
PROGRAMMING THE
6800 MICROPROCESSOR

- Bob Southern ­

Algonquin College
Ottawa Ont. Canada

A self-instructional workbook
for assembly language and machine code programming

01 the 6800 family of microprocessors and peripherals

Chapter 1 - Binary and Hex Numbers

2 - Accumulator Operations

3 - Symbolic Addressing

4 - Index Register

5 - Branching - Assembly Language

6 - Branching - Machine Code

7 - ACIA - Asynchronous Communications
Interface Adapter

8 - PIA - Peripheral Interface Adapter

9 - Subroutines

10 - Stack Operations

11 - Interrupt

HB211

AppendICes

A ._.
B ....
el, C2
D .
E1. E2 .
F1. F2 .

. Hex Codes
ASCII Codes
Instruction Set

.. Machme Code
.. ACIA

.. PIA

G _._. . C)laraeter Set
H .._ . Common losll\lctJons
~ ".." Glossary
J 1, J2 Assembler Error Codes
K OM Instruction

® MOTOROLA Semiconductor Products 100.



Acknowledgments

- Many people helped make this workbook possible. I would like to thank Peter
Booler, Brian Bradley, Michel Brule and Bill Foster of Algonquin College, and
Don Lindsay of Dynalogic Limited for their advice and comments. I also would
like to thank Lynne Hall who formatted and typed this book. Lastly, I would like
to thank Richard Leir, John Oldfield and John Quarterman for their time in
testing the final version of this book.

- The program on the front cover was written by Don Lindsay of Dynalogic
Limited, Ottawa.

Bob Southern

Disclaimer

- The information contained in this workbook has been carefully checked and is
believed to be correct. However the author and publisher cannot assume
responsibility for errors or omissions or liability for any damages or
consequential damages arising from the use of this workbook.

Copyright © 1977 R.W. Southern
All rights reserved

This book or parts thereof may not
be reproduced in any form without
the permission of the copyright
holder.

9 8 7 6
Printed in Canada



PROGRAMMING THE 6800 MICROPROCESSOR

ABOUT THIS WORKBOOK

This workbook has one purpose only, to help you to

learn the fundamentals of assembly language and machine code

programming of the 6800 microprocessor and its peripheral

devices. Considerable coverage is given to programming of

input/output devices, an essential part of microprocessor

applications. The ACIA and PIA, each with their various modes

of operations, are explored in detail in both non-interrupt

and interrupt modes. Program design and documentation is

emphasized, enabling others to understand the purpose and

operational details of your programs. Programming hints and

aids are included along with the answers.

FOR WHOM

This workbook was designed primarily for use by students

at the community college level, although it has been successfully

used by at least one capable high school student. Previous

programming experience is not necessary •. Early high school

mathematics is adequate, although mathematical competence beyond

this level is a good predictor of success.

THIS WORKBOOK IS
AVAILABLE FROM

Motorola Semiconductor Products Inc.
Literature Distribution Center
P.O. Box 20924
Phoenix, AZ 85036

Copyright ~ 1977 R. W. Southern.



HOW TO USE THIS WORKBOOK

The programmed notes in this workbook are for your

use at your own pace. Take your time, proceeding to the next

frame when you are satisfied with your answer, after

comparison with the answer given.

To use these notes effectively.

(a) Cover the given answer shown below the

horizontal line following each question.

A data card is very convenient for this.

(b) Read the text material given in the frame.

(c) Write your answer to the question asked.

( d) Compare your answer with the answer given and

when you fully understand any differences, if

any, proceed to the next paragraph.

For practice attempt the following question, after

covering the answer below the line. Write your answer here.

"After answering the question what should the student do?"

__------1/
Answers The student should compare his/her answer with the one

given in the workbook and, when satisfied with any
\ .
d1fferences, move on to the next paragraph.

I



BINARY AND HEX NUMBERS

Before starting please read the left page to get the
most benefit from this programmed instruction workbook.

PRE-TEST

If you are familiar with binary and hexadecimal
arithmetic operations, try the test below. If this is not
familiar to you, turn the page and start the instruction in
frame 1-1.
(a) Calculate 75 - 41, after first converting each decimal

number to its hexadecimal value, then performing the
subtraction. Verify by converting your answer back to
decimal. Write your answer on this page.

(b) Repeat (a) in binary rather than hexa~ecimal. Solutions
are on the next page.

Contd •••



PRE-TEST
Contd.

(a) Solutions 75 - 41 = 34 (decimal)
2 W 1001011 2 W

--.,.-~

2 L1Z + 1 4 B 2 ~+ 1
2 ill + 1 2 L1Q + 0

2 U+ 0 2 U+ 0

2 U+ 1 2 U+ 1

2 U+ 0 2 L! + 0

2 L! + 0 o + 1

o + 1

101001
"--w-'"-v-'

2 9

Calculate -29 then add 75. all in hex.

FF

-~

D6
+-1

D7
+4B

22 hex

~:::
o

16 = 2} " )4 decimal
161 = )2

----------------------------~-------------------------------

1

J

75 =
41 =

one's complement of 41 =

(as an 8 bit number)

x 21 = 2

x 25 =E
34 decimal

+
---~

01001011

00101001

11010110

1

= 11010111

01001011

00100010

~~
overflow

two's complement of 41

plus 75

If your answers are correct skip over to Chapter 2,
otherwise start Chapter 1 instruction on the opposite page.



plus
plus

numbers.

1-1---The number system most familiar to us is the decimal one,
in which a character has ten possible states, 0 to 9. Adding 1
to 9 results in 10, that is "0" with "1 to carry" or simply
"0 with a carry".

A decimal number 527 means I 7 units = 7
2 tens = 20
5 hundreds = 500
Total = 527

Another decimal concept to note is that 103 = 10 x 10 x 10 = 1000.
Similarly 102 = 10 x 10, 101 = 10 and 100 = 1. In fact any value,
raised to the power of zero, equals 1.

The decimal number 527 may then be expressed as,

527 ~10 used with decimal

~
~'572 x 100 = 7 x 1 = 7
~ x 101 = 2 x 10 = 20

x 102 = 5 x 100 = 500
527

Computers use the binary or two-state number system, that
is each "binary digit" or IJbit" has only two states,' 0 or 1.
Adding 1 to 1 results in 0 with a carry.

The first 3 numbers in the binary number system are 0, 1
and 10. This is seen by adding 0 1

+1 then +1

=1 =10 = 2 (decimal)
In binary add 2 + 1. Your answer should be written above

this line. Then check your answer.

___--J/
10

+ 1

=11 = 3 (decimal) 11 (binary) : J (decimal)



1-2--Now calculate the binary values for 4, 5 and 6, starting
from the binary equivalent of 3.

1 + 1 = 0 + carry
1 + c~rry = 0 + carry.

11 = J
U
100 = 4

~

100 = 4
U
101 = 5

-----/
101 = 5
U
110 = 6

In summary the binary equivalents of 0 to 6 are.
Decimal 0 1 2 3 4 5 6
Binary 0 1 10 11 100 101 110

Leading zeros could be used with the above binary numbers, if
desired, e.g., 110 = 0110 if a 4 bit number is required.

A subscript will be used from now on to denote the number
system, e.g., 1102 is the binary number 110, while 11010 is the
decimal number 110. When the number system is obvious the
subscript may be omitted.

Interpretation
101

~:

of the binary number 101 iSI

~ 2 used with binarl numbers
x 20 = 1

x 21 = 0
x 22 =..2t...

5



1-3---Determine the binary value for 8 and 9.

___--J/
8 = 1000 To verify 110 = 6 110 = 6

9 = 1001 ~ +10 = 2

111 = 7 1000 = 8
+ 1 OR + 1

1000 = 8 1001 = 9

~

1001 = 9
The second solution is more direct and also demonstrates binary
addition with a carry.

1-4-In the binary number 101, the ri"ght bit carries the
least weight and is therefore called the Least Significant
Bit or LSB. The left bit carries the most weight (22 in this
case) and is the Most Significant Bit or MSB.

In binary, calculate 6 + 4. Verify by converting
your answer to decimal.

---~/

Yes! It works.

= 0

= 2

= 0

= 8

1010

6 = 110

+4 = 100

10 1010

~l- : ~ : ~~
a x 22

1 x 23



1-5....
Calculate 8 + 7 in binary. Verify your answer by

converting it back to decimal.

/
1000 = 8 1111

+0111 = 7

lS:: 20 1x =
1111 = 15 1

2x 2 =

x 22 = 4

1 x 23 =...L
15

In summary the binary equivalents for a to 15 are:

0000 = a 0100 = 4 1000 = 8 1100 = 12

0001 = 1 0101 = 5 1001 = 9 1101 = lJ
0010 = 2 0110 = 6 1010 = 10 1110 = 14

0011 = 3 0111 = 7 1011 = 11 1111 = 15

1-6--Each bit of a binary number is assigned a bit number
which is the same as its binary exponent as shown below.

1011

"t:~~ :~
~(:bit #2
'- bit #J

What is another name for bit #J in this binary number lOll?

---_/
MSB or Most Significant Bit.
The bit number is also useful in determining the weight of each
bit in a binary number, e.g.,

.--bit #@,
110110 5)~same.

~1 x 2~



1-7.-
Let's look at a method to convert from decimal to binary.

This method involves successive division of the decimal number
by 2, noting the remainder at each stage. Conversion of 1910 to
binary is illustrated.

10011. This is obtained by reading
the remainders, bottom to top.

= 1

= 2

= 16
1910

.---- remainder2 l.!2 r
2 l2+ 1
2 IJ!.+ 1
2 13. + 0
2 l!.+ 0

o + 1
To verifyc 10011

LS~:
20

2
1

1 x 2
4

Now calculate the binary equivalent of 69 and verify your answer.

/
2 l§2 1000101 To verify
2 (l!±+ 1 ~ :1 x 2° = 1
2 lJ2+ 0 1 x 22 = 4
2 l§.+ 1 1 x 26 = 64
2 ~+ 0 6910
2 ~+ 0
2 l!.+ 0

o + 1



1-8---Convert 11710 to binary and verify your answer by
reconverting to decimal.

2 1117 1110101
2 ~+ 1

~:
x 20 = 1

2 (29 + 0 x 22 = 4
2 (14 + 1 x 24 = 16
2 11. + 0 \......,

~ 1 x 25 32=
2 f1.+ 1 1 x 26 = 64
2 L!.+ 1 11710

o + 1 11710 = 1110101 2
If you are satisfied with your progress proceed to the

next frame. If not, try another number of your own choice now.

1-9-Let's look at binary addition now. Add 6 + 7 in binary
and verify your answer by converting it to decimal.

Note that here 1 + 1 plus
a carry = 1 plus a carry.

~
111 = 7

1101 = 1)10

~'- :~ : ~~
------1..~ 1 x 23

/-----------------

= 1
= 4
= ~

1310 1310 = 11012



1-10

Calculate 5 + 7 in binary and convert your answer to
decimal to verify it.

___----J/
5 = 101

Z = 111

1210 = 110°2

~~
x 22 = 4 )

23 ) ...... 1210 = 110°2
x = 8 )

~1
101.1

1-11

Values less than 1 can be expressed in binary as in the

example below
1010 binary point

The 1 on the right side of the binary point carries the weighting
of 2-1 (or 0.510); since the binary exponent continues to decrease
by 1 for each move to the right. The decimal value is then

x 22 = 4

x 2
1 = °

x 2° = 1
-1x 2 = ~

5·5
Express 110.11 in decimal.

-------'/

can be summarized by.
111
\,,~
-1 -2 -)

2- 1 2-2 2-)

1/2 1/4 1/81248--.... 16

The weight of each bit of a binary number
11111

Bina:yexponent 4~J~~;I ~
orB~t# ~

Binary Value • 24 23 22 21 2°
Decimal
Equivalent



1-12
We'll return to the binary number system later. Mean­

while let's look at another way to express binary numbers, in
hexadecimal form (hex for short) meaning 16 possible states.

A 4 bit binary number has 16 possible states, 0000 to
1111. Expressing each of the first ten values as a single
character is quite familiar now.

0000 = a 0101 = 5
0001 = 1 0110 = 6
0010 = 2 0111 = 7
0011 = J 1000 = 8
0100 = 4 1001 = 9

The problem now is that we need 6 more characters to
express the next values, 1010 to 1111. Arbitrarily the letters
A to F are assigned to express the missing values, that iSI

The even values, A, C and E can be
remembered by the word "ACE"

1010
1011
1100
1101
1110
1111

A =

B =
C =

D =

E =

F =
Appendix A summarizes the binary
equivalents of the hex values, 0 to F.

Without looking in Appendix A, what is the decimal equivalent of
hex code E?

---_/



1-13

By breaking up longer binary numbers into groups of 4
bits each we can express them in their hex equivalents e.g.,
the 8 bit binary number

10011010 can be grouped as
1001 1010
"'-y--' .~

9 A or 9A as the hex equivalent.
Each of the 2 characters can then be a number (0 - 9) or a letter
(A - F). Express 11000011 in hex and mark bit #6 of this
binary number.

___-1/
, -bit #6

C3 ~ ~ ---iJ' 11000011

C 3 76543210 4-bit #

Hex codes are very popular with 8 bit microprocessors,
such as the 6800, with 2 hex characters equalling 8 bits or
1 byte. If for some reason only 7 bits are used in a binary
number, a leading zero may be added to fill out the 8 bits, e.g.,

1011101 =~~!l~
5 D

1-14

Express each of the following binary numbers in hexi

11000101 1111000 111011

___--.J/
11000101 ~1~10~
~-v--'----.....' ~

C 5 7 8
With a base of 16 the hex number 78 equals,

78 ,-;:- 16 used here for ~ numbers.

l'- : 8 x 16° = 8
7 x 161 = 112

12010

The hex number 78 can be expressed as 7816 to avoid confusion
with the decimal number 7810 , a different value.



1-15
Express each of the following hex numbers in binary

and in decimal.
D4

39
6A

D4 = ~91~
D 4

D4

\ ~D4 x= 16
0

= 4
'-. 13 13 x 161 =

'1. 21210208)

39=~~

3 9 9} 57 1048

6A = W10!Q,
6 A 10 10 x 16° = 10} 106

.... 6 x 161 = 96 10

1-16

Addition in hex can be challenging, although the problem
does not exist for computers since they work in binary. Hex is
for our convenience in expressing binary numbers.

One solution is to convert to binary, add the numbers
and convert the answer back to hex, possible but not the fastest
way. If we had 8 toes on each foot we could count on our toes
to add. Did you ever consider why our number system has a base
of ten?

The solution proposed is the use of the number line.
until you become more familiar with hex addition.
For example. 9 + 3 = C

start here~"';",--count J to the right to get "C II

o 1 2 J 4 5 678 9 ABC D E F 0 1 2 345 6 7 8 9 ABC D E F

Going beyond F produces a carry
e.g., D + 5 = 1216 , that is 2 plus a carry.

start~

o 1 2 J 4 5 6 7 8 9 ABC D E Ff F1 2 J 4 5 6 7 8 9 ABC D EF

to o. Contd .•.



1-16
Contd-

Using this principle show that A + 9 = 1316-

--_--.J/
start 1 2 3 4 5 6 7 8 9

8 9 ABC DEFt0 1 2 J 4

'- carry produced
in going from
F to o.

To verifyl
A = 1010
9 = 1001

1 0011
~

1 3 = 1316

start·

1-17
Now add C + 9 and verify your answer by adding the

decimal equivalents.

___---..J/
1 2 3 4 5 6 7 8 9~~------5 plus carry = 1516

ABC D E F 0 1 2 345 6 7

C = 1210
9 = -2..­

2110
~---- agrees



1-18

Now add 7 + D and verify your answer by adding in
decimal.

start 1 2 J 4 5 678 9 ABC D
,~

7 8 9 ABC D E FlO 1 2 3 4 5 6 7 8
~4 plus carry = 1416

To verify 1416
,,-~4 x 16° = 4 7 = 7

1 x 161 = 16 D = 1310
2010 2010

....... agrees~
It would have been easier to add 7 to D rather than D to 7.
The answer still is 1416 •

1-19
Add the hex numbers C and D. Verify your answer.

start
c

c =
D =

4-- agrees ~



1-20
To add 2 column hex numbers each column is added

separately, as in decimal. If the right column produces a
carry it is added to the left column

e.g.. 2F

ill
42
(: : F

2
++ J

1
+== 2 plus carry

- ~ carry = 4
Add the hex numbers JE + 27.

JE
+27

65

l: :E
J

+ 7 =
+ 2 +

5 plus carry
carry = 6....

___---.J/

1-21
Add the hex numbers 4D and 25.

--_----.1/
7216 4D

~

7216
~. :: D + 5 = 2 plus carry

4 + 2 + carry = 7
To verify we'll convert all data to decimal
4D16 = 4 x 161

+ 1J x 16° = 64 + 1) = 7710 77

2516 = 2 x 161
+ 5 x 160 = )2 + 5 = J7 10 !-12

7216 = 7 x 161
+ 2 x 160 = 112 + 2 = 11410 ~1f~------~"~ 11410agrees



1-22
Subtraction involves moving to the left on the number

line, e.g., D - 5 = 8 as seen below

5 4 ) 2 1 start
~

o 1 2 ) 4 5 6 7 8 9 ABC D
For the moment we will avoid "borrow" operations.
Calculate B - 7.

---~/4 7 6 5 4 )

o 1 2 ) 4 5 678 9 A B

start

1-2)

If we are to handle subtraction we have to recognize
negative numbers since 9 - ) is actually 9 + (-). Consider the
number line for an 8 bit binary number. Expressed in hex it

extends from 00 to FF (0 to 25510 )

00 01 02 - - - - - - FD FE
t

FF

the result, still using 2 hexHowever, if 1 is added to FF
characters (8 bits), is FF

+01

1 00
carry---1{

or 00, the carry being lost as an overflow, outside the 8 bit
limit. The question now asked is "What number, when 1 is
added to it, becomes O?" The answer is -1. By definition
therefore FF = -1. We now reconstruct our number line

-1 0 +1 +2
I I I ,

- - - - FD FE FF 00 01 02 - - - - - - - -
What is the value of FD based on this number line?

___-J/
-) Since FD + ) = 00 (carry is outside the 8 bit limit)
This new number line is called a signed number line since it
permits both positive and negative values.



00 8E CA

-----'/

1-24

Continuing with the signed number line if the leading
bit (MSB) of the 8 bit number = 1, that is 8 or more for the
first hex character, the number by definition is negative. The
extent of this signed number line is shown below in decimal,
hex and binary.

-..............
~ ~

~ ~--....... -...-127
10

..- ......--.. __ +127
10

-12810 ~ -) -::2 -:'1 ---+1 - +2 - +) +12~10 ~

~• II I I l II 1- I
80 81 FD FE FF 00 01 02 OJ 7E 7F

\..100000002 01111111
2
J

The extent of this signed number line is then -12810
to +12710, Based on this number line which of the following
hex values are negative,

7A 94 F2

All except 7A and 00 are negative. having a leading hex
character 8 or larger. If converted to binary all except 7A and
00 would have 1 as a leading bit.

If a larger range is needed for the signed number line
16 bits (2 bytes) could be used, again providing negative
values if the leading bit equals 1. This is sometimes referred
to as a double precision value.



F-1~

ABCDEF
~,

F -3 = c
CF

-----I...... FF

.::1!
CE

1-25
To determine the negative value for the hex number 31

is more difficult. A procedure shown below is based on the 2's
complement arithmetic used in binary subtraction.
The procedure then iSI

- Start with the largest possible hex value
(ignoring the sign)

- then subtract the number
using the number line approach

- then add 1

OF now equals -3116

To prove it the sum of OF and 31 should be zero in 2 character
hex format. Prove it.

___---J/
CF

ill
100

~ =F + 1 = 0 + carry
C + 3 + carry = 0 + carry
carry, which is ignored as an overflow

CF = -3116

1-26
Determine the hex value for -5D and prove that it is

correct by adding +5D to it.

/
FF

-5D
A2

.:!:....!
AJ = -5D

D C B A 9 8 ? 6 5 4 3 2 1 start
2 J 4 5 678 9 ABC D E F

~start

In the top row a more direct subtraction
is seen in that F and D are separated by
2, hence F -D = 2.

To check AJ
+.2Q

carry~

1 00



1-27

Now calculate -6C and verify it.

E
4

6c
100

carry)

------/
To checkl

~start
9ABCDEF

~start

FF

-6C
93

U
94

-6c = 94

1-28

The "two hex character" value of -) is FD. If 4
characters are used to express -3. prove that -3 = FFFD.

the value of _.) using 4 hex characters, the

Similarly a 6 character representation would be
FFFFFD.

----'/

FFFFFC
+ 1

FFFFFD

FFFFFF
3

Using 6 hex characters
-) equals

FFFF

=---1
FFFC

~

= FFFD

FFFD

.:..-..J
1 0000
~ carry.
To determine
procedure is

Almost all our work will employ 2 hex characters only.
For 6 hex characters () bytes) the signed number line would
extend from 80000016 (most negative) to 7FFFFF16 (most positive) ..



1-29

We now have the capability to subtract in hex since
72 -JD is actually 72 +(-JD). Once -3D has been calculated the
hex addition will produce the answer. Try it.

____-----J/'
FF largest hex value

-JQ
C2

+ 1 plus 1

CJ = -3D
+1£ now add the 72

1 J5 answer
~overflow ignored

To checkl
If 72 -)D = 35 then 35 + 3D = 72

35
+3D

72

Iro verify further we will convert all data to decimal.

72 = 7 x 161 + 2 x 160 = 112 + 2 = 11410~

3D 3 x 161 + 13 x 160 48 +
11410 -61 10 = 5)10

= = 13 = 6110 ~

35 = 3 x 161 + 5 x 160 = 48 + 5 = 5310
~agrees



1-;0

Let's try one more subtraction. Calculate E; -DC.

-----/
FF

-DC
2;

.!...1
24 = -DC

+E3

07

To verify.
OR

E; is already a negative number

Ej = -lD16 = -2910

DC is already a negative number too

DC = -2416
Therefore -DC = 2416 = 3610

EJ - DC = 07
-29 - (-j6) = 7

FF
-E3

1C

.!...1
1D

FF

-DC
2;

.!...1
24

This shows that subtraction is valid with positive negative or
mixed numbers. Errors will occur if the result goes beyond the
range of -12810 to 12710, the limit of an 8 bit signed number.



/
To check 57 16 = 5 x 161

+ 7 x 160 = 80 + 7 = 8710

2C = 2 x 161
+ 12 x 160 = 32 + 12 = 4410

Total 4310

2B = 2 x 161 + 11 x 160 = 32 + 11 = 4310

1-31
Now calculate 57 -2C and verify your answer in decimal.

FF
-2C

D3
U

D4
ill

1 2B

1-32
As a variation, let's reverse the data in the last

question. Calculate 2C -57.

- __--J/
D5 or -2B FF

.:.i'Z
A8

U
A9

+2C
D5

But D5 is a negative number. To find its positive equivalent.
FF

-D5
2A

.!.J.
-2B

Therefore D5 = -2B, the same answer but the opposite sign,
compared to the previous question, since the data was reversed.



1-))

To complete this section let's review it all within
several questions. Given two decimal numbers, 47 and 7),
calculate the sum by converting to hex, adding, then converting
back to decimal. Verify by decimal addition.

--_-----.J/
2 I 47
2 I 2) +1

2 l!! +1

2 U +1

2U +1

2 L! +0

o +1

101111

= 00101111
~~

= 2 F

2 17)
2 l.1£ +1

2 W +0

2 L...2 +0

2 L2t +1

2 U +0

2 L...! +0

o +1

1001001

= 01001001
'---v-- .-....--'

= 4 9

start 1 2 J 4 5 6 7 8 9
~-v--.""~I"~V~
F 0 1 2 J 4 5 678

2F

+49

78

l~ :7
8

x 16
0

= 8
x 161 = ill

12010



1-34

Now perform the following decimal subtraction 83 -52
by converting to hex, subtracting, then converting to decimal.
Verify in decimal.

___-----J/
2W
2 I 41 +1

2 I 20 +1

2 L1Q +0

2U +0

2 U +1

2 L.!. +0

a +1

1010011

= 53 16

2 L2£
2 ; 26 +0

2 W +0

2U +1

2U +0

2 L.! +1

o +1

110100

= )416
\.

FF )

~/
CB

.:!:..-!
CC = -)416
ill

1 1F

1F = 1 x 161
+ 15 x 16° = 3110 At last! It agrees.



1-35
Binary subtraction is not essential if you can subtract

in hex. However it is included to complete the arithmetic
operations in both formats. From a previous hex example,

D -5 = 8
D = 13 = 1101
5 = 5 = 0101

1101
-0101

1000

Now add the
minuend 1101

As in hex subtraction start with the number to be subtracted,
0101 in this example. Complement it , that is each 0 becomes 1

and each 1 becomes o. Then add 1. This will produce the neg­

ative value of the original number (-5 = 1011 below).
0101

becomes 1010
plus 1 .:!:..-!

= 1011 =-5
+1101 ill

1 1000 = 8
{overflow or carry is ignored.

This subtraction is limited to 4 bits as shown above.
Now calculate 1210 - 710 in binary.

--------'/
1210 = 1100
710 = 0111

-7 = 1000 1100
+ 1 ~+1001

1001.-J 1 0101

= 12

= =2.
= 5

Perform the following 8 bit subtraction &

11010111 (215 decimal)
-10110100 (180 decimal)

--_/
Contd ...



= -18010
+21510

3510

1-36
Contd.

10110100 = 18010
complemented = 01001011

plus 1 + 1
01001100

+11010111

(
1 00100011
overflow

If your data is in hex form already it is more direct
to subtract in hex. If the data is in decimal and conversion
has to be made to binary first, it is your choice whether you
subtract in binary or hex. If the answer is needed in hex, then
hex is preferred.

1-37
Here is the last question for this chapter. Calculate

in binary.
10110100

-11010111

-------/
11011101 which equals -3510 •

This is the previous question

e.g., 18010 - 21510 = -3510
Details are. 11010111

00101000
+ 1

00101001
+10110100

11011101

with the order reversed.

( 21510 )
(complemented)

(two'S complement) = ~21510

(+18°10)
(which is a negative answer)

To calculate its positive value.
11011101
00100010

+ 1

00100011 = 3510
Therefore the answer 110111012 = -3510



2-1-ACCUMULATOR OPERATIONS

The 6800 microcomputer is capable of a simple task such as
the addition of two numbers or a complex task such as the control
of a piece of electronic equipment. In both cases the task is
defined by a series of instructions to the computer, usually
referred to as a program.

Many program formats exist, the most fundamental being
machine code in which a series of 8 bit words are entered in the
computer via switches on the front panel of the computer.

The next level up is the expression of each instruction as
2, 4 or 6 hex characters, permitting entry via a keypad which ha~

one key for each hex character. This still is a form of machine code.

For longer programs it is very tedious to generate hex
codes for each machine language instruction. The solution is
to write the program in assembly language, in which each
instruction is in an abbreviated English format. The computer
itself then converts this assembly language program to machine
code, using a ready-made program called an assembler.

Higher still in the hierarchy of program format~.. are
languages like BASI~, oriented to mathematical calculations in which
algebraic-like statements, including trigonometric functions, are
interpreted into many bytes of machine code for execution by the
computer.

Our interest in this workbook is in assembly language and
machine code programs which link the computer to keyboards, printers,
displays, communication devices and external electronic instruments.

Within the 6800 microprocessor (computer without memory or
interfaces to external equipment) there are two "accumulators", A
and B. Within each accumulator 8 bits of data can be added, sub­
tracted or modified via many different arithmetical and logical
operations.



2-1
Contd.

One of the simplest assembly language instruction is
"CLR A", formed from "CLeaR accumulator A', meaning "put a zero in
each of the 8 bits of accumulator A." The machine code for CLR A,
expressed in hex, is 4F. (You don't have to remember the machine
code. )

Write what you think is the assembly language instruction
to clear accumulator B.

-------'/
CLR B, which in machine code is 5F. This instruction
can be written CLRB, omitting the space. Similarly CLR A can be
written CLRA. Machine codes for all assembly language instructions
are provided in Appendix C, at the end of this workbook. Instruc­
tions involving accumulators are on the first page of Appendix C.

2-2--If a hex value such as 2C is to be loaded into accumulator
A the instruction is

LDA A #$2C (LDA A = LoaD Accumulator A) •
The # symbol denotes that data follows immediately within the
instruction. The $ symbol denotes that the data is in hex format.
After this instruction is executed, the contents of ACC·A is

---' '-- C .7

since the LDA A instruction overwrites any previous contents of
ACC A.

The instruction LDA A #$2C is formed of 2 parts.
LDA A (called the operator)which tells

what happens (loading of ACC A),
#$2C (called the operand) which provides

the data to be loaded.

Contd. • •



2-2
Contd .

•

Such an instruction requires 2 bytes of machine code.
LDA A, when followed by the # symbol is known as an immediate
mode instruction; its machine code, 86, is found under the
"IMMED" column, opposite LDAA in Appendix C. The second byte
of the instruction contains the data to be loaded, 2C. Hence
86 2C = LDA A #$2C. Write the assembly language instruction
and machine code to load ACC B with the hex value 7D.

---~/
LDA B #$7D C6 7D
Appendix G summarizes the use of special symbols such as # and $.

2-)

Write the instruction to load ACC A with the hex value
4D. Also write the machine code.

--_--....../
LDA A #$4D 86 4D

t 86, the machine code for the "operator" part of
the instruction is also known as an operation code, commonly
called the "op code".

The operand value, 4D, is also the code for the letter 00,
based on the ASCII (American Standard Code for Information
Interchange) code, listed in Appendix B at the back of this
workbook.

For practice use this table now to confirm that the
ASCII code for Z is 5A, under column 5 opposite row A.

A spare copy of the Instruction Set is provided at the
end of this workbook. It may be convenient to cut out this
sheet, for use with each problem, instead of continually looking
in the appendices.



2-4-Write the assembly language instruction and machine code
to load ACC A with the ASCII code for the number 8. See Appendix B.

LDA A #$38 86 38

~from Appendix B - ASCII codes.
The ASCII codes for the numbers 0 to 9 are easy to remember,
being 30 + N where N = 0 to 9.

Another form of the immediate instruction to load an
ASCII code is seen in

LDA A #'Z (note the apostrophe)
in which the apostrophe denotes that the ASCII code for the letter
Z is to be loaded. Hence the computer on assembling (converting to
machine code) the above instruction automatically provides the
desired ASCII code for the second byte of the machine code instruc­
tion. The resultant machine code is still 86 SA since this is still
an immediate mode instruction. Such an instruction in which the
computer provides the appropriate code for the desired character is
often referred to as a "literal" instruction.

Write the literal instruction and the resultant machine code
to load ACC B with the ASCII code for the number 7.

LDA B #'7 c6 37
'- opposi te LDAB under Il'fiMED in Appendix C



2-6.--.
Now write two instructions, the first to load ACC A with

the hex value OF, the second to load ACe B with the ASCII code
for the letter F (using a literal). For each instruction provide
the machine code on the left side of the assembly language

instructions.

___----.J/
86 0F
C6 46

LCtA A #$0F
LCtA B #"'F

The first instruction loads a hex value, OF, into Ace A.
The second loads an ASCII code for the letter F into Aec B. If
the difference is not clear, please reread the question and answer.

If the above two instructions were executed in the order
listed ACe A would take on a value, OF, and ACC B a value of 46.
This example although trivial shows the beginning of a program,
a series of instructions executed by the computer which modifies
the contents of an accumulator or a memory location (discussed
later).

2-7.....
Write the assembly language instructions to load ACC A

with the ASCII code for A and load ACC B with the hex value OA.
For each provide the machine code.

86 41.
C6 0A

LCtA A #'''A
LCtA E: #$0A

_-----J/
OF.: LDA A #$41.

Again note the distinction between a hex value and an ASCII code.

The above machi~e code and instructions are part of an
assembler listing, the printout produced by the assembler when

converting assembly language instructions to machine code.



2-8........
The addition of 2 hex values, JF and 27, in ACC A can be

performed by

4F elf;,: A
#$3F'" (Adds JF + 0 = )F in ACe A)E:B 3F ADD A

88 27 ADD A #$27 - (JF + 27 = 6616 in ACC A)
\....Y-' .~
machine assembly

code language
instructions

Rewrite the. above, using 2 rather than J instructions, again
providing the machine code.

-----~/
86 3:F
88 27

LOA A #$3:F
ADD A #$27

This method is preferable to the one
above since it is shorter.

2-9
~

The memory of a computer, where data is stored, can be
envisaged as a series of mail boxes, each with a 4 character hex
address, e.g. l4D5, and the capability to store one byte of data.
'rhe instruction

LDA A $12B7 (no # this time)
loads ACC A with the 8 bit contents of address 12B7, without
destroying the contents of 12B7. Such an instruction is known as
an EXTENDED mode instruction, requiring one byte for the operator
(LDA A) and 2 bytes for the operand ($12B7). Hence LDA A $12B7
becomes B6 12B7. The B6 is found under the EXTND heading, opposite
the LDAA instruction in Appendix C. The total number of bytes

required {J} is found two columns to the right of B6, under
the # column.

Contd •.•



2-9
Contd.

Write the assembly language instructions and machine code
to load accumulator B with the contents of address 06E4.

-------.1./
F6 06E4 LDA B $e6E4

If address 06E4 contains JF then ACe B will contain )F after
execution of this instruction. In the above instruction
LDA B is the operator while 06E4 is the operand, denoting
the data source.

2-10
Write the assembly language instructions to add the

contents of memory addresses lCOO, lCOl and lC02, the answer
residing in ACC B. Provide the machine code •...

F6 1.cee
FB 1.C01.
FB 1.C"32

LDA B
ADD B
ADD B

$1.C~10

$1.CI2I1.
$1.Ce2

-------'/

2-11
The accumulators are used for many purposes within a

program. Data, after being processed in an accumulator, usually
is stored in a memory location, e:',g.,

STA A $064c
which stores the contents of ACC A in address 0640 but does not
destroy the contents of ACC A. This instruction, referencing a
4 character hex address, also is "extended" mode. Write the
machine code for the above instruction.

___--J/
87 12164(:·l .... · 'address

STA A (extended mode)



2-12
Write the assembly language instructions and machine code

to add the hex contents of addresses 14no and 14D1. then store
the sum in address 14D2. without using ACC A.

If 14no contains JE (14DO/JE) and 14Dl contains B5 (14Dl!BS) ,
what will the hex value in address 14D2 be when this program is

executed?

___--J/
F6 1.400
FB :1.40:1.
F7 1402

LOA B
ADD B
STA B

$14De
$1.4D1.
$1.4D:2

(ACe B/JE)
)E + B5 = F)
14D2/FJ (ACC B still contains F3)

start 1 2

BeD E FlO
start-~4

JE

+B5

FJ

2-1J
To place a particular value in a particular memory address

it is first necessary to set it into Aee A or B. With this in mind
write the assembly language instructions and machine code to put
the hex value JB in address 12EJ.

___--J/
86 3B LDA A #$38 }_ assuming use of ACC A.
87 1.2E3 STA A $1.2E3

Such a procedure is known as initializatio~, providing a particular
memory address with an initial value, for use during a program.



2-14
Write the assembly language instructions and machine code

to initialize address 0439 with the ASCII code for the letter G,
with the computer providing the ASCII code.

---~/
86 47
87 (1439

LDA A # ..013
STA A $0439

Again it is not necessary to memorize the machine code for the
instructions. However, the 86 and B7 values will soon become
quite familiar.

2-15

The instruction SUB A $1524 subtracts from accumulator A
the contents of address 1524. Write the assembly language
instructions and machine code tOI

(a) ADD the contents of addresses 13C4 and 13C8
(b) then SUBTRACT from this the contents of address 13CA
(c) then STORE the result in address 1)CC.

_------..1/
B6 :1.3C4
BB 1.3C8
Be 1.3CA
87 :1.3CC

Lr..A A
Ar..[) A
SUB A
STA A

$1.3C4
$:1.-"-'8 )

:-~~ ) -assuming use of ACC A
$1.J:I_oA )
$13CC



2-16
An instruction which will produce the negative value of

the contents of ACC A is
NEG A (NEGate accumulator A).

If ACC A contained 04 before execution of NEG A it would contain
FC (-04) after execution. The machine code or operation
code (op code) is 40 as seen in Appendix C opposite the
2's complement (Negate) instruction.

Like the CLR A instruction NEG is under the
INHERent column, being complete within itself; that is it
does not require another byte for the operand.

Write the assembly language instructions and machine code
to store the value -JC in address 095A.

___-----J/
86 3C LDA A #$3C
40 NEG A
87 1!:195A STA A $t195A

Address 095A now contains 04 (-JC)

2-17
Memory addresses referenced in an instruction normally

require 2 bytes (4 hex characters) to describe them, e.g.,
LOA A $12A6, requiring an EXTENDed mode instruction. Memory
addresses below 10016 require only 1 byte to describe them, as
is seen in a DIRECT mode instruction, e.g.,

LDA A $4A
which loads ACC A from address 004A. The machine codes for
DIRECT mode instructions are in Appendix C. For the above
instruction the machine code is

96 4A
'-v-' "-v-'

L address 004A
LDA A (DIREC'! mode)

Contd ..•



2-17
Contd .

•

Write the instruction to store ACC B in address 66 using a
DIRECT mode instruction. Write its machine code.

---_/
STA E: $66

Aside from requiring fewer memory locations to stor~ the
instruction a DIRECT mode instruction requires fewer machine
cycles to execute as seen in Appendix C. Large programs often
use addresses below 100 as a "scratch pad" storage area, e.g.,
for storage of counter values, or temporary storage of a byte
of data. Use of this area of memory saves memory bytes and
reduces execution time.

2-18

The instruction TAB transfers the contents of ACC A to
ACC B. Similarly TBA provides the reverse transfer. Using as
few instructions as possible, swap the contents of the two
accumulators. Memory addresses below 10016 are available (use
DIRECT mode only). Write the assembly language instructions
and machine code.

---_/
97 50
1.7
[)6 5~3

STA A $50 (or your choice of address)
TBA
LDA E: $5~ (or your choice of address)

Q) 50~
A/ B4Q)

Counter-clockwise execution of the above flow diagram would
utilize TAB (op code 16).



2-19
Accumulator A can be incremented (1 is added to it) via

the instruction
INC A (INCrement accumulator A)

for which the op code is 4C.
Similarly DEC A (DECrement accumulator A) will decrease

its contents by 1. Its op code is 4A. Accumulator B also can
be incremented or decremented.

Calculate the contents of each accumulator after the
following instructions are executed.

CLR A

CLR B

INC B

ADD A #$2C
ADD A #$16
TAB
NEG A

INC A

/
Ace A Ace E:

ClF.: A fl
ClF.: E: 0 f,1

INC E: f:t i
ADD A #$2C 2C :1
ADD A #$16 42 1
TAB 4'-' 42.::.
NEG A BE 4'-:'0::..

INC A ElF 4'::-..-

FF

-42
BD

.±-!
BE

Therefore -42 = BE

ACC A/BF
ACC B/42



2-20

Sometimes it is necessary to clear (force to 0) or set
(force to 1) specific bits of an accumulator, without disturbing
the other bits of the accumulator. This is accomplished via the
AND and ORA operating on the accumulator. The AND instruction
clears specific bits while the ORA instruction sets specific
bits. The instruction

AND A #i5A (machine code 84 SA)
performs the "logical AND" operation (not addition) bit by bit
with ACC A and the data SA being inputs and ACC A holding the
result.

---~/

1 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0

0 ,

In the "logical AND" operation each bit of the result
will be 1, if and only if both the corresponding inputs are 1.
Looking first at bit #7, below, one of the two inputs has a zero.
Therefore bit #7 of the result is zero. Complete the bottom line
showing the contents of ACC A after the AND A #$5A instruction is

executed ~
bit #7 J r1 - ACC A (before)

-5A
- ACC A (after)

1 1 1 0 1 1 0 0

0 1 0 1 1 0 1 0

0 1 0 0 1 0 0 0

~ \. \. \,,, 1.. result is 0 since
"'--- ~_.;z-..-__--a._-.a_~ at least one of the

inputs is o.



2-21
If address 14A2 contains 70, what will ACC A contain

after execution of
LDA A $14A2
AND A #$BF

0 1 1 1 1 1 0 0

1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0

----/JC

7C
BF

=

=

7 6 543 2 1 o ...-bit II

L{Contents of 14A2
to ACC A

= 3C

Bit #6 is guaranteed to be zero regardless of the contents
of address 14A2 since the "mask word", BF contains a zero in bit #6.
The result can be shown as

XOXXXXXX
where X denotes the original data in ACC A before the AND
operation. If the purpose of this operation was to clear bit #6
of the data in address 14A2, the modified data would then be stored
back in address 14A2 by another instruction, STA A $14A2.

2-22
Write the assembly language instructions and machine code

to clear bit #3 of the contents of address 1256.

-------'/
Contd •••



2-22
Contd.

o ...bit #
Contents
of 1256

1234

1

7
x

~I---X-=---~~~-T--~
~ contents

L[:IA A $:1256
AND A #$F7
5TA A $1.256

86 :1256
84 F7
87 1.256

X represents undisturbed data
· # . X"- 0 0B1t3 = 0 S1nce • =

symbol for J
logical AND

" X could be 0 or 1

If X = 0, then 0.0 = 0

If X = 1, then 1.0 = 0

Therefore X.O = 0

All other bits are unchanged since
X.l = X If X = 1, then 1.1 = 1

If X = 0, then 0.1 = 0

Therefore X.l = X
~ ,

same as before

2-23

Similarly all bits, except a specific bit, of a
particular. address can be cleared by the appropriate "mask word".
Write the assembly language instructions and machine code to clear
all bits, except bit #6, of address 065E.

---_/
86 f165E LOA A $065E
84 40 AND A #$40
87 t165E 5TA A $~~165E

iii bit #6
(40 = 01000000)

Since only bit #6 of the mask word = 1, then only bit #6
of the original contents of 065E will be retained. All other bits
of the result will be zero. This technique will be used extensively
later in this workbook.

The above AND instruction could be rewritten in terms of the
binary value of the mask word e.g.,

AND A #%01000000

The % symbol indicates that a binary value will follow. This form
is often useful to both the programmer and the user in quickly
determining which bits are cleared.



2-24----An ASCII code, produced by an external device, such as
a keyboard requires only 7 bits to describe it. The 8th bit
(bit #7) may be 1 or 0 depending on the particular data source.
Assume that an ASCII code is now in ACC A. Write the assembly
language and machine code instruction to clear bit #7 of the
ASCII data. Use the binary version of the mask word in your
answer.

___----J/
84 7F AND A #~0~11~~1~

Note that the machine code instruction is still expressed in hex
even though the assembly language instruction uses a binary mask
word.

In summary a 0 is used in the mask word of an AND

operation for each bit that is to be cleared. All other bits of
the mask word are 1.

2-25
We have seen how to clear specific bits. Let's look at

a method to set specific bits. For this purpose the "logical
OR" operation is used (sometimes called INCLUSIVE OR). Given 2
bits as inputs the logical OR output will be 1 if either the
first input OR the second input OR both inputs are 1. Stated in
logical form ~z ~C + D~

output 'one tlOgical other
input OR input

symbol
(not addition)

The instruction ORA A #$08 will perform the logical OR operation
with ACC A contents and the mask word, 08, as inputs. The result
will reside in ACC A. If 144A contains $CA, what will be the
result after execution of

B6 144A IDA A $144A
8A 5C ORA A #$5C

Contd •..



Ace A/DE 7 6 5 4 3 2 1

2-25
Contd.

O~bit #
CA =

5C
1 1 0 0 1 0 1 0
0 1 0 1 1 1 0 0
1 1 0 1 1 1 1 0 = DE

The mask word 5C (01011100) with a 1 in bits #2, J, 4 and 6
ensures that these bits are set, regardless of the original
data in address 144A. All other bits remain the same.

2-26
Write the assembly language instruction and machine

code to set bits #2 and #7 of the data in address o6A4, without
changing the other bits of this data. Use binary format for
the mask word.

----_/
86 06A4 LDA A $€16A4
E:A E:4 OF.:A A #~'-;::t ~~1 ~j~~UZ1:t(10
87 €16A4 STA A $06A4

In summary a 1 is used in the mask word of an ORA operation for
each bit that is to be set. All other bits in the mask word are O.



2-27

Now set bit #3 and clear bit #5 of address 16n6. Use
binary format for the mask words.

----'/
86 1.6D6
E:A 08
84 DF
87 16D6

LDA A
OF.~A A
AND A
5TA A

$1.6D6
#:..~00001.000
#~·~:11.0:11.:111

$:16D6

set bit #3
clear bi t #5

Ix [ X 1 0 I X 1 1 I X I X I xl
X = unchanged bit

2-28

Once more now! Set bits #7, 6 and 2 of address lA42
and clear bits #1 and 4. Assume that each bit controls the
lights for one room in an 8 room house. Provide both assembly
language and machine code instructions.

------'/
86 1.A42 LDA A $:lA42
:3A C4 OF.:A A #~'~110~~n~1100 (Set 7, 6 and 2)
f=:~+ ED AND A # ~.~1 :11€1:11 ~~11. (Clear 4 and 1)
6''7 :1A42 5TA A $:1A42.'1

Although this is the end of the "Accumulator Operations"
chapter several other accumulator operations will be introduced
at a more appropriate place, later in this workbook. You are
probably ready for a change from "bit bashing". Time for a coffee!



)-1---SYMBOLIC ADDRESSING

So far we have used absolute addresses e.g., 1A42 for
storage of data. When writing in assembly language this is not
desirable for several reasonsl

- until the program is assembled the addresses available
for data storage may not be known.

- if many addresses are used for different purposes it
becomes difficult to remember the purpose of each
address while preparing the program.

- if a program is later modified certain addresses now
used for data storage may not be available, requiring
re-assignment of storage addresses.

The solution is the" use of a "symbolic address" rather
than an absolute address e.g.,

STA A COUNTR
which stores ACe A contents in an address carrying the symbolic
address eOUNTR. ~e absolute address will be determined when the
instructions are assembled into machine code and printed on the
resultant listing. Meanwhile the programmer can continue to use
the symbolic address as if it were an absolute address.

To present an everyday analogy one might suggest meeting
for lunch at "Dan's Place" (a symbolic address), whereas Dan's
Place might be at 146J Main Street (the absolute address).

Write the assembly language instructions to initialize
the symbolic address COUNTR with the hex value JC.

------.;/
LDA A #$3C
STA A COUNT~:



3-2......
Symbolic addresses generated by the programmer can be

up to 6 characters long, the first character being a letter and
all subsequent characters being a letter or a number. It is
good practice to choose a symbolic address which describes the
function, COUNTR perhaps being a counter to keep track of the
number of events that take place when the program is executed.
The only illegal symbolic addresses are A, B and X, the first two
being previously assigned to accumulators. Single letters for
symbolic addresses are almost meaningless and should be avoided.

Write the assembly language instructions to set bit #5
of STATUS, without changing any other bits.

LDA A
ORA A
STA A

STATUS
#~0010e000

STATUS

Only after the above instructions are assembled into machine code
will we know the absolute address for STATUS.



)-)-When the computer assembles an assembly language
program, it needs to know at what address to start. in assigning
each byte of machine code to a memory address. The ORG (origin)
directive to the assembler, in the example below, designates the
starting address. e.g .•

O~:G $0200
LOA A #$3C
STA A COUNTR

This will cause the following address assignments for the
resultant machine code, assuming that COUNTR corresponds to
address 024)

0200/86

0201/;C

0202!B7

0203/02
0204/4)

}- LDA A #$JC

} - STA A COUNTR

To minimize the amount of paper, produced by the assembler. the
address printed is for the first byte of each instruction. e.g.,

0200 :36 3C
02~12 87 0243

LOA A #$3C
STA A COUNTR

Write the assembly language instructions and machine code
to clear bit #4 of STATUS, which corresponds to address 124E.

Start the instructions at address 1200. Show the addresses.

___----J/
ORG $1200

:1.200 86 124E LOA A STATUS
1.2~13 84 EF AND A #~~1.1.1.011.11.

1.205 87 1.24E STA A STATUS

A very common error is omission of the $ symbol. which
causes the assembler to interpret 1200 as a decimal number
in the above example.



3-4......
To reserve a memory byte for a specific symbolic

address, the assembler MUST be directed to do so. In this
program
0200
0200 86 3C
0202 87 0243

0243 0001

ORG
LDA A
STA A,
J
I
I

COUNTR RM8

$0200
#$3C
COUNTR

1

The last line, COUNTR RMB 1 (Reserve Memory Byte - 1 only)
causes one byte (address 0243) to be reserved and recognized as
the symbolic address COUNTR.

This symbolic address, COUNTR, contains data and must not
be embedded in the middle of a group of instructions where its
contents would be interpreted as an instruction, rather than data.
Such an error is seen in this examples

0200 ORG $0200
0200 86 4F LOA A #$4F
0202 87 0205 STA A COUNTR
0205 COUNTR RM8 1

Here COUNTR (address 0205) contains 4F after the first two
instructions are executed. The next instruction would then be
from the next address, 0205, whose contents is now 4F, a CLR A
instruction. It is the execution of the program which determines
whether the contents of a memory address is treated as an
instruction or data.

To avoid the above p~oblems the symbolic address
COUNTR is located outside the group of instructions forming this
part of the program, as in the first example.

No answer is required in this frame



3-5
~

Write the instructions to initialize DATA5 with the
value A4. Start this program at address 0400 and show a complete
listing, noting" that DATA5 corresponds to address 0462.

___-----.J/
040f1 OF.:Ci $t:.::140~Z1

t14~~1t1 86 A4 LDA A #$A4
13402 E:7 ~3462 STA A [)ATA5

13462 0130:1. DATA5 F.:MB :1.

" • " , ""...,I" .. J

Label Operator Operand Comment
Field Field Field Field

The 4 fields of an assembly language program are seen above.
The operator and operand have been discussed previously. In
the bottom line we see DATA5. a "label". that is a "symbolic
address in the label field". In preparing assembly language
programs. labels start in the first column of the line, while
operators (LDA etc.) start in the 8th column. It is only
necessary to space over 1 column rather than 7 to start the
operator (LDA etc.) since the assembler, on noting the absence
of a label. will automatically print the operator in the 8th
column. Similarly short labels (less than 6 characters) need
only to be terminated by one space; the assembler again will
start the operator in the 8th column. A sample source program
before assembly is shown below.

$12~n3

A STATUS
A #;'~:1:1.:t€11.1:t1

A STATUS

ind"ented one
space to start
in the Operator
Field.

NAt'1 CiENPF.:O
OPT 0 .. 5
OF~Ci

LDA
AND
STAfor Label Field r

start first column :
, ORG $:t24E
'~STATUS FeE:

END

t
st

1 column

$FF
.-:..-.-

It is legal to
have more than
one ORG directive
within a program.



3-6---The comment field, mentioned on the previous page,
permits entry of comments to improve the readability of a
program. e.g.,

L.DA A
STA A

#$2£1
NU'·...ALU

INITIALIZE NUVALU
WITH :2£1 (DECIMAL

.... Commenf Field

Such comments are ignored by the assembler but printed on the
resultant listing. One space is all that is needed to separate
such a comment from the operand field.

A good program should begin with a brief description of
its purpose and perhaps some of its internal details. Whole
lines of comments are legal if the * symbol appears in column 1
of each comment line. These too are ignored by the assembler
but printed on the listing. Both examples are seen below.

:+:

:+: PROGRAM TO OUTPUT TEN CHARACTERS
:+: TO THE LINE PRINTER.
:+: VERSION 38 77/11/12 RWS
:+:

LDA A #$£1A
STA A COUNTR

INITIALIZE COUNTER
WITH 0A (1£1 DECIMAL)

One assumption to make when programming is that someone
else without your help will have to modify your program several
years from now. For this, documentation in the form of good
comments is essential. To put it more bluntly. if it is not
worth documenting it is not worth doing. There will be lots
of opportunity to practice this in the next chapter. No answer
is required in this frame.



3-7
~

Three other directives are needed to form a complete
program. These plus the ORG directive are illustrated below.

NAM HEXCHK
OPT 0 .. 5
ORG $04013

•I
I
I

Program
Instructions

END

The entry following NAM, up to 6 characters long, is a program
name, generate. by the programmer. It will be reproduced at the
top of each page of the assembler's listing, aiding in program
recognition.

The OPT (option) directive has many possible entries.
The 0, above, requests an object (machine code) file to be
produced. Depending on the computer system this file may be
stored on paper tape, cassette, diskette or some other medium.
The S entry requests a symbol table, a list of all symbolic
addresses along with the corresponding absolute addresses, at
the end of the listing.

The last directive is END which terminates the assembly
language program. Without looking up, try to list the 4
necessary directives for a program.

- __---J/
NAM OPT ORG and END.



3-8---To practice use of these directives write a program
called CLRALL, starting at address 0400, to clear both
accumulators. Yes, it is a ridiculous program.

NAt1
OPT
OF.:G

__-----...1'/
Cl~:ALl

0., S

:+:
:+:ClRALl. . . CLEARS 80TH ACCUMULATORS.
:+:

1214121121 4F ClR A A TRIVIAL PROGRAM
121401 5F ClR 8

END
To save space in this workbook the directives will not normally
be shown in the listing, but will be assumed.

Note that END only tells the assembler that this is the end
of the program. It does not halt the program, when it is
later executed.

)-9
~

01121121

12Ij,0~3 4F
e1~:::11 5F

EF~ROR 2~39

12111212 ~:::1€1 0£1€1€1
€11~35 87 £1427

NAM PROG68
OPT 0 .. S
OF.:G $1211121121

:+:
:+: F'3:-9
:+:

ClF.: A
elF.: E:

lOA #$4A
STA A $~3427

:+:
END

In this listing
the assembler has noted
ERROR 209 for the
instruction LDA #$4A.
Can you find the error?

The instruction should be LDA A #$4A or LDA B #$4A.
Assembler Error Codes, such as ERROR 209. are explained in
Appendices Jl and J2.



4-1
INDEX REGISTER

Each accumulator is capable of holding 1 byte, represented
by 2 hex characters. If 2 bytes are to be referenced we use the
Index Register which holds 16 bits (2 bytes or 4 hex characters).
The instruction

LDX #$lF2D (an Il~~Diate mode instruction)

loads the Index Register with the hex value lF2D.

The instruction sequence

021Z10 CE 1.F2D
0203 FF 131.6C

LC'::-::
ST:x:

#$:1.F2D
$016C

initializes 2 bytes of memory with iF and 2D via the Index
Register. Address 016c receives 1F while address 016n
receives 2D, as shown below.

I I
016B 0160 016D ~memory address

Machine codes for Index Register instructions are on the second
page of Appendix C.

Write the instruction sequence to initialize 2 bytes of
memory, 14C4 and 14C5, with the hex value 0640. Include the
corresponding machine code.

---~/
1!:11.0~3 CE ~:::164€1

1Z11.03: FF 1.4C4
LD:X:
sr::<

#$1Z164f.1
$1.4C4



4-2
~

Initialize 2 bytes of memory, lC80 and lC81, with the

hex value 2C40. Include the m~chine code.

----/
CE 2C4e
FF 1.C8£1

LDX
ST>::

#$2C4121
$1.C8121

The result iSI 1C80/2C
1C'81/40

(lC80 contains 2C)
(lC81 contains 40)

~
A symbolic rather than an absolute address may be used

to store the value, e.g.,

CE 1.5D6 LDX
FF 1211.6121 STX

f

••1211211212 LISTOP RMB

#$1.5D6
LISTOP

2

(a) Why does the above example use RMB 2 rather than RMB 11

(b) Initialize a symbolic address POINTR with the hex value
1C60. Omit machine code this time.

___---J/
(a) 2 bytes are necessary to store the 2 byte value 1506.
(b)

(an lOOMED instruction)LD>:: #$1.C6£1
ST>~ POI NT F.: (an EXfND instruction),
I

POINTR F.:t18 2

le goes into POINTR
60 goes into the next address above POINTR.



4-4--The instruction STX POINTR+l stores the contents of
the Index Register in the next address above POINTR. Write an
instruction to store the Index Register contents in memory, 3
addresses below CONREG.

FF 14A2 5r::·:: CONREG-3
--~/

If CONREG correponds to address 14A5, the Index Register contents
are stored in address 14A5 - 3 = 14A2, as is seen in the machine
code of this listing.

This could be accomplished, one byte at a time, via
accumulator operations; however the above approach is preferred
because of its simplicity.

4-5-Another use of the index register is seen in

LD::-:: #t1E55ACi
5T::·:: PO I NTFt~

which stores the address, not the contents of MESSAG in the
2 byte address, headed by POINTR. If MESSAG corresponds to
address lBJ4, what will be the contents of POlNTR after
execution ofl

LD~< #t1ES5AG-1
5T::-:: PO I NT F.:

Write the machine code for these two instructions assuming
POINTR corresponds to address lB6A.

-----------"/
lB3J Since MESSAG corresponds to address lB34, then
MESSAG-l corresponds to address lBJJ.

132130 CE 1833
121203 FF 186A

LDX
STX

#MESSAG-1 ~ lMMED MODE (USES #)
POINTR



4-6
~

If TOPBLK corresponds to address lAOO and contains 0)
while TOPBLK+l contains 80, what is the 2 byte contents of
U~MPNT (and MEMPNT+l) for each example below?

19FF
lAOO -1 = 19FF, one
address below lAOO,
now stored in MEMPNT
and MEMPNT+ 1.

___---i/
0)80

The 2 byte contents of
TOPBLK and TOPBLK+l is
0)80, now stored in
MEMPNT and MEMPNT+l.

I
I,

t'1Et'1PNT F.:t1E:

#TOPE:LJ(-:1
t'lEt'1PNT

2

LD>~

ST>::
I
I
t

t'1Et'1PNT F.:t1E:

TOPE:LK
t1Et'1PNT

2

4-7
~

The instruction
CLR :3,X

is interpreted as "Calculate a new address which is the sum of
the Index Register contents and the offset, :3 in this example,
then clear that memory address." The above instruction could
be written as

CLR $3,X
although the $ is redundant for values of 7 or less.

If the Index Register contains l)E4, what address has
its contents cleared by CLR :3,X?

___---.-.1,/
l)E7 X / 1)E4

+ 3
IJE7 = address operated upon by CLR ),X

This mode of instruction is known as Index Mode. The
instruction CLR X is also an Index Mode instruction, being
a legal contraction of CLR O,X. If X contains 2400, the
instruction CLR X will clear the contents of address 2400.
Similarly LDA A X is a contraction of LDA A O,X loading
ACe A with the contents of the address now in X.



4-8-Write the assembly language instruction to store the
contents of ACC A in address 24C0 when the Index Register
contains 24AO.

--_/
STA A $20.. >~

24Co
-24AO

20
Offsets are positive only, 00 to FF, the offset FF producing a
new address 255 10 above the address contained in X. Symbolic
offsets, e. g. ,

LDA A OFFSET,X
are valid, the value of OFFSET being determined at assembly time.
If OFFSET equals $14 via the assembler directive

OFFSET EQU $14
the result would be the same as execution of LDA A $14,X.
Assembler directives are normally located at the top of a
program, to improve readability

4-9..--
Machine code for Index mode instructions are found

under the INDEX column in Appendix C. Note that
LDA A 3,X (op code A6)

requires 2 bytes as seen by the 2 under the # column, 2 columns

to the right of A6. What does the second byte denote? Take
a guess. Attempt to encode the above instruction in machine
code.

--------/
The second byte contains the offset value, 03 in this case,

e.g., ~~~

LDA A offset
(Index Mo de)



4-10
The 2 byte contents of the Index Register can be

incremented (1 is added to it) via the instruction
INX INcrement indeX register (08)

Similarly, DEX DEcrement indeX register (09)
will decrement it.

Write the assembly language instructions to increment
the contents of MEMPNT which now contains the hex value 19FF.
What will its new contents (2 bytes) be after the above
incrementing?

___---J/
LD>!. t'1EMPNT
INX
STX t'1EMPNT
t
I
I

MEMPNT RMB 2 (If not already present in
the rest of' ·the program.)

This J line sequence will be used many times in this workbook to
increment a 2 byte value in memory. Note that the Index Register
(X) still contains the incremented value, 1A00 in the above
example, after STX MEMPNT is executed.

Another application of Index Mode is seen in code
conversion, such as ASCII to Baudot, where each ASCII value
is separated in memory from its Baudot value by 8016 addresses.
Once the address of the ASCII value is known, the corresponding
Baudot value is obtained by the instruction LDA A $80,X



4-11

To store a message such as "START CARD READER" in
memory, it is not necessary to load and store each ASCII
character of the message. The sequence below will store each
required ASCII code and terminate the message with a null (00).

MESSAG FCC ISTART CARD READERI
FeB ~3

FCC (Form Constant Character) is a directive to the assembler.
ordering the storing of the appropriate ASCII codes. Two
identical characters are required to define the boundaries of
the message. The slash (/) is popular for this since it is
not usually used within a message.

FCB (Form Constant Byte) directs the storage of a hex value.
00 in this example, to denote the end of the message. Note
the difference between null (00) and the ASCII code for
zero (JO).

Such message entries generate a lot of unnecessary
printing at assembly time as each ASCII character of the
message is listed. The OPT directive NOG (NO Generate)
eliminates the ASCII code listings but includes the printed
message. e.g., OPT O.S,NOG (at ~he top of the program).

Noting the above message, intialize POINTR with the
address one below the start of the message.

-----/
LD>c:
STX
I
I
I

POINTR Rt1B

#MESSACi-1.
POIr'~T~:

2



4-12
Store the message "ENTER DATA" in memory headed by the

label MESS04, and terminated by a null. Initialize MESPNT with
the address one below the start of this message.

-----/
LDX
ST>!'
I
I
I

t1ESF'NT F.:t1B
t'lESS04 FCC

FCE:

#MESS(14-:1.
t'1ESPNT

2
/ENTEF.: DATA/
~~1

One other assembler directive, available but not required above
is FDB (Form Double Byte) e.g.,

FDB $1433,$7
which in this case stores 14 and 33 in 2 bytes, then 00 and 07

in the next 2 bytes. This directive stores an open ended
string of 4 character data, each separated by a comma.

4-13
What will be the contents of ACe A after execution of

the instructions shown below?
LDX #MESS04-1 INITIALIZE POINTER WITH
STX POINTR ADDRESS MESS04-1
LD::'!, PO I NTF.:
I~~i::

ST::< PO I NTF.:
LDA A >!, GET CHAR VIA :;.~

~

i
POI NTF.: Rt1B .-..::.
MESS(14 FCC .·...ENTER DATA/

FCE: ~3

---_/
Contd ...



4-1:3
Contd.

45, the ASCII code for E in the message ENTER DATA.
POINTR initially contains the address MEsso4-1. After

the second STX POINTR is executed, both POINTR and X contain
the address corresponding to MESSo4. Hence E (ASCII code 45)
is the first data retrieved via LDA A X.

The above sequence, with additions, will be used many
times in this workbook. The advantage of starting with
MEsso4-1 rather than MESSo4 is that X points to the start of

the message when LDA A X is executed the first time.

4-14

If address 12A6 contains C4 (12A6 / c4) the instruction
LDA A $12A6

loads ACC A with C4, the contents of address 12A6.

If address 14AS and the next address contain l2A6

(14A5 / 12 and l4A6 / A6) then

LD::·:: $:14A5
LDA A ::.~

X.·... :12A6
A,.··C4

also places e4 in ACe A, this time via an "indirect" manner,
with X containing the address of the data, 12A6, after execution
of LDX $14A5. Hence this is commonly known as an "indirect" or
"deferred" memory reference.

This process can be extended further. Given the
following initial conditionsl

lCSO / l4A5
14A5 / 12A6
l2A6 / C4

the instructions
LDX $lC50
LDX X
LDA A X

will also place C4 in ACC A via a "double deferred" memory
reference. Before execution of LDX X, X contains 14A5t This
instruction, LDX X, loads X with the contents of the address
now in X, that is with l2A6 the contents of l4A5. The last
instruction then loads C4, the contents of 12A6, into ACC A.



4-15--The main point of this chapter probably needs review again.
If X / 13C4 where is the data stored when STA A X is executed?

----....,,/
in address 13C4. The best way to interpret this instruction is
"store the data in Accumulator A via X". that is X points to the
destination •

4-16
~

If X / 02AE and 02AE / B5 what will ACe B contain after the
instruction LDA B X is executed?

---_/
B5 Accumulator B is loaded via X, that is from the address
now in X. This time X points to the source of the data.

4-17.....
If X / 267E what is compared when the instruction eMP A X
is executed?

----/
The contents of Accumulator A is compared with the contents
of address 267E.



5-1-BRANCHING - ASSEMBLY LANGUAGE

Computer programs in which instructions are executed in
a simple linear manner are almost non-existent. In fact many
decisions are made by computers, in executing a typical program,
to determine what to do next. A program with decisions in it is
described as follows.

The computer may be required to determine if the ASCII
code, now in Ace A corresponds to a valid hex chal'acter t

e.g., 30 to 39 for 0 to 9 or 41 to 46 for A to F. Invalid
characters are to be rejected. Valid ASCII codes are to be
converted to their corresponding hex value, e.g., 39 becomes 9
or 46 becomes OF.

In eliminating invalid ASCII codes the computer must
first eliminate all values below 30. The instructions

COOP A #$2F (CoMPare acc A to 2F)
BLS BADHEX (Branch if Lower or Same to BADHEX)

will do this. If the value in Ace A is lower than 2F or the
same as 2F, the program will branch to BADHEXa that is the
next instruction executed will be the one carrying the label
BADHEX.

If the value in ACC A is JO, the ASCII code for 0,
what will happen "after execution of the above 2 instructions?
Take a guess if necessary.

---~/
No branching will take place. The next instruction executed
will be the one following BLS BADHEX.



5-2-If the first test was passed (no branch since the ASCII
value was 30 or greater), the next test is to check for values
greater than 39, the ASCII code for 9. If the value is 39 or
lower, the program should branch to NUMOK. otherwise it should
continue. Write the instructions to ·do this noting the avail­
ability of the instructions I

BLS - Branch if Lower than or Same
BHI - Branch if HIgher than
BRA - BRAnch unconditionally.

---_/
Ct'1F' A #$39
BLS NUt10K o TO 9. VALID HEX

The conditional branch instructions BLS and BHI treat
the ACe A contents as an unsigned number, that is all values,
00 to FF are considered positive.

By having available both BLS and BHI (opposite instructions)
the programmer can either choose to branch or not to branch when a
specific condition is met.

So far the program is.

HEXCHK CMP A #$2F
8LS 8ADHEX MUST BE BELOW 30
Cr·1P A #$39
BLS NUMOK MUST BE 30-39

•••
Nur'10K,

I
BADHE}!,



5-)-For ASCII codes )0 - 39 we want the hex values 0 - 9 in
ACC A. What instruction, starting at the label NUMOK will do
this, e.g., when key 5 on a keyboard is struck the final contents
of ACe A will be 5, not 35. The program should go to GOODHX when
the correct value is in ACC A. Again assume that the ASCII
code is already in Ace A when the program starts. Show only
the program additions.

--_----.J/
NUt10.::: SUE: A #$3:~3

E:F.:A 1100DH~-::

or
NUt'10K SUB A #···0

BF.:A GOODH::<
We now have a

HEXCHK Ct1P A #$2F
E:LS E:ADHE:X: t'lUST BE E:ELOl,~ 3:(1
Cr'1P A #$3S1
E:LS NUr'10k: NUST BE 3:~~1-3:9

GOO[)H:X:
I
I
I

NUNOK SUE: A #$30
BRA GOODH:X:

BADHE>::



5-4---Now screen for values A to F. Valid characters in this
group should be converted from their ASCII code to their true
hex value, e.g., OA when A is struck. For valid characters
continue to GOODHX, the next line, after this conversion. For
invalid characters branch to BADHEX.

_----..J/
cr'lP A
BLS
Ct1F' A
BHI
SUE: A

#$40
BA[)HE>~

#$46
BADHE>::
#$37

t1UST BE 3:A-4~3

MUST BE GREATER THAN 46
41-46 NOt,J 0A-~3F

END OF ROUT I NE.

The ASCII code for A is 41, for which the hex value is
OA. The ~i:ference is 37, which when subtracted from 41 gives
us OA. S~m~larly when F is struck, 46 - 37 = OF. Calculations
are shown below.

ASCII for "A"
(-37)

FF 41
-OA

j
.+F6

F5 1 37
U

F6 = -OA

When A is struck 41
+C9

1 OA

~ hex code for A



5-5-The final version of this routine (let's call it
HEXCHK) iss

HEXCHK. .. CHECKS IF CHAR NOW IN ACC A
IS VALID HEX CHAR~ THAT IS 121-9 OR A-F.
ENTER WITH ASCII CHAR IN ACC A.
RETURNS WITH 4 BIT EQUIVALENT HEX IN ACe A IF VALID

HE::-::CHK C\"'lP
BLS
Ct'lP
BLS
Ct1P
BLS
Ct'1P
BHI
SUE:

CiOODH::·:: I,
I
l

NUt10K SUB
BF.:A

BADHE::·:: ,
I
I

BADt1ES IFCC
FCB
END

A #$2F
BADHE~':: t'lUST BE BELOl.oJ 3:f~

A #$3:9
NUt'10K t'lUST BE 3:€1-3:9

A #$4~3

BADHE::·:: t'lUST BE 3:A-4~3

A #$46
BADHE>:: t'lUST BE CiF:EATEF~ THAr·~ 46

A #$3:7 4:1-46 NOf..J f1A-0F
END OF ROUTINE.

A #$3:121
CiOODH~'::

lNOT I",'ALID HE::·::..···
~3

What would happen if the first line was CMP A #$301

---_/When 0 is struck on the keyboard the ASCII code 30 would result.
The first 2 lines would then cause a branch to BADHEX (normally
reserved for invalid characters), since BLS BADHEX recognizes
that the code produced is the same as 30. Such an error where
a branch instruction is incorrect for one value, is very common.
Hence a programmer should manually check for boundary values,
0, 9, A and F in the above program.

The label GOODHX could provide an instruction JMP NEXT,
jumping to the next program segment. The BADHEX section could
be temporarily terminated by the instruction BADHEX BRA BADHEX,
an instruction which loops back to itself, preventing execution
of "left over" code in that memory address.



.5-6--Modify this HEXCHK program to include the necessary
assembler directives, this time calling the program HEX2C and
starting it at address 1E40. Show only the first and last

lines of the program.

-------'/
NAr'1
OPT
OF.:G

HE;<:CHI< Cr'1P A
i
I

BADHE>::

HE::-::2C
0 .. 5
$1E4€1

#$;~:F

END

Note that all 4 directives appear in the operator field. The
first label of the program does not have to agree with that
used with NAM. The latter usually designates which version is
listed, e.g., version 2C in this example. Updating the version
number when changes are made is a very effective way of denoting
which listing is the latest, an absolute essential as programs
evolve.

.5-7
~

To understand better how the branch instructions
operate one must be aware of the Condition Code Register (CCR)
in which each of the 6 assigned bits may be set or cleared
according to each instruction executed.

12:345 °....- bit #
'I""----::'-~---+----r-__+-__r-__-__r

Condition Code
Register

For example bit #0 is the CARRY or C bit which will be set if an

8 bit addition produces an overflow, the C bit behaving as the
9th bit. The C bit can be set under other conditions, seen later.

Contd •••

Bit #1, the oVerflow or V bit, is set if a 2's complement
(signed number) arithmetic operation produces an answer exceeding
the range of -128 10 (8016) to +127 10 (7F16)' the available range
using an 8 bit signed number.



5-7
Contd.

b

The Z or Zero bit (bit #2) is set when a zero is produced
in a memory or accumulator operation, e.g., CLR A or CLR MEMPNT.

The N or Negative bit (#3) is set when a resultant
leading bit = 1, implying a negative value in the accumulator or
memory.

The I bit will be treated in the Interrupt chapter.

The H bit is used internally by the DAA instruction for
BCD arithmetic operations. (Details in Appendix K )

Each instruction executed affects the CCR bits as noted
in the right column of Appendix C where the state of each CCR
bit, after the execution of each instruction, is shown. For
example, CLR A will clear or reset (R) the N, V and C bits and
set (5) the Z bit. The dot implies no change. The vertical
arrows for the eMP instruction imply conditional setting or
clearing of these bits. For example, CMP A #$72 produces a
subtraction (ACC A minus 72) which sets the Z bit if the result
is zero or sets the N bit if the answer is negati~e an~or sets
the V bit if a two's complement overflow took place_

Detection of the Z bit status is achieved via
BEQ - Branch if EQual (Equal to Zero if no other

. reference named)

or BNE - Branch if Not Equal

as seen in
DEC A

BEQ ALLDUN
which branches to ALLDUN if ACC A = 0- Similarly BNE branches

on non-zero results when
LDA A SUBTOT
AND A #$C2
BNE t'1ATCH

is executed. Will branching occur assuming SUBTOT/JE? What is
the Z bit state,

___-.--J/
Yes branching will occur since C2-3E = 2 (not equal to zero),
clearing the Z bit and causing a branch via BNE MATCH.



---_/

~
Will the following instructions cause a branch to HIT

if KEDATA contains 291

LDA A I<E[:.ATA
AND A #$D6
E:NE HIT

NO KEDATA = 00101001

D6 = 11010110

LOGICAL AND = 00000000

Since the result is zero the BNE instruction (Branch if not
equal to zero) will not cause a branch to HIT. The Z bit will
be set.

5-9..-
The instructions I

LDA A CONTF.:O
E: IT A #$4~~1

E:NE HIE:IT
perform the logical AND on CONTRO and 40, without modifying
ACC A. The CCR bits are affected and branching to HIBIT will
occur if bit #6 of CONTRO = 1 (not equal to zero).

XXXXXXXX CONTRO
01000000 40

t
Bit #6 is only bit of CONTRO tested.

Since the BIT instruction does not destroy the original
contents of ACC A, several bits can be individually tested,
permitting multiple branches.

Write the instructions to branch to RECEIV if bit #0 of
SERCSR is set or to TRANS if bit #1 of SERCSR is set; otherwise
continue.

---_/
Contd •••



LDA A
BIT A
BNE
BIT A
BNE
I,
J,

SEf;,:CSf;,:
#$0:1
F.:ECEIV
#$(12
TRANS

5-9
Contd.

5-10
Write the instructions to test bits #2 and 3 of SPEED,

branching to LSPEED if bit #2 is set, to HSPEED if bit #3 is
set or to STOPIT if both bits are cleared. Assume that both
bits will not be set at the same time.

--------'/
LDA A SPEED
BIT A #t::€1000:1:1~3(1 CHECK FOR 00
BEQ STOPIT
BIT A #~"~€10~3(1(11€1€1 CHECK FOF.: BIT #2=:1
BNE LSPEED
BIT A #~";:€100€1:1~300 CHECK FOF~ BIT #3:=:1
BNE HSPEED
I
I

I

Note that all bits of ACC A, "viewed" via the mask word, must
be zero to set the Z bit of the CCR. Hence both bits #2 and #3
of SPEED must be zero to branch to STOPIT via the above test.
The above instructions could be part of a speed control routine
for a machine, the individual bits of SPEED being controlled by
the machine's push buttons, connected to the computer.



5-11....-
Further branching operations will.be seen in a program

to clear a group of memory locations. In the program below,
what is the initial contents of MEMADD? What address will be
first to be cleared?

~3200 CE 23FF LOX #$240£1-:1.
0203 FF (12613 STX t'1Et'1A[:.0
132136 FE ~326e t'10F.:CLF.: L.D:X: t'1Et1ADO
132139 08 INX
e;;:~eA FF 02613 STX MEt'1AOD
132(10 6F 00 elF.: :=-!.

020F 2(1 F5 E:RA t'10F~CLR

132613 OF.~J3 $02613
0260 01302 t1Et1AorJ Rt1E: .~

.:!.

--_-----:/
Initially MEMADD contains 2JFF (2400 - 1 = 2JFF).
INX will increment X to 2400, the first address to be cleared
via CLR X.

5-12
What address will be cleared when CLR X is executed the

second time? Explain, starting at MORCLR (second time through
here). When does this clearing operation cease?

-----/
Address 2401
When MORCLR LDX MEMADD is executed the second time X contains
2400. After INX, X contains 2401 which is stored via STX ME~~DD.

CLR X then clears address 2401.

This clearing operation will continue until the above
program is partially overwritten (cleared) by its own operation.
We need a method to break out of this loop after a specific
address is cleared. If the suspense is killing you, check the
next page!



5-13
The CPX (ComPare indeX register) instruction compares

. t t t t some 2 byte reference value, e.g.,the Index Reg1s er con en s 0

CPX #$24C7
or CPX HIVALU

Only 2 branch instructions are valid after CPX, BEQ or BNE.

Modify the previous program to exit from the loop after

address 240F is cleared.

---~/
02(U~1 CE 23FF LD::< *$240~1-1 THIS F'F.~OGf;.:At'1 CLEAF~S

€1203 FF ~1260 ST:X: t'lEt'lAD(:t AND LOOPS BACK
(12~~16 FE €1260 t'10RCLF.: LDX t1Et'lA[)(:l UNTIL t1Et10F~'T' A(:l(:tF~ESS

€1209 ~j8 IN>:: 240F Ie CLEAF.:ED-'
020A FF ~3260 ST::< t1Et1ADD AFTEF~ I.oJHICH E~,::IT

1!:12~3D 6F e0 CLF.: X TAKES PLACE
0;;::0F E:C 240F CF'>~ #$240F
0:.:!::1.2 26 F2 E:NE t10RCLR

:+:

026~3 OF.:G $~1260

~3260 ~~U~102 t1Et1ADD F.:t1B 2
END

While it is true that the Index Register could remain the pointer
throughout this program, without using MEMADD, we are looking
ahead to programs where the Index Register is used for several
purposes inside one loop, requiring retrieval and storage of
each memory address pointer each time it is used.



5-14---How many memory locations will be cleared by the
previous program?

---_/
1016 or 1610

After CLR X is executed JL Hof addresses cleared
1st time 2400 1
2nd time 2401 2
Jrd time 2402 3

15th time 240E OF 16 (1510)
16th time 240F 1016 (1610 )

Tables like this are useful to ensure that the exit from a loop
takes place at the correct point, not one loop too soon or late.
For example, if the problem was to clear 2016 locations such a
table ensures that 241F is the correct reference address for the
exit.

5-15-Modify the previous program to clear 10010 memory
addresses, starting at address 2400. Show only the changes.

-----"/
CPX #$2463 is the only change.

10010 = 6416
Memory Address

2400
2401

# of addresses cleared
1

2

2462
2463



5-16....-
What would be the effeci~ if the label MORCLR appeared

opposite the first instruction, e.g.,
MORCLR LDX #$2400-1

rather than in its present location? Refer back several frames
for the program.

---_/
The program would be re-initialized after each loop, hence it
would clear address 2400 each time in a continuous loop. This
is a fundamental error which ev~ybody makes at least once,
including you and me. The only question is when. More important
though is to be aware of this potential problem. The solution
can be summarized by

LOOPBACK IS ALWAYS BELOW INITIALIZATION
Initialization in the previous program sets up MEMADD with 2;FF,
its initial value. The program loops back to MORCLR, below the
initialization in the original program.



5-17
Good programming requires good planning. While many

planning methods are advocated today, one of the simplest and
most effective is the flow chart, shown below.

\N'T'AL.lZE
At>t>ResS
POIWTE'R

PO, NTEs:l-r X
INCPo..EMENT

ANI>
SToRE

CLEAR
MEMORY
IU)I>R£SS

HAMEl> v,~ X

Note that a flow
chart depicts
functions, not
specific instructions.

Here operations such as initialization, clearing,
storing, etc., are shown inside rectangles. Decisions are
depicted by diamonds which have multiple exits, the chosen
path depending on the decision made.

A good flow chart represents the major effort in
preparing a program. Converting it to instructions, once you
are familiar with the instruction set, should take less time
than flow charting. A flow chart is also useful in documenting
a program for use by future users.

No answer is required in this frame.



5-18
The program to clear 6416 locations could be handled by

using a counter, with an initial value of 6416 , which is
decremented after each address is cleared. Exit would then take
place when the counter is zero. Flow chart such a program.

---------/
IN'T"'L.12G

- COUNTE'I\
- ADI>P.'ESS

><.= UPDATE E>
At>OR6SS

CLEAR MSM
AOl>RESS

DECReME'NT
COU~Te~

To next part of longer program.



5-19
Now write the program to clear 10010 (6416) locations,

starting at address 1200. The program itself is called MEMCLR
and should start at address 0800. Include the necessary
assembler directives. The instructions INC or DEC may be

~

useful to you.

--_-----..1/
1218121121

NAt'1
OPT
OF.:G

t1Et·1CLF.:
0 .. S

MEMCLR... CLEARS 1121121 (DECIMAL) MEMORY LOCATIONS
STARTING AT 12121121. USES X.

1!:18f1f1 B6 64 t1Et'1CLR LOA A #$64 OR LDA A #:1.(1121
121:=:1212 87 12126121 STA A COUNT INIT COUNTEF.:
f18~35 CE 1iFF LD>:: #$12e~3-1

0:=:1218 FF 121261 ST::·~ t1Et'1ADD SET UP ADDF.:ESS PO I NTEF.:.
(1E:eB FE 121;;;:61 t'10F~CLR LO::-:: t1Et'1AOD
eE:eE 1-3:::: IN::~

0E:I-3F FF 0261 ST>~ r1Et'1A[:'D GET ADDF.:ESS
1!:1812 6F e~3 CLF.: ::.~ AND CLEAF.: IT
1218:14 7A 12126(1 DEC COUNT LAST ADDF.:ES5?
1218:17 26 F2 8NE t10F.:CLF.: NO. TF.:'T' AGAIN

f
t

1!:126~3 ORG $12126(1
12126121 01211211 COUNT Rt1E: :1
0:;~61. 00~:::12 t'1Et1ADD F.:t1B 2

END

COUNT could have been incremented from 0, exit taking place when
count equals 64. Down counting is preferred since it is easier
to detect zero than a specific value (CMP A #$64). Both,
however. are valid.



5-20

In the previous program the task was to clear an
address. In the next program the task is to count the number
of addresses, 0900 to 09FF inclusive, which contain zero. This
time the task itself will contain a decision, to count or not
to count. First flow chart, then write the program.

---~/

ACC B, if available. could
have been used as the counter.

C\.1:AR COUNTeR.

".'T f\DDRESS
POIMTSR

X =UPbATE.D
ADDRESS

0200 7F 0262 ZCOUNT CLR
0203 CE 0::::FF LD:~

1212"~6 FF ~126121 ST::-::
0209 FE €126£1 t'10~:CHK LD;:'::
020C £1:::: IN:>::
£12£1(:1 FF 026121 ST::-::
"32:1£1 A6 "3121 LDA A
£12:12 26 ..33 BNE
1212:14 7C 121262 INC
02:17 E:C e9FF SI<IPIT '::F·::.::
02:1.A 26 ED BNE

I

•
13260 OFi:G
f126"~1 1210132 t'1Et'1F'NT ~:t'1E:

0262 00€1:1. BLANK Rt'18
END

BLANt<
#$1219£1£1-:1
t'1Et'1PNT
t1Et'lPNT

t'lEt1PNT
X
SKIPIT
BLANK
#$"~19FF

t10RCHK

$0260
2
:1.

EMPTY COUNTER

INIT ADDRESS POINTER

GET NEXT ADDRESS
GET ITS CONTENTS
NOT ZEF~O

GOT ONE
LAST ADDFi:ESS?
NO. BACK AGAIN



5-21

When the possible count exceeds 255 10 (FF 16 ) two bytes
will be necessary to contain the number of bits. A problem in
incrementing a 16 bit (two byte) counter exists when the low
byte overflows to zero, at which point the high byte must be
incremented, e.g., ~

~ Least Significant
Before ~ 00000010 11111111 Byte
After

Incrementing~~ ....oooo~oo~
Count Count +1

Modify the previous program to count the number of addresses
containing zero in the address range 0900 to 10FF inclusive.
Show program changes only.

---~/
Before After

ZCOUNT C:LF~ BLANK ZCOU~~T CL~~ BLANK
I CL~~ 8LANt<+1.
I •I
I INC BLANI<+1.
I BHE SKIPIT
INC BLANK INC BLANK

S~(IPIT CPX #$09FF S~(IPIT CP:X: #$:10FF
I
I,

BLANK Rt1B :1- BLANK Rt18 2

·rhis process can be extended

to a J byte counter.



5-22
The Index Register also can be used to increment a

2 byte counter. What changes would you make from the previously
modified program to use the Index Register to increment BLANK?
Again show only the program changes.

Before
---_/

After

INC
BNE
INC

SKIPIT

BLANK+i
SKIF'IT
BLANK

LDX
IN>~

STX
SKIPIT

BLANk:

BLANK

If BLANK is to be tested or compared later. the Index Register
will be needed for that operation. Hence the second solution,...
using the Index Register. is preferred.

The second solution shows how the Index Register can be
used for many tasks within a program since the updated value
(after INX) is immediately stored in memory. releasing the Index
Register for another task.



5-23
Assume that the instruction JSR GETCHR, a subroutine

call which we'll examine in detail in a later chapter, puts the
ASCII code for the key, struck on a keyboard, into ACC A. Use
this instruction within a looping type program to store in memory
the ASCII codes for the keys struck. Start storing data at
address 1200. When the! key is struck. exit from the loop
without storing this terminator character. First flow chart
your program.

___-----01'/
STOASC... STORES ASCII CODES FROM KEYBOARD
IN SUCCESIVE MEM ADDR STARTING AT ~200.

! TERMINATES PROGRAM.
CALLS GETCHR. USES A AND X.

2
Here the test takes place before
the task, to avoid storing the !

character.

#$1.2f10-1.
ADDRES INIT POINTER
GETCHR GET ASCII CODE
# .., !
ALLDUN MUST BE !
A[:'D~:ES

\NIT
"1)1)RESS
PO'"T&~

GET CHAR

x: UPoA,eo
PO'HTER

STORE CH"~

GETCH~: EG~U

STOASC L[:'~:

5T:)~

GETt'10F.: JSF.:
Ct'1F' A
BEG!
LD::"~

IN::·::
ST::<
STA A
BRA

ALLDLIN

ADDF.:ES Rt1B

$~F00

ADDRES
.........
GETt10~:

UP[:'ATE ADDF.:ESS
AND STORE ASCII CODE
AN[:a BACK AGA I N.



5-24
Branching instructions recogn~z~ng signed (~) values area

BGE - Branch if Greater or Equal
BGT - Branch if Greater Than
BLE - Branch if Less than or Equal
BLT - Branch if Less Than
BPL - Branch if PLus
BMI - Branch if MInus

Flow chart a program to count the number of
occurrences of values between! 2616 inclusive, within the
memory range 0800 - OBFF inclusive. Manually check your program
for proper branching for values of !26 and ±27.

---_/
SET up L'M'TS
I N I" ADOk POINT
CLEAR COUNTER

)(: UPDATED
ADDRESS

GET CONTE"'TS



5-25
From your flow chart on the previous page, write the

program.

___..----.J/
MEMCHK. . . COUNTS OCCURRENCES OF +26 TO -26 HEX
IN MEM ADDR 0800-0BFF INCLUSIVE

02121121 86 26 t1Et'1CHK LDA A #$26
£12~32 87 £1271 STA A HILIt1 SET UPPER CHECK VALUE
0205 4~3 NEG A
021216 E:7 02;~0 STA A LOLIt'l SET LOI.a~EF.: CHECt< '·.·'ALUE
02~39 7F 1-3274 eLF.: HIT
1-320C "("F &::1275 CL~: HIT+:t
t!.120F CE 07FF L.D>:: #$080121-1
~:::1212 FF 0272 ST~-.:: t'1Et'1PNT INIT PO I NTEF.:
121215 FE 0272 GET8'T'T L[:IX t'lEt1PNT
"32:18 fiE: IN>-~

~3219 FF ..:::12?2 ST~<: t1Et'lPNT GET NE>::T ADDF.:E5S
021C A6 &::10 LDA A >~ GET CHAF.:
t12:tE 8:t £1271 Ct1P A HILIt'1 ....-..-...._... ~t.:. 'f

£1221 2E ~:::1C BGT NOHIT IF SO IGNOF.:E IT
£1223: 8i "32(?~:::1 eMP A LOLIt'1 <26?
~1;;;::26 2(:' €1~::' BLT NOHIT IF SO IGNOF.:E IT
..:::122:=: FE €1274 LD::< HIT
"3228 121'=' IN~<:- t_,

€122C FF £1274 ST~"t, HIT ADD i TO HIT
"::1~:2F FE (127:2 NOHIT LD:~ t'1Et1PNT
0232 8C €1BFF CF'>~ #$0E:FF
k1;;::3:5 ~:6 DE BNE GETBIT'T NO.. BACI< AGAIN

£12';:'0
02710 '3(11.::11 LOLIt.., F~t"'B 1
10271 121001. HILIt1 F.:t·lB :1
0272 a;:n3f12 t1Et'lPNT Rt1B 2
0274 ~:::n3f12 HIT F.:~18

.-.
~



5-26
Previously we saw how to store a message in memory. It

is time to print such a message. For now, assume that the
instruction JSR PRINT, a subroutine call, prints the contents of
ACC A as one ASCII character on a printer. Assume that the
label MESSAG heads a stored message, in ASCII format, terminated
by a null. Flow chart and write a program to print this message,
using the JSR PRINT instruction. If you are stuck, look at the

first two instructions of the solution

------J/
IN'T POINTER

TO MESSAGE

MESSPR... PRINTS MESSAGE THAT IS STORED IN MEMORY.
CALLS PRINT SUBROUTINE FOR EACH CHARACTER PRINTED.
USES A AND X PLUS PRINT SUBROUTINE.

.....FILENAME?...1
o

#t1ESSAG-:1.
POI~TR INIT MEM POINTER
POINTF.:x= UPDATED

PO\NTER

GeT CHAR.

t1ESSPF.~ Lei?::
ST:X:

MORPRT LD>::
INX
ST>::
LDA A
BEG!
.JSF.:
BF.:A

ALLDUN
I
I

POINTF.~ ~:t1B

t1ESSAG FCC
FeB

POINTF~
'.J....,

ALLDUN
PF.:I NT
t'10F.~PF.:T

2

GET ADDRESS OF CHAR
GET ASC I I CHAF.: INA.

PF.: I NT IT
BACI< FOF~ MOF~E

PR'NT CHAR Note the test before printing
to avoid trying to type a null
which cannot be printed.



5-27
Data stored on a diskette, a magnetic mass storage

device, is usually written in blocks of 8016 characters at a
time from a buffer. which is a specific block of memory. In
such an operation the X register must be used both for
retrieving data from the "source" memory address and for storing
it in the "destination" address. For this 2 pointers must be
initialized. For each byte moved. each pointer must then be
updated for use by X. With this in mind, flow chart and write
a program to move the memory block 0600 - o6FF to 0800 - 08FF.

---~/

GET DESTINATION ADDRESS
AND STOF.:E 8'T'TE
LAST B'r'TE?
NO. AROUN[) AGA I N

2
2

SOURCE GET NEXT SOURCE ADDRESS
X GET A BYTE
DEST

#$(160(1-1.
SOURCE INIT SOURCE ADDRESS
#$~~1:30€1-:1

OEST INIT DESTINATION ADDRESS
SOUF.:CE

#$"~1:3FF

t10VB'r'T

DEST

, N\T SOURCE t'10VEIT LDX
ANO DESTIN. ST:X:
POINTER.S L[:.:>::

ST::-::

UPPATE
t'l0 1",1E: 'T1T L[:e::-::

SourtcE IN::-::
P01NTER ST::-::

G-Ei 8YTE LOA A
LD;·::
IN::·::

UPDATE ST::-~

DES-rlWAT lOti STA A
POIr.'TE~ CP::·::

STORE 8'C'TE BNE
I
I,
I

SOUF~CE F.:t·lE:
DEST Rt'lE:

END



Before Decrementing
After Decrementing

5-28-Earlier we saw how to increment a 2 byte counter
without using the X Register. Similarly a 2 byte counter can
be decremented without using the X Register. A special
condition, shown below, exists when the least significant byte
is zero, before decrementing, since both bytes will have to be
decremented this time. Least Significant Byte

.~
00111011 00000000

~,111~111.1

Count Count +1
Write the instructions to decrement the two byte counter COUNT,
recognizing the special condition above. The instruction TST
(TeST or "compare to zero") is useful here.

--_----.J/
TST
BNE
r..EC

DECLOW DEC

COUNT+1.
DECLOW
COUNT
COUNT+1

CHECK LEAST SIG BYTE FOR ZERO
IF NOT e IGNORE MOST SIG BYTE
IF LEAST SIG BYTE e DEC MOST
ALWAYS DEC LEAST SIG BYTE

This sequence of instructions is most useful if a 2 byte counter
must be decremented when the Index Register is not available to
do it. This process also can be extended to a 3 byte counter.



5-29
The program listed below is a slightly shorter version

of HEXCHK, developed earlier in this chapter. This one uses
signed branch instructions which had not been discussed when
the original program was developed.

HE>::CH~( SUB A #$30
BMI BADHE>:: BELOleJ 313
Ct-1F' A #$09
BLE ENDHE>:: BELOI.oJ -. - ABO.....E 313-::.3.
SUB A #$137
Ct-1P A #$0F
BHI BADHE~-:: 46-30-7=€1F. ABO.....E F
Cr-1p A #$09
BLE BADHE>( 4:1-30=0A 8ELOl.oJ A

ENDHE:x:
BAC'HE::·(

Since either 30 or 37 had" to be subtracted to convert
to hex, )0 was subtracted immediately. Branching on a minus
value is now possible, eliminating a COOP instruction. While
the purpose of this workbook is to help you learn fundamentals
rather than write "tight" programs, the above listing is
included to point out that the shortest programs are not
necessarily the most readable and vice versa.

Time for a break. This was a long chapter.



BRANCHING - MACHINE CODE

Even when writing very short machine code programs it
is highly desirable to start with assembly language instructions
and then assemble them into machine code. Manual assembly of a
program raises a problem in that the address for MEMADD in the
instruction STX MEMAOO is often not known until MEMADO RNIB 2 is
encountered, perhaps many instructions later. The solution
proposed is the one used by the computer when it assembles a
program, that of processing the assembly language program twice.
When the assembly language program is read the first time, an
absolute address is assigned to each label (symbolic address in
label field). During the second reading, machine code is
produced for each instruction.

To assign absolute addresses to labels requires knowing
how many bytes each instruction requires. This data is available
in Appendices C1 and C2, under the # column, for each mode avail­
able. Assuming Extended Mode for the instruction LDX MEMPNT, we
see J in the # column for the "EXTNO" mode opposite the LDX
instruction.

For the program below assign the appropriate addresses,
starting at 0618. Addresses already are assigned to the first
2 instructions.

06:18 INIT LOA A #$1.7
(161A STA A ENDVAL

L.[:,~< #$€16D7
ST>~ t1Et1ADD
RTS

ENDVAL F~t'1B :t /tolEt'1ADD Rt1B 2

0618 INIT l.DA A #$17
061A STA A END'·lAL
061.0 LO~'~ #$0607
062€1 ST:X: t1Et1ADD
0623 RTS
0624 END...·'AL F~t18 :t
0625 t'lEt'lADD ~:t'1B 2



6-2-Now that all addresses are known, complete the assembly
operation by assigning the machine code for each instruction.
No entry is required for the labels ENDVAL and MEMADD at the
end of this program.

06:L:=: INIT LDA A #$1.7

ti6iA STA A EN[:IVAL

":361D L())·:: #$06D7

"~1620 STX t1Et'1A[)[:'

103623 ~~TS

0624 EN[:IVAL Rt1B :1

0625 t,otEtilAD[:r Rt1B 2

/
0618 86 17 INIT LDA A #$17

:+:

e61.A B7 0624 STA A ENDVAL
:+:

1o:::161.D CE €16D7 LDX #$06()7
:+:

e620 FF 121625 ST::-:: t'lEt1ADD
:+:

€i623 39 ~:TS

:+:
0624 ":300:1 EN[)VAL Rt18 1

:+:

1216~~5 01211212 t1Et1A[:t[:' Rt18 2



6-3...-
In general it is easy to work with the machine code for

the 6800 microcomputer. Only one area, that of encoding branch
instructions, requires extra care. In the instruction sequence.

:186F 8C 1.A7F CPX ISTART
1.872 26 1.36 BNE STORTN
1874 CE 1.E:78 L[:'X #8IGSOR
1877 8D 1.F0C .JSR OUTt'1ES
:t:=:7A 39 STOF.:TN F.~TS

6
187A

t
address of

STORTN

1874

t
PC. points

here

1873
06

while proCeSSing"
this byte :J

the code for BNE is 26. The next byte, 06, is a forward
reference to STORTN, 6 bytes beyond the byte following 06.
Better read that again! When the microprocessor has fetched
06 from memory and is processing it, to determine the address
to which to branch, the program counter (PC) contains the
address of the next byte, 1874. It is 6 bytes (hence the 06)
from 1874, the PC contents, to 187A, the address of STORTN.

2 4 5.-~

1876 1878 1879

If STORTN is at address 187E instead of 187A, while the
BNE instruction remains at the same address, what value is in
address 1873, the forward reference to STORTN for the BNE
instruction?

--_---..J/
OA 187E - 1874 = OA~ branch offset

target address~ addtess following branch offset



6-4-Backward branching is somewhat more challenging. e.g ••

1.A8aa 86 7FF6 t10RTES LDA A SEF~CSf;.:

:1.A83 84 ~~11. AND A #$131
iA85 27 F9 8E(;J. t'10RTES
1.A87 86 7FF7 LDA A SERBUF

While processing the branch offset F9 (address lAS6) the PC
contains lAS? the address of the next byte. The target
address is lASO, ? bytes backward from the PC value. Hence
F9 (-7) is the branch offset.

To determine this value, F9. the most direct method is
to calculate lA80 - lAS? resulting in FFF9 as a 2 byte negative
value which contracts to F9 as a one byte negative value (refer
to the first chapter for 2 versus 1 byte negative numbers).
For short backward branches the number of bytes can be deter­
mined by counting from lASO to lAS7. e.g ••

@ CD®
iA8aa 86 7FF6

:tA83:

iA85

iAB?

:3fjJ t1fY
® @27 _

CD
86 7FF7

Since the separation is 7 bytes then -7 can be converted to F9.
The missing value above then becomes F9. For more than a dozen
bytes this may become tedious. For short branches, however, it
is simple and quick.

No answer is required in this frame.



6-5-With more experience in using machine code, you may
prefer to count the number of bytes backwards instead of forward
to obtain the branch offset directly. Using the previous program
this would bea

~~l@
1.A80 ~ 7FFt'

1.A83 &?fi>
@@

1.A85 2( -- .. F9 then follows the 27

1.A87 ~...)

Using the above technique determine the machine code for
the backward branch below. The address for LOOPNO is lA60.

02013 7A :1A60 NOTYET DEC lOOPNO

02133 27 BEQ NOTYET

(12£15 4F ClF.: A

/
02013 G>~e (:.EC lOOPNO7H :1 60 NOTl.r'ET

@~ *02€13 2,· F: BEQ NOT'r'ET

4(i):J *
02~35 ClF.: A

*



NEXCHR JSR GETCHR

LDX MEt1A[)D

IN>::

STX t1Et1ADD

LDA A X

CMF' A #$00

6-6-Manually assemble the program
(opposite) using both the first
and last methods to determine
each branch offset. Machine
code for JSR GETCHR is BD tFOO

and for JSR OUTERM is BD lFOJ.

Start at address 0740.

2

JSR OUTEF.:t'1

IN>~

ST>:: t1Et1AD[:a

LDA A '.}.'.,

C~1P A #$&;:1[:1

Rt'1B
END

RTS

BEG~ ENDLIN

:+:

(1755

0746 1.38
:+:

(1747 FF 121756
:+:

(174A A6 0(1
:+:

1-~174C :=::1 a.3D
:+:

074E 27 1-35

(1750 ~ ~ @*B f :1 ..z,~.
Q) ® :+:

(1753 20 EB

BEQ ENDLIN

.JSR OUTERt1

BRA NEXCH(;:

ENDLIN RTS

/MEMADO Rt'1B 2

12:1740 BD :1Fa.~n~1 NEXCHF.: .JSR GETCHF.:
*=

12:1743: FE 0756 L[:a>:: t1Et'1ADD
:+:

,/ 0756 0002
~~

i t
address machine

code

0740 FFFF

-.Q.Z.5..2 ~ -.Q.Z.5..2
=F8AA

+---1
0755 F8AB

-.Q.ZjQ +0740

5 ~FFEB
(forward reference) ~

but FFEB (in 2 byte format) becomes EB in 1 byte format (see
Chapter 1). Normally JMP NEXCHR rather than BRA NEXCHR would
be used to avoid offset calculations.

a.3f1 FF FE

FD Fe FE:

FA

F9 F8 F7

F6 F5

F4 F3

F2 F:1

F0 EF EE

ED EC

EE:

\ V

+
Backward
branch

counting
(last

method)



6-7-Branch instructions use a one byte signed offset,
limiting the branching range to !127 (decimal) addresses.
Attempted branches beyond this range produce an error at assembly
time. Sometimes programs which were previously error-free now
will cause a branching error when new instructions, inserted
between the branch instruction and the target address, now
produce too great an offset. One solution is to branch to the
end of the present routine, or some other appropriate place
where a ~~P (JuMP) instruction, which can jump anywhere, jumps
to the target address.

Such a solution is also one way to avoid backward
branching in machine code, a pragmatic if not aesthetic solution.
Similarly BSR should be replaced by JSR when writing in machine
code unless memory locations are scarce.

Assume that NUCHAR, at address 0608 is beyond branching
range of BEQ NUCHAR, below. Modify the program to reach NUCHAR.
Show your changes in machine code.

~:)2~Je~ E:1 ~~1A Ct'1P A #:f.~]A

:+:
1;:,2t!~~:: '-,-:0 BEG! r·JUCHAF.:.:::.,'

:+:
~12~34 BCI iA64 .JSF.: STOF.:E

:+:

/Cl2~:f? 3:9 F.:TS

02~~1'j E:1 ~~1A

~+.

11:1213(,27 134) ..
:+:

02~Z14 BD :1A64

BEG! .JUr'lPNU

.JSF.: STOF.:E

F.:TS

.Jt1P NUCHAF.:

Changed lines
are circled.



6-8--A problem often encountered in writing machine code
programs is the need to insert a few instructions in the middle
of a program. This results in new addresses for all labels
below the insert (on the listing) requiring re-encoding of the
program.

To prevent or minimize such problems it is desirable to
leave memory address gaps between subroutines or program segments,
typically 1/4 the length of the code written. Where instructions
follow one another continuously for more than ten lines, insert
several Nap (No OPeration) instructions (OP CODE 01) which do
absolutely nothing except to occupy memory locations. These are
easily removed when extra addresses are required for later
changes. The only cost is the extra memory used and slower
execution.

When re-assembly is undesirable or impossible a PATCH is
recommended. This involves a jump to some external address,
where the extra instructi"Ons are placed, followed by a "jump back"
to the address just below the first "jump out". The cost is
usually 6 bytes (2 jumps) plus the inserted code. In the program
below a CLR COUNT instruction is needed just after STX ~mMADD.

Modify the program below to patch in the extra instruction
assuming that COUNT is address OOFF and that addresses 0680 - o68F
are available. Write both .the assembly language instructions and
the machine code for the patch.
1361313 CE i34E LOX #$i34E
0603 FF 136213 STX MEMAOO
13606 FE 0620 LOX MEMAOO
06139 08 INX

0620 t'lEt1ADD EG~U $0620 /
0600 CE i34E LDX l$i~4E

0603 7E 0680 , ~Tt1P PATCH ,
0606 FE 062€1 r LDX

MEt1ADO
0609 08 IN>::
0680 . ORG $06813
0680 FF 136213 PATCH STX t'lEt1ADD
13683 7F e0FF CLR COUNT
13686 7E 0606 .JMP $0606



6-9-The problem below presents a condition where memory
locations for a patch are very limited. Assume that 5 bytes
are available (0470 - 0474). The instruction CLR B is now needed
between the first 2 instructions. In your solution show assembly
language and machine code for changes made. If you are stuck,
look at the hint in the first line of the answer.

£14£10 8D 1.F0(1
134133: 84 5F
0405 :=::1 4C

.JSF.~

ANCI A
Ct1P A

TEF.~t1 IN
*$5F
*··-L

---~/

€14~]f1 BD l.F~::10 JSF.: TEF.:t'l I N
04~(:t ~;~~~~ 68 BF.:A PATCH
~14~15 ::::t BACK Ct'lF' A #'·L
£14-;::'121 OF.~G $047~3

~14?t1 5F PATCH CLR 8
0471 84 AND A #$5F
121473: E:F.~A BACK

(2) 0405 - 0475
FFFF

-~

FB8A
+__1

FBBB
+0405

FF90 .. 90
Since only 5 locations are available
branch instructions (2 bytes per branch)
would just fit. Such situations are quite
common when modifying old programs,
particularly if source listings are
unavailable.

Hint. Use branch rather than jump instructions.
Calculations
(1) 0470 - 0405

FFFF
-0405

FBFA
+__1

FBFB
+0470

006B



6-10.......
The previous example shows how the program counter

contents, when added to the branch offset, produces the address
of the next instruction to be executed, e.g.,

0405 = PC

+ 6B = branch offset
0470 = new address (where PATCH begins)

Reverse branching calculation is slightly different. Since 90
is a negative value, its 2 byte equivalent is then FF90

0475 = PC
+FF90 = branch offset (2 byte format)

0405 = new address (BACK)

Given the following machine code, convert it to assembly
language producing absolute rather than symbolic addresses.
Appendix D gives the instruction for each operation code.

:iF49 81 ~:;'4

1F48 27 (14
1F4D 8D (19
1F4F 2(1 EC

___----.J/

note Ee becomes FFEC
in 2 byte format.

lF49 :::1 (14 Cr'1P A
1F48 27 1-:;'4 8EG'~

lF4D 8D (19 8SF.~

lF4F 2(1 EC E:~~A

Only negative values must
preceded by FF in 2 byte
format.

lF4D

#$04 +~ lF4F
$:1F5:1 ~~~- lF51 +~
$1F58 -...,,"f"--- _
$1F3D lF58

") lF51
be ~+FFEC

IF)D

If more practice is needed, there are lots of listings
in the last half of this workbook.



7-1---- ACIA -
ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

A computer, to perform any useful function, must be able
to communicate with the "outside world", that is to and from
external devices such as keyboards, printers, teletypes, remote
computers, etc. Two forms of information transfer are available,
serial and parallel. Parallel format, in which 8 bits are
transferred at one time, requires 8 external data lines, plus
control lines. For transmission of data beyond several hundred
feet the large number of wires in a cable makes this parallel
transmission impractical. In such cases serial transmission is
preferable. For data transmission over a telephone line serial
format is essential, since only one channel is available.

In serial format data is transmitted at a predetermined
data rate, one bit after another. Each character or byte
(usually 8 bits) is self contained, preceded by a start bit
(always 0) and terminated by one or two stop bits (always 1).
In between successive characters the signal remains in the 1
state, if there is a pause. A typical character is seen below.

rime ---... r,(l is also known as MARK, 0 as SPACE)

'ol~~-LiJ
STAll ,-Si\ "', "'1.. .. ~ "'t tl5 q.~ ~7 St'oP ~,\-(iP

a,r P.uT '~,1

The ACIA acts as the interface between the serial device
and the computer, communicating with the serial device in serial
format and with the computer in parallel format.

Associated with the ACIA are 2 consecutive memory
addresses, the lower one (even) controlling and indicating the
status of the ACIA and the higher one (odd address) containing
data transmitted or received by the ACIA. The actual addresses
are usually in the top half of memory and are assigned by the
hardware designer.

Contd.



7-1
Contd.

Let's look at the Data Buffer first, assuming an address
of 7FF5 for the ACIA Data Buffer "SERBUF". This single buffer
services 2 internal buffers, receiving data from the "read only"
RECEIVE BUFFER. and transmitting data to the "write only"
TRANSMIT BUFFER. The same address is used for both buffers
(see below). Hence the instruction LDA A SERBUF automatically
gets its data from the RECEIVE BUFFER. while STA A SERBUF
automatically passes its data to the TRANSMIT BUFFER.

ACtA

D"7A BUFF i:R..
l ~4cl~e~~ "IFF S \>~\c)",,)

RECe\ve ~\JFFe~

( i).EA 0 ONL.'()

TRA NSM IT B"Fi=E.R

~V'Clns ~;11 eeA set ..o.l dc:..tCc
"itAIVS~11 '""N'e

Write an instruction which sends data, now in ACC A to
the ACIA where it will be automatically put into serial form
and transmitted to some external device.

----'/
STA A $7FF5 All that for one instruction!
Symbolic addresses are preferable when working with the ACIA.
lrhe statement

SERBUF EQU $7FF5
directs the assembler to substitute 7FF5 for the symbolic
address SERBUF. To improve readability of programs it is
usual practice to place all "EQU" assembler directives at
the beginning of a program.

Address 7FF4 is known as the Control and Status Register,
described in detail later in this chapter. Arbitrarily it is
called SERCSR (SERial Control and Status Register).



7-2
Write an instruction to read serial data from the ACIA

into Ace B. Assume previous symbolic definition of the Data
Buffer.

----'/
LDA B SERBUF

Note that if STA A SERBUF
LDA A SERBUF

is executed, the data in ACC A will normally change since data
is stored in the TRANSMIT buffer but loaded from the RECEIVE
buffer, even though both carry the same symbolic address SERBUF.

7-)-----If serial data is being received by the ACIA, some
method is necessary to inform the computer when parallel data
is ready. If data is read too soon it would be erroneous; if
too late it could be lost, since the ACIA has only one 8 bit
RECEIVE buffer where parallel data is stored after being
formed from the incoming serial bit stream. At high serial

data rates, e.g. 9600 bits/sec, the "lifetime" of data in the
RECEIVE buffer is approximately 1 millisecond, after which it
is overwritten by the next byte.

When an incoming data byte is ready, bit #0 of the
Status Register (7FF4) automatically changes from 0 to 1. The
AND or BIT instructions permit us to examine this bit #0, or

"READY" bit, of the ACIA Receiver. It is normal practice to

to test this bit in a looping manner, exit from the loop
taking place when bit #0 = 1, that is when data is ready.

Write the instructions to examine bit #0 of the Status
Register. (No branching yet.)

----.-,,/
LDA A SE~:CSR

AND A #$121:1



RECEIVER
READY
BIT

7-4.....-.
Now add instructions to cause continuous testing of

bit #0 until data is ready, whereupon the data is to be
transferred to ACC A.

---~/
INLOOP LDA A SEF.:CSF.:

lJ)51AND A #$0:1
BEG! INLOOP
L.DA A SE~:E:UF ) ., -DATA READY.

Reading of the data from the RECEIVE buffer, SERBUF, clears the
READY bit, sometimes referred to as a READY FLAG or DONE FLAG.
A timing diagram of these events is shown here.

few if repeated in a looping
microseconds type program

1 ~ __--.A.------..--- ~ ,...,- ~

bit# fJ n
o { 1/ -_........ ---
Goes to 1'\ ~utomatically Data'\ \Data is read
when dat~} cleared when READY into ACC A
is READY data is read, (LDA A SERBUF)
in Data e . g. ,
Buffer. LDA A SERBUF.

Although the rate of transmitting and receiving data bits is fixed
ther~ may be long time gaps between successive characters. Hence
the term "asynchronous" in the ACIA, meaning no specified number

of characters per second.



7-5.-
Data to be transmitted in serial form by the ACIA should

not be transferred to the ACIA's TRANSMIT data buffer until this
buffer is empty and therefore ready to accept a new byte. Bit #1
of the Status Register is the transmitter's READY bit. When in
the 1 state, it denotes this READY condition.

Write a short program to put the byte now in ACC A into
the TRANSMIT buffer when the transmi·~ter is READY. Warning.
Don't destroy data now in ACC A while testing for the READY
condition.

-----'/
OLOOP LDA B SEF::CSR

ANCI B #$02 T~< F::EAD'rI?
SEQ OLOOF'
STA A SER8UF OUT TO TX
E~~Ca

The use of ACC ~ preserves the data in ACC A
printing time, based on
predetermined data rate

Transmitter READY '; of ~t:'CIA ~ I
bit normally 1 _ ,
while waiting for j t 0
data. READY bit goes to 1

STA A SERBUF when transmission of
character is complete.

Note that the transmitter, while dormant, is normally READY,
waiting for data from the computer. In contrast, the receiver
in the dormant state is normally not READY, since it is waiting
for new serial data from the external device.



7-6
Now write a s~ries of instructions to echo serial data

from the ACIA RECEIVE line out on the ACIA's TRANSMIT line.

--------/
$132013

EG!U $7FF4
EfJ.U $7FF5

LCJA A SEF.:CSF~

AND A #$131. R:ECE I VEF.: F.:EAD'-r'?
BEQ INLOOP
LDA A SEF~E:UF GET CHAR IN A
LDA B SEF.:CSF.:
AND 8 #$f:l2 T:xi F.:EADY?
BEG! OLOOP
STA A SEF.:BUF OUT TO T·"J.....
END

OLOOP

:+:
:+:

:+:

SEF.:CSF.:
SEF.:BUF
:+:

INLOOP

7FF4
7FF5

020f~ 86 7FF4
13203 84 €Ii.
€12€15 27 F9
1212137 86 7FF5
020A F6 7FF4
020() C4 02
02€1F 27 F9
12121:1 87 7FF5

This is often known as an ECHO routine, permitting data which
is entered on the keyboard to be viewed by the user.

To make this program more readable, the instruction
AND A #$01 could be replaced by AND A #RXREDY, if
RXREDY EQU $01 is included in the above definitions. Similarly
AND B #$02 could be replaced by AND B #TXREDY.



7-7--Sometimes data, received by the ACIA must be stored,
byte by byte, in memory. Flow chart and write a program to do
this, the first byte going into address 1000. For now assume
no end to this looping type program.

----'/
L[):)'~ #$1.000-1.
5TX MEMADD SET UP ADDF.:ESS POINTEF.:
LDA A SERCSF~

AND A #$~31. F~:X: DATA REAr..y?
8EQ MOF.:TE5
LI)A A 5ERE:UF GET CHAF~

LD~·!. t'1Et1ADD
IN::-::
5TX t'1Et1A [:1D AND NEI.oJ ADDF~ESS

STA A >~ AND STORE CHAF.:
BRA t10F.:TES BACt< FOR r·10F.:E
RME: 2
END

OUTER
~OOP

SToRe IT
IN

HE t.-r AODRESS

t10F.:TES

IN'T'A~'%E
ADDRess
pOIN1'eR

NO

Here we see an inner loop testing the READY bit and an outer loop
storing data. 'fhis is known as a "nested" loop format.



.ll
Modify your program such that receipt of 5A will cause

storage of this byte, then exit from the loop. Show changes only.

---_./
Before
BRA MORTES

After
cr1P A 1$5A
BNE t"10RTES

IS IT Z?

If your modification looked like thisl
CMP A 1$5A
BEQ NEXT
BRA MORTES

IS IT Z?

note that a conditional branch (BEQ NEXT) followed by an

unconditional branch (BRA) can usually be replaced by a

single branch instruction (BNE MORTES) of the opposite sense
(BNE vs BEQ).

Although the ASCII code for Z is 5A some terminals
produce "mark parity", that is the leading bit is always set,
resulting in DA rather than 5A. Other terminals may produce
"space parity" (leading bit is zero) or odd or even parity,
discussed a few pages later.



7-9--The computer when connected via the ACIA to some output
device such as a printer or CRT terminal could send a specific
message to the computer operator.

Flow chart and write a program to output the message
BAD HEX CHAR to such an output device via the ACIA. Terminate
the message with a null.

----"/
$7FF4
$7FF5

.....BAD HE:>:: CHAR.....
&3

#t1ESBAD-1
MEMPNT INIT MESS POINT
MEMF'NT

OUTPUT DEVICE READY?
NOT 'TIET
YES OUTPUT IT

GET POINT ADDRESS
GET CHAR FROM MEM
G~UIT IF NULL

x
t1Et1PNT

ALL[:IUN
SERCS~:

#$02
OUTEST
SERBUF
PRTt10F.:

7FF4 SERCSR EQU
7FF5 SERBUF EI~U

IN IT'''L''Z.& *ADI>RESS LOX
POINT&R ST:>::

P~:Tt'10R LD>::
IN>~

GET HE",. STX
BYT~ F5\OM L(:IA A

l1eMORY BEQ
OUTEST LDA E:

AND B
:0 BEQ

STR A
BRA

t1Et1PNT Rt1B
MESBAD FCC

FeE:
ALLDUN



7FF't
\" ~iS
exaDlplt

7-10
To operate the ACIA correctly the data rate at the

receiving end must be within 1 or ~; (5% would produce errors)
of the transmitted data rate. Hence the frequency of external
oscillator which determines the basic data rate for each ACIA
is usually crystal-controlled. as in modern electronic watches.

Selection of data rates and control operations are
possible via the Control Register. a "WRITE ONLY"
register which shares the same address as the
"READ ONLY" Status Register. The diagram at the
left depicts these registers. assuming 7FF4 as the
assigned address. Hence LDA A $7FF4 reads from
the Status Register, while STA A $7FF4 stores in
the Control Register. The common symbolic address
in previous examples has been SERCSR.

The data rate of the ACIA is determined by dividing
the external oscillator's frequency by 64, 16 or 1, under
control of bits #0 and 1 of the Control Register (see App. E1).
For example, if bit #1 is 0 and bit #0 is 1 (i16 mode) an

oscillator frequency of 9600 bps would produce a data rate
of 9600/16 = 600 bps.

Assuming that all other control bits are correctly set
ensure that the ACIA will operate at a data rate of JOO bps
when the oscillator frequency is 19200 Hz (cycles/sec).
Since the Control Register cannot be read to be modified. assume
that it is updated from ACIACR. a symbolic address in memory.

___----J/
01.1313 B6 738E LDA A ACIAC~~ GET ORIGINAL STATUS
131.03: 84 FE AND A #~:11.:1:1:11.:10 CLEAR BIT 0
0:1'.::15 SA 02 ORA A #~~000000:10 SET BIT :1
131.1217 87 738E STA A ACIACR UPDATE OF~IGINAL

01.0A 87 7FF4 STA A SERCSF~

19200/300 = 64
Therefore bit #1 = 1 ) See

bit #0 = 0 )- Appendix
in the Control Register} E.

If both bits are 1 RESET takes place. This is necessary when
power is first turned on, before changing speed, parity, etc.



121:1.013 86 738E LOA A
0:1.03 84 ED AND A
&Z1:1.05 8A e[) OF.:A A
01.07 B7 738E STA A
0:1.0A 87 7FF4 STA A

7-11
Bits 2, 3 and 4 (see Appendix E) determine the number

of data bits and stop bits of the data format. It also
determines the parity options for the data. Parity control
determines whether each transmitted data byte carries an even,

odd or unspecified number of ones, bit #7 of the data being
modified to produce odd or even parity.

The number of data bits and stop bits, plus parity
options must be agreed upon for both ends of the data link.
Although programmable, they are not usually changed once a
data link is set up.

Without disturbing unspecified Cpntrol Register bits,
set the ACIA for 1200 bps operation using a 19200 bps oscillator.
The data formed is to be 7 data bits plus l' odd parity bi t plus
1 stop bit. Again use ACIACR as the original for the Control
Register.

---_/
ACIACR GET ORIGINAL STATUS
#~~:1.1e1:1.01 CLEAR BITS :1. AND 4
#%01210e1101 SET BITS 0~2 AND 3
ACIACR UPDATE ORIGINAL
SERCSR CHANGE CONTROL REGISTER

7 6 5 4 3 2 1 0 1- bi t /I
IX X X 0 110 1[

'--v-' "v-'"

7 data -:16
odd

1 stop

For your first few programs, which are not part of a larger
program, simply place the desired value in the Control
Register e.g. LDA A #%00001101

STA A SERCSR



7-12
Serial data processed by the ACIA essentially follows

the RS-232-C Specifications of the Electronic Industries
Association (EIA). Voltage levels, source and load resistances,
connector type and pin assignments for data and control signals
are contained within this specification. Some of these control
signals are produced by the ACIA for the serial device. Others
are produced by the serial device for the ACIA.

One control signal is RTS (Request To Send)t which is
produced by the ACIA when requesting permission of the serial

device, a printer perhaps, to send data to it. This signal
is active when low hence is called RTS, the bar over RTS

indicating inversion, that is when RTS = 1, RTS = 0. RTS
is determined by Control Register bits #6 and 5.

The usual response by a serial device (printer) upon
receiving RTS = ° is to activate a control line to the ACIA
called CTS (Clear To Send), also active when low.

This exchange of control signals, usually preceding data
transmission, is often called "hand shaking" and can be used to
permit data transfer only when a device is turned on and
operational. The RTS line can alternately be used as a control
line without feedback (CTS is ignored), perhaps controlling a
function in an external device.

Control Register bits #7! 6 and 5 remain to be discussed.
Bit #7 controls receiver "Interrupt" operations (Chapter 11) and
is assumed to be 0 for now. Similarly bit #5 is assumed to be 0

since it controls transmitter "Interrupt" and "Break" operations.

With bit #5 = 0, bit #6 controls the RTS line; RTS = ° when
bit #6 = 0, and 1 when bit #6 = 1. See Appendix E for details.

The following
(a)

(b)

(c)

program is to.
initialize the ACIA for operation with.
- 7 data bits, even parity and 1 stop bit.
- data rate of 600 bps when the oscillator

frequency is 38400 bps.
set RTS = o.
send the ASCII code ACK (acknowledge) after the
external device (printer) clears eTS.

Contd.



7-12
Contd.

7FF4 SEF.:CSF.~ EG!U $~::'FF4

7FF5 SEF.:E:UF EG!U $7FF5
73::=:E ACIACF.: EG!U $73:=:E

:+:

J.)1J3t1 E:6 -;:'3::=:E LDA A ACIACF.:
(1:1J.~f3: :=:4 :::A AND A #;'~1(1J.~10:101 0
01t15 :=:A (1A OF.:A A #;·~(10t1J.~11(1:1 J.~1

10311217 E'"'? 73::=:E STA A ACIACF.: UPDATE OF.: I Ci I NAL'I
J.~11(1A Eo"'? 7FF4 STA A SEF.:CSF.:'I
J.~1:1J.~1D F6 7FF4 NOT.,.IET LDA E: SEr.:CSF.:
t1:1:1J.3 C4 0A AND E: #~~ t1J.~1 t1J.~11 (11(1
103:1:12 C:1 J.~12 Ct'1F' E: #i~ 0J.~1(1J.:10t1:1 t1
1211:14 .-,.- F7 BNE NOTITIETc..t.:.
(11.1.6 :=:6 (16 LDA A #$(16
1211.:1:=: E:7 7FF5 STA A SEF.:E:UF

Explain the function of the 4 instructions starting
with LDA B SERCSR

--------.",/
7 6 5 4 J 2 1 0 ~bi t #

10 0 0 0 1 0 1 0 I Control
-..,- ~ "~ Register

_ I r I
RTS = 0 7 data.

even .;.64
parity.
1 stop bit.

Ix X X X 0X 1 01 Status
"=C=T=S-=0-J-j---4- Register

or "fTransmitter
CTS=l lREADY

LDA B SERCSR and
AND B #~~000010 10 II expose"
Status Register bits #3 & 1.

CdlP B i;~ooooOO 10 tests for
o in bit #3 (CfS=O) and

1 in bit #1 (Tx READY).

BNE NOTYET branches back if
either condition is not met.



7-1J
Returning to the Status Register, other bits not yet

discussed are,

- Bit #2 - Data Carrier Detect or DCD an input to the ACIA from
a "modem" used to transmit serial data over a telephone
line. DCD = 1 if loss of tone occurs on the telephone line.

- Bit #4 - Framing Error goes to 1 when a stop bit is missing,
usually due to an erroneous start bit.

- Bit #5 - Receiver Overrun - goes to 1 when data is lost due to
too slow reading of the Data Buffer. It is cleared by reading

the Data Buffer.

- Bit #6 - Parity error,goes to 1 when the parity of the
received data differs from that expected, based on the Control
Register contents.

- Bit #7 - Interrupt Request state (Chapter 11).

Write a few instructions to ensure that the Framing Error,
Receiver Overrun and Parity Error bits are all normal (zero). If
one or more is wrong, branch to ERROR.

---_/
7FF4 SE~:CSF.: EQU $7FF4
7FF5 SERBUF EQU $7FF5

*86 7FF4 LDA A SE~:CSF~

:=:4 70 ANI) A #t~~111100~30 CHEC.< FOF~ 3 T',..PES OF ERROR
26 59 BNE EF.:~:OF.:

7 6 5 4 :3 2 1 0 ... bi t #
1X 0 0 0 X X X xl

t I I
P 0 F



8-1---- PIA ­
PERIPHERAL INTERFACE ADAPTER

In the previous chapter we worked with the ACIA which
transmits and receives serial data in a fixed format at a
predetermined rate. This chapter involves the Peripheral
Interface Adapter (PIA), a device which transmits and receives
data in parallel form at an unspecified data rate.

The PIA is comprised of 2 almost identical sections,
A and B, each capable of transmitting or receiving 8 bits of
data. A block diagram of the "An half of the PIA is shown
below. For each section there is a Control Register (CR) and
a Data Buffer, both having similar functions to those in the
ACIA, plus a Data Direction Register (DDR) which determines
which bits of the Data Buffer are inputs and which are outputs.
Both the Data Buffer and the Data Direction Register share the
same official memory address, the selection between the two
depending on the state of bit #2 of the Control Register.

Assume address 7FFO for the DDR and Data Buffer for the
A half of the PIA. Automatically its Control Register address
would be 7FF1. For the "B" half of the PIA the addresses would

be 7FF2 and 7FFJ (Data Buffer and DDR = 7FF2, CR = 7FFJ).

iFFO I ~ CONT~OL
7Ffl ~__~ R1:G\S'TER

) .

-4.-----------B~it\#2 of Oontrol Register

determines if DDR or Data
Buffer is served via 7FFO.

(Bit #2 = 0 --serve DDR)
(Bit #2 = 1 --serve Data Buffer)

Let's assign symbolic addresses to these two memory
addresses, PIABFA being the nA" half Data Buffer (and DDR too)
at address 7FFO. Similarly PIACRA would be the "A" half of
Control Register at 7FF1. For the "B n half the corresponding
symbolic addresses would be PIABFB (Data Buffer and DDR) at 7FF2,
and PIACRB (Control Register) at 7FFJ.

Contd •.•



8-1
Contd.

As noted in the previous diagram, if bit #2 of
PIACRA = 0, then data destined for PIABFA goes to the "A"
Data Direction Register. If this bit #2 = 1, the data will go
to the "A" Data Buffer.

The Data Direction Register stores 8 bits, each bit
independently controlling the data direction for the
corresponding bit of the Data Buffer; 1 = output, 0 = input.

Write the instructions to ensure that all PIA data
lines for the itA" half of the PIA will be input lines. Note
that the first task is to address the Data Direction Register,
via bit #2 of the Control Register.

-------/
*7FF0 F'IABFA EI)U

7FF:1 PIACF~A EG~U

*0:1€n3 B6 7FF:1. LDA A
01€(s 84 FB AND A
13:1135 B7 7FF1. STA A
01138 7F 7FF0 CLF~

$7FFe
$7FF1

PIACRA
#~1111101:1. CLEAR BIT 2 TO ACCESS DDR
PIACRA
PIABFA SET A HALF FOR INPUT



8-2-The routine in the previous frame would normally be
found within a RESET program which is automatically executed
when the microprocessor power is first applied or when the
RESET button is depressed. More details on such initializing
operations are contained in the Interrupt Chapter.

Write the instructions for a RESET routine to set up
the "A" half of the PIA for input and the "B" half for output.
This routine should leave the PIA ready to load and store data.

/
*7FF0 PIA8FA EG'~U $7FF0

7FF1 PIACRA EQU $7FF1
7FF2 PIABFB EI~U $7FF2
7FF3 PIACRE: EG'~U $7FF3

:+:

01(10 86 7FF1 AHALF LDA A PIACF~A

0103 84 FE: AND A #~~1.1111011 CLEAR BIT --, TO ACCESS DDR.:!.

01.05 87 7FF1 STA A PIACRA
01.0S 7F 7FF0 CLR PIABFA SET A HALF FOR INPUT
01.£18 SA 04 OF::A A #~'-;:00£10£110£1 BIT 2 = 1 FOR DATA
e1£1D 87 7FF1 STA A PIACRA
0110 F6 7FF3 BHALF LDA A PIACRE:
01.13 84 FE: AND A #%111.11 ~31.1 CLEAR BIT 2 TO ACCESS DDR
0115 B7 7FF3 STA A PIACRB
01.:1.8 86 FF LDA A # ~.~1.:1.1.:1.1.1.1.:1.
01.:1.A 87 7FF2 STA A PIABFB SET 8 DCIF~ FOR OUTPUT
01.1.0 86 7FF3 LDA A PIACF~E: GET CR AGAIN
01213 8A 134 ORA A #;-;:(113000100 BIT 2 = 1 FOR DATA
01.22 B7 7FF3 STA A PIACRB



Assuming that the B half of the PIA is already
initialized for output (see previous frame), set bit #5 and
clear bit #J of Data Buffer B, without disturbing other Data

Buffer bits. From now on assume PIA Register definition
(PIABFA EQU $7FFO etc.), unless otherwise requested.

----_/
LDA A
ORA A
AND A
STA A

PIABFB
#:Y.001.00000
#~1111e111

PIABFB

SET BIT 5
CLEAR BIT 3

The PIA could be controlling a machine tool, with the changes
in bits #J and #5 representing control signals for the next
machine process.

8-4-What is the state of bit #2 of PIACRB during the
previous frame?

---~/
Bit #2 of PIACRB = 1 permitting communication with the Data
Buffer rather than the Data Direction Register.

..§.;.l
The PIA could be used with a 6800 microcomputer in an

automobile sensor and alarm system. Assume INDATA as Data
Buffer A, at address 7FFO. Also assume the following bit
assignments for INDATA.

Contd •. ·



8-5
Contd.

The input Buffer, INDATA, has the following bit
assignments.

on
on
on
starting
enabled

Status if 1

off
off
off
starting
disabled

Status if 0

Bit #
o
1
2
J
4
5
6
7

Function Status if 0 Status if 1
Seat Belt Monitor disconnected fastened
Door Monitor closed opened
Oil Pressure Monitor low normal
Ignition Monitor ignition off ignition on
Gear Shift Monitor park/neutral all others
Engine Monitor not running running
Day/Night Monitor night day
Headlight Monitor lights off lights on

The output Buffer, OUTDAT, has the following bit
assignments.
Bit # Function

o Buzzer
1 Bell
2 Panel Alarm Light
3 Starter Control

Flow chart and write the in~tructions to ring the bell
if the ignition is off and the headlights are on. (I wish
that I had that on my car.) Assume previous initialization of
the PIA for input on Buffer A and output on Buffer B.

___--J/
*€1:100 B6 7FF0 CARCHK LDA A INDATA

~1:1.03 85 0'-' BIT A #%01300:11210121 IGN?c'
0:105 .-,.- 49 BNE NOBELLoe:.t.:.
€1:1.07 85 8~:::1 BIT A #:"'~:1.0€100000 LIGHT?
~1:109 27 45 SEQ NOBELL
0:1.0B 86 7FF2 LDA A OUTDAT
0:1.€1E E:A €12 OF.:A A #::-~0~3000e1.€1 BELL?
1211.:1.0 87 7FF2 STA A OUTDAT RING BELL

*
R'WG BELL *ExaT 01.50 NOBELL



8-6-This time permit the car to be started if and only ife
(a) seat belt is fastened and
(b) gear shift is in Park or Neutral and
(c) door is closed.
otherwise turn on the buzzer.

First flow chart your solution.

___-.1/

O"fHe~S (l'

OPE" (I)

Your order of checking
the functions may correctly
be different. The order
shown here leads to
slightly easier testing
as seen in answer in the
next frame.



8-7-Now write the program, preferably using the flow chart

shown in the previous frame.

---------/
0:1.22 86 7FF0 TESCA~: LDA A IN[)ATA
01.25 85 01. BIT A #%000000€11.
01.27 27 1214 8EQ BUZZ
01.29 85 :1.2 BIT A #%12100:1.00:1.et
0:1.28 27 etA BEQ OKTOGO
0:1.20 86 7FF2 BUZZ LDA A OUTDAT
0:1.313 8A (11. ORA A #~~000000(11

0132 87 7FF2 STA A OUTDAT
0135 20 08 BRA [)ONE
0:1.37 B6 7FF2 OKTOGO LDA A OUTDAT
013A 8A 138 ORA A #"~0(1e01.000

0:1.3(: 87 7FF2 STA A OUT[)AT
0:1.3F 20 E:1. DONE

BELT ON?

GEAR SHIFT AND DOOR?

BUZZ

OK TO START

7 6 .5 4 J 2 1 0 bit #
o ijBelt on

I~ IX X X 0 X X

1 L-Door
closed

Park or Neutral

OVT 3 ;J. 0

\J Istart ILight Bell I Buzz I
By grouping the Gear Shift and Door checks together the single
instruction BIT A #$00010010 will cause a branch via BEQ OKTOGO
if and only if both bits are o.



8-8-Transfer of data between the PIA and an external device

takes place at an unspecified rate; hence control lines are
needed between the PIA and the external device to indicate to

the PIA when the data is ready and to the external device when
the data has been read. This provides a "hand shaking" linkage
similar to that possible via RTS and CTS in the ACIA.

CA1..

CAt --( ...

?lA
D",A E"Xi'cftt1ALBVrFER bcV'':E

A
\... -

~

For the A half of the PIA two control lines, CAl (input

to the PIA) and CA2 (input or output) are available. CAl could

inform the PIA, acting as a
data receiver, that data is
now available. When this
data is read by the PIA, CA2

could inform the external
device that data has been read;
therefore another byte could be

placed on the data lines. GBl and CB2 could perform similar

functions for the B half. Both CAl and CA2 are controlled by
specific bits of Control Register A as shown below.

CAl
CONTROL

CAl READY Bit
goes to 1 when
CAl goes ACTIVE -------~----~

#

I,~\~"

__,I.D~

_ __6_1t_
W
_l__....I1 ~

<:1\\ il-=AO'1' . "

If 1 CA1 goes ACTIVE in going HIGH.
If 0 CA1 goes ACTIVE in going LOW.

The J bits associated with CA1 are shown above. We are
not using interrupt at this time; hence bit #0 = o. Bit #1
determines whether CAl sets the READY bit (#7) when CAl goes

LOW (if bit #1 = Q) or HIGH (if bit #1 = 1). The CAl READY
bit (also called IRQAl in Motorola literature) indicates, when
going to the 1 state, that CAl has gone ACTIVE.

If bi t #1 ~H'G" If bi t #1
= 0 CAi = 1

LOw cA1

in the in the

Control 'Batt.,. Control
eM •Register ~~A01 Reg1ster
--..... 0 ""i',t\G~

Contd •••



8-8
Contd.

The PIA It READY It bit (similar to the ACIA ',' READY II bit)
will be cleared automatically when data is read from the Data
Buffer, e.g. LDA A PIABFA. Bit #7 of the Control Register
is a READ ONLY bit, and therefore cannot be set or cleared
by a STA A PIACRA instruction.

Initialize Control Register A so that CAl's READY bit
is set when CAl goes HIGH. Do not disturb the other Control
Register bits.

x X X X X X 1 X
t ~ Assume 0

Set (no interrupt)

01.£10 B6 7FF1
0::1.. 1213: BH (1:2
~~~t~Z15 B? '?FFl

LDA A
OJ;.:A A
STA A

PIACF.:A
#~.~ (n30£1€,n:;:110
PI ACF.:A

SET E:IT 2

Note that it is the transition (LOW to HIGH or HIGH to LOW)
which causes the input Control Lines to become ACTIVE, rather

than the final level of these lines



8-9--When bit #5 of Control Register A = 0, CA2 also acts
as an input line similar to CAl. Bit assignments for PIACRA
are as follows.

654 J

t lo for "no interrupt"
(0 = CA2 ACTIVE in going LOW
(1 = CA2 ACTIVE in gOillf..~ HIGH

o for input operation of CA2
CA2 READY bit (read only) 1 = REAux

Bit #5 = 0 for input. Bits #4 and J behave the same as bits #1
and 0 for CAl.

Assume that both CAl and CA2 are to be in~ut Gontrol
lines, CAl being ACl'IVE in going LOW and CA2 being AC'I'IVE in
going HIGH. Write the instructions to produce this. Also
set up the A Data Buffer for input operation.

---~/
x x ° 1 0 x ° 0 ctf-Control Reg. A

tt \..CAl no Interrupt
CAl ACTIVE LOW

{
o to set direction
then 1

CA2 no Interrupt
CA2 ACTIVE HIGH

CA2 Input
$'?FF ~.:~

$?F F:.I..
$7'FF;;::
$?FF3:
F'IACF.:A
# :'.~:1 :1. ~:1:1 ~] ~:::10 ~:::1

PIACRA SET FOR DDR
F'IABFA INPUTS FOR A HALF
#%00010100 DATA 8UF NQW
PIACRA

EOU
EG!U
EG!U
EOU
LDA A
AND A
STA A
eLf;,:
OPA A
:::;TA A

PIABFA
PI ACF.~A
F'IAE:FE:
P I ACF.~E:

?FF~3

?FFl
?FF:;:~

7FF3:
E:6 7FF:l
::::4 D~:::1

B7 7FF:l
'?F 7FF~3

::::A :1.4
E:~:O ·?FF1.

~11.~:::1~:3

t1:1.ff::'
~:3:tf15

(11.(18
0:1t1E:
~~:1.~~[)



8-10
There are J possible modes for CA2, acting as an output

(bit #5 = 1). The first is seen when bit #4 = 1. CA2 will now
act as an output line whose state will be determined by bit #3,
(0 produces LOW, 1 produces HIGH).

7 6 4 J 2 1 0
1

Assume that to communicate with some external device CA2
is to go to the HIGH state for 1 millisecond, then go LOW.
Also assume that the instruction JSR MILSEC (subroutines will be
covered in the next chapter) will cause a delay of 1.0 milli­
seconds. Write the necessary instructions assuming that CA2 is

presen"tly LOW.

--------'/
7FF~3 F'IABFA EGHJ $7FF0
'?FF:1 PIACF.:A EG!U $7FF:1
7FF2 PIABFB Et:;"~'-' $7FF2
7FF3 PIACF.:8 EG!U $7FF3

~31~~10 86 7FF:1 LOA A PIACRA
(1:103: :3A 3:=' OF.:A A #~'~~Z1€1:111€n3~3 SET 8ITS 5 .. 4 AND 7..>.

0:1~35 87 7FF:1 STA A PIACF.:A NO~o.I CA2=1
€11J3:::: 8D ~3113 .JSF.: t'1ILSEC ONE t'1ILLISEC DELA'r'
131.08 E"- 7FF1 L[)A A PIACF.:A t1ILSEC t1AY USE ACe A·b
~310E 84 F7 AND A #~";1:11:101.1.:t CLEAF.~ BIT '3
~:::11.1.~3 87 7FF:1 STA A PIACF.:A CA2=~3

Such an output control signal on CA2 could be produced after
data reception on the A half of the PIA to order the data
source to change mode of operation. For lack of a better name
let's call this the PROGRAMMED mode, since the state of CA2 is
determined by program control.



8-11

CA2 may be used as an output control line in a "hand
shaking" mode when bit #5 = 1 and bits 4 and J = o. In this
mode the A half acts as a data receiver. CA2 will go HIGH

automatically when CAl goes ACTIVE (HIGH in this example) and
will go LOW automatically when Data Buffer A is read.

'---nata Read.
Therefore CA2
is LOW.

CA2
CAl

_C_A_l__n:::'
L-Data

k'<r"]
\.O~_

follows J
state.

Ready

CAt ~

p ~ DAtA
1 ~I."""J'I SOURCE
A ....., 8 '-,..,&S

OF DATA

" -.

When CA2 goes LOW the external device will know that new data
may be put on the data lines.

Flow chart and write the instructions to read the data
from the external source via the PIA (A half) when CAl goes HIGH,
automatically indicating via CA2 that the data has been read.
Store the data starting at 0800. terminating data storage
after FF has been read and stored.

-----1/
Contd •••



8-11
Contd.

*
PtA

F'IAHAN LDX #$0800-1.
IH\T ST;>:: t1Et'lPNT INIT POINTER

LDA R F'IRCF~A

AND A #:Y.1.1.1.0001.0 BITS 4.. 3 .. 2 .. 0 = 0
STA A PIACRA
CLF.: F'IABFA INPUT t10DE NOIo~

OF.:A A #~·~e01.001.1.0 SET ElITS 5.. 2 AND 1.
STA A PIACRA DATA ElUF NOlo!

INl·JAIT LDA A F'IACRA
E:F'L INl·~AIT WAIT FOR F.:EAD1T1 FLAG

STORE IT LOA A PIABFA GET DATA
LOX t'lEt'1F'NT
IN~'~

ST}:: t1Et'lPNT GET STOF.:E AD[)F.:ESS
STR A >~ AND STOF~E DATA
Ct'lF' A #$FF
BNE INWAIT NOT LAST DATA

Hp~ Bp~A HR ALL DONE SPIN FOREVER
t1Er1F'NT Rt18 2

8-12
In the same hand shaking mode (bit #5 = 1, bits

#4 and 3 =.0), the B half of the PIA acts as a transmitter.

Here CB2 will go HIGH when CBl goes ACTIVE (HIGH in this example)
and will go LOW when data is written out (stored) in Data Buffer B.

Sketch timing diagrams for CBl and CB2 indicating the

reason or significance of each change. When working this out
think of what information the PIA (transmitter) and the external
device (e.g., printer) need to know to transmit data without
loss of data or loss of time.

___-1/
CB 1 (in) nf..;.~.~':-------

\ data received by printer, therefore new data
can be put on data lines by PIA

CB2 I I
(out)" 1----------­

CB2' ~new data now available in
follows PIA, therefore CB2 goes LOW
OBl state

Again the hand shaking operation permits optimum data
flow. Although the printer would not normally store more than
132 characters for one complete line of text, the data rate within

this line could be as high as 50 000 characters/second, limited
by the computer's clock and the number of instructions per loop.



8-13
One last mode, the STROBE mode is available when

bit #5 = 1, bit #4 = 0, and bit #3 = 1. It is similar to the
previous HANDSHAKE mode in that CA2 goes low when data is read
(LDA A PIABFA) into the A Data Buffer. It differs in that CA2
automatically returns to the 1 state several microseconds (one
instruction) later. Similarly, in the B half of the PIA, CB2
goes low when a write operation (STA A PIABFB) takes place and
returns to the 1 state automatically, several microseconds
later. This mode of operation releases CAl and CBl for other
tasks, but assumes that data is always ready for the "A" half
and that the external device is always ready to receive data
from the "B II half. A summary of control line operations is
shown below.

CAl (CB 1)
(input only)

7 6 543 2 1 0

I
CAl (CB1)
READY BIT

(read only)

! l L ° for no interrupt
"'O=DDR access ~ (0 = CAl (CB1) ACTIVE in
via Data Buff ( going LOW
l=Data Buffer (1 = CAl (CD1) ACTIVE in
access (going HIGH

STROBE mode
CA2 goes LOvl
momentarily after
READ from A Buffer.
CB2 goes LO~l1

momentarily after
~RlrE to B Buffer.

6

CA2 (CB2)

7

I
bit #5o = input I 1 = output..-__...._---".,A..--- _, ,

5 4 3 2 1 ° bit #4
=1.&....__-_0..........

~I/] /Id/h). 10)~1 '?///} ,...,.. - "
~ ...>~'(, Ia;;1;/t-r i~PI/l PROGRAMMED mode I

j ~ t CA2 (CB2) bit #3

1~~2) 0 1 0 for no fO_l_IO_W_S_b_i_t_II_3 =_o_l=1
READY f I interrupt _ r

BIT + ~., r
,

CA2 (CB2) ACTIVEJ HANDSHAKE mode

~~~nfci~~~ 'ACTIVE CA2 (CB2) goes HIGH
• I following CAl (CB1).

go~ng HIGH CA2 goes LOW after
READ from A BUFFER.
CB2 goes LOW after
WRITE to B BUFFER.

No answer is required in this frame.



o ~.-- -t- A
.....- +- &

1 ~_-a-+--w-«;
Pt f\ 3 P

8-14

Here is an application of the PIA to
detect which of the 4 keys, A. B. C or
D was depressed. CA2 provides logic 0
to all 4 intersections, the depressed
key passing on this 0 state to the
appropriate input. The symbol at the
top of the diagram is an ~
"inverted input OR gate" ~,.

whose output goes to the 1 state if
one or more of the inputs go to o.
PIA lines 4 to 7 are not needed.

Write the initialization instructions for the PIA to
set up CAl as an input (ACTIVE high) and CA2 as an output.
following bit #3. The Data Buffer should be set up as an input.

--_---..J/
XXllo'M'10
~ '-v-J

CA2 CAl
output" input
= bit #3 active

hi.gh

PIACRA
~* ~,~ :t1 :1 :1 ~:1 ~~11 ~:::1

PIACRA ACCESS DDR
PIA8FA DATA INPUT MODE
#~'~~?1~3:1.1~';):1 i~:::1

PIACRA DATA MODE NOW

~:::11.~::'1f1 86 7FFi
~:::1:l03: :=~·4 F;;'-::
~~1:t~~15 E:~:t ~;:OFF1.

0:t~?1S ?F 7FFf1
~:::11J1E: SA 3:6
(1:1(1[) E'? 7FF:t'I

:+: PIA PROG FOR FOUR KEY KEYBOARD.
* CA2 IS OUTPUT TO SWITCHES. CAi IS
:+: INPUT TO PIA. DATA GOES TO LOW 4 BITS.
:+:

KE1TIPIA LOA A
AND A
STA A
CLF.~

OF.~A A
STA A



8-15
Now flow chart and write the instructions to branch to

KEYA, KEYB, KEYC, or KEYD, corresponding to a depression of
keys A, B, C or D.

-----"/
TR'T'AGN LDA A PIACF.:A

BPL Tf;,:'T'ACiN CA1. r'~OT UP 'r'ET
LDA A PIABFA UP r-.low
AND A #$~)F LOl.oJER 4 BITS ONL'T'BIT A #$f1::L KElT' A HIT?
SEQ KE'r'A 'T'ES.
BIT A #$02 KElT' B HIT'f'
BEGJ. KE'T'S
BIT A #$04 I<E'r' C HIT?
BEI;J, I<E'r'(:
BIT A #$(1E: KE'T' D HIT?
BEG! I<E'T'[)

For short tests this "brute force" method is acceptable. For
longer checks, data table lookups should be used.



t'10RDE>::

8-16
Whenever mechanical devices such as switches are used

there exists a problem of contact bounce, that is the contacts
may close, open; then close, several times within a few milli­
seconds of the first contact before settling down to a "closed"
or ON condition. Data or signals from such a switch are highly
unpredictable during this transient period, hence a timing loop
of perhaps ten milliseconds should be introduced after the
first contact detection, via CAlor CA2 before the PIA Data
Buffer is read.

Assuming a lMHz (106 cycles/sec.) clock in the 6800
microprocessor, the number of microseconds per instruction
executed can be determined from Appendix C under the ~ column

denoting the number of machine cycles per instruction.
LDX #$0400

an immediate mode instruction, requires J cycles or J micro­
seconds.

What is the execution time per loop ina

r'10ReaEX DEX
BNE

------"'/
t'10F.:DE>:: DE:X: 4 CYCLES

BNE t'10RDE>~ 4 C'r'CLES
:+:

:+: 8 CYCLES TOTAL



8-17
To get 10 msec., then the # of loops required =

10 / ~6 = 125010 loops
103 10

Initialize the counter for this value and write the
complete delay routine.

-----/
NAt1 PF.:OG68
OPT 0.. S
OF.:G $~j1.€nj

:+:

:+: P8-1.7
:+:

CE 04E2 TIMER LDX
09 MORDEX DEX
26 FD BNE

:+:
:+:

#1.25~] 4-- No $ silZll for decimal #.
4 C'T'CLES

MORDEX 4 CYCLES

1::1 C'T'CLES TOTAL

This routine would then be executed when CAl first detects
a key hit, which would occur when the key is depressed, and
probably upon release, which also produces transient pulses. Hence
the state of CAl should be checked after the delay. If CAl is still
1 it is a legal key hit. If 0, it is probably due to "bounce" upon
key release, which could then be ignored by the program.



8-18
A stepping motor is another application of a PIA.

Imagine 3 electromagnets or coils, A, B and C, placed at equal
angles around a magnet which is free to turn.

A:~

~;:e~
Each of electromagnets At B and C are directly under control
of a PIA Data Buffer bit, as shown in the diagram below.
A magnet is ON when the appropriate bit is in the 1 state,
and OFF when the bit is o. Energizing magnet C causes the
North pole of the central magnet to rotate to the South pole
at c.

[
C

[ I
B A

PIA Data Buffer B

Set up the PIA to cause the central magnet's North pole
to point to A. Assume that PIABFB is already initialized for
output. Also assume that the South pole of each energized
electromagnet is the closest pole to the magnet, as in electro­
magnet C.

___...---J/
0~00 86 ~1 MAGA
0:1€12 87 7FF0

LDA A #:$:~~1~

STA A F'IABFB

Bit #0 (electromagnet A) is ON.



8-19

How would you suggest having the N pole of the central
magnet point to a half way between A and B? Write the
instructions.

------/
€1:10E: 86 ~:1:$ t'lAGA8 LDA A #$03
0:10A 87 7FF0 STA A PIA8FB

Both A and B are ON and equally attracting the N pole, causing
it to point between the two electromagnets, at about the 2
o'clock position.



8-20
~

Write the instructions to cause the central magnet to

move clockwise continuously, starting at A. Assume a delay

subroutine call JSR DELAY, which introduces a delay between
each change to slow down the computer changes to acceptable
rotational rates.

---_/

Data Buffer
01.1313 86 (11. MAGA LDA A #$131.
01.132 B-:O 7FF2 STA A PIABFB, (

01.135 80 €11.32 JSF.: C'ELAY
131.08 86 0-" t1AGA8 LOA A #$03..=:.

..31.eA E'"? 7FF2 STA A PIAE:FE:'I

(11.0D 8D 13:1.32 J5R DELA'T'
(1:11.(1 86 02 MAGE: LOA A #$02
(11.1.2 B7 7FF2 STA A PIABFB
13:1:1.5 BC' 0132 .J5~: DELA'T'
€I1.18 86 (16 t1AGBC LOA A #$06
13:1.1A 87 7FF2 STH A PIABFB
0:1.:1.D BD (11.32 JS~: DELA'T'
..::t120 86 04 t1AGC LDA A #$134
"~tl22 E'? ?FF2 5TFt A PIABFB'I

~~1125 BD (11.32 .J5~: DELA..,'
0:1.28 E:6 &.35 t'1AGCA L[:eA A #$135
€1:12A E''? 7FF2 STA A PIABFE:'.e:12D BD 0:1.32 .JSR DELAY
13:130 2€1 CE BRA MAGA



8-21--
How would you modify the angular velocity for this

stepping motor, under program control?

---_/
The constant used for the delay could be entered via a keyboard
e.g., using the keys 1 - 9, each producing a different constant
and therefore a different angular velocity. The smaller
constant would then be down-counted sooner, producing a shorter
delay, hence a higher speed.

Modern stepping motors usually have many (dozens) of
coils around 'the circumference I alternating between A, B and C

groups, each group being driven by one specific line, hence
PIA bit. An output of the sequence 001, then 010, then 100

would represent one cycle, usually a few degrees. Reversing

the order would reverse rotational direction.



9-1.......
SUBROUTINES

In previous chapters we have used subroutine calls
e.g., JSR GETCHR which caused the ASCII code, for the key struck
on keyboard, to appear in Ace A. Such a subroutine call causes
execution of a group of instructions, headed by the label GETCHR
and terminated by

RTS - ReTurn from Subroutine.
After this subroutine has been executed, the next instruction
executed is that following the subroutine call, e.g •

.JSF.: CiETCHF.:
STA A KE'T'[:tAT

A program can be made up of a series of subroutine calls,
each causing execution of a particular subroutine, ito carry out a
specific task. Each subroutine should have only one entry point
and one exit point. Entry and exit conditions should be well
documented in the accompanying comments, e.g., IIEnter with X
pointing to the head of a message, and exit when the message has
been printed, with Ace A and Ace B contents being overwritten."
Each subroutine can be individually tested and then used with
confidence when called within the main program.

Program planning should be in IItop-down ll format, with
overall tasks being defined first, and from these tasks the sub­
tasks defined. Each task can then be assigned to a subroutine
which in turn can call lower level subroutines to carry out the
sub-tasks. Subroutine calls can be many levels deep, if
necessary, those at the lowest level being responsible for the
simplest tasks, like checking a READY bit in an ACIA or a
control line in a PIA. The overall result is a hierarchical or
pyramidical structure, the top levels being general or "global",
the lowest levels looking after detail.

Contd •••



9-1
Contd.

A typical subroutine. properly documented, is
shown here,

[:tATA F.:EA[:tIT'?
NOT 'TIET.
'TIES. GET DATA
AND E::·::1T.

SEF.:CSR
#$1211
CiETCHF.:
SERBUF

$7FF4
$7FF5

LDA A
AN[) A
BEG!
LDA A
F.:TS

* GETCHR... SUBROUTINE WHICH RETURNS WITH
* ASCII CHAR IN ACC A. X AND B NOT CHANGED.

*SEF.:CSF.: EG!L1
SEF.:E:UF EG!U
:+:

J3ETCHf;.:

7FF4
7FF5

(11(17 86 7FF4
~310A :=:4 01
(110C 27 F9
~Z11(1E 86 7FF5
(1:1.11. 39

Such a subroutine can be called from anywhere within a program,
avoiding duplication of the above instructions.

A subroutine call JSR ECHO is to cause the character,

struck on the keyboard, to be printed or displayed on the
terminal used. ECHO itself could call 2 other subroutines.
Based on this information write the subroutine ECHO, using only
3 instructions. A subroutine called PRINT is available, to
print the ASCII character in ACC A.

--------/

GETS INPUT
Ar·~D OUTPUTS IT.
AND RETURNS

GETCHF~

PF.:INT
.JSF.:
JSF.:
RTS

* ECHO... SUBROUTINE TO ACCEPT ASCI CODE FROM ACIA
* RECEIVER AND ECHO IT ON THE ACIA TRANSMITTER.
* CALLS GETCHR AND PRINT SUBS..

*ECHO~31.~3~Z1 SD 01.07
€1:103 SD 1-3:1:12
e1.e6 39

At this point the details of GETCHR and PRINT are not necessary

except that they both use ACe A.



~
Assuming co.mrnunication to the printing device via the

ACIA, convert the instructions shown below to a well documented

subroutine called PRINT.

PF.:INT LDA B SERCSF.:
AND B #$02 READY TO PF.: I NT""!'

E:Ef~ PRINT NOT 'TIET.

STA A SEF.:E:UF PRINT CHAF.:.

___-------J/

F.:EAD'TI TO PF.: I NT?
NOT 'T'ET.
PF.: I NT CHAR.
AND F~ETUF~N.

LDA B SEF.:CSF.:
AND E: . #$1212
BEt] PF.: I NT
STA A SERBUF
F~TS

* PRINT... SUBROUTINE TO PRINT ASCII CONTENTS
* OF ACC A ON ACIA OUTPUT DEVICE. USES A AND B.

*
PF~INT0112 F6 7FF4

0:115 C4 02
0:1:17 27 F9
0:1:19 87 7FF5
0:1:1C 39

The documentation is just as important as the instructions
written. Fight off the sometimes overwhelming urge to write
undocumented programs, which usually end up in the waste basket.
six months later.

We could depict the subroutine hierarchy ass

ECHO
~ "GETCHR PRINT

implying that ECHO calls both GETCHR and PRINT. For lack of a
better name let's call this a "subroutine tree".



9-)--Imagine a system where the computer is to receive
inputs from 2 ACIA's. It would not be feasible to have the
computer wait in a loop for ACIA #1 since it could lose data
from ACIA #2. The computer could alternately check ACIA #1,
#2, #1 etc., receiving data from an ACIA that is ready. (The
Chapter on "Interrupt" presents another solution.) A
subroutine to check the READY status of ACIA #1, without
reading data, is shown here.

01€10 86 7FF4 I NCHK1. LDA A SEFC:CSl
0103 84 01. AND A #$01 DATA FC:EAD',..?
01.05 27 02 BEG'J. NODATA
01.07 0D SEC GOES HERE IF DATA READY
e1.08 39 SE1RTN RTS
01.09 0(: NO[)ATA CLC GOES HERE IF NOT READY
010A 20 FC E:F~A SE1RTN

Upon exit from this subroutine what is different, when data is
ready, compared to when data is not ready?

-----/
The C bit is set when data is ready, and cleared when data is
not ready.



~
In Appendix C find 2 instructions, each of which branch

conditionally, depending on the state of the C bit. Use one of
them in the main program below, upon return from the subroutine
INCHKl to determine whether or not to store data, MEMADl being
the pointer. If that is not too difficult repeat for ACIA #2,
where MEMAD2 is the pointer within INCHK2, which similarly checks
if ACIA #2 is ready.

BCC - Branch if Carry CHECK:.1.
bit Cleared

or BCS - Branch if Carry
bit Set

CHECK2

/
JSR I NCHK1. ACIA #:.1. READY?
BCC CHEC.:::2 NO DATA HERE
LOX t'1Et1AD:.1.
INX
STX t'1Et1ADi GET POINTER
LOA A SEF~BF1. GET I~~PUT DATA
STA A >~ AND STOF~E IT.
,JSF.: I NCHI<2 ACIA #--, F.:EAO'T'?o:!-

BCC CHECK1. NO r,lATA HERE
LO~: t'1EMAC'2
IN>::
ST>:: t'lEt'lAD2 GET POINTER
LDA A SEF.:BF2 GET DATA FROt1 #2
STA A X AND STORE IT.
BRA CHECK1.

The use of the C bit permits decisions' to be made within
a subroutine, without violation of the requirement for a single
return to the mainline program, via one RTS instruction. The RTS
should be the only means of exiting from a subroutine. To violate
this rule, e.g., via a branch instruction, destroys the modular
design of your program and makes de-bugging a nightmare.



9-5-Let's look at a subroutine HEXADD which expects 4 hex

keys to be struck. and stores the corresponding 4 character
hex value in 2 consecutive bytes of memory. For example if
keys 2. 3. C and 5 are struck. the 2 bytes of memory would look
like this.

r 1 byte "' r 1 byte ,

10 1 0 1 1 I 0 I 0 1 0 1 1 I 1 I 1 I 1 I 0 I 0 1 0 1 1 I 0 I 1 I
'-- 2

Approaching this from a "top-down" direction. assume that we have
a subroutine INBYTE which would return with 2316 in ACC A when
two keys. 2 and 3. are struck. Write the subroutine HEXADD which
calls INBYTE and produces the 16 bit binary contents in the two
memory locations. ADORES and ADDRES+1.

__--c/
:+: HEXADO. . . STORES 2 BYTES IN MEf1 AT LABEL ADDRES
=+: CALLS INBYTE TWICE. USES ACC A.
=+:

£1101'21 BC' 01.13 HEXAr..D JSR INB'r'TE GET 8 BITS IN ACC A.
1'21103 87 1-31.130 STA A ADORES AND STORE THEt-1.
01£16 SD e113 JSR INBYTE 8 t10RE BITS
131£19 87 e10E STA A AD[:'~~ES+1. INTO NE~"~T ADDRESS.
010C 39 RTS
e:1.eD 0£102 Ar)DRES Rt1B 2

=+:

13113 INB'T'TE EQU $0:1.13

This "top-down" approach assumes that we could write the INBYTE

subroutine, if it is not already available.



.2=.2.
Now also assume that INBYTE returns with the C bit set

if an invalid hex key was struck; otherwise C is cleared.
Modify the HEXADD subroutine to check for this abnormal condition,
restarting the HEXADD subroutine when such an error is detected.
Modify the documentation accordingly.

---~/
HEXADD... STORES 2 BYTES IN MEM AT LABEL ADORES
CALLS INBYTE TWICE, CHECKING FOR ERROR WITHIN BYTE
SUB VIA SET C BIT. ACe A USED.

ADDRESS.

GET 8 E:ITS IN Ace A.
RESTART IF ERROF.:.
ELSE STOF.:E THEt1.
8 t10F.:E BITS
RESTART IF ERROR
ELSE STORE IN NEXT

2

INB'T'TE
HEXADD
ADDRES
INB'T'TE
HE>::ADD
ADDF.~ES+:1

..TSR
BCS
STR A
.JSR
BCS
STA A
RTS

ADDF.~ES F.~t1B

:+:
:+:

:+:
:+:
:+:

HE:~-::ADD0::1-£1£1 BD ~]:1:13

~3:1~~13 25 FE:
~1:1~~15 87 '.:11.:1:1
£11.£18 BD '.:1:11.3
€1:1(1B .-.~ F3c:..._1

f1:10D 87 €1:1.:1.2
~J:t:1€1 39
!::11.:1:1 1-~1(1f12

A better solution would be to print the message BAD HEX before
restarting HEXADD. This improves communcation between the
computer and the user, an important consideration in program
design.



j;;J.
A subroutine HEXCHR is now available to acquire an ASCII

character in ACC A, when a key is struck, and to convert it to
its 4 bit hex equivalent, e.g., OB results when B is struck.
This 4 bit result will be right-justified (against the right edge
or as far right as possible) in ACC A. Is this where you
ultimately want the first 4 bits inside ACC A when the INBYTE
subroutine, which receives two such characters, is executed?

---..----.-1/
No. If 5 is the first of two keys struck, the 0101 result
must be moved to the left half of ACC A, to make room for
the next 4 bits, which go in the right half when the second
key is struck.

~
Write the first half of the INBYTE subroutine to place

the first 4 bits in the left half of ACC B. Useful instructions
might be ASL A and TAB. Why is ACC B needed? The HEXCHR
subroutine is still available and returns with the C bit set if
an invalid hex key was struck. Such a condition should cause

an immediate return from INBYTE to HEXADD, with the C bit still
set.

---------.1/
~3:t1~~: BO ~Z11.25 INBIT'TE .JSF.: HE::·::CHF.:
~Z1:t.16 25 1~1C Be::; BITITF.:TN
01:1::: 4':' ASL A'-'
0119 4':' ASl.. A'-'
~::11.:1A 4':' ASL A'-'
0:118 4':' ASL A'-'
(111C 16 TAB

GET 4 BITS
BRD HEX. RETURN NOW.

SHIFT 4 BITS LEFT.
STOF.:E IN B

Ace B is used to store the first 4 bits when HEXCHR, which uses
ACC A, is called to get the second 4 bits. RTS passes the C bit,

undisturbed, to the calling subroutine HEXADD.



9-9---Now finish the INBYTE subroutine including documentation.

The instruction ABA may be useful to you.

___-J/
The complete INBYTE subroutine might bes

SHIFT 4 BITS LEFT.
STOF.:E IN B
GET 4 t10F.:E BITS.
IF BAD HE>::
MERGE BOTH 4 BIT SETS OF DATA
TELL THEM ITS GOOD DATA

ABA
CLC

E:'T'TF.:TN F.~TS

* INBYTE... PRODUCES 8 BITS IN ACC A CORRESPONDING
* TO TWO 4 BIT HEX VALUES} EACH PRODUCED BY
* HEXCHR SUB} WHICH IS CALLED TWICE. USES A AND B

13125 IN8YTE JSR HEXCHR GET 4 BITS
ec BCS BYTRTN BAD HEX. RETURN NOW.

ASL A
ASL A
ASL A
ASL A
TAB

01.25 JSR HEXCHR
02 BCS BYTRTN

€1113: BD
13:11.6 '-,e:'.::.,._1

e:1.:t8 4:=:
1!:1:1:t9 4'-'.=.
e11A 4:=:
1!:111.B 40::''-'
€1::t:1C 16
1!:111D BC'
~~112J.3 25
"~1:122 :1B
0:123 1!:1t::
13124 39

ACC A 0 0 0 0 1 1 1 0 After the first JSR HEXCHR if E
was struck.

A""" B 1 1 1 0 0 0 0 0 After therAB instruction.vv

Ace A 0 0 0 0 1 0 0 1 After the second JSR HEXCHrl if 9
was struck.

ACe A 1 1 1 0 1 0 0 1 After ABA. ACe B is added to
ACe A to merge both 4 bit codes.

So far we have HEXADD calling INBYTE twice.



9-10

The HEXCHR subroutine could be formed from the hex
checking program shown early in the Branching Chapter. Write
this subroutine including the following changes I

(a) At the beginning of the subroutine get the ASCII code for
the struck key into ACC A.

(b) Set the C bit if an invalid hex key is struck; otherwise
clear the C bit and return from the subroutine with the
4 bit hex code in ACC A.

Refer to the Branching Chapter for the original hex checking

program. Assume that the GETCHR subroutine i~ available
to receive an ASCII code in ACC A. when a key is struck.

---~/

121125 BD
13128 81
012A .-,-..

oe:.~

012C 81
0:12E 23
121:13121 E::1
€1:t32 23
0134 :::1
01.36 22
£1138 8~1

0:t3A 0C
013B ::~9

et13C 80
~313E 2~3

0::1.4~3 €1D
~1:14:1 ;;::€i

*= HE:X:CHR. RECEIVES
*= CONVEF.:TS TO 4 BIT

* AND CLEARS C BIT.
*=

0143 HE>~CHF~ .J5F.: GETCH~~

2F eMF' A #$2F
14 BLS BADHEX
39 cr'1P A #$39
fi(: BL.S NUt10K
4121 er'1P A #$40
ec BLS BADHE::-::
46 Ct1F' A #$46
138 BHI BADHEX
37 SUB A #$37

GOODH:X: CLC
HE>!'F.~Tr·~ F.~TS

3=121 NUt10K SUB A #$3€1
FA BRA GOO[:IH>::

E:ADHE:)~ SEC
F:::: BF.:A HE::<RTN

ASCII eODE IN Ace A VIA GETCHR
HEX EQUIVALENT IF VALID
ELSE RETURNS WITH C SET.

(ECHO WOULD BE BETTER STILL)

BEL.OW 3121, NOT HEX

121 TO 9. VALID HEX

3A TO 4121. ILL.EGAL

ABOVE 46. ILLEGAL
A TO F IN 4 BIT FORMAT
TELL THEM IT/5 GOOD

121 TO 9 IN 4 BIT FORMAT.

BAD NEWS. WRONG KEY.



9-11

The GETCHR subroutine is essentially the same as before
except for 2 changes.
(a) Bit #7, the parity bit must be cleared for all data.
(b) Lower case alphabetic characters a to z, must be forced to

upper case by clearing bit #5. Write the GETCHR subroutine.

Both of the above are required to make the data independent of the
type of terminal (some produce parity bit set, others cleared)
and to eliminate having to hold the SHIFT key down when entering
alphabetic characters.

------"/
* GETCHR... SUBROUTINE
*_BIT #7 (PARITY BIT)

*7FF4 SERCSR EQU $7FF4
7FF5 SERBUF EQU $7FF5

*0:143 B6 7FF4 GETCHR LDA A SERCSR
0:146 84 01. AND A #$01.
01.48 27 F9 BEQ GETCHR
014A 86 7FF5 LDA A SERBUF
0140 84 7F AND A #$7F
014F 81. 60 CMP A #$60
01.51 23 06 BLS GETRTN
01.53 81. 7A Cf1P A #$7A
01.55 22 02 BHI GETRTN
0:157 84 DF AND A #$DF
01.59 39 GETRTN RTS

TO GET ASCII CODE FROM ACIA RX.
CLEARED. UPPER CASE IS FORCED.

DATA READY?
NOT YET.
YES. GET DATA
CLEAR PARITY BIT.

BELOW "SMALL All

ABOVE "SMALL ZU
UPPER CASE ALPHA CHAR
AND EXIT.



9-12
Describe the sequence of events when a non-hex key is

struck. Sketch the "subroutine tree" in your answer.

---~/
HEXADD

•INBYTE
~

HEXCHR

•ECHO
/ "-.

GETCHR PRINT

·When HEXCHR detects an invalid hex character the C bit is
set and HEXCHR returns to INBYTE. INBYTE immediately checks the
C bit and. noting that the C bit is set, returns immediately to
HEXADD, which also checks the C bit. HEXADD, on noting that the
C bit is set, immediately restarts .. In summary, a wrong key
immediately restarts HEXADD, preferably after a printed message
such as BAD HEX.

Further use of the C bit is seen in a program where a
task, assigned to a subroutine, results in the C bit being cleared
if the task is completed normally. If the result is abnormal
the C bit is set and ACe A contains the erroneous result, which
can be printed as an error message.



9-13
Here is a new problem, to write a subroutine called

PAGE which prints one page of data. the first address of the
data being in the X Register when PAGE is called. The format
is as follows I

- one PAGE comprises 1610 lines.
- one LINE comprises a Carriage Return and Line Feed (to start

a new line) followed by 8 words, each separated by a space.
- one WORD comprises 4 bytes, from memory, each byte being

printed as 2 ASCII characters, e.g., 00111101 in memory would
cause 3D to be printed.

Use a "top-down" approach to this problem in flow charting and
writing the subroutine PAGE. Assume that the subroutine LINE
is available to print one LINE.

---------//

ONE BELOW FIRST CHAR ADDR
INIT POINTER.

SET UP COUNTER.
PF.:INT LINE
LAST LINE?
NO. PRINT ANOTHER
LAST ONE.

MEt1PNT
#1.6
LINCNT
LINE
LINCNT
NULINE

1
2

Note the double vertical bar here
indicating a subroutine.

LDA A
STA A
JSR
DEC
BNE
RTS
Rt18
Rt1B

DE:>::
STX

* PAGE... SUBROUTINE TO PRINT ONE PAGE (16 LINES)
* OF DATA FROM MEMORY. ENTER WITH X POINTING TO
* FIRST CHAR TO BE PRINTED. CALLS LINE SUB.

*PAGE

STORE
PO'NTER-I

COUNT: "10

NULINE

\\ LINCNT
'---........--- MEt'1PNT

"--
The address for the first memory address could be produced by

the previous subroutine HEXADD.



9-14
The next task, working downward, is to write the

subroutine LINE, which prints 8 words, each comprising the

contents of 4 addresses. Flow chart and write the subroutine

LINE, assuming that 2 subroutines are available as follows.

- ~ORD, to print one word.
- CRLF, to produce a Carriage Return ~~d Line Feed, to start

the next character on a new line.

_____---J/

.JSR C~:LF START NEW LINE
LDA A #$~Z1:=:

STA A l·JF~DNUt·1 SET UP COUNTER
.JSF~ L·JORD
DEC L·JF.~DNUt'1 LAST laJORD?
BNE NULaJORD NO. BACK AGAIN.
RTS LAST ONE.
Rt1B :1.l·JF.:DNUt·1

*

* LINE... SUBROUTINE TO PRINT 64 (DECIMAL) CHAR
:+: FROM 32 MEMORY ADDRESSES. CALLS WORD. USES A.
:+:

LINE
SET UP

,""OR.O c.o~N'TER



. .
pr~n"

9-15
which
space.

ASCII

~he next subroutine proceeding downward is WORD,
prints the contents of 4 memory locations, then skips one
The subroutine OBYTE, to print the contents of ACe A as 2
characters is available. SPA~E, a~other subroutine will
(or skip over) one space. Flow chart and write the NORD

subroutine.

CHAF.:.

ONE SPACE.

INIT COUNTER
PPINT 1 BYTE AS 2

NOT LAST B'T'TE
'T'ES. LAST B'T'TE.
DONE

#$~:::14

B'T'TeNT
OB'T'TE
B'T'Te~·~T

NUB'T'TE
SPACE

:1.

LDA A
STA R
.JSP
DEC
E:NE
JS~:

F.:TS
F.:t18

---------J/
~ WORD... SUBROUTINE TO PRINT CONTENTS OF 4 MEM
* ADRESSES AS 8 HEX CHAR. CALLS OBYTE AND SPACE.
:+: USES ACe A.
:+:

l.oJO F.: D

B'T'TCNT

RETURN



9-16
The OBYTE subroutine is next. It gets one byte from

memory via the pointer MEMPNT and calls HEXPRT twice to print
it as 2 ASCII characters. HEXPRT is entered with 4 bits
right-justified in ACC A. Flow chart and write the OBYTE
subroutine.

--------/

GET ADDRESS
GET BYTE
SA.....E COP'T'.
F.:IGHT
.JUSTIF'T'
LEFT
HALF
ZAP LEFT HALF
PF.:INT IT
GET CLEAN COP'T'
ZAP LEFT HALF
PF.:INT IT
DONE

>::
MEMPNT

TEMP

#$(1F
HE>::PF.:T
TEt'1P
#$0F
HE~·::PF.:T

1

LD~'::

IN>-~

STX
LDA A
STA A
ASF.: A
ASF.: A
ASF.: A
ASR A
ANC' A
.JSF.:
Le'A A
AND A
.JSF.:
RTS
RMB

* DBYTE... SUBROUTINE TO PRINT CONTENTS OF ONE MEM
* ADDRESS AS 2 ASCII CHAR. CALLS HEXPRT. USES A JX.
* ENTER WITH ADDRESS IN MEMPNT.

*OBYTE MEMPNT

TEMP

Re"'URN

Note the use of TEW~ rather than ACC B. It is not good practice
to tie up an accumulator, when calling a subroutine which may

need the accumulator.



9-11
HEXPRT is entered with 4 bits right-justified in Ace A.

It prints the corresponding ASCII character. Flow chart and
write this subroutine noting that PRINT is available to print
the ASCII contents of ACC A.

_----J/
* HEXPRT... SUB TO PRINT ASCII CHAR. CALLS PRINT SUB.
* ENTER WITH 4 BITS RIGHT JUSTIFIED IN ACC A.~oo 30 TO

ACt " CON'Tetm

PR\NT CHRIl.

HE>::PF.~T ADD A
Cf1P A
BLS
ADD A

OUTPUT JSR
RTS

#$3~3

#$]:9
OUTPUT
#$07
PRINT

CONVEF.~T TO ASC I I
NUt1BEF.~?

LETTEF.~. A[:ID 7 t'10RE.
OUT IT GOES.

Check this routine by testing it first with values 0 and 9.
then with values A and F. plus the 4 values just outside these
legal values.



9-18 ..
Next we need the PRINT subroutine. The printer, via

the CTS control line back to the ACIA, will inform the computer
to stop transmitting while Carriage Return and Line Feed
functions take place. Flow chart and write the subroutine to
transmit data via the ACIA when CTS = 1 (CTS = 0).

PIUNT CHAR

RETURN

----..1/
* PRINT... SUBROUTINE TO PRINT CHAR IF DEVICE
* IS ON LINE VIA CTS=~ CCTS NOT=0). USES ACC A AND B
* ENTER WITH ASSCII CODE IN Ace A.
SERCSR EQU $7FF4
SERBUF EQU $7FF5

*PRINT LDA B SERCSR
BIT 8 #$08 CTS NOT=0?
BHE PRINT NO. TRY AGAIN.
BIT 8 #$02 READY?
BEQ PRINT
STA A SERBUF PRINT IT
F.~TS

Loopback for the second test is to the top to ensure that CTS
has not gone to 1, while waiting for the printer to become READY.



LDA A #$eD C~:

.JSF.: PF.:INT
CLR A
.JSR PRINT OUTPUT NULL
.JSR PF.:INT
LDA A #$~3A LF
...TSR PRINT
CLR A
,JSR PF.:INT NULL
,JSF~ PF.:INT
RTS

9-19
SPACE and CRLF now remain. A problem exists in using

the ACIA with the printer in that the ACIA will transmit the
last character in its TRANSMIT Buffer even though the printer
requests a halt to more data by clearing CTS (Clear To Send).
eTS is normally cleared during a Carriage Return or Line Feed
operation or when the printer is not ready to print data. The
above problem results in the loss of the last transmitted
character. The solution is to send a 2 nulls (ae) to the ACIA
after both the CR and LF characters. ;rhe nulls are then
"sacrificed" to preserve the next legal character printed.
With this in mind, write the CRLF and SPACE subroutines. Flow
charts are not necessary for these.

--_---J/
* SPACE... SUBROUTINE TO OUTPUT ONE SPACE CHAR.
:+: CALLS PRINT SUB. USES ACC A.

*SPACE LDA A #$20 ASCII FOR SPACE
.JSF.: I::'R I NT
~:TS

* CRLF... SUBROUTINE TO OUTPUT CARRIAGE RETURN
* AND LINE FEED CHAR TO PRINTING DEVICE. PADS EACH
:+: WITH 2 NULLS CHAR. CALLS PRINT SUB. USES ACC A.
:+:
CRLF



9-20
To complete the subroutine PAGE, draw the "subroutine

tree" to show the subroutine's hierarchy.

---------/
PAGE

~
LINE

/"
WORD CRLF

/"OBYTE SPACE

HE~p0
PRINT

In only a few words, the
overview of PAGE is depicted
here.

A program could call both the HEXADD and PAGE
sUbroutines, the former to define the starting address and the
latter to print the page of data.



9-21
Near the end of the PIA chapter is a program in which

a delay is used to "de-bounce" a switch before its state is
read by the PIA. This delay could be achieved more easily if
subroutine format was used.

Flow chart and write a subroutine which produces a
delay of N milliseconds, where N is the binary contents of
ACC A. This subroutine should call a subroutine MILSEC which
produces a delay of 1 millisecond each time it is called.
Write the ruILSEC subroutine, assuming 1 microsecond per MPU
cycle. If necessary refer to the PIA chapter for the previous
delay routine.

----~/

NOT LAST YET

STO~~ES N
ONE t1ILLISEC

P~:O""'IDE

DELA'T'.

#:113121
t'1ILCNT
t'1ILCNT
t10RDEC

:1

COUNT
t1ILSEC
COUNT
t10Rt1IL

:1

STA A
.JSF.:
DEC
BNE
RTS
Rt'1BCOUNT

*=
* MILSEC... SUB TO
* ONE MILLISECOND

*t1 I LSEC LDA A
STA A

t'10RDEC DEC
BNE
~:TS

t1 I LCNT RME:

* DELAY... SUBROUTINE TO PRODUCE DELAY
* OF N MILLISECONDS~ WHERE N= BINARY
* CONTENTS OF ACC A ON ENTRY. CALLS MILSEC.

*DELA'T'
t10~:t'1 I L

e:10D 86 64
13:113F 87 ~1:1:1.8

~1:1:12 7A ~~1:1:1.:::
~:1:15 26 FB
0:1:17 39
10:1:18 131313:1

10:1130 B7 ~1:10C

'.0 M\LLlSEC ~3:103 BD e:113D
t>E~"Y

0:1~16 7A e:113C
0:1~39 26 F8
0:10E: 39
0:113C ~~10e:1

tHaT cou,,"ER

The 2 loop instructions DEG ~ILCNr and BNE MORDEe take 6 + 4 = 1010
MPU cycles or 10 microseconds. Therefore 10010 or 6416 loops
provide a delay of 1000 microseconds or one millisecond.



9-22
I k&

In the previous frame MIIJCNT could have been given an
initial value of 6416 sim~ly via

MILCNT FeB $64

eliminating the need for the 2 lines of initialization at the
start of the MILSEC subroutine. Would this be acceptable? Why?

------/
No! The subroutine would execute properly the first time it is
called, MILCNT being decremented from 64 to o. The second time
(and all subsequent times) that it is called MILCNT would start
at FF, after first being decremented from 0 by DEC MILCNT. This
subroutine MILSEC would then go through 25610 loops to reach zero,
instead of 10010 loops, producing an incorrect delay. Self­
initialization is required within the subroutine to reset MILCNT

to 64 every time the subroutine is called. Lack of self­
initialization is a common catastrophic error when coverting a
program, which runs correctly once, into a subroutine which is
called many times within a larger program.

This concept should be ext~nded to all programs, as well
as subroutines enabling faulty programs to be restarted during
de-bugging without the necessity of being reassembled or reloaded.

Enough said for now about subroutines!



10-1

STACK OPERATIONS

Previously we have seen data storage in which the Index
Register was used as a pointer. Another 16 bit register. the
Stack Pointer (Sp) is also used to store and retrieve data.
employing a user-defined block of memory, called the stack, for
the storage operations. 'rhe Stack Pointer may be initialized
to point to the address lC40 ·J'ia

LDS #$lC40 (LoaD the Stack pointer)

Another instruction
PSH A (PuSH accumulator A)

performs a "push" operation, that is it stores the contents of
ACC A in the address now contained in the Stack Pointer. The
Stack Pointer is automatically decremented after the storage
operation.

"PuSH" is an appropriate description, similar to the
"pushing" of individual serviettes into a metal holder, each
new serviette now being on the top of the stack.

Initialize the Stack Pointer to lAFF, then store the
contents of Ace A and Ace B on the stack in that order.

---_/
01.00 8E 1.AFF
01.03 36
0104 37

LDS #$:1.AFF
PSH A
PSH B

Stack Status Diagr~ns

r:
E

F

lAF

lAF

lAF

lAr'""')-----f
lAF-""---'11

~SP lAF·
~~.;.;;lI

lAF.,·~_......3P

lAF-,:.=._.=--::::ot
lAF

~~~

Before P3H A
SP/lAFF

After PSH A After PSH B



10-2
Data can be retrived from the top of the stack via

PUL A
which "pulls" the data off the stack into ACC A. 'rhis is
similar to retrieving a stored serviette from the holder, the
last one in being the first one out. In the PUL operation the
stack pointer is incremented automatically, before each byte is
retrieved. Assuming the 2 PSH operations in the previous fr~~e

the instructionsl

32
PUL B
PUL A

first transfers the data, stored in lAFE, into Ace B, then
transfers the data from lAFF into Ace A. Note that the PUL
operations are in the reverse order to the PSH operations,
respecting the "Last In First Out" (LIFO) sequence.

Use of the stack permits temporary storage of data without
the need for a symbolic address or an accumulator usage. Modify
this now familiar subroutine to operate without ACe B. Assume
previous stack pointer initialization.

PF.:INT L.DA E:
AND E:
BEG!
5TA A
F.:TS

SEF.:C5 F.:
#$(12
PF.:INT
SEPBUF

F~ERDITI TO PF.: I t·JT?
NOT 'T'ET.
PP I NT CHAF.:.
AND PETUF.:N.

/------------------
7FF4
7FF5

..:1:1tUj 3:6
t11J::'1! E"-'I::,

\.31\.34 :::4
":1:1":16 27
01.0::: 3:2
\.3:t(19 E'-;:O

'I

1~1~l(1C 39

7FF4
\.32
F9

'7FF5

SEF.:C5R EI~~U :t?FF4
SEF.:E:UF EG!U $7FF5
:+:

PF.:I NT PSH A
NOT'T'ET LDA A SEF.:CSF.:

AN[:t A #$02
BEG! NOT'T'ET
PUL A
5TA A SEF.:E:UF
F.:T5

WARNINGs For every PSH there must be a corresponding PUL to
restore the stack pointer to its original state.



10-)

Assume that the main line program which calls this
PRINT subroutine iSI

07C3: 8[) :1.3:5E:
07C6 FE 077E

.JSR
LDX

PF.:INT
t1Et1PNT

07
c6

lAFO
lAFE
lAFF

If the stack pointer contains lAFF just before JSR PRINT
is executed, the address of the next main line instruction, 07C6
in this example, is stored on the stack. The low byte (C6) goes
into lAFF and the high byte (07) goes into lAFE. The stack

status at this point is depicted by this diagram.
The RTS instruction at the end of the subroutine
automatically performs two PUL operations,
restoring the 07C6 value in the Program Counter.

~SP The next instruction executed is then from 07C6,
the LOX MEMPNT instruction following the
subroutine call.

Assume that the first byte of JSR PRINT resides in 0426,
and that the stack pointer contents is 13CB just before JSR PRINT
is executed. Draw the stack diagram showing stack contents and
SP value for each stack change, starting just before JSR PRINT is
executed and finishing when LOX MEMPNT is executed. The PRINT
subroutine is the one given in the answer of the previous frame.

--_/

after
RTS

SP

after
PUL A

lJe

~CC A
04
2913C8

after
PSH A

13C5 ~SP

...SP

after
PRIN'r

6

7 04
8 29

. lJC

13C

13C

just
JSR

8lJC ....SP
before

JSR PRINT

the next PSH
overwrites 29 1

r--...,



10-4-Examination of data stored on the stack is achieved vial
TSX - Transfer Stack pointer to indeX register.

which transfers the Stack Pointer to the Index Register, then
increments the. Index Register. In this way the Index Register
points at the last byte stored on the stack. This permits
direct access to the data, storea l)n the stack, wi thout

disturbing the Stack Pointer. Wri tl~ the instructions to print
the value of the last byte, stored on the stack. The sub­
routine OBY'l'E is available.

-------..;l'/
0203 30
0204 A6
02€16 E:D

0€1
€1142

TSX
LDA A X
.JSR OBYTE

10-5
Assume' that 4 bytes have been stored on the stack. It

is now desired to increment the first of these 4 bytes without
disturbing the stack pointer or other data on the stack. Write
the necessary instructions.

___----.II

7JF5
7JF6
7JF7
7JF8
7JF9

More stack operations will be seen in the
where the stack is used extensively.

next chapter, Interrupt,

• ••••••••• 2. X

• ••••••••• 1, X

x

'rsx =

SP + 1 ~ X

· J, X

· .
-+-SP

4
1

2

Iii

INC
~11 ~3 ~:::1 J: ~:::1

~31"31 6C ~~f3:



11-1 (a~

INTERRUPT

The simplest type of "interrupt" operation is that
produced when you start the 6800 microcomputer by pushing the
RESET button. This starts execution of a permanently stored
program or "service routine". as interrupt initiated programs are
called, this one servicing the RESEr button. When this button
is pushed the RESET line to the MPU is grounded. This causes
the computer to look in addresses FFFE and FFFF (called "vector"
addresses) for the address of the RESET service routine. The
RESET service routine is then started. typically clearing all
READY bits, initializing the stack pointer and setting up
input/output devices such as the PIA or ACIA for the required
mode of operation.

The RESET line also can be converted to force a restart
of this service routine automatically when power is first
applied, eliminating the RESET button. This is particularly
useful when the microcomputer controls an electronic subsystem
or an appliance (e.g., microwave oven).

Another form of interrupt provides the solution to the
problem of determining when a peripheral device has data or
requires data, without the continuous check of READY bits in an
ACIA or PIA. Under interrupt operation, such devices are ignored
by the computer until the device demands service, whereupon the
computer suspends its present operation. known as a "background"
program and executes the service routine or IIforeground ll program
for the device which demanded service.

Such service may involve the transfer of one byte of data
or the change of several bits in a status register. When the
service routine is completed the computer resumes execution of
the background program.



11-l(b)

Several points are relevant to interrupt operations.
(a) As stated above, READY bit polling or testing, as a routine

operation, is now eliminated permitting more flexible and
efficient use of the computer. With interrupt operation
the peripheral devices essentially say to the computer
"Don't call us. v~e'11 call you. It

(b) The service routine is entered each time that a character
is transmitted or received by the interrupting device or
each time that a push button activates a PIA Control Line.
Such a service routine is short, typically requiring )0 to
60 microseconds to execute.

(c) The elapsed time between successive interrupts by a
particular device is usually long, compared to the execution
time for a service routine. Even at high data rates such as
960 Characters/sec., the time between successive interrupts
is approximately 1 millisecond. For push button activated
interrupts this time could be seconds to hours. Consequently
it is possible to service many devices via interrupt and
still execute background programs for a large percentage of
the computer's available time.

(d) Interrupt programs are not recommended initially because
programming errors are more difficult to find. Orderly
de-bugging, possible with nested subroutine type programs,
is less applicable here because the occurrence of interrupts
is essentially random in time. This makes it difficult to
determine the conditions of various registers at interrupt
time, if a service routine occasionally fails.



CCR
Ace B
Ace A

IXH
IXL
PCH
PCL

11-1 (c)

Interrupt serv~c~ng of interfaces such as the ACIA or
PIA usually involves "Interrupt ReQuest" or "IRQ" operation, also

known as "Maskable Interrupt". Such an interrupt
request is made by grounding of the IRQ line to the

~SP MPU by the interrupting interface. This causes the
present contents of the Program Counter, Index
Register, ACC A, ACe B and the CCR to be pushed
automatically on the stack in the above order.
After p~oviding service to the interrupting device
the IRQ service routine is terminated by the
instruction

RTI (ReTurn from Interrupt)
which automatically pulls the stored values from the

stack, restoring the above registers and accumulators to their
state when IRQ operation was requested. Resumption of the back­
ground program takes place as if nothing happened (except for the
slight delay to provide IRQ service).

IRQ operation first requires initialization of the IRQ
Vector Addresses, FFF8 and FFF9, with the address of the IRQ
Service Routine. IRQ operation (interrupt service) will then take
place if all the following are truel
(a) The Control Register of the appropriate interface (ACIA or

PIA) has been permitted to interrupt. For example bit #7 of
the ACIA Control Register is set to permit ACIA Receiver
Interrupt. PIA interrupt via CAl is permitted by setting
Control Register bit #0.

(b) The interface (ACIA or PIA) must activate (ground) the IRQ
line. This happens automatically when the READY bit is set,
indicating that data is ready from the ACIA Receiver, or
that data is needed by the ACIA T·ransmitter, or that an input
Control Line in the PIA is now ACTIVE.

(c) The I (Interrupt) bit of the CCR must be cleared, e.g., via
the instruction

CLI (CLear Interrupt)
which permits all IRQ-connected interfaces to interrupt.
Hence IRQ operation is controlled "globally" via the I bit
and locally via each Control Register.



ll-l(d)

The PIA and ACIA. connected for interrupt operation. are shown
in the block diagram below.

IEXTE~NAL I c:,,, I 51! TS f!A _
DEVICE I -1 &'T XRQ

fR~.7 (bit.oal) I

•Q \ d0.t CI. out - '800 MPU
I ACtA m

0. \ d a. tel '" r' I(~ierr"ptEMbled)

sera

Before the I bit is cleared to permit IRQ operation,
several preparations for interrupt operation must be made,
usually referred to as "background initialization". These area
(a) Set up the IRQ vector addresses FFF8 and FFF9 with the service

routine address.
(b) Set the Control Register bits of the appropriate interface

(ACIA or PIA) to permit an IRQ request via the receiver,
transmitter or Control Line.

(c) Set up any data pointers for storing or retrieving data.
Only now can the I bit be cleared to permit IRQ operation.

Write the background initialization to set the address
of ACIARX, the start of the ACIA service routine, in addresses
FFF8 and FFF9.

---"/
LDX IACIARX
STX $FFF8 INIT VECTOR FOR IRQ

When an interrupt occurs, the contents of the accumulators
and registers will be pushed on the stack. Then the address of
the next instruction to be executed will be obtained from FFF8
and FFF9, the IRQ vector address. In other words the next
instruction to be executed will be the first instruction of the
the IRQ service routine.



11-2....-
Continuing with the background initialization, set

the ACIA Receiver Interrupt bit, to permit interrupt to occur.
Then initialize MEMADD with the address one below address lAOO,
to permit storage of data from the ACIA Receiver. Assume, as

before, that ACIACR is the "original" for the "write only"
Control Register of the ACIA.

-----.;/
LDA A
O~:A A
STA A
STA A
LD::.-::
STX

ACIACF.:
#~10e00000 ENABLE RX INT
ACIACR
SERCSR
#$1A0~1-1

MEMADD SET UP STORAGE POINTER.

So far the background initialization is.

131121121 CE 011C LDX #ACIARX
121103 FF FFF8 STX $FFF8 INIT VECTOR FOR IRQ
011216 86 738E LDA A ACIACR
011219 8A 80 ORA A #::-~1000001210 ENABLE R>-~ INT
01€1B B7 73E:E STA A ACIACR
010E B7 7FF4 STA A SERCSR
011:1 CE 19FF LDX #$:1A013-:1
12111.4 FF 01.1.A STX l'1El'lADD SET UP STORAGE POINTER.



Now complete the background initialization by clearing
the interrupt bit in the Condition Code Register. At this point
a background task could be started. Since we have no background
task to do at this time, put the computer in an endless loop,
which will be interrupted from time to time by the ACIA, when
it receives another character.

-----..,,/
HF.:

CLI
E:F.:A HF.:

ENABLE INTERRUPT
BACKCiF.:OUNO LOOP

The complete background initialization to provide
interrupt service for the ACIA Receiver is then

10:1.12110 CE e:1.:1.C LL">~ #ACIARX
10:1.103 FF FFF8 STX $FFF8 INIT VECTOR FOR IRQ
0:1.06 86 73SE LDA A ACIACR
10:1.1219 SA 8121 ORA A #~~:1.0012112112100 ENABLE R>:: INT
12I:1.I2IB B7 738E STA A ACIACR
12I:1.0E B7 7FF4 STA A SEF.:CSR
121:1.:1.:1. CE :1.9FF LDX #$:1.A00-1.
1211:1.4 FF 011.A STX t1EMADD SET UP STORAGE POINTER.
0:1.17 €IE CLI ENABLE INTERRUPT
121:1.:1.8 2121 FE HR BRA HR BACKGROUND LOOP
e:1.:1.A 1211211212 t1Et1ADD RMB 2



11-4

Now write the service routine ACIARX, which stores ~

byte via MEMADD each time that the service routine is entered.

Terminate this service routine with RTI, which returns control

to the interrupted background program.

--_----J/

GET NEXT ADDRESS
GET DATA
AND STORE VIA MEMADD
AND RETURN TO BACKGROUND.

t'1Et1ADD

* INTERRUPT SERVICE ROUTINE FOR ACIA RX.
* STORES ONE CHAR IN MEM VIA MEMADD POINTER.
*ACIARX LDX

INX
ST>:: t"lEt'lADI)
L[:IA A SEF~BUF

STA A>::
F.~T I

0:1:1C FE 0:11A
01.iF 08
0120 FF 01:1.A
0:123: 86 7FF5
0:126 A7 00
0128 38

Each time that the ACIA's Receiver is READY with another byte of

data, bit #0 of its Status Register will go to 1, indicating the
READY condition. Since bit #7 of the ACIA Control Register is
also set, permitting ACIA Receiver Interrupt, the setting of the
READY bit automatically activates the IRQ line to the iJIPU,

causing execution of the service routine whose starting address
is in FFF8 and FFF9. After the RTI instruction of this service
routine the background task, if there is one, will be resumed.
A long story isn't it?



11-i

Printing a message via the ACIA under interrupt is
similar to data reception in the previous frame. Here the
ACIA Control Register bits #6 and 5 must be initialized to
provide "RTS = low, Transmitting Interrupt Enabled". (See
Appendix E).

Write the background initialization to permit printing
of the message INVALID HEX via the ACIA under interrupt.
Include the message in the background initialization.

/------------------
~1:.1.. &.3~3 CE &.Z1:12A LD>~

&':::':1&.Z1]: FF FFF8 ST;:-::
":::':1&.36 E"- 73::=:E LDA A.t,::•

..31.(19 84 SF AND A
":::'1 ..:::,8 :=:A 2(1 oF.:A A
(11.1-3D E'-::O 73E:E STA A.,
(':1.1&,:::, Eo"::' 7FF4 STA A.,
01.13 CE &.3:1.:1.8 LD::·::
1-)1:16 FF &.312S ST::-::
1-:::':1:1.9 "3E eLI
":;:'1:tA 213 FE HP 8F.: A

:+:

\.311C 49 BADHE::·:: FCC
a.Z1:1.27 1.:::,&.:;:, FeE:
&.3:12S &.3(1&.32 t'lEt'lAO[) F.:t·18

#MESPRT GET INT ROUTINE ADDRESS
IRQVEC INIT MESSAGE POINTER
ACIACF.:
#%1.0:1:1111:1. CLEAR BIT 6
#%130100000 SET BIT 5 TX INT ENABLED
ACIACR UPDATE ORIGINAL
SERCSR SET UP ACIA
#8ADHE::-::-:1.
MEMADD SET UP POINTER

HR SPIN FOREVER

••••1 I N\,'AL I D HE::·::.····
1-3
2

11-6
Within the service routine how will you ensure that the

ACIA Transmitter will stop sending characters to the printer,
after the last character of the message is printed? /

----
Contd •••



11-6
Peptd.

Disable the transmitter interrupt by clearing bits #6 and 5 of
the ACIA Control Register (see Appendix E). If another device
is still operating under interrupt, the above operation will
affect only the ACIA transmitter. If the ACIA transmitter was
the only interrupting interface, then all IRQ interfaces could
be interrupt disabled by the instruction SEI (SEt Interrupt),
the opposite to eLI.

11-7
Now write the service routine. entered each time ~o

print one character of the message. Assume the background

initialization shown in the previous fr~ne.

---_/

4
5 PF.:INT IT
:1.0 TOTAL 39 MPU CYCLES

A ACIACF.:
A #;·~:1.(u~1:t:1.:t:11

A RCIACR DISABLE TX INT
A SEF.~CSF.~

PF.~TF.~T I

NOt10F.~E

A SEF.:8UF

~3:12A FE (1:128 t'1ESPF.:T L(:I;:'::
0:12(:1 (18 IN::-~

0:12E FF 0:128 ST>::
(11.3:1 A6 "~10 LDR
(1:13:3 .-....,. 04 BEG!0::..'

~~1:13:5 E:7 7FF5 STA
(1:13::: 38 PF.~TF.:TI F.:TI
(11.39 86 73:=:E NOt10F~E LDA
01.3C 84 9F AN[)
(1:1.3E 6'-::' 73:=:E 5TA'.(1:141. 8-:0 7FF4 STA,.'
(1:1.44 20 F'-' E:F.:Ac..

t'1F'U CYCLES
t1Et'1A()D 5

4
MEMADD 6 GET CHAR ADDRESS

A X 5 GET CHAR

At slow terminal rates e.g. 10 Characters/sec one character is
printed every 100 msec. At higher data rates e.g. 960 char/sec,
one character is printed every 'millisecond. The above service
routine requires 39 MPU cycles plus 9 to push and interrupt.
Assuming approximately 50 MPUcycles per interrupt, this is
still only 50 microseconds, using a 1MHz MPU clock. Hence
10 000 to 20 000 interrupts per second are theoretically
possible, supporting dozens of devices. Therein lies the power
of interrupt.



11-8-So far we have looked at only one device operating undeL'
interrupt at one time. Consider an ACIA connected to a printer
(output) and a keyboard (input), both operating under interrupt.
When an IRQ operation is demanded by one of these devices, the
first task of the service routine is to determine which device
produced the in terrupt. Irhis is done by consecutively checking
the READY bit of each device capable of IRQ operation.

Write the first part of the IRQ service routine IRQSER

which determines whether the ACIA's receiver or transmitter
requires service, branching to KEYSER to service the keyboard or
PRTSER to service the transmitter.

--=-----~/
R>~ READ.,.'?

RETURN POINT FOR ALL

TX READY?

SE(;'~CSR

#$1211
KE'r'SER
#$1212
PRTSER

:fi

0200 86 7FF4 IRQSER LDA A
12121213 85 1211 8IT A
12121215 26 49 BNE
12121217 85 1212 BIT A
121209 26 65 8NE
0208 38 INTRTN RTI

Both servifYe
routines would
branch back
to here.
Although all IRQ controlled devices are theoretically equal for
interrupt service it is normal to poll the READY bit of the
fastest device first, if one is significantly faster than the
other to avoid losing data from the faster device while servicing
a slower device. Hence the first device polled effectively has a
slightly higher priority, this advantage increasing as more
devices requiring IRQ service are added to the system.



11-9
PIA Control Lines acting as inputs can produce IRQ

operation if enabled for interrupt via the PIA's Control
Register. When bit #0 of Control Register A (or B) is set,
interrupt is then possible via CAl (CB1). Similarly CA2 (CB2)
is enabled via bit #3. CA2 (CB2) as an output line does not
produce an interrupt since interrupts originate with the external
device such as a keyboardttelling the computer that data is ready
to be moved or that some control action is needed.

Write the background initialization to permit CAl of the
PIA to interrupt when going high (1) and CA2 as an input to
interrupt when going low (O). The A half of the PIA should be
set to receive 8 bit parallel data.

------.1/
* PROG TO SET UP PIA A HALF AS INPUT
:+:

x X 0

REA:r •BITS ,
CA2

input
line

PINPUT

HR

L.[:tA A
At-J [:t A
5TA A
CLF.:
OF.:A A
5TA A
l_[:':;::
5T::-::
CLI
E:~:A

PI ACF.:A
# ~-~ 1.1I-Z1\.~11. ~1 :1.1.
PI ACF.:A CLEAF.:
PIABFA INPUT
# ::-~ ~3 ~1I-:::n31.1.1.1.

PIACF.:A
#PIASER
$FFF8

BIT 2
t'100E

to Data Buffer! ~Al Active high

o 1 1 1 1

t ~ tCAl interrupt
" ~enabled

CA2 CA2 Interrupt
Activa enabled
low



service
LODATA.
HIDATA.

11-10
When an interrupt is produced by CAl of the PIA the
routine is to store bits #0 to J of the Data Buffer in

An interrupt by ~A2 should store bits #4 to 7 in
Assume that CAl and CA2 are the only source of interrupts.

Write the service routines.

0350
0352

HICJATA EQU
LODATA EQU

-------.i/
$0350
$0352

PIACRA
CA1.INT CA1 INT F.:EGJ.UEST VIA BIT 7
#~..~010e0000
CA2INT CA2 INT F.:EQUEST VIA BIT 6

*0100 86 7FF1 PIASER LDA A
0103 2B 05 BMI
0105 85 40 BIT A
0107 26 0B SHE
0109 38 PIARTN RTI
0i0A B6 7FF0 CAiINT LOA A PIABFA
010D 84 OF AND A #$0F ZAP HI BITS
0i0F 87 0352 STA A LODATA
0112 20 F5 BRA PIARTN
01i4 86 7FF0 CA2INT LOA A PIABFA
0117 84 F0 AND A #$F0 ZAP LO BITS
0119 87 0350 STA A HIDATA
0iiC 20 EB BRA PIARTN

If several PIA's are connected as IRQ devices. but capable of
interrupt via CAl only. the skip chain becomesl

LDA A PIACR5
BMI PIA5
LDA A PIACR6
BMI PIA6

etc.



11-11
Another major use of IRQ operation is in controll1ng

the timing of specific computer operations. For example a
digital voltmeter m~y be required to make a measurement in a
lab experiment or in a process-control operation at the rate

of 10 measurements per second. Aside from the inaccuracy of

using timing loops for control of these measurements, the

computer is not available for other tasks.

The solution is in the use of a "Real Time Clock",
a device which produces interrupts at specific times or rates.

The service routine for the real time clock would then determine
which devices. get service at what times. In the example above,
the real time clock could be driven by the 60Hz line signal

producing 60 interrupts/sec. Write the background initialization

and service routine for this clock which causes the digital volt­
meter to make 10 measurements per second via the subroutine
DVMSER.

___-.--J/
0:1.£10 86 06
0:1£12 87 0:11C
1211.1215 CE 0:1.0E
0:108 FF FFF8
01.08 0E
01.0C 2121 FE HERE

e1.0E 7A e1.1.C
121:111. 26 08
£1113 E:6 1216
121:1:15 87 0:11C
0:11.8 BD 0240
£11.18 38

12I:1:1C 121001.

*'
CL~(SER

CLKRTN
*'COUNT

LDA A #$(16
STA A COUNT
LOX #CLKSER
STX $FFFE:
CLI
BRA HERE SPIN IN BACK

DEC COUNT
BNE CLKRTN NOT THIS TIME
LOA A #$06 'TIES. RESET COUNTER
STA A COUNT
JSR DVt'1SER AND MEASURE VOLTAGE
RTI ALL DONE

Rt'18 1

This line frequency-controlled clock is a very simple timer.
Real Time Clocks, much more complex than this, are commercially

available.



11-12
The Non Maskable Interrupt (NMI) is essentially the

same as the IRQ with the following exceptionsl
(a) It is always enabled (capable of interrupting), independent

of the I bit status.
(b) Its vector addresses are FFFC and FFFD.
(c) It will interrupt only when the MPU's NMI line changes

state from 1 to o. It will not re-interrupt until after
NMI has gone high and then is grounded again.

NMI operation is needed when a high speed device requires
high priority service, even if an IRQ service routine is
presently being executed, in which case the IRQ service routine
is interrupted to provide M~I service.

During an NMI service routine all other interrupts are
automatically disabled, hence NMI service routines cannot be
interrupted even for another NMI device. Upon return from an
NMI service routine, service will be provided for another NMI
device, if one is waiting; otherwise it will resume service to
an interrupted IRQ service routine, if one was interrupted. If
none of these are waiting,service will be provided to other
waiting IRQ devices, or to a background program, in that order.

Assuming that an NMI device interrupted an IRQ service
routine, show the state of the stack (in general terms) during
the NMI service routine.

___--.-J/
.. SP DURING NMIt-----1

}

IRQ Status
7 bytes

1---1

}

Background Status
7 bytes

J...-- __

UPON RETURN TO IRQ
SERVICE ROU'rINE

Background Status
7 bytes



11-13

In de-bugging a faulty program it is sometimes necessary
to know the status of internal registers (A, B, X, etc.) after
execution of a specific instruction within a program. This is
possible via the instruction

SWI (SoftWare Interrupt - operation code JF)
If JF (SWI) is placed in memory, in the byte following a specific
instruction, normal program execution will take place until this
)F is encountered, whereupon all internal registers will be
stored on the stack, as if entering an IRQ or NMI service routine.
In this case the program will transfer control via vector
addresses FFFA and FFFB to the SWI service routine, which usually
prints out the contents of the internal registers from the stack.
Insertion of the )F code destroys the original program, hence
most systems require RESET after an SWI service routine is
executed. An exception to this exists in some de-bugging programs
which save the byte which was replaced by 3F, and then restore it
after execution of the SWI service routine.

In some 6800 systems where the SWI routine is provided in
permanent or "Read Only Memory" (ROM) the vectors for SWI may also
be in ROM, rather than in Read/Write Memory, usually called R~~

(Random Access Memory), which can be initialized via RESET. If
vectors are permanent a user-written SWI routine cannot be
implemented.

Why is the stack essential to SWI operation?

------/
Data must be saved by MPU hardware rather than via software
(program) which itself would use some of these registers and
therefore modify their contents.



11-14

Write the background initialization and the SWI serv~ce

routine to print the contents of CCR, ACe B, and ACC A simply as
6 ASCII characters, one after the other, when SWI is encountered
within the program. Assume an available subroutine, OBYTE,
which prints 2 ASCII characters, based on the 8 bit contents of
ACe A.

___-----J1,/

SER'·lICE ROUTINE

OF.:G $0240
PUL A GET CCR FF.~Ot'1 STACK
.JSF.: OB'T'TE PF~INT CCF.:
PUL A
.J5F.: OB'r'TE PF.:INT B
PUL. A
.JSF.: OB'T'TE PRINT A
BF.:A HEF.:E

HF.: E:F.~A HF.~

:+:

:+: S~·JI

:+:

:+:

:+: SOFTWARE INTERRUPT SERVICE TO PRINT CCRJ
:+: ACC A AND B ON CONSOLE TERMINAL. CALLS OBYTE SUB.
:+:

SWIVEC EQU $FFFA
:+:

:+: BACKGROUND INITIALIZATION FOR SWI.
LD>:: #Sl'~ I SEF.:

~11.42

01.42

~11.42

FE HEF.:E
:+:

01.42 OBYTE EQU
END

FFFA

0200 CE 0240
~321-33: FF FFFA
~3206 2"3 FE

024..:::'
~3240

-...-,..::..:::,
0241. BD
0244 3:2
0245 BD
024:3 32
..3249 B[)
024C 20



11-15
Now write the first part of a different SWI service

routine SOFINT, which prints a more readable output of the
stored data, e.g.,

CCR= XX (where XX = stored CCR value)

Assume the following a~ailable subroutines I

OBYTE - prints contents of ACC A as 2 ASCII
character.

OUTMES - prints ASCII message terminated by
null. X = pointer.

CRLF - Carriage Return and Line Feed.

---------/
:+:
:+: PRINTOUT OF REGISTERS AFTER SOFTWARE INTERRUPT
:+:

0200 CE 0250 LDX ISOFINT
02103 FF FFFA STX $FFFA INIT SWI VECTOR.

:+: NOW JUMP TO TARGET PROGRAM
:+:

0250
0250 8D 0:179
0253 CE 028:1
10256 BD 1.F0C
0259 3:2
025A 8D 0142

0281 43
0286 1Zn.3

OF.:G
SOFINT JSR

LDX
JSF.~

PUL A
..JSF.:

:+:
:+:

CCF.:t1ES FCC:
FCE:

$02510
CRLF
ICCRt1ES
OUTMES PRINT CCR=

OBYTE PRINT CCR CONTENTS

.....eCR= I
~3

Note that entry to OBYTE is at 0142, rather than at 0139, in
the original OBYTE routine (Subroutine Chapter), since the data
to be printed is already in ACC A. The CRLF routine is also
from the Subroutine Chapter. The OUTMES routine is from the
ACIA Chapter, bu~ in subroutine format.



stack.

printed

11-16
Execution of the OBYTE subroutine involves use of the
Will this destroy data now on the stack, yet to be
within the SWI service routine? Use stack diagrams to

prove your answer.

-_-------.#/
No. Data to be printed will not be destroyed •

CCR

B

A

IXH
IXL
PCH

PCL

..SP

CCR
B

A

IXH
IXL
PCR

peL

~SP

RH

RL

B

A

IXH
IXL

peH

peL

..SP

RH

RL
B

A

IXH
IXL
PCH

peL

~SP

Within SWI
service
routine
before
I?rintout
begins.

After
first
PUL A.

Within OBYTE sub.
RH and RL are
return address
bytes. H = high,
L = low. CCR data
on the stack is
overwritten but
only after it is
in ACC A for
printing.

After return
from OBYTE
subroutine.
RL and RH will
be overwritten
in future use
of the stack.



11-17
Continuing with the same service routine. assume that

eCR. ACC B and ACe A have been pulled and printed on one line.
How would you print the Index Register contents. still continuing
on the same line? Include the message in your answer.

-----..1/0271. CE ~1291

0274 BD 1.F~3C

121277 32
13278 BD 0:1.42
027E: -.....-.

.::or:!.

027C BD 13:1.42

13291 213
121295 13(1

LD::-::
.JSR
PlIL
JSF::
PUL
JSF~

:+;

:+;

I >f,t1ESS FCC
FeB

# I ~·::t1ESS

OUTt1ES PRINT ::.(=
A

OB'r'TE PF.:INT HI B'T'TE OF ::.::
A

OB'r'TE PF:~INT LO B'r'TE OF ::-::

~/ X= ~ Note space before0' and after message
to make message
readable.

Such a routine is normally included in the computer
system software and is essential in "de-bugging" faulty programs.
By setting SWI (JF) in the main program. just after a subroutine
call. the results of the subroutine can be examined in detail to
determine how it performed. The place in the main program where
the SWI occurs is often called a breakpoint.

More sophisticated de-bug routines permit multiple break­
points for testing of partially completed programs. e.g ••
subroutine calls for which the subroutines have not yet been
written. The "loose ends" or unwritten code can be caught by
breakpoints.



11-18

The complete listing for the SWI de-bug routine is
shown below.

LATE ENTRY. AVOIDS X.

$lF0C
$0179
$0142

:+:

OUTMES EQU
CRLF EQU
OB'T'TE EQU
:+:

:+: PRINTOUT OF REGISTERS AFTER SOFTWARE INTERRUPT
:+:

1.F0C
[1179
~3142

€120e CE ~~125~3 LD>!' #SOFINT
021213 FF FFFA STX $FFFA INIT Sl'~I VECTOFt

:+: NOl·~ ,JUto1P TO TAF::CiET PROCiRAt1
:+:

12125121 ORCi $~325€1

~325e 8D ~3179 SOFINT .JSR CRLF
121253 CE [12E:l LD~'~ #CCRt1ESS
t1256 BD 1F£1C .JSF~ OUTt1ES PF.:INT CCF.:=
13259 32 PUL A
e25A BD 0142 ,JSR 08'r'TE PF.:INT CCF.: CONTENTS
€125D CE 12128C LD>~ #8t1ESS
1212613 BD 1FeC SSR OUTt'1ES PF~INT 6'-,-
12126::::~ 3:2 PUL A
0264 80 13142 .JSR OB'T'TE PF.:INT B CONTENTS
0267 CE ~3287 LDX #At1ESS
026A 8D 1F0C .JSR OUTt1ES PRINT A=
12126D 32 PUL A
026E 8D ~3142 .JSF.: OB'r'TE PF.:INT A CONTENTS
0271 CE 0291 LDX # I :x:t'1ESS
0274 BD 1F~3C .JSR OUTt'1ES PRINT ::.::=
0277 32 PUL A
121'-' '? C' 8[) 121142 .JSF.: 08'r'TE PF.:INT HI B'TITE OF :)~0:::;,. '_'

0278 <.-. PUL A_.~

~327C SO 13142 .JSF~ OB'r'TE PRINT LO B'r'TE OF X
1!:127F 2~3 FE HEF.:E BF.:A HEF.:E

:+:

13281 4~ CCRt'1ES FCC ICCR= ,,/.::.
0286 00 FCB 0
0287 20 At1ESS FCC I A= I
028B 0121 FCB €I
028C 2£1 Bt1ESS FCC ,~J E'- (.J,-

132913 01!:1 FeB ~3

0291 21!:1 I::-::t1ESS FCC / :X:= (".,

0295 ~~n3 FeB ~3

END

The final printout of this could then look like.

CCR= 2F B= D3 A= F2 X= lC5S

Congratulations! You have completed the workbook.
with your programs.

Good luck



APPENDIX. A AND B

APPENDIX A

Hex Codes - 4 bits

0000 = 0 1000 = 8
0001 = 1 1001 = 9
0010 = 2 1010 = A
0011 = J 1011 = B
0100 = 4 1100 = C
0101 = 5 1101 = D
0110 = 6 1110 = E
0111 = 7 1111 = F

----~~-~-~-~~---------------~~~-----~-----~---~-~~------~-~-

APPENDIX B

ASCII Codes

BIrrS 4 thru 6 0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ p P
1 SOH DCI ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5. Et\Q N.AK % 5 E U e u

BITS 0 thru 3 6 ACK SYN & 6 F V f v
7 BEL ETB 7 G W g w
8 BS CAN ( 8 H X h x
9 HT E~1 ) 9 I Y Y
A LF SUB * J Z j z
B VI ESC + K [ k {
C FF FS < L I I I
D CR GS = M ] m }
E SO RS > N ( n =
F 51 US I ? 0 0 DEL

Courtesy M~t0rola Sc@iconductor Products, Inc.



APPENDIX Cl
Instruction Set (2 pages)

ADORI..., MODIS COlO. COOi REG.
BOOLEAN/ARITHMETIC OPERATIOft

ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (AII'..ist..... S 4 3 2 I 0

OPERATIONS MNEMONIC OP - # 0' - # 0' - ,;,&,

0' - # OP - # rtfff to ClHltewts» H I " Z v C

Add ADOA 88 2 2 98 3 2 AS 5 2 BB 4 3 A+M-A t • t t ~ t
ADDS CB 2 2 DB 3 2 EB 5 2 FB 4 3 B+Y"& I • t t : S

Add AcmltlS ABA 1B 2 1 A+B"A l • ~ t t t
Add with Carry AOCA 89 2 2 99 3 2 A9 5 2 89 4 3 A+M+C-A· I • I t t ~

AOCS C9 2 2 09 3 2 E9 5 2 f9 4 3 B+M + C"S t • J ~ J :
And ANOA 84 2 2 94 3 2 A4 5 2 B4 4 3 A.M-A • • + t R •

ANOa C4 2 2 04 3 2 E4 5 2 f4 4 3 B· M-"8 • • t J R •
Bit Test BITA 85 2 2 95 3 2 AS 5 2 SS 4 3 A.M • • t t R •

81TB CS 2 2 05 3 2 E5 5 2 F5 4 3 B.M • • t t R •
Clear CLA 6F 7 2 7F . 6 3 00 -M • • R 5 R R

ClRA 4F 2 1 00 -A - • • R S R R
CLRB 5F 2 1 00 -8 • • R ~ If R

Compare CMPA 81 2 2 91 3 2 Al 5 2 Bl 4 3 A-M • • t f t :
CMPB Cl 2 2 01 3 2 E1 5 2 Fl 4 3 B-M • ~ t t t t

Co mparl Acmltrs CBA 11 2 1 A-B • • t : t I
Complement. l's COM 63 7 2 13 S 3 M-M • • ~ t R S

COMA 43 2 1 A-A • • t t R S
COMB 53 2 1 i-B • • I t R S

Complement, 2's NEG 60 7 2 10 S 3 00 -M-M • • t t<D ®
(Negate) NEGA 40 2 1 00 -A-A • • t tCD ®

NEGB 50 2 1 00 - B-'B • • t f(D @
Decimal Adjust. A DAA 19 2 1 Converts Binary Add. of BCD Characten • .. t t t@into BCD Fo,mat
Oecrement OEC 6A 1 2 7A S 3 M-1-M. • • t t @ •

OECA 4A 2 1 A-l-A • • t 10 •
DeCa SA 2 1 8-1-a • • t t@ •

Exclusive OR EORA 88 2 2 98 3 2 A8 5 2 B8 4 3 A~M-A • • t l R •
eDRB C8 2 2 08 3 2 E8 5 2 F8 4 3 B$M-B • • f t R •

Incremena INC 6C 7 2 7C S 3 M+l-M • • t t ® •
INCA 4C 2 1 A+'l~A • • t t ® .,
INCB SC 2 1 B +1-8 • • t t@ •

Load Ac:mhr LDAA 86 2 2 96 3 2 AS 5 2 86 4 3 M-A • • t t R •
LOA8 C6 2 2 06 3 2 E6 5 2 F6 4 3 M-B • • t t R •

0,. Inclusive DRAA SA 2 2 9A 3 2 AA 5 2 SA 4 3 A+M-A • • 1 : R •
DRAB CA 2 2 DA 3 2 EA 5 2 FA 4 3 S+M-B • • f ~ R •

Push Data PSHA 36 4 1 A-MSp, SP-l-SP • 0 ~ • • •
PSHB 31 4 1 B-MSp,SP-l-SP • 11 W • ·..

Pull Data PULA 32 4 1 SP+ I-SP, MSp-A • • • • • •
PUlB 33 4 ,1 SP +1 -SP, MSp-B • • • • • •

Rotate Left RDl 69 7 2 19 6 3 :1 ~-- 111111' 11:1
• • t l ® t

ROLA 49 2 1 • • t i ® t
59 2 1

D7 .. tlo t t @ fROLB • •
Rotate Right RDR 66 1 2 76 6 3 MI' • • t t @ t

1'1"'11 ;:JRORA 46 2 1 :1 ~ - • • t t @ t
b7 ~ boRORB 56 2 1 • • t t @ t

Shih left. Arithmetic ASL 68 7 2 78 6 3

:1
..- • • t t ® t

ASLA 48 2 1 o ..- 111111111"-0 • • t t ® ~
C b7 bo

ASlB 58 2 1 • • t t ® t
Shift Right. Arithmetic ASR 67 7 2 77 6 3 =} 01117"" - 0

• • t t@ :
ASRA 47 2 1 • • ~ :@ :
ASRB 57 2 1

B b7 bo c • • J t @ t
Shift Right, logic. LSR 64 7 2 74 6 3

:} - • • R l @II
lSRA 44 2 1 0-1111111" - 0 • • R t ® t

~ bo c
t @tLSRB 54 2 1 • • R

Store Atmltr. STAA 97 4 2 A7 6 2 87 5 3 A-M • • t f R •
STAB 07 4 2 E7 6 2 F7 5 3 B-M • • t I R •

Subtract SUBA 80 2 2 90 3 2 AD 5 2 80 4 3 A-M~A • • 1 ~ ~ t
SUBS CO 2 2 DO 3 2 EO 5 2 FO 4 3 B-M-B • • t t t t

Subract Acmltrt. SeA 10 2 1 A-B .... A • • t : t t
Subtr. with Carry SBCA 82 2 2 92 3 2 A2 S. 2 82 4 3 A-M-C-A • • ~ t l t

S8C8 C2 2 2 02 3 2 E2 5 2 F2 4 3 B-M-C-B • • l t t t
Transfer Ac:mltrs TAB 16 2 1 A-B • • t t R •

TBA 11 2 1 8-A • • t t R •
Test. Zero or Minus TST 60 7 2 70 6 3 M-OO • • ~ t R R

TSTA 40 2 1 A-DO • • t t R R

lSTa liD 2 1 B -00 • • t t R R



APPENDIX C2.
Instruction Set (2 pages)

INO£X REGISTER AND STACK IMMED· DIRECT INOEX EXTND IHHER 5 4 3 2 1 I
'OINTIA OPERATIONS MNEMONIC 0' - 11 0' - :F 0' - # 0' - ~

0' - ~ BOOLEAN/ARITHMETIC OPERATION H I N Z V C'!'f" ~

Compar. Ind.. Reg CPX ac 3 3 9C 4 2 AC 6 2 BC 5 3 (XH/XL) - (M/M + 1) • • (!)l @.
Decrement Index Rig DEX 09 4 1 X-l-X • • • t • •Decrement Stack 'nt' DES 34 4 1 SP-l-SP • • • • • •Increment Ind.. Reg INX 08 4 1 X+ I-X • • • ~ • •Increment Stack Pntr INS

~
31 4 1 5'+ I-SP • • • • • •load Inde". Reg LOX CE 3 3 DE 4 2 EE 6 2 FE 5 I M-XH. (M + 1)-Xl • • @ t R •load Stack Pntr lOS 8E 3 3 9E 4 2 AE S 2 BE 5 !II -S'H. (M + 11 -SPl • • @ ~ R •Store Index Reg STX OF 5 2 EF 7 2 F.F 6 3 XH -M. XL -(M + 1) • • @S R •Store Stack Pntf STS 9F 5 2 AF 7 2 SF 6 .3 SPH -M. S'l -(M + 1) • • @t R •Indx Reg - St.ck Pntr TXS 35 4 1 X-l-SP • • • • • •Stack Pntr .. Indx Reg TSX 30 4 I SP+l-X • • • • - •

@() p t bytes

® (Bat N) Test: Resun less than zero? (Bit 15 - 1)

@ (AU) load Condition Code Register from Stack. (Se. Special Oplfations)

o (Bit I) Set when int!mJpt occun. If previously Sit, a Non-Maskabl, Interrupt is
required to exit the wait state:

o (ALL) Set accordif'g to the contents of Accumulator A.

Courtesy Motorola Semiconductor Products. Inc.

LEGEND: 00 Byte =Zero;

OP Operation Code (Hexadecimal); H Half-carry from bit 3;
Number of MPU Cycles; I Interrupt mask

11 Number of Program Bytes; N Negative lsign bit)
+ Ari.thmetic Plus; Z Zero (byte)

Arithmetic Minus; V Overflow. 2's complement
800lean AND; C Carry from bit 1

MSp Contents of memory loution R Reset Always
pointed to be Stack Pointer; S Set Always -

+ Boolean Inclusive OR; ~ Test and 'itt if true. cleared otherwise
$ Boolean Exclusive OR; • Not Affected
fA tomp'ement of M; CCR Condition Cod. Register

Transfer Into; lS Least Significant
a Bit ~ Zero; MS Most Significant

JUMP AND BRANCH I RELATIVE INOEX EXTND INHEA 5 4 3 2 1 0
.OPERATIONS MNEfe'ONIC 0' - ::: 0' - ;; 0' - ~ 0' - :t BRANCH TEST H I N Z V C
Branch AlwaVs BRA 20 4 2 None • - • • • •
Branch If Carry Clear BCC 24 4 2 CzO • • • • • •
Branch If Carry Set BCS 25 4 2 C~l • • • • • •
Sranch If ~ Zero BEQ 21 4 2 Z 2 1 • • • • • •
Branch If ;;. Zero BGE 2C 4 2 N'9V=O • • • • • •
Branch If > Zero BGT 2E 4 2 Z+(N-itV)aO • • • • • •
Branch If Higher BHI 22 4 2 C+Z :I 0 • • • • • •
Branch'f < Zero BLE 2F 4 2 Z+fNav) =I • • • • • •
Branch If loWtf' Or Same BLS 23 4 2 C+Z= 1 • • • • • •
Branch If < Zero alT 20 4 2 N'='V=l • • • • • -Sranch If Minus·' SMI 28 4 2 N:zl • • • • • •
Branch If Not Equal Zero SNE 26 4 2 Z-o • • • • • •
Branch If Overflow Clear BVC 28 .4 2 V=o • • • • • •
Branch If Overflow Set BVS 29 4 2 V= I • • • • • •
Branch If Plus BPL 2A 4 2 N=O • • • • • -Branch To Subroutine BSR 80 8 2

} See Sptcial Operations
• • • • • •

Jump JMP SE 4 2 1E 3 3 • • • • • •
Jump To Subroutine JSR AD 8 2 BO 9 3 • • • • • •
No Operation NOP 01 2 j Advances Prog. Cntr. Only • • • • • •
Return From ,,,terrupt RTI 38 10 1 --@--
Retur~ From Subroutine RTS 39 5 1

} See special Operation. -I-fl-I-rSoftware Interrupt SWI 3F 12 1 • S ••••
Wait for Interrupt WAI 3E 9 1 • @ ••••

CONDITIONS CODe REGISTER- INHER 5 4 3 2 1 0
CONDITION CODE REGIST£R NOTES:BGOL'EAN

,.OPE~ATIO~S MNEMONIC 0' - = OPERATION H I N Z V C (Bit set if test's true .nd cleared otherwise)

Clear Carry ClC OC 2 1 O-C • • • • • R CD (Bit V) Test: Result.= 100000001

Clear Interrupt Mask CLI OE 2 1 0-1 • R • • • • @ (Bit C) Test: Result: 000000001

Clear Overflow ClV OA 2 I o-v • • • • R • @ (Bit C) Test: Decimal value of mOlt significant BCD Character gr~.ter than nine?

Set Carry SEC 00 2 1 1-C - • • • • S INot cleared if previously set.)

Set Interrupt Mask SEI OF 2 I I-I • S • • • - @ (Sit V) Test: Operand = 10000000 prior to execution?

Set Overffow SEV OB 2 1 I-V - - • - S • ® IBitV) Test: Opennd: 01111111 prior to execution?

Acm~tr A-CCR TAP 06 2 1 A-CCR ---@-- ® (Bit V) Test: Set equal to rewlt of N $ Caft" shitt has occurred.

CCR -Acmltr A TPA 01 2 1 CeR -A -1·1-1·1-1· 0~ (Bit N) Test: Sign bit of ",ost significant (MS) byte of result :II 1?
8 Bit V Test: 's com lement overflow from sub raction f lS ?



APPENDIX D
Machine Code

00 * 40 ~EG A 80 SUB A 1t\1~1 co Sl~B II I~l~f
01 NOP 41 • 81 C~fP A I~t~f Cl CMP 8 IMM
02 • 42 • 82 SSC A I~tM C2 S8C B It-1M
03 • 43 COM A 883 • C3 •
04 • 44 LSR A 84 AND A l~fM C4 A~D B I~t~{

05 • 45 • 8S BIT A 1~IM CS BIT B I!\tM
06 TAP 46 ROR .... 86 LOA A I~f~f C6 LDA B L\1M
07 TPA 47 ASR A 88 .. C7 •
08 INX 48 ASL A 88 EOR A IM!\.t C8 EOR B l~fM
09 DEX 49 ROL A. 89 ADC A I~I~1 C9 ADC B I,.tM
OA CLV 4A DEC A 8A ORA A l!\-IM C.t\ ORA B IM~I
08 SEV 48 • 88 ADD A I~t~l CD ADD B I~'foc CLC 4C L~C A 8e CPX A I!\1M CC •
OD SEC 4D TST A 80 BSR REL CD •
OE CU 4E • 8E LDS IM~t CE LOX IMM
OF SEI 4F CLR A 8F • CF •
10 SBA 50 NEG B 90 SUB A DIR 00 SUB B DIR
11 CBA 52 • 91 CMP A DIR 01 C~·fP B DIR
12 • 52 • 92 SBC A DIR D2 sac B DIR
13 • 53 COM B 93 • 03 •
14 • 54 LSR B 94 Al~D A DIR D4 AND B DIR
15 • 55 • 95 BIT A DIR D5 BIT B DIR
16 TAB 56 ROR, B 96 LDA A DIR D6 LOA B DIR
17 TBA 57 ASR B 97 STA A DIR D7 STA B DIR
18 * 58 ASL B 98 EOR A DIR D8 EOR B DIR
19 DAA 59 ROL B 99 ADC A DIR D9 ADC B DIR
lA * 5A DEC B 9:\ ORA A DIR DA ORA B OIR
IB ABA 58 * 98 ADD A DIR DB ADD B DIR
IC • 5C INC B 9C CPX DIR DC •
ID * 50 TST B 90 • DD •
IE • SE • 9E LDS DIR DE LDX DIR
IF • 5F CLR B 9F STS DIR DF STX DIR
20 BRA REL 60 NEG L'iD AO SUB A IND EO SllB B IND
21 • 61 • Al CMP A IND El Clw1P B IND
22 BID REL 62 * A2 sac A IND E2 sac B IND
23 BLS REL 63 COM ISO A3 • E3 •
24 Bce REL 64 LSR L'-;O A4 AND A INO E4 AND B IND
25 BCS REL 65 4: AS BIT A INO ES BIT a I~JD
26 BNE REL 66 ROR l'l> A6 LOA A IND E6 LDA B I~'D
27 BEQ REL 67 ASR L~D A7 STA A IND E7 STA B IND
28 BVC REL 68 ASL 1."0 AS EOR A IND E8 EOR B IND
29 BVS REL 69 ROL IXD A9 ADC A IND E9 ADC B IND
2A BPL REL 6A DEC L':D AA ORA A IND EA ORA B IND
2B B~fi REt 68 • AB ADD A IND EB ADD B IND
2C BGE REL 6C INC L"D AC CPX IND EC •
20 BLT REL 6D TST I~D AD JSR IND ED •
2E BGT REL 6E J~1P I~D AE LOS IND EE LOX ~O
2F BLE REL 6F CLR I~D AF STS IND EF STX L"D30 TSX 70 NEG EXT BO SUB A EXT FO SUB B EXT
31 INS 71 • Bl C~fP A EXT FI CMP B EXT
32 PUL c.A 72 ·.:.~ B2 sac A EXT F2 sac a EXT
33 PUL B 73 Cb.~f EXT B3 .. F3 •
34 DES 74 LSR EXT B4 AND A EXT F4 AND B EXT
35 TXS 75 • 85 BIT A EXT F5 BIT B EXT
36 PSH A 76 ROR EXT B6 LDA A EXT F6 LDA B EXT
37 PSH 8 77 ASR EXT B7 STA A EXT F7 STA B EXT
38 • 78 ASL EXT 88 EOR A EXT F8 ADe B EXT
39 RTS 79 ROL E.XT B9 ADC A EXT F9 ADC B EXT
3A * 7A DEC EXT BA ORA A EXT FA ORA B EXT
38 RTI 78 • BB ADD A EXT Fll ADD B EXT
3C • 7C INC EXT BC CPX EXT Fe •
3D * 7D TST EXT BD JSR EXT FD •
3E WAI 7E J~1P EXT BE lns EXT FE LDX EXT
3F SWI 7F CLR EXT BF STS EXT FF STX EXT

Notes: 1. Addressing ~Iodes; A = Ac:cumul,uor A
B = Accumulator B

2. Unassigned code indicated by"."

l~tM

DIR
EXT

Immediate
Direct
Extended

REL
IND

Relative
Indexed

Hexadecimal Values of Machine Codel

Courtesy Motorola Semiconductor Products. Inc.



APPENDIX El
- ACIA ­

Asynchronous Communications
Interface Adapter

DEF'INITION OF ACIA REGISTER CON·TENTS

D~ta
Buffer Address

Bus Transmit Receive
Line Data Data Control Status

Numb~r Register Regist.. Register Register

(Write Only) (Read Only') (Write Only) (Read Only)

0 Data Bit O· Qata Bit 0 Counter Divide Receive Data Register
Select 1 (CRO) Fuil (RORF)

; , Data Bit 1 Dat8 Bit 1 Counter 0 ivide Transmi~.Data Register
Select 2 (CR 1) Empty (TORE)

2, Data Bit 2 Data Bit 2 Word Select 1 Data Carr ier Detect
(-CA2) (~CD)

3 Data' Bit 3 Data Bit 3 Word Select 2 Clear-to·Send
(CR3) (CTS)

4 Data Bit 4 Data Bit 4 Word Select 3 Framing Error
(CR4) (FE)

5 Data Bit 5 Data Bit 5 Transmit, Control 1 Receiver Overrun
(CRS) (OVRN)

6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity. Error (PE)
(CA6)

7 Data Bit 7··· Data Bit 7·· Receive Interrupt Interrupt Request
Enable (CR7) (IRQ)

,. Leading bit ~ LSB '-= Bit 0
•• Data bit will be zero in 7·bit plus parity modes.

• •• Data bit is "don't care" in' 7-bit plus parity modes.

---'
ACtA Control Register Format

terrupt Counter ratio and Master reset select used
in both transmitters and receiver sections

errupt Output in
ode b1 bO Function (Tx, Rx)

errupt Output In
0 0 +1

ode 0 1 +16

1 0 +64

1 1 MASTER RESET

l
I

b7 b6 b5 b4 b3 b2 bl bO

RIE TC2 TC1 \~S3 'y'''S2 WSl CDS2 CDSl

J

I
Word Length, Parity, and Stop Bit Select

the Interrupt Output· and RTS b4 b3 b2 Word Length + Parity + Stop Bits

sion of a Break 0 0 0 7 Even 2

nction

I

0 0 1 7 Odd 2

ibits Tx interrupt (TI E) 0 1 0 7 Even 1

abies Tx interrupt (T' E) 0 1 1 7 Odd 1

ibits Tx interrupt (TIE) 1 0 0 8 None 2

its Sreal< and inhibits Tx 1 0 1 8 None 1

1 1 0 8 Even 1

t output in transmit mode. 1 1 1 8 Odd 1

Enable tor Receiver In

b7 c: \: Enable~ Int
Receiving M

b7 = O~ Disables Int
Receiving M

1

o
1

b5

o
Fu

Sets RTS = 0 and inh

Sets RTS = 0 and en

Sets RTS = 1 and inh

Sets RTS = 0, Transm
interrupt (T IE)

-Tie is the enable for the interrup

Transmitter Control Bits: Controls
Output, and providei for Transmis

b6

o
o
1

1



APPENDIX E2
- ACIA ­

Asynchronous Communications
Interface Adapter

ACI A Status Register Format

~;~ ~arri;:~:~:::carrip.r is presc~t. - --l
b2 = 1: Indicates the: I()$'; of carrier.

1. The low-to·high transition of the OeD in­
put C~\Jscs b2= 1 and g'::nera\es an interrupt
(b7=1), (IRQ=O)

2. Reading the Status Registe, ~r.d Rx Data
Register or master res~ttlng theAC~A
causes b2=O and b 7~O .

...-._---
Receiver Data Register Full

bO == 0: Indicates that the Receiver Data
Register is ernpty.

bO = 1: Indicates that data has been trans­
ferred to the Receiver Data Register
and status bits states are set (PE,
OVRN, FE).

1. The Read Data Command on the high-to­
low E transition or a master reset causes
bO = O.

2. A "high" 011 the OCD input causes bO-=O
and the receiver to be reset.

I
I

I b7

I

b6 I b5

I

b4

1
b3 I b2 I bl I bO I

IRQ PE OVRN FE CTS OeD I TxDAE RxDRF

T 1 T

,----
! Interrupt Request

1 The interrupt request bit is the complement of
I the i AQ Ol.'tput. Any in1errl.pt that is set and
, enabled '.vill bE:. available in th~ status register
{ in addition to the norrnal I RQ output.

L_---

l

Framing Error

b4 = 1: Indicates the absence of the first stop
bit resulting from character synchro·
nization error, faulty transmission, or

'-- a Break condition.

1. The internal Rx data transfer signal causes
b4=1 due to the above conditions and causes
b4=O on the next Rx data transfer signal if
conditions ha'ie been rectified.

Overrun Error

b5 = 1: Indicates that a character or a num­
ber of characters V\'ere received but
not read from the R x data register
prier to subsequent characters being

~ received.

1. The Read Data Command on the high-to­
10V\' E transition causes b5=1 and bO=1 if an
overrun condition exists. The next Read
Data Command on the high-to-Iow E transi­
tion causes b5=O and bO=O.

Parity Error

b6 = 1: Indicates that a parity error exists.
The parity error bit is inhibited if no
parity is selected.

1. The parity error status is updated during
the Interna! receiver data trans1er signal.

I
Transmitter Data Register Empty

b1 = 1: 'ndicates that tha transmitter data
Register is empty.

b1 :: 0: Indicates t~at the transmitter data
Register is full.

1. The internal Tx transfer signal forces b1==1.

2. The Write Data Command on the high·to­
low E transition causes b1 =0.

3. A Uhigh" on the CTS input causes b1=O.

Clear to Send

The CTS bit reflects the CTS input status for
use by the MPU for interfacing to a modem.
NOTE: The CTS input does not reset the

transmitter.

Courtesy Motorola Semiconductor Products, Inc.



APPENDIX Fl
- PIA ­

Peripheral Interface Adapter

DATA DIRECTION REGISTER

Accessed via Data Buffer address when bit #2 of the Control
Register is o•.
1 = output)

. ~ for each of the 8 data lines on the Data Buffer.o = J.nput J

--------

CONTROL REGISTER

CAl (CB'l)
(input o~ly)

7 6

I
CA1(CB 1)
,READY BIT

(read only)

5 4 3 2 1 0

~~ft9?1
~ ~ I l 0 for no interrupt
O=DDR access (0 = CAl (CB1) ACTIVE in
via Data Buff L ( goin@; LOW'
l=Data Buffer (1 = CAl (CB1) ACTIVE in
access (going, HIGH .

STROBE mode
CA2 goes LOW'
momentarily after
READ from A Buffer.
CB2 goes LOW

'momentarily after
WRITE to B Buffer.

CA2 (CB2) I
bit #5

INPurr mOde.,....__·O_=.......i_n....Plllllllu_t_..-.",A.. 1 = outPu~

7 6 5 4 J 2 1 0 bit #4
=1,....J.. =0

~~llt~)~~JrgA PROGRAMMED mO-d-e----.......1
t ~ t CA2 (CB2) bit #)

1~~2)J 0 1 0 for no f.ollows bi t /13 = 0 l=1
READY t interrupt _
BIT + f

HANDSHAKE mode
CA2 (CB2) ACTIVE CA2 (CB2) goes HIGH
goin~ LOW ( )CA2 (CB2) ACTIVE following CAl CBl ·
going HIGH CA2 goes LOW after

READ from A Buffer.
CB2 goes LOW after
WRITE to B Buffer.



APIENDIX F2

PIA -
Peripheral Interface Adapter

01 :.: 0 : I AQA(9, 1 se~ by high-to-tow transi'tion on
CAt (CB1).

bl·c, 1 : 1RCA(S" se! by low-to·high tr:tns;tion on

CAl (CB1). r'------- 1____ I ~A1 (Cal) Inter~JPt REtQuest Enable/Disable

. bO =0: DisdbJa:i I RCAtB) r~1PU Interrupt by CAl (Cal)

l active transition.'

bO = 1 : Enable I AQA{B} MPU Interrupt by CA 1 (CB 1)
IRQA(B) 1 Interrupt Flag (bit b7) a~:tive tran~i'dor,.

cleared by "',PU Read of Output Regtsti!r A(B). May also be I transit:~n of bO if CA 1 (CB1) active transition occurred
cleared by hardware Reset. ,V'.'hile interrupt was rjisabled.

'=1_ ---=t-

__~_=r__..

b5
'---.
, b6b7 _~J b3 p t--_b__l----.i_b_6--f

IRQA{B)l IRCA(B)2 CA2(CB2) I DDR CA1(CS1)

Flag f_'a_g_._~ C_'~~~~..-L~._c_c_e_s_s-.Io.__C_o_n_t_r_o_1__

--Jt=
.--.---__,J~_~IRQA(B)2 Interrupt Flag (bit b6)

CA2 (C82) Estobl!shed as Input (bS = O}- Goes high on active
transition of CA2 (CB2); Automa~icaJl"clcared by MPU Read
of Output Register A(B). May also be cieared by hardware
Reset.

Detcuoines VJhether Data Direction Register Or au tput
Re~~i is Addressed

b2 ::II 0 : Data Direction R~gister seJe~teCS.

CA2 (CB2) Established as OutPut (bS = 1): ~ RQA(B)2 ::: O.
not affected by CA2 (C82) trans,tior,s.

1. I ROA,B) w:ii occur ~n next (M?U
getlerat~d) p~itive trc:.i'\!ai~~on of b3
if CA2 (CB2) <It:.~j\te transitiGn
occurred vvt-.ile interrupt \"~S

disabled.

---------

b3 = 1: Enables I RQA{B) MPU
Interrupt by CA2 {C82)
active tran~ition.

b4 ~ 0: I RQA(B)2 !et t:y high-t·:>-Jo..v
transition on C,o\2 {CB2).

b4 = 1: I R OA( 8)2 set by ! o't/-to-high
transition on CA2 fCB2).

b3 = 0: Disables IAQA(B) MFU
Interrupt by CA2 (CB2)
active transit.;on. 1

b3

T
L-f> C.A.2 (C82~ Intarrupt A9Guest Enablel

'O;sable

b2 :.: 1 : Outpu t Register seiected.

I

I
L-... Determines Active CA2 (Ca2~ Transition

for St!t"t~-n; inter~~ThQAT8T~
fbit bsT .

-----~,-_.._-

b4

T

I

"'------------_._-------------'

b5

o

CA2 (CB2) Established as Input b.y b5 = 0

CS2 goes on low on 1irst !OVJ­

t~ hi~ E ~rai\sitio., foiiowing
an MPU \A.'n~e into Output
Reg:stcar B; n:~urned high by
th~ ne;<t acti"e CBl t:-an.;ition.

b3 = 0: 'IJrite Stro~e With Cal Restore

CB~

CA2

b3 = 0 : Re~S trobe \N~t~CA~.:.!~

,CA2 goes 10.... on first high-to..
low E transition follO'Ning an
f\,1PU Read of Output Register
A; returnee high by next
ac tive CA 1 transi tion.

b3 = 1: Reed Strobe wi ttl E Restore

CA"2 gees IO~"1 on first hi9h·t~
low E vansiticn following an
MPU Read of Output Register
A; returned high by next
high-to-Iow E tr"nsition.

b3 = 1: 'tiri ...~ Str'.j~e 'Nith E Restore

b3

T

CB2 goe$ 10\'1 0" fi,.st Ivw-to­
high E transition following an

b3 MPU \"Jt;te ;nto Output

l
Rc~;5ter B; returned hi~h by the
next io~·,.to-high E transition.

S'?t/Res~t CA2 (C32)

b4

o

b5 (Note t[hDt operat~on ~""f CA2 :;.nd Co.. 2 'lCA2 (~B21 Establislled as Output by 1,5 ~ 1 u _ _ .,

output fonct;ons are not identic-31)

CA2 (C62) ~C~~ lew as ~'PU vvriteos
b3 := 0 in to C,=,ntrof Aegi~ter.

CA2 (CB2i 9(.":\ high a~ ~'PU writes
b3 = 1 into Control Register.

Courtesy Motorola Semiconductor Products



APPENDIX G & H
APPENDIX G

CHARACTER SET

The characters used in the source language for the Motorola assembler form a
sub-set of ASCII (American Standard Code for Information Interchange, 1968).
The ASCII Code is shown-in App B •. The follo\ving characters are recognized
by the assembler:

I. The alphabet A through Z
2. The integers 0 through 9
3. Four arithmetic operators:

+ - * ,.
4. Characters used as special prefixes:

# (pounds sign) specifies the immediate mode of addressing
$ (dollar sign) specifies a hexadecimal number
@ (commercial at) specifies an octal number
% (percent) specifies a binary number

(apostrophe) specifies an ASCII liter-dl character
5. Characters used as special suffices:

B (letter B) specifies a binary number
H (letter H) specifies a hexadecimal number
o (letter 0) specifies an octal number
Q (letter Q) specifies a octal number

6. Four separating characters:
SPACE
Horizontal TAB
CR (carriage return)
, (comma)

The use of horizontal TAB is always optional, and can be replaced by
SPACE.

Courtosy Motorola Se~iconductor Products, Inc.

APPENDIX H

Commonly Used Instructions

As a quick reference :+:

86 4[: Le'A A #$4[:guide some of the more commonly :+:

used instructions, along E:7 1.2F3 STA A $1.2F3
:+:with their machine codes~ 86 1.2F3 LDA A $:12F3

shown here. :+:are
FE :12A7 LDX $1.2A7

:+:

08 I t·~>(

:+:

FF 1.2A7 ·ST>:: $12A7
:+:

A7 00 STA A >(
:+:

87 1.2[)5 STA A $:1.2 [:a5
:+:

A6 00 L[:aA A X



MICROPROCESSOR GLOSSARY
ACCUMULATOR: 1"he register where arithmetic or

logic re~ults are held. Most MPU instructions
manipulate or test the accumulator contents.

ACCESS TIME: time take for specific byte of storage
to become available to processor.

ACIA: ; Asynchronous Communication Inter-face
Adapter. Inter-face between asynchronous peri­
pheral and an MPU.

ALU: Arithmetic and logic Unit. The part of the MPU
where arithmetic and logic functions are
~~m~. .

ASCII: American Standard Code for Information
Interchange. Binary code to represent alphanu­
meric, special and control characters.

ASSEMBLER: Software which converts assembly
language statements into machine code and
checks for non valid statements or incompl~te

definitions.
ASSEMBLY LANG: Means of representing pro­

gramme statements in mnemonics and conven­
iently handling memory addressing by use of
symbolic terms.

ASYNCHRONOUS: Operations that initiate.a new
operation immediately upon completion of current
one - not timed by system clock.

BASIC: iBeginner's All Purpose Symolic Instruction
Code. An easy to learn, widely used high level
language.

BAUD: j Measure of speed of transmission line~

Number of times a line changes state per second.
Equal to bits per second if each ,line state
rep(esents logic 0 or 1.

BAUDOT CODE: 5-bit code used. to encode
alphanumeric data.

BCD: Binary Coded Decimal. Means of representing
decimal numbers where each figure is replaced by
a binary equivalent.

BENCHMARK: A common task. for the
implementation of which programmes can be
written for different MPUs in order to determine
the efficiency of the different M PUs in the
particular application.

BINARY: The two base number system. The digits are
o or 1. They are used inside a computer to
represent the two states of an electric circuit.

BIT: Asingle binary digit.
BREAKPOINT: Program address at which execution

will be halted to allow debugging or data entry.
BUFFER: Circuit to provide isolation between

sensitive parts of a system and the rest of that
system.

BUG: A program error that causes the program to
malfunction.

BUS: 'The interconnections in a system that carry
parallel binary data. Several bus users are
connected to the bus, but generally only one
"sender" and one "receiver" are active at anyone
instant.

BYTE: A group of bits - the most common byte size
is eight bits.

CLOCK: The basic timing for a MPU chip.
COMPILER: Software which converts' high level

language statements into either assembly
language statements, or into machine code.

CPU: Central processor unit. The part of a system
which performs calc,..lation and data manipulation
'functions.

CROM: Control Read Only Memory.
CRT: Cathode Ray Tube. Often taken to mean

complete output device.
CUTS: Computer Users Tape System. Definition of

system for storing data on cassette tape as series of
tones to represent binary l's and O·s.

DEBUG: The process of checking and correcting any
program errors either in writing or in actual
function.

DIRECT ADDRESSING: An addressing mode where
the address of the operand is contained in the
instruction. (Ad4rcss below 100 in 6800)

DMA: Direct Memory Access.
DUPLEX: Transfer of data in two di(ections

simultaneously.
ENVIRONMENT: The conditions of all registers,

flags, etc., at any instant in program.
EPROM: Electrically Programmable Read Only

Memory. Memory that may be erased (usually by
ultra violet light) and reprogrammed electrically.

EXECUTE: To perform a sequence of program steps.

EXECUTION TI ME: 'The time taken to perform an
. instruction in terms of clock cycles.

FIRMWARE: Instructions or data permanently ~tored

in ROM.
FLAG: A flip flop that may be set or reset ·under

software control.
FLIP-FLOP: two state device that changes state when

clocked.
FLOPPY (DISK): Mass storage which makes use of

flexible disks made of a material similar to
magnetic tape.

FLOW CHART: A diagram representing the logic of a
computer program.

GLITCH: Noise pulse.
HALF DUPLEX: Data transfer in two directions but

only one way at a time.
HAND SHAKE: System of data transfer between CPU

and peripheral whereby CPU "asks" peripheral if!t
will accept data and hnly transfers data If
'·answer'··is yes.

HARD COPY: System output that is printed on paper.
_HARDWARE: All the electronic and mechanical

components making up a system.
HARD WIRE: Circuits that are comprised of logic

gates wired together, the wiring pattern
. determining the overall logic ·operation.

HASH: Nois.y signal.
HEXADECIMAL: The base 16 number system.

Character set is decimal 0 to 9 and letters A to F.
HIGH LEVEL LANGUAGE: Computer language that is

easy to use, but which requires compiling into
. machine code before it can be used by an M PU.
HIGHWAY: As BUS.
IMMEDIATE ADDRESSING: Addressing mode which

uses part of the instruction itself as the operand
data.

INDEXED ADDRESSING: A form of indirect
addressing which uses an Index Registe.r to hold
the address of the operand.

INDIRECT ADDRESSING: Addressing mode where
the address of the location where the address of
the operand may be found is contained in the
instruction.

INITIALISE: Set up all registers, flag, etc., to defined
conditions.

INSTRUCTION: Bit pattern whith must be supplied
to an MPU to cause it to perform a particular
function.

INSTRUCTION REGISTER: MPU. register which is
used to hold instructions fetched from memory.

INSTRUCTION SET: 'The repertoire of instructions
that a given MPU can perform.

INTERFACE: Circuit which·connects different parts of
system together and performs any processing of
signals in order to make transfer possible (ie,
serial - parallel conversion).

INTERPRETER: An intArpreter is a software routine
which accepts and executes a high level language
program, but unlike a compiler does not produce
intermediate machine code listing but converts
each instruction as received.

INTERRUPT: A signal to the MPU which will cause it
to change from its present task to another.

I/O: Input/Output.
K: Abbreviation for 2 10 = 1024
KANSAS CITY (Format): D~finition of a CUTS based

cassette interface system.
LANGUAGE: 'A systemmatic means of communicat­

ing with an MPU.
LATCH: 'Retains previous input state until overwrit­

ten.
LIFO: last In First Out. Used to describe data stack.
LOOPING: Program technique where one section of

program (the loop) is performed many times over.
MACHINE LANG: The lowest level of program. T-he

only language an MPU can understand without
interpreter. .

MASK: Bit pattern used in conjunction with a ·Iogic
operation to select a particular bit or bits from
machine word.

MEMORY: The part of a system which stores data
(working data or instruction object code).

MEMORY MAP: Chart showing the memory
allocation of a system.

MEMORY MAPPED I/O: A technique of implement­
ing I/O facilities by addressing I/O ports as if they
were memory locations. .

MICRO CYCLE: Single program step in an MPUs
Micro program. The smallest level of machine
pro~ram step.

MICRO PROCESSOR: A CPU implemented by use of
large scale integrated c~rcuits. Frequently
implemented on a single chip.

MICRO PROGRAM: Program inside MPU which
controls the M PU chip during its basic
fetch / execute sequence. _

MNEMONIC: A word or phrase which stands for
another (longer) phrase and is easier to remember.

MODEM: Modulator / demodulator used to send and
receive serial data over an audio link.

NON VOLATIVE: ;Memory which will retain data
content after power supply is removed, e.g. ROM.

OBJECT CODE: To- bit patterns that are presented to
the MPU as instructions and data.

O/C: Open Collector. Means of tieing together O/P's
from different devices on the same bus.

OCTAL: Base 8 number system. Character
decimal 0-8.

OP CODE: Operation Code. A bit pattern which
specifies' a machine operation in the CPU.

OPERAND: Data used by machine operations.
PARALLEL: Transfer of two or more bits at the same

time.
PARITY: Check bit added to data, can be odd or even

parity. In odd parity sum of data 1's + parity bit is
odd.

PERIPHERAL: Equipment for inputing to or
outputting from the system (e.g., teletype, VDU,
etc.).

PIA: Peripheral Interface Adapter.
POP: Operation of removing data word from LIFO

stack.
PORT: A terminal which _the MPU uses to

communicate with the outside world.
PROGRAMS: Set of MPU instructions which instruct

the MPU to carry out a particular task.
PROGRAM COUNTER: Register which holds the

address of next instruction (or data word) of the
program being executed.

PROM: Programmable read only memory. Proms are.
special form of ROM. which can be individually
programmed by user. .

PUSH: Operation of putting data to LIFO stack.
RAM: Random Access Memory. Read write memory.

Data may be written to or read from' any location in
this type of memory.

REGISTER: 'General purpose MPU storage location
that will hold one MPU word.

RELATIVE ADDRESSING: Mode of addressing
whereby address of operand .is formed by
combining current program count with a
displacement value which is part of the instruction.

ROM: Read Only Memory. Memory device which has
its data content established as part o{ manufacture
and cannot be changed. .

SCRATCH PAD: Memory that has short access time
and is used by system for short t~rm data storage.

SERIAL: Transfer of data one bit at a time.
SIMPLEX: Data transmission in one direction only.
SOFTWARE: Programs stored on any media.
SOURCE CODE: The list ofstatements that make up a

program.' -
STACK: A last in first out store made up of registers

or memory locations used for stack.
STATUS REGISTER: Register that is used to store the

condition of the atcumulator after an instruction
has been performed (e.g., Acc = 0).

SUB ROUTINE: A sequence of instructions which
perform an often required function, which can be
called from any point in the main program.

SYNTAX: The grammar of a programming language.
TRAP (Vector): Pre-defined location in memory which

the processor will read jiS a result of particular
condition or operation.

TRI STATE: Description of logic devices whose
outputs may be disabled by placing them in a high
impedance state.

TTY: Teletype.
TWO'S COMPLEMENT ARITHMETIC: System of

performing signed arithmetic with binary numbers.
UART: 'Universal Asynchronous Receiver Transmit­

ter.
VDU: Video Display Unit.
VECTOR: Memory address, provided to the processor

to direct it to a new area in memory.
VOLATILE: Memory devices that will lose data

content if power supply removed (Le., RAM).
WORD: Parallel collection of binary digits much as

byte.

Reprinted from the September 1917 edition of Electronics Today International magazine. Toronto. Ontario_



APPENDIX Jl
Assembler Error Codes

281 NA" DIRECT lYE ERROR
"ESSACE: **•• ERROR 2e1 AAAAAA
REAMING: THE H~M DIREC1IVE IS NOT THE FIRST SOURCE STATEMENTJ11 IS I1ISSIHC .. OR IT OCCURS )l!ORE TH~N ONCE IN THE

SA"E SOURCE PROCRA".

282 LABEL OR OPCODE ERROR
"ESSAGE: ••••ERROR 292 AAAAAA
"EAMING: THE ~ABEL OR OPCODE SY"BOl DOES HOT BEGIN WITH AHALPHABETIC CHARACTER.

283 STATEMENT ERROR
"ESSACE: ****ERROR 2e3 AAAAAA
"EAMINe: THE STATE"EKT IS BLANK OR ONLY COHTAIHS A LABEL.

284 SYHT4X ERROR
"ESS~CE: •••• ERROR 294 AAAAAA
KEAHIHG: THE STATEKEHT IS SYNTACTICALLY INCORRECT.

295 L~BEl ERROR
"ESS~CE: ••••ERKOR 29S AAAAAA
"EAHIHG: THE STATEMENT LABEL FIELD IS HOT iER"IHATED

WITH A SPACE.

286 REDE~IHED SV"BOl
"ESSAGE: ••••ERROR 286 AAAAAA
"EAHIHC~ THE SVM9QL HAS PREVIOUSLY BEEN DEFINED. THE FIRSTVALUE IS SAYED IN SY"BOL TABLE.

297 UHDEFINED OPCODE
"ESS~CE: •••• £RROR 291 AAAAAA
"EAHIHC: THE SY"B~l IH THE OPCODE FIELD IS NOT A VAllOOPCODE "HE"OMIC OR DIRECTIVE.

)8~ BRANCH ERROR
··P1ESSAGE: ••••ERROR 298 AAAAAA

"EAHIHG: THE BRANCH COUNT IS BEYOND THE RELATIYE 8YTE·SRAHGE. THE ALLOWABLE RANCE IS:
<*+2> - 128 < D < <*+2) + "127
WHERE: • = ~DDRESS OF THE FIRST BYTE OF THE

BRANCH INSTRUCTION
D • ~DDRESS OF THE DESTINATION OF THE

BRANCH INSTRUCTION.
~

289 "'ILLECAL ADDRESS "ODE
~iSSACE: ••• *ERROR 289 AAAAAA
"EAHIHG: THE "ODE OF AD~RESSIHC IS HOT ALLOWED WITH THE op­CODE TYPE.

218 BYTE OVERFLOW
"ESS~GE: •••• ERROR 219 AAAAAA
HEAHI~C: AN EXPRESSION COHVERTED TO A YALUE ~REATER THAN255 <DECI"AL). THIS ERROR ALSO OCCURS ON CO~PUTERSYSTEMS HAYING WORD LENGTHS OF 16 BITS UHEH USINGHEGATIVE OPERANDS IN THE I"KEDIATE ADDRESSING

"ODE.. EXA"PlE:
L DA ~ • - 5 ; C.A USE S ERR 0R 2 18

THE ERROR HAV BE AVOIDED BY USING THE 8
BIT TWO'S CO"PLE"EHT OF THE HU"BER.
EXA"PLE:

LDA A "FB ; ASSE"BLES OK



APPENDIX J2
Assembler Error Codes

211 UNDEFINED SV"80l
"ESSAGE: ••• *ERROR 211 AAAAAA
"EAHIHG: THE SYMBOL DOES HOT APPEAR tH A LABEL FIELD.

212 DIRECTIYE OPERAHD ERROR
"ESS~CE: **•• ERROR 212 AAAAAA
"EAHtHG: SYNTAX ERROR IN THE OPERAND FIELD OF A DIRECTIVE.

213 EQU DIRECTI~E SYHTAX ERROR
"ESSAGE: ****ERROR 213 ~AAAAA

"EAHIHG: THE STRUCTURE OF THE EQU DIRECTIYE IS SYNTACTI­
CALLY INCORRECT OR IT HAS NO LABEL.

214 FeB DIRECTIVE SYNTAX ERROR
"ESSAGE: ••••ERROR 214 AAAAAA
"EAHIHC: THE STRUCTURE OF THE FeB DIRECTIYE IS SYHT~CTI­

CALLY INCORRECT.

215 FDB DIRECTIVE SYNTAX ERROR
"ESSAGE: •••• ERROR 215 AAAAAA
ftEAHIHC: THE STRUCTURE OF THE FDB DIRECTIVE IS SYNTACTI­

CALLY INCORRECT.

216 DIRECTIYE OPERAND ERROR
"ESSACE: ••• *ERROR 216 AAAAAA
"EAHIHG: THE DIRECTIYE/S OPERAND FIELD IS IN ERROR.

211 OPT DIRECTIVE ERROR
"ESSACE: ••••ERROR 217 AAAAAA
"EANING: THE STRUCTURE OF THE OPT DIRECTIVE IS SYNTACTIC­

ALLY INCORRECT OR THE OPTION IS UNDEFINED.

228 PHASINC ERROR
"ESSAGE: ••••ERROR 228 AAAA~A

"EAMINe: THE VALUE OF THE P COUHTER DURING PASS 1 AND
PASS 2 FOR THE SAnE IHSTRUCTIOH IS DIFFERENT.

221 SYKBOl TA9LE OVERFLOW
"ESSAGE: ••••ERROR 221 AAAAAA
"EAHIHG: THE SY"BOl TABLE HAS OVERFLOWED. THE HEW SY"BOL

WAS HOT STORED AND ALL REFEREHCES TO IT WILL BE
FLACGED AS AN ERROR.

222 SYNTAX ERROR IN THE SYMBOL
"ESSACE: ••**EiROR 222 AAAAAA
"EAHIHG: THE ONE-CHARACTER SY"BOLS ~, B, AND X CAHNOT BE USED

FOR USER-DEFIHED SY"BOlS. THEIR USE IS RESTRICTED
FOR REFEREHCES TO THE ACCU"ULATORS (A & B) AHD TO THE
INDEX RECISTER (X). ERROR 222 ALSO FLAGS ALL SOURCE
STATE"ENTS CONTAININC A SYftBOL THAT HAS BEEN REDE­
FINED.

223 THE DIRECTIYE C~HHOT HAYE A LABEL
"ESSAGE: ***-ERROR 223 AAAAAA
"EAHIMG: THE DIRECT lYE CANNOT HAYE H LABEL. THE LABEL FIELD

"UST BE E"PTV (BLA~K).

Courtesy Motorola Semiconductor Products, Inc.



Il~struction Set (spare copy)

ADDRESSING MODES CONDo CODE REG.
BOOLEAN/ARITHMETIC OPERATION

oJACCUMULATOR AND MEMORY U'AMED DIRECT INDEX EXTND INHER (All r~tst.r l,b.ls S C 3 2 1

OPERATIONS MNEMONIC OP - 11 OP - # OP - # OP - # DP - # ref,r to contents) H , N Z V C

Add AODA 8B 2 2 9B 3 2 AB 5 2 8B 4 3 A+ M-A t • t t t t
AOOB C8 2 2 DB J 2 EB 5 2 FB 4 3 8 .. M-B t - t t t t

Add Acmltrs ABA 18 2 1 A+B-A t - t t t t
Add with Carry AOCA 89 2 2 99 3 2 A9 5 2 B9 4 3 A+M+C-A t - t t t t

AOCB C9 2 2 09 J 2 E9 5 2 F9 4 3 B"'M+C-B t - 1 t t 1
And ANDA 84 2 2 94 3 2 A4 5 2 B4 4 J A. M-A - - • t R -ANOB C4 2 2 04 3 2 E4 5 2 F4 4 J B· M-B - • 1 t R -Bit Test BITA 85 2 2 95 3 2 AS 5 2 B5 4 3 A.M - • t t R -

BITB C5 2 2 OS 3 2 E5 5 2 F5 4 3 B.M - - 1 1 R •
Clear CLR 6F 1 2 1F 6 3 00 -M - • R S R R

CLRA 4F 2 1 00 -A • - R S R R

ClRB SF 2 1 00 -B • • R S R R

Compare CMPA 81 2 2 91 3 2 Al 5 2 B1 4 3 A-M - • 1 t t 1

CMPB C1 2 2 01 3 2 E1 5 2 F1 4 3 B-M - - t t t t

Compare Acmltrs CBA 11 2 1 A-B - • t t t 1

Complement, 1's COM 63 1 2 13 6 3 M-M -· t t R S

COMA 43 2 1 A-A • • 1 t R S

COMB 53 2 1 B.... 8 • • 1 t R S

Complement. 2's NEG 60 7 2 10 6 3 00 - M - M • • t 1 0 0
(Negate) NEGA 40 2 1 00 - A-A • • t 1 0 0

NEGB 50 2 1 00 - B - B - • t t 0 0
Decimal Adjust, A DAA 19 2 1

Converts Binary Add. of BCD Characters • • t t 1 0IOto BCD Fa. mat

Decrement DEC 6A 1 2 7A 6 3 M -l-M • • 1 t o •
DECA 4A 2 1 A - l-A - • t t 0-
OEca 5A 2 1 B-1-8 • • t t o •

Exclusive OR EORA 88 2 2 98 3 2 A8 5 2 88 4 3 A-vM-+A • • 1 t R •
EORB C8 2 2 08 3 2 E8 5 2 F8 4 3 B~M-+B · - t t R -

Increment INC 6C 1 2 7C 6 3 M + 1-M - • 1 t ® •
INCA 4C 2 1 A+l-+A • - t t ® •
INCB 5C 2 1 8 .. , .... B • • t t ® •

load Acmltr LDAA 86 2 2 96 J 2 A6 5 2 B6 4 3 oM .... A • • 1 t R -
LOAB C6 2 2 06 3 2 E6 5 2 F6 4 3 M -B • • t t R •

Or. Inclusive ORAA 8A 2 2 9A 3 2 AA 5 2 BA 4 3 A+M .... A • • t t R •
DRAB CA 2 2 OA 3 2 EA 5 2 FA 4 3 B+M -B • • t t R •

Push Data PSHA 36 4 1 A -+ MSp. SP-1 .... SP - • - • - •
PSHB 37 4 1 8 - MSp, SP-l -SP • • • • • •

Pull Data PULA 32 4 1 SP .. 1 .... SP. MSp - A - • • • • •
PULB 33 4 1 SP .. l-SP. MSp .... B • • • • • -

Rotate Left ROL 69 7 2 79 6 3

:1 r~·- ~-~~;;~~L~-:J - • t t ® t

ROLA 49 2 1 - • t t ® t
C b 7 ~ be @ROLB 59 2 1 • • t t t

Rotate Right ROA 66 1 2 16 6 3
:: CO -:'- rnJllD:}=:J - • t t ® t

RORA 46 2 1 • • t t ® t
ROR8 56 2 1

B C b] -+ be • • t t ® t
Shift Left. Arithmetic ASL 68 1 2 78 6 3

:1
~ • • t t ® t

ASLA 48 2 1 0 ~ lTIIIJIIJ - 0 • • t t @ t
c b7 be @ASLB 58 2 1 • • t t t

Shift RIght, Arithmetic ASR 67 7 2 17 6 3
MJ -

• • t f ® t
ASRA 41 2 1 A C6:rriuIJ - 0 • • t t ® t

b7 b() C
t t @ tASRB 51 2 1 8 - •

Shih RIght. Logic. LSR 64 7 2 74 6 3

:]
-+ • • R t @ t

lSRA 44 2 1 o -+ ITD..ITlIJ -+ 0 • - R t @ t
b7 be c

@LSRB 54 2 1 - • R t t
Store Acmltr. STAA 91 4 2 A1 6 2 81 5 3 A -M • • t t R •

STA8 07 4 2 E7 6 2 F7 5 3 8-M · - t t R •
Subtract SUBA 80 2 2 90 3 2 AD 5 2 80 4 3 A-M-A - • f t t t

SUBB CO 2 2 00 3 2 EO 5 2 fO 4 3 B - M-8 · · t t t t

Subract Acmltrs. SBA 10 2 1 A-B-A • • t t t t

Subtr. with Carry SBCA 82 2 2 92 3 2 A2 5 2 B2 4 3 A-M-C-A • • t t t t

SBCB C2 2 2 02 3 2 E2 5 2 F2 4 3 B-M-C-+B - • t t t t
Transfer Acmltrs TAB 16 2 1 A -+B • • t t R •

TBA 11 2 1 B-A • • t t R •
Test. Zero or Minus TST 60 7 2 70 6 3 M - 00 • • t t R R

:. TSTA 40 2 1 A-DO • • t t R R

TST8 50 2 1 B - 00 • • t t R R



Instruction Set (spare copy)

INDEX REGISTER AND ST~.CK IMMED DIRECT INDEX EXTND INHER 5 4 3 2 1 a

POINTER OPERATlO NS MNEMONIC OP - = OP - OP - !f" OP - # OP - :# BOOLEAN/ARITHMETIC OPERATION H I N Z V C

Compare Indel Reg CPX 8C 3 J 9C 4 2 AC 6 2 BC 5 3 (XH/X L) - (M/M + 1) • • 0 t @.
Decrement Index Reg DEX 09 4 1 X-1-X • • • t • •
Decrem~nt Stad Pntr DES 34 4 1 SP - 1 -SP • • · • · •
Increment Index Reg INX 08 4 1 X + l-X • • · t • ·
Increment Stack Pntr INS 31 4 1 SP +- 1 - SP • • • • · •
load Index Reg lOX CE 3 3 DE 4 2 EE 6 2 FE 5 3 M - XH. (M +- 1) - XL • ·® t R •
Load Stac k Pntr lOS BE 3 3 9E 4 2 AE 6 2 BE 5 3 M -SPH. (M +- 1) -SP l • • @ t R •
Store [ndel Reg STX OF 5 2 EF 7 2 FF 6 3 XH -M,Xl-(M+-1) • • ® : R •
Store Stack Pntr STS 9F 5 2 AF 7 2 BF 6 3 SP H -M, SP L -(M ~ 1) • • ® : R ·
Indx Reg - Stack Pnlr TXS 3S 4 1 X-I .... SP - • • • • •
Stact. Pntr -Indx Rt9 TSX 30 4 1 SP +- 1 - X -· • · • ·
JUMP AND BRANCH RElATlVE INDEX EXTNO INHER 5 4 3 2 1 0

OPERATIONS MNEMONIC OP - = OP - = OP - :; OP - ;:; BRANCH TEST H I N Z V C

Branch Always BRA 20 4 2 None - • • • • ·
Branch If Carry Clear BCC 24 4 2 c=o • • • • · ·
Bra:lch If Carry Set BCS 25 4 2 C =1 • • • • · •
Branch If :: Zero 8EQ 21 " 2 Z =1 • • • • · •
Branch If ~ Zero BGE 2C 4 2 Ni1V::O • · • • · •
Branch If > Zero BGT 2E 4 2 Z+ (N.; V):: 0 • • • • • ·
Branch If HIgher - "I\Sl!1\ del BHI 22 4 2 C+ Z :: a • • • · · ·
Blanch If ~ Zero BlE 2F 4 2 Z +,N .;V) = 1 - • • • • ·
Branch If Lower Or Same -u""9"e' BlS 23 4 2 C + Z:: 1 • • • · • •
Branch If < Zero BLT 20 4 2 N'E-V:: 1 • • · • · •
Branch If MInus 8MI 2B 4 2 N:: 1 • • • · • •
Branch If Not Equal Zero BNE 26 4 2 Z=O • · • • • •
Branch If Overflow Clear BVC 28 4 2 v=o · • · • · •
B, anch II Overflow Set BVS 29 4 2 V:: 1 • • • · • •
Branch If Plus BPL 2A 4 2 N=O • · · • · •
Branch T0 Subroulln~ BSR 80 8 2

} See SpeCIal Operauons

• •
-I- · ·

Jump JMP 6E 4 2 1E 3 3 • • · .· ·
Jump To Subrouhnt! JSR AD 8 2 BD 9 3 · • · . · •
No Operation NOP 01 2 1 Advances Pro~. Cntt. Only • • • • · ·
Return From Interrupt RTI 3B 10 1 --@--
Return From Subroutine RTS 39 5 1

} See special Operations -I-fl-rl-Sohware Interrupt SWI 3F 12 1 • S • • • •

Wait for Interrupt WAI 3E 9 t • @ ••••

CONDITION CODE REGISTER NOTES:

(Bit set ,f test IS true and cleared otherwlsei

o (Bit V) Test: Result = 10000000'1

@ (Bit C) Test: Result =00000000'1

@ (Bit CI Test: Oeclmal value of most sigl\lficant BCD Character greater than nrne'
(Not cleared .f prevIously set.)

CONDITIONS CODE REGISTER INHER 5 4 3 2 1 a
BOOLEAN

OPERATIONS MNEMONIC OP - = OPERATION H I N Z V C

Clear Caery ClC OC 2 1 O-C • • • • • R

Clear Interrupt Mask CLI OE 2 1 0-1 • R • • • •
Clear Overflow CLV OA 2 1 O-V • · • • R •
Set Carry SEe 00 2 1 l-e • • • • • S

Set Interrupt Mask SEI OF 2 1 1-1 • S • • • •
Set Overflow SEV OB 2 I 1-V • • • • S •
Acmlt( A - CCR TAP 06 2 1 A -CCR --@--
CCR -Acmltr A TPA 07 2 1 CCR -A -1·1·1-1·1·

LEGEND: 00 Byte:: Zero;

OP Operation Code IHexadecimal); H Half·carry from bit 3;

NumbEr of MPU Cycles; I Interrupt mask

Number of Program Bytes; N NegatIve (sign bitl

Anthmetlc Plus; Z Zero (byte)

Arithmetic Minus; V Overflow, 2·s complement

Boolean AND; C Carry from bit 7

MSp Contents of memory location R Reset Always
pointed to be Stack Pointer; S Set Always

+ Boolean InclUSIve OR; t Test and set if true. cleared otherwise

oB Boolean Exclusive 0 R: • Not Affected

M Complement of M; eCR ConditIon Code Register

Transfer Into; lS least SignIficant

Bit = Zero; MS Most SigO/ficant

o
®
®
CD
®
®
@
([9

(Bit V)

(BIt VI

(BIt V)

tBlt NI.

lBlt V)

(Bit N)

(All)

(Bit I)

(ALL)

Test: Operand:: 10000000 ;lrior to oecutlon?

Test: Operand = 011 till t prior to execution?

Test: Set equal to result of N.; Cafter shIft has occurred.

Test: Sign bil of most Significant (MS) byte of result:: P

Test: 2's complement overflow from subtraction of LS bytes?

Test: Result less than zero? (BII 15 = 1)

Load Condition Code Register from Stack. (See SpeCial Opp.!a(lons)

Set when Interrupt occurs. If p,eviously ser, a Non·Maskabie Inlerruct I~

reqUIred ro eXIt (he walt slate.

Set according 10 the conlenls of Accumulato, A.

Courtesy Motorola Semiconductor Products, Inc.



DAA INSTRUCTION
Decimal Adjust Accumulator

APPENDIX K

K-l-
A decimal digit may be represented as a 4 bit binary

number e.g. 9 = 1001. Similarly a 2 digit decimal number can be
represented by 8 bits, e.g. 4910 = 01001001. This form is known
as Binary Coded Decimal or BCD, and is not to be interpreted as
a normal binary number.

Addition of decimal numbers, expressed in BCD, is
possible via the DAA ( Decimal Adjust Accumulator) instruction
as seen in this example:

L[)A A #$08
AD[) A #$(16
[)AA

The DAA instruction converts the normal hex sum, OE, to 14, the

expected decimal sum in BCD. This is accomplished internally by
adding 6 in this example (OE + 06 = 14). Details of the internal
operation of the DAA instruction are not essential to its use,

but are given at the bottom of this page. What is important is

that this instruction operates on ACC A, only after execution of
the ADD, ADC or ABA instructions.

Assuming that symbolic addresses OLDATA and NUDATA each
contain one BCD digit, write the instructions to produce the BCD
sum in ACC A.

----/
L[)A A OLDATA
ADD A NUDATA
DAA

DAA Details: When two 2 digit BCD numbers are added a "carry",
produced by the addition of the "least significant lJ column, sets
the H bit of the CCR, e.g. 7 + 5 produces a carry and sets H,
while 7 + 2 clears H. This H bit is added to to the "most
significant" column, all operations being internal to the DAA
instruction.



K-2-
Decimal addition in~BCD is equally valid for "2 digit lJ

decimal data, e.g. 47 10 + 7810 , Here the BCD sum is 125, that is
25 plus a carry into the third column.

Write the instructions to add OLDATA and NUDATA, the
sum going to TOTAL+1 and the carry going to TOTAL. Assume that
OLDATA and NUDATA each contain 2 decimal digits in BCD form.

0100 7F 0150 eLF.: TOTAL
€11.€13: 86 0:152 LOA A OLOATA
€11.~36 88 €11.54 ADD A NUOATA
€11€19 19 DAA
(11.0A B'{ 0:15:1 STA A TOTAL+1
~3:10(:t 24 ((? E:CC FIN!
(11.0F 7C ~315(1 INC TOTAL
01:12 FINI

I
I,

~3:150 (u302 TOTAL F~t18
.-:.
c..

k1:152 0~302 OL[)ATA F.:t18 2
121:154 012102 NliDATA F.:t1B .-.

.:!.

frequency
computer.
lation of

Lab instruments, such as digital voltmeters and
counters, often use BCD format to present data to a
Hence the DAA instruction vastly simplifies manipu­

this data, directly in BCD form.



K-J-Addi tion of 114 digiti' decimal data also requires the

detection of the carry bit after the 2 least significant columns

are added. Use of the ADC (Add with Carry) instruction permits

this carry to be added in when the next 2 most significant digits

are added. Assume that OLDATA and NUDATA each contain 4 BCD

digits in 2 bytes. Write the instructions to produce the 4
digit sum in the 2 bytes labelled TOTAL.

__-----J/
:+:

:+: ADDITION OF 4 CHAf;.: BCD DATA. SUt'1 IN TOTAL.
:+:

l1:1l10 7F t1i50 eLF.: TOTAL
~31.~:::13 E:6 ~:::11.5]: L[)A A OLDATA+1.
t11.£16 BE: (11.55 ADD A NU[)ATA+1.
~31.(19 i'=t DAA BCD SUr1 OF 2 LO DIGITS_.
01.~3A Eo? 0:151- STR A TOTAL+1."
01.li[) E:6 ~:::11.52 LDA A OLDATA
~31.1.0 89 ~31.54 ADC A NU[)ATA
ttl1.3 1.9 DAA BCD SUr1 OF .-. HI DIGITS~

011.4 B7 l31.5£1 STA A TOTAL
I
•
I

This process could be extended to 6, 8 or N digit BCD addition.

Note that the above program does not detect a carry beyond 4
digits; hence input should be limited to J BCD digits.



I N D E X

Accumulator
ACIA
Addition - Binary

- Hexadecimal

11- 1

7- 1

7- 1
7- 5
7- 1
3- 4

11- 1
9- 1
7-12

11- 1
1-23

10- 1
2-11
7- 1
7- 1
8-13
1-35
1-29

11-13
3- 1

10- 4

J- 5
2- 2
4- 1
2- 5
2-20
1- 3

2-21
11- 1

2- 2
1- 3

2-16
4-11

11-12
4-11

2- 3
(Op Code) 2- 3

2- 3
3- 7
2-25
3- 3

7- 8
6- 3
8- 1
8-10

10- 1
10- 1

Vector Address

TSX

Write Only Buffer

Operand
Operation Code
Operator
OPT
ORA
ORG

Service Routine
Signed Number
SP (Stack Pointer)
STA
Start Bit
Stop Bit
Strobe lVIode- PIA
Subtraction- Binary

- Hex
SWI (Software Int.)
Symbolic Address

Read Only Buffer
READY Bit
Read Only Buffer
RlVIB
RTI
RTS (Return from Sub.)
RTS (Request to Send)

Parity
PC (Program Counter)
PIA
Programmed Mode- PIA
PSH
PUL

Mask Word
Maskable Interrupt
Machine Code
MSB

NEG
NOG
Non Maskable Interrupt
Null

Label
LDA
LDX
Literal
Logical AND
LSB

2- 1
7- 1
1- 2
1-16
2-20
2- 3
2- 1

2- 2
2-19
2-25
4- 7
4- 1
2-13
4-10

11- 1

3- 7
7- 1
2- 9

4-11
4-11
4-12

11- 1

8-11
1-12

11- 1
1- 1
1- 1
6- 6

11-17
1-13

5- 7
2- 2
2- 2
2-23
2- 1
3- 6
8-16
1- 2
1- 7
1-33
1-14
7-12

App. K
7- 1
8- 1
4-13
9-21
4-10
2-17

Reg.

CTS

Immediate Mode
INC
Inclusive OR
Index Mode
Index Register
Initialization
INX
IRQ- Interrupt Request

Handshake Mode- PIA
Hexadecimal (Hex)

END
EQU
Extended Mode

DAA
Data Buffer
DDR-Data Direct.
Deferred
Delay
DEX
Direct Mode

CLR
Comment
Contact Bounce
Conversion-Bin to Dec

-Dec to Bin
-Dec to Hex
-Hex to Dec

CCR-Condition Code Reg
Character Set- #

- $
- %

FCB
FCC
FDB
Foreground

Background
Binary Number
Bit
Branch Offset
Breakpoint
Byte

AND
ASCII
Assembler


	About This Workbook
	For Whom
	This Workbook is Available From
	How to Use This Workbook
	Binary and Hex Numbers
	Pre-Test
	Chapter 1: Binary and Hex Numbers
	Chapter 2: Accumulator Operations
	Chapter 3: Symbolic Addressing
	Chapter 4: Index Register
	Chapter 5: Branching - Assembly Language
	Chapter 6: Branching - Machine Code
	Chapter 7: ACIA - Asynchronous Communications Interface Adapter
	Chapter 8: PIA - Peripheral Interface Adapter
	Chapter 9: Subroutines
	Chapter 10: Stack Operations
	Chapter 11: Interrupt
	Appendix A: Hex Codes
	Appendix B: ASCII Codes
	Appendix C: Instruction Set
	Appendix D: Machine Code
	Appendix E: ACIA - Asynchronous Communications Interface Adapter
	Appendix F: PIA - Peripheral Interface Adapter
	Appendix G: Character Set
	Appendix H: Commonly Used Instructions
	Appendix I: Microprocessor Glossary
	Appendix J: Assembler Error Codes
	Instruction Set (spare copy)
	Appendix K: DAA Instruction
	Index

