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SECTION 1
INTRODUCTION

This application note describes the implementation of a speech codec that conforms to the CCITT
standardised G.722 specification for 7kHz audio-coding within 64 kbit/s [1]. The target processor
for which the code was developed is the first in Motorola’s 56100 16-bit Digital Signal Processor
family, the DSP56156 [2].

The G.722 specification details the characteristics of an audio (50Hz to 7kHz) coding system that
may be used for a variety of higher quality speech applications. These characteristics relate to
everything from the anti-aliasing filter mask at the transmitting terminal, to the reconstructing filter
mask at the receiving terminal. Within this document, however, we concern ourselves only with
the software coding aspects of the specification.

The coding system uses Sub-Band Adaptive Differential Pulse Code Modulation (SB-ADPCM) to
decimate a signal sampled at 16 kHz and 14 bits or 224 kbit/s to digital data for transmission at
8 bits and 8kHz or 64 kbit/s. Figure 1-1 gives an overview of the signal flow through the processor
and the status of the signals at relevant points within the codec.

Sigral DSP56156 .
Processing [¢]
and gpeech
i omms
Analogue Transmit G722 Higher-band Encoded Data Link
to Digital QMF fisNe Multiplexer &
Conversion Filter Data Insertion
ADPCM Encoder Device
16 kiz 8 KHz
Sampling Sampling
Digital : igher-ban Encoded Data
'gnta Sample Receive ADPCM Decoder De-multiplexer
to Multi- QMF et & Data
Analogue plexer Filter G722 Lower-band Extraction From
Conversion ADPCM Decoder Device Speech
and Comms
Link
Output
Filtering ~ #

114

® its @ 16 kHz
@ :14bits@ 8kHz
® : 2bits@ 8kHz
@ : 6bits@ 8kHz
{6, 5 or 4 bits for the Decoder)

: 8bits@ 8kHz
: Mode Indicator from transmitter
(requires a comms. protocol)
: Auxiliary data channel input 0, 8 or 16 kbit/s
: Auxiliary data channel output 0, 8 or 16 kbit/s

©0 00

Figure 1-1 G.722 Signal Flow through the DSP56156
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In the SB-ADPCM technigue used, the frequency band is split into two sub-bands (lower and
higher) of 50Hz — 4kHz and 4kHz - 7kHz and the signals from each sub-band are subsequently

encoded using ADPCM. The 50 Hz lower cut-off frequency is set by analogue filtering before A/D
conversion.

The G.722 specification details three basic modes of system operation using the algorithm, two of
which allow the insertion of data into 1 or 2 Isb’s of the 8 bits of transmission data immediately
prior to their being sent. The three modes give rise to the 8-bit data transmission formats indicated
by Figure 1-2 below. This means that modes 2 and 3 allow the insertion of data into the transmitted
byte providing an auxiliary data channel of either 8 or 16 kbit/s respectively, by making use of bits
from the lower sub-band. This has a slightly detrimental effect on the Signal-to-Noise Ratio ( SNR)
of the reconstructed signal.

M.S.B. Data Transmission Format for Mode 1 : 64 kbit/s speech L.S.B.
H.B H.B L.B. L.B. L.B. L.B. L.B. L.B.

M.S.B. Data Transmission Format for Mode 2 : 56 kbit/s speech, 8 kbit/s data L.S.B.
H.B H.B L.B. L.B. L.B. L.B. L.B. DATA

M.S.B. Data Transmission Format for Mode 3 : 48 kbit/s speech, 16 kbit/s data L.S.B.
H.B H.B - L.B. L.B. L.B. L.B. DATA DATA

KEY: L.B. = Lower Band Encoded Signal H.B. = Higher Band Encoded Signal

Figure 1-2 Data Formats for 64 Kbit/s Channel

The G.722 algorithm is well suited to the DSP56156 in so far as:

a) the signal information is contained in 14 bits, allowing direct interface of 16-bit Analogue to
Digital converters, such as Motorola’s 16-bit Sigma-Delta 56ADC16;

b) intermediate accumulation results for the sub-band filters require a minimum resolution of 24
bits which can be adequately accommodated in the processor's 40-bit accumulators;

¢) full duplex operation of the algorithm requires 9.41 MIPS peak processor performance, and the
excess power of the device allows other algorithms such as echo-cancelling and protocols
such as the CCITT's H.221 and G.725 to be included on a single chip;

d) when used as an ISDN terminal with G.722 speech coding and the H.221 and G.725 protocols,
the standard G.711 p and A-Law PCM fallback modes can be easily included by using the
companding hardware built into both of the processor’s two Synchronous Serial Interfaces or
SSI's.

This application note also gives a brief overview of the latest trends in speech coding techniques
and where the G.722 algorithm fits into these developments.
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SECTION 2
THE G.722 ALGORITHM

This section describes the implementation of the G.722 algorithm on the DSP56156 processor.
Figure 1-1 details the G.722 data flow through the processor, from which the sub-sections that
follow have been derived.

2.1 Quadrature Mirror Filters

Since the development of the QMF filter pair by Esteban and Galand [3] the technique of frequency
sub-band splitting has been researched extensively with interesting results. These particular digital
filter structures allow signals to be divided into frequency sub-bands and de-sampled or decimated
without loss of information upon reconstruction at the original sampling frequency. Originally the
technique was developed as a result of work undertaken by Crochiere et al [9] as a means of
reducing the effects of quantisation noise due to coding. The main advantages of this approach are:

a) the localisation of quantisation noise into the frequency sub-bands and in so doing preventing
noise interference between the bands and,

b) the enabling of bit resource allocation to the frequency sub-band signals according to certain
spectral criteria.

Originally the technique allowed only approximate reconstruction of the decomposed signal.
However, with the wealth of development work that has been carried out it is now known that
sub-band signals can be reconstructed perfectly [5](7][8] with linear-phase FIR filters, allowing alias
and phase distortion free reconstruction. The work has been extended to include multiple
sub-bands and multirate filter banks are comprehensively covered in [7].

The following description is a brief introduction to QMF filtering [4). Initially, consider the two
sub-band coder of Figure 2-1. The blocks A-B-C represent the cascade of an encoder, transmission
channel and decoder of some nature. Their presence will, however, be ignored for the purposes of
the present discussion.

High Pass Filter

) . High Pass Filter |
hi(n) 2:1 1:2 h1(n)

x2(n) p2(n) u2(n)
— TRANSMITTER RECEIVER <
x{n) + *(r)
x1(n)
| | Low Pass Filter 21 ) Plin) Low Pass Filter | | ul(n)
hz(n) . A‘B‘C 1 . 2 hz(n)
fs fs/2 fs/2 fs

Figure 2-1 Quadrature Mirror Filters in a 2-band Sub-band Coder
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2-2

The basic process of QMF filtering is designed to overcome the effect of non-ideal transition-band
and stop-band filtering. With real-world filters, the non-zero signal energy in the transition and stop
bands is refiected back into the pass-band during the interpolation process at the receiver causing
aliasing. This aliasing is cancelled in the QMF bank during reconstruction of the signal at the
summing junction indicated in Figure 2-1.

To obtain the cancellation property, filters h1(n) and h2(n) must respectively be symmetrical and
anti-symmetrical FIR filters with an even number of taps, i.e.

h1{n) = h2(n) =0 for n<0 and n=N (1
where N is the number of taps. For symmetry and asymmetry the following restrictions are
implied:

h1(n) = h1(N-1-n)

n=0,123,........ AN/2)-1 (2)
h2(n) = -h2(N-1-n)

Equation 2 gives the necessary condition for FIR filters with constant group delay. This eliminates
signal distortion due to different phase shifting of the individual frequency components that
constitute the input signal as it passes through the filter.

The filter bank indicated must also satisfy the relationship indicated in equation (3), which is the
mirror image relationship of the filters.

h2(n) = (-1)"h1(n) n=01.2....... N-1 3)

In order to obtain perfect reconstruction the combined filter passband responses must be flat, and
to satisfy this requirement the filters must have responses which conform to:

[H1 (&%)]? + [H2(e™)|? = 1 (@)

where Hx(e™) is the Fourier Transform of hx(n). A more detailed analysis of this structure is
presented in [3].

In the G.722 specification the implementation of the QMF filters is described by equations 5
through 12. Equations 5 to 8 represent the transmit QMF filter and 9 to 12 the receive QMF filter.

The transmit output variables, xL(n) and xH(n), are computed in the following manner:

1

xA = Y h(2i)*xin(j-2i) (5)
i=0
1

xB = Y h(2i+1)*xin(j-2i-1) (6)
i=0

xL{n) = XA + xB 7

xH(n) = xA - xB (8

MOTOROLA



For the receive filter, the D/A output variables are calculated as follows:

1
xout(j) =2 h(2i)*xd (i)
i=0
1
xout(j+1) = 2 h(2i+1)*xs (i)
i=0
xd(i) rL{n-i) - rH(n-i)

xs(i)

rL(n-i) + rH(n-i)

where:

index (-1) = value corresponding to the previous 16 kHz sampling interval.

index (j) = value corresponding to the current 16 kHz sampling interval.

index (j+1) = value corresponding to the next 16 kHz sampling interval.

index (n-1) = value corresponding to the previous 8 kHz sampling interval.

index (n) = value corresponding to the current 8 kHz sampling interval.
rL(n-i) = lower band reconstructed signal delay line
rH(n-i) = higher band reconstructed signal delay line

9

(10)

(1)
(12)

An efficient implementation of the band-splitting and reconstruction can be realised using the

structures indicated in Figure 2-2.

éh(N) é}hm-n
D D D

-

x(t) o

fs +

Key: in Figure 2-2 (b)

h(N-1) h(N)

Figure 2-2 Efficient QMF Processing Implementation

(a) Channel Splitting Using QMF Structure
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24

x01(n)

ngm) éh(N-ﬂ
D D

\V4

§:>§9’

x02(n)

>_ D D D
?h(N-I) ($)hm)

Key: l
h{N) : N'th tap of filter h
D : single sample filter delay

xr{n) : reconstructed analogue signal
fs/2 : half the analogue sampling frequency

Ul i e

Figure 2-2 Efficient QMF Processing Implementation
{b) Channel Reconstruction Using QMF Structure

Mathematical analysis of the QMF processing shows the reconstructed signal, xr(n}, is a perfect
replica of the input signal, x(n), but half its magnitude and delayed by an amount equal to (N-1)
sample periods.

In the QMF splitter of Figure 2-2(a), xo1{n) represents the lower band channel and x02(n) the higher
band channel. In the DSP56156 implementation these outputs are stored before subsequent
encoding by the G.722 lower and higher band ADPCM algorithms in the variables ‘xl_cod’ and
'xh_cod’ respectively.

The FIR filters represented are 2-tap, but this is just for reference. The actual number of taps per
filter implemented in the code is 12.

For the filter calculations, in order to avoid excessive signal distortion due to rounding and

truncation errors, intermediate multiply-accumulate results require an accumulator with at least 24

bits of resolution. The 56100 core has 40-bit accumulators.

The decimation of 2 between the analogue and digital conversion sampling process at 16 kHz and
the ISDN line communication frequency of 8 kHz can be efficiently implemented using the interrupt
processing structure shown in Figure 2-3. This structure has not been included in the code as it
stands but may be used as a working reference.
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16kHz CODEC Interrupt

Has there been an YES
8 kHz ISDN Channel

Reception ?

2nd CODEC Input Store 1st CODEC input

) Recall 1st CODEC
Input for QMF Tx G722 Tx(n-1) and Rx(n)
DATA to and from S.S.I.
G D L -
QMF Tx Filter G.722 Decoder Rx(n) data
1st & 2nd CODEC mputs T

= OMF Rx Fllter
G 722 Encoder 1st & 2nd CODEC outputs

Store G.722 Tx(n) data
for next Interrupt Store 2nd CODEC output

Transmit 2nd CODEC output Transmit 1st CODEC output

Return From Interrupt

Figure 2-3 G.722 Processing after A/D Conversion Reception

Table 2-1 shows the coefficients used in the G.722 QMF filters.

Table 2-1 QMF Coefficient Values

Coefficient Value 2" Scaled Value
hy h,, 0.366211 exp-03 3
h, h,, -0.134277 exp-02 1
h, h,, -0.134277 exp-02 1
h, h,, 0.646973 exp-02 53
h, h,q 0.146484 exp—02 12
hg hg -0.190430 exp-01 -156
hg h,, 0.390625 exp-02 32
h, hye 0.441895 exp-01 362
hg h,s -0.256348 exp-01 =210
hy h,, —0.982666 exp-01 -805
hyo h,, 0.116089 exp—00 951
h,, h, 0.473145 exp—00 3876

The scaled values are the ones implemented in the G.722 code. They have been multiplied by
a factor of 2' but to maintain proper scaling within the DSP56156 the scaling should be by 2.
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Table 2-2 Data I/O Formats used

Variable Name Binary Representation Source
Xin SS-2-3.... -14 -15 G.722 Spec.
Xout SS-2-3..... -14 -15 G.722 Spec.
Xin S-1-2-3..... -14 -15 A/D input
Xout S-1-2-3 ... -14 -15 D/A output

Key: S=Sign —x =2

Bearing in mind the scaling of the coefficients and specified input/output data given in Table 2-1
and Table 2-2, a scaling of 2 still has to be applied to each data and coefficient multiplication on the
DSP56156 to maintain the scaling indicated in the G.722 specification. This is taken into account in
software by pre-multiplying the coefficients by 2 before storage in the DSP data memory.

The QMF sections of the G.722 assembly code implemented on the DSP56156 can be found in
Appendix A, sections 1 and 2, at the end of this document.

2.2 G.722 ADPCM Encoders

26

Some familiarity with Differential Pulse Code Modulation techniques as discussed in [10][11] is
assumed.

ADPCM coders combine principles from two basic speech coding techniques, Adaptive PCM
(APCM) and Differential PCM (DPCM) [10][11]. There are two basic differences between these and
uniform and log PCM techniques : APCM and DPCM codecs a) require knowledge of previous
speech sample values to make decisions upon signal scaling factors and signal prediction levels
and b) make use of adaptive quantisation step sizes.

Speech signals tend to have gradual transitions in amplitude. Adaptive PCM codecs exploit this

property by changing or adapting the quantisation characteristics of the algorithm in sympathy with

the amplitude of the speech signal being coded. This gives the impression of a greater dynamic

range from the codec. There are two ways of adapting the quantisation characteristics of the coder,

which are:

a) direct modification of the quantiser step sizes; and

b) scaling the captured speech signal by multiplication with a gain factor.

The G.722 algorithm uses the second technique, which employs a gain factor for scaling the

incoming speech signal.

Signal Gain Factor updating can be performed in one of two ways:

a) the feedforward approach, whereby the update information is passed to the receiving decoder
across the transmission channel; and

b) the feedback approach, which uses previously coded values to determine the update.

With the feedback approach, no extra information is passed to the receiving decoder, freeing

channel bandwidth for more of the signal.
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Differential PCM codecs use the fact that speech signals have a high degree of sample-to-sample
correlation to estimate the magnitude of the next speech sample. This signal estimate is stored
and subtracted from the next actual speech sample (when it is received) to provide a difference
value. The difference value is then quantised. The magnitude of this difference value is therefore
dependent upon the accuracy of the signal prediction scheme used and ideally should be
considerably smaller than the original speech sample. With the number of quantisation levels
remaining the same as for a full-scale speech level, the step size of the original speech quantiser
can therefore be reduced allowing more precise quantisation.

The G.722 algorithm [1] utilises two, independent, feedback Adaptive Differential Pulse Code
Modulation (ADPCM) encoders for the compression of the two signals output from the QMF
transmit filter. The two signals, already decimated to the ISDN line communication frequency of
8kHz, are now represented by a linearly quantised and filtered 14 bits. These signals are then
applied to the ADPCM encoders, which encode the ‘xh_cod’ 14-bit signal into 2 bits for the
higher-band and the ‘xl_cod’ 14-bit signal into 6 bits for the lower-band. The number of bits
allocated to the lower-band is greater due to statistically higher energy spectral density in the
frequency band up to 4kHz for speech signals.

The CCITT higher band and lower band encoders are represented in Figures 2-4 (a) and (b).

xH + eH 4-level IH 16 kbit/sec
: Adaptive Quantiser -
112 kbit/s - Q)
|

ﬁ Quantiser
AH Adaptation

4-level

' Inverse

Adaptive Quantiser
(Q@71)

dH

rH g

sH Adaptive
- Predictor

A A

Figure 2-4 (a) Higher Band G.722 Encoder
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xL + el 60-level Adaptive IL 48 kbit/sec -

+ - Quantiser
112 kbit/s - (Q)

Delete
\ 2 LSBs
AH Quantiser It
4 Adaptation

15-level Inverse
P Adaptive Quantiser

@M
dLt
- sL Adaptive < ] .
Predictor | g rLt "
+

Figure 2-4 (b) Lower Band G.722 Encoder

Figure 2-5 depicts the encoder implementations in modular form. Each block performs a specific
function of the G.722 algorithm and for each of these reusable assembly code modules have been
written that simplify the code structure.

xL IL xH IH
| Block 1L ¢ - — Block 1H i o
Block 3L Block 3H
th
det Block 2L —de——{> Block 2H
sL sH dH
Block 4L g Block 4H  |et——
Lower Banc Higher Banc

Figure 2-56 G.722 Encoders in Modular Format

MOTOROLA



A major portion of the G.722 code involves scale factor adaptation and lower and higher band signal
prediction procedures (blocks 2x, 3x and 4x). The algorithm for performing these procedures is
identical for both lower and higher bands, the only difference being the array pointers and data
values used. This allows the same assembly code to be used for both sub-bands without
unnecessary duplication of code.

Consider first blocks 1L and 1H. These represent the error signal calculation and its subsequent
quantisation for each band. These blocks therefore indicate two independent processes. In the
G.722 specification these functions are performed by the routines ‘Subtra’, ‘Quantl’ and ‘Quanth’.
- The operations performed by these blocks are described by equations 13 through 18.

The difference signals, eL(n) and eH(n), are calculated according to equations 13 and 14 before
quantisation into 6 bits for the lower band and 2 bits for the higher band respectively.

eLin) = xL(n) - sL(n-1) (13)
eHin) = xH(n) - sH(n-1) (14)
where:
xL(n) = Lower-band speech value in current 8 kHz sampling interval.
xH(n) = Higher-band speech value in current 8 kHz sampling interval.
sL(n-1) = Lower-band speech prediction in previous 8 kHz sampling interval.
sH(n-1) = Higher-band speech prediction in previous 8 kHz sampling interval.

Tables 2-2 and 2-3 give the quantiser decision levels and corresponding output codes for the 6-bit
and 2-bit quantisers. The interval boundaries, LL6, LU6, HL and HU, are scaled by computed scale
factors, AL(n) and AH(n), according to equations 15 and 16. Once the appropriate quantiser interval
has been determined for each band the indices (or offsets) mL and mH are then used to select the
corresponding output codes IL and IH according to equations 17 and 18.

LL6(mL)*AL(n) < leL(n)] < LUBML*AL(n) (15)
HL{MH)*AH(n) < leH(n)] < HUMH)*AH(n) (16)

The output codes, ILN and IHN, represent negative quantiser intervals whilst, ILP and IHP,
represent positive intervals (the quantiser decision levels are symmetric about zero).

ILP(mL) , if eL(n) 20

ILin) = (17)
ILN{mL), ifeln) <0
IHP(mH) , if eH(n) 20

IHin) = (18)
IHN(mH) , ifeH(n) <0

Blocks 2L and 2H consist of the Inverse Quantisation routines ‘INVQAL' and ‘INVQAH' respectively
for the higher and lower sub-bands prior to signal prediction. The inverse quantisation process is
based upon the 4 msb bits of IL(n) for the lower band regardless of the G.722 mode of operation.
This enables consistent signal prediction performance even in G.722 mode 3 (48 kbit/s speech,
16 kbit/s data) communication.
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2-10

Blocks 3L, 4L, 3H and 4H form the remaining scale factor (AL(n) and AH(n)) adaptation and signal
prediction portions of the lower band and higher band G.722 encoders respectively. The individual
routines detailed in the G.722 specification that comprise block 3L are ‘Logscl’and ‘Scalel’ for scale
factor adaptation. For block 4L the routines are: ‘Parrec’, ‘Recons’, ‘Upzero’, ‘Uppol2’, ‘Uppol1’,
‘Filtez’, ‘Filtep’ and ‘Predic’ for signal prediction. For higher band blocks 3H and 4H the scale factor
adaptation routines become ‘Logsch’ and ‘Scaleh’ whereas the signal prediction routines are the
same. The scale factor adaptation procedure is represented in section 2-4, ‘G.722 Signal
Prediction’, in modular format.

The G.722 encoder quantisation processes within the DSP56156 implementation adhere to the
equations presented on pages 279 to 288 of the G.722 specification [1]. These have not been
included in this report for simplicity but it is recommended that reference should be made to these
as an aid when reading the code provided.

In the lower sub-band encoder assembly code, the pointer addresses ‘cod_6_pl' and ‘cod_6_mi’
represent the quantiser positive and negative output codes corresponding to the codes presented
in columns ILP and ILN of Table 2-2.

In the implementation described here the signal decision levels represented by columns LL6 and
LU6 in Table 2-2, and HL and HU in Table 2-3 have been pre-multiplied by 8 before storage. This
eliminates the need for the left shift of 3 places demanded by the ‘Quantl’ and ‘Quanth’ routine
descriptions in the G.722 specification. :

As the signal predictor routines are common to both higher and lower band encoders and decoders
the description of the implementation and the associated assembly code is given in section 2-3,
entitled ‘G.722 Signal Prediction’.

The assembly code for the G.722 encoder is provided in Appendix A, section 3.
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Table 2-3 Decision Levels and Output Codes for the Lower Band Quantiser

Index Decision Decision Output Output
(Offset+1) Level Level Code Code

mL LL6 LU6 ILN ILP
1 00 35 111N 111101
2 35 72 111110 111100
3 72 110 011 1M 111011
4 110 150 011110 111010
5 150 190 011101 111001
6 190 233 011100 111000
7 233 276 0110M 11011
8 276 323 011010 110110
9 323 370 011001 110101
10 370 422 011000 110100
11 422 473 010111 110011
12 473 530 010110 110010
13 530 587 010101 110001
14 587 650 010100 110000
15 650 714 010011 101111
16 714 786 010010 101110
17 786 858 010001 101101
18 858 940 010000 101100
19 940 1023 001111 101011
20 1023 1121 001110 101010
21 1121 1219 001101 101001
22 1219 1339 001100 101000
23 1339 1458 001011 100111
24 1458 1612 001010 100110
25 1612 1765 001001 100101
26 1765 1980 001000 100100
27 1980 2195 000111 100011
28 2195 2557 000110 100010
29 2557 2919 000101 100001
30 2919 oo 000100 100000

Table 2-4 Decision Levels and Output Codes for the Higher Band Quantiser

Index Decision Decision Output Output
(Offset+1) Level Level Code Code
mH HL HU IHN IHP
1 00 564 01 11
2 564 o 00 10
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2.3 G.722 ADPCM Decoders

The G.722 lower and higher band decoders are represented below in Figure 2-6(a) and (b)
respectively. From an implementation point of view the modular representation of the decoders
given in Figure 2-7 is more illustrative. It can be seen that some code modules are duplicates of the
ones implemented in the encoder sections of the G.722 algorithm, i.e., blocks 2L, 3L, 4L, 2H, 3H
and 4H. These blocks comprise the Signal Prediction portion of the G.722 decoders and as such
are described in section 2-3. :

MODE INDICATOR v
IL,4 4
ILr D L, dL,

]

48
kbit/s

elete |
2LSB's

Delete ILS

1LSB

15-level Inverse
Adaptive Quantiser

(dLt)

L

30-level Inverse
Adaptive Quantiser

dL,5

L B

ILr
-1

Y

60-level Inverse

dL.6

Adaptive Quantiser

SELECT

Delete 2
LSB's

ILt ‘-—>

Quantiser

L I

Adaptation

15-level <

Inverse
Adaptive
Quantiser

Adaptive

sL

MUX

dL

+ L

Predictor

dLt
Y rLt
+
H

Figure 2-6 (3) Lower Band G.722 Decoder

4-evel Inverse
Adaptive Quantiser

dH

fa

16 kbit/s ‘

Quantiser
Adaptation

Adaptive

.
—= Predictor

Figure 2-6 (b) Higher Band G.722 Decoder
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Block 4L Block 3H |
Lower Band Higher Band

Figure 2-7 G.722 Decoders in modular form

In Figure 2-7, block 5L represents the inverse quantisation (mode dependent) and signal
reconstruction processes in the lower band. Block 5H represents the inverse quantisation and
signal limiting processes for the higher band decoder and block 6L performs the signal limiting or
saturation process of the lower band decoder that restricts the output signals to 14 bits linearly
quantised. The outputs from these blocks are then fed to the receive QMF interpolation filter.

In blocks 5L and SH the inverse quantisation processes produce the difference signals
corresponding to the G.722 encoder signals eL(n) and eH(n). These signals, when added to their
respective signal predictor outputs, sL(n-1) and sH(n-1), should produce the original QMF transmit
filter outputs from the G.722 transmitter. The relationships between the received IL and IH codes
and their corresponding inverse quantisation levels are given below in equations 19 and 20.

dL(n) QL& ( ILr(n)) * AL(n) * sign( ILr(n) ) (19)
dHi(n) Q27( IH(n) ) * AH(n) * sign( IH(n) ) (20)

Note that here QL6 and ILr(n) represent the case for mode 1 or 64 kbit/s speech. In the case of
mode 2 these will be replaced by QL5 and IL,5(n), while mode 3 utilises QL4 and IL,4(n).

These reconstructed difference signals are related to the reconstructed output signals by the
following equations 21 and 22.

rLin) = sL(n-1) + dL(n) (21)
rH(n) = sH(n-1) + dH(n) (22)
where:
rX(n) = Current 8 kHz sampling interval reconstructed output signals.
sX(n-1) = Previous 8 kHz sampling interval signal predictions.
dX(n) = Current 8 kHz sampling interval reconstructed difference signals.

MOTOROLA 2-13



2-14

From Figure 2-6(a) it can be seen that the decoder mode is dependent upon the mode signal
received from the transmitting terminal. It is important to realise that the decoder mode of
operation can only be changed via reception of a mode change signal from the transmitting
terminal, and that this signal requires the implementation of separate communication protocols
(such as the CCITT's H.221 and G.725) before any such mode change can take place. If the G.722
algorithm is used alone as a speech codec without such associated protocols, then the algorithm
will be locked into operation in mode 1 or 64 kbit/s speech.

Once the mode of operation has been determined, the appropriate number of Isb’s are deleted
from the received 6 lower band bits before entering the appropriate decoder section, as indicated
in Figure 2-6(a).

In the G.722 implementation presented, the inverse quantiser arrays have been rearranged to allow
a more structured approach to inverse quantisation. The arrays are ordered such that the received
lower and higher band words represent the offsets from the array base address. This rule also
applies for each mode of operation of the lower band inverse quantisation process. During the array
search the possibility of transmission errors is accounted for by organising the arrays in a manner
which causes any invalid received codeword to select appropriate output values. These have been
arranged to be the minimum selectable values for each G.722 mode or corresponding to a received
codeword of all 1’s (see Table 24 Inverse Quantisation Codes and Levels).

The inverse quantiser arrays contain the G.722 specified values which have been pre-multiplied by
8 in order to perform the left shift scaling by 3 places as specified in the inverse quantiser routines
‘Invaal’, ‘Invgbl’ and ‘Invqah’.

In the lower band decoder two separate inverse quantisation processes take place. The first,
‘Invgah’, which is located within the main decoder routine, involves the reconstruction of the lower
band signal from the received codeword and which is dependent upon the G.722 mode of
operation. The second, ‘Invgb!’, involves the reconstruction of the signal estimate from the 4 msb
bits of the 6 received lower band bits and is located within the signal prediction subroutine. The
latter is required to maintain consistent decoder signal prediction performance even during G.722
mode 3 communication.

In the higher band decoder the inverse quantisation process takes place within the signal prediction
routine and is subsequently stored in the variable location pointed to by the symbol combination

x:(dat_hsbdec+dIt0). This variable is recalled after exit from the signal prediction routine, ‘Pred_h’,
for higher band signal reconstruction.

Once reconstructed, the lower and higher band signals are stored in the variables ‘yl_dec’ and
‘vh_dec’ prior to their use in the receive QMF filter routine.

The decoder routine assembly code has been included as section 4 of Appendix A.
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Table 2-5 Inverse Quantisation Codes and Associated Levels

Received Codewords Inverse Quantisation Level

QQe6 QQ5 QaQ4 QQ2 Level 6 Level 5 Level 4 Level 2

000 00000 0000 00 -17 -35 00 -926
000001 00001 0001 01 -17 -35 -2557 -202
000010 00010 0010 10 -17 -2919 -1612 926
000011 00011 0011 1" -17 -2195 -1121 202
000100 00100 0100 -3101 -1765 -786
000101 00101 0101 -2738 -1458 530
000110 00110 0110 -2376 -1219 -323
000111 00111 0111 -2088 -1023 -150
001000 01000 1000 -1873 -858 2557
001001 01001 1001 -1689 -714 1612
001010 01010 1010 -1535 -587 1121
00101 01011 1011 -1399 473 786
001100 01100 1100 -1279 -370 530
001101 01101 1101 -1170 -276 323
001110 01110 1110 -1072 -190 150
001111 o111 1 -982 -110 00
010000 10000 -899 2919
010001 10001 822 2195
010010 10010 -750 1765
010011 10011 -682 1458
010100 10100 618 1219
010101 10101 -658 1023
010110 10110 -501 - 858
010111 10111 -447 714
011000 11000 -396 587
011001 11001 -347 473
011010 11010 -300 370
011011 11011 -254 276
011100 11100 : 211 190
011101 11101 -170 110
011110 11110 -130 35
0111 M IRRRN 91 -35
100000 3101
100001 2738
100010 2376
100011 2088
100100 1873
100101 1689
100110 1635
100111 1399
101000 1279

N.B. Underlined codewords represent invalid received combinations.
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Table 2-5 Inverse Quantisation Codes and Associated Levels

Received Codewords Inverse Quantisation Level
QQs6 QQ5 QQ4 QQ2 Level 6 Level 5 Level 4 Level 2

101001 1170
101010 1072
101011 982
101100 899
101101 822
101110 750
10111 682
110000 618
110001 558
110010 501
110011 447
110100 396
110101 347
110110 300
110111 254
111000 v 211
111001 : 170
111010 ‘ , 130
11101 91
111100 54
111101 17
111110 -54
11111 -17

N.B. Underlined codewords represent invalid received combinations.

2.4 G.722 Signal Prediction

2-16

The signal prediction section is the most computationally intensive portion of the G.722 algorithm.
This portion of the application note describes how the adaptive scaling factors and signal prediction
filter coefficients are updated within the DSP processor. The theory behind this section is not
covered in this report for reasons of simplicity but for a more detailed description of these
techniques, reference may be made to [10][11].

As the processes within these routines are common to both higher and lower band encoder and
decoder, a code kernel was written that satisfied the needs for each. As a result certain restrictions
have been placed upon the entry requirements of certain registers when entering the predictor
routines. These restrictions are detailed in the comment header associated with the predictor code
(see Appendix A, section 6). When exiting the predictor routine the signal prediction value is
contained in the 'a” accumulator and should be stored in its relevant location before continuing in
the calling routine. The particular variable structure required for correct operation of the signal
prediction scheme is indicated in Appendix A, section 5. This structure details the relevant offsets
required from the base address pointer which is passed to the signal predictor routine in the ‘r2’
address register from the calling subroutine.
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Upon entry into the predictor routines — ‘Pred_|’ for the lower band and 'Pred_h’ for the higher band
- the first process encountered is the inverse quantisation of the lower or higher band transmission
code for use in the predictor routines. This process is performed in the subroutines ‘Invgal’ and
‘Invgah’ for the lower and higher bands respectively. As previously described, this process uses 4
bits from the lower band quantiser code and 2 bits from the higher band quantiser code and the
reconstructed difference signals are stored in memory for subsequent use.

Next, the adaptive scale factors are updated as per the routine descriptions given for ‘Logsc!’ and
‘Logsch’ and ‘Scalel’ and Scaleh’ in the G.722 Specification. A block schematic diagram for this
implementation is shown below in Figure 2-8.

ILr
_—blH LOGSCL NBPL SCALEL Depl SELAY Detl
—  m  LOGSCH NBPH SCALEH Deph ;A ™ Deth
Reset
NBL Lower Band
NBH DE;AY Higher Band
Reset

Figure 2-8 Scale Factor Adaptation in Lower and Higher Bands for both Encoder and Decoder

The scaling factors are updated in the log domain and then subsequently converted to a linear
representation. The log-domain scale factors are updated according to equations 23 and 24 and the
linear domain scale factors are then updated using these new log-domain factors. To ensure that
the scaled signals remain within the bounds of 16-bit arithmetic, the log-domain scaling factors are
limited to the ranges specified by equations 25 and 26. The order of processing that takes place
therefore follows that of the equations, i.e., 23 through 28 in the appropriate bands.

p_nbi_L(n) = B * p_nbl_L(n-1) + wL( ILtin-1)) (23)
p_nbl_H{n) - = B * p_nbl_H(n-1) + wH( IH(n-1)) (24)
where:
B = leakage factor equal to "7’/ .. scaled by 2" to 32512 and,
wX = logarithmic scaling factor multipliers corresponding to the received codewords.
0 < p_nbi_L(n) < 9 (25)
0 < p_nbl_H(n) < 1 (26)

Finally, the linear scaling factors are calculated from;

AL(n) 2* (p_nbl_Ln) +2) A, 27)

AH(n)

2% p_nbl_H(n) * A_, (28)

where A . equals half the quantiser step size of a 14-bit A/D converter.
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As described in the implementing equations within the G.722 specification, there are two possible
methods for performing the linear scale factor updates in the routines ‘Scalel’ and ‘Scaleh’. The
difference between the two methods lies in the memory usage and processing complexity of the
solutions. In the first method the updated log-domain factor is indirectly used to select the linear
scale factor from a table of 353 values, all of which would have to reside in the DSP’s memory map.

The advantage of this method lies in the speed and simplicity of processing required to implement
the search and subsequent manipulation.

The second method employs a 32 value table but requires extra processing to obtain the desired
linear scale factor. For the G.722 implementation presented here the second method was chosen
as the instruction set of the DSP56156 processor allowed a straightforward implementation of the

extra processing necessary by using the multiple left and right shift and repeat instructions (see
G.722 spec. [1] pp 282).

Whichever of the above methods is used, the logarithmic scale factor multipliers are chosen
corresponding to the quantiser output codes. Table 2-56 shows the relationships between the log
multiplication factors, w4 and w2 (lower and higher bands respectively) and the quantiser
codewords for the scale factor adaptation process.

Table 2-6 Relationship between Received Codewords and Log Multiplication Factor

Received Codewords Log Multiplication Factor

QQ4 QQ2 wié w2
0000 00 -60 798
0001 01 3042 -214
0010 10 1198 798
0011 on 538 214
0100 334

0101 172

0110 58

o -30

1000 3042

1001 1198

1010 534

1011 334

1100 172

1101 58

1110 -30

1111 60

N.B. Underlined codewords represent invalid received combinations.
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Upon completion of the inverse quantisation and scale factor adaptation processes the main signal
predictor routines follow. A block schematic of the signal predictor processing is shown in

Figure 2-9.
SZH(n-1)
SZL{n-1) Reset Reset :
SH(n-1)
PH2 —® Recons
— Parrec DELAY DELAY {—m St Semy
PLT2 *
PH PH1
DH Reset pLT Reset  pn Reset Reset —#1 DELAY
DLT v DH1 DH2 * DH6 RH1 | RLT1
DOLT1 DLT2 DLT6
i DELAYT'» DELAY—; — — DELAY—*
Reset —#={ DELAY
Upzero
BPH o 7 RH2 [RLT2
BPLI PLT| PH1 PH2 PH PH]
PLT1 PLT2 PLT PLT
BHi DLTi Uppol2 Uppol1
BLi + APH2| APH
APL2 APL1
Filtez DELAY [-@— R o DELAY
AH2 'y AL2 AH1 § ALY Y  J
Filtep
SPH
1 SPL
Predic
SZH ' SZL SH' SL

Figure 2-9 G.722 Signal Prediction Process showing Higher and Lower Band Signals

The adaptive signal prediction routines comprise of two main sections: a second order section that
models poles in the input signal, and a sixth order section that models zeros in the input signal.
Again, for simplicity the theory behind the development of the routines is not touched upon in this
application note. This report concerns itself quite simply with the implementation of the G.722
adaptive signal prediction routines on the DSP56100 core.

Equations 29 through 34 perform the pole and zero signal predictions and identify two-tap and
six-tap FIR filter structures respectively. The two outputs from these filters are subsequently mixed
(added) to generate the reconstructed difference signals sL(n) and sH(n). These signals are then
added to the inversely quantised difference signals from their respective bands in the next 8 kHz
sampling interval to produce the decoded output signals rL(n) and rH(n).
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The pole predictor signals are calculated according to equations 29 and 30 for the two bands.

2

PL(n) = Y aLi((n—-1)*rLt) (n-i (29)
i=1
2
WPH(n) = ¥ aHi((n-1)*rH) (n-i (30)
i=1
where:
rltx) = 6-bit quantiser codeword truncated to 4 bits.

The zero predictor filter produces outputs according to the following equations 31 ana 32;

6

ZL(n) = Y bLi((n-1)*dLt) (n-i (31)
i=1
6

ZH(n) = Y bHi((n-i)*dH(n-1) (32)

i=1

From the outputs of these two filters the partially reconstructed signals sL{n) and sH(n) are
generated according to equations 33 and 34.

sL(n) SPL(n) + SZL(n) (33)
sH(n) = SPH(n) + SZH(n) ' (34)

The updated signal predictions produced according to equations 33 and 34 are subsequently stored

for use in reconstructing the signal received in the next 8 kHz sampling interval.

The first procedures in the signal prediction subroutine are the ‘Upzero’ adaptive filter coefficient
(bL1-bL6) and differential signal delay line (dLt1-dLt6) updates. It should be noted here that the
differential delay line variables dLt1-dLt6, are stored as twice their reconstructed values. This is
purposely done in order to simplify the operation of the ‘Filtez' routine later in the code.

The equations governing the operation of the ‘Filtez’ filter coefficient updates in the ‘Upzero’
routine are given below in equations 35 to 39. The filter coefficient updating procedure follows a
simplified gradient algorithm.

bLi
bHi

(1-28) * bLi(n-1) + 27 * sign3(dLt(n)) * sign2(dLt(n-i)) (35)
(1-2%) * bHi(n-1) + 27 * sign3(dH(n)) * sign2(dH(n-i)) (36)

where:

i = 1 to 6, and bLi and bHi are implicitly limited to + 2

+1, q=20
sign2(q) = (37)
-1, ag<o0
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+1, g>0
sign3(g) = 0, g=0 (38)
-1, g<0

Once the zero predictor filter coefficients have been updated the next procedure is the update of
the partially reconstructed PLT, PLTO, PLT1 and RLTO signals associated with the pole predictor
filter coefficient updates. The RLT delay line values are multiplied by 2 before storage in order to
simplify the ‘Filtep’ procedure.

The next operation updates the pole predictor filter coefficients according to the processes
specified by the routines ‘Uppol1’ and ‘Uppol2’. The procedure names, ‘Uppol1’ and ‘Uppol2’,
represent the pole predictor coefficient updates corresponding to aL1 and al2 respectively. The
procedures governing the operation of these routines are given below in equations 39 to 49 and
again follows a simplified gradient algorithm.

PLT(n) = DLT(n) + SZL(n-1) (39)
PH(n) = DH(n) + SZH(n-1) (40)
aL1(n) = (1-2%) *al1(n-1) + 3* 28* pA @n
aH1(n) = (1-2%) * aH1(n-1) + 3 * 28* PA (42)
al2(n) = (1-27) *al2(n-1) + 27* PB-27* f * PA (43)
aH2(n) = (1-27) * aH2(n-1) + 27 * PB-27* f * PA (44)
where:
PA = sign2(pX(n)) * sign2(pX(n-1)) (45)
PB = sign2(pX(n)) * sign2(pX(n-2)) (46)
4 * ax1(n-1) laX11<Y,
f = 47
2 * sign(aX1(n-1)) laX11>",
pX = pLt or pH dependent upon the sub-band being processed.
ax = aL or aH dependent upon the sub-band being processed.
sign2(q) = see equation 37

In order to maintain stability, the two pole predictor coefficients are limited to the following ;

laxX21 < 0.75 (48)
laX11l < 1-2%-ax2 (49)

Once these coefficients have been updated the prediction filter routines are executed according to
equations 29 to 34. The program flow then returns to the calling G.722 procedure with the
reconstructed signal, sL(n) or sH(n), in accumulator ‘a’.

The assembly code for the signal prediction portion of the G.722 algorithm is provided in
Appendix A, section 6.
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SECTION 3
G.722 CODE INITIALISATION AND TESTING

To ensure correct operation of any G.722 code implementation the CCITT have prepared a set of
test vector files that the code must process correctly. These test vector files comprise files for
testing encoder and decoder separately. For testing purposes, and to simplify the production of
test vector files, the vectors passed into the decoder for processing make up the files that are used
to compare the outputs from the encoder after processing of its own test vectors. The construction
and use of the data contained in these files is detailed in the G.722 specification [1] pp 304-318.
When passing the test vectors during code development, the QMF filters are bypassed and should
be tested independently of the encoder and decoder code sections. This may be achieved by
passing tones of varying frequencies within the bandwidth of interest (0-7 kHz) through the filters
connected back to back.

The G.722 code as it stands has passed all available CCITT test vectors satisfactorily. When the
code is shipped, two versions of the G.722 code are provided on the disk:

1) the version required to pass the CCITT test vectors, i.e., minus the QMF filters: and

2) the complete version including QMF filters and interface to one of the 56156's SSI's for speech
sampling at 16 kHz.

The directory structure on the disk provided may be used to pass all the test vectors. In the top
level directory there is a help file that gives a comprehensive user's guide to passing the test
vectors using a 56156 Application Development System.

Certain internal variables within the G.722 code require initialisation to specific values to ensure
correct operation of the algorithm and to pass the test vectors. Table 3-1 shows these variables
and the values to which they should initially be set. The table also includes variables that do not
require initialisation but that have been reset anyway. The code sections that perform the
initialisation are provided in Appendix A, section 7 figures (a),(b),(c) and (d). These initial values are
valid for variables in both the higher and lower band encoders and decoders.

As the G.722 code has been written to enable bootstrap from EPROM, all the storage constants
within the DSP X memory that are used in the algorithm (run-time) are pre-loaded with their
relevant values on power-up and hardware reset of the DSP (load-time). This includes all the
variables indicated in Table 3-1 and more.
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Table 3-1 Variables requiring initialisation and the associated values

Variable Description Initialised Value
detl Signal scaling factor in lower band 32 *
deth Signal scaling factor in higher band 8 *
sL,sH Lower and Higher band signal predictions 0
SZL,SZH Reconstructed signals from the Zero predictor 0
o_nbl The last output of the quantiser signal scale factor 0 *
- adaptation routine (NBL in G.722 spec.)

sl1al2, The Pole predictor fil ffici 0 *
aH1 aH2 e Pole predictor filter coefficients
bL1..bL6, ) ) -
bH1..bHE The Zero predictor filter coefficients 0 *
rLio.rLt, Adaptive predictor reconstructed signal delay lines 0 *
rHO,rH1
dLt0..dLt6, . . . . .

*
dHO..dH6 Zero predictor quantised difference signal delay lines 0
PLTO, PLT1, . ) . .
PHO,PHT Partially reconstructed Pole predictor signal delay line 0 *

* = Variables to be initialised as specified by the G.722 specification.

Some points to note regarding the code initialisation procedures are:

a) the delay line buffers associated with the transmit and receive QMF filters are reset to zero
and the modulo addressing pointers associated with each filter are set to the address of their
respective first buffer locations in the routines ‘init_q_tx' and ‘init_q_rx’;

b) the bootstrapping of G.722 constants from program memory into X data memory is performed
in the routine ‘init_const’; and

c) the initiglisation of the encoder and decoder internal variables as detailed in Table 3-1 is
performed in the routines ‘reset_cod’ and ‘reset_dec’ respectively.

The G.722 encoder and decoder software provided in this report have both passed all the available
test vector files provided by the CCITT. When testing the G.722 algorithm both acoustically and for
passing the test vectors, the mode of operation of the G.722 algorithm must be read in from an
external file that resides in the host computer. This is because the mode of operation of the G.722
code in an end application can only be changed with the use of auxiliary communications protocols.

The DSP56156 X data and program memory map structures are shown in Figure 3-1 below. The
internal RAM of the 56156 comprises 2K data and 2K program words and, as indicated in
Figure 3-1, the complete G.722 software implementation fits within the internal memory space of
the device with room to spare.
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X Data Memory
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Unused

QMF RX Filter
Buffer and Pointer

Unused

QMF TX Filter Buffer
and Pointer Store

Unused
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G722 Algorithm Storage
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Higher and Lower Bands
Signal Prediction Variables

Test Variables
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$3EA
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$31C
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$040

$000

Program Memory
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X Data Memory
Initialisation Constants
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Multiplier Constants
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Constants

Main G722 Program

G722 SSl Interrupts

Figure 3-1 Internal Data RAM Memory Map
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SECTION 4
PERFORMANCE SPECIFICATIONS

The G.722 software as it stands uses 1001 words of program memory and 232 words of X data
memory and further optimisation of the code is possible. The worst case execution times in
instruction cycles of the G.722 algorithm modules are given below in Table 4-1. As the G.722
algorithm only needs to execute either the transmit QMF and G.722 encoder orthe G.722 decoder
and the receive QMF in a single 16 kHz sampling period (due to the decimation of the 16 kHz A/D/A
sampling frequency to the ISDN line frequency of 8 kHz) the performance required from the
processor is the worst case of these two scenarios. The number of instructions per second (IPS)

required from the DSP is given by equation 50 and from this the performance required in order to
provide full-dupiex operation is shown in Table 4-2.

Table 4-1 Execution Times of the G.722 Sections

Code Section Instruction Cycles
Transmit QMF Filter 64
G.722 Encoder 116
G.722 Decoder 69
Receive QMF Filter 64
Lower OR Higher Band Predictor 204

The MIPS performance can be calculated as follows:

Millions of Instruction Cycles Instruction Sampling

- *

= 6
Per Second (MIPS) Cycles Frequency * ° (50)
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Table 4-2 MIPS Requirements of the G.722 Code

Code Section Processing Frequency | Instruction Cycles MIPS
Transmit QMF Filter (a) 16 kHz 64 1.03
G.722 Encoder (b) 116 1.86
G.722 Decoder (c) 69 1.10
Receive QMF Filter (d) 64 1.03
Lower OR Higher Band Predictor (e) 204 3.27
Effective G.722 Transmit 588 9.4
(=a+b+2*¢e)
Effective G.722 Receive
cc+d+2%e) 541 8.66

From Table 4-2 it can be seen that the peak performance requirement of the DSP processor is
9.41 MIPS. These figures include the instruction cycles incurred by the subroutine jump
instructions in the main program loop.
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SECTION 5
RECENT TRENDS IN SPEECH CODING TECHNIQUES

In recent years, with lower-cost Digital Signal Processors, Mobile Communications and a desire for
better quality speech transmission, the race has been on to develop algorithms that compress
speech into ever lower bit rates but with increasing bandwidth and quality.

Many speech coding techniques have been developed based upon both time-domain and
frequency-domain processing and latterly the trend has been towards psycho-acoustic coding with
algorithms such as OCF (Optimum Coding in the Frequency domain) [12]. This, as its name
suggests, means that coding techniques are now being developed which base their design upon
the acoustic response of the human auditory system. For example, baseband speech signals are
broken down into ‘critical bands’ using complex filter banks the outputs of which are allocated
different bit rates dependent upon where the highest spectral density lies within the speech
spectrum. New subjective measurement techniques are also being developed that gear their
operation to the responses of the human auditory system and may result in the displacement of
the usual Signal to Noise Ratio (SNR) measurement for perceived quality. The Noise to Mask Ratio
(NMR) metric [13] is currently being developed based upon the audibility of error signals according
to the laws of psycho-acoustics. At present, NMR measurements cannot substitute completely for
listening tests but they can deliver objective, reproducible results, helping to highlight critical
pieces of music and the weaknesses of the algorithms being evaluated. Psycho-acoustic
algorithms are however, extremely computationally intensive and at present most require multiple
processors to execute in real time.

With the imminent arrival of Pan-European Mobile Communication standards such as the GSM
(Group Special Mobile) 06.10 [14], and with the limited availability of frequency airspace, the need
to reduce bit rates to make the systems feasible is of paramount importance. Subsequently, the
quality of the speech encoding algorithms must reflect this demand and evolve, thus consideration
is now being given to speech data transmission rates of 6.5 kbit/s and less.

The G.722 specification [1] has been in existence for a number of years and its relative simplicity
combined with increased speech bandwidth and quality make it a good choice for systems with
limited processing power but which require good quality speech combined with 8 and 16 kbit/s
data channels. As the arrival of the ISDN (Integrated Systems Digital Network) becomes more real
this ability to compress good quality speech and data into a single 64 kbit/s channel makes G.722
the ideal choice for low cost ISDN terminals.
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APPENDIX A
ASSEMBLY CODE SECTIONS

A.1. QMF Transmit Filter Code on the DSP56156

5 Subroutine gmf_tx: transmit QMF filter operating at 8 kHz

u input two samples at 16 kHz and output a low_band value and
. a high_band value

. The input values are x1_in and x0_in (the more recent is x0)

0 The output values are x|_cod and xh_cod

gmf_tx move x:ptr_g_tx,r0; recall pointer
move mO,x:ptr_g_tx; save m0 value
move #23,m0 ; modulo 24 for the delay line
move #q_coef,r3; for QMF TX and RX coefficients

o Read the two values from ADC converter and scale them
o ADC is supposed to be 16 bits (left justfified, 14 bits precison)

N == =====

move x:x1_in,b ; ADC sample (N-1)

move x:x0_in,a ; ADC sample (N)

move b,x:{r0)+ ; save x1 in modulo delay line
move a,x:(r0)+ ; save x0 in modulo delay line

; 10 points on H[23]

Begin mac operation: ACCUMA in a and ACCUMB in b { See G.722 spec. for ACCUMA and ACCUMB )

clr a x:(r0)+,y0 ; read xin[23]

clr b x:(r3)+,x0 ; read h[23]

do #12,end_qg_tx ; for 12 values

mac x0,y0,b x:(rO)+,y1 x:(r3)+,x1 ; mac and read next values
mac x1,y1l,a x:{r0)+,y0 x:(r3)+.x0 ; mac and read next values

end_g_tx; end of do loop

Now save updated pointer and end the computation of x|_cod and xh_cod

tfr b,x ; save 32-bit result in x
add a,b (r0)- ; compute x|_cod

; decrement modulo buffer pointer to correct address
sub X,a ; compute xh_cod
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A2

Limiting the output values

asl
asr
asl
asr
move
move
move
move

a
a

b

b
b,x:xl_cod
a,x:xh_cod

x:ptr_q_tx,m0
rO,x:ptr_q_tx

end of gmf_tx subroutine

;times 2

; limited to -16384 and +16383
; times 2

; limited to -16384 and +16383
; for input of Isbcod

; for input of hsbcod

; recall mO value

; save modulo pointer
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A.2. QMF Receive Filter Code on the DSP56156

Subroutine for RX QMF filter

. Compute two vaiues from yl_dec and yh_dec (outputs of Isbdec and
. hsbdec); the outputs are xout1(n) and xout2 (n+1)

Compute XS and XD (RECB and RECA) G.722 spec.

x:ptr_q_rx,r0
mO,x:ptr_g_rx
#23,m0
#q_coef,r3

::::::::

; recall saved pointer

; save old value of m0

; modulo 24 pointer

; address of coefficients

.

move x:yl_dec,a ;recallyl =l G.722
move x:yh_dec,b ;recall yh = rh G.722
add ab b,yO ;xsinb, x0=rh
sub v0,a b,x:(r0)+ ; xd in a, save xs
move a,x:(r0)+ ; save xd in delay line
; now r0 points on xs11
Begin mac computation
clra x:(r0)+,y0 ; read xs11
crb x:(r3)+,x0 ; read H[23]
do #12,end_q_rx ; for 12 values
mac x0,y0,b x:(r0)+,y1 x:(r3)+,x1 ; mac and read next values
mac x1,yl,a x:(r0)+,y0 x:{r3)+,x0 , mac and read next values
end_q_rx . end of do loop
Scaling for output
asl a (r0)- ; times 2
asl b ; times 2
asl a ; for coefficient scaling
asl a ., same
asl b ; for coefficient scaling
asl b ; same
move b,x:xout2 ; xout(n)
move a,x:xout1 ; xout(n-1)
move x:ptr_g_rx,m0 ; recall m0 value
move rO,x:ptr_g_rx ; save modulo pointer
End of subroutine gmf_rx
rs
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A.3. Encoder Quantisation Routines

Higher & Lower Bands

; Encoder: G.722 encoder ;
; Compute the output, is, from inputs, x|_cod and xh_cod :
; First compute il_cod from xI_cod (Isbcod procedure) ;
; Then compute ih_cod from xh_cod (hsbcod procedure) ;
; Finally compute is from il_cod and ih_cod ;

Lsbcod : lower sub band coder ;
; Compute the output code il_cod from input xl_cod ;

First compute el then quantise on 6 bits ;
; NQTE: entry point of encoder = Isbcod ;

encoder move x:xl_cod,a ;read xl_cod in a
move x:(dat_Isbcod+sl),b ; read prediction
sub b,a . compute el in a

R R R R R T R TP A AN

Quantl : lower sub band 6 bits quantizer ;

elina ;

This procedure uses a mixed tree and direct search ;

; to minimize speed and size of code. ;
; A full binary search procedure would save 20 cycles ;
(10 instructions) but at the expense of 100 program words. ;

I I T A T

I R I Y R ey

quantl move #cod_6_mi,b ; select table for el <0
move #cod_6_pl,x0 ; select table for el >0
move #level_0,r2 ; offset of table level in ram
tst a ; testf sign of el <0
tpl x0,b ; select table >0
move b,r0 : save table in rO
tfr a,b x:(r2+14),x0 level 14 in x0
move x:dat_Isbcod,y0 ; y0 = detl
inc24 b ; to compute lell of G.722
abs b x:(r2+6),x1 ; level 6 in x1
tst a ;testif a >=0
tmi b,a ;a=lell=wd

N Beginning of the tree search

test_14 mpy y0,x0,b x:(r2+22),x0 ; level 22 in x0
move b,b ;setispofbto0
cmp b,a ; test wd with level 14
bp! <test_22 ;if >0 go test_22

A4
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test_6

init__1

init_7

test_22

init_15

init_23

mpy
move

cmp

-bpl

move
move
move
bra

move
move
move
bra
mpy
move

cmp
bpl

move
move
move
bra

move
move
move
bra

y0,x1,b
b,b
b,a
<init_7

#-1,n0
#level__1,13
x:(r0)+n0,b
<end_qgb6

#7,n0
#level _7,13
x:(r0)+n0,b
<end_qg6

y0,x0,b
b,b
b,a
<init_23

#15,n0
#level_15,r3
x:(r0)+n0,b
<end_qb6

#23,n0
#level_23,r3
x:(r0)+n0,b
<end_qgb6

Beginning of direct search for 7 values of index

; level 6 * detl
;setlspofbto0

; test wd with level 6
;if >0 gotoinit_7

; setinit of rO index to -1

; setr3to level__1

; dummy read to update r0 to r0-1

; direct branch to end of procedure

; setinit of rO index to 7

; setr3 to level_7

; dummy read to update r0 to rO+7
direct branch to end of procedure

;level 22 * detl
;setilsptobO

; test wd with level 22
; if >0 go ro init_23

; setinit of rOindex to 15
;setr3tolevel_15

; dummy read to update r0 to r0+15
; direct branch to end of procedure

set init of r0 index to 23

; setr3 to level_23

; dummy read to update rO to r0+23
: direct branch to end of procedure
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move
move

mpy
move

mpy
cmp

tpl

mpy
cmp

tpl

mpy
cmp

tpl

mpy
cmp

tpl

mpy
cmp

tpl

r0,r1

x:(r3)+,x0

y0,x0,b x:(r3)+,x0

b,y1

y0,x0,b x:(r0)+,x1 x:(r3)+,x0
yl,a b,y1

b,b ro,rl

y0,x0,b x:(r0)+,x1 x:(r3)+,x0
vl,a b,y1

b,b r0,r1-

y0,x0,b x:(r0)+,x1 x:(r3)+,x0
vl,a b.y1

b,b r0,r

y0,x0,b x:(rO}+,x1 x:(r3)+,x0
yl,a b,y1

b,b r0,r1

y0,x0,b x:(r0)+,x1 x:(r3)+,x0
yl,a b,y1

b.b r0,r1

;setrl toinitof r0

read level -1,7,15,23
; read level 0,8,16,24
; setlsp of bto 0 (x1)

. rO++, read level 1,9,17,25
; compare level -1,7,15,23
;increment r1 if >0

; rO++, read level 2,10,18,26
; compare level 0,8,16,24
cincrement r1 if >0

; rO++, read level 3,11,19,27
; compare level 1,9,17,25
; increment r1 if >0

; rO++, read level 4,12,20,28
; compare level 2,10,18,26
;increment r1 if >0

; rO++, read level 5,13,21,29
; compare level 3,11,19,27
;increment r1 if >0



mpy y0.x0,b x:(r0)+,x1 x:(r3)+,x0

; r0++, read level 6,14,22,30

cmp yla b,y1 : compare level 4,12,20,28
tpl b,b ro,n ;increment r1 if >0
cmp vyl,a x:(r0)+,x1 ; compare level 5,13,21,29
tpl b,b r0,r1 ;increment r1 if >0
move #dat_Isbcod,r2 ; set offset for Isbcod
move p:rl),a ;codeil_codin a
move a,x:il_cod ; save code for lower sub_band
5 We must call subroutine pred_|
move #const_pr_|,r3 , set constant table for low band
jsr pred_| ; call subroutine pred_|
;withil_codin a
move a,x:(r2+sl) ; save sl in Isbcod
; Hsbcod : higher sub band coder ;
; Compute the output code ih_cod from input xh_cod :
; First compute eh then quantize on 2 bits :

R N NN N N N AL I T

hsbcod move

#dat_hsbcod,r2 ; set offset of data hsbcod
move x:xh_cod,b ;read xh_cod in b
move x:(r2+sl),a ; read prediction
sub a,b x:(r2+delt),y0 ; compute eh in a
5 ; read deth in yO

R R N N N R R R R R R I

; Quanth : higher sub band 2 bits quantizer ;
; ehina :

T N E TN RSN AN Y RN TR ATT) R N R Y PR RPN

guanth move #4512,x0 ; level of quantization
mpy y0,x0,a , compute wd,save eh
tst b ax1 ; test for sign of eh
bmi <cod_hi_mi ; if neg bra cod_hi_mi
move #3,x0 ; lower limit
move #2,y0 ; upper limit
cmp x1,b x0,a ; set a with lower limit
tpl y0,a ; if plus =>upper limit
bra <end_qg2 ; end of quant_h

;withihina
cod_hi_mi inc24 b

abs b ; compute lehl
move #1,x0 ; lower limit
move #0,y0 ; upper limit
cmp x1,b x0,a ; set a with lower fimit
tpl y0,a ;ihina
end_g2 move a,x:ih_cod ; save code for higher sub_band
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We must call subroutine pred_h

move #const_pr_h,r3 ; constant table for high band

jsr pred_h ; call subrouinte pred_h
;withih_cod ina
move a,x:(r2+sl) ; save sh in hsbcod

Computation of is code from il_cod and ih_cod

move x:il_cod,a ; read il in RAM
move x:ih_cod,x0 ; read ih in RAM
move #64,y0 i for<< 6

imac y0,x0,a ; to compute cod
move a,x:is ; save is code in RAM

rts ; return of encoder

End of encoder procedure

:::::::: T Y A T A
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A.4. Decoder Routine (Higher & Lower Bands)

o Subroutine decoder : compute yl_dec and yh_dec from ir
i First compute ilr_dec and ihr_dec
“ Then execute Isbdec and hsbdec

N N N N R NN NN R R N R R I RN AR YRR AT

decoder move x:ir,a
move #63,x0
move #3,y0

; read receive code ir
; set mask for ilr_dec
; set mask for ihr_dec

asr a ab ;shiftasaveainb
asrd a ; to compute ihr_dec
asr a ; final shift of 6 shifts
and y0,a ; mask ithr_dec
and x0,b ; mask for ilr_dec
move b,x:lr_dec ; save ilr_dec
move a,x:ihr_dec ; save ihr_dec
. Isbdec
b Select mode of operation of lower sub band decoder
move #dat_|sbdec,r2 ; set data ram
move #sel_mode,r0 ; load table sel_mode in r0
move x:mode,a ; read mode of decoder
and y0,a a0,x0 : mask mode bits, x0 == 0 (#3 still in y0)
dec24 a b,y1 ; compute modified mode, ilr_dec in y1
tmi x0,a ; select default mode ==1

rep al ;repeat 0 1 or 2 times
; shift and dummy read
; offse: for table QQ6,QQ5 or QQ4

asr b x:(r0)+,x1
move b,n1

move x:(r0),r
move x:(r2+sl),b
move x:(r1)+n1,x0
move x:(r2),y0
move p:(r1),x0

; selected table in r1
; read prediction in b

: read detl in ram

mac y0,x0,b y1,a ; compute yl, a = iir_dec
asl b ; limit yl to 16384
asr b ; end of limiting

move #const_pr_|,r3
move b,x:yl_dec

; for lower predictor

» call pred_|

jsr pred_| ; lower predictor
move a,x:(r2+sl) ; save next prediction

A-8

; dummy read to compute r1+n1

: read table of inverse quantizer

; save reconstructed signal
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hsbdec

MOTOROLA

#dat_hsbdec,r2
#const_pr_h,r3
x:ihr_dec,a

pred_h
x:{r2+dIt0),b
x:(r2+sl),y1
y1l.b ax:(r2+sl)
b

b

b,x:yh_dec

; select ram

; select higher constant

;readihina

; higher predictor
; reconstructed signal

; last prediction

; compute yh, save new sl

; limityh
; end of limiting
; save yh_dec



delt
sl
szl
p_nbl
all
al2
bl
bi2
b3
bl4
bl5
bl6
rit0
it
dit0
dit1
dit2
dit3
dit4
dits
dit6
plt0
plt1

A-10

Structure of Variables for G.722 Signal Predictor

structure of variables for predictor in lower sub band coder

in higher sub band coder
in lower sub band decoder
in higher sub band decoder

the address of this structure is passed to the subroutine predictor;;

in the r2 address register

this structure need 23 words of ram that must be initialized for
correct opration of the G.722 algorithm (digital test sequences)

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

; signal predicted

; output of the zero predictor
; nabla of the predictor

; first pole predictor coefficient
; first pole predictor coefficient
; zero predictor coefficient

; zero predictor coefficient

; zero predictor coefficient

; zero predictor coefficient

; zero predictor coefficient

; zero predictor coefficient

; pole signal predictor

; pole signal predictor

; zero signal predictor

; zero signal predictor

; zero signal predictor

; zero signal predictor

; zero signal predictor

; zero signal predictor

; zero signal predictor

; pole partial signal predictor
; pole partial signal predictor
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A.6. G.722 Signal Prediction Routine

R I R I O R AT ) O R N R vrreerer toeene trrseserineny

Subroutine pred_|: compute invqal, logscl, scalel "
o then compute the adaptive predictor .
Input : il in a (lower subband code)

r3 must point on const_pr_| {constant for lower band)
r2 must point on data ram for lower band

Subroutine pred_h: compute invqgah, logsch, scaleh
Input:  ihin a (higher subband code) "
r3 must point on const_pr_h (constant for higher band) "

r2 must point on data ram for higher band

NOTE: pred_| and pred_h are the same but the entry point of
pred_h skip the >> 2 of input code

assume a = ilfih (level of quantizer)

pred_! Isr a
Isr a ; to compute ilr = il >>2

pred_h move al,n0 ; offset for table QQ4/QQ2
move x:(r3)+,r0 ; to address table QQ4/QQ2
move n0,n1 ; for table W4/W2
move x:(r3)+,11 ; 1o address table W4/W?2
move x:(r0)+n0,x1 ; table QQ4/QQ2 (dummy read)
move x:(r2),x0 ; detl =first data in structure
move p:(r0),x1 ; read inverse quantizer output
mpy x1,x0,b x:(r1)+n1,x0 ; b=det!*1Q4/1Q2, dummy read->r1+n1
clr b b,x:(r2+dit0) ; b=0, save new dit0 in ram

. Begin Logscl/h

move x:(r3)+,x0 ; x0=32512

move x:(r2+p_nbl),y1 : read old p_nbl

mpy y1,x0,a x:(r3)+,y0 ; a= p_nbl*32512; y0=18432/22528)
move p:r1),y1 ; read table W4/ W2

add vyl,a ; compute p_nbl*32512 + wlin a
tmi b,a Jlimitto 0if <0

cmp y0,a ; test if > 18432/22528

tpl y0,a ; limit to 18432/22528
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Begin Scalel/h

asr a a,x:(r2+p_nbl)
asr a x:(r3)+,x0
asr4 a

move x:(r3)+,r0
move #31,y1

and yl.a ab
move al,n0
asrd b

asr b x:(r0)+n0,y1
tfr x0,b byl
sub yl.b
move p:(r0),a
rep b1

asr a

move a,a

asl a

asl a

move a,x:(r2)

; save new p_ntl

: to compute 9/11-wd2 = 1 +(8/10-wd2)

;a=p_nbl>>6

; to address the ILB table
; for mask
;b=p_nbl>>6

; offset of table ILB

;b = p_nbl>>11, dummy read,r0->
;b=9/11, y1 = wd2 (Isp set to 0)
;b1 = 9/11 - wd2 (always >=0)

; read table ILB*2 (ie 9-wd2)

;b1 must be >=0
;a=a>>(9/11-wd2)
;setlspofa to0

;a=a<<2
; save new detl

Predictor : compute the following equations of the

========= (.722 predictor (see detailed
recommendation and ‘C’ program).

upzero(dit,bl);
pltlO}=parrec(dit[0],szl);
rit{O)=recons(sl,dIt{0]);
uppol2(al,plt);
uppoll(al,plt);
szl=filtez(dlt,bl);
spl=filtepirit,al);
sl=predic(spl,szl);

:::::::::::::::::::: 1errasresesnas

”

predictor clr

D N T P PR T R P T ) rrrersiiee

b x:(r2+dit0),a

move #64,x0
move #-64,y0

tst
tgt
tit

asl

a
x0,b
y0,b
b bO,y1

move b,y0

address computation

move #dlt6,n2
move #-2,n0

(r2)+n2,r0

move #bl6,n2
move nO,n3

A-12

(r2)+n2,r3

;a=dlt0, b=0

;x0 = 128/2

;y0 =-128/2

; set flag

;if >0 b =64

; if < 0 b=-64 (else b=0)
;b=2*b;y1 =0

; sign suppressed iny

; for address computation

; for updating the delay line

; r0 = address of dit6

; for adress computation
; idem

; 13 = address of bl6
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upzero

move #32640,x1

move x:(r0)+,a x:(r3)+,x0
add y.a {r0)+n0
abs a (r3)+n3

mpy x1,x0,b  a0,x0
add x0,b x:(r0)+,a x:(r3)+,x0

loop for the following bli

do #5,end_upzero

add y.a a,x:(r0)+n0

abs a b,x:(r3)+n3

mpy x1,x0,b  a0,x0

add x0,b x:(r0)+,a x:(r3)+,x0

end_upzero

; fixed coefficient for bli

; a= dIt6, x0 = bl6

; a= dit6+wd1, r0 = &dit5
; set sign of a0, r3 =&bl5

; X0 = wd2, b= 32640*bl6
;. b = new bl6, a= dit5,x0= bl5

; save dlti in dlti-1,r0 =&dlti+1

; save bli
; X0 = wd2, b= 32640*bli-1
; b =new bli-1

We must compute the new pltO and the rit0 and save 2*dit0 in dlt1
for the filtez computation

Also we must save the new bl1 coefficients in ram

tfr
asl
add
tfr
eor
add
asl
tfr
eor
e uppol2 and uppoll

a,x0 b,x:(r3)+

a x:(r2+szl),b
x0,b x:(r2+plt1),x1
b,yl a,x:(r0)+
x1,b x:(r2+sl),a
x0,a x:(r2+plt0),x0
a x0,x:(r2+plt1)
yl.a ax(r2+rit0)
x0,a y1,x:(r2+plt0)

; uppol2
move al,x1
move b1,y1
move x:(r2+all),a
move #-192,b
neg b b,y0
asl a
asl a
neg a a,x0
tst x1
tit x0,a
tit y0,b
asr4 a
asr4 a
asl a b,y0
; y0 = wd1_uppoll
move #128,b
move #-128,x0
tst y1
MOTOROLA

; XO=a=dlt0, save bl1 in ram
; a=2*dlt0, b= szl

; b= plt0, x1=plt1 (ie pit2)

; save 2*dIt0 in dit1

; sg0Nsg2=b, a= sl

; a= rlt0, x0 = plt0 (ie pit1)

; a=2*rlt0, save new plt1

; a= plt0, save 2*rit0 in ram
; sg0”sg1=a, save new plt0

; x1 =sg0 A sgl

;y1 =sg0 A sg2

;a=all

; b=-192

;b =192, y0 =-192

; to compute wd1

; for limiting and fixe a0 to O
;a=-wd1l, x0 = wd1 (4*al1)
itestif sg0 Asgl ==10r0
cif 1 a= wdl ==>wd2

;if 1 b =-192 (wd1 of uppol1)

cwd2 >>4
cwd2 >>4
;wd2 <<1

; for wd3
; for -wd3
; test sg0 A sg2
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tit
add
move
move
mac
move
move
neg
cmp
tpl
cmp
tmi
tfr

move
sub
neg
move
mac
move
cmp
tpl

.cmp
tmi

move
move
lea
move
move
lea

move
move

mpy
move
mac
move
mac
move
mac
move
mac
move
mac

x0,b

a,b x:(r2+al2),x0
#32512,y1

b,b

y1.x0,b
#-12288,a

b.b

a a,x0
a,b

a,b

x0,b

x0,b

y0,a b,x:(r2+al2)

#15360,x0

x0,b x:(r2+al1),x0
b b,y0
#32640,x1

x0,x1,a

a,a

b,a

b,a

y0,a

y0,a

#dlt6,n2

- #1,n0

(r2)4n2,r0
#bl6,n2
n0,n3
(r2)+n2,r3

a,x:(r2+all)
x:(r0)+n0,y1 x:(r3)+n3,x1

x1,y1,a x:(r0)+n0,y1 x:(r3)+n3,x1
ifw ,a x:(r0)+n0,y1 x:(r3)+n3,x1
>a('1a,y1 ,ax{r0)+n0,y1 x:(r3)+n3,x1
)a('1afy1 ,a x:(r0)+n0,y1 x:(r3)+n3,x1
>a<'1a,y1 ,a x:(r0)+n0,y1 x:(r3)+n3,x1
ifyla x:(r0)+n0,y1 x:(r3)+n3,x1

; setb to wd3

;b= wd4, read al2 in x0
;set 32512 iny1
Jimitwdd

;b=apl2

; set lower limitin a

; limit apl2

; a= 12288, x0=-12288
, compare apl2 with +12288
;setb to 12288 if gt

; compare api2 with -12288
;setbto-12288 if It

;Y0 = wd1, save new al2

; to compute wd3

;b =-wd3, x0 = all
;b=wd3, y0 = -wd3
; factor of al1

;a= apll

; limit apll

;testif a > wd3

; set a to wd3 if gt
;testif a < wd3
;setto-wd3 if It

; for computation updating
;n0=-1
; 10 = address of dit6

;N3 =-1
; 13 = address of bl6

; save new all
;y1 =dit6, x1 = ble

;y1 =dits, x1 =bl5
; limit partial product
vyl =dit4, x1 = bl4

; limit partial product
;y1 =dit3, x1 =bl3
; limit partial product
;y1 =dit2, x1 = bl2
; limit partial product
;y1 =dit1, x1 = bl1

; limit partial product
;y1 =dit0, x1 = al2

; @ = szl then limit in x0

MOTOROLA
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o filtep
thr a,x0 x:(r0)+n0,y1 1yl =rt1, x0 =szl
mpy x1,y1,a x:(rO)+,y1 x:{r3)+n3,x1 ;y1 =rit0, x1 = all
move a,a ;limit al2 * rlt2
mac x1,y1,a x0,x:(r2+szl) ; save szl
add x0,a y1,x:(r0)+ ; rit0 in At

; prediction in accu a

return of subroutine pred_| or pred_h

WARNING: the prediction sl or sh is in accu A and must be saved
in the calling procedure

rts

MOTOROLA
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A.7. (a): G.722 Variable Initialisation Structure

This data ram area is initialized at reset by the init_const

procedure -

sel_mode ds 1
ds 1
ds 1

constant area for lower sub band predictor

; for mode 1 = 64 kbit/s
; for mode 2 = 56 kbit/s
; for mode 3 = 48 kbit/s

; inverse 4 bits quantizer

: log adaptation (4 bits)

; multiplicand factor

; upper limit of p_nbl {(low sub band)
; to compute shift right

; table of 32 values

level__1 ds

1
level_O ds 1
level_1 ds 1
level_2 ds 1
level_3 ds 1
level_4 ds 1
level 5 ds 1
level_6 ds 1
level_7 ds 1
level_8 ds 1
level_9 ds 1
level_10 ds 1
level_11 ds 1
A-16

; inverse 2 bits quantizer

; log adaptation (2 bits)

; multiplicand factor

; upper limit of p_nbl {(high sub band)
; to compute shift right

; table of 32 values

MOTOROLA



AN

level _12 ds 1 ; Q6(19)
level_13 ds 1 . Q6(13)
level_14 ds 1 ;. Q6(14)
level _15 ds 1 ;. Q6(15) -
level_16 ds 1 ; Q6(16)
level_17 ds 1 ;Q6(17)
level_18 ds 1 ; Q6(18)
level_19 ds 1 ; Q6(19)
level_20 ds 1 . Q6(20)
level_21 ds 1 ; Q6(21)
level_22 ds 1 ;. Q6(22)
level_23 ds 1 ;. Q6(23)
level_24 ds 1 ; Q6(24)
level_25 ds 1 ; Q6(25)
level_26 ds 1 ; Q6(26)
level_27 ds 1 ; Q6(27)
level_28 ds 1 ; Q6(28)
1 ; Q6(29)

level_29 ds

Coefficients for QMF TX and RX filters

Note: they must be seen as H[23],H[22] and so on

'Ci_coef ds 24 ; for 24 coeffiecents

QMF sections

" address for modulo arithmetic of delay TX line

org x:$100
dat_g_tx ds 24 ; delay line for QMF tx filter
ptr_q_tx ds 1 ; modulo pointer to dat_q_tx

5 address for modulo arithmetic of delay RX line

;)'rg x:$200
dat_qg_rxds 24 ; delay line for QMF rx filter
ptr_qg_rxds 1 ; modulo pointer to dat_qg_rx
MOTOROLA
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A.7. (b): Variable Initialisation Subroutine calls

; Beginning of test program
org p:$40
prog reset ; reset on chip peripherals
nop ; for the pipeline
nop
ori #3$30,0mr , saturation 32 bits,rounding 2s
nop ; for the pipeline
nop
5 Reset section
Jsrinit_const . init const in ram
jsr reset_cod ; encoder reset
jsr reset_dec ; decoder reset
jsrinit_q_tx ; reset gmf tx
jsrinit_q_rx ; reset gmf rx

A-18 MOTOROLA



A.7. (c): Variable Initialisation Subroutines

; reset_cod: subroutine to reset the encoder (lower and higher) ;
; state variables ;
; We must call this subroutine in order to pass the :
; digital test sequences of the CCITT G.722 :

L T T T A R T R TR T I AT

reset_cod move #dat_lsbcod,r0 ; pointer to data of |_coder
move #32,x0 ; set detl for reset
move x0,x:(r0)+ ; save in memory
clr a ;setato0
rep #22 , set 22 state variables to 0
move a,x:(r0)+ ; end for coder_low
move #dat_hsbcod,r0 ; pointer to data of h_coder
move #8,x0 ; set deth for reset
move x0,x:(r0)+ ; save in memory
rep #22 ; set 22 state variables to 0
move a,x:(r0)+ ; end for coder_high
rts ; return of subroutine

R N N N N N N T L Rt

, reset_dec: subroutine to reset the decoder (lower and higher) ;
; states variables ;
; We must call this subroutine in order to pass the ;
; digital test sequences of CCITT G.722 :

L T R N NI R L LT

reset_dec move #dat_Isbdec,r0 ; pointer to data of |_decoder
move #32,x0 ; set detl for reset
move x0,x:(r0)+ ; save in memory
clr a ;setato0
rep #22 ; set 22 state variables to 0
move a,x:(r0)+ ; end for decoder_low
move #dat_hsbdec,r0 ; pointer to data of h_decoder
move #8,x0 ; set deth for reset
move x0,x:(r0)+ ; save in memory
rep #22 ; set 22 state variables to 0
move a,x:(r0)+ ; end for decoder_low
rts ; return of subroutine
MOTOROLA -
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R T N NPT T YA AT}

nit_g_tx move #dat_q_tx,r0 ; address of delay line
clr a ;ato0
move rO,x:ptr_q_tx . save pointer value
rep #24 ; for 24 elements
move a,x:(r0)+ i ; set all the line to 0
rts ; end of subprogram

o end of init_qg_tx

R N N TR T AT

nit_g_rx move #dat_q_rx,r0 ; address of delay line
clr a ;ato0
move rO,x:ptr_q_rx ; save pointer value
rep #24 ; for 24 elements
move a,x:(r0)+ ;setall the lineto 0
rts ; end of subprogram
o end of init_g_rx
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Dy

0

init_const move

move
rep
move

move
move
rep

move

move
move
rep

move

move
move
rep

move

move
move
rep

move

rts

end of init_const

rsenserensreases

#pr_sel_mode,r0
#sel_mode,r3

#3

p:(r0)+,x:(r3)+

#pr_const_pr_|,r0
#const_pr_|,r3
#6

p:ArO}+,x:(r3) +

#pr_const_pr_h,r0

#const_pr_h,r3
#6
p:(r0)+,x:(r3)+

#pr_level__1,r0
#level _1,r3
#31
p:(r0)+,x:(r3)+

#pr_q_coef,r0
#q_coef,r3
#24
p:Ar0)+,x:(r3)+

MOTOROLA

; start of sel_mode
;in ram

; for 3 values

. prom_ram

; start of const_pr_|
;inram

; for 3 values

; prom_ram

; start of const_pr_h
;inram

; for 3 values

; prom_ram

; start of level__1
;inram

; for 3 values

; prom_ram

; start of g_ceof
;inram

; for 3 values

. prom_ram

; end of subprogram
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A.7. (d): Initialisation Variable Structure

Required in P memory

pr_sel_mode dc QQ6
dc QQs
dc QQ4
constant area for lower sub band predictor

pr_const_pr_ldc QQ4

dc W4
dc 32512
dc 18432
dc 9

dc ILB

pr_const_pr_h dc QQ2
dc W2
dc 32512
dc 22528
dc 11
dc ILB

quantiser thresholds (Q6) for lower sub_band encoder

; for mode 1 = 64 kbit/s
; for mode 2 = 56 kbit/s
; for mode 3 = 48 kbit/s

; inverse 4 bits quantizer
; log adaptation (4 bits)
; multiplicand factor

; upper limit of p_nbl {low sub band)

; to compute shift right
; table of 32 values

; inverse 2 bits quantizer
; log adaptation (2 bits)
; multiplicand factor

; upper limit of p_nbl (high sub band)

; to compute shift right
; table of 32 values

pr_level__1 dc 0*8

pr_level_0 dc 0*8

pr_level_1 dc 35*8
pr_level_2 dc 72*8
pr_level_3 dc 110*8
pr_level_4 dc 150*8
pr_level_5 dc 190*8
pr_level_6 dc 233*8
pr_level_7 dc 276*8

A-22
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pr_level_8

pr_level 9

pr_level_10
pr_level_11
pr_level_12
pr_level_13
pr_level_14
pr_level_15
pr_level_16
pr_level_17
pr_level_18
pr_level_19
pr_level_20
pr_level_21
pr_level_22
pr_level_23
pr_level_24
pr_level_25
pr_level _26
pr_level_27
pr_level_28
pr_level_29

323*8 : Q6( 8)
370*8 ; Q6( 9)
422*8 : Q6(10)
473*8 ;. Q6(11)
530°8 : Q6(19)
587°8 ; Q6(13)
650*8 ; Q6(14)
714*8 ; Q6(15)
786*8 ; Q6(16)
858*8 : Q6(17)
940°8 ; Q6(18)
1023*8 ; Q6(19)
11218 ~: Q6(20)
1219*8 ; Q6(21)
1339%8 : Q6(22)
1458*8 : Q6(23)
1612*8 ; Q6(24)
1765*8 : Q6(25)
1980*8 ; Q6(26)
2195°8 : Q6(27)
2657°8 : Q6(28)
2919°8 : Q6(29)

Note: they must be seen as H[23],H[22] and so on

pr_q_coef

dc

3*2,-11*2,-11%2,63*2,12*2,-156*2
32*2,362*2,-210*2,-805*2,951*2,3876*2

3876*2,951*2,-805%2,-210*2,362*2,32%2 -

-156%2,12*2,63%2,-11%2,-11*2,3*2

MOTOROLA
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A.8. Variable Structure Required in X memory

Area of X RAM -

B R R L S S O S S A S A G A R A R A SRR

data for test

mode ds

1 ; mode of decoder from MODCOD.TST file
x1_in ds 1 ; input of gmf
x0_in ds 1 ; input of gmf
xoutl ds 1 ; output of gmf
xout2 ds 1 ; output of gmf
adc_in_1 ds 1 ; input #1 for adc at 16 kHz
adc_in_0 ds 1 ; input #0 for adc at 16 kHz
dac_out_1 ds 1 ; output #1 for dac at 16 kHz
dac_out_2 ds 1 ; output #2 for dac at 16 kHz
flag_in ds 1 ; flag to check 2nd input at 16 kHz
sav_x0 ds 1 ; save for x0 in interrupt SSI

B R I B 2 o N R o S S A S R RN S N SRR R A

data for predictor in lower sub band coder

,ciat_lsbcod ds 23 ; data ram for the lower sub band predictor

x|_cod ds 1 ; input of Isbcod
il_cod ds 1 ; output of Isbcod

”"

data for predictor in higher sub band coder

aat_hsbcod ds 23 ; data ram for the higher sub band predictor

xh_cod ds 1 ; input of hsbcod
ih_cod ds 1 ; output of hsbeod

data for predictor in lower sub band decoder

'c;at_lsbdec ds 23 ; data ram for the lower sub band predictor

iir_dec ds 1 ; input of Isbdec

yl_dec ds 1 ; output of Isbdec

data for predictor in higher sub band decoder

aat_hsbdec ds 23 ; data ram for the higher sub band predictor

ihr_dec ds 1 ; input of hsbdec
yh_dec ds 1 ; output of hsbdec
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output of encoder

input of decoder

"

ir ds 1

MOTOROLA

; output code-of encoder

; receive code for input of decoder

A-25









Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

L @ MOTOROLA

1PHX33213-0 PRINTED IN USA 4/92 IMPERIAL LITHO 200

APR404/D
A TR U I 000



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

