
Advance Information

MC68000
16-BIT

MICROPROCESSOR

APRIL, 1983

This document contains information on a new product. Specifications and information herein
are subject to change without notice.

©MOTOROLA INC., 1983 ADI-814-R4

Motorola reserves the right to make changes to any products herein to improve reliability. function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

Paragraph
Number

TABLE OF CONTENTS

Title

Section 1
I ntrodu ction

Page
Number

1.1 Data Types and Addressing Modes... 1-1
1.2 Instruction Set Overview.. 1-3

2.1
2.2
2.2.1
2.2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.2.1
2.8.2.2
2.8.2.3
2.8.2.4
2.8.2.5
2.8.3
2.8.3.1
2.8.3.2
2.8.3.3
2.8.3.4
2.8.3.5
2.8.3.6
2.9
2.10

Section 2
Data Organization and Addressing Capabilities

Operand Size.. 2-1
Data Organization in Registers... 2-1

Data Registers... 2-1
Address Registers.. 2-1

Data Organization in Memory.. 2-1
Addressing... 2-2
Instruction Format.. 2-2
Program/ Data References.. 2-2
Register Specification... 2-2
Effective Address.. 2-4

Register Direct Modes... 2-4
Data Register Direct.. 2-4
Address Register Direct... 2-4

Memory Address Modes.. 2-4
Address Register Indirect... 2-4
Address Register Indirect with Postincrement............................ 2-5
Address Register Indirect with Predecrement 2-5
Address Register Indirect with Displacement............................. 2-5
Address Register Indirect with Index....................................... 2-5

Special Address Modes... 2-5
Absolute Short Address....... 2-5
Absolute Long Address.. 2-5
Program Counter with Displacement....................................... 2-5
Program Counter with Index... 2-6
Immediate Data... 2-6
Implicit Reference.. 2-6

Effective Address Encoding Summary... 2-6
System Stack.. 2-6

iii

Paragraph
Number

TABLE OF CONTENTS
(Continued)

Title

Section 3
Instruction Set Summary

Page
Number

3.1 Data Movement Operations.. 3-1
3.2. Integer Arithmetic Operations.. 3-2
3.3 logical Operations.. 3-3
3.4 Shift and Rotate Operations '" 3-3
3.5 Bit Manipulation Operations.. 3-4
3.6 Binary Coded Decimal Operations.. 3-4
3.7 Program Control Operations... 3-4
3.8 System Control Operations....................................... 3-5

4.1
4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.4
4.1.4.1
4.1.4.2
4.1.4.3
4.1.5
4.1.6
4.1.6.1
4.1.6.2
4.1.6.3
4.1.7
4.1.7.1
4.1.7.2
4.1.7.3
4.1.8
4.1.9
4.1.10
4.2
4.2.1
4.2.1.1

Section 4
Signal and Bus Operation Description

Signal Description.. 4-1
Address Bus (A 1 through A23) .. 4-1
Data Bus (DO through D15)... 4-2
Asynchronous Bus Control... 4-2

Address Strobe (AS)... 4-2
Read/Write (R/W) ... 4-2
Upper and lower Data Strobe (UDS, lDS)................... 4-2
Data Transfer Acknolwedge (DTACK) 4-2

Bus Arbitration Control.. 4-2
Bus Request (BR)............................ 4-3
Bus Grant (BG) '" 4-3
Bus Grant Acknowledge (BGACK) ... 4-3

Interrupt Control (lPlO, IPl1, IPl2)... 4-3
System Control '" '" 4-3

Bus Error (BERR) 4-3
Reset (RESET)... 4-3
Halt (HALT) .. 4-4

M6800 Peripheral Control... 4-4
Enable (E) " , 4-4
Valid Peripheral Address (VPA) .. 4-4
Valid Memory Address (VMA) ... 4-4

Processor Status (FCO, FC1, FC2) .. 4-4
Clock (ClK) 4-5
Signal Summary.. 4-5

Bus Operation... 4-5
Data Transfer Operations........................... 4-5

Read Cycle............. 4-6

iv

Paragraph
Number

4.2.1.2
4.2.1.3
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.2.5
4.3
4.4
4.4.1
4.4.2

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10

TABLE OF CONTENTS
(Continued)

Page
Title Number

Write Cycle... 4-8
Read-Modify-Write Cycle ... 4-10

Bus Arbitration.. 4-11
Requesting the Bus ... 4-13
Receiving the Bus Grant ... 4-13
Acknowledgement of Mastership ... 4-13

Bus Arbitration Control.. 4-14
Bus Error and Halt Operation... 4-14

Bus Error Operation.. 4-18
Re-Run Operation .. 4-18
Halt Operation ... 4-19
Double Bus Faults.. 4-20

Reset Operation... 4-20
The Relationship of DTACK, BERR, and HALT 4-21
Asynchronous versus Synchronous Operation 4-23

Asynchronous Operation... 4-23
Synchronous Operation ... 4-23

Section 5
Processing States

Privilege States.. 5-1
Supervisor State.. 5-2
User State.. 5-2
Privilege State Changes... 5-2
Reference Classification... 5-2

Exception Processing.. 5-3
Exception Vectors.. 5-3
Kinds of Exceptions.. 5-4
Exception Processing Sequence... 5-5
Multiple Exceptions.. 5-5

Exception Processing Detailed Discussion.. 5-6
Reset 5-6
Interrupts............. 5-7
Uninitialized Interrupt.. 5-9
Spurious Interrupt.. 5-9
Instruction Traps.. 5-9
Illegal and Unimplemented Instructions.. 5-9
Privilege Violations................. 5-10
Tracing .. 5-10
Bus Error .. 5-10
Address Error ... ,. 5-11

v

Paragraph
Number

TABLE OF CONTENTS
(Continued)

Title

Section 6
Interface with M6800 Perpherals

Page
Number

6.1 Data Transfer Operation .. , 6-2
6.2 Interrupt Interface Operation... 6-3

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12

Section 7
Instruction Set and Execution Times

Instruction Set... 7-1
Addressing Categories... 7-1
Instruction Prefetch .. 7-4

Instruction Execution Times .. 7-4
Effective Address Operand Calculation Timing 7-4
Move Instruction Execution Times.. 7-4
Standard Instruction Execution Times ... 7-6
Immediate Instruction Execution Times.. 7-6
Single Operand Instruction Execution Times................................... 7-7
Shift/Rotate Instruction Execution Times 7-8
Bit Manipulation Instruction Exeuction Times.................................. 7-8
Conditional Instruction Execution Times.. 7-8
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-9
Multi-Precision Instruction Execution Times.................................... 7-9
Miscellaneous Instruction Execution Times 7-10
Exception Processing Execution Times .. 7-11

Section 8
Electrical Specifications

8.1 Maximum Ratings.. 8-1
8.2 Thermal Characteristics... 8-1
8.3 DC Electrical Characteristics.. 8-1
8.4 Power Considerations... 8-2
8.5 AC Electrical Specifications - Clock Timing... 8-3
8.6 AC Electrical Specifications - Read and Write Cycles............................. 8-4
8.7 AC Electrical Specifications - MC68000 to M6800 Peripheral.................... 8-6
8.8 AC Electrical Specifications - Bus Arbitration...................................... 8-8

Section 9
Ordering Information

9.1 Standard MC68000 Ordering Information... 9-1
9.2 "BETTER" ProceSSing - Standard Production Plus 9-2
9.3 Hi-Rei MIL-STD-883B MC68000 Ordering Information 9-3

vi

Paragraph
Number

TABLE OF CONTENTS
(Concluded)

Title

Section 10
Mechanical Data

Page
Number

10.1 Pin Assignments .. 10-1
10.2 Package Dimensions ... 10-3

vii

Figure
Number

LIST OF ILLUSTRATIONS

Title
Page

Number

1-1 Programming Model.. 1-2
1-2 Status Register.. 1-2

2-1 Word Organization in Memory... 2-2
2-2 Memory Data Organization..................... .. 2-3
2-3 Instruction Operation Word General Format.. 2-4
2-4 Single-Effective-Address Instruction Operation Word.............................. 2-4

4-1 Input and Output Signals... 4-1
4-2 Word Read Cycle Flowchart .. 4-6
4-3 Byte Read Cycle Flowchart ,. " " 4-7
4-4 Read and Write Cycle Timing Diagram ... 4-7
4-5 Word and Byte Read Cycle Timing Diagram.. 4-8
4-6 Word Write Cycle Flowchart... 4-8
4-7 Byte Write Cycle Flowchart .. 4-9
4-8 Word and Byte Write Cycle Timing Diagram ... 4-9
4-9 Read-Modify-Write Cycle Flowchart ... 4-10
4-10 Read-Modify-Write Cycle Timing Diagram .. 4-11
4-11 Bus Arbitration Cycle Flowchart ... 4-12
4-12 Bus Arbitration Cycle Timing Diagram ... 4-13
4-13 MC68000 Bus Arbitration Unit State Diagram .. 4-15
4-14 Timing Relationship of External Asynchronous Inputs to Internal Signals 4-16
4-15 Bus Arbitration Timing Diagram - Processor Active 4-16
4-16 Bus Arbitration Timing Diagram - Bus Inactive 4-17
4-17 Bus Arbitration Timing Diagram - Special Case 4-17
4-18 Bus Error Timing Diagram .. 4-18
4-19 Re-Run Bus Cycle Timing Diagram ... 4-19
4-20 Halt Processor Timing Diagram ... , 4-19
4-21 Reset Operation Timing Diagram .. 4-21

5-1 Format of Vector Table Entries .. 5-3
5-2 Vector Number Format .. 5-3
5-3 Exception Vector Address Calculation ... 5-3
5-4 Exception Stack Order (Groups 1 and 2) ... 5-5
5-5 Vector Acquisition Flowchart.. 5-8
5-6 Interrupt Acknowledge Cycle Timing Diagram 5-8
5-7 Interrupt Processing Sequence .. 5-9
5-8 Exception Stack Order (Group 0) .. 5-11
5-9 Address Error Timing Diagram ... 5-12

viii

Figure
Number

6-1
6-2
6-3
6-4

8-1
8-2
8-3
8-4

LIST OF ILLUSTRATIONS
(Continued)

Page
Title Number

M6800 Interfacing Flowchart... 6-1
MC68000 to M6800 Peripheral Timing - Best Case... 6-2
MC68000 to M6800 Peripheral Timing - Worst Case.............................. 6-2
Autovector Operation Timing Diagram...... 6-4

RESET Test Load 8-2
HALT Test Load 8-2
Test Loads... 8-2
MC68000 Power Dissipation (PO) vs Ambient Temperature (TA) 8-3

8-5 Clock Input Timing Diagiam..... 8-3
8-6 Read Cycle Timing Diagram .. Foldout 1
8-7 Write Cycle Timing Diagram .. Foldout 2
8-8 MC68000 to M6800 Peripheral Timing Diagram - Best Case..................... 8-6
8-9 MC68000 to M6800 Peripheral Timing Diagram - Worst Case. 8-7
8-10 Bus Arbitration Timing Diagram... 8-8

ix

Table
Number

1-1
1-2
1-3

LIST OF TABLES

Page
Title Number

Addressing Modes.. 1-3
Instruction Set Summary... 1-4
Variations of Instruction Types.. 1-4

2-1 Effective Address Encoding Summary... 2-6

3-1 Data Movement Operations.................. 3-1
3-2 Integer Arithmetic Operations........................ 3-2
3-3 Logical Operations...................................... 3-3
3-4 Shift and Rotate Operations.. 3-3
3-5 Bit Manipulation Operations................. 3-4
3-6 Binary Coded Decimal Operations.. 3-4
3-7 Program Control Operations... 3-5
3-8 System Control Operations.... 3-5

4-1 Data Strobe Control of Data Bus........................ 4-2
4-2 Function Code Outputs.. 4-4
4-3 Signal Summary.. 4-5
4-4 DTACK, BERR, and HALT Assertion Results .. 4-22
4-5 BERR and HALT Negation Results ... 4-22

5-1 Bus Cycle Classification... 5-3
5-2 Exception Vector Table.. 5-4
5-3 Exception Grouping and Priority........... .. 5-6

7-1 Effective Addressing Mode Categories... 7-1
7-2 Instruction Set... 7-2
7-3 Effective Address Calculation Times.. 7-5
7-4 Move Byte and Word Instruction Execution Times.................................. 7-5
7-5 Move Long Instruction Execution Times... 7-5
7-6 Standard Instruction Execution Times... 7-6
7-7 Immediate Instruction Execution Times.. 7-7
7-8 Single Operand Instruction Execution Times... 7-7
7-9 Shift/Rotate Instruction Execution Times.............................. 7-8
7-10 Bit Manipulation Instruction Execution Times.. 7-8
7-11 Conditional Instruction Execution Times.. 7-9
7-12 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 7-9

x

Table
Number

LIST OF TABLES
(Continued)

Title
Page

Number

7-13 Multi-Precision Instruction Execution Times .. 7-10
7-14 Miscellaneous Instruction Execution Times ... 7-10
7-15 Move Peripheral Instruction Execution Times .. 7-10
7-16 Exception Processing Execution Times .. 7-11

xi/xii

SECTION 1
INTRODUCTION

The MC68000 is the first in a family of advanced microprocessors from Motorola. Utilizing VLSI
technology, the MC68000 is a fully-implemented 16-bit microprocessor with 32-bit registers, a rich
basic instruction set, and versatile addressing modes.

The MC68000 possesses an asynchronous bus structure with a 24-bit address bus and a 16-bit data
bus.

The resources available to the MC68000 user consist of the following:

• 17 32-Bit Data and Address Registers

• 16 Megabyte Direct Addressing Range

• 56 Powerful Instruction Types

• Operations on Five Main Data Types

• Memory Mapped 1/0
• 14 Addressing Modes

As shown in the programming model (Figure 1-1), the MC68000 offers seventeen 32-bit registers, a
32-bit program counter, and a 16-bit status register. The first eight registers (00-07) are used as
data registers for byte (S-bit), word (16-bit), and long word (32-bit) operations. The second set of
seven registers (AO-A6) and the system stack pointer may be used as software stack pointers and
base address registers. In addition, the registers may be used for word and long word operations.
All of the 17 registers may be used as index registers.

The status register (Figure 1-2) contains the interrupt mask (eight levels available) as well as the
condition codes: extend (X), negative (N), zero (Z), overflow (V), and carry (C). Additional status
bits indicate that the processor is in a trace (T) mode and in a supervisor (S) or user state.

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:

• Bits
• BCD Digits (4 bits)

• Bytes (S bits)

• Words (16 bits)
• Long Words (32 bits)

In addition, operations on other data types such as memory addresses, status word data, etc., are
provided in the instruction set.

1-1

31

31

31

I

1615 87 0
DO

D1

D2

D3 Eight

D4
Data
Registers

D5

D6

D7

1615 0

I AO

I A1

A2 Seven
A3 Address

A4 Registers

A5

A6

User Stack Pointer (USP) Two Stack

Supervisor Stack Pointer (SSP)
A7 Pointers

0

I Program
Counter

15 87 0
Status

ISystem Byte: User Byte I Register

Figure 1-1. Programming Model

User Byte
System Byte (Condition Code Register)

Interrupt
Mask

Figure 1-2. Status Register

Overflow

Carry

The 14 address modes, shown in Table 1-1, include six basic types:

• Register Direct

• RegiSter Indirect

• Absolute
• Program Counter Relative

• Immediate
• Implied

Included in the register indirect addressing modes is the capability to do postincrementing,
predecrementing, offsetting, and indexing. The program counter relative mode can also be
modified via indexing and offsetting.

1-2

Table 1-1. Addressing Modes

Mode

Register Direct Addressing
Data Register Direct
Address Register Direct

Absolute Data Addressing
Absolute Short
Absolute Long

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

Immediate Data Addressing
Immediate
Quick Immediate

Implied Addressing
Implied Register

NOTES:
EA = Effective Address
An = Address Register
Dn = Data Register

Generation

EA=Dn
EA=An

EA= (Next Word)
EA= (Next Two Words)

EA= (PC) + d16
EA = (PC) + (Xn) + dS

EA=(An)
EA=(An), An-An+N
An-An- N, EA= (An)
EA= (An) + d16
EA = (An) + (Xn) + dS

DA T A = Next Word(s)
Inherent Data

EA= SR, USP, SP, PC

Xn = Address or Data Register Used as Index Register
SR = Status Register
PC = Program Counter
() = Contents of
dS = S-Bit Offset (Displacement)
d16 = 16-Bit Offset (Displacement)
N = 1 for byte, 2 for word, and 4 for long word. If An is

the stack pointer and the operand size is byte, N = 2
to keep
the stack pointer on a word boundary.

= Replaces

1.2 INSTRUCTION SET OVERVIEW

The MC68000 instruction set is shown in Table 1-2. Some additional instructions are variations, or
subsets, of these and they appear in Table 1-3. Special emphasis has been given to the instruction
set's support of structured high-level languages to facilitate ease of programming. Each instruction,
with few exceptions, operates on bytes, words, and long words and most instructions can use any
of the 14 addressing modes. Combining instruction types, data types, and addressing modes, over
1000 useful instructions are provided. These instructions include Signed and unsigned, multiply and
divide, "quick" arithmetic operations, BCD arithmetic, and expanded operations (through traps).

1-3

Table 1-2. Instruction Set Summary

Mnemonic Description

ADBC Add Decimal With Extend
ADD Add

I Mnemonic I Description

MOVE Move
MULS Signed Multiply

AND Logical And MULU Unsigned Multiply
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right

NBCD Negate Decimal with Extend
NEG Negate

BCC Branch Conditionally NOP No Operation
BCHG Bit Test and Change NOT One's Complement
BCLR Bit Test and Clear
BRA Branch Always
BSET Bit Test and Set
BSR Branch to Subroutine
BTST Bit Test

CHK Check Register Against Bounds
CLR Clear Operand
CMP Compare

OR Logical Or

PEA Push Effective Address

RESET Reset External Devices
ROL Rotate Left without Extend
ROR Rotate Right without Extend
ROXL Rotate Left with Extend
ROXR Rotate Right with Extend
RTE Return from Exception

DBCC Test Condition, Decrement and Branch RTR Return and Restore
DIVS Signed Divide RTS Return from Subroutine
DIVU Unsigned Divide SBCD Subtract Decimal With Extend
EOR Exclusive Or
EXG Exchange Registers

SCC Set Conditional
STOP Stop

EXT Sign Extend SUB Subtract
JMP Jump SWAP Swap Data Register Halves
JSR Jump to Subroutine TAS Test and Set Operand
LEA Load Effective Address TRAP Trap
LINK Link Stack TRAPV Trap on Overflow
LSL Logical Shift Left TST Test
LSR Logical Shift Right UNLK Unlink

Table 1-3. Variations of Instruction Types

Instruction Instruction
Type Variation Description Type Variation Description

ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Peripheral Data
ADDX Add with Extend MOVEQ Move Quick

AND AND Logical And
ANDI And Immediate

MOVE from SR Move from Status Register
MOVE to SR Move to Status Register

ANDI to CCR And Immediate to MOVE to CCR Move to Condition Codes

Condition Codes MOVE USP Move User Stack Pointer

ANDI to SR And Immediate to NEG NEG Negate
Status Register NEGX Negate with Extend

CMP CMP Compare OR OR Logical Or
CMPA Compare Address ORI Or Immediate
CMPM Compare Memory ORI to CCR Or Immediate to
CMPI Compare Immediate Condition Codes

EOR EOR Exclusive Or ORI to SR Or Immediate to

EORI Exclusive Or Immediate Status Register

EORI to CCR Exclusive Or Immediate SUB SUB Subtract
to Condition Codes SUBA Subtract Address

EORI to SR Exclusive Or Immediate SUBI Subtract Immediate
to Status Register SUBQ Subtract Quick

SUBX Subtract with Extend

1-4

SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section contains a description of the registers and the data organization of the MC68000.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals 8 bits, a word equals 16 bits, and a long word
equals 32 bits. The operand size for each instruction is either explicitly encoded in the instruction or
implicitly defined by the instruction operation~ Implicit instructions support some subset of all three
sizes.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
together with the stack pointers support address operands of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order 8 bits, word operands the
low order 16 bits, and long word operands the entire 32 bits. The least significant bit is addressed as
bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the appropriate low
order portion is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and the stack pOinter is 32 bits wide and holds a full 32-bit address. Address
registers do not support the sized operands. Therefore, when an address register is used as a source
operand, either the low order word or the entire long word operand is used depending upon the
operation size. When an address register is used as the destination operand, the entire register is af­
fected regardless of the operation size. If the operation size is word, any other operands are sign ex­
tended to 32 bits before the operation is performed.

2.3 DATA ORGANIZATION IN MEMORY

Bytes are individually addressable with the high order byte having an even address the same as the
word, as shown in Figure 2-1. The low order byte has an odd address that is one count higher than
the word address. Instructions and multibyte data are accessed only on word (even byte) boun­
daries. If a long word datum is located at address n (n even), then the second word of that datum is
located at address n + 2.

2-1

15 14 13 12 11 10 9 8 6 5 4 3 2 0
Word CXXXXlO

Byte 00000o I Byte 000001

Word 000002
Byte 000002 ! Byte 000003

Word FFFFFE
Byte FFFFFE I Byte FFFFFF

Figure 2-1. Word Organization in Memory

The data types supported by the MC68000 are: bit data, integer data of 8, 16, or 32 bits, 32-bit ad­
dresses and binary coded decimal data. Each of these data types is put in memory, as shown in
Figure 2-2. The numbers indicate the order in which the data would be accessed from the
processor.

2.4 ADDRESSING

Instructions for the MC68000 contain two kinds of information: the type of function to be per­
formed and the location of the operand(s) on which to perform that function. The methods used to
locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of three ways:
Register Specification - the number of the register is given in the register field of

their instruction.
Effective Address - use of the different effective addressing modes.
Implicit Reference - the definition of certain instructions implies the use of specific registers.

2.5 INSTRUCTION FORMAT

Instructions are from one to five words in length as shown in Figure 2-3. The length of the instruc­
tion and the operation to be performed is specified by the first word of the instruction which is
called the operation word. The remaining words further specify the operands. These words are
either immediate operands or extensions to the effective address mode specified in the operation
word.

2.6 PROGRAM/ DATA REFERENCES

The MC68000 separates memory references into two classes: program references and data
references. Program references, as the name implies, are references to that section of memory that
contains the program being executed. Data references refer to that section of memory that contains
data. Operand reads are from the data space except in the case of the program counter relative ad­
dressing mode. All operand writes are to the data space.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in­
struction specify whether the register selected is an address or data register and how the register is
to be used.

2-2

Bit Data - 1 Byte = 8 Bits

6 5 4 3 2 0

Integer Data - 1 Byte=8 Bits

15 14 13 12 " 10 9 8 6 5 4 3 2 0

I MSB
Byte 0

LSBI
Byte 1

Byte 2 Byte 3

1 Word= 16 Bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I MSB
Word 0

LSBI
Word 1

I Word 2

1 Long Word = 32 Bits

15 14 13 12 11 10 9 8 6 5 4 3 0
MSB

High Order
- -Long Word 0- - - - - -- ---------

Low Order
LSB

- -Long Word 1- -

- - Long Word 2 -

Addresses - 1 Address = 32 Bits

15 14 13 12 " 10 9 8 6 5 4 3 2
MSB

High Order
- - AddressO - - - - - - - - - - - - - - - - - -­

Low Order

o

LSB

--~~1---------------------

--~~2---------------------

MSB = Most Significant Bit LSB = Least Significant Bit

Decimal Data - 2 Binary Coded Decimal Digits= 1 Byte

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o
MSD

BCD 0 BCD 1 LSD BCD 2 BCD 3

BCD 4 BCD 5 BCD 6 BCD 7

MSD= Most Significant Digit
..

LSD = Least Significant Digit

Figure 2-2. Memory Data Organization

2-3

I

15 14 13 12 11 10 9 8 6 5 4 3 o
Operation Word

(First Word Specities Operation and Modes)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
(If Any, One or Two Words)

Figure 2-3. Instruction Operation Word General Format

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the
operation word. For example, Figure 2-4 shows the general format of the single-effective-address
instruction operation word. The effective address is composed of two 3-bit fields: the mode field
and the register field. The value in the mode field selects the different address modes. The register
field contains the number of a register.

The effective address field may require additional information to fully specify the operand. This ad­
ditional information, called the effective address extension, is contained in the following word or
words and is considered part of the instruction, as shown in Figure 2-3. The effective address
modes are grouped into three categories: register direct, memory addressing, and special.

5 4 3 2 o
Effective Address

Mode Register

Figure 2-4. Single-Effective-Address Instruction Operation Word

2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of 16 multifunction registers.

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the effective ad­
dress register field.

2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by the ef­
fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide the specific
address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the exception of
the jump and jump-to-subroutine instructions.

2-4

2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
in the address register specified by the register field. After the operand address is used, it is in­
cremented by one, two, or four depending upon whether the size of the operand is byte, word, or
long word. If the address register is the stack pointer and the operand size is byte, the address is in­
cremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the operand is in
the address register specified by the register field. Before the operand address is used, it is
decremented by one, two, or four depending upon whether the operand size is byte, word, or long
word. If the address register is the stack pointer and the operand size is byte, the address is
decremented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.4 ADDRESS REGISTER iNDiRECT WiTH DiSPLACEMENT. This addressing mode requires
one word of extension. The address of the operand is the sum of the address in the address register
and the sign-extended 16-bit displacement integer in the extension word. The reference is classified
as a data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This addressing mode requires one word of
extension. The address of the operand is the sum of the address in the address register, the sign­
extended displacement integer in the low order eight bits of the extension word, and the contents
of the index register. The reference is classified as a data reference with the exception of the jump
and jump-to-subroutine instructions.

2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special addressing
mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This addressing mode requires one word of extension. The
address of the operand is the extension word. The 16-bit address is sign extended before it is used.
The reference is classified as a data reference with the exception of the jump and jump-to­
subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This addressing mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The high order
part of the address is the first extension word; the low order part of the address is the second exten­
sion word. The reference is classified as a data reference with the exception of the jump and jump­
to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This addressing mode requires one word
of extension. The address of the operand is the sum of the address in the program counter and the
Sign-extended 16-bit displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is classified as a program reference.

2-5

2.8.3.4 PROGRAM COUNTER WITH INDEX. This addressing mode requires one word of exten­
sion. The address is the sum of the address in the program counter, the sign-extended displace­
ment integer in the lower eight bits of the extension word, and the contents of the index register.
The value in the program counter is the address of the extension word. This reference is classified
as a program reference.

2.8.3.5 IMMEDIATE DATA. This addressing mode requires either one or two words of extension
depending on the size of the operation.

Byte Operation - operand is low order byte of extension word

Word Operation - operand is extension word
Long Word Operation - operand is in the two extension words, high order 16 bits are in the

first extension word, low order 16 bits are in the second extension
word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
(PC) I the system stack pointer (S PI, the supervisor stack pointer (S S P), the user stack pointer
(USP)' or the status register (SRI. A selected set of instructions may reference the status register by
means of the effective address field. These are:

ANDI to CCR EORI to SR
ANDI to SR ORI to CCR
EORI to CCR ORI to SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

MOVE to CCR
MOVE to SR
MOVE from SR

Table 2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.

Table 2-1. Effective Address Encoding Summary

Addressing Mode Mode Register Addressing Mode Mode Register

Data Register Direct 000 Register Number Address Register Indirect with

Address Register Direct 001 Register Number Index 110 Register Number

Address Register Indirect 010 Register Number Absolute Short 111 000

Address Register Indirect with Absolute Long 111 001

Postincrement 011 Register Number Program Counter with

Address Register Indirect with Displacement 111 010

Predecrement 100 Register Number Program Counter with Index 111 011

Address Register Indirect with Immediate 111 100
Displacement 101 Register Number

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address register seven (A7) is the system stack
pointer (S P). The system stack pointer is either the supervisor stack pointer (S S P) or the user stack
pointer (USP), depending on the state of the S bit in the status register. If the S bit indicates super­
visor state, SSP is the active system stack pointer and the USP cannot be referenced as an address
register. If the S bit indicates user state, the USP is the active system stack pointer, and the SSP
cannot be referenced. Each system stack fills from high memory to low memory.

2-6

SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MC68000 instruction set. The
instructions form a set of tools that include all the machine functions to perform the following
operations:

Data Movement
Integer Arithmetic
Logical
Shift and Rotate

Bit Manipulation
Binary Coded Decimal

Program Control
System Control

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move (MOVE) in­
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data move instructions allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to memory, and register to register. Address
move instructions allow word and long word operand transfers and ensure that only legal address
manipulations are executed. In addition to the general move instruction there are several special
data movement instructions: move multiple registers (MOVEM), move peripheral data (MOVEP),
exchange registers (EXG), load effective address (LEA), push effective address (PEA), link stack
(LINK), unlink stack (UNLK), and move quick (MOVEO). Table 3-1 is a summary of the data move­
ment operations.

Instruction

EXG

LEA

LINK

MOVE

MOVEM

NOTES:
s= source
d = destination
[1 = bit number

Table 3-1. Data Movement Operations

Operand Size Operation
32 Rx-Ry

32 EA-An

An- - (SPI
- SP-An

SP + displacement- SP
8,16,32 s-d

16,32
(EAI-An, Dn
An, Dn-EA

- () = indirect with predecrement
(I + = indirect with postdecrement
I = immediate data

Instruction Operand Size

MOVEP 16,32

MOVEO 8

PEA 32
SWAP 32

UNLK -

3-1

Operation

(EAI-Dn
Dn-(EA)

Ixxx- Dn

EA- -(SP)

Dn[31:16]- Dn[15:0]

An-Sp
(SPI+ -An

3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB), multiply
(MUU, and divide (oIV) as well as arithmetic compare (CMP), clear (CLR), and negate (NEG), The
add and subtract instructions are available for both address and data operations, with data opera­
tions accepting all operand sizes. Address operations are limited to legal address size operands (16
or 32 bits). Data, address, and memory compare operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands using word
multiply to produce a long word product, and a long word dividend with word divisor to produce a
word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
These instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX).

A test operand (1ST) instruction that will set the condition codes as a result of a compare of the
operand with zero is also available. Test and set (TAS) is a synchronization instruction useful in
multiprocessor systems. Table 3-2 is a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size

8,16,32

AOO

16,32

AOOX
8,16,32

16,32

CLR 8,16,32

8,16,32

CMP

16,32

OIVS 32 : 16

OIVU 32+ 16

EXT
8-16
16-32

MULS 16x 16-32

MULU 16x 16-32

NEG 8,16,32

NEGX 8,16,32

8,16,32

SUB

16,32

SUBX 8,16,32

TAS 8

TST 8,16,32

NOTES:
[] = bit number
- I I = indirect with predecrement
I) + = indirect with postdecrement
#= immediate data

3-2

Operation

On+IEAI-On
lEAl + On - lEAl

lEAl + Ixxx- lEAl
An+IEAI-An

Ox+Oy+x-Ox
-IAxl+ -IAyl+X-IAxl

O-EA

On-lEAl
IEAI-lxxx

IAxl + - IAyl-
An-lEAl

On + lEAl-On

On+ lEAl-On

IOnI8- On16
IOn116- On32
Onx lEAl-On

OnxIEAI-On

0- lEAl - lEAl
O-IEAI-X-IEAI

On-lEAl-On
lEAl-On-lEAl

lEA) -Ixxx- lEA)
An-lEAl-An

Ox-Oy-X-Ox
- IAxl - - IAyl - X- IAxl

[EA]- 0, 1 - EA[7]

IEAI-O

3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data
operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provide these logical
operations with all sizes of immediate data. Table 3~3 is a summary of the logical operations.

Table 3-3. Logical Operations

Instruction Operand Size Operation

DnA(EAl-Dn
AND 8,16,32 (EAlADn - (EAl

(EAlA#xxx- (EAl

Dn v (EAl-Dn
OR 8,16,32 (EA) v Dn- (EAl

(EAl v #xxx- (EAl

EOR 8,16,32
(EA) e Dy-(EA)

(EA) e lxxx-lEA)

NOT 8,16,32 -(EA.l-!EAl

NOTES:
- = invert v = logical OR
= immediate data
A= logical AND

e= logical exclusive OR

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and ASL and
logical shift instructions LS Rand LS L. The rotate instructions (with and without extend) available
are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all operand sizes and allow a shift count
specified in a data register.

Memory shifts and rotates are for word operands only and allow only single-bit shifts or rotates.

Table 3-4 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

Instrue.. Operand Operation
tion Size

ASL 8,16,32 ~ • J+o
ASR 8,16,32 d ~ ~
LSL 8,16,32 ~. f4-0
LSR 8,16,32 0+1 .~

ROL 8,16,32 m· ~
ROR 8,16,32 ~ ~ ~

ROXL 8,16,32 ~-t ~
ROXR 8,16,32 ~ ~ ~

3-3

3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit
test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG). Table 3-5 is a sum­
mary of the bit manipulation operations. (Z is bit 2 of the status register.)

Table 3-5. Bit Manipulation Operations

Instruction Operand Size Operation

BTST 8.32 -bit of (EAl-Z

BSET 8.32
-bit of (EAl-Z
l-bit of EA

BCLR 8.32
-bit of (EAl-Z
0- bit of EA

BCHG 8.32
-bit of (EAl-Z

- bit of (EAl - bit of EA

NOTE: - = Invert

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD),
and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal
operations.

Table 3-6. Binary Coded Decimal Operations

Instruction
Operand

Operation
Size

ABCD 8 DXlO+ DylO+ X- Dx
- (Axl l0+ - (Ay)lO+ ~- (Ax)

SBCD 8 DXlO- DylO- X - Dx
- (Ax)lO- - (Ay)lO- X- (Ax)

NBCD 8 0- (EA)lO- X- (EA)

NOTE: - () = indirect with predecrement

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional
branch instructions and return instructions. These instructions are summarized in Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC - carry clear LS low or same

CS carry set

EQ equal

F never true

GE greater or equal

GT - greater than

HI high

LE - less or equal

LT
MI

NE
PL

T
VC

VS

3-4

less than
minus
not equal
plus
always true

no overflow

overflow

Table 3-7. Program Control Operations

Instruction Operation

Conditional

BCC Branch Conditionally (14 Conditions)
8- and 16-Bit Displacement

DBCC Test Condition, Decrement, and Branch
16-Bit Displacement

SCC Set Byte Conditionally (16 Conditions)

Unconditional

BRA Branch Always
8- and 16-Bit Displacement

BSR Branch to Subroutine
8- and 16-Bit Displacement

JMP Jump

JSR Jump to Subroutine

Returns

RTR Return and Restore Condition Codes

RTS Return from Subroutine

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in­
structions, and instructions that use or modify the status register. These instructions are summariz­
ed in Table 3-8.

Table 3-8. System Control Operations

Instruction Operation

Privileged
ANDI to SR Logical AND to Status Register
EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE USP Move User Stack Pointer
ORI to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating
CHK Check Data Register Against Upper Bounds
TRAP Trap
TRAPV Trap on Overflow

Status Register
ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condition Codes
MOVE EA to CCR Load New Condition Codes
MOVE SR to EA Store Status Register
ORI to CCR Logical OR to Condition Codes

3-5/3-6

SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion of bus opera­
tion during the various machine cycles and operations is also given.

NOTE
The terms assertion and negation will be used extensively. This is done to avoid confu­
sion when dealing with a mixture of "active-low" and "active-high" signals. The term
assert or assertion is used to indicate that a signal is active or true, independent of
whether that ievei is represented by a high or low voltage. The term negate or negation is
used to indicate that a signal is inactive or false.

4.1 SIGNAL DESCRIPTION

The input and output signals can be functionally organized into the groups shown in Figure 4-1. The
following paragraphs provide a brief description of the signals and a reference (if applicable) to
other paragraphs that contain more detail about the function being performed.

processor{
Status

M6800 {
Peripheral

Control

system{
Control

VCC(2)
GNO(2)

ClK

FCO
FC1
FC2

E
VMA
VPA

BERR
RESET
HALT

£ o (/)
8 ~
~ e uQ.
~ e

()

~

N Bus

~
A1-A23

AS·

R/W
UOS
lOS
..DTACK

BR
BG
BGACK

IPlO
IPl1
IPL2

00-015

}

ASynChrOnous
Bus

Control

\BUS Arbitration J Control

\Interrupt J Control

Figure 4-1. Input and Output Signals

4.1.1 Address Bus (A 1 through A23)

This 23-bit, unidirectional, three-state bus is capable of addressing 8 megawords of data. It provides
the address for bus operation during all cycles except interrupt cycles. During interrupt cycles, ad­
dress lines A 1, A2, and A3 provide information about what level interrupt is being serviced while ad­
dress lines A4 through A23 are all set to a logic high.

4-1

4.1.2 Data Bus (DO through 015)

This 16-bit, bidirectional, three-state bus is the general purpose data path. It can transfer and accept
data in either word or byte length. During an interrupt acknowledge cycle, the external device sup­
plies the vector number on data lines 00-07.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: address strobe,
read/write, upper and lower data strobes, and data transfer acknowledge. These Signals are ex­
plained in the following paragraphs.

4.1.3.1 ADDRESS STROBE (AS). This signal indicates that there is a valid address on the address
bus.

4.1.3.2 READ/WRITE (R/W). This signal defines the data bus transfer as a read or write cycle. The
R/W signal also works in conjunction with the data strobes as explained in the following paragraph.

4.1.3.3 UPPER AND LOWER DATA STROBE (UDS, LOS). These Signals control the flow of data
on the data bus, as shown in Table 4-1. When the R/W line is high, the processor will read from the
data bus as indicated. When the R/W line is low, the processor will write to the data bus as shown.

Table 4-1. Data Strobe Control of Data Bus

UOS LOS R/W 08-015 00-07
High High - No Valid Data No Valid Data

Low Low High
Valid Data Bits Valid Data Bits

8-15 0-7

Hi\ilh Low High No Valid Data
Valid Data Bits

0-7

Low High High
Valid Data Bits

No Valid Data
8-15

Low Low Low
Valid Data Bits Valid Data Bits

8-15 0-7

High Low Low
Valid Data Bits Valid Data Bits

0-7* 0-7

Low High Low
Valid Data Bits Valid Data Bits

8-15 8-15*

*These conditions are a result of current implementation and may
not appear on future devices. .

4.1.3.4 DATA TRANSFER ACKNOWLEDGE (DTACK). This input indicates that the data transfer is
completed. When the processor recognizes OT ACK during a read cycle, data is latched and the bus
cycle terminated. When OTACK is recognized during a write cycle, the bus cycle is terminated.
(Refer to 4.4 ASYNCHRONOUR VERSUS SYNCHRONOUS OPERATION).

4.1.4 Bus Arbitration Control

The three signals, bus request, bus grant, and bus grant acknowledge, form a bus arbitration circuit
to determine which device will be the bus master device.

4-2

4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be bus
masters. This input indicates to the processor that some other device desires to become the bus
master.

4.1.4.2 BUS GRANT (BG). This output indicates to all other potential bus master devices that the
processor will release bus control at the end of the current bus cycle.

4.1.4.3 BUS GRANT ACKNOWLEDGE (BGACK). This input indicates that some other device has
become the bus master. This signal should not be asserted until the following four conditions are
met:

1. a bus grant has been received,

2. address strobe is inactive which indicates that the microprocessor is not using the bus,

3. data transfer acknowledge is inactive which indicates that neither memory nor peripherals are
using the bus, and

4. bus grant acknowledge is inactive which indicates that no other device is still claiming bus
mastership.

4.1.5 Interrupt Control (IPLO, IPL1, IPL2)

These input pins indicate the encoded priority level of the device requesting an interrupt. Level
seven is the highest priority while level zero indicates that no interrupts are requested. Level seven
cannot be masked. The least significant bit is given in IPLO and the most significant bit is contained
in IPL2. These lines must remain stable until the processor signals interrupt acknowledge (FCO-FC2
are all high) to insure that the interrupt is recognized.

4.1.6 System Control

The system control inputs are used to either reset or halt the processor and to indicate to the pro­
cessor that bus errors have occurred. The three system control inputs are explained in the following
paragraphs.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cycle
currently being executed. Problems may be a result of:

1. nonresponding devices,

2. interrupt vector number acquisition failure,

3. illegal access request as determined by a memory management unit, or
4. other application dependent errors.

The bus error signal interacts with the halt signal to determine if the current bus cycle should be re­
executed or if exception processing should be performed.

Refer to 4.2.4 Bus Error and Halt Operation for additional information about the interaction of the
bus error and halt signals.

4.1.6.2 RESET (RESET). This bidirectional signal line acts to reset (start a system initialization se­
quence) the processor in response to an external reset signal. An internally generated reset (result

4-3

of a RESET instruction) causes all external devices to be reset and the internal state of the processor
is not affected. A total system reset (processor and external devices) is the result of external HALT
and RESET signals applied at the same time. Refer to 4.2.5 Reset Operation for further information.

4.1.6.3 HALT (HALT). When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the processor has been halted
using this input, all control signals are inactive and all three-state lines are put in their high­
impedance state (refer to Table 4-3). Refer to 4.2.4 Bus Error and Halt Operation for additional infor­
mation about the interaction between the HALT and bus error signals.

When the processor has stopped executing instructions, such as in a double bus fault condition
(refer to 4.2.4.4 DOUBLE BUS FAULTS), the HALT line is driven by the processor to indicate to ex­
ternal devices that the processor has stopped.

4.1.7 M6800 Peripheral Control

These control Signals are used to allow the interfacing of synchronous M6800 peripheral devices
with the asynchronous MC68000. These signals are explained in the following paragraphs.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all M6800 type peripheral
devices. The period for this output is ten MC68000 clock periods (six clocks low, four clocks high).
Enable is generated by an internal ring counter which may come up in any state (j.e., at power on, it
is impossible to guarantee phase relationship of E to ClK). E is a free-running clock and runs
regardless of the state of the bus on the M PU.

4.1.7.2 VALID PERIPHERAL ADDRESS (VPA). This input indicates that the device or region ad­
dressed is an M6800 Family device and that data transfer should be synchronized with the enable (E)
signal. This input also indicates that the processor should use automatic vectoring for an interrupt.
Refer to SECTION 6 INTERFACE WITH M6800 PERIPHERALS.

4.1.7.3 VALID MEMORY ADDRESS (VMA). This output is used to indicate to M6800 peripheral
devices that there is a valid address on the address bus and the processor is synchronized to enable.
This signal only responds to a valid peripheral address (VPA) input which indicates that the
peripheral is an M6800 Family device.

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the cycle type currently be­
ing executed, as shown in Table 4-2. The information indicated by the function code outputs is valid
whenever address strobe (AS) is active.

Table 4-2. Function Code Outputs

Function Code Output
Cycle Type

FC2 FC1 FCO

Function Code Output
Cycle Type

F"C2 FC1 FCO

Low Low Low (Undefined, Reserved) High Low Low (Undefined, Reserved)

Low Low High User Data High Low High Supervisor Data

Low High Low User Program High High Low Supervisor Program

Low High High (Undefined, Reserved) High High High Interrupt Acknowledge

4-4

4.1.9 Clock (ClK)

The clock input is a TTL-compatible signal that is internally buffered for development of the internal
clocks needed by the processor. The clock input should not be gated off at any time and the clock
signal must conform to minimum and maximum pulse width times.

4.1.10 Signal Summary

Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table 4-3. Signal Summary

Hi-Z
Signal Name Mnemonic Input/Output Active State

On HALT On BGACK

Address Bus A1-A23 Output High Yes Yes

Data Bus DO-D15 Input/ Output High Yes Yes

Address Strobe AS Output Law No. Yes

Read/Write R/W Output
Read-High

No. Yes Write-Law

Upper and Lawer Data Stabes UDS, Ii5S Output Law No. Yes

Data Transfer Acknawledge DTACK Input Law No. No.

Bus Request BR Input Law No. No

Bus Grant BG Output Low No No.

Bus Grant Acknowledge BGACK Input Low No. No.

Interrupt Priority Level IPLO, IPL 1, IPL2 Input Low No No

Bus Error BERR Input Low No No

Reset RESET Input/Output Low No.1 No1

Halt HALT Input/Output Low No1 No1

Enable E Output High No. No

Valid Memory Address VMA Output Low No Yes

Valid Peripheral Address VPA Input Low No No

Function Cade Output FCO, FC1, FC2 Output High Na2 Yes

Clock CLK Input High No No

Power Input VCC Input - - -

Ground GND Input - - -

NOTES:
1. Open drain
2. Function codes are placed in high-impedance state during HALT for R9M, T6E, and BF4 mask sets

4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations,
bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:
1. address bus A 1 through A23,
2. data bus DO through D15, and
3. control Signals.

The address and data buses are separate parallel buses used to transfer data using an asynchronous
bus structure. In all cycles, the bus master assumes responsibility for deskewing all Signals it issues
at both the start and end of a cycle. In addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

4-5

The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible
read-modify-write cycle is the method used by the MC68000 for interlocked multiprocessor com­
munications.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word
(or double word) operation, the processor reads both upper and lower bytes simultaneously by
asserting both upper and lower data strobes. When the instruction specifies byte operation, the
processor uses an internal AD bit to determine which byte to read and then issues the data strobe re­
quired for that byte. For byte operations, when the AD bit equals zero, the upper data strobe is
issued. When the AO bit equals one, the lower data strobe is issued. When the data is received, the
processor correctly positions it internally.

A word read cycle flowchart is given in Figure 4-2. A byte read cycle flowchart is given in Figure 4-3.
Read cycle timing is given in Figure 4-4. Figure 4-5 details word and byte read cycle operations.

BUS MASTER SLAVE

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A 1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UDS) and

Lower Data Strobe (LOS)
Input the Data

1) Decode Address
2) Place Data on 00-015
3) ~ata Transfer Acknowledge

(DTACK)

Acquire the Data

11 Latch Data
21 Negate UDS and LOS
3) Negate~

Terminate the Cycle

11 Remove Data from 00-015
2) Negate i5'i"ACR

Start Next Cycle J

Figure 4-2. Word Read Cycle Flowchart

4-6

BUS MASTER SLAVE

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A1-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UOS) or

lower Data Strobe (lOS)
(based on AO) -'" Input the Data

1) Decode Address
2) Place Data on 00-07 or 08-015 (based on

UOS or lOS)
3) Assert Data Transfer Acknowledge

!DTACK)

Acquire the Data

1) latch Data
2) Negate UOS or lOS
3) Nagata AS

Terminate the Cycle

1) Remove Data from 00-07 or 08-015
2) Negate DT ACK

Start Next Cycle L
I

Figure 4-3. Byte Read Cycle Flowchart

SO S1 S2 S3 S4 S5 S6 S7 so S1 S2 S3 S4 S5 S6 S7 so S1 S2 S3 S4 w w w w S5 S6 S7

ClK

H H r
AS \ I \ I \ r

uos \ I \ I \ r
lOS \ I \ I \ I

R/W \ /
OTACK \ I \ I \ I
08-015 () () (>-
00-07 () () (>-

FCO-FC2 ::x X X >-
I· Read .1 .. Write .1 .. Slow Read ..I

Figure 4-4. Read and Write Cycle Timing Diagram

4-7

so S 1 S2 S3 S4 S5 S6 S7 SO S 1 S2 S3 S4 S5 Sf:) S7 SO S 1 S2 S3 S4 S5 S6 S7

AO*

As \
\
------~----~=======/~----\~------~;---\ ;---UDS

LDS \ I
R/IN

DTACK \ \1-_-...1/ ~
D8-D15 < (I.-__ ---')--

DO-D7 (()

FCO-FC2 ::::x ________________ ~ ____________ ___'x~------------~}__
* Internal Signal Only

III(Word Read-----;~f__-Odd Byte Read-~ I""--Even Byte Read~

Figure 4-5. Word and Byte Read Cycle Timing Diagram

4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a
peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte operation, the
processor uses an internal AO bit to determine which byte to write and then issues the data strobe
required for that byte. For byte operations, when the AO bit equals zero, the upper data strobe is
issued. When the AO bit equals one, the lower data strobe is issued. A word write flowchart is given
in Figure 4-6. A byte write cycle flowchart is given in Figure 4-7. Write cycle timing is given in Figure
4-4. Figure 4-8 details word and byte write cycle operation.

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO-FC2
2) Place Address on Al-A23
3) Assert Address Strobe (AS)

4) Set R/W to Write
5) Place Data on DO-D15
6) Assert Upper Data Strobe (D15S1 and

Lower Data Strobe ([[5SI Input the Data

1) Decode Address
2) Store Data on DO-D15

Terminate Output Transfer 3) Assert Data Transfer Acknowledge (DTACK)

1) Negate UDS and LDS
2) Negate AS
3) Remove Data from DO-D15
4) Set R/iN to Read

-I Terminate the Cycle

r Start Next Cycle 1 1) Negate DT ACK

Figure 4-6. Word Write Cycle Flowchart

4-8

BUS MASTER SLAVE

Address the Device

1) Place Function Code on FCO-FC2
2) Place Address on A 1-A23
3) Assert Address Strobe (AS)
4) Set Rlw to Write
5) Place Data on 00-07 or D8-D15

(according to AO)
6) Assert Upper Data Strobe (UDS) or Input the Data

lower Data Strobe (lOS)
1) Decode Address (based on AO)
2) Store Data on DO-D7 if lDS is Asserted

Store Data on 08-D15 if UOS is Asserted
3) Assert Data Transfer Acknowledge

(DTACK)

Terminate Output Transfer

1) Negate UDS and lOS
2) Negate AS
3) Remove Data from DO-07 or D8-D15
4) Set R/W to Read

Terminate the Cycle

1) Negate DT ACK

Start Next Cycle J

Figure 4-7. Byte Write Cycle Flowchart

SO S1 S2 S3 S4S5 S6 S7 so S1 S2S3 S4 S5 S6 S7 so S1 S2 S3 S4 S5 S6S7

elK

H H >
AO* I I
AS~ I \ I \ r

UDS \ I \ r
LDS \ / \ /
R/WF\ 1\ 1\ r

DTACK \ I '----I \ f
08-D15 ===>-<) <) < >
DO-07 ===>-<) < > < >

FCO-FC2)(X X
* Internal Signal Only

1 If--- Word Wnte ---t.~llooIiI(l--- Odd Byte Write -I. Even Byte Write~

Figure 4-8. Word and Byte Write Cycle Timing Diagram

4-9

4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a read, modifies the
data in the arithmetic-logic unit, and writes the data back to the same address. In the MC68000, this
cycle is indivisible in that the address strobe is asserted throughout the entire cycle. The test and set
(T AS) instruction uses this cycle to provide meaningful communication between processors in a
multiple processor environment. This instruction is the only instruction that uses the read-modify­
write cycles and since the test and set instruction only operates on bytes, all read-modify-write
cycles are byte operations. A read-modify-write flowchart is given in Figure "4_9 and a timing
diagram is given in Figure 4-10.

BUS MASTER SLAVE

Address the Device

1) Set R/W to Read
2) Place Function Code on FCO-FC2
3) Place Address on A l-A23
4) Assert Address Strobe (AS)
5) Assert Upper Data Strobe (UOS) or

Lower Data Strobe (LOS) '" Input the Data

11 Decode Address
21 Place Data on 00-07 or 08-015
3) Assert Data Transfer Acknowledge

Acquire the Data (DTACK)

1) Latch Data
2) Negate UOS or LOS
3) Start Data Modification '" Terminate the Cycle

1) Remove Data from 00-07 or 08-015
2) Negate DTAcK

Start Output Transfer

1) Set R/W to Write
2) Place Data on 00-07 or 08-015
3) Assert Upper Data Strobe (UOSI or Lower

Data Strobe (LOS)
Input the Data

11 Store Data on 00-07 or 08-015
21 Assert Data Transfer Acknowledge

Terminate Output Transfer ~ (DTACKI

1) Negate ~ or LOS
21 Negate AS
3) Remove Data from DO-07 or 08-015
4) Set R/W to Read Terminate the Cycle

1) Negate OT ACK

Start Next Cycle

Figure 4-9. Read-Modify-Write Cycle Flowchart

4-10

ClK

A1·A23

AS

UOS or lOS

Rlw

OTACK

SO S1 S2 S3 S4 S5 S6 S7 S8 S9S10S11 S12S13S14S15S16S17S18S19

\'--------~==========~----~ --~\ I \~ ___ ~
\

08-015 ------4() (}-
FCO-FC2 :)(____________________ x::

... lo(E----------lndivisible Cycle --------i.~1

Figure 4-10. Read-Modify-Write Cycle Timing Diagram

4.2.2 Bus Arbitration

Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the following:

1. asserting a bus mastership request,

2. receiving a grant that the bus is available at the end of the current cycle, and

3. acknowledging that mastership has been assumed.
Figure 4-11 is a flowchart showing the detail involved in a request from a single device. Figure 4-12
is a timing diagram for the same operation. This technique allows processing of bus requests during
data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is
asserted. This type of operation would be true for a system consisting of the processor and one
device capable of bus mastership. In systems having a number of devices capable of bus master­
ship, the bus request line from each device is wire ORed to the processor. In this system, it is easy
to see that there could be more than one bus request being made. The timing diagram shows that
the bus grant signal is negated a few clock cycles a\ter the transition of the acknowledge (BG'ACR)

signal.

However, if the bus requests are still pending, the processor will assert another bus grant within a
few clock cycles after it was negated. This additional assertion of bus grant allows external arbitra­
tion circuitry to select the next bus master before the current bus master has completed its re­
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4-11

PROCESSOR REQUESTING DEVICE

Request the Bus

1) Assert Bus Request (BR)

Grant Bus Arbitration -
1) Assert Bus Grant (BG)

Acknowledge Bus Mastership

1) External Arbitration Determines Next Bus
Master

2) Next Bus Master Waits for Current Gycle to
Complete

3) Next Bus Master Asserts Bus Grant
Acknowledge (BGACK) to Become New

Terminate Arbitration Master

1) Negate BG (and Wait for BGACK to be
4) Bus Master Negates B-R

Negated)

Operate as Bus Master

1) Perform Data Transfers (Read and Write
Cycles) According to the Same Rules the
Processor Uses

Release Bus Mastership

1) Negate BGACK

Re-Arbitrate or Resume ..-
Processor Operation

Figure 4-11. Bus Arbitration Cycle Flowchart

4-12

elK

AS

lDS/UDS

Riw
DTACi<
DO-D15

BG

BGACK
\

Processor

I \ I
\ I \

-I- DMA Device
I

Processor -I- DMA Device---

Figure 4-12. Bus Arbitration Cycle Timing Diagram

4.2.2.1 REQUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (BR) signal. This is a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority level than the
external device and will relinquish the bus after it has completed the last bus cycle it has started_

When no acknowledge is received before the bus request signal goes inactive, the processor will
continue processing when it detects that the bus request is inactive. This allows ordinary process­
ing to continue if the arbitration circuitry responded to noise inadvertently.

4.2.2.2 RECEIVING THE BUS GRANT. The processor asserts bus grant (BG) as soon as possible.
Normally this is immediately after internal synchronization. The only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into the cycle to have asserted the address strobe (AS) signal. In this case, bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a specific priority­
encoded network. The processor is not affected by the external method of arbitration as long as the
protocol is obeyed.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP. Upon receiving a bus grant, the requesting
device waits until address strobe, data transfer acknowledge, and bus grant acknowledge are
negated before issuing its own BGACK. The negation of the address strobe indicates that the
previous master has completed its cycle; the negation of bus grant acknowledge indicates that the
previous master has released the bus. (While address strobe is asserted, no device is allowed to
"break into" a cycle.) The negation of data transfer acknowledge indicates the previous slave has
terminated its connection to the previous master. Note that in some applications data transfer
acknowledge might not enter into this function. General purpose devices would then be connected
such that they were only dependent on address strobe. When bus grant acknowledge is issued, the

4-13

device is a bus master until it negates bus grant acknowledge. Bus grant acknowledge should not
be negated until after the bus cycle(s) is (are) completed. Bus mastership is terminated at the nega­
tion of bus grant acknowledge.

The bus request from the granted device should be dropped after bus grant acknowledge is
asserted. If a bus request is still pending, another bus grant will be asserted within a few clocks of
the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control. Note that the processor does
not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the MC68000 is implemented with a finite state machine. A state
diagram of this machine is shown in Figure 4-13. All asynchronous signals to the MC68000 are syn­
chronized before being used internally. This synchronization is accomplished in a maximum of one
cycle of the system clock, assuming that the asynchronous input setup time (#47) has been met
(see Figure 4-14). The input signal is sampled on the falling edge of the clock and is valid internally
after the next falling edge.

As shown in Figure 4-13, input signals labeled R and A are internally synchronized on the bus re­
quest and bus grant acknowledge pins respectively. The bus grant output is labeled G and the inter­
nal three-state control signal T. If T is true, the address, data, and control buses are placed in a
high-impedance state when AS is negated. All signals are shown in positive logic (active high)
regardless of their true active voltage level. State changes (valid outputs) occur on the next rising
edge after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-15. The bus arbitration sequence while the bus is inactive (i. e., executing internal operations such
as a multiply instruction) is show in Figure 4-16.

If a bus request is made at a time when the MPU has already begun a bus cycle but AS has not been
asserted (bus state SO), BG will not be asserted on the next rising edge. Instead, BG will be delayed
until the second riSing edge following its internal assertion. This sequence is shown in Figure 4-17.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that
the handshake might not occur. Since different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be used to determine the duration be­
tween address strobe and data transfer acknowledge before issuing a bus error signal. When a bus
error signal is received, the processor has two options: initiate a bus error exception sequence or try
running the bus cycle again.

4-14

State Diagram for R9M, T6E, BF4, CC1,
and DL6 Mask Sets

State Diagram for GN7 and Later Mask Sets

R = Bus Reqest Intemal
A= Bus Grant Acknowledge Internal
G= Bus Grant
T = Three-State Control to

Bus Control Logic2

X= Don't Care

RA

RA

RA

NOTE:
1. State machine will not change if the bus

is SO or Sl. Refer to 4.2.3 Bus
Arbitration Contol.

2. The address bus will be placed in the high­
impedance state if T is asserted and AS
is negated.

Figure 4-13. MC68000 Bus Arbitration Unit State Diagram

4-15

ClK

'0"""" S'900,V,"d ~

E""oo' S'900' S'm,',d ~ ~

ClK ~----,

BR (External) -----.....

@
BR (Internal)

\"---
Figure 4-14. Timing Relationship of External Asynchronous Inputs

to Internal Signals

SO S 1 S2 S3 S4 S5 S6 S 7

Bus Released from Three State and
Processor Starts Next Bus CYcle

1 BGACK Negated Internal
BGACK Sampled ~

BGACK Negated • •

SO Sl S2 S3 S4 S5 S6 S7 SO Sl

===~~~~~\======~--~/ --------------,~. ~~--~I
BGACK \~ _________ ~I

A 1-A23 =====~~~;-=--=--=--=--=--=--=-~~"\.) -======--------'(\-' _-_-_-_-_ -_ -_ -_ -_ -_ -_>--C
~ \\-___ ~f'~---------~ r-----

UDS --------\ f' ~ r-----
lDS -------., f' ~ r-----

FCO-FC2 ===x 1-------------« 'C
R/W

DT ACK \'---;::::==/~_--. \ ~

00-015 -----------~~~~====~~----------------------------~~~~~=======
...... l---- Processor --------~.~I ... II(f----- Alternate Bus Master ------'1 I f---- P rocesso' ----'.~

Figure 4-15. Bus Arbitration Timing Diagram - Processor Active

4-16

ClK

Bus Released from Three State and Processor Starts Next Bus Cycle------------.
BGACK Negated-____________________ -----,

BG Asserted and Bus Three Stated,-------,
BR Valid Internal----------,
BR Sampledl-----------.
BR Asserted'----------,

SO Sl S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4

BR ___________________ ~\======~~/

----------------------_\~, ~----~!
\'----_/

)

-+--- Processor---~ .. ~IIooII(f-- Bus Inactive ",I(Alternate Bus Master ---~"~IIooII(f- Processor

Figure 4-16. Bus Arbitration Timing Diagram - Bus Inactive

Bus Three Stated, _____ ---,
BG Asserted, ___ _

ClK
SO S2 S4 S6

SA\

Bus Released from Three State and
Processor Starts Next Bus CYcie

l BGACK Negated Internal

ll BGACK Sampled
BGACK Negated t ~

1
BG ____________ ~\======~-----JI

BGACK \~ ______ ~!

SO S2 S4 S6 SO

A1-A23 .==J----(~~:~~=======~;)~------------«~=:-----~>--C~=
AS ~ \\.... ___ -J/'------------------~~ ______ _J!

UDS ~r-----..\ f''----------------'~ Ir-----
lDS~ \\.... ___ -Jf'~--------~~ r----

FCO-FC2 ~'--________ __J}-----------~(\.... _____________ C
R/W~

DTACK~ \I.... _____ -J!
,....------

DO-D15--------L ___ ..J--------------~L ___ __
....... f---- Processor -----.-+IIIIfIl(--- Alternate Bus Master ----l)o~IIooIII(l_--- Processor ---...::j"~

Figure 4-17. Bus Arbitration Timing Diagram - Special Case

4-17

4.2.4.1 BUS ERROR OPERATION. When the bus error signal is asserted, the current bus cycle is
terminated. If BERR is asserted before the falling edge of S2, ~ will be negated in S7 in either a
read or write cycle. As long as BERR remains asserted, the data and address buses will be in the
high-impedence state. When BERR is negated, the processor will begin stacking for exception pro­
cessing. Figure 4-18 is a timing diagram for the exception sequence. The sequence is composed of
the following elements:

1. stacking the program counter and status register,

2. stacking the error information,

3. reading the bus error vector table entry, and

4. executing the bus error handler routine.

The stacking of the program counter and the status register is the same as if an interrupt had occur­
red. Several additional items are stacked when a bus error occurs. These items are used to deter­
mine the nature of the error and correct it, if possible. The bus error vector is vector number two
located at address $000008. The processor loads the new program counter from this location. A
software bus error handler routine is then executed by the processor. Refer to 5.2 EXCEPTION
PROCESSING for additional information.

~ \~------------------------~/
LDS/UDS ----..\ jr----

R/W --------------------------------------DTACK

D~D15::~====~{~,~~~~~~~~~~~~~~~~===:j
FCO-FC2 =:::x~====================::::::;:--------_:. \1--------

l3Elm \
HALT--------------------------==================~

I Initiate I I I Initiate Bus
1ooI"~Rea--d ... ~.---Response Failure--... -I'I---- Bus Error Detection ---~.~,....t-::E-rro-r-::S-ta-':ck-:-in-g-

Figure 4-18. Bus Error Timing Diagram

4.2.4.2 RE-RUN OPERATION. When, during a bus cycle, the processor receives a bus error signal
and the halt pin is being driven by an external device, the processor enters the re-run sequence.
Figure 4-19 is a timing diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address and data output lines in the high­
impedence state. The processor remains "halted", and will not run another bus cycle until the halt
signal is removed by external logic. Then the processor will re-run the previous cycle using the same
function codes, the same data (for a write operation), and the same controls. The bus error signal
should be removed at least one clock cycle before the halt signal is removed.

NOTE

The processor will not re-run a read-modify-write cycle. This restriction is made to
guarantee that the entire cycle runs correctly and that the write operation of a test-and­
set operation is performed without ever releasing AS. If BERR and HALT are asserted
during a read-modify-write bus cycle, a bus error operation results.

4-18

SO S2 S4 S6 S8 SO S2 S4 S6

ClK

A1-A23

AS I \
LOS/UOS \ I \

R/W

OTACK \ I
00-015 (< >-

FCO-FC2 ~ X x::
~" 1 Clock Pe<iOdj

BERR

~ HALT

,..- Read .,. Halt ~II(Re-Run ·1
Figure 4-19. Re-Run Bus Cycle Timing Diagram

4.2.4.3 HALT OPERATION. The halt input signal to the MC68000 performs a halt/run/single-step
function in a similar fashion to the M6800 halt function. The halt and run modes are somewhat self
explanatory in that when the halt signal is constantly active .the processor "halts" (does nothing)
and when the halt signal is constantly inactive the processor "runs" (does something).

This single-step mode is derived from correctly timed transitions on the halt signal input. It forces
the processor to execute a single bus cycle by entering the run mode until the processor starts a bus
cycle then changing to the halt mode. Thus, the single-step mode allows the user to proceed
through (and therefore debug) processor operations one bus cycle at a time.

Figure 4-20 details the timing required for correct single-step operations. Some care must be exer­
cised to avoid harmful interactions between the bus error signal and the halt pin when using the
single-cycle mode as a debugging tool. This is also true of interactions between the halt and reset
lines since these can reset the machine.

SO S2 S4 S6 so S2 S4 S6

ClK

AS \ I \
lOS/UOS \ / \

RiW

OTACK \ I \ I
00-015 (> < >-

FCO-FC2 :=x x=
HALT \ I

I Read ·1 Halt ·1- Read .,
Figure 4-20. Halt Processor Timing Diagram

4-19

When the processor completes a bus cycle after recognizing that the halt signal is active, most
three-state signals are put in the high-impedence state, these include:

1. address lines, and
2. data lines.

This is required for correct performance of the re-run bus cycle operation.

While the processor is honoring the halt request, bus arbitration performs as usual. That is, halting
has no effect on bus arbitration. It is the bus arbitration function that removes the control signals
from the bus.

The halt function and the hardware trace capability allow the hardware debugger to trace single bus
cycles or single instructions at a time. These processor capabilities, along with a software debugg­
ing package, give total debugging flexibility.

4.2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor will attempt to
stack several words containing information about the state of the machine. If a bus error exception
occurs during the stacking operation, there have been two bus errors in a row. This is commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt. Once a
bus error exception has occurred, any bus error exception occurring before the execution of the
next instruction constitutes a double bus fault.

Note that a bus cycle which is re-run does not constitute a bus error exception and does not con­
tribute to a double bus fault. Note also that this means that as long as the external hardware re­
quests it, the processor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor operation after the processor receives an external
reset input. The processor reads the vector table after a reset to determine the address to start pro­
gram execution. If a bus error occurs while reading the vector table (or at any time before the first
instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only
an external reset will start a halted processor.

4.2.5 Reset Operation

The reset Signal is a bidirectional signal that allows either the processor or an external Signal to reset
the system. Figure 4-21 is a timing diagram for the reset operation. Both the halt and reset lines
must be asserted to ensure total reset of the processor.

When the reset and halt lines are driven by an external device, it is recognized as an entire system
reset, including the processor. The processor responds by reading the reset vector table entry (vec­
tor number zero, address $000000) and loads it into the supervisor stack pointer (SSP). Vector table
entry number one at address $000004 is read next and loaded into the program counter. The pro­
cessor initializes the status register to an interrupt level of seven. No other registers are affected by
the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock periods. In this
case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the

4-20

internal state of the processor. All of the processor's internal registers and the status register are
unaffected by the execution of a reset instruction. All external devices connected to the reset line
will be reset at the completion of the reset instruction.

Asserting the reset and halt lines for ten clock cycles will cause a processor reset, except when VCC
is initially applied to the processor. In this case, an external reset must be applied for at least 100
milliseconds.

ClK

PIUS5~::~
1+ t- >100 Milliseconds --.j~ ___________ _

RESET 1~ ____________ ~1
HALT 1 ~------------

!< ,..! t<4 Clocks
Bus Cycles

3 4 5 6
NOTES:

1) Internal start-up time 4) PC High read in here Bus State Unknown:)OOO{
2) SSP High read in here
3) SSP low read in 'here

5) PC low read in here
6) First instruction fetched here, All Control Signals Inactive,

Data Bus In Read Mode: >---<
Figure 4-21. Reset Operation Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error condition, OT ACK,
BERR, and HALT should be asserted and negated on the rising edge of the MC68000 clock. This
will assure that when two signals are asserted simultaneously, the required setup time (#47) for
both of them will be met during the same bus state.

This, or some equivalent precaution, should be designed external to the MC68000. Parameter #48
is intended to ensure this operation in a totally asynchronous system, and may be ignored if the
above conditions are met.

The preferred bus cycle terminations may be summarized as follows (case numbers refer to Table
4-4):

Normal Termination: OTACK occurs first (case 1).

Halt Termination: HALT is asserted at the same time or before OTACK and BERR remains
negated (cases 2 and 3l.

Bus Error Termination: BERR is asserted in lieu of, at the same time, or before OTACK (case
4); BERR is negated at the same time or after OTACK.

Re-Run Termination: HALT and BERR are asserted in lieu of, at the same time, or before
OT ACK (cases 6 and 7) ; HALT must be held at least one cycle after
BERR. Case 5 indicates BERR may precede HALT on all except R9M,
T6E, and BF4 early mask sets which allows fully asynchronous asser­
tion.

4-21

Table 4-4 details the resulting bus cycle termination under various combinations of control signal se­
quences. The negation of these same control signals under several conditions is shown in Table 4-5
(OT ACK is assumed to be negated normally in all cases; for best results, both ~ and 8 ER R
should be negated when address strobe is negated).

Table 4-4. DTACK, BERR, and HALT Assertion Results

Case Control
Asserted on Rising

No. Signal
Edge of State Result
N N+2

DTACK A S Normal cycle terminate and continue.
1 BERR NA X

HALT NA X

DTACK A S Normal cycle terminate and halt. Continue when HALT removed.
2 BERR NA X

HALT A S

DTACK NA A Normal cycle terminate and halt. Continue when HALT removed.
3 BERR NA NA

HALT A S

DTACK X X Terminate and take bus error trap.
4 Emrn" A S

HALT NA NA

DTACK NA X R9M. T6E. BF4: Unpredictable results. no re-run. no error trap;
5 BERR A S usually traps to vector number O.

HALT NA A All others: terminate and re-run.

DTACK X X Terminate and re-run when HALT removed.
6 BERR A S

HALT A S

DTACK NA X Terminate and re-run when HALT removed.
7 BERR NA A

t=iAtf A S

Legend:
N - the number of the current even bus state le.g., S4, S6, etc)
A - signal is asserted in this bus state
NA - signal is not asserted in this state
X - don't care
S - signal was asserted in prevIous state and remains asserted In this state

Table 4-5. BERR and HALT Negation Results

Conditions of
Control

Negated on Rising
Termination in

Signal
Edge of State Results - Next Cycle

Table 4-4 N N+2

Bus Error
BERR • or • Takes bus error trap.
HALT • or •
BERR • or • Illegal sequence; usually traps to

Re-run HALT • vector number O.

BERR • Re-runs the bus cycle.
Re-run HALT •

BERR • May lengthen next cycle.
Normal HALT • or •

BERR • If next cycle is started it will
Normal HALT • or none be terminated as a bus error.

• = Signal is negated in this bus state.

4-22

EXAMPLE A:
A system uses a watch-dog timer to terminate accesses to unpopulated address space. The
timer asserts DTACK and BERR simultaneously after time out (case 4).

EXAMPLE B:
A system uses . error detection on RAM contents. Designer may (a) delay DTACK until
data verified and return BERR and HALT simultaneously to re-run error cycle (case 6), or if

valid, return DTACK (case 1); (b) delay DTACK until data verified and return BERR at same
time as DTACK if data in error (case 4).

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the MC68000 can be used in an asyn­
chronous manner. This entails using only the bus handshake lines (AS, 'OTIS, LDS, DTACK, BERR,
HALT, and VPA) to control the data transfer. USing this method, AS signals the start of a bus cycle
and the data strobes are used as a condition for valid data on a write cycle. The slave device
(memory or peripheraD then responds by placing the requested data on the data bus for a read cycle
or latching data on a write cycle and asserting the data transfer acknowlege signal (DTACK) to ter­
minate the bus cycle. If no slave responds or the access is invalid, external control logic asserts the
BERR, or BERR and HALT, signal to abort or rerun the bus cycle.

The DT ACK signal is allowed to be asserted before the data from a slave device is valid on a read
cycle. The length of time that DT ACK may precede data is given as parameter #31 and it must be
met in any asynchronous system to insure that valid data is latched into the processor. Notice that
there is no maximum time specified from the assertion of AS to the assertion of DT ACK. This is
because the M PU will insert wait cycles of one clock period each until DT ACK is recognized.

The BERR Signal is allowed to be asserted after the DTACK signal is asserted. BERR must be
asserted within the time given as parameter #48 after DT ACK is asserted in any asynchronous
system to insure proper operation. If this maximum delay time is violated, the processor may exhibit
erratic behavior.

4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK and other
asynchronous inputs, the asynchronous input setup time is given as parameter #47. If this setup is
met on an input, such as DTACK, the processor is guaranteed to recognize that Signal on the next
falling edge of the system clock. However, the converse is not true - if the input signal does not
meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this, parameter #31
may be ignored. Note that if DTACK is asserted, with the required setup time, before the falling
edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four
clock periods.

4-23

In order to assure proper operation in a synchronous system when BERR is asserted after DTACK,
BERR must meet the setup time parameter #27A prior to the falling edge of the clock one clock
cycle after DTACK was recognized. This setup time is critical to proper operation, and the MC68000
may exhibit erratic behavior if it is violated.

NOTE
During an active bus cycle, VPA and BERR are sampled on every falling edge of the clock
starting with SO. DT ACK is sampled on every falling edge of the clock starting with S4
and data is latched on the falling edge of S6 during a read. The bus cycle will then be ter­
minated in S7 except when BERR is asserted in the absence of DTACK, in which case it
will terminate one clock cycle later in S9.

4-24

SECTION 5
PROCESSING STATES

This section describes the actions of the MC68000 which are outside the normal processing
associated with the execution of instructions. The functions of the bits in the supervisor portion of
the status register are covered: the supervisor/user bit, the trace enable bit, and the processor inter­
rupt priority mask. Finally, the sequence of memory references and actions taken by the processor
on exception conditions are detailed.

The MC68000 is always in one of three processing states: normal, exception, or halted. The normal
processing state is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to store results. A special case of the normal state is the stopped
state which the processor enters when a stop instruction is executed. In this state, no further
references are made.

The exception processing state is associated with interrupts, trap instructions, tracing, and other
exceptional conditions. The exception may be internally generated by an instruction or by an
unusual condition arising during the execution of an instruction. Externally, exception processing
can be forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to pro­
vide an efficient context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For example, if during
the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and halts. Only an external reset can restart a halted processor. Note that a pro­
cessor in the stopped state is not in the halted state, nor vice versa.

5.1 PRIVILEGE STATES

The processpr operates in one of two states of privilege: the "supervisor" state or the "user" state.
The privilege state determines which operations are legal, are used to choose between the super­
visor stack pointer and the user stack pointer in instruction references, and may by used by an ex­
ternal memory management device to control and translate accesses.

The privilege state is a mechanism for providing security in a computer system. Programs should
access only their own code and data areas, and ought to be restricted from accessing information
which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state. In
this state, the accesses are controlled, and the effects on other parts of the system are limited. The
operating system executes in the supervisor state, has access to all resources, and performs the
overhead tasks for the user state programs.

5-1

5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the supervisor state is
determined by the S bit of the status register; if the S bit is asserted (high), the processor is in the
supervisor state. All instructions can be executed in the supervisor state. The bus cycles generated
by instructions executed in the supervisor state are classified as supervisor references. While the
processor is in the supervisor privilege state, those instructions which use either the system stack
pointer implicitly or address register seven explicitly access the supervisor stack pointer.

All exception processing is done in the supervisor state, regardless of the setting of the S bit. The
bus cycles generated during exception processing are classified as supervisor references. All stack­
ing operations during exception processing use the supervisor stack pointer.

5.1.2 User State

The user state is the lower state of privilege. For instruction execution, the user state is determined
by the S bit of the status register; if the S bit is negated (low), the processor is executing instruc­
tions in the user state.

Most instructions execute the same in user state as in the supervisor state. However, some instruc­
tions which have important system effects are made privileged. User programs are not permitted to
execute the stop instruction or the reset instruction. To ensure that a user program cannot enter the
supervisor state except in a controlled manner, the instructions which modify the whole state
register are privileged. To aid in debugging programs which are to be used as operating systems,
the move to user stack pointer (MOVE to USP) and move from user stack pointer (MOVE from
USP) instructions are also privileged.

The bus cycles generated by an instruction executed in the user state are classified as user state
references. This allows an external memory management device to translate the address and to
control access to protected portions of the address space. While the processor is in the user
privilege state, those instructions which use either the system stack pointer implicitly or address
register seven explicitly, access the user stack pointer.

5.1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception processing can
change the privilege state. During exception processing, the current setting of the S bit of the
status register is saved and the S bit is asserted, putting the processor in the supervisor state.
Therefore, when instruction execution resumes at the address specified to process the exception,
the processor is in the supervisor privilege state.

5.1.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made, using the en­
coding on the three function code output lines. This allows external translation of addresses, con­
trol of access, and differentiation of special processor state, such as interrupt acknowledge. Table
5-1 lists the classification of references.

5-2

Table 5-1. Bus Cycle Classification

Function Code Output
Reference Class

FC2 FC1 FCO

Function Code Output
Reference Class

FC2 FC1 FCO

0 0 0 (Unassigned) 1 0 0 (Unassigned)

0 0 1 User Data 1 0 1 Supervisor Data

0 1 0 User Program 1 1 0 Supervisor Program

0 1 1 (Unassigned) 1 1 1 Interrupt Acknowledge

5.2 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif­
ferent exception causes. During the first step, a temporary copy of the status register is made and
the status register is set for exception processing. In the second step the exception vector is deter­
mined and the third step is the saving of the current processor context. In the fourth step a new
context is obtained and the processor switches to instruction proceSSing.

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine
which will handle that exception. All exception vectors are two words in length (Figure 5-1), except
for the reset vector which is four words. All exception vectors lie in the supervisor data space, ex­
cept for the reset vector which is in the supervisor program space. A vector number is an 8-bit
number which, when multiplied by four, gives the address of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. In the case of inter­
rupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector number
(Figure 5-2) to the processor on data bus lines DO through 07. The processor translates the vector
number into a full 24-bit address, shown in Figure 5-3. The memory layout for exception vectors is
given in Table 5-2.

Word 0

Word 1

A23

New Program Counter (High)

New Program Counter (Low)

Figure 5-1. Format of Vector Table Entries

Ignored

Where:
v7 is the MSB of the Vector Number
vO is the LSB of the Vector Number

Figure 5-2. Vector Number Format

All Zeroes

Figure 5-3. Exception Vector Address Calculation

5-3

AO=O, Al =0

AO=O, A1 = 1

As shown in Table 5-2, the memory layout is 512 words long (1024 bytes). It starts at address 0 and
proceeds through address 1023. This provides 255 unique vectors; some of these are reserved for
TRAPS and other system functions. Of the 255, there are 192 reserved for user interrupt vectors.
However, there is no protection on the first 64 entries, so user interrupt vectors may overlap at the
discretion of the systems designer.

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep­
tions are the interrupts and the bus error and reset requests. The interrupts are requests from

Table 5-2. Exception Vector Table

Vector Address

Numberls) Dec Hex Space
Assignment

0 0 000 SP Reset: Initial SSP

- 4 004 SP Reset: Initial PC

2 8 008 SO Bus Error

3 12 OOC SO Address Error

4 16 010 SO Illegal Instruction

5 20 014 SO Zero Oivide

6 24 018 SO CHK Instruction

7 28 01C SO TRAPV Instruction

8 32 020 SO Privilege Violation

9 36 024 SO Trace

10 40 028 SO Line 1010 Emulator

11 44 02C SO Line 1111 Emulator

12* 48 030 SO (Unassigned, Reserved)

13* 52 034 SO (Unassigned, Reserved)

14* 56 038 SO (Unassigned, Reserved)

15 60 03C SO Uninitialiled Interrupt Vector

16-23* 64 04C SO (Unassigned, Reserved)

95 05F -

24 96 060 SO Spurious Interrupt

25 100 064 SO Levell Interrupt Autovector

26 104 068 SO Level 2 Interrupt Autovector

27 108 06C SO Level 3 Interrupt Autovector

28 112 070 SO Level 4 Interrupt Autovector

29 116 074 SO Level 5 Interrupt Autovector

30 120 078 SO Level 6 Interrupt Autovector

31 124 07C SO Level 7 Interrupt Autovector

32-47 128 080 SO TRAP Instruction Vectors

191 OBF -

48-63* 192 OCO SO (Unassigned, Reserved)

255 OFF -

64-255 256 100 SO User Interrupt Vectors

1023 3FF -

*Vector numbers 12, 13, 14, 16 through 23, and 48 through 63 are re­
served for future enhancements by Motorola. No user peripheral devices
should be assigned these numbers.

5-4

peripheral devices for processor action while the bus error and reset inputs are used for access con­
trol and processor restart. The internally generated exceptions come from instructions, or from ad­
dress errors or tracing. The trap (TRAP), trap on overflow (TRAPV), check data register against up­
per bounds (CHK), and divide (DIV) instructions all can generate exceptions as part of their instruc­
tion execution. In addition, illegal instructions, word fetches from odd addresses, and privilege
violations cause exceptions. Tracing behaves like a very high-priority internally-generated interrupt
after each instruction execution.

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit is asserted, putting the processor into the
supervisor privilege state. Also, the T bit is negated which will allow the exception handler to ex­
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is
also updated.

in the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fetch and classified as an interrupt acknowledge. For all other ex­
ceptions, internal logic provides the vector number. This vector number is then used to generate the
address of the exception vector.

The third step is to save the current processor status, except for the reset exception. The current
program counter value and the saved copy of the status register are stacked using the supervisor
stack pointer as shown in Figure 5-4. The program counter value stacked usually points to the next
unexecuted instruction; however, for bus error and address error, the value stacked for the program
counter is unpredictable, and may be incremented from the address of the instruction which caused
the error. Additional information defining the current context is stacked for the bus error and ad­
dress error exceptions.

The last step is the same for all exceptions. The new program counter value is fetched from the ex­
ception vector. The processor then resumes instruction execution. The instruction at the address
given in the exception vector is fetched, and normal instruction decoding and execution is started.

ssP ~ Status Register

High ----J r Program Counter - - -

Low

Figure 5-4. Exception Stack Order (Groups 1 and 2)

5.2.4 Multiple Exceptions

Higher
Addresses

These paragraphs describe the processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped accordit:lg to their occurrence and priority. The group 0
exceptions are reset, bus error, and address error. These exceptions cause the instruction currently
being executed to be aborted and the exception processing to commence within two clock cycles.

5-5

The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc­
tions. These exceptions allow the current instruction to execute to completion, but pre-empt the ex­
ecution of the next instruction by forcing exception processing to occur (privilege violations and il­
legal instructions are detected when they are the next instruction to be executed). The group 2 ex­
ceptions occur as part of the normal processing of instructions. The TRAP, TRAPV, CHK, and zero
divide exceptions are in this group. For these exceptions, the normal execution of an instruction
may lead to exception processing.

Group 0 exceptions have highest priority, while group 2 exceptions have lowest priority. Within
group 0, reset has highest priority, followed by bus error and then address error. Within group 1,
trace has priority over external interrupts, which in turn takes priority over illegal instruction and
privilege violation. Since only one instruction can be executed at a time, there is no priority relation
within group 2.

The priority relation between two exceptions determines which is taken, or taken first, if the condi­
tions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP instruction, the
bus error takes precedence, and the TRAP instruction processing is aborted. In another example, if
an interrupt request occurs during the execution of an instruction while the T bit is asserted, the
trace exception has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and priority is given in Table 5-3.

Table 5-3. Exception Grouping and Priority

Group Exception Processing

Reset
Exception processing begins

0 Address Error
Bus Error

within two clock cycles

Trace

1
Interrupt Exception processing begins before

Illegal the next Instruction
Privilege

TRAP, TRAPV,
Exception processing is started by

2 CHK,
Zero Divide

normal instruction execution

5.3 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources and each exception has processing which is peculiar to it. The
following paragraphs detail the sources of exceptions, how each arises, and how each is processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the reset signal is designed
for system initiation and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state
and the trace state is forced off. The processor interrupt priority mask is set at level seven. The vec­
tor number is internally generated to reference the reset exception vector at location 0 in the super­
visor program space. Because no assumptions can be made about the validity of register contents,

5-6

in particular the supervisor stack pointer, neither the program counter nor the status register is sav­
ed. The address contained in the first two words of the reset exception vector is fetched as the ini­
tial supervisor stack pointer, and the address in the last two words of the reset exception vector is
fetched as the initial program counter. Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be pointed to by the initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to
reset external devices. This allows the software to reset the system to a known state and then con­
tinue processing with the next instruction.

5.3.2 Interrupts

Seven levels of interrupt priorities are provided. Devices may be chained externally within interrupt
priority levels, allowing an unlimited number of peripheral devices to interrupt the processor. Inter­
rupt priority levels are numbered from one to seven, with level seven being the highest priority. The
status register contains a 3-bit mask which indicates the current processor priority, and interrupts
are inhibited for all priority levels less than or equal to the current processor priority.

An interrupt request is made to the processor by encoding the interrupt request level on the inter­
rupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts are
detected between instruction executions. If the priority of the pending interrupt is lower than or
equal to the current processor priority, execution continues with the next instruction and the inter­
rupt exception processing is postponed. (The recognition of level seven is slightly different, as ex­
plained in the following paragraph.)

If the priority of the pending interrupt is greater than the current processor priority, the exception
proceSSing sequence is started. A copy of the status register is saved, the privilege state is sent to
the supervisor stack, tracing is suppressed, and the processor priority level is set to the level of the
interrupt acknowledged. The processor fetches the vector number from the interrupting device,
classifying the reference as an interrupt acknowledge and displaying the level number of the inter­
rupt being acknowledged on the address bus. If external logic requests an automatic vectoring, the
processor internally generates a vector number which is determined by the interrupt level number. If
external logic indicates a bus error, the interrupt is taken to be spurious, and the generated vector
number references the spurious interrupt vector. The processor then proceeds with the usual ex­
ception p'rocessing, saving the program counter and status register on the supervisor stack. The
saved value of the program counter is the address of the instruction which would have been ex­
ecuted had the interrupt not been present. The content of the interrupt vector whose vector
number was previously obtained is fetched and loaded into the program counter, and normal in­
struction execution commences in the interrupt handling routine. A flowchart for the interrupt
acknowledge sequence is given in Figure 5-5, a timing diagram is given in Figure 5-6, and the inter­
rupt processing sequence is shown in Figure 5-7.

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt
priority mask, thus providing a "non-maskable interrupt" capability. An interrupt is generated each
time the interrupt request level changes from some lower level to level seven. Note that a level seven
interrupt may still be caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.

5-7

PROCESSOR INTERRUPTING DEVICE

Grant the Interrupt Request the Interrupt

1) Compare Interrupt Level in Status Register
and Wait for Current Instruction to Complete .. / Assert Address Strobe (AS)

3) Place Interrupt Level on A 1, A2, A3
4) Set Function Code to Interrupt Acknowledge .. Provide the Vector Number
5) Assert Address Strobe (AS)

~

6) Assert Data Strobes (UOS* and LOS) 1) Place Vector Number on 00-07
2) Assert Oata Transfer Acknowledge (oT ACK)

Acquire the Vector Number J

1) Latch Vector Number
2) Negate UOS and LOS
3) Negate AS Release

1) Negate OT ACK

Start Interrupt Processing L
I~

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The
processor does not recognize anything on data lines 08 through 015 at this time.

Figure 5-5. Vector Acquisition Flowchart

CLK JLJLf1..J1IU
A4-A23 :J-< }-- L.{

H A1-A3 :J-< }-- --<'--___ ---1

AS \ r- \ (\ I
UOS* \ r- \ (\ I
LOS~ \ (\ I
R/W \ I \
OTACK~ \ I \
08-015 (}-- (
00-07 < }-- (> (

FCO-FC2 :::x 7 ~
IPLO-IPL2 ___________ _ ________________ -Jx~ ________ _

Stack lACK Cycle Stack and

I_ '1_ PCL 1 (Vector Number Acquisition) I Vector Fetch ,I
~~~----------------~~~~(SSP) .. ~ .. ~ -

Last Bus Cycle of Instruction 
(Read or Write) 

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The pro­
cessor does not recognize anything on data lines 08 through 015 at this time. 

Figure 5-6. Interrupt Acknowledge Cycle Timing Diagram 

5-8 



last Bus Cycle 
lACK 

of Instruction Stack 
Cycle 

Stack Stack 
(During Which r---. PCl r---+ (Vector Number r---+ Status ---+ PCH r--+ 
Interrupt Was (at SSP - 2) 

Acquisition) 
(at SSP - 6) (at SSP - 4) 

Recognized) 

Read Read Fetch First Two 

~ Vector ~ Vector f---+- Instruction Words 
High low of Interrupt 

(A16-A31) (AO-A151 Routine 

NOTE: SSP refers to the value of the supervisor stack pointer before the interrupt occurs. 

Figure 5-7. Interrupt Processing Sequence 

5.3.3 Uninitialized Interrupt 

An interrupting device asserts V8A or provides an interrupt during an interrupt acknowledge cycle 
to the MC68000. If the vector register has not been initialized, the responding M68000 Family 
peripheral will provide vector 15, the uninitialized interrupt vector. This provides a uniform way to 
recover from a programming error. 

5.3.4 Spurious Interrupt 

If during the interrupt acknowledge cycle no device responds by asserting DTACK or VPA, the bus 
error line should be asserted to terminate the vector acquisition. The processor separates the pro­
cessing of this error from bus error by fetching the spurious interrupt vector instead of the bus error 
vector. The processor then proceeds with the usual exception processing. 

5.3.5 Instruction Traps 

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor­
mal conditions during instruction execution, or from use of instructions whose normal behavior is 
trapping. 

Some instructions are used specifically to generate traps. The TRAP instruction always forces an 
exception and is useful for implementing system calls for user programs. The TRAPV and CHK in­
structions force an exception if the user program detects a runtime error, which may be an 
arithemetic overflow or a subscript out of bounds. 

The signed divide (DIVS) and unsigned (DIVU) instructions will force an exception if a division 
operation is attempted with a divisor of zero. 

5.3.6 Illegal and Unimplemented Instructions 

" Illegal instruction" is the term used to refer to any of the word bit patterns which are not the bit 
pattern of the first word of a legal instruction. During instruction execution, if such an instruction is 

5-9 



fetched, an illegal instruction exception occurs. Motorola reserves the right to define instructions 
whose opcodes may be any of the illegal instructions. Three bit patterns will always force an illegal 
instruction trap on all M68000 Family compatible microprocessors. They are: $4AFA, $4AFB, and 
$4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for Motorola system products. The 
third pattern, $4AFC, is reserved for customer use. 

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as unimplemented in­
structions and separate exception vectors are given to these patterns to permit efficient emulation. 
This facility allows the operating system to detect program errors, or to emulate unimplemented in­
structions in software. 

5.3.7 Privilege Violations 

In order to provide system security, various instructions are privileged. An attempt to execute one 
of the privileged instructions while in the user state will cause an exception. The privileged instruc­
tions are: 

5.3.8 Tracing 

STOP 

RESET 

RTE 

MOVE to SR 

AND Immediate to SR 

EOR Immediate to SR 

OR Immediate to SR 

MOVE USP 

To aid in program development, the MC68000 includes a facility to allow instruction-by-instruction 
tracing. In the trace state, after each instruction is executed an exception is forced, allowing a 
debugging program to monitor the execution of the program under test. 

The trace facility uses the T bit in the supervisor portion of the status register. If the T bit is negated 
(off), tracing is disabled, and instruction execution proceeds from instruction to instruction as nor­
mal. If the T bit is asserted (on) at the beginning of the execution of an instruction, a trace exception 
will be generated after the execution of that instruction is completed. If the instruction is not ex­
ecuted, either because an interrupt is taken, or the instruction is illegal or privileged, the trace ex­
ception does not occur. The trace exception also does not occur if the instruction is aborted by a 
reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is 
pending on completion, the trace exception is processed before the interrupt exception. If, during 
the execution of the instruction an exception is forced by that instruction, the forced exception is 
processed before the trace exception. 

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu­
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the 
trace exception, and finally the interrupt exception. Instruction execution resumes in the interrupt 
handler routine. 

5.3.9 Bus Error 

Bus error exceptions occur when the external logic requests that a bus error be processed by an ex­
ception. The current bus cycle which the processor is making is then aborted. Whether the pro­
ceSSor was doing instruction or exception processing, that processing is terminated, and the pro­
ceSSor immediately begins exception processing. 

5-10 



Exception processing for the bus error follows the usual sequence of steps. The status register is 
copied, the supervisor state is entered, and the trace state is turned off. The vector number is 
generated to refer to the bus error vector. Since the processor was not between instructions when 
the bus error exception request was made, the context of the processor is more detailed. To save 
more of this context, additional information is saved on the supervisor stack. The program counter 
and the copy of the status register are of course saved. The value saved for the program counter is 
advanced by some amount, one to five words beyond the address of the first word of the instruc­
tion which made the reference causing the bus error. If the bus error occurred during the fetch of 
the next instruction, the saved program counter has a value in the vicinity of the current instruction, 
even if the current instruction is a branch, a jump, or a return instruction. Besides the usual informa­
tion, the processor saves its internal copy of the first word of the instruction being processed and 
the address which was being accessed by the aborted bus cycle. Specific information about the ac­
cess is also saved: whether it was a read or a write, whether or not the processor was processing an 
instruction, and the classification displayed on the function code outputs when the bus error occur­
red.' The processor is processing an instruction if it is in the normal state or processing a group 2 ex­
ception; the processor is not processing an instruction if it is processing a group 0 or a group i ex­
ception. Figure 5-8 illustrates how this information is organized on the supervisor stack. Although 
this information is not sufficient in general to effect full recovery from the bus error, it does allow 
software diagnosis. Finally, the processor commences instruction processing at the address con­
tained in vector number two. It is the responsibility of the error handler routine to clean up the stack 
and determine where to continue execution. 

sSP ~ 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

JR/W/I/N I Function Code 

High 
- -AccessAddress-- - - - - - ----- ------ - ------

Low 

Instruction Register 

Status Register 

High 
- - Program Counter - - - - ----- -- - - - - ---- ---

Low 

R/W (read/write): write=O, read = 1. I/N (instruction/not): instruction=O, not= 1 

Figure 5-8. Exception Stack Order (Group 0) 

Higher 
Addresses 

If a bus error occurs during the exception processing for a bus error, address error, or reset, the pro­
cessor is halted and all processing ceases. This simplifies the detection of catastrophic system 
failure, since the processor removes itself from the system rather than destroy any memory con­
tents. Only the RESET pin can restart a halted processor. 

5.3.10 Address Error 

Address error exceptions occur when the processor attempts to access a word or a long word 
operand or an instruction at an odd address. The effect is much like an internally generated bus 

5-11 



error, so that the bus cycle is aborted and the processor ceases whatever processing it is currently 
doing and begins exception processing. After the exception processing commences, the sequence 
is the same as that for bus error including the information that is stacked, except that the vector 
number refers to the address error vector instead. Likewise, if an address error occurs during the ex­
ception processing for a bus error, address error, or reset, the processor is halted. As shown in 
Figure 5-9, an address error will execute a short bus cycle followed by exception processing. 

On mask sets R9M, BF4, T6E, OL6, CC1, and GN7, UOS and LOS, as well as AS, are asserted. 

SO S1 S2 S3 S4 S5 S6 S7 so Sl S2 S3 S4 S5 S6 S7 so S 1 S2 S3 S4 S5 

CLK 

A l-A23 ::::======i~~;=========~:.-.-~::::::;------~ __ Ir-~_-~~~~~~~-=:::;-__ _ 
~ \~----~~-~\==~==~/~--~~--------~\==~--

UOS * -------, L- J L-
\~----~r-----~~~_~_~_~_~J~-~---------------'~ 

LOS* 

Rlw J 
OT ACK --------, I 

'----~ 

0~015--------_L ______ ~~~ ____ ~~---~~--------~c===== 

I
" I Address Error I Approx. 8 Clocks I 

1ooII ... E----- Read ---... ojooI...:.---Write----l ... · .. ...:-- ldle • ...: 

* UDS and LOS are asserted on mask sets R9M, BF4, T6E, DL6, CC1, and GN7. 

Figure 5-9. Address Error Timing Diagram 

5-12 

Write Stack~ 
I 



SECTION 6 
INTERFACE WITH M6800 PERIPHERALS 

Motorola's extensive line of M6800 peripherals are directly compatible with the MC68000. Some of 
these devices that are particularly useful are: 

MC6821 Peripheral Interface Adapter 

MC6840 Programmable Timer Module 

MC6843 Floppy Disk Controller 

MC6845 CRT Controller 

MC6850 Asynchronous Communications Interface Adapter 

MC6852 Synchronous Serial Data Adapter 

MC6854 Advanced Data Link Controller 

MC68488 General Purpose Interface Adapter 

To interface the synchronous M6800 peripherals with the asynchronous MC68000, the processor 
modifies its bus cycle to meet the M6800 cycle requirements whenever an M6800 device address is 
detected. This is possible since both processors use memory mapped 1/0. Figure 6-1 is a flowchart 
of the interface operation between the processor and M6800 devices. 

PROCESSOR SLAVE 

Initiate the Cycle 

1) The Processor Starts a Normal'Read or 
Write Cycle Define M6800 Cycle 

1) External Hardware Asserts Valid Peripheral 

Synchronize with Enable Address (VPA) 

1) The Processor Monitors Enable (E) Until it is 
Low (Phase 1) 

2) The Processor Asserts Valid Memory 
Address (VMA) Transfer the Data 

1) The Peripheral Waits Until E is Active 

Terminate the Cycle and then Transfers the Data 
~ 

1) The Processor Waits Until E Goes Low 
(On a Read Cycle the Data is Latched 
as E Goes Low Internally) 

2) The Processor Negates VMA 
3) The Processor Negates AS, UDS, and LDS 

~ 
Start Next Cycle 

Figure 6-1. M6800 Interfacing Flowchart 

6-1 



6.1 DATA TRANSFER OPERATION 

Three signals on the processor provide the M6800 interface. They are: enable (E), valid memory ad­
dress (VMA), and valid peripheral address (VPA). Enable corresponds to the E or phase 2 signal in 
existing M6800 systems. The bus frequency is one tenth of the incoming MC68000 clock frequency. 
The timing of E allows 1 megahertz peripherals to be used with 8 megahertz MC68000s. Enable has 
a 60/40 duty cycle; that is, it is low for six input clocks and high for four input clocks. This duty cy­
cle allows the processor to do successive VPA accesses on successive E pulses. 

M6800 cycle timing is given in Figures 6-2,6-3,8-7, and 8-8. At state zero (SO) in the cycle, the ad­
dress bus is in the high-impedence state. A function code is asserted on the function code output 
lines. One-half clock later, in state 1, the address bus is released from the high-impedence state. 

SO S2 S4 w w w w w w S6 so S2 
ClK 

Al-A23 :J-< >-c: 
AS ..r--\ I\.. 

DTACK 

Data Out }-

Data In ( )-

FCO-FC2 :x ~ 
E\ I \ 

VPA 
, I\.. 

VMA \ r-
Figure 6-2. MC68000 to M6800 Peripheral Timing - Best Case 

so S2 S4 w w w w w w w w w w w w w w w S6 so 
ClK 

Al-A23 J< )( AS, , 
DTACK 

Data Out ----{ ~ 
Data In c:::J-

FCO-FC2 ::x 'f.. 
I \ I L 

VPA~ r 
VMA r 

Figure 6-3. MC68000 to M6800 Peripheral Timing - Worst Case 

6-2 



During state 2, the address strobe (AS) is asserted to indicate that there is a valid address on the ad­
dress bus. If the bus cycle is a read cycle, the upper and/ or lower data strobes are also asserted in 
state 2. If the bus cycle is a write cycle, the read/write (R/W) signal is switched to low (write) dur­
ing state 2. One-half clock later, in state 3, the write data is placed on the data bus, and in state 4 
the data strobes are issued to indicate valid data on the data bus. The processor now inserts wait 
states until it recognizes the assertion of VPA. 

The VPA input signals the processor that the address on the bus is the address of an M6800 device 
(or an area reserved for M6800 devices) and that the bus should conform to the phase 2 transfer 
characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus, 
conditioned by the address strobe. Chip select for the M6800 peripherals should be derived by 
decoding the address bus conditioned by VMA. 

After recognition of VPA, the processor assures that the enable (E) is low, by waiting if necessary, 
and subsequently asserts VMA. Valid memory address is then used as part of the chip select equa­
tion of the peripheral. This ensures that the M6800 peripherals are selected and deselected at the 
correct time. The peripheral now runs its cycle during the high portion of the E signal. Figures 6-2 
and 6-3 depict the best and worst case M6800 cycle timing. This cycle length is dependent strictly 
upon when VPA is asserted in relationship to the E clock. 

If we assume that external circuitry asserts VPA as soon as possible after the assertion of AS, then 
VPA will be recognized as being asserted on the falling edge of S4. In this case, no "extra" wait 
cycles will be inserted prior to the recognition of VPA asserted and only the wait cycles inserted to 
synchronize with the E clock will determine the total length of the cycle. In any case, the synchroni­
zation delay will be some integral number of clock cycles within the following two extremes: 

1. Best Case - VPA is recognized as being asserted on the falling edge three ciock cycles before 
E rises (or three clock cycles after E falls). 

2. Worst Case - VPA is recognized as being asserted on the falling edge two clock cycles before 
E rises (or four clock cycles after E falls). 

During a read cycle, the processor latches the peripheral data in state 6. For all cycles, the processor 
negates the address and data strobes one-half clock cycle later in state 7 and the enable signal goes 
low at this time. Another half clock later, the address bus is put in the high-impedence state. During 
a write cycle, the data bus is put in the high-impedence state and the read/write signal is switched 
high. The peripheral logic must remove VPA within one clock after the address strobe is negated. 

DTACK should not be asserted while VPA is asserted. Notice that the MC68000 VMA is active low, 
contrasted with the active high M6800 VMA. This allows the processor to put its buses in the high­
impedence state on DMA requests without inadvertently selecting the peripherals. 

6.2 INTERRUPT INTERFACE OPERATION 

During an interrupt acknowledge cycle while the processor is fetching the vector, the VPA is 
asserted, the MC68000 will assert VMA and complete a normal M6800 read cycle as shown in Figure 
6-4. The processor will then use an internally generated vector that is a function of the interrupt be­
ing serviced. This process is known as autovectoring. The seven autovectors are vector numbers 25 
through 31 (decimal). 

6-3 



Autovectoring operates in the same fashion (but is not restricted to) the M6800 interrupt sequence. 
The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with 
both the M6800 and the MC68000's normal vectored interrupt, the interrupt service routine can be 
located anywhere in the address space. This is due to the fact that while the vector numbers are 
fixed, the contents of the vector table entries are assigned by the user. 

Since VMA is asserted during autovectoring, the M6800 peripheral address decoding should pre­
vent unintended accesses. 

ClK 

A1-A3 

A4-A23 

AS 

UOS* 

lOS 

R/W 

OTACK ~ 

08-015 --c:J-----------------
0~07 ---<===)~------------------------------

FCO-FC2 X y 'C 

L-
------~,~\======~--------~~ \1.... ____ ---J1 
I Normal I I "" .• f--:C::-y-C~le-~.-fo .... I(:..-----Autovector Operation ------i.~ 

* Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing The 
processor does not recognize anything on data lines 08 through 015 at this time. 

Figure 6-4. Autovector Operation Timing Diagram 

6-4 



SECTION 7 
INSTRUCTION SET AND EXECUTION TIMES 

7.1 INSTRUCTION SET 

The following paragraphs provide information about the addressing categories and instruction set 
of the MC68000. -

7.1.1 Addressing Categories 

Effective address modes may be categorized by the ways in which they may be used. The fOlio'v"Jing 
classifications will be used in the instruction definitions. 

Data If an effective address mode may be used to refer to data operands, it is considered a 
data addressing effective address mode. 

Memory If an effective address mode may be used to refer to memory operands, it is con­
sidered a memory addressing effective address mode. 

Alterable If an effective address mode may be used to refer to alterable (writeable) operands, 
it is considered an alterable addressing effective address mode. 

Control If an effective address mode may be used to refer to memory operands without an 
associated size, it is considered a control addressing effective address mode. 

These categories may be combined, so that additional, more restrictive, classifications may be 
defined. For example, the instruction descriptions use such classifications as alterable memory or 
data alterable. The former refers to those addressing modes which are both alterable and memory 
addresses, and the latter refers to addressing modes which are both data and alterable. 

Table 7-1 shows the various categories to which each of the effective address modes belong. Table 
7-2 is the instruction set summary. 

Table 7-1. Effective Addressing Mode Categories 

Effective 
Addressing Categories 

Address 
Modes Mode Register Data Memory Control Alterable 

Dn 000 Register Number X - - X 
An 001 Register Number - - - X 

(An) 010 Register Number X X X X 

IAn)+ 011 Register Number X X - X 
-(An) 100 Register Number X X - X 

dIAn) 101 Register Number X X X X 

dIAn, ix) 110 Register Number X X X X 
xxx.W 111 000 X X X X 
xxx.L 111 001 X X X X 

dIPC) 111 010 X X X -
dIPC, ix) 111 011 X X X -

Ixxx 111 X X X - -

7-1 



Mnemonic 

ABCD 

ADD 

ADDA 

ADD I 

ADDQ 

ADDX 

AND 

ANDI 

ANDI to CCR 

ANDI to SR 

ASL,ASR 

BCC 

BCHG 

BCLR 

BRA 

BSET 

BSR 

BTST 

CHK 

CLR 

CMP 

CMPA 

CMPI 

CMPM 

DBCC 
DIVS 

DIVU 

EOR 

EORI 

EORI to CCR 

EORI to SR 

EXG 

EXT 

JMP 

JSR 

LEA 

LINK 

LSL, LSR 

MOVE 

MOVE to CCR 

MOVE to SR 

Table 7-2. Instruction Set (Sheet 1 of 2) 

Description 

Add Decimal with Extend 

Add Binary 

Add Address 

Add Immediate 

Add Quick 

Add Extended 

AND Logical 

AND Immediate 

AND Immediate to Condition Codes 

AND Immediate to Status Register 

Arithmetic Shift 

Branch Conditionally 

Test a Bit and Change 

Test a Bit and Clear 

Branch Always 

Test a Bit and Set 

Branch to Subroutine 

Test a Bit 

Check Register Against Bounds 

Clear and Operand 

Compare 

Compare Address 

Compare Immediate 

Compare Memory 

Test Condition, Decrement and Branch 

Signed Divide 

Unsigned Divide 

Exclusive OR Logical 

Exclusive OR Immediate 

Exclusive OR Immediate 
to Condition Codes 

Exclusive OR Immediate 
to Status Register 

Exchange Register 

Sign Extend 

Jump 

Jump to Subroutine 

Load Effective Address 

Link and Allocate 

Logical Shift 

Move Data from Source to Destination 

Move to Condition Code 

Move to the Status Register 

Operation 

(Destination) 10 + (Source) 10 + X - Destination 

(Destination) + (Source) - Destination 

(Destination) + (Source) - Destination 

(Destination) + Immediate Data - Destination 

(Destination) + Immediate Data - Destination 

(Destination) + (Source) + X - Destination 

(Destination) A (Source) - Destination 

(Destination) A I mmediate Data - Destination 

(Source) A CCR-CCR 

(Source) A SR-SR 

(Destination) Shifted by < count> - Destination 

If CC then PC+d-PC 

- « bit number» OF Destination - Z 
-I< bit number» OF Destination-
< bit number> OF Destination 

-I<bit number» OF Destination-Z 
0- <bit number> -OF Destination 

PC+d-PC 

-«bit number» OF Destination-Z 
1 - < bit number> OF Destination 

PC--(SP); PC+d-PC 

- « bit number» OF Destination - Z 

If Dn <0 or Dn> «ea» then TRAP 

0-Destination 

(Destination) - (Source) 

(Destination) - (Source) 

(Destination) - Immediate Data 

(Destination) - (Source) 

If - CC then Dn - 1 - Dn; if Dn,* - 1 then PC + d - PC 

(Destination)! (Source) - Destination 

(Destination)! (Source) - Destination 

(Destination) ED (Source) - Destination 

(Destination) ED Immediate Data - Destination 

(Source) ED CCR - CCR 

(Source) ED SR-SR 

Rx-Ry 

(Destination) Sign-Extended - Destination 

Destination - PC 

PC - - (SP); Destination - PC 

<ea> -An 

An- - (SP); SP-An; SP+ Displacement-SP 

(Destination) Shifted by < count> - Destination 

(Source) - Destination 

(Source) - CCR 

(Source) - S R 

A logical AND 
V logical OR 
ED logical exclusive OR 
- logical complement 

7-2 

Condition 
Codes 

X N Z V 

* U * U 

* * * * 
- - - -

* * * * 
* * * * 
* * * * 
- * * 0 

- * * 0 

* * * * 
* * * * 
* * * * 
- - - -

* - - -

* - - -

- - - -

* - - -
- - - -

* - - -

- * U U 

- 0 1 0 

* * * -

* * * -

* * * -

* * * -

- - - -

* * * -

* * * -

- * * 0 

- * * 0 

* * * * 

* * * * 

- - - -
- * * 0 

- - - -

- - - -

- - - -

- - - -

* * * 0 

- * * 0 

* * * * 
* * * * 

* affected 
- unaffected 
o cleared 
1 set 
U undefined 

C 

* 
* 
-

* 
* 
* 
0 

0 

* 
* 
* 
-

-

-

-

-

-

-
U 

0 

* 
* 
* 
* 
-
0 

0 

0 

0 

* 

* 

-
0 

-

-

-

-

* 
0 

* 
* 



Mnemonic 

MOVE from SR 

MOVE USP 

MOVEA 

MOVEM 

MOVEP 

MOVEO 

MULS 

MULU 

NBCD 

NEG 

NEGX 

NOP 

NOT 

OR 

ORI 

ORI to CCR 

ORI to SR 

PEA 

RESET 

ROL, ROR 

ROXL, ROXR 

RTE 

RTR 

RTS 

SBCD 

SCC 
STOP 

SUB 

SUBA 

SUBI 

SUBQ 

SUBX 

SWAP 

TAS 

TRAP 

TRAPV 

TST 

UNLK 

Table 7-2. Instruction Set (Sheet 2 of 2) 

Description 

Move from the Status Register 

Move User Stack Pointer 

Move Address 

Move Multiple Registers 

Move Peripheral Data 

Move Quick 

Signed Multiply 

UnSigned Multiply 

Negate Decimal with Extend 

Negate 

Negate with Extend 

No Operation 

Logical Complement 

Inclusive OR Logical 

Inclusive OR Immediate 

Inclusive OR Immediate 
to Condition Codes 

Inclusive OR Immediate 
to Status Register 

Push Effective Address 

Reset External Device 

Rotate (Without Extend) 

Rotate with Extend 

Return from Exception 

Return and Restore Condition Codes 

Return from Subroutine 

Subtract Decimal with Extend 

Set According to Condition 

Load Status Register and Stop 

Subtract Binary 

Subtract Address 

Subtract Immediate 

Subtract Quick 

Subtract with Extend 

Swap Register Halves 

Test and Set an Operand 

Trap 

Trap on Overflow 

T est and Operand 

Unlink 

Operation 

S R - Destination 

USP-An; An-USP 

(Source) - Destination 

Registers- Destination 
(Source) - Registers 

(Source) - Destination 

Immediate Data - Destination 

(Destination)X(Source) - Destination 

(Destination)X(Source) - Destination 

0- (Destination) 10- X - Destination 

0- (Destination) - Destination 

0- (Destination) - X - Destination 
-

- (Destination) - Destination 

(Destination) v (Source) - Destination 

(Destination) v Immediate Data- Destination 

(Source) v CCR-CCR 

(Source) v SR - SR 

<ea> - -(SP) 

-

(Destination) Rotated by < count> - Destination 

(Destination) Rotated by < count> - Destination 

(SP) + - SR; (SP) + - PC 

(SP)+ -CC; (SP)+ -PC 

(SP)+ -PC 

(Destination) 10 - (Source) 10 - X - Destination 

If CC then 1's- Destination else O's- Destination 

Immediate Data - SR; STOP 

(Destination) - (Source) - Destination 

(Destination) - (Source) - Destination 

(Destination) - Immediate Data - Destination 

(Destination) - Immediate Data - Destination 

(Destination) - (Source) - X - Destination 

Register [31 :16]- Register [15:0] 

(Destination) Tested - CC; 1 - [7] OF Destination 

PC- - (SSP); SR - - (SSP); (Vector) - PC 

If V then TRAP 

(Destinationl Tested - CC 

An-SP; (SP)+ -An 

[ ] = bit number 
A logical AND 
V logical OR 
elogical exclusive OR 
- logical complement 

7-3 

Condition 
Codes 

X N Z V 

- - - -

- - - -

- - - -

- - - -

- - - -

- * * 0 

- * * 0 
- * * 0 

* U * U 

* * * * 
* * * * 
- - - -

- * 
.., 

0 
- * * 0 
- * * 0 

* * * * 

* * * * 

- - - -

- - - -

- * * 0 

* * * 0 

* * * * 
* * * * 
- - - -

* U * U 

- - - -

* * * * 
* * * * 
- - - -

* * * * 
* * * * 
* * * * 
- * * 0 

- * * 0 

- - - -

- - - -

- * * 0 

- - - -

* affected 
- unaffected 
o cleared 
1 set 
U undefined 

C 

-

-

-

-

-

0 

0 

0 

* 
* 
* 
-

0 

0 

0 

* 

* 

-

-

* 
* 
* 
* 
-

* 
-

* 
* 
-

* 
* 
* 
0 

0 
-

-

0 

-



7.1.2 Instruction Prefetch 

The MC68000 uses a two-word tightly-coupled instruction prefetch mechanism to enhance perfor­
mance. This mechanism is described in terms of the microcode operations involved. If the execu­
tion of an instruction is defined to begin when the microroutine for that instruction is entered, some 
features of the prefetch mechanism can be described. 

1. When execution of an instruction begins, the operation word and the word following have 
already been fetched. The operation word is in the instruction decoder. 

2. In the case of multi-word instructions, as each additional word of the instruction is used 
internally, a fetch is made to the instruction stream to replace it. 

3. The last fetch for an instruction from the instruction stream is made when the operation word 
is discarded and decoding is started on the next instruction. 

4. If the instruction is a single-word instruction causing a branch, the second word is not used. 
But because this word is fetched by the preceding instruction, it is impossible to avoid this 
superfluous fetch. 

5. In the case of an interrupt or trace exception, both words are not used. 

6. The program counter usually points to the last word fetched from the instruction stream. 

7.2 INSTRUCTION EXECUTION TIMES 

The following paragraphs contain listings of the instruction execution times in terms of external 
clock (ClK) periods. In this timing data, it is assumed that both memory read and write cycle times 
are four clock periods. Any wait states caused by a longer memory cycle must be added to the total 
instruction time. The number of bus read and write cycles for each instruction is also included with 
the timing data. This timing data is enclosed in parenthesis following the execution periods and is 
shown as (r/w) where r is the number of read cycles and w is the number of write cycles. 

NOTE 
The number of periods includes instruction fetch and all applicable operand fetches and 
stores. 

7.2.1 Effective Address Operand Calculation Timing 

Table 7-3 lists the number of clock periods required to compute an instruction's effective address. It 
includes fetching of any extension words, the address computation, and fetching of the memory 
operand. The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are 
no write cycles involved in processing the effective address. 

7.2.2 Move Instruction Execution Times 

Tables 7-4 and 7-5 indicate the number of clock periods for the move instruction. This data includes 
instruction fetch, operand reads, and operand writes. The number of bus read and write cycles is 
shown in parenthesis as (r/w). 

7-4 



Table 7-3. Effective Address Calculation Times 

Addressing Mode Byte, Word Long 

Register 
On Data Register Direct 0(010) 0(010) 
An Address Register Direct 0(0/0) 0(0/0) 

Memory 
(An) Address Register Indirect 4(1/0) 8(2/0) 
(An)+ Address Register Indirect with Postincrement 4(1/0) 8(2/0) 
-(An) Address Register Indirect with Predecrement 6(1/0) 10(2/0) 
dIAn) Address Register Indirect with Displacement 8(2/0) 12(3/0) 

diAn, ix)* Address Register Indirect with Index 10(2/0) 14(3/0) 
xxx.W Absolute Short 8(2/0) 12(3/0) 

xxx.L Absolute Long 12(3/0) 16(4/0) 
d(PC) Program Counter with Displacement 8(2/0) 12(3/0) 

d(PC, ix)* Program Counter with Index 10(2/0) 14(3/0) 
#xxx Immediate 4(110) 8(2/0) 

*The size of the index register (ix) does not affect execution time. 

Table 7-4. Move Byte and Word Instruction Execution Times 

Source 
Destination 

On An (An) (An) + -(An) dIAn) dIAn, ix)* xxx.W xxx.l 

On 4(1/0) 4(1/0) 8(111) 8(111) 8(1/1) 12(2/1) 14(211) 12(2/1) 16(311) 
An 4(1/0) 4(1/0) 8(111) 8(111) 8(1/1) 12(2/1) 14(211) 12(2/1) 16(3/1) 
(An) 8(2/0) 8(210) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(3/1) 16(3/1) 20(411) 

(An)+ 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(311) 18(3/1) 16(3/1) 20(411) 
-(An) 10(2/0) 10(2/0) 14(2/1) 14(2/1) 14(2/1) 18(311) 20(3/1) 18(3/11 22(411) 
dIAn) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(311) 20(4/1) 22(4/1) 20(4/1) 24(5/1) 

diAn, ix)* 14(3/0) 14(3/0) 18(311) 18(311) 18(3/1) 22(411) 24(4/1) 22(411) 26(5/1) 
xxx.W 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 20(411) 22(4/1) 20(4/1) 24(5/1) 
xxx.L 16(4/0) 16(4/0) 20(411) 20(4/1) 20(4/1) 24(5/1) 26(511) 24(5/1) 28(611) 

d(PC) 12(3/0) 12(3/0) 16(311) 16(3/1) 16(3/1) 20(411) 22(4/1) 20(4/1) 24(511) 
d(PC, ix)* 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 22(411) 24(411) 22(4/1) 26(5/1) 
#xxx 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 16(3/1) 18(311) 16(3/1) 20(411) 

*The size of the index register (ix) does not affect execution time. 

Table 7-5. Move Long Instruction Execution Times 

Source 
Destination 

On An (An) (An) + -(An) dIAn) dIAn, ix)* xxx.W xxx.l 

Dn 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(312) 

An 4(1/0) 4(1/0) 12(1/2) 12(1/2) 12(1/2) 16(2/2) 18(2/2) 16(2/2) 20(312) 
(An) 12(3/0) 12(3/0) 20(312) 20(3/2) 20(3/2) 24(412) 26(412) 24(4/2) 28(512) 

IAn)+ 12(3/0) 12(3/0) 20(312) 20(3/2) 20(3/2) 24(4/2) 26(412) 24(4/2) 28(512) 
-(An) 14(3/0) 14!3/0) 22(312) 22(3/2) 22(3/2) 26(4/2) 28(4/2) 26(4/2) 30(5/2) 
dIAn) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(412) 28(512) 30(5/2) 28(5/2) 32(6/2) 

dIAn, ix)* 18(4/0) 18(4/0) 26(412) 26(4/2) 26(4/2) 30(5/2) 32(512) 30(5/2) 34(6/2) 
xxx.W 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(6/2) 
xxx.L 20(5/0) 20(5/0) 28(5/2) 28(512) 28(5/2) 32(6/2) 34(6/2) 32(6/2) 36(7/2) 
dIPC) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 28(512) 30(5/2) 28(5/2) 32(5/2) 
dIPC, ix)* 18(4/0) 18(4/0) 26(412) 26(4/2) 26(4/2) 30(5/2) 32(5/2) 30(5/2) 34(6/2) 
#xxx 12(3/0) 12(3/0) 20(312) 20(3/2) 20(3/2) 24(412) . 26(412) 24(4/2) 28(512) 

* The size of the index register (ix) does not affect execution time. 

7-5 



7.2.3 Standard Instruction Execution Times 

The number of clock periods shown in Table 7-6 indicates the time required to perform the opera­
tions, store the results, and read the next instruction. The number of bus read and write cycles is 
shown in parenthesis as (r/w) The number of clock periods and the number of read and write 
cycles must be added respectively to those of the effective address calculation where indicated. 

In Table 7-6 the headings have the following meanings: An = address register operand, On = data 
register operand, ea = an operand specified by an effective address, and M = memory effective ad­
dress operand. 

Table 7-6. Standard Instruction Execution Times 

Instruction Size op<ea>, Ant op<ea>, On op On, <M> 

ADD 
Byte, Word 8(1/0)+ 4(1/0)+ 8(111)+ 

Long 6(1/0)+** 6(1/0)+** 12(1/2) + 

AND 
Byte, Word - 4(110)+ 8(1/1) + 

Long - 6(1/0) + * * 12(1/2)+ 

CMP 
Byte, Word 6(110) + 4(1/0)+ -

Long 6(1/0)+ 6(1/0)+ -

DIVS - - 158(1/Q)+* -

DIVU - - 140(1/0)+* -

EOR 
Byte, Word - 4(110)*** 8(111)+ 

Long - 8(1/0)* * * 12(1/2) + 

MULS - - 70(110)+* -

MULU - - 70(1/0)+* -

OR 
Byte, Word - 4(110)+ 8(1/1)+ 

Long - 6(1/0) + * * 12(1/2) + 

SUB 
Byte, Word 8(110) + 4(1/0)+ 8(111)+ 

Long 6(1/0) + * * 6(1/0) + * * 12(1/2)+ 

NOTES: 
+ add effective address calculation time 
t word or long only 
* indicates maximum value 

* * The base time of six clock periods is increased to eight if the effective address mode is 
register direct or immediate (effective address time should also be added). 

* * * Only available effective address mode is data register direct. 
DIVS, DIVU - The divide algorithm used by the MC68000 provides less than 10% difference 

between the best and worst case timings. 
MULS, MULU - The multiply algorithm requires 38+ 2n clocks where n is defined as: 

MULU: n=the number of ones in the <ea> 
MULU: n=concatanate the <ea> with a zero as the LSB; n is the resultant number of 

10 or 01 patterns in the 17-bit source; i.e., worst case happens when the 
source is $5555. 

7.2.4 Immediate Instruction Execution Times 

The number of clock periods shown in Table 7-7 includes the time to fetch immediate operands, 
perform the operations, store the results, and read the next operation. The number of bus read and 
write cycles is shown in parenthesis as (r/w). The number of clock periods and the number of read 
and write cycles must be added respectively to those of the effective address calculation where in­
dicated. 

In Table 7-7, the headings have the following meanings: #= immediate operand, On= data register 
operand, An = address register operand, M = memory operand, and S R = status register. 

7-6 



Table 7-7. Immediate Instruction Execution Times 

Instruction Size op #, On 

ADDI 
Byte, Word 8(2/0) 

Long 16(3/0) 

AODO 
Byte, Word 4(1/0) 

Long 8(1/0) 

ANDI 
Byte, Word 8(210) 

Long 16(3/0) 

CMPI 
Byte, Word 8(2/0) 

Long 14(3/0) 

EaRl 
Byte, Word 8(2!0) 

Long 16(3/0) 

MOVEO Long 4(1/0) 

ORI 
Byte, Word 8(2/0) 

Long 16(3/0) 

Byte, Word 8(2/0) 
SUBI 

Long 16(3/0) 

SUBO 
Byte, Word 4(1/0) 

Long 8(1/0) 

+ add effective address calculation time 
*word only 

7.2.5 Single Operand Instruction Execution Times 

op #, An op#, M 

- 12(2!1) + 

- 2O(3/2l+ 

8(1/0l* 8(1/1)+ 

8(1/0) 12(112)+ 

- 12(2/1)+ 

- 20(311)+ 

- 8(2/0) + 

- 12(3/0) + 

- 12(2!1) + 

- 20(312) + 

- -

- 12(2/1) + 

- 2O(3/2l+ 

- 12(211) + 

- 20(312)+ 

8(1/0) * 8(1/1)+ 

8(1/0) 12(1/2) + 

Table 7-8 indicates the number of clock periods for the single operand instructions. The number of 
bus read and write cycles is shown in parenthesis as (r/wl. The number of clock periods and the 
number of read and write cycles must be added respectively to those of the effective address 
calculation where indicated. 

Table 7-8. Single Operand Instruction Execution Times 

Instruction Size Register Memory 

CLR 
Byte, Word 4(1/0) 8(111) + 

Long 6(1/0) 12(1/2)+ 

NBCD Byte 6(110) 8(111)+ 

NEG 
Byte, Word 4(1/0) 8(111)+ 

Long 6(1/0) 12(1/2)+ 

NEGX 
Byte, Word 4(110) 8(111)+ 

Long 6(1/0) 12(1/2)+ 

NOT 
Byte, Word 4(110) 8(111)+ 

Long 6(1/0) 12(1/2)+ 

SCC 
Byte, False 4(110) 8(1/1) + 

Byte, True 6(1/0) 8(1/1)+ 

TAS Byte 4(1/0) 10(111) + 

TST 
Byte, Word 4(1/0) 4(1/0)+ 

Long 4(1/0) 4(1/0)+ 

+ add effective address calculation time 

7-7 



7.2.6 Shift/Rotate Instruction Execution Times 

Table 7-9 indicates the number of clock periods for the shift and rotate instructions. The number of 
bus read and write cycles is shown in parenthesis as (r /w). The number of clock periods and the 
number of read and write cycles must be added respectively to those of the effective address 
calculation where indicated. 

Table 7-9. Shift/Rotate Instruction Execution Times 

Instruction Size 

Byte, Word 
ASR,ASL 

Long 

LSR, LSL 
Byte, Word 

Long 

ROR, ROL 
Byte, Word 

Long 

Byte, Word 
ROXR, ROXL 

Long 

+ add effective address calculation time 
n is the shift or rotate count 

7.2.7 Bit Manipulation Instruction Execution Times 

Register Memory 

6 + 2n(1/0) 8(111)+ 

8 + 2n(1/0) -

6 + 2n(1/0) 8(111) + 

8 + 2n(1/0) -

6 + 2n(1/0) 8(111)+ 

8 + 2n(1/0) -

6 + 2n(1/0) 8(111) + 

8 + 2n(1/0) --

Table 7-10 indicates the number of clock periods required for the bit manipulation instructions. The 
number of bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods 
and the number of read and write cycles must be added respectively to those of the effective ad­
dress calculation where indicated. 

Table 7-10. Bit Manipulation Instruction Execution Times 

Instruction Size 
Dynamic 

Register 

BCHG 
Byte -

Long 8(110)* 

BeLR 
Byte -

Long 10(1/0)* 

BSET 
Byte -

Long 8(110)* 

BTST 
Byte -

Long 6(1/0) 

+ add effective address calculation time 
* indicates maximum value 

7.2.8 Conditional Instruction Execution Times 

Memory 

8(111) + 
-

8(1/1)+ 

-

8(111) + 

-

4(110) + 

-

Static 

Register Memory 

- 12(2/1) + 

12(210) * -

- 12(211)+ 

14(2/0) * -

- 12(2/1)+ 

12(2/0)* -

- 8(2/0) + 

10(2/0) -

Table 7-11 indicates the number of clock periods required for the conditional instructions. The 
number of bus read and write cycles is indicated in parenthesis as (r/wl. The number of clock 
periods and the number of read and write cycles must be added respectively to those of the effec­
tive address calculation where indicated. 

7-8 



Table 7-11. Conditional Instruction Execution Times 

Instruction Displacement 

Bee 
Byte 

Word 

BRA 
Byte 

Word 

BSR 
Byte 

Word 

OBee 
ee true 

ee false 

+ add effective address calculation time 
"" indicates maximum value 

Branch Branch 
Taken Not Taken 

10(2/0) 8(110) 

10(2/0) 12(2/0) 

10(2/0) -

10(2/0) -

18(2/2) -

18(2/2) -

- 12(2/0) 

10(2/0) 14(3/0) 

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times 

Table 7-12 indicates the number of clock periods required for the jump, jump-to-subroutine, load ef­
fective address, push effective address, and move multiple registers instructions. The number of 
bus read and write cycles is shown in parenthesis as (r/wl. 

Table 7-12. JMP, JSR, LEA, PEA, and MOVEM Instruction t:xecution Times 

Instr Size (An) (An)+ -(An) dIAn) dIAn, ix)+ xxx.W xxx.L d(PC} d(PC, ix)* 

JMP - 8(2/0) - - 10(2/0) 14(3/0) 10(2/0) 12(3/0) 10(2/0) 14(3/0) 

JSR - 16(2/2) - - 18(2/2) 22(212) 18(2/2) 20(312) 18(212) 22(2/2) 

LEA - 4(1/0) - - 8(2/0) 12(2/0) 8(210) 12(3/0) 8(210) 12(2/0) 

PEA - 12(1/2) - - 16(212) 20(212) 16(2/2) 20(312) 16(2/2) 20(212) 

Word 12+4n 12+4n - 16+4n 18+4n 16+4n 20+4n 16+4n 18+4n 
MOVEM (3+ n/O) (3+ n/o) (4+ n/O) (4+ n/o) (4+ n/O) (5+ n/o) (4+ n/o) (4+ n/O) 

M-R Long 12+8n 12+8n - 16+8n 18+8n 16+8n 2O+8n 16+8n 18+8n 
(3+ 2n/0l (3 + 2n/0l (4 + 2n/o) (4+ 2n/0) (4+ 2n/0) (5 + 2n/0) (4+ 2n/0) (4+ 2n/0) 

Word 8+4n - 8+4n 12+4n 14+4n 12+4n 16+4n - -
MOVEM (2/n) (2/n) (3/n) (3/n) (3/n) (4/n) - -

R-M Long 8+8n - 8+8n 12+8n 14+8n 12+8n 16+8n - -
(2/2n) - (2/2n) (3/2n) (3/2n) (3/2n) (4/2n) - -

n is the- number of registers to move 
*is the size of the index register (ix) does not affect the instruction's execution time 

7.2.10 Multi-Precision Instruction Execution Times 

Table 7-13 indicates the number of clock periods for the multi-precision instructions. The number of 
clock periods includes the time to fetch both operands, perform the operations, store the results, 
and read the next instructions. The number of read and write cycles is shown in parenthesis as 
(r/wl. 

In Table 7-13, the headings have the following meanings: Dn = data register operand and 
M = memory operand. 

7-9 



Table 7-13. Multi-Precision Instruction Execution Times 

Instruction Size op On, On op M, M 

ADDX 
Byte, Word 4(1/0) 18(3/1) 

Long 8(110) 30(5/2) 

CMPM 
Byte, Word - 12(3/0) 

Long - 20(510) 

SUBX 
Byte, Word 4(1/0) 18(311) 

Long 8(1/0) 30(5/2) 

ABCD Byte 6(1/0) 18(3/1) 

SBCD Byte 6(110) 18(311) 

7.2.11 Miscellaneous Instruction Execution Times 

Taples 7-14 and 7-15 indicate the number of clock periods for the following miscellaneous instruc­
tioris. The number of bus read and write cycles is shown in parenthesis as (r/w). The number of 
clock periods plus the number of read and write cycles must be added to those of the effective ad­
dress calculation where indicated. 

Table 7-14. Miscellaneous Instruction Execution Times 

Instruction Size Register Memory 

ANDI to CCR Byte 20(3/0) -

ANDI to SR Word 20(310) -

CHK - 10(110) + -
EaRl to CCR Byte 20(3/0) -

EaRl to SR Word 20(3/0) -

ORI to CCR Byte 20(3/0) -

ORI to SR Word 20(3/0) -

MOVE from SR - 6(1/0) 8(1/1) + 
MOVE to CCR - 12(2/0) 12(2/0) + 
MOVE to SR - 12(2/0) 12(2/0) + 
EXG - 6(1/0) -

EXT 
Word 4(1/0) -

Long 4(1/0) -

LINK - 16(2/2) -

MOVE from USP - 4(1/0) -

MOVE to USP - 4(1/0) -

NOP - 4(1/0) -

RESET - 132(1/0) -

RTE - 20(5/0) -

RTR - 20(5/0) -

RTS - 16(4/0) -

STOP - 4(0/0) -
SWAP - 4(110) -

TRAPV - 4(1/0) -

UNLK - 12(3/0) -

+ add effective address calculation time 

Table 7-15. Move Peripheral Instruction Execution Times 

Instruction Size Register - Memory Memory - Register 

Word 16(2/2) 16(4/0) 
MOVEP 

Long 24(2/4) 24(6/0) 

7-10 



7.2.12 Exception Processing Execution Times 

Table 7-16 indicates the number of clock periods for exception processing. The number of clock 
periods includes the time for all stacking, the vector fetch, and the fetch of the first two instruction 
words of the handler routine. The number of bus read and write cycles is shown in parenthesis as 
(r/wl. 

Table 7-16. Exception Processing Execution Times 

Exception Periods 

Address Error 50(417) 

Bus Error 50(417) 

CHK Instruction 44(5/4)+ 

Divide by Zero 42(5/4) 

Illegal Instruction 34(413) 

Interrupt 44(5/3)* 

Privilege Violation 34(4/3) 

RESET* * 40(6/0) 

Trace 34(4/3) 

TRAP Instruction 38(4/4) 

TRAPV Instruction 34(4/3) 

+ add effective address calculation time 
*The interrupt acknowledge cycle is assumed 

to take four clock periods. 
* * Indicates the time from when RESET and 

HALT are first sampled as negated to when 
instruction execution starts. 

7-1117-12 





SECTION 8 
ELECTRICAL SPECIFICATIONS 

This section contains electrical specifications and associated timing information for the MC68000. 

8.1 MAXIMUM RATINGS 

Rating Symbol 
Supply Voltage VCC 
Input Voltage Yin 
Operating Temperature Range 

MC68000 TA 
MC68000C 

Storage Temperature Tstg 

8.2 THERMAL CHARACTERISTICS 

Characteristic Symbol 

Thermal Resistance 
Ceramic 
Plastic with Heat Spreader (JJA 
Type B Chip Carrier 
Type C Chip Carrier 

8.3 DC ELECTRICAL CHARACTERISTICS 

Value 
-0.3 to + 7.0 

-0.3 to + 7.0 

TL to TH 
o to 70 

-40 to 85 

-55 to 150 

Value 

30 
30 
50 
50 

Unit 
V 

V 

°c 

°c 

Rating 

°C/W 

This device contains circuitry to protect the 
inputs against damage due to high static 
voltages or electric fields; however, it is ad­
vised that normal precautions be taken to 
avoid application of any voltage higher than 
maximum-rated voltages to this high­
impedance circuit. Reliability of operation is 
enhanced if unused inputs are tied to an ap­
propriate logic voltage level (e.g., either VSS 
or VCC). 

(VCC=5.0 Vdc ±5%; VSS=O Vdc; TA=TL to TH; see Figures 8-1,8-2, and 8-3) 

Characteristic Symbol Min Max Unit 

Input High Voltage VIH 2.0 VCC V 

Input Low Voltage VIL VSS-0.3 0.8 V 

Input Leakage Current @ 5.25 V BERR,BGACK,BR,OTACK, 
CLK, IPLO-IPL2, VPA lin - 2.5 p.A 

HALT, RESET - 20 

Three-State (Off Statel Input Current@ 2.4 V 10.4 V AS, A1-A23, 00-015, 
ITSI - 20 p.A 

FCO-FC2, LOS, R/W, UOS, VMA 

Output High Voltage (iOH= -400p.AI E* VCC-0.75 -
E, AS, A 1-A23, BG, 00-015, VOH V 

FCO-FC2, LOS, R/W, UDS, VMA 2.4 -

Output Low Voltage 
(iOL = 1.6mAl HALT - 0.5 
(iOL =3.~mA) A 1-A23,BG, FCO-FC2 - 0.5 
(iOL=5.0mAl RESET VOL - 0.5 V 
(iOL=5.3mAI E, AS, 00-015, LOS, R/W - 0.5 

- UDS, VMA 

Power Dissipation (See Section 91 PD*** - - W 

Capacitance (Vin=OV, TA=25°C; Frequency = 1 MHz)** Cin - 20.0 pF 

* With external pullup resistor of 1.1 kO. 
* * Capacitance is periodically sampled rather than 100% tested. 

* * * During normal operation instantaneous V CC current requirements may be as high as 1.5 A. 

8-1 



+5V +5V 

910 G 29 kG 

I 130pF 

I
70PF 

Figure 8-1. RESET Test Load 

Test 

CL = 130 pF 
(Includes all Parasiticsl 

RL =60 kG for 

+5V 

AS, Al-A23, BG, DO~D15, E -
FCO-FC2, LOS, R/W, UOS, VMA 

* R = 1.22 kO for A 1-A23, BG, 
FCO-FC2 

Figure 8-2. HAL T Test Load 

R* =740 0 

MM07000 
or Equivalent 

Figure 8-3. Test Loads 

8.4 POWER CONSIDERATIONS 

The average chip-junction temperature, T J, in °c can be obtained from: 
TJ=TA+(P0-8JA) 

Where: 
T A = Ambient Temperature, °c 
8JA = Package Thermal Resistance, Junction-to-Ambient, °C/W 
PO= PINT+ PliO 
PINT= ICCx VCe. Watts - Chip Internal Power 
PliO = Power Dissipation on Input and Output Pins - User Determined 

For most applications PI/O< PINT and can be neglected. 

An approximate relationship between Po and T J (if PliO is neglected) is: 

(1 ) 

Po = K -+ (T J + 273°C) (2) 
Solving equations 1 and 2 for K gives: 

K = TO-(T A + 273°C) + 8JA-P02 (3) 
Where K is a constant pertaining to the particular part. K can be determined from equation 3 by 
measuring Po (at equilibrium) for a known T A- Using this value of K the values of Po and T J can be 
obtained by solving equations (1) and (2) iteratively for any value of T A-

8-2 



Figure 8-1 illustrates the graphic solution to the equations, given above, for the specification power 
dissipations of 1.50 and 1.75 watts over the ambient temperature range of - 55°C to 125°C using an 
average ()JA of 40°C/watt to represent the various MC68000 packages. However, actual ()JA's in 
the range of 30°C to 50°C/watt only change the curves slightly. 

2.2 

2.0 

Cf) 1.8 
co 
:s: 

"0 1.6 e:: 
05 
~ 
0 

Cl. 
1.4 

1.2 

1.0 

-55 -40 o 25 70 85 110 125 

Ambient Temperature (T A) - °C 

Figure 8-4. MC68000 Power Dissipation (PO) vs Ambient Temperature (TA) 

8.5 AC ELECTRICAL SPECIFICATIONS - CLOCK TIMING (See Figure 8-5) 

Symbol 
4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz 

Unit Characteristic 
Min Max Min Max Min Max Min Max Min Max 

Frequency of Operation F 2.0 4.0 2.0 6.0 2.0 8.0 2.0 10.0 4.0 12.5 MHz 

Cycle Time tcyc 250 500 167 600 125 500 100 500 80 250 ns 

Clock Pulse Width tCl 115 250 75 250 55 250 45 250 35 125 

tCH 115 250 75 250 55 250 45 250 35 125 ns 

Rise and Fall Times tCr - 10 - 10 - 10 - 10 - 5 
ns 

tCf - 10 - 10 - 10 - 10 - 5 

~------ tcyc-----..... 

tCr 

Figure 8-5. Clock Input Timing Diagram 

8-3 



8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES 
(VCC=5.0 Vdc ±5%; VSS=O Vdc; TA=TL to TH; see Figures 8-6 and 8-7) 

Num. Characteristic Symbol 
4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz 

Min Max Min Max Min Max Min Max Min Max 

1 Clock Period tcyc 250 500 167 500 125 500 100 500 80 250 

2 Clock Width Low tCL 115 250 75 250 55 250 45 250 35 125 

3 Clock Width High tCH 115 250 75 250 55 250 45 250 35 125 

4 Clock Fall Time tCt - 10 - 10 - 10 - 10 - 5 

5 Clock Rise Time tCr - 10 - 10 - 10 - 10 - 5 

6 Clock Low to Address tCLAV - 90 - 80 - 70 - 60 - 55 
6A Clock High to FC Valid tCHFCV - 90 - 80 - 70 - 60 - 55 

7 
Clock High to Address Data 

tCHAZx - 120 - 100 - 80 - 70 - 60 
High Impedance (Maximum) 

8 
Clock High to Address/FC 

tCHAZn 0 - 0 - 0 - 0 - 0 -
Invalid (Minimum) 

91 Clock High to AS, OS Low 
tCHSLx - 80 - 70 - 60 - 55 - 55 (Maximum) 

10 
Clock High to AS, OS Low 

tCHSLn 0 - 0 - 0 - 0 - 0 -
(Minimum) 

112 Address to AS, l5S (Read) 
tAVSL 55 - 35 - 30 - 20 - 0 -

Low/ AS Write 

llA2,7 FC Valid to AS, OS (Read) 
tFCVSL 80 - 70 - 60 - 50 - 40 -

Low/ AS Write 
121 Clock Low to AS, OS High tCLSH - 90 - 80 - 70 - 55 - 50 

132 
AS, OS High to Address/FC 

tSHAZ 60 - 40 - 30 - 20 - 10 -
Invalid 

142,5 AS, ~ Width Low (Read)/AS 
tSL 535 - 337 - 240 - 195 - 160 -

Write 

14A2 OS Width Low (Write) tDWPW 285 - 170 - 115 - 95- - 80 -

152 AS, OS Width High tSH 285 - 180 - 150 - 105 - 65 -

16 
Clock High to AS, lJS High 

tCHSl - 120 - 100 - 80 - 70 - 60 
Impedance 

172 AS", ~ High to R/W High tSHRH 60 - 50 - 40, - 20 - 10 -

181 Clock High to R/W High 
tCHRHx - 90 - 80 - 70 - 60 - 60 

(Maximum) 

19 
Clock High to R/W High 

tCHRHn 0 - 0 - 0 - 0 - 0 -
(Minimum) 

201 Clock High to R/W Low tCHRL - 90 - 80 - 70 - 60 - 60 

2OA8 AS Low to R/W Valid tASRV - 20 - 20 - 20 - 20 - 20 

212 Address Valid to R/W Low tAVRL 45 - 25 - 20 - 0 - 0 -

21A2,7 FC Valid to R/W Low tFCVRL 80 - 70 - 60 - 50 - 30 -

'22.2 R/W Low to ITS Low (Write) tRLSL 200 - 140 - 80 - 50 - 30 -

23 Clock Low to Data Out Valid tCLDO - 90 - 80 - 70 - 55 - 55 

24 
Clock High to R/W, Vl.!fA 

tCHRZ - 120 - 100 - 80 - 70 - 60 
High Impedance 

252 OS High to Data Out Invalid tSHDO 60 - 40 - 30 - 20 - 15 -

262 Data Out Valid to ITS Low 
tDOSL 55 - 35 - 30 - 20 - 15 -

(Write) 

2]6 
Data In to Clock Low (Setup 

tDICL 30 - 25 - 15 - 10 - 10 -
Time) 

282,5 AS, OS High to lJ'FACR High tSHDAH 0 490 0 325 0 245 0 190 0 150 

29 
OS High to Data Invalid 

tSHDI 0 - 0 - 0 - 0 - 0 -
(Hold Time) 

30 AS, OS High to l3ER'R High tSHBEH 0 - 0 - 0 - 0 - 0 -

31 2,6 C5'T'A'Cl< Low to Data In 
tDALDI - 180 - 120 - 90 - 65 - 50 

(Setup Time) 

8-4 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 
ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



8.6 AC ELECTRICAL SPECIFICATIONS - READ AND WRITE CYCLES (CONTINUED) 

Num. Characteristic Symbol 
4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz 

Unit 
Min Max Min Max Min Max Min Max Min Max 

32 
HALT and RESET Input 

tRHr, f 0 200 0 200 0 200 0 200 0 200 ns 
Transition Time 

33 Clock High to BG Low tCHGL - 90 - 80 - 70 - 60 - 50 ns 

34 Clock High to BG High tCHGH - 90 - 80 - 70 - 60 - 50 ns 

35 BR Low to BG Low tBRLGL 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clk. Per. 

36 BR High to BG High tBRHGH 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clk. Per. 

37 BGACK Low to BG High tGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk. Per. 

37A 
BGACK Low to BR High 

tBGKBR 30 - 25 - 20 - 20 - 20 - ns 
(to Prevent Rearbitration) 

38 
BG Low to Bus High Impedance 

tGLZ - 120 - 100 - 80 - 70 - 60 ns 
(with AS High) 

39 BG Width High tGH 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

40 Clock Low to VMA Low tCLVML - 90 - 80 - 70 - 70 - 70 ns 

41 Clock Low to E Transition tCLC - 100 - 85 - 70 - 55 - 45 ns 

42 E Output Rise and Fall Time tEr f - 25 - 25 - 25 - 25 - 25 ns 

43 VMA Low to E High tVMLEH 325 - 240 - 200 - 150 - 90 - ns 

44 AS, DS High to VPA High tSHVPH 0 240 0 160 0 120 0 90 0 70 ns 

45 
E Low to Address/VMAI FC 

tELAI 55 - 35 - 30 - 10 - 10 - ns 
Invalid 

46 BGACK Width tBGL 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

476 Asynchronous Input Setup Time tASI 30 - 25 - 20 - 20 - 20 - ns 

483 BERR Low to DTACK Low tBELDAL 30 - 25 - 20 - 20 - 20 - ns 

49 E Low to AS, DS Invalid tELSI -80 - -80 - -80 - -80 - -80 - ns 

50 E Width High tEH 900 - 600 - 450 - 350 - 280 - ns 

51 E Width Low tEL 1400 - 900 - 700 - 550 - 440 - ns 

52 E Extended Rise Time tCIEHX - 80 - 80 - 80 - 80 - 80 ns 

53 Data Hold from Clock High tCHDO 0 - 0 - 0 - 0 - 0 - ns 

54 Data Hold from E Low (Write) tELDOZ 60 - 40 - 30 - 20 - 15 - ns 

55 
R/W to Data Bus Impedance 

tRLDO 55 - 35 - 30 - 20 - 10 - ns 
Change 

564 HALT/RESET Pulse Width tHRPW 10 - 10 - 10 - 10 - 10 - elk. Per. 

Notes: 
1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the value given in these columns. 
2. Actual value depends on clock period. 
3. If #47 is satisifed for both DTACK and BERR, #48 may be 0 nanoseconds. 
4. For power up, the MPU must be held in RESET state for 100 ms to all stabilization of on-chip circuitry. After the system is 

powered up, #56 refers to the minimum pulse width required to reset the system. 
5. #14, #14A, and #28 are one clock period less than the given number for T6E, BF4, and R9M mask sets. 
6. If the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be 

ignored. The data must only satisfy the data-in clock-low setup time (#27) for the following cycle. 
7. For T6E, BF4, and R9M mask set llA timing equals 11, and 21A equals 21. 20A may be 0 for T6E, BF4, and R9M mask sets. 
8. When AS and R/Ware equally loaded (± 20%), subtract 10 nanoseconds from the values given in these columns. 

Timing diagrams (Figures 8-6 and 8-7) are located 
on a fold-out page at the end of this document. 

8-5 



Read and Write Cycle 
Timing Diagrams 

(Timing tables located on 
pages 8-4 and 8-5.) 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

Sl S2 S3 S4 S5 S6 S7 

A"- A23 
----+---++:f 

AS ___ -+-oJ 

LDS/UDS ____ oJ ... f+----{ 

R/W 
------------+---~ 

FCO-FC2 

Asynchronous ---------------+-_ Jr---t-------+--++-------
Inputs 

(Note 1) _______________ -+_-J'~--+-----_+~~--------

BERR/SA 
(Note 2) 

Data In - - - - - - - - - - - - - - -

-r :::('l, #'tN. w) T. t -q 0 .' , I 1. NttJ ( 'if. C r ~ . ~ 1 .... I )-lTc::-\ U , ~ 1,\ r - f f'1'" 
NOTES: ('. L )-5- t,71i1 ".,cr c (! fV",,- . 

1. Setup time for the asynchronous inputs BGACK, IPLO-2, and VPA guarantees their recognition at the next falling edge of the clock. 
2. BR need fall at this time only in Cider to insure being recognized at the end of this bus cycle. 
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 

Figure 8-6. Read Cycle Timing Diagram 

Foldout 1 



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

so S1 S2 S3 S4 S5 S6 S7 so 

Asynchronous 

Inputs ______________ ~-+_-----_++_---------

NOTES: 
1. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted. 
2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge of S2 (Specification 

20A). 

Figure 8-7. Write Cycle Timing Diagram 

Foldout 2 



8.7 AC ELECTRICAL SPECIFICATIONS - MC68000 TO M6800 PERIPHERAL 
(VCC=5.0 Vdc ±5%, VSS=O Vdc, TA=TL to TH, refer to Figures 8-8 and 8-9) 

Num. 

23 

24 

27 

40 

41 

42 

43 

44 

45 

47 

49 

50 

51 

52 

54 

eLK 

Al-A23 

Data -
Out_ 

Data In 

Characteristic Symbol 
4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz 

Min· Max Min Max Min Max Min Max Min Max 

Clock Low to Data Out Valid tCLDO - 90 - 80 - 70 - 55 - 55 

Clock High to R/W, 
tCHRZ - 120 - 100 - 80 - 70 - 60 

VMA High Impedance 

Data In to Clock Low 
tDICL 30 25 15 10 10 

(Setup Time) - - - - -

Clock Low to VMA Low tCLVML - 90 - 80 - 70 - 70 - 70 

Clock Low to E Transition tCLC - 100 - 85 - 70 - 55' - 45 

E Output Rise and Fall Time tEr, f - 25 - 25 - 25 - 25 - 25 

VMA Low to E High tVMLEH 325 - 240 - 200 - 150 - 90 -

AS, OS High to VPA High tSHVPH 0 240 0 160 0 120 0 90 0 70 

E Low to Address/VMAI FC 
tELA I 55 35 30 10 10 

Invalid 
- - - - -

Asynchronous Input Setup Time tASI 30 - 25 - 20 - 20 - 20 -

E Low to AS, OS Invalid tELSI -80 - -80 - -80 - -80 - -80 -

E Width High tEH 900 - 600 - 450 - 350 - 280 -

E Width Low tEL 1400 - 900 - 700 - 550 - 440 -

E Extended Rise Time tCIEHX - 80 - 80 - 80 - 80 - 80 
Data Hold from E Low (Write) tELDOZ 60 - 40 - 30 - 20 - 15 -

SO Sl S2 S3 S4 w w w w w w w w w w w w S5 S6 S7 SO 

Unit 

ns 

r.s 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

NOTE: This timing diagram is included for those who wish to design their own circuit to generate VMA It shows the best case possibly 
attainable. 

Figure 8-8. MC68000 to M6800 Peripheral Timing Diagram - Best Case 

8-6 



so S 1 S2 S3 S4 w w w w w w w w w w w w w w w w w w w w w w w w w w w w S5 S6 S7 SO 

elK 

' ..... 

Al-A23' 

_ ~~-=23~ ____________________________________________________ -*~ 

Data Out _ ---------{ ___________________________________________ ---it--'L 

Data In 

NOTE: Thn timing diagram is included for those who wish to design their own CirCUit to generate VMA. It shows the worst case possibly attainable, 

Figure 8-9. MC68000 to M6800 Peripheral Timing Diagram - Worst Case 



8.8 AC ELECTRICAL SPECIFICATIONS - BUS ARBITRATION 
(VCC= 5.0 Vdc ± 5%; VSS = 0 Vdc; T A = TL to TH; see Figure 8-10) 

Num. Characteristic Symbol 
4 MHz 6 MHz 8 MHz 10 MHz 12.5 MHz 

Unit 
Min Max Min Max Min Max Min Max Min Max 

33 Clock High to BG Low tCHGL - 90 - 80 - 70 - 60 - 50 ns 

34 Clock High to BG High tCHGH - 90 - 80 - 70 - 60 - 50 ns 

35 BR Low to BG Low tBRLGL 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clk. Per. 

36 BR High to BG High tBRHGH 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clk. Per. 

37 i3GACR Low to BG High tGALGH 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 Clk. Per. 

37A 
l3G'ACR Low to BR High 

tBGKBR 30 - 25 - 20 - 20 - 20 - ns 
(to Prevent Rearbitration) 

38 
BG Low to Bus High Impedance 

tGLZ - 120 - 100 - 80 - 70 - 60 ns (with AS High) 

39 Em Width High tGH 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

46 BGACK Width tBGL 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - Clk. Per. 

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim­
ing specifications. They are not intended as a functional description of the input and output signals. 
Refer to other functional descriptions and their related diagrams for device operation. 

Strobes 
and R/W _______ --' 

CLK 

NOTES: 
1. Setup time for the asynchronous inputs BERR, BGACK, BR, DTACK, IPLO-IPL2, and VPA guarantees their recognition at the next 

falling edge of the clock. 
2. Waveform measurements for all Inputs and outputs are specified at logic high = 2.0 volts, logic low= 0.8 volts. 

Figure 8-10. Bus Arbitration Timing Diagram 

8-8 



SECTION 9 
ORDERING INFORMATION 

This section contains detailed information to be used as a guide when ordering the MC68000. 

9.1 STANDARD MC68000 ORDERING INFORMATION 

Frequency Maximum PD 
Package Type (MHz) Temperature Order Number (Watts) 

Ceramic 4.0 Qoe to 70 0 e MC68000L4 1.50 
L Suffix 4.0 -40°C to 85°C MC68000CL4 1.65 

4.0 - 55°C to 125°C MC68000AL4 1.75 
6.0 O°C to 70°C MC68000L6 1.50 
6.0 -40°C to 85°C MC68000CL6 1.65 
6.0 - 55°C to 125°C MC68000AL6 1.75 
8.0 O°C to 70°C MC68000L8 1.50 
8.0 -40°C to 85°C MC68000CL8 1.65 
8.0 - 55°C to 125°C MC68000AL8 1.75 

10.0 O°C to 70°C MC68000L10 1.50 
10.0 -40°C to 85°C M C68000C L 10 1.65 
12.5 O°C to 70°C MC68000L12 1.75 

Plastic with 4.0 O°C to 70°C MC68000G4 1.50 
Heat Spreader 4.0 -40°C to 85°C MC68000CG4 1.65 
G Suffix 6.0 O°C to 70°C MC68000G6 1.50 

6.0 -40°C to 85°C MC68000CG6 1.65 
8.0 O°C to 70°C MC68000G8 1.50 
8.0 - 40°C to 85°C MC68000CG8 1.65 

10.0 O°C to 70°C MC68000G10 1.50 
10.0 - 40°C to 85°C MC68000CG10 1.65 
12.5 O°C to 70°C M C68000G 12 1.75 

Type B Leadless 4.0 O°C to 70°C MC68000ZB4 1.50 
Chip Carrier* 6.0 O°C to 70°C MC68000ZB6 1.50 
ZB Suffix 8.0 O°C to 70°C MC68000ZB8 1.50 

10.0 O°C to 70°C MC68000ZB10 1.50 
12.5 O°C to 70°C MC68000ZB12 1.75 

Pin Grid Array 6.0 O°C to 70°C MC68000R6 1.50 
R Suffix 8.0 O°C to 70°C MC68000R8 1.50 

10.0 O°C to 70°C MC68000R10 1.50 
12.5 O°C to 70°C MC68000R12 1.50 

*Contact factory for availability of the Type C Leadless Chip Carrier (ZC Suffix). 

9-1 



9.2 "BETTER" PROCESSING - STANDARD PRODUCT PLUS 

Level I (Suffix X) 
• 100% temperature cycling per MIL-STO-883A. Method 1010, ten cycles from - 25°C to 

+ 150°C. 
• 100% high temperature functional test at T A max. 

Level" (Suffix 0) 
• 100% burn-in to MIL-STO-883A test conditions equivalent to 168 hours at + 125°C. 
• 100% post burn-in dc parametric test at 25°C. 

Level III (Suffix OS) 
• Combination of Levels I and" above. 

When ordering the" B ETTER" processing, identify the level desired by adding the appropriate suffix 
(indicated above in parenthesis) to the end of the part number. 

M~~oesignation~~~~~~~~~~~~~~~~~~~~~M_C_68~I~IL8DS 
Temperature Range -

Blank=O°C to 70°C 
C = - 40°C to 85°C 
A= -55°C to 125°C 

PackageType--------~--------------------------------~----~----~ 

L Ceramic 
G Plastic with Heat Spreader 
ZB Type B Leadless Chip Carrier 
ZC Type C Leadless Chip Carrier 
R Pin Grid Array 

9-2 



9.3 HI-REL MIL-STD-883B MC68000 ORDERING INFORMATION 
CLASS B, GOLD LEADS ONL Y 

Frequency Maximum Po 
Package Type (MHz) Temperature Order Number (Watts) 
Ceramic 4 - 55°C to 125°C M C68oooBYCA4 1.75 

Side-Brazed 4 - 55°C to 110°C MC68oooBYCB4 1.75 
Y Suffix 6 - 55°C to 125°C MC68oooBYCA6 1.75 
Gold Leads 6 - 55°C to 110°C MC68oooBYCB6 1.75 

6 -40°C to 85°C MC68oooBYCE6 1.65 
8 - 55°C to 125°C M C68000B Y C A.8 1.75 
8 - 55°C to 110°C MC68000BYCB8 1.75 
8 -40°C to 85°C MC68000BYCE8 1.65 

10 -40°C to 85°C MC68000BYCEA 1.65 

Type C Lead!ess 4 - 55°C to 125°C MC68000BZCA4 1.75 
Chip Carrier 4 - 55°C to 110°C MC68000BZCB4 1.75 
Z Suffix 6 - 55°C to 125°C MC68000BZCA6 1.75 
Gold Leads 6 - 55°C to 110°C MC68000BZCB6 1.75 

6 -40°C to 85°C MC68000BZCE6 1.65 
8 - 55°C to 125°C M C68000BZCA8 1.75 
8 -40°C to 85°C MC68oooBZCE8 1.65 

10 -40°C to 85°C MC68000BZCEA 1.65 

9-3/9-4 





SECTION 10 
MECHANICAL DATA 

This section contains the pin assignments and package dimensions for the 64-pin dual-in-line and 
chip carrier versions of the MC68000. 

10.1 PIN ASSIGNMENTS 

64-Pin Dual-in-Line Package 

04 

03 

01 

00 

AS 

uos 
lOS 

R/W 

OTACK 

BG 11 

BGACK 

BR 

vCC 

ClK 

HALT 

RESET 

VMA 

E 

FCl 

10-1 

68-Terminal Chip Carrier 

~1~1~IOOO-NM~~ID~rom~~~ 
~~~~OOOOOOOOOOOOO 
I I I I I I I I I I I I I I I I I

OTACK- 10
9

BG­
BGACK-

BR­
VCC­
ClK­

GNO­
GNO­
N.C.- 18

HAlT­
RESET­

VMA-

168 61
60 -013

-014
-015
-GNO
-GNO
-A23
-A22
-A21
-Vec
-A20
-A19
-A18
-A17
-A16
-A15
-A14

E­
VPA­

BERR­
IPl2-
IPll- 26

27 35 4:f4 -A13

68-Terminal Pin Grid Array

~
Pin Number Function

A1 Do Not Connect
A2 AS
A3 01
A4 02
A5 D4
A6 05
A7 07
AS 08
A9 010
A10 012
B1 OTACK
B2 LOS
B3 UOS
B4 DO
B5 03
B6 D6
B7 09

B8 011

B9 wa.'C·
B10 015
C1 BGACK

C2 BG
C3 R/W
C8 013
C9 A23
C10 A22
01 BR
02 VCC
09 VSS
010 A21
E1 ClK

E2 VSS
E9 VCC
E10 A20

10-2

K 0000000800
0000000000

H 000 000
G 00 00

00 Bottom 00
00 View 00

o 00 00
c 000 000
B 0000000000
A 0000000000
o

3 4 6 7 8 9 10

Pin Number Function

F1 HALT
F2 RESET
F9 A18
F10 A19
G1 VMA
G2 VPA
G9 A15
G10 A17
H1 E
H2 IPL2
H3 iPIT
H8 A13
H9 A12
H10 A16
J1 BERR
J2 IPlO
J3 FC1
J4 Do Not Connect
J5 A2
J6 A5
J7 A8

J8 A10
J9 A11
J10 A14
Kl Do Not Connect
K2 FC2
K3 FCO
K4 A1
K5 A3
K6 A4
K7 A6
K8 A7
K9 A9
K10 Do Not Connect

10.2 PACKAGE DIMENSIONS

L SUFFIX
CERAMIC PACKAGE

CASE 746·01

[: ~ ~l~::rl
L.--tEI----l1

G SUFFIX
PLASTIC PACKAGE

CASE 754-01

10-3

NOTES:
1. DIMENSION [&lIS DATUM.
2. POSITIONAL TOLERANCE FOR LEADS:

1-$-1 0.25 (O.010)@IT 1 A @ I

3. rn IS SEATING PLANE.
4. DIMENSION "L"TO CENTER OF LEADS

WHEN FORMED PARALLEL.
5. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5, 1973.

MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 80.52 82.04 3.170 3.230
B 22.25 22.96 0.876 0.904
C 3.05 4.32 0.120 0.170
D 0.38 0.53 0.015 0.021
F 0.76 1.40 0.030 0.055
G 2.54 BSC 0.100 BSC
J 0.20 0.33 0.008 0.013
K 2.54 4.19 0.100 0.165
L 22.61 23.11 0.890 0.910
M - 100 - 100

N 1.02 1.52 0.040 0.060

NOTES:
1. DIMENSIONS A AND B ARE DATUMS.

2. W IS SEATING PLANE.

3. POSITIONAL TOLERANCE FOR LEADS
(DIMENSION D):

1.1.0' 0.25 (0.010) @I TIA @I B @I

4. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL

5. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.

6. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5, 1973.

MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 81.16 81.91 3.195 3.225
B 20.17 20.57 0.790 0.810
C 4.83 5.84 0.190 0.230
D 0.33 0.53 0.013 0.021
F 1.27 1.77 0.050 0.070
G 2.54 BSC 0.100 BSC
J 0.20 0.38 0.008 0.015
K 3.05 3.55 0.120 0.140
L 22.86 Bse 0.900 BSC
M 00 150 00 150

N 0.51 1.01 0.020 0.040

10.2 PACKAGE DIMENSIONS

ZB SUFFIX
TYPE B LEADLESS

CHIP CARRIER
CASE 760A-01

!
I i----- B-,
'-' -- R -----1

ZC SUFFIX
TYPE C LEADLESS

CHIP CARRIER
CASE 760-01

I

A

NOTES:
1. DIMENSION A IS DATUM (2 PLACES).
2.WIS GAUGE PLANE.
3. POSITIONAL TOLERANCE FOR

TERMINALS(D): 68 PLACES
I t10.25 (O.010)@1 TIA(§) I RCs) I

Trmn:nrn;~~~~----..L~ F 4. DIMENSIONING AND TOLERANCING
p PER ANSI Y14.fi. 1973.

5. DIMENSION H PROVIDES THE SIZE FOR
BOTH THE PAD LENGTH AND THE
THREE CORNER NOTCHES.

10-4

MILLIMETERS INCHES
DIM MIN MAX MIN MAX

A 23.83 24.43 0.938 0.962
B 15.24 15.49 0.600 0.610
C 1.73 3.05 0.068 0.120
D 0.84 0.99 0.033 0.039
F 1.90 2.41 0.075 0.095
G 1.27 BSC 0.050 BSC
H 1.02 1.52 0.040 0.060
N 1.14 2.24 0.045 0.088
R 23.83 24.43 0.938 0.962

NOTES:
1. DIMENSION A IS DATUM (2 PLACES).
2. m IS GAUGE PLANE.
3. POSITIONAL TOLERANCE FOR

TERMINALS(D): 68 PLACES
1 .. 10.25 (0.010) @) I T IA@ I R G> I

4. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5. 1973.

MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 23.83 24.43 0.938 0.962
B 15.24 15.49 0.600 0.610
C 2.03 3.05 0.080 0.120
D 0.56 0.71 0.022 0.028
F 1.90 2.41 0.075 0.095
G 1.27 BSC 0.050 BSC
H 1.02 1.52 0.040 0.060
N 1.78 2.29 0.070 0.090
R 23.83 24.43 0.938 0.962

® MOTOROI.A Semiconductor Products Inc.
3501 ED BLUESTEIN BLVD, AUSTIN, TEXAS 7~,7~1 .. A SUBSIDIARY OF MOTOROLA INC

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	08-01
	08-02
	08-03
	08-04
	08-05
	08-05a
	08-05b
	08-05c
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	xBack

