

MOTOROLA
Semiconductor Products Inc.

MEK6800D2

MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, JBUG and MINlbug are trademarks of Motorola Inc.

Second Edition
© MOTOROLA INC., 1977

First Edition © 1976
"All Rights Reserved"

Printed in U.S.A.

TABLE OF CONTENTS

CHAPTER 1: Introduction

1-1 General Description and Capability . 1-1

1-2 Preparation for Use . 1-4

1-2.1 Construction Hints ... 1-5

1-3 Start-up Procedure . 1-6

1-4 Operating Procedures . 1-6

1-4.1 Memory Examine and Change .. 1-7

1-4.2 Escape (Abort) .. 1-7

1-4.3 Register Display ... 1-7

1-4.4 Go to User Program .. 1-9

1-4.5 Punch from Memory to Tape ... 1-9

1-4.6 Load from Tape to Memory .. 1-9

1-4.7 Breakpoint Insertion and Removal ... 1-10

1-4.8 Trace One Instruction ... 1-10

1-4.9 Calculate Offset to Branch Destination 1-11

1-5 Operating Example . 1-11

CHAPTER 2: Hardware Description

2-1 General Description .. 2-1

2-2 Memory Organization ... 2-1

2-3 Input/Output Devices ... 2-3

2-4 System Clock ... 2-3

2-5 Keyboard/Display .. 2-3

2-6 Trace (Execute Single Instruction) ... 2-4

2-7 Audio Cassette Interface . 2-4

2-8 Kit Expansion . 2-10

CHAPTER 3: Software Description (JBUG Monitor)

3-1 General Description .. 3-1

3-2 Restart/Initialization Routine ... 3-3

3-3 Display Routine ... 3-3

3-4 Keyboard Scan and Decode Routine 3-4

3-5 Memory Examine/Change Routine .. 3-7

3-6 Register Display Routine .. 3-8

3-7 Punch and Load Routines .. 3-9

3-8 Interrupt Handling Routine ... 3-11

Appendix 1: Assembly Listing of JBUG Monitor Al-1

Appendix 2: Assembly Drawings and Parts Lists A2

Appendix 3: Schematic Diagrams .. A3-1

Appendix 4: Power Supply Information ... A4-1

CHAPTER 1
INTRODUCTION

1-1 GENERAL DESCRIPTION AND CAPABILITY

This manual provides a general description and operating instructions for the Motorola

MEK6800D2 Evaluation Kit II. The Kit, when assembled, is a fully functional microcomputer system based on

the MC6800 Microprocessing Unit (MPU) and its family of associated memory and VO devices. The family is

described in the M6800 Microcomputer System Design Data book (included with the Kit) and in the M6800

Microprocessor Applications Manual. Detailed programming information is included in theM6800 Program­

ming Reference Manual.

The MEK6800D2 is designed to provide a completely self-contained method for evaluating the

characteristics of the M6800 family. The standard Kit includes the following devices:

Kit.)

Qty.

1

1

3

2

1

1

Device

MC6800 MPU

MCM6830 ROM with JBUG Monitor (SCM44520P)

MCM6810 RAM (128 x 8)

MC6820 Peripheral Interface Adapter (PIA)

MC6850 Asynchronous Communications Interface Adapter (ACIA)

MC6871B Clock Generator

As assembled Kit is shown in Figure 1-1-1 (all components shown are included with the standard

The Microcomputer Module printed circuit board is preengineered to accept the following addi­

tional components for expanding its capability:

Qty.

2

2

3

2

Device

MCM6810 RAM (128 x 8)

MCM68708 EPROM (Equivalent to 2708)

MC8T97 Buffer

MC8T26 Bidirectional Buffer

The expansion capability provides for a variety of user operating modes.

The integral Keyboard/Display Module can be used in conjunction with the JBUG monitor program

for entering and debugging user programs. Programs can also be loaded and dumped via the Audio Cassette

Interface. The Keyboard, Display and Audio Cassette circuitry are on a separate printed circuit board so that the

ACIA and a second PIA are available if the user has access to an RS-232 or TTY terminal. Wire-wrap space for

up to twenty 16-pin DIP packages is available for user designed circuitry on the Microcomputer Module. A user

generated terminal control program designed to interface with either the PIA or the ACIA can be entered via the

integral keyboard. Alternatively, the Kit will accept (in place of JBUG) the Motorola MINibug II monitor

program. MINibug II has monitor and diagnostic capabilities similar to JBUG but is intended for use with

RS-232 and TTY type terminals. (See Appendix E of the Programming Reference Manual included in the Kit.)

1-1

"';"
I -

1-2

The Kit also permits several different memory configurations. The two MCM6810 128 x 8 RAMs

provided with the standard Kit will accommodate programs of up to 256 bytes in length (the third MCM6810 is

reserved for use by the monitor program). Addition of the two additional optional RAMs expands the capability

to 512 bytes. Strapping options for the additional ROM sockets permits any of the following combinations:

1024 bytes in 512 x 8 bit PROMs (MCM7641)

2048 bytes in 1024 x 8 bit EPROMs (MCM68708)

2048 bytes in 1024 x 8 bit Mask-Programmed ROMs (MCM68308- same pin-out as

MCM68708)

4096 bytes in 2048 x 8 bit Mask-Programmed ROMs (MCM68316 - same pin-out as

MCM68708 except EPROM programming pin is used as additional addressing

pin.)

The general memory organization of the Kit is shown in Figure 1-1-2.

Adding the optional buffers in the spaces provided upgrades the Kit to EXORciser-compatible

status; hence, all the EXORciser 1/0 and Memory modules (see included data sheets) can also be used with the

Kit. For example, addition of MINibug II, an SK Memory board, and the EXORciser's Resident Editor/

Assembler to the Microcomputer Module creates a complete development/prototyping tool.

Not Used

JBUG Monitor Prog

Optional ROM
r----------------or PROM

128 Bytes RAM (JBUG Scratch)

PIA (Keyboard Interface)

ACIA (Cassette Interface)

PIA

Optional ROM

~---------------or PROM

Optional 256 Bytes RAM

256 Bytes RAM

FFFF

E400

EOOO

C800

cooo
A080

AOOO

8024

8020

8009

8008

8004

6800

6400

6000

0100

0000

FIGURE"1-1-2. Memory Map for MEK680002

1-3

1-2 PREPARATION FOR USE AND OPERATION PROCEDURES

The Kit can be assembled by referring to the assembly diagrams of Figures A2-a and A2-b

(Appendix 2) for component placement. Recommended procedures for the handling of MOS and CMOS

integrated circuits are reviewed in Table 1-2-1 and should be followed during assembly. The Kit is completely

self-contained and required only the addition of a 5-volt de power supply. Additional ± 12-volt de supplies are

required only if electrically programmable read only memories (EPROMs) are used or if RS-232 capability is to

be added to the Kit. The switches, connectors and display indicators are identified in Figure 1-1-3.

Caution must be exercised to avoid any electrostatic or high-voltage charge from coming in contact
with the MOS gate elements. The gate oxide is approximately 1000 to 1200 A thick and can be ruptured by
static potentials as small as 80 volts. Most MOS circuits employ various input protective schemes. However, an
electrostatic charge may still cause damage to the gate oxide during the finite time required for the protective
device to turn on.

The following handling precautions are recommended for MOS circuits:

1. All MOS devices should be stored or transported in conductive material so that all exposed
leads are shorted together. MOS devices must not be inserted into conventional plastic foam or
plastic trays of the type used for the storage and transportation of other semiconductor devices.

2. All MOS devices should be placed on a grounded bench surface and the operators should
ground themselves prior to handling devices. This is done most effectively by having the
operator wear a grounded conductive wrist strap.

3. Silk or Nylon clothing should not be worn while handling MOS circuits.

4. Do not insert or remove MOS devices from test sockets with power applied.

5. Check all power supplies to be used for testing MOS devices to be certain no voltage transients
are present.

6. When lead straightening or hand soldering is necessary, provide ground straps for the apparatus
used.

7. Do not exceed the maximum electrical voltage ratings specified by the manufacturer.

8. Double check test equipment setup for proper polarity of voltage before conducting parametric
or functional testing.

9. Cold chambers using C02 for cooling should be equipped with baffles, and devices must be
contained on or in conductive material.

10. All unused device inputs should be connected to Yoo or Vss.

11. All power should be turned off in a system before printed circuit boards containing MOS
devices are inserted or removed.

12. All printed circuit boards containing MOS devices should be provided with shorting straps
across the edge connector when being carried or transported.

TABLE 1-2-1: MOS Handling Recommendations

1-4

EXORciser
Compatible
Bus Connector J2

FIGURE 1-1-3a. Microcomputer Module

1-2.1 CONSTRUCTION HINTS

User
1/0
Connector
J1

Reset
Switch

Hexadecimal
Data
Entry
Keys

Earphone

Address Data
Displays Displays

~~

Command
Keys

FIGURE 1-1-3b. Keyboard/Display Module

The 24-pin socket supplied for the clock must be modified to fit the PC Board. This can be done by

removing the protective strips on the bottom of the socket and pulling out unwanted pins from the bottom. The

pins that must be removed are 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 1 7, 19, 21, and 23 .

The Keyboard has 6 pre-drilled holes for use with standoffs or machine screws to support the board

while in use. It is recommended that the board be supported above the bench a minimum of 1/4 inch to prevent

accidentally shorting conductors on the bottom of the board.

When inserting CMOS devices , it is recommended that a low wattage soldering iron with a

grounded tip be used . This will prevent damaging the part. Another alternative would be using sockets for the

parts.

The cable assembly consists of five items.

1. Edge connector

2. Edge connector cover

3. 50 pin PC Board connector

4. PC Board connector cover

5. Approximately 3 feet of 50 conductor flat cable

The cable may be assembled as follows:

(part no. 3415-0001)

(part no. 3415)

(part no. 3426-0000T)

(part no . 3426)

(part no . 3365)

Step 1: Solder the 50-pin PC board connector (3426-0000T) in place on the Keyboard/Display Module.

1-5

Step 2: Remove protective liner from the PC Board Connector Cover (3426) by first pressing along length of

liner (this will insure good adhesive coverage) and then applying lateral thumb pressure on liner to

displace it enough to be peeled off.

Step 3: Press deeply ribbed side of cable (3365) into alignment grooves of cover, positioning it as required in

step 4. Check visually to insure that the cable is aligned in cover grooves and is even with the edge of

the connector.

Step 4: Place cap and cable over PC Board connector with the cable running away from the Keyboard/Display

Module with the red stripe corresponding to pin 1 of the connector. Then press the assembly together

using a bench vise.

Step 5: Repeat steps 2 and 3 with edge connector and cap on the other end of the cable, keeping the red

conductor aligned with pin 1 of the edge connector. Press this assembly together using the vise.

Step 6: The female edge connector will now mate with the male edge connector (J2) on the Microcomputer

Module. The female conductor lab led "1" should align with the male conductor labled "A". (The

cable "approaches" the back of the Microcomputer Module.)

1-3 START-UP PROCEDURE

Connect the cable attached to the Keyboard/Display Module to connector J2 on the Microcomputer

Module. Apply 5-volt de power. Pushing the reset switch on the Microcomputer Module should now cause the

JBUG prompt symbol, "dash'', to be displayed in the left-most display indicator on the Keyboard/Display

Module. The remaining five displays will be blanked. The JBUG control and monitor program is now in

operation and any of the functions described in the next section may be invoked by means of the data and

command keys on the Keyboard/Display Module.

1-4 OPERATING PROCEDURES

The Keyboard/Display Module, in conjunction with JBUG, provides a means of examining

operation of the Microcomputer Module and entering and trouble-shooting programs. The Keypad has sixteen

keys labeled 0-F for entry of hexadecimal data and eight keys for commanding the following functions:

M - Examine and Change Memory

E - Escape (Abort) from Operation in Progress

R - Examine Contents of MPU Registers P, X, A, B, CC, S

G - Go to Specified Program and Begin Execution of Designated Program

P - Punch Data from Memory to Magnetic Tape

L - Load Memory from Magnetic Tape

N - Trace One Instruction

V - Set (and Remove) Breakpoints

Operating procedures for each of these functions are described in the following paragraphs. The

display should be showing the prompt "dash" before any command is invoked.

1-6

1-4.1 MEMORY EXAMINE AND CHANGE (M)

This function permits examination and, if necessary, change of memory locations. A map of the

MC6800 instructions is included as Table 1-4.1-1 and is useful in translating memory data to instruction

mnemonics.

Open the memory location to be examined by entering the address (as 4-digits of hex via the hex

keypad) followed by closure of the M key (hhhhM). The display will now show the address that was entered in

its group of four displays on the left and the contents in the two on the right. The user at this point has three

options: (1) Leave this location unchanged and move to the next location by closing the G key. The new address

and its data would then be displayed. (2) Change the data by simply entering the new data via the hex keypad

(hh). In this case the display would then be showing the new data that was entered. In the event that an attempt is

made to change Read Only Memory (ROM), the display will continue to show the original data. (3) Close the

Memory Examine function by means of the E key. Closure of the E key will return operation to the monitor and

the prompt will again be displayed.

1-4.2 ESCAPE (ABORT)

This function provides an orderly exit from the other functions and/or user programs. Examples of

its use are included in the accompanying descriptions of the other functions.

1-4.3 REGISTER DISPLAY (R)

This function permits examination of the MPU's registers and may be invoked at any time the JBUG

prompt is being displayed by closing the R key. Following closure of R, the display will show a 4-digit hex

value, the present contents of the Program Counter. The remaining registers may now be examined by

sequencing with the G key and will appear in the following order: Index Register, Accumulator A, Accumulator

B, Condition Code Register, Stack Pointer. 1

This display is circular, i.e., a G key closure following display of the Stack Pointer will cause the

Program Counter to be displayed again. The E key may be used to escape back to the monitor at any point in the

display sequence. If required the contents of any register can be changed by using the Memory Change

function. The monitor executed an interrupt sequence when R was invoked. In servicing an interrupt, the

MC6800 saves its registers on a stack in memory (it is these memory locations that the R function ''examine­

s''). On exit from the R interrupt service routine, the MPU retrieves these values and reloads its registers; hence

if the data on the stack is changed with the M function, the new data will go into the MPU. The following

locations are used to stack the registers:

$A0082 - High order byte of Stack Pointer

$A009 - Low order byte of Stack Pointer

S + 1 - Condition Code Register

S + 2 - Accumulator B

S + 3 - Accumulator A

S + 4 - High order byte of Index Register

11t is a characteristic of the display routine that the value displayed for the Stack Pointer is seven less than the actual value.
21n this manual, hexadecimal data is identified by preceeding it with a dollar sign symbol, $.

1-7

.......
Oo

~ 0 1 2
B

0 . NOP .
(INH)

1 SBA CBA .
2 BRA . BHI

(REL) (REL)

3 TSX INS PUL
(INH) (INH) (A)

4 NEG . .
(A)

5 NEG . .
(B)

6 NEG . .
(IND)

7 NEG . .
(EXT)

8 SUB CMP SBC
(A)

(IMM)
(A)

(IMM)
(A)

(IMM)

9 SUB CMP SBC

(DIR)
(A)

(DIR)
(A)

(DIR)
(A)

A SUB CMP SBC

(IND)
(A)

(IND)
(A)

(IND)
(A)

B SUB CMP SBC

(EXn
(A) (EXT) (A) (EXT)

(A)

c SUB CMP SBC
(B)

(IMM)
(B)

(IMM)
(B)

(IMM)

D SUB CMP SBC
(DIR) (B) (DIR) (B) (DIR)

(B)

E SUB CMP SBC

(IND)
(B) (IND) (B) (IND)

(B)

F SUB CMP SBC
(EXT) (B) (EXT) (B) (EXT) (B)

DIR = Direct Addressing Mode
EXT = Extended Addressing Mode
IMM = Immediate Addressing Mode

3

.

.
BLS
(REL)

PUL
(B)

COM
(A)

COM
(B)

COM
(IND)

COM
(EXT) .

.

.

.

.

.

.

.

4 5 6

. . TAP
(INH) . . TAB
(INH)

BCC BCS BNE
(REL) (REL) (REL)

DES TXS PSH
(INH) (INH) (A)

LSR . ROR
(A) (A)

LSR . ROR
(B) (B)

LSR . ROR
(IND) (IND)

LSR . ROR
(EXT) (EXT)

AND BIT LOA
(A)

(IMM)
(A)

(IMM)
(A)

(IMM)

AND BIT LOA
(A) (A) (A)

(DIR) (DIR) (DIR)

AND BIT LOA

(IND)
(A)

(IND)
(A)

(IND)
(A)

AND BIT LOA

(EXT)
(A)

(EXT)
(A)

(EXT)
(A)

AND BIT LOA
(B)

(IMM)
(B)

(IMM)
(B)

(IMM)

AND BIT LOA

(DIR) (B) (DIR) (B) (DIR) (B)

AND BIT LOA

(IND)
(B)

(IND)
(B)

(IND)
(B)

AND BIT LOA

(EXT) (B) (EXT) (B) (EXT)
(B)

IND = Index Addressing Mode
INH = Inherent Addressing Mode
REL = Relative Addressing Mode

7

TPA
(INH)

TBA
(INH)

BEQ
(REL)

PSH
(B)

ASR
(A)

ASR
(B)

ASR
(IND)

ASR
(EXT) .

STA

(DIR)
(A)

STA
(A)

(IND)

STA

(EXT)
(A)

.

STA

(DIR)
(B)

STA

(!ND)
(B)

STA
(Exn (B)

8 9 A

INX DEX CLV
(INH) (INH) (INH) . DAA .

(INH)

BVC BVS BPL
(REL) (REL) (REL) . RTS .

(INH)

ASL ROL DEC
(A) (A) (A)

ASL ROL DEC
(B) (B) (B)

ASL ROL DEC
(IND) (IND) (IND)

ASL ROL DEC
(EXT) (EXT) (EXT)

EOR ADC ORA
(A) (A) (A)

(IMM) (IMM) (IMM)

EOR ADC ORA

(DIR)
(A)

(DIR)
(A)

(DIR)
(A)

EOR ADC ORA
(A) (A) (A)

(IND) (IND) (IND)

EOR ADC ORA

(EXT)
(A)

(EXT)
(A)

(EXT)
(A)

EOR ADC ORA
(B) (B) (B)

(IMM) (IMM) (IMM)

EOR ADC ORA

(DIR) (B) (DIR) (B) (DIR)
(B)

EOR ADC ORA

(IND)
(B)

(IND)
(B)

(IND)
(B)

EOR ADC ORA

(EXT)
(B) (EXT) (B) (EXT)

(B)

A = Accumulator A
B = Accumulator B

TABLE 1-4.1-1. M6800 Instruction Map

B c D E F

SEV CLC SEC cu SEI
(INH) (INH) (INH) (INH) (INH)

ABA
(INH)

BMI BGE BLT BGT BLE
(REL) (REL) (REL) (REL) (REL)

RTI . . WAI SWI
(INH) (INH) (INH) . INC TST . CLR

(A) (A) (A) . INC TST . CLR
(B) (B) (B) . INC TST JMP CLR
(IND) (IND) (IND) (IND) . INC TST JMP CLR
(EXT) (EXT) (EXn (EXT)

ADD CPX BSR LOS .
(A)

(IMM)
(A)

(IMM) (REL) (IMM)

ADD CPX . LOS STS

(DIR)
(A)

(DIR)
(A)

(DIR) (DIR)

ADD CPX JSR LOS STS

(IND)
(A)

(IND)
(A)

(IND) (IND) (IND)

ADD CPX JSR LOS STS

(EXT)
(A)

(EXn
(A)

(EXT) (EXn (EXT)

ADD . . LOX .
(B)

(IMM) (IMM)

ADD . . LOX STX
(DIR) (B) (DIR) (B) (DIR)

(B)

ADD . . LOX STX

(IND)
(B)

(IND) (IND)

ADD . . LOX STX

(EXT) (B) (EXT) (EXT)

*Unimplemented Op Code

S + 5 - Low order byte of Index Register

S + 6 - High order byte of Program Counter

S + 7 - Low order byte of Program Counter

where "S" is the current Stack Pointer as saved in $A008 and $A009. Note that it is necessary to exit the R

display function and enter the Min order to change register values.

1-4.4 GO TO USER PROGRAM (G)

If the Prompt is being displayed, and assuming that a meaningful program has been previously

entered, the MPU can be directed to go execute the program simply by entering the starting address of the

program (via the hex keypad) followed by closure of the G key (hhhhG). The resulting blanking of the displays

is an indication that the MPU has left the monitor program and is executing the user's program. The MPU will

continue executing the user program until either an Escape (E key) is invoked or the program "blows".

Control, indicated by the prompt "dash", can normally be obtained with the E key. It is possible that an

incorrect program could have caused the monitor's variable data to be modified. In this case, it is necessary to

regain control using the reset switch on the Microcomputer Module.

1-4.5 PUNCH FROM MEMORY TO TAPE

The Punch function allows the user to save selected blocks of memory on ordinary audio tape

cassettes. Before invoking Punch, the Memory Change function should be used to establish which portion of

memory is to be recorded. Using Memory Change, enter the desired starting address into locations $A002 and

$A003 (high order byte into $A002, low order byte into $A003). Similarly, enter the high and low order bytes

of the desired ending address into $A004 and $A005, respectively. Escape from Memory Change via the E key,

thus obtaining the monitor prompt dash. With the audio recorder's microphone input connected to the

corresponding point on the Keyboard/Display Module and the prompt present, the Punch function is performed

as follows. Position the tape as desired (fully rewound is recommended) and put the recorder in its record mode.

Close the P key. The prompt will disappear during the Punch process and then re-appear to indicate that the

Punch operation is completed. Typically, the prompt is "off" for over 30 seconds since the recording format

specifies that a thirty second header of all ones be recorded ahead of the data. See sections 2-7 and 3-7 for

additional details on the recording format.

1-4.6 LOAD FROM TAPE TO MEMORY

The Load function can be used to retrieve from audio magnetic tape data that was recorded using the

Punch function described in the preceding section. With the audio recorder's earphone output connected to the

corresponding input on the Keyboard/Display Module (and with the monitor prompt present on the display), the

Load function is performed as follows. To load the desired record, position the tape at the approximate point

from which the Punch was started and then put the recorder into its playback mode. Close the L key. The prompt

will disappear, then re-appear when the Load function is completed. After the prompt re-appears, the Memory

Examine function can be used to examine locations $A002 and $A003. They will contain the beginning address

of the block of data that was just moved into memory. The end address is not recovered by the function, hence

the data in locations $A004 and $A005 is not significant during the Load function.

1-9

1-4.7 BREAKPOINT INSERTION AND REMOVAL (V)

Because of the difficulty in analyzing operation while a program is executing, it is useful during

debug to be able to set breakpoints at selected places in the program. This enables the user to run part of the

program, then examine the results before proceeding. The breakpoints are set by entering the hex address of the

desired breakpoint followed by a V key closure (hhhh V). This may be repeated up to five times. The breakpoint

entry function can be exited after any entry by using the E key. The monitor program will retain all the

breakpoints until they are cleared.

If at any time an hhhh V entry is made and the hhhh (hex data) does not appear on the display, there

were already five breakpoints stored and the last one was ignored. At any time the prompt is displayed, entry of

a V command not preceeded by hex data will cause the current breakpoints to be removed. If a breakpoint is

entered and the program is subsequently executed to that point, the display will show the current value of the

Program Counter in the four indicators on the left. (This will be the same as the breakpoint address that was

inserted.) The right hand two displays will contain the data stored at that location - that is, the operating code.

At this point the G key can be used to sequence through the other MPU registers exactly as in the register display

function. If it is desirable to proceed on from the breakpoint simply use E (to get the prompt) and then the G key.

At this point, the MPU will reload its registers from the stack and continue with the user's program until another

breakpoint is encountered or the E key is used again.

1-4.8 TRACE ONE INSTRUCTION (N)

The Trace function permits stepping through a program one instruction at a time. The Trace function

can be invoked any time the user program is at a breakpoint or has been aborted with the E key. However,

tracing cannot begin from start-up because the trace routine does not know where the starting address is.

Therefore, an hhhh V command must be given at least once before Trace can be used.

Enter the Trace function by first setting a breakpoint at the location from which it is desired to trace

and then invoking hhhhG to begin program execution. The breakpoint can be set at the very beginning of the

program if desired. 3 Following the hhhhG command, the program will run to the breakpoint and stop,

displaying the Program Counter as before. If the N key is now closed, the MPU executes the next program

instruction and again halts. The display will then show the address of the next instruction (Program Counter)

and the operating code located there. The G key can be used to sequence the other registers on to the display as

for a breakpoint if desired. The N key can now be used to trace as many instructions as desireo: 4

The Trace function cannot be used directly to trace through user IRQ interrupts. The NMI is higher

priority and will cause the IRQ to be ignored. Repeated attempts to execute the Trace command when user IRQ

interrupts are active will result in JBUG continuously returning with the same address. See sections 2-6 and 3-8

of this manual and the M6800 Microprocessor Applications Manual for additional information.

3This procedure assumes the program is in RAM since breakpoints are handled by substituting an SWI for the op-code. If the program to
be traced is entirely in ROM, use a convenient RAM location to insert a jump to the desired ROM address. Then set a breakpoint at the
address of the jump instruction and proceed as above.

41t is a characteristic of the Trace function that all breakpoints in effect at the time Trace is invoked will be removed and must be
re-installed following exit from Trace.

1-10

Interrupt service routines may be traced by setting a breakpoint at the beginning of the service

routine. The Go function may then be used to start program execution, allowing a normal entry into the IRQ

service routine. Once in the service routine, Trace can be used as usual. The E key may be used to exit from

Trace at any time.

1-4.9 CALCULATION OF THE OFFSET TO A BRANCH DESTINATION

The instruction format for conditional branch instructions calls for the offset to the destination to be

entered immediately following the branch instruction op-code as a signed two's complement number. Mental

calculation of the offset is awkward due to the required two's complement format. A short program for making

this calculation is included in JBUG (lines 62-70 of the assembly listing included as Appendix 1 of this

manual). Use the following procedure with this program:

1. Obtain the prompt "dash" by escaping from the current operation.

2. Find the current value of the stack pointer by entering the Register Display.

3. Exit from Register Display and open memory location S+2, where Sis the current value of the

stack pointer as obtained in Step 2. S+2 is the location of the current stacked value of

Accumulator B. Enter the high order byte of the destination address in this location. Next, enter

the low order byte of the destination into Accumulator A in location S + 3.

4. Put the high and low order bytes of the branch instruction's op-code address into S +4 and S + 5,

respectively. This loads the stacked Index Register with the op-code address.

5. Use the "E" key to exit from the Memory Examine/Change function and then enter $EOOOG to

begin executing the program starting at location $EOOO in JBUG.

6. The program runs to location $E013 and hits the SWI breakpoint located there. Examine the

contents of Accumulators A and B by invoking Register Display and sequencing through the

Registers with the G key. The offset, in the correct form for entry in the program, is now in

Ace.A. If Acc.B contains $FF, the offset is valid (within the allowed range) and is in the negative

direction. If Acc.B contains $00, the offset is valid and in the positive direction. Any other value

indicates that the destination is beyond the allowed range.

1-5 OPERATING EXAMPLE

The following example program is suitable for gaining familiarity with the JBUG monitor features.

The program adds the five values in locations $10 through $14 using Acc. A and stores the final result in

location $15. The intermediate total is kept in Acc. A; Acc. Bis used as a counter to count down the loop. The

Index Register contains a "pointer" (i.e., X contains the address) of the next location to be added. The

program, as follows, contains an error which will be used later to illustrate some of JBUG's features.

In the following listing, the leftmost column contains the memory address where a byte (8 bits) of the

program will be stored. The next column contains the machine language op-code and data for a particular

1-11

microprocessor instruction. The next four columns contain the mnemonic representation of the program in

assembler format.

*
* Add 5 numbers at locations 10-14

* Put answer in location 15

*
0020 8E STRT LOS $FF DEFINE STACK IN USER AREA

0021 00

0022 FF

0023 4F CLRA TOTAL# 0

0024 C6 LDAB #4 INITIALIZE COUNTER

0025 04

0026 CE LOX #$10 POINT X TO LOCATION 10

0027 00

0028 10

0029 AB LOOP ADDA O,X ADD 1 LOCATION TO TOTAL

002A 00

002B 08 INX POINT X TO NEXT LOCATION

002C 5A DECB DONE ALL 5 LOCATIONS?

0020 26 BNE LOOP BRANCH IF NOT.

002E FA

002F 97 STAA $15 SAVE ANSWER

0030 15

0031 3F SWI GO TO JBUG

A detailed procedure for entering and debugging this program is shown in the following steps.

1. Start Up and Enter the Program in RAM

A. Turn power on. Push reset button on the main card. JBUG will respond with a"_:".

B. Type 0020 followed by the M key. This displays the current contents of location 0020.

C. Type 8E. This replaces the contents of 0020 with 8E which is the op-code for the first

instruction, LOS.

D. Type G. This steps to the next location (0021) and displays the contents.

E. Type 00.

F. Type G.

G. Type next byte of op-code or operand (FF in this case).

H. Repeat steps F and G for remaining instructions.

I. Type E. Abort input function.

1-12

2. Verify That the Program Was Entered Correctly

A. Type 0020M. Location 20 will be displayed.

B. Type G. Next location will be displayed.

C. Repeat step B until done, visually verifying data entered in Step 1.

D. Type E.

3. Enter Data in Locations 10-14

A. Same as 1 except type OOlOM to start the sequence. Any data may be entered; however,

for purposes of this example 01, 02, 03, 04, 05 should be entered.

B. Type E.

4. Verify Data

A. Repeat step 2 except type OOlOM to begin the sequence. Verify that the memory contains

the values 01, 02, 03, 04, 05 in sequencial order.

5. Run the Program

A. Type E to insure no other option is active.

B. Type 0020G. The program will run down to the "SWI" instruction at location 31 which

will cause it to go to JBUG and show 0031 3F on the display.

6. Check the Answer

A. Type E.

B. Type 0015M. (The answer is stored in location 15). Note that it says OA (decimal 10).

The correct answer is OF or decimal 15; therefore, there is a problem in the program as

originally defined. The next steps should help isolate the problem and correct it.

7. Breakpoint and Register Display

A. It might be helpful to see what the program was doing each time it went through the loop.

Therefore, set a breakpoint at the beginning of the loop, location 0029. To do this type E,

then tye 0029V.

B. A breakpoint could also be set at location 002F to see the results. Type E. Type 002FV.

C. JBUG must be told where to begin, so type E and then 0020G. JBUG will run to the

breakpoint and then display 0029 AB. At this point the program is suspended just before

location 29 and is in JBUG. On detecting this breakpoint, JBUG automatically displays

- the PC and is in the register display mode.

D. Type G (Go to next register). The display should read 0010. This is the value of the X

Register.

E. Type G. Display = 00 (A Register).

1-13

F. Type G. Display = 04 (B Register).

G. Type G. Display= DO (Condition Code Register).

H. Type G. Display= OOF8 (Stack pointer). Even though the program set the stack pointer

to FF the action of the breakpoint used a software interrupt to store the registers on the

stack, thus decrementing it by 7 locations. When JBUG returns to the user's program the

stack will return to FF.

I. Type G. Display = 0029 (PC). The register display is circular and steps D through H

could be repeated.

J. Type E. Abort the register display portion of the breakpoint. Type G to return to the

example program and resume executing. Since the breakpoint at location 0029 is in a

loop it will again be the next breakpoint and the display will contain 0029 AB. At this

point the registers may be displayed again as per steps D through I. If this were done the A

would be seen to contain the partial sum and the B would be decremented. The X Register

would be one greater than previously.

K. Type E.

L. Type G (Proceed). Display will type 0029 AB. Once again the registers may be

examined.

M. Type E.

N. Type G (Proceed). Same comment as L.

0. Type E.

P. Type G (Proceed). Display will now type 002F 97. The program has now successfully

completed the loop four times and the A-Register contains the incorrect sum.

8. Correcting the Program

A. From above it is evident that although the program was supposed to add five numbers, the

loop was executed only four times. Therefore, the LDAB #4 instruction at location 24

and 25 should have initialized B to five. There are two approaches to fix the problem; one

is temporary, the other is permanent. First the temporary one:

B. Type E.

C. Type V. Clears existing breakpoints.

D. Type 0026V. Set a breakpoint just after B register was loaded.

E. Type E.

F. Type 00200. The program will execute up until 0026 and then go to JBUG. Display=

0026 CE.

G. Type G five times. This displays the current stack pointer (OOF8). The B register contains

the counter we wish to modify and is located at location SP + 2 (FA).

1-14

H. Type E.

I. Type OOFAM. The display = OOFA 04.

J. Type 05. The display will change to OOFA 05.

K. Type E.

L. Type G. Proceed from user breakpoint down to the SWI instruction.

M. Type E.

N. Type 0015M. Display= 0015 OF. The program has now calculated the correct value for

the addition of the five numbers 1-5. This verifies the fix but would be inconvenient to do

each time the program was executed. A permanent change would be:

0. Type E, then type V. This clears all breakpoints.

P. Type 0025M. The display = 0025 04.

Q. Type 05. The display = 0025 05. This will now permanently change the LDAB #4

instruction to a LDAB #5 instruction.

R. Type E.

S. Type 0020G. Execute the program.

T. Type E.

U. Type 0015M. Display = 0015 OF, the expected answer; the program is permanently

fixed.

9. Trace Through the Program

A. Type E. In order to execute a trace, the program must first be stopped at a breakpoint. To

trace from the beginning do:

B. Type V. This clears the existing breakpoints.

C. Type 0020V. This sets a breakpoint at the first instruction.

D. Type E.

E. Type 0020G (Go to user program). JBUG will immediately get the breakpoint and type

0020 8E.

F. Type N. The program will execute one instruction and display 0023 4F. At this point the

user can either display the registers by depressing the G key or can continue to the next

instruction. To continue:

G. Type N. Go to next instruction. Display register if desired.

H. Continue step G for as long as desired. Note: Do not try to trace after executing the SWI

instruction; a restart will be necessary before continuing.

I. Type E. Clear trace mode.

1-15

10. Offset Calculation Including Register Modification

A. Assume that the SWI instruction at location 31 is to be changed to a branch always (BRA)

to location 20. This will cause the program to remain in an infinite loop (i.e., the program

has no end and will run continuously unless interrupted by some outside stimuli). Type

0031 to open the memory location. The display = 0031 3F.

B. The op-code for a BRA is a 20, so type 20. The display = 0031 20.

C. The second byte of the BRA instruction should be the two's complement negative offset

to location 20. Since doing this calculation in hex is tedious and error prone, a small_

unsophisticated (there was only a little ROM left) program that does offset calculation

was provided at location EOOO in the JBUG ROM.

D. Type E.

E. Type R, then type five G's. This will display the current stack pointer so that the registers

can be located and set up.

F. Type E.

G. Type in hhhhM where hhhh = SP + 2. This displays the current B register.

H. Type 00. This is the high byte of the destination address of the branch.

I. Type G. This displays location SP + 3 which contains the A-register value.

J. Type 20. Thi~ is the low byte of the destination address.

K. Type G. Display high byte of X register.

L. Type 00. Insert high byte of the branch op-code address.

M. Type G. Display low byte of X register.

N. Type 31. Insert low byte of the branch op-code address.

0. Type E.

P. Type EOOOG. When the program is completed it will return to JBUG via the SWI at

location E013 and the PC will be displayed.

Q. Type G twice. The A register is now displayed and contains ED which is the correct

offset.

R. Type G. The B register will contain an FF to indicate the branch was within range.

S. Type E.

T. Type 0032M.

U. Type ED. Insert the branch offset.

1-16

11. Executing and Aborting

12.

A. Type E.

B. Type 0020G. The program will begin executing and the JBUG prompt "-" will

disappear since the program now contains an infinite loop.

C. Type E. This aborts (Exits) the program and returns control to JBUG. The prompt has

now returned.

D. Type R. Display the PC and any other registers of interest.

E. Type E.

F. Type G. Program will again execute.

G. Type E. Abort program and return to JBUG.

H. Repeat F and G for as many times as you wish.

Punch Program to Cassette

A. Rewind the cassette. Type E.

B. Type A002M.

C. Type 00. Enter high byte of beginning address.

D. Type G.

E. Type 20. Enter low byte of beginning address.

F. Type G.

G. Type 00. Enter high byte of ending address.

H. Type G.

I. Type 32. Enter low byte of ending address.

J. Type E.

K. Turn on cassette in Record mode.

L. Type P. Wait for JBUG prompt to return (approximately 30 seconds).

13. Load Program from Cassette

A. Turn off power. This will cause the program in memory to be lost. Turn power back on.

B. Push the Reset button and get the JBUG prompt.

C. Rewind cassette.

D. Start cassette in playback mode.

E. Type L. Wait for the JBUG prompt. Test the program by any of the options described

above.

1-17

1-18

CHAPTER 2
HARDWARE DESCRIPTION

2-1 GENERAL DESCRIPTION

The MEK6800D2 Kit consists of two printed circuit board assemblies, the Microcomputer Module

and the Keyboard/Display Module. The Keyboard/Display Module includes interface circuitry for using

standard Audio Cassette tape recorders as an off-line magnetic storage medium. The Keyboard/Display

Module provides an economical operator interlace to the Microcomputer Module and is supplied as a separate

board in order to facilitate using the Microcomputer Module with other terminals or as an end-item in the user's

system development.

The Keyboard/Display Module is used in conjunction with a monitor program (called JBUG)

supplied in an MCM6830 ROM to permit an operator to communicate with and control the Microcomputer

Module. A detailed description of the available functions and commands is included in the Operating

Procedures section (Section 1-4 of Chapter 1). The features are, in summary:

1 . Examine and Change Memory

2. Display and Change MPU Registers

3. Go to User's Program

4. Trace One Instruction

5. Set and Clear up to Five Breakpoints

6. Proceed from Breakpoint

7. Abort from User's Program

8. Calculate Offset to Relative Branch Destination

9. Transfer Designated Memory Locations to Magnetic Tape

10. Load Memory Locations from Magnetic Tape

2-2 MEMORY ORGANIZATION

The general memory organization of the Kit is shown in Figure 1-1-2 of Chapter 1 . The memory map

is shown in tabular form in Table 2-2-1. In the M6800 system, memory location assignments are determined by

the combinations of MPU address lines that are applied to the device chip select lines.

In Table 2-2-1, the signals designated as ROM, PROM, etc., are the outputs of an MC74155

One-of-Eight Decoder. The MC74155 decodes the MPU's VMA, A15, A14, and Al3 lines. For example,

when these lines are all high, corresponding to memory address $EOOO (215 + 214 + 213), the ROM output of

the Decoder is low. This signal is applied to the chip select line CS 1 of the JBUG ROM, thus selecting this

2-1

SIGNALS DECODED

DEVICE ADDRESSES </>2 R/W SYMBOL VMA A15

ROM EOOO-E3FF l 1 ROM = 1

PROM COOO-C3FF PROM = 1

RAM (Stack) AOOO-A07F 1 x STACK = 1

PIA 8020-8023 1 x I/0 = 1

ACIA 8008-8009 1 x I/0 = 1

PIA 8004-8007 I x I/0 = 1

PROM 6000-7FFF 6/7 = 1

USER 4000-SFFF 4/5 = 1

USER 2000-3FFF 2/3 = 1

RAM (User) 0000-007F I x RAM = 1

RAM (User) 0080-00FF 1 x RAM = 1

RAM (User) 0100-017F I x RAM = I

RAM (User) 0180-0IFF 1 x RAM = I

x = Decoded by the device addressed

*
+

Required but not decoded by the device addressed

Decoded by 2K x 8 bit optional RAM

1

I

I

1

I

1

0

0

0

0

0

0

0

A14 A13 A12 All AlO

I I

I 0 +

0 I 0

0 0

0 0

0 0

1 1 +

1 0

0 I

0 0

0 0

0 0

0 0

A9 AS A7

x x x

x x x

0 0

x x x

0 0 0

0 0 1

0 I 0

0 1 1

TABLE 2-2-1: MEK6800D2 Evaluation Kit II Address Map

A6 AS A4 A3 A2 Al AO

x x x x x x x

x x x x x x x

x x x x x x x

1 O* O* x x

O* 1 O* x

O* O* I x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x x

device whenever the MPU outputs addresses in the range of $EOOO to $EFFF. The particular locations within

the ROM are selected by applying MPU address lines AO thru A9 to the ROM address inputs. The JBUG ROM

is located at the highest addresses in the kit's memory field. Note that A12 from the MPU is not applied to this

ROM so it will also be selected when the MPU outputs its Restart and Interrupt Vector addresses, $FFF8 -

$FFFF. Start-up and interrupt capability is obtained by placing the appropriate interrupt vector addresses in

locations $EEE8 - $EFFF of the monitor program.

Additional addresses are decoded for the optional ROMs that can be added for user-generated

programs. The Microcomputer Module is layed out to accept either two MCM68708 1024 x 8 bit Electrically

Programmable Read Only Memories (EPROM) or two MCM7641TTL512 x 8 bit Programmable Read Only

Memories. The PRO Ms are more economical but cannot be erased like the EPROM. Two MCM68316 2048 x 8

bit ROMs can also be used in the PROM locations. In this case, MPU address line AlO is applied to the

MCM68316 for decoding the additional 1024 bytes. Jumpers on the PCB are provided for selecting the desired

combination of ROM (see note 6 on the schematic diagram of Figure A3-a).

The MC6810 (128 x 8) RAM occupying memory locations $AOOO- $A07F is used by the MPU for

temporary storage of its internal registers during interrupts and subroutines and is selected by the signal

STACK. The MPU also uses this area for storage of flags and temporary data used by the JBUG monitor. This

organization allows a clean separation between monitor requirements and user RAM. The system assigns, via

the RAM signal, the four user RAMs to the bottom of memory in locations $0000-$01FF (first 512 bytes).

This RAM is useful for small user programs or for scratchpad memory in the MPU's direct addressing range for

larger user programs. To prevent contention with these RAMs, expanded systems should avoid these memory

2-2

locations; however, the board is easily modified (see Section 2-S on system expansion) to accommodate

external memory in this range.

The two signals 2/3 and 4/5 are brought to the edge connector and may be used to select two external

SK-byte blocks of memory. The 2/3 line decodes the second SK-byte block ($2000- $3FFF) of the memory

space; 4/5 decodes the next SK locations ($4000 - $5FFF).

2-3 INPUT/OUTPUT DEVICES

Three I/0 devices are provided with the Kit and are selected by the I/0 signal. The PIA at addresses

$S004- $S007 is provided for user specified peripheral devices. Its input/output lines are brought out ot the J1

edge connector. A wire-wrap area is provided for any buffering or interface circuitry that might be required. In

normal kit operation, the PIA at addresses $S020 - $S023 is used to interface the Keyboard/Display to the

MPU. If a terminal and the MINibug monitor are used, this PIA is also available (via the J2 edge connector) for

user specified I/0. The ACIA at memory locations $SOOS-$S009 is used to interface with the Audio Cassette

circuitry on the Keyboard/Display Module, but can alternatively be used to interface to serial RS-232 or TTY

type terminals (with the MINibug monitor) if desired. Note that the address lines A2, A3, and A5 are applied to

the chip select lines of the $S004 PIA, the ACIA, and the $S020 PIA, respectively. This insures the selection of

only one of the three I/0 devices when the I/0 signal is active. Note also that connecting the A2, A3, and A5

address lines to the PIA and ACIA chip select lines will cause a wider range of addresses than is required to be

selected. For example, when the I/0 signal is low (Al5, A14, A13 = 110) and A5 is high, any address in the

range $S020- $S02F may be present on the bus, depending on the states of AO-A3. The $S020 PIA does not

decode the A2 or A3 lines; therefore, addresses in the range $S024-$S02F will also select this PIA. However,

it is not necessary to use additional decoding if the use of these addresses is avoided in the user program.

2-4 SYSTEM CLOCK

The Kit uses a 614.4 kHz MC6S71B system clock. The frequency was selected in order to provide a

simple means of obtaining a 4SOO Hz reference frequency used by the 300 baud serial data rate tape cassette

circuitry. The 4SOO Hz signal is obtaining by dividing the MC6S71B 's 2fo output (1. 2288 mHz) by 256 with an

MC14040 counter. The 4800 Hz signal is applied to the cassette interface circuitry, along with the ACIA

outputs, via the J2 edge connector.

2-5 KEYBOARD/DISPLAY

The Keyboard/Display Module is provided as a separate printed circuit board in order to facilitate the

use of other terminals and to make the U21 PIA readily available for eventual expansion of the system. The

Keyboard/Display Module connects to the Microcomputer Module via a ribbon cable and connector provided

with the Kit. A scanning technique is used on both the display and the keyboard in order to minimize system

cost. Since operation of this circuitry is intimately related to the control program, refer to the software

discussion (Section 3-4) and the assembly listing, as well as the schematic diagram of Figure A3-b with the

following description.

2-3

The scanning procedure uses lines PBO- PB5 of the PIA, corresponding to SCNREG in the JBUG

assembly listing. The digit patterns to be displayed are put out on lines PAO - PA6 and are designated as

DISREG in the listing. The JBUG monitor program alternates between refreshing the display and checking for

a key closure in the following manner.

The OUTDS subroutine places the digit pattern for the left-most display on PAO-PA6 and then sets

PB5 high, causing that digit to be lighted. During this time, PB4- PBO are low, thus the other digits are off.

This digit of the display is held on for approximately 1. 0 ms, after which the pattern for the second digit is put on

lines PAO - PA6. PB5 is switched low, and PB4 is taken high to select the second digit. This sequence

continues until the right-most digit has been selected, at which time the program goes to the KEYDC subroutine

to check for key closures. The blanking pattern ($FF) is placed on PAO-PA6 to blank the display so that lines

PBO - PB5 can be used to interrogate and decode the keyboard. Following the keyboard check, operation

returns to the display sequence. The refresh rate is fast enough that the displays appear to be on continuously.

An MC14539 CMOS One-of-Four Data Selector (UlO) is used to sequentially select each column in

the keypad matrix and route it to PA 7 for testing by the monitor program. The address data for selecting each

column is output to the Data Selector on lines PB6 and PB7. Refer to the description of the monitor program in

Section 3-4 for details of the keyboard decoding technique. Note that CB 1, a PIA interrupt input, is directly

connected to column 2. This allows the E key to be used for generating an NMI interrupt for escaping from

"blown" user programs. The MC75452 buffers serves to increase the PIA's drive capability.

2-6 TRACE (EXECUTE SINGLE INSTRUCTION)

A hardware trace function is provided that permits a user's program to be executed one instruction at

a time. Results of the execution, including MPU Register contents, can be examined between each Trace

command. The Trace function will operate on programs in either RAM or ROM and is useful as a debugging

aid. The circuitry consists of an MC8316 Counter and two MC7479 D-flip-flops connected as shown in Figure

2-6-1. Refer to this figure also for the associated timing waveforms.

When a Trace command occurs, the system is normally in the Register display mode from either a

previous Trace or having run to a Breakpoint. Thus, the user's Register values are stacked and the monitor

program is alternating between refreshing the displays and checking for new key closures. The user Program

Counter value saved on the stack is pointing to the next user instruction to be executed. Invoking a Trace

command at this point causes the MPU to start the Trace Counter (via CA2 of the Keyboard/Display PIA) and

then execute a Return from Interrupt (RTI) instruction. This causes the MPU to reload its Registers from the

stack and begin executing the next user instruction. In the meantime the Trace counter is counting machine

cycles. The eleventh cycle after the counter is started will be a fetch of the op-code for the next user instruction

(R TI takes ten cycles to execute). The Trace circuitry detects the eleventh cycle and generates a low going NMI

signal. Since the shortest instruction is at least two cycles long, NMI will always be low at the end of the first

instruction and will cause a return to the JBUG monitor program via an NMI interrupt. The NMI service routine

sets CA2 back high, resetting the counter in readiness for another command. The NMI service routine is

described in Section 3-8 in greater detail. From the user's point of view, closure oftheN (Trace) key causes the

system to execute one instruction and then stop so that the results can be examined.

2-7 AUDIO CASSETTE INTERFACE

Circuitry for interfacing an ACIA to an audio cassette recorder/player is included on the Keyboard/

Display Module. This circuitry enables the user to store and retrieve data on ordinary audio cassettes at a 300

2-4

+5V +5V

CA2 s +5V
From 0 Q

PIA U24a NMI

DBE c 0: s 10 k
+5V 0 Q R

PE CET U24b
CEP U25 TC c 0:

+5V MC8316 R c
MR PO P1 P2 P3

+5V

FIGURE 2-6-1. Trace Circuitry and Timing Waveforms

baud (30 characters per second) serial clock rate. Data is stored on the tape using the "Kansas City Standard"

recording format, so-called due to its formulation during a symposium sponsored by BYTE Magazine in Kansas

City, Missouri in November, 1975. The format is designed to eliminate errors due to audio system speed

variations5 and has the following characteristics:

1. A Mark (logical one)6 is recorded as eight cycles of a 2400 Hz signal.

2. A Space (logical zero) is recorded as four cycles of a 1200 Hz signal.

3. A recorded character consists of a Space as a start bit, eight data bits, and two or more Marks as

stop bits.

4. The interval between characters consists of an unspecified amount of time at the Mark frequency.

5. In the data character, the least significant bit (LSB) is transmitted first and the most significant bit

(MSB) is transmitted last.

6. The data is organized in blocks of arbitrary and optionally variable length preceeded by at least

five seconds of Marks.

7. Meaningful data must not be recorded on the first 30 seconds of tape following the clear leader.

A control program in JBUG causes this format to be followed and incorporates the following

additional characteristics:

1. At the beginning of tape (BOT), the ASCII character for the letter "B" is recorded following

1024 Marks (approximately 30 seconds).

2. The "B" is followed by one byte containing the block length (up to 256 bytes in a particular

block).

3. The next two bytes recorded contain the starting address in memory from which the data is

coming.

4. Up to 256 bytes of data are then recorded and followed by 25 marks and the ASCII character for

the letter "G''.

The control program uses the additional features to insure that the Punch and Dump functions are performed in

an orderly manner (see the explanation in Section 3-7 for additional information).

The cassette inferf ace circuit diagram of Figure 2-7-1 serves as an aid to understanding the following

description of the Punch and Load operations. The Punch (transfer of data from the Microcomputer Module's

memory to tape) and Load (transfer from tape to memory) commands are accomplished by a combination of the

control program, the MC6850 Asynchronous Interface Adapter (ACIA), and the cassette interface circuitry.

The ACIA is, in effect, a bus-oriented, universal, asynchronous receiver/transmitter (UART). In the

transmit mode (Punch), it accepts parallel 8-bit data from the MPU bus, adds the formatting start bit and stop

bit, and then converts the data to a serial binary stream (Tx Data in Figure 2-7-1). The desired format is

established by instructions from the MPU as it executes the Punch command. In the receive mode (Load), the

ACIA accepts an incoming serial data stream (Rx Data) and a sampling clock (Rx Clk). It strips off the start/stop

bits and passes each incoming byte to the MPU for transfer to memory, again under control of the MPV as the

5The circuitry provided with the kit will accommodate speed variation of approximately ±25%.
6Logical ones and zeros will be alternatively referred to as Marks and Spaces, respectively, in accordance with serial data transmission
conventions.

2-6

Tx Clk
(4800 Hz)

Tx Data

N
I

-....J

Earphone

/

' /

s R41
D Q -"•v

U12a

MC14081 MC14013

.....-~c R ~ U14d

rl
MC14016

-:i s
D Q !-----,

U12b

B-c MC14013
MC14081

Q
U13b R ~

-:!:-

l..<J Clk

l MC14016
U19

MC14024 Q3 t-----
+5V S

r-----i Ctr I 1 Out 1 r--. 0----1 D

..___ R Q4 1----+-+-----1 ln1 U14a
t----

...--1 Ctrl2
Out 21---'

'---+---+---t I n2
U14b

r--C

U18b
MC14013

R

+5V0

R39

-vv T--
,_.c1

R;~ _a_ ~C3301 -v ~

R4 J U16a •

IAA V
R42

II-- +5 v

< R36

R47

U20 R37
<AA ~MC3301 XO

I u1~>--e--+----I x1

+5V ,..._0----'\<A/\<Arv-----t~
C2

xH ~ ~~4--1 vR45

R35 _....
v•A-.

_I-'-c3
R58
•AA, ~

v
MC14053

~-+----t YO ..f\/'L

'-----i Y1

,-----., zo

Yt----,

...--1 Z1 Z t-+----,
A B C

J t--7
~ R4B Microphone

H

---+------+---------<.-....ATS

MC14081

U14c~ ~

~R61
U11b

MC14538
-4-----l ,_____j U13d 1----7~ Rx Clk

~

MC14016

_rH.___.I _ ____. ~'-B-~1~-;-'V
-= C24

~R49

U17 s
Out2 ,___ ______ __,A Q

R53._, 51~
/~---tl.,_.·VVv·'V-~---111t-_.---+-----tln2

'-- D Qr---HH
~C13 ~R53 RSS[j ~~: Out 1

,l JI MC75140P
/>----<11J----<1t----.---... ~ '-----~

-----iRef

:> R51

U11a U18a
MC1453B MC14013

C6-'- r<1 B Ql------<c O 1-----------4--t----------------7-+ Rx Data

I R c

.__ ___ =r: ... --<)0+5V

FIGURE 2-7-1. Audio Cassette Interface Circuitry

program executes. The ACIA's Request-to-Send, RTS, acts as a gating signal to switch the interface circuitry

between the Punch and Load modes. The reference documents may also be referred to for additional details on

the ACIA's characteristics.

Timing waveforms corresponding to the appropriate signals in Figure 2-7-1 are provided as Figures

2-7-2, 2-7-3, and 2-7-4 as an aid to study of the cassette interface circuitry.

During a Punch operation the interface circuitry operates on the serial data to convert each logical

one (Mark) to an 8-cycle burst of 2400 Hz signal and each logical zero (Space) to a 4-cycle burst of 1200 Hz

signal which is then recorded on tape.

The circuitry reverses this procedure during a Load operation; it decodes the incoming frequency­

modulated signal in order to recover the binary data and a sampling clock.

In Figure 2-7-1, the MC14053 Multiplexer/Demultiplexer, U20, (Data Router, for simplicity) is

used to steer signals to their required points during both Load and Punch operations. For instance, during

Punch, B and C are high while A is derived from the binary data on Tx Data. For this combination of control

signals Y is connected to Yl (because Bis high); thus the 4800 Hz Tx Clk signal from the Microcomputer

Module is applied to the clock input of the MC14024 Counter, U19. Also, because C is high, Z is connected to

Zl, but this signal is not used during Punch. The 2400 Hz and 1200 Hz signals are obtained by selecting either

the +2 (Ql) or the +4 (Q2) outputs of the Counter as it is clocked at 4800 Hz.

The signals at XO and Xl are 1200 and 2400 Hz sine waves obtained via the bandpass filters of U16a

and U16d. One or the other of these signals (depending on the Tx Data logic level at A) will be level shifted,

attenuated, and applied to the microphone output terminals.

TxClk
(4800 Hz)

RTS

Counter Outputs

Cl1
2400 Hz

02
1200 Hz

02P I (Phased 02)

03
600 Hz

Cl4
(Reset)

Tx Data
(Transmit Data)

Tx DP
(Phased Tx Data)

01 Filter A. A. A. A. A. A. A. A. A. A.
2400Hz~VVVV~

02PFtlter' ~ ~ ~ ~ ,/'
1200 Hz """7' """7' """7' ~ ~

FSKOutput A_ ~ ~ ~ ~ /'_
Signal ~~~ ~ """7' '7~

FIGURE 2-7-2. Transmit Waveforms

2-8

Input from
Earphone

"Squared" Data
Output of U 17

Output of Ulla
One-Shot

Rx Data
(Output D of Ullb)

Counter Reset
(Output of Ullb)

Counter Outputs

01

02

03

04

Rx Clk
(Output of U13d;
Same as 03
via Data Router)

J LJ LJ LJ u LJ LJ LJ

_J

FIGURE 2-7-3. Receive Waveforms, Space-to-Mark Transition

lnputfrom A ~ ~ ~ ~ /'\. /
Earphone ~~~ """7 "7 'C/~

"Squared" Data
Output of U 17

Output of __J
Ulla One-Shot

Rx Data
(Output '1i of U18a)

LJ L

Counter Reset n n n
(Output of Ul lb) ----~~-----~--------------------------~ ---------
Counter Outputs -----.

Ql

02

Q3

04

Rx Clk
(Output of U13d;
Same as 02 via
Data Router)

FIGURE 2-7-4. Receive Waveforms, Mark-to-Space Transition

2-9

Note that the 1200 Hz square wave is obtained from the output of U12a rather than the Q2 output of

the MC 14024. This, together with the gating of U 13 and the delay associated with U l 2b, insures that switching

of output frequencies will occur only when the outputs of Ul6a and Ul6d are at essentially the same voltage.

(Refer to the timing diagram of Figure 2-7-2.)

During a Load operation, the incoming signal from the cassette earphone is filtered, amplified and

squared by the Ul 7 Line Receiver. (Ul 7 is connected as a Schmitt trigger to reduce noise problems.) This

results in a signal, at digital levels, that varies between 2400 Hz and 1200 Hz according to the one-zero pattern

that was recorded on the tape. This frequency-modulated signal is then converted to logical ones and zeros by

the pulse width discriminator formed by the Ulla MC14538 Monostable Multivibrator (or One-Shot) and the

Ul8a type D flip-flop. Incoming signals less than 1800 Hz are decoded as zeros; frequencies higher than 1800

Hz are decoded as ones. The Received Data will be present at the Q output of Ul8a.

The required Rx Clk signal, a positive transition at the mid-point of each bit-time and a negative

transition at the end of each bit-time, is generated as follows:

During Load the digital level 2400/1200 Hz signal, instead of the 4800 Hz Tx Clk signal, is steered

to the Counter clock input. The Counter's +8 (Q3) and + 16 (Q4) outputs are connected to the inputs of Ul4b

and U14a, respectively. The control inputs ofU14a and bare connected to Received Data and applied to the Set

input of U18b. The Output ofU18b triggers the Counter Reset one-shot, Ullb. Hence, eitherthe +8or+16

Counter output is steered back (via X) as a reset, depending on whether the data is a zero or a one, respectively.

The Counter is also reset by every Mark-to-Space transition via the U 11 b One-Shot. The Counter's +4 and + 8

outputs are connected to ZO and Z 1, respectively. These connections combined with the reset signals result in a

positive transition at the Z output of the Data Router after either four cyc1es of 2400 Hz or two cycles of 1200

Hz. Thus, the Rx Clk (Z gated by RTS) has a positive transition in the middle of each bit-time and a negative

transition at the end of each bit-time.

2-8 KIT EXPANSION

Provision is made for buffering circuitry to allow the Microcomputer Module to be implemented

into a larger system. The buffers and pinouts selected on the bottom edge connector are compatable with the

EXORciser so its I/0 and Memory Modules can be used with this kit. The direction of data flow across the data

bus buffers is controlled by theMC7430 NAND gate, U7. This decoding provides for data flow off the board to

the external system when there is a Memory Read Cycle at an address that is not decoded by the devices on the

Microcomputer Module itself. Note that the signal RAM decodes the lowest 8K bytes of memory which are

reserved for on-board memory (MCM6810's). Should the user want to assign the lowest 8K of memory

addresses to off-board memory, the following changes are required:

Remove the MCM6810's decoding addresses 0000, 0080, 0010 and 0180; remove the

signal RAM from pin 4 of the MC7430 and tie pin 4 to +5 V. The signal provided at the bus

connector called RAM can be used on outside memory to indicate an MPU access to an address in

the bottom 8K bytes of memory which now resides off the module.

Provision has been made for using a zener diode (1N4733) to generate a -5 V supply for the 2708

PROMs (if they are used) from -12 Vin case this kit is operated in an EXORciser-type system which does not

have -5 V available. Should - 5 V be available, the zener diode and associated 68 ohm resistor can be omitted

and the -5 V brought in through the bus connector.

2-10

CHAPTER 3
SOFTWARE DESCRIPTION (JBUG MONITOR)

3-1 GENERAL DESCRIPTION

The control and diagnostic capability of the MEK6800D2 Kit is provided by the JBUG monitor

program resident in the MCM6830 lK x 8 bit ROM supplied with the Kit. The characteristics of this program

are described in the following sections. An assembly listing of JBUG is included (Appendix 1) and may also be

referred to in studying the flow of the program.

Several RAM locations are used for temporary data storage and as flags by the monitor in

communicating between the various routines. Some of the more significant ones are described below and are

referred to in the description of JBUG.

SP

($A008)

DISBUF

($AOOC)

DIGIN4

($A014)

DIGIN8

(A015)

MFLAG

($A016)

RFLAG

($A017)

NFLAG

($A018)

VFLAG

($A01D)

XKEYBF

($A01A)

A RAM location in which the user's Stack Pointer is saved whenever the monitor resumes

control. The user's Stack Pointer is required for locating user Registers on the stack and to

restore these Register when returning to the user program.

Eight RAM locations used as a buffer to hold the current values being displayed. In the first six

locations, the high order 4 bits of each location represent the display digit-count while the low

order 4 bits contain the value that is to be displayed on that digit. For example, the high order 4

bits of the sixth location in DISBUF identify the right-most display. The last two locations in

DISBUF are used for temporary storage of data that is input from the keypad during a Memory

Change function.

A flag that is set to one (LSB) when at least four hex digits have been entered from the

keyboard (as in Memory Examine)

A flag that is set to one (LSB) when six hex digits have been entered from the keyboard

(as in Memory Change)

A flag that is set to one (LSB) when the M key is depressed to invoke the Memory

Examine Mode.

A flag that is set to one (LSB) when the R key is depressed to invoke the Register Display

Mode.

A flag that is set to one (LSB) when the N key is depressed to invoke the Trace

Mode.

A flag that is set to the number of breakpoints (up to five) that have been set.

A pointer to the next empty location in DISBUF where the next hex key entry will be stored.

The flow of JBUG is straightforward and is shown in Figure 3-1-1. After release of the RESET

button, the monitor goes through an initialization sequence in which the stack pointer is initialized to $A078,

3-1

the PIA for the Keyboard and Display is configured, the flags which communicate between routines are cleared

and a dash (-) is placed in the first location of DISBUF to be displayed on the lefthand digit as a prompt to

indicate that the MPU is executing the JBUG monitor. After initalization the display is scanned; this involves

displaying the contents of DISBUF (first six locations). The display scan takes about 6 ms (6 digits at 1.0 ms per

digit) after which the Keyboard is scanned and decoded (KEYDC). A test is made to see if any key is depressed

and if none is found the program returns to OUTDS. If a key is found to be depressed, a decoding process takes

place to debounce the key and to deteFfnine which key is depressed. If the key is a hex key (0-F) then its value is

placed in the next open location in DISBUF. If the key is one of the command functions, that command is

decoded and executed before returning to the display routine OUTDS. As shown in Figure 3-1-1, the basic

background program flow alternates between refreshing the display and checking for key closures.

KEYDC5

Jump to Indicated
Command Routine

REST AR

Initialize Stack Pointer,
PIAs, ACIA, and Flags.
Put the Prompt dash in
DISBUF

OUTDS

Decode Closure. Test
for Command or Data

Yes No

Yes

Output contents of
DISBUF to Display

Check for Key
Closures (KEYCL)

Store Data. Return
to update Display

No

FIGURE 3-1-1. Overall Program Flow for JBUG Monitor

3-2

No

3-2 RESTART/INITIALIZATION ROUTINE

When the RESET push button is released, the MPU outputs addresses $FFFE and $FFFF in order to

bring in the starting address of the restart routine. Because this system does not require full address decoding

(see Section 2-2), the top two locations of the JBUG ROM ($E3FE and $E3FF) respond with $E08D, the

beginning address of the restart routine, RESTAR. RESTAR first initalizes the Stack Pointer to $A078 and then

sets the NMI interrupt pointer to $E14E. The NMI interrupt pointer is placed in RAM so that the user can

change it and force NMI interrupts to do something other than go to the JBUG monitor (if this is done all

diagnostic capability of JBUG will be lost). The Keyboard/Display PIA, U21, is then configured to match the

hardware connections shown in the Keyboard/Display Module Schematic Diagram, Figure A3-b. The flags are

cleared and a code to blank the display ($17) is stored in all locations of DISBUF. A dash (-) is written in the first

location of DISBUF to indicate that the MPU is executing the monitor program. Flow then branches to the

OUTDS routine whose function is to move the contents of the DISBUF out to the LED displays.

3-3 DISPLAY ROUTINE

The display routine, OUTDS, is detailed in the flow chart of Figure 3-3-1 and begins at line 260

(address $EOFE) of the assembly listing. The first value in DISBUF is loaded into Accumulator A (Ace.A). The

OUTDS

Load X with Pointer to
Display Buffer.

OUTDS1

Get data into Acc. A. Point X
to Pattern Table, DI GTB L.

OUTDS2

Find Pattern by Iner. X, Deer.
A until A = 0. Put Scan Count
into SCNREG. Delay 1.6 ms

No Yes

Shift SCNCNT bit one
position to right Initialize SCNCNT to $20 for

use in checking for Key Closure.
Jump to KEYDC.

KEY DC

FIGURE 3-3-1. Program Flow for Output Display Routine

3-3

Index Register is then pointed to the beginning of DIGTBL, a table which has the correct bit patterns for the

character set to be displayed. The Index Register, X, is then moved to the table location corresponding to the

required pattern by decrementing Ace.A whileX is incremented until Ace.A= 0. This pattern is then put out to

DISREG (the anodes of the seven segment display) as the first digit of display is selected by SCNREG (the

cathodes of the display).

This process is repeated for all six positions by moving a'' one'' through SCNREG as each position's

data appears in DISREG. In this manner, the data in the first six locations of DISBUF are output to their

respective display positions and turned on for about 1.0 ms each (using the DLYl delay loop. After all six

positions have been scanned, the variable SCNCNT is reset to $20 (corresponding to the left-most display) in

readiness for use during the next refresh scan cycle.

3-4 KEYBOARD SCAN AND DECODE ROUTINE

Following each display refresh cycle, the monitor jumps to KEYDC (line 302, address $E14E, flow

charts in Figures 3-4-1and3-4-2), the routine for scanning and decoding the Keyboard. The Keyboard is first

tested by subroutine KEYCL to determine if a key has been depressed. The display is blanked by storing $FF to

avoid flicker while the SCNREG lines are being used to interrogate the keyboard. Storing $3F to SCNREG

applies logical zeros to the rows of the keyboard matrix. KEYCLl then tests each column in sequence to

determine if a key is closed. (A depressed key will couple the zero on its row through to PA7 when tested.) The

KEYCL routine returns to the caller, KEYDC, with status information in Ace.A. If no key was closed, Ace.A

will contain $00 and the program will branch back to OUTDS for a display refresh. If a key was closed, the

program branches to a 20 ms delay (DLY20) to allow time for key debounce. KEYDC 1 then scans the keyboard

one row at a time using KEYCL to scan the columns looking for the closed key.

An exit back to OUTDS occurs (line 312) ifthe last row has been scanned without finding a closure.

If there was a closure, KEYDC2 compares the value returned in Ace.A with codes in table KEYTBL to

determine the key value. The KEYTBL values are related to the column and row position for each key. Each

key is represented by a value in the range 0-23 with the first 16 values representing hex numbers. Once the key

value has been found, the program enters the KEYDC4 routine to wait for the key to be released. After release is

detected, the program again delays for 20 ms to provide time for debounce. Line 327 begins decoding the key

value into either hex or command. Hex keys are entered into DISBUF at the location pointed to by XKEYBF

and then tested to see if four digits have been entered yet. If four digits have been entered, DIGIN4 is set to

enable further operations such as Memory Examine. Comand key values are routed to KEYDC5, a jump table

resulting in a branch to one of eight locations depending on the command key depressed. The following action

is taken on each command key:

P-KEYDC8 · The display buffer, DISBUF, is cleared and the program jumps to subroutine PNCH. Upon

return from the punch routine, a dash (-)is written to DISBUF (to inform the operator that the

punch has been accomplished) and the program jumps to OUTDS.

L-KEYDC9 The display buffer (DISBUF) is cleared and the subroutine LOAD is called. After the data has

been loaded from tape the monitor dash is written into DISBUF and the OUTDS routine called

to inform the operator that the load is complete.

3-4

N-KEYDCA Breakpoints, if any, are removed by clearing VFLAG. The NFLAG is set (LSB) to identify the

TRACE mode and CA2 of the Keyboard/Display PIA is switched low to start the trace counter.

An R TI instruction is then executed to reload the stack into the MPU and go on with the next

user instruction.

V-KEYDCB The DIGIN4 flag is tested to determine if it is in the clear or set breakpoint mode. If four digits

have been entered, the DIGIN4 flag will be set and the program will call the set breakpoint

(SETBR) subroutine and then go to the OUTDS routine. If the DIGIN4 flag is clear, then V

was a clear breakpoint command and the VFLAG is cleared thus clearing any breakpoints

which may have been set.

M-KEYDCC The MFLAG is set to indicate that the Memory mode has been selected. The DIGIN4 flag is

tested to make sure a full memory address has been entered. If four digits have been entered,

the Memory Display Subroutine (MDIS) is called; otherwise the program goes back to

OUTDS.

E-KEYDCD Causes the MPU to clear the DISBUF locations, write the monitor prompt dash to DISBUF,

and then branch to the display refresh routine. When a user program is in progress the E key

generates an NMI interrupt, providing an abort function.

R-KEYDCE The RFLAG is incremented to designate the Register Display mode and then th~ Register

Display subroutine is called.

G-KEYDCF The G key performs one of three functions depending on the current mode of operation. If the

monitor program is in the Memory Examine or Register Display mode, the G command causes

the next location to be displayed. If neither of these modes is in effect, G can be used to either

go to a user program or proceed from a breakpoint. These operations are described in greater

detail in the next paragraph.

When a G command is decoded the jump table directs program flow to KEYDCF (line 431, address

$E20E) and the MFLAG is tested to determine if the current G key closure is a command to go to the next

memory location. If MFLAG is set, the Memory Increment (MINC) subroutine is called and will be followed

by the Memory Display (MDISO) subroutine. If MFLAG is clear, the RFLAG is tested to determine if this G

closure meant go to the next Register location. If RFLAG is set, the subroutine to display next Register

(REGSTI) is called.

If neither MFLAG or RFLAG is set, the G closure is interpretted as a Go to User Program command,

from either a specific address or from the location indicated by the current value of the Program Counter saved

on the stack. The DIGIN4 flag is tested (line 436) to determine if a new starting adress has been entered. If

DIGIN4 is set, the program replaces the stacked value of the Program Counter with the new Go address is saved

in the first four locations of the Display Buffer, DISBUF. After checking to see if there are any breakpoints to

install, the MPU executes a Return from Interrupt (RTI) to the user program.

If DIGIN4 is clear, a proceed from current Program Counter mode is indicated. In this case, the

GETXB routine is called to determine if any breakpoints have been set. If no breakpoints are in effect, keyboard

interrupts are enabled (TGC, line 464) and the MPU execues an RTI back to the user's program. If breakpoints

are indicated, the trace routine (TRACE, line 384) is called to step one instruction. On receiving the NMI

interrupt caused by the trace, the NMI routine (NONMSK, line 91) checks to see if both trace and breakpoint

3-5

flags are set. If set, JBUG then installs the breakpoints (TGC, line 464) and returns to the user's program. This

procedure is necessary to insure that the instruction at the current breakpoint location will itself be executed on a

proceed and that the breakpoint location will contain the SWI the next time it is executed. This is especially

important when the breakpoint is in a loop in the user's program.

OUTOS

KEYDC5

KEYDC2

No

Find Acc. A match in

KEYTBL

Wait for Key release, then
delay 20 ms for
debounce. Test data for
hex or Command

Yes No

KEY DC

KEY CL

Blank Display. Set all
rows low.

KEYCL1

Test for key closure

Delay 20 ms, then
set first row low.

KEYDC1

Scan Keyboard columns
by calling KEYCL 1.

No

Yes No

Point X to next empty location
in D ISB U F. Store key value
there. Test for exactly 4 digits.

Yes No

Find value of key in jump
Table, Branch to Command
Routine.

Set DIGIN4 Flag. Iner.
DISBUF Pointer.

P = KEYDC8
L = KEYDC9
N = KEYDCA
V = KEYDCB
M = KEYDCC
E = KEYDCD
R = KEYDCE
G = KEYDCF

Iner. DISBUF Pointer

To OUTOS

See Figure 34·2 for
KEYCL1 Flow Chart

No

Select next row

KEYDC7

Test for exactly 8 digits

Yes

Set DIGIN8 Flag. Call
Memory Change Routine,
MDIS1. Back up DISBUF
Pointer two locations.

FIGURE 3-4-1. Program Flow for Keyboard Scan and Decode Routine

3-6

KEYCL1

Test selected column.

Yes

Select next column.

No

Returns with state of SCN REG
in Acc. A when key closure is
detected.

FIGURE 3-4-2. Program Flow for KEYCL 1 Subroutine

3-5 MEMORY EXAMINE/CHANGE ROUTINE

Flow charts for the Display and Change Memory routines are shown in Figure 3-5-1. The Memory

Display routine (MDIS, line 483) causes display of the contents of the memory location pointed to by the first

four DISBUF locations. KEYBF, the pointer to the next empty location in DISBUF, is advanced by two in order

to point to locations six and seven in DISBUF when new memory data is entered. The BLDX routine, via a

jump through KEYD3F, builds a memory pointer from the data in the first four locations of DISBUF and loads

it into the Index Register. The data from the location pointed to by X is loaded into Ace.A, split into nibbles

(half-bytes or 4-bit words) by the MDIS2 subroutine, and stored in DISBUF locations four and five. Should a

memory change be required, MDIS 1 (line 496) is called, which gets the new data from locations six and seven

in DISBUF (the keyboard entry) and stores it in the memory location referenced. A read of that location is then

performed to get the actual data (someone might try to alter a ROM) which is put back in DISBUF+4 and

DISBUF+5 to be displayed, giving the operator a visual indication that the change occurred. The Memory

Increment Subroutine (MINC) is called when the G key is used to advance to the next memory location. This

routine simply does a 16 bit increment of the four nibbles stored in the first four locations of DISBUF. MDIS is

then called to display the contents of the incremented address.

3-7

MDIS

Update Keyboard Pointer
to DISBUF

MDISO

Call B LOX to build memory
address from 1st two locations
of DISBUF. (Address in X Reg.)

Get data from that location.
Format for D ISB U F (call
MDIS2). Store in DISBUF.

(a) Display Memory

MDISl

Get new data from locations
6 and 7 of DISBUF.

Get memory address from
DISBUF.

Store data to memory. Read
memory to verify data was
changed.

Format data and store in
DISBUF locations 4 and 5.
Clear DIGIN8 Flag.

(b) Change Memory

FIGURE 3-5-1. Program Flow for Memory Display, Change, and Increment

3-6 REGISTER DISPLAY/CHANGE ROUTINE

MINC

Get memory address from
DISBUF.

Increment memory address.
Format new addr. and store
in DISBUF.

Increment DIG I N4 and
MFLAG.

(c) Increment Memory

The subroutine to display the registers (REGST, flow chart in Figure 3-6-1) transfers the User's

Registers from his stack (User's Stack Pointer is always saved in SP) to the display for operator inspection. The

registers are displayed in the order they are stacked: PC, X, A, B, C. A new register can be selected by pressing

the G key while in the Register Display mode. This causes the register display routine to be entered at REGSTl

(line 556). TEMP2, a RAM buffer, is used as a counterin this routine to determine whether the register is one or

two bytes long, and which register to display next.

The Program Counter is displayed first so that when the Register Display routine is called from the

Trace or Breakpoint routine, the Program Counter appears automatically, allowing the operator to easily follow

program flow. REGST points the Index Register to the top of the user's Stack where the high byte of the

program counter is located. REGSTl clears the display buffer, DISBUF, and determines from the count in

TEMP2 which register is to be displayed. When the count gets to 3, all registers have been displayed and the

user's Stack Pointer is loaded from location SP and displayed.

3-8

Implies
X Reg

REGSTl

Load flag pointing to
next register (TEMP2)
in Acc. A

Get High Byte and display it.

Get Low Byte and display it.
Iner. Acc. A.

Yes No

Implies either P.C. or
X Reg.

Implies P.C.

Decrement Pointer to stack.
Increment Acc. A.

Decrement Pointer to stack.
Display op·code.

Increment Acc. A.
Decrement Pointer to stack.

REGST

Initialize TEMP2 Counter
and Acc. A to (-2).
Get S.P. into X.

Move Pointer to P.C. on
stack. Clear DISBUF.

Yes

Implies
Stack
Pointer

No

Yes

High Byte of Stack Pointer
to 1st two locations of
DISBUF.

Low Byte of Stack Pointer
to next 2 locations of
DISBUF.

Increment TEMP2

FIGURE 3-6-1. Program Flow for Register Display Function

3-7 PUNCH AND LOAD ROUTINES

No

Implies Acc. A.
Acc. B, or C.C.

Move Register pointed to on
stack to 1st two locatiQns
ofDISBUF

The Punch routine (line 609, address $E32F, flow chart in Figure 3-7-1) is entered via a decode of a P

key closure. Initially, the ACIA is reset causing the RTS signal to go low. This is followed by ACIA

programming to set RTS high, establish eight bits for data length, no parity, and two stop bits. Additionally, the

ACIA is set up to transmit serial data at one sixteenth of the clock frequency. A leader is then punched (using the
PNLDR Subroutine) consisting of 1024 ones.

3-9

w
I -0

PNCH

Reset ACIA. Setup for B·Bit,
No Parity, 2-Stop, RTS = 1

Punch Leader (PN LD Rl

PUNDlO ___ - __ C'a_1_Z_B_iii_c~k_L_;;_g_th __ -__ _,

Set Block Length =
ENDA-BEGA

No Yes

PUND25

Punch: ASCII B, Block
Length, Beginning Address

PUND30

Punch Data

No

Punch 25 Ones

No

Punch ACSll G

Set Block Length
Equal 256

DUTCH

PNLDR

$FF~AR

Punch all Ones

X-1 ~x

FIGURE 3-7-1. Program Flow for PUNCH Function

No

PUN

Get Data

DUTCH

Punch Data

x+1~x

DUTCH

Save Acc. B

Test for ACIA Ready

Put Data Away.
Restore Acc. B

No

After the leader is punched, the program compares the beginning address (located in $A002, $A003)

to the ending address (located in $A004, $A005). If the difference is greater than 256 (hex FF), the first block is

assumed to be 256 bytes long. When the difference is less than 256, the block length is set equal to the

difference.

Once this determination has been completed an ASCII ''B'' is punched on the tape. This is followed

by the block length (one byte). The next information stored on the tape is the two byte beginning address of the

data being put on the tape. After the block of data is outputted to the tape recorder, a leader of 25 ones data is put

onto the tape. At this point the beginning address is again compared to the ending address in order to see if all

the data has been punched. To provide a control to validate that all data has been recorded and for ease of

recovery, an ASCII "G" is then punched on the tape. When the beginning address and the ending address are

different, another block of data must be processed. This cycle is continued until the beginning and ending

addresses are the same. Return to control is accomplished with an RTS instruction.

This routine destroys the beginning address originally put in the locations $A002 and $A003. When

the punch routine is complete the data in the ending address is unchanged and the beginning address locations

contain a value one greater than the end address.

The Load routine (line 674, address $E395, flow chart in Figure 3-7-2) is entered via a decode of an

L key closure. This routine sets up the ACIA to receive data in the same format that is used by the Punch routine:

data length equals 8 bits, no parity, two stop bits. The Receive Clock mode is set to divide-by-one and RTS is set

low, indicating that the ACIA is now ready to receive data from the cassette interface circuitry.

Each data byte is brought in by calling the Input One Character routine, INCHR (line 699, address

$E3CO). This routine continuously checks the ACIA's Status Register until there is an indication that a byte is

ready to be transferred. The MPU then fetches the byte from the ACIA Data Receive Register and returns to the

LOAD routine with the data in Ace.A. The data is then tested to determine if it is an ASCII ''B'' or' 'G''. When

a ''B'' is received, the program branches to the Read Data Block routine, RDBLCK. The block length is read

and saved in Acc.B and the beginning address is read and stored into locations $A002 and $A003. Data in the

current block is then brought in and stored to the indicated memory locations. After the block of data is read, the

software branches back to the BILD Routine to look for another block of data or an end of file command. When

other blocks of data are present in this file, they are processed as described above. Eventually, the end of file is

reached. End of file recognition is accomplished by recognizing an ASCII "G" in the BILD routine.

Recognition of ths "G" provides the means for orderly exit from this routine by the execution of the RTS

instruction.

3-8 INTERRUPT HANDLING ROUTINES

The JBUG monitor program handles all three types of M6800 interrupts: Software Interrupt (SWI),

Maskable Interrupt Request (IRQ), and Non-Maskable Interrupt (NMI). In handling interrupts, the MC6800

completes execution of its current instruction, saves the results on the stack and then outputs the appropriate

vector address. At that address it expects to find the beginning address of the selected interrupt service routine

(see the reference literature for more details). Beginning addresses of the service routines are placed in the

vector locations during program development.

The IRQ interrupt is reserved for the user. In servicing an IRQ interrupt, the MPU fetches the address

$E014 from memory locations $E3F8 and $E3F9 near the top of the JBUG ROM. Beginning at location $EO 14

(line 83), the MPU loads the Index Register with the contents of RAM locations $AOOO and $A001, then

3-11

ROBLCK

Get Block Length (INCH R)

Save in Acc. B as Byte
Count

Get Starting Address (Next
2 char.) (INCHR)

Put Strt. Addr. in X for
Memory Pointer and Save
in $A002 & $A003

Get next Character
(INCHR)

Store to Memory; Deer.
Byte Cnt.

No

BILD

LOAD

Set up ACIA for 8-Bit;
No Parity; 2-Stop Bits;
RTS = O;
Divide-by-One.

Get next Character
(INCH R)

Test for Start-of-Block= "B"
or End-of-File= "G"
Characters

Yes

No

FIGURE 3-7-2. Program Flow for LOAD Function

INCHR

No

Get Character from ACIA
and Save in Acc. A

executes an indexed jump. This, in effect, maps the IRQ vector through the JBUG ROM, allowing the user to

reach his interrupt service routine by loading its beginning address into RAM locations $AOOO (high order byte)

and $A001 (low order byte).

The MPU is directed to location $E019 (line 91) by NMI interrupts. The flow of the subroutine

located there, NONMSK, is shown in Figure 3-8-1. NONMSK can be entered due to either a Trace command

(breakpoints may be either active or clear) or because of an interrupt from the keyboard PIA, U21. If the

interrupt was not a Trace command, then the trace flag, NFLAG, is cleared and the program flows to NONMKl

(line 100). The MPU loads the Index Register with the contents of memory locations $A006 and $A007 and

then jumps to that location to begin executing the Keyboard Service Routine, KEYDC. This address was loaded

into $A006 and $A007 during the Restart initialization sequence. The user may cause NMI interrupts to vector

to other locations by loading the desired starting address into $A006 and $A007.

3-12

Implies "E"
Command
from Keybrd

Jump to Keyboard
Service Routine

To KEYDC
Thru NIO

NONMSK

Save User's Stack Pointer.
Disable NM I Interrupts.
Test for Trace Mode

No Yes

Clear NFLAG. Get
Breakpoint Flag

No

Install all Breakpoints.
Enable Keyboard
Interrupts.

Back to User
Program

TOISP

Save Stack Pointer. Set
RFLAG. Call Register
Display, REGST

Jump to Display Routine

To OUTOS
Thru KEYDOF

FIGURE 3-8-1. Program Flow for NMI and SWI Interrupt Handling

SWIR

Save Users Stack Pointer.
Disable Keyboard Interrupts.
Back up PC on Stack by One.
Test B. P. Flag

No

Remove Breakpoints.
Re-insert op-codes.

If the Trace flag (NFLAG) was set, the program checks to see if breakpoints are active. If

breakpoints are active, it is assumed that the purpose of the Trace command was to get off of a breakpoint. In

this case, the breakpoints are installed, further keyboard interrupts are enabled, and flow is passed back to the

user program by execution of an RTI instruction. If there were no active breakpoints, it is assumed that the

Trace command was invoked in order to execute a single instruction. In this case, the stack pointer is saved in

SP and then the program jumps to the Register Display Routine.

Software Interrupts (SWI) are used by the JBUG monitor to implement breakpoints (up to a

maximum of five are allowed). Upon entry from a SWI instruction SWIR (line 107), the user's Stack Pointer is

saved in location SP for use by the Register Display Routine. Keyboard interrupts are disabled so that the

normal Keyboard and Display scanning functions do not cause multiple NMI interrupts. Lines 109-113 cause a

16 bit decrement of the Program Counter saved on the Stack so that it points back to the instruction that was

replaced by the SWI used to make the breakpoint. The subroutine GETXB is called (line 145) to examine the

VFLAG and determine if any breakpoints are set. If there are, TZONK removes all of the SWI instructions so

that the operator doesn't see them. The address of the breakpoints and their op-codes are saved in the

Breakpoint Table, BPTAB. The Register Display Routine is then called so that the operator can examine the

registers on the stack.

3-14

APPENDIX 1
ASSEMBLY LISTING OF JBUG MONITOR

PAGE 001 JBUG

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052

0

NAM JBUG
• REV 1.8 9-6-76
•
•A MONITOR PROGRA" WITH AN INTERNAL KEYBOARD/DISPLAY
•
• ASSEMBLED ON THE EXORCISER FDR MOTOROLA
• INC. -- FALL OF 76
•
• COPYRIGHT 1976 BY MOTOROLA SPG
•
• • •

DPT

••COMMAND SYMBOLS

SYMBOL TABLE;OBJECT TAPE

••••P - PUNCH DESIGNATED MEl'tDRY TD AUDIO CASSETTE
••••L - LOAD AUDIO CASSETTE TD MEl'tDRY
••••N - TRACE ONE INSTRUCTION
• USES NMI INTERUPT
• N CLEARS ANY BRKPTS IF SET
• SINCE TRACE USES HARDWARE IT CAN
• TRACE THRU ROM AND INTERUPTS
••••Y - SET AND CLEAR BREAKPOINTS <FIYE ALLOWED>
• IF THE ADDRESS NOT= ZERO THEN A BRKPT
• IS INSERTED AT THE ADDRESS. IF THE
• ADDRESS = 0 THEN ALL 5 BRKPTS ARE CLEARED.
••••M - MEMORY EXAMINE AND CHANGE •••*E - ESCAPE <ABORT>
•• .. R - REGISTER DISPLAY
• ORDER OF DISPLAY IS: pc,x,A,B,cc,sp
•• .. G - GO TD USERS PROGRAM/ADVANCE/PROCEED.
• IF ADDRESS NOT = 0 SET USER~s PC TD
• NEW VALUE AND GD TD USER~s PROGRAM.
• IF ADDRESS=O THEN RETURN TD PROGRAM AT
• PREVIOUS LOCATION <PROCEED MODE>.
• IF IN R,G MEANS ADVANCE TD NEXT REGISTER.
+ IF IN M,G MEANS ADVANCE TD NEXT MEMORY.
• • .. ,
•*CONTROL STACK AT SA078••
•• RAM STARTS AT SAOOO
•• ROM IS AT LOCATIONS SEOOO-SE3FF
•• ACIA IS AT $8008-8009
•• PIA IS AT $8020-8023
•
• THE RESTART ENTRY IS AT LABEL ~RESTAR~ AT
• LOCATION SE08D.
• ...

Al-1

PAGE 002 JBUG

00054 EOOO
00055
00056
00057
00058
00059
00060
00061
00062 EOOO 08
00063 E001 FF
00064 E004 08
00065 E005 FF
00066 E008 BO
00067 EOOB F2
00068 EOOE FE
00069 E011 A7
00070 E013 3F
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081

AOIE

AOOA
AOOB
AOOA
A01E
00

ORG SEOOO
•
•+++RDUTir"fE TD CALCULATE OFFSETS
+++SETUP STACK AS FOLLOWS:
• B-REG (SP+2) = HIGH BYTE CF DESTil"fRTICJf't ADDR
• A-REG (SP+3) = LOW BYTE OF DEST ADDR
+ X-REG (SP+4~5) = ADDR CF OPCODE OF BRANCH
• INSTRUCTION

INX
STX
INX

BPADR STORE OFFSET ADDR

STX TEMPI ADDR OF NEXT OP CODE
SUB A TEMP1+1 LOW BYTES
SBC B TEMPI HIGH BYTES
LDX BPADR GET OFFSET ADDR
STA A o,x CHANGE OFFSET
SWI STACK AND DISPLAY

••+REGISTERS ON STACK CONTAIN THE FOLLOWING:
•••++INDEX - ADDR OF OFFSET BYTE THAT WAS CHANGED
••••+A ACCM - VALUE OF OFFSET
..... B ACCM - 00 - FORWARD BRAtlCH WITHIN RANGE
+++++ FF - REVERSE BRANCH WITHIN RANGE
••••• -ANY OTHER VALUE IMPLIES A BRANCH
••••• OUT DF RANGE. ..
•
• HERE DN IRQ INTERUPT
•
++ .. IRQ INTERRUPT SERVICE 00082

00083
00084
00085

E014 FE AOOO ID ~DX IDV PICK UP PSEUDO VECTOR
E017 6E 00 JMP X GD TC IT

00086
00087
00088
00089
00090

A008
66
A018
OA
A018
3B
2E
E236

•
• HERE DN NMI INTERUPT
• MAY BE TRACE DR A TRACE TD PROCEED
• DR A KEYBOARD INTERUPT.
•
+ .. +NMI INTERRUPT SERVICE••••
NDNMSK STS SP SAVE USER~s STACK PTR

BSR DISNMI DISABLE NMI INTERUPTS
TST NFLAG TRACE MODE?
BEQ NDNMK1 ND

TNMI CLR NFLAG RESET FLAG
BSR GETXB GET TAB ADDR AND VFLAG
BEQ TDISP ND BP, DISPLAY REGS
JMP TGB BP ACTIVE

00091 E019 BF
00092 E01C 8D
00093 E01E 7D
00094 E021 27
00095 E023 7F
00096 E026 SD
00097 E028 27
00098 E02A 7E
00099 • MUST

E02D FE A006 NDNMK1
E030 6E 00

00100
00101
00102
00103

BE KEYBOARD INTERUPT
LDX NID
.JMP X DECODE KEYBOARD

00104
00105
00106
00107

•
• HERE DN SOFTWARE INTERUPT
• USUALLY A BREAKPOINT
•
••••SWI SERVICE ROUTINE

E032 BF A008 SWIR STS SP SAVE USER~s SP

Al-2

PAGE 003 .JBUG

00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161

E035 SD 4D
E037 30
E038 6D 06
E03A 26 02
E03C 6A 05
E03E 6A 06
E040 8D 21
E042 27 1-4

•

BSR
TSX
TST
BNE
DEC
DEC
BSR
BEQ

DISNMI

6,x
•+4
5,x
6,x
GETXB
TD ISP

DISABLE NMI INTERRUPTS
DECR PC BY 1
BACKUP PC ON STACK

GET TAB ADDR AND VFLAG
ND BRKP~S, GD DISPLAY REGS

• REMOVE BRKPTS WHILE WE ARE IN .JBUG. THEY
• WILL BE RESTORED ON A GD DR PROCEED
•
•••••+HERE TD REMOVE BREAKPOINTS••••••

E044 FF A01E TZDNK STX BPADR SAVE IN TEMP
E047 A6 02 LDA A 2,x GET DP CODE TD RESTORE

E049 81 3F
E04B 27 07
E04D EE 00
E04F A7 00
E051 FE A01E

• SAFEGUARD AGAINST MULTI DEFINED BRKPTS
•

~~$3F

GENA BRANCH IF MULTI-DEF
GET ADDR OF BKPT
RESTORE DP. CODE
GET TABLE POSITION

E054 8D 08 GENA
E056 26 EC

CMP A
BEQ
LDX
STA A
LDX
BSR
BNE
STS
.JMP

o,x
o,x
BPADR
ADD3X
TZDNK
SP
KEYDCE

GET NEXT POSITION AND DECB
GO AGAIN

E058 BF A008 TDISP
E05B 7E E206

SAVE USER'°S STACK POINTER
GO DISPLAY REGS:

E05E 08
E05F 08
E060 08
E061 SA
E062 39

•
••••SUBROUTINE TO GET NEXT TABLE ENTRY
•
ADD3X INX

IN><:

•

INX
DEC B
RTS

DECR CTR
LET CALLER DO CTR CHECK

••••SUB TO GET TABLE ADDR IN X VFLAG IN B
•

E063 CE A022 GETXB LDX ~~BPTAB GET TABLE BASE ADDR
E066 F6 A01D
E069 39

E06A 8D F7
E06C 27 08
E06E Cl 05
E070 2C 52

E072 8D EA
E074 26 FC

LDA B VFLAG
RT:S

•
••:SUBROUTINE TO SET A BREAKPOINT (MAKE AN
••••ENTRY INTO BREAKPOINT TABLE) IF ENOUGH
••••SPACE EXISTS
• THE ACTUAL BRKPTS ARE PUT IN MEMORY
• ON THE '°G'° COMMAND
•
:SETBR BSR

BEQ
CMP B
BGE

••••••GET TO
TPIG BSR

BNE

GETXB GET TAB ADDR AND VFLAG
TZDT ND BKPTS, GO INSERT ONE
~$5 ENOUGH ROOM?
CLRDS NO, CLEAR DISPLAY AND RTS

FIRST FREE SPACE IN TABLE••• .. •
ADD3X ADD 3 TD X AND DECB
TPIG BRANCH IF NOT DONE

Al-3

PAGE 004 JBUG

00162
00163 E076 7C A01D
00164 E079 B6 A01E
00165 E07C A7 00
00166 E07E B6 A01F
00167 E081 A7 01
00168 E083 39
00169
00170
00171
00172 E084 86 3C
00173 E086 B7 8021
00174 E089 B7 8023
00175 E08C :39
00176
00177
00178
00179
00180

••••••INSERT
TZDT INC

LDA A
STA A
LDA A
STA A
RTS

•

NEW BKPT
VF LAG
BPADR
o,x
BPADR+1
1, x

IN TABLE• ... •
INCR FLAG
INSERT IN TABLE

••••SUBROUTINE TD DISABLE NMI INTERRUPTS• .. •
•
DISNMI LDA A

• •

STA A
STA A
RTS

::=$3C
DISCTR
SC NC TR

••••RESTART ROUTINE••••
• •

INTR MASKED CA1 ACTIYE Law
INTR MASKED CB1 ACTIYE LOW

00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191

E08D 8E
E090 BF
E09:3 CE
E096 FF

A078 RESTAR LDS c$A078

00192
00193
00194
001 '35
00196
00197
00198
00199
00200

E099
E09B
E09E
E09F
EOA2

EOA4
EOA6
EOA9
EOAC
EOAE
EOBO

A008 STS SP INITALIZE STACK POINTER
KEYBOARD E14E LDX cKEYDC GD DECODE

A006 STX NID INITALIZE NMI INTERRUPT

86 FF
B7 8022
44
B7
8D

8020
EO

86 03
B7 8008
7F A01D
8D 04
8D 27
20 4C

•INITALIZE KEYBOARD/DISPLAY PIA
LDA A ==SFF
STA A SCNREG
LSR A
STA A DISREG
BSR DISNMI

••INITALIZE ACIA••
LDA A ==3
STA A ACIAS
CLR VFLAG

INIT BSR CLFLG
BSR HDR
BRA DUTDS

•

PBO-PB7 OUTPUTS

PAO-PA6 OUTPUTS,PA7 INPUT
DISABLE KEYBOARD/TRACE

RESET THE ACIA
INITALIZE VFLAG
CLEAR DISPLAY AND FLAGS
li.IRITE PROMPT "-"

••••SUBROUTINE TD CLEAR DISPLAY BUFFER AND FLAGS••••
•

00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215

EOB2
EOB5
EOB6
EOB8
EOB9
EOBC
EOBE
EOC1
EOC4
EOC6
EOC9
EOCB
EOCE
EODO
EOD1

CE A014 CLFLG LDX
CLR A
STA A
INX
CPX
BNE
LDX
STX
LDA A
STA A
LDA A
LDX

==DIGIN4
4F
A7 00
08
8C
26
CE
FF
86
B7
86
CE
A7
08
8C

A01A
F8
AOOC
A01A
7F
8020
11
AOOC
00

A014

CLFLG1

CL RDS

CLRI•S 1 STA A
INX
CPX

CLEARS DIGIN4 AND DIGIN8
o,x CLEARS MFLAG AND RFLAG

CLEARS NFLAG AND TEMP2
~=DIGIN4+6 END?
CLFLG1 ND LOOP BACK
~=DI SBUF
XKEYBF INITALIZE XKEYBF
~=$7F
DISREG BLANK DISPLAY

~=DISBUF
o,x CLEAR OUT DISPLAY BUFFER

~=DISBUF+8 END?

Al-4

PAGE 005 JBUG

00216 EOD4 26 F8 BNE CLRDS:l
00217 EOD6 39 RTS
00218 •
00219 •SUBROUTINE TD l,.JR ITE PROMPT ON DISPLAY
00220 •
00221 EOD7 86 10 HDR LDA A ~~16

00222 EOD9 B7 AOOC STA A DISBUF OUTPUT -
00223 EODC Q

.:, -· RTS
00224 •
00225 •SUBROUTINE TD DELAY 20 MS DR x MS
00226 • 1.~IHEN ENTERING AT DLY1 THE XREG MUST CONTAIN
00227 • THE DESIRED DELAY CT (APX 13USEC/CDUNT>
00228 •
00229 EODD CE 0600 DL'r'20 LDX =~$ 06 0 0
00230 EOEO 09 DL'il DEX
002:31 EOE1 26 FD BNE DL 'r' 1
002:32 EOE3 39 RTS
0023:3 •
002:34 ••••SUBROUTINE TD BUILD Tl,JD BYTE ADDRESS FROM
00235 ••••••FIRST LDCATIDNS DF DISBUF
002:36 • ADDRESS IS IN X-RE6 AND '"BPADR,. ON EXIT
002:37 •
00238 EOE4 CE AOOC BLDX LD>:: =~DI SBUF
00239 EOE7 A6 00 LDA A o,x 1:5ET FIRST BYTE
00240 EOE9 48 ASL A
00241 EOEA 48 ASL A
00242 EOEB 48 ASL A
0024:3 EOEC 48 ASL A MOVE TD HIGH NIBBLE
00244 EOED AA 01 ORA A 1'X DR l•.I I TH LDl~I NIBBLE
00245 EOEF A7 12 STA A BPADR-DISBUF,X STORE IN BPADR
00246 EOF1 A6 02 LDA A 2,x GET SECOND BYTE
00247 EOF:3 48 ASL A
00248 EOF4 48 ASL A
00249 EOF5 48 ASL A
00250 EOF6 48 ASL A MOVE TD HIGH NIBBLE
00251 EOF7 AA 0:3 ORA A :3, x DR 1.•JITH LDl.t.I NIBBLE
00252 EOF9 A7 13 STA A BPADR+l-DISBUF,X STD RE IN BPADR+l
0025:3 EOFB EE 12 LDX BPADR-DI SBUF, >:: ADDRESS TD XREG
00254 EOFD 39 RTS:
00255 •
0025E. •
00257 ••••ROUTINE TD DI SPLA'r' 6 DIGITS IN DISBUF
00258 •
00259 •
00260 EOFE CE AOOC DUTDS LD>:: ~~D ISBUF GET STARTING ADDRESS
00261 El 01 A6 00 DUTDSl LDA A o,x GET FIRST DIGIT
00262 El 0:3 4C INC A
0026:3 El 04 08 IN>::
00264 El 05 FF A020 :s:T:x: XDSBUF SAVE PD INTER
00265 E108 CE E3C9 LD>:: =~DIGTBL-1
0026E. E10B 08 DUTDS2 I N:X:
00267 ElOC 4A DEC A POINT TD PATTERN
00268 El OD 26 FC :E:NE DUTDS2
00269 El OF ?F 8022 CLR :5:CNRE6 BLAN!< DISPLAY

Al-5

PAGE 006 JBUG

00270 Et 12 A6 00
00271 E114 B7 S020
00272 E117 B6 AOtC
00273 E11A B7 S022
00274 E11D CE 004D
00275 E120 SD BE
00276 El22 FE A020
00277 El25 SC A012
0027S E12S 27 lF
00279 El2A 74 A01C
00280 E12D 20 D2
002Sl
002S2
002S3
00284 E12F S6 FF
002S5 E131 CE S020
00286 E134 A7 00
00287 E136 86 3F
002S8 E13S A7 02
00289 E13A A6 02
00290 E13C 6D 00
00291 E13E 2A 08
00292 E140 SB 40
00293 E142 A7 02
00294 E144 84 CO
00295 E146 26 F2
00296 E148 39
00297 E149 S6 20
0029S E14B B7 A01C
00299
00300
00301
00302 E14E SD DF
00303 E150 27 AC
00304 E152 SD 89
00305 El54 CE S020
00306 E157 86 01
00307 E159 A7 02
00308 E15B SD DD
00309 E15D 26 OA
00310 E15F A6 02
00311 E161 81 20
00312 E163 27 99
00313 E165 6S 02
00314 E167 20 F2
00315 E169 5F
00316 E16A CE E3DC
00317 E16D Al 00
0031S E16F 27 09
00319 E171 SC E3F4
00320 E174 27 61
00321 E176 08
00322 E177 5C
00323 E17S 20 F3

•

LDA A
STA A
LDA A
STA A
LDX
BSR
LDX
CPX
BEQ
LSR
BRA

o,x GET PATTER"
DISRE6 SET UP SE6"EHTS
SCl'tCl'tT
SCl'tREG SELECT DIGIT
=:S4D SETUP FOR U'IS DELAY
DLY1 DELAY 1 MS
XDSBUF RECOYER POINTER
=:DISBUF+6
OUTDS3
SCNCNT NO,MOYE TO NEXT DIGIT
OUTDS1

••••SUBROUTINE TO SCAH KEYBOARD...,._
•
KEYCL LDA A

LDX
STA A
LDA A
STA A

KEYCL1 LDA A
TST
BPL
ADD A
STA A
AND A
BNE

KEYCLi2 RTS
OUTDS3 LDA A

STA A
•

=:SFF
==DISRE6
o,x
=:S3F
2,x
2,x
o,x
KEYCL2
;;64
2,x
==sco
KEYCL1

SC NC NT

BLANK DISPLAY

ALL ROWS LOW

KEY DOWN?

SELECT NEXT COLUMN

LAST COLUMN SCANNED?
NO KEY FOUND

INITALIZE SCNCNT

••••ROUTINE TO SCAM AND DECODE KEYBOARD•• .. -
•
KEYDC BSR KEYCL

BEQ OUTDS NO KEY CLOSED
BSR DLY20
LDX =DISRE6 RESTORE X
LDA A =sot SETUP SCAN FOR FIRST ROW
STA A 2,x

KEYDC1 BSR KEYCL1 SCAN KEYBOARD,GET KEY
BNE KEYDC2 KEY FOUND
LDA A 2,x CLEARS NMI INTERRUPT
CMP A ==S20
BEQ OUTDS LAST ROW
ASL 2,x SHIFT LEFT
BRA KEYDC1

KEYDC2 CLR B INITALIZE COUNTER
LDX ==KEYTBL

KEYDC3 CMP A o,x SEARCH TABLE
BEQ KEYDC4
CPX =KEYTBL+24 END OF TABLE?
BEQ KEYDOF NO KEY FOUND IN TABLE
INX
INC B ADYANCE
BRA KEYDC3

Al-6

PAGE 007 .JBUG

00324 E17A 8D B3 KEYDC4 BS:R KEY CL l.i.IAIT FDR KEY RELEASE
00325 E17C 26 FC BNE KEYDC4
00326 E17E BD EODD .JSR DLY20 DELAY 20 MS:EC
00:327 E181 C1 OF CMP B ~:$OF

00:328 E183 2E 27 BGT KE'r'DCS
00329 E185 FE A01A LDX ::<t<EYBF PD INTER IN DIS:BUF
00330 E188 E7 00 STA B o,x STORE KEY VALUE
003:31 E18A 8C AOOF CPX ~:DIS:BUF+3 4 ·DIGITS: IN?
003:32 E18D 26 09 BNE KEYDC7 ND
00:3:33 E18F 7C A014 INC DIGIN4 'r'ES
00:334 E192 08 KEYDC6 INX
00:335 E19:3 FF A01A :STX ::<t<EYBF
003:36 E196 20 3F BRA KEYDOF
003:37 E198 8C A013 KEYDC7 CPX ~:DIS:BUF+7 8 DIGITS IN?
00338 E19B 26 FS BNE KEYDC6
00339 E19D 7C A015 INC DIGIN8 SET FLAG
00:340 E1AO BD E27E .JSR MDIS:1 DISPLAY NEIAI DATA
00341 E1A3 FE A01A LDX XKEYBF
00342 E1A6 09 DEX BACI< UP PD INTER
00:34:3 E1A7 FF A01A :S:TX ::<KEY BF SAVE
00:344 E1AA 20 2B BRA KEYDOF
00:345 •
00:346 • HERE TO DISPATCH TD A KEYBOARD DPTIDN
00:347 ••
00348 •
00:34•3 E1AC CE E196 l<E'r'DCS LD:X: ~:.JMPTAB-:32

00350 E1AF 08 ~SDC5 INX GET TD ADDRESS: IN .JUMP TABLE
00351 E1BO 08 IN>=:
00352 E1B1 5A DEC B
0035:3 E1B2 26 FB BNE K'iDC5 THIS: ONE?
00:354 E1B4 6E 00 .JMP I), X ."f'E:S:
00355 E1B6 20 OE .JMPTAB BRA KEYDC8 p KEY
00356 E1B8 20 14 BRA KE'tDC9 L KE'i
00:357 E1BA 20 1E BRA KE'iDCA N KEY
00:358 E1BC 20 28 BRA KE'r'DCB KE'r'
00359 E1BE 20 37 BRA l<EYDCC M KEY
00:360 E1CO 20 41 BRA KEYDCI1 E KEY
(11):361 E1C2 20 42 BRA ~::EYDCE R KEY
00:362 E1C4 20 48 BRA l<E'r'DCF G KE'i
O 0:3E.3 •
01):364 • HERE ON p KE'i
00365 • PUNCH MEMORY TO AUD ID CASSETTE
00:366 •
00367 E1C6 BI1 EOC4 KEYDC8 .JSR CLRDS: CLEAR DISPLAY
00:368 E1C9 BD E:32F .JSR PNCH PUNCH DATA TD CASS: ET TE
0036'3 E1CC 20 06 BRA l<EYDCH
00370 •
0 (1:371 • HERE ON L ~::EY

00372 • LOAD MEMORY FROM AUDIO CASSETTE
00:373 •
00374 E1CE BD EOC4 KE'r'DC9 .JSR CLRDS CLEAR DISPLAY
00375 E1D1 BD E395 .JSR LOAD LOAD DATA FROM CASSETTE
00:376 E1D4 BD EOD7 KEYDCH .JSR HDR l.1.IR ITE HEADER
00377 • RETURN TD IllS:PLAY HEADER

Al-7

PAGE 008 JBUG

00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420
00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431

E1D7 7E EOFE KEYDOF JMP DUTDS DISPLAY HEADER
•
• HERE DN N KEY
• TRACE ONE INSTRUCTION

ElDA 7F
ElDD 7C
ElEO 86
E1E2 B7
E1E5 3B

•
A01D KEYDCA
A018 TRACE
34
8021

•

CLR
INC
LDA A
STA A
RTI

VF LAG
NFLAG
~;$34

DISCTR

+ HERE DN V KEY

SET UP HARDWARE TD TRACE
CA2 LOW START TRACE

+ IF ADDRESS HAS 4 DIGITS INSERT A BRKPT
• AT ADDRESS OTHERWISE CLEAR ALL 5 BRKPTS
•

E1E6 7D A014 KEYDCB TST
E1E9 26 05 BNE
ElEB 7F A01D CLR
E1EE 20 E7 BRA
ElFO 8D 74 BSR
E1F2 BD E06A JSR
E1F5 20 EO BRA

•

DIGIN4
++7
VF LAG
KEYDOF
KEYD3F
SETBR
KEYDOF

+ HERE DN M KEY

4 DIGI°TS IN?
YES, INSERT BP

GD DISPLAY
YES, INSERT BREAKPOINT

+ DISPLAY MEMORY CONTENTS
•

E1F7 7C A016 KEYDCC INC
E1FA 7D A014 TST
E1FD 27 D8 BEQ
ElFF 8D 68 BSR
E201 20 D4 BRA

•

MF LAG
DIGIN4
KEYDOF
MDIS
KEYDOF

+ HERE DN E KEY

SET FLAG
4 DIGITS IN?
ND
YES,DISPLAY MEMORY

+ ESCAPE <ABORT) USER PGM
•

E203 7E EOAC KEYDCD JMP INIT CLEAR DISPLAY AND FLAGS
•
+ HERE DN R KEY
+ DISPLAY USER REGISTERS
•

E206 7C A017 KEYDCE INC RFLAG REGISTER DISPLAY
E209 BD E2C6 JSR REGST

+ MUTUAL RETURN TD DISPLAY
E20C 20 C9 KEYDCG BRA KEYDOF

•
• HERE
• IF
+ IF
• IF
•

DN G KEY
IN 'M' DISPLAY NEXT MEMORY LOCATION
IN 'R' DISPLAY NEXT REGISTER
4 DIGIT ADDRESS WAS PUNCHED GD TD
ADDRESS IN USER PROGRAM

• •
•

IF 4 DIGITS WEREN'T INPUT RETURN TD USERS
PGM AT CURRENT USER PC <PROCEED)

E20E 7D A016 KEYDCF TST MF LAG MEMORY MODE?

Al-8

PAGE 009 .JBUG

00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442

E211 26 40
E213 7D A017
E216 26 49

E218 7D A014
E21B 26 07

E21D BD E063
E220 27 2B
E222 20 B9

E224 8D 40
E226 30
E227 A7
E229 f;6
E22C E7
E22E BD
E231 BD
E234 27

06
A01E
05
EOC4
E063
17

BNE
TST
BNE

KEYD1F
RF LAG
KEYD2F

YES

• IS IT A ~Ga~ DR ~PROCEED~?

TST DIGIN4 4 DIGITS IN?
BNE KEYDC.J NO, PROCEED MODE

• HERE DN PROCEED
.JSR GETXB GET ADDR AND VFLAG

BRANCH IF ND BREAKPOINTS
GD TRACE

BEQ TGC
BRA TRACE

• HERE DN GD MODE
KEYDC.J BSR KEYD3F GET ADDR

TSX
STA A
LDA B
STA B
.JSR
.JSR
BEQ

•++•INSTALL

6,X MODIFY LDW BYTE
BPADR GET LOW BYTE
5,x MODIFY HIGH BYTE
CLRDS CLEAR DISPLAY
GETXB 13ET TAB ADDR8.VFLAG
TGC BRANCH IF ND BP

ALL BREAKPOINTS•• ..

00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
0046:3

FF A01E TGB STX E236
E239
E23B
E23D
E23E
E240
E242
E245 :32
E246
E248
E24B

BPADR SAVE IN TEMP
EE 00 LDX o,x GET ADDR DF BP
A6 00 LDA A
36 PSH A

o,x GET DP-CODE
SAVE

86 3F LDA A
A? 00 STA A
FE A01E LDX

A? 02
BD E05E
26 E9

PUL A
STA A
.JSR
BNE

~:$3F

o,x
BPADR

ADD3X
TGB

INSTALL A :S:WI

GET BACK CURR TAB LDC
GET BACK DP-CODE
SAVE IT IN A TABLE
GET NEXT TAB LDC
MORE TD DD?

• PREPARE TO
TGC LDA A

RETURN
~:$20

SCNRE6
SCNRE6
~:$3D

SC NC TR

TD USER
E24D 86
E24F B7
E252 F6
E255 86
E257 B7
E25A 3B

20
8022
8022
3D
8023

00464
00465
00466
00467
00468
00469
00470
00471 E25B
00472 E25D
00473 E25F

8D 47
8D 12
20 AB

STA A
LDA B
LDA A
STA A
RTI

• HERE TD DISPLAY NEXT
KEYD1F BSR MINC

BSR MD IS 0
BRA KEYDCG

• HERE ON DISPLAY NEXT
E261 BD E2D7 KEYD2F .JSR REGST1
E264 20 A6 BRA KEYDCG
E266 7E EOE4 KEYD3F .JMP BLDX

••
•

SETUP FDR KB INTR
DUMMY READ TD CLEAR INTR

ENABLE KB INTR
BACK TD USER
MEM LDC
MEMORY INCREMENT
MEMORY DISPLAY

REGISTER
REGISTER DISPLAY

••SUBROUTINE TO DISPLAY MEMORY AND CHANGE IT ..
•
•

00474
00475
00476
00477
00478
00479
00480
00481
00482
0048:3
00484
00485

E269 FE A01A MDIS LDX
INX
I N:X:

XKEYBF
E26C 08
E26D 08

Al-9

PAGE 010 JBUG

00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539

E26E FF A01A UPDATE POINTER
E271 8D F3 MDISO
E273 A6 00

STX
BSR
LDA A
BSR
STA A
STA B
RTS

XKEYBF
KEYD3F
o,x
MDIS2
DISBUF+4
DISBUF+5

GET ADDR OF MEM LOCATION
GET MEMORY DATA

E275 8D 23 FORMAT DATA
E277 B7 A010 STORE DATA IN DISBUF
E27A F7 A011
E27D 39

•
• SUB TD PUT NEW DATA IN MEMORY AND DISPLAY IT
•

E27E F6 A012 MDIS1
E2S1 5S

LDA B
ASL B
ASL B
ASL B
ASL B
ORA B
BSR
STA B
LDA A
BSR
STA A
STA B
CLR
RTS

DISBUF+6 GET NEW DATA

E2S2 5S
E2S3 5S
E2S4 58
E285 FA A013
E2SS SD DC
E2SA E7 00
E2SC A6 00
E2SE 8D OA
E290 B7 A010
E293 F7 A011
E296 7F A015
E299 39

E29A 16
E29B C4 OF
E29D S4 FO
E29F 44
E2AO 44
E2A1 44
E2A2 44
E2A3 39

E2A4 8D CO
E2A6 08
E2A7 FF AOOA
E2AA B6 AOOA
E2AD SD EB
E2AF CE AOOC
E2B2 A7 00
E2B4 E7 01
E2B6 B6 AOOB
E2B9 8D DF
E2BB A7 02
E2BD E7 03
E2BF 7C A014
E2C2 7C A016
E2C!5 39

•

DISBUF+7
KEYD3F
o,x
o,x
MDIS2
DISBUF+4
DISBUF+5
DIGIN8

DATA TD HIGH NIBBLE
DR WITH LOW NIBBLE
GET MEMORY ADDR AGAIN
STORE NEW DATA
ACTUAL DATA IN MEMORY
FORMAT
ACTUAL DATA TD DISPLAY

SETUP FOR NEW DATA ENTRY

••SUBROUTINE TD MOYE LOW NIBBLE OF A TD B AND TD
•• .. MOYE HIGH NIBBLE OF A TD LOW NIBBLE OF A ..
MDIS2 TAB

•

AND B :;;$OF
AND A =;SFO
LSR A
LSR A
LSR A
LSR A
RTS

MASK LOW NIBBLE
MASK HIGH NIBBLE

HIGH NIBBLE TD LOW NIBBLE

• SUBROUTINE TD INC MEl'tDRY DISPLAY AND CHG?
•
MINC BSR

INX
STX
LDA A
BSR
LDX
STA A
STA B
LDA A
BSR
STA A
STA B
INC
INC
RTS

KEYD3F

TEMP1
TEMPI
MDIS2
=;DISBUF
o,x
1'X
TEMP1+1
MDIS2
2,.x
3,x
DIGIN4
MF LAG

Al-10

GET MEMORY ADDRESS
SETUP FOR NEXT MEMORY
SAVE
GET HIGH BYTE
FORMAT FDR DISBUF

PUT IN DISPLAY BUFFER
GET LOW BYTE
FORMAT

LDC

FOUR DIGITS ENTERED
SETUP FOR MEMORY EXAftltiE

PAGE 011 JBUG

00540 •
00541 •
00542 ••SUBROUTINE Ta DISPLAY REGISTERS ON USERS STACK
00543 •
00544 • ORDER OF DISPLAY IS: pc,x,A,B,cc,sP
00545 • TEMP2 STARTS AT -2 AND ADVANCES TD +3 AND
00546 • CORRESPONDS TD THE ORDER OF DISPLAY
00547 •
00548 E2C6 86 FE REGST LDA A ==SFE INITALIZE COUNTER
00549 E2C8 B7 A019 STA A TEMP2
0 0550 E2CB FE A008 LDX SP GET US:ER"S SP
00551 E2CE 86 06 LDA A ==$6
00552 E2DO 08 REGSTO INX POINT TD TOP OF STACK
00553 E2D1 4A DEC A
00554 E2D2 26 FC BNE REGSTO
00555 E2D4 FF AOOA STX TEMPt TEMP X LOCATION
00556 E2D7 BD EOC4 REGST1 JSR CLRDS CLEAR DISPLAY
00557 E2DA FE AOOA LDX TEMPl RESTORE X
00558 E2DD B6 A019 LDA A TEMP2
00559 E2EO 2B OE BMI REGST2 PC AND X REGS
00560 E2E2 81 03 CMP A ==s3 IS IT SP?
00561 E2E4 27 21 BEQ REGST3 YES
00562 E2E6 81 04 CMP A ==$4 ALL REGS OUT START DYER
00563 E2E8 27 DC BEQ REGST
00564 E2EA A6 00 LDA A o,x OUTPUT A,B,CC
00565 E2EC 8D 2E BSR REGST5 DISPLAY ONE BYTE
00566 E2EE 20 21 BRA REGST4 UPDATE COUNTER
00567 E2FO 36 REGS:T2 PSH A SAVE A
00568 E2F1 A6 00 LDA A o,x GET HIGH BYTE
00569 E2F3 8D 27 BSR RE6ST5 DISPLAY
00570 E2F5 FE AOOA LDX TEMP1
00571 E2F8 A6 01 LDA A 1,x GET LOW BYTE
00572 E2FA 8D 2B BSR REGST6 DISPLAY
00573 E2FC 32 PUL A RESTORE A
00574 E2FD 4C INC A X REG? <A=O>
00575 E2FE 27 11 BEQ RE6ST4 YES
00576 E300 8D 12 BSR REGST8 DEC POINTER
00577 E302 BD E271 .JSR MD ISO
00578 E305 20 OA BRA RB!!ST4 UPDATE COUNTER
00579 E307 B6 A008 RE6ST3 LDA A SP SP Ta DISPLAY
00580 E30A 8D 10 BSR REGST5 DISPLAY
00581 E30C B6 A009 LDA A SP+1
00582 E30F 8D 16 BSR REGST6
00583 E311 7C A019 REGST4 INC TEl'1P2 UPDATE COUNTER
00584 E314 FE AOOA RE6ST8 LDX TEMP1 INCREl'IEt'fT X
00585 E317 09 DEX
00586 E318 FF AOOA STX TEMPl SAVE X
00587 E31B 39 RTS
00588 •
00589 ••SUBROUTINE TO MOYE TWO DIGITS IN A TD FIRST TWO
00590 •+++LOCATIONS IN THE DISPLA-Y BUFFER <DISBUF)
00591 •
00592 E31C BD E29A RE6ST!5 JSR MDIS2 FDRl'IAT
00593 E31F CE AOOC LDX =~DISBUF

Al-11

PAGE 012 JBUG

00594 E322 A7 00 REGST7 STA A o,x FIRST DIGIT(DR THIRD>
00595 E324 E7 01 STA B i,x SEOOND DIGIT
00596 E326 39 RTS
00597 •
00598 ••SUBROUTINE TD MD'v'E TWD DIGITS IN A TD SECOND TWD L
00599 ••••LDCATIDNS IN THE DISPLAY BUFFER (DISBUF)
00600 •
00601 E327 BD E29A REGST6 JSR MDIS2 FDR MAT
00602 E32A CE AOOE LDX :;DISBUF+2 THIRD & FOURTH DIGITS
00603 E32D 20 F3 BRA REGST7
00604 •
00605 •
00606 ••••SUBROUTINE TD PUNCH DATA TD CASSETTE TAPE• .. •
00607 • AUDIO CASSETTE WITH KC STANDARD
00608 •
00609 E32F 86 51 PNCH LDA A ==% 01 01 0001 8 BIT CHR PAR 2 STOP
00610 E3:31 B7 8008 STA A AC I AS DIVIDE BY 16 WITH RTS NDT HIG
00611 E334 CE 03FF LDX ::$03FF
00612 E337 8D 54 BSR PNLDR PUNCH LEADER
00613 E339 F6 A005 PUND10 LDA B ENDA+l FORM END TEMP REG
00614 E33C FO A003 SUB B BEGA+l
00615 E33F 'B6 A004 LDA A ENDA
00616 E342 B2 A002 SBC A BEGA
00617 E345 27 02 BEQ PUND25 DIFF LESS THAN 255
00618 E347 C6 FF LDA B :;$FF YES, SET BLDCK=256
00619 E349 86 42 PUND25 LDA A ;; .l'B PUNCH B
OOE.20 E34B 8D 2D BSR DUTCH
00621 E34D 37 PSH B
00622 E34E 30 TSX
00623 E34F 8D 36 BS:R PUN
00624 E351 32 PUL A GET BYTE CDU~ff

00625 E352 4C INC A ADJUST IT
00626 E353 B7 A019 S:TA A TEMP2
00627 E356 CE A002 LDX :;BEGA PUNCH ADDR
00628 E359 8D 2C BSR PUN
00629 E35B 8D 2A BSR PUN
00630 E35D FE A002 LDX BEGA PUNCH DATA
00631 E360 8D 25 PUND30 BSR PUN
00632 E362 7A A019 DEC TEMP2 DONE YET?
006:33 E365 26 F9 BNE PUND30 ND
00634 E367 FF A002 S:TX BEGA SAVE XR VALUE
OOE.35 E36A CE 0019 LDX :;$ 0019
00636 E36D 8D 1E BSR PNLDR PUNCH 25 ONES
00637 E36F FE A002 LDX BEGA RESTORE XR
00638 E372 09 DEX
OOE.39 E373 BC A004 CPX ENDA
00640 E376 26 Cl B~~E PUND10 ND
00641 E378 86 47 LDA A =~ ... G PUNCH G
00642 •
00643 •••SUBROUTINE TD PUNCH DATA BYTE++++
OOE.44 •
00645 E37A 37 DUTCH PSH B S:A'v'E B
00646 E37B F6 8008 DUTC1 LDA B AC I AS IS DATA READY YET?
00647 E37E 57 AS:R B

Al-12

PAGE 013 .JBUG

0064S E37F 57 ASR B
00649 E380 24 F9 BCC OUTC1 XMIT NOT READY YET
00650 E382 B7 8009 STA A AC I AD OUTPUT ONE CHAR
00651 E385 33 PUL B RESTORE B
00652 E386 39 RTS
00653 •
00654 • SUB TO PUNCH ONE BYTE PTED TC BY XRE6.
00655 • ALSO INCRE"ENTS XREG BEFORE RETURN
00656 •
00657 E3S7 A6 00 PUN LDA A x GET DATA
0065S E3S9 SD EF BSR DUTCH PUNCH IT
00659 E3SB OS INX UPDATE ADDR
00660 E3SC 39 RTS
00661 •
00662 •••PUNCH LEADER ...
00663 •
00664 E3SD S6 FF PNLDR LDA A ;;SFF OUTPUT ALL ONES
00665 E3SF 8D E9 BSR DUTCH OUTPUT
00666 E391 09 DEX DECRE"ENT COUNTER
00667 E392 26 F9 BNE PNLDR IF NOT DONE THEN LOOP
00668 E394 39 RTS
00669 •
00670 •
00671 ••••••SUBROUTINE TD LOAD DATA FROM CASSETTE TAPE ... •
00672 •
00673 •
00674 E395 86 10 LOAD LDA A ==%00010000 DIVIDE BY ONE
00675 E397 B7 8008 STA A ACIAS
00676 E39A SD 24 BILD BSR INCHR
00677 E39C Sl 42 CMP A =~ ... B START OF BINARY?
0067S E39E 27 05 BEQ RDBLCK YES
00679 E3AO 81 47 CMP A ~~"'G END OF FILE?
00680 E3A2 26 F6 BNE BILD
00681 E3A4 39 RTS YES
00682 E3A5 SD 19 RDBLCK BS:R INCHR GET BYTE COUNT
00683 E3A7 16 TAB PUT IN B
006S4 E3AS 5C INC B AD.JUST IT
00685 E3A9 8D 15 BSR INCHR GET START ADDR HI
00686 E3AB B7 A002 STA A BEGA
00687 E3AE 8D 10 BSR INCHR GET START ADDR LO
00688 E3BO B7 A003 STA A BEGA+l
00689 E3B3 FE A002 LDX BEGA ADDR TD X REG
00690 E3B6 8D 08 STBLCK BSR INCHR NOT DONE
00691 E3B8 A7 00 STA A x STRE IT
00692 E3BA 08 INX INC ADDR
00693 E3BB 5A DEC B DEC BYTE COUNT
00694 E3BC 26 FS BNE STBLCK NOT DONE
00695 E3BE 20 DA BRA BILD
OOE.96 •
00697 •••••INPUT ONE CHR TD A REG•••• ...
00698 •
00699 E3CO B6 SOOS INCHR LDA A AC I AS
00700 E3C3 47 ASR A
00701 E3C4 24 FA BCC INCHR DATA READY?

Al-13

PAGE 014 JBIJG

00702 E3C6 B6 8009 LDA A AC I AD IHPIJT CHAR
00703 E3C9 39 RTS
00704 •
00705 ++++•SE\JEl"t SEGl"fEHT PATTERNS - USED BY DIJTDS+ ...
00706 • 0 1 2 3 4 5 6 7
00707 E3CA 40 DIGTBL FCB s40,s79,s24,s30,s19,s12,so2,s7s

E3CB 79
E3CC 24
E3CD 30
E3CE 19
E3CF 12
E3DO 02
E3D1 78

00708 • 8 '3 A B c D E F
00709 E3D2 00 FCB $OO,S18,S08,S03,$46,S21,S06,SOE

E3D3 18
E3D4 08
E3D5 03
E3D6 46
E3D7 21
E3D8 06
E:3D9 OE

00710 • BLANK
00711 E3DA BF FCB $BF,S7F

E3DB 7F
00712 ••••KEY 'v'ALIJE LDDKIJP TABLE - USED BY IC::EYDC
00713 • 0 1 ·::O 4 5 6 7 L.. .::J

00714 E3DC 01 KEYT BL FCB $01,so2,s42,ss2,so4,s44,sa4,sos
' E3DD 02

E3DE 42
E:3DF 82
E3EO 04
E3E1 44
E3E2 84
E:3E3 08

00715 • 8 9 A B c D E F
00716 E3E4 48 FCB $48,$88,$C8,$C4,$C2,SC1,$81,$41

E3E5 88
E3E6 C8
E3E7 C4
E3E8 C2
E3E9 Cl
E3EA 81
E3EB 41

00717 • p L N v M E R G
00718 E:3EC 10 FCB $10,$50,$90,$D0,$20,$60,$AO,$EO

E3ED 50
E:3EE '30
E3EF DO
E3FO 20
E3F1 60
E3F2 AO
E3F3 EO

00719 •
Al-14

PAGE 015 JBUG

00720 •• .. ••KEYBOARD/DISPLAY REGISTER ASSIGNMENT
00721 •
00722 8020 DISREG EQU $8020 DISPLAY SEGMENTS REGISTER
00723 8021 DISCTR EQU $8021 DISPLAY SEGMENTS CONTROL
00724 8022 SCNREG EQU $8022 KEYBOARD/DISPLAY SCAN REG
00725 8023 SCNCTR EQU $8023 KEYBOARD/DISPLAY SCAN CTR
00726 8008 AC I AS EQU $8008 ACIA CTRL DR STATUS REG
00727 8009 AC I AD EQU $8009 ACIA XMIT OR RCV REGS
00728 •
00729 ••••INTERRUPT VECTORS
00730 •
00731 E3F8 ORG $E3F8
00732 E3F8 E014 FDB ID IRQ INTERRUPT VECTOR
00733 E3FA E032 FDB Sl.t.llR SOFTWARE INTERRUPT VECTOR
00734 E3FC E019 FDB NONMSK NMI INTERRUPT VECTOR
00735 E3FE E08D FDB RE STAR RESTART INTERRUPT VECTOR

Al-15

PAGE 016 JBUG

00737 • 00738 •••+++YARIABLE PARAMETERS••••••
00739 • SYSTEM RAf't
00740 •
00741 •
00742 • CAUTION: IF THE USER l'IDDIFY~s THIS PRDGRAl't
00743 • <GENERATES HIS OWN PROl't) THE ORDER OF SOME
00744 • OF THE FOLLOWING VARIABLES IS CRITICAL FDR
00745 • CORRECT DPER~TION
00746 •
00747 AOOO ORG SAOOO
00748 • THE USER CAN STORE THE ADDRES OF HIS IRQ
00749 • ROUTINE HERE.
00750 AOOO 0002 IOV RMB 2 IRQ INTERRUPT POINTER
00751 A002 0002 BEGA RMB 2 PUNCH BEGINNING ADDRESS
00752 A004 0002 ENDA RMB 2 PUNCH ENDING ADDRESS
00753 A006 0002 NID RMB 2 NMI INTERRUPT POINTER
00754 A008 0002 :S:P RMB 2 TEMP STACK BUFFER
00755 AOOA 0002 TEP1P1 RMB 2 SCRATCH
00756 AOOC 0008 DISBUF RP1!1 8 DISPLAY BUFFER
00757 A014 0001 DIGIN4 RMB 1 4 DIGITS ENTERED FLAG
00758 A015 0001 DIGIN8 RMB 1 8 DIGITS ENTERED FLAG
00759 A016 0001 MFLAG Rl't!I 1 MEMORY CHANGE MODE FLAG
00760 A017 0001 RFLAG RMB 1 REGISTER DISPLAY MODE FLAG
00761 A018 0001 NFLAG RMB t TRACE MODE FLAG
00762 A019 0001 TEMP2 Rl'tB 1 COUNTER IN REG DISPLAY, AUDIO
00763 AOlA 0002 XKEY!IF Rl't!I 2 NEXT LDC IN DISPLAY BUFFER
00764 AOlC 0001 SCNCNT Rl'tB 1 KEYBOARD /DISPLAY SCAN COUNTE
00765 A01D 0001 VF LAG RMB 1 CONTAINS THE NBR OF ACTIVE BR
00766 A01E 0002 BPADR Rl'tB 2 TEMP ADDR OF BPg.XREG TEPtP
00767 A020 0002 XDSBUF Rl'tB 2 XREG TEl'tP LOCATION
00768 •
00769 • BREAKPOINT AND OPCODE TABLE
00770 • EACH BRKPT REQUIRES 3 BYTES,
00771 .. BYTES 1,2 ARE THE ADDRESS OF THE BRKPT
00772 .. BYTE 3 IS THE REPLACED DP CODE
00773 • CHECK \.'FLAG TO SEE HOW f'tANY OF THE BirtKPTS
00774 .. ARE VALID
00775 •
00776 A022 OOOF BP TAB Rf'tB 15 BREAKPDIHT Sc DP CODE TABLE
00777 END

Al-16

PAGE 017 JBUG

IO E014 KEYCL2 E148 KEYD3F E266 DIGTBL E3CA
NONMSK E019 OUTDS3 E149 MDIS E269 KEYTBL E3DC
TNMI E023 KEY DC E14E MD ISO E271 DISREG 8020
NONf'fK1 E02D KEYDC1 Et !5B MDIS1 E27E DISCTR 8021
SWIR E032 KEYDC2 E169 MDIS2 E29A SCNREG 8022
TZONK E044 KEYDC3 E16D MINC E2A4 SCNCTR 8023
GENA E054 KEYDC4 E17A REG ST E2C6 AC I AS 8008
TD ISP E058 KEYDC6 E192 REGSTO E2DO AC I AD 8009
ADD3X E05E KEYDC7 E198 REGST1 E2D7 IOV AOOO
GETXB E063 KEYDC5 E1AC REGST2 E2FO BEGA A002
SET:BR E06A KYDC5 E1AF REGST3 E307 ENDA A004
TPIG E072 JMPTAB E1B6 REGST4 E311 NIO A006
TZDT E076 KEYDCS E1C6 RE6ST8 E314 SP ROOS
DISNMI E084 KEYDC9 E1CE REGST!5 E31C TEMP1 AOOA
RE STAR EOSD KEYDCH E1D4 REGST7 E322 DIS:BUF AOOC
INIT EOAC KEYDOF E1D7 REGST6 E327 DIGIN4 A014
CLFLG EOB2 KEYDCA E1DA PNCH E32F DIGIN8 A015
CLFLG1 EOB6 TRACE E1DD PUND10 E339 MF LAG A016
CLRDS EOC4 KEYDC:B E1E6 PUND25 E349 RF LAG A017
CU~DS1 EOCE KEYDCC E1F7 PUND30 E360 NFL AG A018
HDR EOD7 KEYDCD E203 DUTCH E37A TEMP2 A019
DLY20 EODD KEYDCE E206 OUTC1 E37B XKEY:BF A01A
DLY1 EOEO KEYDCG E20C PUN E387 SCNCNT A01C
BLDX EOE4 KEYDCF E20E PNLDR E38D \.'FLAG A01D
OUTDS EOFE KEYDCJ E224 LOAD E395 BPADR A01E
OUTDS1 E101 TGB E236 BILD E39A XDSBUF A020
OUTDS2 E1 O:B TGC E24D RDBLCK E3A5 BP TAB A022
KEY CL E12F KEYD1F E25:B STBLCK E3B6
KEYCL1 E13A KEYD2F E261 INCHR E3CO

Al-17

APPENDIX 2
ASSEMBLY DRAWINGS AND PARTS LIST

NUMBER
ITEM REQUIRED

1
2

3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20

21

22
23

24
25
26
27
28
29

30
31

32

3
6

1
1
2
1
1
1
1
1
1
7
1
14

2
3
3
1
7

29

7

2
8

2
2
2
3
24
16

8
1

MEK6800D2 Keyboard/Display Module Parts List

DESCRIPTION

Integrated Circuit: Peripheral Driver
Integrated Circuit: 7Segrnent LED Display

(Litronix or Monsanto)
Integrated Circuit: Dual 4-Channel Data Selector
Integrated Circuit: Dual Monostable Multivibrator
Integrated Circuit: Dual D Flip-Flop
Integrated Circuit: Quad 2-Input AND Gate
Integrated Circuit: Quad Analog Switch
Integrated Circuit: Quad Op-Amp
Integrated Circuit: Dual Line Receiver
Integrated Circuit: Seven Stage Ripple Counter
Integrated Circuit: Analog Multiplexer/Demultiplexer
Transistor, PNP
Capacitor: 100µ.F, 16 volts
Capacitor: 0.1µ.F

Capacitor: 0.05µ.F
Capacitor: 0.001µ.F
Capacitor: 0.002µ.F
Capacitor: 2400 pF Dipped Duramica
Resistor: 4700 fl, 1/4 W, 5%

Resistor: 10 kfl, 1/4 W, 5%

Resistor: 6S fl, 1/4 W, 5%

Resistor: 27 kfl, 1/4 W, 5%
Resistor: 100 kfl, 1/4 W, 5%

Resistor: 100 fl, 1/4 W, 5%
Resistor: 1000 fl, 1/4 W, 5%
Resistor: 180 kfl, 1/4 W, 5%
Resistor: 22 kfl, 1/4 W, 5%
Switch (Stackpole)
Keytops, Double-Shot, Molded, White (Stackpole)!

Keytops, Double-Shot, Molded, Blue (Stackpole)
Connector Cable

Printed Wiring Board

A2

CATALOG NUMBER

MC75452P
Litronix DL 704

Monsanto MAN72 or 74
MC14539BCP
MC1453SBCP
MC14013BCP
MC140SIBCP
MC14016BCP

MC3301P
MC75140Pl

MC14024BCP
MC14053BCP

MPS2907

LO-PROS

Used with Sl - S24,
Item 32

DESIGNATION

U7, US, U9
Ul-U6

UlO
Ull

U12, Ul8
U13
Ul4
U16
U17
U19
U20

Ql-Q7
Cl

C2, C5, C9, CIO, Cl4,
Cl6-C23, C25

C6, Cl3
C3, C4, C24
C7, CS, Cl5

Cll
Rl, R4, R7, RIO
Rl3, Rl6, Rl9

R2, R5, RS, Rll, Rl4,
Rl 7, R20, R22-34, R46,

R49, R53, R55, R56,
R59, R60, R61, R57
R3, R6, R9, R12,

R15, R18, R21
R35, R40

R37, R3S, R39, R41,
R43, R47, R54, R58

R48, R51
R52, R62
R36, R42

R44, R45, R50
Sl - S24

0, l, 2, 3,4, 5, 6, 7, 8, 9,
A,B,C,D,E,F

E, G, L, M, N, P, R, V

0

000 00

~ U6 I
00 • 00

000 00

2 us I
00 0 00

000 ••

2 U4 I
00 •••

••• •• ? U3 I
•• 0 ••

000 00

> U2 I
00 0 ••

000 ••

> Ul I •••••

0

C5 C') •o •o

==*' Eli.II ~ ~5 --~--~
R.5~ ~lED~~ o••••••• ••••• ~

> U20 lc.14 > U11 C'<3 -~~ ••••••• flll~
- rronn - I• c 11 ol o-----1,]lli---
~ ~

••••••• ••••••o
c.zo~ 2 u 19 I Cl?, > u 12 I

0000000 ~ 0000000 .. ~
~

•••••••
> UIS I •••••••

IEml -Q.~ ~
c > U13 I -~ u ... 0 o~o ~ o-[filfil----o

R5'l -0.4
!<,-,O ~

0000 •••••o• ~
~m Llf1t=J~~ •••• u 0000000 .. o----ffi}- ...
~ c 25 o---IBD--o
~ :-=m:: o--ffi}--9

• -Q?.
~OOOOOlO L':'»OIU--~ CIG ~
(u 16 .. o-[filJ--o
••••••• ~ oc ~

~ ~~-

* ICllClll
Ct. CIO

Pt

0

0

FIGURE A2-a. Keyboard/Display Module Assembly

A2-1

~-~,.--1.zs 3o 8 'PLA(;ES

•

EJDEJ

•

MEK6800D2 Microcomputer Module Parts List

NUMBER
ITEM REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION

1 1 Printed Wiring Board
2 None Integrated Circuit: 3-State Hex Driver MC8T97 Ul, U2, U3

(Optional - Reference only)
3 None Integrated Circuit: 3-State Transmitter/Receiver MC8T26 U4, U5

(Optional - Reference only)
4 None Integrated Circuit: 8-Input NAND Gate MC7430 U7

(Optional - Reference only)
5 1 Integrated Circuit: Microprocessing Unit (MPU) MC6800 U6
6 1 Integrated Circuit: MCM6830 ROM (JBUG) SCM44520P U8
7 1 Integrated Circuit: 3-State Hex Driver MC8T96 U9
8 None Integrated Circuit: Electrically Programmable ROM MCM68708 UlO, U12

(Optional - Reference only) (Alternate)
9 None Integrated Circuit: Programmable ROM MCM7641 UlO, U12

(Optional - Reference only) (Alternate)
10 None Integrated Circuit: Mask Programmed ROM MCM68316E UlO, U12

(Optional - Reference only) (Alternate)
11 1 Integrated Circuit: One-of-Eight Decoder MC74155P Ull
12 3 Integrated Circuit: Random Access Memory MCM6810 U13, U14, Ul6

(RAM) (128x8) (U18, U19 Optional)
13 1 Integrated Circuit: 614.4 kHz Clock MC6871B U15
14 1 Integrated Circuit: 12-Bit Binary Counter MC14040BCP U17
15 2 Integrated Circuit: Peripheral Interface Adapter (PIA) MC6820 U20, U21
16 1 Integrated Circuit: Quad 2-Input NAND Gate MC7400P U22
17 1 Integrated Circuit: Asynchronous Communications MC6850 U23

Interface Adapter (ACIA)
18 1 Integrated Circuit: Dual D Flip-Flop MC7479P U24
19 1 Integrated Circuit: Binary Counter MC8316P U25
20 I Capacitor: 100µ,F, 16 volt Cl
21 22 Capacitor: 0.1µ,F C2- Cl9, C22- C25

(Note: Ref. Designations C20 and C2 l are not used)
22 None Diode, Zener, 5-volt 1N4733 CRl

(Optional - Reference only)
23 1 Transistor, NPN MPS2222 Ql
24 18 Resistor: 10 k!1, 1/4 W, 5% RI, R6-R22
25 3 Resistor: 3300 !1, 1/4 W, 5% R2,R3,R4
26 None Resistor: 68 !1, 1.0 W, 5% R5

(Optional - Reference only)
27 None Capacitor: 160 µ,F, 16 volt C26, C27

(Optional - Reference only) R20-R22
28 10 Socket, 24-Pin (Robinson-Nugent or Equiv) ICN-246-S4T
29 3 Socket, 40-Pin (Robinson-Nugent or Equiv) ICN-406-S4T
30 1 Switch, Pushbutton (Control) B8600 Reset
31 1 Cap, Pushbutton Switch (Control)
32 None Connector, 86-Pin (SAE) SAC 43D/l - 2 (For Pl)

(Optional - Reference only)
33 None Connector, Edge, 50-Pin (SAE) CPH7000 - 50 ST (For Jl)

(Optional - Reference only)

A2-2

0

0

0
0
0
0
0
0
0
0
0
0
0
0

U2.I

0 0
0 0
0 0
0 0
0 0
0 0

oo._---~o

0
0

(;Jo

Ct7

0
0

0

0

0

• 0

0

0

0

0
0

• •
o Ul o • •
0 •

(;111

d~o
0 •

0

f/ 0
0

0

00

0 0000000 0 o 0
0 o 0 0

0

0

0

0 0 0
00 0 0 0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

0
0

0
0

0
0

0

0
0

0
0

00

0
000000000000000000/0\

000000000000000000~

r=····::···········j
00000000000000000000

0 00

00

00

0
0

0
0

0

;~. ~~~r
0

0
0
0

0
0

0

fS~O 0 0
0 0
o U\I o
0 0
0 0
0 0 0
0 0 0

0 oril>
C.18

0

0

0

OE20
oi::; o

0 0
0£4 0
OE5 o

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

'

-0~0 0 0

0 u 0

: 2A·:
fit'.. 0 0
'el 0 0

0 °o
0

0

0
0

0 0
0

0

0

0
0

00
El EO

0

000

0

0

0

0

0

0

0

0

0

™ :l
0 0
0 0
0 0

0

0

0

0

0

0

0

c.1::.
0

o~o 0 0
0 u 0

o ia o
0 0
0 0
0 0

0

0

00 Oo
oo

0 0

0

0 oO
0

0
0 0

A2-3

U14
0

0
0
0
0

0

0 0 0 0 0

0

0 ~~J 0
0 ~~4 ~

0 0 0 0 c 7 0 0 0 C.6
o o •roi...o o o{o\

"'-----,,o,----'o 0 0 0 \!!!" 0 0 ~

0 0-~ -0
-~~=o ~ e>-£BI]--O 0 0

.----- 0 0 0

FIGURE A2-b. Microcomputer Module Assembly

~Q.l
0 0

0 0 0 0
0 0 0

0
0

0 0

00
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00

0
U\5

0
0

0

C. I I<>

0

0 0
0 0
0 0
o U2 o

o~o
o o ce
0 0 (o\

0 0 0 ~
0

0

0

0 0
0 0
0 0
o Ul o
0 0
0 0

0

0
0

0

0
0

'0~0

0 ° CIO
<§

0

00

10 COMPONENTS WHICH ARE RATED IN WATTS SHALL BE MOUNTED

1/32 INCH MINIMUM OFF O" BOARD SURFACE AND ELEVATED

AN ADDITIONAL 1/32 INCH FOR EACH WATT IN EXCESS OF ONE WATT

UNLESS SUITABLE HEATSINK OR SUPPORT IS SUPPLIED.

9. ALL COMPONENTS SHALL BE MOUNTED 1/32 INCH MINIMUM

OFF OF PRINTED WIRING BOARD SURFACE.

8 UNINSULATED COMPONENT LEADS WHICH PASS OVER OR ARE

IN CLOSE PROXIMITY TO EXPOSED CIRCUITRY OR ADJACENT

COMPONENT LEADS WHERE THERE IS POSSIBILITY OF ELECTRICAL

SHORTS, SHALL HAVE SLEEVING INSTALLED PRIOR TO

COMPONENT INSTALLATION.

7 JUMPER WIRE TO BE NO. 24 AWG, TINNED, SOLID, INSULATED

(COLOR WHITE) ELECTRICAL HOOKUP WIRE.

6 ALL COMPONENTS TO BE SECURED TO CIRCUIT PATTERN

USING TYPE MS -SN60 RESIN CORE SOLDER.

5 NUMBERS ON CIRCUIT PATTERN ARE POSITION LOCATORS

ONLY AND DO NOT INDICATE PART IDENTIFICATION NUMBER

OR REFERENCE DESIGNATION.

4 (i?> INDICATES DOUBLE TURRET TERMINAL LUG LOCATION
3. ---C::.- BAND INDICATES CATHODE END.

2 FLAG ON CIRCUIT PATTERN INDICATES CATHODE END

LOCATOR FOR AXIAL LEAD SEMICONDUCTOR DEVICES.

I. FLAG ON CIRCUH PATTERN INDICATES PIN I LOCATION ONLY
AND DOES NOT INDICATE INDEX MARK OR TAB ON DEVICE.

NOTES UNLESS OTHERWISE NOTED·

P1 MATES WITH J2 ON
MICROCOMPUTER MODULE

P1

.---,

PA& p

PA5 N

PA4 M

PA3 L

PA2 K

PA1 J

PAO H

PBS 12

PB4 11

PB3 10

PB2 9

P81 B

PBO 7

,-... \
I
I

I

I I

T

I

T

I

25

23

21

19

17

15

13

24

22

20

1B

16

14

APPENDIX 3
SCHEMATIC DIAGRAMS

Q1-Q7~MPS2907 +5V

.:l6·:.
6B.n.

A10 f~~104
4100.n. Q..._,~-'V"v1v2-+---~

6B-'1..

•13 1~~0•
4700.II.. -tl..._.~-'V·,..,1,..,•-t----~

6B..n..

R16 f~~106
4100 J:i.. Q.__..._,_-'V•v1Bv---+------~

ea.r ..

R19 f~ 0 7

4~oo.n.. ~'-'-<--"'",..,2,..,1 _______ __,

&BJ\..

+•v +•v
R26

~ lloK
1----_.-~LI_ PM~~-7-54_5_2---~~-.-2-7--t-~

A

~ J 10K
2 - ~..3_ .. MC.._7_54_5_2 ____ ,___R2-B--+----'

I

l
B C

U1

~ l 10K
LJU9B)'I0"5'------'----_.I----~

1------t-'"-t R29

~ J 10K
LJU7B f<>-'5'------~---;r-----

.___/ R30

~ J 10K
LJUBB)'11>"'5'-------'-----41--------'

D E F G

ADDR.(MS)

I
I 1

l l l
A B C

U2

D

1------t-'"-t R31

1 l 10K
l-l-+-:.4 d 0148

U9A<>-'3'------~---------~ t-----2"1~L__// MC75452

5 M

J_

I J_ !

I I

E F G

ADDA.

.3_

+sv R57

I

l l
A B C

U3

D

+ov

E F

ADDA.

l l

l l l l 1
G A B C

U4

D E F

ADDA.

G A B C

U5

D E F G

DATA(MS)

A B C

U6

D E F G

DATA
R22
10K

A23
10K

R3B
100K I R39

100K l C7

~ A41 A40 ~3 _·i·H
~ ,•Dsd 1 100K 21K ~ I r~ L_; u12Aui-~_,._IV\,~J...-'-~.f'>r'---I-=·+ 4

;,MO..J ~ CB
2 + MC3301

"."l 2 "I.::"' .002 R42 +SY

~ ~ 11 ~~:BOK
T

cc cc

U20A

\2 XO l
.-1------------~~-r~

R58 -~I I '_,,/C> ~
100K 13 jXI

I C3

l m _Gi~
le• ~:,

i MC14053

I_ - - ·--- - ---------'

ln2 ..L

R24
10K

..I C2
.1

A25
IOI<

·~r 221
B I .P01 ~MC330 +SY

1~8 r-:=---·r=----_J_, 1 P,t +sv

~-.!!12d"'u"14"DrJ~>"'-10__.__.•~•::•:-'-' .. 1•:; "l__r,l,E~~ 13 ~:~:SDK +sv U17 Ref ~I -fl ~::

...
!OK

•••
22K

... 100.; M
I
c

~-100K

PB6 13

PB7 14

26

2 B 2B

-f ~ 10K ~cif,·· 7= ~:· MC751:, I ~i RSZ

,.--·------·------~----~----_-_-_-_-_l; __ ~-o----------~---~--<r--'"""---1 ~~OU-t ___ __,_s-:_-t_ro ___ be~--'"~1J 11. ~~!! ~!1--...-lc_1,..,31vK-.,_~!,,-•-1_-<>~R
l~ : 1M -

f~.-3-.~.-3-3-----~11-.---+sv -;;±i,.
l10K 10K _f

1---..;._--+-----'1-"14 A U10 XO~---------------~ L+5V 8

X1 5 -··---------' ~
X2 4 9 D -~ 13~~-~12.,A Q~

,_ __ +_··_3 __ ~_g_~~ __ r-___ 1_._·~r;·3 3 ,---------~ H----'-'1 .. ~Jr1· ~~~ r2lj:~~~p·

~· I 1a§P-;,i;

PA7 R

C81 15
RTS 18

NOTES

1. UNLESS OTHERWISE SPECIFIED:
RESISTANCE VALUES ARE IN OHMS,
CAPACITANCE VALUES ARE IN MICROFARADS,
RESISTORS ARE 1 /4 WATT.

2. ON PW" U.YOUT, A 0,1 UF DECOUPLING
CAPACITOR FOR EACH 3 IC'S.

RXD W
TXD U
RXC 19
TXC 17

[

A,1

27

30
36

37
33
3B
34
1.2

~------l---1-4-+-'~'I. ' ' ~fr= c. - ~· >----~--•+•• ~ J 100K +sv

'----+"-------+--t3 -++-_~6 ~

3. Ql THRU Q7 ARE MPS2907.

4, Ul THRU U6 ARE LITRONIX DL704 OR EQUIV.

B.2

+ov ~::
F,6

~[

3.4 ~==::t--.-.----i

i---.------1 1g :=~ -=~--' dc1 l~ J ~
::~ :::::::::::::::::::: ~:~~::::::::::::::::; 1100_t1E2~J +~;J10K 9 ~
Z,22 43,44f-----I !Q_,'.:'::..f 0

X,23 45,46
l,24 47,48
~.25 49,501-----1

I ,I - 1 1o 5o~ 6Q A4

4 t--1 ~~ ~:.

1+5V

8 •••

CJ ···14 TYP FOR

}1C75140 GND
MC7'.J452 -= ~a I !___!,:a e~•

R C

~----~~S J- ~ +5V

~-~~-

rsv
''····· .. l I ·······18 MC14538

G

l+5V

14 ••••••

? I ······1 TYP. FOR
MC3301
MC14013
MC14016 ND
MC14081 ~

FIGURE A3-a. Keyboard/Display Module Schematic
A3-1

ASO
2.2'K

+SY
R55
10K

...
10K

OF

RUREQ~
REF uNT 13f-o

VMA

AC
Al
1'2
A3
A4
AS

"" A1
All
A'?>
AIO
All

+51/

------,z. 04
34 ,__ __ 3~, us ~r"4'-r---+-~
30 Co I ,..,1 5'-r---+-D_S~ I
T. 01 ~ Dt0
~ ~--'~31 ~._..,r-+--~ I

I :i.- D1
'~ l '.12ft-'12~---->--'

•51~ ~

b'------~
- SEE ~TES

D~~~ r; ;:1----------~~47.5-:---~ 1
llA

SA ~ 1----------=R=ES=E=l----"I
RfSET 5 1----------HT=H=---~-1

x Hl"
y 1--------------~1

MEN\ a.K
MEV. CL..'K L r----------= .. =~l:=J--~- I

>-'Alt 4- ~--------=~----"I

:11>.Q D ~------~~:ro;~Qc+---' I
mil .,,n

TSC

E r------~--1----+---~1
N ~--~---+---~T_SC._~ _ ___,,

:;~~~ ::~B ~
•SVDC ~!~--'-1~~---'---J_~,C-lf--~1c_zL--.~-C-i~5 ·::E

- _liooUF _l1UF .IUF ~Ole 2

~: ;~B ICF\I QPTl~NAL 1~2.(o
GNO '7,H i 1'14133 _1/OOUF, 1~y

-sv ex: 25 RS I -sv
IOSA 0P'l01"A~ c 'Z.1
IVV 100 UF, 1<.V

-1tvoc M 111~-------'--------+--- -1av
•t2Vt:X. T116 ,1z.v
1IZVGNO H&R
.,zv~ ~ ~

+SV

AC>~ l'I l2.2 D41 l>4 B 24 ~ D<1>
~Al ~ ~ 1 '~-1-----<l 10 DI

~ ~ "'- 6 UIO II DZ

~(~o)~ ~ 5 13 D3

~ MC'"630 IO D4 M 4 14 D4

1--A~ I' lJ8 ,~ ~k'f. 3 P!IOM 15 D5
I A;l8 ~ .,.---- ~ 2 (cooo) ..-1.,---0"-..1
~Al 11 I IT' - ~l I SEE 1--17 ___ 07~ 1

1 ., """', ~· ~N07E3 ~
~ CS2. ~13 P.fW ~is ___ __, (§ ~I~
l'A'!> 15 ,..., ii _ »I ~11'!> '

'-~I 1------.. ••'- ...::::J AIO '

~I ' :. 21 ~~

~ lnfi -=-'

'N:14155

... 8

+~v
Al Ul2 10

II

5 13

Pi

D3

UI!'>
/\olEM CL!'. 3 1TL tal :~,f--1_3 _______ ---'0-',1

"·~:~ P·::." ~
- : t F •

' '

~ -ti~ -------;

+5V

R 11
IOK MC1400

J

RELEASED

JI
,.----.,

~p ~ i
•5 v --~--<F ~

r 1=il
z~·~v E~zs

~r-1,f-'-'c~so:;--;;PAt;;...:3~-------lH
-:- Uto P41r4~-----;J

.., 3'. PAS ~
~RSO Pll!><:. L

~~I ~7 ~
1~+----+-~=~~ m P~ 8 P

~ ~ PA7:, R

~ 31 ?IA ~:~ 3'?l ~
03 30 (0004) P80 io l
D4 29 PBI II B

: ~~ PB'Z. :; 9
07 2• Pe3 14 10
~llE PB4 IS 11
RIW ::': E PllS 1• I?

~ 37~ ~~17 :~
~ 38~ <:81~ 15
i:ir.;n J4 tin CB2 1 ~ c_'.!__J

MC<;.82.0 JI

~-s,v Ja
r~-;::;-;;-;5Ai-,~·----~~ cso p 3

R:\4,IOK Ac9 _.11 LJe.I PA\>-'4~-----<J

Atj ~RSO ~ 5 ~
1 ~ RES£l z UZ2A o-~-----'

/16 .3 ~ 15 05
A,1\, IOt' A~ ..11

•v

1~--------;(i;,00~

/>lo 2 SEE llO 0. l'\E5ET •SV ~RSI PM~ M
RIO:)....""- M _/1 .11Q_ 23 ~ PA5 15 ~

O~ ~ l"\7 !' R

1~-------< NOTE 3 1-----' I

Ill.,, IOK ,II\'$..11 ~'1.V 5" sv l R 18 4 DI 32. PIA CA/ 40 s -11• l- -:- /Oii 02 31 {8:n.0~ C.AZ~ •

07 Al 17

R!>. IOK A2 _/1 cs;, 1-''=o'--_-"""'lL-""""'u L----'----s"i uzas DJ .30 P-'~o--+-----1 7
AIO f--1'=------<-@E<I ~ :: ~ ;; 8 p..7, tOi-:. Ai _.l'1

JV· 21 ill /B -@ ! MC7~00 t>W 21 P8213 ~
($1

A4> II UO

1-:-11:2. - ;mr- 07 2" P&3 14 /O
± J DIE 2S PM 15 II

r-------------~ •sv DBE _B!__w 3'11 ~ ;::
11~r 11 ~

R21,t0K
~

•SV cl NMl i1\ITTI Pl!7 l'I
•SV 1illit1I 38 IRQA CBI I& IS

QI t.<::147!' f~•SV 1lrm 3~ ~ c.82. I' I<;.
MP52.~2.'1. /0

(.kU_ ' "°5 II ~- 5 ~ I.if ~ -1'_' 1'«<08W _§ ~ l
vfF o c~~~ 2 3 D& c J
r-' RI' U248 IS P3 Pl l'ZRl~ C 04

IOI\ lt N\::831/0 LJ25 UZllA Mc.l47 '!> E 5
"=- e. - ia P 1 +sv---~-<r '°
-=- [~•SV iillm CE '<:; 2 ~z.H~ "L •5v~ --p- 11 .~

~-------~J h
·8'~-----------------------<IS

'--~~~~~~~~~~~~~~~~~~~I w

I ~:hj-3~-_,,...e FIS mfil~
C'/) """'' 23 '---'1'=-lTc-c-0~--'-l' csa "'""

I ~~R/~W~-~l=<J ~ ~
1~__,Jii.,K~----'1-'1'1 E ACJA

00 2l (Wee)
1 ~-+---D-,---2-<I lolC"8=>0 $

02 _i!Q Fl.TS r--------~
i~+---io~3;-------'~~ F\XD1--z-----~

I ~+---iD,_,4,___---'i-"i& TXD ..--"------,

1~+---i~~5:-----';~~ T)(, i--~-~-~
'-l-----'D"->]_.._ _ __,15,., RJ«: ~-+-~

J~---------------------<U ,____ ______________________________ ~ Jr-----------------------t:~ 4800 >il

J2
MATES Wll H Pi
ON KEYBOARD
DISPLAY
UNI\

'--Ja ,...._-_--_--.-_--... -.----r. ... ~5i"'CH~E~M:":A~J~IC--BA-S-IC--4

i----------,
::-..::.~':9--:::".': MICROC.OMPUTER
".,.. _ __.,.....,.. .. .-.19 •.,,. MODULE -....-.---·-·--

3. OPTIONAL PROMS

MC68T08 ,..;l'\7'"11
E3 TO E9
E4 TO E7
E5 TO E7

MCM68317
EO TO E4
El TO E2
E5 TO E9

4 , MC 8T97 OPTIONAL
5 , MCE!T26 OPTION~L
6 , MC 1'130P OPTIONAL

::::..-::..:"'==.::-...: EVAWATIQ\J KIT TI _..,_,. ___ _
. .---~- .. --. to-------------t

t...-=,,.·-------....,r:"=-~---t ®
I~ I
I !~oc 1 I

II E5 HP. FOR : l. U•Lllll OT••WIN IPllCIFlllD I

•lllllTA•Cll YALUlll AH .. -·· CANCITA•Cll
YALUlll A•ll .. ••c•orA•ADI. •lllllTO•• AH -,' WATT .• 101.

llOTlll•

El TO t:.2
E3 TO E8
E4 TO E6
E5 TO E9

A3-3
FIGURE A3-b. Microcomputer Module

l""oooil4 MC,47, I
I -sv MC700 I
L ___ _!:!!=-1400 __ J

APPENDIX 4
POWER SUPPLY INFORMATION

117 vac

RECTIFIER ASSEMBLY FOR REGULATED POWER SUPPLY

12.6V
rms

Stancor P-8358
Triad F-26X

or Equiv.

1.0 0/5 w

Ohmite 2822
or Equiv.

MDA 970-1

+ 10 Vdc
2.5A-3.0A

+ 3000µF

25WVdc
Sprague TVA1214

or Equiv.

Note: Ground filter capacitor return lead near negative terminal of rectifier to minimize ground loops.

VIN
Input

+10V

R

son

REGULATOR

MJ2955
or Equiv

a1

2N6049
or Equiv

1.0µF I

IC1

MC7805CK

3

J 1sc(a1>

lscToT_ Vo

Output+ 5V
2.5 A

R: used to divert IC regulator bias current and determines at what output current level Q1 begins

conducting. o < R ..;;VBEON(a1>; Ase"" o.sv . lscToT = lsc<a1)+lscoc1)
ls1As(lc1 > 1sc(a1 > •

Note: The Regulator Assembly is capable of supplying 5 A with 2.5°C/W and 1°C/W heatslnk on IC1 and Q1
respectively (TA = 70° C).

Refer to the Motorola VOLTAGE REGULATOR HANDBOOK for additional information.

A4-1

NOTES

NOTES

NOTES

	0001
	0002
	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	A1-01
	A1-02
	A1-03
	A1-04
	A1-05
	A1-06
	A1-07
	A1-08
	A1-09
	A1-10
	A1-11
	A1-12
	A1-13
	A1-14
	A1-15
	A1-16
	A1-17
	A2-00
	A2-01
	A2-02
	A2-03
	A3-01
	A3-03
	A4-01
	Notes-01
	Notes-02
	Notes-03
	xBack

