
® MOTOROLA

MOTOROLA
PASCAL

LANGUAGE MANUAL

M68PLM(D1)

MICROSYSTEMS

MOTOROLA

PASCAL

LANGUAGE MANUAL

M68PLM(D1)

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

Copyright 1979 by Motorola Inc.

Prinled in Swil1eriand

TABLE OF CONTENTS
Page

CHAPTER 1 PASCAL BACKGROUND
1.1 EARLY DEVELOPMENT 1-1
1.2 UCSD CONTRIBUTION 1-1
1.3 MOTOROLA FEATURES 1-2

CHAPTER 2 BASIC LANGUAGE ELEMENTS
2.1 BASIC SYMBOLS 2-1
2.2 RESERVED WORDS 2-1
2.3 SEPARATORS 2-1

CHAPTER 3 USER-SPECIFIED LANGUAGE ELEMENTS
3.1 IDENTIFIERS 3-1
3.2 NUMBERS 3-1
3.3 STRINGS 3-1
3.4 COMMENTS 3-2

CHAPTER 4 PROGRAMS
4.1 INTRODUCTION 4-1
4.2 PROGRAM HEADING 4-1
4.3 DECLARATION PART 4-1
4.4 STATEMENT PART 4-1

CHAPTER 5 PROCEDURE DECLARATION
5.1 INTRODUCTION 5-1
5.2 PROCEDURE HEADING 5-1
5.3 DECLARATION PART 5-1
5.3.1 Label Declaration Part 5-2
5.3.2 Variable Declaration Part 5-2
5.3.2.1 Entire Variables 5-2
5.3.2.2 Component Variables 5-2
5.3.2.2.1 Indexed Variables 5-2
5.3.2.2.2 Field Designators 5-3
5.3.2.2.3 Fi 1 e Buffers 5-3
5.3.2.3 Referenced Variables 5-3
5.3.3 Procedure Declaration Part 5-3
5.3.4 Function Declaration Part 5-3
5.3.5 Constant Definition Part 5-3
5.3.6 Type Definition Part 5-3
5.3.6.1 Sca 1 ar Types 5-4
5.3.6.2 Subrange Types 5-4
5.3.6.3 Standard Simple Types 5-4
5.3.6.4 Array Types 5-4
5.3.6.5 Record Types 5-5
5.3.6.6 Set Types 5-5
5.3.6.7 Fi le Types 5-5
5.3.6.8 String Types 5-6
5.3.6.9 Poi nter Types 5-6
5.4 STATEMENT PART 5-6
·5.5 STANDARD PROCEDURES 5-6
5.5.1 File Handling Procedures 5-6
5.5.2 Dynamic Allocation Procedures 5-7

CHAPTER 6
6.1
6.2
6.3

CHAPTER 7
7.1
7. L 1
7.1.2
7.1. 3
7.1.4
7.1. 5
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.4
7.2.4.1
7.2.4.2
7.2.4.3

CHAPTER B

B.1
B.2
B.3
B.4
B.5

EXPRESSIONS
I NTRODUCTI ON
OPERATORS
FUNCTION DESIGNATORS

STATEMENTS
SIMPLE STATEMENTS

Assignment Statements
Procedure Statements
Goto Statements
Empty Statements
Exi t Statement s

STRUCTURED STATEMENTS
Compound Statements
With Statements
Conditional Statements

If Statements
Case Statements

Repetitive Statements
Wh il e Statement s
Repeat Statements
For Statements

FUNCTION DECLARATIONS
INTRODUCTION
FUNCTION HEADING
DECLARATION PART
STATEMENT PART
STANDARD FUNCTIONS

CHAPTER 9 INPUT AND OUTPUT

6-1
6-1
6-3

7-1
7-1
7-1
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-4
7-5
7-5
7-6

B-1
B-1
B-1
8-2
8-2

9.1 INTRODUCTION 9-1
9.2 CORRESPONDENCE OF FILE VARIABLES TO SYSTEM I/O RESOURCES 9-1
9.2.1 Local Files 9-1
9.2.2 External Files 9-1
9.2.2.1 Resource Name String 9-2
9.2.2.1.1 Syntax 9-2
9.2.2.1.2 Option Specification 9-2
9.3 OPERATIONS COMMON TO ALL FILE TYPES 9-3
9.3.1 Functions 9-3
9.3.2 Procedures 9-4
9.4 OPERATIONS ON TEXTFILES 9-5
9.4.1 Procedures 9-5
9.4.1.1 Write 9-5
9.4.1.2 Writeln 9-6
9.4.1.3 Read 9-6
9.4.1.4 Readln 9-6
9.4.1.5 Page 9-7
9.4.2 Functions 9-7

CHAPTER 10
10.1
10.2

SEPARATE COMPILATION AND LINKAGE
PASCAL SUBPROGRAMS
ASSEMBLY LANGUAGE ROUTINES

10-1
10-1

Page

APPENDIX A SYNTAX A-I

LIST OF TABLES

TABLE 5-1 Data Types 5-4
6-1 Not Operator 6-2
6-2 Multiplying Operators 6-2
6-3 Adding Operators 6-2
6-4 Relational Operators 6-3
8-1 Standard Functions 8-2

LIST OF FIGURES

FIGURE 10-1 Pascal Linkage Process 10-1

iii

1.1 EARLY DEVELOPMENT

A prel iminary version of
Nikl aus Wirth at the
Switzerland. in 1968.
languages. Wirth's first

CHAPTER 1

PASCAL BACKGROUND

the programmi ng 1 anguage Pascal was drafted by Prof.
Eidgenossiche Technische Hochschule, in Zurich.

It was based on the A190l-60 and Algol-W line of
compiler was operational in 1970.

Wi th growi ng interest in the use of compi 1 ers for other computers and to
incorporate some revisions to the language, a revised "Report" was published in
1973. This Motorola specification is based on the second edition* to that
"Report". Material is used with permission of the Springer-Verlag Publishers,
New York.

1.2 UCSD CONTRIBUTION

The Institute for Information Systems at the University of California at San
Diego (UCSD). under the directorship of Kenneth Bowles. has been a major force
behind the development of Pascal in the U.S. In 1974, Bowles looked to Pascal
for its structured programming benefits in teaching; but he also wanted a
language that would be portable and not locked into one particular computer.
Through frequency-based encoding. he got the compiler working on the PDP-II and.
within a short time, on a microprocessor. Thereafter, he and his colleagues put
together a single-user operating system that has received wide distribution and
usage.

Once opened, the Pascal door swung wide for other compilers. which appeared with
a variety of individual ized extensions. The desirabil ity of standardizing on
these extensions was recognized by Pascal advocates and. in the summer of 1978,
a workshop was hosted by the UCSD I nst i tute for I nformat i on Systems. Out of
this workshop arose a small set of extensions which sustained widespread
industry support. The extensions agreed upon exhibited the following
characteristics:

1. Compatibility - they did not invalidate programs written in the original
language.

2. Convenience and Necessity - an extension was characterized either by
being absol utely necessary for the intended appl ication area. or by
being highly convenient as compared to the unextended language.

3. Implementability - an extension was recommended only if an implementa­
tion could be proposed which did not lead to excessive translator
complexity. or undue runtime or code space penalties.

Currently, the American National Standards Institute (ANSI) and the Institute of
Electrical and Electronics Engineers (IEEE) have agreed to jOintly develop a
standard for the Pascal programming language.

* Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report, Second
Edition (Springer-Verlag, New York. Heidelberg. Berlin 1974)

1-1

1.3 MOTOROLA FEATURES

Motoro 1 a's Pasca 1 is based on the 1 anguage as defi ned by Ni kl aus Wi rth, with
additions stimulated by Motorola's participation in the UCSD workshop and its
current participation in the rEEE/ANSI standardization effort.

The first release of Pascal includes extensions for expressing certain embedded­
control type operations, an important consideration to a large class of
microprocessor users. Other extensions are desirable to users who will
implement business-oriented systems. These extensions are as follows:

address specification for
variables

alphanumeric labels

exit statement

external procedure and function
declarations

nondecimal integers

otherwise clause in case
statement --

relaxation of definition and
declaration order

runtime error checking

runtime file assignment

string operations

string types

underscores in identifiers

Omitted from the first release are formal procedure and function parameter
speCifications, packed structures, and type real. These standard Pascal
features will be included in future releases.

Future releases of the language will include, as well, the following extensions:

adjustable formal array
dimensions

compile-time initialization

constant expressions

half-length and double-length
integers

indexed files

1-2

interrupt handling

structured constants

structured function values

symbolic scalar I/O

type transfer functions

user abort

CHAPTER 2

BASIC LANGUAGE ELEMENTS

2.1 BASIC SYMBOLS

The Pascal vocabulary consists of the following basic symbols:

Letters A through Z, a through z, and underscore

Digits: ~ 1 2 3 4 5 6 7 8 9

Speci al Symbol s: + - * / = < > (') [] • , ; : I @ { t

The following operators and del imiters, having a fixed meaning in
the language, are formed using the above special symbols:

<> <= >= :=

(. and .) Subst itutes for [and] for delimiting array indices
and sets.

(* and *) Substitutes for { and for del imiting comments.

The symbol @ is a substitute for t for pointer types.

2.2 RESERVED WORDS

Reserved words are those integral parts of the Pascal language which a
progranmer cannot redefine. They are as follows:

and exit nil set
array file not string
begin for of subprogram
case forward or then
const. function origin to
div goto otherwi se type
do if procedure unt il
downto in program var
else label record whil e
end mod repeat with

2.3 SEPARATORS

Blanks, ends of lines, and comments are considered as separators. An arbitrary
number of separators may occur between any two consecutive Pascal symbols, with
the following restriction: no separators may occur within identifiers, numbers,
and word symbols.

At least one separator must occur between any pair of consecutive identifiers,
numbers, or word symbols.

2-1

3.1 IDENTIFIERS

CHAPTER 3

USER-SPECIFIED LANGUAGE ELEMENTS

<identifier>*

Identifiers serve to denote constants, types, variables, procedures, and
functions. Their association must be unique within their scope of val idity -­
i.e., within the procedure or function in which they are declared.

They consist of a letter or uhderscore followed by any combination of letters,
digits, or underscores. The compiler does not distinguish between upper and
lower case of letters, so these may be used at will to improve readability.

Identifiers denoting distinct objects must differ over the characters contained
in the first ten positions.

Identifiers may not be reserved words (par. 2.2).

3.2 NUMBERS <unsigned number>

Numbers are constants of the predefi ned type integer. The integer ra nge is
-32768 through 32767.

Numbers can be written in the customary decimal notation or in other number
bases where desired. The symbol # separates the base and number: the base writ­
ten in decimal, and the number itself written in the base.

Examples:

3.3 STRINGS

100 (* 100 is a number to the base 10 *)
16#49F0 (* 49F0 is a number to the base 16 *)
8#3770 (* 3770 is a number to the base 8 *)

<string>

strings are sequences of characters enclosed by apostrophes. A string con­
sisting of a single character is a constant of the standard type char; a string
consisting of n (>1) enclosed characters is a constant of the type array [l •• n]
of char, and is compatible with string type.

If the string is to contain an apostrophe, then the apostrophe is to be written
twice.

Examples: 'A'
'don' 't I

'this is a ~tring'

* A syntactic apex variable which equates to an entry in Appendix A, "Syntax".
A similar variable is found at the top of each Pascal segment in the manual,
directing the user to the fully expanded syntax.

3-1

3.4 COMMENTS

A cOlllllent is a sequence of characters enclosed by the symbol pairs (* and *).
The symbol pairs (* and *) are used as synonyms for { and }.

A COlllllent may be inserted between any two i dent Hi ers, numbers, or sped a 1
symbols, and it may be replaced by a space without altering the meaning of the
program text.

However, a "colllllent" enclosed by apostrophes is not a cOlllllent. but a stri ng.
For example. '(* program name *)' is a string.

Examples: (* beginning of program *)
(* send message to printer *)

3-2

4.1 INTRODUCTION

CHAPTER 4

PROGRAMS

<program>

A Pascal program has the form of a procedure declaration (chapter 5) except for
its heading.

4.2 PROGRAM HEADING <program heading>

A program heading contains, in the following order: (1) the symbol £!:.Q.9.r:..am,
(2) a program name identifier, and (3) program parameter identifier(s).

The identifier which follows the symbol program is the program name; it has no
further significance inside the program.

The two standard fil es, input and output, are 1 i sted as parameters in the
program heading, if they are used. They are predeclared as

var input, output: text

and should not be declared in the variable declaration part (par. 5.3.2).

4.3 DECLARATION PART <declaration part>

The declaration part contains declarations and definitions which are local to
the program. For details, see paragraph 5.3.

4.4 STATEMENT PART <statement part>

The statement part of a program has the structure of a single compound statement
(par. 7.2.1). The word end, however. that terminates the top-level compound
statement is followed by a-period (.). which terminates the program.

Example: program copytext(input,output);
var ch: char;
begin

while not eof(input) do
begin

while not eoln(input} do
begin read(c~}; write(ch)
end;

readln; writeln
end

end.

4-1

5.1 INTRODUCTION

CHAPTER 5

PROCEDURE DECLARATION

<procedure declaration>

The procedure declaration serves to define a program part and to associate an
identifier with it so that it can be activated by a procedure statement
(par.7.1.2). The declaration consists of a "procedure heading", a "declaration
part", and a "statement part ".

If the procedure is defined later in the compilation or externally in a separate
compilation, the directive forward replaces the declaration and statement parts.
Forward, when used, follows the procedure heading.

Example: procedure forml(k,l: integer}; forward;

5.2 PROCEDURE HEADING <procedure headinn>

The procedure headi ng spec i fi es the i dent i fi er nami ng the procedure. and an
optional formal parameter section(s}.

The parameters are either value-, variable-, function-, or procedure parameters.
A parameter group without preceding specifier (i.e., var, function, or
procedure) implies that its constituents are value parameters--.--

Examples: procedure sum (var i,j: integer); forward;

(* Assign to x the value of the next integer in the textfile f *)

procedure readinteger (var f: text; var x: integer);
var i,j: integer;
begin while f@ = ' , do get(f); i :=0;

while f@ in ['0' •• '9'] do

x:=
end

begin j:= ord(f@) - ord('0');
i:= 10 * i + j;
get(f)

end;

5.3 DECLARATION PART <declaration part>

The declaration part comprises the declaration of labels, variables, procedures,
and functions, and the definition of constants and types.

5-1

5.3.1 Label Declaration Part <label declaration part>

The label declaration part, which is introduced by the symbol label, specifies
all labels which mark statements in the statement part (pars. 7~and 7.1.5).
Labels are either identifiers (par. 3.1), or unsigned decimal numbers of four
digits or less.

Example: (* 2~~1 and checkit are labels in the current procedure *)

label 2~01, checkit

5.3.2 Variable Declaration Part <variable declaration part)

The variable declaration part, which is introduced by the symbol var, contains
al1 variable declarations local to the procedure declaration. AVariable is
declared by denoting its identifier, followed optionally by the memory address
(origin) at which it is to reside, followed by its previously defined type.

Variables may be entire, components of an array, record or file, or pointers.

Example: var i,j: integer; (* Declare i and j to be integer variables *)

(* Declare a 1~-element array of records, each containing an
integer field and a character field *)

arr: array [1 •• 10] of
record

fl: integer;
f2: char

x: @integer; (* Declare x to be a pOinter to an integer *)

a [origin 16#FCF4]: ACIA; (* Declare a to be an ACIA at hex
memory address FCF4 *)

5.3.2.1 Entire Variables. <entire variable> An entire variable is denoted by
its identifier.

5.3.2.2 Component Variables. <component variable> A component of a structured
variable is denoted by the variable identifier, followed by a selector
specifying the component. The form of the selector depends on the structuring
type of the variable.

5.3.2.2.1 Indexed Variables. <indexed variable> A component of an
n-dimensional array variable is denoted by the variable, followed by n index
expressions. The types of the index expressions must correspond with the index
types declared in the definition of the array type.

Examples: a [12]
a [i + j]

b [red,true]

5-2

5.3.2.2.2 Field Designators. <field designator> A component of a record
variable is denoted by the record variable, followed by the field identifier of
the component.

Examples: u.re
b [red, true]. im
p2@.size

5.3.2.2.3 File Buffers. <file buffer> At any time, only the one component
determined by the current position of a file "read/write head" is directly
accessible. This component is called the current file component and is
represented by the file's buffer variable.

Example: f@

5.3.2.3 Referenced Variables. <referenced variable> If p is a pointer variable
which is bound to a type T, p denotes that variable and its pointer value,
whereas p@ denotes the variable of type T referenced by p.

Examples: pl@
pl@.father

pl@.sibling@.child

5.3.3 Procedure Declaration Part <procedure declaration>

The procedure dec 1 arat ion, wh i ch is introduced by the symbo 1 procedure, serves
to define a program part (par. 5.1). If procedures are nested, this procedure
declaration part defines those nested program parts.

5.3.4 Function Declaration Part <function declaration>

The function declaration part, which is introduced by the symbol function,
serves to define a program part which computes a value (par. 8.1).

5.3.5 Constant Definition Part <constant definition part>

The constant definition part, which is introduced by the symbol const, contains
all constant synon~ definitions local to the procedure. A constant definition
introduces an identifier as a synonym for a constant.

The constants may be signed/unsigned numbers, signed/unsigned constant
identifiers, or strings.

Examples: const maxindex = ~;
rev = '~3.~~';

5.3.6 Type Definition Part <type definition part>

The type definition part, which is introduced by the symbol ~, contains all
data type definitions which are local to the procedure declaration. A data type
determi nes the set of values wh i ch var i ab 1 es of that type may assume, and
associates an identifier with the type. Table 5-1 lists the various data types.

Example: ~ T = array [1 •• 1~] of string [10];

5-3

TABLE 5-1. Data Types

Simple Structured POlnter
Scalar
Subrange

Standard simple

Array
Record
Set
File

String

Pointer

5.3.6.1 Scalar Types. <scalar type> A scalar type defines an ordered set of
values by enumeration of the identifiers which denote these values.

Examples: ~ colors = (red, orange, yellow, green, blue);
suits = (club, diamond, heart. spade);
days = (Monday, Tuesday, Wednesday,

Saturday. Sunday);
Thursday. Friday,

5.3.6.2 Subrange Types. <subrange type> A type may be defined as a subrange of
another sca 1 ar type by i nd i cat i on of the 1 east and the greates t value in the
subrange. The first constant specifies the lower bound, and must not be greater
than the upper Dound.

Examples: ~ index = 1 •• 100;
range = -10 •• +10;

weekdays = Monday •• Friday;

5.3.6.3 Standard Simple Types. The following type identifiers are standard in
Pascal: integer, Boolean, and char. However, other type identifiers may be
defined by the programmer.

integer

Boolean

char

The values are a subset of the whole numbers defined by
individual implementations. Its values are denoted by integers
(par. 3.2).

Its values are the truth values denoted by the predefined
identifiers true and false, such that false is less than true.

Its values are a set of characters determined by particular
implementations. They are denoted by the characters themselves
enclosed within apostrophes.

5.3.6.4 Array Types. <array type> An array type is a structure consisting of a
fixed number of components which are all of the same type, called the component
type. The elements of the array are designated by indices, values belonging to
the so-called index type. The array type defi nit i on spec i f i es the component
type as well as the index type.

An array can have n)= 0 (i. e., unl i mited) dimens ions. When n index types are
specified, the array type is called n-dimensional, and a component is deSignated
by n indices.

Examples: ~ array1 = array [1 .• 100] of integer;
array2 = array [1 •• 10.1 .. 20] of 0 •• 99;
array3 = array [Boolean] of color;

5-4

5.3.6.5 Record T~es. <record type> A record type is a structure consisting of
a fixed number 0 components, possibly of different types. The record type
definition specifies for each component, called a field, its type and an
identifier which denotes it. The scope of these so-called field identifiers is
the record definition itself, and they are also accessible within a field
designator referring to a record variable of this type.

A record type may have several variants, in which case a certain field may be
designated as the tag field, whose value indicates which variant is assumed by
the record variable at a given time. Each variant structure is identified by a
case label which is a constant of the type of the tag field.

When the tag field (liS:" in the example below) is present, a runtime error will
occur on accessing any field in a variant other than the one corresponding to
the current value of the tag field. The tag field may be omitted, in which case
no variant error checking is performed.

Examples: ~ date = record day: 1 •• 31;
month: 1. .12;
year: integer

person = record name, firstname: alfa;
age: 0 •• 120;
married: Boolean

object = record x,y: integer;
A: area;

end;

case s: shape of
triangle: (side: integer;

inclination, angle1, angle2: angle);
rectangle: (side1, side2: integer;

skew, angle3: angle);
circle: (diameter: integer)

5.3.6.6 Set Types. <set type> A set type defines the range of values which is
the powerset of its so-called base type. Base types must not be structured
types.

Examples: ~ digits = set of 0 •• 9;

patriotic = set of (red,white,blue);

5.3.6.7 File~. <file type> A file type definition specifies a structure
consisting of a sequence of components which are all of the same type. The
number of components, called the length of the file, is not fixed by the file
type definition. A file with zero components is called empty.

5-5

Components of a file are accessed sequentially. Operations for stepping through
a file while reading or writing. and for resetting to the beginning, are
described in Chapter 9.

Sequential files with component type char are called textfiles, and are a
special case insofar as the range of component values may be considered extended
by a marker denoting the end of aline. This marker allows textfiles to be
substructured into lines. The type text is a standard type. predeclared as

~ text = file of char

Example: ~ report = fil e of char;

5.3.6.8 String Types. <string type> An object of string type can take on
values of sequences of characters. The sequences~e lengths from one
character up to a number defi ned by the context. Specifi cally, a part i cul ar
stri ng type is specified with a maximum length that objects of that type may
possess.

Example: ~ name = string [10]

5.3.6.9 Pointer T~pes. <pointer type> Variables which are declared in a
program are accesslble by their identifier. They exist during the entire
execution process of the procedure (scope) to "which the variable is local, and
these variables are, therefore, called static (or statically allocated). In
contrast, variables may also be generated dynamically -- i.e., without any
correl at i on to the structure of the program. These dynami c vari ab 1 es are
generated by the standard procedure new; since they do not occur in an explicit
variable declaration, they cannot be referred to by a variable name. Instead,
access is achieved via a so-called pointer value which is provided upon
generation of the dynamic variable. A pointer type thus consists of an
unbounded set of values pointing to elements of the same type.

Examples: ~ link = @integer;
ptype = @person;

5.4 STATEMENT PART <statement part>

The statement part takes the form of a compound statement (par. 7.2.1).

5.5 STANDARD PROCEDURES

Standard procedures are predeclared in every implementation of Pascal. Motorola
implementations feature additional predeclared procedures, which are denoted in
this manual with an asterisk (*). Since they are assumed as declared in a scope
surrounding the program, as are all standard quantities, no conflict arises from
a declaration redefining the same identifier within the program. The standard
procedures are listed and explained below.

5.5.1 File Handling Procedures

The standard file handling procedures are described in Chapter 9.

5-6

5.5.2 Dynamic Allocation Procedures

new(p)

new(p. tI •••• ,tn)

dispose(p)

All ocates a new variable v and assigns the pointer to v
to the pointer variable p. If the type of v is a record
type with variants. the form

Can be used to allocate a variable of the variant with
tag field values tI, ••• ,tn. The tag field values must be
listed contiguously and in the order of their declaration
and must not be changed during execution.

Indicates that storage occupied by the variable p@ is no
longer needed. If the second form of new was used to
allocate the variable then

dispose(p. tI ••••• tn) With identical field values must be used to indicate that
storage occupied by this variant is no longer needed.

5.5.3 String Procedures

*delete(s.x.y)

*insert(sl.s2,x)

Delete a substring from the given string (5) beginning at
the indicated position (x) and running for the given
number of characters (y).

Insert string 1 (sI) at the given position (x) of string 2
(52). Move any trailing characters in string 2 to the
right. past the insert ion. If necessary. truncate the
resulting string so that it conforms to the maximum size
of string 2.

5-7

CHAPTER 6

EXPRESSIONS

6.1 INTRODUCTION <factor>,<term>,<simple expression>.<expression>

Expressions are constructs denoting rules of computation for obtaining values.
Their uses include generating new values for variables by the application of
operators. Expressions consist of operators and operands -- i.e., variables,
constants, and functions.

Expressions which are members of a set must all be of the same type. which is
the base type of the set. [] denotes the empty set, and [x •• y] denotes the set
of all values in the interval x ••• y.

Examples:

Factors:

Terms:

x

15
(x + y + z)

[red, c, green]
[1, 5, 10 •• 19, 23]

not p

x * y

i/(1 - i)

(x <= y) and (y > z)

Simple
expressions:

Expressions:

6.2 OPERATORS

x + y

- x

p or q

hue1 + hue2
* j + 1

P <= q

(i < j) = (j < k)

c in hue1

The rules of composition specify operator precedences according to four classes
of operators. The not operator has the highest precedence, followed by the
multiplying operators:-ihen the adding operators and. finally, with the lowest
precedence, the relational operators (see Tables 6-1 through 6-4). Sequences of
operators of the same precedence are executed from left to right.

Notice that all scalar types define ordered sets of values.

6-1

The operators <>, <=, >= stand for unequal, less or equal, and greater or equal,
respectively.

The operators (= and >= may also be used for comparing values of set type, and
then denote set inclusion.

If P and q are Boolean expressions, p = q denotes their equivalence. and p (= q
denotes impl ication of q by p. (Note that false (= true).

The relational operators = <> (<= > >= may also be used to compare arrays
havi ng components of type char and to compare stri ngs. They then denote
alphanumeric ordering according to the binary collating sequence of characters
in the ASCII character set. For equal length strings, characters in correspond­
ing character positions are compared, starting from the high-order position,
until either a pair of unequal characters or the low-order position of the
string is compared. For unequal length strings, the comparison proceeds as for
strings of equal length. If the process exhausts the characters of the shorter
string, the shorter string is less than the longer unless the remainder of the
longer string consists solely of ASCII spaces, in which case the strings are
equal.

When used as operators with one operand o~y, - denotes sign inversion, and +
denotes the identity operation.

TABLE 6-1. Not Operator

Operator Operation Type of OI!erands Type of Resu 1 t

not Negation Boolean Boolean

TABLE 6-2. Multiplying Operators

Operator Operation Type of Operands Type Of Result

* Multiplication Integer Integer
Set Intersection Any Set Type T T

div Division with Truncation Integer Integer
mod Modulus Integer Integer
and Logical "and" Boolean Boolean

TABLE 6-3. Adding Operators

Operator Operation Type of Operands Type of Result

+ Addition Integer Integer
Set Union Any Set Type T T

- Subtraction Integer Integer
Set Difference Any Set Type T T

or Logical "or" Boolean Boolean

6-2

TABLE 6-4. Relational Operators

Operator Operation Type Of Operaf!C!s Iype ot Result

= "equal to" Any Scalar, Subrange, or Boolean
Set Type

<> "not equal to" (Same as above) Boolean
< "less than" Any Scalar or Subrange Type Boolean
> "greater than" (Same as above) Boolean
<= "1 ess than or equal to". Any Scalar, Subrange. or Boolean

implication, set Set Type
inclusion

>= "greater than or equal to", (Same as above) Boolean
set containment

in Set membership Any Scalar or Subrange Type Boolean
& Its Set Tme ResRect i vel~

6.3 FUNCTION DESIGNATORS <function designator)

A function designator specifies the activation of a function. It consists of
the identifier designating the function and a list of actual parameters. The
parameters are variables, expressions, procedures, and functions, and are
substituted for the corresponding formal parameters.

Examples: Sum(a. 100)

GCD(l47, k)
eof(f)
ord(f@)

6-3

CHAPTER 7

STATEMENTS

Statements denote algorithmic actions, and are said to be executable. They may
be prefixed with a label (par. 5.3.1) followed by a colon, which enables that
statement to be referenced by goto and exit statements.

7.1 SIMPLE STATEMENTS <simple statement>

A simple statement is a statement of which no part constitutes another
statement. In this group are the assignment, procedure, goto, empty, and exit
statements.

7.1.1 Assignment Statements <assignment statement>

The assignment statement serves to replace the curreni value of a variable or a
function identifier by a new value specified as an expression.

The variable (or the function) and the expression must be of identical type.
One exception, however, is permitted -- i.e., the type of the expression is a
subrange of the type of the variable, or vice-versa.

Example: x := y + z (* Replace current value of x by sum of y and z *)

7.1.2 Procedure Statements <procedure statement>

A procedure statement serves to execute the procedure denoted by the procedure
identifier. The procedure statement may contain a 1 ist of actual parameters
which are substituted in place of their corresponding formal parameters defined
in the procedure declaration. The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters,
respectively. There exist four kinds of parameters: so-called value
parameters, variable parameters, procedure parameters, and function parameters.

In the case of a value parameter, the actual parameter must be an expression (of
which a variable is a simple case). The corresponding formal parameter
represents a local variable of the called procedure, and the current value of
the expression is initially assigned to this variable. In the case of a
variable parameter, the actual parameter must be a variable, and the
corresponding formal parameter represents this actual variable during the entire
execution of the procedure. If this variable is a component of an array, its
index is evaluated when the procedure is called. A variable parameter must be
used whenever the parameter represents a result of the procedure.

Examples: next;
transpose{a~n,m);

7.1.3 Goto Statements <goto statement>

A 90~O statement serves to indicate that further processing should continue at
anot er part of the program text -- namely, at the place of the label.

7-1

Ine tOI lowlng restrictions hold concerning the applicability of labels:

1. The scope of a label is the procedure within which it is defined. It is.
therefore, not possible to jump into, or out of, a procedure.

2. Every label must be specified in a label declaration in the heading of
the procedure in which the label marks a statement.

Example: goto sampl;

7.1.4 Empty Statements <empty statement>

The empty statement consists of no symbols and denotes no action. It occurs
whenever the syntax of Pascal requires a statement but no statement appears.

Example: (* The statement encountered between begH and end is the empty
statement which, in this case, has no e ect *)

begin
end;

7.1.5 Exit Statements <exit statement>

The execution of an exit statement without a label operand causes the immediate
termination of the smallest enclosing repetitive statement. Control is given to
the same statement that would be executed after normal loop termination. If a
1 abe lis gi ven, then control is gi ven to the statement that woul d be executed
after normal terminat ion of the encl osi ng repet iti ve statement carrying the
given label.

Examples: for i := 1 to 2~ do begin
read{filel, array! [i]);
if eol n(filel) then exit

end;
(* Control results here after both count-triggered and eoln-type
terminations. *)

lab2: for i := 1 to 20 do
begin

j : = 2;

repeat
arrayl [i] := array! [i] + array2 [j];
if array2 [j] = 999 then exit lab2;
j := j + 2

until j = !0~
(* control results here after Boolean expression becomes

true *)

end;
(* control results here after count-triggered, or if the exit

statement with label lab2 is executed *)

7-2

7.2 STRUCTURED STATEMENTS

Structured statements are constructs composed of other statements which have to
be executed in sequence (compound statement), conditionally (conditional
statements), repeatedly (repetitive statements), or by a with statement.

7.2.1 Compound Statements

The compound statement specifies that its component
executed in the same sequence in which they are written.
end act as statement brackets. The statements that
statement are separated by semicolons (;).

<compound statement>

statements are to be
The symbols begin and

make up the compound

Example: begin Z:= Xi x := y; y := Z end; (* Interchange values of x and y,
using z *)

7.2.2 With Statements <with statement>

Within the component statement of the with statement, the components (fields) of
the record variable(s) specified in theirecord variable list can be denoted by
their field identifier only -- i.e., without preceding them with the denotation
of the entire record variable. The with clause effectively opens the scope
containing the field identifiers of tne-5pecified record variable(s), so that
the field identifiel's may occur as variable identifiers.

If the variable date is declared as
var date: record

then

month: integer;
year: integer

end

with date do

if month = 12 then - --
begin month := 1; year := year + 1
end

else month := month + 1
is equivalent to

if date.month = 12 then
begin date.month := 1; date.year := date.year + 1
end

else date.month := date.month + 1

If the selection of a variable in the record variable list involves the indexing
of an array or the dereferencing of a pointer, then these actions are executed
before the component statement is executed.

7-3

7.2.3 Conditional Statements <conditional statement>

A conditional statement selects for execution a single one of its component
statements.

7.2.3.1 If Statements. <i f statement> The if statement specifi es that a
statement be executed only if a certain condition-(Boolean expression) is true.
If it is fal se, then either no statement is to be executed, or the statement
following the symbol else is to be executed.

The syntactic ambiguity arising from the construct
if <expression1> then if <expression2> then <statement1> else <statement2>

is resolved by interpreting the construct as equivalent to
if <expressionl> then
begin

if <expression2> then <statementl> else <statement2>
end

Examples: if x < 15 then z := X + Y else z := 15;
if pl < > nil then pI := p1@.father;

7.2.3.2 Case Statements. <case statement> The case statement consists of an
expression (the selector) and a list of statements, each being labeled by a
constant of the type of the selector. It specifies that the one statement be
executed whose label is equal to ·the current value of the selector. If no label
equals the value of the selector, control is given to the statement in the
otherwise clause if it exists. Otherwise, the statement causes a runtime error.

Examples: case operator of
plus: x := X + y;
minus: x := x - y;
times: x x * y

end;
case i of

1 : x := abs(x) ;
2: x .: sqr(x);
3: x .: succ(x);
4: x .= pred(x)
otherwise: x 0

end;

7.2.4 Repetitive Statements <repetitive statement>

Repetitive statements specify that certain statements are to be executed
repeatedly. If the number of repetitions is known beforehand -- i.e., before
the repetitions are started -- the for statement is the appropriate construct to
express this situation; otherwise, the while or repeat statement should be used.

7-4

7.2.4.1 While Statements. <while statement> In the while statement, the
component statement is repeatedly executed while the controlling Boolean
expression is true. If the expression's val ue is false at the beginning, the
component statement is not executed at all.

whil e B do S

is equivalent to

Examples:

if B then
begin S;

while B do S
end

while a[i]< > x do i:= + 1;

whil e i > ~ do
begin..if. odd(i) then z := z * x;
end;

whil e not eof(f) do
begin P(f@); get(f)
end;

:= i div 2; x := sqr(x)

7.2.4.2 Repeat Statements. <repeat statement> The repeat statement provides
for the repetition of a sequence of statements based on a controlling
expression. The expression controlling repetition must be of type Boolean. The
sequence of statements between the symbols repeat and unt i1 is repeatedl y
executed (and at least once) until the expreSSlon becomes true. The repeat
statement

repeat S unt il B
is equivalent to

Examples:

begin S;
if not B then ---

repeat S until B
end

repeat k := i mod j;

until j = ~;

repeat P(f@); get(f)
until eof(f);

: = j; j: =k

7-5

7.2.4.3 For Statements. <for statement> The for statement indicates that a
statement is to be repeatedly executed while a progression of values is assigned
to a variable which is called the control variable of the for statement. The
progression can be up to or downto a final value. ----

The control variable. the initial value, and the final value must be of the same
scalar type (or subrange thereof). and must not be altered by the repeated
statement.

The for-statement
for v := eI to e2 do body

is equivalent to
begin
tempI ;= eI; temp2 := e2;
if tempI <= temp2 then

begin
v ;= tempI;
body;
whil e v <> temp2 do

begin
v := succ(v};
body
end

end
end

and the for-statement
for v ;= eI downto e2 do body

is equivalent to
begin
tempI ;= eI; temp2 ;= e2;
if temp I)= temp2 then

begin
v ;= tempI;
body;
whil e v <> temp2 do

begin
v := pred(v);
body
end

end
end

7-6

where tempI and temp2 are auxiliary variables of the host type of the variable v
which do not occur elsewhere in the program.

Examples: for i := 2 to 63 do if a[i] > max then max := a[i];

for i := 1 to n do - -
for j I to n do
begi n x := ~;

for k := 1 to n do x := x + A[i, k] *B[k, j]; C[i, j] := X

end;

for c := red to blue do Q(c);

7-7

8.1 INTRODUCTION

CHAPTER 8

FUNCTION DECLARATIONS

<function declaration>

The function declaration serves to define a program part that computes a value.
The declaration consists of a "function heading", a "declaration part", and a
"statement part".

If the function is defined later in the compilation or externally in a separate
compilation, the directive forward replaces the declaration and statement parts.
Forward, when used, follows the function heading.

Functions are activated by the evaluation of a function designator (par. 6.3),
which is a constituent of an expression.

8.2 FUNCTION HEADING <function heading>

The function heading specifies the identifier naming the function, an optional
formal parameter section(s}, and the result type.

The parameters are either value-, variable-, function-, or procedure parameters.
A parameter group without preceding specifier (Le., var, function, or
procedure) implies that its constituents are value parameters--.--

Example: function Power (x,y: integer): integer;
var w,z,i: integer;
begin W := Xi Z := l;i := y;

whil e i > 0 do
begin (* z* (w**i) = x ** y *)
if odd(i) then Z z*w;

:= i div 2;
w := sqr(w)

end
(* Z = x**y *)
Power := Z

end;

(* y > = 0 *)

function GCD (m,n: integer): integer; forward;

8.3 DECLARATION PART <declaration part>

The declaration part comprises the declaration of labels, variables, procedures,
and functions, and the definition of constants and types (par. 5.3).

8-1

8.4 STATEMENT PART <statement part>

Tke statement part takes the form of a compound statement (par. 7.2.1). There
must be at least one assignment statement assigning a value to the function
identifier. This assignment determines the result of the function.

Occurrence of the function identifier in a function designator within its
declaration implies recursive execution of the function.

8.5 STANDARD FUNCTIONS

Standard funct ions in Table 8-1 are predec 1 ared in every imp 1 ementat i on of
Pasca 1. Motorola Pascal. however. features addit i onal predecl ared funct ions.
which are marked in the text with an asterisk.

TABLE 8-1. Standard Funct ions

FUNCTION IDENTIFI ER MEANING

Arithmet i c abs(x) The absolute value of x.
sqr(x) x raised to the power of 2.

Predicates odd(x) A Boolean result of true if x is odd; false ot herwi se.
The type of x must be integer.

eof(f) Indicates whether the file f is in the end-of-fil e
status. (chapter 9)

eoln(f) Indicates the end of a 1 i ne in a text fil e.
(chapter 9)

Transfer ord(x) x must be of a scalar type (including Boolean and
char), and the result (of type integer) is the ordinal
number of the value x in the s~t defined by the type of
x.

chr (x) x must be of type integer, and the result (of type
char) is the character whose ordinal number is x (if it
existst·

Enumera- succ(x) x is of any scalar or subrange type, and the result is
tive the successor value of x (if it exists).

pred{x) x is of any scalar or subrange type, and the result is
the predecessor value of x (if it exists).

*String length{s) Return the current length of the given string (s).
pos(sl,s2) Return the position of the first occurrence of string 2

(s2) in string 1 (sl). If there is no such occurrence,
return zero.

concat(sl, Return a string equal to string 1 (s1) with stri ng 2
s2, ••• ,sn) (s2) through string n (sn) concatenated onto its end.
copy(s,x,y) Return the substring of the given string (s) that

begins at the indicated position (x) and runs for the
specified number of characters (y).

8-2

CHAPTER 9

INPUT AND OUTPUT

9.1 INTRODUCTION

Many Pascal programs will communicate with their environment solely or
pr inc i pa 11 y through Pa sca l' s I/O fac i 1 it i es. The Pasca 1 obj ect through wh i ch
this takes place is the file. Variables of file type represent ordered
collections of components; files are differentiate~to type of data component
-- in particular, the kind of file with component type char is called a file of
type text and has special formatting facilities available.

9.2 CORRESPONDENCE OF FILE VARIABLES TO SYSTEM I/O RESOURCES

A file variable can correspond to a system resource which might be a storage,
display, or transmission facility. The act of creating this correspondence is
called assignment and can be accomplished in a variety of ways depending on
requirements. The principal distinction concerning the type of assignment is
between local and external files.

9.2.1 Local Files

Some file variables represent data with a useful lifetime that does not extend
beyond their program's execution. These are commonly known as scratch, or local
files. If a file variable is not assigned as external (par. 9.2.2), the system
will cause a local file to be created when the block containing its definition
is entered, and to be destroyed when that block is exited. If the block is the
program's outer block, then the file's lifetime is effectively that of the
program's execution.

9.2.2 External Files

Files which represent data or facilities that exist before and/or after the
program's execution are called external; they have an existence outside the
program and are known to the system by names that are not related to the file
variable name. Therefore, the assignment process must establish the name­
correspondence at file opening time.

This is accomplished by using a variation of reset and rewrite that takes a
second argument, an expression of string type. The value of this expression is
the system name for the resource desired (par. 9.2.2.1).

Example: var answer: string [1~];
input fil e: text;

begin writeln(output, 'what input file?'};
readln(input, answer);
reset(inputfile, answer)

9-1

This technique is also useful when a program wishes to refer always to the same
resource without requiring it to be specified interactively each time the
program is run.

Example: var commoutput: file of commrecord;
begin rewrite(commoutput. 'file271)
end;

9.2.2.1 Resource Name Strin~. The resource name string for the M6B09 consists
of an MOOS device name or fi e name, optionally followed by a semicolon (;) and
sequence of letters and/or digits forming the option specification.

9.2.2.1.1 Syntax. (Refer to Appendix A.)

<resource name string> ::= <name>[;[<option>] •••]

<name> ::= <device name>[:<lu>]I<filename>[.<suffix>][:<lu>]

<device name> ::= #<device mnemonic>

<device mnemoni~> ::= CNILPICPICR

<lu> ::= <digit>

<filename> ::= <identifier>

<suffiX> ::= <identifier>

<option> ::= WIDISICINI~1112131517IFIRII<digit sequence> I •

9.2.2.1.2 Option Specification.
defined:

W - Write protection
D - Delete protection
S - System attribute
C - Contiguous allocation
N - Non-compression ASCII spaces

The following file-attribute options are

The following file formats are defined:

0- User-defined records. Sector I/O required.
1 - Binary records. Defaults to format 3 or 7. depending upon the device.
2 - Memory-imaged. Sector I/O required.
3 - Binary records. (B-bit data bytes)
5 - ASCII records.
7 - ASCII-converted binary records. (7-bit data bytes).

9-2

Other options defined:

F - Forces file-mode I/O for non-diskette devices. (Default for non-diskette
devices is non-file mode.)

R - Forces record I/O. overriding the default sector I/O. when the
component size is a multiple of the sector size (128 bytes).

<number> - initial sector allocation for a new file.

The following default values are utilized:

Device type
Logical unit
Filename
File format

File attribute flags
File/Non-file flag
Record/sector flag

Sector allocation

= OK
= ~

= PFxxxx.SY
= ~ (if non-text and sector I/O)
= 3 (if non-text and record I/O)
= 5 (if text)
= ~ (off) for all flags
= fil e mode
= record (if component size is not multiple of sector

size)
sector (if component size is multiple of sector
size)
128 sectors

Examples of resource name strings:

FILEl.SA
SAM.SA:1; 0124
CRT.eM:1; SC148,2
ILP; 5
NCR; F7

9.3 OPERATIONS COMMON TO ALL FILE TYPES

In the following descriptions. we use the following conventions:

f is a file identifier.
v. vI ••••• vn are variables of the file's component type.
e, e1 ••••• en are expressions of the file's component type.
se is an expression of string type.
i. j. k are expressions of type integer.

9.3.1 Functions

position(f)

eof(f)

Returns an integer denoting the current position of the
"read/write head" in file f. The position of the first
component in f is 1.

Returns the Boolean value true if the position of file f is
past its last component; false otherwise.

9-3

9.3.2 Procedures

put(f)

get(f}

put

get

\,lrite{f, e}

\'/rite

Eof(f) must be true or a runtime error occurs and the
program aborts. The value of buffer variable f@ is
appended to the end of the file. Position(f) is advanced
by 1. Eof(f) remains true.

If eof(f} ;s true, a runtime error occurs and the program
aborts. Position\f} is advanced by 1. If this is beyond
the sequence of fil e components, eof(f} is set true and f@
becomes undefined. Otherwise, eOf(f} remains false and f@
receives the value of the component at the new file
position.

Is equivalent to put(output)

Is equivalent to get(input}

Is equivalent to f@ := e; put(f)

(f. el ••••• en)Is equivalent to \'/rite(f, ell; ••• t write(f, en)

\'/rite(e)

read(f, v)

read

Is equivalent to \'/rite(output, e)

Is equivalent to v := f@ ; get(f)

(f, vI •••• vn) Is equivalent to read(f, vI); •••• read{f. vn}

read{v) Is equivalent to read{input, v)

reset(f) Position{f) becomes 1. If f is empty, eof(f) becomes true
and f@ becomes undefined. Otherwise. eof(f) becomes false
and f@ refers to the first component of f.
Reset (input) is not required since it is automatically
generated.

re\'/rite(f) Position(f) becomes 1. Length{f} becomes~. Eof(f)
becomes true. Any previous components of f are discarded; f
may now be constructed with entirely new data.

reset(f, se).

Rewrite (output) is not required since it is automatically
generated.

rewrite(f, se) Behave 1 ike reset{f) and re\'/rite{f). respectively. except
that f loses any previous assignment to an I/O resource
and becomes ass i gned to the resource whose name is the
value of the string expression see

If an activation of the procedure put(f) is not separated dynamically from a
previous activation of get(f} or reset(f) by an activation of rewrite(f). a
runtime error will occur.

9-4

9.4 OPERATIONS ON TEXTFllES

The basis of legible input and output consists of textfiles that represent some
input or output dev i ce such as a termi na 1 or pri nter. I n order to f ac il i tate
input and output to textfiles, the standard procedures get and put are augmented
with special versions of read, write, readln, and writeln, which have inherent
formatting capabil ;ties. The parameters of these procedures need not
necessarily be of type char, but may also be of certain other types, in which
case implicit conversions are done. In addition, the character field width of
each item in the file may be controlled on output.

There are two predeclared files of type text. They are called input and output;
if the file identifier is omitted in any get, put, read, write, readln, writeln,
eof, or eoln call. the appropriate predeclared file will be assumed.

Textfil es represent a spec; al case among fil e types insofar as texts are
substructured into lines by so-called line markers. If, upon reading a textfile
f. the file position is advanced to a line marker -- Le., past the last
character of a line -- then the value of the buffer variable f@ becomes a blank.
and the standard function eoln(f) (end of line) yields the value true.
Advancing the file position once more assigns to f@ the first character of the
next line, and eoln (f) yields false (unless the next line consists of 0
Characters). line markers. not being elements of type char. can only be
generated by the procedure writeln and sensed by the function eoln and the
procedure readln.

9.4.1 Procedures

9.4.1.1 Write. let pI, ••.• pn denote so-called "write parameters".

1. Write(pl ••••• pn) is equivalent to write(output. pl ••••• pn).

2. The write parameters pi have the following forms:

e e: i

e represents the val ue to be "wr i tten" on the fi 1 e f. and i is a
so-called field width parameter. If the value e, which is either a
number, a character, a scalar value, or a string. requires less than i
characters for its representation, then an adequate number of blanks is
issued such that exactly i characters are written. If i is omitted. an
implementation-defined default width will be assumed.

3. If e is of type char. then

write(f. e:i) is equivalent to
f@ := I I ; put(f); (repeated i-I times)
f@ := e; put(f)

NOTE: the default value for i is in this case 1.

4. If e is of type integer (or a subrange of integer). then the decimal
representation of the number e will be written on the file f. preceded by
an appropriate number of blanks to make the field width i.

9-5

5. If e is of type Boolean, then a representation of the word true or the
word false, as appropriate, is written on the file f. This is equivalent
to

write(f, 'TRUE ': i) or write(f,'FALSE': i)

as appropriate (see rule 6).

6. If e is an array of char or of string type. then e is written on
the file f. preceded by an appropriate number of blanks to make the field
width i.

7. If k stands for the minimum number of characters to properly represent an
output val ue. then the number of characters actually emitted for that
item is the greater of k and i.

9.4.1.2 Writeln.

1. writeln(pl ••••• pn) is equivalent to writeln(output. pl ••••• pn).

2. writeln(f. pl. ''', pn) is equivalent to write(f, pI, pn);
writel n(fl.

3. writeln(f) appends a line marker to the file f.

9.4.1.3 Read.

1. Let v,
Then:

vI, ... , vn be simple types (scalar, standard, or subrange).

read(vl, •••• vn) is equivalent to read(input, vI ••••• vn).

2. If v is of type char, exactly one character is obtained from the file and
assigned to v.

3. I f vis of a simple type but not char. a sequence of characters is
obtained from f which form a constant of the type of v. which is then
assigned to v. The first character that does not conform to the syntax
of the type of v terminates the input process. including the end-of-line
marker. If what was read is not a val id constant of the type of v. a
runtime I/O error occurs.

9.4.1.4 Readln.

1. readln(vl. "', vn) is equivalent to readln{input, vI, •••• vn).

2. readln(f, vI. "', vn) is equivalent to read(f, vI, •••• vn);
readl n(f).

3. readln(f) is equivalent to
while not eoln(f) do get(f);
get(f)- -

Readln is used to read and subsequently skip to the beginning of the
next 1 ine.

9-6

9.4.1.5 Page.

Page{ f) causes ski ppi ng to the top of a new page. when the textfil e f is
printed.

9.4.2 Functions

eol n(f) Returns the Boolean value true if and only if textfile f
is pos i t i oned at an end-of-l i ne marker. When eo 1 n (f) =
true. f@ contains a blank.

9-7

CHAPTER 10

SEPARATE COMPILATION AND LINKAGE

10.1 PASCAL SUBPROGRAMS <subprogram>

Procedure and function declarations may be labeled forward in the Pascal
program, and their speCific program parts may be treated as subprograms and
compiled separately. The subprograms are linked to the main program using the
M6809 Linking Loader (RLOAD). Figure 10-1 represents the Pascal linkage
process.

In order to preserve recognition of global names, all variables in a subprogram
must agree in type, number, and order with those appearing in the program's
declaration part. The program's variables are global to all compilations.

Labels, constants, and types in a program may be duplicated in a subprogram.

10.2 ASSEMBLY LANGUAGE ROUTINES

Assembly language routines may be linked to the Pascal main program using the
M6809 Linking Loader (RLOAO).

Library
Routines

M-Simulator i---.t

Pascal
Compiler

M-code
Module(s)

Load
Module

RASM.f)9

6809

FIGURE 10-1. Pascal Linkage Process

10-1

APPENDIX A

SYNTAX

Throughout the manual. a syntactic apex variable ;s given for each Pascal
segment. (For example, <assignment statement> is the apex variable for the
assignment statement (7.1.1).) Starting from the apex, the complete format of
the syntax may be defined by analyzing the syntactic variable(s) and constant(s)
on the right of the define symbol (::=). Right-hand variables refer to other
left-hand variable entries in the alphabetical listing.

To use this syntax by itself. <source module> is the apex variable to start
with. All the syntax is included in the expanded definition of <source module>.

Note -- The following symbols are meta-symbols belonging to the syntactic
-- format. and not symbol s of the Pascal progranming 1 anguage itself,

except as noted:

< >
. -=
I

[] ...
[]

Enclose a symbol. called a syntactic variable.
"is defined as"
"or"
Denote that the enclosed symbols are optional/repetitive -- that
is, occur zero or more times.
Denote that the enclosed symbols are optional -- that is, occur
zero or one time. Exceptions are in <array type>. <identifier
item>. <indexed variable>, <set>. and <string type> definitions. as
noted.

<actual parameter> ::= <express;on>l<variable>l<procedure identifier> I
<function identifier>

<adding operator> :;= +I-Ior

<array type> ::= array [<index type>[,<index type>] •••] of <component type>
NOTE: The inside brackets are meta-symbols; the outside brackets are

symbols of the language.

<array variable> ::= <variable>

<assignment statement> ::= <variable> := <expression> I
<function identifier> := <expression>

<base type> ::= <simple type>

<block> ::= [<declaration part>] ••• <statement part>

<block or directive> ;;= <block>1 forward

<case label> ::= <constant>

<case label list> ::= <case label>[,<case label>] •••

A-I

<case list element> ::= <case label list>:<statement>l<empty>

<case statement> ::= case <expression> of <case list element>
[;<case list element>] ••• [otherwise-<statement>[;<statement>] •••] end

<character> ::= any displayable ASCII character

<component type> ::= <type>

<component variable> ::= <indexed variable>l<field designator>l<file buffer>

<compound statement> ::= begin <statement>[;<statement>l ••• end

<conditional statement> ::= <if statement>l<case statement>

<constant> ::= <unsigned number>l<sign><unsigned number>/<constant identifier>1
<sign><constant identifier> <string>

<constant definition> ::= <identifier>=<constant>

<constant definition part> ::= const <constant definition>
[;<constant definition>] •• -.-;-

<constant identifier> ::= <identifier>

<control variable> ::= <identifier>

<declaration part> ::= <label declaration part> 1 <constant definition part> 1
<type definition part>l<variable declaration part> 1
<procedure declaration>l<function declaration>

<digit> ::= 0111213141516171819

<digit sequence> ::= <digit>[<digit>] •••

<element> ::= <expression>l<expression> •• <expression>

<element list> ::= <element>[,<element>] ••• I <empty>

<empty> ::=

<empty statement> ::= <empty>

<entire variable> ::= <variable identifier>

<exit statement> ::= exit [<label>]

<factor> ::= <variable>l<unsigned constant>l<f~nction designator>l<set>1
«expression»1 not <factor>

<field designator> ::= <record variable>.<field identifier>

<field identifier> ::= <identifier>

<field list> ::= <fixed part>l<fixed part>;<variant part>l<variant part>

A-2

<file buffer> ::= <file variable>@

<file type> ::= file of <type>

<file variable> ::= <variable>

<final value> ::= <expression>

<fixed part> ::= <record section>[;<record section>] •••

<for list> ::= <initial value> to <final value>l<initial value> downto
<final value>

<formal parameter section> ::= <parameter group>1 var <parameter group> I
function <parameter group> I procedure <identifier>[,<identifier>] •••

<formal parameter spec> ::= «formal parameter section>
[;<formal parameter section>] ••.)

<for statement> ::= for <control variable> := <for list> do <statement>

<function declaration> ::= <function heading><block or directive>;

<function designator> ::= <function identifier>l<function identifier>
«actual parameter>[,<actual parameter>] •••)

<function heading> ::= function <identifier>[<formal parameter spec>]:
<result type>;

<function identifier> ::= <identifier>

<goto statement> ::= goto <label>

<hexdigit> ::= <digit>IAIB!CIDIE!F

<hexdigit sequence> ::= <hexdigit>[<hexdigit>] •••

<identifier> ::= <letter>[<letter or digit>] •••

<identifier item> ::= <identifier>[[origin <un~igned integer>]]
NOTE: Th2 inside brackets are symbols of the language; the outside

brackets are meta-symbols.

<if statement> ::= if <expression> then <statement> I if <expression> then
<statement> else <statement>

<indexed variable> ::= <array variable>[<expression>[,<expression>] •••]
NOTE: The inside brackets are meta-symbols; the outside brackets are

symbols of the language.

<index type> ::= <simple type>

<initial value> ::= <expression>

<label> ::= <unsigned integer>l<identifier>

A-3

<label declaration part> ::= label <label>[,<label>] ••• ;

<letter> ::=
~1~1~1~1~1~1~1~1£1~1~1~1~1~1~1~IQIRISITIUIVIWIXIYIZlalblcldlelflglhliljlkl

<letter or digit> ::= <letter>l<digit>

<max length> ::= <unsigned integer>

<multiplying operator> ::= *Idivlmodland

<parameter group> ::= <identifier>[,<identifier>] ••• :<type identifier>

<pointer type> ::= @<type identifier>

<pointer variable> ::= <variable>

<procedure declaration> ::= <procedure heading><block or directive>;

<procedure heading> ::= procedure <identifier>[<formal parameter spec>];

<procedure identifier> ::= <identifier>

<procedure statement> ::= <procedure identifier>l<procedure identifier>
(<actual parameter>[,<actual parameter>] •••)

<program> ::= <program heading><block>.

<program heading> ::= program <identifier>{<program parameters»;

<program parameters> ::= <identifier>[,<identifier>] •••

<record section> ::= <field identifier>[,<field identifier>] ••• :<type>l<empty>

<record type> ::= record <field list> end

<record variable> ::= <variable>

<record variable list> ::= <record variable>[,<record variable>] •••

<referenced variable> <pointer variable>@

<relational operator> =I<>I<I<=I>=I>I~

<repeat statement> ::= repeat <statement>[;<statement>] ••• until <expression>

<repetitive statement> ::= <while statement> I <repeat statement> I
<for statement>

<result type> ::= <type identifier>

<scalar type> ::= «identifier>[,<identifier>] •••)

<set> ::= [<element list>]
NOTE: The brackets are symbols of the language.

A-4

<set type> ::= set of <base type>

<sign> ::= +1-

<simple expression> ::= <term>l<simple expression><adding operator><term>1
<sign><term>

<simple statement> ::= <assignment statement>l<procedure statement> 1
<goto statement> 1 <empty statement>l<exit statement>

<simple type> ::= <scalar type>l<subrange type> 1 <type identifier>

<source module> ::= <program>l<subprogram>

<statement> ::= <unlabeled statement>l<label>:<unlabeled statement>

<statement part> ::= <compound statement>

<string> ::= '<character>[<character>] •.• '

<string type> ::= string [<max length>]
NOTE: The brackets are symbols of the language.

<structured statement> ::= <compound statement>l<with statement> 1
<conditional statement>l<repetitive statement>

<structured type> ::= <array type>l<record type>l<set type> 1
<file type>l<string type>

<subprogram> ::= <subprogram heading>[<declaration part>] •••

<subprogram heading> ::= subprogram <identifier>«subprogram parameters»;

<subprogram parameters> ::= <identifier>[,<identifier>] •••

<subrange type> ::= <constant> •• <constant>

<tag field> ::= <identifier>: 1 <empty>

<term> <factor>l<term><multiplying operator><factor>

<type> - <simple type> 1 <structured type>l<pointer type>

<type definition> ::= <identifier>=<type>

<type definition part> ::= ~ <type definition>[;<type definition>] ••• ;

<type identifier> ::= <identifier>

<unlabeled statement> ::= <simple statement>l<structured statement>

<unsigned constant> ::= <unsigned number>l<string>l<constant identifier>1 nil

<unsigned integer> ::= [<digit sequence>#]<hexdigit sequence>

<unsigned number> ::= <unsigned integer>

A-5

<variable> ::= <entire variable>l<component variable>l<referenced variable>

<variable declaration> ::= <identifier item>[,<identifier item>] ••• :<type>

<variable declaration part> ::= var <variable declaration>
[;<variable declaration>] •• :;-

<variable identifier> ::= <identifier>

<variant> ::= <case label list>:«field list»I<empty>

<variant part> ::= case <tag field><type identifier> of <variant>[;<variant>] •••

<while statement> ::= while <expression> do <statement>

<with statement> ::= with <record variable list> do <statement>

The following syntax is defined for Pascal features to be included in future
releases:

<constant definition> ::= <identifier>=<constant>l<identifier>=
<type identifier>«constant list»

<constant list> ::= <constant term>[,<constant term>] •••

<constant term> ::= <constant>I«constant list»I<unsigned integer>
of «constant list»

<file type> ::= file of <type> I indexed file of <type>

<formal parameter section> ::= <parameter group> I var <parameter group> I
function <identifier>[.<identifier>] ••• [<formal parameter spec>]:
<type identifier>1 procedure <identifier>[,<identifier>] •••
[<formal parameter spec>]

<multiplying operator> ::= *l/ldiv/mod/and

<scale factor> ::= [<sign>]<digit sequence>

<structured type> ::= <unpacked structured type>/
packed <unpacked structured type>

<unpacked structured type> ::= <array type> I <record type>/<set type>/
<file type>l<string type>

<unsigned number> ::= <unsigned integer>l<unsigned real>

<unsigned real> ::= <digit sequence>.<digit sequence> E <scale factor> I
<digit sequence>.<digit sequence>l<digit sequence> E <scale factor>

A-6

