Interfacing Serial EEPROM
To DSP563xx

by

llan Naslavsky
Leonid Smolyansky

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

Mfax and OnCE are trademarks of Motorola, Inc.

© MOTOROLA INC., 1998

Order this document by: APR38/D

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and (& are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

CONTENTS

1 Introduction

1.1 N 170 1< 1-1
1.2 Serial EEPROM Versus Parallel EEPROM 1-2
1.3 Application Example 1-2
14 Serial EEPROM /DSP Clock Ratio.............................. 1-3
2 Physical Connection

2.1 Serial EEPROM Pinout i, 2-1
2.2 ESSI Pin Connections., 2-2
2.3 SCIPin Connections.ouiii i 2-3
2.4 Chip Select (CS) e e 2-4
2.5 HOLD And WP Lines. ... i 2-4
3 System Implementation

3.1 Block Diagram e 3-1
3.2 High-Level Functions. 3-2
3.3 Application Program Interface. 3-2
3.3.1 WRITE_BLOCK Function i, 3-3
3.3.2 READ BLOCK Function 3-11
3.3.3 PROTECT Function 3-17
3.3.4 UNPROTECT Function, 3-19
3.3.5 PROTECT _ALL Function.................... io... 3-21
3.3.6 UNPROTECT _ALL Function..................iii... 3-22
3.4 Serial EEPROM Functions 0. ... 3-22
3.4.1 WRITE_ENABLE and WRITE_DISABLE Functions. 3-23
3.4.2 READ_STATUS_REG Function. 3-25
3.4.3 WRITE_STATUS_REG Function. 3-30
3.44 WRITE Function. i, 3-34
3.4.5 READ Function 3-34
3.5 Auxiliary Routines 3-35
3.5.1 Serial Interface Reset 3-35
3.5.2 Synchronize Serial Interface 3-36
3.5.3 Poll Status Register. 3-36
3.5.4 Read Modify Write Operation. 3-37
3.6 ESSI Timing Considerationso..... 3-38

MOTOROLA Interfacing Serial EEPROM to DSP563xx i

4.1

4.1.1
4.2.1
4.3.1
4.4

44.1
4.5.1
4.6.1

5

5.1
5.2

ESSI and SCI Configuration

ESSI Configuration.......... 4-1
ESSI Control Register A i 4-1
ESSI Control Register B 4-2
ESSI Port Control, Direction and Data Registers 4-3

SCI Configuration 4-4
SCI Control Register 4-4
SCI Clock Control Register 4-5
SCI Port Control, Direction, and Data Registers................. 4-5

Customization

Code Optimization. it 5-1

Larger-Capacity Serial EEPROM. 5-1

Appendix A Assembly Equates

Appendix B Assembly Equates

Interfacing Serial EEPROM to DSP563xx MOTOROLA

Figures

Figure 1-1 Application Example 1-2
Figure 2-1 DSP - Serial EEPROM Connection tothe ESSI. 2-2
Figure 2-2 DSP - Serial EEPROM Connection with SCI................. 2-3
Figure 3-1 System Implementation 3-1
Figure 3-2 WRITE_BLOCK Flow-Chart 3-4
Figure 3-3 WRITE_BLOCK Timing for One Page 3-5
Figure 3-4 WRITE_ BLOCK Timing.t e e i i i i iieen e 3-5
Figure 3-5 READ BLOCK Flow Chart................................ 3-12
Figure 3-6 READ BLOCK TIiming ittt 3-13
Figure 3-7 PROTECT/UNPROTECT Flow-Chart. 3-17
Figure 3-8 WRITE_ENABLE/WRITE_DISABLE Flowchart.................. 3-23
Figure 3-9 READ_STATUS_ REG Timing., 3-26
Figure 3-10 READ_STATUS_REG Flow-Chart 3-26
Figure 3-11 WRITE_STATUS REG Timing. 3-30
Figure 3-12 WRITE_STATUS_REG Flow-Chart 3-31
Figure 3-13 ESSI Enabling Synchronization 3-39
Figure 3-14 ESSI Disabling Synchronization. 3-39
Figure 4-2 Control Register A i e 4-1
Figure 4-3 Control Register B. i 4-2
Figure 4-5 SCI Control Register 4-4
Figure 4-6 SCI Clock Control Register 4-5
MOTOROLA Interfacing Serial EEPROM to DSP563xx %

Vi

Interfacing Serial EEPROM to DSP563xx

MOTOROLA

Tables

Table 2-1 Serial EEPROM Pins. i 2-1
Table 3-1 High-Level Functions 3-2
Table 3-2 WRITE_BLOCK Parameters, 3-6
Table 3-3 READ_BLOCK Parameters. 3-13
Table 3-4 PROTECT Parameters. i, 3-18
Table 3-5 UNPROTECT Parameters i, 3-19
Table 3-6 Serial EEPROM Functions oo, 3-23
Table 3-7 READ_STATUS _REG Parameters.............. 3-27
Table 3-8 WRITE_STATUS_REG Parameters 3-30
Table 4-1 PCRC,PRRCand PDRCValues.............. 4-3
Table 4-1 PCRE PRRE and PDRE Values 4-6
MOTOROLA Interfacing Serial EEPROM to DSP563xx Vil

viii Interfacing Serial EEPROM to DSP563xx MOTOROLA

Examples

Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 3-5
Example 3-6
Example 3-7
Example 3-8
Example 3-9
Example 3-10
Example 3-11
Example 3-12
Example 3-13
Example 3-14
Example 3-15
Example 3-16
Example 3-17
Example 3-18
Example 3-19
Example 3-20
Example 3-21
Example 3-22
Example 3-23

APT Access Code.o 3-3
WRITE_BLOCK Routine Assembly Code 3-7
AWRITE BLOCK Call 3-11
READ BLOCK Assembly Code 3-14
AREAD BLOCKCall 3-17
PROTECT Function Assembly Code. 3-18
APROTECT Call i 3-19
UNPROTECT Function Assembly Code. 3-20
An UNPROTECT Call. 3-21
The PROTECT ALL Function. 3-21
APROTECT ALLCall. 3-21
The UNPROTECT ALL Function 3-22
An UNPROTECT ALLCall......... 3-22
WRITE_ENABLE/_DISABLE Routine Assembly Code 3-24
WRITE_ENABLE/ DISABLE Calls 3-25
READ_STATUS_REG Routine Assembly Code 3-27
READ STATUS REGCall 3-29
WRITE_STATUS_REG Assembly Code 3-32
AWRITE_STATUS_REG Call. 3-33
Single Byte WRITECall oo ... 3-34
Single Page WRITE Callo oo ... 3-34
One-Byte SEEPROMREAD Call 3-34
SERIAL_INTERFACE_RESET Code 3-35

MOTOROLA

Interfacing Serial EEPROM to DSP563xx IX

Example 3-24 SYNCHRONIZE Code., 3-36
Example 3-25 POLL_SRCodeiiiiiiiiiiiiiiiieeeeeannnn. 3-37
Example 3-26 READ_MODIFY WRITE Operation 3-37

X Interfacing Serial EEPROM to DSP563xx MOTOROLA

Scope

1 Introduction

This application report describes how to interface Serial Electrically Erasable
Programmable Memory (SEEPROM) devices with DSP56300 Family chips through
either the Enhanced Synchronous Serial Interface (ESSI) or the Synchronous
Communication Interface (SCI) of the DSP563xx chip. The ESSI and SCI are
available in several derivatives of the DSP56300 family of microprocessors. See
Appendix B.

The DSP56300 Family’s ESSI and SCI are fully capable of interfacing to SEEPROM
devices through a Serial Peripheral Interface (SPI) bus using the following family
features:

e SPI industry-standard bus connection support through ESSI or SCI
¢ Application Program Interface (API) support for:

— Read data dlock

— Write data block

— Write protection management

e Full serial clock rate support (up to 2MHz)

1.1 Scope

This application report describes the connection of DSP56300 Family devices to
industry standard SPI-compatible SEEPROMs, such as SGS-THOMSON’s
ST95010/020/040 or National’s NM25C020. It is recommended for the developer who
has previous knowledge of Motorola’s DSP56300 family, as well as the specification
of the selected Serial EEPROM.

Section 2 describes the physical connection between the serial interface, ESSI or
SCI, and a SEEPROM. Section 3 details the implemented system conception.
Section 4 explains the configuration of ESSI and SCI registers; Section 5 makes
recommendations on system and code customization.

Appendix A lists the application’s assembly equates; Appendix B lists relevant
reference information.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 1-1

Serial EEPROM Versus Parallel EEPROM

1.2 Serial EEPROM Versus Parallel EEPROM

In comparison to Parallel EEPROMs, Serial EEPROMs have several advantages:

e Serial EEPROMs are cheaper.
¢ Serial EEPROMs are smaller and take up less area on the application board.

e Serial EEPROMs require fewer connection lines.

1.3 Application Example

Figure 1-lillustrates the use of SEEPROMs with DSP56300 Family devices. Here,
a DSP56301 chip connects to a Peripheral Component Interconnect (PCI) bus
through the HI32 Host Interface and to a SEEPROM through ESSI or SCI. The
SEEPROM is used for downloading configuration data for HI32 and for storing
run-time parameters that should be saved on non-volatile storage.

pcigus A DSP56301 |
Run-Time
Parameters
SCI
ESSI |«
Configuration
v Data

AA1572

Figure 1-1 Application Example

1-2 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM / DSP Clock Ratio

1.4 Serial EEPROM / DSP Clock Ratio

Due to ESSI timing considerations, as explained in Section 3.6, the ratio between
the Serial EEPROM Clock and DSP internal clock is limited to a minimum of 40:1.

Serial EEPROM CLOCK
DSP CLOCK(ESS)

For the SCI, the ratio is limited by specification to a minimum of 8:1.

Serial EEPROM CLOCK
DSP CLOCK(SCD

MOTOROLA Interfacing Serial EEPROM to DSP563xx 1-3

Serial EEPROM / DSP Clock Ratio

1-4 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Pinout

2 Physical Connection

This section describes the physical connection between the ESSI or SCI and a
generic Serial EEPROM. The DSP563xx/Serial EEPROM connection suggested in
this application report uses three ESSI pins or three SCI pins and one Port A
Address Attribute pin, AAx, to provide all the data and control functions available in
marketed Serial EEPROM:s.

2.1 Serial EEPROM Pinout

Most SPI-compatible Serial EEPROMs present the user with eight pins: four for the
serial interface, two for auxiliary control, and two for supply voltage and ground.

This report refers to an imaginary device with just such a configuration; we use
general pin names, not necessarily those used in real devices.

On most Serial EEPROMs, pins with different names can have the same function.

Table 2-1 briefly describes each pin function and the corresponding connection on
the application board or DSP.

Table 2-1 Serial EEPROM Pins

. e . ESSI SCI

Pin Description Version Version

CS Chip Select AAx (DSP Port A)!

SI Serial Data Input STDx TXD (SCI)
(ESSIx)?

SO Serial Data Output SRDx RXD (SCI)
(ESSIx)?

SC Serial Clock, provided by DSP (ESSIx? or SCI) SCKx SCLK (SCI)
(ESSIx)?

WP Write Protect, disables memory programming if asserted pulled-up

HOLD | Halts Serial Communication if set pulled-up
VCC Power Supply board supplied
GND Ground board supplied

MOTOROLA Interfacing Serial EEPROM to DSP563xx 2-1

ESSI Pin Connections

Notes: 1. The application discussed here uses pin AAl. Any of the AAx pins
(AA0-AA3) could be used. CS can also be achieved via any GPIO pin, as
explained in Section 2.3.

2. This application addresses ESSIO, although it can run on ESSI1 with
the appropriate register name changes.

ESSI/SCI and Port A act as the serial interface for the DSP while the two additional
control pins (HOLD and WP) are pulled-up. Power Supply and ground are provided
by the board. All these lines should connect on the EEPROM according to the
corresponding specification.

2.2 ESSI Pin Connections

Figure 2-1 outlines a DSP-Serial EEPROM connection using ESSI. The ESSI
supplies the serial clock to the EEPROM through its Serial Clock (SCK) Pin, once
the Port C P3 Pin is configured as ESSI. The Serial Data Input (SI) line is provided
at the Port C P5 Pin once this pin is configured as the ESSI TX0 Serial Transmitter
Output (STD) Pin.

Vcc
DSP563xx SEEPROM
AAL Cs Vee
ESSI
scK scK GND |——II
STD SIN HOLD
SRD SOouT WP

Vcc Vcc

Pull-up
Resistors

AA1573

Figure 2-1 DSP - Serial EEPROM Connection to the ESSI

2-2 Interfacing Serial EEPROM to DSP563xx MOTOROLA

SCI Pin Connections

The Serial Data Output (SO) line is supplied by the Serial EEPROM, driving the
Port C P4 Pin once it is configured as the ESSI Serial Receive Data (SRD) Pin. In
read operations, most Serial EEPROMs keep this line tri-stated until the address
byte is received. Since the ESSI works in synchronous mode reading dummy bytes
during this period, we recommend pulling up this line to minimize power

consumption.

2.3 SCI Pin Connections

Figure 2-2 outlines a DSP-Serial EEPROM connection using SCI.

DSP563xx

AAl

Vce

SCI

SCLK

TXD

RXD

SEEPROM
CS Vvee
SCK GND
SIN HOLD
SOuUT WP

4““

Pull-up
Resistors

Figure 2-2 DSP - Serial EEPROM Connection with SCI

Vce

AA1574

MOTOROLA

Interfacing Serial EEPROM to DSP563xx

2-3

Chip Select (CS)

The SCI supplies the serial clock to the EEPROM through its Serial Clock (SCLK)
Pin once the Port E P2 Pin is configured as SCI. A Serial Data Input (SI) line is
provided at the Port E P1 Pin once it is configured as the SCI Transmit Data (TXD)
Pin.

The Serial Data Output (SO) line is supplied by the Serial EEPROM, driving the
Port E PO Pin, configured as the SCI Receive Data (RXD) Pin. In read operations,
most Serial EEPROMs keep this line tri-stated until the address byte is received.
Since SCI works in synchronous mode reading dummy bytes during this period, we
recommend pulling up this line to minimize power consumption.

2.4 Chip Select (CS)

The Serial EEPROM receives a Chip Select (CS) signal from the DSP. Any General-
Purpose I/O (GPIO) pin can be used to implement Chip Select for the Serial
EEPROM, as long as the pin is kept deasserted any time the EEPROM is not in use.
Here, CS is driven at the Port A Address Attribute or Row Address Strobe Pin
(AA1/RAS1), configured as Address Attribute. Any activity on serial interface pins
while CS is deasserted has no effect on the Serial EEPROM.

The CS line is asserted and deasserted by changing the pin polarity, with no relation
to the Port A Address Attribute mechanism. This pin cannot be used with real
Address Attribute functionality in applications implementing the currently-
described connection. This procedure permits usage of the ESSI or SCI for other
connections besides Serial EEPROM in the same application.

To configure the AA1/RAS1 (CS) Pin as an Address Attribute, DRAM access should
not be defined for the external access type through the External Access Type and Pin
Definition Bits (BAT(1:0) = 10), at the corresponding Address Attribute Register
(AAR1). The pin polarity is determined in AAR1, through the AA Pin Polarity
(BAAP) Bit. Since AA1 is not used for external access, the AA1 pin always reflects an
inactive status. A set BAAP bit gives an active high pin, so the AA1 (CS) Pin is low
and Chip Select is asserted. The default after reset is a cleared BAAP that provides
an active low pin, or the deassertion of the Chip Select Pin (AA1 - CS). If BAAP is
set, the AA1 (CS) pin is active high and CS is asserted.

2.5 HOLD And WP Lines

Asserting the HOLD pin halts serial communication without resetting the current
sequence. This option is not implemented in this application report. This line is
hard-wired deasserted through a pull-up resistor.

2-4 Interfacing Serial EEPROM to DSP563xx MOTOROLA

HOLD And WP Lines

The WP pin disallows write operations to memory when it is asserted. The
application discussed here provides writing functions, so this pin is kept deasserted
by a pull-up resistor. Write protection can be achieved by software through a proper
call to one of the write protection handling functions.

Active usage of these lines can be achieved by GPIO pins, but such usage is beyond
the scope of this application.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 2-5

HOLD And WP Lines

2-6 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Block Diagram

3 System Implementation

This section presents a set of assembly routines that accomplish high-level functions
for transparent access to the Serial EEPROM. These functions allow any application
running on the DSP563xx to interact with the Serial EEPROM by subroutine calls
with memory-mapped arguments. Along with the high-level functions, auxiliary
lower-level routines compose a kernel to perform the Serial EEPROM tasks
employed by the functions. These kernel functions are also available for direct call by
any application.

3.1 Block Diagram

Figure 3-1 shows a block diagram of a general application that interacts with a
Serial EEPROM. As Section 2 shows, any application running on a DSP563xx can
access an external Serial EEPROM connected to a serial interface, ESSI, or SCI. All
interaction occurs through an Application Program Interface (API). No additional
code is needed. Optionally, the application can call lower-level routines (kernel
routines) for a direct interaction with the Serial EEPROM.

<\‘ '/ycAppncaﬁo@
: A

Pl

High-Level Functions

Serial
Interface | > DSP563xx Core

DOP263Xx _ 4

e —
Serial Port
Chip Select

Serial EEPROM
AA1575

Figure 3-1 System Implementation

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-1

High-Level Functions

3.2 High-Level Functions

The high-level Serial EEPROM functions perform write to SEEPROM, read from
SEEPROM and SEEPROM write protection control. Table 3-1 summarizes these
functions.

Table 3-1 High-Level Functions

Function Description

WRITE_BLOCK Copies a block of N x M-byte words from any DSP memory space to
Serial EEPROM

READ_BLOCK Copies a block of N x M-byte words from Serial EEPROM to any DSP
memory space

PROTECT Write-protects Serial EEPROM above any given address

PROTECT_ALL Write-protects all Serial EEPROM

UNPROTECT Write-unprotects Serial EEPROM below any given address

UNPROTECT_ALL Write-unprotects all Serial EEPROM

3.3 Application Program Interface

A straightforward Application Program Interface (API) is provided for interaction
with Serial EEPROM. The basic procedure consists of two steps:

1. DATA FEED: transferring arguments to data memory through a set of move
instructions, DMA transfers, or previous Serial EEPROM download

2. SUBROUTINE CALL: any flow control instructions (jumps and branches to a
correspondent subroutine)

Notes: 1. PROTECT_ALL and UNPROTECT_ALL functions do not require step 1.

2. Memory protection handling is performed by the user’s application
through a suitable call to any of the write protection handling functions.
The API does execute a call of WRITE_BLOCK to a protected address,
although SEEPROM does not complete the write cycle because of the
protection.

3-2 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

The following example shows the code for general accesses to the API:

Example 3-1 API Access Code

APl MCRO ARGUMENT, VALLE

nove # VALUE), r0
nove r 0, x: ARGUMENT
B\DM

AP <PARAMETER 0>, <VALLE FCR PARAMETER 0>
APl <PARAMETER 1>, <VALLE FCR PARAMETER 1>
APl <PARAMETER 2>, <VALLE FCR PARAMETER 2>
AP <PARAMETER n>, <VALLE FCR PARAMETER n>
bsr <FUNCTT ON\>

The sections that follow completely describe all the functions and respective
parameters. Each description includes the function’s flowchart, timing diagrams,
and the routine’s code. Major steps in the routine are indexed and referenced both in
the flowchart and the timing diagrams. Functions that require calling parameters,
are summarized in a table for each function. Descriptions conclude with an example
function call.

The code provided is the same for both the ESSI and SCI versions. Particular
portions corresponding to one peripheral or the other (ESSI or SCI) are selected
during assembling through the equate SERIAL_INTERFACE. This equate is defined in
Appendix A. To assemble the code for ESSI, SERIAL_INTERFACE should be equal to
‘ESSI'. Similarly, to assemble the code for SCI, SERIAL_INTERFACE equate must be
‘SCT.

3.3.1 WRITE_BLOCK Function

The WRITE_BLOCK function permits the application to copy a block of words from
DSP memory to the Serial EEPROM. The function performs Serial EEPROM page

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-3

Application Program Interface

management in a transparent way. Figure 3-2 displays the WRITE_BLOCK function
flowchart; Figure 3-3 and Figure 3-4 show the function’s timing scheme.

BEGIN

(1) Read API Data

Y

(2) Reset serial interface

r ((11) Reset serial interface

(10) End of page?

(3) Pack opcode and address ¢
¢ (12) Deassert Chip Select
(4) Assert Chip Select
~
¢ (13) READ_STATUS_REGISTER
(5) Activate serial interface

and synchronize

Y

(6) Transmit opcode and address

*«

(7) Get current DSP word

'

(8) Get current byte

Y

(14) Write cycle ended?

(15) End of block?

(9) Transmit one byte

RETURN

Figure 3-2 WRITE_BLOCK Flow-Chart

AA1576

3-4 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

13,14 m

1 ‘---~| 1 - S . 1
. . . AR
' \ (s . 1 Al N
S -) - ’ :
0 . R
I a . 0
. f 1 \ N v !
.
"~ 3] 0 | 7 .
- 3 -~ " -
(IS PR . P [PR .
.- ~ .- N
il ' ' LI | 1 [4
| ' ' | | '

Sl ><><First Page XX Poll I:><><Second Page><>i< Poll ><>< Last Page XX Poll ><><

- as)

AA1577

Figure 3-3 WRITE_BLOCK Timing for One Page

(13,14) m

i P i Ea -
. N . .~ . ~ .
i v . . e af .
CS -) ’)
0 . .
I) | . In \
" " 1 i v
’ A Ll
* v (] | h 71 :’
- . - ‘, "
T i I~ o . PR
-~ - . ~ - .
--- - .- N
' il 1 ~ea - ' ' [
' | | ' ' |

S ><><First Page ><>< Poll E><><Second Pagé()i(Poll ><>< ><>< Last Page><>< Poll XX

- (15)

AA1577.5

Figure 3-4 WRITE_BLOCK Timing

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-5

Application Program Interface

Table 3-2 depicts WRITE_BLOCK parameters.

Table 3-2 WRITE BLOCK Parameters

WR_N_STAT REG

internal use

WR_N_COUNTER

internal use

3 for 24-bit words

Parameter Description Range API

WR_N SRC_N number of words to be writ- 1 to 16M-words (24 bits) x:$8
ten to SEEPROM

WR_N_SRC_SPC block source memory space X,Y or P, case insensitive x:$9

WR_N_SRC_ADD block source base address any mapped DSP memory x:$A

address

WR_N_DEST ADD Serial EEPROM address for $00 to $FF (8 bits) x:$B
LSB of first word

WR_N _PAGE_SIZE Serial EEPROM page size Device dependent, must be a x:$C
minus 1 power of 2 (-1)

WR_N_WRD_SZ word size in bytes 1 for byte, 2 for 16-bit words, x:$D

Note: These addresses are determined by the assembler equates. The values
correspond to those in Appendix A and can be changed by modifying the
equates appropriately, with no additional change needed in the code.

3-6 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Example 3-2 presents the assembly code for the WRITE_BLOCK routine.

Application Program Interface

Example 3-2 WRITE_BLOCK Routine Assembly Code

VR TE BLAXK

; (1) READ APl DATA

nove #$0,r0

nove ro, x: VR N GONTER : clear counter

nove X: VRN SRC ADDr0

nove x: VR N DEST_ADD, b

nove x: WR N PACE S ZE, n2

nove #$1,r3

nove x: VRN WD &7, n8

nove X: VR N DEST ADD, r4

nove n2, x0

and X0, b

clr a

nove b, r2

; loop VRTE PAGE until all DSP words have been transnmitted
VR TE PACE

; Wite Enabl e

bsr VR TE_ ENABLE

7 (2) RESET SER AL | NTERFACE

bsr SER AL_| NTERFACE_RESET

; (3) PAK CPAOE and ADDRESS

nove r4, a2

asr #24, 4, a

nove #WR TE_CPAIE a2

asr #38,a, a ; now we have ViR N DEST ADD i

; A0 and VR TE CPAE in Al

7 (4) ASSERT CH P SHLECT

novep #$4, x: M AARL ; set AAL | ow

; (5) ACTIVATE SER AL | NTERFACE and SYNOHRON ZE

bsr SYNCHRON ZE

MOTOROLA Interfacing Serial EEPROM to DSP563xx

3-7

Application Program Interface

Example 3-2 WRITE BLOCK Routine Assembly Code (Continued)

IF SER AL | NTERFACE= ESSI!
novep a0, x: M TX00 ; load 2nd valid byte to be
; TXed (address, B2)
brclr #M ROF, x: M SS SR, * ; wait until byte is TXed
; (opcode, Bl)
novep x: MRX0, n5 ; clear ROF bit
B.SE
IF SER AL | NTERFACE= Sd'
brclr #M TDRE, x: M SSR * ; wait until byte is TXed
; (opcode, BO)
novep a0, x: M STxH ; load 2nd valid byte to be Txed
; (address, Bl)
brclr #M RORF, x: M SSR * ; clean recei ver
novep X: M SRXH al
nop ; pipeline del ay
BND F
BND F
; whi ch space?
clr b
clr a x: VR N CONTER b0
nove #>$20, x0
nove X: VRN SRC SPC a
cnp #3$70, a ; is it lowercase?
sub X0, a ifge ; capitalize
nove X: VR N SRC N x0
cnp # X,a
nove #(_xin_word-_end+1),r5
beq _Xxin word
cnp #Y,a
nove #(_yin_ word-_end+1),r5
beq _yin word
nove #(_pi n_word-_end+1),r5
; transnit page
; (7)) GeT ORRENT CsP WRD
_pin_word
nove p: (r0), al ; case P
bra _cont
_yin_word
nove y:(r0),al ; case Y
bra _cont
_xin word
nove x:(r0),al ; case X
_cont

3-8 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

Example 3-2 WRITE BLOCK Routine Assembly Code (Continued)

do r3,_cutlbyte
asr #$8,a, a
_cutlbyte
nove (r3)+ ; updates byte pointer in
; current DSP word
: (9) TRANSM T ON\E BYTE
|F SER AL_| NTERFACE=ESS'
novep a0, x: M TX00 ; load Nh valid byte to be TXed
; (data, B.n)
brclr #M ROF, x: M SS SR, * ; wait until byte is Txed
; (address/data, B n-1)
novep x: MRX0, n5 ; clear ROF bit
nop ; pipeline delay
nop ; pipeline delay
BSE
IF SER AL | NTERFACE== O
brclr #M TDRE, x: M SSR * ; wait until byte is TXed
novep a0, x: M STxH ; load Nh valid byte to be Txed
; (data, B.n)
brclr #M RORF, x: M SSR * : cl ean recei ver
novep X: M SRH al
BND F
BND F
nove r3,a
nove (rd)+
tst a
bne _upd ; current DSP word fini shed?
nove (r3)+ ; resets r3to 1 (byte pointer)
nove (ro)+ ; points to next D8P word
inc b
nove x0, a0
cnp a,b ; conpare nunber of TXed words
; to nunber of DSP words
beq _end ; end transaction in case all
; D8P word have been TX
_upd
nove (r2)+ ; points to next in-page address
nove rz2,a
tst a
bne rs ; continues until END OF PACE
_end nop
MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-9

Application Program Interface

Example 3-2 WRITE BLOCK Routine Assembly Code (Continued)

brclr #M ROF, x: M SS SR, * ; wait until last byte is Txed
novep x: MRXO, n5 ; clear ROF bit
nove b0, x: VR N GONTER ; save nunber of TXed words
BSE
IF SER AL_| NTERFACE=' 0
brclr #M TDRE, x: M SSR * ; wait until byte is TXed
; (address, Bl)
brclr #M RORF, x: M SSR * ; clean recei ver
novep X: M SRXH al
nove b0, x: WR_N_GONTER ; save nunber of TXed words
BEND F

clr b x: VR N SRC N x0
clr a X: WR N QONTER b0
nove X0, a0

nop

nop

cnp a,b ; conpare nunber of transmtted
; words to nunber of DSP words

bne VR TE_PACE

nop

; RETURN

res

3-10 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

Example 3-3 shows a call to WRITE_BLOCK for copying a 24-word block of 24-bit
words (3-byte words) from DSP X memory, address $204, to address $0 of an 8-byte
page Serial EEPROM.

Example 3-3 A WRITE_BLOCK Call

APl WR N SRC N $18 ; 24 words

APl WRNSRCSC"' x' " ; from X nenory

AP VR N SRC ADD $204 ; Bock begins on address $204

AP VR N CEST ADD, $0 ; Bock is witten to address $0
APl VWR N PAGE Sl ZF, $7 ; SEEPROM's page size is 8 bytes
APl WR N WD &7, $3 ; word size is 3 bytes = 24 bits
bsr WR TE BLOXK ; branch to VIR TE BLOXK subrouti ne

3.3.2 READ_BLOCK Function

A call to READ_BLOCK reads a block of words from Serial EEPROM to DSP memory.
Figure 3-5 shows the READ_BLOCK function flowchart; Figure 3-6 shows the
function’s timing scheme. Figure 3-3 displays READ_BLOCK parameters.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-11

Application Program Interface

BEGIN

(1) Read API Data

'

(2) Reset serial interface

'

(3) Pack opcode and address

(9) End of word?

(10) Write to destination

¢ ¢

(4) Assert Chip Select

'

(11) End of block?

(5) Activate serial interface and
synchronize
+ (12) Reset serial interface
(6) Transmit opcode and address ¢

l (13) Deassert Chip Select

(7) Read one byte

'

(8) Pack it

RETURN
AA1578

Figure 3-5 READ_BLOCK Flow Chart

3-12 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

so YRR, oo

(7,8,9,10)) ’ IR
7 (11)\5

AA1579

Figure 3-6 READ _BLOCK Timing

Table 3-3 READ_BLOCK Parameters

Parameter Description Range API D

RD_N_SRC_N Number of words to be read 1 to 16M-words (24 bits) x:$0
from Serial EEPROM

RD N SRC_ADD Serial EEPROM address for $00 to $FF (8 bits) x:$1
LSB of first word

RD_N_DEST_SPC Block destination memory space | X,Y or P, case insensitive x:$2

RD_N_DEST_ADD Block destination base address Any mapped DSP x:$3

memory address

RD N WRD SZ Word size in bytes 1 for byte, 2 for 16-bit words, 3 | x:$4
for 24-bit words

Note: These addresses are determined by assembler equates. The values correspond
to those in Appendix A and can be changed by modifying the equates
appropriately, with no additional change needed in the code.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-13

Application Program Interface

Example 3-4 shows the assembly code for the READ_BLOCK routine.

Example 3-4 READ_BLOCK Assembly Code

; is it |owercase?
; capitalize

; and READ CPAE in AL

load 2nd valid byte to be

TXed (address, B2)

wait until byte is TXed

(opcode, BL)
clear ROF bit

wait until byte is TXed

(address, B2)
clear ROF bit

READ BLOXK
; (1) READ APl DATA
clr a
nove #>$20, x0
nove x: RD_N SRC ADD, a2
nove x: RD N DEST_ADD r0
nove x:RD NDEST SPC b
nove x: RDN WD &, x1
cnp #3$70, b
sub X0, b
nove x: RD_N SRC N x0
; (2) RESET SER AL | NTERFACE
bsr SER AL | NTERFACE RESET
;7 (3) PAK GPAE and ADDRESS
lasr #24, a, a
nove #READ CPQCLE, a2
asr #8,a,a
7 (4) ASSERT CH P SHECT
novep #$4, x: M AARL
; (5) ACTIVATE SER AL | NTERFACE and SYNCHRON ZE
bsr SYNCHRON ZE
; (6) TRANSM T CPCDE and ADDRESS
| F SER AL | NTERFACE=' ESS''
novep a0, x: M TX00
brclr #M ROF, x: M SS SRD, *
novep X: M RXO, n5
brclr #M ROF, x: M SS SR, *
novep x: MRXO, n5

3-14 Interfacing Serial EEPROM to DSP563xx

MOTOROLA

Application Program Interface

Example 3-4 READ_BLOCK Assembly Code (Continued)

BLSE

IF SER AL | NTERFACE=—= SO

brclr
novep
breclr

novep
nop

#M TDRE, x: M SSR * ;
a0, x: M STXH ;

#M RORF, x: M SSR * ;
X: M SRH al

#$f £ 0000, x: M STXH ;

#M RORF, x: M SSR * ;
x: M SRH al

wait until byte is TXed
(opcode, BO)

load 2nd valid byte to be
TXed (address, Bl)

cl ean recei ver

pi pel i ne del ay

; wait until byte is TXed

(address, Bl)

keep transmtting to naintai n
cl ock

cl ean recei ver

cnp #X,b
nove #(_x-_p+l),r5
beq _sp_end
cnp #Y,b
nove #(_y- _pt+l),r5
beq _sp_end
nove #$1,r5
_sp_end
; read words and wite to D8P nenory
ao X0, _rd_n ws ; read N words
do x1, rd_bytes ; read bytes
I F SER AL | NTERFACE= ESS''
breclr #M ROF, x: M SS SR, * cowait ountil O's receiver is
; full
. (7) READ Q\E BYTE
novep X: MRX0, al
BSE
|F SER AL | NTERFACE= A''
brclr #M TDRE, x: M SSR * ; wait until byte is TXed
novep #$f £ 0000, x: M STXH ; keep transmitting to naintain
; clock
MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-15

Application Program Interface

Example 3-4 READ_BLOCK Assembly Code (Continued)

brclr #M RORF, x: M SSR * read recei ved byte
novep X: M SRH al
BEND F
BEND F
. (8) PAKIT
| sr #16, a
asr #8, 4, a
_rd_bytes
(9) B\D O WRD?
rep x1
asl #8,a, a
. (10) VR TE TO DESTI NATI ON
bra r5
_p
nove al, p:(r0)+
bra _rd_end
X
nove al, x: (rQy+
bra _rd_end
v
nove al,y:(rQ0)+
_rd end
nop
_rd_nws
© (11) B\D OF BLOCK?
; (12) RESET SER AL | NTERFACE
bsr SR AL_| NTERFACE_RESET
(13) DEASSERT CH P SHECT
i)cl r #M BAAP, x: M AARL set AAL high
7 RETURN
rts
3-16 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

Example 3-5 shows a call to the READ_BLOCK function for copying a 6-word block of
8-bit words (1-byte words) from address $0 of a Serial EEPROM to DSP X memory,
address $104. This example actually reads the first two 24-bit words written to the
Serial EEPROM in Example 3-3 as six independent bytes that are each written on a
different DSP X memory address. The LSB of the first 24-bit word written to the
Serial EEPROM is read to the LSB of X:$104, and so on.

Example 3-5 A READ _BLOCK Call

APl RD N SRC N $6 ; 6-word bl ock

AR RD N SRC ADD, $0 ; fromSEEPROM s address $0
AP RD N DEST SPG "' X' " © to D8P X nenory

AP RD N DEST_ADD, $100 ; at address $100

AP RD N WD &7, $1 ; 1-byte words

bsr READ BLAXK

3.3.3 PROTECT Function

The PROTECT function protects the Serial EEPROM from writing from a given
address’ section to the top of the memory. A Serial EEPROM’s section corresponds to
one fourth of its address range. An address’ section is the one to which the address to
be protected belongs. Figure 3-7 displays the PROTECT function flowchart; Table
3-4 shows the function’s parameters.

(1) Read API Data

Y

(2) Calculate write protection bits

Y

(3) Write status register

AA1580

Figure 3-7 PROTECT/UNPROTECT Flow-Chart

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-17

Application Program Interface

Table 3-4 PROTECT Parameters

Parameter Description Range API D
PRF BASE ADD | Serial EEPROM base address One byte, $00 to $FF x:$10
for protection
PRF_MEM_SZ Serial EEPROM’s size in Kbits 1 for 1K-bits or 2 for 2K-bits x:$11
Note: These addresses are determined by assembler equates. The values correspond

to those in Appendix A and can be changed by modifying the equates, with no
additional change needed on the code.

Example 3-6 shows the assembly code for the PROTECT routine.

Example 3-6 PROTECT Function Assembly Code

clr a

clr b

nove #>1,y0

nove #>$40, al

nove #>$60, a0

nove xX: PRFEMBM SZ, b
dec b

asl bl, a a

nove al, x1

nove a0, x0

clr a

nove x: PRFE_BASE ADD al
clr b

nove #>$3, b

cnp x1,a
sub y0, b ifge
cnp X0, a
sub y0, b ifge

nove b1, r0

nove ro, x: WVRSR _DATA
bsr WR TE_STATUS REG
nop

; RETURN

res

3-18 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

The following example calls the PROTECT function in order to write-protect all
addresses above address $d0 on a 2K-bit SEEPROM. The routine protects all

addresses above $d0 location’s section, including the section itself—that is, all
addresses above $c0.

Example 3-7 A PROTECT Call

a PROTECT cal |
APl PRE_BASE_ADD $d0
AP PRE MM &Z, $2
bsr PROTECT

3.34 UNPROTECT Function

Calling the UNPROTECT function cancels write protection for the Serial EEPROM
from memory’s bottom address to a given address’ section. The UNPROTECT function
flowchart is the same as for PROTECT, shown in Figure 3-7. Table 3-5 displays the
parameters of the UNPROTECT function.

Table 3-5 UNPROTECT Parameters

Parameter Description Range APID

UPRF_BASE_ADD Serial EEPROM base address One byte, $00 to $FF x:$12
for protection

UPRF_MEM_SZ Serial EEPROM’s size in Kbits 1 for 1K-bits or x:$13
2 for 2K-bits

Note: These addresses are determined by assembler equates. The values correspond
to those in Appendix A. These values can be changed by modifying the
equates appropriately, with no additional change needed in the code.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-19

Application Program Interface

Example 3-8 shows the assembly code for the UNPROTECT routine.

Example 3-8 UNPROTECT Function Assembly Code

UNPROTECT

. (1) FEAD APl DATA
lcl r a
clr b
nove #>1, y0
nove #>%$40, al
nove #>%$60, a0
nove x: UPRF MBM &, b
dec b
asl bl, a a
nove al, xi
nove a0, x0
clr a
nove x: UPRF_BASE ADD, al
clr b
nove #30, b
(2) CALAULATE VR TE PROTECTION B TS
cnp X0, a
add y0, b iflt
cnp X1, a
add y0, b iflt
| sl #2,b
; (3) VR TE STATUS REQ STER
nove b1, r0
nove ro, x: WRSR_DATA
bsr VWR TE_STATUS REG
nop
;. RETURN
rts

3-20 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Application Program Interface

Example 3-9 calls for UNPROTECT enabling a 2K-bit Serial EEPROM to be written
on all addresses below address $b0. The routine unprotects all addresses below the

$d0 location’s section as well, including the section itself, that is, all addresses below
$c0.

Example 3-9 An UNPROTECT Call

AP UPRF_BASE_ADD, $h0
AP UPRF_ MEM Z, $2
bsr UNPROTECT

3.3.5 PROTECT_ALL Function

Calling the PROTECT_ALL function protects the whole Serial EEPROM from being
written. No parameters are needed. The function writes an adequate value to the
SEEPROM Status Register, as shown in the following code.

Example 3-10 The PROTECT ALL Function

PROTECT_ALL
call VWRSRwith this correspondent data
nove #$c,r0
nove ro, x: WVRSR _DATA
bsr VR TE_STATUS REG
nop
RETURN
rts

To call PROTECT_ALL it is enough to branch to the subroutine, as Example 3-11
shows.

Example 3-11 A PROTECT_ALL Call

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-21

Serial EEPROM Functions

3.3.6 UNPROTECT_ALL Function

Calling the UNPROTECT_ALL function cancels write protection for the whole Serial
EEPROM. No parameters are needed. The function writes an adequate value to the
SEEPROM Status Register, as the following code shows.

Example 3-12 The UNPROTECT_ALL Function

nove #%$0,r0

nove ro, x: WRSR _DATA
bsr WR TE_STATUS REG
nop

;. RETURN

To call UNPROTECT_ALL it is enough to branch to the subroutine, as Example 3-13
shows.

Example 3-13 An UNPROTECT _ALL Call

34 Serial EEPROM Functions

Serial EEPROMs accept one-byte serial opcodes delivering the memory basic
functionality. The general Serial EEPROM complete instruction set is implemented
in this application report. Part of the instruction set is achieved as a sub-set of the
high-level functions described in Section 3.2 and Section 3.3. Other instructions
accomplished by kernel routines that serve those high-level functions are similarly
available for direct call by any application.

Table 3-6 summarizes these low-level functions and the way they work. The
following paragraphs describe them. These functions are called in much the same
way as the high-level functions described in Section 3.3, some with parameters and
some without.

3-22 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Functions

Table 3-6 Serial EEPROM Functions

Function Description Implementation

WREN Enables Serial EEPROM for writing Kernel: WRITE_ENABLE

WRDI Disables Serial EEPROM for writing Kernel: WRITE_DISABLE

RDSR Reads Serial EEPROM’s Status Kernel: READ_STATUS _REG
Register

WRSR Programs Serial EEPROM’s Status Register Kernel: WRITE_STATUS_REG

WRITE Writes to Serial EEPROM Sub-set of WRITE_BLOCK

READ Reads from Serial EEPROM Sub-set of READ BLOCK

3.4.1 WRITE_ENABLE and WRITE_DISABLE Functions

The WRITE_ENABLE and WRITE_DISABLE functions do not require parameters.
WRITE_ENABLE prepares the Serial EEPROM for writing. It is called by higher-level
functions before any programming task, data writing, or status register writing.
WRITE_DISABLE disables the Serial EEPROM for writing and is not called by any
high-level function. The same routine executes both functions, as Figure 3-8 shows.

(1) Pack opcode

Y

(2) Reset Serial Interface

Y

(3) Assert chip select

Y

(4) Activate serial interface
and synchronize

Y

(5) Transmit opcode

Y

(6) Reset serial interface

'

(7) Deassert chip select

AA1581

Figure 3-8 WRITE_ENABLE/WRITE_DISABLE Flowchart

MOTOROLA

Interfacing Serial EEPROM to DSP563xx 3-23

Serial EEPROM Functions

Example 3-14 shows the complete assembly code for the WRITE_ENABLE/
WRITE_DISABLE routine.

Example 3-14 WRITE_ENABLE/_DISABLE Routine Assembly Code

WR TE ENABLE
; (1) PAK CPAE and ADDRESS
nove #%$0, a2
asr #24, a, a
nove #WREN CPALE, a2
asr #38, 4, a ; now we have WREN CPAE i n Al
bra endi s
WR TE D SABLE
; (1) PACK CPOE and ADDRESS
nove #3$0, a2
asr #24, a, a
nove #WRD _CPAIE, a2
asr #38,a a ; now we have WAO _CPOLE in Al
endi s
; (2) RESET SER AL | NTERFACE
bsr SER AL | NTERFACE RESET
7 (3) ASSERT CH P SHLECT
novep #34, x: M AARL . set AAL | ow
; (4) ACTIVATE SER AL | NTERFACE and SYNCHRON ZE
bsr SYNCHRON ZE

| F SER AL | NTERFACE="' ESS"

jclr #M ROF, x: M SS SR, * ; wait until byte is TXed
; (opcode, Bl)

novep x: MRXO, n5 ; clear ROF bit

BSE

IF SERAL_| NTERFACE=—= A

brclr #M TDRE, x: M SSR * ; wait until byte is TXed

; (opcode, BO)

novep #3f f 0000, x: M STXH ; keep transnitting to maintain
; ¢l ock

brclr #M RORF, x: M SSR * ; clean recei ver

novep x: M SRXH al

3-24 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Functions

Example 3-14 WRITE_ENABLE/ DISABLE Routine Assembly Code (Continued)

The WRITE_ENABLE and WRITE_DISABLE functions can be called by branching to the
subroutine, with no need for parameters.

Example 3-15 WRITE_ENABLE/_DISABLE Calls

3.4.2 READ_STATUS_REG Function

The READ_STATUS_REG function reads the SEEPROM Status Register and writes it
on the Least Significant Byte of a given address in a given DSP memory space.
Figure 3-9 shows the READ_STATUS_REG function timing scheme; Figure 3-10
displays the function’s flowchart; Table 3-7 lists the parameters of
READ_STATUS_REG.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-25

Serial EEPROM Functions

AA1582

Figure 3-9 READ_STATUS_REG Timing

|

(1) Read API data (9) Write to destination

Y Y

(2) Reset serial interface (10) Reset serial interface
| (3) Pack opcode (11) Deassert Chip Select

(4) Assert Chip Select

Y

(5) Activate serial interface
and synphronlze

Y

(6) Transmit opcode

Y

(7) Read status register

Y

(8) Pack it AA1583

Figure 3-10 READ_STATUS_REG Flow-Chart

3-26 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Functions

Table 3-7 READ_STATUS_REG Parameters

Parameter Description Range Address!
RDSR_DEST SPC destination memory space XYorP x:$5
RDSR_DEST_ADD destination address any mapped DSP mem- x:$6

ory address

Note: These addresses are determined by assembler equates. The values correspond
to those in Appendix A. These values can be changed by modifying the
equates appropriately, with no additional change needed on the code.

Example 3-16 shows the complete assembly code for the READ_STATUS_REG routine.

Example 3-16 READ_STATUS_REG Routine Assembly Code

clr a

nove #>%$20, x0

nove x: ROBR DEST ADD r 1

nove x: ROBR CEST_SPC b

cnp #$70, b cis it | owercase?
sub X0, b ifge ; capitalize

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-27

Serial EEPROM Functions

Example 3-16 READ_STATUS_REG Routine Assembly Code (Continued)

IF SERAL_| NTERFACE== ESSI

brclr #M RO, x: M S SR, * ; wait until byte is TXed
; (opcode, Bl)

novep x: MRX0, n5 ; clear ROF bit

B.SE

IF SER AL | NTERFACE== Sa'

brclr #M TDRE, x: M SSR * ; wait until byte is TXed
; (opcode, BO)

novep #$f £ 0000, x: M STXH ; keep transmitting to naintain
; ¢l ock

brclr #M RORF, x: M SSR * ; clean recei ver

novep x: MSRXH al

nop ; pipeline del ay

BND F

BEND F

; whi ch space?

cnp #X,b

nove #(_x-_p+l),r5

beq _sp_end

cnp #Y,b

nove #(_y-_ptl),r5

beq _sp_end

nove #$1,r5

_sp_end

; read SRand wite to DSP nenory

: (7) READ STATUS REQ STER

| F SER AL_| NTERFACE=" ESS"

brclr #M ROF, x: M SS SR, * ; wait until ESS0's receiver is
: full

novep x: MRX0, al

B.SE

IF SER AL | NTERFACE= sd

brclr #M RORF, x: M SSR * ; read received byte

novep xX: M SRH al

BND F

BND F

3-28 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Functions

Example 3-16 READ_STATUS_REG Routine Assembly Code (Continued)

bra rs
_p
nove al, p:(rl)+
bra _rd_end
X
nove al, x:(rl)+
bra _rd end
v
nove al,y:(rl)+
_rd_end

Example 3-17 shows an example of a READ_STATUS_REG call. The call reads the
SEEPROM'’s Status Register and writes its value to DSP X data memory at address
$300.

Example 3-17 READ_STATUS_REG Call

AP RDSR DEST_SPG "' X
AP RDSR _[CEST_ADD, $300
bsr READ STATUS REG

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-29

Serial EEPROM Functions

3.4.3 WRITE_STATUS_REG Function

The WRITE_STATUS_REG function programs the SEEPROM Status Register with a
given value. Figure 3-11displays the WRITE_STATUS_REG timing scheme;
Figure 3-12 shows the flowchart; Table 3-8 lists the parameters of

WRITE_STATUS_REG.

Table 3-8 WRITE_STATUS_REG Parameters

Parameter Description Range API
WRSR_DATA Data to be written into the One byte, at LSB of DSP x:$7
SEEPROM Status Register memory location
Note: These addresses are determined by assembler equates. The values correspond

to those in Appendix A and can be changed by modifying the equates
appropriately, with no additional change needed on the code.

SC

Sl

Figure 3-11 WRITE_STATUS_REG Timing

AA1584

3-30 Interfacing Serial EEPROM to DSP563xx

MOTOROLA

Serial EEPROM Functions

BEGIN ¢

(7) Reset serial interface

(1) Read API data

| Y

(2) Reset serial interface (8) Deassert Chip Select

Y r

(3) Pack opcode and data
¢ (9) READ_STATUS_REGISTER

(4) Assert Chip Select

Y

(5) Activate serial interface and
synchronize

(10) Write cycle ended?

RETURN

(6) Transmit opcode and SR data

AA1585

Figure 3-12 WRITE_STATUS_REG Flow-Chart

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-31

Serial EEPROM Functions

Example 3-18 presents the assembly code for the WRITE_STATUS_REG routine.

Example 3-18 WRITE_STATUS_REG Assembly Code

; Wite BEnabl e

asr #38,a,a ; now we have WRSR DATA in AD
; and WVRSR CPQTE in Al

novep #$4, x: M AARL ; change AAl pol arity,in order
; toset it low

i F SER AL_| NTERFACE=' '

novep a0, x: M TX00 ; load 2nd valid byte to be
; T™Xed (SR data, B2)

brclr #M ROF, x: M SS SR, * ; wait until byte is TXed
; (opcode, BL)

novep x: MRX0, n5 ; clear ROF bit

brclr #M ROF, x: M SS SR, * ; wait until byte is TXed
;(SRdata, B2)

novep x: MRX0, n5 : clear ROF bit

3-32 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Serial EEPROM Functions

Example 3-18 WRITE_STATUS_REG Assembly Code (Continued)

BH.SE

IF SER AL | NTERFACE== Sa'

brclr #M TDRE, x: M SSR * ; wait until byte is TXed; (opcode, BO)

novep ao, x: M STxH ; load 2nd valid byte to be Txed
; (data, Bl)

brclr #M RORF, x: M SSR * ; clean recei ver

novep xX: M SRXH al

nop ; pipeline del ay

brclr #M TDRE, x: M SSR * ; wait until byte is TXed
; (data, Bl)

brclr #M RORF, x: M SSR * ; clean recei ver

novep x: M SRH al

BEND F

BEND F

7 (7) RESET SER AL | NTERFACE

bsr SHR AL | NTERFACE RESET

; (8) DEASSERT C(H P SHECT

bel r #M BAAP, x: M AARL ; change AAL polarity, in order

; toset it high

Example 3-19 shows an example of a WRITE_STATUS_REG call, which writes a value
of $f2 to the SEEPROM Status Register.

Example 3-19 A WRITE_STATUS_REG Call

AP WRSR DATA, $f 2
bsr VWR TE_STATUS REG

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-33

Serial EEPROM Functions

3.4.4 WRITE Function

The typical Serial EEPROM presents a WRITE function that enables writing to the
SEEPROM from one byte up to one memory page. The WRITE function is thus a
subset of the WRITE_BLOCK function described in Section 3.3.1 WRITE_BLOCK
Function on page 3-3. With appropriate calls to WRITE_BLOCK, you can run any
WRITE function. For example, the following call writes one byte to address $10 in the
Serial EEPROM.

Example 3-20 Single Byte WRITE Call

VR N SRC N $1

WR N SRC sPC "' x' " ; The data to be wittenis

VR N SRC ADD, $200 ; taken from D8P nenory x: $200

VR N DEST_ADD $10

VWR N PAGE S ZF, $3 ; The used SEHEPROM has a 4-byte; page
VR N WD 7, $1

VR TE_ BLOXK

FE5xE%%

oy
[%2])
=

For writing a page, the call is as follows:

Example 3-21 Single Page WRITE Call

VR N SRC N $4 ; The page is 4-byte long

WR N SRC SPG "' x' "

VR N SRC ADD, $200

WR N DEST_ADD $10 ; $10 is base address of a page
VR N PAGE Sl ZE, $3

VR N WD &7, $1

VR TE BLOK

FEXE%%

o
(%2}
=

3.4.5 READ Function

As with the WRITE function, a READ function is available on the typical Serial
EEPROM, and it permits reading of any number of bytes from the SEEPROM.
Calling the READ_BLOCK function as detailed in Section 3.3.2 runs the READ
function. Since READ_BLOCK can read 8-,16- and 24-bit words, the Serial EEPROM
READ function is a subset of READ_BLOCK. A one-byte SEEPROM READ access is
performed, for example, with the following call:

Example 3-22 One-Byte SEEPROM READ Call

APl RD N SRC N $1 ; read one byte

APl RD N SRC ADD $0 ; from SEEPROM address $0
AR RD N DEST SPC"'y'" ; wite to DSP nenory y: $100
AR RD N DEST_ADD, $100

AP RD N WD &, $1 ; read byte node

bsr READ BLAK

3-34 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Auxiliary Routines

3.5 Auxiliary Routines

Other available auxiliary routines are SERIAL_INTERFACE_RESET, SYNCHRONIZE, and

POLL_SR.

351 Serial Interface Reset

The SERIAL_INTERFACE_RESET routine puts the serial interface, either ESSI or SCI,
in the Personal Reset state while programming the relevant control registers to
initial values. See Example 3-23:

Example 3-23 SERIAL_INTERFACE_RESET Code

SER AL_| NTERFACE_RESET

|F SER AL | NTERFACE==ESSI
novep #DEFALLT _PCR x: M PCRC
novep #DEFALLT _POR x: M PDRC
novep #DEFAULT _PRR x: MPRRC
novep #DEFALLT_CRA x: M CRAO
novep #DEFAULT_CRB x: M GRBO
B.SE
|F SER AL_| NTERFACE—= 3
novep #DEFALLT _PCRE x: M PCRE
novep #DEFAULT_PDRE x: M PDRE
novep #DEFAULT _PRRE x: M PRRE
novep #DEHFALLT SCR x: M SCR
novep #DEFALLT_SOR x: M SR
novep #ACTV_PCRE 1, x: M PCRE ; avoidinitial 1 DSP clock
; spike at SAK
B\D F
BND F
rts
MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-35

Auxiliary Routines

3.5.2 Synchronize Serial Interface

The SYNCHRONIZE routine activates the serial interface in a synchronized way in
order to guarantee timing constraints of the SPI protocol. Example 3-24 shows the
routine’s assembly listing:

Example 3-24 SYNCHRONIZE Code

SYNOHRON ZE
| F SER AL_| NTERFACE==' ESSI'
novep #FFFEEF, x: MTXO0 ; load first byte to be TXed (dummy, BO)
novep #ACTV_PCR 1, x: M PCRC ; enabl e
novep #ACTV_RB, x: M R0 ; activate 's TX and RX
brclr #MTFS x: M SS SR, * ; wait until frame status bit occurs
novep al, x: M TX00 ; load 1st valid byte to be Txed
; (opcode, Bl)
brclr #M ROF, x: M SS SR, * ; wait until byte is TXed;, (dummy, BO)
novep x: MRX0, n5 ; clear ROF bit
rep #A.AK_RATI O 2)
nop
novep #ACTV_PR 2, x: M PCRC ; enabl e SCK and STD
B.SE
IF SER AL_| NTERFACE= 3
novep #ACTV_PCRE 2, x: M PCRE ; enable S
novep al, x: M STxH ; load 1st valid byte to be Txed
; (opcode, BO)
novep #ACTV_SR x: M SR ; activate SO's TX and RX
BEND F
BENO F

res

3.5.3 Poll Status Register

The POLL_SR routine polls the SEEPROM Status Register’'s READY bit to determine
the end of a Serial EEPROM write cycle. The routine is called by the WRITE_BLOCK
routine at the end of each page write of the Serial EEPROM. It is also called by the
WRITE_STATUS_REGISTER routine after it writes to the SEEPROM Status Register.
Example 3-25 shows the routine’s assembly listing.

3-36 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Auxiliary Routines

Example 3-25 POLL_SR Code

POL SR
nove
nove
nove
nove
jsr
nove
j set
res

#>WR N STAT_REG a
a, x: RO8R OEST_ADD
#'X,a

a, x: ROBR DEST_SPC
READ STATUS REG
#MR N STAT REGrl
#$0, x: (r1), POLL_SR

3.5.4 Read Modify Write Operation

The following example performs a READ_MODIFY_WRITE operation on a 10-word
block in a 1K-bit SEEPROM, followed by write protection of the block. The
modification part of the operation switches the first word and the second, the third
and the fourth, and so on until the ninth and tenth words.

Example 3-26 READ_MODIFY_WRITE Operation

RD N DEST_ADD, $100
RO N WD 7, $3
READ BLOK

; read ten words
; from SEEPROM addr ess $c0
; wite to D8P nenory y: $100

; read 3-byte words

#$100,r0

#$5, _end_nodi fy
y:(r0)+ a0
y:(r0)-,al
al,y:(r0)+

ao,y: (r0)+

AR UPRF_BASE ADD, $d0
AR UPRF_MEM Z, $1
bsr UNPROTECT
MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-37

ESSI Timing Considerations

Example 3-26 READ_MODIFY_WRITE Operation (Continued)

AR WNSRCSC"'y"
AR VR N SRC ADD, $100
AR VR N DEST_ADD $d0
AR VR N PACE S ZE, $3
AR VR N WD &7, $3

bsr WR TE BLOXK

3.6 ESSI Timing Considerations

A set of polling routines synchronize ESSI SCLK, enabling with the first valid bit of
Serial Data Out, emulating a gated clock. Figure 3-13 and Figure 3-14 show
Synchronization events for enabling and disabling the ESSI in the worst case (a
READ_BLOCK call).

To guarantee this synchronization scheme, the ratio between the SEEPROM period
and DSP period should be greater than 40, which guarantees the gated clock when
the ESSI SCLK is enabled, while avoiding extra forbidden clocks after the last valid
bit on the ESSI SCLK is disabled.

3-38 Interfacing Serial EEPROM to DSP563xx MOTOROLA

ESSI Timing Considerations

FIRST BYTE (DUMMY) ! FIRST VALID |
I

BIT Enable SCLK pin
[Y
\ / _
~ - VR
<> <>)
SCLK \ y
I ~
| — — — =

| I CLOCK_RATIO x DSP CLOCK |

I
L — 3 Wait for Low Phase of SCLK(CLOCK_RATIO/2)

L — 3 Polling RDF bit (~15-20 DSP clocks)

Last dummy bit received, Receiver is Full

NOTE: Diagram out of scale AA1586

Figure 3-13 ESSI Enabling Synchronization

LAST VALID I NOT VALID I _ .
BIT I BIT Disable SCLK pin
VRN | |
[Y
\ / _
~ 7 N
SCLK \ ,
S~
- — — — — P

I CLOCK_RATIO x DSP CLOCK I

< ——H>»)
I
I
I
I
I
I

L — 3 Polling RDF, API operations and ESSI disabling (<40 DSP clocks)

Last valid bit received, Receiver is Full

NOTE: Diagram out of scale AA1587

Figure 3-14 ESSI Disabling Synchronization

MOTOROLA Interfacing Serial EEPROM to DSP563xx 3-39

ESSI Timing Considerations

3-40 Interfacing Serial EEPROM to DSP563xx MOTOROLA

ESSI Configuration

4 ESSI and SCI Configuration

This section details how the serial interface, whether ESSI or SCI, is configured.

4.1 ESSI Configuration

The following paragraphs describe ESSI programming.

4.1.1 ESSI Control Register A

ESSI Control Register A (CRA) is initialized with a value of $000018, corresponding
to the following configuration

11 10 9 8 7 6 5 4 3 2 1 0

PSR PM7 PM6 PM5 PM4 PM3 PM2 PM1 PMO

0 0 0 0 0 0 0 1 1 0 0 0

1

23 22 21 20 19 18 17 16 15 14 13 12
SSC1 | WL2 WL1 WLO ALC DC4 DC3 DC2 DC1 DCO

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
AA1588

Figure 4-2 Control Register A
e PM7-PMO and PSR: Prescale Modulus Select and Prescale Range bits are
configured so that a 1IMHz serial clock is generated for a 400 MHz chip.

e DC4-DCO: Frame Rate Divider Control bits are cleared providing continuous
data transfer in Normal mode.

e ALC: the Alignment Control bit is cleared, so that transmitted and received
bytes would be aligned to bit 23 in the corresponding data registers.

e WL2-WLO: Word Length Control bits are programmed for 8-bit words.

e SSC1: this bit is irrelevant to the application discussed in this report.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 4-1

ESSI Configuration

4.2.

1

ESSI Control Register B

ESSI Control Register B (CRB) is initialized with a value of $001920. A value of a

value of $031920 activates the ESSI.

11 10 9 8 7 6 5 4 3 2 1 0
CKP FSP FSR FSL1 | FSLO | SHFD | SCKD | SCD2 | SCD1 | SCDO | OF1 OF0

1 0 0 1 0 0 1 0 0 0 0 0

23 22 21 20 19 18 17 16 15 14 13 12
REIE | TEIE RLIE TLIE RIE TIE RE TEO TE1 TE2 MOD SYN

0 0 0 0 0 0 0>11]0->1 0 0 0 1

0->3
AA1589

These values correspond to the following configurations:

application.

Figure 4-3 Control Register B

OFO0 and OF1: Output Flags bits are not used in this implementation.
SCD2-SCDO: Serial Control Direction bits are irrelevant for this application.
SCKD: The internal clock is used, so the Clock Source Direction bit is set.

SHFD: Data is shifted in and out MSB first, so the Shift Direction bit is
cleared.

FSL1-FSLO: Frame Sync Length bits are set to 10 (bit-length) according to the
ESSI specification for continuous periodic data transfers.

FSR and FSP: Frame Sync Relative Timing and Frame Sync Polarity bits are
irrelevant for the current implementation.

CKP: The Clock Polarity bit is set so that data is clocked out on the falling
edge of bit clock and latched in on its rising edge.

SYN: ESSI works in its synchronous mode, so the Synchronous/Asynchronous
bit is set.

MOD: Clearing the ESSI Mode Select bit selects Normal mode for the

4-2

Interfacing Serial EEPROM to DSP563xx

MOTOROLA

ESSI Configuration

e TE2 and TE1: Transmitters 2 and 1 are not used, so corresponding Transmit
Enable bits are zeroed.

e TEO: the Transmit 0 Enable bit is set whenever transmitter 0 is to be used.
e RE: the Receive Enable bit is set whenever the ESSI receiver is to be used.

e REIE, TEIE, RLIE, TLIE, RIE and TIE: No interrupt is used on the
application, so all the interrupt enabling bits are cleared.

4.3.1 ESSI Port Control, Direction and Data Registers

The ESSI Port Control Register (PCRC), Port Direction Register (PRRC) and Port
Data Register (PDRC) mirror the pin functionality, direction, and state required in
every task performed throughout the application.

Table 4-1 condenses all the combinations used.

Table 4-1 PCRC, PRRC and PDRC Values

Pin Number | P5 P4 P3 P2 P1 PO

ESSI STD SRD SCK SC2 SC1 SCO

Function

> M=

Function GPIO GPIO GPIO GPIO GPIO GPIO 00
(PCRC)

Direction OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | OUTPUT | 3F
(PRRC)

Data 1 1 0 1 1 1 37
(PDRC)

Function GPIO ESSI GPIO GPIO GPIO GPIO 20
(PCRC)
Enable ESSI

Function ESSI ESSI ESSI GPIO GPIO GPIO 38
(PCRC)
Enable SCK
and STD

m<—HNpy| ACCy»Tdmdd

MOTOROLA Interfacing Serial EEPROM to DSP563xx 4-3

SCI Configuration
4.4 SCI Configuration

The following paragraphs describe SCI programming.

4.4.1 SCI Control Register

The SCI Control Register (SCR) is initialized with a value of $008008. A value of
$008308 simultaneously enables both the receiver and transmitter 1.

11 10 9 8 7 6 5 4 3 2 1 0

CD11 | CD10 CD9 CD8 CD7 CD6 CD5 CD4 CD3 CD2 CD1 CDO

23 22 21 20 19 18 17 16 15 14 13 12

TCM RCM SCP CoD

AA1591

Figure 4-5 SCI Control Register
These values correspond to the following configuration:
e REIE, STIR, TMIE, TIE, RIE and ILIE: no interrupt is used in this
implementation, so these bits are programmed with zero.
e SCKP: Negative Clock Polarity is used, so this bit is set to one.
¢ TE: the enable bit is set when the SCI transmitter is to be used.
¢ RE: the Receive Enable bit is set when the SCI receiver is to be used.

e WOMS, RWU, WAKE and SBK: These bits are irrelevant in the current
application.

e SSFTD: the Most Significant Bit is shifted first, so this bit should be set to
one.

e WDS2-WDSO0: the Word Select Bits are all zeroed, configuring SCI to its
Synchronous Mode (Mode 0).

4-4 Interfacing Serial EEPROM to DSP563xx MOTOROLA

SCI Configuration

45.1 SCI Clock Control Register

A value of $000031 initializes the SCI Clock Control Register (SCCR).

11 10 9 8 7 6 5 4 3 2 1 0
CD11 | CD10 CD9 CD8 CD7 CD6 CD5 CD4 CD3 CD2 CD1 CDO
0 0 0 0 0 0 1 1 0 0 0 1
0 3 1
15 14 13 12
TCM RCM SCP CoD
0 0 0 0
0
AA1591

Figure 4-6 SCI Clock Control Register

This value corresponds to the following configuration:

e TCM and RCM: An internal clock is used, so the Transmitter Clock Mode and

Receiver Clock Mode bits are zeroed.

e SCP: SCI Clock Prescaler divides by one, so this bit is set to zero.

¢ (COD: this bit is irrelevant in Synchronous mode, since the output divider is

fixed at divide by 2.

e (CD11-CDO: the Clock Divider bits are programmed to $31, providing a 1/400

ratio between the serial clock and the DSP clock.

4.6.1 SCI Port Control, Direction, and Data Registers

The SCI Port Control Register (PCRE), Port Direction Register (PRRE), and Port
Data Register (PDRE) mirror the pin functionality, direction, and state required in

every task performed throughout the application.

MOTOROLA Interfacing Serial EEPROM to DSP563xx

4-5

SCI Configuration

Table 4-1 condenses all the combinations used.

Table 4-1 PCRE PRRE and PDRE Values

Pin Number P2 P1 PO
HEXA

ESSI Function SCLK TXD RXD

D | Function GPIO GPIO GPIO 0

E | (PCRE)

F

A Direction OUTPUT OUTPUT OUTPUT 7
(PRRE)

U

L | Data 0 1 1 3

T | (PDRE)

A | Function GPIO GPIO SCI 1

C | (PCRE)

T | Enable SCI

,Iv Function SCI SCI SCI 7
(PCRE)

E | Enable SCLK and TXD

4-6 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Code Optimization

5 Customization

This section explains how to customize the routines provided in the earlier sections.

5.1 Code Optimization

Much of the assembly code provided in Section 3 is consumed in processing API
parameters and in running API routines. This includes DSP memory space selection,
Serial EEPROM page management, word packing, and so on. Although it gives great
transparency and flexibility, the code needed for performing these features
consumes DSP cycles and program memory, which can be optimized by customizing
all the API functions for the specific user’s application. Below is a list of some
features that can be customized to reduce DSP memory and processing cycles. The
numbers in parentheses address to correspondent steps on the WRITE_BLOCK routine
where the applicable changes should be made. Refer to the function code in Section
3.3.1

¢ Using a fixed DSP memory space permits the DSP memory space processing
from any function to be cut (1,6-7).

¢ Using a fixed word size or/and fixed SEEPROM addresses permits reduce
packing routines (1,3,8,9).

¢ Isolated use of some functions may permit you to avoid branching to common
routines (1-2,5,11,13).

¢ Ifyou do not need to write large blocks, the page management mechanism can
be extracted (1,7,8,10,14,15).

¢ In case some functions that are called one after another,
SERIAL_INTERFACE_RESET can be ignored at the beginning of any function
after the second one (2).

5.2 Larger-Capacity Serial EEPROM

The application discussed in this report provides a one-byte addressing mechanism
that covers any Serial EEPROM up to 2K-bit density. Serial EEPROMs of greater
density use an additional address line for accessing memory locations higher than
$FF. This additional address bit is usually one of the unused bits of the one-byte
opcode and is device-dependent. If your application needs to access larger-density
Serial EEPROMs, you should modify some code in order to fit the present addressing
routines to the selected device. We suggest modifying the code on its highest level, at
the API subroutines call, with minor low-level routine changes for opcode and
address determination.

MOTOROLA Interfacing Serial EEPROM to DSP563xx 5-1

Larger-Capacity Serial EEPROM

5-2

Interfacing Serial EEPROM to DSP563xx

MOTOROLA

Appendix A

Assembly Equates

This Appendix presents the assembly code and defined equates for this application.

A.l EQUATES

In addition to the I/O and Interrupt Equates of the respective DSP56300 derivatives,
the AC-link application assembly code uses the equates defined below.

A.l1l General Equates

START
AKX RATIO

SER AL_| NTERFACE

equ $100 ; Min Program Sarting Address
equ $190 ; ratio (EBPRMperiod / D8P

; period = 1/400)

equ "ESS ™ ; This equate shoul d det ernine
: which Serial Interface wll
; be used on the connection. Set
it to“SA” incase it is
; intended to be used as Seri al

; Interface

A.l.2 ESSI Configuration Equates

EQUATES
DEFALLT _PCR equ $000000
DEFALLT PRR equ $00003F
DEFALLT _PCR equ $000037
DEFALLT_CRA equ $000018
DEFALT _CGRB equ $001920
,’OCTV_CFIB equ $031920 ; TX & RX enabl ed
ACTV PR 1 equ $000020 ; activation
ACTV PR 2 equ $000038 ; S and STD enabl i ng
MOTOROLA Interfacing Serial EEPROM to DSP563xx Appendix A-1

A.1.3 SCI Configuration Equates

SO EQUATES
DEFAULT _PCRE equ $000000
DEFALLT_PRRE equ $000007
DEFALLT_PORE equ $000003
DEFALLT SR equ $008008
DEFAULT_SOCR equ $000031 : 400MHz (400 50)
o= 1M
ACTV. SR equ $008308 . TX & RX enabl ed
ACTV PCRE 1 equ $000001
ACTV PCRE 2 equ $000007
A.l4 SEEPROM Opcodes
EEPROM CPOCCES
VRSR CPOTE equ $01
VR TE_CPOTE equ $02
READ CPODE equ $03
WO _CPOE equ $04
WREN CPOE equ $06
ROSR CPACTE equ $05
Appendix A-2 Interfacing Serial EEPROM to DSP563xx MOTOROLA

; AR

. FON Read N words from EEPROM

RDNSRCN equ $0 ; nunber of words to be read
; from SEEPRIM

RD N SRC ADD equ $1 ; SEEPRMaddress for MSB byte
; of first word

RD N DEST_SPC equ $2 ; Destination nemory space

RD N DEST ADD equ $3 ; Destination nenory address

RO N WD &Z equ $4 ; word size embytes

. RORR Read STATUS REG STER fr om EEPROM

RDSR DEST_SPC equ $5

ROSR DEST_ACD equ $6

. WER: Wite STATUS REG STER to EEPROM

WRSR DATA equ $7

. WVRN: Wite a block of N DSP vords to EEFROM

VR NSRCN equ $8 ; nunber of words to be witten
;. to EEPRM

VR N SRC SPC equ $9

VWR N SRC ADD equ $a ; D8P first word address

VWR N DEST ADD equ $b ; EEPRMaddress for LSB byte
; of first word

WR N PACE S ZE equ $c ; (page size -1) for used
;. BEEPROM

VR N WD &7 equ $d

WR N STAT REG equ $e ; dest to STATUS REG pol | i ng

VR N GONTER equ $f

; PRF Wite protect above address

i:’H: BASE ADD equ $10

PRF_ MM &Z equ $11

; UPRF Wite unprotect above address

LPH:_BASE_ADI) equ $12

UPR- MEM &Z equ $13

MOTOROLA Interfacing Serial EEPROM to DSP563xx

Appendix A-3

Appendix A-4 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Appendix B Assembly Equates

The following manuals, which may contain data pertinent to this application, can be
viewed or downloaded at the indicated web sites.
e http://www.mot.com/SPS/DSP/documentation/DSP56300.html
— DSP56300 Digital Signal Processor Family Manual
— DSP563xx Digital Signal Processor User's Manual
— DSP563xx Digital Signal Processor Data Sheet

— Application note APR20/D, DSP56300/DSP56600 Application
Optimization for the Digital Signal Processors

e http://www.st.com
— ST95040, ST95020, ST95010 Data Sheets
¢ http:/www.national.com

— NM25C020 Data Sheet

MOTOROLA Interfacing Serial EEPROM to DSP563xx Appendix B-1

Appendix B-2 Interfacing Serial EEPROM to DSP563xx MOTOROLA

Order by this number: APR38/D

OnCE and Mfax are registered trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and (4] are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed: Asia/Pacific: Japan:

Motorola Literature Distribution Motorola Semiconductors H.K. Ltd. Nippon Motorola Ltd

P.O. Box 5405 8B Tai Ping Industrial Park SPD, Strategic Planning Office
Denver, Colorado 80217 51 Ting Kok Road 4-32-1, Nishi-Gotanda

1(800) 441-2447 Tai Po, N.T., Hong Kong Shinagawa-ku, Tokyo 141, Japan
1 (303) 675-2140 852-26629298 81-3-5487-8488

Motorola Fax Back System (Mfax™): ~ Technical Resource Center: Internet:

TOUCHTONE (602) 244-6609 1 (800) 521-6274 http://www.motorola-dsp.com/

1 (800) 774-1848

RMFAXO@email.sps.mot.com DSP Helpline

dsphelp@dsp.sps.mot.com

@ MOTOROLA

