« Search user created 1ibraries to satisfy unresolved

global symbols

* Dynamically assign memory

+ Create

object

PROGRAM SEGMENTATION

a memory map describing the location of each

module and data block loaded

The Linking Loader and Macro Assembler permit the user to

segment source programs fnto five different sections. These

sections and their corresponding functions are as follows:

ASCT -

BSCT -

CSCT -

Absolute Section (non-relocatable)

There may be a limited number of absolute
sections in a user's program. These sections
are used to allocate/load/initalize memory
locations assigned by the programmer rather
than the loader, for example, addresses
assigned to ACIA's and PIA's.

Base Section

There is only one Base Sectiun. The linking
loader allocates portions of th's section to
each module that needs space in 3SCT. BSCT
1s generally used for variables that will be
referenced via direct addressing. BSCT is
1imited to locations 0-255 of the addressing
range.

Blank Common (uninitialized)
There is only one CSCT. This section is used

for blank common (similar to FORTRAN blank
common). This section cannct be initialized.

« DSCT - Data Section

There is only one Data Section. The 11nking
loader allocates portions of this section to
each module that needs a part of DSCT. DSCT
is generally used for variables (RAM) which

are to be accessed via extended mode addressing.

- PSCT - Program Section

PSCT is similar to DSCT except that it is
intended to be used for instructions. The
PSCT/DSCT division was made to facilitate a
RAM/ROM dichotomy.

This section concept is preserved by the Loader during the
load process. As a module is being loaded, each of its sections
is combined with the corresponding sections of previously
loaded modules. As a result, the absolute lcad module produced
by the Loader will contain one continuous memory area for
each section type encountered during the load operation.

In addition to the program segmentation provided by the
section concept, the M6800 relocation and 1inking scheme supports
named common. The named common concept provides the function
of initializable common areas within BSCT, 0SCT, and PSCT. Ir
processing named common definitions, the Loader shall:

. Assign to each named common area a size equal to the

largest size defined for the named common during the

load process.

~* Allocate memory at the end of each section for the

named common blocks defined within that section.

The load maps shown in Figure I-1 describe the load process
with regard to sections and named common. The module PGM]
requires memory to be reserved 1n BSCT, CSCT, DSCT, and PSCT,
although the only space necessary in DSCT is for the named common
NCOM1. The module PGM2 requires that memory be allocated in BSCT,
CSCT, DSCT, and PSCT. Neither module defines any ASCT blocks.

The load module‘s map illustrates a typical memory map that
might be produced by loading PGM1 and PGM2. The BSCY for both
PGM1 and PGM2 are allocated memory within the first 256 bytes of
memory. As shown, the first 32 (20 hex) bytes of BSCT are
reserved by the Loader for use by the disc operating system
unless otherwise directed. After BSCT, space for blank common
is allocated, followed by space for PGM2's DSCT. Since PGMI
requires no DSCT for its exclusive use, none will be allocated.
The named common block NCOM1 within DSCT is assigned memory at
the end of DSCT. Finally, the PSCT's for PGM1 and PGM2 are
allocated along with PSCT's common blocks NCOM2 and NCOM3.

The Loader assigns memory within sections in the order in
which the modules are specified. Named common blocks are
allocated memory at the end of thefr corresponding section, 1n
the order in which they are defined. Figure 1-2 {1lustrates a
load module map produced by loading PGM2, followed by PGM1. This

10ad module map is slightly different from the map in Figure I-1
iabcrc PGM1 was loaded first.

1-4

PGM1 PGM2

LENGTH LENGTH
3 10
35 35
20 NCOM1(DSCT) 20 DSCT
10 NCOM1{DSCT)
50
60 PSCT
5 NCOM2 (PSCT) |
10 NCOM3(PSCT) 10 NCOM3(PSCT)
5 NCOM2 (PSCT)
ADDRESS LOAD MODULE
0
32
35 BSCT PGM1
.
80
1C0
120
|IIIIIHHHHIHHIHIIIIIIIII
170
PSCT PGM2
230
235
245
FIGURE I-1
LOAD MAPS

1-5

LOAD MODULE

ADDRESS

0
SYSTEM AREA

32
BSCT PGM2

42 .
BSCT PGM1

45

CSCT

80
DSCT PGM2
100
NCOM1
120 :
PSCT PGM2
180
PSCT PGM1
230
i
FIGURE 1-2
LOAD MAP

1-6

RELOCATION

Relocation allows the user to assemble a source program
without assigning absolute addresses at assembly time. Instead,

absolute memory assignment is performed at load time. In order

to relocate a program (within memory), the source program must
be assembled with the M6800 Macro Assembler using the OPT REL
directive. Programs assembled with this directive will cause
the assembler to produce a relocatable object module instead
of an absolute object module. These relocatabile object modules
contain information describing the size of each section (ASCT,
BSCT, CSCT, and DSCT) and named common area as well as the
relocation data. A complete description of the.relocatable
object module format is contained in the M6800 Macro Assembler
Manual.

In order to load a relocatable object mcdule, the ME800
Linking Loader must be used. The Loader assigns load addresses

and produces an absolute object module compatible with the

EXORciser loader.

The advantages of using relocation are:

* Reassembly is not required for each new absolute load

address.

* Relocation via the M6800 Linking Loader {s faster than
reassembly.

* Dynamic memory assignment of modules 1is possible.

1-7

Linking allows instructions in one program to refer to
instructions or data which reside within other programs. 1If
all programs are assigned absolute addresses during assembly

time, it is possible to directly reference another program via

absolute addresses. However, when using relocatable programs,

absolute load addresses are not generally known until 1oad time.

In order to access other relocatable programs or data blocks,

external reference symbols must be used. These external symbols

are commonly called global symbols since they may be referenced
by any module at load time. Although global symbols are used

to link modules at load time, they must be explicitly defined

and referenced at assembly time. This 1s accomplished by the

M6800 Macro Assembler directives, XDEF and XREF. The XDEF

directive indicates which symbols defined within a module can

be referenced by other modules. The XREF directive indicates

that the symbol being referenced is defined outside the module.

At load time, global references are matched with their

corresponding global definitions. Any reference within a module

to a global symbol {s updated with the load address of the

global symbol, If the loader detects a global reference without

an associated global definition, an undefined globai error will

be printed and a load address of zero will be assigned to the
refarence,

=
.

* MODULE_LIBRARIES

The M6B00 Linking Loader can automatically search a file
for mdules which contain definitions satisfying any unresolved

global symbols. Such a file s called a library file and is

composed of one or more object modules. The Loader sequentially

searches the library file. If a module is found which contains

a symbol definition satisfying an unresolved global symbol, the

module will be loaded. Only those modules which can satisfy an

unresolved reference will be loaded. Since a library file 1is

searched only once, modules which reference other modules within

the library file should occur within the 1ibrary file before

the referenced module. Otherwise, the user must direct the

Loader to search the library again,

MEMORY ASSIGNMENT

During the load process, absolute addresses are assigned
to the program sections within the specified modules, Normally
the loader will automatically perform this assignment by allocating
memory by sections in the order: ASCT, BSCT, CSCT, DSCT and PSCT.
However, the user may define the starting and/or ending address
of any non-ASCT section. In this case, the Loader will first
reserve memory for those sections with defined load addresses
before allocating space for any other section. The Loader also

permits a user to specify the relative section offset of a module

1-9

within a section. However, a section of a module is always loaded

in the associated load section in the order in which the module

was specified.

LOAD MAPS

The Loader will optionally produce a load map describing
the memory layout resulting from the load of the specifted modules.
Figure 1-3 is an example of some of the features included 1n a
typical load map. In addition to this full load map, the Loader
may be directed to produce partial load maps 1isting only the

undefined global symbols or section load addresses.

OPERATING ENVIRONMENT

Equipment Requirements

Minimum equipment requirements for the M6800 Linking
Loader include:

« EXORciser
» 10K bytes of RAM
» Floppy Disc

- Console

Software Requirements

The M6800 Linking Loader operates under the ED0S2.3
floppy disc operating system to load relocatable object
modules produced by the M6800 Macro Assembler.

1-10

SECTION 1

USIRG THE M6800 LINKING LOADELR

CALLING THE LINKING LOADLR

The M68GC [inking loader must be called while under the

control of the disc operating system, WHWhen the user types the

command
RLOAD < c/r >

the disc executive will load the Linking Loader. iporn entry,

the loader prints

FBE8OO LINKING LOADER REY n.m

(where n.m is the revision number)

The character '?' is the Locader's prompt and is printed whenever

the Loader has completed the last command and is ready for another.

LOADER INPUT

The input to the Loader 1s in one of two forws - commands

and object modules. The Loader commands control the relocation

and linking of desired object modules. The object modules are

produced by the M6800 Macro Assembler when the relocation option

is specified. Each source program assembled by the Macro

Assembler creates a single relocatable object module on a disc
file. These disc files or those files created by merging one

or more of these files are used as the input to the _oader.

2-1

The Loader command structure provides for the loading of an
entire file or selected modules within a file. In addition, a

disc file may be used as a library file.

COMMAND FORMAT

Each Loader command line consists of a saguence of commands
and comments followed by a carriage return. The first blank in
a command line terminates the command portion of the line and
the remainder is assumed to be comments. Multinle commands may

appear on a line by using a semi-colon (;) as a command separator.

The format of a command line may thus be defined as:

0
[(comand)[;(comand>]oo] [(space) [(coments)]] <c/r>

The commands in a command line are executed only after the Loader
detects a carriage return.

If a coomand line is entered incorrectly, the line may be
corrected in either of two manners. Ffirst, the command line
may be deleted completely by typing CTRL X (the CTRL and X keys
typed simultaneously). This causes the Loader to ignore the
current command line and a new prompt (?) will be printed.
Instead of deleting the entire command line, the command line
may be corrected by deleting the character(s) in error. This
1s accomplished by typing a RUBOUT to delete the last character
typed. The typing of a RUBOUT also causes the last character

2-2

to be printed. After deleting the character(s) in error, the
corrected version of the command line may be entered.

The Loader will execute all the commands in a command line
before another prompt 1s 1ssued. 1f an error is detected while
attempting to process a cormand, that command will be terminated.
The remaining commands in the command line will be ignored.

When using multiple commands per line, it should be noted

that selected commands require that they are the last command
on a line. T[hese commands include:

« INIT

* A1) intermegiate file commands (1F, 1FON, IFOF)

+ ABSP when used in conjunction with ar intermediate file

LOADER COMMARDS

The Loader commands are divided into three classes: (1)
control commands; () load directives; {3) state directives,
The contrg] commands are used to inftiate Fass | and 11 of the
Loader as weli as to return to EXBUG or the disc operating
system. The load directives are used to identify the modules
to be loaded. Finally, the state directives airect the assign-

ment of memory to the various program sections and the production

of & load map.

2-3

e EET L -

Command Nomenclature

<f name> -

< m_name >

< name >

< number>

Used to indicate the name of a disc input
file. Disc file names must star: with an
alphabetic character and contain a maximum
of five alphanumeric characters. The disc
unit upon which the file resides may be
defined by placing a colon (:) after the
file name, followed by a valid disc drive
number. If a disc unit is not sperified,
drive zero will be assumed.

Used to indicate a named module. Named
modules are composed of a maximum of six

alphanumeric characters, the first of which
must be alphabetic.

Used to indicate a named file or module as
determined by the Loader's current ¥ile/
module state.

Used to indicate a decimal or hexadecimal
number. Unless preceded by a '$' character
which 1s used to denote hexadecimal, the
number will be interpreted as decimal. The
allowable number range unless explicitly
stated otherwise will be:

0 - 65,535 (decimal)
0 - $FFFF (hexadecimal)

Used to indicate that the enclosed directive(s)
is optional.

Used to indicate that the enclosed directive
may be repeated any number of times.

Indicates that one of the enclosed options
must be used.

Control Commands

ABSP - Produce Absolute Load Module

FORMAT: ABSP [=< m_name> [, Printable 3]

DESCRIPTION:

1nfomation>.l

ABSP initiates the second pass of the
Loader. During this pass, an absolute
binary memory image is produced in
EXORciser loadable format cn the disc
file defined by the BO comsand. If an
output module name is specified, 1t will
be included in the module's SO record.
Any printable information is also included
in the S0 record if specified. The print-
able information may contain any character
and 1s terminated only by a semi-colon or
carriage return. NOTE: A space 1s a
valid character in the printable informa-
tion and does not terminzte the command
line. The module name and printable
information may not exceed 30 characters,
If an intermediate file (IF) was
generated during Pass I, the second pass
of the Loader will proceed automatically

as directed by the commands entered during

2-5

the first pass. When an IF {is being used,
the ABSP command must be the last command
in a command line.

In the event that an IF {s not
created during Pass I, the same sequence
of commands used in Pass I (with the
exception of the MAP conmands) must be
repeated exactly as in Pass I.

Prior to the ABSP command, a binary

output file must be defirned via the B0

command,

EXAMPLE: ABSP=R0O0T, A SQUARE ROOT PROGRAM

As a result of this command, the second
pass of the assembler is initiated to

produce an absolute module. The phrase
"ROOT, A SQUARL ROOT PROGRAM' 1s written

in the SO record of ihe absolute module.

BO - Binary Qutput
FORMAT: BO = < f name >

DESCRIPTION: The BO command is used to direct the
binary output in EXORciser load format
to a disc file. The disc file defined
by the BO command must not currently
exist on the defined drive.

EXAMPLE: BO=BORJ Write binary load module on

file BOBJ on drive 0

BO=BOBJ1:1 Write binary load module on
file BOBJ1 on drive 1

EXBUG

FORMAT: EXBUG

DESCRIPTION:

The EXBUG command is one of WO commands

which may be used ‘to exit the Loader.
EXBUG causes control to be returned to

the EXORciser's EXBUG mode after all

Loader files are closed.

EXIT
FORMAT: EXIT

DESCRIPTION: The EXIT command is one of tw) commands

which terminates the Loader‘s activity.
EXIT causes control to be returned to the

disc operating system.

2-9

IDOF - Suppress Printing of Moduyle]D

FORMAT: IDOF
DESCRIPTION:

The IDOF command suppresses the printing
of the module name and print information
associated with each object module loaded.

The Loader is initialized to tne IDOF state.

IDON ~ Print Module ID

FORMAT: IDON
DESCRIPTION:

This command causes the printing on the
console of the name and printable informa-
tion associated with each otject module loaded

or encountered in a library file.

2-10

IF - Intermediate File

FORMAT: If = < f name >

DESCRIPTION:

The IF command defines a file to be used
as an intermediate file. An intermediate
file is a copy of all Pass I Loader
commands and object modules. It is used
to direct the Loader durirg Pass II,
instead of requiring the user to retype
the Pass [command sequence during Pass
II. The IF command alsc automatically
places the Loader in intermediate file
mode similar to the IFON command, Like
the IFON command, the IF command must be
the last command in a conmand 11ine.

The IF file name must be a valid
disc file name and may not be the name
of an existing file cn the specified disc
unit,

EXAMPLE: IFeIPILE Defines IFILE on drive 0 as the

intermediate file,

2-11

IFOF - Intermediate File Mode Qff

FORMAT: IFOF

DESCRIPTION:

[FOF temporarily suppresses the creation

of the intermediate file unti? an 1FON
directive is encountered. This command

must be the last command in a command

line.

IFON - Intermediate File Mode On

FORMAT: 1FON

DESCRIPTION:

This command directs the Loader to write
all further commands and object modules
onto the intermediate file. This directive
remains in effect until an IFOF or Pass
IT command is detected. The IFON command
must be the last command on a command
Vine. IFON is implied when the inter-
mediate file 1s defined by the IF command.
If an intermediate file is to be used
during Pass II, the IFON directive must

be in effect.

2-12

INIT - Inftialize Loader

FORMAT: INIT

DESCRIPTION:

INIT initializes the Loader for Pass 1.
This command is performed automatically
when the Loader is first initiazed. The
use of this command permits severa]
output object modules to be created by
the Loader. The INIT command must be

the last command in a command line.

2-13

0l - Object Input
FORMAT: Ol = < f name>

DESCRIPTION: The OI command is used to identify an
1nput file containing one or more object
modules. The file name must be the name
of an existing disc file.

EXAMPLE: (I=PGM] Ubject input un file PGM1 on

drive 0

01=PGM2: 0 Object input on file PGM2 on
drive 0

Load Directives

FILE - File Mode

FORMAT: FILE

DESCRIPTION:

The FILE directive is used to place the
Loader in file mode. While in file mode,
the Loader will operate on all the modules
within a file as directed by the load
directives. The file mode 1s the default
mode. The file mode may be temporarily

overridden by the ':M' option of the LOAD

command.,

2-15

LIB - Library Search

FORMAT: LIB [=<nun'ber>][.M [<number> 00
<name> JLUT J{'L <name> J[:H] 0

DESCRIPTION: The LIB command instructs tre Loader to

search the specified quect nadules for
those modules which satisfy anv undefined
globz? references. Any module that
satisfies a global symbol will be loaded,

The object modules to be searched
are specified in the same manner as
explained in the description of the LOAD
command,

Modules loaded via the L I8 command
may also reference global snbols that
are not defined. Since a library file fs
searched once for each LiB -~ommand, care
should be taken when creating a library
file in order to avoid multiple passes of

the same library file.

EXAMPLE: |13 Searches the remaining modules
on the input file to resolve
unsatisfied globai references

LI8 : file MLI® on disc unit 1
s l?$1 beeused as a library file.

2-16

LOAD - Load a File or Module

FORMAT: LOAD [:< number> [, o
ez ([o) ()1

DESCRIPTION:

()
The LOAD command directe the MEoor Linking
Loader to load the specifie- object files
and/or modules.

It a <number> 15 given, tre Loader
will load the next <raumber> of modylec
from the disc file defined Ly the 07
comiand. When the < number>» format of
the LOAD command i< used, the ':M' feature
or the MODU directive must be in effect,
The ':M' option causes the Loader to enter
moduie mode only for the indicoted sub-
command. A maximum of 255 modules may be
loaded at one time with this form.

The use of the < name> form of the

LOAD command causes the Loaler to load
The < name>

To

the defined module or file.

must be a valid file or moduie name.

load a module by name, the ':M' feature

t
or the MODU directive must be in effec

hin
and the module must be contained wit

nd.
the disc file defined by the oI comnd

2-17

NOTE : : :
E: Disc files are cequentia) files and

are not rewoyn prior to a modyle

search.

When no options are specified as part

of the LOAD command, only one file or
module will be loaded from the disc file

defined by the Ol commnd.

EXAMPLE: LOAD=PGM}:1 Loads all modules within
file PGM1 on disc drive)

LOAD=1:M,PGM2:M Loads from the input file
the next module and the
module named PGM2

LOAD=PGM3 Loads the file PGM3 from
drive P or the module PG!_43
from the defined input file.
The file/module mode of the
Loader cetermines whether
a file or module will be

loaded.

MODU - Module Mode
FORMAT : MOny

DESCRIPTION: The MODU directive places the Loader in

the module mode. While g the module
mode, the < name> and < number > options
of the load directives shall refer to

modules.

2-19

SKIP - Skip Input Modules

FORMAT - SKIP= < number > [:MJ

DESCRIPTION: The SkIp command directs the

Loader to
Skip the defined number of nodules ip
the file indicated by the Y1 command.

The MODU directive or ":M' cption myst

be in effect. A maximun ¢f 255 modules

may te skipped with a single commandg.

EXAMPLE: SKIP=2:M Skips the next two medules on

the input file

SRCH - Search for a File or Module

FORMAT: SRCH=< name > [:M]

DESCRIPTION:

SRCH causes the Loader to search for 3
named object module or fiie, If the
MODU directive is in effect or the ':M’
option specified, the current disc file
defined by the 0l command w11} be searched
for the named module. [f the Loader is
operating in the file mode as directed by
the FILE command, a disc search will be
performed for the named fiie. [f the
named file is found, this file will
become the new object input file for

future Loader commands. wWhen in file

mode, the file named must be 2 valid

file name and the drive unit may be given
by typing a colon (:) and the drive

ive
number after the file naine. 1f no driv

med.
unit 1s specified, drive 0 {s assu

c unit 1 for the

EXAMPLE: SRCH=FADD:1 Searches disC U0 4 "rapp will

FADD.
;l‘:he new 1nput file.

module named

SRCHeSINE:M Searches for theent fnput f1le.

SINE on the curr

2-21

[4
-

tate Lomrands

(..])P - 1‘_'1', ",!H'((gr,f l(l'.d*,""ﬂ" r,ﬁur,fp(

r
q]

(4

FlOpML T L ILJ : [\] < rismber >

The LUP romprans nagnes the ozder b
et otne cyrcrent relat e address 5 the
sperified secrion (5507, L30T, oe POLT,

to the gisen rnunber. The defined nurber
4t be qreater than oroequal to the
cection's current lotation counter address.
fhe '\' option causes the Loader 1o st2ri
the specified section of all future modules

1naded on an address modulo the given
number. The '\ ' opticn remains in effect

until revored with a 'S\ P’ option or until

the current pass of the Loader {5 complete.

If the '\ ' optfon is in effect when

memory is assigned, the start address

of the section will be rodulo the given
The '\ ' opticn does not apply
locks within the specified

number.

to named common b

section.

2-22

EXAMPLE :

CURP=$100

CURP=N\$100

2-23

Sets the relative PSCT Tocation
counter to 100 {rexadecimal),

Causes the Loader to update
PSCT's relative location counter
to the next madulo 100 (hexa-
decimal) address. This function
is performed for each module
loaded after this command.

DEF - Loader Symbol Definition

ASCT

FORMAT: DEF:<namel> = J< number > BSCT

DESCRIPTION:

EXAMPLE: DEF:ACIA1=$EC10,ASCT 7%7 WascT symbo

< namezZ > ' DSCT
PSCT

The DEF command is used to cefine a
global symbol and ernter it in the global
symbol table. The symbol to be defined
is given by namel and must be a valid
Macro Assembler variable name. The
symbol may not currently be cefined.

If the < number> option is used, the
symbol will be defined with the given

number as the reltative adgress within the

specified section. The DCF command may

be used to provide another name for a

oreviously defined symbol by using the

< pamel > must be a
The

< name2 > option.
y defined global symbol.
s - ASCT, ascT, DSCT, pPSCT -

current]

section option

are used to define the rection associated

with the defined section. ASCT {s the

default section.

ACIAl
pefines symbol v th

absclute address EC10

(hexadecimAI)-

2-24

END - Ending Address

B

FORMAT: END{ C) =< number >
D
p

DESCRIPTION: The END commands are used tc set the
absolute ending address of the associated
section (BSCT, CSCT, OSCT or PSCT). If
beth an ending and starting address are
defined, the size described by these
boundaries must be greater than or equal

to the size of the associated section.

EXAMPLE: ENDB=255 BSCT will be allacated such that
the last address reserved is 255
(decimal).

2-25

MAP - Prints Load Maps

C
FORMAT: MAP)F
5
U

DESCRIPTION:

The MAP commanids are used to display the

current state of the modules loaded or

the Loader's state girectives.

MARC

MAPF

MAPS

Prints the current size, user
defined starting address, and
user defined ending address for
cach of the sections, s well
as the size, starting address,
and ending address for each ASCT

dJefined.

A full map of the state of the
loaded modulet 18 produced after
the Loader assigns memory. 1his
map includen d list of any unde-
fined symbols, 3 section load
map, a load mip for each defined

module and named common and a
defined globai symbol map.

r assigns memory to those
defined by a user
supplied starting and/or ending
address. A mamory load map which
defines the size, starting address

and ending address for each sectfon
{s printed.

The Loade
sections not

Prints a 1ist of atl global refer-
ences which currantly remain

undef ined.

2-26

STR - Starting Address

¥

FORMAT . SIR {C) = <number >
D
FJ

DESCRIPTION: The STR conmarids st tre absolute start-
ing address of the zosnciated section
(BSCT, CSCT, LSCY, PSCT). Those sectiens
whose starting address is not defined by

the user will be assiyned a starting

address by the Loader.

EXAMPLL : STR?-$1000 PSCT will be allccated memory
starting at 1009 /hexadecimal).

Overwrites the default starting

STRR-O
address of BSCT.

2-27

APPENDIX A

A SUMMARY OF M6800 LINKING LOADER COMMANDS

COMMAND FUNCTION

CONTROL COMMANDS

ABSP[=<m_name >[,< printable 1nfomation>]] Initiates Pass II

B0=<f name> Specify the binary object file

EXBUG Give control to EXBUG

EXIT Give control to the disc operating system
I1DOF Suppress identification printing

1DON Print module identification information
IF=<f_name> Specify the intermediate file

IFQF Intermediate file mode off

1FON intermediate file mode on

1517 Initialize the Loader

(i=< ¥ rame> Specify the object input file

LOAD DIReECT VLS

FILE fnter file mode

00 Library search
P < nurher > . , < number > . } } b
He [.: <mr)1.amr:> [u}[[< name >] [M] 0 end load

00 [gz [L0) DAJY] b/
MODU] Enter module mode

SKIP= < number > [:M] Skip files/modules

SRCHe < name > [:M] Search for a file or module

A-1

COMMAN) FUNLT IO

SIATE COMMANDS

{
CUR fyy -« [\] <nunber > Set corrent Tocation counter
P
,'.II‘(,[
DEYF < namel > = (< numbier> SO T
< ey > ot et e a wymbal
PueT
{4
ERD) C L - < opdaer > ot o vection ending andvens
¥
1}
MAE L5t user assinned <ection sizes and
addresses
MAPE Vist tull load niap
MAP Y [15t Ioader ascigqned mection sizes and
addreases
MAal L Uist undefined sybaolns
[s'.
R <ranter et osect1on s tarting oddress
3

A-2

APPENDIY U

(INKING LOADER LRROR MUSSAGES

Errors detected by the Linking Loader while processing a <ommgn
or leading a module will result in an error messaye heing urinted a*
the user's terminal. These errors are diyided tntn two classificati
fatal errors anc non-fatal (warning) errors. When the Loader detent
3 non-recoverable error, a fatal error messate wiil ve neinted, fny

commands not processed on the last command lire will bLe ignored and

a new prompt printed. 11 the Loader can recover “rom oan errgr, oniy

a warning messace will be orinted.
FATAL ERROR MESSAGES
Message Expianaticn
Ghe 2507 Assignment trror - the combired size of BSCT

1 greater than the amount that can be allocated ir
the defined BSCT area,

COy Commn Overfiow - the size of a s=ction's common is
greater than 65,536,
GAE General Assignment Error - the Loacer cannot assign
absolute memory addresses. This may result from:
- the definitions of ASCTs
- user assignment of section addresses
+ the combined length of all sections exceeding
65,536
* the order in which the Loader assigns memory
1CM I11egal Cowmand

B-1

g

6%

sy
-«

I0R

[SY

LOY

SOV

UAE

80

WARNING MESSAGES

Message

MDS- < symbo1 > MU tiply Defined Symbol - the Lo

I111egal Object Record - the input module 1s not a
valid relocatable object module.

ITlegal Syntax - error in the option or specification
field of a command., This error may also occur when

a command s not terminated by a semi-color, space or
carriage return,

Local Symbol Table Overflow - not enough'memory for
all the global (external) symbols defined by the
object modules.

Section Overflow - the size of a sectinr is greater
than 65,535,

User Assignment Frror - the user has incerrectly
defined lcad addresses. This error occurs when:
- the user defined end address is less than the
user defined start address
* the space allocated by the user defined start

and end addresses is less than that required
for the section

© the user has defined load addresses which overlap.

Undefined g0 File

Explanation

tered another definition for the previously

defined global <symbol>. Only the first
definition wil} be valid,

i 5 1> was not
: defined Symbol - the < symbo ‘
UDS-(SymbO]> ggfined during Pass 1. A load address cf

zero will be assumed.

FATAL 1/0 TRRORS

If the Loader detects an error while attemnpting to read or
write from disc, the following message will be printed.
DK xx ST yy f name
where xx is the disc unit, yy is the [/0 error, and f name is
the name of the file being referenced. If an 1/0 error is
detected whiie creating an intermediate file, the 'oader shall
suspend the IF creation., In this event, the user should

reinitialize the Loader,

1/0 Errors Explanation

Loy

Only one output file may be opened at any time

4 Device not ready

5 invalid device (Loader error)
6 Duplicate file name

/

Named file does not exist
File not opened
Unexpected end-of-file

Directory or disc space full

m O W o

Checksum error on object record

APPENDIX C

CXAMPLES OF LOAD OPERATION

This appendix serves to i1lustrate the major ‘*eatures provides
by the M6800 Linking Loader. Figures C-1, C-2 and (-3 show three
programs which have been assembled by the M6300 Macro Assembler.
The relocatable object modules created by assembling these programs
are used as input modules to the Loader in Figures C-4, £-5 and C-%.

Figure C-4 illustrates the use of the Loader withcut an intermediate

file. In Figure C-5, an intermediate file is created and an example

of user gdefined starting addresses is shown. An illustration of

Tibrary files is provided in Figure C-6. The library file PG120 was

created by mercing files PG1D and PG20.

C-1

PG o)

(LLHIM
0 LLTN
Q00 ?
DUOC S
ooN(*
O
O™
XL
WONIN

MR,

LU B

0OC] X
XYl

10N
00D -
) S
O ¢
LU

LU OO LR

LU

LAV

L IR

o .
LR
AR,

)2

AW

l.-"";
b
|] e
'
-
. v
UL)

D CREN
i N
LR
AT AR

WAL
DAL
o
ey : -2 3

UK b

Ve
R
v
Mo
A)

REEA

ﬁ'”

] '4_ o

’-~-‘..'-;

|
||.'.
,’,A
.
‘i
~
ol

FRARM Tk CRINT (U7 MESIAGES (MATN)

LA

4 2o SO
WET REL. CREF, NOG, LLEN=100
TTL FROGRAM TD FRINT OU) MESSAGES (MATN)
([NT MESSAGE FROGRAM |
4
¢ L0 MESSAE ARER
¢NAMED OO CECTOMT I ESCT)
]
380 3 R BT |

O LRSI S| FIR TO MESSAGE 1 ([N PSCT)

1
SRR OFDE MOy PR T0 MESSAGE 2 (IN PSLT)

an U N FTIE TO MESSAGE 2 (XREF IN BSCT)
e VLR M3 FIR TO MESSAGE & (XFEF IN DSCT)

¢ MESIACED 1 OND D
N RAMED OO CBOTMC IN BT
t+

TS COMON. MESSAGE COPNT
winooamp CUMON NESSAGE

R ELANG COMMON SECT IOy
MIvIIT RNE g0 RESERVE 16 BYTES

S SN MECINE

S [EL INEATE END (F MESSAGE

SR FAUGRW SE(TI(N

WIOFID ARG b
-t 4
L}
v EVIESNAL REFEREMCES
’
WREF ATEST
FEF ESIT MSU3, DSCT MSGH ANY STACK, EXBENT, PORC
¢
¢ EriEfna TEFINITIONS
*

SOEF W3G2, MEGY, EABPRT, START. FUIRE

FOD A EMPRT Ex: 02 ELRIG PRINT RIVTINE

FIGURE C-1

MESSAGE PROGRAM 1
C-2

Prig 0;
(LN

e 4%

T R

LI

LU LY

15 G LN

b
HYSSE vk
WSk
yc ™
ns
e
LI

Yl o
WM E el
e F
e ss
D U L
)L

UL

e

W

Yy e R

DS
L T
PRSI

wn T d
3 .
NNV TAE e T
f“‘.\'u“‘ ' p
SN
v T e
e tes e U
. .
e - 4
e
’ Y.
y .-
v
LN L
W e’
-....]

a4

40|

v,

IR]

rYy rTe or

P

PO TTORRINT 00 MHET (NN

LRSI IR

K e

¢ PR R - FE TN T

. '.4 H
B "
L]
A
Sk PLNE
- w4 .
Uy H
-4 N
T8 M
'v((w. 0
Sl w
[]
LI I
L}
valot
.
. i
.)
5
s e
9
. t
R TR
o -
- L
+
v
2
o
vl b TRt
AT S

TOTAL EXEET K

TR
*lF
£ AEFET

LR

'“’:n‘ B
w.

EXEFET
2123l
ey il

SE EHEERT

20
rr
[

LA

SUREE LS
2T TN
W0 [o
i TiogeT
Llwr IWIWT

Lo 1

N

e SR
Lot ENTE
oL |

"

TR WITH
e ATEST

e :

FLE N

FIGURE C-1

ECEUTIN STRETL 0T o= TgRT"

PROSRAM L TITN

SET P STHLY FEGILTE (4FEF)

GET MESSHOE | PUINTLY
FRINT MEYE |

W TO PRUGRA - IREF
TRIC POINT 2[£7.
ET MELLAE T OANDEECS
FRINT MESCAE

OET MESSAE ¢ PUINTER
PRINT MESSAE © v d'N
FRINT MESIoE 4

Lo SLE sRe MG IN e TE R SN

REISAE JESTINGT IO AULRESS
MECIAOE ATCREST < F)
EISAE LEVTH

T SURCE IINTE

&7 BITE
FIRTE S¥RE FoINTER

AL BT
EIRTE DEDTINGT RN FOINTER

FUATE (NCEITER LIONTER
(2

AT SELINE

FRM FOINTER
0 FUINSER

MESSAGE PROGRAM 1 (continued)

c-3

FRGE s PNl FROGRARM TO PRIND GOT MESSHAES TMAIN

- R ATEST 0003740008

NP BCLet O(nrye

NE NG VAT RD

NB O00) TG 00219007

NE 0000 [RSOCT 000 i0e0007 3

F EYDENT fWiits

D FoZq EXEPRT 0047 045000058 (ah] OOy o0
Fooo4r FROMFT 0007 0O0TS 00078 0%)4
P24 LOOFL DOOTSe(vN4

OF D000 MAGY G0 G002 en0n4 3

NB D000 WSS dni (0S4

DO OO0 MECZ]l (e 7e(ni4z

NB (i)l MSLIE Quitge

RE MG 02 00 g einén

NB D MEOF () Je(ue

kD MU I T 0 TTen004 4

NE 08 MIDAF wig e
O ianpy MUIET K 4e e

DB 0015 POINE (g2 Qonioe

R FidZ 0 Geidse

R TTRIV G0 20e005?

BP e STRET (04T G053
P OGKE TOFNTR 00070 02072 00082 HO052¢

FIGURE C-1
MESSAGE PROGRAM 1 (continued)
c-4

PIGE 001 PG2 PROCRAN T0 PRINT OUT MESSAGES (SBPRiRms;

00001 NN PG
00002
PT CREF. PEL. NOG, LM 100

00003 TTL PROORM TO PRINT
00004 . 0T ESSAKES (UBPROGRAN,)
00005 ¢ MESSACE POINTER
60006 . AREA {BCOMMY)
0000TH 0000 BOOMM COMY poCT
0000GN 0000 0002 A MSGIPT BB 2
0000FN 0002 0002 A MSG2PT R 2
000 10N 0004 2 AMSGPTRE >
0001IN 0O06 0002 & MSGAPT R@ 2
00013 0000 PCOME OO BT
00014N 0000 14 & OMGCT FCE CMSGE-CMSG
000ISM 0001 43 A CMSC FCL /COMPION TEST PROGRAE/
000IAN 0014 04 K& FCE 4
00017 0015 N OMSGE EQU ¢ N (F MESAG
00019 '
00020 + MESSAGES 3 AD A
00021 '
000228 0000 BT
000228 0000 4D A MSG2 FCL /MESSAGE 3/
00024B 0009 04 A FGB 4
000260 0000 DSCT
00027 0000 4D & MSGA FCC /MESSAGE ¥/
000261 0009 4 A Feg 4
00030 ')
00031 + START OF PROGRAM 2
00032 '
00033P 0000 PSCT
00034P 0000 DE 00 N POM2 LDX MSGIPT PRINT MESSAGE |
00035 0002 BO 0000 A SR EXBPRT
00034 ’
00037 o PRINT MESSAGE 2
00038 ’
00039P 0005 CE 0000 & LOX g;" PRINT RESSAGE 2
00040P 0008 BD 0000 & JR VESSADE 2 AGAIN
00041P 0O0B DE 02 N LD ﬁ PRINT
00042P 000D BD 0000 A JSR 10 FRON O
0004 0010 7E 0000 A Jp PONE RV
00044 ’
0004S ¢ MEFS ND INEFS
00044] w'm
00047 XeEF mﬂlzﬂm-m
00048 INEF '

FIGURE C-2

MESSAGE PROGRAM

PAGE 002 PG2 mmmmmmammwmmmmw,

euD 0008 DScT
000S1D 0008 0014 ——
000320 0OIE 0001 A STACK R |

00034 FS64 A EXBENT EQU #3564

0005 D
TOTAL ERRORS 00000

BCOMM 000072
BOOM2 00013+
0001 CMSG 00014 00015+
0000 CHSGCT 00014+
0015 CHSGE 00014 000174
564 EXBENT 00047 00054+
EXBPRT 00035 00040 00042 00048
XSG1 00048¢
0000 MSGIPT 0000800034
KSGZ 00039 000484
0002 MSGZPT 00009400041
0000 MSG2 (N023+00047
0004 MSGPT 00010+
0000 M4 00027400047
0006 MSGAPT 00011
PGIME 00043 O00ASH
0000 POMZ 00034400047
001E STACK 00047 000524

SR*EIIRIFICHETTORDIEDS

FIGURE C-2
MESSAGE PROGRAM 2 (continued)

(-6

DATA SECTICN

STACK STORAGE AREA

PAGE 001 PCI SOARRTIELM Toonidvegi

- ',’.' .('.“?

00001 VRM

> I eesfCuE 1y

LLVITRATE IS g Acry
? hat CIEL’.C'EC VECkie e A A

00005 R e
- (ST et

mm J 0 l: : i 1
0000RL (M GRS IV RCRR S, ¢

LYY T (T
00011 LSS F3!

000124 (VY] R UAELEI I CINE 0T CULET AT ENTRY
000144 170 W e

0001SA 100K OF M D TEIT LT ML SR IE COMMON MESSAGE

000134 10 TE 10 & S

000194 1790 LS TR
0D0ISA 1400 PP AV 3 ATESTI B IYEET ROINT s
000208 1002 7E 034 M DENT AT ErBel] SO

nno22 o
TOTAL ERRIRS and

D 1004 ATEST 001D 2aniSy

1000 ATEST2 ALt DAAioa
C 0000 TWCL OadaVMiS
R EXBENT oM taiil)
R EXDFPT AnALIaAnRLS

FIGURE C-3
MESSAGE PROGRAM 3

M=200 CINkING LONMDEF REY 1.0

“LOAD=FG10«FG&0
“01=FG30sLOANL
BO=EOTIT
‘RBLF
LORD=PG10.Pi20
“01=F3305 LORD
*MAPF

NO UNDEFINED SYMEDLS
MAP
=128 YXTR SND COMN
Qo0e 1000 100s
e 1008 1 0OUE
WSy Oue0 Gide nul D
RO=0 oSO auvE o nnsn
anEs ONEE o ang o anon
 OD0ms OUE&E Y1345 0000
MODULULE HAME EICT DeT PICT

o e Iy oo

Fisl MEUEILE S
Fiae Tasn S N 3
Fisz A 0D N
v oreqan
HemME D JIJE CTF

BCOMM B Nz LpcR
ECOMMZ B nlS nozs
DEFINMELD YMEGL:

NHME B TR 1210 | S TE
HTEST A 10ns EWFENT A FSed
Mos: Toanzn Msd boDnAS
STRET & 0k n
TESIT

L ORDCEDT T

E¥ELG 1.2 MALT
eF Q315
ME SSAROE
MESIAGE
MESSAGE
MESSRAGE
MESSAGE
MESSAGE
ME SSAGE
COMMDN TEST FROGFANM
E~BUG 1.c

B ow WAy oy e

LOAD TWO FILES ¢310,P520
LORD FILE Fi330

HAME AE: OBJSCT FJILE
STRFT FALS 11

FEFERT FASI 1 COMMANDS

PEINT FLILL MAF

HRME O TR NMAME 3 TR

EHBERFET S S0Z4 0 MIN F UOEx
B3] 14E F unfFk M FoOtas

CETIIRN T LIiC OFERATING ZYSTEM

FIGURE C-4

EXAMPLE OF LOADER WITHOUT INTERMEDTATE FILE

c-8

b= = 7

oyl LINEING LOWMDER SEV 1.0

71F=sF !

PTRF«ESnt JTRDO=hd (i
A PREe f1nu

MRFI

3

.
{
F

CIZE TR ENMD Qb
Quont FFFE unnd angn
BAON FFFF 0O0an unQon
VLGN GADO uid (nn
anan a5 un oo e

SLORD=FGI0sFR20« 530
-BD'B!*QBQP

SIZE TR ENMD LOMH

A 000# 1000 | 0ns

H Q000 100e funE

B 0027 0020 nnar pnlD
O L L T AT oY TR TR Y < KTV RH Y
O OonZe pndun ndesn o
NS0 oRnn e=sF o i
TMSPF

HC MMDEFINED MBS
M-

I S 2 TR B 0 e
I T (NI WA PR YIS R R

S e 1 00e Yl

B0l e ot e e vl
£onnEu b TR TR A T

QR Lo ndos e
Fomnd nson Hef Foounun
MO VLE teRtte BT (AR

Fra} IR L
PoE TOIRRAREIE 0
FGZ LT e
COomMMDr
NAME D 0F 'Ef
BCOMM b s e

BOmMMe B Ll S G e
DEFINED W MEOL: o
MRME s Te Pyl

ATEST R 100w F - ERENT

MIG3 B oOnzix L D §
“YRFT F 0 n%y
WENIT

ILOAD:. B

EXBUG 1.& MALD
*SO0RIG
MESSAGE
MESSAGE
MESSAGE
MESSHGE
NESSAGE
t:ss:se
wﬁnﬁstasr EROGRAM
- EXBUG 1.2

F WARA RN Rl

?fgﬂTE A IHTERMEDINTE FILE - §y
NOT ol CTRETING ADDFY D 0 F o TepicT

CTRET RIOTY MODULED QN ADORE.ZE. MODL .
FRINT O EF W TGH whLUE - . O 100 Mk,

LORD Flile? FRIOFGTDPE 20
ROZIAH ARL QEIECT FILE - B

FRIOT FOLL MAE

tig - TR Hr*ME } {I: MV?QE b U;Lﬁ
L pF o Fila=zd priisl [LU _‘ .1. vt
i}iiz‘ : ﬁilﬁ FoaMe g oaenn L TRCH I 428

ceTned T (R DFERAT LM IvRIEM

FIGURE C-5

EXAMPLE OF LOADER WITH INTERMEDIATE FILE

c-9

o800 LIt [ths ' ORLEF REV t.n
*1 DON
T1F=F 3
A.0RL=F310
Pl
TIFDF
TMAPLY 150N
RTEST EREBENT MIGZ ™

0005 UNDEFINED 3vMEOLS

MEZIRGRE FROGRAM |

Ve

4

LIB=F5120: 1

P> MESIRGE FROGRAM |
PG2
*1F0OF
A=y TFON
ATEST
G001 UNDEFINELD I vYMEOL S
MOADl=FG 20
P2
“BO=R3Ii [DOFIREF
TMAPF
N0 UNDEFINED TvMEDLS
MR
3 3I2E TR EMD COMRM
Q 0004 1000 1005
o 0006 1008 100B
B 0027 002 G0nas 0010
TO0030 0050 0NFF OO0
D 0029 0098 O0Cx 0000
P 0083 Q0EE (1d% 0000
MIDIWE NAME B:CT DICT PICT
Py 0n=0 03B ONFs
Pie 0020 ONnHS Nt 2
PG3 anzA NNC4 014y
CoOMManN
NAME S SICE TR
BCOMM B (CGOR (QZA
ECOMM2 B 0019 (03¢
DEFINED SYMBDLS
H&MME S <TR HAME § STw=
ATEST A 1005 EXBENT 8 F5564
MSG3 B 00c0 mMSH4 D 00R%
STARPY P QOF0
*EXNIT

?PI@T MO0 E IHFO=r9 71O
CFREATE [NTEFMETIIHTE “JLE

LOAD FILE Fa1Q o

TURH IF- QOFFf

FRINT UNDEFIMED TvMEOL:. TuRN - IF -
PGM2 TR T oo

FILE.TGIEO COHTHING MGDULED P31 AND P2
LIBPARY IEARCH OF FILE FG120 ON DFlve 1

QuLy MADULE P5E WA _INDE [

EXAMPLE OF LIBRARY FILES

c-10

- rie IF QOFF

LIZT UMDEFINED ZvvBEOLIs TURN - [F- 0N

Ldrsg MODei E iy

UEFINE QEBIECT FILE EQs ZTRRT PRSI 11

UL MRF

HAME L TR NAME 3 STR HAME 5 STR
EXBFRT A FO2d 13159 # Q0EL M3GZ D 009
OGINE & UOFR POMZ P 0135 STARCR D 00C3
RETURN TQ DL DPERATINS IYSTEM

FIGURE C-6

	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	A-01
	A-02
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10

