MOTOROLA

Semiconductor Products Inc.

MEK6800D2
MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, JBUG and MINIbug are trademarks of Motorola Inc.

Second Edition
© MOTOROLA INC., 1977
First Edition © 1976
“‘All Rights Reserved”’

Printed in U.S.A.

TABLE OF CONTENTS

CHAPTER 1: Introduction

1-1
1-2
1-2.1
1-3
1-4
1-4.1
1-4.2
1-4.3
1-4.4
1-4.5
1-4.6
1-4.7
1-4.8
1-4.9
1-5

General Description and Capability,
Preparation for Use i i i e i
Construction HInts it it
Start-up Procedure e
Operating Procedurescoiiuiiiiiiiii ittt
Memory Examine and Changeitiiiiiinirinnnnennnnn...
Escape (ADOIt) ittt i i
Register Displayo
Goto User Program i i
Punch from Memory to Tapet
Load from Tape to Memoryttt i
Breakpoint Insertion and Removal e e e
Trace One Instruction ittt

CHAPTER 2: Hardware Description

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

General DesCriptionttt i
Memory Organizationttt
Input/Output DEVICESottt ettt
System CloCKttt
Keyboard/Displayoiiii
Trace (Execute Single Instruction) it
Audio Cassette Interfaceottt .
Kit EXpansionuuuit ittt ittt

CHAPTER 3: Software Description (JBUG Monitor)

3-1
3-2
33
3-4
3-5
3-6
3-7
3-8

Appendix 1: Assembly Listing of JBUG Monitor
Appendix 2: Assembly Drawings and Parts Lists

General Description it e
Restart/Initialization Routinec.oiiiiiiiirneiiinneannnnenns.
Display Routine ittt
Keyboard Scan and Decode Routingc.oouniiuneininnnnnennennn.
Memory Examine/Change Routineccviiiiiiiinnnennnnnn..
Register Display Routine i,
Punch and Load Routinesottt

.....................................

Appendix 3: Schematic Diagrams..........

Appendix 4: Power Supply Information

CHAPTER 1
INTRODUCTION

1-1 GENERAL DESCRIPTION AND CAPABILITY

This manual provides a general description and operating instructions for the Motorola
MEK®6800D2 Evaluation Kit II. The Kit, when assembled, is a fully functional microcomputer system based on
the MC6800 Microprocessing Unit (MPU) and its family of associated memory and I/O devices. The family is
described in the M6800 Microcomputer System Design Data book (included with the Kit) and in the M6800
Microprocessor Applications Manual. Detailed programming information is included in the M6800 Program-
ming Reference Manual.

The MEK6800D2 is designed to provide a completely self-contained method for evaluating the
characteristics of the M6800 family. The standard Kit includes the following devices:

Qty. Device

MC6800 MPU

MCM6830 ROM with JBUG Monitor (SCM44520P)

MCM6810 RAM (128 x 8)

MC6820 Peripheral Interface Adapter (PIA)

MC6850 Asynchronous Communications Interface Adapter (ACIA)
MC6871B Clock Generator

e O TS Ty

As assembled Kit is shown in Figure 1-1-1 (all components shown are included with the standard
Kit.)
The Microcomputer Module printed circuit board is preengineered to accept the following addi-

tional components for expanding its capability:

Qty. Device
2 MCM6810 RAM (128 x 8)
2 MCM68708 EPROM (Equivalent to 2708)
3 MC8T97 Buffer
2 MC8T26 Bidirectional Buffer

The expansion capability provides for a variety of user operating modes.

The integral Keyboard/Display Module can be used in conjunction with the JBUG monitor program
for entering and debugging user programs. Programs can also be loaded and dumped via the Audio Cassette
Interface. The Keyboard, Display and Audio Cassette circuitry are on a separate printed circuit board so that the
ACIA and a second PIA are available if the user has access to an RS-232 or TTY terminal. Wire-wrap space for
up to twenty 16-pin DIP packages is available for user designed circuitry on the Microcomputer Module. A user
generated terminal control program designed to interface with either the PIA or the ACIA can be entered via the
integral keyboard. Alternatively, the Kit will accept (in place of JBUG) the Motorola MINIbug Il monitor
program. MINIbug II has monitor and diagnostic capabilities similar to JBUG but is intended for use with
RS-232and TTY type terminals. (See Appendix E of the Programming Reference Manual included in the Kit.)

1-1

‘t-1-1 3N

1-2

The Kit also permits several different memory configurations. The two MCM6810 128 x 8 RAMs
provided with the standard Kit will accommodate programs of up to 256 bytes in length (the third MCM6810 is
reserved for use by the monitor program). Addition of the two additional optional RAMs expands the capability
to 512 bytes. Strapping options for the additional ROM sockets permits any of the following combinations:

1024 bytes in 512 x 8 bit PROMs (MCM7641)

2048 bytes in 1024 x 8 bit EPROMs (MCM68708)

2048 bytes in 1024 x 8 bit Mask-Programmed ROMs (MCM68308 — same pin-out as

MCM68708)

4096 bytes in 2048 x 8 bit Mask-Programmed ROMs (MCM68316 — same pin-out as
MCM68708 except EPROM programming pin is used as additional addressing
pin.)

The general memory organization of the Kit is shown in Figure 1-1-2.

Adding the optional buffers in the spaces provided upgrades the Kit to EXORciser-compatible
status; hence, all the EXORCciser I/O and Memory modules (see included data sheets) can also be used with the
Kit. For example, addition of MINIbug II, an 8K Memory board, and the EXORciser’s Resident Editor/
Assembler to the Microcomputer Module creates a complete development/prototyping tool.

FFFF
Not Used
EA00
JBUG Moni
UG Monitor Prog E000
€800
Optional ROM
_______ orPROM | cooo
A080
128 Bytes RAM (JBUG Scratch) A000
8024
board Interf
PIA (Keyboard Interface) 8020
8009
ACIA (Cassette Interface)
8008
P
1A 8004
6800
Optional ROM
_______________ _1 6400
or PROM 6000
Optional 256 Bytes RAM
0100
256 Bytes RAM
0000

FIGURE 1-1-2. Memory Map for MEK6800D2

1-3

1-2 PREPARATION FOR USE AND OPERATION PROCEDURES

The Kit can be assembled by referring to the assembly diagrams of Figures A2-a and A2-b
(Appendix 2) for component placement. Recommended procedures for the handling of MOS and CMOS
integrated circuits are reviewed in Table 1-2-1 and should be followed during assembly. The Kit is completely
self-contained and required only the addition of a 5-volt dc power supply. Additional + 12-volt dc supplies are
required only if electrically programmable read only memories (EPROME) are used or if RS-232 capability is to
be added to the Kit. The switches, connectors and display indicators are identified in Figure 1-1-3.

Caution must be exercised to avoid any electrostatic or high-voltage charge from coming in contact
with the MOS gate elements. The gate oxide is approximately 1000 to 1200 A thick and can be ruptured by
static potentials as small as 80 volts. Most MOS circuits employ various input protective schemes. However, an
electrostatic charge may still cause damage to the gate oxide during the finite time required for the protective
device to turn on.

The following handling precautions are recommended for MOS circuits:

1. All MOS devices should be stored or transported in conductive material so that all exposed
leads are shorted together. MOS devices must not be inserted into conventional plastic foam or
plastic trays of the type used for the storage and transportation of other semiconductor devices.

2. All MOS devices should be placed on a grounded bench surface and the operators should
ground themselves prior to handling devices. This is done most effectively by having the
operator wear a grounded conductive wrist strap.

3. Silk or Nylon clothing should not be worn while handling MOS circuits.
4. Do not insert or remove MOS devices from test sockets with power applied.

5. Check all power supplies to be used for testing MOS devices to be certain no voltage transients
are present.

6. When lead straightening or hand soldering is necessary, provide ground straps for the apparatus
used.

7. Do not exceed the maximum electrical voltage ratings specified by the manufacturer.

8. Double check test equipment setup for proper polarity of voltage before conducting parametric
or functional testing.

9. Cold chambers using CO2 for cooling should be equipped with baffles, and devices must be
contained on or in conductive material.

10. All unused device inputs should be connected to VDD or Vss.

11. All power should be turned off in a system before printed circuit boards containing MOS
devices are inserted or removed.

12. All printed circuit boards containing MOS devices should be provided with shorting straps
across the edge connector when being carried or transported.

TABLE 1-2-1: MOS Handling Recommendations

1-4

EXORciser
Compatible
Bus Connector

| From
Keyboard/Display
Module

User

170
Connector
J1

Reset
Switch

FIGURE 1-1-3a. Microcomputer Module

1-2.1 CONSTRUCTION HINTS

Earphone

Address Data
Displays Displays Microphone

To Microcomputer |
Module i

Hexadecimal Command
Data Keys
Entry

Keys

FIGURE 1-1-3b. Keyboard/Display Module

The 24-pin socket supplied for the clock must be modified to fit the PC Board. This can be done by
removing the protective strips on the bottom of the socket and pulling out unwanted pins from the bottom. The
pins that must be removed are 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 21, and 23.

The Keyboard has 6 pre-drilled holes for use with standoffs or machine screws to support the board
while in use. It is recommended that the board be supported above the bench a minimum of 1/4 inch to prevent

accidentally shorting conductors on the bottom of the board.
When inserting CMOS devices, it is recommended that a low wattage soldering iron with a
grounded tip be used. This will prevent damaging the part. Another alternative would be using sockets for the

parts.
The cable assembly consists of five items.

Edge connector

Edge connector cover

50 pin PC Board connector
PC Board connector cover

The cable may be assembled as follows:

(part no. 3415-0001)
(part no. 3415)

(part no. 3426-0000T)
(part no. 3426)

Approximately 3 feet of 50 conductor flat cable (part no. 3365)

Step 1: Solder the 50-pin PC board connector (3426-0000T) in place on the Keyboard/Display Module.

1-5

Step 2: Remove protective liner from the PC Board Connector Cover (3426) by first pressing along length of
liner (this will insure good adhesive coverage) and then applying lateral thumb pressure on liner to
displace it enough to be peeled off.

Step 3: Press deeply ribbed side of cable (3365) into alignment grooves of cover, positioning it as required in
step 4. Check visually to insure that the cable is aligned in cover grooves and is even with the edge of
the connector.

Step 4: Place cap and cable over PC Board connector with the cable running away from the Keyboard/Display
Module with the red stripe corresponding to pin 1 of the connector. Then press the assembly together
using a bench vise.

Step 5: Repeat steps 2 and 3 with edge connector and cap on the other end of the cable, keeping the red
conductor aligned with pin 1 of the edge connector. Press this assembly together using the vise.

Step 6: The female edge connector will now mate with the male edge connector (J2) on the Microcomputer
Module. The female conductor labled ‘1’ should align with the male conductor labled “A’’. (The
cable ‘‘approaches’’ the back of the Microcomputer Module.)

1-3 START-UP PROCEDURE

Connect the cable attached to the Keyboard/Display Module to connector J2 on the Microcomputer
Module. Apply 5-volt dc power. Pushing the reset switch on the Microcomputer Module should now cause the
JBUG prompt symbol, ‘‘dash’’, to be displayed in the left-most display indicator on the Keyboard/Display
Module. The remaining five displays will be blanked. The JBUG control and monitor program is now in
operation and any of the functions described in the next section may be invoked by means of the data and
command keys on the Keyboard/Display Module.

1-4 OPERATING PROCEDURES

The Keyboard/Display Module, in conjunction with JBUG, provides a means of examining
operation of the Microcomputer Module and entering and trouble-shooting programs. The Keypad has sixteen
keys labeled O-F for entry of hexadecimal data and eight keys for commanding the following functions:

M — Examine and Change Memory

E — Escape (Abort) from Operation in Progress

R — Examine Contents of MPU Registers P, X, A, B, CC, S

G — Go to Specified Program and Begin Execution of Designated Program
P — Punch Data from Memory to Magnetic Tape

L — Load Memory from Magnetic Tape

N — Trace One Instruction

V — Set (and Remove) Breakpoints

Operating procedures for each of these functions are described in the following paragraphs. The
display should be showing the prompt ‘‘dash’’ before any command is invoked.

1-6

1-4.1 MEMORY EXAMINE AND CHANGE (M)

This function permits examination and, if necessary, change of memory locations. A map of the
MC6800 instructions is included as Table 1-4.1-1 and is useful in translating memory data to instruction
mnemonics.

Open the memory location to be examined by entering the address (as 4-digits of hex via the hex
keypad) followed by closure of the M key (hhhhM). The display will now show the address that was entered in
its group of four displays on the left and the contents in the two on the right. The user at this point has three
options: (1) Leave this location unchanged and move to the next location by closing the G key. The new address
and its data would then be displayed. (2) Change the data by simply entering the new data via the hex keypad
(hh). In this case the display would then be showing the new data that was entered. In the event that an attempt is
made to change Read Only Memory (ROM), the display will continue to show the original data. (3) Close the
Memory Examine function by means of the E key. Closure of the E key will return operation to the monitor and

the prompt will again be displayed.

1-4.2 ESCAPE (ABORT)

This function provides an orderly exit from the other functions and/or user programs. Examples of
its use are included in the accompanying descriptions of the other functions.

1-4.3 REGISTER DISPLAY (R)

This function permits examination of the MPU’s registers and may be invoked at any time the JBUG
prompt is being displayed by closing the R key. Following closure of R, the display will show a 4-digit hex
value, the present contents of the Program Counter. The remaining registers may now be examined by
sequencing with the G key and will appear in the following order: Index Register, Accumulator A, Accumulator
B, Condition Code Register, Stack Pointer.! o B

This display is circular, i.e., a G key closure following display of the Stack Pointer will cause the
Program Counter to be displayed again. The E key may be used to escape back to the monitor at any point in the
display sequence. If required the contents of any register can be changed by using the Memory Change
function. The monitor executed an interrupt sequence when R was invoked. In servicing an interrupt, the
MC6800 saves its registers on a stack in memory (it is these memory locations that the R function ‘‘examine-
s’”). On exit from the R interrupt service routine, the MPU retrieves these values and reloads its registers; hence
if the data on the stack is changed with the M function, the new data will go into the MPU. The following
locations are used to stack the registers:

$A0082 — High order byte of Stack Pointer
$A009 — Low order byte of Stack Pointer
S + 1 — Condition Code Register

S + 2 — Accumulator B

S + 3 — Accumulator A

S + 4 — High order byte of Index Register

Tt is a characteristic of the display routine that the value displayed for the Stack Pointer is seven less than the actual value.
%In this manual, hexadecimal data is identified by preceeding it with a dollar sign symbol, $.

1-7

dey uononnsuj 0089 “L-1'v-1 1EVL

. %%s_ %,_WMEE o>_h§£ = 134 3po 9__,_333 aelpaww) = WW!
JOIRINWINJYY =] UISSal uaigyu| =
8po) dQ pajuawa|duwiuf, m._owa“._s__oo« = m uo_uo_z .oc_mw%wm< xoucn = Mn“ auo&o&_wwﬂww“.%“umﬁm m_m_
) (1x3) (1x3) (1x3) (1X3) (1x3) (1x3)
{1x3) (1x3) éE@ @Em @ @ @ @ @ @ 1X3 a.E@ @E@ @E@
X1S Xai | - . aav V4O aav 403 VIS val 1 anv | . 08s dNg ans | 4
(an (aNn) (aND) {ann) (ann) (oND) (ann) (ann (an1) {ann)
(on @ e e e e e ™ @™ @ @™ || g
X1S Xai | . . oav YHO aav Ho3 vis val 18 anv | . 08s dwo ans | 3
(W@ (4i0) (Wa) (H10) (W10} (410) (H1a) (41a) (
@ | @@ @ @Y @™ @ @Y |q @ @MY | g0
X1$ Xa1| . aav V40 aavy 03 VIS val Lg anv | . 28s dwo ans | a
(WAD | WD | (WD | (W) WAD | WD | (i) (Wi
(WD @ e e | @ @ e | @ @™ | "W | g
. a1 | - . oav VHO aqy yoa| . val g anv | . 24s dwd ans | 9
3) (X3 La) (1x3) (x3) (1x3) (1x3) (Lx3) (x3 (1a
wa) - war | wal we)) el Wa wal o ba) W) wa) o wa 0P [0 | e
SIS S ysr Xdd aav YH0 aav H03 VLS val Jik: aNvy | . 28s do ans | g
(ann) (ant) (aND) {(ann {ann) (aNw {ann (ann) (GETY (aNI
(OND 1 (N] (O (oD (O N COND oy (NDT oy N @O O w0 ™ L) O [O
S18 Sa1 ysr Xd2 aav VHO aav 403 VIS val lg anv | . 28S dwo ans | v
(W0) (wa) (wa (H10) wa) |- wWa (Wa) (H1a) (W1a) (W))

o) |- o W T w w L w f | w2 |)) 2 |) MO | @0
SIS sa1 | - Xd9 aav V40 aqv H03 V1S val JIL: anvy | . 04s dwo ans | 6
W) WD N | awD | (WD | (Wi (WAD | (WD | (AW (WWD |

(W (3] D | D | DD WL) P Y L P
. sal Hsd Xdd aav V40 aav H03| . val e anv | . 28S do ans | 8
(1x3) La) (1X3) L) (Aa) 1x3) (1x3) (1x3) (1x3) (13 (3 (xa)
419 dwr 1S1 N L . 230 704 1SvY HSY Hou | . 4s1 WOD | - . 03N | ¢
(an) (an1) (ann) (aN1) (oND) (ann) (aND (ann) (ann) (anNn) (aNn) (ann
419 dr 181 N[REL] 704 Isv HSY Hod | . Hs1 Woo| . . DIN | 9
{a) (a) () C)] (@ (a) (8) (@ (8) (8) @
¥ - 181 ONIL| - 93a 704 SV Hsy oy . 431 Woo| . . 9IN | ¢
(v) (v) (v) (v) (v v) {v) (v) (v) (v) ()
v | . 181 N 230 10H sv ysy Hod| . Hs1 Woo| . . 9N | ¢
(HND) (HND) (HND) (HND) (8) (v) (HND (HND () (v) (HN1) (HND
IMS vm | . . | - SiH | . HSd HSd SXL $3a nd nd SN XSl | ¢
(13Y) (13w (3w (3y) (13w) (13y) (13y) (134) (134) (13y) (13y) (13w) (13y) (134) §EE)]
EQL:] 109 114 399 INg 148 SAd Y| 034 INg $08 994 S8 HE | . vig | 2
(HND) (HNI) (HND) (HND)

. . . . vav | . wa| - val avi| Va9 vas | |
(HND (HND) (HNI) (HND) (HNI) {HNY) {HNI) (HNI) (HNY) (HND) (HND)

138 119 938 9719 A3S A1 xaa XNI vdl dvi| doN| . 0

ash
4 | a] g v 6 8 L 9 g 12 € 4 1 0
87

1-R

S + 5 — Low order byte of Index Register

S + 6 — High order byte of Program Counter

S + 7 — Low order byte of Program Counter
where ‘‘S’’ is the current Stack Pointer as saved in $A008 and $A009. Note that it is necessary to exit the R
display function and enter the M in order to change register values.

1-4.4 GO TO USER PROGRAM (G)

If the Prompt is being displayed, and assuming that a meaningful program has been previously
entered, the MPU can be directed to go execute the program simply by entering the starting address of the
program (via the hex keypad) followed by closure of the G key (hhhhG). The resulting blanking of the displays
is an indication that the MPU has left the monitor program and is executing the user’s program. The MPU will
continue executing the user program until either an Escape (E key) is invoked or the program ‘‘blows’’.
Control, indicated by the prompt ‘‘dash’’, can normally be obtained with the E key. It is possible that an
incorrect program could have caused the monitor’s variable data to be modified. In this case, it is necessary to
regain control using the reset switch on the Microcomputer Module.

1-4.5 PUNCH FROM MEMORY TO TAPE

The Punch function allows the user to save selected blocks of memory on ordinary audio tape
cassettes. Before invoking Punch, the Memory Change function should be used to establish which portion of
memory is to be recorded. Using Memory Change, enter the desired starting address into locations $A002 and
$A003 (high order byte into $A002, low order byte into $A003). Similarly, enter the high and low order bytes
of the desired ending address into $A004 and $A005, respectively. Escape from Memory Change via the E key,
thus obtaining the monitor prompt dash. With the audio recorder’s microphone input connected to the
corresponding point on the Keyboard/Display Module and the prompt present, the Punch function is performed
as follows. Position the tape as desired (fully rewound is recommended) and put the recorder in its record mode.
Close the P key. The prompt will disappear during the Punch process and then re-appear to indicate that the
Punch operation is completed. Typically, the prompt is ‘‘off’’ for over 30 seconds since the recording format
specifies that a thirty second header of all ones be recorded ahead of the data. See sections 2-7 and 3-7 for
additional details on the recording format.

1-4.6 LOAD FROM TAPE TO MEMORY

The Load function can be used to retrieve from audio magnetic tape data that was recorded using the
Punch function described in the preceding section. With the audio recorder’s earphone output connected to the
corresponding input on the Keyboard/Display Module (and with the monitor prompt present on the display), the
Load function is performed as follows. To load the desired record, position the tape at the approximate point
from which the Punch was started and then put the recorder into its playback mode. Close the L key. The prompt
will disappear, then re-appear when the Load function is completed. After the prompt re-appears, the Memory
Examine function can be used to examine locations $A002 and $A003. They will contain the beginning address
of the block of data that was just moved into memory. The end address is not recovered by the function, hence
the data in locations $A004 and $A005 is not significant during the Load function.

1-9

1-4.7 BREAKPOINT INSERTION AND REMOVAL (V)

Because of the difficulty in analyzing operation while a program is executing, it is useful during
debug to be able to set breakpoints at selected places in the program. This enables the user to run part of the
program, then examine the results before proceeding. The breakpoints are set by entering the hex address of the
desired breakpoint followed by a V key closure (hhhh V). This may be repeated up to five times. The breakpoint
entry function can be exited after any entry by using the E key. The monitor program will retain all the
breakpoints until they are cleared.

If at any time an hhhhV entry is made and the hhhh (hex data) does not appear on the display, there
were already five breakpoints stored and the last one was ignored. At any time the prompt is displayed, entry of
a V command not preceeded by hex data will cause the current breakpoints to be removed. If a breakpoint is
entered and the program is subsequently executed to that point, the display will show the current value of the
Program Counter in the four indicators on the left. (This will be the same as the breakpoint address that was
inserted.) The right hand two displays will contain the data stored at that location — that is, the operating code.
At this point the G key can be used to sequence through the other MPU registers exactly as in the register display
function. If it is desirable to proceed on from the breakpoint simply use E (to get the prompt) and then the G key.
At this point, the MPU will reload its registers from the stack and continue with the user’s program until another
breakpoint is encountered or the E key is used again.

1-4.8 TRACE ONE INSTRUCTION (N)

The Trace function permits stepping through a program one instruction at a time. The Trace function
can be invoked any time the user program is at a breakpoint or has been aborted with the E key. However,
tracing cannot begin from start-up because the trace routine does not know where the starting address is.
Therefore, an hhhhV command must be given at least once before Trace can be used.

Enter the Trace function by first setting a breakpoint at the location from which it is desired to trace
and then invoking hhhhG to begin program execution. The breakpoint can be set at the very beginning of the
program if desired.® Following the hhhhG command, the program will run to the breakpoint and stop,
displaying the Program Counter as before. If the N key is now closed, the MPU executes the next program
instruction and again halts. The display will then show the address of the next instruction (Program Counter)
and the operating code located there. The G key can be used to sequence the other registers on to the display as
for a breakpoint if desired. The N key can now be used to trace as many instructions as desired.*

The Trace function cannot be used directly to trace through user IRQ interrupts. The NMI is higher
priority and will cause the IRQ to be ignored. Repeated attempts to execute the Trace command when user IRQ
interrupts are active will result in JBUG continuously returning with the same address. See sections 2-6 and 3-8
of this manual and the M6800 Microprocessor Applications Manual for additional information.

3This procedure assumes the program is in RAM since breakpoints are handled by substituting an SWI for the op-code. If the program to
be traced is entirely in ROM, use a convenient RAM location to insert a Jjump to the desired ROM address. Then set a breakpoint at the
address of the jump instruction and proceed as above.

It is a characteristic of the Trace function that all breakpoints in effect at the time Trace is invoked will be removed and must be
re-installed following exit from Trace.

Interrupt service routines may be traced by setting a breakpoint at the beginning of the service
routine. The Go function may then be used to start program execution, allowing a normal entry into the IRQ
service routine. Once in the service routine, Trace can be used as usual. The E key may be used to exit from
Trace at any time.

1-4.9 CALCULATION OF THE OFFSET TO A BRANCH DESTINATION

The instruction format for conditional branch instructions calls for the offset to the destination to be
entered immediately following the branch instruction op-code as a signed two’s complement number. Mental
calculation of the offset is awkward due to the required two’s complement format. A short program for making
this calculation is included in JBUG (lines 62-70 of the assembly listing included as Appendix 1 of this
manual). Use the following procedure with this program:

1. Obtain the prompt ‘‘dash’’ by escaping from the current operation.
2. Find the current value of the stack pointer by entering the Register Display.

3. Exit from Register Display and open memory location S+2, where S is the current value of the
stack pointer as obtained in Step 2. S+2 is the location of the current stacked value of
Accumulator B. Enter the high order byte of the destination address in this location. Next, enter
the low order byte of the destination into Accumulator A in location S+3.

4. Put the high and low order bytes of the branch instruction’s op-code address into S+4 and S+5,
respectively. This loads the stacked Index Register with the op-code address.

5. Use the “‘E’’ key to exit from the Memory Examine/Change function and then enter $E000G to
begin executing the program starting at location $E000 in JBUG.

6. The program runs to location $E013 and hits the SWI breakpoint located there. Examine the
contents of Accumulators A and B by invoking Register Display and sequencing through the
Registers with the G key. The offset, in the correct form for entry in the program, is now in
Acc.A. If Acc.B contains $FF, the offset is valid (within the allowed range) and is in the negative
direction. If Acc.B contains $00, the offset is valid and in the positive direction. Any other value

indicates that the destination is beyond the allowed range.

1-5 OPERATING EXAMPLE

The following example program is suitable for gaining familiarity with the JBUG monitor features.
The program adds the five values in locations $10 through $14 using Acc. A and stores the final result in
location $15. The intermediate total is kept in Acc. A; Acc. B is used as a counter to count down the loop. The
Index Register contains a ‘‘pointer’’ (i.e., X contains the address) of the next location to be added. The
program, as follows, contains an error which will be used later to illustrate some of JBUG’s features.

In the following listing, the leftmost column contains the memory address where a byte (8 bits) of the
program will be stored. The next column contains the machine language op-code and data for a particular

1-11

microprocessor instruction. The next four columns contain the mnemonic representation of the program in
assembler format.

*

* Add 5 numbers at locations 10-14

* Put answer in location 15
*

0020 8E STRT LDS S$FF DEFINE STACK IN USER AREA
0021 00

0022 FF

0023 4F CLRA TOTAL # 0

0024 C6 LDAB #4 INITIALIZE COUNTER

0025 04

0026 CE LDX #$10 POINT X TO LOCATION 10
0027 00

0028 10

0029 AB LOOP ADDA 0O,X ADD 1 LOCATION TO TOTAL
002A 00

002B 08 INX POINT X TO NEXT LOCATION
002C 5A DECB DONE ALL 5 LOCATIONS?
002D 26 BNE LOOP BRANCH IF NOT.

002E FA

002F 97 STAA $15 SAVE ANSWER

0030 15

0031 3F SWI GO TO JBUG

A detailed procedure for entering and debugging this program is shown in the following steps.
1. Start Up and Enter the Program in RAM
A. Turn power on. Push reset button on the main card. JBUG will respond with a *‘—"’,
B. Type 0020 followed by the M key. This displays the current contents of location 0020.

C. Type 8E. This replaces the contents of 0020 with 8E which is the op-code for the first
instruction, LDS.

Type G. This steps to the next location (0021) and displays the contents.
Type 00.
Type G.

Type next byte of op-code or operand (FF in this case).

T 0 m om o

Repeat steps F and G for remaining instructions.

Pt

Type E. Abort input function.

1-12

Verify That the Program Was Entered Correctly

A. Type 0020M. Location 20 will be displayed.

B. Type G. Next location will be displayed.

C. Repeat step B until done, visually verifying data entered in Step 1.
D. TypeE.

Enter Data in Locations 10-14

A. Same as 1 except type 0010M to start the sequence. Any data may be entered; however,
for purposes of this example 01, 02, 03, 04, 05 should be entered.

B. TypeE.
Verify Data

A. Repeatstep 2 except type 0010M to begin the sequence. Verify that the memory contains
the values 01, 02, 03, 04, 05 in sequencial order.

Run the Program
A. Type E to insure no other option is active.

B. Type 0020G. The program will run down to the ‘‘SWI’’ instruction at location 31 which
will cause it to go to JBUG and show 0031 3F on the display.

Check the Answer
A. TypeE.

B. Type 0015M. (The answer is stored in location 15). Note that it says OA (decimal 10).
The correct answer is OF or decimal 15; therefore, there is a problem in the program as
originally defined. The next steps should help isolate the problem and correct it.

Breakpoint and Register Display

A. It might be helpful to see what the program was doing each time it went through the loop.
Therefore, set a breakpoint at the beginning of the loop, location 0029. To do this type E,
then tye 0029V.

B. A breakpoint could also be set at location 002F to see the results. Type E. Type 002F V.

C. JBUG must be told where to begin, so type E and then 0020G. JBUG will run to the
breakpoint and then display 0029 AB. At this point the program is suspended just before
location 29 and is in JBUG. On detecting this breakpoint, JBUG automatically displays
the PC and is in the register display mode.

D. Type G (Go to next register). The display should read 0010. This is the value of the X
Register.

E. Type G. Display = 00 (A Register).

1-13

7~

M
N.
8]
P.

Type G. Display = 04 (B Register).
Type G. Display = DO (Condition Code Register).

Type G. Display = 00F8 (Stack pointer). Even though the program set the stack pointer
to FF the action of the breakpoint used a software interrupt to store the registers on the
stack, thus decrementing it by 7 locations. When JBUG returns to the user’s program the
stack will return to FF.

Type G. Display = 0029 (PC). The register display is circular and steps D through H
could be repeated.

Type E. Abort the register display portion of the breakpoint. Type G to return to the
example program and resume executing. Since the breakpoint at location 0029 is in a
loop it will again be the next breakpoint and the display will contain 0029 AB. At this
point the registers may be displayed again as per steps D through 1. If this were done the A
would be seen to contain the partial sum and the B would be decremented. The X Register
would be one greater than previously.

Type E.

Type G (Proceed). Display will type 0029 AB. Once again the registers may be
examined.

Type E.
Type G (Proceed). Same comment as L.
Type E.

Type G (Proceed). Display will now type 002F 97. The program has now successfully

completed the loop four times and the A-Register contains the incorrect sum.
E]

Correcting the Program

A.

T m oo o0 ow

From above it is evident that although the program was supposed to add five numbers, the
loop was executed only four times. Therefore, the LDAB #4 instruction at location 24
and 25 should have initialized B to five. There are two approaches to fix the problem; one
is temporary, the other is permanent. First the temporary one:

Type E.

Type V. Clears existing breakpoints.

Type 0026V. Set a breakpoint just after B register was loaded.
Type E.

Type 0020G. The program will execute up until 0026 and then go to JBUG. Display =
0026 CE.

Type G five times. This displays the current stack pointer (OOF8). The B register contains
the counter we wish to modify and is located at location SP + 2 (FA).

1-14

b

o

z 2 © &

Type E.

Type 00FAM. The display = O00FA 04.

Type 05. The display will change to OOFA 05.

Type E.

Type G. Proceed from user breakpoint down to the SWI instruction.
Type E.

Type 0015M. Display = 0015 OF. The program has now calculated the correct value for
the addition of the five numbers 1-5. This verifies the fix but would be inconvenient to do
each time the program was executed. A permanent change would be:

Type E, then type V. This clears all breakpoints.
Type 0025M. The display = 0025 04.

Type 05. The display = 0025 05. This will now permanently change the LDAB #4
instruction to a LDAB #5 instruction.

Type E.
Type 0020G. Execute the program.
Type E.

Type 0015M. Display = 0015 OF, the expected answer; the program is permanently
fixed.

Trace Through the Program

A.

m o a =

Type E. In order to execute a trace, the program must first be stopped at a breakpoint. To

trace from the beginning do:

Type V. This clears the existing breakpoints.

Type 0020V. This sets a breakpoint at the first instruction.
Type E.

Type 0020G (Go to user program). JBUG will immediately get the breakpoint and type
0020 8E.

Type N. The program will execute one instruction and display 0023 4F. At this point the
user can either display the registers by depressing the G key or can continue to the next

instruction. To continue:

Type N. Go to next instruction. Display register if desired.

Continue step G for as long as desired. Note: Do not try to trace after executing the SWI

instruction; a restart will be necessary before continuing.

Type E. Clear trace mode.

10. Offset Calculation Including Register Modification

A.

S

MO Z g £ R

Assume that the SWI instruction at location 31 is to be changed to a branch always (BRA)
to location 20. This will cause the program to remain in an infinite loop (i.e. , the program
has no end and will run continuously unless interrupted by some outside stimuli). Type
0031 to open the memory location. The display = 0031 3F.

The op-code for a BRA is a 20, so type 20. The display = 0031 20.

The second byte of the BRA instruction should be the two’s complement negative offset
to location 20. Since doing this calculation in hex is tedious and error prone, a small’
unsophisticated (there was only a little ROM left) program that does offset calculation
was provided at location EOQO in the JBUG ROM.

Type E.

TypeR, then type five G’s. This will display the current stack pointer so that the registers
can be located and set up.

Type E.

Type in hhhhM where hhhh = SP + 2. This displays the current B register.
Type 00. This is the high byte of the destination address of the branch.
Type G. This displays location SP + 3 which contains the A-register value.
Type 20. This is the low byte of the destination address.

Type G. Display high byte of X register.

Type 00. Insert high byte of the branch op-code address.

Type G. Display low byte of X register.

Type 31. Insert low byte of the branch op-code address.

Type E.

Type EOOOG. When the program is completed it will return to JBUG via the SWI at
location EO13 and the PC will be displayed.

Type G twice. The A register is now displayed and contains ED which is the correct
offset.

Type G. The B register will contain an FF to indicate the branch was within range.
Type E.
Type 0032M.

Type ED. Insert the branch offset.

1-16

11.

12.

13.

Executing and Aborting

A.
B.

G.

H.

Type E.

Type 0020G. The program will begin executing and the JBUG prompt *‘—’" will

disappear since the program now contains an infinite loop.

Type E. This aborts (Exits) the program and returns control to JBUG. The prompt has
now returned.

Type R. Display the PC and any other registers of interest.
Type E.

Type G. Program will again execute.
Type E. Abort program and return to JBUG.

Repeat F and G for as many times as you wish.

Punch Program to Cassette

A.

s

L.

T 0 m®m o 0

Rewind the cassette. Type E.

Type AOCO2M.

Type 00. Enter high byte of beginning address.
Type G.

Type 20. Enter low byte of beginning address.
Type G.

Type 00. Enter high byte of ending address.
Type G.

Type 32. Enter low byte of ending address.
Type E.

Turn on cassette in Record mode.

Type P. Wait for JBUG prompt to return (approximately 30 seconds).

Load Program from Cassette

A.

m o o w

Turn off power. This will cause the program in memory to be lost. Turn power back on.
Push the Reset button and get the JBUG prompt.

Rewind cassette.

Start cassette in playback mode.

Type L. Wait for the JBUG prompt. Test the program by any of the options described
above.

1-17

CHAPTER 2
HARDWARE DESCRIPTION

2-1 GENERAL DESCRIPTION

The MEK6800D2 Kit consists of two printed circuit board assemblies, the Microcomputer Module
and the Keyboard/Display Module. The Keyboard/Display Module includes interface circuitry for using
standard Audio Cassette tape recorders as an off-line magnetic storage medium. The Keyboard/Display
Module provides an economical operator interface to the Microcomputer Module and is supplied as a separate
board in order to facilitate using the Microcomputer Module with other terminals or as an end-item in the user’s
system development.

The Keyboard/Display Module is used in conjunction with a monitor program (called JBUG)
supplied in an MCM6830 ROM to permit an operator to communicate with and control the Microcomputer
Module. A detailed description of the available functions and commands is included in the Operating
Procedures section (Section 1-4 of Chapter 1). The features are, in summary:

1. Examine and Change Memory

2. Display and Change MPU Registers

3. Go to User’s Program

4. Trace One Instruction

5. Set and Clear up to Five Breakpoints

6. Proceed from Breakpoint

7. Abort from User’s Program

8. Calculate Offset to Relative Branch Destination

9. Transfer Designated Memory Locations to Magnetic Tape

10. Load Memory Locations from Magnetic Tape

2-2 MEMORY ORGANIZATION

The general memory organization of the Kit is shown in Figure 1-1-2 of Chapter 1. The memory map
is shown in tabular form in Table 2-2-1. In the M6800 system, memory location assignments are determined by
the combinations of MPU address lines that are applied to the device chip select lines.

In Table 2-2-1, the signals designated as ROM, PROM, etc., are the outputs of an MC74155
One-of-Eight Decoder. The MC74155 decodes the MPU’s VMA, A1S, Al4, and A13 lines. For example,
when these lines are all high, corresponding to memory address $E000 (215 + 214 + 213), the ROM output of
the Decoder is low. This signal is applied to the chip select line CST of the JBUG ROM, thus selecting this

2-1

SIGNALS DECODED

DEVICE ADDRESSES | ¢2 | R'W| SYMBOL |VMA|A15]|A14|A13[{A12|A11]A10| A9 | A8 | A7 | A6 |AS5 |A4] A3 | A2 | A1] A0
ROM EOOO-E3FF | 1| 1 |[ROM ={ 1 {1 |1 |1 x [x| x| x| x|x{x|x|x]|x
PROM CO000-C3FF PROM =[1|11]1]0 +ix | x x| x|x]x|{x{x|x]|x
RAM (Stack) | AO00-AO7F | 1 | x |STACK =| 1t |1 jo |1]o0 ojo|x|x|x|x!=x]|x]|x
PIA .- 80208023 | 1 | x |T/O =l1|1]ofo 1 oxlox | x | x
ACIA 8008-8009 | 1 | x |70 =sft|t1]o]o 0* 1 | o* X
PIA — 8004-8007 | 1 | x |0 =f1]1]|o}o o* o1 |x|x
PROM 6000-7FFF 67 =11 0 1 1 + | x X X X X X X X X X
USER 4000-5FFF a5 =f1]0|1]o0
USER 2000-3FFF 3 =l1]0]o |1
RAM (User) | 0000-007F (1 | x [RAM =|1 |0 {0 [0 0jJo|o|x|x|x|x|x|[x]x
RAM (User) | 0080-00FF | 1 x |[RAM =1 0o]Jo o 00 1 x | x I'x X | x | x |x
RAM (User) | 0100017F [1 | x |RAM =| 10 |0 | o o1]olx|xixVix|x|{x]x
RAM (User) | 0180-01FF |1 | x [RAM =|1 |0 |0 |0 011 [x{x|x|x|x]x]x

>
1

Decoded by the device addressed
* = Required but not decoded by the device addressed
+ = Decoded by 2K x 8 bit optional RAM

TABLE 2-2-1: MEK6800D2 Evaluation Kit Il Address Map

device whenever the MPU outputs addresses in the range of $E000 to $EFFF. The particular locations within
the ROM are selected by applying MPU address lines AO thru A9 to the ROM address inputs. The JBUG ROM
is located at ifie highest addresses in the kit’s memory field. Note that A12 from the MPU is not applied to this
ROM so it will also be selected when the MPU outputs its Restart and Interrupt Vector addresses, $FFF8 —
$FFFF. Start-up and interrupt capability is obtained by placing the appropriate interrupt vector addresses in
locations $SEEE8 ~— $EFFF of the monitor program.

Additional addresses are decoded for the optional ROMs that can be added for user-generated
programs. The Microcomputer Module is layed out to accept either two MCM68708 1024 x 8 bit Electrically
Programmable Read Only Memories (EPROM) or two MCM7641 TTL 512 x 8 bit Programmable Read Only
Memories. The PROMs are more economical but cannot be erased like the EPROM. Two MCM68316 2048 x 8
bit ROMs can also be used in the PROM locations. In this case, MPU address line A10 is applied to the
MCM68316 for decoding the additional 1024 bytes. Jumpers on the PCB are provided for selecting the desired
combination of ROM (see note 6 on the schematic diagram of Figure A3-a).

The MC6810 (128 x 8) RAM occupying memory locations $A000 — $AO7F is used by the MPU for
temporary storage of its internal registers during interrupts and subroutines and is selected by the signal
STACK. The MPU also uses this area for storage of flags and temporary data used by the JBUG monitor. This
organization allows a clean separation between monitor requirements and user RAM. The system assigns, via
the RAM signal, the four user RAMs to the bottom of memory in locations $0000 — $O1FF (first 512 bytes).
This RAM is useful for small user programs or for scratchpad memory in the MPU’s direct addressing range for
larger user programs. To prevent contention with these RAMs, expanded systems should avoid these memory

2-2

locations; however, the board is easily modified (see Section 2-8 on system expansion) to accommodate
external memory in this range.

The two signals 2/3 and 4/5 are brought to the edge connector and may be used to select two external
8K-byte blocks of memory. The 2/3 line decodes the second 8K-byte block ($2000 — $3FFF) of the memory
space; 4/5 decodes the next 8K locations ($4000 — $5FFF).

2-3 INPUT/OUTPUT DEVICES

Three I/O devices are provided with the Kit and are selected by the /o signal. The PIA at addresses
$8004 — $8007 is provided for user specified peripheral devices. Its input/output lines are brought out ot the J1
edge connector. A wire-wrap area is provided for any buffering or interface circuitry that might be required. In
normal kit operation, the PIA at addresses $8020 — $8023 is used to interface the Keyboard/Display to the
MPU. If a terminal and the MINIbug monitor are used, this PIA is also available (via the J2 edge connector) for
user specified I/O. The ACIA at memory locations $8008 — $8009 is used to interface with the Audio Cassette
circuitry on the Keyboard/Display Module, but can alternatively be used to interface to serial RS-232 or TTY
type terminals (with the MINIbug monitor) if desired. Note that the address lines A2, A3, and A5 are applied to
the chip select lines of the $8004 PIA, the ACIA, and the $8020 PIA, respectively. This insures the selection of
only one of the.three I/O devices when the 10 signal is active. Note also that connecting the A2, A3, and AS
address lines to the PIA and ACIA chip select lines will cause a wider range of addresses than is required to be
selected. For example, when the 1/0 signal is low (A15, A14, A13 = 110) and AS is high, any address in the
range $8020 — $802F may be present on the bus, depending on the states of AO — A3. The $8020 PIA does not
decode the A2 or A3 lines; therefore, addresses in the range $8024 — $802F will also select this PIA. However,
it is not necessary to use additional decoding if the use of these addresses is avoided in the user program.

2-4 SYSTEM CLOCK

The Kit uses a 614.4 kHz MC6871B system clock. The frequency was selected in order to provide a
simple means of obtaining a 4800 Hz reference frequency used by the 300 baud serial data rate tape cassette
circuitry. The 4800 Hz signal is obtaining by dividing the MC6871B’s 2fo output (1.2288 mHz) by 256 with an
MC14040 counter. The 4800 Hz signal is applied to the cassette interface circuitry, along with the ACIA
outputs, via the J2 edge connector.

2-5 KEYBOARD/DISPLAY

The Keyboard/Display Module is provided as a separate printed circuit board in order to facilitate the
use of other terminals and to make the U21 PIA readily available for eventual expansion of the system. The
Keyboard/Display Module connects to the Microcomputer Module via a ribbon cable and connector provided
with the Kit. A scanning technique is used on both the display and the keyboard in order to minimize system
cost. Since operation of this circuitry is intimately related to the control program, refer to the software
discussion (Section 3-4) and the assembly listing, as well as the schematic diagram of Figure A3-b with the
following description.

2-3

The scanning procedure uses lines PBO — PB5 of the PIA, corresponding to SCNREG in the JBUG
assembly listing. The digit patterns to be displayed are put out on lines PAO — PAG6 and are designated as
DISREG in the listing. The JBUG monitor program alternates between refreshing the display and checking for
a key closure in the following manner.

The OUTDS subroutine places the digit pattern for the left-most display on PAO— PAG6 and then sets
PBS5 high, causing that digit to be lighted. During this time, PB4 — PBO are low, thus the other digits are off.
This digit of the display is held on for approximately 1.0 ms, after which the pattern for the second digit is put on
lines PAO — PAG6. PBS is switched low, and PB4 is taken high to select the second digit. This sequence
continues until the right-most digit has been selected, at which time the program goes to the KEYDC subroutine
to check for key closures. The blanking pattern ($FF) is placed on PAO— PAG6 to blank the display so that lines
PBO — PBS5 can be used to interrogate and decode the keyboard. Following the keyboard check, operation
returns to the display sequence. The refresh rate is fast enough that the displays appear to be on continuously.

AnMC14539 CMOS One-of-Four Data Selector (U10) is used to sequentially select each column in
the keypad matrix and route it to PA7 for testing by the monitor program. The address data for selecting each
column is output to the Data Selector on lines PB6 and PB7. Refer to the description of the monitor program in
Section 3-4 for details of the keyboard decoding technique. Note that CB1, a PIA interrupt input, is directly
connected to column 2. This allows the E key to be used for generating an NMI interrupt for escaping from
“‘blown’” user programs. The MC75452 buffers serves to increase the PIA’s drive capability.

2-6 TRACE (EXECUTE SINGLE INSTRUCTION)

A hardware trace function is provided that permits a user’s program to be executed one instruction at
a time. Results of the execution, including MPU Register contents, can be examined between each Trace
command. The Trace function will operate on programs in either RAM or ROM and is useful as a debugging
aid. The circuitry consists of an MC8316 Counter and two MC7479 D-flip-flops connected as shown in Figure
2-6-1. Refer to this figure also for the associated timing waveforms.

When a Trace command occurs, the system is normally in the Register display mode from either a
previous Trace or having run to a Breakpoint. Thus, the user’s Register values are stacked and the monitor
program is alternating between refreshing the displays and checking for new key closures. The user Program
Counter value saved on the stack is pointing to the next user instruction to be executed. Invoking a Trace
command at this point causes the MPU to start the Trace Counter (via CA2 of the Keyboard/Display PIA) and
then execute a Return from Interrupt (RTI) instruction. This causes the MPU to reload its Registers from the
stack and begin executing the next user instruction. In the meantime the Trace counter is counting machine
cycles. The eleventh cycle after the counter is started will be a fetch of the op-code for the next user instruction
(RTI takes ten cycles to execute). The Trace circuitry detects the eleventh cycle and generates a low going NMI
signal. Since the shortest instruction is at least two cycles long, NMI will always be low at the end of the first
instruction and will cause a return to the JBUG monitor program via an NMI interrupt. The NMI service routine
sets CA2 back high, resetting the counter in readiness for another command. The NMI service routine is
described in Section 3-8 in greater detail. From the user’s point of view, closure of the N (Trace) key causes the
system to execute one instruction and then stop so that the results can be examined.

2-7 AUDIO CASSETTE INTERFACE

Circuitry for interfacing an ACIA to an audio cassette recorder/player is included on the Keyboard/
Display Module. This circuitry enables the user to store and retrieve data on ordinary audio cassettes at a 300

2-4

suuojanepm Bunu)) pue Aiunosig asel) “1-9-z IHNOIL

N\

[

l _
(~ oo [—
Y P YA eI g

114

— NG+

_ A AAY
30l
N
jyol
NG+

20—ge«

NG+

+

e d 14 0d N
d 91£83I AG+
0 4| 21 azn a3g| |
atzn 137 4
0 a0 AG+ Aw & 0 H

eyen

w

\

6LYLIW T/L

340

vid
wo.4

AR

[A'N]

ELL

2-5

baud (30 characters per second) serial clock rate. Data is stored on the tape using the ‘‘Kansas City Standard”’
recording format, so-called due to its formulation during a symposium sponsored by BYTE Magazine in Kansas
City, Missouri in November, 1975. The format is designed to eliminate errors due to audio system speed
variations® and has the following characteristics:

1. A Mark (logical one)® is recorded as eight cycles of a 2400 Hz signal.

2. A Space (logical zero) is recorded as four cycles of a 1200 Hz signal.

3. Arecorded character consists of a Space as a start bit, eight data bits, and two or more Marks as
stop bits.

4. The interval between characters consists of an unspecified amount of time at the Mark frequency.

5. Inthe data character, the least significant bit (LSB) is transmitted first and the most significant bit
(MSB) is transmitted last.

6. The data is organized in blocks of arbitrary and optionally variable length preceeded by at least
five seconds of Marks.

7. Meaningful data must not be recorded on the first 30 seconds of tape following the clear leader.

A control program in JBUG causes this format to be followed and incorporates the following
additional characteristics:

1. At the beginning of tape (BOT), the ASCII character for the letter ‘‘B’’ is recorded following
1024 Marks (approximately 30 seconds).

2. The ““B”’ is followed by one byte containing the block length (up to 256 bytes in a particular
block).

3. The next two bytes recorded contain the starting address in memory from which the data is
coming.

4. Up to 256 bytes of data are then recorded and followed by 25 marks and the ASCII character for
the letter ““G’".

The control program uses the additional features to insure that the Punch and Dump functions are performed in
an orderly manner (see the explanation in Section 3-7 for additional information).

The cassette inferface circuit diagram of Figure 2-7-1 serves as an aid to understanding the following
description of the Punch and Load operations. The Punch (transfer of data from the Microcomputer Module’s
memory to tape) and Load (transfer from tape to memory) commands are accomplished by a combination of the
control program, the MC6850 Asynchronous Interface Adapter (ACIA), and the cassette interface circuitry.

The ACIA is, in effect, a bus-oriented, universal, asynchronous receiver/transmitter (UART). Inthe
transmit mode (Punch), it accepts parallel 8-bit data from the MPU bus, adds the formatting start bit and stop
bit, and then converts the data to a serial binary stream (Tx Data in Figure 2-7-1). The desired format is
established by instructions from the MPU as it executes the Punch command. In the receive mode (Load), the
ACIA accepts an incoming serial data stream (Rx Data) and a sampling clock (Rx CIk). It strips off the start/stop
bits and passes each incoming byte to the MPU for transfer to memory, again under control of the MPU as the

*The circuitry provided with the kit will accommodate speed variation of approximately +25%.
$Logical ones and zeros will be alternatively referred to as Marks and Spaces, respectively, in accordance with serial data transmission
conventions.

2-6

eleq xy

A0 xy

AR

BUOYJOININ

Aqinos) aoepslu| ajasse) olpny “1--Z IHNOIS

_ NG+ =
" 5 P
L3N0 ng
p4 0 F) [8 9o
N~ = = Lug
ELOVLOW 8EGVLOW
egLn eLLn Jou
—1 a] Zho
o zul
[n
IP 4 %)
[LL-1%)
NS+
AA—
[4
vz =
AG+ _
2 ayin
o)] 2 zul
9LOPLOW zino
zino —
geavIon £LOPLOW | — —]
peELN aiLn asin epLN Lyl v0 o
win n
L8OVLOW ° v ° a O L3"0 1o ¢ €0 yzoviow
S NG+ 6L
[4e]
> 9LOVLOW
7/ AG+ Lo *D
515 LgH
vy _
2 8 v d 9ELN
z 1z o 2 22N
ovd L8OVLOW
0z £LOPLOW 180V LOW
oo A qzLn
L{A
oA o] a
£50P1OW = s
1%
X 910%LOW
vvd o5 ox 4
ozn
O AS+
Loy prin
%

LOEEON

€L0PLON
ezin

OIl@

LBOVLOW

auoydieg

eeqQ X1

(zH 008Y)
A0 XL

2-7

program executes. The ACIA’s Request-to-Send, RTS, acts as a gating signal to switch the interface circuitry
between the Punch and Load modes. The reference documents may also be referred to for additional details on
the ACIA’s characteristics.

Timing waveforms corresponding to the appropriate signals in Figure 2-7-1 are provided as Figures
2-7-2, 2-7-3, and 2-7-4 as an aid to study of the cassette interface circuitry.

During a Punch operation the interface circuitry operates on the serial data to convert each logical
one (Mark) to an 8-cycle burst of 2400 Hz signal and each logical zero (Space) to a 4-cycle burst of 1200 Hz
signal which is then recorded on tape.

The circuitry reverses this procedure during a Load operation,; it decodes the incoming frequency-
modulated signal in order to recover the binary data and a sampling clock.

In Figure 2-7-1, the MC14053 Multiplexer/Demultiplexer, U20, (Data Router, for simplicity) is
used to steer signals to their required points during both Load and Punch operations. For instance, during
Punch, B and C are high while A is derived from the binary data on Tx Data. For this combination of control
signals Y is connected to Y1 (because B is high); thus the 4800 Hz Tx Clk signal from the Microcomputer
Module is applied to the clock input of the MC14024 Counter, U19. Also, because C is high, Z is connected to
Z1, but this signal is not used during Punch. The 2400 Hz and 1200 Hz signals are obtained by selecting either
the =2 (QI) or the +4 (Q2) outputs of the Counter as it is clocked at 4800 Hz.

The signals at X0 and X1 are 1200 and 2400 Hz sine waves obtained via the bandpass filters of U16a
and U16d. One or the other of these signals (depending on the Tx Data logic level at A) will be level shifted,
attenuated, and applied to the microphone output terminals.

TxClk
(4800 Hz)

RTS

Counter Outputs

we | L L LT L L LT L 1]

Q2
1200 Hz

az2p

(Phased Q2)

a3

600 Hz I I l 1
a4

(Reset)

Tx Data
{Transmit Data)

Tx BP I |
{Phased Tx Data)

afie /N /N SN N N NN AN AN\
AP AV VA VA VA VR Vi Vi Vi VRN

Q2P Filter N\ P N\ PN e
o <~ _— < ~—

FSK Qutput /\ /\ /\ /\ /\ /\
Signal /SN N N—" N—" NS N

FIGURE 2-7-2. Transmit Waveforms

2-8

Earphone v V
|

“Squared” Data l I J
Output of U17
Output of U11a
One-Shot
Rx Data
(Output Q of U11b) l
Counter Reset n
(Qutput of U11b)
Caunter Outputs _—’—1‘_—I'—l_—‘—‘—,_|__—_[—
at
@] I I I
. | 1
o]
Rx Clk
{Output of U13d; I I

Same as 03
via Data Router)

Lﬁ

FIGURE 2-7-3. Receive Waveforms, Space-to-Mark Transition

Y AN O\ PN T YA 4

“Squared” Data | I I_
Output of U17
Output of I | I I I
U11a One-Shot
Rx Data _ l I
{Output 4 of U18a)
Counter Reset l
{Output of UT1b)

Counter Outputs
Q1

|
|

Q2 _—l
— |
i n

Rx Cik
{Output of U13d;

Same as Q2 via I | l
Data Router)

FIGURE 2-7-4. Receive Waveforms, Mark-to-Space Transition

29

Note that the 1200 Hz square wave is obtained from the output of U12a rather than the Q2 output of
the MC14024. This, together with the gating of U13 and the delay associated with U12b, insures that switching
of output frequencies will occur only when the outputs of Ul6a and U16d are at essentially the same voltage.
(Refer to the timing diagram of Figure 2-7-2.)

During a Load operation, the incoming signal from the cassette earphone is filtered, amplified and
squared by the U17 Line Receiver. (U17 is connected as a Schmitt trigger to reduce noise problems.) This
results in a signal, at digital levels, that varies between 2400 Hz and 1200 Hz according to the one-zero pattern
that was recorded on the tape. This frequency-modulated signal is then converted to logical ones and zeros by
the pulse width discriminator formed by the U11a MC14538 Monostable Multivibrator (or One-Shot) and the
U18a type D flip-flop. Incoming signals less than 1800 Hz are decoded as zeros; frequencies higher than 1800
Hz are decoded as ones. The Received Data will be present at the Q output of U18a.

The required Rx CIk signal, a positive transition at the mid-point of each bit-time and a negative
transition at the end of each bit-time, is generated as follows:

During Load the digital level 2400/1200 Hz signal, instead of the 4800 Hz Tx Clk signal, is steered
to the Counter clock input. The Counter’s +8 (Q3) and + 16 (Q4) outputs are connected to the inputs of U14b
and U14a, respectively. The control inputs of Ul4a and b are connected to Received Data and applied to the Set
input of U18b. The Output of U18b triggers the Counter Reset one-shot, U11b. Hence, either the =8 or +16
Counter output is steered back (via X) as a reset, depending on whether the data is a zero or a one, respectively.
The Counter is also reset by every Mark-to-Space transition via the U11b One-Shot. The Counter’s +4 and +8
outputs are connected to Z0 and Z1, respectively. These connections combined with the reset signals result in a
positive transition at the Z output of the Data Router after either four cycles of 2400 Hz or two cycles of 1200
Hz. Thus, the Rx Clk (Z gated by RTS) has a positive transition in the middle of each bit-time and a negative
transition at the end of each bit-time.

2-8 KIT EXPANSION

Provision is made for buffering circuitry to allow the Microcomputer Module to be implemented
into a larger system. The buffers and pinouts selected on the bottom edge connector are compatable with the
EXORciser so its I/O and Memory Modules can be used with this kit. The direction of data flow across the data
bus buffers is controlled by the MC7430 NAND gate, U7. This decoding provides for data flow off the board t(;—\
the external system when there is a Memory Read Cycle at an address that is not decoded by the devices on the \
Microcomputer Module itself. Note that the signal RAM decodes the lowest 8K bytes of memory which are
reserved for on-board memory (MCM6810’s). Should the user want to assign the lowest 8K of memory
addresses to off-board memory, the following changes are required:

Remove the MCM6810’s decoding addresses 0000, 0080, 0010 and 0180; remove the
signal RAM from pin 4 of the MC7430 and tie pin 4 to +5 V. The signal provided at the bus
connector called RAM can be used on outside memory to indicate an MPU access to an address in
the bottom 8K bytes of memory which now resides off the module.

Provision has been made for using a zener diode (1N4733) to generate a —5 V supply for the 2708
PROM s (if they are used) from —12 V in case this kit is operated in an EXORciser-type system which does not
have —5 V available. Should —5 V be available, the zener diode and associated 68 ohm resistor can be omitted
and the —5 V brought in through the bus connector.

2-10

CHAPTER 3
SOFTWARE DESCRIPTION (JBUG MONITOR)

3-1 GENERAL DESCRIPTION

The control and diagnostic capability of the MEK6800D2 Kit is provided by the JBUG monitor
program resident in the MCM6830 1K x 8 bit ROM supplied with the Kit. The characteristics of this program
are described in the following sections. An assembly listing of JBUG is included (Appendix 1) and may also be
referred to in studying the flow of the program.

Several RAM locations are used for temporary data storage and as flags by the monitor in
communicating between the various routines. Some of the more significant ones are described below and are
referred to in the description of JBUG.

SP A RAM location in which the user’s Stack Pointer is saved whenever the monitor resumes
($A008) control. The user’s Stack Pointer is required for locating user Registers on the stack and to
restore these Register when returning to the user program.

DISBUF Eight RAM locations used as a buffer to hold the current values being displayed. In the first six

($A00C) locations, the high order 4 bits of each location represent the display digit-count while the low
order 4 bits contain the value that is to be displayed on that digit. For example, the high order 4
bits of the sixth location in DISBUF identify the right-most display. The last two locations in
DISBUF are used for temporary storage of data that is input from the keypad during a Memory
Change function.

DIGIN4 A flag that is set to one (LSB) when at least four hex digits have been entered from the
($A014) keyboard (as in Memory Examine)

DIGINS A flag that is set to one (LSB) when six hex digits have been entered from the keyboard
(A015) (as in Memory Change)

MFLAG A flag that is set to one (LSB) when the M key is depressed to invoke the Memory
($A016) Examine Mode.

RFLAG A flag that is set to one (LSB) when the R key is depressed to invoke the Register Display
($A017) Mode.

NFLAG A flag that is set to one (LSB) when the N key is depressed to invoke the Trace
($A018) Mode.

VFLAG A flag that is set to the number of breakpoints (up to five) that have been set.

($A01D)

XKEYBF A pointer to the next empty location in DISBUF where the next hex key entry will be stored.
($A01A)

The flow of JBUG is straightforward and is shown in Figure 3-1-1. After release of the RESET
button, the monitor goes through an initialization sequence in which the stack pointer is initialized to $A078,

3-1

the PIA for the Keyboard and Display is configured, the flags which communicate between routines are cleared
and a dash (-) is placed in the first location of DISBUF to be displayed on the lefthand digit as a prompt to
indicate that the MPU is executing the JBUG monitor. After initalization the display is scanned; this involves
displaying the contents of DISBUF (first six locations). The display scan takes about 6 ms (6 digits at 1.0 ms per
digit) after which the Keyboard is scanned and decoded (KEYDC). A test is made to see if any key is depressed
and if none is found the program returns to OUTDS. If a key is found to be depressed, a decoding process takes
place to debounce the key and to determine which key is depressed. If the key is a hex key (0-F) then its value is
placed in the next open location in DISBUF. If the key is one of the command functions, that command is
decoded and executed before returning to the display routine OUTDS. As shown in Figure 3-1-1, the basic
background program flow alternates between refreshing the display and checking for key closures.

{ RESTAR)

Initialize Stack Pointer,
PlAs, ACIA, and Flags.
Put the Prompt dash in
DISBUF

ouTDS \

Output contents of
DISBUF to Display

All
Digits
Refreshed?

KEYDC

Check for Key
Closures (KEYCL)

Key
Closed?

Decode Closure. Test
for Command or Data

Yes No
KEYDCH] |
Jump to Indicated Store Data. Return
Command Routine to update Display

l

FIGURE 3-1-1. Overall Program Flow for JBUG Monitor

3-2

3-2 RESTART/INITIALIZATION ROUTINE

When the RESET push button is released, the MPU outputs addresses $FFFE and $FFFF in order to
bring in the starting address of the restart routine. Because this system does not require full address decoding
(see Section 2-2), the top two locations of the JBUG ROM ($E3FE and $E3FF) respond with $E08D, the
beginning address of the restart routine, RESTAR. RESTAR first initalizes the Stack Pointer to $A078 and then
sets the NMI interrupt pointer to $E14E. The NMI interrupt pointer is placed in RAM so that the user can
change it and force NMI interrupts to do something other than go to the JBUG monitor (if this is done all
diagnostic capability of JBUG will be lost). The Keyboard/Display PIA, U21, is then configured to match the
hardware connections shown in the Keyboard/Display Module Schematic Diagram, Figure A3-b. The flags are
cleared and a code to blank the display ($17) is stored in all locations of DISBUF. A dash (-) is written in the first
location of DISBUF to indicate that the MPU is executing the monitor program. Flow then branches to the
OUTDS routine whose function is to move the contents of the DISBUF out to the LED displays.

3-3 DISPLAY ROUTINE

The display routine, OUTDS, is detailed in the flow chart of Figure 3-3-1 and begins at line 260
(address $SEOFE) of the assembly listing. The first value in DISBUF is loaded into Accumulator A (Acc.A). The

(ouTDS >

Load X with Pointer to
Display Buffer.

0UTDS1 |

Get data into Acc. A. Point X
to Pattern Table, DIGTBL.

0uTDS2

Find Pattern by Incr. X, Decr.
A until A =0. Put Scan Count
into SCNREG. Delay 1.6 ms

Y

Shift SCNCNT bit one
position to right Initialize SCNCNT to $20 for
use in checking for Key Closure.
Jump to KEYDC.

‘ KEYODC ’

FIGURE 3-3-1. Program Flow for Output Display Routine

3-3

Index Register is then pointed to the beginning of DIGTBL, a table which has the correct bit patterns for the
character set to be displayed. The Index Register, X, is then moved to the table location corresponding to the
required pattern by decrementing Acc.A while X is incremented until Acc.A = 0. This pattern is then put out to
DISREG (the anodes of the seven segment display) as the first digit of display is selected by SCNREG (the
cathodes of the display).

This process is repeated for all six positions by moving a ‘‘one’’ through SCNREG as each position’s
data appears in DISREG. In this manner, the data in the first six locations of DISBUF are output to their
respective display positions and turned on for about 1.0 ms each (using the DLY1 delay loop. After all six
positions have been scanned, the variable SCNCNT is reset to $20 (corresponding to the left-most display) in
readiness for use during the next refresh scan cycle.

3-4 KEYBOARD SCAN AND DECODE ROUTINE

Following each display refresh cycle, the monitor jumps to KEYDC (line 302, address $E14E, flow
charts in Figures 3-4-1 and 3-4-2), the routine for scanning and decoding the Keyboard. The Keyboard is first
tested by subroutine KEYCL to determine if a key has been depressed. The display is blanked by storing $FF to
avoid flicker while the SCNREG lines are being used to interrogate the keyboard. Storing $3F to SCNREG
applies logical zeros to the rows of the keyboard matrix. KEYCLI1 then tests each column in sequence to
determine if a key is closed. (A depressed key will couple the zero on its row through to PA7 when tested.) The
KEYCL routine returns to the caller, KEYDC, with status information in Acc.A. If no key was closed, Acc.A
will contain $00 and the program will branch back to OUTDS for a display refresh. If a key was closed, the
program branches to a 20 ms delay (DLY20) to allow time for key debounce. KEYDC1 then scans the keyboard
one row at a time using KEYCL to scan the columns looking for the closed key.

An exit back to OUTDS occurs (line 312) if the last row has been scanned without finding a closure.
If there was a closure, KEYDC2 compares the value returned in Acc.A with codes in table KEYTBL to
determine the key value. The KEYTBL values are related to the column and row position for each key. Each
key is represented by a value in the range 0-23 with the first 16 values representing hex numbers. Once the key
value has been found, the program enters the KEYDC4 routine to wait for the key to be released. Afterrelease is
detected, the program again delays for 20 ms to provide time for debounce. Line 327 begins decoding the key
value into either hex or command. Hex keys are entered into DISBUF at the location pointed to by XKEYBF
and then tested to see if four digits have been entered yet. If four digits have been entered, DIGIN4 is set to
enable further operations such as Memory Examine. Comand key values are routed to KEYDCS5, a jump table
resulting in a branch to one of eight locations depending on the command key depressed. The following action
is taken on each command key:

P-KEYDCS8 The display buffer, DISBUF, is cleared and the program jumps to subroutine PNCH. Upon
return from the punch routine, a dash (-) is written to DISBUF (to inform the operator that the
punch has been accomplished) and the program jumps to OUTDS.

L-KEYDC9 The display buffer (DISBUF) is cleared and the subroutine LOAD is called. After the data has
been loaded from tape the monitor dash is written into DISBUF and the OUTDS routine called
to inform the operator that the load is complete.

3.4

N-KEYDCA Breakpoints, if any, are removed by clearing VFLAG. The NFLAG is set (LSB) to identify the
TRACE mode and CA2 of the Keyboard/Display PIA is switched low to start the trace counter.
An RTI instruction is then executed to reload the stack into the MPU and go on with the next
user instruction.

V-KEYDCB The DIGIN4 flag is tested to determine if it is in the clear or set breakpoint mode. If four digits
have been entered, the DIGIN4 flag will be set and the program will call the set breakpoint
(SETBR) subroutine and then go to the QUTDS routine. If the DIGIN4 flag is clear, then V
was a clear breakpoint command and the VFLAG is cleared thus clearing any breakpoints
which may have been set.

M-KEYDCC The MFLAG is set to indicate that the Memory mode has been selected. The DIGIN4 flag is
tested to make sure a full memory address has been entered. If four digits have been entered,
the Memory Display Subroutine (MDIS) is called; otherwise the program goes back to
OUTDS.

E-KEYDCD Causes the MPU to clear the DISBUF locations, write the monitor prompt dash to DISBUF,
and then branch to the display refresh routine. When a user program is in progress the E key
generates an NMI interrupt, providing an abort function.

R-KEYDCE The RFLAG is incremented to designate the Register Display mode and then the Register
Display subroutine is called.

G-KEYDCF The G key performs one of three functions depending on the current mode of operation. If the
monitor program is in the Memory Examine or Register Display mode, the G command causes
the next location to be displayed. If neither of these modes is in effect, G can be used to either
g0 to a user program or proceed from a breakpoint. These operations are described in greater
detail in the next paragraph.

When a G command is decoded the jump table directs program flow to KEYDCEF (line 431, address
$E20E) and the MFLAG is tested to determine if the current G key closure is a command to go to the next
memory location. If MFLAG is set, the Memory Increment (MINC) subroutine is called and will be followed
by the Memory Display (MDISO) subroutine. If MFLAG is clear, the RFLAG is tested to determine if this G
closure meant go to the next Register location. If RFLAG is set, the subroutine to display next Register
(REGST]1) is called.

If neither MFLAG or RFLAG is set, the G closure is interpretted as a Go to User Program command,
from either a specific address or from the location indicated by the current value of the Program Counter saved
on the stack. The DIGIN4 flag is tested (line 436) to determine if a new starting adress has been entered. If
DIGIN4 is set, the program replaces the stacked value of the Program Counter with the new Go address is saved
in the first four locations of the Display Buffer, DISBUF. After checking to see if there are any breakpoints to
install, the MPU executes a Return from Interrupt (RTI) to the user program.

If DIGIN4 is clear, a proceed from current Program Counter mode is indicated. In this case, the
GETXB routine is called to determine if any breakpoints have been set. If no breakpoints are in effect, keyboard
interrupts are enabled (TGC, line 464) and the MPU execues an RTI back to the user’s program. If breakpoints
are indicated, the trace routine (TRACE, line 384) is called to step one instruction. On receiving the NMI
interrupt caused by the trace, the NMI routine (NONMSK, line 91) checks to see if both trace and breakpoint

3-5

flags are set. If set, JBUG then installs the breakpoints (TGC, line 464) and returns to the user’s program. This
procedure is necessary to insure that the instruction at the current breakpoint location will itself be executed on a

proceed and that the breakpoint location will contain the SWI the next time it is executed. This is especially
important when the breakpoint is in a loop in the user’s program.

{ KEYDC)

KEYCL

Blank Display. Set all
rows low.

KEYCL1 ‘ See Figure 3-4-2 for

KEYCL1 Flow Chart

Test for key closure

No
Closure?
Yes
Delay 20 ms, then
set first row low.
KEYDC2
Find Acc. A match in KEYDC1
KEYTBL Scan Keyboard columns
by calling KEYCL1. Last No
row ?
No Valid Yes
ouTDbS Key ?

Key
found ?

Yes

KEYDC4 Select next row

Wait for Key release, then l

delay 20 ms for

debounce. Test data for Pgint X to next empty location
hex or Command in DISBUF. Store key value
i there. Test for exactly 4 digits.

KEYDCT ¥

Test for exactly 8 digits

KEYDCH 8
Digits?
Set BIGIN4 Flag. Incr.
Find value of key in jump DISBUF Pointer.
Table, Branch to Command
Routine. Incr. DISBUF Pointer Set DIGINS Flag. Call
Memory Change Routine,
MDIS1. Back up DISBUF
1 Pointer two locations.
P =KEYDCS8
L =KEYDCY
N =KEYDCA
V =KEYDCB
M =KEYDCC
E =KEYDCD @
R =KEYDCE
G =KEYDCF

FIGURE 3-4-1. Program Flow for Keyboard Scan and Decode Routine

3-6

KEYCL1

Test selected column.

Key
Closed ?

Select next column.

All
Columns
tested ?

Returns with state of SCNREG
in Acc. A when key closure is
detected.

FIGURE 3-4-2. Program Flow for KEYCL1 Subroutine

3-5 MEMORY EXAMINE/CHANGE ROUTINE

Flow charts for the Display and Change Memory routines are shown in Figure 3-5-1. The Memory
Display routine (MDIS, line 483) causes display of the contents of the memory location pointed to by the first
four DISBUF locations. KEYBEF, the pointer to the next empty location in DISBUF, is advanced by two in order
to point to locations six and seven in DISBUF when new memory data is entered. The BLDX routine, via a
jump through KEYD3F, builds a memory pointer from the data in the first four locations of DISBUF and loads
it into the Index Register. The data from the location pointed to by X is loaded into Acc.A, split into nibbles
(half-bytes or 4-bit words) by the MDIS2 subroutine, and stored in DISBUF locations four and five. Should a
memory change be required, MDIS 1 (line 496) is called, which gets the new data from locations six and seven
in DISBUF (the keyboard entry) and stores it in the memory location referenced. A read of that location is then
performed to get the actual data (someone might try to alter a ROM) which is put back in DISBUF+4 and
DISBUF+S5 to be displayed, giving the operator a visual indication that the change occurred. The Memory
Increment Subroutine (MINC) is called when the G key is used to advance to the next memory location. This
routine simply does a 16 bit increment of the four nibbles stored in the first four locations of DISBUF. MDIS is
then called to display the contents of the incremented address.

3-7

Update Keyboard Pointer
to DISBUF

MINC

MDISO ‘

Call BLDX to build memory
address from 1st two locations
of DISBUF. (Address in X Reg.)

Get new data from locations
6 and 7 of DISBUF.

Get memory address from

DISBUF.

!

!

Get memory address from

Increment memory address.
Format new addr. and store

Get data from that location.
Format for DISBUF (cal!
MDIS2). Store in DISBUF.

DISBUF.

in DISBUF.

(a) Display Memory

Store data to memory. Read
memory to verify data was

Increment DIGIN4 and
MFLAG.

changed.

Format data and store in
DISBUF locations 4 and 5.
Clear DIGINS Flag.

(b) Change Memory

(c) Increment Memory

FIGURE 3-5-1. Program Flow for Memory Display, Change, and Increment

3-6 REGISTER DISPLAY/CHANGE ROUTINE

The subroutine to display the registers (REGST, flow chart in Figure 3-6-1) transfers the User’s
Registers from his stack (User’s Stack Pointer is always saved in SP) to the display for operator inspection. The
registers are displayed in the order they are stacked: PC, X, A, B, C. A new register can be selected by pressing
the G key while in the Register Display mode. This causes the register display routine to be entered at REGST1
(line 556). TEMP2, aRAM buffer, is used as a counter in this routine to determine whether the register is one or
two bytes long, and which register to display next.

The Program Counter is displayed first so that when the Register Display routine is called from the
Trace or Breakpoint routine, the Program Counter appears automatically, allowing the operator to easily follow
program flow. REGST points the Index Register to the top of the user’s Stack where the high byte of the
program counter is located. REGST1 clears the display buffer, DISBUF, and determines from the count in
TEMP2 which register is to be displayed. When the count gets to 3, all registers have been displayed and the
user’s Stack Pointer is loaded from location SP and displayed.

3-8

‘ REGST1 ’ (REGST }

Load flag pointing to Initialize TEMP2 Counter
next register (TEMP2) and Acc. A to (-2).
in Acc. A Get S.P. into X.

1

Move Peinter to P.C. on
stack. Clear DISBUF.

implies either P.C. or
X Reg. Yes

No

Acc. A<0?

Get High Byte and display it. Implies

Stack | ‘
. Implies Acc. A.

Pointer Acc. B,or C.C.

Get Low Byte and display it. High Byte of Stack Pointer

Incr. Acc. A. to 1st two locations of Move Register pointed to on

DISBUF. stack to 1st two locatigns
of DISBUF
Yes No
Implies | .
X Reg implies P.C.
Decrement Pointer to stack. Decrement Pointer to stack. Low Byte of St.ar.k Pointer
. to next 2 locations of
Increment Acc. A. Display op-code. DISBUF.
increment TEMP2
Increment Acc. A.
Decrement Pointer to stack.
RTS
FIGURE 3-6-1. Program Flow for Register Display Function
3-7 PUNCH AND LOAD ROUTINES

The Punch routine (line 609, address $E32F, flow chart in Figure 3-7-1) is entered via a decode of aP
key closure. Initially, the ACIA is reset causing the RTS signal to go low. This is followed by ACIA
programming to set RTS high, establish eight bits for data length, no parity, and two stop bits. Additionally, the

ACIA is set up to transmit serial data at one sixteenth of the clock frequency. A leader is then punched (using the
PNLDR Subroutine) consisting of 1024 ones.

3-9

uonduny HONNJ 10} MOj4 weibold "L--€ IHNOIA

‘ | 9 115V Yaung

g "99y 210158y
*Aemy ejeq 1ng

$S3uQ GZ Yyoung

Apeay y{0Yy 0} 1sa]

eleq young

g "2y aneg

HIL1NO

0EANNd

ssaippy Bujuuibag ‘yi6uaq
13019 ‘g 1198V :yaung

3-10

| 5ZONNd
95 |enb3 V939 ~ VONI
yibus 330g 18§ = yibuaq }a0jg 18§
on £652 < o
X<l+X *
* S3uQ {8 yaung
eleq yaung ° yi6uay y20ig ‘3je) oianNnd
w HOLNO “(HOING) Jopeat yaung |
1 HILNO *
HY « 448
eleq 139 L =81y ‘dois-z ‘Aiueq oN
'119- 103 dni8s Y|y lasay

."_m“' A H0INd v .“m_""'

After the leader is punched, the program compares the beginning address (located in $A002, $A003)
to the ending address (located in $A004, $A005). If the difference is greater than 256 (hex FF), the first block is
assumed to be 256 bytes long. When the difference is less than 256, the block length is set equal to the
difference.

Once this determination has been completed an ASCII ‘‘B’’ is punched on the tape. This is followed
by the block length (one byte). The next information stored on the tape is the two byte beginning address of the
data being put on the tape. After the block of data is outputted to the tape recorder, a leader of 25 ones data is put
onto the tape. At this point the beginning address is again compared to the ending address in order to see if all
the data has been punched. To provide a control to validate that all data has been recorded and for ease of
recovery, an ASCII *“G”’ is then punched on the tape. When the beginning address and the ending address are
different, another block of data must be processed. This cycle is continued until the beginning and ending
addresses are the same. Return to control is accomplished with an RTS instruction.

This routine destroys the beginning address originally put in the locations $A002 and $A003. When
the punch routine is complete the data in the ending address is unchanged and the beginning address locations
contain a value one greater than the end address.

The Load routine (line 674, address $E395, flow chart in Figure 3-7-2) is entered via a decode of an
L key closure. This routine sets up the ACIA toreceive data in the same format that is used by the Punchroutine:
data length equals 8 bits, no parity, two stop bits. The Receive Clock mode is set to divide-by-one and RTS is set
low, indicating that the ACIA is now ready to receive data from the cassette interface circuitry.

Each data byte is brought in by calling the Input One Character routine, INCHR (line 699, address
$E3C0). This routine continuously checks the ACIA’s Status Register until there is an indication that a byte is
ready to be transferred. The MPU then fetches the byte from the ACIA Data Receive Register and returns to the
LOAD routine with the data in Acc.A. The data is then tested to determine if itis an ASCII *‘B’’ or “‘G”’. When
a ‘“‘B’’ is received, the program branches to the Read Data Block routine, RDBLCK. The block length is read
and saved in Acc.B and the beginning address is read and stored into locations $A002 and $A003. Data in the
current block is then brought in and stored to the indicated memory locations. After the block of data is read, the
software branches back to the BILD Routine to look for another block of data or an end of file command. When
other blocks of data are present in this file, they are processed as described above. Eventually, the end of file is
reached. End of file recognition is accomplished by recognizing an ASCII ‘‘G’’ in the BILD routine.
Recognition of ths *“G’’ provides the means for orderly exit from this routine by the execution of the RTS
instruction.

3-8 INTERRUPT HANDLING ROUTINES

The JBUG monitor program handles all three types of M6800 interrupts: Software Interrupt (SWI),
Maskable Interrupt Request (IRQ), and Non-Maskable Interrupt (NMI). In handling interrupts, the MC6800
completes execution of its current instruction, saves the results on the stack and then outputs the appropriate
vector address. At that address it expects to find the beginning address of the selected interrupt service routine
(see the reference literature for more details). Beginning addresses of the service routines are placed in the
vector locations during program development.

The IRQ interrupt is reserved for the user. In servicing anIRQ interrupt, the MPU fetches the address
$E014 from memory locations $E3F8 and $E3F9 near the top of the JBUG ROM. Beginning at location $E014
(line 83), the MPU loads the Index Register with the contents of RAM locations $A000 and $A001, then

3-11

< LOAD }

Set up ACIA for 8-Bit;
No Parity; 2-Stop Bits;
RTS =0;
Divide-by-One.

BILD
RDBLCK]
Get next Character
Get Block Length (INCHR) | _ (NCHR)

i e G ——

Save in Acc. B as Byte Test for Start-of-Block = “B"”

Count or End-of-File = “G" Get Character from ACIA
__________ Characters and Save in Acc. A

Get Starting Address (Next
2char.) (INCHR)

Put Strt. Addr. in X for
Memory Pointer and Save
in $A002 & $A003

Get next Character
(INCHR)

Store to Memory; Decr.
Byte Cnt.

RTS

FIGURE 3-7-2. Program Flow for LOAD Function

executes an indexed jump. This, in effect, maps the IRQ vector through the JBUG ROM, allowing the user to
reach his interrupt service routine by loading its beginning address into RAM locations $A000 (high order byte)
and $A001 (Iow order byte).

The MPU is directed to location $E019 (line 91) by NMI interrupts. The flow of the subroutine
located there, NONMSK, is shown in Figure 3-8-1. NONMSK can be entered due to either a Trace command
(breakpoints may be either active or clear) or because of an interrupt from the keyboard PIA, U21. If the
interrupt was not a Trace command, then the trace flag, NFLAG, is cleared and the program flows to NONMK 1
(line 100). The MPU loads the Index Register with the contents of memory locations $A006 and $A007 and
then jumps to that location to begin executing the Keyboard Service Routine, KEYDC. This address was loaded
into $A006 and $A007 during the Restart initialization sequence. The user may cause NMI interrupts to vector
to other locations by loading the desired starting address into $A006 and $A007.

3-12

Bujipuey 1dnuisiul IMS PUe |WN 10} Mold weiBoid *L-g-€ FHNDIL

400A3X% Myl

Sg.Lno ol

aunnoy Aejdsig o3 dwnp

1593y ‘Aedsig
Jasifiay (1€ "9v1d4Y
135 "1a1ulod YIelS anes

weibiosd
Jasn 03 oeg

'sydnalu|
pieogAay ajqeu]
‘sjulodyealg §|e [(ersu]

dsial

*sap03-do 118sui-ay
‘sjujodyeasg arowsy

bej4 g -gisa)

3uQ Ag yaeig uo J4 dn yaeg
‘sidnasau] pieogAsy ajgesig
*181U104 }IB1G $18S() BARS

A HIMS v

OIN niyL

J0AIIOL

6ej4 1utodyeasg
129 "9VT4N €3]

aulinoy 83IAIas
pJeoqAay 0y dwnp

saA ON

pagAay woyy
puewwWwoy)
3, saNdw]

apo|y aJes] 1041s3]
sidnasalu| NN 8|qesig
*131U10g % 2e1§ S,48S() BARS

3-13

If the Trace flag (NFLAG) was set, the program checks to see if breakpoints are active. If
breakpoints are active, it is assumed that the purpose of the Trace command was to get off of a breakpoint. In
this case, the breakpoints are installed, further keyboard interrupts are enabled, and flow is passed back to the
user program by execution of an RTI instruction. If there were no active breakpoints, it is assumed that the
Trace command was invoked in order to execute a single instruction. In this case, the stack pointer is saved in
SP and then the program jumps to the Register Display Routine.

Software Interrupts (SWI) are used by the JBUG monitor to implement breakpoints (up to a
maximum of five are allowed). Upon entry from a SWI instruction SWIR (line 107), the user’s Stack Pointer is
saved in location SP for use by the Register Display Routine. Keyboard interrupts are disabled so that the
normal Keyboard and Display scanning functions do not cause multiple NMI interrupts. Lines 109-113 cause a
16 bit decrement of the Program Counter saved on the Stack so that it points back to the instruction that was
replaced by the SWI used to make the breakpoint. The subroutine GETXB is called (line 145) to examine the
VFLAG and determine if any breakpoints are set. If there are, TZONK removes all of the SWI instructions so
that the operator doesn’t see them. The address of the breakpoints and their op-codes are saved in the
Breakpoint Table, BPTAB. The Register Display Routine is then called so that the operator can examine the
registers on the stack.

3-14

PRGE

ononl
noonog

00003
ponog
noons
onaos
pogoy
ooons
noone
gonion
aontt
noo12
noo13
onoilg
on0nts
gonie
0001v
non1a
non1e
o020
gonzt
gonze
oonz23
goo24
oonzs
nan2a
nooz27y
nnoze
0anz9
o030
non31
oonsg
o033
gonz4
0an3s
oonzy
o0nzs
noo3s
aoog o
HIIE]
nnogz
nno4:s
aood4
0onNg4s
HIE TS
ono47
00048
nongs9
aonso
0o0ns1
ooosz

1]

no1

APPENDIX 1

ASSEMBLY LISTING OF JBUG MONITOR

JBUB

NAM JBUG
+ REVY 1.8 9-6-76
>

*A MONITOR PROGRAM WITH AN INTERNAL KEYBORRD-DISPLAY
.

* AZSEMBLED ON THE EXORCISER FOR MOTOROLA

¢ INC. -- FALL OF 76

: COPYRIGHT 1976 BY MOTORDOLA SPG

* oPT .0 S¥YMBOL TABLESDOBJECT TRPE
.

*

++COMMAND SYMBOLS

++eeP — PUNCH DESIGNATED MEMORY TO AJDIO CRSSETTE
+esel - LORD RUDIO CASSETTE TO MEMORY

seoeN — TRACE ONE INSTRUCTION

»* UZES NMI INTERUPT

* N CLERRS ANY BRKPTS IF SET

* SINCE TRACE USES HRARDWARRE IT CAN

* TRACE THRU ROM AND INTERUPTS

*oeey — ZET RAND CLERR BREARKPOINTS <FIVE ALLOWED)

» IF THE RDDRESS NOT= ZERO THEN R BRKPT

> I INZERTED AT THE ADDRESS. IF THE

- ADDREES = 0 THEN RALL 5 BRKPTS ARE CLERRED.

+eeeM — MEMORY EXAMIMNE RAND CHANGE

+*+oeot - EZCAPE CRBORT

+eeeoR — REGISTER DISPLRY

* ORDER OF DISPLAY IS: PCsXsRAsBsCCs3P

>0 TO UZERS PROGRAM-ADYANCE.PROCEED.
IF ADDRESE NOT = 0 ZET USER'S PC TO
MEW YALUE AND &0 TO USER‘S PROGRAM.
IF ADDREZS=0 THEN RETURN TO PROGRAM AT
PREVIOUS LOCATION <PROCEED MODE>.
IF IN R« MEANS ADVYANCE TO MNEXT REGISTER.
IF IM M5 MEANS ADVYANCE TO NEXT MEMORY.

+
L 4
:
@
|

L AN 20 2K 2B 2% R 2N

PEPPPPPPE 000000 00D PP LIPS0 0P S0 P0 0000000000044
++CONTROL STRACK RT SA0N78ee

*+ RPAM ZTARTS AT SAR000

++ ROM IT AT LOCATIONS $EO0DO-SE3FF

+¢ ACIA IS AT $8008-3009

++ PIR IS AT $2020-8023

PLLPL000000 000000000000 50000000000000008080000000000
PLPLPIPSGIS S PPP00PEP LS00 00000000 0P00PP PS50 8600000
*

* THE RESTRRT ENTRY IS AT LABEL “RESTAR” AT

+ LOCATION $EO08D.

.

PEESBPLPP P00 0P E000 00000000 PP 00D L PP PL 0000800000000

Al 1

00054
00055
00056
0o0s?
000358
00059
00060
1111129]
noge2
000A3
00064
DO0RS
000es
00067
onoes
00063
hilirdi)
nooy1
ooovy2
nnoy3
00074
0oovs
naove
poov?y
00ovs
gooys
ooaR0
0nost
noo0s2
noon23
nno24
nooss
noonzé
aoney?
noozg
noosa
ooosn
0002l
non92
00033
anosg
noo9es
(=T
Q0037
0o009es
ngona2
gni1o0o0
o101
00102
on1o3z
00104
no10ns
no10s
nn1o07

ooe

EOOO

ECOO
E0O01
E004
E00S
E0QDS
EOOB
EQOE
EO011
EOQ13

Edi4
EO01Y

EQ19
EQIC
EOQ1E
E021
ED23
ED26
Enz28
EozA

E02D
E0Z0

ED22

JBUG

08
FF
08
FF
B0
F2
FE
A7
3F

FE
6E

BF
3D
7D
27
7F
2D
27
7E

FE
&E

BF

ROLE

AOOR
RO0OB
AO0A
RO1E
o0

ROODD
on

ROO2
66
AN18
oA
RO13
2B
cE
E226

ROOG
oo

OrRG $EO00O
-
+++oROUTINE TO CALCULATE DFFSETSeees
*+o3ETUP ETRCK AS FOLLOWS:
> B-REG (SP+2) = HIGH BYTE OF DESTINRTION ADDR
* A-REG (SP+3> = LOW BYTE OF DEST RDDR
. X—REG (SP+4+5> = ADDR OF OPCODE OF BRANCH
.

INSTRUCTION
INX
ET™ BPRDR STORE OFFSET ADDR
INX
ET™ TEMP1 ADDR OF NEXT OP CODE
B A TEMP1+1 LOW BYTES
TBC B TEMPI1 HIGH BYTES
LD BPRDR GET OFFSET RIDDR
ETRA R DsX CHANGE OFFSET
W1 STRCK AND DISPLRY

+ooREGISTERS ON STRACK CONTARIN THE FOLLOWING:
s++++INDEX — HDDR OF OFFSET BYTE THART WAS CHANGED
seoooft ACCM ~ VALUE OF OFFSET

+eeeeB ACCM — 00 - FORWARD BRANCH WITHIN RANGE

*oo0e FF — REVYERSE BRANCH HITHIN RANGE

o0 —ANY OTHER VARLLUE IMPLIES A BRANCH

*ooee guT OF RANGE.

PEPP PSP PCOPPP SV P0G 00000000000 0008200050000 000000¢

-

+ HERE ON IR INTERUPT

*

+oeeIRE INTERRUPT SERVICEeese

10 LD¥ 10v PICK UFP PEEUDO YECTOR
JMP x 0 TO IT

.

+ HERE ON HMI INTERUPT

* MARY BE TRACE OR AR TRARCE TO PROCEED

» OF A KEYEORRD INTERLPT.

»

+osoNMI INTERRLUPT ZERVICE®eess

NOMMSK =TE =P TRYE UZER-S ETRCK PTR
BER DIZNMI DISABLE NMI INTERUPTS
TET MFLAG TRACE MODE?
BER MONMK 1 NO

THMI CLR NFLHE RESET FLRG
B:R SET*E GET TAR RDDR AND YFLRAG
RER TDISP NO BPs DISPLAY REBGS
JMP TGE BP RCTIVE

+« MUET BE KEYBORRD INTERUPT
NOMNMK1 LDX MIO
JMP " DECODE KEYBORRD

HERE OM =O0FTWARE INTERLUPT
UEZURLLY A BREAKPOINT

L 2R 2R R J

*+eeZh] SERVICE ROUTINEesese
EWIR =TS =P THAYE USERE =P

Al-2

noni1o0e
nol1o9
onilo
o011t
ontiz
00n113
o114
no11s
ooile
N1y
ant1s
gni1s9
aolzo
nnizi
nol1z2
nniz3z
nolz4
naizs
go1z2e
nolay
nnizs
gnizs
anizo
o1zt
anize
no1332
oniz4
aa1z2s
ani13s
o113y
anizs
noniza
o140
o141
no142
onl4:z
nidg44
nlds
nonl4e
0147y
on14:z
149
onisa
n1sl
no1seg
an1s2
an1s4
on1ss
nn1s5e
on1sy
oo1ss
onlss
aoiéan
nniel

]

E035
E0O37
ED33
EN2A
E03C
EO3E
ED40
ED42

E044
E047

E04S
EO04R
04D
ED4F
E0S1
E0S4
ENSE
E0SH
EOSE

EOQSE
EOSF
EQ&D
ENG1
E0sz

EO&RA
EQEC

EDGE
E0VO

E0vVe
EOV4

JBLEG

aD
30
&D
cb
&H
&H
2D
27

FF
At

21
EE
RY
FE
20
ch
BF
TE

O R

D Y e |

L
o

Ny 00

t=rd

05
o2
035
1]
21
14

ROLE

02

wn B ve B N WX
o~ M

RO1E

EC
AOO3
E2 DR

ROz2
ROLD

Fr
0=
ns

a2

EH
FC

BER DISNMI DISRBLE NMI INTERRLPTS

TEX DECR PC BY 1

TET B BRCKUP PC OM STARCK
BME *+4

DEC S

DEC B X

BER GETXB SET TAER ADDR HAND VFLRAG
BER TDIZP MO BREKPTESs 0 DISPLAY REGS
*»
+ REMOVE BREPTE WHILE WE ARE IN JBUG., THEY
+ WILL BE RESTORED ON A =0 OR PROCEED
.
+ooeeooHERE TO REMOVE BREAKPOINTSeeesse
TZOMNK 5TX EPADR SAVE IN TEMP
LR R 2% GET OP CODE TO RESTORE
+ SAFEGUARRD AGRINEST MULTI DEFINED BREPTS
»
CMP R #%3F

BER GENR BRANCH IF MULTI-DEF
LI Dsi ET ADIR OF BKFPT
ETR R s RESTORE OF CODE
LD~ BPARIF GET TRELE POSITION
GENA BER RIDTD3x GET NEXT POZITION AMD DECBR
ENE TZONK GO AGAIN
TDOIEP ETE zP ZAVE UZERYE ETRCK POINTER

dMP KEYDCE o0 DIEPLAY REGE
»
s+++ZLBROUTINE TO GET NEXT THELE ENTRY
*

AODZx IM®

IN

IM¥

IEC B DECR CTR

RT= LET CALLER DO CTR CHECE

»
++eeZIE TO SET TRAEBLE ARDDR IN ¥ YFLARG IN B
*
GET*E LDX #BPTHE 2ET TRELE PBRZE ARDIE
LIR B “FLAG
RT=
*
++ZUEROUTINE TO ZET A BRERKPOINT cMAKE AN
+++oENTRY INTO ERERKPOINT TRELE> IF EMNOUGH
seooZPHCE EXIETE
» THE RCTURL BREKPTS ARE PUT IN MEMORY
* OM THE -7 COMMAND

»
ZETER BER GETHE GET TRE ARIDDR AND WFLAG
BE® T207 NO EkKPT=s GO INZERT ONE
CMP B #35 ENOUGH ROOMY
EGE CLRDE NO» CLEAR DIZPLAY AND RTE
+eseeoET TO FIRET FREE ZPACE IN TRELE®eesses
TRIG B:R RAODEE ADD 2 TO » AND DECE
ENE TRIG BREANCH IF NOT DONE

Al1-3

FRAGE 004 JBLI

aolea ++49¢¢INZERT NEW BKPT IN TRBLE®eesse

01wz EOFe 7C AROLID TZ207 INC “FLAR INCR FLRH

no1ed4 EO7S BE RAOILIE LI A BPRIDR INZERT IN TRHRELE

n1esS EOFC RV 00 ETA A D%

00168 EOFE BE ROLF LI'H A EPRDIR+1

onleyd E02t AT 01 ETA R 1s%

nies EN22 39 RT=

o2 *

go1vyn ++¢¢ZIBROUTINE TO DISABLE HNMI INTERRUPTSeese
0017 »

go1ve E024 38 3C DIZNMI LR R #%3C

n0o17T3 EGZ2s BY 2021 TR AR DIECTR INTR MAZKED CRA1 RCTIVE LOW
poi1v4 EO0S2 EBFP 2023 ZTA A ZCMCTR INTR MAZKED CR1 RCTIVE LOW
doivs E0RC 39 ETE

an1ve *

o0177 *

aniva +++eRESTART ROUTINEeeee

ooy +*

onoisn »

on1=21 E02D 2E AOVE REXTAR LDE #ERO7E

anlzz EO90 BF AOOQE =T= P INITARLIZE ETACK POINTER
oniez EO092 CE E14E LD #kEYIC G0 DECODE KEYBOARRD

nni2gd EO3S FF ADOE ET= NIDO INITALIZE NMI INTERRUPT
an1as +INITALIZE KEYBORRD-DIZPLAY PIA

nnige EO099 26 FF LDA A #3FF

o127 ENB BF 5022 ZTRA R E=ECHRER PRO-FB7Y OUTPUTE

na12s EQ9E 44 LR R

an1as EOSF RBRY 2020 TR R DIZRER FPRO-PAS OUTPUTS. PA7 INPUT
o0i=s0 EoREs 2D EO BER DIZNMIT DIZRABLE KEYEROARD-TRACE
nni=1 ++INITRLIZFE RACIAee

a0132 EoRd 26 032 LI R 3

g2z EORE EBY 2008 =TH A HCIRX REZET THE RCIAR

00134 EORZ PF ROLD CLE YFLAG INITRLIZE “FLRG&

0o13s EORC 2D 04 IMIT EiR CLFL= CLEAR DISPLAY RAND FLAGE
o135 EORE 20 27 BEZR HIDR MRITE PROMPT "-"

00137 EOQEBOD 20 4C ERR QuTDh=

nn1ss 2

0o ++++ZLIEROUTINE TO CLERR DISPLAY BUFFER AND FLAGSeses
o200 »

nozd1 EOBZ CE ARO14 CLFLG LD #DIGIN4

anzo2 EORS 4F CLR A CLERRE DIGING AND DIGINS
on2nz EOBE AT Q0 CLFLGI TR R ¥ CLERREE MFLAR AND RFLAG
nozongd Bz 0= IM> CLEARE NFLRG RAND TEMPZ
po20s EOR2 2C AOLR CP¥ #DISINd4+& END?

onz0e EQBC 26 F2 EME CLFLGY MO LODOF BRCE

onzZ0nd EOBE CE AOOC LI #DIZBUF

nozZos EOCL FF RAOLA I XKEYEBF INITRLIZE =KEYEF

ongos BEOCY 26 FF CLRDE LDAR A #%7F

o210 EQCE BY 3020 ETH AR DIZRER BLANK DISFPLAY

oozZ11l EOCS 26 11 LI A #17

onzi1z2 ENOCE CE ROOC LD #DNIZBUF

00z12 EQCE AV 00 CLEDE1 ZETA R Os ¥ CLERR OUT DIZPLAY BUFFER
nouz2i4 E0oDn 09 IM=

no21s EODI 2C RO14 LR #DIZRBLIF+2 ENDT

Al-4

PRGE

00216
noz21vy
noz21s
noz19
noza20
nnzai
nozee
nnzz23
noza4
noz2s
nozes
nnzay
nnzae
noza9
nozzo
nozat
nna22
o222
nozz4
noz3s
noz26
nnz3v
nozas
nnz29
nnz40
0241
nonz4z2
o243
00244
o245
00246
noz4v
noz4:2
noz49
nozsn
00251
gnzs2
nngs3
nozs4
nnzss
noz25s
nozsy
0nzss
n0ozss
0o02e0
o026l
npozez
No2e3
no2ed
no0z2ES
n02EG
002&7
nnzes
nozes

005

EOD4
EODB

EODY
EODS
EODC

EODD

EOEOQ

EOEL
EOEZ

ECOE4
EOQOET
EOED
EOER
EOEER
EDEC
ECQED
EOEF
EOF1
EOF2
EOF4
EOFS
EOFR
EOF?
EQOF2
EOFR
EOFD

EOFE
Ei101
E103
E104
E105
E102
E10E
El10C
E1 0D
EldF

JBUG

26
39

26
B?
39

CE
0
2k
39

CE
HE
45
43
42
43
AR
A7
A&
43
42
45
45
RAH
A7
EE
39

CE
A6
4r
03
FF
CE
08
4f
26

7F

F8

10
RO OC

0500

FD

ROOC
o0

01
12

oz

AROOC
on

RO20
E32CS

FC
20ze

BNE CLRD=1
RTS
»
+SUBROUTINE 7O WRITE PROMPT ON DISPLRY
*
HIDR LDA AR =16
TR R DISBUF ouTPUT -
RTS
.
+ZUBROUTINE TO DELARY 20 ME OR X MS
* WHEN ENTERING AT DLY1 THE XREG MUST CONTRIN
- THE DESIRED DELRY CT <RPX 13USEC-TCOUNTY
*
nLy20o LDX #%0600

DLY1 DEX
BNE DLY1
RTE

»

++++ZJEROUTINE TO BUILD TWO BYTE RDDREES FROM
+eseooF IRST LOCATIONS OF DISBUF
* ADDRESS IS IN X-REG AND “BPADR” ON EXIT

L 4
ELDx LD #DISBUF
LDAR R DX GET FIRET BYTE
REL AR
RZL R
REL R
AL R MOYE TO HIGH NIBEBLE
ORA A 1% Or WITH LOW NIBBLE
ZTA A BPAIDR-DISBUFsx Z=TORE IN BPRIDR
LDA A 22 RET ZECOND BYTE
AL A
H=ZL R
RZL A
RZL A MOVE TO HIGH NIBBLE
ORR A 3% OrR WITH LOW NIBELE
ZTA A BPADR+1-DIZBUF:* EZTORE IN RPHDR+1
LD BPADR-DISBUF.% ADDRESE TO XREG
RTE
L J
»
++¢+ROUTINE TO DISPLAY & DIGITS IN DISBLUF
»
L 4
guTD=E LD¥ #DISBUF GET =TARTING ADDRESS
OUTDS1 LDAR A 0. X GET FIRET DIGIT
INC H
IN~
ETH “DEBUF SAVE POINTER
L% #DIGTBL-1
pUuTDEZ IMX
IEC R POINT TO PRTTERN

ENE ouTbhES
CLE ECHREB BLAMNK. DIEFLRY

Al-5

PAGE 006 JBUG

0D270 E112 REe 00 LDR A 0% GET PRTTERM

00271 El14 BY 8020 TR R DISRER SET UUP SEGMENTS
0272 E117 B6 ROIC LDA A SCNCNT

0027v3 E11R B?Y 2022 TR R SCNREG SELECT DIGIT

00274 E11D CE 004D LDX #+34D SETUP FOR 1MS DELRY
00275 E120 8D BE B3R DLY1 DELRY 1 MS

nN276 Ei122 FE RO20 LD* XDSBUF RECOVER POINTER
00277 E125 8C RO12 CPX #DISBUF+6

10278 E128 27 1F BER OuUTDE3

00279 E12R 74 AOLC LER SCNCNT NOsMOVE TO NEXT DIGIT
00220 E12D 20 D2 BRA auTnEl

0nz2et *

np28e +o++:UUBROUTINE TO SCRAN KEYBORRDeeee

00283 .

00284 E12F 286 FF KEYCL LDR R #$FF

no28% E131 CE 8020 LD #DISREG

a0e22s E134 RY 00 ETRA R 0¥ BLANK DISPLAY

00287 E136 86 3F LDR R +#%3F

00228 E138 RY 02 ETRA A 2¥% ALL rROWS LOW

00289 E13R Re 02 KEYCL1 LDR R 2%

00220 EI13C 6D 00 TET O ¥

231 E13E 2R 08 BPL KEYCLZ2 KEY DOWNT

00292 E140 2B 40 ADD R #64

noR93 E142 AY D2 STR A 2% SELECT MNEXT COLUMN
00294 E144 24 CO AND A #3C0

no233 El4s 26 F2 ENE KEYCL1 LAET COLUMN SCANNED?
00296 E148 39 KEYCL2 RTE HO KEY FOLUND

00237 E149 236 20 OUTDE3 LDR A #%$20

o293 E14B BY ROIC ETR R Z=CHCNT INITARLIZE SCNCNT
nnz99 *

nn300 ++ooROUTINE TO SCAN AND DECODE KEYROARDeese
o201 *

00302 E14E 23D DF KEYDC RB:IR KEYCL

o203 E150 27 RAC BER OuTD= MO KEY CLOSED

00204 E152 28D 89 BIR nLyz20o

00305 E154 CE 2020 . LD¥ #DISRES RESTDORE &

00306 E1S57 26 0t LIR A #%01 ZETUP =CAN FOR FIRST ROW
00307 E159 AY o2 ETA A 2eX

00302 E1ISR 2D DD KEYDC1 BSR KEYCL1 ZCAN KEYRORRDSsGET KEY
go30% E15SD 26 0OR BNE KEYDC2 KEY FOUND

o310 EISF AG 02 LR A 2% CLERRS HMMI INTERRUPT
003211 E161 81 20 CMP R #3320

00312 E163 27 99 BER ouTDE LAZT rOW

ng313 E165 &8 02 RZL 2 X SHIFT LEFT

00314 E167 20 F2 ERA KEYDC1

00315 E169 SF KEYDC2 CLR B INITRLIZE COUNTER
00216 E16R CE E3DC LD~ #KEYTEBL

00317 E16D A1 00 KEYDC3 CMP A De¥ ZEARCH TABLE

00218 E16F 27 09 BERQ KEYDC4

00319 E171 8C E3F4 CP¥ #KEYTBL+24 EMD OF TRARLE?T
00320 E174 27 61 EER KEYDOF MO KEY FOUND IN TAERLE
00221 E1VR 02 IN®

on322 EIVY SC IMC B HIOYANCE

0323 EI178 20 F2 BRA KEYDC?3

Al-6

noz24
anz2s
no3ze
on227
nn32s
00229
no330
ne331
no3z2
00233
nn3324
nn335
00336
00337
no338
0nz39
0240
o241
nnz4z
nnz42
nz44
0Nz45
DO034%
00247
nnz4:3
n0nNz349
na2sn
00351
nonNzse
0n2532
noz54
noz5s
aozs 6
no3s

DDSED
00261

00370
I'I I-I 37 1

(1]1)rg

E17R
E17C
E17E
Ei121
E183
E135
E1g2
Ei12R
E13D
E13F
E192
E193
E196
Ei198
E19B
E19D
E1RD
E1R3
E1R&
E1R?
E1RA

E1RC
E1RF
E1EBQD
E1BR1
E1EE
Ei1B4
E1B&
E1E2
E1RR
EL1EBC
E1RBE
E1CD
E1CZ

2 E1C4

E1CE
E1C2
EiCC

EICE
E1D1
E1D4

JBUG

8D
26
BD
C1
2E
FE
E7
8C
26
7C
g
FF
20
S0
26
7C
ED
FE
ik
FF
20

20

20
20
=41
20

20

BD
ED

t=qy)

ED
BI
ED

B3
FC
EODD
oF
27
AN1AR
on
ROOF
=)
AD14

RO1A
2F

ARO173
F5

RO15
E2VE
RO1A

RO1A
ch

E195

FER
on
nE
14
1E
o8

37

41
42
48

EQC4
E395
EQDT

KEYDC4 BER KEYCL WRIT FOR KEY RELERSE
BNE KEYDC4
JER DLy20 DELRY 20 MIEC
CMP B #30F
BT KEYDCS
LI *KEYBF POINTER IN DIZBLUF
ETR B 0¥ =TORE KEY YARLUE
CP¥ “DIZBUF+3 4 DIGITES IN?
BNE KEYDC? NO
INC DIRING YE=

KEYDCHA IMX
ETH “KEYBF
ERRA KEYDOF

KEYDCY CPX “DISBUF+? 2 DIGITS INT
BME KEYDCH
INC DIGINS ZET FLAB

JER MDIE1 DISPLAY NEW DATA
LD YKEYEBF
DEX BACK UP POINTER

ETH “KEYBF ERVE

BRHA KEYDOF
*
+ HERE TO DIEPRTCH TO A KEYBOARD OPTION
*e

*
KEYDCS LIDX #IMPTRE-32
EYDES IMX ET TO RDDRESE IN .IMP TARBLE
INX
IEC B
ENE KN DCS THIZ ONET
AMP O» = YEE
JMPTARB ERA KEYDLC2 F KEY
ERR KEYDCS L KEY
ERA KEYICH N KEY
ERR KEYIDCE V¥ KEY
ERH KEYDCLC M KEY
ERH KEYDCD E KEY
ERR KEYDCE F KEY
ERA KEYDCF - KEY

»

+ HERE OM P EKEY
4 FUNCH MEMORY TO ARUDID CRSSETTE

-
KEYDCE =R CLRDE CLEARR DIZPLAY
J=ER PHCH FUNCH DRTR TO CRESETTE
ERR KEYTDICH
>

+ HERE OMN L KEY
»> LOAD MEMORY FROM RUDIO CRSSETTE

.
KEYDC? JEZR CLRD=E CLERR DIZPLAY

JER LORD LOARD DRTR FROM CAZZETTE
KEYDCH JER HIIR WRITE HERDER

» RETUPH TO0 DIZPLAY HERDER

Al-7

PRGE 008 JBUG

00378 E1D?Y 7E EOFE KEYDOF JIMP ouTDs DISPLAY HERDER
0o3v9 >

00380 + HERE ON N KEY
00381 * TRACE OME INSTRUCTION
nn232 »

00333 E1DR 7F RO1D KEYDCR CLR YFLRG
00334 E1DD 7C ARO18 TRACE INC NFLRG

00335 E1ED0 86 34 LDAR R #334 SET UP HARDWRRE TO TRACE
003386 E1EZ2 BY 2021 ETR A DISCTR CAZ2 LOW STRART TRACE
00327 E1ES 3B RTI

on3zs *>

oN2az3 + HERE OMN V KEY

o320 4 IF RDDRESS HAT 4 DIGITS INSERT R BRKPT
noz21 4 AT RDDRESE OTHERMISE CLERR ALL S5 BRKPTS
00332 »

00323 E1E6 VD RO14 KEYDCEB TET DIGING 4 DIGITS IN7?

00294 E1E9 26 05 BNE *+7 YESs INZERT BP

00295 E1ER 7F AO1D CLR YFLAR

00395 E1EE 20 EV ERA KEYDOF 50 DISPLAY

n0397 E1F0 3D 74 BER KEYD3F YEESs INSERT BRERKPOINT
00333 E1F2 BD EORA JER ZETBR

00299 E1FS 20 EO BRA KEYDOF

on40nn »

no4o1 + HERE ON M KEY

00402 » DIZPLRY MEMORY COMTENTS

00402 -

onand E1F? VC ROL16 KEYDCC INC MFLRAG SET FLARG

ood40s E1IFA 7D RO14 T=T DIGING 4 DIGITE IN7Y

nod40e ELIFD 27 DB BER KEYDOF MO

00407 E1FF 2D &8 B:R MDIS YESs DISPLAY MEMORY
00403 E201 20 D4 BRA KEYDOF

o409 *

00414 + HERE ON E EKEY

no411 - EZSCAPE <RBORT> UZER PGM

ongi12 .

0n413 E203 VE EORC KEYDCD JMP INIT CLERR DIISPLAY AND FLAGE
no414 *

0n415 + HERE [N R KEY

no41e * DIZPLAY UZER REGIZTERE

00417 .

o418 E206 FC RO17 KEYDCE INC RFLRE REGIEZTER DIZPLAY
00413 E202 BD E2C6 JER REGET

nn420 +« MUTURL RETURM TO DIEPLRAY

no4z1 E20C 20 C9 KEYDCG BRA KEYDOF

nodeze *

onggz3 + HERE 0OM & KEY

ondz4 * IF IN “M° DIEPLAY NEXT MEMORY LOCATIOM
00425 * IF IN “R° DIZPLAY MNEXT REGISTER

00d26 * IF 4 DISGIT RDDRELE WARE PUNCHED G0 TO
on4z2y * ADDRESE IN USER PROGRAM

no4z2 4 IF 4 DIGITE WEREN'T IMPUT RETLURN TO UZERS
00429 * PEM AT CURRENT UZER PC <PROCEED)
o430 *

nN431 E20E 7D RO1e KEYDCF TET MFLRAG MEMORY MODET

Al-8

nn432
00433
no434
no435
00436
00437
00433
0nNg439
no440
00441
o442
00442
00444
o445
nn446
00447
00443
00449
on450
00451
00452
00453
nn454
no455
004356
00457
nn45a
no459
nog4e0
00461
nogdse
THD Y23€
nn4ed
00465
10466
00457
no463
o459
00470
no471
nog472
ong47y2
00474
ang4ss
on47e
TIE Fary
00478
00479
00420
00431
oo4a2
an4a3
god24
00425

no9

E211
E213
E216

E218
E21B

E21D
E220
E222

E224
E22k
E227
E229
E22C
E22E
E231
E234

E236
E239
E23B
E23D
E23E
E240
E242
E245
Ec46
Ec48
E24B

E24D
E24F
E252
E255
Ee57
E25A

E25EB
E25D
E25F

E2E1
Eck4
E2EB

E2pS
E2elC
E25D

JBUG

b=d)
7D
26

7D
F={

BD
27
20

8D
30
A7
Fb
E?
BD
BD
27

FF
EE
A6
26
a6
A7
FE
32
A7
ED
26

26
BY
Fé
26
B?
3B

2D
2D
[=41]

BD
=31

FE

43
RO17
49

ARD14
g

E063
2B
BS

40

113
RO1E
05
EQC4
E0S3
17

AOLE
00
11

3F
00
RO1E

nz
EOSE
ES

20
2022
B022
3D
2023

47
12
RE

E2D?

A&
EOE4

RO1A

BNE
TET
BNE

KEYD1F
RFLAB
KEYD2F

YES

« IS IT AR 607 OR “PROCEED” 7

TST
BNE

DIGING
KEYDCJ

+ HERE ON PROCEED

JER
BEQ
ERR
+ HERE ON B0
KEYDC.J BSR
TEX
ETR R
LDR B
TR B
JAER
JZR
BEQ

GETXB
T=C
TRRCE
MODE
KEYD3F

By X
BPARDR
Se X
CLRDE
GETXB
T:C

4 DIGITE IN7
N0 PROCEED MODE

GET RDDR RND VYFLAG
BRANCH IF NO BRERKPOINTS
GO0 TRACE

GET RDDR

MODIFY LOW BYTE
GET LOW BYTE
MODIFY HIGH BYTE
CLERR DIEPLRY

GET TAB RDDRYXYFLAG
BERANCH IF NO BP

+*+++INSTRLL ALL BREAKPOINTZeeee

TGB ETx
LD
LDR
P=H
LDR
=TH
LD
PUL
=TR
JER
BNE
+ PREPARE TO
TRC LDA
=TH
LA
LDA
TR
RETI

i i (e i

I

DI DD

BPRDR
O %
HE3

#B3F
Os %
BEPRDR

o X
RDD3X
TER
RETURN TO
«+$20
SCNREG
SCMNREG
#8320
SCNCTR

+ HERE TO DISPLRY NEXT

KEYD1F B:=R MINC
BER MDISO
BRA KEYDCH

+ HERE ON DISPLRY NEXT

KEYD2F JER REGET1
ERA KEYDCG

KEYD3F _IMP BLDX

.

S

ZRAYE IN TEMP
SET ARDDR OF BP
GET OP-CODE
TRYE

IMETARLL R ZWI

ET BRACK CURR TAB LOC
SET BRCK DOP-CODE

ZRAYE IT IN R TRELE
GET NEXT TRR LOC

MORE TO DO7

UZER

SETUP FOR KB INTR
DUMMY RERD TO CLERR INTR

ENRELE KB INTR
BRCK TO UZER

MEM LOC

MEMORY INCREMENT
MEMORY DISPLRAY

REGISTER
REGISTER DIESPLRY

++ZUEROUTINE TO DIEPLARY MEMORY RAMD CHANGE ITee

>

-

MDIE LD*
IN®
IN=

“KEYBF

PREE

01043e
00427
o043
o043
00430
00421
angsg
00433
00434
00435
n049e

D427

00493
00499
nosao
00501
nosaz
oosn3
00504
nas0s
Nas0ne
00507
nosns
00309
nns1n
00511
00512
nos13
0ns14
nos1s
nos1é
00517
ngs1a
nos19
0520
nos21
00322
nnsa3
nos524
00525
00526
00527
nsa2s
o529
00530
00531
00532
00533
00534
00535
00536
00537
00538
nos539

010

E2eE
E271
E273
E275
E277
E27R
E27D

E2YVE
E281
E2B2
E283
E284
E2285
E288
E28R
E28LC
EcB8E
E290
E293
E2S6
E299

E29R
E29R
E29D
E29F
E2R0
E2R1
E2A2
E2R3

E2R4
E2R6
E2RY
E2RR
E2RD
E2RF
E2B2
E2B4
E2B6
E2B9
E2BB
EZBD
E2BF
E2C2
E2CS

JABLIG

FF
2D
Ak
8D
E7
F7
39

Fé
58
58
S8
58
FA
&
E7
RE
2D
B7
F?
7F
39

16
C4
84
44
44
44
44
39

8D
08
FF
B6
8D
CE
A7
E7
B6
8D
A7
E?
7C
7C
39

RO1R
F3
an
23
RO10Q
A1l

RO12

A013
nc
oo
an
oR
ARO10
ARO11
AO15

oF
Fo

ROOA
ROOR
EB
ROOC
oo
01
ROOB
DF
o2
03
RO14
RO16

MDI=EO

*

T
BER
LDR
B:R
=TH
=ETR
RTE

I

ool o)

+ SUR TO PUT

*
MDIE1

»

LDA
REL
REL
AL
REL
OrR
BER
TR
LDA

=R
TR
TR
CLR
RTE

oo b i

- 1 I d

“KEYRF
KEYDZF

O ¥
MDIS2
DISBUF+4
DISBUF+5

LUPDATE POINTER

SET ADDR OF MEM LOCATION
RET MEMORY DATA

FORMAT DRTA

STORE DATA IN DISBUF

NEW DRATR IN MEMORY RAND DISPLAY IT

DISBUF+£

DISBUF+7
KEYD3F
Oa X

Qs ¥
MDISZ2
DIZBLUF+4
DISBUF+5
DIGINS

GET NEW DRTH

DRATA TO HIGH NIBRLE

OR WITH LOW MIRBBLE

BET MEMORY ADDR ARGAIN

EZTORE NEW DRTH

RCTURL DATAR IN MEMORY

FORMAT

RCTURL DATA 7O DISPLAY

ZETUP FOR MEW DRTR ENTRY

++ZUBROUTINE TO MOYE LOW NIBBLE OF A TO B AND TO
+oeoMOVE HIGH NIBBLE OF A TO LOW NIBBLE OF A

L
MDIZ2

.
»
4
MINC

TRE
AND
AND
LSR
LER
LER
LER
RTS

BSR
INX
ETX
LDA
BSR
LDx
TR
TR
LDA
BSR
TR
TR
INC
INC
RTS

I2ITITITIW™

WD DWD

#B0F
#3F 0

KEYD3F

TEMP1
TEMP1
MDIS2
#DISBUF
0s X

1sX
TEMPi+1
MIDIS2
2 X

3 X
DIGING
MFLRG

Al1-10

MASK LOW NIBBLE
MAZK HIGH NIBELE

HIGH NIBBLE TO LOW NIBBLE

SUBROUTINE TO INC MEMORY DISPLAY AND CH&7?

SET MEMORY ARDDRESS

SETUP FOR NEXT MEMORY LOC
SRAYE

GET HIGH BYTE

FORMAT FOR DISBUF

PUT IN DISPLAY BUFFER
GET LOW BYTE
FORMAT

FOUR DIGITS ENTERED
SETUP FOR MEMORY EXAMINE

00540 »

00541 *

nnS42 ++ZLBROUTINE TO DISPLAY REGIETERE OM UEZERE ETARCK
00543 »

0544 + ORDER OF DIEPLRY IS: PLsXsHyBsCCH» =

00545 * TEMP2 E=TRRTE AT -2 HAND RDVANCES TO +32 AND
00546 * CORRESPONDE TO THE ORDER OF DIZPLAY
00547 *

o543 E2C6 86 FE REGET LDA R #3FE INITALIZE COUMTER
noS49 E2C2 BY RO19 =TR A TEMPR2

nOsS0 E2CB FE ROOR LD =P GET UZER-E =P

n0s=S1 E2CE 86 06 LDR R =36

0nssS2 E2D0 08 REGETO IMNX FOINT TO TOP OF =TACK
n0S52 E2D1 4R DEC R

NSS4 E2D2 26 FC BNE REGETO

nnsssS E2D4 FF AOOA B TEMP1 TEMP » LOCRTION

n0s56 E2D7 BD EOC4 REGET1 JZR CLRDE CLERR DIEPLRAY

a0s5? EZDR FE ROOA LD TEMP1 REETORE X

ons52 E2DD Be ROLD LDA A TEMPZ

00559 E2E0 2B 0E BmI RERET2 PC HMD X REBRE

ansSe0 E2E2 31 03 CMP R #$3 IZ IT EP7

o0s561 E2E4 27 21 BEDR REGET2 YES

00562 E2E6 81 04 CMP A %4 ALL REGE OUT ETART OVER
D0Se3 E2ER 27 DC BER REGET

00564 E2ER A& 00 LR A DX OUTPUT RsBsLCC

00565 E2EC 2D 2E BER REGETS DIZPLAY OME BYTE
00S66 E2EE 20 21 BRA REGET4 UPDRTE COUNTER

00567 E2F0 26 REGET2 PEH H ZRYE R

00Se2 E2F1 A6 00 LEBR R DX GET HIGH BYTE

00569 E2F3 2D 27 BER REGETS DISPLRAY

o0sv0 E2FS FE ROOR LDx TEMP1

00371 E2F8 ARe 01 LDA A 1s2 GET LOW BYTE

00s7Y2 E2FR 3D 2B BER RERETH DISPLRAY

00573 E2FC 32 PUL A RE=TORE R

00574 E2FD 40 IMC A A REBT {R=0@

00575 E2FE 27 11 BE®! REGET4 YES

nasyse E300 23D 12 BER REGETH DEC POINTER

00577y E302 BD E271 JER MDISO

0osys E305 20 0R BRR REGET4 UPDRTE COUNTER

N0579 E307 B6 RAODB REGST3 LDA A =P %P TO DISPLAY

00320 ER0R 8D 10 BER REGETS DISPLAY

0531 E30C B RODI LIRA R E=P+1

o582 E30F 8D 16 BSR REGETH

0583 E311 7C AD19 REGST4 INC TEMPZ2 UPDRTE COUNTER

00534 E314 FE AROOR REGETS LDX TEMP1 INCREMENT X

00535 E217 09 DEX

005236 E318 FF ROOR ET¥ TEMP1 SAYE X

00537 E31B 39 RTS

nnsas *

on35a9 ++3IUBROUTINE TO MOVYE TWO DIGITS IN R TO FIRST TwWO
00590 +o0o OCATIONS IN THE DISPLAY BUFFER (DISBUF)
00521 *

n0S92 E31C BD E29AR REGSTS JER MDIS2 FORMAT

00593 E31F CE ROOC LDX #DISBUF

Al-11

00524
00535
00395
00537
nos9s
00599
0000
onenl
nosne
00e03
s ng
0005

ooeas
noein
noell
gnele
o0s13
noe14
0015
=
001y
0os1s

(I3
n0E41
noegl
nned2
0043
Qe
0045
0 0Eds
I~

MMMMM MMM mmmmmmmm

nigz

mmm
PN Y

o ra ng

T L0

mmm
L3Oy OO
e Ny N

=l (|

R R) B, I I

[4]

[}
L CUIN AW e e o s B N ¢ e B o < BN RPN O Y

[5 ALY

2
=
=
3
3
3
3
3

&
=
§
T
1
-

[DOR)
o
¥y}

mmm

00 D) 0O

=g = =)

mix I

R R P I o B B e I kI o | I:v_’l e 0 O o B » o R]

JELS

R?
EV

239

on
01

ED
CE

=41]

E29A
HODE

51
2008
NIFF
54
AO0S
HODZ
AO04
ADD2
nz
FF
42

=31

o M= s RN I I » e B O 0 3 N S

[e B
a1
g

4

Y ORO19
CE ROOZ2
20 2C
2D 2R

ROO2
25
YR RAO1S
Fa
ROOZ
no1s
20 1E
ROz

- ROO4

oe C1
=1
=

=5

Fe 2002
57

REGETY

*

++ZUBROUTINE TO MOYE TWO DIGITS IN A TO SECOMD TWO L

ETR A
TR B
RT=

(e ¥
1a%

FIRST DIGIT<OR THIRD)

ZECOND DIGIT

*+o¢| OCATIONS IN THE DISPLRAY EUFFER <DISBUF>

»
REGSTE

*
*

+¢++SUEROUTINE TO PUNCH DATA TO CAZSETTE TAFEeeess
+ AUDIO CRAZXETTE WITH KC

+*
FPMCH

FLUNDIO

PLUMDZS

PUNDZNO

*

+++ = IBROUTINE

L4
OUTCH
OouTct

dER
LI«
ERR

LR R
=TH R
LI
BEEZR
LDA
SUE
LTA
=B
EER
LDA
LDA
BEIR
P=H
TEH
BEZR
FLIL
INHC
ZTH
LD
BER
EZR
LI
BSR
DELC
EME
ETH
LD
BZR
LI
DEX
CPH
EME
LDA A

I D™

I

d

e (e ¢ i o]

F=H E
LA E
AR E

MDIZ2
#DIZBUF+2
REGETY

#X0101000
ACIARS
#R02FF
PMLDR
ENDA+1
EEGR+1
ENDH
BEGH
FUMDZS
+3FF
R 5
OuTCH

PLIM

TEMFZ
#BEGR
PLIM
PLIM
EEGR
FLIM
TEMPZ
PLMDZ0
BEGH
#fk00192
FHLIE
EERR

ENDA
FLND1 O

A E

TO PLMCH

ACIAE

Al-12

FORMAT

THIRD 2 FOURTH DIGITS

ETANDARD

1 2 BIT CHR PAR 2

DIVIDE BY 16 WITH RTS MNOT HIG

FIUMNCH LEARDER
FORM END TEMP REG

DIFF LEEE THAM 25%
YEZs EZET BLOCK=2%56

FLINCH R

GET BYTE COUNT
HROJIUET IT

FLUMCH ADDR

FLUNCH DRTA

DONE
MO
ZRAVE

YETY
#“REOSMALUE
FUNCH 25 OMEX
FESTORE =R

HO

FPLMCH 15

DIATA BYTEeees

ZAVE B

I DATR RERDY YET?

ZT0OP

00e42
nos49
0050
nnesSl

noesSe

00653
0ns54
o055
0056
00R5S7V
00e5Ssa

ODERT
NSRS
osy 0
0oa71
Nasv72
Oosv2
noevy4

0 o0 IZIJ

= o
Ty T
Lo

;?: |:I".
SRR RN Yy}

T T
L

novoa
007 o1

013

E37F
E3S80
E=282
E33%5
E386

E3237
E3R9
E38B

EZ3C 3

mmmmm
LTV SV P Y
o000 o0 00 00
£ M0 = TS
W o 00
LYW SN0 I e B o

E395

E297
EZ9R
E33LC
EZ2E
E3RD
E2R2

E3H4Z

E2RS

EZRATY
EZR2
EZRY

. EZREB
¥ EZRE

E2RO
E3E3
E3Be&
E3R2
E2EHR
EZEER
E3BC
E2EE

mmm
(SN N]
D I B |
$H WD

JBUG

57
c4
B7
33
39

20
By
FE
=30
H7
s
SA
=4
20

no
EF

FF
ES

15
RONZ
10
RONZ
RO02
ng
na

DA

g00s

FA

*

AZR B

BCLC ouTCc1
TR A ACIARD
PUL B

RTE

“MIT NOT RERDY YET
OUTPUT ONE CHARR
RESTORE B

+ ZUE TO PUNCH ONE BYTE PTED TO BY XREG.
+ ALEOD INCREMENTS XREG BEFORE RETURN

»
PLIMN

»

LA R X

BER aOuTCH
IN®

RTE

*++PLINCH LERDER®ee

»
PNLDR

*
»

sesoe+ T IRROUTINE TO LORD

*
s
LORD

EILD

RDELCK

ETBLCK

L 4

+*+oeeIMPLT

.
INCHR

LA R #%FF
BER OuTCH
DEX
EME FPHLIR
RTE

LA H

=TR A RCIAE
BER IMNCHE
CMF AR ="E
BE® ROBLCE
CMP AR #7015
EME BILD
RTE

BER INCHR
TARE

INC R

BEIR INCHR
TR A EBEGRH
B:ER INCHRE
ZTH A EEGR+1
LD EEBH
BER INCHR
ETR A =

IMN~

DEC B

ENE ETRLECE
ERRA EILD

LR A HACIAS
A= H
BCC INCHR

Al-13

#x0001 0000

GET DHTH
PUMCH IT
UPDRTE RIDDR

OUTPUT ALL ONEE
ouTPUT

DECREMENT COUNMNTER

IF NOT DOME THEM LOOP

DATA FROM CASSETTE TRPEeees

DIVIDE BY ONE

ZTRART OF EBINRRY?Y
YE=
END OF FILE®

YE=

GET BYTE COUNT
FIUT IN E

ADJIUET IT

GET EZTART ARDIDIR HI
GET ZTART RDDR LO
ARLODR TO
MOT DOME
=TRE IT
INC RDDR
DEC BYTE COUNT
MOT DOME

RER

ONE CHR TO R REGessess

DARATH RERDYT?Y

PRGE

novoz2
007 o3
007 04
00705
00706
00707

ooy o8
ony o9

on7@10
novit

[ren Rt B]
oo R e [men

Y BV R |

s
$H WM

oovr1s
0ov1e

novly
onvis

aov1sa

D14

E3C6
E3C9

E3CAH
E3CB
E3CC
E3CD
E3CE
E3CF
E3D0D
E3D1

E3D2
E2D3
E3D4
E3D5S
E3D6
E3D7
E3DR
E3DS

EZDR

E2DB

E3DC
E2DD
E3DE
E3DF
EZED
E3E1
E3EZ2
E3E3

EZE4
E2EDS
E3E6
E3E?
E3E2
E3ED
EZER
EZEBR

E2EC
EZED
EZEE
E2EF
E3F0
EzF1
E3F2
E3F3

JBUG

B6 3009
29

40
e
24
30
19
12
nz
va

oo
13
08
03
46
21
1] 3
nE

BF
7F

01
02
42
a2
04
44
a4
08

43
88
ce
C4
ce
1
21
41

10
50
20
nn
20
&0
RO
ED

LDR A RCIRD INPUT CHAR

RTS
*
+o+0oSEVEN SEGMENT PATTERNS — USED BY OUTDSeess
» 0 1 e 3 4 5 =) 7

DIGTBL FCB $340:573,524+330-519-%12,802,878

. 2 3 A B C U E F
FCRB F00>513+508,503»346:,821,506,30E

» - BLANK
FCB $BFs37F

*eeokEY VALUE LOOKUP TRABLE - USED BY KEYDC

» 0 1 = 32 4] = T
KEYTBL FCPR B01,502» 542,382, %04, 3544,834,808

. a E A B C I E F
FCR 42,388, BCBy $C4FC2H»3C1 581,541

* P L M K4 M E 4 E
FCB P10 350530, 8D0-F20+F60:3R0-FE0

Al-14

PAGE 015

00720
nov21
oora22
00723
a07z24
novas
naveé
nov2vy
aov28
nonyw29
0ov3n
00731 E3FR
nn732 E3F8
niv33 E3FA
00724 E3FC
00735 E3FE

JBUG

3020
2021
2022
2022
20082
2009

ED14
E032:
E019
EOSD

++4¢+o+kKEYBORRD-DIEPLAY REGISTER RASSIGNMENT

»

DIZREG EQU
DIZCTR EQU
EZCNREG EQU
SCNCTR ERLU
ACIRSE EQY
RCIARD EQU
*
+*+++ INTERRUPT
»*
ORG
FIOER
FDE
FDB
FIDB

$3020 DISPLAY SEGMENTS RERISTER
33021 DIZPLAY ZEGMENTS CONTROL
$3a0ee KEYBORRD-DISPLAY SCAN REG
2023 KEYBORRD-DISPLAY SCAN CTR
$2008 ACIA CTRL OR STATUS REG
FR009 RCIA XMIT OR RCY REGE
VECTORSeses

BEIF8

I0 IRR INTERRUPT VECTOR

ZWIR ZOFTWARE INTERRUPTY VECTOR
HOMMEK NMI INTERRUPT YECTOR
REZTHR RESTART INTERRUPT YECTOR

Al-15

PRI5E

0oyay
0a73s
0ov3s
noyv40
0o7v41
nov4e
0n0v4:3
nnv44s
nnv45
00746
noy47
nonyv4a
noy49
anyso
novsl
noyaz
noysS3
00754
0a75s
anvse
novs?
n0yss
0ovs9
00ve0
00761
0nvyes
00ve3
0o0ve4d
0Oves
g 1)
0076y
00768
NOvVe9
0avyvyo
onvyt
anyre
ooy y3
onyy4
aovys
oovve
noyvyy

016

ROOOD

ROOOD
AoO2
Aoo4
A0OE
Ro0R
RO0R
ROOC
RO14
RO1S
AO1&
al1h iy
RO13
A019
ADLIA
AOLIC
ROLD
AROLE
ROZ20

Roz22

JARLIS

o002
onn2
nong
oaoz
agooz
onoz
nooa
000l
0001
0001
0001
0001
goot
aaoe
noo1
ono1
noog
oooz2

D00F

*

+oeeooo¥VARIABLE PARAMETERSeeseee

. ZYSTEM RAM
*
+»
+ CAUTION:
*
*
+ CORRECT OPERATION
.

ORG FROQ0
+ THE U=ER CHNM
+ ROUTINE HERE.
oy RME Z
BEGA RME c
ENDA EME =
NID FMB c
=P RME c
TEMP! RMB (=
DISBUF RME 2
DIGIN4 RMB 1
DIGINE RME 1
MFLARz RMB 1
RFLAG RMB 1
MFLREZ RMB 1
TEMPZ2 RMER 1
XKEYBF RMEB 2
SCNCNT RMB 1
YFLAG RMB 1
BPARDR RME 2
*»DZBUF RMB 2
>

IF THE USER MODIFY‘S THIS PROGRAM

CGENERARTES HIT OWN PROM> THE ORDER OF SOME
OF THE FOLLOWING YARIARBLES IS CRITICAL FOR

STORE THE RDDRES OF HIS IRG

IRR INTERRUPT POINTER

FPUNCH BESINNING ADDRESE

PUNCH ENDING ADDRESS

MMI INTERRUPT POINTER

TEMP =TRCK BUFFER

ZCRRATCH

DIZPLAY ERUFFER

4 DIGITE ENTERED FLRG

8 DIGITS ENTERED FLREG

MEMORY CHRANGE MODE FLAG
REGISTER DISPLRAY MODE FLRAG
TRACE MODE FLAG

COUNTER IN REE DISPLRY. RUDIO
MEXT LOC IN DISPLAY BUFFER
KEYBOARD ~DISPLAY SCAN COUNTE
CONTRINS THE NBR OF ACTIYE BR
TEMP RDDR OF BPLXREG TEMP
xREG TEMP LOCARTION

BREAKPOINT AND OPCODE TRBLE
ERCH BRKPT REQUIRES 3 BYTES:»
BYTES 1,2 HARE THE RDDRESS OF THE BRKPT
BYTE 3 IS THE REPLRCED OF CODE

ARE VYARLID

PTRE

RMB
END

15

Al-16

>

>

-

4

4 CHECK YFLAG TO SEE HOW MANY OF THE BRKPTS
>

*

B

BREARKPOINT % OP CODE THBLE

PRGE 017 JBUB

I0 ED14 KEYCL2 E148 KEYD3F E266 DIGTBL E3CA
MONMSK E019 OUTDS3 E149 MDIS E269 KEYTBL E3DC
TNMI E023 KEYDC E14E MDIS0 E271 DISREG 8020
NONMK 1 EO02D KEYDC1 E15B MDIS1 E27E DISCTR 8021
SWIR EO032 KEYDC2 E169 MDIsS2 E2%R ZCNREGS 8022
TZONK E044 KEYDC3 E16D MINC E2R4 SCNCTR 8023
ENR EO0S4 KEYDC4 E17R REGET E2Cé ACIAS 2008
TDISP EO0S8 KEYDCE E192 REGETO E2D0O ACIAD 8009
RDD3X EDSE KEYDC? E198 REGST1 E2D7 1oV ROOD
GETXBE EO063 KEYDCS E1RC REGST2 E2F0 BEGA AD0R2
ZETBR EOD6RA KYDCS E1L1RF REGST3 E307 ENDR ROD4
TPIG EO72 JMPTRB E1B6 REGST4 E311t NIO ADOG
TZOT EOV6E KEYDC8 E1C6 REGSTS E314 3P RODS8
DIZNMI EO024 KEYDCS EICE REGETS E31IC TEMP1 ROOR
RESTAR EO0SD KEYDCH E1D4 REGST? E322 DISBUF ROOC
INIT EORC KEYDOF E1D7 RESST6 E327 DIGING RO14
CLFLG EO0OB2 KEYDCA E1DR PNCH ER2F DIGINS ADLS
CLFLG1 EOB& TRACE E1DD PUND10D E339 MFLRAS RO16
CLRDS EOC4 KEYDCR E1E6 PUND2S E349 RFLAG AOL17
CLRDS1 EOCE KEYDCC E1F7 PUND30 E360 NFLAS RO18
HIR EOD? KEYDCD E203 OuTCH E37AR TEMPZ2 RO19
DLY20 EODD KEYDCE EZ206 OUTC1 E37B “KEYBF ROIR
DLY1 EOEOQ KEYDCG E20C PLUN E387 ZCHCNT ROLC
BELDX EDE4 KEYDCF E20E PMLDR E32D YFLAG AO1D
OUTDS EOFE KEYDC.) E224 LORD E395 BEPRDR RO1E
OUTDS1 E101 TR E236 BILD E39R “DSBUF A020
OUTDE2 E10B TG0 E24D RDBLCK E3RS BPTAR RO22
KEYCL E12F KEYDIF E25R ZTBLCK E2B6

KEYCLY E13R KEYD2F E261 INCHR E3CO0

Al-17

APPENDIX 2

ASSEMBLY DRAWINGS AND PARTS LIST

MEK6800D2 Keyboard/Display Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 3 Integrated Circuit: Peripheral Driver MC75452P U7, U8, U9
2 6 Integrated Circuit: 7Segment LED Display Litronix DL704 Ul — U6
(Litronix or Monsanto) Monsanto MAN72 or 74
3 1 Integrated Circuit: Dual 4-Channel Data Selector MC14539BCP U10
4 1 Integrated Circuit: Dual Monostable Multivibrator MC14538BCP Ull
5 2 Integrated Circuit: Dual D Flip-Flop MC14013BCP Ul12, U18
6 1 Integrated Circuit: Quad 2-Input AND Gate MC14081BCP Ui13
7 1 Integrated Circuit: Quad Analog Switch MC14016BCP Ul4
8 1 Integrated Circuit: Quad Op-Amp MC3301P Ul16
9 1 Integrated Circuit: Dual Line Receiver MC75140P1 u17
10 1 Integrated Circuit: Seven Stage Ripple Counter MC14024BCP U19
11 1 Integrated Circuit: Analog Multiplexer/Demultiplexer MC14053BCP U20
12 7 Transistor, PNP MPS2907 Q1 — Q7
13 1 Capacitor: 100uF, 16 volts Cl1
14 14 Capacitor: 0.1uF C2, Cs, C9, Cl10, C14,
Cl16-C23, C25
15 2 Capacitor; 0.05uF C6, C13
16 3 Capacitor: 0.001uF C3,C4,C24
17 3 Capacitor: 0.002uF C7, C8, Ci5
18 1 Capacitor: 2400 pF Dipped Duramica Cll
19 7 Resistor: 4700), 1/4 W, 5% R1, R4, R7, R10
R13, R16, R19
20 29 Resistor: 10 k{2, 1/4 W, 5% R2, RS, R8, R11, R14,
R17, R20, R22-34, R46,
R49, R53, R55, R56,
RS9, R60, R61, R57
21 7 Resistor: 68), 1/4 W, 5% R3, R6, RY, R12,
R15, R18, R21
22 2 Resistor: 27 k), 1/4 W, 5% R35, R40
23 8 Resistor: 100 k2, 1/4 W, 5% R37, R38, R39, R41,
R43, R47, R54, R58
24 2 Resistor: 100 (), 1/4 W, 5% R48, R51
25 2 Resistor: 1000 2, 1/4 W, 5% R52, R62
26 2 Resistor: 180 k{}, 1/4 W, 5% R36, R42
27 3 Resistor: 22 kQ), 1/4 W, 5% R44, R4S, R50
28 24 Switch (Stackpole) LO — PRO5 S1 —S24
29 16 Keytops, Double-Shot, Molded, White (Stackpole) 0,1,2,3,4,5,6,7,8,9,
Used with S1 — S24, A,B,C,D,E,F
Item 32
30 8 Keytops, Double-Shot, Molded, Blue (Stackpole) E,G,L,M,N,P,R, V
31 1 Connector Cable
32 1 Printed Wiring Board

A2

8'PLAGES

o -
wo ©0 ©0
Al B Smeiw om0 o
e o FH cume R o~z
(- N —.
00000000 [XXX)] o Rig—o (o
P U20 Jew o UM .ﬁ o (5z3 o
cee o6 Oyl | X xy RIS XY xx
. ar
ue | o ET e Ocu o 09 e
o0 o oo (X YIYYY (XXXXXY) a7 o{rRz3-@
u19 Uiz R W
000 oo 28 520 =
US (XXX X (XXX XY X é
60 © oo *—{rei o = a3 b
scccooe [(XYYYYY) 428 3
ue T e R P >
seso e & oooooo o EZ o>
v 0%0 SBQE‘;"
coe oo XYY coccecee gsg 2
S ua | S S°
U4 o
oo & o0 (X XX g oooooo |>f.| >
cos oo e S . N
U3 \ XYY YY)
e ¢ oo
ute
coe o6 XYY LB : v .L‘J;. 3
Uz eeo0e
%6 o oo
oe0 oo
Y Ul (XYY
.
so0oe
YY)
- - %
1Y
N
o °

b wt
< o]
o w0
© Vel
N~ <

16 PLACES

DY

FIGURE A2-a. Keyboard/Display Module Assembly

A2-1

MEK®6800D2 Microcomputer Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 1 Printed Wiring Board
2 None Integrated Circuit: 3-State Hex Driver MC8T97 U1, U2, U3
(Optional — Reference only)
3 None Integrated Circuit: 3-State Transmitter/Receiver MC8T26 U4, US
(Optional — Reference only)
4 None Integrated Circuit: 8-Input NAND Gate MC7430 U7
(Optional — Reference only)
5 1 Integrated Circuit: Microprocessing Unit (MPU) MC6800 U6
6 1 Integrated Circuit: MCM6830 ROM (JBUG) SCM44520P U8
7 1 Integrated Circuit: 3-State Hex Driver MC8T96 U9
8 None Integrated Circuit: Electrically Programmable ROM MCM68708 u10, U12
(Optional — Reference only) (Alternate)
9 None Integrated Circuit: Programmable ROM MCM7641 Ul10, U12
(Optional — Reference only) (Alternate)
10 None Integrated Circuit: Mask Programmed ROM MCM68316E U10, Ui2
(Optional — Reference only) (Alternate)
11 1 Integrated Circuit: One-of-Eight Decoder MC74155P Ul1
12 3 Integrated Circuit: Random Access Memory MCM6810 U13, Ul4, Ul6
(RAM) (128x8) (U18, U19 Optional)
13 1 Integrated Circuit: 614.4 kHz Clock MC6871B u1s
14 1 Integrated Circuit: 12-Bit Binary Counter MC14040BCP u17
15 2 Integrated Circuit: Peripheral Interface Adapter (PIA) MC6820 U20, U21
16 1 Integrated Circuit: Quad 2-Input NAND Gate MC7400P u22
17 1 Integrated Circuit: Asynchronous Communications MC6850 U23
Interface Adapter (ACIA)
18 1 Integrated Circuit: Dual D Flip-Flop MC7479P U24
19 1 Integrated Circuit: Binary Counter MC8316P U25
20 1 Capacitor: 100uF, 16 volt Cl
21 22 Capacitor: 0.1uF C2 —Cl19,C22 —C25
(Note: Ref. Designations C20 and C21 are not used)
22 None Diode, Zener, 5-volt 1N4733 CR1
(Optional — Reference only)
23 1 Transistor, NPN MPS2222 Q1
24 18 Resistor: 10 k), 1/4 W, 5% R1, R6-R22
25 3 Resistor: 3300 Q, 1/4 W, 5% R2, R3, R4
26 None Resistor: 68 £}, 1.0 W, 5% R5
(Optional — Reference only)
27 None Capacitor: 160 uF, 16 volt C26, C27
(Optional — Reference only) R20 — R22
28 10 Socket, 24-Pin (Robinson-Nugent or Equiv) ICN—246—S4T
29 3 Socket, 40-Pin (Robinson-Nugent or Equiv) ICN—406—S4T
30 1 Switch, Pushbutton (Control) B8600 Reset
31 1 Cap, Pushbutton Switch (Control)
32 None Connector, 86-Pin (SAE) SAC 43D/1 — 2 (For P1)
(Optional — Reference only)
33 None Connector, Edge, 50-Pin (SAE) CPH7000 — 50 ST (For J1)

(Optional — Reference only)

A2-2

m

e

A2-3

FIGURE A2-b. Microcomputer Module Assembly

00"
o ° o o o
-] [(-] (-] (-] -] o o (-] o -]
-] o -] (-] -] -] o -] -] -] -]
-] ° (-] o (-] -] -] -] o -] o o L] -] -]
S ° 00000000 o ° o°° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
o o °° -] ° o° [[° ° °o [° ° ° [° ° ° ° ° ° o
ce4 © o ° o® °° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
° ° ° [-] [o [-3 L] -] -] -] o ° o o -2 -1 ° o -]
. ° oooooooooooooooooo@ ° ° ° ° ° o o o o ° ° o ° ° ° ° o
o L] o o -] o -] L] -] L] L] L] o -] o -] -]
o val o ©000000000000000000¢%, o o o o o o o o o o o o o o o o
° o 00000000000000000006 o ° ° ° ° o o ° o ° ° ° o ° ° ° °
o e o L] © -] o ° L] o L] o L] o o [o o (-]
° o [° ° ° ° ° L) ° ° ° o o ° ° ° o ° ° o
° ° ° u2o ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
° o o o o o o -] o o ° -] [(] o o o L] o [
° ° [-] o ° o o ° o o o o ° o o o L] ° ° o
o o o 00000000000000000000 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
° o (-] o o ° o ° ° ° o o ° ° o -] [L] o [
° ° ° ° eo °, ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° 10. COMPONENTS WHICH ARE RATED IN WATTS SHALL BE MOUNTED
° : ° P PP o ° ° ° 1732 INCH MINIMUM OFF OF BOARD SURFACE AND ELEVATED
: ° ° ° o o AN ADDITIONAL 1/32 INCH FOR EACH WATT IN EXCESS OF ONE WATT
oo ° ° ° ° o—(ﬁm—o ©° © 00000 UNLESS SUITABLE HEATSINK OR SUPPORT IS SUPPLIED.
[° ° 9. ALL COMPONENTS SHALL BE MOUNTED 1/32 INCH MINIMUM
° ° ° o ° o
°° ° o ° o ° o - ° - ° Ui OFF OF PRINTED WIRING BOARD SURFACE.
8) %o ° ° ° ° ° © ° ° o & ° ° ° ° o 8 UNINSULATED COMPONENT LEADS WHICH PASS OVER OR ARE
ci17 © °° ° ° ° ° ° ° °l, o o ° o|u {o IN CLOSE PROXIMITY TO EXPOSED CIRCUITRY OR ADJACENT
- °®, o|Ul|o ojysi® ol, jo ° o ofu je o7 [° L COMPONENT LEADS WHERE THERE #5 POSSIBILITY OF ELECTRICAL
° ° ° ° ° ° ° ° 0l25]0 ol22]e ° °
° ° o ° ° ° ol2%|o ° o o ° ° ° SHORTS, SHALL HAVE SLEEVING INSTALLED PRIOR TO
oo ° ° o o ° P ° ° oP lo o ° ° ° COMPONENT INSTALLATION.
° o ° ° 0,0 ° ° o ° ° ° o o ° ° ° ° 7. JUMPER WIRE TO BE NO.24 AWG, TINNED, SOLID, INSULATED
° ° ° <3 0® (COLOR WHITE) ELECTRICAL HOOKUP WIRE.
o -] ° o (-] ce2 ° []
° % ci8 ° cid 6. ALL COMPONENTS TO BE SECURED TO CIRCUIT PATTERN
° ° . iq Qe USING TYPE MS - SN60 RESIN CORE SOLDER.
° o o° ©®0 5 NUMBERS ON CIRCUIT PATTERN ARE POSITION LOCATORS
° 8 ONLY AND DO NOT INDICATE PART IDENTIFICATION NUMBER
° ot Py : o OR REFERENCE DESIGNATION.
b Otz o0 ° 4. @ INDICATES DOUBLE TURRET TERMINAL LUG LOCATION.
ga o ° b oc> © ° 3 B BAND INDICATES CATHODE END.
p ° ul2 ot o ° b o ° 2. FLAG ON CIRCUIT PATTERN INDICATES CATHODE END
° ° ° 3 o : :Eg LOCATOR FOR AXIAL LEAD SEMICONDUCTOR DEVICES.
: : ors V) b I. FLAG ON CIRCUHT PATTERN INDICATES PIN | LOCATION ONLY
o out[d ° b ° AND DOES NOT INDICATE INDEX MARK OR TAB ON DEVICE.
o
° : : : ° NOTES : UNLESS OTHERWISE NOTED:
u ° °
o
[- -] .(:x:) 3 0000
° £0 £y €1 £9€6E8% O :?oeo
c3 o © o
° ° ° o c6 o o © ooo ° °]
o o ° ° o ° o -] o0
3 4 e e 00 ° o
°
o b o °
¢ U b DI o ° 0 ° ° e © o ° ° °
Vie
o] o ° ° ° ° ° ° o o ° ° °
L P o o ® © o , 0 ° ° o o ° ° ° °
L o o ° ° ° ° ° ° ° ° ° °
p " ™ o|VSle o|V% e ofUlje o|U2]e oVl [o
o b o ° oc7 © o o ¢8§ ° ° ° oeCcoO o °
° ° 7 C
d t o ° ° o © ° c°© ° ° ° ° °
ce (])]) ° [o [o [} °
(X)) ° ° ° ° ° S
o o © ° [° o []
o+ « cer +@ o O oce+—@ 9 0 A °
\ s [e RS " o ° 9 ° 9

SCHEMATIC DIAGRAMS

APPENDIX 3

—

P1 MATES WITH J2 ON Q1-07: MPS 2907 +sv
MICROCOMPUTER MODULE
P1
/’\\
§
t
Pa6 | P —+ 25
I
Lo
t ;
B RS - T +
| | 10K | "
! R4 Q2 i : +5v
s | N ' 23 VA * k
) 4700 o R6 L
P i C
v [T ;
‘ ! : i i ‘
| [[|] ;
A B Cc D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G
PA4 L] + 21 R22 R23 2 R24 R25
, ‘Y (R} ADDR. (MS) u2 ADDR. us ADDR. us ADDR. us DATA (MS) use DATA 10K 10K 10K ; 10K
o CcC cC M E R G
. 7
- C] 1 CJ o| yol xol xof
10K Ry
R10 Q4
PA3 L . 19 AN P L N v
€700 o R12)/o/)/O/ >/o/ >/o/
; 7 8 9 A
NCID CID AP
~
at3 s KRRy
PA2 3 17 WA 4 5 6 B
4700
* /}O/o/ />O/c/ Y /)O/o’
: 68
i
1 2 3 C
! P AN It
:
PA1 J 4 15 go :O éo D
)
i /%/o/ /}O/o’ %l /)O/o/
i
PAO [W ' 13
A4
10K
| 20 M
| A
| R38 R39 ! :104: 1
| 100K 100K 12 {xo ?110 c
PBS | 12 24 ;
; !
| le Ra1 R40 " (A
PB4 | 11 . 22 +5V f m slp S_J|, 100k 27K
. : g 13 ix1
' 1 L~ te 3301 :
! -qcC u1e
PB3 [10 + 20 : R42 +5V | MC14053
| 2] MC14024 |
! S
PB2 | 9 8
> ussB p-2 b 2| s
pe1 | 8 , 16 x| / R31 13 I out
' 1 3 10K
I Ref: 8
P8O | 7 T 14 :@cumsuz c7s]
MC75140
+5V
R32 %nsa 116
10K 10K N n1 3
4 xo0 e e
PBS | 13 26 A U110 .
x1}4-2 1 Strobe i
P87 | 14 s 28 2lg 4 2
x2 2
i +5V tler MC14539 a NOTES : =
. R34 I__ X3 !
! ! 10K Z T ——— —‘ i 1. UNLESS OTHERWISE SPECIFIED: +5V *]RO“K
i | - 7 8 RESTSTANCE VALUES ARE IN OHMS,
PAT R ; 27 I J_' 4.0 u208 l CAPACITANCE VALUES ARE IN MICROFARADS, 9000000
- ! k RESISTORS ARE 1/4 WATT. \ F
ce1 | 15 It 3 I
RTS | 18 32 B 15 ‘ 2. ON PW LAYOUT, A 0,1 UF DECOUPLING - Co <X C\s 5\!\04‘&. be. - oot U .
RXD w a7 7] CAPACITOR FOR EACH 3 1C's. ._ng vt [] ° ¢
: e
™ | u 33 3. Q1 THRU Q7 ARE MPS2907. s 1~ ng_gcg O pot ¥ \"“\30 re,ﬂ\) 0\36
RXC 19 38 MC1401 . -
TXC 17 34 vi MC14083 v 4. U1 THRU U6 ARE LITRONIX DL704 OR EQUIV. ®C14016 AGND
N . T : s doting LoAQ operalen .
, 1,2 +5V cit . w5y .
B,2 3.4 2400pF 1+5\ +5V
+sv| | €3 5.6
0.4 7.8 I e 2 L ‘9000 90000000 Dececscoo
E, ' = - i —
L F,: 3,12 L 1loSp[s_| Ltlo Als i :
[x.20 . i 39,40 UIsA 3 UNA 0000. 000060009: o0 7 98 | oms o per ansivies B MOTOROLA INC.
v.21 a2 acias C14538 TYP. FOR He1es3s HC14053 T D Integrated Circuits Division
GND| z,22 43,44 2 718 BlS MC75140 GND [§ ND Notes 2200 WEST BROADWAY, MESA, ARIZONA 85202
Xas| 4546 96 Q w7452 = = = S TITLE: N "
. r s nE <P A e < .
s . peged R c LTS a1 KEVBOARD/DISPLAY MODULE SCHEMAT: S
L | z.2s 49,50, 14 3 sy BURLINGANE \1/08/76 MEKEBOOD2 KIT
" ' DATE PROI
C 1 e amvint o s wtauter ron suntanion on mon | BEA * o cRoue F
L R otucTion Tmeator sme nesthecs vy woronoLe guECkED | CODE 04713] SOALE WEIGHT: ISNEET of

A3-1

FIGURE A3-a. Keyboard/Display Module Schematic

€CO ENGR ET CHANGE ” IBI'!
e 4 RELEASED
REF REG| 12—
REFGNT| 13f—0
+5v
8 33 [
VMA F —o Vvma +
3002 A RN -5 *sv RV e sv
Al |40 3 2 A A MPU .5y +5Y 24 24 ab 29
= VIR 3 02 _ N 28 |10 24 0 3 (Y 23 2 00
f:zl B 7 e B /| Ae o | MeB0o0 B¢] AO“‘csHs L 0 I LSNP DO | o pe fad 5512 L;O ~:¢:&;RAM il:f :"L;‘RM ;D‘ hﬁA“W
EN o Al O Ue 29 X N ——)) A 22 3 DY hA 2 3 DI NAL 22| "L “l0i00) N o180)
A3 | 3 [0z A AT i s 2\ A 23 3 o & ! o N1 U3 TR (0080) N 4 bz Y haz 21 4 D2
g\) 28 o5 N uio a4 p2Y ha 2l 4 D2 R_2lwemo |4 02 e o N 2
ad | B q ; A% Z P 3 I D2 A2 21 RAM N _2l| meem NS o1 OPT. ————
as | T 13 off - — L pe s ¢ N [2] e s oY \Aa—eo(ooocb_S_DsW 2 2l e (5 03 N3 2lucan|5 03] N3 20 wemo |5 D3
I6, NOTE ! Ad 13 26 o1 A3 2t s p3 o 3 13 D3 A3 20 N N"_ 2 F— F—— I pa)
* F}”' - 5 o2 ftod e D4 Y M 4 4 e facie|000) [N | a0 e Y kA o e D4 M 8| yg [e 02 Y NAe 9] Lo |
A [3 > A 20| mceg NE ~ Moo 7 oo | e 8l uie [T 5 ke s 7 bS ") 7 05 Y has s 1. D5
Ty TThe pe N v‘: —2 NS 1o g 7 D5 @il}\b - (?.‘gg)% \%% g 0eY hao 17 8 e p 7 8 06 Y ke 8 %o 1 pNee 8 De
3 3 /] 32 k= Mo 18 8 0o N 2 A N——| =] Fo o7 5 o7\ &3] D7 AT 10 3 b7)
Ae | S P Ve e a1 N A2 18 40 TESET N Ve | SEE 17 o7 AT i[9 oY a1]l [2 o1 M0 9 O7TY NS |9 ©
a1 |37 §I; e YN 19 T TRE lar 17 9 D1 @9»& NOTE 3 | e 12l o W?—' o Rrw) WCSO o rwYN ke 1© o RW Y Ka8 Bl [e rw
e | % T 1Y) \CTR— s wa e te| o, [Rw J o R N o il [| Leel® i) | Lo mle® [Somy | Nowls[om
A | R i gz AIO AN A2 22 e N o 15 5\ o 2 L@ Az 14 o ca 3 \L@& = L—@—C—wlj N ez mm 2 5
a0 | P 13 SEE s AL ARAS 2 u{wﬁ\ N2 & — (22 o Mg R T Eis'—s—k— 555 S RAM = =
A 3o \rm 24 P i Pa e @ e BN T T B T D
- ; 2! = =
e A5 28 I N T Io ???? 1* It = L = = 2 s = N
Tare A2 Hus e — Tl 5V o L
Alg | 34 5, U3 Al = N+ -5 R20.10K 8 2
A3 N i e A, oV D 4
A | M — bl’ - 3
C) 0 Asew | 1| e 4800 HE -
as | 33 2 e AIW ' s . ~5v 0——]|6 MCMISS .5y e i3 sv £ 2
R/wW |e 5 i DBE +3v RIG “pRoMI AR g 3 I 3 - RIS ™ Ml
e sy XE 5:——' 10K X - A poy A 45V o MC14040) o -
- NOTE , MC , Ul RON| +5V U7y M
L—aL*}L ; ! o TROM |/ _ ; [T 20 Jea 5 -3
L : T o sy AR BRI) L1~ O Al o |5 = L] Co eadl; 5
— 3r----- bl - s 273 = V20 ol K
| —— VL . 14 — ut PAY
L @ VAT s - P ‘ : R T LY N [ol N2 Xrso emf .
5 a2 S A 7 15| s "W L@z NN RS S M
o e o) I f‘; 2 DBE A [. D2 Yo A KAz 24 s H N
L el e m b2 = 2R/ (S : o PROWY/ m e o2 o258 et b
I e 2T 53 ' ¢ BN | ; e Blimx R L b6 3 AT 2 R
! e I 15 FOM__A |) STH v wang '|_J® o 32 n | s
6, 2 i e PROMGA VMA -] I E 14| e 1/o0 j /o MC 3 3 Al 53
+5V @—— . 8 D 52 11 N1B2 35, g T
{ [STAER
8 u { i STACK /] ! T8 = D3 30lmn04) pao 2 bl
5 L 2 I L L Da 29| iy m 8
= sfivore c SEE TETL DS __ 28 ey °
SEE NOTE € NOTE & -l— = +5v b6 27 PR3 10
jo2d 2¢| ™ 4 I
e - D4 a® s x o g DeE 28 il
—— N2 E PBS 12
[T us 4] Riw__ 21 PBG|E i3
A 5 oS 10 DI IS 37 7 4
5% al 7| UR IR® Pe1 '
L et c. | 5y N IRG S6lmer B g
% |t C be] a2 . Ny b2 FEET 39 fmrem cae (2 e
S P e T o = v wewsze ML P21 J
L 2 R22, \0x [AT] | a3 s 13 b3 TRER 42
X :’__ NO ‘E%L__rn
] S =3, ok fas] @ —— A q - D4, U%?o) J
4 Looeod ——AAA~ pazkd
T SEENOTES 73 A Rizox |ae] 4 &— " as 3| PrOM g DS, NAG 36 0 oads E J2
oy o e 35 A A - (e000 DA rs e W | MATES WITH Py
CEC 21 t1, on s
5187 FAM AA e 2 SETEE 3 e D, RESET \fé—acs' PASIE N %NBSEZEOQRD
| 22 BA o |aa NO 5 g 5
. P e A N__oe _ 39 e R | UNIT
Ba RESET VW AT i 7 o7 N D 32 piA_, %0 s
REET | 5 = RS, 10k |a3 y, 2V +5¥ -5Y __D2 3 0) CA2| %’ -
— v = D3 3 cagl!
Bl A Az re. 10k [a2] g A8 el = 122 FEORT 1 ! D4 29 oy ;
N2 | MEM Gk AAA- e 22 o e | bs 28 pez)
’ — R7, 10k At ~5v 21 —— |18 De 21 i3
“‘WM‘L: : HALY Y AA- 12 o cs2 € LT 0T % roafle :?
% | o ™=a Re. 10k [ag| 4 o —le L Dee___ 25, pas|> 2
2RQ [l A —W ad 0o ues R21, 10K = - W Zlew Ppoe 13
MW | E TsC 3 = 24 N 37 TREB PRY s Ity
TSC N A 0 23 -5V A WWZ 3: IRQA B [} 5
~5voc a0 RI Rz [R3 R4 N 376 95—52 b R e :ﬁ
+sy0C |82 10K 3300a 333000 § 33000 R/W :: ?V aciA = ¥ NCo836 , CB §
+SvDC e, 3 *5V R E— 04
= Le dco--Leas e N oé = ff:,g 45V £
_ Toow TuvF TJuF NOTE 2 DI 2 RTs, | x
GND [Wel D2 e 2 L i
: L 03 E| RXD
GND X.42 CAi Al 26 N\ ¢ §
GND V43 ’“l;m‘gg OFT ONAL I00UF | ibY \ g; II: Txb 4 SY J-3
-svbc |28 5 -5V N Dé e ™3 | e
©8n OPTIONAL. = c27 y 1 15 RXC.] U
w 100 UF, 16! L ‘ i7
-lvoe M -1V __4800 K2 = ; i
~vDe ITe 412V] 3
212V GND (M8 e, v 8 e o o e | ™ SCHEMATIC — BASIC
+ 2050 K9 e s e e MICROCOMPUTER
= ::m--u—m--m-:: MODULE
— — - - -
4 o s et i wer e o ves | EVALUATION KIT TT
| = ‘ L -—;:—-l-—
R ORI 7D T
3. OPTIONAL PROMS 4 ,MCBT97 OPTIONAL DI \ I :".:.':._...-.--:;--

MCeB708 MCMTeAl MCME83I7 5,MC8T26 OPTIONAL | pukvmiyauinyhauis iyt STOROLA NG
2.CAPACITOR FOR EVERY 3 PACKS ELTO e2 £E3 10 E9 EO TO E4 6. MCM30P OPTIONAL | WP FOR | - Sermiearireten Frodects Bovisin
LUNLESS oTMERWISG SPECIFIES: £370 €8 & ToEr £ TOE I mC 1473 | o = =

RESISTANCE VALUES ARE W ONMS. CAPACITANCE E4q §0 Eg E5 T €7 ES TO i SV MCTe30 I
VALUES ARE ¢ MICROFARADS. RESISTORS ARE %vlatv.v 0% E5 TO L _ _ _ M0 |
worEs:
e
AR 3000 m-¢

FIGURE A3-b. Microcomputer Module
A3-3

APPENDIX 4
POWER SUPPLY INFORMATION

RECTIFIER ASSEMBLY FOR REGULATED POWER SUPPLY

1.0 /5 W

o—{I o« v O
Ohmite 2822
or Equiv,
|| N autv Z. 3000uF
117 vac 12.6Vv ~
rms — Sprague TVA1214
o— ‘

Stancor P-8358 MDA 970-1
Triad F-26 X =
or Equiv.

\

Note: Ground filter capacitor return lead near negative terminal of rectifier to minimize ground loops.

—0

+ 10 Vdc
2.5A-3.0A

25WVdc

or Equiv.

REGULATOR
MJ2955
ViN 0.122 o Equiv
Input sW
+10Vv EJ Q1
y Isca1)
2N6049
or Equiv ICt v
2 IscToT O
MC7805CK * -@
Qutput + 5V
1.0uF ,[3 Iscict) 25A

R: used to divert IC regulator bias current and determines at what output current level Q1 begins

. A\
conducting. 0 < R <YBEON(Q1) . o ~ 0.6V 1 = +1
'BlAS(IC‘I) sC '—SC(Q‘I); SCTOT sc(Q1)*lsc(ic)

Note: The Regulator Assemobly is capable of supplying 6 A with 2.5°C/W and 1°C/W heatsink on IC1 and Q1
respectively (T 5 = 70 C).

Refer to the Motorola VOLTAGE REGULATOR HANDBOOK for additional information.

A4-1

