled by
setting Bit 19, the CE bit, in the Status Register (SR). When disabled, the cache memory
may be used as internal Program RAM. However, upon enabling the cache, any
instructions that were resident are no longer available. The cache is subdivided into
sectors, each of which is 128 program words in size. Hence, eight sectors are available
for the 1 kword cache.

Although a handful of instructions are associated with cache operation, patching
requires knowledge of only two instructions: PLOCK and PUNLOCK. For simple
patches that are initiated at start-up and left active for the duration of program
execution, only the PLOCK instruction will be used.

For patches that are dynamically engaged and disengaged, PUNLOCK will be used as
well. The cache must be enabled for these cache instructions to be valid. If disabled,
execution of any cache instructions will generate an illegal instruction interrupt.

1-4

DSP56304 ROM Software Patching

MOTOROLA

Introduction

Cache Basics and Relevant Instructions

PLOCK is used to lock a cache sector to a specified program memory address. More
specifically, the seventeen Most Significant Bits (MSBs) of the argument specified with
the PLOCK instruction are moved into the least recently used cache sector tag, and the
sector is then locked. Locking the cache sector prevents the cache controller from
modifying the cache sector tag. In other words, locking ensures that a cache sector is
always assigned to a specified range of P memory words. This is extremely relevant
when patching ROM code.

The PUNLOCK instruction is the inverse of the PLOCK instruction. It unlocks the
specified cache sector. This returns control of that cache sector to the cache controller for
allocation. Using PUNLOCK in ROM patching is necessary only if a cache sector is
intended for reuse for multiple patches that do not fall within the addressing range
covered by one cache sector. If all software resides in ROM and all patches fit within the
available cache sectors, PUNLOCK will not be needed. However, if more than eight
patches are required or if the user needs the improved performance the cache provides
for external Digital Signal Processor (DSP) code, patches can be engaged and disengaged
dynamically.

SECTION 2

PATCHING

2-2

DSP56304 ROM Software Patching

MOTOROLA

Patching

2.1 OVERVIEW .2-3
2.2 SINGLE INSTRUCTION REPLACEMENT2-3
2.3 SKIPPING MULTIPLE INSTRUCTIONS2-5
2.4 INSERTING INSTRUCTIONS .2-6

Patching

Overview

MOTOROLA

DSP56304 ROM Software Patching

2-3

2.1 OVERVIEW

Initiating a patch requires four steps.

1. Enable the cache by setting Bit 19, the CE bit, in the Status Register (SR).

2. Enable the patching mechanism by setting Bit 23, the PEP bit, in the Operation
Mode Register (OMR).

3. Lock the cache sector to the ROM address to be patched (PLOCK).

4. Move the new opcode over the original opcode in ROM.

Enabling the cache and patch mechanism are obvious steps, as it is this functionality that
makes ROM patching possible. Locking the cache sector to the ROM address to be
patched sets one cache sector’s tag field to the seventeen MSBs of the ROM address.
Moving the new opcode over the original opcode in ROM causes the new opcode to be
stored into the locked cache sector. It also sets the valid bit for that location in the locked
cache sector. Thereafter, whenever the core generates an address for the instruction
fetch of the old ROM opcode, the cache controller will view this as a cache “hit” and will
execute the instruction out of the cache instead of ROM. Because the desired new
opcode is in the cache, the new opcode will be executed and the patch is complete.

2.2 SINGLE INSTRUCTION REPLACEMENT

The overview lists the steps one should take to install a ROM patch. Now, to focus on a
specific code example, consider the ROM-resident filter shown in

Example 2-1

.

Example 2-1

ROM Filter Error

 org p:$ff00d0 ; start of ROM on 56304
 clr a x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y1,a ; ERROR!!! y1 should actually be y0

2-4

DSP56304 ROM Software Patching

MOTOROLA

Patching

Single Instruction Replacement

The last line in the example of

Example 2-1

 contains an error. Unlike the preceding line,
one of the source operands is y1 as opposed to y0. The code in

Example 2-2

 should be
used to patch this piece of code.

Once the patch initialization instructions above are executed, the patch is in place
indefinitely. The instructions parallel the steps outlined in

Section 2-1

. Executing a
PUNLOCK on the ROM patch address will disable this patch. One detail requires
attention in the above example. The new opcode put in place required only one program
word. If the new instruction were to require two program words, two program words
must be overwritten. However, the user must ensure in such a case that both words fall
within the address range covered by the locked cache sector.

Recall that the PLOCK instruction moves the seventeen MSBs into the tag field of the
least recently used cache sector and locks it. Hence, the cache sector will cover the
program memory range from P:$FF0100 to P:$FF017F if the two-word instruction is at
address P:$FF017F . Because the second word of the two instructions resides at
P:$FF00180, overwriting that location in ROM will not introduce the complete opcode
into the locked cache sector. In fact, the second word will not be moved into any cache
sector at all. This is because the patch mechanism requires the destination of a patch
opcode to be a locked cache sector. Two cache sectors must therefore be locked to
implement a two word patch that crosses a cache sector’s boundary. An alternative is to
jump out before the boundary is reached (using a patched-in JMP instruction), execute
the desired instructions in external RAM, and jump back into the code. This option will
reduce the number of cache sectors consumed to one but is somewhat less efficient.

Example 2-2

ROM Filter Patch

 org p:$400 ; start of ext P RAM
 bset #19,sr ; enable the cache
 bset #23,omr ; enable the rom patch mechanism
 move #$2000D3,x0 ; x0=ROM opcode to "macr x0,y0,a"
 plock $ff00d3 ; lock cache sectr with ROM patch address
 movem x0,p:$ff00d3 ; update ROM opcode to "macr x0,y0,a"
 jmp $ff00d0 ; jmp to start of ROM

Patching

Skipping Multiple Instructions

MOTOROLA

DSP56304 ROM Software Patching

2-5

2.3 SKIPPING MULTIPLE INSTRUCTIONS

Skipping multiple consecutive instructions in ROM follows directly. The straight-
forward solution is to replace the first instruction in ROM to be skipped with a JMP or
BRA instruction to the ROM address where execution should resume. The initialization
procedure is the same as that described in the previous section. As long as the JMP or
BRA is short enough to fit into one program word, there is no need to be concerned
about the second word of the instruction lying outside the range covered by the locked
cache sector. However, if the JMP or BRA is long and the resulting two-word instruction
exceeds the range covered by one cache sector, a second sector must be locked. One
solution is to exit ROM at an instruction before the cache sector boundary is reached,
using a patched-in JMP or BRA instruction in the last location in the cache sector,
jumping or branching to a RAM location, then executing a JMP or BRA back into the
code at the desired reentry point. This method will reduce the number of cache sectors
used to one but is less efficient.

Let’s examine a specific example. Consider the following code in ROM:

Now suppose it has been decided that the second filter that uses accumulator B is no
longer needed. Using the technique just discussed, the user can install a BRA
instruction in place of the CLR B instruction. The target of the BRA is just after the
MACR instruction. The following code exemplifies this.

Example 2-3

Multiple Instruction ROM Code

 org p:$ff00d0 ; start of ROM on 56304
 clr a x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y0,a ; round result
 clr b x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y0,b ; round result

Example 2-4

ROM Code Alteration

 org p:$400 ; start of ext P RAM
 bset #19,sr ; enable the cache
 bset #23,omr ; enable the ROM patch mechanism
 move #$050c04,x0 ; x0=BRA opcode
 PLOCK $ff00d0 ; lock cache sectr with ROM patch addr
 movem x0,p:$ff00d4 ; overwrite ROM with opcode
 jmp $ff00d0 ; jmp to start of ROM code

2-6

DSP56304 ROM Software Patching

MOTOROLA

Patching

Inserting Instructions

2.4 INSERTING INSTRUCTIONS

In some instances, the ROM code instructions do not need to be modified or replaced.
Rather, one or more instructions must be inserted at a particular location. To meet this
requirement, the patch begins with a JMP, BRA, JSR, BSR, etc., out of the ROM code at
the instruction where execution should resume. The target is a location in RAM that
contains the instructions to be inserted. After executing the inserted instructions, the
original ROM instruction that was patched over with a JMP, BRA, JSR, or BSR
instruction must be executed. Finally, a JMP, BRA, or RTS is used to return flow into the
ROM after the code patch has been executed.

When inserting instructions, exiting the ROM will most likely require a two-word
instruction because a long JMP, BRA, JSR, or BSR will be used. This, of course, is
dependent upon where your RAM is mapped. In typical configurations, two program
words will be needed. As mentioned earlier, caution should be observed to ensure that
both program words reside within the address range covered by the locked cache sector.

Consider another specific example. First, assume we start with the ROM code listed
below.

The functionality to be inserted is shown below. The code contains calculations needed
to provide a filter output into accumulator “

b

” before summing with accumulator “

a

”
above.

Example 2-5

ROM Code

 org p:$ff00d0 ; start of ROM on 56304
 clr a x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y0,a ; round result
 ;NEED TO INSERT CODE HERE ;
 add a,b ; sum result of two filters

Example 2-6

ROM Code Alteration

 clr b x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y0,b ; round result

Patching

Inserting Instructions

MOTOROLA

DSP56304 ROM Software Patching

2-7

To achieve this task, the ROM instructions “

macr x0,y0,a”

 and “

add a,b”

 will be
replaced with a two word JSR to a subroutine patch. The MACR instruction that was
replaced will execute at the entry to the patch, followed by the code to be inserted,
followed by the replaced ADD instruction, and followed finally by an RTS that will
return flow back into the ROM code.

The code below enables the cache and patch mechanism, initializes the JSR to exit the
ROM code, and includes the patch code itself.

Example 2-7

Patch Code

 org p:$400 ; start of ext P RAM
 bset #19,sr ; enable the cache
 bset #23,omr ; enable the ROM patch mechanism
 move #$0bf080,x0 ; x0=first word of two word JSR opcode
 PLOCK $ff00d0 ; lock cache sector with ROM patch addr
 move x0,p:$ff00d3 ; update ROM with JSR opcode
 move #$00040e,x0 ; x0=second word of two work JSR opcode
 move x0,p:$ff00d4 ; update ROM with JSR destinatin addr
 jmp $ff00d0 ; jmp to start of ROM code
 ;START OF PATCH CODE ;
 macr x0,y0,a ; round result
 clr b x:(r0)+,x0 y:(r4)+,y0 ; clr accum, get data/coeff
 rep #10 ;
 mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; filter, get data/coeff
 macr x0,y0,b ; round result
 add a,b ; sum result of two filters
 rts ; reenter ROM code

2-8

DSP56304 ROM Software Patching

MOTOROLA

Patching

Inserting Instructions

SECTION 3

OPTIMIZATION

3-2

DSP56304 ROM Software Patching

MOTOROLA

Optimization

3.1 INTRODUCTION .3-3
3.2 MINIMIZING PATCHING IMPACT ON THE CACHE 3-3
3.3 MULTIPLE PATCHES COVERED BY ONE CACHE

SECTOR ADDRESS RANGE .3-3
3.4 DAISY-CHAINING PATCHES TOGETHER 3-4

Optimization

Introduction

MOTOROLA

DSP56304 ROM Software Patching

3-3

3.1 INTRODUCTION

To yield a functioning application, it is essential in many circumstances to use the cache
to modify code that exists in ROM. However, if that application makes use of external
memory, the performance impact that results from reducing the number of available
cache sectors must be considered. It may be worthwhile from an application
development standpoint to simulate software with one or more cache sectors locked out
of a usable range to see the effect on performance. It is of little benefit to find out after the
fact that the number of sectors that must be locked to patch ROM code reduces
performance to the point of software failure.

3.2 MINIMIZING PATCHING IMPACT ON THE CACHE

In the event that the number of cache sectors dedicated to patching must be minimized
or the number of patches required exceeds the number of cache sectors available, it
becomes necessary to implement more than one patch per cache sector. Basically, this
can be achieved in two ways. First, if two areas that need to be patched reside within the
address range covered by one cache sector, two patches can easily be incorporated into
one sector. Second, it is possible to daisy-chain multiple patches in a fashion that uses
one cache sector.

3.3 MULTIPLE PATCHES COVERED BY ONE CACHE SECTOR
ADDRESS RANGE

This case is simple in concept. If two sections of code reside within the address range
covered by one cache sector, then both patches can easily be initialized to reside in one
cache sector. The range covered by a locked cache sector was discussed earlier, but the
topic will be revisited for clarification.

The PLOCK instruction initializes a cache sector’s tag to the seventeen MSBs of the
argument specified. This is essentially the base address for that sector. The next 128
program word addresses are covered by that cache sector. In all preceding examples, the
address of the start of the patch was used as the argument for PLOCK. Since the
seventeen MSBs of that argument are used by PLOCK, it is important to realize that the
range covered is not necessarily the address specified in the argument plus 128 program
words (unless, of course, the start of the patch address happens to have the seven Least
Significant Bits (LSBs) as 0). Rather, the base address for the cache sector, which is zero,
is taken from the seventeen MSBs, extended, and used as the base address for that sector.
The ROM address range covered by a cache is extended from that value.

3-4

DSP56304 ROM Software Patching

MOTOROLA

Optimization

Daisy-chaining Patches Together

Once it is determined that any two sections of code that need to be patched meet this
criteria, putting two patches in one sector is trivial. Simply lock the sector using either
address (both locations to be patched share the same seventeen MSBs) and install the
appropriate type of patch, many of which have already been presented.

3.4 DAISY-CHAINING PATCHES TOGETHER

Daisy-chaining patches is a method whereby one cache sector is used to support
multiple patches that do not reside within a range that could be covered by one cache
sector. One incentive for using this approach is the need to maximize the effectiveness of
the cache by not consuming too many cache sectors for patching. A second demand for
this approach stems from software that requires more patches than there are available
cache sectors (of which there are eight total). It is important to realize, however, that
such a method comes at a performance cost for those patches that are daisy-chained.
More than likely, a mixture of daisy-chained patches and patches that use dedicated
cache sectors will provide the balance between cache and patch performance best suited
for a given application.

Chaining patches together requires dynamically enabling and disabling patches. At the
onset of application execution, the first patch is initialized using a cache sector. The
patch code that is executed must perform the purpose of the patch (i.e., correct a coding
error), disable the current patch, and enable the next patch. This procedure continues
through a series of patches chained together eventually reenabling the first patch and
fulfilling the cycle. This behavior continues for the life of the application.

To consider a specific example, one should begin with some code that is already in ROM,
as shown in

Example 3-1

.

Optimization

Daisy-chaining Patches Together

MOTOROLA

DSP56304 ROM Software Patching

3-5

The ROM software shown in Example 3-1 is simply an executive that calls three
subroutines, each of which increments an address register. Notice that they are spread
out in memory in such a way that one cache sector would not be able to cover them all.
The goal is to use one cache sector to add a patch to each of the subroutines. The
software listed in Example 3-2 provides that functionality.

Example 3-1 ROM Code

1: page 255,60
2: org p:$ff00d0 ;start of rom on 56304
3: rom_main ;call all rom subroutines
4: jsr sub1_rom
5: jsr sub2_rom
6: jsr sub3_rom
7: jmp rom_main
8:
9: org p:$ff1000
10: sub1_rom
11: move #-1,m1 ;m1=linear
12: move (r1)+ ;increment r1,n1 for testing
13: move r1,n1
14: rts
15:
16: org p:$ff2000
17: sub2_rom
18: move #-1,m2 ;m2=linear
19: move (r2)+ ;increment r2,n2 for testing
20: move r2,n2
21: rts
22:
23: org p:$ff3000
24: sub3_rom
25: move #-1,m3 ;m3=linear
26: move (r3)+ ;increment r3,n3 for testing
27: move r3,n3
28: rts

3-6 DSP56304 ROM Software Patching MOTOROLA

Optimization

Daisy-chaining Patches Together

Example 3-2 Patch Code Lines 1–44

1: page 255,60
2: ;***
3: ; equates
4: ;***
5: sub1_rom_patch_addr equ $FF1002 ;equate for first patch address
6: sub2_rom_patch_addr equ $FF2002 ;equate for second patch address
7: sub3_rom_patch_addr equ $FF3002 ;equate for third patch address
8: rom_main equ $FF00D0 ;equate for entry to rom_main
9:
10: ;***
11: ; data for daisy chain patching
12: ;***
13: org x:$0
14: patch_data_table ;data struct for daisy chain patching
15: dc sub1_patch ;address of patch routine
16: dc sub1_rom_patch_addr;first address to patch
17: dc $205900 ;first rom word replaced by patch jsr
18: dc $223900 ;second rom word replaced by patch jsr
19: dc sub2_patch ;etc...
20: dc sub2_rom_patch_addr
21: dc $205A00
22: dc $225A00
23: dc sub3_patch
24: dc sub3_rom_patch_addr
25: dc $205B00
26: dc $227B00
27: patch_data_table_end
28: dc 0 ;FREE, here for patch_data_table_end
29: patch_ptr dc patch_data_table+1 ;ptr into patch_table data struct
30: patch_r1 ds 1 ;register save memory locations
31: patch_m0 ds 1
32: patch_m2 ds 1
33: patch_r2 ds 1
34: patch_r0 ds 1
35:
36: ;***
37: ; main program
38: ;***
39: org p:$400
40: bset #19,sr ;enable cache
41: bset #23,omr ;enable patch mode for 56304
42: nop
43: pflush ;clear and unlock all cache sectors
44: ;enable first patch

Optimization

Daisy-chaining Patches Together

MOTOROLA DSP56304 ROM Software Patching 3-7

Example 3-2 (Cont.) Patch Code Lines 45–88

45: plock sub1_rom_patch_addr ;lock cache sector for first patch
46: move #$0bf080,x0 ;x0=opcode for jsr
47: movem x0,p:sub1_rom_patch_addr ;install jsr in cache (write over rom)
48: move #sub1_patch,x0 ;x0=address of patch routine
49: move x0,p:sub1_rom_patch_addr+1;install addr in cache-write over rom
50: jmp rom_main ;enter rom_code executive
51:
52: ;***
53: ; patch routines
54: ;***
55: sub1_patch
56: move #-1,m5 ;patch code added to sub1_rom
57: move (r5)+
58: jmp daisy_chain_patch ;setup next patch
59:
60: sub2_patch
61: move #-1,m6 ;patch code added to sub2_rom
62: move (r6)+
63: jmp daisy_chain_patch ;setup next patch
64:
65: sub3_patch
66: move #-1,m7 ;patch code added to sub3_rom
67: move (r7)+
68: jmp daisy_chain_patch ;setup next patch
69:
70: ;***
71: ; patch daisy chain routine
72: ;***
73: daisy_chain_patch
74: move r0,x:patch_r0 ;save r0
75: move m0,x:patch_m0 ;save m0
76: move x:patch_ptr,r0 ;r0=ptr in patch_data_table
77: ;m0=mod patch_data_table
78: move #patch_data_table_end-patch_data_table-1,m0
79: move m2,x:patch_m2 ;save m2
80: move r1,x:patch_r1 ;save r1
81: move r2,x:patch_r2 ;save r2
82: move x:(r0)+,r1 ;r1=current rom adress patched
83: move x:(r0)+,r2 ;r2=rom word replaced by patch jsr
84: move #-1,m2 ;m2=linear addressing
85: punlock (r1) ;disable current patch, unlock sector
86: move x:(r0)+,r1 ;r1=rom word replaced by patch jsr addr
87: movem r2,p:orig_instr ;install first word of instr
88: movem r1,p:orig_instr+1 ;install second word of instr

3-8 DSP56304 ROM Software Patching MOTOROLA

Optimization

Daisy-chaining Patches Together

The next paragraphs discuss the patch code shown in Example 3-2. Much of the code is
interleaved to maximize the efficiency of the DSP56304 processor, minimizing pipeline
stalls but making it more confusing to read the code. Therefore, line numbers are used
to clarify references to the code.

• The code begins with a list of equates in lines 5–8. The variables that are defined
indicate the address where patches are to be inserted in ROM and the start of the
main program in ROM.

• Following in lines 14–26 is a table (patch_data_table) containing all information
required by the daisy-chaining routine to perform its purpose. The table contains
four elements for each of the three patches that are implemented: the start address
of the patch routine, the address where the ROM code is exited, and two
instruction opcodes that are located where the ROM code is exited. The patch
daisy-chain code increments through this table using the values to dynamically
enable and disable patches. Additionally, storage for a pointer into the table and
for saving and restoring registers used by the daisy_chain_patch routine is
allocated.

• Execution of the patch start-up code begins with the main program on line 40.
The first four lines enable the cache, enable the patching mechanism, and flush
the cache contents.

• Next, the first patch is enabled by locking a cache sector to the appropriate ROM
address and overwriting that address with a JSR to the patch routine.
Initialization is finalized by jumping to the start of the main ROM routine. The
ROM code is listed in Example 3-1 on page 3-5.

Example 3-2 (Cont.) Patch Code Lines 89–104

89: move x:(r0)+,r1 ;r1=next patch routine address
90: move x:(r0),r2 ;r2=next rom address to patch
91: move r0,x:patch_ptr ;update patch_ptr
92: move #$0bf080,r0 ;r1=jsr opcode
93: plock (r2)+ ;lock sector using next patch address
94: movem r1,p:(r2)- ;install jsr patch addr (overwrite rom)
95: movem r0,p:(r2) ;install jsr (overwrite rom)
96: move x:patch_m0,m0 ;restore m0
97: move x:patch_m2,m2 ;restore m2
98: move x:patch_r1,r1 ;restore r1
99: move x:patch_r2,r2 ;restore r2
100: move x:patch_r0,r0 ;restore r0
101: orig_instr
102: nop ;space for original instruction
103: nop ;space for original instruction
104: rts ;return back into rom code

Optimization

Daisy-chaining Patches Together

MOTOROLA DSP56304 ROM Software Patching 3-9

• The main ROM executive is a collection of subroutine calls. The first patch affects
the ROM subroutine sub1_rom. When the JSR that has been introduced into that
subroutine is encountered, program flow will be directed to the sub1_patch
routine on line 55. This routine executes the patch and then jumps to the
daisy_chain_patch routine.

• At the start and end of the daisy_chain_patch routine, all used registers are saved
and restored. This ensures the code is transparent in operation to the ROM code.
The R0 register is initialized with the pointer into patch_data_table, which is
pointing to the second element in the table (the current ROM address being
patched). This value is loaded into R1 on line 82 and used to unlock the cache
sector on line 85.

• Since the pointer into patch_data_table has been advanced, it is now pointing to
the two opcodes that were replaced in ROM by the JSR instruction used to exit the
ROM code. These two opcodes are retrieved from patch_data_table and written
into Program RAM at the end of the patch routine in lines 83, 86 and 87–88 (they
replace the NOPs). Hence, the daisy_chain_patch routine will execute them just
before exiting. At this point, the current patch has been disabled and the
instructions lost exiting the ROM code have been restored for execution. The
code now turns its focus to setting up the next patch.

• The next two elements in patch_data_table are the address of the next patch
routine and the address to exit from ROM. These values are retrieved in
lines 89–90 and the pointer into the patch_data_table is saved in memory since it
is no longer needed. The ROM address is used to lock the cache sector, which
prepares it for the installation of the next patch.

• The pointer into ROM is then used as the destination for a JSR opcode and the
starting address of the next patch routine on lines 94–95. Since a sector has
already been locked for this region of ROM, the action of writing these opcodes
into ROM installs the opcodes in the cache and enables the next patch.

• At this point, the next patch has been installed and enabled. After restoring all
registers used, the daisy_chain_patch routine executes the two instructions that
were replaced by the JSR in ROM and executes an RTS, which returns execution
to the point in ROM just past the exit point.

• Eventually, the next ROM patch address will be encountered and the
daisy_chain_patch routine will repeat.

3-10 DSP56304 ROM Software Patching MOTOROLA

Optimization

Daisy-chaining Patches Together

The code of Example 3-2 on page 3-6 inserted instructions into various locations into
ROM. However, skipping instructions is also easy to implement. The programmer
simply uses a JMP or BRA to exit the ROM code with the destination being the
daisy_chain_patch routine. In the data structure where the “lost” opcodes for that patch
are stored, place opcodes for a JMP or BRA back into the desired reentry point into the
ROM. This prevents the RTS at the end of the daisy_chain_patch routine from being
executed and allows choice of any destination for ROM reentry.

Many other patching variations depend upon the needs of a given situation and can be
supported by some careful thought and modification to the code of Example 3-2.

	COVER
	TABLE OF CONTENTS
	LIST OF EXAMPLES
	INTRODUCTION
	PATCHING
	OPTIMIZATION

