MOTOROLA Order by APR39/D

Semiconductor Application Note (Motorola Order Number)
Rev. 0, 10/98

Programming the
DSP56307 Enhanced Filter
Coprocessor (EFCOP)

Tina M. Redheendran

The enhanced filter coprocessor (EFCOP) is a
general-purpose peripheral module of the DSP56307 that is a
fully programmable complex filter. The EFCOP’s optimized
modes of operation perform complex finite impulse response
(FIR) filtering, infinite impulse response (IIR) filtering,
adaptive FIR filtering, and multichannel FIR filtering. The
EFCOP filter operations are completed concurrently with the
DSP56300 core operations with minimal CPU intervention.

The EFCOP has dedicated modes of operation optimized for
cellular basestation applications. In a transceiver basestation,
the EFCOP can perform complex matched filtering to
maximize the signal-to-noise ratio (SNR) within an
equalization process. In a transcoder basestation or a mobile
switching center, the EFCOP can perform all types of FIR
and IIR filtering within a vocoder, as well as LMS-type echo
cancellation.

This document describes the programming model for the
EFCOP and presents two application examples for the
EFCOP:

* A complete IIR filter

*  An LMS echo canceller
It is assumed that you already have access to the available
Motorola DSP56307 documentation, which is located on the

Motorola DSP World Wide Web site at the following
address:

htt p: // www. not or ol a- dsp. conf docunent ati on

You can download the example EFCOP code presented in
this application report from the Motorola DSP Web site at the
following address:

htt p: // www. not or ol a- dsp. conf docunent ati on/ app
not es

1
1.1
1.2

1.2.

Contents
EFCOP Programming Model .... 1-1
EFCOP Description ........c..c.ccne. 1-1
EFCOP Registers .......ccccceeruenuenne. 1-2

1 Filter Data Input Register
(FDIR)...oeiiririirinirceirenceeneeeaes 1-2

1.2.2 Filter Data Output Register

1.2.3 Filter K-Constant Input Register

(FKIR) oo 1-2

1.2.4 Filter Count Register (FCNT)....... 1-3
1.2.5 EFCOP Control Status Register

(FCSR) e 1-3
1.2.6 EFCOP ALU Control Register

(FACR) .o 1-5
1.2.7 EFCOP Data Base Address

(FDBA) .ottt 1-6
1.2.8 EFCOP Coefficient Base Address

(FCBA) .ot 1-6
1.2.9 Decimation/Channel Count

Register (FDCH).......ccceevevveeninenee. 1-7
2 IR Filter Example..................... 2-1
2.1 TR Filter Theory.......ccccevcererenuene 2-1
2.2 IR Filter Design.......cccccoceverenuene 2-2
2.3 IIR Filter Example Code............... 2-3
2.3.1 Initialization of Constants............. 2-3
2.3.2 FIR Filter Session .........ccoecereereene 2-5
2.3.3 IIR Filter Session ...........cccoevveeueenne 2-8
2.3.4 Coefficients, Taps, and Input........ 2-9
2.4  Filter ResultS......ccocevevererenneneee 2-10
3 Echo Canceller Example ........... 3-1
3.1 Echo Canceller Theory ................. 3-1
3.2 Echo Canceller Design.................. 3-2
3.3 Example Code......ccccevrerrenienrnnnne. 33
3.3.1 Declaration of Constants............... 3-3
3.3.2 EFCOP Initialization..................... 3-4
3.3.3 Interrupt Code to Implement the

Coefficient Update..........cccoueuenee 3-5
3.3.4 Initialization of Coefficients

and Input ......ccoevvevieneneeeeee 3-6
3.4 Echo Canceller Results.................. 3-7
4 Correlation Notes..........ccceeuveeee. 4-1
5 Programmer’s Reference........... 5-1

© Motorola, Inc., 1998

@ MOTOROLA

a8
o]
O
LL
L
~
o
[92]
©
Lo
o
n
o
]
=
(@]
=
£
S
s
o
o
S
o




Programming the DSP56307 EFCOP Motorola



EFCOP Description

1 EFCOP Programming Model

This section describes the registers for configuring and operating the EFCOP. The DSP56307 User’s
Manual discusses EFCOP programming in detail, including the basic types of filter algorithms that can
be processed.

1.1 EFCOP Description

As Figure 1-1 shows, the EFCOP comprises the following main functional blocks:
*  Peripheral module bus (PMB) interface, including:
— Data input buffer
— Constant input buffer
— Output buffer
— Filter counter
* Filter data memory (FDM) bank
» Filter coefficient memory (FCM) bank
*  Filter multiplier-accumulator (FMAC) machine
*  Address generator

»  Control logic

DMA Bus
PMB GDB Bus A I
Interface B v ‘ e
v Y Memory
Shared
4-Word
FDIR
Data Input Buffer . FCNT RAM

Control Filter Count r=—=—-——— 1
Logic ﬂ FCBA | FCM [
| o ! Coeff. Base Ad. : COEFFICIENT |
X Memory FDBA Memory Bank I
Shared I DATA | DataBaseAd. | 24-bit |
RAM I Memory Bank | Address b o o o e

| 24-bit | Generator A

L Z_ .[ —
FKIR > FMAC
Filter Constant 24x24 -> 56-bit
- Rounding & Limiting
|
Output Buffer
FDOR I AA1491

Figure 1-1. EFCOP Block Diagram

Motorola 11



EFCOP Registers

1.2 EFCOP Registers

Table 1-1 lists the EFCOP registers available to the digital signal processing programmer. The next
subsections describe these registers in detail.

Table 1-1. EFCOP Registers and Base Addresses

Address EFCOP Register Name

$FFFFBO Filter data input register (FDIR)

$FFFFB1 Filter data output register (FDOR)
$FFFFB2 Filter K-constant register (FKIR)
$FFFFB3 Filter count register (FCNT)

$FFFFB4 Filter control status register (FCSR)
$FFFFB5 Filter ALU control register (FACR)
$FFFFB6 Filter data buffer base address (FDBA)
$FFFFB7 Filter coefficient base address (FCBA)
$FFFFB8 Filter decimation/channel register (FDCH)

1.2.1 Filter Data Input Register (FDIR)

The FDIR is a 24-bit 4-word-deep FIFO for DSP-to-EFCOP data transfers. Up to four data samples
can be written into the FDIR using the same address. Data from the FDIR is transferred to the FDM for
filter processing. For proper operation, write data to the FDIR only if the FDIBE status bit is set,
indicating that the FIFO is empty. Writing to the FDIR clears the FDIBE bit. Data transfers can be
triggered by an interrupt request (for core transfers) or a DMA request (for DMA transfers). Both the
DSP56300 core and the DMA controller can access the FDIR for writes.

1.2.2 Filter Data Output Register (FDOR)

The FDOR is a 24-bit read-only register for EFCOP-to-DSP data transfers. The result of the filter
processing is transferred from the FMAC to the FDOR. For proper operation, read data from the
FDOR only if the FDOBEF status bit is set, indicating that the FDOR contains data. Reading from the
FDOR clears the FDOBF bit. Data transfers can be triggered by an interrupt request (for core transfers)
or a DMA request (for DMA transfers). The FDOR is accessible for reads by the DSP56300 core and
the DMA controller.

1.2.3 Filter K-Constant Input Register (FKIR)

The FKIR is a 24-bit write-only register for DSP-to-EFCOP constant transfers. The filter constants are
written to the FKIR before echo cancellation processing and transferred to the FMAC adder. The
FKIR is accessible for reads or writes only by the DSP56300 core.

1-2 DSP56307 EFCOP Programming Motorola



EFCOP Registers

1.2.4 Filter Count Register (FCNT)

The FCNT register is a 24-bit read/write register for selecting the filter length (number of filter taps).
Always write the initial count into the FCNT register before enabling the EFCOP—that is, setting the
FEN bit (bit 0 of the FCSR). Do not change the contents of the FCNT register unless the EFCOP is in

the individual reset state (FEN = 0). In the individual reset state, the EFCOP module is inactive, but
the contents of the FCNT register are preserved. Table 1-2 describes the FCNT register bits.

Table 1-2. FCNT Register Bits

Bit Number Mnemonic Value Function
23-12 — These bits are reserved and should be written with 0
11-0 FCNT Filter Count

These bits should be written with the number of coefficient values
minus one

1.2.5 EFCOP Control Status Register (FCSR)

The FCSR is a 24-bit read/write register by which the DSP56300 core controls the main operation
modes of the EFCOP and monitors the EFCOP status. All FCSR bits are cleared after hardware and
software reset. To ensure proper operation, do not change the FCSR bits unless the EFCOP is in
individual reset state (i.e., FEN = 0) except FEN, FDIOE, FDIIE, FUPD, and FADP. Table 1-3

describes the FCSR bits.
Table 1-3. FCSR Bits
Bit Number Mnemonic Value Function
23-16 — These bits are reserved and should be written with 0
15 FDOBF Filter Data Output Buffer Full - status bit
0 FDOR is empty
1 FDOR is full and ready to be read by the Core or DMA
14 FDIBE Filter Data Input Buffer Empty - status bit
0 FDIR is full
1 FDIR is empty and ready to be written to by the Core or DMA
13 FCONT Filter Contention - sticky status bit
0 Memory contention has not occurred
1 Memory contention occurred between the Core and the EFCOP
12 FSAT Filter Saturation - sticky status bit
0 Overflow or underflow has not occurred
1 Overflow or underflow occurred

Motorola

1-3




EFCOP Registers

Table 1-3. FCSR Bits (Continued)

Bit Number Mnemonic Value Function
11 FDOIE Filter Data Output Interrupt Enable
0 Interrupt disabled
1 Interrupt enabled
10 FDIIE Filter Data Input Interrupt Enable
0 Interrupt disabled
1 Interrupt enabled
9 — This bit is reserved and should be written with 0
8 FSCO Filter Shared Coefficients mode -valid only in multichannel

mode (FMLC bitin FCSR = 1)

0 Sequential coefficients
1 Shared coefficients
7 FPRC Filter Processing State Initialization mode - valid only with FIR
filter type (FLT bitin FCSR = 0)
0 Initialization enabled
1 Initialization disabled
6 FMLC Filter Multichannel mode
0 Multichannel mode disabled
1 Multichannel mode enabled
5-4 FOM Filter Operation mode - valid only with FIR filter type (FLT bit in
FCSR =0)
00 Mode 0: Real FIR filter
01 Mode 1: Full complex FIR filter
10 Mode 2: Complex FIR filter with alternate real and imaginary
outputs
11 Mode 3: Magnitude
3 FUPD Filter Update - valid only with FIR filter type (FLT bit in FCSR =

0), automatically cleared by the EFCOP and automatically set in
adaptive mode (FADP bit in FCSR = 1)

0 Coefficient update is complete

1 Begin coefficient update

1-4 DSP56307 EFCOP Programming Motorola



EFCOP Registers

Table 1-3. FCSR Bits (Continued)

Bit Number

Mnemonic

Value

Function

2

FADP

Filter Adaptive mode - valid only with FIR filter type (FLT bit in
FCSR =0)

Adaptive mode disabled

Adaptive mode enabled

FLT

Filter Type

FIR filter

IR filter

FEN

Filter Enable

EFCOP disabled and in the individual reset state

EFCOP enabled

1.2.6 EFCOP ALU Control Register (FACR)

The FACR is a 24-bit read/write register by which the DSP56300 core controls the main operation
modes of the EFCOP arithmetic logic unit (ALU). All FACR bits are cleared after hardware and
software reset. Table 1-4 describes the FACR bits.

Table 1-4. FACR Bits

Bit Number

Abbrev.

Value

Function

23-7

These bits are reserved and should be written with 0

6

FISL

Filter Input Scale - scaling in each case is determined by the
FSCL[1:0] bits in the FCSR

Scale both the IR feedback terms and the IIR input

Scale only the IIR feedback terms

FSA

Filter Sixteen-bit Arithmetic mode

Disables sixteen-bit arithmetic mode

Enables sixteen-bit arithmetic mode

FSM

Filter Saturation mode

Disables saturation mode

Enables saturation mode

FRM

Filter Rounding mode

00

Convergent rounding

Motorola

1-5



EFCOP Registers

Table 1-4. FACR Bits (Continued)

Bit Number Abbrev. Value Function
01 Twos complement rounding
10 Truncation (no rounding)
11 Reserved

1-0 FSCL Filter Scaling

00 Scaling factor = 1 (no shift)
01 Scaling factor = 8 (3-bit arithmetic left shift)
10 Scaling factor = 16 (4-bit arithmetic left shift)
11 Reserved

1.2.7 EFCOP Data Base Address (FDBA)

The FDBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FDM bank.
The FDBA points to the location to write the next data sample. The FDBA points to a modulo delay
buffer of size M, defined by the filter length (M = FCNT[11:0] + 1). The address range of this modulo
delay buffer is defined by lower and upper address boundaries. The lower address boundary is the
FDBA value with Os in the k LSBs, where k> M= ok , and therefore must be a multiple of 2K The
upper boundary is equal to the lower boundary plus (M — 1). Since M < 2K once M is chosen (FCNT is
assigned), the sequential series of data memory blocks (each of length 2 k) is created where multiple
circular buffers for multichannel filtering can be located. If M < 2K thereisa space between sequential
circular buffers of 2 - M. The address pointer is not required to start at the lower address boundary or
to end on the upper address boundary. It can point anywhere within the defined modulo address range.
If the data address pointer (FDBA) increments and reaches the upper boundary of the modulo buffer, it
wraps around to the lower boundary.

1.2.8 EFCOP Coefficient Base Address (FCBA)

The FCBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FCM bank.
The FCBA points to the first location of the coefficient table. The FCBA points to a modulo buffer of
size M, defined by the filter length (M = FCNT[11:0] + 1). The address range of this modulo buffer is
defined by lower and upper address boundaries. The lower address boundary is the FCBA value with
0s in the k LSBs, where 2F > M > 2%/ and therefore must be a multiple of 2K The upper boundary is
equal to the lower boundary plus (M — 1). Since M < 2 once M is chosen (FCNT is assigned), the
sequential series of coefficient memory blocks (each of length 2k) is created where multiple circular
buffers for multichannel filtering can be located. If M < 2K thereisa space between sequential circular
buffers of 2¥ - M. The FCBA address pointer must be assigned to the lower address boundary (must
have k Os in its LSBs). In a compute session, the coefficient address pointer always starts at the lower
boundary and ends at the upper address boundary. Therefore, reading FCBA always gives the value of
the lower address boundary.

DSP56307 EFCOP Programming Motorola



EFCOP Registers

1.2.9 Decimation/Channel Count Register (FDCH)

The FDCH is a 24-bit read/write register for setting the number of channels used in multichannel mode
and setting the decimation ratio in FIR filter mode. FDCH should be written before the EFCOP is
enabled—that is, setting the FEN bit (bit 0 of the FCSR). FDCH should be changed only when the
EFCOP is in the individual reset state (FEN = 0). Otherwise, improper operation may result. In the
individual reset state, the EFCOP module is inactive, but the contents of the FDCH register are
preserved. Table 1-5 describes the FDCH bits.

Table 1-5. FDCH Register Bits

Bit Number Abbrev. Value Function
23-12 — These bits are reserved and should be written with 0
11-8 FDCM Filter Decimation
These bits should be written with the decimation factor minus one
7-6 — These bits are reserved and should be written with 0
5-0 FCHL Filter Channels - valid only in multichannel mode (FMLC bit of
FCSR=1)
These bits should be written with the number of channels minus
one

Motorola

1-7



EFCOP Registers

1-8 DSP56307 EFCOP Programming Motorola



[IR Filter Theory

2 IR Filter Example

This section describes how to implement a complete infinite impulse response (IIR) filter using the
EFCOP. It gives the theoretical background, the filter design, the example code, and the results of the
example filter.

2.1 IR Filter Theory

The difference equation for an IIR filter is:

N M
= x(n -1 y(n-i (EQ1)
y(n) ZOB,x(n i) +-21A pn-J)
1 = J =

where x(n) is the filter input at time n, y(n) is the filter output at time n, N is the number of
feed-forward filter coefficients minus one, B ; are the feed-forward filter coefficients, M is the number
of feed-back filter coefficients, and A jare the feed-back filter coefficients.

Equation 1 can be rewritten as:

N
w(n) = Z Bl.x(n—i) (EQ2)
i=0
and
0 M 0
y(n) = S0w(n) + z A y(n—-jd (EQ3)
0 i1’/ O

where all the coefficients are scaled down by S. The block diagram of Equation 2 and Equation 3 is
shown in Figure 2-1.

The EFCOP implements an IIR filter using the logic of Figure 2-1. First, an FIR mode session
calculates w(n) using Equation 2 and x(n) as the input. Then, an IIR mode session calculates y(n) using
Equation 3 and w(n) as the input.

Motorola 2-1



IIR Filter Design

w(n)
X(n) S . y(ny,
4 \
71
i o
71
2 102
71
x(n-3) y(n-3)
)
)
°
)
) -
x(n-N+1) . | y(n-M+1)
71
Ko v
FIR Session IIR Session
AA1496

Figure 2-1. General IIR Block Diagram

2.2 |IR Filter Design

This example implements a butterworth lowpass filter with M = N = 3 and a cut-off frequency of
0.8W,,, where W, is half the sampling rate. The filter coefficients for these design parameters
(determined using Matlab) are shown in Table 2-1.

Table 2-1. Example Filter Coefficients

By = 0.5276 _
B, = 1.5829 A; = -1.7600
B, = 1.5829 Ay =-1.1829
B = 0.5276 Ag=-0.2781

Many of these coefficients have magnitudes greater than 1, which cannot be expressed in the DSP’s
fixed point numerical representation. Thus, the coefficients are scaled down by eight before they are
used with the EFCOP and the EFCOP scaling factor bits are set to scale up the output of the IIR filter
by eight. Table 2-2 shows the scaled coefficients.

2-2 DSP56307 EFCOP Programming Motorola



IIR Filter Example Code

Table 2-2. Scaled Example Coefficients

By = 0.0660 —

B; = 0.1979 A = -0.2200
B, = 0.1979 A, = -0.1479
B; = 0.0660 Ag=-0.0348

Figure 2-2 shows the block diagram for this example.

x(n)

x(n-1)

x(n-2)

x(n-3)

w(n)

z1 zt
B,=0.1979 A1=-0.2200 y(n-1)

71 z1
B,=0.1979 A,=-0.1479 y(n-2)

zt zt
B3=0.0660 A5=-0.0348 y(n-3)

FIR Session IIR Session
AA1497

Figure 2-2. IR Block Diagram

2.3 IR Filter Example Code

The IIR filter example code is divided into four sections:

¢ Initialize the constants

* Implement the FIR filter session

* Implement the IIR filter session

» Initialize the filter input, coefficients, and taps

2.3.1 Initialization of Constants

The first section of the code, shown in Example 2-1, initializes the filter constants and defines the
constants to control the EFCOP and DMA data transfers. The input/output equate and interrupt equate
files are included. The following memory address locations are initialized:

START Start of the program.
I NPUT Input data x(n).
FI R_QUT Output of the FIR session and input of the IIR session w(n).
QUTPUT Output of the IIR session y(n).
Motorola 2-3



IIR Filter Example Code

FI R_FDBA Memory address pointers for the FIR and IIR filter data and coefficient buffers.
Il R_FDBA These constants are written to the EFCOP data buffer base address (FDBA) and
FI R_FCBA the EFCOP coefficient buffer base address (FCBA). The EFCOP shares the

Il R_FCBA lowest 4K memory locations of X and Y memory with the DSP core for the data

and coefficient buffers, respectively.
The constant initialization section defines the following constants to control the EFCOP:

FI R_FCSR Written to the EFCOP control status register (FCSR) to control the main operation
modes of the EFCOP. This constant configures the EFCOP in real FIR filter mode
with processing initialization disabled, and it sets the EFCOP enable bit for the
FIR filter session.

Il R_FCSR Weritten to the EFCOP control status register (FCSR) to control the main operation
modes of the EFCOP. This constant configures the EFCOP in IIR filter mode, and
it sets the EFCOP enable bit for the IIR filter session.

Il R_FACR Written to the EFCOP ALU control register (FACR) to control the main operation
of the EFCOP ALU for the IIR filter session. The | | R_FACR constant sets the
scaling factor of the IIR filter output to eight.

FI R_LEN Defines the filter length. FI R_LEN s set to four because there are four FIR
(feed-forward) filter coefficients, B ;, i=0...3 for this example. FIl R_LEN- 1 is
written to the EFCOP filter count register (FCNT) for the FIR filter session.

Il R_LEN Defines the filter length. | | R_LEN s set to three because there are three IR
(feed-back) filter coefficients, A ;, j=1...3 for this example. I R_ LEN-1is
written to the FCNT register for the IIR filter session.

The constant initialization section also defines constants to control the DMA transfers. The code uses
two DMA channels, channel O to transfer the input data to EFCOP data input register (FDIR) and
channel 1 to transfer the output data from the EFCOP data output register (FDOR).

FIR_NUM N Written to DMA counter register 0 (DCOO) to set the number of DMA transfers to
FDIR for the FIR session.

I R_NUM N Written to DMA counter register 0 (DCOO) to set the number of DMA transfers to
FDIR for the IIR session.

Because FDIR is a 4-word-deep register, mode B of the DMA transfers four input words at a time to
FDIR. With mode B, DOCQO is separated into two sections: DCOL (bits 0-11) and DCOH (bits 12-23).
DCOH is set to the number of transfers minus one. DCOL is set to the number of words in each
transfer minus one. The input file for this example has 1024 points. Thus, DOCH is set to 255 (or
$OFF) and DCOL is set to 3. The total number of words transferred is equal to (255+1) 0(3+1) = 1024.

FI R_NUMOUT  Written to DCOL to set the number of DMA transfers from FDOR for the FIR
session.

I R_NUMOUT  Written to DCOI to set the number of DMA transfers from FDOR for the IIR
filter session.

Because FDOR is one word deep, mode A of the DMA transfers one output word at a time from
FDOR. With mode A, DCOL is set to the number of DMA transfers minus one. Thus, FI R_NUMOUT
and | | R_NUMOUT are set to the number of output values minus one, or 1023 (or $3FF).

2-4 DSP56307 EFCOP Programming Motorola



IIR Filter Example Code

Example 2-1. [IR Filter Constant Initialization

RS E R RS RS EEEEE R E RS EEEEEEEEEEEEEREEEEEEREEEEEREE RS

nol i st
I NCLUCE "i oequ. asm
I NCLUCE "i nt equ. asnt
l'ist
EEEE Rk S Rk I I S S R R I I R R S R R R Sk Sk S R R SR S Sk R I I Rk O I R

; QONSTANTS

START equ $100 ; Main programstarting address

| NPUT equ $2000 ; FIR session source address

FIR QJT equ $1000 ; FIR session destination address

QJtPur equ $3000 ; 11 R session destination address

FI R_FDBA equ O ; FIR Data Start Address x:$0

| | R_FDBA equ 100 ; IR Data Start Address x:$100

FI R_FCBA equ O ; FIR Coeff Start Address y:$0

I | R_ FCBA equ 100 ; IR Coeff Start Address y: $100

FI R_ FCSR equ $081 ; Enabl e EFCCP FI R Mode O

I R FCSR equ $003 ; Enable EFCCP |1 R Mode O

Il R FACR equ $001 ; Enable EFQCP I IR Scal e by 8 Mde

FIR_LEN equ 4 ; EFCCP FIR | ength

| | R LEN equ 3 : EFOCCP IR length

FIR NUM N equ $0FF003 ; DMVAO Count (256*4=1024 word xfers) FIR inputs
FIR NUMUT  equ $3FF ; DMAL Count (1024 word xfers) FIR outputs

IR NUM N equ $0FF003 ; DMVAO Count (256*4=1024 word xfers) IIR inputs
IR_NUMUT  equ $3FF ; DMAL Count (1024 word xfers) |IIR outputs

2.3.2 FIR Filter Session

The second part of the code, shown in Example 2-2, implements the FIR filter session and calculates
w(n) from Equation 2. The reset vector is set to the beginning of the program. The FI R_LEN,

FI R_FDBA, and FI R_FCBA constants are written to the appropriate EFCOP registers, as described
in Section 2.3.1, “Initialization of Constants.” FI R_FCSRis written to the FCSR to enable the
EFCOP.

Channel 0 of the DMA transfers the input data from memory to the FDIR four words at a time.
Figure 2-3 shows how the DMA transfer is completed. The DMA is initialized to complete this
transfer as follows:

Identify the source of the data transfer— The memory address location of the input data,
I NPUT, is written to the DMA source address register for channel 0 (DSRO).

Identify the destination of the data transfers — The memory-mapped address location of the
FDIR is written to the DMA destination address register for channel O (DDRO).

Specify the number of data transfers — FI R_NUM N, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCOO.

Designate the offset increment — The DMA offset register 0 (DORO) is used with mode B to
increment the DMA source address register after each transfer. For this example, the input
data is stored sequentially in memory. Therefore, DORO is written with the number 1 to
increment the DMA source address register by one after each transfer.

Specify the transfer properties — The DMA control register for channel 0 (DCRO) controls
the DMA channel O operation. The value written to DCRO sets the transfer to trigger from the
EFCOP input buffer empty request. This value also sets the source transfer to mode to B using
the offset register DORO. The destination transfer mode is set to A with no updating of the
destination register because the input data should always be transferred to the FDIR. The

Motorola



IIR Filter Example Code

| NPUT— }

increment by 1

(DORO)

source memory space is set to X memory because the input data is stored in X memory, as
discussed in Section 2.3.4, “Coefficients, Taps, and Input.” The destination memory space is
set to Y memory because all EFCOP registers including FDIR are mapped to internal Y I/O
memory. Finally, DMA channel O is enabled.

SOURCE DESTINATION
FDO R

transfer #1

o
}

Figure 2-3. DMA Channel O Transfer

Channel 1 of the DMA transfers the output data from the FDOR to memory. Figure 2-4 shows how the
DMA transfer is completed. The DMA is initialized to complete this transfer as follows:

Identify the source of the data transfer — The memory-mapped address location of the FDOR
is written to the DMA source address register for channel 1 (DSR1).

Identify the destination of the data transfer — The memory address location of the FIR output
data, FI R_QUT, is written to the DMA destination address register for channel 1 (DDR1).

Specify the number of data transfers — FI R_NUMOUT, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCOI.

Specify the transfer properties — The DMA control register for channel 1 (DCR1) controls
the DMA channel 1 operation. The value written to DCR1 sets the transfer to trigger from the
EFCOP output buffer full request. This value also sets the source transfer to mode to A with
no updating of the source register because the output data should always be transferred from
FDOR. The destination transfer mode is set to A with post increment by one because the
output data is stored sequentially to memory. The source memory space is set to Y memory
because all EFCOP registers including FDOR are mapped to internal Y I/O memory. The
destination memory space is set to X memory because the FIR output data is stored in X
memory. Finally, DMA channel 1 is enabled.

Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination
and channel operation completes for channels O and 1, respectively. The program polls these bits and
waits until the DMA transfers complete before continuing. Finally, the EFCOP is put into personal
reset mode by clearing FCSR so that the EFCOP can be programmed for the IIR filter session.

2-6

DSP56307 EFCOP Programming Motorola



IIR Filter Example Code

SOURCE
FDOR

transfer 1

transfer 2

DESTINATION
-« FIRQUT
post-increment

. by 1

[ )

[ ]
)
)
)

Q AA1499

Figure 2-4. DMA Channel 1 Transfer

Example 2-2. FIR Filter Session Code

ckkkkhkkhkkhkkhkhkkhhkkhhkkhhkhhkkhhkkhkkhhkhhkhhkhhhhhhhhhkhhkhhkhhkhhkhhhhhhdhhdhkdhhdhkhkhkhhk*x*x

L
C %

FIRFilter Section

3
IEEEEE S SR EEEEEEEEE SRR R SRR SRS EEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEESEEEESEE

org
jnp
org
nmovep
nmovep

nmovep
nmovep

; DMA O init to input DATA to EFCCP

nmovep
nmovep
nmovep
nmovep
nmovep

; DMA 1 init to output DATA from EFCCP

nmovep
nmovep
nmovep
nmovep

jeclr
jclr
novep

P:0
START

P: START
#FI R LEN- 1, y: M_FONT
#F| R_FDBA, y: M FDBA
#FI R_FOBA, y: M_FCBA
#FI R FCSR y: M FCSR

#1 NPUT, x: M DSRO

#M FD R, x: M _DDRO
#FTR_NUM N, X: M _DOOD
#$1, x: M DCRO
#$94AA04, x: M DCRO

#M FDCR x: M DSRL
#FTR_OUT, x: M DDRL
#FI R_NUMDUT, x: M DOOL
#$8EB2CL, x: M DCRL

#0, x: M DSTR, *
#1, x: M DSTR *
#$000, y: M FCSR

FIR I ength

FIR Data Start Address
FIR Coeff Start Address
Enabl e EFCCP

DVA source is the I NPUT data buffer

DVA destination is the EFCCP i nput register
DVA count in node B

DVA offset is 1

DVA control reg with |ine nmode FD BE request

DVA source is the EFCCP out put register
DVA destination is the FIR QUT data buffer
DVA count

DVA control register with FDCBF request

Vit till DVA O ends
Vit till DVA 1 ends
Reset EFCCP

Motorola

2-7



IIR Filter Example Code

2.3.3

The third part of the code, shown in Example 2-3, implements the IIR filter session and calculates y(n)
from Equation 3. The | | R_ LEN, Il R_FDBA, |1 R _FCBA, andl | R_FACRconstants are
written to the appropriate EFCOP registers, as described in Section 2.3.1, “Initialization of Constants.”
I I R_FCSRis written to the FCSR to enable the EFCOP.

IR Filter Session

Channel 0 of the DMA transfers the input data from memory to the FDIR, four words at a time.
Figure 2-3 shows how the DMA transfer is completed except that the source data is located at
FI R_QUT instead of | NPUT. The DMA is initialized to complete this transfer as follows:

ldentify the source of the data transfer — The memory address location of the input data, in
this case FI R_QUT, is written to DSRO.

Identify the destination of the data transfer — The memory-mapped address location of the
FDIR is written to DDRO.

Specify the number of data transfers — | | R_NUM N, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCOO.

Designate the offset increment — DORO is used with mode B to increment the DMA source
address register after each transfer. For this example, the input data is stored sequentially in
memory. Therefore, DORO is written with the number 1 to increment the DMA source address
register by one after each transfer.

Specify the transfer properties — DCRO controls the DMA channel O operation. The value
written to DCRO sets the transfer to trigger from the EFCOP input buffer empty request. This
value also sets the source transfer to mode B using the offset register DORO. The destination
transfer mode is set to A with no updating of the destination register because the input data
should always be transferred to FDIR. The source memory space is set to X memory because
the input data is stored in X memory. The destination memory space is set to Y memory
because all EFCOP registers including the FDIR are mapped to internal Y I/O memory.
Finally, DMA channel O is enabled.

Channel 1 of the DMA transfers the output data from FDOR to memory. Figure 2-4 shows how the
DMA transfer is completed except that the destination data is located at OUTPUT instead of
FI R_QUT. The DMA is initialized to complete this transfer as follows:

Identify the source of the data transfer — The memory-mapped address location of FDOR is
written to the DMA source address register for channel 1 (DSR1).

ldentify the destination of the data transfer — The memory address location of the IIR output
data, QUTPUT, is written to the DMA destination address register for channel 1 (DDR1).

Specify the number of data transfers — | | R_NUMOUT, which is described in Section 2.3.1,
“Initialization of Constants.” is written to DCO1.

Specify the transfer properties — The DMA control register for channel 1 (DCR1) controls
the DMA channel 1 operation. The value written to DCR1 sets the transfer to trigger from the
EFCOP output buffer full request. This value also sets the source transfer to mode to A with
no updating of the source register because the output data should always be transferred from
FDOR. The destination transfer mode is set to A with post increment by one because the
output data is stored sequentially to memory. The source memory space is set to Y memory
because all EFCOP registers including FDOR are mapped to internal Y I/O memory. The
destination memory space is set to X memory because the IIR output data is stored in X
memory. Finally, DMA channel 1 is enabled.

2-8

DSP56307 EFCOP Programming Motorola



IIR Filter Example Code

Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination
and channel operation completes for channels O and 1, respectively. The program polls these bits, and
when the DMA transfers complete the program is finished.

Example 2-3. IIR Filter Session Code

IR R SRS R R SRR R R SRS E RS SRR E R R R EEEREEREEEREEEEEEEEE R
3

;¥ IR Filter Section
;********************************************************************
novep #l IR LEN-1,y: M FONT ; IR length
novep #l 1R FDBA y: M FDBA ; IR Data Start Address
nmovep #l 1R FCBA y: M FCBA ; IR Coeff. Start Address
novep #l IR FACR y: M FACR ; IR Control Register
novep #l 1R FCSR y: M FCSR ; Enabl e EFCCP

; DMM O init to input DATA to EFCCP

nmovep #FI R QUT, x: M DSRO ; DVA source is the FIR QJT data buffer

novep #M FD R x: M DDRO ; DVA destination is the EFQCP i nput buffer
nmovep #l IR NUM N x: M DOQ0 ; DVA count in node B

nmovep #$1, x: M DCRO ; DVA offset is 1

novep #$94AA04, x: M DCRO ; DVMA control reg with |ine node FD BE request

; DMA 1 init to output DATA from EFCCP

nmovep #M FDCOR, x: M DSRL ; DVA source is the EFOCCP out register
nmovep #QUTPUT, x: M DDRL ; DVA destination is the QUTPUT data buffer
novep #l 1 R_NUMJUT, x: M DCOL ; DVA count

novep #$8EB2CL, x: M DCRL ; DVA control reg wth FDOBF request

jclr  #0,x: MDSTR * ; Wait till DVA O ends

jclr  #1,x: MDSTR * ;o Wit till DVA 1 ends
st op_| abel

st op

2.3.4 Coefficients, Taps, and Input

The final part of the code, shown in Example 3-4, initializes the coefficients, taps, and input for the
filter. The coefficient values are described in Section 2.2, “IIR Filter Design.” The memory address
pointers for the coefficients, FI R_FCBAand | | R_FCBA, are defined in Section 2.3.1,
“Initialization of Constants.” The EFCOP shares the lowest 4K memory locations of Y memory with
the DSP core for the coefficient buffers. Thus, the coefficients are stored in Y memory. Notice that the
coefficients are stored in reverse order such that the coefficient with the largest index is stored first
and the coefficient with the smallest index is stored last.

The FIR filter taps must be initialized because processing state initialization mode is disabled for the
FIR filter in the FI R_FCSR constant. Also, the IIR filter taps must be initialized because the EFCOP
assumes that the data taps are initialized before the EFCOP is enabled and therefore does not initialize
the taps for IIR filter mode. The filter taps are all initialized to zero. This tells the EFCOP that the
values of the FIR input x(r) and the IIR output y(n) are zero for n < 0. The number of taps needed for
each filter is equal to the number of filter coefficients. The memory address pointers for the taps,

FI R_FDBAand | | R_FDBA, are defined in Section 2.3.1, “Initialization of Constants.” The
EFCOP shares the lowest 4K memory locations of X memory with the DSP core for the filter tap
buffers. Thus, the filter taps are stored in X memory.

Motorola 2-9



Filter Results

The last lines of the code specify the input data. The memory address pointer for the input data,

I NPUT, is defined in Section 2.3.1, “Initialization of Constants.” The file i nput . dat , which
contains the input data, is included at this memory location. For more information on the i nput . dat
file, consult the next section.

Example 2-4. Coefficients, Inputs, and Taps Code

rhkkkkhkhkkhhkhhkhhkhkhkkhhkhhkhhkhhhhhhhkhhkhhhhhhhhhhdhdhhhhhhhhhhhhhhhhhhkhhhhhhihkx
1

;* OCEFF G ENTS, | NPUTS, & TAPS

org y: FIR_FCBA

dc 0. 06595304781274 ; b(3)/8
dc 0. 19785914343823 ; b(2)/8
dc 0. 19785914343823 ; b(1)/8
dc 0. 06595304781274 ; b(0)/8
org y: I R_ FCBA

dc -0.03475748970432 ; a(3)/8
dc -0.14786165775473 ; a(2)/8
dc - 0. 22000523504290 ; a(1)/8
org x: FI R_FDBA

dc $000000

dc $000000

dc $000000

dc $000000

org x: 'l R_FDBA

dc $000000

dc $000000

dc $000000

org x: I NPUT

I NCLUDE "input.dat"

2.4 Filter Results

This section describes the results for this filter example by presenting the input and the output data.
The filter input data (calculated using Matlab) is gaussian random noise with a mean of 0.0 and a
variance of 1.0. The data is then scaled so that the magnitudes of all of the values are less than 1. The
filter output data is stored in X memory beginning at the memory address pointer, OJTPUT, that is
defined in Section 2.3.1, “Initialization of Constants.”

To show the effect of the filter, the frequency spectrum of the input and output is plotted (using
Matlab) in Figure 2-5. As Figure 2-5 shows, the frequency spectrum of the output is the same as the
frequency spectrum of the input for all frequency values less than 0.8W,,, where W, is half the
sampling rate. However, since the output is processed through the lowpass IIR filter, the frequency
spectrum of the output is greatly attenuated for frequency values greater than 0.8 W,. Thus, the IIR
filter is working properly and filtering the input signal as expected.

2-10 DSP56307 EFCOP Programming Motorola



Filter Results

20

15

10

Magnitude (dB)

20

15

10

Magnitude (dB)

Frequency Spectrum of Input

0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8
Frequency/Wn

Frequency Spectrum of Output

0.1

0.2

Figure 2-5.

0.3 0.4 0.5 0.6 0.7 0.8
Frequency/Wn

Frequency Spectrum of Input and Output

Motorola

2-11



Filter Results

2-12 DSP56307 EFCOP Programming Motorola



Echo Canceller Theory

3  Echo Canceller Example

This section describes how to implement a complete LMS electrical echo canceller using the EFCOP.
It gives the theoretical background, the filter design, the example code, and the results of the echo
canceller.

3.1 Echo Canceller Theory

Figure 3-1 shows the block diagram for the echo canceller in this example. This figure depicts a
near-end electrical echo canceller. At the near-end is a four-wire system with separate signal paths for
the transmit signal and receive signal. The transmit and receive signals are combined via a hybrid into
a single two-wire signal for connection to the public phone network at the far-end. The hybrid also
introduces an unwanted echo of the near-end signal x(n) into the receive path. The adaptive filter
determines the delay and attenuation of the echo introduced by the hybrid and generates an estimate of
the echo, y(n), that can be subtracted from the received signal + the echo, s(n). The result is a
cancellation of most of the echo, leaving only the desired received signal e(n). The adaptive filter also
uses the received signal e(n) to help track the delay and attenuation of the echo.

Y %y

Echo

(n) Transmit signal

Adaptive
Filter

Y A
s(n) _ e(n)
+ 2 -

Receive signal

Near-end

Far-end <@ Hybrid

AA1501
Figure 3-1. Echo Canceller Block Diagram
The output of the adaptive filter is calculated as follows:
L-1
)= % h,(i)x(n=1) (EQ4)
i=0

where y(n) is the estimated echo of the near-end signal at time n, x(n) is the near-end signal at time n, L
is the number of filter coefficients, and & , (i) are the filter coefficients for time n. After the output
signal is calculated, the filter coefficients are updated. First, the error signal is calculated by

e(n) = s(n)-y(n) (EQS)

where e(n) is the error signal or the far-end signal plus the residual echo of the near-end signal at time
n, and s(n) is the far-end signal plus the echo of the near-end signal at time 7.

Motorola 3-1



Echo Canceller Design

Next, the coefficient update step is calculated as follows:

Ke(n) = K(n)e(n) (EQ6)

where K , (n) is the coefficient update step at time n and K(n) is the step size at time n. Finally, the
filter coefficients are updated for the next time period using the following equation:

hn+](i)=hn(i)+Ke(n)x(n—i) (EQ7)

The EFCOP implements Equation 4 using a FIR filter session. The EFCOP also implements a
coefficient update session to calculate the new filter coefficients using Equation 7.

3.2 Echo Canceller Design

The example discussed in this section implements an echo canceller using an adaptive filter as
previously described. Recall that the purpose of the adaptive filter is to generate an estimate of the
near-end echo that can be subtracted from the far-end signal + the echo, s(n). However, the adaptive
filter interprets the far-end signal as noise. Thus, it is difficult for the adaptive filter to estimate the
echo when the far-end signal is present. It is much easier for the adaptive filter to estimate the echo
when s(n) contains only the near-end echo. Therefore, some echo cancellers are designed to detect
when the far-end signal is absent and update the filter coefficients only during these times. When the
far-end signal is present, these echo cancellers set the step size, K, to zero so that the filter coefficients
are not changed. In other applications, these echo cancellers might reduce the step size significantly so
that the filter coefficients are changed only a small amount when the far-end signal is present.

The echo canceller in this example reduces the step size when the far-end signal is present. For an
LMS echo canceller, the step size K(n) = K, a constant that does not vary with time. This example uses
K = 0.4 when the far-end signal is absent and K = 0.004 when the far-end signal is present.

Detecting the presence of a far-end signal must be done by DSP core and not the EFCOP. Therefore,
this example does not address how to detect the presence of the far-end signal. Instead, the input file
containing the far-end signal + the echo, s(n), is created so that the far-end signal is absent for 300
samples and then present for 100 samples, and the example code automatically reduces the step size
after 300 samples This input file is named f ar . dat .

Both the far-end and the near-end signals are gaussian random noise (generated with Matlab) with a
mean of 0.0 and a variance of 1.0. The near-end signal input file is 400 samples long and the near-end
signal is uncorrelated with the far-end signal. The near-end signal input file is named near . dat . The
near-end signal is delayed by three samples and attenuated by J0.1 = 0316 to create the near-end
echo. Then the near-end echo is added to the far-end signal to create the f ar . dat input file. Both
input signals are scaled so that the magnitudes of all of the values are less than 1.

For example, the filter coefficients are set to zero before the processing starts. With no a priori
knowledge about the echo, this is as good a starting point as any. The filter coefficients change and
become non-zero when the processing begins and the coefficients are updated.

3-2

DSP56307 EFCOP Programming Motorola



Example Code

3.3 Example Code

A real-life LMS electrical echo canceller requires 48 coefficients to cancel 6 ms of echo with a
sampling rate of 8KHz (8000 samples/sec [10.006 seconds = 48). A real echo canceller also requires
thousands of samples to converge. This example is scaled down to simplify the explanations and
shorten the running time and input files.

The echo canceller example code is divided into four sections:

* Declare the necessary constants.
* Initialize the EFCOP.

* Implement the coefficient update with an interrupt service routine.

* Initialize the filter inputs and coefficients.

3.3.1 Declaration of Constants

The first part of the code, shown in Example 3-1, defines the constants for the echo canceller and
defines a constant to control the EFCOP. The input/output equate and interrupt equate files are
included. The following memory address locations are initialized:

START
NEAR SI G
FAR SI G
ECHO

FDBA_ADDRS
FCBA_ADDRS

Start of the program.

Near-end signal data x(n).

Far-end signal plus the echo of the near-end signal data s(n).
Estimated echo of the near-end signal data y(n).

Memory address pointers for the filter data and coefficient buffers.

These constants are written to FDBA and FCBA. The EFCOP shares the lowest
4K memory locations of X and Y memory with the DSP core for the data and
coefficient buffers, respectively.

The constant initialization section also defines the following constants to control the EFCOP:

FCSR Written to FCSR to control the main operation modes of the EFCOP. It configures
the EFCOP in real FIR filter mode with adaptive filter mode enabled. FCSR also
enables the data output buffer full interrupt. Finally, FCSR sets the EFCOP
enable bit.

FI R_LEN Defines the filter length. FI R_LEN s set to ten because there are ten filter
coefficients, A ,, (i), i=0...9 for this example. FI R_LEN- 1 is written to FCNT.

K1 and K2 Set to the step sizes that update the filer coefficients. K1 is used when the far-end
signal is absent, and K2 is used when the far-end signal is present.

COUNT and Defines the number of data samples to process. For this example, there are 400

COUNTK input data samples. FI R_LEN- 1, or 9, of these samples initialize the filter.
Thus, 400 - 9 =391 data samples are processed. The constant determines when
the program is to change the step size. When there are COUNTK - 1, or 100
samples left to process, the program changes K from K1 to K2.

Motorola 3-3



Example Code

Example 3-1. Constant Definition Code

IR RS SRS SRR R R SRR SR SRR RS R R EEEEEREEEEEREREREEEREEE RS

nol i st
I NCLUDE "i oequ. asm!
I NCLUCE "i nt equ. asnY

;******l*l*s*t**********************************************************
; OONSTANTS
;*******************************************************************
START equ $100 ; Main programstarting address

NEAR SI G equ $3000 ; Points to the Near-end data, x(n)

FAR SI G equ $2000 ; Points to the Far_end data, s(n)

ECHO equ $1000 ; Points to the Echo data, y(n)

FDBA ADDRS equ O ; Data Start Address x:$0

FCBA ADDRS equ O ; Coeff Start Address y:$0

FCSR equ $805 ; Enable EFCCP ADP FIR Mode O with DOBF interrupt
FI R LEN equ 10 ; Filter Length

K1 equ 0.4 ; Step size-Coef Update Constant-No Noi se
K2 equ 0. 004 ; Step size-Coef Update Constant-Noi se
COUNT equ 391 ; Data Count-390 total data sanples
COUNTK equ 101 ; Data Count to change K after 300 sanpl es

3.3.2 EFCORP Initialization

The second part of the code, shown in Example 3-2, initializes the EFCOP for the echo canceller. The
reset vector is set to the beginning of the program. The command to jump to the interrupt code is
placed at the EFCOP output buffer full interrupt starting address. EFCOP interrupts are enabled at an
interrupt priority level of 2 by setting the appropriate bits in the interrupt priority register peripherals
(IPRP). The interrupt mask bits O and 1, bits 8 and 9 in the status register (SR), are cleared to permit
interrupts at all priority levels. The following registers are initialized:

e Register b0 is initialized with COUNT to control the number of data samples to process, as
described in Section 3.3.1, "Declaration of Constants."

e Address registers I 2 and r O are initialized to the beginning of the near-end signal data, x(n)
(NEAR _SI G), and the echo signal data, y(n) (ECHO).

e Address register I 3 is initialized for the far-end signal plus the echo of the near-end signal
data buffer, s(n) (FAR_SI G). This buffer is incremented by FI R_LEN- 1 because the first
FI R_LEN- 1 data samples of x(n) are used to initialize the filter and the x(n) and s(n) data
buffers should be aligned after the filter initialization.

e The YO register is initialized with the first value for the step size, K.

The FI R_LEN, FDBA_ ADDRS, and FCBA ADDRS constants are written to the appropriate
EFCOP registers, as described in Section 3.3.1, "Declaration of Constants." FCSRis written to FCSR
to enable the EFCOP. The first FI R_LEN samples of the near-end signal are written to the EFCOP
data input register, FDIR: FI R_LEN- 1 samples to initialize the filter and one more sample to begin
the first filter session. In the adaptive filter mode the EFCOP filters one sample of data and then waits
until a value for K,(n) is written to the FKIR. Once a value is written to FKIR, the EFCOP performs a
coefficient update session. When the output buffer is full, the EFCOP requests interrupt service from
the core, and the interrupt code updates the filter coefficients. At this point, the program waits until the
EFCOP data output interrupt enable bit is cleared. The interrupt code clears this bit when all data
samples are processed. The program waits until the final filter update session is finished, and then the
program is complete.

DSP56307 EFCOP Programming Motorola



Example Code

Example 3-2. EFCOP Initialization Code

RS E R RS E R E R E RS E R E R EEEEEEEEEEEREEEEEEREEEEEREE RS
)

-k

Initialization

’
skkkhkkhkkhkhkkhkhkhhkhhkhhhhkhhkhhkhhhhhhhhhhhkhhkhhhhhhhhdhhhhhhhhhhhhhhkhhkhhkhhhhh
)

org P.0

jnp START

org p: (I _FDCBF) EFCCP Qut put Buffer Full Interrupt

Starting Address

jsr >kdo Junp to Interrupt Code

org p: START

nmovep #$c00, x: M | PRP Enable interrupts in IPR

bclr #8,SR Enable interrupts in SR

bclr  #9, SR

nove #0,b Init Counter

nove  #OOUNT, b0

move #NEAR SIGr2 Init Pointer to Near-end Data, x(n)

nove #ECHO rO Init Pointer to Echo Data, y(n)

nove #FAR SIGHHI R LEN-1,r3 Init Pointer to Far-end Data, s(n)

nmove  #Ki1,y0 Init K

nmovep #FIR LEN-1,y: M FONT Filter Length

nmovep #FDBA ADDRS, y: M FDBA Data Start Address

novep #FCBA ADDRS, y: M FCBA Coeff Start Address

novep #FCSR y: M FCSR Enabl e EFCCP

rep #FI R LEN Init Filter

nmovep Xx:(r2)+ y:MFDR

jset #11,y: MFCSR * ; Wit till FDAE is cleared

jset  #3,y:MFCSR * ; WAt until last update is conplete
st op_| abel

st op
3.3.3 Interrupt Code to Implement the Coefficient Update

The third part of the code, shown in Example 3-3, calculates Equation 5 and Equation 6 and then starts
the filter coefficient update session by writing the step parameter to FKIR. When the program reaches
this point, the EFCOP has just completed a FIR filter session and placed the output into FDOR,
causing a EFCOP output buffer full interrupt request. Updating of the coefficients proceeds in the
following steps:

1. The interrupt code moves the filter output, y(n), from FDOR to the ECHOdata buffer and

increments the ECHOdata buffer pointer.

2. The ECHOdata and the current FAR_SI G data, s(n), are moved to data registers, incrementing

the FAR_SI Gdata buffer pointer.

The current error signal, e(n) is calculated as in Equation 5.

4. The step size, located in register Y0, is multiplied by the error signal to calculate the coefficient

update step parameter as in Equation 6.
The step parameter is loaded into FKIR.

The EFCOP performs the coefficient update session, as in Equation 7, and replaces the filter
coefficients with the updated coefficients.

Motorola 3-5



Example Code

0.

The next input sample is written from the NEAR_SI Gdata buffer to the input register, FDIR,

incrementing the NEAR_SI Gdata buffer pointer.

The program determines if step size needs to be changed by comparing the counter in register b0
to the value from COUNTK. If these values are equal, the step size is changed by writing K2 to the

y O register. Otherwise the step size is not changed.

The counter is decremented and as long as the counter is not equal to zero the interrupt exits.

The process repeats when the EFCOP places the next output into FDOR. When the counter is equal to
zero, the EFCOP output buffer full interrupt is disabled and the processing stops.

Example 3-3.

Interrupt Code

IEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES S

’
-k

Interrupt Code

)
IR R SRS E R SRR R SRS E SRR SRR R R R R R R EEEEEEEEEEEREEEEEEEEEE

kdo
novep y: MFDCR x: (r0)+ ; Move y(n) to memory buffer
nove y:MFDCR x1 ; Mowve y(n) to x1
nove X:(r3)+ a ; Move s(n) to a
sub x1, a ; a=-e(n) =s(n) - y(n)
nove a, x0 ; X0 = e(n)
npy x0, y0, a ; a = Ke = Ke(n)
movep a,y:MFKIR ; Move Ke to FKIR
novep X:(r2)+,y:MFDR ; Move x(n) to FDIR
clr a ; Check if K needs to be changed
move  #OOUNTK a0
cnp a,b
j ne samek ; Change Kto K2 if
nove #K2,y0 ; there are 100 sanples |eft
sanek dec b ; Decrenent the counter
j ne cont ; Junp to cont if counter is not zero
nop
bclr  #11,y: M FCSR ; Disable interrupt
cont
rei
3.3.4 Initialization of Coefficients and Input

The final part of the code, shown in Example 3-4, initializes the coefficients and inputs for the echo
canceller. The coefficient values are initialized to zero as described in Section 3.2, "Echo Canceller
Design." The memory address pointer for the coefficients, FCBA ADDRS, is defined in

Section 3.3.1, "Declaration of Constants." The EFCOP shares the lowest 4K memory locations of Y
memory with the DSP core for the coefficient buffers. Thus, the coefficients are stored in Y memory.
The filter taps do not need to be initialized for this example because processing state initialization
mode is enabled in the FCSR constant.

The last lines of the code specify the input data. The input data includes the near-end signal data x(n)
(NEAR _SI G and the far-end signal plus the echo of the near-end signal data s(n) (FAR_SI G. The
input files that contain these signals, near . dat andf ar. dat, are described in Section 3.2, "Echo
Canceller Design." The memory address pointers for the input data, FAR_SI Gand NEAR S| G are
defined in Section 3.3.1, "Declaration of Constants." The far . dat and near . dat files are included
at these memory locations.

3-6

DSP56307 EFCOP Programming

Motorola



Echo Canceller Results

Example 3-4. Coefficient and Input Code

org y: FCBA_ADDRS
dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000

dc $000000
org X: FAR SI G
| NCLUDE "far.dat"
org X: NEAR SI G
| NCLUDE "near . dat "

3.4 Echo Canceller Results

This section describes the results for the echo canceller example, presenting the filter coefficients and
the received signal, e(n). If the filter is working properly, the filter coefficients show the delay and the
attenuation of the echo. Table 3-1 shows the filter coefficients after 100, 200, 300, and 400 samples.
Notice that the coefficients are stored in reverse order so that the coefficient with the largest index is
stored first and the coefficient with the smallest index is stored last as they are stored in the DSP
memory.

Recall that the far-end signal is absent for the first 300 samples. During this time the filter is adapting
only to the near-end echo. The third coefficient from the bottom becomes more dominant as the
number of samples increases. This signifies that the near-end echo is delayed three samples as
described in Section 3.2, "Echo Canceller Design." The magnitude of the third coefficient approaches
the attenuation factor of the near-end echo J(ﬂ = 0.316 as the number of samples increases. Thus,
the adaptive filter coefficients show the delay and attenuation of the echo properly and the filter is
working as expected.

The filter coefficients for n = 400 show the effect of the far-end signal on the adaptive filter. Recall
that the far-end signal is present for the last 100 samples and that the adaptive filter interprets the
far-end signal as noise. Thus, the filter coefficients degrade when n = 400. The third coefficient is not
as dominant as it is when n = 300. However, the step size is reduced for the last 100 samples. Thus, the
coefficients are not significantly affected and the adaptive filter still does an acceptable job of
cancelling the near-end echo, as indicated by the received signal, e(n).

Table 3-1. Filter Coefficients

n =100 n =200 n =300 n =400
h(9) = -0.0052 -0.0003 -0.0000 -0.0047
h(8) = -0.0062 -0.0010 0.0000 -0.0008
h(7) = 0.0014 -0.0005 0.0000 0.0027

Motorola



Echo Canceller Results

Table 3-1. Filter Coefficients (Continued)
n=100 n =200 n =300 n =400
h(6) = 0.0020 0.0005 -0.0000 0.0015
h(5) = 0.0045 0.0008 0.0000 0.0029
h(4) = 0.0049 0.0004 0.0000 0.0002
h(3) = -0.0068 -0.0007 0.0000 0.0035
h(2) = 0.2999 0.3150 0.3162 0.3197
h(1) = -0.0034 -0.0003 0.0000 0.0046
h(0) = 0.0026 0.0008 0.0000 -0.0049

Table 3-2 shows the received signal, e(n), the far-end signal, and the error between these two signals
for the last 20 samples. The received signal is calculated in the interrupt code. The far-end signal is
obtained from Matlab before the near-end echo is added to create the far-end plus the echo of the
near-end signal, s(n). The error is the far-end signal minus the received signal. The table shows that the
error between the two signals is very small. Thus, the adaptive filter works properly and generates an
acceptable estimate of the echo, even when the far-end signal is present.

Table 3-2. Received/Far-End Signal Error

n e(n) Far-End (n) Error
381 -0.2092 -0.2063 0.0029
382 -0.3894 -0.3895 -0.0001
383 0.3776 0.3781 0.0005
384 0.1931 0.1964 0.0033
385 0.3200 0.3245 0.0045
386 0.1265 0.1301 0.0036
387 -0.2400 -0.2394 0.0006
388 0.1939 0.1953 0.0014
389 -0.0094 -0.0078 0.0016
390 -0.5286 -0.5289 -0.0003
391 -0.1407 -0.1391 0.0016
392 0.4876 0.4880 0.004
393 -0.2476 -0.2458 0.0018
394 -0.3945 -0.3958 -0.0013

3-8

DSP56307 EFCOP Programming

Motorola



Echo Canceller Results

Table 3-2. Received/Far-End Signal Error (Continued)

395 0.0678 0.0714 0.0036
396 0.2297 0.2308 0.0011
397 -0.1418 -0.1407 0.0011
398 0.1386 0.1342 -0.0044
399 -0.5797 -0.5796 0.0001
400 0.0654 0.0665 0.0011

Motorola 3-9



Echo Canceller Results

3-10 DSP56307 EFCOP Programming Motorola



4

Correlation Notes

This section gives a few notes on how to implement correlations using the EFCOP. The general
correlation equation for real valued signals is:

r b(k) = a(n)b(k + n) (EQ8)
72

where r 4, (k) is the cross-correlation between signals a(n) and b(n). If a(n) = b(n), then Equation 8 is
the auto-correlation.

Equation 8 is similar to the general convolution equation implemented by the EFCOP:

y(k) = Zh(n)x(k -n) = Zx(n)h(k -n) (EQ9)
n n

where y(n) is the result of filtering the signal x(n) with the filter coefficients i(n).

Equation 8 converts into the second part of Equation 9 if the filter input signal, x(n), is replaced with
the a(n) signal and the filter coefficients are replaced with the b(n) signal values in reverse order.
However, the EFCOP filter coefficients are stored in memory in reverse order. Thus, implementing a
cross-correlation using the EFCOP is as simple as using the first signal as the input signal and the
second signal as the filter coefficients, making sure that the second signal is stored in memory in the
proper non-reversed order.

Motorola 4-1



DSP56307 EFCOP Programming

Motorola



D  Programmer’s Reference

[EFCOP]

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

6 6 6‘ 6‘ 6‘ 6‘ 6‘ 6‘ 6‘ 6 6 75 Filter Count Value
Filter Count Register (FCNT) +% = Reserved, Program as 0

Y:$FFFFB3 Read/Write

Reset = $000000 Filter Enable Bit 0

0 = EFCOP Disabled

FilterData Input Interrupt Enable Bit 10 1 = EFCOP Enabled
(Read/write control bit) - .
0 = Interrupt disabled Filter Type Bit 1
1 = Interrupt enabled 0=FIR

1=1IR
FilterData Output Interrupt Enable Bit 11 - -
(Read/write control bit) Adaptive Mode Enable Bit 2

- ; 0 = Adaptive Mode Disabled
8 - :::2::3& g:f:l?lleeg 1 = Adaptive Mode Enabled
FilterSaturation Bit 12 Ugidate Mode Enaple Bit 3
; 0 = Update Mode Disabled
(Read only status bit)
1 = Update Mode Enabled
0 = No FMAC underflow/overflow
1 = FMAC underflow/overflow occurred Filter Operating ModeBits 5-4
00 = Real 10 = Alt. Complex
FilterContention Bit 13 01 = Complex 11 = Magnitude
(Read only status bit) _
0 = No dual access occurred Crlan'nels Bit 6
- . 0 = Single channel
1 = Core and EFCOP tried to access 1 = Multichannel
the same bank in FDM or FCM

Initialization Bit 7
0 = Preprocess initialization
1 = No initialization

Filter Data Input Buffer Empty Bit 14
(Read only status bit)

0 = FDIR is not empty

1 =FDIR is empty Coefficients Bit 8
0 = Not shared
Filter Data Output Buffer Full Bit 15 1 = Shared

(Read only status bit)

0 = FDOR is not full V
1"'111 Y——Y v v v

1=FDORis full

23 22 21 2019 18 17 1615 14 13 12,11 10 9 8,7 6 5 4,3 2 1 0
* * * * * * * * SgF |FBDE CgNT FSAT|FDOE| FDIE * FSCO|FPCR|FMLC|FOM1FOMO|FUPD|FADP| FLT | FEN
0{0]0/0|0O]0O|0O]O 0

EFCOP Control Status Register (FCSR) % = Reserved, Program as 0

Y:$FFFFB4 Read/Write
Reset = $000000

Figure 5-1. EFCOP Counter and Control Status Registers (FCNT and FCSR)

Motorola 5-1



[EFCOP]

Saturation Mode Bit 4

0 = Disabled 1 =Enabled

Sixteen-bit Arithmetic Mode Bit 5 |

Filter Rounding Mode Bits 3-2

00 = Convergent
01 = Two’s complement

10 = Truncation
11 = Reserved

Filter Scaling Bits 1-0
00=x1 10=x16
01 =x8 11 = Reserved

0 =Disabled 1 = Enabled ]
Filter Input Scaling Bit 6
0=Notused 1=Used *

— N
23 22 21 20,19 18 17 1615 14 13 12,11 10 9 8,7 6 5 4,3 2 1 O
% [ K[ & x| [ x] H [ F[FH [ H x5 [ % [ rognas | e
0[O0l 0O/0|0O]|0O]|0O|O|O|O|O|0O|0O|0O]|0O]|0O]O0O calng

EFCOP ALU Control Register (FACR)

Y:$FFFFB5 Read/Write
Reset = $000000

1514 1312 11 10 9 8 7 6 5 4 3 2 1 O

+% = Reserved, Program as 0

Data Base Address (FDM Pointer)

EFCOP Data Base Address (FDBA)

Y:$FFFFB6 Read/Write
Reset = $000000

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 O

Coefficient Base Address (FDM Pointer)

EFCOP Coefficient Base Address (FCBA)

Y:$FFFFB7 Read/Write
Reset = $000000

23 22 21 2019 18 17 16415 14 13 121110 9 87 6 5 4 3 2 1 0
x| k| k|*k|*k|*k|*x|*k|*k|*|%*k|%| FilterDeci- |%|%/|
olololololololololol0|0]| mationvalue |00 Filter Channels Value

EFCOP Decimation/Channel Count Register (FDCH)

Y:$FFFFB8 Read/Write
Reset = $000000

* = Reserved, Program as 0

Figure 5-2. EFCOP FACR, FDBA, FCBA, and FDCH Registers

5-2

DSP56307 EFCOP Programming

Motorola



NOTES:



NOTES:

DSP56307 EFCOP Programming

Motorola



Order By:
APR39/D

Motorola

5-5



OnCE and Mfax are registered trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and (4] are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:  Asia/Pacific: Japan:

Motorola Literature Distribution Motorola Semiconductors H.K. Ltd. Nippon Motorola Ltd

P.O. Box 5405 8B Tai Ping Industrial Park SPD, Strategic Planning Office141
Denver, Colorado 80217 51 Ting Kok Road 4-32-1, Nishi-Gotanda

1(800) 441-2447 Tai Po, N.T., Hong Kong Shinagawa-ku, Japan

1 (303) 675-2140 852-26629298 81-3-5487-8488

Motorola Fax Back System (Mfax™):  Technical Resource Center: Internet:

TOUCHTONE (602) 244-6609 1 (800) 521-6274 http://www.motorola-dsp.com/

1 (800) 774-1848

RMFAXO@email.sps.mot.com DSP Helpline

dsphelp@dsp.sps.mot.com

@ MOTOROLA



