M68CRA(D)

M6800
CO-RESIDENT ASSEMBLER
REFERENCE MANUAL

@ MOTOROLA MICROSYSTEMS

M68CRA (D)
Nov., 1976

M6800
CO-RESIDENT ASSEMBLER

REFERENCE MANUAL

The information in this manual has been carefully checked and is
believed to be entirely reliable. However, no responsibility is assumed
for inaccuracies. Furthermore, such information does not convey to the
purchaser of the product described any license under the patent rights
of Motorola or others.

EXORciser, EXbug, MIKBUG, and MINIBUG are trademarks of Motorola,
Inc.

First Edition
Motorola, Inc., 1976
"All Rights Reserved"

TABLE OF CONTENTS

CHAPTER 1: GENERAL INFORMATION

Introduction

M6800 Co-Resident Assembler Language
Machine Operation Codes
Directives

M6800 Co-Resident Assembler
Assembler Aims

Assembler Operation
Ordering Information
Operating Environments
Equipment Requirements
Software Requirements

HFHRHFEFHRERHERPRRRFEPF
- - - - - - - - - -

VUL WWWLWNDNON -
- - - - -

ST o N = N =

CHAPTER 2: CODING M6800 CO-RESIDENT ASSEMBLER
LANGUAGE PROGRAMS

2.1 Source Statement Format

2.1.1 Sequence Numbers

2.1.2 Label Field

2.1.3 Operation Field

2.1.4 Operand Field

2.1.5 Comment Field

2.2 Expressions

2,2.1 Constants

2.2.2 ASCII Literals

2:3 Symbols

2.4 M6800 Addressing Modes

2.4.1 Inherent and Accumulator Addressing Mode
2.4.2 Immediate Addressing Mode

2.4.3 Relative Addressing Mode

2.4.4 Indexed Addressing Mode

2.4.,5 Direct and Extended Addressing Mode
2.5 Assembler Listing

2.5.1 Assembly Listing

2.5.2 Object Program

CHAPTER 3: ASSEMBLER DIRECTIVES

1 Introduction

2 End

3 EQU -- Equate Symbol Value

A FCB -- Form Constant Byte

5 FCC -- Form Constant Character

6 FDB -=- Form Double Constant Byte

T
|

U N P e

WM P

el ol S S S R SIS ey

L)
|
-

L=l
T [T TN DO IR | 1T U A T (R O TR A

csuLuunnubtun PP WWLWWN = =

MR RN NN

CHAPTER 4:

4.1
4.2

APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:

APPENDIX H:
APPENDIX I:

TABLE OF CONTENTS (CONTINUED)

NAM -- Program Name

OPT == OQutput Option

ORG —- Origin

PAGE -- Top of Page

RMB -- Reserve Memory Bytes
SPC -- Space

ASSEMBLY INFORMATION

General Information

Co-Resident Assembler Tape/Cassette
Operating Procedures

Loading Co-Resident Assembler From
Tape/Cassette

Loading Tape/Cassette Into EXORciser
Loading Tape/Cassette Into Evaluation
Module Memory

Assembly Initiation

Tape/Cassette Co—-Resident Assembler
Operation

Co-Resident Assembler Diskette
Operating Procedures

Diskette Co-Resident Assembler
Operating Characteristics

Diskette Co—-Resident Assembler
Operation

CHARACTER SET

SUMMARY OF M6800 INSTRUCTIONS

M6800 CO-RESIDENT ASSEMBLY DIRECTIVES SUMMARY
ASSEMBLER ERROR MESSAGES

ABSOLUTE OBJECT RECORD FORMAT

SAMPLE PROGRAM

USING MIKBUG VERSION OF THE M6800 CO-RESIDENT SOFIWARE
USE OF OTHER PERTPHERALS WITH THE CO-RESIDENT SOFIWARE

PROM VERSION OF CO-RESIDENT ASSEMBLER/EDITOR

ii

i
-

R s
o e

H!J:C;'J'T}

CHAPTER 1

GENERAL INFORMATION

s INTRODUCTION

The M6800 Co-Resident Assembler is a program that processes
source program statements written in M6800 Assembly Language, translates
these source statements into object programs compatible with the M6800
Firmware loaders, and produces a formatted listing of the source program.
The M6800 Co-Resident Assembler is compatible with the MPCASM and M68SAM
cross—assemblers. This Assembler can co-reside in memory with the M6800
Co-Resident Editor. The editor is described in the M6800 Co-Resident
Editor Manual.

Lo M6800 CO-RESIDENT ASSEMBLER LANGUAGE

The symbelic language used to code source programs to be processed
by the assembler is called the M6800 Co-Resident Assembler Language.

The language is a collection of mnemonic symbols representing:
Operations
- M6800 machine-instruction operation codes
-~ M6800 Co-Resident Assembler directives
Symbolic names (labels)
Operators
Special symbols
I;2:.1 Machine Operation Codes
The assembly language provides mnemonic machine-instruction
operation codes for all machine instructions in the M6800 instruction
set. The M6800 instructions are described in detail in the M6800

Programming Reference Manual. Refer to Appendix B for a summary of the
M6800 instructions.

17252 Directives

The assembly language also includes mnemonic directives which
specify auxiliary actions to be performed by the assembler. Directives
are not always translated into machine language. (Directives are described
in Chapter 3 and a summary of directives is included in Appendix C.)

1-1

1,3 M6800 CO-RESIDENT ASSEMBLER

The M6800 Co-Resident Assembler translates source statements
written in M6800 Assembly Language into machine language, assigns
storage locations to instructions and data, and performs auxiliary
assembler actions designated by the programmer.

13,0 Assembler Aims
The two basic aims of the M6800 Co-Resident Assembler are:

. To translate source programs into object code in the
format required by the M6800 resident loaders or an
EXORciser—-compatible loader.

To provide a printed listing containing the source
language input, assembler object code, and additional
information (such as error codes, if any) useful in
program analysis.

2:3.2 Assembler Operation

The assembler reads the source program twice: first, to
develop the symbol table; second, to assemble the object program
with reference to the symbol table developed in Pass 1. During Pass
2, the object code and the assembly listing are generated. Each
source language line is processed before the next line is read.

As each line is processed, the assembler examines the location,
operation, and operand fields. The operation code table is scanned for
a match with the operation field. If a standard machine operation code
is being processed, the proper data is inserted into the object code.
If a directive is specified, the proper action is taken. The object
code and the assembly listing are formed for output, with any detected
actual or potential errors flagged before the line containing the error
is printed.

1.4 ORDERING INFORMATION

The M6800 Co-Resident Assembler may be used with the M6800
EXORciser, Evaluation Module I, Evaluation Module II and Evaluation Kit.
Table 1-1 identifies the options of the Assembler, their part numbers,
and the hardware they are designed to work with.
1355 OPERATING ENVIRONMENTS

2 P | Equipment Requirements

Minimum equipment requirements for the M6800 Co-Resident Assembler
include:

EXORciser, Evaluation Module I, Evaluation Module II,
or Evaluation Kit

8k bytes of RAM

Terminal with TTY (20m A neutral loop current) or RS-232C
interface and equipped with an automatic reader/punch
control.

1.,5.2 Software Requirements
The M6800 Co-Resident Assembler operates with the EXbug
Firmware, the MIKBUG Firmware, and the MINIBUG Firmware. This Assembler
also may be used with EXORdisk and the EDOSII software operating system.
NOTE:
When using the Co-Resident software with Evaluation Module I

or the Evaluation Kit modify this hardware in accordance with
Appendix G.

TABLE 1-1. Co-Resident Assembler Packages

HARDWARE SOFTWARE SOFTWARE PACKAGE
PACKAGE NAME PART NUMBER*

1. EXORciser Co-Resident Assembler M68BASMRO13 A, B, D
(EXbug)

2. Evaluation Co—-Resident M68ASM6813 A, B
Module I Assembler/Editor
(MIKBUG)

3. Evaluation Co-Resident Assembler M68ASMR213 A, B
Module II
(MINIBUG II)

*A = Cassette, B = Paper Tape, D = Diskette

CHAPTER 2

CODING M6800 CO-RESIDENT ASSEMBLER
LANGUAGE PROGRAMS

A SOURCE STATEMENT FORMAT

Programs written in assembly language consist of a sequence of
source statements. Each source statement consists of a sequence of
ASCII characters ending with a carriage return. Refer to Appendix A
for a listing of the supported ASCII character set.

Each source statement may include up to five fields:
Sequence number
. Label (or "#" implying a comment)
. Operation
. Operand
. Comment
2l Sequence Numbers

The sequence number field is an option provided as a programmer
convenience. The sequence number field starts at the beginning of a
source line and consists of up to five decimal digits (the value must be
less than 65,536). Sequence numbers must be followed by a space.

Although sequence numbers are optional, they must be consistently
used or not used for an entire program. If the first source statement
includes a sequence number, then every succeeding statement must also
include a sequence number. If the first source statement is unnumbered,
then no other statement may be numbered. 1In this case the Assembler will
provide sequential line numbers on the assembly listing.

25152 Label Field

The label field occurs directly after the sequence number field
(if there is one) or as the first field of a source line. The label
field may take one of the following forms:

(1) An asterisk (*) as the first character indicates that
the rest of the source line is a comment and should be
ignored (except for listing purposes) by the assembler.

(2) A blank (b) as the first character indicates that the
label field is empty (the line is not a comment and does
not have a label).

(3) A symbol.
The attributes of a symbol are:
. consists of 1 to 6 characters

. valid characters in a symbol are A through Z
and 0 through 9.

the first character of a symbol must be
alphabetic.

. the symbols "A", "B", and "X" are special symbols
used by the assembler and should never be used in
the label field.

A symbol may occur only once in the label field. If a symbol does
occur in more than one label field, then each reference to that symbol will
cause an error.

A label (symbol in the label field) is normally assigned the
value of the program location counter of the first byte of the instruction
or data being assembled.

The label of an EQU directive is assigned the value of the
expression in the operand field.

Some directives must not have a label in the label field. These
directives include: ORG, NAM, END, OPT, PAGE, and SPC.

Each symbol in a program is allocated an eight byte block in the
symbol table.

2ol 3 Operation Field

The operation field occurs directly after the label field in an
assembly language source statement., This field consists of an operation
code of three or four characters. The rules governing symbols also apply
to entries in the operation code field.

Entries in the operation code field may be one of two types:

. machine mnemonic operation code - these correspond directly
to M6800 machine instructions. This operation code field
includes the "A" or "B" character for the "dual" or
"accumulator' addressing modes. For compatibility with
other M6800 assemblers, a space may separate the operator
from the accumulator designation (i.e., LDA A is the same
as LDAA).

. directive - special operation codes known to the assembler
which control the assembly process rather than being translated
directly to machine language.

The assembler searches for operation codes in the table of
machine operation codes and directives. If not found, an error message
is printed.

2.1.4 Operand Field

Interpretation of the operand field is dependent on the
operation field. For the M6800 machine instructions, the operand
field must specify the addressing mode. The operand field formats and
the corresponding addressing modes are as follows:

M6800 Machine Instruction

Operand Format Addressing Mode
no operand - inherent and accumulator
expression = direct or extended

(direct will be used if possible)

i€ expression » - immediate

< expression »,X indexed

Addressing modes and expressions are described in the M6800
Programming Manual. Assembler directives can take on another form.
These directives are described in Chapter 3.

Zoded Comment Field

The last field of an M6800 Assembly Language source line is the
comment field. This field is optional and is ignored by the assembler
except for being included in the listing. The comment field is separated
from the operand field (or the operator field if there is no operand) by
one or more blanks and may consist of any ASCII character. This field
is important in documenting the operation of a program.

Lo EXPRESSIONS

An expression is a combination of symbols and/or numbers separated
by one of the arithmetic operators (+, -, *, or /).

The assembler evaluates expressions algebraically from left to
right without parenthetical grouping. There is no precedence hierarchy
among the arithmetic operators. A fractional result, or intermediate
result obtained during the evaluation of an expression, will be truncated
to an integer value.

3]
I
2

24251 Constants
Decimal: < number >

Hexidecimal: § < number)> or < number> H
(first digit in latter case must be 0 — 9)

Octal: @ < number > or < number> 0 or < number> Q
Binary: % < number > or < number?> B

2:2:2 ASCIT Literals
' character> (apostrophe followed by an ASCII character)

The result is the numeric value for the ASCII character.
2.3 SYMBOLS

A symbol in an expression is similar to a symbol in the label
field except that the value of the symbol is referenced instead of defined.
An asterisk "#" is a special symbol recognized by the assembler and
represents the value of the current location counter (first byte of an
instruction, when used in the context of the symbol.

A 16-bit integer value is associated with each symbol. This
value is used in place of the symbol during expression evaluation.

The M6800 Co-Resident Assembler is a two-pass assembler. The
symbol table is built on the first pass. Object records and listing are
produced on the second pass. Certain expressions cannot be fully evaluated
during the first pass because they may contain (forward) references to
symbols which have not yet been defined. In some cases, a symbol may
not be defined before being used in the second pass. Since the assembler
cannot evaluate such symbols, these cases are treated as errors. Only one
level of forward referencing is allowed.

2.4 M6800 ADDRESSING MODES
21 Inherent and Accumulator Addressing Mode

The M6800 includes some instructions which require only an
operation code byte. These self-contained instructions employ inherent
or accumulator addressing and do not require the operand field when
written in the M6800 assembly language.

2.4.2 Immediate Addressing Mode

Imnediate addressing refers to the use of one or two bytes
immediately following the instruction operation code as the instruction
operand. Immediate addressing is selected by preceding the operand field
in the source line with the character "#". The expression following the

"#" may require one or two bytes, depending on the instruction.

2-4

24,3 Relative Addressing Mode

Relative addressing is used by the branch instructions.
Branches can be made only within the range =126 to 129 relative to
the first byte of the branch instruction:

(PC+2)-128 £D £ (PC+2)+127

PC

[

address of first byte of branch instruction

D address of the destination of the branch

The actual branch offset put into the second byte of the branch
instruction is the two's complement representation of the difference
between the location of the byte immediately following the branch
instruction and the location of the destination.

2.4.4 Indexed Addressing Mode

Indexed addresses are relative to the M6800 index register.
The address is calculated at the time of instruction execution by adding
the one-byte displacement in the second instruction byte to the current
contents of the 16-bit index register. Since no sign extension is
performed, the offset cannot be negative.

Indexed addressing is normally indicated by the characters ",X"
following the expression in the operand field. (Special cases of ",X" or
"X" alone are the same as "0,X".)

2.4.5 Direct and Extended Addressing Mode

Direct and extended addressing utilize one (direct) or two
(extended) bytes to form the address of the operand desired. Direct
addressing is limited to the first 256 bytes of memory, 0-255. Direct
and extended addressing are selected by simply putting an expression in
the operand field of the source line. Direct addressing is used if
possible. An error results if a directly-addressable variable is
referenced before it is defined in a source program since this can
cause a phasing error. To avoid phasing problems, directly addressable
variables should always be defined before any reference to the variable.

2.5 ASSEMBLER LISTING

Assembler outputs include an assembly listing and an object
program.

2:5:1 Assembly Listing
The assembly listing includes the source program as well as
additional information generated by the assembler. Most lines in the

listing correspond directly to a source statement. Lines which do
not correspond directly to a source line include:

2-5

. page header lines

. error lines (see Appendix D for a listing of error
numbers)

. expansion lines for the FCC, FDB, FCB directives

Most listing lines follow the standard format shown in Table 2-1.

TABLE 2-1. Standard Format

(Special cases may not use exactly the same format.)

COLUMN CONTENTS

1-5 Source line # - 5 digit decimal counter kept
by assembler

7-10 Current Location Counter value (in hex)
17-13 Machine Operation Code (hex)

15-16 First byte of operand (hex)

17-18 Second byte of operand (if there is one)
20-25 Label Field

27-31 Operation Field

34-41 Operand Field (longer operand extends into

comment field)

43-Last Comment Field
Column
. Object Program

Detailed descriptions of the absolute and relocatable object
format is included in Appendix E.

2-6

CHAPTER 3

ASSEMBLER DIRECTIVES

3.1 INTRODUCTION

Assembler directives are instructions to the assembler rather
than instructions to be directly translated into object code. This
section describes the directives recognized by the M6800 Co-Resident
Assembler.

In Table 3-=1 the directives are grouped by function performed.
Detailed descriptions of each directive are arranged alphabetically.

Assembly Directives

DIRECTIVE

FUNCTION

ASSEMBLY CONTROL

NAM

ORG

END

LISTING CONTROL

PAGE
SPC
OPT NOO
OPT O

(Object Tape)
OPT M

(Memory File)
OPT NOM
OPT S

(Print Symbols)
OPT NOS
OPT NOL

(No Listing)

OPT L

QPT NOP
(No Page)

OPT B

OPT NOG
(No Generate)

3-2

Program name
Origin

Program end

Top of page
Skip '"n'" lines
No object tape

The Assembler will generate
an object tape (selected by
default).

The Assembler will write
machine code to memory.

No memory (selected by
default).

The Assembler will print the
symbols at the end of Pass 2.

No printing of symbols (selected
by default).

The Assembler will not print
a listing of the assembler data.

The listing of assembled data
will be printed (selected by
default).

The Assembler will inhibit
format paging of the assembly
listing.

The listing will be paged
(selected by default).

Causes only 1 line of data
to be listed from the assembler
directions FCC, FCB, and FDB.

TABLE 3-1. Assembly Directives (Continued)

DIRECTIVE

FUNCTION

OPT G

DATA DEFINITION/STORAGE ALLOCATION

FCC

FCB

FDB

RMB

SYMBOL DEFINITION

EQU

All data generated by the
FCC, FCB, and FDB directions
will be printed (selected by
default).

Character string data
One byte data
Double byte data

Reserve memory bytes

Assign permanent value

3-3

3.2

3.3

END

FORMAT: END

DESCRIPTION:

The END directive indicates to the Assembler that
the source is finished. Subsequent source state-
ments are ignored. The END directive encountered
at the end of the first pass through the source
program causes the Assembler to start the second
pass.

EQU - Equate Symbol Value

FORMAT: < label > £GU < expression) [(conments)]

DESCRIPTION:

The EQU directive assigns the value of the expression
in the operand field to the symbol in the label field.
The label and expression follow the rules given in

a previous section. Note that EQU is one operator
that assigns a value other than the program location
counter to the label. The label and operand fields
are both required and the label cannot be defined
anywhere else in the program.

The expression in the operand field of an EQU cannot

include a symbol that is undefined or not yet defined
(no forward references are allowed).

3-4

(")

3.4 FCB = Form Constant Byte

FORMAT: [< 1abe1>] FCB

DESCRIPTION:

00

[<expr>]

0

{<expr>, [<expr> 5
<null>, ' 4

< expr>

< comments >

The FCB directive may have one or more operands,
separated by commas. An 8-bit unsigned binary
number corresponding to the value of each operand
is stored in a byte of the object program. If
there is more than one operand, they are stored

in successive bytes. The operand field may contain
the actual value (decimal, hexadecimal, octal, or
binary). Alternatively, the operand may be a
symbol or an expression which can be assigned a
numerical value by the Assembler.

An FCB directive followed by one or more null
operands separated by commas will store zeros for
the null operands.

3=5

3.5 FCC - Form Constant Character

FORMAT: [(label >] FCC

NOTE:

DESCRIPTION:

d < ASCII string > d

< decimal number > , < ASCII string>
< comments >
"d" is any non-numeric character (used
as a delimiter).

ASCII string may not include a carriage
return.

The FCC directive translates strings of characters
into their 7-bit ASCII codes. Any of the characters
which correspond to ASCII hexadecimal codes 20 (SP)
through 5F (__) can be processed by this directive.

i

Count, comma, text. Where the count specifies
how many ASCII characters to generate and the
text begins following the first comma of the
operand. Should the count be longer than the
text, spaces will be inserted to fill the count.
Maximum count is 255.

Text enclosed between identical delimiters, each
being any single character. (If the delimiters
are numbers, the text must not begin with a
comma.)

3.6 FDB - Form Double Constant Byte

FORMAT: < label FDB
00
<expr> , <expr> , < expr
<null)> , 5
0
< expr?
< comments}>

DESCRIPTION: The FDB directive may have one or more operands
separated by commas. The 16-bit unsigned binary
number corresponding to the value of each operand
is stored in two bytes of the object program. If
there is more than one operand, they are stored
in successive bytes. The operand field may contain
the actual value (decimal, hexadecimal, octal, or
binary). Alternatively, the operand may be a
symbol or an expression which can be assigned a
numerical value by the Assembler.

An FDB directive followed by one or more null
operands separated by commas will store zeros for

the null operands.

The label is optional.

LA kiFdl F s
FHE G e
CHAAEA + FROGRaM 10 TLLUZTREATE USE OF FORM DOUBLE
CHEGEGL i O TL ORISR DIARECTIVE
EEcac= +
GUAGET Gebl G F B
BEIEICIS G LHEEL Fie cEELAFFL #FFF. . RFFFF
o Gt
G R RRF
GGG @ el FLE LAREL +~0l 6, LARBEL+S, LABEL
GG
[I S [B
Cascisd & Ry

TOTEL EREORT GocGn

3=d

37 NAM - Program Name

FORMAT: NAM

DESCRIPTION:

< program name)

[< comments >]

The NAM directive must be the first statement

of a M6800 Co-Resident Assembler source program.
The NAM directive does not allow a label, but it
does require an operand -- a program name (one-

eight characters).

The program name from the NAM directive is printed
on the header line for each listing page.

3.8 OPT = Output Option

FORMAT: OPT < option [, <option>]

DESCRIPTION:

The OPT directive is used to give the programmer
optional control of the format of the Assembler
output. The options are written in the operand
field and are separated by commas. The options
may have the character "NO" as a prefix which

reverses their meaning.

OPTION

OPT O
(object tape)

OPT NOO

OPT M
(memory file)

OPT NOM

OPT S
(printed symbols)

OPT NOS

OPT L

OPT NOL
(no listing)

MEANING

The Assembler will
generate an object tape.
(selected by default)

No object tape

The Assembler will write
machine code into memory.

No memory (selected by
default).

The Assembler will print
the symbols at the end
of Pass 2.

No printing of symbols
(selected by default).

The listing of assembled
data will be printed
(selected by default).

The Assembler will not
print a listing of the
assembled data.

OPT P

OPT NOP

OPT G

OPT NOG
(no generate)

3-9

The listing will be paged
(selected by default).

The Assembler will inhibit
format paging of the
assembly listing.

All data generated by
the FCC, FCB, and FDB
directions will be print-
ed (selected by default).

Causes only one line of
data to be listed from
the assembler directions
FCC, FCB, and FDB.

3.9

faAa=,

GEiua

G A
G ||

6 e To o I

TOTHL

ORG - Origin

FORMAT: ORG < expression> [(comments >]

DESCRIPTION:

PAEa @i |
gl

L1 A
[T D R o T T
eungrl

Baad, GEaE

The ORG directive changes the program counter to
the value specified by the expression in its operand
field. Subsequent statements are assigned memory
locations starting with the new program counter
value. If no ORG is specified, the program counter
is initialized with a value of 0, The ORG directive
may not include a label.
bt I Sl
BRoGipaid 7o ILLUSTRATE U=t OF THE ORIGIH
* DiFECTIVE
=R R i PC STRRTS AT ZERO
ik Bl S
DRG oG FOOSET To HEXR za
il A
] T FCOSET T WALUE OF TOHM
Fe o B ULE]
ErL

3-10

3.10 PAGE - Top of Page

FORMAT: PAGE

DESCRIPTION:

The PAGE directive causes the Assembler to advance
the paper to the top of the next page. The PAGE
directive does not appear on the program listing.
No label or operand is used, and no machine code
results.

e P it RMB - Reserve Memory Bytes

FORMAT: [< label >] RMB < expression > [(commen ts >:l

DESCRIPTION:

alsialcHs

GRGE T Goon CLAES B 4 1 BYTE PESERVED FOR CLRAE
BEAGEGD duaoel Az = feledie 2 = EYWTES FRESERVED FOR

LA l.-‘\l.\n 4 l._u_'il._d_,

I._1I.__il._1L i

TOTAL ERFUES GoEom

The RMB directive causes the location counter to

be increased by the value of the operand field.

This reserves a block of memory whose length is
equal to the value of the operand field. The
operand field may contain the actual number (decimal,
hexadecimal, octal or binary) equal to the number

of bytes to be reserved. Alternmatively, the operand
may be a symbol or an expression which can be
assigned a numerical value by the Assembler.

The block of memory which is reserved by the RMB
directive is unchanged by that directive.

The expression must not contain symbols which are
defined later in the program (forward references).

R i

PROGESM TO ILLUSTRATE USE OF THE RESERVE
MEMORY B TE LIRECT W

LB

FiEs &
R w-CL AL EXPRESSION bﬁrEHMEHL- Z1ZE
EHL

3-11

3.12

SPC - Space

FORMAT: SPC

DESCRIPTION:

< expression >

The SPC directive provides n vertical spaces for
formatting the program listing. It does not itself
appear in the listing. The number of lines to be
left blank is stated by an operand in the operand
field.

The operand would normally contain the actual
number (decimal, hexadecimal, octal or binary) equal
to the number of lines to be left blank. A symbol
or an expression is also allowed.

When the SPC directives causes the listing to cross

page boundries, only those blank lines required to
get to the top of the next page will be generated.

3-12

CHAPTER 4

ASSEMBLER OPERATION

4.1 GENERAL INFORMATION

The user may have received the M6800 Co-Resident Assembler on
cassette, paper tape, or diskette. The loading, initialization and
operation of the Co—Resident Assembler in paper tape and cassette is
discussed in Paragraph 4.2 while the loading and operation of the
Co-Resident Assembler from diskette is discussed in Paragraph 4.3.

4.2 CO-RESIDENT ASSEMBLER TAPE/CASSETTE
OPERATING PROCEDURES

4.2.1 Loading Co-Resident Assembler From Tape/Cassette

The Co-Resident Assembler must be present in the EXORciser or
Evaluation Module memory prior to the initiation of the assembler
operation. However, it is not always necessary to load the Assembler
before each assembly operation. If several programs are assembled in
succession, or if the programs are tested without modifying the memory
locations used by the assembler, then the Assembler will remain intact
in memory and available for subsequent uses without reloading.

i M | LOADING TAPE/CASSETTE INTO EXORciser MEMORY. Load the
Co-Resident Assembler into the EXORciser from tape/cassette as follows:

a. Place the Co-Resident Assembler object tape (paper tape or cassette)
into the System Reader Device.

b. Enter the EXbug command "LOAD". The EXbug Firmware will respond
with "'SGL/CONT".

c. Type "S" after SGL/CONT to load the single file containing the
Co-Resident Assembler. After the header record from the tape is
printed, the file is loaded into memory. Upon completion, control is
returned to EXbug.

42.2.2 LOADING TAPE/CASSETTE INTO EVALUATION MODULE MEMORY. Load
the Co-Resident Assembler into the Evaluation Module from paper tape/
cassette as follows:

a. Load the Co-Resident Assembler object tape (paper tape or cassette)
into the System Reader Device.

b. Enter the character L after the asterisk. This initiates the
Evaluation Module loading procedure. The Evaluation Module loads
the Co-Resident Assembler into memory and then prints an asterisk.

4,2.2 Assembler Initiation

In normal operation, the memory region between the end of the
Co-Resident Editor and location $2000 is used by the Assembler for
the symbol table. This table provides space for 90 symbols. If a
larger symbol table is required, the symbol table area can be extended
at either end.

By selecting the editor over-write feature, the area occupied
by the Co-Resident Editor can be appended to the beginning of the
symbol table. This increases the symbol table capacity to 312 symbols.
The over-write option is enabled by using MAID to change the contents
of memory location 30316 to FFy..

o O 1., = MeT T
202200 =F
&

If more than 8k bytes of read-write memory are available,
additional memory can be appended to the end of the symbol table.
This is accomplished by modifying the end-of-symbol-table address in
nmemory locations 301;4 and 302;74. Eight bytes of read-write memory
are required for the storage of each symbol. Modifying locations
301,4 and 30274 to contain 2400 extends the symbol table by 1k bytes,
or 128 symbols for a total of 2}8, assuming the editor over-write is
not selected.

=4F05 1.2 m3lD
LRI e L

R I (Y

*

If the object code is to be written into memory (OPT M), the
end-of-symbol-table address delimits the address. For example, if the
symbol table ends at 2000l (the default value), a program beginning
at 2000y or higher may have its output directed into EXORciser memory
(assuming the memory is available). 1If, on the other hand, only 8k of
memory is available and the programmer wishes to assemble into memory
(OPT M), the symbol table can be shortened to make memory available
for the object code. This is accomplished by changing the end-of-symbol-
table address to a lower address. For example, assume 1F00 is the

16
new end-of-symbol-table address.

2Nl o20
U0 0o
+

A program beginning at lFOOl now can be assembled into memory.

6
Should an end-of-symbol-table address be entered that is less

than the start-of-symbol-table address, the Co-Resident Assembler uses the

default address 200016.

A user's program may take advantage of the direct addressing mode
and use the first 256 bytes (0-100,.) for scratch memory. However, no
instructions that generate data; such as FCC, FDB, or FCB; may be assembled
into this area because the Assembler and Editor also use this portion of
memory for scratch storage.

Figure 4-1 depicts a memory map of the Co-Resident Assembler.

Memory Map Memory Map
Tape Version Disk Version
Assembler Operation Assembler Operation
HEX HEX
0000 0000
SCRATCH SCRATCH
0100 0100
1/0 ROUTINES I/0 ROUTINES
0300 0300
RESIDENT RESIDENT
ASSEMBLER ASSEMBLER
1610 OPTIONAL USE 1610
RESIDENT AS SYMBOL TABLE SYMBOL TABLE
EDITOR 225 ADDITIONAL CONTINUES TO
1D00 SYMBOLS THE EﬁD OF
CONTINUOUS RAM
SYMBOL TABLE
(93 SYMBOLS)
2000
OPTIONAL USE
AS SYMBOL TABLE|
H

NOTE: (TAPE VERSION ONLY)
The editor overwrite flag is at $303.
If it is zero the editor area will not
be used as symbol table. If it is non-
zero the editor area will be used as sym-
bol table.
Locations $301-$302 contain the address
of the end of the symbol table. The de-
fault value of $2000 may be changed by
the user.

FIGURE 4-1. Memory Maps of Co—Resident Assembler.

4-3

Selection of the Editor over-write feature and modification of

the end-of-symbol-table must be done after the Assembler has been
loaded and before it is initiated. Figure 4-2 illustrates the procedure
for loading the Assembler and initiating it without modification.
Appendix F depicts the Program Assembling Procedures.

EXBILNS 1.2 LOAD

ESLSCOMT

=Bt b =

ZHBUS 1.2 MAID

el NS5

MEZ00 RESTOENT ASSEMELER 1.3

COEYRIGHT mOTOR{LA

CHTER FAZL: 1F«lls

iF

S0 RELZIDEMT SHIEME

CIRYRIGHT MOTORILA

“HTER PRI 1Fa] 2

S

FIGURE 4-2. Program Assembling Procedures
4.2.3 Tape/Cassette Co-Resident Assembler Operation

The Co-Resident Assembler is a two-pass assembler. That is,
the Co-Resident Assembler must read a source program twice--once to
build a symbol table and a second time to produce the assembled output.
In response to the assembler prompt message.

ENTER PASS: 1P, 18, 2P, 2L, 2T
Select the appropriate assembler pass. The Co-Resident Assembler Pass
controls are described in the following paragraph and are summarized in
Table 4-1.

TABLE 4-1. Co-Resident Assembler Pass
Controls and Options

CONTROL DESCRIPTION
1P Pass 1, clears symbol table
1S Pass 1, inhibits clearing of symbol table
2P Pass 2, assembly listing and object tape
output.
2L Pass 2, assembly listing only
2T Pass 2, object tape only.

b=4

PASS 1P -- Pass 1 produces a table of the symbols which appear in the
program and the corresponding memory addresses to which they are assigned.
This table is used in Pass 2 to determine the address field for instructions
which reference memory symbolically. Program syntax is also checked in

Pass 1, and errors are listed.

PASS 1 Option 1S -- In the assembly of multiple source tapes, it may be
advantageous to be known to each assembly. The S option for Pass 1
inhibits the clearing of the symbol table before the pass is started.

PASS 2P -- Pass 2 rereads the source tape and uses information in the
symbol table to produce the assembled output. Using terminals which
permit independent on/off control of the tape output and printer devices,
Pass 2 can produce both an object tape and an assembly listing. A
terminal without independent controls will permit the generation of
either an object tape or an assembly listing (not both). In this case,
Pass 2 may be repeated to generate both output forms,

PASS 2 OPTIONS
2L -- The L option for Pass 2 is used to generate only an assembly
listing (no object tape).

2T —— The T option for Pass 2 is used to generate an object tape
(no assembly listing).

NOTE:

One-Pass Operation. For source programs which have no
symbolic forward references, Pass 1 may be omitted. For
short programs with only a few forward references, it is
also possible to'omit Pass 1. In this case, however, the
forward references will be flagged with error 211 and the
assembled program with an address field of FFFF. The
correct address can be patched after the symbol table is
printed at the completion of the assembly.

In combination with the options for entering a source
program from the terminal keyboard and for assembling
an object program in memory, short programs may be
assembled and executed without the use of tapes.

43 CO-RESIDENT ASSEMBLER DISKETTE OPERATING PROCEDURES
4,3.1 Disk Co-Resident Assembler Operating Characteristics

The Co-Resident Assembler on diskette, when working with the
EXORdisk with its EDOS Firmware, has several unique characteristics.
In this application, the EDOSII Firmware automatically selects the
Editor-overwrite option. Also the assembler searches the EXORciser
for the end of its continuous memory to deter the end-of-symbol-table
address.

4-5

If the user wishes to use the OPT M directive and insert the
assembled output into memory he must provide a block of memory that is
not continuous with the memory being used by the Co-Resident Assembler,

4.3.2 Diskette Co-Resident Assembler Operation

The Co-Resident Assembler is a two pass assembler that resides
in the diskette file named ASMB. That is, in its assembly operation
the Assembler reads the source program twice —- once to build a symbol
table, and a second time to produce the assembled output. Unlike the
two pass operation of the assembler on tape or diskette, this assembly
automatically performs the two passes in sequence.

This assembler working with the EXORdisk's EDOS Firmware assembles
the source file and directs the assembled object output (if selected)
to the object file and the assembly listing (if selected) to the terminal
device. In initiating the assembly process, the user instructs the
EXORciser to run the EDOS Firmware. On receiving the EDOS prompt (!)
the user enters the appropriate assembly command. The three assembly
operations are described in Figure 4-3 and illustrated in Figure 4-4. 1In
entering the assembly command, all three operands must be specified. 1In
the case where no object file is to be created, any dummy file name may
be entered in the operand field. 1In this case, no file entry will be
created on the diskette.

Name: ASM
Format: ASM, passoption, objectfilename, sourcefilename

Purpose: To assemble the contents of the source file and to direct
the assembled object output, if any to the object output
file and the assembled listing, if any, to the list device.

Comments: All three operands must be specified. If no object file is
to be created, any dummy file name (i.e. X or Y or Z etc.)
may be entered in this operand field since no file directory
entry will be created.

The pass option operand field may contain the number 2, 3,

er 4.

2 = both an assembly listing and an object output are
produced.

3 = only as assembly listing is generated to the list
device.

4 = only an object output is generated to the output
object file.

Example: ASM,4,JOEQ, JOES

Produce an object file named JOEO from the source file named
JOES.

FIGURE 4-3. Assemble (ASM) Command

PSESMa 2 PEMOT s FEM
=200 SELIDEMNT ATSEMELER 1, 2
TAORYREIGHT mdTOROLA 1376

FIGURE 4-4, Example of Disk Assembly Operation

4=7

APPENDIX A

CHARACTER SET

The character set recognized by the Motorocla M6800 Co-Resident

Assembler is a subset of ASCII (American Standard Code for Information
Interchange, 1968). The ASCII Code is shown in the M6800 Programming
Reference Manual, The following characters are recognized by the assem-

bler.

1. The upper case letters A through Z
2. The integers @ through 9
3. Four arithmetic operators:

+ - %

4. Characters used as special prefixes:

A

? (pounds sign) specifies the immediate mode of addressing
(dollar sign) specifies a hexadecimal number

(commercial at) specifies an octal number

(percent) specifies a binary number

(apostrophe) specifies an ASCII literal character
(ampersand) specifies a decimal number

-

=g}

5. Characters used as special suffixes:

B (letter B) specifies a binary number
H (letter H) specifies a hexadecimal number
0 (letter 0) specifies an octal number
Q (letter Q) specifies an octal number

6. Three separating characters:
SPACE
CR (carriage return)

, (comma)

7. A comment in a source statement may include any characters
with ASCII hexadecimal values from 20 (SP) through 5F (_).

In addition to the above, the assembler has the capability
of reading string of characters and of entering the
corresponding 7-bit ASCII code into specified locations in
the memory. This capability is provided by the assembler
directive FCC (see Chapter 3). Any characters corresponding
to ASCII hexadecimal values 20 (SP) through 5F (__) can be
processed. This kind of processing can also be done, for a
single ASCII character, by using the immediate mode of
addressing with an operand in the form " 'C",

APPENDIX B
SUMMARY OF M6800 INSTRUCTIONS

paldl] eww e e 0 0 e e esuoeaT e e CuoeNnNNee e e NN e O

Paxapul r~ @ eT MWW WM~ 8L} @ 81~M~ 8 & 8l & 8 e~ o e 09 oaf~ 0 o

papuayx3
wang
ajerpawLu |
X020V

{puesadQ |enq)

Bﬁ_sﬂ_ﬂm
paijdur)
paxapu)
papuaixgy
Wwang
a1eIpaww |
X 20V

(puessdg jenq)

w

INC

L]

INS

MO T W WD WD

2 % oM T T 0B

o e NI e @

e 0 0 9 @ 80Dy

»

INX

JMP
JSR

LDA
LDS
LDX
LSR
NEG

*eTTTWO &0 0 8

®MMO 8 8 8 & 0 8

eONND o 0o & 0 0 @

® & 8 a0y B @ 8 O

ABA

ADC
ADD

AND
ASL
ASR
BCC
BCS
BEA
BGE
BGT
BHI

NOP
ORA
PSH

T

e o

[']

X

X

BIT

PUL
ROL

ROR
RTI
RTS

BLE
BLS
BLT

BMI
BNE

e =T

: 1

SBA
SBC

BPL
BRA
BSR
BVC
BVS

SEC
SEI

oW W W T

e W)WM

e o 0 o0

>

X

SEV
STA
STS
STX
SUB

L

SWiI
TAB

TAP
TBA

TPA
TST

=+ < e o @ © ® o © & o O

LB

TSX
TSX

PN 9T o 0 BT 8T T

[=]

CBA
cLc
CLI

CLR
CLv

& o~ oM~ w @M~

T WY oW

e e 8 ®

e 80T o @

CMP
COM
CPX

x

DAA

DEC

ety & oy @ 0OV

DES
DEX

WAI

X

EOR

Interrupt tme is 12 cycles from the end of

NOTE

the instruction being executed, except following

a WA instruction. Then it is 4 cycles.

INSTRUCTION ADDRESSING MODES AND EXECUTION TIMES
(TIMES IN MACHINE CYCLES)

B-1

ADORESSING MODES BOOLEAN/ARITHMETIC OPERATION COND. CODE REG.
IMMED DIRECT INDEX EXTND IMPLIED (AN register labely 5l4i3j2{1]0
QPERATIONS mnemonic| o0 - ={or - =lop - =lor - =|op - = 1S conteen) o bl il b ko
Adz Al0A 38 2196 3 2|AER 5 1|BR ¢ 3 Avit -4 4 LT
ALDs cs 2joe 32 2|ER S 1| F & 3 BN B jejtife
Add Acmitey AEA 18 2 1 Ash -4 el
Add with Larry ADCA 82 2 2| 3 2|aAs 5 2|88 ¢ 3 AsMeC -A slefifiiige
AGCE M2 2o ¥ Kl S FFAE 3 B+M+C -8 LIRS R I
And ARDA 88 2 2% Y 2|Af 05 2|B4 3 3 AW <4 ele|l|iIR|e®
AKDE €4 2 2[{0& 3 2|E4 5 2|P8 & 3 B+M B sfeji|l|R|e
Bil Teyl BITA By 2 1% 3 MRS OB 2(BH & 3 AW sje|lll|R|e
aiTe S ¢ |05 3 TEE R RIES 4 3} B els|l|l|f|e
Cleat CLR 5 L kb 3 oo« e|8RIS|RIR
CLRA & 2 1| 0D A ®|®(RISIRIR
CLRE 5 2 1| 00-+A ole|RiS|R|R
Compare CMPA £ 2 2|19 3 XA 5 2|BY & 3 A M olelld]
CYPH 2 2o 3 2|Et s |F o2 3 B-M DO HHEE
Compare Acming CBA 1 2 1|A-B elefifili]t
Camplament, 1y com &3 r e 3 ooen eielllllAlS
Coma 33 2 1| A eje|l|1IRIS
coMB 53 2) | B8 LR RAE:R £
Cumplement, 2t NEG st 1 (7 §F 3 0 Moem sl OD
IHegatel NEGA W 2 1| o0-a-A slel:|1 @@
NEGE 502)V |oo-B-8B ele|!|! @D
Deumpl Adjunt, & naa | 7 I Conyerty Bingry Add of BCO Characters |@|@ 1|11 1 @
wip BCD Format
Degrement DEC B4 1 2{7A 6 13 w-1-+M ele|llliile
DECA 2A 2 t|A-1-A sle|lllldle
DECH A 1 1 B.1=+8 ele lllig|e
Eetluyve OR EORA B8 2 2|98 3 |Am & 2|88 2 13 AEM A ele|l|llR|e
EDRE €8 2 2|08 1 2|E8 & 2|F8 & 3] 8EM -8 ejlel|i|R|e
Tnciement INC B) &l 5 3 Met ot slafi|1iTHe
INCA % 2) | Eerea olaft|1fi)e
INCE 56 2 1| Fetob slefi|ifE)e
Lozd Acmiy LoAA B6 2 2|9 3 2|A6 5 2|86 2 3 M oA e|o||!|R|e
LDAB €6 2 2|06 3 2|E8 § 2|F6 & 3 Moo ele|l|liR|e®
Or, Inclusive DRAA BA 2 219A 3 2|AA & 2|BA § 1 AvM = A sje|l |l IR|e
ORAS €A 2 |0A 3 2|BAa § 2|FA &% 3 Ben-g olellliiR|e
Puth Date PSHA kB 4 1 A =Mgp, 5P - 1—SP IR SR IR 00
PSHE 3 & 1| 8-~MgpSP-1 +SP LI RE AR IR AR
Pull Data PULA 32 & 1| SRl 5P Mgp-A oleeinee
PULB 33 ¢ §P+ 1 +SP Mgp—~§& ele o 00
Ratate Left ROL B v 2|17 8 3 M ofo || 1fEN!
ROLA 4 2 ! .a.} — [TIIITTT}= ofe|:| 1@t
ROLE 92 1|8 ¢ W = bl AOHB G
Raotats Right ROR B8 ! 2|1® & 23 M ———————— olo|!|1¥EN !
RORA % 2 1 A}] - TT1T] HUHHGH
RORS 6 2 1@ & = n SOHHGE
St Lett, Avthmetic AsL 68 7 72|m & 3 v} . ele|!|1E)!
ASLA 8 2 t|aA 0 - OIIIIID=-0 HOHEBEGHE
AsLa ® 2 1|8 c 0 DLHHGE
Staft Right, Arihmetic ASR 6 t 2|n § 3 L = DO GE
ASRA 4 2 1 A}Qﬂ:ﬂ:{m - llt!@:
ASRE 5 2) B b? 60 [oo 1| 11EL:
Shift Right, Logie LSR M 2 n e 3 M o DUOLMGHE
L5AA % 7 1|a o—-{rmnTn - 0 BN GH
LSHE 8 7 1@ b7 o C eloip|IiEN S
Stote Agmit STAA 7 & 2|A B 2|87 5 3 AN DO HE
STag m 4 2|80 & 2|F7 5 1 2N sleli|i|R|®
Sutitract SubA @ 2 2|0 3 2|AD 5 2|80 5§ 3 A M-a siefilili]s
sugs 0 2 2080 3 2|80 5 2|F0 & 2 a-N-B AL RS R
Subtract Azmitrg S8A w F A B—A ole|dlt] s
Subtr with Canry SBCA 22 2 2|9 3 2|/A2 % 2|8 & 2 A-M-C—=a sle|llrs]s
SBCE €2 2 2|02 3 Z|E2 % F2 4 2 B-M-C -8 LAL RS RERY I
Travaler Agimiing TAB 16 2 1| AR eolo|!|tlR|e
T84 LA S | B A ool | l|R|e
Test, Zero or My 1s1 B0 7 2| & 3 M 00 ele|l|!|RIR
7514 0 2 1t A 00 ole | TIR(A
1578 50 2 t|la8 o0 sleliltin|n
HltLiNjZIV|E
LEGEND: CONDITION CODE SYMBOLS:
0P Operation Code (Hexadecmal |, + Boolean Inglusiee OR;
= Number o! WPU Cycles; @ Boolean Exgliier DR, W Hall carry fram bt 3,
= Kumber of Program Bytes, R Complement of M | Interrupt mash
. Arithmetrc Plut - Trargher intg, K Negatree fugn bit)
- Anthmenic Mings Bit = Zwro Z Zeeo ibytel
3 Bootean AND, 00 Byte = Zero v Dvertica, 2% complement
Mgp Contents of memory ipcation gmnted 1o te Stazs Pointer; C Carey brgm bt 7
R Resss Alaays
Note — Accumulator addressmg mode sttuctions are ielu@ed on e cotum 1er IMPLIED addrening s Ser Alaayy
. Teat and 11 o trur, cleaied Giherwiie
Ll Not Aftected

MC6800 INSTRUCTION SET

B-2

COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED i 5 ‘Id] 32 | 1 [U
POINTER DPERATIDNS MNEMONIC I op|=| =|0OP|~| =|0P |~ l =|0P|~|=|0P| = 1 = BOOLEAN/ARITHMETIC OPERATION | H |1 N (2 \J’iC
| compare Index Reg CPX a3 a|oc|afz2]ac|s|2 ecls |3 XH - M. XL - (Mo o|e|(D]: @]
Oecrement Index Reg DEX [B X-1-X ® 80 [00
Decrement Stack Pntr DES 4|1 SP1 8P o s e o sle
Increment Index Reg INX 05| 4 |1 X=1 =R LI | ijele
Increment Stack Patr INS 40 SP+1—SP © 0000
Load Index Reg LDX CE|(3| 3|DE|4 | 2|EE|6 |2 |FE|5 |13 Mo R, (N 10 =X o o@:|R|e
Load Stack Prte LOS 8E | 3| 3 I'SE 4 | 2|AE|'G |2 |BE|S5 |3 M—=SPH. [M =+ 1) —=5P e :-u.‘i TIR|e
Stare Index Reg stx || OF (5 | 2 |EF|7 (2 |FF|B |3 XHM XL oM 1) o o(0 ! R e
Store Stack Pote STS 9F | & |2 [AE| 7| 2 (BFE|B |3 SPH =M, SPL =M« 1) [™ /@i R|e
Indx Reg +Stack Pnie ™ XS | 3504 | 0 X -1 -=5P e o 0 0 0 @
Stack Prtr —= Inix Reg 15X | | 1 l w4 Spe g X e 8 e 0o
COND. CODE REG.
RELATIVE INDEX EXTND IMPLIED 5413 | 2|11 1|0
OPERATIONS MNEMONIC BR| ~ [= P =| £ DP] = |# [opP|—= | & BRANCH TEST H|A "8 2 5% |5
Branch Always BRA 0014 |2 None L R S A
Branch If Carry Clear Bec 24| 4 |2 c=0 o e o o o o
Branch It Carry Set BCS 254 |2 £=1 o o o o @@
Branch Il = Zero BEQ 27| 4 | 2 Z=1 e o o o 0|
Branch If = Zero BGE 26| 4 |2 NEV=D e o | o o o |®
Branch |l > Zero BGT 26| 4|2 [| Z+IN®VI=D o o e 0| 0|0
Branch It Higher BHI 22| 4 |2 ' c+2=0 o o (0o o 0|
Branch If < Zerg BLE 2F| &4 | 2 Z+IN@V) =1 e o o & o |®
Branch It Lower Or Same BLS 23| 4 | 2 | C+Z=1 e/l o o o o @
Branch Il < Zero BLT 2004 |2 N@V-= s o o| s o =
Branch If Minus M 28 (4|2 | N=1 e o o & o @
Branch 1l Not Equal Zero BNE 26| 4|2 | Z=0 e o o o a0
Branch It Overflow Clear BVC 8|4 |2 | V=0 o o | 0 o oo
Branch It Overflow Set BYS a2 | V=i o o o 0|0|e
Branch If Plug BPL A 4] 2 ‘I N=0 o o | o o0 |0
Branch To Subroutine BSR 8D | 8 |2 | l el o e 0o s @
Jump NP GE| 4 | 2| TE| 3| 3 | + See Special Operatians e o o o o e
Jump To Subroutine ISR AD| B | 2|BD| 9|3 ‘ ol oo ol ele
No Operation NoP 01|72 |1 Advances Prog, Cntr, Only e o 0o o 0 0
Return From Interrupt RTI 38 |10 |1 @
Return Frem Subroutine RTS /5| i o/ o/ v el ele
Sottware Interrupt W IF (12 |1 ; See Special Operations o & o o 0|
Wart tor Interrupt® | WAl | 3|9 |1 ‘ ° @l e © o o
*WAl puts Address Bus, R/, and Data Bus in the three-state mode while VMA is held low.) :
COND. CODE REG.
IMPLIED s[al3fz]1]o0
OPERATIONS MNEMONIC |OP | ~ | ~ | BOOLEAN OPERATION | H | I'|N|Z|¥V|E
Clear Carry cLe gc|z |1 0-C o e oo 0|R
Clear Interrupt Mask cul 0E |2 (1 g1 e Rl e |80 e
Clear Overflow cLv 1ga |2z |1 | 0~V e o |e® o R|e
Set Carry SEC ag (2 |1 ‘=G o o | e 0|5
St Interrupt Mask SE| OE |2 | 1= ® | S|® @|lw|e
Sat Overflow SEV 0B|2 1|1 1=V o | o|e e |S| e
Acmlte A — CCR TAP 06| 2 1 A—CCR —_—
CCR = Acmiir A TPA gz CCR—A e|e|e oo

1 (Bit V)
2 g g
3 8 Ci
4 B vi
5 (Bit V)
& (Bir V)

CONDITION CODE REGISTER NOTES:

Test. Result = 100000007
Test: Result = 000000007

Test: Decimal value of most ugniticant BCO Character greater than nine?

{Not cleared if previousty set |

Test: Operand = 10000000 prior to execution?
Test: Operand = 01111111 prior to execution?
Test: Set equal to result of NEC alter shilt has ocourred.

(Bt set of test s true and ¢

(Bit N)
{8t vl
(Bit N)
(A1)

(Bit 1)

— e D 03 =d
(=]

leared otherwise)

Test: Sign bit of most significant (MS) byte = 17

Test: 2's complement overtiow from subtraction ol M3 bytes?
Test: Result less than zero? (Bit 15 = 1)

Load Condition Code Register from Stack, (See Special Operations)
Set when interrupt occurs. I previously s2t, 3 Non-Maskable

Interrupt is required to exit the wait state,

LAl

MC6800 INSTRUCTION SET (CONTINUED)

B-3

Set according to the contents of Accumulator A

APPENDIX

C

M6800 Co—Resident Assembly Directives
Summary

DIRECTIVE

FUNCTION

ASSEMBLY CONTROL

NAM
ORG
END

LISTING CONTROL

PAGE
SPC
OPT NOO

OPT O
(Object Tape)

OPT M
(Memory File)

OPT NOM

OPT S
(Print Symbols)

OPT NOS

OPT L

OPT NOL
(No Listing)

Program name
Origin

Program End

Top of page
Skip "n'" lines
No object tape

The Assembler will generate
object tapes (selected by default).

The Assembler will write machine
code to memory.

No memory (selected by default).

The Assembler will print the
symbols at the end of Pass 2.

No printing of symbols (selected
by default).

The listing of assembled data
will be printed (selected by
default).

The Assembler will not print a
listing of the assembled data.

M6800 Co-Resident Assembly Directives
Summary (Continued)

DIRECTIVE FUNCTION

OPT P The listing will be paged (selected
by default).

OPT NOP The Assembler will inhibit format
paging of the assembly listing.

OPT G All data generated by the FCC, FCB,
and FDB directions will be printed
(selected by default).

OPT NOG Causes only 1 line of data to be

(No Generate)

DATA DEFINITION/STORAGE ALLOCATION

FCC

FCB

FDB

SYMBOL DEFINITION

EQU

listed from the assembly directions
FCC, FCB, and FDB.

Character string data (Form constant
character)

One byte data (Form constant
byte)

Reserve memory bytes (Form double
byte)

Assign permanent value

201

202

204

205

206

207

208

209

210

211

APPENDIX D

ASSEMBLER ERROR MESSAGES

NAM DIRECTIVE ERROR

MEANING: The NAM directive is not the first source statement,
or it occurs more than once in the same source
program (Applies only to version 1.2)

EQU DIRECTIVE SYNTAX ERROR
MEANING: The EQU directive requires a label (Applies only to
version 1.2)

STATEMENT SYNTACTICALLY INCORRECT
MEANING: The source statement is syntactically incorrect

LABEL ERROR
MEANING: The statement may not have a label or the label is
syntactically incorrect.

REDEFINED SYMBOL
MEANING: The symbol has been previously defined.

UNDEFINED OPCODE
MEANING: The symbol in the operation code field is not a valid
operation code mnemonic or directive.

BRANCH ERROR
MEANING: The branch count is beyond the relative byte's range.
The allowance is
(* +2) - 128 D (* +2) + 127
where D = address of the destination of the branch
instruction.
* = address of the first byte of the branch
instruction.

ILLEGAL ADDRESS MODE
MEANING: The mode of addressing is not allowed with the
operation code type.

BYTE OVERFLOW
MEANING: A one byte expression has been converted to a value
greater than 25510 or less than —12810.

UNDEFINED SYMBOL
MEANING: The symbol does not appear in the label field.

213% EQU DIRECTIVE SYNTAX ERROR
MEANING: The EQU directive requires a label.

216 DIRECTIVE OPERAND ERROR
MEANING: The directive operand field is in error,

218 MEMORY ERROR
MEANING: The memory option was used and the object code was
directed to overwrite the assembler/editor onto
non—existent memory.

220 REDEFINED LABEL ERROR
MEANING: The symbol in the label field has been redefined and
has a different value on Pass 2 than on Pass 1.

221 SYMBOL TABLE OVERFLOW
MEANING: The symbol table has overflowed. See assembler
operation paragraph in Chapter 3 for extending the
symbol table.

* In version 1.2 ERROR 213 is a redefined symbol error.

APPENDIX E
ABSOLUTE OBJECT RECORD FORMAT

oD
Frame 0A
00
1
2
3 — —
4 o I
5 s ‘ S s
6 - Sa A
7 ’ - =
g E o 2
[
9 - -3 £ - .
10 R 2 7 }
. b 9
< ar
. = =
m
N s —}

_\\

Leader (Nulls)
(Nulls)
(CR) Formatting for printer

{LF)
(Null)
S = Start-of-record
CC = Type of Record

Byte Count (two frames =
one byte)

readability ; ignored by leader

Address/Size

Data

Checksum

Frames 3 through N are hexadecimal digits (in 7-bit ASCII) which are converted
to BCD. Two BCD digits are combined to make one 8-bit byte.

The checksum is the one’s complement of the summation of 8-bit bytes.

cc-30 cc=31 CcC=39
Header Data End-of-File
Frame Record Record Record
1. Start-of-Record ___ 53 S 53 S 53 S
2. Type of Record __ 30 0 31 1 39 9
3. 31 b 30
4 Byte Count 32 12 26 16 13 @3
8 30 3 30
6. Address/Size 30 31 1100 30 0000
. 30 i 30 30
8. 30 30 30
9. 34 39 46 FC
10. Data 18 4811 18 a8 a3
. 34 30 (Checksum)
y 2 44D 22 32
. 35 ——
. 32 BER 41 _—
) ‘ A8 (Checksum)
;_—5—“’.—/"— 8
38
N. Checksum 45 e

E1

noont
ooz
anon=

ooanin
oonil
nogls
ooz
aonidg
aoais
nonis
ooniy

non13

0Nz
nonsg

nnn=1

nnnzs
COouMT
ZTACE
TOTAL

.':]

g Fiam

Soon

(O [V RN

2000 =

2003

g 0l
T

Z00A
200
Z00nAH
S0
Z0E
=
Sl

201

O T oD
=) o= T T T

B v U R o

tad T e MO T e
T T I

Al

g

2019
S

=g b

c0le

)
mo

201
cllA E
S0iD =

[= o
L I
Fi
5%

(R

el g
ool

aoo=z ZTHET
Z0=E BNTE
ERFORE 00000

APPENDIX F

SAMPLE PROGRAM

MHM

+ FEMIZION

COUMT
ETHET

ERCE

FOUMT

arT
aFT
aoFT
ORIz
Ed
LO=
LI
LIA
LIA
CHP
RE
DE=
DEC
EMHE
A1

B B
ArE

* COMMEMT

ETACK
EYTE

HODF
OHTH

ZUERTH THE

O~H
RTZ

FME
EME
FCE
FCE

FLE
FCiz

EMD

S0nn BRCE

SEE

ROOFE

I Ik

STATEMEMT MOTE TRUMCATIOM
COMMEMT FIELD
MOST

H

FISH

=2 w0

2000
I

WAL e

S#ETHCE
ADDF
00T
10

FOUMI
ERCE

ZUERTH
=TART

EY'TE

=0
1
E20

F10.54

LATH

QUTFUT OEBJECT THFE
ZELECT PRIMTING OF EvMEOLE

» IMDICATES OCTAL
“THCK FOIMTER

IME

IMMEDIARTE ADOREZEIMG
DIFRECT RDDREZZIMG
IMD==ED ADIREZZIMG
FELATIYE RDDREZZIMG
IMFLIED ADDREZZIMG
HZCUMULATOR OMLY ADDEEZZIMG

WHIT FOR IMTERELUFT

AUMP TO =UBROUTIME
EXTEMDED AUDDORE=ZIMG

TET

FETUREM FROM ZUEBROUTIME

ZCRATCH AREA FOR EZTHCK
ZTRET OF =ZTHCE

FOREM COMETHMT EYTE

T IMDICATES HESADECIMAL

0123455723 0123245
TRUNCATIOMO]1 S
ZIGMHIFICANT EBIT

FORM COMETAMT LDOUELE EBYTE
SEETS FORM COMETHMT DATH ZTRIMG

ZUERTM 2013

tHECT

TONENNOOS0474D2 02020202070
S11EZNONSESN2EFES 0380 21358 05A] D227

;

1

’|
i
=
o
N
L
fLE
T
L
(L
()
in
Lo s
L=
o
el
B
-
m
I
=
—
1T
m
I
it
F o8

SANEO000ET

L

EXEBUG 1.2 FRENT

EE: ARLODFE 0801 2000
EMD ADDR FFFF 203H

HBEC Y

2000 3E @0 32 FE 20 36 06 03 95 04 A1 02 27 05 0% SA . 2. &F...1.7..2
Z010 26 Fe 3E BD 20 13 FE Z0 00 15 BA 20 33 33 S5 S5 #,:=3 =290y
2020 55 S5 S5 S5 S5 S5 S5 55 55 S5 S5 S5 55 S5 S5 55 UUCCUUULN 0
2020 55 55 95 20 10 04 20 32 93 45 54 55 S5 55 55 S5 i, .. SSETUOLYL
EES ARDDRE 2000

APPENDIX G

USING MIKBUG VERSION OF THE M6800
CO-RESIDENT SOFTWARE WITH THE MEX6800 D1
EVALUATION KIT

The MIKBUG version of the M6800 Co-Resident to make the Evaluation Kit compatible with the M6800
Software may be used with the MEKG800 D1 Evaluation Co-Resident Software,
Kit. As discussed in Engineering Note 100. The Evalu- a. Change the schematic in Figure 3-4 of Engineering
ation Kit uses the MIKBUG Firmware stored in the Note 100 in accordance with Figure 1 of this docu-
MCME830L7 ROM and interfaces with the selected data ment. The changes are depicted in dotted lines. Use
terminal via a MC6820 Peripheral Interface Adapter at the modified schematic to design and build your
addresses 8004 through 8007. Interfacing the Evaluation terminal interface.
Kit with a RS-232C compatible or TTY (20 mA neutral b. Change the Control H character delete command
current loop) terminal is depicted in Figure 3-4 of in Table 2-1 of the M6800 RESIDENT SOFTWARE
Engineering Note 100, The following changes are required SUPPLEMENT to control H. (In Edition 1 of the

supplement, add the Control A to Table 2-1.)

Address Bus
12v Saerial
Output
80048007 39k
Addrass Fl— VM A 5
Decoder Rosot & a Sarial
Commaon
I— |34
[Serial
22| <o A MC14B9AL e
See Note 2
B 52 (St
24
a5 pagiat:S 6 RS.232C
A0 = | AS0 *,i Output
;n—_as.ns1 | MC1488L S
RIW 21 aw .| T /=" """ 1 [?u Note1 |
9 10 .

25 PA7 2 L | it W) RS.232C
i s | 12V B o
po—233] oo MC6820 I mciaesaL |} == e | RS-232C

32 | 7400 | Ll O, Sig Gnd
D1 D1 T | =S L._

31 - o—
b2 02 i o!

03— 04 MC 1489 //
19 13
D4 AN o4 cez Reader
28 _—— e —— Control
os a5 MC14B9AL
7 184001
os—=" 06 18 Gnd for 30 CPS gucml
—p{ 2ne tor ontro
D7 . 7 ey {'5 WV tar 10 CPS Roturn
PB7 PB2 PBO =
17| 12 wL
91 k
= Reset Iny 3 AN
2a Mci4s36
13 620 pF
Dou! Quty {{ <
o«
8- Bypass 50k
10 a p
11 Outp
Cc Osc Cik
TR D Iah Inh 5 MI
12|14 7| 15 Note 1. Jumper E1 to E2 for TTY operation
[Note 2. Jumper E3 to E4 for RS-232C operation
10k

VY

1L
I

APPENDIX H

USE OF OTHER PERIPHERALS WITH THE
CO-RESIDENT SOFTWARE

The Co-Resident Assembler/Editor has been designed to operate
with TTY terminals equipped with automatic reader/punch control, or
other compatible terminals such as Texas Instruments 733/ASR. Normally
these console devices are also used for communication with the resident
system's monitor program. Since other terminal types may offer advantages
such as lower cost or higher performance, the Co-Resident software was
designed to easily accommodate other peripherals. All Assembler/Editor
input/output requests are processed by a common input/output program
that resides in memory locations 010016 —02FF16.

Each input/output operation, such as punch record, print record,
etc. is invoked by entering the input/output package through the appro-
priate jump vector. In the standard version, the input/output routine
processes the input/output request and performs the input/output operations
on the console device by calling the elementary input/output routines in
the resident monitor. As a result, there are three versions of the common
input/output program:

EXORciser -- Input/Output via EXbug

Evaluation -- Input/Output via MIKBUG
Module I

Evaluation == Input/Output via MINIBUG II
Module II

In order to substitute the other peripheral devices, the user
must supply the appropriate input/output drivers and patch the common
I/0 programs so that his drivers are called rather than the standard
ones. To facilitate such modifications, source listings of the three
common input/output programs are available through the M6800 User's
Group Library.

LINE PRINTER INTERFACE

The input/output hardware and common input/output program modifica-
tions listed in the following paragraphs provide an example of the changes
required to operate the Co-Resident Assembler/Editor with a line printer
(Centronics type). The Disk Operating System includes the necessary commands
and driver routines for implementing a line printer. The commands and driver
routines required for paper tape and cassette are provided in the following
paragraphs.,

Hardware

The jumper connections listed in Table Hl must be performed if
the MEX6820 Input/Output Module is used to interface the printer with
the EXORciser. However, if the MEX68PI Printer Interface Module is
used, these connections are not required. When using either of these
modules, refer to the appropriate User's Guide Supplement.

Common Input/Output Program

A, Disk Assembler — ASMB (Version 1.3 Only)

In order to enable the printer patch included on the 1.3 version
of the ASMB disk file, the disk file must be amended with the object file
patch provided in Figure H1.

B Disk Assembler — ASMB (Version 1.2 or 1.2A Only)

Version 1.2 of the disk assembler (ASMB) does not include a printer
patch. However, the object file patch (ASMPATCH) provided in Figure H2
may be used to amend this version of the disk file to permit printer opera-
tion.

c. Paper Tape and Cassette Assemblers
Assembler software provided on either paper tape or cassette must
be amended in the following manner to operate with a printer.

X; The object file (LPTDVR) provided in Figure H3 must
be stored in memory at a location contiguous with
the Co-Resident Assembler and Co-Resident Editor.

24 The current version of the assembler must be amended
with the object file (ASMPATCH) listed in Figure H3.

TABLE H1 MEX6820 Input/Output Module Jumper

Requirements for Operating With a Line Printer

JUMPER CONNECTIONS* PRINTER
PIA PTIA PIN CONNECTOR CONNECTOR PIN
SIGNAL NUMBER PIN NUMBER NUMBER
CA2 39 1 1
PAO 2 3 2
PAL 3 5 3
PA2 4 7 -
PA3 5 9 5
PA4 6 1 6
PAS 7 13 d
PAG 8 15 8
PA7 9 17 9
CAl 40 19 10

*Jumper connections to be performed between PIAl (Ul3) or PIA2 (U1l5) on
MEX6820 and connector P2 or P3 respectively.

NOTES:
1. The following pins on connector P2 or P3 (MEX6820) should be
connected to ground.

2, 4, 6, 8, 10, 12, 14, 16, 18 and 20

2. Printer connector pins 19 through 28 should be connected to
ground.

$SEDNITwa=AT

MESHD PETTIDENT SDITOR 1.3
COFYRIGHT MOTOR0OLA 1976
FT MAM PAT

OrGE E20

LOE SEFF2A

oMb

¥

JEEETE
TATM 2 FATOs PART

MeSnn PESIDEMT ASTEMELER 1.2
COFYRIGHT MOTOFROLR 1327

== T g AT

! RE=1D ERT

CONGE o0 Ri=gE] Tl
OOnne oo 35 FFEA LDO= $IFFEA

S EMD

TAOTAL E=RORI (0000

PREMAM HIMEY ITMEY

P RRE s ATMEs HEMEs FATO

FIGURE Hl1. ASMB Version 1.3 Object File Printer Patch

H-4

nnn HEM ASMPATCH

onons aeT O X

fa0ns «THI=Z FROSRAM PATCHES THE Ma200 RESIDEMT SS3EMELER
nanng ¢TO REDUEET THE USER TO SELECT IF JUTeUT IS TO EE =
nanns T THE SRINTER DEWICE LTINS THE FROM TGRIVER

naons o eq=z L=t | i
nonony =F23 HETHOE E | S
OonGs FEa3 HECHT =l TFED
nonnz 011€ A0RTH B T11E
arnto Mi1E wLIE =il T11E
nnni 0y a3 #HERD Ef 11323
R ni=s “woIME B 11 25
nnnt = == U LoaTs Zau EFERDS
rnn4 SADLD LIETAL ER TEATD
nan1s nLnn H=ME =gl 100
ONaLs Nn2n ass e 1

A1l 7? V020 2E FF3A L wEITARTK

N1 0023 35 00 LDH A PAEE

aog1e a5 31 02 EMF 7/ w3 JdEJECT OMLYT
aOnsn ang? 27 13 EED S B | YE=

GoN21 0029 ZE oNSe TOE LT whEs

aanss nn2s BD ON11= 1= =DHTH

TOn=s NnNz= SE gonn LI 3]

ann=4 ansz: a3 0= 9% NEX

-

cn ENME
FES3 g B
nilE A=ZFR ks
Sa e {
0 EED ERHTR

1

LN

-

=S
G227 an=3
ann=s nnze

=4
GOnNEsS nazs
24

- T

L3 [s
g =

&

Wt D
D

a0 L O R Y B e T R

nnn=3 nozn 2

MO0 03 31 45 oHP B 87N
NNEL N4l 2E ES EHE Ta=
NOGE2 Onds T oLon 93m SMP AZME
NONaz ands COE EADS PRHTRE LDE #LTATH

NOn=d nong43 ni1=4 T HHERD+1
MOnES n0gs ERDT S e #LDATAL
N3 NN4E f Ma7 ETH HWLINE®1
min=7 nnsz 20 =F EFS H=M
unnzz nnNsg S50 MEiE FCC SPRIMTERT.

00ss 52

nass 43

WSy 4E

sz S4

nnse 45

nnsA SE

nnsE =<
nonzs aosc 04 ECE 3
nnnan ENT

o

n-an
mm T

FIGURE H2, ASMB Versions 1.2 and 1.2A Object File Printer Patch

H-5

oong
[
nonng
nnnns
nonnz
Oncn=
nonin
nontd
annis
nnant =
annid
N E=
Hninie
nnnty
noni=
nanys
Nz
non=1
non=gz
Grn=3
non=<
nines

nonae=

nonz<

nanzn =

nnn=i
nnn=z2
onnsg

Onn=s

Nnn=y

FIGURE H3.

ESEN

o
It -
(RN

EC11
Friin
EHE I
=
TF EEld
e EF
v EC10
e ZE
v Bl

—

(LR
[y
(=Y

Er11
EC11

BT AR

T oLl M o) m

T I T
Ll
(aa)

EC1n

OV

HIDS
ERDS =5 00
ESDY 30 D7
EQD= e
=RTIF n=
CATIT iy
FROF nd

P o Mo e G0 00 ul O T wd e P e s 0 e Dt g ool o

F1
CE

T - e T3 T

=
m
N

Paper Tape

MEm LETDYE

gFT
orG
+IM ELOT

AZEZEMELER

+ CRFTIRTAY

Y CRFOATHD

CHTRL
TIHTH
LIST

F=ZH A

CLE

LTiH

=TH

T

=TH

FLIL

=TH

LTiH

Ei
Eibd

S
R LN

ZTH
LA
=TH
LISTY LTI
EFL
LIIH
LIETE ERT=
FOATH ECU
LI
ELR

LTiA
EZR
LA
CHE
BEED
EZR
JERE
ERA
EHID

FTIIATH1

R v 0 0 Qs o I s 5 36 e G o s i e O e

I

I I

0
I=HED

= JMF FIETHI

FEC11 FIA RODREEE
TECLO FIA RODREEE
+

CHTEL
wEFF
IIRTAH
#EZE
LHTRL

CHTRL
LIETY
USTH

+
WD
LIETF
+EH
LI=T
=4
LIETZ
LIAT

FOATAHL

and Cassette Line Printer Driver Object File Patch

H-6

SET THE FOLLOWIHNG
= MR FDATH

LOCHTIONE

APPENDIX I

PROM VERSION OF CO-RESIDENT
ASSEMBLER/EDITOR

The Co-Resident Assembler/Editor also is available to operate
in the ROM environment. The Assembler's starting address is C000 6 and
Editor's starting address is C003;4. The Co-Resident Assembler/Eéltor
program uses /k bytes of ROM and requires a minimum of 1k byte of RAM.
This Assembler/Editor program resides in memory locations C000,¢ through
DBFF, . and uses the RAM memory locations 0000;¢ through O01FF;g for scratch-
pad memory. The symbol table starts at memory location 020036 and ends
at the default 120016‘ This provides a buffer for 500 symbols.

To change the size of the symbol table, the user enters into
memory locations 0100 6 and 0101y, the end-of-symbol-table address plus
one. In this case, tﬁe user enters the Assembler at C039;4 rather than
000016.

If the object code is to be written into memory (OPT M), the end-
of-symbol-table address delimits the address. For example, if the symbol
table ends at 1200 (the default address), a program beginning at memory
location 12004 or may have its output directed into EXORciser memory
(providing it is available).

It should be noted that the edit buffer starts at memory location
0200, and extends to the end of continuous RAM memory.

@ MOTOROLA

MICROSYSTEMS - 3102 North 56th Street - Phoenix, Arizona 85018

T b

