
CENTRAL
PROCESSOR

UNIT
• - -

REFERENCE
MANUAL

•

® MOTOROLA

CP 32RM/AD

CPU32
Reference Manual

Motorola reserves the right to make changes without further notice to any products herein to improve reliability,
function or design. Motorola does not assume any liability arising out of the application or use of any product or
circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola
products are not designed, intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and ® are registered
trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

©MOTOROLA INC., 1989

PREFACE

This reference manual describes the capabilities, operation, and programming of
the CPU32 instruction processing module found in the M68300 Family of embedded
controllers. This manual is a part of a multivolume set of manuals - each volume
corresponding to a major module in the M68300 Family. Each device in the M68300
Family also has a system integration user's manual that describes the function and
operation of that particular device with references to the other volumes. The manual
set for each device in the M68300 Family will require two to four volumes. This
manual consists of the following sections and appendix:

Section 1. Introduction
Section 2. Architecture Summary
Section 3. Addressing Modes
Section 4. Instruction Set
Section 5. Processing States
Section 6. Exception Processing
Section 7. Development Support
Section 8. Instruction Execution Timing
Appendix A. M68000 Family Summary

NOTE

In this manual, assertion and negation are used to specify driving a signal
to a particular state. In particular, assertion and assert refer to a signal that
is active or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level (high or
low) that they represent.

The audience of this manual includes systems designers, systems programmers,
and applications programmers. Systems designers need some knowledge of all
sections of this volume, with particular emphasis on Sections 1, 7, Appendix A,
and the electrical specifications and mechanical data from the appropriate system
integration user's manual. Systems programmers should become familiar with
Sections 1, 2, 3, 4, 5, 6, 8, and Appendix A. Applications programmers can find
most of the information they need in Sections 1, 2, 3, 4, 5, 8, and Appendix A.

From a different viewpoint, the audience for this book consists of users of the
M68000 Family members and those not familiar with the CPU32. Users of the other
M68000 Family members can find references to similarities to and differences from
the other Motorola microprocessors throughout the manual. However, Sections 1,
2, and Appendix A specifically identify the CPU32 within the rest of the M68000
Fam ily and contrast its differences.

TABLE OF CONTENTS

Paragraph
Number Title

Page
Number

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.6.1
1.1.6.2
1.1.7
1.1.8
1.2

2.1
2.2
2.3
2.3.1
2.3.1.1
2.3.1.2
2.3.1.3
2.3.2

3.1
3.2
3.3

Section 1
Overview

Featu res......... 1-2
Virtual Memory......... 1-2
Loop Mode Instruction Execution 1-3
Vector Base Register... 1-4
Improved Exception Handling.. 1-4
Enhanced Addressing Modes ... 1-5
Instruction Set .. 1-5

Table Lookup and Interpolate Instructions..................... 1-6
Low-Power STOP Instruction.. 1-6

Processing States........ 1-6
Privilege States... 1-8

Block Diagram 1-8

Section 2
Architecture Summary

Programming Model ... 2-1
Registers.. 2-3
Data Types........ 2-4

Organization in Registers... 2-4
Data Registers.. 2-5
Address Registers... 2-6
Control Registers.. 2-6

Organization in Memory............ 2-7

Section 3
Data Organization and Addressing Capabilities

Program and Data References.. 3-2
Notation Conventions.. 3-2
Implicit Reference... 3-3

MOTOROLA CPU32 REFERENCE MANUAL iii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.4.2.1
3.4.2.2
3.4.2.3
3.4.2.4
3.4.2.5

3.4.2.6

3.4.3·
3.4.3.1
3.4.3.2

3.4.3.3

3.4.3.4
3.4.3.5
3.4.3.6
3.4.4
3.5
3.5.1
3.5.2
3.6
3.7
3.7.1
3.7.2
3.7.3

4.1
4.1.1
4.1.1.1
4.1.1.2

iv

Effective Address .. ,... 3-4
Register Direct Mode... 3-4

Data Reg ister Di rect 3-4
Address Register Direct... 3-4

Memory Addressing Modes... 3-5
Address Register Indirect... 3-5
Address Register Indirect with Postincrement 3-5
Address Register Indirect with Predecrement................. 3-6
Address Register Indirect with Displacement 3-6
Address Register Indirect with Index (8-Bit

Displacement) ... 3:..6
Address Register Indirect with Index (Base

Displacement) .,... 3-8
Special Addressing Modes... 3-8

Program Counter Indirect with Displacement 3-8
Program Counter Indirect with Index (8-Bit

Displacement) 3-9
Program Counter Indirect with Index (Base

Displacement) ... 3-9
Absolute Short Address ,... 3-10
Absol ute long Add ress 3-10
Immediate Data..... 3-11

Effective Address Encoding Summary................................. 3-11
Programming View of Addressing Modes 3-13

Addressing Capabilities ,............ 3-14
General Addressing Mode Summary 3-15

M68000 Family Addressing Capability....................................... 3-17
Other Data Structures..................... 3-18

System Stack 3-18
User Stacks .. ,... 3-19
Queues , ... ,............. 3-20

Section 4
Instruction Set

M68000 Fam i Iy Com patibi I ity ... 4-1
New Instructions , 4-2

low-Power STOP (lPSTOP) ... 4-2
Table lookup and Interpolate (TBl) 4-2

CPU32 REFERENCE MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

4.1.2 Unimplemented Instructions................................ 4-2
4.2 Instruction Format.. 4-3
4.3 Instruction Summary........... .. 4-4
4.3.1 Data Movement Instructions.. 4-5
4.3.2 Integer Arithmetic Operations 4-6
4.3.3 Logical Instructions ... 4-7
4.3.4 Shift and Rotate Instructions.. 4-8
4.3.5 Bit Manipulation Instructions... 4-9
4.3.6 Binary-Coded Decimal (BCD) Instructions............................ 4-9
4.3.7 Program Control Instructions ... 4-10
4.3.8 System Control Instructions ... 4-10
4.4 Instruction Details... 4-12
4.4.1 Notation and Format.............................. 4-12
4.4.2 Condition Code Register.. 4-14
4.4.3 Condition Tests.. 4-17
4.4.4 Instruction Descriptions ... 4-18
4.5 Instruction Format Summary ... 4-177
4.6 Using the Table Instruction .. 4-192
4.6.1 Table Example 1: Standard Usage...................................... 4-193
4.6.2 Table Example 2: Compressed Table 4-194
4.6.3 Table Example 3: 8-Bit Independent Variable 4-196
4.6.4 Table Example 4: Maintaining Precision 4-198
4.6.5 Table Example 5: Surface Interpolations............................. 4-200
4.7 Nested Subroutine Calls........ 4-201
4.8 Pipeline Synchronization with the NOP Instruction 4-201

Section 5
Processing States

5.1 Privilege Levels..... 5-2
5.1.1 Supervisor Privilege Level... 5-2
5.1.2 User Privilege Level.. 5-3
5.1.3 Changing Privilege Level... 5-3
5.2 Address Space Types.. 5-4
5.2.1 Type 0000 - Breakpoint.. 5-5
5.2.2 Type 0001 - MMU Access 5-5
5.2.3 Type 0010- Coprocessor Access...................................... 5-5

MOTOROLA CPU32 REFERENCE MANUAL v

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

5.2.4 Type 0011 - Internal Register Access................................. 5-6
5.2.5 Type 1111 - Interrupt Acknowledge................................... 5-6
5.3 Exception Processing .. 5-6
5.3.1 Exception Vectors........ 5-7
5.3.2 Exception Stack Frame...... 5-7

6.1
6.1.1
6.1.2
6.1.3
6.1.4
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10
6.2.11
6.2.12
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.1.4
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3

vi

Section 6
Exception Processing

Exception Vectors... 6-1
Types of Exceptions.. 6-1
Multiple Exceptions... 6-3
Exception Stack Frame.. 6-4
Exception Processing Sequence... 6-5

Processing of Specific Exceptions ... 6-5
Reset ... 6-6
Bus Error... 6-6
Address Error... 6-8
Instruction Traps... 6-9
Software Breakpoints .. 6-10
Hardware Breakpoints 6-10
Format Error.. 6-11
Illegal or Unimplemented Instructions................................. 6-11
Privilege Violations... 6-12
Tracing .. 6-13
Interrupts... 6-15
Return from Exception.. 6-16

Fault Recovery .. 6-18
Types of Faults ... 6-20

Type 1: Released Write Faults 6-20
Type II: Prefetch, Operand, RMW, and MOVEP Faults 6-21
Type III: Faults During MOVEM Operand Transfers 6-22
Type IV: Faults During Exception Processing................. 6-23

Correcting the Fault.. 6-23
Completing Released Writes (Type I) via Software 6-23
Completing Released Writes (Type I) via RTE................. 6-24
Correcting Type II Faults via RTE.................................. 6-24

CPU32 REFERENCE MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)

Parag'raph
Number Title

Page
Number

6.3.2.4
6.3.2.5
6.3.2.6
6.4
6.4.1
6.4.2
6.4.3

7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.2.3
7.2.2.4
7.2.3
7.2.4
7.2.5
7.2.6
7.2.6.1
7.2.6.2
7.2.7
7.2.7.1
7.2.7.2
7.2.7.3
7.2.7.4
7.2.7.5
7.2.7.6
7.2.7.7
7.2.7.8

Correcting Type III Faults via Software 6-25
Correcting Type III Faults via RTE................................. 6-26
Correcting Type IV Faults via Software............ 6-26

CPU32 Stack Frames... 6-27
Normal Four-Word Stack Frame.................................. 6-27
Normal Six-Word Stack Frame... 6-28
BERR Stack Frame.. 6-28

Section 7
Development Support

CPU32 Integrated Development Support : :........... 7-1
Background Debug Mode (BDM) Overview 7-2
Deterministic Opcode Tracking Overview.......... 7-3
On-Chip Hardware Breakpoint Overview................ 7-3

Background Debug Mode (BDM) .. 7-3
Enabling BDM 7-3
BDM Sources....................... 7-4

External BKPT Signal ,' 7-5
BGND Instruction .. 7-5
Double Bus Faults... 7-5
Peripheral Breakpoints.............. 7-5

Entering BDM ... 7-6
Command Execution... 7-6
Returning from BOM .. '" 7-7
Serial Interface... 7-8

CPU Serial Logic...... 7-8
Development System Serial Logic 7-11

Command Set.. 7-13
Command Format ; ... 7-13
Command Sequence Diagrams 7-14
Command Set Summary ~ 7-16
Read AID Register (RAREG/RDREG) ~ 7-17
Write AID Register (WAREG/WDREG) 7-18
Read System Register (RSREG) 7-19
Write System Register (WSREG).................... 7-20
Read Memory Location (READ) 7-21

MOTOROLA CPU32 REFERENCE MANUAL vii

TABLE OF CONTENTS (Continued)

Paragraph
Number Title

Page
Number

7.2.7.9
7.2.7.10
7.2.7.11
7.2.7.12
7.2.7.13
7.2.7.14
7.2.7.15
7.2.7.16
7.3
7.3.1
7.3.2
7.3.3

8.1
8.1.1
8.1.2
8.1.3
8.1.3.1
8.1.3.2
8.1.3.3
8.1.4
8.1.5
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7

viii

Write Memory Location (WRITE) 7-22
Dump Memory Block (DUMP) 7-24
Fill Memory Block (FILL).. 7-26
Resume Execution (GO)..... 7-28
Call User Code (CALL)... 7-29
Reset Peripherals (RST) ... 7-31
No Operation (NOP) .. ~........... 7-32
Future Commands.. 7-32

Deterministic Opcode Tracking... 7-33
Instruction Fetch (IFETCH).. 7-33
Instruction Pipe (lPIPE) .. 7-33
Opcode Tracking during Loop Mode................................... 7-35

Section 8
Instruction Execution Timing

Resource Scheduling ... 8-1
Microsequencer.. 8-1
Instruction Pipeline.... 8-2
Bus Controller Resources...... 8-3

Prefetch Controller......................... 8-3
Write-Pending Buffer... 8-3
Microbus Controller.. 8-4

Instruction Execution Overlap.. 8-4
Effects of Wait States.............. 8-5

Instruction Stream Timing Examples.. 8-6
Timing Example 1: Execution Overlap............ 8-6
Timing Example 2: Branch Instructions 8-7
Timing Example 3: Negative Tails...................................... 8-8

Instruction Timing Tables.. 8-9
Fetch Effective Address .. ,............. 8-12
Calculate Effective Address.. 8-13
MOVE Instruction .. 8-14
Special-Purpose MOVE Instruction...................................... 8-15
Arithmetic/Logical Instructions... 8-16
Immediate Arithmetic/Logical Instructions 8-17
Binary-Coded Decimal and Extended Instructions................. 8-18

CPU32 REFERENCE MANUAL MOTOROLA

Paragraph
Number

8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14

MOTOROLA

TABLE OF CONTENTS (Concluded)

Title
Page

Number

Single Operand Instructions...................... 8-19
Shift/Rotate Instructions.. 8-20
Bit Manipulation Instructions... 8-21
Conditional Branch Instructions.. 8-22
Control Instructions......... 8-23
Exception-Related Instructions and Operations.................... 8-24
Save and Restore Operations... 8-25

Appendix A
M68000 Family Summary

Index

CPU32 REFERENCE MANUAL ix

x CPU32 REFERENCE MANUAL MOTOROLA

Figure
Number

1-1
1-2

2-1
2-2
2-3
2-4
2-5
2-6

3-1
3-2
3-3
3-4
3-5
3-6

4-1
4-2
4-3
4-4
4-5

5-1

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

LIST OF ILLUSTRATIONS

Title

Loop Mode Instruction Sequence
CPU32 Block Diagram

User Programming Model
Supervisor Programming Model Supplement
Status Register
Data Organization in Data Registers
Address Organization in Address Registers
Memory Operand Addressing .. .

Single-Effective-Address Instruction Operation Word
Effective Address Specification Formats
Using SIZE in the Index Selection
Using Absolute Address with Indexes
Addressing Array Items
M68000 Family Address Extension Words

Instruction Word General Format
Instruction Description Format
Table Example 1
Table Example 2
Table Example 3

General Exception Stack Frame

Exception Stack Frame .. .
Reset Operation Flowchart ~
Format $0 - Four-Word Stack Frame
Format $2 - Six-Word Stack Frame
Format $C - BERR Stack for Prefetches and Operands
Internal Transfer Count Register
Format $C - BERR Stack During Four- or Six-Word Stack
Format $C - BERR Stack on MOVEM Operand

MOTOROLA CPU32 REFERENCE MANUAL

Page
Number

1-3
1-9

2-2
2-2
2-4
2-5
2-6
2-8

3-1
3-12
3-14
3-15
3-16
3-17

4-3
4-19
4-193
4-194
4-196

5-8

6-4
6-7
6-27
6-28
6-29
6-29
6-30
6-31

xi

Figure
Number

xii

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12

8-1
8-2
8-3
8-4
8-5
8-6
8-7

LIST OF ILLUSTRATIONS (Continued)

Page
Title Number

Traditional In-Circuit Emulator Diagram... 7-2
Bus State Analyzer Configuration.. 7-2
BDM Block Diagram... 7-4
BDM Command Execution Flowchart..................................... 7-7
Debug Serial liD Block Diagram.. 7-9
Serial Interface Timing Diagram .. 7-10
BKPT Timing for Single Bus Cycle... 7-11
BKPT Timing for Forcing BDM .. 7-12
BKPT/DSCLK Logic Diagram.. 7-12
Command-Sequence-Diagram Example........... 7-15
Functional Model of Instruction Pipeline................................. 7-34
Instruction Pipeline Timing Diagram...................................... 7-35

Block Diagram of Independent Resources............................... 8-2
Simultaneous Instruction Execution....................................... 8-4
Attributed Instruction Times.. 8-5
Example 1 - Instruction Stream... 8-6
Example 2 - Branch Taken 8-7
Example 2 - Branch Not Taken :......... 8-7
Example 3 - Branch Negative Tail.. 8-8

CPU32 REFERENCE MANUAL MOTOROLA

LIST OF TABLES

Table
Number Title

Page
Number

1-1 Instruction Set Summary.... 1-7

3-1 Effective Addressing Mode Categories...................................... 3-13

4-1 Data Movement Operations... 4-5
4-2 Integer Arithmetic Operations.. 4-6
4-3 Logical Operations.. 4-7
4-4 Shift and Rotate Operations... 4-8
4-5 Bit Manipulation Operations.... 4-9
4-6 Binary-Coded Decimal Operations.. 4-9
4-7 Program Control Operations .. 4-10
4-8 System Control Operations.. 4-11
4-9 Condition Code Computations .. 4-14
4-10 Conditional Tests... 4-17
4-11 Operation Code Map... 4-177

5-1 Address Space Encodings.. 5-4

6-1 Exception Vector Assignments ... 6-2
6-2 Exception Groups 6-3
6-3 Tracing Control... 6-13

7-1 BDM Source Summary.. 7-5
7-2 Polling the BDM Entry Source...... 7-6
7-3 CPU-Generated Message Encoding... 7-9
7-4 BDM Command Summary ... 7-16

MOTOROLA CPU32 REFERENCE MANUAL xiii

xiv CPU32 REFERENCE MANUAL MOTOROLA

SECTION 1
OVERVIEW

The CPU32, the instruction processing module ofthe M68300 Family, is based
on the industry-standard MC68000 core processor with many features of the
MC68010 and MC68020 as well as unique features suited for high-p.f3rform­
ance controller applications. The CPU32 is designed to provide a significant
increase in performance over the MC68HC11 CPU to meet the demand for
higher performance requirements for the 1990's while maintaining source
code and binary code compatibility with the M68000 Family.

One major goal of the CPU32 is to increase system throughput. This increase
could not be achieved by simply increasing the clock/bus frequency or adding
a fe,w new instructionp to an existing 8-bit, MC6800-type CPU. A faster, more
powerful CPU, capable of processing data sizes up to 32 bits, is included on
the chip as a first step in realizing such a performance increase. As controller
applications become more complex and control programs become larger,
high-level languages (HLLs) will become the system designer's choice in
programming languages. HLLs allow users to develop complex algorithms
faster, with few errors, and provide easier portability. The CPU32 has an
instruction set based on the M68000 Family, which can efficiently support
HLLs.

Ease of programming is an important consideration in using a microcon­
troller. An instruction format implementing a register-memory interaction
philosophy predominates the design, and all data resources are available to
all operations requiring those resources. All eight multifunction data registers
are available as data resources, and all seven general-purpose addressing
registers are available for addressing data. Although the program counter
(PC) and stack pointers (SP) are special-purpose registers, they are also avail­
able for most data addressing activities. The eight general-purpose data reg­
isters readily support 8-bit (byte), 16-bit (word), and 32-bit (long-word) operand
lengths for all operations. Address manipulation is supported by word and
long-word operations. Ease of program checking and diagnosis is further
enhanced by trace and trap capabilities at the instruction level.

MOTOROLA CPU32 REFERENCE MANUAL 1-1

1.1 FEATURES

Features of the CPU32 are as follows:

• Fully Upward Object Code Compatible with M68000 Family

• Virtual Memory Implementation

• Loop Mode of Instruction Execution

• Fast Multiply, Divide, and Shift Instructions

• Fast Bus Interface with Dynamic Bus Port Sizing

• Improved Exception Handling for Controller Applications

• Enhanced Addressing Modes
Scaled Index
Address Register Indirect with Base Displacement and Index
Expanded PC Relative Modes
32-Bit Branch Displacements

• Instruction Set Enhancements
High-Precision Multiply and Divide
Trap-On Condition Codes
Upper and Lower Bounds Checking
Enhanced Breakpoint Instruction

• Trace on Change of Flow

• Table Lookup and Interpolate Instruction

• Low-Power Stop Instruction

• Hardware Breakpoint Signal, Background Mode

• 16.77 MHz Operating Frequency at -40-125°C

• Fully Static Implementation

1.1.1 Virtual Memory

1-2

The full addressing range of the CPU32 is 16 Mbytes in each of eight address
spaces. Even though most systems implement a smaller physical memory,
the system can be made to appear to have a full 16 Mbytes of memory
available to each user program by using virtual memory techniques.

A system that supports virtual memory has a limited amount of high-speed
physical memory that can be accessed directly by the processor and main­
tains an image of a much larger "virtual" memory on a secondary storage

CPU32 REFERENCE MANUAL MOTOROLA

device. When the processor attempts to access a location in the virtual mem­
ory map that is not resident in physical memory, a page fault occurs. The
access to that location is temporarily suspended while the necessary data is
fetched from secondary storage and placed in physical memory. The sus­
pended access is then restarted or continued.

The CPU32 uses instruction restart, which requires that only a small portion
of the internal machine state be saved. After correcting the fault, the machine
state is restored, and the instruction is refetched and restarted. This process
is completely transparent to the application program.

1.1.2 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program
loops. One of these features is the OScc looping primitive instruction. To
increase the performance of the CPU32, a loop mode has been added to the
processor. The loop mode is used by any single-word instruction that does
not change the program flow. Loop mode is implemented in conjunction
with the OBcc instruction. Figure 1-1 shows the required form of an instruction
loop for the processor to enter loop mode.

The loop mode is entered when the OScc instruction is executed and the
loop displacement is - 4. Once in loop mode, the processor performs only
the data cycles associated with the instruction and suppresses all instruction
fetches. The termination condition and count are checked after each exe­
cution of the data operations of the looped instruction. The CPU32 auto­
matically exits the loop mode on interrupts or other exceptions.

ONE-WORD INSTRUCTION f+-

OBCC

OBCC DISPlACEMENT -
$FFFC=-4

Figure 1-1. Loop Mode Instruction Sequence

MOTOROLA CPU32 REFERENCE MANUAL 1-3

1.1.3 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte
exception vector table, consisting of 256 exception vectors. Exception vectors
contain the memory addresses of routines that begin execution at the com­
pletion of exception processing. These routines perform a series of opera­
tions appropriate forthe corresponding exceptions. Because the exception
vectors contain memory addresses, each consists of one long word, except
for the reset vector. The reset vector consists of two long words: the address
used to initialize the supervisor SP and the address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector
number and the VBR. The vector numbers for some exceptions are obtained
from an external device; other numbers are supplied automatically by the
processor. The processor multiplies the vector number by four to calculate
the vector offset, which is added to the VBR. The sum is the memory address
of the vector. All exception vectors are located in supervisor data space,
except the reset vector, which is located in supervisor program space. Only
the initial reset vector is fixed in the processor's memory map; once initial­
ization is complete, there are no fixed assignments. Since the VBR provides
the base address of the vector table, the vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that is executed
by an operating system. Details of exception processing are provided in
SECTION 6 EXCEPTION PROCESSING.

31 o
VECTOR BASE REGISTER (VBR)

1.1.4 Improved Exception Handling

1-4

The processing of an exception occurs in four steps, with variations for dif­
ferent exception causes. During the first step, a temporary internal copy of
the status register is made, and the status register is set for exception proc­
essing. During the second step, the exception vector is determined; during
the third step, the current processor context is saved. During the fourth step,
a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context
by pushing it on the supervisor stack. This context is organized in a format

CPU32 REFERENCE MANUAL MOTOROLA

called the exception stack frame. This information always includes the status
register and PC context of the processor when the exception occurred. To
support generic handlers, the processor places the vector offset in the ex- •
ception stack frame. The processor also marks the frame with a frame format. "
The format field allows the return-from-exception (RTE) instruction to identify '. . . .,.
what information is on the stack so that it may be properly restored.

1.1.5 Enhanced Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the
results of the specified operation to be placed either in a register or directly
in memory; this flexibility eliminates the need for extra instructions to store
register contents in memory.

The seven basic addressing modes are as follows:

1. Register Direct

2. Register Indirect

3. Register Indirect with Index

4. Program Counter Indirect with Displacement

5. Program Counter Indirect with Index

6. Absolute

7. Immediate

Included in the register indirect addressing modes are the capabilities to
postincrement, predecrement, and offset. The PC relative mode also has
index and offset capabilities. In addition to these addressing modes, many
instructions implicitly specify the use of the status register, SP, and/or PC.­
Addressing is explained fully in SECTION 3 ADDRESSING MODES. A sum­
mary of the M68000 Family addressing modes, is found in APPENDIX A M68000
FAMilY SUMMARY.

1.1.6 Instruction Set

The instruction set of the CPU32 is very similar to that of the MC68020 (see
Table 1-1). Two new instructions have been added to facilitate controller
applications - low-power stop (LPSTOP) and table lookup and interpolate

MOTOROLA CPU32 REFERENCE MANUAL 1-5

(TBL). The following instructions found on the M68020 are not implemented
on the CPU32:

BFxxx - Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)

CALLM, RTM - Call Module, Return Module
CAS, CAS2 - Compare and Set (Read-Modify-Write Instructions)
cpxxx - Coprocessor Instructions (cpBcc, cpDBcc, cpGEN,

cpRESTORE, cpSAVE, cpScc, cpTRAPcc)
PACK, UNPK - Pack, Unpack BCD Instructions

The CPU32 traps on unimplemented instructions or illegal effective address­
ing modes, allowing user-supplied code to emulate unimplemented capa­
bilities or to define special-purpose functions. However, Motorola reserves
the right to use all currently unimplemented instruction operation codes for
future M68000 core enhancements.

1.1.6.1 TABLE LOOKUP AND INTERPOLATE INSTRUCTIONS. To maximize
throughput for real-time applications, reference data is often "precalculated"
and stored in memory for quick access. The storage of each data point would
require an inordinate amount of memory. The table instruction requires only
a sample of data points stored in the array, reducing memory requirements.
Intermediate values are recovered with this instruction via linear interpola­
tion. The results are rounded (optional) with the round-to-nearest algorithm.

1.1.6.2 LOW-POWER STOP INSTRUCTION. In applications where power con­
sumption is a consideration, the CPU32 forces the device into a low-power
standby mode when immediate processing is not required. The low-power
stop mode is entered by executing the LPSTOP instruction. The processor
will remain in this mode until a user-specified (or higher) interrupt level or
reset occurs.

1.1.7 Processing States

1-6

The processor is always in one of four processing states: normal, exception,
halted, or background. The normal processing state is that associated with
instruction execution; the bus is used to fetch instructions and operands and
to store results. The exception processing state is associated with interrupts,
trap instructions, tracing, and other exception conditions. The exception may

CPU32 REFERENCE MANUAL MOTOROLA

Table 1-1. Instruction Set Summary

Mnemonic Description

ABCD Add Decimal with Extend
ADD Add
ADDA Add Address

Mnemonic Description

MOVE Move
MOVE CCR Move Condition Code Register
MOVE SR Move Status Register • ADDI Add Immediate MOVE USP Move User Stack Pointer

ADDQ Add Quick MOVEA Move Address
ADDX Add with Extend MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral
ASL, ASR Arithmetic Shift Left and Right MOVEQ Move Quick

Bcc Branch Conditionally MOVES Move Alternate Address Space

BCHG Test Bit and Change MULS, MULS.L Signed Multiply
BCLR Test Bit and Clear MULU, MULU.L Unsigned Multiply
BGND Background
BKPT Breakpoint
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine

NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation

BTST Test Bit OR Logical Inclusive OR

CHK Check Register Against Upper and
ORI Logical Inclusive OR Immediate

Lower Bounds PEA Push Effective Address
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
CMP2 Compare Register Against Upper

and Lower Bounds

RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTD Return and Deallocate
RTE Return from Exception
RTR Return and Restore Codes
RTS Return from Subroutine

DBcc Test Condition, Decrement and
Branch

DIVS, DIVSL Sig ned Divide
DIVU, DIVUL Unsigned Divide

SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract

EOR Logical Exclusive OR SUBA Subtract Address
EORI Logical Exclusive OR Immediate SUBI Subtract Immediate
EXG Exchange Registers SUBQ Subtract Quick
EXT, EXTB Sign Extend SUBX Subtract with Extend

ILLEGAL Take Illegal Instruction Trap
SWAP Swap Register Words

JMP Jump
JSR Jump to Subroutine

TBLS,TBLSN Table Lookup and Interpolate
(Signed)

TBLU, TBLUN Table Lookup and Interpolate
LEA Load Effective Address (Unsigned)
LINK Link and Allocate TAS Test Operand and Set
LPSTOP Low-Power Stop TRAP Trap
LSL, LSR Logical Shift Left and Right TRAPcc Trap Conditionally

TRAPV Trap on Overflow
TST Test Operand

UNLK Unlink

MOTOROLA CPU32 REFERENCE MANUAL 1-7

be internally generated explicitly by an instruction or by an unusual condition
arising during the execution of an instruction. Externally, exception proc­
essing can be forced by an interrupt, a bus error, or a reset. The halted
processing state is an indication of catastrophic hardware failure. For ex­
ample, if during the exception processing of a bus error another bus error
occurs, the processor assumes that the system. is unusable and halts. The
background processing state is initiated by breakpoints, execution of specjal
instructions, or a double bus fault. Background processing allows interactive
debugging of the system via a simple serial interface. Processing states are
explained fully in SECTION 5 PROCESSING STATES.

1.1.8 Privilege States

The processor operates at one of two levels of privilege - user or supervisor.
The supervisor level has higher privileges than the user level. Not all instruc­
tions are permitted to execute in the lower privileged user level, but all
instructions are available at the supervisor level. This scheme allows a sep­
aration of supervisor and user levels so the supervisor can protect system
resources from uncontrolled access. The processor uses the privilege level
indicated by the S bit in the status register to select either the user or super­
visor privilege level and either the user stack pointer (USP) or a supervisor
stack pointer (SSP) for stack operations.

1.2 BLOCK DIAGRAM

1-8

A block diagram of the CPU32 is shown in Figure 1-2. The major blocks
depicted operate in a highly independent fashion that maximizes concurrency
of operation while managing the essential synchronization of instruction
execution and bus operation. The bus controller loads instructions from the
data bus into the decode unit. The sequencer and control unit provide overall
chip control, managing the internal buses, registers, and functions of the
execution unit.

CPU32 REFERENCE MANUAL MOTOROLA

DATA BUS

ADDRESS
BUS

MOTOROLA

SEQUENCER

CONTROL
UNIT

INSTRUCTION
PREFETCH

AND
DECODE

BUS
CONTROL

Figure 1-2. CPU32 Block Diagram

CPU32 REFERENCE MANUAL

BUS CONTROL

1-9

1-10 CPU32 REFERENCE MANUAL MOTOROLA

SECTION 2
ARCHITECTURE SUMMARY

The CPU32 architecture includes several important features that provide both •
power and versatility to the user. The CPU32 is source and object code
compatible with the MC68000 and MC68010. All user state programs can be
executed unchanged. The major CPU32 features are as follows:

• 32-Bit Internal Data Path and Arithmetic Hardware

• 24-Bit Address Bus Supported by 32-Bit Calculations

• Rich Instruction Set

• Eight 32-Bit General-Purpose Data Registers

• Seven 32-Bit General-Purpose Address Registers

• Separate User and Supervisor Stack Pointers

• Separate User and Supervisor State Address Spaces

• Separate Program and Data Address Spaces

• Many Data Types

• Flexible Addressing Modes

• Full Interrupt Processing

• Expansion Capability

2.1 PROGRAMMING MODEL
The programming model of the CPU32 consists of two groups of registers:
user model and supervisor model that correspond to the user and supervisor
privilege levels. Executing at the user privilege level, user programs can only
use the registers of the user model. Executing at the supervisor level, system
software uses the control registers of the supervisor level to perform super­
visor functions.

As shown in the programming models (see Figures 2-1 and 2-2), the CPU32
has 16 32-bit general-purpose registers, a 32-bit program counter, one 32-
bit supervisor stack pointer, a 16-bit status register, two alternate function

MOTOROLA CPU32 REFERENCE MANUAL 2-1

•

31 16 15 8 7

DO

01

02

03 DATA REGISTERS
04

05

06

07

31 16 15

AD

A1

A2

A3 ADDRESS REGISTERS

A4

A5

A6

31 16 15 0

I A7 (USP) USER STACK POINTER

31 0

I P.c PROGRAM COUNTER

15 8 7
r---~----I
L _______ CCR CONDITION CODE REGISTER

Figure 2-1. User Programming Model

31 16 15

AT (SSP) SUPERVISOR STACK POINTER

15 8 7

(CCR) SR

31

VBR

31 3 2 0

~ = ~ ~ -=-~ ____ -~ -=--= ~ = =-~ --= =-~-_---=--=--= ~ _-r=l ~:~ L _____________________ ~r==J

STATUS REGISTER

VECTOR BASE REGISTER

ALTERNATE FUNCTION

CODE REGISTERS

Figure 2-2. Supervisor Programming Model Supplem'ent

2-2 CPU32 REFERENCE MANUAL MOTOROLA

code registers, and a 32-bit vector base register. The user programming
model remains unchanged from previous M68000 Family microprocessors.
The supervisor programming model, which supplements the user program­
ming model, is used exclusively by the CPU32 system programmers who
utilize the supervisor privilege level to implement sensitive operating system
functions. The supervisor programming model contains all the controls to
access and enable the special features of the CPU32. All application software, 2
written to run at the nonprivileged user level, migrates to the CPU32 from
any M68000 platform without modification.

2.2 REGISTERS

Registers 07-00 are used as data registers for bit (1 to 32 bits), byte (8 bit),
word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers
A6-AO and the user and supervisor stack pointers are address registers that
may be used as software stack pointers or base address registers. Register
A7 (shown as A7 and A7' in Figure 2-1) is a register designation that applies
to the user stack pointer in the user privilege level and to the supervisor stack
pointer in the supervisor privilege level. In addition, the address registers
may be used for word and long-word operations. All of the 16 general­
purpose registers (D7-DO, A7-AO) may be used as index registers.

The program counter (PC) contains the address of the next instruction to be
executed by the CPU32 ; During instruction execution and exception proc­
essing, the processor automatically increments the contents of the PC or
places a new value in the PC, as appropriate.

The status register (SR) (see Figure 2-3) stores the processor status. It contains
the condition codes that reflect the results of a previous operation and can
be used for conditional instruction execution in a program. The condition
codes are extend (X), negative (N), zero (Z), overflow (V), and carry (C). The
user byte containing the condition codes is the only portion of the SR infor­
mation available in the user privilege level; it is referenced as the condition
code register (CCR) in user programs. In the supervisor privilege level, software
can access the full status register, including the interrupt priority mask (three
bits), as well as additional control bits. These bits put the processor in one
of two trace modes (T1, TO) and in user or supervisor privilege level (S).

The vector base register (VBR) contains the base address of the exception
vector table in memory. The displacement of an exception vector is added
to the value in this register to access the vector table.

MOTOROLA CPU32 REFERENCE MANUAL 2-3

•

USER BYTE
SYSTEM BYTE (CONDITION CODE REGISTER) ~ ____________ A~ ____________ ~v~ ____________ ~A~ ____________ _

SUPERVISORAJSER
STATE

~
INTERRUPT

PRIORITY MASK

Figure 2-3. Status Register

NEGATIVE

ZERO

OVERFLOW

CARRY

Alternate function code registers (SFC and DFC) contain 3-bit function codes.
Function codes can be considered extensions of the 24-bit linear address that
optionally provide as many as eight 16-Mbyte address spaces. Function codes
are automatically generated by the processor to select address spaces for
data and program at the user and supervisor privilege levels and to select a
CPU address space used for processor functions (such as breakpoint and
interrupt acknowledge cycles). Registers SFC and DFC are used by the MOVE
instructions to explicitly specify the function codes of the memory address.

2.3 DATA TYPES

Six basic data types are supported:

1. Bits

2. Binary-Coded Decimal (BCD) Digits

3. Byte Integers (8 bits)

4. Word Integers (16 bits)

5. Long-Word Integers (32 bits)

6. Quad-Word Integers (64 bits)

2.3.1 Organization in Registers

2-4

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits
and addresses of 16 or 32 bits. The seven address registers and the two stack
pointers are used for address operands of 16 or 32 bits. The PC is 32 bits
wide.

CPU32 REFERENCE MANUAL MOTOROLA

2.3.1.1 DATA REGISTERS. Each data register is 32 bits wide. Byte operands oc­
cupy the low-order 8 bits, word operands, the low-order 16 bits, and long­
word operands, the entire 32 bits. When a data register is used as either a
source or destination operand, only the appropriate low-order byte or word
(in byte or word operations, respectively) is used or changed; the remaining
high-order portion is neither used nor changed. The least significant bit (LSB)
of a long-word integer is addressed as bit zero, and the most significant bit
(MSB) is addressed as bit 31. Figure 2-4 shows the organization of various
types of data in the data registers.

BIT (O~MODULO (OFFSET)<31, OFFSET OF 0= MSB)
31 30 o

IMSBI I LSB I
BYTE

31 24 23 16 15 8 7 0

HIGH-ORDER BYTE MIDDLE HIGH BYTE MIDDLE LOW BYTE LOW-ORDER BYTE

16-BIT WORD
31

LONG WORD
31

QUAD WORD
63 62

IMSBI

31

16 15 o
HIGH-ORDER WORD LOW-ORDER WORD

o
LONG WORD

32

ANY Dx

o
ANY Dx I LSB I

Figure 2-4. Data Organization in Data Registers

Quad-word data consists of two long words: for example, the product of
32-bit multiply or the quotient of 32-bit divide operations (signed and un­
signed). Quad words may be organized in any two data registers without
restrictions on order or pairing. There are no explicit instructions for the
management of this data type; however, the MOVEM instruction can be used
to move a quad word into or out of the registers.

MOTOROLA CPU32 REFERENCE MANUAL 2-5

•

•

BCD data represents decimal numbers in binary form. Although many BCD
codes have been devised, the BCD instructions of the M68000 Family support
formats in which the four LSBs consist of a binary number having the numeric
value of the corresponding decimal number. In this BCD format, a byte con­
tains one digit; the four LSBs contain the binary value, and the four MSBs
are undefined. ABCD, SBCD, and NBCD operate on two BCD digits packed
into a single byte.

2.3.1.2 ADDRESS REGISTERS. Each address register and stack pointer is 32 bits
wide and holds a 32-bit address. Address registers cannot be used for byte­
sized operands. Therefore, when an address register is used as a source
operand, either the low-order word or the entire long-word operand is used,
depending upon the operation size. When an address register is used as the
destination operand, the entire register is affected, regardless ofthe operation
size. If the source operand is a word size, it is first sign extended to 32 bits,
and then used in the operation to an address register destination. Address
registers are used primarily for addresses and to support address compu­
tation. The instruction set includes instructions that add to, subtract from,
compare, and move the contents of address registers. Figure 2-5 shows the
organization of addresses in address registers.

31 16 15 o
SIGN EXTENDED 16-BIT ADDRESS OPERAND

31 o
FULL 32-BIT ADDRESS OPERAND

Figure 2-5. Address Organization in Address Registers

2.3.1.3 CONTROL REGISTERS. The control registers described in this section con­
tain control information for supervisor functions and vary in size. With the
exception of the user portion of the SR (CCR), they are accessed only by
instructions at the supervisor privilege level.

2-6

The SR shown in Figure 2-3 is 16 bits wide. Only 11 bits of the SR are defined;
all undefined values are reserved by Motorola for future definition. The un­
defined bits are read as zeros and should be written as zeros for future
compatibility. The lower byte of the SR is the CCR. Operations to the CCR

CPU32 REFERENCE MANUAL MOTOROLA

can be performed at the supervisor or user privilege level. All operations to
the SR and CCR are word-size operations, but for all CCR operations, the
upper byte is read as all zeros and is ignored when written, regardless of
privilege level.

The alternate function code registers (SFC and DFC) are 32-bit registers with
only bits 2:0 implemented that contain the address space values (FC2-FCO)
for the read or write operand of the MOVES instruction. The MOVEC instruc­
tion is used to transfer values to and from the alternate function code reg­
isters. These are long-word transfers; the upper 29 bits are read as zeros and
are ignored when written.

2.3.2 Organization in Memory

Memory is organized on a byte-addressable basis in which lower addresses
correspond to higher order bytes. The address, N, of a long-word data item
corresponds to the address of the most significant byte of the highest order
word. The lower order word is located at address N + 2, leaving the least
significant byte at address N +3 (see Figure 2-1). The CPU32 requires long­
word and word data as well as instruction words to be aligned on word
boundaries (see Figure 2-6). Data misalignment is not supported.

MOTOROLA CPU32 REFERENCE MANUAL 2-7

•

2-8

15

IMS' BYTE 0

BYTE 2

15

IMS'

15

MSB
LONG WORD 0

LONG WORD 1

LONG WORD 2

15

MSB
ADDRESS 0

ADDRESS 1

ADDRESS 2

MSB = Most Significant Bit
LSB = Least Significant Bit

15 12 11
MSD BCDO

BCD4

MSD = Most Significant Digit
LSD = Least Significant Digit

BIT DATA
1 BYTE = 8 BITS

4 3

INTEGER DATA
1 BYTE = 8 BITS

8 7

LS'I
WORD = 16 BITS

WORD 0

WORD 1

WORD 2

LONG WORD = 32 BITS

HIGH ORDER

LOW ORDER

ADDRESS
1 ADDRESS = 32 BITS

HIGH ORDER

LOW ORDER

DECIMAL DATA
BCD DIGITS = 1 BYTE

8 7

BCD1 LSD BCD2

BCD5 BCD6

BYTE 1

BYTE 3

Figure 2-6. Memory Operand Addressing

CPU32 REFERENCE MANUAL

LSB

LSB

BCD3

BCD7

MOTOROLA

SECTION 3
DATA ORGANIZATION AND
ADDRESSING CAPABILITIES

The addressing mode of an instruction can specify the value of an operand
(with an immediate operand), a register that contains the operand (with the
register direct addressing mode), or how the effective address of an operand
in memory is derived. An assembler syntax has been defined for each ad­
dressing mode.

Figure 3-1 shows the general format of the single-effective-address instruc­
tion operation word. The effective address field specifies the addressing
mode lor an operand that can use one of the numerous defined modes. The
designation is composed of two 3-bit fields: mode field and register field.
The value in the mode field selects one mode -or a set of addressing modes.
The register field specifies a register for the mode or a submode for modes
that do not use registers.

15 14 13 12 11 10 6 4 3 2 o
EFFECTIVE ADDRESS

MODE REGISTER

Figure 3-1. Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for one of the operands. The
formats of these instructions include appropriate fields for operands that use
only one addressing mode.

The effective address field may require additional information to fully specify
the operand address. This additional information, called the effective address
extension, is contained in an additional word or words and is considered part
of the instruction. Refer to 3.4.4 Effective Address Encoding Summary for a
description of the extension word formats.

When the addressing mode uses a register, the register field of the operation
word specifies the register to be used. Other fields within the instruction
specify whether the register selected is an address or data register and how
the register is to be used.

MOTOROLA CPU32 REFERENCE MANUAL 3-1

•

•

3.1 PROGRAM AND DATA REFERENCES

An M68000 Family processor separates memory references into two classes,
which creates two address spaces, each with a complete logical address
range. The first class is program references, which includes primarily ref­
erences to opcodes and extension words. The other class is data references.
Operand reads are from the data space with two exceptions: 1) immediate
operands embedded in the instruction stream and 2) operands addressed
relative to the current program counter. Operands satisfying either of these
two exceptions are classified as program space references. All operand writes
are to data space .

3.2 NOTATION CONVENTIONS

3-2

EA - Effective address

An - Address register n
Example: A3 is address register 3

Dn - Data register n
Example: D5 is data register 5

Rn - Any register, data or address

Xn.SIZE*SCALE - Denotes index register n (data or address), the index size
(W for word, L for long word), and a scale factor (1, 2, 4,
or 8 for no, word, long-word or 8 for quad-word scaling,
respectively).

PC - Program counter

SR - Status register

SP - Stack pointer

CCR - Condition code register

USP - User stack pointer

SSP - Supervisor stack pointer

dn - Displacement value, n bits wide

bd - Base displacement

L - Long-word size

W-Word size

B - Byte size

() -Identify an indirect address in a register

CPU32 REFERENCE MANUAL MOTOROLA

3.3 IMPLICIT REFERENCE
Some instructions make implicit reference to the program counter, the sys­
tem stack pointer, the user stack pointer, the supervisor stack pointer, or the
status register. The following table enumerates these instructions and the
registers involved:

Instruction Implicit Registers

ANDI to CCR SR

ANDI to SR SR

BRA PC

BSR PC,SP

CHK (exception) SSP,SR

CHK2 (exception) SSP,SR

DBcc PC

DIVS (exception) SSP,SR

DIVU (exception) SSP,SR

EORI to CCR SR

EORI to SR SR

JMP PC

JSR PC,SP

LINK SP

LPSTOP SR

MOVE CCR SR

MOVE SR SR

MOVE USP USP

ORI to CCR SR

ORI to SR SR

PEA SP

RTD PC,SP

RTE PC,SP,SR

RTR PC,SP,SR

RTS PC,SP

STOP SR

TRAP (exception) SSP,SR

TRAPV (exception) SSP,SR

UNLK SP

MOTOROLA CPU32 REFERENCE MANUAL 3-3

•

3.4 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by a field in the operation
word called an effective address field or an effective address (EA). The EA
is composed of two 3-bit subfields: mode specification field and register
specification field. Each ofthe address modes is selected by a particular value
in the mode specification subfield of the EA. The EA field may require further
information to fully specify the operand. This information, called the EA
extension, is in a following word or words and is considered part of the
instruction (see 3.1 PROGRAM AND DATA REFERENCES).

II 3.4.1 Register Direct Mode

These EA modes specify that the operand is in one of the 16 multifunction
registers.

3.4.1.1 DATA REGISTER DIRECT. In the data register direct mode, the operand is
in the data register specified by the EA register field.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
DATA REGISTER:
NUMBER OF EXTENSION WORDS:

EA=Dn
On

~ ~ 0

On -:----~> I OPERAND I o L-. --------~~~--------~

3.4.1.2 ADDRESS REGISTER DIRECT. In the address register direct mode, the
operand is in the address register specified by the EA register field.

GENERATION: EA=An
ASSEMBLER SYNTAX: An
MODE: 001
REG ISTER: n 31 0
DATA REGISTER: An ---~>I OPERAND I NUMBER OF EXTENSION WORDS:" L-______________________ -----I

3-4 CPU32 REFERENCE MANUAL MOTOROLA

3.4.2 Memory Addressing Modes

These EA modes specify the address of the memory operand.

3.4.2.1 ADDRESS REGISTER INDIRECT. In the address register indirect mode, the
operand is in memory, and the address of the operand is in the address
register specified by the register field.

GENERATION: EA=(An)
ASSEMBLER SYNTAX: (An)
MODE: 010 31 0
REGISTER: n
ADDRESS REG ISTER: An MEMORY ADDRESS

31 0
MEMORY ADDRESS:

OPERAND NUMBER OF EXTENSION WORDS: 0
~

3.4.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. In the address
register indirect with postincrement mode, the operand is in memory, and
the address of the operand is in the address register specified by the register
field. After the operand address is used, it is. incremented by one, two, or
four, depending on the size of the operand: byte, word, or long word. If the
address register is the stack pointer and the operand size is byte, the address
is incremented by two rather than one to keep the stack pointer aligned to
a word boundary.

GENERATION: EA = (An)
An=An+SIZE

ASSEMBLER SYNTAX: (An) +
MODE: 011

31 REGISTER: n o
ADDRESS REGISTER: An .. MEMORY ADDRESS

OPERAND LENGTH (1, 2, OR 4):

31 o
MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 0

MOTOROLA CPU32 REFERENCE MANUAL 3-5

•

•

3.4.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. In the address
register indirect with predecrement mode, the operand is in memory, and
the address of the operand is in the address register specified by the register
field. Before the operand address is used, it is decremented by one, two, or
four, depending on the operand size: byte, word, or long word. If the address
register is the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer aligned to a
word boundary.

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

OPERAND LENGTH (1, 2, OR 4):

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

An = An-SIZE
EA=(An)
-(An)
100 31
n r-----------------------~
An----+I

~------~~----~~----~

31

o OPERAND

3.4.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. In the address reg­
ister indirect with displacement mode, the operand is in memory. The address
of the operand is the sum of the address in the address register plus the
sign-extended 16-bit displacement integer in the extension word. Displace­
ments are always sign extended to 32 bits before being used in EA calcu­
lations.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

31

EA = (An) + d16
(d16 An)
101 '
n
An----+I

31

MEMORY ADDRESS

o
DISPLACEMENT: [~N EXT~DED = I....-___ INT __ EG_ER ____ ---.l-----+t

31
MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: OPERAND

o

o

3.4.2.5 ADDRESS REGISTER INDIRECT WITH INDEX (8-BIT DISPLACEMENT). This
addressing mode requires one extension word that contains the index reg­
ister indicator and an a-bit displacement. The index register indicator includes
size and scale information. In this mode, the operand is in memory. The
address of the operand is the sum of the contents of the address register,
the sign-extended displacement value in the low-order eight bits of the ex­
tension word, and the sign-extended contents of the index register (possibly
scaled). The user must specify the displacement, the address register, and
the index register in this mode.

3-6 CPU32 REFERENCE MANUAL MOTOROLA

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS:

EA = (An) + (Xn"SCALE) + dS
(dS. An. SIZE"SCALE)
110
n 31

An------~~ ______ ~M~EM~O~R~Ym~DR~E~SS~~--~

31 7 0

~ = SIGN ~TENDED = INTEGER

31 o
SIGN-EXTENDED VALUE

SCALE VALUE

31
NUMBER OF EXTENSION WORDS: OPERAND

This address mode uses two different formats of extension. The brief format
provides fast indexed addressing; the full format provides a number of op­
tions in size of displacements. Both forms use an index operand. Notationally,
this index operand is specified flRi.sz*scl". "Ri" selects one of the general
data or address registers for the index register. The term flsz" refers to the
index size and may be either:flW" or flL". The.term flscl" refers to the index
scale selection and may be any of 1, 2, 4, or 8. The index operand is derived
from the index register. The index register is a data register if bit [15] = 0 in
the first extension word and is an address register if bit [15] = 1. The register
number of the index register is given by bits [14: 12] of the extension word.
The index size is given by bit [11] of the extension word; if bit [11] = 0, the
index value is the sign-extended low-order word integer of the index register;
if bit [11] = 1, the index value is the long integer in the index register. Finally,
the index value is scaled according to the scaling selection in bits [10:9] to
derive the index operand. The scale selections 00, 01, 10, or 11 select scaling
of the index value by 1, 2,4, or 8, respectively. Brief format indexing requires
one word of extension. The address of the operand is the sum of the address
in the address register, the sign-extended displacement integer in the low­
order eight bits of the extension word, and the index operand. The reference
is classed as a data reference, except for the JMP and JSR instructions.

MOTOROLA CPU32 REFERENCE MANUAL 3-7

•

•

3.4.2.6 ADDRESS REGISTER INDIRECT WITH INDEX (BASE DISPLACE·
MENT). This addressing mode requires an index register indicator .and an
optional 16- or 32-bit sign-extended base displacement. The index register
indicator includes size and scale information. In this mode, the operand is
in memory. The address of the operand is the sum of the contents of the
address register, the scaled contents of the sign-extended index register, and
the base displacement.

GENERATION: EA = (An) + (Xn"SCALE) + db
ASSEMBLER SYNTAX: ~bd, An, Xn. SIZE"SCALE)
MODE: 10 31
REGISTER: n
PROGRAM COUNTER: An MEMORY ADDRESS

31 0

BASE DISPLACEMENT: SIGN-EXTENDED VALUE

31 0

INDEX REGISTER: SIGN-EXTENDED VALUE

SCALE: SCALE VALUE

MEMORY ADDRESS: 31
NUMBER OF EXTENSION WORDS: 1,2,OR3 . OPERAND

3.4.3 Special Addressing Modes

These special addressing modes do not use the register field to specify a
register number but rather to specify a submode.

3.4.3.1 PROGRAM COUNTER INDIRECT WITH DISPLACEMENT. In this mode, the
operand is in memory. The address of the operand is the sum of the address
in the program counter and the sign-extended 16-bit displacement integer
in the extension word. The value in the program counter is the address of
the extension word. The reference is a program space reference and is only
allowed for read accesses.

3-8

GENERA nON:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

DISPLACEMENT:

MEMORY ADDRESS:

EA=(PC)+d16
(d16,PC)
111
010 31

ADDRESS OF EXTENSION WORD

31 -+15~ ________ ~O

~ SIGN EXTENDED --'-____ IN_TE_G_E_R __ ----'

31

OPERAND

o

o

NUMBER OF EXTENSION WORDS:

CPU32 REFERENCE MANUAL MOTOROLA

3.4.3.2 PROGRAM COUNTER INDIRECT WITH INDEX (8-BIT DISPLACE­
MENT). This mode is similar to the address register indirect with index
(8-bit displacement) mode described in 3.4.2.5 ADDRESS REGISTER INDI­
RECT WITH INDEX (8-BIT DISPLACEMENT)' but the program counter is used
as the base register. The operand is in memory. Tt;le address of the operand
is the sum of the address in the program counter, the sign-extended dis­
placement integer in the lower eight bits ofthe extension word, and the sized,
scaled, and sign-extended index operand. The value in the program counter
is the address of the extension word. This reference is a program space
reference and is only allowed for reads. The user must include the displace­
ment, the program counter, and the index register when specifying this ad­
dressing mode.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

EA = (PC) + (Xn) + dS
(dS, PC, Xn. SIZE"SCALE)
111 011 r:-31 ___________ --;;,

PROGRAM COUNTER: MEMORY ADDRESS

31 o
DISPLACEMENT: ~ = SIGN EXTENDE~ - --'-----'-IN_T_EG_ER_j-----~

31 o
INDEX REGISTER: SIGN-EXTENDED VALUE

SCALE: SCALE VALUE

MEMORY ADDRESS: 31
NUMBER OF EXTENSION WORDS: OPERAND

3.4.3.3 PROGRAM COUNTER INDIRECT WITH INDEX (BASE DISPLACE­
MENT). This mode is similar tothe address register indirect with index (base
displacement) mode described in 3.4.2.6 ADDRESS REGISTER INDIRECT WITH
INDEX (BASE DISPLACEMENT), but the program counter is used as the base
register. It requires an index register indicator and an optional 16- or 32-bit
sign-extended base displacement. The operand is in memory. The address
of the operand is the sum of the contents of the program counter, the scaled
contents of the sign-extended index register, and the base displacement. The
value of the program counter is the address of the first extension word. The
reference is a program space reference and is only allowed for read accesses.

In this mode, the program counter, the index register, and the displacement
are aH optional. However, the user must supply the assembler notation "ZPC"
(zero value is taken for the program counter) to indicate that the program
counter is not used. This scheme allows the user to access the program space
without using the program counter in calculating the EA. The user can access

MOTOROLA CPU32 REFERENCE MANUAL 3-9

lEI

III

the program space with a data register indirect access by plaCing ZPC in the
instruction and specifying a data register (On) as the index register.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

EA = (PC) + (Xn) + bd
\bd. PC. Xn. SIZE-SCALE)
O~~ r31:...--___________:,O

PROGRAM COUNTER: ADDRESS OF EXTENSION WORD

31 o
BASE DISPLACEMENT: SIGN-EXTENDED VALUE

31 o
INDEX REGISTER: SIGN-EXTENDED VALUE

SCALE: SCALE VALUE

MEMORY ADDRESS: 31
NUMBER OF EXTENSION WORDS: 1.2.0R3 OPERAND

3.4.3.4 ABSOLUTE SHORT ADDRESS. In this addressing mode, the operand is in
memory, and the address of the operand is in the extension word. The 16-
bit address is sign extended to 32 bits before it is used.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
EXTENSION WORD:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EAGIVEN
(xxx).W
111 31 15 0
000 ----.. ~: [= ~NETEND~ = MEMORY ADDRESS

31 o
OPERAND

3.4.3.5 ABSOLUTE LONG ADDRESS. In this mode, the operand is in memory, and
the address of the operand occupies the two extension words following the
instruction word in memory. The first extension word contains the high-order
part of the address; the low-order part of the address is the second extension
word.

GENERATION: EAGIVEN
ASSEMBLER SYNTAX: ~xxx).L
MODE: 11 15 REGISTER: 001
FI RST EXTENSION WORD: ADDRESS HIGH

15
SECOND EXTENSION WORD:

31
CONCATENATION

31 0
MEMORY ADDRESS: OPERAND
NUMBER OF EXTENSION WORDS: 2

3-10 CPU32 REFERENCE MANUAL MOTOROLA

3.4.3.6 IMMEDIATE DATA. In this addressing mode, the operand is in one or two
extension words:

Byte Operation
The operand is in the low-order byte of the extension word.

Word Operation
The operand is in the extension word.

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word;
the low-order 16 bits are in the second extension word.

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
NUMBER OF EXTENSION WORDS:

OPERAND GIVEN
#XXX
111
100
10R2

3.4.4 Effective Address Encoding Summary

Most of the addressing modes use one of the three formats shown in Figure
3-2. The single EA instruction is in the format of the instruction word. The
encoding of the mode field of this word selects the addressing mode. The
register field contains the general register number or a value that selects the
addressing mode when the mode field contains "111 fl. Some indexed or
indirect modes use the instruction word followed by the brief format exten­
sion word. Other indexed or indirect modes consist of the instruction word
and the full format of extension words. The longest instruction for the CPU32
contains six extension words. It is a MOVE instruction with full format ex­
tension words for both the source and destination EAs and with 32-bit base
displacements for both addresses.

Grouped according to the use of the mode, EA modes can be classified as
follows:

Data A data addressing EA mode is one that refers to data operands.

Memory A memory addressing EA mode is one that refers to memory
operands.

Alterable An alterable addressing EA mode is one that refers to alterable
(writable) operands.

Control A control addressing EA mode is one that refers to memory
operands without an associated size.

MOTOROLA CPU32 REFERENCE MANUAL 3-11

•

•

3-12

15 14

15 14

D/A

15 14

Field
Instruction

Register
Extensions

Register
D/A

Single EA Instruction Format

13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Brief Format Extension Word

12 11 10

REGISTER W/L SCALE 0 I DISPLACEMENT

Full Format Extension Word(s)

12 11 10

REGISTER I/IS

BASE DISPLACEMENT (0, 1, OR 2 WORDSl

Definition

General Register Number

Index Register Number
Index Register Type

O=Dn
1=Dn

Field
BS

IS

BD SIZE

Definition
Base Register Suppress

tl = Base Register Added
1 = Base Register Suppressed

Index Suppress
0= Evaluate and Add Index Operand
1 = Suppress Index Operand

W/L Word/Long-Word Index Size
Base Displacement Size

00 = Reserved
0= Sign-Extended Word
1 =Long Word

Scale Scale Factor
00= 1 I/IS*
01 =2
10=4
11=8

* Memory indirect causes illegal instruction trap; must be = 000 if IS = 1.

01 = Null Displacement
10 = Word Displacement
11 = Long-Word Displacement

Index/Indirect Selection
Indirect and Indexing Operand
Determined in Conjunction with
Bit 6, Index Suppress

Figure 3-2. Effective Address Specification Formats

These categories are sometimes combined, forming new categories that are
more restrictive. Two combined classifications are alterable memory or
alterable data. The former category refers to those addressing modes that
are both alterable and memory addresses; the latter category refers to ad­
dressing modes that are both alterable and data addresses. Table 3-1 shows
the categories to which each of the EA modes belong.

CPU32 REFERENCE MANUAL MOTOROLA

3.5 PROGRAMMING VIEW OF ADDRESSING MODES

Extensions to the indexed addressing modes, indirection, and full 32-bit dis­
placements provide additional programming capabilities for the CPU32. The
following paragraphs describe addressing techniques that exploit these ca­
pabilities and summarize the addressing modes from a programming point
of view.

Table 3-1. Effective Addressing Mode Categories

Address Modes Mode Register Data Memory Control Alterable Assembler Syntax

Data Register Direct 000 reg. no. X - - X Dn

Address Register Direct 001 reg. no. - - -. X An

Address Register Indirect 010 reg. no. X X X X (An)
Address Register Indirect

with Postincrement 011 reg. no. X X - X (An)+
Address Register Indirect

with Predecrement 100 reg. no. X X - X -(An)
Address Register Indirect

with Displacement 101 reg. no. X X X X (d16,An)

Address Register Indirect
with Index (S-Bit Displace- 110 reg. no. X X X X (ds,An,Xn)
ment)

Address Register Indirect 110 reg. no. X X X X (bd,An,Xn)
with Index (Base Displace-
ment)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L

Program Counter Indirect
with Displacement 111 010 X - X X (d16,PC)

Program Counter Indirect
with Index (S-Bit Displace- 111 011 X - X X (ds,PC,Xn)
ment)

Program Counter Indirect 111 011 X - X X (bd,PC,Xn)
with Index (Base Displace-
ment)

Immediate 111 100 X X - - #(data)

MOTOROLA CPU32 REFERENCE MANUAL 3-13

•

III

3.5.1 Addressing Capabilities

3-14

In the CPU32, setting the base register suppress (8S) bit in the full format
extension word (see Figure 3-2) suppresses use of the base address register
in calculating the EA, allowing any index register to be used in place of the
base register. Since any of the data registers can be index registers, this
provides a data register indirect form (Dn). Since either a data register or an
address register can be used, the mode could be called register indirect (Rn).
This addressing mode is an extension to the M68000 Family because the
CPU32 can use both the data registers and the address registers to address
memory. The capability of specifying the size and scale of an index register
(Xn.SIZE*SCALE) in these modes provides additional addressing flexibility.
Using the SIZE parameter, either the entire contents of the index register can
be used, or the least significant word can be sign extended to provide a
32-bit index value (refer toFigure 3-3).

31 16 15 0

Dlwi

~ USED IN ADDRESS CALCULATION

Figure 3-3. Using SIZE in the Index Selection

For the CPU32, the register indirect modes can be extended further. Since
displacements can be 32 bits wide, they can represent absolute addresses
or the results of expressions that contain absolute addresses. This scheme
allows the general register indirect form to be (bd,Rn) or (bd,An,Rn) when
the base register is not suppressed. Thus, an absolute address can be directly
indexed by one or two registers (refer to Figure 3-4).

The indirect suppressed index register mode (see Figure 3-5) uses the con­
tents of register An as an index to the pointer located at the address specified
by the displacement. The actual data item is at the address in the selected
pointer.

Scaling provides an optional shifting of the value in an index register to the
left by zero, one, two, or three bits before using it in the EA calculation (the
actual value in the index register remains unchanged). This is equivalent to
multiplying the register by one, two, four, or eight for direct subscripting into
an array of elements of corresponding size using an arithmetic value residing

CPU32 REFERENCE MANUAL MOTOROLA

SYNTAX: (bd,An,Rn)

bd
An

Rn

Figure 3-4. Using Absolute Address with Indexes

in any of the 16 general-purpose registers. Scalin-g does not add to the EA
calculation time. However, when combined with the appropriate derived
modes, scaling produces additional capabilities. Arrayed structures can be
addressed absolutely and then subscripted; for example, (bd,Rn*SCALE).
Optionally, an address register that contains adynamic displacement can be
included in the address calculation (bd,An,Rn*SCALE). Another variation that
can be derived is (An,Rn*SCALE). In the first case, the array address is the
sum of the contents of a register and a displacement (see Figure 3-5). In the
second example, An contains the address of an array and Rn contains a
subscript.

3.5.2 General Addressing Mode Summary

The addressing modes described in the previous paragraphs are derived from
specific combinations of options in the indexing mode or a selection of two
alternate addressing modes. For example, the addressing mode called reg­
ister indirect (Rn) assembles as the address register indirect if the register is
an address register. If Rn is a data register, the assembler uses the address
register indirect with index mode, using the data register as the indirect
register, and suppresses the address register by setting the base suppress
bit in the EA specification. Assigning an address register as Rn provides
higher performance than using a data register as Rn. Another case is (bd,An)'
which selects an addressing mode based on the size of the displacement. If
the displacement is 16 bits or less, the address register indirect with dis­
placement mode (d16,An) is used. When a 32-bit displacement is required,
the address register indirect with index (bd,An,Xn) is used with the index
register suppressed.

MOTOROLA CPU32 REFERENCE MANUAL 3-15

•

•

3-16

A6=1

2

SYNTAX: MOVE.W (A5,A6.L*SCALE),(A7)

SIMPLE ARRAY
(SCALE=1)

RECORD OF 2 WORDS
(SCALE =4)

15 o

WHERE:
A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

RECORD OF 1 WORD
(SCALE = 2)

15 o

RECORD OF 4 WORDS
(SCALE =8)

NOTE: Regardless of array structure, software increments indexed by the appropriate
amount to point to next record.

Figure 3-5. Addressing Array Items

CPU32 REFERENCE MANUAL MOTOROLA

It is useful to examine the derived addressing modes available to a pro­
grammer (without regard to the CPU32 EA mode actually encoded) because
the programmer need not be concerned about these decisions. The assem­
bler can choose the more efficient addressing mode to encode.

3.6 M68000 FAMILY' ADDRESSING CAPABILITY

Programs can be easily transported from one member of the M68000 Family
to another member in an upward compatible fashion. The user object code
of each early member of the family is upward compatible with newer mem­
bers and can be executed on the newer microprocessor without change. The
address extension word(s) are encoded with information that allows the
CPU32 to distinguish the new address extensions to the basic M68000 Family
architecture. The address extension words for the early MC68000, MC68008,
MC68010, and MC68020 microprocessors are shown in Figure 3-6. The en­
coding for SCALE used by the CPU32 and the MC68020 is a compatible
extension of the M68000 architecture. A value of zero for SCALE is the same
encoding for both extension words; thus, software that uses this encoding
is both upward and downward compatible across all processors in the prod­
uct line. However, the other values of SCALE are not found in both extension

I

MC6S000/MC6S00S/MC6S010
ADDRESS EXTENSION WORD

15 14 12 11

D/A I REGISTER I W/L I
D/A: o = Data Register Select

10

0

1 = Address Register Select

W/L: o = Word-Sized Operation

I

1 = Long-Ward-Sized Operation

CPU32/MC6S020
EXTENSION WORD

15 14 12 11 10

0 I 0 I

I D/A I REGISTER I W/L I SCALE o I
D/A: 0 = Data Register Select

1 = Address Register Select

W/L: 0 = Word-Sized Operation
1 = Long-Ward-Sized Operation

SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

DISPLACEMENT INTEGER

DISPLACEMENT INTEGER

Figure 3-6. M68000 Family Address Extension Words

MOTOROLA CPU32 REFERENCE MANUAL 3-17

•

•

formats; therefore, while software can be easily migrated in an upward com­
patible direction, only nonscaled addressing is supported in a downward
fashion. If the MC68000 were to execute an instruction that encoded a scaling
factor, the scaling factor would be ignored and would not access the desired
memory address.

The earlier microprocessors have no knowledge of the extension word for­
mats implemented by newer processors, and, while they do detect illegal
instructions, they do not decode invalid encodings of the extension words
as exceptions .

3.7 OTHER DATA STRUCTURES

In addition to supporting the array data structure with the index addressing
mode, M68000 processors also support stack and queue data structures with
the address register indirect postincrement and predecrement addressing
modes. A stack is a last-in-first-out (LIFO); a queue is a first-in-first-out (FIFO)
list. When data is added to a stack or queue, it is pushed onto the structure;
when it is removed, it is IIpopped" or pulled from the structure. The system
stack is used implicitly by many instructions; user stacks and queues may
be created and maintained through use of addressing modes.

3.7.1 System Stack

Address register 7 (A7) is the system stack pointer (SP). The SP is either the
supervisor stack pointer (SSP) or the user stack pointer (USP), depending on
the state of the S bit in the status register. If the S bit indicates the supervisor
state, the SSP is the SP, and the USP cannot be referenced as an address
register. If the S bit indicates the user state, the USP is the active SP, and
the SSP cannot be referenced. Each system stack fills from high memory to
low memory. The address mode - (SP) creates a new item on the active
system stack, and the address mode (SP) + deletes an item from the active
system stack.

The program counter is saved on the active system stack on subroutine calls
and is restored from the active system stack on returns. On the other hand,
both the program counter and the status register are saved on the supervisor
stack during . .the processing of traps and interrupts. Thus, the correct exe­
cution of the supervisor state code is not dependent on the behavior of user
code, and user programs may use the USP arbitrarily.

CPU32 REFERENCE MANUAL MOTOROLA

To keep data on the system stack aligned properly, data entry on the stack
is restricted so that data is always put in the stack on a word boundary. Thus,
byte data is pushed on or pulled from the system stack in the high-order half
of the word; the low-order half is unchanged.

3.7.2 User Stacks

The user can implement stacks with the address register indirect with post­
increment and predecrement addressing modes. With address register An
(n = 0-6), the user can implement a stack that is filled either from high to low
memory or from low to high memory. Important considerations are as •
follows:

• Use the predecrement mode to decrement the register before its contents
are used as the pointer to the stack.

• Use the postincrement mode to increment the register after its contents
are used as the pointer to the stack.

• Maintain the SP correctly when byte, word, and long-word items are
mixed in these stacks.

To implement stack growth from high to low memory, use
- (An) to push data on the stack,
(An) + to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An
points to the top item on the stack. This scheme is illustrated as follows:

LOW MEMORY
(FREE)

An ~ TOP OF STACK

7 · · ·
BOTTOM OF STACK

HIGH MEMORY

MOTOROLA CPU32 REFERENCE MANUAL 3-19

•

To implement stack growth from low to high memory, use
(An) + to push data on the stack,
- (An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the
next available space on the stack. This scheme is illustrated as follows:

LOW MEMORY
BOTTOM OF STACK

· ·
TOP OF STACK

An ~ (FREE)

HIGH MEMORY

3.7.3 Queues

3-20

The user can implement queues with the address register indirect with post­
increment or predecrement addressing modes. Using a pair of address reg­
isters (two of AO-A6), the user can implement a queue which is filled either
from high to low memory or from low to high memory. Two registers are
used because queues are pushed from one end and pulled from the other.
One register, An, contains the "put" pointer; the other, Am, the "get" pointer.

To implement growth of the queue from low to high memory, use
(An) + to put data into the queue,
(Am) + to get data from the queue.

After a IJput" operation, the "put" address register points to the next available
space in the queue, and the unchanged "get" address register points to the
next item to be removed from the queue. After a "get" operation, the "get"
address register points to the next item to be removed from the queue, and
the unchanged "put" address register points to the next available space in
the queue, which is illustrated as follows:

LOW MEMORY
LAST GET (FREE)

GET (Am) + ~ NEXT GET

· ..,

· ·
LAST PUT

PUT (An) + ~ (FREE)

HIGH MEMORY

CPU32 REFERENCE MANUAL MOTOROLA

To implement the queue as a circular buffer, the relevant address register
should be checked and adjusted, if necessary, before performing the "put"
or "get" operation. The address register is adjusted by subtracting the buffer
length (in bytes) from the register contents.

To implement growth of the queue from high to low memory, use
- (An) to put data into the queue,
- (Am) to get data from the queue.

After a "put" operation, the "put" address register points to th~ last item
placed in the queue, and the unchanged "get" address register points to the
last item removed from the queue. After a "get" operation, the "get" address
register points to the last item removed from the queue, and the unchanged
"put" address register points to the last item placed in the queue, which is
illustrated as follows:

LOW MEMORY
(FREE)

PUT - (An) ~ LAST PUT

'7 '7
£

NEXT GET
GET -(Am) ~ LAST GET (FREE)

HIGH MEMORY

To implement the queue as a circular buffer, the "get" or "put" operation
should be performed first, and then the relevant address register should be
checked and adjusted, if necessary. The address register is adjusted by adding
the buffer length (in bytes) to the register contents.

MOTOROLA CPU32 REFERENCE MANUAL 3-21

III

•

3-22 CPU32 REFERENCE MANUAL MOTOROLA

SECTION 4
INSTRUCTION SET

This section describes the set of instructions provided in the CPU32 and
demonstrates their use. Descriptions of the instruction format and the
operands used by instructions are also included. After a summary of the
instructions by category, a detailed description of the operation of each
instruction is listed in alphabetical order. Programming information for spe­
cific instructions is included, followed by a description of condition code
computation and an instruction format summary.

The CPU32 instructions form a set of tools which includes all the machine
functions for the following operations:

• Data Movement

• Arithmetic Operations

• Logical Operations

• Shifts and Rotates

• Bit Manipulation

• Conditionals and Branches

• System Control

The large instruction set encompasses a complete range of capabilities and,
combined with the enhanced addressing modes, provides a flexible base for
program development.

4.1 M68000 FAMILY COMPATIBILITY

It is the philosophy of the M68000 Family that all user-mode programs can
execute unchanged on a more advanced processor and that supervisor-mode
programs and exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000
Family. Object code from an MC68000 or MC68010 may be executed on the
CPU32, and many of the instruction and addressing mode extensions of the
MC68020 are also supported.

MOTOROLA CPU32 REFERENCE MANUAL 4-1

•

•

4.1.1 New Instructions

Two new instructions have been added to the M68000 instruction set for use
in controller applications. They are low-power stop (LPSTOP) and table lookup
and interpolate (TBL).

4.1.1.1 lOW-POWER STOP (lPSTOP). In applications where power consumption
is a consideration, the CPU32 forces the device into a low-power standby
mode when immediate processing is not required. The low-power stop mode
is entered by executing the LPSTOP instruction. The processor remains in
this mode until a user-specified or higher interrupt level or reset occurs.

4.1.1.2 TABLE lOOKUP AND INTERPOLATE (TBl). To maximize throughput for
real-time applications, reference data is often precalculated and stored in
memory for quick access. The storage of each data point would require a
inordinate amount of memory. The TBL instruction, which requires only a
sample of data points stored in the array, reduces memory requirements.
Intermediate values are recovered with this instruction via linear interpolation.

The CPU32 TBL instruction looks up the two table entries bounding the de­
sired result and performs a linear interpolation between them. Byte, word,
and long-word operand sizes are supported. The result is rounded according
to the round-to-nearest algorithm. Optionally, byte and word results are left
unrounded and returned along with the fractional portion of the calculated
result. Software can make use of this extra "precision" to reduce the
cumulative error in complex calculations. See 4.5 USING THE TABLE
INSTRUCTION for examples.

4.1.2 Unimplemented Instructions

4-2

Trap-on unimplemented instructions allow user-supplied code to emulate
unimplemented capabilities or to define special-purpose functions. However,
Motorola reserves the right to use all currently unimplemented instruction
operation codes for future M68000 enhancements. See 6.2.8 Illegal or
Unimplemented Instructions for more details.

CPU32 REFERENCE MANUAL MOTOROLA

4.2 INSTRUCTION FORMAT

All instructions consist of at least one word; some have as many as seven
words as shown in Figure 4-1. The first word of the instruction, called the
operation word, specifies the length of the instruction and the operation to
be performed. The remaining words, called extension words, further specify
the instruction and operands. These words may be immediate operands,
extensions to the effective address mode specified in the operation word,
branch displacements, bit number, special register specifications, trap
operands, or argument counts.

15 a
OPERATION WORD

(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

Figure 4-1. Instruction Word General Format

Besides the operation code, which specifies the function to be performed,
an instruction defines the location of every operand for the function. Instruc­
tions specify an operand location in one of three ways:

• Register Specification

• Effective Address

• Implicit Reference

A register field of the instruction contains
the number of the register.

An effective address field of the instruction
contains address mode information.

The definition of an instruction implies the
use of specific registers.

The register field within an instruction specifies the register to be used. Other
fields within the instruction specify whether the register selected is an address
or data register and how the register is to be used. SECTION 3 DATA ORGAN­
IZATION AND ADDRESSING CAPABILITIES contains detailed register infor­
mation.

MOTOROLA CPU32 REFERENCE MANUAL 4-3

III

•

4.3 INSTRUCTION SUMMARY

4-4

The instructions form a set of tools to perform the following operations:
Data Movement Bit Manipulation
Integer Arithmetic Binary-Coded Decimal Arithmetic
Logical Program Control
Shift and Rotate System Control

The complete range of instruction capabilities combined whh the addressing
modes described previously provide flexibility for program development.

The following notations are used in this section. In the operand syntax state­
ments of the instruction descriptions, the operand on the right is the desti­
nation operand.

An = any address register, A7-AO
On = any data register, 07-00
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SR = status register
SP = active stack pointer

USP = user stack pointer
SSP = supervisor stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, OFC)
d = displacement; d16 is a 16-bit displacement

(ea) = effective address
list= list of registers (for example, 03-00)

#(data) = immediate data; a literal integer
label = assembly program label

[7] = bit 7 of an operand
[31 :24] = bits 31-24 of operand (high-order byte of a register)

X = extend (X) bit in CCR
N = negative (N) bit'in CCR
V = overflow (V) bit in CCR
C = carry (C) bit in CCR
+ = arithmetic addition or postincrement
- = arithmetic subtraction or predecrement
* = arithmetic multiplication
/ = arithmetic division or conjunction symbol
~ = invert; operand is logically complemented
A= logical AND

CPU32 REFERENCE MANUAL MOTOROLA

v = logical OR
(8 = logical exclusive OR
Dc = data register D7-DO used during compare
Du = D7-DO used during update

Dr, Dq = data registers, remainder or quotient of divide
Dh, Dl = data registers, high- or low-order 32 bits of product
MSW = most significant word
LSW = least significant word

Fe =function code
{R/W} = read or write indicator

[An] = address extensions

4.3.1 Data Movement Instructions

The MOVE instruction with its associated addressing modes is the basic
means of transferring and storing address and data. MOVE instructionstrans­
fer byte, word, and long-word operands from memory to memory, memory
to register, register to memory, and register to register. Address movement
instructions (MOVE or MOVEA) transfer word and long-word operands and
ensure that only valid address manipulations are executed. In addition to the
general MOVE instructions, there are several special data movement instruc­
tions: move multiple registers (MOVEM), move peripheral data (MOVEP),
move quick (MOVEQ), exchange registers (EXG), load effective address (LEA),
push effective address (PEA)' link stack (LINK), and unlink stack (U NLK). Table
4-1 is a summary of the data movement operations.

Table 4-1. Data Movement Operations

Instruction
Operand Operand

Operation
Syntax Size

EXG Rn, Rn 32 Rn. Rn

LEA (ea), An 32 (ea). An

LINK An, #(d) 16,32 SP -4. SP, An. (SP); SP. An, SP+d t SP

MOVE (ea), (ea) 8,16,32 source. destination
MOVEA (ea), An 16,32.32

MOVEM list, (ea) 16,32 listed registers. destination
(ea), list 16,32.32 source. listed registers

MOVEP Dn, (d16,An) 16,32 Dn[31:24) t (An + d); Dn[23:16).(An+d+2);
Dn[15:8). (An+d+4); Dn[7:0). (An+d+6)

(d16,An), Dn (An+d). Dn[31 :24); (An+d+2). Dn[23:16)
(An+d+4). Dn[15:8); (An+d+6). Dn[7:0)

MOVEO #(data), Dn 8.32 immediate data. destination

PEA (ea) 32 SP -4. SP; (eaH (SP)

UNLK An 32 An. SP; (SP). An; SP+4. SP

MOTOROLA CPU32 REFERENCE MANUAL 4-5

•

•

4.3.2 Integer Arithmetic Operations

4-6

The arithmetic operations include the four basic operations of add (ADD),
subtract (SUB), multiply (MUL), and divide (DIV) as well as arithmetic com­
pare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The instruction
set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands
consist of 16 or 32 bits. The clear and negate instructions apply to all sizes
of data operands.

Table 4-2. Integer Arithmetic Operations

Instruction
Operand Operand

Operation
Syntax Size

ADD Dn, (ea) 8, 16,32 source + destination. destination
(ea), Dn 8,16,32

ADDA (ea), An 16,32

ADDI #(data), (ea) 8,16,32 immediate data + destination. destination
AD DO #(data), (ea) 8,16,32

ADDX Dn,Dn 8,16,32 source + destination + X • destination
- (An), - (An) 8,16,32

CLR (ea) 8,16,32 O. destination

CMP (ea), Dn 8, 16,32 destination - source
CMPA (ea), An 16,32

CMPI #(data), (ea) 8, 16,32 destination - immediate data

CMPM (An)+, (An)+ 8, 16,32 destination - source

CMP2 (ea), Rn 8, 16,32 lower bound< = Rn< = upper bound

DIVS/DIVU (ea), Dn 32/16.16:16 destination/source. destination (signed or unsigned)
(ea), Dr:Dq 64/32 • 32: 32

(ea), Dq 32/32.32
DIVSLlDIVUL (ea), Dr:Dq 32/32 • 32: 32

EXT Dn 8.16 sign extended destination. destination
Dn 16.32

EXTB Dn 8.32

MULS/MULU (ea), Dn 16 x 16.32 source*destination • destination (signed or unsigned)
(ea), DI 32 x32. 32

(ea), Dh:DI 32 x32. 64

NEG (ea) 8, 16,32 0- destination. destination

NEGX (ea) 8, 16,32 0- destination - X • destination

SUB (ea), Dn 8, 16,32 destination - source. destination
Dn, (ea) 8, 16,32

SUBA (ea), An 16,32

SUBI #(data), (ea) 8, 16,32 destination - immediate data. destination
SUBO #(data), (ea) 8, 16,32

SUBX Dn,Dn 8, 16,32 destination - source - X. destination
-(An), -(An) 8, 16, 32

TBLS/TBLU (ea), Dx 8, 16,32 Dyn - Dym. temp
Dym:Dyn, Dx [temp*Dx (7:0)]1256. temp

Dym +temp. Dx

CPU32 REFERENCE MANUAL MOTOROLA

Signed and unsigned MUL and DIV instructions include:

• Word multiply to produce a long-word product

• Long-word multiply to produce a long-word or quad-word product

• Division of a long-word dividend by a word divisor (word quotient and
word remainder)

• Division of a long-word or quad-word dividend by a long-word divisor
(long-word quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arith­
metic. These instructions are add extended (ADDX), subtract extended (SUBX),
sign extend (EXT), and negate binary with extend (NEGX). Refer to
Table 4-2 for a summary of the integer arithmetic operations.

4.3.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical
operations with all sizes of integer data operands. A similar set of immediate
instructions (ANDI, OR I, and EORI) provide these logical operations with all
sizes of immediate data. The TST instruction arithmetically compares the
operand with zero, placing the result in the condition code register.
Table 4-3 summarizes the logical operations

Table 4-3. Logical Operations

Instruction
Operand Operand

Operation
Syntax Size

AND (ea),Dn 8, 16,32 source A destination. destination
Dn,(ea) 8, 16,32

ANDI #(data),(ea) 8,16,32 immediate data A destination. destination

EaR Dn,(ea) 8,16,32 source EB destination. destination

EaRl #(data),(ea) 8,16,32 immediate data EB destination. destination

NOT (ea) 8,16,32 ~ destination. destination

OR (ea),Dn 8, 16, 32 source V destination. destination
Dn,(ea) 8, 16, 32

ORI #(data),(ea) 8,16,32 immediate data V destination. destination

TST (ea) 8,16,32 source - 0 to set condition codes

MOTOROLA CPU32 REFERENCE MANUAL 4-7

III

•

4.3.4 Shift and Rotate Instructions

4-8

The arithmetic shift instructions, ASR and ASL, and logical shift instructions,
LSR and LSL, provide shift operations in both directions. The ROR, ROL,
ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the extend bit. All shift and rotate operations can be performed
on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count
may be specified in the instruction operation word (to shift from 1-8 places)
or in a register (modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit po­
sition only. The SWAP instruction exchanges the 16-bit halves of a register.
Performance of shift/rotate instructions is enhanced so that use of the ROR
and ROL instructions with a shift count of eight allows fast byte swapping.
Table 4-4 is a summary of the shift and rotate operations.

Table 4-4. Shift and Rotate Operations

Instruction
Operand Operand

Operation
Syntax Size

ASL On,On 8,16,32
1---0 0£J--1 0: #(data),On 8,16,32

(ea) 16

ASR On,On 8, 16,32 c:s .~ #(data),On 8, 16, 32
(ea) 16

LSL On,On 8, 16,32
#(data),On 8, 16,32 0£J--1 < t--o

(ea) 16

LSR On,On 8,16,32
#(data),On 8,16,32 04 ~ ~

(ea) 16

ROL On,On 8, 16,32

~< ~ #(data),On 8,16,32
(ea) 16

ROR On,On 8, 16,32

.~ ~ #(data),On 8, 16,32
(ea) 16

ROXL On,On 8,16,32

~o: 1< 1 X ~ #(data),On 8,16,32
(ea) 16

ROXR On,On 8,16,32

~~ lo=H #(data),On 8,16,32
(ea) 16

SWAP On 16

+ + 1 I I

CPU32 REFERENCE MANUAL MOTOROLA

4.3.5 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instruc­
tions: bit test (BTST), bit test and set (BSET), bit test and clear (BCLR), and
bit test and change (BCHG). All bit manipulation operations can be performed
on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory
operands are 8 bits long. In Table 4-5, the summary of the bit manipulation
operations, Z refers to bit 2, the zero bit of the status register.

_ able 4-5. Bit Manipulation Operations

Instruction
Operand Operand

Operation
Syntax Size

BCHG On,(ea) 8,32 ~ ((bit number) of destination) • Z. bit of destination
#(data),(ea) 8,32

BCLR On,(ea) 8,32 ~ ((bit number) of destination) • Z;
#(data),(ea) 8,32 O. bit of destination

BSET On,(ea) 8, 32 ~ ((bit number) of destination). Z;
#(data),(ea) 8, 32 1 • bit of destination

BTST On,(ea) 8,32 ~ ((bit number) of destination) • Z
#(data),(ea) 8,32

4.3.6 Binary-Coded Decimal (BCD) Instructions

Five instructions support operations on BCD numbers. The arithmetic
operations on packed BCD numbers are add decimal with extend (ABCD),
subtract decimal with extend (SBCD)' and negate decimal with extend (NBCD).
Table 4-6 is a summary of the BCD operations.

Table 4-6. Binary-Coded Decimal Operations

Instruction
Operand Operand

Operation
Syntax Size

ABCO On,On 8 sourcelO + destinationlO + X. destination
-(An),-(An) 8

NBCO (ea) 8 0- destinationlO - X. destination

SBCO On,On 8 destinationlO - sourcelO - X. destination
-(An),-(An) 8

MOTOROLA CPU32 REFERENCE MANUAL 4-9

III

III

4.3.7 Program Control Instructions

A set of subroutine call and return instructions and conditional and uncon­
ditional branch instructions pe,rform program control operations. Table 4-7
summarizes these instructions.

Table 4-7. Program Control Operations

Instruction Operand Operand
Operation Syntax Size

Conditional

Bcc (label) 8, 16,32 if condition true, then PC + d t PC

OBcc On,(label) 16 if condition false, then On - 1 t On
if On~ -1, then PC+d t PC+d t CP

Scc (ea) 8 if condition true, then 1's t destination;
else O's t destination

Unconditional

BRA (label) 8, 16,32 PC+d t PC

BSR (label) 8,16,32 SP-4tSP; PCt(SP); PC+dtPC

JMP (ea) none destination t PC

JSR (ea) none SP-4 t SP; PC t (SP); destination t PC

NOP none none PC+2 t PC

Returns

RTO #(d) 16 (SP) t PC; SP+4+d t SP

RTR none none (SP) t CCR; SP+2 t SP; (SP) t PC; SP+ 4 t SP

RTS none none (SP) t PC; SP+4 t SP

Letters cc in the instruction mnemonic opcodes specify testing one of the
following condition codes:

CC - Carry clear
CS - Ca rry set
EQ -Equal
F - Never true*
GE - Greater or equal
GT - Greater than
HI - High
LE - Less or equal
*Not applicable to the Bcc instruction.

LS - Low or same
L T - Less than
MI -Minus
NE - No equal
PL - Plus
T - Always true
VC - Overflow clear
VS - Overflow set

4.3.8 System Control Instructions

4-10

Privileged instructions, trapping instructions, and instructions that use or
modify the condition code register provide system control operations.
Table 4-8 summarizes these instructions. The preceding list of condition code

CPU32 REFERENCE MANUAL MOTOROLA

representations applies to the TRAPcc instruction. All of these instructions
cause the processor to flush the instruction pipeline.

Table 4-8. System Control Operations

Instruction Operand Operand Operation Syntax Size

Privileged

ANDI #(data),SR 16 immediate data A SR • SR

EORI #(data),SR 16 immediate data EEl SR. SR

MOVE (ea),SR 16 source. SR
SR,(ea) 16 SR • destination

MOVE USP,An 32 USP .An
An,USP 32 An. USP

MOVEC Rc,Rn 32 Rc. Rn
Rn,Rc 32 Rn. Rc

MOVES Rn,(ea) 8,16,32 Rn • destination using DFC
(ea),Rn source using SFC. Rn

ORI #(data),SR 16 immediate data V SR. SR

RESET none none assert RESET line

RTE none none (Spa SR; SP+2. SP; (SP). PC; SP+4. SP;
restore stack according to format

STOP #(data) 16 immediate data. SR; STOP

LPSTOP #(data) none immediate data. SR; interrupt mask. EBI; STOP

Trap Generating

BKPT #(data) none if breakpoint cycle acknowledged, then execute re-
turned operation word, else trap as illegal instruction

BGND none none if background mode enabled, then enter background
mode else format/vector offset. - (SSP);
PC. - (SSP); SR. - (SSP); (vector). PC

CHK (ea),Dn 16,32 if Dn <0 or Dn <lea), then CHK exception

CHK2 (ea),Rn 8,16,32 if Rn <lower bound or Rn> upper bound, then CHK
exception

ILLEGAL none none SSP - 2. SSP; vector offset. (SSP);
SSP -4. SSP; PC. (SSP);
SSP - 2. SSP; SR. (SSP);
illegal instruction vector address. PC

TRAP #(data) none SSP - 2. SSP; format and vector offset. (SSP)
SSP -4. SSP; PC. (SSP); SR. (SSP); vector
address. PC

TRAPcc none none if cc true, then TRAP exception
#(data) 16,32

TRAPV none none if V then take overflow TRAP exception

Condition Code Register

ANDI #(data),CCR 8 immediate data A CCR • CCR

EORI #(data),CCR 8 immediate data EEl CCR • CCR

MOVE (ea),CCR 16 source. CCR
CCR,(ea) 16 CCR • destination

ORI #(data),CCR 8 immediate data V CCR. CCR

MOTOROLA CPU32 REFERENCE MANUAL 4-11

•

4.4 INSTRUCTION DETAILS

The following paragraphs contain detailed information about each instruction
in the CPU32 instruction set. First, the notation and the format of the instruc­
tion description is presented. Then each instruction is described in detail.
The instruction descriptions are arranged alphabetically by instruction mne­
monic.

4.4.1 Notation and Format

4-12

The instruction descriptions use notational conventions for the operands, the
subfields and qualifiers, and the operations performed by the instructions.
In the syntax descriptions, the left operand is the source operand, and the
right operand is the destination operand. The notational conventions listed
in 4.3 INSTRUCTION SUMMARY apply. The following lists contain the ad­
ditional notations used in the instruction descriptions.

Notation for operands:

PC - Program counter

SR - Status register

V - Overflow condition code

Immediate Data -Immediate data from the instruction

Source - Source contents

Destination - Destination contents

Vector - Location of exception vector

By convention, the destination operand is the operand on the right.

Notation for subfields and qualifiers:

{bit) of {operand) - Selects a single bit of the operand

({operand») - The contents of the referenced location

{operand)10 - The operand is binary-coded decimal; operations
are performed in decimal

({address register») - The register indirect operator, which indicates that
- ({address register») the operand register points to the memory 10-
({address register») + cation of the instruction operand. The optional

mode qualifiers are -, +, (d), and (d,ix)

#xxx or #{data) -Immediate data that follows the instruction
word(s)

CPU32 REFERENCE MANUAL MOTOROLA

Notations for operations that have two operands, written (operand) (op)
(operand), where (op) is one of the following:

• - The source operand is moved to the destination
operand

•• - The two operands are exchanged

+ - The operands are added

- - The destination operand is subtracted from the
source operand

* -The operands are multiplied

/ - The source operand is divided by the destination
operand

(- Relational test, true if source operand is less than
destination operand

) - Relational test, true if source operand is greater •
than destination operand ~

shifted by - The source operand is shifted or rotated by the .
rotated by number of positions specified by the second op­

erand

Notation for single-operand operations:

~(operand) - The operand is logically complemented

(operand)sign-extended - The operand is sign extended; all bits ofthe upper
portion are made equal to the high-order bit of
the lower portion

(operand)tested - The operand is compared to 0, and the condition
codes are set appropriately

Notation for other operations:

MOTOROLA

TRAP - Equivalent to Format/Offset Word. (SSP); SSP - 2
• SSP; PC • (SSP); SSP-4 • SSP; SR • (SSP);
SSP --.:. 2 • SSP; (vector) • PC

STOP - Enter the stopped state; waiting for interrupts

If (condition) then - The condition is tested. If true, the operations
(operations) else after "then" are performed. If the condition is

(operations) false and the optional "else" clause is present,
the operations after "else" are performed. If the
condition is false and else is omitted, the instruc­
tion performs no operation. Refer to the descrip­
tion of Bcc instruction as an example.

CPU32 REFERENCE MANUAL 4-13

•

4.4.2 Condition Code Register

4-14

The condition code register portion of the status register contains five bits:
X - Extend V - Overflow
N - Negative C - Carry
Z-Zero

The last four bits represent a condition of the result of a processor operation.
Table 4-9 lists the effect of each instruction on these bits. The X bit is an
operand for multiprecision computations; when it is used, it is set to the
value of the carry bit. The carry bit and the multiprecision extend bit are
separate in the M68000 Family to simplify programming techniques that use
them. Refer to Table 4-4 as an example.

Program and system control instructions use certain combinations of these
bits to control program and system flow. Table 4-9 lists the combinations of
these bits and their interpretations .

Table 4-9. Condition Code Computations (Sheet 1 of 2)

Operations X N Z V C Special Definition

ABCD * U ? U ? C = Decimal Carry
Z=Z A Rm A ... A RO

ADD, ADDI, AD DO * * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm
C = Sm A Dm V Rm A Dm V Sm A Rm

- - -
ADDX * * ? ? ? V = Sm A Dm A Rm V Sm A Dm A Rm

C = Sm A Dm V Rm A Dm V Sm A Rm
Z = Z A Rm A ... A RO

AND, ANDI, EOR, EORI, - * * 0 0
MOVEO, MOVE, OR,
ORI, CLR, EXT, NOT,
TAS, TST

CHK - * U U U

CHK2, CMP2 - U ? U ? Z = (R = LB) V (R = UB)
C = (LB < = UB) A (lR < LB) V (R > UB)) V

(UB < LB) A (R > UB) A (R < LB)
- - -

SUB, SUBI, SUBO * * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm
C = Sm A Dm V Rm A Dm V Sm A Rm

- - -
SUBX * * ? ? ? V = Sm A Dm A Rm V Sm A Dm A Rm

C = Sm A Dm V Rm A Dm V Sm A Rm
Z = Z A Rm A ... A RO

- - -
CMP, CAMPI, CMPM - * * ? ? V = Sm A Dm A Rm V Sm A Dm A Rm

C = Sm A Dm V Rm A Dm V Sm A Rm

DIVS, DUVI - * * ? 0 V = Division Overflow

MULS, MULU - * * ? 0 V = Multiplication Overflow

SBCD,NBCD * U ? U ? C = Decimal Borrow
Z = Z A Rm A ... A Ro

CPU32 REFERENCE MANUAL MOTOROLA

Table 4-9. Condition Code Computations (Sheet 2 of 2)

Operations X N Z V C Special Definition

NEG * * * ? ? V = Dm A Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm ARm
C = Dm V Rm
Z = Z A Rm A ... A RO

ASL * * * ? ? V = Dm A (Dm -1 V ... V Dm - r) V Dm A

ASL (R=O) - * *
LSL, ROXL * * *
LSR (r=O) - * *
ROXL (r=O) - * *
ROL - * *
ROL (r=O) - * *
ASR, LSR, ROXR * * *
ASR, LSR (r=O) - * *
ROXR (r=O) - * *
ROR - * *
ROR (r=O) - * *

NOTE:
- = Not Affected
U = Undefined, Result Meaningless
? = Other - See Special Definition
* = General Case

X=C
N = Rm
Z = Rm A ... A RO

0

0

0

0

0

0

0

0

0

0

0

Sm = Source Operand - Most Significant Bit

0

?

0

?

?

0

?

0

?

?

0

Dm = Destination Operand - Most Significant Bit
Rm = Result Operand - Most Significant Bit

R = Register Tested
n = Bit Number
r = Shift Count

LB = Lower Bound
UB = Upper Bound

A = Boolean AND
V = Boolean OR

Rm = NOT Rm

(DM-1 V ... +Dm-r)
C = Dm-r+ 1

C = Dm-r+ 1

C=X

C = Dm-r+1

C = Dr-1

C=X

C = Dr-1

MOTOROLA CPU32 REFERENCE MANUAL 4-15

III

•

4-16

In the instruction set descriptions, the condition code register is shown as
follows:

X N Z v c
u I *

where:
X (extend)

Set to the value of the C bit for many arithmetic operations. Otherwise
not affected or set to a specified result.

N (negative)
Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)
Set if the result equals zero. Cleared otherwise.

V (overflow)
Set if arithmetic overflow occurs. This implies that the result cannot
be represented in the operand size. Cleared otherwise.

C (carry)
Set if a carry out of the most significant bit of the operands occurs for
an addition. Also set if a borrow occurs in a subtraction. Cleared oth­
erwise.

The following symbols are shown in the square representing each condition
code:

* = Set according to the result of the operation
- = Not affected by the operation
o = Cleared
1 = Set
U = Undefined after the operation

CPU32 REFERENCE MANUAL MOTOROLA

4.4.3 Condition Tests

Table 4-10 lists the condition names, encodings, and tests for the condition
branch and set instructions. The test associated with each condition is a
logical formula using the current states of the condition codes. Ifthis formula
evaluates to one, the condition is true. If the formula evaluates to zero, the
condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is currently true.

MOTOROLA

Table 4-10. Conditional Tests

Mnemonic Condition

T True

F* False

HI High

LS Low or Same

CC(HS) Carry Clear

CS(LO) Carry Set

NE Not Equal

EQ Equal

VC Overflow Clear

VS Overflow Set

PL Plus

MI Minus

GE Greater or Equal

LT Less Than

GT Greater Than

LE Less or Equal

*Not available for the Bee instruction .

• = Boolean AND
+ = Boolean OR
N = Boolean NOT N

Encoding

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

CPU32 REFERENCE MANUAL

Test

1

0

C·Z
- -
C+Z

C
C

Z

Z

V

V

N
N

N·V+N·V

N·V+N·V
- ---

N·V·Z + N·V·Z
- -

Z+ N·V+ N·V

4-17

•

•

4.4.4 Instruction Descriptions

4-18

Figure 4-2 shows the format of the instruction descriptions. The attributes
line specifies the size of the operands of an instruction. When an instruction
can use operands of more than one size, a suffix is used with the mnemonic
of the instruction:

.B - Byte operands
.W - Word operands
.L - Long-word operands

CPU32 REFERENCE MANUAL MOTOROLA

INSTRUCTION NAME --------------.........

OPERATION DESCRIPTION -------------,..

ASSEMBLER SYNTAX FOR THIS INSTRUCTION -------~ ...

SIZEATTRIBUTE---------------~

TEXT DESCRIPTION OF INSTRUCTION OPERATION--------3~

CONDITION CODE EFFECTS,--------------J~

INSTRUCTION FORMAT (THIS SPECIFIES THE BIT PATTERN AND }
FIELDS OF THE OPERATION AND COMMAND WORDS, AND ANY
OTHER WORDS THAT ARE ALWAYS PART OF THE
INSTRUCTION. THE EFFECTIVE ADDRESS EXTENSIONS ARE
NOT EXPLICITLY IllUSTRATED. THE EXTENSION WORDS (IF
ANY) FOllOW IMMEDIATElY AFTER THE illUSTRATED
PORTIONS OF THE INSTRUCTIONS.

MEANINGS AND AllOWED VALUES (FOR THE VARIOUS -----~
FIELDS REQUIRED BY THE INSTRUCTION FORMAT)

ABeD
Operation: Source 1 0 + Destination +

Assembler
Syntax:

ABCD Dy,Dx
ABCD - (Ay), - (Ax)

Attributes: Size = (Byte)

Description: Adds the source operation
and stores the result in the destinatio
decimal arithmetic. The operands,
different ways:

1. Data register to data register:
specified in the instruction.

2. Memory to memory: The oper
addressing mode using the ad

This operation is a byte operation 0

Condition Codes:

X N Z V C
U • I

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Un
V Undefined.
C Set if a decimal carry was generat

NOTE
Normally the Z condition code bit i
an operation. This allows success
of multiple-precision operations.

If RIM = 0, Rx and Ry are Data Registers
If RIM = 1, Rx and Ry are Address Registers for th

Instruction Fields:

Register Rx field - Specifies the desti
If RIM .. 0, specifies a data register
If RIM ... 1, specifies an address reg

RIM field - Specifies the operand add
o -the operation is data register to
1 - the operation is memory to me

Register Ry field - SpeCifies the sour
If RIM .. 0, specifies a data regis
If RIM ... 1, specifies an address

Figure 4-2. Instruction Description Format

MOTOROLA CPU32 REFERENCE MANUAL 4-19

•

II

ABCD Add Decimal with Extend ABCD

Operation: Source10+Destination10+X. Destination

Assembler
Syntax:

ABCD Dy,Dx
ABCD - (Ay), - (Ax)

Attributes: Size = (Byte)

Description: Adds the source operand to the destination operand along with the extend
bit, and stores the result in the destination location. The addition is performed using
binary coded decimal arithmetic. The operands, which are packed BCD numbers, can
qe addressed in two different ways:

1. Data register to data register: The operands are contained in the data registers
specified in the instruction.

2. Memory to memory: The operands are addressed with the predecrement ad­
dressing mode using the address registers specified in the instruction.

This operation is a byte operation only.

Condition Codes:

X N Z v c
I u I * u I *

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Undefined.
C Set if a decimal carry was generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

4-20

15 14 13 12 11 10

1 11 I 0 I 0 I REGISTER Rx I 1 o I 0 I 0

RIM Field: 0 = Data Register to Data Register 1 = Memory to Memory

If RIM = 0, ,Rx and Ry are Data Registers

o I RIM

If RIM = 1, Rx and Ry are Address Registers for the Predecrement Addressing Mode

CPU32 REFERENCE MANUAL

REGISTER Ry

MOTOROLA

ABCD Add Decimal with Extend ABCD

Instruction Fields:
Register Rx field - Specifies the destination register:

If RIM = 0, specifies a data register
If RIM = 1, specifies an address register for the predecrement addressing mode

RIM field - Specifies the operand addressing mode: ° - the operation is data register to data register
1 - the operation is memory to memory

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register
If RIM = 1, specifies an address register for the predecrement addressing mode

MOTOROLA CPU32 REFERENCE MANUAL 4-21

•

II

ADD

Operation:

Assembler
Syntax:

Attributes:

Add

Source + Destination. Destination

ADD (ea),Dn
ADD Dn, (ea)

Size = (Byte, Word, Long)

ADD

Description: Adds the source operand to the destination operand using binary addition,
and stores the result in the destination location. The size of the operation .may be
specified as byte, word, or long. The mode of the instruction indicates which operand
is the source and which is the destination as well as the operand size.

Condition Codes:

X N Z v c
* I *

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

REGISTER OPMODE

Instruction Fields:

4-22

Register field - Specifies any of the eight data registers.
Opmode field:

Byte

000
100

Word

001
101

Long

010
110

Operation

(ea)+(Dn). (n)
(Dn) + (ea) • (ea)

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

ADD Add ADD
Effective Address Field - Determines addressing mode:

a. If the location specified is a source operand, all addressing modes are allowed
as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*Word and Long Only

b. If the location specified is a destination operand, only memory alterable address­
ing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) . - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTES:
1. The Dn mode is used when the destination is a data register; the destination (ea)

mode is invalid for a data register.
2. ADDA is used when the destination is an address register. ADDI and ADDQ are

used when the source is immediate data. Most assemblers automatically make
this distinction.

MOTOROLA CPU32 REFERENCE MANUAL 4-23

•

•

ADDA Add Address ADDA

Operation: Source + Destination. Destination

Assembler
Syntax: ADDA (ea), An

Attributes: Size = (Word, Long)

Description: Adds the source operand to the destination address register, and stores
the result in the address register. The size of the operation may be specified as word
or long. The entire destination address register is used regardless of the operation
size.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE REGISTER

Instruction Fields:

4-24

Register field - Specifies any of the eight address registers. This is always the des­
tination.

Opmode field - Specifies the size of the operation:
011 - Word operation. The source operand is sign-extended to a long operand and

the operation is performed on the address register using all 32 bits.
111 - Long operation.

Effective Address field - Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

CPU32 REFERENCE MANUAL MOTOROLA

ADDI

Operation:

Assembler
Syntax:

Attributes:

Add Immediate ADDI

Immediate Data + Destination. Destination

ADDI #(data),(ea)

Size = (Byte, Word, Long)

Description: Adds the immediate data to the destination operand, and stores the result
in the destination location. The size of the operation may be specified as byte, word,
or long. The size of the immediate data matches the operation size.

Condition Codes:

X N Z V

* I * I * I * I *

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

0 I 01 OJ 0 I 0 I 1 I 1 1 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

1

MOTOROLA CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

•

•

ADDI Add Immediate

4-26

Effective Address field ~ Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

On 000 reg. number:On (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

Immediate field ~ (Data immediately following the instruction):
If size = DO, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

CPU32 REFERENCE MANUAL

ADDI

Register

000

001

-

-

-

-

MOTOROLA

ADDQ

Operation:

Assembler
Syntax:

Add Quick

Immediate Data + Destination. Destination

ADDQ #(data),(ea)

Attributes: Size = (Byte, Word, Long)

ADDQ

Description: Adds an immediate value of one to eight to the operand at the destination
location. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address reg­
ister is used regardless of the operation size.

Condition Codes:

X N Z V C

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise~
C Set if a carry occurs. Cleared otherwise.

The condition codes are not affected when the destination is an address register.

Instruction Format:

15 14 13 12 11 10

DATA
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Data field - Three bits of immediate data, 7-0 (with the immediate value 0 representing

a value of 8).
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-27

•

ADDQ Add Quick ADDQ

Effective Address field - Specifies the destination location.
Only alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

• *Word and Long Only

4-28 CPU32 REFERENCE MANUAL MOTOROLA

ADDX Add Extended ADDX
Operation:

Assembler
Syntax:

Attributes:

Source + Destination + X • Destination

ADDX Dy,Dx
ADDX -(Ay),-(Ax)

Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand along with the extend
bit and stores the result in the destination location. The operands can be addressed
in two different ways:

1. Data register to data register: The data registers specified in the instruction con­
tain the operands.

2. Memory to memory: The address registers specified in the instruction address
the operands using the predecrement addressing mode.

The size of the operation can be specified as byte, word, or long.

Condition Codes:

X N Z v
* I *

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

NOTE
Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero re~ults upon completion
of multiple-precision operations.

Instruction Format:

15 14 13 12 11 10

I 1 I 1 o I 1 REGISTER Rx I 1 SIZE I 0 I 0 RIM REGISTER Ry

MOTOROLA CPU32 REFERENCE MANUAL 4-29

•

•

ADDX Add Extended ADDX
Instruction Fields:

Register Rx field - Specifies the destination register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

4-30

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

RIM field - Specifies the operand address mode:
0- The operation is data register to data register.
1 - The operation is memory to memory.

Register Ry field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

CPU32 REFERENCE MANUAL MOTOROLA

AND
Operation:

Assembler
Syntax:

Attributes:

AND Logical

SourceADestination • Destination

AND (ea),Dn
AND Dn,(ea)

Size = (Byte, Word, Long)

AND

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The contents of an address register may not be
used as an operand.

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

Instruction Fields:
Register field - Specifies any of the eight data registers.
Opmode field:

Byte Word

000 001
100 101

MOTOROLA

Long

010
110

Operation

((ea))A((Dn)) • On
((Dn))A((ea)) • ea

CPU32 REFERENCE MANUAL

MODE REGISTER

4-31

•

•

AND AND Logical AND

4-32

Effective Address field - Determines addressing mode:
Ifthe location specified is a source operand only data addressing modes are allowed
as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,A'n,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

If the location specified is a destination operand only memory alterable addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg; number:An (bd,PC,Xn) - -

NOTES:
1. The Dn mode is used when the destination is a data register; the destination

<ea) mode is invalid for a data register.
2. Most assemblers use ANDI when the source is immediate data.

CPU32 REFERENCE MANUAL MOTOROLA

ANDI

Operation:

Assembler
Syntax:

Attributes:

AND Immediate ANDI

Immediate DataADestination • Destination

ANDI #(data),(ea)

Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size.

Condition Codes:

X N Z v C

o I 0

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

1010101010111 1

EFFECTIVE ADDRESS
0 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL

MODE I REGISTER

BYTE DATA (8 BITS)

4-33

•

•

ANDI AND Immediate

4-34

Effective Address field - Specifies the destination operand.
Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn 000 reg. number:Dn (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

Immediate field - (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

CPU32 REFERENCE MANUAL

ANDI

Register

000

001

-

-

-

-

MOTOROLA

ANDI
to CCR AND Immediate to Condition Codes

ANDI
to CCR

Operation:

Assembler
Syntax:

Attributes:

SourceACCR • CCR

ANDI #(data),CCR

Size = (Byte)

Description: Performs an AND operation of the immediate operand with the condition
codes and stores the result in the low-order byte of the status register.

Condition Codes:

X N Z V C

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

MOTOROLA CPU32 REFERENCE MANUAL 4-35

III

•

ANDI
to SR

Operation:

Assembler
Syntax:

Attributes:

AND Immediate to the Status Register

(Privileged Instruction)

If supervisor state
then SourceASR • SR
else TRAP

ANDI #(data),SR

Size = (Word)

ANDI

to SR

Description: Performs an AND operation of the immediate operand with the contents
of the status register and stores the result in the status register. All implemented bits
of the status register are affected.

Condition Codes:

X N Z V C

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

0/0/0/0/0
YVORD DATA (16 BITS)

4-36 CPU32 REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift

Operation:

Assembler
Syntax:

Attributes:

Destination Shifted by (count) • Destination

ASd DX,Dy
ASd #(data),Dy
ASd (ea)
where d is direction, L or R

Size = (Byte, Word, Long)

ASL, ASR

Description: Arithmetically shifts the bits of the operand in the direction (L or R) spec-
ified. The carry bit receives the last bit shifted out of the operand. The shift count for
the shifting of a register may be specified in two different ways:

1. Immediate - The shift count is specified in the instruction (shift range, 8-1) .
2. Register - The shift count is the value in the data register specified in instruction

modulo 64.

The size ofthe operation can be specified as byte, word, or long. An operand in memory
can be shifted one bit only, and the operand size is restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros
are shifted into the low-order bit. The overflow bit indicates if any sign changes occur
during the shift.

ASL:

:J~-......---t.... __ O_P_ER_A_ND __ ~

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign­
bit (MSB) is shifted into the high-order bit.

ASR:
rl MSB OPERAND
L--L_I...----l--rI--1--------l

MOTOROLA CPU32 REFERENCE MANUAL 4-37

•

•

ASL, ASR Arithmetic Shift ASL, ASR

Condition Codes:

X N Z V C

* I * I * I * I *

X Set according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the most significant bit is changed at any time during the shift operation.

Cleared otherwise.
C Set according to the last bit shifted out of the operand. Cleared for a shift count

of zero .

Instruction Format (Register Shifts):

15 14 13 12 11 10

o I COUNT/REGISTER dr I SIZE i/r I 0 o I REGISTER

Instruction Fields (Register Shifts):

4-38

Count/Register field - Specifies shift count or register that contains the shift count:
If i/r = 0, this field contains the shift count. The values one to seven represent counts

of one to seven; value of zero represents a count of eight.
If i/r = 1, this field specifies the data register that contains the shift count (modulo

64).
dr field - Specifies the direction of the shift:
0- Shift right
1 - Shift left

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10- Long operation

i/r field:
If i/r = 0, specifies immediate shift count.
If ilr = 1, specifies register shift count.

Register field - Specifies a data register to be shifted.

CPU32 REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR

Instruction Format (Memory Shifts):

15 14 13 12 11 10

EFFECTIVE ADDRESS

Instruction Fields (Memory Shifts):
dr field - Specifies the direction of the shift:
0- Shift right
1 - Shift left

MODE

Effective Address field - Specifies the operand to be shifted.
Only memory alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn - - (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) -

(d8.An,Xn) 110 reg. number:An (d8,PC,Xn) -

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn) -

MOTOROLA CPU32 REFERENCE MANUAL

REGISTER

Register

000

001

-

-

-

-

4-39

III

•

Bee Branch Conditionally Bee

Operation: If (condition true) then PC + d • PC

Assembler
Syntax: Bcc (label)

Attributes: Size = (Byte, Word, Long)

Description: If the specified condition is true, program execution continues at location
(PC) + displacement. The PC contains the address of the instruction word of the Bcc
instruction plus two. The displacement is a twos complement integer that represents
the relative distance in bytes from the current PC to the destination PC. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. If the 8-bit displacement field in the
instruction word is all ones ($FF), the 32-bit displacement (long word immediately
following the instruction) is used. Condition code cc specifies one of the following
conditions:

CC carry clear 0100 C
CS carry set 0101 C

LS low or same 0011 C+Z
LT less than 1101 NeV+NeV

EQ equal 0111 Z
GE greater or equal 1100 NeV+NeV
GT greater than 1110 NeVeZ + NeVeZ
HI high 0010 eeZ
LE less or equal 1111 Z+NeV+NeV

MI minus 1011 N
NE not equal 0110 Z
PL plus 1010 N
VC overflow clear 1000 V
VS overflow set 1001 V

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 4

0 I 1 I 1 I o I CONDITION I 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

4-40 CPU32 REFERENCE MANUAL MOTOROLA

Bee Branch Conditionally Bee

Instruction Fields:
Condition field - The binary code for one of the conditions listed in the table.
8-Bit Displacement field - Twos complement integer specifying the number of bytes

between the branch instruction and the next instruction to be executed if the con­
dition is met.

16-Bit Displacement field - Used for the displacement when the 8-bit displacement
field contains $00.

32-Bit Displacement field - Used for the displacement when the 8-bit displacement
field contains $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MOTOROLA CPU32 REFERENCE MANUAL 4-41

III

II

BCHG

Operation:

Assembler
Syntax:

Attributes:

Test a Bit and Change

~(number) of Destination) • Z;
~(number) of Destination) • (bit number) of Destination

BCHG Dn,(ea)
BCHG #(data),(ea)

Size = (Byte, Long)

BCHG

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then inverts the specified bit in the destination. When the destination is
a data register, any of the 32 bits can be specified by the modulo 32-bit number. When
the destination is a memory location, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation may be specified in either of two ways:

1. Immediate - The bit number is specified in a second word of the instruction.
2. Register - The specified data register contains the bit number.

Condition Codes:

X N Z V C

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

4-42 CPU32 REFERENCE MANUAL MOTOROLA

BCHG Test a Bit and Change BCHG

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register that contains the bit number.
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 11 10

I 1 I
EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0 I MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Long only; all others are byte only.

Bit Number field - Specifies the bit number.

MOTOROLA CPU32 REFERENCE MANUAL 4-43

•

•

BCLR

Operation:

Assembler
Syntax:

Attributes:

Test a Bit and Clear

-(bit number) of Destination) • Z;
o • (bit number) of Destination

BCLR Dn,(ea)
BCLR #(data),(ea)

Size = (Byte, Long)

BCLR

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately, then clears the specified bit in the destination. When a data register is the
destination, any of the 32 bits can be specified by a modulo 32-bit number. When a
memory location is the destination, the operation is a byte operation, and the bit
number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate - The bit number is specified in a second word of the instruction.
2. Register - The specified data register contains the bit number.

Condition Codes:

X N Z V C

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

4-44 CPU32 REFERENCE MANUAL MOTOROLA

BCLR Test a Bit and Clear BCLR

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register that contains the bit number.
Effective Address field - Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn* 000 reg. number:Dn (xxx)W 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) -

(dsAn,Xn) 110 reg. number:An (ds,PC,Xn) -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) -

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 11 10

Register

000

001

-

-

-

-

I I
EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 1 0
MODE I REGISTER

0 0 0 0 0- 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx)W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) - -

(dsAn,Xn) 110 reg. number:An (dS,PC,Xn) - -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Long only; all others are byte only.

Bit Number field - Specifies the bit number.

MOTOROLA CPU32 REFERENCE MANUAL 4-45

•

•

BGND

Operation:

Assembler
Syntax:

Atributes:

Enter Background Mode

IF (background mode enabled) THEN
Enter Background Mode

ELSE

BGND

Format/Vector offset. - (SSP)
PC. -(SSP)
SR. -(SSP)
(Vector) • PC

Size= (Unsized)

BGND

Description: The processor suspends instruction execution and enters background mode
(if enabled). The freeze output is asserted to acknowledge entrance into background
mode. Upon exiting background mode, instruction execution continues with the in­
struction pointed to by the current program counter.

If background mode is not enabled, the processor initiates illegal instruction exception
processing. The vector number is generated to reference the illegal instruction ex­
ception vector. Background mode is covered in SECTION 7 DEVELOPMENT SUPPORT.

Condition Codes:

X N Z

I - I - I

X Not affected
N Not affected
Z Not affected
V Not affected
C Not affected

Instruction Format:

v c

15 14 13 12 11 10

o I 1 o I 0 I 1 o I 1

4-46 CPU32 REFERENCE MANUAL MOTOROLA

BKPT

Operation:

Assembler
Syntax:

Attributes:

Breakpoint

Run breakpoint acknowledge cycle
If acknowledged

then execute returned operation word
else TRAP as illegal instruction

BKPT #(data)

Unsized

BKPT

Description: Executes a breakpoint acknowledge bus cycle with the immediate data
(value 0-7) on bits 2-4 of the address bus and zeros on bits 0 and 1 of the address
bus.

The breakpoint acknowledge cycle accesses the CPU space, addressing type 0, and •
provides the breakpoint number specified by the instruction on address lines A4-A2. .~
If the external hardware terminates the cycle with DSACKxs the data on the bus (an
instruction word) is inserted into the instruction pipe and is executed after the break-
point instruction. The breakpoint instruction requires a word to be transferred so if
the first bus cycle accesses an 8-bit port, a second cycle is required. If the external
logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available) the processor takes an illegal instruction exception. Refer to 7.2.5 Software
Breakpoints for details of breakpoint operation.

This instruction supports breakpoints for debug monitors and real-time hardware
emulators. The exact operation performed by the instruction is implementation­
dependent. Typically, this instruction replaces an instruction in a program; that in­
struction is returned by the breakpoint acknowledge cycle.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

o I 1 I 0 o I 0 I 0 I 1 I 0 o I 1 VECTOR

Instruction Fields:
Vector field - Contains the immediate data, a value in the range of 0-7. This is the

breakpoint number.

MOTOROLA CPU32 REFERENCE MANUAL 4-47

III

BRA Branch Always BRA

Operation: PC+d. PC

Assembler
Syntax: BRA (label)

Attributes: Size = (Byte, Word, Long)

Description: Program execution continues at location (PC) + displacement. The PC con-
tains the address of the instruction word of the BRA instruction plus two. The dis­
placement is a twos complement integer that represents the relative distance in bytes
from the current PC to the destination PC. If the 8-bit displacement field in the instruc­
tion word is zero, a 16-bit displacement (the word immediately following the instruc­
tion) is used. If the 8-bit displacement field in the instruction word is all ones ($FF),
the 32-bit displacement (long word immediately following the instruction) is used.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

0 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 8-81T DISPLACEMENT

16-81T DISPLACEMENT IF 8-81T DISPLACEMENT =$00

32-81T DISPLACEMENT IF 8-81T DISPLACEMENT = $FF

Instruction Fields:

4-48

8-Bit Displacement field - Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

16-Bit Displacement field - Used for a larger displacement when the 8-bit displace­
ment is equal to $00.

32-Bit Displacement field - Used for a larger displacement when the 8-bit displace­
ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

CPU32 REFERENCE MANUAL MOTOROLA

BSET Test a Bit and Set BSET

Operation:

Assembler
Syntax:

Attributes:

~(bit number) of Destination) • Z;
1 • (bit number) of Destination

BSET Dn,(ea)
BSET #(data),(ea)

Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. Then sets the specified bit in the destination operand. When a data register
is the destination, any of the 32 bits can be specified by a modulo 32-bit number.
When a memory location is the destination, the operation is a byte operation, and the
bit number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in either of two ways:

1. Immediate - The bit number is specified in the second word of the instruction.
2. Register - The specified data register contains the bit number.

Condition Codes:

X N Z

I - I - I *

X Not affected.
N Not affected.

v C

Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10 2

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA CPU32 REFERENCE MANUAL 4-49

•

•

BSET Test a Bit and Set BSET

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register that contains the bit number.
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) - -

(daAn,Xn) 110 reg. number:An (da,PC,Xn) - -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 11 10

I 1 I 1 I
EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0
I MODE REGISTER

0 0 0 0 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):

4-50

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register' Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) - -

(daAn,Xn) 110 reg. number:An (da,PC,Xn) - -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Long only; all others are byte only.

Bit Number field - Specifies the bit number.

CPU32 REFERENCE MANUAL MOTOROLA

BSR Branch to Subroutine BSR

Operation:

Assembler
Syntax:

Attributes:

SP-4. SP; PC. (SP); PC+d • PC

BSR (label)

Size = (Byte, Word, Long)

Description: Pushes the long word address of the instruction immediately following the
BSR instruction onto the system stack. The PC contains the address of the instruction
word plus two. Program execution then continues at location (PC) + displacement. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current PC to the destination PC. If the 8-bit displacement field in the
instruction word is zero, a 16-bit displacement (the word immediately following the
instruction) is used. If the 8-bit displacement field in the instruction word is all ones
($FF), the 32-bit displacement (long word immediately following the instruction) is
used.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

0 I 1 I 1 I 0 I 0 I 0 I 0 I 1 I 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Instruction Fields:
8-Bit Displacement field - Twos complement integer specifying the number of bytes

between the branch instruction and the next instruction to be executed.
16-Bit Displacement field -- Used for a larger displacement when the 8-bit displacement

is equal to $00.
32-Bit Displacement field - Used for a larger displacement when the 8-bit displace­

ment is equal to $FF.

NOTE

A branch to the immediately following instruction automatically uses the 16-
bit displacement format because the 8-bit displacement field contains $00
(zero offset).

MOTOROLA CPU32 REFERENCE MANUAL 4-51

•

•

BTST Test a Bit 8T5T

Operation: - (bit number) of Destination) • Z;

Assembler
Syntax:

BTST Dn,(ea)
BTST #(data),(ea)

Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code ap-
propriately. When a data register is the destination, any of the 32 bits can be specified
by a modulo 32 bit number. When a memory location is the destination, the operation
is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers to the
least significant bit. The bit number for this operation can be specified in either of two
ways:

1. Immediate - The bit number is specified in a second word of the instruction.
2. Register - The specified data register contains the bit number.

Condition Codes:

X N Z V C

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Dynamic, specified in a register):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

4-52 CPU32 REFERENCE MANUAL MOTOROLA

8T5T Test a Bit 8T5T

Instruction Fields (Bit Number Dynamic):
Register field - Specifies the data register that contains the bit number.
Effective Address field - Specifies the destination location. Only data addressing

modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn* 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*Long only; all others are byte only.

Instruction Format (Bit Number Static, specified as immediate data):

15 14 13 12 11 10

I o I
EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0
I MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Instruction Fields (Bit Number Static):
Effective Address field - Specifies the destination location. Only data addressing

modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Bit Number field - Specifies the bit number.

MOTOROLA CPU32 REFERENCE MANUAL 4-53

•

•

CHK
Operation:

Assembler
Syntax:

Attributes:

Check Register Against Bounds CHK
If Dn < 0 or Dn > Source then TRAP

CHK (ea),Dn

Size = (Word, Long)

Description: Compares the value in the data register specified in the instruction to zero
and to the upper bound (effective address operand). The upper bound is a twos
comple'ment integer. If the register value is less than zero or greater than the upper
bound, a CHK instruction exception, vector number 6, occurs.

Condition Codes:

X N Z V C

-1*lululu

X Not affected.
N Set if Dn < 0; cleared if Dn > effective address operand. Undefined otherwise.
Z Undefined.
V Undefined.
C Undefined.

Instruction Format:

15 14 13 12 11 10

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-54

Register field - Specifies the data register that contains the value to be checked.
Size field - Specifies the size of the operation.

11 - Word operation.
10 - Long operation.

CPU32 REFERENCE MANUAL MOTOROLA

CHK Check Register Against Bounds CHK
Effective Address field - Specifies the upper bound operand. Only data addressing

modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) 111 010

(ds.An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd.An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-55

•

•

CHK2 Check Register Against Bounds CHK2

Operation: If Rn < lower bound or
Rn > upper bound

then TRAP

Assembler
Syntax: CHK2 (ea),Rn

Attributes: Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address contains
the bounds pair: the lower bound followed by the upper bound. For signed compar­
isons, the arithmetically smaller value should be used as the lower bound. For unsigned
comparisons, the logically smaller value should be the lower bound .

The size of the data and the bounds can be specified as byte, word, or long. If Rn is
a data register and the operation size is byte or word, only the appropriate low-order
part of Rn is checked. If Rn is an address register and the operation size is byte or
word, the bounds operands are sign-extended to 32 bits and the resultant operands
are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value. If the
register value is less than the lower bound or greater than the upper bound, a CHK
instruction exception, vector number 6, occurs.

Condition Codes:

4-56

X N Z V C

X Not affected.
N Undefined.
Z Set if Rn is equal to either bound. Cleared otherwise.
V Undefined.
C Set if Rn is out of bounds. Cleared otherwise.

CPU32 REFERENCE MANUAL MOTOROLA

CHK2 Check Register Against Bounds CHK2

Instruction Format:

15 14 13 12 11 10

0 0 I 0 I 0 0 SIZE 0 1

D/A REGISTER 1 010 0 0

Instruction Fields:
Size field - Specifies .ne size of the operation.

00 - Byte operation
01 - Word operation
10 - Long operation

EFFECTIVE ADDRESS
1

I MODE REGISTER

0 0/010101010

Effective Address field - Specifies the location of the bounds operands. Only control
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

D/A field - Specifies whether an address register or data register is to be checked.
0- Data register.
1 - Address register.

Register field - Specifies the address or data register that contains the value to be
checked.

MOTOROLA CPU32 REFERENCE MANUAL 4-57

•

•

CLR

Operation:

Assembler
Syntax:

Attributes:

Clear an Operand CLR

o • Destination

CLR <ea)

Size = (Byte, Word, Long)

Description: Clears the destination operand to zero. The size of the operation may be
specified as byte, word, or long.

Condition Codes:

x N Z V C

I - I 0 I 0 I 0

X Not affected.
N Always cleared.
Z Always set.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:
Size field - Specifies the size of the operation.

00 - Byte operation
01 - Word operation
10 - Long operation

4-58 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

CLR Clear an Operand CLR

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) - -
(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-59

•

•

CMP

Operation:

Assembler
Syntax:

Attributes:

Compare CMP

Destination - Source. cc

CMP (ea), On

Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination data register and sets
the condition codes according to the result; the data register is not changed. The size
of the operation can be byte, word, or long.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

REGISTER OPMODE

Instruction Fields:

4-60

Register field - Specifies the destination data register.
Opmode field:

Byte Word

000 001

Long

010

Operation

(On») - (ea»)

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

CMP Compare CMP

Effective Address field - Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*Word and Long only.

NOTE

CMPA is used when the destination is an address register. CMPI is used when
the source is immediate data. CMPM is used for memory-to-memory com­
pares. Most assemblers automatically make the distinction.

MOTOROLA CPU32 REFERENCE MANUAL 4-61

•

•

Operation:

Assembler
Syntax:

Attributes:

Compare Address CMPA

Destination - Source

CMPA <ea), An

Size = (Word, Long)

Description: Subtracts the source operand from the destination address register and
sets the condition codes according to the result; the address register is not changed.
The size of the operation can be specified as word or long. Word length source op­
erands are sign extended to 32-bits for comparison.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

REGISTER OPMOOE
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-62

Register field - Specifies the destination address register.
Opmode field - Specifies the size of the operation:

011 - Word operation. The source operand is sign-extended to a long operand and
the operation is performed on the address register using all 32 bits.

111 - Long operation.

CPU32 REFERENCE MANUAL MOTOROLA

CMPA Compare Address CMPA

Effective Address field - Specifies the source operand. All addressing modes are
allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) 111 010

(d8An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-63

•

•

CMPI

Operation:

Assembler
Syntax:

Attributes:

Compare Immediate CMPI

Destination - Immediate Data

CMPI #(data),(ea)

Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and sets the
condition codes according to the result; the destination location is not changed. The
size of the operation may be specified as byte, word, or long. The size of the immediate
data matches the operation size.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

0 I 0 I 0 I 0 I 11 1 I 0 I 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

1

4-64 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

MOTOROLA

CMPI Compare Immediate CMPI

Effective Address field - Specifies the destination operand. Only data addressing
modes, except immediate are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn 000 reg. number:Dn (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #(datal -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16.An) 101 reg. number:An (d16,PC) 111

(d8.An,Xn) 110 reg. number:An (d8,PC,Xn) 111

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111

Immediate field - (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

MOTOROLA CPU32 REFERENCE MANUAL

Register

000

001

-

010

011

011

4-65

III

•

CMPM

Operation:

Assembler
Syntax:

Attributes:

Compare Memory CMPM

Destination - Source. cc

CMPM (Ay)+,(Ax)+

Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination operand and sets the
condition codes according to the results; the destination location is not changed. The
operands are always addressed with the postincrement addressing mode, using the
address registers specified in the instruction. The size ofthe operation may be specified
as byte, word, or long .

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

I 1 I 0 I 1 I 1 REGISTER Ax I 1 SIZE I 0 o I 1 REGISTER Ay

Instruction Fields:

4-66

Register Ax field - (always the destination). Specifies an address register in the
postincrement addressing mode.

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

Register Ay field - (always the source). Specifies an address register in the postin­
crement addressing mode.

CPU32 REFERENCE MANUAL MOTOROLA

CMP2 Compare Register Against Bounds CMP2

Operation:

Assembler
Syntax:

Attributes:

Compare Rn < lower-bound or
Rn > upper-bound
and Set Condition Codes

CMP2 (ea),Rn

Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address contains
the bounds pair: the lower bound followed by the upper bound. For signed compar­
isons, the arithmetically smaller value should be used as the lower bound. For unsigned
comparisons, the logically smaller value should be the lower bound .

The size of the data and the bounds can be specified as byte, word, or long. If Rn is
a data register and the operation size is byte or word, only the appropriate low-order
part of Rn is checked. If Rn is an address register and the operation size is byte or
word, the bounds operands are sign-extended to 32 bits and the resultant operands
are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value.

NOTE

This instruction is identical to CHK2 except that it sets condition codes rather
than taking an exception when the value in Rn is out of bounds.

Condition Codes:

X N Z V C

X Not affected.
N U ndefi ned.
Z Set if Rn is equal to either bound. Cleared otherwise.
V Undefined.
C Set if Rn is out of bounds. Cleared otherwise.

MOTOROLA CPU32 REFERENCE MANUAL 4-67

•

•

CMP2 Compare Register Against Bounds CMP2

Instruction Fields:

4-68

Size field - Specifies the size of the operation.
00 - Byte operation
01 - Word operation
10 - Long operation

Effective Address field - Specifies the location of the bounds pair. Only control ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

D/A field - Specifies whether an address register or data register is compared.
0- Data register.
1 - Address register.

Register field - Specifies the address or data register that contains the value to be
checked.

CPU32 REFERENCE MANUAL MOTOROLA

OBee

Operation:

Assembler
Syntax:

Attributes:

Test Condition, Decrement, and Branch

If condition false then (On -1 • On;
If On -=1= -1 then PC+d • PC)

OBcc On,(label)

Size = (Word)

OBee

Description: Controls a loop of instructions. The parameters are: a condition code, a
data register (counter), and a displacement value. The instruction first tests the con­
dition (for termination); if it is true, no operation is performed. If the termination
condition is not true, the low-order 16 bits of the counter data register are decremented
by one. If the result is -1, execution continues with the next instruction. If the result
is not equal to -1, execution continues at the location indicated by the current value
of the PC plus the sign-extended 16-bit displacement. The value in the PC is the address
of the instruction word of the OBcc instruction plus two. The displacement is a twos
complement integer that represents the relative distance in bytes from the current PC
to the destination PC.

Condition code cc specifies one of the following conditions:

ee carry clear 0100 e LS low or same
es carry set 0101 e LT less than
EQ equal 0111 Z MI minus
F never equal 0001 a NE not equal
GE greater or equal 1100 N·V + N·V PL plus
GT greater than 1110 N·V·Z + N·v·z T always true
HI high 0010 e·z ve overflow clear
LE less or equal 1111 Z+N·V+ N·V VS overflow set

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

CONDITION 1 1

DISPLACEMENT (16 BITSl

MOTOROLA CPU32 REFERENCE MANUAL

0011 e+z
1101 N·V+N·V
1011 N
0110 Z
1010 N
0000 1
1000 V
1001 V

REGISTER

4-69

•

•

OBee Test Condition, Decrement, afld Branch OBee

Instruction Fields:
Condition field - The binary code for one of the conditions listed in the table.
Register field - Specifies the data register used as the counter.
Displacement field - Specifies the number of bytes to branch.

NOTES:
1. The terminating condition is similar to the UNTIL loop clauses of high-level languages.

For example: DBMI can be stated as IIdecrement and branch until mi.nus".
2. Most assemblers accept DBRA for DBF for use when only a count terminates the loop

(no condition is tested).
3. A program can enter a loop at the beginning or by branching to the trailing DBcc

instruction. Entering the loop at the beginning is useful for indexed addressing modes
and dynamically specified bit operations. In this case, the control index count must
be one less than the desired number of loop executions. However, when entering a
loop by branching directly to the trailing DBcc instruction, the control count should
equal the loop execution count. In this case, if a zero count occurs, the DBcc instruction
does not branch, and the main loop is not executed.

4-70 CPU32 REFERENCE MANUAL MOTOROLA

DIVS
DIVSL

Operation:

Assembler
Syntax:

Attributes:

Signed Divide

Destination/Source. Destination

DIVS.W (ea),Dn 32/16. 16r:16q
DIVS.L (ea),Dq 32/32 • 32q
DIVS.L (ea),Dr:Dq 64/32 .32r:32q
DIVSL.L (ea),Dr:Dq 32/32. 32r:32q

Size = (Word, Long)

DIVS
DIVSL

Description: Divides the signed destination operand by the signed source operand and
stores the signed result in the destination. The instruction uses one of four forms. The
word form of the instruction divides a long word by a word. The result is a quotient 4
in the lower word (least significant 16 bits) and the remainder is in the upper word .
(most significant 16 bits) of the result. The sign of the remainder is the same as the
sign of the dividend.

The first long form divides a long word by a long word. The result is a long quotient;
the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long word.
The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word
quotient and a long word remainder.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before the instruction completes. If the in­

struction detects an overflow, it sets the overflow condition code, and the op­
erands are unaffected.

MOTOROLA CPU32 REFERENCE MANUAL 4-71

•

DIVS
DIVSL Signed Divide

DIVS
DIVSL

Condition Codes:

X N Z v C

- I I * * I 0

X Not affected.
N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide

by zero occu rs.
Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by

zero occurs.
V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth­

erwise.
C Always cleared.

Instruction Format (word form):

15 14 13 12 11 10

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-72

Register field - Specifies any of the eight data registers. This field always specifies
the destination operand.

Effective Address field - Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

CPU32 REFERENCE MANUAL MOTOROLA

DIVS
DIVSL

Instruction Format (long form):

15 14 13 12 11

0 1 I 0 I 0 1

0 REGISTER Dq 1

Instruction Fields:

Signed Divide

10

1 0 0 0 1

SIZE 0 0 0 0 o I

DIVS
DIVSL

EFFECTIVE ADDRESS

MODE I REGISTER

o I o I REGISTER Dr

Effective Address field - Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Register Dq field - Specifies a data register for the destination operand. The low­
order 32 bits of the dividend comes from this register, and the 32-bit quotient is
loaded into this register.

Size field - Selects a 32 or 64 bit division operation.
0- 32-bit dividend is in Register Dq.
1 - 64-bit dividend is in Dr:Dq.

Register Dr field - After the division, this register contains the 32-bit remainder. If Dr
and Dq are the same register, only the quotient is returned. If Size is 1, this field
also specifies the data register that contains the high-order 32 bits of the dividend.

NOTE
Overflow occurs if the quotient is larger than a 32-bit signed integer.

MOTOROLA CPU32 REFERENCE MANUAL 4-73

•

•

DIVU
DIVUL Unsigned Divide

DIVU
DIVUL

Operation: Destination/Source. Destination

Assembler
Syntax:

DIVU.W (ea),Dn 32/16 • 16r: 16q
DIVU.L (ea),Dq 32/32 • 32q
DIVU.L (ea),Dr: Dq 64/32 • 32r:32q
DIVUL.L (ea),Dr:Dq 32/32. 32r:32q

Attributes: Size = (Word, Long)

Description: Divides the unsigned destination operand by the unsigned source operand
and stores the unsigned result in the destination. The instruction uses one of four
forms. The word form of the instruction divides a long word by a word. The result is
a quotient in the lower word (least significant 16 bits) and the remainder is in the
upper word (most significant 16 bits) of the result.

The first long form divides a long word by a long word. The result is a long quotient;
the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long word.
The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word
quotient and a long word remainder.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.
2. Overflow may be detected and set before the instruction completes. If the in­

struction detects an overflow, it sets the overflow condition code, and the op­
erands are unaffected.

Condition Codes:

4-74

X N Z V C

X Not affected.
N Set if the quotient is negative. Cleared otherwise. Undefined if overflow or divide

by zero occu rs.
Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow or divide by

zero occurs.
V Set if division overflow occurs; undefined if divide by zero occurs. Cleared other­

wise.
C Always cleared.

CPU32 REFERENCE MANUAL MOTOROLA

DIVU
DIVUL Unsigned Divide

DIVU
DIVUL

Instruction Format (word form):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

Instruction Fields:
Register field - Specifies any of the eight data registers. This field always specifies

the destination operand.
Effective Address field - Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

MOTOROLA CPU32 REFERENCE MANUAL 4-75

•

•

DIVU
DIVUL Unsigned Divide

DIVU
DIVUL

Instruction Format (long form):

15 14 13 12 11 10

I 0 I 0
EFFECTIVE ADDRESS

0 1 1 1 0 0 0 1
I MODE REGISTER

0 REGISTER Dq 0 SIZE 0 0 0 0 o I 0 I 0 I REGISTER Dr

Instruction Fields:

4-76

Effective Address field - Specifies the source operand. Only data addressing modes
are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 all

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 all

Register Oq field - Specifies a data register for the destination operand. The low­
order 32 bits of the dividend comes from this register, and the 32-bit quotient is
loaded into this register.

Size field - Selects a 32- or 64-bit division operation.
0- 32-bit dividend is in Register Oq.
1 - 64-bit dividend is in Or:Oq.

Register Dr field - After the division, this register contains the 32-bit remainder. If Dr
and Oq are the same register, only the quotient is returned. If Size is 1, this field
also specifies the data register that contains the high-order 32 bits of the dividend.

NOTE

Overflow occurs if the quotient is larger than a 32-bit unsigned integer.

CPU32 REFERENCE MANUAL MOTOROLA

EOR

Operation:

Assembler
Syntax:

Attributes:

Exclusive OR Logical EOR

Source EB Destination. Destination

EOR Dn,<ea)

Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand using the
source operand and stores the result in the destination location. The size of the op­
eration may be specified to be byte, word, or long. The source operand must be a
data register. The destination operand is specified in the effective address field.

Condition Codes:

X N Z v C

o I 0

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format (word form):

15 14 13 12 11 10

REGISTER OPMODE

Instruction Fields:
Register field - Specifies any of the eight data registers.
Opmode field:

Byte Word

100 101

MOTOROLA

Long

110

Operation

«ea)) EB «Dn)) • <ea)

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

4-77

III

EOR Exclusive OR Logical EOR

4-78

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTE

Memory to data register operations are not allowed. Most assemblers use
EORI when the source is immediate data.

CPU32 REFERENCE MANUAL MOTOROLA

EORI

Operation:

Assembler
Syntax:

Attributes:

Exclusive OR Immediate EORI

Immediate Data EB Destination. Destination

EORI #(data),(ea)

Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand using the
immediate data and the destination operand and stores the result in the destination
location. The size of the operation may be specified as byte, word, or long. The size
of the immediate data matches the operation size.

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cl ea red.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

I 0 I 0 I 0 I 1 I 0 I 1 I I
EFFECTIVE ADDRESS

0 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL

MODE I REGISTER

BYTE DATA (8 BITS)

4-79

•

•

EORI Exclusive OR Immediate EORI

4-80

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn 000 reg. number:Dn (xxx).W 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data} -

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

Immediate field - (Data immediately following the instruction):
If size = ~O, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is next two immediate words.

CPU32 REFERENCE MANUAL

Register

000

001

-

-

-

-

MOTOROLA

EORI
to CCR Exclusive OR Immediate

to Condition Code

EORI
to CCR

Operation:

Assembler
Syntax:

Attributes:

Source EB CCR. CCR

EORI #(data),CCR

Size = (Byte)

Description: Performs an exclusive OR operation on the condition code register using
the immediate operand and stores the result in the condition code register (low-order
byte of the status register). All implemented bits of the condition code register are
affected.

Condition Codes:

X N Z V C

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

MOTOROLA CPU32 REFERENCE MANUAL 4-81

•

•

EORI
to SR Exclusive OR Immediate to the Status Register

(Privileged Instruction)

EORI
to SR

Operation:

Assembler
Syntax:

Attributes:

If supervisor state
then Source EB SR. SR
else TRAP

EORI #(data),SR

Size = (Word)

Description: Performs an exclusive OR operation on the contents of the status register
using the immediate operand and stores the result in the status register. All imple­
mented bits of the status register are affected.

Condition Codes:

X N Z V C

* I * I * I * I *

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

WORD DATA (16 BITS)

4-82 CPU32 REFERENCE MANUAL

o I 0

MOTOROLA

EXG

Operation:

Assembler
Syntax:

Attributes:

Rx •• Ry

EXG DX,Dy
EXG AX,Ay
EXGDx,Ay
EXG Ay, Ox

Size = (Long)

Exchange Registers EXG

Description: Exchanges the contents of two 32-bit registers. The instruction performs
three types of exchanges:

1. Exchange data registers.
2. Exchange address registers.
3. Exchange a data register and an address register.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

I 1 I 1 o I 0 I REGISTER Rx I 1 OPMODE REGISTER Ry

Instruction Fields:
Register Rx field - Specifies either a data register or an address register depending

on the mode. Ifthe exchange is between data and address registers, this field always
specifies the data register.

Opmode field - Specifies the type of exchange:
01000 - Data registers.
01001 - Address registers.
10001 - Data register and address register.

Register Ry field - Sp~cifies either a data register or an address register depending
on the mode. If the exchange is between data and address registers, this field always
specifies the address register.

MOTOROLA CPU32 REFERENCE MANUAL 4-83

•

•

EXT
EXTB
Operation:

Assembler
Syntax:

Attributes:

Sign Extend

Destination Sign-extended. Destination

EXT.W Dn
EXT.L Dn
EXTB.L Dn

extend byte to word
extend word to long word
extend byte to long word

Size = (Word, Long)

EXT
EXTB

Description: Extends a byte in a data register to a word or a long word, or a word in a
data register to a long word, by replicating the sign bit to the left. If the operation
extends a byte to a word, bit [7] of the designated data register is copied to bits [15:8]
of that data register. If the operation extends a word to a long word, bit [15] of the
designated data register is copied to bits [31: 16] of the data register. The EXTB form
copies bit [7] of the designated register to bits [31 :8] of the data register.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

o I 0 I OPMODE o I 0 I 0

Instruction Fields:

4-84

Opmode field - Specifies the size of the sign-extension operation:
010 - Sign-extend low-order byte of data register to word.
011 - Sign-extend low-order word of data register to long.
111 - Sign-extend low-order byte of data register to long.

Register field - Specifies the data register is to be sign-extended.

CPU32 REFERENCE MANUAL

REGISTER

MOTOROLA

ILLEGAL Take Illegal Instruction Trap

Operation:

Assembler
Syntax:

Attributes:

SSP - 2. SSP; Vector Offset. (SSP);
SSP - 4. SSP; PC • (SSP);
SSP - 2 • SSP; SR • (SSP);
Illegal Instruction Vector Address. PC

ILLEGAL

Unsized

ILLEGAL

Description: Forces an illegal instruction exception, vector number 4. All other illegal
instruction bit patterns are reserved for future extension of the instruction set and
should not be used to force an exception.

Condition Codes:
Not affected

Instruction Format:

15 14 13 12 11 10

o I 1 1 I 0 I 0

MOTOROLA CPU32 REFERENCE MANUAL 4-85

•

•

JMP Jump JMP
Operation: Destination Address. PC

Assembler
Syntax:

Attributes:

JMP (ea)

Unsized

Description: Program execution continues at the effective address specified by the in-
struction. The addressing mode for the effective address must be a control addressing
mode ..

Condition Codes:
Not affected .

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Effective Address field - Specifies the address of the next instruction. Only control

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx)W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

4-86 CPU32 REFERENCE MANUAL MOTOROLA

JSR

Operation:

Assembler
Syntax:

Attributes:

Jump to Subroutine

SP - 4. Sp; PC • (SP)
Destination Address. PC

JSR <ea)

Unsized

JSR

Description: Pushes the long word address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the ad­
dress specified in the instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Effective Address field - Specifies the address of the next instruction. Only control

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(dataj - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-87

•

III

LEA

Operation:

Assembler
Syntax:

Attributes:

Load Effective Address LEA

(ea) • An

LEA (ea),An

Size = (Long)

Description: Loads the effective address into the specified address register. All 32 bits
of the address register are affected by this instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-88

Register field - Specifies the address register to be updated with the effective address.
Effective Address field - Specifies the address to be loaded into the address register.

Only control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On - - (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

CPU32 REFERENCE MANUAL MOTOROLA

LINK Link and Allocate LINK

Operation:

Assembler
Syntax:

Attributes:

Sp - 4. Sp; An • (SP);
SP. An; SP+d • SP

LINK An, #(displacement)

Size = (Word, Long)

Description: Pushes the contents of the specified address register onto the stack. Then
loads the updated stack pointer into the address register. Finally, adds the displace­
ment value to the stack pointer. For word size operation, the displacement is the sign­
extended word following the operation word. For long size operation, the displacement
is the long word following the operation word. The address register occupies one long
word on the stack. The user should specify a negative displacement in order to allocate
stack area.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

REGISTER

15 14 13 12 11 10

o I 1 I 0 I o I 1 I 0 I 0 I o I o I o I o I o I 1 I REGISTER

HIGH-ORDER DISPLACEMENT

LOW-ORDER DISPLACEMENT

Instruction Fields:
Register field - Specifies the address register for the link.
Displacement field - Specifies the twos complement integer to be added to the stack
pointer.

NOTE

LINK and UNLK can be used to maintain a linked list of local data and parameter
areas on the stack for nested subroutine calls.

MOTOROLA CPU32 REFERENCE MANUAL 4-89

•

•

LPSTOP Low Power Stop LPSTOP

Operation: If supervisor state
Immediate Data. SR
Interrupt Mask. External Bus Interface (EBI)
STOP
else TRAP

Assembler
Syntax: LPSTOP #<data>

Attributes: Size = (Word) Privileged

Description: The immediate operand is moved into the entire status register, the Pro-
gram Counter is advanced to point to the next instruction, and the processor stops
fetching and executing instructions. A CPU LPSTOP broadcast cycle is executed to
CPU space $3 to copy the updated interrupt mask to the external bus interface (EBI).
The internal clocks are stopped.

Execution of instructions resumes when a trace, interrupt, or reset exception occurs.
A trace exception will occur if the trace state is on when the LPSTOP instruction is
executed. If an interrupt request is asserted with a higher priority that the current
priority level set by the new status register value, an interrupt exception occurs;
otherwise the interrupt request is ignored. If the bit of the immediate data correspond­
ingto the S bit is off, execution of the instruction will cause a privilege violation. An
external reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

15 14 13 12 11 10

1 I 1 I 1 I 1 I 1 I 0 I o I 0 101 o I o I 0 I o I 0 I 010

0 I 0 I 0 I o I 0 I 0 I o I 1 I 1 I 1 I o I 0 I o I 0 I o I 0

IMMEDIATE DATA

Instruction Fields:

Immediate field:
Specifies the data to be loaded into the status register.

4-90 CPU32 REFERENCE MANUAL MOTOROLA

LSL, LSR Logical Shift LSL,LSR

Operation:

Assembler
Syntax:

Attributes:

Destination Shifted by (count) • Destination

LSd Dx,Dy
LSd #(data),Dy
LSd (ea)
where d is direction, L or R

Size = (Byte, Word, Long)

Description: Shifts tl:le bits of the operand in the direction specified (L or R). The carry
bit receives the last bit shifted out of the operand. The shift count for the shifting of
a register is specified in two different ways:

1. Immediate - The shift count (1-8) is specified in the instruction .
2. Register - The shift count is the value in the data register specified in the in-

struction modulo 64.
The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memory, (ea), can be shifted one bit only, and the operand size
is restricted to a word.

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out ofthe high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit.

LSL:
~~.--'---~ ____ OP_E_RA_ND __ ~~

The LSR instruction shifts the operand to the right the number of positions specified
as the shift count. Bits shifted out of the low-order bit go to both the carry and the
extend bits; zeros are shifted into the high-order bit.

LSR: ~L-.-_O_P_ER_AN_D_----lt-------C:-~:

MOTOROLA CPU32 REFERENCE MANUAL 4-91

•

•

LSL, LSR Logical Shift LSL, LSR

Condition Codes:

X N Z V C

X Set according to the last bit shifted out of the operand. Unaffected for a shift count
of zero.

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shifted out of the operand. Cleared for a shift count

of zero.

Instruction Format (Register Shifts):

15 14 13 12 11 10

o I COUNT/REGISTER dr I SIZE ilr I 0 I 1 REGISTER

Instruction Field (Register Shifts):

4-92

Count/Register field:
If ilr = 0, this field contains the shift count. The values 1-7 represent shifts of 1-7;

value of ° specifies a shift count of 8.
If ilr = 1, the data register specified in this field contains the shift count (modulo

64).
dr field - Specifies the direction of the shift:
0- Shift right
1 - Shift left

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

ilr field:
If i/r = 0, specifies immediate shift count.
If ilr = 1, specifies register shift count.

Register field - Specifies a data register to be shifted.

CPU32 REFERENCE MANUAL MOTOROLA

LSL,LSR logical Shift

Instruction Format (Memory Shifts):

15 14 13 12 11 10

Instruction Fields (Memory Shifts):
dr field - Specifies the direction of the shift:
0- Shift right
1 - Shift left

LSL, LSR

EFFECTIVE ADDRESS

MODE REGISTER

Effective Address field - Specifies the operand to be shifted. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx),w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(da,An,Xn) 110 reg. number:An (da,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

([bd,An,XnLod) 110 reg. number:An ([bd,PC,XnLod) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-93

III

•

MOVE
Operation:

Assembler
Syntax:

Attributes:

Move Data from Source to Destination MOVE
Source. Destination

MOVE (ea),(ea)

Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location, and sets the
condition codes according to the data. The size of the operation may be specified as
byte, word, or long.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

DESTINATION

REGISTER MODE

Instruction Fields:

MODE

Size field - Specifies the size of the operand to be moved:
01 - Byte operation
11 - Word operation
10 - Long operation

4-94 CPU32 REFERENCE MANUAL

SOURCE

REGISTER

MOTOROLA

MOVE Move Data from Source to Destination MOVE
Destination Effective Address field - Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

Source Effective Address field - Specifies the source operand. All addressing modes
are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*For byte size operation, address register direct is not allowed.

NOTES:
1. Most assemblers use MOVEA when the destination is an address register.
2. MOVEO can be used to move an immediate 8-bit value to a data register.

MOTOROLA CPU32 REFERENCE MANUAL 4-95

•

II

MOVEA

Operation:

Assembler
Syntax:

Attributes:

Source. Destination

MOVEA (ea),An

Size = (Word, Long)

Move Address MOVEA

Description: Moves the contents of the source to the destination address register. The
size of the operation is specified as word or long. Word-size source operands are sign­
extended to 32-bit quantities.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

DESTINATION
REGISTER

SOURCE

MODE REGISTER

Instruction Fields:

4-96

Size field - Specifies th.e size of the operand to be moved:
11 - Word operation. The source operand is sign-extended to a long operand and

all 32 bits are loaded into the address register.
10 - Long operation.

Destination Register field - Specifies the destination address register.
Effective Address field - Specifies the location of the source operand. All addressing

modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

CPU32 REFERENCE MANUAL MOTOROLA

MOVE
from CCR Move from the

Condition Code Register

MOVE
from CCR

Operation:

Assembler
Syntax:

Attributes:

CCR. Destination

MOVE CCR,(ea)

Size = (Word)

Description: Moves the condition code bits (zero extended to word size) to the desti-
nation location. The operand size is a word. Unimplemented bits are read as zeros .

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Effective Address field - Specifies the destination location. Only data alterable ad­

dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTE

MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR are byte
operations.

MOTOROLA CPU32 REFERENCE MANUAL 4-97

•

•

MOVE
to CCR

Operation:

Assembler
Syntax:

Attributes:

Source. CCR

MOVE (ea),CCR

Size = (Word)

Move to Condition Codes

MOVE
to CCR

Description: Moves the low-order byte of the source operand to the condition code
register. The upper byte of the source operand is ignored; the upper byte of the status
register is not altered.

Condition Codes:

X N Z V

X Set to the value of bit 4 of the source operand.
N Set to the value of bit 3 of the source operand.
Z Set to the value of bit 2 of the source operand.
V Set to the value of bit 1 of the source operand.
C Set to the value of bit 0 of the source operand.

Instruction Format:

15 14 13 12 11 10

4-98 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

MOVE
to CCR

Instruction Fields:

Move to Condition Codes

MOVE
to CCR

Effective Address field - Specifies the location of the source operand. Only data
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(dg,An,Xn) llC reg. number:An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

NOTE

MOVE to CCR is a word operation. ANDIJ ORI, and EORI to CCR are byte
operations.

MOTOROLA CPU32 REFERENCE MANUAL 4-99

•

•

MOVE
from SR Move from the Status Register

(Privileged Instruction)

Operation:

Assembler
Syntax:

Attributes:

If supervisor state
then SR • Destination
else TRAP

MOVE SR,(ea)

Size = (Word)

MOVE
from SR

Description: Moves the data in the status register to the destination location. The des-
tination is word length. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-100

Effective Address field - Specifies the destination location. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTE

Use the MOVE from CCR instruction to access only the condition codes.

CPU32 REFERENCE MANUAL MOTOROLA

MOVE
to SR

Operation:

Assembler
Syntax:

Attributes:

Move to the Status Register
(Priviledged Instruction)

If supervisor state
then Source. SR
else TRAP

MOVE (ea),SR

Size = (Word)

MOVE
to SR

Description: Moves the data in the source operand to the status register. The source
operand is a word and all implemented bits of the status register are affected.

Condition Codes:
Set according to the source operand.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Effective Address field - Specifies the location of the source operand. Only data

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ all reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 all

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 all

MOTOROLA CPU32 REFERENCE MANUAL 4-101

•

•

MOVE
USP

Operation:

Assembler
Syntax:

Attributes:

Move User Stack Pointer
(Privileged Instruction)

If supervisor state
then USP • An or An • USP
else TRAP

MOVE USP,An
MOVE An,USP

Size = (Long)

MOVE
USP

Description: Moves the contents of the user stack pointer to or from the specified
address register.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

I 0 I 1 I 0 o I 1 I 1

Instruction Fields:
dr field - Specifies the direction of transfer:
0- Transfer the address register to the USP.
1 - Transfer the USP to the address register.

o I dr I

Register field - Specifies the address register for the operation.

4-102 CPU32 REFERENCE MANUAL

REGISTER

MOTOROLA

MOVEC Move Control Register
(Privileged Instruction)

Operation:

Assembler
Syntax:

Attributes:

If supervisor state
then Rc • Rn or Rn • Rc
else TRAP

MOVEC RC,Rn
MOVEC Rn,Rc

Size = (Long)

MOVEC

Description: Moves the contents of the specified control register (Rc) to the specified
general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer even though the control
register may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:
dr field - Specifies the direction of the transfer:
0- Control register to general register.
1 - General register to control register.

AID field - Specifies the type of general register:
0- Data register.
1 - Address register.

Register field - Specifies the register number.
Control Register field - Specifies the control register.

Hex Control Register

000 Source Function Code (SFC)
001 Destination Function Code (DFC)
800 User Stack Pointer (USP)
801 Vector Base Register (VBR)

Any other code causes an illegal instruction exception.

MOTOROLA CPU32 REFERENCE MANUAL 4-103

•

•

MOVEM Move Multiple Registers

Operation:

Assembler
Syntax:

Attributes:

Registers. Destination
Source. Registers

MOVEM register list,(ea)
MOVEM (ea),register list

Size = (Word, Long)

MOVEM

Description: Moves the contents of selected registers to or from consecutive memory
locations starting at the location specified by the effective address. A register is selected
if the bit in the mask field corresponding to that register is set. The instruction size
determines whether 16 or 32 bits of each register are transferred. In the case of a
word transfer to either address or data registers, each word is sign-extended to 32
bits, and the resulting long word is loaded into the associated register.

Selecting the addressing mode also selects the mode of operation of the MOVEM
instruction, and only the control modes, the predecrement mode, and the postincre­
ment mode are valid. If the effective address is specified by one of the control modes,
the registers are transferred starting at the specified address, and the address is in­
cremented by the operand length (2 or 4) following each transfer. The order of the
registers is from data register a to data register 7, then from address register a to
address register 7.

If the effective address is specified by the predecrement mode, only a register-to­
memory operation is allowed. The registers are stored starting at the specified address
minus the operand length (2 or 4), and the address is decremented by the operand
length following each transfer. The order of storing is from address register 7 to
address register 0, then from data register 7 to data register o. When the instruction
has completed, the decremented address register contains the address of the last
operand stored. In the CPU 32, if the addressing register is also moved to memory,
the value written is the decremented value.

If the effective address is specified by the postincrement mode, only a memory-to­
register operation is allowed. The registers are loaded starting at the specified address;
the address is incremented by the operand length (2 or 4) following each transfer. The
order of loading is the same as that of control mode addressing. When the instruction
has completed, the incremented address register contains the address of the last
operand loaded plus the operand length. In the CPU32, if the addressing register is
also loaded from menlOry, the value loaded is the value fetched plus the operand
length.

4-104 CPU32 REFERENCE MANUAL MOTOROLA

MOVEM Move Multiple Registers MOVEM

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

REGISTER LIST MASK

Instruction Field:
dr field - Specifies the direction of the transfer:
0- Register to memory
1 - Memory to register

MODE

Size field - Specifies the size of the registers being transferred:
0- Word transfer
1 - Long transfer

REGISTER

Effective Address field - Specifies the memory address for the operation. For register­
to-memory transfers, only control alterable addressing modes or the predecrement
addressing mode are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-105

•

•

M·OVEM Move Multiple Registers MOVEM

For memory-to-register transfers, only control addressing modes or the postincrement
addressing mode are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Register List Mask field - Specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corresponds
to the last register to be transferred. Thus, both for control modes and for the
postincrement mode addresses, the mask correspondence is:

15 14 13 12 11 10 9 8 7 6 5 4 3

A7 I A6 I A5 I A4 I A3 I A2 I A1 I AD I 07 I 06 I 05 I 04 I 03 02 01 DO

For the predecrement mode addresses, the mask correspondence is reversed:

4-106

15 14 13 12 11 10

DO 01 02 03 04 05 06 07 AD A 1 A2 A3 A4 A5 A6 A7

NOTE

An extra read bus cycle occurs for memory operands. This accesses an op­
erand at one address higher than the last register image required.

CPU32 REFERENCE MANUAL MOTOROLA

MOVEP Move Peripheral Data

Operation:

Assembler
Syntax:

Attributes:

Source. Destination

MOVEP DX,(d,Ay)
MOVEP (d,Ay),Dx

Size = (Word, Long)

MOVEP

Description: Moves data between a data register and alternate bytes within the address
space (typically assigned to a peripheral), starting at the location specified and incre­
menting by two. This instruction is designed for 8-bit peripherals on a 16-bit data bus.
The high-order byte of the data register is transferred first and the low-order byte is
transferred last. The memory address is specified in the address register indirect plus
16-bit displacement addressing mode. If the address is even, all the transfers are to
or from the high-order half of the data bus; if the address is odd, all the transfers are
to or from the low-order half of the data bus. The instruction also accesses alternate
bytes on an 8- or 32-bit bus.

Example: Long transfer to/from an even address.

Byte Organization in Register
31 24 23 16 15

HI-ORDER MID-UPPER MID-LOWER LOW-ORDER

Byte Organization in Memory (Low Address at Top)

15

HI-ORDER

MID-UPPER

MID-LOWER

LOW-ORDER

MOTOROLA CPU32 REFERENCE MANUAL 4-107

•

III

MOVEP Move Peripheral Data

Example: Word transfer to/from an odd address

Byte Organization in Register

31 24 23 16 15

HI-ORDER

Byte Organization in Memory (Low Address at Top)

15

HI-ORDER

LOW-ORDER

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

DATA REGISTER OPMODE

DISPLACEMENT (16 BITS)

Instruction Fields:
Data Register field - Specifies the data register for the instruction.
Opmode field - Specifies the direction and size of the operation:

100 - Transfer word from memory to register.
101 - Transfer long from memory to register.
110 - Transfer word from register to memory.
111 - Transfer long from register to memory.

MOVEP

LOW-ORDER

ADDRESS REGISTER

Address Register field - Specifies the address register which is used in the address
register indirect plus displacement addressing mode.

Displacement field - Specifies the displacement used in the operand address.

4-108 CPU32 REFERENCE MANUAL MOTOROLA

MOVEQ Move Quick

Operation:

Assembler
Syntax:

Attributes:

Immediate Data. Destination

MOVEQ #(data),Dn

Size = (Long)

MOVEQ

Description: Moves a byte of immediate data to a 32-bit data register. The data in an
8-bit field within the operation word is sign-extended to a long operand in the data
register as it is transferred.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

I 0 I 1 I 1 I 1 REGISTER o I

Instruction Fields:
Register field - Specifies the data register to be loaded.

DATA

Data field - Eight bits of data, which are sign-extended to a long operand.

MOTOROLA CPU32 REFERENCE MANUAL 4-109

•

MOVES Move Address Space
(Privileged Instruction)

MOVES

Operation: If supervisor state
then Rn • Destination [DFC] or Source [SFC] • Rn
else TRAP

Assembler
Syntax:

MOVES Rn,(ea)
MOVES (ea),Rn

Attributes: Size = (Byte, Word, Long)

Description: Moves the byte, word, or long operand from the specified general register
to a location within the address space specified by the destination function code (DFC)
register; or, moves the byte, word, or long operand from a location within the address
space specified by the source function code (SFC) register to the specified general
register.

If the destination is a data register, the source operand replaces the corresponding
low-order bits of that data register, depending on the size of the operation. If the
destination is an address register, the source operand is sign-extended to 32 bits and
then loaded into that address register.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

0 0 I 0 I 0 1 1 1 0 SIZE

AID REGISTER dr 0 0 0 010

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10- Long operation

4-110 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE I REGISTER

o I 0 o I 0 I 010

MOTOROLA

MOVES Move Address Space
(Privileged Instruction)

MOVES

Effective Address field - Specifies the source or destination location within the al­
ternate address space. Only memory alterable addressing modes are allowed as
shown:

Addressing Mode Mode Register Addressing Mode

Dn - -

An - -

(An) 010 reg. number:An

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An

(d8,An,Xn) 110 reg. number:An

(bd,An,Xn) 110 reg. number:An

AID field - Specifies the type of general register:
0- Data register
1 - Address register

Register field - Specifies the register number.
dr field - Specifies the direction of the transfer:
0- From (ea) to general register
1 - From general register to (ea)

NOTE

(xxx).w

(xxx).L

#(data)

(d16,PC)

(d8,PC,Xn)

(bd,PC,Xn)

Mode Register

111 000

111 001

- -

- -

- -

- -

For either of the two following examples with the same address register as
both source and destination

MOVES.x An,(An) +
MOVES.x An, - (An)

the value stored is undefined. The current implementations ofthe MC68010,
CPU32, and MC68020 store the incremented or decremented value of An.

MOTOROLA CPU32 REFERENCE MANUAL 4-111

•

•

MULS

Operation:

Assembler
Syntax:

Attributes:

Signed Multiply

Source * Destination. Destination

MULS.W (ea),Dn
MULS.L (ea),DI
MULS.L (ea),Dh:DI

Size = (Word, Long)

16x16.32
32x32.32
32 x 32.64

MULS

Description: Multiplies two signed operands yielding a signed result. This instruction
has a word operand form and a long word operand form.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destination
data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-order
32 bits of the quad word result; the high-order 32 bits of the product are discarded.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if overflow. Cleared otherwise.
C Always cleared.

NOTE

Overflow (V = 1) can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if the high-order 32 bits of the quad word
product are not the sign extension of the low-order 32 bits.

Instruction Format (word form):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

4-112 CPU32 REFERENCE MANUAL MOTOROLA

MULS Signed Multiply MULS

Instruction Fields:
Register field - Specifies a data register as the destination.
Effective Address field - Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Instruction Format (long form):

15 14 13 12 11 10

0 1 I 0 I 0 1 1 0
EFFECTIVE ADDRESS

0 0 0 I MODE REGISTER

0 REGISTER Dq 1 SIZE 0 0 0 0 0 I o I o I REGISTER Dr

Instruction Fields:
Effective Address field - Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-113

•

•

MULS Signed Multiply MULS

4-114

Register 01 field - Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Size field - Selects a 32- or 64-bit product.
0- 32-bit product to be returned to Register 01.
1 - 64-bit product to be returned to Oh:OI.

Register Oh field - If Size is 1, specifies the data register into which the high-order
32 bits of the product are loaded. If Oh = 01 and Size is 1, the results of the operation
are undefined. Otherwise, this field is unused.

CPU32 REFERENCE MANUAL MOTOROLA

MULU

Operation:

Assembler
Syntax:

Attributes:

Unsigned Multiply

Source * Destination. Destination

MULU.W (ea),Dn
MULU.L (ea),DI
MULU.L (ea),Dh:DI

Size = (Word, Long)

16x16.32
32x32.32
32x32.64

MULU

Description: Multiplies two unsigned operands yielding an unsigned result. This in-
struction has a word operand form and a long word operand form.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destination
data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-order
32 bits of the quad word result; the high-order 32 bits of the product are discarded.

Condition Codes:

X N Z V C

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if overflow. Cleared otherwise.
C Always cleared.

NOTE

Overflow (V = 1) can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if any of the high-order 32 bits of the quad
word product are not equal to zero.

MOTOROLA CPU32 REFERENCE MANUAL 4-115

•

•

MULU Unsigned Multiply MULU

Instruction Format (word form):

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

Instruction Fields:
Register field - Specifies a data register as the destination.
Effective Address field - Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Instruction Format (long form):

15 14 13 12 11 10

I o I 0
EFFECTIVE ADDRESS

0 1 1 1 0 0 0 0 1 MODE REGISTER

0 REGISTER DI 0 SIZE 0 0 0 0 0 I o I o I REGISTER Dh

4-116 CPU32 REFERENCE MANUAL MOTOROLA

MULU Unsigned Multiply MULU

Instruction Fields:
Effective Address field - Specifies the source operand. Only data addressing modes

are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

Register 01 field - Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product are
loaded into this register.

Size field - Selects a 32- or 64-bit product.
o - 32-bit product to be returned to Register 01.
1 - 64-bit product to be returned to Oh:OI.

Register Oh field - If Size is 1, specifies the data register into which the high-order
32 bits ofthe product are loaded. If Oh = 01 and Size is 1, the results of the operation
are undefined. Otherwise, this field is unused.

MOTOROLA CPU32 REFERENCE MANUAL 4-117

•

•

NBCD

Operation:

Assembler
Syntax:

Atttibutes:

Negate Decimal with Extend NBCD

o - (Destination10) - X. Destination

NBCD (ea)

Size = (Byte)

Description: Subtracts the destination operand and the extend bit from zero. The op-
eration is performed using binary coded decimal arithmetic. The packed BCD result
is saved in the destination location. This instruction produces the tens complement
of the destination if the extend bit is zero, or the nines complement if the extend bit
is one. This is a byte operation only .

Condition Codes:

X N Z V C

* I u I * I u I *

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a decimal borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

4-118 CPU32 REFERENCE MANUAL MOTOROLA

NBCD Negate Decimal with Extend NBCD

Instruction Fields:
Effective Address field - Specifies the destination operand. Only data alterable ad­

dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data> - -

(An)+ 011 reg. number:An

-(An) 100 reg. numberlAn

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-119

•

•

NEG

Operation:

Assembler
Syntax:

Attributes:

Negate NEG

o - (Destination) • Destination

NEG (ea)

Size = (Byte, Word, Long)

Description: Subtracts the destination operand from zero and stores the result in the
destination location. The size of the operation is specified as byte, word, or long.

Condition Codes:

X N Z V C

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:

4-120

Size field - Specifies the size of the operation.
00 - Byte operation
01 - Word operation
10 - Long operation

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

NEG Negate NEG

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-121

•

•

NEGX

Operation:

Assembler
Syntax:

Attributes:

Negate with Extend NEGX

o - (Destination) - X • Destination

NEGX (ea)

Size = (Byte, Word, Long)

Description: Subtracts the destination operand and the extend bit from zero. Stores the
result in the destination location. The size of the operation is specified as byte, word,
or long.

Condition Codes:

X N Z v c
* I *

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
the operation. This allows successful tests for zero results upon completion
of multiple precision operations.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:

4-122

Size field - Specifies the size of the operation.
00 - Byte operation
01 - Word operation
10 - Long operation

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

NEGX Negate with Extend NEGX

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data, - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-123

•

•

NOP

Operation:

Assembler
Syntax:

Attributes:

None NOP

None

NOP

Unsized

Description: Performs no operation. The processor state, other than the program counter,
is unaffected. Execution continues with the instruction following the NOP instruction.
The NOP instruction does not begin execution until all pending bus cycles are com­
pleted. This synchronizes the pipeline, and prevents instruction overlap.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

o I 1 I 0 o I 0 I 1

4-124 CPU32 REFERENCE MANUAL MOTOROLA

NOT

Operation:

Assembler
Syntax:

Attributes:

Logical Complement NOT

~ Destination. Destination

NOT (ea)

Size = (Byte, Word, Long)

Description: Calculates the ones complement of the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,
or long.

Condition Codes:

X N Z v C

o I 0

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:
Size field - Specifies the size of the operation.

00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

4-125

•

II

NOT Logical Complement NOT

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

4-126 CPU32 REFERENCE MANUAL MOTOROLA

OR

Operation:

Assembler
Syntax:

Attributes:

Inclusive OR Logical

Source V Destination. Destination

OR (ea),Dn
OR Dn,(ea)

Size = (Byte, Word, Long)

OR

Description: Performs an inclusive OR operation on the source operand and the des-
tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The contents of an address register may
not be used as an operand.

Condition Codes:

X N Z V

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

Instruction Fields:
Register field - Specifies any of the eight data registers.
Opmode field:

Byte Word

000 001
100 101

MOTOROLA

Long

010
110

Operation

((ea)) V ((Dn)) • (Dn)
((Dn)) V ((ea)) • (ea)

CPU32 REFERENCE MANUAL

MODE REGISTER

4-127

•

•

OR Inclusive OR Logical OR

Effective Address field - If the location specified is a source operand, only data
addressing modes are allowed as shown:

4-128

Addressing Mode Mode Register Addressing Mode Mode Register

On 000 reg. number:On (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

If the location specified is a destination operand, only memory alterable address­
ing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

On - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ Otl reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(da,An,Xn) 110 reg. number:An (da,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTES:
1. If the destination is a data register, it must be specified using the destination Dn

mode, not the destination (ea) mode.
2. Most assemblers use ORI when the source is immediate data.

CPU32 REFERENCE MANUAL MOTOROLA

ORI

Operation:

Assembler
Syntax:

Attributes:

Inclusive OR ORI

Immediate Data V Destination. Destination

ORI #(data),(ea)

Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the immediate data and the des-
tination operand and stores the result in the destination location. The size of the
operation is specified as byte, word, or long. The size of the immediate data matches
the operation size.

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10 4

10101010101010 1

EFFECTIVE ADDRESS 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Instruction Fields:
Size field - Specifies the size of the operation.

00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL

MODE I REGISTER

BYTE DATA (8 BITS)

4-129

•

•

ORI Inclusive OR ORI

4-130

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

On 000 reg. number:On (xxx).w 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

Immediate field - (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

CPU32 REFERENCE MANUAL

Register

000

001

-

-

-

-

MOTOROLA

ORI
to CCR

Operation:

Assembler
Syntax:

Attributes:

Inclusive OR Immediate
to Condition Codes

Sou rce V CCR • CCR

ORI #(data),CCR

Size = (Byte)

ORI
to CCR

Description: Performs an inclusive OR operation on the immediate operand and the
condition codes and stores the result in the condition code register (low-order byte
of the status register). All implemented bits of the condition code register are affected .

Condition Codes:

X N Z V C

X Set if bit 4 of immediate operand is one. Unchanged otherwise.
N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

MOTOROLA CPU32 REFERENCE MANUAL 4-131

•

•

ORI
to SR

Operation:

Assembler
Syntax:

Attributes:

Inclusive OR Immediate to the Status Register
(Privileged Instruction)

If supervisor state
then Source V SR • SR
else TRAP

ORI #(data),SR

Size = (Word)

ORI
to SR

Description: Performs an inclusive OR operation of the immediate operand and the
contents of the status register and stores the result in the status register. All imple­
mented bits of the status register are affected.

Condition Codes:

X N Z V C

X Set if bit 4 of immediate operand is one. Unchanged otherwise.
N Set if bit 3 of immediate operand is one. Unchanged otherwise.
Z Set if bit 2 of immediate operand is one. Unchanged otherwise.
V Set if bit 1 of immediate operand is one. Unchanged otherwise.
C Set if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

15 14 13 12 11 10

o I 0 I 0 I 0 I 0

WORD DATA (16 BITS)

4-132 CPU32 REFERENCE MANUAL MOTOROLA

PEA

Operation:

Assembler
Syntax:

Attributes:

Push Effective Address PEA

Sp - 4. SP; (ea) • (SP)

PEA (ea)

Size = (Long)

Description: Computes the effective address and pushes it onto the stack. The effective
address is a long word address.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:
Effective Address field - Specifies the address to be pushed onto the stack. Only

control addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An (d16,PC) 111 010

(da,An,Xn) 110 reg. number:An (da,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

MOTOROLA CPU32 REFERENCE MANUAL 4-133

•

•

RESET

Operation:

Assembler
Syntax:

Attributes:

Reset External Devices
(Privileged Instruction)

If supervisor state
then Assert RESET Line
else TRAP

RESET

Unsized

RESET

Description: Asserts the RESET signal for 512 clock periods, resetting all external de-
vices. The processor state, other than the program counter, is unaffected and execution
continues with the next instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

o I 1 o I 0 I 0 I 0

4-134 CPU32 REFERENCE MANUAL MOTOROLA

ROL,ROR Rotate (Without Extend)

Operation:

Assembler
Syntax:

Attributes:

Destination Rotated by (count) • Destination

ROd DX,Dy
ROd #(data) ,Dy
ROd (ea)
where d is direction, L or R

Size = (Byte, Word, Long)

ROL, ROR

Description: Rotates the bits of the operand in the direction specified (L or R). The
extend bit is not included in the rotation. The rotate count for the rotation of a register
is specified in either of two ways:

1. Immediate - The rotate count (1-8) is specified in the instruction .
2. Register - The rotate count is the value in the data register specified in the

instruction, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ea); can be rotated one bit only, and operand size is restricted
to a word.

The ROL instruction rotates the bits of the operand to the left; the rotate count de­
termines the number of bit positions rotated. Bits rotated out of the high-order bit go
to the carry bit and also back into the low-order bit.

ROL: Wi'lll~:----';---O-P-ER-A-ND------'~

The ROR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low-order bit
go to the carry bit and also back into the high-order bit.

ROR: ~r--O-P-ER-A-ND-~r-~~>~W

MOTOROLA CPU32 REFERENCE MANUAL 4-135

•

•

ROL,ROR Rotate (Without Extend) ROL, ROR

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the resultis zero. Cleared otherwise.
V Always cleared.
C Set .according to the last bit rotated out of the operand. Cleared when the rotate

count is zero.

Instruction Format (Register Rotate):

15 14 13 12 11 10

COUNT/
REGISTER

REGISTER

Instruction Fields (Register Rotate):

4-136

Count/Register field:
If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-

7, and 0 specifies a count of 8.
If ilr = 1, this field specifies a data register that contains the rotate count (modulo

64).
dr field - Specifies the direction of the rotate:

o - Rotate rig ht
1 - Rotate left

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

ilr field - Specifies the rotate count location:
If ilr = 0, immediate rotate count.
If ilr = 1, register rotate count.

Register field - Specifies a data register to be rotated.

CPU32 REFERENCE MANUAL MOTOROLA

ROL, ROR Rotate (Without Extend)

Instruction Format (Memory Rotate):

15 14 13 12 11 10

Instruction Fields (Memory Rotate):
dr field - Specifies the direction of the rotate:

o - Rotate right
1 - Rotate left

ROL, ROR

EFFECTIVE ADDRESS

MODE REGISTER

Effective Address field - Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(da,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

MOTOROLA CPU32 REFERENCE MANUAL 4-137

•

•

ROXL, ROXR Rotate with Extend ROXL, ROXR

Operation: Destination Rotated with X by (count) • Destination

Assembler
Syntax:

ROXd Dx,Dy
ROXd #(data),Dy
ROXd (ea)
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R). The

4-138

extend bit is included in the rotation. The rotate count for the rotation of a register is
specified in either of two ways:

1. Immediate - The rotate count (1-8) is specified in the instruction .
2. Register - The rotate count is the value in the data register specified in the

instruction, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, (ea), can be rotated one bit only, and operand size is restricted
to a word.

The ROXL instruction rotates the bits of the operand to the left; the rotate count
determines the number of bit positions rotated. Bits rotated out of the high-order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into
the low-order bit.

[£J....:II(:----tII------1--op-E-RA-N-O ---.HiJ]

The ROXR instruction rotates the bits of the operand to the right; the rotate count
determines the number of bit positions rotated. Bits rotated out of the low-order bit
go to the carry bit and the extend bit; the previous value of the extend bit rotates into
the high-order bit.

LITH--O-P-ERA-N-O----,I----+--~~[£J

CPU32 REFERENCE MANUAL MOTOROLA

ROXL, ROXR Rotate with Extend ROXL, ROXR

Condition Codes:

X N Z v C

o I *

X Set to the value of the last bit rotated out of the operand. Unaffected when the
rotate count is zero.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit rotated out of the operand. When the rotate count is

zero, set to the value of the extend bit.

Instruction Format (Register Rotate):

15 14 13 12. 11 10

COUNT/
REGISTER

Instruction Fields (Register Rotate):
Count/Register field:

REGISTER

If i/r = 0, this field contains the rotate count. The values 1-7 represent counts of 1-
7, and 0 specifies a count of 8.

If i/r = 1, this field specifies a data register that contains the rotate count (modulo
64).

dr field - Specifies the direction of the rotate:
0- Rotate right
1 - Rotate left

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

ilr field - Specifies the rotate count location:
If ilr = 0, immediate rotate count.
If i/r = 1, register rotate count.

Register field - Specifies a data register to be rotated.

MOTOROLA CPU32 REFERENCE MANUAL 4-139

•

•

ROXL, ROXR Rotate with Extend ROXL, ROXR

Instruction Format (Memory Rotate):

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields (Memory Rotate):

4-140

dr field - Specifies the direction of the rotate:
0- Rotate right
1 - Rotate left

Effective Address field - Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(ds,An,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

CPU32 REFERENCE MANUAL MOTOROLA

RTD

Operation:

Assembler
Syntax:

Attributes:

Return and Deallocate RTD

(SP) • PC; SP + 4 + d • SP

RTD #(displacement)

Unsized

Description: Pulls the program counter value from the stack and adds the sign-extended
16-bit displacement value to the stack pointer. The previous program counter value
is lost.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

Instruction Field:
Displacement field - Specifies the twos complement integer to be sign extended and

added to the stack pointer.

MOTOROLA CPU32 REFERENCE MANUAL 4-141

•

II

RTE

Operation:

Assembler
Syntax:

Attributes:

Return from Exception
(Privileged Instruction)

If supervisor state
then (SP) • SR; SP + 2 • SP; (SP) • PC;
SP + 4. SP;
restore state and deallocate stack according to (SP)
else TRAP

RTE

Unsized

RTE

Description: Loads the processor state information stored in the exception stack frame
located at the top of the stack into the processor. The instruction examines the stack
format field in the format/offset word to determine how much information must be
restored.

Condition Codes:
Set according to the condition code bits in the status register value restored from the
stack.

Instruction Format:

15 14 13 12 11 10

Format/Offset word (in stack frame):

15 14 13 12 11 10

FORMAT o I 0 I VECTOR OFFSET

4-142 CPU32 REFERENCE MANUAL MOTOROLA

RTE Return from Exception
(Privileged Instruction)

Format Field of Format/Offset Word:

RTE

Contains the format code, which implies the stack frame size (including the format/
offset word).

0000 - Short Format, removes four words. Loads the status register and the program
counter from the stack frame.

0001 - Throwaway Format, removes four words. Loads the status register from the
stack frame and switches to the active system stack. Continues the instruc­
tion using the active system stack.

0010- Instruction Error Format, removes six words. Loads the status register and
the program counter from the stack frame and discards the other words.

1000 - MC68010 Long Format. The MC68020 takes a format error exception.
1001 - Coprocessor Mid-Instruction Format, removes 10 words. Resumes execution

of coprocessor instruction.
1010 - MC68020 Short Format, removes 16 words and resumes instruction exe­

cution.
1011 - MC68020 Long Format, removes 46 words and resumes instruction exe­

cution.
Any other value in this field causes the processor to take a format error exception.

MOTOROLA CPU32 REFERENCE MANUAL 4-143

•

•

RTR

Operation:

Assembler
Syntax:

Attributes:

Return and Restore Condition Codes

(SP) • CCR; SP + 2 • SP;
(SP) • PC; SP + 4. SP

RTR

Unsized

RTR

Description: Pulls the condition code and program counter values from the stack. The
previoU's condition codes and program counter values are lost. The supervisor portion
of the status register is unaffected.

Condition Codes:
Set to the condition codes from the stack.

Instruction Format:

15 14 13 12 11 10

I 0 I 1 o I 0 I 1 1 I 1

4-144 CPU32 REFERENCE MANUAL MOTOROLA

RTS

Operation:

Assembler
Syntax:

Attributes:

Return from Subroutine RTS

(SP) • PC; SP + 4 • SP

RTS

Unsized

Description: Pulls the program counter value from the stack. The previous program
counter value is lost.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 2

o I 1

MOTOROLA CPU32 REFERENCE MANUAL 4-145

III

SBCD Subtract Decimal with Extend SBCD

Operation: Destination10 - Source10 - X. Destination

Assembler
Syntax:

SBCD Dx,Dy
SBCD -(Ax),-(Ay)

Attributes: Size = (Byte)

Description: Subtracts the source operand and the extend bit from the destination op-
erand and stores the result in the destination location. The subtraction is performed
using binary coded decimal arithmetic; the operands are packed BCD numbers. The
instruction has two modes:

1. Data register to data register: The data registers specified in the instruction con­
tain the operands.

2. Memory to memory: The address registers specified in the instruction access the
operands from memory using the predecrement addressing mode.

This operation is a byte operation only.

Condition Codes:

4-146

X N Z V C

* I u I * I u I *

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) is generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

CPU32 REFERENCE MANUAL MOTOROLA

SBCD Subtract Decimal with Extend SBCD

Instruction Format:

15 14 13 12 11 10 .3

I 1 I 0 I 0 0 I REGISTER Ry I 1 o I 0 I 0 o I RIM REGISTER Rx

Instruction Fields:
Register Dy/Ay field - Specifies the destination register.

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrementaddressing mode.

RIM field - Specifies the operand addressing mode:
a - The operation is data register to data register.
1 - The operation is memory to memory.

Register Dx/Ax field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

MOTOROLA CPU32 REFERENCE MANUAL 4-147

•

Sec Set According to Condition Sec

Operation: If Condition True
then 1s • Destination
else Os • Destination

Assembler
Syntax:

Attributes:

Scc <ea)

Size = (Byte)

Description: Tests the specified condition code; if the condition is true, sets the byte
specified by the effective address to TRUE (all ones). Otherwise, sets that byte to
FALSE (all zeros). Condition code cc specifies one of the following conditions:

CC carry clear 0100 C LS low or same 0011 C+Z
CS carry set 0101 C LT less than 1101 NeV+Ney
EQ equal 0111 Z MI minus 1011 N
F never true 0001 0 NE not equal 0110 Z
GE greater or equal 1100 NeY+NeV PL plus 1010 N1
GT greater than 1110 NeyeZ + NeVeZ T always true 0000 V
HI high 0010 CeZ YC overflow clear 1000 Y
LE less or equal 1111 Z+ NeV+ NeY YS overflow set 1001

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

CONDITION
EFFECTIVE ADDRESS

MODE REGISTER

4-148 CPU32 REFERENCE MANUAL MOTOROLA

See Set According to Condition See

Instruction Fields:
Condition field - The binary code for one of the conditions listed in the table.
Effective Address field - Specifies the location in which the true/false byte is to be

stored. Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(da,An,Xn) 110 reg. number:An (da,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTE:
A subsequent NEG.B instruction with the same effective address can be used to
change the Scc result from TRUE or FALSE to the equivalent arithmetic value
(TRUE= 1, FALSE=O).

MOTOROLA CPU32 REFERENCE MANUAL 4-149

•

STOP

Operation:

Assembler
Syntax:

Attributes:

Load Status Register and Stop
(Privileged Instruction)

If supervisor state
then Immediate Data. SR; STOP
else TRAP

STOP #(data)

Unsized

STOP

Description: Moves the immediate operand into the status register (both user and su-
pervisor portions)' advances the program counter to point to the next instruction, and
stops the fetching and executing of instructions. A trace, interrupt, or reset exception
causes the processor to resume instruction execution. A trace exception occurs if
instruction tracing is enabled (TO = 1, T1 = 0) when the STOP instruction begins exe­
cution. If an interrupt request is asserted with a priority higher than the priority level
set by the new status register value, an interrupt exception occurs; otherwise, the
interrupt request is ignored. External reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

15 14 13 12 11 10

I 0 11 1 0 1 0 1 1 1 1 1 1
IMMEDIATE DATA

Instruction Fields:
Immediate field - Specifies the data to be loaded into the status register.

4-150 CPU32 REFERENCE MANUAL MOTOROLA

SUB

Operation:

Assembler
Syntax:

Attributes:

Subtract

Destination - Source. Destination

SUB <ea),Dn
SUB Dn,<ea)

Size = (Byte, Word, Long)

SUB

Description: Subtracts the source operand from the destination operand and stores the
result in the destination. The size of the operation is specified as byte, word, or long.
The mode of the instruction indicates which operand is the source, which is the des­
tination, and which is the operand size.

Condition Codes:

X N Z V C

* I * I * I * I *

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

REGISTER OPMODE

Instruction Fields:
Register field - Specifies any of the eight data registers.
Opmode field:

Byte Word
000 001
100 101

MOTOROLA

Long
010
110

Operation
«Dn») - «ea»). <Dn)
«ea») - «Dn») • <ea)

CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

4-151

II

SUB Subtract SUB

4-152

Effective Address field - Determines the addressing mode. If the location specified
is a source operand, all addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*For byte size operation, address register direct is not allowed.

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn - - (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) - -

(dg,An,Xn) 110 reg. number:An (dg,PC,Xn) - -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) - -

NOTES:
1. If the destination is a data register, it must be specified as a destination Dn

address, not as a destination <ea) address.
2. Most assemblers use SUBA when the destination is an address register, and SUBI

or SUBQ when the source is immediate data.

CPU32 REFERENCE MANUAL MOTOROLA

SUBA Subtract Address SUBA
Operation:

Assembler
Syntax:

Attributes:

Destination - Source. Destination

SUBA (ea),An

Size = (Word, Long)

Description: Subtracts the source operand from the destination address register and
stores the result in the address register. The size of the operation is specified as word
or long. Word size source operands are sign extended to 32-bit quantities prior to the
subtraction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12

Opmode Field:
Word Long

011 111

Instruction Fields:

11 10

REGISTER

Operation

((An») - ((ea») • (An)

EFFECTIVE ADDRESS
OPMODE

MODE REGISTER

Register field - Specifies the destination, any of the eight address registers.
Opmode field - Specifies the size of the operation:

011 - Word operation. The source operand is sign extended to a long operand and
the operation is performed on the address register using all 32 bits.

111 - Long operation.

MOTOROLA CPU32 REFERENCE MANUAL 4-153

•

SUBA Subtract Address SUBA
Effective Address field - Specifies the source operand. All addressing modes are

allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

4-154 CPU32 REFERENCE MANUAL MOTOROLA

SUBI' Subtract Immediate SUBI SUBI

Operation: Destination - Immediate Data. Destination

Assembler
Syntax:

Attributes:

SUBI #(data),(ea)

Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and stores the
result in the destination location. The size of the operation is specified as byte, word,
or long. The size of the immediate data matches the operation size.

Condition Codes:

X N Z V C

* I * I * I * I *

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

0 1010101011101 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

1

MOTOROLA CPU32 REFERENCE MANUAL

2

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

4-155

•

•

SUBI Subtract Immediate SUBI

Instruction Fields:
Size field - Specifies the size of the operation.

00 - Byte operation
01 - Word operation
10 - Long operation

SUBI

Effective Address field - Specifies the destination operand. Only data alterable ad­
dressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode

Dn 000 reg. number:Dn (xxx).W 111

An - - (xxx).L 111

(An) 010 reg. number:An #(data) -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) -

(da,An,Xn) 110 reg. number:An (da,PC,Xn) -

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) -

Immediate field - (Data immediately following the instruction)

4-156

If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

CPU32 REFERENCE MANUAL

Register

000

001

-

-

-

-

MOTOROLA

SUBQ

Operation:

Assembler
Syntax:

Attributes:

Subtract Quick SUBQ

Destination - Immediate Data. Destination

SUBQ #(data),(ea)

Size = (Byte, Word, Long)

Description: Subtracts the immediate data (1-8) from the destination operand. The size
of the operation is specified as byte, word, or long. Only word and long operations
are allowed with address registers, and the condition codes are not affected. When
subtracting from address registers, the entire destination address register is used,
regardless of the operation size.

Condition Codes:

X N Z V C

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

15 14 13 12 11 10

DATA

Instruction Fields:

EFFECTIVE ADDRESS

MODE REGISTER

Data field - Three bits of immediate data; 1-7 represent immediate values of 1-7, and
o represents 8.

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

MOTOROLA CPU32 REFERENCE MANUAL 4-157

•

•

SUBQ Subtract Quick SUBQ

4-158

Effective Address field - Specifies the destination location. Only alterable addressing
modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data; - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) - -

(dsAn,Xn) 110 reg. number:An (ds,PC,Xn) - -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) - -

*Word and Long Only

CPU32 REFERENCE MANUAL MOTOROLA

SUBX

Operation:

Assembler
Syntax:

Attributes:

Subtract with Extend SUBX

Destination - Source - X • Destination

SUBX DX,Dy
SUBX -(Ax)'-(Ay)

Size = (Byte, Word, Long)

Description: Subtracts the source operand and the extend bit from the destination op-
erand and stores the result in the destination location. The instruction has two modes:

1. Data register to data register: The data registers specified in the instruction con­
tain the operands.

2. Memory to memory: The address registers specified in the instruction access the
operands from memory using the predecrement addressing mode .

The size of the operand is specified as byte, word, or long.

Condition Codes:

X N Z V C

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a carry occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the start of
an operation. This allows successful tests for zero results upon completion
of multiple-precision operations.

Instruction Format:

15 14 13 12 11 10

I 1 I 0 o I 1 REGISTER Ry I 1 SIZE o I 0 I RIM REGISTER Rx

MOTOROLA CPU32 REFERENCE MANUAL 4-159

•

•

SUBX Subtract with Extend SUBX

Instruction Fields:
Register Dy/Ay field - Specifies the destination register:

If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

4-160

Size field - Specifies the size of the operation:
00 - Byte operation
01 - Word operation
10 - Long operation

RIM field ~ Specifies the operand addressing mode:
0.....,... The operation is data register to data register.
1 - The operation is memory to memory.

Register Dx/Ax field - Specifies the source register:
If RIM = 0, specifies a data register.
If RIM = 1, specifies an address register for the predecrement addressing mode.

CPU32 REFERENCE MANUAL MOTOROLA

SWAP Swap Register Halves SWAP

Operation:

Assembler
Syntax:

Attributes:

Description:

Register [31: 16] •• Register [15:0]

SWAP Dn

Size = (Word)

Exchange the 16-bit words (halves) of a data register.

Condition Codes:

X N Z V C

X N at affected.
N Set if the most significant bit of the 32-bit result is set. Cleared otherwise.
Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

REGISTER

Instruction Fields:
Register field - Specifies the data register to swap.

MOTOROLA CPU32 REFERENCE MANUAL 4-161

•

•

TBLS
TBLSN Table Lookup and Interpolate (Signed)

TBLS
TBLSN

Operation: Rounded:
ENTRY(n) +{(ENTRY(n + 1) - ENTRY(n))*Dx[7:0]}/256 • Dx

Unrounded:
ENTRY(n)·256 + {(ENTRY(n + 1) - ENTRY(n))·Dx[7:0]} • Dx

Where ENTRY(n) and ENTRY(n + 1) are either:
1. Consecutive entries in the table pointed to by the <ea> and indexed

by Dx[15:8)*size or,
2. The registers Dym, Dyn respectively

Assembler TBLS. <size> <ea>,Dx *Result rounded
Syntax: TBLSN.<size> <ea>,Dx *Result not rounded

TBLS.<size> Dym:Dyn, Dx *Result rounded
TBLSN.<size> Dym:Dyn, Dx *Result not rounded

Attributes: Size = (Byte, Word, Long)

Description: The signed table lookup and interpolate instruction, TBLS, allows the ef-

4-162

ficient use of piecewise linear, compressed data tables to model complex functions.
The TBLS instruction has two modes of operation: table lookup and interpolate mode
and data register interpolate mode.

For table lookup and interpolate mode, data register Dx[15:0) contains the independent
variable X. The effective address points to the start of a signed byte, word, or long­
word table containing a linearized representation of the dependent variable, Y, as a
function of X. In general, the independent variable, located in the low-order word of
Dx, consists of an 8-bit integer part and an 8-bit fractional part. An assumed radix
point is located between bits 7 and 8. The integer part, Dx[15:8]' is scaled by the
operand size and is used as an offset into the table. The selected entry in the table is
subtracted from the next consecutive entry. A fractional portion of this difference is
taken by multiplying by the interpolation fraction, Dx[7:0). The adjusted difference is
then added to the selected table entry. The result is returned in the destination data
register, Dx.

For register interpolate mode, the interpolation occurs using the Dym and Dyn registers
in place of the two table entries. For this mode, only the fractional portion, Dx[7:0]'
is used in the interpolation, and the integer portion, Dx[15:8], is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimentional functions.

CPU32 REFERENCE MANUAL MOTOROLA

TBLS
TBLSN Table Lookup and Interpolate (Signed)

TBLS
TBLSN

Signed table entries range from - 2n -1 to 2n -1 -1; whereas, unsigned table entries
range from 0 to 2n -1 where n is 8, 16, or 32 for byte, word, and long-word tables,
respectively.

Rounding of the result is optionally selected via the "R" instruction field. If R = 0
(TABLE), the fractional portion is rounded according to the round-to-nearest algorithm.
The rounding procedure can be summarized by the following table.

Adjusted
Difference
Fraction
~-1/2

> -1/2 and <1/2
~1/2

Rounding
Adjustment

-1
+0
+1

The adjusted difference is then added to the selected table entry. The rounded result
is retuned in the destination data register, Ox. Only the portion of the register corre­
sponding to the selected size is affected.

Byte

Word

Long

31

Unaffected

Unaffected

Result

24 23

Unaffected

Unaffected

Result

16 15 8 7

Unaffected Result

Result Result

Result Result

If R= 1 (TABLENR), the result is returned in register Dx without rounding. If the size
is byte, the integer portion of the result is returned in Dx(15:8); the integer portion of
a word result is stored in Ox(23:8); the least significant 24 bits of a long result are
stored in Ox(31 :8). Byte and word results are sign extended to fill the entire 32-bit
register.

Byte

Word

Long

MOTOROLA

31 24 23 16 15 8 7

Sign Extended Sign Extended Result Fraction

Sign Extended Result Result Fraction

Result Result Result Fraction

NOTE

The long-word result contains only the least significant 24 bits of
integer precision.

CPU32 REFERENCE MANUAL 4-163

•

•

TBLS
TBLSN Table Lookup and Interpolate (Signed)

TBLS
TBLSN

For all sizes, the 8-bit fractional portion of the result is returned in the low byte of the
data register, Dx(7:0). User software can make use of the fractional data to reduce
cumulative errors in lengthy calculations or implement rounding algorithms different
from that provided by other forms of TBLS. The assumed radix point described pre­
viously places two restrictions on the programmer:

1) Tables are limited to 257 entries in length.

2) Interpolation resolution is limited to 11256 the distance between consecutive table
entries. The assumed radix point should not, however, be construed by the pro­
grammer as a requirement that the independent variable be calculated as a frac­
tional number in the range 0< = X< = 255. On the contrary, X should be considered
to be an integer in the range 0< = X< = 65535; realizing that the table is actually
a compressed representation of a linearized function in which only every 256th
value is actually stored in memory.

See 4.5 INSTRUCTION FORMAT SUMMARY for examples on using the TBLS instruc­
tion.

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the integer portion of an unrounded long result is not in the range,

- (223)::;:;: Resu It::;:;: (223) -1. Cleared otherwise.
C Always cleared.

Instruction Format:

Table Lookup and Interpolate:

15 14 13 12 11 10

I 1 I o I 0
EFFECTIVE ADDRESS

1 1 1 1 0 0 0
I MODE REGISTER

0 REGISTER Dx 1 R 0 1 Size 01010101010

4-164 CPU32 REFERENCE MANUAL MOTOROLA

TBLS
TBLSN Table Lookup and Interpolate (Signed)

Data Register Interpolate:

15 14 13 12 11 10

Instruction Fields:

Effective address field (table lookup and interpolate mode only):

TBLS
TBLSN

REGISTER Dym

REGISTER Dyn

Specifies the destination location. Only control addressing modes are allowed as
shown:

Addressing Mode Mode Register

Dn - -

An - -

(An) 010 reg. number:An

(An)+ - -

-(An) - -

(d16,An) 101 reg. number:An

(d8,An,Xn) 110 reg. number:An

(bd,An,Xn) 110 reg. number:An

Size field:
Specifies the size of operation.

00 - byte operation
01 - word operation
10 - long operation

Register field:

Addressing Mode Mode Register

(xxx).w 111 000

(xxx).L 111 001

#(data) - -

(d16,PC) 111 010

(d8,PC,Xn) 111 011

(bd,PC,Xn) 111 011

Specifies the destination data register, Dx. On entry, the register contains the inter­
polation fraction and entry number.

Dym, Dyn field:
If the effective address mode field is nonzero, this operand register is unused and
should be zero. If the effective address mode field is zero, the surface interpolation
variant of this instruction is implied, and Dyn specifies one of the two source
operands.

Rounding mode field:
The 'R' bit controls the rounding of the final result. When R = 0, the result is rounded
according to the round-to-nearest algorithm. When R = 1, the result is returned
unrounded.

MOTOROLA CPU32 REFERENCE MANUAL 4-165

•

•

TBLU
TBLUN Table Lookup and Interpolation (Unsigned)

TBLU
,TBLUN

Operation: Rounded:
ENTRY(n) +{(ENTRY(n + 1) - ENTRY(n))*Dx[7:0]}/256 • Dx

Unrounded:
ENTRY(n)-256 + {(ENTRY(n + 1) - ENTRY(n))-Dx[7:0]} • Dx

Where ENTRY(n) and ENTRY(n + 1) are either:
1. Consecutive entries in the table pointed to by the <ea> and indexed

by Dx[15:8]*size or,
2. The registers Dym, Dyn respectively

Assembler TBLU.<size> <ea>,Dx * Result rounded
Syntax: TBLUN.<size> <ea>,Dx * Result not rounded

TBLU.<size> Dym:Dyn, Dx * Result rounded
TBLUN.<size> Dym:Dyn, Dx * Result not rounded

Attributes: Size = (Byte, Word, Long)

Description: The unsigned table lookup and interpolate instruction, TBLS, allows the

4-166

efficient use of piecewise linear, compressed data tables to model complex functions.
The TBLU instruction has two modes of operation: table lookup and interpolate mode
and data register interpolate mode.

For table lookup and interpolate mode, data register Dx[15:0] contains the independent
variable X. The effective address points to the start of a unsigned byte, word, or long­
word table containing a linearized representation of the dependent variable, Y, as a
function of X. In general, the independent variable, located in the low-order word of
Dx, consists of an 8-bit integer part and an 8-bit fractional part. An assumed radix
point is located between bits 7 and 8. The integer part, Dx[15:8]' is scaled by the
operand size and is used as an offset into the table. The selected entry in the table is
subtracted from the next consecutive entry. A fractional portion of this difference is
taken by multiplying by the interpolation fraction, Dx[7:0]. The adjusted difference is
then added to the selected table entry. The result is returned in the destination data
register, Dx.

For register interpolate mode, the interpolation occurs using the Dym and Dyn registers
in place of the two table entries. For this mode, only the fractional portion, Dx[7:0]'
is used in the interpolation, and the integer portion, Dx[15:8], is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimentional functions.

CPU32 REFERENCE MANUAL MOTOROLA

TBLU
TBLUN Table Lookup and Interpolation (Unsigned)

TBLU
TBLUN

Signed table entries range from - 2n -1 to 2n -1 -1; whereas, unsigned table entries
range from 0 to 2n -1 where n is 8, 16, or 32 for byte, word, and long-word tables,
respectively. The unsigned and unrounded table results will be zero extended instead
of sign extended.

Rounding of the result is optionally selected via the IIR" instruction field. If R = 0
(TABLE), the fractional portion is rounded according to the round-to-nearest algorithm.
The rounding procedure can be summarized by the following table.

Adjusted
Difference
Fraction
~1/2

<1/2

Rounding
Adjustment

+1
+0

The adjusted difference is then added to the selected table entry. The rounded result
is retuned in the destination data register, Dx. Only the portion of the register corre­
sponding to the selected size is affected.

Byte

Word

Long

31

Unaffected

Unaffected

Result

24 23

Unaffected

Unaffected

Result

16 15 8 7

Unaffected Result

Result Result

Result Result

If R = 1 (TBLUN), the result is returned in register Dx without rounding. If the size is
byte, the integer portion of the result is returned in Dx(15:8); the integer portion of a
word result is stored in Dx(23:8); the least significant 24 bits of a long result are stored
in Dx(31 :8). Byte and word results are sign extended to fill the entire 32-bit register.

Byte

Word

Long

MOTOROLA

31 24 23 16 15 8 7

Sign Extended Sign Extended Result Fraction

Sign Extended Result Result Fraction

Result Result Result Fraction

NOTE

The long-word result contains only the least significant 24 bits of
integer precision.

CPU32 REFERENCE MANUAL 4-167

--

•

TBLU
TBLUN Table Lookup and Interpolation (Unsigned)

TBLU
TBLUN

For all sizes, the 8-bit fractional portion of the result is returned in the low byte of the
data register, Dx(7:0). User software can make use of the fractional data to reduce
cumulative errors in lengthy calculations or implement rounding algorithms different
from that provided by other forms of TBLS. The assumed radix point described pre­
viously places two restrictions on the programmer:

1) Tables are limited to 257 entries in length.

2) Interpolation resolution is limited to 1/256 the distance between consecutive table
entries. The assumed radix point should not, however, be construed by the pro­
grammer as a requirement that the independent variable be calculated as a frac­
tional number in the range O~X~255. On the contrary, X should be considered
to be an integer in the range O~X::;t65535; realizing that the table is actually a
compressed representation of a linearized function in which only every 256th
value is actually stored in memory.

See 4.5 INSTRUCTION FORMAT SUMMARY for examples on using the TBLU instruc­
tion.

Condition Codes:

X N Z V C

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the integer portion of an unrounded long result is not in the range,

- (223)~Result~(223) -1. Cleared otherwise.
C Always cleared.

Instruction Format:

Table Lookup and Interpolate:

15 14 13 12 11 10

1 1 I 1 I 1 1 0 0 0 o 1 0
EFFECTIVE ADDRESS

MODE 1 REGISTER

0 REGISTER Ox 0 R 0 1 Size 01010101 o 1 0

4-168 CPU32 REFERENCE MANUAL MOTOROLA

TBLU
TBLUN Table Lookup and Interpolation (Unsigned)

Data Register Interpolate:

15 14 13 12 11 10

Instruction Fields:

Effective address field (table lookup and interpolate mode only):

TBLU
TBLUN

REGISTER Dym

REGISTER Dyn

Specifies the destination location. Only control addressing modes are allowed as
shown:

Addressing Mode Mode Register

Dn - -

An - -
(An) 010 reg. number:An

(An)+ - -

-(An) - -

(d16.An) 101 reg. number:An

(ds.An,Xn) 110 reg. number:An

(bd.An,Xn) 110 reg. number:An

Size field:
Specifies the size of operation.

00 - byte operation
01 - word operation
10 - long operation

Register field:

Addressing Mode Mode Register

(xxx).w 111 000

(xxx).L 111 001

#(data) - -

(d16,PC) 111 010

(ds,PC,Xn) 111 all

(bd,PC,Xn) 111 all

Specifies the destination data register, Ox. On entry, the register contains the inter­
polation fraction and entry number.

Dym, Dyn field:
If the effective address mode field is nonzero, this operand register is unused and
should be zero. If the effective address mode field is zero, the surface interpolation
variant of this instruction is implied, and Dyn specifies one of the two source
operands.

Rounding mode field:
The 'R' bit controls the rounding of the final result. When R = 0, the result is rounded
according to the round-to-nearest algorithm. When R = 1, the result is returned
unrounded.

MOTOROLA CPU32 REFERENCE MANUAL 4-169

III

•

TAS Test and Set an Operand TAS

Operation: Destination Tested. Condition Codes; 1 • bit 7 of Destination

Assembler
Syntax: TAS (ea)

Attributes: Size = (Byte)

Description: Tests and sets the byte operand addressed by the effective address field.
The instruction tests the current value of the operand and sets the Nand Z condition
bits appropriately. TAS also sets the high-order bit of the operand. The operation uses
a read-modify-write memory cycle that completes the operation without interruption.
This instruction supports use of a flag or semaphore to coordinate several processors .

Condition Codes:

X N z v C

- I * * I 0 I 0

X Not affected.
N Set if the most significant bit of the operand is currently set. Cleared otherwise.
Z Set if the operand was zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Instruction Fields:

4-170

Effective Address field - Specifies the location of the tested operand. Only data
alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An - - (xxx).L 111 001

(An) 010 reg. number:An #(data) - -

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16An) 101 reg. number:An (d16,PC) - -

(d8An,Xn) 110 reg. number:An (d8,PC,Xn) - -

(bdAn,Xn) 110 reg. number:An (bd,PC,Xn) - -

CPU32 REFERENCE MANUAL MOTOROLA

TRAP

Operation:

Assembler
Syntax:

Attributes:

Trap

SSP - 2 • SSP; Format/Offset. (SSP);
SSP - 4. SSP; PC • (SSP); SSP - 2 • SSP;
SR • (SSP); Vector Address. PC

TRAP #(vector)

Unsized

TRAP

Description: Causes a TRAP #(vector) exception. The instruction adds the immediate
operand (vector) of the instruction to 32 to obtain the vector number. The range of
vector values is 0-15, which provides 16 vectors.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

o I 0 I 1 o I 0 I VECTOR

Instruction Fields:
Vector field - Specifies the trap vector to be taken.

MOTOROLA CPU32 REFERENCE MANUAL 4-171

•

•

TRAPcc Trap on Condition TRAPcc

Operation: If cc then TRAP

Assembler
Syntax:

TRAPcc
TRAPcc.W #(data)
TRAPcc.L #(data)

Attributes: Unsized or Size = (Word, Long)

Description: If the specified condition is true, causes a TRAPcc exception. The vector
number is 7. The processor pushes the address of the next instruction word (currently
in the program counter) onto the stack. If the condition is not true, the processor
performs no operation, and execution continues with the next instruction. The im­
mediate data operand should be placed in the next word(s) following the operation
word and is available to the trap handler. Condition code cc specifies one of the
following conditions.

CC carry clear 0100 C LS low or same 0011 C+Z
CS carry set 0101 C LT less than 1101 NoV + NoV
EQ equal 0111 Z MI minus 1011 N
F never true 0001 0 NE not equal 0110 Z
GE greater or equal 1100 NoV + NoV PL plus 1010 N
GT greater than 1110 NoVoZ + NoVoZ T always true 0000 1
HI high 0010 CoZ VC overflow clear 1000 V
LE less or equal 1111 Z+NoV+ NoV VS overflow set 1001 V

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

o I 1 I 0 I 1 I CONDITION I 1 I 1 I 1 I 1 I 1 I OPMODE

OPTIONAL WORD

OR LONG WORD

Instruction Fields:
Condition field - The binary code for one of the conditions listed in the table.
Opmode field - Selects the instruction form.

4-172

010- Instruction is followed by word-size operand.
011 - Instruction is followed by long-word-size operand.
100 - Instruction has no operand.

CPU32 REFERENCE MANUAL MOTOROLA

TRAPV
Operation:

Assembler
Syntax:

Attributes:

Trap on Overflow TRAPV
If V then TRAP

TRAPV

Unsized

Description: If the overflow condition is set, causes a TRAPV exception (vector number
7). If the overflow condition is not set, the processor performs no operation and
execution continues with the next instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

1 I 1 I 0

MOTOROLA CPU32 REFERENCE MANUAL 4-173

•

III

1ST
Operation:

Assembler
Syntax:

Attributes:

Test an Operand TST
Destination Tested. Condition Codes

TST (ea)

Size = (Byte, Word, Long)

Description: Compares the operand with zero and sets the condition codes according
to the results of the test. The size of the operation is specified as byte, word, or long.

Condition Codes:

X N Z V C

X Not affected.
N Set if the operand is negative. Cleared otherwise.
Z Set if the operand is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

15 14 13 12 11 10

Instruction Fields:
Size field - Specifies the size of the operation:

00 - Byte operation
01 - Word operation
10 - Long operation

4-174 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

TST Test an Operand TST

Effective Address field - Specifies the destination operand. All addressing modes are
allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).w 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #(data) 111 100

(An)+ 011 reg. number:An

-(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(ds,An,Xn) 110 reg. number:An (dS,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

*Word or long word operation only.

MOTOROLA CPU32 REFERENCE MANUAL 4-175

•

•

UNLK

Operation:

Assembler
Syntax:

Attributes:

Unlink UNLK

An • SP; (SP) • An; SP + 4 • SP

UNLK An

Unsized

Description: Loads the stack pointer from the specified address register then loads the
address register with the long word pulled from the top of the stack.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10

I 0 I 1 I 0 o I 0 I 1 o I 1 I 1 REGISTER

Instruction Fields:
Register field - Specifies the address register for the instruction.

4-176 CPU32 REFERENCE MANUAL MOTOROLA

4.5 INSTRUCTION FORMAT SUMMARY

A summary of the primary words in each instruction of the instruction set
follows. The complete instruction definition consists of the primary words
followed by the addressing mode operands such as immediate data fields,
displacements, and index operands. The four most significant bits of the first
(or only) primary word provide a means of categorizing the instructions. Table
4-11 is an operation code (opcode) map that lists an instruction category for
each combination of these bits.

Table 4-11. Operation Code Map

Bits 15-12 Operation

0000 Bit Manipulation/MOVEP/lmmediate

0001 Move Byte

0010 Move Long

0011 Move Word

0100 Miscellaneous

0101 ADDQ/S U BQ/Scc/D Bcc/TRAPcc

0110 Bcc/BSR/BRA

0111 MOVEQ

1000 OR/DIV/SBCD

1001 SUB/SUBX

1010 (Unassigned, Reserved)

1011 CMP/EOR

1100 AND/MULIABCD/EXG

1101 ADD/ADDX

1110 Shift/Rotate/Bit Field

1111 Coprocessor Operation

MOTOROLA CPU32 REFERENCE MANUAL 4-177

•

CPU32 INSTRUCTIONS

ORI
15 14 13 12 11 10

10101010101010 I
EFFECTIVE ADDRESS

0 SIZE
I MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10= Long

ORI to CCR
15 14 13 12 11 10

• ORI to SR
15 14 13 12 11 10

I
0 a I 0 0 I 0 I 0 I 0 0 0 I 1 I 1 I 1 I 1 I 1 0 I 0

WORD DATA (16 BITS)

CMP2
15 14 13 12 11 10

I 0 I
EFFECTIVE ADDRESS

0 0 0 0 SIZE 0 1 1 1 REGISTER MODE

D/A REGISTER 0 01 0 0 0 0 o I 0 I 0 I 0 I 0 I 0

Size Field: 00 = Byte 01 = Word 10= Long

CHK2
15 14 13 12 11 10

I 0 I
EFFECTIVE ADDRESS

0 0 0 0 SIZE 0 1 1
I MODE REGISTER

D/A REGISTER 1 01 0 0 a 0 o I 0 I 0 I 0 I 0 I 0

Size Field: OO=Byte 01 =Word 10=Long

Bit (Dynamic)

15 14 13 12 11 10

DATA REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Type Field: OO=TST 10=CLR 01=CHG 11=SET

4-178 CPU32 REFERENCE MANUAL MOTOROLA

MOVEP
15 14 13 12 11 10

DATA REGISTER OPCODE

DISPLACEMENT (16 BITS)

Opmode Field: 100=Transfer Word from Memory to Register
101 = Transfer Long from Memory to Register
110 = Transfer Word from Register to Memory
111 = Transfer Long from Register to Memory

ANDI

15 14 13 12 11 10

0
I

0
I

0
I 0 I 0 I 0 I

1
I

0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Size Field: OO=Byte 01=Word 10=Long

ANDI to CCR

15 14 13 12 11 10

ANDI to SR

15 14 13 12 11 10

I

0 1

WORD DATA (16 BITS)

SUBI

15 14 13 12 11 10

0 I 0 I 0 I 0 I 0 I 1 I 0 I 0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10= Long

ADDI

15 14 13 12 11 10

0
1

0
1

0
1

0
1

0
1

1
11 1

0 SIZE

WORD DATA (16 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10= Long

I

I

1

MOTOROLA CPU32 REFERENCE MANUAL

ADDRESS REGISTER

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

•

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

EFFECTIVE ADDRESS

MODE I REGISTER

BYTE DATA (8 BITS)

4-179

Bit (Static)

15 14 13 12 11 10

!
EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 TYPE I MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Type Field: OO=TST 10=CLR 01 =CHG 11 =SET

EORI
15 14 13 12 11 10

/0/0/0/1/0/1/0 I
EFFECTIVE ADDRESS

0 SIZE
I MODE REGISTER

WORD DATA 06 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10= Long

• EORI to CCR
15 14 13 12 11 10

EORI to SR
15 14 13 12 11 10

I
0 I 0 0 I 0 I 1 I 0 1 0 I 0 1 I 1 I 1 I 1 I 1 0 I 0

WORD DATA 06 BITS)

CMPI
15 14 13 12 11 10

0 I 0 I 0 I 0 I 1 I 1 I 0 I 0 SIZE
I

EFFECTIVE ADDRESS

MODE I REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: OO=Byte 01 =Word 10= Long

MOVES
15 14 13 12 11 10

I 0 I
EFFECTIVE ADDRESS

0 0 0 1 1 1 0 SIZE I MODE REGISTER

AID REGISTER dr 0 0 0 01 0 01 0 o I 0 I 0 I 0

dr Field: 0 = EA to Register 1 = Register to EA

4-180 CPU32 REFERENCE MANUAL MOTOROLA

MOVE Byte
15 14 13 12 11 10

DESTINATION SOURCE

REGISTER MODE MODE REGISTER

Note Register and Mode Locations

MOVEA Long

15 14 13 12 11 10

DESTINATION SOURCE
REGISTER

MODE REGISTER

MOVE Long

15 14 13 12 11 10 4

DESTINATION SOURCE

III REGISTER MODE MODE REGISTER

Note Register and Mode Locations

MOVEA Word

15 14 13 12 11 10

DESTINATION SOURCE
REGISTER

MODE REGISTER

MOVE Word

15 14 13 12 11 10

DESTINATION SOURCE

REGISTER MODE MODE REGISTER

Note Register and Mode Locations

NEGX
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Size Field: 00= Byte 01 =Word 10=Long

MOVE from SR
15 14 13 12 11 10 4

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA CPU32 REFERENCE MANUAL 4-181

CHK
15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

Size Field: 10=Long 11 =Word

LEA
15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER

MODE REGISTER

CLR
15 14 13 12 11 10

•
EFFECTIVE ADDRESS

MODE REGISTER

Size Field: 00= Byte 01 = Word 10=Long

MOVE from CCR
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

NEG
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Size Field: 00= Byte 01 =Word 10= Long

MOVE to CCR
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

NOT
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Size Field: 00= Byte 01 =Word 10=Long

4-182 CPU32 REFERENCE MANUAL MOTOROLA

MOVE to SR

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

NBCD

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

LINK Long

15 14 13 12 11 10

o I 1 I o I o I 1 I 0 I 0 I 01 0 I 0 I o I 0 I 1 I REGISTER

HIGH-ORDER DISPLACEMENT

LOW-ORDER DISPLACEMENT

SWAP III
15 14 13 12 11 10

I 0 I 1 0 I 0 I 1 o I 0 I 0 I REGISTER

BKPT

15 14 13 12 11 10

I 0 1 I 0 I 0 I 1 o I 0 I 0 I 0 I 1 o I 0 I 1 VECTOR

PEA

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10= Long

EXT/EXTB

15 14 13 12 11 10

I 0 I 1 o I 0 I 1 o I 0 I OPCODE o I 0 I 0 I REGISTER

Opmode Field: 010= Extend Word 011 = Extend Long 111 = Extend Byte Long

MOVEM Registers to EA

15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

REGISTER LIST MASK

Size Field: a = Word Transfer 1 = Long Transfer

MOTOROLA CPU32 REFERENCE MANUAL 4-183

•

TST

15 14 13 12 11 10

Size Field: 00= Byte 01 =Word 10=Long

TAS

15 14 13 12 11 10

BGND
15 14 13 12 11 10

I 0 I 0 I 1 I 1 I 1

ILLEGAL

15 14 13 12 11 10

I 0 I I 1 I 1

MULS/MULU Long

15 14 13 12 11 10

0 1
I

0
I

0 1 1 0 0 0

0 REGISTER 01 TYPE SIZE 0 0 0

Type Field: 0 = MULU 1 = MULS
Size Field: 0 = Long-Word Product 1 = Quad-Word Product

DlVS/DIVU Long
DIVUUDIVSL

15 14 13

0 1
I

0
I

0 REGISTER Dq

12 11

0 1

TYPE

Type Field: 0 = DIVU 1 = DIVS

10

1 0 0 0

SIZE 0 0 0

Size Field: 0 = Long-Word Dividend 1 = Quad-Word Dividend

MOVEM EA to Registers
15 14 13 12 11 10

I

I

REGISTER LIST MASK

Size Field: 0 = Word Transfer 1 = Long Transfer

1 I 1

1 I 1

0

0 0

1

0 0

4-184 CPU32 REFERENCE MANUAL

EFFECTIVE ADDRESS

MODE REGISTER

EFFECTIVE ADDRESS

MODE REGISTER

I 1 I 1 I 1

I 1 I 1 0 I

EFFECTIVE ADDRESS

MODE I REGISTER

I 0 I 0 I REGISTER Dh

EFFECTIVE ADDRESS

MODE I REGISTER

I o I o I REGISTER Dr

EFFECTIVE ADDRESS

MODE REGISTER

MOTOROLA

TRAP
15 14 13 12 11 10

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 0 I 0 I VECTOR

Link Word
15 14 13 12 11 10

REGISTER

UNLK
15 14 13 12 11 10

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 0 I 1 1 I REGISTER

MOVE to USP
15 14 13 12 11 10 III I 0 I 1 I 0 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 0 I 0 REGISTER

MOVE from USP
15 14 13 12 11 10

I 0 I 1 I 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 0 I 1 REGISTER

RESET
15 14 13 12 11 10

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 0 I 0

NOP

15 14 13 12 11 10

I 0 I 1 I 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 0 I 1

STOP

15 14 13 12 11 10

I 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 0

RTE

15 14 13 12 11 10

0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1

MOTOROLA CPU32 REFERENCE MANUAL 4-185

RTD
15 14 13 12 11 10

DISPLACEMENT (16 BITS~

RTS
15 14 13 12 ;1 10

0 I 1 0 I I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 I 0 I 1 0 I 1

TRAPV
15 14 13 12 11 10

• 0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 1 I 0 I 1 1 I 0

RTR
15 14 13 12 11 10

0 I 1 0 I 0 I 1 I 1 I 1 0 I 0 I 1 I 1 I 1 I 0 I 1 I 1 I 1

MOVEC
15 14 13 12 11 10

dr Field: 0 = Control Register to General Register
1 = General Register to Control Register

Control Register Field: $OOO=SFC $801 =VBR
$001 =DFC $802 = CAAR
$002=CACR $803=MSP
$800=USP $804=ISP

JSR
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

JMP
15 14 13 12 11 10

EFFECTIVE ADDRESS

MODE REGISTER

4-186 CPU32 REFERENCE MANUAL MOTOROLA

ADDO
15 14 13 12 11 10

EFFECTIVE ADDRESS
DATA

MODE REGISTER

Data Field: Three bits of immediate data; 1-7 represent immediate values of 1-7, and 0 represents 8.
Size Field: OO=Byte 01 =Word 10=Long

See
15 14 13 12 11 10

CONDITION
EFFECTIVE ADDRESS

MODE REGISTER

DBee
15 14 13 12 11 10

CONDITION 1 REGISTER

DISPLACEMENT (16 BITS)

TRAPee
15 14 13 12 11 10

o I 1 I 0 I 1 I CONDITION I 1 I 1 I 1 I 1 I 1 I OPMODE

OPTIONAL WORD

OR LONG WORD

Opmode Field: 010 = Word Operand 011 = Long Operand 100 = No Operand

SUBO
15 14 13 12 11 10

EFFECTIVE ADDRESS
DATA

MODE REGISTER

Data Field: Three bits of immediate data; 1-7 represent immediate values of 1-7, and 0 represents 8.
Size Field: OO=Byte 01 =Word 10=Long

Bee
15 14 13 12 11 10

0 /1 /
1

/
0

/
CONDITION

/
8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

BRA
15 14 13 12 11 10 3

o I 1 I 1 I o I o I 0 I o I o I 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT =$00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

MOTOROLA CPU32 REFERENCE MANUAL

III

o

4-187

•

BSR
15 14 13 12 11 10

o 1 1
1

1
1 o 1 o 1 0

1
0

1
1 'I 8-81T DISPLACEMENT

16-81T DISPLACEMENT IF 8-81T DISPLACEMENT = $00

32-81T DISPLACEMENT IF 8-81T DISPLACEMENT = $FF

MOVEa
15 14 13 12 11 10

I 0 I REGISTER DATA

Data Field: Data is sign extended to a long operand, and all 32 bits are transferred to the data register.

OR
15 14 13 12 11 10

REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Opmode Field:
Byte Word Long Operation

000 001 010 (ea»)v(Dn»). (Dn)
100 101 110 (Dn»)v(ea») • (ea)

DIVS/DIVU Word

15 14 13 12 11 10

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Type Field: 0= DIVU 1=DIVS

SBeD
15 14 13 12 11 10

REGISTER Ry RIM REGISTER Rx

RIM Field: 0 = Data Register to Data Register 1 = Memory to Memory

If RIM = 0, Both Registers are Data Registers
If RIM = 1, Both Registers are Address Registers for the Predecrement Addressing Mode

SUB
15 14

Opmode Field:

13

Byte

000
100

12

Word

001
101

11 10

REGISTER OPMODE

Long

010
110

Operation

(Dn») - (ea») • (Dn)
(ea») - (Dn») • (ea)

EFFECTIVE ADDRESS

MODE REGISTER

{)

4-188 CPU32 REFERENCE MANUAL MOTOROLA

SUBA

15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE REGISTER

Opmode Field:
Word Long Operation

011 111 ((An») - ((ea»). (An)

SUBX

15 14 13 12 11 10

REGISTER Ry SIZE RIM REGISTER Rx

Size Field: 00 = Byte 01 = Word 10= Long
RIM Field: 0= Data Register to Data Register 1 = Memory to Memory

If RIM = 0, Both Registers are Data Registers
If RIM = 1, Both Registers are Address Registers for the Predecrement Addressing Mode

CMP • 15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE REGISTER

Opmode Field:
Byte Word Long Operation

000 001 010 ((On») - ((ea»)

CMPA
15 14 13 12 11 10

REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Opmode Field:
Word Long Operation

011 111 ((An») - ((ea»)

EOR
15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE REGISTER

Opmode Field:
Byte Word Long Operation

100 101 110 ((ea») EB ((On») • (ea)

CMPM
15 14 13 12 11 10

REGISTER Ax SIZE REGISTER Ay

Size Field: 00 = Byte 01 =Word 10= Long

MOTOROLA CPU32 REFERENCE MANUAL 4-189

•

AND
15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE REGISTER

Opmode Field:
Byte Word Long Operation

000 001 010 (ea))A(Dn)) • (Dn)
100 101 110 (Dn))A(ea)) • (ea)

MULS/MULU Word
15 14 13 12 11 10

REGISTER
EFFECTIVE ADDRESS

MODE REGISTER

Type Field: 0 = MULU 1 =MULS

ABeD
15 14 13 12 11 10

I 1 I 1 0 I 0 I REGISTER Rx I 1 I 0 olololR/M REGISTER Ry

RIM Field: 0 = Data Register to Data Register 1 = Memory to Memory

If RIM = 0, Both Registers are Data Registers
If RIM = 1, Both Registers are Address Registers for the Predecrement Addressing Mode

EXG· Data Registers
15 14 13 12 11 10

REGISTER Dx I 1 I 0 I 1

EXG Address Registers
15 14 13 12 11 10

I 1 I 1 I 0 I 0 I REGISTER Ax I 1 I 1

EXG Data Register and Address Register
15 14 13 12 11 10

I 1 1 I 0 I REGISTER Dx I 1 I 1 o I

ADD
15 14 13 12 11 10

REGISTER OPMODE

Opmode Field:
Byte

000
100

Word

001
101

Long Operation

010 (ea))+(Dn)).(Dn)
110 (Dn)) + (ea)) • (ea)

o I 0 I 0 REGISTER Dy

I 0 I 1 REGISTER Ay

o I 1 REGISTER Ay

EFFECTIVE ADDRESS

MODE REGISTER

4-190 CPU32 REFERENCE MANUAL MOTOROLA

ADDA
15 14 13 12 11 10

EFFECTIVE ADDRESS
REGISTER OPMODE

MODE

Opmode Field:
Word Long Operation

011 111 (ea)) + (An)) • (An)

ADDX
15 14 13 12 11 10

REGISTER Rx SIZE RIM

Size Field: 00= Byte 01 =Word 10=Long
RIM Field: O=Data Register to Data Register 1 = Memory to Memory

If RIM == 0, Both Registers are Data Registers
If RIM = 1, Both Registers are Address Registers for the Predecrement Addressing Mode

Shift/Rotate Register
15 14 13 12 11 10

COUNTIREGISTER dr SIZE IIR

Count/Register Field:
If IIR Field = 0, Specifies Shift Count
If IIR Field = 1, Specifies a Data Register That Contains the Shift Count

dr Field: 0 = Right 1 = Left
Size Field: 00= Byte 01 =Word 10=Long
IIR Field: O=lmmediate Shift Count 1 = Register Shift Count

TYPE

Type Field: OO=Arithmetic Shift 01 = Logical Shift 10 = Rotate with Extend 11 = Rotate

Shift/Rotate Memory

15 14 13 12 11 10

REGISTER

REGISTER Ry

REGISTER

EFFECTIVE ADDRESS

MODE

Type Field: OO=Arithmetic Shift 01 = Logical Shift 10= Rotate with Extend 11 = Rotate
dr Field: 0 = Right 1 = Left

LPSTOP

15 14 13 12 11 10

1 I 1 I 1 I 1 I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0

0 I 0 I 0 I 0 I 0 I 0 I 0 I 1. I 1 I 1 I 0 I 0 I 0

IMMEDIATE DATA

MOTOROLA CPU32 REFERENCE MANUAL

REGISTER

I 0 I 0 I
I 0 I 0 I

III

0

0

4-191

TBLSITBLU (Lookup and Interpolate)

15 14 13 12 11 10 3

1 I 1 I 01
0

EFFECTIVE ADDRESS
1 1 1 0 1 0 I MODE REGISTER

0 REGISTER Ox 1 R 0 1 SIZE o I 0 I 0 I 0 0 0

Type Field: 0 = TBLS 1 =TBLU
R Field: 0 = TBLSITBLU 1 = TBLSNITBLUN

TBLS/TBLU (Data Register Interpolate)

15 14 13 12 11 10

REGISTER Dym

REGISTER Dyn

Type Field: 0 = TBLS 1 =TBLU
R Field: 0 = TBLSITBLU 1 = TBLSNITBLUN

4.6 USING THE TABLE INSTRUCTION

4-192

The table lookup and interpolate instruction supports two variants: TBLS
returns a rounded byte, word, or long-word signed result; TBLSN returns an
unrounded byte, word, or long-word signed result; TBLU returns a rounded
byte, word, or long-word unsigned result, and TBLUN returns an unrounded
byte, word, or long-word unsigned result. All four variants support two
locations for the interpolation data: an n-element table stored in memory,
and a 2-element table stored in a pair of data registers. The latter form
provides a means of calculating a surface interpolation between a pair of
previously calculated linear interpolations.

The following examples provide some insight as to how the programmer
may compress tables and/or force fewer interpolation levels between table
entries. Example 1 (see Figure 4-3) demonstrates the table lookup and
interpolation process for a 257-entry table allowing up to 256 interpolation
levels between entries. Example 2 (see Figure 4-4) reduces the table length
to four entries for the same set of data. Example 3 (see Figure 4-5) demon­
strates how an 8-bit independent variable can be used with this instruction.

Two additional examples demonstrate how the programmer might use TBLSN
to reduce cumulative errors in cases where several table lookup and inter­
polations are required in a single calculation. Example 4 demonstrates the
case where the results from three table interpolations are added together to
achieve the desired result. Example 5 illustrates the usefulness of TBLSN in
doing surface (3D) interpolations.

CPU32 REFERENCE MANUAL MOTOROLA

4.6.1 Table Example 1: Standard Usage

y

16384 32768
I

49152 65536

X

INDEPENDENT VARIABLE

Figure 4-3. Table Example 1

The table consists of 257 word entries. The function is a straight linewithin
the range 32768 ~ X ~ 49152 as shown on the plot. The table entries within
the range of interest are as follows:

Entry No. X Value V Value

128* 32768 1311

162 41472 1659

163 41728 1669

164 41984 1679

165 42240 1690

192* 49152 1966

*For this example, these values have
been chosen as the end points of the
linear range. All table entries between
these two points fall on the line.

MOTOROLA CPU32 REFERENCE MANUAL 4-193

•

The table instruction is executed with the following bit pattern in Ox:

31 16 15

NOT USED 11 0 1 . 0 0 0 1 1 1 0 0 O' 0 0 0 0 I

Table Entry Offset Ox • (8: 15) = $A3 = 163
Interpolation Fraction. Ox(0:7) = $80 = 128

Using this information, the table instruction calculates the dependent vari­
able, Y:

Y= 1669+ (128(1679-1669))/256= 1674

4.6.2 Table Example 2: Compressed Table

256 512 786 1024

INDEPENDENT VARIABLE

Figure 4-4. Table Example 2

4-194 CPU32 REFERENCE MANUAL MOTOROLA

In example 2, the data from Example 1 has been compressed into a 5-entry
table by limiting the maximum value the independent value may take on.
Instead of the normal range of 0 ~ X = 65535, X is limited to 0 ~ X ~ 1023.
Up to 256 levels of interpolation are still allowed between table entries.

CAUTION

Only highly linear functions should compress the table to such
extremes while continuing to allow so many levels of interpolation
between entries. The table entries within the range of interest are
as follows:

Entry No. X Value Y Value

2 512 1311

3 786 1966

Since the table was reduced from 257 to 5 entries, the independent variable,
X, must be scaled appropriately. In this case the scaling factor is 64, and the
scaling is done by a single instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

31 16 15

NOT USED 100000010100011101

Table Entry Offsef. Dx(8: 15) = $02 = 2
Interpolation Fraction. Dx(0:7) = $8E = 142

Using this information, the table instruction calculates the dependent vari­
able, Y:

Y = 1331 + (142(1966 -1311))/256 = 1674

The chosen function was linear between the points entered into the table.
Had another function been chosen, the interpolated values for Examples 1
and 2 might not have been identical.

MOTOROLA CPU32 REFERENCE MANUAL 4-195

III

•

4.6.3 Table Example 3: 8-Bit Independent Variable

1024

4-196

2048 3072
X

INDEPENDENT VARIABLE

Figure 4-5. Table Example 3

CPU32 REFERENCE MANUAL

4096

MOTOROLA

In this example, the independent variable, X, is assumed to have been cal­
culated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry
table. This value is passed to a subroutine that performs an interpolation
using the following table values. An 8-bit result is returned. This example
attempts to demonstrate the setup required to utilize the table instruction
within the interpolation subroutine. The 17-entry table for the function plotted
in Figure 4-5 contains the following data:

x x V
(Subroutine) (Instruction)

0 0 0

1 256 16

2 512 32

3 768 48

4 1024 64

5 1280 80

6 1536 96

7 1792 112

8 2048 128

9 2304 112

10 2560 96

11 2816 80

12 3072 64

13 3328 48

14 3584 32

15 3840 16

16 4096 0

The first column represents the value passed to the subroutine, the second
column represents the value expected by the table instruction, and the third
column is the result to be returned. The following value has been calculated
for the independent variable, X:

31 16 15

NOT USED I 0 0 0 0 0 0 0 0 1 0 10 1 1 0 1 I

MOTOROLA CPU32 REFERENCE MANUAL 4-197

•

•

As an 8-bit value, using the upper four bits as the table offset and the lower
four bits as the interpolation fraction, the following results should be obtained
from a table lookup subroutine:

Table Entry' Offset. Dx(4:7) = $8 = 11
Interpolation Fraction. Dx(0:3) = $D = 13

Thus, Y is calculated as follows:

Y =80 + (13(64- 80))/16 = 67

If the 8-bit value for X were to be used directly by the table instruction, the
interpolation would incorrectly be between entries 0 and 1. To get the data
in the correct format, it must be shifted to the left four places.

LSL.W #4,Dx

The new range for X is 0 ~ X ~ 4096; however, since the shift zero-filled the
least significant digits, the interpolation fraction can only take on one of 16
values. After the shift operation, Dx contains the following value:

31 16 15

NOT USED 100001 01 1 1 1 01 0000 I

Execution of the table instruction using the new value in Dx, yields:

Table Entry Offset. Dx(8: 15) = $08 = 11
Interpolation Fraction. Dx(0:7) = $DO = 208

Thus, Y is calculated as follows:

Y=80 + (208(64-80))/256=67

4.6.4 Table Example 4: Maintaining Precision

4-198

In this example, three table lookup and interpolations (TLls) are performed
and the results summed. The calculation is done twice; once with the result
of each TLI rounded before the addition and again with only the final result

CPU32 REFERENCE MANUAL MOTOROLA

rounded. Assume that the result of the three interpolations are as follows.
The "." indicates the binary radix point.

TLI #1 0100 0000.0111 0000

TLI #2 0011 1111.0111 0000

TLI #3 0000 0001 .0111 0000

First, the results of each TLI are rounded using the round-to-nearest-even
algorithm of TBLS. The following values represent the values that would be
returned by TBLS:

TLI #1 0100 0000.

TLI #2 0011 1111 .

TLI #3 0000 0001 .

Summing, the following result is obtained:

0100 0000.
0011 1111.
0000 0001.

1000 0000.

Using the same TLI results,the sum is calculated and then rounded according
to the same algorithm.

0100 0000.0111 0000
0011 1111. 0111 0000
0000 0001.0111 0000

1000 0001 0101 0000

Rounding yields:

1.000 0001.

MOTOROLA CPU32 REFERENCE MANUAL 4-199

•

•

Since the second result is the more desirable of the two, the following code
sequence illustrates how the addition of a series of table interpolations could
be performed without losing any precision in the intermediate results:

TBLSN.B
TBLSN.B
TBLSN.B
AOO.L
AOO.L
ASR.L
BCC.S
AOOO
L 1 ...

(ea),Ox
(ea),Om
(ea),OI
Ox,Om
Om,OI
8,01
L1
L 1,01

Long additions avoid
problems with carry

Move radix point
Fraction MSB in carry
Simple half round

4.6.5 Table Example 5: Surface Interpolations

4-200

The various forms of table can be used to perform surface (30) TLis. However,
since the calculation must be split into a series of 20 TLls, the possibility of
losing precision in the intermediate results is possible. The following code
sequence, incorporating both TBLS and TBLSN, eliminates this possibility.

MOVE.W
TBLSN.B
TBLSN.B
TBLS.W
ASR.L
BCC.S
AOOO.(size)
L 1 ...

Ox, 01
(ea), Ox
(ea), 01
Ox/Ol, Om
8, Om
L1
#1, Om

Copy entry number and fraction #

Surface interpolation w/Round
Read just the result
No round necessary
Half round up

At the beginning of this code sequence, Ox should contain the fraction and
entry number for the two TLis. Om contains the fraction for the surface
interpolation. The two (ea) fields in the calls to TBLSN point to consecutive
columns in the 30 table. The size of TBLS must be word if the size of TBLSN
was byte and long word if TBLSN was word. The increased size of TBLS is
a result of increasing the number of significant digits to accommodate the
scaled fractional result of the 20 TLis.

CPU32 REFERENCE MANUAL MOTOROLA

4.7 NESTED SUBROUTINE CALLS

The LINK instruction pushes an address onto the stack, saves the stack address
at which the address is stored, and reserves an area of the stack. Using this
instruction in a series of subroutine calls results in a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by
loading an address into the stack pointer and pulling the value at that address
from the stack. When the operand of the instruction is the address of the link
address at the bottom of a stack frame, the effect is to remove the stack
frame from the stack and from the linked list.

4.8 PIPELINE SYNCHRONIZATION WITH THE NOP INSTRUCTION

Although the no operation (NOP) instruction performs no visible operation,
it forces synchronization of the instruction pipeline by waiting for all pending III ..
bus cycles to complete. All previous instructions complete execution before
the NOP begins.

MOTOROLA CPU32 REFERENCE MANUAL 4-201

4-202 CPU32 REFERENCE MANUAL MOTOROLA

SECTION 5
PROCESSING STATES

This section describes the processing states of the CPU32. It describes the
functions of the bits in the supervisor portion of the status register and the
actions taken by the processor in response to exception conditions.

Unless the processor is halted, it is always in the normal, background, or
exception processing state. Whenever the processor is executing instructions
or fetching instructions or operands, it is in the normal processing state. The
stopped state, which the processor enters when a STOP or LPSTOP instruc­
tion is executed, is a special case of the normal state in which no further bus
cycles are generated.

NOTE

Exception processing refers specifically to the transition from normal
processing of a program to normal processing of system routines,
interrupt routines, and other exception handlers. Exception proc­
essing includes all stacking operations, the fetch of the exception
vector, and filling of the instruction pipeline caused by an exception.
It has completed when execution of the first instruction of the ex­
ception handler routine begins.

The processor enters the exception processing state when an interrupt is
acknowledged, when an instruction is traced or results in a trap, or when
some other exceptional condition arises. Execution of certain instructions or
unusual conditions occurring during the execution of any instructions can
cause exceptions. External conditions, such as interrupts, breakpoint re­
quests, bus errors, and some coprocessor responses, also cause exceptions.
Exception processing provides an efficient transfer of control to handlers and
routines that process the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus
error or generates an address error while in the exception processing state.
This type of failure halts the processor. For example, if during the exception
processing of one bus error another bus error occurs, the CPU32 has not
completed the transition to normal processing; therefore, the processor as­
sumes that the system is not operational and halts. Only a reset external to

MOTOROLA CPU32 REFERENCE. MANUAL 5-1

•

•

the CPU can restart a halted processor. (When the processor executes a STOP
or LPSTOP instruction, it is in a special type of normal processing state -
one without bus cycles. It is stopped, not halted.)

5.1 PRIVILEGE LEVELS

The processor operates at one of two levels of privilege - user or supervisor.
The supervisor level has higher privileges than the user level. Not all instruc­
tions are permitted to execute in the lower privileged user level, but all
instructions are available at the supervisor level. This scheme allows a sep­
aration of supervisor and user levels so the supervisor can protect system
resources from uncontrolled access. The processor uses the privilege level
indicated by the S bit in the status register to select either the user or su­
pervisor privilege level and either the user stack pointer or a supervisor stack
pointer for stack operations. The processor identifies a bus access (supervisor
or user mode) via the function codes to maintain differentiation between
supervisor and user levels.

In many systems, the majority of programs execute at the user level. User
programs can access only their own code and data areas and can be restricted
from accessing other information. The operating system, which typically
executes at the supervisor privilege level, has access to all resources, per­
forms the overhead tasks for the user level programs, and coordinates their
activities.

5.1.1 Supervisor Privilege Level

5-2

The supervisor level is the higher privilege level. For instruction execution,
the supervisor state is determined by the S bit of the status register; if the
S bit is set, the supervisor level applies, and all instructions are executable.
The bus cycles generated for instructions executed in supervisor level are
normally classified as supervisor references, and the values of the function
codes on FC2-FCO refer to supervisor address spaces.

All exception processing is performed at the supervisor level. All bus cycles
generated during exception processing are supervisor references, and all
stack accesses use the supervisor stack pointer.

CPU32 REFERENCE MANUAL MOTOROLA

5.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined
by the S bit of the status register; if the S bit is clear, the processor executes
instructions at the user privilege level.

Most instructions execute at either privilege level, but some instructions that
have important system effects are privileged and can only be executed at
the supervisor level. For instance, userprograms are not permitted to execute
the STOP, LPSTOP, or RESET instructions. To prevent a user program from
entering the privileged level, except in a controlled manner, instructions that
can alter the S bit in the status register are privileged. The TRAP #n instruction
provides controlled access to operating system services for user programs.

The bus cycles for an instruction executed at the user privilege level are
classified as user references, and the values ofthe function codes on FC2-FCO
specify user address spaces. While the processor is at the user level, refer­
ences to the system stack pointer implicitly, or to address register seven (A7)
explicitly, refer to the user stack pointer (USP).

5.1.3 Changing Privilege Level

To change from the user to the supervisor privilege level, one of the condi­
tions that causes the processor to perform exception processing must occur.
Exception processing saves the current values of the S bit as well as the
remainder of the status register on the supervisor stack, and then sets the S
bit, forcing the processor into the supervisor privilege level. Execution of
instructions continues at the supervisor level to process the exception con­
dition.

To return to the user privilege level, a system routine must execute one of
the following instructions: MOVE to SR, ANDI to SR, EORI toSR, ORI to SR,
or RTE. These instructions execute at the supervisor privilege level and can
modify the S bit of the status register. After these instructions execute, the
instruction pipeline is flushed and is refilled from the appropriate address
space.

The RTE instruction returns to the program that was executing when the
exception occurred. It restores the exception stack frame saved on the super­
visor stack. If the frame on top of the stack was generated by an interrupt,
breakpoint, trap, or instruction exception, the RTE instruction restores the
status register and program counter to the values saved on the supervisor

MOTOROLA CPU32 REFERENCE MANUAL 5-3

•

stack. The processor then continues execution at the restored program counter
address and at the privilege level determined by the S bit of the restored
status register. If the frame on top 'the stack was generated by a bus fault
(bus error or address error exception), the RTE instruction restores the entire
saved processor state from the stack.

5.2 ADDRESS SPACE TYPES

5-4

The processor specifies a target address space for every bus cycle with the
function code signals according to the access required. In addition to distin­
guishing between supervisor/user and program/data, the processor can iden­
tify special processor cycles, such as the interrupt acknowledge cycle or the
LPSTOP broadcast cycle. Table 5-1 lists the access types defined for the
CPU32 and the corresponding values of function codes FC2-FCO.

The memory locations of user program and data accesses are not predefined.
Neither are the locations of supervisor data space. During reset, the first two
long words beginning at memory location zero in the supervisor program
space are used for processor initialization. No other memory locations are
explicitly defined by the CPU32.

A function code of $7 (FC2: FCO = 111) selects the CPU address space. This
special address space does not contain instructions or operands but is reserved
for special processor functions. The processor uses accesses in this space
to communicate with external devices for special purposes. For example, all
M68000 processors use the CPU space for interrupt acknowledge cycles. The
CPU32 also generates CPU space accesses for breakpoint acknowledge and
the LPSTOP broadcast.

Table 5-1. Address Space Encodings

FC2 FC1 FCO Address Space

0 0 0 (Undefined Reserved)*

0 0 1 User Data Space

0 1 0 User Prog ram Space

0 1 1 (Undefined Reserved)*

1 0 0 (Undefined Reserved)*

1 0 1 Supervisor Data Space

1 1 0 Supervisor Program Space

1 1 1 CPU Space

*Address space 3 is reserved for user definition; 0
and 4 are reserved for future use by Motorola.

CPU32 REFERENCE MANUAL MOTOROLA

Supervisor programs can use the MOVES instruction to access all address
spaces, including the user spaces and the CPU address space. Although the
MOVES instruction can be used to generate CPU space cycles, doing so may
interfere with proper system operation. Thus, the use of MOVES to access
the CPU space should be done with caution.

The following formats represent the information presented on the address
bus for various CPU space transactions. The CPU space type field resides on
bits A 19-A 16 and indicates the CPU space function the processor is per­
forming. The functionality of address bits A5-AO is particular to the type of
function being performed. Since address bits A31-A20 are not present on
all implementations of M68000 processors, they cannot be essential for de­
coding CPU space transactions and are insignificant. Currently, only five of
the possible 16 encodings of A19-A16 are defined: 0000,0001,0010,0011,
and 1111. Of these, only 0000, 0011, and 1111 are supported by the CPU32.

5.2.1 Type 0000 - Breakpoint

This CPU space type is used as a breakpoint acknowledge.

31 5 4 2 1 0

I 0 a 0 I BKPT # I T I 0 I

The BKPT# field on A4-A2 indicates the breakpoint number. Software break­
points will set this value to the number of the executing breakpoint instruc­
tion. Hardware breakpoints always set BKPT # to 7 (%111).

The T bit on A 1 designates the type of breakpoints. T = 0 indicates a software
breakpoint; T = 1 indicates a hardware breakpoint.

5.2.2 Type 0001 - MMU Access

This type of access is not supported by the CPU32 processor. This space is
reserved for future use.

5.2.3 Type 0010 - Coprocessor Access

This type of access is not supported by the CPU32 processor. This space is
reserved for future use.

MOTOROLA CPU32 REFERENCE MANUAL 5-5

•

5.2.4 Type 0011 - Internal Register Access

This CPU space type is used to access certain critical system configuration
or control registers. There is a single register on the CPU32 which resides in
CPU space, the interrupt mask register in the external bus interface. This
register is written to by the LPSTOP instruction to mask off external interrupts
below the CPU mask level while in STOP mode. The levels on A3-A 1 indicate
the encoded CPU interrupt mask level.

31 18 17 1 0

0000000000000 1 1 1 1 1 1 1 1 1 1

000000000000

15 3 2 1 0

These registers will also reside in CPU space 3 and are only accessible through
the MOVES command. The general format of this CPU space type is defined
as follows:

31 18 17 16 15 12 11 8 7

1000000000000001111cccciMMMMIAAAAAAAAI

A15-A12 is used as a 1 of 16 external chip select.
A11-A8 is used as a 1 of 16 internal module select.
A7-AO is used as a 1 of 256 module register address.

5.2.5 Type 1111 - Interrupt Acknowledge

This CPU space type is used for interrupt acknowledge. The levels on A3-A 1
indicate the encoded interrupt level being acknowledged.

31 5 4

I 1 I LEVEL 1

5.3 EXCEPTION PROCESSING

5-6

An exception is defined as a special condition that pre-empts normal proc­
essing. Both internal and external conditions cause exceptions. External con­
ditions that cause exceptions are interrupts from external devices, bus errors,
breakpoint requests, and reset. Instructions, address errors, tracing, and
breakpoints are internal conditions that cause exceptions. The TRAP, TRAPcc,
TRAPV, CHK, CHK2, RTE, and DIV instructions can all generate exceptions
as part of their normal execution. In addition, illegal instructions and privilege
violations cause exceptions.

CPU32 REFERENCE MANUAL MOTOROLA

Exception processing, which is the transition from the normal processing of
a program to the processing required for the exception condition, involves
the exception vector table and an exception stack frame. The following para­
graphs describe the exception vector table and a generalized exception stack
frame. Exception processing is discussed in detail in SECTION 6 EXCEPTION
PROCESSING.

5.3.1 Exception Vectors

The vector base register (VBR) contains the base address of the 1024-byte
exception vector table, which consists of 256 exception vectors. Exception
vectors contain the memory addresses of routines that begin execution at
the completion of exception processing. These routines perform a series of
operations appropriate for the corresponding exceptions. Because the ex­
ception vectors contain memory addresses, each vector consists of one long
word, except for the reset vector. The reset vector consists of two long words:
the address used to initialize the supervisor stack pointer and the address
used to initialize the program counter.

The address of an exception vector is derived from an 8-bit vector number
and the VBR. The vector numbers for some exceptions are obtained from an
external device; other numbers are supplied automatically by the processor.
The processor multiplies the vector number by four to calculate the vector
offset, which it adds to the VBR. The sum is the memory address of the
vector. All exception vectors are located in supervisor data space, except the
reset vector, which is located in supervisor program space. Only the initial
reset vector is fixed in the processor's memory map; once initialization is
complete, there are no fixed assignments. Since the VBR provides the base
address of the vector table, the vector table can be located anywhere in
memory; it can even be dynamically relocated for each task that is executed
by an operating system. Details of exception processing are provided in
SECTION 6 EXCEPTION PROCESSING, and Table 6-1 lists the exception vec­
tor assignments.

5.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor
context on the top of the supervisor stack. This context is organized in a
format called the exception stack frame. This information always includes a
copy of the status register, the program counter, the vector offset of the
vector, and the frame format field. The frame format field identifies the type

MOTOROLA CPU32 REFERENCE MANUAL 5-7

•

5-8

of stack frame. The RTE instruction uses the value in the format field to
properly restore the information stored in the stack frame and to deallocate
the stack space. The general form of the exception stack frame is illustrated
in Figure 5-1. Refer to SECTION 6 EXCEPTION PROCESSING for a complete
list of exception stack frames.

STATUS REGISTER

PROGRAM COUNTER

FORMAT I VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(0, 2, OR 8 WORDS, IF NEEDEDl

Figure 5-1. General Exception Stack Frame

CPU32 REFERENCE MANUAL MOTOROLA

SECTION 6
EXCEPTION PROCESSING

Processing an exception occurs in four steps, with variations for different
exception causes. During the first step, atemporary copy ofthe status register
is made, and the status register is set for exception processing. During the
second step, the exception vector is determined; during the third step, the
current processor context is saved. During the fourth step, a new context is
obtained, and the processor switches to instruction processing.

6.1 EXCEPTION VECTORS

Exception vectors are memory locations from which the processor fetches
the address of a routine to handle that exception. All exception vectors are
one long word in length, except for the reset vector, which is two long words
in length. All exception vectors lie in the supervisor data address space,
except for the reset vector located in the supervisor program address space.
A vector number is an 8-bit number. This vector number is multiplied by four
to form the vector offset. The vector offset is added to the vector base register
(VBR) during exception processing to arrive at a memory address. Vector
numbers are generated internally or externally, depending on the cause of
the exception.

As shown in Table 6-1, 192 vectors are reserved for user definition as interrupt
vectors, and 64 vectors are defined by the processor. However, there is no
protection on the first 64 vectors; therefore, external devices may use vectors
reserved for internal purposes at the discretion of the systems designer. This
practice, however, is strongly discouraged.

6.1.1 Types of Exceptions

Exceptions can be generated by either internal or external causes. The exter­
nally generated exceptions are interrupts, bus errors, breakpoint, and reset
requests. The interrupts are requests from peripheral devices for processor
action, the breakpoints are requests from development equipment for pro­
cessor action, and bus errors and reset are used for access control and

MOTOROLA CPU32 REFERENCE MANUAL 6-1

•

6-2

Table 6-1. Exception Vector Assignments

Vector Vector Offset

Number(s) Dec Hex Space Assignment

0 0 000 SP Reset: Initial Stack Pointer
1 4 004 SP Reset: Initial Program Counter
2 8 008 SO Bus Error
3 12 OOC SO Address Error

4 16 010 SO Illegal Instruction
5 20 014 SO Zero Divide
6 24 018 SO CHK, CHK2 Instructions
7 28 01C SO TRAPcc, TRAPV Instructions

8 32 020 SO Privilege Violation
9 36 024 SO Trace

10 40 028 SO Line 1010 Emulator
11 44 02C SO Line 1111 Emulator

12 48 030 SO Hardware Breakpoint
13 52 034 SO (Reserved for Coprocessor Protocol Violation)
14 56 038 SO Format Error and
15 60 03C SO Uninitialized Interrupt

16-23 64 040 SO (Unassigned, Reserved)
92 05C -

24 96 060 SO Spurious Interrupt
25 100 064 SO Level 1 Interrupt Autovector
26 104 068 SO Level 2 Interrupt Autovector
27 108 06C SO Level 3 Interrupt Autovector

28 112 070 SO Level 4 Interrupt Autovector
29 116 074 SO Level 5 Interrupt Autovector
30 120 078 SO Level 6 Interrupt Autovector
31 124 07C SO Level 7 Interrupt Autovector

32-47 128 080 SO TRAP Instruction Vectors, 0-15
188 OBC -

48-58 192 OCO SO (Reserved for Coprocessor)
232 OE8 -

59-63 236 OEC SO (Unassigned, Reserved)
252 OFC -

64-255 256 100 SO User-Defined Vectors
1020 3FC (192)

processor restart. The internally generated exceptions come from instruc­
tions, address errors, tracing, or breakpoint instructions. The TRAP, TRAPcc,
TRAPV, BKPT,CHK, CHK2, RTE, and DIV instructions can generate exceptions
as part of their normal execution. In addition, illegal instructions, instruction
fetches from odd addresses, word or long-word operand accesses from odd
addresses, and privilege violations cause exceptions.

CPU32 REFERENCE MANUAL MOTOROLA

6.1.2 Multiple Exceptions

The following paragraphs describe the processing that occurs when multiple
exceptions arise simultaneously. Exceptions can be grouped according to
their characteristics and priority as shown in Table 6-2.

The priority relationship between two exceptions determines which is proc­
essed first if both exceptions occur simultaneously. The term Ilprocess" in
this context means the execution of the four steps previously defined:

1. Change processing states (if needed).

2. Determine exception vector.

3. Save old context.

4. Load new context and begin instruction fetches.

Process in this context does not include the execution of the routine pointed
to by the exception vector. As soon as the CPU32 has completed processing
for an exception, it is then ready to begin execution of the exception handler
routine or begin exception processing for other pending exceptions. Also, it
is possible for a higher priority exception to be proce$sed before the com­
pletion of exception processing for lower priority exceptions. For example,
if a bus error occurs during the processing for a trace exception, the bus
error will be processed and handled before the trace exception processing
is completed. However, most exceptions cannot occur during exception proc­
essing, and very few combinations of the exceptions shown in Table 6-2 can
be pending simultaneously.

Table 6-2. Exception Groups

Group/ Exception and Characteristics Priority Relative Priority

0 Reset Aborts all processing (instruction or exception); does
not save old context.

1.1 Address Error Suspends processing (instruction or exception);
1.2 Bus Error saves internal context.

2 BKPT#n, CHK, CHK2, Exception processing is a part of instruction exe-
Divide by Zero, RTE, cution.
TRAP #n, TRAPcc,
TRAPV

3 Illegal Instruction, Line Exception processing begins before instruction is
A, Unimplemented executed.
Line F, Privilege Vio-
lation

4.1 Trace Exception processing begins when current instruc-
4.2 Hardware Breakpoint tion or previous exception processing is completed.
4.3 Interrupt

MOTOROLA CPU32 REFERENCE MANUAL 6-3

•

Group zero (0) is the highest priority; group four (4.3) is the lowest priority.
This priority scheme is very important in determining the order in which
exception handlers are executed in mUltiple-exception situations. As a gen­
eral rule, the lower the priority of an exception, the more quickly the handler
routine for that exception will be executed.

For example, consider the arrival of an interrupt during the execution of a
TRAP instruction while tracing is enabled. The trap exception is processed
first, followed immediately by exception processing for the trace and then
the interrupt. Thus, when the processor resumes normal instruction execu­
tion, it is in the interrupt handler, which returns to the trace handler, which
returns to the trap exception handler. An exception to this rule is the reset
exception, which is the highest priority and the first exception handled, since
all other exceptions are cleared by the reset condition.

6.1.3 Exception Stack Frame

6-4

Exception processing saves the most volatile portion of the current context
on the top of the supervisor stack. This context is organized in a format called
the exception stack frame. This information always includes the status reg­
ister and program counter of the processor when the exception occurred. To
support generiC handlers, the processor places the vector offset in the
exception stack frame. The processor also marks the frame with a frame
format. The format field allows the RTE instruction to identify what infor­
mation is on the stack so that it may be properly restored. The general form
of the exception stack frame is illustrated in Figure 6-1. Although some for­
mats are peculiar to a particular M68000 Family processor, the format 0000
is always legal and indicates that just the first four words of the frame are
present. See 6.4 CPU32 STACK FRAMES for a complete list of CPU32 excep­
tion stack frames.

(I)
W

1:1:(1)
W(I)
:J:w
(!) 1:1:

i:§
<l:

15

FORMAT

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

I VECTOR OFFSET

OTHER PROCESSOR STATE INFORMATION,
DEPENDING ON EXCEPTION

(0, 2, OR 8 WORDS)

Figure 6-1. Exception Stack Frame

CPU32 REFERENCE MANUAL MOTOROLA

6.1.4 Exception Processing Sequence

Exception processing occurs in four identifiable steps. During the first step,
an internal copy is made of the status register. After the copy is made, the
processor state bits in the status register are changed as follows. The S bit
is set, putting the processor into supervisor privilege state. Also, the T1 and
TO bits are cleared, allowing the exception handler to execute unhindered
by tracing. For the reset and interrupt exceptions, the interrupt priority mask
is also updated.

During the second step, the vector number of the exception is determined.
For interrupts, the vector number is obtained by a processor read from CPU
space $F, defined as an interrupt acknowledge. For all other exceptions,
internal logic provides the vector number. This vector number is then used
to generate the address of the exception vector.

For exceptions other than reset, the third step is to save the current processor
status. The exception stack frame is created and placed on the supervisor
stack. The stacked information is dependent on the exception and the context
in which it is being processed. All exception stack frames contain a copy of
the status register (before the exception) and the program counter to return
to following the RTE instruction. Additional information defining the current
context is stacked for some instructions generated and for all bus error and
address error exceptions.

The last step is the same for all exceptions. The exception vector offset is
determined by multiplying the vector number by four. This offset is then
added to the contents of the VBR to determine the memory address of the
exception vector. The new program counter value (and supervisor stack
pointer for the reset exception) is fetched from the exception vector. The
processor then resumes instruction execution. The instruction at the address
given in the exception vector is fetched, and normal instruction decoding
and execution is started.

6.2 PROCESSING OF SPECIFIC EXCEPTIONS

Exceptions have a number of sources, and each exception has processing
that is peculiar to it. This section details the sources of exceptions, how each
arises, and how each is processed.

MOTOROLA CPU32 REFERENCE MANUAL 6-5

•

6.2.1 Reset

Assertion of RESET by external hardware or assertion of the internal RESET
signal by an internal module causes a reset exception. The reset exception
has the highest priority of any exception; it provides for system initialization
and recovery from catastrophic failure. When it is recognized, reset exception
aborts any processing in progress, and that processing cannot be recovered.
Figure 6-2 is a flowchart of the reset exception, which performs the following
operations:

1. Clears both trace bits in the status register to disable tracing.

2. Places the processor in the supervisor privilege level by setting the
supervisor bit in the status register.

3. Sets the processor interrupt priority mask to the highest priority level
(level seven).

4. Initializes the vector base register to zero ($00000000).

5. Generates a vector number to reference the reset exception vector (two
long words) at offset zero in the supervisor program address space.

6. Loads the first long word of the reset exception vector into the interrupt
stack pointer.

7. Loads the second long word of the reset exception vector into the pro­
gram counter.

After the initial instruction prefetches, program execution begins at the ad­
dress in the program counter. The reset exception does not save the value
of either the program counter or the status register. If a bus error or address
error occurs during the exception processing sequence for a reset, a double
bus fault occurs. The processor halts, and the HALT signal is asserted to
indicate the halted condition. Execution ofthe reset instruction does not cause
a reset exception or affect any internal registers, but it does cause the CPU32
to assert the RESET signal, resetting all internal and external peripherals.

6.2.2 Bus Error

6-6

Bus error exceptions occur when an assertion of the BERR signal is acknowl­
edged. The BERR signal is asserted by one of three sources:

1. External logic by assertion of the BERR input pin, or

2. Direct assertion of the internal BERR signal by an internal module, or

3. Direct assertion of the internal BERR signal by the on-chip hardware
watchdog after detecting a no-response condition.

CPU32 REFERENCE MANUAL MOTOROLA

(ENTRY

I
1 • S
o • TO,T1

$7 l 12:10
$0 VBR

OTHERWISE
SP. (VECTOR # 0)

OTHERWISE
PC • (VECTOR # 1)

OTHERWISE BEGIN
INSTRUCTION
EXECUTION

)

d=J
USERRORI
ADDRESS
ERROR

(DOUBLE BUS FAULT)

Figure 6-2. Reset Operation Flowchart

The time at which the bus error is acknowledged differs for instruction and
data accesses. If the aborted bus cycle is a data access, the processor
immediately begins exception processing, except in the case of released
operand writes. Released write bus errors are delayed until the next instruc­
tion boundary or until another operand access is attempted. If the aborted
bus cycle is an instruction prefetch, the processor will delay taking the ex­
ception until it attempts to use the prefetched information. For example, a
branch instruction may flush an aborted prefetch and, since that word is not

MOTOROLA CPU32 REFERENCE MANUAL 6-7

•

accessed, no exception occurs. Because of instruction prefetch, exception
processing of an aborted instruction fetch is delayed until the processor
actually attempts to use the aborted information.

Exception processing for bus error exceptions follows the normal exception
flow. The status register is copied, the supervisor state is entered, and the
tracing is disabled. A vector number is generated to refer to the bus error
vector. Since the processor was not necessarily between instructions when
the bus error exception request was made, preserving the context of the
processor is more involved than for other exceptions. Any registers altered
within the faulted-instruction effective address calculation are restored to
their initial values. Information identifying the faulted bus cycle is placed on
the stack in a special status word (SSW). The SSW contains specific infor­
mation about the aborted access: its size, whether it was a read or a write,
the bus cycle type, and the function code when the bus error occurred. The
fault address, bus error exception vector number, program counter, and copy
of the status register are also saved. Several bus error stack format organi­
zations are utilized to provide additional information regarding the nature of
the fault. After stacking,~the processor continues instruction processing at
the address contained in the bus error exception vector (vector 2).

If a bus error occurs during the exception processing for a bus error, address
error, or reset or while the processor is loading information from the stack
during the execution of an RTE instruction, the processor halts. This cessation
simplifies the detection of catastrophic system failure, since the processor
removes itself from the system rather than modifying the current state of
the stacks and memory. Only the assertion of RESET can restart a halted
processor.

6.2.3 Address Error

6-8

Address error exceptions occur when the processor attempts to access an
instruction, word operand, or long-word operand at an odd address. The
effect is much like an internally generated bus error initiating exception proc­
essing. After exception processing commences, the sequence is the same as
that for bus error, except that the vector number refers to the address error
vector. If an address error occurs during the exception processing for a bus
error, address error, or reset, the processor is halted.

The time at which the address error is acknowledged is dependent on several
factors. If the aborted bus cycle was a data space access, the processor begins
exception processing when an attempt is made to use the data from the bus

CPU32 REFERENCE MANUAL MOTOROLA

cycle, or, in the case of a released write, at the next instruction boundary or
attempted operand access. The prefetch mechanism delays exceptions until
the processor actually attempts to use the aborted cycle's information. There­
fore, an address error on a change in flow (e.g., a branch to an odd address)
is delayed until the end of the instruction that affected the program counter.
For this case, the fault address and return program counter wi" be the odd
address. The current instruction program counter is that of the instruction
which resulted in the exception.

6.2.4 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor
recognition of abnormal conditions during instruction execution or from use
of specific trapping instructions.

Some instructions are used specifically to generate traps. The TRAP instruc­
tion, which always forces an exception, is useful for implementing system
calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions
force an exception if the user program detects a run-time error, which may
be an arithmetic overflow or a value out of bounds. The DIVS and DIVU
instructions will force an exception if a division operation is attempted with
a divisor of zero.

Exception processing for traps is straightforward. The status register is cop­
ied, the supervisor state is entered, and the trace state is turned off. Thus, if
tracing was enabled when the instruction causing a trap began execution, a
trace exception will be generated by the instruction, but the trap handler
routine will not be traced (the trap exception will be processed first, then the
trace exception). The vector number is internally generated; for the TRAP
instruction, part of the vector number comes from the instruction itself. The
trap vector number, program counter, and copy of the status register are
saved on the supervisor stack. The saved value of the program counter is
the address of the instruction following the instruction which generated the
trap. For all instruction traps other than TRAP, a pointer to the instruction
causing the trap is also saved as the fifth and sixth words of the exception
stack frame. Finally, instruction execution commences at the address con­
tained in the exception vector.

MOTOROLA CPU32 REFERENCE MANUAL 6-9

•

6.2.5 Software Breakpoints

To use the CPU32 in a hardware emulator, the processor must provide a
. means of inserting breakpoints intothe target code, giving a clear announce­

ment when it has reached a breakpoint. For the MC68000 and MC68008, an
illegal instruction can be inserted at the breakpoint and detected when the
processor is fetched from the illegal instruction exception vector location.
Since the VBR on the MC68010, MC68020, and CPU32 allows arbitrary
relocation of the exception vectors, the exception vector address cannot serve
as a reliable indication that the processor is taking the breakpoint. On the
MC68010, MC68020, and CPU32, this function is provided by extending the
functionality of a set of the illegal instructions ($4848-$484F) to serve as
breakpoint instructions.

When a breakpoint instruction is executed, the CPU32 performs a read from
CPU space $0 at a location corresponding to the breakpoint number. If this
bus cycle is terminated by BERR, the processor then proceeds to perform
the illegal instruction exception processing. If the bus cycle is terminated by
DSACK, the processor uses the data returned to replace the breakpoint in
the internal instruction pipeline and begins execution of that instruction. See
5.2 ADDRESS SPACE TYPES for detailed descriptions of the various CPU
space operations.

6.2.6 Hardware Breakpoints

6-10

In addition to software breakpoints, the CPU32 also recognizes hardware
breakpoint requests. Breakpoint requests arriving at the processor do not
force immediate exception processing but are made pending. Pending break­
points are detected between instruction executions and at the end of excep­
tion processing. When a hardware breakpoint is acknowledged, the CPU
performs a read from CPU space $0 at location $1 E (see 5.2 ADDRESS SPACE
TYPES). If the bus cycle is terminated normally, instruction execution con­
tinues with the next instruction as if a breakpoint request had not been
received. On the other hand, if the bus cycle is terminated by BERR, the CPU
begins exception processing. The status register is copied, the supervisor
state is entered, and the trace state is turned off. The vector number is
internally generated; vector 12 (offset $30) is assigned to hardware break­
points. The program counter of the currently executing instruction, program
counter of the next instruction to execute, and copy of the status register are
saved on the supervisor stack. Data returned during this bus cycle is always
ignored.

CPU32 REFERENCE MANUAL MOTOROLA

6.2.7 Format Error

Just as the processor checks that the instruction words fetched are valid, the
processor also performs some checks of data values for control operations.
The RTE instruction checks the validity of the stack format code and, in the
case of the bus cycle fault format, the validity of the data to be loaded into
the various internal registers (i.e., the version number of the processor that
generated the frame). This check ensures that the program is not making
erroneous assumptions about internal state information in the stack frame.

If this check determines that the format of the control data is improper, the
processor generates a format error exception. This exception saves a four­
word format exception frame and then vectors through vector table entry
number 14. The stacked program counter is the address ofthe RTE instruction
that discovered the format error.

6.2.8 Illegal or Unimplemented Instructions

'"egal instruction is the term used to refer to any of the word bit patterns
which 1) do not correspond to the bit pattern of the first word of a legal
CPU32 instruction, 2) are an undefined register specification field in the first
extension word of a MOVEC instruction, or 3) are an indexed addressing
mode extension word with bits [5:4] = 00 or bits [3:0] =F 0000 .

The word patterns with bits [15:12] equal to 1010 (referred to as A-line opcodes)
are distinguished as unimplemented instructions, and a separate exception
vector (vector 10, offset $28) is given to this pattern to permit efficient em­
ulation. If during instruction execution, such an illegal instruction is fetched,
an illegal instruction exception occurs. This facility allows the operating sys­
tem to detect program errors or to emulate unimplemented instructions in
software.

The word patterns with bits [15: 12] equal to 1111 (referred to as F-line opcodes)
are used for instruction set extensions to the M68000 Family. They may
generate an unimplemented instruction exception. This exception is caused
by the first extension word of the instruction or by the addressing mode
extension word. If the F-line instruction is an unimplemented instruction,
then a separate F-line emulation vector (vector 11, offset $2C) is used for the
exception vector.

MOTOROLA CPU32 REFERENCE MANUAL 6-11

•

•

All unimplemented instructions are reserved for use by Motorola for
enhancements and extensions to the basic M68000 architecture. Opcode
pattern $4AFC is defined to be illegal on all M68000 Family members. Those
customers requiring the use of an unimplemented opcode for synthesis of
"custom instructions," operating system calls, etc. should use this opcode.

Exception processing for illegal and unimplemented instructions is similar
to that for traps. After the instruction is fetched and decoding is attempted,
the processor determines that execution of an illegal instruction is being
attempted and starts exception processing before altering any registers. The
status register is copied, the supervisor state is entered, and tracing is dis­
abled. The vector number is generated to refer to the illegal instruction vector
or, in the case of unimplemented instructions, to the corresponding emu­
lation vector. The illegal instruction vector number, current program counter,
and copy of the status register are saved on the supervisor stack, with the
saved value of the program counter being the address of the illegal or
unimplemented instruction. Finally, instruction execution commences at the
address contained in the exception vector.

6.2.9 Privilege Violations

6-12

To provide system security, various instructions are privileged. An attempt
to execute one of the privileged instructions while in the user privilege state
will cause an exception. The privileged exceptions are as follows:

• AND Immediate to SR

• EOR Immediate to SR

• LPSTOP

• MOVE from SR

• MOVE to SR

• MOVE USP

• MOVEC

• MOVES

• OR Immediate to SR

• RESET

• RTE

• STOP

CPU32 REFERENCE MANUAL MOTOROLA

Exception processing for privilege violations is nearly identical to that for
illegal instructions. After the instruction is fetched and decoded and the pro­
cessor determines that a privilege violation is being attempted, the processor
starts exception processing before the instruction is executed. The status
register is copied, the supervisor state is entered, and the trace state is turned
off. The vector number is generated to reference the privilege violation vector;
the privilege violation vector number, current program counter, and status
register are saved on the. supervisor stack. The saved value of the program
counter is the address of the first word of the instruction causing the privilege
violation. Finally, instruction execution commences at the address contained
in the privilege violation exception vector.

6.2.10 Tracing

To aid in program development, the M68000 processors include a facility to
allow instruction execution by instruction tracing. The CPU32 also allows
instruction tracing to change program flow. In trace mode, a trace exception
is generated after an instruction is executed, allowing a debugging program
to monitor the execution of a program under test.

The trace facility uses the T1 and TO bits in the supervisor portion of the
status register. If both T bits are clear, tracing is disabled, and instruction
execution proceeds normally (see Table 6-3).

If the T1 bit is clear and the TO bit is set at the beginning of the execution of
an instruction and if that instruction causes the program counter to be updated
in a nonsequential manner, a trace exception is generated after the execution
of that instruction has completed. Instructions that can be traced in this mode
are all branches, jumps, subroutine calls, returns, and status register manip­
ulations. If the branch is not taken, an exception is not generated.

If the T1 bit is set and the TO bit is clear at the beginning of the execution of
any instruction, a trace exception is generated after the execution of that

Table 6-3. Tracing Control

T1 TO Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow

1 0 Trace on Instruction Execution

1 1 (Undefined; Reserved)

MOTOROLA CPU32 REFERENCE MANUAL 6-13

•

6-14

instruction has completed. If the instruction is not executed, either because
an interrupt is taken orthe instruction is illegal, unimplemented, or privileged,
the trace exception does not occur. The trace exception also does not occur
if the instruction is aborted by a reset, bus error, or address error exception.
In those cases, the trace exception is deferred until after execution of the
instruction has successfully completed. If the instruction is executed and an
interrupt is pending on completion, the trace exception is processed before
the interrupt exception. If, during the execution of the instruction, an excep­
tion is forced by that instruction, the forced exception is prOcessed before
the trace exception.

If an instruction is executed and a breakpoint is pending upon completion
of the instruction, the trace exception is processed before the breakpoint.

In general terms, a trace exception can be viewed as an extension to the
function of any instruction. If a trace exception is generated by an instruction,
the execution of that instruction is not complete until the trace exception
processing associated with it is completed. If the instruction does not com­
plete execution due to a bus error or address error exception, trace exception
processing is deferred until after the execution of the suspended instruction
is restarted (by the associated RTE) and completed normally. If the instruction
is executed and an interrupt is pending on completion, the trace exception
processing is completed before the interrupt exception processing starts. If,
during the execution of the instruction, an exception is forced by that
instruction, the forced exception is processed before the trace exception is
processed.

If the processor is in trace mode when an attempt is made to execute an
illegal, unimplemented, or privileged instruction, that instruction will not
cause a trace since it is not executed. This is of particular importance to an
instruction emulation routine that performs the instruction function, adjusts
the stacked program counter to beyond the unimplemented instruction, and
then returns. Before the return is executed, the status register on the stack
should be checked to determine if tracing is on. If tracing is on, the trace
exception processing should also be emulated for the trace exception handler
to account for the emulated instruction.

The exception processing for trace starts at the end of normal processing for
the traced instruction and before the start of the next instruction. An internal
copy is made of the status register. The transition to supervisor state is made,
and the T bits of the status register are cleared, disabling further tracing. A
vector number is generated to reference the trace exception vector. The
address of the instruction that caused the trace exception, the trace exception

CPU32 REFERENCE MANUAL MOTOROLA

vector offset, the current program counter, and the copy of the status register
are saved on the supervisor stack. The saved value of the program counter
is the address of the next instruction to be executed. Instruction execution
commences at the address contained in the trace exception vector.

Tracing affects the normal operation of two instructions. If the STOP or LPSTOP
instructions begin execution with T1 set, a trace exception will be taken after
the STOP (LPSTOP) instruction loads the status register. Upon return from
the trace handler routine, execution will continue with the instruction follow­
ing STOP (LPSTOP)' and the processor will never enter the stopped condition.
Also, an RTE from a bus error or address error will not be traced because of
the possibility of continuing the instruction from the fault.

6.2.11 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained
within interrupt priorities, allowing an unlimited number of peripheral devices
to interrupt the processor. Interrupt recognition and subsequent processing
are based on the internal interrupt request signals (lRQ7-IRQ1) and the cur­
rent processor priority set in the priority mask (12, 11, IO) 'of the status register.
Interrupt request level zero (lRQ7-IRQ1 negated) indicates that no service is
requested. When interrupt level one through six is requested via IRQ6-IRQ1,
the processor compares the request level with the interrupt mask to deter­
mine whether the interrupt should be processed. Interrupt requests are in­
hibited for all priority levels less than or equal to the current processor priority.
The exception is level seven, which is nonmaskable.

The CPU32 input synchronization circuitry for the IRQ7-IRQ1 control lines
samples these inputs on consecutive rising edges of the processor clock to
synchronize and debounce these signals. An interrupt request held constant
for two consecutive clock periods is considered a valid input; therefore, it is
possible that an interrupt request is held for as short a period as two clock
cycles could be recognized. Valid edges on level seven are latched until
acknowledged.

Interrupt requests arriving at the processor do not force immediate exception
processing but are made pending. Pending interrupts are detected between
instruction executions and at the end of exception processing. If the priority
of the pending interrupt is greater than the current processor priority, the
exception processing sequence is started. First, a copy of the status, register
is saved, the privilege state is set to supervisor, tracing is suppressed, and

MOTOROLA CPU32 REFERENCE MANUAL 6-15

•

the processor priority level is set to the level of the interrupt being acknowl­
edged. The processor fetches the vector number from the interrupting device,
classifying the bus cycle as an interrupt acknowledge (CPU space $F) and
displaying· the encoded level number of the acknowledged interrupt on the
address bus.

If the interrupting device requests automatic vectoring"the processor inter­
nally generates a vector number determined by the in'terrupt level number.
If the response to the interrupt acknowledge bus cycle is a bus error, the
interrupt is taken to be spurious, and the generated vector number references
the spurious interrupt vector. The processor then proceeds with the usual
exception processing, saving the exception vector number, program counter,
and status register on the supervisor stack. The saved value of the program
counter is the address of the instruction which would have been executed
had the interrupt not occurred. The content of the interrupt vector, whose
vector number was previously obtained, is fetched and loaded into the pro­
gram counter, and normal instruction execution commences in the interrupt
handler routine.

Priority level seven is a special case. Level-seven interrupts cannot be inhib­
ited by the interrupt priority mask, thus providing a nonmaskable interrupt
capability. Level-seven requests are necessarily edge triggered to eliminate
continuous servicing and inevitable stack overflow. A level-seven interrupt
is generated 1) each time the interrupt request level changes from some
lower level to level seven (regardless of the processor priority mask level)
or 2) if the request level remains at level seven and the processor priority
mask is changed from level seven to a lower level.

Many M68000 peripherals provide for programmable interrupt vector num­
bers to be used in the interrupt request/acknowledge mechanism of the sys­
tem. If this vector number is not initialized after reset and if the peripheral
must acknowledge an interrupt request, the peripheral should return the
vector number for uninitialized interrupt vector (vector 15).

See the system integration user's manual for detailed information on the
interrupt acknowledge cycle operation.

6.2.12 Return from Exception

6-16

After exception stacking operations have completed for all pending excep­
tions, the processor resumes instruction execution at the address contained
in the vector referenced by the last exception to be processed. Once the

CPU32 REFERENCE MANUAL MOTOROLA

exception handler has completed execution, the processor must return to
the system context in existence prior to the exception (if possible). The mech­
anism to accomplish this action for any exception is the RTE instruction.

When the RTE instruction is executed, the processor examines the stack frame
on top of the supervisor stack to determine if it is a valid frame and what
type of context restoration should be performed. See SECTION 7 DEVELOP­
MENT SUPPORT for a description of each format type. For a normal four­
word frame, the processor updates the status register and program counter
with the data pulled from the stack, increments the supervisor stack pointer
by eight, and resumes normal instruction execution. For the six-word frame,
the status register and program counter are updated from the stack, the active
supervisor stack pointer is incremented by 12, and normal instruction exe­
cution resumes.

For the bus fault frame, the format value on the stack is first checked for
validity. In addition, the version number contained on the stack must match
the version number of the processor that is attempting to read the stack
frame. The version number is located in the most significant byte (bits [15:8])
of the internal register word at location SP + $14 in the stack frame. A validity
check is used to insure that the data in a multiple processor system will be
properly interpreted by the RTE instruction. If the frame is invalid or
inaccessible, a format error or a bus error exception is taken, respectively.
Otherwise, the processor reads the entire frame into the proper internal
registers, deal locates the stack (12 words), and resumes normal processing .
Bus error frames for faults during exception processing require that the RTE
instruction rewrite the faulted stack frame. If an error occurs during any of
the bus cycles required to rewrite the frame, the processor will enter the
halted state.

If a format error or bus error occurs during execution of an RTE instruction
due to any 9f the errors previously described or an illegal format code, the
processor will create a normal four-word or a bus-cycle fault stack frame
below the frame that it was attempting to use. In this way, the faulty stack
frame remains intact and may be examined and repaired by the format error
or bus error exception handler or used by a different type processor (e.g.,
an MC68010, MC68020, or a future M68000 processor) in a multiprocessor
system.

MOTOROLA CPU32 REFERENCE MANUAL 6-17

•

6.3 FAULT RECOVERY

6-18

There are four facets to recovery from the memory fault: recognizing the
fault, saving the processor state, repairing the fault (if possible), and restoring
the processor state. Saving and restoring the processor state are described
in the following paragraphs.

The stack contents are identified by the SSW. In addition to identifying the
fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.

15 14 13 12 11 10 4

I TP I MV I 0 I TR I B1 I BO I RR RM IN I RW I LG I SIZ FUNC

TP - BERR Frame Type
MV - MOVEM in Progress
TR - Trace Pending
B1 - Breakpoint Channel 1 Pending
BO - Breakpoint Channel 0 Pending
RR - Rerun Write Cycle after RTE
RM - Faulted Cycle Was Read-Modify-Write (RMW)
IN -Instruction/Other
RW - Read/Write of Faulted Bus Cycle
LG - Original Operand Size Was Long Word
FUNC - Function Code of Faulted Bus Cycle
SIZ - Remaining Size of Faulted Bus Cycle

The SSW defines the class of the faulted bus operation in the TP field. Two
BERR exception frame types are defined to support faults on prefetch and
operand accesses and exception frame stacking:

o - Operand or prefetch bus fault
1 - Exception processing bus fault

MV is set when the operand transfer portion of the MOVEM instruction is in
progress at the time of the bus fault. If a prefetch bus fault occurs while
recovering from the MOVEM fault (e.g., when refetching the MOVEM opcode
and extension word), both the MV and IN bits will be set in the stacked SSW.

o - MOVEM was not in progress when fault occurred
1 - MOVEM in progress when fault occurred

TR indicates that a trace exception was pending when the bus error exception
was processed; thus, the instruction that generated the trace will not be
restarted upon returning from the exception handler. This includes the MOVEM

CPU32 REFERENCE MANUAL MOTOROLA

and released write bus errors indicated by the assertion of either MV or RR
in the stacked SSW.

o - Trace not pending
1 - Trace pending

B1 indicates that a breakpoint exception was pending on channel 1 (external
breakpoint source) when the bus error exception was processed. Pending
breakpoint status is stacked, regardless of the type of bus error exception
being processed.

o - Breakpoint not pending
1 - Breakpoint pending

BO indicates that a breakpoint exception was pending o'n channel 0 (internal
breakpoint source) when the bus error exception was processed. Pending
breakpoint status is stacked, regardless of the type of bus error exception
being processed.

o - Breakpoint not pending
1 - Breakpoint pending

RR will be set in the stacked SSW if the faulted bus cycle was a released
write. If the write is completed (rerun) in the exception handler, the stacked
RR bit should be cleared before executing the RTE. The bus cycle will be
rerun if the stacked RR bit is set upon returning from the exception handler.
0- Faulted cycle was read, RMW, or unreleased write
1 - Faulted cycle was a released write

Faulted RMW bus cycles set the RM bit in the stacked SSW. This bit is ignored
during unstacking.
0- Faulted cycle was non-RMW cycle
1 - Faulted cycle was either the read or write of an RMW cycle

Instruction prefetch faults are distinguished from operand (both read and
write) faults by the IN bit in the stacked SSW. If IN is cleared, the error was
on an operand cycle; if IN is set, the error was on an instruction prefetch. IN
is ignored during unstacking.
0- Operand
1 - Prefetch

Read and write bus cycles are distinguished by the RW bit in the stacked
SSW. Read bus cycles will set this bit, and write bus cycles will clear this bit
in the stacked SSW. This bit is reloaded into the bus controller if the RR bit
is set during unstacking.

o - Faulted cycle was an operand write
1 - Faulted cycle was a prefetch or operand read

MOTOROLA CPU32 REFERENCE MANUAL 6-19

An original operand size of long word is conveyed in the LG bit in the stacked
SSW. LG is cleared if the original size of the operand was byte or word; SIZ
will indicate the original (and remaining) size. LG is set if the original size of
the operand was long word; SIZ will indicate the remaining size at the time
of the fault. LG is ignored during unstacking.

o - Original operand size was byte or word
1 - Original operand size was long word

The operand size remaining when the fault was detected is available in the
SIZ field of the stacked SSW. This field does not indicate the initial size of
the operand. It also does not necessarily indicate the proper status of a
dynamically sized bus cycle. Dynamic sizing occurs at the external bus and
is transparent to the CPU. The byte size is shown only when the original
operand was a byte. This field is reloaded into the bus controller if the RR
bit is set during unstacking. The SIZ field is encoded as follows:

00 - Long word
01 - Byte
10 - Word
11 - Unused, reserved

The function code for the faulted cycle is stacked in the FUNC field of the
SSW, which is a copy of FC2-FCO for the faulted bus cycle. This field is
reloaded into the bus controller if the RR bit is set during unstacking. All
unused bits are stacked as zeros and are ignored during unstacking. Further
discussion of the SSW is included in 6.3.1 Types of Faults.

6.3.1 Types of Faults

An efficient implementation of instruction restart dictates that faults on some
bus cycles be treated differently than faults on other bus cycles. The CPU32
defines four fault types: released write faults, faults during exception proc­
essing, faults during the operand transfer portion of MOVEM, and faults on
any other bus cycle.

6.3.1.1 TYPE I: RELEASED WRITE FAULTS. CPU32 instruction pipelining is the
overlap of the final instruction write with the execution of the following
instruction. These overlapped writes are referred to as released writes. Since
the machine context is lost (for the instruction that queued the write) as soon
as the following instruction starts, it would not be possible to restart the
faulted instruction.

6-20

Released write faults are taken at the next instruction boundary, and the
stacked program counter is that of the next unexecuted instruction. Should
a subsequent instruction attempt an operand access with a released write

CPU32 REFERENCE MANUAL MOTOROLA

fault pending, the instruction wi" be aborted and the write fault acknowl­
edged. This action prevents any possibility of stale data being used by the
instruction.

The SSW for a released write fault contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5

I 0 I 0 I 0 I TR I 81 I BO I 1 I 0 I 0 I 0 I LG I SIZ FUNC

The trace and breakpoint pending bits (TR, B1, BO) are set ifthe corresponding
exception is pending when the BERR exception is taken. Status regarding
the faulted bus cycle is reflected in the LG, SIZ, and FUNC fields of SSW.

The remainder of the stack contains the program counter of the next unex­
ecuted instruction, the current status register, the address of the faulted
memory location, and the contents of the data buffer which was to be written
to memory. This data is written on the stack in the format depicted in
Figure 6-3.

6.3.1.2 TYPE II: PREFETCH, OPERAND, RMW, and MOVEP FAULTS. The majority
of BERR exceptions are included in this category: a" instruction prefetches,
a" operand reads, a" RMW cycles, and a" operand accesses resulting from
the execution of the MOVEP instruction (except the last write of a MOVEP
Rn,(ea) or the last write of MOVEM, which is a type I fault). The TAS, MOVEP,
and MOVEM instructions account for a" operand writes not considered re- •
leased. •

A" type" faults cause an immediate exception, resulting in the current in­
struction being aborted. Any registers that were altered as the result of an
effective address calculation (i.e., postincrement or predecrement) are re­
stored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5

I 0 I 0 I 0 I 0 I B1 I BO I 0 I RM I IN I RW I LG I SIZ FUNC

The trace pending bit is always cleared in the SSW for type" faults, since
the instruction wi" be restarted upon returning from the handler. Saving the
pending exception on the stack would have resulted in the trace exception
being taken prior to restarting the instruction. Assuming that the exception
handler does not alter the stacked SR trace bits, the trace is requeued when
the instruction is started.

MOTOROLA CPU32 REFERENCE MANUAL 6-21

•

The breakpoint pending bits are stacked in the SSW, even though the
instruction is restarted upon returning from the handler. This stacking avoids
problems with bus state analyzer equipment, which has been programmed
to breakpoint only the first access to a specific location or which is counting
accesses to the programmed location. If this response is not desired, the
exception handler can clear the bits before returning. The RM, IN, RW, LG,
FUNC, and SIZ fields all reflect the type of bus cycle causing the fault. If the
bus cycle was an RMW, the RM bit will be set with the RW bit indicating
whether the fault was on the read or write.

6.3.1.3 TYPE III: FAULTS DURING MOVEM OPERAND TRANSFERS. Bus faults
occurring as a result of a MOVEM operand transfer are classified as type III
faults. Instruction prefetch faults associated with MOVEM are type II faults.

6-22

Type III faults cause an immediate exception, resulting in the current instruc­
tion being aborted. None of the registers altered during execution of the
faulted instruction are restored prior to executing the fault handler, including
any register predecremented as a result of the effective address calculation
or any registers overwritten during the course of instruction execution. Since
postincremented registers are not updated until the end of the instruction,
the register retains its preinstruction value (unless overwritten by operand
movement).

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5

I 0 I 1 I 0 I TR I B1 I BO I RR I 0 I IN I RW I LG I SIZ FUNC

MV is set in the stacked SSW, indicating that the MOVEM should be continued
from the point of the fault upon returning from the exception handler. TR,
B1, and BO are set if the corresponding exception is pending when theBERR
exception is taken. IN is set if a bus fault occurred during an attempt to restart
the instruction while refetching the opcode or an extension word. RW, LG,
SIZ, and FUNC all reflect the type of bus cycle which caused the fault. All
write faults have the RR bit set, indicating that the write should be rerun
upon returning from the exception handler.

The remainder of the stack frame contains the processor's· internal state
necessary to continue the MOVEM with the operand transfer following the
faulted transfer. The next operand to be transferred, incremented or decre­
mented by the operand size, is stored in the faulted address location ($08).

CPU32 REFERENCE MANUAL MOTOROLA

The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 6-3 for the stacking
format.

6.3.1.4 TYPE IV: FAULTS DURING EXCEPTION PROCESSING. The final instance
in which a fault can occur is during exception processing. If the exception is
another address or bus error, the machine halts with the "double bus fault"
condition. However, if the exception is one that causes a four- or six-word
stack frame to be written, a bus cycle fault frame is written below the faulted
exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5

I 1 I 0 I 0 I TR I 81 I 80 I ·0 I 0 I 0 I 1 I LG I SIZ FUNC

TR, B1, and BO are set if the corresponding exception is pending when the
BERR exception is taken.

The contents of the faulted exception stack frame are included in the bus
fault stack frame. The pre-exception status register and the format/vector
word of the faulted frame are stacked. From the format/vector word, the type
of exception can be determined. If the faulted exception stack frame was a
six-word frame, the program counter of the instruction causing the initial
exception is stacked as well. This data is written on the stack in the format
depicted in Figure 6-4. The stacked RTE return address is that to which the
initial exception would have returned.

6.3.2 Correcting the Fault

Methods for correcting type I, II, III, and IV faults are discussed in the following
paragraphs.

6.3.2.1 COMPLETING RELEASED WRITES (TYPE I) VIA SOFTWARE. There are two
methods of completing a faulted released write bus cycle. The first method
is to use a software handler; the second method involves having the bus
cycle rerun by the RTE instruction. To complete the bus cycle in software,
the handler must transfer the data in the stacked image of the data output
buffer to the external location indicated by the image of the fault address in
the address space defined by the function code field of the SSW.

MOTOROLA CPU32 REFERENCE MANUAL 6-23

•

The internal 16-bit data bus requires splitting long operands into two bus
accesses. A fault on the second access of a long operand causes the LG bit
in the SSW to be set with the SIZ field, inaicating the operand size remaining
at the time of the fault. If operand coherency is important, the complete
operand should be rewritten, not just the portion remaining when the fault
occurred. After completion of the bus cycle, the RR bit in the stacked SSW
should be cleared. Failure to clear this bit may result in an attempt by the
RTE to rerun the bus cycle. It is not necessary to adjust the program counter
(or any other stack contents) before executing the RTE instruction.

6.3.2.2 COMPLETING RELEASED WRITES (TYPE I) VIA RTE. Type I faults need
not be completed in a software exception handler since the RTE instruction
can complete the faulted bus cycle. After correcting the cause of the fault,
the handler should execute an RTE instruction. The fault address, data output
buffer, program counter, and status register are restored from the stack. Any
pending breakpoint or trace exceptions, as indicated by the TR, B1, and BO
bits in the stacked SSW, are requeued during the restoration of SSW. As part
of the unstacking operation, the RR bit in the SSW is checked. If set, the SSW,
RW, FUNC, and SIZ fields are copied into the machine. Utilizing the restored
state, the CPU32 initiates a bus cycle to rerun the released write cycle.

Long-word write operand coherency can be maintained only if the stack
contents are adjusted prior to execution of the RTE. The fault address should
be decremented by two if LG is set and SIZ indicates a remaining byte or
word size. SIZ must also be set to long. All other fields should be unaltered.
Utilizing this modified state, the bus controller initiates the bus cycle(s) to
rerun the complete released write operand.

NOTE

Manipulating the stacked SSW value can cause unpredictable re­
sults. The RR bit is checked by RTE; however, the RW bit is not
checked. Therefore, it is possible that the bus cycle rerun by the RTE
instruction will not be a write or will not be to the same address
space as the initial bus cycle. If the bus cycle is a read, the returned
data will be ignored.

6.3.2.3 CORRECTING TYPE II FAULTS VIA RTE. Instructions aborted due to a type
II fault are restarted upon returning from the exception handler. It is imper­
ative that the fault handler perform corrective steps which allow the instruc­
tion to be safely executed when restarted. If the fault was due to a nonresident

6-24 CPU32 REFERENCE MANUAL MOTOROLA

page in a demand-paged virtual memory configuration, the fault address
should be read from the stack, and the corresponding page should be swapped
in. An RTE instruction terminates the exception handler. After unstacking the
machine state, the instruction is refetched and restarted.

6.3.2.4 CORRECTING TYPE III FAULTS VIA SOFTWARE. MOVEM operand fault
recovery is by one of three methods: completion of the instruction in soft­
ware, converting the fault to type II and restarting the instruction via RTE, or
continuing the instruction from the fault via RTE. The preferred method is
the latter of the three. Sufficient information is contained in the stack frame
to complete the instruction in software. After correcting the cause of the
memory fault, the faulted bus cycle should be rerun. The following steps are
required to complete the instruction through software:

1. The MOVEM opcode and extension are read from the location pointed
to by the stacked PC and PC + 2. The handler need not recalculate the
effective address since the next operand address is saved in the stack
frame; however, the effective address field in the opcode must be
examined to determine what updates should be done to the address
register and program counter at the completion of the instruction.

2. Before restarting the instruction, the mask must be adjusted to account
for the operands already transferred. The stacked operand transfer count
is subtracted from 16 to obtain the actual number of operands trans­
ferred. Using this count value, the mask should be scanned. Each time
a set bit is found, it should be cleared, and the count should be decre­
mented. When the count reaches zero, the mask is ready for continuation
of the MOVEM.

3. The operand address must be adjusted. If the effective addressing mode
is predecrement, subtract the operand size (i.e., four if the size is long)
to the stacked value; otherwise, add the operand size. The instruction
may now be continued.

4. Continue scanning the mask for set bits. As each bit is found, the selected
register is read/written from/to the operand address.

5. As each operand is transferred, the mask bit is cleared and the operand
address incremented (decremented if predecrement effective address).
When all bits in the mask are cleared, all operands have been transferred.

6. If the addressing mode was predecrement or postincrement, the register
should be updated to complete the execution of the instruction.

MOTOROLA CPU32 REFERENCE MANUAL 6-25

•

7. If the TR bit is set in the stacked SSW, a six-word stack frame should
be created and the trace handler should be executed. Likewise, if either
the B1 or BO bit is set in the SSW, another six-word stack frame should
be created, and the har.dware breakpoint handler should be executed.

8. The stack is deallocated, and control is returned to the faulted program.

In some situations, it may be necessary to rerun all operand transfers instead
of continuing from the faulted operand. Clearing the MV bit in the stacked
SSW converts a type III fault into a type II fault. Consequently, MOVEM, as
with all other type II exceptions, will be restarted upon returning from the
exception handler. When the faulted operand was not the first transferred,
operand transfers completed before the fault are not "undone." These mem­
ory locations are accessed a second time when the instruction is restarted.
If any registers used in the effective addressing calculation were overwritten
before the fault occurred, an incorrect effective address is calculated upon
restarting the instruction.

6.3.2.5 CORRECTING TYPE III FAUL 15 VIA R1E. The preferred method for
recovering from a MOVEM bus fault is to correct the cause of the fault and
to execute an RTE instruction without altering the contents of the stack. The
RTE recognizes that a MOVEM was in progress when the fault occurred,
restores the appropriate machine state, refetches the instruction, and con­
tinues the instruction with the faulted transfer. This instruction is the only
instruction continued upon returning from the exception handler. Although
the instruction is refetched, the effective address is not recalculated, and the
mask is rescanned the same number of times as before the fault. Therefore,
modifying the code prior to the RTE causes unexpected results.

6.3.2.6 CORRECTING TYPE IV FAUL 1S VIA SOFTWARE. BERR exceptions
potentially occur at two points during exception processing: while fetching
the exception vector or while stacking. The same stack frame and SSW are
used for both possibilities; the fault address distinguishes between the two.
The format/vector word image in the BERR stack frame identifies the type of
faulted exception and the contents of the remainder of the frame.

6-26

A fault address corresponding to the stacked format/vector word indicates
that the error occurred while trying to acquire the address of the exception
handler. After correcting the cause of the fault, the BERR exception handler
should execute an RTE. The RTE restores the internal machine state, fetches
the address of the original exception handler, creates the original exception
stack frame, and resumes execution at the address of the exception handler.

CPU32 REFERENCE MANUAL MOTOROLA

If the memory fault is uncorrectable, the exception handler should rewrite
the faulted exception stack frame at SP+$14+$06 and jump directly to the
exception handler. The stack frame can be generated from the information
in the BERR frame: the pre-exception status register (SP + $OC), the format/
vector word (SP + $OE), and, if the frame being written is a six-word frame,
the program counter of the instruction causing the exception (SP+$10). The
return program counter value is available at SP + $02.

A stacked fault address of the current stack pointer may indicate that, although
the first exception received a BERR while stacking, the BERR exception stack­
ing completed successfully. While this practice is highly unlikely, it is a pos­
sibility supported by the CPU32. Once the exception handler is assured that
the fault has been corrected, recovery can proceed as described previously.
If the fault cannot be corrected, the supervisor stack should be moved to
another area of memory, any valid stack frames copied to the new stack area,
the faulted exception frame created on top of the stack, and execution re­
sumed at the address of the exception handler.

6.4 CPU32 STACK FRAMES

The CPU32 generates three different stack frames. These frames consist of
the normal four- and six-word stacks and the twelve-word BERR stack frame .

6.4.1 Normal Four-Word Stack Frame

This stack frame is created by noninstruction-related exceptions, including
interrupts and format error. It is also used for TRAP #n instructions, illegal
instructions, A-line and F-line emulator traps, and privilege violations. The
program counter value contains the address of the next instruction to be
executed or the instruction that caused the exception, depending on the
exception type (see Figure 6-3).

SP.

+$02

+$06

MOTOROLA

15

o I

STATUS REGISTER

PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

o I o I o I VECTOR OFFSET

Figure 6-3. Format $0 - Four-Word Stack Frame

CPU32 REFERENCE MANUAL 6-27

•

•

6.4.2 Normal Six-Word Stack Frame

This stack frame is created by instruction-related traps, which include CHK,
CHK2, TRAPcc, TRAPV, and zero divide. This frame is also used for trace
exceptions. For these cases, the faulted instruction program counter value
is the address of the instruction causing the exception. The current program
counter value is the address of the next instruction to be executed and the
address to which the RTE instruction returns.

Hardware breakpoints also utilize this format. The stacked faulted instruction
program counter is the address of the instruction executing when the break­
point was sensed. In most cases, this is the address of the instruction that
caused the breakpoint; however, since the final operand write of aninstruc­
tion is allowed to overlap into the next instruction(s), the faulted instruction
program counter is not always that of the instruction causing the breakpoint.
The current program counter value is the address of the next instruction to
be executed and the address to which the RTE instruction returns (see Figure
6-4).

SP.

+$02

+$06

+$08

15

0 I

STATUS REGISTER

NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

0 I 1 I o I VECTOR OFFSET

FAULTED INSTRUCTION PROGRAM COUNTER HIGH

FAULTED INSTRUCTION PROGRAM COUNTER LOW

Figure 6-4. Format $2 - Six-Word Stack Frame

6.4.3 BERR Stack Frame

6-28

This stack frame is created whenever a bus cycle fault is detected. The CPU32
BERR stack frame is quite different from the equivalent stack frame on any
other M68000 Family member. The only internal machine state required in
the CPU32 stack frame is the bus controller state at the time of the error and
a single internal register. The bus operation in progress at the time of the
fault is conveyed in the SSW.

15 14 13 12 11 10

TP MV I 0 I TR I B1 BO RR RM IN I RW I LG SIZ FUNC

CPU32 REFERENCE MANUAL MOTOROLA

The CPU32 BERR stack frame is 12 words in length. There are three variations
of this frame, each distinguished by a different value in the TP:MV field of
the SSW. Faults occurring during normal instruction execution (both pre­
fetches and non-MOVEM operand accesses) utilize the SSW with TP: MV = 00.
Figure 6-5 depicts this stack frame. An internal transfer count register appears
at location SP + $14 in all three bus error stack frames. The register contains
an a-bit microcode revision number, and, for type III faults, an a-bit transfer
count. The format of this register is depicted in Figure 6-6.

SP.

+$02

+$06

+$08

+$OC

+$10

+$14

+$16

15

1 I

0 I

1 I 0 I

o I

STATUS REGISTER

RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

o I VECTOR OFFSET

FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

DBUF HIGH

DBUF LOW

CURRENT INSTRUCTION PROGRAM COUNTER

CURRENT INSTRUCTION PROGRAM COUNTER

INTERNAL REGISTER

SPECIAL STATUS WORD

Figure 6-5. Format $C - BERR Stack for Prefetches and Operands

15

MICROCODE REVISION NUMBER TRANSFER CODE

Figure 6-6. Internal Transfer Count Register

MOTOROLA CPU32 REFERENCE MANUAL 6-29

•

•

6-30

The microcode revision number is checked by the CPU when restoring a
BERR stack frame via the RTE instruction. This precaution ensures that, should
multiple processors be used in a system, the processor restarting from the
stacked information is at the same revision level as the processor which
created the stack frame. The transfer count is ignored unless the MV bit in
the stacked SSW is set. If the MV bit is set, the least significant byte of the
internal register is reloaded into the MOVEM transfer counter during the RTE
instruction. An internal transfer count register appears at location SP + $14
in all three BERR stack frames.

If a bus error occurs during exception processing, the SSW TP:MV field is
set to TP: MV = 10. The frame detailed in Figure 6-7 is written below the
faulting frame. Stacking begins at the address pointed to by SP - 6 (the SP
value is the value before initial stacking on the faulted frame).

The fault address of a dynamically sized bus cycle is the upper byte. There
is no indication which of the two bytes caused the BERR.

15

SP. STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 1 I 1 I 0 I 0 I VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$OC PRE-EXCEPTION STATUS REGISTER

FAULTED EXCEPTION FORMATNECTOR WORD

+$10 FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX-WORD FRAME ONLYI

FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX-WORD FRAME ONLYI

INTERNAL REGISTER

+$16 1 I 0 I SPECIAL STATUS WORD

Figure 6-7. Format $C - BERR Stack During Four- or Six-Word Stack

CPU32 REFERENCE MANUAL MOTOROLA

The third stack format is for faults that occur during the operand portion of
the MOVEM instruction. This format is identified by TP: MV = 01. Figure 6-8
details this stack frame.

+$06

+$08

+$OC

+$10

+$16

MOTOROLA

15

STATUS REGISTER

RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

1 I 1 I o J o I VECTOR OFFSET

FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

DBUF HIGH

DBUF LOW

CURRENT INSTRUCTION PROGRAM COUNTER

CURRENT INSTRUCTION PROGRAM COUNTER

INTERNAL TRANSFER COUNT REGISTER

o I 1 I SPECIAL STATUS WORD

Figure 6-8. Format $C - BERR Stack on MOVEM Operand

CPU32 REFERENCE MANUAL 6-31

•

•

6-32 CPU32 REFERENCE MANUAL MOTOROLA

SECTION 7
DEVELOPMENT SUPPORT

All M68000 Family members include the following to facilitate applications
development:

Trace on Instruction Execution - M68000 processors include an instruc­
tion-by-instruction tracing facility as an aid to program development; how­
ever, the MC68020, MC68030, and CPU32 also allow tracing only those
instructions causing a change in program flow. In the trace mode, a trace
exception is generated after each instruction is executed, allowing a debug­
ger program to monitor the execution of a program under test. See 6.2.10
Tracing for more information.

Breakpoint Instruction - An emulator may insert software breakpoints into
the target code to indicate when a breakpoint has occurred. On the MC68010,
MC68020, MC68030, and CPU32, this function is provided via illegal
instructions ($4848-$484F) that serve as breakpoint instructions. See 6.2.5
Software Breakpoints for more information.

Unimplemented Instruction Emulation - When an attempt is made to
execute an illegal instruction, an illegal instruction exception occurs.
Unimplemented instructions (F-line, A-line, ...) utilize separate exception
vectors to permit efficient emulation of unimplemented instructions in soft­
ware. See 6.2.8 Illegal or Unimplemented Instructions for more informa­
tion.

7.1 CPU32 INTEGRATED DEVELOPMENT SUPPORT

The CPU32 not only incorporates all the previous features but also provides
additional features that aid development tools in advancing support for
integrated system development. These additions include background debug
mode, deterministic opcode tracking, hardware breakpoints, and internal visi­
bility in the single-chip environment.

MOTOROLA CPU32 REFERENCE MANUAL 7-1

•

•

7.1.1 Background Debug Mode (BDM) Overview

7-2

Microcomputer systems generally provide a debugger, implemented in soft­
ware, for system analysis at the lowest level. The BDM on the CPU32 is
unique in that the debugger is implemented in CPU microcode. Registers
can be viewed and/or altered, memory can be read or written to, and test
features can be invoked. Incorporating these capabilities on-chip simplifies
the environment in which an in-circuit emulator operates. The traditional
in-circuit emulator configuration (see Figure 7-1) removes the MCU from the
target, replacing it with hardware resident in the emulator. An expensive
cable provides the communication path between the target system and the
emulator. By contrast, with an integrated debugger, the traditional emulator
configuration can be replaced by a bus state analyzer (BSA) (see Figure
7-2). The advantage of this configuration is twofold: 1) the processor remains
in the target hardware, serving as its own emulation processor and 2) this
integration reduces cost by eliminating the cable. The BSA provides a means
for monitoring target processor operation; the on-chip debugger provides
the mechanism for altering the operating environment. Many of the problems
experienced with the classic emulator configuration are minimized: i.e., lim­
itations on high-frequency operation, AC and DC parametric mismatches,
and restrictions on cable length.

TARGET
SYSTEM

IN·CIRCUIT
EMULATOR

Figure 7-1. Traditional In-Circuit Emulator Diagram

TARGET
SYSTEM

TARGET
~ BUS STATE ~ ... - ,.

ANALYZER "'
,.

MCU ..

Figure 7-2. Bus State Analyzer Configuration

CPU32 REFERENCE MANUAL

l.

MOTOROLA

7 ~ 1.2 Deterministic Opcode Tracking Overview

CPU32 function code outputs are augmented by two supplementary signals
to monitor the instruction pipeline. The instruction pipe (lPIPE) output indi­
cates the start of each new inst(uction and each mid-instruction pipeline
advance. The instruction fetch (lFETCH) output identifies those bus cycles in
which the operand data is loaded into the instruction pipeline. Pipeline flushes
are also signaled with IFETCH. Monitoring these two signals allows a BSA
to synchronize to the instruction stream and monitor the activity. Refer to
7.3 DETERMINISTIC OPCODE TRACKING for a complete description.

7.1.3 On-Chip Hardware Breakpoint Overview

An external breakpoint input and on-chip hardware breakpoint allow a break­
point trap on any memory access. Off-chip address comparators preclude
breakpoints on internal accesses unless show cycles are enabled. Breakpoints
on instruction prefetches, which are ultimately flushed from the instruction
pipeline, are not acknowledged; operand breakpoints are always acknowl­
edged. Acknowledged breakpoints optionally initiate exception processing
or BDM. See 6.2.6 Hardware Breakpoints for more information.

7.2 BACKGROUND DEBUG MODE (BDM)

BDM is an alternate CPU32 operating mode in which normal instruction
execution is suspended while special microcode performs the functions of a
debugger. BOM is initiated by one of several sources: externally generated
breakpoints, internal peripheral breakpoints, the background (BGNO) instruc­
tion, or catastrophic exception conditions. While in BDM, the CPU32 ceases
fetching instructions via the parallel bus and, instead, accepts commands via
a dedicated serial interface. A high-speed, SPI-type serial link provides BDM
communication between the CPU and the development system. Figure 7-3
illustrates a block diagram of the BOM.

7.2.1 Enabling BDM

Accidentally entering BDM in a nondevelopment environment could inad­
vertently lock up the CPU32 since the serial command interface would prob­
ably not be available. For this reason, BOM is enabled during reset via the
breakpoint (BKPT) signal. When BKPT is asserted (low) at the rising edge on
RESET, BOM operation is enabled until the next system reset. A high BKPT

MOTOROLA CPU32 REFERENCE MANUAL 7-3

•

•

MICROCODE

EXECUTION
UNIT

SEQUENCER

SERIAL
INTERFACE

I-------t---I-T_+_ IPIPEIDSO

I----------L.---t-:~ IFETCHIDSI

BUS
CONTROL

BKPTIDSCLK

DATA BUS

BERR

FREEZE

ADDRESS BUS

Figure 7-3. BDM Block Diagram

signal at the trailing edge of RESET disables BOM and all sources of entry
revert to their normal operation. BKPT is relatched on each rising transition
of RESET .

BKPT is synchronized internally; therefore, the signal must be held low for
at least two clock cycles prior to the negation of RESET. Special care must
be taken in the design of the BOM enable logic. If the hold time on BKPT
(after the trailing edge of RESET) extends into the first bus, the possibility
exists that the bus cycle could be inadvertently tagged with a breakpoint.
Refer to the system integration module user's manual for actual timing
information.

7.2.2 80M Sources

7-4

Once BOM has been enabled, any of several sources are capable of causing
the transition from normal operation into BOM. These sources include 1)
external breakpoint hardware, 2) the BGNO instruction, 3) double bus faults,

CPU32 REFERENCE MANUAL MOTOROLA

and 4) internal peripheral breakpoints. If BOM is not enabled when the
exception condition occurs, the exception is processed normally. Table 7-1
summarizes the processing of each source for both the enabled and disabled
cases. As depicted in the table, the BKPT instruction never causes a transition
into the BOM of operation.

Table 7-1. BDM Source Summary

Source BDM Enabled BDM Disabled

BKPT Background Breakpoint Exception

Double Bus Fault Background Halted
-

BGND Instruction Background Illegal Instruction

BKPT Instruction Opcode Substitution Opcode Substitution
Illegal Instruction Illegal Instruction

7.2.2.1 EXTERNAL BKPT SIGNAL. Once enabled, BOM is initiated whenever
assertion of BKPT is acknowledged. If BOM is disabled, a breakpoint exception
(vector $OC) is acknowledged. Timing on the BKPT input is the same as that
for read cycle data with respect to the trailing edge of data strobe. A break­
point acknowledge bus cycle is not run when entering BOM.

7.2.2.2 BGND INSTRUCTION. An illegal instruction, $4AFA, is reserved for use by
development tools. The CPU32 defines $4AFA (BGNO) to be a BOM entry
point when BDM is enabled. If BDM is disabled, an illegal instruction trap is
acknowledged. Illegal instruction traps are discussed in 6.2.8 Illegal or
Unimplemented Instructions.

7.2.2.3 DOUBLE BUS FAULTS. Two bus faults in succession, or double bus faults,
normally indicate that a catastrophic error has occurred within the system,
resulting in the suspension of instruction execution. When this error condition
occurs during initial system debug (e.g., a fault in the reset logic), further
debugging is impos~ible until the situation is corrected. Through 80M, the
fault can be bypassed temporarily, the cause of the problem can be deter­
mined, and the effects of the problem can be corrected. Should BOM be
disabled, a double bus fault causes the processor to terminate instruction
execution until reset.

7.2.2.4 PERIPHERAL BREAKPOINTS. Peripherals capable of requesting break­
points do so by asserting the BKPT signal. With respect to the CPU32, the

MOTOROLA CPU32 REFERENCE MANUAL 7-5

•

•

operation of peripheral breakpoints is identical to that of ~ternal breakpoints.
Consult the appropriate peripheral user's manual for additional details on
the generation of peripheral breakpoints.

7.2.3 Entering 80M

Upon detecting a breakpoint or double bus fault or upon decoding a BGNO
instruction, the processor suspends instruction execution and asserts the
FREEZE output. This action is the first indication that the processor has entered
BOM. Once FREEZE has been asserted, the CPU enables the serial commu­
nication hardware and awaits the first command.

As part of the process of entering BOM, the CPU writes a unique value into
temporary register A (ATEMP), indicating the source that caused the tran­
sition. By issuing a read system register command as the initial command,
the user can poll the register and determine the source (see Table 7-2).

Table 7-2. Polling the BOM Entry Source

Source ATEMP [31 :24] ATEMP [23:0]

Double Bus Fault SSW $FFFF

BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000

ATEMP is used in most debugger commands for temporary storage; there­
fore, it is imperative that the read system register (RSREG) command be the
first command issued after the transition into BOM .

A double bus fault during the initial stack pointer/program counter (Sp/pe)
fetch sequence is further distinguished by a value of $00000001 in the current
instruction PC. At no other time will the processor write an odd value into
this register.

7.2.4 Command Execution

7-6

As each command is accumulated in the serial shifter, the microcode routine
corresponding to that command is executed. If the command can complete
without additional serial traffic, it does. However, if addresses or operands
are required, the microcode reads each word as it is assembled by the serial

CPU32 REFERENCE MANUAL MOTOROLA

CPU ACTIVITY DEVELOPMENT SYSTEM ACTIVITY

ENTER (BDM)

• ASSERT FREEZE SIGNAL
• WAIT FOR COMMAND SEND INITIAL COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT OUT 17 BITS
• DISABLE SHIFT CLOCK

EXECUTE COMMAND

• LOAD: NOTREADY/RESPONSE
• PERFORM COMMAND
• STORE RESULTS

READ RESULTSINEW COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT IN/OUT 17 BITS
• DISABLE SHIFT CLOCK
• READ RESULT REGISTER

YES

CONTINUE

Figure 7-4. 80M Command Execution Flowchart

interface. The CPU then performs the desired operation, including any nec­
essary memory or register accesses. Result operands are loaded into the
output shift register to be shifted out as the next command is read. This
process is repeated for each instruction until the CPU returns to the normal
operating mode.

7.2.5 Returning from 80M

BDM is terminated when a resume execution (GO) or call user code (CALL)
command is received. Both GO and CALL flush the instruction pipeline and
refetch instructions from the location pointed to by the current PC. The current

MOTOROLA CPU32 REFERENCE MANUAL 7-7

•

III

PC and the memory space referred to by the status register SUPV bit reflect
any changes made during 8DM. FREEZE is negated prior to initiating the first
prefetch. Upon negation of FREEZE, the serial subsystem is disabled, and
the signals revert to IPIPE/IFETCH functionality.

7.2.6 Serial Interface

Communication with CPU32 during 8DM sessions is via a dedicated serial
interface, which shares pins with other development features. The 8KPT
signal becomes the serial clock (DSCLK); serial input data (OSI) is received
on IFETCH, and serial output data (DSO) is transmitted on IPIPE.

The serial interface is a full-duplex synchronous protocol similar to the serial
peripheral interface (SPI) protocol. The development system serves as the
master of the serial link since it is responsible for the generation of DSCLK.
8y deriving DSCLK from the CPU32 system clock, the design of the devel­
opment system serial logic is unhindered by the operating frequency of the
target MCU. Operable frequency range of the serial clock is from DC to one­
half the MCU system clock frequency.

The serial interface operates in a full-duplex mode - that is, data is both
transmitted and received simultaneously by the master and slave devices.
In general, data transitions occur on the falling edge of the DSCLK and are
stable by the following rising edge of DSCLK. Data is transmitted most sig­
nificant bit first and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide - 16 data bits and a status/control bit.
For CPU-generated messages, bit 17 indicates the message status as shown
in Table 7-3.

Command and data transfers initiated by the development system should
clear bit 17. The current implementation ignores this bit; however, Motorola
reserves the right to use this bit for future enhancements.

7.2.6.1 CPU SERIAL LOGIC. The CPU serial logic block diagram, pictured in the
left-hand portion of Figure 7-5, consists of the transmit and receive shift
registers and control logic containing synchronization logic, serial clock gen­
eration circuitry, and a received bit counter.

7-8 CPU32 REFERENCE MANUAL MOTOROLA

Table 7-3. CPU-Generated Message Encoding

16 15 o
SIC DATA FIELD

...
STATUS/CONTROL

Bit 17 Data Message Type

0 xxxx Valid Data Transfer

0 FFFF Command Complete; Status OK

1 0000 Not Ready with Response; Come Again

1 0001 BERR Terminated Bus Cycle; Data Invalid

1 FFFF Illegal Command

[-~""-'-~'-'"-~-R;~~;~""",, __ -,m--"I
r··· .. -............................... -.-•.• -..................... -..... -.................. ~

DEVELOPMENT SYSTEM

! SERIAL IN ! DSI
PARALLEL OUT

EXECUTION ~~ ____ ---'
UNIT

STATUS -4------------'

DATA

PARALLEL IN
SERIAL OUT

Figure 7-5. Debug Serial 1/0 Block Diagram

MOTOROLA CPU32 REFERENCE MANUAL 7-9

•

•

7-10

Both DSCLK and DSI are synchronized to the on-chip clocks, thereby mini­
mizing the chance of propagating metastable states into the serial state
machine. Data is sampled during the high phase of CLKOUT. At the falling
edge of CLKOUT, the sampled value is made available to the internal logic.
The effect of this synchronization technique on the user is that the minimum
hold time on DSI with respect to DSCLK is one full period of CLKOUT.

The serial state machine begins a sequence of events based on the rising
edge of the synchronized DSCLK (see Figure 7-6). The synchronized serial
data is transferred to the input shift register, and the received bit counter is
decremented. One-half clock period later, the output shift register is updated,
bringing the next output bit to the DSO signal. DSO changes relative to the
rising edge of DSCLK and does not necessarily remain stable until the falling
edge of DSCLK.

One clock period after the synchronized DSCLK has been seen internally, the
updated counter value is checked. If the counter has reached zero, the receive
data latch is updated from the input shift register. At this same time, the
output shift register is reloaded with the "not ready/come again" response.

CLKOUT

FREEZE ~

DSCLK I
DSI

SAMPLE
WINDOW ~

INTERNAL
SYNCHRONIZED

DSCLK ---__ ----'

INTERNAL --------------.
SYNCHRONIZED

DSI

DSO

CLKOUT

Figure 7-6. Serial Interface Timing Diagram

CPU32 REFERENCE MANUAL MOTOROLA

Once the receive data latch has been loaded, the CPU is released to act on
the new data. Response data overwrites the "not ready" response when the
CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO
signal. In general, this action changes the state of the signal from a high
("not ready" response status bit) to a low (valid data status bit) logic level.
However, this level change only occurs if the command completes success­
fully. Error conditions overwrite the "not ready" response with the appro­
priate response that also has the status bit set.

A user may take advantage of the state change on DSO to signal hardware
that the next serial transfer may begin. A timeout of sufficient length should
also be incorporated into the design to trap error conditions that do not
change the state of DSO. Hardware interlocks in the CPU prevent result data
from corrupting serial transfers in progress.

7.2.6.2 DEVELOPMENT SYSTEM SERIAL LOGIC. The development system, as the
master of the serial data link, must supply the serial clock. However, normal
and BDM operations could inadvertently interact if the dual operating modes
are not properly considered when designing the clock generator.

Breakpoint requests are made by asserting BKPT to the .Iow state using one
of two methods. The predominant method (one described thus far) is to assert
BKPT during the single bus cycle for which the exception is desired. A second
method is to assert BKPT and continue asserting it until the CPU32 responds
by asserting FREEZE. This method is useful for forcing a transition into BDM
when the bus is not being monitored. Each BKPT assertion method requires
a slightly different approach in the design cjf the serial logic to avoid spurious
serial clocks.

DSCLK --------,

BGNDJORCE ---------------___________ _

BKPT_TAG ------.r---,L.. _____________________ _

BKPT

FREEZE _____1 L

Figure 7-7. BKPT Timing for Single Bus Cycle

MOTOROLA CPU32 REFERENCE MANUAL 7-11

•

•

Figure 7-7 represents the timing required for asserting BKPT during a single
bus cycle. Figure 7-8 depicts the timing of the BKPT/FREEZE method. In both
cases, the serial clock is left high after the final shift of each transfer. This
technique eliminates the possibility of accidentally tagging the prefetch
initiated at the conclusion of a BDM session. As mentioned previously, all
timing within the CPU is derived from the rising edge of the clock; whereas,
the falling edge is effectively ignored.

Figure 7-9 represents a sample circuit providing for both BKPT assertion
methods. As the name implies" FORCE-BGND is used to force a transition
into BDM by the assertion of BKPT. FORCE-BGND can be a short pulse or
can remain asserted until FREEZE is asserted. Once asserted, the set-reset
latch holds BKPT low until the first DSCLK is applied.

BKPT-TAG should be timed to the bus cycles since it is not latched. If extended
past the assertion of FREEZE, the negation of BKPT - TAG appears to the
CPU32 as the fi rst . DSCLK.

DSCLK is the gated serial clock. Normally high, it pulses low for each bit to
be transferred. At the end of the seventeenth clock period, it returns high
until the start of the next transmission. Clock frequency is implementation
dependent and may range from DC to the maximum specified frequency.

DSCLK

BGNDJORCE -----111 11 11 1 11..&...1 _____________ -------

BKPT_TAG ----------------------------

FREEZE ____ _ L

Figure 7-8. BKPT Timing for Forcing BDM

DSCLK -......------~ BKPTIDSCLK

Figure 7-9. BKPT/DSCLK Logic Diagram

7-12 CPU32 REFERENCE MANUAL MOTOROLA

Although performance considerations might dictate a hardware implemen­
tation, software solutions are not precluded provided serial bus timing is
maintained.

7.2.7 Command Set

Following is a description of the command set available in BDM.

7.2.7.1 COMMAND FORMAT. The following standard bit format is utilized by all
8DM commands.

15 10

OPERATION REGISTER

Operation Field:
Commands are distinguished by the operation field. This 6-bit field pro­
vides for a maximum of 64 unique commands.

RIW Field:
The direction of the operand transfer is specified in this field. When this
bit is a one, the operation is from the CPU to the development system.
When this bit is a zero, data is written into the CPU or memory from the
development system.

Operand Size:
For sized operations, this field specifies the operand data size. All addresses
are expressed as 32-bit absolute values. The size field is encoded as follows:

Encoding Operand Size

00 Byte

01 Word

10 Long

11 Reserved

Address/Data (AID) Field:
Used by those commands that operate on address and data registers, the
AID field determines whether the register field specifies a data or address
register. A one indicates an address register; a zero selects a data register.
For other commands, this field may be interpreted differently.

MOTOROLA CPU32 REFERENCE· MANUAL 7-13

•

•

Register Field:
In most commands, this field specifies the register number when operating
on an address or data register.

Extension Words (as required):
Some commands require immediate data or addresses in the form of
extension words. Addresses require two extension words each since
addressing capability is limited to absolute long. Immediate data can be
either one ortwo words. Byte and word data each require a single extension
word; long-word data requires two words. Operands and addresses are
transferred most significant word first. At this time, no command requires
an extension word to fully specify the operation to be performed (i.e.,
single-word commands only).

7.2.7.2 COMMAND SEQUENCE DIAGRAMS. A command sequence diagram
illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each diagram
corresponds to the data transmitted by the development system to the CPU;
likewise, the bottom half corresponds to the data returned by the CPU in
response to the development system commands. Command and result trans­
actions are overlapped to minimize latency.

7-14

The command sequence diagram in Figure 7-10 demonstrates the use of
these diagrams. The cycle in which the command is issued contains the
command mnemonic issued by the development system (in this example,
read memory location). During the same cycle, the CPU is responding with
either the lowest order results of the previous command or with a command
complete status if no other results were required .

During the second cycle of the diagram, the development system supplies
the high-order 16 bits of the memory address. The CPU returns the "not
ready" response unless the received command was decoded as unimple­
mented, in which case the response data is the illegal command encoding.
If an illegal command response occurs, the development system should
retransmit the command.

NOTE

The "not ready" response can be ignored except in those cases when
a memory bus cycle is in progress. In all other cases, the CPU can
accept a new serial transfer with eight system clock periods.

CPU32 REFERENCE MANUAL MOTOROLA

COMMANDS TRANSMITTED TO THE CPU

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN F
IlleGAL COMMAND
IS RECEIVED BY CPU

RESULTS FROM PREVIOUS COMMAND

LOW-ORDER 16 BITS OF MEMORY ADDRESS

NONSERIAL-RELA TED ACTIVITY

SEQUENCE TAKEN IF BUS ERROR
OR ADDRESS ERROR OCCURS ON
MEMORY ACCESS

HIGH AND LOW-ORDER
16 BITS OF RESULT

RESPONSES FROM THE CPU

Figure 7-10. Command-Sequence-Diagram Example

In the third cycle, the development system supplies the low-order 16 bits of
the memory address. The CPU always returns the "not ready" response in
this cycle. At the completion of the third cycle, the CPU initiates the memory
read operation. Any serial transfers that begin while the memory access is
in progress will return the "not ready" response.

The results are returned in the two serial transfer cycles following the com­
pletion of the memory access. The data transmitted to the CPU during the
final transfer is the opcode for the following command. Should the memory
access generate either a bus or address error, an error status is returned in
place of the result data.

MOTOROLA CPU32 REFERENCE MANUAL 7-15

•

•

7.2.7.3 COMMAND SET SUMMARY. The 8DM command set is summarized in
Table 7-4. Detailed descriptions of each command can be found in subsequent
paragraphs.

Table 7-4. 80M Command Summary

Command Mnemonic Description

Read AID Register RAREG/RDREG Read the selected address or data register and
return the results via the serial interface.

Write AID Register WAREGIWDREG The data operand is written to the specified ad-
dress or data register.

Read System Register RSREG The specified system control register is read. All
registers that can be read in supervisor mode
can be read in BDM.

Write System Register WSREG The operand data is written into the specified
system control register.

Read Memory Location READ Read the sized data at the memory location spec-
ified by the long-word address. The source func-
tion code register (SFC) determines the address
space accessed.

Write Memory Location WRITE Write the operand data to the memory location
specified· by the long-word address. The desti-
nation function code register (DFC) register de-
termines the address space accessed.

Dump Memory Block DUMP Used in conjunction with the READ command to
dump large blocks of memory. An initial READ
is executed to set up the starting address of the
block and to retrieve the first result. Subsequent
operands are retrieved with the DUMP com-
mand.

Fill Memory Block FILL Used in conjunction with the WRITE command
to fill large blocks of memory. An initial WRITE
is executed to set up the starting address of the
block and to supply the first operand. Subse-
quent operands are written with the FILL com-
mand.

Resume Execution GO The pipeline is flushed and refilled before re-
suming instruction execution at the current PC.

Call User Code CALL Current PC is stacked at the location of the cur-
rent SP. Instruction execution begins at user patch
code.

Reset Peripherals RST Asserts RESET for 512 clock cycles. The CPU is
not reset by this command. Synonymous with
the CPU RESET instruction.

No Operation NOP NOP performs no operation and may be used as
a null command.

7-16 CPU32 REFERENCE MANUAL MOTOROLA

7.2.7.4 READ AID REGISTER (RAREG/RDREG). Read the selected address or data
register and return the results via the serial interface.

Command Format:

15 14 13 12 11 10
10101110101010111110 REGISTER

Command Sequence:

RDREGIRAREG
???

Operand Data:
None

Resu It Data:
The contents of the selected register are returned as a long-word value.
The data is returned most significant word first.

MOTOROLA

NOTE

Accesses to register A7 follow the supervisor (S) bit at the time 8DM
was entered. If S = 0, A7 corresponds to the user SP; if S = 1, A7
corresponds to the supervisor SP. 8DM writes to SR, which affect
the S bit, have no effect on the selection of A7. Use the RSREGI
WSREG commands to directly access a specific SP.

CPU32 REFERENCE MANUAL 7-17

•

•

7.2.7.5 WRITE AID REGISTER (WAREG/WDREG). The operand (long-word) data
is written to the specified address or data register. All 32 bits of the register
are altered by the write.

7-18

Command Format:

15 14 13 12 11 10

o I 1 o I 0 I 0 I AID I REGISTER

Command Sequence:

WDREGIWAREG
???

Operand Data:
The long-word data is written into the specified address or data register.
The data is supplied most significant word first.

Result Data:
Command complete status ($OFFFF) is returned when the register write
has completed.

NOTE

Accesses to register A7 follow the S bit at the time BDM was entered.
If S = 0, A7 corresponds to the user SP; if S = 1, A7 corresponds to
the supervisor SP. BDM writes to SR, which affect the S bit, have
no effect on the selection of A7. Use the RSREGIWSREG commands
to directly access a specific SP.

CPU32 REFERENCE MANUAL MOTOROLA

7.2.7.6 READ SYSTEM REGISTER (RSREG). The specified system control register
is read. All registers that can be read in supervisor mode can be read in BDM.
Several internal temporary registers are also accessible.

Command Format:

15 14 13 12 11 10

o I 0 I REGISTER

Command Sequence:

Operand Data:
None

Resu It Data:
Always returns 32 bits of data, regardless of the size of the register being
read. If the register is less than 32 bits, the result is returned zero extended.

Register Field:
The system control register is specified by the register field according to
the following table:

System Register Select Code

Return Program Counter (RPC) 0000

Current Instruction Program Counter (PCC) 0001

Status Register (SR) 1011

User Stack Pointer (USP) 1100

Supervisor Stack Pointer (SSP) 1101

Source Function Code Register (SFC) 1110

Destination Function Code Register (DFC) 1111

Temporary Register A (ATEMP) 1000

Fault Address Register (FAR) 1001

Vector Base Register (VBR) 1010

MOTOROLA CPU32 REFERENCE MANUAL 7-19

•

•

7.2.7.7 WRITE SYSTEM REGISTER (WSREG). The operand data is written into the
specified system control register. All registers that can be written in super­
visor mode can be written in 80M. Several internal temporary registers are
also accessible.

7-20

Command Format:

15 14 13 12 11 10

I 0 o I 1 o I 0 I 1 o I 0 I 1 o I 0 o I REGISTER

Command Sequence:

Operand Data:
The data to be written into the register is always supplied as a 32-bit long
word. If the written register is' less than 16 bits, the least significant word
is used.

Resu It Data:
"Command complete" status is returned when the register write is com­
pleted.

Register Field:
The system control register is specified by the register field according to
the following table. The FAR is a read-only register; any write to this register
is ignored.

System Register Select Code

Return Program Counter (RPC) 0000

Current Instruction Program Counter (PCC) 0001

Status Register (SR) 1011

User Stack Pointer (USP) 1100

Supervisor Stack Pointer (SSP) 1101

Source Function Code Register (SFC) 1110

Destination Function Code Register (DFC) 1111

Temporary Register A (ATEMP.) 1000

Fault Address Register (FAR) 1001

Vector Base Register (VBR) 1010

CPU32 REFERENCE MANUAL MOTOROLA

7.2.7.8 READ MEMORY LOCATION (READ). Read the sized data at the memory
location specified by the long-word address. Only absolute addressing is
supported. The SFC register determines the address space accessed. Valid
data sizes include byte, word, or long word.

Command Format:

15 14 13 12 11 10

I 0 o I 0 I 1 lop. SIZE o I 0

Command Sequence:

Operand Data:
The single operand is the long-word address of the requested memory
location.

Resu It Data:
The requested data is returned as either a word or long word. Byte data
is returned in the least significant byte of a word result. Word results return
16 bits of significant data; long-word results return 32 bits.

A successful read operation returns data bit 17 cleared; whereas, if a bus
or address error is encountered, the returned data is $10001.

MOTOROLA CPU32 REFERENCE MANUAL 7-21

•

•

7.2.7.9 WRITE MEMORY LOCATION (WRITE). Write the operand data to the mem­
ory location specified by the long-word address. The destination function
code (DFC) register determines the address space accessed. Only absolute
addressing is supported. Valid data sizes include byte, word, and long word.

Command Format:

15 14 13 12 11 10

o I 0 I 0 lop. SIZE

Command Sequence:

7-22 CPU32 REFERENCE MANUAL MOTOROLA

Operand Data:
Two operands are required for this instruction. The first operand is a long­
word absolute address specifying the location the operand data is to be
written to. The second operand is the data. Byte data is transmitted as a
16-bit word, justified in the least significant byte; 16- and 32-bit operands
are transmitted as 16 and 32 bits, respectively.

Result Data:
Successful write operations return a status of $OFFFF. Bus or address errors
on the write cycle are indicated by the assertion of bit 17 in the status
message and by a data pattern of $0001.

MOTOROLA CPU32 REFERENCE MANUAL 7-23

•

•

7.2.7.10 DUMP MEMORY BLOCK (DUMP). DUMP is used in conjunction with the
READ command to dump large blocks of memory. An initial READ is executed
to set up the starting address of the block and to retrieve the first result.
Subsequent operands are retrieved with the DUMP command. The initial
address is incremented by the operand size (1, 2, or 4) and saved in a tem­
porary register. Subsequent DUMP commands use this address, increment
it by the current operand size, and store the updated address back in the
temporary register.

7-24

NOTE

The DUMP command does not check to see that a valid address is
present in the temporary register. Therefore, DUMP is a valid com­
mand only when preceded by another DUMP or by a READ com­
mand; otherwise, the results are undefined.

The size field is examined each time a DUMP command is given, allowing
the operand size to be altered dynamically.

Command Format:

15 14 13 12 11 10

a I 1 OP. SIZE 01010101010

Command Sequence:

CPU32 REFERENCE MANUAL MOTOROLA

Operand Data:
None

Resu It Data:
The requested data is returned as either a word or long word. Byte data
is returned in the least significant byte of a word result. Word results return
16 bits of significant data; long-word results return 32 bits. Status of the
read operation is returned as in the READ command: $Oxxxx for success,
$10001 for bus or address errors.

MOTOROLA CPU32 REFERENCE MANUAL 7-25

•

•

7.2.7.11 FILL MEMORY BLOCK (FILL). FILL is used in conjunction with the WRITE
command to fill large blocks of memory. An initial WRITE is executed to set
up the starting address of the block and to supply the first operand. Subse­
quent operands are written with the FILL command. The initial address is
incremented by the operand size (1, 2, or 4) and is saved in a temporary
register. Subsequent FILL commands use this address, increment it by the
current operand size, and store the updated address back in the temporary
register.

7-26

NOTE

The FILL command does not check to see that a valid address is
present in the temporary register. Therefore, FILL is a valid command
only when preceded by another FILL or by a WRITE command; other­
wise, the results are undefined.

The size field is examined each time a FILL command is given, allowing the
operand size to be altered dynamically.

Command Format:

15 14 13 12 11 10

o lop. SIZE I 0 010101010

Command Sequence:

CPU32 REFERENCE MANUAL MOTOROLA

Operand Data:
A single operand is data to be written to the memory location. Byte data
is transmitted as a 16-bit word, justified in the least significant byte; 16-
and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Resu It Data:
Status is returned as in the WRITE command: $OFFFF for a successful
operation and $10001 for a bus or address error during write.

MOTOROLA CPU32 REFERENCE MANUAL 7-27

•

7.2.7.12 RESUME EXECUTION (GO). The pipeline is flushed and refilled before
normal instruction execution is resumed. Prefetching begins at the current
PC and current privilege level. If either the PC or SR is altered during 8DM,
the updated value of these registers is used when prefetching commences.

7-28

NOTE

A bus error or address error on the first instruction prefetch from
the new PC allows 8DM to exit and to be trapped as a normal mode
exception. The stacked value of the current PC mayor may not be
valid in this case, depending on the state of the machine prior to
entering 8DM. In the case of an address error, the PC does not reflect
the true return PC. Instead, the stacked fault address is the (odd)
return PC.

Command Format:

15 14 13 12 11 10 3

o I 0 o I 0 I 0

Command Sequence:

Operand Data:
None

Result Data:
None

CPU32 REFERENCE MANUAL MOTOROLA

7.2.7.13 CALL USER CODE (CALL). This instruction provides a convenient way to
patch user code. The current PC is stacked at the location pointed to by the
current SP (SP selected by S bit latched when BOM entered). The stacked PC
serves as a return address to be restored by the return from subroutine (RTS),
which terminates the patch routine. The 32-bit operand data is then loaded
into the PC. The pipeline is flushed and refilled from the location pointed to
by the new PC. BOM is exited, and instruction execution is initiated.

As an example, consider the following code segment that is supposed to
output a character to an asynchronous communications interface adaptor.
Note the missing check of the transmit data register empty (TORE) flag.

CHKSTAT MOVE.B
BEQ.B
MOVE.B

MISSING ANOI.B
RTS

ACIAS,OO
CHKSTAT
OATA,ACIAO

#2,00

Move ACIA status to DO
Loop till condition true
Output data

Check for TORE
Return to in-line code

BOM and the CALL command can be used to insert the missing code by
observing the following sequence:

1. Breakpoint user program at CHKSTAT;
2. Enter BOM;
3. Execute CALL command to MISSING;

Exit BOM;
4. Execute MISSING code; and
5. Return to user program.

MOTOROLA

NOTE

Bus errors or address errors that occur during stacking of the return
address cause the CPU to return an error status via the serial interface
and to remain in BOM. A bus error or address error on the first
instruction prefetch from the new PC allows BOM to exit and to be
trapped as a normal mode exception. The stacked value of the cur­
rent PC mayor may not be valid in this case, depending on the state
of the machine prior to entering BOM. In the case of an address
error, the return PC does not reflect the true return PC. Instead, the
stacked fauit address is the (odd) return PC.

CPU32 REFERENCE MANUAL 7-29

•

7-30

Command Format:

15 14 13 12 11 10

01010101010101010 o 1 0

Command Sequence:

Operand Data:
The 32-bit operand data is the starting location of the patch routine, which
is the initial PC upon exiting 80M.

Resu It Data:
None

CPU32 REFERENCE MANUAL MOTOROLA

7.2.7.14 RESET PERIPHERALS (RST). RST asserts RESET for 512 clock cycles. The
CPU is not reset by this command. This command is synonymous with the
CPU RESET instruction.

Command Format:

15 14 13 12 11 10

o I 0 I 0 I 0 I 1 o I 0 I 0 I 0 010101010 o I 0

Command Sequence:

Operand Data:
None

Result Data:
The "command complete" response ($OFFFF) is loaded into the serial shif­
ter after the negation of RESET.

MOTOROLA CPU32 REFERENCE MANUAL 7-31

•

•

7.2.7.15 NO OPERATION (NOP). NOP performs no operation and may be used as
a null command where required.

Command Format:

15 14 13 12 11 10

o I 0 I 0 I 0 I 0

Command Sequence:

Operand Data:
None

Result Data:
The IIcommand complete" response ($OFFFF) is loaded into the serial shif­
ter.

7.2.7.16 FUTURE COMMANDS. Unassigned command opcodes are reserved by
Motorola for future expansion. All unused formats within any revision level
will perform a NOP and return the ILLEGAL command.

7-32 CPU32 REFERENCE MANUAL MOTOROLA

7.3 DETERMINISTIC OPCODE TRACKING

The CPU32 utilizes deterministic opcodetracking to trace program execution.
Two new signals, IPIPE and IFETCH, provide all the information required to
analyze the operation of the instruction pipeline.

7.3.1 Instruction Fetch (lFETCH)

IFETCH indicates which bus cycles are accessing data to fill the instruction
pipeline. IFETCH is pulse-width modulated to multiplex two indications on a
single pin. Asserted for a single clock cycle, IFETCH indicates that the data
from the current bus cycle is routed to the instruction pipeline. IFETCH held
low for two clock cycles indicates that the instruction pipeline has been
flushed. The operand of the bus cycle is used to begin filling the empty
pipeline. Both user and supervisor mode fetches are signaled by IFETCH.

Proper tracking of bus cycles via the IFETCH signal on a fast bus requires a
simple state machine. On a two-clock bus, IFETCH may signal a pipeline flush
with associated prefetch and a consecutive prefetch. That is, IFETCH remains
asserted for three clocks, two clocks indicating the flush/fetch and a third
clock signaling the second fetch. These two operations are easily discerned
if the tracking logic samples IFETCH on the two rising edges of CLKOUT,
which follow the address strobe (data strobe during show cycles) falling edge.
Three-clock and slower bus cycles allow time for negation of the signal be­
tween consecutive indications and do not experience this operation.

7.3.2 Instruction Pipe (lPIPE)

IPIPE signals the advances of the internal instruction pipeline (see Figure
7-11). The pipeline can be modeled as a three-stage FIFO in which dat~ can
be used out of both the second and third stages. The instruction register B
(lRB) stage, which provides for initial decoding of the opcode and decoding
of any extension words, is a source for immediate data. On the other hand,
the IRC stage supplies residual decoding of the opcode during instruction
execution. Assertion of IPIPE for a single clock cycle indicates the use of data
out of the second stage (lRB). Regardless of the presence of valid data in the
initial stage (lR), the contents of IRB are invalidated. If the IR stage conta.ins
valid data, the data is copied into IRB (lR • IRB), and the IRB stage is revali­
dated.

MOTOROLA CPU32 REFERENCE MANUAL 7-33

•

•

7-34

DATA
BUS R R

B

EXTENSION
WORDS

R

C

OPCODES
RESIDUAL

Figure 7·11. Functional Model of Instruction Pipeline

Assertion of IPIPE for two clock cycles indicates the start of a new instruction
and subsequent replacement of data in the final stage (lRC). This action
causes a full advance of the pipeline: IRB. IRC and IR. IRB. IR is refilled
during the next instruction fetch bus cycle. Data loaded into IR propagates
through empty pipeline stages automatically, which impliesthat an accurate
model of pipeline operation should include valid bits for the IR and IRB stages.
Advancing the pipeline, either explicitly via IPIPE, or implicitly by negated
valid bits, should set the valid bit of the stage being loaded and negate the
valid bit of the register supplying the data.

Because instruction execution is not timed to bus activity, IPIPE is synchro­
nized with the system clock and not the bus. Figure 7-12 illustrates the timing
in relation to the system clock. IPIPE should be sampled on the falling edge
of the clock. The assertion of IPIPE for a single cycle after deassertion for
one or more cycles indicates a use of the data in IRB (advance of IR into IRB).
Assertion for two clock cycles indicates that a new instruction has started
and both the IR. IRB and IRB. IRC transfers have occurred. Loading IRC
always indicates that a new instruction is beginning execution. The opcode
is the word loaded into IRC by the transfer.

In some cases, instructions using immediate addressing initiate the start of
an instruction and a second pipeline' advance, That is, the IPIPE signal is not
to be negated between the two indications, which implies the need for a
state machine to track the state of IPIPE. The state machine can be resyn­
chronized during periods of inactivity on the signal.

CPU32 REFERENCE MANUAL MOTOROLA

CLKOUT

IPIPE~

EXTENSION
WORD USED

\'--____ ---J/
INSTRUCTION EXTENSION

START WORD USED

\'--_---Jr-
INSTRUCTION

START

Figure 7-12. Instruction Pipeline Timing Diagram

7.3.3 Opcode Tracking during Loop Mode

IPIPE and IFETCH continue to work normally during loop mode. IFETCH
indicates all instruction fetches up through the point that data begins recir­
culating within the instruction pipeline. IPIPE continues to signal the start of
instructions and the use of extension words even though data is being re­
circulated internally. IFETCH returns to normal operation with the first fetch
after exiting loop mode.

MOTOROLA CPU32 REFERENCE MANUAL 7-35

•

•

7-36 CPU32 REFERENCE MANUAL MOTOROLA

SECTION 8
INSTRUCTION EXECUTION TIMING

This section, which describes the instruction execution timing of the CPU32
using external clock cycles, provides accurate execution and operation timing
guidelines but not exact timings for every possible circumstance. This
approach is used since exact execution time for an instruction or operation
is highly dependent on concurrency of independently scheduled resources,
memory speeds, and other variables. The timing numbers presented in this
section allow the assembly language programmer or compiler writer to pre­
dict the performance of the CPU32. Additionally, the timings for exception
processing are included so that designers of multitasking or real-time sys­
tems can predict task-switch overhead, maximum interrupt latency, and sim­
ilar timing parameters. Instruction timings are given in clock cycles to eliminate
clock frequency dependencies.

8.1 RESOURCE SCHEDULING

Some of the variability in instruction execution timings results from the over­
lap of resource utilization. The processor can be viewed as consisting of
several independently scheduled resources. Since little ofthe resource sched­
uling is directly related to instruction boundaries, it is impossible to make
accurate estimates of the time required to execute a particular instruction
without knowing the complete context within which the instruction is
executing. The position of these resources within the CPU32 is shown in
Figure 8-1.

8.1.1 Microsequencer

The microsequencer is either executing microinstructions or awaiting com­
pletion of accesses necessary to continue executing microcode. The micro­
sequencer controls the bus controller, instruction execution, and internal
processor operations such as calculation of effective address and setting of
condition codes. The microsequencer initiates instruction word prefetches
after a change of flow and controls the validation of instruction words inthe
instruction pipeline.

MOTOROLA CPU32 REFERENCE MANUAL 8-1

•

•

ADDRESS
BUS

EXECUTION UNIT

PROGRAM
COUNTER
SECTION

BUS CONTROL
SIGNAlS

DATA
SECTION

Figure 8-1. Block Diagram of Independent Resources

DATA
BUS

8.1.2 Instruction Pipeline

8-2

The CPU32 contains a two-word instruction pipeline where instruction opcodes
are decoded. As shown in Figure 8-1, instruction words (instruction operation
words and all extension words) enter the pipeline at stage B. To reach stage
C, an instruction word must have been completely decoded. Each of the
pipeline stages has a status bit that reflects whether or not the word in that
stage was loaded with data from a bus cycle which terminated abnormally.
Stages of the pipeline are filled from an initial request by the microsequencer
and are subsequently filled by the prefetch controller as they are emptied.

The instruction pipeline contains an additional stage which serves as a buffer.
Prefetches completing on the bus before stage B of the instruction pipeline
have been emptied are temporarily stored in this buffer.

CPU32 REFERENCE MANUAL MOTOROLA

8.1.3 Bus Controller Resources

The bus controller and microsequencer can operate concurrently. The bus
controller can perform a read or write or schedule a prefetch while the
microsequencer controls an effective address calculation or sets the condition
codes. The microsequencer may also request a bus cycle that the bus con­
troller cannot perform immediately. In this case, the bus cycle is queued, and
the bus controller runs the cycle when the current cycle is complete.

The bus controller consists of the instruction prefetch controller, the write­
pending buffer, and the microbus controller. These three resources transact
all reads, writes, and instruction prefetches required for instruction execution.

8.1.3.1 PREFETCH CONTROLLER. The instruction prefetch controller receives an
initial request from the microsequencer to initiate prefetching at a given
address. Subsequent prefetches are requested by the prefetch controller
whenever a pipeline stage is invalidated, either through completion of an
instruction or use of extension words. Additional state information permits
the controller to inhibit prefetch requests when a change in instruction flow
(e.g;, JMP) is anticipated. The prefetch occurs as soon as the bus is free of
operand accesses already requested by the microsequencer.

For the typical program, a change offlow can be expected in approximately
10 to 25 percent of the instructions executed. Each time this happens, the
instruction pipeline must be flushed and refilled from the new instruction
stream. If priority were given to instruction prefetches rather than to operand
accesses, it is likely that many instruction words would be flushed and never
used, meanwhile delaying needed operand cycles. To maximize the available
bus bandwidth, the CPU32 will schedule a prefetch only when the next
instruction is not a change-of-flow instruction and when room exists in the
pipeline for the prefetch.

8.1.3.2 WRITE-PENDING BUFFER. The CPU32 incorporates a single-operand write­
pending buffer, allowing the microsequencer to continue execution after the
request for a write cycle is queued in the bus controller. The time occupied
by the write at the end of an instruction can utilize the next instruction's head
cycle time, thus reducing overall execution time. Interlocks prevent the
microsequencer from overwriting this buffer.

MOTOROLA CPU32 REFERENCE MANUAL 8-3

•

•

8.1.3.3 MICROBUS CONTROLLER. The microbus controller performs the bus cycles
issued to the bus controller by the microsequencer. Operand accesses always
take priority over instruction prefetches. Word and byte operands are ac­
cessed in a single CPU-initiated bus cycle, although the external bus interface
may be required to initiate a second cycle in the case of a word operand to
a byte-sized external port. Long operands are accessed in two bus cycles,
the most significant word first.

The goal of the bus controller is to maximize the useful bandwidth of the
bus by not starting prefetches when those prefetches will be discarded due
to a change of flow. Capable of recognizing certain instructions like branches
and RTS, the instruction pipeline will inform the bus controller that no more
prefetches are required.

8.1.4 Instruction Execution Overlap

8-4

Overlap is the time, measured in clock cycles, that an instruction executes
concurrently with the previous instruction. As illustrated in Figure 8-2, por­
tions of instructions A and B execute simultaneously. The overlapped portion
of instruction B is absorbed in the execution time of A. Similarly, the overlap
time between instructions Band C reduces the overall execution time of the
two instructions. Each instruction contributes to the total overlap time. The
portion of the time at the end of the execution time of instruction A that can
overlap at the beginning of instruction B is called the tail of instruction A.
The portion of time at the beginning of instruction B that can overlap the
end of instruction A is called the head of instruction B. The total overlap time
between instructions A and B consists of the lesser of the tail of A and the
head of B.

I-----INSTRUCTK>N A ------I

I-----INSTRUCTK>N B -----I

I-----INSTRUCTION C-----I

OVERlAP OVERLAP

Figure 8-2. Simultaneous Instruction Execution

CPU32 REFERENCE MANUAL MOTOROLA

The execution time attributed to instructions A, B, and C after considering
the overlap is illustrated in Figure 8-3. The overlap time is attributed to the
execution time of the completing instruction.

I----INSTRUCTION A -----I

!----INSTRUCTION B ----I

I----INSTRUCTION C ----I

y
OVERLAP
PERIOD

IABSORBED BY
NSTRUCTION A)

OVERLAP
PERIOD

IABSORBED BY
NSTRUCTION B)

Figure 8-3. Attributed Instruction Times

8.1.5 Effects of Wait States

The CPU32 contains a small amount of on-chip memory with an access time
of two clocks. While it is possible to get two-clock external accesses when
the bus is operated in a synchronous mode, the typical external memory
speed is three clocks or more.

All instruction times given in the timing tables in this section assume that
both instruction fetches and operand cycles are to the two-clock memory
and are for word access only (unless explicitly mentioned otherwise}. Any
time a long access is made, the time for the additional bus cycle(s} must be
added to the overall execution time. Wait states due to slow external memory
must be added into that memory for each bus cycle.

A typical application will have a mixture of bus speeds: e.g., program exe­
cuting from an off-chip ROM, the stack in the on-chip RAM, bulk storage of
variables in a slower off-chip RAM, and peripherals with speeds ranging from
moderate to very slow. To arrive at an accurate instruction time calculation,
each bus access must be individually considered. Many instructions have a
head cycle count, which may be used to reduce the total number of cycles
caused by a slower memory on the prefetch started by the previous instruc­
tion. For such cases, the increase in access time has no effect on the total
execution time of that pair.of instructions.

MOTOROLA CPU32 REFERENCE MANUAL 8-5

•

II

To trace the execution time of instructions by monitoring the external bus,
note that the order of operand accesses is always the same for a particular
instruction sequence, and, provided the bus speed is identical across those
sequences, the interleaving of instruction prefetches with operands .is also
identical.

8.2 INSTRUCTION STREAM TIMING EXAMPLES

Some programming examples will allow a more detailed examination of
these effects. For all examples, the memory access is from the internal two­
clock memory or external synchronous memory, the bus is idle, and the
instruction pipeline is full at the start.

8.2.1 Timing Example 1: Execution Overlap

The example shown in Figure 8-4 illustrates the overlapping of execution
due to the bus controller's ability to execute bus cycles while the sequencer
is calculating the next effective address. One clock is saved between each
instruction since that is the minimum time of the individual head and tail
numbers.

2 4 5 6

CLOCK

BUS

Instructions

MOVE.W
ADDQ.W
CLR.W

7 8 9

A1, (AO) +
#1, (AO)
$30 (A1)

0 345 678

3 PRE- WRITE
CONTROLLER FETCH FOR 3

INSTRUCTION
CONTROLLER

EXECUTION
TIME

8-6

MOVEA1.(AO)+

MOVE.WA1.(AO)+

CLR
<EA>

CLR.W $30(A1)

Figure 8-4. Example 1 - Instruction Stream

CPU32 REFERENCE MANUAL MOTOROLA

8.2.2 Timing Example 2: Branch Instructions

Example 2 shows what happens when a branch instruction is executed for
both the taken and not-taken cases (see Figures 8-5 and 8-6). The instruction
stream is for a simple limit check with the variable already in a data register.

ClOCK

BUS 1 PRE-
CONTROllER FETCH

INSTRUCTION MOVEa CONTROLLER

EXECUTION MOVEa
TIME #7,D1

ClOCK

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

MOTOROLA

Instructions

MOVEQ
CMP.L
BLE.B
MOVE.L

#7, D1
D1, DO
NEXT
D1, (AO)

4 5 6 8 o 234

2

1 PRE-
FETCH

MOVEa

MOVEa
#7,D1

OFFSET
CALC

PRE­
FETCH

TAKEN
TAKEN TAKEN ~111::.:::::r~~1:::·]111

BLE.B NOT TAKEN

Figure 8-S. Example 2 - Branch Taken

4 5 6 7 8

3 PRE­
FETCH

OFFSET NOT
CALC TAKEN

BLE.B NOT TAKEN ll~[:.:··.:.:·:::.:::·.:::::::::~~~:~::~:::~~~!:::::::::::::::::::::::::::::::::::lli
Figure 8-6. Example 2 - Branch Not Taken

CPU32 REFERENCE MANUAL 8-7

•

•

8.2.3 Timing Example 3: Negative Tails

This example (see Figure 8-7) shows how to properly account for the negative
tail figures for branches and other change-of-flow instructions. For this exam­
ple, the bus speed is assumed to be four clocks per access. Instruction three
is at the branch destination.

Instructions

MOVEO
BRA.W
MOVE.L

#7, D1
FARAWAY
D1, DO

The CPU32 has a two-word instruction pipeline, but, due to internal delays,
the minimum time for a branch instruction allows three bus cycles. The
negative tail is intended to serve as a reminder that on a fast bus an extra
two clocks are available for prefetching a third word, but that on a slower
bus the third word is not forced to be fetched.

2 3 4 5 7 9 0 345 6 789

CLOCK

BUS
CONTROLLER BRANCH OFFSET PREFETCH

INSTRUCTION
CONTROLLER

MOVE
TO DO

EXECUTION
TIME MOVEQ#7,D1 MOVE.L D1,OO

8-8

Figure 8-7. Example 3 - Branch Negative Tail

Example 3 actually illustrates three different considerations in calculating the
time for an instruction. The branch instruction does not attempt to prefetch
beyond the minimum number of words needed for itself; the negative tail
allows execution to begin sooner than would be calculated for a three-word
pipeline, and there is a one-clock delay caused by the displacement arriving
late at the CPU.

CPU32 REFERENCE MANUAL MOTOROLA

The negative tail only needs to be calculated on changes of flow, but the
concept can be generalized to any instruction so that only two words are
required to be in the pipeline, but up to three words may be present. When
there is an opportunity for the extra prefetch, it is made. A prefetch to replace
an instruction can begin ahead of the instruction, resulting in a faster
processor.

8.3 INSTRUCTION TIMING TABLES

The following assumptions apply to the times shown in the tables in this
section:

• A 16-bit data bus is used for all memory accesses.

• All memory accesses occur with two-clock bus cycles and no wait states.

• The instruction pipeline is full at the beginning of the instruction and is
refilled by the end of the instruction.

Three values are listed for each instruction and addressing mode:

. Head This value is th~ number of cycles at the beginning of the instruction
available for the previous instruction's write to complete or for a
prefetch to occur.

Tail This value is the number of cycles at the end of the instruction used
by the instruction to complete a write.

Cycles This field contains four numbers per entry, three of which are con­
tained in parenthesis. The outer number represents the minimum
number of cycles required for the instruction to complete. Within
the parenthesis, the numbers represent the number of bus accesses
performed by the i'nstruction. The first number inside the parenthesis
is the number of operand read accesses performed by the instruc­
tion. The second number is the number of instruction fetches per­
formed by the instruction, including all prefetches to keep the

MOTOROLA

instruction and the instruction pipeline filled. The third number is •
the number of write accesses performed by the instruction. :

TOTAlNUMBEROFa.OCKS~dlJ8 (2/1/0)

NUMBER OF READ CYCLES ~
NUMBER OF INSTRUCTION ACCESS CYCLES

NUMBER OF WRITE CYCLES --------'

CPU32 REFERENCE MANUAL 8-9

•

8-10

The total number of bus-activity clocks and internal clocks (not overlapped
by bus activity) of the instruction in this example are derived as follows:

(2 reads x 2 clocks/read) +
(1 instruction access x 2 clocks/access) +
(0 writes x 2 clocks/write) = 6 clocks of bus activity

8 clocks total- 6 clocks bus activity = 2 internal clocks

One example from the timing tables is the ADD.L (12, A3, D7.W· 4), D2
instruction, with the instructions and data from two-clock memory. The
effective addressing mode is listed as head =4, tail =4, cycles = 10 (2/1/0). The
difference from CEA timing table (see 8.3.2 Ca,culate Effective Address) is
because the table is listed for word accesses, and this example is for a long
access. The instruction itself has a head = 0, tail = 0, and cycles = 2(0/1/0) from
the arithmetic/logical timing table (see 8.3.5 Arithmetic/Logicallnstructions).
Assuming no trailing write exists from the previous instruction, the execution
time is calculated as follows:

The effective address calculation requires six clocks, with the replacement
fetch for the effective address occurring during this time (leaving a head of
four). If there had not been time in the head to perform the prefetch due to
a previous trailing write, then time must be allotted in the middle of the
instruction or after the tail to do the prefetches. The read of the memory
requires two bus cycles at two clocks each. This read time, implied in the tail
figure for the effective address, cannot be overlapped with the instruction
since the instruction has a head of zero. An additional two clocks are required
for the actual ADD, which makes the total 6 + 4 + 2 = 12 clocks. If the bus
cycles take more time (i.e., the memory is off-chip), then add the appropriate
number of clocks to each memory access.

An example of the overlapped execution possible on the CPU32 is with the
instruction sequence MOVE.L DO, (AO) followed by LSL.L #7, D2. The MOVE
has a head of zero and a tail of four, since it is a long write. The LSL has a
head of four; therefore, the trailing write from the MOVE will overlap the LSL
completely. Thus, this two-instruction sequence has a head of zero and a tail
of zero and a total execution of eight clocks instead of .12 clocks obtained by
adding the individual cycle times.

General observations regarding calculation of execution time are as follows:

• Any time the number of bus cycles is listed as IIX ,II substitute a value of
one for byte and word cycles and a value of two-for long cycles. For
long bus cycles, usually add a value of two to the tail.

CPU32 REFERENCE MANUAL MOTOROLA

• The time calculated for an instruction on a three-clock (or longer) bus is
usually longer than the actual execution time. All times shown are for
two-clock bus cycles.

• If the previous instruction has a negative tail, then a prefetch for the
current instruction may begin there in advance of the instruction needing
the prefetch.

• Certain instructions requiring an immediate extension word (immediate
word effective address, absolute word effective address, address register
indirect with displacement effective address, conditional branches with
word offsets, bit operations, LPSTOP, TBL, MOVEM, MOVEC, MOVES,
MOVEP, MUL.L, DIV.L, CHK2, CMP2, and DBcc) are not permitted to begin
until the extension word has been in the instruction pipeline for at least
one cycle. This does not apply to long offsets or displacements .

MOTOROLA CPU32 REFERENCE MANUAL 8-11

•

•

8.3.1 Fetch Effective Address

8-12

The fetch effective address table indicates the number of clock periods needed
for the processor to calculate and fetch the specified effective address. The
total number of clock cycles is outside the parentheses. The numbers inside
parentheses (r/p/w) are included in the total clock cycle number. All timing
data assumes two-clock reads and writes.

Instruction Head Tail Cycles

Dn - - 0(01010)

An - - 0(01010)

(An) 1 1 3(xI010)

(An)+ 1 1 3(xI010)

-(An) 2 '. 2 4(xI010)

(d16,An) or (d16,PC) 1 3 5(x/1/0)

(xxx).W 1 3 5(x/1/0)

(xxx).L 1 5 7(x/2/0)

#(data).W 1 1 3(0/1/0)

#(data).B 1 1 3(0/1/0)

#(data).L 1 3 5(0/2/0)

(d8,An,Xn.Sz x Sc) or (d8,PC,Xn.Sz x Sc) 4 2 8(x/1/0)

(0) 2 2 6(x/1/0)

(d16) 1 3 7(x/2/0)

(d32) 1 5 9(x/3/0)

(An) 1 1 5(x/1/0)

(Xm.SzxSc) 4 2 8(x/1/0)

(An,Xm.Sz x Sc) 4 2 8(x/1/0)

(d16,An) or (d16,PC) 1 3 7(x/2/0)·

(d32,An) or (d32,PC) 1 5 9(x/3/0)

(d16,An,Xm) or (d16,PC,Xm) 2 2 8(x/2/0)

(d32,An,Xm) or (d32,PC,Xm) 1 3 9(x/3/0)

(d16,An,Xm.Sz x Sc) or (d16,PC,Xm.Szx Sc) 2 2 8(x/2/0)

(d32,An,Xm.Sz x Sc) or (d32,PC,Xm.Sz x Sc) 1 3 9(x/3/0)

x = There is one bus cycle for byte 'and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and to
the number of cycles.

NOTES:
1. Tail on reads is the minimum time a read or prefetch will take after the

number of cycles for word operands.
2. Size and scale of the index register do not affect execution time.
3. The program counter may be substituted for the base address register

An.
4. For the indexed addressing modes, the prefetches to replace it are per­

mitted to occur immediately so that the head is zero if the previous
instruction had a tail smaller than the listed effective address head. This
scheme allows a slower bus to work faster than might otherwise be
calculated.

CPU32 REFERENCE MANUAL MOTOROLA

8.3.2 Calculate Effective Address

The calculate effective address table indicates the number of clock periods
needed for the processor to calculate the specified effective address. The
timing is equivalent to fetch effective address except there is no read cycle.
The tail and cycle time are reduced by the amount of time the read would
occupy. The total number of clock cycles is outside the parentheses. The
numbers inside parentheses (r/p/w) are included in the total clock cycle num­
ber. All timing data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles

Dn - - 0(01010)

An - - 0(01010)

(An) 1 0 2(01010)

(An)+ 1 0 2(01010)

-(An) 2 0 2(01010)

(d16,An) or (d16.PC) 1 1 3(0/1/0)

(xxx).W 1 1 3(0/1/0)

(xxx).L 1 3 5(0/2/0)

(d8,An,Xn.Sz x Sc) or (d8,PC,Xn.Sz x Sc) 4 0 6(01110)

(0) 2 0 4(0/1/0)

(d16) 1 1 5(0/2/0)

(d32) 1 3 7(0/3/0)

(An) 1 0 4(0/1/0)

(Xm.SzxSc) 4 0 6(0/1/0)

(An,Xm.Sz x Sc) 4 0 6(0/1/0)

(d16,An) or (d16,PC)
"-

1 1 5(0/2/0)

(d32,An) or (d32,PC) 1 3 7(0/3/0)

(d16,An,Xm) or (d16,PC,Xm) 2 0 6(0/2/0)

(d32,An,Xm) or (d32,PC,Xm) 1 1 7(0/3/0)

(d16,An,Xm.Sz x Sc) or (d16,PC,Xm.Sz x Sc) 2 0 6(0/2/0)

(d32,An,Xm.Sz x Sc) or (d32,PC,Xm.Sz xSc) 1 1 7(0/3/0)

NOTES:
1. Tail on reads is the minimum time a read or prefetch will take after the

number of cycles for word operands.
2. Size and scale of the index register do not affect execution time.
3. The program counter may be substituted for the base address register

An.
4. For the indexed addressing modes, the prefetches to replace it are per­

mitted to occur immediately so that the head is zero, if the previous
instruction had a tail smaller than the listed effective address head. This
scheme allows a slower bus to work faster than might otherwise be
calculated.

CPU32 REFERENCE MANUAL 8-13

•

•

8.3.3 MOVE Instruction

8-14

The MOVE instruction table indicates the number of clock periods needed
for the processor to calculate the destination effective address and to perform
the MOVE or MOVEA instruction. The fetch effective address table is needed
on most MOVE operations (soupce, destination dependent). The destination
effective addresses are divided by their formats (refer to 3.4.4 Effective Address
Encoding Summary). The total number of clock cycles is outside the paren­
theses. The numbers inside parentheses (r/p/w) are included in the total clock
cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

MOVE Rn, On 0 0 2(011/0)

MOVE Rn, An 0 0 2(0/1/0)

MOVE (FEA), An 0 0 2(0/1/0)

MOVE (FEA), On 0 0 2(0/1/0)

MOVE Rn, (Am) 0 2 4(0/1/x)

MOVE Rn, (Am) + 1 1 5(0/1/x)

MOVE Rn, - (Am) 2 2 6(0/1/x)

MOVE Rn, (CEA) 1 3 5(0/1/x)

MOVE #, (CEA) 2 2 6(0/1/x)*

MOVE (FEA), (An) 2 2 6(0/1/x)

MOVE (FEA), (An) + 2 2 6(0/1/x)

MOVE (FEA), - (An) 2 2 6(0/1/x)

MOVE (CEA), (CEA) 2 2 6(0/1/x)

x = There is one bus cycle for byte and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and
to the number of cycles.

* = There should be an immediate effective address calculation also in­
cluded for this instruction.

NOTE:
For instructions not explicitly listed (MOVE (CEA), (CEA»), the source ef­
fective address is calculated by the calculate effective address table, and
the destination effective address is calculated by the same table except the
bus cycle is for the source effective address. If the prefetches for the ad­
dressing modes have been completed, then a maximum of three cycles
are allotted for the memory read without affecting the total execution time.

CPU32 REFERENCE MANUAL MOTOROLA

8.3.4 Special-Purpose MOVE Instruction

The special-purpose MOVE instruction table indicates the number of clock
periods needed for the processor to fetch, calculate, and perform the special­
purpose MOVE operation on the control registers or specified effective
address. Footnotes indicate when to account for the appropriate effective
address times. The total number of clock cycles is outside the parentheses.
The numbers inside parentheses (r/p/w) are included in the total clock cycle
number. All timing data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles

EXG 2 0 4(011/0)

MOVEC Cr,Hn 10 0 14(012/0)

MOVEC Rn, Cr 12 0 <16(011/0)

MOVE CCR,Dn 2 0 4(0/1/0)

MOVE CCR, (CEA) . 0 2 4(0/111)

MOVE Dn,CCR 2 0 4(0/1/0)

MOVE (FEA), CCR 0 0 4(0/1/0)

MOVE SR,Dn 2 0 4(0/1/0)

MOVE SR, (CEA) 0 2 4(0/1/1)

MOVE Dn,SR 4 -2 10(013/0)

MOVE (FEA), SR 0 -2 10(0/3/0)

MOVEM.W (CEA), RL 1 0 8+n·4(n+1, 2,0)*

MOVEM.W RL, (CEA) 1 0 8+n·4(0, 2, n)*

MOVEM.L (CEA), RL 1 0 12 + n·4(2n +2,2,0)

MOVEM.L RL, (CEA) 1 2 10+n·4(0, 2, 2n)

MOVEP.W Dn, (d16, An) 2 0 10(0/2/2)

MOVEP.W (d16, An), Dn 1 2 11 (2/2/0)

MOVEP.L Dn, (d16, An) 2 0 14(0/2/4)

MOVEP.L (d16, An), Dn 1 2 19(4/2/0)

MOVES (CEA), Rn 1/7 1 13(x/2/0)

MOVES Rn, (CEA) 1/9 2 14(0/2/x)

MOVE USP,An 0 0 2(0/110)

MOVE An,USP 0 0 2(0/1/0)

SWAP Dn 4 0 6(0/1/0)

x = There is one bus cycle for byte and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and
to the number of cycles.

* = Each bus cycle may take up to four clocks without increasing total
execution time.

Cr = Control registers USP, VBR, SFC, DFC, CAAR, and CACR
n = Number of registers to transfer

RL = Register List
< = Maximum time is indicated; certain data or mode combinations may

execute faster.

CPU32 REFERENCE MANUAL 8-15

•

III

8.3.5 Arithmetic/Logical Instructions

8-16

The arithmetical/logical instruction table indicates the number of clock periods
needed for the processor to perform the specified arithmetical/logical instruc­
tion using the specified addressing mode. Footnotes indicate when to account
for the appropriate effective address times. The total number of clock cycles
is outside the parentheses. The numbers inside parentheses (r/p/w) are
included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles

ADD(A) Rn, Rm 0 0 2(0/1/0)

ADD(A) (FEA), Rn 0 0 2(0/1/0)

AND Rn, (FEA) 0 3 5(0/1/x)

AND Dn, Dm 0 0 2(0/1/0)

AND (FEA), Dn 0 0 2(0/1/0)

AND Dn, (FEA) 0 3 5(0/1/x)

EOR Dn, Dm 0 0 2(0/1/0)

EOR Dn, (FEA) 0 3 5(0/1/x)

OR Dn, Dm 0 0 2(0/1/0)

R (FEA), Dn 0 0 .2(0/1/0)

OR Dn, (FEA) 0 3 5(0/1/x)

SUB (A) Rn, Rm 0 0 2(0/1/0)

SUB (A) (FEA), Rn 0 0 2(0/1/0)

SUB Rn Rn, (FEA) 0 3 5(0/1/x)

CMP(A) Rn, Rm 0 0 2(0/1/0)

CMP(A) (FEA), Rn 0 0 2(0/1/0)

CMP2 (FEA), Rn 1/2 0 <20(x/2/0)

MULsu.W (FEA), Dn 0 0 26(0/110)

MULsu.L (FEA), Dn 1/2 0 <52(0/1/0)

DIVU.W (FEA), Dn 0 0 32(0/110)

DIVS.W (FEA), Dn 0 0 42(0/1/0)

DIVU.L (FEA), Dn 1/2 0 <48(011/0)

DIVS.L (FEA), Dn 1/2 0 <64(0/1/0)

TBLsu Dn/Dm, Dp 26 0 <30(0/2/0)

TBLsu (CEA), Dn 1/6 0 <38(2x/2/0)

TBLNsu Dn/Dm, Dp 30 0 <34(01210)

TBLNsu (CEA), Dn 1/6 0 <42(2x/2/0)

x = There is one bus cycle for byte and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and
to the number of cycles.

< = Maximum time is indicated; certain data or mode combinations will
execute faster.

su = The execution time is identical for signed or unsigned operands.

CPU32 REFERENCE MANUAL MOTOROLA

8.3.6 Immediate Arithmetic/Logical Instructions

The immediate arithmetical/logical instruction table indicates the number of
clock periods needed for the processor to fetch the source immediate data
value and to perform the specified arithmetical/logical instruction using the
specified addressing mode. Footnotes indicate when to account for the
appropriate fetch effective or fetch immediate effective address times. The
total number of clock cycles is outside the parentheses. The numbers inside
parentheses (r/p/w) are included in the total clock cycle number. All timing
data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles

MaVEQ #,Dn 0 0 2(0/1/0)

ADDQ #,Rn 0 0 2(0/1/0)

ADDQ #, (FEA) 0 3 5(011lx)

SUBQ #,Rn 0 0 2(0/1/0)

SUBQ #, (FEA) 0 3 5(0/1/x)

ADDI #,Rn 0 0 2(0/1/0)*

ADDI #, (FEA) 0 3 5(0/1/x)*

ANDI #,Rn 0 0 2(0/1/0)*

ANDI #, (FEA) 0 3 5(0/1/x)*

EaRl #,Rn 0 0 2(01110)*

EaRl #, (FEA) 0 3 5(0/1/x)*

aRI #, Rn 0 0 2(0/1/0)*

aRI #, (FEA) 0 3 5(0/1/x)*

SUBI #,Rn 0 0 2(0/1/0)*

SUBI #, (FEA) 0 3 5(0/1/x)*

CMPI #,Rn 0 0 2(0/1/0)*

CMPI #, (FEA) 0 0 2(01110)*

x = There is one bus cycle for byte and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and
to the number of cycles.

* = Add immediate effective address.

CPU32 REFERENCE MANUAL 8-17

•

•

8.3.7 Binary-Coded Decimal and Extended Instructions

8-18

The binary-coded decimal and extended instruction table indicates the num­
ber of clock periods needed for the processor to perform the specified
operation using the specified addressing mode. No additional tables are
needed to calculate total effective execution time for these instructions. The
total number of clock cycles is outside the parentheses. The numbers inside
parentheses (r/p/w) are included in the total clock cycle number. All timing
data assumes two-clock reads and writes.

Instruction Head Tail Cycles

ABCD On, Om 2 0 4(011/0,)

ABCD - (An), - (Am) 2 2 12(211/1)

SBCD On, Om 2 0 4(01110)

SBCD - (An), - (Am) 2 2 12(2/1!1)

ADDX On, Om 0 0 2(011/0)

AODX -(An), -(Am) 2 2 10(2/111)

SUBX On, Dm 0 0 2(0/1/0)

SUBX -(An), -(Am) 2 2 10(2/111)

CMPM (An)+, (Am)+ 1 0 8(2/1/0)

CPU32 REFERENCE MANUAL MOTOROLA

8.3.8 Single Operand Instructions

The single operand instruction table indicates the number of clock periods
needed for the processor to perform the specified operation using the spec­
ified addressing mode. The total number of clock cycles is outside the
parentheses. The numbers inside parentheses (r/p/w) are included in the total
clock cycle number. All timing data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles
CLR On 0 0 2(011/0)

CLR (CEA) 0 2 4(0/1/x)

NEG On 0 0 2(0/1/0)

NEG (FEA) 0 3 5(0/1/x)

NEGX On 0 0 2(0/1/0)

NEGX (FEA) 0 3 5(0/1 Ix)

NOT On 0 0 2(0/1/0)

NOT (FEA) 0 3 5(0/1/x)

EXT On 0 0 2(0/1/0)

NBCO Dn 2 0 4(0/1/0)

NBCO (FEA) 0 ·2 6(0/1/1)

See On 2 0 4(0/1/0)

Sec (CEA) 2 2 6(0/1/1)

TAS On 4 0 6(0/1/0)

TAS (CEA) 1 -0 10(0/111)

TST On 0 0 2(0/1/0)

TST (FEA) 0 0 2(0/1/0)

x = There is one bus cyele for byte and word operands and two bus cycles
for long operands. For long. bus cycles, add two clocks to the tail and to
the number of cycles.

CPU32 REFERENCE MANUAL 8-19

•

•

8.3.9 Shift/Rotate Instructions

8-20

The shift/rotateinstruction table indicates the number of clock periods needed
for the processor to perform the specified operation on the given addressing
mode. Footnotes indicate when to account forthe appropriate effective address
times. The number of bits shifted does not affect the execution time, unless
noted. The total number of clock cycles is outside the parentheses. The num­
bers inside parentheses (r/p/w) are included in the total clock cycle number.
All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

LSd Dn, Dm -2* 0 (0/1/0)*

LSd #, Dm 4 0 6(01110)

LSd (FEA) 0 2 6(01111)

ASd Dn, Dm -2* 0 (011/0)*

ASd #, Dm 4 0 6(011/0)

ASd (FEA) 0 2 6(0/1/1)

ROd Dn, Dm -2* 0 (0/110)*

ROd #, Dm 4 0 6(011/0)

ROd (FEA) 0 2 6(0/1/1)

ROXd Dn, Dm -2** 0 (0/110)**

ROXd #,Dm -2*** 0 (01110)***

ROXd (FEA) 0 2 6(0/1/1)

d = Direction (left or right).
* = Execution time is calculated by this formula: max(3 + (n/4) + mod

(n,4) + mod(((n/4) + mod(n,4) + 1,2) ,6) or by the following table.
** = Execution time is calculated by this formula (count:::::: 63): max(3 +

n + mod(n + 1,2),6).
*** = Execution time is calculated by this formula (count:::::: 8): max(2 +

n + mod(n, 2), 6).

Clocks Shift Counts

6 0 1 2 3 4 5 6 8

8 7 10 11 13 14 16 17 20

10 15 18 19 21 22 24 25 28

12 23 26 27 29 30 32 33 36

31 34 35 37 38 40 41 44

39 42 43 45 46 48 49 52

47 50 51 53 54 56 57 60

55 58 59 61 62

22 63

CPU32 REFERENCE MANUAL MOTOROLA

8.3.10 Bit Manipulation Instructions

The bit manipulation instruction table indicates the number of clock periods
needed1for the processor to perform the specified operation on the given
addressing mode. The total number of clock cycles is outside the parentheses.
The numbers inside parentheses (r/p/w) are included in the total clock cycle
number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

BCHG #,On 2 0 6(012/0)

BCHG On, Om 4 0 6(0/1/0)

BCHG #, (FEA) 1 2 8(0/2/1)

BCHG On, (FEA) 2 2 8(0/1/1)

BCLR #,On 2 0 6(0/2/0)

BCLR On, Om 4 0 6(0/1/0)

BCLR #, (FEA) 1 2 8(0/2/1)

BCLR On, (FEA) 2 2 8(0/1/1)

BSET #,On 2 0 6(0/2/0)

BSET On, Om 4 0 6(0/1/0)

BSET #, (FEA) 1 2 8(0/2/1)

BSET On, (FEA) 2 2 8(0/1/1)

BTST #,On 2 0 4(0/2/0)

BTST On, Om 2 0 4(0/1/0)

BTST #, (FEA) 1 0 4(0/2/0)

BTST On, (FEA) 2 0 4(0/1/0)

MOTOROLA CPU32 REFERENCE MANUAL .8-21

•

•

8.3.11 Conditional Branch Instructions

8-22

The conditional branch instruction table indicates the number of clock periods
needed for the processor to perform the specified branch on the given branch
size, with complete execution times given. No additional tables are needed
to calculate total effective execution time for these instructions. The total
number of clock cycles is outside the parentheses. The numbers inside
parentheses (r/p/w) are included in the total clock cycle number. All timing
data assumes two-clock reads and writes.

Instruction Head Tail Cycles

Bee (taken) 2 -2 8(0/2/0)

Bee.B (not taken) 2 0 4(0/1/0)

Bee.W (not taken) 0 0 4(0/210)

Bee.L (not taken) 0 0 6(0/3/0)

OBee (T, not taken) 1 1 4(0/2/0)

OBee (F, -1, not taken) 2 0 6(0/210)

OBee (F, not -1, taken) 6 -2 10(0/2/0)

OBee (T, not taken) 4 0 6(0/1/0)*

OBee (F, -1, nottaken) 6 0 8(0/1/0)*

OBee (F, not -1,taken) 6 0 6(01010)*

* = In loop mode .

CPU32 REFERENCE MANUAL MOTOROLA

8.3.12 Control Instructions

The control instruction table indicates the number of clock periods needed
for the processor to perform the specified operation on the given addressing
mode. Footnotes indicate when to account for the appropriate effective address
times. The total number of clock cycles is outside the parentheses. The num­
bers inside parentheses (r/p/w) are included in the total clock cycle number.
All timing data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles

ANDI #,SR 0 -2 12(0/2/0)

EORI #,SR 0 -2 12(0/2/0)

ORI #,SR 0 -2 12(0/2/0)

ANDI #,CCR 2 0 6(0/210)

EORI #,CCR 2 0 6(0/2/0)

ORI #,CCR 2 0 6(0/2/0)

BSR.B 3 -2 13(012/2)

BSRW 3 -2 13(0/2/2)

BSRL 1 -2 13(0/2/2)

CHK (FEA), On (no ex) 2 0 8(0/110)

CHK (FEA), On (ex) 2 -2 42(2/2/6)

CHK2 (FEA), On (no ex) 1/2 0 20(x/l/0)

CHK2 (FEA), On (ex) 1/2 -2 54(x + 2/2/6)

JMP (CEA) 0 -2 6(0/210)

JSR (CEA) 3 -2 13(012/2)

LEA (CEA), An 0 0 2(0/110)

LlNK.W An, # 2 0 10(012/2)

LlNK.L An, # 0 0 10(0/3/2)

NOP 0 0 2(0/1/0)

PEA (CEA) 0 0 8(0/1/2)

RTD # 1 -2 12(212/0)

RTR 1 -2 14(3/2/0)

RTS 1 -2 12(2/2/0)

UNLK An 1 -2 9(21110)

x = There is one bus cycle for byte and word operands and two bus cycles
for long operands. For long bus cycles, add two clocks to the tail and to
the number of cycles.

CPU32 REFERENCE MANUAL 8-23

•

•

8.3.13 Exception-Related Instructions and Operations

8-.24

The exception-related instructions and operations table indicates the number
of clock periods heeded for the processor to perform the specified exception­
related actions. No additional tables are needed to calculate total effective
execution time for these instructions. The total number of clock cycles is
outside the parentheses. The numbers inside parentheses (r/p/w) are included
in the total clock cycle number. All timing data assumes two-clock reads and
writes.

Instruction Head Tail Cycles

BKPT (Acknowledged) 0 0 14(1/010)

BKPT (Bus Error) 0 -2 35(3/2/4)

Breakpoint (Acknowledged) 0 0 10(1/010)

Breakpoint (Bus Error) 0 -2 42(3/2/6)

Interrupt 0 -2 30(3/2/4)*

RESET 0 0 518(011/0)

STOP 2 0 12(01110)

LPSTOP 3 -2 25(0/3/1)

Divide-by-Zero 0 -2 36(2/2/6)

Trace 0 -2 36(2/2/6)

TRAP # 4 -2 29(2/2/4)

ILLEGAL 0 -2 25(2/2/4)

A-line 0 -2 25(2/2/4)

F-line 0 -2 25(2/2/4)

Privileged 0 -2 25(2/2/4)

TRAPcc (trap) 2 -2 38(2/2/6)

TRAPcc (no trap) 2 0 4(0/110)

TRAPcc.W (trap) 2 -2 38(2/2/6)

TRAPcc.W (no trap) 0 0 4(0/2/0)

TRAPcc.L (trap) 0 -2 38(2/2/6)

TRAPcc.L (no trap) 0 0 6(0/3/0)

TRAPV (trap) 2 -2 38(212/6)

TRAPV (no trap) 2 0 4(01110)

* = Minimum interrupt acknowledge cycle time is assumed to be three clocks.

CPU32 REFERENCE MANUAL MOTOROLA

8.3.14 Save and Restore Operations

The save and restore operations table indicates the number of clock periods
needed for the processor to perform the specified state save or return from
exception. Complete execution times and stack length are given. No addi­
tional tables are needed to calculate total effective execution time for these
instructions. The total number of clock cycles is outside the parentheses. The
numbers inside parentheses (r/p/w) are included in the total clock cycle num­
ber. All timing data assumes two-clock reads and writes.

MOTOROLA

Instruction Head Tail Cycles

BERR on instruction 0 -2 <58(2/2/12)

BERR on exception 0 -2 48(212112)

RTE (four-word frame) 1 -2 24(4/2/0)

RTE (six-word frame) 1 -2 26(4/2/0)

RTE (BERR on instruction) 1 -2 50(12/2/y)

RTE (BERR on four-word frame) 1 -2 66(10/2/4)

RTE (BERR on six-word frame) 1 -2 70(12/2/6)

< = Maximum time is indicated; certain data or mode combinations will
execute faster.

y = If a bus error occurred during a write cycle, the cycle is rerun by the RTE .

CPU32 REFERENCE MANUAL 8-25

•

•

8-26 CPU32 REFERENCE MANUAL MOTOROLA

APPENDIX A
M68000 FAMILY SUMMARY

Appendix A summarizes the characteristics of the microprocessors in the
M68000 Family. M68000 UM/AD, M68000 User's Manual Sixth Edition in­
cludes more detailed information about the MC68000 and MC68010 differ-
ences.

MC68000 MC68010 CPU32 MC68020

Data Bus Size (Bits) 16 16 8,16 8, 16,32
Address Bus Size (Bits) 24 24 24 32
Instruction Cache

(In Words) -3* 3* 128

*Three-word cache for the loop mode.

Virtual Memory/Machine
MC68000 None
MC68010 Bus Error Detection, Instruction Continuation
CPU32 Bus Error Detection, Instruction Restart
MC68020 Bus Error Detection, Instruction Continuation

Coprocessor Interface
MC68000 Emulated in Software
MC68010 Emulated in Software
CPU32 Emulated in Software
MC68020 In Microcode

Word/Long-Word Data Alignment
MC68000 Word/Long-Word Data, Instructions, and Stack Must Be Word

Aligned
MC68010 Word/Long-Word Data, Instructions, and Stack Must Be Word

Aligned
CPU32 Word/Long-Word Data, Instructions, and Stack Must Be Word

Aligned
MC68020 Only Instructions Must Be Word Aligned (Data Alignment Im-

proves Performance)

MOTOROLA CPU32 REFERENCE MANUAL A-1

•

•
A-2

Control Registers
MC68000 None
MC68010 SFC, DFC, VBR
CPU32 SFC,DFC,VBR
MC68020 SFC, DFC, VBR, CACR, CAAR

Stack Pointers
MC68000 USP, SSP
MC68010 USP, SSP
CPU32 USP, SSP
MC68020 USP, SSP (MSP, ISP)

Status Register Bits
MC68000 T, S, 10/11/12, X/N/Z/V/C
MC68010 T, S, 10111/12, X/N/Z/V/C
CPU32 T1/TO, S, 10/11/12, X/N/Z/V/C
MC68020 T1/TO, S, M, 10/11/12, X/N/Z/V/C

Function Code/Address Space
MC68000 FCO-FC2 = 7 is Interrupt Acknowledge Only
MC68010 FCO-FC2 = 7 is CPU Space
CPU32 FCO-FC2 = 7 is CPU Space
MC68020 FCO-FC2 = 7 is CPU Space

Indivisible Bus Cycles
MC68000 Use AS Signal
MC68010 Use AS Signal
CPU32 Use RMC Signal
MC68020 Use RMC Signal

Stack Frames
MC68000
MC68010
CPU32
MC68020

Supports Original Set
Supports Formats $0, $8
Supports Formats $0, $2, $C
Supports Formats $0, $1, $2, $9, $A, $B

CPU32 REFERENCE MANUAL MOTOROLA

M68000 Instruction Set Extensions

Mnemonic Description CPU32 M68020

Bcc Supports 32-Bit Displacements Y' Y'

BFxxxx Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU, Y'
BFFFO, BFINS, BFSET, BFTST)

BGND Background Operation Y'

BKPT New Instruction Functionality Y' Y'

BRA Supports 32-Bit Displacements Y' Y'

BSR Supports 32-Bit Displacements Y' Y'

CALLM New Instruction Y'

CAS, CAS2 New Instructions Y'

CHK Supports 32-Bit Operands Y' Y'

CHK2 New Instruction Y' Y'

CMPI Supports Program Counter Relative Addressing Y' Y'

CMP2 New Instruction Y' Y'

cp Coprocessor Instructions Y'

DIVS/DIVU Supports 32-Bit and 64-Bit Operations Y' Y'

EXTB Supports 8-Bit Extend to 32 Bits Y' Y'

LINK Supports 3-Bit Displacements Y' Y'

LPSTOP New Instruction Y'

MOVEC Supports New Control Registers Y' Y'

ivIULS/MULU Supports 32-Bit Operands, 64-Bit Results Y' Y'

PACK New Instruction Y'

RTM New Instruction Y'

TABLE New Instruction Y'

TST Supports Program Counter Relative, Immediate, and Y' Y'
an Addressing

TRAPcc New Instruction Y' Y'

UNPK New Instruction Y'

•
MOTOROLA CPU32 REFERENCE MANUAL A-3

M68000 Addressing Modes

Mode Mnemonic MC68010/ CPU32 MC68020
MC68000

Register Direct Rn ~ ~ ~

Address Register Indirect (An) ~ ~ ~

Address Register Indirect with (An) + ~ ~ ~

Postincrement

Address Register Indirect with -(An) ~ ~ ~

Predecrement

Address Register Indirect with (d16,An) ~ ~ ~

Displacement

Address Register Indirect with Index (da,An,Xn) ~ ~ ~

(8-Bit Displacement)

Address Register Indirect with Index (bd,An,Xn*SCALE) ~ ~

(Base Displacement)

Memory Indirect with Postincrement ([bd,AnI,Xn,od) ~

Memory Indirect with Predecrement ([bd,An,Xnl,od) ~

Absolute Short (xxx).W ~ ~ ~

Absolute Long (xxx).L ~ ~ ~

Program Counter Indirect with (d16,PC) ~ ~ ~

Displacement

Program Counter Indirect with Index (da,PC,Xn) ~ ~ ~

(a-Bit) Displacement

Program Counter Indirect with Index (bd,PC,Xn*SCALE) ~ ~

(Base Displacement)

Immediate #(data) ~ ~ ~

Program Counter Memory Indirect with ([bd,PCI,Xn,od) ~

Postincrement

Program Counter Memory Indirect with ([bd,PC,Xnl,od) ~

Predecrement

•
A-4 CPU32 REFERENCE MANUAL MOTOROLA

-A-
Absolute Long Address Mode, 3-10
Absolute Short Address Mode, 3-10
AC Electrical Specifications,

See system integration user's manual
Address Bus,

See system integration user's manual
Address Error Exception, 6-8
Address Register,

Direct Addressing Mode, 3-4
Indirect Displacement Mode, 3-6
Indirect Index (Base Displacement) Mode, 3-9
Indirect Index (8-Bit Displacement) Mode, 3-9
Indirect Addressing Mode, 3-4
Indirect Postincrement Addressing Mode, 3-5
Indirect Predecrement Addressing Mode, 3-6

Address Registers, 2-6
Address Space Types, 5-4
Addressing,

Capabilities, 3-14
Compatibility, M68000, 3-17, A-4
Indexed, 3-6, 3-9
Indirect, 3-5ff.
Mode Enhancements, 1-5
Mode Summary, 3-15

Addressing Modes,
Register Direct, 3-4
Memory, 3-5
Programming View, 3-13
Special, 3-8

Architectural Comparisons (M68000), A-1
Arithmetic/Logical Instruction,

Immediate, Timing Table, 8-17
Timing Table, 8-16

Assignments, Exception Vector, 6-2
Asynchronous Bus Operation,

See system integration user's manual

-8-

Background Debug Mode, 7-3
Command,

Execution, 7-6
Format, 7-14
Sequence Diagrams, 7-16

INDEX

Sequence Example, 7-17
Set, 7-14

Enabling, 7-3
Entering, 7-6
Returning from, 7-7
Sources, 7-4

BGND Instruction, 7-5
Binary-Coded Decimal and Extended

Instructions, 8-18
Binary-Coded Decimal Operations, 4-9
Bit Manipulation Instructions, 8-21
Bit Manipulation Operations, 4-9
Block Diagram, 1-8
Branch Instructions, 8-7
Breakpoint Exception Processing, 7-5
Breakpoints,

Hardware, 7-3, 6-10
On Data Accesses, 7-3
On Instructions, 7-3
Peripheral, 7-5

Breakpoint Instruction, 7-1
Breakpoint Pin, External, 7-5
Bus Controller Resources, 8-3
Bus Cycle Fault Stack Frame, 6-28
Bus Error, 6-6, 6-28
Bus Faults, Double, 7-5

-c-
Calculate Effective Address, 8-13
Changing Privilege Level, 5-3
Compatibility, M68000 Addressing, 3-14
Condition Code,

Computations, 4-14
Register, 4-14

Condition Tests, 4-17
Conditional Branch Instructions, 8-22
Control,

Instructions, 8-23
Registers, 2-6

Conventions, Notation, 3-2
Correcting Faults, 6-22
CPU,

Serial Logic, 7-8
Space, 5-4
Space Address Encoding, 5-5

MOTOROLA CPU32 REFERENCE MANUAL INDEX-1

-D-
Data,

Format, 7-11
Movement Instructions, 4-5
Register Direct Addressing, 3-4
Registers, 2-4
Structures, Other, 3-18
Types, 2-4

Deterministic Opcode Tracking, 7-3, 7-33
Development Features, Standard, 7-1
Development Support, 7-1
Development System Serial Logic, 7-11
Double Bus Faults, 7-5
Dump Memory Block (DUMP), 7-24
Dynamic Bus Sizing, 6-20, 6-31

-E-
Effective Address, 3-4

Calculate Table (CEA), 8-13
Encoding Summary, 3-11
Fetch Table (FEA), 8-12

Enhanced Addressing Modes, 1-5
Enhanced Instruction Set, 1-5
Errors, Bus, 6-6
Example, Table Instruction, 4-192
Exception,

Address Error, 6-6
Breakpoint Instruction (BKPT), 6-10
Bus Error, 6-6
Format Error, 6-11
Handling, 1-4
Illegal Instruction, 6-11
Instruction Traps, 6-9
Interrupts, 6-15
Kinds of, 6-1
Multiple, 6-3
Priority, 6-3
Privilege Violation, 6-12
Processing, 5-6

Sequence, 6-5
State, 6-1

Reset, 6-6
Related Instructions and Operations, 8-24
Return from, 6-16
Stack Frame, 5-7, 6-4
Trace, 6-13
Unimplemented Instruction, 6-11
Vectors, 5-7, 6-1

Execution Time Calculations, 8-9ff.
Execution Overlap Example, 8-6

-F-
Faults,

Correcting,
Type II via RTE, 6-24
Type III via RTE, 6-26
Type III via Software, 6-25
Type IV via Software, 6-26

Double Bus, 7-5
During,

Exception Processing, 6-23
MOVEM Operand Transfers, 6-22

Prefetch, Operand, RMW, and MOVEP, 6-21
Released Write, 6-20
Recovery, 6-18
Types of, 6-20

Featu res, 1-2
Fetch Effective Address, 8-12
Fill Memory Block (FILL), 7-26
Format Error, 6-11
Four-Word Stack Frame, Normal, 6-27
Function Code Registers, 2-4ff.
Future Commands, 7-32

-G-

General Description, 1-1

-H-

Halt Operation,
See system integration user's manual

-1-

Illegal or Unimplemented Instructions, 6-12
Immediate,

Arithmetic/Logical Instructions, 8-17
Data Addressing, 3-11

Implicit Reference, 3-3
Indexed Addressing, 3-6, 3-9
Indirect Addressing, 3-5ff.
Instruction,

Descriptions, 4-18ff.
Details, 4-12
Execution Overlap, 8-4
Family Compatibility, 4-1
Fetch (lFETCH), 7-29

INDEX-2 CPU32 REFERENCE MANUAL MOTOROLA

Instruction,
Format, 4-3
Format Summary, 4-177
New, 1-6,4-2
Pipe, 8-2
Pipe (IPIPE), 7-33
Set Enhancements, 1-5
Summary, 4-4
Timing Tables, 8-9
Traps, 6-9

Instruction Set Extensions, A-3
Instruction Stream Timing Examples, 8-6
Instructions,

Binary-Coded Decimal (BCD), 4-9, 8-18
Bit Manipulation, 4-9, 8-21
Conditional Branch, 8-22
Data Movement, 4-5, 8-14
Exception Related, 8-24
Integer Arithmetic, 4-6, 8-16
Logical, 4-7, 8-16
Prog ram Control, 4-10, 8-23
Shift and Rotate, 4-8, 8-20
Single Operand, 8-19
System Control, 4-10, 8-23

Integer Arithmetic Operations, 4-6
Interrupts, 6-15

-L-
Logical Operations, 4-7
Loop Mode Instruction Execution, 1-3
Low-Power Stop (LPSTOP), 1-6,4-2

-M-
M68000 Family Addressing Capability, 3-17
M68000 Family Compatibility, 4-1
Memory,

Addressing Modes, 3-5
Data Organization, 2-7
Indirect Addressing, A-4
Virtual"1-2

Microbus Controller, 8-4
Microsequencer,8-1
Model, Programming, 2-1
Move Instruction, 8-14
Move Instruction, Special Purpose, 8-15
Multiple Exceptions, 6-3

-N-
Negative Tails, 8-8
No Operation (NOP), 7-32
Notation and Format, 4-12

Notation Conventions, 3-2
Normal Processing State, 6-1

-0-

Opcode Tracking during Loop Mode, 7-35
Opcode Tracking, in Background Mode, 7-3, 7-35
Organization,

Memory, 2-7
Registers, 2-4

Overlap, 8-4

-p-

Pipeline Sync with the NOP Instruction, 4-201
Prefetch Controller, 8-3
Priority Exception, 6-3
Privilege Levels,

Changing, 5-3
States, 1-8
Supervisor, 5-2
User, 5-2

Privilege Violations, 6-11
Processing of Specific Exceptions, 6-5
Processing States, 1-6
Program and Data References, 3-2
Program Control Instructions, 4-10
Program Counter Indirect with Displacement, 3-8

Index (8-Bit Displacement), 3-9
Index (Base Displacement), 3-9

Programmer's Model, 2-1
Programmer's View of Addressing Modes, 3-13

-Q-

Queues, 3-20

-R-

Read,
Address/Data Register (RAREG/RDREG), 7-17
Memory Location (READ), 7-21
System Register (RSREG), 7-19

Recovery,
Bus Fault, 6-24
RTE,6-26
Software, 6-25

References,
Data, 3-2
Implicit, 3-3
Program, 3-2

Register Direct Addressing, 3-4

MOTOROLA CPU32 REFERENCE MANUAL INDEX-3

Registers,
Address, 2-6
Condition Code, 4-14
Control, 2-6
Data, 2-4
Function.. Code, 2-4ff.
Organization, 2-3
Status, 2-3
Vector Base, 1-4

Release Writes (Type I),
Completing via Software, 6-23
Completing via the RTE, 6-24

Reset, 6-6
Reset Peripherals (RST), 7-31
Resource Scheduling, 8-1
Return from Exception, 8-16
Rotate Instructions, 4-8

-5-

Save and Restore Operations, 8-25
Serial Interface, 7-8
Shift and Rotate Operations, 4-8
Shift and Rotate Instructions, 8-20
Single Operand Instructions, 8-19
Six-Word Stack Fr~me, Normal, 6-28
Sizing, Dynamic Bus, 6-20, 6-31
Software Breakpoints, 6-10
Software Bus Fault Recovery, 6-25
Space Formats, 5-5

Type OOOO-Breakpoint, 5-5
Type 0001-MMU Access, 5-5
Type 001 O-Coprocessor Access, 5-6
Type 0011-lnternal Register Access, 5-6
Type 1111-lnterrupt Acknowledge, 5-6

Special Address Modes, 3-8
Special-Purpose MOVE Instruction, 8-15
Stack,

Frames, 6-27, 5-7
User, 3-19
System, 3-18

States, Processing, 5-1ff
Status Register, 2-3
Subroutine Calls, Nested, 4-201
Supervisor Privilege level, 5-2
Surface Interpolations, 4-200
System,

Control Instructions, 4-10
Stack, 3-18

Synchronization, Pipeline with NOP, 4-201

-T-
Table,

Examples,
Table Standard Usage, 4-193
Compressed Table, 4-194
8-Bit Independent Variable, 4-196
Maintaining Precision, 4-198
Surface Interpolations, 4-200

Instruction, Using the, 4-192
lookup and Interpolate (TBl), 1-6, 4-2

Tests, Condition, 4-17
Timing Examples,

Branch Instructions, 8-7
Execution Overlap, 8-6
Negative Tails, 8-8
See system integration user's manual

Timing Tables, 8-9
Trace on Instruction Execution, 6-13, 7-1

-u-
Unimplemented Instruction Emulation; 7-1
Unimplemented Instructions, 4-2
User Privilege level, 5-3
User Stacks, 3-19

-v-
Vector Base Register,.1-4
Vectors, Exception, 6-2, 5-7
Virtual Memory, 1-2

-w-
Wait States, Effects of, 8-5
Write,

Address/Data Register (WAREG/WDREG), 7-18
Memory location (WRITE), 7-22
Pending Buffer, 8-3
System Register (WSREG), 7-20

INDEX-4 CPU32 REFERENCE MANUAL MOTOROLA

Overview

Architecture Summary

Data Organization and Addressing Capabilities

Instruction Set

Processing States

Exception Processing

Development Support

Instruction Execution Timing

M68000 Family Summary

Index

Overview

Architecture Summary

Data Organization and Addressing Capabilities

Instruction Set

Processing States

Exception Processing

Development Support

Instruction Execution Timing

M68000 Family Summary

Index

A24846-1 #13858, 11,000 MCU PRINTED IN USA 8/90 GTE

