

Table
of Contents

MOTOROLA

 iii

SECTION 1

Introduction

1.1 Standard Version of ADPCM 1-1
1.2 Non-Standard Version of ADPCM 1-2

SECTION 2

Speech Coding

2.1 Trade-Offs 2-1
2.2 Advantages of Digital Speech Coding 2-2

SECTION 3

Types of
Speech Coders

3.1 Uniform PCM 3-2
3.2 Logarithmic PCM 3-5
3.3 ADPCM Coding 3-7

SECTION 4

The CCITT
ADPCM

Algorithm

4.1 The Encoder Algorithm 4-4
4.2 The CCITT Decoder Algorithm 4-18

SECTION 5

ADPCM
Implementation

on the
DSP56001

5.1 I/O Interface 5-3
5.2 Standard Implementation 5-5

5.2.1 Code Structure 5-6
5.2.2 Initialization 5-9
5.2.3 PCM Format Conversion 5-12
5.2.4 Logarithmic Conversion 5-14
5.2.5 Floating-Point Conversion 5-17
5.2.6 Difference Signal Quantization 5-19
5.2.7 Inverse Quantization 5-22
5.2.8 Adaptive Predictor 5-24

iv

 MOTOROLA

Table
of Contents

5.2.9 Tone Detection 5-31
5.2.10 Scale Factor Adaptation 5-32
5.2.11 Decoder Synchronization 5-34

5.3 Non-Standard Implementation 5-34
5.3.1 Code Structure 5-36
5.3.2 Initialization 5-37
5.3.3 Format Conversions 5-40
5.3.4 Adaptive Predictor 5-41

5.4 Optimization Techniques 5-43
5.5 Performance Specifications 5-52

Appendix A

References

Terminology A-1

Reference-1

Illustrations

MOTOROLA

v

Figure 1-1

Figure 1-2

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

CCITT ADPCM Encoder Block Diagram 1-2

CCITT ADPCM Decoder Block Diagram 1-3

A/D Conversion Process 3-2

Quantization Noise Model 3-3

Uniform Quantizer 3-4

Feedforward APCM Coder 3-8

Feedback APCM Coder 3-8

DPCM Coder 3-9

ADPCM Coder 3-11

CCITT ADPCM Encoder Block Diagram (detailed) 4-3

PCM Conversion and Difference Signal
Computation 4-5

Adaptive Quantizer 4-6

Inverse Adaptive Quantize 4-7

Adaptive Prediction Filter 4-8

Predictor Pole Coefficient Adaptation for a

1

(k) 4-10

Predictor Pole Coefficient Adaptation for a

2

(k) 4-11

Predictor Zero Coefficient Adaptation 4-12

vi MOTOROLA

Illustrations

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 5-11

Figure 5-12

Scale Factor Adaptation 4-13

Speed Control Parameter Adaptation 4-15

Tone Detection 4-17

CCITT ADPCM Decoder Block Diagram (detailed) 4-19

Synchronous Coding Adjustment 4-20

Code Flow Diagram 5-8

Internal Data RAM Memory Map 5-11

Address Register Usage 5-12

Linear to Log Conversion Routine 5-16

Linear to Floating-Point Conversion Routine 5-18

Difference Signal Scaling and Quantization 5-20

Inverse Quantization and Scaling of
ADPCM Codeword 5-23

Adaptive Predictor Data Structure 5-27

Internal Data RAM Memory Map (Non-standard) 5-39

Address Register Usage (Non-standard) 5-39

Adaptive Prediction Filter 5-42

Adaptive Predictor Data Structure (Non-standard) 5-43

List of Tables

MOTOROLA

 vii

Table 4-1

Table 4-2

Table 4-3

Table 5-1

Table 5-2

Quantizer Normalized Input/Output Characteristic 4-6

W(l) Lookup Table 4-14

F[l(k)] Lookup Table 4-16

Memory Usage 5-53

Code Execution Times 5-55

MOTOROLA 1-1

T

his application report describes the implementation
of an Adaptive Differential Pulse Code Modulation
(ADPCM) speech coder on the Motorola DSP56001
digital signal processor. The algorithm described in
this document has been standardized by the Interna-
tional Telegraph and Telephone Consultative
Committee (CCITT) in Recommendation G.721 [1] for
digital speech coding in a telecommunications envi-
ronment. The standard, as defined by the CCITT,
specifies the translation of µ-law or A-law PCM encod-
ed speech at 64 kbit/s to ADPCM encoded speech at
32 kbits to provide a 2 to 1 compression of the speech
signal with very little perceptual loss of speech quality.
The algorithm also has added complexity to handle
non-speech signals such as modem signals. The
block diagrams of the CCITT ADPCM encoder and de-
coder are shown in Figure 1-1 and Figure 1-2.

1.1 Standard Version of
ADPCM

Two implementations of the ADPCM algorithm on the
DSP56001 are described in this document. The first
implementation adheres completely with the CCITT
Recommendation G.721 (revised version dated Au-
gust 1986). It provides bit-for-bit compatibility with the

SECTION 1

Introduction

“This
application

report will first
point out some

of the
advantages of

speech coding
in general and

then some of the
particular

advantages of
the CCITT
standard.”

1-2 MOTOROLA

test vectors described in G.721, meaning that the
code correctly passes all the digital test sequences
defined by the CCITT. In addition to providing com-
patibility with the standard, this implementation
provides full-duplex operation. This means that one
DSP56001 is able to perform both an encode and a
decode in real-time.

1.2 Non-Standard Version
of ADPCM

The second implementation also provides full-du-
plex ADPCM operation on a single DSP56001.
This non-standard version implements the same
algorithm as the standard version but does so
more efficiently. As a result, this version requires

Figure 1-1 CCITT ADPCM Encoder Block Diagram

Convert to
uniform

PCM

Adaptive
quantizer

Inverse
adaptive
quantizer

Adaptive

predictor

64 kbit/s
A-law or µ-law

PCM input
∑

∑

difference
signal

input
signal

32 kbit/s

output

+

-

reconstructed
signal

signal
estimate

+

+ quantized
difference
signal

MOTOROLA 1-3

less computational power and uses less memory
than the standard version. In addition, the code
provides a more direct, readable implementation
of the algorithm, which permits easier modification
of the code.

This application report presents some of the advan-
tages of speech coding, followed by some of the
particular advantages of the CCITT standard. The
basic concepts of ADPCM and a detailed descrip-
tion of the actual CCITT algorithm are also
included. After a description of the algorithm, the
implementation of the algorithm on the DSP56001
is discussed, including various techniques used to
improve performance. Finally the real-time perfor-
mance and other technical characteristics of the
DSP56001 implementations are described.

■

Figure 1-2 CCITT ADPCM Decoder Block Diagram

Inverse
adaptive
quantizer

∑ Convert to

PCM

Adaptive

predictor

Synchronous
Coding

Adjustment

signal
estimate

quantized
difference
signal

64 kbit/s
A-law

PCM output

32 kbit/s
input

reconstructed
signal+

+

or µ-law

MOTOROLA 2-1

S

peech coding, or speech compression, is one of
the major application areas for digital signal process-
ing in the field of speech processing. The goal of
speech coding is to digitally code speech efficiently for
either storage or transmission. In telecommunication
applications, the goal is typically to code an analog
speech signal into a digital format, transmit the digital
signal, and then decode the digital signal back into an
analog waveform — all in real time.

2.1 Trade-Offs

While the goal seems very simple, there are many
trade-offs to be considered in a practical application.
These trade-offs include decoded speech quality,
transmission bandwidth, coder complexity, overall
system cost, and real-time considerations. Different
applications may have very different requirements.
For example, military communication applications of-
ten sacrifice coder complexity and speech quality to
achieve very low transmission bandwidths. Other ap-
plications, such as some voice mail systems, may not
require real-time performance.

SECTION 2

Speech Coding

“Digital signals
. . . are less
sensitive to

transmission
noise and they

are easier to
multiplex, error

protect, and
encrypt for

security than
analog signals.”

2-2 MOTOROLA

2.2 Advantages of Digital
Speed Coding

Digital speech coding has advantages beyond the
compression savings. Digital signals in general
have many desirable properties: they are less sen-
sitive to transmission noise and they are easier to
multiplex, error protect, and encrypt for security
than analog signals. Since coding algorithms can
be implemented in software, modifications and im-
provements to algorithms are much easier than with
dedicated hardware. In many applications such as
computer workstations, a common DSP may per-
form several functions. These applications can add
speech coding to a system without adding addition-
al hardware.

As noted above, the ADPCM algorithm defined by
the CCITT is intended for use in a telecommunica-
tions environment, although it may be applied in
other areas. The CCITT algorithm actually imple-
ments a PCM/ADPCM/PCM conversion process
and is called a transcoder for this reason. The stan-
dard is intended for use on digital channels that
contain the digital equivalent of analog signals on
analog telephone channels, so the CCITT algorithm
has added complexity to handle non-speech sig-
nals (such as modem and DTMF signals) that may
be present on analog telephone channels. It pro-
vides 2 to 1 compression allowing two ADPCM
coded signals to be easily multiplexed into one ba-
sic 64-kbit/s digital channel.

 ■

MOTOROLA 3-1

A

lthough there are many different methods for
speech coding, these methods generally fall into two
main categories:

waveform coders

 and

source
coders

. Waveform coders deal with speech on a
sample by sample basis.

Their goal is to have the out-
put waveform of the decoder match the original
speech waveform as closely as possible. Source cod-
ers (also called vocoders),

on the other hand, attempt
to describe a speech signal in terms of parameters of
a speech production model. These models typically
estimate vocal tract shape

and vocal tract excitation.
Vocoders can operate at much lower bit rates than
waveform coders but their output speech quality is
generally not as good.

ADPCM is classified as a
waveform coder and is actually a combination of

sev-
eral basic waveform coding techniques. It should also
be noted that many

speech coding algorithms are hy-
brids that combine a variety of techniques. For
instance, ADPCM techniques are used in portions of
many other coder

algorithms, such as subband cod-
ers and LPC coders.

As noted above, ADPCM is a combination of several
basic techniques. The

following discussion is a brief

SECTION 3

Types of Speech
Coders

“. . . logarithmic
PCM (log PCM)

coding,
effectively

compresses the
input signal at

the transmission
end and

expands it at the
receiving end.”

3-2 MOTOROLA

introduction to these techniques. Reference [2]
also provides a good introduction to the topics dis-
cussed here as well as other

types of speech
coders.

3.1 Uniform PCM

In any digital speech coding system, an analog
speech signal must be

converted into a digital rep-
resentation before it can be processed. Most digital
coders use a form of pulse-code modulation (PCM)
for the A/D

conversion. The A/D conversion process
is represented by a combination

of two processes:

• a continuous-to-discrete conversion (C/D)

• a quantization

(Q[]), as shown in Figure 3-1 [3]

The C/D conversion changes a continuous

time
waveform into a discrete time waveform with contin-
uous amplitude.

Mathematically, this process will

Q[]C/D
x(n)

x̂ n() Q x n()[]=x(t)

A/D

T= sampling rate

Figure 3-1 A/D Conversion Process

MOTOROLA 3-3

not introduce any error into the input signal as long
as the sampling rate is at least twice the highest fre-
quency of the input signal. The quantizer maps each
continuous amplitude sample into a digital code-
word. The mapping process represented by the
function (Q[]) is called the quantizer characteristic.

The quantization process will introduce an

error
called the quantizer error into the signal. This error
can be represented as an additive white noise source
in the quantizer as shown in Figure 3-2. In speech
applications, this error will be evident as audible
noise at the D/A output. In many speech coding ap-
plications, this quantization noise is expressed in
terms of Signal-to-Quantization Noise Ratio (SNR).

Figure 3-3 shows an example of a uniform quantizer.
Uniform PCM quantizers feature a constant step size
(

∆

) [3]. To prevent large errors, the quantizer’s range
must represent the input signal’s potentially maxi-
mum amplitude. The amount of noise that the
quantizer introduces into the signal is also directly

Figure 3-2 Quantization Noise Model

x̂ n() x n() e n()+=
+

+
x(n)

e(n) = uniformly distributed white
noise sequence

Q[]

∑

3-4 MOTOROLA

related to the step size. Together, the quantizer
range and the step size determine the number of
bits required to adequately represent a signal of giv-
en quality. Telephone quality speech signals (“toll”
quality) require about 35 dB of SNR in a frequency
range of about 200-3200 Hz. Usually, 11-12 bits
quantization at an 8 kHz sampling rate are needed
to ensure this SNR over a typical range of speech
signals [2].

Figure 3-3 Uniform Quantizer

∆/2 3∆/2 5∆/2 7∆/2

-9∆/2 -∆/2-3∆/2-5∆/2-7∆/2
quantizer input

quantizer output

} ∆ = step size
∆

2∆

3∆

-∆

-2∆

-3∆

-4∆

MOTOROLA 3-5

3.2 Logarithmic PCM

One of the disadvantages of uniform PCM coding is
that the SNR is not constant. For instance, during
“voiced” segments of speech (vowels for example)
the SNR may be high, but during “unvoiced” seg-
ments of speech (consonants for example) the SNR
may be low. Consequently, bits are wasted to en-
sure that the maximum SNR is always less than an
acceptable level. Logically, if one can reduce the
maximum SNR, then fewer bits will be needed.
Non-uniform quantizers have features that aim to
reduce the maximum SNR, including a step size
that varies according to the input signal, or alterna-
tively, non-uniform scaling of input before it is
quantized [4]. With this approach, the step size is
greater for large input amplitudes than it is for small
amplitudes. The goal is to obtain a uniform SNR
over all input ranges so that the SNR is independent
of the input.

A basic approach to achieve this goal with speech
signals is to logarithmically space the quantization
levels. This approach, called logarithmic PCM (log
PCM) coding, effectively compresses the input sig-
nal at the transmission end and expands it at the
receiving end. For this reason, log PCM coding is
also referred to as companding [4]. True logarithmic
quantization is not practical in reality, but two meth-
ods that approximate this technique have been
standardized [5]. These methods are referred to as
µ-law and A-law companding. They achieve a SNR
that is constant enough for practical purposes.
Compared with uniform PCM, these techniques

3-6 MOTOROLA

need about four fewer bits per sample for equiva-
lent speech quality. Therefore, only eight bits are
needed per sample rather than the 11 or 12 bits
that uniform PCM needs. Eight-bit log PCM com-
panding is one of the simplest forms of speech
coding and has also been standardized for digital
telecommunications.

Speech coders are typically specified in terms of bit
rate. The bit rate is the number of samples per
second, times the number of bits per sample. As
noted, telephone quality voice signals primarily
range from 200 to 3200 Hz and they are typically
sampled at 8 kHz to maintain this frequency range.
Therefore, the basic standard data rate for µ-law
and A-law PCM data is 8 bits/sample at 8000
samples/second or 64,000 bits/second (64 kbit/s).
This is the source of the data rate for a basic digital
transmission channel. The process of converting
log PCM signals to/from analog signals is often
done using CODEC devices (such as the
MC145503). In the CCITT algorithm, the log PCM
data is converted to linear PCM data before the
ADPCM encoding itself is performed and the
decoded linear signal is converted back into log
PCM form after the decoding process is completed.
The process for converting between log and linear
PCM data, including the implementation on the
DSP56001, is described in detail in the Motorola
applications report “Logarithmic/Linear Conversion
Routines For DSP56000/1” [6].

MOTOROLA 3-7

3.3 ADPCM Coding

Speech coders try to remove “redundancy” in
speech signals in order to further reduce the data
rate of speech signals obtained by PCM methods.
Speech coders do this by taking advantage of known
characteristics of speech signals. ADPCM is a tech-
nique of speech compression based on a
combination of two basic speech coding techniques,
Adaptive PCM (APCM) and Differential PCM
(DPCM). A basic difference between these tech-
niques versus uniform and log PCM methods is that
they require previous samples to be remembered
while uniform and log PCM methods do not. A sec-
ond key difference is that uniform and log PCM
coders have fixed compression and expansion
curves (fixed step sizes), while most adaptive PCM
methods change their compression and expansion
curves over time (adaptive step sizes).

APCM coders take advantage of the tendency for
speech signals to vary

relatively slowly [2]. The
coders exploit this property by changing the charac-
teristics of

the coder adaptively over time. One way
to doing this is to change the

quantizer step size in
proportion to the average speech amplitude. The
step size modification can be achieved in two ways;
by either directly scaling the

step size or by scaling
the input signal by a gain factor. Updating the step
size

or gain factor can also be done in one of two
ways. The feedforward approach,

shown in Figure
3-4, actually sends the update information to the
decoder over the transmission channel [7]. The
feedback approach, shown in Figure 3-5, deter-

3-8 MOTOROLA

mines the information from the previously coded
samples so that no extra information needs to be
transmitted to the decoder [7]. APCM, in general,
provides better SNR performance and speech qual-
ity at a given bit rate compared to uniform or log
PCM but it does require more computation.

Figure 3-4 Feedforward APCM Coder

Q[] Q-1[]

Step-size
Adaptation

x(n) x’(n)
c’(n)c(n)

DecoderEncoder

∆’(n)∆(n)

Figure 3-5 Feedback APCM Coder

Q[] Q-1[]x(n) x’(n)
c’(n)c(n)

DecoderEncoder

∆’(n)∆(n)

Step-size
Adaptation

Step-size
Adaptation

MOTOROLA 3-9

Other properties that are unique to speech signals

relate to the spectral envelope. A typical short-time

magnitude spectrum of a speech signal shows a

slowly varying envelope whose shape is primarily

determined by the vocal tract response. This caus-

es speech samples to have a high degree of

“sample-to-sample correlation” [2]. DPCM tech-

niques try to take advantage of this characteristic.

DPCM coders are characterized by the use of a pre-

dictor that forms an estimate of each incoming

speech sample. This estimate is subtracted from

the actual sample and the difference between them

is coded instead of the actual input sample. Most

DPCM coders use a form of linear prediction where

the estimate is based on a linear combination of

previous input samples. A block diagram of a

DPCM coder is shown in Figure 3-6 [2].

Figure 3-6 DPCM Coder

∑

x(n) x’(n)
+

+

+

-

+

+

DecoderEncoder

Q[]∑

Predictor

Q-1[]

Predictor

∑

3-10 MOTOROLA

ADPCM techniques use a combination of APCM
and DPCM techniques. There are many different
ways to implement the concepts of APCM and
DPCM. Therefore, the term ADPCM can justifiably
refer to a broad range of speech coders that may
have widely varying characteristics. ADPCM
techniques, as well as APCM and DPCM
techniques, may also be applied to non-speech
signals, such as high-fidelity audio signals or video
images. These implementations may not exploit
properties that are specific to speech, however.
The term ADPCM as used in this discussion refers
specifically to the algorithm defined by the CCITT
for telephone quality speech signals. Therefore
the scope of this algorithm may not apply to all
applications requiring signal compression. A
general block diagram of the ADPCM
configuration used in the CCITT algorithm is
shown in Figure 3-7 [2].

■

MOTOROLA 3-11

F
ig

u
re

 3
-7

A
D

P
C

M
 C

od
er

Q
[]

Q

-1

[]

P
re

di
ct

or

x(
n)

x’
(n

)
+

+

+

-

+

D
ec

od
er

E
nc

od
er

Q

-1

[]

S
te

p-
si

ze
A

da
pt

at
io

n

S
te

p-
si

ze
A

da
pt

at
io

n

+

∆

(n
)

∆

’(n
)

c(
n)

c’
(n

)

∑

P
re

di
ct

or

∑

∑

MOTOROLA 4-1

The CCITT ADPCM coder is designed to meet sever-
al specific requirements [8]. The design goals were to:

• provide compression while satisfying the objective
signal quality requirements specified in CCITT
Recommendation G.712 [10]

• retain a high enough level of subjective quality
(defined by listening tests) even after a series of
encodings and decodings

• provide compatibility with the existing µ-law and
A-law PCM formats

• operate stably in the presence of high-bit-error
rates during transmission

• operate properly in the presence of voiceband
data at up to 4.8 kbit/s

These requirements and others led to the standard-
ization of this particular algorithm. The following
paragraphs provide an overview of this algorithm, fol-
lowed by a detailed description of each part. This
application report focuses on the algorithm implemen-
tation rather than the complete development of the
theory behind this algorithm.

SECTION 4

The CCITT ADPCM
Algorithm

“The decoder
portion of the

CCITT algorithm
uses the same
routines as the
encoder for the

inverse
quantization,

linear prediction,
tone detection,
and adaptation

functions.”

4-2 MOTOROLA

A detailed block diagram of the encoder portion of
the CCITT ADPCM algorithm is shown in Figure 4-1.
The decoder portion is shown in Figure 4-12. The al-
gorithm uses the feedback method whereas the
encoder uses only the coded ADPCM signal l(k) for
feedback to the prediction and adaptation sections.
Since this information is the same that the decoder
uses for adaptation, no update parameters need to
be sent over the transmission channel. This struc-
ture has two key properties:

1. The encoder and the decoder are almost
functionally identical.

2. The decoder is in the same “state” as the
encoder for a given sample (assuming no
transmission errors).

Therefore, all common internal signals are identical,
enabling the decoder to keep track of the encoder's
adaptive process without explicitly receiving infor-
mation from the encoder.

The APCM portion of the algorithm uses the gain fac-
tor approach for quantization. The difference signal
to be coded is first scaled by the adaptive scale factor
y(k) before it is quantized according to a fixed quan-
tization curve. The smallest step size allowed by the
overall quantization is equivalent to the smallest step
size defined in µ-law or A-law PCM. The largest step
size is 1024 times the smallest step size. It should be
noted that the gain factor itself and other signals
used in its computation are in base 2 logarithmic
form. The adaptation of the scale factor y(k) is based
on a “bimodal” adaptation technique (the quantizer is
also called a dynamic locking quantizer).

MOTOROLA 4-3

The scaling adaptation rate is “fast” for signals with
large fluctuations, like speech, and is “slow” for sig-
nals with small fluctuations, like voiceband data and
tones. A purely stationary input such as a single
tone causes the quantizer to stop adapting or to
“lock”. The overall speed of adaptation is a combi-
nation of the fast (unlocked) and slow (locked) scale
factors.

The DPCM portion of the algorithm uses a linear
predictor that is based on an autoregressive moving
average (ARMA) process which has a combination
of poles and zeros in its transfer function [4]. The
structure for the predictor is based on several fac-
tors including stability in the presence of errors and

Figure 4-1 CCITT ADPCM Encoder Block Diagram (detailed)

Reconstructed
Signal

Calculator

Tone &
Transition
Detector

Adaptive
Speed
Control

Quantizer
Scale factor
Adaptation

Input PCM
Format

Conversion

Adaptive
Predictor

32 kbit/s
output

s(k) sl(k) d(k) dq(k)l(k)

yl(k)
al(k) td(k)

tr(k)

y(k)
a2(k)

sr(k)

se(k)Difference
Signal

Computation

Adaptive
Quantizer

Inverse
Adaptive
Quantizer

4-4 MOTOROLA

the ability to track both speech and voiceband data
signals. The adaptation of the predictor coefficients
is based on a gradient search or steepest descent
method and all coefficients are updated for each in-
put sample. The output of the linear predictor is the
signal estimate se(k). This signal is subtracted from
the input signal to form the difference signal that is
actually coded and sent to the decoder.

The additional blocks added to the CCITT coder are
for PCM format conversion, tone transition detection,
and synchronization. The tone transition detection
determines when transitions between stationary tone
signals occur. When a transition is detected all of the
coefficients in the predictor are set to zero and the
quantizer is set to the fast (unlocked) mode. The
synchronization block helps prevent noise accumulation
when multiple PCM/ADPCM/PCM conversions
(synchronous tandem codings) are performed on a
signal. This synchronization block does not affect the
internal state of the decoder and has a minimal effect
on the output quality of a single PCM/ADPCM/PCM
conversion.

4.1 The Encoder Algorithm
Figure 4-1 shows a block diagram of the major portions
of the CCITT ADPCM encoder. This section gives a
detailed description of each block. The DSP56001 as-
sembly code routines associated with each block are
described in detail in SECTIONS 5.2 and 5.3.

MOTOROLA 4-5

The first stage of the encoder is shown in Figure 4-2.
The input to the encoder is the A-law or µ-law PCM
signal s(k). This signal is converted to a uniform (lin-
ear) PCM signal sl(k) in the routine EXPAND. In the
next routine, SUBTA, the difference signal d(k) is
calculated by subtracting the signal estimate se(k)
from sl(k). As in all DPCM type coders, the difference
signal is actually encoded and transmitted rather
than a compressed version of the input signal.

d(k) = sl(k) - se(k) Eqn. 4-1

In the next stage of the encoder, shown in Figure 4-3,
the difference signal d(k) is quantized by a 15-level
non-uniform adaptive quantizer. The quantization
process is performed by three routines. In the routine
LOG the linear difference signal d(k) is converted to a
base 2 logarithmic form, dl(k) representing the magni-
tude, and ds(k) representing the sign. The scale
factor y(k) (also in Iogarithmic form) is then subtract-
ed from dl(k) in the routine SUBTB, in effect dividing
the linear signal d(k) by a gain factor. This normalized

Figure 4-2 PCM Conversion and Difference Signal Computation

Convert to
uniform
PCM

(EXPAND)

s(k)
sl(k)

se(k)

d(k)
(SUBTA)

∑
+

-

4-6 MOTOROLA

signal dln(k) is then quantized in the routine QUAN
according to the normalized input/output characteris-
tic shown in Table 4-1.

Figure 4-3 Adaptive Quantizer

(LOG)

d(k)
dl(k)

y(k)

l(k)

(QUAN)

∑
+

-

Quantize
to

4 bitsdln(k)

(SUBTB)

ds(k)

Convert
to

log2

Table 4-1 Quantizer Normalized Input/Output
Characteristic

INPUT OUTPUT

log2|d(k)|-y(k) |l(k)| log2|dg(k)|-y(k)

[3.12, +∞) 7 3.32

[2.72, 3.12) 6 2.91

[2.34, 2.72) 5 2.52

[1.91, 2.34) 4 2.13

[1.38, 1.91) 3 1.66

[0.62, 1.38) 2 1.05

[-0.98, 0.62) 1 0.031

(-∞, 0.98) 0 -∞

MOTOROLA 4-7

The output of the quantizer section is the 32-kbit/s
ADPCM signal l(k). This is the overall output of the
encoder that is transmitted to the decoder. Each
sample of l(k) contains four bits, three bits for the
magnitude (from Table 4-1) and one bit for the sign
(from ds(k). The quantizer is a 15-level quantizer
since the all-zero codeword is not allowed.

The inverse adaptive quantizer, shown in Figure 4-4,
converts the ADPCM signal l(k) into the signal dq(k),
the quantized version of the difference signal. The in-
verse quantization is performed in three routines
that are effectively the inverse of the three quantizer
routines. The routine RECONST maps the magni-
tude of l(k) into one of eight normalized output
values shown in Table 4-1. The routine ADDA adds
the scale factor y(k) (the same value as in the quan-
tizer) to the normalized output value dqln(k), in effect
multiplying by a gain factor. The routine ANTILOG
then converts this logarithmic value dql(k), along
with the sign of l(k) (dqs(k)), to the linear quantized
difference signal dq(k).

Figure 4-4 Inverse Adaptive Quantize

(LOG)

l(k)
dqln(k)

y(k)

dq(k)

(ANTILOG)

∑
+

+

Convert
to

Lineardql(k)

(ADDA)

dqs(k)

Inverse
Quantize

4-8 MOTOROLA

The remaining portion of the encoder performs
three main functions:

1. calculating the new signal estimate

2. performing the adaptation functions

3. detecting tones

The adaptive predictor's primary function is to use
the past history of the quantized difference signal
dq(k) to update the signal estimate se(k). The linear
predictor model used for the prediction consists of a

Figure 4-5 Adaptive Prediction Filter

Z-1 Z-1 Z-1 Z-1 Z-1 Z-1

X X X

∑

∑

+

+

+
+

X
(ADDB)

(ACCUM)

X

dq(k) dq(k-1) dq(k-2) dq(k-3) dq(k-4) dq(k-5) dq(k-6)

b1(k-1) b2(k-1) b3(k-1) b4(k-1) b5(k-1) b6(k-1)

(ACCUM)

sr(k-1) sr(k-2)

a2(k-1)a1(k-1)

sr(k)+

+
sez(k)

se(k)

X = (FMULT)

∑

X

Z-1 Z-1

X X

MOTOROLA 4-9

sixth order section that models zeroes and a sec-
ond order section that models poles. The prediction
filter shown in Figure 4-5, is implemented in the rou-
tines FMULT and ACCUM using the equations:

Eqn. 4-2

Eqn. 4-3

The CCITT standard specifies that the multiplies in
Eqn. 4-2 and Eqn. 4-3 be done in floating point so
the values of dq(k) and sr(k) must be converted to
floating point. This is done in the routines FLOATA
and FLOATB. The signal sr(k) in Eqn. 4-2 and
Eqn. 4-3 is the reconstructed signal. The routine
ADDB calculates sr(k) by adding the quantized dif-
ference signal dq(k) to the signal estimate se(k) as
shown in Eqn. 4-4. The reconstructed signal repre-
sents the overall output of the ADPCM algorithm.
The encoder does not output this signal but uses it
as feedback for the prediction.

Eqn. 4-4

The predictor coefficients ai(k) and bi(k) are updated
for each sample using a gradient search algorithm.
The adaptation of the two pole coefficients, a1(k)

sez k() bi k 1–() dq k i–()•
i 1=

6

∑=

se k() ai k 1–() sr k i–() sez k()+•
i 1=

2

∑=

sr k i–() se k i–() dq k i–()+=

4-10 MOTOROLA

and a2(k) is shown in Figure 4-6 and Figure 4-7
respectively. These coefficients are updated ac-
cording to the following equations:

Eqn. 4-5

Eqn. 4-6

where:

Eqn. 4-7

and:

f(a1) = 4a1 |a1| ≤ 2-1

= 2 sgn (a1) |a1| > 2-1 Eqn. 4-8

a1 k() 1 2
8–

– 
  a1 k 1–() 3 2

8–
• 

 + sgn p k()[] sqn p k 1–()[]=

a2 k() 1 2
7–

– 
  a2 k 1–() 2

7–
+ sgn(p k()[] sgn p k 2–()[]=

f a1 k 1–()[] sgn p k()[] sgn p k 1–()[]–)

p k() dq k() sez k()+=

Figure 4-6 Predictor Pole Coefficient Adaptation for a1(k)

a1
coefficient
adaptation

(UPA1) (LIMD) (TRIGB)

p(k) p(k-1) a2p(k) tr(k)

a1(k)
Predictor
Trigger Z-1Limit a1

Coefficient
a1(k-1)

MOTOROLA 4-11

Eqn. 4-5 is implemented in the routine UPA1 while
Eqn. 4-6 and Eqn. 4-8 are implemented in the rou-
tine UPA2. Eqn. 4-7 is calculated in the routine
ADDC. The coefficients a1(k) and a2(k) are con-
strained for stability reasons to the following limits:

|a2(k)| ≤ 0.75 Eqn. 4-9

|a1(k)| ≤ 1 - 2-4-a2(k) Eqn. 4-10

Eqn. 4-9 is calculated in the routine LIMC and Eqn.
4-10 is calculated in the routine LIMD.

The adaptation of the bi(k) zero coefficients is
shown in Figure 4-8. They are updated in the rou-
tines XOR and UPB according to:

 bi(k) = (1 - 2-8) bi(k -1) + 2-7 sgn[dq(k)] sgn[dq(k-i)]

for i = 1,2,...,6 Eqn. 4-11

The bi(k) coefficients are implicitly limited to ± 2.

Figure 4-7 Predictor Pole Coefficient Adaptation for a2(k)

a2
coefficient
adaptation

(UPA2) (LIMC) (TRIGB)

p(k)
p(k-1)

a2p(k)
tr(k)

a2(k)
Predictor
Trigger Z-1Limit a2

Coefficient

p(k-2)

a2(k-1)a1(k-1)

4-12 MOTOROLA

The function sgn[x] in Eqn. 4-5 through represents
the sign of x. It is defined as:

sgn[x] = +1 if x > 0 Eqn. 4-12

 = -1 if x < 0

 = +1 if x = 0 and i ≠ 0
[where x = p(k-i) or x = dq(k-i)]

 = 0 if x = p(k) = 0 or x = dq(k) = 0

The predictor coefficients may be further modified
by the tone transition signal tr(k). The routine TRIGB
tests tr(k) for a transition detection and sets the pre-
dictor coefficients to 0 if a transition is detected.

If tr(k) = 1 then ai(k) = bi(k) = td(k) = 0 Eqn. 4-13

The adaptation of the scale factor y(k) is based on
information from past values of l(k) and the speed

Figure 4-8 Predictor Zero Coefficient Adaptation

Pole
Coefficient
Adaptation

(TRIGB)

bi(k)Predictor
Trigger Z-1 bi(k-1)dq(k-i)

dq(k)

(XOR, UPB)

MOTOROLA 4-13

control parameter al(k). The overall speed of adap-
tation is a combination of the fast and slow scale
factors yu(k) and yl(k). The speed control parame-
ter al(k) determines how the fast and slow scale
factors are combined. A diagram of this process is
shown in Figure 4-9.

The fast (unlocked) scale factor yu(k) is calculated
in the routine FILTD equation:

yu(k) = (1 - 2-5) y(k) + 2-5 W[l(k)] Eqn. 4-14

The routine LIMB constrains yu(k) to the limits:

1.06 ≤ yu(k) ≤ 10.00 Eqn. 4-15

Figure 4-9 Scale Factor Adaptation

W[l(k)]l(k)
Limit

Fast Scale
Factor

Scale
Factor

Adaptation
Slow Scale

Factor
Adaptation

Z-1

(FUNCTW)

(FILTD) (LIMB)

(FILTE)

(MIX)

y(k)

yl(k)
yl(k-1)

yu(k)
yu(k-1)

al(k)

Z-1

Fast Scale
Factor

Adaptation

4-14 MOTOROLA

The function W(l) according to Eqn. 4-14 is calculat-
ed in the routine FUNCTW according to Table 4-2.

The slow (locked) scale factor yl(k) is calculated in
the routine FILTE by the equation:

 yl(k) = (1 - 2-6) yl(k-1) + 2-6yu(k) Eqn. 4-16

The overall scale factor y(k) is determined in the
routine MIX by the equation:

 y(k) = al(k) yu(k-1) + [1 - al(k)] yl(k-1) Eqn. 4-17

The speed control parameter al(k) is limited to the
range 0 < al(k) < 1. The value of al(k) approaches 1
for speech signals in which case the fast (unlocked)
scale factor yu(k) dominates in Eqn. 4-17. For data
signals and tones however, the value of al(k) ap-
proaches 0 in which case the slow (locked) scale
factor yl(k) dominates in Eqn. 4-17. The value of
al(k) is determined primarily by the rate-of-change
of the difference signal, which is encoded in l(k).
The update of al(k) is shown in Figure 4-10.

Table 4-2 W(l) Lookup Table

|l(k)| 7 6 5 4 3 2 1 0

W(l) 70.13 22.19 12.38 7.00 4.00 2.56 1.13 -0.75

MOTOROLA 4-15

Two measures of the difference signal value are
used to update the speed control parameter, dms(k)
and dml(k). The signal dms(k) represents the “short
term” average of the function F[l(k)], while dml(k)
represents the “long term” average of F[l(k)]. The
value of F[l(k)] is a weighted function of l(k) and is
determined in the routine FUNCTF according to Ta-
ble 4-2. The difference signals dms(k) and dml(k) are
calculated in the routines FILTA and FILTB respec-
tively according to the equations:

dms(k) = (1 - 2-5) dms(k-1) + 2-5 F[l(k)] Eqn. 4-18

dml(k) = (1 - 2-7) dml(k-1) + 2-7 F[l(k)] Eqn. 4-19

Figure 4-10 Speed Control Parameter Adaptation

F[l(k)]
l(k) Speed Control

Parameter
Adaptation

Long Term
Average

Adaptation

(FUNCTF)

(FILTA)
Short Term

Average
Adaptation

Z-1

Z-1

(LIMA)
(FILTB)

(SUBTC, FILTC, TRIGA)

dml(k-1)

dml(k)

al(k)
ap(k) ap(k-1)

dms(k)

dms(k-1)

td(k)tr(k)

y(k)

F[l(k)]

Z-1
Limit Speed

Control
Parameter

4-16 MOTOROLA

The values of dms(k) and dml(k) are used to
determine the “unlimited” speed control parameter
ap(k). The value of ap(k) is calculated in the routines
SUBTC, FILTC, and TRIGA by the equation:

Eqn. 4-20

The value of ap(k) tends towards 2 if the difference
between dms(k) and dml(k) is large, indicating the
rate-of-change of the difference signal is fast, but it
tends towards 0 if the difference is small, indicating
the rate-of-change is slow. The value of ap(k) also
tends towards 2 when tones are detected (td(k) = 1)
or in idle channel conditions (y(k) < 3). When a tone
transition is detected (tr(k) = 1), explicitly set to 1.

To form the desired speed control parameter al(k)
the parameter ap(k) is constrained in the routine
LIMA to the limits given in . This limiting has the ef-

fect of delaying a state transition start until the
magnitude of the difference signal become relative-
ly constant.

ap(k) = (1-2-4)ap(k-1) + 2-3 if |dms(k)-dml(k)| ≥ 2-3dml(k)

= (1-2-4)ap(k-1) + 2-3 if y(k) < 3

= (1-2-4)ap(k-1) + 2-3 if td(k) = 1

= 1 if tr(k) = 1

= (1-2-4)ap(k-1) otherwise

Table 4-3 F[l(k)] Lookup Table

|l(k)| 7 6 5 4 3 2 1 0

F[l(k)] 7 3 1 1 1 0 0 0

MOTOROLA 4-17

Eqn. 4-21

The final step of the encoder is tone detection,
shown in Figure 4-11. It is included to improve the
performance of the coder in the presence of non-
speech voice-band data signals that may be
present on a typical analog phone line (e.g. DTMF
tones and data modems.) The tone detect signal,
td(k), indicates the presence of a tone. When a tone
is detected, td(k) causes the quantizer to be driven
into the fast mode of adaptation. The TONE routine
calulates td(k) by the equation:

Eqn. 4-22

ai(k) = 1 if ap(k-1) >1

= ap(k-1) if ap(k-1) ≤1

Figure 4-11 Tone Detection

a2(k) Tone
Detection Z-1Predictor

Trigger

Tone
Transition
Detection

(TONE)

(TRIGB)

(TRANS)

td(k) dq(k)yl(k)

tr(k)

td(k) = 1 if a2(k) < -0.71875
= 0 otherwise

4-18 MOTOROLA

The tone detect signal, td(k,) also causes the tone
transition detect signal, tr(k), to be set when a tran-
sition between tones occurs. This signal sets the
predictor coefficients to 0 and the tone detect signal
to 0 (in the TRIGB routine) so that the fast adapta-
tion mode will take effect immediately. The tone
transition detect signal, tr(k,) is determined in the
routine TRANS by the equation:

Eqn. 4-23

4.2 The CCITT Decoder
Algorithm

A detailed block diagram of the decoder process is
shown in Figure 4-12. As mentioned previously, the
CCITT ADPCM coder uses the feedback scheme
and one of the properties of this scheme is that the
encoder and decoder are almost identical in terms
of function. The decoder portion of the CCITT algo-
rithm uses the same routines as the encoder for the
inverse quantization, linear prediction, tone detec-
tion, and adaptation functions. The input to the
decoder, I(k), is the same l(k) used in the encoder
for adaptation and prediction. The decoder exe-
cutes all of the same routines as the encoder (and
in the same order) except for the input PCM conver-
sion (EXPAND), the difference signal computation
(SUBTA), and the adaptive quantization (LOG,
SUBTB, and QUAN). These sections are normally
not needed in the decoder but they are used in the

tr(k) = 1 if a2(k) < -0.71875 and |dq(k)| > 24•2 yi(k)
= 0 otherwise

MOTOROLA 4-19

CCITT algorithm however, as explained in the fol-
lowing paragraphs.

The linear output of the decoder is the reconstruct-
ed signal sr(k) as calculated in the routine ADDB.
This is converted to the A-law or µ-law PCM signal
sp(k) in the routine COMPRESS. This would nor-
mally be the final output but instead this signal is
passed through a synchronous coding adjustment
block, shown in Figure 4-13. The purpose of this
block is to prevent cumulative distortions that may
occur with “synchronous tandem codings” - multiple

Figure 4-12 CCITT ADPCM Decoder Block Diagram (detailed)

Inverse
Adaptive
Quantizer

Reconstructed
Signal

Calculator

Synchronous
Coding

Adjustment

l(k) dg(k) sr(k) sp(k)

Quantizer
Scale Factor
Adaptation

Adaptation
Speed
Control

Tone &
Transition
Detector

Adaptive
Predictor

Output PCM
Format

Conversion32 kbit/s
input

y(k)

yl(k)

y(k)

sd(k)

se(k)

a1(k)

a2(k)
tr(k)

td(k)

4-20 MOTOROLA

ADPCM/PCM/ADPCM conversions on a transmis-
sion path. These distortions can only be prevented
when the transmission paths are error-free and
when no extra digital signal processing functions
are performed on intermediate PCM and ADPCM
signals.

As noted previously, the encoder and decoder will
be in the same internal “state” (all internal variables
the same) assuming there are no transmission
errors. The decoder then estimates the quantization
that occurred in the encoder and forces the ADPCM
sequence which it reconstructs to match the
ADPCM sequence which it received. The decoder
does so by converting the PCM signal sp(k) back to
a linear signal slx(k) in the EXPAND routine. A new
difference signal dx(k) is then calculated in the
SUBTA routine by the equation:

dx(k) = slx(k) - se(k) Eqn. 4-24

Figure 4-13 Synchronous Coding Adjustment

Convert
to

Log PCM

Convert
to uniform

PCM

Quantize to
4 bits and
compare

l(k)
se(k)

sr(k) sp(k) sd(k)
∑

slx(k)

dlx(k)

dlnx(k)

dx(k)

y(k)

dsx(k)

(COMPRESS) (EXPAND)
(SUBTA)

(LOG)

(SUBTB)

(SYNC)

+
-

+

-

Convert
to

log2

∑

MOTOROLA 4-21

The new difference signal dx(k) is then converted to
the normalized logarithmic signal dlnx(k) in the rou-
tines LOG and SUBTB. The same quantization as
in the encoder then occurs in the routine SYNC. But
this routine also does a comparison of the new cod-
ed ADPCM signal to the received ADPCM signal
l(k). The final PCM output of the decoder, sd(k), is
determined by this comparison, defined by:

Eqn. 4-25

where:

sp(k)+ = the PCM code word that represents the
next more positive PCM output level

sp(k)- = the PCM code word that represents the
next more negative PCM output level

■

sd(k) = sp(k)+ if dx(k) < lower interval boundary

= sp(k)- if dx(k) ≥ upper interval boundary

= sp(k) otherwise

MOTOROLA 5-1

“The standard
version of the

DSP56001
ADPCM source

code
implements the

ADPCM
algorithm
exactly as

specified by the
CCITT.”

Two versions of the CCITT ADPCM algorithm de-

scribed in previous sections have been implemented

on the DSP56001, both in a full-duplex configuration.

The assembly source code for these programs are

available on the Motorola DSP bulletin board (Dr. BuB)

under the names ADPCM.ASM and ADPCMNS.ASM.

The code for the standard version is provided in a form

that will process data in files on a host computer. The

non-standard version is set up for real-time operation.

The l/O interface to either version can be easily mod-

ified for other configurations.

The program that implements the standard version,

ADPCM.ASM, has been optimized. This optimization

enables it to perform both the encode and the decode

portions of the algorithm in real-time on a single

DSP56001, running at 27 MHz with external program

memory. The source code is set up to run the CCITT

test sequences specified in Appendix ll of Recom-

mendation G.721 (1986 version) [1]. This code is a

bit-for-bit compatible implementation of the CCITT

specification and correctly passes all µ-law and A-law

test sequences provided by the CCITT.

ADPCM
Implementation on
the DSP56001

SECTION 5

5-2 MOTOROLA

ADPCMNS.ASM is the program for the non-standard
version and it is a modification of the standard imple-
mentation. ADPCMNS.ASM performs the complete
ADPCM algorithm in real-time on a single DSP56001,
and requires less computational power than the stan-
dard version. In addition to providing a more efficient
implementation of the ADPCM algorithm, this version
is better suited for modification since the algorithm is
programmed more directly than the CCITT standard
specification allows.

For both ADPCM versions, the encoder and
decoder portions of the source code are designed
to be independent of the l/O interfaces so that the
code can be easily modified for a variety of
configurations, including single or multiple channel
half-duplex configurations. For the standard
version, this feature permits real-time performance
on a slower speed DSP56001 or allows other
simultaneous tasks to be performed on the same 27
MHz DSP56001. For the non-standard version, this
feature allows an even greater variety of
configurations. Further performance details for both
versions are described in SECTION 5.5
Performance Specifications. This section details
the implementation of the CCITT ADPCM algorithm
on the DSP56001.

This application report provides only a basic de-
scription of the source code. For a more complete
understanding of the DSP56001 code, refer to the
CCITT document. Many of the details in Recom-
mendation G.721 are not included in this document
but have a significant impact on the assembly im-
plementations, especially the standard version. In

MOTOROLA 5-3

many cases, the standard code does not implement
the equations given in this document in a straight-
forward manner due to the way the specification is
written. Also, many of the comments in the source
code refer to the notations used in Recommenda-
tion G.721. (See APPENDIX A Terminology for
definitions of the basic terminology).

5.1 I/O Interface
The standard ADPCM source code is set up to run
the CCITT test sequences on the Motorola
DSP56000ADS board. The program simulates the
PCM and ADPCM interfaces by using the file l/O
routines on the ADS board. The file l/O routines
allow programs running on the ADS board to
access data in ASCII files on the host computer.
These routines provide a convenient method for
accessing the CCITT test files which are distributed
in ASCII format. The ADS does require that the data
in the test files be in a slightly different format than
that provided by the CCITT. The details of this
format can be found in the file ADPCM.HLP located
with the ADPCM source code on the Motorola DSP
bulletin board. The source code is set up to process
a PCM input file to test the encoder and an ADPCM
input file to test the decoder simultaneously. Two
output files are written, one for the encoded
ADPCM output and one for the decoded PCM
output. When running the CCITT test sequences
these output files can be compared to the CCITT
files to verify correct operation. This procedure is

5-4 MOTOROLA

also discussed in the ADPCM.HLP file. The data in
the two files being processed does not have to be
related in any way since the encoder and decoder
are designed to operate on two independent
signals. Additionally, any file containing PCM data
in ASCII hex characters may be used as input to the
encoder, and likewise any file containing ADPCM
data can be used as input to the decoder. It should
be noted however that the file l/O routines on the
ADS are not designed for high-speed data transfer
so that processing data files with the DSP56001
ADPCM program will not be in real-time.

The non-standard ADPCM program includes the
code required for a real-time l/O interface. The PCM
channel is provided by a Motorola MC145503
CODEC connected to the DSP56001's
Synchronous Serial Interface (SSI). Eight general-
purpose l/O pins on the DSP56001 are used for the
ADPCM channel. Four are used for parallel input
and the other four are used for parallel output.

The SSI interface (both the transmit and receive)
and the parallel l/O interface are assumed to be
synchronous. The code is synchronized with the l/O
interface by polling. No interrupts are used, al-
though they can be added if desired. The real-time
full-duplex operation of the non-standard ADPCM
program has been tested on a set-up consisting of
two DSP56000ADS. Further details of this test set-
up can be found in the file ADPCMNS.HLP.

As mentioned previously, the l/O interface of the
ADPCM programs are designed to be flexible for a
variety of configurations. The standard ADPCM

MOTOROLA 5-5

code is provided with a file l/O interface to allow
easy testing of the CCITT sequences, but it can be
easily modified for a real-time interface. This was
done to test the real-time operation of the algorithm.
Only the interface portion of the source code was
changed. The algorithm itself was not modified. The
non-standard code already contains code for a real-
time interface, but it can be modified for other con-
figurations as well. In addition to the test set-up
using CODECs for the PCM channel, this code was
tested with a 16-bit linear A/D and D/A interface. In
this case the PCM compression and expansion rou-
tines were removed, but again the algorithm itself
was not modified.

5.2 Standard
Implementation

The standard version of the DSP56001 ADPCM
source code implements the ADPCM algorithm ex-
actly as specified by the CCITT. The advantage of
using this version is that the user can be confident
that the DSP56001 implementation will perform ex-
actly as specified by the CCITT. This includes
performance with non-speech signals and in spe-
cial operating conditions. The disadvantage of this
version is that the specification does not always al-
low the equations to be implemented in an efficient
manner on a general purpose digital signal proces-
sor. An example is the multiply and accumulation
portion of the linear predictor. The standard speci-
fies that the multiply be done in a floating-point

5-6 MOTOROLA

format while the accumulation be done in 16-bit
fixed point format. Not only is the floating-point mul-
tiply less efficient than a native 24-bit fixed point
multiply on the DSP56001, but several conversions
between fixed and floating-point formats are re-
quired for each sample (see SECTION 5.2.5
Floating-Point Conversion). This is the most time
consuming part of the algorithm but other parts of
the specification also do not permit efficient imple-
mentation on a programmable microprocessor.

The standard implementation was written with the
following two objectives:

• to adhere with the CCITT specification in order
to maintain bit-for-bit compatibility with the
CCITT test sequences

• to obtain a full-duplex solution with real-time
operation on a single DSP56001

Knowing that the standard version was written with
these two primary objectives may help to clarify the
way the algorithm was implemented.

5.2.1 Code Structure
The assembly program for the standard version of
the ADPCM algorithm is structured as two main rou-
tines, the encoder (transmit) and the decoder
(receive), plus one subroutine for initialization. After
the initialization routine, the encoder routine is exe-
cuted, followed by the decoder. The code then
alternates between the encoder and decoder indefi-
nitely. A flow diagram of the encoder and decoder is
shown in Figure 5-1. This shows the order in which

MOTOROLA 5-7

the various portions of the algorithm are executed.

The order of execution of the individual CCITT rou-

tines along with their execution speed is given in

SECTION 5.4 Performance Specifications.

The encoder and decoder routines are designed to

operate as independent code segments. They do

assume that appropriate variables are stored in

data memory and that appropriate pointers have

been set. In particular, address registers r1, r2, r6,

and r7 should contain the appropriate memory ad-

dresses prior to executing the encoder and decoder

sections. Registers r3 and r5 should contain con-

stant address values used for table lookup.

Registers r0 and r4 do not need to be initialized

since they are used as general purpose registers.

The encoder and decoder are not set up as subrou-

tines in the program. If interrupts are used for data

l/O, they can easily be made into subroutines or in-

terrupt routines. However, one routine should not

interrupt the other routine until it is completely fin-

ished executing.

No subroutines are used within the encoder or the

decoder so that optimal speed can be obtained.

The code has also been optimized to take advan-

tage of the DSP56001's architecture as much as

possible. This causes the various CCITT routines in

the code to “overlap” in many cases, meaning that

variables and data values for one routine may be

read from memory while the previous routine is still

executing. In one case, the XOR and UPB routines

are actually combined into a single section of code.

5-8 MOTOROLA

Compute Scale Factor

Covert log PCM
Input to Linear

Compute Difference Signal

Quantize Difference Signal

Output ADPCM word

Compute
Reconstructed Signal

Predictor Adaptation

Tone Detection

Speed Control
Parameter Adaptation

Scale Factor Adaptation

Tone Transition Detection

Inverse Quantize
ADPCM Signal

Get Input Sample

Predictor Filter

ENCODER

DECODERENCODER

DECODER

Limit Speed
Control Parameter

Figure 5-1 Code Flow Diagram

Compute Scale Factor

Compute
Reconstructed Signal

Predictor Adaptation

Tone Detection

Speed Control
Parameter Adaptation

Scale Factor Adaptation

Tone Transition Detection

Inverse Quantize
ADPCM Signal

Get Input Sample

Predictor Filter

Limit Speed
Control Parameter

Covert Output
to Log PCM

Output PCM word

Sync. Comparison
and Adjustment

MOTOROLA 5-9

This optimization makes the code more difficult to
follow in some cases, however, extra comments
were added to clarify most of these cases. Further
discussion of this optimization technique is present-
ed in SECTION 5.4 Optimization Techniques.

5.2.2 Initialization
The initialization subroutine accomplishes three
main tasks:

1. initializing the DSP56001

2. initializing program variables and lookup tables

3. initializing data buffer pointers and modulo
registers

This subroutine also includes any l/O interface con-
figuration that is necessary. Figure 5-2 shows the
memory map of the internal data RAM. The encoder
and decoder algorithms each require several vari-
ables to be stored in memory. The DSP56001 code
also requires several other temporary storage loca-
tions. Most of the variables used by the algorithm are
stored in data memory below address $40 so that the
short immediate addressing mode can be used
when accessing them. Data locations that are ac-
cessed with an addressing register are stored at
higher locations in data memory since they do not
need to use immediate addressing modes.

The DSP56001 initialization consists of enabling the
on-chip, factory programmed data ROM tables and
setting the DSP56001's Bus Control Register (BCR)
for zero wait state external program memory access.
The µ-law and A-law ROM table in X memory is

5-10 MOTOROLA

needed for the log PCM conversion routine. The
zero wait states for external program memory are
needed so the algorithm will run in real time.

The program initialization is done in the subroutine
INIT. First, all internal X and Y data RAM is cleared,
all variables that require specific values are initialized,
and then all lookup tables are copied from their load-
time locations in program memory to their run-time lo-
cations in data RAM. Next, the pointers to the receive
(decode) and transmit (encode) data buffers are ini-
tialized. These buffers hold the delayed values of
dq(k) and sr(k) used in the linear predictor filter. These
are the only true modulo buffers used in the assembly
code in the sense that the newest delayed values re-
place the oldest delayed values without actually
moving the other delayed values. The INIT routine ini-
tializes the sign and mantissa locations in these
buffers since the code assumes a certain range of le-
gal values in these locations. The INIT routine also
initializes other variables including the variable LAW.
It determines whether the µ-law or A-law format is
chosen. The program defaults to setting LAW to zero
to select µ-law for the PCM format. The code can be
changed to set LAW to any non-zero value which will
select the A-law format. It can also be easily modified
to select µ-law or A-law based on an external input.

The remaining portions of the INIT routine initialize
the addressing registers and modifier registers that
are used to access the data memory. Six of the vari-
able storage areas (indicated by * in Figure 5-2) are
addressed using modulo pointers. These six areas,
three each for the encoder and decoder, are used by
the linear predictor filter.

MOTOROLA 5-11

Figure 5-2 Internal Data RAM Memory Map

Encoder Variables

Decoder Variables

Temporary Variables

Unused

FMULT Constants

PCM Conversion Table

W[I] Table

Inverse Quan. Table

Quantization Table

Encoder Predictor Data*

Encoder Partial Products*

Decoder Predictor Data*

Unused

Decoder Partial Products*

X:

Encoder Variables

Decoder Variables

Temporary Variables

Shift Constant Table

Encoder Predictor Coef*

Decoder Predictor Coef*

Unused

Misc. Constants

Y:

$68

$60

$58

$38

$20

$1e

$f

$0

$80

$78

$60

$58

$40

$36

$30

$28

$20

$18

$10

$b

$5

$0

*These regions are addressed as
modulo buffers.

5-12 MOTOROLA

The complete addressing register assignments
along with the associated addressing modes are
shown in Figure 5-3. Six of the addressing registers
are reserved for particular functions, and the re-
maining two are used for other general purpose
tasks requiring addressing registers. The INIT rou-
tine can also contain any initialization needed for a
hardware interface such as the SSI port. No initial-
ization is needed to use the file l/O routines on the
ADS so l/O initialization is not included in the stan-
dard code.

5.2.3 PCM Format Conversion

The ADPCM algorithm uses several different types of
numeric formats. Conversion between these formats
is required in several places in the assembly code.
The log PCM format conversion is one of these in-
stances. Two different routines are used for
converting between µ-law or A-law PCM samples
and linear (uniform) samples. EXPAND converts an

Figure 5-3 Address Register Usage

PCM Conversion (ROM)

Predictor Data

Partial Products

General Purpose

Misc. Constants

Predictor Coefficients

Right Shift Table

General PurposeR4

R5

R6

R7

R0

R1

R2

R3

linear

mod(7)

mod(23)

mod(127)

linear

linear

mod(7)

linear

MOTOROLA 5-13

8-bit log PCM sample to a linear 14-bit two's-comple-
ment representation that is suitable for numeric
operations. COMPRESS performs the opposite con-
version. The DSP56001 ADPCM implementation
supports both µ-law and A-law format conversion.

The routine EXPAND performs the conversion by
using the internal µ-law and A-law ROM tables on
the DSP56001. EXPAND uses register r3 as the
pointer into the lookup table. Register r3 is set
during program initialization to either the µ-law table
base or the A-law table base and remains set to this
value while the program is running. Register n3 is
used as an offset into the ROM table. The assembly
code for EXPAND is identical for both formats and
is only dependent on the base pointer stored in r3
so separate routines are not needed. To obtain
optimal speed, the COMPRESS routine requires
separate code sections for the µ-law and A-law
conversion. In this routine, the variable LAW is
tested for each sample. If only one format is used,
the variable LAW may be eliminated and one
section of COMPRESS may be removed to save
program memory. The SYNC routine discussed in
SECTION 5.2.11 also requires separate code
segments for each log PCM format, so similar
program memory savings can be obtained there.

The EXPAND and COMPRESS routines are modi-
fied versions of routines given in the Motorola
applications brief “Logarithmic/Linear Conversion
Routines for the DSP56000/1” [6]. They were cho-
sen based on maximum execution speed.
Complete descriptions of each routine can be found
in the above applications brief.

5-14 MOTOROLA

5.2.4 Logarithmic Conversion
Another conversion required in the ADPCM algo-
rithm is between a linear and a base 2 logarithmic
format. The quantizer and the inverse quantizer
achieve their adaptive characteristic by use of a
scale factor. The scale factor itself and many of the
variables used to calculate it are in a base 2 loga-
rithmic form. The total number of bits used for these
variables differs but they all share a common form
of a mixed number. The numeric operations are
performed on these numbers assuming an integer
exponent portion combined with a fractional mantis-
sa portion in one mixed number. The scale factor
adaptation does not require a specific conversion to
this format but a conversion is required in the quan-
tizer and inverse quantizer. The routine LOG in the
quantizer converts the difference signal to the base
2 logarithmic form so that it can be modified by the
scale factor. In the inverse quantizer, the routine
ANTILOG converts the quantized difference signal
back to the linear form after it has been readjusted
by the scale factor. In fact, the ADPCM codeword is
based on the log of the difference signal d(k) rather
than the difference signal itself.

Figure 5-4 illustrates the conversion process in a ver-
sion of the LOG routine. The input D is in a 16-bit
two's complement format. The first step is to convert
this number to a sign magnitude representation sav-
ing the sign in register y1. After checking the
magnitude for a non-zero value it is then normalized
to determine the exponent and mantissa. The itera-
tive NORM instruction is used for this conversion.
This instruction will shift the magnitude left one bit for

MOTOROLA 5-15

each iteration until a 0 is in bit 23 and a 1 is in bit 22
(this is the normalized fraction format on the
DSP56001). For each left shift the value in r0 is dec-
remented. Once the magnitude has been normalized
successive iterations will do no further adjustments.
Fourteen iterations are performed since the maxi-
mum that the magnitude can be shifted is 14 bits,
assuming the magnitude is non-zero. Fourteen itera-
tions of the NORM is not needed in all cases but
taking time to test after each iteration would cause
the worst case delay to be longer. After the normal-
ization process is finished the normalized mantissa
will be in accumulator a and the associated exponent
will be in register r0.

The remaining instructions combine the exponent
and mantissa into a mixed number. The truncation of
the mantissa to seven bits is performed by using a
mask instead of actually shifting. This technique is
common throughout the code. The process of com-
bining the exponent and mantissa also shows the
technique of shifting by multiplication. The exponent
is moved from r0 to x1 where it will be in the four
LSBs but it needs to be left justified to bits 22-19
which are the four MSBs of the DSP56001's fraction-
al format. A shift constant is read from the shift
constant table in Y memory and is multiplied with the
exponent. The result is that the exponent is effective-
ly shifted left 19 bits. A shift constant is also used to
shift the mantissa right by three bits. In this example
the mantissa is shifted right and combined with the
exponent in a single MAC instruction. This shift tech-
nique is described in further detail in SECTION 5.4.
The resulting log signal DL is a mixed number with

5-16 MOTOROLA

four integer bits and seven fractional bits with an im-

plied radix point. Note that this logarithmic format is

similar to the mixed number format discussed in [9].

Figure 5-4 Linear to Log Conversion Routine

;**
; LOG
;
; Convert difference signal from the linear to the log domain
;
; Input: D = siii iiii | iiii iiii. | 0000 0000 (16TC) in accum A
;
; Outputs:
; DL = 0iii i.fff | ffff 0000 | 0000 0000 (llSM) in accum A
; DS = sXXX XXXX | XXXX XXXX | 0000 0000 (lTC) in Y1
;
;**

MOVE #$000E, R0 ;Get exp bias (14)
MOVE X:Y_T,B ;Get Y
ABS A A,Yl ;Find DQM=|D|, save DS to Y1
JNE <NORMEXP_T ;Check for DQM=0
CLR A (R7) + ;If DQM-0 set DL=0
JMP <SUBTB_T

NORMEXP_T
REP #14 ;If DQM!=0, do norm iteration
NORM R0, A ;14 times to find MSB of DQM

; A1 = 01?? ???? | ???? ???? | 0000 0000 = normalized DQM (A2=A0=0)
; R0 = 0000 0000 | 0000 eeee = exponent of normalized DQM

; Get rid of leading “1” in normalized DQM
; Truncate mantissa to 7 bits and combine with exponent

MOVE Y:(R7)+,X1 ;Get mask K6 ($3F8000)
AND Xl,A Y:LSHFT-l9,X0 ;Truncate MANT, get EXP shift

; A1 = 00mm mmmm | m000 0000 | 0000 0000 (A2=A0=0)

MOVE R0,X1 ;Move EXP to X1
MPY X0,Xl,A A,X1 Y:(R7) +,Y0 ;Shift EXP<<19,save MANT to X1,

;get mask K7 ($100000)
MOVE A0,A ;Move EXP to A1

; X1= 00mm mmmm | m000 0000 | 0000 0000
; A1= 0eee e000 | 0000 0000 | 0000 0000 (A2=A0=0)

MAC Y0,Xl,A ;shift MANT>>3 & combine with EXP

; Al= 0eee e.mmm | mmmm 0000 |0000 0000 (A2=A0=0)
; = 0iii i.fff | ffff 0000 |0000 0000 (A2=A0=0)

MOTOROLA 5-17

The routine ANTILOG in the inverse quantizer per-
forms the opposite conversion. It does so by
splitting the exponent and mantissa apart and then
shifting the mantissa right again according to the
exponent.

5.2.5 Floating-Point Conversion
The other type of conversion required in the ADPCM
algorithm is a floating-point conversion. The CCITT
specifies that the multiplications in the linear predic-
tor filter be done in a specific floating-point format.
After each multiplication, the result must be con-
verted back into fixed-point format before it is
accumulated with the other partial products. The
data inputs to the predictor filter are the delayed val-
ues of dq(k) and sr(k). For each input sample, these
values are converted to floating-point and then
stored in this form so they do not have to be con-
verted again. The coefficients of the predictor filter
ai(k) and bi(k) are updated in fixed-point form for
each sample so they must be converted from linear
to floating-point form for each sample. Since there
are six zeros and two poles in the predictor filter, the
overall requirement is ten fixed-point to floating-
point conversions and eight floating-point to fixed-
point conversions. Clearly, this conversion process
has a major impact on the execution speed of the
overall algorithm, so this process must execute as
fast as possible. Sixteen of these conversions are
performed in the FMULT routine and the other two
are performed in the FLOATA and FLOATB rou-
tines so that much of the speed emphasis is placed

5-18 MOTOROLA

on the FMULT routine. Again, the overall goal is the
minimum worst case execution time.

The floating-point format used in this algorithm con-
sists of four exponent bits, six mantissa bits (with an
explicit leading 1), and one sign bit for a total of elev-
en bits (11FL). As mentioned, the values of dq(k)
and sr(k) are stored in the floating-point format.

Figure 5-5 Linear to Floating-Point Conversion Routine

;**
; FLOATA
;
; Converts the quantized difference signal from 15-bit signed magnitude to
; floating pt. format (llFL - sign, exp, and mant stored separately)
;
; Inputs:
; DQ = siii iiii | iiii iii.0 | 0000 0000 (15SM) in accum A
;
; Outputs:
; DQ0 = (llFL)
; DQ0EXP = X:(R2) = 0000 0000 | 0000 0000 | 0000 eeee
; DQ0MANT = X:(R2+1) = 01mm mmm0 | 0000 0000 | 0000 0000
; DQ05 = X: (R2+2) = sXXX XXXX | XXXX XXXX | 0000 0000
;
;**
;
; R2 points to predictor data buffer - DQ0 will overwrite previous SR2

MOVE X:DQ_T, Y0 ;Get DQS
MOVE Y:DQMAG,A ;Get MAG=DQMAG
TST A #$000E,R0 ;Check MAG, get exponent bias (14)
JNE <NORMDQ_T ;Test MAG
MOVE #<$40, A ;If MAG=0 set MANT=100000,
MOVE #0,R0 ; and EXP=0
JMP <TRUNCDQ_T

NORMDQ_T
REP #13 ;If MAG!=0 do NORM iteration 13
NORM R0,A ; times to find MSB of MAG

; Al = 01?? ???? | ???? ???0 | 0000 0000 = normalized MAG (A2=A0=0)
; R0 = 0000 0000 | 0000 eeee = exponent of normalized MAG

TRUNCDQ_T MOVE #<$7E,X0 ;Get mask
 AND X0,A R0,X:(R2)+ ;Truncate MANT to 6 bits,

; save EXP to DQlEXP

; Al = 01mm mmm0 | 0000 0000 | 0000 0000 (A2=A0=0)
 MOVE Al,X:(R2)+ ;Save MANT to DQlMANT
 MOVE Y0,X:(R2)+ ;Save DQ to DQlS

MOTOROLA 5-19

The coefficients do not need to be stored in this for-
mat since they are used immediately after they are
converted in the FMULT routine. Further details of
the FMULT routine are given in the adaptive predic-
tor section, however, a version of FLOATA is shown
in Figure 5-5 to illustrate the conversion process.
Clearly, the process of normalizing the input value is
very similar to that in the logarithmic conversion rou-
tine LOG. The main difference is that the sign,
exponent, and mantissa components are not com-
bined but are stored separately in the data buffer,
using register r2 as a pointer. Note that this storage
form was chosen because it requires less data ma-
nipulation and shifting. Also notice that the complete
value of the two's complement number is stored as
the sign. Only the sign of the value is important so
the sign does not need to be separated from the rest
of the number.

5.2.6 Difference Signal Quantization
After the EXPAND conversion routine converts the
input signal s(k) to the two's complement signal
sl(k), the routine SUBTA subtracts the signal esti-
mate se(k) from this value to form the difference
signal d(k). The computation in SUBTA only re-
quires aligning radix points and subtracting. The
adaptive quantization of d(k) is not as straightfor-
ward. To perform the quantization d(k) must be
normalized by the scale factor y(k). As noted previ-
ously, the scaling and quantization is performed in
base 2 log format. This conversion in the routine
LOG is described in SECTION 5.2.4.

5-20 MOTOROLA

After conversion the log signal dl(k) is scaled in the
routine SUBTB and quantized in the routine QUAN.
These two routines are shown in Figure 5-6.
SUBTB simply truncates the scale factor y(k) and
then subtracts this value from dl(k). The
quantization of this normalized value dln(k) in the
QUAN routine is done by a table search. The
boundary values of the eight quantization regions
shown in Table 4-1 are stored in the table
QUANTAB in data memory. These values are read
from the table using register r0 as a pointer and
then compared with dln(k) until the correct range is
found. When the range is found, an offset from the
starting address of QUANTAB is subtracted from
the last value in r0. This process produces the
correct magnitude of l(k) given in Table 4-1.

Figure 5-6 Difference Signal Scaling and Quantization (sheet 1 of 2)

;**
;
; SUBTB
;
; Scale log version of difference signal by subtracting the scale factor
;
; DLN = DL - Y
;
; Inputs:
; DL = 0iii i.fff | ffff 0000 | 0000 0000 (llSM) in accum B
; Y = 0iii i.fff | ffff ff00 | 0000 0000 (13SM) in accum A
;
; Output:
; DLN = siii i.fff | ffff 0000 | 0000 0000 (12TC) in accum A
;
;***

SUBTB_T MOVE Y:(R7),X0 ;Get mask K8 ($7FF000)
 AND X0,B ;Truncate Y to 11 bits (Y>>2)

SUB B.A ;Find DLN = DL - Y

;**

MOTOROLA 5-21

Figure 5-6 Difference Signal Scaling and Quantization (sheet 2 of 2)

; QUAN
; Quantize difference signal in log domain
;
; log2 |D(k)| - Y(k) | |I(k)|
; -------------------- |-------
; [3.12, + inf) | 7
; [2.72, 3.12) | 6
; [2.34, 2.72) | 5
; [1.91, 2.34) | 4
; [1.38, 1.91) | 3
; [0.62, 1.38) | 2
; [-0.98, 0.62) | 1
; (-inf, -0.98) | 0
; Inputs:
; DLN = siii i.fff | ffff 0000 | 0000 0000 (12TC) in accum A
; DS = sXXX XXXX | XXXX XXXX | 0000 0000 (lTC) in reg Yl
; Output:
; I = siii 0000 | 0000 0000 | 0000 0000 (ADPCM format) in accum A
;**
; Quantization table in X memory
; QUANTAB DC $F89000 ;-0.98
; DC $050000 ;0.62
; DC $0B2000 ;1.38
; DC $0F6000 ;1.91
; DC $12C000 ;2.34
; DC $15D000 ;2.72
; DC $190000 ;3.12
; DC $7FFFFF ;15.99
;

MOVE #QUANTAB,R0 ;Get quantization table base
MOVE #>QUANTAB+2,X1 ;Get offset for quan. conversion
MOVE X:(R0)+,X0 ;Get 1st quan. table value

TSTDLN_T
CMP X0,A X:(R0)+,X0 ;Compare to DLN, get next value
JGE <TSTDLN_T ;If value<DLN try next range
MOVE R0,A
SUB Xl,A Y:LSHFT-20,X0 ;When range found subtract pointer

; from base to get IMAG=II

; A1 = 0000 0000 | 0000 0000 | 0000 0iii (A2=A0=0)
MOVE Al,X1
MPY X0,Xl,A Yl,B ;Shift IMAG <<20, result is

; in A0, move DS into B
MOVE A0,A

; A1 = 0iii 0000 | 0000 0000 | 0000 0000 (A2=A0=0)
MOVE Al,X:IMAG ;Save IMAG
TST A #<$F0,X0 ;Check IMAG, get invert mask
JEQ <INVERT_T ;If IMAG=0 invert bits
TST B ; else check DS
JPL <IOUT_T ;If DS=1 don't invert IMAG

INVERT_T EOR X0,A ;If DS=0 or IMAG=0 invert IMAG
IOUT_T MOVE Al,A ;Adjust sign extension

5-22 MOTOROLA

The magnitude of l(k) is shifted to the MSBs of reg-
ister a1 and is then combined with the sign value
ds(k) which was previously saved in register y1 in
the LOG routine. The ADPCM word l(k) is in a sign
magnitude type format. If ds(k) is negative then the
four MSBs of the accumulator are inverted, setting
the sign bit to 1 and inverting the magnitude bits. If
the sign is positive the magnitude of l(k) is not
changed leaving the sign set to 0. A special case
occurs when the magnitude of l(k) is 0. In this case
the bits are inverted even if the sign is positive. This
means that an all zero word is not legal and will nev-
er be transmitted. This is why the quantizer is
referred to as a 15-level quantizer. It should be not-
ed however that transmission errors can cause an
all zero word to be received by the decoder so this
case must be taken into account in the inverse
quantization.

5.2.7 Inverse Quantization
The inverse quantization of the ADPCM sample l(k)
is performed in the routines RECONST and ADDA.
These routines are shown in Figure 5-7. The
RECONST routine uses a table lookup to find dlnq(k)
— the quantized version of dln(k). After removing the
sign of l(k) the magnitude is inverted if necessary
and is then shifted to the three LSBs of the 24-bit
word. This magnitude is then moved to the offset
register n4 where it is used as an offset to find one
of eight values stored in the lookup table IQUANTAB
(defined in Table 4-1). The scale factor y(k) is added
to the result to find the denormalized value dql(k).

MOTOROLA 5-23

;**
; RECONST
;
; Reconstruct quantized difference signal in the log domain
;
; |I(K)| | log2 |DQ(k)| - Y(k)
; ---------|-------------------
; 7 | 3.32
; 6 | 2.91
; 5 | 2.52
; 4 | 2.13
; 3 | 1.66
; 2 | 1.05
; 1 | 0.031
; 0 | - inf
;
; Inputs:
; I = iiii 0000 | 0000 0000 | 0000 0000 (ADPCM format) in accum A
;
; Output:
; DQLN = siii i.fff | ffff 0000 | 0000 0000 (12TC) in accum A
; DQS = sXXX 0000 | 0000 0000 | 0000 0000 (lTC) in reg Y1
;
;**
;
; Inverse quantization table in X memory
;
;IQUANTAB DC $800000 ;-16 |I|=0
; DC $004000 ;0.031 |I|=1
; DC $087000 ;1.05 |I|=2
; DC $0D5000 ;1.66 |I|=3
; DC $111000 ;2.13 |I|=4
; DC $143000 ;2.52 |I|=5
; DC $175000 ;2.91 |I|=6
; DC $1A9000 ;3.32 |I|=7

MOVE #<$F0,X1
MOVE A,Y1 A,X:I_R ;Save DQS (sign of I) to Y1
EOR Xl,A Y:RSHFT+20,Y0 ;Invert bits of I
TMI Yl,A ;If ^IS=1 use I, else use ^I

; A1 = 0iii 0000 | 0000 0000 | 0000 0000
MOVE Al,X0
MOVE Al,X:IMAG ;Save |I|
MPY X0,Y0,A #IQUANTAB,R4 ;shift IMAG>>20

; A1 = 0000 0000 | 0000 0000 | 0000 0iii (A2=A0=0)
MOVE Al,N4 ;Load IMAG as offset into IQUAN table
MOVE X:Y_R,B ;Get Y
MOVE X:(R4+N4),A ;Lookup DQLN

Figure 5-7 Inverse Quantization and Scaling of ADPCM Codeword
(sheet 1 of 2)

5-24 MOTOROLA

This logarithmic value is converted back into linear
form in the routine ANTILOG to find the result of the
overall inverse quantization procedure dq(k), the
quantized version of the difference signal.

The quantization and inverse quantization proce-
dures can serve as illustrations of one way of
implementing an adaptive quantization in a wave-
form coder. The adaptation of y(k), discussed in
SECTION 5.2.10, addresses the adaptive charac-
teristic of the scale factor but the scaling and
quantization process described here can still be
used no matter how the adaptation is performed.

5.2.8 Adaptive Predictor
The adaptive predictor portion of the ADPCM algo-
rithm is implemented in two main sections. The

;**
; ADDA
; Add scale factor to log version of quantized difference signal
;
; DQL = DQLN + Y
;
; Inputs:
; Y = 0iii i.fff | ffff ff00 | 0000 0000 (13SM) in accum B
; DQLN = siii i.fff | ffff 0000 | 0000 0000 (12TC) in accum A
; Output:
; DQL = siii i.fff | ffff 0000 | 0000 0000 (12TC) in accum A
;
;**

MOVE Y:(R7)+,Y0 ;Get mask K8 ($7FF000)
AND Y0,B ;Truncate Y to 11 bits (Y<<2)
ADD B,A ;Find DQL=DQLN+(Y<<2)

Figure 5-7 Inverse Quantization and Scaling of ADPCM Codeword
(sheet 2 of 2)

MOTOROLA 5-25

first section is the prediction filter itself, shown in
Figure 4-5. This section consists of the routines
FMULT and ACCUM. The filter uses delayed data
and coefficient values so FMULT and ACCUM are
the first two routines executed in the encoder and
the decoder. The second section consists of the re-
constructed signal calculation and the adaptation of
the predictor coefficients. These routines are exe-
cuted after the inverse quantization in both the
encoder and the decoder.

The adaptive predictor is the most computationally
intensive portion of the ADPCM implementation on
the DSP56001. One of the main reasons for this is
the floating-point multiplies that are required in the
FMULT routine, as was discussed in the floating-
point conversion section. The FMULT routine is set
up as a hardware DO loop that is executed eight
times, two for the poles and six for the zeros. For
each tap of the filter the two’s-complement coeffi-
cient must be converted to the floating-point format
before it is multiplied with the delayed data value.
After the multiplication each partial product must be
converted to the fixed point format. Overall eight
fixed-point to floating-point conversions and eight
floating-point to fixed point conversions are re-
quired in the FMULT routine. The flow description
within each loop of FMULT is as follows:

1. Convert the 16-bit two's complement coefficient
to a 13-bit magnitude and a 1-bit sign.

2. Convert the 13-bit magnitude to a 4-bit exponent
and a 6-bit mantissa.

5-26 MOTOROLA

3. Add the exponents of the coefficient and the
data to find the 5-bit exponent of the partial
product.

4. Multiply the mantissas of the coefficient and the
data and truncate the results to find the 8-bit
mantissa of the partial product.

5. Convert the exponent and the mantissa of the
partial product to a 15-bit magnitude.

6. Exclusive-OR the signs of the coefficient and
the data to find the sign of the partial product.

7. Convert the 15-bit magnitude and 1-bit sign of
the partial product to a 16-bit two's complement
number.

Since the FMULT routine requires a large percent-
age of the processing time of the overall algorithm
it is desired to have the worst case execution speed
of this routine as short as possible. To reduce data
movement overhead, several constants that are
needed by the routine are stored in the table
CONST in data memory. These constants are ad-
dressed using register r0 so parallel moves can be
taken advantage of whenever possible. This tech-
nique is discussed in SECTION 5.4 Optimization
Techniques. Another aspect of this routine that has
a significant effect on the speed is the way the co-
efficients, data, and partial products are stored in
data memory. A description of this buffer structure
is shown in Figure 5-8. The variables wai(k) and
wbi(k) in this figure represent the partial products for
the pole and zero taps of the filter. To eliminate ex-
tra overhead the predictor data buffer that contains
the delayed floating point values of dq(k) and sr(k) is

MOTOROLA 5-27

set up so that the sign, mantissa, and exponent are

stored separately. Storing the data in this form uses

more data memory but the routine requires much

less computation when using these values than if

they were combined into one word. The address

register r2 is used as a pointer to this buffer so when

an element is needed an address register address-

ing mode can be used. These modes allow the

parallel bus structure of the DSP56001 to be taken

advantage of whenever possible.

Figure 5-8 Adaptive Predictor Data Structure

dq(k-1)

dq(k-2)

dq(k-3)

dq(k-4)

dq(k-5)

dq(k-6)

sr(k-1)

sr(k-2)
b1(k-1)

b2(k-1)

b3(k-1)

b4(k-1)

b5(k-1)

b6(k-1)

a1(k-1)

a2(k-1)

wb1(k-1)

wb2(k-1)

wb3(k-1)

wb4(k-1)

wb5(k-1)

wb6(k-1)

wa1(k-1)

wa2(k-1)

X:(R1)Y:(R6)

X:(R2)

0000 0000 0000 0000 0000 eeee
01mm mmm0 0000 0000 0000 0000
sXXX XXXX XXXX XXXX 0000 0000

mod(23)

exponent
mantissa
sign

mod(6) mod(7)

5-28 MOTOROLA

The data buffer structure also allows the efficient
offset addressing modes of the DSP56001 to be
used when consecutive values of one component
are required. For instance, the signs of each de-
layed dq(k) value are needed in the XOR/UPB
routine. In this routine the offset register n3 is set to
3 so that when one sign is read from the buffer, reg-
ister r3 is automatically post-incremented by 3 to
point to the next sign. The modulo pointer feature of
the DSP56001 also reduces execution speed since
less software overhead is required to update the
pointer. The data buffer for the prediction filter is ac-
tually a modified form of the usual modulo buffer
structure on the DSP56001 since two new values,
sr(k-1) and dq(k-1), are added to the buffer for each
sample. The new sr(k-1) overwrites the current
dq(k-6) and the new dq(k-1) overwrites the current
sr(k-2). The coefficient buffer and partial product
buffer are addressed using modulo pointers for effi-
ciency but the physical locations of each
component do not change.

The implementation of the ACCUM routine that
adds the partial products is more straightforward
than the FMULT routine. The wbi(k) partial products
for the six zeros are accumulated first to obtain the
partial signal estimate sez(k). Then the wai(k) partial
products for the two poles are accumulated with the
zeros to form the final signal estimate se(k). Even
though FMULT and ACCUM account for a large
percentage of the overall execution speed they only
implement Eqn. 4-2 and Eqn. 4-3 of the CCITT
algorithm.

MOTOROLA 5-29

The second section of the adaptive predictor code
is executed after the inverse quantizer. Calculating
Eqn. 4-4 to determine the reconstructed signal
sr(k) is done in the routine ADDB. This routine re-
quires a format conversion since dq(k) is in a sign
magnitude format. Following the ADDB routine is
the adaptation of the predictor coefficients which
includes Eqn. 4-5 through Eqn. 4-12. Due to the
way the specification is written the implementation
of Eqn. 4-5 through Eqn. 4-8 to update a1(k) and
a2(k) is slightly more complicated than Figure 4-6
and Figure 4-7 indicate. The ADDC routine basi-
cally implements Eqn. 4-7 but it also calculates
part of Eqn. 4-5 and Eqn. 4-6 that use the signal
p(k). The routine first calculates p(k) and then
saves it to memory after delaying the previous val-
ues of p(k) and p(k-1). The routine then calculates
the variables PKS1 and PKS2 that represent the
multiplication of the sgn[x] functions in Eqn. 4-5
and Eqn. 4-6. The sgn[x] function that is calculated
in this routine does not have the values shown in
Eqn. 4-12. Instead a 0 in the sign bit represents a
positive number while a 1 in the sign bit represents
a negative number. The variable SIGPK is used to
distinguish the special case of sgn[p(k)] = 0. The
routine UPA1 calculates Eqn. 4-5 in a slightly rear-
ranged form:

a1(k) = a1(k-1) - [2-8 • a1(k-1)] + gain Eqn. 5-1

The gain portion of Eqn. 5-1 represents the second
half of Eqn. 4-5 and is determined by testing the
variables PKS1 and SIGPK. The routine UPA2 cal-

5-30 MOTOROLA

culates Eqn. 4-6 to update a2(k) in a similar manner.
This routine is more complicated since it also has to
calculate the value of f(a1) in Eqn. 4-8. After updat-
ing a1(k) and a2(k), the routines LIMD and LIMC
limit these values. The routine LIMC uses a con-
stant upper and lower limit defined in Eqn. 4-9 for
the comparison. It makes use of the conditional
transfer instructions of the DSP56001 as discussed
in SECTION 5.4 Optimization Techniques. The
LIMD routine is very similar but it must calculate the
upper and lower limits before the comparison.

The bi(k) coefficients are updated in the routines
XOR and UPB which are combined in a single code
segment. The XOR routine accounts for the sgn[x]
multiplication in Eqn. 4-11 that uses the delayed
values of dq(k). The calculation of Eqn. 4-11 is sim-
ilar to that of Eqn. 4-5 and Eqn. 4-6 except that the
calculation must be done six times for each of the
six bi(k) coefficients. In this routine the special case
of sgn[dq(k)] = 0 is checked only once since it ap-
plies to all six calculations. If this case is found a DO
loop that does not add the second half of Eqn. 4-11
is executed. If this case is not present a DO loop
that does the full calculation is executed, but execu-
tion time is saved since the test for the special case
does not have to be performed for each stage of the
loop.

After the coefficients have been updated they are
passed through the predictor trigger routine. Since
this routine also affects the tone detect signal tr(k),
they are all updated at once in the tone detection
section of the algorithm. The final step of the adap-
tive prediction section is the conversion of the

MOTOROLA 5-31

quantized difference signal dq(k) and the recon-
structed signal sr(k) to the floating-point format. This
is done in the routines FLOATA and FLOATB re-
spectively. After these values have been converted
they are stored in the predictor data buffer. Further
details of the floating-point conversion are found in
SECTION 5.2.5 Floating Point Conversion.

5.2.9 Tone Detection
The tone detection portion of the ADPCM algorithm
is implemented in three routines; TONE, TRIGB,
and TRANS. The TONE routine, executed after the
predictor adaptation, checks the pre-limited version
of the coefficient a2(k) for a threshold. If it is below
that threshold the tone detection variable td(k) is set
to 1. The TRIGB routine affects the signal td(k) as
well as the predictor coefficients.

TRIGB tests the transition detect signal td(k), and if it
is set then the tone detect signal and all of the predic-
tor coefficients are set to zero. The transition detect
signal td(k) is set in the TRANS routine. This routine
occurs after a delay block so it is executed after the
inverse quantizer (since it needs the value of dq(k))
but before the predictor adaptation. The TRANS rou-
tine first checks the delayed signal of td(k). If td(k) is
set indicating a tone is present, TRANS compares
the values of dq(k) and yl(k) according to Eqn. 4-23
to detect a transition from a tone to a non-stationary
signal. The comparison requires a format conversion
since dq(k) is in sign magnitude format and yl(k) is in
logarithmic format. If the comparison threshold is met
then td(k) will be set to drive the adaptation to the fast
mode immediately.

5-32 MOTOROLA

5.2.10 Scale Factor Adaptation

The scale factor adaptation consists of two main
sections, the adaptation of the scale factor, shown
in Figure 4-9, and the speed control parameter ad-
aptation, shown in Figure 4-10. The adaptation of
the speed control parameter comprises seven rou-
tines. The first routine, FUNCTF, maps the
magnitude of the ADPCM sample to one of four val-
ues specified in Table 4-2. The next two routines,
FILTA and FILTB, use the result of this mapping,
F[l(k)], to track a short term and a long term average
of the difference signal. As was the case with the
adaptation of the predictor coefficients, the FILTA
routine implements Eqn. 4-18 in a slightly different
form:

dms(k) = dms(k-1) + 2-5 [F[l(k)] - dms(k-1)] Eqn. 5-2

The FILTB routine implements Eqn. 4-19 in a simi-
lar manner using dml(k). The next three routines
implement Equation (4-20) that determines the un-
limited speed control parameter ap(k) from these
averages and other inputs. Eqn. 4-20 sets ap(k) to
one of three values. The SUBTC routine checks for
the three cases in which the factor of 2-3 is added.
SUBTC sets the variable AX to 1 if either of these
three conditions is met, otherwise it is set to 0. The
routine FILTC calculates the factor (1-2-4) ap(k-1)
and then adds AX to this value. Notice that AX is ac-
tually set to a value that can be added directly so
that extra shifting is not required. The following rou-
tine, TRIGA, tests the final condition based on a

MOTOROLA 5-33

transition detection. If tr(k) is equal to 1 then the
value of ap(k) is set to 1, otherwise TRIGA leaves
ap(k) as the value set by FILTC. The final routine,
LIMA, limits the delayed value of ap(k) according to
Eqn. 4-21 to form the final speed control parameter
al(k). Since LIMA uses the delayed value of ap(k)
this routine is executed after FMULT and ACCUM
routines near the beginning of the algorithm. The
output of LIMA, al(k) is fed directly to the scale fac-
tor adaptation routine MIX.

The update of the scale factor y(k) is performed in
five routines that are executed immediately follow-
ing the speed control parameter update. The first of
these routines, FUNCTW, performs a mapping of
l(k) that is based on Table 4-2. It is similar to the
FUNCTF routine. The output of FUNCTW is the sig-
nal W[l(k)] that is used to update the unlocked scale
factor yu(k). This update is performed in the FILTD
routine. It implements Eqn. 4-14 in a rearranged
form that is similar to that of Eqn. 5-2. This value is
limited in the routine LIMB according to Eqn. 4-15.
The limited value of yu(k) is also used in Eqn. 4-16
to update the locked scale factor yl(k). This is done
in the routine FILTE. The final update of the scale
factor y(k) is done in the routine MIX. Since this fol-
lows a delay block, it is performed immediately after
LIMA near the beginning of the algorithm. The MIX
routine combine the three inputs yu(k-1), yl(k-1),
and al(k) according to Eqn. 4-17. Like previous
equations it is executed in a slightly different form:

y(k) = al(k) [yu(k-1) - yl(k-1)] + yl(k-1) Eqn. 5-3

5-34 MOTOROLA

5.2.11 Decoder Synchronization

As mentioned in SECTION 4.2 The CCITT Decoder
Algorithm, the decoder is almost identical to the
encoder. The differences include the log PCM
conversion and the synchronization block shown in
Figure 4-13. The log PCM conversion routine
COMPRESS is discussed in SECTION 5.2.3. Most
of the synchronization section is identical to the first
section of the encoder. The routines EXPAND,
SUBTA, LOG, and SUBTB are the same as those
discussed previously. The SYNC routine is similar to
the QUAN routine but instead of transmitting the
resulting ADPCM word, it compares it to the received
ADPCM word. If they are the same then sp(k), the log
PCM value of the reconstructed signal, becomes the
output of the decoder, sd(k). If they are not the same
then the next more positive or negative PCM word
becomes the output as described in Eqn. 4-25. Most
of the computation in the SYNC routine is used to
check the boundary cases of the PCM word. Also, it
has two separate code sections, one for the µ-law
case and the other for the A-law case.

5.3 Non-Standard
Implementation

The main objective of the non-standard ADPCM
program is to provide a more straightforward and
efficient implementation of the ADPCM algorithm
than the CCITT standard specification allows. The
non-standard code implements the same algorithm

MOTOROLA 5-35

as the standard version but eliminates many of the
details described in Recommendation G.721. Two
key features have been removed; one being the
use of floating-point multiplies in the adaptive pre-
diction filter. Instead, the non-standard code
implements the filter in fixed-point arithmetic using
the 24-bit multiplier and 56-bit accumulator on the
DSP56001. The removal of this feature alone great-
ly improves the execution speed of the code and
also reduces the code complexity. Another key fea-
ture of the standard ADPCM code that was
removed is the synchronous coding adjustment
block in the decoder. As noted previously, this block
is included to prevent cumulative distortions when
multiple ADPCM encodes and decodes are per-
formed on the same channel. Since many
applications do not require this block it has been re-
moved in the non-standard version. Other minor
details have also been removed to make individual
routines as efficient as possible.

In addition to improving the execution speed of the
algorithm, the non-standard version also reduces
memory size requirements. The standard ADPCM
code is not able to implement code segments as
subroutines because of execution speed require-
ments. Since the execution speed of the non-
standard routine is much faster, code segments
that are common to the encoder and the decoder
can be shared. This feature allows the run-time por-
tion of the ADPCM algorithm to fit into the
DSP56001's on-board program RAM, so that no
high-speed external RAM is required for real-time
operation of a single full-duplex channel. Even with

5-36 MOTOROLA

the extra overhead of subroutines, real-time perfor-
mance can still be obtained on a 20 MHz
DSP56001. Further performance details are given
in SECTION 5.5 Performance Specifications.

One objective of the non-standard version is to pro-
vide a direct, readable implementation of the
algorithm that can be easily modified. Many optimi-
zation techniques used in the standard
implementation make modifying a part of the algo-
rithm difficult without affecting other parts of the
code. The non-standard code is written so that the
subroutines are as independent as possible. Even
within subroutines the individual ADPCM routines
are separated so that they do not overlap.

This section provides further details that are partic-
ular to the non-standard implementation. Since the
basic form of the code is very similar to the standard
version, this section focuses on differences be-
tween the standard and the non-standard code.

5.3.1 Code Structure

Like the standard code, the non-standard program
is organized as two main routines; the encoder and
the decoder, plus an initialization subroutine. The
encoder and decoder are still implemented as inde-
pendent code segments, but the structure of the
code within the encoder and decoder routines dif-
fers from the standard version. The most noticeable
difference is that the ADPCM routines are coded as
a set of subroutines that are shared by the encoder
and the decoder. This requires more processor

MOTOROLA 5-37

overhead to call the routines, but it provides much
greater savings of program memory. The savings
are increased if multiple encodes and decodes are
used. The encoder and decoder are still organized
as independent segments even though they share
common subroutines.

The execution flow of the algorithm blocks within the
non-standard code is similar to the one shown in
Figure 5-1 with some exceptions. The exceptions are:

• the synchronous coding adjustment in the
decoder has been removed

• the PCM output occurs immediately after the
reconstructed signal calculation

For this version, only registers r0, r2, r3, and r6 are
reserved and each ADPCM routine functions
efficiently as possible as an independent routine.
Several of the optimization techniques used in the
standard version were removed to keep the routines
independent. Many of these optimization techniques,
discussed in SECTION 5.4, can be added to the non-
standard code to improve the execution speed.

5.3.2 Initialization

The initialization subroutine on the non-standard
code performs the same basic tasks as the standard
version. Since the non-standard version has a real-
time l/O interface, the INIT routine also includes
initialization of the SSI port used for the PCM
interface and the general-purpose l/O pins used for
the ADPCM interface.

5-38 MOTOROLA

Figure 5-9 shows the memory map of the internal
data RAM. In general, the arrangement of the vari-
ables and lookup tables is similar to the standard
version. A notable difference between the two is the
total storage requirement. A reason for this is that
the predictor data buffers no longer require data to
be stored in floating point format, so each buffer is
only eight words long instead of 24. Also, since the
predictor filter is implemented as one routine, the
partial products of each multiply no longer need to
be stored. Another reduction results from the elimi-
nation of the FMULT constant storage and the
miscellaneous constant storage. Most of these con-
stants are no longer needed since many are related
to details of the CCITT specification. To reduce
code complexity the remaining miscellaneous con-
stants are stored as immediate data in program
memory. Another difference from the standard ver-
sion is the addition of a lookup table for the F[l]
variable calculated in the routine FUNCTF.

Figure 5-10 shows how the non-standard version
uses addressing registers. Registers r2, r3, and r6
function the same as in the standard code. The pre-
dictor data buffer is now addressed as a modulo 7
block instead of a modulo 23 block since the floating
point format is no longer used. The ADPCM code no
longer uses registers r1, r4, r5, and r7. Only register
r0 is retained as a general purpose register. The use
of register r3 can be removed if desired since the al-
gorithm uses it only in the EXPAND routine. Register
r0 can be used in this routine instead but it must be set
to the correct PCM table base, based on the variable
LAW, each time the CONVERT subroutine is called.

MOTOROLA 5-39

Encoder Variables

Decoder Variables

Temporary Variables

F[I] Table

W[I] Table

Inverse Quan. Table

Quantization Table

PCM Conversion Table

Unused

Encoder Predictor Data*

Unused

Decoder Predictor Data*

X:

Encoder Variables

Decoder Variables

Temporary Variables

Shift Constant Table

Encoder Predictor Coef*

Decoder Predictor Coef*

Unused

Unused

Y:

$50

$48

$40

$39

$21

$1e

$f

$0

$48

$40

$38

$2f

$27

$1f

$17

$f

$a

$5

$0

*These regions are addressed as
modulo buffers.

$37

Figure 5-9 Internal Data RAM Memory Map (Non-standard)

PCM Conversion (ROM)

Predictor Data

Not Used

General Purpose

Not Used

Predictor Coefficients

Not Used

Not UsedR4

R5

R6

R7

R0

R1

R2

R3

linear

mod(7)

mod(127)

mod(7)

Figure 5-10 Address Register Usage (Non-standard)

5-40 MOTOROLA

5.3.3 Format Conversions

The standard and non-standard programs use
several different numeric formats. As noted
previously, the change having the most major impact
is the removal of the floating-point format. The
floating-point conversions used in three routines,
FMULT, FLOATA, and FLOATB were eliminated.
The FMULT routine was combined with the ACCUM
routine to form one common routine. The FLOATB
routine that converts the reconstructed signal to
floating-point in the standard version simply writes it
directly to the predictor data buffer in the non-
standard version. The floating-point conversion in
the FLOATA routine that converts the quantized
difference signal has also been removed, but this
routine must still do a conversion from the sign
magnitude format to the two's-complement format
before the value is stored in the data buffer.

The size of variables is another main difference
between the standard and the non-standard
versions that has a large impact on the code. The full
24/56-bit precision of the DSP56001 is used
whenever possible. The truncation of data values to
shorter lengths that is specified in the CCITT
document in many places is avoided when
unnecessary. Not only does this improve the
precision of calculations, it also leads to a more
efficient implementation.

The other numeric format conversions used in the
non-standard ADPCM code, the PCM and logarith-
mic conversions, are basically the same as in the
standard version. The full A-law and µ-law PCM

MOTOROLA 5-41

conversion routines are provided in the code, but
since the ADPCM algorithm itself operates on linear
input data these routines can be removed if an in-
terface to linear data is desired. The logarithmic
format must still be retained since it is inherent in
many of the ADPCM equations. The quantization
and inverse quantization blocks are also basically
the same as in the standard version.

5.3.4 Adaptive Predictor

The adaptive predictor filter in the non-standard
code is implemented as a single routine called
FMULT/ACCUM as shown in Figure 5-11. This rou-
tine is a much simpler implementation of the filter
than the FMULT and ACCUM routines used in the
standard version. The entire filter requires only nine
words of program memory compared to the 60
words required by the standard version. This rou-
tine is shared by the encoder and the decoder in the
non-standard version so the code savings are actu-
ally doubled.

In addition to improved execution speed and re-
duced program memory size, this implementation
also reduces data memory size. The data storage
structure is shown in Figure 5-12. Since the FMULT
and ACCUM routines are combined the partial
products do not need to be stored. This eliminates
the need for the partial product buffers. Additional
data memory is saved since the delayed recon-
structed signal values and the delayed quantized
difference signal values do not need to be stored in

5-42 MOTOROLA

floating-point format. Instead these values are
stored in the predictor data buffer as 24-bit two's-
complement numbers. Also note that the predictor
coefficients have been extended to 24 bits to make
full use of the data sizes on the DSP56001.

Figure 5-11 Adaptive Prediction Filter

;**
; FMULT/ACCUM
;
; Perform adaptive prediction filter using 29-bit fixed point
; multiply and 56-bit accumulate
;
; SEZ(k) = [Bl(k-1) * DQ(k-1)] +... + [B6(k-1) * DQ(k-6)]
; = WB1 + WB2 +... + WB6
;
; SE(k) = SEZ(k) + [Al(k-1) * SR(k-1)] + [A2(k-1) * SR(k-2)] = SEZ + WA1 + WA2
;
; Inputs:
; SRn = X:(R2) = siii iiii | iiii iiii. | ffff ffff (24TC)
; (DQ in same format as SR)
;
; An = Y:(R6) = si.ff ffff | ffff ffff | ffff ffff (24TC)
; (Bn in same format as An)
;
; Outputs:
; SEZ = siii iiii | iiii iiii. | ffff ffff (24TC)
; SE = siii iiii | iiii iiii. | ffff ffff (24TC)
;
;***

PRDICT CLR A X:(R2)+,X0 Y:(R6)+,Y0 ;Get DQ1 & B1
REP #6
MAC X0,Y0,A X:(R2)+,X0 Y:(R6)+,Y0 ;Find SEZ
TFR A,B ;Copy SEZ
ASL B ;Adjust radix pt.
MAC X0,Y0,A X:(R2)+,X0 Y:(R6)+,Y0 ;Accum, get SR2 & A2
MAC X0,Y0,A ;Find SE
ASL A ;Adjust radix pt.
RTS

MOTOROLA 5-43

The update of the predictor filter coefficients is
largely the same as in the standard version except
that the XOR/UPB routine has been modified to use
less program memory. Instead of using two sepa-
rate loops, (one with the exclusive-or calculation
and one without), only one loop is used because the
XOR function is done for each coefficient.

5.4 Optimization
Techniques

The implementation of the standard CCITT ADPCM
coder on the DSP56001 uses several optimization

dq(k-1)

dq(k-2)

dq(k-3)

dq(k-4)

dq(k-5)

dq(k-6)

sr(k-1)

sr(k-2)

b1(k-1)

b2(k-1)

b3(k-1)

b4(k-1)

b5(k-1)

b6(k-1)

a1(k-1)

a2(k-1)

Y:(R6)X:(R2)

mod(7) mod(7)

Figure 5-12 Adaptive Predictor Data Structure (Non-standard)

5-44 MOTOROLA

techniques to obtain real-time performance. The
goal is to obtain the minimum worst case execution
speed for the entire algorithm. A description of
these techniques serves as an aid to understanding
the assembly code since many of these techniques
make the code harder to follow. A key factor in op-
timizing any assembly code is complete knowledge
of the part’s architecture, both from a hardware and
software standpoint; plus equal knowledge of the
algorithm being implemented. Such knowledge is
also helpful for the ADPCM example. The following
is a list of optimization techniques used in the AD-
PCM version:

1. The algorithm does not use subroutines, as noted in
SECTION 5.2.1. The overhead of passing
parameters and calling subroutines requires a
significant portion of the total execution time,
prohibiting real-time performance. Eliminating
subroutines also allows exploitation of the
DSP56001’s parallelism as much as possible since
less data movement is required. The disadvantage
of this approach is that more program memory is
required to duplicate common routines. This can be
a problem if more external memory is required but
in the ADPCM code it was found that even with
subroutines the amount of required code would not
fit in the on-chip program RAM.

2. In this application memory is sacrificed whenever
gains in execution speed can be obtained. This may
not work in all cases depending on the memory
configuration. A key factor in using this technique is
the multiplexed external bus of the DSP56001. The
external bus will allow one external access per
instruction cycle (assuming zero wait states) with no

MOTOROLA 5-45

penalty in execution speed. In this application
external data memory is not used so there will not
be a speed delay when accessing external program
memory.

3. REP and DO instructions are very useful for saving
program memory locations and in general are very
efficient instructions, however they do take extra
cycles to set up the loop registers. In many cases in
the ADPCM code instructions that could be
performed with a REP or DO loop are instead
repeated in the code multiple times. An example is
the iterative NORM instruction used for the
logarithmic and floating-point conversions. Instead
of using a “REP #14” preceding the NORM
instruction, 14 separate NORM instructions are
used. For a single case the savings are very little but
when adding up the savings throughout the
algorithm this allows several cycles of execution
time to be saved for each sample. In the case of
FMULT which is executed eight times, this allows a
total of 16 instruction cycles to be saved for each
sample.

4. In many cases gains can be obtained by examining
instruction encoding. For instance, immediate
operands that are greater than 8 bits (or 12 bits in
some cases) require an extra word of storage in
program memory and also cause the instruction to
take an extra cycle to fetch the operand. This is also
the case for immediate data that is less than eight
bits but not left-justified. The ADPCM algorithm
needs several operands of this type, 32 to be exact.
Instead of addressing them as immediate operands
they are moved to a constant table in data memory
and addressed with register r7. This does not cost
extra memory since these constants require an
extension word in program memory in any case.
The advantage of this technique is that an extra

5-46 MOTOROLA

instruction cycle is saved by not having to fetch an
instruction extension word. For the data in the table
in Y memory this results in a savings of 32 cycles
per sample for the entire algorithm. This technique
is also used in the FMULT routine that uses its own
constant table so even more savings per sample
are added. In addition to the instruction fetch
savings, this allows more parallelism to be exploited
since the most efficient parallel addressing modes
on the DSP56001 require the use of addressing
registers. The disadvantages of this technique are
that a dedicated register is required to address them
and code is harder to follow and modify because of
the added complexity. To help alleviate the
complexity of the ADPCM code these constants are
referred to as Kxx in the comments so that what is
actually being read from the constant table is easier
to identify.

5. Since the DSP56001 is a fractional-based
architecture, many operations are more efficient
when the data is left-justified. An example of this is
the 8-bit immediate operand storage mentioned
above. Another example is the NORM instruction
that deals with the left-most bits in an accumulator.
Data that is already left-justified as much as
possible will require less shifting for normalization
and therefore fewer NORM iterations. For this
reason data is kept left-justified throughout the code
as much as possible.

6. Parallel moves are taken advantage of whenever
possible. This makes the assembly code more
difficult to understand and modify since values may
be fetched from memory long before they are
actually used, in many cases while the previous
routine is being executed. In many applications this
can save considerable time especially when
multiple loops of a code segment are executed.

MOTOROLA 5-47

Dual parallel moves on the DSP56001 usually
require the use of an addressing register for
accessing memory. Whenever possible pointers are
used instead of immediate addresses.

7. Knowledge of efficient test instructions can result in
savings when decisions are necessary. For
example, many cases in the CCITT specification
refer to single bit variables. Whenever possible the
single bit is stored in the sign bit of the 24-bit word
whether it represents a sign or not. This allows
instructions to test the sign of the word to determine
if the variable is set or not.

8. Some of the most efficient instructions on the
DSP56001 are the conditional transfer instructions.
These are taken advantage of in several places in
the ADPCM source code. These include the
routines used for limiting such as the LIMC routine.
In this routine a value is tested for both an upper and
a lower limit. When this is required the following
code segment can be used:

This code segment can be very efficient since each
instruction executes in a single cycle and the CMP
instructions can have parallel moves associated
with them. When it is possible to use these transfer
instructions the savings over using branching
instructions can be great.

9. As with virtually all microprocessors, JMP
instructions on the DSP56001 should be avoided
whenever possible. These instructions take a
minimum of two instruction cycles to execute due to

; Lower limit in x0
; Upper limit in xl
; Value to be limited in a

cmp x0,a <parallel move>
tlt x0,a
cmp xl,a <parallel move>
tgt xl,a

5-48 MOTOROLA

the instruction pipeline and do not allow parallel
moves. Conditional jump instructions also take a
minimum of two instruction cycles even if the jump
is not taken. As mentioned above, conditional jumps
can be avoided in many cases by using conditional
transfer instructions instead.

10. Many different data formats are encountered in the
ADPCM assembly code. Some of these have been
discussed previously. Trying to adjust these
different formats to the DSP56001's fractional data
format is not practical. Instead, these formats are
allowed to “float” freely within the 24-bit data word,
or the 56-bit data word in the accumulators. The
goal is to find the most efficient format that requires
the least amount of data manipulation. An example
is the many shifts that are specified in the CCITT
standard. In many of these cases the shift is not
actually performed. Instead, the value is truncated
by using a mask constant and an AND instruction.

11. When shifting data cannot be avoided the lack of a
single-cycle, multi-bit hardware shifter on the
DSP56001 can be a problem. This is another
example of where complete knowledge of the
architecture of the part is a key factor in code
optimization. The DSP56001 does not have a
hardware shifter but it does have a single-cycle
hardware multiplier. Since shift operations are
actually just a multiplication by a power of two, the
multiplier can be used as a shifter.

A basic description of this technique is presented in
the Motorola DSP application report “Fractional and
Integer Arithmetic Using the DSP56000...” [9]. This
application report describes two techniques for do-
ing multi-bit shifts on the DSP56000/1. The most
straightforward approach uses a REP or DO in-

MOTOROLA 5-49

struction followed by a shift instruction. As noted
previously, this process is iterative and requires
overhead for the DO or REP. A faster way calls for
multiplying the operand by a shift constant. If the
amount of shift is always the same, the constant
can be explicitly coded in the instruction sequence.
If however, the shift amount is not always the same
there is a convenient method of getting the appro-
priate shift constant. This method uses a lookup
table for determining the shift constant. The table
should be of the following form:

org x:

rshift equ *—1
dc $400000 ;>>1 or <<23
dc $200000 ;>>2 or <<22
dc $100000 ;>>3 or <<21

•••
dc $000002 ;>>22 or <<2
dc $00000l ;>>23 or <<1

lshift equ *

This table can be put in either X or Y memory. To
perform an arbitrary right shift the value of rshift
should be loaded into one of the address registers
as a table base. The amount of the shift will then be
loaded into the corresponding offset register so that
the appropriate shift constant can be read from the
table in memory. The technique is similar for an ar-
bitrary left shift although the offset will be negative.
For either a left or right shift the integer shift amount
should be between 1 and 23. The following is an ex-
ample of a right shift:

move #rshift,r0 ;Set r0=table base
move b0,n0 ;Load shift amount as offset
move al,xl ;Set data up for shift
move x:(r0+n0),x0 ;Lookup shift constant
mpy x0,xl,a ;Shift data right

;Result is shifted into a0

5-50 MOTOROLA

In this example, the 24-bit number to be shifted is in
a1 and the amount of the shift is in the LSBs of b0.
The base of the right shift lookup table rshift is load-
ed into r0 and the amount of the shift is loaded into
n0 as an offset into the table. The shift constant is
found by using the Indexed by Offset addressing
mode. The table base in r0 is not changed so the r0
does not have to be loaded again for another shift
unless r0 is used elsewhere. To accomplish the shift
the shift constant is put in x0 and the 24-bit number
that is to be shifted is put in x1. The MPY instruction
performs the shift. The result is found in a1 and a0.
It is also sign extended into a2. This method is faster
than the REP or DO method because the actual shift
takes only one instruction cycle. Data movement is
the only overhead and it can often be done in paral-
lel with other operations. The only other extra time
needed is the one extra instruction cycle required by
the Indexed by Offset mode.

The following is an example of a left shift:

move #1shift,r0 ;Set r0=table base
neg b a1,x1 ;Find negative shift amount,
 ; set data up for shift
move b0,n0 ;Load s.a. as negative offset
move x:(r0+n0),x0 ;Lookup shift constant
mpy x0,xl,a ;Shift data left

;Result is shifted into al

This example is very similar to the right shift except
that a negative offset is used. The shift amount is
negated before it is loaded as an offset, since the
Indexed by Offset mode can only use a positive off-
set. Again the result is found in a0 and a1 and is

MOTOROLA 5-51

sign extended into a2. The left shift requires the
same amount of data movement as the right shift
but also needs an extra ALU operation to negate
the shift amount. In the example shown, the execu-
tion time is the same as the right shift.

The APDCM code uses this technique in several
forms. The shift table is in Y memory and uses the
labels RSHFT and LSHFT. In some cases the table
is addressed like the above examples but with reg-
ister r5 as the pointer. When the immediate short
addressing mode can be used, the table is ad-
dressed using this mode instead of the address
pointer. In addition, some shift constants are ad-
dressed as immediate operands in the instruction
word. In all cases the actual shift is performed in the
same manner as the above examples.

As mentioned, many of these optimization tech-
niques improve execution speed at the expense of
memory usage or code complexity. Since execution
speed is not as high a priority in the non-standard
version, several of these techniques are not used.
The result is greater memory savings and lesser
code complexity. Some techniques, such as shifting
by multiplication, are still used in some cases how-
ever. As with almost any program there are always
many trade-offs to be considered. If a particular ap-
plication requires greater speed from the non-
standard version, the optimization techniques can
be added to the code following the examples shown
in the standard version.

5-52 MOTOROLA

5.5 Performance
Specifications

The memory usage for both implementations of the
DSP56001 ADPCM algorithm is shown in Table 5-1.
Both programs use only internal X and Y memory so
no external data memory is required. External pro-
gram memory is required for the standard version,
however. As noted previously, this memory must be
zero-wait state memory for a 27 MHz DSP56001
(45 ns access time) in order for the standard code
to run in real-time. Table 5-1 shows a total of 611
words of program memory for the non-standard
code indicating some external memory is required.
However, most of the last 132 words of the code is
taken up by the INIT routine and the load-time con-
stant table storage. The remaining few words are
part of the COMPRESS routine. Most applications
will not require simultaneous use of both µ-law and
A-law compression. If either the µ-law or A-law por-
tion of the INIT routine is removed then the entire
“run-time” portion of the non-standard code (exclud-
ing the INIT routine) will reside in internal memory.
If a host processor is attached to the DSP56001
then no external memory will be required. Other-
wise, slower memories can be used during the
initialization process.

MOTOROLA 5-53

Table 5-2 shows the order of execution of the rou-
tines and the worst-case processing time in
instruction cycles for each routine. A routine is de-
fined as the code between commented sections
even though, in the case of the standard version,
some processing for that function may not be in-
cluded in this code. These worst-case times are
calculated based on worst-case branches and de-
lays in each routine. Note that an instruction cycle
(Icycle) is defined as two clock cycles on the
DSP56001. For a 27 MHz DSP56001 an instruction
cycle is 74.1 ns. Sampling at a rate of 8 kHz gives
125 microseconds to do both an encode and a de-
code. This translates into 1687 instruction cycles on
27 MHz DSP56001.

The calculations for the standard version in Table 5-2
indicate a total of 1707 instruction cycles for full-du-
plex operation (both the encoder and decoder). It has
been found, however, that there is very little possibil-
ity of the maximum delay occurring in all of the
routines in the encoder and decoder simultaneously.

Table 5-1 Memory Usage

PROGRAM DATA

Standard Non-standard Standard Non-standard

Internal 447 479 118 (X) 70 (X)

External 783 132

Total 1230 611 222 142

Note: All values are for 24 bit words.

5-54 MOTOROLA

No samples of the CCITT test sequences were ob-
served to exceed the real-time limit and no indications
of this occurrence were found in the real-time test set-
up. If an extra margin is desired, the input clock can
be increased to 27.5 MHz. Also the synchronization
block in the decoder is not necessary for the ADPCM
algorithm itself. This includes the routines EXPAND,
SUBTA, LOG, SUBTB, and SYNC. This block is in-
cluded for synchronization of multiple PCM/ADPCM/
PCM conversions on a single channel. If only one
PCM/ADPCM/PCM conversion is used the deletion
of this block should not significantly affect the output
speech quality. In this case the worst case execution
time will be 1589 instruction cycles. Note that these
routines are necessary to correctly pass the CCITT
test sequences.

The non-standard version takes a total of 984 instruc-
tion cycles for both the encode and decode, indicating
full-duplex operation is possible on a 20.5 MHz
DSP56001. As noted, the non-standard implementa-
tion removed some of the optimizations used in the
standard version to conserve program memory. If de-
sired, these optimizations can be added to the non-
standard version to improve performance. At least 100
instruction cycles can be saved from both the encoder
and the decoder. This would allow 2 full-duplex chan-
nels on a 27 MHz DSP56001.

MOTOROLA 5-55

5-56 MOTOROLA

Table 5-2 Code Execution Times (page 1 of 2)

ENCODER DECODER

Standard Non-standard Standard Non-standard

FMULT (x8) 341 - FMULT (x8) 341 -

ACCUM 13 14 ACCUM 13 14

LIMA 4 4 LIMA 4 4

MIX 14 9 MIX 14 9

EXPAND 10 14 RECONST 13 10

SUBTA 3 2 ADDA 3 1

LOG 22 28 ANTILOG 25 28

SUBTB 3 1 TRANS 34 32

QUAN 36 41 ADDB 8 6

RECONST 7 10 ADDC 19 11

ADDA 3 1 XOR - -

ANTILOG 25 28 UPB (x8) 76 72

TRANS 34 32 UPA2 27 25

ADDB 8 6 LIMC 6 5

ADDC 19 11 UPAl 12 14

XOR - - LIMD 8 8

UPB (x8) 76 72 FLOATA 22 7

UPA2 27 25 FLOATB 27 1

LIMC 6 5 TONE 5 3

UPAl 12 14 TRIGB 13 15

5-57 MOTOROLA

Note: All numbers are in Icycles and are for worst case delays.

Table 5-2 Code Execution Times (page 2 of 2)

ENCODER DECODER

Standard Non-standard Standard Non-standard

LIMD 8 8 FUNCTF 14 5

FLOATA 22 7 FILTA 6 4

FLOATB 27 1 FILTB 5 3

TONE 5 3 SUBTC 11 11

TRIGB 13 15 FILTC 5 3

FUNCTF 14 5 TRIGA 3 3

FILTA 6 4 FUNCTW 7 5

FILTB 5 3 FILTD 5 4

SUBTC 11 11 LIMB 4 7

FILTC 5 3 FILTE 9 4

TRIGA 3 3 COMPRESS 33 39

FUNCTW 7 5 EXPAND 10 -

FILTD 5 4 SUBTA 3 -

LIMB 4 7 LOG 22 -

FILTE 8 4 SUBTB 3 -

misc. 4 116 SYNC 80 -

- - misc. 7 117

TOTAL 810 513 TOTAL 897 471

MOTOROLA A-1

 “. . . the suffix
‘_T’ refers to
those labels

associated with
the encoder

(transmit) and
the suffix ‘_R’

refers to those
associated with

the decoder
(receive).”

APPENDIX

The DSP56001 assembly code and this application
note use several different symbols describing the
ADPCM implementation. Most of these symbols are
derived from the G.721 specification [1]. The following
symbols correspond to the variable types defined in
the G.721 specification:

SM = signed magnitude value

TC = two's complement value

FL = floating point value

A number preceding one of these symbols shows the
number of total bits in a particular variable (e.g. 14TC
represents a 14-bit two's complement number). See
Table 3 of Recommendation G.721 (Reference 1) for
the full binary representation of each variable, includ-
ing the location of the radix point. The contents of
registers or memory locations at certain points in the
code are also detailed bit for bit.

Terminology

A-2 MOTOROLA

This application note uses the following terminology:

. = location of implied radix point

i = integer bit

f = fraction bit

s = sign bit

m = mantissa bit

e = exponent bit

1 = bit is always 1

0 = bit is always 0

X = bit value is unknown but is not significant

An exception to the above list is the PCM word
where:

p = sign bit

s = segment bit

q = quantization level bit

Note that when labels are used to refer to variables
or program locations in the assembly code the suf-
fix “_T” refers to those labels associated with the
encoder (transmit) and the suffix “_R” refers to
those associated with the decoder (receive).

Example:

; y = 0iiii i.fff | ffff ff00 | 0000 0000 (13sm)
Y_T DS 1 ;Quantizer scale factor

MOTOROLA A-3

The above example shows the memory allocation
for a variable — the scale factor y(k). It is defined as
a 13-bit signed magnitude number with four integer
bits and nine fractional bits. The value stored in
memory is always stored in the 24-bit format with
the implied radix point between bits 18 and 19.

Example:

At the point where these comments appear in the
code; the register a1 always contains a 1 in bit 22,
five other mantissa bits, and all other bits set to 0.
Register b1 always contains four exponent bits in
bits 0 through 3 with all other bits set to 0. Registers
a0, a2, b0, and b2 are always set to 0. ■

; A1 = 01mm mmm0 | 0000 0000 | 0000 0000 (A2=A0=0)
; B1 = 0000 0000 | 0000 0000 | 0000 eeee (B2=B0=0)

MOTOROLA Reference-1

REFERENCES
1. CClTT Recommendation G.721, “32 kbit/s

Adaptive Differential Pulse Code Modulation
(ADPCM)”, Study Group XVIII - Report R 26(C),
August 1986.

2. D. O'Shaughnessy, Speech Communication —
Human and Machine, Addison-Wesley, 1987.

3. A.V. Oppenheim and R.W. Schafer, Discrete-
Time Signal Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

4. N.S. Jayant and P. Noll, Digital Coding of
Waveforms, Prentice-Hall, Englewood Cliffs, NJ,
1984.

5. CCITT Recommendation G.711, “Pulse Code
Modulation (PCM) of Frequencies”, CCITT Red
Book, October, 1984.

6. “Logarithmic/Linear Conversion Routines for
DSP56000/1”, Motorola, Inc., DSP Operation
Technical Brief.

7. L. R. Rabiner and R.W. Schafer, Digital
Processing of Speech Signals, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

8. N. Benvenuto et al., “The 32-kbit/s ADPCM
Coding Standard”, AT&T Technical Journal, Vol.
65, No. 5, September/October 1986, pp. 12-22.

9. “Fractional and Integer Arithmetic Using the
DSP56000 Family of General Purpose Digital
Signal Processors”, Motorola, Inc., DSP Division
Technical Report APR3/D.

10. CClTT Recommendation G.712, “Performance
Characteristics of PCM Channels Between 4-
Wire Interfaces at Voice Frequencies”, CCITT
Red Book, October,1984.

	SECTION 1
	Introduction

	SECTION 2
	Speech Coding
	Types of Speech Coders

	SECTION 3
	SECTION 4
	The CCITT ADPCM Algorithm
	ADPCM Implementation on the DSP56001

	SECTION 5
	APPENDIX
	Terminology

