Twin CODEC Expansion Board
for the DSP5600
Application Development System

@ MOTOROLA ER

Twin CODEC Expansion Board for the DSP5600
Application Development System

Prepared by: Ralph Weir, DSP Applications Engineer, Motorola Ltd., East Kilbride, Scotland
Eric Cheval, DSP Applications Engineer, Motorola Inc., Oakhill, Texas

INTRODUCTION

The codec is an integrated ADC, DAC and filter intended for use in telecommunications applications. As such, it has been
designed for a sample rate of 8KHz, the standard telecomms sampling frequency, and has a serial interface which may be used
in a TDM system.

The filter implemented in the codec tailors the incoming analogue signal for transmission through a telephone channel. It has
a band-pass characteristic, cutting off at 300Hz and 3.4KHz; this also performs the anti-aliasing function for the ADC.

This document describes a twin codec board designed to facilitate the development of telecomms applications around the
DSP56000 family processors. The board is intended for any situation where a DSP module is required to link two analogue lines,
as in the case of a line repeater, or indeed a telephone handset; there is no reason why it should not be used to develop
applications requiring a single codec.

The codec board is designed to interface to the DSP directly, using the SSI interface; this is capable of generating all signals
required for a serial codec, creating aninterface with no glue logic whatsoever. Itis possible to create systems with many codecs,
all under the control of one DSP processor over the SSI communications link. The board described here is a simple example
of such a system.

Various software routines are available, giving the DSP the ability to convert between the various data formats available from
codecs (linear, A-law and p-law are the three main formats; it is essential that data be in a linear format before DSP processing).
The conversion rotuines are listed in Appendix E, but for more details, consuit application note ANE0O0S, or the Dr Bub bulletin
board. PCB artwork for the expansion board is included in Appendix F at the end of this document.

DSP56000/1 SERIAL SYNCHRONOUS INTERFACE (SSI)

The DSP56000 SSI is a powerful serial interface which may be used with many existing serial codecs, cofidecs (monocircuits)
and serial ADC’s and DAC's. It is also a suitable medium for building serial networks of DSP’s based on a time division
multiplexed (TDM) access protocol. A complete description of the interface will be found in DSP56000 UM/AD user’s manual,
section 7; what follows is a short description of the interface.

The SSl is a 6 pin interface which may be configured for synchronous or asynchronous exchange, continuous or gated clock,
and normal or network mode. Clocks may be generated either internally and output, or input from the external host system.
The 6 pins are not necessarily used in all configurations, and unused lines may remain as general purpose /0.

Like every DSP56000/1 on-chip peripheral, this is a full duplex, double buffered, memory mapped peripheral, mapped into the
peripheral area atthe top of internal X-memory. Thisinterface inputs and outputs the data using two 24bit data registers mapped
at X:$FFEF :

- TX write-only Transmit Data Register

The transmit shift register is associated with this register. This register shifts out the data written to the TX register onto the
STD pin; when empty, it reads the data in the Transmit Data Register if any is available (a transmitter underrun error will occur
if nofresh data is present). The DSP may be programmed for aninterrupt when the transfer takes place, or may poll the SSl status
flags.

- RX read-only Receive Data Register

The receive shift register is associated with this register. This register formats the serial data read from the SRD pin; when full,
ittransfersthe datato the Receive Data Register, and sets a flag to indicate data is available (if the data in the RX registeris unread
by the time the shift register is again full, a receiver overrun error will occur). Unused bits are written as zeros; the DSP may
be programmed for an interrupt when the transfer takes place, or may poll the SSI status flags.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

©MOTOROLA INC., 1989 APR401

There are four control registers associated with the SSI. These are :

- CRA (X:$FFEC)
16bit read/write control register governing word length, frame rate and clock speed.

- CRB (X:$FFED)
16bit read/write control register governing interrupt control, peripheral enables and clock/frame sync formats.

- SSISR (X:SFFEE)
8bit read only peripheral status register containing all device status and error flags.

- TSR (X:SFFEE)

8bit write only time slot register used in network mode; behaves like an alternative Tx data register which is written during
unused time slots., In this case, rather than transmitting data, the STD pin will be tri-stated during that time slot.

CRA (16 low bits of X:$FFEC; Read/Write register)

13 12 1 10 9 8 7 6 5 4 3 2 1 0
WLO| DC4 | DC3 | DC2 | DC1| DCO | PM7 | PM6 | PM5 | PM4 | PM3 | PM2 | PM1 | PMO

15
PSR

14
wL1

This register controls clock and frame sync generation, word length and number of words per frame. It is used as follows:

- PSR Prescaler Range. PSR=1 enables a divide by 8 prescaler in the clock generator.
-WL1/0 Selects the number of bits per word (00 for 8 bit data).

-DC4/0 Control the frame divider rate. In normal mode they control the word transfer rate.
-PM7/0 Select the divide ratio for the clock generator.

According to the DSP’s crystal clock frequency and the required SSl clock rate, the various standard telecomms frequencies may
be generated. The table below details the values of PM7-0 for this; note that if the prescaler is used, these values should be
divided by 8:

FOSC (MHz) Maximum 128 KHz 1.5636 MHz 1.544 MHz 2.048 MHz 2.56 MHz
bit clock

16.384 4.096 32 2.67 2.65 2 1.6

18.432 4.608 36 3 2.99 2.25 1.8

20.48 5.12 40 3.33 3.31 2.5 2

When the frame sync has to be generated by the DSP on pins SC1/2, bits DC4-0 of CRA and the FSL bit of CRB have to be set
up accordingly. For the MC145503 monocircuit, SC2 may be connected directly to TDE/RDE; these lines should be high during
word exchange, so the FSL bit in CRB should be cleared.

The codec’s TDE line should be cycled at 8KHz to provide the sampling rate clock. This defines DC4-0 for a single codecin normal
mode, according to the selected bit clock SCK. Note that the value for a twin codec system is based on cycling TDE at 16KHz,
as the line is gated between two devices; thus the DC4-0 value should be halved.

SCK 128 KHZ 1.536 MHZ 2.048 MHZ
DC4-0

One CODEC 2 $17 $1F

DC4-0

Two CODEC 1 $B $10

MOTOROLA APR401
2

CRB (16 low bits of X:$FFED; Read/Write register; cleared by RESET)

15

14 13 12 |1 10 9 8 7 6 5 4 3 2 1 0

RIE

TIE | RE | TE |MOD | GCK | SYN | FSL | * * SKD | SD2 | SD1 | SDO | OF1 | OF0

This register controls interrupts from the SSI, enabling of the SSI and clock/frame sync formats. It also contains the control bits
for the serial control lines SC0/1/2, and is used as follows:

- RIE
-TIE

-RE
-TE

- MOD

- GCK
- SYN
- FSL
- SKD

- SD2
-SD1/0
- OF1/0

Enables the Rx interrupt; the DSP will be interrupted when data may be read from the SSI’s RX register.
Enables the Tx interrupt; the DSP will then be interrupted when data may be written to the TX register for SSI
transmission.

Enables the SSI receiver. If this bit is not set, the SSI will never receive any data.

Same as RE, but for the SSI transmitter.

Selects normal mode when clear, network mode when set.

Selects continuous clock when clear, gated clock when set.

Selects asynchronous mode when clear, synchronous mode when set.

Selects frame sync length - word length when clear, bit length when set.

Selects external clock when clear, internal clock when set.

Controls the direction of the SC2 line; clear for input.

Controls the direction of the SC1 and SCO lines; clear for input.

Output data for SC1 and SCO when configured as an output

SR (8 low bits of X:$FFEE; Read only register)

7

6 5 4 3 2 1 0

RDF

TDE ROE TUE RFS TFS IF1 IFO

The status register provides the following status information to the DSP:

- RDF
- TDE

- ROE

-TUE

- RFS

-TFS

-IF1/0

Receive Data Full - set when the RX register contains valid received data which may be read by the DSP.

Transmit Data Empty - set when the TX register is empty, and ready to receive another word for transmission. Note
that this does not mean the last word has been fully transmitted, as the SSI port is a buffered interface.

Receiver Overrun Error - set when the DSP overwrites valid, but unread, data in the RX register. This would occur if
the SSlwas receiving a stream of serial data, and for some reason the DSP did not read one word. This condition may
be used to provide an alternative interrupt to the DSP, or may be polled to check for the error condition.
Transmitter Underrun Error - set when a frame sync occurs, but the SS| has no data to transmit. This may cause an
error with many serial devices; this may be used to switch to the transmit exception interrupt vector, or may be polled
to detect the error.

Receive Frame Sync - set when a receive frame sync occurs during the reception of a word, when in network mode.
This indicates the first time slot.

Transmit Frame Sync - same as RFS, but for transmission.

InputFlag 1/0 - this flag contains the data onthe SC1/0line, when configured as aninput. itislatched from SC1/0during
reception of the MSB of each incoming word.

Some or all of the lines allocated from Port C to the SSI must be configured as dedicated on-chip peripheral pins, by setting the
corresponding bits of the Port C control register:

APR401

MOTOROLA
3

PCC (X:$FFE1 Port C Control register - read/write register)

The Port C lines are used as follows:

-PC3 SCo bidirectional Serial Control line
-PC4 SC1 bidirectional Serial Control line
-PC5 SC2 bidirectional Frame Sync I/O
-PC6 SCK bidirectional Serial Clock

-PC7 SRD input receive data

-PC8 STD output transmit data

Initialising the SSI

The recommended procedure for SSl initialisation is given in the user’'s manual, and is as follows:

1. RESET the device. This can be a hardware reset, performed by driving the RESET* pin low, as on power-on reset;, or a
software reset, performed by executing the RESET instruction, which resets the on-chip peripherals.

2, Program the SSI control registers CRA and CRB by writing to their locations in X-memory

3. Set at least one SSI pin as not general purpose 1/O by setting the corresponding control bit in the PCC register.

Hardware for the Codec Board

As the twin codec board is intended as a development tool for use in a wide variety of applications, a great deal of flexibility had
to be built in to the codec interface. This has been achieved, but at the expense of the hardware simplicity which is possible
when using the SS| interface.

The codec used for this board is the MC145503, one of the MC14550X range; the variety available from this range allows the
user to select a device with as few, or as many, features as required. The MC145503 is the standard codec, with the addition
of complete access to the on-chip op-amp; it is pin-compatible with the older MC14403 codec, which may be used equally well
in the board.

Clock Generation
A clock and frame sync generator capable of supplying 2.048MHz have been included on the board. The frame sync generator
isjumper configurable, allowing either an 8KHz or a 16KHz frame sync, for use in single and dual codec applications respectively.

A further option exists with the serial communications clock and frame sync signals; they may be generated by the DSP
processor. Itistherefore possible to have split communication rates, with transmission and reception clocks being generated
by the DSP processor and external clock respectively if required.

Codec Selection

One of the more involved parts of the circuit is the codec selection circuitry. This must aliow either of the two codecs to be
addressed; in many applications, it would be possible to accomplish this using the serial control lines, SC0 and SC1. However,
these are multi-function lines. It is possible that some applications will require the use of them for frame synchronisation, or
asynchronous clock inputs. In view of this, it was decided not to restrict the board to using them alone for codec selection.

A better answer was felt to be allowing the option of using one of the the serial control lines, or one of a pair of unused portlines;
the lines chosen were PB0 and PC2. These were chosen in the hope that the user would not require the use of all the features
of all three peripherals simultaneously; it is expected that at least one of the lines which may be used for codec selection will
be available. PC2 is the SCl’s serial clock line; as many applications of the SCI do not use the SCl in its synchronous mode, this
line is almost always available. On the other hand, PBO will always be in use where the host port is required.

The codec select line used must be synchronised to the serial data streams to prevent data corruption. Additional circuitry is
not required for SCO, the serial control line used, as it is internally synchronised to the Transmit Frame Sync signal; however,
PC2 and PBO may change asynchronously with respect to the serial data streams, and thus require external synchronisation.
This is the function of USB; this is a D-type which synchronises the select line used to the rising edge of the transmit frame sync.
Itisrecommended a 74F74 is used for this, as other types (eg 74HC74) will introduce an excessive propagation delay which will
lead to data corruption.

MOTOROLA APR401
4

A second complication lies in the fact that some applications will require separate transmit and receive frame synchronisation.
This has resulted in the gating of the TDE and RCE signals with the select line, separately; this allows the option of splitting the
frame sync signals.

Power Supply
As the codec board has been designed specifically to interface to the ADS development system, power may be taken from this;
however, -5V must be generated locally. This is accomplished using a 7660 voltage inverter.

Jumper Options
The following is a list of the jumpers provided, along with their function.

Jumper Function

J1 Selects External Clock Generation (2.048MHz)

J2 Selects External Frame Sync Generation

J3 Selects Synchronous Receive/Transmit Frame Sync

J4 Selects Synchronous Receive/Transmit Data Clocks

J5 Disables DSP’s Receive Frame Sync

J6é Selects operating mode of codecs

J7 Disables DSP’s serial clock

J8 Select either PC2 or PBO for codec selection .
J9 Select either SCO or the output of J8 for codec selection.
J10 Select either 8KHz or 16KHz frame sync generation

The jumper settings for the example software included in this document are detailed below:-

S5 S5 "
DIN - 41612 96 - WAY CONNECTOR DIN - 41612 96 - WAY CONNECTOR |

J4
J7
[)
o
]
o
o
Js8
J4
l J7
F
0
1
o
Js

olo
J6
Ole :
NEE X X)
00 5
o
J10
ome
JG‘ ® s
00
IJ2
[
J10

v e

OO0O0 S101010

S3
CH2 I/P CH2 O/P CH1 P CH'I O/P CH2 /P CH2 O/P CH1 I/P CH1 O/P
1. ECLK_SIN.ASM 1. TWOTHRU.ASM
2. SIN_INT.ASM 2.FILT.ASM

Configuration of the Twin Codec Board for Example Software

APR401 MOTOROLA
5

Appendix A Twin Codec Expansion Board Schematics

+5V
1[]| 2.048MH:
i o 71 4
s R10 Q3 -8—2 32 T4HCT4
1 U4 1S o
4.7K3 1K T P yancass O 2 Pus of2

2 D
3 5 cpr 03 7 o
12 1
136

@ +5V
18 G
°
VDD p
7 501 1
R1 R2 . TOD - SRD S5-C18
s1 P Co— 10K I roD |42 STD S5-C17
B3 ki 12
M een 1 3
{_se0 | e Toc - — SCK S5-C19
[] P
Wac Roc b SCO S5-C22
10 s 5
pe Huis TOE — 5. SC185-21
s2 oP Rxo RCE * —sf_l‘us I 4 > ® SC2 S5-C20
¢-5Vs wia ®
* MC145503
| Vss
L
oo sV
’ qpoSV
16
VDD
7 1
RS R6 POl ™D
s3 P CO— [10K | i RDD []
|
5 ! i
TX- i
R7 10
[Tse0 2 xe TOC i ! }11 2 J8
— N IS D e |2l & Pe2sscas
c — ®
; vaG - Qe 1 e PBOS5A25
: A . L TDEQT———' ‘ Q13 i mz
or ([tmo e -
51 A +5V =
MC145503 T
vss
lB
.5V T
e
8! |
-5V D1 . 5 i - \
c1 +10p i+
U7 PELUE
10p — 0
—!_' 7680 jc2 ic3
| s !
- - !
———ee——— s5B2
o | s5BM
o | S5-B21
® — -—— -——1 55-B31

MOTOROLA APR401
6

Appendix B Twin Codec Expansion Board Parts List

u1,2 MC145503 PCM Codec

U3 74HC04

U4 74HC393

us T4F74

ue 74HCO8

u7 Maxim 7660

R1,5 10KQ

R2,6 5.1KQ

R3,7 680Q

R4,8 560Q

R9,11,12 4.7KQ

R10 1KQ

C1,2,3 10u tantalum

C4- 0.1u (decouplers)

D1 Schottky Diode

X1 2.048MHz Crystal

$1,2,3,4 ‘Square Pad’ BNC Connectors
S5 DIN41612 96-way connector

APR401 MOTOROLA
7

Appendix C
Demo Software for Twin Codec Board

EXAMPLE 1

KK Kk ko ok o K Kok ok Xk ok ok R K KKk ok ok o K R K K K ko K K R R K KR K KK KR K R R K Xk

; FILENAME: ECLK_SIN.ASM

; FUNCTION: CODE INITIALISES SSI TO INTERFACE TO A SINGLE CODEC, WITH
; SYNCHRONOUS Rx/Tx SECTIONS.

’

; J1 - ON J6 - -5V
; J2 - ON J7 - OFF
; J3 - ON J8 - OFF
;7 -0 J9 - OFF
; J10 SHOULD BE SET FOR 8KHz FRAME SYNC

; (THIS IS THE POSITION AWAY FROM THE J10 LETTERING ON THE PCB)

'-*********************‘k**************‘k******‘k********************‘k*

include ‘\dsp\demo\ioequ’ ;look for IOEQU.ASM
org p:$40

;‘k***********X**************************‘k****X**‘k*******X**********

; program code

;**************************************‘k***************************

start move #M SR, r2 ; set up r2 for often-used register
reset

; SETUP FOR EXTERNAL CLOCK

movep #0,x:M CRA ; PSR=0 , WL=0 , DC4-0=$13 ,PM7-0=1
movep #$3200,x:M CRB; RIE=0,TIE=0, RE,TE =1
movep #51£8,x:M PCC ; set CC(8:3) as SSI pins

,-*************************************‘k****************'K***********

; wait for transmission and reception
;***x**r*x***

A -

wWall
wcde jclr #M_TDE, x: (r2) ,wtde ; wait for tde
movep x0,x:M TX ; write data to TX reg.
wrdf jelr #M_RDF, x: (r2) ,wrdf ; wait for rdf
movep x:M RX, x0 ; read data from RX reg.
jmp wait

MOTOROLA APR401
8

EXAMPLE 2

IREE A LRSS ST RS SR SRR S L SRS SR RS SRR EEEEEEEEEEEEEEEEEEEEEEESEEEE RS S SIS
’

E TO A SINGLE CODZC, WITH
Z FAST INTERRUPT

; J1C SHOULD BE SET FOR 8KHz FRAME SYNC

; (THIS IS TEE POSITION AWAY FROM THE J1C LETTERING ON THE PCB)

t

IEE RS SRS SRS SRS S SR SR EEEEEEEEEEEEEEEEEEEE SRS RS R DRSS RS SRS RS S S S S5 5%
’

incliude ‘\dsp\demo\ioequ’ ;look for IOEQU.ASM

IR S S EEEEEEEREEEEE S S SR SRR EEEEIE SRS R R RS i I o b S b S i
’

; reset vector

; not normally reguired for the ADS; however, this will allow the user to load and
; run this file directly, without charging the PC Zrom the ADS’'s default.

IR RS E R SRS EEEER SRR R R R R RE R RS R b e i R
’

org p:$0C
reset pittie] star

R A A A KA K KA A AT A A A AT KA I AT A XA XA XX A A A KRA KNI AAKAAATKAANKAKRIAXAXXRKARK KKK KKK XK
’

; interrupt routines

IR SR SRR EEEEREEEEE RS S S S SRR R R I kI I I b i I I e R I i
’

org 0:30C
ss i_rx movep e :V;_R; Ly &
noe

Ssi ti movep

KA AR KR AKX A AR F A X AT XX T AR AT AT T T r T XN XATKXRAXKXAT KA TXRX X T AXKXXKNR K x X x> x>k

APR401 MOTOROLA
9

EXAMPLE 3

PAGE 132,66,3,3

Kk Kk kK K KK K Kk Kk k sk ok k sk ke k ok ok kS ok %k k x k k ok sk Kk ok Rk %k kK K %k %k ok Sk Kk ok Kk Sk Kk ok K ok sk ok e Kk K K Rk ok ok ok

’
’

; FILENAME : TWOTHRU.ASM WRITTEN : 13/4/88
; HISTORY : THE BEGINNING

~

~

FUNCTION: CODE INITIALISES SSI TO INTERFACE TO TWO CODECS, WITH
SYNCHRONOUS Rx/Tx SECTIONS. CODEC SELECTION IS PERFORMED

USING PC2 OR PBO

DATA IS READ FROM EACH CODEC, AND OUTPUT TC THE SAME CODEC.

Se e N N

~.

BOARD CONFIGURATION

; Jl OFF Jé -5V

; J2 OFF J7 CFF

; J3 ON J8 END NEAREST PCB LETTERING
; J4 ON J9 END NEAREST PCB LETTERING
; J5 CFF J10 DON’T CARE

;**

include ‘\dsp\demo\iocequ’ ;look for IOEQU.ASM
org p:840

;x**x************************X******x******************************

; program code
;***********r*******************************x*********k************

start move #M SR, r2 ; set up r2 for often-used register
reset

; SETUP? FOR INTERNAL CLOCK

movep #$.301,x:M CRA; PSR=0 , WL=0 , DC4-0=$13 ,PM7-0=1
movep #53234,X:M_CRB; RIE=0,TIE=0, RE,TE =1

movep #S1£8,x:M PCC ; set CC(8:3) as SSI pins

movep #$2,x:M PBDDR ; port B as I/0 lines

FFHI A KT AIA X T AKX KRNI KT TK KK KKK KK K KKK XK K Jw Kk k& k% ok ok K ok k& %k % Kk % %k k& Kok k% ok ok ko ox ok ok
’

; walt for transmission and reception

PR R KK T XA KK AKX KA K KAARKAAK AT AR KKK KK T A KA KA KKK KK KK KK KA K kKK KKk K&k Kk Kk Kk k k%% k%
’

wait
wtdel jclxr #M TDE, x: (r2),wtdel ; wait for tde
bset #0,x:M PBD ; set PBRC line for codec one
movep X0, x:M TX ; write data to TX reg.
wrdfl jclr #M RDF, x: (xr2),wrdfl ; wait for rdf
movep x:M RX, %0 ; read data from RX reg.
wtde?2 clir #M _TDE, x: (r2) ,wtde2 ; wait for tde
bcly #0,x:M 23D ; clear PBO line for codec two
movep X1, x:M TX ; write data to TX reg.
wrdi2 icir #M RDF, x: (r2),wrdf2 ; wait for rdf
M RX, XL ; reac data from RX reg.
wait

MOTOROLA APR401
10

EXAMPLE 4

PAGE 132,66,3,3
OPT MEX

;*‘k****‘k*'x****X***************************x*‘k**r**************r*‘k**

; FILENAME: FILT.ASM WRITTEN : 13/4/88
; HISTORY : THE BEGINNING

~

~

; FUNCTION: CODE INITIALISES SSI TO INTERFACE TO TWO CODECS, WITH
; SYNCHRONOUS Rx/Tx SECTIONS. CODEC SELECTION IS PERFORMED

; USING PC2 OR PBO

; DATA IS READ FROM EACH CODEC, AND OUTPUT TO THE SAME CODEC.

~

~

~

~

BOARD CONFIGURATION

~.

; J1 OFF J6 -5V

; J2 OFF J7 OFF

; J3 ON J8 END NEAREST PCB LETTERING

; J4 ON J9 END NEAREST PCB LETTERING
Js OFF J10 DON’ T CARE

S Ne N

KKK A KKK KR AR K AR AR AR A A A A AR A A AR A A A A AR R A A R A A AN ARk dAh Ak hkkhkk kK Kk kkxkkkkkkx

include “\dsp\demo\iocequ’ ;look for IOEQU.ASM
maclib ‘\dsp\macros\filter’

maclib ‘\dsp\macros\compand’

org p:$40

;**************************************w**********************r**x*

; data for filters
;**x************x

xfilt ad equ 0 ; address for x filter storage
n pts_x equ 39 ; numper of points in x filter
codx_op equ xfilt ad+n pts x ; temporary store for x filter output
yfilt ad equ 128 ; address for y filter storage
n pts y equ 99 ; number of points invy filter
cody_op equ vfilt ad+n pts_y ; temporary store for y filter cutpu:t

;**********x*x*********x****x**x***************x***********X*XX*X**

; program code

;*******x************x*****xw*x*****X**wx******x*******k*x**x****x*

start move #M SR, r2 ; set up r2 for ofter-used register
move #4,omr ; set data ROM’s on for log/linear data acc
not

APR401 MOTOROLA
11

; SETUP FOR SSI INTERNAL CLOCK, SET UP SSI

movep #$1,x:M PBDDR ; port B as I/0 lines

movep #$1301,%x:M CRA; PSR=0 , WL=C , DC4-0=$13 ,PM7-0=1
movep #$3234,x:M CRB; RIE=0,TIE=0, RE, Tz =1

movep #$1£8,x:M PCC ; set CC(8:3) as SSI pins

; transmit initial data for codecs

wl jclr #M TDE, x: (r2),wl ; wait for tde
bset #0,x:M _PBD ; set PB0O line for codec one
movep #8d5,x:M _TX ; write first data to TX reg.
w2 jclr #M TDE, x: (r2),w2 ; wait for tde
bclr #0,%x:M _PBD ; clear PBO line for codec two
movep #5d5,x:M TX ; write first data to TX reg.

Kk ok kK hk kK Kk kA A A A KK KA KKK A A KA KKK KK LI K K KKK KKK KKK KKK AR KKK KKK KK KKK kK * K

H
; wait for transmission and recepticn
;***x******

walt
bclr #0,x:M PBD ; set PBO line for codec one
wtdel jclr #M TDE, x: (r2) ,wtdel ; wait for tde
movep x:codx_op,x:M _TX ; write data to TX reg.
wrdfl jclr #M RDF, x: (r2),wrdfl ; wait for rdf
movep x:M RX,x0 ; read data from RX reg.
allin ; convert to linear data
fir filt r0,r4,n pts x ; filter using filter 1l
linal ; back to logarithmic data for o/p
move al,x:codx_op ; store
bset #0,x:M _PBD ; clear ?BO line for codec two
wtde2 jclr #M TDE, x: (r2) ,wtde2 ; wait for tde
movep x:cody_op,x:M TX ; write data to TX reg.
wrdf2 jclr #M RDF, x: (r2),wrdf2 ; wait for rdf
movep x:M RX, x0 ; read data from RX reg.
allin ; convert to linear for processing
fir filc r3,r7,n pts_ y ; filter in filter 2
linal ; back to log for output
move al,x:cody_op ; store
end jmp wait

;******************‘k***************x*********‘k******7(’****’k****X**X**********‘k******

; filter coefficients

; FILTL is a LPF, 3dB cutoff at 2KHz
; FILT2 is a BPF, 3dB points at 1.6KHz and 2.4KEz

~.

;***************************x*********x**x**x*x*********w**X***********X*******x***

MOTOROLA APR401
12

radix 16

org y:xfilt_ad

FILT1 DC 00060B,002157,003775,FFF959, FF9A4E, FFF841, 00C389, 00232D
DC FEA1l0,FFBS1B, 0257F6,007B50,FC1572,FF51F1, 06A75B, 00DAFS
DC F36611,FF0606,2848B8,40CD26,2848B8,FF0606,F36611, 00DAFS
DC 06A75B,FF51F1,FC1572,007B50,0257F6, FFB51B, FEA110, 00232D
DC 00C389,FFF841,FF9A4E,FFF959,003775,002157,00060B
org y:yfilt ad

FIR64 2 DC 000000, 00016A,000000,FFFAD4, 000000, 0009BF, 000000, FFF5BF
DC 000000, 000000,000000,0018A7,000000,FFC5F6,000000,0051D8
DC 000000, FFBA7B, 000000, 000000, 000000,007B83, 000000, FEFCOE
DC 000000, 014DD5, 000000, FEF9C5, 000000, 000000, 000000, 019ED4
DC 000000,FCB7BA, 000000, 041DEB, 000000,FCC911, 000000, 000000
DC 000000,057118,000000,F3C20B, 000000, 12EAFE, 000000, E8322E
DC 000000, 1998C5,000000,E8322E, 000000, 12EAFE, 000000, F3C20B
DC 000000,057118,000000,000000,000000,FCC911,000000, 041DEB
DC 000000,FCB7BA, 000000, 019ED4, 000000, 000000, 000000, FEFSC5
DC 000000, 014DD5, 000000, FEFCOE, 000000, 007B83,000000, 000000
DC 000000, FFBAT7B, 000000, 0051D8, 000000, FFC5F6, 000000, 0018A7
DC 000000, 000000,000000, FFFSRBRF, 000000, 0009BF, 000000, FFFAD4
DC 000000,00016A,000000

APR401 MOTOROLA
13

;***********************‘k***********9#**

’

; AM Modulator

EXAMPLE 5

; This example uses the twin codec board to acquire two signals.
; One 1s output without alteration, and also to modulate the second.

Jl
J2
J3
Jé
J5

Ne Ne Ne N Se Se Ne Ne N,

BOARD CONFIGURATION

ON
ON
ON
ON
OFF

include
maclib

J6 -5V
J7 CFF
J8 END NEAREST PCB LETTERING
J9 END NEAREST PCB LETTERING

J10 END NEAREST PCB LETTERING

% % % %k Kk % ok Kk Kk Kk ko ok Kk %k k ok ok ok ok ok Sk sk %k %k %k sk %k %k gk sk %k Sk ok sk sk sk k %k ke ke k ok k ok ok ok sk %k %k %k %k %k %k Sk %k Sk kK ok ok ok sk sk %k sk ok ok %k ok e ke ok k ke ki ki k kK

‘\dsp\demo\iocequ’
“\dsp\macros\compand’

; look for IOEQU.ASM

; following is the reset vector

org
Jmp

p:0
start

; these are the SSI interrupt vectors. Only one pair are used

org
jsr
jsr

p:Sc
interpt
interpt

; Xxmemory reservations

out:
out2

inl

;**x*******x**xxxx**x******‘k**‘k****k******************‘k**********************

org
ds
ds

a
ot

as

; Start of Program
; Tirst Step - Initialisaticn of hardware and software

IREES S S SRS S SRS SRS SRS SRS SRS LRSS R SRS SRS SRS ERE SRS RE e R SR EEEESE RSN
’

start

runtime

org
reset
movep
movep
movep
move

movep
movep
moveo
move

MOTOROLA

14

x:

1 ; storage for data for codec one o/p
1 ; storage for data for codec two o/p
1 ; data received from codec 1

1 ; data received from codec 2

p:$40
; clear out processor
#$128,x:M CRA; PSR=0 , WL=0 , DC4-0=$13 ,PM7-0=1
#$b200,x:M _CRB ; enable Tx interrupt, external clock
#$1££f,x:M PCC; set CC(8:3) as SSI pins
#6, omr ; enable data ROM’s
#$2300,x:M _BCR
#$1,x:M PBDDR; port B as I/0 lines
#$3000,x:M_IPR ; set SSI interrupts to level 2
#2,sr ; and enable interrupts

runtime ; and continue waiting for more data

APR401

;****‘k*****************************'k*****************************‘k***‘k*******

; this is the interrupt routine
,-*************************************:***xk**********************************

interpt jset #0,x:M PBD, proc ; 1f PBO line set, do frame processing
bset #0,x:M_PBD ; if not, set PBO line for codec one
movep x:outl,X:M TX ; ard write output data to codec one
movep X:M RX,x:in2 ; read input data read from codec two
rti

proc bclr #0,x:M_PBD ; 1f not, clear PBC line for codec two

movep x:out2,X:M TX ; and write output data to codec two
movep X:M RX,x:inl read input data read from codec one

~.

andi #Sfc, mr ; re-enable interrupts to allow I/0 during processing
crdd jsx process ; process data
rti

’-*********************************‘k**’k***************************************

; This routine performs signal processing tasks on the data

; As an example, one channel is used to modulate the other
,-**"**

process move x:inl, a ; read sample from channel 1
move a,x:outl ; output to same channel
allin ; convert channell data to linear
move al,y0 ; and transfer for multiply
move X:in2,a ; read sample from channel 2
allin ; convert channel 2 to linear
move al,x0 ; transfer back for multiply
mpy x0,y0,a ; performmultiply for AMmodulation
linal ; convert result to log format
move al,x:out2 ; outout modulated result to channel 2
rts

APR401 MOTOROLA
15

Appendix D Example Filter Description
Filter Implementation Techniques

The filters used as examples in the demo software are all implemented around two software macros, listed below. All are FIR
filters, with different numbers of taps, and were designed using a proprietary digital filter CAD system.

The macros were implemented to allow the rapid creation of different froms of FIR filter. They cover both initialisation and
execution of the filter.

Thefirstmacro, INIT_FIR, is passed various parameters indicating to the assembler which registers to use for the filter, how many
taps are in the filter, and what memory area to use; it then initialises the DSP to perform this filter. Note that this generates filters
with symmetrical memory usage; i.e. if the filter uses the first 100 locations of X-memory, it will also use the first 100 locations
of Y-memory.

The second macro, FIR_FILT, performs one pass of the FIR filter algorithm. It must be passed the register pair used for data and
coefficient access.

MACRO - INIT_FIR

;************‘k**x***

; FIRFilter Initialisation macro
; Calling Procedure : init_fir coeff,data,points,address

; Parameters : coeff - number of coefficient address register set
; in the range 0-7 (ie RO/NO/MO - R7/N7/M7)

; : data - number of data address register set

; in the range 0-7 (ie RO/NO/MO - R7/N7/M7)

; : points - number of points in filter

; : address - X/Y memory area to be used for data

; and coefficients

; Comments : coeff and data should not be in the same address register

; group; ie one may be in group 0-3, the other group 4-7

; This initialisation routine sets up the filter to use the same
; locations in X & Y memory.

;***********************************‘k*********‘k*************************************

init fir MACRO COEFF, DATA, POINTS, ADDRESS move
4?ADDRESS, r\COEFF :

move #?ADDRESS, r\DATA

move #?2POINTS-1, m\COEFF

move £2POINTS-1, m\DATA

ENDM

MACRO - FIR_FILT
;***‘k

; FIR filter macro ; ; input linear data in al ; output result in al ;
,-**

fir filt MACRO COEFF,DATA

move al,x0

clr a x0,x: (DATA) + y: (COEFF) +, y0

rep #n_pts 1-1

mac #0,v0,a x: (DATA) +, %0 y: (COEFF) +, y0 macr
x0,v0,a (DATA) -
ENDM

MOTOROLA APR401
16

Filter 1

The first filter was implemented using the FDAS filter design package, available from Momentum Data Systems. The filter was
designed using the Parks-Maclellan design methodology; the initial specification for the filter is given below.

Sample Rate 8KHz
Filter Type LPF
Upper Limit of Pass Band 1.4KHz
Lower Limit of Stop Band 2.1KHz
Pass Band Ripple -0.1dB
Stop Band Ripple -78dB
Number of Taps 39

This gives the filter of Figure 1A; this transfer function has been evaluated using extended floating point arithmetic, and is thus
the closest we can achieve to the theoretically ideal filter. However, few DSP processors will work to this type of accuracy; the

coefficients must be truncated to fit in the word length of the processor used. In the case of the 56000, the word length is 24
bits; Figure 1B is the realisable transfer function when the coefficients are quantised for this word length.

As can be seen, truncating the coefficients to 24 bits has had no serious effect on the filter’s transfer function. Thisis not always
the case; for example, truncating the coefficients to 16 bits significantly alters the stopband characteristics of the filter

! |
LOG MAGNITUDE (dB) VERSUS FREQUENCY : i MAGNITUDE VERSUS FREQUENCY
H |
. i
ouo e |
| i
| i !
\ | \‘
i i b
\ . i | !
1 ! “‘ i
-2008 . . \ ' | .eee: |
\ : i
i i ! !
~ i . : !
z ! . . |
T \ ‘w H B
~ ! i : .
[TTRZLEL] \ ;g .600 | 1
a \ ll— | :
!
ju] i i i
= \ 1T
H ! & . .
Z |I H a ! '
(] 1 b= : i
T | | ‘
¥ -60a8 ! ! 400 | i
(U] | ! | i
(w] |
a .
-8od8 M’[\' AL [/\ "\\ ,/\. FANARATS 200 i
\ Vot \ L .
, !’ ! i R
1
Ji)
! i l{ HE {
Il]
il .
l ! \
| ! : N\
-100a8 . I .ece _
e.000 1.009 2.000 4.000 ! 9.0080 1.000 2.0800 3.000 4.000
E+00 €+03 E+03 €+03 ; E+00 Ev03 €+03 Ev03 £+03
FREQUENCY (HERTZ) FREQUENCY (HERTZ)
PASSBAND RIPPLE IN -oB -.1000 .LOw PASS FILTER | PASSBAND RIPPLE IN -dB -.1000 LOu PSS FILTER
STOPBAND RIPPLE IN -dB -78.0000 | FIR (EQUIRIPPLE) DESIGN STOPBAND RIPPLE IN -B -78. 0000 | FIR (EQUIRIPPLE) DESIGN
PASSBAND CUTOFF FREQUENCY 1400.00 i | PASSBAND CUTOFF FREQUENCY 1400. 00 ‘
STOPBAND CUTOFF FREQUENCY 2108.00 | NUMBER OF TAPS: 39 | STOPBAND CUTOFF FREQUENCY 2180.00 NUMBER OF TaPs: 39
SAMPLING FREQUENCY ©000. 00 T FILTER DESIGN & ANALYSIS | SAMPLING FREQUENCY 8000. 00 FILTER DESIGN & ARALYSIS
ALL FREQUENCIES IN HERTZ . SYSTEM . ALL FREQUENCIES IN HERTZ SYsSTEM
QUANTIZATION 48 BITS - FLOATING POINT MOMENTUM DATA SYSTEMS, INC. QUENTIZATION 48 BITS - FLOATING POINT MOMENTUM DATA SYSTEMS, INC.
Figure 1A

Theroretical Log & Magnitude Plots
Low Pass Filter

APR401

MOTOROLA
17

MAGNITUDE VERSUS FREQUENCY
1.000 \
8ee
a
SBBB | s s e e e
3
-
H
z
a
a
x
400
200
0008 sos0se
°.200 1.000 2.000 3.000 4.000
E+o0 E+03 E+03 E+03 E+@e3
FREQUENCY (HERTZ)
PASSBAND RIPPLE IN -dB =-.1000 LOW PASS FILTER
STOPBAND RIPPLE IN -a8 ~78.0000 FIR (EQUIRIPPLE) DESIGN
PASSBAND CUTOFF FREQUENCY 1400.00
STOPBAND CUTOFF FREQUENCY 2160.00 NUMBER OF TARPS: 39
SAMPLING FREQUENCY 8000.00 FILTER DESIGN i ANALYSIS
ALL FREQUENCIES IN HERTZ SYSTEM
QUANTIZATION 24 BITS FIXED POINT FRACTIONAL MOMENTUM DATA SYSTEMS, INC.

LOG MAGNITUDE(dB) VERSUS FREQUENCY

S2OAB | o s s s s e

LOG MAGNITUDE (dB)

S O U S PUITS: SOV SR S

S2100CB L s s L
°.000 1.000
E+00 E+03

U

vm iy
uil

i

3.000 a.000
£vo3 Ev03

FREQUENCY (HERTZ)

PASSBAND RIPPLE IN -dB
STOPBAND RIPPLE IN -dB
PASSBAND CUTOFF FREQUENCY
STOPBAND CUTOFF FREQUENCY
SAMPLING FREQUENCY

ALL FREQUENCIES IN HERTZ
QUANTIZATION 24 BITS FIXED POINT FRACTIONAL

LOW PASS FILTER
FIR (EQUIRIPPLE) DESIGN

NUMBER OF TAPS: 39
FILTER DESIGN I ANALYSIS
SYSTEM
MOMENTUM DATA SYSTEMS, INC.

Figure 1B
Realisable Log & Magnitude Plots
Low Pass Filter

MOTOROLA
18

APR401

Filter 2
The second filter was again implemented using the FDAS filter design package, available from Momentum Data Systems. The
filter was again designed using the Parks Maclellan design methodology; the initial speqiﬁcation for the filter is given below.

Sample Rate 8KHz
Filter Type BPF
Upper Limit of Pass Band 2.2KHz
Lower Limit of Pass Band 1.8KHz
Upper Limit of Stop Band 1.4KHz
Lower Limit of Stop Band 2.6KHz
Pass Band Ripple -0.1dB
Stop Band Ripple -78dB
Number of Taps 69

This gives the filter of Figure 2; this is the 24-bit version of the filter.

It should be noted that when using a codec, only around 78dB of resolution is available. These filters were designed with that
factin mind; the 56000 will support filters with cut-offs of -144dB. In this application, such a filter would be excessively powerful.

LOG MAGNITUDE (dB) UERSUS FREQUENCY MAGNITUDE VERSUS FREQUENCY
[} / 1.000 / \\
=20AB | ... s cam / .800 !
~
T
- w
m'l.” D .600
a =]
=] [
- H :
H z
z a
o a
I =
z -1 |- SRS AP S URRNY S B L 0000000000 RSP OSSO0 SO OO OSSR SO Y
[ul
o
_|
-80dB |, A-A-A-AN-AAAR B T O .200 . $ -
i
0.000 1.000 2.008 3.e00 4.000 9.000 1.000 2.000 3.000 4.000
E+@0 E+e3 E+e3 E+e3 E+83 E+00 Eee3 E+03 E+@3 E+03
FREQUENCY (HERTZ) FREQUENCY (HERTZ)
PASSBAND RIPPLE IN -dB ~.1000 BAND PASS FILTER PASSBAND RIPPLE IN -oB -.1000 BAND PASS FILTER
STOPBAND RIPPLE IN -dB ~T78.0000 FIR (EQUIRIPPLE) DESIGN STOPBAND RIPPLE IN ~oB -78.0000 FIR (EQUIRIPPLE) DESIGN
CUTOFF 1800.080 2200.08 PASSBAND CUTOFF FREQUENCIES 1800.00 2200.00
STOPBAND CUTOFF FREQUENCIES 1400.00 2600.00 ! NUMBER OF TAPS: 69 STOPBAND CUTOFF FREQUENCIES 1400.00 2600.00 NUMBER OF TAPS:
SAMPLING FREQUENCY 8000.00 FILTER DESIGN L ANALYSIS SAMPLING FREQUENCY 8000.00 FILTER DESIGN & ANALYSIS
ALL FREQUENCIES IN HERTZ SYSTEM ALL FREQUENCIES IN HERTZ SYSTEM
QUANTIZATION 24 BITS FIXED POINT FRACTIONAL MOMENTUM DATA SYSTEMS, INC. QUANTIZATION 24 BITS FIXED POINT FRACTIONAL MOMENTUM DATA SYSTEMS, INC.

Figure 2
Realisable Log & Magnitude Plots
Band Pass Filter

APR401 MOTOROLA
19

Se Ne N

~e

~.

Appendix E Log/Lin Conversion Routines

This programoriginally available on the Motorola DSP bulletin board.
a under a DISCLAMER OF WARRANTY available from
-2 2SP Cperation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

Lineaxr PCM to Companded CODEC Data Conversion Macros
Last Update 20 Apr 87 Version 1.0
1,0

These macros convert 13 bit, linear fractional data into 8 bit companded
data suitable for transmission to CODEC D/A converters used in
telecommunications applications. Four companded formats are

supported for the Motorola MC14400 CODEC series and similar devices.

Macro Calls: linsm - linear to sign magnitude conversion

with mu-law companding.

linmu - linear to mu-law companded conversion
without zero code suppression.

1ind3d4 - linear to mu-law companded conversion
with D3/D4 format zero code suppression.

linal - linear to a-law companded conversion
with CCITT (G7.12) format.

No macro arguments are required. However, these
macros assume that the scaling modes are off
(s1=0, s0=0).

Input data is a 56 bit number in accumulator a. Although any 56 bit
number may be used, the 13 bit linear fraction is assumed to be in

the most significant bits of al. Values outside this fractional range
are automatically converted to a maximum positive or negative companded
value (dynamic range limiting).

Cutput data Is in the 8 most significant bits of al. The 16 1LSB’s
cI a2l zre zerc.
Sign | Chorc Number | Step Numbexr |
| Bit | | |
P23 22 21 20+ 19 18 17 16

Alters Data ALU Registers

x1 %0
a2 a:z a0 a
b2 bl jol¢) b

Alters Address Registers
r0

Alters Program Control Registers
pc sx

Uses U locazions on System Stack

T At e~ e N - Do A =4 T o7
Latest Revision - April 15, 1887
T o Vet FlaA Do v o n¥e LR
Tested and verlifilsd - Aprili 27, 198

MOTOROLA
20

APR401

; linsm - linear to sign magnitude conversion
;

linsm macro

_bias equ $008400 ;absolute bias = 33
tfr a,b a,a ;save input sign, limit input data
abs a # bias,x0 ;form input magnitude, get bias
add x0,a #7,x0 ;add bias to magnitude, get chord bar
move a,a ;limit again
rep #7 ;find chord number by normalizing
norm r0,a ; biased magnitude to get step number
asl a ;isolate step number
asl a b,b ;limit input again
neg b r0,a2 ;invert sign bit, get chord number
asr a ;combine chord and step
asr a
asr a
asl b ;get sign bit
ror a #<$£ff, x0 ;combine sign, chord and step
and x0,a ;clear 16 LSB’s
endm

; linmu - linear to mu-law conversion

linmu macro

_bias equ $008400 ;absolute bias = 33
tfr a,b a,a ;save input sign, limit input data
abs a #_bias,x0 ;form input magnitude, get bias
add %0, a #7,r0 ;add bias to magnitude, get chord bar
move a,a ;limit again
rep #7 ;find chord number by rormalizing
norm r0,a ; biased magnitude to get step number
asl a ;isolate step number
asl a b,b ;limit input again
neg b r0,a2 ;invert sign bit, get chord number
asr a ;combine chord and step
asr a
asr a
not a ;invert 7 LSB’s for mu-law
asl b ;get sign bit
ror a #<Sff, x0 ;combine sign, chord and step
and %0, a ;clear 16 LSB’s
endm

; 1ind3d4 - linear tomu-law conversion with zero code suppression
;

1ind3dé4 macro

_bias equ $008400 ;absolute bias = 33

H
tir a,b a,a ;save input sign, limit input date
abs a # bias,x0 ;form input magrnitude, get bias
add x0,a #7,x0 ;add bias to magnitude, get chord bar
move a,a ;limit again
rep #7 ;£find chord number by normalizing
norm r0,a ; biased magnitude to cet stepr numpber
asl a ;isolate step number
asl a b, b ;limit input again
neg b r0,az ;invert sign pbit, get chora numper
asr a ;compine chord and step

APR401 MOTOROLA
21

asr a

asr a

not a ;invert 7 LSB’s for mu-law
asl b ;get sign bit

ror a #<$ff,x0 ;combine sign, chord and step
and %0, a #<$02, x0 ;clear 16 LSB’s

teq x0,a ;suppress zero code

endm

; linal - linear to a-law conversion

linal macro

tfr a,b a,a ;save input sign, limit input data
move #1,a0 ;force to non-zero value
abs a #7,x0 ; form input magnitude, get chord bar
move a,a ;limit again
rep #6 ;find chord number by normalizing
norm r0,a ; magnitude to get step number
jnr <_ok ;jump if normalized
move (r0) - ;adjust for chord zero
_Ok asl a ;isolate step number
asl a b,b ;limit input again
neg b r0,a2 ;invert sign bit, get chord number
asr a ;combine chord and step
asr a
asr a
asl- b ;get sign bit
ror a #<S$ff,x0 ;combine sign, chord and step
and x0,a #<$55, %0 ;clear 16 LSB’s
eor %0, a ;invert odd bits for a-law
endm

SN

This programoriginally available on the Motorola DSP bulletin board.
; It is provided under a DISCLAMER OF WARRANTY available from
Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

~e

; Companded CODEC to Linear PCM Data Conversion Macros
; Last Update 20 Apr 87 Version 1.0
loglin ident 1,0

; These macros convert 8 bit companded data received from CODEC A/D

; converters used in telecommunicaticns applications to 13 bit, linear
; fractional data. The internal mu/a-law lookup tables in the DSP56001
; X data ROM are used to minimize execution time. Three companded

; formats are supported for the Motorola MC1440C CODEC series and

; similar devices. '

; Macro Calls: smlin - sign magnitude to linear conversion

; with mu-law companding.

; mulin - mu-law companded to linear conversion.

; allin - a-law companded to linear conversicn

; with CCITT (G7.12) format.

;

; No macro arguments are required. Eowever, these
; macros assume that the scaling modes are off

; (S1=0, s0=0).

MOTOROLA APR401
22

Input data is in the 8 most significant bits of al. The remaining
bits of a are ignored.

Se Ne S Se N N

| Sign | Chord Number | Step Number |
| Bit | I) |
;123 122 21 20 1__19 18 17 16 |

Output data is in the 56 bit accumulator a. The linear fraction is
in the 13 most significant bits of al and the 11 least significant
bits are zero.

Ne N

N

’ -
; Alters Data ALU Registers

; x1 x0

; a2 al a0 a

; b2 bl b0 b

Alters Address Registers
r0

~e

~

Alters Program Control Registers
pc sr

Se N NN

Uses 0 locations on System Stack

SN0 N

Latest Revision - April 15, 1987
; Tested and verified - April 20, 1987

; smlin - sign magnitude to linear conversion

smlin macro

_shift equ $80 ;shift constant
_mutable equ $100 ;base address of mu-law table
not a al,b ;invert input bits, save input
1sl a #>_shift,x0 ;shift out sign bit, get shift constant
lsr a # mutable, x1 ;shift in zero, get table base
tfr x1l,a al,xl1 ;swap table base and offset
mac x1l,x0,a ;shift offset down and add to base
move a,x0 ;move to address register
nop
1sl b x:(r0),a ;c=sign bit, lookup linear data
neg a a,b ;a=negative result, b=positive result
tcs b,a ;1f pos sign, correct result
endm

mulin - mu-law to linear conversion

Ne NN

mulin macro

_shift equ $80 ;shift constant
_mutable equ $100 ;base address of mu-law table
move al,b ;save input
1sl a #> shift,x0 ;shift out sign bit, get shift constant
1sr a #_mutable, x1 ;shift in zero, get table base
tfr x1l,a al,x1 ;swap table base and offset
mac x1,x0,a ;shift offset down and add to base
move a,r0 ;move to address register
nop
1sl b x:(x0),a ;c=sign bit, lookup linear data

APR401 MOTOROLA
23

neg a a,b
tcs b,a
endm

;a=negative result, b=positive result
;1f pos sign, correct result

; allin - a-law to linear conversion
allin macro

_shift equ $80

_atable equ $180

’

;shift constant
;base address of a-law table

move al,b ;save input

1s1 a #> shift,x0 ;shift out sigr bit, get shift constant
lsr a # _atable, x1 ;shift in zero, get table base

tfr x1l,a al,x1 ;swap table base and offset

mac x1,x0,a ;shift offset down and add to base
move a,xr0 ;move to address register

nop

1sl b x:(r0),a ;c=sign bit, lookup linear data

neg a a,b ;a=negative result, b=positive result
tcs b,a ;1f positive sign, correct result
endm

MOTOROLA APR401
24

Appendix F Twin Codec Expansion Board PCB Artwork

|'."

PCB Artwork
Component Side

TWIN CODEC
EXPANSION BOARD

EXPANSION BRD

PCB Artwork
Solder Side

APR401 ' MOTOROLA
25

Appendix F Twin Codec Expansion Board PCB Artwork

[

0000000
o S moccooe 4 S
ecoecce ° 00
s 238
He 00000
‘ 0000000 :! 1
: 000000
o .“ 0000000 ©
®
PY ° oo : HO00000
l 4 EXPANSION BRD 6"

Solder Resist Mask

I o U S— CBA
P D] *()*() !

S3

U2 c2 Ct cC3

S5
sS4

us D
AE—_—1 [
s1 Y o

1 2 J1
52 U4
Lo 1 N
co J10
X1 u3

| |

' < EXPANSION BRD 6" ’,

Screen Printing

MOTOROLA : APR401
26

All products are sold on Motorola’s Terms & Conditions of Supply. Inordering a product covered by this document the Customer agrees to be bound by those
Terms & Conditions and nothing contained in this document constitutes or forms part of a contract (with the exception of the contents of this Notice). A copy
of Motorola’s Terms & Conditions of Supply is available on request.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and) are registered trademarks of Motorola, inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

The Customer should ensure that it has the most up to date version of the document by contacting its local Motorola office. This document supersedes any
earlier documentation relating to the products referred to herein. The information contained in this document is current at the date of publication. It may
subsequently be updated, revised or withdrawn.

MOTOROLA APR401

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

| @ MOTOROLA

JIT PRINTED IN THE USA 1993 MPS APR401/D

TR OO0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

