MPL LANGUAGE

REFERENCE MANUAL

M6800 MICROPROCESSOR

Motorola Microsystems
3102 N. 56th Street
Phoenix, Arizona 85018

I’E ale <~ g"l 5%"""13
e e B R R

MPL LANGUAGE
For The

116800 MICROPROCESSOR

PRELIMINARY

MARCH 1976

The information in this manual has been carefully
reviewed and is believed to be entirely reliable.
However, no responsibility is assumed for
inaccuracies. Furthermore, such information does
not convey to the purchaser of the semiconductor
devices described any license under the patent
rights of Motorola Inc. or others.

The material in this manual is subject to change,
and Motorola Inc. reserves the right to change
specifications without notice.

Second Edition
Copyright © 1976 by Motorola Inc.

TABLE OF

CONTENTS

INTRODUCTION . . « ¢ ¢ o« ¢ o & &
ELEMENTS OF THE LANGUAGE
DATA REPRESENTATION,

CONSTANTS. & ¢« v & ¢ ¢ ¢ o o o &

SYMBOLIC NAMES (RESERVED KEYWORDS)

VARIABLES. « . ¢« ¢ & &

ARRAYS . . . ¢ v v v e v o o v W
SUBSCRIPTS+ « « « o+ .

POINTERS « . « . « .« ..
EXPRESSIONS, ARITHMETIC.
Arithmetic and Logical Operators
Order of Computation
LOGICAL EXPRESSIONS.
ORIGIN STATEMENT
DECLARE STATEMENT,
ARITHMETIC ASSIGNMENT STATCEMENT.
CONTROL STATEMENTS

Unconditional GO TO Statements.

Assigned GO TO Statements .

Computed GO TO Statement. . . .

IF Statement. . . « « « o
DO Statement. . . « « o« o .

.

POINTERS AND THE 'DO' STATEMENT

END Statement . . . + « « .
MAIN PROCEDURE . . « ¢« « & « &« &
SUBROUTINE PROCEDURES,

ARGUMENTS IN A SUBROUTINE PROCEDURE.

INVOKING THE COMPILER.
SOURCE PROGRAM ERRORS.

SAMPLE SOURCE PROGRAM LISTING.

T 3
. e « » o e e 2 e e s e o 8
e R
S ¥

c e e s s e e e e e e . 22
e e e s s e e e e e s e e e 23
T 25
. o« e e e e e e e . 27

L] . . L] . L . . - . . L] . - 29
- - - . . - - - . - - - . 34
- . . - - - . . . L . 37
. L] . - . Ll L] . . - - . . L] . 38

L] - . . - L L L] . . - - . 39

o o e e e s s e e e e e 42
. . L] - - . . L] . - L] 3

e s s s e e e s e e o s e & 50
c o e s 8 s s e 8 s o b o s e 51
e s s o s s e s e @ « = s e 52
« o s 4 @ s s e s o 4 e o a 53
G« s s s e m s e e e . 57

s e e s e s 4 e e e s e s e 61
. e e e s e 4 s e e s s e A-1
B-1

COMPILED AND ASSEMBLED SOURCE PROGRAM B-2

MPL MANUAL

Preface

This compiler expands the Total Product Offering for the M6800
Microprocessor family of Parts. The compiler was developed to
meet the varied needs of microprocessor users and in particular
the output of the compiler is an assembly language file (rather
than machine language output). This shows the user the code
generated on a compiler statement by compiler statement basis;
which in turn gives the user closed loop feedback on his pro-

gramming technigues.

Compilers have not been software panaceas in the past, nor do
we expect this compiler to solve all your programming problems.
However, in the hands of a serious programmer, this compiler

should serve as an effective software tool.

-ii-

INTRODUCTION

The MPL language is a compiler language that is especially
useful in writing programs for applications that involve mathe-
matical computations and manipulation of numerical and string
data. The language is also especially suitable for realtime

microprocessor applications.

Source programs written in the MPL language consist of a
set of statements constructed by the programmer from the lang-

uage elements described in this publication.

In a process called compilation, a program called the MPL
Compiler analyzes the source program statements and translates
them into an assembly language program called the object pro-
gram, which will ke suitable for assembly by an M6800 Assembler.
In addition, when the MPL Compiler detects errors in the source

program, it produces appropriate diagnostic error messages.

MPL
SOURCF
FILE

MPL.
COMPILER

M&300
SSEMBLER

MACHIME
FILF

LISTING

COMPILER-BLNCK DIAGRAM

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which
the compiler generates machine instructions, constants, and
storage areas. A given MPL statement effectively performs one
of three functions:

1. Causes certain operations to be performed (e.g., add,
multiply, branch)
2. Specifies the nature of the data being handled.

3. Specifies the characteristics of the source program.

MPL statements usually are composed of certain MPL key
words used in conjunction with the basic elements of the
language: constants, variables, and expressions. The categories

of MPL statements are as follows:

A. Arithmetic Statements: These statements cause calculations

to be performed and cause the result to replace the current
value of a designated variable or subscripted variable.

B. Control Statements: These statements enable the user to

govern the flow and terminate the execution of the object
program.

C. Specification Statements: These statements are used to

declare the properties of variables and arrays (such as

type and amount of storage reserved).

D. Procedure Statements: These statements enable the user to

name and define procedures, which can be compiled separately

cr with the main program.

The basic elements of the language are discussed in this
chapter. The actual MPL statements in which elements are used
are discussed in the following sections. The term procedure

refers to a main program or a subprogram. The phrase executable

statements refers to those statements in categories A, B, and

D above.

The order of an MPL program unit is:

1. Procedure statement.

2. Specification statements, if any. (Explicit specification
statements which initialize variables or arrays must appear
in the same specification statements that define the variable
Oor array name.)

3. Executable statements, at least one of whichk must be present.

4. END statement.

CODING MPL STATEMENTS

The statements of an MPL source program may be punched on
cards or typed on a TTY terminal with each line on the TTY terminal
representing one 80-column card. MPL statements are written
within columns 1 through 72. If a statement is too long for one
card, it may be continued on successive cards except for any
valid constant. All constants must be completely contained on

the same card or line.

As many blanks as desired may be written in a statement to
improve its readability. Multiple blanks are ignored by the
compiler. Elanks, however, that are inserted in literal data

are retained and treated as blanks within the data.

It should'also be noted however that the connectors and
logical operators - NOT, AND, OR, GT, GE, EQ, NE, LT, LE, IAND,
IOR, IEOR, SHIFT - must be preceded and followed by at least
one blank. Other reserved words must be preceded and followed
by a blank or some other delimiter. Labels, variable names

and procedure names must not contain hnlanke.

The first card of a statement may contain a statement label
consisting of from 1 through 6 alphabetic or numeric characters,
the first of which must be alphabetic. Statement labels must
be followed by a colon (:) symbol. If column 1 contains a
dollar sign ($), the card is considered to be an assembly
language card and is passed to the symbolic output file without

being acted upon by the compiler.

Columns 73 through 80 are not significant to the MPL
compiler and may therefore, be used for program identification,

sequencing, etc.

Multiple statements may appear on one line, separated by

blanks or by a semicolon(;).

(]

|._l

Comments to explain a program may be written either by:
Enclosing the comments within /* and %/ delimiters.
Such comments may occur anywhere and may extend over

several lines.

Terminating one or more statements on a line by an exclam—
ation character (!) and following this by comments. The

compiler considers all information after the ! to be comments.
It is also possible to place the ! in column one if it is

desired to make the entire card to be a comment.

DATA REPRESENTATION

Data may be represented in MPL in the following formats:
Bit string:

BIT(l) - BIT(7) are one bit fields which may be tested,
set or cleared. The most significant bit, bit 7, is the
only bit used for the BIT (1) declaration. BIT(8) is
used for an 8-bit field (one byte) which car have the
following operations performed on it:

A. Test (magnitude only)

B. Shift (rotate shift)

C. Logical AND

D. Logical OR

E. Logical EOR

Single or double precision integer binary: BINARY(l) or
BINARY (2). One or two bytes are occupied respectively
and the following operations may be performed:

A. Test

B. Shift (arithmetic right & left)

C Logical AND
D Logical OR
E. Logical EOR
F. Mulitply

G. Divide

H. Add

I. Subtract

J. Replace

ASCII numeric: DECIMAL(l), DECIMAL(2) ... DECIMAL(12),
SIGNED DECIMAL (1), SIGNED DECIMAL(2) ... SIGNED DECIMAL(1l2),
DECIMAL(m,n) or SIGNED DECIMAL (m,n) where m indicates the
total number of bytes (digits) in the representation and n
indicates the number of bytes (digits) after the assumed
decimal point. m and n must not be greater than 12. This
representation occupies one byte for each digit plus one

for an optional sign and may be used in the following

operations:
A. Test
B. Add

C. Subtract

D. Replace

4. ASCII alphanumeric: CHARACTER(m) occupies m bytes, one for
each character and 1 < m < 255.

The CHARACTER representation may be tested and replaced.

CONSTANTS

A constant is a fixed, unvarying quantity. Five types of
constants can be used: integer, binary, hexadecimal, string,
and address. The type of a constant is defined by its implicit
type and by its usage. For example, the value 123 may have
such representations as BINARY (1), BINARY(2) or DECIMAL(3)

depending upon the environment of its usage.

INTEGER CONSTANTS

Definition

Integer Constant - a whole number written without a decimal
point. It occupies one or two locations of storage for a
binary constant and N bytes for a numeric ASCII constant
where 1 < N < 12.
Maximum magnitude for binary constant: + 127 for one byte
+ 32767 for two bytes
An integer constant may be positive, zero, or negative;
if unsigned, it is assumed to be positive. Its magnitude must
not be greater than the maximum for the given representation
implied by its environment in a statement and it may not contain

embedded commas.

Examples:

Valid integer constants:

0

+91

91

173

-21474

Invalid integer constants:

3145903612 (exceeds the allowable range of a binary constant)

5,396 (contains an embedded comma)

BINARY CONSTANTS

Definition

Binary constant - a string of 0 and 1 bits followed by the
ictter E. A binary constant may occupy one or two bytes.
If less than 8 cr 1€ kits are specified, they will be right
justified in the one or two bytes required to contain the
constant.

Examples:

01001011B

1001110010010111B

1011B

10011011011B

\O

HEXADECIMAL CONSTANTS

Definition

Hexadecimal constant -- a hexadecimal number (0-9, A-F)
enclosed in double quotes or not enclosed in quotes and
followed by the letter H. In the latter case the first
character must be numeric. The maximum magnitude is FFFF, .

One or two bytes are occupied.

Examples:
"0" or OH "FIFF" or OFFFFH "5A4C" or FA4CH
"3F" oxr 3Fl "D24" or OD24H "6F" or 6FH

STRING CONSTANTS

Definition

String constant -- a series of ASCII characters enclosed in

quote signs.

It occupies one byte for each character and must be less

than 256 bytes long. A maximum of 47 characters can be

used to the right of an equal sign.

Examples:

'TOTAL'

'"VALUE IS' - The full 64 ASCII character set may be used.
The exclamation point (!), and apostrophe (')
can be used by usirg two

AA="!!"'' will set AA=!"

10

ADDRESS CONSTANT

Definition

Address constant -- a series of ASCII characters enclosed
in quote marks representing the value of an address. It

occupies two bytes and must have a magnitude less than

65535.

Examples:

'"TABLE' - address of TABLE
'"TABLE+50%10' -~ address of TABLE+50%10

An address constant is assumed if the data representation
is BINARY (2) and the constant name is enclosed in single

quotes.

SYMBOLIC NAMES

Definition:

Symbolic Name -- consists of from one through six alphameric
characters i.e., numeric (0 through 9) or alphabetic

(A through Z), the first of which must be alphabetic. In
addition, keywords reserved by the compiler or assembler
should not be used as symbolic names. The following names

are reserved keywords:

A GE OR

AND GO ORIGIN

B GOTO PROC
BASED GT PROCEDURE
BEGIN IAND RETURN
BIT IEOR SHIFT

BY IF SIGNED

il

CALL INIT T

DCL INITIAL THEN
DECLARE IOR 0
DEF LAEREL WHILE
DEFINED LE X

DO LT 2000
ELSE MAIN 2001
END NE

EOR NOT .

EQ OPTIONS ZFFF

Note: All 4 character symbolic names whose first

character is 2 are reserved.

Symbolic names are used in a procedure to identify elements
in the following classes.

. An array and the elements of that array (see "Arrays")

. A variable (see "Variables")

A statement label

. A procedure name

Symbolic names must be unique within a program (consisting
of a main procedure and optional sub-procedure(s)) and can

identify elements of only ore class.

VARIABLES

An MPL variable is a symbolic representation of a quantity
that occupies a storage area. The value specified by the name
is always the current value stored in the area. For example,
in the following statement both W and Y are variables:

W=5+Y%

The value of Y is determined by some previous statement and
may change from time to time. The value of W is calculated
whenever this statement is executed and changes as the value of

Y changes.

VARIABLE NAMES

The use of meaningful variable names can serve as an aid
in documenting a program. That is, someone other than the
programmer may look at the program and understand its function.
For example, to compute the distance a car traveled in a
certain amount of time at a given rate of speed, the following
statement could have been written:

W=Y * Z
where * designates multiplication. However, it would be more
meaningful to someone reading this statement if the programmer
had writter:

DIST = RATE x TIME

Examples:

vValid variable names:

B292sS

RATE

12

Invalid variable names:
B292704 (Contains more than six characters)
4ARRAY (First character is not alphabetic)

SI.X (Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the
variable represents. Thus, a binary variable (BINARY) repre-
sents a binary data, a bit string variable (BIT) represents
bit strirg data, a numeric ALSCII variable (DECIMAL) represents
numeric ASCII data, and a literal string variable (CHARACTER)
reéresents alphanumeric 2SCII data.

The number of storage locations reserved for the variable
depends on the type <f the variable.

A programmer must declare the type of a variable by using

the DECLARE statement prior to the first usage of the variable.

ARRAYS

An MPL array is a set of variables identified by a single
variable name. A particular variable in the array may be re-
ferred to by its position in the array (e.¢., first variable,
third variable, seventh variable, etc.). Consider the array
named NEXT which consists of five variables, each currently

representing the following values: 273, 41, 8976, 59, and 2.

NEXT(l) is the location containing 273
NEXT(2) is the location containing 41
NEXT(3) is the location containing 8976
NEXT(4) is the location containing 59

NEXT(5) is the location containing 2

Each variable (element) in this array consists of the
name of the array (i.e., NEXT) immediately followed by a number
enclosed in parentheses, called a subscript quantity. The
variables that the array comprises are called subscripted
variables. Therefore, the subscripted variable NEXT (1) has
the value 273; the subscripted variable NEXT(2) has the value
of 41, etc.

The subscripted variable NEXT(I) refers to the "Ith"
subscripted variable in the array, where I is an integer vari-
able that may be assigned a value of 1, 2, 3, 4, or 5.

To refer to any element in an array, the array name must
be subscripted. The array name alone represents the entire
array.

Consider the following array named LIST described by two
subscript quantities, the first ranging from 1 through 5, the

second from 1 through 3.

Column 1 Column 2 Column 3
ROW 1 82 4 7
ROV 2 12 13 14
ROW 3 91 1 31
ROW 4 24 16 10
ROW 5 2 8 2

15

The array would be defined as:
DECLARE
01 TABLE,
02 ROW(5),
03 LIST(3) BINARY (1)
or as:

DECLARE LIST(5,3)

Reference to the number in row 2, column 3
would be coded as:

LIST (2,3)
Thus, LIST (2,3) has the value 14 and LIST (4,1) has the
value 24

Crdirary mathematical notation usee LIST ;, ;

J
any element of the array LIST. In MPL, this is written as LIST

to represent

(I,J) where I equals 1, 2, 3, 4 or 5, and J equals 1, 2 or 3.
An additional possibility of referring to elements of an
array is made available in MPL if the first of the two metliods
i declaring is used. ROW(2) then refers to the data in all
three columns of row 2 and TABLE refers to all elements of the

array.

16

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is specified by
the number of subscript quantities of the array and the maximum
value of each subscript quantity. This information must bhe
given for all arrays before using them in a program so that an
appropriate amount of storage may be reserved. Declaration of
this information is made by a DECLARE statement. This statement
is discussed in detail in the chapter "DECLARE" statement. The
type of an array name is determined by the specification for
the type of the variable name. Each element of an array is of
the type specified for the array name, but need not be the same
type for all levels of the structure. The above example could
be declared as:

01 TABLE,

02 ROW(5),
03 COL1 BINARY (1),
03 COL2 BINARY (2),
03 COL3 DECIMAL(5)
if it is desired to have varying data representations for each
column. Within one column however the data representation is

fixed.

17

SUBSCRIPTS

A subscript is an integer subscript quantity or a set of
integer subscript quantities separated by commas, which is
used to identify & perticular element of an array. The number
of subscript qﬁantities in any subscript must be the same as
the number of dimensions of the array with which the subscript
is associated. A subscript is enclosed in parentheses and is
written immediately after the array name. A maximum of three
subscript guantities can appear in a subscript.

General Form

Subscript Quantities -- may be one of four forms:

v
k
vtk
v-k
Where: v represents an unsigned, nonsubscripted, integer BINARY (1)
variable and must be level 01
k represents an unsigned integer constant.
Whatever subscript form is used, its evaluated result, as well
as the intermediate result, must always be greater than or equal
to 1 and less than or equal to 255. For example, when reference
is made to the subscripted variable V(I-2), the value of I must
ke greater than or equal to 3 ard less than or equal to 255. 1In
any case, the evaluated result must be within the range of the

array.

13

Examples:

Valid subscripted variables:
ARRAY (IHOLD)

NEXT (19)

MATRIX (I—s)

Z(I+3,J+8,K)

Invalid subscripted variables:

ARRAY (=1) (The subscript quantity I may not be signed)

ARRAY (I+2.) (The constant within a subscript quantity
must be an integer with no associated
cdecimal point)

NEXT (-7+J) (If subtraction is indicated, the variable
must precede the constant)

W(I(2)) (The subscript quantity I may not itself

be subscripted)

TEST (K*2) (Multiplication is indicated which is an
error)
TOTAL (2+K) (If addition is indicated, the variable must

precede the constant. Thus TOTAL (K+2) 1is
correct)
Q(1I,J,K,L) (No more than three subscript quantities

may be used)

19

POINTERS

The evaluation of subscripts generally requires multi-
plication. Since the M6800 does not have a multiplication
instruction, an alternate form of array addressing is provided
through the use of pointers. A pointer must be declared with
a representation BINARY (2). It must contain the adadress of
the level 01 entry of the item being referenced. An item is
pointed by the form

V:P or P->V

where V represents a simple or subscripted variable and P
represents a simple variable of type BINARY(2), level 0l.

Valid pointed variables

ARRAY : PTR or PTR -> ARRAY
NEXT (19) : JJ or JJ -> NEXT(19)
MATRIX (I-5):JJ or JJ -> MATRIX(I-5)

Invalid pointed variables
ARRAY :PTR(3) (pointer may not be subscripted)
NEXT (19) :JJ-2 (would be evaluated as (NEXT(19):JJ)-2)
Additienallyv, pointer variables are useful in handling
linked lists. For example:
DECLARE
01 TABLE (100),
02 LINK BINARY(2),
02 Al DECIMAL(3),
02 A2 CHARACTER(D5)
The pointer for the next entry in the chain may be obtained by
the statement:

XX=LINK:XX 20

The following coding will link the new entry pointed
to by "NEXT" into the chain. Assume the variable "PTR" points
to the first entry in the chain:
ZZ = 'PTR'

L1 XX = 272

22 LINK:XX
IF ZZ NE @ AND Al:NEXT GE Al:2Z
THEN GO TO L1
LINMK:2X = NEXT
LINK:NEXT = ZZ
Removing (unchaining) the entry that has a value of Al equal to
35 could be accomplished by:
ZZ = 'PTR'
Ll: XX = 272
272 = LINK:XX

IF Al:2Z NE 35 THEN GO TO L1

LINK:XX = LINK:ZZ

EXPRESSIONS

MPL provides two kinds of expressions: arithmetic and
logical. Expressions may appear in arithmetic assignment state-

ments and in IF statements.

21

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary
that may be a single constant, variable, subscripted variable,
or another expression enclosed in parentheses. The primary
may be either type BIT, BINARY, DECIMAL or CHARACTER.

Tf the primary is of BIT type, the expression is BIT type.

If it is of DECIMAL type, the expression is of DECIMAL type etc.

Examples:
Primary Type of Primary Type of Expression
3 BINARY BINARY
AA CHARACTER(5) CHARACTER(5)
C(I+2) DECIMAL (3) DECIMAL(3)
subscripted variable
(R+S=T) Parenthesized Same as R,S, and T

exXpression
In the expression C(I+2), the subscript (I+2), which must
always represent integer binary, does not affect the type of the
expression. That is, the type of the expression is determined
solely by the type of primary appearing in that expression.
More complicated arithmetic expressions containing two or
more primaries may be formed by using arithmetic operators that

express the computation(s) to be performed.

22

Arithmetic and Logical Operators

The arithmetic and logical operators are as follows:

Arithmetic Operator Definition
* Multiplication
/ Division
+ NMddition
- Subtraction
SHIFT Shift
IAND Logical AND
I0R Logical OR
IEOR Logical EOR

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following

are the rules for constructing arithmetic expressions that contain

arithmetic operators:

1.

All desired computations must be specified explicitly. That
is, if more than one primary appears in an arithmetic ex-
pression, they must be separated from one another by an
arithmetic operator. For example, the two variables W and Y
will not be multiplied if written:

WYy
If multiplication is desired, then the expression must be
written as follows:

WxY

23

2. No twn arithmetic operators may appear in sequence in the
same expression. For example, the following expressions
are invalid:

Wx/Y and W IAND *Y
An exception is the unary minus:
Wx=-Y
In effect, -Y will be evaluated first and then W will be

multiplied by the result.

A shift operand is written as:
W SHIFT k

where k represents a positive or negative constant number of
bits to shift the variakle W and -3 < K < 8. & positive value
represents a left shift, while a negative value represents a
right shift. Shifts are arithmetic for wvariebles having data
representation of BINARY(l). If the variable has a data
representation of BIT(l), the shift operation will be circular.
That is, bit 7 will be rotated to the right on a right shift,
negative value, and rotated left on a left shift through the

whole byte.

)
Il

R SHIFT 2

Il

Z(3) D(3) SHIFT -6

24

3. Order of Computation: Computation is performed from left to

right according to the hierarchy of operations shown in the

following list.

OPERATION HIERARCHY
unary - 1
SHIFT 2
logical AND - IAND 3
logical OR - IOR 3
logical EOR - IEOR 3
multiply 4
divide 4
add 5
subtract 5

This hierarchy is used to determine which of two consecutive
operations is performed first. If the first operator is
higher than or equal to the second, the first operation is
performed. If it is not, the second operator is compared

to the third, etc. When the end of the expression is
encountered, all of the remaining operations are performed

in reverse order.

25

For example, in the expression VxY+ZxW IAND I, the

operations are performed in the following order:

1. v=Y Call the result R (multiplication) (R+Z#*W IAND I)
2. W IAND I Call the result S (logical AND) (R+Z*S)

3. z*s , Call the result T (multiplication) (R+T)

4., R+T Final operation (addition)

A unary plus or minus has the highest priority.

C -D is treated as C=0-D
C =-D*E is treated as C=(0-D)*E

C =-D+E is treated as C=(0-D)+E
Parentheses may be used in arithmetic expressions, as in
algebra, to specify the order in which the arithmetic operations
are to be computed. Where parentheses are used, the expression
within the parentheses is evaluated before the result is used.

This is equivalent to the definition above since a parenthe-

sized expression is a primary.

For example, the following expression:
D+ ((C+D)*E)+C IAND 2

is effectively evaluated in the following order:

1. (C+D) Call the result R D+ (R*E)+C IAKD 2
2. (R*E) Call the result S D+S+C IAND 2
3. D+S Call the result T T+C IAND 2

4., C IAND 2 Call the result V T+V

5. T+v Final operation

26

4. The type of the result of an operation depends on the type
of the two operands (primaries) involved in the operation.

All variables within an expression must be of the same type.

LOGICAL EXPRESSIONS

A logical expression consists of two arithmetic e:xpressions
(which may of course be simple variables) connected by one of
the following relational operations:

ECQ - equal

NE - not equal

GT - greater than

LT - less than

GE - greater than or equal to

LE - less than or equal to

Examples:

C EQ C
C IAND "3F" NE 21
(C+D) *E GT 50
It should be clearly understood here that arithmetic expressions
involved in relational operations are evaluated first before the
relational operation is applied. See example in item 3, Order of

Computation above.

27

Relational operations in turn may be connected by the use

of the logical connectives AND and OF:

C EQ D ORLE EQ F
C NE D AND E GT F OR G EQ H
Normally AND operations have a higher hierarchy than OR operations,
thus C EQ D AND E GT F OR G EQ H is evaluated as
(C EQ DAND E GT F) OR G EQ H
However parentheses may be used to change the order of evaluation -
C EQ D AND (E GT F OR G EQ H)
Additionally, the meaning of a logical operation may be
reversed by the modifier NOT
Example:
NOT W EQ Y
means W NE Y
NOT (W EQ Y AND Z EQ V)

means everything but the intersection of W EQ Y AND Z EQ V

28

STATEMENTS

The following sections describe the statement types that

are available in the MPL language.

THE ORIGIN STATEMENT
General férm
ORIGIN "hex constant"

The ORIGIN statement is used to reset the assembly address
for the subsequent statements. It may appear anywhere in the
program.

Example:
ORIGIN "3F2E"
The subsequent statements will be assembled starting at

hex address 3F2E.

Default starting address is zero.

THE DECLARE STATEMENT

The general form is:
DECLARE
[BIT i

BINARY
(m)
DECIMAL DEFINED name]

@evel #}name[(occurrenceﬂ (m,n
iSIGNED DECIMAL
]

| CHARACTER
i
| LABEL |

[ﬁASED]|}NITIAL (value 1, value 2 ...)]

29

Forms in square brackets are optional. The following

abbreviations are allowed:

DCL - DECLARE CHAR - CHARACTER
BIN - BINARY DEF - DEFINED
DEC - DECIMAL INIT - INITIAL

Notes

1. Level number is optional, but if not used is assumed to be
01. Basic items are level 0l explicitly or implicitly.
Elementary items have successively higher level numbers
and must be in sequence and mey not be greater than 05.

Skipping a level number is not allowed. For example:

DECLAREL
01 AR,
02 BB,
03 cc, (indentation of levels for
03 DD, clarification only and are
02 EE, not required)
01 FF

is wvalid, while

DECLARE
01 AaA,
02 BB,

04 cCC
is invalid since level 03 is skipped.

Each level except the last one must terminate with a comma.

30

Name represents any valid MPL name.
If occurrence is not used then it is assumed to be 1.
Multiple occurrences may be used for arrays with more than
one dimension.
Example:

AA

RTS (8)

XYZ(10,12)
If BIT, BINARY etc. is not used then the data representation
is assumed to be BINARY (1) unless there are other levels
defined within the current level.
For example in the following statements:

DECLARE

01 AA,

02 BB DEC(3),
02 CC DEC(4),

01 RR,

01 TT(10,4 BIN(2)
RR will have a data representation of BINARY(l) since there
is no explicit data representation given. AA on the other
hand must not have a data representation since there are

other levels defined within AA.

31

5.

m refers to the length of the data representation -

2 bits, 4 bytes etc. n refers to the number of digits
after the decimal point in the case of DECIMAL or
SIGNED DECIMAL data representations. If m is not used
then its value is assumed to be 1.

Permissible values for m and n are as follows:

Representation m n

BIT 1 ~8 not used
BINARY 1~ 2 not used
DECIMAL 1~ 12 1~ 12
CHARACTER 1 ~ 256 not used
LABEL not used not used

LABEL is used in conjunction with a computed GO TO
statement or an assigned GO TO statement; see assigned
and computed GO TO statement descriptions for an example.
Field definitions (m,n) DEFINED and BASED clauses may not
occur with LABEL.

DEFINED name is used to redefine a previously used name
at the same level.

In any data structure, the name being redefined must be

the last name used at the same level. For example:

DECLARE
01 XX,
01 Yy,
02 AA,
03 RR,
03 Ss,
02 BB DEFINED AA

32

is valid, since AA is the last previous

02 level
DECLARE
01 XX,
02 YvY,
02 2z,

02 WW DEFINED YY

occurrence at the

is invalid since ZZ is the last previous occurrence at

the 02 level.

8. BASED is used when a data structure is being defined

which will not result in space being allocated by the

computer.

9. INITIAL (value 1, value 2 ...) is used to initialize

variables. The INITIAL statement may not be used if

DEFINED has also been used.
Example:
DECLARL RATE DEC(2)
DCL
01 PIAlA,
02 CRTRDY BIT (1),

02 CRTDWN BIT(1)

DECLARE
0l FLAG1,

02 BFLAGl BIN(1l),

02 XFLAGL BIN(l) DEFINED BFLAGI

33

DECLARE
01l STRUCT (10),
02 ITEM CHARACTER(S5),
02 AMT,
03 DLRS DECIMAL(2),
03 CENTS DECIMAL(2),

02 USAGE(5)

DECLARE TBL(5) INITIAL(5,3,2,1,9)
DCL ENDP CHAR(3) INITIAL('END')
String constants used in coniunction with LABEL need not
have single quotes.
For example:
DCL JTAB(3) LABEL INITIAL (A20,A70,A110)

where A20, A70, and All0 are labels used in the program.

ARITHMETIC ASSIGNMENT STATEMENT

General form
a=b
Where: a is a subscripted or nonsubscripted variable,
or a series of comma separated subscripted or nonsub-

scripted variables

b is an arithmetic expression.

This MPL statement closely resembles a conventional
algebraic equation when used in its simplest form. However,
the equal sign specifies replacement rather than equivalence.
That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value
of the variable or variables to the left of the equal sign.

The type of the variable(s), represented by a, is
converted according to the type of the arithmetic expression

b, as shown in Table 2.

Type Type
of of
b a BIN DEC CHAR
BIN Assign Convert to Convert to numeric
numeric ASCIT ASCII with zero
and assign suppression and
assign, right justi-
fied, blanked filled
on left
DEC Convert to Assign Zero suppress and
binary and assign
assign
CHAR Not Not allowed Assign
allowed
a>b left justify
blank fill a
b>a truncate b on
the right and
assign

TABLE 2

35

Assume that the data representation of several variables

has been specified as follows:

Variable Names Type

I, J, W BINARY (1) wvariables

c, D, E DECIMAL(3) wvariables
EE CHARACTER(5) variables
F (5,5) RBINARY (2) array

Then the following examples illustrate valid arithmetic
statements using constants, variables, and subscripted
variables of different types:

Statements Description

C =D The value of C is replaced by the current
value of D.

W=D The value of D is converted to binary,
and this value replaces the value of W.

c=1I The value of I is converted to an ASCII

field, and this result replaces the value

of C.

I=1+1 The value of I is replaced by the wvalue
of T + 1.

C=D+E The sum of D and E replaces the value of
C.

Statements Description

C = F(5,4) The value of F(5,4) is converted to
numeric ASCII and replaces the value of C.

J = EE Not allowed.

F(2,3) = ¢C The value of C is converted to double
precision binary, and this value replaces
the value of F(2,3).

c,D,E =W The current value of W is converted to

numeric ASCII and is used to replace the

values of C, D, and E.

CONTROL STATEMENTS

Normally, MPL statements are executed sequentially. That
is, after one statement has been executed, the statement
immecdiately following it is executed. Thie secticn discusses
the statement that may be used to alter and control the normal

sequence of execution of statemants in the program.

CC TO STATEMENTS

GO TO statements permit transfer of control to an executable
statement specified by number in the GO TO statement. Control
may be transferred either unconditionally or conditionally. The
GO TO statements are:

1. Unconditional GO TO statement

2. Assigned GO TO statement

3. Computed GO TO statement

Note that in all three types GO TO may be replaced by GOTO.

37

Unconditional Go To Statement

General Form

GO TO xXXXXX

Where: xxxxx is a label on an executable statcment.

This GO TO statement causes control to be transferred

to the statement specified by the statement lakel.
subsequent execution of this GO TO statement results in a

transfer to that same statement.

Every

Any executable statement

immediately following this statement should have a statement

number; otherwise, it can never be referred to or executed.

Example: GO TO

L10:W

Il

L25:2

L25

Y + Z

FE IAND 2

.

In the above example, each time the GO TO statement

executed, contreol is transferred to statement L25.

Assigned GO TO Statement

General Form

GO TO xXXxXX

is

Where:xxxxx is the name of a LABEL defined in the DECLARE

part of the program.

38

Example 1
DECLARE CAT LABEL

CAT = 'A25'

GO TO CAT

Example 2
DECLARE CAT(5) LABKL

CAT (3) 'A25"

GO TO CAT(3)
In these examples CAT and CAT(3) are defined as labels in a
DECLARE statement. The values of the labels are assigned during

program execution.

Computed GO TO Statemernt

General Form

GO TO (51. X 4 X 4 eeep X), 1

OR GO TO labelname (i)
2 -3 n - — I

Where: x , X, ..., x , are the labels of executable
- — —n
statements.

i is a nonsubscripted BINARY(l) variable whose current
value is in the range: 1< i < n
labelname is the name of a LABEL array defined in a

LABEL declaration.

39

This statement causes control to be transferred to the

statement labeled El’ 52, 53, ..., or x , depending on whether
n

the current value of i is 1, 2, 3, ..., or n, respectively.

Example 1

GO TO (L25, L10, L7), ITEM

L7: C = E IAND 2 + AA
L25:L = C
L10:D = 21

In this example, if the value of the integer variable ITEM
is 1, statement L25 will be executed next. If ITEM is equal to

2, statement L10 is executed next, and so on.

40

Example 2

DECLARE LARRAY (3) LABEL INITIAL (L10, L20, L30)

GO TO LARRAY (Y)

In this case LARRAY is the name of a LABEL array. If the
value of the integer variable Y is 1, statement L10 will be
executed next. If Y is equal to 2, statement L20 will be

executed and if Y is equal to 3, statement L30 is executed.

41

ADDITIONAL CONTROL STATEMENTS

IF Statement

General Form

IF a THEN S1 [ELSE S2:

Where: a is a logical expression.

and S1, S2 represent executable statements. If it is
desired to execute more than one statement if the condition

is or is not met, the form
IF a THEN DO

A
1

A

ELSE DO

END

may be used.

42

Other examples:

IF INADD(2) LT O THEN INADD(1l) = "FF"

IF I LT 32 THEN GO TO BYTEl

Do Statement

General Form

DO

END
The sequence of statements is performed only once.

DO i = m TO m, [BY m3]

1
i is a nonsubscripted integer variable of data representation
BINARY.

m,, M, and m, are either unsigned integer constants or

3
unsigned nonsubscripted integer variables with a BINARY
data representation. If the clause RY m3 is omitted, it

is assumed to be present with m3 = 1.

The DO statement is a command to execute at least once
the statements that physically follow the DO statement, up
to a END statement. These statements are called the range
of the DO. The first time the statements in the range of
the DO are executed, i is initialized to the value m,; each

succeeding time i is increased by the value ms.

When, at the end of the iteration, i is equal to or
greater than m,, control passes to the statement following
the END statement.

If m, is equal to m;, the statements in the range of
the DO are executed once. Upon completion of the DO, the
DO variable contains the value m, . All four variables,
i, my, m,, and my must be either BINARY (1) or BINARY (2)

in a DO definition.

DO WHILE Boolean expression

If the Boolean expression after the word WHILE is true the

sequence of statements down to the END statement is executed

as often as the Boolean expression is true. When the ex-

pression is false an exit is made from the loop. The

Boolean expression must contain variables which are altered

during the execution of the DO loop and the result of such

alteration must eventually change the value of the Boolean

expression from TRUE to FALSE. If this does not occur no

regular exit from the loop is possible. However an IF

statement in the loop might in the usuval way cause a

transfer of control outside the loop.

DO i = my TO m, [PY mé] WHILE Boolean expression

This form is a combination of forms 2 and 3. For example:
DO I =1 TO 5 WHILE Y LT 4

The loop would be executed up to 5 times, depending upon

the truth of the Boolean expression.

44

NOTE:

The Boolean expression must start with a variable; starting
with a constant will cause an error.

There are several ways in which looping (repetitively
executing the same statements) may be accomplished when using
the MPL language. For example, assume that a manufacturer
carries 100 different machine parts in stock. Periodically,
he may find it necessary to compute the amount of each different
part presently available. This amount may be calculated by
subtracting the number of each item used, OUT(I), from the

previous stock on hand, STOCK(I).

Lxarple 1:
I=0
L10:STOCK(I) = STOCK(I) - OUT(I)
I =1I+1
IF I LT 100 THEN GO TO L1lO
L30:C =D + E
Explanation:

The first, third, and fourth statements required to control
the previously shown loop could be replaced by a single DO

statement as shown in example 2.

45

Example 2:

DO I =1 TO 100
L25:STOCK(I) = STOCK(I) - OUT(I)
END

C=D+ E

Explanation:

In example 2, the DO wvariable, I, is set to the initial

value of 1. Before the second execution of statement L25, I
is increased by the increment, 1, and statement L25 is again
executed. After 100 executions of the DO loop, I equals 100.

Since I is now equal to the test value, 100, control passes

out of the DO loop and the fourth statement is executed next.

Note that the DO variable I is now 1l00.

46

Example 3:

DO I =1TO 9 BY 2

J=1+XK
L25:ARRAY (J) = BRAY.(J)

END

C=D+ E

Explanation:

In example 3, statement L25 is at the end of the range

of the DO loop. The DO variable, I, is set to the initial value

of 1. Before the second execution of the DO loop, I is increased
by the increment, 2, and the second and third statements are
executed a second time. After the fifth execution of the DO

loop, I equals 9. Since I is now equal to the test value, 9,

control passes out of the DO loop and the fifth statement is

executed next. Note that the DO variable, I, is now 9.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement (i, m , m , m)
1 2 3

should not be changed by a statement within the range of
the DO loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of the inner DO
must be in the range of the outer DO. A set of DO state-
ments satisfying this rule is called a nest of DO's and

may be nested nine deep.

Example 1:
DO I =1 TO 4
C(I) = D(I) IAND 2
Range of
DO J = 2 TO 5 l
Range of Outer DO
E(J) = C(I)
Inner DO
END I
END
Example 2:
DO INDEX = L TO M
N = INDEX + K
Range of
DO J = 1 TO 100 BY 2 I
Range of Outer DO
TABLE (J) = SUM(J,N)-1
Inner DO
END |
D(N) = C(N)
END

48

3.

A transfer out of the range of any DO loop is permissible
at any time.
The extended range of a DO is defined as those statements
in the program unit containing the DO statement that are
executed between the transfer out of the innermost DO of
DO's and the transfer back into the range of this innermost
DO. The following restrictions apply:
Transfer into the range of a DO is permitted only if
such a transfer is from the extended range of the DO.
. No DO statements are permitted in the extended range of
the DO.

The indexing parameters (i , m , m ,m) cannot be
- -1 T2 73

changed in the extended range of the DO.
ilote that a statement that is the end of the range of more
than one DO statement is within the innermost DO loop.
The indexing parameters (i, gl, mz, 33) may be changed by
statements outside the range of the DO statement. No
transfer may be made into the range of the DO statement from
outside the DO statement.

The use of, and return from, a subprogram from within any

DO loop in a nest of DO's is permitted.

POINTERS AND THE 'DO' STATEMENT

Consider a table of student data containing student name,
student ID, and eight class entries each containing semester
hours and class number. The DECLARE statement to allow for
100 such entries would be:

DECLARE

01 STUDNT(100),

02 NAME CHAR(10),
02 ID DEC(3),
02 CLASES(8),
03 HOURS DEC(2,1),
03 CNUM DEC (3)
The hours can be summed stepping through all entries in
the table using the following statements:
DO ZZ = 'STUDNT' TO 'STUDNT+99x%x53' BY 53
DO J =1 TO 8
SUM = SUM + HOURS (J) :22
END

END

If it were desired to have the entries available in some
order, each entry in the table can be linked to the next.

DECLARE
01 STUDNT (100),
02 LINK BINARY(2),
02 NAME CHAR(10),
02 ID DEC(3),
02 CLASES(8),
03 HOURS DEC(2,1),
03 CNUM DEC(2,1)
The previous example would then be:
ZZ = initial entry
LOOP:DO J = 1 TO 8
SUM = SUM + HOURS(J):7ZZ
END
ZZ = LINK:Z7
I 22 NE g THEN GO TO LOOP

END Statement

The END statement terminates a DO loop or a procedure
(see below). An optional label may follow which then must be
the sare as the label of the beginning of the DO loop, or the
label of the procedure.

For example:

XX: DO

END XX
51

MAIN PROCEDURE

A main procedure (usually referred to as a mainline
program in other languages) is identified by the statement
PROCEDURE OPTIONS (MAIN)
or
PROCEDURLE OPTIONS (MAIN, stack name)

In the first example, the compiler will assume that the
program is wholly in RAM memory and will allocate temporary
storage and stack. Additionally, the compiler will generate
jumps around in line DECLARE statements.

When a stack name is given, the compiler assumes a mixture
of RAM and ROM memories. The programmer must allocate a
temporary variable called T and a stack using a DECLARE state-
ment. The compiler will not generate jumps around in line
DECLARE's as it is assumed that the programmer will place
DECLARE's in RAM and procedures in ROM.

A main program chould be terminated with a 'branch to self'
instruction. This will stop the program and also keep it from
rurning right on inte any sub programs following the main pro-
gram. An END statement will not generate a terminating
instruction. Use $ BRA * or LABEL: GO TO LABEL before the
END statement.

Subscripts and mathematical expressions are evaluated by
subroutines called by the compiler and appended to the end of the
user's program. A label ZFFF is attached to the END statement
following these routines. The user can find the first byte

address following the end of his program by referring to the label.

52

SUBROUTINE PROCEDURES

It is sometimes desirable to write a program which, at
various points, requires the same computation to be performed
with different data for each calculation. It would simplify
the writing of that progranm if the statements required to
perform the desired computation could be written only once
and then could be referred to freely, with each subsequent
reference having the same effect as though these instructions
were written at the point in the program where the reference

was made.

For example, to take the cube root of a number, a program
must be written with this object in mind. If a general program
were written to take the cube root of any number, it would be
desirable to be able to combine that program (or subprogram)
with other programs where cube root calculations are required.

The MPL language provides for the above situation through
the use of subroutine procedures. A subroutine procedure is
set up as follows:

label: PROCEDURE (a , a , a ;, ... a)
1 2 3 n

2 subroutine procedure label is a statement label as
defined above and al, a2, a3 ... 1s the parameter list of
arguments associated with the subroutine procedure.

The SUBROUTINE is referenced by a CALL statement, which
consists of the word CALL followed by the label of the sub-

routine prccedure and its parenthesized arguments.

53

For example:

ABC: PROCEDURE (P,Y,2Z)

RETURN

END
is called by the statement:

CALL ABC (R,S,T)

where R, S and T are the arguments in the parameter list
corresponding to the dummy arguments P, Y, Z in the subroutine
procedure. Of course there need not be any arguments at all.
In this connection it should be noted that if the main procedure
and the subroutine procedure(s) are compiled together, then all
variables in both the main and the subroutine procedures are
effectively common tc all procedures. On the other hand if
subroutine procedures are compiled separately, the variable
names and statement labels within them do not relate to any
other procedures. Constants used as arguments default to

BINARY (2) .

The subroutine procedure may use sne crmore of its arguments
to return values to the calling program. Any arguments so used
must appear on the left side of an arithmetic statement. The
subroutine procedure name (label) must not appear in any other

statement in the procedure.

54

Subroutines compiled by themselves must contain a $T RMB 40
or DCL T(40) statement for temporary workspace used by routines

called whan the subroutine is compiled.

A main program calling a subroutine compiled separately
must have an EQU telling the main program where the subroutine
starts.

The dummy arguments (gl, 32, 33, ...,gn) may be considered
dummy variable names that are replaced at the time of execution
by the actual arguments supplied in the CALL statement.

Additional information about dummy arguments is in the section

"Arguments in a Subroutine Procedure".

Example:

The relationship between variable names used as arguments
in the calling program and the dummy variables used as arguments
in the subroutine procedure is illustrated in the followiné
example. The object of the subprogram is to "copy" one array

directly into another.

55

Calling Program

DECLARE
01 w(100) BINARY(1l),
01 Y(100) BINARY(1l)

CALL COPY (W,Y,100)

COPY:

SUBROUTINE Procedure

PROCEDURE (C, D, N)
DECLARE

01 C(100) BINARY(1l),
01 D(100) BINARY(1l),
01 N BINARY(2),

01 NN BINARY (1),

01 I BINARY (1)

NN=N

DO I 1 TO NN

D(I) C(I)
EIND
RETURN

END

The same names for dummy arguments may not be used in

subsequent subroutines in the same compilation. Once a
is defined, it remains defined for the remainder of the
Thus all variables are common and need not be redefined

subroutine.

56

name
program.

in each

ARGUMENTS IN A SUBROUTINE PROCEDURE

The dummy arguments of a subroutine procedure appear
after the word PROCEDURE and are enclosed in parentheses.
They are, in effect, replaced at the time cf execution by the
actual arguments supplied in the CALL statement of the calling
program. The dummy arguments must correspond in number, order,
and type to the actual arguments. For example, if the actual
argument is BINARY, then the dummy argument must be BINARY.
If a dumny argument is an array, the corresponding actual
argument must be an array. The size of the dummy array must

not exceed the size of the actual array.

The actual arguments can be:
Any type of constant
. Any type of nonsubscripted variable

. An array name

For each dummy argument in the procedure, an appropriate

DECLARE specification statement must appear in the procedure.

57

If a dummy argument is assigned a value in the subprogram,
the corresponding actual argument must be a nonsubscripted
variable name or an array name. A constant should not be
specified as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the subprogram. Dummy arguments may not be used
for:

. subscripts

. arguments in another subroutine call

index of a computed GG TO statement

parameters or index of DO loops

An alternative method of using a parameter list which is
more efficient in terms of object code generation may be used
if there are three or less arguments in the parameter list and
the arguments themselves are of a certain length. The general
form in this case is:

label: PROCCDURE <a a,>

R
and the corresponding CALL statement would be:

CALL label <bl' b2' b3>

Note especially the use of the '<' and '>' delimiters.

a b and b, must be one byte in length and a_, and b

1’ %20 1 2 3 3
must be two bytes in length. Of course the same method may be
used if there are only one or two arguments in the parameter
list, but in those cases all arguments must be one byte in

length.

58

Examples:
CALL XYZ <3,XX,J>
CALL DEF < Z,VAL:YY >

CALL GHI <, ,PTR(3)>

Example of a main program calling a subroutine when each
has been compiled as a separate program. It should be noted
using this technique causes redundant coding when the same type
of operations are performed in each program. For instance, all
routines called from the library for computing subscripts will
be called for each program using subscripts. When compiled

together, these routines are called once.

TCOHPTLE MAlN PROGEAM B
1SUBROUTINE ZOMPILED ZEFRC

ORIGIN "2a8"

DECLARE

Al W{iaa) BIN{1)Y,

Al ¥C198) BId(L)

DCL I
VSUBROQUTINE ’CSFPY! HRS BEEW COLMPILED AMD STARTS AT
'HEX ADBDRESS 2A
$COPY ERY $24

PROCEDIRE IJFTIOHS(MAINI

D6 I = 1 TO 14

Weix=1l

END

I=14

CALL COPYCW, Y., 1)

STOP:. 50 T2 E&8TOF
¢ O0°PT NOL
END

BETILY AND CaLt
i

59

Subprogram

1COMPILE ZUBROUTINE CALLED FROW SEPARATELY
ICOMPILED MAIN PROGRAMN.
corv: PROCEDURECC, D, H>
! HOTE**%* THE DECLARE T<(49) STATEMENT IS
! REQUIRED FOR ROUTINES CALLED WHEN
! THIS SUBROUTINE IS COMPILED.
! YARIGBLE T I5 INCLUDED WITH
! MAIN PROGRAMS BY FROCEDURE OFTIDNSCMAIN)
! STATEMENT, THEREFORE THE USER DOES NOT SUFPLY IT.
DECLARE T(48)
DECLARE
81 CC1@8) RBINARYC(1),
31 D(188) BINARY(1),
81 N BIHARRY(13,
81 1 BIHARYC(1)
BEL HN
NN=N
D3 I =1 TO NN
DCIY = CCID
END
RETURN
I'THE FOLLOWING QPTION WILL FPROHIBIT THE
'CROSS-ASSEMBLER FROM PRINTING FROM HERE ON.
$ aPT NOLIST
EHb

60

OPERATION

This section describes how to access the compiler on the

XEROX Sigma 9 timesharing system and the GE MARK III time-

sharing system.

INVOKING THE COMPILER

The compiler is invoked by typing

MTSS T/S
:M63MPL.MPU

GE MARK III T/S
OPT BIG
RUN M68MPL

The compiler will request filenames by typing:

ENTER INPUT FILENAME

? input file name

ENTER OUTPUT FILENAME

? output file name (this will be the input file to the

cross assembler)

The compiler is also available in GE MARK III background.

Invoke as follows:

RUN M68MPLI - This invokes the program that prepares and
submits JCL file for background processing.

SOURCE F'ILE NAME:?

enter source file name here.

PRIORITY:? enter H for high, press carriage return for

normal,

enter L for low which is overnight

processing.

ASSEMBLE MPL OUTPUT - YES/NO? enter YES if you wish to

compile and assemble both during this
run. Enter NO if you wish to compile
only. The MPL output file is saved
for later retrieval. No MPL output
file is saved if you answer YES. An
assembly listing and object tape file
is saved instead.

61

CONTROL FILE NAME: M68SNNNN These names are returned
to you. Keep them, they

JOB ID=JJJdJ are required to retrieve
output.

Allow anywhere from 10-90 minutes for this to be executed in
background. Time required depends on how fast the background

processor is running.

Check background progress of job by entering: BST JJJJ
When this entry returns DONE to you, proceed with retrieval

proyram as follows:

RUN M68MPLO starts retrieval program.
JOB ID: 2JJJJ enter the 4-character jobi.

COMPILER OUTPUT FILE:? Press carriage return if you answered
YES for both compile and assembly.
Enter the name of a file you want the
MPL output to be saved in if you
compiled only, answered NO.

LIST FILE:? enter the name of a file you want assembly listing
retrieved to, press carriage return if you don't
want to retrieve it.

OBJECT FILE:? enter name cf object tape file, press carriage
return if you don't want to save it.

CONTROL FILE TO DELETE:? enter MG8SNNNN control file name
returned when job was initiated, press
carriage return if you don't want to
delete it.

PURGE JOB - YES/NO? YES purges JOB JJJJ, NO saves it. It will
be purged automatically after 36 hours.
BE sure to retrieve output before that
time.

62

SOURCE PROGRAM ERRORS

Source program errors are identified by printing the
source line in error followed by an error message.

* k%
ERROR XXX

The error number XXX is defined on the following pages.

500 - illegal character

501 - syntax error (or compiler expects a different symbol type)
502 - "SYM" overflow in 'STUFF' (too many symbols in the program)
503 - parse stack overflow (statement is too complex)

504 - this symbol has already been declared as a variable

505 - the compiler expects this symbol to be a declared variable
506 - illegal character scan

507 - token overflow - scan (symbol over 47 characters long)

508 - missing level (level numbers must be in sequence)

509 - name duplicated

510 - decimal locaticn too big

511 - value too big for data representation

512 - DEFINED or BIT items may not have initial values

5§13 - undefined error message number

514 - undefined error message number

515 - level number cannct be greater than 5

516 - statement label is a variable

517 - index name not found

518 - index representation is not BINARY

519 - index size is not 1

520 - variabie cannot be pointed, dummy or subscripted

521 - "TEMP" (variable nzme T) is not large enough for this
expression

522 - variable name not found or "T" is not declared and thecre
is no main procedure

523 - tco many operands in this expression
524 - variable nam2 has t00 many occurrcnces
5§25 - pointer name not found

526 - pointer not level 01 or is dummy

A-2 3/76

527
528
529
530
531
532
533
534
535
526
537
538
539

540

541
542
543
544
545
546
547
548
549

550
551
552

pointer is array

pointer size is not 2 bytes

pointer data representation is not BINARY
subscript name not found

too many subscripts

subscript not level 1

subscript is an array

subscript is not 1 byte

subscript deta representation is not BINARY
too many operands

constant . 127

constant not allowed as first operand

the number of subscripts used do not agree with the
number of subscripts in the declare statement

DO operand data representation is not BINARY and/or
size is 2

too many nested IF's and/or DO's

cempiler error

iF/DO overlap

DC loops are nested more than nine deep
increment ¢f DO is nct 1 byte in length

initial or final value size is not same as index
simple variable required

shift operand is not constant

number of bits shifted is not consistent with field
size or zero

constant not allowed greater than 1 byte
illegal operation for this picture typc

mixed mode nct allowed

3/76

553
554
555
556
557
558
559
560

561
562

563

564

565
566

567
568

A=B+C not allowed when mode changes

compiler error. A op B = C has mixed mode
operand for bit operation is not constant § or 1
illegal bit operation

STUFF error

illegal action call

action number out of range

picture or initialize conflict between levels; only
elementary items may have a picture or be initialized

bit string spans more than one byte

warning code can be deleted; the last statements store

into the same location; example: J=1; J=2;

warning code can be deleted; the last statement loaded
from and stored into the same location; examples:
J=J; Z(5)=Z(5)

the keyword following the variable name is not a scale
(picture) attribute; example: binary, decimal or
character

the array has more than three dimensions

arrays with more than one dimension can only be dimension
as elementary items

more items initialized than the space declared

BASED variables can only be declared at level one (01)
and can not be initialized

3/76

DWW NN B DN -

- -
fos B T o= B VIR AA NS S I MR A T = B VIRECE o A N ST ~ B+ I Y]

— e A e
(& LI 7Y B AV I

SOURCE PROGRAM LISTING

$ 0PT MF=MFTEST,SYNBOL
DCL 1¢S> INIT(S, 18,7, -3,22)
DCL J. 8. L
PROC OPTIONSCMAIN)
L=9
S=v7F"
D0 J=17T0S5S
'FIND THE LARGEST HUMBER IN THE ARRAY
IF I¢J) LE L THEN GO TO SI

L= I(dD
TFI4D THE SMALLEST NUMBER IN THE ARRAY
3l IF I<d) GE S THEN GO TO S5
S=1d(d)
SS: £HD
STOP. GO0 TO STOP

END

B-1 3/76

ppeia
8920829
vae3a
epe4e
gBase
0DAEO
nBera
vaege
weBse
vi3i38
Bgi18
edi”
apl13e
episa
vBiSe
a0iED
0aaico
apr1za
206130
eozE0
apz1n
AN]
6Bz30
GRpZsQ

NIRRT
PRI~ R = I 7
[\OCH
U B S 4

OO 5o B oI v B]
DD IO DA DWW

To S GO D T
LW QLoD
DL IR VS SIS B 7N BN I SIS IS B VN B o3

PR
o

Lo
D ad I TN G B Ll TQ e QU

De
Exx]
F
AN
L

42418
884280
9430
Q2440
A84548
Q@pasescn
o479
G430
2B438
agsoa
835t
ga5za

3053
9885
2087
88389

3@ascC
3Gs5F
3B?71

8s
8a
87
FB
16

Pgot
CE TR
2e81

en2s

QE

7F

8B2F
8057

7F
85

8058

2280
89
8885
89
a7

Qega
85
2885
8o
8s
83
6arva

80680
3]
8885

* ¥ X

*3gesz
1

*B@383
J

S

L
*BpBed
T

28088
«B8B8S

*000806

*PEBa7

*BHaae
28081
*B00069

2862
*80610
*3001!
2603

*32012

51

2004
*@00913
2805

ASSEMBLY LISTING

NAM

LARD

COMPILED WITH PL/1 YERSION 8.54

oPT MF=NFTEST.SYMBOL
DCL 1(5) INIT(S, 18, ?J"3J 22)
FCB S
FCB 18
FCB I'4
FCB -3
FCB 22
DCL J, S, L
RMB 1
RMB 1
EHB i
PROC OPTIONSC{MAIN)D
RMB 40
LDS #$7+39
L=0
CLR L
S="7F"
LDR A #1127
STA A §
DOs$d =1 TO S
LBA A &1
IFINB THE LARGEST NUMBER IN THE ARRAY
STA A J
IF I<¢J) LE L THEN GO TO S|
LBX %1
LBA B J
JSR ZF1F
LBA & 6.X
CHP A& L
BGT 2083
J NP St1
L = ICJD
'FIND THE SHMALLEST HUMBER IN THE ARRAY
L DX L
Lha B J
JSR Z2F1F
LDdA A B.XK
STR A L
St IF I¢Jd> GE S THEMN GO TO S5
L DX #1
LBA B J
JSR ZF1F
LDA A 8,X
CMP A 8
BLT 2885
JMP §5
S=I1C¢(J)
LDX #1
Lda B J
JSR 2F1F

3/76

88534
eps540
eesse
0e560
ea8sve
pBLaed
885906
oBean
epeto
96628
28630
26648
ndosA
nEe?o
68638
ABs38
agvao
e6gvie
eprae
earvie
egav4n
eerse
e8v50
earre

vB74
2876

2878
3e7nA
ger7cC
8B7E
a8?7F

3832

ae85
4287
30883
aes89
a08na
an8cC
388E
aase
a832
3895
30837

A6
37

36
8t
2C
4C
7E

es
85
85
85
a4

983¢C

a882

7E

26
83
39
1]
DF
b8
D7
24
7C
DE
39

SYNBOL TABLE

8§35
20062
ZF1F

Do
8a73
0ed4co
2085

3882

32

ac
ar
8r
83
80BE
13

STI®
2883
2F1F1

LDA
STA
*pB8814 SS:
§9 L DA
cMp
BGE
INC
JMP
*0@20815 STOP
2886 EQU
STOP JHP
*BBG16 END
ZF L F BNE
DEX
RTS
ZF1F2 DEC
ZFSF STX
ADD
STA
BCC
INC
ZF1Fl LDX
RTS
END
BBBS L
ees2 T
6B4F Zea4
8895 ZF1F2

.
H

#5
2086

20801

GO TO STOP

*
STOP

ZF1F2

T+6
T+?
T+7
2F1F1
T+6
T+6

neB? S

@6ees zZeea
1pes Zeds
Be89 ZFSF

*x% ADD TOQ INDEX k%%

aube
868243
REEL
888A

51 6858
2881 Be3C
Z0B6 BB82

3/76

