GENERAL INFORMATION

HARDWARE INSTALLATION

USER INTERFACE COMMANDS

ADS GRAPHICAL USER INTERFACE

FUNCTIONAL DESCRIPTION

HOST CARD / COMMAND CONVERTER K

MOTOROLA OBJECT MODULE FORMAT (OMF)

MOTOROLA OBJECT FILE FORMAT (coFF) HEIH

MOTOROLA S-RECORD INFORMATION

c LIBRARY FuncTions IR

INDEX

GENERAL INFORMATION

HARDWARE INSTALLATION

USER INTERFACE COMMANDS

ADS GRAPHICAL USER INTERFACE

FUNCTIONAL DESCRIPTION

HOST CARD / COMMAND CONVERTER

MOTOROLA OBJECT MODULE FORMAT (OMF)

MOTOROLA OBJECT FILE FORMAT (COFF)

MOTOROLA S-RECORD INFORMATION

C LIBRARY FUNCTIONS

INDEX

DIGITAL SIGNAL PROCESSOR (DSP)

Application Development System (ADS)
User’'s Manual

Motorola, Incorporated
Semiconductor Products Sector
Wireless Signal Processing Division
6501 William Cannon Drive West
Austin, TX 78735-8598

This document (and other documents) can be viewed on the World Wide
Web at http://www.motorola-dsp.com.

OnCE is a trademark of Motorola, Inc.

0 MOTOROLA INC., 1989, 1997

Order this document by DSPADSUM/AD

Motorola reserves the right to make changes without further notice to any products
herein to improve reliability, function, or design. Motorola does not assume any liability
arising out of the application or use of any product or circuit described herein; neither
does it convey any license under its patent rights nor the rights of others. Motorola
products are not authorized for use as components in life support devices or systems
intended for surgical implant into the body or intended to support or sustain life. Buyer
agrees to notify Motorola of any such intended end use whereupon Motorola shall
determine availability and suitability of its product or products for the use intended.
Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Employment Opportunity /ZAffirmative Action Employer.

TABLE OF CONTENTS

11
1.2
1.3
1.3.1
1.3.2
1.3.3
1.4
1.5
151
1.5.2
153
1.6
2.1
2.2
221
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.4
24.1
2.4.2
2.5
2.5.1
25.1.1
2.5.1.2
2.5.1.3
2.5.2
2.6
2.6.1

INTRODUCTION . .. e 1-3
GENERAL DESCRIPTION. i 1-4
OPERATING ENVIRONMENT. e 1-6
PC-Compatible Requirements. 1-6
Hewlett Packard HP7xx Workstation Requirements 1-7
Sun-4 or Compatible Workstation Requirements 1-7
ADS SOFTWARE FEATURES 1-8
TEXT-BASED USER INTERFACE 1-9
General Description. 1-9
Command Entry. 1-9
Display Modes 1-10
GETTING STARTED e 1-11
HOST COMPUTER INTERFACECARD 2-3
PC-COMPATIBLE TO COMMAND CONVERTER INTERFACE 2-3
Installing the PC-Compatible Interface 2-3
INSTALLING THE PC-COMPATIBLE SOFTWARE 2-5
Defining Environment Variables 2-5
All Versions of User-Interface Program 2-6
Text-Based User Interface Program Installation 2-6
Using Default Settings. 2-7
Graphical User Interface (GUI) Program Installation. 2-7
SUN 4 TO COMMAND CONVERTER INTERFACE 2-8
Installing the Sun-4 Interface. 2-8
Software Installation 2-9
HP7XX TO COMMAND CONVERTER INTERFACE. 2-10
Installing the HP-7xx Interface. 2-10
HP VUE Shutdown 2-10
HP-UX COMMAND LINE SHELL SHUTDOWN 2-10

ISA Card Installation 2-11
Installing the HP-7xx Device Driver. 2-12
CONFIGURING THE COMMAND CONVERTER 2-16
Selecting the Command Converter Device Number 2-16

MOTOROLA DSPADSUM/AD i

2.6.2 JTAG/OnCE PortBuffer Veeo oo oo 2-17
2.6.3 Command Convertor Monitor Firmware Upgrades. 2-17
3.1 INTRODUCTION. . .. e 3-3
3.2 COMMAND OVERVIEW e 3-3
3.2.1 Memory/Register Display/Modification Commands 3-3
3.2.2 File /OCommands. i, 3-3
3.2.3 Target Program Execution Commands. 3-4
3.2.4 C Source Code Debug Commands. 3-4
3.2.5 Command Converter Commands 3-4
3.2.6 Miscellaneous Commands, 3-4
3.3 COMMAND SYNTAX .. e 3-5
3.4 COMMAND PARAMETERS i 3-7
3.5 COMMAND SUMMARY ... e 3-8
3.6 DETAILED COMMAND DESCRIPTIONS 3-12
3.6.1 ASM—Single Line Interactive Assembler............... 3-12
3.6.2 BREAK—Set, Modify, or Clear Breakpoint.............. 3-14
3.6.3 CCHANGE—Change Command Converter Memory 3-23
3.6.4 CDISPLAY—Display Command Converter Flags and

MEMOTY . . e 3-24
3.6.5 CFORCE—Assert Reset or Break on Command Converter.3-25
3.6.6 CGO—Execute ONnCE Sequence.covivinnn. 3-26
3.6.7 CLOAD—Load OnCE Command Sequence. 3-27
3.6.8 CSAVE—Save Command Converter Memory to a File3-28
3.6.9 CSTEP—Step through OnCE Sequence 3-29
3.6.10 CTRACE—Trace through OnCE Sequence............. 3-30
3.6.11 CHANGE—Change Register or Memory Value 3-31
3.6.12 COPY—Copy aMemory Block. 3-33
3.6.13 DEVICE—Select Default target DSP address 3-34
3.6.14 DISASSEMBLE—Single Line Disassembler. 3-36
3.6.15 DISPLAY—Display Register or Memory. 3-37
3.6.16 DOWN—Move Down the C Function Call Stack. 3-39
3.6.17 EVALUATE—Evaluate an Expression 3-40
3.6.18 FINISH—Step Until End of Current Subroutine 3-41
3.6.19 FORCE—Assert RESET or BREAK on Target. 3-42
3.6.20 FRAME—Select C Function Call Stack Frame........... 3-43
3.6.21 GO—Execute DSP Program. 3-44
v DSPADSUM/AD MOTOROLA

3.6.22
3.6.23
3.6.24
3.6.25
3.6.26
3.6.27
3.6.28
3.6.29
3.6.30
3.6.31
3.6.32
3.6.33
3.6.34
3.6.35
3.6.36
3.6.37

3.6.38
3.6.39
3.6.40
3.6.41
3.6.42
3.6.43
3.6.44
3.6.45
3.6.46
3.6.47
3.6.48
3.6.49
3.6.50
3.6.51
3.6.52
3.6.53
3.6.54
3.6.55
3.6.56

HELP—ADS User Interface Help Text 3-45

HOST—Change HOST Interface Address 3-46
INPUT—Assign Input File 3-47
LIST—List Source FileLines........................ 3-51
LOAD—Load DSP Program 3-52
LOG—Log Commands and/or Session. 3-54
MORE—Enable/Disable Session Paging Control 3-55
NEXT—Step Over Subroutine Calls or Macros. 3-56
OUTPUT—ASssign Output File. 3-57
PATH—Define File Directory Path. 3-60
QUIT—EXitADS Program 3-61
RADIX—Change Default NumberBase 3-62
REDIRECT—Redirect stdin/stdout/stderr for C Programs . 3-63
SAVE—Save Memory ToFile 3-64
STEP—Step Through DSP Program. 3-65
STREAMS—Enable/Disable Handling of 1/O for

C Programs i e 3-66
SYSTEM—Operating System AccesS. 3-67
TRACE—Trace Through DSP Program 3-68
TYPE—Display The Result Type of C Expression 3-69
UNLOCK—Unlock Password Protected Device Type. 3-70
UNTIL—Step Until Address. 3-71
UP- Move Up the C Function Call Stack 3-72
VIEW- Select Display Mode. 3-73
WAIT—Wait Specified Time 3-74
WATCH—Set, Modify, View, or Clear Watch Item 3-75
WASM—GUI Assembly Window 3-76
WBREAKPOINT—GUI Breakpoint window. 3-77
WCALLS—GUI C Calls Stack Window 3-78
WCOMMAND—GUI Command Window. 3-79
WHERE—GUI C Calls Stack Window. 3-80
WINPUT—GUI File Inputwindow 3-81
WLIST—GUI ListWindow 3-82
WMEMORY—GUI Memory Window 3-83
WOUTPUT—GUI File Output Window 3-84
WREGISTER—GUI Register Window. 3-85

MOTOROLA DSPADSUM/AD %

3.6.57 WSESSION—GUI Session Window 3-86
3.6.58 WSOURCE—GUI Sourcewindow 3-87
3.6.59 WSTACK—GUI Stack Window. 3-88
3.6.60 WWATCH—GUI watchwindow 3-89
3.7 DEBUGGING CPROGRAMS. 3-90
3.7.1 CDebugFeatures. 3-90
3.7.2 C EXPresSiONS. . ..ot 3-90
3.7.3 ReStrictions 3-91
3.7.4 Compiling a Program for Debugging. 3-92
3.8 C DEBUGGING COMMANDS. e 3-92
3.9 EXAMPLE DEBUGGING SESSIONS 3-92
3.9.1 Binary Search Example. 3-93
3.9.2 Recursive Binary Tree Traversal Example 3-96
4.1 INTRODUCTION. . .. e 4-3
4.2 HOST SYSTEM REQUIREMENTS. 4-3
4.3 PLATFORM SPECIFICS. 4-3
4.4 GENERAL WINDOW BEHAVIOR 4-4
4.4.1 File Chooser e 4-4
4.4.2 Multiple Operations., 4-5
4.4.3 MULTIPLE SELECTIONS. 4-6
4.5 GRAPHICAL INTERFACE FUNCTIONS OVERVIEW 4-6
4.5.1 GUI Structure 4-7
45.2 Startingthe ADS 4-7
4.5.3 File AccessPaths 4-8
4.5.4 Loading ObjectFiles. 4-8
4.5.5 Examining and ChangingMemory 4-8
4.5.6 Examining and Changing Registers 4-9
4.5.7 Program Execution—the ToolBar 4-9
4.5.8 Device Selection. 4-9
45.9 Breakpoints. 4-10
4.5.10 Simulated Inputand Output 4-11
45.11 Stream File Support 4-11
45.12 Command and Session Windows. 4-11
45.13 Command and SessionLog Files. 4-12
4.5.14 Save Files. 4-12
4.5.15 Input Conventions. i 4-12
Vi DSPADSUM/AD MOTOROLA

4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.7
4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9
4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16
4.7.17

FILEMENU e 4-13
File//Path/l.... 4-14
File//Load//Memory COFF, Memory OMF 4-15
File//Save//Memory COFF, Memory OMI 4-16
File//Save//State, File//Load//State 4-17
File//Input//Open 4-18
File//Input//Close 4-19
File//Output/Open i, 4-19
File//Output//Close. i 4-20
File//IO Streams//... 4-20
File//IO Redirect//... 4-21
File//Log//Commands. 4-21
File//Log//Session i, 4-22
File//lLog/IClose i, 4-23
File//Macro. e 4-24
File//About 4-24
File//Preferences i 4-25
FIle//EXIt. . . . 4-26

DISPLAY MENU. e 4-27
Display//Display//Active 4-28
Display//Display//Memory, 4-28
Display//Display//Reqisters 4-29
Display//Display//Stack 4-29
Display//Display//Version. 4-30
Display//Display//Off 4-30
Display//Disassemble//From PC, Memory Block 4-31
Display//List 4-32
Display//Evaluate. 4-33
Display//Call Stack. 4-34
Display//[RadixX 4-34
Display//Device 4-35
Display//Path 4-35
Display//Input Files and Display//Output Files. 4-36
Display//Redirected IO Streams, 10 Streams Status. 4-36
Display//lLog Files, 4-37
Display//Breakpoints, 4-37

MOTOROLA DSPADSUM/AD vii

4.7.18 Display//Watch//Show. 4-38
4.7.19 Display//Watch//Add 4-38
4.7.20 Display//Watch//Off 4-39
4.7.21 Display//Type 4-39
4.7.22 Display//IMore 4-40
4.7.23 Display//View//Register. 4-40
4.7.24 Display//View//Assembly, Source 4-41
4.8 MODIFY MENU e 4-41
4.8.1 Modify//Change Register. 4-42
4.8.2 Modify//Change Memory. 4-42
4.8.3 Modify//Copy Memory 4-43
4.8.4 Modify//Radix//Set Default. 4-44
4.8.5 Modify//Radix//SetDisplay 4-44
4.8.6 Modify//Device//Set Default. 4-45
4.8.7 Modify//Device//Configure. 4-45
4.8.8 Modify//Device//Unlock 4-46
4.8.9 Modify//Up, Modify//[Down 4-46
4.9 EXECUTEMENU 4-47
4.9.1 Execute//GO 4-48
49.2 Execute//Step, Next, Trace. 4-48
4.9.3 Execute//Until 4-49
494 Execute//Finish 4-49
4.9.5 Execute//Breakpoints//Set Software 4-50
4.9.6 Software Break Processing. 4-50
4.9.7 Execute//Breakpoints//Set Hardware 4-51
4.9.8 DSP56300 and DSP56600 Breakpoint Logic 4-52
4.9.9 Hardware Break Processing. 4-53
4.9.10 Execute//Breakpoints//Clear 4-53
4.9.11 Execute//Breakpoints//Enable, Disable. 4-54
4.9.12 Execute//Wait 4-54
4.9.13 Execute//Stopo 4-55
4.9.14 Execute//Reset.... 4-55
4.10 WINDOWS MENU. e 4-55
4.10.1 Windows//Assembly 4-57
4.10.2 WINdows//Sourcet 4-57
4.10.3 Windows//Register 4-58
viil DSPADSUM/AD MOTOROLA

4.10.4
4.10.5
4.10.6
4.10.7
4.10.8
4.10.9
4.10.10
4.10.11
4.10.12
4.10.13
4.10.14
411
4.12
4.12.1
4.12.2
4.12.3
4.12.4
4.12.5
4.12.6
4.12.7
4.12.8
5.1

5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.4.1
5.4.2
5.4.3
5.4.4

Windows//IMemory 4-59
Windows//Stack 4-60
Windows//Calls 4-60
Windows//Watch 4-61
Windows//ListFile 4-62
Windows//Input 4-63
Windows//Output 4-63
Windows//Breakpoints. 4-63
Windows//Command 4-64
Windows//Session 4-65
Windows//Tile, Cascade (Microsoft Windows only). 4-67
HELP MENU e 4-68
THE TOOLBAR. . . . e 4-69
GO BULON. 4-69
StopButton 4-69
STEPBUttON 4-69
NEXT Button e 4-69
FINISHBULtON e 4-70
DEVICEBULON e 4-70
REPEATBUttON. e 4-70
RESETBUttON e 4-70
INTRODUCTION . .. o e 5-3
HOST COMPUTER HARDWARE 5-3
Host Computer Bus Interface Card 5-4
Host Computer Interface Cable 5-5
COMMAND CONVERTERCARD i, 5-6
Command Converter Handshake Signals 5-7
Command Converter Interface Connector. 5-8
Multiple Target Connections 5-9
TCK Drive and Timing Considerations 5-10
Resetting Target DSP Devices.. 5-11
ONCE PORT ARCHITECTURE. 5-12
OnCE Controller 5-12
Program Controller Pipeline Information 5-13
Program Address Bus FIFO 5-14
Program Decoder Communication 5-14

MOTOROLA DSPADSUM/AD IX

5.4.5 Hardware/Software Breakpoints 5-15
5.4.6 Program Single-Stepping 5-15
5.5 HOST COMPUTER SOFTWARE 5-16
5.6 COMMAND CONVERTER SOFTWARE. 5-17
5.7 JTAG/ONCE COMMUNICATIONS PERFORMANCE. 5-18
5.8 COMMUNICATING WITH THE TARGET ONCE PORT...... 5-20
5.8.1 OnCECommand Formatccouvv.... 5-21
5.8.2 OnCE Port Protocol. 5-21
5.8.3 OnCE Debug Acknowledge Signal 5-22
5.9 WRITING YOUR OWN ONCE COMMAND SEQUENCE..... 5-23
5.10 COMMUNICATING WITH THE TARGET JTAG PORT 5-24
5.11 CHANGES TOTHEONCE PORTPINS. 5-24
5.12 JTAG INSTRUCTION REGISTER. oo 5-27
5.12.1 ENABLE_ONCE (0110) i 5-28
5.12.2 DEBUG _REQUEST (0111)..........covviiiiiin, 5-28
5.12.3 Polling for Chip Status From the JTAG Port. 5-28
6.1 INTRODUCTION. . ..o 6-3
6.2 HOST INTERFACE CARD BUS SIGNAL DESCRIPTION 6-3
6.3 HOST COMPUTER INTERFACE CABLE. 6-5
6.4 JTAG/ONCE INTERFACECABLE 6-6
6.5 HOST COMPUTER CARD BILLS OF MATERIALS 6-7
6.6 COMMAND CONVERTER BILL OF MATERIALS 6-10
6.7 HOST INTERFACE CARD SCHEMATICS 6-13
6.8 COMMAND CONVERTER CABLES AND SCHEMATICS6-22
Al INTRODUCTION. . . .o e A-3
A.2 RECORD DEFINITIONS A-4
A21 StartRecord A-4
A.2.2 EndRecord. A-5
A.2.3 DataRecord i A-5
A.2.4 BlockdataRecord A-6
A.2.5 SymbolRecord A-6
A.2.6 CommentRecord i A-7
A.3 OBJECT MODULE FORMAT EXAMPLE A-7
B.1 INTRODUCTION. . . . o B-3
B.2 OBJECT FILESTRUCTURE. B-3
B.3 OBJECT FILE COMPONENTS i B-5
X DSPADSUM/AD MOTOROLA

B.3.1 FILEHEADER B-5

B.3.2 OptionalHeader. B-6
B.3.3 SECHONS . . . o e B-8
B.3.3.1 Section Headers e B-8
B.3.3.2 Relocation Information B-11
B.3.3.3 Line Numbers e B-11
B.3.3.4 SymbolTable B-12
B.3.3.5 SymbolName B-14
B.3.3.6 SymbolValue B-14
B.3.3.7 Section Number B-14
B.3.3.8 Symbol Type. B-15
B.3.3.9 Symbol Storage Class. B-16
B.3.3.10 Auxiliary Entries B-18
B.3.3.10.1 Filenames. B-18
B.3.3.10.2 SECHIONS . . o B-19
B.3.3.10.3 TagNames. B-20
B.3.3.10.4 END OF STRUCTURES B-21
B.3.3.10.5 FUNCTIONS. e B-21
B.3.3.10.6 ALY S . o B-22
B.3.3.10.7 End of Blocks and Functions B-22
B.3.3.10.8 Beginning of Blocks and Functions B-23
B.3.3.10.9 Structure, Union, and Enumeration Names B-23
B.3.3.10.10 StringTable B-23

B.4 DIFFERENCES BETWEEN DSP OBJECT FORMAT AND
STANDARD COFFB-24

B.4.1 Multiple Memory Spaces i, B-24
B.4.2 OBJECT FILE TRANSPORTABILITY B-25
B.4.3 Structure Size Fields L B-26
B.4.4 Relocation Information. B-26
B.4.5 Block Data Sections. B-27
B.4.6 Other EXtensions i B-27
B.5 OBJECT FILE DATA EXPRESSION FORMAT B-28
B.5.1 Data Expression Generation B-28
B.5.2 Data Expression Interpretation B-29
B.5.2.1 User Expression—{ ... }. i, B-29
B.5.2.2 Relocatable Expression—[...] B-29

MOTOROLA DSPADSUM/AD Xi

B.5.2.3 Memory Space Operator—@.ovn.. B-29

B.5.24 Bit Size Operator—# B-30
B.5.2.5 Memory Attribute Operator—: B-30
C.1l INTRODUCTION. e C-3
C.2 S-RECORD CONTENT e C-3
C.3 S-RECORD TYPES. e C-4
C.4 S-RECORD CREATION e C-5
D.1 INTRODUCTION. . ..o e D-3
D.2 ADS OBJECT LIBRARY FILES. D-4
D.2.1 ADS OBJECT LIBRARY ENTRYPOINTS. D-4
D.2.2 LIBRARY ENTRYPOINTS LISTED BY PREFIX.......... D-5
D.2.2.1 ads_—ADS-Specific Utility Routines D-5
D.2.2.2 dspd_cc_—Command Converter Driver Level Routines . D-5
D.2.2.3 dspd_—Driver Level Routines D-5
D.2.2.4 dspt_—DSP DEVICE-SPECIFIC ROUTINES D-6
D.2.2.5 dsp_cc_—Command Converter Interface Routines. D-6
D.2.2.6 dsp_—ADS Interface Routines D-6
D.2.2.7 sim_—User Interface Routines D-7
D.3 LIBRARY FUNCTION DESCRIPTIONS D-8
D.3.1 ads_cache_r egi st ers—Cache OnCE and Core Registers. . D-8
D.3.2 ads_st art up—Initialize ADS Database and Driver. D-9
D.3.3 dspd_br eak—Force Running DSP into Debug Mode D-10
D.3.4 dspd_cc_ar chi t ect ur e—Initialize Command Converter

forDSPFamily D-11
D.3.5 dspd_cc_read_f | ag—Read Command Converter Flag

WOrd . . D-12
D.3.6 dspd_cc_read_nenor y—Read from Command Converter

MEMOIY . . D-13
D.3.7 dspd_cc_reset —Reset Command Converter........... D-14
D.3.8 dspd_cc_revision—Read Command Convertor

Revision Number. D-15
D.3.9 dspd_cc_wite_flag—Write Command Converter Flag

WOrd . .. D-16
D.3.10 dspd_cc_wite_nemor y—Write to Command Converter

MEeMOTY e D-17

xii DSPADSUM/AD MOTOROLA

D.3.11

D.3.12

D.3.13
D.3.14
D.3.15

D.3.16
D.3.17

D.3.18
D.3.19
D.3.20

D.3.21
D.3.22

D.3.23
D.3.24
D.3.25
D.3.26

D.3.27
D.3.28

D.3.29
D.3.30

D.3.31
D.3.32

D.3.33
D.3.34

D.3.35

dspd_check_servi ce_request —Check for Service

Request D-18
dspd_fill _nmenmor y—Initialize DSP Memory Buffer to
SingleValue. D-19
dspd_go—Begin Execution on Target DSP Device D-20
dspd_jtag_reset —Reset JTAG Communications. D-21
dspd_read_core_regi sters—Read Core Registers from

DSP DEVICE . . .ot D-22

dspd_r ead_nenor y—Read Memory Block from DSP Device D-23
dspd_read_once_r egi st er s—Read OnCE Registers from

DSP Device D-24
dspd_r eset —Reset DSP Device to Debug or User Mode. . D-25
dspd_st at us—Determine DSP Status D-26
dspd_write_core_regi sters—Write Core Registers to DSP
DeVICE. . .. e D-27
dspd_wri t e_nmenor y—Write to Memory in DSP DeviceD-28
dspd_write_once_registers—Write ONnCE Registers to

DSP DevIiCe D-29
dspt _masm xxxxx—Assemble DSP Mnemonic D-30
dspt _unasm xxxxx—Disassemble DSP Mnemonics D-31
dsp_al | oc—Allocate Memory D-32
dsp_cc_f nem—Fill Command Converter Memory with a

Value D-33

dsp_cc_go—Start Command Converter Program Execution D-34
dsp_cc_I| dmem—Load Command Converter Memory from

File. . D-35
dsp_cc_reset —Reset Command Converter D-36
dsp_cc_revi si on—Read Command Converter Monitor

REVISION D-37
dsp_cc_rmem—Read Command Converter Memory D-38
dsp_cc_rnmem bl k—Read Command Converter Memory

Block D-39
dsp_cc_wnrem—Write Command Converter Memory. D-40
dsp_cc_wrem bl k—Write Command Converter Memory

Block D-41

dsp_check_servi ce_r equest —Check for Service Request . D-42

MOTOROLA DSPADSUM/AD Xiii

D.3.36 dsp_fi ndnem—Get Map Index for Memory Prefix D-43

D.3.37 dsp_fi ndreg—Get Peripheral and Register Index D-44
D.3.38 dsp_f mem—Fill Memory Block witha Value............. D-45
D.3.39 dsp_free—Free a Device Structure D-46
D.3.40 dsp_free_mem—Free Memory Block D-47
D.3.41 dsp_go—Initiate DSP Program Execution.............. D-48
D.3.42 dsp_go_addr ess—Initiate Program Execution from Address D-49
D.3.43 dsp_go_r eset —Initiate Program Execution after Device

Resel. D-50
D.3.44 dsp_i ni t —Initialize a Single DSP Device Structure. D-51
D.3.45 dsp_I| dmem—Load DSP Memory from OMF or COFF File. . D-52
D.3.46 dsp_| oad—Load All DSP Structures from State File. D-53
D.3.47 dsp_new—Create New DSP Device Structure. D-54
D.3.48 dsp_pat h—Construct Filename. D-55
D.3.49 dsp_real | oc—Reallocate Memory Block D-56
D.3.50 dsp_r eset —Reset Specified DSP Device. D-57
D.3.51 dsp_r mem—Read DSP Memory Location. D-58
D.3.52 dsp_r mem bl k—Read Block of DSP Memory Locations . .. D-59
D.3.53 dsp_rreg—Read a DSP Device Register D-60
D.3.54 dsp_save—Save All DSP Structures to State File. D-61
D.3.55 dsp_spat h—Search Path for Specified File. D-62
D.3.56 dsp_st art up—Initialize DSP Structures D-63
D.3.57 dsp_st at us—Determine DSP Device Status D-64
D.3.58 dsp_st ep—Execute Counted Instructions. D-65
D.3.59 dsp_st op—Force DSP Device into Debug Mode D-66
D.3.60 dsp_unl ock—Unlock Password Protected Device Type . .. D-67
D.3.61 dsp_wrem—Write DSP Memory Location. D-68
D.3.62 dsp_wrem bl k—Write DSP Memory Block D-69
D.3.63 dsp_w eg—Write a DSP Device Register D-70
D.3.64 si m docnd—Execute Emulator User Interface Command. . D-71
D.3.65 si m gncmd—Get Command String from Macro File. D-72
D.3.66 si m gt cd—Get Command String from Terminal D-73
D.4 EMULATOR SCREEN MANAGEMENT FUNCTIONS D-74
D.4.1 simv ceol —Clearto End of Line. D-74
D.4.2 simw_ctrl br—Check for CtrL-C Signal. D-75
D.4.3 si nw_cur sor—Move Cursor to Specified Line and Column D-75

Xiv DSPADSUM/AD MOTOROLA

D.4.4
D.4.5
D.4.6
D.4.7
D.4.8
D.4.9
D.4.10
D.4.11
D.4.12
D.4.13
D.4.14
D.4.15
D.5
D.5.1
D.5.2
D.5.3
D.5.4
D.6
D.6.1
D.6.2
D.6.3
D.7
D.8
D.9

si mw_endwi n—End Emulator Window D-75

si mv_get ch—Non-Translated Keyboard Input. D-75
si mv_gkey—Translated Keyboard Input. D-76
si mv_put c—Output Character to Terminal D-76
si mv_put s—Output Stringto Terminal. D-76
si mv_r edo—Repaint Screen with Output from Device. D-76
si nw_r edr aw—Redraw Screen after Scroll Count D-77
si mv_r ef resh—Screen Update after Buffering OutputD-77
simw_scrnest—Increase Screen Buffering One LevelD-77
si mv_unnest —Decrease Screen Buffering One Level. D-78
simw_winit—Initialize Window Parameters............. D-78
si mv_wscr —Write String and Perform Logging D-78
NON-DISPLAY EMULATOR D-79
CreatingaNewDevice D-80
Loading Program Code or Device State D-80
Executing Device Instructions D-81
Testing Breakpoint Conditions. D-81
MULTIPLE DEVICE EMULATION it D-83
Allocation and Initialization of Multiple Devices.......... D-83
Controlling Multiple DSP Devices D-83
Multiple DSP Emulator Display D-84
RESERVED FUNCTION NAMES D-85
EMULATOR GLOBAL VARIABLES. D-85

MODIFICATION OF EMULATOR GLOBAL STRUCTURES . . D-86

MOTOROLA DSPADSUM/AD XV

LIST OF FIGURES

Figure 1-1 Application Development 1-4
Figure 1-2 Target Circuit Emulation. 1-4
Figure 2-1 PC-compatible Interface Card Jumper Group Locations 2-4
Figure 2-2 HP-7xx ChassisRearView 2-11
Figure 3-1 Interactive Assembler DialogBox 3-13
Figure 3-2 Interactive Change Dialog Box. 3-32
Figure 4-1 Main Window for Sun SPARCstation2 4-4
Figure 4-2 Sun File Chooser Dialog BOX 4-5
Figure 4-3 Windows File Chooser Dialog BOX. 4-5
Figure 4-4 GUIl Interface to ADS 4-7
Figure 4-5 File//Path/Set, Add DialogBox. 4-14
Figure 4-6 File//Load//Memory COFF, Memory OMF Dialog Box........... 4-15
Figure 4-7 File//Save//Memory COFF, Memory OMF Dialog Box. 4-16
Figure 4-8 File//Load//State, File//Save//State Dialog Box 4-17
Figure 4-9 File//Input//Open Dialog BOX 4-18
Figure 4-10 File//Input//Close Dialog BoX 4-19
Figure 4-11 File//Output//Open Dialog BOX oo 4-20
Figure 4-12 File//IO Redirect//... DialogBoxes 4-21
Figure 4-13 File//Log//Commands Dialog Box. 4-22
XVi DSPADSUM/AD MOTOROLA

Figure 4-14 File//Log//Commands Dialog Box 4-23
Figure 4-15 File//Log//Close Dialog BOX. oo 4-24
Figure 4-16 File//About Dialog BOX. 4-25
Figure 4-17 File//Preferences Dialog BOX. 4-25
Figure 4-18 File/[ExitDialog BOX e 4-26
Figure 4-19 Display//Display//Active Output 4-28
Figure 4-20 Display//Display//Memory Dialog Box 4-29
Figure 4-21 Display//Display//Registers DialogBox 4-29
Figure 4-22 Display//Display//Stack Output 4-30
Figure 4-23 Display//Display//Version Output. 4-30
Figure 4-24 Display//Display//Off Qutput 4-30
Figure 4-25 Display//Disassemble//Memory Dialog Box. 4-31
Figure 4-26 Display//Disassemble//...OQutput 4-31
Figure 4-27 Display//List File Dialog BOX 4-32
Figure 4-28 Display//List File OQutput. e 4-32
Figure 4-29 Display//Evaluate Dialog Box 4-33
Figure 4-30 Display//Evaluate Output. 4-33
Figure 4-31 Display//Call Stack Dialog BOX 4-34
Figure 4-32 Display//Call Stack Output. 4-34
Figure 4-33 Display//Radix Output 4-34
Figure 4-34 Display//Device OUIPUL 4-35
Figure 4-35 Display//Path Output 4-35
MOTOROLA DSPADSUM/AD XVii

Figure 4-36 Display//Input Files Output.o 4-36
Figure 4-37 Display//IO Streams Outputt 4-36
Figure 4-38 Display//Log Files Qutput. 4-37
Figure 4-39 Display//Breakpoints Output.t 4-37
Figure 4-40 Display//Watch//Show Qutput. 4-38
Figure 4-41 Display//Watch//Add Dialog BoX. 4-38
Figure 4-42 Display//Watch//Off Dialog Box 4-39
Figure 4-43 Display//[Type Dialog BoX. e 4-39
Figure 4-44 Display//Type OQutput oo e 4-39
Figure 4-45 Display//More Dialog BOX. 4-40
Figure 4-46 Session Window—Register View. 4-40
Figure 4-47 Session Window, Assembly View 4-41
Figure 4-48 Modify//Change Register Dialog Box 4-42
Figure 4-49 Modify//Change Memory DialogBox 4-43
Figure 4-50 Modify//Copy Memory Dialog BOX 4-43
Figure 4-51 Modify//Radix//Set Default DialogBox 4-44
Figure 4-52 Modify//Radix//Set Display Dialog Box. 4-44
Figure 4-53 Modify//Device//Set Default Dialog Box 4-45
Figure 4-54 Modify//Device//Configure DialogBox 4-45
Figure 4-55 Modify//Device//Unlock DialogBox 4-46
Figure 4-56 Modify//lUp Dialog BOX oo 4-46
Figure 4-57 Execute//GoDialogBoX. 4-48
XVill DSPADSUM/AD MOTOROLA

Figure 4-58 Execute//STEP DialogBoX i 4-49
Figure 4-59 Execute//Until Dialog BOXo 4-49
Figure 4-60 Execute//Breakpoint//Set Software DialogBox................ 4-50
Figure 4-61 Execute//Breakpoint//Set Hardware Dialog Box 4-51
Figure 4-62 Execute//Breakpoint//Set Hardware Dialog Box

(DSP56300, DSP56600)o oot 4-52
Figure 4-63 Execute//Breakpoint//Clear DialogBox 4-53
Figure 4-64 Execute//Breakpoints//Enable DialogBox. 4-54
Figure 4-65 Execute//Wait Dialog BOX 4-54
Figure 4-66 Assembly Window 4-57
Figure 4-67 Source Window (NOSOUICE) . .. oo i ittt e e 4-58
Figure 4-68 Source Window (source file present). 4-58
Figure 4-69 Register Window Peripheral Group Selection. 4-58
Figure 4-70 Register WiNdOw e 4-59
Figure 4-71 Windows//Memory Dialog BOX. 4-59
Figure 4-72 Memory WINdow e 4-60
Figure 4-73 Stack Windowo 4-60
Figure 4-74 CallsWIndow. 4-61
Figure 4-75 Windows//Watch DialogBox 4-62
Figure 4-76 ListFile Window e 4-62
Figure 4-77 INPUEWINdOW. 4-63
Figure 4-78 Output Window 4-63
MOTOROLA DSPADSUM/AD XX

Figure 4-79 Breakpoint Window 4-64
Figure 4-80 Command WINdow. 4-65
Figure 4-81 SessioNn WINdOW. e 4-66
Figure 4-82 Tiled and Cascaded Windows, 4-67
Figure 4-83 L 4-68
Figure 4-84 Helpona Specific TOPIC.o oot e 4-68
Figure 5-1 Host Computer Bus Interface Card 5-4
Figure 5-2 37-Pin Host Computer Interface Cable 5-6
Figure 5-3 Command Converter Block Diagram 5-7
Figure 5-4 Target System OnCE Interface Connector. 5-9
Figure 5-5 JTAG CONNECLIONS it e e 5-9
Figure 5-6 Multiple JTAG Target Connections (1). 5-10
Figure 5-7 Fan Outof TCKatSource 5-11
Figure 5-8 Reset JTAG device with RESET Signal. 5-12
Figure 5-9 OnCE Port Architecture 5-13
Figure 5-10 Host Computer User Interface Program. 5-16
Figure 5-11 Command Converter Monitor Memory. 5-17
Figure 5-12 Command Converter / Target DSP Clock Constraints. 5-18
Figure 5-13 OnCE 8-Bit Command Format. 5-21
Figure 5-14 OnCE Port Protocol e 5-22
Figure 5-15 JTAG/OnCE Interface i 5-25
Figure 5-16 TAP Controller State Diagram 5-26
XX DSPADSUM/AD MOTOROLA

Figure 6-1 Command Converter Interface 6-6
Figure 6-2 37-Pin Host Interface Cable 6-13
Figure 6-3 PC-Compatible Interface CardRev. 2.0 6-14
Figure 6-4 Sun Sparc SBus Interface Card 6-18
Figure 6-5 Command Converter PowerCable 6-22
Figure 6-6 Command Converter OnCE Interface Cable. 6-23
Figure 6-7 JTAG/OnCE Command Converter Schematic Rev. 6. 6-24
MOTOROLA DSPADSUM/AD XXi

LIST OF TABLES

Table 2-1 PC-compatible I/O Addresses 2-4
Table 2-2 Command Converters Rev 4, 5 Device Number Selection 2-16
Table 2-3 CMOS BUFFER Ve CONFIGURATION .. 2-17
Table 3-1 Hardware Breakpoint ACCeSS. 3-15
Table 3-2 ONnCE Hardware Breakpoint Types, 3-15
Table 3-3 JTAG/OnCE Hardware Breakpoint Types 3-16
Table 3-4 DSP56300 AND DSP56600 Hardware Breakpoint Address

Qualifiers 3-16
Table 3-5 DSP56300 and DSP56600 Hardware Breakpoint Event Qualifier. .3-17
Table 3-6 Software Breakpoint Types 3-17
Table 3-7 Floating Point Software Breakpoint Types. 3-18
Table 3-8 Breakpoint ACtIONS 3-19
Table 3-9 EXpression Operators.ot 3-20
Table 4-1 Register Requirements for Simulated Input. 4-18
Table 4-2 Register Requirements for Simulated Output. 4-19
Table 4-3 Summary of Window Functions 4-56
Table 5-1 OnCE Sequence ControlCodes 5-23
Table 5-2 JTAG Instruction Register Encoding 5-27
Table 5-3 DSP Core Status Bit Description 5-28
Table 6-1 PC Interface Card J2 (ISA16 Bus) Connector 6-3
XXii DSPADSUM/AD MOTOROLA

Table 6-2 Sun 4 SPARC (SBus) Connector, 6-4
Table 6-3 Host Computer Interface Cable. 6-5
Table 6-4 JTAG/ONCE Connector J3 6-6
Table 6-5 ADS PC-Compatible Interface Electrical Parts List

Rev 2.01—06/06/96. 6-7
Table 6-6 ADS PC-compatible Interface Hardware Parts List

Rev 2.01—06/06/96. e 6-8
Table 6-7 37-Conductor Cable Assembly List Rev 2.0 - 11/01/95. 6-8
Table 6-8 Sun-4 SBus Parts List Rev. 01 May 27,1992 6-8
Table 6-9 ADS Command Converter Electrical Parts List

Rev. 2.01—06/06/96 6-10
Table 6-10 ADS Command Converter Hardware Parts List

Rev. 2.01—06/06/96 6-12
Table 6-11 JTAG/ONnCE 14-Pin Cable Assembly 6-12
Table B-1 Basic COFF File Structure. e B-4
Table B-2 File Header Format e B-5
Table B-3 File HeaderFlags i B-6
Table B-4 Motorola DSP Optional Link Header Format. B-7
Table B-5 Motorola DSP Optional Runtime Header Format B-8
Table B-6 Section Header Format. i B-9
Table B-7 SectionHeaderFlags B-10
Table B-8 Relocation Entry Format B-11
Table B-9 Line Number Entry Formato, B-11
Table B-10 Line Number Grouping B-12
MOTOROLA DSPADSUM/AD XXxiii

Table B-11 COFF Symbol Table Ordering B-12
Table B-12 Symbol Table Entry Format B-13
Table B-13 Fundamental Types i e B-14
Table B-14 Derived TYPES . ..ottt B-15
Table B-15 Storage Classes. B-16
Table B-16 Storage ClassandValue B-17
Table B-17 Section Symbol Auxiliary Entry B-19
Table B-18 Section Symbol Auxiliary Entry B-19
Table B-19 Relocatable Buffer/Overlay Auxiliary Entry B-20
Table B-20 Tag Name Symbol Auxiliary Entry B-20
Table B-21 End of Structure Auxiliary Entry B-21
Table B-22 Function Symbol Auxiliary Entry. B-21
Table B-23 Array Symbol Auxiliary Entry B-22
Table B-24 End of Block or Function Auxiliary Entry B-22
Table B-25 Beginning of Block or Function Auxiliary Entry. B-23
Table B-26 Structure, Union, or Enumeration Name Auxiliary Entry B-23
Table B-27 CORE_ADDR Format B-24
Table B-28 Memory Mapping Enumerations B-25
Table B-29 Motorola DSP COFF Byte Ordering.o, B-26
Table C-1 S-Record Fields C-3
Table C-2 S-reCOrd TYPES. . C-4
XXiv DSPADSUM/AD MOTOROLA

SECTION 1
GENERAL INFORMATION

MOTOROLA

DSPADSUM/AD

1-1

General Information

1.1 INTRODUCTION e 1-3
1.2 GENERAL DESCRIPTION e 1-4
1.3 OPERATING ENVIRONMENT 1-6
1.3.1 PC-Compatible Requirements 1-6
1.3.2 Hewlett Packard HP7xx Workstation Requirements. 1-7
1.3.3 Sun-4 or Compatible Workstation Requirements 1-7
1.4 ADS SOFTWARE FEATURES 1-8
15 TEXT-BASED USER INTERFACE i 1-9
151 General Description 1-9
1.5.2 Command Entry 1-9
1.5.3 Display Modes. 1-10
1.6 GETTING STARTED. e 1-11
1-2 DSPADSUM/AD MOTOROLA

General Information

Introduction

1.1 INTRODUCTION

The Motorola Application Development System (ADS) is a four component
development tool for designing real-time signal processing systems. The ADS
consolidates complex hardware and software development tools within a low cost
workstation environment using a well supported Operating System. By providing a
solid foundation for application development and test, the ADS significantly reduces
development costs and time-to-market. The versatile ADS not only allows rapid initial
development, but also supports comprehensive testing of prototype designs.

The four ADS components are:

= Host-Bus Interface Board—There are two types of boards available: 16-bit ISA
bus (for PC-compatibles and HP7xx workstations) and SBus (for Sun and SPARC
workstations)

= Command Converter (CC)—This is a universal design that supports all ADMs.

= Control, Development, and Debugging Software—This software is available in
several versions: DOS-compatible (6.0 or later), Windows-compatible (3.1 or later
and Windows95), Sun OS-compatible (Rel. 4.1.1 or later), Solaris-compatible (Rel.
2.5 or later), and HPUX-compatible (Ver. 9.x only).

= Application Development Module (ADM)—This module supports development
and test using a specific DSP chip. Consult your local Motorola distributor, a
Motorola semiconductor sales office, or the source for the latest information—the
Motorola DSP home page on the Internet (http://www.motorola-dsp.com) to identify
currently available ADMs.

Motorola DSPs have a common OnCE™ module that allows the development tools to
have identical features. Using the concept of a common serial debug port, one set of tools
has been designed which allows the user to communicate with any of the architectures
using a single Command Converter. In some Motorola DSPs, this module uses a
dedicated ONnCE serial port to access the internal module. In other Motorola DSPs, the
internal ONCE module is addressed using the IEEE Joint Test Action Group (JTAG)
4-wire Test Access Port (TAP) Boundary Scan Architecture protocol. The tools software
can use either the direct OnCE serial port or the JTAG serial port.

This manual describes the installation, use, and functional description of the control
system that interacts with the target DSP.

Note: The DSP CLAS Design-In Software Package is a recommended companion
product for the ADS. The CLAS software package runs on PC-compatibles,
Macintosh (not supported by the ADS), HP7xx Workstation, or a Sun-4
Workstation. The CLAS package includes the DSP Simulator Program and the
DSP Macro Cross Assembler Program which are compatible with the ADS
user interface program.

MOTOROLA DSPADSUM/AD 1-3

General Information

General Description

1.2 GENERAL DESCRIPTION

The ADS provides a tool for designing, debugging, and evaluating DSP based systems.
It consists of three hardware circuit boards, as illustrated in Figure 1-1, and two software
programs. The hardware circuit boards are the Host-Bus interface, Command Converter,
and the ADM. The two software programs are the ADS user interface program which is
executed on the host computer and the Command Converter monitor program.

Figure 1-1 illustrates the ADS being used as a hardware evaluation tool or software
accelerator. The ADM card has a 14-pin connector which provides an access point for the
Command Converter JTAG/OnCE interface.

37-pin 14-pin User Application

Interface Ribbon Circuits
Cable Cable 1
Host Computer ||
5 I O
|/‘ Motorola DSP]
Host-Bus | C][]
Interface Card
Command
Converter

Application Development Module (ADM)

Figure 1-1 Application Development

37-pin Target

Interface

Cable Command 14-pin ¢
Converterl Serial

Interface - - -
Host Computer \

l Upto 24

|/‘ :I Target
14-pin _-% Devices

Host Computer 2x7
Interface Card connector - - -
Up to Seven Additional - - -

Command Converters

Figure 1-2 Target Circuit Emulation

1-4 DSPADSUM/AD MOTOROLA

General Information

General Description

Figure 1-2 on page 1-4 illustrates how the ADS can be used as an emulator for a defined
target system for which the user needs to debug the hardware or software. Here the user
must provide an access point on the target hardware for a 14-pin JTAG/OnCE interface
cable, which may be as simple as a 2 row x 7 set of test points. Section 5 provides
complete details of the pinout of the JTAG/ONCE interface cable.

The software program provides the routines necessary for the user to communicate with
the target DSP on the ADM or the target application. This program has a group of
powerful commands, which enables the user to perform a variety of tasks. Operating
system command calls may be made from within the program, or temporary exits to the
operating system may be made without disturbing current setups to the target DSP.

The format for invoking the non-windowed version of the ADS program is:
ADSXxxxx [racro command fil enaneg]
The format for invoking the Windowed version of the ADS program is:

@Bxxxxx [macro command fil enane]

Note: The individual ADM User’s Manuals specify which version of the software to
load (e.g., DSP56301ADM uses the ADS56300 or GDS56300 software).

The macro command filename (default.cmd extension) is an optional parameter. The
macro command file should contain a sequence of commands that the user wishes to
execute upon ADS start up and prior to command entry from the keyboard. Macro
commands may be nested (a macro command file may call another macro command file)
to any level. The macro commands may be easily generated from within the ADS
program using the log command. Refer to the LOG command for further details. For
users who are on a host computer which invokes the ADS using a mouse, it may not be
easy to invoke the user interface program with a macro command file. To solve this
problem the ADS searches for a specific file named “startup.cmd” in the same directory
from which the ADS is invoked. If it finds such a file it is opened as a macro command
file and the commands are executed prior to checking for the optional macro command
file argument.

The HOST-BUS to ADM interface board provides a physical link between the HOST
computer and the ADM via a parallel data and control bus cable. The parallel data path
is used for high speed data transfers. The control bus signals enable the HOST computer
to reset, interrupt, and send commands to ADMs simultaneously or sequentially.

The ADM is the basic platform for evaluating the DSP. It contains a DSP chip with a
JTAG/0ONnCE interface connector to configure it as a slave to the HOST computer or as a
stand-alone unit. In the slave configuration, the user controls the DSP processor and is
able to interrogate its status. This enables the user to debug hardware and software
easily. In the stand-alone configuration, a user program resident in ROM controls the
ADM and may be used as a prototype system for an end product.

MOTOROLA DSPADSUM/AD 1-5

General Information

Operating Environment

1.3 OPERATING ENVIRONMENT

The ADS hardware and software is currently supported on three different host
computers:

e PC-compatibles
e Hewlett Packard HP7xx Workstations

= Sun-4 and compatible Workstations

1.3.1 PC-Compatible Requirements

The minimum hardware requirements for the ADS User Interface Program include:
= PC-compatible (486 or Pentium) with 8 M bytes of RAM
e MS-DOS 6.0 (or later), Windows 3.1 (or later), or Windows 95 (or later)
e CD-ROM drive
= Hard drive with 8 M bytes of free space
< Mouse and keyboard
= One 16-bit I/0 ISA expansion slot
= Free 1/0 addresses 100-102 hex, or 200-202 hex, or 300-302 hex.

If the user debug setup involves many assigned disk files, the operating system’s limit of
the number of open files may be reached. In order to reduce the chance of this situation
occurring, it is recommended that your operating system CONFIG.SYS file be modified
with the following MS-DOS configuration commands:

= BUFFERS =32
= FILES=20

These commands increase the number of disk memory buffers and the maximum
number of files that may be open at one time.

1-6 DSPADSUM/AD MOTOROLA

General Information

1.3.2

Operating Environment

Hewlett Packard HP7xx Workstation Requirements

The minimum hardware requirements for the ADSH User Interface Program include:

1.3.3

HP7xx Workstation running HPUX Version 9.x. (10.x is not supported)
CD-ROM drive

Hard drive with 8 M bytes of free space

Mouse and keyboard

One EISA expansion slot.

Sun-4 or Compatible Workstation Requirements

The minimum hardware requirements for the ADSF User Interface Program include:

SUN Operating System Release 4.1.1 or later or SOLARIS Release 2.5 or later
CD-ROM drive

Hard drive with 8 M bytes of free space

Mouse and keyboard

One SBus expansion slot.

MOTOROLA DSPADSUM/AD 1-7

General Information

ADS Software Features

1.4

ADS SOFTWARE FEATURES

Single/Multiple stepping through DSP programs

Source level symbolic debug of assembly and C source programs
Conditional or unconditional software and hardware breakpoints
Program patching using a Single-Line Assembler

Session and/or Command Logging for later reference

Loading and Saving of files to/from ADM Memory

Macro command definition and execution

Display Registers and Memory

Debug commands which support Multiple DSP development

Hexadecimal/Decimal/Binary/Fractional/Floating Point calculator

Multiple Input/Output file access from DSP object programs
On-line help screens for each command and DSP register
Compatible with the DSP CLAS Assembler & Simulator

Single Command Converter supports OnCE and JTAG protocols

Choice of Text-Based or Graphical User Interface

1-8

DSPADSUM/AD

MOTOROLA

General Information

Text-Based User Interface

1.5 TEXT-BASED USER INTERFACE

The ADS provides a Text-BasedUser Interface and a Graphical User Interface (GUI). This
section describes the Text-Based User Interface. Refer to Section 4 for detailed
information about the GUI.

151 General Description

The Text-Based User Interface provides the fastest user response time. All command
entry occurs from a fixed command line on the screen (third line from the bottom). A
fixed error line (second line from the bottom) is used to flag any errors in the command
line entry. A fixed help line (last line on bottom of the screen) assists in command line
entry by displaying the command’s optional or required parameters. Additional help
and examples can be viewed by typing a “?”” at any point during command entry. As
each valid command is accepted from the command line, the command and its results
are scrolled into the display screen. The last 100 lines of a DOS display screen entry are
available for review at any time by typing Pg Up, Pg Dn, Up-Arrow, or Down-Arrow.
The Left-Arrow and Right-Arrow keys allow cursor movement on the command line.

152 Command Entry

Upon entry into the Text-Base User Interface program, several of the available
commands are displayed on the help line. The remaining commands may be reviewed
by pressing the SPACE bar when the cursor is at the start of the command line. The user
interface program requires a minimum number of key strokes to recognize a command.
The minimum number of required characters for each command is shown highlighted
on the help line. A command may be specified by typing the required characters
followed by a space or by typing the entire command word followed by a space. A
detailed description of the commands and command syntax is provided in Section 3.

Entering the command key strokes followed by a space activates the help line for that
particular command. The help line shows the syntax for the remainder of the command.
Additional help and examples of the current instructions may be obtained by typing a
question mark at any point during the command entry. Any text following a semicolon
on the command line is considered to be a user comment. This provides the user a means
of documenting a session display. Command execution begins when the user types the
Enter or Return key. If the specified command is not predefined, an attempt is made to
interpret it as a macro filename. If a macro file of the same name exists, its commands are
executed. Macro commands are a convenient way to group a series of commands that
might be executed often under one command name.

MOTOROLA DSPADSUM/AD 1-9

General Information

Text-Based User Interface

The ADS user interface software searches for the macro command filename (default.cmd
extension). The macro command file is a text file that should contain a sequence of
commands that the user wishes to execute. Macro commands may be nested (a macro
command file may call another macro command file) to any level. Macro command files
may be conveniently created by enabling logging of command entries. This procedure is
explained in the documentation of the LOG command. Once a valid command is
entered, it is stored in a holding buffer for repeated execution. To execute the previous
valid command the user need only type the Enter or Return key.

Command line editing is supported for command entry corrections. The cursor may be
moved on the command line by using the Left-Arrow and Right-Arrow keys. The
Back-Arrow key on the upper right of the keyboard will backspace and delete the
previous character. The Del key will delete the following character. The Ins key may be
used to toggle between insert and overwrite modes of character entry. The Ctrl-C or
Ctrl-Break keys may be used to abort the execution of a display command. The Ctrl-S
key allows the current screen output to be frozen for closer examination. The Ctrl-X key
acts as a toggle to disable or enable Command Converter service requests. Disabling
Command Converter service requests freezes execution of multiple “show” or “note”
breakpoints and allows user interface commands to be entered and the display to be
examined. Enabling Command Converter service requests resumes Command
Converter execution.

1.5.3 Display Modes

The ADS supports three display modes: Register, Assembly, and Source. These modes
determine the ADS display at the termination of either the GO, STEP, or TRACE
commands. The Register display mode causes the display of register and memory
locations enabled by the DISPLAY command. The Assembly display mode causes the
display of one full screen of disassembled instructions containing the instruction at the
current execution address. The Source display mode causes the display of one page of
the original source file which contains the source line associated with the current
execution address. In both the Assembly and Source display modes the position of the
current execution address is marked by ‘=>" in the left margin. The Source display mode
requires symbol and line information in the object file that will normally be the result of
assembling with the —g option of the assembler. See the Assembler Manual for
instructions on the use of the —g option. A display mode can be selected either by the
ADS VIEW command, or by toggling among the display modes using the Ctrl-W key
entry (hold down Ctrl and press w). In addition, ADS commands which display registers
or memory, or otherwise create display to the register display window will select the
Register display mode; and the ADS LOAD and LIST commands will switch from the
Register display mode to the Source display mode.

1-10 DSPADSUM/AD MOTOROLA

General Information
Getting Started

1.6 GETTING STARTED

After following the installation instructions in Section 2 you should be ready to begin a
debug/evaluation session. In order to communicate with the target DSP it must be put
into the Debug mode of operation. When first entering the ADS user interface program
and the user is just starting a debug session, the user interface program automatically
resets the Command Converter.

A good starting reference when initially starting a debug/evaluation session is to reset
the Command Converter, user interface program and target DSP into the Debug mode
of operation by issuing a FORCE S (system reset) command. If the user exits the user
interface program and has put the target DSP into the User mode of operation by issuing
a GO command or by toggling the target DSP reset pin, the FORCE B (put the DSP into
the Debug mode from the User mode) or FORCE R (put the DSP into the Debug mode
from the Reset state) command must be executed so the target is forced into the Debug
mode. There are status flags in the ADS user interface program and in the Command
Converter monitor that are used to determine whether the target is in a User mode of
operation or in the Debug mode ready to communicate with the JTAG/OnCE port. This
IS necessary so that if the user exits the ADS user interface program and the targetis in
the Debug mode, the ADS user interface program will initialize its debug status flag
correctly by reading the Command Converter monitor debug status flag. For more
information on the status flags refer to the CFORCE command in Section 3.

When power is applied to the ADS system via the 37-pin connector, there are two reset

circuits that are activated. The Command Converter has a reset circuit which will put the
DSP56002 controller into its monitor program and will wait for commands from the host
computer. Any time the power is removed from the target and/or Command Converter
the FORCE S command should be executed. This will insure that the user initializes the
system into a deterministic state.

Section 4 discusses in detail the functional description of the system interaction between
the ADS user interface program, Command Converter monitor program and the target
JTAG/0ONnCE port. A good tip to remember for OnCE-based systems is that whenever
the target is put in the Debug mode of operation, its DSO pin (DE pin for newer DSPs) is
toggled low. This pin is tied to the IRQB pin of the Command Converter. If power is
removed from the target with the 14-pin JTAG/ONnCE cable connected to the Command
Converter, the DSO line will look like a low signal. This will cause the Command
Converter to request service from the host computer.

Note: A good rule is to remove the 14-pin JTAG/ONnCE cable prior to powering
down the target system when using separate power from the Command
Converter.

MOTOROLA DSPADSUM/AD 1-11

General Information

Getting Started

1-12 DSPADSUM/AD MOTOROLA

SECTION 2
PREPARATION AND INSTALLATION

MOTOROLA DSPADSUM/AD

2-1

Preparation and Installation

2.1 HOST COMPUTER INTERFACE CARD. 2-3
2.2 PC-COMPATIBLE TO COMMAND CONVERTER INTERFACE 2-3
2.3 INSTALLING THE PC-COMPATIBLE SOFTWARE 2-5
2.4 SUN 4 TO COMMAND CONVERTER INTERFACE 2-8
2.5 HP7XX TO COMMAND CONVERTER INTERFACE 2-10
2.6 CONFIGURING THE COMMAND CONVERTER 2-16
2-2 DSPADSUM/AD MOTOROLA

Preparation and Installation

Host Computer Interface Card

21 HOST COMPUTER INTERFACE CARD

This chapter covers the installation instructions for the different host computer
platforms. Schematics and bill of materials for the different host computer interface
cards can be found in Section 5.

2.2 PC-COMPATIBLE TO COMMAND CONVERTER INTERFACE

The interface between the Command Converter and the ADS User Interface Program is
handled by a circuit board that resides in one of the PC-compatible motherboard system
expansion slots. A single PC-compatible interface card can control up to eight Command
Converters.

2.2.1 Installing the PC-Compatible Interface

CAUTION

Before removing or installing any
equipment in the PC-compatible
computer, turn off the power and
disconnect the power cord.

Refer to the appropriate Installation and Setup manual for your PC-compatible for
instructions on removing the system cover.

Jumper group JG1 selects the interrupt asserted on the host processor by the Host
Interface Card when the target DSP device makes a Service Request (by reaching a
breakpoint, for example).

Note: The ADS software does not support interrupts. No jumper should be placed
on JG1 when used with the ADS software.

Jumper group JG2 specifies the Host Interface card 1/0 address. The Host Interface
Card supports 16-bit I/0 addresses, and uses three consecutive addresses from the
specified address. The starting address may be configured, with jumper pairs A8-Al5in
JG2, to any multiple of $100, up to $FF00. Place a jJumper over a pair of pins to set that

MOTOROLA DSPADSUM/AD 2-3

Preparation and Installation

PC-compatible to Command Converter Interface

address bit to 0; remove the jumper to set the address bit to 1. Address bits AO-A7 are
not decoded. In Figure 2-1, the selected address range is $100-$102.

Note: Although the Host Interface Card supports 16-bit addressing, the ADS
software only supports address ranges $1XX, $2XX, and$3XX.

Once you have ensured that the selected address does not confilict with another
expansion card installed in the motherboard you may install the Host Interface Card.
Figure 2-1 illustrates the physical locations of JG1 and JG2.

37-pin
i command
ADDRESS
IRQ SELECT converter

SELECT —1 A8 Interface
3r—

IG1 A13 1

3333331

o
@
N

<«——— [ISAInterface

(not to scale)

=

Figure 2-1 PC-compatible Interface Card Jumper Group Locations

The Host Interface Card resides in the PC-compatible 1/0 bus and is the particular
address block with which the ADS User Interface Software communicates. The Host
Interface Card address block may be changed to start at one of three addresses as
follows:

Table 2-1 PC-compatible I/0 Addresses

PC'C%%?S?SIG g PC-compatible Peripheral JG1
100-102 (default) Undefined A8 open, all other pairs linked
200-202 Game Port A9 open, all other pairs linked
300-302 Prototype Port A8, A9 open, all other pairs linked

If the Host Interface Card address block is changed from the default 1XX,¢, the selected
address must be specified to the ADS. This may be done in one of three ways:

= Set the environment variable ADMADDR:>SET ADMADDR=200
e |ssue the ADS command host:0> host io 200
= Use the -d option on the ADS command line:>ADS56300 -d 200

2-4 DSPADSUM/AD MOTOROLA

Preparation and Installation

Installing the PC-compatible Software

To install the Host Interface Card properly, position its front bottom corner in the plastic
card guide channel at the front of the PC-compatible chassis. Keeping the top of the Host
Interface Card level and any ribbon cables out of the way, lower the card until the card
connectors are aligned with the PC-compatible system board expansion slot connectors.
Using an evenly distributed pressure, press the Host Interface Card straight down until
it seats in the expansion slot.

Secure the Host Interface Card to the PC-compatible chassis using the bracket retaining
screw. Refer to the PC-compatible Installation and Setup manual for instructions on
reinstalling the cover.

The Host Interface card is factory configured for address decoding at $100-$102 of the
PC-compatible 1/0 Address Map, which are undefined peripheral addresses.

Note: Jumper JG2 should be left disconnected.

The PC-compatible interface card is factory configured for address 100 and no
interrupts.

2.3 INSTALLING THE PC-COMPATIBLE SOFTWARE

There are two debugger programs available. A Text-Based User Interface program that
provides information in one scrolling window has been used since the inception of the
ADS. A Graphical User Interface program (GUI) that supports multiple windows,
menus, and many dialog boxes is also available for use in the Microsoft Windows
environment.

2.3.1 Defining Environment Variables

The following sections specify environment variables which may need to be defined to
establish the correct operating environment for the ADS user interface software. These
environment variables may be defined during system startup by adding lines to the file
c:\autoexec.bat, which applies to all versions of DOS and WINDOWS. Some
Windows95™ installations may not use the autoexec.bat file. If it does not exist, it may
be created and the SET commands inserted.

The general form of the SET command is:
SET synbol narme=val ue

Use the names and values from the sections below, and do not use spaces around the ‘=’
sign.

MOTOROLA DSPADSUM/AD 2-5

Preparation and Installation

Installing the PC-compatible Software

2.3.2 All Versions of User-Interface Program

If the 1/0 address of the Host Interface Card is changed from the default setting of 1xXyg,
the ADS user interface program must be informed of the address to access the card. This
may be done with the environment variable ADMADDR:

set admaddr =200

2.3.3 Text-Based User Interface Program Installation

The ADS DOS user interface program exceeds 300 K bytes in size and dynamically
allocates memory. The DOS version of the ADS user interface program uses an extended
memory manager, DOS/4GW, supplied with the Watcom 386 C compiler. DOS/4GW is
based on Rational Systems’ DOS/16M 16-bit Protected-Mode support. This program is
called during the ADS user interface program startup, and must be locatable using the
DOS PATH environment variable. Refer to the dos4gw.doc file on the Motorola Tools
CD.

In almost all cases, DOS/4GW programs can detect the type of machine that is running
and automatically choose an appropriate Real mode to Protected mode switch
technique. For those few cases in which this default setting does not work the
dos4gw.exe program, supplied on the Tools CD, uses the environment variable DOS16M
in order to choose an appropriate real- to protected-mode switch technique. In case the
default operation does not work on your computer, change the switch mode settings
with the following command:

set DOBl6Mval ue

Do not insert a space between DOS16M and the equal sign. The README file on the
Tools CD gives more information on the use of different PC-compatible machines and
the value used for those machines. The following procedure shows you how to test the
switch mode setting:

1. Before running DOS/4GW applications, check the switch mode setting by
running the PMINFO program and note the switch setting reported on the last
line of the display. PMINFO.EXE is provided on the Motorola Tools CD. If
PMINFO runs, the setting is usable on your machine.

2. If you changed the switch setting, add the new setting to your autoexec.bat file.

3. In order for the virtual memory capability to operate properly, the PC’s
environment variables must have a defined variable DOS4GVM, with options to
define virtual memory parameters. If the DOS4GVM environment variable does
not exist, the virtual memory capability does not operate.

The possible parameters are:

2-6 DSPADSUM/AD MOTOROLA

Preparation and Installation

Installing the PC-compatible Software

e MINMEM—The minimum amount of RAM managed by the VMM. Default is

512 KB.

« MAXMEM—The maximum amount of RAM managed by the VMM. Default is
4 MB.

 SWAPNAME—The swap file name. Default name “DOS4GVM.SWP” on current
drive.

e DELETESWAP—Specifies that the swap file should be deleted.
= VIRTUALSIZE—The size of the virtual memory space. Default is 16 MB.
Use the following format for the DOS4GVM environment variable:
set DCAGM: [option[#val ue]] [option[#val ue]]

A “# is used with options that take values since the DOS command shell will not accept
“="_As an additional example, the following line in your autoexec.bat file will enable an
8 MB virtual memory swap file with automatic deletion of the swap file:

set DOAGM:del et eswap naxnen#8192

2.3.4 Using Default Settings

If you set DOS4GVM equal to 1, the default parameters are used for all options. In this
case the swap file will be called DOS4GVM.SWP and will be given a size of 16 MB. Also
note that you should not have to use the DOS16M environment variable for PC
compatible 486-based machines. The only line required for the autoexec file is:

set DOAGM-L

2.3.5 Graphical User Interface (GUI) Program Installation

The GUI requires the Microsoft WIN32S to be installed on systems running Microsoft
Windows 3.1. The WIN32S software is distributed on the CD. This software is loaded by
invoking SETUP on \WIN32S\DISK1.

To install the development software, run SETUP in the WIN directory. See the README
file for details.

MOTOROLA DSPADSUM/AD 2-7

Preparation and Installation

SUN 4 to Command Converter Interface

24 SUN 4 TO COMMAND CONVERTER INTERFACE

The Motorola SBus/ADS Interface is an interface board that is designed to be installed in
an SBus slot on a Sun SPARCstation or compatible workstation. The board provides a
parallel communication path between the workstation and a Motorola DSP development
system.

2.4.1 Installing the Sun-4 Interface

The Motorola SBus/ADS Interface is delivered ready to install in your SBus system.
There are no user configurable jumpers or hardware configurable options. Please consult
the “SPARCstation xxx Installation Guide” or the board installation instructions
supplied with your SBus system for installation details. Following is a summary of the
Instructions in the Sun manual:

1. Turn off power to the system, but keep the power cord plugged in. Be sure to save
all open files and then the following steps should shut down your system:

host nane%/ bi n/ su
Passwor d: nypasswd
host nane# /usr/etc/ hal t

Wait for the following messages:

Syncing file systens... done
Hal ted
Pr ogram Ter m nat ed

Type b(boot), c(continue), n(new command node)

When these messages appear, you can safely turn off the power to the system
unit.

2. Open the system unit. Be sure to attach a grounding strap to your wrist and to the
metal casing of the power supply. Follow the instructions supplied with your
system to gain access to the SBus slots.

3. Remove the SBus slot filler panel for the desired slot from the inner surface of the
back panel of the system unit. Note that the Motorola SBus/ADS Interface board
is a slave only board and thus will function in any available SBus slot.

4. Slide the SBus board at an angle into the back panel of the system unit. Make sure
that the mounting plate on the SBus board hooks into the holes on the back panel
of the system unit.

2-8 DSPADSUM/AD MOTOROLA

Preparation and Installation

SUN 4 to Command Converter Interface

5. Push the SBus board against the back panel and align the connector with its mate
and gently press the corners of the board to seat the connector firmly.

6. Close the system unit.

7. Connect the 37-pin ADM interface cable to the SBus/ADS Interface board and
secure.

8. Turn power on to the system unit and check for proper operation.

2.4.2 Software Installation

Note: In the instructions that follow, ADSxxx represents the name of your particular
system, such as ADS56000, ADS96000, etc.

The distribution CD included with the ADS package contain the “mdsp” SBus device
driver for the ADS as well as the ADSxxx user interface program for the ADS. The
following steps will allow you to install the device driver and run the user interface.

1. Copy all of the software from the distribution CD onto your system using
uncompress and tar. See the readme file for details
2. Install the driver with the following commands:

host nane# cd adsxxx/ dri ver
host nane# make i nstal |
3. After asuccessful installation, you should see a module status message indicating
that your module was successfully loaded and giving its ID. To see this status at
any time, issue the “modinfo” command on SOLARIS, “modstat” for SunOS.

4. If the ADSxxx driver module was loaded properly, you should be ready to run
the ADSxxx user interface:

host nane# cd ../bin
host nane# adsxxx

If, for any reason, you wish to uninstall the driver, use the following commands:

host nane# cd adsxxx/ dri ver
host nane# nake unl oad (SunCs 4. x)
host nane# nake uninstal | (SOLAR S 2. X)

MOTOROLA DSPADSUM/AD 2-9

Preparation and Installation

HP7xx to Command Converter Interface

25 HP7XXTO COMMAND CONVERTER INTERFACE

The Motorola HP7xx Interface uses the same ISA card which is installed in the
PC-compatible. It is controlled by an HPUX device driver. The HP7xx computer must
have an ISA slot available to plug this card into. Older versions of the HP700 series
computer did not have ISA expansion slots. The ISA board provides a parallel
communication path between the HP workstation and a Motorola DSP development
system. For details on jumper configurations of the ISA card, refer to Section 2.2

on page 2-3 of this chapter.

The HP7xx device driver and user interface program support multiple host interface
cards in a system. Therefore when reading the software installation instructions keep in
mind that the device driver name(s) must be different for each card installed in a system.

2.5.1 Installing the HP-7xx Interface

Before installing one or more ISA cards, a sequence of steps must be followed to shut
down your system. If you are using HP VUE carry out steps 1 through 4 of Section
2.5.1.1. If you are using the HP-UX command line shell carry out steps 1 through 4 of
Section 2.5.1.2.

To shut down your computer you must first be logged in as “root”. Save all open files
prior to shutting down, and always follow the proper shutdown procedure before
turning off the power to your workstation. Failure to do so could cause damage to files.

Note: “hostname#” represents the system prompt, (i.e., it is not to be entered as part
of the command).

2511 HP VUE Shutdown

1. Use the HaltSystem application, located in the System_Admin file of the General
toolbox, by double-clicking on its icon.

2. Click on the “OK, Halt System” button to initiate shutdown.

3. When the message “Halted, you may now cycle power.” appears, you may safely
turn off the power to your workstation.

4. Gotostep 1 of Section 2.5.1.3 on page 2-11.

25.1.2 HP-UX COMMAND LINE SHELL SHUTDOWN
1. Change to the root directory with the following command:
host nane# cd /

2. Enter this command to initiate shutdown:
host nane# / et ¢/ shutdown -h 0

2-10 DSPADSUM/AD MOTOROLA

Preparation and Installation

HP7xx to Command Converter Interface

3. When the message “Halted, you may now cycle power.” appears, you may safely

4.

turn off the power to your workstation.
Go to step 1 of Section 2.5.1.3

25.1.3 ISA Card Installation
The following steps should be used to install the ISA card:

1.
2.

Remove the power cord from both the wall socket and the unit.

Remove the power supply cover plate (see Figure 1 below), located on the rear of
the unit and marked “TO ACCESS EISA PULL THIS HANDLE”, and gently slide
the EISA Adapter Card Assembly (hereafter called “assembly”) out of the unit.

Remove the blank EISA slot cover from the assembly. The cover is simply a piece
of metal that covers the hole when there is no card installed, and is held in place
by a single screw. Be sure to save this screw as it will be used to secure the card.

Carefully slide the ISA card into the assembly, making sure that the connector
pins on the assembly meet up properly with those on the card, and that the cable
socket is positioned fully within the hole. Use the screw saved from the previous
step to securely attach the card to the assembly.

Carefully slide the assembly back into the unit. Press firmly on all four corners to
ensure that the connectors on the front of the assembly fully engage with those
inside the unit.

Reinstall the power supply cover plate, and then reconnect the power cord to
both the unit and the wall socket. Also connect the 37-pin ribbon cable from the
ISA card to the ADM board.

The system may now be restarted.

Power supply cover plate

— >
(@)

AC Power Connection EISA Connector hole

Figure 2-2 HP-7xx Chassis Rear View

MOTOROLA DSPADSUM/AD 2-11

Preparation and Installation

HP7xx to Command Converter Interface

2.5.2 Installing the HP-7xx Device Driver

An HP-700 formatted Digital Audio Tape (DAT) contains the necessary files for the
installation of the device driver. The device driver supports multiple cards so only one
device driver needs to be installed regardless of the number of cards being used. This
tape is UNIX tar formatted and should be read in with the following command:

tar xvf /dev/rm/Om
An alternate command would be:
tar xvf /dev/rnm/0Om

The number at the end of the command is the device number and should be changed if

the tape drive number is different on the machine being used. The ‘n’ in the first example
keeps the tape from being rewound after it is read. After the files are extracted from the
tape a directory named “driver” is created.

The user must be logged in as “root” or superuser to proceed from this point. The
following steps should be followed for proper installation of the driver program:

Note: “hostname#” represents the system prompt (i.e., it is not to be entered as part
of the command).

The HP device driver for the ADS supports multiple host interface cards (up to three,
limited by the addresses that can be selected on the host interface card) installed into a
single HP-700 workstation.

1. When the files were installed, a directory called driver was created in the
hierarchy. Make this the current directory now by executing the following
command, where ADS-PATH is the path to where the ADS files were installed:

host nane# cd / ADS- PATH dri ver
2. Copy and change the ownership, group and mode of the device driver library file,
libmdsp.a, using the following commands:
host nane# cp | i bndsp. a / et ¢/ conf
host nane# chown bin /etc/conf/libndsp. a
host nane# chgrp bin /etc/conf/libndsp. a
host nane# chnod 444 /et c/ conf/ i bndsp. a

3. To install the device configuration file, type the following command (note that it
may be necessary to escape the ! by using a backslash \, depending on the shell
you are using):

host name# cp ! MOT0010. OFG /etc/eisa
This copies the configuration file into the system EISA configuration directory.

Modify the copy of the file in Zetc/eisa to reflect the 1/0 port that the card is
configured for (change the PORT entry).

2-12 DSPADSUM/AD MOTOROLA

Preparation and Installation

HP7xx to Command Converter Interface

If you are using multiple host interface cards in your HP, make multiple copies of
this file in Zetc/eisa, changing the last digit of the file name on each copy. Modify
each copy to have the correct ID and PORT entries (the ID entry should be the
name of the file without the .CFG extension). Each PORT entry should be
modified to contain the proper addresses for the additional cards that are
supported.

4. Run the EISA configuration program by typing:
host nane# / et c/ ei sa_config

At the EISA prompt, type “add 'MOT0010.CFG <slot num>”, where <slot num>
is the slot number in which the card is installed.

If you have installed multiple host interface cards, repeat the "add" command
once for each configuration file and slot. For example, if you created a file
IMOTO0011.CFG for a card in slot 2, and modified the PORT and ID entries in
IMOTO0011.CFG to reflect the 1/0 address of the card in slot 2, you would type
"add IMOTO0011.CFG 2" to add that card to the EISA configuration information.

On machines with one EISA expansion slot, the slot number is 1.
Press “q” to quit the EISA configuration program, and “s” to save.

5. You must now edit the /etc/master file to include the ADS device driver. Make a
backup copy of “/etc/master”. You will need to change one line and add three
new lines in this file. The entries will be in the “Third Party and User Drivers”, the
alias table, the driver/library table, and the library table.

Change the first available line of the "Third Party and User Drivers' section to look
like the following line. An available line is one which has dashes in the first four
entries. Note that the last two entries are already set and are not to be changed.
The last entry is the major number for the device. You may use a line which has
38, 39, 40, 42, or 43 for the major number. Make note of the number you choose, as
it is used in the next step.

Nane Handl e Type Mask Bl ock Char (Do not add this line.)
nusp nusp 1 1FA -1 <naj or >

Find the alias table add the following line:
nusp nusp

Find the driver/library table add the following line:
nusp |i bndsp. a

Find the library table add the following line:
libndsp.a O

MOTOROLA DSPADSUM/AD 2-13

Preparation and Installation

HP7xx to Command Converter Interface

6.

Note:

Make a device file for the driver by executing the following:
host nane# nknod /dev/ndsp0 ¢ <naj or > <minor >

The major and minor numbers of the device are given by <major> and <minor>,
respectively. N is a user chosen device group number. The ADS user interface
software always defaults to device group 0 or mdspo0.

The <major> must be the same major number you used in the previous step.
The minor number is 0x4S0000, where ‘S’ should be replaced by the card slot
number in which the card was placed (1 — n). For machines with a single slot,
the slot number is 1. For example, slot 4 of a multi-slot machine would be
0x440000

Be sure to change the permissions for this file(s) by typing this command:
host nane# chnod 666 /dev/ ndspO

If you have installed multiple host interface cards, repeat the "mknod" and
“*chmod" steps for each new card. The <major> number for each will be the same,
but the <minor> number will reflect the slot in which the card was installed. The
device file names are arbitrary, but you should make note of which card
corresponds to each device file name. We suggest using a final digit of ‘"N - 1" for
slot "N".

Edit the file Zusr/sam/lib/kc/drivers.tx and add an entry for the ADS device
driver. You may wish to make a backup of the file before editing it. Add the line:

nusp: : : Qut: Mbtorol a ADS Host Interface Card

Select and edit a dfile (configuration description file). First, change directories by
executing:

host nane# cd /et c/ conf
A dfile must now be selected. Your current system dfile should be called either
dfile, dfile.SAM (for a kernel that has been configured with the HP System
Administration Manager), or a unique name given by you if you have altered
your kernel configuration by hand. Use the dfile appropriate for your system. If

you aren’t sure which version to use, or if your choice doesn’t work, then you can
use the file created by the command

host nane# / systemi TOO/ get_kdfile /hp-ux > dfile.current
to get your current system dfile.

Make a backup copy of the selected dfile and edit the selected dfile by adding the
following lines to the top of it:

* Mbtorol a D8P ADS Device Driver
nusp

2-14

DSPADSUM/AD MOTOROLA

Preparation and Installation

HP7xx to Command Converter Interface

9. Generate the files needed to rebuild the kernel with your new device driver.
Execute this command, replacing dfile-name with the dfile you selected in the
previous step

host nane# /et c/ confi g dfil e- nane

10. Generate a new kernal object file in the current directory using the following
command:

host nane# nmake -f config.nk XIS i bndsp. a

11. If the build finished successfully, your new kernel may now be installed. Make a
backup of the current kernel by executing the following copy command:

host nane# cp /hp-ux /hp-ux. pre-ads

12. The final step is to Install the new kernel in the root path and reboot the system.
Note the period before the first slash in the first argument of the cp command:

host nane# cp ./hp-ux /hp-ux
To reboot the system using the new kernel type the following command:

host nane# exec reboot

During boot-up, you should see the following message displayed on the screen if
the installation was successful:

“ot <slot-nunr. Mdtorola DSP ALS Host Interface Card Initialized”,

where <slot-num> is the previously selected slot number in which the card is
installed.

The ADS Device Driver is now installed and ready for use. By default, the ADS
program attempts to open the device file dev/mdsp0. If you want to use a
different device (i.e., different host interface card), you can specify the device file
name in an environment variable, or on the command line. The environment
variable is ADMADDR. The command line option is "-d', followed by the name of
the device file. The "-d' option must come before a command file name.

For example, to use /dev/mdsp2, you could set an environment variable before
invoking the ADS software using the following statements:

setenv ADMAODR / dev/ ndsp2
adsXXXXX [command-file] (where XXXXX is the device)

or you can invoke the ADS software with a command line argument such as:
adsXXXXX -d /dev/ misp2 [command-fil e]

MOTOROLA DSPADSUM/AD 2-15

Preparation and Installation

Configuring the Command Converter

2.6 CONFIGURING THE COMMAND CONVERTER

The universal Command Converter supports both the OnCE and JTAG serial protocols.
The universal Command Converter may be identified by the surface-mount DSP56002
which controls its operation. The monitor program resides in SRAM, and is downloaded
by the ADS software during Command Converter initialization and reset operations.

The Universal Command Converter has two user-configurable jumper groups, JG2
which selects the device number, and JG3 which selects the power source for the
OnCE/JTAG buffers.

2.6.1 Selecting the Command Converter Device Number

The Command Converter JG2 jumper group selects which device that particular
Command Converter will respond to commands from the user interface program. The
following table describes the device address select option:

Table 2-2 Command Converters Rev 4, 5 Device Number Selection

Device Address JG2
0 (default) 1-2, 3-4,5-6
1 1-2,34
2 1-2,5-6
3 1-2
4 3-4,5-6
S 3-4
6 5-6
7 no jumpers

Note: All Command Converters are factory configured for device address 0.

2-16 DSPADSUM/AD MOTOROLA

Preparation and Installation

Configuring the Command Converter

2.6.2 JTAG/OnCE Port Buffer V¢

In order to provide support for low voltage DSPs, a CMOS buffer exists between the
DSP56002 controller and the target ONnCE/JTAG interface cable. This buffer has its Vcc
pin connected to JG3, Pin 2. See Table 2-3 for CMOS buffer V¢ configuration.

Table 2-3 CMOS BUFFER Vc CONFIGURATION

V¢ Source JG3
Supply V¢ from Host System (+5 V) 1-2
Supply V¢ from Target System (default) 2-3

Note: The Universal Command Converter is factory configured for the JTAG/OnCE
buffers to be powered from the target system (JG3 2-3).

2.6.3 Command Convertor Monitor Firmware Upgrades

The monitor code for the Command Converter Revision 6, tailored for the target DSP
family in use, is provided with the ADS software, and downloaded automatically into
the command converter during ADS system initialization and Universal Command
Converter reset. If arevision is issued for the monitor firmware, an environment variable
must be defined to specify the filename of the revised monitor. The specified file will be
loaded into the Command Converter instead of the standard monitor program. The
variable which must be defined is CC56000, where ‘56000’ is replaced with name of the
DSP family in use, and the defined value is the fully-specified filename of the revised
monitor software. For example:

= DOS, in AUTOEXEC.BAT:
SET OC56300=C \ ADS\ REVI S| NS\ MIN TQR LCD
e UNIX, with C shell, in .login or .cshrc:
setenv ¢c56300 /ads/ revi si ons/ noni tor. | od
= UNIX, with Bourne shell, in .profile:

¢c56300=/ ads/ revi si ons/ noni tor. | od
export cc56300

specifies that, for the ADS56300 or GUI56300, the standard DSP56300 family
Universal Command Converter monitor code is to be replaced by the code in the file
ADS\REVISIONS\MONITOR.LOD.

MOTOROLA DSPADSUM/AD 2-17

Preparation and Installation

Configuring the Command Converter

To verify that the monitor file is loading correctly, start the ADS program and enter the
following commands:

force s
display v

The monitor revision should be 5.05. If the error ‘Unable to reset Command Converter’ is
issued, make sure the correct path is specified in the definition of CC56x00.

£S5

2-18 DSPADSUM/AD MOTOROLA

SECTION 3
USER INTERFACE COMMANDS

MOTOROLA DSPADSUM/AD

3-1

User Interface Commands

3.1 INTRODUCTION e 3-3
3.2 COMMAND OVERVIEW 3-3
3.3 COMMAND SYNTAX . . e 3-5
3.4 COMMAND PARAMETERS L. 3-7
3.5 COMMAND SUMMARY e 3-8
3.6 DETAILED COMMAND DESCRIPTIONS 3-12
3.7 DEBUGGING C PROGRAMS. 3-90
3.8 C DEBUGGING COMMANDS. 3-92
3.9 EXAMPLE DEBUGGING SESSIONS 3-92

3-2 DSPADSUM/AD MOTOROLA

User Interface Commands

Introduction

3.1 INTRODUCTION

This section describes the ADS user interface commands in detail. There are examples on
how to invoke command line arguments associated with each command and there are
examples on debugging compiled C source programs written with the Motorola GNU
based C Compiler. Also, the user interface program is designed to communicate with
multiple devices in a system.

3.2 COMMAND OVERVIEW

There are forty-five commands available in six functional categories: target
memory/register modification, file /0, target DSP address execution control, C source
code debug, miscellaneous tasks, and Command Converter tasks. Since the ADS
interface program supports multiple Application Development Module connections, a
device argument is included in most of the commands. This device argument designates
which ADM Board or target DSP is to be addressed. If no device argument is entered,
the default device will be addressed. The user interface program will default to device
number 0 upon entry, but may be changed to any one of eight possible default devices.

3.2.1 Memory/Register Display/Modification Commands

There are six program/data memory display/change commands available which allow
the user to ASSEMBLE (ASM), CHANGE, COPY, DISASSEMBLE, and DISPLAY
registers or memory. A WATCH list may be used to display a variable whenever single
stepping or program execution is halted.

3.2.2 File /O Commands

There are five program/data file /O commands available which allow the user to
INPUT or OUTPUT data to/from a target, LOAD macro-assembler object module
programs, LOG commands and/or display entries, and SAVE program/data memory
to files.

MOTOROLA DSPADSUM/AD 3-3

User Interface Commands

Command Overview

3.2.3 Target Program Execution Commands

There are eight program execution commands available which allow the user to set
BREAK conditions in program memory, instruct a target to GO to a program address
and begin execution, FORCE a reset or program halt on a target, STEP x number of
instructions before displaying register and memory changes, and TRACE through a
program one instruction at a time. For symbolic debug capabilities, the NEXT command
operates essentially the same as the STEP command except that if the DSP opcode being
executed calls a subroutine or macro, execution continues until return from the
subroutine or macro. The UNTIL command has the effect of setting a temporary
breakpoint at a specified address, executing until a breakpoint is encountered, then
clearing the temporary breakpoint. The FINISH command proceeds until an RTS opcode
is encountered for the current subroutine.

3.2.4 C Source Code Debug Commands

There are seven C source code debug commands available. The user may use WHERE to
display the C function call stack. The user can then use UP, DOWN and FRAME to
traverse the call stack. The user may REDIRECT data from stdin/stdout/stderr to files
when STREAMS are enabled and the user may also DISPLAY the data type of a variable,
function or C expression. Section 3.8 gives examples on how to use these commands
using example C programs provided on the ADS software distribution media.

3.25 Command Converter Commands

There are eight commands associated with the Command Converter board. These
commands allow the user to CCHANGE, CDISPLAY, CLOAD, CSAVE, CSTEP,
CTRACE, or execute a OnCE command sequence (CGO) in the Command Converter Y
memory. This allows users the ability to write and debug their own command sequences
for the OnCE debug port. The CFORCE command is used to reset or interrupt the
Command Converter.

3.2.6 Miscellaneous Commands

There are eleven miscellaneous task commands available which allow the user to
EVALUATE expressions in five different radices, select a new default DEVICE, QUIT
the User interface program and return to the operating system or get HELP for command

3-4 DSPADSUM/AD MOTOROLA

User Interface Commands

Command Syntax

line entry. Also a default PATH may be defined for a target, a new default RADIX may
be selected, execute SYSTEM commands or WAIT a specified number of seconds before
proceeding to the next command. The HOST command allows the host computer
interface card address to be changed. The LIST command displays a specified source file
when symbolic debug is in effect. The VIEW command allows selection of the simulator
display mode-source, assembly, or register.

3.3 COMMAND SYNTAX

The command descriptions in Section 3.6 each begin with a command syntax line
showing the general form of the command. The command syntax line contains special
punctuation to indicate command keywords, required or optional fields, repeated fields,
and implied actions. The special punctuation is not used for command entry but rather
to describe the forms of the command. Capitalized WORDS indicate command
keywords. Command keywords may be entered in either upper or lower case. The
portion of the command keyword shown in BOLDFACE represents the minimum
portion of the keyword that the user must type. The portion of the keywords not in
boldface may be typed if desired, but is not required by the user interface. The user
interface types out the remainder of the keyword for you if you type the boldface
characters followed by a space.

Other command parameters, shown in the command syntax line in lower case (but not
within parentheses), are used in place of the expanded definitions shown in the
following section. Square brackets [] enclose optional command parameters. The
brackets themselves are not entered as a part of the command. For example, in the
“WAIT [count(seconds)]” command the count parameter is optional.

The solidus ‘/’ is used to separate entries in lists of alternate command parameters. The
user may only enter one of the parameters in the list. The solidus is not entered as a part
of the command. For example, when entering the “LOG” command, log c filename and
log s filename are valid entries, but not log ¢ s filename. Parentheses () surround a
description of an implied action. This is only included to help the user understand the
action of the command. Neither the parentheses nor the description within are entered
as part of the command. For example, when entering the “COPY” command, copy
(from)p:0..10 (to) x:5 should be entered as copy p:0..10 x:5. The from and to words in the
command syntax line are only an explanation of the direction of data transfer. Three
consecutive periods ‘... indicate that the preceding field may be repeated if desired. For
example, when entering the “DISPLAY” command, multiple registers may be specified
for display on the same command line.

MOTOROLA DSPADSUM/AD 3-5

User Interface Commands

Command Syntax

The following symbolic address forms may be used in any ADS command in place of an
absolute address:

@i nenunber The line nunber in the current file.
@i | ename@i nenunber The |ine nunber in the specified fil enane.
@ynbol nane The synbol in the current section.

@ect i onnane@yniol nane The synbol in the naned secti on.

The @ character preceding the symbols may be omitted in most contexts, but is required
when the symbol name is the same as an ADS register or peripheral name. The ADS
retains each symbol’s associated memory space so that it is not necessary to type the
memory space, for example “X:” preceding a symbol label which is associated with X
memory in the assembly source program.

The disassembler provides symbolic information for the memory addresses being
accessed. This includes jump or branch target addresses as well as data memory
accesses. All addressing modes are supported. The register indirect modes generate a
label based on the current value of the referenced register. The symbolic information is
displayed as a label, or label plus offset, in a comment following the disassembled
instruction.

Refer to Section 3.7.2 and Section 3.7.3 for details on supported C expression syntax.

3-6 DSPADSUM/AD MOTOROLA

User Interface Commands

3.4

Command Parameters

COMMAND PARAMETERS

The following expanded definitions apply to the parameters shown on the command
syntax line in lower case (but not within parenthesis):

Note:

address = P:location/X:location/Y:location
address_block = address..location/address#count
address_qualifier = DSP56300/DSP56600 hardware breakpoint address qualifier

action =11/12/13/14/15(increment CNTn)/H(halt)/N(note)/S(show
registers)/T(expression)Test expression for true condition

#bn = (break number) decimal integer constant in the range 1 to 99
count = positive integer expression in range 1 to $7FFFFFFF
dev_num = specific device number to be addressed for a given command.

dev_list = dvx,dv0..x,dvx,y,z = one or more targets to be addressed for a given
command. For example, device group 0 to 4 is expressed as dv0..4, whereas the
device set of 1, 3, and 5 is expressed as dv1,3,5

expression = any arithmetic expression valid for the Assembler; in addition, the
register names may be used in the expression

filename = any valid pathname for the operating system in use
JTAG/OnCE_type=JTAG/0OnCE hardware breakpoint type

location = integer expression; it will be mapped into the DSP address range (0 to
$FFFF). (0 to $FFFFFF for DSP56300 or $FFFFFFFF for DSP96002)

OnCE_type = OnCE hardware breakpoint type
pathname = any valid pathname for the operating system in use
radix = % for binary value, * for decimal value, $ for hexadecimal value

reg = see ADM reference manual for register names pertaining to the particular
DSP being evaluated

reg_block =reg..reg
reg_group =ALL/CORE/IO/STACK/OnCE

Check the DSP User’s Manual for a description of peripheral registers in the
particular DSP being evaluated. Use the “HELP REGS” command to get a
description of the full set of registers in the DSP for which you are designing.

MOTOROLA DSPADSUM/AD 3-7

User Interface Commands

Command Summary

3.5

COMMAND SUMMARY

Target Memory/Register Modification

ASM [dev_num] [B(byte wide)] [(beginning at) address]
assembler_mnemonic

CHANGE [dev_list] [reg[_block]/address[_block] [expression]]...
COPY (from)[dev_num] address[_block] (to) address

DISPLAY [dev_list] [V(ADM user interface program Version)/\W(executing
targets)

DISPLAY [dev_list] [ON/OFF] [reg[_block/_group]/address[_block]]..
DISASSEMBLE [dev_list] [B(byte wide)][address[block]]

WATCH [dev_list] [#wn] [radix] reg/Zaddr/expression/{c_expression}
WATCH [dev_list] [#wn] OFF

File 170

INPUT [dev_list] #(file number)... OFF
INPUT [dev_list] [#(file number)] address TERM/filename [-rd/-rf/-rh/-ru]
LOAD [dev_list] [B(byte wide) address_offset] (from) filename

LOAD [dev_list] [S(state)/M(memory-only)/D(debug symbols-only)] (from)
filename

LOG [dev_list] [OFF] V(source status)/C(commands)/S(session)] [filename]]
[-O/-A/-C]

OUTPUT [dev_list] [#(file number)] OFF

OUTPUT [dev_list] [#(file number)] address filename/ TERM
[-rd/-rf/-rh/-ru] [-O/-A/-C]

SAVE [dev_num] S(state)/address_block... filename [-O/-A/-C]

Target Execution Control

BREAK [dev_list] [#bn...] [OFF/E(enable)/D(disable)]
BREAK [dev_list] [#bn] EOF [#fn] [t(expression)] [count] [action]
BREAK [dev_list] [#bn] swbp_type address [t(expression)] [count] [action]

3-8

DSPADSUM/AD MOTOROLA

User Interface Commands

Command Summary

Hardware Breakpoints

= For DSP56300 and DSP56600 families:
BREAK [dev_list] [#bn [access] [J[TAG/ONnCE_type] [addr_qual] address
[break_qual [addr_qual] address] [t(expression) [count] [action]]

e Other families:

BREAK [dev_list] [#bn] [access] [type] [address[_range] [count] [action]
FINISH [dev_list]

FORCE [dev_list] R(reset to Debug mode)/B (break)/RU(reset to User
mode/ S(system)

GO [dev_list] [(from) location/R(reset)] [#bn] [:(occurrence)count]
NEXT [dev_list] [count] [LI(source lines)/IN(instructions)]

STEP [dev_list] [count] [LI(source lines)/IN(instructions)]

TRACE [dev_list] [count] [LI(source lines)/IN(instructions)]
UNTIL [dev_list] addr/line_number/address_label

= C Source Code Debug

DOWN [dev_list] [count]

FRAME [dev_list] [#frame-number]

REDIRECT [dev_list] STDIN OFF/file

REDIRECT [dev_list] STDOUT/STDERR OFF/file [-A/-O/-C]
REDIRECT [dev_list] [OFF]

STREAMS [dev_list] [ENABLE/DISABLE]

TYPE [dev_list] {c_expression}

UP [dev_list] [count]

e Command Converter Control

CCHANGE [dev_list] [FLAG/XPTR/YPTR/address[_block]] [(to)
expression]

CDISPLAY [dev_list] [FLAG/XPTR/YPTR/address[_block]]
CFORCE [dev_list] R(reset)/B(break)/D(Debug mode)/U(User mode)
CGO [dev_list] [address]

MOTOROLA DSPADSUM/AD 3-9

User Interface Commands

Command Summary

CLOAD [dev_list] filename

CSAVE [dev_num] address_block filename [-O/-A/-C]
CSTEP [dev_list] [count]

CTRACE [dev_list] [count]

GUI Windows

WASM [dev_list] [OFF]

WBREAKPOINT [dev_list] [OFF]

WCALLS [dev_list] [OFF]

WCOMMAND [OFF]

WHERE [dev_list] [[+/-]n]

WINPUT [dev_list] [OFF]

WLIST [win_num] OFF/file

WMEMORY [dev_list] [win_num] space [addr]
WMEMORY [win_num] [OFF]

WOUTPUT [dev_list] [OFF]

WREGISTER [dev_list] [win_num] [OFF]
WSESSION [OFF]

WSOURCE [dev_list] [OFF]

WSTACK [dev_list] [OFF]

WWATCH [dev_list] [win_num] [#wn] [radix] reg/addr/expression
WWATCH [dev_list] [win_num] [#wn] [OFF]

Miscellaneous

EVALUATE [dev_list] [B(bin) D(dec)/F(flt)/H(hex)/U(Uns)] expression/{C
expression}

DEVICE [dev_list [device_type/ON/OFF/X]]

DEVICE [dev_num] [cc_num] [tms_num] [chain_pos] [device_type]
DEVICE cc_num tms_num chain_pos IR count

HELP [dev_num] [command/reg] (Alternative syntax: command ?)
HOST [IO PC 10 addr] [TIMEOUT value]

3-10

DSPADSUM/AD MOTOROLA

User Interface Commands

Command Summary

— LIST [+/-/./addr]

— PATH [dev_list] [pathname]

— PATH [dev_list] + pathname[,pathname...]
- PATH [dev_list] -

— QUIT [E(enable)] [D(disable)]

- RADIX [dev_list] [B(bin)/D(dec)/H(hex)/F(FIt)/U(Uns)]
[reg[_block]/address[_block]]...

— SYSTEM [-C(continue immediately)] [system_command [argument_list]]
(non-GUI only)

— UNLOCK dev_type password

— VIEW [A(assembly)/S(source)/R(register)]

— WAIT [[dev_list] B(break)]/count(seconds)]

— Citrl-X (toggle ADM service requests on/off)

— Citrl-S (screen scroll freeze)

— Ctrl-C (abort display command)

— Citrl-F (insert next command in command circular buffer on command line)
— Citrl-B (insert last command in command circular buffer on command line)

— up-arrow/down-arrow (scroll display screen)

MOTOROLA DSPADSUM/AD 3-11

User Interface Commands

Detailed Command Descriptions

3.6 DETAILED COMMAND DESCRIPTIONS

The following subsections provide a detailed description for each of the user interface
Commands.

3.6.1 ASM—Single Line Interactive Assembler

ASM[dev_num] [B(byte wide)] [(beginning at) address] assenbl er_nmenoni c

The ASM command invokes a single-line interactive DSP Assembler program allowing
the user to create or edit DSP object code programs in memory using assembly language
mnemonics. Each source line is immediately converted into the proper machine
language code and stored in ADM or target system memory. The source line entry is not
saved. The address parameter is optional. The beginning address may be in any of the
three (p, X, or y) memory maps of the DSP.

Note: The Y memory is only valid for DSP56000 and DSP96002 family members. If
no address is specified, assembly begins in the p (program) memory space
using the current program counter value as the beginning address.

Invoking this command causes existing object code at the beginning address to be
disassembled and displayed on the screen. The user may optionally enter a new
Assembler mnemonic on the command line or edit the existing object code. The
Assembler is called when the carriage return key is entered. If the new instruction
cannot be assembled correctly an error message is displayed on the error line and the
cursor is placed at the point of error.

The B (byte-wide) parameter takes one byte from each memory word starting at the
specified address to build up the instruction word to be displayed. Similarly the
assembled mnemonic instruction is divided into bytes and stored in successive words.

If the interactive Assembler is invoked with the GUI version of the ADS, a dialog box
displays the original instruction at the specified location. To change the instruction and
display the next, type the new instruction and click [OK]. To exit the interactive
Assembler, click [CANCEL]. Any new instruction which has been typed before clicking
[CANCEL] will not be written to the current location.

3-12 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

Interactive Input —l

Change:

| jelr #52,x:<<Sffffc9, 50076

| 0K | | Cancel I

Figure 3-1 Interactive Assembler Dialog Box

The Session and Command windows will be written to during interactive Assembler
operations. Both windows display the original ASM command, the Session window
displays each change as it is applied.

Example 3-1 ASM Command Examples

asmp:$50

Start interactive Assembler at program memory address 50 hex of the current default device.
asm

Start interactive Assembler at current program counter value of the current default device.

asmmyfile.asm@7
Start interactive Assembler at the address corresponding to myfile.asm line 7.

asmdv3 p:10
Start interactive Assembler at target address #3 program memory address 10.

asmnop
Overwrite the instruction at the current pc with the specified instruction.

asmx:0 add #<2,a

Store assembled instruction in specified data memory location. This feature may be useful for

patching overlaid programs where overlays are copied from data to program memory before
execution.

asmdv3 b y:$040100

Perform byte-wide assembly from address $40100 in y memory. Each byte of the instruction is
stored in successive locations, so two or three locations are required to store each 16- or 24-bit
instruction. Even if assembled into program memory, this code cannot be executed directly; it is
intended for use with code similar to the byte-wide loader in the ROM bootstrap code.
Byte-wide assembly may be used interactively (as in this example) or to assemble a single
instruction.

MOTOROLA DSPADSUM/AD 3-13

User Interface Commands

Detailed Command Descriptions

3.6.2

BREAK—Set, Modify, or Clear Breakpoint

BREAK [dev_list] [#bn] [OFF/ E(enabl e)/D(di sabl €)]

Software Breakpoints

BREAK [dev_list] [#bn] swbp_type address [t(expression)] [count] [action]
DSP56300/DSP56600 Families Hardware Breakpoints

BREAK [dev_list] [#bn] [access] [JTAG OnCE type] [addr_qual] address
[break_qual [addr_qual] address] [t(expression) [count] [action]

Other Families Hardware Breakpoints
BREAK [dev_list] [#bn] access] [nCE type] [address[_block]] [count] [action]

The BREAK command enables or disables breakpoints which causes a user’s DSP
program execution to halt and enter the Debug mode of operation. There are two basic
types of breakpoints that may be entered, hardware breakpoints and software
breakpoints.

Breakpoint list rules:

1.

The default breakpoint will always be hardware of program core fetch if no break
type is entered and a single address is used, example “break p:50”. For the
DSP56300 and DSP56600 families, the access type defaults will always be read for
program memory and read/write for data memory.

If more than one hardware breakpoint is entered in the breakpoint list, only the
last hardware breakpoint entered will be enabled, all other hardware breakpoints
will be disabled.

Break counts may be used for hardware and software breakpoints. If no count is
entered it defaults to a value of 1. Software breakpoint counts may also be set
with the GO command.

Software breakpoints should only be set on opcode addresses and not operand

addresses. In order to help prevent setting a breakpoint on an operand address,
the user is issued a warning whenever a software breakpoint is set on an illegal
opcode. However, if the operand happens to be a legal opcode, no warning will
be issued and the user program may not execute properly because a DEBUGCC
opcode will reside in the operand location rather than the correct operand.

When a breakpoint is defined, it will be enabled by default. The user must
specifically disable or turn off the breakpoint number if that breakpoint is not
desired.

3-14

DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

The ONnCE circuitry as described in the User’s Manual allows the user to set hardware

breakpoints to occur on Program memory addresses or Data memory addresses. A

real-time 24 bit breakpoint counter allows the user to stop program execution and to
enter the Debug mode of operation after the nth occurrence of entering the breakpoint
address. The user has the option of selecting whether the Program memory access is
either a read, a write or read/write generated from the Program controller. The
hardware breakpoint accesses are as follows:

Table 3-1 Hardware Breakpoint Access

Break Access Meaning
r Break on Program or Data memory read
w Break on Program or Data memory write
rw Break on Program or Data memory access

Table 3-2 and Table 3-2 on page 3-15 describe the different hardware breakpoint types

for each DSP;

Table 3-2 OnCE Hardware Breakpoint Types

DSP Break Type Meaning
All pcf Break on any Program core fetch (read only)
All pcm Break on Program read (fetch or move - read only)
24, 32 bit pcfm Break on Program access (fetch or P move - r/w)
24 bit pce Break on executed fetch only (read only)
32 bit pdma Break on Program memory DMA accesses
24 bit pa Break on Program access (r/w)
16 bit xabl Break on X address bus 1 access
16 bit xab?2 Break on X address bus 2 access
24, 32 bit xa Break on X data memory access (r/w)
24, 32 bit ya Break on Y data memory access (r/w)
32 bit xdma Break on X memory DMA access
32 bit ydma Break on Y memory DMA access

MOTOROLA

DSPADSUM/AD

3-15

User Interface Commands

Detailed Command Descriptions

Table 3-3 JTAG/ONnCE Hardware Breakpoint Types

DSP Break Type Meaning
16 bit pce Break on executed fetch only (read only)
16 bit pcm Break on Program fetch or move (r, w, or rw)
16 bit xabl Break on X address bus 1 access (r, w, or rw)
24 bit pa Break on Program access (r, w, or rw)
24 bit xa Break on X data memory access (r, w, or rw)
24 bit ya Break on Y data memory access (r, w, or rw)
24 bit dma Break on DMA access (r, w, or rw)

Note: Program core fetches are always read only.

Note: DSP56600 hardware breakpoint logic is the same as the DSP56300.

The number of simultaneous hardware breakpoints are limited by on-chip logic. When
more than one hardware breakpoint is set the last or highest breakpoint number with a
hardware breakpoint set will be the one which is set in the OnCE port. The OnCE
circuitry also allows the user to set conditional or unconditional software breakpoints to
occur by using the special DEBUGcc instructions. This allows the user to set as many
breakpoints as required to debug algorithms. User program execution is halted after the
opcode is executed when a breakpoint occurs. A breakpoint occurrence counter may be
set so that from one to $ffff occurrences of the breakpoint address(es) in real-time occur
before returning to the Debug mode of operation.

The DSP56300 and DSP56600 OnCE circuitry allows the two breakpoint addresses to
form a range of inclusive or exclusive addresses. The address qualifiers in the breakpoint
statement express whether the breakpoint address placed in the breakpoint comparator
is to be less than, greater than, equal to or not equal to the address bus being monitored.
The address qualifiers correspond to the breakpoint control tables in the OnCE section in
the user manual.

Table 3-4 DSP56300 AND DSP56600 Hardware Breakpoint Address Qualifiers

Break Address Meanin
Qualifier 9
> Address bus is greater than breakpoint address
< Address bus is less than breakpoint address

== Address bus is equal to breakpoint address

I= Address bus is not equal to breakpoint address

3-16 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

When enabling both of the DSP56300 or DSP56600 hardware breakpoint registers they
form a sequential state machine. This means that the breakpoint counter will not be
decremented until the event qualifier is met for both breakpoints. The breakpoints can
be coupled so that the event qualifier is triggered when breakpoint 0 and 1 are true,
breakpoint 0 or 1 is true, or breakpoint 0 becomes true then breakpoint 1 becomes true.

Table 3-5 DSP56300 and DSP56600 Hardware Breakpoint Event Qualifier

Break Event Qualifier Meaning
and Breakpoint 0 and Breakpoint 1
or Breakpoint 0 or Breakpoint 1
then Breakpointl after Breakpoint 0

Breakpoint 0 implies the first of two possible breakpoints in a breakpoint expression.

There are seventeen types of DEBUGcc software breakpoints based on the Condition
Code Register (CCR) bit values. Table 3-6 describes the command line options for the
DEBUGcc breakpoint types.

Table 3-6 Software Breakpoint Types

DSP Type Meaning Condition Code Bit(s)
all ccor hs carry clear Cc=0
all cs carry set c=1
16, 24 bit ec extension clear E=0
all eq equal Z=1
16, 24 bit €es extension set E=1
all ge greater or equal N (xor) V=0
all gt greater than Zor (N (xor)V)=0
32 bit hi higher than ZorC=0
16, 24 bit Ic limit clear L=0
all le less or equal Zor (N (xor)V)=1
16, 24 bit Is limit set L=1
all It less than N (xor) V=1
all mi minus N=1
all ne not equal Z=0
16, 24 bit nr normalized Zor (NotN (and) NotE) =1

MOTOROLA DSPADSUM/AD 3-17

User Interface Commands

Detailed Command Descriptions

Table 3-6 Software Breakpoint Types (Continued)

DSP Type Meaning Condition Code Bit(s)
all pl plus N=0
16, 24 bit nn not normalized Zor (Not U (and) NotE) =0
32 bit Ve overflow clear V=0
32 bit VS overflow set V=1
all al always N.A.

Note: When using software breakpoints the opcode at that address will be replaced
by one of the software breakpoints chosen. Therefore it is wise to set
conditional software breakpoints at an address with a NOP opcode.

For the 32-bit DSP96002 there are 21 types of FDEBUGcc software breakpoints based on
the Condition Code Register (CCR) and/or the Exception Register (ER) bit values.
Table 3-7 describes the command line options for the FDEBUGcc breakpoint types

Table 3-7 Floating Point Software Breakpoint Types

Type Meaning Condition Code Bit(s)
eq equal Z=1
err error UNCC or SNAN or OPERR or OVF or
UNForDz=1
ge greater or equal NAN or (N and ~2)=0
ol greater or less than NANorZ=0
gle greater, less or equal NAN =0
gt greater than NANorZorN=0
inf infinity =1
le less or equal NANor~(Norz)=0
It less than NANorZor~N=0
mi minus N=1
ne not equal Z=0
nge not (greater or equal) NAN or (Nand ~Z2)=1
ngl not (greater or less) NANorz=1
ngle not (greater, less or equal) NAN =1

3-18

DSPADSUM/AD

MOTOROLA

User Interface Commands

Detailed Command Descriptions

Table 3-7 Floating Point Software Breakpoint Types

Type Meaning Condition Code Bit(s)
ngt not greater than NANorZor~N=1
ninf not infinity 1=0
nle not (less than or equal) NANor~(Norz)=1
nlt not less than NANorZor~N=1

or ordered NAN =0
pl plus N=0
un unordered NAN =1

The host computer program will evaluate the breakpoint expression when a breakpoint
occurs and if there is not a test condition, the user will be informed of the target having
stopped. If there is a test condition, it must be true before the target is halted. If the test
condition is not true, the user interface program will replace the original opcode at the
breakpoint address, single-step through it, replace it with the conditional breakpoint
opcode, and pass control of the processor back to the User mode from the Debug mode.

If a breakpoint is met during DSP program execution, there are various actions which
may be performed. If no action argument is entered, the default action is to halt program
execution and display all enabled registers and memory blocks. More than one action
argument may be entered at once. The valid action arguments available are listed in
Table 3-8.

Table 3-8 Breakpoint Actions

Argument Action.
H Halt execution—this is the default.
In Increment counter variable CNTn (n=1/2/ 3).
N Note—display the breakpoint expression and continue.
S Show the enabled register/memory set and continue.
T(expression) |Test the expression within the parenthesis. If the expression is true execute
the actions following the expression, otherwise continue program execution.

Note: The Ctrl-X key acts as a toggle to disable or enable ADM service requests.
Disabling ADM service requests freezes execution of multiple "show" or "note"
breakpoints and allows user interface commands to be entered and the
registers to be examined. Enabling ADM service requests resumes ADM

execution.

MOTOROLA DSPADSUM/AD 3-19

User Interface Commands

Detailed Command Descriptions

A breakpoint expression may be any logical expression that is valid for the DSP Macro
Assembler. Table 3-9 is a list of operators that may be used in the breakpoint expression:

Table 3-9 Expression Operators

Operator Description
< less than
<= less than or equal to
== equal to
>= greater than or equal to
> greater than
I= not equal to
+ addition
- subtraction
* multiplication
/ division
&& logical “and”
1 logical “or”
! logical “negate”
& bitwise “and”
| bitwise “or”
~ bitwise one’s complement
n bitwise “exclusive or”
<< shift left
>> shift right

If more than one breakpoint expression is entered for a breakpoint address, the actions
following each expression are executed only if that expression is evaluated as true. If no
specific data representation is used in the break address or break expression, the data
values will be evaluated using the default radix when an ADM requests the host for
breakpoint service. Therefore, the specific data representation should be used when
setting breakpoints. It should also be noted that there is a major difference between
setting conditional software breakpoints in user memory and using breakpoint
expressions to evaluate a breakpoint. The conditional software breakpoint is done in
real-time inside the DSP, whereas the breakpoint expression requires stopping the DSP
and evaluating the expression from the host computer side. This means that the host
computer must interrogate the target DSP to determine if the breakpoint expression is

3-20

DSPADSUM/AD

MOTOROLA

User Interface Commands

Detailed Command Descriptions

true. This is not done in real-time. The same holds true for the CNT1-3 counters versus
the breakpoint counter register in the OnCE port of the target system. The CNT1-3
counters are software counters in the host computer whereas the breakpoint counter
register is hardware and is decremented in real-time.

Example 3-2 General Breakpoint Examples for DSPs with OnCE or JTAG/OnCE Ports

break
Display all currently enabled breakpoints for all target DSPs.

break dv2
Display currently enabled breakpoints for target DSP address #2.

break off
Disable all currently enabled breakpoints for the default target DSP address.

break dv2 off
Disable currently enabled breakpoints for target DSP address 2.

break off 2
Disable breakpoint number 2 of the current default target address.

break dv2 p:$100

Halt DSP program execution of target DSP address 2 and display enabled registers and memory
when the DSP instruction at program address 100 hex is reached. This is a hardware breakpoint
which will work with OnCE and JTAG/OnCE based DSPs.

break p:$30s

Display enabled registers and memory of the current default target DSP address and continue
program execution when the DSP instruction at program address 30 hex is reached. This is a
hardware breakpoint which will work with OnCE and JTAG/OnCE based DSPs.

break dv3 p:$200 t(rO>r1) h

If the value of RO is greater than R1 in target DSP address 3 when its DSP instruction at its
program counter 200 hex is reached, halt target DSP address 3. To evaluate whether RO is
greater than R1, the host computer will set a hardware breakpoint at address 200 and will
interrogate the target DSP every time a breakpoint occurs at that address. This is a hardware
breakpoint which will work with OnCE and JTAG/OnCE based DSPs.

break al @32 t({i>10}) h
Break if the program reaches line 32 and the C variable “i” is greater than 10.

break le p:$320 h

Halt DSP program execution of default target DSP address and enter Debug mode when the Z
or (N and V) bits of the CCR are equal to 1 at the address $320 of program memory. This is a
software breakpoint, and testing of the Condition Code Register is done real-time.

MOTOROLA DSPADSUM/AD 3-21

User Interface Commands

Detailed Command Descriptions

Example 3-2 General Breakpoint Examples for DSPs with OnCE or JTAG/OnCE Ports
(Continued)

break al p:$320

Halt DSP program execution of default target DSP address and enter Debug mode
unconditionally at the address $320 of program memory. This is a software breakpoint and
must be placed in SRAM.

break r xa x:300

Halt DSP program execution of the default target DSP address and enter Debug mode when a
read access of X data memory address 300 occurs. This is a hardware breakpoint which will
work with OnCE and JTAG/ONnCE based DSPs.

Example 3-3 General Breakpoint Examples for DSPs with OnCE Ports

break rw pcfm p:$100 $20

Halt DSP program execution of the default target DSP address and enter the Debug mode when
the 32nd occurrence of a read or write access of a program core fetch or move occurs at address
$100.

break rw pce p:$250

Halt DSP program execution of default target DSP address and enter Debug mode when a read
or write access of program memory address 250 hex occurs.

Example 3-4 General Breakpoint Examples for DSPs with JTAG/OnCE Ports

break r xa>x:104 and < x:110

Halt DSP program execution on default target DSP when a read access of X memory address
range 105 to 109 occurs 1 time.

break rw pa==p:104 or == p:110

Halt DSP program execution on default target DSP when a read or write access of program
memory address 104 or 110 occurs 1 time.

3-22 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.3 CCHANGE—Change Command Converter Memory

CCHANCE [dev_list] [FLAG/ XPTR/YPTR/ address[_bl ock]] [expression]

The CCHANGE command allows the memory examination or modification of the OnCE
Command Converter P, X or Y data memory spaces of the DSP56002. This command is
useful for users who wish to design and debug their own OnCE command sequences.
The command sequence description with respect to the Command Converter monitor
program is outlined in 5.1.

The XPTR is Command Converter x memory location 4 and is used to point to the x
memory area where values read from the target OnCE are to be stored. The YPTR is
Command Converter X memory location 2 and is used to point to the y memory area
where sequences are to start from when issuing a CGO command.

Note: Command Converter X memory addresses 0 to 7F hex are reserved for use by
the Command Converter monitor. These locations should not be changed by
the user. For more details on the usage of these locations refer to the monitor
program source listing. P memory locations 0 to 1B0 hex are reserved for the
monitor which is boot loaded from the Command Converter EPROM.

Example 3-5 CCHANGE Command Examples

cchange dv2 x:0

Display the current value of X:0 of Command Converter #2 memory and prompt the user for a
new value. Subsequent values may be displayed or changed by entering a carriage return. To
exit this interactive mode, use the escape key.

cchange y:0..$10 $0

Change y:0 to y:$10 of the default Command Converter to a value of 0.

MOTOROLA DSPADSUM/AD 3-23

User Interface Commands

Detailed Command Descriptions

3.6.4 CDISPLAY—Display Command Converter Flags and Memory

CDI SPLAY [dev_list] FLAG/XPTR/YPTR/ address[_bl ock]. ..

The CDISPLAY command allows the user to examine the Command Converter flag
register, Y memory pointer, or the P, X or Y memory values used to transfer OnCE serial
command sequences to the target DSP. All values will be displayed in hexadecimal.

Command converter X memory locations 0 to 10 hex are used for temporary storage of
flags and constants as defined in 5.1. To display the Command Converter X or Y

memory pointers, command line arguments have been added to the CDISPLAY and
CCHANGE commands.

Example 3-6 CDISPLAY Command Examples

cdi spl ay flag

Display the Command Converter flag register. The flag register is used to store status bits of
whether the target DSP is in the Debug mode or User mode, as well as other Command
Converter monitor flags.

cdisplay y:0..$10

Display the Command Converter Y memory space which is used for the OnCE command
sequence transfers to the target DSP.

cdi spl ay xptr

Display the X memory pointer, which is used to save values read from the OnCE port when
executing OnCE serial sequences.

3-24 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.5 CFORCE—Assert Reset or Break on Command Converter

CFCRE [dev_list] R(reset)/B(break)/D(Debug node)/U(User node)

The CFORCE command is used for forcing a hardware reset or hardware interrupt on a
Command Converter. The D option can be used to force the Command Converter into
the Debug mode in the event that the target has entered the Debug mode by some means
other than through the ADS program (such as a DEBUG instruction in the user code).
The U option can be used to force the Command Converter into the User mode in the
event that the target has entered the User mode by some means other than through the
ADS program (such as a push button reset or power-on reset). When using the U or D
arguments, internal flags of the user interface program are also set or cleared.

CAUTION

Placing the Command Converter in Debug
mode when the target is NOT in Debug
mode can cause improper behavior of the
ADS system.

Example 3-7 CFORCE Command Examples

cforce dvir
Force a hardware reset on Command Converter #1.

cforce b
Force an interrupt on the default Command Converter.

cforce d
Force the default Command Converter into the Debug mode.

cforce u
Force the default Command Converter into the User mode.

MOTOROLA DSPADSUM/AD 3-25

User Interface Commands

Detailed Command Descriptions

3.6.6 CGO—Execute OnCE Sequence

CGO[dev_list] [(from) address]

The CGO command allows the user to execute OnCE command sequences in the
DSP56002 controller’s Y memory. This command is useful for debugging user defined
OnCE serial command sequences which will be used in a target system. A sequence
memory pointer resides in the DSP56002 controller’s internal X memory at address 2.

This pointer is used as the start location and may be changed using the CCHANGE
command.

Example 3-8 CGO Command Examples

cgo

Execute the OnCE sequence of the default Command Converter starting at the current address
in the Command Converter PTR.

cgo $10

Change the Command Converter PTR to hex 10 and execute the OnCE sequence of the default
Command Converter starting at that address.

3-26 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.7 CLOAD—Load OnCE Command Sequence

CLQAD [dev_list] filename

The CLOAD command is used for loading a user defined OnCE serial command
sequence into the Command Converter internal Y memory. The file must be in DSP
object module format (OMF) and have a .lod suffix name. Refer to Appendix A for further
details on OMF files. This command allows the user to write a OnCE command sequence
using the Command Converter monitor program OnCE sequence format as described in
5.1.

Example 3-9 CLOAD Example

cload onceseq.lod
Load the file "onceseq.lod" into the Y memory of the default Command Converter.

MOTOROLA DSPADSUM/AD 3-27

User Interface Commands

Detailed Command Descriptions

3.6.8 CSAVE—Save Command Converter Memory to a File

CSAVE [dev_num] address_bl ock fil enane [-o/-a/-c]

The CSAVE command allows the user to save the Command Converter X or Y data
memory to a disk file. This is useful when debugging user defined OnCE command
sequences using the Command Converter monitor program sequence format.

If a file currently exists with the filename specified the user will be prompted for an
action of either appending the data to the file, overwriting the file, or aborting the
command.

The selection of the file action may be included in the command line using the -o

(overwrite), -a (append), or the ¢ (cancel) argument. This is useful when executing
macro command files.

Example 3-10 CSAVE Command Examples

csave dv0..3y:0..$20 onceseq.lod

Save the contents of Command Converters 0, 1, 2, and 3 Y memory addresses 0 to hex 20 to a file
named "onceseq.lod".

csave Xx:$10#10 newdata.lod

Save the contents of the default Command Converter’s X memory addresses hex 10 through hex
1A to a file named "newdata.lod".

3-28 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.9 CSTEP—Step through OnCE Sequence

CSTEP [dev_list] [count]

The CSTEP command allows the user to execute a group of OnCE serial sequences
before displaying the OnCE register contents. This gives the user the opportunity to
write and debug a OnCE command sequence using the Command Converter monitor
program sequence format as described in Section 5 Functional Description.

Note: The OPDBR and OPILR registers always display the last values stored after
executing a GO, STEP or TRACE command or after servicing a breakpoint.
The values of these registers will not reflect the changes made to them when
executing the CGO, CSTEP, or CTRACE when doing a display of the OnCE
registers.

Also, it is important to remember that writing to the OPDBR register is in
effect manipulating the DSP program controller. Whenever 2-word opcodes
are being written to the OPDBR, it is best to CTRACE or CSTEP 2 before
displaying registers.

Example 3-11 CSTEP Command Examples

cstep

Execute one OnCE serial command of the default Command Converter’s Y memory pointed at
by its YPTR. The OnCE registers will be displayed after the command is executed.

cstep $10

Execute hex ten OnCE serial commands of the default Command Converter’s Y memory
pointed at by its YPTR. The OnCE registers will be displayed after the hex 10 commands have
all been executed.

A macro command file can help in single stepping through user defined OnCE sequences and
displaying results. The display of registers after a CSTEP or CTRACE were not implemented
because of the nature of having to access the OPDBR register to retrieve the register values. An
example of a macro file would be the following:

cstep 2 ;execute 2 OhCE commands t hen show XPTR and YPTR
cdi spl ay x:80..90 y:80..9f ;display the Cormand Gonverter x and y nenory
di spl ay ;display the target registers

MOTOROLA DSPADSUM/AD 3-29

User Interface Commands

Detailed Command Descriptions

3.6.10 CTRACE—Trace through OnCE Sequence

CTRACE [dev_list] [count]

The CTRACE command allows the user to single step through a OnCE command
sequence in the Command Converter Y memory pointed at by the Command Converter
YPTR. This enables the user to write and debug OnCE command sequences using the
Command Converter monitor program sequence format.

Note: The OPDBR and OPILR registers always display the last values stored after
executing a GO, STEP or TRACE command or after servicing a breakpoint.
The values of these registers will not reflect the changes made to them when
executing the CGO, CSTEP, or CTRACE when doing a display of the OnCE
registers.

Also, it is important to remember that writing to the OPDBR register is in
effect manipulating the DSP program controller. Whenever 2-word opcodes
are being written to the OPDBR, it is best to CTRACE or CSTEP 2 before
displaying registers.

Example 3-12 CTRACE Command Example

ctrace 10

Execute 10 OnCE serial commands of the default Command Converter and display the OnCE
register contents after each command is executed. The serial commands reside in the Command
Converter Y memory and are pointed at by the Command Converter YPTR register.

A macro command file can help in single stepping through user defined OnCE sequences and
displaying results. The display of registers after a CSTEP or CTRACE were not implemented
because of the nature of having to access the OPDBR register to retrieve the register values. An
example of a macro file would be the following:

ctrace 2 ; single step 2 OhCE commands and show XPTR and
; YPIR after each trace.

cdi spl ay x:80..90 y:80..9f ;display the Command Gonverter x and y nenory

di spl ay ;display the target registers

3-30 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.11 CHANGE—Change Register or Memory Value

CHANGE [dev_list] [reg[_bl ock]/address[_bl ock] [expression]]...

The CHANGE command allows register or memory examination or modification.
Memory blocks may be initialized to a particular value by including an end address. If
the command is entered without a value, the register or memory location of the current
default target DSP address will be displayed with its current value on the command line
and the user will be prompted for a new value. Multiple changes may be specified in a
single command line. Each specified destination(block) must be followed by the value of
expression to be assigned to it.

An interactive mode of register/memory display and change can be initiated by
specifying a single register or memory location without an associated expression. In this
mode each register or memory location can be examined and optionally modified. To
change the register or memory location contents and display the next register or
location, type the new value followed by carriage return. Subsequent or previous
memory locations or register names can be examined and changed if required by typing,
respectively, Up-Arrow (Ctrl-U) or Down-Arrow (Ctrl-N). Typing a new value followed
by Up- or Down-arrow does not change the open location. Pressing the Esc key causes
the interactive CHANGE command to terminate.

CAUTION

Users should be aware that some
peripheral registers contain handshake
bits that change state when they are read.
Reading these registers can interfere with
the proper operation of the peripheral
when returning to the user’s program.

If interactive change mode is entered with the GUI version of the ADS, a dialog box
displays the original value of the specified location, preceded by a semicolon ‘;’. To
change the location and display the next, type the new value before the semicolon and
click [OK]. The old contents appearing after the semicolon may, but need not, be deleted.
To exit interactive Change mode, click [CANCEL]. Any new value which has been typed
before clicking [CANCEL] will not be written to the current location.

MOTOROLA DSPADSUM/AD 3-31

User Interface Commands

Detailed Command Descriptions

Interactive Input —l

change al=

| 5040127 Hex:5000000 De

| 0K | | Cancel I

Figure 3-2 Interactive Change Dialog Box

The Session and Command windows are written during interactive change operations.
Both windows display the original CHANGE command, the Session window display
each change as it is applied.

Example 3-13 CHANGE Command Examples

change

Display the current default target DSP address’s register values individually starting with
register a and prompt the user for new values.

change x:$55

Display x memory location hexadecimal 55 of the current default target DSP address and
prompt the user for a new value. Subsequent or previous memory locations may be examined
and changed using the up arrow key for the previous address and down arrow for the next
address.

change dv3 pc

Display the current value of the program counter on target DSP address 3 and prompt the user
for a new value. Subsequent or previous register values may be examined and changed using
the up arrow key for the previous address and down arrow for the next address.

change p:$20 $123456

Change the current default target DSP address’s p memory address hexadecimal 20 to
hexadecimal 123456.

change r0..r7 0 p:$30..$300 0 x:$fffe $55 pc ‘100

Change the current default target DSP address’s registers r0 to r7 to 0, p memory addresses 30
hex to 300 hex to 0, x memory address fffe hex to 55 hex and the program counter to 100
decimal.

change dv1,3,5r0..r7 0 p:$1000..$2000 0

Change target DSP addresses 1,3 and 5 registers r0 to r7 to 0 and their program memory
addresses 1000 hex to 2000 hex to a value of 0.

change xdat..xdat+5 35

Change memory block beginning at the address corresponding to symbolic label xdat and
ending at xdat + 5 to decimal value 35.

3-32 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.12 COPY—Copy a Memory Block

COPY (from[dev_num] address[_bl ock] (to) address

The COPY command copies memory blocks from one location to another. The source
and destination memory maps may be different. This allows the user to move data or
program code from one memory map to another or to a different address within the
same memory map. This command allows the copying of program or data blocks within
asingle target DSP device. To transfer information from one target device to another, use
the SAVE command to create an object file, which may then be loaded into the
destination device.

Example 3-14 COPY Command Examples

copy p:0..30 p:100

Copy the data in current default target DSP address program memory starting at 0 and ending
at 30 to program memory starting at 100.

copy dv3p:0..30dv2 p:100

Copy the data in target DSP address number 3 program memory starting at 0 and ending at 30
to target DSP address number 2 program memory starting at 100.

copy x:0#100 p:0

Copy one hundred memory locations beginning at x memory location 0 to p memory beginning
at location 0.

copy x:$100..$200 x:$150

Copy the data in the current default target DSP address X memory starting from hex $200 down
to hex $100 and put the data in the current default target DSP address X memory starting at hex
$250 down to hex $150. Whenever the addresses of the source and destination overlap, the
source end address will be used and the addresses will be decremented rather than
incremented.

copy xdat..xdat+40 ydat

Copy 40 memory locations beginning at the address corresponding to symbolic label xdat to the
block beginning at address corresponding to symbolic label ydat.

MOTOROLA DSPADSUM/AD 3-33

User Interface Commands

Detailed Command Descriptions

3.6.13 DEVICE—Select Default target DSP address

DEM CE [dev_list [device_type/ ON/ OFF/ X]]
DEM CE [dev_num] [chain_num] [tms_num] [chain_pos] [device_type]

DEM CE cc_num tms_num chain_pos IR count

The DEVICE command allows the user to:

Select the current device for command input and session output
Activate one or more of the target devices controlled by the ADS.
Specify the device type of each target device

List the type and status of each device

Specify the position of devices in a JTAG chain

Specify non-Motorola devices in a JTAG chain

Enable and disable each device

Deactivate a device and deallocate all associated structures

The command line prompt displays the number of the currently selected device. At
start-up, device DVO is activated and selected as the current device.

device_type specifies which type of DSP is being emulated. If omitted, a default
value will be selected, depending on the device family in use. Use DEVICE
command for a list of supported device types.

ON makes the specified device(s) active for program execution

OFF suspends program execution for the specified device. The state of the device
is not otherwise changed.

X deactivates the device and discards all associated structures. If the X parameter
is used for the current device, another device will become the current device. At
least one device must be activated at all times; the last device may not be
deactivated.

JTAG parameters—The ADS supports up to eight command converters on a
development host. Each Command Converter supports one JTAG chain which
may service up to twenty-four devices. The DEVICE command associates each
device in any position in the JTAG chain with an ADS device number (dvn). The
ADS only performs debugging operations on Motorola DSP devices. However, to
support target systems incorporating other devices, the DEVICE command also
permits the specification of the JTAG instruction register length so such devices
may be handled correctly.

3-34

DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

— DVn—Specifies the device number to be used to access the device described
by the remainder of the parameters. (0..31)

— CCn—Specifies the Command Converter to which the device is connected
0..7)

— TMSn—Specifies which TMS (Test Mode Select) line controls this device (0..1);
Command Converter revision 6 only supports TMSO0.

— POSn—Specifies which position the device occupies in the JTAG chain. The
device connected directly to TDO from the Command Converter is position 0.
O0<n)

— IR n—Specifies the length of the instruction register for unsupported devices.
(2<n)

Note: The defaults for the above parameters are as follows: CCn defaults to the
device number DVn and all other parameters default to zero. This maintains
compatibility with previous versions.

Example 3-15 DEVICE Command Examples

devi ce

Display all activated target DSP addresses and device types, and lists all supported family
members.

device dv0..2 on
Activate target DSP address 0, target DSP address 1, and target DSP address 2.

devi ce dv0, 3 of f
Deactivate target DSP address 0 and target DSP address 3.

devi ce dv2
Select target DSP address 2 as the default target DSP for command entry.

device dvl x

Deactivate target DSP address 1 and discard all associated data structures. If this was the
selected device, select another.

devi ce dv12 cc3 pos2 56301
Specifies that device DV12 refers to a DSP56301, which is controlled by Command Converter
#3, occupying the third (0,1,2...) position in the chain. TMSO is used by default.

device cc3 tns0 posl ir 3

The device on Command Converter 3, TMS chain 0, position 1 is not to be used in this
development session. It has an instruction register 3 bits wide. Note that no device number may
be specified, and that all fields are required.

Note: The instruction register length must not be specified for a device which has
been allocated an ADS device number.

MOTOROLA DSPADSUM/AD 3-35

User Interface Commands

Detailed Command Descriptions

3.6.14 DISASSEMBLE—Single Line Disassembler

DISASSEMBLE [dev_list] [B(byte wi de)][address[_bl ock]]

The DISASSEMBLE command allows the user to review DSP object code in its assembly
language mnemonic format. All invalid opcodes will display "DC" for define constant.
The b (byte-wide) parameter constructs the instruction words by taking one byte from
each word of memory, starting from the specified address.

Example 3-16 DISASSEMBLE Command Examples

disassenbl e

Disassemble a page of instructions pointed at by the user interface program disassembler
counter of the current default target DSP address. A counter maintains the last instruction
disassembled so subsequent instructions may be disassembled by merely entering a carriage
return to execute the same instruction again.

disassenbl e p:0..20

Disassemble program memory address block 0 to 20 of the current default target DSP address.
disassenbl e dv2 x:$50#10

Disassemble ten instructions of the target DSP address 2 starting at x memory map 50 hex.

disassenbl e lab_1..lab_2

Disassemble memory address block beginning at the address corresponding to symbolic label
lab_1 and ending at lab_2.

disassenbl e b y:$1000#$40

Disassemble forty instructions starting at address y:$1000. The instruction words are
constructed by taking one byte from each location; thus depending on the target processor, two
or three locations are required to hold each instruction word.

3-36 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.15 DISPLAY—Display Register or Memory

DI SPLAY [W(executing targets)/[dev_list] V(ADS user interface program version)]
DI SPLAY [dev_list] [ON/OFF] [reg[_bl ock/ _group]/address[-_bl ock]]...

The DISPLAY command allows the user to examine the contents of a register group
and/or memory block in the radix specified by the RADIX command. The default
display radix is hexadecimal. It may also be used to enable or disable particular registers
or memory locations for automatic display when executing debug commands.

Entering the command with no parameters will cause the display of all enabled registers
and memory blocks. Registers and memory blocks may be enabled or disabled by
entering the command with one of the "enable” keywords (i.e., ON or OFF) prior to the
register and/or memory list. The keywords have the following meaning:

< ON = Enable display of the following registers and memory locations.

< OFF = Disable display of the following registers and memory locations.

Entering the DISPLAY command with only a register or memory list causes immediate
display of the listed registers and memory locations without affecting their "enable”
status. Several register group names have been predefined and may be used in the
display list to enable, disable or display all of the registers in the group. The list of group
names available depends on the target device. For a list of the peripheral names
available with a particular ADS system, use the command HELP periph.

CAUTION

Some peripheral registers contain
handshake bits that change state when
they are read. Reading these registers can
interfere with the proper operation of the
peripheral within the user program.

MOTOROLA DSPADSUM/AD 3-37

User Interface Commands

Detailed Command Descriptions

Example 3-17 DISPLAY Command Examples

di spl ay

Display all currently enabled registers and memory of the current default target DSP address.
di splay on

Enable all programming model registers for display on the current default target DSP address.
di splay p:0..300

Display p memory addresses 0 through 300 of the current default target DSP address.

di splay on p:0..20 x:30..40 x:$100

Display enable p memory address block 0 to 20, x memory address block 30 to 40 and X
memory address hexadecimal 100 of the current default target DSP address.

di splay dv2 p:30..50

Display p memory address block 30 to 50 of target DSP address 2.

display w

Display all target DSP addresses that are currently executing user programs.

display v

Display the user interface program and Command Converter monitor program revision
numbers.

di splay on host

Display enable the host peripheral registers.

di spl ay on all

Display enable all programming model and peripheral registers.
di splay X:0..$100

Display the values of x memory locations 0 to 100 hex.

3-38 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.16 DOWN—Move Down the C Function Call Stack

DOWN [dev_list] [n]

The DOWN command is used to move down the call stack. It can be used in conjunction
with the WHERE, FRAME, and UP commands to display and traverse the C function call
stack. After entering a new call stack frame using DOWN, that call stack frame becomes
the current scope for evaluation. In other words, for C expressions, the EVALUATE

command acts as though this new frame is the proper place to start looking for variables.

Example 3-18 DOWN Command Examples

down

Move down the call stack by one stack frame.
down 2

Move down the call stack by two stack frames.

MOTOROLA DSPADSUM/AD 3-39

User Interface Commands

Detailed Command Descriptions

3.6.17 EVALUATE—Evaluate an Expression

EVALUATE [dev_list]
B(bi nary)/D(deci nal)/ F(float/fract.)/H(hex)/U(unsi gned)] expression/{c_expressi on}

The EVALUATE command is used as a calculator for evaluating arithmetic expressions
or for converting values from one radix to another. The result of the expression
evaluation is displayed in the specified radix. If a radix is not specified in the
EVALUATE command line, the current default radix (specified by the RADIX
command) will be used. An expression consists of an arithmetic combination of
operators and operands. An operand may be a register name, a memory location, or a
constant value. For example, A2 evaluates to the contents of register A2. To evaluate A2
as hexadecimal, a dollar sign must precede the value. The same holds for the values A0,
Al, A2, B0, B1, and B2.

The order of evaluation of an expression’s operators will be associated from left to right.
Parenthesis may be used to force the order of evaluation of the expression. A more
extensive discussion of the expressions which are valid for the EVALUATE command is
in the DSP Assembler Reference Manual (Section 3). The valid symbols for an
expression are listed in the description of the BREAK command.

Example 3-19 EVALUATE Command Examples

eval uat e rO+p:$50

Add the value in r0 register to the value in program memory address hexadecimal 50 of the
current default target DSP address and display the result using the default radix.

eval uate dv4 rO+p:$1000

Add the value in r0 register of target DSP address 4 to the value in its program memory address
hexadecimal 1000 and display the result using the default radix.

eval uate b $345

Convert hexadecimal 345 to binary and display the result.

eval uate h %10101010&p:r0

Calculate the bitwise AND of program memory address specified by the value in r0 register and
the binary value 10101010 and display the result in hexadecimal.

eval uate $a0+$b0

Calculate the sum of hexadecimal a0 plus hexadecimal bO.

eval uate {count}

Display the value of the C variable “count”.

eval uat e {count+max}

Evaluate the sum of the C variables “count” and “max”, and display the result.

eval uat e {lookup(i)}

Call the C function “lookup” from the command line, with the argument “i”. Display the result
of calling the function.

3-40 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.18 FINISH—Step Until End of Current Subroutine

FIN SH [dev_list]

The FINISH command executes instructions until a Return-To-System (RTS) instruction
is executed within the current subroutine. The ADS interface program simply steps,
checking if any instruction is an RTS. If so, that RTS is executed, and instruction
execution halts immediately afterward. While stepping, if a branch to subroutine or
jump to subroutine instruction is encountered, tests for the RTS instruction are
suspended until execution resumes at the address following the subroutine call.

Example 3-20 FINISH Command Example

fini sh
Finish the current subroutine, continuing from the current address until an RTS is executed.

MOTOROLA DSPADSUM/AD 3-41

User Interface Commands

Detailed Command Descriptions

3.6.19 FORCE—Assert RESET or BREAK on Target

FAORCE [dev_list] R(reset to Debug node)/B(break)/RU(reset to User node)/S(Systemn)

The FORCE command asserts a hardware reset or asserts a debug request on one or
more target systems. This command is useful for reinitializing all registers, as well as
peripherals to their Reset state or when the user wishes to halt real-time executing of the
target DSP to interrogate its registers and/or memory. All communication with the
target DSP program model must be done while the target DSP is in the Debug mode of
operation. Asserting a debug request is only required once to enter the Debug mode.
Exiting the Debug mode is accomplished via a GO, TRACE, or STEP command, or a
FORCE RU.

The B(break) argument asserts a debug request on the DSP and the register values will
not be altered. Program execution can be resumed after a break by using a GO
command. The R(reset to Debug mode) argument asserts the debug request on the DSP
after the RESET pin is asserted and continues asserting the debug request until after the
RESET pin is de-asserted, thus bringing the DSP into the Debug mode of operation at
reset.

The RU (reset to User mode) argument asserts the RESET on the DSP pin only and does
not assert a debug request, thus bringing the DSP out of reset into the mode specified by
the external mode pins (which can be set by the user). The S (System) argument causes a
CFORCE R followed by a FORCE R of the devices specified in the command. This
command basically resets the Command Converter and then the target putting it into the
Debug mode of operation.

Example 3-21 FORCE Command Examples

force r

Force a reset on the current default target DSP address. This command will destroy the contents
of some registers since a hardware reset initializes them automatically.

force b

Force the current default target DSP address into the Debug mode of operation. Program
execution will halt and the DSP will enter the Debug mode waiting for command entry from the
Host computer via the OnCE debug port.

force dv1,4,5b

Force target DSPs 1, 4, and 5 to halt DSP program execution and enter the Debug mode of
operation for user commands.

force ru

Reset the default target DSP into the User mode specified by its mode pins.

3-42 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.20 FRAME—Select C Function Call Stack Frame

FRAME [dev_list] [#n]

The FRAME command is used to select the current call stack frame. It can be used in
conjunction with the WHERE, DOWN, and UP commands to display and traverse the C
function call stack. After entering a new call stack frame using FRAME, that call stack
frame becomes the current scope for evaluation. In other words, for C expressions, the

EVALUATE command acts as though this new frame is the proper place to start looking
for variables.

Example 3-22 FRAME Command Examples

frane #2

Select call stack frame number two.

frame #0

Select call stack frame number zero (innermost frame).

MOTOROLA DSPADSUM/AD 3-43

User Interface Commands

Detailed Command Descriptions

3.6.21 GO—Execute DSP Program

GO [dev_list] [(fromlocation/R(reset)] [[#break_nunber] [:(occurrence)count]]

The GO command initiates program execution of DSP code. It can be used to start
multiple ADMs or target systems simultaneously. The Command Converter monitor
passes control to the user program on the ADM or target system until a breakpoint is
reached or a break is asserted with the FORCE command. The GO command can be used
to resume execution after a force break.

Invoking the command with no argument will start execution at the current program
counter value. Enabled break-points are examined at the end of every instruction cycle. If
an address argument is included, program execution begins at the address specified. The
R(reset) parameter will cause program execution to start from the user defined reset
exception.

The optional #break_number parameter may be used to cause the code execution to halt
only if that particular breakpoint condition occurs. All other breakpoint conditions are
ignored.

The optional :count parameter may be used to cause the code execution to halt only if the
breakpoint has occurred a specified number of times. The occurrence count may only be
used with the break_number parameter.

Example 3-23 GO Command Examples

go dv0,1

Start DSP program execution from the current address specified by the program counter of
target DSP addresses 0 and 1. The target DSP addresses will stop at the first occurrence of any
breakpoint set and report to the user the register results.

go $100

Start DSP program execution at program memory address hex.100 of the current default target
DSP address.

go 100 #5:3

Start DSP program execution at location 100 (default radix) of the current default target DSP
address and halt on the third occurrence of breakpoint number 5.

3-44 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.22 HELP—ADS User Interface Help Text

HELP [dev_num] [command/reg] (or) command ?

The HELP command allows the user to review the Application Development System
command set or a particular command’s description. The HELP line for command entry
is designed so that a minimum amount of documentation is required to use the ADS
interface program.

Invoking the command with a command name causes a summary of that command’s
parameters with a brief description and example to be displayed on the screen. If no
command name parameter is included, the entire command set is displayed.

The HELP command may also be used to review the register names and bit descriptions
of peripheral control registers. Invoking the command with a register name causes the

register contents of the default or selected target DSP address to be displayed on the
screen.

Help for a particular command can also be obtained by entering the command and a
guestion mark "?".

Example 3-24 HELP Command Examples

hel

Disi)lay a summary of the available commands with their arguments.

help a

Display a summary of the ASM command, its arguments, and some examples.
hel p dvlomr

Display a description of the OMR bits of target DSP address #1.

hel p oscr

Display a description of the OSCR bits of the default target DSP address.

break ?

Display a summary of the BREAK command, its arguments, and some examples.

MOTOROLA DSPADSUM/AD 3-45

User Interface Commands

Detailed Command Descriptions

3.6.23 HOST—Change HOST Interface Address

HOST [10 PC IO addr] [TIMEOUT value]

The HOST command allows the user to reconfigure the Host Interface card 1/0 address
or set the timeout count for interaction with ADMs or target systemes.

The 1/0 address may be started at $100, $200, or $300 only on the IBM-PC interface.

The TIMEOUT argument is used to change the host timeout value. In order for the user
interface to avoid becoming hung up, it limits the time it will wait for the Command
Converter to respond. If the Command Converter does not respond within this limit, an
error message will be displayed. The default value of the timeout is 1 second.

Example 3-25 HOST Command Examples

host

Display the current Host Interface Card address and timeout count being used.
host timeout 3

Change the host timeout to 3 seconds.

host io $200

Change the PC Host Interface address to $200.

Note: Changing the Host Interface address should be done only after changing JG1
of the IBM-PC Interface Card, otherwise the target DSP address will not
respond to the ADS user interface commands.

3-46 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.24 INPUT—Assign Input File

INPUT [dev_list] [#(file nunber)] [OFF/[address TERM/filenane [-rd/-rf/-rh/-ru]]]

The INPUT command open files which will pass data to an ADM or target system
whenever a user program enters the Debug mode of operation via a software breakpoint
at a predefined address. Use of the keyword TERM assigns input from a terminal file
which is created using a single line editor. The input data is in ASCII and is expressed in
hexadecimal (-rh) unless decimal (-rd), unsigned (-ru), or floating point (-rf) radix is
specified. Any number of files may be open for a target DSP input, up to host computer
limits.

To successfully accomplish data transfers the following rules must be followed when the
ADS user program calls the monitor file input subroutines.

1. Itis necessary that a file be opened using the INPUT command and that the DSP
user program have a DEBUG software breakpoint opcode at the program address
which is to enter the Debug mode of operation.

2. The file number and the word count which the user wishes to input data from
must be in the X0 (RO for DSP96000) register of the DSP prior to executing the
DEBUG instruction.

3. The address where the data is to be put must be in the RO (R1 for DSP96000)
register and the memory map type (P =0, X =1, Y = 2) must be in the R1 (R2 for
DSP96000) register.

The default path for each target DSP address can be changed with the PATH command.
If a transfer error occurs an error message will be displayed on the screen.

The ADS user interface program provides a way to specify repeated input values and
sequences very similar to the DSP simulator program. A single data value may be
repeated by specifying #count following the data item. A group of data items may be
indicated by enclosing the group in parentheses. The entire group may then be repeated
by placing #count immediately following the closing parenthesis. The parentheses may
be nested. A closing parenthesis without a following repeat count will cause the data
sequence within the parentheses to repeat forever.

Example 3-26 Examples of Input File Data

$ABCF
A single data item $ABDF

1FF#20
Repeat the data item 1FF twenty times.

(CC 50)#5
Repeat the sequence of data pairs CC 50 five times.

MOTOROLA DSPADSUM/AD 3-47

User Interface Commands

Detailed Command Descriptions

There are two levels of terminal data input capability provided by the ADS user
interface. If the INPUT command specifies term as the input filename, the ADS program
enters a resident editor which allows creation of an input data file. The data file is given
a temporary name, termxxxx.io (xxxx=0000-9999), and is saved on the disk at the
termination of the INPUT command. The entire contents of the input file may be
specified in this manner, including any of the valid fields specified above.

A second level of terminal data input allows the user to be prompted any time the next
input data value is needed. This method is triggered if the lower case letter t is
encountered in the data field of the input file. Each time a t is encountered, the user will
be prompted for a single data value from the terminal. The ADS user interface will read
the input data using the radix option specified in the INPUT command. Hexadecimal is
the default input radix.

Example 3-27 Examples of Terminal Input Within an Input File

t#30

Request the next thirty input values from the user interactively or until an ESCAPE character is
entered.

(t)

All input values are to come from the user interactively until an ESCAPE character is entered.

3-48 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

Example 3-28 Example Of Program That Resides on a Target DSP5600x

Input Requirements:
1. Load X0 with file number and word count

a. For 16-bit devices, the file number will be in the upper byte and word count
byte.

b. For 24-bit devices, the file number will be in the upper byte and word count
in the lower 2 bytes.

2. Load RO with the starting location of the source block.
3. Load R1 with the source memory space:
a. MOVE #0, RL—Move block to P memory space
b. MOVE #1, RL—Move block to X memory space
c. MOVE #2, RL—Move block to Y memory space
4. Execute DEBUG instruction to enter Debug mode of operation.

Code Example:

MOVE #$1000c, x0 ;file #l-nput a bl ock of 12 words DSP5600x only
MOVE #$0, R0 ;starting address of block is $0

MOVE #1, RL ;in X nenory space

DEBUG ;enter Debug node

Example 3-29 Example Of Program That Resides on a Target DSP9600x

Input Requirements:
1. Load RO with file number in upper byte and word count in lower two bytes.

2. Load R1 with the starting location of the source block.
3. Load R2 with the source memory space:
a. MOVE #0, R2—Move block to P memory space
b. MOVE #1, R2—Move block to X memory space
c. MOVE #2, R2—Move block to Y memory space
4. Execute DEBUG instruction to enter Debug mode of operation.

Code Example:

MDVE #$10000c, R0 ;file #l—nput a bl ock of 12 words
MDV/E #$0, RL ;starting address of block is $0
MDVE #1, R2 ;in X nenory space

DEBUG ;enter Debug node

MOTOROLA DSPADSUM/AD 3-49

User Interface Commands

Detailed Command Descriptions

Example 3-30 INPUT Command Examples

input

Display currently open input files for the current default target DSP address.

input dv2 p:200 data.io

Open "data.io" file for input to target DSP address #2 and place in the target DSP address 2
input list.

Note: p:200 is the address where the DEBUG opcode will reside.

input dv2 off

Close all current input data files assigned to target DSP address 2.

input dv1l#2

Display the file number 2 input filename for target DSP address 1.

input p:400 data.io -rf

Open "data.io" file for input to the default target DSP address as ASCII fractional
and place in the default target DSP address input list.

Note: p:400 is the address where the DEBUG opcode will reside.

input p:600 term

Create a "term" file for input. The file number defaults to the first available number, one or
greater.
Note: p:600 is the address where the DEBUG opcode will reside.

3-50 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.25 LIST—List Source File Lines

LIST [+/ -/ ./ addr]

The LIST command displays source lines or disassembled instructions from the specified
source file, or beginning at the specified address. The current display mode determines
whether a source file or assembly mnemonics will be displayed. If the simulator is in the
Register display mode, this command will switch it to the Source display mode and
display the source file lines associated with the specified address or line number. If the
display mode is already source or assembly, the display mode is not altered. The
Assembly display mode displays disassembled instructions corresponding to the
specified address or line number.

The next or previous pages of the currently displayed source file may be selected by
specifying + or —, rather than a specific address or line number. In addition, the source or
assembly associated with the current execution address may be selected by specifying.
(period) or by using the LIST command without a parameter.

Example 3-31 LIST Command Examples

list 20

List source or assembly corresponding to line 20 of the current source file.
list test.asm@20

List source or assembly corresponding to line 20 of the source file test.asm.
list test.asm

List source or assembly corresponding to line 1 of the source file test.asm.
list +

Display the next page of the current source file or assembly.

list.

Display source or assembly corresponding to the current execution address.
list -

Display the previous page of the current source file or assembly.

list lab_1

List source or assembly corresponding to symbolic address lab_1.

MOTOROLA DSPADSUM/AD 3-51

User Interface Commands

Detailed Command Descriptions

3.6.26 LOAD—Load DSP Program

LQAD [dev_list] [B(byte wide) address_offset] (from) file
LQAD [dev_list] [S(state)/M(nenory-only)/D(debug synbol s-only)] (fronm) file

The LOAD command transfers DSP Macro-Assembler object files to the target DSP
memory. The object module format (OMF) is defined in Appendix A, the Common Object
File Format (COFF) is defined in Appendix B. Programs are loaded into the memory map
and address specified by each data record. A directory path may be specified with the
filename.

If only the file parameter is specified, then the user interface program assumes that the
file is an OMF file. The object file may be in either the special ASCII OMF format, or in
the DSP COFF format generated by the DSP Macro-Assembler. An OMF file may be
created by using the DSP Macro-Assembler, or by using the SAVE command, or by
some user generated method. If no filename suffix is specified, a OMF format “.lod* file
is searched first and if not found, then a COFF format “.cld” file is searched. Loading a
COFF format file replaces the target DSP symbolic debug information unless the M
option is specified.

Programs are loaded into the memory map and address specified by each data record. A
directory path may be specified with the filename. The default path for each target DSP
address can be changed with the PATH command.

If S is specified as the second of three parameters, the ADS interface program will load
filename as an ADS state file. The ADS state file may be created using the SAVE s
command. Loading the ADS state changes all ADS setups as well as registers and
memory, to the previous definition saved in the state filename. If no filename suffix is
specified, .adm is assumed.

If M is specified as the second parameter, the ADS interface program will load object file
filename, .cld or .lod, without modifying the target DSP symbolic debug information.

If D is specified as the second parameter, the ADS will load only the symbolic debug
information from the object file filename. The device memory contents are not altered.
Only the COFF format files (.cld suffix) are supported by this option.

If B is specified as the second parameter, the third parameter must be an address offset
which is added to the OMF data record start address where data is to be loaded. The file
must be in OMF and will be loaded byte wide sequentially incrementing the address
counter on each byte load. The low order byte will be loaded first and the high order
byte will be loaded last in each word. This is similar to the byte wide loading format of
the bootstrap loader program on the DSP. This feature allows users to download
programs into RAM and debug bootloader or overlay programs.

3-52 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

Example 3-32 LOAD Command Examples

load \source\testloop.lod
Load "testloop.lod" file from directory "source".

load lasttest
Load "lasttest.lod" file from current directory. If not found look for “lastltest.cld” and load.

load s lunchbrk
Load "lunchbrk.adm", ADS state.

load m test.cld
Load the COFF format “test.cld” file, ignoring any symbolic debug information in it.

load d test.cld

Load the symbolic debug information from the COFF format “test.cld” file, ignoring the
memory contents of the file.

load b 300 bootprog.lod

Load the “bootprog.lod” file writing the least significant byte first and most significant byte last
into each consecutive memory location of the target. The 300 argument is an address offset to be
added to the starting location of memory specified in the data record.

MOTOROLA DSPADSUM/AD 3-53

User Interface Commands

Detailed Command Descriptions

3.6.27 LOG—Log Commands and/or Session

LOG [dev_list] [OFF] [C(commands)/S(session)] [filename] [-o/-a/-c]
LOG [dev_list] [OFF] V(source display status |ine)

The LOG command allows the user to record command entries only, or record all
session display output to a file. Recording of commands only is useful as a method of
generating macro command files. Recording all session display output provides a
convenient way for the user to review the results of an extended sequence of commands.
The user would otherwise only have access to the last 100 lines of output on the terminal.
Since the output log files are in ASCII format, they may easily be printed or reviewed
using an editor program.

Entering the LOG command with no parameters will cause a display of the currently
opened log filenames. The keyword OFF is used to terminate logging. The C and S key
characters are used to specify whether the logfile will contain only commands (C), or all
session output (S).

The suffixes .cond and .log are added, respectively, to the commands-only or session
filename if no other suffix is specified. The default file path for each target DSP can be
changed with the PATH command. If a file currently exists with the filename specified
the user will be prompted for an action of either appending the data to the file,
overwriting the file, or aborting the command. The selection of the file action may be
included in the command line using the -o (overwrite), -a (append), or the -c (cancel)
argument.

Example 3-33 LOG Command Examples

log

Display currently opened log files.

log s \debugger\sessionl

Log all display entries to filename "sessionl.log" in directory "debugger”

log ¢ macrol
Log all commands to filename "macrol.cmd"”.

log off ¢
Terminate command logging.

log off
Terminate all logging.

log ¢ macrol -a

Log all commands to filename “macrol.cmd”. If a file with that name currently exists cancel the
execution of the command.

3-54 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.28 MORE—Enable/Disable Session Paging Control

MCRE [OFF]

The MORE command allows the user to enable or disable the paging of data on the

session window. This is particularly useful when displaying large amounts of data and
you wish to examine the data page by page.

The paging feature is turned off by default and data will scroll vertically across the
screen when it is larger than the size of the screen.

Example 3-34 MORE Command Examples

more

Turn on session display paging control.

mor e off

Disable session display paging control (reset or default state).

MOTOROLA DSPADSUM/AD 3-55

User Interface Commands

Detailed Command Descriptions

3.6.29 NEXT—Step Over Subroutine Calls or Macros

NEXT [dev_list] [count] [LI(lines)/IN(inst)]

The NEXT command functions the same as the STEP command, except that if the next
instruction to be executed calls a subroutine or begins execution of a macro, all the
instructions of the subroutine or macro are executed before stopping to display the
enabled registers. In order to recognize macros, the symbolic debug information for the
program code must be loaded. The debug information is included in the COFF format
.cld files generated using the Assembler’s —g option.

The optional count value enables repeating of the NEXT command the specified number
of times before execution terminates.

All breakpoints are ignored while the NEXT command is executing.

Example 3-35 NEXT Command Examples

next
Step over subroutine calls or macros; or otherwise just advance one instruction and display the
enabled registers and memory blocks.

next 10
Execute the equivalent of 10 NEXT instructions, halting to display the enabled registers and
memory blocks only after the tenth invocation.

next 10 li
Step over the 10 next source lines (if there is a source file associated with the current program
counter).

3-56 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.30 OUTPUT—ASssign Output File

OUTPUT [dev_list] [#(file nunber)... OFF]
OUTPUT [dev_list] [#(file nunber)] address filenane/ TERM [-rd/-rf/-rh/-ru] [-o/-a/-c]

The OUTPUT command opens disk files that will accept data from the target DSP. In
order to do this, the user must first open the file for output and assign an address where
a DEBUG software breakpoint will occur. Prior to executing the DEBUG instruction the
user must load the X0 register with the file number to write to and the transfer count
value, RO with the address of memory and R1 with the memory map type (P=0, X=1,
Y=2).

Use of the keyword TERM assigns the output to the display terminal rather than a file.
The output data is in ASCII and is expressed in hexadecimal (-rh) unless decimal (-rd) or
fractional (-rf), or unsigned (-ru) radix is specified. Any number of files may be open for
an target DSPs output, up to the host computer limits.

For file output, it is necessary that a file be opened using the OUTPUT command. The
file number in the output statement must correspond to the file number used in the DSP
user program call to the Debug mode of operation. The default path for each target DSP
address can be changed with the PATH command.

If a file currently exists with the filename specified, the user will be prompted for an
action of either appending the data to the file, overwriting the file, or aborting the
command.

The selection of the file action may be included in the command line using the -0
(overwrite), -a (append), or the -c (cancel) argument. This is useful when executing
macro command files.

To accomplish data transfers successfully, the following rules must be followed when
the ADS user program calls the monitor file output subroutines.

MOTOROLA DSPADSUM/AD 3-57

User Interface Commands

Detailed Command Descriptions

Example 3-36 Example Of Program That Resides on a Target DSP5600x

Input Requirements:
1. Load X0 with file number and word count

a. For 16-bit devices, the file number will be in the upper byte and word count
byte.

b. For 24-bit devices, the file number will be in the upper byte and word count
in the lower 2 bytes.

2. Load RO with the starting location of the source block.
3. Load R1 with the source memory space:
a. MOVE #0, RL—Move block to P memory space.
b. MOVE #1, RL—Move block to X memory space.
c. MOVE #2, RL—Move block to Y memory space.
4. Execute DEBUG instruction to enter Debug mode of operation.

Code Example:

MOVE #$1000c, x0 ;file #l—nput a bl ock of 12 words DSP5600x only
MOVE #$0, R0 ;starting address of block is $0

MOVE #1, RL ;in X nenory space

DEBUG ;enter Debug nmode

Example 3-37 Example Of Program That Resides on a Target DSP9600x

Input Requirements:
1. Load RO with file number in upper byte and word count in lower two bytes.

2. Load R1 with the starting location of the source block.
3. Load R2 with the source memory space:
a. MOVE #0, R2—Move block to P memory space.
b. MOVE #1, R2—Move block to X memory space.
c. MOVE #2, R2—Move block to Y memory space.
4. Execute DEBUG instruction to enter Debug mode of operation.
Code Example:

MDVE #$10000c, R0 ;file #l—nput a bl ock of 12 words
MDV/E #$0, RL ;starting address of block is $0
MDVE #1, R2 ;in X nenory space

DEBUG ;enter Debug node

3-58 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

Note: For DSP56300 systems, you must clear Bit 17 of the Status Register (SR) before
loading the X0 register with the proper value of file number and word count.

Example 3-38 OUTPUT Command Examples

out put
Display all output files currently open for all target DSP addresses.

out put dv2 p:300 admout

Open file "admout.io" for logging of target DSP address 2 outputs.
Note: p:300 is the address where the DEBUG opcode is to reside.

out put dv2 off

Close file currently open for target DSP address 2 outputs.

out put p:500 outfile.io -rd

Open file "outfile.io" for logging of default target DSP address outputs in decimal radix.
Note: p:500 is the address where the DEBUG opcode is to reside.

output #2 p:700 term

Open file number 2 for the current default target DSP address as the terminal.
Note: p:700 is the address where the DEBUG opcode is to reside.

MOTOROLA DSPADSUM/AD 3-59

User Interface Commands

Detailed Command Descriptions

3.6.31 PATH—Define File Directory Path

PATH [dev_list] [pat hnane]
PATH + pat hnang[, pat hnane, . . .]
PATH -

The PATH command allows the user to pre-define a directory path for file 1/0 for each
target DSP address. This enables the user to effectively partition data files for each target
DSP address in their appropriate subdirectory. Once a file is opened for INPUT,
OUTPUT, SAVE, or LOGging, subsequent changes to the path will not affect the opened
file. To change the path, the file must be closed and reopened with the new path name.
The user may still override the default path by explicitly specifying a pathname as a
prefix to the filename in any of the commands which reference a file.

Alternate source pathnames may be specified using the “PATH +” form of the
command. Each time the command is issued, the specified pathname, or
comma-separated list of pathnames, is added to the current list. When searching for files,
the ADS user interface program will search first using the default pathname specified for
the current device, then in each of the alternate source pathnames, in the order that they
were specified.

Example 3-39 PATH Command Examples

path
Display the path for the current default target DSP address.

path dvl..4\;

Define a path to the root directory for target DSP addresses 1, 2, 3, and 4. All subsequent
commands with filename arguments will have this path string preceded to the filename when
making an operating system call.

path + .\test
Add pathname “..\test” to the list of alternate source pathnames.

path + .\test,.\help
Add pathnames “..\test+ and +..\help” to the list of alternate source pathnames.

path -
Clear the list of alternate source pathnames.

3-60 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.32 QUIT—EXit ADS Program

QUT [E(enabl e)/D(di sabl e)]

The QUIT command passes control back to the operating system and closes all logging
files, assignment files, and macro files currently open.

Use the SYSTEM command to exit the ADS program temporarily.

QUIT enable and QUIT disable control the action taken by the ADS if an error occurs
during the execution of a macro command. QUIT enable specifies that the macro
command is aborted and the ADS quits immediately with a non-zero exit status. QUIT
disable specifies that the ADS does not exit.

Example 3-40 QUIT Command Examples

quit
Close all currently open files and return to the Operating System. Target DSP may be left
running until the program is re-entered.

quite
Specify that errors in a macro command will cause the ADS to exit with a non-zero status. The
ADS does not exit when this command is issued.

MOTOROLA DSPADSUM/AD 3-61

User Interface Commands

Detailed Command Descriptions

3.6.33 RADIX—Change Default Number Base

RAD X [dev_list] [B(bin)/D(dec)/F(flt)/H(hex)/U(uns)] [reg[_bl ock]/address[_bl ock]]

The RADIX command allows the user to change the default number base for command
entry. Hexadecimal constants may always be specified by preceding the constant by a
dollar sign ($). Likewise, a decimal value may be specified by preceding the constant
with a grave accent ().

Note: The default radix is hexadecimal when the user interface program is initially
invoked.

This means that hexadecimal constants must be entered with a preceding dollar sign.
Changing the default radix allows the user to enter constants in the chosen radix without
typing the radix specifiers before each constant.

The RADIX command also allows the user to select the display radix of registers and/or
memory. The default display radix for registers and memory is hexadecimal.

The use of the values of hex A or B require the $ preceding the value, otherwise the
values will be evaluated as the contents of the registers A or B, respectively.

Example 3-41 RADIX Command Examples

radi x
Display the default radix currently enabled.

radi x h

Change default radix entry to hexadecimal. Hexadecimal constant entries no longer require a
preceding dollar sign, but any decimal constants will require a preceding grave accent ().
radix fa

Change the default display radix for the long register a to display a fractional value whenever
the a register is displayed.

radi x u x:100..200

Enable the display radix for X data memory block 100 to 200 to be unsigned when displayed on
the screen.

3-62 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.34 REDIRECT—Redirect stdin/stdout/stderr for C Programs

REDI RECT [dev_list] STDIN OFF/file
REDI RECT [dev_list] STDOUT/ STDERR OFF/file [-A/-O/-C]
REDI RECT [dev _list] [OFF]

The REDIRECT command is used to redirect the stdin/stdout/stderr for C programs. It
allows the user to redirect stdin from a file, and redirect stdout/stderr to files.

No stream file redirection occurs while stream option is disabled. See STREAMS
command, Section 3.6.37 on page 3-66.

Example 3-42 REDIRECT Command Examples

redi rect

Display the redirect list, which shows each of the three streams that can be redirected, along
with to where they are being redirected.

redirect DVO0,3,4,5 off

Cancel all stream redirection for specified target devices.

redi rect stdin input

Redirect the C stdin (standard input) stream from the file input.cio (.cio is the default
extension).

redi rect stdout output.txt

Redirect the C stdout (standard output) stream to the file output.txt.

redirect stderr errors

Redirect the C stderr (standard error) stream to the file errors.cio.

redirect stdout output -o

Redirect the C stdout stream to the file output.cio, overwriting the file if it already exists.

redi rect stdout output -a

Redirect the C stdout stream to the file output.cio, appending to the end of the file if it already
exists.

redi rect stdout output -c
Redirect the C stdout stream to the file output.cio, but don’t redirect if the file already exists.

Note: No I/0 processing or handling of redirection occurs if the streams option has
been disabled. See STREAMS for more information.

MOTOROLA DSPADSUM/AD 3-63

User Interface Commands

Detailed Command Descriptions

3.6.35 SAVE—Save Memory To File

SAVE [dev_num] S(state)/address bl ock... filenanme [-o0/-a/-c]

The SAVE command allows creation of an ADS state file from the current ADS state, or
creation of an OMF file from specified memory blocks.

If S is specified as the second parameter, an ADS state file is created. It contains the entire
ADS state, including memory contents, breakpoint settings and the current pointer
position of any open files. This file is in an internal format that is efficient for the ADS
Interface program to store and load (see the LOAD s command description). The default
suffix for an ADS state filename is .adm.

If memory blocks are specified (instead of S) the specified memory areas are stored in
Macro_Assembler object module format so the file may be reloaded with the LOAD
command. The default suffix for an OMF file is .lod. If a filename suffix of ..cld is
explicitly specified, a COFF file will be created.

If a file currently exists with the filename specified the user will be prompted for an
action of either appending the data to the file, overwriting the file, or aborting the
command.

The selection of the file action may be included in the command line using the -o
(overwrite), -a (append), or the ¢ (cancel) argument. This is useful when executing
macro command files.

Example 3-43 SAVE Command Examples

save p:0..$ff x:0..$20 sessionl

Save all three memory maps to OMF file "session1.lod" of the current default target DSP
address. Prompt for required action if file already exists.

save s lunchbrk

Save the default ADS state to filename "lunchbrk.adm”. Prompt for required action if file
already exists.

save dvl s lunchbrk.el -o

Save the target DSP address 1 state to filename "lunchbrk.el". Overwrite the current file
“lunchbrk.el” if it exists.

3-64 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.36 STEP—Step Through DSP Program

STEP [dev_list] [count] [LI(source |ines)/IN(instructions)]

The STEP command allows the user to execute count instructions or C source lines
before displaying the enabled registers and memory blocks. This command gives the
user a quick way to specify execution of a number of instructions without having to set a
breakpoint. It is similar to the TRACE command except that display occurs only after the
count number of cycles or instructions have occurred.

Note: The address of the first instruction that is to be executed is in the OnCE
Program Address Bus Decode Register (OPABD). If the Program Counter is
changed before a TRACE or STEP command is issued, the address of the
Program Counter Register points to the instruction to be executed.

CAUTION

DSP5616x: When single stepping through a BRKcc instruction and
the condition is true, the instruction immediately following the
BRKcc instruction will be displayed by the ADS but will not be
executed. Instead, the DSP will correctly execute the instruction at
LA + 1. Single-stepping Tcc, REPcc or REP instructions with initial
loop counter equal to zero may cause incorrect DSP operation.

The main difference between the TRACE and STEP commands is the OnCE port trace
counter is armed to trace one instruction in the Trace mode. The STEP command arms
the trace counter with the count instructions to be executed in real time before

re-entering the Debug mode of operation and displaying the enabled registers and
memory.

Example 3-44 STEP Command Examples

step

Step one instruction at the current target DSP address and display enabled registers and
memory blocks.

step $50

Execute hex $50 instructions and then display the enabled registers and memory blocks.

step 31i

Step over the next 3 source lines (for a source file associated with the current program counter).
step dv2,55

Execute 5 instructions on target DSP addresses 2 and 5 simultaneously and display the enabled
registers and memory blocks of each when they have each completed their 5 instructions.

MOTOROLA DSPADSUM/AD 3-65

User Interface Commands

Detailed Command Descriptions

3.6.37 STREAMS—Enable/Disable Handling of I/O for C Programs

STREAMS [dev_num] [ENABLE DI SABLE|

The STREAMS command is used to enable and disable the handling of input and output
on the host side for C programs. By default, it is enabled. When enabled all input and
output that is done in the C program running on the DSP is handled on the host side. So
for example, when an fopen() call is made in the C program running on the DSP call, the
host software intercepts the call and does the fopen() on the host side.

See REDIRECT command, Section 3.6.34 on page 3-63.

Example 3-45 STREAMS Command Examples

streans e

Enable handling of C input/output. All input/output calls done in a C program running on the
DSP will be handled by the host software (e.g. fopen(), fwrite(), printf(), etc.).

streans d

Disable handling of C input/output.

3-66 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.38 SYSTEM—Operating System Access

SYSTEM [-C(conti nue i nmedi ately)] [system_command [argument_list]]

SYSTEM is a non-GUI command that allows operating system commands to be
executed. The operating system commands may be executed as subprocesses of the ADS
interface program or may be executed independently by temporarily exiting the ADS
interface program. Invoking this command with no arguments will cause the ADS
Interface Program to pass control to the Operating system but stay resident. To re-enter
the ADS Interface Program the EXIT command must be invoked from the operating
system command line.

Operating System commands invoked from within the ADS Interface program will not
be logged to the screen buffer for review.

When a SYSTEM command is specified on the system command line, the user is
prompted to “Hit return to continue...” before control returns to the ADS. This allows
the user to inspect the command output before it is destroyed.

The command argument “-c” (continue immediately) causes control to return to the
ADS without prompting the user. This may be useful in macro commands, allowing
system commands to be used without requiring operator intervention.

Example 3-46 SYSTEM Command Examples

system
Temporarily exit the ADS interface program and go to the Operating System. To re-enter the
ADS interface program invoke the EXIT command. All previous setups will not be altered.
systemdir
Invoke the directory Operating System command from within the ADS Interface program:
system
dir *.io
del he.io
exit

Create a MS-DOS shell and temporarily exit the ADS user interface program. Execute two
MS-DOS commands and re-enter the ADS user interface program using the EXIT command.
The current state as well as opened files of all target DSP addresses will remain the same.
system-c del e:\temp*.lod

Delete the specified temporary files and continue without issuing the continuation prompt.

MOTOROLA DSPADSUM/AD 3-67

User Interface Commands

Detailed Command Descriptions

3.6.39 TRACE—Trace Through DSP Program

TRACE [dev_list] [count]/[LI(source lines)/IN(instructions)]

The TRACE command gives a snap shot of each instruction during program execution.
This single stepping capability displays the enabled registers and memory blocks after
each instruction until count instruction or C source lines are decremented to zero. To
execute an instruction requires exiting the Debug mode of operation and entering the
User mode of operation so that the instruction pipeline may be restored and any result of
the traced instruction and subsequent instructions update the pipeline and machine
state.

Note: The address of the instruction that is to be traced is in the OnCE Program
Address Bus Decode Register (OPABD). If the program counter is changed
before a TRACE or STEP command is issued, the address of the program
counter register will point to the instruction to be traced.

When single stepping through the BRKcc instruction and the condition is true, the
instruction immediately following the BRKcc instruction is displayed by the ADS but is
be executed. Instead, the DSP correctly executes the instruction at LA + 1.
Single-stepping a Tcc, REPcc, or REP instruction with initial loop counter equal to zero
may cause incorrect DSP operation.

The main difference between the TRACE and STEP commands is the OnCE port trace
counter is armed to trace one instruction in the Trace mode. The STEP command arms
the trace counter with the count instructions to be executed in real time before
re-entering the Debug mode of operation and displaying enabled registers and memory.

Example 3-47 TRACE Command Examples

trace
Execute one instruction and display the enabled registers and memory blocks.

trace 20

Execute 20 instructions and display the enabled registers and memory blocks after each
instruction.

trace 51i

Execute the next 5 lines of source, and display enabled registers and memory blocks after each
line.

trace dv2,45

Execute 5 instructions on target DSP address 2 and target DSP address 4 from their current
program counter and display their enabled registers and memory blocks after each instruction.

3-68 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.40 TYPE—Display The Result Type of C Expression

TYPE [dev_list] {c_expression}

The TYPE command is used to display the result type of a C expression. If result of the
expression is a storage location (e.g., just a variable name, or an element of an array), it
will display the address of the storage location, in addition to its data type.

Example 3-48 TYPE Command Examples

type {count}

Display the type and location of the variable count.
type {0.5+i}

Display the type of the given expression.

MOTOROLA DSPADSUM/AD 3-69

User Interface Commands

Detailed Command Descriptions

3.6.41 UNLOCK—Unlock Password Protected Device Type

UNLQOX dev_type password

The UNLOCK command provides password enabling for emulation of unannounced
device types. Once unlocked, the device type may be selected with the DEVICE
command.

Example 3-49 UNLOCK Command Example

unl ock 56002 x51-234
Enabl e devi ce type 56002 for simulation using the password x51-234.

3-70 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.42 UNTIL—Step Until Address

UNT L [dev_list] addr/line_nunber/address_| abel

The UNTIL command sets a temporary breakpoint at the specified line or address, then
steps until that breakpoint. It then clears the temporary breakpoint and displays the
enabled registers and memory blocks in the same manner as the STEP command.

The addr parameter may be expressed as a line number in the program source file.
Specification of a line number is valid only if the symbolic debug information has been
loaded from a COFF format .cld file. The debug information is generated using the
Assembler’s —g option. Line numbers may be specified as filename@line_number for a
line number in a particular file or simply by line_number for line numbers in the
currently displayed file.

All other breakpoints are ignored while the UNTIL command is executing.

Example 3-50 UNTIL Command Examples

until 20

Go until the instruction associated with line 20 in the current file is reached.
until p:$50

Go until the instruction at hexadecimal address p:50 is reached.

until lab_2
Go until the instruction at label lab_2 is reached.

MOTOROLA DSPADSUM/AD 3-71

User Interface Commands

Detailed Command Descriptions

3.6.43 UP- Move Up the C Function Call Stack

UP [dev_list] [n]

The UP command is used to move up the call stack. It can be used in conjunction with
the WHERE, FRAME, and DOWN commands to display and traverse the C function call
stack.

After entering a new call stack frame using UP, that call stack frame becomes the current
scope for evaluation. In other words, for C expressions, the EVALUATE command acts
as though this new frame is the proper place to start looking for variables.

Example 3-51 UP Command Examples

up

Move up the call stack by one stack frame.
up 3

Move up the call stack by three stack frames.

3-72 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.44 VIEW- Select Display Mode

VI EW [A(assenbl y)/ S(source)/R(register)]

The VIEW command changes the ADS display mode. There are three display modes:
Assembly, Source, and Register. See Display Modes in Section 1 for a description of the
display modes.

If the VIEW command is entered with a parameter, the specified display mode is
selected. When no parameter is entered, the display mode cycles to the next display
mode in the following order: Source—Assembly—Register. The same results can be
obtained by typing Ctrl-w.

Example 3-52 VIEW Command Examples

VI ew

Cycle to the next display mode among Source, Assembly and Register modes.
vView s

Select Source display mode.

view a

Select Assembly display mode.

viewr

Select Register display mode.

MOTOROLA DSPADSUM/AD 3-73

User Interface Commands

Detailed Command Descriptions

3.6.45 WAIT—Wait Specified Time

WAT [[dev_list] B(break)]/count(seconds)]

The WAIT command pauses for count seconds or until the user types any key before
continuing to the next command. If the WAIT command is entered without a count
parameter, the command will terminate only if the user types a key. This instruction is
useful when executing a macro file and the current display on the screen needs to be
examined before executing further instructions from the macro file. The B option causes
a pause until all of the specified devices have entered the Debug mode. This option is
useful when executing a macro file where the devices must hit breakpoints or complete
steps or traces before the next command is accepted.

Example 3-53 WAIT Command Examples

wai t

Wait for a key stroke from the keyboard before executing any further instructions.
wait 10

Wait ten seconds before executing another command from the keyboard.

wait dv0..3b
Wait until devices 0,1,2 and 3 have all entered the Debug mode.

3-74 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.46 WATCH—Set, Modify, View, or Clear Watch Item

WATCH [dev_list] [#wn] [radix] reg/addr/expression/{c_expressi on}

WATCH [dev_list] [#wn] OFF
The WATCH command is used to add, modify, view, and clear watch items. Watch
items are on a watch list that gets displayed every time the user does a trace, or a

breakpoint is hit. Additionally, any time a user types WATCH without any parameters,
the watch list is displayed.

Example 3-54 WATCH Command Examples

watch r0
Add register r0 to the watch list.

watch x:0
Add x:0 to the watch list.

watch {(count+1)%total}

Add the given C expression to the watch list.

watch h {count/2}

Add the given C expression to the watch list, with display radix hex.
watch b {flag}

Add the given C variable to the watch list, with display radix binary.
watch rO+x:0

Add the expression r0+x:0 to the watch list.

watch

Display the watch list.

watch #3 off
Remove item number three from the watch list.

watch off
Remove all items from the watch list.

MOTOROLA DSPADSUM/AD 3-75

User Interface Commands

Detailed Command Descriptions

3.6.47 WASM—GUI Assembly Window

WASM[dev_list] [OFF]

WASM is a GUI command that opens an assembly window. Multiple device windows
may be opened for debugging target systems with multiple DSPs.

Example 3-55 WASM Command Examples

wasm

Open an assembly window for the current device.
wasmdvO0..1

Open an assembly window for devices dv0 and dv1.
wasm off

Close the assembly window for the current device.

3-76 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.48 WBREAKPOINT—GUI Breakpoint window

WBREAKPQ NT [dev_|ist] [OFF]

WBREAKPOINT is a GUI command that opens a breakpoint window. Multiple device
windows may be opened for debugging target systems with multiple DSPs.

Example 3-56 WBREAKPOINT Command Exampels

whbr eakpoi nt

Open a breakpoint window for the current device.
whbreakpoi nt dv0,3,4

Open a breakpoint window for the listed devices.
whbr eakpoi nt off

Close the breakpoint window for the current device.

MOTOROLA DSPADSUM/AD 3-77

User Interface Commands

Detailed Command Descriptions

3.6.49 WCALLS—GUI C Calls Stack Window

WCALLS [dev_list] [OFF]

WCALLS is a GUI command that opens a C call stack window. Multiple device windows
may be opened for debugging target systems with multiple DSPs.

Example 3-57 WCALLS Command Examples

wcall s

Open a C call stack window for the current device.
wcal | s off

Close the C call stack window for the current device.

3-78 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.50 WCOMMAND—GUI Command Window

WCOMAND [OFF]

WCOMMAND is a GUI command that opens the Command window. Only one

Command window may be opened even for debugging target systems with multiple
DSPs.

The Command window is shared between all target DSP devices. All commands affect
the current default device unless specifically addressed to other device(s). The prompt
on the command entry line indicates the current default device.

Example 3-58 WCOMMAND Command Examples

wconmand

Open a Command window.
wconmmand off

Close the Command window.

MOTOROLA DSPADSUM/AD 3-79

User Interface Commands

Detailed Command Descriptions

3.6.51 WHERE—GUI C Calls Stack Window

WHERE [dev_list] [[+-]n]

WHERE is a GUI command that displays the C function call stack. Multiple device
windows may be opened for debugging target systems with multiple DSPs.

Example 3-59 WHERE Command Examples

where

Display the call stack..

where 3

Display the three innermost frames in the call stack.
where -5

Display the five outermost frames in the call stack.

3-80 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.52 WINPUT—GUI File Input window

WINPUT [dev_I|ist] [OFF]

WINPUT is a GUI command that opens an input window. The input window lists all
simulated input assignments for the specified device. Multiple device windows may be
opened for debugging target systems with multiple DSPs.

Example 3-60 WINPUT Command Examples

winput

Open an input window for the current device.
winput off

Close the input window for the current device.

MOTOROLA DSPADSUM/AD 3-81

User Interface Commands

Detailed Command Descriptions

3.6.53 WLIST—GUI List Window

WLIST [w n_nunj} [OFF]

WLIST is a GUI command that opens a list window. A list window is used to view a test
file within the ADS environment. Multiple list windows may be opened for viewing
multiple text files.

Example 3-61 WLIST Command Examples

wli st Ifile.1st
Open a list window with the text file Ifile.1st displayed.

wli st win2 Ifile.1st

Open a list window with a window number of 2 with text Ifile.txt displayed. If list window 2
already exists, replace the contents with Ifile.1st.

wli st win2 off

Close list window number 2.

wli st off

Close all open list windowvs.

wli st win3

Open a list window with a window number of 3 with no text file displayed.

3-82 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.54 WMEMORY—GUI Memory Window

WMEMRY [dev_list] [wn_nun [space [addr]/[OFF]]

WMEMORY is a GUI command that opens a memory window. Multiple device
windows may be opened for viewing and changing separate memory areas and spaces
at the same time, and for debugging target systems with multiple DSPs.

The memory window is positioned initially to view the address specified by the addr
field. The addr field may also be used in conjunction with the space field to select the
exact memory space required.

Example 3-62 WMEMORY Command Examples

wmenory pi

Open a memory window for the internal program (pi) memory space for the current device.
wmenory xi 0

Open a memory window for the xi memory space containing address 0 for the current device.
wmenory dv2 win3 x $4100

Open a memory window for memory space x with a window number of 3 for the current
device. Scroll window to display address $4100.

wmenory off

Close all memory windows for the current device.
wmenory win3 off

Close memory window 3 for the current device.

MOTOROLA DSPADSUM/AD 3-83

User Interface Commands

Detailed Command Descriptions

3.6.55 WOUTPUT—GUI File Output Window

WOUTPUT [dev_list] [OFF]

WOUTPUT is a GUI command that opens a file output window. The output window
displays the simulated output assignments for the specified device. Multiple output
windows may be opened for debugging target systems with multiple DSPs.

Example 3-63 WOUTPUT Command Examples

wout put

Open an output window for the current device.
wout put dv1 off

Close the output window for the device dvl.

3-84 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.56 WREGISTER—GUI Register Window

WREQ STER [dev_list] [win_num [OFF]

WREGISTER is a GUI command that opens a register window. Multiple register
windows may be opened to display and change separate blocks of registers at the same

time. Multiple device windows may be opened for debugging target systems with
multiple DSPs.

Example 3-64 WREGISTER Command Examples

wregi st er

Open a register window for the current device.

wregi ster win3

Open a register window with a window number of 3 for the current device.
wregi ster dv1 off

Close all register windows for the device dv1l.

MOTOROLA DSPADSUM/AD 3-85

User Interface Commands

Detailed Command Descriptions

3.6.57 WSESSION—GUI Session Window

WSESS ON [OFF]

WSESSION is a GUI command that opens a Session window. Only one Session window
may be opened even for debugging target systems with multiple DSPs. All session
output from all target devices is written to the Session window. A message is output to
indicate which target device produced the following output.

Example 3-65 WSESSION Command Examples

wsessi on
Open a Session window for the current device.

wsessi on off
Close the Session window.

3-86 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.58 WSOURCE—GUI Source window

WSQURCE [dev_list] [OFF]

WSOURCE is a GUI command that opens a Source Code window. Multiple device
windows may be opened for debugging target systems with multiple DSPs.

Example 3-66 WSOURCE Command Examples

wsour ce

Open a Source window for the current device.
wsour ce off

Close the Source windows for the current device.

MOTOROLA DSPADSUM/AD 3-87

User Interface Commands

Detailed Command Descriptions

3.6.59 WSTACK—GUI Stack Window

WSTAXK [dev_list] [OFF]

WSTACK is a GUI command that opens a Device Stack window. Multiple device
windows may be opened for debugging target systems with multiple DSPs.

Example 3-67 WSTACK Command Examples

wstack

Open a Stack window for the current device.

wstack off

Close the Stack window for the current device.

3-88 DSPADSUM/AD MOTOROLA

User Interface Commands

Detailed Command Descriptions

3.6.60 WWATCH—GUI watch window

WWATCH [dev_list] [win_nunm [#wn] [radix] reg/ addr/expression
WWATCH [dev_list] [win_num [#an] [OFF]

WWATCH is a GUI command that opens a Watch window. Multiple device windows
may be opened for debugging target systems with multiple DSPs.

Example 3-68 WWATCH Command Examples

wwat ch r0

Open a Watch window for the current device with the register r0 displayed. If the window
already exists, add r0 to the list of watched items.

wwat ch x:$100

Open a Watch window for the current device with the memory location x:$100 displayed. If the
window already exists, add x:$100 to the list of watched items.

wwat ch r2+3

Open a Watch window for the current device with the expression r2+3 displayed. If the window
already exists, add r2+3 to the list of watched items.

wwat ch win2 r0

Open a Watch window for the current device with a window number of 2 with the register r0
displayed. If the window already exists, add r0 to the list of watched items.

wwat ch off

Close all Watch windows for the current device.

wwat ch win3 off

Close Watch window 3 for the current device.

wwat ch #2 off

Remove watch element #2 from first Watch window’s list of watched elements.

wwat ch win4 #2 off
Remove watch element #2 from Watch window 4’s list of watched elements.

MOTOROLA DSPADSUM/AD 3-89

User Interface Commands

Debugging C Programs

3.7 DEBUGGING C PROGRAMS

The ADS user interface software is capable of loading programs compiled with the
Motorola Optimizing C Compiler, and also has features which aid in the process of
debugging such programs. This section provides background information on what
features are available, and gives examples of the commands that implement these
features. The main thrust of this section is the tutorials at the end, which give practical
examples of how the debugging features might be used. No special “mode” needs to be
entered to debug C programs, and all of the familiar ADS capabilities are available while
debugging C programs.

3.7.1 C Debug Features

The features available for debugging C programs include:
= Step line by line through C programs.
= Examine and change the value of C variables.

= Evaluate complex C expressions, including the ability to call C functions from the
command line.

= Set breakpoints based on C expressions.
= Add C variables and expressions to a watch list.

= Examine and traverse the C function call stack, examining local variables and
parameters at each level of the stack.

= Redirect C input and output.

= Determine the type and location of a C variable, along with the result type of a C
expression.

3.7.2 C Expressions

C expressions may be used as arguments to the break, evaluate, type, and watch
commands. Expressions must be surrounded by the left and right curly braces ({ and }).
This is so that expressions can have spaces in them yet will still be considered a single
parameter to a command. Any valid C expression can be used between the braces, with
the exception of expressions that contain things mentioned in the following section on
restrictions. For information on what makes up a valid C expression, consult a manual
on the C programming language.

3-90 DSPADSUM/AD MOTOROLA

User Interface Commands

Debugging C Programs

In addition to supporting basic C expressions, a new operator (#) has been added. This
new operator is used to “create” an array from a pointer or another array. The syntax of
the operator is:

nane#si ze

where “name” is the name of a pointer or array in the C program, and “size” is a
constant integer greater than zero indicating what size array to make. So for instance, if
“vals” is a pointer to a group of integers, “vals#10” is an array of the first ten integers.
This can be useful for display purposes. This operator can be used to make single
dimensional arrays only. Attempting something like “(name#sizel)#size2” will make a
one dimensional array with “size2” elements.

One final addition to C expressions is the ability to use DSP registers in expressions by
prefixing them with a dollar sign ($) in the C expression. For registers that are greater
than the size of a “long” variable, the upper bits are truncated. So for example, if “$a”
were specified in the 56000 ADS software, only the lower 48 bits of register A would be
used.

Note: The $ in non-C_expression evaluation is used to designate a hexadecimal
value.

3.7.3 Restrictions

To improve usability, an effort has been made to have the fewest possible restrictions,
and although some remain, they are very reasonable. The first restriction is that string
literals are not supported in expressions. This would have required allocating some
portion of the DSP memory for debugging purposes, possibly interfering with the user’s
code. The other restriction is on type casts. Only forms of type casting such as the
following are allowed:

(type)

(type *)

(enum enuner at i on_t ag)

([struct/union/enun structure/uni on/enuneration_tag *)

In these examples, “type” includes both basic C types, and types that were defined with
typedef in the C program.

MOTOROLA DSPADSUM/AD 3-91

User Interface Commands

C Debugging Commands

3.7.4 Compiling a Program for Debugging

To use the C debugging features included in the ADS user interface program, the C
program being loaded into the DSP must have been compiled using the “compile with
debugging information” flag available in the compiler. For the Motorola Optimizing C
Compilers, this flag is “—g”. By default the Motorola Optimizing C Compilers compile
programs with optimization turned on. This will not be affected by compiling with
debugging turned on. Since optimization can change the order in which portions of
programs execute, along with eliminating variables, placing variables into registers, etc.,
you may experience strange behavior when debugging programs that have been
optimized. When compiling with the “-alo” flag, this strange behavior might be
considerably more noticeable. If this is the case, compile with the “~fno-opt” flag, which
disables optimization.

3.8 C DEBUGGING COMMANDS

Certain commands (WHERE, UP, DOWN, FRAME, STREAMS, REDIRECT, and TYPE)
exist specifically for debugging C programs, while other commands (BREAK,
EVALUATE, FINISH, GO, NEXT, STEP, TRACE, UNTIL, and WATCH) are useful in
debugging C programs, but are also used in assembly language debugging.

To eliminate duplicated functionality, the EVALUATE command is used in C
debugging as the CHANGE, DISPLAY, and EVALUATE commands would be used in
assembly language debugging. For instance, to display a C variable, EVALUATE that
variable. To change the value of a C variable, EVALUATE an expression that has an
assignment to that variable. EVALUATE is used just as it would be for an assembly
language expression to evaluate and display the result of a C expression. In addition to
the result, the type of the result is displayed. For example when evaluating an expression
that involves long integer variables, the result type displayed would be “long.”

3.9 EXAMPLE DEBUGGING SESSIONS

This section goes over debugging two simple C programs, one that performs a binary
search on a constant array, and one that performs a binary tree traversal, writing each
element on the tree out to disk. These two example programs contain examples of many
commands useful for C debugging. The two programs are both included in source form
with the ADS distribution. These files are binsbad.c, binsgood.c, and trav.c. The file
binsbad.c is a version of a binary search program with bugs in it. The file binsgood.c has
no known bugs. The file trav.c is used in the second session to illustrate the use of more
debugging commands.

3-92 DSPADSUM/AD MOTOROLA

User Interface Commands

Example Debugging Sessions

3.9.1 Binary Search Example

For brevity, the full text of the source code for the binary search program is not shown
here. You should compile the file binsbad.c, start the ADS software, and follow through
the instructions in the rest of this section step by step, so that what is happening in each
step is clear to you.

Assuming you have already compiled the binsbad.c source file with the debugging flag,
started the ADS host software, and reset the DSP, you should now do:

load binsbad.cld
to load the COFF file that resulted from compiling binsbad.c.

The first thing we will do is step over the program text at a very high level to verify that
the program appears to be working. We will then step through in detail and find that
there are problems which result in both poor efficiency, and improper execution.

First, set a breakpoint at function “main”.
break al main

Now that you have set a software breakpoint that stops at “main”, start execution of the
DSP program.

go

After the breakpoint is reached, we want to view the source code for the program and
get some indication of where we stopped when we hit the breakpoint for “main”.

views

By using the NEXT command we can step over the next two lines of source code (the call
to the function “find_keyword” and the assignment to the variable “t).

next 2

So, “find_keyword” has been called with “typedef” as an argument. The index returned
by “find_keyword” has been assigned to “indx”, and the token value for the “indx” item
of “key_toks” has been assigned to “t”. Now display what value “t” has.

evaluate {t}

You should see the result “enum token_t: Typedef”. So, “t” is of type “enum token_t”,
and it’s value is “Typedef”, the enumeration value that corresponds to the string
“typedef”. Now view the source again.

View s

Repeat the procedure we have just gone through to examine the results of each
additional call to “find_keyword”.

While viewing the source, display the entire “key_toks” array.

MOTOROLA DSPADSUM/AD 3-93

User Interface Commands

Example Debugging Sessions

eval uate {key_toks}

You should see the display of an entire array of structure items. Display the contents of a
single structure, for example the one at index 7.

eval uat e {key_toks[7]}

You should see the structure entry for “do.” Arbitrarily complex expressions can be
used. Here is an illustration of the “#” operator.

eval uate {key_ toks#10}

You should see the display of the first 10 elements of the “key_toks” array. Now, on to
debugging. Repeat the procedure for loading the program, so that we can start over from
the beginning. Run until you hit the breakpoint at “main”.

load binsbad.cld
go
View the source, and then step into the “find_keyword” function.

views

step
Now, step until the indicator is pointing at the line that begins the while loop.

After stepping to the while loop, use the WHERE command to find out where you are,
and how you got there.

where

You should see a list containing the function you are in, and the function “main”. This
list tells you that the function you are in was called from “main” with the parameter
listed. The indicator tells you which level of the call stack is currently selected. By
selecting other levels of the stack (with up, down, and frame), you can examine local
variables within those functions. You can also view the source for those functions, in
which case the indicator will point at the place where you will return to when you get
back up to that function. For instance, view the source code again, and then move up a
stack level, and then finally down a stack level. Note the difference in the source display
as you move up and down levels.

view s
up
down
Now, examine the values of the variables low and high.
eval uat e {low}

eval uat e {high}

Since low and high are the bounds of our search within the area, something should
immediately strike you as being wrong. In C, array indices begin at zero, and the last

3-94 DSPADSUM/AD MOTOROLA

User Interface Commands

Example Debugging Sessions

element of an array is indexed by the number of elements in the array minus one.
However, in this program, “high” has been set to the number of elements in the array. It
is off by one, and this could cause it to access elements that are not a part of this array.
Modify the source program so that one is subtracted from the value assigned to “high”.
See the file binsgood.c if you need help. Recompile the program and repeat the steps
necessary to get you back into the “find_keyword” function of the newly compiled
program.

After repeating the previous steps you should be back at the beginning of the while loop
and should be able to examine the variables “low” and “high”” and see that they now
have correct values. Now we want to add a few expressions to our watch list so that we
can view them as we step over lines.

watch {med}
watch {low}
watch {high}
watch {key_toks[med].keyword}

Let’s go into the register view and step line by line through the source and watch the
progress of our variables.

viewr

next i

Repeat the NEXT command several times and watch what happens to each of the
variables. The form of the NEXT command being used (NEXT li), steps line by line,
rather than instruction by instruction (which is the default for the NEXT command when
not viewing source). Repeat the NEXT command until you see “Expression out of scope”
as a result of the watch expressions, indicating that you have left the function that you
were stepping through. View the source.

views

If you were watching carefully while you used next to go over the lines, you might have
noticed that “high” was not changing by much each iteration of the loop. Examining the
source carefully you’ll see “high = high - 1 where it should actually read “high = med -
1”. Correct this in the source code and recompile. Repeat the previous steps needed to
get into the function “main”.

If you next over the lines while viewing source, and stop after the call to “find_keyword”
in which “while” is the parameter, you’ll notice that the variable “indx” was assigned a
value of “-1”, indicating that “while” wasn’t found in the list.

Tracing through this call to “find_keyword” carefully, it becomes apparent that the
expression in the while loop should be “low <= high”, rather than “low < high”. Correct
this mistake, recompile, and then repeat the steps necessary to get into the function
“main”.

MOTOROLA DSPADSUM/AD 3-95

User Interface Commands

Example Debugging Sessions

Step into the first call to the “find_keyword” function, after the assignments to “low”
and “high”, but prior to the beginning of the while loop. Set a breakpoint that will stop
execution at line 62 when “low” and *“high” have the same value.

break al @62 t({low==high})

Recognize that when we set the breakpoint for “main”, we simply used its name (since it
is a function), but in this case we are using a C expression enclosed in braces. Unless you
are specifying a function name to break on, you should use the expression format as
above.

Execute the program until you hit the breakpoint.
go
Examine the values of “low” and “high”.

Now, experiment on your own to get a better feel for debugging C programs within the
ADS software. At some point you will want to do the next tutorial, which will introduce
a couple more commands that can be useful in debugging C programs.

3.9.2 Recursive Binary Tree Traversal Example

This example introduces some more C debugging commands, this time stepping
through a program that doesn’t have any known bugs, to illustrate the result of using the
debugging commands.

For brevity, the full text of the source code for the tree traversal program is not shown
here. You should compile the file trav.c, start the ADS software, and follow through the
instructions in the rest of this section step by step, so that what is happening in each step
is clear to you.

Assuming you have already compiled the trav.c source file with the debugging flag,
started the ADS host software, and reset the DSP, you should now do:

load trav.cld
to load the COFF file that resulted from compiling trav.c.

The file trav.c contains code to open a text file, traverse a binary tree, and write the
numbers contained in the nodes out to a file. If there are any problems in doing this, it
writes an error message out to stderr and exits. By using the STREAMS command, you
can determine whether C input and output are currently being handled by the host
software.

streans

By default, input and output are handled by the host software. One reason you might
want to disable the handling of input and output by the C program is if you have written

3-96 DSPADSUM/AD MOTOROLA

User Interface Commands

Example Debugging Sessions

your own send and receive functions that were compiled into your C program, and you
have special communication needs that are handled in those routines (like writing out to
a peripheral on the DSP).

REDIRECT the output to stderr so that it gets written into a file.
redi rect stderr stderr -0

This command will open the file stderr.cio on the host side, and force everything that is
written to stderr to be written to this file. The -o flag specifies that stderr.cio file should
be overwritten if it already exists.

Now, set a breakpoint at main, run until that breakpoint is hit, and view the source.
break al main
go

The main routine contains calls to create_tree_node to create nodes for our tree. It builds
a simple tree, and then calls write_tree_to_file to write the tree out.

Step over all the calls to create_tree_node.
next 8

Use the EVALUATE command to add yet another node onto this tree. This illustrates the
ability to call C functions from the command line.

eval uat e {tree->right->right->right = create_tree_node(9)}
Now, step over the call to write_tree_to_file, and the tree will be written out to the file.

next

Examine the file “treefile.txt” to see the results.

MOTOROLA DSPADSUM/AD 3-97

User Interface Commands

Example Debugging Sessions

3-98 DSPADSUM/AD MOTOROLA

SECTION 4
GRAPHICAL USER INTERFACE

MOTOROLA DSPADSUM/AD

4-1

Graphical User Interface

4.1 INTRODUCTION e 4-3
4.2 HOST SYSTEM REQUIREMENTS. 4-3
4.3 PLATFORM SPECIFICS. 4-3
4.4 GENERAL WINDOW BEHAVIOR L. 4-4
4.5 GRAPHICAL INTERFACE FUNCTIONS OVERVIEW 4-6
4.6 FILEMENU 4-13
4.7 DISPLAY MENU 4-27
4.8 MODIFY MENU s 4-41
4.9 EXECUTEMENU 4-47
4.10 WINDOWS MENU. e 4-55
4.11 HELP MENU 4-68
4.12 THE TOOL BAR 4-69
4-2 DSPADSUM/AD MOTOROLA

Graphical User Interface

Introduction

41 INTRODUCTION

This chapter describes the DSP ADS Graphical User Interface (GUI). Use of each
operation is described, using illustrations of the windows, dialog boxes, and expected
output results from the operation. Important features are indicated on each illustration.

4.2 HOST SYSTEM REQUIREMENTS

The graphic interface version of the DSP ADS requires the following minimum system
configuration:

= Sun Workstation—Any SPARCstation 2 or above, with at least 10 MB of free disk
space, or

= Hewlett Packard Workstation—Any HP7xx series workstation, with at least
10 MB of free disk space, or

e PC-compatible Computer—An 486 or later system, minimum 8 MB RAM, color
SVGA display at 800 by 600 resolution or better, approximately 10 MB free disk
space. A high resolution SVGA display (1280 x 1024) with a 17 monitor will give
a more productive working environment.

4.3 PLATFORM SPECIFICS

The operation of the ADS under the GUI varies slightly from one platform to another.
This is in the area of certain windows and dialog boxes supplied by the platform itself. In
all aspects of the ADS itself, operation, although not the details of appearance, is
consistent across the platforms. Although this section addresses some of the relevant
differences between the platforms, it is assumed that the reader is familiar with his own
environment. Although there are frequent references to window operations, no attempt
is made to teach the windows or any other system. After this introductory section, all
screen illustrations are taken from the Windows system.

MOTOROLA DSPADSUM/AD 4-3

Graphical User Interface

General Window Behavior

44 GENERAL WINDOW BEHAVIOR

Under Windows, all the GUI windows are constrained within the area of the main
window. To use the whole screen, the main window must be maximized. When one of
the open windows is minimized, it appears as an icon within the main window. Dialog
boxes, however, appear in the center of the screen and are not bound by the main
window. They may be moved as desired, some can be re-sized, none can be minimized,
and all must be dismissed before any other operation may be performed.

Under Motif, the windows are not bound by the main window. They may use the whole
screen without restriction. When a window is opened, an icon appears in the main
window. When a window is minimized, by clicking in the ‘down triangle’ in the top left
corner, it becomes an icon at the right of the screen. These icons are not labelled, so use
the icons in the main window (which are labelled) to choose which window to reopen.

Minimize with the Sim56000 Click with right
down triangle'] Modify v Execute v} _Wﬁmws ~g_Help ¥] mouse button to
o @ o i) —drop menu.

Icons represent
minimized i dop dop Click on title bar
W|nd0WS Use to Command Session Wlth nght mouse
reopen or bring bL_Jtton to drop
hidden windows to window coqtrol
front. menu to exit

, window.

Figure 4-1 Main Window for Sun SPARCstation 2

441 File Chooser

The dialog box supplied by the platform for the purpose of selecting a file or directory
varies significantly in appearance, although not in overall function. All have the same
basic features:

= Drive selection (built into the Unix file structure)

= Parent and sub-directory selection

e List of files in current directory

= Accept selection or cancel operation

= A space to type a file name directly

4-4 DSPADSUM/AD MOTOROLA

Graphical User Interface

Pin if required.

General Window Behavior

T

Scroll through

7 list of files and

A Load Memory OMF
Scroll horizontally _History +} Special v View «] Filters ¢]
through directories— “| ind
parents to left, .] i
subs to right. i / -
Open

Select a directory in

y directories.

one column gives list
of files/directories

— Enter file name
if desired.

in next.
Figure 4-2 Sun File Chooser Dialog Box
Type name [OK] to open,
or Wi|dcard f||ter \ [Cance'] to dismiss_
File Hame: Directories:

S'CI‘OH through . 4| basio.lod + = en + Open fOI(_jer IS
files or directories. basiopZlod = tguiz & current directory;

_ e 00 save above is path,
Click on required file. | |x141ed below is

& 3 sub-directories.

Select files to view List Files of Type: Drives:

from pull-down list. [OMF Files (~lod] [#] [=c: micron Bl | Selectrequired drive.

Figure 4-3 Windows File Chooser Dialog Box

4.4.2 Multiple Operations

Many operations may need to be performed several
times in succession. These include setting breakpoints,
specifying display radix for various memory areas, etc.
To avoid navigating the menus each time, the dialog
box may be retained for repeated operations.

Under Windows, such dialog boxes have three buttons
—usually labelled [OK], [Apply], [Cancel]. Clicking on
[OK] performs the operation and dismisses the dialog
box [Apply] retains it for further operations. When the

Memory Space
e][z
Start Address
51200
End Address Value
51364 0.01|
| oK | | Apply I | gancell

dialog box is no longer needed, it must be dismissed by using [OK] on the last operation,
or [Cancel]. No other GUI operations can be performed until the dialog box has been

dismissed.

MOTOROLA DSPADSUM/AD

4-5

Graphical User Interface

Graphical Interface Functions Overview

Under Motif, the same effect is achieved in a different way. There is -5 Setberault pevice
only one button, [Apply], which performs the appropriate operation,

and then dismisses it. The dialog box can be made (semi) permanent _
by clicking on the pin in the top left corner, so it will not be . _
dismissed after clicking the [Apply] button. The dialog box may then feply)
be used as many times as required; click on the pin again to unpin it,

and the window closes. To dismiss the dialog box without taking any action,
double-click on the pin (i.e., ‘pin and release’, and the dialog box closes).

Device

4.4.3 MULTIPLE SELECTIONS

Many dialog boxes permit the selection of several items from the list. This is handled
differently on different platforms.

= On Windows or the HP, a click with the left mouse button selects one item and
clears any previous selection. Click and drag selects a range of consecutive items;
the list scrolls when the drag reaches the end of the window. To add to an existing
selection, hold the control key while clicking or click/dragging the items to be
added.

= On the Sun, click or click and drag with the left button to make a selection and
clear any previous selection; use the middle button to add to an existing selection.

45 GRAPHICAL INTERFACE FUNCTIONS OVERVIEW

The GUI provides a graphical interface to the debugger for the Motorola families of DSP
devices. Versions support both the software DSP simulator and the ADS emulation
systems. The GUI consists of a set of tools—menus, dialog boxes, windows and buttons.
Using these tools, the user selects the desired operation, and the interface generates the
appropriate commands for the development system. These commands are passed to the
debugger via the Command window, and the output and other information displayed in
the Session and other windows. The user may also enter commands directly into the
Command window, so retaining direct control over the debugging process if desired.
These features provide full control over the development process. The menus provide
the control functions, the dialog boxes gather additional information as necessary, and
the windows display information, and also provide facilities to modify certain items
such as register and memory values. This section describes in general terms the range of
features offered by the GUI. It is intended to provide a brief overview without going into
great detail on any subject. References are included to the appropriate sections for
further study.

4-6 DSPADSUM/AD MOTOROLA

Graphical User Interface

Graphical Interface Functions Overview
4.5.1 GUI Structure

The GUI provides an interface to the command line debugger, generating commands
from the user actions, and interpreting the responses.

Expression Evaluator Assembler/Disassembler
> Parser
GUI - Commands

Interface Layer

Y

Driver Layer

Y

(Target DSP Hardware)

Figure 4-4 GUI Interface to ADS

45.2 Starting the ADS

At system start-up, the main window opens. T = -
This provides the menu for the system, and Lilc_Display _Modity_Execule_Windows _Help
the tool bar for convenient access to SECH72 2006

frequently-used operations.

Session

Other windows may also open. This is

force b

controlled by the Preferences item in the File display v _ o
.. Command Converter monitor revision 4.58
menu. If checked, the positions of the MOTOROLA DSP55080 ADS: UERSION 6.0.18
. . wsession]
windows are saved on exit, so the GUI starts wconnand

with the required windows already open.
dsp dep dsp
Running under Microsoft Windows, the main | = "¢ Command
window is the whole work area. All windows
are held within its bounds. To use the whole

MOTOROLA DSPADSUM/AD 4-7

Graphical User Interface

Graphical Interface Functions Overview

screen, it is necessary to maximize the main window, and similarly, when the main
window is minimized, all the other windows go with it. On other platforms, the
daughter windows are free to use any area of the screen. An icon representing each open
window appears on the main window, which can be used to find a window hidden
behind others, or reopen a minimized window.

45.3 File Access Paths

The debugger makes use of two types of path for creating and accessing files. The main
path is used for created files (assuming no path is explicitly specified with the file name),
and is the first place searched for an input file. This is known as the Working Directory.
Alternate Source Paths are also searched, in turn, if an input file is not found in the
working directory. Thus object files may be stored in one directory, and sources in
another, and each may be accessed easily. These paths are set up with Path... in the File
menu.

454 Loading Object Files

The development system can load object files in COFF and OMF formats into memory.
These files may be produced by the DSP Assembler and C Compiler, with file types ‘.cld’
and “.lod’. COFF files may contain symbolic debugging information in addition to the
object code, permitting the use of variable names and labels during the debug session.
Use the File menu Load option, to load the program into memory. If the source files are
present (i.e., in the object directory or one of the directories set up with File//Path), the
Source window displays the source code around the current instruction.

45.5 Examining and Changing Memory

After loading the program, you can look at the program in memory. The Assembly
window (Windows menu, Assembly option) lists the memory contents, disassembled.
Symbolic references are included if symbolic data was loaded from a COFF file. The
Assembly window also permits editing the program with Assembler instructions, and
one way of setting and clearing Halt breakpoints. As the program executes, the
Assembly window automatically refreshes to display the area around the PC. In
addition, the Memory window displays a block of memory as numeric values (Windows
menu, Memory option). You can control the radix used to display each memory location
(Modify menu, Radix option) individually. So if one location is a counter, it can display
in decimal, if another is a bit mask, binary or hexadecimal might be more suitable. The

4-8 DSPADSUM/AD MOTOROLA

Graphical User Interface

Graphical Interface Functions Overview

Memory window can be re-sized to display more or less memory (the number of
columns adjusts to use the width given), and scrolled to cover the whole memory
address range. Click on a location to modify an individual memory location. Several
Memory windows may be opened, to display different memory areas concurrently. To
initialize a block of memory to the same value in each location, as in clearing a buffer,
use the Modify menu, Memory option.

4.5.6 Examining and Changing Registers

The registers can also be monitored with the Register window (Window menu, Register
option). All registers associated with the core or a specified peripheral can be displayed
in a window, scroll to view those you want. Multiple windows may be opened for each
device to view registers in different peripherals. Registers can also be modified, as with
the Memory window; see also Modify menu, Register option.

4.5.7 Program Execution—the Tool Bar

The tool bar provides convenient control of program execution. The green light allows
program execution to proceed until interrupted, the red light interrupts it. Step executes
either an instruction, or a line of code, depending on whether the source information is
available. Next is the same as Step, except on meeting a call to a subroutine (or function,
if you speak C). Step treats the subroutine like the rest of the code, and stops after each
instruction in the subroutine. Next treats the subroutine as one instruction, and stops
after it is finished.

45.8 Device Selection

The debugger can support multiple DSP devices, up to thirty-two depending on the
configuration. Each device may be configured as part of this session, or excluded. The
DEVICE button selects which DSP processor is affected by user commands at any given
time—which device’s memory bank is displayed in this Memory window, which
device’s register is being changed, which device is affected by this breakpoint. This is
called the Default Device. The Device entry in the Modify menu can configure and turn
devices On or Off; when instructions are executed, all devices which are on will execute
inturn.

MOTOROLA DSPADSUM/AD 4-9

Graphical User Interface

Graphical Interface Functions Overview

4.5.9 Breakpoints

There are two types of breakpoint used by the ADS:

= A software breakpoint is an instruction placed in the DSP code which when
executed (possibly conditionally, for example if carry is clear) places the device in
Debug mode. Software on the host then performs further checks, and if satisfied
performs the action specified for the breakpoint. A software breakpoint may also
be associated with end of file on simulated input.

= A hardware breakpoint involves circuitry built into the DSP which monitors
address lines, etc., and when the specified conditions are met, places the device in
Debug mode. This monitoring involves no run-time penalty. Software on the host
then performs further checks, and if satisfied performs the action specified for the
breakpoint.

Both types of breakpoint may have an associated count. If specified, the breakpoint is
ignored until the Nth occurrence. This count is reinitialized each time execution is
initiated.

There are several ways of specifying breakpoints. The Source window displays the
source code for the executing program; double-click on a line of code to set (or clear) a
breakpoint. There is no indication given in the Source window, but the Command
window shows the command to set the breakpoint (or clear it), and the corresponding
address in the Assembly window will be highlighted blue to show the position of the
breakpoint. Similarly, a double-click in the Assembly window will set or clear a
breakpoint on any instruction, not just the start of a line of code. All breakpoints are
listed in the Breakpoint window.

These are HALT breakpoints—the program is halted and control returns to the user.
With the Execute menu, breakpoints may have several other actions associated with
them. For example, incrementing a counter (four are available) tracks how many times a
piece of code was executed, a note can be written to the Session window record the event
that the breakpoint was executed, or a selection of registers, memory locations, and
expressions (values which may never have been calculated by the program during its
normal execution, but which may be useful for you to know) can be displayed to the
Session window. All this is set up by Breakpoint in the Execute menu.

So far all the breakpoints have been associated with program locations. It is also possible
to place hardware breakpoints in the data, so that when a specific memory location (or
memory block) is accessed—wherever the PC is at the time—the breakpoint occurs and
the specified action is performed. It is possible to set multiple breakpoints on a single
location or event, to specify multiple actions—say increment a counter, display some
values, and halt—to be taken at the same time.

4-10 DSPADSUM/AD MOTOROLA

Graphical User Interface

Graphical Interface Functions Overview

45.10 Simulated Input and Output

DSP programs do not usually exist in isolation. It is necessary to simulate interaction
with the electrical world outside the device. This is handled by Input and Output in the
File menu.

Input associates a data file with a DEBUG instruction; every time that instruction is
executed with the appropriate parameters, the value returned to the program is
provided by the data file. Input from a file is directed to a memory location. This
simulated input represents a data stream, so that each access gets the next item. Each
entry in the file can be read once, and only once, and can not be skipped.

Simulated output is similar. When a specified DEBUG instruction is executed, a record is
written to the output file, consisting of the data value specified.

45.11 Stream File Support

Support is also provided for the basic C stream files, STDIN, STDOUT and STDERR. AC
program running on the DSP device may use these files, and the 10 will be handled by
the host. See File menu, Stream to enable and disable stream 10, and File menu, Redirect
to redirect the streams to files on the host system. If stream support is disabled, or the file
accessed has not been redirected, the request is ignored. Output is discarded, no input is
returned.

4512 Command and Session Windows

There are two windows which are involved in most GUI operations.

e Command Window—Most GUI operations generate commands which are
passed to the debugger and stored in a history buffer that is displayed in the
Command window. Stored commands may be retrieved, edited and re-executed.
A command entry line permits commands to be entered manually, and a help line
gives the syntax of the command being entered. There is only one Command
window, shared among all the devices in use.

= Session Window—Whenever the debugger generates output, it is written to the
Session window, the main screen for the current device. When a command is
executed, it is echoed in the Session window. When an error is detected, it is
reported in the Session window. The Display menu basically causes information
to be output to the Session window.

MOTOROLA DSPADSUM/AD 4-11

Graphical User Interface

Graphical Interface Functions Overview

45.13 Command and Session Log Files

All commands entered through the Command window (manually or from the GUI) may
be written to a log file. This can serve as a record of the command input to a session, but
can also be used as command input itself. A Macro file is an ASCII text file containing
ADS/Simulator commands, which can be read and executed. A command log is one
way of creating such files. See Macro in the File menu.

All activity in the Session window can be logged as a permanent record of a debugging
session. Thus all the breakpoint data, memory and register values output to the Session
window, may be examined and analyzed later. Although there is only one Session
window, each device has its own output buffer. The Session window displays the buffer
for the current device; activity on any other device will be recorded in its own buffer
(and possibly also written to its own Session log file), and displayed when that device
becomes the current device.

Note: All activity in the Command and Session windows may be recorded to a log
file. See Log in the File menu.

4514 Save Files

At the end of a development session (or indeed any other convenient time), all or part of
the system status may be saved. The entire debugger configuration—all memory and
register contents, counters, display settings, breakpoints, etc. may be saved to a GUI
status file. This may be reloaded later, and development may proceed from where it was
interrupted. This is handled by Save State and Load State in the File menu. Memory
contents may be saved as COFF or OMF object modules. These files will contain any
patches applied during the session. See Save... in the File menu. Finally the window
positions may be saved on exit. See Preferences in the File menu. The next time the
debugger is used, the windows will open where they were left.

4.5.15 Input Conventions

= Numeric values (including addresses) are assumed to be in the default radix
unless prefixed by a radix identifier: *~ (grave accent) = decimal, $ = hexadecimal,
% = binary.

= Many input fields accept expressions—either C expressions, or DSP Assembler
expressions. Program symbols may be used in expressions if debug information

4-12 DSPADSUM/AD MOTOROLA

Graphical User Interface

4.6

The File menu handles all operations associated with file
handling. The operations covered are: Load 4
Save b
= Path specifies a primary directory as the default for all file Input »
operations and alternate paths for file read operations. Qutput b
Separate paths are maintained for each DSP device. 10 Streams N
- Load and Save operations load object modules into 10 Redirect s
memory, write selected memory areas out into object Log »
modules, and save and reload the entire status of the Macro...
development system. About...
= Input and Output provide simulated data for a program, Preferences...
and saves output produced by a program. Exit

File Menu

has been loaded. C expressions must be enclosed in brackets {}. See Section 3.4.17
for expression information.

Program locations are often specified with the mapping in one field and the
address in another field. Sometimes, one field is used for input. In this case, the
location may be input as a program line number (‘@116’—see Section 3.3) or an
address including the memory type (e.g., p:$4117).

FILE MENU

2

10 Streams and 10 Redirect provide a basic stream 10

environment for C programs running on the development system. Stream 10 may
be enabled or disabled, and the basic stream files STDIN, STDOUT, STDERR
redirected to files on the development host.

Log permits Command and Session windows to be logged to files.
Commands in a Macro file may be executed.

About displays the version of the program, and claims and acknowledges
copyright.

Preferences controls saving of window positions.

Exit allows the user to leave the debugger.

MOTOROLA DSPADSUM/AD 4-13

Graphical User Interface

File Menu

4.6.1 Eile//Path/...

Load Add...
Save Clear Alternate Path List

A separate set of file search paths is maintained for '
each device. File//Path//Set sets the default directory, referred to as the Working
Directory, for all file accesses for the current device (see Modify//Device).

File//Path//Add sets one or more Alternate Source Paths for the current device.

On all file operations, the working directory specified in File//Path//Set is used as the
initial directory in the file open dialog box. The alternate source path is used if a
command is typed directly into the command window, or a file name is typed into a
dialog box, specifying a file name without a path. In this case, an output file will be
created in the working directory, and an input file will be searched for, initially in the
working directory, and in each alternate source directory in turn until found.

File//Path//Clear... removes all alternate source directories specified by
File//Path//Add. All future file accesses for this device will only use the working
directory.

Shows path before Dialog menus to
leftmost column. Click to select device,
open pull-down list and directory list order,
select a directory from previously-visited
list. directories.

T Select Directory _—l
History Special Yiew Yolumes
MAKERS
Use >" and ‘<’ buttons . &
. i MAKERS 23 CLIPART i
to scroll h_onzontally 3 MOUSE u
through directory (=3 MSOFFICE £3 DICT Displays
levels. @ pcs [+]| 3 FILTERS currently selected
Directory: directory. May
| MAKERS{DEMOS} <—1— also click and
enter path
| Select | | Qpen{| Cancel I dlreCtIy'
Adjust dialog box Single click and Open
size for number . . (or double click) lists
Single click and . :) .
of columns directories available in
SELECT sets path X
shown and length last selected directory.
of list. to last selected

directory.

Figure 4-5 File//Path/Set, Add Dialog Box

4-14 DSPADSUM/AD MOTOROLA

Graphical User Interface

File Menu

File

Load Memory COFF...

State...
The File//Load//Memory COFF, Memory OMF menu

items read object modules in OMF or COFF format into the DSP memory for the current
device (see Modify//Device//Set Default). Complementary functions
File//Save//Memory COFF and Memory OMF are available to preserve memory
contents in OMF or COFF files, which may themselves be loaded. If Memory COFF load
is selected, a dialog box gives the choice of loading memory, debug symbols or both.
Otherwise, the operation is identical for both OMF and COFF files.

4.6.2 File//Load//Memory COFF, Memory
OMF

Select from Load OMF file opens Initial dialog box is only used with
loading file chooser dialog box COFF files to select the class of
memory, debug directly. data to be loaded, before starting
symbols, or the file search dialog box.
both. e
Usual =| Load M COFF
operation is to S May enter
load both. — || [name of load
Might load aC Memory _ | file manually if

C Debug Symbols i
symbols only @ Memory and Symbols desired, [OK]
after loading to load.
patched — File Name £
memory saved ErEt Click to open
after previous E E file access
debug session. [ok | [cancel | dialog box.
May type file
name File Hame: Directories: “
direCtIy. May I |’-x | c:\makerh _
include drive consfile tat # [Een *
and path or fmw32s16.dll %";:';:’:

fmw32s32.dll
use path frame.exe £ demos Select

p htmillite_exe £ dict . .

shown in rest mak exghi £ filters directories
of dialog box. & fminit from list by

¥t Files of Type: .

Al Filos 1 E B double-click

T to build path.

Double-click on Select desired file type
required file or from pulldown list to)
Single-click and specify which files are Select drive from
[OK] to load. displayed in list. pull-down list.

Figure 4-6 File//Load//Memory COFF, Memory OMF Dialog Box

MOTOROLA DSPADSUM/AD 4-15

Graphical User Interface

File Menu
4.6.3 File//Save//Memory COFF, Memory %
QMI Load »

The File//Save//Memory COFF, Memory OMI menu

Memory COFF...

Memory OMF...
State...

Input
Qutput

items save the contents of a single memory block into DSP COFF or ASCII OMF files that
can later be reloaded with the ADS or in any other environment where such files may be
used. A dialog box is used to specify which area of memory is to be written, by
specifying the memory space (P, X, Y, etc.) and the address range. A separate operation
is required for each memory space to be saved. File//Save complements File//Load.

Both the OMF and

Click here to enter the required file

COFF options open name manually. Device and path
the SAVE Memory may be specified. If omitted, will
dialog box. use working directory or alternate
source path.
Select the /
required memory =| A Save Memory |
space from the Memory Space
pull-down list. \
o

Tab to (or click on)

Start Address End Address
the address range ~ ~a
fields and enter the | s4E00 | S4EFF
memory range to be . /
saved. ‘$’ prefix = fie Rame Or click to
hexadecimal. | ~———— open file

I I e chooser.

| 0K I | Apply I | Cancel I
Enter file name ﬁ':: Bane | pe
direCtly tO SpeCify has-io.lod * B ch * Se|eCt
new file name. basiop2.led B tgui3 : i
-« directories from
list by

Double-click on v _ double-click to
required flle or ave File as Type: Drives: bu”d path
Single-click and [OMF Files (o) [3] [c: micron R
[OK] to save.
Another dialog
box will open to Select desired file type from Select drive
confirm existing pulldown list to specify which from oull-down
file is to be files are displayed in list. romp
replaced. list.

Figure 4-7 File//Save//Memory COFF, Memory OMF Dialog Box

4-16

DSPADSUM/AD

MOTOROLA

Graphical User Interface

File Menu

4.6.4 File//Save//State, File//Load//State

Memory COFF...
Memory OMF...
Input State...

The Load and Save State menu items allow the state of the

entire ADS system to be saved and later reloaded. This Ourteurt 8
includes the state of all DSP devices in the system, their
device type, and for those devices which are enabled, the fa“; :

entire contents of memory, registers, counters, status
registers, peripheral registers, etc. Additionally, the state of
the GUI is saved, including the command history buffer, Py — N
and the session output buffer for each device.

Memory COFF...
Memory OMF...

This may be used in several ways. A protracted development session may be saved
before a break, and reloaded after the interruption to be continued where it was left off.
Alternatively, if a particular part of a program is proving troublesome, the state may be
saved just before the problem area, simplifying the setup for repeated attempts to isolate
the problem. Or a set of standard routines and data areas may be pre-loaded in a GUI
state file, making it easy to set up the environment for testing some new code

The dialog boxes for Load//State and Save//State are identical in layout and operation.
Only the titles differ.

Enter file name

manually if Select directories
desired. State from list by
files use double-click to
extension . SIM’. build path.
Load State
.‘File Name: Directories:
tstate. sim c:htgui
DOUble_CIiCk on radvice.out f| Bgc;\ ¥
required file or 9uiSE000 cxe & tgui /
Single-click and nfo.out £ notes
[OK] to save. On SimSG000 vr
SAVE, another trace. out -
dialog box will List Files of Type: Drives:
open to confirm [AM Fites =) Bl [= e micton :
existing file is to —
be replaced. = d:
Select desired file type from pulldown Select drive
list to specify which files are displayed from pull-down
in list. list.

Figure 4-8 File//Load//State, File//Save/ /State Dialog Box

MOTOROLA

DSPADSUM/AD 4-17

Graphical User Interface

File Menu

4.6.5 Eile//Input//Open

Eile//1Input//Open reads data from the terminal or a file to

provide simulated input to a memory location in the default
device. The input file is associated with a DEBUG instruction

Pin...
Address...

in the code. More than one input file may be associated with a single DEBUG instruction.
When DEBUG is executed, registers must be set as shown in Table 4-1.

Table 4-1 Register Requirements for Simulated Input

Data Item DSP96xxx DSP56xxx
Input File Number and byte count RO X0
Input Address R1 RO
Memory map (P=0, X=1, Y=2) R2 R1

Each time the DEBUG instruction is executed, a data value is obtained from the input file
associated with the file number specified, and stored in the indicated location. The
format of the data file and programming requirements is documented in the command

line Input Section 3.4.24.

Specify Input # Enter address of DEBUG
for this inputfile. instruction which requests
Next available input from this file.
number is

offered.

Open Input File

Select default radix
used in data file. Radix
specifiers may also be
used in file.

Select data ,\Input Number Debug Addreye Radix
from file or E@ (p:§1442 g E;':::::al
entered at . O Floating Point
terminal. \ Fm.m ' Hexedecimal
@ File . O Unsigned Click to
) Terminal Open f||e
May specify file File Name |_— chooser.
name
manua“y \“ ’]C:\TGUI\XMO File... I
. 0
Default file type
is 10", Lok] [ey | [cancer |
Figure 4-9 File//Input//0Open Dialog Box
4-18 DSPADSUM/AD MOTOROLA

Graphical User Interface

4.6.6

Input//Close closes all or selected simulated inputs to the
default device. A dialog box opens, offering all of the currently
open input numbers for the default device. Select the inputs to
be closed, using the appropriate combination of mouse clicks,

File//Input//Close

File Menu
 File I
Path »
Load »
Save »

Open...
Pin...
Address...

OQutput

10 Streams
10 Bedirect

<CTRL>-Clicks, and Click-and-Drag. Then close all selected inputs by clicking [OK].

All Inputs set up for
the current device
are listed in the
scroll box. Select
those to be closed.

Input Number

| oK | | gancell

= Close Input File

-

4.6.7

File//Output//Open prepares for writing data from a memory
location or block in the default device to the terminal or a file to
provide simulated output. The output file is associated with a

=-| Close Input File

Input Number

#4
no

r_ _—

0K I Cancel I

Select multiple
individual input numbers
by clicking on the first
one, then
<CTRL>-CLICK to
select additional input

Select
a range
by click
and
drag.

n /
#

Select a
single Input
number with
a click.

= Close Input File —l

Input Number

/

| oK | | gancell

Figure 4-10 File//Input//Close Dialog Box

File//Output/Open

Path

Load
Save

ry|lwvrwv| v

Input
Qutput

IN Streama

DEBUG instruction in the DSP code. More than one output file may be associated with a
single DEBUG instruction. When the DEBUG is executed, registers must be set as shown

in Table 4-2.

Table 4-2 Register Requirements for Simulated Output

Data Item DSP96xxx DSP56xxx
Output File Number and byte count RO X0
Output Address R1 RO
Memory map (P=0,X=1,Y =2) R2 R1
MOTOROLA DSPADSUM/AD 4-19

Graphical User Interface

File Menu

Each time the DEBUG instruction is executed, the data is obtained from the output
address, and written to the output file associated with the file number specified. The
format of the data file and programming requirements is documented in the command
line Output Section 3.4.30.

Set Output File No. First
available no. is offered.

Enter address of DEBUG
instruction written into
code.

Selectradix to
be used for
data output.

Select data \ Open Output File
to f||e or Qutput Number Debug Afldress Radix
session ’7 - () Decimal
i -u p:$1044 O Fractional
window. \ To Yl) O Floating Point
@® File () Hex!adecimal
¢ Terminal » U“_S'Q“Ed
- () String
Enter file
name for file \ File Name
gL:f;;LlJJtl.t ’]c:\ie%\tdata\rund.io Fil i Click to
T Y I)
extension is Mo] [owty | [Gomeel | open file
10" = B e chooser.
Figure 4-11 File//Output//Open Dialog Box
4.6.8 File//Output//Close
Path »
Load »
Output//Close closes all or selected outputs from the default s ’

Open...
Pin...
Address...

device. A dialog box opens, offering all of the currently open Output
output numbers for the default device. Select the outputs to be
closed, using the appropriate combination of mouse clicks,

<CTRL>-Clicks, and Click-and-Drag. Then close all selected outputs by clicking [OK].

See File//1Input//Close for close dialog box usage illustration.

10 Streams
10 Bedirect

46.9 File//1O Streams//...

Path

Load
Save

File//10 Streams enables or disables stream 1/0 for C programs
running on the current device. The standard stream files are
supported—STDIN, STDOUT, and STDERR. Any references by

C programs to these files may be redirected to files on the host. '
See File//10 Redirect. Stream file handling may be configured independently for each
device. By default streams handling is enabled. If a C program attempts to access a
stream file while it is not enabled and redirected, the access is ignored. Output is
discarded, and a standard value is supplied as input.

Input
OQutput

vy v | v wv|w

Enabhle
Disable

4-20 DSPADSUM/AD MOTOROLA

Graphical User Interface

File Menu

4.6.10 File//lIO Redirect//...

Path

Load
Save

File//10 Redirect//Stream redirects the selected stream on the |-

current device to a file on the host. Each stream file may be Output
assigned individually; unwanted streams do not have to be
redirected. Streams may be redirected whether stream support is [Log

enabled or disabled; however, for the redirection to be effective,

stream operations must be enabled. Disabling stream support while a stream is
redirected does not terminate the redirection. It merely makes it ineffective until streams
are enabled again. File//10 Redirect//Off ends redirection of one or more streams for
the current device. Only streams which have previously been redirected may be
selected.

vyl v wv | wvw|lw

Stream...

Select 5 RedecOSweam |
Stream to
— Stream ——; .
redirect. W - srom ... Click to
. open File
@ STDOUT
C STDERR Chooser.
— File Name
[T14 ﬁo.om File... ’f‘
Enter file name__
manually or... | (0] 4 | | Apply I | Cancel I

Select stream(s) to

close. Only Streams —;
redirected streams 8 :Ig'g‘m
ar'e offered. Then = g s
click [OK] to close. . |

oK | | Cancel I

Figure 4-12 File//10 Redirect//... Dialog Boxes

4.6.11 File//lLog//Commands

Path

Load
Save

File//Log//... menu items control the creation of files put
containing a record of a debugging session. Recording Output

vy v | v wv|lwvrw|w

may be started and terminated at any time during the o e

session. Selecting File//Log//Commands opens the
Open Log File dialog box. If an existing file is selected
for logging, an action confirmation box opens, with options to append to the existing file,
overwrite it, or cancel the operation. The command log file has two main purposes. Its
obvious purpose is to record a development session. In addition, the log file may also be

MOTOROLA DSPADSUM/AD 4-21

Graphical User Interface

File Menu

used in the GUI as a macro file (see File//Macro), when all the commands recorded in
the log file will be executed. This file is a standard ASCII text file, and may be modified
with any text editor as desired.

Note: Nearly all GUI operations, including menu operations and window
interaction, result in commands executed in the Command window, and will
thus be stored in the log file.

Enter file name manually if Select directories
desired. Command log files use from list by
extension .SIM’. Use wildcards to double-click to
specify which files build path.
are showndn file Open Log File
list. ! .
N\ Fond R Lo]
Double-click om—R[iend 1 B & F ..
required file or] msapps
Single-click and g yotem
[OK] to open log. -
Another dialog) i s
. Save File as Type:
box will open to [All Files -] B
confirm if eXiSting Select drive
file is to be from pull-down
replaced. list.
Select desired file type from
pulldown list to specify o])
which files are displayed in (T) Alfitewith that name currently Specify action to be
list. taken if file selected
[append | |overwrite] | cancel | or entered already
exists.

Figure 4-13 File//Log//Commands Dialog Box

4.6.12 File/lLog//Session

Path

Load
Save

File//Log//Session logs the Session window for the active

Input

device (see Modify//Device//Set Default) to a file. Qutput

Logging may be started and stopped at any time. A separate |J2rese

v vl wv|lwv wv|w

log file may be established for each device. The Session
window need not to be open for the session log to be
written. Selecting File//Log//Session opens the Open Log
File dialog box. If an existing file is selected for logging, an action confirmation box
opens, with options to append to the existing file, overwrite it, or cancel the operation.

Commands...
Session...
bout... Source Display Status

4-22 DSPADSUM/AD MOTOROLA

Graphical User Interface

File Menu

Everything output to the Session window while in Register mode (see
Display//View//Register) is written to the session log file. Changed values and error
messages displayed in red in the Session window are enclosed in braces ({}).

Using the List File window, the session log can be viewed without closing the log first,
bypassing the limit on the session buffer size. However, anything written to the Session
window after opening the List File window will not be accessible in that window.
Selecting Log//Source Display Status writes an additional line to the Session log. This
requires that the Source window must be tracking the source, or the Session window
must be set to View Source in the Display menu.

Enter file name manually if desired.
Session log files use extension
‘.Log’. Use wildcards to specify
which files are

Select directories
from the list by
double-clicking to

e alt build a path.
shown in file list. Open Log File
File Hame: Directories:
Double-click on logeess log 4 B & F BT Select drive from
required file or AP vdebugdilog 25 notes pull-down list.
Single-click and
[OK] to open log. - _
Another dialog -
. Save File as Type: Drives:
box WI” open to [All Files 7] ENE B
confirm action if
file already exists.
® A file with that name currently . .
Select desired file type from exists Specify action to be
pulldown list to specify [Append | [overwrite| [Cancel | taken if file selected or
which files are displayed in entered already
the list. exists.

Figure 4-14 File//Log//Commands Dialog Box

4.6.13 File//lLog//Close

Path

Load
Save

Use File//Log//Close to close all or any of the currently o
open log files for the current device. The Close Log File | output
dialog box offers a list of log files which may be closed; 10 Streams
click the check boxes as required and clock [Close] to n
close the log(s). The check box for any log which is not

currently active is shown shaded. Prefernces...

vy v | v wv|lwvrw|w

Commands...
Session...
Source Display Status

MOTOROLA DSPADSUM/AD 4-23

Graphical User Interface

File Menu
Check box is Note that only log
drawn shaded if =] Close LogFile files for the current
log is not active. device will be
Type————————— closed.
[Commands
* Session
[~ Source Display Status
Click check boxes ﬁ Log activity not
to select log activity \QK Cancel | checked will
to be closed. \ remain active.

Figure 4-15 File//Log//Close Dialog Box

4.6.14 File//Macro

Path

Load
Save

File//Macro reads and executes a file containing commands for the ot
GUI. These commands are documented in the User Commands chapter. | output

ry|lwvrw| v w|lwvwr|w

The Macro file is a standard ASCII text file, and may be created or o e
edited with any text editor. The default file extension is *.CMD’. Log
Command log files created with File//Log//Command may be Macro.____

[ahont |

submitted as Macro command files.

As the commands are read from the Macro file, they are displayed in the Command
window, executed, and echoed in the Session window, along with any output generated.
Commands which affect an individual device will execute on the current device, unless
the command specifies a particular device. Thus, a single command file may be executed
repeatedly, if required, for a number of devices by selecting a different device before
each execution. Macro file execution may be aborted by Execute//STOP or the Stop light
button on the tool bar.

4.6.15 File//About

Path

Load
Save

File//About displays an information panel which identifies the product

Input

ry|lvrw | wvw|wvw|w

name and version, that Motorola has copyright on the product, and Output
acknowledges copyright of software incorporated into the product. This | |3 Sreams
notice is displayed during start-up, and closes automatically if not Log
dismissed within three seconds. Macro...

Preferences...

4-24 DSPADSUM/AD MOTOROLA

Graphical User Interface

File Menu
= About ADS56000 [+]«
Motorola DSP Debugger
Version 6.0.18
Copyright [c] 1995 Motorola Inc., All Rights Reserved
Copyright [c] ¥isix Software Inc., All Rights Reserved
[Run Time Components Only]
[!E;] Click to
dismiss.
Figure 4-16 File//About Dialog Box

4.6.16 File//Preferences o |
Pat »
Load »
The Preferences dialog box provides the option to save the window i‘:ﬁ :
positions on exit. Thus when restarting the GUI, all windows will be Output ’
restored to their positions on exit. This may be used in two main ways. | [Streans ‘
Log >

= |f left checked permanently, each session will start with the i”“’;’"'
- ay . About...

windows positioned as they were left at the end of the last
session. [Exit |

= Alternatively, if you prefer the windows to start arranged the same way each
time, arrange the windows, check the save box, and exit. Restart and clear the
check box. Each time the debugger is started the windows will be arranged the
way they were saved.

Preferences |

* Save Window Positions On Exit

| oK | | gancell

Figure 4-17 File//Preferences Dialog Box

MOTOROLA DSPADSUM/AD 4-25

Graphical User Interface

File Menu

4.6.17 File//Exit

Path »
Load »
- - - - - 5
This option exits the debugger. The Exit dialog box pops up to make ;11‘;? :
sure you intended to exit. This dialog box is also activated by other exit | utput »
procedures. 10 Sircams R
Log >
Macro...
About...
Preferences...

® Are you sure you want to quit?

_Yes || o |

Figure 4-18 File//Exit Dialog Box

4-26 DSPADSUM/AD MOTOROLA

Graphical User Interface

Display Menu

4.7 DISPLAY MENU

The Display menu controls the Session window. Most of the options cause output to the
Session window, a few control the way it operates.

Note: Each device has its own session buffer. Make the intended device the current
device before performing any Display menu operations intended to relate to
that device.

Most of the facilities offered by the Display menu may be obtained in other ways with
the dedicated windows. However, the Session window does have one advantage—the
option to write all Session output to a log file. As all output from the Display menu is
sent to the Session window for the current device, if the description of any Display menu
item does not specify where the output goes, it is assumed to be the appropriate Session
window. Features include:

e Display selected registers & variables Display

. . . Display >
= View memory as instructions Disassemble >

. - . . List...
= List source file in Session window Evaluate...

N Call Stack...

= Calculate Assembler and C expressions Radix

. Device
= Display C call stack frames Path

. . . Input Fil

= Set default input and display radix Qutput Files

Bedirected 10 Streams

= Display device configuration and supported types 10 Streams Status

= Display working directory / alternate source paths 'é':faf:;?m

= Display simulated input assignments }—":;tg“ g

= Display simulated output assignments More >
Yiew »

= List stream IO redirection

= |O stream support enabled/disabled

e List log file assignments

= List breakpoints

= Control expression display at breakpoints
= Display the type of a C expression

e Suspend Session window output when full

= Select operating mode of Session window

MOTOROLA DSPADSUM/AD 4-27

Graphical User Interface

Display Menu

4.7.1

Selecting this window writes the enabled registers and
memory locations to the Session window. The initial setting
is all registers and no memory displayed. This is the same

Display//Display//Active

Display
Display
Disassemble
List...
Evaluate...
Call Stack...
Radix

Nevire

Active
Memory...
Register...
Stack
Yersion
Off

display as presented in the Session window whenever program execution stops. See
Display//Display//Memory, Registers, and Watch.

Note: Display//Display// ... is hardware oriented and intended to monitor the DSP
processor memory and registers. Display//Watch// ... provides a similar
facility which is also able to monitor program variables and expressions.

Command to Session
e!'\able memory = display on p:0..12
display dliglay SFFFFFFFFFFFF Y= SFFFFFFFFFFFF
a= SFFFFFFFFFFFFFF b= $00080000800000
. . 1= S$FEFFFF xB= SFFFFFF r7= $1FFF n7= $FFFF 7= $FFFF
Register dlsplay. yl= S$FFFFFF yB= SFFFFFF r6= SFFFF n6= S$FFFF mb= S$FFFF
Modify/Radix/Displ __| 357 355 51- ooooo po- Soooono ra- Serer mac Seeee me Seeee
ay sets output radix r3= $1FFF n3= S$FFFF m3= SFFFF
pc= $0042 sr= §$68314 onr= $82 r2= SFFFF n2= $FFFF m2= S$FFFF
la= $FFFF lc= $efff r1= $FFFF n1= $FFFF mi= $FFFF
ssh= $FFFF ssl= $FFFF sp= $80 rB= S$FFFF nB= S$FFFF mB= S$FFFF
N_lemory 1pr=3000060 ber= sFFFFcﬂizi_ sﬂgggggﬂcnt2= 8088688 cnt3= BA06080A cnti= BOOOA0
display p:guaan= gl]aFlJSl] gmmauu gl]hFlJSl] 800425
. y8084= Bbfaga aeay2s Bbfaga aeay2s
requested in ' B:suaas= $0bF o880 3006425 $0bF 080 800425
: p:ioaec= $ebfos0 $anas2s $ebfos0 aeay2s
NeXt instruction I B;ggglz‘]:ﬁﬁﬂ]ﬂl] Bsﬂgg;!{:sf nove x:igﬂ?:“gs; :n::F_l,pfs‘:"ij;aﬂs‘:1
to execute
Figure 4-19 Display//Display//Active Output
4.7.2 Display//Display//Memory Display

This menu selection controls the display of memory areas

Disassemble

List...
Evaluate...

Register...
Stack

either immediately or as part of the post-execution display. Post-execution display may
be unconditional or conditional on the way in which memory has been accessed during
execution.

4-28 DSPADSUM/AD MOTOROLA

Graphical User Interface

Select display mode:

On—Always display after
execution.

Off—Do not display.

Immediate—Display now.

Display Menu

Display Memory

Select memory

- Display Memory Space
) On /
O off 2]
O Read
O Write Start Address
O ReadfWrite $4116 ~_|
@® Immediate
End Address
54207
| oK I | Apply I | Cancel I

space from list.

/

Enter memory
range to
display.

Figure 4-20 Display//Display//Memory Dialog Box

4.7.3

The menu selection controls the display of registers either
immediately or as part of the post-execution display in

Session window.

Select display mode:

On—Always display after
execution.

Off—Do not display.

Immediate—Display now.

—

Display//Display//Registers

Display
Display
Disassemble

Active
Memory...

List... Register...
Evaluate... Stack
Call Stack... Yersion
Radix Off
Nevire
= Display Register —l S_eIeCt regiSterS
Dical Reaist with CLICK,
isplay — Registers
o 0 CLICK/DRAG,
O Off a b CTRL'CLICK
O Read a0
O Write al
O ReadfWrite a2
@ Immediate b]
b0 [+]
| oK | | Cancel I

Figure 4-21 Display//Display//Registers Dialog Box

4.7.4

This menu selection sends the stack contents to the Session
window. The entire stack is displayed with the current
Top-of-Stack marked and the active stack area highlighted

in red.

Display//Display//Stack

Display

Disassemble
List.

Evaluate... Stack
Call Stack... Yersion
Device

Dath

Active
Memory...
Register...

MOTOROLA

DSPADSUM/AD

4-29

Graphical User Interface

Display Menu

Dv00 Session

p:$03a5 605eD@
help stack
SP SSH

= move rB,x:{ro)+ ;

SSL STACK LEVEL

All 16 stack levels displayed.

600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level
600008088 level

15
14
13
12
1
18
a9
a8
a7
a6
a5
an

Top of Stack pointer.

Active stack

highlighted red. — %

Figure 4-22 Display//Display//Stack Output

a3
a2

4.7.5

Display

Display//Display//Version T

Disassemble

. . . List... Register...
This menu selection displays the command converter Evaluate. . Stack
.. . C. Yersion
revision number and the ADS version number and Radix
production date. Path
=| Session ==
p:ioaio= $@bFago $@a80425 $@bFago
p:i0a4s 300000 = move #50,r0
display v
Command Converter monitor revision 4.58
MOTOROLA DSPS56086808 ADS: VERSION 6.8.18 9-14-95

Figure 4-23 Display//Display//Version Output

4.7.6 Display//Display//Off

Display

This selection cancels all memory and register display at

the end of execution.

Active
Memory...

Disassemble

List... Register...
Evaluate... Stack
Call Stack... Yersion

Radix

Dv00 Session

Note: STEP executed, but giiplay of f G
no register or p:$ll;3a8 22d008 = move r6,r0
. step I
memory display. p:$03a9 204e00 = move (r6)+né 3]
Figure 4-24 Display//Display//Off Output
4-30 DSPADSUM/AD MOTOROLA

Graphical User Interface

Display Menu
4.7.7 Display//Disassemble//From PC, Display

Memory Block...

Disassemble
List...

Memory Block

Display//Disassemble//... reads the specified memory area, disassembles it and writes
it to the Session window.

= Disassemble//From PC reads memory starting with the PC address, fills Session
window and stops. Each subsequent use continues from last location decoded.

i Disassemble Memory —l

Memory Space

e]2

Start Address
$200

End Address

| oK | | gancell

Figure 4-25 Display//Disassemble//Memory Dialog Box

= Disassemble//Memory writes the entire area specified. This could easily be
larger than the Session window, or even the device buffer. Scroll to view if it is too
large for the Session window; use Display//More//0n to pause if it is too large
for the device buffer. If no end address is specified, the window is filled, but there
is no automatic continuation the next time Disassemble Memory is used.

Dv00 Session

disassemble p:$2@8
38280 6685088
8281 B855e3c

move rB,x:(r6)+ ; ®x:{(F__c_sig_handlers+126)
move ssh,x:{r6)+ ; =x:{F__c_sig_handlers+126)
move #58,n6

move r6,rf

move (ré)+nb

move (r@)-

move x:{rB)-,ssh ; x:{F__c_sig_handlers+126)
move r@,ré

tst a x:(r8),rd ; x:(F__c_sig_handlers+126)
rts

move rB,x:(r6)+ ; ®x:{(F_ c_sig_handlers+126)

8282 3eaoon
8283 22doe8
0284 204e88
8285 2@50088
8286 @5d83c
az2a7 221688
82068 60e003
8289 @0ae6c
828a 6A5e88

===l =l =l =B = = B =~}

Figure 4-26 Display//Disassemble//... Output

MOTOROLA DSPADSUM/AD 4-31

Graphical User Interface

Display Menu

4.7.8 Display//List

Display
Display >
Disassemble »
List...

Evaluate...
Call Stack...
Radix

This selection displays the source file for the executing program in
the Session window. As execution proceeds, source display tracks
PC. Step to Next/Previous Page with [Apply] (1 page = Session
window size). Revert to PC with Current Page. If Address is a number, it is interpreted
as line number in source file. To specify a memory address, include memory space, as
p:$001F.

= List File Contents —l

— List
C Current Page
C Next Page

C Previous Page
@ From Address

— Address

p:s0104

| oK | | Apply I | gancell

Figure 4-27 Display//List File Dialog Box

Dv00 Session

src:prolog.c@182 pc=prolog.c@185 pe:$3ac <Fm
182 main() /=2
183 {

184 int i;
=> 185 i=pra();
186 i+=pr1{1); I
187 i+=pr2{);
188 i+=pr3(2); [+

Figure 4-28 Display//List File Output

4-32 DSPADSUM/AD MOTOROLA

Graphical User Interface

Display Menu

4.7.9 Display//Evaluate Display

Display
Disassemble
List...

This selection evaluates DSP Assembler and C expressions and ST
writes the result to the Session window. C expressions display the

type of the expression and the value, in the specified format or the normal format for the
expression type if ‘All’ is selected. DSP Assembler expressions may be displayed in any
type. Selecting ‘All’ gives a selection of interpretations depending on the expression
itself.

C expressions are evaluated in the context of the current stack frame by default—that is,
the value displayed is that which would have been returned if the expression had been
included in the program at the current execution point. C expressions can be evaluated
in the context of any of the functions on the call path to the current function. See
Modify//Up, Modify//Down, and the Call Stack window to select an alternative
evaluation context.

= Evaluate Expression —l
il Select

Expression O Binary / radix for

|a+h @ Decimal = dlsplay
/ C Fractional
Enter expression to O Floating Point

evaluate. Enclose O Hexedecimal
C Unsigned

C expression in {}. O Al

| oK | | Apply I | gancell

Figure 4-29 Display//Evaluate Dialog Box

Expression is echoed, evaluated, and
the result displayed.

_) = Dv00 Session ==
C expressions are in brackets {}.
evaluate {{gi+i-j)/k}
int: 8 L.
C expressions display type of Sualuate <(giri+D/k}
expression, but can print in any format. evaluate a+b
Hex :00000009000000 Dec:000000150994944 Frac
evaluate d a+b
DSP Assembler expressions print in Dec:0000061508994944

selected format, or ‘All’ gives a selection
depending on the expression.

Figure 4-30 Display//Evaluate Output

MOTOROLA DSPADSUM/AD 4-33

Graphical User Interface

Display Menu

4.7.10 Display//Call Stack iy
Display
Disassemble
List...

This selection displays summary information about call stack Evaluate.

Call Stack...

frames. The dialog box initially offers to display the entire call
stack; a selection can be made to display only the specified number
of innermost or outermost frames.

Display Call Stack Il)
Innermost—Start at D!alog opens
current procedure and Frames —— with no. of call
work back toward main(). T (@) e frames on
|[C Outermost stack. Reduce

Outermost—Start at if desired.

) | OK | | Cancel I . .
main() and work toward Increasing gives

current procedure. error message.

Figure 4-31 Display//Call Stack Dialog Box

Frames are listed in D -
w00 Session

order selected—from \ p:$86c5 45000 80861e - move x:>$1e,x1 ; x:Fgi

H where +3

inner or outer end S H0 pioxcs in prS (k-h)

4]
(here, inner). # p:ox122 in pr7 (k=4)]
#2 p:8x3d2 in main () g [+]

7o

Address of next instruction ... In procedure..... .. which was called
to execute..... with these
parameters.

Figure 4-32 Display//Call Stack Output

4.7.11 Display//Radix Disnlay
Biggssyemhle
List...

This selection displays the default radix, used for all numbers Evaluate...

input without an explicit radix specifier. This applies whether the ™

number being input is a register or memory contents value, or a T

memory address. It is not affected by any Display Radix. The initial default radix is
Hexadecimal.

Dv00 Session

[+
p:$l]122 285608 = move (ro)-
radix I
The current default radix is [+]

Figure 4-33 Display//Radix Output

4-34 DSPADSUM/AD MOTOROLA

Graphical User Interface

Display Menu

4.7.12 Display//Device Display
Display
Disassemble

List...

This selection displays the status of each possible DSP device and Evaluate...

. Call Stack...
lists the device types supported. The configuration of each device Radix
is set with Modify//Device//Configure. e

Session
DEVICE STATUS TYPE DEVICE STATUS TYPE
dv88 on 56802 duBs unused Status of each
@02 unused duoe unused possible device
duB3 unused duB7 unused is listed.
Supported DSP ;;I"]ggsihle device types—-—
family 560B4ron
members are — ||ss605
listed. et
Figure 4-34 Display//Device Output
4.7.13 Display//Path
Display
Disassemble
List...
This selection displays the search paths in the Session window. Evaluate...
. . . Call Stack...
Paths are established with File//Path//Set and Radix

File//Path//Add. There are two types of path. blandlia

Input Files

= The Working Directory is the main directory, created with File//Path//Set. It is
used as the initial directory for all file chooser boxes. Also, whenever a file is
created, and the file name is specified without a directory, the file is created in the
working directory.

= The Alternate Source Paths are only used when opening a file for read access,
when a file name is specified without a directory. The working directory is
searched first, then each of the alternate source directories in turn.

E D00 Session

path [+
Device Working Directory:

Alternate Source Paths:

C:\DSPCODE L]
C:\PROJECTX [+]

Figure 4-35 Display//Path Output

MOTOROLA DSPADSUM/AD 4-35

Graphical User Interface

Display Menu
4.7.14

Display//Input Files and Display//Output
Files

This selection displays the file assignments for simulated input
and output for the current device. See File//Input//... and
File//Output//... for assignment procedures.

Display >
Disassemble »
List...

Evaluate...

Call Stack...

Radix

Device

Path

Input Files

Qutput Files

Session

input #5 off
winput

input

#1. Input file:
#2. Input file:
#3. Input file:
#4. Input file:

C:ATGUIS\term@B05 io at address p:$4117
C:ATGUIBATRAGS .I0 at address p:$1046
C:ATGUIBNTAHR7 .10 at address p:$2446
C:\DSPCODENOBJECTA\TERH@BOA_I0 at address p:$3es8

Figure 4-36 Display//Input Files Output

4.7.15 Display//Redirected 10 Streams, 10 Streams

Status

IO stream redirection supports stream 10 for C programs running
on a DSP. STDIN, STDOUT, and STDERR are supported. Support
may be enabled or disabled (see File//10 Streams//...), and each of
the stream files may be individually assigned to a file on the
development host (see File//10 Redirect//...). Display//10

Display >
Disassemble »
List...

Evaluate...

Call Stack...

Radix

Device

Path

Input Files

Output Files

Redirected 10 Streams

10 Streams Status
Log Files

Streams Status indicates whether stream support is enabled or disabled,
Display//Redirected 10 Streams lists the stream files and the assignments to files on the

host.
Use of
File//10 Redirect to
redirect STDOUT -
Dw00 Session
redirect stdout dépiri.so
/ streams
Stream Status Streans onapled
stdin off
/ stdout to C:ATGUI3NdBpiri.so I
lstderr off [+]
Redirected 10 Streams
Figure 4-37 Display//10 Streams Output
4-36 DSPADSUM/AD MOTOROLA

Graphical User Interface

4.7.16 Display//Log Files

All activity in the Command and Session windows may be written to
log files. There is only one Command log, but may be a Session log
for each device. If command activity for different devices is to be
logged separately, the old command log must be closed before the
command log for the new device can be opened. Display//Log Files
displays a summary of the logging status.

Display Menu

| Display [
Display)
Disassemble]
List...

Evaluate...

Call Stack...

Radix

Device

Path

Input Files

Output Files

Redirected 10 Streams

10 Streams Status

Dv00 Session

Logg@ng comma_mds to: [+
From “File//Log//...” to / iﬂg'—‘t“'-‘ session to:
open the lOg files iggging commands to: |
Logging session to: [+]
From “Display//Log” to /
show open log files. Note: Any log file not listed is closed.
Figure 4-38 Display//Log Files Output
: :
4.7.17 Display//Breakpoints mm
Disassemble »
List...
This selection displays all breakpoints set for the current device, Evaluate...
listing the breakpoint number, its location, and the action to be Radix
performed. The breakpoint location is listed exactly as entered o
when the breakpoint was set. Ot Fies

Breakpoints are
set by clicking

source and Session
Assembler \ .
. Break #1 al p:33c8® 1 h
windows (SW) Break #2 al p:$3ae 1 h
Break #3 cs p:$3bé 1 n
Break #4 mi p:$3de &4 n
Note at address$3b6 Break #5 ru xa x:$108F0..$18FF 1 i1 disabled L]
if carry set (SW) Break #6 rw xa x:$10F@_ _510FF t(x@>6) 1 i2 [+

Break on RW access to addresses specified.
Do action only if x0 is greater than 6 (HW).

Figure 4-39 Display//Breakpoints Output

Redirected 10 Streams

10 Streams Status

Log Files

Breakpoints

Watch >

MOTOROLA DSPADSUM/AD

4-37

Graphical User Interface

Display Menu

4.7.18 Display//Watch//Show | Disploy N
g;xlsasyemhle :
List...

Display//Watch displays the value of expressions whenever %:ﬁ';f;;(-_-__

execution is interrupted. The expression to display is Radix

specified with Display//Watch//Add, and may be reviewed | pon™

with Display//Watch//Show. The expression may be lg"g;;‘uf‘;';is

specified using register names and Assembler labels. If the Redirected 10 Streams

expression is enclosed in brackets {}, it is interpreted as a C Loghies

expression, using C variable names. Use Modify//Up and UL

//Down to navigate the call stack and select the evaluation
context for the expressions. Display//Watch//Show
displays the watch list.

Value of expression
is output. Note when

List ‘I goes out of scope
expressions Dv00 Session m?a ked b anoth%r
with reference p:30863 S6F408 DABOE1 = move #>51,a L+ (i y K
watch ‘), the expression
numbers. Mt {gi} 3) P
42 (i) Expression out of scope ||| Cannot be evaluated.
#3 h {gi+i} Expression out of scope [4]

Figure 4-40 Display//Watch//Show Output

4.7.19 Display//Watch//Add

Display//Watch//Add adds expressions to the watch list. Symbolic references are
interpreted as Assembler mnemonics and register names, unless the expression is in
brackets {}. The value of the expression is displayed by Display//Watch//Show, or
when execution terminates. When a C variable goes out of scope, the expression can no
longer be evaluated. Use Modify//Up and //Down to select an evaluation context

B AddWatchExpression |
Expression Radix Sel_eCt
@® Decimal /l‘a..dlx for
{iflgi +1)* 100 } O Fractional 4| display.

O Floating Point
) Hexedecimal
Enter O Unsigned

expression for O Default
watch list.

| oK | | Apply I | gancell

Figure 4-41 Display//Watch//Add Dialog Box

4-38 DSPADSUM/AD MOTOROLA

Graphical User Interface

Display Menu

4.7.20 Display//Watch//Off

This selection removes a Display//Watch expression from the list. As the dialog box
only lists the reference numbers, it may be helpful to use Display//Watch//Show first.

Select wach Femoc Watched xpression|
oxpressions 1o \ Watch Number
remove. Use Click,

Ctrl-Click and
Click/Drag.

Figure 4-42 Display//Watch//0Off Dialog Box

4.7.21 Display/[Type Display

Display
Disassemble

This selection displays the type of a C variable or expression. Use

Modify//Up or //Down to select the evaluation context. E:‘g;g;ﬂs Status

Breakpoints
Watch

Expression

[{gi*i)

| oK | | Apply I | gancell

Figure 4-43 Display//Type Dialog Box

Dv00 Session

Break #4% {gi >27 } n
type {gi = i} L
int K

Figure 4-44 Display//Type Output

MOTOROLA DSPADSUM/AD

4-39

Graphical User Interface

Display Menu

4.7.22 Display//More o
Biggssyemhle »
List...

Display//More freezes the Session window when it is full until Evaluate...

the user responds. It is useful when the output from an operation padgix

H Device
may be longer than the Session buffer. Poth
Input Files
Output Files
Redirected 10 Streams
= ADS56000 10 Streams Status
Log Files
0 More: Press OK to continue Breakpoints
Watch »

| OK I | Qancell Type..

Yiew »

Figure 4-45 Display//More Dialog Box

4.7.23 Display//View//Register %—’
Disassemble »

The Display//View commands control the type of .

information displayed in the Session window. Register -

mode is used to view the output buffer for the current | 3"’8" ’

device. This displays the breakpoint memory and register s Register

information, commands, error messages, output from the Assemhly
Display menu, etc. This can be considered the normal mode for this window.

. i = Dw00 Session 1«1
Register View shows |
la= 56600 lc= $6088 1= $68088 n1= $6088 mi= S$FFFF
comme}nds entered ssh= ssl= sp= rB= nB= $0008 mo= SFFFF
for device and output. ||ipr= $8888 bcr= SFFFF
cyc= ictr= cnt1= 686868688 cnt2= 80686868 cnt3= 0OOAAA cnti= 000060

p:i03ac BbFOED BOABS@ = jsr >3558 ; p:Fpro
path C:\DSPCODE\OBJECT
path + C:\DSPCODE\SOURCE
load prolog
At break, all enabled Loading file:C:\DSPCODE\OBJECT\prolog.cld

registers are output. wasmn

break p:$88cd
No memory enabled go
Break #1 p:580cd h ;dev:® pc:@8cd cyc:1891

_»
here. Changed x= y= $000006000000
1 a= b=
values are in red. ®1= %B= r7= $8808 n7= $0888 n7= S$FFFF
yi= $080BOA yB= $A0OBAE 6= né= né= S$FFFF
az= al= ap= r5= $8808 nS= $08BB nS5= S$FFFF
b2= b= ba= ri= $8800 b= $0BBB mh= SFFFF
r3= $8800 n3= $0808 m3= SFFFF
pc= sKr= onr= $82 r2= %0888 n2= 50888 n2= SFFFF
; TR la= $088A 1c= $086@ r1= $8808 ni1= $0888 mi= S$FFFF
Break instruction is cohe o1 sp- i e no- SEFEE
displayed. ipr= $8888 bcr= $FFFF

\ cyc= ictr= cnti= 680808 cnt2= BEABAE cnt3= BOBOAS cntiy= BOABOA

p:i0Acd 44FLO0 BOABOZ = move H332,x0

Figure 4-46 Session Window—Register View

4-40 DSPADSUM/AD MOTOROLA

Graphical User Interface

Modify Menu

4.7.24 Display//View//Assembly, Source _

%;22:22rnhle :

List...
Use the Session window to view the ‘p’ memory space as %:ﬁ';f;;(-_-"
assembly instructions, or to view the program source. The | Radix
display scrolls to view the entire memory area or source poace
code. This display does not use the 100-line device output lg"g;;‘uf‘;';is
buffer, and is not limited to a scrolling region of 100 lines. | Redirected 0 Streams
At each break in execution, the window refreshes in the Loghies
area of the PC, marking the current instruction with the ycaKpoints \
arrow symbol, ‘=>’. The display is very similar to the Type..
Address and Source windows. However, the Session " Regisier
window cannot be used to view, set or clear breakpoints. Assembly

Source

Dv00 Session

asm:pi:$9b pc=prolog.c@29 pi:$%e <{Fpri+4> section:prolog_c
aa9b Fpra+8081 move ssh,x:{r6)+ ; ®x:{F__c_sig_handlers+136)
ae9c Fpri+8062 move #51,n6
aaed Fpr4+808083 move ré,r@

=>88%e Fpr4+ 808684 move (ré)+né
aa9fF Fpra+8085 move b@,x:{r6)+ ; ®x:(F__c_sig_handlers+136)
aBang Fpra+8086 move b1,x:{r6)+ ; ®x:(F__c_sig_handlers+136)
afa1 Fpra+8087 move x@,x:{r6)+ ; ®%:(F_ c_sig_handlers+136)

Figure 4-47 Session Window, Assembly View

4.8 MODIFY MENU Modily

The Modify menu examines and alters many aspects of the Change Memory...
development system: Copy Memory...
Radix }
= Change Register: change one or more registers to the same Device b
new value. Up...
= Change a single memory location or a block of memory to Down...

the same new value.

= Copy asingle location or a block of memory to another location or block. The
destination memory block may but need not be in the same memory space as the
source.

= Specify the Default Radix and the Display Radix. The default radix is used for all
input numbers which do not include an explicit radix specifier. The initial default
radix is hexadecimal. The display radix specifies how each memory location and
register is to be displayed. The initial display radix is hexadecimal.

= Select the current device and set the device type (e.g., set DV05 to be type 56002).

= Select a stack frame from the C call stack as the context for C expression
evaluation.

MOTOROLA DSPADSUM/AD 4-41

Graphical User Interface
Modify Menu

4.8.1 Modify//Change Register

Change Register...
Change Memory...
Copy Memory...

Radix »

Modify//Change Register changes the value of one or more registers
on the current device. A dialog box is opened which offers all the registers on the current
device in a scrolling list. Registers may be selected by a single click to select one register,
or click-and-drag to select a continuous range of registers. The list scrolls automatically
when the dragging reaches either end of the scroll list. Use the control key to add to an
existing selection; Ctrl-Click adds one register, Ctrl-Click-Drag adds a range of resisters.
Enter a new value in the value field, and click [OK] to change all selected registers.

Select one or
_ more
registers.
Enter new value to

apply to all selected
registers.

— Registers

Click to update all

Sfeff |__— selected registers.

| oK I ganceli

Figure 4-48 Modify//Change Register Dialog Box

4.8.2 Modify//Change Memory

Modify
Change Memory...
Copy Memory...
Radix »
Device »
Up...

Down...

Modify//Change Memory changes a range of memory locations in
one address space on the current device to a new value. All locations
are changed to the same value.

Note: Addresses are frequently specified in hexadecimal. Use the ‘$’ radix specifier
for hexadecimal, or set the default radix to hexadecimal
(Modify//Radix//Set Default).

4-42 DSPADSUM/AD MOTOROLA

Graphical User Interface

Select memory
space from
pull-down list.

Enter start and
end of address
range.

4.8.3

Modify//Copy Memory copies one block of memory to another. The
source and destination memory maps may, but need not, be the same.
Enter the memory block by selecting the source memory space, and

Memory Space
B

Start Address

—. 51200

End Address
51364

Change Memory

Value

0.01| P

oK

| | Apply I | Cancel I

Modify Menu

Enter new value
for entire
address range
specified.

Figure 4-49 Modify//Change Memory Dialog Box

Modify//Copy Memory

Modity

Change Register...
Change Memory...

Copy Memory...

Radix »
Device »
Up...

Down...

entering the start and end addresses. Enter the destination of the copy with the memory
space and start address. The copy will wrap around to the start of memory if it reaches

the end.

Select source
memory space
from pull-down
list.

Enter source

start and end _

addresses.

PR

> 4

~

-~
—_ —

= Copy Memory —l
— From —To
Memory Space Memory Space
2] 2]
\
Start Address Start Address \
54000 5722 -
End Address
54166
| oK | | Apply I | Cancel I

Select
destination
address space
and enter starting
address.

Figure 4-50 Modify//Copy Memory Dialog Box

MOTOROLA

DSPADSUM/AD

4-43

Graphical User Interface

Modify Menu

4.8.4

Modify//Radix//Set Default specifies the radix used on all
input fields unless the input value includes a radix operator.
The radix operators are listed in the table below. The initial

default radix is Hexadecimal.

Note:

4.8.5

Modify//Radix//Set Display specifies the radix used when
registers or memory locations are displayed. Each register
or memory location may have its own display radix. Thus a

Figure 4-51 Modify//Radix//Set Default Dialog Box

Click on radix
to be used for
all input

values—numeri\L

¢ and address.

Modify//Radix//Set Default

B SetDefault Radix |

Radix
) Decimal

@ Hexadecimal
C Unsigned

C Binary

Change Register...

Change Memory...
Copy Memory...

Device
Up...
Down...

Set Default...

Set Display...

The Radix Operator is used as a prefix to the input value.

o

| | Cancel I

Modify//Radix//Set Display

Device
Up...
Down...

Change Register...
Change Memory...
Copy Memory...

Set Default...
Set Display...

location which contains a counter may be set to display in decimal, a bitmask may
display in binary, etc.

. Select
Click on = Set Radix Il
the radix to fad - y memorfy
be applied adx r s r y space from
to allloIO @ Decimal M ”iﬁ/ pull-down list.
' Hexadecimal EIE
selected C Fractional - Enter start
locations. = ZI:::;:?::DIM Start Address " address to
C Binary set radix
End Address for one
word.
Select one
or more A Enter end
registers Lo]| ;A""'¢ | [_cancel | address to
from _ , _ _ apply radix
scrolling list Note that the radix may be applied to a selection of to address
if required. registers or a block of memory or both at once. range.
Figure 4-52 Modify//Radix//Set Display Dialog Box
4-44 DSPADSUM/AD MOTOROLA

Graphical User Interface
Modify Menu

4.8.6 Modify//Device//Set Default

Change Register...

Change Memory...
Copy Memory...

Modify//Device/ /Set Default selects a DSP device as the Radix
current target device. All device-oriented operations will be Fue.
applied to this device until another device is selected.

Set Default...
Confiaure...

Set Default Device—l

Select a device
from the
pull-down list and
click [OK].

Device

J|

Figure 4-53 Modify//Device//Set Default Dialog Box

4.8.7 Modify//Device//Configure

Change Register...
Change Memory...
Copy Memory...

Radix »
Device

Modify//Device//Configure allows information to be
specified about the DSP devices in use. If a device is not
specified, the current default device is assumed:

Set Default...
Configure...
Unlock...

= Type—This selection specifies which particular member of the DSP family is in
use. Type automatically adds a device to the system, initially Device 0.

e On—Device is turned on, able to execute instructions.

e Off—Deuvice is temporarily unable to execute instructions. Memory and register
contents is retained.

< Remove—Device is no longer considered to be part of the system. All data is lost.

— Configure Device _l Select type of
configuration to
pricvice - Cile - /be performed.
Select device g I;I:Pe
to configure. o i
Default is T & Remave
current default
device. — Device Type Select DSP
(2] type from list
56000 when Type

selected above.

[56004rom [+

Figure 4-54 Modify//Device//Configure Dialog Box

MOTOROLA DSPADSUM/AD 4-45

Graphical User Interface

Modify Menu

4.8.8 Modify//Device//Unlock

Change Register...
Change Memory...
Copy Memory...

Radix »
Device

The development system may contain hidden device types.
A password is required to activate such devices. A
password is not required for devices which are not hidden.

Set Default...
Configure...
Unlock...

= Unlock Device Type .
= Enter password, click
- [OK]. If valid, the device
evice Type X
type appears in
56001 selection lists.
. Password
Enter device / /
type to unlock. DLAT-2Px
| oK I | Apply I | Cancel I

Figure 4-55 Modify//Device//Unlock Dialog Box

4.8.9 Modify//Up, Modify//Down

Change Register...
Change Memory...

Modify Up and Down are used to select the context to be used for £opy Memory...
evaluating C expressions with Display//Evaluate, Display//Watch, | Device

and the Watch window. The potential problem arises because of the
rules of scope for C. Since each function can have its own variable,
‘i14°, it may be necessary to specify which function’s ‘i14’ is to be referenced. As each
function is called, a stack frame is created, containing the variables belonging to that
function. The stack frame for the current function is stack frame 0, the calling function
has frame 1, and so on back to the main program, at frame 7. Display//Evaluate returns
the value which would be returned at the current execution point. If the expression
refers to a variable in a calling function, which is masked by an identical variable in the
current function, the required variable is inaccessible. To evaluate the expression, we
need to be able to select the required stack frame as the evaluation context. Modify//Up
shifts the evaluation context towards the main program by increasing the frame number.
Modify//Down shifts towards the current function by decreasing it. Modify//Up and
//Down work similarly with the Watch window and Display//Watch. If an expression
can not be evaluated because it is ‘out of scope’, select the original context to evaluate the
expression again.

Up increases the call

frame number
Down decreases the call f’a’"“ towards the main

frame number towards program.

the current function
(frame 0). [ok | [appty | [cancer |

Figure 4-56 Modify//Up Dialog Box

4-46 DSPADSUM/AD MOTOROLA

Graphical User Interface

Execute Menu

49 EXECUTE MENU

The Execute menu controls the execution of programs on the target Execute

. . Step...
= Go lets the program run until a breakpoint or other event fmsem
interrupts execution. Options are available to specify the Next...
execution start address and the way that breakpoints (if set) Finish
are to be handled. Until...
= Step executes a specified number of instructions, cycles, or Breakpoints »
lines of code. If a subroutine call is executed, Step follows the Wait
execution through the subroutine. aup'"
= Trace executes a specified number of instructions, generating Beset 4

a trace of each instruction executed. After each instruction
execution the enabled registers and memory locations are output to the Session
window.

= Next executes a specified number of instructions or lines of code, skipping over
all subroutine calls.

= Finish executes to the end of the current subroutine, terminating after the RTS
instruction is executed.

= Until specifies a temporary breakpoint and executes until that (or optionally, any
other) breakpoint is met.

= Breakpoints allows the setting and clearing of breakpoints. A breakpoint is an
event (e.g., executing a particular instruction, expression value non-zero) and an
action (e.g., increment counter, stop execution).

= Wait pauses, either indefinitely, until a timer has expired, or the user cancels the
wait. This is useful in Macro files to freeze the screen for examination.

= Stop stops execution and returns control to the user.

= Reset is used to reset the device registers, to change the mode of a device, or to
reset the entire ADS state.

MOTOROLA DSPADSUM/AD 4-47

Graphical User Interface

Execute Menu

49.1 Execute//Go Ezcecute
Step...
Trace...

Execute//Go opens the Go dialog box to control program execution. Nes..

There are options controlling the starting address and the way Until..
breakpoints (if any have been set) are to be handled. These options are

summarized in the illustration below. The program is allowed to run free g;;;

from the specified starting point until it is stopped by one of several Beset >
events. These include user action (Execute//Stop, Stop light button), the

program hits a breakpoint specified to stop program execution, or until the program

executes an instruction which ends execution, such as STOP or an illegal instruction).

Breakpoints »

Select from:

1) Proceed from next address OR specified

address.

2) Reset device before proceeding.

Select which
device(s) execute.

If the address is
selected above,
may enter start
address here. If

blank, proceed from

next address.

- ,7

Go From —
’7@) Address

) Reset

Address

oK | | Cancel I

[T Go to Breakpoint

—To

[

Count

Break N‘ﬁl{

IF breakpoints have
been established,
may select a target
breakpoint. If
selected, all other
STOP breakpoints
will be ignored.

Select target
breakpoint from
pull-down list.

Specify how many
times to encounter
breakpoint before

o

4.9.2 Execute//Step, Next, Trace

Execute//Step executes a specified number of instructions or lines of

Figure 4-57 Execute//Go Dialog Box

code. If a function is called, it is treated like the rest of the code.
Execute//Next treats a function call as a single steps. Execute//Trace outputs all
enabled registers and memory locations after each instruction execution. At end of
execution, the Session window displays the values of all registers, memory locations,
and expressions which have been enabled (Display//Display//Register,
Display//Display//Memory, Display//Watch).

stopping (i.e. stop
on 4th time
breakpoint is
encountered).

Execute
Step...
Trace...

Next...
Finich

4-48

DSPADSUM/AD

MOTOROLA

Graphical User Interface

Execute Menu

Select T—l Number of
elec steps to
device(s) to Device . Count /execute
execute DvD = :
D
D2 Increment ——
Dw3 (@ Lines
’70 Instructions —Select type of
steps to
| 0K | | Cancel I execute.
Figure 4-58 Execute//STEP Dialog Box
4.9.3 Execute//Until | Excouc I

Go...
Step...
Trace...

Execute//Until executes the program to a specified location. The location Nes..
may be specified as a program line number, an address, or a label. This v
sets a temporary breakpoint which is cleared when execution terminates. | Breakpoints »

Wait

Line numbers and labels may only be used if debug information has been loaded from a
COFF file (see File//Load//Memory COFF).

Select — o | Enter target location:
device(s) to Device LinefAddressfLabel] 20$1?34 Izsoan addrests
execute. - 20—line 20 in curren

p11446 - source module.

- file@20—line 20 in
module ‘file’.

- mode5—Ilabel ‘modeb’
in current module.

| oK | | gancell

Figure 4-59 Execute//Until Dialog Box

494 Execute//Finish Exceie

Program executes until the end of the current subroutine. The RTS
instruction is executed before execution stops. Breakpoints are handled as
normal. If a function is called during a Finish operation, it executes as Breakooints
normal, but the exit from that function does not end execution.

Finish

MOTOROLA DSPADSUM/AD 4-49

Graphical User Interface

Execute Menu

Execute
Go...
Step...
Trace...

Set software breakpoint and specify action to be taken when Next...
. Einish
breakpoint is met. Available options will vary with DSP type, Until..
type of breakpoint and action selected. Breakpoints are enabled
when set, and may be disabled. Breakpoints are listed in the
Breakpoint window, and are indicated in the Assembly window with blue highlighting
on the address when enabled. More than one breakpoint may be set on the same
location, so that more than one action may be taken. When the dialog box opens, the first
available breakpoint number is offered. Breakpoint numbers do not have to be
consecutive, and may be allocated for convenience. For details on software breakpoint

types, see BREAK command, Section 3.4.2.

4.9.5 Execute//Breakpoints//Set Software

Breakpoints Set Software...

Set Hardware..

Set breakpoint Specify break type. Break Specify action to be
number. instruction placed in code taken when

Initially set to checks that condition is met. breakpoint is met.
first free Options are:
number. - Halt execution.

. . Set Breakpoint - Note: DI.SpIay
Specify which breakpoint expres-
time break is to WreakpuintNumher — Action sion.
be E (ol |8 8 :::: - Show: Display
acknowledged. ¢ Show enabled registers &

Count Address ®C m memory.

: Increment C - : -
If InpUt files IVW g Increment CNT2 :gzrggjenr:ér spec
Open_’ may O Increment CNT3 N
SpeCIfy break at ?.F =l Expression | Increment CNT4 g Comman_d_' Exe-
end of file. : cute specified com-

_ p\nputFile Numbersy (w0 >32¢ | Wu ™ mand on break.
Expression =
evaluated when \ |
break detected. If Specify address for
false, continue d breakpoint.
program, if true,] p:xxx = address
continue break [ok | [ety | [cancer] Xxx = source line no.
processing.

Figure 4-60 Execute//Breakpoint//Set Software Dialog Box

4.9.6 Software Break Processing

Before the target is placed in User mode for program execution, the instruction at the
breakpoint address is replaced with a DEBUG opcode. If a conditional breakpoint is
specified, a conditional instruction is used, such as DEBUGLE. When the DEBUGcc

4-50 DSPADSUM/AD MOTOROLA

Graphical User Interface

Execute Menu

instruction is executed, the target enters Debug mode. The ADS program, which has
been polling the command converter, detects the return of the target to Debug mode.
The expression is evaluated; if false the target DSP is restarted, if true count is checked,
and if the breakpoint has been encountered the correct number of times (ignoring
occasions when the expression was false), the specified action is taken. The count is then

re-initialized.

4.9.7

Execute//Breakpoints//Set Hardware

Set hardware breakpoint and specify action to be taken when
breakpoint is met. Available options will vary with DSP type,

type of breakpoint and action selected. Breakpoints are

enabled when set, and may be disabled. Breakpoints are listed
in the Breakpoint window, and are indicated in the Assembly
window with blue highlighting on the address when enabled.
For details on hardware breakpoint types, see BREAK command, Section 3.4.2.

| Excoutc I

Go...
Step...
Trace...
Next...
Finish

Until...
Breakpoints

Wait...
Stop
BReset

Set Software...
Set Hardware...
Clear...

Enable...
Disable...

Specify Set breakpoint Specify break type. Specify actionto be - Show: Display
which time number. ONnCE registers are taken when enabled registers &
break is to be Initially setto set to detect breakpoint is met. memory.
acknowledge first free specified access. Options are: - Increment: speci-
d. number. - Halt execution. fied counter.
- Note: Display - Command: Exe-
breakpoint. cute specified com-
mand on break.
Set Breakpoint
BreakPoint Number — Type = Y — Action
Expression ® Halt)
evaluated EE (2] Memory Space O Note Specify
when break = aE @ S _ address
Count C Comman — range for
detected. If ‘ gteess Start Address crement] 9 .
false, 1 E O Read 00 - A | O Ingertient CNT2 breakpoint.
continue o . Increment CNT3
program, if 8 E::::::nte End Address — C Increment CNT4
true, $100H & ;
continue] — Expression
break _>|
processing.
| oK | | Apply I | Cancel I
Figure 4-61 Execute//Breakpoint//Set Hardware Dialog Box
MOTOROLA DSPADSUM/AD 4-51

Graphical User Interface

Execute Menu

4.9.8 DSP56300 and DSP56600 Breakpoint Logic

The DSP56300 and DSP56600 families feature breakpoint logic with twin comparators.
These comparators each provide a True/False indication which may be combined in
four ways to fully specify a breakpoint condition. These combinations are:

< AND—Dboth conditions true causes breakpoint

= OR—either condition true causes breakpoint

= THEN—first condition true, and then second condition true causes breakpoint

< ONLY—first condition true causes breakpoint; second condition is not considered

One access type = Set Breakpoint —l
and memory Type First Condition Action
space applies to g Type Access Address Qualifier ® Halt
both conditions - C Read @® Equal C Note
E C Write ' Not Equal C Show
Memory Space (' ReadfWrite (! Greater Than C Command
. (8 Execute ' Less Than L aeremente
Specify how to b][] O Increment CNT2
compipe the two \\ Address E :"'3"3'“8": E:ﬁ
conditions 5100 ncremen

® Or

L Second Condition
C Only
Access Address Qualifier
Complete one or O Read O Equal
L kpoint Number .
both conditions as -Breakpoint Number | | - yyyige O Not Equal Expression
5 [l ® Readfrite @ Greater Than
appropriate B 05
) Execute C'Less Than

Count
Address

[0]

B SO0
Remainder of dialog |

is as above.

0K | | Cancel |

Figure 4-62 Execute//Breakpoint//Set Hardware Dialog Box (DSP56300, DSP56600)

4-52 DSPADSUM/AD MOTOROLA

Graphical User Interface

Execute Menu

4.9.9 Hardware Break Processing

During program execution, the OnCE logic constantly monitors address lines for
specified values (e.g., program fetch from address P:$...). When the condition is true, the
counter is decremented; when it reaches zero, the DSP enters Debug mode. The entry to
Debug mode is detected by the Command Converter, which sends a service request to
the development host. The ADS software then evaluates the expression (if specified),
fetching register and memory values from the target DSP as necessary. If the expression
is false, the DSP is returned to User mode and the program resumes execution. The user
is not notified of this activity.

If the expression evaluates to true, or no expression was specified, the breakpoint has
occurred. The specified action is then taken, such as returning control to the user (Halt
action), or incrementing the specified counter (Increment Cntl). If the action is Halt, the
user has full control over subsequent activity. For all other actions, the target device is
automatically returned to USER mode to continue program execution.

4.9.10 Execute//Breakpoints//Clear e I
Step...
Trace...
This selection removes a breakpoint. Select the breakpoint or Nex...
breakpoints from the pull-down list, and click [OK] to clear. Unil.
Cleared breakpoints can only be reinstated by recreating with Dreakpoints Set Software...
Execute//Breakpoint//Set... sop” T
=| Dv00 Breakpoints M =

Break #1 al p:53ab 1 h .
Breakpoint Number Break #2 al p:53b1 1 h

Break #3 pa p:544b t[r0+r1>54017) 1 i1 disabled
Break #4 cs p:54711 1n

Break #5 gt p:576ef 80 n

Break #6 rw xa x:30 1 h disabled

Break #7r xax:$0 1h disabled

Break #8 rw xax:50 1h

/

Select breakpoint(s).

+ »

View details of

_ = breakpoints in Breakpoint

Click [OK] to clear. i
window.

Figure 4-63 Execute//Breakpoint//Clear Dialog Box

MOTOROLA DSPADSUM/AD 4-53

Graphical User Interface

Execute Menu

4.9.11 Execute//Breakpoints//Enable, Disable (xcoutc HR—
Step...
Trace...
Breakpoints may be disabled and enabled from this menu. Nex...
Disable temporarily deactivates the selected breakpoints, Until..

Set Software...
Set Hardware...
Clear...

Breakpoints

Wait...
Stop

Enable reinstates them. While disabled, breakpoints have no
effect on DSP program execution, and do not cause any of the
actions associated with the breakpoint.

=] D00 Breakpoints x|« Breakpoint
Break #1 al p:53ab 1h #l _ window also
. Breakpoint Number Break #2 al p:$3b1 1h |
Only disabled Break#3 pa p:$44b t0+r1>$4017) 11 disabled Shows
Breakpoints n [2] Break #4 cs p:$4711 1n disabled
are listed. Break #5 gt p:$76e8 80 n . status of
47 Break #6 rw xa x:$0 1 h disabled b KDOi
Select those to Break#7 1 xax$0 1h disabled reakpoints.
enable. Break #8 rw xa x50 1h g
CN E——
=
NOTE: Disable Breakpoint dialog box is identical
apart from the title bar, and is not shown.

Figure 4-64 Execute//Breakpoints//Enable Dialog Box

4912 EXGCUtG//W&It Ecute
Step...
Trace...
The WAIT command pauses for a number of seconds, or forever if no Next..
count specified. Pause may be ended by pressing the [Cancel] button, or | unti.
hitting <enter>. Wait is useful in macro files (File//Macro), where it Breakpoints

freezes the display while details are examined.

~ I
Enter wait time Seconds Wait command: Press Cancel to
in seconds or continue

E—

check ‘Forever'.

Cancel

[~ Forever

| OK | | gancell

Click to terminate wait.

Figure 4-65 Execute//Wait Dialog Box

4-54 DSPADSUM/AD MOTOROLA

Graphical User Interface

Windows Menu

4.9.13 Execute//Stop e I
Step...
Trace...
Execute//Stop interrupts execution of the DSP program or macro Nes..
execution. Control is returned to the user interface. Until...
Breakpoints »
Any temporary breakpoint set by Execute//Until is cleared.
[Reset
4.9.14 Execute//Reset... Excovte B
Step...
Trace...
Execute//Reset//Device performs hardware reset on the Nex...
current device, asserting debug request, to leave the device | unii..
in Debug mode. Some registers are initialized by a reset. Breakpoints ¥
Wait...
Stop
Execute//Reset//Command Converter resets the Reset
Command Converter. Eommand Converter

Execute//Reset//System resets the command converter, then resets the device.

4.10 WINDOWS MENU
Assembly

)) . . Source
The Windows menu provides access to the windows which allow Register

monitoring and control of the development process. These windows Memory...
display information such as the contents of registers and memory, are Stack
updated automatically at each break in execution, and may be moved | Calls

and re-sized to provide a convenient working environment. Watch...

List File...
. . . Input
Many of the windows are multi-function, for example the Assembly Output
window, which displays the code in the vicinity of the PC, permits Breakpoints
editing the code with the single-line Assembler, and sets and clears Command
breakpoints. Session
Tile
Some windows may be opened many times. With some of the Cascade

windows, such as the Breakpoint window, which lists the breakpoints

which have been set in a particular DSP device, a window may be opened for each
device. The Memory window, however, which displays a block of memory and may be
scrolled through the entire address range of the memory space chosen, may be opened
as many times as desired for each device to show different memory areas at the same
time.

MOTOROLA DSPADSUM/AD 4-55

Graphical User Interface

Windows Menu

Table 4-3 Summary of Window Functions

Window Function Notes
Assembly Display and edit memory contents, set and clear | One per Device
breakpoints, follow program execution.
Source Display source program. One per Device
Register Display and modify register contents. Registers Multiple
arranged in alphabetical order and grouped by
peripheral.
Memory Display and edit contents of memory. Memory Multiple
type may be selected, scroll bars access entire
range of selected bank of memory.
Stack Display stack contents. Indicates current top of One per Device
stack. There can be a maximum fifteen entries.
Calls Display C procedure call stack. One per Device
Watch Display expressions selected for Watching. Erase | Multiple
with double-click.
List File Examine any text file. Multiple
Input Display simulated input assignments. One
Output Display simulated output assignments. One

Breakpoints

Display breakpoints set in code. Enable and
disable with double-click.

One per Device

Command Display command history. Retrieve, edit and One, shared for all
re-submit commands. Command help. Error functions
message display.

Session Echo commands submitted to One, switched
Emulator/Simulator and Display output. Each between devices
device has its own buffer, only currently selected | and functions
device is shown.

Tile Arrange open windows in tile pattern. PC only

Cascade Arrange open windows in cascade pattern. PC only

4-56 DSPADSUM/AD MOTOROLA

Graphical User Interface

Windows Menu

4.10.1 Windows//Assembly

Assembly
Source
Register
Memnne. .

Opens the Assembly window for the current device. If it is already open,
but hidden or minimized, it is restored and brought to the front.

Adjust width of columns
by dragging the gap
between labels.

Binary is disassembled and
listed. lllegal opcodes are
listed as numeric constants.

Operands are decoded and
interpreted as symbolic
references when appropriate.

Next instruction Dv00 Assembly
is highlighted in [} geron Tygaddress |fmuz§\ <\ Enter start of
red.
\ Address | Label | N}nemonic | Symbols 7\'\ memory to

#0000 clrg #50,x0 + display. May
Double click 0001 jelr #$2,0mr,5008b use

ff0003 jcir #51,0mr,5ff0020 .
on addrelss ff0oos movep #>53e0000,x:<<5 flllenames’
or label field 0007 do #<$6,5ff000d line numbers,
to set or clear %uuua \ jelr xsz,x:«sfrrrca,s‘ﬁﬁn\ - labels and
breakpoints. addresses.
Enabled
breakpoints)) Click on a mnemonic field, type
display blue. If debug information loaded, in new instruction, <CR> to store

Figure 4-66 Assembly Window

The Assembly window displays the memory in the vicinity of the Program Counter
(PC). The scroll bar gives access to the full program memory. As the program executes,
the display is updated at each break in execution. The next instruction to be executed is
always displayed, highlighted in red. Breakpoints may be cleared, and Halt breakpoints
set by a double-click on an address or label field. Enabled breakpoints are displayed in
blue.

4.10.2

Windows
Source
Register
Memory...
Stack

Mall~

Windows//Source

The Source window displays the source code for the executing program.
The source code may reside in the directory containing the object module,
or any or the directories specified in the path (see File//Path...). The
window automatically tracks the PC, displaying the corresponding source line
highlighted in red. The scroll bar may be used to scan the whole source file, but the
display will revert to the current line with each execution step.

MOTOROLA DSPADSUM/AD 4-57

Graphical User

Interface

Windows Menu

A halt execution breakpoint may be set with the Source window. Double-click on a
statement to set or clear the breakpoint. The breakpoint is added to the breakpoint list,
displayed in the breakpoint window and highlighted blue in the Assembly window. The
presence of the breakpoint is not indicated in the Source window. If no source code is
available for the executing code, the window shows a message giving the current PC,
and indicating that no source is available.

Dv00 Source

no_source_file pc=E@ pe:$e@B@ {no_label> section:global

Figure 4-67 Source Window (no source)

Single line display Current instruction Scroll through whole
summarizes status. highlighted in red. program. Display reverts to

Double-clic
kona
statement
to seta
breakpoint.

current line after

Dv00 Source

74 {
75 dint i;
76 long j;

78 j=gj+1;
79 ipr.iprb.uh=0x12;
\ 80 ipr.iprb.um1=3;
81 ipr.iprb.um2=8x45;
82 ipr.iprb.um3=0x67;

Figure 4-68 Source Window (source file present)

4.10.3 Windows//Register

The Register window displays and modifies a group of registers for the

current device.

To display registers for another device, first make that the

current device and open the Register window. Multiple windows may be
opened for each device. A dialog box allows the selection of the register set to be
displayed. Each register window may display the registers for the core or any one

execution.

Windows

Assembly
Source

Register

peripheral.
=-| Open Register Window E Open RegisterWindow—l
Peripheral Peripheral
2]
| OK I | Cancel I
Figure 4-69 Register Window Peripheral Group Selection
4-58 DSPADSUM/AD MOTOROLA

Graphical User Interface

Windows Menu

The selected registers (core registers or registers for the specified peripheral) are
arranged in alphabetical order. The window may be resized and scrolled to select which
registers are displayed. To view registers which are not conveniently displayed in one
window at the same time, open another window and adjust each one to the required
range of registers. The display is updated each time the device enters User mode and
returns to Debug mode.

To change a register, click on it once, type in the new value, and store the value with

<CR>. The new value will be displayed in red, and the next register will be highlighted
for modification.

Displays registers for core or
peripheral for Current Device. RN Single click on a value to
T T T —— select. Type new value and

Register values displayed in Sttt <CR> to change. Highlights

hexadecimal or radix set as dstr | 500003 red and selects next value to
i ' i £p Sttt change.

display radix. Enter values in idr 3000301

specific radix or default radix. 000000

(see Modify//Radi/l...) Scroll to view desired registers.

Figure 4-70 Register Window

4.10.4 Windows//Memory

Windows
Assembly
Source
Register
Memory...

The Memory window displays and optionally changes the contents of
memory. Each memory window displays a contiguous block of memory
from one of the address spaces. Select the address space from a pull-down
list in the dialog box.

Open Memory Window

Memory Space

by 50; 0..ffff, vi, ye or yr depending upon address and omr values| IEI

| oK | | Apply I | gancell

Figure 4-71 Windows//Memory Dialog Box

Resize the window to adjust the size of the memory area displayed. The columns in the
display adjust automatically to fit the width available. The full range of the memory
space selected may be viewed with the scroll bar. To change memory, click on a location,
enter the new value, and store with <CR>. The next location is selected for modification.

MOTOROLA DSPADSUM/AD 4-59

Graphical User Interface

Windows Menu

Memory window

displays one memory
space for a device.

Open multiple
windows for other
devices, address

spaces or

discontiguous
memory ranges.

4.10.5

The Stack window displays the hardware stack. It may be resized and

Values shown in Display Radix.

= Dv00 Memory Winl p nn

Scroll To Address P
p:5000001 | $a03f3b p/| Sidfi3s | see2ab7? +
p:$000004 | 5fc6361 7 | SaleDbd | $007ded
p:$000007 | 58d68a2 | [Y¥RNEEl _Sc45635
p:500000a | 57b4247 457a093b | %R2dd64
p:500000d | Sf2ac87 5037573 | $625adb

Enter new values in Default Radix or use

explicit radix specifier.

Figure 4-72 Memory Window

Windows//Stack

scrolled to view as much or as little as required.

Drag gaps to
adjust column
width

Enter an address for
start of display area.
Use filenames,
labels, line
numbers and
memory addresses

Click to select a
location. Type new
value and <CR> to
save and select next

Windows
Assembly
Source
Register
Memory...

Stack

AN

= Dv00 Stack BE
Level | sSH | ssL |

02 5000026 $00c00314 +
01 S00feftt 500000020

00 500000000 $00000000 +

Figure 4-73 Stack Window

The hardware stack is used by the subroutine call instructions, interrupt handling and
by some other instructions. In C procedures, the return address is put on the stack by the
JSR instruction, but then removed and incorporated into the C stack frame. Thus, the
return address only uses the hardware stack temporarily. Different conventions may be
used by Assembler programs.

4.10.6

The Calls window tracks C procedure calls. Each procedure call adds
another stack frame, each return removes one. Entry 0 is the most nested
procedure, that is, the top entry on the stack; the highest number is the

main() procedure.

Windows//Calls

Windows
Assembly
Source
Register
Memory...

Stack

4-60

DSPADSUM/AD

MOTOROLA

Graphical User Interface

Windows Menu

Each entry has a nesting level number, the PC return address (i.e., the address after the
procedure call), and the name of the procedure. The top level represents the entry to the
debug monitor, and so indicates the next instruction to be executed.

The call stack also indicates the context to use for evaluating C expressions. As each
procedure may have its own copy of a named variable, it may be necessary to indicate
which instance is required. A double-click on a stack level selects it as the expression
context for Display//Evaluate. See also Modify//Up and Modify//Down.

Shows one entry P-space address is #0 indicates next
for each call to address of next instruction to
reach current instruction to execute in execute in current

location. calling procedure. procedure
NSSS————————————— See also Modify//Up
= : Dv00 Calls Al and Modify//Down.
#0 p:0x6fin ne3 [=]
p:0x7bin ne? [J
Double-click on a
/Y #3 p:0x93 in main [
stack frame to D Note PC address
select as Evaluate .
format—OxHHHH is
context. B)
- ———(| hexadecimal

Figure 4-74 Calls Window

4.10.7 Windows//Watch

Assembly
Source
Register

The Watch window displays the values of any expression. This can be the Memory...
contents of a memory location or register, or any arbitrary value which Zﬁj‘,fs'-‘

need not be calculated during program execution at all. C expressions may
be used, enclosed in braces {}. Symbolic references may be used if symbols
have been loaded from the object module. The values are re-calculated and

output at each break in execution.

List File...
Innut

A C expression which refers to C variables can only be evaluated in the context in which
the watch is established—that is, while all the variables used in the expression are in
scope. So if one (or more) of the variables in an expression goes out of scope (either
because a procedure call or return from a procedure), the value is replaced with the
message “Expression out of scope”. When all elements of the expression are back in
scope, the value is again displayed.

MOTOROLA DSPADSUM/AD 4-61

Graphical User Interface

Windows Menu

An expression which has gone out of scope because of procedure a call may be evaluated
and displayed by selecting the stack frame for the evaluation context. See Modify//Up
and Modify//Down. The stack frame assignment remains in effect only until the next
instruction is executed. An expression out of scope because of procedure exit can not be
evaluated until the procedure is next invoked, as its variables no longer exist.

Select window number. B Add Watch Expression To Window | Select display
Multiple Watch | wing A radix for

. Inaow adnx 1 .
windows may be & B | ___—expression. C
opened for each device. _E O Fractional « expressions

O Floating Point default to type
.) Hexadecimal i
Enter expression. _ © Unsigned of expression.
Enclose C |EX:’:]“BS]"’“ O Default
. . =i ru+

expressions in — >
brackets {}. ok | [Laeely | | cancel |

Figure 4-75 Windows//Watch Dialog Box

4.10.8 Windows//List File

Assembly
Source
Register

Views an ASCII file without leaving the development environment. A Memory...
standard File Chooser dialog box is opened. Select an ASCII file for cats
viewing. The List File window is opened, showing the start of the file. The gt
line number appears at the start of each line. The window may be re-sized

and scrolled to view the whole file.

= List Win1 CATGURWORK\SESSIOND.LOG [~1-1

4 no_source_file pc=@0 pe:5e000 <no_label> section:global

5 load AASDBTEST.CLD

6 Loading file:AA\SDBTEST.CLD

7 wviews

8 srosdbabedefghijk.asm@1 pc=sdbabcdefghijk.asm@b5 pi:56d <lab_d> s
9 next

10 X= 5000000000000 y= 5000000000000

11 a= 5$00000000000000 b= S00000000000000

12 x1= 5000000 x0= $000000 r7= S0000 n¥= SO000 m7= Sf
13 y1= 5000000 y0= $000000 r6= 50000 nb= S0000 mb= $fify)

Figure 4-76 List File Window

Note: The whole file is read when the window is opened, which may take some time
with large files.

You may open as many List File windows as you wish. This may be a convenient way of
scanning source files, Session window log files (which may be viewed without first
closing the log), etc.

4-62 DSPADSUM/AD MOTOROLA

Graphical User Interface

Windows Menu

4.10.9 Windows//Input

Windows
Assembly
Source

. Register

Displays all simulated input which has been assigned for the current Memary...

. - - tac|
device. An Input window may be opened for each device. Calls

Watch...

List File...

D00 Input
1. Input file: CATGURRANDOM.IO at address p:$c022
#3. Input file: CATGUI3\term0004.io at address p:54172

OQutput

Rreaknpinte

: B

Figure 4-77 Input Window

4.10.10 Windows//Output

Assembly
Source
. . . . Register
Displays all simulated output which has been assigned for the current Memory...
. . . Stack
device. An Output window may be opened for each device. Calls
Watch...
|___isathi|e...
Input
D00 Output]
#1. Qutput file: term at address p:51447 Rreabnninte
#3. Output file: CATGUIN\TAR?.10 at address p:51447
#4. Output file: CATGUI\TRAGS.IO at address p:5fel
Figure 4-78 Output Window
4.10.11 Windows//Breakpoints
Assembly
Source
i i i i Register
Displays, enables and disables breakpoints set for the current device. A Memory...
Breakpoint window may be opened for each device. Breakpoints may be set | cans
. Watch...
and cleared by: List Filo...
Input
; . . Qutput
= Double-click on Assembly window address field.
omman

= Double-click on source line in Source window.
= Execute//Breakpoint//Set or //Clear menu.

Breakpoints that are set by clicking on the source window are identified by the line
number. Breakpoints that are set by clicking on the Assembly window have the address
listed. Disabled breakpoints are marked with the word ‘disabled’; all other listed
breakpoints are enabled.

MOTOROLA DSPADSUM/AD 4-63

Graphical User Interface

Windows Menu

Breakpoints listed
for current device
only. Those not

disabled are
Break #1 al p:$3ac 1h
enabled. Break #2 al p:$3de 1 h disabled
Break #4 pcf p:$1004..5101f 5i2
Breakpoint
address displayed

as hexadecimal. First three are SW

breakpoints. Last is
HW breakpoint.

Figure 4-79 Breakpoint Window

4.10.12 Windows//Command

The Command window provides the main interface between the user

interface and the rest of the system:

= The user may enter commands directly.

= All commands generated by the GUI are entered via the Command

window.

= The command history is displayed and may be retrieved, edited and

re-submitted.

= Summary help is available for all commands.

Required action
indicated by letter:
h—Halt.
i—Increment counter.
s—Show registers &
memory in Session.
n—Note breakpoint.
x—Execute macro file.

Double-click to
enable or disable
breakpoint.

Assembly
Source
Register
Memory...
Stack
Calls
Watch...
List File...
Input
OQutput
Breakpoints
Command
Session

Tile
Cascade

< Commands executed may be written to a log file—see File//Log//Commands.

The command history buffer holds the last ten commands. If the last command is
repeated exactly, the duplicate is not stored. The default size of ten commands may be

changed during installation.

4-64 DSPADSUM/AD

MOTOROLA

Graphical User Interface

Click on history If history is edited, original

One command line to select, command is always restored.
window handles <CR> to execute. When executed, the new
all commands for May edit first. command is added to history.

the system.
Command
radix d b2
: radix h p:5400p..5401e
Click and type radix b 2
commands radix h a0
directly into wasm
d device Dv2
Cqmman hanage b1 Sfffffe
window. change b2 5iffffe
step
2>|frame #2
Prompt is AME /401 > =
current
device
No. Command abbreviations shown in red

Figure 4-80 Command Window

4.10.13 Windows//Session

The Session window provides the main output from the development

Windows Menu

Use scroll bar to
view command
history.

Summary help
lists
commands.
Space bar
cycles through
commands.
Type portion in
red and a
space,
command is
completed and
help gives
syntax for that

Assembly
Source
Register
Memory...
Stack

system. The Display menu directs most of its output to the Session window, caus

and controls its operation.

= [tems output to the Session window include:

= All commands input via the Command window are echoed.

= All output from commands is displayed.
= OQOutput from many Display menu operations.

= Views of source code and assembly code.

Watch...
List File...
Input
OQutput
Breakpoints
Command

Tile
Cascade

= Registers and memory locations enabled for display at breakpoints and after

execution.

= Error messages are sent to the Session window.

MOTOROLA DSPADSUM/AD

4-65

Graphical User Interface

Windows Menu

Commands Window title Scroll bar
echoed in shows current to review
Session device. output
window buffer.

Enlarge or

maximize window
to display more of
the device buffer.

Dv00 Session
break p:ibhad
list .
view v
display on x:58081.__ 50004
go
Break #1 p:$0651 h ;dev:0 pc:8651 cyc:198
x= $0000000000080 y= $apepepene0an
a= $0000000000ABAB b= {0popopene0A0A0
®1= $apaoen xB= $apaoen r7= $0000 n7= $o0000 n7= $FFFF
yi= $apaoen ye= $apaoen rb= né= mé= $FFFF
az= $ae at= $apaoen ab= $apaoen r5= $0000 n5= $o0000 m5= $FFFF
b2= $8e b1= $apaoen b@= $apaoen r4= $0000 n4= $o0000 n4= $FFFF
r3= $o0000 n3= $o000 n3= $FFFF
»| pc= sKr= onr= $82 r2= %0880 n2= $8888 n2= SFFFF
la= $0080 1c= $0000 r1= $0000 n1=$o0060 mi= $FFFF
ssh= s51= sp= re= nB= 50888 nmB= S$FFFF
ipr= 40880 bcr= SFFFF
| cyc= ictr= cnti= 808888 cnt2= @8068088 cnt3= BOAB6E8 cnty4= G0000Q
x:$0001= $aoasp0 $80ffbe $80ffbe
x:$0004= $apapbe
p:$0051 B55e3c = move ssh,x:(r6)+ ; x:{F__c_sig_handlers+129)
Values changed since Memory locations and Initial setting:

last output displayed in
red. Error messages
also in red.

registers output at break
selected by
Display//Display menu.

Figure 4-81 Session Window

Display all registers
and no memory.

The last 100 lines written to the Session window may be viewed with the scroll bar. The
size of this buffer may be set during installation. Some operations may write more than
100 lines to the Session window. The Display menu has a More feature, which pauses the
display every ‘windowful’, allowing the display to be examined, before accepting the

next section of output. See Display//More...

There is only one Session window, but a separate output buffer for each device. Output
from each device is written to its own buffer, but only activity for the current device is
displayed in the Session window. When another device is made the current device, the

Session window is refreshed with the buffer for that device.

Output to the session window may be logged to a file—see File//Log//Session. A

separate log file may be established for each device.

4-66 DSPADSUM/AD

MOTOROLA

Graphical User Interface

Windows Menu

4.10.14 Windows//Tile, Cascade (Microsoft Windows only)

Assembly
Source
. . . . Register
The Microsoft Windows environment has two features to arrange windows Memory..
- . - - - . - ack
tidily: Tile and Cascade. Tile divides the main window into roughly equal | cans
areas and places one open window in each tile. All windows are visible, but ‘L—T:t";'},';___
not all are large enough to be useful. Cascade makes all the windows the g'ff.'fm
same size, but usually larger than Tile, and staggers so that the top window | Breakpoints
. Command
can be seen, and the title bar of all other windows is visible. Sesslon
Tile
. _C d
Both of these techniques simplify the process of locating a window loston ——
the desktop under other windows or scrolled off the edge of the main
window.
Simb6000 = Simb6000 ﬂ =
File Display Modify Execute Windows Help File Display Modify Execute Windows Help
Fir? B 20C S8R e C
= |Dwv00 Sessiof v | ~ EDVUU Assemﬂn = Command |'| &
W = Dv00 Session v |~
lo = D00 Assemb |-
break p:50051 b =
break p:50124 b Pll Address| Label Mnemonic
break p:504a0 55| FprO+0001 move ssh,x:[rb]+ bt
break p:504ab e ip{| 0052 Fpr0+0002 move #50,n6
list. CH| 0053 Fpr0+0003 move r6,r0
view r : 0054 Fpr0+0004 move (r6]+n6
|J 0055 Fpr0+0005 move #>51,a
— 0057 Fpr0+0007 move [r0]- T
Tiled window Cascaded window

Figure 4-82 Tiled and Cascaded Windows

MOTOROLA DSPADSUM/AD 4-67

Graphical User Interface

Help Menu

411 HELP MENU

The Help menu item calls up the command line help for the ADS, which
is displayed in the Session window. This lists all the commands available, with a syntax
summary for each. Acceptable abbreviations are shown in red.

Session

WSESSION [OFF]
WSOURCE [dev_list] [OFF]
WSTACK [dev_list] [OFF]
WWATCH [devw_list] [win_num] [#wn] [radix] reg/faddr/expression
WWATCH [devw_list] [win_num] [#wn] [OFF]

scomment string entry

Macro filename
——————————— Other Help Topics —————---—--——-—-

io : list of on-chip io registers and their addresses
map : memory map descriptions for various omr settings
mem : memory names with block addresses
pin : list of pin names with index and pin values
periph: 1list of periperhal names with index
port : list of port names with index and mask

Figure 4-83

Further command details are available. Using the Command window, type Help (H
<space> is enough) followed by the help topic (the command name (or abbreviation) or
port name, etc.) and further details are output to the Session window.

Note: The Help//Help output is nearly 100 lines long, and fills the output buffer.
Any previous output in the Session window will be lost.

= Command ﬂ—l

+

Session

sci : I/0 file format for sci peripheral

portio : I/0 file format for portb or portc
u>|heh)wﬂ once : I/0 file format for OnCE peripheral
help WS

WSOURCE: Source Window --—————————-

HELP [dev num] [command{reqgftopic]

USOURCE [dev_list] [OFF]

wusource
Open a source window for the current device.

wsource off
Close the source window for the current device.

Figure 4-84 Help on a Specific Topic

4-68 DSPADSUM/AD MOTOROLA

Graphical User Interface

The Tool Bar

STI§. ﬂ FIRISH Dﬁ Q C
The Tool Bar is located in the main

window just below the menu bar. It comprises a number of buttons providing a
convenient way of performing frequently-used functions.

4.12.1 Go Button ; \

The Go button starts program execution from the next address. All breakpoints
will be acknowledged. This button is equivalent to Execute//Go from current
address, with no target breakpoint.

4.12.2 Stop Button g \

The Stop button interrupts DSP program execution and returns control to the

user. The command ‘force b’ appears in the Session window. If a macro

command file is executing, it is aborted by the Stop button. This button is equivalent to
Execute//Stop.

412 THE TOOL BAR
8§

4.12.3 STEP Button i’

The STEP button executes one execution step. If the source window is open,

tracking the program source, STEP executes one line of code. Otherwise, STEP

executes one instruction. On encountering a JSR instruction, STEP proceeds with the first
instruction of the function, and steps through it. This button is equivalent to
Execute//Step with a count of 1.

4.12.4 NEXT Button
‘NE:-:T

The NEXT button executes one execution step. If the source window is open,
tracking the program source, NEXT executes one line of code. Otherwise,

NEXT executes one instruction. On encountering a JSR instruction, NEXT allows the
function to execute, and stops after the RTS instruction. This button is equivalent to
Execute//Next with a count of 1.

MOTOROLA DSPADSUM/AD 4-69

Graphical User Interface
The Tool Bar

4.12.5 FINISH Button *$E
FINISH\

FINISH allows the current function to execute to completion. Control returns

to the user after executing the RTS instruction. It is not affected if another function is
encountered during a FINISH operation, execution continues to the end of the current
function. FINISH is equivalent to Execute//Finish.

4.12.6 DEVICE Button ﬁ
DEUICE

The DEVICE button opens the ‘Set Default Device’ dialog box. This [l
selects which is the current default device, to which all commands Device
will be directed until further notice. This button cannot be used to

. . . \ E3
configure, or enable and disable devices. The DEVICE button is
equivalent to Modify//Device//Set Default.

4.12.7 REPEAT Button :-hf \
REPEAT

The REPEAT Button repeats the last command in the history buffer, listed in
the Command window. This button is equivalent to clicking on the last
command in the history buffer in the Command window and pressing <CR>.

4.12.8 RESET Button @\

The RESET Button generates a reset command for the current device. It is
equivalent to Execute//Reset, with the device mode unchanged.

/|

4-70 DSPADSUM/AD MOTOROLA

SECTION 5
FUNCTIONAL DESCRIPTION

MOTOROLA DSPADSUM/AD

5-1

Functional Description

5.1 INTRODUCTION e 5-3
5.2 HOST COMPUTER HARDWARE 5-3
5.3 COMMAND CONVERTER CARD. 5-6
5.4 OnCE PORT ARCHITECTURE. 5-12
5.5 HOST COMPUTER SOFTWARE 5-16
5.6 COMMAND CONVERTER SOFTWARE. 5-17
5.7 JTAG/ONCE COMMUNICATIONS PERFORMANCE. 5-18
5.8 COMMUNICATING WITH THE TARGET OnCE PORT 5-20
5.9 WRITING YOUR OWN OnCE COMMAND SEQUENCE 5-23
5.10 COMMUNICATING WITH THE TARGET JTAG PORT 5-24
5.11 CHANGES TOTHEONCEPORTPINS 5-24
5.12 JTAG INSTRUCTION REGISTER. o 5-27

5-2 DSPADSUM/AD MOTOROLA

Functional Description

Introduction

5.1 INTRODUCTION

The Application Development System (ADS) user interacts with the target DSP through
two subsystem components, the host computer interface and the Command Converter
controller. The host computer interface consists of a program written in the C language
which interacts with a host computer bus interface card. The Command Converter
consists of a program written in DSP56002 assembly language which interacts with the
host computer bus interface card and the target OnCE port.

It should be noted that older versions of Motorola DSP products use the OnCE port
protocol, while newer versions of Motorola DSP products use the IEEE JTAG 4-wire
protocol to interact with their OnCE port. New versions of the Command Converter
support both OnCE and JTAG protocols.

Commands entered from the host computer’s keyboard are parsed and a series of low
level command packets are sent to the Command Converter. The Command Converter
translates these low level command packets into serial sequences that are transferred to
the target DSP via its OnCE port. The OnCE port provides the necessary control to the
target so programs may be loaded or saved, registers read or modified, and hardware
breakpoints set or cleared.

The host computer interface is designed to communicate with as many as eight targets.
This requires a special software protocol to avoid data collisions between one target and
another. The purpose of this section is to describe the subsystem components of the ADS
to give a better understanding of the communication link between the user and the
target DSP.

5.2 HOST COMPUTER HARDWARE

The host computer hardware interface provides the communications link between the
user and the Command Converter. The ADS user interface program uses a software
handshake when communicating with the Command Converter. There are signals
defined on the host computer bus interface card which are used for requesting and
acknowledging information transfer. Since the handshake is software driven the transfer
rate will be dependent upon the host computer bus speed and its operating system. This
section describes the host computer interface hardware and software components.

MOTOROLA DSPADSUM/AD 5-3

Functional Description

Host Computer Hardware

5.2.1 Host Computer Bus Interface Card

Figure 5-1 shows a block diagram of the host computer interface card for all supported
computer platforms. The interface consists of three fixed addresses in the host computer
I/0 memory map. Host computer interface card address zero is used as a control port
for selecting, resetting, or interrupting one or more Command Converters. Address one
reads and writes eight bit data bytes to one or more Command Converters. Address two
acknowledges Command Converter service requests and selects group members for
multiple Command Converter commands. All data is passed high order byte first. For
example, in a 32-bit transfer, bits 31-24 are transferred first, followed by bits 23-16, bits
15-8, and then bits 7-0.

R/W
Addr -
Bus Address »| Decoder
ADO
|
* Bus Ctrl w
o} Bus ot Local Data AD1 RS
P QO OE o O
g I= | L (O
O 0 =
— > o
0 m ~ S
2 | | Crl2 > 5 E
AD2 (@)
8
+5v and Gnd

Figure 5-1 Host Computer Bus Interface Card

Command converters always act as slaves to the host computer interface card to avoid
transfer collisions. The ADS user interface program allows as many as eight Command
Converters to be addressed using one host computer interface card. Command
converters may be addressed in groups or individually depending upon the command
and command arguments entered by the user.

Host computer interface card address zero has eight output control lines. These output
control lines are asserted using positive logic (VOH = TRUE). Three address zero signals
(ADM_SELO, ADM_SEL1, ADM_SEL?2) select a Command Converter before sending a

5-4 DSPADSUM/AD MOTOROLA

Functional Description

Host Computer Hardware

command. Further information on the method of Command Converter selection is
discussed in subsequent sections.

Two handshake signals originate at the host computer and are used to pass data to and
from a Command Converter. HOST_REQ initiates a data byte transfer to a Command
Converter while HOST_ACK acknowledges receipt of a data byte from a Command
Converter.

Two control signals (ADM_BRK,ADM_RESET) allow the user to assert an interrupt or a
reset exception on a single Command Converter or a group of Command Converters.
The ADM_BRK signal is used to put the Command Converter back into Command
Entry mode. while the ADM_RESET signal is used to reset the Command Converter.

The Command Converter informs the host computer of target DSP entries to the Debug
mode of operation by asserting the HOST_BRK signal. The ADS user interface program
on the host computer periodically polls the HOST_BRK signal from the keyboard polling
routine. If the HOST_BRK signal is asserted the host computer will determine which
Command Converter is requesting service by reading the ADM_INT signal. The
INT_ACK signal is asserted by the host computer when a service request has been
recognized. Further details on the functions of each signal will be given in a subsequent
section. Figure 5-2 on page 5-6 illustrates the 37-pin cable and the direction of the signal
groups.

5.2.2 Host Computer Interface Cable

The host computer interface card interacts with the Command Converters via a 37-pin
ribbon cable assembly. Each end of the ribbon cable has a 37-pin DIN receptacle
connector. The cable assembly is approximately 4 feet in length and is designed so that
additional Command Converters may be easily attached to the existing cable by
crimping a new DIN connector.

Normally the ADS is shipped with an Application Development Module (ADM) and
power for both the Command Converter and ADM are supplied by the host computer
interface card via the cable. The ribbon cable is not designed to draw more than 2 amps
current at 5 volts. Since each Command Converter draws approximately 250
milliamperes, it is safe to power all 8 units via the cable, but the target systems must be
powered by a different source to insure correct operation.

MOTOROLA DSPADSUM/AD 5-5

Functional Description

Command Converter Card

8-bit DATA BUS (host computer and Command Converter)
- L
ADM_SELO0,ADM_SEL1,ADM_SEL?2 (address select)

©

3 o HOST_REQ, HOST_ACK, INT_ACK (host computer handshake)

O - o
25 5
E = ADM_REQ, ADM_ACK (Command Converter handshake) o
s 5
5 2 =
5 g ADM_BRK, ADM_RESET (host computer control) 8
2 I | °
5 3 5
2 o] ADM_INT, HOST_BRK (Command Converter service request) g
T e 3
5' O

+5 V, Ground (Command Converter power)

Figure 5-2 37-Pin Host Computer Interface Cable

53 COMMAND CONVERTER CARD

The Command Converter is based on a DSP56002, which uses its on-chip resources to
minimize and simplify the interface to the target OnCE debug port. Communication
with the host computer is via the DSP56002 Port B or the SCI port, while the serial
interface to the target DSP is via the DSP56002 SSI port.

Each Command Converter has a unique address ranging from 0 to 7. This allows the
user to debug multiprocessor systems where as many as eight Command Converters are
physically in the target system. JG2 of the Command Converter card defines the address
selected for that card.

When a user wishes to communicate with a Command Converter, its address must first
appear on the interface cable output control lines before the Command Converter can
communicate with the host computer. The host computer must then hold that address
on the control bus until communication has ended.

5-6 DSPADSUM/AD MOTOROLA

Functional Description

Command Converter Card

No N e
= (8]
Clock N 8o
0 0N
xs D:8
Vce PLL —
r o3 O
[}
———O —_ 5o
[352
a
4 i
c e
Q > 5
9 gt &
= Sg 3
2 - 0 £
@ « < ¥ T = o]
o o g N5 < c
© S o ™3 £
- © o =
o) 2
8 % 2
3 FREQIN | 8 ? £
O
17
o
T
%) = c
5 £ 2
o @ o
iE e
nd < bt _I%
= < Q|-
O 3
a

Figure 5-3 Command Converter Block Diagram

5.3.1 Command Converter Handshake Signals

The DSP56002 on the Command Converter card is configured such that bits 0-7 of its
Port B are used for 8-bit data transfers and bits 8-14 are used for data transfer control.

There are three output control bits in the middle order byte of the DSP56002 Port B data
word. These bits are the ADM_INT, ADM_REQ, and ADM_ACK signals. ADM_REQ
and ADM_ACK, act as handshake lines for reading and writing data. ADM_INT acts as
a flag to indicate whether the ADM is requesting host computer service. These three
control bits are part of the host parallel control bus. They are enabled when the host
computer selects the ADM.

MOTOROLA DSPADSUM/AD S-7

Functional Description

Command Converter Card

There are three input control bits in the middle order byte of Port B data word that
represent the HOST_ACK, HOST_REQ, and INT_ACK. These signals are sent from the
host computer for reading and writing data. INT_ACK informs the monitor that the host
computer has received its service request and is ready to communicate.

HOST _BRK is a wired-or control line. HOST_BRK is used by the Command Converter to
inform the host computer whenever the target DSP has entered the Debug mode of
operation. Since more than one Command Converter may be started for a user debug
session more than one may hold HOST_BRK active low at one time. Once this signal is
asserted it may only be deasserted by the host computer or by a Command Converter
reset.

5.3.2 Command Converter Interface Connector

The target application must have a 14-pin connector to interface to the Command
Converter controller. This interface comprises nine signals and three ground connections
on 7 row x 2 column male pins which are 1/10 inch center to center as illustrated in
Figure 5-4 on page 5-9.

Since the target system will have a resident reset circuit, it is recommended to have an
AND gate in series with the CC_RESET signal. This will insure that the DSP will be reset
with a valid VOL level from either the target reset circuit or from the Command
Converter. The pull-down resistors are to insure that no false signals are propagated to
the JTAG/ONCE circuit when the Test Data Input/Debug Serial Input (TDI/DSI) and
Test Data Clock/Debug Serial Clock (TCK/DSCK lines are active. The Test Data
Out/Debug Serial Output (TDO/DSO) pullup is to insure that the Debug Acknowledge
signal from the ONnCE circuit is deasserted. The debug request (DR) pullup is to insure
that the Command Converter controls when the target DSP is put in the Debug mode.

When a command has been received by the Command Converter from the host
computer, a series of serial command packets are sent to the target OnCE debug port.
These serial command packets consist of an 8-bit command followed by a 16-,24-, or
32-bit serial read or write of data. The serial bit width is dependent on the DSP
architecture.

The Command Converter will always act as the clock master of the serial transfers. In
order to transfer a command, the target DSP must be in the Debug mode of operation.
This may be accomplished by a force b or force r command from the user interface
program.

5-8 DSPADSUM/AD MOTOROLA

Functional Description

Command Converter Card

10 kQ
GND_AAAAA_TDUDSI D @
Ve AMAn_TDOIDSO D @
10 kQ
vee GNDAMAA_TCKIDSCK 5y ()4 CGND
v 10kQ pr
DSP 10k cC— @ KEY (No Connect)
RESET CC RESET i
CC_RESET TMSO (for JTAG devices
PIN " @ !
TARGET VDDC @ TMS1 (for JTAG devices)
TARGET Vv 10 kQ pgz TRST (for JTAG devices)
RESET CCAMMN—=2 09 @———
CIRCUIT (for JTAG devices)

TOP VIEW
Figure 5-4 Target System OnCE Interface Connector

The force b command will cause an assertion of the DR pin of the target DSP until an
acknowledge is received on the TDO/DSO pin. The force r command will cause an
assertion of the DR pin while also asserting the reset of the target DSP. When the target
reset pin is deasserted the DR pin will remain asserted until an acknowledge is received
on the TDO/DSO pin.

The host computer user interface program, as well as the Command Converter monitor
program, each have a flag which is set when the force b command is issued. This flag
tells these programs that the target system is in the Debug mode of operation and is
ready to receive commands. For more information refer to the CFORCE command in
Section 3.

5.3.3 Multiple Target Connections

The basic JTAG connection comprises 5 pins as illustrated in Figure 5-5.

TDI
TDO
TCK TARGET
TMS PROCESSOR
TRST!

1 Optional connection

Figure 5-5 JTAG Connections

MOTOROLA DSPADSUM/AD 5-9

Functional Description

Command Converter Card

Multiple target devices may be connected in series, allowing a single Command
Converter JTAG/0OnCE connector to control multiple devices, as in Figure 5-6. Data
flows from the JTAG host, into each JTAG implementation through TDI, out through
TDO and into TDI in the next chip, eventually returning to the JTAG host.

RESET
TRST
| | [| |
TDO —|TDI TDO}—]TDI TDO}—JTDI TDO}—JTDI TDO}—JTDI DO — — — —]TDI TDO
TCK TMS TCK TMS TCK TMS TCK TMS TCK TMS TCK TMS
TDI L —‘
l/
T™MS - e
Maximum of 4 loads on Buffer—74HCT244
TCK and TMS circuits or similar

Figure 5-6 Multiple JTAG Target Connections (1)

5.34 TCK Drive and Timing Considerations

The signals from the Command Converter are TDO, TCK and TMS, and TRST. Signal
TCK requires fast rise and fall times dictated by the TCK pin timing specification, and
consequently attention must be given to the drive capabilities of the circuits driving this
signals. There is no problem with TDO, as each TDO output is connected to only one TDI
input. TMS need only be valid at the rising edge of TCK, similarly there is no problem
with TRST as the reset signal is not subject to the timing constraints of TCK.

There is a potential problem with driving the TCK circuit with a large number of target
devices. The problem is related to the rise and fall times of TCK, caused by excessive
capacitance, which can cause communication problems with a single circuit connecting
multiple TCK input pins.

Acceptable transition times may be achieved for TCK by driving no more than four
JTAG inputs from each buffered output. This may be achieved with two configurations.

Figure 5-6 above shows one method. Here (in effect) one track connects each of the TCK
inputs. A buffer is placed in circuit after (at most) each fourth input to restore the signal
guality for subsequent inputs. The propagation delay of the buffer is not significant.

5-10 DSPADSUM/AD MOTOROLA

Functional Description

Command Converter Card

Figure 5-7 shows another possible configuration which also enables signal quality to
meet the requirements. In this configuration the signal is split and buffered into a
number of parallel TCKn signals. Each of these signals may drive up to 4 TCK inputs.

TeK TeK TCK TCK TCK TCK
i~ | | |
— ¢ ¢ @
TCK TCK TCK
TCK, l 1 |
[
| TCK TCK TCK TCK
TCK, 1 1 1

Figure 5-7 Fan Out of TCK at Source

Either configuration above is equally valid. The choice will depend on practical
considerations related to each project, or a combination could be used.

JTAG signal TMS may also need some consideration. Although not subject to the strict
requirements for TCK, it is still important that TMS has settled to a valid level at the
rising edge of TCK.

5.35 Resetting Target DSP Devices.

The RESET signal from the Command Converter is typically connected to all target
devices on aJTAG chain. RESET is asserted by the ADS command FORCE R. All devices
on the JTAG chain handling the specified device are reset. Execution control is
established immediately on exit from reset, before any instructions are executed. The
sequence of events is illustrated in Figure 5-8 on page 5-12. Since all targets on the JTAG
chain are connected to the same RESET signal, all devices enter reset. The JTAG
controller is still active during reset, and while RESET is held low, the JTAG instruction
DEBUG_REQ is clocked in. When RESET is deasserted, the device is immediately in
Debug mode, with no instructions executed since releasing RESET.

MOTOROLA DSPADSUM/AD 5-11

Functional Description

OnCE Port Architecture

o Command Converter

asserts RESET. All
RESET \ / targets enter reset.
@ JTAG instruction

N DEBUG_REQUEST is
DEBUG_REQ » loaded.

o) () @ Command Converter

releases RESET. Targets
exit reset in Debug mode.

INSTRUCTION
REGISTER

N

Figure 5-8 Reset JTAG device with RESET Signal

5.4 OnCE PORT ARCHITECTURE

This section covers a global view of the OnCE architecture. To get specific details on the
OnCE port registers and addresses for the 16-, 24-, or 32- bit DSPs it is best to refer to the
pertinent DSP user manual. To control the target DSP with minimal die area penalty the
OnCE port was designed so users could interact directly with the program controller.
This port eliminates the need for a special debug monitor resident in the user program
memory map. Figure 5-9 illustrates the OnCE port architecture.

54.1 OnCE Controller

The OnCE port controller acts as a serial slave interface which is controlled by the
Command Converter. To communicate with the OnCE controller the DSP must be putin
the Debug mode of operation. The Debug mode may be entered from a hardware or
software breakpoint, single stepping through opcodes, or from an assertion of the Debug
Request (DR) pin.

A state machine decodes 8-bit commands and controls interaction with the OnCE
registers. The OnCE controller block also contains a clock counter and circuits for
synchronizing external clocks with the system clock. Exiting the Debug mode can only
be achieved by a OnCE command or from the Reset state without the DR pin asserted.
The OnCE Status/Control Register (OSCR) is used to enable or disable hardware
breakpoints or the single step mode. It also provides status information on how the
Debug mode was entered.

5-12 DSPADSUM/AD MOTOROLA

Functional Description
OnCE Port Architecture

5.4.2 Program Controller Pipeline Information

When the Debug mode of operation is entered, the current state of the DSP pipeline is
saved in three registers. The Program Instruction Latch Register (OPILR) holds the next
opcode to be executed when returning to the User mode of operation. The host computer
should immediately save this register when the Debug mode of operation is entered so
the exact state of the program controller pipeline may be restored when returning to
User mode.

DSI/0S0
DSCK/OS] |
DSO g | | | v
| * * | OBULR |
| OSCR | | OBLLR |
CLOCK CTRS. | OMBC |
DR i STATE MACHINE | oTC |
ONnCE CONTROLLER BREAKPOINT / TRACE
I I I REGISTERS & LOGIC
| OPDBR (TO) | I I I
[OGDBR (FROM) | Program Address Bus
PROGRAM DECODER [PABFETCH |<_|
[[
COMMUNICATION [PAB DECODE |
| |
| OPILR | PABO -« 3
PAB1 - 235
| OPAFR | PAB2 -—| =E
PAB3 - g&’
| OPADR | PAB4 | 5
PIPELINE I [
INFORMATION | FIFO Shift Reg. |
PROGRAM CONTROLLER PROGRAM ADDRESS
INTERFACE REGISTERS BUS FIFO

Figure 5-9 OnCE Port Architecture

MOTOROLA DSPADSUM/AD 5-13

Functional Description
OnCE Port Architecture

Since the DSP is a pipelined machine there is no program counter in the DSP
programming model. Program flow is dictated by a program address generator so
special registers are made available to give insight on where the program currently is.
The Program Address Fetch Register (OPAFR) holds the address of the opcode that was
fetched for decoding and the Program Address Decode Register (OPADR) holds the
address of the opcode that resides in the instruction latch. These registers are read only
and are not affected when in the Debug mode.

5.4.3 Program Address Bus FIFO

When programs are executing out of on-chip Program RAM there is no external bus
activity. This is important for accessing multiple internal buses simultaneously during a
single instruction cycle. To provide better visibility into the user’s program flow, the last
five addresses of DSP opcodes executed may be read from a FIFO circular buffer. This
FIFO is frozen when in the Debug mode and will not change until re-entering the User
mode of operation. The 8-bit command to read the FIFO automatically increments the
FIFO pointer to the next location. Successive reads will always give the oldest address
first and the newest address last. All five registers should be read when addressing the
FIFO so the pointer will always be deterministic. The Program Address Bus FIFO is very
useful for evaluating interrupt service routines, program flow changes or code which is
executed from internal RAM. The FIFO is read only and is not affected when in the
Debug mode.

5.4.4 Program Decoder Communication

In order to communicate with the DSP user registers the OnCE port interacts with the
DSP program controller unit via a Program Data Bus Register (OPDBR). DSP opcodes
may be fed serially into the DSP program decoder unit bypassing the pipeline
instruction fetch stage. Opcodes are always written first followed by operands when
executing two word instructions. OnCE port registers are not accessible from the DSP
programming model. DSP programming model and peripheral registers are accessible
only through a Global Data Bus Register (OGDBR). This read only register is located in
the user X data memory peripheral address space. The OGDBR is the transfer register for
passing information back to the OnCE port. For example, to read the RO register value,
the OPDBR is loaded with the opcode “move R0,X:OGDBR”. An 8-bit command is then
sent to read the OGDBR to retrieve the contents of the register value transferred.

5-14 DSPADSUM/AD MOTOROLA

Functional Description

OnCE Port Architecture

5.4.5 Hardware/Software Breakpoints

Users may halt program execution and enter the Debug mode via hardware and/or
software breakpoints. Hardware breakpoints may be set on program opcode fetches,
program memory moves or data memory accesses. A Memory Breakpoint Counter
(OMBC) must be loaded to cause a halt of program flow on the nth occurrence of the
breakpoint. The Debug mode of operation will be entered after the opcode at the
breakpoint address has been executed. The OBC should be loaded with n -1 times of
breakpoint occurrences. The OnCE port is scalable so that single chip DSPs of different
sizes can use the OnCE controller concept. The die area of the DSP96002 permits extra
features that are not feasible on less powerful devices; therefore, hardware breakpoint
registers vary in size and features. For example, the DSP96002 has separate data and
program memory breakpoint comparators, while the DSP56002 only has one set of
breakpoint comparators. The DSP96002 and the DSP56002 have a Program Upper Limit
Register (OPULR) and a Program Lower Limit Register (OPLLR). These registers allow
breakpoint address ranges to be defined. The DSP56L811 uses only a single breakpoint
address (OPBR). Conditional or unconditional software breakpoint opcodes
(DEBUGCC) may be set in Program RAM. The DSP Status Register may be evaluated in
real-time to determine whether to halt program execution depending on whether
particular bits are set or clear. For example, setting a DEBUGEQ opcode in program flow
will only cause the program to halt if the status register Z bit is set. Software breakpoints
are set on opcode addresses only.

Software breakpoints are useful for halting program flow only after a particular
condition is true. Users can select when to stop program execution based on
predetermined conditions in a program’s behavior. When the Debug mode of operation
is entered after executing a software breakpoint, a special bit in the OnCE
Status/Control Register (OSCR) will be set to tell the user that the Debug mode was
entered from a software breakpoint. The same holds when the Debug mode is entered
from a hardware breakpoint. There is also a special bit in the OSCR which flags the user
that a hardware breakpoint has been accomplished.

5.4.6 Program Single-Stepping

To evaluate programs one opcode at a time, the OnCE controller provides a single step
capability. Single stepping requires the chip be put into the User mode of operation so
the pipeline registers are updated after the execution of the opcode. This is accomplished
by loading a Trace Counter register (OTC) with the n — 1 opcodes to execute. The OTC
allows users to multiple step opcodes in real-time so routines may be quickly executed.
Entering the Debug mode from a single step will cause a special bit in the OSCR to be set
to flag the user how the DSP exited the User mode of operation.

MOTOROLA DSPADSUM/AD 5-15

Functional Description

Host Computer Software

5.5 HOST COMPUTER SOFTWARE

The host computer user interface program comprises of two levels of support. There is a
turn-key program which provides immediate access to the target and there is also a set
of libraries and C language support modules for customized interfaces. The C modules
of source are provided to allow default values to be changed when entering the ADS and
the libraries are provided to facilitate assembly and disassembly of target DSP
instructions. Also, screen and keyboard characteristics may be changed and access to
help information may be changed as well, as illustrated in Figure 5-10.

C Source Modules C Libraries

Expression
Evaluator

Main(),
Initializer,
Dispatcher

Parse/Execute
Screen/Keyboard
Drivers

Help Interface
Single-line
ASM/DISASM

Hardware

Drivers Symbolic Debug

Figure 5-10 Host Computer User Interface Program

5-16 DSPADSUM/AD MOTOROLA

Functional Description

Command Converter Software

If a user wishes to interact with the hardware directly, a set of functions exist which may
be called by a separate program. These functions provide a means of communicating
with the target DSP without having to completely understand the communications
protocol. The information contained in this section is made available so that users may
write their own programs to communicate with the hardware. The distribution diskettes
which contain the software programs for the Application Development System will
contain these C language modules.

5.6 COMMAND CONVERTER SOFTWARE

The Command Converter exits reset in the Bootstrap mode of operation and boot loads
its monitor program from the host interface or an RS-232 serial link. The ROM loader
loads a secondary loader via the SCI port. This loader program loads the monitor
software via the host interface.

The X data RAM is used as a scratch pad area for storage of temporary information and
also for information retrieved when performing OnCE port read commands. X data
memory locations $00-$16 are used as a storage area and should not generally be
changed by the user. The Y data RAM is used as an overlay area for storing the
commands and data sent to the OnCE port by the DSP56002 Synchronous Serial
Interface. Y data RAM locations $00-$0F are used for storing OnCE command
sequences. Figure 5-11 illustrates the memory usage of the DSP56002 RAM.

32 K Word Program SRAM

$7FFF
Unused
Area
$4000 OPnCE %nctE
ort or
$3FFF Reads Writes
Command $FF $FF
Converter
Monitor $7F
Area $20
Storage
$0 $0 Sequencer | $0
P X Y

Figure 5-11 Command Converter Monitor Memory

MOTOROLA DSPADSUM/AD 5-17

Functional Description

JTAG/OnCE Communications Performance

5.7

JTAG/ONCE COMMUNICATIONS PERFORMANCE

The performance of the JTAG/ONCE link, and therefore some aspects of the ADS system
performance, is determined by the clock speed of the SSI port on the Command
Converter DSP used for the JTAG/0OnNCE link. Loading, saving and examining memory
and other data transfer operations proceed faster with a faster SSI clock. However, the
maximum permissible SSI clock speed is determined by the clock speed used on the
target DSP processor, and must not exceed target DSP clock / 8. When multiple DSP
processors are connected in a JTAG chain, the slowest target DSP clock must be
considered.

Clock

JTAG/OnCE
Connector

/18

PLL

TIO

Clock
PLL
Clock Out
L
3] TDI
Clock Out 5 ¢
Clock In - 5 &
2 TDO
5
Target DSP

SSi

Command
Converter
DSP

Command Converter, SSI and Target clocks must be set so that

Clock Out ZClock In x 8

Figure 5-12 Command Converter / Target DSP Clock Constraints

The SSI port in the Command Converter DSP56002 used for the JTAG/ONCE serial link,
is controlled by the value stored in Command Converter memory location X:$6, SSICLK.
This value is used to initialize the SSI control register CRA on the Command Converter,

and may be altered to control the SSI clock speed.

See the 56002 User Manual for full SSI details; briefly, CRA comprises several fields:

Bits 0-7 Prescale Modulus (PM0-PM7)—0 = divide by 1 up to 255 = divide by 256.

Bits 8-12 (DC0-DC4)—frame rate divider
Bits 13-14 Word Length control (WL0-WL1)

Bit 15 Prescale Range (PSR)—O0 = divide by 1,1 = divide by 8

5-18

DSPADSUM/AD

MOTOROLA

Functional Description

JTAG/OnCE Communications Performance

Only PMO0-PM7 and PSR should be changed, all other fields should be left unchanged.

The value for PM0-PM7 that will give the fastest link with a target DSP is given by:

PM = (2 xFcc—1)/ Ftgt

where Fcc and Ftgt are the clock speeds of the Command Converter and target DSPs;
use integer arithmetic; fractional results are to be truncated.
If PM exceeds 256, set PSR to 1 and divide PM by 256.

The PLL oscillator in the Command Converter DSP56002 (rev 6) is controlled by the
value stored in Command Converter memory location X:$16, PLLVAR. This value is
used to initialize the PLL control register PCTL and may be altered to select the
operating speed of the Command Converter.

These locations may be changed with the change command, either manually or as part of
a command file. See Section 3 for more information.

For example, the following values could be used for PLLVAR and SSICLK:

e PLLVAR: $40003 20 MHz external clock x 4 = 80 MHz system clock
e SSICTL: $1 80 MHZ system clock / 8 = 10 MHz SSI clock

After establishing communication with a target DSP device, it is possible to lose
communication if the target system reduces its clock speed, possibly as a power-saving
feature or for some other reason. To re-establish communication, the Command
Converter SSI clock rate must be reduced to the range dictated by the clock in the target
DSP.

MOTOROLA DSPADSUM/AD 5-19

Functional Description

Communicating with the Target OnCE Port

5.8 COMMUNICATING WITH THE TARGET OnCE PORT

All OnCE debug port registers are accessed via an 8-bit command. The 8-bit command
contains the register address, whether to read or write to that address, whether to
execute the opcode/operand in the pipeline registers and whether to exit or stay in the
Debug mode of operation.

There are two basic classes of registers in the OnCE port. Registers associated with port
status and breakpoints will always be accessed with the intent to stay in the Debug mode
and not to execute the opcode/operand in the pipeline registers. Registers associated
with the pipeline are the only registers which are accessed when executing
opcodes/operands and exiting the Debug mode of operation.

In order to retrieve or store information to target system memory, the Command
Converter must load opcodes and operands into the pipeline registers and execute them
while still in the Debug mode. Since the opcode and operand values may be loaded into
the program instruction latch and program data bus latch, it is possible to execute one
instruction and then re-enter the Debug mode of operation. If the opcode/operand is
executed from the Debug mode the pipeline status registers will not be updated but if
the opcode/operand is executed from the User mode the pipeline status registers will
change.

All 8-bit commands will be followed by an acknowledge from the DSO pin. All write
commands will also be followed by an acknowledge after the 32nd bit of the data has
been shifted into the DSIZOSO0 pin. A write to the PDB register with an exit to User mode
will be the only case where an acknowledge will not be followed by a write command.

In order to insure that the target system will re-enter the User mode in the correct state,
the host computer interface program will always store the pipeline register values when
the target system enters the Debug mode of operation. When the user wishes to re- enter
the User mode a go command is issued and the previous state of the machine is restored
prior to exiting the Debug mode. If the user enters the Debug mode and wishes to
change the program counter to evaluate code at a different address, a long jump
instruction is entered into the pipeline registers so that the program controller may
reload the pipeline. All data output on the target system is via a Global Data Bus
Register. To read a memory location, a register is loaded with the address to read, the
data is retrieved and put into another register and then that register value is moved to
the global data bus register. The user then reads the value of Global Data Bus.

All registers used to move data should be saved prior to executing the commands and
restored immediately after using them. Reading and writing new values to registers are
accomplished using two word opcodes which write directly to the register or move the
register directly to the Global Data Bus Register.

5-20 DSPADSUM/AD MOTOROLA

Functional Description

Communicating with the Target OnCE Port

5.8.1 OnCE Command Format

OnCE 8-bit commands consist of five address select bits and three control bits as
described in Figure 5-13. OnCE register addresses are slightly different on the 16-, 24-,
and 32- bit DSPs. An example command sequence for reading a register value follows
using the DSP56002 ONCE register addresses; OPDBR register is at address 9 and the
OGDBR register is at address 8.

7 6 5 4 3 2 1 0

R/W GO EX RS4 | RS3 | RS2 | RS1 | RSO

R/W—0 = Write Data to Register selected
1 = Read Data from Register selected

GO—0 = Do not execute opcode in OPDBR
1 = Execute opcode in OPDBR
EX—O0 = Remain in the Debug mode
1 = Exit the Debug mode to the User mode
RS4-RS0 = OnCE Register Select bits 4-0

Figure 5-13 OnCE 8-Bit Command Format

5.8.2 OnCE Port Protocol

Two of the four OnCE port pins, Debug Serial Input/OnCE Status 0 (DSI/0S0) and
Debug Serial Clock/OnCE Status 1 (DSCK/0S1), are initialized to outputs during
hardware reset of the DSP. These pins provide information regarding whether the DSP
isin STOP/WAIT mode, waiting for an external access to complete or whether executing
normally from internal RAM. These pins should have pull down resistors so when the
Debug mode is entered they will be in a deterministic state and not produce false clocks
or data.

The host computer must provide all clocks to the DSCK/OS1 when reading or writing
commands and data. All serial data is clocked in on the negative edge while data is
clocked out on the positive edge of the DSCK clock input. The maximum rate of DSCK is
1/4 of the DSP internal clock rate.

When DR is asserted the DSP program controller completes the current instruction it is
executing, stores the contents of the pipeline registers and freezes the DSP program
controller. All program interrupt service requests are held in a pending state and the
DSI/0S0 and DSCK/OS1 pins become inputs so data and commands may be
transferred.

MOTOROLA DSPADSUM/AD 5-21

Functional Description

Communicating with the Target OnCE Port

5.8.3 OnCE Debug Acknowledge Signal

Whenever the Debug mode is entered an acknowledge signal is transmitted out of the
Debug Serial Output (DSO) pin. This signal provides a means for synchronizing the host
computer to the OnCE controller. Figure 5-14 illustrates the timing protocol for the
DSP56100 16-bit architecture. The delay between the assertion of the DR and the
transmission of the acknowledge signal can vary. The DSP must complete the current
instruction being executed before entering the Debug mode. Therefore, if an external bus
access is in progress and the DSP Bus Control Register is greater than zero, the delay will
be dependent upon the number of internally generated wait states.

Also, if a bus arbitration unit currently does not permit the DSP to complete an external
access the Debug mode cannot be entered until the arbiter permits the access to
complete. This same rule holds for the Transfer Acknowledge (TA) signal of the DSP. If
the TA signal is not asserted the DSP will not enter the Debug mode until the bus access
is complete. The debug acknowledge signal is transmitted immediately after each 8-bit
command, and after the proper number of clocks required to write to a register. Also, if
an execute opcode command is given, the acknowledge signal will be asserted after the
DSP program controller completes execution of the opcode in the OPDBR.

DSCK/OS1 DSCK/OS1
DSI/OS0 DSI/OS0
8- bit Command 8- bi
cor\ﬁmgnd Converter Data command
DSO DSO
OnCE
N~ / / Data
(Acknowledge) (Acknowledge)
Write Command Timing Read Command Timing

Figure 5-14 OnCE Port Protocol

It should be noted that the DSO normally is in a high impedance state and only drives a
signal output when executing an 8-bit write command or when sending the debug
acknowledge signal. This signal normally has a pull-up resister.

5-22 DSPADSUM/AD MOTOROLA

Functional Description

Writing Your Own OnCE Command Sequence

5.9 WRITING YOUR OWN OnCE COMMAND SEQUENCE

The ADS user interface program has eight special commands that allow the user to
develop their own OnCE serial sequences. These commands allow the user to CLOAD,
CSAVE, CCHANGE, CDISPLAY, CTRACE, CGO, CFORCE, or CSTEP through OnCE
serial sequences. Users have total control over the OnCE port. They may wish to develop
their owwn OnCE command sequences which they use in a system. The Command
Converter monitor and host computer user interface allows for development of these
sequences.

Sequences consist of ONCE commands and data as described in the DSP user manual.
Sequences may read or write values to the OnCE registers in order to extract data from
the target. Sequences use a defined format so that the Command Converter monitor may
know when data is to be read or written over the OnCE port. Data that is read from the
ONnCE port is stored in the Command Converter X memory specified by a pointer in the
X memory location 4 of the DSP56002 controller. Data values that are read are stored in
the upper 16 bits of the X memory 24-bit words.

The 8-bit ONnCE commands are stored in the upper byte of the Y memory 24-bit words
with the lower byte value giving the appropriate action necessary to complete the 8-bit
ONnCE command. For example, when a OnCE read command is issued, an acknowledge
signal must be received to stay synchronized, then the proper number of clocks must be
issued by the controller to receive the data from the target OnCE port. To accomplish
this a defined set of actions will occur when a sequence byte is in the lower byte of the
command word of the Y memory.

Table 5-1 describes the actions associated with each sequence byte type:

Table 5-1 OnCE Sequence Control Codes

Seggggce Action taken by Command Converter Monitor
0 No Action
1 End of sequence—return to monitor
2 Send command, wait for ack, clock in data into X memory.
4 Send command, wait for ack, clock out data, wait for ack.
8 Send command, wait for ack
10 Send command, wait for ack, clock out data

MOTOROLA DSPADSUM/AD 5-23

Functional Description

Communicating with the Target JTAG Port

An example Command Converter Y memory command sequence follows:

800002 ;read GBR register and store in X nenory.
000004 ;wite CBCRregi ster

123400 ;val ue of $1234

090004 ;wite PDB no go, no ex.

3A1400 ;move r0, x: B - opcode

490004 ;wite PDB go, no ex.

FFFFOO ; $FFFF - operand -

880002 ;read Q@B no go, no ex. and store in X mem+1
000001 ;end of seqguence

5.10 COMMUNICATING WITH THE TARGET JTAG PORT

Devices which have an IEEE JTAG 5-wire port communicate with the OnCE port via the
IEEE JTAG protocol. A special user defined JTAG command, ENABLE_ONCE, is
executed through the JTAG state machine in order to pass serial commands and data to
and from the OnCE controller. The OnCE concept of communicating with registers via
an 8-bit command continues to hold true. There have been minimal changes to the OnCE
controller and logic. The major difference is the communication protocol has been
changed to adhere to the JTAG protocol.

5.11 CHANGES TO THE OnCE PORT PINS

OnCE port pins have been converted to JTAG pins on newer devices. The DSIZ0OS0 i/0
pin has become the TDI input pin. This pin adheres to the JTAG standard and therefore
no longer provides status information. The DSCK/OS1 pin has become the TCK input
pin. Like TDI, this pin will no longer provide status information. The DSO output pin
has become the TDO output pin. This pin no longer provides the acknowledge pulse
since it must adhere to the JTAG standard. The DRZ input pin has become the TMS
input pin. This pin no longer is used as an external debug request mechanism.

Figure 5-15 is a block diagram of the IEEE 1149.1-1990 test logic coupled to the OnCE
logic TAP Controller.

5-24 DSPADSUM/AD MOTOROLA

Functional Description
Changes to the OnCE Port Pins

TRST

|
™S

g Y
TCK

TDI %7 *

Instruction Reg.
4 bits

| IR Decode

v Y

Boundary Scan Register

Y Y

ID Register —

v Y

Bypass Register

Y Y

OnCE Logic

1Yoy

TAP Controller

Y

TDO

IR

\
R

-

Figure 5-15 JTAG/ONCE Interface

A new bidirectional pin called the Debug Event (DE) has been added. This pin provides
an open drain output signal which indicates an event has occurred in the OnCE debug
logic. This event can be an entry to Debug mode, a trace count decrement to zero or a
vectored interrupt taken due to one of the above.

The DE pin also provides an input function which acts as the debug request signal used
to halt the DSP core. The main advantage of this pin is in debugging multiple DSP
applications.

The TAP controller is a synchronous finite state machine that contains sixteen states as
illustrated in Figure 5-16 on page 5-26. The TAP controller responds to changes at the
TMS and TCK signals. Transitions from one state to another occur on the rising edge of
TCK. The value shown adjacent to each state transition in this figure represents the
signal present at TMS at the time of a rising edge at TCK.

MOTOROLA DSPADSUM/AD 5-25

Functional Description

Changes to the OnCE Port Pins

Test-Logic-Reset

1
t
0 A

Select-DR-Scan
0
¢ 0
Shift-DR '

1

= O

0

Exit2-DR

1

Update-DR

1Y o

s -

Select-IR-Scan

> Shift-IR '

Y

1Y io

Figure 5-16 TAP Controller State Diagram

The TDO pin remains in the high impedance state except during the Shift-DR or Shift-IR
controller states. In these controller states, TDO will update on the falling edge of TCK.
TDI is sampled on the rising edge of TCK.

5-26

DSPADSUM/AD

MOTOROLA

Functional Description

JTAG Instruction Register

There are two paths to the 16-state machine. The SHIFT-IR_SCAN path is used to
capture and load JTAG instructions into the instruction register. The SHIFT-DR_SCAN
path is used to capture and load data into the test data registers. The TAP controller will
execute the last instruction decoded until a new instruction is entered at the Update-IR
state or until the Test-Logic-Reset state is entered. All communication with the OnCE
port is via the Select-DR-Scan path after the TAP controller has decoded an
ENABLE_ONCE command.

5.12 JTAG INSTRUCTION REGISTER

The DSP IEEE 1149.1-1990 implementation includes the three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and four public instructions
(CLAMP, HIGHZ, IDCODE, ENABLE_ONCE). The TAP controller contains a four bit
instruction register. The instruction is presented to an instruction decoder during the
Update-IR state. Table 5-2 illustrates the four bits (B3-B0) used to decode sixteen
instructions.

Table 5-2 JTAG Instruction Register Encoding

B3 B2 Bl BO Instruction
0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD

0 0 1 0 IDCODE

0 0 1 1 RESERVED

0 1 0 0 HIGHZ

0 1 0 1 CLAMP and BYPASS

0 1 1 0 ENABLE_ONnCE

0 1 1 1 DEBUG_REQUEST

1 X X X BYPASS

All other encodings are reserved for future enhancements and will be decoded as
BYPASS. The Instruction Register is reset to 0010 in the Test-Logic-Reset controller state.
Therefore, the IDCODE instruction is selected on JTAG reset. In the Capture-IR state the
two Least Significant Bits of the Instruction Shift Register will be preset to 01 where the 1
is in the Least Significant Bit location as required by the standard. The two Most
Significant Bits may either capture status or be set to 0. New instructions are shifted into
the Instruction Shift Register stage on Shift-IR state.

MOTOROLA DSPADSUM/AD 5-27

Functional Description

JTAG Instruction Register

5.12.1 ENABLE_OnCE (0110)

The ENABLE_ONCE instruction enables the JTAG port to communicate with the OnCE
state machine and registers. It is provided as a Motorola public instruction to allow the
user to perform system debug functions. When the ENABLE_ONCE instruction is
invoked, the TDI and TDO pins will be connected directly to the OnCE registers. The
particular OnCE register connected between TDI and TDO is selected by the OnCE state
machine and the OnCE instruction being executed. All communication with the OnCE
instruction controller is done through the SELECT-DR-SCAN path of the JTAG state
machine.

5.12.2 DEBUG_REQUEST (0111)

The DEBUG_REQUEST instruction asserts a request to halt the core for entry to Debug

mode. It is typically used in conjunction with ENABLE_ONCE to perform system debug
functions. It is provided as a Motorola public instruction. When the DEBUG_REQUEST
instruction is invoked, the TDI and TDO pins will be connected to the BYPASS register.

5.12.3 Polling for Chip Status From the JTAG Port

Two DSP core status bits are accessible by reading the OnCE Status/Control Register or
when a JTAG instruction is entered in the SHIFT-IR state. Table 5-3 describes the two
status bits of the DSP core. To insure synchronization of an external JTAG controller and
the target DSP, the status bits should be polled after entering commands which do
external memory accesses. This will insure that external accesses with wait states or bus
arbitration will terminate correctly before trying to enter any new commands associated
with executing DSP opcodes thought the OPDBR.

Table 5-3 DSP Core Status Bit Description

Function | OS1 | OSO Comment
Normal 0 0 | DSP core executing Instructions
Stop/Wait 0 1 | DSP core in Stop or Wait Mode
Busy 1 0 DSP doing external or peripheral access
Debug 1 1 |DSP core halted

5-28 DSPADSUM/AD MOTOROLA

SECTION 6

HOST COMPUTER CARD/COMMAND
CONVERTER SUPPORT INFORMATION

MOTOROLA DSPADSUM/AD 6-1

Host Computer Card/Command Converter Support Information

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

INTRODUCTION e 6-3
HOST INTERFACE CARD BUS SIGNAL DESCRIPTION 6-3
HOST COMPUTER INTERFACECABLE. 6-5
JTAG/OnCE INTERFACECABLE. 6-6
HOST COMPUTER CARD BILLS OF MATERIALS 6-7
COMMAND CONVERTER BILL OF MATERIALS 6-10
HOST INTERFACE CARD SCHEMATICS 6-13

COMMAND CONVERTER CABLES AND SCHEMATICS6-22

6-2

DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Introduction

6.1 INTRODUCTION

This chapter provides the connector signal descriptions and parts lists for hardware that
is required to run with the ADS software. This list includes the host interface cards, host

interface cable and the Command Converter card.

6.2 HOST INTERFACE CARD BUS SIGNAL DESCRIPTION

Each host interface card is designed for a unique host computer bus architecture. This
section gives each card edge connector description which is plugged into the host
computer expansion bus. This information is for reference only.

Table 6-1 PC Interface Card J2 (ISA16 Bus) Connector

Pin # Mnemonic Signal Name and Description
Al I/0 CH CK No Connect
A2-A9 D7-D0 PC Bus data bits 7 to 0.
A10 1/0 CH RDY No Connect
All AEN PC BUS Address Enable output
Al12-A21 A19-A10 No Connect
A22-A31 A9-A0 PC Bus address bits 9 to 0.
Bl GND PC ground
B2 RESET PC reset signal,(positive true).
B3 +5v PC+5V
B4-B8 No Connect
B9 PC +12 V
B10 GND PC ground
B11-B12 MEMW/MEMR | No Connect
B13 oW I/0 write command,(negative true).
B14 IOR 170 read command,(negative true).
B15-B20 No Connect
B21 IRQ7 PC Interrupt request 7,(Printer), NOT USED.
B22-B23 No Connect
B24 IRQ4 PC Interrupt request 4,(COM1), NOT USED
B25 IRQ3 PC Interrupt request 3,(COM2),
B26-B31 No Connect
MOTOROLA DSPADSUM/AD 6-3

Host Computer Card/Command Converter Support Information

Host Interface Card Bus Signal Description

Table 6-2 Sun 4 SPARC (SBus) Connector

Pin# Description Pin# Description Pin# Description
1 GND 33 PA(06) 65 D(18)
2 BR 34 PA(08) 66 D(20)
3 SEL 35 PA(10) 67 D(22)
4 INTREQ1 36 ACKO 68 GND
5 D(00) 37 PA(12) 69 D(24)
6 D(02) 38 PA(14) 70 D(26)
7 D(04) 39 PA(16) 71 D(28)
8 INTREQ2 40 ACK1 72 +5V
9 D(06) 41 PA(18) 73 D(30)

10 D(08) 42 PA(20) 74 SIZ(1)
11 D(10) 43 PA(22) 75 RD
12 INTREQ(3) 44 ACK2 76 GND
13 D(12) 45 PA(24) 77 PA(01
14 D(14) 46 PA(26) 78 PA(03)
15 D(16) 47 DTAPAR 79 PA(05)
16 INTREQ4 48 -12v 80 +5V
17 D(19) 49 CLK 81 PA(07)
18 D(21) 50 BG 82 PA(09)
19 D(23) 51 AS 83 PA(11)
20 INTREQ5 52 GND 84 GND
21 D(25) 53 D(01) 85 PA(13)
22 D(27) 54 D(03) 86 PA(15)
23 D(29) 55 D(05) 87 PA(17)
24 INTREQ6 56 +5V 88 +5V
25 D(31) 57 D(07) 89 PA(19)
26 S1Z(0) 58 D(09) 90 PA(21)
27 SIZ(2) 59 D(11) 91 PA(23)
28 INTREQ7 60 GND 92 GND
29 PA(00) 61 D(13) 93 PA(25)
30 PA(02) 62 D(15) 94 PA(27)
31 PA(04) 63 D(17) 95 RESET
32 LERR 64 +5V 96 +12V

6-4 DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Host Computer Interface Cable

6.3 HOST COMPUTER INTERFACE CABLE

The 37-pin cable which hooks to the host computer is called the host computer interface.
This cable provides the signals and power to the Command Converters.

Table 6-3 Host Computer Interface Cable

Pin# Mnemonic Signal Name and Description
1 INT_ACK Host ack of ADM service request
2 ADM_GROUP CC group control flag from Host
3 HOST_ACK Host ack of ADM data transfer request
4 ADM_ALL Host signal which selects all ADMs
5 ADM_RESET Host signal which asserts CC(s) reset
6-8 ADM_SEL2,1,0 CC address select signals 2-0 for one of 8 CCs
9 HOST_REQ Host signal which requests CC data
10 ADM_REQ CC signal which requests Host data transfer
11 ADM_ACK CC ack of Host data transfer request
12 ADM_INT CC service request status signal to Host
13 HOST BRK CC service request signal to Host,(low true)
14 ADM_BRK Host signal to interrupt CC(s)
15 BRACE_SEL Brace56 Emulator select signal
16-19 PD1,3,5,7 HOST/CC data bus bitsl, 3,5, 7
20-25 GND HOST/CC ground lines
26 +12v +12 volts from the HOST
27-29 +5v +5 volts from the HOST
30 HOST_ENABLE HOST signal which enables CC address logic
31-33 GND HOST/CC ground lines
34-37 PDO0,2,4,6 HOST/CC data bus bits 0, 2, 4, 6
MOTOROLA DSPADSUM/AD 6-5

Host Computer Card/Command Converter Support Information
JTAG/ONnCE Interface Cable

6.4 JTAG/OnCE INTERFACE CABLE

The Command Converter 14-pin connector is hooked to the target system through the
JTAG/0ONnCE interface cable. These signals provide the control signals to as many as
twenty-four target DSP or other JTAG devices.

Table 6-4 JTAG/OnCE Connector J3

Pin # Signal Signal Description
1 TDI/DSI Target JTAG/ONCE Serial Input
2 GND Ground
3 TDO/DSO Target JTAG/ONCE Serial Output
4 GND Ground
5 TCK/DSCK Target JTAG/ONCE Serial Clock
6 GND Ground
7 DR Target OnCE Debug Request Input
8 No Connect Used as Key
9 CC_RESET Target DSP Reset Input
10 TMSO Target JTAG Test Mode Select 0 input
11 vdd Target Vdd—Supplies OnCE Buffer (HC367)
12 TMS1 Optional Target Test Mode Select 1 (not required)
13 DEZ Target JTAG/0OnCE Debug Event (input/output)
14 TRST Target JTAG Reset Input
gnd lAOAkA «__TDI/DSI D @
vee 10k rpomso @ @—
oo _AMWTEKDSCK 5y (g {eND
oep 10k vee _ 10k DR @ KEY (No Connect)
EESE;G_‘ CC_RESET @ @ TMSO (for jtag devices)
TARGET VDD C C TMS1 (for jtag devices)
TARGET VCe 10k BEZ C . TRST (for jtag devices)
CR::ERSCEJIT - (for jtag devices) 2
TOP VIEW

Figure 6-1 Command Converter Interface

6-6 DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Host Computer Card Bills of Materials

Note: This is a plug connector that has all odd numbers on the left side and all even
numbers on the right side when viewing from top. Pin 1 is on upper left side.
Spacing between pins is 1/10th of an inch. Refer to Command Converter J3
connector as an example.

6.5 HOST COMPUTER CARD BILLS OF MATERIALS

This section contains the bill of materials for each of the host computer interface printed
circuit board assemblies in the Application Development System.

Table 6-5 ADS PC-Compatible Interface Electrical Parts List Rev 2.01—06/06/96

Qty Description Ref. Designator Vendor Part #
Integrated Circuits
1 MC74LS04D Ul Motorola
2 MC74F521DW u2,uU3 Motorola
1 MC74F138D U4 Motorola
2 MC74F32D uU5,U6b Motorola
1 MC74LS00D u7 Motorola
1 MC74F245DW us Motorola
2 SN74ALS373DW uU9,ul11 Texas Instrument
2 SN74ALS575DW uU10,U13 Texas Instrument
1 SN74ALS374DW ul1z Texas Instrument
1 MC74F125D ul4 Motorola
Resistors
100 KQ R1 Bourns CR1206-1003-FVCA
10 KQ R2 Bourns CR1206-1002-FVCA
Resistor Networks
1 10 KQ—8 resistor RN1 Bourns 4610X-101-103
pack-common pullup
22 Q—8 series resistors RN2 Brady 4816-P-001-220
22 Q—10 series resistors RN3 Brady 4820-P-001-220
Capacitors
15 0.1 pF C1-C15 Murata
GRM42-6COG104K050BL
2 100 pF C16,17 Sprague 501D107M6R3LL

Note: Resistors are 5% 1/4 w carbon (unless otherwise specified).

MOTOROLA DSPADSUM/AD 6-7

Host Computer Card/Command Converter Support Information

Host Computer Card Bills of Materials

Table 6-6 ADS PC-compatible Interface Hardware Parts List Rev 2.01—06/06/96

Qty. Location Description Vendor Part #
Jumpers.
JG1 5 row x 2 berg stick R.N. NSH-10DB-S2-TG30
JG2 8 row x 2 berg stick R.N. NSH-16DB-S2-TG30
Connectors
1 J2 AMP 37-pin SUB-D Connector AMP 745097-1
Miscellaneous
1 PC Bracket Olsen 9007001
2 4-40 3/8 Screws
2 4-40 3/8 Nuts
1 AMP Female Screwlocks AMP 205817-3
2 Molex jumpers Molex 15-29-1024
Table 6-7 37-Conductor Cable Assembly List Rev 2.0 - 11/01/95
Qty. Description Vendor Part #
2 AMP Mating Connector AMP# 747319-1
1 37-Conductor Ribbon Cable 4 ft. T&B/Ansley
28AWG,stranded, .050 inch pitch #171-37
Table 6-8 Sun-4 SBus Parts List Rev. 01 May 27,1992
Qty Description Desliqgri;.ator Vendor
2 74ACT138 u10,12 Motorola
4 74ACT244 U4,7,8,9 Motorola
1 7T4ACT245 ull Motorola
1 T4ACTO02 u6 Motorola
1 74ACTO08 us Motorola
1 7T4ACT32 u2 Motorola
1 74ACTO04 Ul Motorola
1 74F374 u1l7 Motorola
1 T74F273 u1s8 Motorola
2 7T4ACT273 U13,16 Motorola
1 74F373 u19 Motorola
2 74ACT373 U14,20 Motorola
6-8 DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Host Computer Card Bills of Materials

Table 6-8 Sun-4 SBus Parts List Rev. 01 May 27,1992 (Continued)

Qty Description Des?ge:étor Vendor

1 PALCE22V10H-15PC/4 U3 AMD

1 WS57C291B-35T uils WSI

2 R pack 8 x222Q RN1,2 Bourns 4116R-001-RC

1 100k Q R1 Newark 10F305

20 | 0.01 pf Ceramic C22 Kemet C322C104M5R5CA

1 10 pf Electrolythic Axial C22 Sprague 501D106MO063LL

1 100 pf Electrolythic Axial c21 Sprague 501D107M010LM

2 24 Pin IC socket U3,15 R.N. ICE-243-S-TG30

1 SBUS Male connector J1 Fujitsu FCN-234P096-GO

1 37-pin D connector J2 Amphenol 617-C037P-AJ221
MOTOROLA DSPADSUM/AD 6-9

Host Computer Card/Command Converter Support Information

Command Converter Bill of Materials

6.6 COMMAND CONVERTER BILL OF MATERIALS
Table 6-9 ADS Command Converter Electrical Parts List Rev. 2.01—06/06/96
Qty Description Ref. Designator Vendor Part #
Integrated Circuits
1 DSP56002PV Ul Motorola
1 MC1455D U2 Motorola
1 A53-20MHz u3 Connor Winfield
3 MC74HC244DW U4,6,13 Motorola
1 MC74F245DW us Motorola
1 MC74F373DW u7 Motorola
3 MCM6206DP12 U8,9,10 Motorola
1 PALCE20V8Q15PC U1l AMD
1 MAX232CWE ui12 Maxim
1 MC74ACT161D ul4 Motorola
Resistors
1 3KQ R1 Bourns CR12060302]VCA
28 10 KQ R2,3,4,6,9,11,12,13,14,15,16, | Bourns CR12061002)VCA
18,19,22,23,25,29,30,31,32,3
3,34,35,36,39,41,42,43
2 1.8 KQ R5,26 Bourns CR12060182]VCA
4 1KQ R7,8,24,27 Bourns CR12060102]VCA
1 1 MQ R10 Bourns CR12061004JVCA
4 330 Q R17,20,28,38 Bourns CR12060330JVCA
2 100 Q R21,37 Bourns CR12060100JVCA
1 500 Q R40 Bourns CR12060500JVCA
Resistor Networks
3 22 Q RN1-3 Bourns 4610-102-220
1 54 Q RN4 Bourns 4610-102-540
Capacitors
17 0.1 yF C1-6, 8, 15, 18, 20, Kemet C315C104M5U5CA
21-23, 25, 26
23 1 uF C1-6, 10, 15-19, 21, 23, 25, | Murata Erie
27,29, 31, 33, 36, 37, 38,39 | GRM42-6X7R104K025BB
1 AT uF C7 Panasonic ECS-F1HE-474
6-10 DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Command Converter Bill of Materials

Table 6-9 ADS Command Converter Electrical Parts List Rev. 2.01—06/06/96

Qty Description Ref. Designator Vendor Part #
1 A pF C8 Panasonic ECS-F1VE-104
1 390 pF C9 Murata Erie
GRM42-6X7R301K050BB
10 uF Cl1,12 Panasonic ECS-FOJE-106K
4.7 pF C13,14 Panasonic ECS-FOJE-475K
.01 uF C20, 22, 24, 26, 28, 30, 32 Murata Erie
GRM42-6X7R103K025BB
1.0 yF C34 Panasonic ECS-F1CE-105K
10 uF C35 Sprague 501D107M010LM
Diodes
1 1IN5711 D1 Hewlett Packard
Crystal
1 27 MHz X1 International Crystal
#436161-27.00.,
Abricon
#AB-27.00MHZ-10
Fundamental Frequency
At - Cut Crystal
Transistors
3 | 2N3904 Q1-3 | Motorola
Fuse
1 |30APOLY F1 | Raychem RUE300
Light Emitting Diode
1 | Green SMT LED1 | Hewlett Packard HSMG-T400
Note: 1. X1 must be parallel resonant, 10 pF load, fundamental frequency.

2. Mylar spacer goes under crystal to insulate from PCB.

MOTOROLA

DSPADSUM/AD

6-11

Host Computer Card/Command Converter Support Information

Command Converter Bill of Materials

Table 6-10 ADS Command Converter Hardware Parts List Rev. 2.01—06/06/96

Qty Description Ref. Designator Vendor Part #
Jumpers
1 x 2 Bergstik JG1,4 R.N. NSH-02SB-S2-TG30
2 x 3 Bergstik JG2 R.N. NSH-06DB-S2-TG30
1 x 3 Bergstik JG3 R.N. NSH-03SB-S2-TG30
Connectors
1 1 x 2 Terminal Block P1 Augat NC6-P102-02
1 37-Pin Connector J1 Amphenol 617C037PAJ221
1 1 x 4 Bergstik J2 R.N. NSH-04SB-52-TG30
1 2 x 7 Bergstik J3 R.N. NSH-14DB-S2-TG30
1 2 x 5 Bergstik Ja R.N. NSH-10DB-S2-TG30
Sockets
1 | 24-PIN DIP Socket | u11 | R.N. ICE-283-S-TG
Switches
1 | SPSTMOM | swi | st
Miscellaneous
4 Ruber Feet Amatom #5186
4 3/ 4” Nylon Standoffs HH Smith
4 4-40 x 1/4” Nylon Screws Waldon

Table 6-11 JTAG/ONCE 14-Pin Cable Assembly

Qty Description Vendor Part #
IDC Receptacle Connector Dupont #66432-014
12” Flat Ribbon 14 Pin Cable Dupont #76825-014
Polarization Plug Dupont #65762-001

6-12 DSPADSUM/AD MOTOROLA

Host Computer Card/Command Converter Support Information

Host Interface Card Schematics

HOST INTERFACE CARD SCHEMATICS

6.7

€6/9T/T
T40 T 39Vvd 0T 'A3d

T'T 31avO 3I0V4d3LNI NV
1IV13d NOILVvOldav4

“ONI
VI10dOLOW

JUS]SISUOD
9(1shw 10103Uu0? 0] 10]23uUuU0d WoJd) uollejuallo T uld 'T

‘S310N

‘(saor|d 2) sjaljal urens
Y1iM 10108Uu09 3joridadal
Bunreuiwiay ssew uid /¢

o

‘Buioeds 1010nNpuo)d .10
pspuens OMY ¢
3|qed uoqqiy

31719VO 30V4d3LINI NAV

Figure 6-2 37-Pin Host Interface Cable

6-13

DSPADSUM/AD

MOTOROLA

T z 4 g 9
40T :39vd
0Z A3Y 4300033 SS3¥aav
ALVa | qyvO 30V4HILNI LSOH 9T VS| AL
ane
66T 60:6€:€T LT UBC U34=A3IHIAON LSV SNimvaad P o |_
08¢ M
18 g ev
28—, oy
€8¢ o
va = op ov
88— y1 W
98 [— o1
18 g1
g Y oov-,
A
Vg
R
A
iy [ano
L
Yo
en
ano
=y UL
4 MM I 8y
zal-s 6v
9NId ¥TN ON ~ oS e o
5214 v |8 v
41 v
0T n S8 pp eTv
I T %8 g v1v ano
- d ev O stV
20A SMONI ~Nd ¢ 6T o= 91 © %gr
* sz1d W, p17@ Oer
v - o &
9 a3 has
vin ev o o1 O
g W g @ o,
w SY — e1 w:O Gg
s 1 '3 o
A ﬁ _ 4 T
ONOTJINY — 1
zn Sow~owe o o0
RES10COM 0T
INY
-
20N
Y8 LSOH S vO 9 0T 6 STOYI
¥0S1 8 L jazexs]
9 S otoul
m 2 € SO
z T €0l
190
T z 4 S 9

Figure 6-3 PC-Compatible Interface Card Rev. 2.0 (Page 1 of 4)

MOTOROLA

DSPADSUM/AD

6-14

T m m o n m
0z A3 30vd
vdoz 31va SY3LSIOTY .
QuVD FOVRIALNI LSOH 9T VS| FL
966T OT-THTT 0T UNE UON=AIHIAON 1SV onmvad™N® 24 o7 WESER] T A 3 1353y
T v0S71
™n
F5
nw 6T T
¥13S_NaV L9
€13S_NQV Cs 3 dia
MOV NI o
i o Tele] 177108 oV .a
dNoYs Wavy a0 e o i
Sdo oy 4] AAnDA 2
vAOl +11€89 EV[~ 9 £a
a0 Srva W g ra
ao o17jsd SV y &
¥0S1 aol /1199 9v[" ¢ 1a
n 000 8T (L8 sL V[¢ S
1T
Ce
- 8n
v
- 01 ano
€T n .
A z £ (z
B €T B 6 T
° n ¢ T 264 +MOI
vLESTV ~ —
zin ced n 9N
an
S
& Tz
3% < zed 0l
—o, oM
o 19 Bk : =
2ddy v g <BF3 <] e
£ady tJa o8 8 //|A_
8,3 Qre -
vady Sam el oIl —
5ady P o soF& il
e fe s E I
£LESTV g
TN
ano
Na—v n_m
vT
] *SMONI
S NV _—
O3H_1SOHY ¢
SOV LSOHY 1]
Jv_Navy 9]
013S_NavY ot
T13S_NavY 9t -
213S_NaVY 51
13534 Wavy S T
2 5
<
5 A P oo
! 2 —d 9A 9
6_d sa ot o
20A — ;=330 ﬂlo ot al < 2v
- —q €A A2
SN e Pa %z 2T za T ov
O3y_Nav £ 1BFE i o
SOV WAV] >
SidE LSOH §Fa =ore -
et ’a "O[zt 4
i 8eT4
439 8 e
00T ﬁmmi
T
T o - - _

Figure 6-3 PC-Compatible Interface Card Rev. 2.0 (Page 2 of 4)

6-15

DSPADSUM/AD

MOTOROLA

4 S 9 L
y40€ :39vd
ano sig| anovs
SYOLO3INNOD HILSYN <S1>0 ——F75—
0z A3 31va L 9THILSYA 1a | “1oa 810 s1a
QuVD FOVRIALNI LSOH 9T VS| 20N ota | NSt i) v1a
- 1d¥a ciq] Lodd <€1>a 915 €1a
9661 6v:€T:2T LT UNC UOW=A3IHIAON 1SYT BNIMvaa 5ova via| *oova <¢1>d 510 Zia
90Ma — g | 90da <t1>d ¥io _ T1d
OOVa g | *9Ova <01>a €15 o01d
sdUa TTa | oud <6>a 210 64
4 «$X0va ota | +9tovd <6>d T 8ad
sad” ze- 0d¥a soa | 00¥a HMNIN 00 <OaMW
AN —
vad 9g - LOMova soa] +0Mova *AUNIN 600 ~OQUN
—_— —— 1M L1 11
<ad se- yTOMI 70a sTv1 800
e STOMI — gog | STOMI 200 8TV1
odad ve - 6TV F————7—
[ateXYll 900 61V
5 [4xeXS]} 50a oVl b—a—
ano - eg- 1108 j0a] FOMI o 500 0zv1
aNo T - otoMl —goa | OFOM! o |12
_®T .910 —%oq] 910! [€0 v
ano~ 1e- — o €2Vl €2v1
- . 9T T00 | " Jamgs |—
(378YNI LSOH) an9™ og- 100 «3IHES
Q0A 6z~ ZNOO-VSI
J0A 8z-
e ST — i
$13S Wav 9z - ?
N I —
A ano —ggg| SN0V
aNo T EZm %0 oed | gi, ovs TV OV
Q0A 629 WS —ev — v
ano 2z~ ERC] sza | 2 v@ 2vs v oy
N B 2L e | St ES v ev
— «2ova ozd | = vvs
ano 0z- e}t Ly v
€0l BZ] SVS —aou—
Jad — vOuI 9oy SV
61 Ol vza WS ——— oy
_— SOHI v Sev
sad 8T~ soul L] N S el
- .- 9dul 8vs (—=—— oo
gad_ am Joul MWM LOul 6vS |MM« o
1ad g1 o8 o] 10SAS 0IVS —=2— o1y
€1ISWAY gr= FENEEN oTg | HS3uATY VS —zy — TIv
EWaY T o TO¥a gra | O¥0 ¢S 5w e
g _nt Diova e +Diova EIVS v e1v
NdELSOH B £O¥a YIVS F———

- et el¥le] oTa v vV
INTNQY T grs £0va STa *Qw\o w?m 9TV IV
xo<_>_n_<|§.|v =0l v1d «mu, o__ M« & SV 9TV

R LStV
o WA o1= MOl L e g1vs | LY
REEN Zig ETV__ 8TV
O34 LSOH P PIEN Trg] gFINAW 61YS ——=v e1v
L N aNovs! NIV st —
073s wav 8~ ano ord MNTO s Aqvavol — I NV
e AZT+ 509 0TV =AQY HO Ol
T13S QY 7= 0as ————
SN +SMON sog | *MON 60v__ 0d
Z1asway - pa e 1as Bov__ 1d
Es Wy oo 2o8a sog | Zoua s v za
WY e _As 608 | Mww__ vas —2ov__ £d
~ T 60YI 20l 04 sas SOV va
MOV LSOH e 20A gom | VASt oas [—¥Ov 54
[A
dNOY9 WAy z- 13539 —zpg | 13STUVSI Jas gov__ 9d
e TANOVSI cov__ 44
MOV LNI B ano T08 | cov D\
T »IHOO! TV w0 HO Ol
HOLOINNOD Nid L€ TNOD-VSI
o 10
HOLOANNOD 8VSI
4 S 9 L

Figure 6-3 PC-Compatible Interface Card Rev. 2.0 (Page 3 of 4)

MOTOROLA

DSPADSUM/AD

6-16

T z € v 9
| =[0274 :39vd
0Z A3y 'SdVO/SHOLSISTY
‘aLva 3L
966T GZ:€V:TT OT UNC UON=QIIHIJON LSVT SNIMvad
- —_— W -
dno¥o Wav dNO¥O Wavy
44
2y
- —_— W -
MOV LNI SOV LNIY
ano <4
£
\
41 oot
Wy
|_|H 35} ad VWY g l4dy
9ad 01 L 9ady
DO0A <<(
sad 1T A 9 sady
vad <t ,,>> S vady
ead €1 Wy v eady
ano ano ano ano ano ano ano A
zad T A € zady
z 2 r_\m /_\N /_\N /—\N /—\N tad ST ,,>> z 1ady
/_\ . /_\ . Ul 1o 1o 1o 1o oad 9t Wy T 0add
I 1o Ji1o =
|_|H V15 |_|ﬁ 219 |_|H 10 |_|H 010 |_|H 60 |_|H 80 |_|H 10 o
- on 20A 20A 20A 20A 20A
A
ano ano ano ano ano ano ano - _
13834 Wav ¢ >§ g 13534 Wavy
aito aiTo aito aito aito aito aiTo T3S Wav 11 AMA 9 1713 wavy
|_|H €10 |_|ﬁ 9 |_m 5 |_|ﬁ o |_|H €0 |_|H 2 |_|H 1) oS wav et | S 013s wavy
TV Wav €T A Y v wavy
20N 20N 20N 20N 20N 20N 20N MOV LSOH #T WV T yovLSOHY
A
[eEE] wmo_._ ST ,g 2 O34 LSOHY
Sdgway 9T T yygwavy
42
Ny
T 4 € v

Figure 6-3 PC-Compatible Interface Card Rev. 2.0 (Page 4 of 4)

6-17

DSPADSUM/AD

MOTOROLA

T Z € 14 S 9 L
vIOT ooy €667 £2:80:€T YT INC POM=Q3I4IAON 1SV
06/S2/2T SHY3A0D03A SS3HYAAY SNgs)
Alva I
oHoA_IS pPyS
70S1vV
6Th |T m
3dia
CRONC 2 Y
_ OA" 70S1 <9¢>q 8 ¥ PR
N3 9a v € 9 mn S84 1w 4548
Y0S1V 80STV 3 5 6628 q 8888
n SN YOSV _.H <1e>a g, & <1€>a S
n _N
c
- ms St 3._<
= (=
(D IND
<
<
= s
<e>ppv 10>Yd S
<¢0>Vd S
13534 € Hl|m JECERRS
80S1V
SN
€S0 5
e x% IM1O _ T DS
1S2
1S9 7 _d on L€ (Rzis_s
oTv - £z € (T)zis_s
e 1 n g kN
[<80>Vd_S X o/l |
s A R Y </0>Vd S e peer—aeq o 1 YRS
<0E>P 9 so ov|—¢ <90>vd_S * o1 O [E<tT>vd S
<6¢>p ST 1,0 w| € <S0>Vd_S A D
<8¢>p T oo ev <y0>Vd_S oty " b1
</c>p € 0 ov|—S <e0>Vd_S ob ol '
<9¢>p T % 1wl 29 <¢0>Vd S Hd|wi o gy
<G¢>p 0 o ovl 2 <10>vd_S 0TAZZ
<vZ>p 6 67210 8 <00>vd S en
ZPY_S
SN IV S
oMV S
T Z € 14 S 9 L

Figure 6-4 Sun Sparc SBus Interface Card (Page 1 of 4)

MOTOROLA

DSPADSUM/AD

6-18

6-19

DSPADSUM/AD

T | z € v 5 9 i 8
€0C g5vg €66T YO:VE:YT T2 INC PAM=ATIHIAON LSV
06/52/2T aoepAU| SAY SNES
‘31va A7LIL
s -
iU
Z2iu
V(S
uwylwmg N 1
He
i 4 ol (574
13s3y - —— s
[& o bd 2,
L7 D C (sY#d
] a o [of OF >
8 BT <IE <€>ppy
wdmr—o [_ <Z5PPY SIESTY
B B C YOV LM
B s d Z0STV 1 -~
— 10
13s 3ovue St BiE—=eg O g\; 0 A e
MOV INI —g 8 SH—=oeg | on
dno¥o wav ~ © 8t re>d ar¥—5gg
5 pocy] <IZ>
€L2STV Z M ET <87>
[of] Oc
81N 3 9eT <1
€125V
91N
w(oT
, = (Tov_avay B o0y 3% zn P
<G>pd W—g ot wa._<H INCWav o
<ISpAOL | w12t |’ A O WAy —H @ Fr—=zg
<GPATT [VW19 b wg © 0V Wav % 329
<€Spae MWV—¢ i P e N49 LSOH/ 5% E—r
<p>pd g WA— 5 & 2>d i e 62>0 <0>ppv
<g>pd >g< € m w L MWM KT>PppY m a w Am. vm
<9>pd g A 4 & gl 960 N
</>pd 9 VWV @ T Te>d ub €LESTV
INY £LEST | _ P vin
ug nav A J
b Tl pason | [Ty
uuuos - v mxo<|m_tm>> TRy — n<<<|H ; __ mw MIVM on
L MOV ILINM 9z>a
OETe BiE £28 zosv 03 Nay —Sl w7 L—=pf ri—
[) £ L 92> an — 4 AAA € N 5 Sa T &
B N 12>d ¢13S_INAV S A Z S0 atl 4 m
ol el % £1 mwm 1HS3H NV 9 VVv T 6T ‘AT <1650
[ToTRCTA i s 0e>a
101 61 8T 1e>a ZNY mwm.m.d_,q
v.ESTVY JETER
£ AJV_ILidM
MOV avay
T z g v g 9 L 8

Figure 6-4 Sun Sparc SBus Interface Card (Page 2 of 4)

MOTOROLA

T | z | £ | v | g 9

40 € :39vd €66T 87:20:LT TZ INC PIM=CTIHIAON LSV

06/S2/2T
‘31va 80BURI SAY SNES .5

MOTOROLA

Figure 6-4 Sun Sparc SBus Interface Card (Page 3 of 4)
DSPADSUM/AD

_ i T 5 . a9 LSOH/
us i m: =
&7
TN oo .
¥0S1V 207N
n zn
° P <1>beuw”s
= <¢>boyw|”s
o <e>bayl's
e L
e 4 SET—]
o P
1%y; begmr
<p>boyuIs
XNN3A <G>bayuI™s
otn <9>bayu s
</>bays
&)" - NI 8d
134 _ 3d 39
¢ []8T <00~ s Z 8T <80>d S 4 BT <97>a° S
v | 1 | 9T <1050 S v 79T <60>0 S iZ 9T </1>d° S
9] T [¥ <eo>ad s] WI vT <01>d S 9 7T <81>d S
8] 2T <co>a s 38 2T <t1>d S 8 ¢l <67>A S
vyeSnv Y¥ZSNV JaAS I\
N N 6N
061 fos1! 6T
134 134 13d
1] C]6 <v0>ds TT [1 |6 <e>d s TT [1 |6 <02>aS
€T] [[Z <50>0'S €| 1 |Z <e>d s €| { | Z <te>d s
St L[S <e0>ds ST (|5 9>d’s ST | { |[S <ze>d s
L1 gmmqm <.0>d S IT [€ <G1>d S IT| © [€ <€>ad s
rveSnv vyeSv
201 vn 201 in 20A 6n
T 4 € 4 S 9

6-20

T 4 € 4 S 9 L 8
yjopy 9bed
96 ATT+ AT 8y
06/5¢/cT aoeNBIU| SAY SNIS %0 _ reqeld s

‘areq BpL G6 13534°S - W
: v6 </z>vd S <9>vd S oy
4K = ~ €6 <S¢>Vd S <vz>vd S oy
€66T G5:25:9T TZ INC PAM=A3I4IAON 1SV __t6 3 Moy s ——

26 pub VS a4
T6 <€2>Vd S <eevd s ey
06 <Te>vd S <0z>vd S fag >
sionoede) Buydnosag _— _ -

68 <6I>Vd S <8T>Vd S v
88 207 ovYs oy
pu pu __88 _ S__or |

w N .8 <LT>Vd S <91>Vd S 6E
Jnoot e T® T® “—g——=9>0d 98 <GT>Vd S <bT>vd S~ gg
220120 AZT+ 290 “oe <v>ad S8 <€T>Vd S <CT>vd S e
e =e>ad 78 pub (0Mv's oc ?
[44e) 12O e <0>ad €8 <TT>Vd S <0T>Vd S ge ?

e pub 28 <60>Vd S <80>Vd_S e
—— pub 18 </0>Vd S <90>vd S e
uc,m_w\ E,m_w\ pup pub pu <& pub 08 oon d4ITSs zs

/ﬂ /ﬂ /ﬂ THMH_ 6. <50>Vd S <v0>Vd S 1€

oe 318VN3_LSOH b = _

T T T T T ez o 8, <€0>vVd S <20>vd S e
A DA gon oon 00A “5z 200 L. <T0>VYd S <00>vd S 62
“z 20A 9/ pub </>boywi’s 8z >
0c0 610 gro 10 910 52 AZT+ G/ ’ pd’S (ns”s — 0z
gz pub vL Mzs’s 02ss ™ 9z
Sz pub €L <0e>d s <1e€>d S Sz ’
pu pu ez pub zL oon <9>boyi’s e
INT'0 are /a_w\ M UCM UCM UCM J pub T <8z>d’ s <62>a S |VMN

020-1D A|._”N pub 0L <9¢>d S </¢>a s 22
r T 7T T 7T — pub 69 <vz>d S >as 12
20A 0N (014 _ boxu P I N

20A 20A 20A ———=</>4d 89 pub <G>bay| s 02
Ahvan_n_ L9 <zz>d’ s <€z>d S 61
S19 V19 g0 zIo TIO S 99 <0z>a°S <1>as g1
LT —_— — —c

T =1>Ad S9 <gT>d S <67>d S T
R 79 207 <p>boyuis — o7
pu pu pu pu pu ST 73S 30vyd 9 7 «wI>dS <OT>0s o7 N
M M M vT Mg nav 0 <s1oqs Tas
T T T T T €T Ndg LSOH/ — o <eloa s <as
A A 950 99A 99A 147 ._.z_|_>_n_< o pub <esboyiuls — o7 N
A|§|w.ukrm_m nay T 65 <11>0S <r>as 1t
o 6 e o ® O 85 <60>0°S <©0>as o1
6 039 1SOH — _ o |
8 073S_Wav 48 ,</0>0's poedS__ 6

—. <Z>baYylu

u u z 1735 _Wav 98 |, o ebeduls 8

P P pu pub pu - G5 <G0>a S <v0>0_S .

—2 ¢3S hav ¥S <€0>d S <¢0>a s 9
S 13S3d_nav — _ _ ,
T 1T 7T 7T 7 v TV Nav — & ,<10>0s <00>dS___ g |

2A 20A — 25 pub <T>bayurs v
J0A J0A Q0N S MOV 1SOH % w<|m |_m_WIW|mv
SO 128] 50} 20 10 Z dNOod9 ED{ % Om_‘lw ueS 5 R
' 2 POV NI 6 NS ucm2|ﬁv
T z £ v s 9 L _ 8

This card is not supported on Sun Sparc 1 and Sun Sparc 1 Plus systems.

Note:

Figure 6-4 Sun Sparc SBus Interface Card (Page 4 of 4)

6-21

DSPADSUM/AD

MOTOROLA

Host Computer Card/Command Converter Support Information

Command Converter Cables and Schematics

6.8

COMMAND CONVERTER CABLES AND SCHEMATICS

06/t 145
I 401 39%4 01 AT

0" 137992 d3s0d

0L AN 2D AW CD
17131

HOI1%J149%4

"6l
I CLDE

dedmoal] ¢

PERNSUL TOMBE | -22
PNYE Qe B A0 buwado
UE Y Br o0 speds 2
UILENEUL aad YL
Jdaddoa pauuly papued;s
(OE Xa [y adlmamegal] 7|

a1l
JUNTFLTET]

(L

A20[q apedg

118%] d43m0d
d0L4IANDD ANYHIHOD

1517
S1d%d

Figure 6-5 Command Converter Power Cable

MOTOROLA

DSPADSUM/AD

6-22

€6/T€/8
T40 T 39vd 0’2’ A3y

02319vO 3OV4d31NI

3ONO dOLHIANOD ANVININOD
“1IVL13d NOILVOldav4

"ONI VIOHOLOW

JUS]SISU0D 9] Isnw 10103uu0d 0]
10]139UU0J WoJ) uoljeluslo T uld 'T

‘S310N

¢# uld

$10]98UU09 Y10q
Jo g uid ul Aay ade|d

VT# Uld

/

‘Buioeds 1010npuo)d ,,05°0
pspuens O9MY 82
3|qed uoqqry

379VvDO 30V4d31NI 3ONO
HO1d3IANOD ANVINWOD

‘(3@1gvo NoggIy) vI-T.LTRY
‘AsIsuy g

(ATM) T-Md

(431134 NIVYLS) SAIMPT-HSji
"(N1Q NIdPT) d1-MdN ¥TO-SAl

"Juabnpn/uosuiqoy
-1SIT7S14dvd
‘uoneualo

T# uid ayealpul 01 9|qed
uoqqu uo pueq anjq asn

T# uld

TT# uld

-

yojou

-

"(saoeld 2) sjalal
urens Yum J010auuod
Buneuiwial

ssew uid T

Figure 6-6 Command Converter OnCE Interface Cable

6-23

DSPADSUM/AD

MOTOROLA

T 4 € 4 S 9 L
§40T ‘39Vd
. . M10/13SIH/HTTI0HLNOD
AT E IS I =} .
VA 73 183ANOD ONVINNOD L
/66T TS:¥E:ST LT uer U4 ONIMVHA
JOV443ILNI IONO 0T +d8
0 o—0 «NIL3S3d e DDA
0T LM
9 osa mﬁ,ﬁ__\mmwx ¥ TAN/OQOW
ef -ddo v, | «¥Q VOUINAON 2 ~804dI/ad0W
aNo "¢ £ iSa o/ | Isa ¥ 9 VOUINAON
MOsa T. | MOsd
v »13S34 0T NS TTIGNT
vIad 9z | viad ANOd 57 4110 10
€1dd Te | e1ad OONd 77 LT
crad 8z | zrad X007d ¢y woo1d 2N o1
179d 0c | TTad m_f_xz_m 9 LINId Y|
ot4ad 22 | orad Od ¢ dvod /1 D0A MOTS MOTS MotTl Mot MOT, MOT
6dd vz | 68d 40 INdYD 4d ose
gdd <o 8ad 1NOMO ¢ ANINO10 60 125! €Td ccd 64 cvd vy
WX =
lad Z€ | L8d WLX3 7 Av1X O0A OOA OJOA 2OA DDA D0A
94d ee | 99d NI ST
sad ge | sad 80d
vad 8¢ | vad Jod &2 80d
€dd 6€ | €ad 90d I.Flmm wwm_
2dd Ty | ¢4d S0d Fpo——— o
1dd €y | Tad vod g 559
oad vy | 08d €d g g5y
20d o
olL 09 | OlL ol (4 2od 5 1o
o
%S9 I77| «sq 0od F———-—-—— Tod m S
N9 29 | «Nd sv 09d L ZHINOZ
*O9d ¥9 | x99 €eae—— 0
»dg g9 | «dg P <€2>a w en
*LM €9 | «M 120 Fpr—————— <ce>d
*AIX 8L +AIX 0za —pr——— 224
*M 19 | =M 610 —gp————— <0z>a anos
Nalt] 89 | Q¥ g1a <6T>0
«Sa 08 | xSA /1a <81>d 41 210
xSd 28 | «Sd otq &L MWM ' .
<GT>V 70T | STV s1a Hl_, zc¢ !
|~ VET <GT>a NT
<vT>V 90 v $1a 10 8D
<€T>V ¥0T | €TV e1q EET <v1>d ano _L<<(
TeT
<<T>V 20 v ad g <€T>a 20A 0T SIa 94l
<TI>V T0T | TIV 11a <21>a T
<0T>V 00T | 0TV > orq 82t <I1>a HHL
<65V 86 | 6V a 60 |Nuﬂ|amﬁ <01>d £1LNO LD
<8>V 16 | 8Y m_ 84— MMWM M1 13S3d 1Sy
<[>V 96 | LV 8 KAt g ¥06ENZ Ld GGSaN
<>V S6 | 9V W el e A 0
<G>V 26 | sV a sa\—p—— <9>d zn
<>V 88 | ¥V va <5>Q
<ge>V L ev ea 91T <v>a -
<>V 9! o za vIT <¢>d
<T>V v8 | TV 1a |._”._”._”|m: <¢>a 8y
<0>V €g | OV 0d f—gr—— <1>d
<0>a J0A
n
T 4 g 4 S 9 L

Figure 6-7 JTAG/0OnCE Command Converter Schematic Rev. 6 (Page 1 of 5)

MOTOROLA

DSPADSUM/AD

6-24

T z € 4 S L 8
§40z 39vd
ZoATd alvg| IOVHYALNI 3ONO/OVLC . aNo
: HILYIANOD ANVNNOD FLL o“/_w
L66T YO:SE:ST LT uer b ONIMVEd
ano vod et 61
stPL AN9S[g €0 vwm%:
o —ww
Ol .ﬂlmw «3d dngLl JO0A MT
Al 6 ano vou
48 13 61
vIPO g3of; \%_
~ o d0 —.
€ S ot
ano m M_ . z SWH N[IeEEE -~ W
% W * T vn 0T
0€€e
¢10d aoalgy ~ ey 0T L1d
T9TLOVYL - 4ng1™00A ans 4N9100A 98y
vIn
6T 4Nn91 00A T
L2y
L0d L et _
YvZOH dNngL O0A
N —
D
y1ad T 1~ 6 -
ot oM 4ngL 00N
€Y vNn . »Z3d_ €T, _¥T «lSdl
20N ! Mwryvs Qan 1T, J2r_ TSWL
e1ad g1~ <t or | 1 .13S340 6. 0T OSWL
S0t vY2OH 8| | L _ Hd Lo o8 OAIN
ogy N . 9 ,,>> S _ MOSABOL G 9 NI O34
2o - ,§ S osa/odL e m ¥ aNs
§0d 91— T Z T sanaL ¢
Y¥ZOH
30T er
6T vn
9N T JOV4H3LNI
ano iz 9T e 3ONO/OVLL
— vZOH
¢ddngTood ~ 1
0ot T YN gor
T2y S
80d 71 mﬁ —
N
ans 4ngL 20A
1394Vl €2
b AGHZT
103713S FOVLIOA
90d
T z € 4 S L 8

Figure 6-7 JTAG/0ONCE Command Converter Schematic Rev. 6 (Page 2 of 5)

6-25

DSPADSUM/AD

MOTOROLA

T z € v g 9 L 3
§40¢€ :39vd
.) 3OV4HILNI LSOH anNo
CONFH BVA | 319300 aNviaWoD T aNO o *1LO313S/81d
/66T 22:G€:ST LT Uer u4=a3I4IdOW 1SV ONIMvHd 94 I
Mv3dd LSOH = " edod
€1 NS'T
FEYNILSOH < —g5g VOGENZ oy 03— 20N
13SIHNQY ¢ ——
El [oel 8dd
A - 61
dNO¥ONaY <=, VW dNO¥O Wavy STTO T 69d
TvWay 00€ 10 yr oted
ZiasnNay g — 8ed 13,990 er
T13SNAY «———— mumo al’s
01ESWAY —o—— ouow me
HOV INI 2 Stoart
NHINAY ans
- P4 o |z|@ gled
73S 1009 “9z > 215 N T
—==
-z¢ | HEHE 190 30
T R _
- ! m =R 2 oy [OA] 8T <GT>d
A 1Ty 9 [y (A 7T <{1>d
ano 1 8 By tA 2T <8T>a
=z 1 Q0A PbZOH
— anN° on 6T - +Sa
— ——\W—— T0d 2 0T
. 62 | 2 T ve L L0 S
O0A -8z 0T z 13s d3S 1T Py {0\ 6 <6T>d
— == |
-2z €y m MOVLNI/0Za ET IV (PN £ <0ec>d
MOVLSOH ~6 o ST V2N S <12>0
o) m
dLSOH 6 AL ano IT BV EA ¢ <zz>a
- 6
oo _£€ 0T PYZOH
73S 30v4d “a1 _ W o
MOVINGY = ol M5
ININGY u g | W
= A
d3NAY -MM o w2 MOV1SH/TZa aNo
Lagd P A\
9agd zz eNd ano e
saad s T
e 2
o IR wh T o
Tagd ¢ E O3d1SH/ZZa 3 ua
& cNd 8 s l9d
oagd - g Ty Lad
A VAN _ Sifta oy gad
i 3 VW\ 7 e 8 v
w5 T]f8 V[y8d
T w— g8 wv[s €dd
2w £ sTle [2ad
a 1% v 1ad
z INY 8T ‘8z 0dd
an Sved
T z £ 4 S 9 L 3

Figure 6-7 JTAG/0ONnCE Command Converter Schematic Rev. 6 (Page 3 of 5)

MOTOROLA

DSPADSUM/AD

6-26

T z € v g 9 L
G40V :39vd ano
- 21907 WOANVH/WYHS o
ALVA | ¥3193IANOD ANVININOD 3TLL ano 963
- ——— 103138 Vv, o€
L66T ¥¥SEIGT LT Uer U4=A3I4IQON 1SV ONIMvad ano | 2% o1]
et ss3yaav
zor
Nl G0d
S "z Zd
T 2
Y ol £ d
_
+LN013S3 ———W\——57|%g v od
ST 730179 g MHaway
Son oy =ea °Ig Ztad
ey 68d tq N7 o13swav MOTS 0T 0T
0Ee 235 4i—g T73sWav 9Ty STH{ vTH T
,T10313S/8Ta 02 8
82y 2103135 50 sg m" 6 ¢asnav
+*a0dI/laaon o AAN/OAOW 570, » 0T MM/M__\,_Q\ ;
—q T MOt
ozy TISHL 1 20A
’ A Mg J18VNILSOH 6ed <
N7 13s3dnav
P €T
POA ez MOVLISOH
727 g0z 20A
97 A
NTTZ N T N T
*o 0Z <ST>V *w 02 <ST>V *o 0C <ST>V
x 2z «Qd x 2z «ad X 2z «Qd
o] o
STv|_%¢_<e>v vl % <e>v o[92 <e>v
Ty 4 <Pv Ty —&— PV v —&— SV
oTY €C <65V o1V €C <6>V oY €2 <6>V
ey |_Te_ <er>v v |_Te_ v v | _Te_ e
v </>V av|_re_ <>V oy |_ve_ <>
8V gz <gv o TGz <ev o NSz <sv
<>a 6T 149 LYiE <oy >0 6T |35 gyl £ _ <oV <€>0 61 o0 gyl £ <oV
<1>a 81 1292 N[<y <50 8T |00 ou[v <p>v <c>a 8T |00 oy| v <V
<v1>d 2T 199 SYITg <ooy <9>q 2T |70 e <ov <1>a 2T |70 e <ov
<«gr>a o1 179 YVio T <gsv <>a ot |70 [W[Te <ev <02>0 9T g0 o[9 <ewv
<9T7>d ST €0 ev / <0T>VY <8>d ST 20 2v A <0T>V <0>d ST 20 2v A <0T>V
<61>a €1 |9 V[g <IIov <aaer |90 SV <tV <e>aer 49 WIe T <tov
«g>a 2t 179 WiIs <y 01> L[5 oyl 6 _ <PV <e>0 el |0 vl 6 _ <€V
<1>a T 199 Yo sy <6>a 11 0T <vTI>V <1>d 1T 0T <vI>v
290290 290290 290290W
0N 6N 8n
T z € v g 9 L

Figure 6-7 JTAG/OnCE Command Converter Schematic Rev. 6 (Page 4 of 5)

6-27

DSPADSUM/AD

MOTOROLA

T z £ 4 g 9 L 8
406 F9vVd
.) ONI1dN0D3A / VI¥3S
29A3Y 3LVA | y3143ANOD ANVYINWOD 0L
66T 6S'GE'ST LT UBL U4=A3IHIGON LSV ONIMvHd ofﬂo ano ans or_ﬂo anos oz__w_o ﬁm__u_o of__/_\o
L . o 1 upe
ELR A 4 1o L 410 410 T 41 To T 4T0 T 4nro T 4nro
YOLOINNOD ¥IMOd 610 T e T 20 160 0£ 622 82 £ed
20A 20A 20N 20A 20A 20A 20A 20A
anNo /7\ /7\ ﬁ_v
¢ ano ano ano ano
10 4 o1 T | ano o(_/__\o ano ano ano 1 1 1
980 1) v0'E ato Ly dra L ogiro L it L ito 1o 4110 1o
T 4l 1o aito 410 ELR A T T T
~ 920 T o 25 T e25 T 225 T 1z9 020 810 JA%e}
DOA I O0A DOA DDA 39A 39A 99 J0A O0A J0A
ano ano ano ano ano ano ano ano ano ano
L Jfto 0 Jito L LR 0] L Jnto L Jito L Jfto N Jfto L 410 L Jlto N Jito
ano T g0 T .60 T oo T o T oo Teo T v T e T 2 T 15
QoA 4091799A 997 20A 20A 20A 20A 20A 20A 20A
“
SHOLIOVdYD DNITdNOD-3d TvO01
1031
005 ano
ovy
gl an ot
— - ano 4ot
z44ng 90d 2| zio
20A)
50T B oon ¢ T
' ﬁr — 61 ﬁ J3s"y3s 110 L s
-10 40)
__/m_O My ¢ € |m[r_\w
_ sy ans
T34N8790d 7 [0y (04 €T © 20A S10 1 ZEIXVIN
_ +10 +20 T V10
13s F0vdEd ¥ H,qH; 91 | T v 4
_ s 12y oc ¥10s
90d 9 [ey[¢ ¥T Td4dng 90d 0
B <H A _ ST(OTd I] 9 yis
dnNoY9 Wavy 8 [y EA 2T o 11¢d ocli—, °T s
¥¥ZOH s L2 oTL
v
€In €In zIn JOVHYILNI
zod 00d WId3s
zr
T z € 4 S 9 L 8

Figure 6-7 JTAG/OnCE Command Converter Schematic Rev. 6 (Page 5 of 5)

MOTOROLA

DSPADSUM/AD

6-28

APPENDIX A

MOTOROLA DSP OBJECT MODULE
FORMAT (OMF)

MOTOROLA DSPADSUM/AD

A-1

Motorola DSP Object Module Format (OMF)

A.l INTRODUCTIONo e A-3
A.2 RECORD DEFINITIONS A-4
A2.1 Start Record A-4
A.2.2 End Record. A-5
A.2.3 DataRecord A-5
A.2.4 BlockdataRecord A-6
A.2.5 SymbolRecord e A-6
A.2.6 CommentRecord A-7
A.3 OBJECT MODULE FORMAT EXAMPLE A-7

A-2 DSPADSUM/AD MOTOROLA

Motorola DSP Object Module Format (OMF)

Introduction

A.1 INTRODUCTION

The Object Module Format (OMF) produced by the DSP cross-assembler is an ASCII file
consisting of variable-length text records. Records may be defined with a fixed number
of fields or contain repeating instances of a given field (such as instructions or data).
Fields within each record are separated by whitespace characters (blank, tab, form feed,
newline). The general format for a DSP OMF record is illustrated below (“ws” represents
whitespace):

_<TYPBE><ws><fi el d1><ws><fi el d2><ws>. . . <fi el dn>

Every record starts with a Type Definition Field, which begins with an underscore ()
character. For records with repeating fields, the underscore character indicates where
one record ends and another begins. A scanning program would examine the first
character of each field looking for the underscore character. If found, the program would
know it had encountered a new record and would use the remainder of the field to
determine the record type. The Type Definition Field may be upper or lower case,
although the assembler guarantees upper case output.

The only exception to this processing is when a comment occurs in the object file as a
result of an IDENT or COBJ assembler directive. Comments in the object file are
bracketed by newline characters and thus appear on a line by themselves. Since the
location of comment fields in an OMF record is well defined, scanning software need
only look for an opening and closing newline sequence to determine the bounds of a
comment. The assembler will fill lines in the object file to a maximum of 80 characters,
using the minimum white space (one blank or newline) to delimit fields. Records with
repeating fields may be of arbitrary length.

MOTOROLA DSPADSUM/AD A-3

Motorola DSP Object Module Format (OMF)

Record Definitions

A.2 RECORD DEFINITIONS

There are six DSP OMF record types defined

= Start

e End

= Data

= Blockdata
e Symbol

= Comment

Note: Currently, Data records are used for both code and data.

A.2.1 Start Record

Format:

_START <Mbdul e i d> <Versi on> <Revi si on nunber >
<Corment >

The Start record begins an assembler Object Module File. The information contained in
the record corresponds to the parameters in the first valid IDENT directive encountered
in the assembler input. If no IDENT directive is given, the assembler uses the input file
name (without extension) as the module name, supplying zero for version and revision
numbers and an empty Comment field (which appears as a blank line in the object file).

The module id field conforms to the definition of a legal assembler symbol, that being a
series of up to eight ASCII characters, starting with an alphabetic character and followed
by alphanumeric characters or the underscore (_). The version and revision numbers are
ASCII numeric values corresponding to the expressions found in the IDENT directive.

A-4 DSPADSUM/AD MOTOROLA

Motorola DSP Object Module Format (OMF)

Record Definitions

A.2.2 End Record

Format:

_BN\D <Entry point address>

The End record terminates an Object Module File. The only field in the record contains
an address which is the result of the expression in an END directive. If no END directive
was encountered in the assembler source, the address is the result of the expression
found in the first valid ORG assembler directive with a reference to runtime program
memory space (P). The address is in ASCII hex format; it contains only the hex digits
0-F, with no special radix characters such as a leading ‘0X’ or trailing ‘H’. The address is
in the range 000000000-FFFFFFFF.

A.2.3 Data Record

Format:

_DATA <Menory space> <Address> <Code/ data> . ..

The Data record is used to load values based on the specifier in the memory space field.
The Memory Space specifier is a single character representing the memory space to be
loaded (X, Y, L, or P). The character may be upper or lower case, although the assembler
guarantees upper case output. The address is an ASCII hex value indicating where to
begin loading in the specified memory space. It contains only hex digits 0-F, with no
leading or trailing radix characters. The range of the address is 00000000-FFFFFFFF. A
variable number of ASCII hex values to load follows the starting address. These values
are in the same format as the load address, that being hex digits only with no radix
indicator. The range of the values is between 0 and FFFFFFFF. The list ends when a field
is read with an underscore in the first character position, signaling the start of a new
record.

In the case of Data records with an L space memory specifier, the data values will be
paired high:low such that the first data value in the pair will be loaded into the X
memory space and the second data value will be loaded into Y memory space.

MOTOROLA DSPADSUM/AD A-5

Motorola DSP Object Module Format (OMF)

Record Definitions

A.24 Blockdata Record

Format:
_BLOKDATA <Mem space> <Addr > <Qount > <Val ue>

The Blockdata record provides a shorthand method for loading repeated data values, as
might appear in a block constant storage (BSC) assembler directive. This makes the
object file more compact, but requires more work on the part of the loading software.

The space specifier is a single character representing the memory space to be loaded (X,
Y, L, or P). The character may be upper or lower case, although the assembler guarantees
upper case output. The address is an ASCII hex value indicating where to begin loading
in the specified memory space. It contains only hex digits 0-F, with no leading or trailing
radix characters. The range of the address is 00000000-FFFFFFFF.

The count field specifies the number of times the following value is to be loaded into
consecutive memory locations starting at the load address. The count value has the same
format and range as the starting address, and should be interpreted as an unsigned
integer. The value field contains the value to be loaded. It has the same format and range
as the values in a standard Data record (hex digits 0-F, range O—-FFFFFFFF).

A.2.5 Symbol Record

Format:

_SYMBQL <Mem space> < <Synbol > <Address> > . ..

The Symbol record contains information about symbols (labels) found in the assembler
source file. Symbol records are created at the end of assembly as the result of a SYMOBJ
directive or the SO assembler option. The space specifier is a single character
representing the memory space to be loaded (X, Y, L, or P). The character may be upper
or lower case, although the assembler guarantees upper case output.

An arbitrary number of symbol/address pairs follows the memory space attribute. The
symbol field conforms to the definition of a legal assembler symbol, that being a series of
up to eight ASCII characters starting with an alphabetic character and followed by
alphanumeric characters or the underscore (). The address is an ASCII hex value
indicating the address at which the symbol was defined. It contains only hex digits 0-F,
with no leading or trailing radix characters. The range of the address is
00000000—-FFFFFFFF.

A-6 DSPADSUM/AD MOTOROLA

Motorola DSP Object Module Format (OMF)

Object Module Format Example

A.2.6 Comment Record

Format:

QOMWENT

<Coment >

The Comment record puts a comment into the object file; it is produced via the COBJ
assembler directive. The comment text appears on a line by itself in the object file; it is
delimited by newline characters.

A.3 OBJECT MODULE FORMAT EXAMPLE

Example A-1 DSP56000 assembler code fragment

FR i dent 1,1 ; Conpl ex Qorrel ati on/ Gonvol uti on
n equ 500
org x: $0
aaddr ds 1024
org y: $0
baddr ds 1024
org p: $0
start
nove #aaddr, r0
nove #baddr, r4
clr
clr b X:(r0),x1 y:(r4),y0
| oop
do #n, endl oop
nac x1,y0, b X:(rd)+,x0 y: (r0)+ vyl
nac x0,y1, b
nac x1, x0, a
nac -yl,y0,a x:(rQ),x1 y:(rd),y0
endl oop
rnd a
rnd b
end

Example A-2 Corresponding Assembler OMF Output File

_START FIR 0001 0001

Gonpl ex Gorrel ati on/ Gonvol ution

_DATA P 0000 300000 340000 200013 C4801B 06F481 000009
F19CEA 2000CA 2000A2 (480B6 200011 200019

_END 0000

MOTOROLA DSPADSUM/AD A-7

Motorola DSP Object Module Format (OMF)

Object Module Format Example

A-8 DSPADSUM/AD

MOTOROLA

APPENDIX B

MOTOROLA DSP OBJECT FILE FORMAT
(COFF)

MOTOROLA DSPADSUM/AD B-1

Motorola DSP Object File Format (COFF)

B.1 INTRODUCTION. . .. s B-3
B.2 OBJECT FILESTRUCTURE. B-3
B.3 OBJECT FILECOMPONENTS oo B-5
A4 DIFFERENCES BETWEEN DSP OBJECT FORMAT AND
STANDARD COFF A-23
B.5 OBJECT FILE DATA EXPRESSION FORMAT. B-28
B-2 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Introduction

B.1 INTRODUCTION

The Motorola DSP Assembler and Linker produce a binary object file in a modified form
of the AT&T Common Object File Format (COFF). COFF is a formal definition for the
structure of machine code files. It originated with Unix System V but has sufficient
flexibility and generality to be useful in non-hosted environments. In particular, COFF
supports user-defined sections and contains extensive information for symbolic software
testing and debugging. Later sections describe the COFF implementation for the
Motorola family of Digital Signal Processors. The DSP COFF format has been altered to
support multiple memory spaces and normalized to promote transportability of object
files among host processors. See Section B.5 Object File Data Expression Format on
page B-28 for a list of differences between the Motorola DSP object file format and
standard COFF.

Note: A general discussion of COFF is provided in the following reference:

Gintaras R. Gircys, Understanding and Using COFF, O’Reilly & Associates,
1988 (ISBN 0-937175-31-5).

B.2 OBJECT FILE STRUCTURE

A DSP COFF object file consists of up to eight groups of object file information. Some of
these groups are optional, depending on the type of object file generated, and others
may have repeating occurrences. The basic object file components are:

= File header

e Optional header

= Section headers

= Section data

= Relocation information

= Line numbers

= Symbol table

e String table

MOTOROLA DSPADSUM/AD B-3

Motorola DSP Object File Format (COFF)

Object File Structure

The general structure of the object file is listed in Table B-1.

Table B-1 Basic COFF File Structure

File Header

Optional Header

Section 1 Header

Section n Header

Section 1 Contents

Section n Contents

Section 1 Relocation Info

Section n Relocation Info

Section 1 Line Numbers

Section n Line Numbers

Symbol Table

String Table

The file header contains object file information such as timestamp, number of sections,
pointer to the symbol table, and file status flags. Depending on how the object file was
generated, the Optional Header may hold link or run time information. The Optional
Header is followed by a list of Section Headers. Each Section Header contains pointers
to Section Data, Relocation Information, and Line Number entries. After the Section
Headers comes the raw data for all sections. If the object file is relocatable, the raw data
may be followed by a block of Relocation Entries for all sections. If the original source
file was compiled or assembled with the -G debug option, the Relocation Information is
followed by source Line Number and Address entries. The Symbol Table contains
information on program symbols used by both the Linker and the Debugger. The String
Table may contain very long symbolic names, comment text, or relocation expressions.

Note: The last four groups (Relocation Info, Line Number entries, Symbol Table, and
String Table) may not appear if the linker —S option is used to strip symbols
from the object file.

B-4 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

B.3 OBJECT FILE COMPONENTS

The following sections are detailed descriptions of each DSP COFF object file
component. The descriptions include the purpose of the component, its structure in the
object file, and meanings of individual fields within the component.

B.3.1 FILE HEADER

The file header is the first component in a COFF object file. It contains information about
the object file itself and is used for negotiating other components within the file. There is
only one file header per object file. Table B-2 shows the structure of the COFF file header.

Table B-2 File Header Format

Bytes Declaration Name Description
0-3 unsigned long | f_magic Magic number
4-7 unsigned long | f_nscns Number of sections
8-11 long int f_timdat Time and date when file was created
12-15 long int f_symptr File pointer to the start of the symbol table
16-19 long int f_nsyms Number of symbol table entries
20-23 unsigned long | f_opthdr Number of bytes in the optional header
24-27 unsigned long | f flags Flags (See Table B-3 on page B-6.)

The magic number is a special code indicating the target machine for the object file
(DSP56000, DSP96000, etc.). The number of sections is useful for scanning the list of
section headers. The date and time stamp is kept in binary form and may contain a
host-dependent time value. The f_symptr field contains a file byte offset to the
beginning of the symbol table. The number of symbol table entries provides an upper
bound for looping through the symbol table and an indirect means for accessing the start
of the string table. The size of the optional header allows for jumping to the start of the
section header list. The flags field is a set of bit flags which convey status information
about the object file. It is used primarily by linkers, debuggers, and other loader software
to determine whether the file is valid for a particular requested operation. The
individual bit flags are shown in Table B-3.

MOTOROLA DSPADSUM/AD B-5

Motorola DSP Object File Format (COFF)

Object File Components

Table B-3 File Header Flags

Mnemonic Flag Meaning

F RELFLG | 0000001 Relocation information stripped from file

F_EXEC 0000002 File is executable (no unresolved external references)
F_LNNO 0000004 Line numbers stripped from file

F_LSYMS 0000010 Local symbols stripped from file

F CC 0010000 File produced by C compiler (Motorola DSP only)

B.3.2 Optional Header

The COFF optional header ordinarily is used to hold system-dependent or runtime
information. This allows different operating environments to store data that only that
environment uses without requiring all COFF files to reserve space for that information.
General utility programs can be made to work properly with any common obiject file.
This is done by seeking past the optional header using the f_opthdr size field in the file
header record. The optional header in a Motorola DSP object file may contain two
distinct types of information, depending upon how the file was generated. If the file is a
relocatable object file, it will have an optional header containing linker information. If
the file is an absolute object file, it will have an optional header containing runtime
information. The runtime header is similar to standard COFF a.out optional header
formats.

Table B-4 on page B-7 shows the linker optional header. The module size field gives the
size of the entire object module. The data size field reflects the size of the entire raw data
block within the module. The endstr field points to an expression in the string table
which originated with the assembler END directive (see Chapter 6 of the DSP Macro
-assembler Manual); it indicates the starting address of the module. If this field is
negative or zero, there is no end expression. The logical section count is the count of
sections in the object module created via the assembler SECTION directive. The counter
count represents the number of COFF sections in the file (analogous to the file header
f_nscns field). The relocation entry and line number counts hold the number of all
relocation entries and line number records in the file. The buffer and overlay counts give
counts for each instance of a buffer or overlay in the module. The major version, minor
version, and revision number fields reflect the assembler and linker versions to ensure
linker backward compatibility. The optional header flags hold special mode flags for the
linker.

B-6 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

Table B-4 Motorola DSP Optional Link Header Format

Bytes Declaration Name Description
0-3 long int modsize Object module size
4-7 long int datasize Module raw data size
8-11 long int endstr End directive expression string
12-15 long int secnt Logical section count
16-19 long int ctrent Counter count
20-23 long int relocnt Relocation entry count
24-27 long int Inocnt LIne number entry count
28-31 long int bufcnt Buffer count
32-35 long int ovicnt Overlay count
36-39 long int majver Major version number
40-43 long int minver Minor version number
44-47 long int revno Revision number
48-51 long int optflags Optional header flags

Table B-5 on page B-8 defines the contents of the runtime optional header. This header is
similar to the standard COFF a.out header but there are differences. The magic number
in this header is not the same as the magic number in the file header; this magic number
is used indicate the file type to a host operating system. The magic number and version
stamp fields currently are not used by the Motorola DSP tools and are set to zero. The
text size field gives the size of all text-type data (executable code) in the object file. The
data size field holds a count of all initialized data (apart from code) in the file. The
uninitialized data size field is not used and is set to zero.

The program entry field represents the address given in the assembler END directive.
The text start and data start values contain the low addresses for text and data segments,
respectively. The text and data end values contain the high addresses for text and data
segments, respectively. Note that addresses are expressed in terms of the C language
typedef CORE_ADDR. A CORE_ADDR is a structure containing a long (4 byte) address
and an enumeration type which classifies the address according to memory space (X, Y,
L, P) and memory mapping (internal, external, etc.). See Section B.4.1 Multiple Memory
Spaces on page B-24 for more information on the CORE_ADDR structure.

MOTOROLA DSPADSUM/AD B-7

Motorola DSP Object File Format (COFF)

Object File Components

Table B-5 Motorola DSP Optional Runtime Header Format

Bytes Declaration Name Description

0-3 long int magic Magic number

4-7 long int vstamp Version stamp
8-11 long int tsize Size of text in words
2-15 long int dsize Size of data in words
16-19 long int bsize Size of uninitialized data in words
20-27 CORE_ADDR | entry Program entry point
28-35 CORE_ADDR | text_start Base address of text
36-43 CORE_ADDR | data_start Base address of data
44-51 CORE_ADDR | text_end End address of text
52-59 CORE_ADDR | data_end End address of data

B.3.3 Sections

A section is the smallest portion of an object file that is treated as one separate and
distinct entity. Sections can accommodate program text, initialized and uninitialized
data, and block data. COFF sections in DSP obiject files may be grouped under a logical
section defined by the assembler SECTION directive.

It is a mistake to assume that every COFF file will have a specific number of sections, or
to assume characteristics of sections such as their order, their location in the object file, or
the address at which they are to be loaded. This information is available only after the
object file has been created. Programs manipulating COFF files should obtain it from file
and section headers in the file,

B.3.3.1 Section Headers

Every object file has a table of section headers to specify the layout of data within the file.
The section header table consists of one entry for every section in the file. The
information in the section header is described in Table B-6 on page B-9.

B-8 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

Table B-6 Section Header Format

Bytes Declaration Name Description

0-7 char S_hame Section name (null padded)
8-15 CORE_ADDR | s_paddr Physical address
16-23 CORE_ADDR | s_vaddr Virtual address
24-27 long int S_size Section size in words
28-31 long int s_scnptr File pointer to raw data
32-35 long int s_relptr File pointer to relocation entries
36-39 long int s_Innoptr File pointer to line number entries
40-43 unsigned long | s_nreloc Number of relocation entries
44-47 unsigned long | s_nlnno Number of line number entries
48-51 long int s_flags Section flags (see Figure E-7)

The section name is an 8-byte character array padded with null (zero) bytes if required.
In Motorola relocatable object files, section names may be longer than eight characters.
In this case, the convention used for long symbol names is followed, where if the least
significant four bytes of the section name field contain zeroes, the name is in the symbol
table at the offset given by the most significant four bytes of the name field. See Section
B.3.3.5 Symbol Name on page B-14 for more information on the handling of long symbol
names.

The physical address is the address where the section text or data will reside in memory.
The address value depends upon whether the section is absolute or relocatable. If the
section is absolute, then the physical address is the actual address where the section will
be loaded into memory. If the section is relocatable, then the physical address is an
offset from the start of the logical section (implicit or defined by the SECTION directive)
in which the section is defined.

In most cases, the virtual address is the same as the physical address. However, for
block data sections in Motorola DSP object files, the virtual address field holds the repeat
count for the single raw data value associated with this section. For example, if the
assembly language source file included a directive of the form BSC $400,$FFFF, the
s_vaddr field would contain the value $400, the s_size field would be 1 (or 2 ifin L
memory), and the single raw data word associated with the section would be $FFFF.

MOTOROLA DSPADSUM/AD B-9

Motorola DSP Object File Format (COFF)

Object File Components

Table B-7 Section Header Flags

Mnemonic Flag Meaning
STYP_REG $0000 Regular section
STYP_DSECT $0001 Dummy section
STYP_NOLOAD | $0002 Noload section
STYP_GROUP $0004 Grouped section
STYP_PAD $0008 Padding section
STYP_COPY $0010 Copy section
STYP_TEXT $0020 Executable text section
STYP_DATA $0040 Initialized data section
STYP_BSS $0080 Uninitialized data section
STYP_BLOCK $0400 Block data section
STYP_OVERLAY | $0800 Overlay section
STYP_MACRO $1000 Macro section

The section size is the count of raw data words associated with the section. Thisisin
contrast to standard COFF section sizes which usually are given in bytes. Raw data
words currently are stored in the object file as long (4-byte) integers independent of the
target processor word size. The file pointer fields are file byte offsets into the object file to
the start of the current section raw data, relocation entries, and line number information.
The counts of relocation and line number entries provide an upper bound for scanning
these tables. The section flags comprise the section attributes and are described in

Table B-7. Text sections are reserved for code to be loaded into program memory (P
space). Data sections hold initialized data, generated by assembler DC directives for
example, bound for data (X, Y, L) memory. Bss sections are used for uninitialized blocks
resulting from assembler DS and similar directives. Padding sections are generated to
provide alignment when a modulo or reverse-carry buffer is declared. The block section
attribute flags a block data section, described above. The overlay flag indicates the
section is part of an overlay. Macro sections represent code and data generated during a
macro expansion. Dummy sections are used internally by the assembler to mark empty
sections after the first assembly pass. Empty sections may still appear in the object file if
a symbol is associated with a section which contains no data. The noload, group, and
copy attributes are not used at present.

B-10 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.2 Relocation Information
Obiject files have one relocation entry for each relocatable reference in the text or data.
The relocation information consists of entries with the format described in Table B-8.

Table B-8 Relocation Entry Format

Bytes Declaration Name Description

0-3 long r_vaddr Address of reference

4-7 long r_symndx String table index
8-11 unsigned long r_type Relocation type

The address field represents the relocatable address within the section raw data where a
modification is needed. In standard COFF the r_symndx field points to an entry in the
symbol table corresponding to the reference requiring modification. The relocation type
encodes how the raw data is to be changed to reflect the resolved symbol value.

In Motorola DSP COFF r_symndx is an offset into the string table which points to a
relocation expression. The linker interprets this expression and updates the word at
r_vaddr with the result of the expression evaluation. The relocation type is always zero.
See Section B.5 Object File Data Expression Format on page B-28, for more information
on relocation expressions.

B.3.3.3 Line Numbers

When the compiler or assembler is invoked with the -G debug option an entry is made
in the object for every source line where a breakpoint can be inserted. It is then possible
to reference source line numbers when using a debugger. The structure of an object file
line entry is shown in Table B-9.

Table B-9 Line Number Entry Format

Bytes Declaration Name Description

0-3 long I_symndx Function name symbol table index

0-7 CORE_ADDR |_paddr Line number physical address
8-11 unsigned long |_Inno Source file line number

All line numbers in a section are grouped by function as shown in Table B-10

on page B-12. The first entry in a function grouping has line number 0 and has, in place
of the physical address, an index into the symbol table for the entry containing the
function name. Subsequent entries have actual line numbers and addresses of the

MOTOROLA DSPADSUM/AD B-11

Motorola DSP Object File Format (COFF)

Object File Components

program text corresponding to the line numbers. The line number entries are relative to
the beginning of the function, and appear in increasing order of address.

Table B-10 Line Number Grouping

Symbol index 0
Physical address Line number
Physical address Line number
Symbol index 0
Physical address Line number
Physical address Line number
B.3.34 Symbol Table

The COFF symbol table serves a dual purpose: it provides resolution for symbolic
references in relocation expressions during linking, and it establishes a framework for
the handling of symbolic debug information. The symbol table consists of at least one
fixed-length entry per symbol with some symbols followed by auxiliary entries of the
same size.

Because of symbolic debugging requirements the order of symbols in the symbol table is
very important. Whereas an individual symbol table entry can completely describe a
single debugging entity, the entities exist within the framework of the source language
that produced them. For example, symbol scoping and function blocks in C are
represented by the appropriate ordering of begin-end block entries in the symbol table.
Symbols in the symbol table appear in the sequence shown in Table B-11.

Table B-11 COFF Symbol Table Ordering

Filename 1

Function 1

Local symbols for function 1

Function 2

Local symbols for function 2

Statics

B-12 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

Table B-11 COFF Symbol Table Ordering (Continued)

Filename 1

Function 1

Local symbols for function 1

Statics

Defined global symbols

Undefined global symbols

The entry for each symbol is a structure that holds the symbol value, its type, and other
information. There are symbol table entries used for relocation and linking and there are
special symbols used only for debugging. The two kinds of entries are distinguished by
combinations of field values in the symbol record. The structure of a symbol table entry
is illustrated in Table B-12.

Table B-12 Symbol Table Entry Format

Bytes Declaration Name Description
0-7 | char n_name Symbol name (null padded)
0-3 | longint n_zeroes Zero in this field indicates name
is in string table
4-7 | longint n_offset Offset of name in string table
8-15 CORE_ADDR | n_address Symbol address value
8-15 | unsigned long | n_val[2] Symbol value
16-19 | longint n_scnum Symbol section nhumber
20-23 | unsigned long | n_type Symbol basic and derived type
24-27 | longint n_sclass Symbol storage class
28-31 | longint Nn_numaux Number of auxiliary entries
MOTOROLA DSPADSUM/AD B-13

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.5 Symbol Name

The first eight bytes in the symbol table entry are a union of a character array and two
longs. If the symbol name is seven characters or less, the null-padded symbol name is
stored there. If the symbol name is longer than seven characters, then the entire symbol
name is stored in the string table. In this case, the eight bytes contain two long integers:
the first is zero and the second is the offset (relative to the beginning of the string table)
of the name in the string table. Since there can be no symbols with a null name, the
zeroes on the first four bytes serve to distinguish a symbol table entry with an offset
from one with a name in the first eight bytes.

B.3.3.6 Symbol Value

The symbol value is a union of a CORE_ADDR typedef and an array of two longs. If the
symbol value is an address the contents will be stored as a CORE_ADDR structure with
memory and mapping attributes. Otherwise the contents are stored in the n_val field.
Whether the symbol value is an address or not depends on the storage class of the
symbol. See Section B.3.3.9 Symbol Storage Class on page B-16 for more information on
the relationship of symbol value and storage class.

B.3.3.7 Section Number

The section number maps a symbol to its corresponding section in the object file (e.g. the
section in which the symbol is defined). A special section number (-2) marks symbolic
debugging symbols, including structure/union/enumeration tag names, typedefs, and
the name of the file. A section number of -1 indicates that the symbol has a value but is
not relocatable. Examples of absolute-valued symbols include automatic and register
variables, function arguments, and end-of-structure symbols. A section number of 0
flags a relocatable external symbol that is not defined in the current file. Section
numbers greater than zero correlate to the ordinal sequence of sections in the object file.

Table B-13 Fundamental Types

Mnemonic Value Type
T_NULL 0 Type not assigned
T_VOID 1 Void
T CHAR 2 Character
T SHORT 3 Short integer
T_INT 4 Integer
T _LONG 5 Long integer
T_FLOAT 6 Floating point

B-14 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

Table B-13 Fundamental Types (Continued)

Mnemonic Value Type
T_DOUBLE 7 Double word floating point
T STRUCT 8 Structure
T_UNION 9 Union
T ENUM 10 Enumeration
T_MOE 11 Member of enumeration
T_UCHAR 12 Unsigned character
T_USHORT 13 Unsigned short
T UINT 14 Unsigned integer
T ULONG 15 Unsigned long

B.3.3.8 Symbol Type

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. This information is generated by the compiler and
assembler only if the -G debug option is used. Each symbol has exactly one basic or
fundamental type but can have more than one derived type. The type information is
encoded as sets of bits in the field. Bits 0-3 hold one of the fundamental type values
given in Table B-13. Bits 4-15 are arranged as six 2-bit subfields. These subfields
represent levels of the derived types given in Table B-14.

Table B-14 Derived Types

Mnemonic Value Type
DT_NON 0 No derived type
DT _PTR 1 Pointer
DT_FCN 2 Function
DT_ARY 3 Array

As an example of encoding fundamental and derived types, consider a function
returning a pointer to a character. The fundamental type is character, giving bits 0-3 of
the symbol type field the value 2. Bits 4-5 would hold a 2 for the derived type of function
and bits 6-7 would contain a 1 for the pointer derived type. The value in the symbol
entry type field would result in %01100010 binary, or $62 hexadecimal.

MOTOROLA DSPADSUM/AD B-15

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.9

Symbol Storage Class

The symbol storage class indicates how a symbol will be used during execution or
debugging. Some storage classes actually reflect how a symbol will be stored, e.g. as a
register parameter. Other storage classes provide information for special symbols used
in debugging, such as the beginning of blocks or the end of functions. Storage classes are
outlined in Table B-15. The value of a symbol depends on its storage class. This
relationship is summarized in Table B-16 on page B-17.

Table B-15 Storage Classes

Mnemonic Value Type

C _EFCN -1 Physical end of function
C_NULL 0 No storage class
C_AUTO 1 Automatic variable
C_EXT 2 External symbol
C_STAT 3 Static symbol
C_REG 4 Register variable
C_EXTDEF 5 External definition
C_LABEL 6 Label
C _ULABEL 7 Undefined label
C_MOS 8 Member of structure
C_ARG 9 Function argument
C _STRTAG 10 Structure tag
C_MOU 11 Member of union
C_UNTAG 12 Union tag
C_TPDEF 13 Type definition
C_USTATIC 14 Uninitialized static
C_ENTAG 15 Enumeration tag
C_MOE 16 Member of enumeration
C_REGPARAM 17 Register parameter
C FIELD 18 Bit field
C_BLOCK 100 Beginning and end of block
C_FCN 101 Beginning and end of function
C_EOS 102 End of structure
C_FILE 103 C language source filename
C_LINE 104 -
C_ALIAS 105 Duplicated tag
C_HIDDEN 106 -

B-16 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

Table B-15 Storage Classes (Continued)

Mnemonic Value Type
A FILE 200 Assembly source filename
A _SECT 201 Beginning and end of section
A _BLOCK 202 Beginning/end of COFF section
A_MACRO 203 Macro expansion
A_GLOBAL 210 Global assembly language symbol
A_XDEF 211 XDEFed symbol
A XREF 212 XREFed symbol
A_SLOCAL 213 Section local label
A_ULOCAL 214 Underscore local label
A_MLOCAL 215 Macro local label

Table B-16 Storage Class and Value

Storage Class Value
C_AUTO Stack offset in words
C_EXT Relocatable address
C _STAT Relocatable address
C_REG Register number
C_LABEL Relocatable address
C_MOS Offset in words
C_ARG Stack offset in words
C_STRTAG 0
C_MOU 0
C_UNTAG 0
C_TPDEF 0
C_ENTAG 0
C_MOE Enumeration value
C_REGPARAM Register number
C_FIELD Bit displacement
C_BLOCK Relocatable address
C FCN Relocatable address
C_EOS Size of structure in words
C_FILE (see below)

C_ALIAS Tag index
MOTOROLA DSPADSUM/AD B-17

Motorola DSP Object File Format (COFF)

Object File Components

Table B-16 Storage Class and Value (Continued)

Storage Class Value
C_HIDDEN Relocatable address
A _FILE (see below)
A_SECT String table offset to section name
A _BLOCK Relocatable address
A_MACRO String table offset to macro name
A _GLOBAL Relocatable address
A _XDEF Relocatable address
A _XREF String table offset to symbol name
A _SLOCAL Relocatable address
A_ULOCAL Relocatable address
A MLOCAL Relocatable address

If a symbol has storage class C_FILE or A_FILE, the value of that symbol equals the
symbol table entry index of the next C_FILE or A_FILE symbol. That s, the C_FILE and
A_FILE entries form a one-way linked list in the symbol table. If there are no more
C_FILE or A_FILE entries in the symbol table, the value of the symbol is the index of the
first global symbol.

Relocatable symbols have a value equal to the relocatable address of that symbol. When
the section is relocated by the linker, the value of these symbols changes.

B.3.3.10 Auxiliary Entries

Every symbol table entry may have zero, one, or more auxiliary entries. These auxiliary
entries are used to hold additional information about the primary symbol. The number
of auxiliary entries associated with a given symbol can be determined by examining the
n_numaux field of the main symbol entry.

An auxiliary symbol table entry contains the same number of bytes as its associated
symbol table entry and is contiguous with the primary entry in the object file. Unlike
primary symbol table entries, however, the format of an auxiliary entry depends on the
type and storage class of the main symbol.

B.3.3.10.1 Filenames

The auxiliary table entry for a filename contains a 14-character array followed by an
unsigned long integer. If the integer is zero then the filename is in the array. Otherwise
it is in the string table at the offset given by the integer value.

B-18 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.10.2 Sections

Section auxiliary entries have the format shown in Table B-17. This information is
analogous to selected fields in the corresponding section header. If the object file is
relocatable a section symbol entry will have a second auxiliary entry with the format
shown in Table B-18.

Table B-17 Section Symbol Auxiliary Entry

Bytes Declaration Name Description
0-3 long int x_scnlen Section length
4-7 unsigned long X_nreloc Number of relocation entries
8-11 unsigned long x_nlinno Number of line numbers
12-31 — — Unused (zero filled)

Table B-18 Section Symbol Auxiliary Entry

Bytes Declaration Name Description
0-3 long int secno Logical section number
4-7 long int rsecno Logical relocation section
number
8-11 long int flags Section type flags
12-27 struct mematt mem Section memory attributes
28-31 — — Unused (zero filled)

The logical section number is the ordinal related to a SECTION directive in the
assembler source file. The relocation section number usually is the same as the logical
section number, but may be different if the logical section is static within an enclosing
section. The memory mapping is an alternate encoding of the CORE_ADDR information
in the section header. Section type flags indicate whether this COFF section represents a
buffer or overlay block. If the current COFF section is a buffer or overlay block a third
auxiliary entry is produced. The layout of that entry is shown in Table B-19

on page B-20.

MOTOROLA DSPADSUM/AD B-19

Motorola DSP Object File Format (COFF)

Object File Components

Table B-19 Relocatable Buffer/Overlay Auxiliary Entry

Bytes Declaration Name Description

0-3 long int bufcnt Buffer section number

4-7 long int buftyp Buffer type
8-11 long int buflim Buffer limit
0-15 struct ovimem Overlay memory attributes

mematt

16-19 long int ovicnt Overlay section number
20-23 long int ovlstr Overlay origin expression
24-31 — — Unused (zero filled)

Buffers and overlays are mutually exclusive so their respective fields share storage space
in the object file. The buffer section number is really the buffer instance count in this file.
Buffer type is either modulo or reverse carry. The buffer limit gives the upper bound for
the buffer size even though the block may contain less initialized data than this limit
suggests. The overlay memory structure gives the runtime memory attributes for this
block. The overlay section number is really the overlay instance count in this file. The
overlay origin expression is the expression given for the runtime counter in the
assembler ORG directive.

B.3.3.10.3 Tag Names
Auxiliary entries for C language structure and union tag names have the format
described in Table B-20.

Note: In Motorola DSP COFF the size of the associated structure or union is in words

as opposed to bytes as in standard COFF. The x_endndx field is used to create
a linked list of tag name entries through the symbol table.

Table B-20 Tag Name Symbol Auxiliary Entry

Bytes Declaration Name Description
0-7 — — Unused (zero filled)
8-11 unsigned long X_Size Size of structure, union, or
enumeration in words
12-15 — — Unused (zero filled)
16-19 long int Xx_endndx Index of next structure, union, or

enumeration entry

20-31 — — Unused (zero filled)

B-20 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)
Object File Components

B.3.3.10.4 END OF STRUCTURES

The format for C language end-of-structure auxiliary entries is given in Table B-21. Note
that the size of the structure, union, or enumeration is given in words rather than bytes.
The tag index holds the symbol table index for the tag record associated with this
structure.

Table B-21 End of Structure Auxiliary Entry

Bytes Declaration Name Description
0-3 long int x_tagndx Tag index
4-7 — — Unused (zero filled)
8-11 unsigned long X_size Size of structure, union, or
enumeration in words
12-31 — — Unused (zero filled)
B.3.3.10.5 FUNCTIONS

Function auxiliary entries have the format shown in Table B-22.

Note: The size of the function is given in words rather than bytes.

The function tag index holds the symbol table index to the begin-function symbol for
this function. The x_endndx field points to the next function symbol table entry. The
x_Innoptr field contains a byte offset pointer within the object file to the line number
entry that signals the start of this function (see Section B.3.3.3 Line Numbers on

page B-11 for more information).

Table B-22 Function Symbol Auxiliary Entry

Bytes Declaration Name Description
0-3 long int X_tagndx Tag index
4-7 long int x_fsize Size of function in words
8-11 long int x_Innoptr File pointer to line number entry
12-15 long int x_endndx Index of next function entry
16-31 — — Unused (zero filled)
MOTOROLA DSPADSUM/AD B-21

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.10.6

Arrays

The format for C language array auxiliary entries is given in Table B-23. The tag index
contains the offset to the next array symbol in the symbol table. The line number field
gives the source file line number for the array declaration.

Table B-23 Array Symbol Auxiliary Entry

Bytes Declaration Name Description
0-3 long int x_tagndx Tag index
4-7 unsigned long x_Inno Line number of array declaration
8-11 unsigned long X_size Size of array
12-15 unsigned long x_dimen[0] | Firstarray dimension
16-19 unsigned long x_dimen[1] | Second array dimension
20-23 unsigned long x_dimen[2] | Third array dimension
24-27 unsigned long x_dimen[3] | Fourth array dimension
28-31 — — Unused (zero filled)
B.3.3.10.7 End of Blocks and Functions

The format for C language symbol entries for the end of blocks and functions is given in
Section B.3.3.10.8 Beginning of Blocks and Functions on page B-23. Only the source file
line number for the end of the block or function is stored.

Table B-24 End of Block or Function Auxiliary Entry

Bytes Declaration Name Description
0-3 — — Unused (zero filled)
4-7 unsigned long x_Inno Source file line number
8-31 — — Unused (zero filled)
B-22 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Components

B.3.3.10.8 Beginning of Blocks and Functions

The format for C language symbol entries for the beginning of blocks and functions is
described in Table B-25. The source file line number is retained. The x_endndx provides
a link to the next beginning of block or function symbol in the symbol table.

Table B-25 Beginning of Block or Function Auxiliary Entry

Bytes Declaration Name Description
0-3 — — Unused (zero filled)
4-7 unsigned long x_Inno Source file line number
8-15 — — Unused (zero filled)
16-19 long int Xx_endndx Index of next beginning of
block or function
20-31 — — Unused (zero filled)
B.3.3.10.9 Structure, Union, and Enumeration Names

The format for auxiliary entries related to structure, union, and enumeration names is
given in Table B-26. The tag index is used to access the tag symbol record that describes
this structure. Note that in Motorola DSP COFF the size of the associated structure or
union is in words as opposed to bytes as in standard COFF.

Table B-26 Structure, Union, or Enumeration Name Auxiliary Entry

Bytes Declaration Name Description
0-3 long int X_tagndx Tag index
4-7 — — Unused (zero filled)
8-11 unsigned long X_size Size of structure, union, or
enumeration in words
12-31 — — Unused (zero filled)
B.3.3.10.10 String Table

Symbol and section names longer than seven characters and comment text are stored
contiguously in the string table with each string delimited by a zero byte. The first four
bytes represent the size of the string table in bytes; offsets into the string table, therefore,
are always greater than or equal to 4. An empty string table has a length field with value
zero.

MOTOROLA DSPADSUM/AD B-23

Motorola DSP Object File Format (COFF)
Differences Between DSP Object Format And Standard COFF

B.4 DIFFERENCES BETWEEN DSP OBJECT FORMAT AND
STANDARD COFF

Motorola DSP COFF is substantially the same as generic COFF and usage of format
elements is similar. However, the original COFF specification did not envision aspects
of machine architecture which the Motorola DSP family possesses. Moreover, standard
COFF encompasses a file format which is quite adaptable among host processors, but is
not necessarily portable among those hosts. It is straightforward enough to adapt COFF
to a new host machine, but the intent is that the derived host format will be recognized
and executed only on that target host. For Motorola DSP COFF the format had to be
extended for cross-development such that a given object file would be usable on all
targeted host systems. The following sections outline the differences and changes
between standard COFF and Motorola DSP COFF.

B.4.1 Multiple Memory Spaces

Standard COFF has no built-in mechanism for accommodating multiple memory spaces.
It does handle the notion of separate text and data sections, and a possible extension
would have been to define section types for the new memory areas. This quickly
becomes unwieldy when mapping information (internal, external, port A/B) is
considered as well.

The solution was to extend addressing information to include the memory and mapping
with the address value itself. This is done by defining a C language typedef called
CORE_ADDR which holds both the memory and mapping data along with the memory
address. For any address context in the COFF file a CORE_ADDR is used rather than, for
example, an unsigned long. A description of the CORE_ADDR format is shown in
Table B-27.

Table B-27 CORE_ADDR Format

Bytes Declaration Name Description
0-3 long woO.l Memory address
4-7 enum wl.mape Memory mapping

The enumeration values for the memory mapping field are shown in order in Table B-28
on page B-25.

B-24 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Differences Between DSP Object Format And Standard COFF

Table B-28 Memory Mapping Enumerations

Mnemonic Value Mnemonic Value
memory_map_p 0 memory_map_xa 16
memory_map_x 1 memory_map_xb 17
memory_map_y 2 memory_map_xe 18
memory_map_| 3 memory_map_xi 19
memory_map_none 4 memory_map_xr 20
memory_map_laa 5 memory_map_ya 21
memory_map_lab 6 memory_map_yb 22
memory_map_lba 7 memory_map_ye 23
memory_map_Ibb 8 memory_map_vyi 24
memory_map_le 9 memory_map_yr 25
memory_map_li 10 memory_map_pt 26
memory_map_pa 11 memory_map_pf 27
memory_map_pb 12 memory_map_error 666666
memory_map_pe 13 — —
memory_map_pi 14 — —
memory_map_pr 15 — —

B.4.2 OBJECT FILE TRANSPORTABILITY

There are many different structure definitions in the COFF specification. These
definitions consist of fields comprised of varying C data types. These data types are
recognized by any reasonable C compiler, but their characteristics and sizes may change
from machine to machine. This is acceptable if the COFF files are to be used only on a
particular machine architecture. But if COFF files are produced on one machine to be
used on another several problems may arise. One is that since the data fields can vary in
size there could be alignment problems when accessing structures or individual fields.
Another issue is byte ordering between machines. Given an arbitrary byte stream, some
machines store the bytes in a word starting at the least significant bit (LSB) end of the
word, while others store bytes starting at the most significant bit (MSB) end of the word.

The Motorola DSP version of COFF addresses these potential problems by normalizing
the object file. Normalization occurs in a number of ways. All structure and union
elements are converted to long values, and raw data is stored in 4-byte quantities

MOTOROLA DSPADSUM/AD B-25

Motorola DSP Object File Format (COFF)
Differences Between DSP Object Format And Standard COFF

independent of the word size of the target processor. In some cases this wastes space in
the object file and in memory but it was considered worth the price for transportability
among supported hosts. Also it is not a completely portable solution by any means (e.g.
for machines with larger than 4-byte word sizes).

The byte ordering issue was dealt with by establishing a baseline ordering, providing
compliance for foreign hosts with conversion code. This introduces overhead logic on
machines that do not support the baseline word order but again it was seen as a
reasonable trade-off to insure transportability of object files among development
environments. Note that byte swapping logic only comes into play for fields that are not
byte-atomic, such as integer fields. Character arrays in structures, for example, should
not have their bytes exchanged.

The byte ordering for Motorola DSP COFF is shown in Table B-29. It adheres to what
sometimes is called the big-Endian approach to byte and word ordering.

Table B-29 Motorola DSP COFF Byte Ordering

Addrn Addr n+1 Addr n+2 Addr n+3
MSB MSB -1 LSB+1 LSB

B.4.3 Structure Size Fields

In some of the COFF data structures there is a size field which gives the size of a block in
the target processor environment. For example, there are several symbol table auxiliary
entries that specify the size of a structure or union for debug purposes. In standard
COFF these sizes ordinarily are in bytes but in Motorola DSP COFF they are given in
words unless otherwise indicated. The use of word sizes for debug entities should be
distinguished from file pointer offset values in the object file. File pointers are indeed
byte offsets within the object file that are used by utilities to process information in the
object file itself.

B.4.4 Relocation Information

In standard COFF the r_symndx field of any given relocation record points to an entry in
the symbol table corresponding to a symbol reference requiring modification. When the
standard COFF linker performs symbol resolution, pairing symbol definitions with
matching references, it updates the relocation entry to point to the symbol definition and
discards the reference symbol. When the relocation entries are processed, the resolved

B-26 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)
Differences Between DSP Object Format And Standard COFF

symbol value is used to modify the raw data indicated by the relocation entry at
r_vaddr. In Motorola DSP COFF r_symndx is an offset into the string table which points
to a relocation expression. The linker interprets this expression and updates the entire
word at r_vaddr with the result of the expression evaluation. The relocation type is
always zero. See Section B.5 Object File Data Expression Format on page B-28, for more
information on relocation expressions.

B.4.5 Block Data Sections

Generic COFF does not make allowance for a block data section. A block data section
results from use of the assembler BSC directive, where a large block of memory is
initialized with a single value. Block data sections are handled in Motorola DSP COFF
by making special use of the section s_vaddr field and adding an informative flag. In
most cases the section virtual address is the same as the physical address. However, for
block data sections in Motorola DSP object files the virtual address field holds the repeat
count for the single raw data value associated with the section. For example, if the
assembly language source file included a directive of the form BSC $400,$FFFF the
s_vaddr field would contain the value $400, the s_size field would be 1 (or 2 if in L
memory), and the single raw data word associated with the section would be $FFFF. In
addition, the STYP_BLOCK flag is set in the section s_flags field.

B.4.6 Other Extensions

If the object file is relocatable there are extra structures which the assembler and linker
generate to support special constructs such as logical sections, buffers, and overlays. The
optional link file header contains information which the linker requires; it is described in
Section B.3.2 Optional Header on page B-6. Every symbol table entry for a section in a
relocatable file has an extra auxiliary entry described in Section B.3.3.10.2 Sections on
page B-19. One special DSP COFF structure not documented elsewhere is the comment
symbol. A comment symbol table entry is emitted either indirectly via the assembler
IDENT directive or directly with the COBJ directive (see Chapter 6 of the DSP
Macro-assembler User Manual). A comment symbol table entry may be identified by a
symbol name of .cmt and a type and storage class of zero. The value field of a comment
symbol holds the offset into the string table of the comment text. The section number for
a comment symbol produced with the IDENT directive is always —1. Comment symbols
generated with the COBJ directive have the section number of the section where the
COBJ directive appears in the source file. Comment symbols have no auxiliary entry.

MOTOROLA DSPADSUM/AD B-27

Motorola DSP Object File Format (COFF)

Object File Data Expression Format

B.5 OBJECT FILE DATA EXPRESSION FORMAT

Object file data expressions are used in data relocation records to represent values to be
loaded into memory. An expression is a combination of symbols, constants, operators,
and parentheses. Expressions may contain user-defined labels, integers, floating point
numbers, or literal strings. An object file data expression generally follows the
guidelines of assembler expressions, except that functions are not supported (e.g. they
must be evaluated at assembly time), and operators are provided for linker-specific
operations. Also, floating point terms found in these expressions are converted to binary
values.

B.5.1 Data Expression Generation

Link file data expressions are generated when external or relocatable operands are
encountered during assembly or incremental link processing. In most cases the operand
expression is copied verbatim from the source and embellished with link evaluation
control constructs. For example, consider the source line below:

MOVE #FOQ RO

The DSP96000 assembler produces the following encoding for this line in the object file:

$3A802000 {FO3} @#0

Since the symbol FOO is not known to the assembler it generates a two-word instruction
and places a relocation reference to the expression in the position of the second
instruction word. The braces ({ }) indicate that this is a user expression that should
adhere to certain integrity constraints such as those governing absolute and relative
terms. Otherwise the braces are treated much like parentheses. The at sign (@) is a binary
operator indicating the memory space of the left operand by the right. The pound sign
(#) is a binary operator signifying the size in bits of the left operand by the right. More
information on these special operators and their operands is given below.

Here is another example of data expression generation:
JAR #1, X LQC, LABAL

For this conditional jump the assembler produces the following object file code:
(($02A00481&(~(~0<<8) <<12)) | (({ LOT @#8&+(~0<<8)) <<12)) {LABEL} @#0

The first expression is evaluated such that the relative address LOC, resolved at link
time, is shifted and masked into the middle eight bits of the base instruction word

B-28 DSPADSUM/AD MOTOROLA

Motorola DSP Object File Format (COFF)

Object File Data Expression Format

($02A00481). The expression could have been more complex if the bit number was an
external reference. The relative value of the symbol LABEL occupies the second
instruction word.

B.5.2 Data Expression Interpretation

Obiject file data expressions are similar to standard assembler expressions which
generally follow the rules of algebra and boolean arithmetic. They are written using
infix notation in conjunction with unary and binary operators and parentheses. There
are also extensions to the usual set of assembler arithmetic and grouping operators.
These are control constructs that assist the linker in determining the size, type, and
characteristics of an expression operand.

B.5.2.1 User Expression—{ ... }

The curly braces ({ }) delimit a user expression within a data expression. A user
expression is that part of a data expression that was written by the programmer and not
generated by the assembler or linker as part of its control requirements. It is useful to
isolate the user expression in order to check for relationships among absolute and
relative terms. In all other respects the curly braces behave like parentheses.

B.5.2.2 Relocatable Expression— ... |

The square brackets ([]) are used to enclose a relocatable expression. The value
contained in the square brackets is an offset from the base of the current section. Usually
this grouping operator is placed around the value of an assembler local label
(underscore label) since these symbols do not migrate to the link file.

B.5.2.3 Memory Space Operator—@

The at sign (@) is a binary operator that checks the memory space compatibility of the
left operand based on the value of the right operand. The right operand can have the
following values:

None

X space
Y space
L space
P space

A WODNPEFE, O
I I | I T

The compatibility check is made based on the matrix outlined in the DSP
Macro-assembler User Manual, EXPRESSION MEMORY SPACE ATTRIBUTE.

MOTOROLA DSPADSUM/AD B-29

Motorola DSP Object File Format (COFF)

Object File Data Expression Format

B.5.24 Bit Size Operator—#

The pound sign (#) is a binary operator used to verify the size in bits of the left operand
given the value of the right operand. The following bit sizes and operand type
correspondences are defined:

-16 = 16-bit signed short immediate or offset
-7 = 7-bit signed short immediate
-5 = 5-bit signed short offset
-1 = Negated immediate shift
0 = DSP word size immediate or absolute
1 = Immediate shift
5 = b5-bit short immediate
6 = 6-bit short immediate or absolute
7 = 7-bit short immediate or absolute
8 = 8-bit short immediate or absolute
12 = 2-bit short immediate or absolute
15 = 5-bit short absolute
19 = 9-bit short immediate
85,86,87 = 5,6,7-bit I/0 short absolute
B.5.2.5 Memory Attribute Operator—:

The colon (©) is used to assign a memory space and counter encoded in the right operand
to the left operand. The low sixteen bits of the right operand contain the counter
designator for the left operand. The high sixteen bits contain the memory space
designator for the left operand. The value here corresponds to the memory space values
given for the memory space operator (@) described above.

£S5

B-30 DSPADSUM/AD MOTOROLA

APPENDIX C
MOTOROLA S-RECORD INFORMATION

MOTOROLA DSPADSUM/AD C-1

Motorola S-record Information

C.1l INTRODUCTION. . .. e C-3
C.2 S-RECORD CONTENT C-3
C.3 S-RECORD TYPES. C-4
C4 S-RECORD CREATION C-5

C-2 DSPADSUM/AD MOTOROLA

Motorola S-record Information

Cl

Introduction

INTRODUCTION

The Motorola S-record format is recognized and supported by a variety of
EPROM/EEPROM programmer manufacturers. This appendix describes the S-record
format and explains how to convert DSP object module format files to S-record format

files.

The Motorola S-record format was devised for the purpose of encoding programs or
data files in a printable format for transportation between computer systems as well as
development tools. This transportation process can therefore be monitored and the
S-records can be easily edited.

C.2

S-RECORD CONTENT

S-records are character strings made of several fields which identify the record type,
record length, memory address, code/data, and checksum. Each byte of binary data is
encoded as a 2-character hexadecimal number: the first character representing the
high-order 4 bits, and the second the low-order 4 bits of the byte. The five fields which
comprise an S-record are shown in Table C-1. Accuracy of transmission is ensured by the
record length (byte count) and checksum fields.

Table C-1 S-Record Fields

. Printable
Field Characters Contents

Type 2 S-record type—S0, S1, S9, etc.

Record 2 Character pair count in record, exclude type, record length.

Address 4,6, 0r8 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.

Code/data 0-2n From 0 to n bytes of executable code, memory loadable data, or
descriptive information. For compatibility with teletypewriters,
some programs may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

Checksum 2 Least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the
record length, address, and the code/data fields. Each record may
be terminated with a CR/LF/NULL. Additionally, an S-record
may have an initial field to accommodate other data such as line
numbers generated by some time-sharing systems.

MOTOROLA DSPADSUM/AD C-3

Motorola S-record Information

S-Record Types

C.3 S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the
encoding, transportation, and decoding functions. The various Motorola upload,
download, and other record transportation control programs, as well as cross
assemblers, linkers, and other file-creating or debugging programs, utilize only those
S-records which serve the purpose of the program. For specific information on which
S-records are supported by a particular program, consult the user manual for that
program. An S-record may include any of record types listed in Table C-2. Only one
termination record is used for each block of S-records. Normally only one header record
is used, although it is possible for multiple header records to be used.

Table C-2 S-record Types

Type Description

SO Header record for each block of S-records. The code/data field may contain
any descriptive information identifying the following block of S-records. The
address field is normally zeroes.

S1 Code/data record and the 2-byte address at which the code/data is to reside.

S2 Not applicable to DSP56000 programming.

S3 Code/data record and the 4-byte address at which the code/data is to reside.

S4-S6 Not applicable to DSP56000 programming.

S7 Termination record for a block of S3 records. Address field may optionally
contain the 4-byte address of the instruction to which control is to be passed. If
not specified, the first entry point specification encountered in the input will be
used. There is no code/data field.

S8 Not applicable to DSP56000 programming.

S9 Termination record for a block of S1 records. Address field may optionally

contain the 2-byte address of the instruction to which control is to be passed. If
not specified, the first entry point specification encountered in the input will be
used. There is no code/data field.

DSPADSUM/AD MOTOROLA

Motorola S-record Information

S-Record Creation

C.4 S-RECORD CREATION

To convert an object module formatted file to an S-record formatted file a utility
program (SREC) is provided with the DSP56000 macro assembler program. A detailed
description of this utility program may be found in the DSP56000 macro assembler file
SREC.DOC. There are various command line options available when executing the
SREC utility. When entering no command line options the default file output will be

“ X” for X Data memory values, “.Y” for Y Data memory values, “.L” for Long Data
memory values, and “.P” for Program memory values.

To create a file which may be loaded into an EPROM programmer which supports the
Motorola S record format and is suitable for “BOOTLOADING”, a user must enter the
“-b” command line option. This option uses byte addressing when transferring load
addresses to S-record addresses. Following example is a listing of the example code
fragment used in Appendix A:

Example C-1 S-record File, 32-bit Data

S0044649521A
S3240000300000340000200013C4801B06F481000009F19CEA2000CA2000A2CA480B620001113
S30600212000199F

S7030000FC

Entering the “—m” command line option will create 4 separate files with a “.P0”, “.P1”,
“P2” and “.P3” suffixes for Program memory files. This option splits the 32 bit word into
4 bytes where.PO files contain S-records for the bits 0-7, .P1 files contain S-records for the
bits 8-15, .P2 files contain the bits 16-23 and .P3 files contain the bits 24-31. This option
allows the user to program 4 separate EPROMs/EEPROMSs where the data byte is
aligned to the correct address on each device.

Entering the “-b” command line option will use byte addressing when transferring load
addresses to S-record addresses. This means that load file DATA record start addresses
are multiplied by the DSP bytes/word and subsequent S1/S3 record addresses are
computed based on the data byte count.

Entering the “-s” command line option will write data to a single file, putting memory
space information into the address field of the SO header record. Bytes may be reversed
with the “-r” option.

Entering the “~w” command line option will use word addressing when transferring
load addresses to S-record addresses. This means that load file DATA record start
addresses are moved unchanged and subsequent S1/S3 record addresses are computed
based on the data word count.

MOTOROLA DSPADSUM/AD C-5

Motorola S-record Information

S-Record Creation

The following are example listings of the example code fragment used in Appendix A in
each of the three files:

Example C-2 S-record File, Low-order Byte

/* This is the FIR.PO low order byte file of the 24 bit words */

0044649521A
S10F00000000131B8109EACAA2B6111902
SO030000FC

Example C-3 S-record File, Middle-order Byte

/* This is the FIR.P1 middle byte file of the 24 bit words */

0044649521A
S10F000000000080F4009(000080000060
S9030000FC

Example C-4 S-record File, High-order Byte

/* This is the FIR.P2 high order byte file of the 24 bit words*/

0044649521A
S10F0000303420C40600F12020C420206D
S9030000FC

Each file has the same SO header record and S9 terminator record. The source code for
the SREC program is also available to the user and is written in the “C” programming
language.

£S5

C-6 DSPADSUM/AD MOTOROLA

APPENDIX D
C LIBRARY FUNCTIONS

MOTOROLA

DSPADSUM/AD

D-1

C Library Functions

D.1 INTRODUCTION. . .. e D-3
D.2 ADS OBJECT LIBRARY FILES. o D-4
D.3 LIBRARY FUNCTION DESCRIPTIONS D-8
D.4 EMULATOR SCREEN MANAGEMENT FUNCTIONS D-74
D.5 NON-DISPLAY EMULATOR D-79
D.6 MULTIPLE DEVICE EMULATION. D-83
D.7 RESERVED FUNCTIONNAMES D-85
D.8 EMULATOR GLOBAL VARIABLES D-85
D.9 MODIFICATION OF EMULATOR GLOBAL STRUCTURES. . D-86
D-2 DSPADSUM/AD MOTOROLA

C Library Functions

Introduction

D.1 INTRODUCTION

The ADSDSP emulator package includes several libraries of functions which were used
to build the emulator. These libraries allow the user to build his own customized
emulator and integrate it with his unique project. The source code for many of the
ADSDSP functions is provided, including the code for the main entry point, the code for
the terminal 170 functions, and example code for a non-display version of the emulator.
The source code can be modified to create an emulator customized for a particular
application.

A custom emulator may be built with or without display support. Omitting display
support reduces the program size by about half, but sacrifices the screen output facilities
used in the ADS, and also the user interface and command parsing and execution
routines (which rely on the display routines). A non-display ADS may be used to
provide direct program control of the hardware by calling the low-level routines,
creating reports and activity logs using standard C functions. Omitting display support
does not preclude the use of the standard C input/output functions or the creation of an
alternative user interface.

The rest of the appendix covers various aspects of the specification and use of the
libraries:

e Section D.2 lists and groups the functions

= Section D.3 defines each function

= Section D.4 defines the display (terminal 1/0) functions

= Section D.5 discusses display and non-display support

= Section D.6 describes the emulation of multiple DSP devices

= Section D.7 lists reserved function names

= Section D.8 describes global data used by the emulator

= Section D.9 covers tailoring items in the global structures

MOTOROLA DSPADSUM/AD D-3

C Library Functions

ADS Object Library Files

D.2 ADS OBJECT LIBRARY FILES

D.2.1 ADS OBJECT LIBRARY ENTRYPOINTS

The library functions are listed below. They are divided into groups by their function
name prefix. The prefix indicates to which part of the ADS they belong, and if they are
available in the display or non-display versions of the emulator.

e ads_ ADS-specific routines; both versions

e dspd_ driver level; not for use by user code; both versions

e spd_cc_ Command Converter driver level; not for use by user code; both

e dspt_ DSP device dependent routines; both versions

e dsp_ both versions

e dsp_cc_ Command Converter routines; both versions

e sim display only; user interface routines

The driver-level routines (both those referred to above and those documented in the rest
of this appendix) are not intended to be called by emulator code. They are designed to be
(directly or indirectly) by the interface routines. They are documented so that the user
can rewrite them to drive alternate emulator hardware. Other lower-level functions
mentioned in this appendix are not intended to be called by user code; these functions
are not documented and are specified by the prefixes dspl _,sim _and dspt| _.

D-4 DSPADSUM/AD MOTOROLA

C Library Functions

D.2.2

D.22.1

ads_cache_regi st ers(devn);
ads_startup(devp, devtype);

D.2.2.2

dspd_cc_architecture
(devn, device_type);
dspd_cc_read fl ag

(devn, flag, value);

dspd_cc_read _nenory(devn, nem addr, count,
val ue) ;

dspd_cc_reset (devn);

dspd_cc_revi sion

(devn, revstring);

dspd_cc_ wite flag

(devn, flag, value);

dspd_cc_wite nenory(devn, nem addr, count,
val ue) ;

D.2.2.3

dspd_br eak(devn, command);

dspd_check_ser vi ce_r equest

(devn);

dspd_fill_nenory(devn, nem addr, count, val ue);
dspd_go(devn, opcode, operand);

dspd_j tag_reset (devn, reset_type);

dspd_read _core _registers

(devn, reg_num count, val ue);

dspd_r ead_nenor y(devn,

nem space, addr, count, val ue);
dspd_read_once_regi sters

(devn, reg_num count, value);
dspd_reset (devn, reset_node);
dspd_st at us(devn, node);
dspd_wite core registers
(devn, reg_num count, val ue);
dspd_write_nenory(devn, nemspace, addr, count,
val ue) ;

dspd_ wite once registers
(devn, reg _num count, value);

ADS Object Library Files

LIBRARY ENTRYPOINTS LISTED BY PREFIX

ads_—ADS-Specific Utility Routines

Read OnCE and core registers from device
Initialize ADS database and driver

dspd_cc_—Command Converter Driver Level Routines

Initialize Command Converter for DSP family
Read Command Converter flag word
Read from Command Converter memory

Reset Command Converter
Read Command Converter revision number

Write Command Converter flag word

Write to Command Converter memory

dspd_—Driver Level Routines

Force running DSP into debug mode
See if DSP is requesting service from host

Initialize DSP memory buffer to single value
Begin execution on target DSP device

Reset JTAG communications

Read core registers from DSP device

Read memory block from DSP device
Read once registers from DSP device

Reset specified DSP device
Determine DSP status
Write core registers to DSP device

Write to memory in DSP device

Write once registers from DSP device

MOTOROLA

DSPADSUM/AD

D-5

C Library Functions

ADS Object Library Files

D.2.2.4 dspt_—DSP DEVICE-SPECIFIC ROUTINES

dspt _nmasm Xxxxx
(rmenoni ¢, ops, err);
dspt _unasm Xxxxx
(ops, sr, omm, sdbp);

Assemble mnemonic string to ops

Disassemble DSP opcodes

D.2.2.5 dsp_cc_—Command Converter Interface Routines

dsp_cc_f nen{devi ce, mype, addr, count, val ue);

dsp_cc_go(devn);
dsp_cc_| dnen{devn, | oadfn);
dsp_cc_reset (devi ce);

dsp_cc_revi sion
(devn, revstring);
dsp_cc_rnmem

(device, niype, addr, val ue);
dsp_cc_rnembl k(devi ce, ntype, addr, count,

val ue) ;
dsp_cc_wrem

(device, ntype, addr, val ue);
dsp_cc_wrem bl k(devi ce, ntype, addr, count,

val ue) ;

Fill Command Converter memory block
Start program on Command Converter

Load Command Converter Memory from file
Reset Command Converter

Read Command Converter Monitor Revision

Read Command Converter Memory
Read Command Converter memory block
Write Command Converter memory

Write Command Converter memory block

D.2.2.6 dsp_—ADS Interface Routines

dsp_al | oc(nbyt es, cl ear nen) ;

dsp_check_servi ce_request
(devn);

dsp_f i ndnen{ devn, nermane, nap) ;

dsp_findreg

(devn, regnane, pval ,rval);
dsp_f mem

(devn, nap, addr, bl ocksz, val) ;

dsp_free(devn);

dsp free nenfcp);
dsp_go(devn);
dsp_go_address(devn, addr);
dsp_go reset (devn);

dsp_ini t (devn);

dsp_| drenfdevn, fi | enane) ;
dsp_l oad(fil enane);
dsp_new(devn, devi ce_type);

dsp _path
(pat h, base, suffi x, new nane) ;

Allocate Memory
Determine if device is requesting service

Get map index for memory prefix
Get peripheral and register index

Fill memory block with a value

Free memory allocated for a DSP device
Free memory block

Initiate program execution

Initiate program execution from addr
Initiate program execution after reset
Initialize selected device

Load device memory from filename

Load all device states from filename
Create new DSP device

Create filename from path, base and suffix

D-6

DSPADSUM/AD

MOTOROLA

C Library Functions

dsp_real | oc(nembl k, nbytes);
dsp _reset (devn);

dsp_rnmem
(devn, nap, addr, remval) ;

dsp_rnmembl k (devn, map, addr, count, val ue) ;

dsp rreg

(devn, peri phn, regn, regval);
dsp_save(fil enane);

dsp_spat h(base, sufx, retn);
dsp_startup();
dsp_st at us(devn, node)
dsp_step(devn, step)

dsp_st op(devn);

dsp_unl ock

(devi ce_t ype, password);
dsp_wnen{ devn, map, addr, val) ;
dsp_wrem bl k

(devn, nap, addr, count , val ue;
dsp weg

(devn, peri phn, regn, regval);

ADS Object Library Files

Reallocate memory block
Reset specified DSP device
Read DSP memory map addr to mem_val

Read Block of DSP Memory Locations
Read DSP peripheral register to regval

Save the state of all devices to filename
Search path for specified file

Initialize emulator structures
Determine DSP Device Status

Execute counted instructions

Force DSP device into Debug Mode
Unlock password protected device type

Write DSP memory map addr with val
Write DSP Memory Block

Write DSP peripheral register with regval

D.2.2.7 sim_—User Interface Routines

si m docnu(devn, command_stri ng) ;
si m gnend(devn, command_stri ng) ;
si m gt cnd(devn, command_stri ng) ;

Perform emulator command on DSP device
Get Command String from Macro File
Get Command String from Terminal

MOTOROLA

DSPADSUM/AD D-7

C Library Functions

Library Function Descriptions

D.3 LIBRARY FUNCTION DESCRIPTIONS

D.3.1 ads_cache_regi st ers—Cache OnCE and Core Registers

#i ncl ude " si ntom h"

#i ncl ude " prot ocom h"

int ads_cache_regi sters(devi ce_i ndex)

i nt device; /* device affected by comand */

ads_cache_regi sters() caches all OnCE and core registers on the target device
devi ce_i ndex to ensure the integrity of values returned by dsp_rreg() .

This routine must always be called before calling dsp_rreg() each time the device
returns to debug mode. If it is not called, the values returned by dsp_rreg() may be
unreliable.

The return value is TRUE on successful completion, FALSE otherwise.

Exanple D1 ads_cache_registers()

/* cache registers */
#i ncl ude "si ntom h*
#i ncl ude " prot ocom h"

int devn = 0;

int peri phnumpc, regnum pc;
unsi gned | ong pc_val ue;

int status;

/* Fnd register reference nunbers */

stat us=dsp_fi ndreg(devn, "pc", &eri phnum pc, & eghum pc)

st at us=dsp_check_ser vi ce_r equest (devn)

/* |s device requesting service? */

ckerr(status);

if (status)

/* Yes, so... */

{
st at us=ads_cache_regi sters(devn);/* cache the registers */

/* get pc addr for service request */

st at us=dsp_rreg(devn, peri phnum pc, regnum pc, &c_val ue) ;

D-8 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.2 ads_st art up—Initialize ADS Database and Driver

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int ads_startup(devp, devtype)

char *devp; /* device driver nane (UN X or board address (PQ */
int devtype;/* Device famly */

ads_startup() initializes the device driver and allocates certain ADS data structures.
devp points to a character string containing the name of the device driver on UNIX™
systems, or the board address on PC systems (DOS or WINDOWS). devt ype indicates
which family of DSP devices is being used.

ads_start up() must be called before calling dsp_start up().

Valid values for devt ype are:

* ADSP56000
* ADSP56300
* ADSP96000

The function return value is TRUE on successful completion, FALSE otherwise.

Example D-2 ads_st artup()

/* Initialize ADS software (PQ*/
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

int status;

stat us=ads_st art up("100", ADSP56000);

/* Initialize ADS software (UN X™Y*/
#i ncl ude "si ncom h*

#i ncl ude " prot ocom h"

int status;

st at us=ads_st art up("/ dev/ ndsp0", ADSP56000);

MOTOROLA DSPADSUM/AD D-9

C Library Functions

Library Function Descriptions

D.3.3 dspd_br eak—Force Running DSP into Debug Mode

#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#i ncl ude "driver. h"

i nt dspd_break(devi ce_i ndex, conmmand)

i nt device_index;/* D8P device to be affected by command */
int command;/* conmmand to be sent to DSP device */

dspd_br eak() forces the target device devi ce_i ndex into debug mode, using the
method specified by the parameter comand.

Valid values for conmand are:

= DSP_JTAG BREAK—used for devices with JTAG port
e DSP_ONCE _BREAK—used for devices with OnCE port
The function returns DSP_CK if the operation succeeds, DSP_ERRCR otherwise.

Exanple D-3 dspd_break()

/* Force D8P into debug node */
#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#i ncl ude "driver. h"

int devn;
int break_status;

devn=0;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

br eak_st at us=dspd_br eak(devn, D8P_ONCE BREAK)/ * Force devi ce i nto DEBUG node */

D-10 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.4 dspd_cc_archi t ect ur e—Initialize Command Converter for
DSP Family

#include "driver.h"

i nt dspd_cc_architecture(devi ce_i ndex, device_type)
int device_index;/* D8P device affected by command */
int device type;/* Type of DSP device */

Initializes the Command Converter devi ce_i ndex for the target architecture specified
by devi ce_t ype. The device attached to the Command Converter may be any member
of the specified DSP family.

Valid values for devi ce_t ype are:

 DSP_CC 56000
« DSP_CC 56300
« DSP_CC 96000
Example D-4 dspd_cc_architecture()

/* Initialize Cormand onverter for device 0, a 56002 */

#i ncl ude "dri ver. h"

int devn, status;

devn=0;

st at us=dspd_cc_ar chi t ect ur e(devn, DSP_QGC 56000) ;/* setup GC for 56K famly */

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

MOTOROLA DSPADSUM/AD D-11

C Library Functions

Library Function Descriptions

D.3.5

dspd _cc_read fl ag—Read Command Converter Flag Word

#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#include "driver.h"

int dspd_cc_read_fl ag(devi ce_i ndex, flag, val ue)

int device_index;/* Command Gonverter affected by command */
int flag;, /* Specify flag to read */

unsi gned | ong *val ue;/* Location to receive flag val ue */

dspd_cc_read_flag() reads flag word f | ag from Command Converter
devi ce_i ndex, storing the value obtained in the location pointed to by val ue.

Valid values for f | ag are:

The function returns DSP_OK on success, DSP_ERROR otherwise.

DSP_CC FLAGS
DSP_CC_STATUS

DSP_CC XPTR
DSP_CC_YPTR

DSP_CC DEVI CE_ADDRESS
DSP_CC_CLOCK_RATE
DSP_CC_DEVI CE_COUNT
DSP_CC_DEVI CE_ACTI VE

Example D-5 dspd_cc_read_fl ag()

/* Read Cormand Gonverter flag word */
#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#i ncl ude "driver. h"

int status, flag_val ue, devn;

devn=0;

status=dspd_cc_read flag(devn, D8P_OC XPTR &flag val ue);

D-12

DSPADSUM/AD

MOTOROLA

C Library Functions

Library Function Descriptions

D.3.6 dspd_cc_read_nenor y—Read from Command Converter
Memory

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

#i ncl ude "cc. h"

i nt dspd_read_nenory(devi ce_i ndex, mem space, address, count, val ue)
int device_index;/* Cormand Gonverter affected by command */

int nemspace;/* Menory space to read */

unsi gned | ong address;/* Address of first location to read */

unsi gned | ong count;/* Number of |ocations to read */

unsi gned | ong *val ue;/* Address of buffer to receive read val ues */

dspd_cc_read_rnenory() reads a block of memory starting at address addr ess,
length count , in memory space nem space on Command Converter devi ce_i ndex.
The values read are stored in the buffer pointed to by val ue.

Valid values for mrem space are:

« DSP_CC PMEM
¢« DSP_CC XMVEM
« DSP_CC YMEM
The return value is DSP_ X for success, DSP_ERRCOR if the transaction fails.

Example D-6 dspd_cc_read _nenory()

/* Read nenory bl ock from Gomvand Gonvert er*/
#i ncl ude " si ntom h*

#i ncl ude "dri ver. h"

#i ncl ude "cc. h"

int devn, status;

unsi gned | ong read_addr, read_|en;

unsi gned | ong *read_buf;

devn=0;

read _buf = (unsigned | ong *)dsp_al | oc(100*si zeof (unsi gned | ong));
r ead_addr =0x0400I ;

read_| en=100I ;

st at us=dspd_cc_read_nenor y(devn, D8P_CC PMBM read_addr, read | en, read_buf);

MOTOROLA DSPADSUM/AD D-13

C Library Functions

Library Function Descriptions

D.3.7 dspd_cc_reset —Reset Command Converter

#i ncl ude "si ntom h"

#i ncl ude "driver. h"

i nt dspd_cc_reset (devi ce_i ndex)
i nt devi ce_i ndex;

dspd_cc_reset () resets the Command Converter devi ce_i ndex.

The return value is DSP_XK for success, DSP_ERRCOR if the reset fails.

Example D-7 dspd_cc_reset ()

/* Reset Command Converter */
#i ncl ude "si ntom h"
#i ncl ude "driver. h"

int devn, status;

devn=0;

st at us=dspd_cc_reset (devn) ;

D-14 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.8 dspd_cc_revision—Read Command Convertor Revision
Number

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

i nt dspd_cc_revision(devi ce_i ndex, revstring)

int device_index;/* Command Qonverter affected by command */

char *revstring;/* pointer to buffer to receive revision nunber string */

dspd_cc_revi sion() returns a text string containing the version number of the
monitor for Command Converter devi ce_i ndex in the buffer pointed to by
revstring.
The message is created with the format:

"Command Converter nonitor revision {%. 2f}"

The return value is DSP_CK for success, DSP_ERRCRIf the reset fails.

Example D-8 dspd_cc_revi sion()

/* Read GQC nonitor revision nunber */
#i ncl ude "si ntom h"
#incl ude "driver. h"

int devn, status;
char *rev_buf;

devn=0;
rev_buf = (unsigned | ong *)dsp_al | oc(100*si zeof (char));

st at us=dspd_cc_revi si on(devn, rev_buf);

MOTOROLA DSPADSUM/AD D-15

C Library Functions

Library Function Descriptions

D.3.9 dspd_cc_write flag—Write Command Converter Flag Word

#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#include "driver.h"

int dspd_cc_wite flag(device_ index, flag, value)
i nt devi ce_i ndex;

int flag;

unsi gned | ong val ue;

dspd_cc_wite_flag() writesto flag word f | ag on Command Converter
devi ce_i ndex, fetching the value from the location pointed to by val ue.

Valid values for f | ag are:

« DSP_CC FLAGS
« DSP_CC STATUS
« DSP _CC XPTR
« DSP_CC _YPTR
« DSP_CC DEVI CE_ADDRESS
« DSP_CC CLOCK_RATE
« DSP_CC DEVI CE_COUNT
« DSP_CC DEVI CE_ACTI VE
The function returns DSP_COK on success, DSP_ERRCR otherwise.

Example D-9 dspd_cc_wite_flag()

/* Wite Gormmand Gonverter flags */
#i ncl ude "cc. h"

#i ncl ude "si ntom h"

#i ncl ude "driver. h"

int devn, status;

devn=0;

status=dspd_cc_wite_ flags(devn, D8P_QC YPTR 0x0400!) ;

D-16 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.10 dspd_cc_write_nenory—Write to Command Converter
Memory

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

#i ncl ude "cc. h"

int dspd_wite nenory(device_index, nemspace, address, count, val ue)
int device_index;/* Cormand Gonverter affected by command */

int nemspace;/* Menory space to wite */

unsi gned | ong address;/* Address of first location to wite */

unsi gned | ong count;/* Nunber of |ocations to wite */

unsi gned | ong *val ue;/* Address of buffer of values to wite */

dspd _cc_wite nenory() writes a block of memory starting at address addr ess,
length count , in memory space nem space on Command Converter devi ce_i ndex.
The values read are retrieved from the buffer pointed to by val ue.

Valid values for mrem space are:

« DSP_CC PMEM—program memory
e DSP_CC XMEM—X data memory
e DSP_CC YMEM—Y data memory
The return value is DSP_ X for success, DSP_ERRCOR if the transaction fails.

Example D-10 dspd_cc_wite_nmenory()

/* Wite nemory bl ock to Cormand Converter*/

#i ncl ude "si ncom h*

#incl ude "driver.h"

#i ncl ude "cc. h"

int devn, status;

unsigned long wite addr, wite len;

unsi gned | ong *wite buf;

devn=0;

wite buf = (unsigned | ong *)dsp_al | oc(100*si zeof (unsi gned | ong));

get_val ues_in(wite buf, 1001)/* fetch values to wite... */

wri t e_addr =0x0400! ;
wite | en=100l;

stat us=dspd_cc_wite_nenory(devn, DSP_ CC PMEMwite addr,wite len,wite buf);

MOTOROLA DSPADSUM/AD D-17

C Library Functions

Library Function Descriptions

D.3.11 dspd_check_servi ce_request —Check for Service Request

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

i nt dspd_check_servi ce_request (devi ce_i ndex)

int device_index;/* D8P index affected by command */

dspd_check_servi ce_request () checks to see if the target device devi ce_i ndex is
requesting service from the host computer

The return value is TRUE if the device is requesting service, FALSE if it is not requesting
service, and DSP_ERROR if the function cannot complete successfully.

Exanple D-11 dspd_check_servi ce_request ()

/* Check to see if a DSP device is requesting service */
#i ncl ude "si ncom h"
#i ncl ude "dri ver. h"

int devn;
int status;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

/* wait for device to request service */
whi | e ((status=dspd_check_servi ce_request (devn))=FALSE);

if (status==DSP BRR(R
return(DsP_ ERRIR;

/* device requested service. Nowfind out why..... */

D-18 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.12 dspd_fill _nmenory—Initialize DSP Memory Buffer to Single
Value

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

int dsp fill_nenory(devi ce_i ndex, nem space, addr ess, count , val ue)
int device_index;/* index of DSP device affected by cormand */
int nemspace;/* nenory space to fill */

unsi gned | ong address;/* address of start of nenory bl ock */
unsi gned | ong count;/* length of nenory bl ock */

unsigned | ong val ue;/* fill value */

dspd_fill _nmenory() initializes a block of memory on the specified DSP device
devi ce_i ndex to the specified value. count locations starting at addr ess are filled
with val ue.

Valid values for mem space are:

= P_MEM—program memory
e X MEM—X data memory
e Y_MEM—Y data memory
The return value is DSP_CK for success, DSP_ERRORif the transaction fails.

Example D-12 dspd_fill _menory()

/* clear P nenory on DSP device 1 */
#i ncl ude "si ntom h"
#i ncl ude "dri ver. h"

int devn;
int status;

devn=0;

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */
[* init buffer to 'no value */

status=dsp_fill_nenory(devn, X MBM 0x0100l , 0x144l , Oxffffffl)

MOTOROLA DSPADSUM/AD D-19

C Library Functions

Library Function Descriptions

D.3.13 dspd_go—Begin Execution on Target DSP Device

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

i nt dspd_go(devi ce_i ndex, opcode, operand)

int device_index;/* Index of DSP device affected by command */
unsi gned | ong opcode;/* val ues to load into pipeline */

unsi gned | ong operand;/* before starting programexecution */

dspd_go() is called to start program execution on the target device devi ce_i ndex.

The target device’s pipeline is loaded with the parameters opcode and oper and, and
the device is forced to start executing.

The values loaded into the pipeline via opcode and oper and should either be the values
saved from the pipeline when the device entered debug mode, or if execution is required
to continue from a specific address, the values loaded should form a long jump
instruction to the required execution start address:

opcode: opcode for long jump to required execution start address.
Symbolic names are defined for JUMP opcodes for the device
families in simcom.h.

operand: address of long jump target (execution start address)

The function returns DSP_CK on successful completion, DSP_ERROR otherwise.

Exanple D-13 dspd_go()

/* Sart execution fromaddress 0x1000 */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "driver. h"

int err, status, devn;

devn=0;

err=dsp_|l oad("l unchbrk. adnmi);/* rel oad devi ces and programdata */

st at us=dspd_go(devn, DSP_LONGUWP 56K 0x1000l); /* & execute from 0x1000 */

D-20 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.14 dspd_jtag reset—Reset JTAG Communications

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

int dspd_jtag_reset(device_index, reset_type)

int device_index;/* device affected by comnmand */
int reset_type;/* type of reset to perform*/

dspd_jtag_reset () resetsthe JTAG TAP controller for the device devi ce_i ndex.
reset _t ype may be set to:

e DSP_JTAG RESET HARDWARE—Force reset by asserting trst pin on JTAG port

e DSP _JTAG RESET SOFTWARE—TForce reset by toggling tms pin on JTAG port
until the JTAG TAP controller state machine returns to its reset state.

The function returns DSP_CK if the operation succeeds, DSP_ERRCR otherwise.

Example D-14 dspd_jtag_reset ()

/* reset JTAG communi cations with */
#i ncl ude "si ntom h"
#i ncl ude "driver. h"

int devn;
int status;

devn=0;
dsp_new(devn, "96002");/* Alocate structure for device 0, a 96002 */

stat us=dspd_jtag_reset (devn, DEP_JTAG RESET HARDMWRE)

MOTOROLA DSPADSUM/AD D-21

C Library Functions

Library Function Descriptions

D.3.15 dspd_read_core_regi sters—Read Core Registers from
DSP Device

#i ncl ude "adsreg56. h"

#i ncl ude " si ntom h"

#i ncl ude "dri ver. h"

int dspd_read_core registers(device_index, reg_num count, val ue)
int device_index;/* Index of DSP device affected by comrmand */

int reg num/* FHrst register to read */

unsi gned | ong count;/* Nurber of registers to read */

unsigned | ong *val ue;/* Pointer to area to receive register val ues */

dspd_read_core_regi sters() reads count core registers starting at register
r eg_numfor target device devi ce_i ndex, storing the values in the memory pointed to
by val ue.

The order of the registers is specified in the header file adsregXX.h

Note: Calling order is important. dspd_r ead_once_r egi st er s() must be called
before calling dspd_r ead_core_regi st ers() . If the calling order is
reversed, the values in the OnCE registers will have been altered.

Some registers, for example the a register, may be too large to be held in a single
location. These registers are also defined as a number of smaller registers, a0, al, and
a2. Such registers require an element in the value array for the compound register, and
one for each of its component parts. The value returned for the compound register is
undefined. Each of the component values is returned, and must be assembled by the
calling program if the value of the compound register is required. The return value is
DSP_Xif the operation succeeds, DSP_ERRORIf it fails.

Example D-15 dspd_read _core registers()

/* Read core registers */
#i ncl ude "adsreg56. h"

#i ncl ude "si ntom h"

#incl ude "driver.h"

int devn, status;
unsi gned | ong count _once, buf_once[15], count_core, buf _cor e[ADSOCREVAN ;
devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */
count_once=15; /* all OhCE registers */
count_core = ADSOCREMWAX /* al | core registers */
/* get OhCE first, then core */
st at us=dspd_read_once_regi sters(devn, G8CR count_once, buf_once);
stat us=dspd_read core_regi sters(devn, ADS A count_core, buf _core);

D-22 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.16 dspd_read_nenor y—Read Memory Block from DSP Device

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

i nt dspd_read_nenory(devi ce_i ndex, mem space, address, count, val ue)
i nt device_index;/* Index of DSP device affected by command */

int nemspace;/* Menory space to read */

unsi gned | ong address;/* Address of first location to read */

unsi gned | ong count;/* Nurber of |ocations to read */

unsi gned | ong *val ue;/* Pointer to area to recei ve nenory val ues */

dspd_read_nenory() readscount wordsof memory from the DSP device in memory
space nem space starting at address addr ess, and stores them in the memory pointed
to by val ue.

Valid values for mem space are:

= P_MEM—program memory
e X MEM—X data memory
= Y_MEM—Y data memory
The return value is set to DSP_(K if the operation succeeds, DSP_ERROR if it fails.

Example D-16 dspd_read_nenory()

/* Read D8P nenory bl ock */
#i ncl ude "si ntom h"
#i ncl ude "driver. h"

int devn, status;
unsi gned | ong x_nem buf [0x100] ;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

/* Read back work buffer */
status = dspd_read_nenory(devn, X MBM 0x0000l, 0x0100l, x_nem buf)

MOTOROLA DSPADSUM/AD D-23

C Library Functions

Library Function Descriptions

D.3.17 dspd_read_once_regi st ers—Read OnCE Registers from
DSP Device

#i ncl ude "adsreg56. h"

#i ncl ude " si ntom h"

#i ncl ude "dri ver. h"

int dspd_read_once registers(device_index, reg_num count, val ue)
int device_index;/* Index of DSP device affected by comrmand */

int reg num/* FHrst once register to read */

unsi gned | ong count;/* Nurber of registers to read */

unsigned | ong *val ue;/* Pointer to area to receive register val ues */

dspd_read_once_regi sters() reads count OnCE registers starting from register
r eg_numfrom target device devi ce_i ndex and stores the values in the memory
pointed to by val ue.

The order of the registers is specified in the header file adsregXX.h.
Note: Calling order is important. dspd_r ead_once_r egi st er s must be called
before calling dspd_read_core_regi st ers. If the calling order is reversed,

the values in the OnCE registers will have been altered.

The function returns DSP_OK on success, DSP_ERROR otherwise.

Example D-17 dspd_read_once_regi sters()

/* Read once registers */
#i ncl ude "adsreg56. h"

#i ncl ude "si ntom h"

#incl ude "driver.h"

int devn, status;
unsi gned | ong count _once, buf_once[15], count_core, buf_cor e[ADSOCREVAN ;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

count _once=15;
count _core = ADSOCREMAX;

st at us=dspd_read_once_regi sters(devn, C8CR count_once, buf_once);
status=dspd _read_core_regi sters(devn, ADS A count_core, buf_core);

D-24 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.18 dspd_reset —Reset DSP Device to Debug or User Mode

#i ncl ude "si ntom h"

#i nclude "driver.h"

i nt dspd_reset (devi ce_i ndex, reset_node)

int device_index;/* Index of affected DSP device */
int reset_node;/* type of reset to perform*/

dspd_reset () resets the target device devi ce_i ndex. The device may be reset into
debug mode or user mode, based on the value of r eset _node.

Valid values for r eset _node are:

= DSP_RESET_ DEBUG—reset device into debug mode
e DSP_RESET USER—reset device into user mode
The function returns DSP_OK on success, DSP_ERROR otherwise.

Exanple D-18 dspd_reset()

/* P ace D8P device 3 into debug node */

#i ncl ude "si ncom h*

#incl ude "driver.h"

int devn, status;

devn=0;

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dspd_reset (devn, DSP_RESET DEBUG;/* Reset devi ce i nto DEBUG node */

MOTOROLA DSPADSUM/AD D-25

C Library Functions

Library Function Descriptions

D.3.19 dspd_st at us—Determine DSP Status

#include "driver.h"

#i ncl ude "si ntom h"

i nt dspd_status(devi ce_i ndex, node)

int device_index;/* D8P device affected by command */

int *node; /* address of buffer to receive device status */

dspd_st at us() places the execution status of the target device device_index in the int
pointed to by mode.

Valid values for *mode are:

= DSP_USER MODE—device is executing a user program
e DSP_DEBUG MODE—device is in debug mode

The function returns TRUE on success, or FALSE otherwise.

Example D-19 dspd_stat us()

/* determne status of DSP 0 */
#i ncl ude "driver. h"
#i ncl ude "si ntom h"

int devn, status;
i nt devi ce_node;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dspd_status(devn, &devi ce node);/* get device status */

D-26 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.20 dspd_wite _core_regi sters—Write Core Registers to DSP
Device

#i ncl ude "adsreg56. h"

#i ncl ude " si ntom h"

#i ncl ude "dri ver. h"

int dspd_wite core registers(device_ index, reg_num count, val ue)
int device_index;/* Index of DSP device affected by comrmand */

int reg num/* Frst once register to wite */

unsi gned | ong count;/* Nurber of register words to wite */

unsi gned | ong *val ue;/* Pointer to area hol ding register val ues */

dspd_write_core_registers() writescount core registers starting atr eg_numto
target device devi ce_i ndex.The values written are taken from the memory pointed to
by val ue.

The order of the registers is specified in the header file adsregXX.h

Some registers, for example the a register, may be considered to be an entity in its own
right, or a number of smaller registers, that is a0, al,and a2. Such registers require an
element in the value array for the compound register, and one for each of its component
parts. The value for the compound register is ignored. Each of the component values is
loaded, thereby changing the value of the compound register.

The function returns DSP_OK on success, DSP_ERROR otherwise.

Example D-20 dspd _wite _core_registers()

/* Wite core registers */
#i ncl ude "adsreg56. h"

#i ncl ude "si ntom h"

#incl ude "driver.h"

int devn, status;
unsi gned | ong core_reg_val ues| 15] ;

devn=0;

dsp_new(devn, "56002");/* Alocate structures for device 0, a 56002 */

/* wite all core registers frombuffer */
st atus=dspd_wite core registers(devn, ADS A 15, core reg_val ues)

MOTOROLA DSPADSUM/AD D-27

C Library Functions

Library Function Descriptions

D.3.21 dspd_write_nmenory—Write to Memory in DSP Device

#i ncl ude "si ntom h"

#i ncl ude "dri ver. h"

int dspd_wite_nenory(device_i ndex, nemspace, address, count, val ue)
int device_index;/* Index of DSP device affected by command */

int nemspace;/* Menory space to wite */

unsi gned | ong address;/* Address of first location to wite */

unsi gned | ong count;/* Nurber of locations to wite */

unsi gned | ong *val ue;/* Pointer to area hol di ng nemory val ues */

dspd_write_menory() writes count words of memory in the DSP device. The values
are taken from the buffer pointed to by val ue.

Valid values for mem space are:

 P_MEM—program memory
e X MEM—X data memory
e Y _MEM—Y data memory
The return value is set to DSP_OK if the operation succeeds, DSP_ERRORif it fails.

Example D-21 dspd_write_nenory()

/* Wite D8P nenory bl ock */
#i ncl ude "si ntom h"
#i ncl ude "driver. h"

int devn, status;
unsi gned | ong x_nem buf [0x100] ;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dspd wite nenory(devn, X MBM 0x0400l, 0x0100l, &_nem buf[0])

D-28 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.22 dspd_wite_once_regi sters—Write OnCE Registers to
DSP Device

#i ncl ude "adsreg56. h"

#i ncl ude " si ntom h"

#i ncl ude "dri ver. h"

int dspd_wite_once_registers(device_ index, reg_num count, val ue)
int device_index;/* Index of DSP device affected by comrmand */

int reg num/* Frst once register to wite */

unsi gned | ong count;/* Nurber of registers to wite */

unsi gned | ong *val ue;/* Pointer to area hol ding register val ues */

dspd_write_once_registers() writescount OnCE registers starting at register
r eg_numto the target device devi ce_i ndex. The values written are taken from the
memory pointed to by val ue.

The order of the registers is specified in the header file adsregXX.h.

The function returns DSP_OK on success, DSP_ERROR otherwise.

Example D-22 dspd_wite_once_registers()

/* Wite once registers */
#i ncl ude "adsreg56. h"

#i ncl ude "si ntom h"

#incl ude "driver.h"

int devn, status;
unsi gned | ong once_reg_val ues [15];

devn=0;

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

/* wite all Oh\CEregisters frombuffer */
st atus=dspd_write _once registers(devn, GBR 15|, once_reg_val ues)

MOTOROLA DSPADSUM/AD D-29

C Library Functions

Library Function Descriptions

D.3.23 dspt _masm xxxxx—Assemble DSP Mnemonic

#i ncl ude "proto56n. h"/* n=k, 1,3,8 */

#i ncl ude " prot 096k. h"

i nt dspt_nmasm xxxxx(nmenoni ¢, ops, error_ptr)

char *mmenoni c;/* Pointer to assenbl er mmenoni ¢ string */

unsi gned | ong *ops;/* Array for words of assenbl ed code */

char **error_ptr;/* WII point to nmessage if an error occurs */

dspt _masm xxxxx() invokes the single line assembler to assemble a DSP mnemonic. It
returns one of the following integer codes:

< -1 Anerror occurred. The user supplied error pointer error _ptr will pointto a
message that explains the error.
e 0 The line mnemonic provided was a comment

e 1 The mnemonic assembled correctly and required 1 word of code. The code
will be in the ops[O] location.

e 2 The mnemonic assembled correctly and required 2 words of code. The first
word will be placed in ops[0] , the second in ops[1] .

e 3 The mnemonic assembled correctly and required 3 words of code. The first
word will be placed in ops[0] , the second in ops|[1], the third in ops|[2] .

Note: The xxxxx in the function name should be replaced by a device family
number. It should be 56k for the 56000 family devices, 56n00 for the 56n00
family devices and 96k for the 96000 family devices.

Exanpl e D-23 dspt_nmasm xxxxx()

/* Assenble the instruction "nove rO,r1" */
#i ncl ude "pr ot 056k. h"

unsi gned | ong opcodes| 3] ;
char *error_ptr;
int retval;

retval =dspt _rmasm 56k("nove r0, r1", &pcodes[O], &error_ptr);

D-30 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.24 dspt _unasm xxxxx—Disassemble DSP Mnemonics

#i ncl ude "proto56n. h"/* n=k, 1,3,8 */

#i ncl ude " prot 096k. h"

i nt dspt_unasm xxxxx(ops, return_string, sr, om, gdbp)

unsi gned | ong *ops;/* Pointer to opcodes to be di sassenbl ed */
char *return_string;/* Pointer to return character buffer */
unsi gned | ong sr;/* Val ue of device status register */

unsi gned | ong om;/* Val ue of device operating node register */
char *gdbp; /* Return val ue reserved for use by debugger*/

dspt _unasm xxxxx() disassembles ops[0] (and possibly ops[1] and ops|[2] if ops
[O] requires a second or third word) and places the disassembled mnemonic in the
ret ur n_stri ng buffer supplied by the user. If correct disassembly requires a device
status register and/or operating mode register value, the values should be provided in
the sr and onr parameters. The gdbp parameter is a pointer reserved for use by the
symbolic debugger, and should be NULL for other applications.

The mnemonic may require as many as 120 characters of return buffer. The function
returns the number (1 to 3) of words consumed by the disassembly. It returns 0 for illegal
opcodes and a return string containing a DC directive.

Note: The xxxxx in the function name should be replaced by a device family
number. It should be 56k for the 56000 family devices, 56n00 for the 56n00
family devices, and 96k for the 96000 family devices.

Example D-24 dspt _unasm xxxxx()

/* D sassenbly of the opcode representi ng NP */
#i ncl ude " prot o56n. h"

unsi gned 1 ong ops[3];/*Instruction words to be di sassenbl ed. */
char return_string[120];/*The return mmenoni ¢ goes here. */

int nunwords;/*Nunber of operands used by di sassenbl er. */
ops[0] =0L;

ops[1] =0L;

ops[2] =0L;

nunwor ds=dspt _unasm 56k(ops, ret urn_string, OL, OL, NULL) ;

/* Now nunwor ds==1, return_string=="nop" */

MOTOROLA DSPADSUM/AD D-31

C Library Functions

Library Function Descriptions

D.3.25 dsp_al | oc—Allocate Memory

The routines dsp_al | oc,dsp_free_nmemand dsp_r eal | oc are replacements for the
standard C functions mal | oc, free andr eal | oc. They are used in much the same way
as the standard functions, for allocating space for structures, buffers, etc. These functions
are used in the debugger libraries, and must also be used exclusively in the user
debugger code. Any attempt to use the standard routines will have unpredictable
results.

#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

voi d *dsp_al | oc(nbyt es, cl ear nen)

unsi gned i nt nbytes;/* Nurmber of bytes to allocate */
int clearmrem/* Qear allocated nenory */

dsp_al | oc() allocates the number of bytes of memory specified in nbyt es. The
memory block allocated is aligned for use as any data type. If cl ear memis true
(nonzero), the allocated memory is cleared to zero.

The address of the allocated buffer is returned as the return value, type voi d*.

If the requested memory cannot be allocated, the error message " I nsuf fi ci ent
menory: dsp_al |l oc” is output, and the return value is the NULL pointer.

Example D-25 dsp_al | oc()

/* Alocate tenporary buffer of 50 int. Buffer is cleared. */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int *tbptr
tbptr = (int *) dsp_all oc(50*si zeof (int), 1)

if (tbptr == NULL)
{...handl e error...

D-32 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.26 dsp_cc_f mem—Fill Command Converter Memory with a Value

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int dsp_cc_fren{device, niype, address, count, val ue)

int device; /* CGommand Gonverter affected by command */
enum nenory_nmap ntype; /* Menory space to fill */

unsi gned | ong address; /* Address of start of nenory bl ock */

unsi gned | ong count; /* Length of nenory bl ock */

unsi gned I ong *value; /* FH Il value */

dsp_cc_fmen() initializes a block of memory in the Command Converter device
starting at address addr ess, length count , in address space nt ype with the value
pointed to by val ue.

Valid values for nt ype are:

« DSP_CC YMEM
« DSP_CC_XMEM
« DSP_CC PMEM

The return value is TRUE for success, FALSE otherwise. If the return value is FALSE, then
some but not all of the specified locations may have been changed.

Example D-26 dsp_cc_fnmen()

/[* Initialize QC statistics buffer */
#i ncl ude "si ntomh"

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int devn, fill _value, status;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

fill _val ue=0;

dsp_cc_frnenfdevn, D8P _QC XMEV) 0xe410l, O0x201, &fill_val ue)

MOTOROLA DSPADSUM/AD D-33

C Library Functions

Library Function Descriptions

D.3.27 dsp_cc_go—Start Command Converter Program Execution

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dspd_cc_go(devi ce_i ndex)
i nt devi ce_i ndex;

dsp_cc_go() starts the Command Converter for the target device devi ce_i ndex

executing from the address indicated by the current program counter.

The return value is TRUE for success, FALSE otherwise.

Example D-27 dsp_cc_go()

[* Sart QCrunning */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"
int devn, status;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dspd_cc_go(devn);/* Sart Cormand Converter nonitor */

D-34 DSPADSUM/AD

MOTOROLA

C Library Functions

Library Function Descriptions

D.3.28 dsp_cc_| dnem—Load Command Converter Memory from File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_cc_| dnenfdevi ce_i ndex, | oadfn)

i nt devi ce_i ndex; /* CGomand Gonverter affected by command */
char *| oadf n; /* Nane of file to be | oaded */

dsp_cc_| dmen() loads memory in the Command Converter devi ce_i ndex from the
file | oadf n. This is a lower-level routine which does not call the user-level filename
routines; | oadf n must contain the fully-specified name of the file to be opened. The file
is OMF format, the file extension should be .lod

The return value is TRUE on successful completion, FALSE otherwise.

Example D-28 dsp_cc_| drmemn()

/* Load Command Gonverter nenory fromfile */
#i ncl ude "si ncom h*

#i ncl ude " prot ocom h"

int devn, status;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dsp_cc_| dnenf{devn, "c:\ dspdev\ bi n\l oadfil e. | od");

MOTOROLA DSPADSUM/AD D-35

C Library Functions

Library Function Descriptions

D.3.29 dsp_cc_reset —Reset Command Converter

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dsp_cc_reset (devi ce)

i nt device; /* QC device affected by command */

dsp_cc_reset () resets the Command Converter devi ce. Function
dspd_cc_architecture() iscalled to configure the Command Converter for the type
of DSP device attached.

This procedure may be called as part of the initialization procedures to guarantee the
Command Converter is in a known state, to recover from a lockup, or at any other time
when the Command Converter needs to be restarted.

The return value is TRUE if the operation succeeds, FALSE otherwise.

Example D-29 dsp_cc_reset ()

/* reset Command Gonverter */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

int devn, status;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status= dsp_cc_reset (devn);/* reset the Conmand Gonverter for device 0 */

D-36 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.30 dsp_cc_revi si on—Read Command Converter Monitor
Revision

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dspd_cc_revision(devi ce_i ndex, revstring)

int device_index;/* Command Qonverter affected by command */
char *revstring;/* receives QC nonitor revision string */

dsp_cc_revi sion() interrogates the Command Converter devi ce_i ndex to
determine the monitor revision, and returns a formatted string inr evst ri ng containing
the monitor revision.

The format used to create the revstring is:

"Conmand Gonverter nonitor revision {%. 2f}"

The return value is TRUE on successful completion, FALSE otherwise.

Example D-30 dsp_cc_revi sion()

/* obtain Gommand Gonverter nonitor revision nunber */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn, status;
char revision_ string[80];

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dspd_cc_revi sion(devn, revision_string);

MOTOROLA DSPADSUM/AD D-37

C Library Functions

Library Function Descriptions

D.3.31 dsp_cc_rnem—Read Command Converter Memory

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int dsp_cc_rnenfdevice, niype, address, val ue)

int device;/* Gommand Qnverter affected by command */
enum nenory_nmap ntype;/* Menory space to read */

unsi gned | ong address;/* Address of location to read */
unsi gned | ong *val ue;/* Target location for read val ue */

dsp_cc_rmen() reads one location from the Command Converter devi ce, memory
space nt ype, address addr ess, and stores the value in the location pointed to by
val ue.

Valid values for mtype are:

« DSP_CC YMEM
« DSP_CC_XMEM
« DSP_CC PMEM

The return value is TRUE on successful completion, FALSE otherwise.

Example D-31 dsp_cc_rnen()

/* Read | ocation fromGmand Gonverter nenory */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int devn, status;

enum nenory_nap read _nentyp,/* nenory space to read */

unsi gned | ong read_address,/* address of |ocation to read */
read _store;/* location to hold read val ue */

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

read nemyp = DSP_CQC XMEM/* set nenory space for read */
read_addr ess=0x0040I ;/* set read address */
/* read required | ocation */
status = dsp_cc_rnen{devn, read neniyp, read address, & ead_store);

D-38 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.32 dsp_cc_rnmem bl k—Read Command Converter Memory
Block

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude " coreaddr. h"

int dsp_cc_rnembl k(devi ce, ntype, address, count, val ue)
int device;/* Command Qonverter affected by command */
enum nenory_nap ntype;/* Menory space to read */

unsi gned | ong address;/* Address of |ocation to read */
unsi gned | ong count/* nunber of |ocations to read */

unsi gned | ong *val ue;/* Target |ocation for read val ue */

dsp_cc_rnmem bl k() reads count locations from the target Command Converter

devi ce, memory space nt ype, address addr ess, and stores the values in the buffer
pointed to by val ue.

Valid values for mtype are: DSP_CC_YMEM DSP_CC_XMEM and DSP_CC_PMVEM

The return value is TRUE on successful completion, FALSE otherwise.

Example D-32 dsp_cc_rnem bl k()

/* Read nenory bl ock from Gomvand Gonverter nenory */
#i ncl ude "si ncom h"

#i ncl ude " prot ocom h"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int devn, status;

enum nenory_nap read nentyp;/* nenmory space to read */
unsi gned | ong read address,/* address of first location to read */
read | ength,/* nunber of |ocations to read */
read store[1024];/* buffer to hold read val ues */
devn=0; /* set device nunber */
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

read_nemyp = DSP_CGC XMBEM/* set nmenory space */
read_addr=0x0040l ;/* start address */
read | engt h=55I ;/* and bl ock | ength */
/* nowread the nenory bl ock into read store */
status = dsp_cc_rnmembl k(devn, read nentyp, read_addr, read | ength, read store);

MOTOROLA DSPADSUM/AD D-39

C Library Functions

Library Function Descriptions

D.3.33 dsp_cc_wrem—Write Command Converter Memory

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int dsp_cc_wrenfdevice, niype, address, val ue)

int device;/* Gommand Qnverter affected by command */

enum nenory_nmap ntype;/* Menory space to wite */

unsi gned | ong address;/* Address of location to wite */

unsi gned | ong *val ue;/* Source location for value to wite */

dsp_cc_wren() writes one location in the Command Converter devi ce, memory
space nt ype, address addr ess, using the value in the location pointed to by val ue.

Valid values for nt ype are:

« DSP_CC_YMEM
« DSP_CC XMEM
« DSP_CC_PMEM

The return value is TRUE on successful completion, FALSE otherwise.

Example D-33 dsp_cc_wren()

/* Wite to alocation in Gomvand Gnverter nenory */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "cc. h"

#i ncl ude "coreaddr. h"

int devn, status;

enumnenory nap wite nentyp,/* nenory space to wite */

unsigned long wite address,/* address of location to wite */
wite store;/* location to hold value to wite */

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

wite nemyp = DSP_CGC XMBM/* set nmenory space for wite */
wite address=0x0040l ;/* set wite address */
/* wite required | ocation */
status = dsp_cc_wren{devn, wite nentyp, wite address, &wite store);

D-40 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.34 dsp_cc_wrem bl k—Write Command Converter Memory
Block

#i ncl ude " prot ocomh"

#i ncl ude "cc. h"

#i ncl ude " coreaddr. h"

int dsp_cc_wrem bl k(devi ce, ntype, address, count, val ue)
int device;/* Gommand Qonverter affected by command */
enum nenory_nap ntype;/* Menory space to wite */

unsi gned | ong address;/* Address of location to wite */
unsi gned | ong count/* nunber of |ocations to wite */
unsi gned | ong *val ue;/* Source buffer for wite val ues */

dsp_cc_wrem bl k() writes count locations in the Command Converter devi ce,
memory space nt ype, address addr ess, and obtaining the values from the buffer
pointed to by val ue.

Valid values for mtype are: DSP_CC_YMEM DSP_CC_XMEM and DSP_CC_PMVEM

The return value is TRUE on successful completion, FALSE otherwise.

Example D-34 dsp_cc_wrem bl k()

/* Wite several |ocations fromGommand Converter nenory */
#i ncl ude "si ncom h"

#i ncl ude "prot ocomh"

#incl ude "cc. h"

#i ncl ude "coreaddr. h"

int devn, status;

enumnenory _nap wite nentyp;/* nenory space to wite */

unsigned long wite_ addr,/* address of first location to wite */
wite length,/* nunber of locations to wite */
wite store[1024];/* buffer hol ding val ues to wite*/

devn=0; /* set device nunber */
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

wite nemyp = DSP_CC XMBM/* set nenory space */
wite _addr=0x0040l ;/* start address */
wite | ength=55l;/* and bl ock | ength */
/* nowwite the nemory bl ock to device 0*/
stat us=dsp_cc_wnem bl k(devn, wite neniyp, wite addr, wite length, wite store);

MOTOROLA DSPADSUM/AD D-41

C Library Functions

Library Function Descriptions

D.3.35 dsp_check_service_request —Check for Service Request

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dsp_check_servi ce_request (devi ce_i ndex)

int device_index;/* device affected by operation */

dsp_check_servi ce_request () checks to see if the target device devi ce_i ndex is
requesting service from the host computer, that is, checks to see if the target device is in
Debug Mode.

The return value is TRUE if the device is requesting service, FALSE if it is not, and
DSP_ERRCRIf the function cannot complete successfully.

Example D-35 dsp_check_servi ce_request ()

/* Check if device O is requesting service */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int devn = 0;
int ok;

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */
ok = dsp_cc_reset(devn);/* reset Cormand Converter */
ok = dsp_reset(devn);/* and device 0 to debug node*/

ok = dsp_check_servi ce_request (devn)/* |s device 'devn’ requesting service? */

D-42 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.36 dsp_findnmem—Get Map Index for Memory Prefix

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

dsp_fi ndnen{ devi ce_i ndex, nenory_nane, nenory_nap)

i nt devi ce_i ndex; /* D8P device to be affected by command */
char *nenory_nang; /* nenory space nane */

enum nenory_nap *nenory_nap;/* return nenory nap type */

dsp_fi ndmen{) searches the dt _var . memstructure for device devi ce_i ndex for a
match to the menor y_nane string provided in the function call. If a match is found,
dsp_fi ndmen() returns the memory map mai nt ype structure value through the
menor y_map parameter and 1 as the function return value; otherwise it just returns O as
the function return value.

For a list of memory names use the emulator help mem command.

Exanple D-36 dsp_findnem)

/* Get map index for nenory space "P' */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "coreaddr. h"

int devn;
enum nenory_nap nap;
int ok;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

ok=dsp_fi ndnenfdevn, "P', &map)/* Get nenory nap index for "P' nenmory */

MOTOROLA DSPADSUM/AD D-43

C Library Functions

Library Function Descriptions

D.3.37 dsp_findreg—Get Peripheral and Register Index

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_fi ndreg(devi ce_i ndex, reg_nane, peri ph_nunber, reg_nunber)

i nt devi ce_i ndex; /* D8P device index to be affected by command */
char *reg_nane;/* register name */

int *periph_nunber;/* return peripheral index */

int *reg_nunber;/* return register index */

dsp_findreg() searchesthedt var. peri ph structures for a match to ther eg_nane
string provided in the function call. If a match is found, dsp_fi ndreg() returns the
peripheral index through per i ph_nunber, the register number through the
reg_nunber parameter and 1 as the function return value; otherwise it just returns O as
the function return value.

You may also use the emulator "help reg” command to obtain a list of the valid
peri ph_numand r eg_numvalues, and r eg_val size for each register.

Exanpl e D 37 dsp_findreg()

/* Get peripheral index and register nunber for register 'n3 */
#i ncl ude "si ncom h"
#i ncl ude " prot ocom h"

int devn;
int regnum pnum
int ok;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

ok=dsp_fi ndreg(devn, "n3", &num & egnum) ;/* Get index for "n3" register */

D-44 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.38 dsp_f mem—Fill Memory Block with a Value

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

dsp_f nen{ devi ce_i ndex, nenory_nap, addr ess, bl ock_si ze, val ue)

i nt devi ce_i ndex; /* D8P device to be affected by command */

enum nenory_nap nenory_nap;/* nmenory desi gnator */

unsi gned | ong address; /* DEP nenory start address to wite */

unsi gned | ong bl ock_si ze;/* Nunber of locations to wite */

unsi gned | ong *value; /* Pointer to value to wite to nenory | ocation */

dsp_f men() initializes a block of DSP memory with a single value.

The menory_map parameter is a memory type that selects the appropriate dt _nenory
structure from dt _var . mnemfor the selected device devi ce_i ndex. These structures are
described in the simdev.h file which is included with the emulator. The menory_nap
parameter can be obtained with the function dsp_f i ndnen{) by using the memory
name as a key. Use the emulator help mem command for a list of valid memory names.
The menory_nmap enum is nenory_map_ concatenated with a valid memory map name.
As an example, nenory_map_pa refers to off chip pa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should
be at the val ue location and the most significant word at the val ue + 1 location.

Example D-38 dsp_fnmen()

/* Wite 300 | ocations beginning at P.$200 with the value 4 */
#i ncl ude "si ntom h"

#i ncl ude "prot ocomh"

#i ncl ude "coreaddr. h"

int devn;
unsi gned | ong address, nenval, bl ocksi ze;

addr ess=0x200L;
bl ocksi ze=300;
nenval =4L;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

dsp_f nen{devn, nenory_nap_p, addr ess, bl ocksi ze, &enval) ;

MOTOROLA DSPADSUM/AD D-45

C Library Functions

Library Function Descriptions

D.3.39 dsp_free—Free a Device Structure

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_f ree(devi ce_i ndex)

i nt devi ce_i ndex; /* D8P device index to be affected by command */

dsp_free() frees all allocated memory associated with a device structure for
devi ce_i ndex, and closes any open files associated with the device structure.

Example D-39 dsp_free()

/* Qreate three new device structures, then get rid of device 2. */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

ads_startup("100", ADSP56000) ;
dsp_startup();

dsp_new(0, "56002");/* Alocate structure for device 0, a 56002 */
dsp_new(1, "56002");/* Alocate structure for device 1, a 56002 */
dsp_new(2, "56002");/* Alocate structure for device 2, a 56002 */

dsp free(l); /* Free structure for device 1 */

D-46 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.40 dsp_free_nmem—Free Memory Block

The routines dsp_al | oc,dsp_free_nmemand dsp_r eal | oc are replacements for the
standard C functions mal | oc, free andr eal | oc. They are used in much the same way
as the standard functions, for allocating space for structures, buffers, etc. These functions
are used in the debugger libraries, and must also be used exclusively in the user
debugger code. Any attempt to use the standard routines will have unpredictable
results.

#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

voi d dsp_free_nen{cp)

char *cp /* pointer to nenory block to be freed */

dsp_free_nen() releases a memory block previously allocated withdsp_al | oc() . Its
argument cp is the address of the data block.

Example D-40 dsp_free_nmem()

/* Alocate and rel ease nenory bl ock */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int *buffer;

int i;

buffer = (int *) dsp_al | oc(sizeof (int)*10, 0)
/* Wse the buffer */

for (i=0; i<10; i++)
buf fer[i]++

/* And discard it */
dsp_free_nen{(char*)buffer);

MOTOROLA DSPADSUM/AD D-47

C Library Functions

Library Function Descriptions

D.3.41 dsp_go—lInitiate DSP Program Execution

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dsp_go(devi ce_i ndex)

int device_index;/* D8P device to start executing */

dsp_go() starts the target device devi ce_i ndex to begin executing, in real time, from
the address specified by the current program counter.

The function returns TRUE on successful completion, FALSE otherwise.

Example D-41 dsp_go()

/* start D8P 0 executing */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int devn, status;
char *|oad fname="filter2.cld";

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

status = dsp_| dnenfdevn, | oad fnane);/* load programinto nenory */

status = dsp_go(devn);/* start programexecution */

D-48 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.42 dsp_go_addr ess—Initiate Program Execution from Address

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_go_addr ess(devi ce_i ndex, address)

int device_index;/* D8P device affected by command */

unsi gned | ong address;/* address fromwhich to start executing */

dsp_go_address() causes the target device devi ce_i ndex to begin executing, in real
time, from the address specified by addr ess.

The function returns TRUE on success, FALSE otherwise.

Exanpl e D42 dsp_go_address()

/* Sart execution fromspecified address */
#i ncl ude " si ntom h*
#i ncl ude " prot ocom h"

int devn, status;
char *load fname="filter2.cld";

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

st at us=dsp_| dnen{devn, | oad_fnane);/* |oad programinto nenory */

st at us=dsp_go_addr ess(devn, 0x1400l);/* start program execution */

MOTOROLA DSPADSUM/AD D-49

C Library Functions

Library Function Descriptions

D.3.43 dsp_go_reset —Initiate Program Execution after Device
Reset

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_go_reset (devi ce_i ndex)

int device_index;/* D8P device affected by command */

dsp_go_reset () causes the target device specified by devi ce_i ndex to be reset into
User Mode. Execution starts at the reset value for pc.

To place a device into debug mode, see dsp_r eset ().

The function returns TRUE on success, FALSE otherwise.

Exanple D-43 dsp_go _reset()

/* Initiate programexecution by reset */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn, status;
char *| oad_fnane="filter2.cld";

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

st at us=dsp_| dnen{devn, | cad_fnane);/* | oad programinto nenory */

status=dsp_go_reset (devn);/* start programexecution after device reset */

D-50 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.44 dsp_i ni t —Initialize a Single DSP Device Structure

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_i ni t (devi ce_i ndex)

i nt devi ce_i ndex; /* D8P device index to be affected by command */

dsp_i nit () initializes a device devi ce_i ndex to the same state that existed following
the dsp_new() call which created it. It is equivalent to performing the emulator FORCE
S command. All memory spaces are cleared, the registers are reset, breakpoints and
input/output file assignments are cleared.

Example D-44 dsp_init()

/* re-initialize a device */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

dsp_new(0, "56002");/* Qeate new D8P structure */

dsp init(0); /* Re-initialize device 0 */

MOTOROLA DSPADSUM/AD D-51

C Library Functions

Library Function Descriptions

D.3.45 dsp_| dnem—Load DSP Memory from OMF or COFF File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

i nt dsp_| dneng devi ce_i ndex, fi | enane)

int device_index;/* D8P device index to be affected by comnmand */
char *filenane;/* Full pathnane of QW format file to be | oaded */

dsp_| dren() loads the memory space of a specified DSP device devi ce_i ndex from
an object file f i | enan®e. The file may be created as the output from the DSP Macro
Assembler, or by using the Emulator save command, and may be either COFF format or
"lod" format. In order to specify a COFF format file, the filename suffix must be ".cld". A
filename with any other suffix is assumed to be in ".lod" format.

This is a lower level function that does not invoke the user interface modules for
pathname and automatic ".lod" suffix extension. The entire pathname must be specified.

The function returns 1 if the load is successful, O if an error occurred loading the file.

Example D-45 dsp_| dnem()

/* Qeate D8P device structures for a three device emul ation. */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn;
int err;

for (devn=0; devn<3; devn++)
dsp_new(devn, "56002");/* O eate new DSP structures */

/* Load device 1 with a programnaned filter2.1od.*/

err=dsp_| dnen{1, "c:\p42\bi n\filter2.10d");

D-52 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.46 dsp_| oad—Load All DSP Structures from State File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_| oad(filenane)

char *filenane;/* Full nane of Sate Fle to be | oaded */

dsp_| oad() loads the emulator state of all devices from a specified emulator state file
fil enamne. It is not necessary to allocate the device structures prior to calling dsp_load.
This function does not invoke the user interface modules for pathname and automatic
".adm" suffix extension; the entire filename must be specified.

dsp_load returns 1 if the load was successful, O if there was an error.

Example D-46 dsp_| oad()

/* Load the emul ator state fromthe file 'l unchbreak.adm */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int err;
ads_startup("100", ADSP56000) ;
dsp_startup();

err=dsp_|l oad("I unchbr k. adni);

MOTOROLA DSPADSUM/AD D-53

C Library Functions

Library Function Descriptions

D.3.47 dsp_new—Create New DSP Device Structure

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_new(devi ce_i ndex, devi ce_t ype)

int device_index;/* D8P device index to be affected by comnmand */
char *devi ce_type;/* Nane correspondi ng to DSP device type */

dsp_new() creates a new DSP structure that represents a DSP device devi ce_i ndex,
and initializes it. It will be necessary to use the dsp_unl ock() function call prior to
dsp_new() if the selected devi ce_t ype is password protected.

Example D-47 dsp_new()

/* Qeate DSP device structures for a three device emul ation. */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn;
ads_startup(" 100", ADSP56000) ;
dsp_startup();

for (devn=0; devn<3; devn++)
dsp_new(devn, "56002");/* Qeate new D8P structures */

D-54 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.48 dsp_pat h—Construct Filename

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_pat h(pat h_nane, base_nane, suf fi x, new_nane)

char *path_nane;/* Directory pat hnane */

char *base_nane;/* Base filenane to be appended to path_nane */

char *suffix;/* Suffix string to be appended to base_nane */

char *new nane;/* Pointer to return buffer for constructed pathnane */

dsp_| oad() constructs a fully-specified path and filename from the user-provided
pat h_nane, base_name and suf f i x. The constructed filename is returned in
new_narre.

If base_nane begins with a pathname separator or with a device designator,
pat h_name will not be prefixed to base_nane. If base_nane already ends with " . "
and some filename extension, the string in suf f i x will not be appended.

Example D-48 dsp_| oad()

/* Load file filter2.1od fromthe current working directory for device 0. */
#i ncl ude " si ncom h*

#i ncl ude " prot ocom h"

#i ncl ude "si ndev. h"

extern struct dev_const dv_const;/* emul ator device structures */
char newf n[80];

dsp_new(0, "56002");/* Qeate new D8P structure */

/* Qeate file nane from */

/* Path specified in device structure dv_const. sv[Q] ->pat hwork */

/* created by "path..." command */

/* Base file nane filter2 */

/* Flenane suffix .lod. Note the "." is not explicitly specified. */

dsp_pat h(dv_const. sv[Q] ->pat hwork, "filter2","l od", newf n);

dsp | drenfO, newn); /* Load file into DSP device 0 */

MOTOROLA DSPADSUM/AD D-55

C Library Functions

Library Function Descriptions

D.3.49 dsp_real | oc—Reallocate Memory Block

The routines dsp_al | oc,dsp_free_nmemand dsp_r eal | oc are replacements for the
standard C functions mal | oc,free andr eal | oc. They are used in the much same way
as the standard functions, for allocating space for structures, buffers, etc. These functions
are used in the debugger libraries, and must also be used exclusively in the user
debugger code. Any attempt to use the standard routines will have unpredictable
results.

#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

voi d *dsp_real | oc(nem bl k, nbyt es)

char *nmembl k;/* Address of existing allocated bl ock */
unsi gned int nbytes;/* Required size of nenory bl ock */

dsp_real | oc() changes the size of a memory block mrem bl k previously allocated
with dsp_al | oc() to the specified size nbyt es. The address of the reallocated block
may not be the same as the address of the original block. The contents of the original
block is preserved—either completely if the block size is increased, or to the end of the
new block if the block size is reduced. If the requested block cannot be allocated, the
original block is unchanged.

Example D-49 dsp _real |l oc()

/* increase buffer size */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int status;
char *bufptr;

/* Alocate tenporary buffer of 50 characters. Buffer is cleared. */
buf ptr = (char *) dsp_al | oc(50*si zeof (char), 1)

if (bufptr == NULL)
{...handl e error...}

/* increase buffer size to 82 characters, preserving contents */

bufptr = (char *) dsp_real |l oc(bufptr, 82*sizeof (char))

D-56 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.50 dsp_reset —Reset Specified DSP Device

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_reset (devi ce_i ndex)

int device_index;/* Index of affected DSP device */

dsp_reset () resets the target device devi ce_i ndex into Debug mode. To reset a
device into User mode, see dsp_go_reset ().

The function returns TRUE on success, FALSE otherwise.

Example D-50 dsp_reset ()

/* Pl ace D8P device 3 into debug node */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int devn, status;

devn=3;
dsp_new(devn, "56002");/* Qeate new D8P structure */

/* ensure device in known state */
status = dsp_reset (devn);/* Reset device into DEBUG node */

MOTOROLA DSPADSUM/AD D-57

C Library Functions

Library Function Descriptions

D.3.51 dsp_r nem—Read DSP Memory Location

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

i nt dsp_rnengdevi ce_i ndex, nenory_nap, addr ess, ret urn_val ue)

i nt devi ce_i ndex; /* D8P device to be affected by command */
enum nenory_nap nenory_nap;/* nmenory desi gnator */

unsi gned | ong address; /* DSP nenory address to read */

unsi gned | ong *return_val ue;/* Returned nenory val ue (or val ues) */

dsp_rmen() reads the contents of a selected DSP memory location specified by
menory_map and addr ess, and writes ittor et ur n_val ue. If the menory_map implies
a two-word value, the least significant word will be returned tor et ur n_val ue, and the
most significant word will be returned to the r et ur n_val ue+1 location. This function
also returns a flag that indicates whether or not the memory location exists. It returns 1 if
the location exists, O otherwise.

The menor y_nap parameter selects the appropriate dt _nenory structure from

dt _var. nemfor the selected device. These structures are describe in the simdev.h file
which is included with the emulator. The menory_nmap parameter can be obtained with
the function dsp_f i ndrmen() by using the memory name as a key. Use the emulator
help mem command for a list of valid memory names. The nenory_nmap enum is
nmenory_map_ concatenated with a valid memory name. As an example,
nmenory_map_pa refers to off chip pa memory on the 96002 device.

Example D-51 dsp_rmen()

/* Read X nenory | ocation 100 fromdevice 0. */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "coreaddr. h"

unsi gned | ong addr ess;
unsi gned | ong nenval ;
int devn;

int ok;

devn=0;
dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */
addr ess=100L;

ok=dsp_r nen{ devn, nenory_nap_x, addr ess, &menval) ;

D-58 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.52 dsp_rnem bl k—Read Block of DSP Memory Locations

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

i nt dsp_rnembl k(devi ce_i ndex, nenory_nap, addr ess, count , r et ur n_val ue)
i nt devi ce_i ndex; /* D8P device to be affected by command */
enum nenory_nap nenory_nap;/* nmenory desi gnator */

unsi gned | ong address; /* DSP nenory address to read */

unsi gned | ong count; /* nunber of nenory |ocations to read */

unsi gned | ong *return_val ue;/* Returned nenory val ue(s) */

dsp_rmem bl k() reads count locations starting at addr ess from memory
menory_map in device devi ce_i ndex, and writes it to the memory block pointed to by
return_val ue. If menory_map implies a two word value, the values will be returned in
order, with the low-order half of the first word followed by the high-order half, then the
low-order half of the second word, etc. Thus for word n (counting from 0) in the memory
block, the low-order value is stored inr et ur n_val ue[2*n] , the high-order value in
return_val ue[2* n+1] . The function return value indicates whether or not the
memory locations exist. It returns 1 if all the locations exist, O otherwise. The
menory_map parameter selects the appropriate dt _nenor y structure from dt_var.mem
for the selected device. These structures are describe in the simdev.h file which is
included with the emulator. The menor y_nap parameter can be obtained with the
function dsp_f i ndrmen() by using the memory name as a key. Use the emulator help
mem command for a list of valid memory names. The nenor y_map enum is
nmenory_map_ concatenated with a valid memory name. As an example,
menory_map_pa refers to off chip pa memory on the 96002 device.

Example D-52 dsp_r nmem bl k()

/* Read 20 X nenory locations starting at 100 fromdevice 0. */
#i ncl ude "si ntom h"

#i ncl ude "prot ocomh"

#i ncl ude "coreaddr. h"

unsi gned | ong addr ess;

unsi gned | ong count ;

unsi gned | ong nenval [20] ;

int devn;

int ok;

devn=0;

dsp_new(devn, "56002");/* Alocate structure for device 0, a 56002 */

addr ess=100L;
count =20L;

ok=dsp_r men{ devn, nenory_nap_x, addr ess, count , &enval [0]) ;

MOTOROLA DSPADSUM/AD D-59

C Library Functions

Library Function Descriptions

D.3.53 dsp_rreg—Read a DSP Device Register

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_rreg(devi ce_i ndex, peri ph_numreg_numreg_val)

int device_ index; /* D8P device index to be affected by conmand */
int periph_num/* DSP peripheral nunber */

int reg_num/* DSP regi ster nunber */

unsi gned | ong *reg_val ;/* Return register val ue goes here */

dsp_rreg() reads a register specified by peri ph_numand r eg_numfrom device
devi ce_i ndex and stores the value in the location pointed to by r eg_val . Registers
which return more than one word as the register value will return the least significant
word inreg_val [0] , the most significant word inreg_val [1] .

Use the emulator "help reg" command to obtain a list of the valid per i ph_numand
reg_numvalues, and r eg_val size for each register. Also, dsp_fi ndreg() can be
used to obtain the peripheral and register number by using the register name as a key.

Example D-53 dsp_rreg()

/* Read register r3 fromdevice 0, a 56002. Wse dsp findreg to obtain the */
/* peripheral and register nunbers corresponding to the register nane "r3". */
#i ncl ude "si ntom h*

#i ncl ude " prot ocom h"

int devn;
int periph_num reg_num
unsi gned | ong regval ;

devn=0;
dsp_new(devn, "56002"); /* A locate structure for device 0, a 56002 */

i f (dsp_findreg(devn,"r3", &eriph_num & eg_nun))
dsp_rreg(devn, peri ph_numreg_num & egval) ;

D-60 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.54 dsp_save—Save All DSP Structures to State File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_save(filenane)

char *filenane;/* Full nane of Sate Fle to be saved */

dsp_save saves all DSP device structures to an emulation state file. This function does
not invoke the user interface functions which provide pathname and .adm suffix
extension, so the entire filename must be specified. The function returns 1 if the save is
successful, 0 if an error occurs when saving the file. This function will call the function
dspl xmnsave() as one of the steps of saving the DSP structure.

Example D-54 dsp_save

/* Save debugger status in file | unchbreak.adm*/
#i ncl ude "si ncom h"
#i ncl ude " prot ocom h"

int ok;

dsp_new(0, "56002");/* Alocate structure for device 0, a 56002 */
dsp_new(1, "56002");/* Alocate structure for device 1, a 56002 */

/* Save device 0 and 1 to state file |unchbrk.adm */
ok=dsp_save("| unchbrk. adnt);

MOTOROLA DSPADSUM/AD D-61

C Library Functions

Library Function Descriptions

D.3.55 dsp_spat h—Search Path for Specified File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_spat h(base, sufx, retn)

char *base; /* Ptr to base file nane */

char *sufx;/* Ptr to file extension */

char *retn;/* Ptr to buffer to receive conpleted file nane */

dsp_spat h() takes the base filename * base and suffix * suf x supplied as arguments,
and searches the working directory and alternate source paths until the required file is
found.

The working directory is searched first, then each of the alternate source directories in
the order in which the paths were specified. The search terminates immediately if a
match is found. If multiple files exist on the search path with the same name, the only
way to access files after the first file encountered in the search path is to specify the full
path explicitly in the input filename * base.

If a match is found, the filename return buffer *r et n contains the fully-specified
filename. *r et n is used as working storage and will be changed whether or not a match
is found.

This function returns TRUE if the file is found, FALSE otherwise.

Exanple D-55 dsp_spat h()

/* find required file on search path*/
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn, status;
char full_nane[80];

devn=0;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

si mdocnd(devn, "path c:\work\tenp"); /* set up working directory */
si mdocnu(devi ce_i ndex, "path + c:\work\bin");/* and alternate source path */

/* find first occurrence of 'nyfile on path */
status = dsp_spath("nyfile", "lod", full_nane);

D-62 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.56 dsp_st art up—lInitialize DSP Structures

#i ncl ude "si ntom h"
#i ncl ude " prot ocomh"
int dsp_startup();

dsp_startup() initializes general DSP structures which are not device specific. It
should be called once (and only once) during program initialization before any calls to
ads_startup() anddsp_new().

Example D-56 dsp_startup()

/* startup */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

ads_startup("100", ADSP56000) ;
dsp_startup(); /* Initialize D8P structures */

dsp_new(0, "56002") ; /* Alocate structure for device 0, a 56002 */
dsp_new(1, "56002"); /* Alocate structure for device 1, a 56002 */

MOTOROLA DSPADSUM/AD D-63

C Library Functions

Library Function Descriptions

D.3.57 dsp_st at us—Determine DSP Device Status

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

int dsp_status(device_index, node)

int device_index;/* D8P device affected by command */

int *node; /* address of buffer to receive device status */

dsp_st at us() places the execution status of the target device devi ce_i ndex in the int
pointed to by * node.

Valid values for * node are:

= DSP_USER MODE—device is executing a user program
e DSP_DEBUG MODE—device is in debug mode

The function returns TRUE on success, or FALSE otherwise.

Example D-57 dsp_stat us()

/* determne status of DSP 0 */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn, status;
i nt devi ce_node; /* recei ve node of device 0 */

devn=0;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

status = dsp_status(devn, &device node); /* get current node for device 0 */

D-64 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.58 dsp_st ep—Execute Counted Instructions

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_st ep(devi ce_i ndex, step)
i nt device_index;/*

unsi gned | ong st ep;

dsp_st ep() causes the target device specified by devi ce_i ndex to execute st ep
instructions. The device then returns to Debug mode.

Note: A success return code means the Command Converter has been instructed to
make the target device execute the required number of instructions. It is
necessary to call dsp_check_servi ce_request () to find out when the
target device has executed the instruction and returned to Debug mode.

The function returns TRUE on successful completion, FALSE otherwise,

Example D-58 dsp_step()

/* Execute 1 D8P instruction on device 0 */
#i ncl ude "si ntom h"
#i ncl ude " prot ocom h"

int devn, status;
unsi gned | ong step_count;

devn = 0O;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

step_count = 1l;

status = dsp_step(devn, step count);

MOTOROLA DSPADSUM/AD D-65

C Library Functions

Library Function Descriptions

D.3.59 dsp_st op—Force DSP Device into Debug Mode

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_st op(devi ce_i ndex)

int device_index;/* D8P device affected by command */

dsp_st op() forces the device devi ce_i ndex into Debug mode.

The function returns TRUE on successful completion, FALSE otherwise.

Example D-59 dsp_st op()

/* force DSP device to debug node */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

int devn, status;

devn = 0;
dsp_new(devn, "56002"); /* allocate structure for device 0, a 56002 */

status = dsp_| dnenfdevn, "x14.1od");/* | oad programfile */
status = dsp_go(devn); /* start the devi ce running user program*/

...later...

status = dsp_stop(devn);/* stop the device now */

status = ads_cache registers(devn); /* cache regs on entry to debug node */

D-66 DSPADSUM/AD

MOTOROLA

C Library Functions

Library Function Descriptions

D.3.60 dsp_unl ock—Unlock Password Protected Device Type

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_unl ock(devi ce_type, passwor d)

char *password;/* Pointer to string containing password */
char *devi ce_type;/* Nane correspondi ng to DSP device type */

dsp_unl ock() provides the passwor d for protected devi ce_t ypes. It must be used
prior to the dsp_new() function call if the devi ce_t ype is password protected.

Example D-60 dsp_unl ock()

/* Qeate a device emul ation of the password protected 56001 device */
#i ncl ude "si ntom h"
#i ncl ude "prot ocomh"

int devn;

ads_startup(" 100", ADSP56000) ;

dsp_startup();

devn=0;

dsp_unl ock("56001", "x51-234"); /* provide password for device */

dsp_new(devn, "56001"); /* Qreate structures for protected device type*/

MOTOROLA DSPADSUM/AD D-67

C Library Functions

Library Function Descriptions

D.3.61 dsp_wrem—Write DSP Memory Location

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

dsp_wnen{devi ce_i ndex, nenory_nap, addr ess, val ue)

i nt devi ce_i ndex; /* D8P device to be affected by command */

enum nenory_nap nenory_nap;/* nmenory desi gnator */

unsi gned | ong address; /* DSP nenory address to wite */

unsi gned | ong *value; /* Pointer to value to wite to nenory | ocation */

dsp_wnren() writes a selected DSP memory location.

The menory_map parameter selects the appropriate dt _nenor y structure from

dt _var. memfor the selected device. These structures are described in the simdev.h file
which is included with the emulator. The menory_nmap parameter can be obtained with
the function dsp_f i ndmemby using the memory name as a key. Use the emulator help
mem command for a list of valid memory names. Valid nenor y_map values are
nmenory_map_ concatenated with a valid memory name. As an example,
menory_map_pa refers to off chip pa memory on the 96002 device.

If the selected memory map requires two word values, the least significant word should
be at the val ue location and the most significant word at the val ue+1 location.

Example D-61 dsp_wren()

/* Wite a zero value to address P.200 in device 0 */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

#i ncl ude "coreaddr. h"

int devn;

unsi gned | ong address, nenval ;
addr ess=200L;

nenval =0L;

devn=0;

dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

dsp_wren{ devn, nenory_nap_p, addr ess, &renval) ;

D-68 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.62 dsp_wrem bl k—Write DSP Memory Block

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

#i ncl ude "coreaddr. h"

dsp_wrem bl k(devi ce_i ndex, nenor y_nap, addr ess, count , val ue)

i nt devi ce_i ndex; /* D8P device to be affected by command */

enum nenory_nap nenory_nap;/* nmenory desi gnator */

unsi gned | ong address; /* DSP nenory address to wite */

unsi gned | ong count; /* Nunber of locations to wite */

unsi gned | ong *value; /* Pointer to value to wite to nenory | ocation */

dsp_wrem bl k() writes count locations starting at addr ess in memory space
menory_map in device devi ce_i ndex, with values taken from the memory block
pointed to by val ue.

If menor y_nmap implies a two-word value, the values will be retrieved from val ue in
order, with the low-order half of the first word followed by the high-order half, then the
low-order half of the second word, etc. Thus for word n (counting from 0) in the memory
block, the low-order value is taken from val ue[2* n] , the high-order value from

val ue[2*n+1] .

The menor y_nmap parameter selects the appropriate dt _nenor y structure from

dt _var. nemfor the selected device. These structures are described in the simdev.h file
which is included with the emulator. The menory_nmap parameter can be obtained with
the function dsp_f i ndrmen() by using the memory name as a key. Use the emulator
help mem command for a list of valid memory names. Valid nenor y_nap values are
nmenory_map_ concatenated with a valid memory name. As an example,
nmenory_map_pa refers to off chip pa memory on the 96002 device.

Example D-62 dsp_wrem bl k()

/* Copy 100 val ues in X $c400 to P. $a000 */
ncl ude "si ntom h"

#i ncl ude " prot ocom h"

ncl ude "coreaddr. h"

int devn;
unsi gned | ong address, count, nenval [100];

nenval =0L;
devn=0;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

addr ess=0xc400;

dsp_rnenfdevn, nenory_nap_x, addr ess, 100L, &enval [0]); /* fetch 100 val ues */
addr ess=0xa000; /* fromX $c400 */
dsp_wneng devn, nenory_nap_p, addr ess, 100L, &enval [0]); /* and wite to P.$a000 */

MOTOROLA DSPADSUM/AD D-69

C Library Functions

Library Function Descriptions

D.3.63 dsp_w eg—Write a DSP Device Register

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

dsp_w eg(devi ce_i ndex, peri ph_numreg_numreg_val)

int device_ index; /* D8P device index to be affected by conmand */
int periph_num/* DSP peripheral nunber */

int reg_num/* DSP regi ster nunber */

unsi gned | ong *reg_val ;/* Value to be witten to register */

dsp_wr eg() writes a selected register in the a DSP device.

Use the emulator "help reg" command to obtain a list of the valid per i ph_numand

reg_numvalues, and r eg_val size for each register. Also, the function

dsp_findreg() can be used to obtain the peripheral and register number by using the

register name as a key.

If a register requires more than one word to represent the data value the least significant
word should be at [r eg_val], with more significant words at [r eg_val +1] , etc.

Example D-63 dsp_w eg()

/* Wite value 100 to pc register in device 0. Wse dsp findreg to deternine

devi ce and register nunbers for pc. */
#i ncl ude "si ncom h*
#i ncl ude " prot ocom h"

int devn;
int periph_num reg_num
unsi gned | ong regval ;

devn=0;

dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

r egval =100L;

i f (dsp_findreg(devn,"pc", &eriph_num & eg_numn))
dsp_w eg(devn, peri ph_numreg_num & egval) ;

D-70 DSPADSUM/AD

MOTOROLA

C Library Functions

Library Function Descriptions

D.3.64 si m docnd—Execute Emulator User Interface Command

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

si m docnu(devi ce_i ndex, command_st ri ng)

int device_index;/* D8P device index to be affected by conmand */
char *command_string;/* Wser interface command to be executed */

si m docnd() executes any emulator command that the emulator normally accepts
from the terminal. ADSDSP normally calls si m gt cnd() to get a valid command string
from the terminal, then calls si m docnd() to execute it. The devi ce_i ndex
determines which DSP device (in a multiple DSP emulation) is affected by the command
execution. The devices are numbered 0,1,2...n-1 in an n-device system, so be very careful,
for example, to use 0 for the devi ce_i ndex parameter in a single device system.

If the command_st ri ng begins macro execution, the selected device structure

i n_macr o flag will be set by si m docnd() . ADSDSP retrieves valid commands from
the macro file by calling si m gntnd() as long as thei n_macr o flag is set. The
commands are still executed by si m docnd() , whether they come from the terminal or
a macro file.

Some commands initiate device execution (such as go or trace). The target executes until
execution of a breakpoint or the completion of the requested number of instruction
steps.

Example D-64 si m docnd()

/* UWse simdocnd to execute device O fromaddress P.40 to breakpoint at P.80 */
#i ncl ude " si ntom h*
#i ncl ude " prot ocom h"

int devn;

devn=0;
dsp_new(devn, "56002"); /* Alocate structure for device 0, a 56002 */

si m docnd(devn, "change pc $40");/* Change device O pc register to $40 */
si mdocnd(devn, "break h P.-$80");/* Set a breakpoint for device 0 */
si mdocnd(devn, "go"); /* Begin execution of device 0 */

MOTOROLA DSPADSUM/AD D-71

C Library Functions

Library Function Descriptions

D.3.65 simgncnd—Get Command String from Macro File

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

si m gnend(devi ce_i ndex, command_st ri ng)

i nt devi ce_i ndex; /* D8P device index to be affected by command */
char *command_string; /* Pointer to return buffer for conmand Iine */

si m gntnd() reads the next emulator command string from a macro file. The

si m docnd() function will normally determine that a command is a macro, open the
macro file and set the device structure si m const . i n_nmacr o flag. The si m gncnd()
function returns the next line from the open macro file each time it is called. It will clear
the i n_macr o flag at the end of macro execution or if an invalid macro command is
processed. The command_st r i ng buffer should be at least 80 characters.

Example D-65 si m gnecnd()

/* Execute the macro command file startup cnd on DSP device structure 0. */
#i ncl ude "si ntom h"

#i ncl ude " prot ocom h"

ncl ude "si nusr. h"

extern struct simconst sv_const; /* Ewl ator device structures */

char command_string[80];

int devn;

devn=0;

dsp_new(devn, "56002"); /* Ceate new D8P structure */
si mdocnu(devn, "startup"); /* Begin the startup nacro */
whil e (sv_const.in_macro){ /* Whtil end of nmacro file */

si m gnend(devn, command_string);/* Get command fromnacro file */
si m docnu(devn, command_string);/* Execute command string */

}

D-72 DSPADSUM/AD MOTOROLA

C Library Functions

Library Function Descriptions

D.3.66 simgtcnd—Get Command String from Terminal

#i ncl ude "si ntom h"

#i ncl ude " prot ocomh"

si m gt cnd(devi ce_i ndex, command_st ri ng)

i nt devi ce_i ndex; /* D8P device index to be affected by command */
char *command_string; /* Pointer to return buffer for conmand Iine */

si m gt cnd() gets the next command string from the terminal in an interactive mode.
The command line editing, command expansion and on-line help functions are invoked
by this terminal command input function. The command string is fully checked for
errors prior to returning. The conmand_st r i ng buffer should be at least 80 characters.

Example D-66 si m gt cnd()

/* Get and execute emul ator commands for device until a go type command is */
/* entered. */

#i ncl ude "si ncom h*

#i ncl ude " prot ocom h"

#i ncl ude "si musr. h"

extern struct simconst sv_const; /* Ewl ator device structures */
char command_stri ng[80] ;
int devn;

devn=0;
dsp_new(devn, "56002"); /* Qeate new D8P structure */

vhil e (!sv_const.sv[devn]->stat.executing){ /* Check for go. If not, */
si m gt cnu(devn, command_string) ; /* Get command and */
si m docnu(devn, command_string) ; /* Execute command */

}

MOTOROLA DSPADSUM/AD D-73

C Library Functions

Emulator Screen Management Functions

D.4 EMULATOR SCREEN MANAGEMENT FUNCTIONS

The following sections describe functions which are provided in source code form in the
emulator package in the file scrmgr.c. These functions define all the operations
associated with emulator terminal 1/0. The code includes conditionally compiled
sections for MSDOS, UNIX, and VMS. The code is provided to allow customizing of the
emulator terminal 1/0 for a particular environment. The user may, for example, wish to
redefine the control characters used by the emulator so that they map to some particular
terminal.

The following is a quick reference list of the emulator screen management functions:

si nw_ceol () ; Clear to end of line

sinwctrlbr(); Check for Ctrl-C signal

si nw_cursor (1 ne, col umm) ; Move cursor to specified line, column

si nw_endwi n() ; End the emulator display

si nw_get ch(); Non-translated keyboard input

si nw_gkey(); Translated keyboard input

si nw putc(c); Output character to terminal

si nw_put s Output string to terminal at line and column
(l'i ne, col um, text, flag);

si nw_r edo(devi ce) ; Repaint screen with output from device

si nw _redraw(count) ; Redraw screen after scrolling count

sinw refresh(); Screen update after buffering output

si nw_scrnest (); Nest output buffering another level

si mw_unnest () ; Pop output buffering one level
sinwwnit(); Initialize window parameters

si nw_wscr Write string and perform logging functions

(string, commandfl ag) ;

D.4.1 si nw_ceol —Clear to End of Line

si nw _ceol ()

This function must clear the display from the current column to the end of line, then
return the cursor to the previous position.

D-74 DSPADSUM/AD MOTOROLA

C Library Functions

Emulator Screen Management Functions

D.4.2 si mw_ctrl br—Check for CtrL-C Signal

sinmwctrlbr()

This function must check for the occurrence of a Ctrl-C signal from the terminal. If the
Ctrl-C signal occurs, it sets a flag for the active breakpoint DSP (defined by

sv_const . br eakdev). It returns the si m var . st at . CTRLBRflag for the current
device. This allows the program to select the device that will halt in response to the
Ctrl-C signal from the keyboard in a multiple device emulation.

D.4.3 si nw_cur sor —Move Cursor to Specified Line and Column

si nw_cursor (| i ne, col umm)

This function must move the cursor to the specified | i ne and col unm and update the
sim const. curlineandsi mconst. curcl mvariables.

D.4.4 si nw_endwi h—End Emulator Window

si nw_endw n()

This function is normally called when returning to the operating system level from the
emulator. It must terminate any special processing associated with terminal I/0 for the
emulator and clear the display.

D.4.5 si nw_get ch—Non-Translated Keyboard Input

si nw _get ch()

This function gets a single character in a non-translated mode from the terminal. It is not
used much by the emulator—only when returning from the execution of the system
command prior to the time when the emulator’s special terminal 1/0 processing is
reinitialized.

MOTOROLA DSPADSUM/AD D-75

C Library Functions

Emulator Screen Management Functions

D.4.6 si mw_gkey—Translated Keyboard Input

si nw_gkey()

This function gets a keystroke from the terminal and maps it to one of the accepted
internal codes used by the emulator. The internal codes are defined in simusr.h. This
function should not output the character to the terminal. This function is a good
candidate for modification if you want to change the set of input control characters used
by the emulator.

D.4.7 si nw_put c—Output Character to Terminal

si nw _put c(c)
char c;

This function outputs the character in the variable c at the current cursor and column
position. It advances and updates the si m const . cur cl mvariable. This function is not
used often by the emulator, and it is not very time critical when it is used, so the
emulator implementation is just to call si nw_put s() after creating a temporary string
from the character c.

D.4.8 si nw_put s—Output String to Terminal

si nw _put s(1i ne, col umm, text, fl ag)

int line; /* Mwve cursor to this line for output */

int colum;/* Mbwve cursor to this columm for output */

char *text;/* Text string to be output */

int flag; /* O=non-bold, 1=bold on/off by {}, 2=all bold */

This function outputs the string int ext to the terminal at the specified | i ne and
col um. Highlighting of output can be enabled either by setting the f | ag parameter to 2
or by enclosing text in curly braces and setting the flag parameter to 1.

D.4.9 si nw_r edo—Repaint Screen with Output from Device

si nw _r edo(devi ce)
i nt device; /* Wse screen buffer fromthis device to repaint screen */

This function repaints the screen from a devi ce screen buffer. It is normally only called
when reentering the emulator following a system command, after loading the device

D-76 DSPADSUM/AD MOTOROLA

C Library Functions

Emulator Screen Management Functions

state with the load s filename command, or after switching devices in a multiple device
emulation with the device command.

D.4.10 sinw_redraw—Redraw Screen after Scroll Count

si nw_r edr aw(count)
int count; /* Nurmber of lines to scroll before repainting the screen */

This function scrolls up or down count lines in the display buffer, then redisplays the
text in the buffer at that position. This function only displays the text that is in the
scrolling portion of the display.

D.4.11 sinw refresh—Screen Update after Buffering Output

si nw refresh()

The emulator buffers screen output in implementations other than MSDOS in order to
decrease the time spent repainting the screen. This provides a fixed display effect for
consecutive trace commands. The si nw_ref resh() function will take care of
refreshing the screen following buffering of screen output. It also resets the

si m const . scrnest variable to 0 to coincide with the non-buffered status of the
screen following the refresh.

D.4.12 simw_scrnest—Increase Screen Buffering One Level

si nw scrnest ()

This function increments a counter to signify the screen output buffering level. The
companion si nw_unnest () and si nw_refresh() functions provide the output
buffering operations for the emulator. The si m const . scr nest variable is
incremented each time this function is called.

MOTOROLA DSPADSUM/AD D-77

C Library Functions

Emulator Screen Management Functions

D.4.13 si nw_unnest —Decrease Screen Buffering One Level

si nw_unnest ()

This function decrements the si m const . scr nest variable each time it is called. If the
screen buffering level drops below one, si nw_unnest () will call si nw _refresh() to
update the screen.

D.4.14 simw_winit—Initialize Window Parameters

sinwwnit()

This function initializes any screen or keyboard parameters that are required for the
emulator terminal 170 environment. It is called whenever the emulator is entered from
the operating system level, which includes the initial emulator entry and re-entry
following the system command.

D.4.15 si nw wscr—Write String and Perform Logging

si nw wscr (text, command_f | ag)
char *text;/* Text string to wite to screen */
int coomand_flag;/* Hag 1=string is a coomand, 0= not a command */

This function outputs the string t ext to the terminal above the command line after
scrolling the display up one line. It also takes care of writing the text string to the proper
log files specified by the emulator log s or log c commands, depending on f | ag.

D-78 DSPADSUM/AD MOTOROLA

C Library Functions

Non-Display Emulator

D.5 NON-DISPLAY EMULATOR

The emulator package contains object libraries which support both display and non-
display versions of the emulator. The library nwads contains functions available to the
non-display version of the emulator. The library wwads contains functions that may
only be used in a display version of the emulator. For each device type there are also
display and non-display device-specific libraries named wwxxxxx and nwxxxxx where
the xxxxx is the device number.

The source code contained in anwdsp.c can be linked with the nwxxxxx and nwsim
libraries to create a non-display version of the emulator. Elimination of the user interface
functions cuts the code size of the emulator almost in half. However, all of the functions
listed in Section D.4 and si m docnd(), si m gntnd() and si m gt cnd() described in
Sections Section D.3.64, Section D.3.65, Section D.3.66, are sacrificed. The remainder of
the functions in Section D.3 are available in the non-display emulator libraries.

Some major features of the emulator are eliminated by the loss of the si m docnd()
function. In particular, there are no low-level entry points provided to set a breakpoint
or to assign input or output files to DSP memory. However, the basic functions required
to create a device, load a program, execute the code, and test or modify device registers
are all still available. The use of these basic functions to support breakpoints is discussed
in Section D.5.4. In addition, the dsp_save() function provides the capability to save
the state of the non-display version. The state file can later be reloaded by a display
version of the emulator for visual examination of the registers and memory contents.

The following sections cover several topics that concern the non-display version of the
emulator. Section D.5.1 deals with creating a new device. Section D.5.2 describes how
to load a program or state file. Section D.5.3 describes how to execute device cycles.
Section D.5.4 describes how to test breakpoint conditions.

MOTOROLA DSPADSUM/AD D-79

C Library Functions

Non-Display Emulator

D.5.1 Creating a New Device

The simcom.h file defines the maximum number of DSP devices in the constant
DSP_NMAXDEVI CES. A new device can be created and numbered from 0 to
DSP_MAXDEVI CES- 1. The structures are allocated by calls to the dsp_new() function
described in Section D.3.47.

The following C source code illustrates the steps necessary to create 3 DSP devices. Note
that the numbers used for device number (0, 1, 2 below) reflect the device numbers set
up on the target hardware, and do not need to be consecutive.

Example D-67 Device Structures Creation

ads_startup(" 100", ADSP56000) ;

dsp_startup();

dsp_new(0, "56002") ; /* Alocate structure for device 0, a 56002 */
dsp_new(1, "56002"); /* Alocate structure for device 1, a 56002 */
dsp_new(2, "56002"); /* Alocate structure for device 2, a 56002 */

D.5.2 Loading Program Code or Device State

The display version of the emulator provides the high level si m docnd() function
interface. It allows the user to simply execute the high level load or load s emulator
commands to load program code or a emulator state file. The non-display version of the
emulator makes use of the lower level function calls, dsp_| den() and dsp_| oad() , to
accomplish the same results. They are described in Section D.3. The major difference
from their high-level counterparts is that no filename expansion is provided in the lower
level calls. The program code loaded by the dsp_| drren() function may be any COFF
format or OMF format file. The OMF format is created as the output of versions of the
Macro Assembler prior to release 4.0 and of the Emulator save command. The OMF file
format is described in Section A.1. The COFF format files are the output of the Macro
Assembler beginning with release 4.0, or those saved by the Emulator save command
with the suffix ".cld". The COFF file format is described in Section B.1. The Emulator
state loaded by the dsp_| oad() function may have previously been saved by a display
or non-display version of the emulator. The formats are the same. The dsp_save()
function is provided as a low-level entry point that saves the Emulator state for a
non-display version of the Emulator. It is the same function that is called during
execution of the high level save s command, which is only available in the display
version. The only limitation is that the full save filename must be specified. No
automatic expansion is done for the working path or filename suffix as in the higher
level emulator calls. The dsp_save() function is described in Section D.3.54.

D-80 DSPADSUM/AD MOTOROLA

C Library Functions

Non-Display Emulator

D.5.3 Executing Device Instructions

After creating a new device—as described in Section D.5.1—and loading a program or
state file—as described in Section D.5.2—the emulator is ready to execute the program
code. Execution begins at the start address specified in the load file, or continues from
the previous location in an emulator state file. The user’s code may select a new
execution address by writing register "pc"” using the dsp_wr eg() function, or with
dsp_go_address().

D.5.4 Testing Breakpoint Conditions

The command line interface in the display version of the emulator provides facilities to
specify breakpoint conditions. When the breakpoint condition is met during user
program execution, the emulator displays the enabled registers (assuming the
breakpoint action is halt). The non-display emulator does not provide a way to specify
breakpoint conditions. It is up to the user’s code to examine device registers or memory
conditions and decide whether or not to continue execution. The device registers and
memory can be examined using the dsp_rreg() and dsp_r nmen() functions. The
emulator hardware executes independently of the emulator control software. After
successfully completing a call to initiate instruction execution (e.g. dsp_go_addr ess(),
dsp_go, dsp_step()), the device executes until a termination condition is
encountered. Termination conditions include:

= Hardware breakpoint condition satisfied
= DEBUG instruction executed
= Specified number of instructions executed in dsp_step

= Call to dsp_reset, etc.

When the device stops executing, the function dsp_check_servi ce_request ()
returns TRUE. It is then the responsibility of the user program to determine the reason for
the service request. Hardware breakpoints are described in the appropriate hardware
documentation and are not covered here.

MOTOROLA DSPADSUM/AD D-81

C Library Functions

Non-Display Emulator

Software breakpoints are caused by executing conditional or unconditional DEBUG
instructions. These instructions must be inserted into the user DSP code. This may be
achieved in several possible ways (not all of which are suitable for production code):

= Hard-coded DEBUG nstructions included in the DSP code.
= NOP instructions in code which may be overwritten with DEBUG instructions.

= Save instruction word and overwrite with an unconditional DEBUG instruction.
MUST be the first word of multi-word instructions.

It is the responsibility of the user code to retain the addresses of the DEBUG instructions
and carry out the desired checks and actions when they are encountered.

In the first two possibilities, no special action is needed to continue program execution.
Acalltodsp_go() ordsp_step() will resume device execution at the location
following the DEBUG instruction. Although inappropriate for production code, this
approach is simple.

With the third approach, it is necessary to restore the original instruction before
continuing, and then reinstate the breakpoint as necessary. The full operation of setting
and handling the breakpoint is outlined below:

1. save contents of breakpoint location(s)

2. overwrite with DEBUG instruction(s)

3. start execution with call to dsp_go()

4. repeatedly call dsp_check_servi ce_request () until return value is TRUE
5. save registers with ads_cache_regi sters()

6. read pc address

7. check for breakpoint address and carry out required checks and actions

8. write the saved instruction word back to memory

9. reset the pc register to the breakpoint address

10. execute 1 instruction with dsp_step

-
=

. repeatedly call dsp_check_servi ce_r equest () until return value is TRUE
12. continue from (2) above.....

Note: This is only a general outline and may need to be modified for specific
circumstances:

D-82 DSPADSUM/AD MOTOROLA

C Library Functions

Multiple Device Emulation

Consideration always needs to be given to the case where the first instruction to be
executed is itself the target of a breakpoint. In this case, step over that instruction before
inserting the DEBUGInstructions. Adding or deleting of breakpoints needs to be handled.
Steps (4) and (11) above do not need to be tight loops. Calls to

dsp_check_servi ce_request () may be made at convenient points in other
processing to determine when the device is ready.

D.6 MULTIPLE DEVICE EMULATION

The ADSDSP emulator may be used to emulate a single DSP device or multiple devices.
As many devices as are required by the target configuration may be configured using the
device command or dsp_new functi on() . The following sections describe some
details about the way the emulator handles multiple devices. Section D.6.1 describes the
required steps to allocate and initialize multiple DSP structures. Section D.6.2 describes
the method of controlling multiple devices. Section D.6.3 describes display of device
output in the multiple device environment.

D.6.1 Allocation and Initialization of Multiple Devices

Most of the higher level emulator functions require a device index as one of the
parameters. The emulator uses the device index to select a previously allocated DSP
structure. The DSP structures are allocated dynamically by calling the dsp_new()
function for each device. The device type is also selected in the dsp_new() function call.
In the display version of the emulator, the device command handles the details of calling
dsp_new() . The proper sequence of instructions necessary to allocate three DSP devices
is shown below.

ads_startup("100", ADSP56000) ;

dsp_startup();

dsp_new(0, "56002") ; /* Alocate structure for device 0, a 56002 */
dsp_new(1, "56002"); /* Alocate structure for device 1, a 56002 */
dsp_new(2, "56002"); /* Alocate structure for device 2, a 56002 */

D.6.2 Controlling Multiple DSP Devices

Each target device operates independently under the control of the ADSDSP emulator.
The basic execution sequence for a single target device is unchanged:

1. Initialize DSP device

MOTOROLA DSPADSUM/AD D-83

C Library Functions

Multiple Device Emulation

2. Load memory

3. initialize breakpoints as desired

4. initiate execution (dsp_go(),dsp_step(), etc.)

5. IF DESIRED, interrupt execution with dsp_reset () ordsp_stop()

6. calldsp_check_service_request () to detect return to Debug Mode

When controlling multiple devices, all devices require initialization as above. Whenever
a device starts executing, as a result of a command like step or a function call like
dsp_go(), execution starts immediately for the specified device and continues
independently of the ADS. Each device must be started by a separate command or
function call. Execution continues until an event in the device causes the device to enter
Debug Mode, such as reaching a breakpoint or the required number of instructions
being executed, or the ADS stops execution for a target, with a force b command or a call
to function dsp_st op() . All other devices will continue executing while that device is
being serviced. The emulator needs to check each device to see if it has entered Debug
Mode by calling dsp_check_servi ce_request () for each executing device in turn.
This may be coded as a tight loop for maximum response, or interleaved with other
activity as required.

D.6.3 Multiple DSP Emulator Display

The emulator display functions are contained in the source file scrmgr.c in the emulator
package. This code supports the scrolling virtual screen for the ADS. The supplied
display code uses a single window. The lines above the command line form a scrolling
region in which session output is displayed. The command line, error line and help line
are the three bottom lines of the display. The default size of the scroll buffer holds 100
lines of output. As each device causes output to the screen, a message is output
specifying which device caused the output. The device command allows the user to
switch the displayed device. When it switches to a new device, it refreshes the entire
screen from the device’s display buffer.

D-84 DSPADSUM/AD MOTOROLA

C Library Functions

Reserved Function Names

D.7 RESERVED FUNCTION NAMES

The public function names used in the emulator all begin with the prefixes dsp_, ads_,
or si m_. Functions which begin with si m_are only available when a display version of
the emulator is created. Functions which begin with dsp_ and ads__ are available to both
display and non display versions. The screen management functions all begin with

si nw_. In general, functions which begin with dsp_ or si m_are higher level functions
available for direct reference from the user’s code; those beginning with dspd_, dspl _
or si m _ are meant only for internal use by the emulator. The higher level functions
and the screen management functions are documented in Section D.3 and Section D.4.
The public functions are listed in the file named global.sym which is included with the
distribution.

D.8 EMULATOR GLOBAL VARIABLES

In order to reduce conflicts with user variable names, the emulator global variables have
been grouped together into several large structures. In general, the structure names
beginning with s are used defined in simusr.h and are only used in the display version
of the emulator; while those beginning with d are defined in simdev.h and are used by
both the display and non-display versions of the emulator. The prefixes st _and dt _ are
used for structure names of device-type structures, that is structures which must be
defined for each device type. The prefixes si m_and dev__ are used for structure names
of general device or simulation structures.

Global variable names may have a prefix dx_, dv_, sx_, or sv_. The prefix dx__ is used
for variables of dt _ structures. The prefix dv__ is used for variables of dev__ structures.
The prefix sx__is used for variables of st _ structures. The prefix sv__is used for
variables of sev_ structures. A list of emulator global variables is included in the
distribution file named global.sym.

MOTOROLA DSPADSUM/AD D-85

C Library Functions

Modification of Emulator Global Structures

D.9 MODIFICATION OF EMULATOR GLOBAL STRUCTURES

The source file simglob.c, which is included in the emulator package, contains the global
structures sv_const and dv_const . There are some useful modifications, described
below, that can be made to the constant definitions at the beginning of simglob.c. The
simglob.c module must then be recompiled and relinked using the make file provided
with the emulator package.

e DSP_NMAXDEVI CES—This define constant determines the maximum number of
devices that can be allocated using the emulator’s device command. As a default
it is set to 32.

= DSP_CVDSZ—This define constant determines the size of the previous command
stack. The emulator commands are stored in the stack and can be reviewed using
the Ctrl-f and Ctrl-b key entries. As a default the previous command stack size is
set to 10.

= DSP_W NSZ—This define constant determines the size of the screen buffer that is
maintained and displayed by the scrmgr.c functions. It specifies the number of
display lines that will be allocated for each device as they are created with the
emulator device command. The user can use the Ctrl-u, Ctrl-t, Ctrl-v, and Ctrl-d
key sequences to review display lines that have scrolled off the screen. This
constant should not be set to a value smaller than the number of lines in the
display window.

£S5

D-86 DSPADSUM/AD MOTOROLA

MOTOROLA Wireless Sighal Processing

Suggestion/Problem Report

Motorola DSP Department welcomes your com-
ments on its products and publications. Please use
this form to report any problems, enhancement

For fastest response, Motorola DSP Department
may also be may also be contacted electronically.
Send e-mail to:

requests or ideas you have concerning this product

and send it to the following address: dsphelp@dsp.sps.mot.com

doc-update@dsp.sps.mot.com
Motorola b @dsp.sp

Attention: Wireless Signal Processors
Mail Stop OE314

6501 William Cannon Drive West
Austin, Texas 78735-8598

Or visit our web site. You may browse our exten-
sive database, including all our latest documenta-
tion and product news. Our web address is:

http://www.motorola-dsp.com

Please tell us about yourself.

Name Date
Company.

E-mailaddress. Phone
Street Address. City. . . .
State. Zip. ... Country

Please give a complete description of the configuration you are using, with any comments or problems.
This should include the development environment in use, the type of host computer, software and any
external circuitry you are using with this product and, if possible, how to reproduce any problem reported.

ALL INFORMATION WILL BE TREATED AS STRICTLY CONFIDENTIAL.

(Please continue on reverse if necessary)

Motorola WSP Technical Helpline (512) 891-3230

MOTOROLA Wireless Signhal Processing

Report Continuation

(Please continue on extra sheets if necessary)

Motorola WSP Technical Helpline (512) 891-3230

INDEX

A

evaluate 3-40

finish 3-41
.adm D-53, D-61 force 3-42
ads_cache_registers D-8 go 3-44
ads_startup D-9 help 3-45
Application development host 3-46
multiple targets 1-5 input 3-47
single target 1-5 list 3-51
load 3-52
B log 3-54, 3-55
next 3-56
breakpoint output 3-57
access 3-15 path 3-60
action 3-19 quit 3-61
continue D-82 radix 3-62
DEBUGcc 3-17 save 3-64
expression operators 3-20 step 3-65
FDEBUGcc 3-18 system 3-67
hardware access 3-15 trace 3-68
hardware types 3-15, 3-16 until 3-71
rules 3-14 view 3-73
software type 3-17 wait 3-74
testing D-71, D-81 command converter
addressing 5-6
C block diagram 5-6
ccld 3-64, D-52, D-80 EZﬁggﬁ;ﬂeD5$2’ D-10
.cmd 4-24, D-72 memory change 3-23
COFF B-1, B-24 memory display 3-24
command monitor program 5-17
asm 3-12 monitor revision D-37
break 3-14 reset D-36
cchange 3-23 command entry
cdisplay 3-24 command line editing D-73
cforce 3-25 expansion D-73
cgo 3-26 macro file D-71, D-72
change 3-31 terminal D-71, D-73, D-75
cload 3-27 command execution
copy 3-33 macro file D-71, D-72
csave 3-28 trace mode D-77
cstep 3-29 unlock 3-70
ctrace 3-30 command overview 3-3
3?3\12;5;33:3;6 command syntax
: - address 3-7
display 3-37 address_block 3-7
MOTOROLA DSPADSUM/AD Index-1

address_qualifier 3-7
boldface 3-5
breakpoint_action 3-7
count 3-7
description 3-5
device number 3-7
symbolic address forms 3-6
commands
system D-75, D-76
until 3-70
Comment
object file B-27
comment
from dspt_masm D-30
control keys
Ctrl-w 1-10
CTRL-C D-75

D

Data

block B-27
device mode D-25, D-26, D-42
display

off 3-37

on 3-37
display mode select 3-73
display modes 1-10
display support D-3
dsp_alloc D-32
dsp_cc_fmem D-33
dsp_cc_go D-34
dsp_cc_Ildmem D-35
dsp_cc_reset D-36
dsp_cc_revision D-37
dsp_cc_rmem D-38
dsp_cc_rmem_blk D-39
dsp_cc_wmem D-40
dsp_cc_wmem_blk D-41
dsp_check_service_request D-42, D-65
dsp_findmem D-43
dsp_findreg D-8, D-44
dsp_fmem D-45
dsp_free D-46
dsp_free_mem D-47
dsp_go D-48
dsp_go_address D-49
dsp_go_reset D-50
dsp_init D-51

dsp_ldmem D-52

dsp_load D-53

dsp_new D-11, D-54, D-80
dsp_path D-55

dsp_realloc D-56

dsp_reset D-57

dsp_rmem D-58
dsp_rmem_blk D-59

dsp_rreg D-8, D-60

dsp_save D-61

dsp_spath D-62

dsp_startup D-63

dsp_status D-64

dsp_step D-65

dsp_stop D-66

dsp_unlock D-67

dsp_wmem D-68

dsp_wreg D-70

dspd_break D-10
dspd_cc_architecture D-11
dspd_cc_read_flag D-12
dspd_cc_read_memory D-13
dspd_cc_reset D-14
dspd_cc_revision D-15
dspd_cc_write_flag D-16
dspd_cc_write_memory D-17
dspd_check_service_request D-18
dspd_fill_memory D-19
dspd_go D-20

dspd_jtag_reset D-21
dspd_read_core_registers D-22, D-24
dspd_read_memory D-23
dspd_read_once_registers D-22, D-24
dspd_reset D-25

dspd_status D-26
dspd_write_core_registers D-27
dspd_write_memory D-28
dspd_write_once_registers D-29
dspt_masm_xxxxx D-30
dspt_unasm_xxxxx D-31

E

execute 1 instruction 3-68
execute DSP program 3-44
execute n instructions realtime 3-65

execute n instructions until address 3-71

Expression
object file B-28

Index-2

DSPADSUM/AD

MOTOROLA

F

File
object B-1
filei/o
commands D-71, D-72
filename D-55
memory D-80
state file D-53, D-61, D-80
filename suffixes
.adm D-53, D-61
.cld 3-64, D-52, D-80
.cmd 4-24, D-72
.lod D-35, D-52
floating point breakpoint 3-18
function library D-3
filenames D-79
function name prefixes D-4
global variables D-85

G

GUI
DISPLAY menu 4-27
EXECUTE menu 4-47
FILE menu 4-13
functional overview 4-6
HELP menu 4-68
MODIFY menu 4-41
toolbar 4-69
WINDOWS menu 4-55

H

hardware requirements
Hewlett Packard HP7xx 1-7
IBM-PC 1-6
Sun-4 1-7

help 3-45

host computer interface
37 pin cable pinout 6-5
cable 5-5
PC BUS connector 6-3
SBUS connector 6-4

jumper group locations 2-4
IBM PC software
DOS4GVM default settings 2-6, 2-7
installation 2-5
virtual memory capability
DOS4GVM 2-6
IBM-PC Card
default i/o address 2-5
installation 2-3
IBM-PC software
protected mode resources
pminfo.exe 2-6
IBM-Pc software
dos4gw.exe program 2-6
initialization
window parameters D-78

J
JTAG reset types D-21

L

library of functions D-3
Line number B-11

.lod D-35, D-52

lower case 3-5

M

macro command file
execution D-71, D-72
in_macro D-71, D-72
invoking ADS 1-5
startup file 1-5
memory
allocate D-56
allocation D-32
deallocate D-47
get map index D-43
load D-35, D-52
load state D-53
read D-13, D-23, D-38, D-39, D-58, D-59
write D-17, D-19, D-28, D-33, D-40, D-41,

user interface structure 5-16 D-45, D-68
HP7xx Card menu
installation 2-10 DISPLAY 4-27
EXECUTE 4-47
| FILE 4-13
HELP 4-68
IBM PC Card MODIFY 4-41
MOTOROLA DSPADSUM/AD Index-3

WINDOWS 4-55
multiple devices D-83

device index D-71

halting D-75

N

non-display emulation
library file D-79
library restrictions D-79
loading program code D-80
nwads D-79

O

Obiject file
auxiliary entry B-18
comment B-27
data expression B-28
differences B-24
file header B-5
format B-1
line number B-11
optional header B-6
relocation B-11, B-26
section B-8
section number B-14
storage class B-16
structure B-3
structure size B-26
symbol name B-14
symbol table B-12
symbol type B-15
symbol value B-14
transportability B-25
object module format
example file A-7
record types A-3
OnCE
concept 1-3
debugging custom sequences 3-29
executing custom sequences 3-26
handshake 5-20
loading custom sequences 3-27
saving custom sequences 3-28
OnCE port
architecture 5-12

debug acknowledge 5-22

recommended target interface 6-6
user interface commands 5-23

P

path

define file directory path 3-60

R

radix

change default number base 3-62

registers
get index D-44
read D-22, D-24, D-60

write D-27, D-29, D-70

Relocation B-11, B-26
reset target 3-42

S

save target memory to a file 3-64

screen buffer D-77

Screen management functions D-74

scrmgr.c D-84
Section

block data B-27

header B-8
sim_gmcmd D-72
sim_gtcmd D-73
simw_ceol D-74
simw_ctrlbr D-75
simw_cursor D-75
simw_endwin D-75
simw_getch D-75
simw_gkey D-76
simw_putc D-76
simw_puts D-76
simw_redo D-76
simw_redraw D-77
simw_refresh D-77
simw_scrnest D-77
simw_unnest D-78
simw_winit D-78
simw_wscr D-78
software breakpoints 3-18

command converter control sequences 5-23 SREC]
communications protocol 5-21 creation C-5
connector pinout 6-6 format C-3
Index-4 DSPADSUM/AD MOTOROLA

types C-4
start execution D-48, D-49, D-50, D-65
stop execution D-66
Sun 4 Card
installation 2-8
symbolic debug command
finish 3-41
list 3-51
next 3-56
until 3-71
view 3-73
symbolic debug display
display modes 1-10

T
toolbar 4-69

U

UNLOCK 3-70

W

wait specified time 3-74

Watcom compiler 2-6

window behavior 4-4

windows function summary 4-56
wwads D-79

MOTOROLA DSPADSUM/AD Index-5

Index-6 DSPADSUM/AD MOTOROLA

	TOC Heading - Table of contents
	TOC Heading - List of Figures
	TOC Heading - List of Tables
	Section Number - Section

	Section Heading - General Information
	Heading 1 - 1.1 Introduction
	Heading 1 - 1.2 General Description
	Figure Title - Figure�1�1 Application Development
	Figure Title - Figure�1�2 Target Circuit Emulation

	Heading 1 - 1.3 Operating Environment
	Heading 2 - 1.3.1 PC-Compatible Requirements
	Heading 2 - 1.3.2 Hewlett Packard HP7xx Workstation Requiremen...
	Heading 2 - 1.3.3 Sun-4 or Compatible Workstation Requirements...
	Heading 1 - 1.4 ADS Software Features
	Heading 1 - 1.5 Text-Based User Interface
	Heading 2 - 1.5.1 General Description
	Heading 2 - 1.5.2 Command Entry
	Heading 2 - 1.5.3 Display Modes
	Heading 1 - 1.6 Getting Started
	Section Number - Section

	Section Heading - Preparation and Installation
	Heading 1 - 2.1 Host Computer Interface Card
	Heading 1 - 2.2 PC-compatible to Command Converter Interface
	Heading 2 - 2.2.1 Installing the PC-Compatible Interface
	Figure Title - Figure�2�1 PC-compatible Interface Card Jumper Gro...
	Table Title - Table�2�1 PC-compatible I/O Addresses

	Heading 1 - 2.3 Installing the PC-compatible Software
	Heading 2 - 2.3.1 Defining Environment Variables
	Heading 2 - 2.3.2 All Versions of User-Interface Program
	Heading 2 - 2.3.3 Text-Based User Interface Program Installati...
	Heading 2 - 2.3.4 Using Default Settings
	Heading 2 - 2.3.5 Graphical User Interface (GUI) Program Insta...
	Heading 1 - 2.4 SUN 4 to Command Converter Interface
	Heading 2 - 2.4.1 Installing the Sun-4 Interface
	Heading 2 - 2.4.2 Software Installation
	Heading 1 - 2.5 HP7xx to Command Converter Interface
	Heading 2 - 2.5.1 Installing the HP-7xx Interface
	Heading 3 - 2.5.1.1 HP VUE Shutdown
	Heading 3 - 2.5.1.2 HP-UX COMMAND LINE SHELL SHUTDOWN
	Heading 3 - 2.5.1.3 ISA Card Installation
	Figure Title - Figure�2�2 HP-7xx Chassis Rear View

	Heading 2 - 2.5.2 Installing the HP-7xx Device Driver
	Heading 1 - 2.6 Configuring the Command Converter
	Heading 2 - 2.6.1 Selecting the Command Converter Device Numbe...
	Table Title - Table�2�2 Command Converters Rev 4, 5 Device Numbe...

	Heading 2 - 2.6.2 JTAG/OnCE Port Buffer VCC
	Table Title - Table�2�3 CMOS BUFFER VCC CONFIGURATION

	Heading 2 - 2.6.3 Command Convertor Monitor Firmware Upgrades
	Section Number - Section

	Section Heading - User Interface Commands
	Heading 1 - 3.1 Introduction
	Heading 1 - 3.2 Command Overview
	Heading 2 - 3.2.1 Memory/Register Display/Modification Command...
	Heading 2 - 3.2.2 File I/O Commands
	Heading 2 - 3.2.3 Target Program Execution Commands
	Heading 2 - 3.2.4 C Source Code Debug Commands
	Heading 2 - 3.2.5 Command Converter Commands
	Heading 2 - 3.2.6 Miscellaneous Commands
	Heading 1 - 3.3 Command Syntax
	Heading 1 - 3.4 Command Parameters
	Heading 1 - 3.5 Command Summary
	Heading 1 - 3.6 Detailed Command Descriptions
	Heading 2 - 3.6.1 ASM—Single Line Interactive Assembler
	Figure Title - Figure�3�1 Interactive Assembler Dialog Box
	Example Title - Example�3�1 ASM Command Examples

	Heading 2 - 3.6.2 BREAK—Set, Modify, or Clear Breakpoint
	Table Title - Table�3�1 Hardware Breakpoint Access
	Table Title - Table�3�2 OnCE Hardware Breakpoint Types
	Table Title - Table�3�3 JTAG/OnCE Hardware Breakpoint Types
	Table Title - Table�3�4 DSP56300 AND DSP56600 Hardware Breakpoin...
	Table Title - Table�3�5 DSP56300 and DSP56600 Hardware Breakpoin...
	Table Title - Table�3�6 Software Breakpoint Types (Continued)
	Table Title - Table�3�7 Floating Point Software Breakpoint Types...
	Table Title - Table�3�8 Breakpoint Actions
	Table Title - Table�3�9 Expression Operators �
	Example Title - Example�3�2 General Breakpoint Examples for DSPs w...
	Example Title - Example�3�3 General Breakpoint Examples for DSPs w...
	Example Title - Example�3�4 General Breakpoint Examples for DSPs w...

	Heading 2 - 3.6.3 CCHANGE—Change Command Converter Memory
	Example Title - Example�3�5 CCHANGE Command Examples

	Heading 2 - 3.6.4 CDISPLAY—Display Command Converter Flags and...
	Example Title - Example�3�6 CDISPLAY Command Examples

	Heading 2 - 3.6.5 CFORCE—Assert Reset or Break on Command Conv...
	Example Title - Example�3�7 CFORCE Command Examples

	Heading 2 - 3.6.6 CGO—Execute OnCE Sequence
	Example Title - Example�3�8 CGO Command Examples

	Heading 2 - 3.6.7 CLOAD—Load OnCE Command Sequence
	Example Title - Example�3�9 CLOAD Example

	Heading 2 - 3.6.8 CSAVE—Save Command Converter Memory to a Fil...
	Example Title - Example�3�10 CSAVE Command Examples

	Heading 2 - 3.6.9 CSTEP—Step through OnCE Sequence
	Example Title - Example�3�11 CSTEP Command Examples

	Heading 2 - 3.6.10 CTRACE—Trace through OnCE Sequence
	Example Title - Example�3�12 CTRACE Command Example

	Heading 2 - 3.6.11 CHANGE—Change Register or Memory Value
	Figure Title - Figure�3�2 Interactive Change Dialog Box
	Example Title - Example�3�13 CHANGE Command Examples �

	Heading 2 - 3.6.12 COPY—Copy a Memory Block
	Example Title - Example�3�14 COPY Command Examples

	Heading 2 - 3.6.13 DEVICE—Select Default target DSP address
	Example Title - Example�3�15 DEVICE Command Examples

	Heading 2 - 3.6.14 DISASSEMBLE—Single Line Disassembler
	Example Title - Example�3�16 DISASSEMBLE Command Examples

	Heading 2 - 3.6.15 DISPLAY—Display Register or Memory
	Example Title - Example�3�17 DISPLAY Command Examples

	Heading 2 - 3.6.16 DOWN—Move Down the C Function Call Stack
	Example Title - Example�3�18 DOWN Command Examples

	Heading 2 - 3.6.17 EVALUATE—Evaluate an Expression
	Example Title - Example�3�19 EVALUATE Command Examples

	Heading 2 - 3.6.18 FINISH—Step Until End of Current Subroutine...
	Example Title - Example�3�20 FINISH Command Example

	Heading 2 - 3.6.19 FORCE—Assert RESET or BREAK on Target
	Example Title - Example�3�21 FORCE Command Examples

	Heading 2 - 3.6.20 FRAME—Select C Function Call Stack Frame
	Example Title - Example�3�22 FRAME Command Examples

	Heading 2 - 3.6.21 GO—Execute DSP Program
	Example Title - Example�3�23 GO Command Examples

	Heading 2 - 3.6.22 HELP—ADS User Interface Help Text
	Example Title - Example�3�24 HELP Command Examples

	Heading 2 - 3.6.23 HOST—Change HOST Interface Address
	Example Title - Example�3�25 HOST Command Examples

	Heading 2 - 3.6.24 INPUT—Assign Input File
	Example Title - Example�3�26 Examples of Input File Data
	Example Title - Example�3�27 Examples of Terminal Input Within an ...
	Example Title - Example�3�28 Example Of Program That Resides on a ...
	Example Title - Example�3�29 Example Of Program That Resides on a ...
	Example Title - Example�3�30 INPUT Command Examples

	Heading 2 - 3.6.25 LIST—List Source File Lines
	Example Title - Example�3�31 LIST Command Examples

	Heading 2 - 3.6.26 LOAD—Load DSP Program
	Example Title - Example�3�32 LOAD Command Examples

	Heading 2 - 3.6.27 LOG—Log Commands and/or Session
	Example Title - Example�3�33 LOG Command Examples

	Heading 2 - 3.6.28 MORE—Enable/Disable Session Paging Control
	Example Title - Example�3�34 MORE Command Examples

	Heading 2 - 3.6.29 NEXT—Step Over Subroutine Calls or Macros
	Example Title - Example�3�35 NEXT Command Examples

	Heading 2 - 3.6.30 OUTPUT—Assign Output File
	Example Title - Example�3�36 Example Of Program That Resides on a ...
	Example Title - Example�3�37 Example Of Program That Resides on a ...
	Example Title - Example�3�38 OUTPUT Command Examples

	Heading 2 - 3.6.31 PATH—Define File Directory Path
	Example Title - Example�3�39 PATH Command Examples

	Heading 2 - 3.6.32 QUIT—Exit ADS Program
	Example Title - Example�3�40 QUIT Command Examples

	Heading 2 - 3.6.33 RADIX—Change Default Number Base
	Example Title - Example�3�41 RADIX Command Examples

	Heading 2 - 3.6.34 REDIRECT—Redirect stdin/stdout/stderr for C...
	Example Title - Example�3�42 REDIRECT Command Examples

	Heading 2 - 3.6.35 SAVE—Save Memory To File
	Example Title - Example�3�43 SAVE Command Examples

	Heading 2 - 3.6.36 STEP—Step Through DSP Program
	Example Title - Example�3�44 STEP Command Examples

	Heading 2 - 3.6.37 STREAMS—Enable/Disable Handling of I/O for ...
	Example Title - Example�3�45 STREAMS Command Examples

	Heading 2 - 3.6.38 SYSTEM—Operating System Access
	Example Title - Example�3�46 SYSTEM Command Examples

	Heading 2 - 3.6.39 TRACE—Trace Through DSP Program
	Example Title - Example�3�47 TRACE Command Examples

	Heading 2 - 3.6.40 TYPE—Display The Result Type of C Expressio...
	Example Title - Example�3�48 TYPE Command Examples

	Heading 2 - 3.6.41 UNLOCK—Unlock Password Protected Device Typ...
	Example Title - Example�3�49 UNLOCK Command Example

	Heading 2 - 3.6.42 UNTIL—Step Until Address
	Example Title - Example�3�50 UNTIL Command Examples

	Heading 2 - 3.6.43 UP- Move Up the C Function Call Stack
	Example Title - Example�3�51 UP Command Examples

	Heading 2 - 3.6.44 VIEW- Select Display Mode
	Example Title - Example�3�52 VIEW Command Examples

	Heading 2 - 3.6.45 WAIT—Wait Specified Time
	Example Title - Example�3�53 WAIT Command Examples

	Heading 2 - 3.6.46 WATCH—Set, Modify, View, or Clear Watch Ite...
	Example Title - Example�3�54 WATCH Command Examples

	Heading 2 - 3.6.47 WASM—GUI Assembly Window
	Example Title - Example�3�55 WASM Command Examples

	Heading 2 - 3.6.48 WBREAKPOINT—GUI Breakpoint window
	Example Title - Example�3�56 WBREAKPOINT Command Exampels

	Heading 2 - 3.6.49 WCALLS—GUI C Calls Stack Window
	Example Title - Example�3�57 WCALLS Command Examples

	Heading 2 - 3.6.50 WCOMMAND—GUI Command Window
	Example Title - Example�3�58 WCOMMAND Command Examples

	Heading 2 - 3.6.51 WHERE—GUI C Calls Stack Window
	Example Title - Example�3�59 WHERE Command Examples

	Heading 2 - 3.6.52 WINPUT—GUI File Input window
	Example Title - Example�3�60 WINPUT Command Examples

	Heading 2 - 3.6.53 WLIST—GUI List Window
	Example Title - Example�3�61 WLIST Command Examples

	Heading 2 - 3.6.54 WMEMORY—GUI Memory Window
	Example Title - Example�3�62 WMEMORY Command Examples

	Heading 2 - 3.6.55 WOUTPUT—GUI File Output Window
	Example Title - Example�3�63 WOUTPUT Command Examples

	Heading 2 - 3.6.56 WREGISTER—GUI Register Window
	Example Title - Example�3�64 WREGISTER Command Examples

	Heading 2 - 3.6.57 WSESSION—GUI Session Window
	Example Title - Example�3�65 WSESSION Command Examples

	Heading 2 - 3.6.58 WSOURCE—GUI Source window
	Example Title - Example�3�66 WSOURCE Command Examples

	Heading 2 - 3.6.59 WSTACK—GUI Stack Window
	Example Title - Example�3�67 WSTACK Command Examples

	Heading 2 - 3.6.60 WWATCH—GUI watch window
	Example Title - Example�3�68 WWATCH Command Examples

	Heading 1 - 3.7 Debugging C Programs
	Heading 2 - 3.7.1 C Debug Features
	Heading 2 - 3.7.2 C Expressions
	Heading 2 - 3.7.3 Restrictions
	Heading 2 - 3.7.4 Compiling a Program for Debugging
	Heading 1 - 3.8 C Debugging Commands
	Heading 1 - 3.9 Example Debugging Sessions
	Heading 2 - 3.9.1 Binary Search Example
	Heading 2 - 3.9.2 Recursive Binary Tree Traversal Example
	Section Number - Section

	Section Heading - Graphical User Interface
	Heading 1 - 4.1 Introduction
	Heading 1 - 4.2 Host System Requirements
	Heading 1 - 4.3 Platform Specifics
	Heading 1 - 4.4 General Window Behavior
	Figure Title - Figure�4�1 Main Window for Sun SPARCstation 2

	Heading 2 - 4.4.1 File Chooser
	Figure Title - Figure�4�2 Sun File Chooser Dialog Box
	Figure Title - Figure�4�3 Windows File Chooser Dialog Box

	Heading 2 - 4.4.2 Multiple Operations
	Heading 2 - 4.4.3 MULTIPLE SELECTIONS
	Heading 1 - 4.5 Graphical Interface Functions Overview
	Heading 2 - 4.5.1 GUI Structure
	Figure Title - Figure�4�4 GUI Interface to ADS

	Heading 2 - 4.5.2 Starting the ADS
	Heading 2 - 4.5.3 File Access Paths
	Heading 2 - 4.5.4 Loading Object Files
	Heading 2 - 4.5.5 Examining and Changing Memory
	Heading 2 - 4.5.6 Examining and Changing Registers
	Heading 2 - 4.5.7 Program Execution—the Tool Bar
	Heading 2 - 4.5.8 Device Selection
	Heading 2 - 4.5.9 Breakpoints
	Heading 2 - 4.5.10 Simulated Input and Output
	Heading 2 - 4.5.11 Stream File Support
	Heading 2 - 4.5.12 Command and Session Windows
	Heading 2 - 4.5.13 Command and Session Log Files
	Heading 2 - 4.5.14 Save Files
	Heading 2 - 4.5.15 Input Conventions
	Heading 1 - 4.6 File Menu
	Heading 2 - 4.6.1 File//Path//...
	Figure Title - Figure�4�5 File//Path/Set, Add Dialog Box

	Heading 2 - 4.6.2 File//Load//Memory COFF, Memory 4.6.2 OMF
	Figure Title - Figure�4�6 File//Load//Memory COFF, Memory OMF Dia...

	Heading 2 - 4.6.3 File//Save//Memory COFF, Memory 4.6.3 OMI
	Figure Title - Figure�4�7 File//Save//Memory COFF, Memory OMF Dia...

	Heading 2 - 4.6.4 File//Save//State, File//Load//State
	Figure Title - Figure�4�8 File//Load//State, File//Save//State Di...

	Heading 2 - 4.6.5 File//Input//Open
	Table Title - Table�4�1 Register Requirements for Simulated Inpu...
	Figure Title - Figure�4�9 File//Input//Open Dialog Box

	Heading 2 - 4.6.6 File//Input//Close
	Figure Title - Figure�4�10 File//Input//Close Dialog Box

	Heading 2 - 4.6.7 File//Output/Open
	Table Title - Table�4�2 Register Requirements for Simulated Outp...
	Figure Title - Figure�4�11 File//Output//Open Dialog Box

	Heading 2 - 4.6.8 File//Output//Close
	Heading 2 - 4.6.9 File//IO Streams//...
	Heading 2 - 4.6.10 File//IO Redirect//...
	Figure Title - Figure�4�12 File//IO Redirect//... Dialog Boxes

	Heading 2 - 4.6.11 File//Log//Commands
	Figure Title - Figure�4�13 File//Log//Commands Dialog Box

	Heading 2 - 4.6.12 File//Log//Session
	Figure Title - Figure�4�14 File//Log//Commands Dialog Box

	Heading 2 - 4.6.13 File//Log//Close
	Figure Title - Figure�4�15 File//Log//Close Dialog Box

	Heading 2 - 4.6.14 File//Macro
	Heading 2 - 4.6.15 File//About
	Figure Title - Figure�4�16 File//About Dialog Box

	Heading 2 - 4.6.16 File//Preferences
	Figure Title - Figure�4�17 File//Preferences Dialog Box

	Heading 2 - 4.6.17 File//Exit
	Figure Title - Figure�4�18 File//Exit Dialog Box

	Heading 1 - 4.7 Display Menu
	Heading 2 - 4.7.1 Display//Display//Active
	Figure Title - Figure�4�19 Display//Display//Active Output

	Heading 2 - 4.7.2 Display//Display//Memory
	Figure Title - Figure�4�20 Display//Display//Memory Dialog Box

	Heading 2 - 4.7.3 Display//Display//Registers
	Figure Title - Figure�4�21 Display//Display//Registers Dialog Box...

	Heading 2 - 4.7.4 Display//Display//Stack
	Figure Title - Figure�4�22 Display//Display//Stack Output

	Heading 2 - 4.7.5 Display//Display//Version
	Figure Title - Figure�4�23 Display//Display//Version Output

	Heading 2 - 4.7.6 Display//Display//Off
	Figure Title - Figure�4�24 Display//Display//Off Output

	Heading 2 - 4.7.7 Display//Disassemble//From PC, 4.7.7 Memory ...
	Figure Title - Figure�4�25 Display//Disassemble//Memory Dialog Bo...
	Figure Title - Figure�4�26 Display//Disassemble//... Output

	Heading 2 - 4.7.8 Display//List
	Figure Title - Figure�4�27 Display//List File Dialog Box
	Figure Title - Figure�4�28 Display//List File Output

	Heading 2 - 4.7.9 Display//Evaluate
	Figure Title - Figure�4�29 Display//Evaluate Dialog Box
	Figure Title - Figure�4�30 Display//Evaluate Output

	Heading 2 - 4.7.10 Display//Call Stack
	Figure Title - Figure�4�31 Display//Call Stack Dialog Box
	Figure Title - Figure�4�32 Display//Call Stack Output

	Heading 2 - 4.7.11 Display//Radix
	Figure Title - Figure�4�33 Display//Radix Output

	Heading 2 - 4.7.12 Display//Device
	Figure Title - Figure�4�34 Display//Device Output

	Heading 2 - 4.7.13 Display//Path
	Figure Title - Figure�4�35 Display//Path Output

	Heading 2 - 4.7.14 Display//Input Files and Display//Output 4....
	Figure Title - Figure�4�36 Display//Input Files Output

	Heading 2 - 4.7.15 Display//Redirected IO Streams, IO Streams ...
	Figure Title - Figure�4�37 Display//IO Streams Output

	Heading 2 - 4.7.16 Display//Log Files
	Figure Title - Figure�4�38 Display//Log Files Output

	Heading 2 - 4.7.17 Display//Breakpoints
	Figure Title - Figure�4�39 Display//Breakpoints Output

	Heading 2 - 4.7.18 Display//Watch//Show
	Figure Title - Figure�4�40 Display//Watch//Show Output

	Heading 2 - 4.7.19 Display//Watch//Add
	Figure Title - Figure�4�41 Display//Watch//Add Dialog Box

	Heading 2 - 4.7.20 Display//Watch//Off
	Figure Title - Figure�4�42 Display//Watch//Off Dialog Box

	Heading 2 - 4.7.21 Display//Type
	Figure Title - Figure�4�43 Display//Type Dialog Box
	Figure Title - Figure�4�44 Display//Type Output

	Heading 2 - 4.7.22 Display//More
	Figure Title - Figure�4�45 Display//More Dialog Box

	Heading 2 - 4.7.23 Display//View//Register
	Figure Title - Figure�4�46 Session Window—Register View

	Heading 2 - 4.7.24 Display//View//Assembly, Source
	Figure Title - Figure�4�47 Session Window, Assembly View

	Heading 1 - 4.8 Modify Menu
	Heading 2 - 4.8.1 Modify//Change Register
	Figure Title - Figure�4�48 Modify//Change Register Dialog Box

	Heading 2 - 4.8.2 Modify//Change Memory
	Figure Title - Figure�4�49 Modify//Change Memory Dialog Box

	Heading 2 - 4.8.3 Modify//Copy Memory
	Figure Title - Figure�4�50 Modify//Copy Memory Dialog Box

	Heading 2 - 4.8.4 Modify//Radix//Set Default
	Figure Title - Figure�4�51 Modify//Radix//Set Default Dialog Box

	Heading 2 - 4.8.5 Modify//Radix//Set Display
	Figure Title - Figure�4�52 Modify//Radix//Set Display Dialog Box

	Heading 2 - 4.8.6 Modify//Device//Set Default
	Figure Title - Figure�4�53 Modify//Device//Set Default Dialog Box...

	Heading 2 - 4.8.7 Modify//Device//Configure
	Figure Title - Figure�4�54 Modify//Device//Configure Dialog Box

	Heading 2 - 4.8.8 Modify//Device//Unlock
	Figure Title - Figure�4�55 Modify//Device//Unlock Dialog Box

	Heading 2 - 4.8.9 Modify//Up, Modify//Down
	Figure Title - Figure�4�56 Modify//Up Dialog Box

	Heading 1 - 4.9 Execute Menu
	Heading 2 - 4.9.1 Execute//Go
	Figure Title - Figure�4�57 Execute//Go Dialog Box

	Heading 2 - 4.9.2 Execute//Step, Next, Trace
	Figure Title - Figure�4�58 Execute//STEP Dialog Box

	Heading 2 - 4.9.3 Execute//Until
	Figure Title - Figure�4�59 Execute//Until Dialog Box

	Heading 2 - 4.9.4 Execute//Finish
	Heading 2 - 4.9.5 Execute//Breakpoints//Set Software
	Figure Title - Figure�4�60 Execute//Breakpoint//Set Software Dial...

	Heading 2 - 4.9.6 Software Break Processing
	Heading 2 - 4.9.7 Execute//Breakpoints//Set Hardware
	Figure Title - Figure�4�61 Execute//Breakpoint//Set Hardware Dial...

	Heading 2 - 4.9.8 DSP56300 and DSP56600 Breakpoint Logic
	Figure Title - Figure�4�62 Execute//Breakpoint//Set Hardware Dial...

	Heading 2 - 4.9.9 Hardware Break Processing
	Heading 2 - 4.9.10 Execute//Breakpoints//Clear
	Figure Title - Figure�4�63 Execute//Breakpoint//Clear Dialog Box

	Heading 2 - 4.9.11 Execute//Breakpoints//Enable, Disable
	Figure Title - Figure�4�64 Execute//Breakpoints//Enable Dialog Bo...

	Heading 2 - 4.9.12 Execute//Wait
	Figure Title - Figure�4�65 Execute//Wait Dialog Box

	Heading 2 - 4.9.13 Execute//Stop
	Heading 2 - 4.9.14 Execute//Reset...
	Heading 1 - 4.10 Windows Menu
	Table Title - Table�4�3 Summary of Window Functions

	Heading 2 - 4.10.1 Windows//Assembly
	Figure Title - Figure�4�66 Assembly Window

	Heading 2 - 4.10.2 Windows//Source
	Figure Title - Figure�4�67 Source Window (no source)
	Figure Title - Figure�4�68 Source Window (source file present)

	Heading 2 - 4.10.3 Windows//Register
	Figure Title - Figure�4�69 Register Window Peripheral Group Selec...
	Figure Title - Figure�4�70 Register Window

	Heading 2 - 4.10.4 Windows//Memory
	Figure Title - Figure�4�71 Windows//Memory Dialog Box
	Figure Title - Figure�4�72 Memory Window

	Heading 2 - 4.10.5 Windows//Stack
	Figure Title - Figure�4�73 Stack Window

	Heading 2 - 4.10.6 Windows//Calls
	Figure Title - Figure�4�74 Calls Window

	Heading 2 - 4.10.7 Windows//Watch
	Figure Title - Figure�4�75 Windows//Watch Dialog Box

	Heading 2 - 4.10.8 Windows//List File
	Figure Title - Figure�4�76 List File Window

	Heading 2 - 4.10.9 Windows//Input
	Figure Title - Figure�4�77 Input Window

	Heading 2 - 4.10.10 Windows//Output
	Figure Title - Figure�4�78 Output Window

	Heading 2 - 4.10.11 Windows//Breakpoints
	Figure Title - Figure�4�79 Breakpoint Window

	Heading 2 - 4.10.12 Windows//Command
	Figure Title - Figure�4�80 Command Window

	Heading 2 - 4.10.13 Windows//Session
	Figure Title - Figure�4�81 Session Window

	Heading 2 - 4.10.14 Windows//Tile, Cascade (Microsoft Windows ...
	Figure Title - Figure�4�82 Tiled and Cascaded Windows

	Heading 1 - 4.11 Help Menu
	Figure Title -
	Figure Title - Figure�4�84 Help on a Specific Topic

	Heading 1 - 4.12 The Tool Bar
	Heading 2 - 4.12.1 Go Button
	Heading 2 - 4.12.2 Stop Button
	Heading 2 - 4.12.3 STEP Button
	Heading 2 - 4.12.4 NEXT Button
	Heading 2 - 4.12.5 FINISH Button
	Heading 2 - 4.12.6 DEVICE Button
	Heading 2 - 4.12.7 REPEAT Button
	Heading 2 - 4.12.8 RESET Button
	Section Number - Section

	Section Heading - Functional Description
	Heading 1 - 5.1 Introduction
	Heading 1 - 5.2 Host Computer Hardware
	Heading 2 - 5.2.1 Host Computer Bus Interface Card
	Figure Title - Figure�5�1 Host Computer Bus Interface Card

	Heading 2 - 5.2.2 Host Computer Interface Cable
	Figure Title - Figure�5�2 37-Pin Host Computer Interface Cable

	Heading 1 - 5.3 Command Converter Card
	Figure Title - Figure�5�3 Command Converter Block Diagram

	Heading 2 - 5.3.1 Command Converter Handshake Signals
	Heading 2 - 5.3.2 Command Converter Interface Connector
	Figure Title - Figure�5�4 Target System OnCE Interface Connector

	Heading 2 - 5.3.3 Multiple Target Connections
	Figure Title - Figure�5�5 JTAG Connections
	Figure Title - Figure�5�6 Multiple JTAG Target Connections (1)

	Heading 2 - 5.3.4 TCK Drive and Timing Considerations
	Figure Title - Figure�5�7 Fan Out of TCK at Source

	Heading 2 - 5.3.5 Resetting Target DSP Devices.
	Figure Title - Figure�5�8 Reset JTAG device with RESET Signal

	Heading 1 - 5.4 OnCE Port Architecture
	Heading 2 - 5.4.1 OnCE Controller
	Heading 2 - 5.4.2 Program Controller Pipeline Information
	Figure Title - Figure�5�9 OnCE Port Architecture

	Heading 2 - 5.4.3 Program Address Bus FIFO
	Heading 2 - 5.4.4 Program Decoder Communication
	Heading 2 - 5.4.5 Hardware/Software Breakpoints
	Heading 2 - 5.4.6 Program Single-Stepping
	Heading 1 - 5.5 Host Computer Software
	Figure Title - Figure�5�10 Host Computer User Interface Program

	Heading 1 - 5.6 Command Converter Software
	Figure Title - Figure�5�11 Command Converter Monitor Memory

	Heading 1 - 5.7 JTAG/OnCE Communications Performance
	Figure Title - Figure�5�12 Command Converter / Target DSP Clock C...

	Heading 1 - 5.8 Communicating with the Target OnCE Port
	Heading 2 - 5.8.1 OnCE Command Format
	Figure Title - Figure�5�13 OnCE 8-Bit Command Format

	Heading 2 - 5.8.2 OnCE Port Protocol
	Heading 2 - 5.8.3 OnCE Debug Acknowledge Signal
	Figure Title - Figure�5�14 OnCE Port Protocol

	Heading 1 - 5.9 Writing Your Own OnCE Command Sequence
	Table Title - Table�5�1 OnCE Sequence Control Codes

	Heading 1 - 5.10 Communicating with the Target JTAG Port
	Heading 1 - 5.11 Changes to the ONCE Port Pins
	Figure Title - Figure�5�15 JTAG/OnCE Interface
	Figure Title - Figure�5�16 TAP Controller State Diagram

	Heading 1 - 5.12 JTAG Instruction Register
	Table Title - Table�5�2 JTAG Instruction Register Encoding

	Heading 2 - 5.12.1 ENABLE_ONCE (0110)
	Heading 2 - 5.12.2 DEBUG_REQUEST (0111)
	Heading 2 - 5.12.3 Polling for Chip Status From the JTAG Port
	Table Title - Table�5�3 DSP Core Status Bit Description

	Section Number - Section

	Section Heading - Host Computer Card/Command Converter Support Infor...
	Heading 1 - 6.1 Introduction
	Heading 1 - 6.2 Host Interface Card Bus Signal Description
	Table Title - Table�6�1 PC Interface Card J2 (ISA16 Bus) Connect...
	Table Title - Table�6�2 Sun 4 SPARC (SBus) Connector

	Heading 1 - 6.3 Host Computer Interface Cable
	Table Title - Table�6�3 Host Computer Interface Cable

	Heading 1 - 6.4 JTAG/ONCE Interface Cable
	Table Title - Table�6�4 JTAG/OnCE Connector J3
	Figure Title - Figure�6�1 Command Converter Interface

	Heading 1 - 6.5 Host Computer Card Bills of Materials
	Table Title - Table�6�5 ADS PC-Compatible Interface Electrical P...
	Table Title - Table�6�6 ADS PC-compatible Interface Hardware Par...
	Table Title - Table�6�7 37-Conductor Cable Assembly List Rev 2.0...
	Table Title - Table�6�8 Sun-4 SBus Parts List Rev. 01 May 27,199...

	Heading 1 - 6.6 Command Converter Bill of Materials
	Table Title - Table�6�9 ADS Command Converter Electrical Parts L...
	Table Title - Table�6�10 ADS Command Converter Hardware Parts Li...
	Table Title - Table�6�11 JTAG/OnCE 14-Pin Cable Assembly

	Heading 1 - 6.7 Host Interface Card Schematics
	Figure Title - Figure�6�2 37-Pin Host Interface Cable
	Figure Title - Figure�6�3 PC-Compatible Interface Card Rev. 2.0 (...
	Figure Title - Figure�6�4 Sun Sparc SBus Interface Card (Page 4 o...

	Heading 1 - 6.8 Command Converter Cables and Schematics
	Figure Title - Figure�6�5 Command Converter Power Cable
	Figure Title - Figure�6�6 Command Converter OnCE Interface Cable
	Figure Title - Figure�6�7 JTAG/OnCE Command Converter Schematic R...

	AX Number - Appendix

	Section Heading - Motorola DSP Object Module Format (OMF)
	AX Heading 1 - A.1 Introduction
	AX Heading 1 - A.2 Record Definitions
	AX Heading 2 - A.2.1 Start Record
	AX Heading 2 - A.2.2 End Record
	AX Heading 2 - A.2.3 Data Record
	AX Heading 2 - A.2.4 Blockdata Record
	AX Heading 2 - A.2.5 Symbol Record
	AX Heading 2 - A.2.6 Comment Record
	AX Heading 1 - A.3 Object Module Format Example
	AX Example Title - Example�A�1 DSP56000 assembler code fragment
	AX Example Title - Example�A�2 Corresponding Assembler OMF Output Fil...

	AX Number - Appendix

	Section Heading - Motorola DSP Object File Format (COFF)
	AX Heading 1 - B.1 Introduction
	AX Heading 1 - B.2 Object File Structure
	AX Table Title - Table�B�1 Basic COFF File Structure

	AX Heading 1 - B.3 Object File Components
	AX Heading 2 - B.3.1 FILE HEADER
	AX Table Title - Table�B�2 File Header Format
	AX Table Title - Table�B�3 File Header Flags

	AX Heading 2 - B.3.2 Optional Header
	AX Table Title - Table�B�4 Motorola DSP Optional Link Header Format...
	AX Table Title - Table�B�5 Motorola DSP Optional Runtime Header For...

	AX Heading 2 - B.3.3 Sections
	AX Heading 3 - B.3.3.1 Section Headers
	AX Table Title - Table�B�6 Section Header Format
	AX Table Title - Table�B�7 Section Header Flags

	AX Heading 3 - B.3.3.2 Relocation Information
	AX Table Title - Table�B�8 Relocation Entry Format

	AX Heading 3 - B.3.3.3 Line Numbers
	AX Table Title - Table�B�9 Line Number Entry Format
	AX Table Title - Table�B�10 Line Number Grouping

	AX Heading 3 - B.3.3.4 Symbol Table
	AX Table Title - Table�B�11 COFF Symbol Table Ordering (Continued)
	AX Table Title - Table�B�12 Symbol Table Entry Format�

	AX Heading 3 - B.3.3.5 Symbol Name
	AX Heading 3 - B.3.3.6 Symbol Value
	AX Heading 3 - B.3.3.7 Section Number
	AX Table Title - Table�B�13 Fundamental Types (Continued)

	AX Heading 3 - B.3.3.8 Symbol Type
	AX Table Title - Table�B�14 Derived Types

	AX Heading 3 - B.3.3.9 Symbol Storage Class
	AX Table Title - Table�B�15 Storage Classes (Continued)
	AX Table Title - Table�B�16 Storage Class and Value (Continued)

	AX Heading 3 - B.3.3.10 Auxiliary Entries
	AX Heading 4 - B.3.3.10.1 Filenames
	AX Heading 4 - B.3.3.10.2 Sections
	AX Table Title - Table�B�17 Section Symbol Auxiliary Entry
	AX Table Title - Table�B�18 Section Symbol Auxiliary Entry
	AX Table Title - Table�B�19 Relocatable Buffer/Overlay Auxiliary En...
	AX Heading 4 - B.3.3.10.3 Tag Names
	AX Table Title - Table�B�20 Tag Name Symbol Auxiliary Entry
	AX Heading 4 - B.3.3.10.4 END OF STRUCTURES
	AX Table Title - Table�B�21 End of Structure Auxiliary Entry
	AX Heading 4 - B.3.3.10.5 FUNCTIONS
	AX Table Title - Table�B�22 Function Symbol Auxiliary Entry
	AX Heading 4 - B.3.3.10.6 Arrays
	AX Table Title - Table�B�23 Array Symbol Auxiliary Entry
	AX Heading 4 - B.3.3.10.7 End of Blocks and Functions
	AX Table Title - Table�B�24 End of Block or Function Auxiliary Entr...
	AX Heading 4 - B.3.3.10.8 Beginning of Blocks and Functions
	AX Table Title - Table�B�25 Beginning of Block or Function Auxiliar...
	AX Heading 4 - B.3.3.10.9 Structure, Union, and Enumeration Names...
	AX Table Title - Table�B�26 Structure, Union, or Enumeration Name A...
	AX Heading 4 - B.3.3.10.10 String Table

	AX Heading 1 - B.4 Differences Between DSP Object Format And B.4 ...
	AX Heading 2 - B.4.1 Multiple Memory Spaces
	AX Table Title - Table�B�27 CORE_ADDR Format
	AX Table Title - Table�B�28 Memory Mapping Enumerations�

	AX Heading 2 - B.4.2 OBJECT FILE TRANSPORTABILITY
	AX Table Title - Table�B�29 Motorola DSP COFF Byte Ordering

	AX Heading 2 - B.4.3 Structure Size Fields
	AX Heading 2 - B.4.4 Relocation Information
	AX Heading 2 - B.4.5 Block Data Sections
	AX Heading 2 - B.4.6 Other Extensions
	AX Heading 1 - B.5 Object File Data Expression Format
	AX Heading 2 - B.5.1 Data Expression Generation
	AX Heading 2 - B.5.2 Data Expression Interpretation
	AX Heading 3 - B.5.2.1 User Expression—{ ... }
	AX Heading 3 - B.5.2.2 Relocatable Expression—[...]
	AX Heading 3 - B.5.2.3 Memory Space Operator—@
	AX Heading 3 - B.5.2.4 Bit Size Operator—#
	AX Heading 3 - B.5.2.5 Memory Attribute Operator—:

	AX Number - Appendix

	Section Heading - Motorola S-record Information
	AX Heading 1 - C.1 Introduction
	AX Heading 1 - C.2 S-record Content
	AX Table Title - Table�C�1 S-Record Fields

	AX Heading 1 - C.3 S-Record Types
	AX Table Title - Table�C�2 S-record Types

	AX Heading 1 - C.4 S-Record Creation
	AX Example Title - Example�C�1 S-record File, 32-bit Data
	AX Example Title - Example�C�2 S-record File, Low-order Byte
	AX Example Title - Example�C�3 S-record File, Middle-order Byte
	AX Example Title - Example�C�4 S-record File, High-order Byte

	AX Number - Appendix

	Section Heading - C Library Functions
	AX Heading 1 - D.1 Introduction
	AX Heading 1 - D.2 ADS Object Library Files
	AX Heading 2 - D.2.1 ADS OBJECT LIBRARY ENTRYPOINTS
	AX Heading 2 - D.2.2 LIBRARY ENTRYPOINTS LISTED BY PREFIX
	AX Heading 3 - D.2.2.1 ads_—ADS-Specific Utility Routines
	AX Heading 3 - D.2.2.2 dspd_cc_—Command Converter Driver Level Ro...
	AX Heading 3 - D.2.2.3 dspd_—Driver Level Routines
	AX Heading 3 - D.2.2.4 dspt_—DSP DEVICE-SPECIFIC ROUTINES
	AX Heading 3 - D.2.2.5 dsp_cc_—Command Converter Interface Routin...
	AX Heading 3 - D.2.2.6 dsp_—ADS Interface Routines
	AX Heading 3 - D.2.2.7 sim_—User Interface Routines

	AX Heading 1 - D.3 Library Function Descriptions
	AX Heading 2 - D.3.1 ads_cache_registers—Cache OnCE and Core Regi...
	AX Example Title - Example�D�1 ads_cache_registers()

	AX Heading 2 - D.3.2 ads_startup—Initialize ADS Database and Driv...
	AX Example Title - Example�D�2 ads_startup()

	AX Heading 2 - D.3.3 dspd_break—Force Running DSP into Debug Mode...
	AX Example Title - Example�D�3 dspd_break()

	AX Heading 2 - D.3.4 dspd_cc_architecture—Initialize Command Conv...
	AX Example Title - Example�D�4 dspd_cc_architecture()

	AX Heading 2 - D.3.5 dspd_cc_read_flag—Read Command Converter Fla...
	AX Example Title - Example�D�5 dspd_cc_read_flag()�

	AX Heading 2 - D.3.6 dspd_cc_read_memory—Read from Command Conver...
	AX Example Title - Example�D�6 dspd_cc_read_memory()

	AX Heading 2 - D.3.7 dspd_cc_reset—Reset Command Converter
	AX Example Title - Example�D�7 dspd_cc_reset()

	AX Heading 2 - D.3.8 dspd_cc_revision—Read Command Convertor Revi...
	AX Example Title - Example�D�8 dspd_cc_revision()

	AX Heading 2 - D.3.9 dspd_cc_write_flag—Write Command Converter F...
	AX Example Title - Example�D�9 dspd_cc_write_flag()

	AX Heading 2 - D.3.10 dspd_cc_write_memory—Write to Command Conve...
	AX Example Title - Example�D�10 dspd_cc_write_memory()

	AX Heading 2 - D.3.11 dspd_check_service_request—Check for Servic...
	AX Example Title - Example�D�11 dspd_check_service_request()

	AX Heading 2 - D.3.12 dspd_fill_memory—Initialize DSP Memory Buff...
	AX Example Title - Example�D�12 dspd_fill_memory()

	AX Heading 2 - D.3.13 dspd_go—Begin Execution on Target DSP Devic...
	AX Example Title - Example�D�13 dspd_go()

	AX Heading 2 - D.3.14 dspd_jtag_reset—Reset JTAG Communications
	AX Example Title - Example�D�14 dspd_jtag_reset()

	AX Heading 2 - D.3.15 dspd_read_core_registers—Read Core Register...
	AX Example Title - Example�D�15 dspd_read_core_registers()

	AX Heading 2 - D.3.16 dspd_read_memory—Read Memory Block from DSP...
	AX Example Title - Example�D�16 dspd_read_memory()

	AX Heading 2 - D.3.17 dspd_read_once_registers—Read OnCE Register...
	AX Example Title - Example�D�17 dspd_read_once_registers()

	AX Heading 2 - D.3.18 dspd_reset—Reset DSP Device to Debug or Use...
	AX Example Title - Example�D�18 dspd_reset()

	AX Heading 2 - D.3.19 dspd_status—Determine DSP Status
	AX Example Title - Example�D�19 dspd_status()

	AX Heading 2 - D.3.20 dspd_write_core_registers—Write Core Regist...
	AX Example Title - Example�D�20 dspd_write_core_registers()

	AX Heading 2 - D.3.21 dspd_write_memory—Write to Memory in DSP De...
	AX Example Title - Example�D�21 dspd_write_memory()

	AX Heading 2 - D.3.22 dspd_write_once_registers—Write OnCE Regist...
	AX Example Title - Example�D�22 dspd_write_once_registers()

	AX Heading 2 - D.3.23 dspt_masm_xxxxx—Assemble DSP Mnemonic
	AX Example Title - Example�D�23 dspt_masm_xxxxx()

	AX Heading 2 - D.3.24 dspt_unasm_xxxxx—Disassemble DSP Mnemonics
	AX Example Title - Example�D�24 dspt_unasm_xxxxx()

	AX Heading 2 - D.3.25 dsp_alloc—Allocate Memory
	AX Example Title - Example�D�25 dsp_alloc()

	AX Heading 2 - D.3.26 dsp_cc_fmem—Fill Command Converter Memory w...
	AX Example Title - Example�D�26 dsp_cc_fmem()

	AX Heading 2 - D.3.27 dsp_cc_go—Start Command Converter Program E...
	AX Example Title - Example�D�27 dsp_cc_go()

	AX Heading 2 - D.3.28 dsp_cc_ldmem—Load Command Converter Memory ...
	AX Example Title - Example�D�28 dsp_cc_ldmem()

	AX Heading 2 - D.3.29 dsp_cc_reset—Reset Command Converter
	AX Example Title - Example�D�29 dsp_cc_reset()

	AX Heading 2 - D.3.30 dsp_cc_revision—Read Command Converter Moni...
	AX Example Title - Example�D�30 dsp_cc_revision()

	AX Heading 2 - D.3.31 dsp_cc_rmem—Read Command Converter Memory
	AX Example Title - Example�D�31 dsp_cc_rmem()

	AX Heading 2 - D.3.32 dsp_cc_rmem_blk—Read Command Converter Memo...
	AX Example Title - Example�D�32 dsp_cc_rmem_blk()

	AX Heading 2 - D.3.33 dsp_cc_wmem—Write Command Converter Memory
	AX Example Title - Example�D�33 dsp_cc_wmem()

	AX Heading 2 - D.3.34 dsp_cc_wmem_blk—Write Command Converter Mem...
	AX Example Title - Example�D�34 dsp_cc_wmem_blk()

	AX Heading 2 - D.3.35 dsp_check_service_request—Check for Service...
	AX Example Title - Example�D�35 dsp_check_service_request()

	AX Heading 2 - D.3.36 dsp_findmem—Get Map Index for Memory Prefix...
	AX Example Title - Example�D�36 dsp_findmem()

	AX Heading 2 - D.3.37 dsp_findreg—Get Peripheral and Register Ind...
	AX Example Title - Example�D�37 dsp_findreg()

	AX Heading 2 - D.3.38 dsp_fmem—Fill Memory Block with a Value
	AX Example Title - Example�D�38 dsp_fmem()

	AX Heading 2 - D.3.39 dsp_free—Free a Device Structure
	AX Example Title - Example�D�39 dsp_free()

	AX Heading 2 - D.3.40 dsp_free_mem—Free Memory Block
	AX Example Title - Example�D�40 dsp_free_mem()

	AX Heading 2 - D.3.41 dsp_go—Initiate DSP Program Execution
	AX Example Title - Example�D�41 dsp_go()

	AX Heading 2 - D.3.42 dsp_go_address—Initiate Program Execution f...
	AX Example Title - Example�D�42 dsp_go_address()

	AX Heading 2 - D.3.43 dsp_go_reset—Initiate Program Execution aft...
	AX Example Title - Example�D�43 dsp_go_reset()

	AX Heading 2 - D.3.44 dsp_init—Initialize a Single DSP Device Str...
	AX Example Title - Example�D�44 dsp_init()

	AX Heading 2 - D.3.45 dsp_ldmem—Load DSP Memory from OMF or COFF ...
	AX Example Title - Example�D�45 dsp_ldmem()

	AX Heading 2 - D.3.46 dsp_load—Load All DSP Structures from State...
	AX Example Title - Example�D�46 dsp_load()

	AX Heading 2 - D.3.47 dsp_new—Create New DSP Device Structure
	AX Example Title - Example�D�47 dsp_new()

	AX Heading 2 - D.3.48 dsp_path—Construct Filename
	AX Example Title - Example�D�48 dsp_load()

	AX Heading 2 - D.3.49 dsp_realloc—Reallocate Memory Block
	AX Example Title - Example�D�49 dsp_realloc()

	AX Heading 2 - D.3.50 dsp_reset—Reset Specified DSP Device
	AX Example Title - Example�D�50 dsp_reset()

	AX Heading 2 - D.3.51 dsp_rmem—Read DSP Memory Location
	AX Example Title - Example�D�51 dsp_rmem()

	AX Heading 2 - D.3.52 dsp_rmem_blk—Read Block of DSP Memory Locat...
	AX Example Title - Example�D�52 dsp_rmem_blk()

	AX Heading 2 - D.3.53 dsp_rreg—Read a DSP Device Register
	AX Example Title - Example�D�53 dsp_rreg()

	AX Heading 2 - D.3.54 dsp_save—Save All DSP Structures to State F...
	AX Example Title - Example�D�54 dsp_save

	AX Heading 2 - D.3.55 dsp_spath—Search Path for Specified File
	AX Example Title - Example�D�55 dsp_spath()

	AX Heading 2 - D.3.56 dsp_startup—Initialize DSP Structures
	AX Example Title - Example�D�56 dsp_startup()

	AX Heading 2 - D.3.57 dsp_status—Determine DSP Device Status
	AX Example Title - Example�D�57 dsp_status()

	AX Heading 2 - D.3.58 dsp_step—Execute Counted Instructions
	AX Example Title - Example�D�58 dsp_step()

	AX Heading 2 - D.3.59 dsp_stop—Force DSP Device into Debug Mode
	AX Example Title - Example�D�59 dsp_stop()

	AX Heading 2 - D.3.60 dsp_unlock—Unlock Password Protected Device...
	AX Example Title - Example�D�60 dsp_unlock()

	AX Heading 2 - D.3.61 dsp_wmem—Write DSP Memory Location
	AX Example Title - Example�D�61 dsp_wmem()

	AX Heading 2 - D.3.62 dsp_wmem_blk—Write DSP Memory Block
	AX Example Title - Example�D�62 dsp_wmem_blk()

	AX Heading 2 - D.3.63 dsp_wreg—Write a DSP Device Register
	AX Example Title - Example�D�63 dsp_wreg()

	AX Heading 2 - D.3.64 sim_docmd—Execute Emulator User Interface C...
	AX Example Title - Example�D�64 sim_docmd()

	AX Heading 2 - D.3.65 sim_gmcmd—Get Command String from Macro Fil...
	AX Example Title - Example�D�65 sim_gmcmd()

	AX Heading 2 - D.3.66 sim_gtcmd—Get Command String from Terminal
	AX Example Title - Example�D�66 sim_gtcmd()

	AX Heading 1 - D.4 Emulator Screen Management Functions
	AX Heading 2 - D.4.1 simw_ceol—Clear to End of Line
	AX Heading 2 - D.4.2 simw_ctrlbr—Check for CtrL-C Signal
	AX Heading 2 - D.4.3 simw_cursor—Move Cursor to Specified Line an...
	AX Heading 2 - D.4.4 simw_endwin—End Emulator Window
	AX Heading 2 - D.4.5 simw_getch—Non-Translated Keyboard Input
	AX Heading 2 - D.4.6 simw_gkey—Translated Keyboard Input
	AX Heading 2 - D.4.7 simw_putc—Output Character to Terminal
	AX Heading 2 - D.4.8 simw_puts—Output String to Terminal
	AX Heading 2 - D.4.9 simw_redo—Repaint Screen with Output from De...
	AX Heading 2 - D.4.10 simw_redraw—Redraw Screen after Scroll Coun...
	AX Heading 2 - D.4.11 simw_refresh—Screen Update after Buffering ...
	AX Heading 2 - D.4.12 simw_scrnest—Increase Screen Buffering One ...
	AX Heading 2 - D.4.13 simw_unnest—Decrease Screen Buffering One L...
	AX Heading 2 - D.4.14 simw_winit—Initialize Window Parameters
	AX Heading 2 - D.4.15 simw_wscr—Write String and Perform Logging
	AX Heading 1 - D.5 Non-Display Emulator
	AX Heading 2 - D.5.1 Creating a New Device
	AX Example Title - Example�D�67 Device Structures Creation

	AX Heading 2 - D.5.2 Loading Program Code or Device State
	AX Heading 2 - D.5.3 Executing Device Instructions
	AX Heading 2 - D.5.4 Testing Breakpoint Conditions
	AX Heading 1 - D.6 Multiple Device Emulation
	AX Heading 2 - D.6.1 Allocation and Initialization of Multiple De...
	AX Heading 2 - D.6.2 Controlling Multiple DSP Devices
	AX Heading 2 - D.6.3 Multiple DSP Emulator Display
	AX Heading 1 - D.7 Reserved Function Names
	AX Heading 1 - D.8 Emulator Global Variables
	AX Heading 1 - D.9 Modification of Emulator Global Structures

	TOC Heading - INDEX
	GroupTitlesIX - A
	GroupTitlesIX - B
	GroupTitlesIX - C
	GroupTitlesIX - D
	GroupTitlesIX - E
	GroupTitlesIX - F
	GroupTitlesIX - G
	GroupTitlesIX - H
	GroupTitlesIX - I
	GroupTitlesIX - J
	GroupTitlesIX - L
	GroupTitlesIX - M
	GroupTitlesIX - N
	GroupTitlesIX - O
	GroupTitlesIX - P
	GroupTitlesIX - R
	GroupTitlesIX - S
	GroupTitlesIX - T
	GroupTitlesIX - U
	GroupTitlesIX - W

