@ MOTOROLA M6809EXOR(D1)

M6809
EXORciser

User’s Guide

MICROSYSTEMS

M6809EXOR(D1)
SEPTEMBER 1979

M6809
EXORciser
USER'S GUIDE

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser®, EXORdisk, and EXbug are trademarks of Motorola Inc.

First Edition

©Copyright 1979 by Motorola Inc.

TABLE OF CONTENTS

Page
CHAPTER 1 GENERAL INFORMATION
1.1 INTRODUCTION 1-1
1.2 FEATURES 1-1
1.3 SPECIFICATIONS 1-2
1.4 EQUIPMENT SUPPLIED 1-2
1.5 GENERAL DESCRIPTION 1-3
1.5.1 EXORciser Memory Parity 1-3
1.5.2 Dual Map Concepts 1-5
1.5.3 Second Level Interrupt Feature 1-7
1.5.4 Dynamic System Bus 1-10
CHAPTER 2 INSTALLATION INSTRUCTIONS AND HARDWARE PREPARATION

2.1 INTRODUCTION 2-1
2.2 UNPACKING INSTRUCTIONS 2-1
2.3 INSPECTION 2-1
2.4 INSTALLATION INSTRUCTIONS 2-1
2.5 DATA TERMINAL SELECTION AND CONNECTIONS 2-2
2.5.1 RS-232C Interconnections 2-2
2.5.2 20mA Current Loop Interconnections 2-2
2.6 PREPARATION OF SYSTEM MODULES 2-2

CHAPTE OPERATING INSTRUCTIONS

INTRODUCTION

SWITCHES AND INDICATORS
1 Front Panel Switches and Indicators
.2 Switches on the DEbug Module
INITIALIZATION

.1 Power ON/OFF Procedures
o2 Baud Rate Selection
.3

Start-Up Procedures

3

1

2

2

2

3

3

3

3

4 USING THE DUAL MEMORY MAP
5 ADDRESS SELECTION

6 EXbug COMMANDS
6
6
6
6
6
6
6
6
6
6
6
7

wwwwwwwwwc;owwwwwwww
N R EOOOTOEPDWWN

.6.1 Four-Character Commands -
.6.2 Single Character Commands -14
.6.2.1 Register Display and Change -14
«6.2.2 Program Execution Control -16
«6.2.3 Program Execution -19
.6.2.4 Memory Parity Control -20
«6.2.5 I/0 Control =22
.6.2.6 Memory Search 3-23
6.2.7 Miscellaneous 3-26
.6.3 Memory Change 3-27
.6.3.1 Adding EXbug Commands 3-28
. EXbug SUBROUTINES AND ENTRY POINTS 3-29
CHAPTER 4 SYSTEM DEVELOPMENT USING EXORciser
4.1 INTRODUCTION 4-1
4,2 THE EXORciser IN SYSTEM DEVELOPMENT 4-1
4.3 PERIPHERAL INTERFACING 4-1
4.4 PROCEDURE FOR DESIGN 4-3
4.5 EXORciser CONFIGURATION 4-5
4.6 SYSTEM ADDRESS SELECTION 4-5
4.7 SECOND LEVEL INTERRUPT 4-5

CHAPTER 4 (con
4.8

. .
== s = e O
RPN O

L]

e o o)
— e b e

CHAPTE

oo N Lo I -.h-h-b-b-h-b-h-h-b

L)
D= O

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

TOMMOO o>

APPENDIX

—

FIGURE 1-1.
1-2.

1
w
.

1
.

m.h.p-bwwwtipwwwww»-n—t
HWNRWOWOONO O WN -
[]

t'd)

MEMORY ASSIGNMENTS
EXORciser CONFIGURATION FOR SYSTEM EMULATION
TESTING PROTOTYPE OR PRODUCTION SYSTEMS
PRECAUTIONS WHEN USING THE USER SYSTEM EVALUATOR
SYSTEM EVALUATION AND DEBUG PROCEDURES
Memory Loader
Abort Function
Default Debug Offset
Memory Change Function
Breakpoint, Trace, and Halt-on-Address/
Scope Sync Functions
Breakpoints
Trace
Halt-on-Address
Scope Sync
Error Correction
SOFTWARE DEVELOPMENT USING EXORciser

THEORY OF OPERATION

INTRODUCTION
BASIC EXORciser BLOCK DIAGRAM DESCRIPTION

EXORciser BUS DESCRIPTION AND SPECIFICATIONS
EXbug 2.1 PROGRAM FOR EXORciser

PERIPHERAL REQUIREMENTS FOR EXORciser OPERATION
USE OF THE ASR33 TELETYPEWRITER WITH EXORciser
THE RS-232C STANDARD

TI TERMINAL DESCRIPTION

EXECUTIVE MAP -~ USER MAP INTERFACE

COMPATIBILITY AMONG M6809 EXORciser, EXORciser II, and

M6800 EXORciser I MODULES

DIRECT MEMORY ACCESS ON THE DEVELOPMENT SYSTEM BUS

LIST OF ILLUSTRATIONS

EXORciser Simplified Block Diagram
EXORciser Dual Memory Map
Interrupt Vectors in User Map

Interrupt Vectors for Executive Map and Single Map Mode

EXORciser Front Panel Switches and Indicators
Toggle Switches on DEbug Module
PRNT Example

Tape Format

PNCH Example

LOAD Example

VERF Example

SRCH Example

MDOS Line Printer Driver

System Designing and Verifying Procedure
EXORciser, the Development Tool

Using Memory Change to Calculate a Relocatable Address

EXORciser Simplified Block Diagram

ii

&
(24
(1]

R O |
= OOOUWOWWOUIOO

B N I O N O O N O '

ImﬂmIOOW:D
Y

—
]
—

o

m-h-b-bwwwwcfowwwwt—u—n—‘»—a
WHE RN N = ON 00 NOY A

TABLE 1-1.
1-2.
1‘30
1-40
1-5.
3-1.
3-2.
3"30

LIST OF TABLES

EXORciser Specifications

Second Level Interrupt Rules
Second Level NMI Rules

Second Level SWI Rules

IRQ, FIRQ, SWI2, and SWI3 Rules

EXbug Commands
Dual Map Mode Second Level SWI Options

EXbug Routines

iii

Page

[}
WA = I=HWOWON
o o, [N

wwwo‘—':—-—n—n—a

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

The M6809 EXORciser Development System is the basic tool for designing and
developing M6809 microprocessor-based systems. It is an extremely powerful and
easy-to-use development system that has been designed to be highly user-
oriented, reducing system development time and cost. The M6809 EXORciser
incorporates several advanced features, including Dual Memory Map mode of
operation and the ability to develop higher performance systems using the MC68A
and MC68B series parts (1.5 MHz and 2.0 MHz, respectively).

Documentation relevant to the M6809 EXORciser Development System is separated
into two major categories: the M6809 EXORciser User's Guide and various
supplemental manuals. This manual (the M6809 EXORciser User's Guide) is the
primary guide for using the entire M6809 EXORciser system, and provides general
information, installation and set-up instructions, operating instructions,
guidelines to follow for system development, and theory of operation for the
entire system. It also provides a thorough description of each M6809 EXbug
command, as well as all of the entry points for user access to the various sub-
routines. Specifically excluded from this manual are operating instructions for
development system modules requiring special operating procedures (such as the
PROM Programmer III Module or System Performance Monitor). Operating instruc-
tions for these modules are provided in their accompanying User's Guide.

Supplemental manuals are provided with this User's Guide. These supplements

offer detailed information on each of the standard and optional modules used
with the M6809 EXORciser, including schematic diagrams, detailed theory of

operation, and a complete parts list.

NOTE

THROUGHOUT THIS USER'S GUIDE, WHEREVER
EXORciser, EXbug, MPU MODULE, OR DEbug
MODULE TERMS ARE USED, THE TYPE NUMBER
M6809 IS IMPLIED, UNLESS OTHERWISE SPECIFIED.

1.2 FEATURES

The features of the EXORciser include:

. Versatile and easily expandable modular assembly tool used to evaluate and
debug the user's system hardware and software.

. Dual Memory Map mode of operation.

. Selectable clock speeds of up to 2.0 MHz.

. 32K of Development System Random Access Memory (RAM).

. 8 selectable baud rates from 110 to 9600 baud.

« A single RS-232C compatible serial communications interface.

« A chassis containing a l4-card motherboard and the necessary +5 Vdc and
+12 Vdc power supplies.

1-1

1.3 SPECIFICATIONS

Table 1-1 identifies the basic EXORciser specifications.

TABLE 1-1. EXORciser Specifications

CHARACTERISTICS

SPECIFICATIONS

Power Requirements

95-135/205-250 VAC

47-420 Hz
250 W
Word Size
Data 8 bits
Address 16 bits
Instruction Up to 5 bytes

Memory Capability

65,536 bytes (maximum) in each map

Instructions

59 variable length

System Speed

Not over 2.0 MHz

Interrupts

3 hardware and 3 software

Data Terminal Interface
Characteristics

Baud Rates
(Jumper Selectable)

110, 150, 300, 600, 1200, 2400, 4800, and 9600

Signal Characteristics

TTY (20 mA neutral current loop) or
EIA RS-232C compatible

Reader Control signal

Control signal for TTY devices modified for
external control

Operating Temperatures

0 to 55°C

1.4 EQUIPMENT SUPPLIED

The EXORciser is shipped with the chassis (including power supply, motherboard,
and cover), MPU Module, DEbug Module, and 32K bytes of either static or dynamic
RAM (depending on customer preference).
Text Editor are also included in a media specified by the customer (either paper

tape, cassette, or diskette). This manual, together with the appropriate User's

Guides, is also included.

1-2

The Macro Assembler/Linking Loader and

1.5 GENERAL DESCRIPTION

The EXORciser consists of a chassis with power supply and two essential hard-
ware modules -- the MPU Module and the DEbug Module. Optional memory modules
and peripheral modules may be configured in the system, as required by the user.
The MPU Module provides the central time base for the systeme The 2 MHz M6809
microprocessor chip is located on this module. The DEbug Module includes the
system terminal interface and 3K bytes of firmware referred to as EXbug. This
firmware 1is organized into a 2K ROM and a 1K ROM so that all I/0 utility
routines reside in the 1K part. These routines are available to the user, and
the single 1K ROM may be replaced by the user in situations where special I/0
routines are desirable. EXbug represents the basic system monitor for the
EXORciser, through which the user may enter commands to examine and to change
memory, to trace program execution, or to load additional systems software. All
EXbug commands are described in Chapter 3 of this manual.

Figure 1-1 shows a block diagram of the EXORciser configuration, with each of
the large boxes representing a plug-in module. Along the left of the diagram,
it can be seen that the configuration includes at least two systems that
timeshare the same MPU Module -- the debug system and the user system (the one
under development). In fact, if you include the Software Development System to
be discussed later, there are really three systems encompassed by the EXORciser.
The debug system is a complete operating M6809 system, which includes a
Microprocessor, RAM, ROM, and I/0. It is a specialized microcomputer with
unique hardware and software features to aid the designer.

MDOS is the optional software package that provides a complete disk operating
and file management system to the EXORciser. MDOS is described in detail in the
MDOS Reference Manual, and requires at least 16K bytes of RAM.

In order for the user to be able to take full advantage of the system develop-
ment aids provided, the following system concepts must be fully understood:

. Memory Parity

. Dual Map

. Second Level Interrupt Vectors
. Dynamic System Bus

1.5.1 EXORciser Memory Parity

Both the Static RAM and Dynamic RAM Modules, available for 2 MHz operation with
the EXORciser, provide parity detection that interfaces with the system bus.
The DEbug Module may be enabled via an EXbug command to monitor this parity
error signal. If enabled, the occurrence of a parity error will cause a non-
maskable interrupt (NMI) to be generated, and EXbug will print a parity error

message to warn the system user of the fault. While writing to the disk, a
memory parity error will generate a disk time-out error instead of a parity

error message. A parity error generated while examining User Map memory from
EXbug will result in EXbug switching to the Executive mode.

Because of the extensive flexibility for configuring hardware in an EXORciser,

the system cannot automatically initialize all memories to the proper parity at
power start-up without some direction from the user. As a result, EXbug starts

up following POWER-ON or RESTART by refusing to accept any parity errors from
memory modules. (Enabling and disabling parity does not involve modifying hard-

ware; i.e., the parity detection logic is always active on the memory modules.)

In order to properly initialize the system to take advantage of memory parity,
the user must first initialize all Tlocations in the memory modules (EXbug
command "I") and then must turn on the enabling indicator in the EXbug firmware
(command ";;"). Chapter 3 contains a complete explanation of each of these
commands. If a parity error occurs and the user has enabled this feature, the
message "PARITY" will be printed by EXbug.

=7
| RS232C
} & < .l Terminal !
—-—. DEbug L_ - _J
DEbug > Module <2
System r —_—— —
. ‘ 20 mA
l * TTY
< - MPU ->
s Module
>
— | S—— - —
R/W
b)
T { o
- RAM . P
VUA/ Meodule v
VXA g s
— | [-l &
— ©
P © 1 >
© ~ >
S : 2
n [Additional .E
5 2 RAM'’s, ROM’s la)
£ g /o
8 < *
)
1 t ®
User ¢ i
\ 8 Control/
System (’ Status Lines
W . Optional
E, R/W 1/0 — t—.’
— i l Module
j : 32 Input/
Output Lines

v oy \/ VRS

FIGURE 1-1. EXORciser Simplified Block Diagram

1-4

1.5.2 Dual Map Concepts

The DEbug Module provides the EXORciser with the ability to address two separate
64K memory maps, as illustrated in Figure 1-2. To accomplish this, the DEbug
Module takes the Valid Memory Address (VMA) signal from the MPU Module and
converts it to two other signals: Valid User Address (VUA) and Valid Executive
Address (VXA). Al1 EXORciser hardware modules may be configured to respond to
one of these enabling signals. As a result, two complete maps of 64K bytes are
addressable for either random access data storage or for data I/0.

EXbug is always assigned to the Executive map, regardless of Single or Dual Map
mode. The user selects Dual or Single Map mode via a switch on the DEbug
Module. In the Dual Map mode, the generation of the VUA and VXA signals is
under EXbug control. In this mode, the user can specify which map he wishes to
use via EXbug commands. However, when using the User map, the VUA 1ight on the
front panel will not be on until a program is actually being run in the User
map. This occurs because EXbug, in the Executive map, is still in control of
the system until control is given to a program in the User map.

MDOS must be run in the Executive map when the system is in the Dual Map mode
because MDOS must access EXbug and its I/0 facilities. This leaves the full 64K
User map available without restrictions. The Executive map has full access to
the User map. However, the User map has only limited access to the Executive
map. Control can be passed from the User map to the Executive map only by use
of software interrupts (SWI's) when properly enabled by the user.

The DEbug Module also provides for a Single Map mode of operation, as
illustrated in Figure 1-2. Here, all addresses of $F000 and larger are assigned
to VXA (EXbug), and all addresses smaller than $F000 are assigned to VUA. (This
assignment is controlled by hardware - not by EXbug firmware.) In this mode,
all hardware modules must be configured for VUA operation. Thus, MDOS is effec-
tively run in VUA when the EXORciser is in the Single Map mode. Modules used in
this mode must not use addresses $F000 or larger. Programs run in this mode can
access EXbug, but cannot reside in the EXbug address range. The user must also
account for the presence of the MDOS ROM and I/0 devices when laying out his
development memory map, if MDOS 1is configured in the system. For more
information on MDOS, see EXORdisk User's Guide.

The debug system memory is set up so that the very top of memory is RAM, in
contrast to ROM or PROM which would normally be used. This is done so that the
interrupt vectors can be changed to suit any user requirements. A PROM address
is switched in during restart to get the EXORciser started (in EXbug). The
EXbug initialization routine sets the RAM interrupt vector locations to values
used by EXbug. IRQ is always masked and is not used by EXbug.

The DEbug Module contains hardware that controls the switching of the maps.
This hardware may be accessed only via software running under VXA. This
normally means that the map control is handled completely by the EXbug firmware.
The user may, however, set up service routines in the Executive Map that can
control the map selector. By setting the proper trigger value, then by
executing the proper instruction that will cause the map to change on the
appropriate subcycle of an instruction execution, the User map dynamicall
transfers program control from one map to another. The Software Interrupt (SWI
servicing routines in EXbug play a major role in accomplishing this control.
Normal system development using the EXORciser does not require explicit map
control by the user. EXbug provides complete access and control to the User map
for system development requiring an unobstructed 64K bytes of address space
(User map).

1-5

FFFF

FFF2

Fooo

ecoo’

E800

2000

0000

.
Interrupt W
Vectors

EXbug VXA
ROM/
RAM

VUA <

PlAs

Disk
Controller

Non-MDOS
RAM

¢ VXA, VUA
User

Program
Area

MDOS
Initialization

Overlay
Area

MDOS
Functions

User
Program
Area

Executive Map

FIGURE 1-2. EXORciser Dual Memory Map
1-6

User Map

FFFF

0000

1.5.3 Second Level Interrupt Feature

EXbug provides for the SWI and NMI features of the M6809 to be available to the
user without restricting EXbug use of them. This capability is referred to as
the second level interrupt feature. The EXbug use of the interrupt is the first
level and has the highest priority. EXbug gains control first, then decides if
user processing at the second level is specified. If the interrupt is not an
EXbug interrupt, EXbug passes control on to the second level service routine.
Using this technique, breakpoints can be set in a program that uses SWI's for
its own use (EXbug uses SWI's to mark breakpoints). The second level service
routines are reached via an address vector, just as normal interrupt service
routines. However, the locations where the vectors are kept vary, depending on
the map in use and whether the system is in the Single or Dual Map mode.

In the User map, the second level vectors are at the same locations as the
normal vectors -- i.e., $FFF2 through $FFFF. Since EXbug vectors must be at
these locations in the Executive map, the second level Executive map vectors are
located indirectly; that is, the address contained in locations $FFO0 and $FFO1
in the Executive map points to the last byte of the second level reset vector.
In this manual, this location is referred to symbolically as "ATOP". The other
vectors are in the normal order, as illustrated in Figure 1-3.

Reset FFFE, FFFF (used by user restart and ;g command)
NMI FFFC, FFFD

SWI FFFA, FFFB (2nd level if breakpoints set)

IRQ FFF8, FFF9

FIRQ FFF6, FFF7

SWI2 FFF4, FFF5

SWI3 FFF2, FFF3

-~ N

FIGURE 1-3. Interrupt Vectors in User Map

EXbug only gains control of non-EXbug NMI's if the system is in the Single Map
mode or if instructions are being executed from the Executive map of the Dual
Map mode when the NMI occurs. In both cases, EXbug uses the indirect approach
through the address in $FF00, $FF01 to determine the address of the second level

service routine. Figure 1-4 illustrates this process.

The action taken due to a nonbreakpoint SWI is determined by the value of EXbug
E parameter (see the E command description, paragraph 3.6.1). A non-

breakpoint SWI can generate an error message, or be serviced by the second level
routine. The address of the second level SWI routine in the User map is
obtained from $FFFA, $FFFB. For the Executive map and the Single Map mode, the
address of the second level SWI routine is obtained indirectly through $FFO0O,
$FF01. EXbug does not handle IRQ's, so they can be handled directly by the user

in whichever map the interrupt is recognized.

1-7

The user must put the IRQ, FIRQ, SWI2, and SWI3 vectors at $FFF2 through $FFF9
in the User map. In the Executive map and the Single Map mode, the indirect
pointer in $FF00, $FFO01 is used to establish these vectors. During abort and
restart, EXbug moves the IRQ, FIRQ, SWI2, and SWI3 vectors specified by the
address in $FF00, $FFO1 to the normal $FFF2 through $FFF9 address range. On

restart, EXbug puts an address of $83FF into locations $FF00, $FFO1 as the
default second level vector top of memory in the Executive Map.

-, N

SWI3 ATOP-$D,ATOP-$C]
SWI2 ATOP-$B,ATOP-$A Moved to FFF2-FFF9 on
Abort and Restart
FIRQ ATOP-9, ATOP-8
IRQ ATOP-7, ATOP-6
SWI ATOP-5, ATOP-4 Second Tevel SWI
NMI ATOP-3, ATOP-2 Second level NMI
Reset ATOP-1, ATOP Used by command ; G
~h ~
-+~ N
address ATOP | FFOO,FFO1 Default is 83FF
NN A

a. Executive map (Dual mode) or User map if in Single mode.

LY o N
SWI3 FFF2,FFF3 W
SWI2 FFF4,FFF5 \ Setup from location ATOP
on Abort and Restart
FIRQ FFF6,FFF7
IRQ FFF8,FFF9
SWI FFFA,FFFB
In RAM, normally setup
NMI FFFC,FFFD by EXbug
Reset FFFE,FFFF In ROM for EXbug

b. User map of the Dual Map mode.

FIGURE 1-4. 2nd Level Interrupt Vector Locations for Executive Map and User Map

1-8

Tables 1-2 through 1-5 summarize the rules used by EXbug for handling
interrupts, including these second level interrupts.

The response time for second level service of interrupts is slower than if the
interrupts were serviced directly. This is because EXbug gains control and must
determine that the interrupt is not an EXbug function. EXbug must then
determine what action to take, and then set up the processor registers and stack
accordingly. On entry to a second level service routine, the processor
registers and stack are configured as if control had been given directly to the
routine without intervention by EXbug.

Response time of second level SWI's serviced in the User map can be speeded up
by not setting breakpoints. Executive map response can be speeded up by
directly taking over the interrupt vector. This is done by placing the address
of the service routines at the normal vector positions, $FFFA through $FFFD.
However, this eliminates use of EXbug functions which require these vectors:
SWI - breakpoints; NMI - abort, trace, program continuation at a breakpoint.
Also, the EXbug vectors are restored to the locations on restart.

TABLE 1-2. Second Level Interrupt Rules

I. Second level interrupts are interrupts which are not related to EXbug
functions. They are generated by the user.

II. Exbug gets control from a second level interrupt but passes it on to the
user's service routine.

ITI. Possible second level interrupts are NMI and SWI.
IV. Addresses for second level interrupt service routines in the Executive

map are located indirectly through ATOP. Second level interrupt service
routine addresses in the User map are in the normal vector locations.

TABLE 1-3. Second Level NMI Rules

I. Second level NMI is only possible in the Single Map mode or when the
system is running in the Executive map of the Dual Map mode.

II. Second level NMI is always enabled when the system is in either of the
two modes described in item I.

III. The address of the second level NMI service routine for both of the modes
in item I is determined indirectly through ATOP.

IV. User NMI's generated while the system is in the User map of the Dual Map
mode will not return the system to the Executive map.

1-9

TABLE 1-4. Second Level SWI Rules

IT.

ITI.

IV.

V.

Second level SWI's can occur in any map and in any map mode.

Second level SWI's must be enabled by the EXbug E command. User SWI's in
the Single Map mode or the Executive map of the Dual Map mode will cause
an "SWI" error message if the second level SWI is not enabled. User
SWI's in the User map of the Dual Map mode, without the second level

enabled, will be serviced directly in the User map if no breakpoints are
set, or will generate an "SWI" error message if breakpoints are set.

Second Tevel SWI's from the User map of the Dual Map mode may be serviced
in either the User map or the Executive map, depending on the E command
value entered.

The address of the second level SWI service routine for the Executive map
is determined indirectly through ATOP. The address of the second level
SWI service routine for the User map is in $FFFA, $FFFB of the User map.

User map SWI's being handled in the Executive map require the S stack to
be in memory common to both maps (i.e., enabled by VMA).

TABLE 1-5. IRQ, FIRQ, SWI2, and SWI3 Rules

I.

II.

III.

Iv.

EXbug does not use these interrupts and, therefore, does not have service
routines for them. They must be serviced directly by the user.

They are serviced in the map in which they are recognized. They do not
cause a map change.

The vectors always come from $FFF2-$FFF9 in the current map when the
interrupt is recognized.

The vectors for the Single Map mode and the Executive map of the Dual Map
mode are initialized by EXbug during abort and restart indirectly from

ATOP. On abort and restart, ATOP is initialized to $83FF.

1.5.4

Dynamic System Bus

In the upper left-hand corner of all EXORciser modules (except the MPU Module)
is a 20-pin (4-pin on Static RAM) header known as the Dynamic System Bus (DSB).

As implied in its description, this input/output port gives the designer a means
for dynamically expanding the hardware capabilities of the EXORciser. The DSB
facilitates the implementation of such system features as:

. Priority Interrupts

. Extended Memory Systems

. Advanced Parity Error Control
. Multiprocessor Applications

1-10

None of the connections on the DSB is used by EXbug or any of the standard
EXORciser modules (although the pins are connected to their appropriate logic on
the modules). No cables are provided for the DSB. Instead, the DSB provides a
unified approach for system designers to incorporate EXORciser modules into more
sophisticated end products of their own.

Some of these possible applications are described below. Additional ideas will
be recognized by imaginative designers.

PARITY-ERROR: For memory systems that demand a more sophisticated parity error
control than the standard EXORciser parity (see par. 1.5.1), the PAR-ERR signal
could be used as an input to a custom module that could perform such functions
as retry, restart, or fault address identification. If more than one memory
module needed to be controlled, the open header used for the DSB could be used
for nonbused connections. For example, an individual pair of twisted wires with
a 2-pin female connector could tie multiple memory modules to a single hardware
module designed by the user.

PAGE ENABLE: The Dual Map concept has been extended by making each EXORciser
module addressable in one of three modes:

VUA - Valid User Address
VXA - Valid Executive Address

PAGE-ENABLE - for multiple "pages" of 64K bytes

Each module provides a jumper arrangement that allows the user to assign the
module to one of these addressing modes. If a user builds a controller that can
convert the VMA signal from the MPU into one of several pages, an unlimited
number of "pages" of 64K bytes can be realized. These "pages" could contain any
combinations of peripherals and memories. Once again, individual twisted pairs
would need to be connected from unique modules to a central control module.
This addressing capability will be useful in multiple-terminal, multi-disk, and
extended memory systems.

1-11

CHAPTER 2
INSTALLATION INSTRUCTIONS AND HARDWARE PREPARATION

2.1 INTRODUCTION

This chapter provides the unpacking, inspection, installation, and preparation-
for-use instructions for the EXORciser Development System. Information is also
provided on the data terminal selection and connection to the EXORciser.

2.2 UNPACKING INSTRUCTIONS

NOTE

IF THE SHIPPING CARTON IS DAMAGED UPON RECEIPT,
REQUEST THAT THE CARRIER'S AGENT BE PRESENT
DURING UNPACKING AND INSPECTION OF THE SYSTEM.

Unpack the EXORciser from its shipping carton. Refer to the packing list and
verify that all of the items are present. Save the packing materials for
storing or reshipping the system.

2.3 INSPECTION

The EXORciser should be inspected upon receipt for broken, damaged, or missing
parts, and for any physical damage to the chassis and/or internal modules.

2.4 INSTALLATION INSTRUCTIONS

As delivered, the EXORciser can be mounted on a table top, bench, or any other
flat surface having sufficient room to allow easy access to the front and rear
panels. After a Tocation has been selected, proceed with the following steps.

a. Connect the selected data terminal to the EXORciser (refer to par. 2.5
for data terminal selection and connection information).

b. With the EXORciser POWER switch positioned OFF, connect the system to the
selected power source.

CAUTION

INSERTING MODULE WHILE POWER IS APPLIED MAY
RESULT IN DAMAGE TO COMPONENTS ON THE MODULE.

c. Ensure that all of the necessary modules are installed prior to
application of power. (NOTE: Since each module is offset, as well as
keyed, there is no chance of installing the modules backward. However,
wire-wrapped modules that require more than normal card separation should
be installed into the slots provided for this purpose.)

d. Connect interface cables to controller modules (if installed). If the
EXORciser top is to be installed, all cables must exit the chassis from
the rear.

e. Depress the POWER switch and observe that the indicator lamp on the
switch illuminates.

2-1

2.5 DATA TERMINAL SELECTION AND CONNECTIONS

The type of data terminal chosen for use with the EXORciser depends on the other
peripherals that are used, and on the total role of the Development System. The
EXORciser is compatible with a wide range of terminals because of its capability
to communicate via either the RS-232C or 20 mA current loop interface. The
terminal interface should be full duplex and transfer data at rates between 110
and 9600 baud. The standard ASCII communications protocol has been implemented
and is further described in Appendix C.

2.5.1 RS-232C Interconnections

The RS-232C interface is commonly used with terminals and modems. Most
terminals come equipped with a cable which will plug into the EXORciser and
operate correctly. However, in some cases, it is necessary to assemble or
modify a cable to make certain the proper signals are supplied to the terminal.
The EXORciser only needs to be connected to the data send and receive lines (and
ground), but most terminals are designed to work with modems and require the
RS-232C handshake signals to work properly. For this reason, logic is included
to sense the Data Terminal Ready (DTR) signal and to turn it around to supply
signals on the Clear-to-Send (CTS), Data Set Ready (DSR), and Data Carrier
Detected (DCD) Tines. These signals are required by some terminals before they
will operate. It is not advisable to connect more than one RS-232C device to
the EXORciser (in parallel), since this is not permitted by the standard, and
voltages may be out of limits. (See Appendix E for RS-232C signal descriptions
and pin assignments.) Appendix F describes the use of the TI ASR733 terminal.

2.5.2 20 mA Current Loop Interconnections

Although originated for teletypewriters, the 20 mA current loop interface is
used by many other terminals because of its simplicity. When the 20 mA
interface is used for terminals other than a TTY, a baud rate faster than 110
baud can be used, but not faster than 1200 baud because of the bypassing used
for noise reduction.

While the EXORciser directly outputs only RS-232C interface signals, these
signals can be easily converted to the 20 mA neutral current loop protocol
through the use of Micromodule 11 (M68MM11). The interconnections required for
this current loop interface, along with the necessary connections at the ASR33
teletype, are described in detail in Appendix D and the Micromodule 11 User's
Guide.

2.6 PREPARATION OF SYSTEM MODULES

The MPU and DEbug Modules represent the minimum configuration for an EXORciser
system. The Floppy Disk Controller Module must be added in order to use the
EXORdisk and MDOS. Various memory modules may be configured, as required. The
minimum module configuration to operate an MDOS-based EXORciser consists of the
MPU, DEbug, and Floppy Disk Controller Modules, plus at least 16K of memory.
(The Macro Assembler requires at least 24K of memory.) Additional I/0 modules
may be required for specific system development.

The reader should refer to the applicable User's Guide for complete details on
each module.

2-2

CHAPTER 3
OPERATING INSTRUCTIONS

3.1 INTRODUCTION

Information in this chapter is intended to familiarize the user with the basic
operating procedure needed to initialize the EXORciser, use the dual memory map,
and select the addresses of the various modules. This chapter also provides a
description of the EXbug commands, subroutines, and entry points that are used
to perform system evaluation and debug procedures.

3.2 SWITCHES AND INDICATORS

The EXORciser switches and controls are divided into three categories:
(1) those on the EXORciser chassis, (2) those on the DEbug Module, and (3) those

on the MPU Module and the optional modules. The controls available on the MPU
and optional modules (memories and peripherals) are described in their

respective supplements.
3.2.1 Front Panel Switches and Indicators

Figure 3-1 illustrates the arrangement of the front panel switches and
indicators.

ABORT RESTART POWER

OO |

VXA

VUA O
EXORciser M6809)

| __/

\® MOTOROLA MICROSYSTEMS

FIGURE 3-1. EXORciser Front Panel Switches and Indicators

POWER - The power switch is used to turn the EXORciser ON and OFF. It is an
alternate action pushbutton switch with a built-in indicator which is
illuminated when A/C power is ON.

3-1

ABORT - The momentary pushbutton switch labeled ABORT causes an NMI (Non-
Maskable Interrupt) to be generated. Program control is returned to the address
indicated in the Executive map locations FFFC (MSB) and FFFD (LSB) of the NMI
vector. Except when a program is running in the User map, an abort operation
always forces the system into the Executive map, even though the Dual Map mode
is selected. If locations FFFC/FFFD of the Executive map have not been
explicitly changed by the user, pressing the ABORT button will cause control to
be returned to the EXbug routine.

RESTART - This momentary pushbutton switch generates a low level RESTART signal
throughout the system. As in the case of power ON, control is determined by the
address contained in the Restart vector locations FFFE (MSB) and FFFF (LSB). A
switch on the DEbug Module indicates in which map (User or Executive) the
Restart vector is to be found. The RESTART signal is also supplied to the bus
to reset all hardware that recognizes the Restart. If EXbug is in the map
indicated by the RESTART switch on the DEbug Module, pressing the front panel
RESTART button causes the EXORciser to initialize itself through the EXbug
initialization firmware.

VUA/VXA - The Tlights labeled VUA and VXA indicate when and in which map the
EXORciser is executing. Both lamps will be OFF when any of the three bus
signals -- BA (Bus Available), HALT, or BUSREQ (Bus Request) --is active. For
example, if the processor is in a CWAI (Clear and Wait for Interrupt) state,
neither light will be on. When the processor is executing, the lights will
indicate which map is currently active. The VUA indicator (Valid User Address)
is on when the system is executing in the User map. This is true when Dual Map
mode is selected, the user has entered "USER", and the EXbug firmware is not
being accessed. It is also true when in Single Map mode and the EXbug firmware
is not being accessed. The VXA 1light is on when EXbug firmware is being
executed under either single or dual map selection, or when execution is from
the Executive map under Dual map configuration.

3.2.2 Switches on the DEbug Module

The three switches that will be used during normal EXORciser use are described
here. They are accessible when the chassis cover is removed. Figure 3-2
summarizes their orientation, when viewed from the component side of the DEbug
Module.

SINGLE
ouT
DUAL
HOA
SYNC
EXBG
USER

NN // NN

SW1 SW2 SwW3

MAP RESTART

FIGURE 3-2. Toggle Switches on DEbug Module

3-2

SW1 (MAP MODE) - This is a three-position switch which selects which map the
EXbug firmware is to reside in. In the SINGLE position, only 64K of memory
addressing space is available. EXbug occupies the high order portion of this
map. In the OUT position, the EXbug firmware is essentially disabled and the
DEbug Module becomes inactive. In the DUAL position, EXbug resides in the
executive portion of memory. The dual 64K memory map capability is enabled by
this switch position. When in this position, the user controls which map is
accessed via commands entered into EXbug (see USER and EXEC commands).

SW2 (HALT-ON-ADDRESS) - This switch is used in conjunction with the EXbug
command H (Halt-on-Address). When the user has enabled the Halt-on-Address
feature by entering the H command, this switch selects either the Trigger (SYNC)
mode or the Halt-on-Address (HOA) mode. When set in its HALT-ON-ADDRESS
position (toggle left), the EXORciser hardware will stop program execution if
the address bus compares with the address entered by the user for the H command.
When execution is halted, the MPU registers are displayed and control is
returned to the EXbug firmware. When the switch is set to the right, a scope
trigger pulse is generated when the program accesses the specified address.
This trigger is physically available to the user at the sync test point in the
upper left of the DEbug Module. During Trigger mode, program execution con-
tinues at full speed.

SW3 (RESTART MAP) - This switch allows the user to specify which map the
EXORciser is to access during power-up or RESTART. EXbug Restart vectors will
always be used when in Single Map mode. If in Dual Map mode, and the Restart
switch is set to its USER position, the EXORciser will use the User map for its
restart vector and subsequent execution. This feature allows the user to fully
evaluate the power startup portion of his final system design.

3.3 INITIALIZATION

System initialization consists of selecting the system baud rate, module
addresses, turning power on, and performing any required start-up procedures.
Before the power is applied, it is necessary to select the baud rate to match
the terminal, and set the switches on the DEbug Module for the desired con-
figuration. Normally, the baud rate is selected when the system is first con-
figured, and does not require further adjustments unless the system terminal is
changed. Memory, I/0, or Disk Controller Module must be properly jumpered for
VUA or VXA to match the mode selected, as well as being set for the proper
addresses. Module addresses are selected as required for software development
or for the target system being emulated (see paragraph 3.5).

3.3.1 Power ON/OFF Procedures

The recommended sequence for turning on the equipment in an EXORciser system is:
a. System Console (Terminal)
b. EXORciser
c. EXORdisk Unit

d. Printer Unit
CAUTION

DISKETTES SHOULD NOT BE MOUNTED
IN EXORDISK WHEN APPLYING POWER.

3-3

The recommended sequence for turning power OFF is:
a. Printer Unit
b. EXORdisk Unit
c. EXORciser
d. System Console (Terminal)
CAUTION

DISKETTES SHOULD BE REMOVED FROM
EXORDISK BEFORE TURNING POWER OFF.

3.3.2 Baud Rate Selection

Typically, the EXORciser will be operated at the maximum baud rate permitted by
the system console. Refer to DEbug User's Guide for instructions on configuring
the DEbug Module for the selected baud rate.

3.3.3 Start-Up Procedures

The procedures that are required at power-up and following a restart are
described below. Here again, the required procedures depend on the system con-

figuration.

If the system console requires null padding after a carriage return (see
paragraph 3.6.2.5 and Appendix F), the "K" command should be used to specify the
padding. This ensures that the first few characters on new lines are accurately
displayed on various terminals. ‘

If the system is being operated in Dual Map mode, the MAP switch on the DEbug
Module must be set to DUAL, and the memory or I/0 modules must be properly
Jjumpered for VUA or VXA. If the user wishes to debug programs in the User map,
the EXbug command USER must be entered.

If parity error detection is desired, the user must enable the detection logic
after the memory has been initialized. The EXbug semicolon command is used to
enable parity. If parity is to be monitored in the User map memory (RAM only),
the memory initialization (command I) should be entered after the USER command
is specified.

In the Single Map mode or Executive map of the Dual Map mode, EXbug assumes that
the user program may be contained within half of the maximum range of the
EXORciser memory. For this reason, EXbug provides for moving the user IRQ,
FIRQ, SWI2, and SWI3 vectors up to the EXbug memory at $FFF2 through $FFF9. Two
locations in the EXbug memory are initialized to $83FF on the assumption that
that is the top of user memory. The IRQ vector would be at $83F8. The vector
is moved up to the EXbug memory at $FFF8 and $FFF9 simply by pressing the ABORT
button. This causes the user normal IRQ, FIRQ, SWI2, and SWI3 vectors to be

moved to the appropriate area. In the event a different top of memory address
is desired, it 1is only necessary to change locations $FF00 and $FFO1 to the

correct value by means of the EXbug Memory Change feature (described in
par. 3.6.3) and press the ABORT button. Remember that pressing the RESTART
button, or turning the EXORciser power OFF and ON, will restore $83FF, and it
will be necessary to re-enter the revised address. EXbug uses the top of memory
address to find the user restart vector and second level SWI and NMI vectors.

NOTE

If the IRQ, FIRQ, SWI2, and SWI3 vectors are to be used,
the ABORT button should always be pressed after loading
a program into the Executive map or the Single Map mode,
even though the top of memory address is $83FF.

3-4

3.4 USING THE DUAL MEMORY MAP

The DEbug Module provides the EXORciser with the capability of addressing two
separate 64K blocks of memory. These two blocks of memory are referred to as
the Dual Memory map. One of these, the Executive map, contains EXbug and, if
configured for Dual map, its peripheral devices and RAM, the EXORdisk ROM and
I/0 devices, and the Printer 1/0 device. The other, the User map, is completely
available to the user for emulation of his target system. This gives the user
complete freedom in assigning addresses to his memory and I/0 devices without
worrying about addressing conflicts with the system monitor and I/0 devices,
yet EXbug still provides the user with full debug capabilities in the User map.
Optionally, in the Single Map mode, the DEbug Module can merge the two maps. In
this mode, all addresses less than $F000 come from the User map. The DEbug
Module preparation section describes how to select the Single or Dual Map mode.

In the Dual Map mode, all of the EXbug debug commands are available in either
map. The EXbug USER and EXEC commands control which map will be accessed by the
debug commands. The command USER causes the EXbug debug commands to operate in
the User map. In this mode, EXbug's prompt is *. The command EXEC causes the
EXbug debug commands to operate in the Executive map. EXbug's prompt is *E in
this mode. On power-up, EXbug comes up in the EXEC mode.

In the Single Map mode, the EXEC and USER commands are not usually required
since the maps have been merged. However, if the Halt-on-Address or Scope Sync
functions are to be used at an address less than $F000, the USER command must be
entered so that the address compare circuitry will detect the appropriate map.

3.5 ADDRESS SELECTION

The address selection of the various modules will depend on whether the system
is being used for software development or to emulate the target system.
Included in the address selection is the determination of which map the module
will respond in. The user assigns a module to one of the two maps by installing
either the VUA or VXA addressing jumper that is found on all EXORciser modules.

During software development (edits, compilations, assemblies, etc.), the user
will probably want as much contiguous RAM as possible, starting at address 0000
(minimum of 16K). In the Dual Map mode, programs in the User map cannot
reference EXbug or the system terminal without special techniques (see
Appendix G). Therefore, MDOS memory or disk controllers must be in the
Executive map with EXbug. In the Single Map mode, where the distinction between
Executive and User maps is simply the address boundary F000, EXbug can be
accessed from the User map. This requires that the EXORdisk Interface, Printer
Interface (if they are used), and RAM be configured for the VXA, and the DEbug
Module be configured for the Dual Map mode, or that the RAM, EXORdisk Interface,
and Printer Interface be configured for VUA, and the DEbug Module be configured
for the Single Map mode. These same requirements also apply for any programs
that use the system terminal or EXbug routines.

During target system emulation, the module addresses will be selected as
required for the target system. The target system may be emulated in the User
map of the Dual Map mode or, if it does not require any addresses equal to or
greater than F000, it may be emulated in the Single Map mode. In the Single Map
mode, all modules should be configured to respond to VUA.

The various module User's Guides contain instructions on setting the address and
map of the various modules. Modules in the Executive map should be addressed
only at values less than FO00 to avoid conflicts with EXbug.

3-5

3.6 EXbug COMMANDS

There are three groups of EXbug commands:

a. Four-character commands followed by a carriage return.

b. Single-character commands following a semicolon, period, or dollar sign.
c. Memory change commands.

Four-character commands specify the map to be used, control the operation of the
console tape (cassette or paper tape), load the disk operating system, and print

memory. The user may add four-character commands to EXbug.
commands control program debug functions.
locations to be examined and changed.
displaying its prompt.

A Tlist of the EXbug commands is in Table 3-1.

TABLE 3-1. EXbug Commands

Single-character
Memory change commands allow memory
Any command may be entered when EXbug is

Page
COMMAND EXPLANATION Ref.
EXEC return Debug in the Executive map (default). 3-8
USER return Debug in the User map. 3-9
PRNT return Print memory in both hexadecimal and ASCII 3-9
format.
LOAD return Load an object tape from the terminal to memory. | 3-11
VERF return Verify an object tape from the terminal against 3-12
memory.
SRCH return Search an object tape on the terminal. 3-13
PNCH return Punch an object tape on the terminal from memory.| 3-10
MDOS return Set the EXEC mode, then jump to E800. 3-9
<A nn [byte] return Display and change the A accumulator. 3-15
«B nn [byte] return Display and change the B accumulator. 3-15
.C nn [byte] return Display and change the condition code register. 3-15
.D nn [byte] return Display and change the DPR register. 3-16
;E nn [byte] return Display and change the second level SWI enable. 3-27
H¢ Go (jump) to the target program at its restart | 3-19
address.
addr;G Go (jump) to the target program at the speci- 3-19
fied address.
$H nnnn [addr] return| Enable and change the halt on address or scope 3-18
sync.
sH Disable the halt on address and scope sync. 3-18
byte; I Initialize memory with a specified byte. 3-21

TABLE 3-1. EXbug Commands (cont'd)
Page
COMMAND EXPLANATION Ref.
;K nnnn [value] return| Display and change the terminal null pad value. [3-22
addr;L Calculate long relative offset from currently 3-28
open location to the specified location.
$M or ;M Display and change the memory search beginning 3-23
and ending addresses and search mask.
3N Trace the next instruction. 3-20
value;N Trace the next specified number of instructions.| 3-20
addr;0 Calculate short relative offset from currently | 3-28
open location.
.P nnnn [addr] return | Display and change the program counter. 3-15
P Proceed with program execution. 3-20
value;P Proceed with program excution from breakpoint; 3-20
value specifies the number of times the break-
point location is to be passed before return-
ing control to EXbug and providing a register
printout.
;Q nnnn [value] return| Display and change the default debug offset. 3-26
$R or ;R Display the target program registers. 3-14
.S nnnn [addr] return | Display and change the stack pointer. 3-16
$T nnnn [addr] return | Enable and change the trace to ending address. 3-18
3T Disable the trace to ending address. 3-19
.U nnnn [addr] return | Display and change the U register. 3-16
;U Remove all breakpoints. 3-17
addr;U Remove a specified breakpoint. 3-17
$V or ;v Display the breakpoint addresses. 3-17
addr;V Set a breakpoint at the specified address. 3-16
byte;W Search memory for the specified byte (word). 3-26
See the M command.
<X nnnn [addr] return | Display and change the X index register. 3-15
.Y nnnn [addr] return | Display and change the Y index register. 3-15
;Z nn [byte] return Copy terminal output to printer option. 3-23
3e Display the memory parity error interrupt. 3-21
H Enable the memory parity error interrupt. 3-21
Control-X Abort the current command or entry. 3-9
Control-W Wait until some other character is entered. 3-9

TABLE 3-1. EXbug Commands (cont'd)

Page
COMMAND EXPLANATION Ref.
addr/nn cmnd The memory change function is invoked by enter- | 3-27
ing addr/. Cmnd is one of the following memory
change function commands. These commands are
accepted as long as EXbug remains in the memory
’ change function.
[byte] LF Change memory if byte entered, and display the 3-27
next sequential location.
[byte] space Change memory if byte entered, and display the 3-27
previous sequential Tlocation.
[bytel/ Change memory if byte entered, and redisplay the| 3-27
current location.
[byte] return Change memory if byte entered, and exit the 3-27
memory change function.

NOTE: a. Hexadecimal numbers may be preceded by a minus sign to obtain the
two's complement of the value entered.

b. Values shown in brackets ([1) in above explanations indicate
optional user inputs.

c. When addr is a single number (e.g., 142), the debug offset is added to
the number to determine the value used by the command. If two
comma-separated values are entered, the sum of the values is used by
the command.

Some features are common to most commands. All parameters entered are assumed
to be hexadecimal values. A minus sign preceding a value will cause the two's
complement of the value to be used. Control-X can be used to delete the current
entry or command and cause EXbug to print another prompt. All address and
16-bit register parameters will automatically be adjusted by the addition of a
debug offset (see the Q command) unless a second parameter, separated from the
first by a comma, is entered. On power-up and restart, the debug offset is
reset to a value of 0. When a second parameter is entered, it (instead of the
debug offset) is added to the first parameter.

3.6.1 FOUR-CHARACTER COMMANDS

The four-character commands are activated by entering the appropriate four
characters, followed by a carriage return. If more than four characters are
entered before the carriage return, only the first four will be used to
determine the command. If an invalid command is entered, EXbug responds by
typing a question mark, ringing the bell in the system terminal, and then
issuing another prompt. The four-character commands are described as follows.

EXEC - When the system is in the Dual Map mode, this command causes all debug
commands entered after it to operate on the Executive map. This mode remains in
effect until the USER command is entered. This is the default mode following
power-up or restart. The prompt in this mode is *E. In the Single Map mode,
this command does not affect what memory is accessed.

3-8

USER - When the system is in the Dual Map mode, this command causes all debug
commands entered after it to operate on the User map. This mode remains in
effect until the EXEC command is entered. The prompt in this mode is *. In the
Single Map mode, this command does not affect what memory is accessed. However,
it should be entered when a Halt-on-Address or Scope Trigger is active in the
Single Map mode.

MDOS - This command causes the EXEC command to be executed and then jumps to the
disk boot loader routine at $E800.

PRNT - This command prints the specified portion of the current memory map in
both hexadecimal and ASCII forms. After the user has entered the carriage
return, EXbug responds by printing BEG nnnn (where nnnn is the last beginning
address entered). If a beginning address had not been entered before, nnnn is
whatever value was in the beginning address memory location when the system was
turned on. If the beginning address is correct, the user should enter a
carriage return. To change the beginning address, the user may enter an address
followed by a carriage return, or an address followed by a comma, followed by a
second address followed by a carriage return. (The command can also be aborted
at this point by entering a Control-X.) If a single address is entered, the
beginning address is determined by adding the debug offset to it; if two
comma-separated addresses are entered, the beginning address becomes the sum of
two addresses entered. If an invalid character is entered in one of the
addresses, the command is aborted. If an incorrect address is entered, the
correct address may be entered on the same line before the comma or carriage
return is entered. Up to 19 hexadecimal characters may be entered before the
comma or carriage return. Only the last four characters will be used as the
address. If less than four hexadecimal characters have been entered, the
unspecified most significant bits are assumed to be zero. For example, entering
E CR gives an address of $000E if the debug offset is O.

After the beginning address has been successfully entered, EXbug prints END nnnn
(where nnnn is the current ending address). Here, the user has the same options
for entering an ending address as described for the beginning address. If the
ending address to be used is less than the beginning address, EXbug will request
the beginning and ending addresses again. If the ending address is equal to or
greater than the beginning address, EXbug will print the requested portion of
memory. An example of the PRNT command is shown in Figure 3-3. While memory is
being displayed, entering Control-W will cause the display to wait at the end of
the current 1ine until some other character is entered. Entering control-X will
abort the PRNT command at the end of the current Tline.

*E FEMT

EEG Foon

EMD FOSO0

Foon FE F2 AE TE F0 45 FE Fu &F VE FO DS YE FO D3V “rR.“FE¥FOVRULTRY™
Folo Fo 22 FE F1 12 FE F2 2A FE FO EZ VE FU AF FE FOI FP.7R. "Re"FIVP-VP
Fuzn AD FE FO 23R FE FO 2D VE FO 2F FE FO E1 2D FE& RE -"pi™F-"F-"Fl.R%
Fuzn o0 <1 04 27 27 2D EL 02 20 FS 26 0D 2D DA 28 OA ... FeA. Ueeades
Fod4n 2D De 4F 20 D= CE FB 23 20 E® CE FF 0OAR ED Fe 04 MO ZNL..cN. .=,
FOSD 25 FZ CE FE 29E =D De CE FF 0C ED Fe nd4 25 F2 CE HNsMi. MM .=w03sN
143

FIGURE 3-3. PRNT Example

3-9

PNCH - This command punches the specified portion of the current memory map on

the console punch device in an ASCII hexadecimal format. The tape format is
described in Figure 3-4.

/ } Leader (Nulls)
[]»] (CR) Formatting for printer
} 4 Nulls
0A (LF) readability ; ignored

Frame

ram 00 (NULL) by leader

1 53 S = Start-of-record

2 cc CC = Type of Record

3 —_ Byte Count (two frames =

4 g one byte)

5 8 —

: :o: g - - Address/Size

8 E o E

9 < € o - - Data

o 2 3 2

. x‘ o

] 2

3 E >

.)

'; - - } Checksum

Frames 3 through N are hexadecimal digits represented by a 7-bit ASCli character.
Two hexadecimal digits are combined to make one 8-bit byte.

The checksum is the one’s complement of the summation of 8-bit bytes.

cC=30 CC=31 CC=39
Header Data End-of-File
Frame Record Record Record
1. Start-of-Record ___ 53 S 53) 53 S
2. Type of Record ___ 30 [1] 31 1 39 9
3. 31 31 30
" Byte Count 32 12 36 16 13 23
5. 30 31 30
6. Address/Size 30 0000 31 1100 30 0000
7. 30 30 30
8 _______ 30 30 30
9. 34 39 4€ FC
10, Data 28 48-H 38 98 43

. 34 30 (Checksum)
. 34 44D 32 02
: 3 52-R =1
. 32
. —_— 8A (Checksum)

LA 41

39

N. Checksum 45 9

FIGURE 3-4. Tape Format

3-10

After the command has been entered, EXbug requests the beginning and ending
addresses as described under the PRNT command. After the beginning and ending
addresses have been entered, EXbug requests the information to be put in the
header record. Zero through 17 characters, terminated by a carriage return, may
be entered. If 18 characters, not including a carriage return, are entered, the
characters will be ignored and the header information will be requested again.
ASCII control characters should not be entered in the header.

When the carriage return terminating the header information is entered, EXbug
will begin the punch sequence. Therefore, if the console punch device does not
have automatic control using the ASCII DC2 and DC4 characters, it should be
turned on after the last header character has been entered but before the
carriage return terminating the header is entered. The non-automatic punch
should be turned off after EXbug has completed the punch operation and has
printed a prompt. If the console punch device does have automatic control,
EXbug will control the punch, and no operator intervention is required.

If the system terminal is a TI Silent 700 with the Remote Device Control option,
and EXbug has been informed of this in the K command, then the data sent to the
console punch will not be printed on the terminal. On other terminals, the data
will be printed as it is being punched. If the 1ine printer option is set at
zero (see the Z command), the punch data will not be listed on the line printer
as it is being punched. Figure 3-5 shows an example of the PNCH command.

+E FHCH
EEG FOON
EHD FOS0
HOFR==ERZH
3&030003?5434?3241H3
S11EBEFOOOTEFZAETEF O4SFEF OEFTEF ODSTEF ODETEF 02=FEF 1 1 2VEFS2RHAS
'11EFH1:"EFHE"EFHHF EFORDY EFH'H“EFHLD EFNEFFEFOEISDFZASSF
—1IEFDZHDD:1“4;7;?uDE1“:E”Ff:E“D DDA=E UH=D0edFZ 0DZCEFBSCS

*F
FIGURE 3-5. PNCH Example

LOAD - The LOAD command reads an ASCII hexadecimal tape from the system console
reader into the current memory map. The required tape format is specified in
Figure 3-4. The system console reader should respond to either the ASCII device
control codes (DC1 through DC4) or to the TI Silent 700 remote device control
codes so that EXbug can control tape motion.

After the user has entered the command, EXbug responds with "S/C". Entering
Control-X will abort the Load function. Entering S will cause EXbug to load a
single object file -- that is, EXbug will stop the LOAD command and issue a
prompt when it reads an end-of-file (S9) record. Entering C will cause EXbug to
load continuously. All end-of-file records will be ignored. To stop the cont-
tinuous load, the ABORT button or the RESTART button must be pressed. Entering
any other character will cause the message to be repeated. During either the
single or continuous load, EXbug will print at the system terminal the data in
each header (SO) record it reads.

3-11

If a checksum error is encountered while Tloading, EXbug will print CKSM nnnn
(where nnnn is the starting load address of the record in error). Entering
Control-X will abort the LOAD command. Entering C will cause the LOAD command
to continue and load the record in error. If the checksum error is due to an
error in the record load address, there is no way to determine where data will
be Toaded in memory. The user can reposition the tape to the beginning of the
record in error, enter R, and EXbug will re-read the record. Entering any other
character will cause the message to be repeated.

As the LOAD command writes each byte into memory, it reads it back to verify
that memory changed. If memory does not change properly, the error message

ADDR/MM/TP
nnnn mm tt

is printed, and the LOAD command is aborted. nnnn is the address of the memory
location that did not change correctly. mm is the hexadecimal value that the
memory location changed to. tt is the hexadecimal value for that location from
the tape.

Figure 3-6 shows an example of the LOAD command.

*E LOAD
S/C S
XBG2A
*E

FIGURE 3-6. LOAD Example

VERF - The VERF command verifies the current memory map with an ASCII hexa-
decimal tape in the system console reader. The required tape format is
specified in Figure 3-4. The system console reader should respond to either the
ASCII device control codes (DC1 through DC4) or to the TI Silent 700 remote
device control codes so that EXbug can control the tape motion.

After the user has entered the command, EXbug responds with "S/C". The user
should now enter S, C, or Control-X, as described for the LOAD command, to
obtain the desired operation.

The VERF command checks for header (S0) records and checksum errors, the same as
the LOAD command. The data in each header record read will be printed at the
system terminal. Checksum errors during VERF result in the same error message
and permit the same error response options as checksum errors during LOAD. If
the checksum error is due to an address error, and the continue option is
selected, the verification will be meaningless.

2-12

When a mismatch between the tape and memory is detected, the error message

ADDR/MM/TP
nnnn mm tt

is printed. nnnn is the address of the error. mm is the memory contents. tt
is the tape cotents. The heading ADDR/MM/TP is printed only for the first error
detected;. Only the address and data portions of the message are printed for
any subsequentd errors. While verify errors are being printed, entering
Control-W will cause the printout to stop until another character is entered.
Also, while verify errors are being printed, entering Control-X will cause the
VERF command to be aborted.

An example of the VERF command is shown in Figure 3-7.

*E VERF
S/C'S
XBG2A
*E

FIGURE 3-7. VERF Example

SRCH - The SRCH command searches the tape in the system console reader for
header (SO) records. All other record types will be skipped over. Figure 3-4
shows the required tape format. The system console reader should respond to
either the ASCII device control codes (DCl1 through DC4) or to the TI Silent 700
remote device control codes so that EXbug can control the tape motion.

On reading a header record, SRCH will stop the tape and print the data in the
record. SRCH will then print "C/L/V". Entering C will cause the search to
continue. Entering L will cause the LOAD command to be entered. Entering V
will cause the VERF command to be entered. Entering Control-X will cause the
SRCH command to be aborted and an EXbug prompt to be issued. Entering any other
character will cause the message to be repeated. Refer to the LOAD and VERF
command descriptions for the messages printed by these commands and the
appropriate responses.

If SRCH detects a checksum error in the header record, it will print the
checksum error message described in the LOAD command. An example of the SRCH
command is shown in Figure 3-8.

*E SRCH
XBG2A
C/L/V L
S/C s

FIGURE 3-8. SRCH Example

3.6.2 Single Character Commands

The single character commands control debug functions. These commands are pre-
ceded by a semicolon, period, or dollar sign. Single character commands fall
into various groups: register display and change, program execution control,
memory parity control, I/0 control, memory search, and miscellaneous functions.

The following conventions are applied in the command format representations:

n a hexadecimal digit of 0 through F displayed by the command. Thus,
nnnn is a 4-digit hexadecimal number, and nn is a 2-digit hexadecimal
number.

[] items contained within brackets indicate an optional parameter.

addr a 16-bit value entered by the user and expressed in hexadecimal. A
single hexadecimal number may be entered, or two hexadecimal numbers
separated by a comma may be entered. For example, 12AB and 56DC,123
are valid entries. Leading zeros may be omitted. If a single number
is entered, the debug offset is added to the number to determine the
value used by the command (see Q command). If two comma-separated
values are entered, the sum of the values is used by the command.

byte an 8-bit value entered by the user and expressed in hexadecimal.
Leading zeros may be omitted.

value a 16-bit value entered by the user and expressed in hexadecimal. This

value is not relocated by the debug offset. Leading zeros may be
omitted.

return a carriage return.

If an error is made in entering a value, the value may be re-entered so that the
last four digits entered is the desired value. Up to 19 digits may be entered
for a single value. However, only the last four digits entered will be used. A
command may be aborted while a value is being entered by entering Control-X. If
an invalid character is entered in a value, the item being displayed will not be
changed when the command is terminated. If an error is made in a command, EXbug
will print a question mark and ring the bell in the system terminal.

3.6.2.1 Register Display and Change. These commands allow the user to display
and change the M6809 register values that will be used while executing the
program under test. There is one command that displays all the register values,
while individual commands are used to display and change each register.

Function: Display all registers

Format: ;R or $R

Description: This command displays the target register values in the following
format:

P-nnnn X-nnnn Y-nnnn A-nn B-nn C-nn DP-nn U-nnnn S-nnnn

where n is a hexadecimal digit. P, X, Y, A, B, C, DP, U, and S
designate the program counter, X index register, Y index register,
A accumulator, B accumulator, condition code register, direct page
register, user stack pointer, and stack pointer, respectively.

3-14

Function:

Format:

Description:

Function:

Format:

Description:

Function:

Format:

Description:

Function:

Format:

Description:

Function:

Format:

Description:

Function:

Format:

Description:

Display and change the program (location) counter

«P nnnn [addr] return

This command displays the target program counter value (nnnn). To
change the program counter value, enter a new value as described
in the definition of addr. A carriage return terminates the
command.

Display and change the X index register

X nnnn [addr] return

This command displays the target X index register value (nnnn).
The value may be changed by entering a new value. A carriage
return terminates the command.

Display and change the Y index register

.Y nnnn [addr] return

This command displays the target Y index register value (nnnn).
The value may be changed by entering a new value. A carriage
return terminates the command.

Display and change the A accumulator

+A nn [byte] return

This command displays the target A accumulator value (nn). The
value may be changed by entering a new value. A carriage return
terminates the command.

Display and change the B accumulator

.B nn [byte] return

This command displays the target B accumulator value (nn). The
value may be changed by entering a new value. A carriage return
terminates the command.

Display and change the condition code register

.C nn [byte] return

This command displays the target condition code register (nn).

The value may be changed by entering a new value. A carriage
return terminates the command.

3-15

Function:
Format:

Description:

Function:
Format:

Description:

Function:
Format:

Description:

Display and change the direct page register
.D nn [byte] return
This command displays the target direct page register value (nn).

The value may be changed by entering a new value. A carriage
return terminates the command.

Display and change the user stack pointer

~«U nnnn [addr] return

This command displays the target user stack pointer (nnnn). The
value may be changed by entering a new value. A carriage return
terminates the command.

Display and change the stack pointer
.S nnnn [addr] return
This command displays the target stack pointer (nnnn). The value

may be changed by entering a new value. A carriage return
terminates the command.

3.6.2.2 Program Execution Control. These commands control the execution of the

target program. They permit the user to set and remove breakpoints, halt the
program or generate a scope sync pulse when a specified address appears on the
bus, and specify an ending address for a program trace.

Function:
Format:

Description:

Set a breakpoint
addr;V

This command permits the user to specify a breakpoint in the
breakpoint table of EXbug. A maximum of eight breakpoints can be
entered. During an EXbug execute function, the breakpoints are
inserted into the target program. When a breakpoint location is
encountered, the program is halted to permit visual check printing
out, or other performance analysis of the processor program
registers. The breakpoint sequence is:

. User designates the breakpoint locations. A breakpoint cannot
be set at an absolute address of 0000. Also, since an SWI
instruction is inserted into a breakpoint location, breakpoints
should only be set on the first byte of an instruction, and only
be used 1in portions of the target program where the stack
pointer is pointing to a valid stack area.

. User initiates the target program through the use of the program

execute command (;G, addr;G, and ;P). Breakpoints are not
inserted in memory during trace operations.

3-16

. When a breakpoint is encountered, control is returned to EXbug, and

Function:

Format:

Description:

Function:

Format:

Description:

Function:

Format:

Description:

the contents of the processor registers are printed. Breakpoints are
inserted in the map where the target program execution begins,
regardless of what map was in use when the breakpoint addresses were

entered.
NOTE
When an abort occurs, all breakpoints in memory are
removed. However, breakpoints are not removed from
memory during the restart sequence. In both cases,

abort and restart, the table of breakpoint addresses
is cleared. Following a restart during which break-
points are active, the user will have to manually
restore the original instructions, using the memory
change function. Also, when EXbug encounters a memory
location where a breakpoint cannot be inserted (e.g.,
read only memory), it will print a question mark,
sound the terminal bell, and issue another prompt as
an error indication. If this occurs, all instructions
that are normally saved for re-insertion into the
program are lost. These instructions may be restored,
using the memory change function. It is also necessary
to keep the U stack out of the S stack when using
breakpoints if the U stack is to maintain its integrity.

Display the breakpoint addresses

3V oor $V
This command displays the table of absolute addresses at which
breakpoints are set. An address of 0000 indicates that the

associated location in the table does not contain a breakpoint
address.

Remove a specified breakpoint

addr;U

Regardless of the map that is in use, the command removes the
specified address from the breakpoint table. If a breakpoint is
not set at the specified address, a question mark is printed and
the terminal bell is sounded.

Remove all breakpoints

H)

Regardless of the map that is in use, the command clears all
addresses from the breakpoint table.

3-17

Function:
Format:

Description:

Function:

Format:

Description:

Function:
Format:

Description:

Enable and change the Halt on Address or Scope Sync
$H nnnn [addr] return

This command enables, displays, and allows the user to change the
Halt on Address/Scope Sync address. The selection between Halt on
Address or Scope Sync is determined by the position of the
appropriate switch on the DEbug Module (refer to par. 3.2.2). In
Halt on Address operation, control will be returned to EXbug when
the specified absolute address appears on the system bus as a
valid memory address. Since the address match causes an NMI,

program execution will be stopped after the instruction that
accessed the halt address has been executed.

In the Scope Sync mode, a pulse will be generated at the scope

trigger pin on the DEbug Module each time the specified address
appears as a valid address on the bus. The Halt/Sync address is
set in the map in which program execution begins, regardless of
the map in which it was enabled. Thus, in the Single Map mode,
the command USER should be entered before starting a program with
Halt/Sync enabled, since all addresses below FO000 come from the
User map. Once enabled, the Halt/Sync will remain active until it
is disabled or an abort or restart is performed. When enabled,
the Halt/Sync is active only while executing the target program
(following a program execution command).

Disable the Halt on Address or Scope Sync
sH

Regardless of the map that is in use, the command disables the
Halt-on-Address/Scope Sync function.

Enable and change the Trace to Ending Address
$T nnnn [addr] return

This command enables the Trace to Ending Address function,
displays the address, and allows the user to change the ending
address. Once enabled, the Trace to Ending Address is initiated
by starting program execution with the PROCEED command (;P).
EXbug will continue tracing until the trace program counter is
equal to the ending address. Therefore, the ending address should
be the first byte of an instruction. During the trace, entering
Control-W will cause the trace to pause until some other character
is entered. Entering Control-X will abort the trace and return
control to EXbug. Once enabled, the Trace to Ending Address
remains enabled until it is disabled or an abort or restart is
performed. Since the trace operation uses an NMI and the stack,
tracing should not be used unless the stack pointer is pointing to
a valid stack area. Also, SWI instructions should not be traced
since some SWI instructions are serviced by EXbug. CWAI
instructions cannot be traced because the trace-NMI would cause
the CWAI to continue and not wait for the user interrupt.

3-18

Function:
Format:
Description:

Disable the Trace to Ending Address
3T
This command disables the Trace to Ending Address function.

3.6.2.3 Program Execution. These commands permit the user to execute the

target program. The various program execution commands permit starting the
target program through its restart vector or at a specified address, proceed-
ing with program execution, and tracing one or more instructions.

Function:
Format:

Description:

Function:
Format:
Description:

Start the target program through its restart vector
;G

This command starts the target program through its restart vector.
In the USER mode, the restart vector is obtained from locations
FFFE and FFFF; while in the EXEC mode, the restart vector is
obtained from the target program top of memory as specified at
FFOO and FFOl. (See the Start-up Procedures section.) Therefore,
when using ;G in the Single Map mode, EXbug should be in the EXEC
mode and the top of memory address should be set up appropriately.

This command cannot be used to initiate a Trace to Ending address.
If Trace to Ending address 1is enabled when this command is
entered, EXbug will print a question mark, sound the terminal
bell, and issue another prompt.

On entering the target program, the stack pointer, condition code
register, and direct page register will contain the last target
value obtained by EXbug. The contents of the A and B accumulators
and the X, Y, and U registers are indeterminate. The user should
ensure that the stack pointer is pointing to a valid stack area
before any debug functions, such as breakpoints or a Halt on
Address, are encountered in the target program. This can be
accomplished by specifying the stack pointer value, using the .S
command before entering the ;G command, or by executing an LDS
immediate instruction as the first instruction of the target
program.

Start the target program at a specified address
addr;G

This command starts the target program at the specified address.
A Trace to Ending Address function cannot be initiated with this
command. If Trace to Ending Address is enabled when this command
is entered, EXbug will print a question mark, sound the terminal
bell, and issue another prompt.

On entering the target program, the stack pointer, condition code
register, and direct page register will contain the last target
value obtained by EXbug. The contents of the A and B accumulators
and the X, Y, and U registers are indeterminate. The user should
ensure that the stack pointer is pointing to a valid stack area
before any debug functions such as breakpoints or a Halt on
Address are encountered in the target program. This can be
accomplished by specifying the stack pointer value, using the .S
command before entering the ;G command, or by executing an LDS
immediate instruction as the first instruction of the target
program.

Function:
Format:

Description:

Function:
Format:

Description:

Proceed with target program
[value];P

This command resumes target program execution using the target
register values. If a value is entered, then the point of program
continuation must be at a breakpoint Tlocation. The value
specifies the number of times the breakpoint location is to be
passed before the breakpoint returns control from other
breakpoints while the pass count is in effect, unless they also
have a non-zero pass count. A pass value will not be accepted if
the Trace to Ending Address is active. If a pass value is entered
while the Trace to Ending address is active, EXbug will print a
question mark, sound the bell in the terminal, and issue another
prompt.

This command should not be used to resume program execution at an
SWI or CWAI instruction if a breakpoint is set at that
instruction. Since continuing at a breakpoint causes an NMI, the
CWAI instruction will not wait for the user interrupt. The
breakpoint at the SWI will prevent it from being serviced as a
user SWI, but as a breakpoint.

This command can be used to initiate a Trace to Ending address if
a pass value is not entered. Breakpoints are not active during a
Trace to Ending address.

Trace the next instruction
[valuel;N

This command traces the next instruction. If a value is entered,
it specifies the number of instructions to trace. After each
instruction is executed, the contents of the registers are
displayed. If multiple instructions are traced, entering
Control-W will cause the trace to stop until some other character
is entered. Entering Control-X will cause the trace to abort.

Since the trace function uses NMI, CWAI instructions should not be
traced because CWAI instructions will not wait for the user
interrupt, but will continue due to the NMI. Also, SWI instruc-
tions cannot be traced due to the servicing of some SWI's by
EXbug and the fact that the stack has a high chance of being
destroyed. Because the trace NMI uses the S stack pointer,
tracing should only be done in portions of the program where the
stack pointer is pointing to a valid stack area. In all cases, if

the User stack pointer is being used, it should not be placed in
the S stack during a trace. It will be overwritten if it is.

3.6.2.4 Memory Parity Control. These commands provide the user with control

over memory parity functions. Included are commands to initialize memory with a
specific pattern and to enable and disable the memory parity error interrupt

function.

3-20

Function:
Format:

Description:

Function:
Format:

Description:

Function:
Format:

Description:

Initialize memory to a specific pattern
byte;I

This command initializes random access memory to the byte value
entered. After the command is entered, EXbug requests the
beginning and ending addresses of the memory region to be
initialized. The beginning and ending addresses are entered as
described in the PRNT command. After valid beginning and ending
addresses have been entered, the memory is initialized. The byte
value entered is put in each memory Tlocation, starting at the
beginning address through the ending address.

Since the state of the memory is indeterminate when power is first
turned on, individual byte parity may be in error. Therefore, the
memory with parity should be initialized by writing to it before
it is read with the parity error interrupt enabled. Writing to
the memory can be accomplished by using this command, or by
loading a program.

Enable memory parity error interrupt

This command enables the memory parity error interrupt. When a
memory parity error interrupt is enabled, an NMI will be
generated, which returns system control to EXbug. EXbug will then
print PARITY, followed by a printout of the interrupted registers.
Note that the program counter value displayed will not be pointing
to the instruction being executed while the parity error occurred,
but will be pointing to the next instruction to be executed after
the parity error occurred.

NOTE

While writing to the disk, a memory parity
error will generate a disk time-out error
instead of a parity error message.

In order to prevent any pending interrupts from occurring when the
error interrupt is enabled, the memory initialization command I
should be used immediately before the parity error interrupt
enable command. Using the memory change function to write a
location will also clear any pending parity error interrupts.

Disable memory parity error interrupt
This command disables the memory parity error interrupt. Following

this command, a memory parity error will not generate an NMI.
This is the default mode in EXbug.

3-21

3.6.2.5. 1/0 Control. These commands provide the user with control over EXbug
I/0 functions. Included are commands to specify the number of nulls to be
padded after a carriage return or other characters, and to direct the EXbug
output to a Tine printer.

Function: Display and change the terminal null pad values
Format: ;K nnnn [value] return

Description: This command specifies the control codes used to control the
console reader and punch, the number of nulls to be padded after a
carriage return, and the number of nulls to be padded after all
other characters. The null pad is required for terminals that have
a mechanical carriage , and it cannot turn in a single character
time. The null pad value is a 16-bit value. When a value is
entered, leading zeros are assumed.

The most significant bit, bit 15, of the null pad value controls
which console reader control codes are used. When this bit is
zero, the normal ASCII DC1l and DC3 codes are used to turn the
reader on and off. When this bit is one, the TI Silent 700 RDC
codes are used to read a block of tape from the console. Also,
when bit 15 is a one, the TI Silent 700 RDC codes are used to turn
the terminal printer off before sending data to the terminal
punch, and to turn the printer back on when punching is completed.

The eight least-significant bits, 0 through 7, specify a binary
number which is the number of nulls sent to the terminal after a
carriage return is sent. This number is the last two hexadecimal
digits printed and entered.

The remaining seven bits, 8 through 14, specify a binary number
which is the number of nulls sent to the terminal after any
character other than a carriage return is sent.

The following values of the null pad parameter are used for TI
Silent 700 terminals at the baud rate listed:

BAUD RATE K VALUE
300 4
1200 8317
2400 872F

Since the null pad value is initialized to zero on power-up and
restart, a terminal that requires null pads will not print
properly until the the appropriate null pad value is entered. Even
though the terminal may not correctly print the current value, the
appropriate value can be entered and will be echoed to the
terminal.

3-22

Function:
Format:

Description:

Display and copy the terminal output to line printer option
;Z nn [byte] return

This command displays the status of the line printer interface.
When the nn value is 0, the Tline printer interface 1is not
initialized and data is only displayed at the terminal. The O
indication is a default value following a power-up, restart, or
abort. When the nn value 1is non-zero (1), the 1line printer
interface is initialized and the terminal output is sent to the
line printer. The printer output is not paged, but is continuous.
To initialize the 1line printer, a [byte] value of 1 must be
entered.

EXbug uses the line printer routines in the ROM on the Floppy Disk
Controller Module to initialize the printer interface and send
characters to the printer. A listing of these routines is provided
in Figure 3-9. EXbug calls the LPINIT entry when the 1ine printer
interface is enabled. The LIST entry point is used by EXbug to
send characters to the line printer. If EXbug detects a printer
error by the carry bit being set on return from LIST, EXbug
disables the 1line printer interface. If the ROM is not in the
system, then equivalent line printer routines must be provided for
EXbug if the line printer output feature is to be used.

User program output, directed through various EXbug entry points,
will also be directed to the line printer under control of the
line printer interface (see par. 3-7). The line printer routine is
contained in the EXbug I/0 1isting of Appendix B, and can be
controlled by the user program. However, the user program must
guarantee that the printer interface has been initialized before
setting the switch to non-zero.

3.6.2.6 Memory Search. These commands control the memory search function.

Commands are included to establish the search address range and comparison mask
and to initiate the memory search.

Function:
Format:

Description:

Establish search address range and comparison mask
;M or $M

This command first requests the search address range as described
in the PRNT command. Memory will be searched from the beginning
address specified through the ending address. After a valid
address range is entered, the command requests the search
comparison mask in the following manner:

MASK = nn [byte] return

nn is the hexadecimal respresentation of the current mask. If it
is to be changed, a new value can be entered. A carriage return
terminates the command. The mask specifies which bits in each byte
are to be checked against the search value. Only those bit
locations set to a one in the mask will be compared. For example,
a mask of FF would compare each bit in the byte during the search,
while a value of 01 would compare only bit 0, the last significant

bit.

3-23

00761

00763
00764
00765
00766
00767
00768
00769
00770
00771

00773
00774
00775
00776
Q0777

007794
00780

00781

00782A
00783A
007844
00785A
00786A
007874A

00789

00790

00791A
00792A
ND0793A
00794A
00795A

00797
00798
00799
00800
008014A
008024
00803A
008044
008054
00806A
00807A
00808A

EBB4

EBB4
EBB6&
EBBS
EBBA
EBBC
EBBF

EBCO
EBC3
ERBCéA
EBCS8
EBCH

EBCC
EBCF
EBDO
EBD2
EBDS
EBD7
EBDS8
EBDA

8D
86
8D
86
B7
39

8E
BF
86
B7
39

B7
43
8D
B6
84
44
26

7D

EC10
EC11
EC12
EC13

EBB4
2
34
02
3C
ECLL

ERCO
FF3C
EC10
3¢

ECL3

EBCC
EC10

E2
EC12
03

06
EC11

>>> 2D

EBEO

EBBC

2>

EBEQ
A

TTL. LINE PRINTER DRIVER

LINE PRINTER DRIVER FOR CENTRONICS TYPE
INTERFACE THROUGH A PIA WITH OQUTPUT
CHARACTER ON A SIDE. INPUT STATUS ON B SIDE
6809 VERSION

VERSION 1.2 19 FEB 1979
COPYRIGHT 1979 BY MOTOROLA INC

% & Kk &% %k ok Kk %k kK

PIA ADDRESGES
DAT# EQU $EC10

CNTRILL EQU sECLL
STAT EQu $ECLA
CNTRL2 EQU GECI3

ORG RMSTRT++3B4
STROBE PRINTER

LISTS EQU #*
BSR LLERROR CLEAR ACKNOWLEDGE
LDA #4$34
BSR LIST7
LDA #$3C
LIST7 STA CNTRL.1
RTS

SUBROUTINE 70 INITIALIZE PIA

LPINIT EQU #*
LDX #$FF3C A DATA OQUTRPUT
8TX DATA
LDA #463C B STATUS INPUT
STA CNTRL.2
RTG

SUBROUTINE TO PRINT CHARACTER FROM A ACC
AND CHECK FOR PRINTER ERROR
IF ERROR CARRY 1S SET ON RETURN

LIST EQU #
STA DATA SEND DATA
COMA SET ERROR STATUS
BSR LISTS SEND STROBE

LIST3 LDA STAT CHECK STATUS
ANDA #3 BIT O=SELECT, BIT 1=PA
DECA A SHOULD HAVE BEEN O1
BNE LERROR NO PAPER OR NOT SELECT
TST CNTRL.1 ACKNOWLEDGE?

FIGURE 3-9. MDOS Line Printer Driver

3-24

008094
00810A
00811A
008124

00814

00815

00816A
00817A
008184
00819A
008204
00821A
008224
00823A
00824A
00825A
00826A
00827A

EBDD 2A F3 EBDR BPL LIST3 NO
EBDF 4F CLRA YES, CLEAR ERROR STATU
EBEO Bé6 EC10 A LERROR LDA DATA RESTORE A
EBE3 39 RTS
SQUBROUTINES TO PRINT STRING AND STRING, CR, L
EBEA A LDATA EQU ¥
EBE4 86 OD A LDA #4$D SEND CR
EBE& 8D E4 EBCC LDATA7 BSR L1IST
EBE8S 25 FC EBE6 BCS L.DATA7 HANG UP ON ERROR
EBEA 86 0A A LDA HEA SEND LF
EBEC 20 00 EBEE BRA I.DATA3 HOLD LDATA1 ENTRY POIN
EBEE 8D DC EFBCC LDATA3 BSR LIST
EBFO 25 FC EBEE BCS LDATA3 HANG UP ON ERROR
EBF2 A4 80 A LDATALl LDA 0, X+
EBF4 81 04 A CMPA #4 EOT?
EBF64 26 F& EBEE BNE LLDATA3 NO
EBF8 30 1F A LEAX =1, X YES, CORRECT X
EBFA 39 RTG
FIGURE 3-9. MDOS Line Printer Driver (cont'd)
TABLE 3-2. Dual Map Mode Second Level SWI Options
MAP SWI MAP SWI it REQUIRED
IS IN SERVICED IN E VALUE
user user 01
user executive FF
executive executive FF
executive user not permitted

3-25

Function:
Format:

Description:

Search memory for a byte (word)
byte;W

This command searches memory over the last beginning-ending
address range specified for a match with the value entered. Only
those bit positions set to one in the last comparison mask entered
are compared during the search. The same beginning and ending
address parameters are used for the PRNT, the PNCH, the I, and the
M commands. Therefore, if one of these commands is entered after
the M command and before the W command, the beginning and ending
addresses specified for the last such command entered will be used
for the W command.

When the memory search finds a match, it prints the memory address
of the match and the contents of memory. Entering Control-W while
this printout is occurring causes the search command to wait until
some other character is entered. Entering Control-X during the
printout causes the search to abort and return to the EXbug
command level.

3.6.2.7 Miscellaneous. These commands control various EXbug functions. They

permit the user to specify a default debug offset to be used with address
parameters that are entered, and also control EXbug responses to SWI's that are
not breakpoints.

Function:
Format:

Description:

Display and change the default debug offset
;Q nnnn [value] return

This command displays, and permits the user to change, the default
debug offset. The debug offset is added to a single parameter
entered as an address value in an EXbug command to determine the
absolute address. When two parameters are entered as an address
value, the sum of the two parameters is the absolute address used.
To change the debug offset, enter a new value. A carriage return
terminates the command.

Use of the debug offset permits the user to easily test programs
assembled with the relocatable option. Once the debug offset is
set to the main program section, all references to the main
program section made in EXbug can be accomplished simply by
entering the relative address given in the assembly T1listing.
References can also be made to other load sections by entering
both the relative address and the section starting address,
separated by a comma, in place of the single address parameter.
EXbug then uses the sum of these two values as the absolute
address.

3-26

Function: This command permits the user to display and change the option in
which second level SWI's are serviced.

Format: 3E nn [byte] return

Description: The second level SWI enable controls the operation of second level
SWI dinstructions that are not breakpoints. The location of the
vector depends upon the map that is in use (User or Executive) and
whether the system is in the Single or Dual Map mode. The value of
nn indicates the map where the second level SWI's are to be
serviced. To change the map where second Tevel SWI's are serviced,
a new value, [byte], can be entered.

To use the second level SWI feature in the Single Map mode, the
value of nn should be set to FF. Table 3-2 1lists the various
second level SWI options supported in the Dual Map mode. When the
value of nn is zero (which is the default value following a
power-up, restart, or abort sequence), non-breakpoint SWI's in the
Single Map mode or in the Executive map of the Dual Map mode
return control to EXbug which, in turn, prints a breakpoint error
message. EXbug prints "SWI" followed by the register values when
the SWI is encountered. EXbug then issues a prompt. A zero value
causes SWI's in the User map of the Dual Map mode to return
control to EXbug and print the SWI message only if breakpoints
have been set in the User map. However, if the nn value is zero,
and no breakpoints are set in the User map, then SWI's in the User
map of the Dual Map mode cause program control to be given to the
location pointed to by the SWI vector (contained in addresses
$FFFA and $FFFB of the User map).

3.6.3 Memory Change

The Memory Change function permits the user to examine and change individual
memory locations. To invoke the Memory Change function, the user enters:

addr/

Here again, addr is either a single parameter that is added to the debug offset
to determine the absolute address, or two parameters separated by a comma that
are added together to determine the absolute address. After the user enters the
slash, EXbug prints a space, the contents of the specified Tlocation in
hexadecimal, and then another space. If the memory contents are to be changed,
the user may enter a new hexadecimal value. Next, the user enters one of the
following characters to close the current memory location:

Carriage return This ends the memory change function and returns control to the
EXbug command level. EXbug then prompts the user.

Line Feed This causes the next sequential memory location to be opened
for memory change and its contents displayed.

Space This causes the previous sequential memory location to be
opened for memory change and its contents displayed.

Slash This causes the current memory location to be reopened for
memory change and its contents displayed.

3-27

If memory is being changed, but it does not change properly, an error indication
will be displayed. A space will be printed, then a question mark, the terminal
bell will be sounded, and another space will be printed. The memory contents
after the attempted memory change are then printed. The Memory Change function
then continues as requested by the terminating character (carriage return, line
feed, space, or slash). .

Memory locations displayed by the Memory Change function, after it has been
invoked, are in the form -- absolute address, space, contents, space.

Also, the Memory Change function will calculate the required offset for a long
or short relative addressing mode instruction (addr;L or addr;0 command). To
calculate a relative address offset, first open the memory location that is to
contain the offset (e.g., the second byte of a branch instruction). Next, the
destination address is entered, followed by a semicolon and the capital letter L
for long relative, or 0 for short. If a single parameter is entered for the
destination address, the debug offset will be added to it to determine the
absolute destination address. If two parameters separated by commas are entered
for the destination address, they will be added together to determine the
absolute destination address.

The Memory Change function will indicate that the destination address is out of
range by printing a space, a question mark, and sounding the terminal bell. If
the destination address is in range, the correct offset will be printed. In
both cases, the address and contents of the currently open location will be
redisplayed on the next 1ine, permitting the user to easily modify it or request
another relative offset calculation.

3.6.3.1 Adding EXbug Commands. The user has the ability to add as many
four-character commands as desired. The only limiting factor is memory size.
In order to implement this feature, the user must have a table of his commands
and the actual commands stored in the Executive memory map (if the Dual Map mode
is in use), and must have told EXbug where his command table resides. The user
command table format must be as follows:

Example:

CTBEG EQU* Command table beginning
FCC/CMD1/ Four character command
FDB CMDIE Entry address of command
FCC/CMD2/ Four character command
FDB CMD2E Entry address of command

. . .

FCC/CMDN/ Four character command
FDB CMDNE Entry address of command
CTBENDEQU* Command table end

Once the user command table is stored in memory, EXbug must be informed of its
location by having the beginning address of the table (the value of CTBEG in the
above example) put at locations $FFOE and $FFOF, while the ending address of the
table (the value of CTBEND in the above example) is put at locations $FF10 and

3-28

$FF11. In both of these cases, the addresses are loaded into memory in the
order of most significant byte first, followed by the least significant byte.
If the command table and commands are loaded from a tape, the tape may contain
an object code that will properly initialize these locations. This object code
may be generated by the ORG and FDB statements in the source. For the above
example, the source code required to generate the proper object code to
initialize these locations would be:

Example: ORG $FFOE
FDB CTBEG, CTBEND

NOTE: An ORG statement or END statement would be required after the two source
lines shown above, so that the object code would not be produced at location
$FF12 or beyond.

If the command table and commands are loaded from an MDOS file, a short program
can be included in the file that would initialize these locations and then give
control to EXbug when it is executed. Programs cannot be loaded from the disk
at these locations.

Pressing the ABORT pushbutton will not modify locations $FFOE through $FF11.
However, pressing the RESTART pushbutton will cause these locations to be
restored to the EXbug values. These locations will also be restored to the
EXbug values when power is initially applied. Thus, following a restart, the
user must restore the beginning and ending addresses of his table (if required)
in memory locations $FFOE through $FF11l. If the user does not wish to add
commands, no operation is needed.

On entry to the user command, the stack pointer will be pointing at two
locations below the top of the EXbug stack area; the A accumulator will contain
$20; and the contents of the B accumulator and X, Y, U, CC, and DP registers
will be unspecified. None of these values need be restored before returning to
EXbug. However, IRQ and FIRQ are normally made while EXbug is running. User
commands that are intended to return to EXbug without affecting the current
states of EXbug variables, should return by jumping to location $F5C2. User
programs that are intended to return to EXbug and initialize EXbug variables,
should return by jumping to location $F564.

3.7 EXbug SUBROUTINES AND ENTRY POINTS

This paragraph lists and describes the subroutines in EXbug that are available
to run programs in the EXORciser. Since EXbug is in the Executive map, any
program that uses EXbug routines must also be in the Executive map if the
EXORciser is being operated in the Dual Map mode. Also, programs run in the
Single Map mode can use EXbug routines. Table 3-3 lists the available routines.
A listing of the first 1K of EXbug, which contains most of these routines, is
provided in Appendix B. This is the 1K ROM on the DEbug Module. This ROM can
be replaced by a user-provided ROM if he wishes to modify the I/0 or restart
sequence. However, the other 2K of EXbug makes references to the first 1K, as
given in cross reference symbol table of Appendix B. These references must be
provided for in a user-installed ROM for proper operation of EXbug. In order
for programs that use EXbug to be compatible with past and future versions of
EXbug, they should only use the routines listed in Table 3-3, and only at the
addresses given in that table.

3-29

TABLE 3-3. EXbug Routines

Page
ENTRY ADDR MNEMONIC FUNCTION Ref.
F000 PWRUP ENTER EXBUG FROM RESTART 3-30
F003 XBEGEN INPUT START & END ADDRESSES 3-31
FO06 XCBCDH CONVERT HEX TO BCD 3-3]
F009 XCHEXL CONVERT MS BCD TO HEX (ASC!) 3-32
FooC XCHEXR CONVERT LS BCD TO HEX (ASCI) 3-32
FOOF XINADD INPUT HEX ADDR INDIRECT (X) 3-32
FO12 XINCH INPUT ONE CHARACTER 3-33
FO15 XINCHN INPUT ONE CHAR NO PARITY 3-33
FO18 XOUTCH OUTPUT CHAR (WITH SPEED FILL) 3-33
FO1B XOUT2H PRINT 2 HEX CHAR (X) 3-34
FO1E XOUT4H PRINT 4 HEX CHAR (X) 3-34
F021 XPCRLF PRINT C/R L/F (Uses A) 3-34
F024 XPDATA PRINT C/R L/F + DATA STRING 3-35
F027 XPDAT1 PRINT DATA STRING (Enter with X) 3-35
FO2A XPSPAC PRINT SPACE 3-35
FOF3 FOF3 REENTER EXBUG COMMAND LEVEL 3-36
F564 F564 REENTER EXBUG COMMAND LEVEL 3-36
F5C2 F5C2 REENTER EXBUG COMMAND LEVEL 3-36
F8A4 F8A4 READ OBJECT RECORD 3-36
FOCF F9CF OUTPUT CHAR (NO SPEED FILL) 3-37
FBFB - RTNUSR RETURN TO USER MAP FROM SWi 3-37

Except as stated in the descriptions, all of these are subroutines, end with an
RTS, and should be called with a JSR. Control will be returned to the next
instruction following the JSR, providing the stack pointer and stack memory are
properly implemented. Most of these routines involve input or output of data on
the terminal that is connected to the EXORciser. The routines that involve
input from the keyboard (or tape reader) will sit and wait (in a loop) until the
character is input; then it will return. Unless indicated otherwise, routines
that output to the terminal are affected by the Z option. That is, output
through these routines will be sent to the 1line printer, as well as the
terminal, if the Z option is on (non-zero). The Z flag is kept in location

ZFLAG ($FF32) and can be modified by the program. (Refer to the Z command
descripton.)

Name: PWRUP -- Power-up and restart entry

Function: Configure EXbug and its peripherals from a restart or power-up
condition

Call: JMP PWRUP

Input: None

Output: EXbug parameters are initialized along with the EXbug peripheral

devices. the EXbug start-up message is sent to the terminal.
NOTE: Control is not returned to the calling program, but is
given to the EXbug command input routine.

3-30

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XBEGEN -- Input Start and End Addresses

Request Input of Beginning and Ending Addresses as defined in the
PRNT command. Verify inputs are hexadecimal characters. Verify
ending address is larger than beginning address.

JSR XBEGEN

None

$FFOA BEGA 16 Bit Beginning Address
$FFOC ENDA 16 Bit Ending Address

NOTE

Acc A and B and the X and Y Index Registers are used
by this subroutine. If their contents are meaningful,
they must be saved prior to calling this subroutine.
If single parameters are entered for BEG or END, the
default debug offset (Q in locations $FFE6, $FFE7)
will be added to them to determine BEGA and ENDA.
If two parameters separated by a comma are entered,
they will be added together to determine the address
being entered. The calling program may modify Q to
specify the default debug address. However, if it
does this, the new value of Q will be used by EXbug
as the default debug offset.

XCBCDH -- Convert a hexadecimal character to a binary number

Convert character
Set N

Verify input is a hexadecimal digit character.
to a 4-bit binary number with HI order 4 bits equal zero.
(negative) condition code for non-hexadecimal characters.

JSR XCBCDH

Character to convert must be in Acc A

If hexadecimal character input, Acc A contains the 4-bit binary
number represented by the input character, and the N (negative)
condition code is cleared. If non-hexadecimal character input, Acc

A contains the character input, and the N condition code is set.
the B, X, Y, and U Registers are preserved.

3-31

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

XCHEXL -- Convert most significant binary value to Hex

Convert the most significant 4 bits of Acc A to an ASCII coded
hexadecimal digit character

JSR XCHEXL

Contents of Acc A

An ASCII coded hexadecimal digit character in Acc A.
and U Registers are preserved.

The B, X, Y,

XCHEXR -- Convert least significant binary value to Hex

Convert the least significant 4 bits of Acc A to an ASCII coded
hexadecimal digit character

JSR XCHEXR

Contents of Acc A

An ASCII coded hexadecimal digit character in Acc A.
and U Registers are preserved.

The B, X, Y,

XINADD -- Input a hexadecimal address

Convert up to 4 input hexadecimal characters to a 16-bit binary
address.

JSR XINADD
X Index Register contains address to store result

Most significant 8 bits of resultant 16-bit address will be stored
into the memory location specified by the X Register. The least
significant 8 bits will be stored into the next higher memory
location. Acc A will contain last character input. Acc B will
contain number of input hexadecimal characters. The X Register is
unchanged. The subroutine returns to the calling program when an
invalid character, or the fifth hexadecimal digit, is entered.
The Y and U Registers are preserved.

NOTE

This address is not modified
by the default debug offset.

3-32

Name:

Function:

Call:

Subroutine
Input: .

Subroutine
Qutput:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:
Function:
Call:
Subroutine

Input:

Subroutine
Output:

XINCH -- Input one character

Wait for and accept.input of one character from debug terminal and
echo character back to terminal, if required.

JSR XINCH

There is a no echo flag (AECHO) at $FF58. It must be set non-zero

before each call to XINCH for each character that is not to be
echoed to the terminal (and line printer, if the Z option is on).

Acc A contains 8-bit input character as received from the debug
terminal. XINCH clears AECHO if it was non-zero. The B, X, Y,

and U Registers are preserved.

XINCHN -- Input one character with no parity

Wait for and accept input of one character from debug terminal and
echo character back to terminal, if required. Clear HI order bit
of input character.

JSR XINCHN
There is a no echo flag (AECHO) at $FF58. It must be set non-zero

before each call to XINCHN for each character that is not to be
echoed to the terminal (and line printer, if the Z option is on).

Acc A contains input character as received from the debug terminal
with the HI order bit cleared. XINCHN clears AECHO if it was
non-zero. The B, X, Y, and U Registers are preserved.

XOUTCH -- Output Character
Output one character with required speed fill

JSR XOUTCH

Acc A contains character to output to the debug terminal (and to
the line printer, if the Z option is on).

Acc a contains character output.
preserved.

The B, X, Y, and U Registers are

3-33

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:
Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

XOUT2H -- Output two hexadecimal characters and a space

Convert the contents of an 8-bit binary byte to two hexadecimal
characters and output them, followed by a space character, to the
debug terminal.

JSR XOUT2H

The X Register contains address of the byte to be converted and
output.

Acc A contains last character output. The X Register is
incremented by one. The B, Y, and U Registers are preserved.

XOUT4H -- Output four hexadecimal characters and a space.

Convert the contents of two consecutive 8-bit binary bytes to four
hexadecimal characters and output them, followed by a space
character, to the debug terminal.

JSR XOUT4H

The X Register contains address of the first byte to be converted
and output.

Acc A contains last character output. The X Register contains the
input address plus 2. the B, Y, and U Registers are preserved.

XPCRLF == Print CR/LF/Null

Qutput a carriage return, a line feed, and a null character to the
debug terminal with required speed fill.

JSR XPCRLF

None

Acc A contains a null character (0).
are preserved.

The B, X, Y, and U Registers

3-34

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

Name:
Function:
Call:

Subroutine
Input:

Subroutine
Output:

XPDATA -- Print CR/LF/Data string

Output a carriage return, a line feed, and the user-specified
string of data characters to the debug terminal.

JSR XPDATA

The X Register will contain the starting address of user data

string to output. Output string is terminated by an EOT (04)
character.

The X Register will contain the address of the EOT character. Acc
A will contain the EOT character. The B, Y, and U Registers are
preserved.

XPDAT1 -- Print Data String

Output a user-specified string of data characters to the debug
terminal.

JSR XPDAT1
The X Register will contain the starting address of user data

string to output. Output string is terminated by an EOT (04)
character.

The X Register will contain the address of the EOT character. Acc
A will contain the EOT character. The B, Y, and U Registers are
preserved.

XPSPAC -- Print space
Output a space character to the debug terminal

JSR XPSPAC

None

Acc A will contain a space character.
Registers are preserved.

The B, X, Y, and U

3-35

name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Output:

Name:

Function:

Call:

Subroutine
Input:

FOF3 -- Reenter EXbug

Entry point for programs to reenter EXbug. In 6800 EXbug 1, this
is the MAID re-entry point. Reentering EXbug at this point with
breakpoints active can cause unexpected results.

JMP FOF3

None

Control is not returned to the calling program.

F564 -- Reenter EXbug
Entry point for programs to reenter EXbug. This entry point
initializes most of the EXbug parameters. This is the recommended
EXbug reentry address.

JMP F564

None

Control is not returned to the calling program

F5C2 -- Reenter EXbug

Entry point for user-added, four-character commands to reenter
EXbug

JMP F5C2

None

Control is not returned to the calling program

F8A4 -- Read object record

Read an object record from the terminal tape reader to a memory
buffer and convert the data from ASCII to binary. This routine
continues to read records until an object record is read. The
object format is described in Figure 3-4.

JSR F8A4

None

3-36

Subroutine
Output:

Name:
Function:
Call:
Subroutine

Input:

Subroutine
Qutput:

Name:

Function:

Call:

Subroutine
Input:

Subroutine
Qutput:

The record type, ASCII 0, 1, or 9, is in BCONT (location $FF91).
The byte count is in location $FF92. The rest of the record in
hexadecimal, up to the checksum, begins in location $FF93. An
indication of the validity of the checksum is in BCKSM (location
$FF90). If this location contains zero, the checksum was correct.
If it contains a non-zero value, the checksum was in error. The
register values are indeterminate on return.

FICF -- Output character
Output one character without speed fill

JSR FICF

Acc A contains the character to output to the debug terminal. The
character is not sent to the line printer if the Z option is zero.

Acc A contains character output.
preserved.

The B, X, Y, and U Registers are

RTNUSR -- Return to the user map

Returns control to the user map following a user map SWI that was
serviced in the Executive map. See E command description for
further information. This entry point is in EXbug 2 only.

JMP RTNUSR

The processor registers to be restored from the SWI must be on the
stack as the next items that can be pulled off the stack.

Control is not returned to the calling program.

3-37

CHAPTER 4
SYSTEM DEVELOPMENT USING THE EXORciser

4.1 INTRODUCTION

The EXORciser is a system development tool used in the design and development of
M6809 Microprocessor Systems. This chapter contains an overview of the tasks of
developing hardware and software, and an explanation of the role of the
EXORciser in the development of the user system. The use of the EXORciser to
emulate (functionally duplicate) the user system, or to connect to an existing
microprocessor system, is described, and methods to debug the user system are
shown.

The optional EXORciser modules are discussed in general terms. Refer to the
User's Guide for the optional modules, and to this User's Guide for details in
preparing the EXORciser to emulate your system, or to connect it to another
systeme It is assumed in this chapter that the M6809 Data Sheet is being used,
as well as the M6809 Programming Manual. These are the manuals referenced by
the expression "M6809 Manuals" used throughout this chapter.

4.2 THE EXORciser IN SYSTEM DEVELOPMENT

The EXORciser reduces the time required for an engineer to construct a working
model of a prototype system. This 1is accomplished by the ability of the
EXORciser to emulate a user system hardware, and to debug the interfaces of
external devices and user software. Rather than immediately designing and
building a prototype of a system, the engineer sets up the EXORciser to
functionally represent the system, using the plug-in optional modules mentioned
here and described in detail in the separate User's Guides.

If the designer has already built a prototype or production model of his system
before acquiring the EXORciser, he can proceed to the later sections of this
chapter for descriptions of the use of the EXORciser with external microcomputer
hardware.

4.3 PERIPHERAL INTERFACING

When a system is being designed to use the MC6809, MC68A09, or MC68B09
Microprocessor, it must be determined how to control the hardware, and how much
of the system logic can be done in software. The hardware typically has
functions that need to be controlled, and sensors that need to be monitored.
The EXORciser is an operating microcomputer in modular form, which can be
interfaced to the user hardware. Since most external devices can be interfaced
with 6820 or 6821 Peripheral Interface Adapters (PIA's), and use TTL compatible
signals, an I/0 Module would, typically, be plugged into the EXORciser, and the
PIA 1/0 pins wired to the user peripheral device via a flat ribbon cable. (It
is assumed that the user circuits are TTL compatible.) Once this is done, the
user can test the hardware interface by using the EXbug Display/Change Memory
command, as described in Chapter 3 (i.e., since PIA registers are like memory
locations in 6809 systems, storing to the PIA data register, after it has been
programmed as an output port, will put signal levels on the I/0 lines in
accordance with the data word stored). For example, depending on the system
hardware, a data word can be selected to cause a motor to run, a solenoid valve
to open, or a relay to close. When such a word is entered, it will frequently
be found that the correct action did not happen, in which case a scope or meter

4-1

Flow Chart
Functions To
Be Performed

Implement
Electromechanical
Systems
Elements

Plan Hardware
Interface To
System Bus

A

FIGURE 4-1.

Y Write Code
Using M6809
Instruction
» Set
Determine Enter Source Code
Control Words Using
And 1/0O Terminal, Floppy
Addresses Disk, And Editor
Program
ROMS or PROMS Assemble
As Required [———— Using
Resident
Assembler
|
Hardware
Simulation
Using
EXORciser
e BEEEE————
Does Debug
System Meet Using
Design E Xbug
Goals .
F- Firmware
Final Design .
Modif
Of PC Cards .
Software
And Other Using
Hardware Editor
Test
Using
Use Errors
Module

4-2

System Designing and Verifying Procedure

can then be used to observe changes on the output lines and/or peripheral
devices, and the wires moved or the control word changed to correct the problem.
Once the proper control words have been determined, a similar analysis is made
of the data word read from the PIA input data register. The bits of this word
are the result of the data levels on the lines from the sensor hardware. When
the control and status words are known, a routine can be entered into memory, in
machine language, using EXbug, to exercise the external hardware. When

everything has been tried and it is fully understood, a complete program can be
written and assembled on the EXORciser, wusing the optional resident

Editor/Assembler programs. The program for this subsystem is then loaded into
memory, and tested by using breakpoints or "run-one-instruction" methods (see
Chapter 3). When finalized, the same technique is repeated for other subsystems
and their additional peripheral units until a whole system is assembled. This

entire process is depicted in Figure 4-1. It is seen in that figure that each
step has feedback paths so the hardware or software can be improved any number

of times until the desired performance is reached.

The engineer now has an operating model of his system using EXORciser hardware,
with a minimum amount of time spent on prototype construction. The programmer
can now finalize his routines.

The advantages of the EXORciser to the programmer are that he can verify his 1/0
programming steps by testing them before he writes a source program, and it
permits him to debug the resulting object code on a real time basis.

4.4 PROCEDURE FOR DESIGN

To better understand using the EXORciser in the design and development of an
M6809 Microprocessor system, let us review the procedure followed by a typical
engineer in developing a microprocessor system, and how the EXORciser will
simplify the design (see Figure 4-2). The engineer:

a. Defines his system, using flow charts (or other means). In this

definition, he determines the software and hardware functions to be
performed.

b. Sets up the EXORciser to emulate his system hardware (to be explained).

If required, he also builds any special hardware interface circuitry to
his peripherals.

c. Prepares his software programs on the EXORciser, after testing the
hardware required to accomplish the intended function, and determining
the addresses and control words.

d. Loads software into the EXORciser and, using the EXbug Firmware, debugs
both the hardware and the software until he has a working system.

e. Designs and builds a preproduction model of his system.

f. Combines the preproduction hardware with the user system software and
using the EXORciser EXbug Firmware and the User System Evaluator (USE*5

module, debugs and makes any hardware and software adjustments.

g. Extensively tests and evaluates his system in an actual working
environment. At this point, the program may be stored in PROM's, using
the optional PROM Programmer.

EXORciser

Software
Development

EXORdisk Terminal

Keypads
[]
Hardware
Relays Debug

Final Debug
and/or
Production
Test

FIGURE 4-2. EXORciser, the Development Tool
4-4

h. Builds the production hardware of his system and has his ROM's made. The
USE* is used in testing and debugging the production systems.

i. Combines the production hardware with the system software and makes the
final adjustments to his system. He again may use the EXORciser in
evaluating his system by means of the USE*.

je. Releases his system to production.
k. Analyzes problems in production hardware with the EXORciser and USE*.

* The User System Evaluator is an optional module with an interconnecting cable
(and buffers) which plugs into the M6809 socket of the user prototype or
production unit. It connects the two systems together in such a way that all
the debug capabilitiess of the EXORciser are usable in the user hardware.
(See the USE User's Guide for details.)

4.5 EXORciser CONFIGURATION

The EXORciser configuration is described in detail in paragraph 1.5. Memory
parity is described in paragraph 1.5.1. Dual map concepts are discussed in
paragraph 1.5.2.

4.6 SYSTEM ADDRESS SELECTION

The address selection of the various modules will depend on whether the system
is being used for software development or to emulate the target system.
Included in the address selection is the determination of which map the module
will respond in. The user assigns a module to one of the two maps by installing
either the VUA or VXA addressing jumper that is found on all EXORciser modules.

During software development (edits, compilations, assemblies, etc.), the user
will probably want as much continuous RAM as possible, starting at address 0000.
This RAM must also be in the same map as EXbug so that the software development
programs can communicate with the system terminal. This requires that the RAM,
EXORdisk interface, and Printer interface be configured for the VXA, and the
DEbug Module be configured for the Dual Map mode, or that the RAM, EXORdisk
interface, and Printer interface be configured for VUA, and the DEbug Module be
configured for the Single Map mode. These same requirements also apply for any
programs that use the system terminal or EXbug routines.

During target system emulation, the module addresses will be selected as
required for the target system. The target system may be emulated in the User
map of the Dual Map mode or, if it does not require any addresses equal to or
greater than F000, it may be emulated in the Single Map mode. In the Single Map
mode, the modules should be configured to respond to VUA.

Refer to the applicable User's Guide for instructions on setting the address and
map of the various modules. To avoid conflicts with EXbug, Modules in the
Executive map should be addressed only at values less than $F000.

4.7 SECOND LEVEL INTERRUPT

The second level interrupt feature of the EXORciser is described in detail in
paragraph 1.5.3.

4-5

4.8 MEMORY ASSIGNMENTS

The DEbug Module provides the EXORciser with the capability of addressing two
separate 64K blocks of memory. These two blocks of memory are referred to as

the Dual Memory map. One of these, the Executive map, contains EXbug (if
configured for VXA), its peripheral devices and RAM, the EXORdisk ROM and I/0

devices, and the Printer I/0 device. The other, the User map, is completely
available to the user for emulation of his target system. This gives the user
complete freedom in assigning addresses to his memory and I/0 devices without
worrying about addressing conflicts with the system monitor and I/0 devices, yet
EXbug €rovides the user with full debug capabilities 1in the User map.
Optionally, in the Single Map mode, the DEbug Module can merge the two maps. In

this mode, all addresses less than $F000 come from the User map.

In the Dual Map mode, all of the EXbug debug commands are available in either
map. The EXbug USER and EXEC commands control which map will be accessed by the
debug commands. The command USER causes the EXbug debug commands to operate in
the User map. In this mode, EXbug prompt is *. The command EXEC causes the
EXbug debug commands to operate in the Executive map. EXbug prompt is *E in
this mode. On power-up, EXbug comes up in the EXEC mode.

In the Single Map mode, the EXEC and USER commands are not usually required,
since the maps have been merged. However, if the Halt-on-Address or Scope Sync
function is to be used at an address less than $F000, the USER command must be
entered so that the address compare circuitry will detect the appropriate map.

Executive map/User map interface is described in detail in Appendix G. It is
suggested that the user read Appendix G, and then prepare the User Map as
follows:

a. Construct a basic memory map of the User System.

b. Assign the memory location for ROM's or PROM's at the top of memory. The

top of memory of the ROM's must appear to the MPU as address FFFF in the
planned decoding scheme. (Some address lines will not be used, and the
ROM, therefore, will respond to more than one range of addresses.)

Cc. Assign the memory addresses for RAM's. It is recommended that the RAM's
be placed below address 100 in memory, to realize the advantage of the
direct addressing mode to save memory.

d. If the User System is using Peripheral Interface Adapters (PIA's),
assign four addresses for each PIA, as described in the M6809 Manuals.

e. If the User System dis wusing Asynchronous Communication Interface
Adapters (ACIA's), assign two addresses for each ACIA, as described in
the M6809 Manuals.

4.9 EXORciser CONFIGURATION FOR SYSTEM EMULATION
This paragraph discusses preparing the EXORciser to emulate (functionally

represent) the User System. Refer to the optional module User's Guides, as
required, for details. Prepare the EXORciser hardware as follows:

a. Install the EXORciser modules in the EXORciser card slots.

4-6

b. Determine whether the EXORciser clock or an external clock is to be used

in the User System. Install jumpers on the MPU Module accordingly. (If
using the User System Evaluator, see applicable User's Guide.)

c. If you are using an external clock, determine the clock frequency to be
used in the User System.

d. Connect the external clock to the MPU Module.

e. Connect the EXORciser to the user process or peripheral device, using the
I/0 Module for parallel interface, or the ACIA Module for serial
interface.

f. Construct any required special circuitry for interface.

g. Set the base memory addresses on the EXORciser memory and peripheral
interface modules by means of the address switches, as described in the
module User's Guides.

h. Assign memory map address enable jumpers (VUA, VXA, or PAGE ENABLE) on
each module.

4.10 TESTING PROTOTYPE OR PRODUCTION SYSTEMS

Once the designer has emulated his system in the EXORciser chassis and it is
operating properly, he can begin construction of a prototype as a next step in
the development. By his emulation, he now knows exactly how much memory he
needs, how many output ports or lines will be required, and even what his clock
circuit and decoding scheme must be. This information allows him to design a
prototype that will be reasonably close to the final production units. He has
not eliminated the need for a prototype altogether, but probably has bypassed
several iterations, at least.

When construction is completed, he must test his prototype and determine whether
it performs as well as the emulation system did. For this purpose, the
EXORciser is augmented by the addition of the User System Evaluator (USE). This
subsystem consists of a USE processor module connected by cables to the MPU
Module, and a buffer and cable assembly.

The USE-EXORciser can be used with the Motorola M6809 microprocessor system.
The purpose of this arrangement is to provide the same debug capabilities in the
user system as previously used in the emulation. The interconnection of the two
systems in this way creates one bigger system which operates in real time with
one MPU. With this arrangement, it is now possible to operate and test the
system with all or part of the I/0, or memory, in either system. The memory can
be RAM or ROM (or PROM), and the I/0 can be the original emulated version using
EXORciser modules, or can be the newly constructed circuits on the prototype.

Since it 1is better to take 1little steps, rather than one big plunge, the
procedure for the development of a typical system might be as follows:

a. One or more of the I/0 chips are installed, and the associated external
peripheral is tested by using the EXbug memory display/change routine,
just as was done in the original emulation (see par. 4-3).

b'

d.

€.

After all of the I/0 circuits have been activated and are working
correctly (assuming that the system previously shown in Figure 4-2 is
being prototyped), resume testing by loading the program that was used in
the emulation into RAM module.

NOTE

Many engineers may choose to assemble their I/0 circuitry
on the prototype board, or boards, and get it working with
their peripherals before the programming is finalized.
In this case, it is desirable to be able to edit and
re-assemble the program without dismantling the hardware
setup. This is possible by installing one or more of the
dynamic RAM memory modules.

If using a tape terminal and the Resident Editor/Assembler programs, a
minimum of 8K of RAM will be required with its address switches set for 0
and 1 (so as to have memory from 0000 to 1FFF). The Editor/Assembler
reside in this range with 744 bytes left over for the edit buffer or
assembler symbol table.

If the EXORdisk Floppy Disk System is chosen with the standard Editor
and Assembler programs, a minimum of 16K of RAM will be required, with
its address switch set for 0 to provide memory from 0000 to 3FFF.

NOTE

With either of these arrangements, the editing and
assembling process can be carried on in the EXORciser
without disturbing the hardware or the program in memory.
The USE feature, whereby the memory in the EXORciser has
priority over any memory (or I/0) in the user system,
allows this to work.

Once the user program has been edited and re-assembled until it operates
properly, it can be copied into EROM, or bi-polar PROM, by means of the
PROM Programmer Module (MEX68PP3). The PROM can then be installed in the
appropriate socket of the user prototype for extended testing.

NOTE

Any of the features of the EXbug program can be used at
any time. For example, the Trace and Breakpoint funcrions
are fully usable in either system. Trace works with PROM
(or ROM) and, although breakpoints will not work in ROM,
the Stop-on-Address will, and does essentially the same
job. These allow testing in real time (i.e., no wait
states are required, and the instructions are executed at
the user clock rate, including all I/0).

When the program has been put into PROM's, the EXORciser will start up in
the map specified by the switch settings on the DEbug. EXbug Restart
vectors will always be used when in Single Map mode. If in Dual Map
mode, and the Restart switch is set to its USER position, the EXORciser

will use the USER map for its RESTART vector and subsequent execution.
This feature allows the user to fully evaluate the power startup portion

of his final system design.

4-8

4.11 PRECAUTIONS WHEN USING THE USER SYSTEM EVALUATOR

The User System Evaluator is designed to interface with the user M6809 system,
but certain non-obvious precautions must always be taken. When the USE module
is first installed, many users have difficulty getting their EXORciser to run
properly. Refer to the USE User's Guide.

4.12 SYSTEM EVALUATION AND DEBUG PROCEDURES

Once a program has been written, entered, and assembled or compiled, it must be
tested to determine if there are any errors or bugs in it. The program must
also be tested with a prototype version of the system hardware to determine if
the complete system functions as required. The EXORciser, with the EXbug
program, provides a ready tool for system testing. For preliminary system
testing, the various optional EXORciser modules, such as the PIA and ACIA
modules, can be used to emulate the I/0 functions of the final system. The
EXORciser RAM modules can be configured, as required, to contain the program
under test. Paragraph 4.9 discusses how to configure the EXORciser for system
testing. After the system is properly configured, load the program.

4.12.1 Memory Loader

The program may be loaded to memory from tape, using the terminal tape reader
and EXbug LOAD command. If the program is on an MDOS diskette, the MDOS LOAD
command can be used to bring it into memory. At this point, the program can be
run without any EXbug debug features active. This will given an indication if
the program operates correctly. The program can be started using the ;G or
addr;G command.

4.12.2 Abort Function

If the program does not operate properly, the ABORT button should return control
to EXbug. The abort will give a register printout of the processor state when
the abort occurred. This printout can be useful 1in further debugging by
indicating a likely place to start debugging. If the program were run in the
Single Map mode or in the Executive map, it might have destroyed EXbug NMI
vector, in which case the abort will not function. Also, execution of an
invalid op code might put the processor in a state where it will not respond to
the abort NMI. If either of these two conditions occurs, the RESTART button
will have to be used to return control to EXbug. In the Dual Map mode, the
restart switch S3 on the DEbug Module must be in the EXBG position for the
restart to start EXbug.

4.12.3 Default Debug Offset

Before continuing further with debugging, the default debug offset, or Q value,
should be specified if a relocatable program is under test. Specifying the main
base address of the program as the Q value speeds debugging by permitting direct
entry of all addresses relative to it. EXbug automatically adds the Q value to
each single parameter address value entered. The Q value can be overridden by
entering two parameters separated by a comma as an address parameter. In this
case, the two parameters are added together to determine the absolute address.
Refer to par. 3.6, EXbug commands, for further information about the default
debug offset. All addresses displayed by EXbug are absolute values. The Memory
Change function can be used to determine the corresponding relative value. To
determine the relative address, enter the absolute address, a comma, a minus

sign, the base address, and then a slash. EXbug will then display the contents
of the relative address used as an absolute address. Entering another slash
will cause EXbug to display the relative address and the memory contents again.
A carriage return ends the Memory Change function. Figure 4-3 shows an example
of this use of the Memory Change function.

*E; Q 0000 43AB

*E 256,V Note: Offset + BRKPT = First BKPT Address
*E 32A;V 43AB + 256 = 4601 (HEX)
*E 240,G

P-4601 X-45EB A-00 B-37 C-D4 S-FF8A
0256 FF

FIGURE 4-3. Using Memory Change to Calculate a Relocatable Address

4,12.4 Memory Change Function

Since the I/0 devices in an M6809 system are in the memory map, the Memory-
Change function can be used to read and change their contents. Certain features
of the memory change command facilitate its use to read and modify I/0 devices.
The slash (/) memory change terminator updates the open location to the new
value entered, if one was, and then re-opens the same location. This capability
is handy in toggling a bit in a parallel output device, or repetitively viewing
an input device. If a location does not change correctly, the Memory Change
function is not automatically exited. Instead, an error message, consisting of
a question mark, bell character, and the contents of the location, is sent to
the system terminal. After the error message, the Memory Change function
proceeds according to the command used to close the last location. This feature
is useful when writing to write only registers or PIA control registers. The
EXbug Memory Change function reads a location only once when its contents are
displayed. Also, a location is read once after it is written to verify that it
changed properly. When a location is written, only one store instruction is
used.

4.12.5 Breakpoint, Trace, and Halt-on-Address/Scope Sync Functions

EXbug provides three different methods of controlled program execution to assist
in locating hardware and software problems. The methods are:

. Breakpoints
. Halt-on-Address/Scope Sync
. Trace

Each method has its advantages and restrictions. Combined, they provide very
powerful and flexible techniques for testing and debugging M6809 systems. There
is one restriction that is common to all three controlled program execution
methods, except for the scope sync. Breakpoints, trace, and halt-on-address all
use an interrupt to stop program execution. Since an interrupt pushes the

contents of the processor register on the stack, the stack pointer must be
pointing at a valid stack area when the interrupt occurs. Therefore, if the

4-10

stack pointer is not pointing at RAM when the interrupt occurs, the register
contents will be lost. If the stack pointer is pointing to a data area in RAM
when the interrupt occurs, the data will be overwritten by the register
contents.

4.12.5.1 Breakpoints. Breakpoints are probably the most useful of the three
techniques. A maximum of eight breakpoints can be active at any given time.
Therefore, they can be used to check program flow. Breakpoints can be set at
various locations throughout the program; then, when program execution reaches
the breakpoint, execution is stopped and the processor registers are displayed.
Breakpoints are also useful in testing the execution of program loops. This is
provided by the n;P command, which continues execution at a breakpoint but does
not stop and display the registers at that breakpoint until the nth time it
occurs. Except for the use of the n;P in loop testing, the program will execute
in real time while breakpoints are active. During the n;P operation, the
breakpoint remains in the program and gives control to EXbug each time it is
encountered. EXbug returns control to the program as long as the n value is
non-zero. This operation will slow loop execution. The restrictions on the use
of breakpoints are that they can only be used in programs running in RAM, and
that they must only be set on the first byte of an instruction. Both of these
restrictions result because EXbug uses the SWI instruction for breakpoints.

4.12.5.2 Trace. The trace feature comes in two options: trace a given number
of instructions or trace to a given address. Both are useful in watching the
processor registers during program execution. Care must be exercised while
using trace, however, since it is easy to quickly generate more register
printout than one can reasonably digest. Since the trace feature uses the NMI,
programs in ROM as well as RAM can be traced. The restriction on trace is that
the program execution is not real time. EXbug interrupts the program after each
instruction so that it can provide a register printout.

4.12.5.3 Halt-on-Address. The Halt-on-Address function is useful in finding
how a location is being changed when it is not expected to be. Halt-on-Address
generates an interrupt when the specified address appears on the address bus.
It is not necessarily associated with the execution of a specific instruction,
as are the two previous techniques. Since it is a function of address, the
Halt-on-Address can also be used as a single breakpoint for a program in ROM.
The restrictions on the Halt-on-Address are that the processor is not
interrupted until after the completion of the instruction which accessed the
specified location, and that unexpected halts may occur due to the operation of
certain instructions. The first restriction causes the program counter to
indicate the next instruction to be executed after the instruction that accessed
the specified location. In most cases, this will not cause a problem. However,
if the instruction which caused the halt also caused a change in program flow
(such as a branch, JMP, JSR, RTS, or RTI), it may be difficult to determine
which instruction caused the halt. Unexpected halts may be caused by certain
instructions. For example, all single-byte instructions cause the next address
to be read while the instruction is being executed. Therefore, if a halt is set
on an instruction following a single-byte instruction, the halt will occur twice
-- once when the single-byte instruction is executed and, again, when the
instruction following it is executed. One instance of this type of operation
that is not always obvious is when a halt is set on an instruction where the
preceding location contains an RTS. The halt will occur when the RTS is
executed, but the associated register printout will show no relationship to
where the halt was set. A cycle-by-cycle description of all M6809 instructions
is contained in the M6809 Data Sheets.

4-11

4.12.5.4 Scope Sync. Associated with the Halt-on-Address function is a Scope
Sync function, which is enabled and disabled by the same EXbug commands as the
Halt-on-Address. The selection between the two functions is made by switch S2
on the DEbug Module. When the switch is in the Halt-on-Address position, an NMI
is generated by the address match. In the Scope Sync position, a pulse is
generated at the scope trigger point on the DEbug Module by the address match.
The Scope Sync feature 1is used to trigger an oscilloscope to monitor the
waveforms associated with a particular point in the program. The restriction on
the Scope Sync is that unexpected trigger pulses may result. This happens for
the same reason as the unexpected halts -- the specified address appearing on
the bus because of a preceding single-byte instruction.

4.12.6 Error Correction

Once program errors, or bugs, have been found using the above procedures, the
next step is to correct the bug and continue testing. There are two ways of
correcting bugs. If the bug is relatively minor, such as loading the wrong
register or the wrong value, it may be patched -- that is, corrected in memory.
A written record should be made of the patch so that the program source may be
corrected at a later time. It is also a good idea to dump the patched program
to disk or tape so that memory can be restored. After several patches have been
collected, the program source should be edited and the bugs corrected. Then the
program can be recompiled or assembled, and testing can continue with the new

version of the program. If the program bug is major, such as an error in
program organization, it may be necessary to go directly to the edit, compile,
assemble procedure.

The point at which a bug becomes too large to patch depends on the time required
to edit, compile, assemble the program. If the program can be edited and
compiled or assembled and a new object program obtained quickly, then lengthy
patches may not be appropriate.

4.13 SOFTWARE DEVELOPMENT USING THE EXORciser

With the addition of the EXORdisk and Microsystems Printer, the EXORciser
becomes a very powerful software development tool. Software is developed as
follows.

Program Requirements - The first step in software development is to define the
program requirements. This specification should be as complete and detailed as
possible. Without this road map of what is required of the software, the design
of it can easily become misdirected into areas that are really unimportant.

Language Selection - Select the language the program will be written in. The
choice is between assembly language and the higher level languages. Along with
resident absolute and macro/relocatable assemblers, Motorola currently supports
the following resident higher level languages for the M6809: FORTRAN, BASIC,
MPL, and PASCAL. The decision of which language to use depends on the
application, the proposed production volume of the final system, and what
languages the user has experience with. Typically, as the production volume of
a product is increased, the reduced memory requirements of assembly language
over higher level languages makes assembly language a better choice. However,
when the production volume will be low, the reduced development time for higher
level languages, as compared to assembly language, will make them the better
choice. System response time requirements may also p]ayla part in determining
what language is used, since higher level languages execute more slowly than

4-12

assembly language. Some higher Tlevel Tlanguages overcome this by permitting
portions of the program to be written in assembly language. The user should
also give preference to languages he has had experience with, in order to avoid
a possibly lengthy learning period which would affect the product schedule.

Progam Design - After a language has been selected and program requirements
defined, design the program. This step is very important. The completed design
of the program is equivalent to the schematic for the hardware. This design may
be done in flow chart, metacode, a higher 1level language, or some other
technique with which the designer is familiar. The language selected will have
a bearing on the design. A more detailed design is required if the program is
to be written in assembly language instead of a higher level language. This is
required so that memory and the processor registers are properly allocated.
These are tasks that a higher level 1language will take care of for the
programmer. Some higher level languages such as MPL are structured so that the
program could be designed using the higher level language. In these cases, the
design and coding, or programming, would occur concurrently.

Writing the Program - Once the design is completed, the next step is to write
the program. As the program is being written, it can be entered onto disk or
tape, using the resident editor. This is referred to as the source. If the
program is written in modular blocks, they may be compiled or assembled and
tested as they are completed. Otherwise, the complete program will have to be
entered before it can be compiled/assembled and tested.

Testing - The procedure described in the preceding section may be used for
testing the program. However, if the equivalent I/0 devices for the final
system are not duplicated in the EXORciser, the routines that handle these
devices and the corresponding I/0 cannot be tested easily. If these routines
are to be tested at all without the corresponding hardware, then software
routines must be written to simulate the I/0. Generally, though, routines that
do not require I/0 can be tested without much difficulty once any required
parameters are set up. As testing continues and program errors are found, they
may be corrected by patches, as described in the preceding section. When
several patches have been made to the program, it is wise to incorporate the
corrections in the source by editing it. After the corrections have been made,
the program can be compiled/assembled again, and testing can continue.

4-13

CHAPTER 5
THEORY OF OPERATION

5.1 INTRODUCTION

This chapter provides a block diagram description of the EXORciser. As a system
development tool, the EXORciser may be configured in a variety of applications
and with a variety of options. This chapter, rather than discussing each
possible configuration, discusses the basic EXORciser, which comes equipped with
an MPU Module, a DEbug Module, 32K of RAM Modules, and the power supply.

The basic EXORciser and its optional modules provide the user with a system
development tool for the M6809 Microcomputer Family of Parts. The user, through
his configuration of the optional modules in the basic EXORciser unit, has the
capability of emulating (functionally creating) a hardware prototype of his
system.

5.2 BASIC EXORciser BLOCK DIAGRAM DESCRIPTION

The basic EXORciser, as illustrated in Figure 5-1, consists of the MPU Module,
DEbug Module, power supply, chassis, EXORciser bus, and the EXbug Firmware.
Each of these modules is built around the M6809 Microcomputer Family of Parts,
MC68B09 Microprocessing Unit (MPU), MC68B21 Peripheral Interface Adapter (PIA),
MC68B10 Random Access Memory (RAM), and MC68B50 Asynchronous Communications
Interface Adapter (ACIA).

Through its system debug and program control features, the EXORciser EXbug
Firmware minimizes the time required to develop a user system. The EXbug

Firmware provides the EXORciser with the capability to:
. Display the contents of the MPU registers at any time.

. Step through the user program one instruction at a time.
. Trace through a user program to locate problem areas.

. Stop the program on a selected program step.

. Abort from the user program and return to the EXbug control program on
command.

. Re-initialize the EXORciser on command.
The user communicates with the EXORciser in one of two ways:

. Through an RS-232C or TTY data terminal.
. Through the EXORciser front panel controls and indicators.

The data terminal permits the user to communicate directly with the EXbug
Firmware. The EXORciser front panel permits the user to apply power to the
EXORciser to abort (exit) the EXORciser from a routine, and to initialize and
reset the EXORciser.

The MPU Module incorporates the MC68B09 Microprocessing Unit (MPU) and the

system clock. This module provides the MPU and the clock signals for both the
EXORciser and the user prototype system. The MC68B09 Microprocessing Unit is an

8-bit parallel processing unit capable of addressing 64K bytes of memory. In
addition, the MPU addresses its input and output devices as memory. The MPU
also provides the EXORciser with 59 variable length instructions and the
capability of responding to real time interrupt signals.

The MPU Module controls the flow of commands, data, and addresses on the
EXORciser bus. During an MPU memory read or write operation, the MPU Module
controls the transfer of command, status, addresses, and data to the selected
module by controlling the EXORciser bus.

The DEbug Module provides the EXORciser with the capability to evaluate and
debug the user prototype hardware and software in an actual application. The
EXbug Firmware, contained in ROM, provides the EXORciser with program control
capabilities. The RAM is used as a scratchpad memory for the EXbug Firmware.
The EXbug Firmware enables the EXORciser to:

. Load data into the EXORciser.

. Verify that the data in the EXORciser is valid.

. Search a tape for a specific file.

. Print the contents of the memory.

. Punch (or record) the contents of the memory.

. Perform the MAID (Motorola Active Interface Debug) functions.

The MAID function enables the EXORciser to:

. Examine and, if required, change the contents in a memory location.

. Examine and, if required, change the contents of the MPU registers.

. Calculate the offset in the relative addressing mode.

. Insert, display, and remove breakpoints in the user program.

. Freerun or trace through a user program under MAID control.

. Search memory for a specific bit pattern.

. Perform decimal-octal-hexadecimal conversions.

. Stop the EXORciser on a selected memory address in the user program.

. Provide an oscilloscope trigger pulse at a selected memory address.
The DEbug Module also incorporates the level converter circuits required to
interface the EXORciser with a TTY or RS-232C data terminal, and also provides
the EXORciser with eight standard baud rates (110, 150, 300, 600, 1200, 2400,

4800, and 9600). This module also interfaces the EXORciser with a TTY or
RS-232C compatible data terminal.

The Power Supply provides the EXORciser with the +5, +12, and -12 Vdc power
sources that are required by the EXORciser and related modules. This power
supply will support a full rack of modules.

The chassis is capable of holding 14 plug-in modules. These 14 modules connect

directly into the EXORciser bus. The Power Supply is not a plug-in module, and
is mounted directly to the EXORciser chassis.

5-2

Terminal

| RS232C
ﬁ > - -,
———————8» DEbug
> Module T
-y

% ‘ rl 20 mA
TTY |

L____1

R

DEbug
System

Module

VMA

-
MPU -
-

R/W

RAM

8
— Module
o

!

Additicnal
RAM’s, ROM’s
Or
1/0's

'

Optional
1/0
Module

3

VUA/
VXA

IRQ

Address Bus (16)

Restart

User
System

Control Signals
Data Bus (8)

~

N ﬁ 8 Control/
(

> Status Lines

E, R/W

il

N

oLl

P S—

32 Input/
(Output Lines

FIGURE 5-1. EXORciser Simplified Block Diagram

5-3

APPENDIX A
EXORciser BUS DESCRIPTION AND SPECIFICATIONS

INTRODUCTION

The EXORciser Development System incorporates a multilayer motherboard to
interconnect the address, data, and control buses for up to 14 separate system
modules. The motherboard is made with an embedded groundplane to provide the
high noise immunity requirements of a high speed microprocessor development
system. This appendix identifies all of the motherboard interconnections, and
describes the function of each interconnect signal. In addition, complete
timing specifications are provided for the bus interconnections.

DESCRIPTION OF BUS SIGNALS AND PIN ASSIGNMENTS

Table 1 summarizes the pin assignments for the EXORciser motherboard, while
Table 2 1lists the signal mnemonic, name, and functional description. Eight

motherboard interconnection lines have been specifically reserved for user
applications. Other unused EXORciser motherboard interconnects are reserved for

future EXORciser expansions.

TABLE 1. EXORciser Bus Connections

PIN NUMBER PIN NUMBER
(COMPONENT SIDE) FUNCTION (CIRCUIT SIDE) FUNCTION

A,B,C +5VDC 1,2,3 +5VDC
D IRQ 4 HALT
E T 5 RESET
F VMA 6 R/W
H Not used 7 Q
J E 8 GND
K GND 9 GND
L MEMCLK 10 VUA
M -12vDC 11 -12vDC
N BUSREQ 12 REF REQ
P BA 13 REF GNT
R MNRDY 14 DEBUG
S LIC* 15 BUSGNT
T +12VDC 16 +12VDC
u STANDBY 17 STANDBY
v PWR FAIL 18 CLK
W PARITY-ERR 19 VXA

X,Y,Z GND 20,21,22 GND

TABLE 1. EXORciser Bus Connections (cont'd)
PIN NUMBER PIN NUMBER
(COMPONENT SIDE) FUNCTION (CIRCUIT SIDE) FUNCTION

A FIRQ 23 BS
B GND(REF) 24 GND (REF)

C,D,E,F Reserved for 25,26,27,28 Reserved for

Bus Expansion Bus Expansion

H D3 29 oI
J D7 30 D5
K DY 31 D0
T D6 32 D4
M Al4 33 A15
N A13 34 A12
P A10 35 All
R A9 36 A8
S A6 37 A7
T A5 38 A4
T A2 39 A3
v Al 40 A0

W,X,Y GND 41,42,43 GND

*Denotes signal not used with M6809 EXORciser. For M6809E EXORcisers, LIC

signal is used.

TABLE 2. EXORciser Bus Signals

PIN
NUMBER

SIGNAL
MNEMONICS

SIGNAL NAME AND DESCRIPTION

A,B,C

+5VDC

IRQ

+5 Vdc Power - Used by the system module logic circuits
and available to the wuser for prototype module
requirements. (15 Amps max.)

INTERRUPT REQUEST - An active low signal used to request
generation of an MPU interrupt sequence. The MPU will wait
until it completes the instruction being executed before
it recognizes the request. At that time, if the interrupt
mask bit in the MPU condition code register is not set,
the MPU will begin executing the interrupt sequence.

NON-MASKABLE INTERRUPT - A 1low going, edge sensitive
signal used to request generation of an MPU non-maskable
interrupt sequence. The MPU will wait until it completes
the instruction being executed before it recognizes the
request. At that time, regardless of the logic state of
the interrupt mask bit in the MPU condition code register,
the MPU will begin executing the non-maskabale interrupt.

A-2

TABLE 2. EXORciser Bus Signals (cont'd)

PIN SIGNAL
NUMBER | MNEMONICS SIGNAL NAME AND DESCRIPTION

F VMA VALID MEMORY ADDRESS - A high 1level, TTL compatible
signal produced by the MPU Module and used to indicate to
the DEbug Module that a valid memory address is present on
the address bus.

H GND GROUND.

J E E - A bi-phase clock signal generated by the MPU Module.

Data from the MPU is guaranteed good with the falling edge
of E. This signal is held high during MNRDY.

GND GROUND

MEMCLK MEMORY CLOCK - A TTL level clock signal, in phase with E,

used to refresh all dynamic memory modules within the
system. This signal 1is_stretched high during 2 MHz use.
It is held high during MNRDY (pin R low).

M -12vDC -12 Vdc Power - Used by the system module logic circuits
and available to the wuser for prototype module
requirements. (1.5 Amps max.)

N BUSREQ BUS REQUEST - An active low signal used to request access
to the system bus. A low on this line will cause the MPU
Module to three-state (off or high impedance state) the
data, address, and R/W lines. A BUSGNT signal (pin 15)

will also be generated at this time.

p BA BUS AVAILABLE - A normally low level signal generated by
the system MPU. This signal along with the BS signal (pin
23) indicates the MPU state.

BA BS MPU STATE

0 0 Normal (Running)

0 1 Interrupt Acknowledge
1 0 Sync Acknowledge

1 1 Halt or Bus Grant

R MNRDY MEMORY NOT READY - A signal generated by the user that
permits the EXORciser to work with slow memory modules.
When this signal is low (set-up time before the falling
edge of E), the clocks will be stretched with E high and Q
low. Furthermore, the memory ready function actually
changes the system E, MEMCLK (pin L), and CLK (pin 18)
signals. Devices which require a real-time clock must use
a different clock source.

Not used (M6809 only).

S LIC LAST INSTRUCTION CYCLE (M6809E only). - An active high
signal produced only by the MC68BO9E MPU during the last

cycle of each instruction. This line will be a high during
the halt and sync states.

T +12VDC +12 Vdc Power - Available to the user for prototype module
requirements. (2.5 Amps max.)

A-3

TABLE 2. EXORciser Bus Signals (cont'd)

PIN
NUMBER

SIGNAL
MNEMONICS

SIGNAL NAME AND DESCRIPTION

u

X,Y,Z

=

= | =}«

< =|

STANDBY

PWR FAIL

PARITY-ERR

GND(REF)

=

O] O] O
O N

Al4

Al3
A10

STANDBY Power - This line is reserved for use with battery
backup memory modules. If battery backup is not required,
the STANDBY Tine is not used.

POWER FAIL - This signal line is reserved for use with
memory modules requiring battery backup. When used, this
low Tevel signal would disable the protected memory
module. (This feature is not supplied as part of the
EXORciser.)

PARITY ERROR - This signal line is normally held high by
the DEbug Module. If a memory module that incorporates a
parity check circuit is used within the EXORciser, and a
parity error is detected, this signal will be forced low
for one clock cycle.

GROUND

FAST INTERRUPT REQUEST - An active low signal used to
request the generation of an MPU fast interrupt sequence.
The MPU will wait until the instruction being executed is
completed before recognizing the request. At that time,
if the interrupt mask bit in the MPU condition code
register is not set, the MPU will begin the interrupt
sequence. This sequence is fast in the sense that it only
stacks the return address and condition codes.

GROUND (REFERENCE) - Available to the user for prototype
modules that require an isolated ground. This ground line
is not connected to the normal EXORciser ground
connection.

USER DEFINED - These signal Tlines, along with their
counterpart pin numbers (25,26,27,28) are reserved by
Motorola for possible expansion of the data bus to 16
bits. Since compatibility of 16-bit data bus modules with
existing modules is unlikely, these eight lines may be
used for custom modules.

DATA bus (bit 3) - One of 8 bi-directional data lines used
to provide a two-way data transfer between the MPU Module
and all other plug-in modules within the system. The data
bus drivers on the other modules are in their off or high
impedance state except when selected during a memory read
or write operation.

DATA bus (bit 7) - Same as D3 on Pin H.
DATA bus (bit 2) - Same as D3 on Pin H.
DATA bus (bit 6) - Same as D3 on Pin H.

ADDRESS bus (bit 14) - One of 16 address lines from the

MPU Module that permits the MPU to select any addressable
memory location within the EXORciser.

ADDRESS bus (bit 13) - Same as Al4 on Pin M.
ADDRESS bus (bit 10) - Same as Al4 on Pin M.

A-4

TABLE 2.

EXORciser Bus Signals (cont'd)

PIN
NUMBER

SIGNAL
MNEMONICS

SIGNAL NAME AND DESCRIPTION

1 <] <} =l v =|

— Zl
L J

N <
-

w =<|

L
]

8,9
10

11

12

A9
A6
A5
A2
Al
GND
+5VDC

GND
VUA

-12VDC

REF REQ

Same as Al4 on Pin M.
Same as Al4 on Pin M.
Same as Al4 on Pin M.
Same as Al4 on Pin M.
Same as Al4 on Pin WM.

ADDRESS bus (bit 9)
ADDRESS bus (bit 6)
ADDRESS bus (bit 5)
ADDRESS bus (bit 2)
ADDRESS bus (bit 1)
GROUND

+5 Vdc Power - Used by the system module logic circuits
and available to the user for prototype module require-
ments. (15 Amps Total max.)

HALT - A normally high Tevel signal used to halt the MPU.
A Tow Tevel on the HALT input causes the MPU to halt at
the end of the present instruction, and remain halted
indefinitely without loss of data, until the HALT pin is
driven high.

RESET - An active low signal used to reset the MPU as
well as other peripheral devices and system modules. This
signal also restarts the EXORciser when power is initially
applied. Depressing the RESTART pushbutton switch located
on the front panel of the EXORciser while the system is
operating will generate a RESET signal and cause the MPU
Module to execute the EXbug restart routine or the restart
routine indicated by the user.

READ/WRITE - This signal is generated by the MPU Module,
and indicates to the other modules contained within the
system that the MPU is performing a memory read (high) or
write (Tow) operation. The normal standby state of this
signal is read (high).

Q - A quadrature clock signal which leads E. Addresses
from the MPU will be guaranteed good with the leading edge
of Q. This signal is held Tow during MNRDY (pin R low).

GROUND

VALID USER ADDRESS - This signal is produced by the DEbug
Module. When high, this signal indicates that the address
on the address bus is valid and the MPU Module is not
addressing the EXbug program.

-12 Vdc Power - Available to the user for prototype module
requirements. (1.5 Amps max.)

REFRESH REQUEST - When low, this input signal to the MPU
Module initiates a memory refresh cycle of the dynamic
memory modules. The memory clock signal will continue to
run to allow memory refreshing.

TABLE 2. EXORciser Bus Signals (cont'd)

PIN SIGNAL
NUMBER | MNEMONICS SIGNAL NAME AND DESCRIPTION

13 REF GRANT | REFRESH GRANT - When high, this output signal from the MPU
» Module instructs the dynamic memory modules to refresh
their memories.

14 DEBUG DEBUG - This Tlow level signal from the DEbug Module
indicates that the DEbug Module 1is installed in the
EXORciser. This 1is used to determine whether the VUA
signal is controlled by the DEbug Module or the MPU

Module.

15 BUSGNT BUS GRANT - This signal is generated by the MPU Module in
response to a low level Q. When high, this signal
indicates that the MPU is not in control of the bus.

16 +12VDC +12 Vdc Power - Available to the user for prototype module

requirements. (2.5 Amps max.)
17 STANDBY STANDBY Power - Same as STANDBY on Pin U.

18 CLK CLOCK - A symmetrical clock signal generated by the MPU
Module in phase with E. It is free running except when
used with slow memories. During memory ready (low level
MNRDY), the CLK signal is stretched high.

19 VXA VALID EXECUTIVE ADDRESS - A high level signal generated by
the DEbug Module in place of the VUA signal (refer to
description of VUA on Pin 10) when the EXORciser is
operating in the dual map mode and the EXbug program is
addressing the executive portion of the memory map.
Additionally, all peripheral modules (such as memories)
must be set to respond to VXA signal if the user wants to
operate those modules in the executive portion of the

map.
20,21,22 GND GROUND
23 BS BUS STATUS - This signal is generated by the MPU Module.

When high, this signal, in conjunction with the BA signal
(pin P), determines the MPU halt, interrupt, and sync
states.

24 GND(REF) GROUND (REFERENCE) - Available to the user for prototype
modules that require an isolated ground. This ground line
is not connected to the normal EXORciser ground

connection.
25,26 USER DEFINED - These signal _lines, along with their
27,28 counterpart pin numbers (C,D,E,F) are reserved by Motorola

for possible expansion of the data bus to 16 bits. Since
compatibility of 16-bit data bus modules with existing

modules is unlikely, these eight lines may be used for
custom modules.

DATA bus (bit 1) - Same as D3 on Pin H.
DATA bus (bit 5) - Same as D3 on Pin H.

29
30

o' c'
(2] B)

TABLE 2. EXORciser Bus Signals (cont'd)

PIN SIGNAL

NUMBER | MNEMONICS SIGNAL NAME AND DESCRIPTION
31 DO DATA bus (bit 0) - Same as D3 on Pin H.
32 F DATA bus (bit 4) - Same as D3 on Pin H.
33 Al5 ADDRESS bus (bit 15) - Same as Al4 on Pin M.
34 Al12 ADDRESS bus (bit 12) - Same as Al4 on Pin M.
35 A1l ADDRESS bus (bit 11) - Same as Al4 on Pin M.
36 A8 ADDRESS bus (bit 8) - Same as Al4 on Pin M.
37 A7 ADDRESS bus (bit 7) - Same as Al4 on Pin M.
38 A4 ADDRESS bus (bit 4) - Same as Al4 on Pin M.
39 A3 ADDRESS bus (bit 3) - Same as Al4 on Pin M.
40 A0 ADDRESS bus (bit 0) - Same as Al4 on Pin M.

41,42,43 GND GROUND

BUS SIGNAL TIMING SPECIFICATIONS

The second portion of Appendix A is intended to provide the user with detailed
timing data and general application notes. It is written from the perspective
of the design engineer who wants to design a new peripheral and/or memory module
that will interface with the EXORciser bus. Therefore, timing data is presented
with respect to the bus (internal timing on specific modules is not discussed).
Figure 1 presents a block diagram illustrating this point of view (using the bus
as the reference). Figure 2 provides a general timing diagram for the most
important signals on the bus. Frequent reference will be made to these two
figures throughout the following discussion.

Assumptions

A1l timing data presented in this appendix is based upon the EXORciser system
hardware consisting of the multilayer motherboard, the MPU Module (M6809MPU),
and the DEbug Module (M6809DB). In addition, it is assumed that all interfacing
to the bus is buffered with MC8T97 (MC6887) or equivalent devices. Timing data
on each signal 1is based upon a capacitive load (CL) of 50 picofarads and a
maximum device loading of 10 MC8T97 or equivalent devices (-4.0 mA @ 0.5V and
400 uA @ 2.4V). Vcc is always assumed to be 5.0 volts. Ground is O volts and
is Tlogic zero (low). Positive current is defined as into the terminal
referenced.

MPU
Module

MPU
mos | mos 4o
E a

TIMING CKT

>

VMA

DEbug Module

J/ \L NV

Data Bus (8 bit)
Address Bus (16 bit)

Bus Bus Bus Bus 8us Bus
VUA VXA R/W MEM E Q
CLK
User Module

FIGURE 1. EXORciser Timing Signals Diagram (Bus View)

| TBEHBEH

k:— TBEHBEL, ——————
BUS E (BE) \ J \ /_

ja— TBELBQH —¥}&———— TBQHBQL ——— >

BUS Q (B0) _—/7 \ /

"— TMCHMCL _—ﬂ

1

TMCHBEH — |a— —>| J&— TBELMCL
MEM CLK (MC) —\ / \ /
—» Je— TADVBQH
J—— TADVBEH —— —| |e— TBELADX
R/W, VUA, VXA (AD)
je— TBQHDHY —¥]
TBEHDWV ~ —o] ja— —»| |ja— TBELDWZ
N\ A \ V2
DATA (WRITE) (DW) —/ \ / -
ja— vDRVBEL-o4
BN 7\ e
DATA (READ) (DR) —/ ./ o

FIGURE 2. EXORciser Bus Specification Timing Diagram

Nomenclature and Abbreviations

A11 abbreviations shown in Figure 2 and Table 5 (as well as in the examples) use
upper case characters with no subscripts. The initial character is always the
letter T followed by a six-character descriptor. This descriptor is used to
identify the to/from measurement points. The first three letters of the
descriptor identify the signal name and transition level for the measurement
starting point, while the last three letters identify the signal name and
transition level for the measurement ending point. The descriptor format is
illustrated in Table 3, while Table 4 lists the measurement abbreviations.

Description of Bus Timing and Examples

The bus timing and control signals are generated by the MPU and DEbug Modules.
These signals will be described with reference to Figures 1, 2, and Table 5.

During instruction execution, the MPU uses both the address bus and data bus,
regardless of whether an internal or external MPU operation is being performed.
In order to prevent the system from using erroneous address and data
information, the MPU generates the VMA signal. When VMA is high, the MPU is

A-9

addressing an external addressable location. During DMA and refresh operations,
WMA is appropriately three-stated or pulled low to prevent operational errors.
In the EXORciser system, the DEbug Module uses the high level VMA signal to
generate either the VUA or the VXA signal. The high level VUA signal selects
address locations within the User map, while the high level VXA signal selects

locations within the Executive map. These signals will never be simultaneously
high.

TABLE 3. Descriptor Format

T XX X XX X

)

Transition level of ending point
Signal name of ending point
Transition level of starting point

Signal name of starting point

TABLE 4. Measurement Abbreviations

ABBREVIATIONS (Signal Names)

AD =Bus Address, Bus R/W, Bus VUA, or Bus VXA
DW = Write data from MPU to peripheral module
DR = Read data from peripheral module to MPU
MC = Bus Memory Clock
BE =Bus E clock signal
BQ =Bus Q clock signal
ABBREVIATIONS (Transition Levels)

H =Low-To-High Transition

L =High-To-Low Transition

V =Transition to Valid State

X =Transition to Invalid or Don't Care State
Z =Transition to Off (High Impedance State)

WAVEFORMS

WAVEFORM SYMBOL INPUT OUTPUT
Must be valid Will be valid

———___ Change from Will change from
High-To-Low High-To-Low
Change from Will change from
/ Low-To-High Low-To-High
W Don'’t Care Changing state
(Any change)
::) High impedance
(Off)

A-10

The time relationship between the bus signals is shown in Figure 2, while the
minimum, typical, and maximum time values for the signals are listed in Table 5
(for 1.0 MHz, 1.5 MHz, and 2.0 MHz operation). All of these time values are
referenced to either the leading edge or trailing edge of BUS E (BE) or BUS Q
(BQ). Time relationships not specified within this table can be readily
calculated from the information provided. Examples 1 and 2 present two typical
problems, along with the calculations required to determine the solution to
each.

From the analysis, it has been determined that the user module must place valid

data on ‘the data bus within 463 nanoseconds from the time that BUS ADDRESS,
BUS R/W, and BUS VUA or BUS VXA become valid.

TABLE 5. EXORciser Bus Specifications

SIGNAL 1.0 MHz 1.5 MHz 2.0 MHz

NAME MIN TYP MAX MIN TYP MAX MIN TYP MAX
TBEHBEH 980 1000 647 480
TBEHBEL 435 510 265 205
TMCHBEH -17 -4 8 -17 -4 8 30
TMCHMCL 430 495 260 255
TBELMCL -7 4 16 -7 4 16 -7 4 16
TADVBEH 248 410 153 98
TADVBQH 18 175 18 8
TBELADX 9 50 9 9
TBEHDWV 10 28 53 63
TBQHDWV 260 280 188 153
TBELDWZ 13 20 13 13
TDRVBEL 123 220 103 83
TBELBQH 250 260 175 135
TBQHBQL 435 500 265 205

NOTE: Al1 times are shown in nanoseconds. For information on values not shown
in table, contact (800) 528-1908.

A-11

EXAMPLE 1. Determining Data Ready Time (Read Operation)

PROBLEM:

To determine, during a memory read operation, the minimum
(worst case) time _interval between the time that the
BUS ADDRESS, BUS R/W, and BUS VUA or VXA become valid and
the time that valid data must be on the data bus.

(This time is TADVIRV).

ANALYSIS:

From Figure 2, we obtain the BUS E, BUS ADDRESS, and
DATA (READ) signals.

Jt———— TBEHBEL -——-D'

BUS E (BE) L / \

je—————»}— TADVBEH

j&——————»+— TDRVBEL

’4—— TADVDRY ————>

TADVDRV(= TADVBF.H(+ x'BEHBEL() - TDRVBEL

MIN) MIN) MIN (WORST CASE)

TADVDRV(MI”) = 248 nSEC + 435 nSEC - 220 nSEC

TADVDRV(MIN) = 463 nSEC

CONCLUSION:

From the analysis, it has been determined that the user
module must place valid data on the data bus within
463 nanoseconds from the time that BUS ADDRESS, BUS R/W,
and BUS VUA or BUS VXA become valid.

A-12

EXAMPLE 2. Determining the Data Margin During Read Operation

PROBLEM:

To determine whether the memory module shown will function satisfactorily
during a read operation. This example also works equally well for I/0
devices such as the PIA or ACIA.

PN —

VA —
USER
MODULE

R/ ————

BUS E ———

R G

ASSUMPTIONS:

(1) User module data access time from a valid address location:
ta(A) = 340 nanoseconds

(2) User module data access time from BE going high:
ta(BE) = 100 nanoseconds

(3) In order to occur during the read cycle, the last data access time to
become valid must be selected: ta(A) or ta(BE), whichever occurs later.

(4) BUS ADDRESS, BUS R/W, and BUS VUA or BUS VXA must be valid 30 nanoseconds
prior to the leading edge of BUS BE.

ANALYSIS:

(1) From the bus specifications, determine the worst case conditions for a
memory read operation and plot the timing diagram for a read cycle.

(a) TBEHBEH (min)
(b) TBEHBEL (min)
(c) TADVBEH (min)
{d; TBELADX (min)
e) TDRVEBL (worst case)

980 nanoseconds
435 nanoseconds
248 nanoseconds

9 nanoseconds
123 nanoseconds

Plot: Bus Read Specifications (Worst Case)

A-13

EXAMPLE 2. Determining the Data Margin During Read Operation (con't)

BUS E (BE)

ADDRESS,

R/H, VUA, VXA (AD)

DATA (READ) (DR)

s 980 nSEC

»l
\al

—

e
pe—— 435 nstc e (545 nsEC] ———»
fo— (258 soc]—|
Je— 248 nSEC —»] —»| j&— 9 nsEC

ORERY AN

fe———— [560 nSEC] ————
pe— [312 nSEC] —»fe——>— 123 nsEC
N

n_/

(2) From the timing plot produced in step 1, calculate the timing
relationships required to evaluate the mdoule read cycle.
are shown within boxes in the plot produced in the previous step.)

(a) TADVDRV
TADVIRV
TADVDRYV

(b) TBEHDRV
TBEHDRV
TBEHIRV

(c) TBELBEH
TBELBEH
TBELBEH

(d) TADXADV
TADXADV
TADXADV

wnonn

TADVBEH + TBEHBEL - TDRVBEL
248 nsec + 435 nsec - 123 nsec
560 nanoseconds

TBEHBEL - TDRVBEL
435 nsec - 123 nsec
312 nanoseconds

TBEHBEH - TBEHBEL
980 nsec - 435 nsec
545 nanoseconds (not required for read cycle)

TBELBEH - TBELADX - TADVBEH
545 nsec - 9 nsec - 248 nsec
288 nanoseconds

(These values

(3) From the timing plot produced in step 1 and the worst case bus read
specifications, determine when valid data (DM) will be available from the
module. Calculate and plot the data margin by referencing the times to

TBEH.

A-14

EXAMPLE 2. Determining the Data Margin During Read Operation (cont'd)

e 980 nSEC »|

[
Je——— 435 nSEC ——>}————— 545 nSEC —————»]

BUS E (BE) /I \ r

I je— 288 nSEC —a]
je—248 nSEC —| —>]| j¢— 9 nsEC
ADDRESS, AWV
R/, VUA, VXA (AD) M ! ‘A’A’A‘A’A‘A‘A‘A’A‘A’A’A‘A‘A’A’
J&—————— 560 nSEC —————
l&— 312 nSEC ——»-je—s}—— 123 nSEC

DATA (READ) (DR) } ()

—/
92 nSEC —] fe— |
f¢— 340 nSEC |

VALID DATA l I I
ta(A) (om) | |
- }&—100 nseC |

VALID DATA | l
ta(BE) (DM) I

—{ 212 nSEC |a—

VALID DATA READ MARGIN l

(a) Using ta(A):

TBEHDMV = ta(A) - TADVBEH
TBEHDMV = 340 nsec - 248 nsec
TBEHDMV = 92 nanoseconds

(b) Using ta(BE):

TBEHDMV

ta(BE)
TBEHDMV = 1

00 nanoseconds

(4) Valid data ta(A) occurs 92 nanoseconds after TBEH. Valid data ta(BE)
occurs 100 nanoseconds after TBEH and is the limiting time factor. Therefore,
data is valid 100 nanoseconds after TBEH. Since the bus specification requires
Fhat data be valid within 312 nanoseconds of TBEH or TBEHDRV, the valid data
read)margin is calculated using the following formula (illustrated in preceding
step).

TBEHDRV - TBEHDMV
312 nsec - 100 nsec
212 nanoseconds

CONCLUSION:

Valid Data Read Margin
Valid Data Read Margin
Valid Data Read Margin

The user module will operate satisfactorily for a read operation on the
EXORciser bus.

A-15

APPENDIX B
EXBUG 2.1 PROGRAM FOR EXORciser

B-1

PAGE 001 EXBUGO? . SA:1 EXBUG2 VERSION 2.1,6809 15 MAR 1979

00001 NAM EXBUGZ

00002 TIL VERSION 21,6809 15 MAR 1979

00003 IDNT VERSION Z.1,4809 15 MAR 1979

00004 OPT NOCLIST DON‘T LIST CONDITIONAL ASSEMBLY STATEMENTS
00006 * EXBUG (TM) PROGRAM FOR EXORCISER (TM) SERIES-II
00007 # COPYRIGHT 1979 BY MOTOROLA INC

00009 # EXBUG COMMANDS

00010 # LOAD(CR) LOADER

00011 # VERF(CR) VERIFY

00012 ¥ PNCH(CR) PUNCH

00013 # PRNT(CR) PRINT

00014 % SRCH(CR) SEARCH

00015 *+ MDOS(CR) LOAD AND START MDOS

00016 % USER(CR) DEBUG IN THE USER MAP

00017 % EXEC(CR) DERUG IN THE EXECUTIVE MAP

00018 + /f DISPLAY/CHANGE MEMORY

00019 + {LF) NEXT LOCATION

00020 *# (SPACE) PREVIOUS LOCATION

00021 * / CLOSE/REOPEN CURRENT LOCATION

00022 + (CR) CLOSE

00023 + 0 CALCULATE SHORT RELATIVE OFFSET
00024 # il CALCULATE LONG RELATIVE ADOFFSET
00025 ¥ A DISPLAY/CHANGE THE A ACCUMULATOR
00026 *# B DISPLAY/CHANGE THE B ACCUMULATOR
00027 ¥ .C DISPLAY/CHANGE THE CONDITION CODE REGISTER
00028 # D DISPLAY/CHANGE THE DPR REGISTER
00029 ¥ E DISPLAY/CHANGE THE SWI RETURN SWITCH
00030 * 6 60 (JUMP TO ADDRESS)

00031 * $H SET HALT ON ADDRESS

00032 # H RESET HALT ON ADDRESS

00032 LI INITIALIZE MEMORY

00034 ¥ K DISPLAY/CHANGE CONSOLE PAD VALUE
00035 * S SET MEMORY SEARCH ADDR AND MASK
00036 ¥ M SET MEMORY SEARCH ADDR AND MASK
00037 ¥ N TRACE INSTRUCTION

00038 + P DISPLAY/CHANGE THE PROGRAM COUNTER
00039 L CONTINUE EXECUTION

00040 ¥ ;0 DISPLAY CHANGE DEBUG OFFSET

00041 ¥ $R DISPLAY REGISTERS

00042 + R DISPLAY REGISTERS

00043 + .5 DISPLAY/CHANGE STACK POINTER

00044 LI 1 SET TRACE TO ENDING ADDRESS

00045 T RESET TRACE TO ENDING ADDRESS

00046 + U DISPLAY/CHANGE THE U REGISTER

00047 ¥ U REMOVE BREAKPOINTS

00048 * $V DISPLAY/SET BREAKPOINTS

00049 L DISPLAY/SET BREAKPOINTS

00050 L 8-BIT MEMORY SEARCH

00051 ¥ X DISPLAY/CHANGE THE X REGISTER

00052 Y DISPLAY/CHANGE THE Y REGISTER

00053 ® 1 DISPLAY/CHANGE THE LINE PRINTER SWITCH
00054 L B DISABLE PARITY ERROR INTERRUPT
00035 * ENABLE PARITY ERROR INTERRUPT

00056 # THE USER CAN ADD COMMANDS TERMINATED BY A CARRIAGE RETURN
00057 # BY SUPPLYING EXBUG WITH THE BEGINNING AND ENDING ADDRESSES
00058 *+ OF A COMMAND TABLE

B-2

PAGE 002 EXBUGO? .SA:1 EXBUGZ VERSION 21,6809 135 MAR 1979

00060
00061

00065

00067

00069
00070
00071

00073
00074
00075
00076
00077
00078

00079

00087

00091

00094

0001

FCF4
FCFS
83FF
FCr8
FCF9
FCFA
FCFB
FCFC
FCFD
FCFE
FCFF
FCFD
003F

EBCO

EB0O

EXBUG COMMANDS RECOGNIZE THE FOLLOWING PARAMETER PREFIX:
£ - USE TWO’S COMPLEMENT

THIS FILE GENERATES THE LISTING OF THE FIRST IK OF
EXBUG, WHICH IS SUPPLIED WITH THE SYSTEM, AS WELL AS
THE ENTIRE EXBUG LISTING. THIS IS CONTROLLED BY THE
CONDITIONAL ASSEMBLY FLAG LISTNG. LISTNG IS EQUATED
TO ONE OF THE FOLLOWING LABELS AS DESIRED.

AONK EQU O ASSEMBLY LISTING OF FIRST 1K

AAL EW 1 ASSEMBLY LISTING OF ALL
¥ HERE’S THE CONDITIONAL ASSEMBLY FLAG

A LISTNG EQU ONEK

EXBUG EQUATES
A ACIASC EQU $FCF4 ACIA STATUS/CONTROL REGISTER
A ACIADT EQU SFCFS ACIA DATA REGISTER
A TOPTGT EQU $83FF DEFAULT TOP OF VECTORS (EXEC MAP)
A HPIAAD EQU $FCF8 HALT ON ADDRESS PIA - A DATA
A HPIAAC EQU HPIAAD+1 HALT ON ADDRESS PIA - A CNTL
A HPIABD EQU HPIAAD+Z HALT ON ADDRESS PIA - B DATA
A HPIABC EGU HPIAAD+3 HALT ON ADDRESS PIA - B CNTL
A MPIAAD EGU HPIAAD+4 MAP CONTROL PIA - A DATA
A MPIABD EQU HPIAAD+S MAP CONTROL PIA - B DATA
A MPIAAC EQU HPIAAD+6 MAP CONTROL PIA - A CNTL
A MPIABC EQU HPIAAD+7 MAP CONTROL PIA - B CNTL
A SBIT EQU MPIABD STOP BIT INDICIATION
ASHI EGU $3F SWI INSTRUCTION
A SKIF2 EQU ¢8C CMPX IMMEDIATE INSTRUCTION

MDOS LINE PRINTER DRIVER EQUATES
A LPINIT EQU $EBCO INITIALIZE LINE PRINTER INTERACE
A LIST EGU $EBCC SEND CHARACTER TO LINE PRINTER

MDOS BOOT LOAD ENTRY EQUATE
A MDOSE EGU $ES00

B-3

PAGE 003 EXBUGO9 .SA:1 EXBUGZ VERSION 2 1,480% 15 MAR 1979

000978 FOOO
00102

00103A FO00 16
001047 FOO3 20
001054 FOOS 12
001064 FO06 20
001074 FO08 12
001084 FOO9 16
001094 FOOC 16
001104 FOOF 20
00111A FO11 12
001127 FO12 16
001134 FO15 16
00114A FO18 14
001154 FOIB 16
00116A FOIE 16
001174 FO21 20
00118A F023 12
001194 F024 20
00120A FO26 12
00121A F027 20
001227 F029 12
001237 FO2A 20
001244 FO2C 12

00126
00127
00128
00129
00130
00131

00133
00134
00135
00136
001374 FO2D 8D
00138
00139
00140
00141
00142
001437 FOZF A6
001444 FO31 81
001454 F033 27
00146A FO35 8D
00147A F037 30
00148A FO39 20

ORG

% THE FOLLOWING JUMP TABLE IS COMMON TO EXBUG 1 AND 2

027 F2AA PWRUP LBRA START GET HERE FROM RESET
41 FO44 XBEGEN BRA BEGEND GET BEGINNING AND ENDING ADDRESSES
NOP HOLD ENTRY POINT
64 FO&C XCBCDH BRA CBCDHX CONVERT ASCIT HEX TO BINARY
NOP HOLD ENTRY POOIINT
Q0EA FOF6 XCHEXL LBRA CHEXL ~ CONVERT 4MSB TO ASCII HEX
00EB FOFA XCHEXR LBRA CHEXR CONVERT 4LSB TO ASCII HEX
73 F0B4 XINADD BRA INADDR GET HEX ADDRESS INDIRECT (X)
NOP HOLD ENTRY POINT
00BD FOD2 XINCH LBRA INCH INPUT ONE CHARACTER
020D F225 XINCHN LBRA INCHNP INPUT ONE CHARACTER NO PARITY
0092 FOAD XOUTCH LBRA CMNDE OUTPUT CHARACTER (WITH SPEED PAD)
008B FOAY XOUTZH LBRA OUTZHS PRINT 2 HEX CHARS. SPACE (X)
0086 FOA7 XOUT4H LBRA OUTAHS PRINT 4 HEX CHARS, SPACE (X)
18 FO3B XPCRLF BRA PCRLF PRINT CR, LF
NOP HOLD ENTRY POINT
07 FO2D XPDATA BRA PDATA PRINT CR, LF. DATA STRING
NOP HOLD ENTRY POINT
06 FOZF XPDAT1 BRA PDATA1 PRINT DATA STRING
NOP HOLD ENTRY POINT
TF FOAB XPSPAC BRA PSPACE PRINT SPACE
NoP HOLD ENTRY POINT

*

$F000

1/0 ROUTINES START HERE

THESE ROUTINES ARE ACCESSED FROM THE JUMP TABLE
AND ARE THE EXBUG 1 FUNCTIONAL EQUIVALENTS WITH
OPTIONAL LINE PRINTER OUTPUT

*

+

PRINT CR, LF, DATA STRING TERMINATED BY EOT
*

FO2D A PDATA EQU #
Fz2 Fozi BSR XPCRLF PRINT CR, LF
FALL INTO PDATA1 ROUTINE
*
PRINT DATA STRING TERMINATED BY EOT
#
FOZF A PDATAl EQU #
84] A 0.X GET CHAR
04 A PR M EoT?
3 FOs9 BEQ ENDI YES: RETURN
El FO18 BSR XOUTCH NO, SEND CHAR
01 A LEAX 1.X INC POINTER
Fa FozF BRA PDATAL CONTINUE

B-4

PAGE 004 EXBUGO? .SA:1 EXBUGZ VERSION 2.1,4809 15 MAR 1979

00150
00151
00152
00153
00154A FO3B 86
001354 FO3D 8D
00136A FO3F 86
00157A FO41 8D
00158A FO43 4F
001594 FO44 20

00161

00162

00163

00164

001654 FO46 8E
00166A FO49 8D
00167A FO4B 8E
001687 FO4E 17
001694 FOS1 25
00170A FO053 8
00171A FOS6 8D
00172 F058 8E
00173A FOSB 17
00174A FOSE 25
001754 F060 S8E
00176 F063 EC
00177A FO55 A3
00178A F067 25
001797 FOL9 39

00181
00182
00183
00184
001857 FO4A 8D
00186

00188
00189
001%0
00191
00192
00193
00194A FOLC 81
00195A FOLE 22

*

PRINT CR, LF, NULL
1]

FO3B A PCRLF EQU #
0D A LDA #$D SEND CR
D9 Fo18 BSR XOUTCH
0A A LDA #$A SEND LF
DS Fo18 BSR XOUTCH
CLRA SEND NULL
D2 Fo18 BRA XOUTCH
*
INPUT BEGINNING AND ENDING ADDRESSES
#
F045 A BEGEND EQU #
FB91 A LDX #MBEG PRINT CR, LF, BEG
D9 F024 BSR XPDATA
FFOA A LDX #BEGA PRINT/CHANGE BEGA
0357 F3A8 LBSR PCMND1
F3 FO04s BCS BEGEND ERROR
FB%6 A ENDIN LDX #MEND PRINT CR, LF, END
CC Fo24 BSR XPDATA
FFOC A LDX ~ #ENDA PRINT/CHANGE ENDA
054A F5A8 LBSR PCMND1
F3 FO033 BCS ENDIN ERROR
FFOR A LDX #BEGA POINT TO BEGA
02] b 2X INSURE ENDA D= BEGA
84 A SUBD 0.X
DD FO46 BCS BEGEND BEGA LARGER
ENDI RTS
*
INPUT ONE ASCII HEX CHARACTER AND CONVERT TO BINARY
L
FOA A INIH EQU #
A9 FO15 BSR XINCHN INPUT CHARR
FALL INTO CBCDHX ROUTINE
#
CONVERT ASCII HEX TO BINARY
* [F NOT HEX, CHAR NOT CONVERTED AND N=1
* IF HEX, CHAR CONVERTED AND N=0
*
FO6C A CBCDHX EQU #
4 A PR ¥F
i1 Fost BHI CBCDH1 NOT HEX

B-5

PAGE 005 EXBUGO? .SA:1 EXBUGZ VERSION 2 1,4809 15 MAR 1979

00196A FO70 81
001974 F072 25
001987 F074 80
001994 FO76 84
002004 FO78 39

00202
00203A F079 81
002044 FO7B 22

002054 FO7D 81
00206A FOTF 24

002074 FO81 1A
002087 F083 39

00210
00211
00212
00213
00214
00215
00216A FOB4 4F
00217A F08S SF
00218A FO86 ED
002194 F088 8D
00220A FOBA 2B
00221A FOSC 8D
00222A FOSE 5C
00223A FOSF Ci
00224A FO91 26
002254 F093 39

00227
00228
00229
00230
002317 FO94 34
002324 FO96 Cb
002334 FO98 &8
00234A FO9A &9
002354 FOSC SA
00236A FO9D 26
00237A FO9F AB
00238A FOAL A7
00239A FOA3 35

00241

FI&=

BABR I

Fog4

A& &S8R

FO94

01

F9
01
01

A
Fo79
A

A
Fos1

A
F076

A

PR ¥R
BCS CDEC <A
SUBA #7 CORRECT A-F
A CBCDH3 ANDA #$F MASK TO 4 LSB
RTS
CONVERT ASCII DECIMAL TO BINARY
CDEC CWPA ¥9
BHI CBCDH1 ERROR, >9
twPA #°0
BCC CBCDH3 0-9
CBCDH1 ORCC #$8 SET N
RTS

A

A
FosA
F093
F094

A
Fog8

fA
A
A
A
A

Foss
A
A
A

+

INPUT ADDRESS, RETURN WITH:
* (R) LAST CHAR INPUT
¥ (B) NUMBER OF HEX CHARS INPUT

*

INADDR EQU
CLRA
CLRB
STD

INADD! BSR
BMI
BSR
INCB
CHPB
BNE

INADD3 RTS

*

INIT INPUT STORAGE

0. X

INTH GET HEX CHAR

INADD3 NOT HEX

MERGEH MERGE INPUT WITH NUMBER
INC HEX CHAR COUNT

#5 HAVE MORE THAN 4 CHARS?

INADDI NO

* MERGE HEX CHAR IN A (4 LSB) WITH 16 BIT HEX MUMBER (X)

¥

MERGEH EQU
PSHS
LDB

MERGE1 ASL
ROL
DECB
BNE
ADDA
STA
PULS

SAVE ACC A/B
NUMBER#15

MERGE1
LX
1.X
AB,PC RESTORE ACC B & RTS

INPUT+NUMBER

B-6

PAGE 006 EXBUGO9 .SA:1 EXBUGZ VERSION 21,6809 15 MAR 1979

00242
00243
00244
00245A FOAS IF
00246
00247
00248
00249
00250
00251A FOA7 8D
00252
00253
00254
00255
00256
00257A FOA? 8D
00258
00259
00260
00261
00262
00263A FOAB 86
00264

00266
00267
00268
00269
00270A FOAD 7D
00271A FOBO 26
002727 FOB2 8D
00273 FOB4 7D
00274A FOB7 27
002754 FOBY BD
00276A FOBC 24
00277A FOBE 7F
00278A FOC1 39

00280
00281
00282
00283
00284A FOCZ AS
002854 FOC4 34
00286 FOC6 8D
002874 FOCS 8D
00288 FOCA 35
0026% FOCC 8D
002904 FOCE 30
00291A FODO 20

¥ PRINT TOP OF DATA STACK
¥

FOAS A OUTHEX EGU #
3 A TR WX
FALL INTO OUT4HS
*
PRINT 4 HEX CHARACTERS, SPACE (X)
#
FOA7 A OUT4HS EQU #
19 FOC2 BSR OUTZH PRINT FIRST 2 HEX CHARS
FALL INTO OUTZ2HS FOR LAST 2 HEX CHARS, SPACE
*
PRINT 2 HEX CHARACTERS, SPACE (X)
#
FOAS A OUTZ2HS EGU #
17 FoOC2 BSR OUTZH PRINT 2 HEX CHARS
FALL INTO PSPACE
*
PRINT SPACE
*
FOAB A PSPACE EQU #
20 A LDA #$20 SPACE
FALL INTO COMMAND OUTPUT CHARACTER
*
COMMAND ECHO/OUTPUT ROUTINE
*
FOAD A CMNDE EQU +
FF67 A TST CASSET PUNCHING?
76 F128 BNE OUTCH YES
74 Fi28 BSR OUTCH ALWAYS OUTPUT TO CONSOLE
FF37 A TST IFLAG OUTPUT TO PRINTER?
DA FO93 BEQ INADD3 NO
EBCC A CMNDE1 JSR LIST YES
DS F093 BCC INADD3 K
FF37 A CLR IFLAG PRINTER ERROR, CLEAR I FLAG
RTS
#
QUTPUT 2 HEX CHARS (X)
¥
FOC2 AOUTH EQU #
84 A LA 0. X GET CHAR TO PRINT
02 OUTZ2H!1 PSHA SAVE IT
& FOFS BSR CHEXL CONVERT 4 MSB
E3 FOAD BSR CMNDE PRINT ASCII
02 PULA RESTORE CHAR
2C FOFA BSR CHEXR CONVERT 4 LSB
01 A LEAX 1, X INC POINTR
DB FOAD BRA CMNDE

B-7

PAGE 007 EXBUGO? .SA:1 EXBUG2 VERSION 2. 1,46809 15 MAR 1979

00293
00294
00295
00296
00297
00298A FODZ B
002994 FODS 47
003007 FODS 24
00301A FODS BS
003024 FODB 7D
00303A FODE 27
00304A FOEO 7F
003054 FOE3 39

00307
00308
00309
00310
00311A FOE4 17
003127 FOE7 81
00313A FOET 27
00314A FOEB 81
003154 FOED 27
00316A FOEF 81
00317A FOF1 26
00318

00320
00321
00322
00323A FOF3 16

00325
00326
00327
00328
003297 FOF6 44
00330A FOF7 44
00331A FOFS 44
00332A FOF9 44
00333
00334
00335
00336
00337
00338A FOFA 84

4

% INPUT ONE CHARACTER FROM CONSOLE

ECHO CHARACTER IF AECHO CLEAR
#

FODZ A INH EQU #
FCF4 A LDA ACIASC RECEIVE REG FULL?
ASRA
FA& FOD2 BCC INCH NO
FCFS A LDA ACIADT YES, GET CHAR
FF38 A TST AECHD ECHO?
CD FOAD BEQ CMNDE YES
FF38 A CLR AECHD NO, RESET AECHO
RTS
*
¥ EXBUG COMMAND INPUT ROUTINE
¥
FOE4 A CMNDI EQU #
0138 F222 LBSR INNPNE ASSUME NO ECHO
oA A CHPA A LF?
19 F104 BEQ CHEXI YES, DON‘T ECHO
0D A CMPA 88D CR?
15 Fi104 BE@ CHEX1 YES, DON‘T ECHO
18 A CHPA 8818 CTL-X?
BA FOAD BNE CMNDE NO, ECHO CHAR

¥ YES, RETURN TO EXBUG

#
EXBUG MAID ENTRY ADDRESS - MUST BE AT $FOF3
¥
0230 F346 FOF3 LBRA RENTRZ

*

CONVERT 4 MSB TO ASCIT HEX

#

A CHEXL EQU #

LSRA
LSRA
LSRA
LSRA

FALL INTO CHEXR FOR CONVERSION

¥

CONVERT 4 LSB TO ASCII HEX
+

FOFA A CHEXR EQU #
OF A ANDA ¥$F

FOF6
SHIFT 4 MSB T0O 4 LSB

MASK TO 4 LSB

B-8

PAGE 008 EXBUGOY .SA:1 EXBUG2 VERSION 2.1,6809 15 MAR 1979

00339A FOFC 8B
00340A FOFE 81
00341A F100 23
003424 F102 8B
00343A F104 39

00345

00346

00347

003438

00349A F105 8E
003504 F108 Ab
00351A F10A 34
003524 F10C 17
00353A F10F 35
003544 F111 25
003354 F113 Ab
003364 F115 26
00357A F117 3D
00338A F118 27
00359A F11A 86
00360A F11C 8D
00361 F11E 86
003624 F120 20
00363

00354A F122 5D
003654 F123 26
00356A F125 7E

00368

00369

00370

00371

00372

00373A F128 17
003747 F12B 34
003750 F12D 84
00376A F12F 81
003774 F131 26
00378A F133 C6
00379A F135 7D
00380A F138 26
00381A F13A Fb
00382A F13D C4
00383A F13F SA
00384A F140 2B
003854 F142 4F
00384A F143 17
003874 F146 20

#0
§9
CHEX1
8

*
$IFLAG
0. X

A X
ACMND1
B X
CHEX1
0. X
1CMND1

CHEX1
#$D
CMNDE!
#$A
CMNDE1

CHEX1
LPINIT

ADD ASCII 0

0-9
A-F

SAVE OLD Z FLAG

GET OLD Z FLAG
ERROR

NEW ZFLAG
PRINTER NOW ON
PRINTER NOW OFF
PRINTER WAS OFF
SEND CR, LF

PRINTER WAS ON
INIT LP, PRINTER WAS OFF

QUTPUT CHARACTER FROM ACC A TO CONSOLE
WITH SPEED PAD IF PUNCH FLAG OFF

30 A ADDA
39 A cHPA
02 F104 BLS
07 A ADDA
CHEX1 RTS
#
1 COMMAND
*
F105 A ICMND EQU
FF37 A LDX
84 A LDA
12 A PSHS
043t F54D LBSR
14 fA PULS
F1 F104 BCS
84 A LDA
0B F122 BNE
TSTB
EA F104 BEQ
0D A LDA
98 FOB? BSR
0A A LDA
97 FOBY BRA
¥
ICMNDI TSTB
DF F104 BNE
EBCO A J
*
*
F128 A OUTCH EQU
00AC F1D7 LBSR
06 A PSHS
TF A ANDA
0D A CHPA
15 Fi48 BNE
04 A LDB
FF67 A TST
03 F13D BNE
FFO3 A LDB
TF A OUTCH! ANDB
DECB
0E Fi130 BMl
CLRA
0091 F1D7 LBSR
F5 F13D BRA

#
OCHAR
AB
87F
8D
OUTCHS
#
CASSET
OUTCH1
CRNL
7

OUTCH3
OCHAR
OUTCH1

B-9

SEND CHAR

SAVE ACC A/B
RESET CHAR PARITY

CR?

NO

4 NULLS IF CR AND PUNCHING

PUNCHING

CR AND NOT PUNCHING

RESET SIGN BIT (120,240 TI FLAG)
DONE PADDING?

YES

SEND NULL

PRGE 009 EXBUGO? .SA:1 EXBUGZ VERSION 21,4809 15 MAR 1979

003897 F148 F& FF02 A OUTCHS LDB CHARNL

00390A F14E 7D FF67 A TST CASSET

003714 F14E 27 ED F13D BE@ OUTCHI NOT CR AND NOT PUNCHING
00392A F150 4F OUTCH3 CLRA TO CLEAR CARRY
00393A FI151 35 & A PULS A/B,PC NOT CR AND PUNCHING ,RTS
00395 *

00396 # PNCH COMMAND

00397 ¥

00398 F133 APNCH EQU +

00399A F133 17 FEAD FOO3 LBSR XBEGEN GET ADDRS

00400A F136 8E FBEZ A PNCHI LDX #MHDR GET SO DATA

00401A F159 17 FEC8 F024 LBSR XPDATA

0040ZA FISC 8E FF94 A LDX #BUF+2 INIT RUFFER POINTER
00403A FI9F C& 02 A LDB #2 INIT BYTE COUNT
00404A F161 17 0283 F3E7 PNCH3 LBSR INPUTI

00405A F164 C1 15 A CMPE 421

00404A F166 24 EE FIS& BCC PNCH1 BUFFER OVERFLOW
004074 F168 81 0D A CHPA #8D

00408A F16A 26 F5 F161 BNE PNCH3 NOT CR

00409A F16C 8D 77 FIES BSR SETUP SET UP FOR 50
00410A FIE 7C FF&7 A INC CASSET PUNCH FLAG ON
00411A F171 7D FFO2 A TST SPEED

004124 F174 28 04 F17A BPL PNONI NOT TI CONTROL
004134 F176 86 30 A Lba #0 T1 PRINTER OFF
00414A F178 8D 55 FICF BSR DLE

004154 F17A 86 12 A PNON1 LDA #$12 DCZ - PUNCH ON
00416A F17C 8D 59 F1D7 BSR OCHAR

004174 FI7E 17 0096 F217 LBSR LIR PUNCH LEADER
0041BA Fi181 C6 30 A LDB #0 PUNCH RECORD TYPE, BYTE COUNT, ADDR
00419A F183 8D &9 FIEE BSR TPIN

00420A F185 27 04 F18B BEQ PNCHIS NO MSG

00421A F187 8D 77 F200 PNCHS BSR TPUNI PUNCH MESSAGE
004227 F18% 26 FC F187 BNE PNCHS NOT DONE

00423A FISB FE FFOA A PNCHIS LDU BEGA
00424A FISE FC FFOC A PNCH7 LDD ENDA CALC BYTE COUNT

004254 F191 3¢ 40 A PSHS U
00426A F193 A3 EI A SUBD 0,5+
00427A F195 1083 0018 A CNPD 824
004287 F199 25 02 F19D BCS PNCH1L

004294 F19B C& 17 A PNCH? LDB 823
004304 F15D CB 04 A PNCH11 ADDB #4

00431A FI9F F7 FF91 A STB BCONT SAVE BYTE COUNT
00432A FiAZ C6 31 fA L #1 PUNCH DATA RECORD
004337 F1A4 8D 48 FIEE BSR TPWN

00434A F1At IF 31 A TR UX

004354 F1AS 17 08F6 FAAL PNCHI3 LBSR FETCH

00436A F1AB 8D 55 F202 BSR PINT1

00437 FIAD 26 F9 FiA8 BNE PNCHI3

004387 F1AF 33 IF A LEAU -1,X CORRECT AND UPDATE ADDRESS
004394 FIBI 11B3 FFOC A CMPU ENDA

00440A F1BS 25 D7 Fi8E BCS PNCH7 NO

00441A F1B7 C6 03 A LB # $9 RECORD BYTE COUNT
00442A FIE? 8D 2R FIES BSR SETUP SET UP S9 RECORD

PAGE 010 EXBUGO9 .SA:1 EXBUGZ VERSION 21,6809 15 MAR 1979

00443A FI1BB C6 39 A LbB #9 PUNCH 59 RECORD
00444A F1BD 80 2F FIEE BSR TPUN

00445A FIBF 8D 356 F217 BSR LDR PUNCH TRAILER
00446A FIC1 7F FF67 A CLR CASSET PUNCH FLAG OFF
00447A F1C4 86 14 A LDA #s14 DC4 - PUNCH OFF
00448A F1C6 8D OF Fi1D7 BSR OCHAR

004494 FICB 7D FFOZ A TST SPEED

00430A FICB 2R 4% F216 BPL PUNTS NOT TI CONTROL
004351 * TI1 PRINTER ON ENTRY - CALLED FROM POWER-ON INITIALIZATION
004527 F1CD 86 39 A PNOFF3 LDA ¥9 TI1 PRINTER ON
00433 # FALL INTO DLE ROUTINE

00435 *

00434 * SEND DLE AND ACC A TO CONSOLE

00457)

00458 FICF ADE ENU +

004398 FICF 34 Q2 PSHA SAVE ACC A
00450A FID1 86 10 A LDA #$10 SEND DLE

00461A FID3 8D 02 F1D7 BSR OCHAR

00462R F1D5 35 02 PULA RESTORE ACC A
00443 # FALL INTO OCHAR

004465 *

00466 # QUTPUT CHARACTER FROM ACC A TO CONSOLE, NO SPEED PAD
00447 # GET HERE FROM ENTERING AT $F9CF

00448 *

00449 FID7 A OCHAR EQU +

00470A F1D7 34 04 PSHB SAVE ACC B
00471A FID? F& FCF4 A OCHARL LDB ACIASC TRANSMIT REG EMPTY?
00472 FIDC CS 02 A RITE #2

00473A FIDE 27 F9 F1D9 BER OCHAR1I NO

00474A FIEO B7 FCFS A STA ACIADT YES, SEND CHAR
004734 FIE3 35 B84 fi PLLS B.PC RESTORE ACC B AND RTS
00477 *

00478 # SET UP BYTE COUNT, ADDR=0000

00479 FIES A SETUP EQU *

00450R FIES 8E FF91 A LDX #BCONT

00481A FIEB CE 0000 A Loy # SET ADDR = 0
004327 FIEB E7 84 A STB 0. X SAVE COUNT
00483A F1ED 39 RTS

00484)

00485 # PUNCH S, RECORD TYPE, BYTE COUNT, ADDR
004854 FIEE ATPUN EQU

00487A FIEE 86 353 A LDRA #§ PUNCH S

004284 FIFO 8D ES FID7 BSR OCHAR

B-11

PAGE 011 EXBUGO? .SA:1 EXBUGZ VERSION 21,6809 15 MAR 1979

00489A FIF2 IF 98 A TR B.A PUNCH RECORD TYPE
00490A FIF4 8D E1 F1D7 BSR OCHAR

00491A FIF6 8E FF91 A LDX #BCONT

00492R FIF9 SF CLRB INIT CKSM
00493A FIFA 8D 04 F200 BSR TPUNT PUNCH BYTE COUNT
00494A FIFC EF 84 A StU 0. GET ADDR

00495A FIFE 8D 00 F200 BSR TPUNI PUNCH ADDR MSB
00496A F200 A6 84 ATPUNl LDA 0, PUNCH ADDR LSB
00497 *

00498 # PUNCH DATA

00499A F202 34 02 PUNT1 PSHA UPDATE CKSM
005008 F204 EB EO fl ADDB 0,5+

00501A F206 17 FEBB FOC4 PUNT3 LBSR OQUT2HI SEND BYTE

00502A F209 7A FF91 A DEC BCONT CHECK BYTE COUNT
00303A F20C 26 08 F216 BNE PUNTS NOT DONE

00504A F20E S3 COMB PUNCH CKSM
005054 F20F IF 98 A TR B.A

00506A F211 8D F3 F206 BSR PINT3

005074 F213 8D OA F2iF BSR XCRLF PUNCH CR, LF
00508A F215 #F CLRA SET Z FLAG (DONE)
005097 F216 39 PUNTS RTS

00511 *

00512 # PUNCH LEADER

00513 F217 ALDR EWN

00514A F217 C6 37 A LDB #55 COUNT

005157 F219 4F CLRA NULL

005164 F21A 8D BB F1D7 LDR1 BSR OCHAR

00517A F21C 5A DECB

00518A F21D 26 FB F21A BNE LDR1

00519A F21F 16 FDFF F021 XCRLF LBRA XPCRLF

00520 *

00521 # INPUT ONE CHARACTER, NO PARITY OR ECHO
00522 *

00523 FZZ2 A INNPNE EQU

00524A F222 7C FF58 A INC AECHO NO ECHO

00525 # FALL INTO INCHNP

00524 *

00527 # INPUT ONE CHARACTER, STRIP PARITY
00528 ' *

00529 FZ2Z5 A INCHW EQU

00530R F225 17 FEAA FOD2 LBSR INCH INPUT CHARACTER
00531A F228 84 T7F A ANDA #$7F STRIP PARITY
00532A F22A 39 RTS

00534 # READER INPUT ~ IGNORE RUBOUTS

00535 F22B ARDIN EGU %

00536A F2ZB 8D F5 F222 BSR INNPNE

00537A F22D 81 7F fA CMPA #$7F

005387 F22F 27 FA F22B BEQ RDIN RUBOUT, TRY AGAIN

B-12

PAGE 012 EXBUGO? .SA:1 EXBUGZ VERSION Z.1,680% 15 MAR 1979

005394 F231 39

00541A F232 B4
00542A F235 B7
00543A F238 39

00545

00546

00547

00548

00549

00550

005514 F239 Fé
00552A F23C 2A
00553A F23E 86
009544 F240 8D
00555A F242 20
00556

00557A F244 85
00358A F244 8D
005594 F248 85
00560A F24A 8D
005617 F24C 8D
00562

00563A F24E 81
00544A F250 26
00569A F252 5D
00566A F253 2B
00567A F255 81
005687 F257 26
00569A F259 SE
00570A F25C 8D
00571A F25E A7
00572 F260 81
00573A F262 27
00574A F264 80
00575A F266 44
00576R F267 26
00577A F269 &F
00578A F26B 8D
005794 F26D &C
005804 F26F 1F
00581A F271 8D
00382A F273 5A
005837 F274 26
00584A F276 86
005854 F278 A7
00586

005877 F27A 86
00588A F27C 8D

FCFD
FOF4

F239

FFO2
06
37
8D
08

i1
8F
5
ES
0D

0D
03

E9
53
F3
FFeF
cD
02
»
05
30

E3
01
1c
84
89
16

FB
04
02

3F
B4

RTS

A RDON3 ANDA SBIT

A

A

A
F244
A
FICF
F24C

A

A
F235

FZ3t
A
F24c
A
F22B
A
A
F269
A

F24C
A
F289
A
A
F289

Fzn

A
A

F232

STA
RTS

*

% READ RECORD ROUTINE

ACIASC

GET HERE FROM ENTERING AT $FBA4

*

READR EQU #
+ READER ON
LDB SPEED
BPL RDONt NOT TI CONTROL
READR? LDA #7 BLOCK FORWARD
BSR ILE
BRA READRI
*
RDONI LDA #511 DC1 - READER ON
BSR OCHAR
LDA #85F READER RELAY ON
BSR RDON3
READRY BSR RDIN GET CHAR
IF TI AND CR READ ANOTHER RECORD
CHPA #$D
BNE READR3 NOT CR
TSTB
BMI READR? IS TI
READR3 CMPA #'S
BNE READR1 FIRST CHAR NOT S
LDX #BUF-3 INIT BUFFER POINTER
BSR RDIN GET RECORD TYPE
STA 2.X SAVE IT IN BCONT
CHPA #9
BEQ READRS EOF
SUBA #°0
LSRA
BNE READR1 NOT HEADER OR DATA
READRS CLR 1, X INIT CKSM
BSR RDBYTE READ BYTE COUNT
INN 0X CORRECT CKSM
TR AB SAVE BYTE COUNT
READR7 BSR RDBYTE GET DATA
DECB CHECK BYTE COUNT
BNE READR7 NOT DONE
A STORE ETX FOR HEADER
STA 2.X

% READER OFF - CALLED FROM POMER ON INITIALIZATION
A RDROFF LDA #$3F READER RELAY OFF

BSR

RDON3

B-13

PAGE 013 EXBUG09 .SA:1 EXBUGZ VERSION 21,6809 15 MAR 1979

0058% F27E 86 13 A READRS LDA #$13 DC3 - READER OFF

00590A F280 17 FEAS F128 LBSR OUTCH

00591A F283 80 00 F285 BSR READRS CLEAR ACIA
00592A F285 B4 FCFS A READRS LDA ACIADT

00593A F288 39 RTS

00595 # READ BYTE

00596 FZ89 A RDBYTE EQU #

00597A F289 8D 1A F2AS BSR RDINHX GET CHAR
00598A F28B 48 ASLA MOVE TO 4 MSB
00559A F28C 48 ASLA

006004 F28D 48 ASLA

00601A F268E 48 ASLA

006024 F26F 38 02 A PSHS A AND SAVE IT
00603A F291 8D 12 F2A5 BSR RDINHX GET CHAR
00604A F293 AB EQ A ADDA 0,5+ FORM BYTE
006054 F293 A7 03 A SR 3 X STORE BYTE
00606A F297 BB FF90 A ADDA BCKSM UFDATE CKSM
00607A F29A B7 FF%0 A STA BCKSM

00608A F29D 8C FFD8 A CPX #BUF+70

006097 F2A0 27 02 F2R4 BEG RDBYT1 BUFFER OVERFLOW
00610A F2A2 30 01 INX .

00611A F2A4 39 RDBYT1 RTS

00613 * READER INPUT - HEX CHARACTER
00614 F2A5 A RDINHX EQU #

00615A F2A5 8D 84 F22B BSR RDIN

00616A F2A7 16 FDCZ FOSC LBRA CBCDHX

PAGE 014 EXBUGO? . SA:1 EXBUG2 VERSION 2.1,6809 15 MAR 1979

00618
00619
00620
00621 F2pA
00622A F2AA 10CE FFES
00623

00624A F2AE CE
006254 F2B1 8E
00626A F2B4 AF
00627 F2B6 BE
00628A F2B? AF
00629A F2BB 30
00630A F2BD AF
00631A F2BF 4F
00632~ F2C0 SF
00633A F2C1 FD
00634A F2C4 ED
00635

00636A F2C6 CE
00637A F2C9 CC
00638A F2CC ED
006394 F2CE C6
006407 F2D0 ED
00641

00642A F2D2 CC
00643A F2D5 ED
00644A F2D7 86
00645 F2D9 ED
00646

006474 F20B 17
00648

006497 F2DE Cé
00650A F2E0 E7
00651A F2E2 C6
00652A F2E4 E7
00633A F2E6 8D
00654A F2E8 8D
006557 F2EA 1IF
006568 FZEC 30
00457A F2EE Ab
00658 F2F0 85
006590 F2F2 27
00660A F2F4 8C
00661A F2F7 2B
00662A F2F9 Cé
00663A F2FE E7
00664A F2FD CA
00665A F2FF E7
00666A F301 7F
00667A F304 86
006687 F306 B7

FF02
83FF
SE
FBS1
4C
06
4t

FFES
c4

FOF4
FF3C
4
04
4

TFTF
48
2C
Lo

0524

03
c4
31
c4
96
94
3
1F
c4
02
F8

04
3%
c4
40
49
FFIE
50
FF21

00670

00471 F309
00572A F309 10CE FFES
00673A F30D 8E FF90
00674A F310 BF FF22

E700

#

% EXBUG POWER-UP INITIALIZATION

*

A START EQU #
A LDS #XSTACK INIT SP
INITIALIZE RAM
A LDU $ATOP+2
A LDX #TOPTGT
A STX -2, ATWI U
A LDX #CRCMD
A STX $CU CMDBEG-ATOP, U
A LEAX & X
A STX St U CMDEND-ATOP, U
CLRA
CLRB
A sth @
A st o0 U
% INITIALIZE HALT ON ADDRESS PIA
A LDU $ACIASC PIA BASE ADDRESS
A LDD #$FF3C A DATA TO OUTPUT
A STh 4 A DIR+CNTL
A LDB ¥4 B DATA TO QUTPUT
A ST &U B DIR+CNTL
* INITIALIZE MAP CONTROL PIA
A LDD #$7F7F A+B DATA OUTPUT
A SIb &U A+B DIR
A LbA ¥ A CNTL
A S$Tb 10,U A+B CNTL
COME UP IN EXEC MAP
FB02 LBSR EXEC
* INITIALIZE ACIA
A LDB #$3 RESET ACIA
A $TB 0.U
A LDB #431 ASSUME 2 STOP BITS
A STB 0.V
F27E BSR READR6 SEND 2 CHARACTERS
F27E BSR READR6
A TR WX
A INACIA LEAX -1, X COUNT CHAR SEND TIME
A LA O0U ACIASC
A BITA #2 CHAR SENT?
F2EC BEQ@ INACIA NO
A CPX #$E700 REALLY 2 STOP BITS?
F2FD BMI IACIAL YES
A LDB #$35
A st O0U ACIASC
A IACIAL ORAB #540 SAVE IN SBIT
A 5TB %U SBIT
A CLR PRDPR SET PSEUDO DPR=0
A LDA #$50 SET PSEUDO I, F MASKS
A STA PRCC
% GET HERE FROM ENTERING AT $F544
A RENTER EQU +
A LDS #XSTACK INIT SP
A LDX #STACK INIT PSEUDO SP
f STX SPSAVE

B-15

PAGE 015 EXBUGO? .SA:1 EXBUGZ VERSION 21,4809 15 MAR 1979

00676 % INITIALIZE VECTORS - ABORT REENTRY POINT
00677 F313 A RENTR1 EQU #

00678 #INIT EXEC MAP IRQ VECTORS

00679A F313CE 0000 A LU % U=TOP OF EXBUG’S POINTER
00680A F316 BE FFO0 A Lbx ATOP

00681A F319 30 01 A LEAX 1, X INX

00682A F31B C6 18 A LDB #24

00683A F31D A6 82 A RENTR4 LDA 0,-X

00584A F3IF A7 (2 A stA - 0,V

006854 F321 SA DECB

00686A F322 26 F9 F31D BNE RENTR4

00687A F324 8E F8C3 A LDX #NMISRV INIT NMI VECTOR
00688A F327 BF FFFC A STX $FFFC

00689A F32ZA 8E FB27 A LDX #SWISRV INIT SWI VECTOR
006908 F32D BF FFFA A STX §FFFA

00692 # CLEAR EXBUG RAM

00693A F330 C6 44 A LDB #ZEND-BKADDR

00694A F332 17 (355 Fé8A LBSR UCMND1

00696A F335 86 3A A LA ¥ TI RDC ON

00697A F337 17 FE9S FICF LBSR DLE

00698A F33A 17 FE90 F1CD LBSR PNOFF3 PRINTER ON

006997 F33D 17 FF3A F27A LBSR RDROFF READER OFF

00701A F340 8E FBE7 A LDX #HDNG PRINT HEADING
00702A F343 17 FCDE F024 LBSR XPDATA

00704 * GET HERE FROM ENTERING AT $FOF3 OR $F5C2
00705 F346 A RENTRZ EQU #

00706A F246 10CE FFES A LDS #XSTACK INIT SP

00707 # ISSUE PROMPT

00708A F34A 8E FBD7 A LDX #PRMI PRINT #

00709A F34D 17 FCD4 F024 LBSR XPDATA

00710A F350 B6 FFES A Lba MODE

00711A F353 26 05 F35A BNE CLP1 IS USER MODE
00712A F355 30 01 A LEAX 1, X

00713A F357 17 FCCD FO27 LBSR XPDAT!

00714A F35A 4F CLP1 CLRA NO PARAMETERS YET
00715A F35B 17 021E FS7C LBSR INDSP INIT DATA STACK POINTER
00716A F33E 17 0083 F3E4 CLP9 LBSR INPUT GET FIELD

00717A F361 25 4E F3B1 BCS CLP3 ERROR

00718A F363 81 0D A CMPA #$D CR TERMINATOR?
00719A F365 27 32 F399 BEQ CLPS YES, CR COMMAND
00720A F367 17 00A9 F413 LBSR CNVRT CONVERT INPUT FIELD
00721A F36A 8E FB3F A LDX #PCMDT-6 INIT PERIOD CMD TABLE POINTER
00722A F36D 81 2E A cwPhA ¥ PERIOD?

00723A F36F 27 OF F380 BEQ CLP7 YES

00724A F371 8E FBO8 A LDX #SCMD-6 INIT TABLE POINTER
00725A F374 81 2F A CHPA ¥/ SLASH?

00726A F376 27 0D F385 BER CLPI3 YES

00727A F378 81 24 A (HPA ¥ $?

00728A F3784 27 04 F380 BE@ CLP7 YES

007294 F37C 81 3B A PR ¥ SEMICOLON?

00730A F37E 26 DE F33E BNE CLPY NO. GET NEXT PARAMETER
00731 # PERIOD, SEMICOLON, OR DOLLAR SIGN

00732 F380 ACLP7 EQU *

00733A F380 17 FDb1 FOE4 LBSR CMNDI GET COMMAND CHAR

B-16

PAGE 016 EXBUGO9 .SA:1 EXBUG2 VERSION 21,6809 15 MAR 1979

00734A F383 IF
0073%A F385 30
00736 F387 6D
00737A F389 27
00738A F38B Al
007394 F38D 26
00740A F38F 17
00741A F392 AD
00742A F395 25
007434 F397 20

00745

00746A F399 SE
007474 F39C 8D
00748A F39E 24
00749A F3A0 8C
00730A F3A3 26
00751A F3AS BE
00752A F3A8 8D
00733A F3AA 24
00734A F3AC BC
00755A F3AF 26

007574 F3B1 17
00756A F3B4 20

00760

00761

00762A F3B6 FC
00763A F3B9 81
00764A F3BB 27
007657 F3BD A3
007667 F3BF 26
00767A F3C1 FC

007687 F3C4 A3

00769A F3C6 27

00771A F3C8 30
00772A F3CA 1A
00773A F3CC 39

00775
00776
00777
00778
00779A F3CD B
00780A F3D0 47
00781A F3D1 24
00782A F3D3 17
00783A F3D6 80
007844 F3D8 27
007854 F3DA 4A
00784A F3DB 27
00787A F3DD 39

89 A TFR AB SAVE COMMAND CHAR IN B
03 A CLP13 LERX 3/X UPDATE POINTER
03 A ST 3X DONE?
26 F3B1 BE@ CLP3 YES, ERROR
03 A CPA 3 X MATCH?
F& F385 BNE CLPI3 NO
FC?8 FO2A CLP15S LBSR XPSPAC PRINT SPACE
9804 A JSR [4,X] GET COMMAND ADDRESS
1A F3B1 BCS CLP3 ERROR
AD F34% BRA RENTRZ NEXT COMMAND
CR COMMAND
FB&1 ACLPS LDX #CRCMD CHECK EXBUG COMMANDS FIRST

18 F3B6 CLP17 BSR CMDCHK LOOK FOR MATCH

EF F3¢F BCC CLP15 FOUND IT
FB91 A CPX #CRCMDE CECKED ALL OF TABLE?
F7 F39C BNE CLP17 NO
FFOE A LDX CMDBEG CHECK USER TABLE
0C F3B5 CLP19 BSR CMDCHK LOOK FOR MATCH
E3 F38F BCC CLPIS FOUND IT
FF10 A CPX CMDEND CHECKED ALL OF TABLE?
F7 F3A8 BNE CLPI9 NO
0129 FADD CLP3 LBSR PERR PRINT ERROR MESSAGE
90 F38 BRA RENTRZ
LOOK FOR CR COMAND TABLE MATCH
F3B5 A CMDCHK EQU #

FF92 A LbD B CHECK FIRST & SECOND CHAR
0D A CHPA #$D
89 F346 BEQ RENTRZ REPROMPT IF (R
84 A SUBD 0.X
07 F3C8 BNE INXS
FF94 A LDD BUF+2 CHECK THIRD AND FOURTH CHAR
02 fA SUBD 2. X
15 F3DD BEQ CKBRKI FOUND IT
06 A INX6 LEAX & X
01 SEC SEC NOT FOUND FLAG
RTS

*

* CHECK FOR BREAK/WAIT

¥
F3D ACKBRK EQU +

FCF4 A LDA ACIASC CHECK ACIA
ASRA
0A F3DD BCC CKBRK!I NO CHAR
FE4C F222 CKBRK7 LBSR INNPNE
17 A SUBA ¥$17 CTL-W?
F9 F3D3 BEQ CKBRK7 YES
DECA CTL-x?
D4 F3Bl BEQ CLP3 YES, RETURN TO COMMAND LEVEL
CKBRK1 RTS

B-17

PAGE 017 EXBUGO? .SA:1 EXBUG2 VERSION 21,6809 15 MAR 1979

00789
00790
00791
00792
00793A F3DE 17
00794A F3E1 7E

00796
00797
00758
00799
00800A F3E4 8E
00801A F3E7 17
00802A F3EA A7
00803A F3EC 5C
00804A F3ED 8D
008054 F3EF 24
00806A F3F1 8C
00807A F3F4 25
00808A F3F6 20

00810
00811
00812
00813
00814A F3F8 A6
00815

00817

00818

00819

008204 F3FA 31
00821A F3FD 6D
00822A F3FF 27
00823A F401 Al
00824A F403 26
008254 F405 39
00826

00827

00828

00829 FA406
008304 FAOE

*

* MDOS COMMAND
*
F3DE AMDOS EQU *
0721 FBO2 LBSR EXEC SET EXEC MAP
EB00 A JMF MDOSE
*
INPUT FIELD TO BUFFER
*
F3E4 A INPUT EQU *
FF92 A LDX #BUF INIT BUFFER POINTER
FCFA FOE4 INPUT1 LBSR CMNDI GET CHAR
80 A STA 0 X+ SAVE CHAR, INC BUF POINTER
INCB INC CHAR COUNT
0B F3FA BSR CKTRM TERMINATOR?
14 F405 BCC CKTRM1 YES
FFA6 A CPX #BUF+20 BUFFER FULL?
F1 F3&7 BCS INPUTI NO
DZ F3XA BRA SEC YES, ERROR
*
GET CHARACTER FROM BUFFER - CHECK IF TERMINATOR
*
F3F8 AGETC EQU +
80 A DA O X4 GET CHAR, UPDASTE POINTER
FALL INTO CKTRM
CHECK FOR TERMINATOR
*
8C 09 CKTRM LEAY <TRMTB,PCR CHECK AGAINST TERM TABLE
A4 A CKTRM3 TST 0,Y CHECKED ALL OF TABLE?
C9 F3CA BER SEC YES
A0 A CHPA 0, Y+
F8 F3FD BNE CKTRM3 NOT TERMINATOR
CKTRM1 RTS IS TERMINATOR
*TERMINATOR TABLE
SPACE, CR, LF, COMMA, SLASH, SEMICOLON, DOLLAR SIGN. PERIOD
F406 A TRMTB EGU #
20 fi FCB $20,8D:84, "1,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>