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PROGRAMMING THE 6800 MICROPROCESSOR

ABOUT THIS WORKBOOK

This workbook has one purpose only, to help you to
learn the fundamentals of assembly language and machine code
programming of the 6800 microprocessor and its peripheral
devices. Considerable coverage is given to programming of
input/output devices, an essential part of microprocessor
applications. The ACIA and PIA, each with their various modes
of operations, are explored in detail in both non-interrupt
and interrupt modes. Program design and documentation is
emphasized, enabling others to understand the purpose and
operational details of your programs. Programming hints and

aids are included along with the answers.

FOR _WHOM

This workbook was designed primarily for use by students
at the community college level, although it has been successfully
used by at least one capable high school student. Previous
programming experience is not necessary.  Early high school
mathematics is adequate, although mathematical competence beyond

this level is a good predictor of success.

THIS WORKBOOK IS
AVAILABLE FROM

Motorola Semiconductor Products Inc.
Literature Distribution Center

P.0. Box 20924

Phoenix, AZ 85036

Copyright (c) 1977 R. W. Southern.



HOW TO USE THIS WORKBOOK

The programmed notes in this workbook are for your
use at your own pace. Take your time, proceeding to the next
frame when you are satisfied with your answer, after

comparison with the answer given.

To use these notes effectively:

(a) Cover the given answer shown below the
horizontal line following each question.

A data card is very convenient for this.

(b) Read the text material given in the frame.

(c) Write your answer to the question asked.

(d) Compare your answer with the answer given and
when you fully understand any differences, if
any, proceed to the next paragraph.

For practice attempt the following question, after

covering the answer below the line. Write your answer here.

"After answering the question what should the student do?"

/

Answer: The student should compare his/her answer with the one

_ 8iven in the workbook and, when satisfied with any

\qifferences, move on to the next paragraph.



BINARY AND HEX NUMBERS

Before starting please read the left page to get the
most benefit from this programmed instruction workbook.

PRE-TEST

If you are familiar with binary and hexadecimal
arithmetic operations, try the test below. If this is not
familiar to you, turn the page and start the instruction in
frame 1-1.

(a) Calculate 75 - 41, after first converting each decimal
number to its hexadecimal value, then performing the
subtraction. Verify by converting your answer back to
decimal. Write your answer on this page.

(b) Repeat (a) in binary rather than hexadecimal. Solutions
are on the next page.

/

Contd e 00




PRE-TEST

Contd.
(a) Solutions 75 - 41 = 34 (decimal)
2 125 dootoss, 2 Lt _iotooL,
2 |37 +1 L B 2 20 + 1 2 9
2 |18 + 1 2 |10+ 0
2 L9+o0 2 Ls+o0
2 L4+ 2 L2+1
2 |.2+0 2 L1+0
2 1 1+0 0+ 1
o0+ 1
Calculate -29 then add 75, all in hex.
FF
-29
Dé
+_1
D7
+4B
22 hex
\\92x16(1)= 2}'_.34 decimal
2 x 167 = 32
(v) 75 = 01001011 (as an 8 bit number)
L1 = 00101001
one's complement of 41 = 11010110
+ 1
two's complement of 41 = 11010111
plus 75 01001011
1 00100010
overflow _,} \\\~t:: 1 x 21 = 2
| 1x 2% =32
34 decimal

If your answers are correct skip over to Chapter 2,
otherwise start Chapter 1 instruction on the opposite page.
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The number system most familiar to us is the decimal one,
in which a character has ten possible states, 0 to 9. Adding 1
to 9 results in 10, that is "0" with "1 to carry" or simply

"0 with a carry".

A decimal number 527 meanss 7 units = 7
plus 2 tens = 20

plus 5 hundreds = 500

Total = 527

Another decimal concept to note is that 103 = 10 x 10 x 10 = 1000,
Similarly 10% = 10 x 10, 101 = 10 and 10° = 1. 1In fact any value,
raised to the power of zero, equals 1.

The decimal number 527 may then be expressed as:

527 10 used with decimal numbers.
‘ 7 X 10 =7 x1 = 7
2 X 10 =2x 10 = 20
.5 x 10° = 5 x 100 = 500
527

Computers use the binary or two-state number system, that
is each "binary digit" or "bit" has only two states, 0 or 1.
Adding 1 to 1 results in 0 with a carry.

The first 3 numbers in the binary number system are 0, 1

and 10. This is seen by adding 0 1
+1 then +1
=1 =10 = 2 (decimal)

In binary add 2 + 1. Your answer should be written above
this line. Then check your answer.

Y

10

=11 = 3 (decimal) 11 (binary) = 3 (decimal)
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A

Now calculate the binary values for 4, 5 and 6, starting
from the binary equivalent of 3.

11 = 3 100 = 4 101 = 5
1 1 +1
100 = &4 101 = 5 110 = 6

{\-———* 1+ 1=20+ carry

1 + carry = 0 + carry.

In summary the binary equivalents of 0 to 6 are:
Decimal 0o 1 2 3 4 5 6
Binary 0 1 10 11 100 101 110

Leading zeros could be used with the above binary numbers, if
desired, e.g., 110 = 0110 if a 4 bit number is required.

A subscript will be used from now on to denote the number
system, e.g., 1102 is the binary number 110, while 1101o is the
decimal number 110. When the number system is obvious the
subscript may be omitted.

Interpretation of the binary number 101 iss

101 3 2 used with binary numbers
\ 1 x2" =1
0 x 21 =0
2 _
1 x2°=4

(9,1



Determine the binary value for 8 and 9.

8 = 1000 To verify 110 = 6 110 = 6
9 = 1001 + 1 +10 = 2
111 =7 1000 = 8
+ 1 OR + 1
1000 = 8 1001 = 9
+ 1
1001 = 9

The second solution is more direct and also demonstrates binary
addition with a carry.

1-4

In the binary number 101, the right bit carries the

least weight and is therefore called the Least Significant
Bit or LSB. The left bit carries the most weight (2% in this

case) and is the Most Significant Bit or MSB.

In binary, calculate 6 + 4. Verify by converting
your answer to decimal.

6 = 110
4 = _100
10 1010
\L——-ro:czo:o
1x2t=2
0 x 22 =0
1 x 23 = 8
10

10 Yes! It works.



Er]
Calculate 8 + 7 in binary. Verify your answer by

converting it back to decimal.

/

11112 = 1510 1000 = 8 1111
*0111 = 7 11 x20=1
1111 = 15 \\~4-1 x 25 =2
1 x 2% = i
1x 22 = 8
15
In summary the binary equivalents for 0 to 15 are:
0000 = O 0100 = 4 1000 = 8 1100 = 12
0001 = 1 0101 = 5 1001 = 9 1101 = 13
0010 = 2 0110 = 6 1010 = 10 1110 = 14
0011 = 3 0111 = 7 1011 = 11 1111 = 15

1-6
Each bit of a binary number is assigned a bit number
which is the same as its binary exponent as shown below.

1011
‘tbit #0
bit #1
bit #2

~~—bit #3
What is another name for bit #3 in this binary number 10117

/

MSB or Most Significant Bit.
The bit number is also useful in determining the weight of each
bpit in a binary number, e.g.,
bit #5
it i)
110110 ™

Ll XZ@/same.
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Let's look at a method to convert from decimal to binary.

This method involves successive division of the decimal number
by 2, noting the remainder at each stage. Conversion of 1910 t
binary is illustrated.

2 li?. remainder

[AS T \S B AV b

L2+
4 +
|_2.+
LJ__+
0O +

To verify:s 10011

-

1 x 2
1 x 2
1 x 2

1

1 10011. This is obtained by reading
0 the remainders, bottom to top.
0
1

1
2

16

1990

Now calculate the binary equivalent of 69 and verify your answer.

2
2
2

2
2
2
2

|69
Lg& +

17 +
8 +
&+
Lé +
Ll_+

0 +

1000101 To verify

1 |\ 1 x29- 1

0 1x2%2= 4

1 1x 26 = 6l

0 6910
0

0

1
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aa————
Convert 11?10 to binary and verify your answer by

reconverting to decimal.

2 |117 - 1110101

2 |58 + 1 L\E:::l x20= 1

2 (29 + 0 1x2%= 4

2 (14 +1 1x 2% = 16

2 j7+o0 ~—e1x 20 = 32

2 3+1 1 x 2% =_6b

2 1+ 1 117,

0+ 1

11710 = 11101012

If you are satisfied with your progress proceed to the
next frame. If not, try another number of your own choice now.

1-9
Let's look at binary addition now. Add 6 + 7 in binary
and verify your answer by converting it to decimal.

110 = 6 Note that here 1 + 1 plus

111 = 7 a carry = 1 plus a carry.
1101 = 1310 0
\%1x2=1
1x 22 = 4
=1 x 27 = _8

1310 1310 = 11012



Calculate 5 + 7 in binary and convert your answer to
decimal to verify it.

5 =101
7 = 111
12,, =1100,

fi

-
»
N

W
I
~

8 )—ar1210 = 1100

1-11

Values less than 1 can be expressed in binary as in the

1o1f;‘\\binary point

The 1 on the right side of the binary point carries the weighting
of 2'1 (or 0.510)$'since the binary exponent continues to decrease
by 1 for each move to the right. The decimal value is then

example below

1x22= 4
oxza2l= o
0
(//———- 1x2°= 1
‘ v —1x 2_1= 0.5
101.1 5.5
Express 110.11 in decimal. /////
6.7510 ,
1 x2° =4
1x 2 =2
0 _
0x2 =0
1 x 271= 0.5
-2
1 x2 %= 0.2
(-
110.11 6.7540

The weight of each bit of a binary number can be summarized by:

11111.111
Binary exponent

; l ///1/ ' 51\>-
or Bit # — 3 3

0]
Binary Value — 2 23 22 ol 0 51 -2 -3
1

Decimal 1/2 1/14 1/8

Equivalent - 16 8 & 2



1-12
We'll return to the binary number system later. Mean-
while let's look at another way to express binary numbers, in

hexadecimal form (hex for short) meaning 16 possible states.

A 4 bvit binary number has 16 possible states, 0000 to
1111, Expressing each of the first ten values as a single
character is quite familiar now.

0000 = O 0101 = 5
0001 = 1 0110 = 6
0010 = 2 0111 = 7
0011 = 3 1000 = 8
0100 = 4 1001 = 9

The problem now is that we need 6 more characters to
express the next values, 1010 to 1111. Arbitrarily the letters
A to F are assigned to express the missing values, that is:

A = 1010

B = 1011

C = 1100 The even values, A, C and E can be
D = 1101 remembered by the word "ACE"

E = 1110 Appendix A summarizes the binary
F = 1111

equivalents of the hex values, 0 to F.
Without looking in Appendix A, what is the decimal equivalent of

hex code E? ////

14

14 10

= 1110

[}

10 Ei6
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By breaking up longer binary numbers into groups of 4

bits each we can express them in their hex equivalents e.g.,
the 8 bit binary number

10011010 can be grouped as

1001 1010,

9 A or 9A as the hex equivalent.

Each of the 2 characters can then be a number (0 - 9) or a letter
(A - F). Express 11000011 in hex and mark bit #6 of this
binary number.

-bit #6
c3 1100 0011 —¥ 11000011
c 3 76543210 4—Dbit #

Hex codes are very popular with 8 bit microprocessors,
such as the 6800, with 2 hex characters equalling 8 bits or
1 byte. If for some reason only 7 bits are used in a binary
number, a leading zero may be added to fill out the 8 bits, e.g.,
1011101 =~919$%3937
5 D

Express each of the following binary numbers in hex:

11000101 1111000 111011
J1000101 01111000 00111011
C 5 7 8 3 B
With a base of 16 the hex number 78 equals:

78 16 used here for hex numbers.
\\~b-8 x 16% = 8

7 x 161 = 112

12010

The hex number 78 can be expressed as 7816 to avoid confusion
with the decimal number ?810, a different value.



Express each of the following hex numbers in binary
and in decimal:

D4
39
6A
D4 = 11010100 D4
LGy
D & k\:u x 169 = 4 212
1 10
D=13 13 x 16 = 20;}
39 = 00111001 39
3 9 \L»9x16°=9 s
3 x 161 = 48 10
6A = 01101010 6A o
6 A La=10 10x 16 = 10 106
1 10
6 x 16 = 96

1-16
Addition in hex can be challenging, although the problem
does not exist for computers since they work in binary. Hex is

for our convenience in expressing binary numbers.

One solution is to convert to binary, add the numbers
and convert the answer back to hex, possible but not the fastest
way. If we had 8 toes on each foot we could count on our toes
to add. Did you ever consider why our number system has a base
of ten?

The solution proposed is the use of the number line,
until you become more familiar with hex addition.
For examples 9 + 3 =C
start here 12 count to the right to get "C"
—N\r\/\/P o] 3 to e g g |
0123456789ABCDEFO0123456789ABCDETF

Going beyond F produces a carry
e.g.y, D+ 5 = 1216’ that is 2 plus a carry.
start 12345

0123456789ABCDE Etf 123456789ABCDETF

F to O. Contd...
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Contd.

Using this principle show that A + 9 = 1316‘

start 123456789 To verify:
89ABCDEF,0123% A = 1010

t\\ 9 = 1001

carry produced ) 821;

in going from 13 = 134¢
F to 0.

1-17
Now add C + 9 and verify your answer by adding the
decimal equivalents.

/

1546 start 12345678 9 4——5 plus carry = 15,
ABCDEF 01234867

C = 12 15, = 15
10 16

9=_9 \\5x 169 = 5
21, 1 x 16 = 16

N— - agrees — 2'110




Now add 7 + D and verify your answer by adding in
decimal.

b, ¢ start 1234k56789ABC0D

~ry
789 ABCDEF012345678
l ZL plus carry = 1416

To verify 1416

‘ 4 x 160
1 x 16}
20
0 agrees —~¥ 10

It would have been easier to add 7 to D rather than D to 7.
The answer still is 1416'

7 =17
D =13,

1]
o &

1
20

1-19

L]
Add the hex numbers C and D. Verify your answer.

123456789ABCD

c start ' S~~~
+D CDEF|0123456789ABC
1916

To verify 1916

\~4»9 b'e 160
N1 x 161

10
1649 = yo

2510 <4— agrees -—p- 2510

(=)
|
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To add 2 column hex numbers each column is added
separately, as in decimal. If the right column produces a
carry it is added to the left column
e, 2F
*+13
L2
‘\.__q» F + 3 = 2 plus carry
2+ 1+ carry = b

Add the hex numbers 3E + 27.

\ \~—4>-E + 7 = 5 plus carry
3+ 2+ carry = 6

Add the hex numbers 4D and 25.

724¢

SR &

16

\\.—VD + 5 = 2 plus carry
L + 2 + carry = 7
To verify we'll convert all data to decimal

4D16=4x161+13x16o=6l++13=?710 77

2516 = 2 X 161 + 5x 160 = 32 + 5 = 3740 + 37

72, =7x 16  + 2x16%°=112+2= 114, g0 o 114
16 10 10

agrees



Subtraction involves moving to the left on the number
line, e.g., D - 5 = 8 as seen below
54321 start

0123456789ABCD
For the moment we will avoid "borrow" operations.
Calculate B - 7.

0123456789A8B
1-23

If we are to handle subtraction we have to recognize
negative numbers since 9 - 3 is actually 9 + (-3). Consider the
number line for an 8 bit binary number. Expressed in hex it
extends from 00 to FF (0 to 25510)

& 4 4 3
¥ v - v

00 01 02 - = = - = = = = = = = = = - =~ FD FE FF

However, if 1 is added to FF the result, still using 2 hex
characters (8 bits), is FF
+01

1 00
carry ————A

or 00, the carry being lost as an overflow, outside the 8 bit
limit. The question now asked is "What number, when 1 is
added to it, becomes 0?" The answer is -1. By definition
therefore FF = -1. We now reconstruct our number line

-1 0 +1 +2

3 3 s
v v

-~--- FD FE FF 00 01 02 - ~-=====--

What is the value of FD based on this number line?

-3 Since FD + 3 = 00 (carry is outside the 8 bit 1limit)
This new number line is called a signed number line since it
permits both positive and negative values.
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Continuing with the signed number line if the leading
bit (MSB) of the 8 bit number = 1, that is 8 or more for the
first hex character, the number by definition is negative. The

extent of this signed number line is shown below in decimal,

hex and binary.
Y — ’/’A\\-‘\\\
\
/
— . —~
-127 - —_— T +127
10 - - T~ >~ 10
-128 l -3 T -2 1 +1 T +2 T 43 +12610 #
*___4___{1, } 4 + } ! 4 +—| -
io 81 FD FE FF 00 01 02 03 7E 7F
10000000, 01111111 2

2
The extent of this signed number line is then -128
to +12710 Based on this number line which of the follow1ng
hex values are negative,
7A 94 F2 00 B8E CA

/

All except 7A and 00 are negative, having a leading hex
character 8 or larger. If converted to binary all except 7A and
00 would have 1 as a leading bit.

If a larger range is needed for the signed number line
16 bits (2 bytes) could be used, again providing negative
values if the leading bit equals 1. This is sometimes referred
to as a double precision value.
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To determine the negative value for the hex number 31
is more difficult. A procedure shown below is based on the 2's
complement arithmetic used in binary subtraction.
The procedure then is:
- Start with the largest possible hex value

(ignoring the sign) ———» FF

- then subtract the number —> =31 F -1 iia/'
using the number line approach CE ABCDETF
w_/\
- then add 1 = + 1 F -3=¢C
CF now equals -3116 CF

To prove it the sum of CF and 31 should be zero in 2 character
hex format. Prove it.

/

x“~——-F + 1 =0 + carry
C+ 3 + carry = 0 + carry

carry, which is ignored as an overflow
CF = ~314¢

1-26

Determine the hex value for -5D and prove that it is
correct by adding +5D to it.

Fe DCBAOETEShI 2y — start

-5D 23456789ABCDEF
A2 ;4&~§-3~€~ﬁ;\~_ start

+ 1 In the top row a more direct subtraction
A3 = -5D is seen in that F and D are separated by

2, hence F -D = 2.
To check A3
5D

carry s i
1 00
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aEm———
Now calculate -6C and verify it.
-6C = 94 FF To_check:
-6C 321 )start 9l
93 9ABCDETF 6C
+ 1 54321 start 100
9l J‘
carry
128
The "two hex character" value of -3 is FD. If 4
characters are used'to express -3, prove that -3 = FFFD.
FFFD
+ 3 Similarly a 6 character representation would be
110000 FFFFFD.
é-carry.
To determine the value of -3 using 4 hex characters, the
procedure is FFFF FFFFFF
=3 =3
FFFC Using 6 hex characters FFFFFC
+ 1 -3 equals + 1
= FFFD FFFFFD

Almost all our work will employ 2 hex characters only.
For 6 hex characters (3 bytes) the signed number line would
extend from 80000016 (most negative) to ?FFFFF16 (most positive).



FF
-3D
cz
* 1
c3
72
135
Ao

To
72

3D
35

1-29

We now have the capability to subtract in hex since
72 -3D is actually 72 +(-3D). Once -3D has been calculated the
hex addition will produce the answer. Try it.

largest hex value

plus 1

= -3D

now add the 72

answer
verflow ignored

verify further we will
7 x 16> + 2 x 16°

]
]

3 x 161 + 13 x 16°
3x 161 + 5 x 16°

To check:

If 72 -3D = 35 then 35 + 3D = 72

35
*3D
72

convert all data to decimals

2 v 2= W)
114, -61,, = 5
48 + 13 = 61,, 10710 o 710

48 + 5 = 5310 agrees
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SR
Let's try one more subtraction. Calculate E3 -DC.

FF E3 is already a negative number FF
=DC ZE3
= - = - 1C

23 E3 1D16 2910
r1 + 1
24 = -DC iD
*E3 DC is already a negative number too FF
07 -Ic
DC = -2416 —
Therefore -DC = 24,, = 36 23

16 10

+1
24

To verifys E3 - DC = 07

OR -29 - (-36) = 7
This shows that subtraction is valid with positive negative or
mixed numbers. Errors will occur if the result goes beyond the
range of -12810 to 12710. the 1limit of an 8 bit signed number.
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.—
Now calculate 57 -2C and verify your answer in decimal.

/

FF To check 57,4 = 5 X 16 + 7 x16° =80+ 7 =87
=2t e =2x16Y+12x16% =32+ 12 = 44
P Total 4
+ 1 otal &3

Dl 0B =2 x 161 + 11 x 16° = 32 + 11 = 43
57
1 2B
1-32

As a variation, let's reverse the data in the last
question. Calculate 2C -57.

10

10

10
10

/

D5 or -2B FF
=57
A8
+ 1
A9
+2C
D5
But D5 is a negative number. To find its positive equivalent:
FF

Therefore D5 = -2B, the same answer but the opposite sign,
compared to the previous question, since the data was reversed.
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To complete this section let's review it all within
several questions. Given two decimal numbers, 47 and 73,
calculate the sum by converting to hex, adding, then converting
back to decimal. Verify by decimal addition.

/

1;; 2 L%; ,, o 2 l—7—Z ,, lootoor
= 00101111 = 01001001
12044 211 +1 TRy 280 Y
25 +1 2|9 +0
22+ 2 4+
2_1+0 2 _2+0
0 +1 2| _1+0
0 +1
2F
shg R 12aks56789
08 FO12345678
\—+8 x 16° = 8
L--? x 161 = 112
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Now perform the following decimal subtraction 83 -52
by converting to hex, subtracting, then converting to decimal.

Verify in decimal.

83 2 .83
=52 2|41 +1
3149 2 20 +1
2 10 +0
2 _5+0
2 2 +1
2 1+0
0 +1

1F = 1 x 161 + 15 x 169 =

1010011 z ng +0 110100
= 5316 2113 +0 = Mg N
2 6 +1 )
2|_3 +0 FF ﬂ/
2 1+ =34
0 +1 CB
+ 1
CC = -3k,
*53
1 1F
3110 At last! It agrees.
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Binary subtraction is not essential if you can subtract
in hex. However it is included to complete the arithmetic
operations in both formats. From a previous hex example,

D-5=28

D =13 = 1101 1101
5= 5= 0101 -0101
1000

As in hex subtraction start with the number to be subtracted,
0101 in this example. Complement it , that is each 0 becomes 1
and each 1 becomes 0. Then add 1. This will produce the neg-
ative value of the original number (-5 = 1011 below).
0101
becomes 1010
plus 1+ 1

= 1011 = -5
Now add the +1101 +13

overflow or carry is ignored.
This subtraction is limited to 4 bits as shown above.
Now calculate 1210 - 710 in binary.

1210 = 1100 -7 = 1000 1100 = 12
7.0 = 011t t1 pralool = 2
1001 10101 = 5

Perform the following 8 bit subtraction:

11010111 (215 decimal)
-10110100 (180 decimal)

Contd...
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Contd.
AR
10110100 = 18010
complemented = 01001011
plus 1 A |
01001100 = -18010
+11010111 +21510
<:,1 00100011 3510
overflow

If your data is in hex form already it is more direct
to subtract in hex. If the data is in decimal and conversion
has to be made to binary first, it is your choice whether you
subtract in binary or hex. If the answer is needed in hex, then
hex is preferred.
4
Here is the last question for this chapter. Calculate
in binary.
10110100
-11010111

/

11011101 which equals -3510.

This is the previous question with the order reversed.
eogc. 18010 “21510 = -3510

Details are: 11010111 (21510)
00101000 (complemented)
+ 1
00101001 (two's complement) = -215,,
+10110100 (+18010)
11011101 (which is a negative answer)
To calculate its positive value:
11011101
00100010

*r 1
00100011 = 35,

Therefore the answer 110111012 = -3510
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ACCUMULATOR OPERATIONS -

The 6800 microcomputer is capable of a simple task such as
the addition of two numbers or a complex task such as the control
of a piece of electronic equipment. In both cases the task is
defined by a series of instructions to the computer, usually
referred to as a progranm.

Many program formats exist, the most fundamental being
machine code in which a series of 8 bit words are entered in the
computer via switches on the front panel of the computer.

The next level up is the expression of each instruction as
2, 4 or 6 hex characters, permitting entry via a keypad which has
one key for each hex character. This still is a form of machine code.

For longer programs it is very tedious to generate hex
codes for each machine language instruction. The solution is
to write the program in assembly language, in which each
instruction is in an abbreviated English format. The computer
itself then converts this assembly language program to machine
code, using a ready-made program called an assembler.

Higher still in the hierarchy of program formats are
languages like BASIQ. oriented to mathematical calculations in which
algebraic-like statements, including trigonometric functions, are
interpreted into many bytes of machine code for execution by the
computer.

Our interest in this workbook is in assembly language and
machine code programs which link the computer to keyboards, printers,
displays, communication devices and external electronic instruments.

Within the 6800 microprocessor (computer without memory or
interfaces to external equipment) there are two "accumulators", A
and B. Within each accumulator 8 bits of data can be added, sub-
tracted or modified via many different arithmetical and logical
operations.
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Contd.
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One of the simplest assembly language instruction is
"CLR A", formed from "CLeaR accumulator A', meaning "put a zero in
each of the 8 bits of accumulator A." The machine code for CLR A,
expressed in hex, is 4F. (You don't have to remember the machine
code.)

Write what you think is the assembly language instruction

CLR B, which in machine code is 5F. This instruction

can be written CLRB, omitting the space. Similarly CLR A can be
written CLRA. Machine codes for all assembly language instructions
are provided in Appendix C, at the end of this workbook. Instruc-
tions involving accumulators are on the first page of Appendix C.

to clear accumulator B.

2-2
If a hex value such as 2C is to be loaded into acé:;:Eator
A the instruction is
LDA A #$2C (LDA A = LoaD Accumulator A),.
The # symbol denotes that data follows immediately within the
instruction. The $ symbol denotes that the data is in hex format.

After this instruction is executed, the contents of ACC A is

ojojijoj1i1j0io0
L\ 2 Jg_c___,_./

since the LDA A instruction overwrites any previous contents of
ACC A.

The instruction LDA A #$2C is formed of 2 parts:
LDA A (called the operator)which tells
what happens (loading of ACC A),
#b2C (called the operand) which provides
the data to be loaded.

Contd...



2-2
Contd.
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Such an instruction requires 2 bytes of machine code.
LDA A, when followed by the # symbol is known as an immediate
mode instruction; its machine code, 86, is found under the
"IMMED" column, opposite LDAA in Appendix C. The second byte
of the instruction contains the data to be loaded, 2C. Hence
86 2C = LDA A #$2C. Write the assembly language instruction
and machine code to load ACC B with the hex value 7D.

LDA B #7D C6 7D

Appendix G summarizes the use of special symbols such as # and $.

22,

Write the instruction to load ACC A with the hex value
4D. Also write the machine code.

LDA A #$4D 86 4D

86, the machine code for the "operator" part of
the instruction is also known as an operation code, commonly
called the "op code".

The operand value, 4D, is also the code for the letter M,
based on the ASCII (American Standard Code for Information
Interchange) code, listed in Appendix B at the back of this
workbook .

For practice use this table now to confirm that the
ASCII code for Z is 5A, under column 5 opposite row A.

A spare copy of the Instruction Set is provided at the
end of this workbook. It may be convenient to cut out this
sheet, for use with each problem, instead of continually looking
in the appendices.
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Write the assembly language instruction and machine code
to load ACC A with the ASCII code for the number 8. See Appendix B.

LDA A #$38 86 38

from Appendix B - ASCII codes.
The ASCII codes for the numbers 0 to 9 are easy to remember,
being 30 + N where N = 0 to 9.

222
Another form of the immediate instruction to load an
ASCII code is seen in
LDA A #'2 (note the apostrophe)

in which the apostrophe denotes that the ASCII code for the letter
Z is to be loaded. Hence the computer on assembling (converting to
machine code) the above instruction automatically provides the
desired ASCII code for the second byte of the machine code instruc-
tion. The resultant machine code is still 86 5A since this is still
an immediate mode instruction. Such an instruction in which the
computer provides the appropriate code for the desired character is
often referred to as a "literal" instruction.

Write the literal instruction and the resultant machine code
to load ACC B with the ASCII code for the number 7.

LDA B #'7 cé 37
opposite LDAB under IMMED in Appendix C
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Now write two instructions, the first to load ACC A with
the hex value OF, the second to load ACC B with the ASCII code
for the letter F (using a literal). For each instruction provide
the machine code on the left side of the assembly language

instructions.

LA A #$68F
LDAR B #F

The first instruction loads a hex value, OF, into ACC A.
The second loads an ASCII code for the letter F into ACC B. If
the difference is not clear, please reread the question and answer.

0
Ty Ty
T

LG

If the above two instructions were executed in the order
listed ACC A would take on a value, OF, and ACC B a value of 46.
This example although trivial shows the beginning of a program,
a series of instructions executed by the computer which modifies

the contents of an accumulator or a memory location (discussed
later).

7
Write the assembly language instructions to load ACC A
with the ASCII code for A and load ACC B with the hex value OA.

For each provide the machine code.

/

Again note the distinction between a hex value and an ASCII code.

41 #°A OF LDA A #Ed4l
» BA LA B #$¥0A

[y 2 1]
T

The above machine code and instructions are part of an
assembler listing, the printout produced by the assembler when

converting assembly language instructions to machine code.
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The addition of 2 hex values, 3F and 27, in ACC A can be
performed by
4F CLR A _ .
SE IF  ADD A #$3F/_(Adds 3F + 0 = 3F in ACC A)
sB 27 AR A #$27— (3F + 27 = 665, in ACC A)
N N—————
machine assembly

code language
instructions

Rewrite the above, using 2 rather than 3 instructions, again
providing the machine code.

/

86 Z=F LA A #$%F This method is preferable to the one
8B 27 RDD A #$27 . . .
above since it is shorter.

2-9

The memory of a computer, where data is stored, cé;-;;
envisaged as a series of mail boxes, each with a 4 character hex
address, e.g. 14D5, and the capability to store one byte of data.
The instruction

LDA A $12B7 (no # this time)

loads ACC A with the 8 bit contents of address 12B7, without
destroying the contents of 12B7. Such an instruction is known as
an EXTENDED mode instruction, requiring one byte for the operator
(LDA A) and 2 bytes for the operand ($12B7). Hence LDA A $12B7
becomes B6 12B7. The B6 is found under the EXTND heading, opposite
the LDAA instruction in Appendix C. The total number of bytes
required (3) is found two columns to the right of B6, under
the # column.

Contd...
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Write the assembly language instructions and machine code
to load accumulator B with the contents of address O&E4.

/

m—/

F& a&cE4 LDA B  $86E4

If address 06E4 contains 3F then ACC B will contain 3F after
execution of this instruction. In the above instruction

LDA B is the operator while O6E4 is the operand, denoting
the data source.

2-10
Write the assembly language instructions to add the
contents of memory addresses 1C00, 1C0l and 1C02, the answer

residing in ACC B. Provide the machine code.

/

F& 1Coa LDA B #1Co6
FB 1CH1 ARDD B #1091
FB 1Co2 ADD B #1082

2-11

The accumulators are used for many purposes within a
program. Data, after being processed in an accumulator, usually
is stored in a memory location, e.g.,

STA A $064C

which stores the contents of ACC A in address 064C but does not
destroy the contents of ACC A. This instruction, referencing a
4 character hex address, also is "extended” mode. Write the

machine code for the above instruction.

/

BY Q&4
: A<}
L address
STA A (extended mode)
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Write the assembly language instructions and machine code
to add the hex contents of addresses 14D0 and 14D1, then store

the sum in address 14D2, without using ACC A.

If 14D0 contains 3E (14D0/3E) and 14D1 contains B5 (14D1/B5),
what will the hex value in address 14D2 be when this program is

executed?
FE 1408 LDA B $14D@d (ACC B/3E)
FE 1401 ADD B #$14D1 3E + B5 = F3
Fe 1402 STA B #1402 14D2/F3 (ACC B still contains F3)
3E
start 1 2 3 4 5 135
B C DE F|O 1 2 3 3

start——"\“/zhza"§°‘h

2-13
To place a particular value in a particular memory address
it is first necessary to set it into ACC A or B. With this in mind
write the assembly language instructions and machine code to put

the hex value 3B in address 12E3.

Such a procedure is known as initialization, providing a particular
memory address with an initial value, for use during a program.

o6 2B LOAR A #$32B L ___ s .
Eo 19E% STA A $10EZ assuming use of ACC A
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L]
Write the assembly language instructions and machine code

to initialize address 0439 with the ASCII code for the letter G,
with the computer providing the ASCII code.

86 47 LA A #7G

B7 84329 STA H #8429

Again it is not necessary to memorize the machine code for the
instructions. However, the 86 and B7? values will soon become
quite familiar.

2-15
The instruction SUB A $1524 subtracts from accumulator A
the contents of address 1524. Write the assembly language
instructions and machine code to
(a) ADD the contents of addresses 13C4 and 13C8
(b) then SUBTRACT from this the contents of address 13CA

(¢) then STORE the result in address 13CC.

BS 13C4  LDA A $13C4
BE 13C8 - e~ .
BB 13CR 232 2 iizéﬂ ) —assuming use of ACC A

B 13CC  STR A $43CC
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L ]
An instruction which will produce the negative value of

the contents of ACC A is
NEG A (NEGate accumulator A).
If ACC A contained O4 before execution of NEG A it would contain
FC (-04) after execution. The machine code or operation
code (op code) is 40 as seen in Appendix C opposite the
2's complement (Negate) instruction.

Like the CLR A instruction NEG is under the
INHERent column, being complete within itself; that is it
does not require another byte for the operand.
Write the assembly language instructions and machine code

to store the value -3C in address 095A.

86 2o LDA A #3Z2C
4 MEG A
BY @35H STAR A #895A

Address 095A now contains C4 (-3C)

217
Memory addresses referenced in an instruction normally

require 2 bytes (4 hex characters) to describe them, e.g.,
LDA A $12A6, requiring an EXTENDed mode instruction. Memory
addresses below 10016 require only 1 byte to describe them, as
is seen in a DIRECT mode instruction, e.g.,

LDA A $4A
which loads ACC A from address OO4A. The machine codes for
DIRECT mode instructions are in Appendix C. For the above
instruction the machine code is

35, 1,

address 004A
L—— LDA A (DIRECI mode)

Contd...
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Write the instruction to store ACC B in address 66 using a
DIRECT mode instruction. Write its machine code.

/

Ty

L7 =

) STA B a8

Aside from requiring fewer memory locations to store the
instruction a DIRECT mode instruction requires fewer machine
cycles to execute as seen in Appendix C. Large programs often
use addresses below 100 as a "scratch pad" storage area, e.g.,
for storage of counter values, or temporary storage of a byte
of data. Use of this area of memory saves memory bytes and
reduces execution time.

218

The instruction TAB transfers the contents of ACC A to

ACC B. Similarly TBA provides the reverse transfer. Using as
few instructions as possible, swap the contents of the two

accumulators. Memory addresses below 10016 are available (use

DIRECT mode only). Write the assembly language instructions
and machine code.

/

$5@ (or your choice of address)

oW
@ =d =
i

[ax)

= i
-

I I
I

n
ot

LOA B #%3 (or your choice of address)

A@.},SO\@
e B

@

Counter-clockwise execution of the above flow diagram would
utilize TAB (op code 16).
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Accumulator A can be incremented (1 is added to it) via

the instruction
INC A (INCrement accumulator A)

for which the op code is A4C.
Similarly DEC A (DECrement accumulator A) will decrease

its contents by 1. Its op code is 4A. Accumulator B also can

be incremented or decremented.

Calculate the contents of each accumulator after the
following instructions are executed:

CIR A
CIR B
INC B
ADD A  #$2C
ADD A #p16
TAB
NEG A
INC A
i RCC A RCC B
ACC A/BF SR E o @
ACC B/lez TG B 5 i
AL B #F20 e i
ADD A #Ele G2 i
FF TRE 4z by
42 ihe o
BD
+1
BE

Therefore -42 = BE
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Sometimes it is necessary to clear (force to 0) or set
(force to 1) specific bits of an accumulator, without disturbing
the other bits of the accumulator. This is accomplished via the
AND and ORA operating on the accumulator. The AND instruction
clears specific bits while the ORA instruction sets specific

bits. The instruction

AND A #5A (machine code 84 54)
performs the "logical AND" operation (not addition) bit by bit
with ACC A and the data 5A being inputs and ACC A holding the
result.

In the "logical AND" operation each bit of the result
will be 1, if and only if both the corresponding inputs are 1.
Looking first at bit #7, below, one of the two inputs has a zero.
Therefore bit #7 of the result is zero. Complete the bottom line
showing the contents of ACC A after the AND A #$5A instruction is

executed -//‘\
bit #7 1 1 110 1 110 0| — ACC A (before)
1 0} 1 1 0 1 O] — 5A

0 — ACC A (after)
1 1 0 1 0

0 1 0 1 0 1 0

0 0 1 0 0 0

A L A X A result is O since

at least one of the
inputs is 0.
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If address 14A2 contains 7C, what will ACC A contain
after execution of

LDA A $14A2
AND A #$BF
3C
7 6 5 4 3 2 1 0 -e—bit #
7C = o f 1114t 1f11}10 1L {Contents of 14A2
0 0 111 1 1 0 0 = 3C

Bit #6 is guaranteed to be zero regardless of the contents
of address 14A2 since the "mask word", BF contains a zero in bit #6.
The result can be shown as

Xo0XXXXXX

where X denotes the original data in ACC A before the AND
operation. If the purpose of this operation was to clear bit #6
of the data in address 14A2, the modified data would then be stored
back in address 14A2 by another instruction, STA A $14A2.

2-22
Write the assembly language instructions and machine code
to clear bit #3 of the contents of address 1256.

/

Contd. L2 ]
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Contd.
BE 1256  LDA A $1256 7 6 5 K 3 2 1 0bitf
84 F7 AND A #3F7 XTX|]X|X[X[XT[X]X] Contents
BT 1258 STA A $1256 I T 1 1 5 1 T T of 1256
X T X X X0 X[ XX
( {‘ACC A (after) and contents
of 1256 (after).
X represents undisturbed data
Bit =0 since X* 0=0 X could be 0 or 1
symbol for J If X = 0, then 0.0 = 0

logical AND If X = 1, then 1.0 = 0

Therefore X.0 = 0
All other bits are unchanged since
X.1 =X If X =1, then 1.1
If X = 0, then 0.1
Therefore X.1 = X
| S
same as before

won
O =

2-23
Similarly all bits, except a specific bit, of a
particular address can be cleared by the appropriate "mask word".
Write the assembly language instructions and machine code to clear
all bits, except bit #6, of address 065E.

/

BE BESE LOR A $8ESE .
84 4@ AND A #$40 o Dbit #6
E7 BESE STA A $9ESE (40 = 01000000)

Since only bit #6 of the mask word = 1, then only bit #6
of the original contents of 065E will be retained. All other bits
of the result will be zero. This technique will be used extensively
later in this workbook.

The above AND instruction could be rewritten in terms of the
binary value of the mask word €.,

AND A #%01000000

The % symbol indicates that a binary value will follow. This form
is often useful to both the programmer and the user in quickly
determining which bits are cleared.
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An ASCII code, produced by an external device, such as
a keyboard requires only 7 bits to describe it. The 8th bit
(bit #7) may be 1 or 0 depending on the particular data source.
Assume that an ASCII code is now in ACC A. Write the assembly
language and machine code instruction to clear bit #7 of the
ASCII data. Use the binary version of the mask word in your

answer.

a4 ?F AMD A #Hod111141

Note that the machine code instruction is still expressed in hex
even though the assembly language instruction uses a binary mask
word.

In summary a 0 is used in the mask word of an AND
operation for each bit that is to be cleared. All other bits of
the mask word are 1.

2~2
We have seen how to clear specific bits. Let's look at
a method to set specific bits. For this purpose the "logical
OR" operation is used (sometimes called INCLUSIVE OR). Given 2
bits as inputs the logical OR output will be 1 if either the
first input OR the second input QR both inputs are 1. Stated in

logical form rrZ ?,C + D
one

output logical other
input OR input
symbol

(not addition)

The instruction ORA A #$08 will perform the logical OR operation
with ACC A contents and the mask word, 08, as inputs. The result
will reside in ACC A. If 144A contains $CA, what will be the
result after execution of

B6 144A  IDA A $144A

84 5C ORA A #$5C

Contd...
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Contd.
ACC A/DE 7 6 5 4 3 2 1 O0=wbit#
CA=]1 1170 0 1 0 170
5C 0 1 0 1 1 1 0 0
1 110 1 1 1 1 0| = DE

The mask word 5C (01011100) with a 1 in bits #2, 3, 4 and 6
ensures that these bits are set, regardless of the original
data in address 144A. All other bits remain the same.

2-26

Write the assembly language instruction and machine
code to set bits #2 and #7 of the data in address 06A4, without

changing the other bits of this data.
the mask word.

Use binary format for

/

Be BER4 LOA A $685A4
=] SR=E OFA A #X18008160
BY BEA4 STH AR $96A4

In summary a 1 is used in the mask word of an ORA operation for
each bit that is to be set. All other bits in the mask word are 0.
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Now set bit #3 and clear bit #5 of address 16D6. Use
binary format for the mask words.

/

BE 16DE LOA A $16D6

SR A ORA A #xpoepiees set bit #3
a4 OF AHD A #211611144 clear bit #5
BT 16DE STA A $16DE

X { X]o|X|1}|X |X [X

X = unchanged bit

2-28
Once more now! Set bits #7, 6 and 2 of address 1A42
and clear bits #1 and 4. Assume that each bit controls the
lights for one room in an 8 room house. Provide both assembly

language and machine code instructions.

/

EBS 1A42 LOA A $1Ag42
2R C4 ORA A #xiieecien  (Set 7, 6 and 2)
&4 ED AMD A 211161181  (Clear 4 and 1)
E7 1A42 STH A $£1A42

Although this is the end of the "Accumulator Operations”
chapter several other accumulator operations will be introduced
at a more appropriate place, later in this workbook. You are
probably ready for a change from "bit bashing". Time for a coffee!
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SYMBOLIC ADDRESSING

So far we have used absolute addresses e.g., 1A42 for
storage of data. When writing in assembly language this is not
desirable for several reasons:

- until the program is assembled the addresses available

for data storage may not be known.

- if many addresses are used for different purposes it
becomes difficult to remember the purpose of each
address while preparing the program.

- if a program is later modified certain addresses now
used for data storage may not be available, requiring
re-assignment of storage addresses.

The solution is the use of a "symbolic address" rather

than an absolute address e.g.,
STA A COUNTR

which stores ACC A contents in an address carrying the symbolic
address COUNTR. The absolute address will be determined when the
instructions are assembled into machine code and printed on the
resultant listing. Meanwhile the programmer can continue to use
the symbolic address as if it were an absolute address.

To present an everyday analogy one might suggest meeting
for lunch at "Dan's Place" (a symbolic address), whereas Dan's
Place might be at 1463 Main Street (the absolute address).

Write the assembly language instructions to initialize
the symbolic address COUNTR with the hex value 3C.

/

LDA A #$30C
STA A COUNTR
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Symbolic addresses generated by the programmer caﬂ-;:'
up to 6 characters long, the first character being a letter and
all subsequent characters being a letter or a number. It is
good practice to choose a symbolic address which describes the
function, COUNTR perhaps being a counter to keep track of the
number of events that take place when the program is executed.
The only illegal symbolic addresses are A, B and X, the first two
being previously assigned to accumulators. Single letters for

symbolic addresses are almost meaningless and should be avoided.

Write the assembly language instructions to set bit #5
of STATUS, without changing any other bits.

LA A STATUS
OFRA A #X081660866
STH A STATUS

Only after the above instructions are assembled into machine code
will we know the absolute address for STATUS.
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When the computer assembles an assembly language
program, it needs to know at what address to start, in assigning
each byte of machine code to a memory address. The ORG (origin)
directive to the assembler, in the example below, designates the
starting address, e.g.,

ARG ¥AZ08
LDA A #$2C
STH AR COUNTRE

This will cause the following address assignments for the
resultant machine code, assuming that COUNTR corresponds to
address 0243

0200/86

- LDA A #3C
0201/3C
0202/B7
0203/02 »- STA A COUNTR
0204/43

To minimize the amount of paper, produced by the assembler, the
address printed is for the first byte of each instruction, e.g.,

0}

LDA A #$30
4% STH A COUMTR

=3

P

(V)

-3
= I

]
B

Do

Write the assembly language instructions and machine code
to clear bit #U4 of STATUS, which corresponds to address 124E.
Start the instructions at address 1200. Show the addresses.

/

ORG Flzea

1200 B 4124E LA AR STATUS
128X 84 EF AND A #XH11164144
1263 B7Y 124E 5TR A STATUS

A very common error is omission of the $ symbol, which
causes the assembler to interpret 1200 as a decimal number
in the above example.
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To reserve a memory byte for a specific symbolic

address, the assembler MUST be directed to do so. In this

program
azae ORrRG $AazEAd
azea ge =C LR A #$F=C
gzaz2 BY azdx STH A COUMTR
|
1
'
B2d4Z Bsel CRUNTR RHME 1

The last line, COUNTR RMB 1 (Reserve Memory Byte - 1 only)
causes one byte (address 0243) to be reserved and recognized as
the symbolic address COUNTR.

This symbolic address, COUNTR, contains data and must not
be embedded in the middle of a group of instructions where its
contents would be interpreted as an instruction, rather than data.
Such an error is seen in this example:

B5z8a ORG FAZEE
Bz 2e 4F LOA A $#$4F
bzaz BY 8263 STA A COUNTRE
B2as COUNTR RME 1

Here COUNTR (address 0205) contains 4F after the first two
instructions are executed. The next instruction would then be
from the next address, 0205, whose contents is now 4F, a CLR A
instruction. It is the execution of the program which determines
whether the contents of a memory address is treated as an
instruction or data.

To avoid the above problems the symbolic address
COUNTR is located outside the group of instructions forming this
part of the program, as in the first example.

No answer is required in this frame
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Write the instructions to initialize DATA5 with the

value Ak. Start this program at address 0400 and show a complete

listing, noting that DATAS corresponds to address 0462.

/

e e C ORG FE4BEH
a4BE 26 Ad LDA A #$FA4
AadBz BY Aa4&2 STA A DATAS

Bdez @aal DATAS RME 1

—_—— o —_—
Label Operator Operand Comment
Field Field Field TField

The 4 fields of an assembly language program are seen above.
The operator and operand have been discussed previously. In
the bottom line we see DATA5, a "label"”, that is a "symbolic
address in the label field". In preparing assembly language
programs, labels start in the first column of the line, while
operators (LDA etc.) start in the 8th column. It is only
necessary to space over 1 column rather than 7 to start the
operator (LDA etc.) since the assembler, on noting the absence
of a label, will automatically print the operator in the 8th
column. Similarly short labels (less than 6 characters) need
only to be terminated by one space; the assembler again will
start the operator in the 8th column. A sample source program
before assembly is shown below.

indented one gg? gFgFRU
space to start ORG $1000
ll:l the Operator LDA A STATUS
Field. ANG A #114@1444
=TH ) =
for Label Field FTH A OSTRTY ,
start first column ! ﬁt 1s legal to
o - ave more than
o $1T -
L*.S$;;U§l;g§ - one ORG directive
END within a program.

T

1Stcolumn
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The comment field, mentioned on the previous page,
permits entry of comments to improve the readability of a

program, €.g.,

LR AR #E28 INITIALIZE MUYALU
STA A MUVYALL WITH 2a (DECIMAL 227
-, s’

Comment Field

Such comments are ignored by the assembler but printed on the
resultant listing. One space is all that is needed to separate
such a comment from the operand field.

A good program should begin with a brief description of
its purpose and perhaps some of its internal details. Whole
lines of comments are legal if the * symbol appears in column 1
of each comment line. These too are ignored by the assembler
but printed on the listing. Both examples are seen below.

PROGRAM TO OUTPUT TEM CHARACTERS
T2 THE LIMNE PRINTER.
VERSION ZB  77FAs14712 RHE

LA A #$8A IMITIALIZE COUNTER
STA A COUNTR WITH B8R <16 DECIMAL >

One assumption to make when programming is that someone
else without your help will have to modify your program several
years from now. For this, documentation in the form of good
comments is essential. To put it more bluntly, if it is not
worth documenting it is not worth doing. There will be lots
of opportunity to practice this in the next chapter. No answer
is required in this frame.
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Three other directives are needed to form a complete
program. These plus the ORG directive are illustrated below.

MNAM HEXCHK
OFT o, s
ORG Fa486

Program
Instructions

i

)
EMD

The entry following NAM, up to 6 characters long, i3 a program
name, generated by the programmer. It will be reproduced at the
top of each page of the assembler's listing, aiding in program
recognition.

The OPT (option) directive has many possible entries.
The 0, above, requests an object (machine code) file to be
produced. Depending on the computer system this file may be
stored on paper tape, cassette, diskette or some other medium.
The S entry requests a symbol table, a list of all symbolic
addresses along with the corresponding absolute addresses, at
the end of the listing.

The last directive is END which terminates the assembly
language program. Without looking up, try to list the 4
necessary directives for a program.

/

NAM OPT ORG and END.
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To practice use of these directives write a program
called CLRALL, starting at address 0400, to clear both

accumulators. Yes, it is a ridiculous program.

/

MAM CLREALL
oFPT 0. S
B4 EE ORG FHASEHO

*

#CLERLL. . . CLEARS BOTH ACCUMULATORS,
*

B488 4F CLE A A TREIYIAL PROGRAM
a481 SF CLE B
EMD

To save space in this workbook the directives will not normally
be shown in the listing, but will be assumed.

Note that END only tells the assembler that this is the end

of the program. It does not halt the program, when it is
later executed.

3-9
MAM FROGES In this listing
. oFT 0.5 the assembler has noted
(% 5[ QRG FHEA1 A
> N ERROR 209 for the
# PE-3 instruction LDA #3U4A.
E
BlEmn 4F CLE A Can you find the error?
ai8i SF CLE B
ERROR 285
A48 A gaeye LDA #EdA
21E5S BY G427 STAH A £0427

EMD

/

The instruction should be LDA A #$4A or LDA B #$HA.
Assembler Error Codes, such as ERROR 209, are explained in
Appendices J1 and J2.
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Anmunu
INDEX REGISTER

Each accumulator is capable of holding 1 byte, represented
by 2 hex characters. If 2 bytes are to be referenced we use the
Index Register which holds 16 bits (2 bytes or 4 hex characters).
The instruction

LDX #$1F2D (an IMMEDiate mode instruction)
loads the Index Register with the hex value 1F2D.
The instruction sequence

“dzea CE AFzD LD #$1F 2D

BzaE FF B1aC 5Tw $o1eC

initializes 2 bytes of memory with 1F and 2D via the Index
Register. Address 016C receives 1F while address 016D
receives 2D, as shown below.

[ o] T ]

016B 016C 016D ~¢—memory address
Machine codes for Index Register instructions are on the second
page of Appendix C.

Write the instruction sequence to initialize 2 bytes of
memory, 14C4 and 14C5, with the hex value 0640. Include the
corresponding machine code.

/

8180 CE as4e Lo, #FOE40
B183 FF 4404 STH 1404
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Initialize 2 bytes of memory, 1C80 and 1C81, with the
hex value 2C40. 1Include the machine code.

- CE 2C48 LD #$zC4A
FF 1C28 STA F103@
The result is: 1C80/2C (1C80 contains 2C)
1¢81/40 (1C81 contains 40)

4-3
A symbolic rather than an absolute address may be used
to store the value, e.g.,

CE 15D& LD~ #1508
FF aleg = 4 LISTOF
i
|

¢
BEE LISTOF RME &

(a) Why does the above example use RMB 2 rather than RMB 17
(b) Initialize a symbolic address POINTR with the hex value
1C60. Omit machine code this time.

/

(a) 2 bytes are necessary to store the 2 byte value 15D6.
b 13 3
() LD #+10c@ (an IMMED 1nstruct}on)
ST FOINTE (an EXIND instruction)
|
|
POINTR RME

Ry

1C goes into POINTR
60 goes into the next address above POINTR.
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The instruction STX POINTR+1 stores the contents of
the Index Register in the next address above POINTR. Write an

instruction to store the Index Register contents in memory,
addresses below CONREG.

3

/

FF 14Rz ST CONREG-Z

If CONREG correponds to address 14A5, the Index Register contents
are stored in address 14A5 - 3 = 14A2, as is seen in the machine

code of this listing.

This could be accomplished, one byte at a time, via

accumulator operations; however the above approach is preferred

because of its simplicity.

Another use of the index register is seen in
L HMESZRG
STH POINTR

which stores the address, not the contents of MESSAG in the
2 byte address, headed by POINTR. If MESSAG corresponds to

address 1B34, what will be the contents of POINTR after
execution ofs

LD HMESSAG-1

STA FOIMTE
Write the machine code for these two instructions assuming
POINTR corresponds to address 1B6A.

/

1B33 Since MESSAG corresponds to address 1B34, then
MESSAG-1 corresponds to address 1B33.

8200 CE 1B33 LDX  #MESSAg—4 —*+— IMMED MODE (USES #)

Bz28Z FF 1B&R 5TH POINTR
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If TOPBLK corresponds to address 1A00 and contains 03
while TOPBLK+1 contains 80, what is the 2 byte contents of

MEMPNT (and MEMPNT+1) for each example below?

LD #TOFBLK~1 LDvs TOPELE
ST MEMPHT STH MEMFPHT
s :
MEMPNT RME 2 MEMFHT RME 2
19FF 0380
1A00 -1 = 19FF, one The 2 byte contents of
address below 1A00, TOPBLK and TOPBLK+1 is
now stored in MEMPNT 0380, now stored in
and MEMPNT+1. MEMPNT and MEMPNT+1.

_Lp:l
The instruction

CLR 3,X
is interpreted as "Calculate a new address which is the sum of
the Index Register contents and the offset, 3 in this example,
then clear that memory address." The above instruction could
be written as

CIR $3,X
although the $ is redundant for values of 7 or less.

If the Index Register contains 13E4, what address has
its contents cleared by CLR 3,X?

/

13E7 X / 13E4

r 3
13E7 = address operated upon by CLR 3,X

This mode of instruction is known as Index Mode. The
instruction CLR X is also an Index Mode instruction, being
a legal contraction of CLR 0,X. If X contains 2400, the
instruction CLR X will clear the contents of address 2400.
Similarly LDA A X is a contraction of LDA A 0,X loading
ACC A with the contents of the address now in X.
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Write the assembly language instruction to store the
contents of ACC A in address 24C0 when the Index Register
contains 24A0.

/

24C0
-24A0
20
Offsets are positive only, 00 to FF, the offset FF producing a

new address 25510 above the address contained in X. Symbolic
offsets, e.g.,

LDA A OFFSET,X
are valid, the value of OFFSET being determined at assembly time.
If OFFSET equals $14 via the assembler directiye

OFFSET EQU $1k
the result would be the same as execution of LDA A $14,X.
Assembler directives are normally located at the top of a
program, to improve readability

L-9
Machine code for Index mode instructions are found
under the INDEX column in Appendix C. Note that
LDA A 3,X (op code A6)

requires 2 bytes as seen by the 2 under the # column, 2 columns
to the right of A6. What does the second byte denote? Take
a guess. Attempt to encode the above instruction in machine
code.

/

The second byte contains the offset value, 03 in this case,
S-S &9_2_1
LDA A offset
(Index Mode)
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The 2 byte contents of the Index Register can be -
incremented (1 is added to it) via the instruction
INX - INcrement indeX register (08)
Similarly, DEX - DEcrement indeX register (09)

will decrement it.

Write the assembly language instructions to increment
the contents of MEMPNT which now contains the hex value 19FF.
What will its new contents (2 bytes) be after the above
incrementing?

/

LD MEMFNT
IMX
STR MEMPNT
|
!
MEMPNT RME 2 (If not already present in

the rest of the program.)

P

This 3 line sequence wili be used many times in this workbook to

increment a 2 byte value in memory. Note that the Index Register

(X) still contains the incremented value, 1A00 in the above
example, after STX MEMPNT is executed.

Another application of Index Mode is seen in code
conversion, such as ASCII to Baudot, where each ASCII value

is separated in memory from its Baudot value by 8016 addresses.
Once the address of the ASCII value is known, the corresponding
Baudot value is obtained by the instruction LDA A $80,X
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To store a message such as "START CARD READER" in -
memory, it is not necessary to load and store each ASCII
character of the message. The sequence below will store each
required ASCII code and terminate the message with a null (00).

MESSAG FOC ASTART CARD REARDERS
FCE 5]

FCC (Form Constant Character) is a directive to the assembler,
ordering the storing of the appropriate ASCII codes. Two
identical characters are required to define the boundaries of
the message. The slash (/) is popular for this since it is
not usually used within a message.

FCB (Form Constant Byte) directs the storage of a hex value,
00 in this example, to denote the end of the message. Note
the difference between null (00) and the ASCII code for
zero (30).

Such message entries generate a lot of unnecessary
printing at assembly time as each ASCII character of the
message is listed. The OPT directive NOG (NO Generate)
eliminates the ASCII code listings but includes the printed
message, €.g., OPT 0,S,NoG (at the top of the program).

Noting the above message, intialize POINTR with the
address one below the start of the message.

LD #MESSAG~1
STH FOINTR
'

!
POINTR RME

8]
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Store the message "ENTER DATA"” in memory headed by the
label MESSO4, and terminated by a null. Initialize MESPNT with
the address one below the start of this message.

LD®
STH

MESFMT EME
MESSEd FCC
FCR

/

#MESSES -1
MESPNT

2

JENTER DRTHS

-
Lol

One other assembler directive, available but not required above
is FDB (Form Double Byte) e.g.,

FDB $1433,$7

which in this case stores 14 and 33 in 2 bytes, then 00 and 07
in the next 2 bytes. This directive stores an open ended
string of 4 character data, each separated by a comnma.

ket

What will be the contents of ACC A after execution of
the instructions shown below?

LD
STH
L
IMH
ST
LDA
i
{
FOINTR RME
MESSB4 FOC
FCE

#MESSA4~1 INITIALIZE FOIMTER WITH
FOINTRE ADDRESS MESSE4-1
FOIMTE

FOINTR
* GET CHAR %IA =

(4]

™

JENTER DATR/

5

/

Contd...
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Contd.
L5, the ASCII code for E in the message ENTER DATA.
POINTR initially contains the address MESSO4-1. After
the second STX POINTR is executed, both POINTR and X contain
the address corresponding to MESSO4. Hence E (ASCII code 45)
is the first data retrieved via LDA A X.

The above sequence, with additions, will be used many
times in this workbook. The advantage of starting with
MESSO4-1 rather than MESSO4 is that X points to the start of

the message when LDA A X is executed the first time.

4-14

If address 12A6 contains C4 (1246 / C4) the instruction
LDA A $1246
loads ACC A with C4, the contents of address 12A6.

If address 14A5 and the next address contain 1246

{14A5 / 12 and 14A6 / A6) then

L.Evs F1ARS ASLZRE

LR A =% Ao
also places C4 in ACC A, this time via an "indirect" manner,
with X containing the address of the data, 12A6, after execution
of LDX $14A5. Hence this is commonly known as an "indirect" or
"deferred” memory reference.

This process can be extended further. Given the
following initial conditions:

1C50 / 14As

14A5 / 1246

1246 / C4
the instructions

LDX $1Cs50

IDX X

LDA A X

will also place C4 in ACC A via a "double deferred" memory
reference. Before execution of LDX X, X contains 14A5. This
instruction, IDX X, loads X with the contents of the address
now in X, that is with 12A6 the contents of 14A5. The last
instruction then loads C4, the contents of 12A6, into ACC A.
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The main point of this chapter probably needs review again.
If X / 13C4 where is the data stored when STA A X is executed?

in address 13C4. The best way to interpret this instruction is
"store the data in Accumulator A via X", that is X points to the
destination .

h-16

/

If X / 02AE and 02AE / B5 what will ACC B contain after the
instruction ILDA B X 1is executed?

B5 Accumulator B is loaded via X, that is from the address
now in X. This time X points to the source of the data.

4-17
If X / 267E what is compared when the instruction CMP A X
is executed? “j////

The contents of Accumulator A is compared with the contents
of address 267E.
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BRANCHING - ASSEMBLY LANGUAGE

Computer programs in which instructions are executed in
a simple linear manner are almost non-existent. In fact many
decisions are made by computers, in executing a typical program,
to determine what to do next. A program with decisions in it is
described as follows.

The computer may be required to determine if the ASCII
code, now in ACC A corresponds to a valid hex character,
€.g., 30 to 39 for 0 to 9 or 41 to 46 for A to F. Invalid
characters are to be rejected. Valid ASCII codes are to be
converted to their corresponding hex value, e.g., 39 becomes 9
or 46 becomes OF.

In eliminating invalid ASCII codes the computer must
first eliminate all values below 30. The instructions

CMP A #$2F (CoMPare acc A to 2F)

BLS BADHEX (Branch if Lower or Same to BADHEX)
will do this. If the value in ACC A is lower than 2F or the
same as 2F, the program will branch to BADHEX; that is the
next instruction executed will be the one carrying the label
BADHEX .

If the value in ACC A is 30, the ASCII code for 0,
what will happen after execution of the above 2 instructions?
Take a guess if necessary.

/

No branching will take place. The next instruction executed
will be the one following BLS BADHEX.
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If the first test was passed (no branch since the KEE}I
value was 30 or greater), the next test is to check for values
greater than 39, the ASCII code for 9. If the value is 39 or
lower, the program should branch to NUMOK, otherwise it should
continue. Write the instructions to do this noting the avail-
ability of the instructions:
BLS - Branch if Lower than or Same
BHI - Branch if HIgher than

BRA - BRAnch unconditionally.

/

CHMFP B #3239
BLS LI @ To 3. WALID HEX

The conditional branch instructions BLS and BHI treat
the ACC A contents as an unsigned number, that is all values,
00 to FF are considered positive.

By having available both BLS and BHI (opposite instructions)
the programmer can either choose to branch or not to branch when a
specific condition is met.

So far the program is:
HESCHE CHP R #$2F
ELS BRDHE* MUST BE BELOW =&
CHMF A #3$329
EBLS HLMOE MUST BE Z@-z2
‘
'

MU,

{
)
ERDHE
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For ASCII codes 30 - 39 we want the hex values 0 --Er}n

ACC A. What instruction, starting at the label NUMOK will do
this, e.g., when key 5 on a keyboard is struck the final contents
of ACC A will be 5, not 35. The program should go to GOODHX when
the correct value is in ACC A. Again assume that the ASCII
code is already in ACC A when the program starts. Show only
the program additions.

MUMOE  SUB A #$320

EFRA ETNTN] W] g B
or
NUMOK  SUB A #7@
EFA GOODHR

We now have:

HEXCHE CHMP R #$2F
BLS BARACHEX MUST BE BELOM Za
CHMFP R #$3Z3
BLS MURFCI MLIST BE Z@-Z3
(
)
GOODHH
(
1
MUMOE  SUB A #%3265
ERA GEOODH
ERDHEX
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Now screen for values A to F. Valid characters in this
group should be converted from their ASCII code to their true
hex value, e.g., OA when A is struck. For valid characters
continue to GOODHX, the next line, after this conversion. For

invalid characters branch to BADHEX.

CHP R g4

BELS EADHEX MU=T BE ZA-48
CHMF A #$d4E
EHI ERDHE X MUST BE GREATER THRM 4&
SUE A #EE7 di-4E NOW aR-aF
GOODHE EMND OF ROUTIME.

The ASCII code for A is 41, for which the hex value is

OA. The difference is 37, which when subtracted from L1 gives

us OA. Similarly when F is struck, 46 - 37 = OF. Calculations
are shown below:

FF b1 When A is struck 41 ASCII for "A"
=0A » tF6 *G9 (-37)

F5 1 37 1 OA
+ 1

F L ks—- hex code for A
F6 = -0A



The final version of this routine (let's call it

HEXCHK) iss

HEWCHE, |

IS YALID HEX CHAR.

CHECKZ IF CHAR MNOW IWN HCC A
THAT IZ 8-% OR A-F.

EMTER WITH ASCII CHAR IM ACC A,
FETURNS WITH 4 BIT EQUIMALEMT HEX IM ACC 8 IF WAL I

HE®SZHE P
BlL=
ceF
BLE
P
BLS
CHMF
BHI
=B

GOOCHE |

-

]

1)
MUMOE, SUE

BRA
EH&HEHl

[

1
BADMES FrC

FCBE

ErD

I I

i

I o

#EIF
EFADHEN
#3335
MIIMCIE
#5400
ERDHE X
#5405
EFRDHE
#EI7

#£3Z0
GIOODH

MUST BE BELOW Z@

MUST BE

ZE-E0

MUST BE ZA-46

'wh!

MUST BE GREATER THAM 45
d4l-4& WO BR-AF
END OF ROUTIME.

SHOT WALID HEXS

5]

What would happen if the first line was CMP A #3302

When 0 is struck on the keyboard the ASCII code 30 would result.
The first 2 lines would then cause a branch to BADHEX (normally

5

23

/

reserved for invalid characters), since BLS BADHEX recognizes

that the code produced is the same as 30.
a branch instruction is incorrect for one value,

Such an error where
is very common.

Hence a programmer should manually check for boundary values,
0, 9, A and F in the above program.

The label GOODHX could provide an instruction JMP NEXT,
jumping to the next program segment. The BADHEX section could
be temporarily terminated by the instruction BADHEX BRA BADHEX,

an instruction which loops back to itself, preventing execution

of "left over” code in that memory address.
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Modify this HEXCHK program to include the necessary
assembler directives, this time calling the program HEX2C and
starting it at address 1E40. Show only the first and last

lines of the program.

/

HE HE=2C
oFT a. 5
ORG F1E48

HEXCHE. TP A #$32F
| |

BHDQEH

END
Note that all 4 directives appear in the operator field. The
first label of the program does not have to agree with that
used with NAM. The latter usually designates which version is
listed, e.g., version 2C in this example. Updating the version
number when changes are made is a very effective way of denoting
which listing is the latest, an absolute essential as programs
evolve.

22
To understand better how the branch instructions
operate one must be aware of the Condition Code Register (CCR)
in which each of the 6 assigned bits may be set or cleared
according to each instruction executed.

b 3 2 1 O «— bit #

. Condition Code
H I N Z v C Register

For example bit #0 is the CARRY or C bit which will be set if an
8 bit addition produces an overflow, the C bit behaving as the
9th bit. The C bit can be set under other conditions, seen later.

Bit #1, the oVerflow or V bit, is set if a 2's complement
(signed number) arithmetic operation produces an answer exceeding
the range of -12810 (8016) to +127,, (7F16), the available range

using an 8 bit signed number.
Contd...
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Contd.

The Z or Zero bit (bit #2) is set when a zero is produced
in a memory or accumulator operation, e.g., CLR A or CLR MEMPNT.

The N or Negative bit (#3) is set when a resultant

leading bit 1, implying a negative value in the accumulator or
memory.

The I bit will be treated in the Interrupt chapter.

The H bit is used internally by the DAA instruction for
BCD arithmetic operations. ( Details in Appendix K )

Each instruction executed affects the CCR bits as noted
in the right column of Appendix C where the state of each CCR
bit, after the execution of each instruction, is shown. For
example, CLR A will clear or reset (R) the N, V and C bits and
set (S) the Z bit. The dot implies no change. The vertical
arrows for the CMP instruction imply conditional setting or
clearing of these bits. For example, CMP A #$72 produces a
subtraction (ACC A minus 72) which sets the Z bit if the result
is zero or sets the N bit if the answer is negative and/or sets
the V bit if a two's complement overflow took place.

Detection of the Z bit status is achieved via

BEQ - Branch if EQual (Equal to Zero if no other
reference named)

or BNE - Branch if Not Equal

as seen in
DEC A
BEQ ALLDUN
which branches to ALLDUN if ACC A = 0. Similarly BNE branches

on non-zero results when

LR A SUBTOT
AMD A #3C2
ENE MATCH
is executed. Will branching occur assuming SUBTOT/3E? What is

the 2 bit state, A/////

Yes branching will occur since C2:3E = 2 (not equal to zero),
clearing the Z bit and causing a branch via BNE MATCH.
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Will the following instructions cause a branch to HIT
if KEDATA contains 29?

LR A KEDATH
AN A #EDe

EBME HIT /////
NO KEDATA = 00101001
D6 = 11010110
LOGICAL AND = 00000000

Since the result is zero the BNE instruction (Branch if not
equal to zero) will not cause a branch to HIT. The Z bit will
be set.

223
The instructions:
LDA A COMTRC
EBIT A #$48
EME HIEBIT

perform the logical AND on CONTRO and 40, without modifying
ACC A. The CCR bits are affected and branching to HIBIT will
occur if bit #6 of CONTRO = 1 (not equal to zero).
XXXXXXXX CONTRO
O%OOOOOO Lo
Bit #6 is only bit of CONTRO tested.

Since the BIT instruction does not destroy the original
contents of ACC A, several bits can be individually tested,
permitting multiple branches.

Write the instructions to branch to RECEIV if bit #0 of
SERCSR is set or to TRANS if bit #1 of SERCSR is set; otherwise
continue.

/

Contd. LA
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Contd.
LA R SERCESR
BIT R #$&61
EHE RECEIY
BIT 8 #$az
EMNE TRAMNS
|
L}
i
)
5-10

Write the instructions to test bits #2 and 3 of SPEED,
branching to LSPEED if bit #2 is set, to HSPEED if bit #3 is
set or to STOPIT if both bits are cleared. Assume that both
bits will not be set at the same time.

SFEED

#Loonell1aa  CHECK FOR o8

BER STORIT

BIT A #X80800168 CHECK FOR BIT #2=1
EME LSFEED

#A0Re1068  CHECK FOR BIT #3=1
BNE HSFEED

-
=
o 1]
I D

m
-
-
I

Note that all bits of ACC A, "viewed" via the mask word, must
be zero to set the Z bit of the CCR. Hence both bits #2 and #3
of SPEED must be zero to branch to STOPIT via the above test.
The above instructions could be part of a speed control routine
for a machine, the individual bits of SPEED being controlled by
the machine's push buttons, connected to the computer.



what is the initial contents of MEMADD? What address

first to be cleared?

CE 23FF

FF 8260

FE 9268 MORCLR
oS
FF &
&F
z@

Dot

T oW S

[y B 1D

%X

o

IT’]

15

%]

R o o R Y
D R R

DRI (N (N
D)
f

D
AN
o
[t ]

a]alche MEMRDD

Initially MEMADD contains 23FF (2400 - 1 =

LD
STH
L.CrA
IN=
STH
CLE
EBERA

ORG
FHME

#+2400-1
MEMADD
MEMACD

MEMADC

)
Y

MORCLE

£Azed
>

o

5-11

Further branching operations will be seen in a program

to clear a group of memory locations. In the program below,

will be

/

23FF).

INX will increment X to 2400, the first address to be cleared

via CLR X.

second time?
here) .

Address 2401

5-12
What address will be cleared when CLR X is executed the

Explain, starting at MORCLR (second time through
When does this clearing operation cease?

/

When MORCLR LDX MEMADD is executed the second time X contains

2400.

CLR X then clears address 2401.

This clearing operation will continue until the above
program is partially overwritten (cleared) by its own operation.
We need a method to break out of this loop after a specific

address is cleared.
next page!

If the suspense is killing you, check the

After INX, X contains 2401 which is stored via 3TX MEMADD.
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The CPX (ComPare indeX register) instruction compares
the Index Register contents to some 2 byte reference value, e.g.,

CPX #$24C7
or CPX HIVALU

Only 2 branch instructions are valid after CPX, BEQ or BNE.

Modify the previous program to exit from the loop after

address 240F is cleared.

goae CE 2EFF L.Co
B20Z FF azen STH
B236 FE 8268 MORCLR LD
G282 Ao IMN®
Az0R FF Qzen aTH
Bzal éF Gs CLE
wzaF 2 245F CPH
gz1z 26 F2 EME
4

B2el ORG
BZ2ed 8062 MEMADD &HME

E ML

/

#¥24068-1 THIS PROGRAM CLERRS

MEMACD
MEMADD

MEMADL:
*

#+240F
MORCLE

1258

[
]

AMD LOOFS BRCK

UNTIL MEMORY RDDRESS
Z48F IS CLERRED
AFTER WHICH EXIT
THKES FLACE

While it is true that the Index Register could remain the pointer
throughout this program, without using MEMADD, we are looking

ahead to programs where the Index Register is used for several

purposes inside one loop, requiring retrieval and storage of
each memory address pointer each time it is used.
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How many memory locations will be cleared by the
previous program?

/

1016 or 1610
After CIR X is executed X/ #of addresses cleared

1st time 2400 1
2nd time 2401 2
3rd time 2402 3
15th time 240E OF,¢ (1544)
16th time 24OF 10,4 (1644)

Tables like this are useful to ensure that the exit from a loop
takes place at the correct point, not one loop too soon or late.
For example, if the problem was to clear 204¢ locations such a
table ensures that 241F is the correct reference address for the
exit.

5-1
Modify the previous program to clear 10010 memory

addresses, starting at address 2400. Show only the changes.

/

CPX #$2463 is the only change.

Memory Address # of addresses cleared
2400 1
2L0o1 2
2L462 63,6 (994¢)

2463 6k,¢ (100,,)
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What would be the effect if the label MORCLR appeared
opposite the first instruction, e.g.,
MORCLR LDX #$2400-1
rather than in its present location? Refer back several frames

for the program.

/

The program would be re-initialized after each loop, hence it
would clear address 2400 each time in a continuous loop. This
is a fundamental error which everybody makes at least once,
including you and me. The only question is when. More important
though is to be aware of this potential problem. The solution
can be summarized by

LOOPBACK IS ALWAYS BELOW INITIALIZATION
Initialization in the previous program sets up MEMADD with 23FF,
its initial valué. The program loops back to MORCLR, below the
initialization in the original progranm.
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Good programming requires good planning. While many
planning methods are advocated today, one of the simplest and

most effective is the flow chart, shown below.

1

Note that a flow
INVTIALIZE

ADDRESS chart depicts
POINTER

functions, not

——y specific instructions.

POINTER =+ X

INCAEMENT
AND
STORE

}

CLEAR

MEMORY
ADDRESS

NAMED via X

LAST
ADDRESS
?

YES

Here operations such as initialization, clearing,
storing, etc., are shown inside rectangles. Decisions are
depicted by diamonds which have multiple exits, the chosen
path depending on the decision made.

A good flow chart represents the major effort in
preparing a program. Converting it to instructions, once you
are familiar with the instruction set, should take less time
than flow charting. A flow chart is also useful in documenting
a program for use by future users.

No answer is required in this frame.
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The program to clear 6416 locations could be handled by
using a counter, with an initial value of 6”16' which is
decremented after each address is cleared. Exit would then take
place when the counter is zero. Flow chart such a program.

}

INITIALIZE
- COUNTER
~ ADDRESS

o

X=VUPDATED
ADDRESS

y
CLERAR MEM
ADPRESS

DECREMENT
COUNTER

=0

To next part of longer program.
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Now write the program to clear 1004, (6416) locations,
starting at address 1200. The program itself is called MEMCLR
and should start at address 0800. Include the necessary
assembler directives. The instructions INC or DEC may be
useful to you.

MNEM MEMCLE

OFT 0.5
BEe0 DRG ERSHE
MEMCLE. . . CLEARS 180 (CECIMAL)  MEMORY LOCATIOMNS
STRRTIMNG AT 12068, USES ®.
BERE S8 &4 MEMCLRE LDR A #$6d OR LDA A #1806
asaz B7 a2 STA A COUMT IMIT COUMTER
ases CE AAFF L Lo #$1288-1
BEES FF 8261 STH MEMADD  SET UF ADDRESS POINTER.
BEEE FE 8261 MORCLRE LDW MEMADC
AEEE @S T
BEEF FF 8264 ST MEMADD  GET ADDRESS
asls &F Ba CLE i AMD CLEAR IT
AS1d TR G268 DEL: COUNT LAST ADDRESST?
B517 26 Fz FNE MORCLR MO, TRY AGRIN
BoEE ORG $EZEE
BZEA BEAL COUMT  RME 1
AZEL BERZ MEMADD RME 2
ErD

COUNT could have been incremented from 0, exit taking place when
count equals 64. Down counting is preferred since it is easier
to detect zero than a specific value (CMP A #$364). Both,
however, are valid.
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In the previous program the task was to clear an
address. In the next program the task is to count the number
of addresses, 0900 to O9FF inclusive, which contain zero. This
time the task itself will contain a decision, to count or not
to count. First flow chart, then write the program.

* /

CLEAR COUNTER
INIT ADDRESS 6288 7F B262 ZCOUNT CLR BLANE, EMFTY COUNTER
POINTER BZR% CE BSFF LL #H02E5H-1
- B285 FF 8250 ST MEMFMT INIT ADDRESS FOINTER
8285 FE BZE0 MORCHE L MEMFMT
y AZED B TN
x=:;wwab BZEL FF @268 ST MEMPMT  GET MEXT ADDRESS
PRESS G218 A6 o9 LDA A % GET ITS CONTENTS
Bzi1z 26 @z ENE SKIPIT  MOT ZERD
B214 TC B2ED INC ELFME GOT COME
8217 8C A9FF SKIFIT CEY #FOIFF  LAST ADDRESSY
BziA 26 ED ENE MORCHK MO, BACK AGRIN
]
HCRENERT azer ORG FO260
COUNTER b BIER BBz MEMFHT RME 2
B262 oRel ELANE RME 1
END

ACC B, if available, could
have been used as the counter.
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When the possible count exceeds 255,45 (FFy4) two B;;;g

will be necessary to contain the number of bits. A problem in
incrementing a 16 bit (two byte) counter exists when the low
byte overflows to zero, at which point the high byte must be

incremented, e.g.
’ r——’\:i:>\-Least Significant

Before — 00000010 11111111 Byte

After

Incrementing" 90000011~99922299/

Count Count +1
Modify the previous program to count the number of addresses
containing zero in the address range 0900 to 10FF inclusive.
Show program changes only.

Before After
SCOUMT CLE ELANK SCOUNT CLR ELENE
i CLF BLAME+1
| !
| INC BLAME+1
' BME SKIFIT
INC BLANK INC BLANE
SKIPIT CPX #EOSFF SKIPIT CP¥ #E$10FF
| |
1 ]
i [ ]
ELAME RME i ELANK RME 2

This process can be extended
to a 3 byte counter.
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The Index Register also can be used to increment a
2 byte counter. What changes would you make from the previously
modified program to use the Index Register to increment BLANK?
Again show only the program changes.

/

Before After
INC BLAMK+1 LD BLANK
BHE SKIFIT I
INC BLAMNEK STH BLAMNK
SKIPIT SKIFIT

If BLANK is to be tested or compared later, the Index Register
will be needed for that operation. Hence the second solution,
using the Index Register, is preferred.

The second solution shows how the Index Register can be
used for many tasks within a program since the updated value
(after INX) is immediately stored in memory, releasing the Index
Register for another task.
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Assume that the instruction JSR GETCHR, a subroutine
call which we'll examine in detail in a later chapter, puts the
ASCII code for the key, struck on a keyboard, into ACC A. Use
this instruction within a looping type program to store in memory
the ASCII codes for the keys struck. Start storing data at
address 1200. When the ! key is struck, exit from the loop
without storing this terminator character. First flow chart

your program.

+ /

‘Ngaaess GETCHR EGU $1F30
POINTER

. STOASC. . . STORES ARSCII CODES FROM KEYEBOARD
> IN SUCCESIVE MEM ADDR STARTING AT 1266,

! TERMINATES FROGRAM
CHLLES GETCHRE. USES A AND X

GET CHAR
STORSC LD #$1208~1
ST AODRES  INIT POIMTER
GETMOR ISR GETCHR  GET ASCII CODE
CHME A #7!
YES EER ALLDUWN  MUST BE !
LLx ACDDRES
INX
No N ADDRES  UPDATE ADDRESS
STR A ¥ ANC STORE RSCII CODE

X= UPDATED BRA GETMOR  AMD BRACK RGAIM.

POINTER ALLDUN

STORE CHAR -
ADDRES RME 2

Y
Y the task, to avoid storing the

character.

Here the test takes place before
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Branching instructions recognizing signed (-) values are:

BGE - Branch if Greater or Equal
BGT - Branch if Greater Than

BLE - Branch if Less than or Equal
BLT - Branch if Less Than

BPL - Branch if PLus

BMI - Branch if MInus

Flow chart a program to count the number of
occurrences of values between I 2616 inclusive, within the
memory range 0800 - OBFF inclusive. Manually check your program
for proper branching for values of ¥26 and t27.

¥
SET VP LIMITS
INVT ADOR POINT

CLEAR COUNTER

P
P

1

X = VPOATED
ADODRESS
GET CONTENTS

Yes

NO

NO

INCREMENT
COUNTER VIA X
| o

LAST
ADDRESS
?
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From your flow chart on the previous page, write the
program.

/

MEMCHE, . . COUNTS QOCURREMCES OF +26 TO —26 HEX
IN MEM ADDR 9S28-0BFF INCLUSIVE

EIe@ 56 26  MEMCHK LDA A #$26

BzBz BT @271 STR A HILIM  SET UFFER CHECK WALUE
AZBS 4@ MEG A

B2BE BY 6270 STR A LOLIM  SET LOWER CHECK WALLE
BZBS TF 8274 CLR  HIT

B2BC PF 8275 CLR  HIT+1

B2EF CE BFFF LD #s@s68-1

B2z FF 8272 STH  MEMPNT  INIT POINMTER
G215 FE @272 GETEYT LDK  MEMPNT

B2le @S TN,

B21s FF B272 ST MEMPNT  GET MEWT ADLRESS
B2AC FE G LOFA A X GET CHAR

B21E B1 9271 CMP A HILIM 3267

gzzl 2E A BEGT  MOHIT IF S0 IGNORE IT
EreE Bl BT CMP R LOLIM <267

B2ze 2D @7 BLT  NOHIT IF S0 IGMORE IT
G228 FE G274 LD®  HIT

BZZE as TH

Bzen FF @27e ST HIT ADD 4 TO HIT
BezF FE 9272 NOHIT LDX  MEMPNT

B2TE &0 BEFF CRY  #SBEFF

AZES 26 DE EME  GETEYT MO, BACK AGAIN
et _

Gzve @@l LOLIM RME 4

po7l @aAL  HILIM RME 1

@27z @ae2  MEMFMT RMEB 2

gzv4 meEz  HIT  FME 2
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Previously we saw how to store a message in memory. It
is time to print such a message. For now, assume that the
instruction JSR PRINT, a subroutine call, prints the contents of
ACC A as one ASCII character on a printer. Assume that the
label MESSAG heads a stored message, in ASCII format, terminated

by a null.
using the JSR PRINT instruction. If you are stuck, look at the

first two instructions of the solution

!

INIT POINTER
TO MESSAGE

X=UPDATED
POINTER

GET CHAR.

o

No

YES

PRINT CHAR

-

Flow chart and write a program to print this message,

/

MESSPR. . . PRINTS MESSAGE THAT IS STORED IN MEMORY.
CALLS FRIMT SUBROUTINE FOR EACH CHARRBCTER PRINTED.
A AMD = PLUS PRINT SUBROUTINE.

LISES
MESSPR

MORFRT

HLLDUW

J
FOINTE
MESSAG

LD
STH
LD
THx
STH
LOA
EBEL
JER
ERA

RME
FCC
FCE

HMESSAG-1

FOINTR INIT MEM FOINTER
FOINTR

FOINTR GET ADDRESS OF CHAR
# GET RSCII CHAR IN A
AL LELiM

FRINT FRINT IT
MORFRT BACK FOR MORE

2
~FILENAME -
@

Note the test before printing
to avoid trying to type a null
which cannot be printed.
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Data stored on a diskette, a magnetic mass storage
device, is usually written in blocks of 8016 characters at a
time from a buffer, which is a specific block of memory. In
such an operation the X register must be used both for
retrieving data from the "source" memory address and for storing
it in the "destination" address. For this 2 pointers must be
initialized. For each byte moved, each pointer must then be
updated for use by X. With this in mind, flow chart and write
a program to move the memory block 0600 - O06FF to 0800 - O8FF.

/

INIT _gou;c: MONVEIT LD #E+05080-1
AND DESTIN. 5T SOURCE IMIT SOURCE ADDRESS
POINTERS L #FASRR—-1
; ST LEST IMIT DESTIMATION ADDRESS
ST qn g d S 'l
UPDATE MOVENT L[.:: SOURCE
SOURCE I
POINTER ST SOURCE GET MEXT SQURCE ROOCRESS
GET BYTE LDAR A = GET A BYTE
Lo DEST
\ I
S?ATE ST CEST GET DESTIMHATION ADDRESS
STINATION STH A = AL STORE EBYTE
POINTER CF #EASFF LAST BYTE?
STORE BYTE lBNE MOVEYT HO. ARCUMND AGHIN
]
\
i
SOURCE RME 2
~ DEST EME 2
° END

YES
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Earlier we saw how to increment a 2 byte counter
without using the X Register. Similarly a 2 byte counter can
be decremented without using the X Register. A special
condition, shown below, exists when the least significant byte
is zero, before decrementing, since both bytes will have to be

decremented this time. Least Significant Byte

———
Before Decrementing 00111011 00000000
After Decrementing 00111010 11111111
~——
Count Count +1
Write the instructions to decrement the two byte counter COUNT,
recognizing the special condition above. The instruction TST
(TeST or "compare to zero") is useful here.

/

TST COUNT+1  CHECK LERST SIG BYTE FOR 2EROQ

BEMHE DECLOW IF MOT @ IGMORE MOST SIG BYTE

DEC COUNT IF LERST £1IG BYTE & DEC MOST
DECLOW DEC COUMT+1 ALMWAYS DEC LEARST SIG BYTE

This sequence of instructions is most useful if a 2 byte counter
must be decremented when the Index Register is not available to
do it. This process also can be extended to a 3 byte counter.
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The program listed below is a slightly shorter version
of HEXCHK, developed earlier in this chapter. This one uses
signed branch instructions which had not been discussed when

the original program was developed.

HEXCHE SUE
BEMI
CHF
BLE
SUE
CHP
BHI
CHP
ELE

ENDHE
ERDHEX

T I D> D

#$28
BRACHEX
#$a9
ENDHE
#£07
#E0F
BRDHEX
#EQ3D
BRADHE»

E

E

4

4

ELOM ZA

ELCW 25 ABOVE =9

- 8-V=GF. RBOVE F

1-Z8=0A BELOMW A

Since either 30 or 37 had to be subtracted to convert
to hex, 30 was subtracted immediately. Branching on a minus
value is now possible, eliminating a CMP instruction. While
the purpose of this workbook is to help you learn fundamentals
rather than write "tight" programs, the above listing is
included to point out that the shortest programs are not
necessarily the most readable and vice versa.

Time for a break.

This was a long chapter.
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BRANCHING - MACHINE CODE

Even when writing very short machine code programs it
is highly desirable to start with assembly language instructions
and then assemble them into machine code. Manual assembly of a
program raises a problem in that the address for MEMADD in the
instruction STX MEMADD is often not known until MEMADD RMB 2 is
encountered, perhaps many instructions later. The solution
proposed is the one used by the computer when it assembles a
program, that of processing the assembly language program twice.
When the assembly language program is read the first time, an
absolute address is assigned to each label (symbolic address in
label field). During the second reading, machine code is
produced for each instruction.

To assign absolute addresses to labels requires knowing
how many bytes each instruction requires. This data is available
in Appendices C1 and C2, under the # column, for each mode avail-
able. Assuming Extended Mode for the instruction LDX MEMPNT, we
see 3 in the # column for the "EXTND" mode opposite the LDX
instruction.

For the program below assign the appropriate addresses,

starting at 0618. Addresses already are assigned to the first
2 instructions.

asls IMIT LOAR A #%17
Belr STA A EMDVAL
LD #E0eDV
SThA MEMACD
RTS
EMDVAL REMEB 1
MEMADD FEME 2 /////
Bels IMIT LA A #F17V
Beln STA A ENDYAL
asib LD #¥del?
B2 STA MEMADD
aszx RTS
aez4 EMDVAL RME 1
BEZD MEMARDD RME 2
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Now that all addresses are known, complete the assembly
operation by assigning the machine code for each instruction.
No entry is required for the labels ENDVAL and MEMADD at the

end of this program.

BElE INIT LOA A ##$17
Be1R 5TR A ENDVAL
asil LD #EOEDT
Be2a ST MEMADL
HBe23 RTS
Bz EMDVAL RME 1
BEZS MEMADD RME &
Acls Se 47 INIT LA A #FL7
BelA BY Be2 " STR A EMDVAL
geil OE @slv " LG #+0eDy
gezi FF oBez2h " STw MEMRDD
BEZE 29 i} RTS

o
\e2d Baad EMDYAL RME 1

+

He2D aRnn MEMARLL RME

L
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In general it is easy to work with the machine code for
the 6800 microcomputer. Only one area, that of encoding branch

instructions, requires extra care. In the instruction sequences

186F 20 AAFF CF #START
1872 25 96 BME STORTH
1274 CE 187EB LD #BIGSOR
1877 BD AFAC JER OUTHES
1878 29 STORTH RTS

the code for BNE is 26. The next byte, 06, is a forward
reference to STORTN, 6 bytes beyond the byte following 06.
Better read that again! When the microprocessor has fetched
06 from memory and is processing it, to determine the address
to which to branch, the program counter (PC) contains the
address of the next byte, 1874. It is 6 bytes (hence the 06)
from 1874, the PC contents, to 1874, the address of STORTN.
1 2 3 L 5 6
1873 1874 *1875 1876 1877 1878 1879 187aA

06 1
while processing) PC. points address of
this byte here STORTN
If STORTN is at address 187E instead of 187A, while the
BNE instruction remains at the same address, what value is in

address 1873, the forward reference to STORTN for the BNE
instruction?

/

0A 187E - 1874 = 0A —— branch offset
target address address following branch offset



Backward branching is somewhat more challenging, e.g.,

1A88 Be VYFFE MORTES LDA A SERCSE
1R8= &84 B4 AND A #$61

1ABS 27 F9 EER: MORTES
1R8Y B& FFFV LDA A SERBUF

While processing the branch offset F9 (address 1A86) the PC
contains 1A87, the address of the next byte. The target
address is 1A80, 7 bytes backward from the PC value. Hence
F9 (-7) is the branch offset.

To determine this value, F9, the most direct method is
to calculate 1A80 - 1A87 resulting in FFF9 as a 2 byte negative
value which contracts to F9 as a one byte negative value (refer
to the first chapter for 2 versus 1 byte negative numbers).

For short backward branches the number of bytes can be deter-
mined by counting from 1A80 to 1A87, e.g.,

0 @
1A88 BE F&
(R S 5@ @
e D @
1RES 27
O
1RZY B& VPFFT

Since the separation is 7 bytes then -7 can be converted to F9.
The missing value above then becomes F9. For more than a dozen
bytes this may become tedious. For short branches, however, it
is simple and quick.

No answer is required in this frame.
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With more experience in using machine code, you may
prefer to count the number of bytes backwards instead of forward
to obtain the branch offset directly. Using the previous program

this would be:

1Rga @F@

1AEE g &

1R85 2 :;. - F9 then follows the 27

Using the above technique determine the machine code for
the backward branch below. The address for LOOPNO is 1A60.

B2e8 VA 1REG NOTYET DEC LOoPNO
B2z 27 ___ EEG NOTYET
B2a5 4F CLR A
8208 PH 1AS8 MOTYET DEC LOGPRHG
@O
B2az 2 Fj BER MOTYET
b
7 Mg b 4 CLE A
E
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NEXCHR JSR GETCHR  Manually assemble the program
LD MEMADD (opposite) using both the first
NSt and last methods to determine
each branch offset. Machine
sT% MEMALD  oode for JSR GETCHR is BD 1F00
LDA A ™ and for JSR OUTERM is BD 1F03.
_ Start at address 0740.
CMF A #$8D
BER ENDLIN
JSR QUTERM
ERA HEXCHR
ENDLIN RTS
MEMADD RME Py /////
@8 FF FE avdE BD AFod MEACHE ISR GETCHE
E 3
Fi» FC FE G74% FE @758 LEri MEMADD
o
FH BvFdE \Bas It
Ed
Fe@ F8 F7 @747 FF G7SE STH MEMADL
E
Fe FS HP4H HE g LR A 4
£
F4 FZ= B4 =1 &b CMPE R #$FaD
*+:
Fz F1 B7vdE 27 a5 BEXR EMDLIN
+
Fa EF EE 5 ran] E:[@ l@lﬁ_g) JSk QOUTERM
A Q ® * 3 N
ED EC BYSE 28 EB ERA MEXCHR
@ B 3
EE ayss =4 EMOLIN RTS
*
—y— @7s z RME 2
& Boa MEMADD i 0?40 FFFF
¢ Y -0755 — -0755
Backward address machine =F8AA
branch code
counting U |
(last) 0755 F8AB
method
-0750 +0740
5

(forward reference)

/—- FFEB

but FFEB (in 2 byte format) becomes EB in 1 byte format (see
Chapter 1). Normally JMP NEXCHR rather than BRA NEXCHR would
be used to avoid offset calculations.
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Branch instructions use a one byte signed offset,
limiting the branching range to f127 (decimal) addresses.
Attempted branches beyond this range produce an error at assembly

time.

Sometimes programs which were previously error-free now

will cause a branching error when new instructions, inserted
between the branch instruction and the target address, now

produce too great an offset.

One solution is to branch to the

end of the present routine, or some other appropriate place
where a JMP (JuMP) instruction, which can jump anywhere, jumps

to the target address.

Such a solution is also one way to avoid backward
branching in machine code, a pragmatic if not aesthetic solution.
Similarly BSR should be replaced by JSR when writing in machine

code unless memory locations are scarce.

Assume that NUCHAR, at address 0608 is beyond branching
Modify the program to reach NUCHAR.

range of BEQ NUCHAR, below.

Show your changes in machine code.

BEER 21 B8R CHP
E 3

kN 2V BEG
+

azed BL 1Red JER
+*

2@y =9 ETS

azEE 21 an CHMF
E 3

H._n EEG
*

g4 BL LRed I5K
b

B2y =9 RET=

H

#E0A
MUICHAE

STORE

/

#£0H

JUMPRU

STORE

NUCHAR

Changed lines
are circled.
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A problem often encountered in writing machine code
programs is the need to insert a few instructions in the middle
of a program. This results in new addresses for all labels

below the insert (on the listing) requiring re-encoding of the
program.

To prevent or minimize such problems it is desirable to
leave memory address gaps between subroutines or program segments,
typically 1/4 the length of the code written. Where instructions
follow one another continuously for more than ten lines, insert
several NOP (No OPeration) instructions (OP CODE 01) which do
absolutely nothing except to occupy memory locations. These are
easily removed when extra addresses are required for later

changes. The only cost is the extra memory used and slower
execution.

When re-assembly is undesirable or impossible a PATCH is
recommended. This involves a jump to some external address,
where the extra instructions are placed, followed by a " jump back"
to the address just below the first " jump out". The cost is
usually 6 bytes (2 jumps) plus the inserted code. In the program
below a CLR COUNT instruction is needed just after STX MEMADD.
Modify the program below to patch in the extra instruction
assuming that COUNT is address OOFF and that addresses 0680 - 068F
are available. Write both the assembly language instructions and
the machine code for the patch.

Bedrn CE 134E LD #¥124E
BBz FF Gcza 5TH MEMACD
gene FE Beze LD MEMACD
Bess ag IMNA

B2 MEMADE ERU FRe28

/

BSE0 CE 134E 3% 51 24E
BEET TE B&8a | IMF PRTCH |
DERE FE 8626 zr’ LD MEMALCD

B&o9 Bo INK

ass8 ORG $8e206

BESA FF BezBa PATCH  STA MEMADD
BESZE PF DBFF CLE COUNT

BESE YE Bsde JMF $BED0
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The problem below presents a condition where memof;-
locations for a patch are very limited. Assume that § bytes
are available (O470 - O474). The instruction CLR B is now needed
between the first 2 instructions. In your solution show assembly
language and machine code for changes made. If you are stuck,
look at the hint in the first line of the answer.

d4i3a BLe 1FB4 JER TERMIN
0453 24 SF AMD R #$5F
2435 21 40 CMF A #°L

Hint. Use branch rather than Jump instructions.

Calculations
(1) o470 - 0405
FFFF
-0405 A4EH ED LF3E ISE TERMIM
FEFA P40 28 SR ERF FATCH
B405 21 40X BACK  CHP R $7L
+__ 1 a47a ORG 0473
FBFB @47 SF FRATCH CLR B
B471 S4 SF AMD B #35F
+0470 B47E 2@ 96 ERA EACK

006B

(2) obos - ou7s
FFFF
- 0475
FB8A
+ 1

————

FB8B

+ 0405 Since only 5 locations are available
FFO0 ~———p 90 branch instructions (2 bytes per branch)
would just fit. Such situations are quite
common when modifying old programs,
particularly if source listings are
unavailable.
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The previous example shows how the program counter
contents, when added to the branch offset, produces the address

of the next instruction to be executed, e.g.,

0405 = PC
+ 6B = branch offset
0470 = new address (where PATCH begins)

Reverse branching calculation is slightly different. Since 90
is a negative value, its 2 byte equivalent is then FF90

o475 = PC
+FF90 = branch offset (2 byte format)
0405 = new address (BACK)

Given the following machine code, convert it to assembly
language producing absolute rather than symbolic addresses.
Appendix D gives the instruction for each operation code.
1F49 31 B4

1F4E 27 B84
1F40 S0 @s
1F4F 28 EC
1F4D
1F45 51 @4 CHP R #$04 +_Ob LIFLF
1F4E 27 @9 BEG $1F51 <—— 1F51 +__ 09
1F4D 20 @32 Bk FLFOS - 1F58
1F4F 28 EC ERA $1F 20 5
1F51
Only negative values must be +FFEC note EC becomes FFEC
preceded by FF in 2 byte 1F3D 1in 2 byte format.
format.

If more practice is needed, there are lots of listings
in the last half of this workbook.



- ACIA -

ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER

A computer, to perform any useful function, must be able
to communicate with the "outside world", that is to and from
external devices such as keyboards, printers, teletypes, remote
computers, etc. Two forms of information transfer are available,
serial and parallel. Parallel format, in which 8 bits are
transferred at one time, requires 8 external data lines, plus
control lines. For transmission of data beyond several hundred
feet the large number of wires in a cable makes this parallel
transmission impractical. In such cases serial transmission is
preferable. For data transmission over a telephone line serial
format is essential, since only one channel is available.

In serial format data is transmitted at a predetermined
data rate, one bit after another. Each character or byte
(usually 8 bits) is self contained, preceded by a start bit
(always 0) and terminated by one or two stop bits (always 1).
In between successive characters the signal remains in the 1
state, if there is a pause. A typical character is seen below.

rime ——p l~(1 is also known as MARK, 0 as SPACE)

| N ”l

o -
START S8 & w2l w3 ay us @, n 7 Ste svop STRT
8T EY0 S

The ACIA acts as the interface between the serial device
and the computer, communicating with the serial device in serial
format and with the computer in parallel format.

Associated with the ACIA are 2 consecutive memory
addresses, the lower one (even) controlling and indicating the
status of the ACIA and the higher one (odd address) containing
data transmitted or received by the ACIA. The actual addresses

are usually in the top half of memory and are assigned by the
hardware designer.

Contd.
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Contd.

Let's look at the Data Buffer first, assuming an address
of 7FF5 for the ACIA Data Buffer "SERBUF". This single buffer
services 2 internal buffers, receiving data from the "read only"
RECEIVE BUFFER, and transmitting data to the "write only"
TRANSMIT BUFFER. The same address is used for both buffers
(see below). Hence the instruction LDA A SERBUF automatically
gets its data from the RECEIVE BUFFER, while STA A SERBUF
automatically passes its data to the TRANSMIT BUFFER.

incom; ng secial data
RECEWE LIvE

RECE\VE BUFFER

( READ ONLY)

TRANSMIT BVFFER

NCin —
DATA BUFFER CWRITE onuy)
( addvress IFFS ba\ow)

transmitted seriod date
TRAVS MIT LivE

Write an instruction which sends data, now in ACC A to
the ACIA where it will be automatically put into serial form
and transmitted to some external device.

/

STA A $7FF5 All that for one instruction!
Symbolic addresses are preferable when working with the ACIA.
The statement
SERBUF EQU $7FF5

directs the assembler to substitute 7FF5 for the symbolic
address SERBUF. To improve readability of programs it is
usual practice to place all "EQU" assembler directives at
the beginning of a program.

Address 7FF4 is known as the Control and Status Register,
described in detail later in this chapter. Arbitrarily it is
called SERCSR (SERial Control and Status Register).
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Write an instruction to read serial data from the ACIA
into ACC B. Assume previous symbolic definition of the Data

Buffer.

/

LDA B SERBUF

Note that if STA A SERBUF

LDA A SERBUF
is executed, the data in ACC A will normally change since data
is stored in the TRANSMIT buffer but loaded from the RECEIVE
buffer, even though both carry the same symbolic address SERBUF.

7-3
If serial data is being received by the ACIA, somé--
method is necessary to inform the computer when parallel data
is ready. If data is read too soon it would be erroneous; if
too late it could be lost, since the ACIA has only one 8 bit
RECEIVE buffer where parallel data is stored after being
formed from the incoming serial bit stream. At high serial
data rates, e.g. 9600 bits/sec, the "lifetime" of data in the
RECEIVE buffer is approximately 1 millisecond, after which it

is overwritten by the next byte.

When an incoming data byte is ready, bit #0 of the
Status Register (7FF4) automatically changes from O to 1. The
AND or BIT instructions permit us to examine this bit #0, or
"READY" bit, of the ACIA Receiver. It is normal practice to
to test this bit in a looping manner, exit from the loop
taking place when bit #0 = 1, that is when data is ready.

Write the instructions to examine bit #0 of the Status
Register. (No branching yet.)

/

LDA A  SERCSR
AND A  #$54
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Now add instructions to cause continuous testing of
bit #0 until data is ready, whereupon the data is to be

transferred to ACC A.

/

INLOOF LDA AR SERCSR
AMD A #FEl yXﬁ
BER INLOOF A
LH A SEREBUF

«———— DATA READY.

Reading of the data from the RECEIVE buffer, SERBUF, clears the
READY bit, sometimes referred to as a READY FLAG or DONE FLAG.
A timing diagram of these events is shown here.

few if repeated in a looping
RECEIVER microseconds type program
READY 1 —N A
BIT bit # - o
0 . /| .
!
Goes to 13 Automatically Data\ YData is read
when data/ cleared when READY into ACC A
is READY data is read, (LDA A SERBUF)
in Data €.Zey
Buffer. LDA A SERBUF.

Although the rate of transmitting and receiving data bits is fixed
there may be long time gaps between successive characters. Hence
the term "asynchronous" in the ACIA, meaning no specified number

of characters per second.
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Data to be transmitted in serial form by the ACIA‘;;;le
not be transferred to the ACIA's TRANSMIT data buffer until this
buffer is empty and therefore ready to accept a new byte. Bit #1
of the Status Register is the transmitter's READY bit. When in

the 1 state, it denotes this READY condition.

Write a short program to put the byte now in ACC A into
the TRANSMIT buffer when the transmiiter is READY. Warning:

Don't destroy data now in ACC A while testing for the READY
condition.

/

aLOOF LA SERCESR
M #E02 TA RERDYT
EEG aLaap
=TH SERBUF ouUT TO TH
EMC:

mm

T

The use of ACC B preserves the data in ACC A

printing time, based on
predetermined data rate

/ of the ACIA |
A
Transmitter READY - o
bit normally 1 0 7” o
while waiting for /
data. READY bit goes to 1
STA A SERBUF when transmission of

character is complete.

Note that the transmitter, while dormant, is normally READY,
waiting for data from the computer. In contrast, the receiver
in the dormant state is normally not READY, since it is waiting
for new serial data from the external device.
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Now write a series of instructions to echo serial data
from the ACIA RECEIVE line out on the ACIA's TRANSMIT 1line.

ORG

B

o+

*®
TFF4 SERCSR EGU
YFFS SERBLUF EGU

E 3
Be PFF4 INLOOF LDA
a4 a1 =1}
27 Fg BE®X
B& VFF3 LA
F& PFF4 QLOOFP  LDA
C4 az FAML
27 F9 BER
BEY VFFS STRH
EML:

mm>D DD

Ii

FazBy

$7FF4
$7FFS

SERCSR
#4091
IMLOOF
SEREUF
SERCSE
#E02
aLooF
SERBUF

RECEIYER RERDY?
GET CHAR IN A
T# RERADY?

OuUT TO TH

This is often known as an ECHO routine, permitting data which

is entered on the keyboard to be viewed by the user.

RXREDY EQU $01 is included in the above definitions.

To make this program more readable, the instruction
AND A #$01 could be replaced by AND A #RXREDY, if

AND B #$02 could be replaced by AND B #TXREDY.

Similarly
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Sometimes data, received by the ACIA must be stored,
byte by byte, in memory. Flow chart and write a program to do
this, the first byte going into address 1000. For now assume

no end to this looping type program.

/

INITIALIZE
ADDRESS LD #$100R—1
POINTER STX MEMADD  SET UF ADDRESS POINTER
MORTES LDA A SERCSR
FHD A #$81 R¥ DATA READYT

BEG MORTES
LR A SERBUF GET CHAR

ovTER LD¥  MEMADD
? Vooe IN
ST MEMADD  AND MNEW ADDRESS
STR A ¥ AND STORE CHAR
ERA MORTES  EBACK FOR MORE
MEMADD RME 2
STizglf iy

NEXT ADDRESS

| S

Here we see an inner loop testing the READY bit and an outer loop
storing data. This is known as a "nested" loop format.
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Modify your program such that receipt of 5A will cause
storage of this byte, then exit from the loop. Show changes only.

/

Before After

BRA MORTES CMF A #$5R IS IT 27
BEMNE MORTES

If your modification looked like this:

CMP R #$0R Is IT 27
BEG NE®T
BRA MORTES

NE®T

note that a conditional branch (BEQ NEXT) followed by an
unconditional branch (BRA) can usually be replaced by a
single branch instruction (BNE MORTES) of the opposite sense
(BNE vs BEQ).

Although the ASCII code for Z is 5A some terminals
produce "mark parity", that is the leading bit is always set,
resulting in DA rather than 5A. Other terminals may produce
"space parity" (leading bit is zero) or odd or even parity,
discussed a few pages later.
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The computer when connected via the ACIA to some output
device such as a printer or CRT terminal could send a specific
message to the computer operator.

Flow chart and write a program to output the message
BAD HEX CHAR to such an output device via the ACIA. Terminate

the message with a null.

7FF4

4 7FFS

INITIALZE
ADDRESS
POINTER

e —— |

GET NEXT
BYTE FROM
MEMORY

SERCSR

SERELIF
+

FRTMOR

QUTEST

MEMPHNT
MESERALD:

ALLDUN

/

EQU
EL

LDx
STH
LD
IN¥
STX
LDR
EE®
LDA
RAND
BEG
STH
BRA
RHME
FCC
FCE

E

I

$7FF4
$7FF5

#MESEBRD-1
MEMFMNT IMNIT MESS POINMT
MEMFNT

MEMPHT GET POIMT ADDRESS

* GET CHAR FROM MEM
FRLLEAIN GUIT IF MULL

SERCSE

#3832 OUTFUT DEVICE RERADY?

QUTEST MOT YET
SEREUF YES OUTFUT IT
PRTHMOR

-
[N

7BAD HEX CHARS
(5]
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TFFY
in this

example

Biae
"nigz
BiEs
@197
B16H

7-10

To operate the ACIA correctly the data rate at the
receiving end must be within 1 or 2% (5% would produce errors)
of the transmitted data rate. Hence the frequency of external
oscillator which determines the basic data rate for each ACIA
is usually crystal-controlled, as in modern electronic watches.

STA-
Tus

REG.

CON-
TRoL

REG,

B&
sS4
2[
BY
BV

Selection of data rates and control operations are
possible via the Control Register, a "WRITE ONLY"
register which shares the same address as the
"READ ONLY" Status Register. The diagram at the
left depicts these registers, assuming 7FF4 as the
assigned address. Hence LDA A $7FF4 reads from
the Status Register, while STA A $7FF4 stores in
the Control Register. The common symbolic address
in previous examples has been SERCSR.

The datd rate of the ACIA is determined by dividing
the external oscillator's frequency by 64, 16 or 1, under
control of bits #0 and 1 of the Control Register (see App. E1).
For example, if bit #1 is 0 and bit #0 is 1 ($16 mode) an

oscillator frequency of 9600 bps would produce a data rate
of 9600/16 = 600 bps.

Assuming that all other control bits are correctly set
ensure that the ACIA will operate at a data rate of 300 bps
when the oscillator frequency is 19200 Hz (cycles/sec).

Since the Control Register cannot be read to be modified, assume
that it is updated from ACIACR, a symbolic address in memory.

/

LDA A ACIACK GET ORIGINAL STATUS
AND A  #X14144436 CLEAR BIT B

ORA A #Xoooooaela SET BIT 1

STR A ACIACK UPDATE ORIGIMAL

STR A SERCSR

19200/300 = 64

Therefore bit #1 = 1 ) See
bit #0 = 0 )- Appendix
in the Control Register) E.

If both bits are 1 RESET takes place. This is necessary when
power is first turned on, before changing speed, parity, etc.
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Bits 2, 3 and 4 (see Appendix E) determine the nuﬁ;:;-
of data bits and stop bits of the data format. It also
determines the parity options for the data. Parity control
determines whether each transmitted data byte carries an even,
odd or unspecified number of ones, bit #7 of the data being

modified to produce odd or even parity.

The number of data bits and stop bits, plus parity
options must be agreed upon for both ends of the data link.
Although programmable, they are not usually changed once a
data link is set up.

Without disturbing unspecified Control Register bits,

set the ACIA for 1200 bps operation using a 19200 bps oscillator.

The data formed is to be 7 data bits plus 1 odd parity bit plus

1 stop bit. Again use ACIACR as the original for the Control

/

Register.

Bl188 B& ?PISE LA A RCIACR GET ORIGINAL STATUS
@162 24 ED AND R #214141611581 CLEAR BITS 4 AMND <4
a18sS 2R b ORA A #X08881181 SET BITS @, 2 AMC: =
Blay BFY 7ISE STAR A ACIACE UPLATE ORIGIMAL

@188 B7Y PFF4 STH B SERCSR  CHANGE CONTROL REGISTER

76 54 3210 <—bit #
|xxxo11o1

S~ S~
7 data =16
odd
1 stop

For your first few programs, which are not part of a larger
program, simply place the desired value in the Control

Register e.g. LDA A #%00001101
STA A SERCSR



7-12
Serial data processed by the ACIA essentially follows

the RS-232-C Specifications of the Electronic Industries
Association (EIA).

Voltage levels, source and load resistances,
connector type and pin assignments for data and control signals
are contained within this specification. Some of these control
signals are produced by the ACIA for the serial device. Others
are produced by the serial device for the ACIA.

One control signal is RTS (Request To Send), which is
produced by the ACIA when requesting permission of the serial
device, a printer perhaps, to send data to it. This signal
is active when low hence is called RTS, the bar over RTS
indicating inversion, that is when RTS = 1, RIS = 0.

RTS
is determined by Control Register bits #6 and 5.

The usual response by a serial device (printer) upon
receiving RTS = 0 is to activate a control line to the ACIA
called CTS (Clear To Send), also active when low.

This exchange of control signals, usually preceding data
transmission, is often called "hand shaking" and can be used to
permit data transfer only when a device is turned on and
operational. The RTS line can alternately be used as a control
line without feedback (CTS is ignored), perhaps controlling a
function in an external device.

Control Register bits #7, 6 and 5 remain to be discussed.
Bit #7 controls receiver "Interrupt" operations (Chapter 11) and
is assumed to be 0 for now. Similarly bit #5 is assumed to be 0
since it controls transmitter "Interrupt" and "Break" operations.
With bit #5 = 0, bit #6 controls the RTS line; RTS = O when
bit #6 = 0, and 1 when bit #6 = 1. See Appendix E for details.

The following program is tos

(a) initialize the ACIA for operation with:
- 7 data bits, even parity and 1 stop bit.
- data rate of 600 bps when the oscillator

frequency is 38400 bps.

(b) set RTS = 0.

(c) send the ASCII code ACK {acknowledge) after the
external device (printer) clears CIS.

Contd.
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Contd.
L )
rFFg SERCER B FTFF4
TFFES SEREUF EL ¥TFFS
TESE AZIRCR EQU T EEE
EJ
BluE BE FIES LA A ACIRCE
qia= 24 2/ AND A #X18681016
H18S 2H B8R ORA A #X80001818
1187 BY FIS STH A HZIARCE LUFLRTE CORIGIMNAL
#lER BY VFF4 STH A SERCSR
818l F& FFF4 MOTYET LR B  SERCSRE
@lia C4 aRf AMD B #X00001849
811z -1 a2 CHMF B #X00008016
Biigd 2 F? EME MOTYET
qi1s SE ae LOA A #f6s
112 BY PFFS SZTA B SEREUF

Explain the function of the 4 instructions starting
with LDA B SERCSR

/

7654321 0<wbit i

00001010 Control LDA B SERCSR and
\Tga “"_—/ [ Regls‘ter AND B #;000001010 uexposen
TS = 0 7 data. |64 Status Register bits #3 & 1.
even < :
parity. - CilP B ##00000010 tests for
1 stop bit. 0 in bit #3 (CTS=0) and

1 in bit #1 (Ix READY).

XXXX0X10 Status '
CTS O}_/} t\ Register BNE NOTYET branches back if

Transmitter either condition is not met.

CTS 1 READY
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Returning to the Status Register, other bits not yet

discussed are:

- Bit #2 - Data Carrier Detect or DCD an input to the ACIA from
a "modem” used to transmit serial data over a telephone
line. DCD = 1 if loss of tone occurs on the telephone line.

- Bit #4 - Framing Error goes to 1 when a stop bit is missing,
usually due to an erroneous start bit.

- Bit #5 - Receiver Overrun - goes to 1 when data is lost due to

too slow reading of the Data Buffer. It is cleared by reading

the Data Buffer.

- Bit #6 - Parity error, goes to 1 when the parity of the
received data differs from that expected, based on the Control

Register contents.

- Bit #7 - Interrupt Request state (Chapter 11).

Write a few instructions to ensure that the Framing Error,
Receiver Overrun and Parity Error bits are all normal (zero). If

one or more is wrong, branch to ERROR.

TFF4 SERCSR

TFFS SEREBLUF
+

Be TFF4

=1

26 59

EGU
E@L

LCH
AN
ENE

/

$7FF4
$7FFS

SERCSR
#:201110609
ERROR

CHECK FOR 2 TYPES OF ERROR

765432 10«bit #

X000XXXX

||
POF



- PIA -
PERIPHERAL INTERFACE ADAPTER

In the previous chapter we worked with the ACIA which
transmits and receives serial data in a fixed format at a
predetermined rate. This chapter involves the Peripheral
Interface Adapter (PIA), a device which transmits and receives
data in parallel form at an unspecified data rate.

The PIA is comprised of 2 almost identical sections,
A and B, each capable of transmitting or receiving 8 bits of
data. A block diagram of the "A" half of the PIA is shown
below. For each section there is a Control Register (CR) and
a Data Buffer, both having similar functions to those in the
ACIA, plus a Data Direction Register (DDR) which determines
which bits of the Data Buffer are inputs and which are outputs.
Both the Data Buffer and the Data Direction Register share the
same official memory address, the selection bétween the two
depending on the state of bit #2 of the Control Register.

Assume address 7FF0 for the DDR and Data Buffer for the
A half of the PIA. Automatically its Control Register address
would be 7FF1. For the "B" half of the PIA the addresses would
be 7FF2 and 7FF3 (Data Buffer and DDR = 7FF2, CR = 7FF3).

PR W S W /// ‘ CoN"'&oL
IFFO TFFL 24' %] REGISTER

| . =

Bit #2 of Control Register
] o] g R

(Bit #2
(Bit #2

0 —serve DDR)
1 -——serve Data Buffer)

Let's assign symbolic addresses to these two memory
addresses, PIABFA being the "A" half Data Buffer (and DDR too)
at address 7FFO. Similarly PIACRA would be the "A" half of
Control Register at 7FF1. For the "B" half the corresponding
symbolic addresses would be PIABFB (Data Buffer and DDR) at 7FF2,
and PIACRB (Control Register) at 7FF3.

Contd..
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L )
As noted in the previous diagram, if bit #2 of
PIACRA = 0, then data destined for PIABFA goes to the "A"
Data Direction Register. If this bit #2 = 1, the data will go
to the "A" Data Buffer.

The Data Direction Register stores 8 bits, each bit
independently controlling the data direction for the
corresponding bit of the Data Buffer; 1 = output, 0 = input.

Write the instructions to ensure that all PIA data
lines for the "A" half of the PIA will be input lines. Note
that the first task is to address the Data Direction Register,
via bit #2 of the Control Register.

e

*
TFFE FIREFA EQU *VFF@
rFF1 FIRCEA EQU ¥YFFL
o
81@aa Be FFFA LA A FIARCRA
B18% 54 FB AND A #xXid11118414 CLEAR BIT 2 TO ACCESS DDR
A1as> BY FFF1 STA A PIACRA
ales VF YFFa CLE FIREFA SET A HALF FOR INFUT
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The routine in the previous frame would normally be

found within a RESET program which is automatically executed
when the microprocessor power is first applied or when the

RESET button is depressed.

More details on such initializing

operations are contained in the Interrupt Chapter.

Write the instructions for a RESET routine to set up

the "A" half of the PIA for input and the "B" half for output.
This routine should leave the PIA ready to load and store data.

a1o8
818z
a1eS
8168
aiae
818D
a11a
811z
0115
8118
a1in
811D
a1z2a
8122

7FFa
rFF1
°FF2
°FFZ3

B
84
B?Y
7F
2R
B7Y
F&
84
B?
26
B?
ES
SH
B?

7FFi
FE
vFF1
YFFa
84
TFF1
TFFZ=
FE
TFFZ=
FF
7FF2
TFFZ
a4
YFF2

*
FIRBFA
PIACRA
FPIRBFE
FIARCRE
*
AHARLF

EHALF

EQU
EQU
EGL
EGU

LDH
AND
STH
CLR
ORA
STRH
LDR
AND
STH
LDA
STH
LDA
ORA
STAR

s (b i &

IPIIDITTIDTIITDIDIDX

/

$7FF@
$7FF1
$7FF2
$7FF3

FIACRA

#%11111811 CLERR BIT 2 TO ACCESS DDR
FIRCRA

PIREFH SET A HALF FOR INPUT
#100680188 EBIT 2 = 4 FOR DRTA

PIRCRA

PIACRE

#411111814 CLERR BIT 2 TO RCCESS DDR
FIACRE

#x114144411

FPIAREFE SET B DDR FOR CQUTPUT

FIACRE GET CR RAGRIN

#i00Ba0168 BIT 2 = 4 FOR DATA

PIACRB
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Assuming that the B half of the PIA is already
initialized for output (see previous frame), set bit #5 and
clear bit #3 of Data Buffer B, without disturbing other Data
Buffer bits. From now on assume PIA Register definition
(PIABFA EQU $7FF0 etc.), unless otherwise requested.

LA A FIABFE

ORA A #X0alo066a SET BIT 5
AMD A #X41118411 CLEAR EBIT 3
STH AR FIAEFE

The PIA could be controlling a machine tool, with the changes
in bits #3 and #5 representing control signals for the next

machine process.

8-4
What is the state of bit #2 of PIACRB during the

previous frame?

Bit #2 of PIACRB = 1 permitting communication with the Data
Buffer rather than the Data Direction Register.

822
The PIA could be used with a 6800 microcomputer in an

automobile sensor and alarm system. Assume INDATA as Data
Buffer A, at address 7FF0. Also assume the following bit

assignments for INDATA.

Contd...
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Contd.
The input Buffer, INDATA, has the following bit
assignments.
Bit ﬁ Function Status if 0 Status if 1
0 Seat Belt Monitor disconnected fastened
1 Door Monitor closed opened
2 0il Pressure Monitor low normal
3 Ignition Monitor ignition off ignition on
4 Gear Shift Monitor park/neutral all others
5 Engine Monitor not running running
6 Day/Night Monitor night day
7 Headlight Monitor lights off lights on
The output Buffer, OUTDAT, has the following bit
assignments.
Bit # Function Status if 0 Status if 1
0] Buzzer off on
1 Bell off on
2 Panel Alarm Light off on
3 Starter Control starting starting
disabled enabled

Flow chart and write the instructions to ring the bell
if the ignition is off and the headiights are on. (I wish
that I had that on my car.) Assume previous initialization of
the PIA for input on Buffer A and output on Buffer B.

¥
CHRCHE LDR

B1E88 BS FFFG A INDATA
B18z 85 ag BIT A #xovoolio6o IGHN?
8185 25 49 EME HOBELL
aia? 25 20 BIT A #X18800066 LIGHT?
gi189 27 45 BEQ NOBELL
H1B8E BE PFFZ LDA A OUTDAT
B1BE SR az OFRA A  #Xo0006816 BELL?
ai1a B? VFFFZ2 STR A OUTDAT RING BELL
#
y *

EXIT RING BeLL

NOBELL .
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This time permit the car to be started if and only if:

(a) seat belt is fastened and

(b) gear shift is in Park or Neutral and

(c) door is closed.

otherwise turn on the buzzer.

First flow chart your solution.

OTHERS (V)

PARK OR
NEVTRAL

(o)

OPEN (1) - DooR

?

CLOSED (o)

BVZZER oN

OK TO START

Y

!

/

Your order of checking

the functions may correctly
be different. The order
shown here leads to
slightly easier testing

as seen in answer in the
next frame.



ai1z22
8125
a127v
81239
vize
812D
Bi1za
81zx2
a1=5
B1z?
B13R
B1z3C
B1zF

B&

27

8-7

A

Now write the program, preferably using the flow chart
shown in the previous frame.

rFF@a TESCAR LDA
a1 BIT
20 BER
i2 BIT
@A EBE®
rFF2 BUZZ LCA
gl ORA
rFF2 5TA
a8 BRA
YFF2 OKTOGO LDA
ae URA
°FF2 STH

E1 DONE

I

I D I

o o R 2 s 1

INDRTR
#HHXAAGGEEL
BUZZ
#loBal1a01a
OKTOGO
CUTDAT
#HBO0A0G0E1,
QUTDAT
DONE
OUTDAT
#%00001008
ouTDAT

/v

ovT

BELT OMW?

GERR SHIFT AND DOOR?

BLZZ

OK TO START

7654 3210bit ¢

£ Belt on
XXX 0XXoO 1)
1 A___ Door
closed

Park or Neutral

3 p v (o]

Start |Light | Bell | Buzz

By grouping the Gear Shift and Door checks together the single
instruction BIT A #300010010 will cause a branch via BEQ OKTOGO
if and only if both bits are 0.
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Transfer of data between the PIA and an external device
takes place at an unspecified rate; hence control lines are
needed between the PIA and the external device to indicate to
the PIA when the data is ready and to the external device when
the data has been read. This provides a "hand shaking" linkage
similar to that possible via RTS and CTS in the ACIA.

For the A half of the PIA two control lines, CAl (input
to the PIA) and CA2 (input or output) are available. CA1l could
inform the PIA, acting as a

C M o« data receiver, that data is
PiA now available. When this
AT, ExtaamaL data is read by the PIA, CA2

A could inform the external

N YT device that data has been read;

therefore another byte could be
placed on the data lines. CB1 and CB2 could perform similar
functions for the B half. Both CAl and CA2 are controlled by
specific bits of Control Register A as shown below.

7 0 - bit #
CA1 A r /////
CONTROL 7 I l // // o
| X 0 for Non-
CA1 READY Bit T Interrupt

goes to 1 when A Operation for CA1l
CA1 goes ACTIVE
If 1 CAl goes ACTIVE in going HIGH.
If 0 CA1l goes ACTIVE in going LOW.
The 3 bits associated with CA1l are shown above. We are
not using interrupt at this time; hence bit #0 = 0. Bit #1
determines whether CAl sets the READY bit (#7) when CAl goes
LOW (if bit #1 = Q) or HIGH (if bit #1 = 1). The CAl1 READY
bit (also called IRQA1l in Motorola literature) indicates, when
going to the 1 state, that CAl has gone ACTIVE.

If bit #1 WG — If bit #1
[T
= CAd = .

0 Low 1 Ry .
in the in the ow
Control Bits 1o Control Bt -
Register qzhdYy e Register can READY

(o) D LY —_— &

Contd. LN
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Contd.
The PIA "READY" bit (similar to the ACIA "READY" bit)
will be cleared automatically when data is read from the Data

Buffer, e.g. LDA A PIABFA. Bit #7 of the Control Register

is a READ ONLY bit, and therefore cannot be set or cleared
by a STA A PIACRA instruction.

Initialize Control Register A so that CAl's READY bit
is set when CAl1l goes HIGH.

Do not disturb the other Control
Register bits.

/

XXXXXX1X

1 {~ Assume O

Set .
€ (no interrupt)
aiaa Be TFFL LA R PIACEA _ )
s o M = 1= O ey ORA A/ #XoERaedls SET BIT 2
BLBRS BY FFFL STH A FPIRACERA

Note that it is the transition (LOW to HIGH or HIGH to LOW)

which causes the input Control Lines to become ACTIVE, rather
than the final level of these lines
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When bit #5 of Control Register A = 0, CA2 also acts

as an input line similar to CAl1. Bit assignments for PIACRA
are as follows.

b3
/ 7/'1? N

]L t-O for "no interrupt"
(o

CA2 ACTIVE in going LOW
(1 = CA2 ACTIVE in goinsz HIGH

0 for input operation of CA?
CA2 READY bit (read only) 1 = READY

nwon

Bit #5 = 0 for input. Bits #4 and 3 behave the same as bits #1
and 0 for CA1l.

Assume that both CA1 and CA2 are to be input control
lines, CAl being ACIIVE in going LOW and CA2 being ACTIVE in
going HIGH. Write the instructions to produce this. Also
set up the A Data Buffer for input operation.

/

XX 010X 0 O0sControl Reg. A
A t.k~CA1 no Interrupt
CA1 ACTIVE LOW
0 to set direction
then 1
CA2 no Interrupt
e e S 'CA2 ACTIVE HIGH
VFFE FIREFA EQ E¥PFFE \
TFFL FIACRA EQL FTFFL CA2 Input
TFF2 FIFREBFE EQLU ¥FFF2
FFFZ FIACEE ERL F¥FFFE
188 Be FRFL LA A FIACER
A1aT 24 e ARG A #$EL1a1a088
BiEas BY FFFL STH B FIHIFH SET FOR  DDE )
aies VF FFFA& LR FIABFA IHNFUTS FOR A HALF
#lae S8 14 ORE A #E8EELELRE DARTAR BUF KO
aiah BY TFFL STH A FIACEA
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There are 3 possible modes for CA2, acting as an output
(bit #5 = 1). The first is seen when bit #4% = 1. CA2 will now
act as an output line whose state will be determined by bit #3,
(0 produces LOW, 1 produces HIGH).
7 6 5 4 3 2 1 0
1 1

- CA2

Assume that to communicate with some external device CA2
is to go to the HIGH state for 1 millisecond, then go LOW.
Also assume that the instruction JSR MILSEC (subroutines will be
covered in the next chapter) will cause a delay of 1.0 milli-
seconds. Write the necessary instructions assuming that CA2 is
presently LOW.

TFF& FIREFA EGL *FFFa

TFFL FIACEA EGU ¥7FF1

TFF2 FIAREFE EQL $7FF2

rFFZz FIACRE E&LU ¥7FFZ=
|i0a BS TFFL LDA A PIACEA
B1@E 2R 28 OFRA A #2E0111868 SET BITS S, 4 AND =
8183 BY FFF1 STH A PIACRA MOW CARZ=
Bias BD @141z JER MILSEC OME MILLISEC DELAY
B18E BSs FFF1 LA A PIACRA MILSEC MAY USE ACC A
G18E 24 F7 AMD A #X1134811d CLERR BIT =2
ga1ie BT PFF1 STR A PIACEA CARzZ=8

Such an output control signal on CA2 could be produced after
data reception on the A half of the PIA to order the data
source to change mode of operation. For lack of a better name
let's call this the PROGRAMMED mode, since the state of CA2 is
determined by program control.
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CA2 may be used as an output control line in a "hand

shaking" mode when bit #5 = 1 and bits 4 and 3 = 0.

mode the A half acts as a data receiver. CA2 will go HIGH

In this

automatically when CA1 goes ACTIVE (HIGH in this example) and
will go LOW automatically when Data Buffer A is read.

HiG it
on | |

& Data Ready

HiGwn

-1

CA2 follows
CAl1 state.

\~Data Read.
Therefore CA2
is LOW.

CAL

—

>+0

-

DATA
LTI gounce

8 LINES
OF DATA

CA2

P
Lo

When CA2 goes LOW the external device will know that new data
may be put on the data lines.

Flow chart and write the instructions to read the data
from the external source via the PIA (A half) when CA1l goes HIGH,
automatically indicating via CA2 that the data has been read.
Store the data starting at 0800, terminating data storage
after FF has been read and stored.

/

Contd...
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Contd.
* e e )
FIAHAN LD #$ESBO-1
IN\'T PIA ST MEMFMT  IMIT POINTER
LOA A FIACRA
AND A #711100018 BITS 4,3.2.6 = g
STA A PIACRA

CLR FIREFA INFUT MODE HNOL

ORA A #2601068116 SET BITS 5.2 AND 1
STA A PIACRA  DATA EBUF HOW
INMAIT LDR A PIACRA
EPL IMMAIT  WAIT FOR READY FLAG
LDR A PIAREFA  GET DATH
STORE 17 LDX  MEMENT
TN
ST  MEMPFMT  GET STORE RDDRESS
No STH R ¥ AND STORE GATA
| CHMP B #3FF
ENE INWAIT  WNOT LAST DATA
Ces HR ERA  HR ALL DONE SPIN FOREVER
MEMPNT RME =
8-12
L )

In the same hand shaking mode (bit #5 = 1, bits
#4 and 3 = 0), the B half of the PIA acts as a transmitter.
Here CB2 will go HIGH when CB1 goes ACTIVE (HIGH in this example)
and will go LOW when data is written out (stored) in Data Buffer B.

Sketch timing diagrams for CB1 and CB2 indicating the
reason or significance of each change. When working this out
think of what information the PIA (transmitter) and the external
device (e.g., printer) need to know to transmit data without
loss of data or loss of time.

/

— Wiey

C81 (in)

Low

R .data received by printer, therefore new data
can be put on data lines by PIA

CcB2

{out)
QBZ‘\ new data now available in
follows PIA, therefore CB2 goes LOwW
CB1 state

Again the hand shaking operation permits optimum data
flow. Although the printer would not normally store more than
132 characters for one complete line of text, the data rate within
this line could be as high as 50 000 characters/second, limited
by the computer's clock and the number of instructions per loop.
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One last mode, the STROBE mode is available when ==
bit #5 = 1, bit #4 = 0, and bit #3 = 1. It is similar to the
previous HANDSHAKE mode in that CA2 goes low when data is read
(LDA A PIABFA) into the A Data Buffer. It differs in that CA2
automatically returns to the 1 state several microseconds (one
instruction) later. Similarly, in the B half of the PIA, CB2
goes low when a write operation (STA A PIABFB) takes place and
returns to the 1 state automatically, several microseconds
This mode of operation releases CAl and CB1 for other

tasks, but assumes that data is always ready for the "A" half

later.
and that the external device is always ready to receive data

from the "B" half.
shown below.

CAl1l (CB1
(input only)

A summary of control line operations is

7 6 5 4 3 2 1 0
', ' 7 oLV 77,
'%%%J l l ] [ %%/%kZQ;
| i .
CA1 (CB1) . j;‘ Lo for no interrupt
READY BIT OfDDR access (0 = CA1 (CB1) ACTIVE in
(read only) via Data Buff ( going LOW
1=Data Buffer (1 = CA1 (CB1) ACTIVE in
access ( going HIGH
cA2 (CB2) | ,
bit #5
0 = input J 1 = output
4 N
7 6 5 L 3 2 1 0 bit #4
AZ’#”%,f'ffﬂy ’ =1 A =0
17 Aoihligd 1 ] | procrawMED moae
~ CA2 (CB2) bit #3
CA2 01 1 1 =
(CB2) 0 for no follows bit #3 =01 =1
READY | interrupt
BIT \\ f

CA2 (CB2) ACTIVE |
going LOW:

CA2 (CB2) ACTIVE
going HIGH

HANDSHAKE mode

CA2 (CB2) goes HIGH
following CA1 (CB1).
CA2 goes LOW after
READ from A BUFFER.
CB2 goes LOW after
WRITE to B BUFFER.

No answer is required in this frame.

STROBE mode
CA2 goes LOW
momentarily after
READ from A Buffer.
CB2 goes LOW
momentarily after
WRITE to B Buffer.
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8-14
Here is an application of the PIA to
detect which of the 4 keys, A, B, C or
D was depressed. CA2 provides logic 0
to all 4 intersections, the depressed
key passing on this 0 state to the
appropriate input. The symbol at the
top of the diagram is an «
"inverted input OR gate” §§i::::>'“
whose output goes to the 1 state if

one or more of the inputs go to 0.
PIA lines 4 to 7 are not needed.

Write the initialization instructions for the PIA to
set up CAl as an input (ACTIVE high) and CA2 as an output,

The Data Buffer should be set up as an input.

/

Xx110% 10
S Ny’
CA2 CA1
output input
= bit #3 active
high

FIA FROG FOR FOUR KEY EEYBOARD.
CHz TS QUTRUT T SHITCHES, CRL IS
THFUT TO FIA. DATA GOES TO LOW 4 BITS.

K3

B

o

£
VFFL EEYFIA LOA
Fa ML
FEFA =TH
- FFFi& CLR
26 OFEA
T VFFL =TH

B
-
B
puoe
m o
]
1T

L e 4

T

FIRZEA

20t W M M W51 B

FIACERA HCCESS Dl
FIREFA DATAH THFUT MODE
#eaEailatim

= TACREA CRTHE MODE MO
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Now flow chart and write the instructions to branch To
KEYA, KEYB, KEYC, or KEYD, corresponding to a depression of

keys A, B, C or D.

| e

NO

Yes
GET DATA

For short tests this "brute force" method is acceptable.

TRYHGM LDA
EFL
LOH
AMD
EIT
BE®X
BIT
EEL
BIT
BER
BIT
EEL

T I I I

I I

I

FIACREA
TEYRGN
FIREFA
#FOF
#¥0:1
FEYH
#E02
KEYE
#F04
KEY(C
#E38
EEYD

CH1 MOT UP YET

UFP MO

LOWER 4 BITS OMHLY
FEY R HIT?

YES.
FEY B HITY
KEY C HIT?

FEY [ HIT?

For

longer checks, data table lookups should be used.
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Whenever mechanical devices such as switches are used
there exists a problem of contact bounce; that is the contacts
may close, open, then close, several times within a few milli-
seconds of the first contact before settling down to a "closed"
or ON condition. Data or signals from such a switch are highly
unpredictable during this transient period, hence a timing loop
of perhaps ten milliseconds should be introduced after the
first contact detection, via CA1 or CA2 before the PIA Data
Buffer is read.

Assuming a 1MHz (106 cycles/sec.) clock in the 6800
microprocessor, the number of microseconds per instruction

executed can be determined from Appendix C under the ~~ column
denoting the number of machine cycles per instruction.
LDX #$0400

an immediate mode instruction, requires 3 cycles or 3 micro-
seconds.

What is the execution time per loop ins

MORBEX DEX
EHE MORDE

MORDEX DEX 4 CYCLES
EBNE MORDEX 4 CYCLES
*

* 2 CYCLES TOTAL
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To get 10 msec., then the # of loops required =
o ,_8

= 1250,, loops
103 © 10% 10

Initialize the counter for this value and write the
complete delay routine.

/

MHAM FROGES

aFT o, 5
ORG k3% s (6]
Y
# PE-17
E
CE @4EZ2 TIMER LD #1250 <6— No $ sign for decimal #.
(G MORDER: DES 4 CYCLES
=& FD EME MORDE 4 CYCLES
+
e 2 CYCLES TOTAL

This routine would then be executed when CA1l first detects
a key hit, which would occur when the key is depressed, and
probably upon release, which also produces transient pulses. Hence
the state of CA1l should be checked after the delay. If CAl is still
1 it is a legal key hit. If 0, it is probably due to "bounce" upon
key release, which could then be ignored by the program.



3-18

A stepping motor is another application of a PIA.
Imagine 3 electromagnets or coils, A, B and C, placed at equal

angles around a magnet which is free to turn.

N
3 g_

o 4
W NS

Each of electromagnets A, B and C are directly under control
of a PIA Data Buffer bit, as shown in the diagram below.

A magnet is ON when the appropriate bit is in the 1 state,
and OFF when the bit is 0, Energizing magnet C causes the
North pole of the central magnet to rotate to the South pole

at C.

C

B

A

PIA Data Buffer B

Set up the PIA to cause the central magnet's North pole

to point to A.

Assume that PIABFB is already initialized for
Also assume that the South pole of each energized

electromagnet is the closest pole to the magnet, as in electro-

/

output.

magnet C.

B8 SE Wl MAGA LA A #3561
alaz BY VFFA STH A FIABFE
Bit #0 (electromagnet A) is ON.
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How would you suggest having the N pole of the central
magnet point to a half way between A and B? Write the
instructions.

/

Az MAGRE LDA
VFFE =TH

l_,_l Fl

1L
B1e

=}
]

I

#EH
FIfc

'T! l‘.\l

bt I
II bx]
m o0

{FE

Both A and B are ON and equally attracting the N pole, causing
it to point between the two electromagnets, at about the 2
o'clock position.
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Write the instructions to cause the central magnet to
move clockwise continuously, starting at A. Assume a delay
subroutine call JSR DELAY, which introduces a delay between
each change to slow down the computer changes to acceptable

rotational rates.

Data Buffer

al1ea S @1 MAGH LOR A #$81
aiez BY YFF2 STH A PIAEBFE
a1as BL @i1zx2 JER LELAY
aips 88 @z MAGARE LOA A #$83
ai1eR BY FFFZ STH A FPIAEFE
agialb BD 01z=2 JSR DELAY
500 B 7 2 2 MHGE LA A #$62
Bi1z BY PFF2 =TH A FIAEBFE
89113 BD @122 JSR CELRAY
ails 8& 88 MAGEC LDA A #$f8s
11/ BV VFFZ =TR A PIABFE
a11b BD 61z=2 JER DELAY
128 26 a9 MAGC LDA A #5049
Bize BY PFF2 STR A FIABFE
@125 BD 81z JSR DELAY
aizg Se as MARGCA LDA A #$85
G12H BY PFFz2 STR A FPIREFE
a1zl BL B1z2 JER DELARY

Biza 28 CE BRA MAGAH



How would you modify the angular velocity for this
stepping motor, under program control?

/

The constant used for the delay could be entered via a keyboard

e.g., using the keys 1 - 9, each producing a different constant
and therefore a different angular velocity. The smaller

constant would then be down-counted sooner, producing a shorter
delay, hence a higher speed.

Modern stepping motors usually have many (dozens) of
coils around the circumference, alternating between A, B and C
groups, each group being driven by one specific line, hence
PIA bit. An output of the sequence 001, then 010, then 100
would represent one cycle, usually a few degrees. Reversing
the order would reverse rotational direction.
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SUBROUTINES

In previous chapters we have used subroutine calls
e.g., JSR GETCHR which caused the ASCII code, for the key struck
on keyboard, to appear in ACC A. Such a subroutine call causes
execution of a group of instructions, headed by the label GETCHR
and terminated by

RTS - ReTurn from Subroutine.

After this subroutine has been executed, the next instruction
executed is that following the subroutine call, e.g.

J=R SETCHE -*___——/
STR A KEYDAET

A program can be made up of a series of subroutine calls,
each causing execution of a particular subroutine, ito carry out a
specific task. Each subroutine should have only one entry point
and one exit point. Entry and exit conditions should be well
documented in the accompanying comments, e.g., "Enter with X
pointing to the head of a message, and exit when the message has
been printed, with ACC A and ACC B contents being overwritten."
Each subroutine can be individually tested and then used with
confidence when called within the main program.

Program planning should be in "top-down" format, with
overall tasks being defined first, and from these tasks the sub-
tasks defined. Each task can then be assigned to a subroutine
which in turn can call lower level subroutines to carry out the
sub-tasks. Subroutine calls can be many levels deep, if
necessary, those at the lowest level being responsible for the
simplest tasks, like checking a READY bit in an ACIA or a
control line in a PIA. The overall result is a hierarchical or
pyramidical structure, the top levels being general or "global",
the lowest levels looking after detail.

Contd. LN
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Contd.
A

A typical subroutine, properly documented, is
shown here:

# GETCHR. . . SUBROUTIME WHICH RETURMS WITH
# ASCIT CHAR IM RCC A ¥ AND B MOT CHANGED
*
FFF4 SERCSR EGU $7FF4
TFFS SEREBUF E@L ¥7VFFS
E S
8187 B YFF4 GETCHR LDR A SERCSR
giBer 24 Bl AMEs A #3581 DATA RERDY?
alac ¥ OF3 EE GETCHR MNOT YET
H18E BE PFFS LA A  SERBLUF YES. GET DATA
Bill =23 RTS AND EXIT.

Such a subroutine can be called from anywhere within a program,
avoiding duplication of the above instructions.

A subroutine call JSR ECHO is to cause the character,
struck on the keyboard, to be printed or displayed on the
terminal used. ECHO itself could call 2 other subroutines.
Based on this information write the subroutine ECHO, using only
3 instructions. A subroutine called PRINT is available, to
print the ASCII character in ACC A.

/

* ECHO. . . SUBROUTINE TO RACCEFT RSCI CODE FROM ACIA
* RECEIVER AMD ECHO IT ON THE ACIA TRANSHMITTER.
* CHALLS GETCHR AND PRINT SUBS. .

£
8iea Bl 8187 ECHO JSR GETCHR GETS INWFUT
Riaz BD @11z JER FRINT ANC QUTPUTS IT
aies =29 RTS AND RETURNS

At this point the details of GETCHR and PRINT are not necessary
except that they both use ACC A.
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Assuming communication to the printing device via the

ACIA, convert the instructions shown below to a well documented
subroutine called PRINT.

PRINT LDA B SERCSE
ANC B #$82 RERDY TO FPRINT?
BER FRINT HOT YET.
S5TH A  SEREUF PRINT CHAE.

/

*
#* FRINT. .. SUBROUTINE TO FRIMNT ASCII COMTENTS
* OF ACC A ON ACIA QUTFUT DEVICE. USES A AMD E.
E

8112 F& FFF4 PRINT LDA B SERCSR

B14s C4 az HND B #$£Q32 RERADY TO FRINT?

ai11y 27 F2 EBER FRINWNT HOT YET.

Hii3 BY PFFS 5TH R SEREUF FRIMT CHFAR.

a141c =9 RTS AMD RETLIREM.

The documentation is just as important as the instructions
written. Fight off the sometimes overwhelming urge to write

undocumented programs, which usually end up in the waste basket,
six months later.

We could depict the subroutine hierarchy as:

ECHO
y'e N
GETCHR PRINT
implying that ECHO calls both GETCHR and PRINT. For lack of a
better name let's call this a "subroutine tree".
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Imagine a system where the computer is to receive‘--
inputs from 2 ACIA's. It would not be feasible to have the
computer wait in a loop for ACIA #1 since it could lose data
from ACIA #2. The computer could alternately check ACIA #1,
#2, #1 etc., receiving data from an ACIA that is ready. (The
Chapter on "Interrupt" presents another solution.) A
subroutine to check the READY status of ACIA #1, without

reading data, is shown here.

aioe Be YFF4 INCHEL LDR R SERCSL

8182 34 @1 AND A #$81 DATH RERDY?

BiEs 27 82 EEQ! MODATA

aiay 8bh SEC GOES HERE IF DRATA RERDY
gias =9 SELRTH RTS

ai1e9 ac NODRTAR CLC GOES HERE IF NOT RERDY
ai8A 28 FC ERA SEL1RTM

Upon exit from this subroutine what is different, when data is
ready, compared to when data is not ready?

/

The C bit is set when data is ready, and cleared when data is

not ready.
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In Appendix C find 2 instructions, each of which branch
conditionally, depending on the state of the C bit. Use one of
them in the main program below, upon return from the subroutine
INCHK1 to determine whether or not to store data, MEMAD1 being
the pointer. If that is not too difficult repeat for ACIA #2,
where MEMAD2 is the pointer within INCHK2, which similarly checks

if ACIA #2 is ready.

/

—f

BCC - Branch if Carry CHECK1 JSR INCHK1 ACIA #1 READY?

bit Cleared BCC CHECKZ2 MO DATA HERE
or BCS - Branch if Carry LD MEMADL
bit Set I
STH MEMARD4 GET FOIMNTER
LA A SERBFL GET INFUT DRTH
STR A ¥ AND STORE IT

CHECKZ JsSR INCHKZ ACIA #2 READY?
BCC CHECKA ND DATA HERE

LDx MEMRADC2

INE

STH MEMALD:2 GET POINTER

LDA R SEREFZ GET DATA FROM #z
STH A XK AND STORE IT.

BRA CHECK4

The use of the C bit permits decisions-to be made within
a subroutine, without violation of the requirement for a single
return to the mainline program, via one RTS instruction. The RTS
should be the only means of exiting from a subroutine. To violate
this rule, e.g., via a branch instruction, destroys the modular
design of your program and makes de-bugging a nightmare.
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Let's look at a subroutine HEXADD which expects 4 hex
keys to be struck, and stores the corresponding 4 character
hex value in 2 consecutive bytes of memory. For example if
keys 2, 3, C and 5 are struck, the 2 bytes of memory would look
like thiss

~—— 1 byte 1 byte ——
oo 1[0[0[0]1]1]1]1]0]0]0[1[0[1'
Ne— 2 — \._3_/ \-C..-_« \_,..5___/

Approaching this from a "top-down" direction, assume that we have
a subroutine INBYTE which would return with 2316 in ACC A when
two keys, 2 and 3, are struck. Write the subroutine HEXADD which
calls INBYTE and produces the 16 bit binary contents in the two
memory locations, ADDRES and ADDRES+1.

/

#* HEXADD. . . STORES 2 BYTES IN MEM AT LABEL RADDRES
# CALLS INBYTE TWICE. UWSES RACC A

*®
fglea BL 811 HEXADD JSR INBYTE GET & BITS IN ACC A
Aal1ez BY adi8D STA A ADDRES AMD STORE THEM.
fgiee BD 011X JER INEBYTE S MORE BITS
B185 BEY @18E STA A ADDRES+1 INTO NEXT ADDRESS.
giec =9 RTS

ai8b Boez2 ADDRES RME 2
s

a1z INEYTE EQU #0113

This "top-down" approach assumes that we could write the INBYTE
subroutine, if it is not already available.
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Now also assume that INBYTE returns with the C bit set
if an invalid hex key was struck; otherwise C is cleared.
Modify the HEXADD subroutine to check for this abnormal condition,
restarting the HEXADD subroutine when such an error is detected.
Modify the documentation accordingly.

/

B
# HEFADD, . . STORES 2 BEYTES IN MEM RT LABEL. RDDRES
# CHLLS IMEYTE THICE. CHECKIMG FOR ERROR MWITHIM BYTE
# SUE VIR SET C© BIT. RACC A LUSED.
E
*
#i8e BD 8142 HEXADD JSE INEYTE GET & BITS IN ACC A
a1ex 25 FB BCS HEZADD RESTART IF ERREOR.
Blas BY 8411 STR A ARDRES ELSE STORE THEM.
alas BD 811= JSR INEYTE 8 MORE BITS
alag 25 F= BCS HE=RDD RESTART IF ERROR .
B16al BY 8442 STR A ADLDRES+1L ELSE STORE IM MEXT ADDRESS.
Hlle =9 RTS
H11l seaz RODRES RME P

A better solution would be to print the message BAD HEX before
restarting HEXADD. This improves communcation between the
computer and the user, an important consideration in program
design.



A subroutine HEXCHR is now available to acquire aggngll
character in ACC A, when a key is struck, and to convert it to
its 4 bit hex equivalent, e.g., OB results when B is struck.
This 4 bit result will be right-justified (against the right edge
or as far right as possible) in ACC A. 1Is this where you
ultimately want the first 4 bits inside ACC A when the INBYTE
subroutine, which receives two such characters, is executed? ////,

No. If 5 is the first of two keys struck, the 0101 result
must be moved to the left half of ACC A, to make room for
the next 4 bits, which go in the right half when the second

key is struck.

28

Write the first half of the INBYTE subroutine to place
the first 4 bits in the left half of ACC B. Useful instructions
might be ASL A and TAB. Why is ACC B needed? The HEXCHR
subroutine is still available and returns with the C bit set if
an invalid hex key was struck. Such a condition should cause
an immediate return from INBYTE to HEXADD, with the C bit still
set.

/

e———f

B11E BL 8125 IMBYTE JSR HE=CHR GET 4 BITS

glie 29 4ac (=] EYTRETH ERD HEX. RETUREN N,
|11s 4o ASL A

(B o I A=l A

BllA 4 A=L. A

B11E 45 A=L A =HIFT 4 BITS LEFT.
a1ic 1s THE STORE IM B

ACC B is used to store the first 4 bits when HEXCHR, which uses
ACC A, is called to get the second 4 bits. RTS passes the C bit,
undisturbed, to the calling subroutine HEXADD.
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Now finish the INBYTE subroutine including documentation.
The instruction ABA may be useful to you.

/

# INEYTE. .. PRODUCES & BITS IN ACC A CORRESPOMDIMNG
# TO THO 4 BIT HEX VYALUES., EACH FRODUCEDR BY
# HERCHRE SUE. WHICH IS CALLED TWICE. USES A AMD E

The complete INBYTE subroutine might be:

811 BD 8125 IMEYTE JSR HE=CHR GET 4 BITS

aile 25 & ECS EYTRTH ERD HEX. RETURM MO,
Biis 48 AL A

f@ids 42 AZL A

BilR 4= A=l A

giiE 4% H=L H SHIFT 4 BITS LEFT.
H11Z de THE STORE IMH B

ai1h BD @Lzs JSR HE“CHR GET 4 MORE BITS
qiz\w 25 @z BCS EYTRETH IF BARD HEX

#gilzz 1B HER MERGE EBOTH 4 BIT SETS OF CATA
2122 e cLC TELL THEM ITS GOOC DATH
Blzg4 9 EYTRTN RT=

ACC A 00001110 -- After the first J3R HEXCHR if E
was struck.

ACC B 11100000 --After the TAB instruction.

ACC A 00001001 -- After the second JSR HEXCHR if 9
was struck.

ACC A 11101001 --After ABA. ACC B is added to
ACC A to merge both 4 bit codes.

So far we have HEXADD calling INBYTE twice.
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The HEXCHR subroutine could be formed from the hex
checking program shown early in the Branching Chapter.

this subroutine including the following changes:

(a)

(v)

the struck key into ACC A.
Set the C bit if an invalid hex key is struck; otherwise
clear the C bit and return from the subroutine with the

L bit hex code in ACC A.
Refer to the Branching Chapter for the original hex checking
Assume that the GETCHR subroutine is available

program.

to receive an ASCII code in ACC A, when a key is struck.

B1ZE
5 b 10
G141

Bl
Sl

—

0
P 1

iy

PRI

3]
DS P R L

od 300 R

OUNRRY]

-~
'’

D D

>,

Y SR 0

14z
2F

14

29
(2]
A
ac
4e
{55
=7

.n Tl '.f\l
I =

Write

At the beginning of the subroutine get the ASCII code for

/

# HEHCHE. . . RECEIVES ASC
# CONVERTS TO 4 BIT HEX
* AN CLERRS C BIT. ELS
b
HEXCHRE J5R GETCHR
CMF A ##$2F
ELS ERDHEX
CHF A #£329
BLS MUK
CHF A #%48
BL.S BADHE -
CMF A #3468
EHI ERCHE
SUE A ##$Z7
GOOLHX CLC
HEXRETH RTS
MUMOE  SUB A #£2Z06
EFA GOOLH-
EREHEY SEC
ERA HEXRTH

IT CORE IM ACC A YIA G
EQUIVALEMNT IF WALID
E RETURMS WITH C SET.

CECHO WOl BE BETTER

BELOM 3. MNOT HEX

B T0 2 WALID HEX

ZA TO 4@ ILLEGAL
REOVE 46, ILLEGAL

A TO F IN 4 BIT FORMAT

ETCHR

STILL Y

TELL. THEM TT“S G000
8 T3 3 IM 4 BIT FORMAT.
EAD MEMS. WHROMG EEY.
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The GETCHR subroutine is essentially the same as befZ;;-
except for 2 changes:
(a) Bit #7, the parity bit must be cleared for all data.
(b) Lower case alphabetic characters a to z, must be forced to

upper case by clearing bit #5. Write the GETCHR subroutine.

Both of the above are required to make the data independent of the
type of terminal (some produce parity bit set, others cleared)

and to eliminate having to hold the SHIFT key down when entering
alphabetic characters.

/

#* GETCHR. .. SUBROUTINE TO GET ASCII CODE FROM ACIA RY.

* BIT #7 (PARITY BIT> CLEARED. UPPER CASE IS FORCED.
L J

’FF4 SERCSR EQU $7FF4

’FFS SERBUF EGU $7FFS
*

8142 B6 7FF4 GETCHR LA R SERCSR

8146 84 61 AND A #$01 DATA READY?

8148 27 F9 BEG GETCHR NOT VYET.

014 B6 7PFFS LDA AR SERBUF YES. GET DARTA

914D 84 7F AND A #3$7F CLEAR PARITY BIT.
814F 81 66 CMP R #%68

9151 23 86 BLS GETRTHN BELOW "SMALL A"

8153 81 7R CHMF A #$7A

8155 22 82 BHI GETRTN ABOYE "SMALL Z*

@157 84 DF AND A #$DF UPPER CASE ALFHA CHAR

8159 =29 GETRTN RTS AND ERIT.
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Describe the sequence of events when a non-hex key is
struck. Sketch the "subroutine tree" in your answer.

HEXADD
}
IN%?TE
HEXCHR

Y
ECHO
SN
GETCHR PRINT

‘When HEXCHR detects an invalid hex character the C bit is
set and HEXCHR returns to INBYTE. INBYTE immediately checks the
C bit and, noting that the C bit is set, returns immediately to
HEXADD, which also checks the C bit. HEXADD, on noting that the
C bit is set, immediately restarts. In summary, a wrong key
immediately restarts HEXADD, preferably after a printed message
such as BAD HEX.

Further use of the C bit is seen in a program where a
task, assigned to a subroutine, results in the C bit being cleared
if the task is completed normally. If the result is abnormal
the C bit is set and ACC A contains the erroneous result, which
can be printed as an error message.



Here is a new problem, to write a subroutine called
PAGE which prints one page of data, the first address of the
data being in the X Register when PAGE is called.

is as follows:

one PAGE comprises 1610 lines.

9-13

The format

one LINE comprises a Carriage Return and Line Feed (to start

a new line) followed by 8 words, each separated by a space.

one WORD comprises U4 bytes, from memory, each byte being
printed as 2 ASCII characters, e.g., 00111101 in memory would

cause 3D to be printed.

Use a "top-down" approach to this problem in flow charting and

writing the subroutine PAGE.

is available to print one LINE.

A

B

Assume that the subroutine LINE

/

/

MEMFNT
#16
LINCHT
LIME
LIMCHT
NULINE

1

&

* PAGE. . . SUBROUTINE TO PRINT OME PAGE <416 LINES)
* OF DATA FROM MEMORY

ENTEFR MWITH ¥ POINTING TO

* FIRST CHRR TO BE FRINTEDR. CALLS LIME SUB.

OME BELOW FIRST CHRR ADDR
INIT POINTER.

SET UF COUNMTER.
FRINT LIME

LAST LINMNE?

MO, FRINT AMNOTHER
LAST ONE

\\\5_ Note the double vertical bar here
indicating a subroutine.

STORE
POINTER-I "
COUNT =g, PAGE  DEX
STH
> LDA
| STH
PRINT A NULINE JSR
LINE DEC
T ‘\\ ENE
RTS
DECREMENT
COUNT LINCNT RME
MEMFNT RME
vo
Yes
RETURN

The address for the first memory address could be produced by

the previous subroutine HEXADD.
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The next task, working downward, is to write the -
subroutine LINE, which prints 8 words, each comprising the
contents of 4 addresses. Flow chart and write the subroutine
LINE, assuming that 2 subroutines are available as follows:
- WORD, to orint one word.
- CRLF, to produce a Carriage Return and Line reed, to start

the next character on a new line.

!

CRRquP.\GE RIN
LiNg FEED + LINE. . SUEROUTINE T0 FRINT sS4 ¢DECIMALY CHAR
Y + FROM %= MEMORY ADDRESSES. CALLS WORD. USES A.
SET up "
WORD COUNTER LINE JSR CRLF START NEW LINME
- LDR A #$02
‘ STH A WMRDNUM  SET UP COUNTER
NUMORD TSR WORD
PRINT A WORD LEC WEDNUM  LAST WORD?
ENE NUWORE MO, BACK RGRIN.
! RTS LAST ONE
DECREMENT WRDNUM RMB 1
WORD COUNTER *
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The next subroutine proceeding downward is WORD, which
prints the contents of 4 memory locations, then skips one space.
The subroutine OBYTE, to print the contents of ACC A as 2 ASCII
characters is available. SPAZE, anoiher subroutine will print
(or skip over) one space. Flow chart and write the WORD

subroutine.

'

INITIALIZE
# oF BYTES
- + WORD. | . SUBROUTIMNE TO FRIMNT CONTENTS OF 4 MEM
1 * ADREESSES AS © HEX CHAR., CALLS DEYTE AMD: SPACE
PRINT A * LIZES RACC A
BYTE *
WaRD LOH A #£04d
, i
STH 8 BYTONT IMIT COUMTER
DECREMENT MUEYTE J3F: OEYTE FRINT 1 EYTE RS 2 CHA
MLIE JER B “INT 1 BYTE RZ 2 CHAFR
BYTE COUNT DEC EYTCNT
EHE HUEYTE MOT LAST BYTE
Jb? SFACE YEZ. LAST EYTE. OME SFACE.
RETS CONE
No ENYTCNT RME 1
YES
1 SPACE
Y

RETURN



The OBYTE subroutine is next.

right-justified in ACC A.

subroutine.

¥

X=VUPDATED
POINTER

¥

GET BYTE
FROM MEM

4

CoPY To
TEMP

RIGHT JUSTIFY
ACC A HIGH WALE

!

PRINT CHAR

3

TEMP-> A

!

LOWER HALF
OF BYTE I\N A

‘.

PRINT CHAR

RE{%RN

Note the use of TEMP rather than ACC B.

* DBEYTE. .. SUBROUTINE TO
# ADDRESS AS 2 ASCII CHAR. CALLS HEXPRT.

HEXPRT is entered with 4 bits

9216
It gets one byte from
memory via the pointer MEMPNT and calls HEXPRT twice to print
it as 2 ASCII characters.

Flow chart and write the OBYTE

/

PRINT CONTENTS OF OME MEM

o
#
# ENTER WITH ADDRESS IM MEMPMT.
*

OBYTE

TEMP

LD
M
STX
LOA
STR
ASE
HER
RS
ASR
AMC
JER
LCA
AL
JER
RTS
FME

T DD DDI

I

MEMFHT

MEMPNT
*
TEMF

#EOF
HEXFET
TEMF
#E0F
HEXFRET

1

GET ACDRESS
GET EBYTE

SAVE COPY.
FRIGHT

JUSTIFY

LEFT

HALF

ZAF LEFT HALF
FRINT IT

GET CLEAM COPY
ZAF LEFT HALF
FRIMT IT

HONE

LUSES A

to tie up an accumulator, when calling a subroutine which may

need the accumulator.

s W

It is not good practice
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HEXPRT is entered with 4 bits right-justified in ACC A.

It prints the corresponding ASCII character.

Flow chart and

write this subroutine noting that PRINT is available to print
the ASCII contents of ACC A.

{

ADD 30 TO
ACC A CONTENTS

YES

APD 7 To
ACC A

P

A

PRINT CHaR.

y

RETURN

/

* HEXPRT. .. SUEB TO PRINT ASCII CHAR. CALLS PRINT SUB.
# EMTER WITH 4 BITS RIGHT JUSTIFIED IM RCZC A
<+
HE=FRET ADD A #3201 CONVERT TO RSCII
CHMP A #%=3 MHUMBER™
BLS oUTFUT YE=.
ARD A #3207 LETTER. ARDD 7 MORE.
oUTPUT J2R PRINT OuUT IT GOES.
RTS

Check this routine by testing it first with values 0 and 9,
then with values A and F, plus the 4 values just outside these

legal values.
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Next we need the PRINT subroutine. The printer, via
the CTS control line back to the ACIA, will inform the computer
to stop transmitting while Carriage Return and Line Feed
functions take place. Flow chart and write the subroutine to
transmit data via the ACIA when CTS = 1 (CTS = 0).

* PRINT. .. SUBROUTINE TO PRINT CHAR IF DEVICE

* IS OM LINE YIAR CTS=1 (CTS NOT=6)>. USES ACC R AND R
* ENTER WITH ASSCII CODE IN ACC A.

SERCSR EGU *7FF4

SERBUF EGU $PFFES

B 3

FRINT LA B SERCSR
BIT B #$68 CTS NOT=87
BMNE PRINT NO. TRY AGAIN.
BIT B #$&82 RERDY"?

PRINT CHAR BE® FRINT

STA A SERBUF FRINT IT
RTS

RETURN

Loopback for the second test is to the top to ensure that CTS
has not gone to 1, while waiting for the printer to become READY.
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SPACE and CRLF now remain. A problem exists in using
the ACIA with the printer in that the ACIA will transmit the
last character in its TRANSMIT Buffer even though the printer
requests a halt to more data by clearing CTS (Clear To Send).

CTS is normally cleared during a Carriage Return or Line Feed
operation or when the printer is not ready to print data. The

above problem results in
character. The solution
after both the CR and LF
"sacrificed" to preserve
With this in mind, write
charts are not necessary

the loss of the last transmitted

is to send a 2 nulls (0C) to the ACIA
characters. The nulls are then

the next legal character printed.

the CRLF and SPACE subroutines. Flow
for these.

/

* SPRCE. . . SUBROUTINE TO JUTPUT ONE SPACE CHAR.
* CALLS PRINT SUB. USES ACC A

*

=PACE  LDA
JSE
RTS

A #€28 RSCII FOR SPACE
FRINT

% CRLF. .. SUBROUTINE TO OUTPUT CARRIAGE RETURM
# AND LINE FEED CHAR TO PRINTING DEYICE. PADS EACH
*# WITH 2 MULLS CHAR. CALLS PRINT SUB. USES RCC A,

¥

CRLF LDA
JER
CLRE
JER
JSR
L.DA
JER
CLE
JER
JER
rRTS

A #$8D CR
FRINT
A
FPRINT OUTPUT MNULL
FRINT
A #FER LF
PRIMNT

A
PRINT MULL
FRIMT
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To complete the subroutine PAGE, draw the "subroutine
tree" to show the subroutine's hierarchy.

/

PAGE
’/E;NE
WORD CRLF
OBY£g// \j;%ACE In only a few words, the
l overview of PAGE is depicted
here.

HEXPRT
PRINT

A program could call both the HEXADD and PAGE
subroutines, the former to define the starting address and the
latter to print the page of data.
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Near the end of the PIA chapter is a program in which
a delay is used to "de-bounce" a switch before its state is
read by the PIA. This delay could be achieved more easily if

subroutine format was used.

Flow chart and write a subroutine which produces a
delay of N milliseconds, where N is the binary contents of
ACC A. This subroutine should call a subroutine MILSEC which
produces a delay of 1 millisecond each time it is called.
write the MILSEC subroutine, assuming 1 microsecond per MPU
cycle. If necessary refer to the PIA chapter for the previous
delay routine.

/

t * DELAY. .. SUBROUTIMNE TO PRODUCE DELAY

INIT COUNTER % OF M MILLISECONDS, WHERE N= BINARY
+ COMTEMTS OF ACC A OM ENTRY. CALLS MILSEC.
*
@108 BF 9180 DELAY STR A COUNMT STORES M
10 MILLISEC B162 BD @180 MORMIL JSR MILSEC  ONE MILLISEC
DELAY BLRE TA B4@C DEC COLMT
G109 26 FS ENE MORMIL  NOT LAST YET
! 168 =9 RTS
DECREMENT B1iBC BEEL  COUNT  RME 1
COUNTER #+
# MILSEC. .. SUE TO FPROVIDE
* OME MILLISECOND CELAY.
*
=0 B18D 26 64 MILSEC LDA A #1686
B16F BT 8118 STA A MILCNT
=0 G112 PA 8145 MORDEC DEC MILCNT
RETURN 115 26 FE ENE MORDED
a117 =3 RTS
B11S BEad MILCHT RME 1

The 2 loop instructions DEC WILCNT and BNE JORDEC take 6 + 4 = 1049
MPU cycles or 10 microseconds. Therefore 10010 or 6“16 loops
provide a delay of 1000 microseconds or one millisecond.
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In the previous frame MIILCNT could have been givenizzn.
initial value of 6416 simply via
MILCNT FCB $64
eliminating the need for the 2 lines of initialization at the
start of the MILSEC subroutine. Would this be acceptable? Why?

/

No! The subroutine would execute properly the first time it is
called, MILCNT being decremented from 64 to 0. The second time
(and all subsequent times) that it is called MILCNT would start
at FF, after first being decremented from 0 by DEC MILCNT. This
subroutine MILSEC would then go through 25610 loops to reach zero,
instead of 100, loops, producing an incorrect delay. Self-
initialization is required within the subroutine to reset MILCNT
to 64 every time the subroutine is called. Lack of self-
initialization is a common catastrophic error when coverting a
program, which runs correctly once, into a subroutine which is
called many times within a larger program.

This concept should be extended to all programs, as well
as subroutines enabling faulty programs to be restarted during
de-bugging without the necessity of being reassembled or reloaded.

Enough said for now about subroutines!



Register was used as a pointer.

STACK OPERATIONS

10-1

Previously we have seen data storage in which the Index

Another 16 bit register, the

Stack Pointer (SP) is also used to store and retrieve data,

employing a user-defined block of memory, called the stack, for

the storage operations.

to point to the address 1040 +via
LDS #$1C40 (LoaD the Stack pointer)
Another instruction

PSH A (PuSH accumulator A)

The Stack Pointer may be initialized

performs a "push" operation, that is it stores the contents of

ACC A in the address now contained in the Stack Pointer. The

Stack Pointer is automatically decremented after the storage

operation.

8188
aiez
gi64

"PuSH" is an appropriate description, similar to the
"pushing” of individual serviettes into a metal holder, each
new serviette now being on the top of the stack.

Initialize the Stack Pointer to 1AFF, then store the
contents of ACC A and ACC B on the stack in that order.

8E 41AFF
36
37

LDS #FLAFF

PEH A
PSH B
Stack Status Diagrams
1AFD 1AF[]
1AFE 1AFE
1AFF ~SP 1AFFACC A

Before P3SH A
SP/1AFF

1AF] <3P
-3SP 1AFHACC B
1AFFACC A

After PSH A After PSH B
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Data can be retrived from the top of the stack via
PUL A
which "pulls" the data off the stack into ACC A. This is
similar to retrieving a stored serviette from the holder, the
last one in being the first one out. In the PUL operation the
stack pointer is incremented automatically, before each byte is
retrieved. Assuming the 2 PSH operations in the previous frame
the instructions:
A4 FUL B
32 PUL A
first transfers the data, stored in 1AFE, into ACC B, then
transfers the data from 1AFF into ACC A. Note that the PUL
operations are in the reverse order to the P3SH operations,
respecting the "Last In First Out" (LIFO) sequence.

Use of the stack permits temporary storage of data without
the need for a symbolic address or an accumulator usage. Modify
this now familiar subroutine to operate without ACC B. Assume
previous stack pointer initialization.

FRIMT LA B SERCISE

AL B #HEA2 RERDY TO FRINT?
BER PRIMNT HOT YET
=ZTH A SERBUF FRINT CHAR
TS AMD RETLURN
TFF4 SERCIE ERL F7FF4
TFFD SEREBLF ERL £¥7FFS
3
e I 1 R FRIMT FSH A
2181 Bs FFF4 MOTYET LDAR A SERCSE
glod 2d @Az AMD A/ HERS
Blee 27 F3 BEL HOTYET
BiGs =2 P A
glg3 BY FFFS STA A SERBLUF
L 3 ETS

WARNING: For every PSH there must be a corresponding PUL to
restore the stack pointer to its original state.
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Assume that the main line program which calls this
PRINT subroutine is:

arCE BL AZ52 JER PRIMNT
arCé FE a77E LD MEMPNT
If the stack pointer contains 1AFF just before JSR PRINT

is executed, the address of the next main line instruction, 07Cé6
in this example, is stored on the stack. The low byte (C6) goes
into 1AFF and the high byte (07) goes into 1AFE. The stack
status at this point is depicted by this diagram.
The RTS instruction at the end of the subroutine
automatically performs two PUL operations,
restoring the 07C6é value in the Program Counter.

1AFD <SP  The next instruction executed is then from 07C6,
1AFE | 07 the LDX MEMPNT instruction following the
1AFF | C6 subroutine call.

Assume that the first byte of JSR PRINT resides in 0426,
and that the stack pointer contents is 13C8 just before JSR PRINT
is executed. Draw the stack diagram showing stack contents and
SP value for each stack change, starting just before JSR PRINT is
executed and finishing when LDX MEMPNT is executed. The PRINT
subroutine is the one given in the answer of the previous frame.

the next PSH

overwrites 29 —}

13C5 <SP
~13C§ -SP ACC A 13CHACC AleSP ACC A
13C7| o4 o4 o4 o4
13C3 -SSP 13C8 29 13C8 29 13C8_29 13C8 29 |«SP
before Jjust after after after after

JSR PRINT JSR PRINT PSH A PUL A RTS
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Examination of data stored on the stack is achieved via:s
TSX - Transfer Stack pointer to indeX register.

which transfers the Stack Pointer to the Index Register, then
increments the Index Register. In this way the Index Register
points at the last byte stored on the stack. This permits '
direct access to the data, storea on the stack, without
disturbing the Stack Pointer. Write the instructions to print
the value of the last byte, stored on the stack. The sub-
routine OBYI'E is available.

S/

gzez o TSX
aze4 He v LDAR A K
pzas BD aldz JSR OBYTE

10-5

Assume that 4 bytes have been stored on the stack. It

is now desired to increment the first of these 4 bytes without
disturbing the stack pointer or other data on the stack. Write

the necessary instructions.

BLRE T8 TS
1

161 ec B3 NG EH PSY =
SP +1 X

73F5 -—SP
73F6 b leveeeinass X
73F7 3 Jeiieeeans s 1,X
73F8 2 leeeeienia2,X
73F9 [ #1 fo...iii0l 30X
More stack operations will be seen in the next chapter, Interrupt,

where the stack is used extensively.
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INTERRUPT

The simplest type of "interrupt" operation is that
produced when you start the 6800 microcomputer by pushing the
RESET button. This starts execution of a permanently stored
program or "service routine”, as interrupt initiated programs are
called, this one servicing the RESET button. wWhen this button
is pushed the RESET line to the MPU is grounded. This causes
the computer to look in addresses FFFE and FFFF (called "vector"
addresses) for the address of the RESET service routine. The
RESET service routine is then started, typically clearing all
READY bits, initializing the stack pointer and setting up
input/output devices such as the PIA or ACIA for the required
mode of operation.

The RESET line also can be converted to force a restart
of this service routine automatically when power is first
applied, eliminating the RESET button. This is particularly
useful when the microcomputer controls an electronic Subsystem
or an appliance (e.g., microwave oven).

Another form of interrupt provides the solution to the
problem of determining when a peripheral device has data or
requires data, without the continuous check of READY bits in an
ACIA or PIA. Under interrupt operation, such devices are ignored
by the computer until the device demands service, whereupon the
computer suspends its present operation, known as a "background"
program and executes the service routine or "foreground" program
for the device which demanded service.

Such service may involve the transfer of one byte of data
or the change of several bits in a status register. When the
service routine is completed the computer resumes execution of
the background program.
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Several points are relevant to interrupt operations:

(a)

(b)

(c)

(d)

As stated above, READY bit polling or testing, as a routine
operation, is now eliminated permitting more flexible and
efficient use of the computer. With interrupt operation
the peripheral devices essentially say to the computer
“Don't call us. We'll call you."

The service routine is entered each time that a character
is transmitted or received by the interrupting device or
each time that a push button activates a PIA Control Line.
Such a service routine is short, typically requiring 30 to
60 microseconds to execute.

The elapsed time between successive interrupts by a
particular device is usually long, compared to the execution
time for a service routine. Even at high data rates such as
960 characters/sec., the time between successive interrupts
is approximately 1 millisecond. For push button activated
interrupts this time could be seconds to hours. Consequently
it is possible to service many devices via interrupt and
still execute background programs for a large percentage of
the computer's available time.

Interrupt programs are not recommended initially because
programming errors are more difficult to find. Orderly
de-bugging, possible with nested subroutine itype programs,
is less applicable here because the occurrence of interrupts
is essentially random in time. This makes it difficult to
determine the conditions of various registers at interrupt
time, if a service routine occasionally fails.
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Interrupt servicing of interfaces such as the ACIA or
PIA usually involves "Interrupt ReQuest" or "IRQ" operation, also

known as "Maskable Interrupt". Such an interrupt
request is made by grounding of the IRQ line to the
~«SP MPU by the interrupting interface. This causes the
CCR present contents of the Program Counter, Index
ACC B Register, ACC A, ACC B and the CCR to be pushed
ACC A automatically on the stack in the above order.
IXH After providing service to the interrupting device
IXL the IRQ service routine is terminated by the
PCH instruction
PCL RTI (ReTurn from Interrupt)

which automatically pulls the stored values from the
stack, restoring the above registers and accumulators to their
state when IRQ operation was requested. Resumption of the back-
ground program takes place as if nothing happened (except for the
slight delay to provide IRQ service).

IRQ operation first requires initialization of the IRQ

Vector Addresses, FFF8 and FFF9, with the address of the IRQ

Service Routine. IRQ operation (interrupt service) will then take

place if all the following are true:

(a) The Control Register of the appropriate interface (ACIA or
PIA) has been permitted to interrupt. For example bit #7 of
the ACIA Control Register is set to permit ACIA Receiver
Interrupt. PIA interrupt via CA1 is permitted by setting
Control Register bit #0.

(b) The interface (ACIA or PIA) must activate (ground) the IRQ
line. This happens automatically when the READY bit is set,
indicating that data is ready from the ACIA Receiver, or
that data is needed by the ACIA Transmitter, or that an input
Control Line in the PIA is now ACTIVE.

(c) The I (Interrupt) bit of the CCR must be cleared, e.g., via
the instruction
CLI (CLear Interrupt)
which permits all IRQ-connected interfaces to interrupt.
Hence IRQ operation is controlled "globally" via the I bit
and locally via each Control Register.
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The PIA and ACIA, connected for interrupt operation, are shown
in the block diagram below.

EXTERNAL cay SeTts -
PEVICE 81y ﬂA IRQ

#7  (bit#o=1) > s TRQ
sefl.ﬂ‘ dQTG- out ‘__—j—"———_— !‘Am_q . 6800 MPU

serial datae in ——>1(Interrupt Enabled)

Before the I bit is cleared to permit IRQ operation,
several preparations for interrupt operation must be made,

usually referred to as "background initialization". These are:

(a) Set up the IRQ vector addresses FFF8 and FFF9 with the service
routine address.

(b) Set the Control Register bits of the appropriate interface
(ACIA or PIA) to permit an IRQ request via the receiver,
transmitter or Control Line.

(c) Set up any data pointers for storing or retrieving data.

Only now can the I bit be cleared to permit IRQ operation.

Write the background initialization to set the address
of ACIARX, the start of the ACIA service routine, in addresses
FFF8 and FFF9.

/

When an interrupt occurs, the contents of the accumulators
and registers will be pushed on the stack. Then the address of
the next instruction to be executed will be obtained from FFF8
and FFF9, the IRQ vector address. In other words the next
instruction to be executed will be the first instruction of the

LD¥ #ACIARY
STH $FFF8 INIT YECTOR FOR IRQG

the IRQ service routine.
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T
Continuing with the background initialization, set
the ACIA Receiver Interrupt bit, to permit interrupt to occur.
Then initialize MEMADD with the address one below address 1A00,
to permit storage of data from the ACIA Receiver. Assume, as
before, that ACIACR is the "original" for the "write only"
Control Register of the ACIA.

LDA A ACIACE

OFEA A AlegpannE ENMABLE R OINT

STH A ACIACR

STA A SERCSR

LDes #+1ABB-1

STH MEMADC SET UP STORAGE FPOIMTER.

So far the background initialization is:

2188 CE v141cC LD HAC I AR

8182 FF FFF2 S5TH ¥FFFS INIT VECTOR FOR IR®
vl86 BE 72BE LDR A ACIACR

8163 3R S8 OFA B #X100066686G ENARELE R¥ INT
vl8B BY 73IZE STR A ACIACR

B18BE BY VFF4 STH R SERCSE

811l CE 49FF LD #F1lRBA-1

8114 FF Bi4R STH MEMADD: SET UFP STORAGE POINTER.
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Now complete the background initialization by clearing
the interrupt bit in the Condition Code Register.
a background task could be started.
task to do at this time, put the computer in an endless loop,
which will be interrupted from time to time by the ACIA, when

it receives another charactér.

HF:

810
8163
Blu6
8183
9168
016k
8111
Bii4
ai11vy
8118
811R

CE
FF
B6
SA
E7
E?
CE
FF
BE
20

At this point
Since we have no background

/

ENRELE INTERRUFT
BRCEGROUNDE: LOOF

The complete background initialization to provide
interrupt service for the ACIA Receiver is then

B11c
FFFa
738E
=17

r38E
TFF4
19FF
g1inR

FE

avaz

HR

LDx
STw
LDH
ORHA
STH
=TH
LD®
STR
CLI
BRA

MEMADD RME

pm b ¢ e 1

H#RCIRRK

¥FFF2 INIT “ECTOR FOR IRG

ACIACE

#nlB8aouve  ENABLE Rx INT

ACIACRKR

SERCSR

#FlABE-1

MEMADD SET UP STORAGE FOINTER.
ENARBLE INTERRUPT

HR EACKGROUND LOOP

2



a11c
811F
a1z8
@12z
ai1ze
ai1zg
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Now write the service routine ACIARX, which stores one
byte via MEMADD each time that the service routine is entered.
Terminate this service routine with RTI, which returns control
to the interrupted background program.

/

* INTERREUPT SERWICE ROUTINE FOR ACIA Foe
* STORES OME CHAR IM MEM WIA MEMADD FOINTER

*

A11R ACIARY LDX

aiin

. 7FFS

515

M
STH
LR A
STA A
ETI

MEMADL

MEMADL
SEREUF

:}:0

GET MEXT ADDRESS

GET DATA

AMD STORE YIA MEMADD

AMD RETURM TO BRCKGROUMND

Each time that the ACIA's Receiver is READY with another byte of
data, bit #0 of its Status Register will go to 1, indicating the

READY condition.

Since bit #7 of the ACIA Control Register is

also set, permitting ACIA Receiver Interrupt, the setting of the
READY Dit automatically activates the IRQ line to the iiPU,
causing execution of the service routine whose starting address
After the RTI instruction of this service

is in FFF8 and FFF9.
routine the background task, if there is one, will be resumed.

A long story isn't it?



similar to data reception in the previous frame.

i

Printing a message via the ACIA under interrupt is

Here the

ACIA Control Register bits #6 and 5 must be initialized to

provide "RTS = low,

Appendix E).

Transmitting Interrupt Enabled".

(See

Write the background initialization to permit printing
of the message INVALID HEX via the ACIA under interrupt.

Include the message in the background initialization.

o
Ry

CE 24izR
FF FFF2
Be TEDE
zd BF
2R 28

TEEE
BY YFF4
CE Blig
FF a1as

.,.
IEX]
T T T
o 5

XA
o

o~

LU &

o

-
XY

| el nal el
SR N s PR U B 1 BT B w DO R B
o
iy’
¥

KX
ot

*ﬁ FE

i T 0% T
ol ol el ol Sl ol ol el ol S O

L
v

OO o o
PR

AR
DO B

LD
i
LEH
FAHD
OFA

. =TR

HE:
+:
EADHE =

MEMRADD

=TA
(I
o
LI
ERA
Fio
FCE
FME

T DT I

/

#MESPFRT
IRAVEL
RCITACE
#FH1811141

RCIACE
SERCER
#EADHE -1
MEMAGD

HE:

STHYALTD

Iy

AT

P

GET INT ROUTIME HODRESS
INIT MESSAGE FOIMTER

1 CLERR BIT &

B OSET BIT S TH
UFDARTE ORIGIMAL
SET UP ACIA

SET UF FOINTER

SFIM FOREVER

HE .

IMT EMRELED
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Within the service routine how will you ensure that the
ACIA Transmitter will stop sending characters to the printer,

after the last character of the message is printed?

/

Contd...
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Lenlid.

Disable the transmitter interrupt by clearing bits #6 and 5 of
the ACIA Control Register (see Appendix E). If another device
is still operating under interrupt, the above operation will
affect only the ACIA transmitter. If the ACIA transmitter was
the only interrupting interface, then all IRQ interfaces could
be interrupt disabled by the instruction SEI (SEt Interrupt),
the opposite to CLI.
11-

Now write the service routine, entered each time to
print one character of the message. Assume the background
initialization shown in the previous frame.

MFU CYCLES

B12A FE 8122 MESPRT LD MEMADL 5

BlhD (k] IM: <4

B1zE FF @128 STw MEMH[D & GET CHAR ADDRESS
81z 1 Ae Ba LCH A = GET CHAR

Q1EE 27 a4 BER HHMHRE <

ui__ EY VFFS STR A SERBUF 3 PRINT IT

a1z ZB FRETETI RTI ia TOTAL =9 MPU CYCLES
B1=2 Be FZSE NOMORE LDA A ACIACE

B1E0 84 IF AHD A #1le814114

B1ZE BV VIE2E STR A ACIACRE  DISAELE TH INT
2141 BY VFF4 STRH A SERCESR

al4d z@ F2 ERA FRTRTI

At slow terminal rates e.g. 10 characters/sec one character is
printed every 100 msec. At higher data rates e.g. 960 char/sec,
one character is printed every millisecond. The above service
routine requires 39 MPU cycles plus 9 to push and interrupt.
Assuming approximately 50 MPU cycles per interrupt, this is
still only 50 microseconds, using a 1MHz MPU clock. Hence

10 000 to 20 000 interrupts per second are theoretically

possible, supporting dozens of devices. Therein lies the power
of interrupt.
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So far we have looked at only one device operating under
interrupt at one time. Consider an ACIA connected to a printer
(output) and a keyboard (input), both operating under interrupt.
When an IRQ operation is demanded by one of these devices, the
first task of the service routine is to determine which device
produced the interrupt. This is done by consecutively checking
the READY bit of each device capable of IRQ operation.

Write the first part of the IRQ service routine IRQSER
which determines whether the ACIA's receiver or transmitter

requires service, branching to KEYSER to service the keyboard or
PRTSER to service the transmitter.

¢
8208 Be FFF4 IRGSER LDA A SERCSE
gaez 85 8l EIT A #$081 F» RERDY?
R285 26 49 ENE KEYSER
Rn2ay 85 82 BIT A #s$v2 T® READY?
B289 26 &85 BMNE PRTSER
gzBe B INTETH RTI FETURM POINT FOR ALL

Both service
routines would
branch back

to here.

Although all IRQ controlled devices are theoretically equal for
interrupt service it is normal to poll the READY bit of the
fastest device first, if one is significantly faster than the
other to avoid losing data from the faster device while servicing
a slower device. I!Hence the first device polled effectively has a
slightly higher priority, this advantage increasing as more
devices requiring IRQ service are added to the system.



IR}

PIA Control Lines acting as inputs can produce IRQ
operation if enabled for interrupt via the PIA's Control
Register. When bit #0 of Control Register A (or B) is set,
interrupt is then possible via CA1 (CB1). Similarly CA2 (CB2)
is enabled via bit #3. CA2 (CB2) as an output line does not
produce an interrupt since interrupts originate with the external
device such as a keyboard,telling the computer that data is ready
to be moved or that some control action is needed.

Write the background initialization to permit CA1 of the
PIA to interrupt when going high (1) and CA2 as an input to
interrupt when going low (0). The A half of the PIA should be
set to receive 8 bit parallel data.

/

# PROG TO SET UP FIA H HALF RS INFUT

»:

FINFUT LDA A PIACRA
AND R #7dl et
=2TA A FIACRA  CLEAR BIT 2 to Data Buffer
CLR  FIREFA  INPUT HMODE . e T
ORA A #ReBEA1111 1 ;Al Active high
STA A PLACRA

Lo #PIASER S

00
ST $FFF8 i tCA 1 interrupt
CLI READY enabled
HE ERH HF BITS

CA2 cCA2 CA2 Interrupt
input Active enabled
line 1low



service routine is to store bits #0 to 3 of the Data Buffer in

LODATA.
HIDATA.

Write the service routines.

aiua
a18x
a1as
814y
#1489
ai8R
18D
g1aF
L5 e
@114
8147
8115
811C

11-10
When an interrupt is produced by CAl of the PIA the

An interrupt by CA2 should store bits #4 to 7 in
Assume that CAl and CA2 are the only source of interrupts.

8358
Bz52

BG
2E

=
a5

26
2B
BE
&4
BT

BS
84
BY
28

7FFL
85
4@
BE

vFF@a
BF
BE52
F3
vFFa
Fa
8=5u
EE

HIDRTA
LODATAH
*

PIARSER

FIARTN
CHLINT

CRZINT

EGU
EGL

LDA
BEMI
BIT
EME
RTI
LDR
AND
STR
ERA
LA
AND
STAR
BRA

I o o

u (e L

/

$8358
$Bz52

FPIACRA
CRLINT

CAL

#uolaoavoa

CRZINT

FIABFA
#EOF

LODRTA
PIRRETH
FIAEBFA
#EFBQ

HIDRATH
FIRRTN

CR2

ZHRF

ZHAF

INT REGUEST VIR BIT 7

INT REQUEST WIA BIT &

HI BITS

LG BITS

If several PIA's are connected as IRQ devices, but capable of

interrupt via CA1l only, the

LDR A
BMI
LDA A
BMI

skip chain becomes:

FIACRS

PIAS

FPIACRE

FIRE

etc.
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Another major use of IRQ operation is in controlling
the timing of specific computer operations. For example a
digital voltmeter may be required to make a measurement in a
lab experiment or in a process-control operation at the rate
of 10 measurements per second. Aside from the inaccuracy of
using timing loops for control of these measurements, the
computer is not available for other tasks.

The solution is in the use of a "Real Time Clock",
a device which produces interrupts at specific times or rates.
The service routine for the real time clock would then determine
which devices. get service at what times. In the example above,
the real time clock could be driven by the 60Hz line signal
producing 60 interrupts/sec. Write the background initialization
and service routine for this clock which causes the digital volt-

meter to make 10 measurements per second via the subroutine
DVMS3ER.

alee 85 @s LA A #4605
|igz BY aiicC STA A COUNT
#8185 CE vl8E LD¥ #CLESER
a162 FF FFFS S5TH $FFF2
Biae aE cLI
aiac 28 FE HERE ERA HERE SPIM IM BRACK
*
f1aE 7R 8141C CLEKSER DEC COUNT
a111 z& a2 BHE CLKRTHM HOT THIS TIME
@11z 86 8s LDR A #%8& YES., RESET COUNTER
8115 BY 811C STA A COUNT
a11& BD @249 JER DYMSER AMD MEARSURE YOLTHGE
a1iB =B CLERTH RTI ALL DOME
prn

811C Y6l COUNT RNMB 1

This line frequency-controlled clock is a very simple timer.
Real Time Clocks, much more complex than this, are commercially
available.
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The Non Maskable Interrupt (NMI) is essentially the
same as the IRQ with the following exceptionss

(a) It is always enabled (capable of interrupting), independent

of the I bit status.

(b) 1Its vector addresses are FFFC and FFFD.

(¢) It will interrupt only when the MPU's NMI line changes
state from 1 to 0. It will not re-interrupt until after
NMI has gone high and then is grounded again.

NMI operation is needed when a high speed device requires

high priority service, even if an IRQ service routine is
presently being executed, in which case the IRQ service routine
is interrupted to provide NMI service.

During an NMI service routine all other interrupts are
automatically disabled, hence NMI service routines cannot be
interrupted even for another NMI device. Upon return from an
NMI service routine, service will be provided for another NMI
device, if one is waiting; otherwise it will resume service to
an interrupted IRQ service routine, if one was interrupted. If
none of these are waiting,service will be provided to other
waiting IRQ devices, or to a background program, in that order.

Assuming that an NMI device interrupted an IRQ service
routine, show the state of the stack (in general terms) during
the NMI service routine.

/

SP DURING NMI UPON RETURN TO IRQ

7 bytes

“3p

Background Status Background Status
7 bytes 7 bytes

L o
SERVICE ROUTINE
}.IRQ Status
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In de-bugging a faulty program it is sometimes necessary
to know the status of internal registers (4, B, X, etc.) after
execution of a specific instruction within a program. This is
possible via the instruction

SWI (SoftWare Interrupt - operation code 3F)
If 3F (SWI) is placed in memory, in the byte following a specific
instruction, normal program execution will take place until this
3F is encountered, whereupon all internal registers will be
stored on the stack, as if entering an IRQ or NMI service routine.
In this case the program will transfer control via vector
addresses FFFA and FFFB to the SWI service routine, which usually
prints out the contents of the internal registers from the stack.
Insertion of the 3F code destroys the original program, hence
most systems require RESET after an SWI service routine is
executed. An exception to this exists in some de-bugging programs
which save the byte which was replaced by 3F, and then restore it
after execution of the SWI service routine.

In some 6800 systems where the SWI routine is provided in
permanent or "Read Only Memory" (ROM) the vectors for SWI may also
be in RO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>