

M68PRM{D)
Nov., 1976

M6800
PROGRAMMING

REFERENCE MANUAL

The information in this document has been carefully checked
and is believed to be entirely reliable. However, no responsibility
is assumed for inaccuracies. Furthermore, such information does
not convey to the purchaser of the product described any license
under the patent rights of Motorola, Inco or others.

Motorola reserves the right to change specifications without
notice.

EXORciser, EXORdisk, and EXORtape are trademarks of Motorola Inc.

First Edition
Motorola, Inc. 1976

"All Rights Reserved"

ii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1-1

CHAPTER 2: HARDWARE DESCRiPTION 2-1

2.0
2.1
2.1.1
2.1.1.1
2.1.1.2
2.1.1.3
2.1.1.4
2.1.2
2.1.2.1

Introduction 2-1
The Basic Microcomputer Components 2-1

A Minimum System 2-1
MPU - Microprocessor Unit 2-2
ROM - 1024 x 8-Bit Read Only Memory 2-4
RAM - 128 x 8-Bit Static Random Access 2-4
PIA - Peripheral Interface Adapter 2-4
Expanding the Basic System 2-6
ACIA - Asynchronous Communications Interface Adapter 2-6

CHAPTER 3: PROGRAMMING THE M6800 MiCROPROCESSOR 3-1

3.0 Machine Code 3-1
3.1 Stack and Stack Pointer 3-1
3.2 Saving MPU Status 3-3
3.3 Interrupt Pointers 3-4
3.3.1 Reset (or Power On) 3-4
3.3.2 Non-Maskable Interrupt - NMI 3-5
3.3.3 Software Interrupt - SWI 3-5
3.3.4 Interrupt Request 3-5
3.3.5 Wait Instruction - WAI 3-6
3.3.6 Manipulation of the Interrupt Mask Bit 3-6
3.3.7 Special Programming Requirements 3-7
3.3.8 Look-Ahead Feature 3-7
3.3.9 Return from Interrupt - RTI 3-7
3.4 Subroutine Linkage 3-8
3.4.1 Call Subroutine - BSR or JSR 3-8
3.4.2 Return from Subroutine - RTS 3-8
3.5 Data Storage in the Stack ~ 3-9
3.6 Reentrant Code 3-9
3.7 Manipulation of the Stack Pointer 3-9

CHAPTER 4: M6800 MICROPROCESSOR ADDRESSING MODES 4-1

4.0 Addressing Modes 4-1
4.1 Dual Addressing 4-1
4.2 Accumulator Addressing (Single Operand) 4-1
4.3 Inherent Addressing 4-1
4.4 Immediate Addressing 4-2
4.5 Relative Addressing 4-4
4.6 Indexed Addressing 4-4
4.7 Direct and Extended Addressing 4-6

iii

TABLE OF CONTENTS (Continued)

APPENDIX A: DEFINITION OF THE EXECUTABLE INSTRUCTIONS A-1
APPENDIX B: EXbug AND MAID COMMANDS B-1
APPENDIX C: MIKbug COMMANDS C-1
APPENDIX 0: MINIbug II COMMANDS D-1
APPENDIX E: MINlbug III COMMANDS E-1
APPENDIX F: ASCII CODE CONVERSION TABLE F-1
APPENDIX G: HEXADECIMAL AND DECIMAL CONVERSiON G-1

iv

CHAPTER 1
INTRODUCTION

1.0 INTRODUCTION

Motorola Microsystem's software and development tools for the M68DO have been de­
signed to simplify the implementation of systems using the M68DO Microcomputer Family. The M68DO
Programming Reference Manual is the basic software reference document to be used as a supple­
ment to reference manuals for specific software products. It includes descriptions of:

• M6800 Program-visible Registers
• Interrupts and Stack Operations
• M6800 Addressing Modes
• M6800 Instruction Set
• Commands for

- EXbug
- MIKbug
- MINlbug II
- MINlbug III

The manual also includes descriptions of basic M6800 Microcomputer Family components:

-MPU
-ROM
-RAM
-PIA
-ACIA

Available User's Guides and software reference manuals include:

• M68DD EXORciser User's Guide
• EDOS II Operator's Manual
• Co-Resident Assembler Reference Manual
• Co-Resident Editor Reference Manual
• Linking Loader Reference Manual
• Macro Assembler Reference Manual
• Resident FORTRAN Reference Manual
• M68SAM Cross Assembler Reference Manual
• M68EML Simulator Reference Manual
• M68MPL Compiler Reference Manual

1-1

1-2

CHAPTER 2
HARDWARE DESCRIPTION

2.0 INTRODUCTION

The MC6800 MPU is the nucleus of a series of fully bus-compatible, silicon gate NMOS
building blocks which are interconnected into the desired microcomputer system configuration.

Development tools are also available which emulate system function and performance so
that hardware may be evaluated and system software and firmware generated and debugged. The
most powerful is the M6800 EXORciser. By configuring its modules in his system's likeness, the user
possesses a surrogate prototype with which to edit, assemble and modify his programs in real time on
the actual hardware.

2.1 THE BASIC MICROCOMPUTER COMPONENTS

A minimum system can be assembled with four LSI (Large Scale Integration) bus oriented
parts:

MPU - Microprocessor
RAM - 128 X 8 Random Access Memory

ROM - 1024 X 8 Read Only Memory
PIA - Peripherallnterface Module

2.1.1 A Minimum System

These parts can be interconnected without interface parts making a minimum functional
system (Figure 2-1). Such a system can easily be adapted for a number of small scale applications by
simply changing the application program content of the ROM.

~
To

Peripheral
"B"

~
To

Peripheral
"A"PAe·PA7

E RES

CAl

CA2

RSG!I·RSI

CS4>
CSl

CS2
RIW

PBG!I·PB7RIW

!lAM
AG!I·A6

09·07

A13

A2

A0-AI

A14

A0·A6

A0·A9

L-..---~E

'-----E
'-------elE

Data Bus 00· 07

VMAe02

+5.0 v _
H

FIGURE 2-1. Minimum System Configuration

2-1

The minimum system may be exp"anded without the addition of TIL integrated circuits
providing the load does not exceed the capacity ofthe MPU. The MPU has capacity to drive a 'oad of
one standard TIL input and 130 picofarads at one megahertz.

2.1.1.1 MPU - Microprocessing Unit

Some of the more important features of the MC6800 Microprocessing Unit that contribute
to the "ease of use" in a system are:

• Eight-bit parallel processing
• Bi-directional data bus
• Sixteen-bit address bus - 65k bytes of addressing
.72 instructions - variable length
• Seven addressing modes - Direct, Relative, Immediate, Indexed, Extended, Implied,

and Accumulator
• Interrupt vectoring
• Two Accumulators
• Index Register
• Program Counter
• Stack Pointer and variable length stack
• Condition Code Register (6 codes)
• Separate Non-Maskable Interrupt
• Direct Memory Access (DMA) and multiple processor capability
• Clock operating rates up to 1 MHz
• Simple interface without TIL
• Halt/ Go. and single instruction execution capability
.40 pin package
A programming model of the microprocessing unit is represented in Figure 2-2. This

comprises all of the registers in the MPU which are controlled explicitly by programs. The inputs and
outputs of the MPU form five functional groups (see Figure 2-3):

1. 8-bit data bus
2. 16-bit address bus
3. Controls
4. Clock input signals
5. Power supply and ground
This manual, being concerned with the programming of the MPU, primarily considers the

information being transferred on the data bus and the address bus connected to the MPU.
In this manual, the control signals are considered only as they affect execution of a

program. The control signals are as follows:

• Reset
• Halt
• Non-Maskable Interrupt
• Interrupt Request
• Read/ Write
• Data Bus Enable
• Valid Memory Address
• Three-state Control
• Bus Available
Reset, Halt, Non-Maskable Interrupt, and Interrupt Request are considered in Chapter 3.

Read/ Write, Data Bus Enable, and Valid Memory Address are considered only as they relate to the

2-2

=-- JAceumu'.'o. A

o

7

I ACCA

7

I ACCB

IX

PC

SPI IStack Pointer

Condition Codes
.............---L..r"""""r........,.......,.......,... Register

Carry-Borrow

Overflow (Two's Complement)

Zero

~-- Negative

"----- Interrupt Mask

1------ Half Carry (From Bit 3)

FIGURE 2-2. Programming Model of the M6800 Microprocessor

a·Bit Data Bus)

16-Bit Address Bus)

Controls) M6800 Microprocessor--------...."
Clock Input Signals)

Power Supply and GrOund)

FIGURE 2-3. M6800 Microprocessor - Inputs and Outputs

addressing of the memory and interlace units. Three-State Control, Bus Available, and the Halt control
lines function in Direct Memory Access (DMA) and mUltiple processor operations.

The execution time of any instruction in a program is directly proportional to the clock
period and is, therefore, expressed as a number of clock cycles. Apart from the times of execution of
instructions, the clock inputs are not otherwise considered in this manual.

The information contained in this programming manual applies to programs written for
execution by the microprocessing unit, and is not restricted to any particular set of parts with which the
MPU may be interconnected in any system. Motorola offers a family of parts that are compatible with
the MPU and which may be easily assembled into a computing system giving the user the most cost
effective solution to his problem.

2-3

2.1.1.2 ROM - 1024 X B-Bit Read Only Memory

The MCM6830 is a mask-programmable byte-organized memory designed for use in
bus-organized systems. It is fabricated with N-channel silicon-gate technology. The ROM operates
from a single power supply, is compatible with TTL and DTL, and needs no clocks or refreshing

because of static operation.
The memory is compatible with the M6800 Microcomputer Family, providing read only

storage in byte increments. Memory expansion is provided through multiple chip select inputs. The
active level of the chip select inputs and the memory content are defined by the customer. Some of the

important features of the ROM are:
• Organized as 1024 bytes (1 byte = 8 bits)
• Static operation
• Three-state data output
• Four chip select inputs (mask option)
• Single 5 volt power supply
• TTL/ DTL compatible
• Maximum access time = 575 ns

2.1.1.3 RAM - 12B X B-Bit Static. Random Access Memory

The MCM6810 is a byte-organized memory designed for use in bus-organized systems. It
is fabricated with N-channel silicon-gate technology. The RAM operates from a single power supply,
has compatibility with TTL and DTL, and needs no clocks or refreshing because of static operation.

The memory is compatible with the M6800 Microcomputer Family, providing random
storage in byte increments. Memory expansion is provided through multiple chip select inputs. Some
of the important features of the RAM are:

• Organized as 128 bytes (1 byte = 8 bits)
• Static operation
• Bi-directional, three-state, data input/ output
• Six chip select inputs (four active low, two active high)
• Single 5-volt power supply
• TTL/ DTL compatible
• Maximum access time = 1.0 us for MCM6810L

575 ns for MCM6810L-1

2.1.1.4 PIA - Peripheral Interface Adapter

The MC6820 Peripheral Interface Adapter provides an effective means of interfacing
peripheral equipment to the MC6800 Microprocessing Unit (MPU). This device is capable of interfac­
ing the MPU to peripherals through two, 8-bit, bi-directional, peripheral data buses and four control
lines. No external logic is required for interfacing to most peripheral devices.

The functional configuration ofthe PIA is programmed by the MPU during system initializa­
tion. Each of the peripheral data lines can be programmed to act as an input or output, and each of the
four controll interrupt lines may be programmed for one of several control modes, as shown in Figure
2-4. This allows a high degree of flexibility in the over-all operation of the interface. Some of the
important features of the PIA are:

• An 8-bit bi-directional data bus for communication with the MPU
• Two bi-directional 8-bit buses for interface to peripherals
• Two programmable control registers

2-4

Determine Active CA1 (CB1) Transition for Setting
Interrupt Flag IROA(B)1 -(bit b7)

bl :::: 0: I ROA(B)l set by high-to-Iow transition on
CAl (CB1).

bl :::: 1 : I ROA(B) 1 set by low-to-high transition on
CAl (CB1).

I

IROA(B) 1 Interrupt Flag (bit b7)

Goes high on active transition of CAl (CB1); Automatically
cleared by MPU Read of Output Register A(B). May also be
cleared by hardware Reset.

CA1 (Cal) Interrupt Request Enable/Disable

bO:::: 0: Disables IROA(B) MPU Interrupt by CAl (CB1)
active transition. 1

bO:::: 1 : Enable I ROA(B) MPU Interrupt by CAl (CB1)
active transition.

1. I ROA(B) will occur on next (MPU generated) positive
transition of bO if CA 1 (CB1) active transition occurred
while interrupt was disabled.

I

b7

IROA(B)l
Flag

I

b6

IROA(B)2
Flag

I

b5 b4 I b3

CA2(CB2)
Control

b2

DDR
Access

I

bl 1 b4>

CA1(CB1)
Control

IRQA(B)2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 :::: 0): Goes high on active
transition of CA2 (CB2); Automatically cleared by MPU Read
of Output Register A(B). May also be cleared by hardware
Reset.

CA2 (CB2) Established as Output (b5 :::: 1): I ROA(B)2 '" O.
not affected by CA2 (CB2) transitions.

r

Determines Whether Data Direction Register Or Output
Register IS Addressed

b2 '" 0 : Data Direction Register selected.

b2:::: 1 : Output Register selected.

I
CA2 (CB2) Established as Input by b5:::: 0

'-----..-- Determines Active CA2 (CB2) Transition
for Setting Interrupt Flag I ROA(B)2 ­
(bit b6)

CA2 (Ca2) Established as Output by b5 =1

b5 b4 E~ (Note that operation of CA2 and CB2
output functions are not identical)

1 0
~CA2

b3 '" 0 : Read Strobe With CA 1 Restore

CA2 goes low on first high-to­
low E transition following an
MPU Read of Output Register
A; returned high by next
active CA 1 transition.

b3 '" 1: Read Strobe with E Restore

CA2 goes Iowan first high-to­
low E transition following an
MPU Read of Output Register
A; returned high by next
high-to-Iow E transition.

~CB2

b3 '" 0: Write Strobe With CBl Restore

CB2 goes on low on first low­
to high E transition following
an MPU Write into Output
Register B; returned high by
the next active CBl transition.

b3 '" 1: Write Strobe With E Restore

CB2 goes low on first low-to­
high E transition following an

b3 MPU Write into Output

l
Register B; returned high by the
next low-to-high E transition.

Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes
b3'" 0 Into Control Register.

CA2 (CB2) goes high as MPU writes
b3 '" 1 into Control Register.

2-5

b5

o

b4
-,-

b3

L. CA2 (CB2) Interrupt Request Enablel
Disable

b3:::: 0: Disables IRQA(B) MPU
Interrupt by CA2 (CB2)
active transitlon. l

b3'" 1: Enables I ROA(B) MPU
Interrupt by CA2 (CB2)
active transition.

1. I ROA(B) will occur on next (MPU
generated) positive transition of b3
if CA2 (CB2) active transition
occurred while interrupt was
disabled.

b4 :::: 0: I ROA(B)2 set by high-to-Iow
transition on CA2 (CB2).

b4'" 1: I ROA(B)2 set by low-to-high
transition on CA2 (CB2).

FIGURE 2-4. PIA Control Register Format

Controls

B·Bit Data Bus

Controls

MPU = Microprocessing Unit
ROM = Read-Only Memory
RAM = Random Access Memory
PIA =Peripheral Interface Adapter
ACIA = Asynchronous Communications Interface Adapter
(MODEM = Modulator/Demodulator)

Peripheral Devices

FIGURE 2·5. Expanded M6800 Microcomputer

• Two programmable data direction registers
• Four individually controlled interrupt input lines; Two usable as peripheral control out-

puts
• Handshake control logic for input and output peripheral operation
• High-impedance three-state and direct transistor drive peripheral lines
• Program controlled interrupt and interrupt disable capability
• CMOS compatible peripheral lines

2.1.2 Expanding the Basic System

The minimum system can be expanded with other family parts to meet the needs of more
complex systems (see Figure 2-5). Motorola also is continually developing new parts to add to the
family.

2.1.2.1 ACIA - Asynchronous Communications Interface Adapter

The MC6850 Asynchronous Communications Interface Adapter provides the data format­
ting and control to interface serial asynchronous data communications information to bus organized
systems such as the MC6BOO Microprocessing Unit.

The bus interface of the MC6850 includes select, enable, read/ write, interrupt and bus
interface logic to allow data transfer over an 8-bit bi-directional data bus. The parallel data of the bus
system is serially transmitted and received by the asynchronous data interface, with proper formatting
and error checking. The functional configuration of the ACIA is programmed via the data bus during
system initialization. A programmable control register provides variable word lengths, clock division
ratios, transmit control, receive control, and interrupt control (see Figures 2-6 and 2-7). For peripheral
or modem operation, three control lines are provided. These lines allow the ACIA to interface directly
with the MC6860L 0-600 bps Digital Modem. Some of the features of the ACIA are:

• Eight and nine-bit transmission

2-6

• Optional even and odd parity
• Parity, overrun and framing error checking
• Programmable control register
• Optional -:- 1, -:- 16, and -:- 64 clock modes
• Up to 500 Kbps transmission
• False start bit detection
• Peripheral! modem control functions
• Double buffered
• One or two stop bit operation

Data Carrier Detect

b2 = 0: Indicates carrier is present.
b2 = 1: Indicates the loss of carrier.

1. The low-to-high transition of the DCD in­
put causes b2=1 and generates an interrupt
Ib7=1l. II RQ=OI

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=O and b7=0.

Interrupt Request

The interrupt request bit is the complement of
the I RQ output. Any interrupt that is set and
enabled will be available in the status register
in addition to the normal I RQ output.

Receiver Data Register Full

bO = 0: Indicates that the Receiver Data
Register is emptY.

bO = 1: Indicates that data has been trans­
ferred to the Receiver Data Register
and status bits states are set IPE.
OVRN. FE).

1. The Read Data Command on the high-to­
low E transition or a master reset causes
bO = O.

2. A "high" on the DCD input causes bO=O
and the receiver to be reset.

I

I
1

b7 I
IRQ

I
b6

b5 I b4 I b3 I b2

PE OVRN FE CTS DCD

I T

J

r

Framing Error

b4 = 1: Indicates the absence of the first stop
bit resulting from character synchro·
nization error. faultY transmission. or

L.....- a Break condition.

1. The internal Rx data transfer signal causes
b4=1 due to the above conditions and causes
b4=O on the next R x data transfer signal if
conditions have been rectified.

Overrun Error

b5 = 1: Indicates that a character or a num­
ber of characters were received but
not read from the Rx data register
prior to subsequent characters being

'--- received.

1. The Read Data Command on the high-to­
low E transition causes b5= 1 and bO= 1 if an
overrun condition exists. The next Read
Data Command on the high-to-Iow E transi­
tion causes b5=0 and bO=O.

Parity Error

b6 = 1: Indicates that a parity error exists.
'-- The paritY error bit is inhibited if no

pari ty is selec ted.

1. The parity error status is updated during
the internal receiver data transfer signal.

FIGURE 2-6. ACIA Status Register Format

2-7

I
Transmitter Data Register Empty

b1 = 1: I ndicates that the transmitter data
Register is empty.

b1 = 0: Indicates that the transmitter data
Register is full.

1. The internal T x transfer si gnal forces b 1= 1.

2. The Write Data Command on the high-to­
low E transition causes b1=0.

3. A "high" on the CTS input causes b1=0.

Clear to Send

The CTS bit reflects the CTS input status for
use by the MPU for interfacing to a modem.

NOTE: The CTS input does not reset the
transmitter.

Enable for Receiver Inte"upt

b7:::: 1: Enables Interrupt Output in
Aecelving Mode

b7:::: 0: Disables Interrupt Output in
Aecelving Mode

Counter ratio and Master reset select used
in both transmitters and receiver sections

b1 bO Function (Tx, Ax)

0 0 +1

0 1 +16

1 0 +64

1 1 MASTE A AESET

~
b7 b6 b5 b4 b3 b2 b1 bO

AlE TC2 TC1 WS3 WS2 WS1 CDS2 CDS1

I
I

Word Length, Parity, and Stop Bit Select

Transmitter Control Bits: Controls the Interrupt Output" and RTS b4 b3 b2 Word Length + Parity + Stop Bits
Output, and provides for Transmission of a Break 0 0 0 7 Even 2

b6 b5 Function 0 0 1 7 Odd 2

0 0 Sets ATS :::: 0 and Inhibits Tx interrupt (TIE) 0 1 0 7 Even 1

0 1 Sets RTS::: 0 and enables Tx interrupt (TIE) 0 1 1 7 Odd 1

1 0 Sets RTS ::: 1 and Inhibits Tx interrupt (TI E) 1 0 0 8 None 2

1 1 Sets RTS ::: O. Transmits Break and inhibits Tx 1 0 1 8 None 1
interrupt (TI E) 1 1 0 8 Even 1

·TI E is the enable for the interrupt output in transmit mode. 1 1 1 8 Odd 1

FIGURE 2-7. ACIA Control Register Format

2-8

CHAPTER 3
PROGRAMMING THE M6800 MICROPROCESSOR

3.0 MACHINE CODE

Each of the 72 executable instructions of the source language assembles into 1 to 3 bytes
of machine code. The number of bytes depends on the particular instruction and on the addressing
mode. (The addressing modes which are available for use with the various executive instructions are
discussed in Chapter 4).

The coding of the first (or only) byte corresponding to an executable instruction is sufficient
to identify the instruction and the addressing mode. The hexadecimal equivalents of the binary codes,
which result from the translation of the 72 instructions in all valid modes of addressing, are shown in
Figure 3-1. There are 197 valid machine codes, 59 of the 256 possible codes being unassigned.

When an instruction translates into two or three bytes of code, the second byte, or the
second and third bytes contain(s) an operand, an address, or information from which an address is
obtained during execution. This is explained along with a description of the different addressing
modes in Chapter 4 of this manual.

3.1 STACK AND STACK POINTER

The stack consists of any number of locations in RAM memory. The stack provides for
temporary storage and retrieval of successive bytes of information, which may include any of the
following items:

• current status of the MPU
• return address

• data
The stack can be used for the following purposes:
• interrupt control
• subroutine linkage
• temporary storage of data (under control of the program)
• reentrant code
The microprocessing unit includes a 16-bit stack pointer. This contains an address which

enables the MPU to find the current location of the stack.
When a byte of information is stored in the stack, it is stored at the address which is

contained in the stack pointer. The stack pointer is decremented (by one) immediately following the
storage in the stack of each byte of information. Conversely, the stack pointer is incremented (by one)
immediately before retrieving each byte of information from the stack, and the byte is then obtained
from the address contained in the stack pointer. The programmer must ensure that the stack pointer is
initialized to the required address before the first execution of an instruction which manipulates the
stack.

Normally, the stack will consist of a single block of successive memory locations. However,
some instructions in the source language change the address contained in the stack pointer without
storing or retrieving information into or from the stack. The use of these instructions may result in the
stack being other than one continuous sequence of memory locations. In such a case, it may
alternatively be considered that there exist two or more stacks, each of which consists of a block of
successive locations in the memory.

3-1

00 * 40 NEG A 80 SUB A IMM CO SUB B IMM
01 NOP 41 * 81 CMP A IMM C1 CMP B 'MM
02 * 42 * 82 SBC A IMM C2 SBC B IMM
03 * 43 COM A 83 * C3 *
04 * 44 LSR A 84 AND A IMM C4 AND B IMM
05 * 45 * 85 BIT A IMM C5 BIT B IMM
06 TAP 46 ROR A 86 LOA A IMM C6 LOA B IMM
07 TPA 47 ASR A 87 * C7 *
08 INX 48 ASL A 88 EOR A IMM C8 EOR B IMM
09 OEX 49 ROL A 89 AOC A IMM C9 AOC B IMM
OA CLV 4A DEC A 8A ORA A IMM CA ORA B rMM
OB SEV 4B * 8B ADD A IMM CB ADD B IMM
OC CLC 4C INC A 8C CPX A IMM CC *
00 SEC 40 TST A 80 BSR REL CD *
OE CLI 4E * 8E LOS IMM CE LOX rMM
OF SEI 4F CLR A 8F · CF ·
10 SBA 50 NEG B 90 SUB A OIR DO SUB B orR
11 CBA 51 · 91 CMP A OIR 01 CMP B OIR
12 · 52 · 92 SBC A OIR 02 SBC B orR
13 · 53 COM B 93 · 03 ·14 * 54 LSR B 94 AND A OIR 04 AND B OIR
15 · 55 * 95 BIT A OIR 05 BIT B OIR
16 TAB 56 ROR B 96 LOA A OIR 06 LOA B OIR
17 TBA 57 ASR B 97 STA A OIR 07 STA B OIR
18 · 58 ASL B 98 EOR A orR 08 EOR B orR
19 ·OAA 59 ROL B 99 AOC A OIR 09 AOC B OIR
1A · SA DEC B 9A ORA A OIR OA ORA B OIR
1B ABA 5B · 9B ADD A orR DB ADD B orR
1C * 5C INC B 9C CPX OIR DC ·10 · 50 TST B 90 * DO ·1E · 5E · 9E LOS OIR DE LOX OIR,
1F * SF CLR B 9F STS OIR OF STX orR
20 BRA REL 60 NEG INO AO SUB A INO EO SUB B INO
21 * 61 * A1 CMP A rNO E1 CMP B rNO
22 BHI REL 62 · A2 SBC A INO E2 SBC B INO
23 BLS REL 63 COM INO A3 · E3 ·24 BCC REL 64 LSR INO A4 AND A INO E4 AND B INO
25 BCS REL 65 · AS BIT A INO E5 BIT B INO
26 BNE REL 66 ROR INO A6 LOA A INO E6 LOA B INO
27 BEQ REL 67 ASR INO A7 STA A INO E7 STA B INO
28 BVC REL 68 ASL INO A8 EOR A INO E8 EOR B rNO
29 BVS REL 69 ROL INO A9 AOC A INO E9 AOC B INO
2A BPL REL 6A DEC INO AA ORA A INO EA ORA B INO
2B BMI REL 6B · AB ADD A INO EB ADD B INO
2C BGE REL 6C INC INO AC CPX INO EC *
20 BLT REL 60 TST INO AD JSR INO ED *
2E BGT REL 6E JMP INO AE LOS INO EE LOX INO
2F BLE REL 6F CLR INO AF STS INO EF STX INO
30 TSX 70 NEG EXT BO SUB A EXT FO SUB B EXT
31 INS 71 * B1 CMP A EXT F1 CMP B EXT
32 PUL A 72 * B2 SBC A EXT F2 SBC B EXT
33 PUL B 73 COM EXT B3 * F3 *
34 DES 74 LSR EXT B4 AND A EXT F4 AND B EXT
35 TXS 75 * B5 BIT A EXT F5 BIT B EXT
36 PSH A 76 ROR EXT B6 LOA A EXT F6 LOA B EXT
37 PSH B n ASR EXT B7 STA A EXT F7 STA B EXT
38 * 78 ASL EXT B8 EOR A EXT F8 AOC B EXT
39 RTS 79 ROL EXT B9 AOC A EXT F9 AOC B EXT
3A * 7A DEC EXT BA ORA A EXT FA ORA B EXT
3B RTI 7B · BB ADD A EXT FB ADD B EXT
3C * 7C INC EXT BC CPX EXT FC *
3D · 70 TST EXT BO JSR EXT FO ·3E WAI 7E JMP EXT BE LOS EXT FE LOX EXT
3F SWI 7F CLR EXT BF STS EXT FF STX EXT

Notes: 1. Addressing Modes: A :;:: Accumulator A
B :;:: Accumulator B
REL :;:: Relative
INO :;:: Indexed

2. Unassigned. code indicated by"·".

IMM :;:: Immediate
OIR :;:: Direct

TABLE 3·1. Hexadecimal Values of Machine Codes

3-2

3.2 SAVING MPU STATUS

The status of the microprocessing unit is saved in the stack during the following opera-
tions:

SP

~

-
CC

ACCB

ACCA

IXH

IXl

PCH

PC'l

m + 1

m + 2

m

m - 1

m - 9

m - 8

m - 7

m - 6

m- 5

m-4

m - 3

m - 2

SP

l

~

.. -

~

u

V-
ell

iii

m + 1

m

m + 2

m - 2

m -1

• in response to an external condition indicated by a negative edge on the Non-Maskable
Interrupt control input signal to the MPU.

• during execution of the machine code corresponding to either of the source language
instructions SWI (Software Interrupt) or WAI (Wait for Interrupt).

• during servicing of an interrupt from a peripheral device, in response to a negative edge
on the Interrupt Request control input signal to the MPU and provided the interrupt mask
bit (I) is clear.

The status is stored in the stack in accordance with the scheme shown in Figure 3-2.
Before storing the status, the stack pointer contains the address of a memory location represented in
Figure 3-2 by "m." The stack, if any, extends from location "m + 1" to higher locations. The status is
stored in seven bytes of memory, beginning with the byte at location "m," and ending with the byte at
location lim - 6." The stack pointer is decremented after each byte of information is entered into the
stack.

The information which is saved in the stack consists of the numerical content of all of the
registers of the programming model, shown in Figure 2-2, except the stack pointer.

The value stored for the program counter (PCH and PCl) is in accordance with the
following rules:

1. In response toa Non-Maskable Interrupt or to an interrupt from a peripheral device, the
value saved for the program counter is the address of that instruction which would next
be executed, if the interrupt had not occurred.

2. During execution of a SWI or WAI instruction, the value saved for the program counter is
the address of that SWI or WAI instruction, pius one.

I I
I

Before After

SP = Stack Pointer

CC = Condition Codes (Also called the Processor Status Byte)
ACC B = Accumu lator B

ACCA = Accumulator A

I X H = I ndex Register, Higher Order 8 Bits

I Xl = Index Register, lower Order 8 Bits
PC H = Program Counter, Higher Order 8 Bits
PCl = Program Counter, Lower Order 8 Bits

FIGURE 3-2. Saving the Status of the Microprocessor in the Stack

3-3

The values stored for the other registers (CC, ACCS, ACCA, IXH and IXL) are in accor­
dance with the following rules:

1. In response to a Non-Maskable Interrupt, or an interrupt from a peripheral device, the
values saved are those which resulted from the last instruction executed before the
interrupt was serviced.

2. During execution of a SWI or WAI instruction, the values saved are those which resulted
from the last instruction executed before the SWI or WAI instruction.

3. The condition codes H, I, N, Z, V, and C, in bit positions 5 thru 0 of the processor
condition code register, are stored respectively in bit positions 5 thru 0 of the applicable
memory location in the stack. Bit positions 7 and 6 of that memory location are set (go to
the 1 state).

3.3 INTERRUPT POINTERS

A block of memory is reserved for pointers, which provide for read-only storage of the
addresses of programs which are to be executed in the event of a reset (or power on), a low state of the
Non-Maskable Interrupt control input, a software interrupt, or a response to an interrupt signal from a
peripheral device. The respective pointers each occupy two bytes of memory and are disposed at
locations from "n - 7" to "n," as indicated in Figure 3-3.

The location indicated in Figure 3-3 by "n" is that location which is addressed when all the
lines of the address bus are in the high ("1 ") state. In most systems, the location "n" will be the highest
address in the memory. However, the correspondence of "n" to a particular numerical value depends
on the hardwired interconnections of the parts of the programmable system to the address bus.

3.3.1 Reset (or Power On)

The Reset control input to the MPU is used to start the execution of the program, either for
initial start-up or from a power down condition following a power failure. When a positive edge is
detected on this input line, the program counter is loaded with the address stored in the restart pointer
at locations "n - 1" and "n" of memory (see Figure 3-3). The MPU then proceeds with execution of a
Restart Program, which begins with the instruction addressed by the program counter. The restart and
the continued execution, however, depends on the Gol Halt control input being in the "Go" condition.

When the Gol Halt control input is in the high state, the machine will fetch the instruction
addressed by the program counter and start execution. When this line changes to a low, execution will

Internal Interrupt Pointer-- {

J----t

Software Interrupt Pointer -- {

J----t

Non-Maskable Interrupt Pointer - {

J----t

Reset Pointer {

~--

n-7

n-6

n-5

n-4

n-3

n-2

n-1

n

n = Memory Location Addressed When All Lines of

The Address Bus are in the High (1) State.

FIGURE 3·3. Reset and Interrupt Pointers

3-4

stop. The stop may become effective at the completion of execution of the current instruction.
Alternatively, one more instruction may be executed before the stop becomes effective, due to the
look-ahead capability described in Section 3.3.8. Execution of the program will not be resumed until
the "Go" condition is restored.

TheGo/ Halt input must remain in the "Go" condition for the interrupt sequences to be
completed. Otherwise, the machine will stop execution at the end of an instruction. The following
sections of this manual, which describe the interrupt operations, assume that the "Go" state is
maintained.

3.3.2 NMI - Non-Maskable Interrupt

The sequence of operations, which occurs following a non-maskable interrupt, is initiated
by a neg~tive edge on the Non-Maskable Interrupt control input to the MPU. Execution of the current
instruction is completed. The response of the MPU to the Non-Maskable Interrupt signal may begin on
the completion of execution of the current instruction. Alternatively, one or more instructions in the
program may first be executed, due to the look-ahead capability of the MPU described in Section
3.3.8.

The status of the MPU is then saved in the stack, as described in Section 3.2 and the
program counter is loaded with the address stored in the Non-Maskable Interrupt pointer at locations
"n - 3" and "n - 2" of memory (see Figure 3-3). The MPU then starts execution of the Non-Maskable
Interrupt Program, which begins with the instruction which is now addressed by the program counter..

3.3.3 SWI - Software Interrupt

During execution of the SWI instruction, the status of the MPU is saved in the stack, as
described in Section 3.2. The value saved for the program counter is the address of the SWI
instruction, plus one.

After the status has been saved, the interrupt mask bit "I" is set (I = 1). The MPU will not
respond to an interrupt request from a peripheral device while the interrupt mask bit is set.

The program counter is then loaded with the address stored in the software interrupt
pointer at locations "n - 5" and "n - 4" of memory (see Figure 3-3). The MPU then proceeds with
execution of a Software Interrupt Program, which begins with the instruction whose address is now in
the program counter.

The MPU will remain insensitive to an interrupt request from any peripheral device
(signalled by a "low" state of the Interrupt Request control input signal to the MPU) until the interrupt
mask bit has been reset by execution of the programmed instructions.

3.3.4 IRQ - Interrupt Request

A request for an interrupt by a peripheral device is signalled by a low state of the Interrupt
Request control input to the MPU (IRQ).

The MPU will not respond to an Interrupt Request while the interrupt mask bit is set (I = 1).
Normal execution of the program continues until the interrupt mask bit is reset (I = O)enabling the MPU
to respond to the Interrupt Request.

Execution of the current instruction will always be completed before the MPU responds to
an Interrupt Request. The response of the MPU to the Interrupt Request may begin on the completion
of the current instruction. Alternatively, one more instruction in the program may first be executed, due

3-5

to the look-ahead capability of the MPU described in Section 3.3.8. The Response of the MPU to the
Interrupt Request then proceeds as follows:

1. Saving the Status
Provided the last instruction executed was not a WAI instruction, the status of the MPU
;s saved in the stack, as described in Section 3.2. The value saved for the program
counter is the address of the instruction which would be the next to be executed if the
interrupt had not occurred. If the last instruction executed was a WAI instruction, the
address of the next instruction is not saved since PC and MPU status were already
saved by the WAI instruction in preparation for an interrupt.

2. Interrupt Mask
The interrupt mask bit is then set (I = 1). This prevents the MPU from responding to
further interrupt requests until the interrupt mask bit has been cleared by execution of
programmed instructions.

3. Internal Interrupt Pointer and Program
The program counter is loaded with the address stored in the internal interrupt pointer at
locations lin - 7" and lin - 6" of memory (see Figure 3-3). The MPU then proceeds with
execution of an internal interrupt program, which begins with the instruction currently
being addressed by the program counter. The internal interrupt pointer is selected by
logic which is internal to the MPU. At the point when execution of the internal interrupt
program begins, no distinction will have been made regarding the source ofthe interrupt
request. In a system in which there is more than one possible source of interrupt
request, the internal interrupt program must include a routine for identifying the origin of
the request. In a system composed of the Motorola Microcomputer Kit, this routine
would consist of a programmed interrogation of the addressable registers of the PIAs
and ACIAs, in order to identify the peripheral device which has requested the interrupt.

3.3.5 WAI - Wait Instruction

During execution of the WAI instruction, the status of the MPU is saved in the stack, as
described in Section 3.2. The value saved for the program counter is the address of the WAI
instruction, plus one.

Execution of the WAI instruction does not change the interrupt mask bit.
If the interrupt mask bit is set (I = 1), the MPU cannot respond to an interrupt request from

any peripheral device. Execution stops after MPU status is saved and can be resumed only via a
Non-Maskable Interrupt or a reset interrupt.

If the interrupt mask bit is in the reset state (I = 0), the MPU will service any interrupt
request which may be present. If the Interrupt Request input is in the high state, execution will be
suspended, and the MPU will wait for an Interrupt Request to be signalled. If an Interrupt Request is
signalled by the Interrupt Request input changing to the low state, the interrupt will be serviced as
previously described: the interrupt mask bit will be set, the program counter will be loaded with the
address stored in the internal interrupt pointer, and execution of the internal interrupt program will
begin.

3.3.6 Manipulation of the Interrupt Mask Bit

The interrupt mask bit is affected by execution of the source language instructions SWI
and RTI, and by the servicing of an interrupt request from a peripheral device, as has been previously

3-6

described. The interrupt mask may also be manipulated by the use of any of the following instructions:
• CLI - clear interrupt mask bit
• SEI - set interrupt mask bit
• TAP - transfer accumulator A to processor condition codes register

The state of the interrupt mask bit can also be affected as a result of the following instruction:
• TPA - transfer the processor condition codes register to accumulator A.
During execution of the TPA instruction, the condition codes H, I, N, Z, V, and C, in bit

positions 5 thru 0 of the processor condition codes register are stored respectively in bit positions 5
thru 0 of accumulator A. Bit positions 7 and 6 of accumulator A are set (Le. go to the 1 state). After
execution of the TAP instruction, the state of each of the condition codes (H, I, N, Z, V, C) will be
whatever is retrieved from the respective bit positions (5 thru 0) of accumulator A.

3.3.7 Special Programming Requirements

A comprehensive program should make provision for the following special requirements:
(a) Pointers:

The program should place the addresses of the reset .and interrupt routine in the
respective pointers (see Figure 3-3) at the high-address end of memory. The addres­
ses would usually be placed in the pointers by use of the FOB assembler directive in the
source program.

(b) Reset and Interrupt Sequences:
The sequences of instructions to be addressed by the Reset pointer, the Non­
Maskable Interrupt pointer, the Software Interrupt pointer, and the Internal Interrupt
pointer, should be provided in the program.

(c) Input and Output:
The program would normally include provisions for inputs and outputs relating to
peripheral devices. In a programmable system composed of the parts of the Motorola
Microcomputer Family, the input and output routines would involve reading and writing
coded data from and into the addressable registers of the PIAs and ACIAs. The input
and output routines would normally be reached via conditional branch instructions in
the Internal Interrupt Program.

3.3.8 Look-Ahead Feature

The MPU responds, at the completion of the instruction being executed, to any of the
following signals:

• Halt
• Non-Maskable Interrupt
• Interrupt Request (when the interrupt mask is in the reset state).
However, if the interrupt occurs during the last cycle of an instruction, the look-ahead to the

next instruction feature will mask the interrupt until the completion of the next instruction.

3.3.9 RTI - Return from Interrupt

The source language instruction RTI assembles into one byte of the machine code.
Execution of this instruction consists of the restoration of the MPU to a state pulled from the stack.

The information which is obtained from the stack provides for the numerical content of the
registers of the programming model shown in Figure 2-2. The operation is the reverse of that
represented in Figure 3-2. Seven bytes of information are pulled from the stack and stored in

3-7

respective registers of the MPU. The address stored in the stack pointer is incremented before each
byte of information is pulled from the stack.

After execution of the RTI instruction, the state of each of the condition codes (H, I, N, Z, V,
and C) will be whatever is retrieved from the respective bit positions (5 thru 0) of the applicable
memory location in the stack. In particular, it should be noted that the interrupt mask bit (I-bit) may be
either set or reset by execution of the RTI instruction.

3.4 SUBROUTINE LINKAGE

The stack provides an orderly method of calling a subroutine and returning from the
sUbroutine. Use of a stack allows subroutine calls when in a subroutine (subroutine nesting).

3.4.1 Call Subroutine (BSR o"r JSR)

A return address is saved in the stack during execution ofthe machine code corresponding
to either of the source language instructions BSR (branch to subroutine) or JSR uump to subroutine).

The return address is stored in the stack in accordance with the scheme shown in Figure
3-4. Before storing the return address, the stack pointer contains the address of a memory location
represented in Figure 3-4 by "m." The stack, if any, extends from memory location "m + 1" to higher
locations. The return address is stored in two bytes of memory, at locations "m - 1" and "m." The
stack pointer is decremented after each byte of the return address is pushed into the stack.

For either of the instructions (BSR or JSR), the return address saved in the stack is that of
the next byte of memory following the bytes of code which correspond to the BSR or JSR instruction.
Thus, for the BSR instruction, the return address is equal to the address of the BSR instruction, plus
two. For the JSR instruction, the return address is equal to the address of the JSR instruction, plus
three or plus two; according to whether the instruction is used with the extended or the indexed mode
of addressing.

3.4.2 RTS - Return From Subroutine

During execution of the RTS instruction, the return address is obtained from the stack and
loaded into the program counter. The address stored in the stack pointer is incremented before each
byte of the return address is pulled from the stack. This operation is the reverse of that represented in
Figure 3-4.

m-3 m-3

m-2 m-2 SP

m-l m-l RAH

m SP m RAL

m+l --!f m+l

m+2 m+2
~

u
m+3 m+3 III

en

I
Before II After

SP =Stack Pointer

RAH"" Return Address, Higher Order 8-Bits

RAL = Return Address, Lower Order 8-Bits

FIGURE 3-4. Saving a Return Address in the Stack

3-8

3.5 DATA STORAGE IN THE STACK

The source language instruction PSH is used for storing asingle byte of data in the stack.
This instruction addresses either register A or register B. The contents of the specified register is
stored in the stack, in accordance with the scheme represented in Figure 3-5. The address contained
in the stack pointer is decremented.

Conversely, the source language instruction PUL retrieves data from the stack. This
instruction addresses either register A or register B. The address contained in the stack pointer is
incremented. A single byte of data is then obtained from the stack and loaded into the specified
register. The operation is the reverse of that represented in Figure 3-5.

3.6 REENTRANT CODE

Reentrant code is an attribute of a program that allows the program .to be interrupted
during execution, entered by another user, and subsequently, reentered at the point of interruption by
the first user, thus producing the desired results for all users: a program with an intermediate state of
execution that is totally restorable when it is reentered after an interruption.

The instruction TSX allows data on the stack to be manipulated by the indexed mode of
addressing.

3.7 MANIPULATION OF THE STACK POINTER

The address saved in the stack pointer is affected by execution of the source language
instructions (SWI, WAI, RTI, BSR, JSR, RTS, PSH, and PUL) and also by the servicing of a
Non-Maskable Interrupt or an Interrupt Request from a peripheral device, as previously described. In
these operations, the stack pointer is coordinated with the storing and retrieval of information in the
stack.

The address in the stack pointer may also be manipulated without storing or retrieving
information in the stack. This is carried out by the following source language instructions:

• DES - decrement stack pointer
• INS - increment stack pointer
• LDS -load the stack pointer
• TXS - transfer index register to stack pointer

I

Before I

SP

r
After

-
ACCX

:JI.
U
t1l

rii

m-2

m-1

~--SP m

t----f - - ~J m+1
_ ~2

t1l

riil
I

m

m+1

m+2

m-2

m-1

SP =Stack Pointer

ACCX = Accumulator A or B

FIGURE 3·5. Data Storage in the Stack

3-9

The use of any of these four instructions can result in the stack being other than a block of
successive locations in memory.

The content of the stack pointer is also involved in execution of the following instructions:
• STS - store the stack pointer
• TSX - transfer stack pointer to index register
The instruction TSX loads the index register with a value equal to the contents of the stack

pointer, plus 1. The instruction TXS loads the stack pointer with a value equal to the contents of the
index register, minus 1. This is in accordance with the operation of the stack pointer during execution
of the instructions SWI,'WAI, BSR, JSR, or PSH, or during servicing of an interrupt from a peripheral
device; in which case the stack pointer is set to one less than the address of the last byte stored in the
stack.

3-10

CHAPTER 4
M6800 MICROPROCESSOR ADDRESSING MODES

4.0 ADDRESSING MODES

The assembler scans the operator and operand to determine the proper addressing mode.
The addressing modes are:

• Dual Addressing
• Accumulator Addressing
• Inherent Addressing
• Immediate Addressing
• Relative Addressing
• Indexed Addressing
• Direct and Extended Addressing

4.1 DUAL ADDRESSING

Eleven of the executable instructions require addressing of two operands in the operand
field. These instructions are indicated in Figure 4-1 by the column headed Dual Operand. For all of
these operators the first operand must be either accumulator A or accumulator B. This is specified
respectively by A or B as the first character in the operand field, the second character in the operand
field being a SPACE.

For dual addressing the specification of the first operand (either A or B) is separated from
that of the second operand by one or more SPACE characters.

The second operand is specified in the operand field in accordance with the rules for
immediate, direct, extended, or indexed addressing (as subsequently defined); depending on which
modes of addressing are valid for the individual operators. (For nmemonic operators which employ
dual addressing, it is permissible to omit the SPACE between the operator and the first operand field
- LDAA LABEL).

4.2 ACCUMULATOR ADDRESSING (SINGLE OPERAND)

Thirteen of the operators address a single operand from the operand field and, thus, can
address either accumulator A or accumulator B in the microprocessing unit. These operators are
indicated by the column headed ACCX in Figure 4-1. This mode of addressing is specified by writing
an operand field consisting only of the single character A or B (corresponding to accumulator A or
accumulator B). For this type of addressing, it is then permissible to omit the SPACE between the
operator and the operand field.

For this type of addressing, the assembly of a source instruction results in one byte of
instruction in the machine language. For operators PUL and PSH, the accumulator mode is the only
valid mode of addressing. The remaining eleven operators capable of this mode of addressing can
alternatively be used with extended or indexed addressing.

4.3 INHERENT ADDRESSING

In many cases, the mnemonic operator itself specifies one or more registers which contain
operands or in which results are saved. For example, the operator ABA requires two operands which

4-1

are located in accumulator A and accumulator B of the microprocessor. The operator also determines
that the result of execution will be saved in accumulator A.

For some executable instructions, all of the information which may be required for the
addressing is contained in the mnemonic operator, and no operand field is used in the source
statement. There are 25 sU~h instructions. These are indicated by the column headed Inherent in
Figure 4-1.

Assembly of this type ofsource instruction results in only one byte of machine language
code. Some other operators which contain addressing information inherently in the mnemonic code
also require further addressing or operand information which is then placed in an operand field.
Examples are the operators CPX, LDS, LDX, STS and STX.

4.4 IMMEDIATE ADDRESSING

The operators with which the immediate mode of addressing is permissible are indicated
by the column headed Immediate in Figure 4-1. This mode of addressing is selected by beginning the
specification of the corresponding operand (in the operand field of a source statement) with the pound
character "#".

ABA
ADC
ADD
AND
ASL
ASA
BCC
BCS
BEA
BGE
BGT
BHI
BIT
BLE
BLS
BLT
BMI
BNE
BPL
BAA
BSA
BVC
BVS
CBA
CLC
CLI
CLA
CLV
CMP
COM
CPX
OM
DEC
DES
OEX
EOA

x
x
x

x

x

x

x
(J
(J
«
•
•
•
•
2
2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2

•
•
2

•
•
2

•
•
•

!
.!!
~
GI

E
E

•
2
2
2

•
•
•
•
•
•
•
•
2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2

•
3
•
•
•
•
2

•
3
3
3

•
•
•
•
•
•
•
•
3

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3

•
4

•
•
•
•
3

~
GI
~c
!
x
w

•
4
4
4
6
6

•
•
•
•
e

•
4

•
•
•
•
•
•
•
•
•
•
•
•
•
6

•
4
6
5
•
6

•
•
4

•
5
5
5
7
7

•
•
•
•
•
•
5

•
•
•
•
•
•
•
•
•
•
•
•
•
7

•
5
7
6

•
7

•
•
5

...
c
f
CD
J:
C

2

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
2
2

•
2

•
•
•
2

•
4
4

•

CD
>
.~

ca
CD
a:

•
•
•
•
•
•
4
4
4
4
4
4

•
4
4
4
4
4
4
4
8
4
4

•
•
•
•
•
•
•
•
•
•
•
•
•

INC
INS
INX
JMP
JSA
LOA
LOS
LOX
LSA
NEG
NOP
ORA
PSH
PUL
AOL
AOA
ATI
ATS
SBA
SBC
SEC
SEI
SEV
STA
STS
STX
SUB
SWI
TAB
TAP
TBA
TPA
TST
TSX
TXS
WAI

x

x

x

x

x

~
ca

X ~
(J E
(J E« -
2 •
• •
• •
• •
• •
• 2
• 3
• 32 •
2 •
• •
• 24 •
4 •
2 •
2 •

• •
• •
• •
• 2• •
• •
• •
• •
• •
• •
• 2• •
• •
• •
• •
• •
2 •
• •
• •
• •

...
u
.~
C

•
•
•
•
•
3
4
4

•
•
•
3

•
•
•
•
•
•
•
3

•
•
•
4
5
5
3

•
•
•
•
•
•
•
•
•

1
~
c
~
x
w
6

•
•
3
9
4
5
5
6
6

•
4

•
•
6
6
•
•
•
4

•
•
•
5
6
6
4

•
•
•
•
•
6

•
•
•

7

•
•
4
8
5
6
6
7
7

•
5

•
•
7
7

•
•
•
5

•
•
•
6
7
7
5

•
•
•
•
•
7

•
•
•

•
4
4

•
•
•
•
•
•
•
2

•
••
•
•
10
5
2

•
2
2
2

•
•
•
•
12
2
2
2
2

•
4
4
9

NOTE: Interrupt time is 12 cycles from the end of
the instruction being executed, except following
a WAI instruction. Then it is 4 cycles.

FIGURE 4-1. Instruction Addressing Modes and Execution Times (Times in Machine Cycles)

4-2

With the immediate mode of addressing, the operand field of the source statement either
contains the actual value of the operand, or it includes a symbol or an expression which has an
algebraic value equal to the value of the operand. The operand may be specified in accordance with
any of the following formats:

Number
Symbol
Expression
#'C
In the first three of these alternate forms, the assembler will find or compute a numerical

value ofthe operand. For any executive instruction in the immediate mode of addressing (except CPX,
LOS, or LOX), the numeric values must be an integer from 0 to 255 (decimal). For the operators CPX,
LOS, or LOX, any value from 0 to 65535 (decimal) is valid.

In the last of the alternate forms (#'C), the apostrophe instructs the assembler to translate
the next character into the corresponding 7-bit ASCII code. The ASCII code so obtained is then the
value of the operand. The single character "C" can be any character of the ASCII character set with a
hexadecimal value from 20 (SP) thru 5F ().

For the immediate mode of addressing, the assembler inserts the actual value of the
operand into the machine code. Except for the three operators (CPX, LOS, and LOX), an instruction in
the immediate mode is assembled into two bytes of machine code and the value of the operand is
entered in the second byte. When it is a number, the operand is entered in the memory in unsigned
a-bit binary code. When it is an ASCII character, the corresponding 7-bit ASCII code applies, using bits
0-6 with bit 7 set to zero.

For the three operators (CPX, LOS, or LOX) used in the immediate mode, the source
statement is assembled into three bytes of machine code. The numerical operand (which can have
any value from 0 thru FFFF) will be entered in the second and third bytes. The second byte will contain
the most significant part of the operand and the third byte will contain the least significant part of the
operand. Both parts are entered into the respective bytes of the memory in unsigned a-bit binary code.

The operators (CPX, LOS, or LOX) in the immediate mode are not normally used with an
operand in the format #'C. However, in such a case, the assembler would place the ASCII coded
character "C" in the third byte of the machine code corresponding to the source instruction.

When the immediate mode of addressing is used, the numerical address is in effect that of
the second byte of machine code which results from assembly of the source instruction. Data flow for
the immediate addressing mode is shown in Figure 4-2.

ACCA

25

MPU

PROGRAM
MEMORY

PC I------Ie

GENERAL FLOW

MPU

PROGRAM
MEMORY

PC =5002
I----K'"

EXAMPLE

FIGURE 4·2. Immediate Addressing Mode Data Flow

4-3

4.5 RELATIVE ADDRESSING

For the relative addressing mode to be valid, there is a rule which limits the distance in the
machine language program from the branch instruction to the destination of the branch. The rule
which applies to the relative addressing mode is that the address of the destination of the branch must
be within the range specified by:

(PC + 2) - 128 ~ D ~ (PC + 2) + 127
where

PC = address of the first byte of the branch instruction.
D = address of the destination of the branch instruction.
When it is desired to transfer control beyond the range of the branch instructions, this can

be done by using JMP (unconditional jump) or JSA uump to subroutine). These instructions do not use
the relative mode of addressing.

The assembler translates a branch instruction into two bytes of the machine code. The
second byte contains a relative address. This is stored as a number in 8-bit, two's complement, binary
form, with a decimal value in the range of -128 to +127. These numbers correspond to the limits ofthe
range of a branch instruction, as described above.

The relationship between the relative address and the absolute address of the destination
of a branch instruction is expressed by:

D = (PC + 2) + A
where:

PC = address of the first byte of the branch instruction
D = address of the destination of the branch instruction
A = the 8-bit, two's complement, binary number, stored in the second byte of the branch

instruction.
The relative addressing mode is available only to the conditional branch instructions, the

unconditional branch instruction (BAA), and the branch to subroutine (BSA). None of these source
instructions can use any other of the several modes of addressing. The three-character mnemonic
instruction, therefore, is sufficient to determine when the relative mode of addressing will be used for
the assembler. An example of the data flow for the relative addressing mode is shown in Figure 4-3.

4.6 INDEXED ADDRESSING

The Indexed column of Figure 4-1 indicates the instructions for which indexed addressing
is valid.

With this mode of addressing, the numerical address is variable; depending on the
contents of the index register. The current address is obtained whenever it is required during the
execution of a program, rather than being predetermined by the assembler as it is for the other
addressing modes. The operand field of the source statement contains a numerical value which, when
added to the contents of the index register during execution of the program, will provide the numerical
address. Alternatively, the operand field may contain a symbol or an expression which the assembler
is able to replace by the value which is to be added to the contents of the index register. An example of
the indexed addressing mode is shown in Figure 4-4.

In indexed addressing, the data for obtaining the numerical address may be written in any
of the formats:

X
,X
Number,X
Symbol,X
Expression,X

4-4

MPU

GENERAL FLOW

MPU

PROGRAM
MEMORY

PC = 5008
t----4

PC=5025~

EXAMPLE

FIGURE 4-3. Relative Addressing Mode Data Flow

MPU

ADDR = INDX t-----tL~

+ OFFSET;"";,,;,,.,..............

PROGRAM
MEMORY

PC--.....c

OFFSET ~ 255

GENERAL FLOW

MPU

Accann
Tm5EX
rnu

ADDR = 405
...............--4

PROGRAM
MEMORY

PC = 5006
......---<'"

EXAMPLE

FIGURE 4-4. Indexed Addressing Modo

The single character X informs the assembler that the indexed mode is to be used (the character X
being reserved to denote the index register).

The format X, when used alone, instructs the assembler that the address of the operand is
identical with the contents of the index register. This format has the same effect on the assembly as if
O,X had been written.

If a symbol or an expression is used rather than a number, the assembler will find or
compute a numerical value of that symbol or expression. The source program must then include other
statements which define a numerical value for the symbol or which enable the assembler to compute a
numerical value for the symbol or expression. Only values from zero to FF (hexadecimal) are valid.

4-5

This value is added to the contents of the index register during execution to obtain the numerical
address as shown in the following formula:

o = numerical value + X
where

X = contents of index register
o = numerical address
For indexed addressing, the source instruction is translated into two bytes of the machine

code. The second byte contains the number, in unsigned a-bit binary form, which is added to the
contents of the index register during execution of the instruction. The number thus obtained is the
numerical address (in accordance with the previous formula).

4.7 DIRECT AND EXTENDED ADDRESSING

In direct addressing, the source instruction is translated into two bytes of machine code.
The second byte will contain the address in unsigned a-bit binary form.

In extended addressing, the source instruction is translated into three bytes of machine
language. The second of these bytes will contain the highest a bits of the address. The third byte will
contain the lowest a bits of the address. The contents of the second and third bytes will both be coded
in unsigned a-bit binary form.

For both direct and extended addressing, the address, which is placed by the assembler
into the second or third bytes of the machine code, is the absolute numerical address.

As may be seen in Figure 4-1, there are several instructions for which the extended mode
of addressing is valid and not the direct mode. For these instructions, when using any of the number,
symbol, or expression formats, the assembler will select the extended mode of addressing, regardless
of the value of the numerical address. The source statement will be translated into three bytes of the
machine code.

For those instructions which may use the direct mode of addressing as well as the
extended mode, the assembler selects the mode according to the following rule: The assembler will
select direct addressing if the numerical address is in the range from 0 to 255 (decimal) and will select
extended addressing if the numerical address exceeds 255 (decimal). Examples of the direct and
extended addressing modes are shown in Figures 4-5 and 4-6.

MPU

ADDR
""'---0001

PROGRAM
MEMORY

PC
I----'IC.

ADDR = 05.255

GENERAL FLOW

MPU

ADDR = 100 t--""';";'--f

PROGRAM
MEMORY

PC =5004
I----r'"

EXAMPLE

FIGURE 4-5. Direct Addressing Mode Data Flow

4-6

MPU

PROGRAM
MEMORY

MPU

ADDR = 300
4

.......

PROGRAM
MEMORY

PC---...

ADDR :;, 256

GENERAL FLOW

PC = 5006

EXAMPLE

FIGURE 4-6. Extended Addressing Mode Data Flow

4-7

4-8

APPENDIX A
Definition of the Executable Instructions

A.1 Nomenclature

The following nomenclature is used in the subsequent definitions.

(a) Operators
() = contents of
~ = is transferred to

t lIis pulled from stack"

! = lIis pushed into stack"
= Boolean AND

0 = Boolean (Inclusive) OR
(±) = Exclusive OR
= = Boolean NOT

(b) Registers in the MPU
ACCA = Accumulator A
ACCB = Accumulator B
ACCX = Accumulator ACCA or ACCB

CC Condition codes register

IX = Index register, 16 bits
IXH Index register, higher order 8 bits
IXl = Index register, lower order 8 bits

PC = Program counter, 16 bits
PCH = Program counter, higher order 8 bits
PCl = Program counter, lower order 8 bits

SP = Stack pointer
SPH = Stack pointer high
SPl Stack pointer low

(c) Memory and Addressing
M A memory location (one byte)
M +1 = The byte of memory at 0001 plus the address of the memory location indi-

cated by 11M."
Rei Relative address (Le. the two's complement number stored in the second byte

of machine code corresponding to a branch instruction).
(d) Bits 0 thru 5 of the Condition Codes Register

C = Carry - borrow bit-O
V = Two's complement overflow indicator bit-1
Z = Zero indicator bit-2
N = Negative indicator bit-3
I = Interrupt mask bit-4
H = Half carry bit-5

(e) Status of Individual Bits BEFORE Execution of an Instruction
An = Bit n of ACCA (n=7,6,5, ... ,0)
Bn = Bit n of ACCB (n=7,6,5, ... ,0)
IXHn = Bit n of IXH (n=7,6,5, ... ,0)

A-1

I
I

IXLn = Bit n of IXL (n=7,6,5,m,O)
Mn = Bit n of M (n=7,6,5, ... ,O)
SPHn = Bit n of SPH (n=7,6,5,... ,0)
SPLn = Bit n of SPL (n=7,6,5, ... ,O)
Xn = Bit n of ACCX (n=7,6,5,m,O)

(f) Status of Individual Bits of the RESULT of Execution of an Instruction
(i) For a-bit Results

Rn = Bit n of the result (n =7,6,5, ... ,0)

This applies to instructions which provide a result contained in a single byte of
memory or in an a-bit register.

(ii) For 16-bit Results
RHn = Bit n of the more significant byte of the result

(n =7,6,5, ... ,0)
RLn = Bit n of the less significant byte of the result

(n =7,6,5, ... ,0)

This applies to instructions which provide a result contained in two consecu­
tive bytes of memory or in a 16-bit register.

A.2 Executable Instructions (definition of)

Detailed definitions of the 72 executable instructions of the source language are provided on the
following pages.

A-2

Add Accumulator B to Accumulator A ABA

Condition Codes:

Operation:

Description:

ACCA ~ (ACCA) + (ACCB)

Adds the contents of ACCB to the contents of ACCA and places the result in
ACCA_

H: Set if there was a carry from bit 3; cleared otherwise_
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

Boolean Formulae for Condition Codes:
H = AJ·B3+B3- Fb+R3'A3
N = R7
Z = R7' Rs .Rs .R4 .R3 .R2 .R1 .Ro
V = A7'B7'R7+A7-SrR7
C = A7'B7+BrR7+R7'A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octall decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

Inherent 2 1 1B 033 027

A-3

ADC Add with Carry

Operation:

Description:

ACCX ~ (ACCX) + (M) + (C)

Adds the contents of the C bit to the sum of the contents of ACCX and M, and
places the result in ACCX.

Condition Codes: H Set if there was a carry from bit 3; cleared otherwise.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

800lean Formulae for Condition Codes:
H = X3·M3+M3·j:b+R3·X3
N = R7
Z = R7·Rs·Rs·R4·R3·i=b·R1·Ro
V = X7·M7·R7+X7·M7·R7
C = X7'M7+M7'Fh+R7,X7

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 89 211 137
A DIR 3 2 99 231 153
A EXT 4 3 89 271 185
A IND 5 2 A9 251 169
B IMM 2 2 C9 311 201
B DIR 3 2 D9 331 217
B EXT 4 3 F9 371 249
8 IND 5 2 E9 351 233

A-4

Coding of First (or only)
Number of byte ~f machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 8B 213 139
A DIR 3 2 9B 233 155
A EXT 4 3 BB 273 187
A IND 5 2 AB 253 171
B IMM 2 2 CB 313 203
B DIR 3 2 DB 333 219
B EXT 4 3 FB 373 251
B IND 5 2 EB 353 235

Add Without Carry ADD
Operation: ACCX ~ (ACCX) + (M)

Description: Adds the contents of ACCX and the contents of M and places the result in ACCX_

Condition Codes: H: Set if there was a carry from bit 3; cleared otherwise_
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise_
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise_
C: Set if there was a carry from the most significant bit of the result; cleared

otherwise.

Boolean Formulae for Condition Codes:
H = X3-M3+M3-i=b+R3-X3
N = R7
Z = R7 -R6 -Rs -R4 -R3 .R2 -R1 -Ro
V = X7-M7-R7+X7-M7-R7
C = X7-M7+M7-R7+i=h-X7

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

I
II
I

A-5 III

AND Logical AND

Operation:

Description:

ACCX ~ (ACCX) . (M)

Performs logical "AND" between the contents of ACCX and the contents of M and
places the result in ACCX. (Each bit of ACCX after the operation will be the logical
"AND" of the corresponding bits of M and of ACCX before the operation.)

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

800lean Formulae for Condition Codes:
N = R7
Z = Fh· R6' RS'R4' Fh'R2' R1·Ro
V = 0

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 84 204 132
A DIR 3 2 94 224 148
A EXT 4 3 84 264 180
A IND 5 2 A4 244 164
8 IMM 2 2 C4 304 196
8 DIR 3 2 04 324 212
8 EXT 4 3 F4 364 244
8 IND 5 2 E4 344 228

A-6

A-7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

ASL

o
bo

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 48 110 072
B 2 1 58 130 088

EXT 6 3 78 170 120
IND 7 2 68 150 104

Description: Shifts all bits of the ACCX or M one place to the left. Bit 0 is loaded with a zero. The
C bit is loaded from the most significant bit of ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, EITHER (N is set and C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the most significant bit of the ACCX or Mwas set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = Fh· R6 .Rs .R4· R3 .R2 .R1 .Ro
V = N Et) C = [N·C] 0 [N·C]

(the foregoing formula assumes values of Nand C after the shift operation)
C = M7

Addressing Formats

See Table A-3

Arithmetic Shift Left

Operation:

A-8

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 47 107 071
B 2 1 57 127 087

EXT 6 3 77 167 119
INO 7 2 67 147 103

Arithmetic Shift RightASR

.~---t~~ITJ
b7 bo

Shifts all bits of ACCX or M one place to the right. Bit 7 is held constant. Bit 0 is
loaded into the C bit.

Condition Codes: H: Not affected,
I: Not affected.
N: Set if the most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise,
V: Set if, after the completion of the shift operation, EITHER (N is set and C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the least significant bit ofthe ACCX or M was set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = i=h'R6' Rs' R4' Ra' R2,R1'Ro
V = N (f) C = [N·C] 0 [N'C]

(the foregoing formula assumes values of Nand C after the shift operation)
C = Mo

Addressing Formats:

See Table A-3

Operation:

Description:

Branch if Carry Clear Bee
Operation: PC ~ (PC) + 0002 + Rei if (C)=O

Description: Tests the state of the C bit and causes a branch if C is clear.

See BRA instruction for further details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 24 044 036

A-9

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 25 045 037

Operation: PC ~ (PC) + 0002 + Rei if (C)=1

Description: Tests the state of the C bit and causes a branch if C is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-a.

Branch if Carry SetBCS

A-10

Branch if Equal BEQ
Operation: PC of- (PC) + 0002 + Rei if (2)=1

Description: Tests the state of the 2 bit and causes a branch if the 2 bit is set.

See BRA instruction for further details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 27 047 039

A-11 I

BGE Branch if Greater than or Equal to Zero

Operation: PC ~ (PC) + 0002 + Rei if (N) (f) (V) = 0

i.e. if (ACCX) ~ (M)
(Two's complement numbers)

Description: Causes a branch if (N is set and V is set) OR (N is clear and V is clear).

If the BGE instruction is .executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (Le. ACCX) was greater than or
equal to the two's complement number represented by the subtrahend (Le. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 2C 054 044

A-12

BGTBranch if Greater than Zero

Operation: PC ~ (PC) + 0002 + Rei if (Z) 0 [(N) (f) (V)] = 0

Le. if (ACCX) > (M)
(two's complement numbers)

Description: Causes a branch if [Z is clear] AND [(N is set and V is set) OR (N is clear and V is
clear)].

If the BGT instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (Le. ACCX) was greater than
the two's complement number represented by the subtrahend (Le. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 2E 056 046

A-13

I

II
I
I

BHI Branch if Higher

Operation: PC ~ (PC) + 0002 + Rei if (C) . (Z)=O

Le. if (ACCX) > (M)
(unsigned binary numbers)

Description: Causes a branch if (C is clear) AND (Z is clear).

If the BHI instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
unsigned binary number represented by the minuend (Le. ACCX) was greater
than the unsigned binary number represented by the subtrahend (Le. M).

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 22 042 034

A-14

A-15

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Addressing Formats:

See Table A-1.

BIT
(ACCX) . (M)

Performs the logical"AN0" comparison of the contents of ACCX and the contents
of M and modifies condition codes accordingly. Neither the contents of ACCX or M
operands are affected. (Each bit of the result of the "AND" would be the logical
"AND" of the corresponding bits of M and ACCX.)

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the result of the "AND" would be set; cleared

otherwise.
Z: Set if all bits of the result of the "AND" would be cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = Fh· R6 .Rs .R4 .i=b .R2' R1 . Ro
V = 0

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A rMM 2 2 85 205 133
A DIR 3 2 95 225 149
A EXT 4 3 85 265 181
A IND 5 2 A5 245 165
8 IMM 2 2 C5 305 197
B DIR 3 2 05 325 213
B EXT 4 3 F5 365 245
8 IND 5 2 E5 345 229

Bit Test

Operation:

Description:

A-16

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REl 4 2 2F 057 047

Branch if Less than or Equal to ZeroBlE
Operation: PC ~ (PC) + 0002 + Rei if (Z)O[(N) ® (V)]=1

i.e. if (ACCX) ~ (M)
(two's complement numbers)

Description: Causes a branch if [Z is set] OR [(N is set and V is clear) OR (N is clear and V is
set)].

If the BlE instruction is executed immediately after execution of any of the
instructions CSA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (Le. ACCX) was less then or
equal to the two's complement number represented by the subtrahend (Le. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

BLSBranch if Lower or Same

Operation: PC ~ (PC) + 0002 + Rei if (C)O(Z) = 1

Le. if (ACCX) ~ (M)
(unsigned binary numbers)

Description: Causes a branch if (C is set) OR (Z is set).

If the BLS instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the
unsigned binary number represented by the minuend (Le. ACCX) was less than
or equal to the unsigned binary number represented by the subtrahend (Le. M).

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 23 043 035

A-17

Operation: PC ~ (PC) + 0002 + Rei if (N) <±) (V) = 1

Le. if (ACCX) < (M)
(two's complement numbers)

Description: Causes a branch if (N is set and V is clear) OR (N is clear and V is set).

If the BLT instruction is executed immediately after execution of any of the
instructions CBA, CMP, SBA, or SUB, the branch will occur if and only if the two's
complement number represented by the minuend (Le. ACCX) was less than the
two's complement number represented by the subtrahend (Le. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

BLT Branch if Less than Zero

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 2D 055 045

A-18

Branch if Minus BMI
Operation; PC+- (PC) + 0002 + Rei if (N) = 1

Description; Tests the state of the N bit and causes a branch if N is set.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-a.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 2B 053 043

A-19

A-20

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 26 046 038

Branch if Not EqualBNE
PC ~ (PC) + 0002 + Rei if (2) = 0

Tests the state of the Z bit and causes a branch if the Z bit is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Operation:

Description:

Branch if Plus BPL
Operation: PC ~ (PC) + 0002 + Rei if (N) =0

Description: Tests the state of the N bit and causes a branch if N is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 2A 052 042

A-21

A-22

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 20 040 032

Branch AlwaysBRA
Operation:

Description:

PC ~ (PC) + 0002 + Rei

Unconditional branch to the address given by the foregoing formula, in which R is
the relative address stored as a two's complement number in the second byte of
machine code corresponding to the branch instruction.

Note: The source program specifies the destination of any branch instruction by
its absolute address, either as a numerical value or as a symbol or expression
which can be numerically evaluated by the assembler. The assembler obtains the
relative address R from the absolute address and the current value ofthe program
counter PC.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

BSRBranch to Subroutine

Operation: PC ~ (PC) + 0002

~ (PCl)

SP ~ (SP) - 0001

~ (PCH)

SP ~ (SP) - 0001

PC ~ (PC) + Rei

Description: The program counter is incremented by 2. The less significant byte ofthe contents
of the program counter is pushed into the stack. The stack pointer is then
decremented (by 1). The more significant byte of the contents of the program
counter is then pushed into the stack. The stack pointer is again decremented (by
1). A branch then occurs to the location specified by the program.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REl 8 2 80 215 141

BRANCH TO SUBROUTINE EXAMPLE

Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand

A. Before
PC ~ $1000 80 BSR CHARLI

$1001 50

SP ~ $EFFF

B. After
PC ~ $1052 ** CHARLI *** *****

SP ~ $EFFD
$EFFE 10
$EFFF 02

A-23

A-24

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 28 050 040

Branch if Overflow ClearBve
Operation: PC ~ (PC) + 0002 + Rei if (V) = 0

Description: Tests the state of the V bit and causes a branch if the V bit is clear.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

REL 4 2 29 051 041

Operation:

Description:

Branch if Overflow Set

PC ~ (PC) + 0002 + Rei if (V) =1

Tests the state of the V bit and causes a branch if the V bit is set.

See BRA instruction for details of the execution of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-B.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

A-25

BVS

A-26

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 11 021 017

Compare Accumulators

Operation:

Description:

(ACCA) - (ACCB)

Compares the contents ofACCA and the contents of ACCB and sets the condition
codes, which may be used for arithmetic and logical conditional branches. Both
operands are unaffected_

Condition Codes: H: Not affected_
I: Not affected.
N: Set if the most significant bit of the result of the subtraction would be set;

cleared otherwise.
z: Set if all bits of the result of the subtraction would be cleared; cleared

otherwise_
V: Set if the subtraction would cause two's complement overflow; cleared

otherwise_
C: Set if the subtraction would require a borrow into the most significant bit of

the result; clear otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = R7-R6-Rs-R4·R3·R2·R1· Ro
V = A7"Eh'Fh+A7'B7'R7
C = A7' B7+B7·R7+R7·A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

CBA

Clear Carry CLC
Operation: C bit ~ 0

Description: Clears the carry bit in the processor condition codes register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Cleared

Boolean Formulae for Condition Codes:
C =0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 OC 014 012

A-27

A-28

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 OE 016 014

Clear Interrupt Mask

I bit ~O

Clears the interrupt mask bit in the processor condition codes register. This
enables the microprocessor to service an interrupt from a peripheral device if
signalled by a high state of the "Interrupt Request" control input.

Condition Codes: H: Not affected.
I: Cleared.
N: Not affected.
z: Not affected.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
I =0

Operation:

Description:

ell

C~r CLR
Operation: ACCX ~ 00
or: M ~ 00

Description: The contents of ACCX or M are replaced with zeros.

Condition Codes: H: Not affected.
I: Not affected.
N: Cleared
Z: Set
V: Cleared
C: Cleared

Boolean Formulae for Condition Codes:
N = 0
Z = 1
V = 0
C =0

Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 4F 117 079
B 2 1 SF 137 095

EXT 6 3 7F 177 127
IND 7 2 6F 157 111

A-29

A-30

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octall decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 OA 012 010

Clear Two's Complement Overflow Bit

V bit +- 0

Clears the two's complement overflow bit in the processor condition codes
register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
V =0

elV
Operation:

Description:

A-31

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 81 201 129
A DIR 3 2 91 221 145
A EXT 4 3 B1 261 177
A IND 5 2 A1 241 161
B IMM 2 2 C1 301 193
B OIR 3 2 01 321 209
B EXT 4 3 F1 361 241
B INO 5 2 E1 341 225

CMP
(ACCX) - (M)

Compares the contents of ACCX and the contents of M and determines the
condition codes, which may be used subsequently for controlling conditional
branching. Both operands are unaffected.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the result of the subtraction would be set;

cleared otherwise.
Z: Set if all bits of the result of the subtraction would be cleared; cleared

otherwise.
V: Set if the subtraction would cause two's complement overflow; cleared

otherwise.
C: Carry is set if the absolute value of the contents of memory is larger than the

absolute value of the accumulator; reset otherwise,

Boolean Formulae for Condition Codes:
N = R7
Z = Fh'R6'Rs'R4'R3'R2'R1'Ro
V = X7,M7·R7+X7· M7'R7
C = X7·M7+M7·R7+R7,X7

Addressing Formats:

See Table A-1.

Compare

Operation:

Description:

A-32

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 43 103 067
B 2 1 53 123 083

EXT 6 3 73 163 115
INO 7 2 63 143 . 099

ComplementCOM
Operation: ACCX ~ == (ACCX) = FF - (ACCX)
or: M ~ = (M) = FF - (M)

Description: Replaces the contents of ACCX or M with its one's complement. (Each bit of the
contents of ACCX or M is replaced with the complement of that bit.)

Condition Codes: H: Not affected.
I: Not affected_
N: Set if most significant bit of the result is set; cleared otherwise.
z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared_
C: Set.

Boolean Formulae for Condition Codes:
N = R7
Z = R7-R6·Rs-R4·j:b· R2-R1-Ro
V = 0
C = 1

Addressing Formats:

See Table A-3.

Compare Index Register CPX
Operation: (IXL) - (M + 1)

(IXH) - (M)

Description: The more significant byte of the contents of the index register is compared with
the contents of the byte of memory at the address specified by the program. The
less significant byte of the contents of the index register is compared with the
contents of the next byte of memory, at one plus the address specified by the
program. The Z bit is set or reset according to the results of these comparisons,
and may be used subsequently for conditional branching.

The N and V bits, though determined by this operation, are not intended for
conditional branching.

The C bit is not affected by this operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the result of the subtraction from the more

significant byte of the index register would be set; cleared otherwise.
Z: Set if all bits of the results of both subtractions would be cleared; cleared

otherwise.
V: Set if the subtraction from the more significant byte of the index register

would cause two's complement overflow; cleared otherwise.
C: Not affected.

Boolean Formulae for Condition Codes:
N = RH7
Z = (RH7' RHs' RHs' RH4' RH3' RH2' RH1' RHa)'

(RL7' RLs' RLs· R1.4· Ru' RL2' RL1 .RLa)
V = IXH7·M7·RH7+IXH7·M7·RH7

Addressing Formats:

See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

IMM 3 3 8C 214 140
DIR 4 2 9C 234 156
EXT 5 3 BC 274 188
INO 6 2 AC 254 172

A-33

A-34

Decimal Adjust ACCA

Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set
the carry bit, as indicated in the following table:

DAA

Note: Columns (1) through (4) of the above table represent all possible cases which can result from
any of the operations ABA, ADD, or ADC, with initial carry either set or clear, applied to two
binary-coded-decimal operands. The table shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry-borrow bit C and the half-carry bit Hare
all the result of applying any of the operations ABA, ADD, or ADC to binary-coded­
decimal operands, with or without an initial carry, the DAA operation will function as
follows.

Subject to the above condition, the DAA operation will adjust the contents of ACCA and
the C bit to represent the correct binary-coded-decimal sum and the correct state of the
carry.

Condition Codes: H:
I:
N:
z:
V:
C:

Not affected.
Not affected.
Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not defined.
Set or reset according to the same rule as if the DAA and an immediately
preceding ABA, ADD, or ADC were replaced by a hypothetical binary­
coded-decimal addition.

Boolean Formulae for Condition Codes:
N = R7
Z = i=h'R6'Rs' R4·j:b· R2·R1·Ro
C = See table above.

Operation:

State of Number State of
C-bit Upper Initial Lower Added C-bit

before Half-byte Half-carry to ACCA after
DAA (bits 4-7) H-bit (bits 0-3) byDAA DAA

(Col. 1) (Col. 2) (Col.3) (Col. 4) (Col. 5) (Col. 6)

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 19 031 025

A-35

Operation: ACCX ~ (ACCX) - 01
or: M ~ (M) - 01

Description: Subtract one from the contents of ACCX or M_

The N, Z, and V condition codes are set or reset according to the results of this
operation.

The C bit is not affected by the operation_

Condition Codes: H: Not affected_
I: Not affected_
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise. Two's complement overflow occurs if and only if (ACCX)
or (M) was 80 before the operation_

C: Not affected_

Boolean Formulae for Condition Codes:
N = R7
Z = R7-R6-Rs-Rs-R4-R3-R2-R1-Ro
V = X7-X6-XS-X4-X3-X2-XO = R7-R6-Rs- R4-R3-R2-R1-Ro

Addressing Formats:

See Table A-3_

DEC Decrement

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 4A 112 074
B 2 1 5A 132 090

EXT 6 3 7A 172 122
IND 7 2 6A 152 106

A-36

Decrement Stack Pointer DES
Operation: SP ~ (SP) - 0001

Description: Subtract one from the stack pointer.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 34 064 052

A-37

II
~

II

~
~
~
~
~
~
~
~
~

I
I

A-38

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 09 011 009

Decrement Index Register

Operation: IX ~ (IX) - 0001

Description: Subtract one from the index register.

Only the Z bit is set or reset according to the result of this operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
Z = (RH7·RH6·RHs·RH4·RH3· RH2·RH1· RHo)·

(RL7· RL6' RLs' Rl4· Rl3· RL2' RL1 . RLo)

DEX

A-39

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Addressing Formats:

See Table A-1.

EOR

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 88 210 136
A DIR 3 2 98 230 152
A EXT 4 3 88 270 184
A IND 5 2 A8 250 168
8 IMM 2 2 C8 310 200
8 DIR 3 2 D8 330 216
8 EXT 4 3 Fa 370 248
8 IND 5 2 E8 350 232

ACCX ~ (ACCX) @ (M)

Perform logical "EXCLUSIVE OR" between the contents of ACCX and the
contents of M, and place the result in ACCX. (Each bit of ACCX after the operation
will be the logical "EXCLUSIVE OR" of the corresponding bit of M and ACCX
before the operation.)

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is' set; cleared otherwise.
z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared
C: Not affected.

800lean Formulae for Condition Codes:
N = R7
Z = Fh· R6' Rs' R4' R3' R2' R1 .Ro
V = 0

Operation:

Description:

Exclusive OR

A-40

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 4C 114 076
B 2 1 5C 134 092

EXT 6 3 7C 174 124
IND 7 2 6C 154 108

IncrementINC
Operation: ACCX ~ (ACCX) + 01
or: M ~ (M) + 01

Description: Add one to the contents of ACCX or M.

The N, Z, and V condition codes are set or reset according to the results of this
operation.

The C bit is not affected by the operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise. Two's complement overflow will occur if and only if
(ACCX) or (M) was 7F before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7'R6'Rs'R4'R3'R2'R1'Ro
V = X7·X6·XS,X4,X3·X2,X1'XO
C = R7'R6'Rs'R4'R3'R2'R1'Ro

Addressing Formats:

See Table A-3,

Increment Stack Pointer INS
Operation: SP ~ (SP) + 0001

Description: Add one to the stack pointer.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 31 061 049

A-41

A-42

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 08 010 008

Increment Index Register

IX ~ (IX) + 0001

Add one to the index register.

Only the Z bit is set or reset according to the result of this operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Set if all 16 bits of the result are cleared; cleared otherwise.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
Z = (RH7' RH6' RHs' RH4' RH3' RH2' RHl . RHo)'

(RL7' RL6' RLs· RLt· RG· RL2' RLl . RLo)

Operation:

Description:

INX

A-43

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

EXT 3 3 7E 176 126
IND 4 2 6E 156 110

JMP
Operation: PC ~ numerical address

Description: A jump occurs to the instruction stored at the numerical address. The numerical
address is obtained according to the rules for EXTended or INDexed addressing.

Condition Codes: Not affected.

Addressing Formats:

See Table A-7.

Jump

A-44

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

EXT 9 3 BD 275 189
IND 8 2 AD 255 173

Jump to Subroutine

JUMP TO SUBROUTINE EXAMPLE (extended mode)

Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand

A. Before:
PC ~ $OFFF BD JSR CHARLI

$1000 20
$1001 77

SP ~ $EFFF

B. After:
PC $2077 ** CHARLI *** *****

~

SP ~ $EFFD
$EFFE 10
$EFFF 02

JSR
Operation:
Either: PC ~ (PC) + 0003 (for EXTended addressing)
or: PC ~ (PC) + 0002 (for INDexed addressing)
Then: ~ (PCl)

SP ~ (SP) - 0001
~ (PCH)
SP ~ (SP) - 0001
PC ~ numerical address

Description: The program counter is incremented by 3 or by 2, depending on the addressing
mode, and is then pushed onto the stack, eight bits at a time. The stack pointer
points to the next empty location in the stack. A jump occurs to the instruction
stored at the numerical address. The numerical address is obtained according to
the rules for ~XTended or INDexed addressing.

Condition Codes: Not affected.

Addressing Formats:

See Table A-7.

A-45

Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

LOA

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 86 206 134
A DIR 3 2 96 226 150
A EXT 4 3 86 266 182
A IND 5 2 A6 246 166
B IMM 2 2 C6 306 198
8 DIR 3 2 06 326 214
8 EXT 4 3 F6 366 246
B IND 5 2 E6 346 230

ACCX ~ (M)

Loads the contents of memory into the accumulator. The condition codes are set
according to the data.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = Fh· RG· Rs· R4· R3' R2' Rl· Ro
V = 0

Operation:

Description:

Load Accumulator

A-46

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing . Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

IMM 3 3 8E 216 142
DIA 4 2 9E 236 158
EXT 5 3 BE 276 190
INO 6 2 AE 256 174

Load Stack Pointer

Operation: SPH ~ (M)
SPL ~ (M+1)

Description: Loads the more significant byte of the stack pointer from the byte of memory at the
address specified by the program, and loads the less significant byte of the stack
pointer from the next byte of memory, at one plus the address specified by the
program.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the stack pointer is set by the operation;

cleared otherwise.
Z: Set if all bits of the stack pointer are cleared by the operation; cleared

otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = RH7
Z = (AH7·AH6·AHs·AH4·AH3·AH2·AH1· AHo)'

(AL7' AL6' ALs· Al4· Au' AL2' ALl' ALa)
V =0

Addressing Formats:

See Table A-5.

LOS

Load Index Register LOX
Operation: IXH ~ (M)

IXL ~ (M+1)

Description: Loads the more significant byte of the index register from the byte of memory at
the address specified by the program, and loads the less significant byte of the
index register from the next byte of memory, at one plus the address specified by
the program.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the index register is set by the operation;

cleared otherwise.
Z: Set if all bits of the index register are cleared by the operation; cleared

otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = RH7
Z = (RH7' RHs' RHs' RH4' RH3 . RH2' RH1 . RHo)'

(RL7' RLs' RLs· Rl4' Rl3· RL2' RLl .RLo)
V = 0

Addressing Formats:

See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

IMM 3 3 CE 316 206
DIR 4 2 DE 336 222
EXT 5 3 FE 376 254
IND 6 2 EE 356 238

A-47

A-48

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Logical Shift Right

Operation:

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 44 104 068
B 2 1 54 124 084

EXT 6 3 74 164 116
IND 7 2 64 144 100

o-'~--,----r.._.....L...-...---L-_....L----L------JL...-....I ---I"~ IT]
b7 bo

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is loaded with a zero. The C
bit is loaded from the least significant bit of ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Cleared.
z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the shift operation, EITHER (N is set and C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the least significant bit of the ACCX or M was set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N = 0
Z = R7·R6·Rs·R4·R3·R2·R1·Ro
V = N (i) C = [N'C] 0 [N·C]

(the foregoing formula assumes values of Nand C after the shift operation).
C = Mo

Addressing Formats:

See Table A-3.

LSR

Negate NEG

Description:

Operation:
or:

ACCX +- - (ACCX) = 00 - (ACCX)
M +- - (M) = 00 - (M)

Replaces the contents of ACCX or M with its two's complement. Note that 80 is left
unchanged,

Condition Codes: H: Not affected_
I: Not affected,
N: Set if most significant bit of the result is set; cleared otherwise_
z: Set if all bits of the result are cleared; cleared otherwise_
V: Set if there would be two's complement overflow as a result of the implied

subtraction from zero; this will occur if and only if the contents of ACCX or M
is 80_

C: Set if there would be a borrow in the implied subtraction from zero; the C bit
will be set in all cases except when the contents of ACCX or M is 00_

Boolean Formulae for Condition Codes:
N = R7
Z = i=h-Rs-Rs-R4' Fb-R2-R1-Ro
V = R7'Rs-Rs-R4-R3-R2'R1-Ro
C = R7+Rs+Rs+R4+R3+R2+R1 +Ro

Addressing Formats:

See Table A-3_

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes {No. of cycles} machine code HEX. OCT. DEC.

A 2 1 40 100 064
B 2 1 50 120 080

EXT 6 3 70 160 112
IND 7 2 60 140 096

A-49

I

NOP No Operation

Description: This is a single-word instruction which causes only the program counter to
be incremented. No other registers are affected.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 01 001 001

A-50

Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 8A 212 138
A DIR 3 2 9A 232 154
A EXT 4 3 SA 272 186
A IND 5 2 AA 252 170
B IMM 2 2 CA 312 202
B OIR 3 2 OA 332 218
B EXT 4 3 FA 372 250
B INO 5 2 EA 352 234

ORA
ACCX ~ (ACCX)0(M)

Perform logical "OR" between the contents of ACCX and the contents of M and
places the result in ACCX. (Each bit of ACCX after the operation will be the logical
"OR" of the corresponding bits of M and of ACCX before the operation).

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = Fh· R6'Rs' R4' R3'R2' Al' Ro
V = 0

Operation:

Description:

Inclusive OR

A-51

A-52

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 4 1 36 066 054
B 4 1 37 067 055

Push Data Onto Stack

Operation: ! (ACCX)
SP ~ (SP) - 0001

Description: The contents of ACCX is stored in the stack at the address contained in the stack
pointer. The stack pointer is then decremented.

Condition Codes: Not affected.

Addressing Formats:

See Table A-4.

PSH

A-53

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 4 1 32 062 050
B 4 1 33 063 051

PUL
Operation: SP ~ (SP) + 0001

jACCX

Description: The stack pointer is incremented. The ACCX is then loaded from the stack, from
the address which is contained in the stack pointer.

Condition Codes: Not affected.

Addressing Formats:

See Table A-4.

Pull Data from Stack

A-54

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal! decimal):

Rotate Left

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 49 111 073
B 2 1 59 131 089

EXT 6 3 79 171 121
IND 7 2 69 151 105

Operation: o4---- L------:I-.----'-----L._-'--~_.L.--_L______J'4
b7 bo

Description: Shifts all bits of ACCX or M one place to the left. Bit 0 is loaded from the C bit. The
C bit is loaded from the most significant bit of ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the operation, EITHER (N is set and C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the most significant bit of the ACCX or M was set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = i=h·Rs·Rs· R4· i=b·R2·R1·Ro
V = N (±) C = [N'G] 0 [N·C]

(the foregoing formula assumes values of Nand C after the rotation)
C = M7

Addressing Formats:

See Table A-3

ROL

Rotate Right

Operation:

ROR

b7 bo

Description: Shifts all bits of ACCX Or M one place to the right. Bit 7 is loaded from the C bit. The
C bit is loaded from the least significant bit of ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if, after the completion of the operation, EITHER (N is set and C is

cleared) OR (N is cleared and C is set); cleared otherwise.
C: Set if, before the operation, the least significant bit of the ACCX or M was set;

cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = Fh·Rs·Rs·R4·i=b·R2·R1·Ro
V = N (f) C = [N·el 0 [N·Cl
(the foregoing formula assumes values of Nand C after the rotation)
C = Mo

Addressing Formats:

See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 46 106 070
B 2 1 56 126 086

EXT 6 3 76 166 118
IND 7 2 66 146 102

A-55

I

IIII
I
I
I

RTI Return from Interrupt

Operation: SP ~ (SP) + 0001 , fCC
SP ~ (SP) + 0001 , fACCB
SP ~ (SP) + 0001 , fACCA
SP ~ (SP) + 0001 , flXH
SP ~ (SP) + 0001 , flXL
SP ~ (SP) + 0001 , fPCH
SP ~ (SP) + 0001 , fPCL

Description: The condition codes, accumulators B and A, the index register, and the program
counter, will be restored to a state pulled from the stack. Note that the interrupt
mask bit will be reset if and only if the corresponding bit stored in the stack is zero.

Condition Codes: Restored to the states pulled from the stack.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 10 1 3B 073 059

Return from Interrupt

Example

A. Before
PC ~

SP ~

Memory
Location

$D066

$EFF8
$EFF9
$EFFA
$EFFB
$EFFC
$EFFD
$EFFE
$EFFF

Machine
Code (Hex)

3B

11HINZVC
12
34
56
78
55
67

Assembler Language
Label Operator Operand

RTI

(binary)

B. After
PC ~ $5567

$EFF8
$EFF9
$EFFA
$EFFB
$EFFC
$EFFD
$EFFE

SP ~ $EFFF
CC = HINZVC (binary)
ACCB = 12 (Hex)
ACCA = 34 (Hex)

**

11HINZVC
12
34
56
78
55
67

IXH = 56 (Hex)
IXL = 78 (Hex)

A-56

(binary)

*** *****

RTSReturn from Subroutine

Operation: SP ~ (SP) + 0001
t PCH
SP ~ (SP) + 0001
t PCl

Description: The stack pointer is incremented (by 1). The contents of the byte of memory, at the
address now contained in the stack pointer, are loaded into the 8 bits of highest
significance in the program counter. The stack pointer is again incremented (by
1). The contents of the byte of memory, at the address now contained in the stack
pointer, are loaded into the 8 bits of lowest significiance in th~ program counter.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 5 1 39 071 057

Return from Subroutine

EXAMPLE

Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand

A. Before
PC $30A2 39 RTS

SP $EFFD
$EFFE 10
$EFFF 02

B. After
PC $1002 ** *** *****

$EFFD
$EFFE 10

SP. $EFFF 02

A-57

SBA Subtract Accumulators

Operation:

Description:

ACCA ~ (ACCA) - (ACCB)

Subtracts the contents of ACCB from the contents of ACCA and places the result
in ACCA. The contents of ACCB are not affected.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation.
C: Carry is set if the absolute value of accumulator B plus previous carry is

larger than the absolute value of accumulator A; reset otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = i=h·R6·Rs·R4·R3·R2·R1·Ro
V = A7·B7·i=h+A7·B7·R7
C = A7' B7+B7' R7+R7' A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 10 020 016

A-58

Subtract with Carry SBC
Operation:

Description:

ACCX ~ (ACCX) - (M) - (C)

Subtracts the contents. of M and C from the contents of ACCX and places the
result in ACCX,

Condition Codes: H: Not affected,
I: Not affected,
N: Set if most significant bit of the result is set; cleared otherwise,
Z: Set if all bits of the result are cleared; cleared otherwise,
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise,
C: Carry is set if the absolute value of the contents of memory plus previous

carry is larger than the absolute value of the accumulator; reset otherwise,

Boolean Formulae for Condition Codes:
N = R7
Z = R7'R6'Rs'R4'Ra'R2'R1'Ro
V = X7·M7·R7+X7,M7,R7
C = X7·M7+M7·R7+R7,X7

Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 82 202 130
A 'DIR 3 2 92· 222 146
A EXT 4 3 B2 262 178
A IND 5 2 A2 242 162
B IMM 2 2 C2 302 194
B DIR 3 2 D2 322 210
B EXT 4 3 F2 362 242
B IND 5 2 E2 342 226

A-59

SEC
Operation: C bit ~ 1

Description: Sets the carry bit in the processor condition codes register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Set.

Boolean Formulae for Condition Codes:
C = l'

Addressing Modes, Execution Time, and Machine Code (hexadecimal I octall decimal):

Set Carry

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 00 015 013

A-60

Set Interrupt Mask SEI
Operation; I bit ~ 1

Description: Sets the interrupt mask bit in the processor condition codes register. The microp­
rocessor is inhibited from servicing an interrupt from a peripheral device, and will
continue with execution of the instructions of the program, until the interrupt mask
bit has been cleared.

Condition Codes: H: Not affected.
I: Set.
N: Not affected.
z: Not affected.
V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes:
I = 1

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 OF 017 015

A-61

SEV Set Two's Complement Overflow Bit

Operation: V bit ~ 1

Description: Sets the two's complement overflow bit in the processor condition codes register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
z: Not affected.
V: Set.
C: Not affected.

Boolean Formulae for Condition Codes:
V = 1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 OB 013 011

A-52

A-63

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Addressing Formats:

See Table A-2.

STAStore Accumulator

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A DIR 4 2 97 227 151
A EXT 5 3 B7 267 183
A IND 6 2 A7 247 167
B DIR 4 2 D7 327 215
B EXT 5 3 F7 367 247
B IND 6 2 E7 347 231

M ~ (ACCX)

Stores the contents of ACCX in memory. The contents of ACCX remains un­
changed.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the contents of ACCX is set; cleared

otherwise.
z: Set if all bits of the contents of ACCX are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = X7
Z = X7' X6' Xs, X4' X3' X2' Xl' Xo
V = 0

Operation:

Description:

STS Store Stack Pointer

Operation: M ~ (SPH)
M + 1 ~ (SPL)

Description: Stores the'more significant byte of the stack pointer in memory at the address
specified by the program, and stores the less significant byte of the stack pointer
at the next location in memory, at one plus the address specified by the program.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the stack pointer is set; cleared otherwise.
Z: Set if all bits of the stack pointer are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = SPH7
Z = (SPH7' SPH6' SPHs' SPH4' SPH3 . SPH2' SPH1 .SPHo)'

(SPL7' SPLs' SPLs' SPl4' SP13' SPL2' SPL1 .SPLo)
V = 0

Addressing Formats:

See Table A-6.

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

DIR 5 2 9F 237 159
EXT 6 3 BF 277 191
IND 7 2 AF 257 175

A-64

Store Index Register STX
Operation: M ~ (IXH)

M + 1 ~ (IXL)

Description: Stores the more significant byte of the index register in memory at the address
specified by the program, and stores the less significant byte of the index register
at the next location in memory, at one plus the address specified by the program.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bite of the index register is set; cleared otherwise.
z: Set if all bits of the index register are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = IXH7
Z = (IXH7 ·IXH6·IXHs ·IXH4 ·IXH3 . IXH2 ·IXHl ·IXHo)·

(IXL7·IXL6·IXLs·IXl4·IXL3·IXL2·IXL1·IXL0)
V = 0

Addressing Formats:

See Table A-6.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

DIR 5 2 OF 337 223
EXT 6 3 FF 377 255
IND 7 2 EF 357 239

A-65

A-66

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A IMM 2 2 80 200 128
A DIR 3 2 90 220 144
A EXT 4 3 BO 260 176
A IND 5 2 AO 240 160
B IMM 2 2 CO 300 192
B DIR 3 2 DO 320 208
B EXT 4 3 FO 360 240
B IND 5 2 EO 340 224

Subtract

Operation:

Description:

ACCX ~ (ACCX) - (M)

Subtracts the contents of M from the contents of ACCX and places the result in
ACCX.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Set if there was two's complement overflow as a result of the operation;

cleared otherwise.
C: Set if the absolute value of the contents of memory are larger than the

absolute value of the accumulator; reset otherwise,

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·Rs·R4·R3·R2·R1·Ro
V = X7·M7,R7'X7,M7,R7
C = X7·M7+M7,R7+R7,X7

Addressing Formats:

See Table A-1.

SUB

~II

II

I
I

I

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 12 1 3F 077 063

Software Interrupt SWI
Operation: PC ~ (PC) + 0001

! (PCl) , SP ~ (SP)-0001
! (PCH) , SP ~ (SP)-0001
! (IXl) , SP ~ (SP)-0001
! (IXH) , SP ~ (SP)-0001
! (ACCA) , SP ~ (SP)-0001
! (ACCB) , SP ~ (SP)-0001
! (CC) , SP ~ (SP)-0001
I ~1
PCH ~ (n-0005)
PCl ~ (n-0004)

Description: The program counter is incremented (by 1). The program counter, index register,
and accumulator A and B, are pushed into the stack. The condition codes register
is then pushed into the stack, with condition codes H, I, N; Z, V, C going
respectively into bit positions 5 thru 0, and the top two bits (in bit positions 7 and 6)
are set (to the 1 state). The stack pointer is decremented (by 1) after each byte of
data is stored in the stack.

The interrupt mask bit is then set. The program counter is then loaded with the ~

address stored in the software interrupt pointer at memory locations (n-5) and ~I~~.
(n-4), where n is the address corresponding to a high state on all lines of the ~
address bus.

Condition Codes: H: Not affected.
I: Set.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Boolean Formula for Condition Codes:
I = 1

Addressing Modes, Execution Time, and Machine Code (hexadecimal! octal! decimal):

A-67

I

Software Interrupt
EXAMPLE
A. Before:

CC = HINZVC (binary)
ACCS = 12 (Hex)
ACCA = 34 (Hex)

Memory
Location

PC --'; $5566
SP --'; $EFFF

$FFFA
$FFFB

IXH = 56 (Hex)
IXL = 78 (Hex)

Machine
Code (Hex)

3F

DO
55

Assembler Language
Label Operator Operand

SWI

I
I
I

B. After:
PC --'; $0055
SP --'; $EFF8

$EFF9 11 HINZVC (binary)
$EFFA 12
$EFFB 34
$EFFC 56
$EFFO 78
$EFFE 55
$EFFF 67

Note: This example assumes that FFFF is the memory location addressed when all lines of the
address bus go to the high state.

A-68

Transfer from Accumulator A to Accumulator B TAB
Operation:

Description:

ACCS ~ (ACCA)

Moves the contents of ACCA to ACCS. The former contents of ACCS are lost.
The contents of ACCA are not affected.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the contents of the accumulator is set; cleared

otherwise.
Z: Set if all bits of the contents of the accumulator are cleared; cleared other­

wise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·Rs·R4·R3·R2·R1·Ro
V = 0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal! decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 16 026 022

A-69

TAP

Operation: CC ~ (ACCA)

Bit Positions

7 6 543 2 1 a

Transfer from Accumulator A
to Processor Condition Codes Register

ACCA

CC

Carry-Borrow

"""---- Overflow
(Two's Complement)

"---- Zero
L.....- Negative

1-.- Interrupt Mask

L.....- Half Carry

Description: Transfers the contents of bit positions athru 5 of accumulator A to the correspond­
ing bit positions of the processor condition codes register. The contents of
accumulator A remain unchanged.

Condition Codes: Set or reset according to the contents of the respective bits athru 5 of accumulator
A.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 06 006 006

A-70

Transfer from Accumulator B to Accumulator A TBA
Operation:

Description:

ACCA ~ (ACCS)

Moves the contents of ACCB to ACCA. The former contents of ACCA are lost.
The contents of ACCB are not affected.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant accumulator bit is set; cleared otherwise.
z: Set if all accumulator bits are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7' A6·As· R4·R3·R2·A1·Ro
V = 0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octall decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 17 027 023

A-71

TPA

Operation:

Transfer from Processor Condition Codes Register to
Accumulator A

ACCA ~ (CC)

Bit Positions

1
1 _--I

ACCA

CC

Carry-Borrow

L...-__ Overflow
(Two's Complement)

'------- Zero

'-------- Negative

L..- Interrupt Mask

L.....-.. Half Carry

I

Description: Transfers the contents of the processor condition codes register to corresponding
bit positions 0 thru 5 of accumulator A. Bit positions 6 and 7 of accumulator A are
set (Le. go to the "1" state). The processor condition codes register remains
unchanged.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 2 1 07 007 007

A-72

Test TST
Operation: (ACCX) - 00

(M) - 00

Description: Set condition codes Nand Z according to the contents of ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the contents of ACCX or M is set; cleared

otherwise.
Z: Set if all bits of the contents of ACCX or M are cleared; cleared otherwise.
V: Cleared.
C: Cleared.

Boolean Formulae for Condition Codes:
N = M7
Z = M7·M6·Ms·M4·M3·M2·M1·Mo
V = 0
C =0

Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

A 2 1 40 115 077
B 2 1 50 135 093

EXT 6 3 70 175 125
INO 7 2 60 155 109

A-73

I

TSX Transfer from Stack Pointer to Index Register

Operation: IX ~ (SP) + 0001

Description: Loads the index register with one plus the contents of the stack pointer. The
contents of the stack pointer remain unchanged.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 30 060 048

A-74

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 4 1 35 .065 053

Transfer From Index Register to Stack Pointer TXS
Operation: SP ~ (IX) - 0001

Description: Loads the stack pointer with the contents of the index register, minus one.
The contents of the index register remain unchanged.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

I
A-75

A-76

Coding of First (or only)
Number of byte of machine code

Addressing Execution Time bytes of
Modes (No. of cycles) machine code HEX. OCT. DEC.

INHERENT 9 1 3E 076 062

Operation: PC ~ (PC) + 0001
! (PCl) , SP ~ (SP)-0001
! (PCH) , SP ~ (SP)-0001
! (IXl) , SP ~ (SP)-0001
! (IXH) , SP ~ (SP)-0001
! (ACCA) , SP ~ (SP)-0001
! (ACCS) , SP ~ (SP)-0001
! (CC) , SP ~ (SP)-0001

Condition Codes: Not affected.

Description: The program counter is incremented (by 1). The program counter, index register,
and accumulators A and B, are pushed into the stack. The condition codes
register is then pushed into the stack, with condition codes H, I, N, Z, V, C going
respectively into bit positions 5 thru 0, and the top two bits (in bit positions 7 and 6)
are set (to the 1 state). The stack pointer is decremented (by 1) after each byte of
data is stored in the stack.

Execution of the program is then suspended until an interrupt from a peripheral
device is signalled, by the interrupt request control input going to a low state.

When an interrupt is signalled on the interrupt request line, and provided the I bit is
clear, execution proceeds as follows. The interrupt mask bit is set. The program
counter is then loaded with the address stored in the internal interrupt pointer at
me.mory locations (n-7) and (n-6), where n is the address corresponding to a high
state on all lines of the address bus.

Condition Codes: H: Not affected.
I: Not affected until an interrupt request signal is detected on the interrupt

request control line. When the interrupt request is received the I bit is set and
further execution takes place, provided the I bit was initially clear.

N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/ octal/ decimal):

~

I

I

WAI Wait for Interrupt

Addressing Mode of First Operand

Second Operand Accumulator A Accumulator B

IMMediate eee A #number eee B #number
eee A #symbol eee B #symbol
eee A #expression eee B #expression
eee A #te eee B #te

DIRect or EXTended eee A number eee B number
eee A symbol eee B symbol
eee A expression eee B expression

INDexed eeeAX eee BX
eee z ,X eee B ,X
eee A number,X eee B number,X
eee A symbol,X eee B symbol,X
eee A expression,X eee B expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol "*".
3. "expression" may contain the special symbol "*".
4. space may be omitted before A or B.

Applicable to the following source instructions:
ADe ADD AND BIT eMP
EOR LOA ORA SBe SUB

*Special symbol indicating program-counter.

TABLE A-1. Addressing Formats (1)

Addressing Mode of First Operand
Second Operand Accumulator A Accumulator B

DIRect or EXTended STA A number STA B number
STA A symbol STA B symbol
STA A expression STAB expression

INDexed STAAX STA BX
STA A ,X STA B ,X
STA A number,X STA B number,X
STA A symbol,X STA B symbol,X
STA A expression,X STA B expression,X

Notes: 1. "symbol" may be the special symbol "*".
2. "expression" may contain the special symbol "*".
3. Space may be omitted before A or B.

Applicable to the source instruction:

STA

*Special symbol indicating program-counter.

TABLE A-2. Addressing Formats (2)

A-77

IIII

Operand or
Addressing Mode Formats

Accumulator A eeeA

Accumulator B eee B

EXTended eee number
eee symbol
eee expression

INDexed eeex
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol u*".
3. "expression" may contain the special symbol "*".
4. Space may be omitted before A or B.

Applicable to the following source instructions:

ASL ASR eLR eOM DEe INe
LSR NEG ROL ROR TST

*Special symbol indicating program-counter.

TABLE A·3. Addressing Formats (3)

Operand Formats

Accumulator A eeeA

Accumulator B eeeB

Notes: 1. eee = mnemonic operator of source instruction.
2. Space may be omitted before A or B.

Applicable to the following source instructions:

PSH PUL

TABLE A-4. Addressing Formats (4)

A-78

Addressing Mode Formats

IMMediate eee #number
eee #symbol
eee #expression
eee #'e

DIRect or EXTended eee number
eee symbol
eee expression

INDexed eeex
eee ,X
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol "*".
3. "expression" may contain the special symbol "*".

Applicable to the following source instructions:

epx LOS LOX

*Special symbol indicating program-counter.

TABLE A-5. Addressing Formats (5)

Addressing Mode Formats

DIRect or EXTended eee number
eee symbol
eee expression

INDexed eeex
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol "*".
3. "expression" may contain the special symbol "*".

Applicable to the following source instructions:

STS STX

*Special symbol indicating program-counter.

TABLE A-6. Addressing Formats (6)

A-79

I

Addressing Mode Formats

EXTended eee number
eee symbol
eee expression

INDexed eeex
eee,x
eee number,X
eee symbol,X
eee expression,X

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol "*".
3. "expression" may contain the special symbol "*".

Applicable to the following source instructions:

JMP JSR

*Special symbol indicating program-counter.

TABLE A-7. Addressing Formats (7)

Addressing Mode Formats

RElative eee number
eee symbol
eee expression

Notes: 1. eee = mnemonic operator of source instruction.
2. "symbol" may be the special symbol "*".
3. "expression" may contain the special symbol "*".

Applicable to the following source instructions:

Bee Bes BEQ BGE BGT BHI BlE BlS
BlT BMI BNE BPl BRA BSR Bve BVS

*Special symbol indicating program-counter.

TABLE A-8. Addressing Formats (8)

A-SO

EXbug COMMANDS

LOAD

VERF

PNCH

PRNT

SRCH

S10, S30, & S120

S240
(EXbug 1.2 only)

TERM
(EXbug 1.2 only)

MAID

n/

n;O

(LF)

t

APPENDIX B
EXbug COMMANDS

DESCRIPTION

Initiates memory loader function.

Compares contents of memory with tape data. Where unequal, prints
location in hexadecimal.

Instructs EXORciser to punch an absolute formatted binary object
tape.

Causes terminal to print the contents of memory in hexadecimal
followed by the literal ASCII characters.

Searches tape for header record. Stops reader at first record
encountered and prints that record.

Inserts nulls for proper printing during terminal operation at 110,
300, and 1200 Baud: 8, or 8, or 3 nulls, respectively, inserted after
standard ASCII characters; 8, or 4, or 23, respectively, inserted
following carriage return character.

Inserts nulls for proper printing during 2400 Baud terminal opera­
tion. Seven nulls inserted after standard ASCII characters; 47 nulls
inserted following carriage return character.

Prints the number of nulls currently being inserted after standard
ASCII and carriage return characters. Permits either or both to
be changed.

Print the contents of memory location n and enable the EXORciser
to change the contents of this memory location.

Calculate the address offset (for relative addressing mode
instructions.

Print the contents of the next sequential memory location and
enable the EXORciser to change the contents of this memory
location (LF - Line Feed character).

Print the contents of the previous sequential memory location
and enable the EXORciser to change the contents of this
memory location (t - up arrow character, or SHIFT key, or N
character).

B-1

EXbug COMMANDS

(CR)

n;V

$V

n;P

;U

n;U

n;W

$M

;G

n;G

$R

;P

;N

N

n;N

$T

;T

$S

;S

#n=

#$n=

#@n=

DESCRIPTION

Return the displayed contents to memory and accept next
command (CR - Carriage Return character).

Enter a breakpoint at memory location n.

Display the memory location of each breakpoint.

Continue executing from the selected breakpoint until this break­
point is encountered n times.

Remove all the breakpoints.

Remove the breakpoint at memory location n.

Search for the n bit pattern.

Display the search mask.

Execute the user's program starting at the auto restart memory
location.

Execute user's program starting at memory location n.

Display/ change the user's program registers.

Continue executing from the current program counter setting.

Trace one instruction.

Trace one instruction.

Trace n instructions.

Set the trace mode.

Reset the trace mode.

Display and set the stop-on-address compare - Scope trigger
pulse.

Reset the stop-on-address compare - Scope trigger pulse.

Convert the decimal number n to its hexadecimal equivalent.

Convert the hexadecimal number n to its decimal equivalent.

Convert the octal number n to its hexadecimal equivalent.

B-2

APPENDIX C
MIKbug COMMANDS

OPERATION DESCRIPTION

L Load tape.
M Memory change.
R Display registers CC, B, A, X, P, S.
P Print! punch tape.
G Go to location.

C-1

C-2

APPENDIX D
MINlbug II COMMANDS

COMMAND DESCRIPTION

L Load tape.

M Memory Change.

P Print/ punch dump.

R Display registers CC, B, A, X, P, S.

S Set terminal speed:
1 - set speed for 10 cps
3 - set speed for 30 cps

G Go to location nnnn.

W Memory test.

y Punch binary tape.

Z Load binary tape.

See Evaluation Module II User's Guide for detailed description.

D-1

0-2

COMMAND

L

M

P

R

S

8

C

N

T

G

D

U

V

APPENDIX E
MINlbug III COMMANDS

DESCRIPTION

Load.

Memory change.

Print/ punch dump.

Display registers CC, 8, A, X, P, S.

Set terminal speed:
1 - set speed for 10 cps
3 - set speed for 30 cps

Print out all breakpoints.

Continue execution from current location.

Next instruction.

Trace "N" instructions.

Go to location "N tt
•

Delete all breakpoints.

Reset breakpoint with address "N".

Set a breakpoint with address "N".

E-1

E-2

APPENDIX F
ASCII CODE CONVERSION TABLE

BITS 4 thru 6 0 1 2 3 4 5 6 7

0 NUL OLE SP 0 @ P P
1 SOH OC1 ! 1 A Q a q
2 STX OC2 " 2 B R b r
3 ETX OC3 # 3 C S c s
4 EOT OC4 $ 4 0 T d t
5 ENQ NAK 0/0 5 E U e u

BITS 0 thru 3 6 ACK SYN & 6 F V f v
7 BEL ETB 7 G W 9 w
8 BS CAN (8 H X h x
9 HT EM) 9 I Y Y
A LF SUB * J Z j z
B VT ESC + K [k {
C FF FS < L / I /
0 CR GS = M] m }
E SO RS > N " n ::::::::

F SI US / ? 0 0 DEL

F-1

F-2

APPENDIX G
HEXADECIMAL AND DECIMAL CONVERSION

From hex: locate each hex digit in its corresponding column position and note the decimal
equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into the decimal
number to be converted, and (2) note its hex equivalent and hex column position. (3) Find
the decimal remainder. Repeat the process on this and subsequent remainders.

HEXADECIMAL COLUMNS

6 5 4 3 2 1

HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC HEX = DEC

° ° ° ° ° ° ° ° ° ° ° °1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2
3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 5,242,880 5 327,680 5 20,480 5 1,280 5 80 5 5
6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7
8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11 ,534;,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12
0 13,631,488 0 851,968 0 53,248 0 3,328 0 208 0 13
E 14,680,064 E 917,504 E 54,344 E 3,584 E 224 E 14
F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

o 1 2 3 4 567 o 1 2 3 4 567 o 1 2 3 4 567

BYTE BYTE BYTE

G-1

POWERS OF 2

2n n

256 8
512 9

1 024 10
2048 11
4096 12
8 192 13

16384 14
32768 15
65536 16

131 072 17
.262 144 18

524288 19
1 048 576 20
2097 152 21
4 194304 22
8388 608 23

16777 216 24

20 = 160

24 = 16'
28 = 162

2'2 = 163

2'8 = 164

220 = 165

224 = 166

228 = 167

232 = 168

238 = 169

240 = 16'0

244 = 16"
248 = 16'2

252 = 16'3

256 = 16'4

260 = 16'5

G-2

POWERS OF 16

16n n

1 0
16 1

256 2
4096 3

65536 4
1 048576 5

16 777216 6
268435456 7

4294967296 8
68 719 476 736 9

1 099 511 627 776 10
17 592 186 044 416 11

281 474 976 710 656 12
4 503 599 627 370 496 13

72 057 594 037 927 936 14
1 152 921 504 606 846 976 15

•

MOTOROLA Semiconductor Products Inc.
'.0.•OK 20912. 'HOl<NIK. "'''''ZON''' .5036 SU.510'''''''Y OF UOTO"'OL ... INC

M68PRM(OI _.--_.-_.......... -

	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Hardware Description
	Chapter 3: Programming the M6800 Microprocessor
	Chapter 4: M6800 Microprocessor Addressing Modes
	Appendix A: Definition of the Executable Instructions
	Appendix B: EXbug and MAID Commands
	Appendix C: MIKbug Commands
	Appendix D: MINIbug II Commands
	Appendix E: MINIbug III Commands
	Appendix F: ASCII Code Conversion Table
	Appendix G: Hexadecimal and Decimal Conversion

