

MOTOROLA

Semiconductor Products Inc.

MEK6800D2
MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser, JBUG and MINIbug are trademarks of Motorola Inc.

Second Edition
© MOTOROLA INC., 1977
First Edition © 1976
““All Rights Reserved”’

Printed in U.S.A.

TABLE OF CONTENTS

CHAPTER 1: Introduction

1-1
1-2
1-2.1
1-3
1-4
1-4.1
1-4.2
1-4.3
1-4.4
1-4.5
1-4.6
1-4.7
1-4.8
1-4.9
1-5

General Description and Capability,
Preparation for Usettt e
Construction HINtsoiitiiiii i
Start-up Procedure e
Operating Procedures ittt
Memory Examine and Changec.iiiiiiiiiiiiiiineneeennnn.
Escape (ADOrt)ttt e e e
Register Displaycoouiiiiii i e
Goto User Program i
Punch from Memory to Tapettt
Load from Tape to Memoryouutitiiee ettt e
Breakpoint Insertion and Removal ittt
Trace One Instructionttt i

CHAPTER 2: Hardware Description

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

General DesCriptionuiiniinti i i s
Memory Organizationuuuiitiin ettt
INput/Output DEVICES\ttt ettt et et e
System ClOCK ... \oti it e i e e
Keyboard/Displayottt
Trace (Execute Single Instruction)ouiuiiniiineeineennnn..
Audio Cassette Interfacettt i e
Kit EXpansion e

CHAPTER 3: Software Description (JBUG Monitor)

3-1 General Descriptionottt
3-2 Restart/Initialization Routineciiiiiiiieiiiiiinenn.n.
3-3 Display Routine i e
3-4 Keyboard Scan and Decode Routinecviinniiniinnnnnenn.n
3-5 Memory Examine/Change Routineouuuuiinunnnnennnnns
3-6 Register Display Routine it
3-7 Punch and Load Routines ittt
3-8 Interrupt Handling Routine i
Appendix 1: Assembly Listing of JBUG Monitor
Appendix 2: Assembly Drawings and Parts Lists
Appendix 3: Schematic Diagrams...

Appendix 4: Power Supply Information

CHAPTER 1
INTRODUCTION

1-1 GENERAL DESCRIPTION AND CAPABILITY

This manual provides a general description and operating instructions for the Motorola
MEKG6800D2 Evaluation Kit II. The Kit, when assembled, is a fully functional microcomputer system based on
the MC6800 Microprocessing Unit (MPU) and its family of associated memory and I/O devices. The family is
described in the M6800 Microcomputer System Design Data book (included with the Kit) and in the M6800
Microprocessor Applications Manual. Detailed programming information is included in the M6800 Program-
ming Reference Manual.

The MEK6800D2 is designed to provide a completely self-contained method for evaluating the
characteristics of the M6800 family. The standard Kit includes the following devices:

Qty. Device

MC6800 MPU

MCM6830 ROM with JBUG Monitor (SCM44520P)

MCM6810 RAM (128 x 8)

MC6820 Peripheral Interface Adapter (PIA)

MC6850 Asynchronous Communications Interface Adapter (ACIA)
MC6871B Clock Generator

h— e N W) e

As assembled Kit is shown in Figure 1-1-1 (all components shown are included with the standard
Kit.)
The Microcomputer Module printed circuit board is preengineered to accept the following addi-

tional components for expanding its capability:

Qty. Device
2 MCM6810 RAM (128 x 8)
2 MCM68708 EPROM (Equivalent to 2708)
3 MC8T97 Buffer
2 MC8T26 Bidirectional Buffer

The expansion capability provides for a variety of user operating modes.

The integral Keyboard/Display Module can be used in conjunction with the JBUG monitor program
for entering and debugging user programs. Programs can also be loaded and dumped via the Audio Cassette
Interface. The Keyboard, Display and Audio Cassette circuitry are on a separate printed circuit board so that the
ACIA and a second PIA are available if the user has access to an RS-232 or TTY terminal. Wire-wrap space for
up to twenty 16-pin DIP packages is available for user designed circuitry on the Microcomputer Module. A user
generated terminal control program designed to interface with either the PIA or the ACIA can be entered via the
integral keyboard. Alternatively, the Kit will accept (in place of JBUG) the Motorola MINIbug II monitor
program. MINIbug II has monitor and diagnostic capabilities similar to JBUG but is intended for use with
RS-232 and TTY type terminals. (See Appendix E of the Programming Reference Manual included in the Kit.)

1-1

‘b=1-1 3HNOId

1-2

The Kit also permits several different memory configurations. The two MCM6810 128 x 8 RAMs
provided with the standard Kit will accommodate programs of up to 256 bytes in length (the third MCM6810 is
reserved for use by the monitor program). Addition of the two additional optional RAMs expands the capability
to 512 bytes. Strapping options for the additional ROM sockets permits any of the following combinations:

1024 bytes in 512 x 8 bit PROMs (MCM7641)

2048 bytes in 1024 x 8 bit EPROMs (MCM68708)

2048 bytes in 1024 x 8 bit Mask-Programmed ROMs (MCM68308 — same pin-out as

MCM68708)

4096 bytes in 2048 x 8 bit Mask-Programmed ROMs (MCM68316 — same pin-out as
MCM68708 except EPROM programming pin is used as additional addressing
pin.)

The general memory organization of the Kit is shown in Figure 1-1-2.

Adding the optional buffers in the spaces provided upgrades the Kit to EXORciser-compatible
status; hence, all the EXORciser I/O and Memory modules (see included data sheets) can also be used with the
Kit. For example, addition of MINIbug II, an 8K Memory board, and the EXORciser’s Resident Editor/
Assembler to the Microcomputer Module creates a complete development/prototyping tool.

FFFF
Not Used
E400
JBUG Monitor P

onitor Prog E000
C800

Optional ROM
——————— orPROM_ 1 cooo
A080
128 Bytes RAM (JBUG Scratch) A000
8024

PIA board Interf:
IA (Keyboard Interface) 8020
8009

ACIA (Cassette Interface)

8008
PIA 8004
6800

Optional ROM
| ____ —{ 6400
or PROM 6000

Optional 256 Bytes RAM

0100

256 Bytes RAM
0000

FIGURE 1-1-2. Memory Map for MEK6800D2

1-3

1-2 PREPARATION FOR USE AND OPERATION PROCEDURES

The Kit can be assembled by referring to the assembly diagrams of Figures A2-a and A2-b
(Appendix 2) for component placement. Recommended procedures for the handling of MOS and CMOS
integrated circuits are reviewed in Table 1-2-1 and should be followed during assembly. The Kit is completely
self-contained and required only the addition of a 5-volt dc power supply. Additional = 12-volt dc supplies are
required only if electrically programmable read only memories (EPROM:s) are used or if RS-232 capability is to
be added to the Kit. The switches, connectors and display indicators are identified in Figure 1-1-3.

Caution must be exercised to avoid any electrostatic or high-voltage charge from coming in contact
with the MOS gate elements. The gate oxide is approximately 1000 to 1200 A thick and can be ruptured by
static potentials as small as 80 volts. Most MOS circuits employ various input protective schemes. However, an
electrostatic charge may still cause damage to the gate oxide during the finite time required for the protective
device to turn on.

The following handling precautions are recommended for MOS circuits:

1. All MOS devices should be stored or transported in conductive material so that all exposed
leads are shorted together. MOS devices must not be inserted into conventional plastic foam or
plastic trays of the type used for the storage and transportation of other semiconductor devices.

2. All MOS devices should be placed on a grounded bench surface and the operators should
ground themselves prior to handling devices. This is done most effectively by having the
operator wear a grounded conductive wrist strap.

3. Silk or Nylon clothing should not be worn while handling MOS circuits.
4. Do not insert or remove MOS devices from test sockets with power applied.

5. Check all power supplies to be used for testing MOS devices to be certain no voltage transients
are present.

6. When lead straightening or hand soldering is necessary, provide ground straps for the apparatus
used.

7. Do not exceed the maximum electrical voltage ratings specified by the manufacturer.

8. Double check test equipment setup for proper polarity of voltage before conducting parametric
or functional testing.

9. Cold chambers using CO: for cooling should be equipped with baffles, and devices must be
contained on or in conductive material.

10. All unused device inputs should be connected to VDD or Vss.

11. All power should be turned off in a system before printed circuit boards containing MOS
devices are inserted or removed.

12. All printed circuit boards containing MOS devices should be provided with shorting straps
across the edge connector when being carried or transported.

TABLE 1-2-1: MOS Handling Recommendations

1-4

EXORciser Earphone

(B:omgatible Address Data
us Connector Displays Displays

Microphone

it From To Microcomputer
§ Keyboard/Display Module
1 Module
User
1/0
Connector
e J1
Reset
Switch
Hexadecimal Command
Data Keys
Entry
Keys
FIGURE 1-1-3a. Microcomputer Module FIGURE 1-1-3b. Keyboard/Display Module

1-2.1 CONSTRUCTION HINTS

The 24-pin socket supplied for the clock must be modified to fit the PC Board. This can be done by
removing the protective strips on the bottom of the socket and pulling out unwanted pins from the bottom. The
pins that must be removed are 2, 4, 6, 8, 9, 10, 11, 14, 15, 16, 17, 19, 21, and 23.

The Keyboard has 6 pre-drilled holes for use with standoffs or machine screws to support the board
while in use. It is recommended that the board be supported above the bench a minimum of 1/4 inch to prevent
accidentally shorting conductors on the bottom of the board.

When inserting CMOS devices, it is recommended that a low wattage soldering iron with a
grounded tip be used. This will prevent damaging the part. Another alternative would be using sockets for the
parts.

The cable assembly consists of five items.

1. Edge connector (part no. 3415-0001)
2. Edge connector cover (part no. 3415)

3. 50 pin PC Board connector (part no. 3426-0000T)
4. PC Board connector cover (part no. 3426)

5. Approximately 3 feet of 50 conductor flat cable (part no. 3365)

The cable may be assembled as follows:

Step 1: Solder the 50-pin PC board connector (3426-0000T) in place on the Keyboard/Display Module.

1-5

Step 2: Remove protective liner from the PC Board Connector Cover (3426) by first pressing along length of
liner (this will insure good adhesive coverage) and then applying lateral thumb pressure on liner to
displace it enough to be peeled off.

Step 3: Press deeply ribbed side of cable (3365) into alignment grooves of cover, positioning it as required in
step 4. Check visually to insure that the cable is aligned in cover grooves and is even with the edge of
the connector.

Step 4: Place cap and cable over PC Board connector with the cable running away from the Keyboard/Display
Module with the red stripe corresponding to pin 1 of the connector. Then press the assembly together
using a bench vise.

Step 5: Repeat steps 2 and 3 with edge connector and cap on the other end of the cable, keeping the red
conductor aligned with pin 1 of the edge connector. Press this assembly together using the vise.

Step 6: The female edge connector will now mate with the male edge connector (J2) on the Microcomputer
Module. The female conductor labled ‘‘1°” should align with the male conductor labled ‘“A’’. (The
cable ‘‘approaches’’ the back of the Microcomputer Module.)

1-3 START-UP PROCEDURE

Connect the cable attached to the Keyboard/Display Module to connector J2 on the Microcomputer
Module. Apply 5-volt dc power. Pushing the reset switch on the Microcomputer Module should now cause the
JBUG prompt symbol, ‘‘dash’’, to be displayed in the left-most display indicator on the Keyboard/Display
Module. The remaining five displays will be blanked. The JBUG control and monitor program is now in
operation and any of the functions described in the next section may be invoked by means of the data and
command keys on the Keyboard/Display Module.

1-4 OPERATING PROCEDURES

The Keyboard/Display Module, in conjunction with JBUG, provides a means of examining
operation of the Microcomputer Module and entering and trouble-shooting programs. The Keypad has sixteen
keys labeled O-F for entry of hexadecimal data and eight keys for commanding the following functions:

M — Examine and Change Memory

E — Escape (Abort) from Operation in Progress

R — Examine Contents of MPU Registers P, X, A, B, CC, S

G — Go to Specified Program and Begin Execution of Designated Program
P — Punch Data from Memory to Magnetic Tape

L — Load Memory from Magnetic Tape

N — Trace One Instruction

V — Set (and Remove) Breakpoints

Operating procedures for each of these functions are described in the following paragraphs. The
display should be showing the prompt ‘‘dash’’ before any command is invoked.

1-6

1-4.1 MEMORY EXAMINE AND CHANGE (M)

This function permits examination and, if necessary, change of memory locations. A map of the
MC6800 instructions is included as Table 1-4.1-1 and is useful in translating memory data to instruction
mnemonics.

Open the memory location to be examined by entering the address (as 4-digits of hex via the hex
keypad) followed by closure of the M key (hhhhM). The display will now show the address that was entered in
its group of four displays on the left and the contents in the two on the right. The user at this point has three
options: (1) Leave this location unchanged and move to the next location by closing the G key. The new address
and its data would then be displayed. (2) Change the data by simply entering the new data via the hex keypad
(hh). In this case the display would then be showing the new data that was entered. In the event that an attempt is
made to change Read Only Memory (ROM), the display will continue to show the original data. (3) Close the
Memory Examine function by means of the E key. Closure of the E key will return operation to the monitor and
the prompt will again be displayed.

1-4.2 ESCAPE (ABORT)

This function provides an orderly exit from the other functions and/or user programs. Examples of

its use are included in the accompanying descriptions of the other functions.

1-4.3 REGISTER DISPLAY (R)

This function permits examination of the MPU’s registers and may be invoked at any time the JBUG
prompt is being displayed by closing the R key. Following closure of R, the display will show a 4-digit hex
value, the present contents of the Program Counter. The remaining registers may now be examined by
sequencing with the G key and will appear in the following order: Index Register, Accumulator A, Accumulator
B, Condition Code Register, Stack Pointer.!

This display is circular, i.e., a G key closure following display of the Stack Pointer will cause the
Program Counter to be displayed again. The E key may be used to escape back to the monitor at any point in the
display sequence. If required the contents of any register can be changed by using the Memory Change
function. The monitor executed an interrupt sequence when R was invoked. In servicing an interrupt, the
MC6800 saves its registers on a stack in memory (it is these memory locations that the R function ‘‘examine-
s’”). On exit from the R interrupt service routine, the MPU retrieves these values and reloads its registers; hence
if the data on the stack is changed with the M function, the new data will go into the MPU. The following
locations are used to stack the registers:

$A0082 — High order byte of Stack Pointer
$A009 — Low order byte of Stack Pointer
S + 1 — Condition Code Register

S + 2 — Accumulator B

S + 3 — Accumulator A

S + 4 — High order byte of Index Register

'Tt is a characteristic of the display routine that the value displayed for the Stack Pointer is seven less than the actual value.
%In this manual, hexadecimal data is identified by preceeding it with a dollar sign symbol, $.

1-7

81

LSB
0 1 2 3 4 5 6 7 8 9 A B c D E F
MSB
0 * NOP * * * * TAP TPA INX DEX CLv SEV CLC SEC CLI SEl
(INH) (INH) (INH) (INH) (INH) (INH) (INH) (INH) (INH) (INH) (INH)
1| SBA CBA * * * * TAB TBA * DAA * ABA * * * *
(INH) (INH) (INH) (INH)
2 | BRA * BHI BLS BCC BCS BNE BEQ BVC BVS BPL BMI BGE BLT BGT BLE
(REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL) (REL)
3| TSX INS PUL PUL DES TXS PSH PSH * RTS * RTI * * WAI SWI
(INH) (INH) (A) (B) (INH) (INH) (A) (B) (INH) (INH) (INH) (INH)
4 | NEG * * CcoM LSR * ROR ASR ASL ROL DEC * INC TST * CLR
(A) (A) (A) (A) (R) (A) (A) (A) (A) (A) (A)
5 | NEG * * CoM LSR * ROR ASR ASL ROL DEC * INC TST * CLR
(B) 8) (B) (8) (8) (B) (B) (B) (B) (8) (8)
6 | NEG * * CoM LSR * ROR ASR ASL ROL DEC * INC TST JMP CLR
(IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND)
7 | NEG * * COM LSR * ROR ASR ASL ROL DEC * INC TST JMP CLR
(EXT) (EXT) (EXT) (EXT) | (EXT) | (EXT) | (EXT) | (EXT) (EXT) | (EXT) | (EXT) | (EXT)
8 | SUB CMP SBC * AND BIT LDA * EOR ADC ORA ADD CPX BSR LDS *
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (REL) (IMM)
9| suB CMP SBC * AND BIT LDA STA EOR ADC ORA ADD CPX * LDS STS
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR) (DIR)
A | SuB CMP SBC * AND BIT LDA STA EOR ADC ORA ADD CPX JSR LDS STS
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
(IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND)
B| sSuB CMP SBC * AND BIT LDA STA EOR ADC ORA ADD CPX JSR LDS STS
(A) (A) (A) (A) (A) (A) () (A) (A) (A) (A) (A
(EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT) (EXT)
C| SuB CMP SBC * AND BIT LDA * EOR ADC ORA ADD * * LDX *
8) (B) (8) (B) (8) (B) (8) (B) (B) (B)
(IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM) (IMM)
D| SuB) CMP 8 SBC B * AND 5 BIT B LDA 8 STA B EOR B ADC . ORA 8 ADD) * * LDX) STX ®)
(DIR) (DIR)() (DIR)() (DIR)() (DIR)() (DIR)() (DIR)() (DIR)() (DIR)() (DIR)() (DIR)((DIR) (DIR)
E| SuB CMP SBC * AND BIT LDA STA EOR ADC ORA ADD * * LDX STX
(8) (B) (8) (8) (8) 8) (8) 8 8 (B) (B)
(IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND) (IND)
F | SuB CMP SBC * AND BIT LDA STA EOR ADC ORA ADD * * LDX STX
(8) (8))] (B) 8 (8) (8) (8 (8) (8) (8
(EXT) | (EXT) | (EXT) (EXT) | (EXT) (EXT) | (EXT) (EXT) [(EXT) | (EXT) | (EXT) (EXT) | (EXT)
DIR = Direct Addressing Mod! IND = Index Addressing Mod A = A lator A *Uni
EXT — Extonded Addressing Mode INH — inherent Addressing Mode B — Accumulator B Unimplemented Op Code
IMM = Immediate Addressing Mode REL = Relative Addressing Mode

TABLE 1-4.1-1. M6800 Instruction Map

S + 5 — Low order byte of Index Register

S + 6 — High order byte of Program Counter

S + 7 — Low order byte of Program Counter
where *“‘S”’ is the current Stack Pointer as saved in $A008 and $A009. Note that it is necessary to exit the R
display function and enter the M in order to change register values.

1-4.4 GO TO USER PROGRAM (G)

If the Prompt is being displayed, and assuming that a meaningful program has been previously
entered, the MPU can be directed to go execute the program simply by entering the starting address of the
program (via the hex keypad) followed by closure of the G key (hhhhG). The resulting blanking of the displays
is an indication that the MPU has left the monitor program and is executing the user’s program. The MPU will
continue executing the user program until either an Escape (E key) is invoked or the program ‘‘blows’’.
Control, indicated by the prompt ‘‘dash’’, can normally be obtained with the E key. It is possible that an
incorrect program could have caused the monitor’s variable data to be modified. In this case, it is necessary to
regain control using the reset switch on the Microcomputer Module.

1-4.5 PUNCH FROM MEMORY TO TAPE

The Punch function allows the user to save selected blocks of memory on ordinary audio tape
cassettes. Before invoking Punch, the Memory Change function should be used to establish which portion of
memory is to be recorded. Using Memory Change, enter the desired starting address into locations $A002 and
$A003 (high order byte into $A002, low order byte into $A003). Similarly, enter the high and low order bytes
of the desired ending address into $A004 and $A005, respectively. Escape from Memory Change via the Ekey,
thus obtaining the monitor prompt dash. With the audio recorder’s microphone input connected to the
corresponding point on the Keyboard/Display Module and the prompt present, the Punch function is performed
as follows. Position the tape as desired (fully rewound is recommended) and put the recorder in its record mode.
Close the P key. The prompt will disappear during the Punch process and then re-appear to indicate that the
Punch operation is completed. Typically, the prompt is ‘‘off’’ for over 30 seconds since the recording format
specifies that a thirty second header of all ones be recorded ahead of the data. See sections 2-7 and 3-7 for
additional details on the recording format.

1-4.6 LOAD FROM TAPE TO MEMORY

The Load function can be used to retrieve from audio magnetic tape data that was recorded using the
Punch function described in the preceding section. With the audio recorder’s earphone output connected to the
corresponding input on the Keyboard/Display Module (and with the monitor prompt present on the display), the
Load function is performed as follows. To load the desired record, position the tape at the approximate point
from which the Punch was started and then put the recorder into its playback mode. Close the L key. The prompt
will disappear, then re-appear when the Load function is completed. After the prompt re-appears, the Memory
Examine function can be used to examine locations $A002 and $A003. They will contain the beginning address
of the block of data that was just moved into memory. The end address is not recovered by the function, hence
the data in locations $A004 and $A005 is not significant during the Load function.

1-9

1-4.7 BREAKPOINT INSERTION AND REMOVAL (V)

Because of the difficulty in analyzing operation while a program is executing, it is useful during
debug to be able to set breakpoints at selected places in the program. This enables the user to run part of the
program, then examine the results before proceeding. The breakpoints are set by entering the hex address of the
desired breakpoint followed by a V key closure (hhhh V). This may be repeated up to five times. The breakpoint
entry function can be exited after any entry by using the E key. The monitor program will retain all the
breakpoints until they are cleared.

If at any time an hhhh'V entry is made and the hhhh (hex data) does not appear on the display, there
were already five breakpoints stored and the last one was ignored. At any time the prompt is displayed, entry of
a V command not preceeded by hex data will cause the current breakpoints to be removed. If a breakpoint is
entered and the program is subsequently executed to that point, the display will show the current value of the
Program Counter in the four indicators on the left. (This will be the same as the breakpoint address that was
inserted.) The right hand two displays will contain the data stored at that location — that is, the operating code.
At this point the G key can be used to sequence through the other MPU registers exactly as in the register display
function. If it is desirable to proceed on from the breakpoint simply use E (to get the prompt) and then the G key.
At this point, the MPU will reload its registers from the stack and continue with the user’s program until another
breakpoint is encountered or the E key is used again.

1-4.8 TRACE ONE INSTRUCTION (N)

The Trace function permits stepping through a program one instruction at a time. The Trace function
can be invoked any time the user program is at a breakpoint or has been aborted with the E key. However,
tracing cannot begin from start-up because the trace routine does not know where the starting address is.
Therefore, an hhhhV command must be given at least once before Trace can be used.

Enter the Trace function by first setting a breakpoint at the location from which it is desired to trace
and then invoking hhhhG to begin program execution. The breakpoint can be set at the very beginning of the
program if desired.® Following the hhhhG command, the program will run to the breakpoint and stop,
displaying the Program Counter as before. If the N key is now closed, the MPU executes the next program
instruction and again halts. The display will then show the address of the next instruction (Program Counter)
and the operating code located there. The G key can be used to sequence the other registers on to the display as
for a breakpoint if desired. The N key can now be used to trace as many instructions as desired:*

The Trace function cannot be used directly to trace through user IRQ interrupts. The NMI is higher
priority and will cause the IRQ to be ignored. Repeated attempts to execute the Trace command when user IRQ
interrupts are active will result in JBUG continuously returning with the same address. See sections 2-6 and 3-8
of this manual and the M6800 Microprocessor Applications Manual for additional information.

3This procedure assumes the program is in RAM since breakpoints are handled by substituting an SWI for the op-code. If the program to
be traced is entirely in ROM, use a convenient RAM location to insert a jump to the desired ROM address. Then set a breakpoint at the
address of the jump instruction and proceed as above.

41t is a characteristic of the Trace function that all breakpoints in effect at the time Trace is invoked will be removed and must be
re-installed following exit from Trace.

1-10

Interrupt service routines may be traced by setting a breakpoint at the beginning of the service
routine. The Go function may then be used to start program execution, allowing a normal entry into the IRQ
service routine. Once in the service routine, Trace can be used as usual. The E key may be used to exit from
Trace at any time.

1-4.9 CALCULATION OF THE OFFSET TO A BRANCH DESTINATION

The instruction format for conditional branch instructions calls for the offset to the destination to be
entered immediately following the branch instruction op-code as a signed two’s complement number. Mental
calculation of the offset is awkward due to the required two’s complement format. A short program for making
this calculation is included in JBUG (lines 62-70 of the assembly listing included as Appendix 1 of this
manual). Use the following procedure with this program:

1. Obtain the prompt ‘‘dash’’ by escaping from the current operation.
2. Find the current value of the stack pointer by entering the Register Display.

3. Exit from Register Display and open memory location S+2, where S is the current value of the
stack pointer as obtained in Step 2. S+2 is the location of the current stacked value of
Accumulator B. Enter the high order byte of the destination address in this location. Next, enter
the low order byte of the destination into Accumulator A in location S+3.

4. Put the high and low order bytes of the branch instruction’s op-code address into S+4 and S+35,
respectively. This loads the stacked Index Register with the op-code address.

5. Usethe ““E’’ key to exit from the Memory Examine/Change function and then enter $E000G to
begin executing the program starting at location $E000 in JBUG.

6. The program runs to location $E013 and hits the SWI breakpoint located there. Examine the
contents of Accumulators A and B by invoking Register Display and sequencing through the
Registers with the G key. The offset, in the correct form for entry in the program, is now in
Acc.A. If Acc.B contains $FF, the offset is valid (within the allowed range) and is in the negative
direction. If Acc.B contains $00, the offset is valid and in the positive direction. Any other value

indicates that the destination is beyond the allowed range.

1-5 OPERATING EXAMPLE

The following example program is suitable for gaining familiarity with the JBUG monitor features.
The program adds the five values in locations $10 through $14 using Acc. A and stores the final result in
location $15. The intermediate total is kept in Acc. A; Acc. B is used as a counter to count down the loop. The
Index Register contains a ‘‘pointer’’ (i.e., X contains the address) of the next location to be added. The
program, as follows, contains an error which will be used later to illustrate some of JBUG’s features.

In the following listing, the leftmost column contains the memory address where a byte (8 bits) of the
program will be stored. The next column contains the machine language op-code and data for a particular

1-11

microprocessor instruction. The next four columns contain the mnemonic representation of the program in

assembler format.

0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002B
002C
002D
002E
002F
0030
0031

*

* Add 5 numbers at locations 10-14

* Put answer in location 15
%

8E STRT LDS S$FF DEFINE STACK IN USER AREA
00

FF

4F CLRA TOTAL # 0

C6 LDAB #4 INITIALIZE COUNTER

04

CE LDX #$10 POINT X TO LOCATION 10
00

10

AB LOOP ADDA O0OX ADD 1 LOCATION TO TOTAL
00

08 INX POINT X TO NEXT LOCATION
S5A DECB DONE ALL 5 LOCATIONS?

26 BNE LOOP BRANCH IF NOT.

FA

97 STAA §$15 SAVE ANSWER

15

3F SWI GO TO JBUG

A detailed procedure for entering and debugging this program is shown in the following steps.

1. Start Up and Enter the Program in RAM

A.

B.

L]

= 0 m m o

Turn power on. Push reset button on the main card. JBUG will respond with a “‘—".
Type 0020 followed by the M key. This displays the current contents of location 0020.

Type 8E. This replaces the contents of 0020 with 8E which is the op-code for the first
instruction, LDS.

Type G. This steps to the next location (0021) and displays the contents.
Type 00.

Type G.

Type next byte of op-code or operand (FF in this case).

Repeat steps F and G for remaining instructions.

Type E. Abort input function.

1-12

Verify That the Program Was Entered Correctly

A. Type 0020M. Location 20 will be displayed.

B. Type G. Next location will be displayed.

C. Repeat step B until done, visually verifying data entered in Step 1.
D. TypeE.

Enter Data in Locations 10-14

A. Same as 1 except type 0010M to start the sequence. Any data may be entered; however,
for purposes of this example 01, 02, 03, 04, 05 should be entered.

B. TypeE.
Verify Data

A. Repeat step 2 except type 0010M to begin the sequence. Verify that the memory contains
the values 01, 02, 03, 04, 05 in sequencial order.

Run the Program
A. Type E to insure no other option is active.

B. Type 0020G. The program will run down to the ‘‘SWI’’ instruction at location 31 which
will cause it to go to JBUG and show 0031 3F on the display.

Check the Answer
A. TypeE.

B. Type 0015M. (The answer is stored in location 15). Note that it says OA (decimal 10).
The correct answer is OF or decimal 15; therefore, there is a problem in the program as
originally defined. The next steps should help isolate the problem and correct it.

Breakpoint and Register Display

A. Itmight be helpful to see what the program was doing each time it went through the loop.
Therefore, set a breakpoint at the beginning of the loop, location 0029. To do this type E,
then tye 0029V.

B. A breakpoint could also be set at location 002F to see the results. Type E. Type 002FV.

C. JBUG must be told where to begin, so type E and then 0020G. JBUG will run to the
breakpoint and then display 0029 AB. At this point the program is suspended just before
location 29 and is in JBUG. On detecting this breakpoint, JBUG automatically displays

- the PC and is in the register display mode.

D. Type G (Go to next register). The display should read 0010. This is the value of the X
Register.

E. Type G. Display = 00 (A Register).

1-13

~

&

0 Z %

Type G. Display = 04 (B Register).
Type G. Display = DO (Condition Code Register).

Type G. Display = O0F8 (Stack pointer). Even though the program set the stack pointer
to FF the action of the breakpoint used a software interrupt to store the registers on the
stack, thus decrementing it by 7 locations. When JBUG returns to the user’s program the
stack will return to FF.

Type G. Display = 0029 (PC). The register display is circular and steps D through H
could be repeated.

Type E. Abort the register display portion of the breakpoint. Type G to return to the
example program and resume executing. Since the breakpoint at location 0029 is in a
loop it will again be the next breakpoint and the display will contain 0029 AB. At this
point the registers may be displayed again as per steps D through I. If this were done the A
would be seen to contain the partial sum and the B would be decremented. The X Register
would be one greater than previously.

Type E.

Type G (Proceed). Display will type 0029 AB. Once again the registers may be
examined.

Type E.
Type G (Proceed). Same comment as L.
Type E.

Type G (Proceed). Display will now type 002F 97. The program has now successfully
completed the loop four times and the A-Register contains the incorrect sum.

Correcting the Program

A.

m WU 0w

From above it is evident that although the program was supposed to add five numbers, the
loop was executed only four times. Therefore, the LDAB #4 instruction at location 24
and 25 should have initialized B to five. There are two approaches to fix the problem; one
is temporary, the other is permanent. First the temporary one:

Type E.

Type V. Clears existing breakpoints.

Type 0026V. Set a breakpoint just after B register was loaded.
Type E.

Type 0020G. The program will execute up until 0026 and then go to JBUG. Display =
0026 CE. \

Type G five times. This displays the current stack pointer (O0OF8). The B register contains
the counter we wish to modify and is located at location SP + 2 (FA).

1-14

b

o

zZ 2 ° R

Type E.

Type OOFAM. The display = OOFA 04.

Type 05. The display will change to O0OFA 05.

Type E.

Type G. Proceed from user breakpoint down to the SWI instruction.
Type E.

Type 0015M. Display = 0015 OF. The program has now calculated the correct value for
the addition of the five numbers 1-5. This verifies the fix but would be inconvenient to do
each time the program was executed. A permanent change would be:

Type E, then type V. This clears all breakpoints.
Type 0025M. The display = 0025 04.

Type 05. The display = 0025 05. This will now permanently change the LDAB #4
instruction to a LDAB #5 instruction.

Type E.
Type 0020G. Execute the program.
Type E.

Type 0015M. Display = 0015 OF, the expected answer; the program is permanently
fixed.

Trace Through the Program

A.

m o 0w

Type E. In order to execute a trace, the program must first be stopped at a breakpoint. To
trace from the beginning do:

Type V. This clears the existing breakpoints.
Type 0020V. This sets a breakpoint at the first instruction.
Type E.

Type 0020G (Go to user program). JBUG will immediately get the breakpoint and type
0020 8E.

Type N. The program will execute one instruction and display 0023 4F. At this point the
user can either display the registers by depressing the G key or can continue to the next
instruction. To continue:

Type N. Go to next instruction. Display register if desired.

Continue step G for as long as desired. Note: Do not try to trace after executing the SWI
instruction; a restart will be necessary before continuing.

Type E. Clear trace mode.

1-15

10. Offset Calculation Including Register Modification

A.

tr

= o m

—

b

Mo Z 2 ¢ OR

Assume that the SWI instruction at location 31 is to be changed to a branch always (BRA)
to location 20. This will cause the program to remain in an infinite loop (i.e. , the program
has no end and will run continuously unless interrupted by some outside stimuli). Type
0031 to open the memory location. The display = 0031 3F.

The op-code for a BRA is a 20, so type 20. The display = 0031 20.

The second byte of the BRA instruction should be the two’s complement negative offset
to location 20. Since doing this calculation in hex is tedious and error prone, a small
unsophisticated (there was only a little ROM left) program that does offset calculation
was provided at location EOOO in the JBUG ROM.

Type E.

Type R, then type five G’s. This will display the current stack pointer so that the registers
can be located and set up.

Type E.

Type in hhhhM where hhhh = SP + 2. This displays the current B register.
Type 00. This is the high byte of the destination address of the branch.
Type G. This displays location SP + 3 which contains the A-register value.
Type 20. This is the low byte of the destination address.

Type G. Display high byte of X register.

Type 00. Insert high byte of the branch op-code address.

Type G. Display low byte of X register.

Type 31. Insert low byte of the branch op-code address.

Type E.

Type EO00G. When the program is completed it will return to JBUG via the SWI at
location E013 and the PC will be displayed.

Type G twice. The A register is now displayed and contains ED which is the correct
offset.

Type G. The B register will contain an FF to indicate the branch was within range.

Type E.
Type 0032M.

Type ED. Insert the branch offset.

1-16

11.

12.

13.

Executing and Aborting

A.
B.

T o m @ o

Type E.

Type 0020G. The program will begin executing and the JBUG prompt ‘‘—’ will

disappear since the program now contains an infinite loop.

Type E. This aborts (Exits) the program and returns control to JBUG. The prompt has

now returned.

Type R. Display the PC and any other registers of interest.
Type E.

Type G. Program will again execute.
Type E. Abort program and return to JBUG.

Repeat F and G for as many times as you wish.

Punch Program to Cassette

H!—i

K.

L.

T 0mmY 0w »

Rewind the cassette. Type E.

Type AO02M.

Type 00. Enter high byte of beginning address.
Type G.

Type 20. Enter low byte of beginning address.
Type G.

Type 00. Enter high byte of ending address.
Type G.

Type 32. Enter low byte of ending address.
Type E.

Turn on cassette in Record mode.

Type P. Wait for JBUG prompt to return (approximately 30 seconds).

Load Program from Cassette

A.

m o 0w

Turn off power. This will cause the program in memory to be lost. Turn power back on.
Push the Reset button and get the JBUG prompt.

Rewind cassette.

Start cassette in playback mode.

Type L. Wait for the JBUG prompt. Test the program by any of the options described
above.

1-17

1-18

CHAPTER 2
HARDWARE DESCRIPTION

2-1 GENERAL DESCRIPTION

The MEK6800D2 Kit consists of two printed circuit board assemblies, the Microcomputer Module
and the Keyboard/Display Module. The Keyboard/Display Module includes interface circuitry for using
standard Audio Cassette tape recorders as an off-line magnetic storage medium. The Keyboard/Display
Module provides an economical operator interface to the Microcomputer Module and is supplied as a separate
board in order to facilitate using the Microcomputer Module with other terminals or as an end-item in the user’s
system development.

The Keyboard/Display Module is used in conjunction with a monitor program (called JBUG)
supplied in an MCM6830 ROM to permit an operator to communicate with and control the Microcomputer
Module. A detailed description of the available functions and commands is included in the Operating
Procedures section (Section 1-4 of Chapter 1). The features are, in summary:

1. Examine and Change Memory

2. Display and Change MPU Registers

3. Go to User’s Program

4. Trace One Instruction

5. Set and Clear up to Five Breakpoints

6. Proceed from Breakpoint

7. Abort from User’s Program

8. Calculate Offset to Relative Branch Destination

9. Transfer Designated Memory Locations to Magnetic Tape

10. Load Memory Locations from Magnetic Tape

2-2 MEMORY ORGANIZATION

The general memory organization of the Kitis shown in Figure 1-1-2 of Chapter 1. The memory map
is shown in tabular form in Table 2-2-1. In the M6800 system, memory location assignments are determined by
the combinations of MPU address lines that are applied to the device chip select lines.

In Table 2-2-1, the signals designated as ROM, PROM, etc., are the outputs of an MC74155
One-of-Eight Decoder. The MC74155 decodes the MPU’s VMA, Al5, Al4, and A13 lines. For example,
when these lines are all high, corresponding to memory address $E000 (215 + 21# + 213), the ROM output of
the Decoder is low. This signal is applied to the chip select line CST of the JBUG ROM, thus selecting this

2-1

SIGNALS DECODED

DEVICE | ADDRESSES | ¢2 | R/'W| SYMBOL |Vma|A15|A14|A13|A12]|A11[{A10| A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0
ROM EOOO-E3FF | 1 | 1 |[ROM =| 1 |1 |1 |1 x | x| x]x|x|x|x|x]x]x
PROM C000-C3FF PROM =[1 {1]1]o0 +ix x| x| x|x]x|x]x]x]x
RAM (Stack) | AOOO-AO7F | 1 | x [STACK ={ 1 [1 |0 |1] 0 ool x|x|x|x|x]|x]x
PIA 80208023 |1 | x |FTO =] 1]1]o0o]o 1 ox|o* | x | x
ACIA 8008-8009 | 1 | x |T/O =l1]1]o}]o 0* 1| o* X
PIA 8004-8007 | 1| x [TO0 =] 1]|1]0]0 0* o*| 1 |x |x
PROM 6000-7FFF 61 =l1]o|1]1 + x| x]x|x|x|x]x]x|x]x
USER 4000-5FFF 5 =l1]o|1]o

USER 2000-3FFF 23 =l1]ofo |1

RAM (User) | 0000-007F 1 x |RAM =| 1 0 0 0 0 010] x X X X X X X
RAM (User) | 0080-00FF 1 | x [RAM =] 1 |0 [0 |o oo 1 |x|x|x|x|x|x|x
RAM (User) | 0100-017F | 1 x [RAM =] 1 0|]01}O 0 1 Olx |x [x |x|x |[x|x
RAM (User) | 0180-01FF | 1 x |[RaM = 1 0]0|O 0 1 1 x |x | x| x| x |x |Xx

>
I

Decoded by the device addressed

*
I

Required but not decoded by the device addressed
Decoded by 2K x 8 bit optional RAM

TABLE 2-2-1: MEK6800D2 Evaluation Kit Il Address Map

device whenever the MPU outputs addresses in the range of $E000 to $SEFFF. The particular locations within
the ROM are selected by applying MPU address lines AO thru A9 to the ROM address inputs. The JBUG ROM
is located at the highest addresses in the kit’s memory field. Note that A12 from the MPU is not applied to this
ROM so it will also be selected when the MPU outputs its Restart and Interrupt Vector addresses, $FFF8 —
$FFFF. Start-up and interrupt capability is obtained by placing the appropriate interrupt vector addresses in
locations $EEE8 — $EFFF of the monitor program.

Additional addresses are decoded for the optional ROMs that can be added for user-generated
programs. The Microcomputer Module is layed out to accept either two MCM68708 1024 x 8 bit Electrically
Programmable Read Only Memories (EPROM) or two MCM7641 TTL 512 x 8 bit Programmable Read Only
Memories. The PROMs are more economical but cannot be erased like the EPROM. Two MCM68316 2048 x 8
bit ROMs can also be used in the PROM locations. In this case, MPU address line A10 is applied to the
MCM68316 for decoding the additional 1024 bytes. Jumpers on the PCB are provided for selecting the desired
combination of ROM (see note 6 on the schematic diagram of Figure A3-a).

The MC6810 (128 x 8) RAM occupying memory locations $A000 — $AO7F is used by the MPU for
temporary storage of its internal registers during interrupts and subroutines and is selected by the signal
STACK. The MPU also uses this area for storage of flags and temporary data used by the JBUG monitor. This
organization allows a clean separation between monitor requirements and user RAM. The system assigns, via
the RAM signal, the four user RAMs to the bottom of memory in locations $0000 — $O01FF (first 512 bytes).
This RAM is useful for small user programs or for scratchpad memory in the MPU’s direct addressing range for
larger user programs. To prevent contention with these RAMs, expanded systems should avoid these memory

2-2

locations; however, the board is easily modified (see Section 2-8 on system expansion) to accommodate
external memory in this range.

The two signals 2/3 and 4/5 are brought to the edge connector and may be used to select two external
8K-byte blocks of memory. The 2/3 line decodes the second 8K-byte block ($2000 — $3FFF) of the memory
space; 4/5 decodes the next 8K locations ($4000 — $5FFF).

2-3 INPUT/OUTPUT DEVICES

Three I/O devices are provided with the Kit and are selected by the 1/0 signal. The PIA at addresses
$8004 — $8007 is provided for user specified peripheral devices. Its input/output lines are brought out ot the J1
edge connector. A wire-wrap area is provided for any buffering or interface circuitry that might be required. In
normal kit operation, the PIA at addresses $8020 — $8023 is used to interface the Keyboard/Display to the
MPU. If a terminal and the MINIbug monitor are used, this PIA is also available (via the J2 edge connector) for
user specified I/O. The ACIA at memory locations $8008 — $8009 is used to interface with the Audio Cassette
circuitry on the Keyboard/Display Module, but can alternatively be used to interface to serial RS-232 or TTY
type terminals (with the MINIbug monitor) if desired. Note that the address lines A2, A3, and A5 are applied to
the chip select lines of the $8004 PIA, the ACIA, and the $8020 PIA, respectively. This insures the selection of
only one of the three I/O devices when the 1/0 signal is active. Note also that connecting the A2, A3, and AS
address lines to the PIA and ACIA chip select lines will cause a wider range of addresses than is required to be
selected. For example, when the /O signal is low (A15, A14, A13 = 110) and AS is high, any address in the
range $8020 — $802F may be present on the bus, depending on the states of AO— A3. The $8020 PIA does not
decode the A2 or A3 lines; therefore, addresses in the range $8024 — $802F will also select this PIA. However,
it is not necessary to use additional decoding if the use of these addresses is avoided in the user program.

2-4 SYSTEM CLOCK

The Kituses a 614.4 kHz MC6871B system clock. The frequency was selected in order to provide a
simple means of obtaining a 4800 Hz reference frequency used by the 300 baud serial data rate tape cassette
circuitry. The 4800 Hz signal is obtaining by dividing the MC6871B’s 2fo output (1.2288 mHz) by 256 with an
MC14040 counter. The 4800 Hz signal is applied to the cassette interface circuitry, along with the ACIA
outputs, via the J2 edge connector.

2-5 KEYBOARD/DISPLAY

The Keyboard/Display Module is provided as a separate printed circuit board in order to facilitate the
use of other terminals and to make the U21 PIA readily available for eventual expansion of the system. The
Keyboard/Display Module connects to the Microcomputer Module via a ribbon cable and connector provided
with the Kit. A scanning technique is used on both the display and the keyboard in order to minimize system
cost. Since operation of this circuitry is intimately related to the control program, refer to the software
discussion (Section 3-4) and the assembly listing, as well as the schematic diagram of Figure A3-b with the
following description.

2-3

The scanning procedure uses lines PBO — PBS5 of the PIA, corresponding to SCNREG in the JBUG
assembly listing. The digit patterns to be displayed are put out on lines PAO — PAG6 and are designated as
DISRERG in the listing. The JBUG monitor program alternates between refreshing the display and checking for
a key closure in the following manner.

The OUTDS subroutine places the digit pattern for the left-most display on PAO — PA6 and then sets
PBS5 high, causing that digit to be lighted. During this time, PB4 — PBO are low, thus the other digits are off.
This digit of the display is held on for approximately 1.0 ms, after which the pattern for the second digit is put on
lines PAO — PAG6. PBS is switched low, and PB4 is taken high to select the second digit. This sequence
continues until the right-most digit has been selected, at which time the program goes to the KEYDC subroutine
to check for key closures. The blanking pattern ($FF) is placed on PAO — PAG6 to blank the display so that lines
PBO — PBS can be used to interrogate and decode the keyboard. Following the keyboard check, operation
returns to the display sequence. The refresh rate is fast enough that the displays appear to be on continuously.

AnMC14539 CMOS One-of-Four Data Selector (U10) is used to sequentially select each column in
the keypad matrix and route it to PA7 for testing by the monitor program. The address data for selecting each
column is output to the Data Selector on lines PB6 and PB7. Refer to the description of the monitor program in
Section 3-4 for details of the keyboard decoding technique. Note that CB1, a PIA interrupt input, is directly
connected to column 2. This allows the E key to be used for generating an NMI interrupt for escaping from
“‘blown’’ user programs. The MC75452 buffers serves to increase the PIA’s drive capability.

2-6 TRACE (EXECUTE SINGLE INSTRUCTION)

A hardware trace function is provided that permits a user’s program to be executed one instruction at
a time. Results of the execution, including MPU Register contents, can be examined between each Trace
command. The Trace function will operate on programs in either RAM or ROM and is useful as a debugging
aid. The circuitry consists of an MC8316 Counter and two MC7479 D-flip-flops connected as shown in Figure
2-6-1. Refer to this figure also for the associated timing waveforms.

When a Trace command occurs, the system is normally in the Register display mode from either a
previous Trace or having run to a Breakpoint. Thus, the user’s Register values are stacked and the monitor
program is alternating between refreshing the displays and checking for new key closures. The user Program
Counter value saved on the stack is pointing to the next user instruction to be executed. Invoking a Trace
command at this point causes the MPU to start the Trace Counter (via CA2 of the Keyboard/Display PIA) and
then execute a Return from Interrupt (RTI) instruction. This causes the MPU to reload its Registers from the
stack and begin executing the next user instruction. In the meantime the Trace counter is counting machine
cycles. The eleventh cycle after the counter is started will be a fetch of the op-code for the next user instruction
(RTT takes ten cycles to execute). The Trace circuitry detects the eleventh cycle and generates a low going NMI
signal. Since the shortest instruction is at least two cycles long, NMI will always be low at the end of the first
instruction and will cause a return to the JBUG monitor program via an NMI interrupt. The NMI service routine
sets CA2 back high, resetting the counter in readiness for another command. The NMI service routine is
described in Section 3-8 in greater detail. From the user’s point of view, closure of the N (Trace) key causes the
system to execute one instruction and then stop so that the results can be examined.

2-7 AUDIO CASSETTE INTERFACE

Circuitry for interfacing an ACIA to an audio cassette recorder/player is included on the Keyboard/
Display Module. This circuitry enables the user to store and retrieve data on ordinary audio cassettes at a 300

2-4

(54

+bV

o D—0

+5V
1/2 MC7479
CA2 +oV 10 k
From D QF— -
PIA U24a +5V Nl
N _ S 10 k
DBE) Ch T T +5V O—{D a AA
i | eE CET U24b
Cep u25 =
45V . Messs Te ¢ . ¢ =
MR PO P1 P2 P3
+5V -
EA RTI
NN RN
1.0 us

CA2

>
v

ml
-l

1.Uus|——

max

I
I
Is]]7_I lsl |9| m 1 I L
7‘ —ﬁ
/

TC

08~ Cgp

FIGURE 2-6-1. Trace Circuitry and Timing Waveforms

L
e~ A L

h
L
r
Is

baud (30 characters per second) serial clock rate. Data is stored on the tape using the ‘‘Kansas City Standard’’
recording format, so-called due to its formulation during a symposium sponsored by BYTE Magazine in Kansas
City, Missouri in November, 1975. The format is designed to eliminate errors due to audio system speed
variations® and has the following characteristics:

1. A Mark (logical one)® is recorded as eight cycles of a 2400 Hz signal.

2. A Space (logical zero) is recorded as four cycles of a 1200 Hz signal.

3. Arecorded character consists of a Space as a start bit, eight data bits, and two or more Marks as
stop bits.

4. The interval between characters consists of an unspecified amount of time at the Mark frequency.

5. Inthe data character, the least significant bit (LSB) is transmitted first and the most significant bit
(MSB) is transmitted last.

6. The data is organized in blocks of arbitrary and optionally variable length preceeded by at least
five seconds of Marks.

7. Meaningful data must not be recorded on the first 30 seconds of tape following the clear leader.

A control program in JBUG causes this format to be followed and incorporates the following
additional characteristics:

1. At the beginning of tape (BOT), the ASCII character for the letter ‘B’ is recorded following
1024 Marks (approximately 30 seconds).

2. The *“B”’ is followed by one byte containing the block length (up to 256 bytes in a particular
block).

3. The next two bytes recorded contain the starting address in memory from which the data is
coming.

4. Up to 256 bytes of data are then recorded and followed by 25 marks and the ASCII character for
the letter “G”".

The control program uses the additional features to insure that the Punch and Dump functions are performed in
an orderly manner (see the explanation in Section 3-7 for additional information).

The cassette inferface circuit diagram of Figure 2-7-1 serves as an aid to understanding the following
description of the Punch and Load operations. The Punch (transfer of data from the Microcomputer Module’s
memory to tape) and Load (transfer from tape to memory) commands are accomplished by a combination of the
control program, the MC6850 Asynchronous Interface Adapter (ACIA), and the cassette interface circuitry.

The ACIA is, in effect, a bus-oriented, universal, asynchronous receiver/transmitter (UART). In the
transmit mode (Punch), it accepts parallel 8-bit data from the MPU bus, adds the formatting start bit and stop
bit, and then converts the data to a serial binary stream (Tx Data in Figure 2-7-1). The desired format is
established by instructions from the MPU as it executes the Punch command. In the receive mode (Load), the
ACIA accepts an incoming serial data stream (Rx Data) and a sampling clock (Rx CIk). It strips off the start/stop
bits and passes each incoming byte to the MPU for transfer to memory, again under control of the MPU as the

5The circuitry provided with the kit will accommodate speed variation of approximately +25%.
SLogical ones and zeros will be alternatively referred to as Marks and Spaces, respectively, in accordance with serial data transmission
conventions.

2-6

LT

Tx Clk

(4800 Hz) /
R39
s R41
D Q pf———AA—4 MC3301
U12a
MC14081 MC14013
U13a (o]
R
u1lad R47
+5v O
MC3301 v20 c2
MC14016 X0 R44
x—
X1
N s = R38 MC14053
Tx Data D Q Yo L
7 Y
U12b RS8 Y1 cio
MC14081 MC14013 20
MC14081 B nas
c a z1 z
) U13b R A B c
‘ = R48 Microphone
rs7 C15
Clk Q1 +5V o—w\.—T—| }—Tﬁ Vs
MC14016 L < RTS
u1lg Q2 =
MC14024 ctrl out1 ol—e A a MC14081
Ul4c
——R Q4 In1 U14a U1sb U1l1b uU13d Rx Clk
o =1 MC14013 R61 MC145638
— Ctri2
Out 2 MC14016
In2 [+
U14b
— C24
—VWV L 2
R50
c11
R52 u17 - s
in2
Out2 Q D Q
Ref Utla U18a
Earphone n1 MC14538 _ MC14013 _ ‘ N
B Q [+ Q Rx Data
Rs1 str out1| ©@ 7
N\ MC75140P c R
7/

FIGURE 2-7-1. Audio Cassette Interface Circuitry

|

program executes. The ACIA’s Request-to-Send, RTS, acts as a gating signal to switch the interface circuitry
between the Punch and Load modes. The reference documents may also be referred to for additional details on
the ACIA’s characteristics.

Timing waveforms corresponding to the appropriate signals in Figure 2-7-1 are provided as Figures
2-7-2, 2-7-3, and 2-7-4 as an aid to study of the cassette interface circuitry.

During a Punch operation the interface circuitry operates on the serial data to convert each logical
one (Mark) to an 8-cycle burst of 2400 Hz signal and each logical zero (Space) to a 4-cycle burst of 1200 Hz
signal which is then recorded on tape.

The circuitry reverses this procedure during a Load operation; it decodes the incoming frequency-
modulated signal in order to recover the binary data and a sampling clock.

In Figure 2-7-1, the MC14053 Multiplexer/Demultiplexer, U20, (Data Router, for simplicity) is
used to steer signals to their required points during both Load and Punch operations. For instance, during
Punch, B and C are high while A is derived from the binary data on Tx Data. For this combination of control
signals Y is connected to Y1 (because B is high); thus the 4800 Hz Tx Clk signal from the Microcomputer
Module is applied to the clock input of the MC14024 Counter, U19. Also, because C is high, Z is connected to
Z1, but this signal is not used during Punch. The 2400 Hz and 1200 Hz signals are obtained by selecting either
the +2 (Q1) or the +4 (Q2) outputs of the Counter as it is clocked at 4800 Hz.

The signals at X0 and X1 are 1200 and 2400 Hz sine waves obtained via the bandpass filters of U16a
and U16d. One or the other of these signals (depending on the Tx Data logic level at A) will be level shifted,
attenuated, and applied to the microphone output terminals.

TxCk
(4800 H2)
RTS _[

Counter Outputs

e 1 L L L L 1y
?2200Hz I | I | I | I I I
AR 1] |] B
e | l [L
?l:eset) n n

Tx Data [
(Transmit Data)

TXDP _____.l]_
(Phased Tx Data)

AN A YA N A YA YA YA YA YA Y AN
LAV AV VA VAV VAV VA VN

Q2P Filter N /\ /\ /\ /\ /\
20k N N N—" N—— N~—

FSKOutput 2\ N\ O\ . O\ 7\
Signal SN\ N N—" N——"" NS N

FIGURE 2-7-2. Transmit Waveforms

2-8

L I 1

“Squared” Data I I J J | I | -
Output of U17
Output of Ul1a | -
One-Shot
Rx Data
(Output Q of U11b) | ‘
Counter Reset J"l n
(Output of U11b)
Counter Outputs —[—I__——J_L—J—'—L—,_——L———’__—
Q1
Q2 l l | I
a3 []
" N
Rx Clk
(Output of U13d; r 1

Same as Q3
via Data Router)

FIGURE 2-7-3. Receive Waveforms, Space-to-Mark Transition

moutfrom /N7 N\ PN PN PN N\~

“Squared” Data I l r
Output of U17
Output of
U11a One-Shot I |
Rx Data _] I
(Output Q of U18a)
Counter Reset
(Output of U11b)

Counter Qutputs

a1

|
|

« T
o T I
|

Rx Clk
(Output of U13d;

Same as Q2 via
Data Router)

FIGURE 2-7-4. Receive Waveforms, Mark-to-Space Transition

2-9

Note that the 1200 Hz square wave is obtained from the output of U12a rather than the Q2 output of
the MC14024. This, together with the gating of U13 and the delay associated with U12b, insures that switching
of output frequencies will occur only when the outputs of Ul6a and U16d are at essentially the same voltage.
(Refer to the timing diagram of Figure 2-7-2.)

During a Load operation, the incoming signal from the cassette earphone is filtered, amplified and
squared by the U17 Line Receiver. (U17 is connected as a Schmitt trigger to reduce noise problems.) This
results in a signal, at digital levels, that varies between 2400 Hz and 1200 Hz according to the one-zero pattern
that was recorded on the tape. This frequency-modulated signal is then converted to logical ones and zeros by
the pulse width discriminator formed by the U11a MC14538 Monostable Multivibrator (or One-Shot) and the
U18a type D flip-flop. Incoming signals less than 1800 Hz are decoded as zeros; frequencies higher than 1800
Hz are decoded as ones. The Received Data will be present at the Q output of U18a.

The required Rx Clk signal, a positive transition at the mid-point of each bit-time and a negative
transition at the end of each bit-time, is generated as follows:

During Load the digital level 2400/1200 Hz signal, instead of the 4800 Hz Tx Clk signal, is steered
to the Counter clock input. The Counter’s <8 (Q3) and +16 (Q4) outputs are connected to the inputs of U14b
and U14a, respectively. The control inputs of Ul4a and b are connected to Received Data and applied to the Set
input of U18b. The Output of U18b triggers the Counter Reset one-shot, U11b. Hence, either the ~8 or +16
Counter output is steered back (via X) as a reset, depending on whether the data is a zero or a one, respectively.
The Counter is also reset by every Mark-to-Space transition via the U11b One-Shot. The Counter’s +4 and +8
outputs are connected to Z0 and Z1, respectively. These connections combined with the reset signals resultin a
positive transition at the Z output of the Data Router after either four cycles of 2400 Hz or two cycles of 1200
Hz. Thus, the Rx Clk (Z gated by RTS) has a positive transition in the middle of each bit-time and a negative
transition at the end of each bit-time.

2-8 KIT EXPANSION

Provision is made for buffering circuitry to allow the Microcomputer Module to be implemented
into a larger system. The buffers and pinouts selected on the bottom edge connector are compatable with the
EXORciser so its I/O and Memory Modules can be used with this kit. The direction of data flow across the data
bus buffers is controlled by the MC7430 NAND gate, U7. This decoding provides for data flow off the board to
the external system when there is a Memory Read Cycle at an address that is not decoded by the devices on the
Microcomputer Module itself. Note that the signal RAM decodes the lowest 8K bytes of memory which are
reserved for on-board memory (MCM6810’s). Should the user want to assign the lowest 8K of memory
addresses to off-board memory, the following changes are required:

Remove the MCM6810’s decoding addresses 0000, 0080, 0010 and 0180; remove the
signal RAM from pin 4 of the MC7430 and tie pin 4 to +5 V. The signal provided at the bus
connector called RAM can be used on outside memory to indicate an MPU access to an address in
the bottom 8K bytes of memory which now resides off the module.

Provision has been made for using a zener diode (1N4733) to generate a —5 V supply for the 2708
PROM s (if they are used) from —12 V in case this kit is operated in an EXORciser-type system which does not
have —5 V available. Should —5 V be available, the zener diode and associated 68 ohm resistor can be omitted
and the —5 V brought in through the bus connector.

2-10

3-1

CHAPTER 3

SOFTWARE DESCRIPTION (JBUG MONITOR)

GENERAL DESCRIPTION

The control and diagnostic capability of the MEK6800D2 Kit is provided by the JBUG monitor

program resident in the MCM6830 1K x 8 bit ROM supplied with the Kit. The characteristics of this program
are described in the following sections. An assembly listing of JBUG is included (Appendix 1) and may also be

referred to in studying the flow of the program.

Several RAM locations are used for temporary data storage and as flags by the monitor in

communicating between the various routines. Some of the more significant ones are described below and are

referred to in the description of JBUG.

SP
($A008)

DISBUF
($A00C)

DIGIN4
($A014)

DIGINS
(A015)

MFLAG
($A016)

RFLAG
($A017)

NFLAG
($A018)

VFLAG
($A01D)

XKEYBF
($A01A)

A RAM location in which the user’s Stack Pointer is saved whenever the monitor resumes
control. The user’s Stack Pointer is required for locating user Registers on the stack and to
restore these Register when returning to the user program.

Eight RAM locations used as a buffer to hold the current values being displayed. In the first six
locations, the high order 4 bits of each location represent the display digit-count while the low
order 4 bits contain the value that is to be displayed on that digit. For example, the high order 4
bits of the sixth location in DISBUF identify the right-most display. The last two locations in
DISBUF are used for temporary storage of data that is input from the keypad during a Memory
Change function.

A flag that is set to one (LSB) when at least four hex digits have been entered from the
keyboard (as in Memory Examine)

A flag that is set to one (LSB) when six hex digits have been entered from the keyboard
(as in Memory Change)

A flag that is set to one (LSB) when the M key is depressed to invoke the Memory
Examine Mode.

A flag that is set to one (LSB) when the R key is depressed to invoke the Register Display
Mode.

A flag that is set to one (LSB) when the N key is depressed to invoke the Trace
Mode.

A flag that is set to the number of breakpoints (up to five) that have been set.

A pointer to the next empty location in DISBUF where the next hex key entry will be stored.

The flow of JBUG is straightforward and is shown in Figure 3-1-1. After release of the RESET

button, the monitor goes through an initialization sequence in which the stack pointer is initialized to $A078,

3-1

the PIA for the Keyboard and Display is configured, the flags which communicate between routines are cleared
and a dash (-) is placed in the first location of DISBUF to be displayed on the lefthand digit as a prompt to
indicate that the MPU is executing the JBUG monitor. After initalization the display is scanned; this involves
displaying the contents of DISBUF (first six locations). The display scan takes about 6 ms (6 digits at 1.0 ms per
digit) after which the Keyboard is scanned and decoded (KEYDC). A test is made to see if any key is depressed
and if none is found the program returns to OUTDS. If a key is found to be depressed, a decoding process takes
place to debounce the key and to determine which key is depressed. If the key is a hex key (0-F) then its value is
placed in the next open location in DISBUF. If the key is one of the command functions, that command is
decoded and executed before returning to the display routine OUTDS. As shown in Figure 3-1-1, the basic
background program flow alternates between refreshing the display and checking for key closures.

(RESTAR)

Initialize Stack Pointer,
PlAs, ACIA, and Flags.
Put the Prompt dash in
DISBUF

0uUTDS \

Output contents of
DISBUF to Display

All
Digits
Refreshed?

Yes

KEYDC

Check for Key

Closures (KEYCL)
Decode Closure. Test

Key
Closed?
for Command or Data
Yes @ No
KEYDC5 \

[|

Jump to Indicated Store Data. Return
Command Routine to update Display

\

FIGURE 3-1-1. Overall Program Flow for JBUG Monitor

3-2

3-2 RESTART/INITIALIZATION ROUTINE

When the RESET push button is released, the MPU outputs addresses $FFFE and $FFFF in order to
bring in the starting address of the restart routine. Because this system does not require full address decoding
(see Section 2-2), the top two locations of the JBUG ROM ($E3FE and $E3FF) respond with $EO8D, the
beginning address of the restart routine, RESTAR. RESTAR first initalizes the Stack Pointer to $A078 and then
sets the NMI interrupt pointer to $E14E. The NMI interrupt pointer is placed in RAM so that the user can
change it and force NMI interrupts to do something other than go to the JBUG monitor (if this is done all
diagnostic capability of JBUG will be lost). The Keyboard/Display PIA, U21, is then configured to match the
hardware connections shown in the Keyboard/Display Module Schematic Diagram, Figure A3-b. The flags are
cleared and a code to blank the display ($17) is stored in all locations of DISBUF. A dash (-) is written in the first
location of DISBUF to indicate that the MPU is executing the monitor program. Flow then branches to the
OUTDS routine whose function is to move the contents of the DISBUF out to the LED displays.

3-3 DISPLAY ROUTINE

The display routine, OUTDS, is detailed in the flow chart of Figure 3-3-1 and begins at line 260
(address $EOFE) of the assembly listing. The first value in DISBUF is loaded into Accumulator A (Acc.A). The

‘ ouTDS)

Load X with Pointer to
Display Buffer.

)

0UTDS1

Get data into Acc. A. Point X
to Pattern Table, DIGTBL.

0UTDS2

Find Pattern by Incr. X, Decr.
A until A =0, Put Scan Count
into SCNREG. Delay 1.6 ms

[
Shift SCNCNT bit one
position to right Initialize SCNCNT to $20 for

use in checking for Key Closure.
Jump to KEYDC.

< KEYDC ’

FIGURE 3-3-1. Program Flow for Output Display Routine

3-3

Index Register is then pointed to the beginning of DIGTBL, a table which has the correct bit patterns for the
character set to be displayed. The Index Register, X, is then moved to the table location corresponding to the
required pattern by decrementing Acc.A while X is incremented until Acc.A = 0. This pattern is then put out to
DISREG (the anodes of the seven segment display) as the first digit of display is selected by SCNREG (the
cathodes of the display).

This process is repeated for all six positions by moving a ‘‘one’’ through SCNREG as each position’s
data appears in DISREG. In this manner, the data in the first six locations of DISBUF are output to their
respective display positions and turned on for about 1.0 ms each (using the DLY1 delay loop. After all six
positions have been scanned, the variable SCNCNT is reset to $20 (corresponding to the left-most display) in
readiness for use during the next refresh scan cycle.

34 KEYBOARD SCAN AND DECODE ROUTINE

Following each display refresh cycle, the monitor jumps to KEYDC (line 302, address $E14E, flow
charts in Figures 3-4-1 and 3-4-2), the routine for scanning and decoding the Keyboard. The Keyboard is first
tested by subroutine KEYCL to determine if a key has been depressed. The display is blanked by storing $FF to
avoid flicker while the SCNREG lines are being used to interrogate the keyboard. Storing $3F to SCNREG
applies logical zeros to the rows of the keyboard matrix. KEYCLI then tests each column in sequence to
determine if a key is closed. (A depressed key will couple the zero on its row through to PA7 when tested.) The
KEYCL routine returns to the caller, KEYDC, with status information in Acc.A. If no key was closed, Acc.A
will contain $00 and the program will branch back to OUTDS for a display refresh. If a key was closed, the
program branches to a 20 ms delay (DLY20) to allow time for key debounce. KEYDC1 then scans the keyboard
one row at a time using KEYCL to scan the columns looking for the closed key.

An exit back to OUTDS occurs (line 312) if the last row has been scanned without finding a closure.
If there was a closure, KEYDC2 compares the value returned in Acc.A with codes in table KEYTBL to
determine the key value. The KEYTBL values are related to the column and row position for each key. Each
key is represented by a value in the range 0-23 with the first 16 values representing hex numbers. Once the key
value has been found, the program enters the KEYDC4 routine to wait for the key to be released. Afterrelease is
detected, the program again delays for 20 ms to provide time for debounce. Line 327 begins decoding the key
value into either hex or command. Hex keys are entered into DISBUF at the location pointed to by XKEYBF
and then tested to see if four digits have been entered yet. If four digits have been entered, DIGIN4 is set to
enable further operations such as Memory Examine. Comand key values are routed to KEYDCS5, a jump table
resulting in a branch to one of eight locations depending on the command key depressed. The following action
is taken on each command key:

P-KEYDC8 The display buffer, DISBUF, is cleared and the program jumps to subroutine PNCH. Upon
return from the punch routine, a dash (-) is written to DISBUF (to inform the operator that the
punch has been accomplished) and the program jumps to OUTDS.

L-KEYDC9 The display buffer (DISBUF) is cleared and the subroutine LOAD is called. After the data has
been loaded from tape the monitor dash is written into DISBUF and the OUTDS routine called
to inform the operator that the load is complete.

3-4

N-KEYDCA Breakpoints, if any, are removed by clearing VFLAG. The NFLAG is set (LSB) to identify the
TRACE mode and CA?2 of the Keyboard/Display PIA is switched low to start the trace counter.
An RTI instruction is then executed to reload the stack into the MPU and go on with the next
user instruction.

V-KEYDCB The DIGIN4 flag is tested to determine if it is in the clear or set breakpoint mode. If four digits
have been entered, the DIGIN4 flag will be set and the program will call the set breakpoint
(SETBR) subroutine and then go to the OUTDS routine. If the DIGIN4 flag is clear, then V
was a clear breakpoint command and the VFLAG is cleared thus clearing any breakpoints
which may have been set.

M-KEYDCC The MFLAG is set to indicate that the Memory mode has been selected. The DIGIN4 flag is
tested to make sure a full memory address has been entered. If four digits have been entered,
the Memory Display Subroutine (MDIS) is called; otherwise the program goes back to
OUTDS.

E-KEYDCD Causes the MPU to clear the DISBUF locations, write the monitor prompt dash to DISBUF,
and then branch to the display refresh routine. When a user program is in progress the E key
generates an NMI interrupt, providing an abort function.

R-KEYDCE The RFLAG is incremented to designate the Register Display mode and then the Register
Display subroutine is called.

G-KEYDCF The G key performs one of three functions depending on the current mode of operation. If the
monitor program is in the Memory Examine or Register Display mode, the G command causes
the next location to be displayed. If neither of these modes is in effect, G can be used to either
g0 to a user program or proceed from a breakpoint. These operations are described in greater
detail in the next paragraph.

When a G command is decoded the jump table directs program flow to KEYDCEF (line 431, address
$E20E) and the MFLAG is tested to determine if the current G key closure is a command to go to the next
memory location. If MFLAG is set, the Memory Increment (MINC) subroutine is called and will be followed
by the Memory Display (MDISO) subroutine. If MFLAG is clear, the RFLAG is tested to determine if this G
closure meant go to the next Register location. If RFLAG is set, the subroutine to display next Register
(REGST1) is called.

If neither MFLAG or RFLAG is set, the G closure is interpretted as a Go to User Program command,
from either a specific address or from the location indicated by the current value of the Program Counter saved
on the stack. The DIGIN4 flag is tested (line 436) to determine if a new starting adress has been entered. If
DIGIN4 is set, the program replaces the stacked value of the Program Counter with the new Go address is saved
in the first four locations of the Display Buffer, DISBUF. After checking to see if there are any breakpoints to
install, the MPU executes a Return from Interrupt (RTI) to the user program.

If DIGIN4 is clear, a proceed from current Program Counter mode is indicated. In this case, the
GETXB routine is called to determine if any breakpoints have been set. If no breakpoints are in effect, keyboard
interrupts are enabled (TGC, line 464) and the MPU execues an RTI back to the user’s program. If breakpoints
are indicated, the trace routine (TRACE, line 384) is called to step one instruction. On receiving the NMI
interrupt caused by the trace, the NMI routine (NONMSK, line 91) checks to see if both trace and breakpoint

3-5

flags are set. If set, JBUG then installs the breakpoints (TGC, line 464) and returns to the user’s program. This
procedure is necessary to insure that the instruction at the current breakpoint location will itself be executed on a

proceed and that the breakpoint location will contain the SWI the next time it is executed. This is especially
important when the breakpoint is in a loop in the user’s program.

(KEYDC)

KEYCL

Blank Display. Setall
rows low.

KEYCL1

See Figure 3-4-2 for
KEYCL1 Flow Chart

Test for key closure

No
Closure?
Yes

Delay 20 rﬁs, then
set first row low.

KEYDC2
Find Acc. A match in KEYDC1
KEYTBL Scan Keyboard columns

by calling KEYCLI. Last No

row ?
Yes
Yes No
KEYDC4 Select next row

Wait for Key release, then
delay 20 ms for
debounce. Test data for Point X to next empty location

hex or Command in DISBUF. Store key value
there. Test for exactly 4 digits.

KEYDC7 Y

Test for exactly 8 digits

Yes No
KEYDC5 8
Digits?
Set DIGIN4 Flag. Incr.
Find value of key in jump DISBUF Pointer.
Table, Branch to Command
Routine. Incr. DISBUF Pointer Set DIGINS Flag. Call
Memory Change Routine,
MDIS1. Back up DISBUF
1 Pointer two locations.
P =KEYDC8
L =KEYDC9
N =KEYDCA
V =KEYDCB
M =KEYDCC
E =KEYDCD @
R =KEYDCE
G =KEYDCF

FIGURE 3-4-1. Program Flow for Keyboard Scan and Decode Routine

3-6

KEYCL1

Test selected column.

Key
Closed?

Select next column.

All
Columns
tested ?

Returns with state of SCNREG
in Acc. A when key closure is
detected.

FIGURE 3-4-2. Program Flow for KEYCL1 Subroutine

3-5 MEMORY EXAMINE/CHANGE ROUTINE

Flow charts for the Display and Change Memory routines are shown in Figure 3-5-1. The Memory
Display routine (MDIS, line 483) causes display of the contents of the memory location pointed to by the first
four DISBUF locations. KEYBEF, the pointer to the next empty location in DISBUF, is advanced by two in order
to point to locations six and seven in DISBUF when new memory data is entered. The BLDX routine, via a
jump through KEYD3F, builds a memory pointer from the data in the first four locations of DISBUF and loads
it into the Index Register. The data from the location pointed to by X is loaded into Acc.A, split into nibbles
(half-bytes or 4-bit words) by the MDIS2 subroutine, and stored in DISBUF locations four and five. Should a
memory change be required, MDIS1 (line 496) is called, which gets the new data from locations six and seven
in DISBUF (the keyboard entry) and stores it in the memory location referenced. A read of that location is then
performed to get the actual data (someone might try to alter a ROM) which is put back in DISBUF+4 and
DISBUF+35 to be displayed, giving the operator a visual indication that the change occurred. The Memory
Increment Subroutine (MINC) is called when the G key is used to advance to the next memory location. This
routine simply does a 16 bit increment of the four nibbles stored in the first four locations of DISBUF. MDIS is
then called to display the contents of the incremented address.

3-7

Update Keyboard Pointer
to DISBUF

MDISO +

Call BLDX to build memory
address from 1st two locations
of DISBUF. (Address in X Reg.)

Get new data from locations
6 and 7 of DISBUF.

Get memory address from

DISBUF.

!

!

Get memory address from

Increment memory address.
Format new addr. and store

Get data from that location.
Format for DISBUF (call

DISBUF.

in DISBUF.

Store data to memory. Read
memory to verify data was

Increment DIGIN4 and
MFLAG.

MDIS2). Store in DISBUF. changed.
@ Format data and store in
DISBUF locations 4 and 5.

Clear DIGINS Flag.

(a) Display Memory (b) Change Memory (c) Increment Memory

FIGURE 3-5-1. Program Flow for Memory Display, Change, and Increment

3-6 REGISTER DISPLAY/CHANGE ROUTINE

The subroutine to display the registers (REGST, flow chart in Figure 3-6-1) transfers the User’s
Registers from his stack (User’s Stack Pointer is always saved in SP) to the display for operator inspection. The
registers are displayed in the order they are stacked: PC, X, A, B, C. A new register can be selected by pressing
the G key while in the Register Display mode. This causes the register display routine to be entered at REGST1
(line 556). TEMP2, aRAM buffer, is used as a counter in this routine to determine whether the register is one or
two bytes long, and which register to display next.

The Program Counter is displayed first so that when the Register Display routine is called from the
Trace or Breakpoint routine, the Program Counter appears automatically, allowing the operator to easily follow
program flow. REGST points the Index Register to the top of the user’s Stack where the high byte of the
program counter is located. REGST]1 clears the display buffer, DISBUF, and determines from the count in
TEMP2 which register is to be displayed. When the count gets to 3, all registers have been displayed and the
user’s Stack Pointer is loaded from location SP and displayed.

3-8

REGST1 (REGST }

Load flag pointing to Initialize TEMP2 Counter
next register (TEMP2) and Acc. A to (-2).
in Acc. A Get S.P. into X.

1

Move Pointer to P.C. on
stack. Clear DISBUF.

Implies either P.C. or
X Reg. Yes

No

Acc. A<0?

Get High Byte and display it. Implies
Stack | .
R Implies Acc. A.
Pointer Acc. B, or C.C.
Get Low Byte and display it. High Byte of Stack Pointer
Incr. Acc. A. to 1st two locations of Move Register pointed to on
DISBUF. stack to 1st two locatigns
of DISBUF
Implies .
X Reg Implies P.C.
Decrement Pointer to stack. Decrement Pointer to stack. Low Byte of Smk Pointer
. to next 2 locations of
Increment Acc. A. Display op-code. DISBUF.
Increment TEMP2
Increment Acc. A.
Decrement Pointer to stack.
RTS
FIGURE 3-6-1. Program Flow for Register Display Function
3-7 PUNCH AND LOAD ROUTINES

The Punch routine (line 609, address $E32F, flow chart in Figure 3-7-1) is entered via a decode of aP
key closure. Initially, the ACIA is reset causing the RTS signal to go low. This is followed by ACIA
programming to set RTS high, establish eight bits for data length, no parity, and two stop bits. Additionally, the
ACIA is set up to transmit serial data at one sixteenth of the clock frequency. A leader is then punched (using the
PNLDR Subroutine) consisting of 1024 ones.

3-9

0r-¢

PUND10

Reset ACIA. Setup for 8-Bit,
No Parity, 2-Stop, RTS =1

!

Punch Leader (PNLDR)

Calc. Block Length

‘ PNLDR ’

$FF > AR

OUTCH

!

Punch all Ones

N
0> 2650 Y

Set Block Length =
ENDA - BEGA

Set Block Length
Equal 256

I

PUND25

Punch: ASCII B, Block
Length, Beginning Address

PUND30

Punch Data

Punch 25 Ones

Punch ACSII G

FIGURE 3-7-1. Program Flow for PUNCH Function

Get Data

0UTCH !

Punch Data

!

X+1->X

OUTCH

L

Save Acc. B

Test for ACIA Ready

Ready No
Yet?

Yes

Put Data Away.
Restore Acc. B

O

After the leader is punched, the program compares the beginning address (located in $A002, $A003)
to the ending address (located in $A004, $A005). If the difference is greater than 256 (hex FF), the first block is
assumed to be 256 bytes long. When the difference is less than 256, the block length is set equal to the
difference.

Once this determination has been completed an ASCII ‘‘B’’ is punched on the tape. This is followed
by the block length (one byte). The next information stored on the tape is the two byte beginning address of the
data being put on the tape. After the block of data is outputted to the tape recorder, a leader of 25 ones data is put
onto the tape. At this point the beginning address is again compared to the ending address in order to see if all
the data has been punched. To provide a control to validate that all data has been recorded and for ease of
recovery, an ASCII *“G”’ is then punched on the tape. When the beginning address and the ending address are
different, another block of data must be processed. This cycle is continued until the beginning and ending
addresses are the same. Return to control is accomplished with an RTS instruction.

This routine destroys the beginning address originally put in the locations $A002 and $A003. When
the punch routine is complete the data in the ending address is unchanged and the beginning address locations
contain a value one greater than the end address.

The Load routine (line 674, address $E395, flow chart in Figure 3-7-2) is entered via a decode of an
L key closure. This routine sets up the ACIA toreceive data in the same format that is used by the Punch routine:
data length equals 8 bits, no parity, two stop bits. The Receive Clock mode is set to divide-by-one and RTS is set
low, indicating that the ACIA is now ready to receive data from the cassette interface circuitry.

Each data byte is brought in by calling the Input One Character routine, INCHR (line 699, address
$E3C0). This routine continuously checks the ACIA’s Status Register until there is an indication that a byte is
ready to be transferred. The MPU then fetches the byte from the ACIA Data Receive Register and returns to the
LOAD routine with the data in Acc.A. The data is then tested to determine if it is an ASCII “‘B*” or *‘G”’. When
a ‘““‘B”’ is received, the program branches to the Read Data Block routine, RDBLCK. The block length is read
and saved in Acc.B and the beginning address is read and stored into locations $A002 and $A003. Data in the
current block is then brought in and stored to the indicated memory locations. After the block of data is read, the
software branches back to the BILD Routine to look for another block of data or an end of file command. When
other blocks of data are present in this file, they are processed as described above. Eventually, the end of file is
reached. End of file recognition is accomplished by recognizing an ASCII ‘*“‘G’’ in the BILD routine.
Recognition of ths ‘“‘G”’ provides the means for orderly exit from this routine by the execution of the RTS
instruction.

3-8 INTERRUPT HANDLING ROUTINES

The JBUG monitor program handles all three types of M6800 interrupts: Software Interrupt (SWI),
Maskable Interrupt Request (IRQ), and Non-Maskable Interrupt (NMI). In handling interrupts, the MC6800
completes execution of its current instruction, saves the results on the stack and then outputs the appropriate
vector address. At that address it expects to find the beginning address of the selected interrupt service routine
(see the reference literature for more details). Beginning addresses of the service routines are placed in the
vector locations during program development.

The IRQ interrupt is reserved for the user. In servicing anTRQ interrupt, the MPU fetches the address
$E014 from memory locations $E3F8 and $E3F9 near the top of the JBUG ROM. Beginning at location $E014
(line 83), the MPU loads the Index Register with the contents of RAM locations $A000 and $A001, then

3-11

< LOAD '

Set up ACIA for 8-Bit;
No Parity; 2-Stop Bits;
RTS =0;
Divide-by-One.

BILD

RDBLCK ¥
Get Block Length (INCHR)
———————— S
Save in Acc. B as Byte
Count
 — - ——— = -

Get Starting Address (Next
2 char.) (INCHR)

Put Strt. Addr. in X for
Memory Pointer and Save
in $A002 & $A003

Get next Character
(INCHR)

Test for Start-of-Block = “B”
or End-of-File = “G"
Characters

Get Character from ACIA
and Save in Acc. A

Get next Character
(INCHR)

Store to Memory; Decr.
Byte Cnt.

FIGURE 3-7-2. Program Flow for LOAD Function

3-12

RTS

executes an indexed jump. This, in effect, maps the IRQ vector through the JBUG ROM, allowing the user to
reach his interrupt service routine by loading its beginning address into RAM locations $A000 (high order byte)
and $A001 (low order byte).
The MPU is directed to location $E019 (line 91) by NMI interrupts. The flow of the subroutine
located there, NONMSK, is shown in Figure 3-8-1. NONMSK can be entered due to either a Trace command
(breakpoints may be either active or clear) or because of an interrupt from the keyboard PIA, U21. If the
interrupt was not a Trace command, then the trace flag, NFLAG, is cleared and the program flows to NONMK1
(line 100). The MPU loads the Index Register with the contents of memory locations $A006 and $A007 and
then jumps to that location to begin executing the Keyboard Service Routine, KEYDC. This address was loaded
into $A006 and $A007 during the Restart initialization sequence. The user may cause NMI interrupts to vector
to other locations by loading the desired starting address into $A006 and $A007.

el-¢

(NONMSK ;

)

Save User's Stack Pointer.
Disable NMI Interrupts.
Test for Trace Mode

Implies “E"’
Command
from Keybrd Y

No

Jump to Keyboard
Service Routine

Clear NFLAG. Get
Breakpoint Flag

]

To KEYDC
Thru NIO

< SWIR ’

|

Save Users Stack Pointer.
Disable Keyboard Interrupts.
Back up PC on Stack by One.

Test B. P. Flag
No ~VFLAG
Set?

Yes

Remove Breakpoints.
Re-insert op-codes.

Install all Breakpoints.
Enable Keyboard
Interrupts.

Back to User
Program

TDISP

Save Stack Pointer. Set
RFLAG. Call Register
Display, REGST

|

Jump to Display Routine

To OUTDS
Thru KEYDOF

FIGURE 3-8-1. Program Flow for NMI and SWI Interrupt Handling

If the Trace flag (NFLAG) was set, the program checks to see if breakpoints are active. If
breakpoints are active, it is assumed that the purpose of the Trace command was to get off of a breakpoint. In
this case, the breakpoints are installed, further keyboard interrupts are enabled, and flow is passed back to the
user program by execution of an RTI instruction. If there were no active breakpoints, it is assumed that the
Trace command was invoked in order to execute a single instruction. In this case, the stack pointer is saved in
SP and then the program jumps to the Register Display Routine.

Software Interrupts (SWI) are used by the JBUG monitor to implement breakpoints (up to a
maximum of five are allowed). Upon entry from a SWI instruction SWIR (line 107), the user’s Stack Pointer is
saved in location SP for use by the Register Display Routine. Keyboard interrupts are disabled so that the
normal Keyboard and Display scanning functions do not cause multiple NMI interrupts. Lines 109-113 cause a
16 bit decrement of the Program Counter saved on the Stack so that it points back to the instruction that was
replaced by the SWI used to make the breakpoint. The subroutine GETXB is called (line 145) to examine the
VFLAG and determine if any breakpoints are set. If there are, TZONK removes all of the SWI instructions so
that the operator doesn’t see them. The address of the breakpoints and their op-codes are saved in the
Breakpoint Table, BPTAB. The Register Display Routine is then called so that the operator can examine the
registers on the stack.

3-14

PRZE

oonnl
onno2

0noon3
nooog
0noons
noooes
noooy
nooons
ooon9
ooo1o
noo1l
oon1z2
oo01:3
o014
oon1s
noole
onn1y
onn1s
onon1e
ooonzo
nooz1
oonz2
onoe3
nnoz24
onnzs
oo0ze
ono2y
nooze
nnona9
00030
oon21
non32
0003z
oonz4
00035
0003e
ooonzv
oon3za
nno3s
noo4a
nnog41
ooongz
nnn4:z
nno44
o004
oonN4da
o004y
nnon4sg
nong9
noonsn
00051
nooss

0

on1

APPENDIX 1

ASSEMBLY LISTING OF JBUG MONITOR

JBUG

NAM JBUG
* REY 1.8 9-6-75
»
*A MONITOR PROGRAM WITH AN INTERNAL KEYBOARD-DISPLAY
*

+ AZSEMBLED ON THE EXORCISER FOR MOTOROLA
+ INC. -—- FALL OF 76

+
+ COPYRIGHT 1976 BY MOTOROLR SP6
>
oPT =0 E¥YMBOL TARBLESOBJECT TRPE
*
*

*

++COMMAND SYMBOLS

++eeP — PUNCH DESIGNATED MEMORY TO RUDIO CRSSETTE
+eoel — LORD AUDIO CRESETTE TO MEMORY

++eeN — TRACE ONE INSTRUCTION

- UZEE NMI INTERUPT

* M CLERRS ANY BRKPTE IF ZET

» ZINCE TRACE USES HARDWARRE IT CAN

» TRACE THRU ROM AND INTERUPTSE

+eoeey — ZET AND CLERR BREARKPOINTS <FIVE RLLOWED?

» IF THE RADDRESS NOT= ZERO THEN R BREKPT

- IS INZERTED RT THE ADDRESS. IF THE

. ADDRESS = 0 THEN ALL 5 BRKPTE RRE CLERRED.

+eoeM — MEMORY EXAMINE AND CHANGE

+eooFE — EZCRPE CRBORTY

+eeoR — REGISTER DISPLRY

» ORDER OF DISPLAY ISt PCsXsRsBsCCs3SP

> — 0 TO USERS PROGRAM-ADVANCE-PROCEED.
IF ADDRESE NOT = 0 SET USER‘S PC TO
MEW YARLUE AND cO TO USER‘S PROGRAM.
IF ADDRESE=0 THEN RETURN TO PROGRAM RT
FREYIOUS LOCATION <PROCEED MODE).
IF IN Rsi> MEANS RADYANCE TO NEXT REGISTER.
IF IMN M:5 MEANS RDYANCE TO NEXT MEMORY.

+
+
:
4

L 20 20 28 B 2 2B N J

PEPPPLPPPPP PSP PPPPPPECI0000800 000000000000 000000 ¢
»+CONTROL ETACK RT $R0O7Ses

++ RAM EZTARTS AT $ARO00D

++ ROM IZ AT LOCATIONS SEO00O0-BE3FF

++ ACIA IS AT $2003-3009

++ PIA IS AT $23020-3023

PLPPPPPPLPPPP 0000000000000 00 800000000000 80000000000
P R T R R 2 R e g L S e e g 2 e i e 2
.

+ THE RESTRRT ENTRY IS AT LABEL “RESTRAR” AT

+ LOCATION $EOSD.

*
PLPLPLPPPPLP00000 000000000000 08 0000000000000 0000000 0

Al-1

PRGE 002 JBUG

00054 EOOO OrRG $EOQOO

00055 '

00056 +*+eoROUTINE TO CALCULATE OFFSETSeesse

00057 ++oSETUP STARACK AS FOLLOWS:

00058 4 B-REG (SP+2> = HIGH BYTE OF DESTINARTION ADDR
00059 . R-REG6 (SP+3> = LOW BYTE OF DEST RDDR

00060 - X—-REG (IP+4+35)> = ADDR OF OPCODE OF BRANCH
00061 » INSTRUCTION

000s2 E0O00 0B INX

00063 EO0O01 FF ROLE BTX BPRDR STORE OFFSET RDDR

noo64 E004 08 INX

00085 E00S FF ROOAR ETX TEMP1 ARDDR OF NEXT OP CODE
Do0oes EOOS BO ROOB SJB R TEMP1i+1 LOW BYTES

00067 EOOB F2 ROOR SBC B TEMP! HIGH BYTES

00028 EOOE FE ROILE LD* BPRDR GET OFFSET RIDDR

00069 EO11 A7 00 ETA R 0OsX CHANGE OFFSET

0ooyn EO013 3F EWI STRCK AND DISPLAY

onovl +++oREGISTERS ON STACK CONTRIN THE FOLLOWING:
ooova seo++INDEX - ADDR OF OFFSET BYTE THRAT WAS CHANGED
0poy3 +eooei ACCM - VYALUE OF OFFSET

00074 +ose¢B ACCM — 00 - FORWARD BRANCH WITHIN RANGE
onovs so000 FF - REVERSE BRANCH WITHIN RANGE
noove so000 -ANY OTHER VYALUE IMPLIES R BRANCH
onovey so00e OuUT OF RANGE.

nnov7e PEPPSP0P0 0000000000000 00000000000000 0000000000000 00
onovye >

onoz2o0 + HERE ON IRS INTERUPT

noost .

onoz2g ++e+IRQ INTERRUPT SERVICEeees

00022 E014 FE ROOO IO LD ov PICK UP PSEUDO VECTOR
ooos4 EOLIY BE 00 JMP = o0 70 IT

00035 4 ,

nno2e + HERE ON NMI INTERUPT

onos? * MAY BE TRACE OR A TREARCE TO PROCEED

noonzg 4 OR A KEYBOARRD INTERUPT.

onogs -

= +e+ooNMI INTERRUPT SERVICEeees

00091 EO019 BF ROO02 NONMEK =TS P ZRAYE UZER’E ETRCK PTR
onos2 EOIC 3D 66 BEIR DIZNMI DISRBLE NMI INTERUPTE
0033 EOLIE 7D ROLSB =T NFLAG TRACE MODE?

onos4 E021 27 OR BER NONMK 1 NO

ono3s E023 7F AO18S THNMI CLR NFLRAE RESET FLRG

o026 EO026 8D 3B BER GETXE GET TRAR ADDR AND VFLAG
o003y E028 27 2E RER TDIZP NO BPFs DISPLRY REGE
ao0ss EO02A YE E236 AMP TGE BP RCTIVE

oo + MUET BE KEYRBORRD INTERUPT

00100 EO2D FE ROOGE NONMK1 LDX NIO

00101 EO20 &E 00 JMP » DECODE KEYBORRD

oo102 »

on1o2 + HERE OM =OFTWARE INTERUPT

00104 . UEURLLY A BREARKPOINT

00105 -

001 0& ++oeSh] ZERVICE ROUTINE®eee

00107 E022 BF ROD2 EWIR ETE =P ZRAVE UZER‘E EP

Al-2

PRGE 003 JBUG

00108 EO3S 3D 4D BER DIZNMI DISARBLE MNMI INTERRUPTS
00109 EO37 320 TEX DECR PC BY 1

00110 EO28 6D 06 TET SRS BRCKUP PC OM =TRCK
00111 EO2R 26 02 BNE *+4

no11g2 EO3C AR 05 DEC S

00113 EO3E AR 0Dk DEC B X

noi14 EO040 2D 21 BER SETXER GET TABR ADDR AND VFLAG
nn11s EN4z2 27 14 BER TDIZP MO BRKPTSs 0 DISPLAY REBRE
natie *

00117 + REMOVE BRKPTS WHILE WE ARE IN JBUG. THEY
00118 +« WILL BE RESTORED ONM A 50 OR PROCEED

0o119 *

no1z2o0 +ose0eeHERE TO REMOVE PBREARKPOINTSeeesss

0N121 E044 FF ROLIE TZONK ETX BEPRDR ZAYE IN TEMP

nniz2 EN47 R 02 LDAR A 22 GET OP CODE 7O REETORE
0123 + TAFEGUARD AGAINET MULTI DEFINED ERKPTE

noie4 *

00125 E049 21 3F CMP R #%23F

00126 EO4R 27 0OF RER SENHA ERAMCH IF MULTI-DEF
0127 E04D EE OO0 LI O GET ADDR OF BKFT

0128 EO04F A7 00 ZTA A Ds ¥ REZTORE OP CODE

00129 EONS1 FE ROLE LDH BPRIR GET TARELE POSITION
on1z0 EONS4 2D 02 GENA BER ADD3X GET NEXT POZITIOMN AND DECER
non131 EOSE 26 EC ENE TZ20OMK 50 AGAIN

noni22 EONS2 BF ROO2 TDISP =TS =P ZAYE UZER-Z EZTACK FOINTER
00122 EOSE PE E206 JMF KEYDCE 50 DISPLAY REGE

00134 *

n013s ++++ZIBROUTINE TO GET NEXT TRABLE ENTRY

on1ze L

00127 EQSE 02 ADDZX INX

no1zs EOSF 02 INA

no1329 Eos0 02 IM=

00140 EOB1 SH DEC B DECR CTR

nni41 E0kz 29 BT LET CARALLER IO CTR CHECK
noi4e *

0014z +eee=UE TO SET TRAELE RDDR IN ¥ YFLRAS IN E
nol44 *

nn14s E0&2 CE AOZ22 GETXE LDX #+EPTHE GET THELE EBRZE RIDR
o014 E0eR Fe ROLD LA B “FLRAG

o147y EOED 329 RT=

nnig4s *

00149 ++ZUUBEROUTINE TO ZET A BRERKPOINT <MAKE AN
ooisn ++o+ENTRY INTO BRERKPOINT TAELE) IF ENOUGH
00151 +e9eSFPRCE EXIETSE

no1sz - THE RACTUAL EBRKPTE REE FPUT IN MEMORY

nn1s3 + OM THE -7 COMMAND

onis4 *

no1ss E0sR 2D F7 ZETER B:R GETH®E GET TAE ADDR AND YFLAG
no1se EQEC 27 02 BEQD T20T HO BKPTE:s 0 INZERT ONE
1Sy EOSE 21 05 CMP B #+%5 ENOUGH ROOMY

no1sa EOVOD 2C 52 BiGE CLEDE MOs CLERR DIEZPLAY ANMD RTE
nn1Lss +oo00eET TO FIRET FREE ZPACE IN THELEeeeeses
nolen EOFZ2 2D EH TPIG BER ADD3X ADD 2 TO ¥ AMD DECE
nolsl EOP4 26 FC ENE TPIG BRANCH IF NOT DONE

Al-3

FR5E 004 JBUG

no1ea +4+44¢IMZERT NEW BKPT IN TRRLE®eess

00182 EOVE PC ROLID TZ20OT7 INC YFLAR INCR FLRG

n01sd4 EOVPS BE ROILE LIIA A EBPRDR INZERT IN THRLE

n01es EOFC AY 00 STA A 0%

00166 EOFE BE AOLF LA # EPRDR+1

no1e? E021 A7 01 STAR AR 1

n01es EQB32 39 RTZ

00163 *

noivo ++++ZIBROUTINE TO DISRBLE NMI IMTERRUPTSeese
no1vl *

o172 EN24 38 3C DIZMMI LR A #%3C

on1v3 EO28 BY 2021 ZTRA A DIZCTR INTE MASZKED CAR1 RCTIVE LOW
00174 EN22 BY 2023 ETA R ECHCTR INTR MASKED CRB1 ACTIVE LOW
00175 EN2C 39 RTE

n17ea *

Q0177 *

0niva ++2oRESTART ROUTINE®see

noive *

0o1an .

no121 EONSD 2E AROFE RESTAR LDE #FRO7E

on1sz EO020 EBF ROOS =ET= =P INITALIZE =TRCEK POINTER
00122 E0®2 CE E14E LD HKEYIDC 50 DECODE KEYBORRD

noi2ad4 E03s FF ARODA ETH MIO INITALIZE NMI INTERRUPT
nnies +INITALIZE KEYRORRD-DIZPLAY PIA

a0a12e EQ99 26 FF LDAR A #%FF

o012y EOSB BY 2022 ZTR R ZCHREG FEO-FEY OUTPUTE

no123 EQE 44 LER R

00133 EO3F BF 2020 ZTR A DIZREG PRO-PRS OUTPUTE.PAT7 INPUT
00120 EOR2 2D EO ‘ BEER DIZNMI DIZABLE KEYEROARD-TRACE
oon1a1 ++INITALIZE RCIRee

00132 EOR4 25 032 LIR A #3

00192 ENORe EBEF 2008 ZTA A RACIAS REZET THE RCIA

00134 EOR® PF RO1D CLE YFLRAG INITRLIZE %FLRR

00125 EORC 2D 04 IMIT BEER CLFLiz CLEARR DISPLAY AND FLAGE
no013s EORE 2D 27 BZR HIR MRITE PROMPT "-"

00137 EQBD 20 4C ERA ouTDE

o1 *

o193 ++++ZIEROUTIME TO CLERR DIZPLAY EBUFFER AND FLAGSeees
ao20n *»

onzol EOBE2 CE AN14 CLFLG LDX #DIGING

noz0z2 EORS 4F CLE A CLERRE DIGING AND DIGINS
noznz EOBE RV 00 CLFLE1I ETA AR O3 CLERRE MFLAS AMD RFLRAG
nozo04 EOES 02 INX CLEARRE MNFLARS> AND TEMPZ
0o0zNs ENE2 2C AOLA CPX #DIGINd+6 END?

noz0e EOQBC 26 F2 ENE CLFLG1 NO LOOF EBRCK

00207 EOEBE CE AOOC LD #DIZBLUF

0oz0s EOC1 FF AOLA ETH “KEYEBF INITRLIZE XKEYBF

nozos E0c4 26 FF CLRDZ LDA A #%7F

onz10 EOCE BT S020 ZTA A DIZREG BLAMNEK. DISPLAY

00211 EOCo =26 11 LDA A #17

noz1z EOQCE CE ROGC LD #DIZELUF

00213 EOQCE AT 00 CLRDE1 ZTA AR Os X CLEARR OUT DIZPLAY BUFFER
noz14 EOQDOD O3 IN=

n0zi1s EODL 2C RAO14 CP* #DIZBUF+2 END7

Al-4

nn216
noz21v
noz21s8
o219
noz20
onz21
noe2e
noze2
onz24
nozes
00226
nn22y
non2zs
ooze?
00230
00231
nozag
noz23
nozz24
00235

oo B e}
DosCIN oo B e }
Mmoo no

N OS S ETY Y]
Do AW I X 0 B NS A

o
=

oo
noz41
onz4z
o024z
onz44
noz4s5
nnz24e
o247
nnz42
anz249
noa2sn
noz2s1
nozse
nnzs3
nonz25S4
00255
00256
o025y
o025
o259
nozen
nnzel
no2e
noZe2
nn2ed
no2es
O026E
an2ey
nnzes
no2e?

005

EOD4
EODEA

EOD?
EODS
EODC

EODD
EOED
EOQE1
EDE

EOE4
EQEY
EOESD
EOER
EOQEE
EOEC
EOED
EOQEF
EOF1
EOFZ
EOF4
EOFS
EOF&
EOFY
EOF2
EOFE
EOFD

EOFE
E101
E103
E104
E105
El102
E10R
E10C
E10D
E10F

JBUG

26

26
BY

39

CE
02
26
39

CE
A&
45
42
42
43
AR
A7
A&
43
48
458
48
AR
Ry

EE
29

-t

CE
A6
4T
0g
FF
CE
0=
4F
26

7F

F3

=D

I -
e}
D]

neon

FD

RODC
on

01
1z

02

AOOC
oa

mx
o
o

LY 8 e

w0
=0

BNE CLRDE=1
RT=
*
+ZUBROUTINE TO WRITE PROMPT ON DISPLRY
.
HDR LDR R #16
ETR R DISBUF ouTPUT -
RTE
.
+ZUBROUTINE TO DELRY 20 ME OR X M:S
» WHEN ENTERINGE AT DLY1 THE XREG MUST CONTRIN
- THE DEEIRED DELRY CT (APX 13USEC/COUNT?
.
DLY20 LDX #30600

Lyl DEX
ENE DLY1
RTE

»

+e++ZIEROUTINE TO BUILD TWO EBYTE RDDRESS FROM
seooeeoF IRST LOCATIONS OF DISBUF

* ADDREEE IE IN X-REG AND “BPARADR- ON EXIT

.

ELD> LD #DISRUF

LDA A D% GET FIRET BYTE
A=ZL A
AL H
HZL A
=L A MOYE TO HIGH NIBBLE
ORA A 12 Or WITH LOW NIBBLE
STR A EBPRDR-DISBUFsx =TORE IN BPRDR
LDA A 2% GET ZECOND BYTE
RZL H
AL A
AREL R
AZL R MOYE TO HIGH NIBBLE
ORA A 3% OrR WITH LOW NIBELE
ZTA A EBPARDR+1-DIZEBUFsx ZTORE IN BPRDR+1
LD BPADR-DIZBIF.Xx ADDRESS 7O XREG
RTZ

L

>

+++oROUTINE TO DISPLAY & DIGITE IN DISBUF
»

L 4
ouTD= LDX #DISBUF GET STARTING ADDRESS
OUTDE1 LDA A 0Os¥ GET FIRET DIGIT
IMC R
IN®
TR ADZBUF ZAYE POINTER
LD #DIGTERL-1
OuUTDEZZ INX
IIEC A POINT TO PRATTERN

ENE ouTDE2
CLE ZCNREDR ELANK DIZPLRAY

Al-5

PRGE 006 JBUG

00270 E112 R6 00 LDR R 0sX GET PRTTERM

00271 Et114 B7 2020 ETR A DISREG SET UP SEGMENTS
00272 E117 Bé ROLIC LDR R SCNCHNT

00273 E11R B7 8022 STR R SCNREG SELECT DIGIT

00274 E11D CE 004D LDX #+$4D SETUP FOR 1MS DELRY
00275 E120 8D BE BER DLY1 DELRY 1 MS

00276 El22 FE RO20 LDX XDEBUF RECOVER POINTER
0027y E125 8C RO12 CPX #DISBUF+6

00278 E128 27 1IF BER OuUTDS3

00279 E12R 74 ROLC LER SCNCNT NOsMOVYE TO NEXT DIGIT
00230 E12D 20 D2 BRA OouTDE1L

noe31 *

on2se se++ZUBROUTINE TO SCAN KEYBORRDeeee

002383 *

00284 E12F 86 FF KEYCL LDR R #$FF

00285 E131 CE 8020 LDX #DISREG

0on22s E134 A7 00 ETR A 0sX BLANK DISPLRAY

nn23? E136 36 3F LDR R #$3F

nnEs88 E138 RY 02 ETR R 29X ALL ROWE LOW

00289 E13R A 02 KEYCL1 LDR R 2sX

00290 E13C 6D 00 TET Os X

00291 E13E 2R 08 BPL KEYCL2 KEY DOWNT

n0292 E140 8B 40 ADD R =64

00293 El142 RY 02 ETR A 2sx SELECT NEXT COLUMN
00294 El44 24 CO AND A #3C0

00295 El46 26 F2 ENE KEYCL1 LAST COLUMN =CANNED?
nn296 E143 39 KEYCL2 RTE NO KEY FOUND

00297 E149 36 20 OuUTDE3 LDR AR #3220

00292 E14B BY ROIC ETR R SCNCNT INITRLIZE ECNCNT
nnz99 +

00300 +e+oROUTINE TO :=CAN AND DECODE KEYBORRDeees
00201 >

00302 E14E 2D DF KEYDC B:SR KEYCL

00203 E150 27 AC BEQ guTDE MO KEY CLOSED

00304 E152 3D 39 BEIR DLY20

00305 E154 CE 2020 LD #DIEZREG RESTORE X

00306 E157 26 01 LDR A %01 SETUP =CAN FOR FIRET ROW
o207 E159 A7 02 ETR A 2sX

00302 E1SB 8D DD KEYDC1 BSR KEYCL1 ZCAN KEYBORRDSGET KEY
00309 EI1SD 26 0A BNE KEYDLC2 KEY FOUMND

003210 EIS5F A6 02 LDR R 2% CLEARRS NMI INTERRUPT
noz11 E161 81 20 CMP R =320

00312 E163 27 939 BERQ ouTD=E LAET ROW

0032132 E165 B8 02 REL 2 ¥ EHIFT LEFT

00314 E167 20 F2 ERA KEYDC1

00213 E189 5F KEYDC2 CLR B INITRLIZE COUNTER
n021s E16R CE E3DC LD #KEYTBL

00317 E16D A1 00 KEYDC3 CMP R Os2 SERRCH THEBLE

003128 E16F 27 09 BER KEYDC4

00319 E171 8C E3F4 CPX #KEYTBL+24 EMD OF TRBLEY
00320 E1v4 27 61 BER KEYDOF MO KEY FOUND IN TRELE
00221 E176 08 INX

nn322 E1VY 5C INC B RDYANCE

00323 E17P8 20 F2 BRA KEYDC3

Al-6

PRGE

noz24
00325
no326
0n327
non328
an3z9
no330
nn331
go332
nn333
nn334
0335
00338
00337
o338
o339
o240
0241
non34e
o343
nonz44
0345
nn34E
nn247
nnz42
on349
on3s0
00251
on3s2
on253
00254
00355
D356
00357
o352
on3sn
ozl
] 2%
nnzes

nnzed

D}
=
)

=
[}
L

[n A0 A A0 A0 A

0032
O02e
D036
oozaT
o027
nnave

P00 =~ N

D

[y

0avy

E17R
E17C
E17E
E131
E183
E185
E132
E18R
E13D
E13F
E192
E193
E196
E198
E19B
E19D
E1RO
E1R3
E1R6&
E1R?
E1RA

E1RC
E1RF
E1RD
E1B1

E1R2
E1B4 ¢

E1R&
E1E2
E1BR
E1RBC
E1BE
E1CO
E1C2
E1C4

ElCe
E1Ca
E1CC

E1CE
E1D1
E1D4

JBUG

8D
26
BD
C1
2E
FE
E7
8C
26
7C
08
FF
20
aC
26
7C
ED
FE
09
FF
20

20
20
=31
2
20

ED
BD

20

ED
ED
ED

B3
FC
EODD
oF
27
AD1A
0o
ROOF
03
AD14

AO1A
3F

RO13
F5

RO15S
E2YE
AO1A

RO1A
2B

E196

FR
on
0E
14
1E
23
37
41
42
43

EOQC4
E395
EQD?

KEYDC4 BIR
BNE
JER
CMP
BGT
LD¥
=TH
CPX
BNE
INC
KEYDCHA IMX
ET™
ERA
KEYDC? CPX
ENE
INC
JER
LDX
DEX
ETH
BRA
*

KEYCL
KEYDC4
DLY20
+30F
KEYDCS
AKEYBF
Os X
#DIZBUF+3
KEYDCY
DIGING

“KEYBF
KEYDOF
#DIEZBUF+7
KEYDCH
DIGINS
MDI=E1
“KEYBF

XEEYBF
KEYDOF

WRIT FOR KEY RELERSE

DELRY 20 MEEC

POINTER IN DIEZRLUF
EZTORE KEY “RLUE
4 DIGITE IN?
NO
YE=S

2 DIGITE INY

ZET FLRAB
DIEPLAY NEW DRTAH

BACK UP POINTER
EAVE

+ HERE TO DIEPATCH TO A KEYBOARD OPTION

e

*

KEYDCS LDX

EYDCS INX
INs=
DEC
ENE
AMP

JMPTRE ERHR
BERA
ERA
ERA
BRA
BERA
ERA
ERA

»

. JMPTRB-3

EYDCS
O ¥

KEYDLCS2
KEYDCS
KEYDCR
KEYDCER
KEYDCC
KEYDCD
KEYDCE
KEYDCF

+» HERE ON P EKEY
> PUNCH MEMORY TO RUD

2

GET TO RDDRESE IN JUMP TREBLE

THI= OMNET
YE=

KEY

KEY

KEY

KEY

KEY

KEY

KEY

KEY

1AM ZC ™

7

I0 CREEETTE

CLERR DIZPLRAY
FUNCH DARTR TO CREZETTE

CLERR DIZPLRARY
LOARD DATH FROM CARZEETTE

.

KEYDCE2 JZR CLRDE
JER PNCH
ERRA KEYIDCH

*

+ HERE ON L KEY

- LOARD MEMORY FROM RUDIO CASSETTE

*

KEYDCS JZR CLRDE
JER LORD

KEYDCH JER HIDR

WRITE HERDER

+ RETURMN TO DIZPLAY HERDER

Al-7

PRGE 008 JBUG

no3va3 E1D7? 7E EOFE KEYDOF JMP ouTD:s DIEPLRY HERDER
00379 »>

00380 + HERE ON N KEY
00331 . TRACE ONE INSTRUCTION
nn3ze *

00333 E1DR 7YF AOL1D KEYDCAR CLR YFLRG
00334 E1DD 7C RO18 TRACE INC NFLAG

00335 E1ED 86 34 LDA A #%$34 SET UP HARDWARE TO TRACE
00336 E1E2 BY 2021 TR A DISCTR CR2 LOW START TRACE
00337 E1ES 3B RTI

00332 .

ooz + HERE OM ¥V KEY

nnz20 * IF ADDRESS HAT 4 DIGITS INZEERT R BRKPT
00391 * AT ADDRESE OTHERWIEZE CLEARR RLL S5 BRKPTSE
00232 .

00393 E1E6 7D AO14 KEYDCE T=ET DIGIN4 4 DISITS IN?

00234 E1ES 26 05 ENE *+7 YEZs INZERT BP

00325 E1ER 7F AOLD CLR YFLAG

00336 E1EE 20 E?Y BRA KEYDOF 50 DISPLRAY

00337 E1FD 2D 74 BER KEYD3F YEZs INSERT BRERKPOINT
00393 E1F2 BD EOBAR JER ZETEBR

00339 E1FS 20 EO ERA KEYDOF

00400 *

00401 + HERE ON M KEY

00402 * DIZPLARY MEMORY COMTENTS

no40:32 *

00404 E1F7 7C RAO16 KEYDCC INC MFLAG SET FLAG

00403 E1FR 7D RAO14 TET DIGING 4 DIGITE IN¥

no40e E1FD 27 DR BER KEYDOF MO

00407 E1FF 2D &R B:R MDIS YEZ» DISPLAY MEMORY
oo402 E201 20 D4 ERA KEYDOF

oo409 .

00410 + HERE ON E KEY

nn411 * EZCAPE <ABORT> UZER PGM

no41e .

00413 E203 7E EORC KEYDCD JMP INIT CLERR DIZPLAY RND FLAGE
nnd14 »

00415 + HERE ON R KEY

ond41e * DIZPLAY UZER REGIESTERE

00417 .

00418 E206 7C RO1Y KEYDCE INC RFLAE REGIZTER DIZPLRAY
00419 E20% BD E2CE JER REGET

00420 + MUTURL RETURN TO DIEPLRAY

00421 E20C 20 C9 KEYDCG BRA KEYDOF

nog4ze »

nog4z3 + HERE OM & KEY

nodz4 * IF IN “M7 DIZPLAY MNEXT MEMORY LOCRTION
00425 IF IN "R DIEPLRY MNEXT REGISTER

00426 IF 4 DIGIT ADDRESE WAE PUNCHED 50 TO
nn4z2v ADDRESE IN UZER PROGRAM

on4z29 PGM AT CURRENT USER PC ({PROCEEIDD
nn4:2n

2
.
*
00422 * IF 4 DIGITE WEREN-T IMPUT RETURN TO U:ERE
»
*
00431 E20E 7D ARO1s KEYDCF TET MFLRAG MEMORY MODET

Al-8

PARGE

00432
00433
00434
00435
00436
00437
00433
no439
00440
00441
no442
00443
n0444
00445
00446
00447
00443
00449
00450
00451
00452
00453
00454
004355
00456
00457
00453
00459
00480
00451
no4e2
no04e3
00464
00465
00466
00467
nn463
00469
an47 0
00471
nn4va
00473
00474
00475
NN47ve6
o477
00478
00479
004320
no4=1
nn432
nng43:2
nogz4
nN435

009

E211
E213
E216

E218
E21B

E21D
Ec20
E2e2e

E224
Ec26
E227
E22%
E22C
E22E
E231
E234

Ee36
E239
E23B
E23D
E23E
E240
Ec4e
E245
E246
E248
E24B

E24D
Ec4F
E252
E255
E257Y
E2SH

E25E
E25D
E2SF

E2E1l
Ech4
Ee6h

E2p9
E26C
EesD

JBUG

=)
7D
26

7D
26

BD
27
20

8D
30
R?Y
F&
E?Y
BD
BD
ev

FF
EE
A6
36
86
A7
FE
32
A7
BD
26

36
BY
Fé6
86
BY
3B

2D
2D

20

BD
20
7E

FE
02
ng

48
AD17
49

RO14
irg

EDR3
2B
BS

40

06
RO1E
05
EOC4
EDR3

17

RO1E
oo
oo

3F
o0

ROL1E

02
EOSE
ES

20
2022
8022
3D
3023

47
12
AR

E2D7

RE&
EOE4

RO1A

BNE KEYD1F
TST RFLAG
BNE KEYD2F

YES

« IS IT A 7607 OR “PROCEED”7?

TST DIGIN4

BNE KEYDCJ
+ HERE ON PROCEED

JER GETXB

BER TRC

BRRA TRRCE
+ HERE ON 50 MODE

KEYDC.J BSR KEYD3F
TEX
ETR R BeX
LDR B BPADR
ETRA B 5sX
JER CLRDE
JER GETXB
BERQ TiC

4 DIGITS IN7
NOs PROCEED MODE

GET ADDR RND VFLAG
BRANCH IF NO BREAKPOINTS
50 TRACE

5ET RDDR

MODIFY LOW BYTE
GET LOW BYTE
MODIFY HIGH BYTE
CLERR DISPLRY

SET TRB RDDRi&VFLAG
BRANCH IF NO BP

++++INSTALL ALL BRERKPOINTSeeee

TGB ETX BPARDR
LDx Os X
LDR R Osx
PEH A
LDR AR #%3F
ETRA R OsX
LD~ BPRDR
PUL R
ETR AR 2%
JER RDD3x
BNE TR

+ PREPARE TO RETURN TO

TGC LDR R #320
ETR AR =CNREG6
LDAR B =CNREG
LDR R +#$3D
TR R ECHNCTR
RTI

+ HERE TO DISPLRY NEXT
KEYD1F BER MINC
BER MDIZO
BRA KEYDLChB
+ HERE ON DISPLARY NEXT
KEYD2F ISR REGET1
BRA KEYDCE
KEYD3F .IMP BLDX
*e
»

++ZUUBROUTINE TO DIEPLAY

>

’.

MDIE LD “KEYBF
INx
INX

Al-9

ERAYE IN TEMP
SET RDDR OF BP
ET OP-CODE
=ZRYE

INSTALL R EWI

5ET BACK CURR TARB LOC
SET PBRCK OP-CODE

ERAYE IT IN R TRELE
GET NEXT TRR LOC

MORE TO DO7

UEER

SETUP FOR KB INTR
DUMMY READ TO CLERR INTR

ENARBLE KB INTR
BRCK TO UZER

MEM LOC

MEMORY INCREMENT
MEMORY DISPLRAY

REGIETER
REGISTER DISPLARY

MEMORY AND CHANGE ITee

PRGE

o426
00437
00438
00429
00490
00491
nngsz
nng33
00494
00495
00496

00497

00493
nn493
00500
onsol
nnso2
nnsos
nnsod
00505
00506
nosovy
nosos
onsos
00510
ons11
nns12
00313
nnsi4
nns1s
ons1e
]11=3 g
nns18
nos19
ons20
nons21
nos2e
00323
nosS24
00525
no0s2e
00527
00528
ons29
nos30
00531
00532
00533
00534
005335
003536
00537
00538
00539

010

E2eE
E271
E2V3
E27S
E2V7
E27R
E2?D

E2TE
E281
Ee32
E283
E284
E235
Ez88
E28R
E28C
E23E
E2S0
E293
E2%6
E299

E29R
E29B
E22D
E29F
E2RO
E2R1
E2R2
E2R3

E2R4
E2R6
E2RY
E2RAR
E2RD
E2RF
E2B2
EcB4
E2B6
E2B9
E2BB
E2BD
E2BF
E2C2
E2CS

JBUB

FF
21
AE
81
E7
F?
39

Fé
58
58
58
58
FR
2D
E?
A&
8D
B?
F7
7F
39

16
C4
84
44
44
44
44
39

8D
03
FF
B6
8D
CE
A?
E?
B6
8D
A7
E?
7C
7C
39

RO1A
F2
on
o3
RO10
RO11

RO12

AO13
nC
oo
oo
oR
AD10
RO11
AO15S

0oF
Fo

RODA
ROOAR
EB
ROOC
0o
01
ROOB
DF
o2
03
RO14
RO16

MDIEZO0

»

TR
BER
LDA
BEIR
=TH
=TH
RTE

+ ZUR TO PUT

»
MDIZ1

>

+»+ZUBROUTINE TO MOVE LOW NIBBLE OF

LDA
REL
REL
REL
REL
OrRA
BER
=TH
LDA
BER
=TH
=TH
CLR
RTE

B
B
B
B
B
B
B
A
A
B

“KEYRF
KEYD3F
O
MDIE2
DISBUF+4
DISRBUF+5

DIZRUF+6

DISRBUF+7
KEYD3F
Ne ¥

0s¥
MDIS2
DISBUF+4
DISBUF+5
DIGINS

UPDRTE POINTER

ET ADDR OF MEM LOCATION
GET MEMORY DRTRA

FORMAT DRTA

STORE DATR IN DIZBUF

NEW DRTR IN MEMORY RAND DIEPLAY IT

GET MNEW DRTA

DATRA TO HIGH NIBELE

OrR WITH LOW NIBBLE

SET MEMORY ADDR AGARIN
EZTORE MNEW DRTH

RCTUARL DARTHR IN MEMORY
FORMAT

ACTUARL DATR TO DISPLAY

ZETUP FOR NEW DRTR ENTRY

A TO B AND TO

++ooMOYE HIGH NIBBLE OF R TO LOW NIBBLE OF R

>
MDIZ2

»

TARE
AND
AND
LER
LER
LER
LER
RTS

I D2D27DPD™

#30F
#3F0

MASK LOW NIBBLE
MARZK HIGH NIBBLE

HIGH MIBBLE TO LOW NIBBLE

+ TUBROUTINE TO INC MEMORY DISPLRY AND CH&7Y

*
MINC

BER
INX
ETX
LDR
BER
LDX
iTH
5TR
LDR
B3R
TR
STR
INC
INC
RTS

WD DOD

KEYD3F

TEMP1
TEMP1
MDIS2
#DISBUF
0s X

15X
TEMP1i+1
MDIS2
cr X
3 X
DIGING
MFLRG

Al-10

SET MEMORY RDDRESS
SETUP FOR NEXT MEMORY LOC
SRYE

GET HIGH BYTE
FORMAT FOR DISBUF

PUT IN DISPLRY BUFFER
GET LOW BYTE
FORMART

FOUR DIGITS ENTERED
SETUP FOR MEMORY EXRMINE

PRZE 011 JEUG

oos40 »

00541 *

nns42 ++ZUBROUTINE TO DISPLAY REGISTERS OM UZERS ETRCK
nons43 >

00544 + ORDER OF DIZPLARY IS PCsXsRsBsCCaZP

005435 » TEMP2 =TARTE AT -2 RAND ADVANCES TO +3 AND
00546 > CORRESPOMDE TO THE ORDER OF DIZPLAY
00547 4

00542 E2CH6 86 FE REGET LDAR R %%FE INITALIZE COUMTER
00343 E2C2 BY RO19 =TRA AR TEMP2

n0S50 E2CB FE AROO2 LDx P GET UZER"E ZP

n0551 E2CE 86 06 LDR B #%6

nnssz2 e2b0 02 REGETO INX POINT TO TOP OF ETACK
00353 E2D1 4R DEC H

00554 E2D2 26 FC ENE REGETO

00555 E2D4 FF AOOA ETH TEMP1 TEMP ¥ LOCATION

00556 E2D7Y BD EOC4 REGET1 J:R CLRDE CLERR DIZPLRAY

00557 E2DR FE ROOA LD TEMP1 REETORE x

n0s52 E2DD Bé& RAO19 LR A TEMPZ2

00359 E2EQ 2B OE EMI REGET2 PC AND X REGE

nose0 Eg2ee2 21 032 CMP R =83 IZ IT ZPY

n0sel E2E4 27 21 BER REGET?2 YEE

00Se2 E2ES 81 04 CMP R #%4 ALL REGE OUT ZTRRT OVER
n0se2 E2ER 27 DC BER REGET

00Se4 E2ER A6 00 LDAR A DX OUTPUT RsB»CC

no5e5S E2EC 28D 2E BEIR REGETS DIZPLAY OME BYTE
n05e6 E2EE 20 21 ERA REGET4 UPDRTE COUNTER

003ey E2F0 26 REGET2 PEH H ZRYE R

00Se2 E2F1 A& 00 LDAR R OsX GET HIGH BYTE

no36e? E2F3 8D 27 BER REGETS DISPLRAY

n0570 E2FS FE RODOR LI TEMP1

n0sv1l E2F8 A6 01 LDAR A 1sX GET LOW BYTE

00572 E2FR 3D 2B BER REGRETE DIZPLRAY

o572 E2FC 32 PUL A REZTORE R

n0s74 E2FD 4C INC R n RERY A=

00575 E2FE 27 11 BEDQ REGET4 YEE

00576 E300 2D 12 BEIR REGETR DEC POINTER

00577 E302 BD E271 JER MDIZO

005y E305 20 0A BRA REGET4 UPDRTE COUNTER

00S¥9 E307 BS6 RAOOB REGST2 LDA A EP P TO DISPLAY

n0s20 E20R 2D 10 BER REGETS DISPLAY

00321 E30C Bs ROOD LDR R ZIP+1

nos82 E30F 2D 16 BER REGETH

0583 E211 7C AO1S REGET4 INC TEMP2 UPDRTE COUNTER

N0534 E314 FE AROOR REGSTS LDX TEMP1 INCREMENT X

00585 E217 09 DEX

n0536 E318 FF ROOA ET¥ TEMP1 SAYE X

nn328¢ E31B 39 RTS

nonsa8 *

00529 ++IUBROUTINE TO MOYE TwO DIGITE IN AR TO FIRET TWO
00590 ++++| OCATIONS IN THE DISPLAY BUFFER <DISBUPF
00521 »

00592 E31C BD E29R REBGETS JER MDIS2 FORMART

00593 E31F CE ROOC LDX #DISBUF

Al-11

FRGE 012 JEUG

nos%4 E222 R7Y 00 REGET? STR R 08X FIRST DIGIT<OR THIRD)
o595 E224 EFY 01 ETRA B 1sX SECOND DIGIT

0059 E326 39 RTE

nosey *

o092 ++ZUBROUTINE TO MOYE TWO DIGITS IN A TO SECOMD TwWO L
ons99 +eoo ICATIONE IN THE DISPLAY BUFFER (DISBUF>
ooenn *

0001 E327 BD E29A REGETE JER MDIZ2 FORMAT

noe0z2 E3Z2R CE ROOE LD #DIZBUF+2 THIRD & FOURTH DIGITS
00e03 E22D 20 F32 ERRA REGETV

noeng *

0005 *

Y ++++ZUEROUTINE TO PUNCH DRTR TO CASSETTE TAPEeeese
o0e0vy + AUDIO CAZSETTE WITH KC ETANDARD

ooens *

ooen’ EZ2F 268 51 PNCH LDA A =#X01010001 2 BIT CHR PAR & =TOP
00e10 EZ31 BY 2002 ETRA A HCIAES DIVIDE EY 16 WITH RTS NOT HIG
nlel1l E324 CE O3FF LI +R02FF

ooele E3Z7V 2D 54 BER PMHLIR PLNCH LERDER

00e13 E333 F& ROODS PUNDIO LDA B ENDHR+1 FORM END TEMP REG
noeld E3ZC FO ROO3 ZUE B EEGH+1

ooelsS E33F Be AOO4 LDAR A ENDA

nlele E342 B2 RAOO2 ZEC R BEGH

O0ely EZ45 27 02 EE®R FUNDZS DIFF LEEE THARM 255
noe12 E247 Ce FF LDAR B #%FF YEE» EZET BLOCK=256
noe19 E343 28 42 FLUMNDZS LDR A 7 FPUMNCH B

noez0 EZ4ER 2D 2D BER OuUTCH

onezl EZ4D 37 P:H B

noeze E24E =0 TEH

o023 E34F 2D 26 B:R PLIM

noezd E251 32 FUL H GET BYTE COUNT

n0e2s E352 4C IMC R ADIUET IT

nooezse E252 BY RAOL9 ETR AR TEMPZ

noe2y E356 CE ROOZ LI +BEGH FUMCH RDDR

noezs E3S59 2D 2C BER PLMN

ooez® EZSE 2D 2A BER PLM

onez0 E35D FE ROOZ2 LD BEGH FPUNCH DRTH

00e21l E3e0 2D 25 PUNDZ20 BER PLIM

o032 E262 VA AO1S DEC TEMPZ DONE YET?

o032 E365 26 F9 ENE PLINDZO MO

n0e24 E36V FF ROOZ ETw BEGH EZRAYE R WALLUE

o0ez% E26R CE 0019 LI #§0019

noeze EZeD 2D 1E BEIR FPNLIIR PUNCH 25 OMES

no0e2y E2Z6F FE ROOZ LI BEGH REETORE »E

noe=8 EIT2 09 DE

o0e33 E3VE BC AROO4 CP= EMNDHA

nied40 EZTE 26 C1 EME PLIND1 O HO

nooedl E3IVE 26 47 LA A =75 PUMCH 5

onegdsz *

00e43 +++ZLEROUTINE TO PUNCH DRATH BYTEe+es

noedd *

noed4s EIVAR 27 OuTCH PEH B *AVE B

ooed4e EZVE F& 2002 0OUTC1 LDA B ACIAE I DATA REARDY YETY
n0ed47 EZVE 57 AR B

Al-12

PRGE

n0e48
005649
ooes0
nnes1
nnes2
005e53
T)
00&55
n0eSe6
n0esy
ooeSe
nnes59
00es0
00eel
nnEe2
O0Ee3
noeed
N0EES
0NEes
O0Ee?
onees
O0ee3
oned0
eyl
ooev7e
00ed:2
noey4d
00e7S
O0E7E
NOEYY
ooeya
00e73
o0ea0
n0e21
ones2

no7on
noyni

013

E37F
E320
E332
E335
E336

E327
E38%
E38E
E28C

E32D
E22F
E231
E392
E324

JBUG

57
24
BY
33
39

RE
8D
na
29

W o 0o
R Ll)

26
BY
20
21

-
(=

21
26
a3
21
16
5C

3 3D

BV
2D
BY
FE
=3 0
Ry
n=
SA

. 26

20

Fo
8009

no
EF

FF
ES

10
s002
c4
42
05

47
Fé&

15
ROO2
10
ROOD3Z
RO0O2
na

an

0
o=
o

RER
BCLC
=TRH
PUL
RTE

E

ouTC1 XMIT NOT RERDY YET
A ACIAD OUTPUT ONE CHAR
B RESTORE B

>

+ =UR TO PUNCH ONE BYTE PTED TO BY XREFG.
+ ALE0 INCREMENTE XRE6 BEFORE RETURN
+
P

LN LA R X ET DATAH
BEZR OuTCH PUNCH IT
INX LUPDRTE RDDR
RTE
»
+++PLINCH LERDERe®e+e
*
PNLDR LDR R #%FF OUTPUT ALL ONES
BER OuTCH gouTPUT
DEX DECREMENT COUNTER
EME PMLDR IF NOT DONE THEN LOOP
RTE
-
*
++++++ZIBROUTINE TO LOARD DATR FROM CASSETTE TRAPEeeess
*
»
LOARD LDA R #X00010000 DIVIDE BY ONE
ETRA A RCIRE
RILD BER INCHR
CMP R =7 ETRRT OF BINRRY?T
BER RDEBLCE YEE
CMP R %7 END OF FILE?Y
EME RILD
RTZ YEE
RDEBLCK RER IMCHR GET BYTE COUNT
TRE FUT IN B
INC B ADJUET IT
BER INCHR GET ETRRT ADIDR HI
TR R EEGH
BEIR IMCHR SET ZTRRT HDDR LO
ETA A EBEGH+1
LI BEGA RODR TO * REG
ETBLCK EBER INCHR NOT DOME
ETA A X =ETRE IT
M INC RDDR
DEC B DEC BYTE COUNT
EME ETRLCEK NOT DOME
ERR RILD
*
+++++INPLUT ONE CHR TO A REGeesees
.
IMCHR LDR R HRCIRE
A=k A
BCC INCHR DATR RERDY?

Al-13

PRGE

novo2
00703
nov o4
00705
00706
novov

oo0vos
nov o9

no7v10
oovll

novig

novL3
novig

noviy
noy1s

now19

014

E3C6
E3C9

E3CAH
E3CB
E3CC
E3CD
E3CE
E3CF
E3DO
E3D1

E3D2
E3D3
E3D4
E3D5
E32Ds
E3D7
E3DR
E3D2

E3DR
E3DB

E3DC
E2DD
E3DE
E3DF
EZED
E3E1L
E3E2
E3E3

E3E4
EZES
E3Eé
E3E7
E3EZ2
E3E9
EZER
EZEB

E2EC
EZED
EZEE
EZEF
E3F0
EZF1
E3F2
E3F3

JBUG

B6 8009
39

40
7o
24
30
19
12
02
78

on
13
L]
N3
45
21
06
nE

BF
7F

01
g
42
32
04
44
24
03

43
388
ca
C4
ce
Ci1
21
41

10
50
20
Do
20
&0
RO
ED

LDR R RCIRD INPUT CHRAR

RTE
>
+eeeoSEVEN SEGMENT PRATTERNS — LUZED BY OUTDSeees
* 0 1 c 2 4 2 B v

DIGTBL FCB $40,579:524+$30,$19-312,802,%73

» 2 E A B C D E F
FCR FOOs 513,308,503+ 3465821,506:30E

» - BLANK
FCB $BF+ $37F

++eoKEY “YRLUE LOOKUP TRBLE - USED BY KEYDC

> 0 1 2 3 4] = T
KEYTBL FCER $01,3022$425 332, $04>344-$384,38083

L 2 9 A R C I E F
FCE F42, 383 FCB+ BCA+FC2-$C1 3815 841

14 P L M Y M E R E
FCB F10: 8503230+ 3D0+F20+F00+FROFED

Al-14

PRGE 015

novao
aova21
norz22
nova3
nov24
nov25
novee
nova2v
nova8
nnvea29
nnv30
00731 E3F8
0ovy32 E3FR
nov23 E3FA
nnv34 E3FC
00733 E3FE

JBUG

3020
2021
022
3023
2008
2009

E014
E032
E019
EOSD

sose0oKEYROARD-DISPLAY REGISTER RESIGNMENT

*

DIZREG EQU
DIZCTR EQU
ZCNREG EQU
SCNCTR EQU
ACIARE EQU
RCIAD EQU
.
*+eo INTERRUPT
*
OrG
FDR
FDE
FDR
FDB

2020 DIZPLAY ZEGMENTE REGISTER
32021 DIZPLRY EZEGMENTS CONTROL
$a0z2e KEYBOARRD-DISPLARY =CAN REG
$2023 KEYBORRD-DISPLAY EZCAN CTR
$2003 ACIA CTRL OR ETATUE REGR
2009 RCIA XMIT OR RCY REGE
YECTORSeeee

FEZFB

10 IRZ INTERRUPT YECTOR

EWIR ZOFTWARRE INTERRUPT VECTOR
NONMZK NMI INTERRLUPT YECTOR
RE=THR RESTART INTERRUPT “ECTOR

Al-15

PRGE

0ovay
novas
a073ase
0ov4n
nov41
nov4ae
novaa
00744
no74s
00746
nov47
nnv4a
00749
novso
nnvs1
noes2
novsa
novs54
novss
0075A
Qo?Ps?
no?ss
0ov7se
0o7e0
0o07eE1l
novez
00v7e3
00764
NO7ES
1]i)rd 3
no7ve?
noves
Nove9
1] rard i)
novv1
novv2
0o773
00774
0ov77s
novve
Q0777

016

ROOO
RO0O2
ADO4
AND6
ROO2
ROOA
ROOC
RO14
RO15
RO16
RO17
RO12
RO19
RO1A
AO1C
RO1D
RO1E
RO20

RO22

JBUG

ooo2
ono2
onoz2
aooz
oon2
nooz2
nons
ono1
ono1
nonol
onnl
o001
onnl
onoz
n0no1
nnol
nooz
aooz

000F

»

*++40+oYARIABLE PRARAMETERSeeseee

L0 20 2R B K IR BN J

+ THE UZER CHN

CRUTION:
CGENERARTES HIE OWN PROM> THE ORDER OF SOME
OF THE FOLLOWING YARIARBLES IS CRITICAL FOR
CORRECT OPERATION

OrG

ZYSTEM RAM

IF THE USER MODIFY S THIS PROGRAM

$RO0O
STORE THE ADDREE OF HIZ IRQ

+ ROUTINE HERE.

oy
BEGRH
ENDA
MIO

=P
TEMP1
DISBUF
DIGING
DIGINS
MFLRAG
RFLAG
NFLRG
TEMP2
*KEYBF
SCNCNT
YFLRG
BPADR
XDEBUF
»

RMB
FME
EME
RMEB
RMEB
RME
RMEB
RMB
RME
RMB
RME
RMB
RME
RMB
RMB
RMB
RMEB
RMB

TU Y = b [b bt b bt s = 00 T MO TO T TO TO

IR® INTERRUPT POINTER

PUNCH BEGINNING RDDRESS

PUNCH ENDING RDDRESS

NMI INTERRUPT POINTER

TEMP =TRCK BLFFER

ZCRRATCH

DIZPLAY BUFFER

4 DIGITE ENTERED FLRG

2 DIGITS ENTERED FLAG

MEMORY CHANGE MODE FLAG
REGISTER DISPLRY MODE FLAG
TRACE MODE FLARG

COUNTER IN RE6 DISPLAYs RUDIDO
NEXT LOC IN DIEPLRY BUFFER
KEYBORRD ~DISPLRY SCAN COUNTE
CONTRINS THE NBR OF RCTIVE BR
TEMP RDDR OF BPAXREG TEMP
XREG TEMP LOCATION

+ BRERKPOINT RAND OPCODE TABLE
» ERCH BRKPT REQUIRES 3 BYTESs
> BYTES 1,2 HRE THE RDDRESS OF THE BRKPT

BYTE 3 IS THE REPLACED OP CODE
CHECK VFLAG TO SEE HOW MANY OF THE BRKPTS

PTHE

»

.

4 ARE VARLID
.

B

RMB
END

15

Al-16

BRERKPOINT & 0OP CODE TRBLE

PRSE 017 JBUG

I0
HOMMEK
THNMI
NONMK 1
EWIR
TZONK
GENA
TDIZP
ADD3X
GETXB
ZETBR
TPIG
TZ207T
DISHMI
RESTRR
INIT
CLFLG
CLFLGB1
CLRDS
CLRDE=1
HDR
DLY2D
DLY1
BLDX
guTDh:E
OuTDE1
ouTDER2
KEYCL
KEYCL1

EO14
EO19
E023
EO02D
ED32
E044
E054
E0S8
EOSE
E063
E06R
EO72
EO76
E0B4
EO08D
EORC
EOBe2
EOB6
EOC4
EOCE
EODY
EODD
EOED
EOE4
EOFE
E101
E10B
E12F
E13R

KEYCLZ2
guTDS3
KEYDC
KEYDC1
KEYDCR2
KEYDC3
KEYDC4
KEYDCHE
KEYDC?
KEYDCS
KYDCS
JMPTRB
KEYDCS8
KEYDCS
KEYDCMH
KEYDOF
KEYDCH
TRRACE
KEYDCE
KEYDCC
KEYDCD
KEYDCE
KEYDCG
KEYDCF
KEYDC.J
TGER
TG
KEYD1F
KEYD2F

E148
E149
E14E
E15B
E169
E16D
E17R
E192
E198
E1RC
E1RF
E1B6
Ei1Cé
E1CE
Ei1D4
E1DY
E1DA
E1DD
E1E6
E1F?
E203
E206
E20C
E20E
E224
E235
E24D
E25E
E261

KEYD3F
MDIS
MDISO
MDIS1
MDIS2
MINC

REGST
REGSTO
REGST1
REGST2
REGST3
REGST4
REGSTS
REGSTS
REGST?
REGSTE
PNCH
PUND10
PUND25

PUND30
OUTCH
ouTc1
PLN
PMLDR
LORD
BRILD
RDBLCK

Al1-17

=TBLCK
INCHR

E266
E269
E271
E27E
E29A
E2R4
E2C6
E2D0
E2D?7
E2F0
E307
E311
E314
E31C
E322
E327
E32F
E339
E349
E360
E37A
E37B
E337
E32D
E395
E39R
E3RS
E3B6
E3CO

DIGTBL
KEYTBL
DISREG
DISCTR
ZCNREG
ECNCTR
ACIARS
ACIARD
Iav
BEGA
ENDAR
HIO

=P
TEMP1
DIZBUF
DIGING
DIGINS
MFLRG
RFLAG
NFLAG
TEMPZ2
“KEYBF
SCMCNT
YFLRAG
BPRIDR
~DEBUF
EPTRE

E3CR
E3DC
8020
8021
8022
8023
2008
2009
ROOD
ROO2
RO0O4
ROOK
ROD3
ROOR
/o0C
RO14
RO135
RO1K
RO17
RO13
RO19
RO1R
RO1C
AO1D
RO1E
AO20
RO22

APPENDIX 2
ASSEMBLY DRAWINGS AND PARTS LIST

MEK6800D2 Keyboard/Display Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 3 Integrated Circuit: Peripheral Driver MC75452P U7, U8, U9
2 6 Integrated Circuit: 7Segment LED Display Litronix DL704 Ul — U6
(Litronix or Monsanto) Monsanto MAN72 or 74
3 1 Integrated Circuit: Dual 4-Channel Data Selector MC14539BCP Ul10
4 1 Integrated Circuit: Dual Monostable Multivibrator MC14538BCP Ull
5 2 Integrated Circuit: Dual D Flip-Flop MC14013BCP U12, U18
6 1 Integrated Circuit: Quad 2-Input AND Gate MC14081BCP Ul13
7 1 Integrated Circuit: Quad Analog Switch MC14016BCP Ul14
8 1 Integrated Circuit: Quad Op-Amp MC3301P U16
9 1 Integrated Circuit: Dual Line Receiver MC75140P1 u17
10 1 Integrated Circuit: Seven Stage Ripple Counter MC14024BCP u19
11 1 Integrated Circuit: Analog Multiplexer/Demultiplexer MC14053BCP U200
12 7 Transistor, PNP MPS2907 Q1 — Q7
13 1 Capacitor: 100uF, 16 volts Cl1
14 14 Capacitor: 0.1uF C2, C5, C9, C10, Cl4,
C16-C23, C25
15 2 Capacitor: 0.05uF C6, C13
16 3 Capacitor: 0.001uF C3,C4,C24
17 3 Capacitor: 0.002uF C7, C8, C15
18 1 Capacitor: 2400 pF Dipped Duramica Cl1
19 7 Resistor: 4700 Q, 1/4 W, 5% R1, R4, R7, R10
R13, R16, R19
20 29 Resistor: 10 kQ, 1/4 W, 5% R2, R5, R8, R11, R14,
R17, R20, R22-34, R46,
R49, R53, RSS5, RS6,
R59, R60, R61, R57
21 7 Resistor: 68 €, 1/4 W, 5% R3, R6, R9, R12,
R15, R18, R21
22 2 Resistor: 27 k), 1/4 W, 5% R35, R40
23 8 Resistor: 100 k2, 1/4 W, 5% R37, R38, R39, R41,
R43, R47, R54, R58
24 2 Resistor: 100 £, 1/4 W, 5% R48, R51
25 2 Resistor: 1000 Q, 1/4 W, 5% R52, R62
26 2 Resistor: 180 kQ), 1/4 W, 5% R36, R42
27 3 Resistor: 22 k), 1/4 W, 5% R44, R45, R50
28 24 Switch (Stackpole) LO — PRO5 S1 —S24
29 16 Keytops, Double-Shot, Molded, White (Stackpole) 0,1,2,3,4,5,6,7,8,9,
Used with S1 — S24, A,B,C,D,E,F
Item 32
30 8 Keytops, Double-Shot, Molded, Blue (Stackpole) E,G,L,M,N,P,R, V
31 1 Connector Cable
32 1

Printed Wiring Board

A2

8°PLAGES

U6

Y YR Y
us
%0 o oo

U4

0o o oo

Uz

ce0 oo
ul

o
- o °0
Hﬁ Rez-oMcz@® o—{R51]—e
% o~—4 -
[L4CL o @ ° o—[R3—e o~ {Iz5—o
00000000 00000 [)
5 u20 ICM Uil C“ ui10 o733
ooyl I ooooooocnog—o . QE:oooooo Rzz_.
17 w
o EGH-eo [OcCi o ',:a:: oo Z
[XXYIXX Y 000000 o—{R33-©
PN - .
XXX YY) [XXIXX XN Y | 3
o [il—o “aon o S £
XXYYY Y] (XYXYXYY) <&y O
Ui e 2 U3] Jg6an > <) o a
eee scococe P@°* oo Ono M
eoeo) A4 gBCO)N
S N
XYY 00ocecoe Sy 2
g <
et u14 S °
oooo 9@ ococccooo ﬂf‘ ° f z o o) 33 w
o B s S S
WOl c2
s
Y 76 ' e000
e000000
| [\ n N W
N - XA %
o
::%—0 0000
ey o ~ ¥ - ©
(XX X
: 35t
Y XX
\ o o

16 PLACES

DO

FIGURE A2-a. Keyboard/Display Module Assembly

A2-1

MEK6800D2 Microcomputer Module Parts List

NUMBER
ITEM | REQUIRED DESCRIPTION CATALOG NUMBER DESIGNATION
1 1 Printed Wiring Board
2 None Integrated Circuit: 3-State Hex Driver MC8T97 U1, U2, U3
(Optional — Reference only)
3 None Integrated Circuit: 3-State Transmitter/Receiver MC8T26 U4, US
(Optional — Reference only)
4 None Integrated Circuit: 8-Input NAND Gate MC7430 u7
(Optional — Reference only)
5 1 Integrated Circuit: Microprocessing Unit (MPU) MC6800 U6
6 1 Integrated Circuit: MCM6830 ROM (JBUG) SCM44520P U8
7 1 Integrated Circuit: 3-State Hex Driver MC8T96 U9
8 None Integrated Circuit: Electrically Programmable ROM MCM68708 U10, U12
(Optional — Reference only) (Alternate)
9 None Integrated Circuit: Programmable ROM MCM7641 uU10, U12
(Optional — Reference only) (Alternate)
10 None Integrated Circuit: Mask Programmed ROM MCM68316E U10, U12
(Optional — Reference only) (Alternate)
11 1 Integrated Circuit: One-of-Eight Decoder MC74155P Ul1
12 3 Integrated Circuit: Random Access Memory MCM6810 U13, U14, U16
(RAM) (128x8) (U18, U19 Optional)
13 1 Integrated Circuit: 614.4 kHz Clock MC6871B U1s
14 1 Integrated Circuit: 12-Bit Binary Counter MC14040BCP u17
15 2 Integrated Circuit: Peripheral Interface Adapter (PIA) MC6820 U20, U21
16 1 Integrated Circuit: Quad 2-Input NAND Gate MC7400P U22
17 1 Integrated Circuit: Asynchronous Communications MC6850 U23
Interface Adapter (ACIA)
18 1 Integrated Circuit: Dual D Flip-Flop MC7479P U24
19 1 Integrated Circuit: Binary Counter MC8316P U2s
20 1 Capacitor: 100uF, 16 volt C1
21 22 Capacitor: 0.1uF C2 —C19,C22 —C25
(Note: Ref. Designations C20 and C21 are not used)
22 None Diode, Zener, 5-volt 1N4733 CR1
(Optional — Reference only)
23 1 Transistor, NPN MPS2222 Q1
24 18 Resistor: 10 kQ), 1/4 W, 5% R1, R6-R22
25 3 Resistor: 3300 Q, 1/4 W, 5% R2, R3, R4
26 None Resistor: 68 , 1.0 W, 5% RS
(Optional — Reference only)
27 None Capacitor: 160 uF, 16 volt C26, C27
(Optional — Reference only) R20 — R22
28 10 Socket, 24-Pin (Robinson-Nugent or Equiv) ICN—246—S4T
29 3 Socket, 40-Pin (Robinson-Nugent or Equiv) ICN—406—S4T
30 1 Switch, Pushbutton (Control) B8600 Reset
31 1 Cap, Pushbutton Switch (Control)
32 None Connector, 86-Pin (SAE) SAC 43D/1 —2 (For P1)
(Optional — Reference only)
33 None Connector, Edge, 50-Pin (SAE) CPH7000 — 50 ST (For J1)

(Optional — Reference only)

A2-2

H
/

(-] o L] o o
[-] o (-] (-] o (-] L] o [} (] o
o) o) °) ° ° o [o
) [° ° ° ° o o) o o ° o °) o
ﬂ \/ ° 00000000 °o° °°° ° ° ° ° ° ° o ° o ° ° ° ° ° ° ° o
: o oo ° (-] °0 ° ° ° o o ° ° ° ° ° ° ° ° ° ° o o
c24 ° [° o o° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
: o [-] (-] (-] [}] -]] (-] o ° ° o -] (-] o °] (-]
° : °°°°°°°0°°00°°°000® o ° o ° ° o ° ° ° o ° ° o ° ° ° °
o (-]] [-] -] (-] -] (-] o o -] -] ° L] o °
: val : ©00000000000000000 7, o o o o o ° o o o o o o o o o o o
° o 00000000000000000009 ° ° ° ° ° ° o ° ° ° ° ° ° ° ° ° °
-] (-] (-]] (-] ° o] (-] o o (-]] o -] o o
° o [-] ° o o o o ° o o o ° ° ° ° o ° ° o o
° © ° uao ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
° : (-] o]] -] (-] o o (] -] o o] (-] o (-] ° o
: o [-]] ° [} (-] -] o (-] o] o o ° [} [}] o (-]
° ° (-] 00000000000000000000O0 ° ° ° ° o o ° o o ° ° ° o o ° ° °
[-] °° L] o -] (-] o o] (] L] o o -] o] ° (-]
° : ° ° oo ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° 10 COMPONENTS WHICH ARE RATED IN WATTS SHALL BE MOUNTED
: o ° P oo ° ° ° ° 1/32 INCH MINIMUM OFF OF BOARD SURFACE AND ELEVATED
° ° ° ° e o AN ADDITIONAL 1/32 INCH FOR EACH WATT IN EXCESS OF ONE WATT
oo ° ° ° ° ° o—{iﬁm—o o—_—© 00000 UNLESS SUITABLE HEATSINK OR SUPPORT IS SUPPLIED.
[) o 0® 0§ ° ° o ° 9. ALL COMPONENTS SHALL BE MOUNTED 1/32 INCH MINIMUM
U
° 0 ° p ° o © ° () ° ° ° uis OFF OF PRINTED WIRING BOARD SURFACE.
° ° ° ° ° <© ° ° o & ° ° ° ° o 8 UNINSULATED COMPONENT LEADS WHICH PASS OVER OR ARE
ci7 o ° ° ° ° ° ° ol |° ° ° olu |0 IN CLOSE PROXIMITY TO EXPOSED CIRCUITRY OR ADJACENT
° 0% o|Ulle °(ud : : U : : 25 : : UZ : : \7 : ° o COMPONENT LEADS WHERE THERE #5 POSSIBILITY OF ELECTRICAL
° ° : : : . oleale ol le o 2 : ol e SHORTS, SHALL HAVE SLEEVING INSTALLED PRIOR TO
oo ° ° ° o o ° o & ° ° ° o o ° ° ° COMPONENT INSTALLATION.
° o ° ° 0,0 ° ° o @ ° ° ° o o ° ° ° 7 JUMPER WIRE TO BE NO.24 AWG, TINNED, SOLID, INSULATED
° ° ° ° ° ° o ° cz2 ° ° <3 (COLOR WHITE) ELECTRICAL HOOKUP WIRE.
° % cig ° ci® 6 ALL COMPONENTS TO BE SECURED TO CIRCUIT PATTERN
° ° . Qe USING TYPE MS - SN60 RESIN CORE SOLDER.
° o o
K 5 NUMBERS ON CIRCUIT PATTERN ARE POSITION LOCATORS
° ONLY AND DO NOT INDICATE PART IDENTIFICATION NUMBER
° o : o OR REFERENCE DESIGNATION.
° ° b 020 4 (@ INDICATES DOUBLE TURRET TERMINAL LUG LOCATION
5 o ° b 0c> © 3. —{_B— BAND INDICATES CATHODE END.
P ° vi2 oca o b 04 o 2 FLAG ON CIRCUIT PATTERN INDICATES CATHODE END
: : ° vlio : :gs LOCATOR FOR AXIAL LEAD SEMICONDUCTOR DEVICES.
° ° OES b I. FLAG ON CIRCWT PATTERN INDICATES PIN | LOCATION ONLY
o olVlle ° b ° AND DOES NOT INDICATE INDEX MARK OR TAB ON DEVICE.
° o ° ° P o °
° ° ° o b NOTES UNLESS OTHERWISE NOTED-
o -] ©
00690 0 0 @ocn 0.0 0
000
° £Bep ET EO BN £1 E%6ER® O
o0 o
° °
° 8 ° ce o © o o
o oO—po ©° ° ° °
c5] o ° 0O o °
-] o o [}
b o o
Ul b via o L] ° o ° v o ° o ° ° o
b o ° ° ° ° ° ° o o ° ° °
b o ° © © o 0 ° ° o o ° ° ° °
b o ° ° ° ° ° ° ° ° ° °
b o o|VSle o|V%e ol|Ulle o|U2|e oVl |o
b ° o o © ecT © o o ¢g ° ° ° oeCco o °
b o ° ° o ©°lolo 0®° ° ° ° ° °
b 5—° ° ° ° ° oo oo ° 8 ° ° o
° X

FIGURE A2-h. Microcomputer Module Assembly

A2-3

APPENDIX 3
SCHEMATIC DIAGRAMS

P1 MATES WITH J2 ON Q1-Q7: MPS2907 +sv
MICROCOMPUTER MODULE
P1
2
|
-
PAG P t + 25
l
| | T
|
, | T T
E ' —
oy L
1 | T
Ps | N N 23 ' - | 5V
o + —+
-
. |
| |
e | w ' 2 A B CcC D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G)R22'R23R24<'n25
L u1 ADDR. (MS) u2 ADDR. u3 ADDR. us ADDR. us DATA (MS) us DATA 31K Shox 30K S
L CcC cC M E R G
y
: L’_J] 1] | T P /)o/c/ />O/0’ };o/
PA3 L - 19 P L N \
: Pl /)O/o’ /)O/o/ /%/o/
| 7 8 9 A
, Y] /)50’ /)O/o/ /yéd
PA2 K 17 4 5 6 B
! /)éo/ /)O/o/ /)50’ %c/
oo
1 2 3 (o]
[
Yo Yol Yo Yo
[O 10 1o
[J + } 15 o F E D
l
| Y| Y| Y| Y]
' !
i
PAO | W } 13
R4S
, AAre T 10K
' ey az:“ I
. U20A M
YOR i R38 R39 Rés |
2|U7A o2 I 2 _ix co c
PBS | 12 24 L/ Mc75452 R27 |
. |
_‘..I’ﬂl 10K) 1 [A 14
UBA i X
Pes | M T+ 22 2{" " ucrsas2 R28 : =
| 6 . oK , 13 [xt
) ,|uss i
PB3 | 10 20 R29 i | MC14053
' ! _—21’_\& 10K * . —
' ' u7B
PB2 | o . 18 i aslsyad 730
o : %]
In2
pBl | 8 - 16 S R31 out
' | _'J_WS 10K
! USA Ref 3
PBO | 7 14 2 u17]
. e g W
l +5v c‘s
% 51 o slow I - .
“ xol-& — K
PB6 | 13 - 26 a V10 ‘ 1 o E
2 x1}2 - IR Strobe | = SRS3 (,_ RS1 A
PB7 14 T L 28 (] e 2 S0k B P 0on o
o A 1] o MC14539 3 NOTES = T 05
[R34 I ST, X3 o
| 10K = _Ls T —_— 1. UNLESS OTHERWISE SPECIFIED: L
| = RESISTANCE VALUES ARE IN OHMS,
PA7 R + 27 J - "—PI' u2o8 CAPACITANCE VALUES ARE IN MICROFARADS, =
RESISTORS ARE 1/4 WATT.
cB1 15 — - 30
RTS 18 " 36 B }15 2. ON PW LAYOUT, A 0.1 UF DECOUPLING
RXD w " 37 |q CAPACITOR FOR EACH 3 IC'S,
XD 1] 33 3. Q1 THRU Q7 ARE MPS2907.
RXC | 10 - 38 |
TXC 17 34 v . '4(_3}4»053 | 4. Ul THRU U6 ARE LITRONIX DL704 OR EQUIV.
r AN 1,2 +5V 2
8.2 3,4 +5V +5V +5V
+sv| | €3 T 5,6
0.4 7,8 . 3 ‘0000 90000000 Doocoo
] 9,10 . uz0¢
L| Fe - 1,12 + ¢ . caal 6 21
[x.20 - . 39,4 T 100 1 T 00009, ©000000009: 00000 8 | om & TOL. PER ANSI Y148 N
v.21 } 41,42 5“2"0"5 +5V R6O 9 s - Z 1 S MC14538 TYP FOR HC14538 HC14053 STD Integrated Circuits Division
D! 2,22 +- 43,44 __[A B MC75140 GND Gl ND| " | NOTES 2200 WEST BROADWAY, MESA, ARIZONA 85202
OGN0l | xaa 4548 10K —2315 o MC7ses2 = = = g TITE
B24 . 47,48 R [} KEYBOARD/DISPLAY MODULE SCHEMAT'C
g t 148 = MC14053 23 r ORIGINATOR TE
| T.2s . 49,50 _ 3 5V | BURLINGANME \1/08/76 MEKGB00D2 KIT
‘ : DRAWN DATE PROD GROUP D¥G.
[= Ao ool L oy L
- FRODUCTION THEREOF ARE RESEAVED BY MOTOROLA GUECKED € CODE 04713 l SCALE WEIGHT l‘"“" oF

A3-1

FIGURE A3-a. Keyboard/Display Module Schematic

€co ENOR e CHANGE L l DATE
l s 4 RELEASED
REF REQ| 12}—o
REF GNT| 13—0
+5V
VMA F 3 2 Ny 8 33]
U
AG |% Z 2 MPU 32 o\
v 500 Al A 3 “5v +5Y *5v 5V 5V
Al |V = 00 [D2 N r" [—[—'
A2 | T B o Y | L E) D3 N Ab 2412 Y] - P [At 2312 1% pp |as m 2 Do A 22 o
A3 |39 2, Ho BAAN 0] v [z X A 24 2 - ol Do 512 Do N e e
a |3 I uz %N v s o5 Al_23) 3 DI J 1 10 DI) KA 3 D) fA 2 3 by NA 2 3 DI
A 3% 13 ¢EE 114 A Aas N vio U3 B/ FEETR (0080) 2 o
as | 7 S A3 17 27 pe N | A 22 4« D » 6 I D2 Y KAz 2! 14 D2] KAz 2| pam |4 D2 1 KA 2![menio |4 D2
V- e 1 o4 26 07 RN L3 S 13 53 kA 2o A" s 3N kA 29005 23 k® 20| Lo |5 03)
F N_AS L) 5 o2 NS 21| (E000) N 29 N 29 S N= 2 vle |2 D3
e 'S 3ol \ A4 20 e D4 Y M 4 \4 pa N [& 19](*000) [> [(m a|™e80[G 1a A4 19 o D4
= 3 @l NAY_20] meaao| N2 1) NS N
Ty e Lo le % oRE As 13| g [1_ D5 Y . AojE 3] prom 15 D5 Y kA5 18]M@80 (7 o5 ks 18l ua [T D5 ke 18 7 05 Y
Ae |3 T e 3 47/ 25 i Lﬁ—\ A6 18 ® D& Lpo 2]€09) [ie e N hae 11 [e_oeY KAe 7 s oY has 7 8 Do)
NG 7 3 28 A\ A0 19 R (AT 11 DA @)ﬁ%@ e T OTY N [2 o) Nt [o1Y ko o w 2 o7
s |3 2 2 g\ 2 TN 8 l6] ., [B AW Q0 B o PR Y N8 e, [RN (e 2l 1o RWY R 2] o fie RIWY
iLh L 0/ Al e N M) ™ 7] [2 4 13 2 14 13 DBEY
A ; 13 D LTV N T— N W NS B e LX) @ : AID :—:—@ N Bl ey ,: R e Y- =
' N m — —
18V - R — AlS 28| 3 (&%) & 5 —e S5 — (, - N
__[!‘ 5 = T Ie ???? T T T Th
- 1y 3% = = = = = = = N
------ A2 |
NE ST] 1 L v
A3 [N o e A = oI +H-5Y RZ0 10K A \§
Ao | M | v 5
e R T e 3
iy 3 e it et A L) A3 T 1 T e > & g
16 ! L 2l
+5V =g NOTES g] 10K [St A ‘5v L
C] | ! UM gl PROM), SV A g
= R .2 = 56 5V o i a4 I3 ' 3 " © 45 A R 20 7 20 2 "
% |3 b—2 Ua ;Z,——A I } 8 ‘ 8 73 N——=TrolD1 2xFc L] S0 .
o |29 = ::'——5 > ro uPROM i 7 Yoo et RAM 4 memck 3| U a3 o! M X 0 paef3 X
%R —2 - D2 _EJ", UT 208 A " e 7 ! 02 S ow N——"{1rLd2 NwMOS A R0 Mo L
131 L = 3 RIW_ C 7 \1 _ | PAaiS ™M
3 |§p— E) ‘ ' 10 PROMY, e 2 2) 62 M 2eq pas N
Sk LR = L A el : el i) Yrorsz es = -l]]
! 3 E— 1 1= B0 | ! STy [STACK S o6 33 prefs 4
*5V @ : 8, & PROMG/ VMA o k) . 4] 2 1/0 b 32 2
& L ! | STRER A o ' S n (02301 5y (a3 3
' [l 2 IZ | '
J—.l—.“- ------ 3 = = [S _L_B b3 29 (4504) PBO :? 1
SEE NOTE € SEE § T D4 29 o s
NOTE @ = = w5y DS 28 ra2! °
T D4 ; e o pB3 |3 10
a
54 | f—2 Us (4] AS L 2 o4 o Paat! I
55 |30 e, g os Rw _21]c, PBS 12
05 | o iz ey A 7 ue o DI . PBG(E 3
% | L 5 o | bBe g —] E— TR oa{IRGE PBT 14
o7 | T s ;:la o1 a2 ¢ " D2 A
l
6 2l |
+SV -——51: I;Z R22, 10K |AT A3 s 13 D3
[E AN NO.
H Ll
Ll RS, 10K |AB] A © « q - D4,
= SEE NOTE S
ACD 20 g; /1 Rz ox 8¢l A @21 3| PROM g DS
0EO0E | 475 | 2 / M (6000 Je
ol o2 RAM R, so; A3l A e SEE © b6 MATES WITH P{
BA A) NOTE 3 ON KEYBOARD
BA | » = R10, 10k |A4 e
RESET | 5 £oe ° AT | 17 D7, ONIT
= w1 y R9, 10k |AS y,
RS v
He Latd R®, 10K |A2) 23 = 20 W/
';‘2 Y N R Iyl sl m @i
MEM Lk | L AT y R7, 10K |A1 5V & 2 ro T——@
—ALT | & TR AN 12 10 O R——O
IRQ | D e RG. 10k [AS o 7
NI | E Toc v AP " ve3 . R21,10K =
s | N W A ‘; =
+5vDC [A,IfF—— [Ri Rz |R”3 |Re B3 o q
ot “‘__:I 10k 33300 333002333000 ‘—L——ww ug% 1 . TEET 34 o IE) e
+SVDC |C 3 1 J_ +5V N___DBE W™ Acia <D\ =' MCL820 S 5
= tlcr lce---Lcas SEE N o) 22l (B008 Rie g3
— Tioowr Tuur TJuF NOTE 2 N D 2] WG830|g 1ok Es
GND Nél 1 N 3 20| RTS 2 1 +5V : gq
GND X4 CRI = D3 | RXD - = 18
oPTioNAL| LC2e P =
GND |743 6 L 10OUF , 16¥ N\ bs 3 ™ors § g
-svbe |25 = -5V \ Do o] ™ S 5
©8a OPTIONAL + cetr 1 15| RxC I w
W 100 UF, 16V - ! W
-vDe Ml -1V 4800 HZ L J v
+12vDC 16 Hav | e
212V GNO |H,8 l T
212V GND 1K9] [A SCHEMATIC — BASIC
— = roemmmmemser = | MICROCOMPUTER
{——* —_— —————— FLYIG WNTH BOTOROLA'S SEQUESTS FOR GUSTATION 08 WY WWLE
_1 ITORNLA FURSRASE GROSIS M TMALL B ATVURRED T WSS
S | mrsmeme e e s e | EVALUATION KIT TT
3. OPTIONAL PROMS 4 ,MC8T97 OPTIONAL | 7 - \ | FSTIISS SMIBISE SIS SPOmAES
osLeew R THE VN W
2.CAPACITOR FOR EVERY 3 PACKS Mces708 MCMTeAl MCM6E8317 5 ,MC8T26 OPTIONAL ‘ | = s s e s 1% -
El TO &2 E3 TO E9 EO TO &4 6, MC7M30P OPTIONAL MOTOROLA INC.
1.UNLESS OTNERWISE SPECIFIED: E3 10 E8 E4 TO E7 El TO E2 ' TYP. FOR ‘ - , « Diviaion
RESISTANCE VALUES ARE W ONMS. CAPACITANCE €4 70 E6 E5 TO E7 ES TO E9 MCT4T9 | Dy L T
“:::un ARE I MICROFARADS. RESISTORS ARE Lwatr.oi0n ESTO E9 L VM Teod i
! — — — —— — — — —

A3-3

FIGURE A3-b. Microcomputer Module

APPENDIX 4
POWER SUPPLY INFORMATION

RECTIFIER ASSEMBLY FOR REGULATED POWER SUPPLY

1.0 2/5W
. + 10 Vdc
O— I TH0 ¢ —VWv —O 25a-3.0a
Ohmite 2822
or Equiv.
[| T auiv * 3000uF
117 vac 12.6V ~ 25WVdc
rms — jy B Sprague TVA1214
or Equiv.
O- O
Stancor P-8358 MDA 970-1
Triad F-26X -
or Equiv.

Note: Ground filter capacitor return lead near negative terminal of rectifier to minimize ground loops.

REGULATOR
MJ2955
VIN 0.122 o Equiv
Input S5W
+10V &J Q1
y J'sc(m)
2N6049
or Equiv Ic1 v
2 IscTtoT -
MC78056CK (-O—e-@ - o

Output + 5V
2.5 A

|
1.0uF I is Sc(ic1)

R: used to divert IC regulator bias current and determines at what output current level Q1 begins

; Y
conducting. 0 < R < BEON(O1) . Rgc ~ IO.GV JlscToT = lsc(antlscict)
IBlAS(IC1) sc(Qi) :

Note: The Regulator Assemobly is capable of supplying 5 A with 2.5°C/W and 1°C/W heatsink on IC1 and Q1
respectively (Tp = 70 C).

Refer to the Motorola VOLTAGE REGULATOR HANDBOOK for additional information.

A4-1

NOTES

NOTES

NOTES

. 4
TR T Yy rvrrsv ety

- -

=1

N

L T R)

L N I

sPess e sene

i A T

PRVIS

	0001
	0002
	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	A1-01
	A1-02
	A1-03
	A1-04
	A1-05
	A1-06
	A1-07
	A1-08
	A1-09
	A1-10
	A1-11
	A1-12
	A1-13
	A1-14
	A1-15
	A1-16
	A1-17
	A2-00
	A2-01
	A2-02
	A2-03
	A3-01
	A3-03
	A4-01
	Notes-01
	Notes-02
	Notes-03
	xBack

