@ MOTOROLA

SEMICONDUCTORS

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721

Advance Information

MC68008

8-/32-BIT
MICROPROCESSOR
WITH
8-BIT DATA BUS

APRIL, 1985

This document contains information on a new product. Specifications and information herein ©MOTOROLA INC., 1985

are subject to change without notice.

ADI939R2



Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does
not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its
patent rights nor the rights of others. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/
Affirmative Action Employer.




Paragraph
Number

—_
N —

21

2.2
2.2.1
222
2.3

24

25

2.6

2.7

2.8
2.8.1
2.8.1.1
2.8.1.2
282
2.8.2.1
2822
28.23
2824
28.25
283
2.8.3.1
2.83.2
2.8.3.3
28.34
2.8.35
2.8.3.6
2.9
2.10

TABLE OF CONTENTS

Title
Section 1
Introduction
Data Types and AddressingModes . ..................................
Instruction Set Overview .. ... ... . .
Section 2

Data Organization and Addressing Capabilities

Operand Size ... ... ..
Data Organizationin Registers ........... ... ... ..
DataRegisters . ............ .. .
Address Registers ... ...
Data OrganizationinMemory ......... ... .. ... ... ... ... . ............
AdAressiNg . .. oo
Instruction Format. . ... ..
Program/Data References . .......... ... ... . . . .. ... ...
Register Specification. ......... ... . . .
Effective Address ... ... .. ... .
Register Direct Modes .. ... .. ... .. . . .
Data Register Direct . ...... ... . i
Address Register Direct . ................... . ... .. ... .. ...
Memory Address Modes . ............. ...
Address Register Indirect . ..................... ... ...
Address Register Indirect with Postincrement .............. .. ... ...
Address Register Indirect with Predecrement .................. .. ...
Address Register Indirect with Displacement .............. ... ... ...
Address Register Indirect with Index . ......................... .. ..
Special Address Modes . ...
Absolute Short Address . . ................ .. .. .
Absolute Long Address . ............. ...
Program Counter with Displacement ..............................
Program CounterwithIndex .......... . ... .. ... ... ...........
Immediate Data . ............. . ..
ImplicitReference . ... . .. . .
Effective Address Encoding Summary . ............ . ... L
System Stack. ... ...

Page
Number



Paragraph
Number

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
411
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.34
4.1.4
4.1.41
4.1.4.2
4.1.4.3
415
4.1.6
4.1.6.1
4.1.6.2
4.1.6.3
417
4.1.71
4.1.7.2
4.1.8
4.1.9
4.1.10
41.11
4.2
4.2.1
4211
4212
4.2.1.3
4.2.2
4.2.21
4222
4.2.2.3

TABLE OF CONTENTS
(Continued)

Title

Section 3

Instruction Set Summary
Data Movement Operations
Integer Arithmetic Operations
Logical Operations
Shift and Rotate Operations
Bit Manipulation Operations
Binary Coded Decimal Operations
Program Control Operations
System Control Operations

Section 4
Signal and Bus Operation Description

Signal DesCription . . . ...
Address Bus (48-Pin: A0 through A19—52-Pin: AQ through A21) .... ..
DataBus (DOthrough D7) ... ..
Asynchronous BusControl ............. . ... .. ... .. ... ...

Address Strobe (AS) ... ...
Read/Write (R/W) .. ... oo
Data Strobe (DS) .. .. oo
Data Transfer Acknowledge (DTACK) . ............. ... .. ... ...
Bus Arbitration Control ..........0. . .. .
Bus Request (BR) .. ... ... . .
Bus Grant (BG) . ... .. oo

System Control ... ... ...
BUS Error (BERR) . ..o
Reset (RESET) .. ... o
Halt (HALT) . .

M6800 Peripheral Control . . ......... ... ... ... ..
Enable (B) ... ...
Valid Peripheral Address (VPA) ... ...,

Processor Status (FCO, FC1, FC2)

iv

Clock (CLK) L. o
VeCcandGND ..o
Signal Summary . ...
BusOperation . ... ... ... . . e
Data Transfer Operations . ..................... P
Read Cycle .. ... . ... .
Write CycCle. . ...
Read-Modify-Write Cycle. .. ......... .. ... ... ... ... ... . ...
Bus Arbitration ...
RequestingtheBus. ... ... ... .. .. . .
Receivingthe Bus Grant. ....... ... ... ... ... ... ...
Acknowledgement of Mastership (52-Pin Version of MC68008 Only) . ..

Page
Number



Paragraph
Number

4.2.3
424
4.2.41
4242
4243
4.24.4
425
4.3

4.4
4.41
442

5.1
511
5.1.2
5.1.3
5.1.4
5.2
5.2.1
522
523
5.2.4
5.3
5.3.1
5.3.2
533
534
5.35
5.3.6
5.3.7
538
5.3.9
5.3.10

6.1
6.2
6.3

TABLE OF CONTENTS

(Continued)

Page
) Title Number

Bus Arbitration Control ......... ... .. .. ... 4-18
Bus Errorand HaltOperation. . .......... ... ... ... .. .............. 4-21
Exception Sequence . ...... ... .. .. 4-22
Re-RunningtheBusCycle........... . ... .. ... ... ............ 4-23
Halt Operationwithno BusError . ......... ... ... ... .. ... ....... 4-23
DoubleBusFaults. ... ... ... .. . . . 4-25
Reset Operation. . ... ... ... .. 4-25
The Relationship of DTACK, BERR, and HALT ......................... 4-27
Asynchronous Versus Synchronous Operation ......................... 4-28
Asynchronous Operation . ............. .. ... i 4-28
Synchronous Operation .. ... ... .. 4-30

Section 5

Processing States

Privilege States . ... 5-1
SUpervisor State . ... ... . . 5-2
USEr STate . ... ..o 5-2
Privilege State Changes . ............ ... .. ... 5-2
Reference Classification .. ....... ... . ... ... ... ... .. . ... ... .. ... ... 5-2
Exception Processing ... ... .. . 5-2
Exception Vectors .. . ... ... 5-3
Kinds of Exceptions . ...... ... . 5-4
Exception Processing Sequence .. ........... ... .. 5-b
Multiple Exceptions. ............ T 55
Exception ProcessingInDetail ... ... ... .. ... . . 5-6
ReSet. . . 5-6
INterTUPES L 5-6
Uninitialized Interrupt . ... .. ... . 5-8
Spurious INterrupt. ... ... 5-9
INStrUCtiON Traps . . ... oo 5-9
Illegal and Unimplemented Instructions . .. ............... ... ... ..... 5-9
Privilege Violations .. ... . ... .. 5-9
Tracing . .. 5-9
BUS EMOr. ... 5-10
Address Error. .. ... o 5-11

Section 6

Interface with M6800 Peripherals

Data Transfer Operation. . ... . . . . . . . .. 6-1
AC Electrical Specifications . . ........... ... . ... 6-3
Interrupt Interface Operation . . ........ ... ... .. . . . i 6-4



TABLE OF CONTENTS

(Concluded)
Paragraph Page
Number Title Number
Section 7
Instruction Set and Execution Times
7.1 Instruction Set. . ... ... . .. 7-1
7.11 Addressing Categories .. ... ... 7-1
7.1.2 Instruction Prefetch ... ... .. .. ... . .. .. . . ... 7-3
7.2 Instruction Execution Times . .............. . i i 7-4
7.2.1 Effective Address Operand Calculation Timing . ....................... 7-4
7.2.2 Move Instruction Execution Times . .......... ... ... .. .............. 7-4
7.2.3 Standard Instruction Execution Times . .............................. 7-6
7.2.4 Immediate Instruction Execution Times . ............. ... ... ......... 7-6
7.2.5 Single Operand Instruction Execution Times. . . ....................... 7-7
7.2.6 Shift/Rotate Instruction Execution Times . ........................... 7-8
7.2.7 Bit Manipulation Instruction Execution Times. . ....................... 7-8
7.2.8 Conditional Instruction Execution Times .. ........................... 79
7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times ... ... .. 7-9
7.2.10 Multi-Precision Instruction Execution Times .. ........................ 7-10
7.2.11 Miscellaneous Instruction Execution Times. . ......................... 7-10
7.2.12 Exception Processing Execution Times ............... ... .. ... ..... 7-10
Section 8
Electrical Specifications
8.1 Maximum Ratings . . ... ... 8-1
8.2 Thermal Characteristics . ............... .. . . i, 8-1
8.3 Power Considerations. . ............ . ... .. . . e 8-1
8.4 DC Electrical Characteristics ................. ... . . .. . i .. 8-2
8.5 Clock TIMING . ..o 8-3
8.6 AC Electrical Specifications — Read and Write Cycles .©............... .. 8-4
8.7 AC Electrical Specifications — MC68008 to M6800 Peripheral ............. 8-6
8.8 AC Electrical Specifications — Bus Arbitration....................... ... 8-8
Section 9
Ordering Information
9.1 Package TyYpeS . . . .. . 9-1
9.2 Standard MC68008 Ordering Information .............................. 9-1
9.3 “Better’” Processing — Standard ProductPlus ......................... 9-1
Section 10
Mechanical Data
10.1 Pin AsSignments . ... ... ... 10-3
10.3 Package Dimensions. . ....... ... ... ... ... 10-4

Vi



4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
. 419
4-20
4-21
4-22
4-23
4-24
4-256
4-26

5-1

5-3
5-4
5-6
5-6
5-7

LIST OF ILLUSTRATIONS

Title
ProgrammingModel . ...... ... ...
Status Register . ... .. . . .
Memory Data Organization .............. ... ... ... ... ... ...
Instruction Operation Word General Format . ...........................
Single-Effective-Address Instruction OperationWord .. ............... ...
Inputand Output Signals . ........................ ... .
External VMA Generation ............. . ...
Word Read Cycle Flowchart . ... .. ... . ... . ... .. ... . .. . ... ... ...
Byte Read Cycle Flowchart ........ ... . ... .. ... ... ... . .. ... .. ...
Read and Write Cycle Timing Diagram. . .......... .. ... ... ... .. ...,
Word and Byte Read Cycle Timing Diagram .. ....... ... ... ............
Word Write Cycle Flowchart .. .......... ... ... ... . . .
Byte Write Cycle Flowchart .. ... .. . . . . .
Word and Byte Write Cycle Timing Diagram. ... ........................
Read-Modify-Write Cycle Flowchart . .................................
Read-Modify-Write Cycle Timing Diagram . ......... ... ... ... ..........
Bus Arbitration Cycle Flowchart for the 48-PinVersion . ..................
Bus Arbitration Cycle Flowchart for the 52-Pin Version ... ................
Bus Arbitration Timing for the48-PinVersion .. .........................
Bus Arbitration Timing for the 52-Pin Version ... ........................
MC68008 Bus Arbitration Unit State Diagram . . .........................
Timing Relationships of External Asynchronous Inputs to Internal Signals. . .
Bus Arbitration Timing Diagram — Processor Active.....................
Bus Arbitration Timing Diagram — Bus Inactive. . .......................
Bus Arbitration Timing Diagram — SpecialCase ........................
Re-Run Bus Cycle Timing Information . ................................
HALT Operation Timing Characteristics. .. .............................
HALT Signal Single-Step Operation Timing Characteristics .. .............
Bus Error Timing Diagram .. ......... ... .. .. . .
Reset Operation Timing Diagram . ............ ... ... . ... .............
System Reset Timing Diagram . ........... ... ... .....................
Format of Vector Table Entries ............. . .. .....................
Vector Number Format. ................ ... ... .
Vector Number Translated toan Address . .............................
Vector Acquisition Flowchart .......... .. ... .. ... ... .. ... ..
Interrupt Acknowledge Cycle Time. . .......................0..........
Interrupt Processing Sequence .. ............... .. ...
Supervisor Stack Order (Group Q) . . ........ ... . ... .. ... ... . ... . ... ...
Address Error Timing ... ...

Vi

Page
Number



Figure
Number

6-1

6-2
6-3

81
8-2
83
84
85
8-6
87
88
8-9
8-10
8-11

8-12

LIST OF ILLUSTRATIONS

(Continued)

Title

M6800 Cycle Flowchart .........................
M6800 Cycle Timing ......... ... ...
Autovector Operation Timing Diagram ............

MC68008 Power Dissipation (Pp) vs Ambient Temperature (TA)......... ..

RESET TestlLoad ..............................
HALT TestLoad ...............................
TestLoads ......... ... ...
Input Clock Waveform ..........................

Read Cycle Timing ............ ... .. ... ........

Write Cycle Timing

MC68008 to M6800 Peripheral Timing — Worst Case

Bus Arbitration Timing — IdleBusCase ............. ... ... ...........
Bus Arbitration Timing — Active BusCase . .................... e

Bus Arbitration Timing — Multiple Bus Requests. . . .

viii

MC68008 to M6800 Peripheral Timing — Best Case . .

Page
Number

6-2
6-3
6-4

8-2
8-3
8-3
8-3
8-3
Foldout
1
Foldout
2
8-6
8-7
Foldout
3
Foldout
4
Foldout



Table
Number

_;__\_.
AR SN

3-1
3-2

34
35
36

3-8

4-2
4-3

45

5-2
5-3

7-1
7-2
7-3
7-4
7-5
7-6

7-8

7-9

7-10
7-1
7-12
7-13
7-14
7-15
7-16
7-17

LIST OF TABLES

Page
Title Number

AddressingModes ... ... 1-3
InsStruction Set. .. ... .. 1-4
Variations of Instruction Types . . ... .. i 1-4
Effective Address Encoding Summary . ... 2-6
Data Movement Operations. . ... ... .. .. .. . . i 3-1
Integer Arithmetic Operations .. ........... ... ... 3-2
Logical Operations ......... ... i 3-3
Shiftand Rotate Operations ....... ... ... . ... i, 3-3
Bit Manipulation Operations . ............. ... ... ... .. ... . 3-4
Binary Coded Decimal Operations ............... ... ... .. i, 3-4
Program Control Operations .. ... ... .. ... . i 35
System Control Operations . ............ ... i 3-b
Data Strobe Controlof DataBus. ............... ... ... ... ... ........ 4-2
Function Code Qutputs . ....... .. ... . . . i 4-6
Signal Summary .. ... 4-6
DTACK, BERR, and HALT AssertionResults .. ......................... 4-29
BERR and HALT NegationResults . . ......... ... ... ... ... .. ... ... ... 4-29
Reference Classification .. .......... . ... ... . . . . . . . 5-3
VectorTable. . ... ... . . 5-4
Exception Grouping and Priority .. ....... ... 5-6
Effective Addressing Mode Categories. . ................... e 7-1
Instruction Set. ... ... .. . . 7-2
Effective Address Calculation Timing . .. .. ... 7-4
Move Byte Instruction Execution Times. .. ............................. 7-5
Move Word Instruction Execution Times . ... ........................... 7-5
Move Long Instruction Execution Times .. ............................. 7-5
Standard Instruction Execution Times . ................. ... ........... 7-6
Immediate Instruction Execution Times .. ........... ... ... 7-7
Single Operand Instruction Execution Times. . . ............... ... ...... 7-7
Shift/Rotate Instruction Execution Times ... ............. ... ... ... ... 7-8
Bit Manipulation Instruction Execution Times. .. ........................ 7-8
Conditional Instruction Execution Times . . ........... ... ............. 7-9
JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times ... ....... 7-9
Multi-Precision Instruction Execution Times . . .......................... 7-10
Miscellaneous Instruction Execution Times. . ........... ... ... ... ...... 7-11
Move Peripheral Instruction Execution Times .. ......................... 7-11
Exception Processing Execution Times ............. . ... . ... ... .... 7-11

ix/x



SECTION 1
INTRODUCTION

The MC68008 is a member of the M68000 Family of advanced microprocessors. This device allows
the design of cost effective systems using 8-bit data buses while providing the benefits of a 32-bit
microprocessor architecture. The performance of the MC68008 is greater than any 8-bit micropro-
cessor and superior to several 16-bit microprocessors.

The resources available to the MC68008 user consist of the following:
17 32-Bit Data and Address Registers

56 Basic Instruction Types

Extensive Exception Processing

Memory Mapped 1/0

14 Addressing Modes

Complete Code Compatibility with the MC68000

A system implementation based on an 8-bit data bus reduces system cost in comparison to 16-bit
systems due to a more effective use of components and the fact that byte-wide memories and
peripherals can be used much more effectively. In addition, the non-multiplexed address and data
buses eliminate the need for external demultiplexers, thus further simplifying the system.

The MCB68008 has full code compatibility (source and object) with the MC68000 which allows pro-
grams to be run on either MPU, depending on performance requirements and cost objectives.

The MC68008 is available in a 48-pin dual-in-line package (plastic or ceramic) and a 52-pin quad
plastic package. Among the four additional pins of the 52-pin package, two additional address lines
are included beyond the 20 address lines of the 48-pin package. The address range of the MC68008
is one or four megabytes with the 48- or 52-pin package, respectively.

The large non-segmented linear address space of the MC68008 allows large modular programs to be
developed and executed efficiently. A large linear address space allows program segment sizes to
be determined by the application rather than forcing the designer to adopt an arbitrary segment size
without regard to the application’s individual requirements.

The programmer’s model is identical to that of the MC68000, as shown in Figure 1-1, with seven-
teen 32-bit registers, a 32-bit program counter, and a 16-bit status register. The first eight registers
(DO-D7) are used as data registers for byte (8-bit), word (16-bit), and long word (32-bit) operations.
The second set of seven registers (AO-AB), the user stack pointer (A7), and the system stack pointer
(A7’) may be used as software stack pointers and base address registers. In addition, the registers
may be used for some simple word and long word data operations. All of the 17 registers may be
used as index registers.

1-1
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Figure 1-1. Programming Model

While all of the address registers can be used to create stacks and queues, the A7 address register,
by convention, is used as the system stack pointer. Supplementing this convention is another ad-
dress register, A7, also referred to as the system stack pointer. This powerful concept allows the
supervisor mode and user mode of the MC68008 to each have their own system stack pointer (con-
sistently referred to as SP) without needing to move pointers for each context of use when the
mode is switched.

The system stack pointer (SP) is either the supervisor stack pointer (A7’ =SSP) or the user stack
point (A7=USP), depending on the state of the S bit in the status register. If the S bit is set, in-
dicating that the processor is in the supervisor state, when the SSP is the active system stack
pointer and the USP is not used. If the S bit is clear, indicating that the processor is in the user
state, then the USP is the active system stack pointer and the SSP is protected from user
modification.

The status register, shown in Figure 1-2, may be considered as two bytes: the user byte and the
system byte. The user byte contains five bits defining the overflow (V), zero (Z), negative (N), carry
(C), and extended (X) condition codes. The system byte contains five defined bits. Three bits are
used to define the current interrupt priority; any interrupt level higher than the current mask level
will be recognized. (Note that level 7 interrupts are non-maskable — that is, level 7 interrupts are
always processed.) Two additional bits indicate whether the processor is in the trace (T) mode
and/or in the supervisor (S) state.
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Figure 1-2. Status Register

1.1 DATA TYPES AND ADDRESSING MODES

Five basic data types are supported. These data types are:

Bits

BCD Digits (4 bits)
Bytes (8 bits)
Words (16 bits)

[ J
[}
[ J
[ ]
® | ong Words (32 bits)

In addition, operations on other data types such as memory addresses, status word data, etc., are

provided in the instruction set.

Most instructions can use any of the 14 addressing modes which are listed in Table 1-1. These

addressing modes consist of six basic types:
® Register Direct

Register Indirect

Absolute

Program Counter Relative

Immediate

[
[ J
[}
[ J
® Implied

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct Addressing

Data Register Direct Dn

Address Register Direct An
Absolute Data Addressing

Absolute Short xxx. W

Absolute Long xxx.L
Program Counter Relative Addressing

Relative with Offset d1g(PC)

Relative with Index Offset dg(PC,Xn)
Register Indirect Addressing

Register Indirect (An)

Postincrement Register Indirect (An)+

Predecrement Register Indirect —(An)

Register Indirect with Offset d1glAn)

Indexed Register Indirect with Offset dg(An,Xn)
Immediate Data Addressing

Immediate #xxx

Quick Immediate #1-#8
Implied Addressing

Implied Register SR/USP/SP/PC

Data Register

Address Register

Address or Data Register used as Index Register
Status Register

Program Counter

Stack Pointer

User Stack Pointer
Contents of

8-Bit Offset (Displacement)
16-Bit Offset (Displacement)
Immediate Data

1-195



The register indirect addressing modes also have the capability to perform postincrementing, pre-
decrementing, offsetting, and indexing. The program counter relative mode may be used in com-
bination with indexing and offsetting for writing relocatable programs.

1.2 INSTRUCTION SET OVERVIEW

The MC68008 is completely code compatible with the MC68000. This means that programs
developed for the MC68000 will run on the MC68008 and vice versa. This applies equally to either
source code or object code.

The instruction set was designed to minimize the number of mnemonics remembered by the pro-
grammer. To further reduce the programmer’s burden, the addressing modes are orthogonal.

The instruction set, shown in Table 1-2, forms a set of programming tools that include all processor
functions to perform data movement, integer arithmetic, logical operations, shift and rotate opera-
tions, bit manipulation, BCD operations, and both program and system control. Some additional in-
structions are variations or subsets of these and appear in Table 1-3.

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description
ABCD Add Decimal With Extend MOVE Move
ADD Add MULS Signed Multiply
AND Logical And MULU Unsigned Multiply
ASL Arithmetic Shift Left NBCD Negate Decimal with Extend
ASR Arithmetic Shift Right NEG Negate
Bce Branch Conditionally NOP No Operation
BCHG Bit Test and Change NOT One’s Complement
BCLR Bit Test and Clear OR Logical Or
BRA Branch Always PEA Push Effective Address
BSET Bit Test and Set -
BSR B . RESET Reset External Devices

ranch to Subroutine ROL R Left without Extend
BTST Bit Test otate Left without Exten
- - ROR Rotate Right without Extend

CHK Check Register Against Bounds ROXL Rotate Left with Extend
CkAR Clear Operand ROXR Rotate Right with Extend
CMP Compare RTE Return from Exception
DBcc Test Condition, Decrement and Branch RTR Return and Restore
DIVS Signed Divide RTS Return from Subroutine
DIvU Unsigned Divide SBCD Subtract Decimal with Extend
EOR Exclusive Or Sce Set Conditional
EXG Exchange Registers STOP Stop
EXT Sign Extend SUB Subtract
JMP Jump SWAP Swap Data Register Halves
JSR Jump to Subroutine TAS Test and Set Operand
LEA Load Effective Address TRAP Trap
LINK Link Stack ‘ TRAPV Trap on Overflow
LSL Logical Shift Left TST Test
LSR Logical Shift Right UNLK Unlink

1-196
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Table 1-3. Variations of Instruction Types

Instruction Instruction
Type Variation Description Type Variation Description
ADD ADD Add MOVE MOVE Move
ADDA Add Address MOVEA Move Address
ADDQ Add Quick MOVEC Move Control Register
ADDI Add Immediate MOVEM Move Multiple Registers
ADDX Add with Extend MOVEP Move Peripheral Data
AND AND Logical And MOVEQ Move Quick
ANDI And Immediate MOVES Move Alternate Address
ANDI to CCR | And Immediate to Space
Condition Codes MOVE from SR Move from Status Register
ANDI to SR And Immediate to MORE to SR Move to Status Register
Status Register MOVE from CCR | Move from Condition Codes
CMP CMP Compare MOVE to CCR Move to Condition Codes
CMPA Compare Address MOVE USP Move User Stack Pointer
CMPM Compare Memory NEG NEG Negate
CMPI Compare Immediate NEGX Nexgate with Extend
EOR EOR Exclusive Or OR OR Logical Or
EORI Exclusive Or Immediate ORI Or Immediate
EORI to CCR Exclusive Or Immediate ORI to CCR Or Immediate to
to Condition Codes Condition Codes
EORI to SR Exclusive Or Immediate ORI to SR Or Immediate to
to Status Register Status Register
SuB SUB Subtract
SUBA Subtract Address
SuBl Subtract Immediate
SuUBQ Subtract Quick
SUBX Subtract with Extend

1-6/1-6
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SECTION 2
DATA ORGANIZATION AND ADDRESSING CAPABILITIES

This section describes the registers and data organization of the MC68008.

2.1 OPERAND SIZE

Operand sizes are defined as follows: a byte equals eight bits, a word equals 16 bits (two bytes), and
a long word equals 32 bits (four bytes). The operand size for each instruction is either explicitly en-
coded in the instruction or implicitly defined by the instruction operation. Implicit instructions sup-
port some subset of all three sizes. When fetching instructions, the MC68008 always fetches pairs
of bytes (words) thus guaranteeing compatibility with the MC68000.

2.2 DATA ORGANIZATION IN REGISTERS

The eight data registers support data operands of 1, 8, 16, or 32 bits. The seven address registers
together with the stack pointers support address operands of 32 bits.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low order eight bits, word operands
the low order 16 bits, and long word operands the entire 32 bits. The least significant bit is
addressed as bit zero; the most significant bit is addressed as bit 31.

When a data register is used as either a source or destination operand, only the appropriate low
order portion is changed; the remaining high order portion is neither used nor changed.

2.2.2 Address Registers

Each address register and the stack pointer is 32 bits wide and holds a full 32-bit address. Address
registers do not support the byte sized operand. Therefore, when an address register is used as a
source operand, either the low order word or the entire long word operand is used depending upon
the operation size. When an address register is used as the destination operand, the entire register
is affected regardless of the operation size. If the operation size is word, any other operands are sign
extended to 32 bits before the operation is performed.

2.3 DATA ORGANIZATION IN MEMORY

The data types supported by the MC68008 are: bit data, integer data of 8, 16, or 32 bits, and 32-bit
addresses. Figure 2-1 shows the organization of these data types in memory.



Bit Data 1 Byte =8 Bits
7 6 5 4 3 2 1 0

I I I I B B

Integer Data 1 Byte=28 Bits
7 6 5 4 3 2 1 0

Byte O Lower Addresses
Byte 1
Byte 2
Byte3 Higher Addresses

1 Word=2 Bytes= 16 Bits
Byte O (MS Byte) Lower Addresses

Word0 —
Byte 1 (LS Byte)
Byte 0 (MS Byte)
Y Y Word 1 ———
Byte 1 (LS Byte) Higher Addresses

1 Long Word=2 Words =4 Bytes= 32 Bits
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Byte 1 Word
———— LongWord0 —
Byte2 Low Order
Byte 3 Word
| BvteO High Order
Byte 1 Word
f——— LongWord 1 —
Byte2 Low Order
Byte3 Word Higher Addresses
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Figure 2-1. Memory Data Organization

2.4 ADDRESSING

Instructions for the MC68008 contain two kinds of information: the type of function to be per-
formed, and the location of the operand(s) on which to perform that function. The methods used to
locate (address) the operand(s) are explained in the following paragraphs.

Instructions specify an operand location in one of three ways:
Register Specification — the number of the register is given in the register field of the
instruction.
Effective Address — use of the different effective address modes.
Implicit Reference — the definition of certain instructions implies the use of specific registers.



2.5 INSTRUCTION FORMAT

Instructions are from one to five words (two to ten bytes) in length as shown in Figure 2-2. Instruc-
tions always start on a word boundary thus guaranteeing compatibility with the MC68000. The
length of the instruction and the operation to be performed is specified by the first word of the in-
struction which is called the operation word. The remaining words further specify the operands.
These words are either immediate operands or extensions to the effective address mode specified in
the operation word.

Even Byte (AO=0) Odd Byte (A0=1)
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Operation Word
(First Word Specifies Operation and Modes)

Immediate Operand
(If Any, One or Two Words)

Source Effective Address Extension
(If Any, One or Two Words)

Destination Effective Address Extension
(If Any, One or Two Words)

Figure 2-2. Instruction Operation Word General Format "

2.6 PROGRAM/DATA REFERENCES

The MC68008 separates memory references into two classes: program references, and data
references. Program references, as the name implies, are references to that section of memory con-
taining the program being executed. Data references refer to that section of memory containing
data. Operand reads are from the data space except in the case of the program counter relative ad-
dressing mode. All operand writes are to the data space. The function codes are used to indicate
the address space being accessed during a bus cycle.

2.7 REGISTER SPECIFICATION

The register field within an instruction specifies the register to be used. Other fields within the in-
struction specify whether the register selected is an address or data register and how the register is
to be used.

2.8 EFFECTIVE ADDRESS

Most instructions specify the location of an operand by using the effective address field in the
operation word. For example, Figure 2-3 shows the general format of the single-effective-address
instruction operation word. The effective address is composed of two 3-bit fields: the mode field,
and the register field. The value in the mode field selects the different address modes. The register
field contains the number of a register.

Even Byte Odd Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Effective Address
X X X X X X X X X X Mode 1 Register

1-200
Figure 2-3. Single-Effective-Address Instruction Operation Word
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The effective address field may require additional information to fully specify the operand. This
additional information, called the effective address extension, is contained in the following word or
words and is considered part of the instruction, as shown in Figure 2-2. The effective address
modes are grouped into three categories: register direct, memory addressing, and special.

2.8.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of sixteen multifunction
registers.

2.8.1.1 DATA REGISTER DIRECT. The operand is in the data register specified by the effective
address register field.

2.8.1.2 ADDRESS REGISTER DIRECT. The operand is in the address register specified by the ef-
fective address register field.

2.8.2 Memory Address Modes

These effective addressing modes specify that the operand is in memory and provide the specific
address of the operand.

2.8.2.1 ADDRESS REGISTER INDIRECT. The address of the operand is in the address register
specified by the register field. The reference is classified as a data reference with the exception of
the jump and jump-to-subroutine instructions.

2.8.2.2 ADDRESS REGISTER INDIRECT WITH POSTINCREMENT. The address of the operand is
in the address register specified by the register field. After the operand address is used, it is incre-
mented by one, two, or four depending upon whether the size of the operand is byte, word, or long
word. If the address register is the stack pointer and the operand size is byte, the address is incre-
mented by two rather than one to keep the stack pointer on a word boundary. The reference is
classified as a data reference.

2.8.2.3 ADDRESS REGISTER INDIRECT WITH PREDECREMENT. The address of the operand will
be in the address register specified by the register field. Before the address register is used for
operand access, it is decremented by one, two, or four depending upon whether the operand size is
byte, word, or long word. If the address register is the stack pointer and the operand size is byte,
the address is decremented by two rather than one to keep the stack pointer on a word boundary.
The reference is classified as a data reference.

2.8.2.4 ADDRESS REGISTER INDIRECT WITH DISPLACEMENT. This address mode requires one
word of extension. The address of the operand is the sum of the address in the address register and
the sign-extended 16-bit displacement integer in the extension word. The reference is classified as a
data reference with the exception of the jump and jump-to-subroutine instructions.

2.8.2.5 ADDRESS REGISTER INDIRECT WITH INDEX. This address mode requires one word of
extension. The address of the operand is the sum of the address in the address register, the sign-
extended displacement integer in the low order eight bits of the extension word, and the contents
of the index register. The reference is classified as a data reference with the exception of the jump
and jump-to-subroutine instructions.



2.8.3 Special Address Modes

The special address modes use the effective address register field to specify the special addressing
mode instead of a register number.

2.8.3.1 ABSOLUTE SHORT ADDRESS. This address mode requires one word of extension. The
address of the operand is the extension word. The 16-bit address is sign extended before it is used.
The reference is classified as a data reference with the exception of the jump and jump-to-
subroutine instructions.

2.8.3.2 ABSOLUTE LONG ADDRESS. This address mode requires two words of extension. The
address of the operand is developed by the concatenation of the extension words. The high order
part of the address is the first extension word; the low order part of the address is the second exten-
sion word. The reference is classified as a data reference with the exception of the jump and jump-
to-subroutine instructions.

2.8.3.3 PROGRAM COUNTER WITH DISPLACEMENT. This address mode requires one word of
extension. The address of the operand is the sum of the address in the program counter and the
sign-extended 16-bit displacement integer in the extension word. The value in the program counter
is the address of the extension word. The reference is classified as a program reference.

2.8.3.4 PROGRAM COUNTER WITH INDEX. This address mode requires one word of extension.
This address is the sum of the address in the program counter, the sign-extended displacement
integer in the lower eight bits of the extension word, and the contents of the index register. The
value in the program counter is the address of the extension word. This reference is classified as a
program reference.

2.8.3.56 IMMEDIATE DATA. This address mode requires either one or two words of extension
depending on the size of the operation.
Byte Operation — operand is low order byte of extension word
Word Operation — operand is extension word
Long Word Operation — operand is in the two extension words, high order 16 bits are in the
first extension word, low order 16 bits are in the second extension
word.

2.8.3.6 IMPLICIT REFERENCE. Some instructions make implicit reference to the program counter
(PC), the system stack pointer (SP), the supervisor stack pointer (SSP), the user stack pointer
(USP), or the status register (SR). A selected set of instructions may reference the status register by
means of the effective address field. These are:

ANDI to CCR EORI to SR MOVE to CCR
ANDI to SR ORI to CCR MOVE to SR
EORI to CCR ORI to SR MOVE from SR

2.9 EFFECTIVE ADDRESS ENCODING SUMMARY

Table 2-1 is a summary of the effective addressing modes discussed in the previous paragraphs.



Table 2-1. Effective Address Encoding Summary

Addressing Mode Mode Register

Data Register Direct 000 Register Number
Address Register Direct 001 Register Number
Address Register Indirect 010 Register Number
Address Register Indirect with

Postincrement on Register Number
Address Register Indirect with

Predecrement 100 Register Number
Address Register Indirect with

Displacement 101 Register Number|
Address Register Indirect with

Index 10 Register Number
Absolute Short 1 000
Absolute Long m 001
Program Counter with

Displacement m 010
Program Counter with Index m on
Immediate m 100 1207

2.10 SYSTEM STACK

The system stack is used implicitly by many instructions; user stacks and queues may be created
and maintained through the addressing modes. Address register seven (A7) is the system stack
pointer (SP). The system stack pointer is either the supervisor stack pointer (SSP) or the user stack
pointer (USP), depending on the state of the S bit in the status register. If the S bit indicates super-
visor state, SSP is the active system stack pointer and the USP is not used. If the S bit indicates
user state, the USP is the active system stack pointer, and the SSP cannot be referenced. Each
system stack fills from high memory to low memory.



SECTION 3
INSTRUCTION SET SUMMARY

This section contains an overview of the form and structure of the MC68008 instruction set. The in-
structions form a set of tools that include all the machine functions to perform the following

operations:
Data Movement Bit Manipulation
Integer Arithmetic Binary Coded Decimal
Logical Program Control
Shift and Rotate System Control

The complete range of instruction capabilities combined with the flexible addressing modes
described previously provide a very flexible base for program development.

3.1 DATA MOVEMENT OPERATIONS

The basic method of data acquisition (transfer and storage) is provided by the move (MOVE) in-
struction. The move instruction and the effective addressing modes allow both address and data
manipulation. Data move instructions allow byte, word, and long word operands to be transferred
from memory to memory, memory to register, register to memory, and register to register. Address
move instructions allow word and long word operand transfers and ensure that only legal address
manipulations are executed. In addition to the general move instruction there are several special
data movement instructions: move multiple registers (MOVEM), move peripheral data (MOVEP),
exchange registers (EXG), load effective address (LEA), push effective address (PEA), link stack
(LINK), unlink stack (UNLK), and move quick (MOVEQ). Table 3-1 is a summary of the data move-
ment operations.

Table 3-1. Data Movement Operations

Instruction Operand Size Operation
EXG 32 Rx <> Ry
LEA 32 EA — An NOTES:
LINK — AN — —(SP) s=source
SP — An d=destination
SP + displacement — SP [ 1=bit number
MOVE 8, 26, 32 (EA)s — (EA)d — =indirect with predecrement
MOVEM 16, 32 (EA) — An, Dn + =?ndirec? with postdecrement
’ An, Dn — (EA) #=immediate data
MOVEP 16, 32 (EA) = Dn
Dn — (EA)
MOVEQ 8 #xxx = Dn
PEA 32 EA — —(SP)
SWAP 32 Dn([31:16] <> Dn[15:0]
UNLK - An — SP
(SP) + — An 1-202
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3.2 INTEGER ARITHMETIC OPERATIONS

The arithmetic operations include the four basic operations of add (ADD), subtract (SUB), multiply
(MUL), and divide (DIV) as well as arithmetic compare (CMP), clear (CLR), and negate (NEG). The
add and subtract instructions are available for both address and data operations, with data opera-
tions accepting all operand sizes. Address operations are limited to legal address size operands (16
or 32 bits). Data, address, and memory compare operations are also available. The clear and negate
instructions may be used on all sizes of data operands.

The multiply and divide operations are available for signed and unsigned operands using word
multiply to produce a long word product, and a long word dividend with word divisor to produce a
word quotient with a word remainder.

Multiprecision and mixed size arithmetic can be accomplished using a set of extended instructions.
These instructions are: add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX).

A test operand (TST) instruction that will set the condition codes as a result of a compare of the

operand with zero is also available. Test and set (TAS) is a synchronization instruction useful in
multiprocessor systems. Table 3-2 is a summary of the integer arithmetic operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Size Operation Instruction Operand Size Operation
ADD 8, 16, 32 Dn + (EA) — Dn EXT 8 — 16 (Dnlg — Dn1g
(EA) + Dn — (EA) 16 — 32 (Dn)1g — Dngz2
(EA) + #xxx — (EA) MULS 16 x 16 — 32 Dn x (EA) — Dn
16, 32 An + (EA) = An MULU | 16 x 16 — 22 Dn x (EAl — Dn
ADDX AR I _D(VA;“) X2 [NEs 8, 16, 32 0 - (EA) — (EAJ
o L XY R
CMP 8,16, 32 Dn — (EA) ' Y (EA) — Dn — (EA)
(EA) — #xxxx (EA) — #xxx — (EA)
(Ax)+ — (Ay)+ An — (EA) — An
16, 32 An — (EA) SUBX 8, 16, 32 Dx — Dy — X — Dx
DIVS 2+ 16 Dn + (EA] — Dn e (AR = Y] —X — (AR
DIVU 32 + 16 Dn + (EA) — Dn TAS 8 (EA) -0, 1 — EA [7]
TST 8, 16, 32 (EA) - 0
NOTES:
[ 1=bit number
#=immediate data 1-208

— = indirect with predecrement
+ =indirect with postdecrement
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3.3 LOGICAL OPERATIONS

Logical operation instructions AND, OR, EOR, and NOT are available for all sizes of integer data
operands. A similar set of immediate instructions (ANDI, ORI, and EORI) provide these logical
operations with all sizes of immediate data. Table 3-3 is a summary of the logical operations.

Table 3-3. Logical Operations

Instruction Operand Size Operation
AND 8, 16, 32 Dn A (EA) — Dn
(EA) A Dn — (EA)
(EA) A #xxx — (EA)
OR 8, 16, 32 Dn V (EA) — Dn
(EA) V Dn — (EA)
(EA) V #xxx = (EA)

EOR 8, 16, 32 (EA) ® Dy — (EA)
(EA) @ #xxx — (EA)
NOT 8, 16, 32 ~(EA) — EA
NOTES:
#=immediate data V=logical OR
~ =invert ® = |ogical exclusive OR
A= logical AND 1-204

3.4 SHIFT AND ROTATE OPERATIONS

Shift operations in both directions are provided by the arithmetic instructions ASR and ASL and
logical shift instructions LSR and LSL. The rotate instructions (with and without extend) available
are ROXR, ROXL, ROR, and ROL. All shift and rotate operations can be performed in either
registers or memory. Register shifts and rotates support all operand sizes and allow a shift count
specified in a data register.

Memory shifts and rotates are for word operands and provide single-bit shifts or rotates.

Table 3-4 is a summary of the shift and rotate operations.

Table 3-4. Shift and Rotate Operations

lntsig:c- ODsei;znd Operation

ASL [8, 16, 32 0

ASR 8, 16, 32 ‘

LSL 8. 16,32 0

LSR |8, 16, 32 0 |

oL 5. 16,2

ROXL [8. 16, 32

ROXR [8, 16, 32 —_—> 205




3.5 BIT MANIPULATION OPERATIONS

Bit manipulation operations are accomplished using the following instructions: bit test (BTST), bit
test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG). Table 3-5 is a sum-
mary of the bit manipulation operations. (Z is bit 2 of the status register.)

Table 3-5. Bit Manipulation Operations

Instruction Operand Size Operation

BTST 8, 32 “bitof [EA)—Z
~bitof (EA—Z

BSET 8 32 1= bit of EA
“bit of (EA)—Z

BCLR 8 32 0= bit of EA
Zbit of (EA)—2Z

BCHG 8, 32 ~bit of (EAI— bit of EA

NOTE: ~ =invert 1-206

3.6 BINARY CODED DECIMAL OPERATIONS

Multiprecision arithmetic operations on binary coded decimal numbers are accomplished using the
following instructions: add decimal with extend (ABCD), subtract decimal with extend (SBCD),
and negate decimal with extend (NBCD). Table 3-6 is a summary of the binary coded decimal
operations.

Table 3-6. Binary Coded Decimal Operations

Instruction Operand Size Operation
ABCD 8 Dx10 + Dy1g + X=—Dx
—(Ax}10 + = (Ay)1p + X = (Ax)
SBCD 8 Dx1g — Dy10 — X — Dx
= (Ax)10 — —(Ay)1p — X —(Ax)
NBCD 8 0 — (EA)90 — X—(EA)
1-207

3.7 PROGRAM CONTROL OPERATIONS

Program control operations are accomplished using a series of conditional and unconditional

branch instructions, jump instructions, and return instructions. These instructions are summarized
in Table 3-7.

The conditional instructions provide setting and branching for the following conditions:

CC — carry clear GE — greater or equal LS — low or same PL — plus

CS — carry set GT — greater than LT — less than T — always true
EQ — equal HI — high MI — minus VC — no overflow
F — never true LE — less or equal NE — not equal VS — overflow

3-4



Table 3-7. Program Control Operations

Instruction Operation
Conditional
Bece Branch Conditionally (14 conditions)
8- and 16-Bit Displacement
DBcc Test Condition, Decrement, and Branch
16-Bit Displacement
Scc Set Byte Conditionally (16 Conditions)
Unconditional
BRA Branch Always
8- and 16-Bit Displacement
BSR Branch to Subroutine
8- and 16-Bit Displacement
JMP Jump
JSR Jump to Subroutine
Returns
RTR Return and Restore Condition Codes
RTS Return from Subroutine 1208

3.8 SYSTEM CONTROL OPERATIONS

System control operations are accomplished by using privileged instructions, trap generating in-
structions, and instructions that use or modify the status register. These instructions are sum-

marized in Table 3-8.

Table 3-8. System Control Operations

Instruction Operation
Privileged
ANDI to SR Logical AND to Status Register
EORI to SR Logical EOR to Status Register
MOVE EA to SR Load New Status Register
MOVE USP Move User Stack Pointer
ORIl to SR Logical OR to Status Register
RESET Reset External Devices
RTE Return from Exception
STOP Stop Program Execution

Trap Generating

CHK Check Data Register Against Upper Bounds
TRAP Trap
TRAPV Trap on Overflow
Status Register
ANDI to CCR Logical AND to Condition Codes
EORI to CCR Logical EOR to Condition Codes

MOVE EA to CCR
MOVE SR to EA
ORIl to CCR

Load New Condition Codes
Store Status Register
Logical OR to Condition Codes

3-5/3-6



SECTION 4
SIGNAL AND BUS OPERATION DESCRIPTION

This section contains a brief description of the input and output signals. A discussion of bus opera-
tion during the various machine cycles and operations is also given.

4.1 SIGNAL DESCRIPTION

The MC68008 is available in two package sizes (48-pin and 52-pin). The additional four pins of the
52-pin quad package allow for additional signals: A20, A21, BGACK, and IPL2.

Throughout this document, references to the address bus pins (A0-A19) and the interrupt'priority

level pins (IPLO/IPL2, IPL1) refer to AO-A21 and IPLO, IPL1, and IPL2 for the 52-pin version of the
MC68008.

The input and output signals can be functionally organized into the groups shown in Figure 4-1(a)
for the 48-pin version and in Figure 4-1(b) for the 52-pin version. The following paragraphs provide a
brief description of the signals and a reference (if applicable) to other paragraphs that contain more
information about the function being performed.

(a) 48-Pin Version

vee
GND (2) Address Bus A0-A19
CLK
—
Data Bus DO-D7
FCO
Processor FC1 AS
| >
Status o
<——FC—2——— MC68008 —ﬂv——) Asynchronous
Microprocessor DS Bus
> Control
Meso s o £ ] | DTACR _
Peripheral VPA _
Control —> BR Bus
-—————
BG } Arbitration
BERR —
System BERR _ Control
RESET IPLO/2
Control > |————— Interrupt
(H_ALT_> (___IE’_U___ Control

1-210

Figure 4-1. Input and Output Signals



(b) 52-Pin Version

Address Bus AO0-A21
GND (2).
CLK
——ﬁ
Data Bus DO-D7
(—EEQ——. E
EEEEE—
Processor FC1 p—
Status < R/—Wb Asynchronous
<« 2| mcesoos oS Bus
i ——>
Microprocessor Control
DTACK
M6800 «t —
Peripheral { VPA <..B_R— B
Control —_— BG BuS
—> Arbitration
— BGACK Control
BERR l————
System RESET IPLO
Control — €
AALT IPL1 Interrupt
B PO Control 1210

Figure 4-1. Input and Output Signals (Continued)

4.1.1 Address Bus (48-Pin: AQ through A19
52-Pin: AO through A21)

This unidirectional three-state bus provides the address for bus operation during all cycles except
interrupt acknowledge cycles. During interrupt acknowledge cycles, address lines A1, A2, and A3
provide information about what level interrupt is being serviced while address lines AO and A4
through A19 (A21) are all driven high.

4.1.2 Data Bus (DO through D7)

This 8-bit, bidirectional, three-state bus is the general purpose data path. During an interrupt
acknowledge cycle, the external device supplies the vector number on data lines DO-D7.

4.1.3 Asynchronous Bus Control

Asynchronous data transfers are handled using the following control signals: address strobe,
read/write, data strobe, and data transfer acknowledge. These signals are explained in the follow-
ing paragraphs.

4.1.3.1 ADDRESS STROBE (AS). This three-state signal indicates that there is a valid address on
the address bus. Itis also used to ““lock”” the bus during the read-modify-write cycle used by the test
and set (TAS) instruction.

4.1.3.2 READ/WRITE (R/W). This three-state signal defines the data bus transfer as a read or
write cycle. The R/W signal also works in conjunction with the data strobe as explained in the
following paragraph.



4.1.3.3 DATA STROBE (DS). This three-state signal controls the flow of data on the data bus as
shown in Table 4-1. When the R/W line is high, the processor will read from the data bus as in-
dicated. When the R/W line is low, the processor will write to the data bus as shown.

Table 4-1. Data Strobe Control of Data Bus

DS | R/W DO-D7

1 — No Valid Data

0 1 Valid Data Bits 0-7 (Read Cycle)

0 0 Valid Data Bits 0-7 (Write Cycle) ront

4.1.3.4 DATA TRANSFER ACKNOWLEDGE (DTACK). This input indicates that the data transfer
is completed. When the processor recognizes DTACK during a read cycle, data is latched and the
bus cycle is terminated. When DTACK is recognized during a write cycle, the bus cycle is
terminated. (Refer to 4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION.)

4.1.4 Bus Arbitration Control

The 48-pin MC68008 contains a simple two-wire arbitration circuit and the 52-pin MC68008 contains
the full three-wire MC68000 bus arbitration control. Both versions are designed to work with daisy-
chained networks, priority encoded networks, or a combination of these techniques. This circuit is
used in determining which device will be the bus master device.

4.1.4.1 BUS REQUEST (BR). This input is wire ORed with all other devices that could be bus
masters. This device indicates to the processor that some other device desires to become the bus
master. Bus requests may be issued at any time in a cycle or even if no cycle is being performed.

4.1.4.2 BUS GRANT (BG). This output indicates to all other potential bus master devices that the
processor will release bus control at the end of the current bus cycle.

4.1.4.3 BUS GRANT ACKNOWLEDGE (BGACK). This input, available on the 52-pin version only,
indicates that some other device has become the bus master. This signal should not be asserted un-
til the following four conditions are met:
1. a bus grant has been received,
2. address strobe is inactive which indicates that the microprocessor is not using the bus,
3. data transfer acknowledge is inactive which indicates that neither memory nor peripherals
are using the bus, and
4. bus grant acknowledge is inactive - which indicates that no other device is still claiming bus
mastership.

NOTES
1) There is a two-clock interval straddling the transition of AS from the inactive state
to the active state during which BG cannot be issued.
2) If an existing MC68000 system is retrofitted to use the MC68008, 48-pin version
(using BR and BG only), the existing BR and BGACK signals should be ANDed
and the resultant signal connected to the MC68008's BR.



4.1.5 Interrupt Control (48-Pin: IPLO/IPL2, IPLT
52-Pin: IPLO, IPL1, IPL2)

These input pins indicate the encoded priority level of the device requesting an interrupt. The
MC68000 and the 52-pin MC68008 MPUs use three pins to encode a range of 0-7 but, for the 48-pin
MCB8008 only two pins are available. By connecting the IPLO/TPLZ pin to both the IPLO and IPLZ in-
puts internally, the 48-pin encodes values of 0, 2, b, and 7. Level zero is used to indicate that there
are no interrupts pending and level seven is a non-maskable edge-triggered interrupt. Except for
level seven, the requesting level must be greater than the interrupt mask level contained in the pro-
cessor status register before the processor will acknowledge the request.

The level presented to these inputs is continually monitored to allow for the case of a requesting
level that is less than or equal to the processor status register level to be followed by a request that is
greater than the processor status register level. A satisfactory interrupt condition must exist for two
successive clocks before triggering an internal interrupt request. An interrupt acknowledge se-
quence is indicated by the function codes.

4.1.6 System Control

The system control inputs are used to either reset or halt the processor and to indicate to the pro-
cessor that bus errors have occurred. The three system control signals are explained in the following
paragraphs.

4.1.6.1 BUS ERROR (BERR). This input informs the processor that there is a problem with the cy-
cle currently being executed. Problems may be a result of:

1. nonresponding devices,

2. interrupt vector number acquisition failure,

3. illegal access request as determined by a memory management unit, or

4. various other application dependent errors.

The bus error signal interacts with the halt signal to determine if the current bus cycle should be re-
executed or if exception processing should be performed. Refer to 4.2.3 Bus Error and Halt Opera-
tion for a detailed description of the interaction which is summarized below.

BERR HALT  Resulting Operation

High High Normal operation

High Low Single bus cycle operation
Low High Bus error — exception processing
Low Low Bus error — re-run current cycle

4.1.6.2 RESET (RESET). This bidirectional signal line acts to reset (start a system initialization se-
quence) the processor in response to an external RESET signal. An internally generated reset (result
of a reset instruction) causes all external devices to be reset and the internal state of the processor is
not affected. A total system reset (processor and external devices) is the result of external HALT
and RESET signals applied at the same time. Refer to 4.2.4 Reset Operation for further information.

4.1.6.3 HALT (HALT). When this bidirectional line is driven by an external device, it will cause the
processor to stop at the completion of the current bus cycle. When the processor has been halted
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using this input, all control signals are inactive and all three-state lines are put in their high-
impedance state. Refer to 4.2.3 Bus Error and Halt Operation for additional information about the
interaction between the halt and bus error signals.

When the processor has stopped executing instructions, such as in a double bus fault condition,
the halt line is driven by the processor to indicate to external devices that the processor has stop-

ped.

4.1.7 M6800 Peripheral Control

These control signals are used to allow the interfacing of synchronous M6800 peripheral devices
with the asynchronous MC68008. These signals are explained in the following paragraphs.

" The MCB8008 does not supply a valid memory address (VMA) signal like that of the MC68000. The
VMA signal indicates to the M6800 peripheral devices that there is a valid address on the address
bus and that the processor is synchronized to the enable clock. This signal can be produced by a
TTL circuit (see a sample circuit in Figure 4-2). The VMA signal, in this circuit, only responds to a
valid peripheral address (VPA) input which indicates that the peripheral is an M6800 Family device.
Timing for this circuit is shown in Figure 6-2. '

SN74LS73 SN74LS73
A B
VPA Decode (Address
Decode ® Strobe) J Q J al—nNc
E——OP>CK ——OD>CK

K 3 K VMA (To MC6800
__|,_ CLR Devices)

S L > UPA (ToMC68008)
CLK 1-212

Figure 4-2. External VMA Generation

Ol

The VPA decode shown in Figure 4-2 is an active high decode indicating that address strobe (AS)
has been asserted and the address bus is addressing an M6800 peripheral. The VPA output of the
circuit is used to indicate to the MC68008 that the data transfer should be synchronized with the

enable (E) signal.

4.1.7.1 ENABLE (E). This signal is the standard enable signal common to all M6800 type peripheral
devices. The period for this output is 10 MC68008 clock periods (six clocks low, four clocks high).

4.1.7.2 VALID PERIPHERAL ADDRESS (VPA). This input indicates that the device or region
addressed is a M6800 Family device and that data transfer should be synchronized with the enable
(E) signal. This input also indicates that the processor should use automatic vectoring for an inter-
rupt. Refer to 6.0 INTERFACE WITH M6800 PERIPHERALS.

4.1.8 Processor Status (FCO, FC1, FC2)

These function code outputs indicate the state (user or supervisor) and the cycle type currently be-
ing executed, as shown in Table 4-2. The information indicated by the function code outputs is valid

whenever address strobe (AS) is active.
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4.1.9 Clock (CLK)

Table 4-2. Function Code Outputs

Function Code Output
FC2 FC1 FCo Cycle Type
Low Low Low (Undefined, Reserved)
Low Low High User Data
Low High Low User Program
Low High High (Undefined, Reserved)
High Low Low (Undefined, Reserved)
High Low High Supervisor Data
High High Low Supervisor Program
High High High Interrupt Acknowledge
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The clock input is a TTL-compatible signal that is internally buffered for development of the internal
clocks needed by the processor. The clock input shall be a constant frequency.

4.1.10 Ve and GND

Power is supplied to the processor using these two signals. VCC is power and GND is the ground

connection.

4.1.11 Signal Summary

Table 4-3 is a summary of all the signals discussed in the previous paragraphs.

Table 4-3. Signal Summary

Hi-Z
Signal Name Mnemnoic Input/Output | Active State on HALT | on BGACK

Address Bus AO-A19 Output High Yes Yes
Data Bus DO-D7 Input/Output High Yes Yes
Address Strobe AS Output Low No Yes
Read/Write R/W Output Read-High No Yes

Write-Low No Yes
Data Strobes DS Qutput Low No Yes
Data Transfer Acknowledge DTACK Input Low No No
Bus Request BR Input Low No No
Bus Grant BG Qutput Low No No
Bus Grant Acknowledge* * BGACK Input Low No No
Interrupt Priority Level TPLx Input Low No No
Bus Error BERR Input Low No No
Reset RESET Input/Output Low No* No*
Halt HALT Input/Output Low No* No*
Enable E Output High No No
Valid Peripheral Address VPA Input Low No No
Function Code Output FCO, FC1, FC2 Output High No Yes
Clock CLK Input High No No
Power Input Vee Input - — -
Ground GND Input — — —
*Open Drain

* *52-Pin Version Only
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4.2 BUS OPERATION

The following paragraphs explain control signal and bus operation during data transfer operations,
bus arbitration, bus error and halt conditions, and reset operation.

4.2.1 Data Transfer Operations

Transfer of data between devices involves the following leads:
® Address bus A0 through A19
® Data bus DO through D7
® Control signals

The address and data buses are separate non-multiplexed parallel buses. Data transfer is accom-
plished with an asynchronous bus structure that uses handshakes to ensure the correct movement
of data. In all cycles, the bus master assumes responsibility for deskewing all signals it issues at both
the start and end of a cycle. In addition, the bus master is responsible for deskewing the
acknowledge and data signals from the slave device.

The following paragraphs explain the read, write, and read-modify-write cycles. The indivisible
read-modify-write cycle is the method used by the MC68008 for interlocked multiprocessor
communications.

NOTE
The terms assertion and negation will be used extensively. This is done to avoid con-
fusion when dealing with a mixture of “"active-low’’ and "‘active-high’’ signals. The
term assert or assertion is used to indicate that a signal is active or true independent
of whether that voltage is low or high. The term negate or negation is used to indi-
cate that a signal is inactive or false.

4.2.1.1 READ CYCLE. During a read cycle, the processor receives data from the memory or a
peripheral device. The processor reads bytes of data in all cases. If the instruction specifies a word
(or double word) operation, the processor reads both bytes. When the instruction specifies byte
operation, the processor uses AO to determine which byte to read and then issues data strobe.

A word read cycle flowchart is given in Figure 4-3. A byte read cycle flowchart is given in Figure 4-4.
Read cycle timing is given in Figure 4-5. Figure 4-6 details words and byte read cycle operations.

4.2.1.2 WRITE CYCLE. During a write cycle, the processor sends data to either the memory or a
peripheral device. The processor writes bytes of data in all cases. If the instruction specifies a word
operation, the processor writes both bytes. When the instruction specifies a byte operation, the
processor uses A0 to determine which byte to write and then issues the data strobe. A word write
cycle flowchart is given in Figure 4-7. A byte write cycle flowchart is given in Figure 4-8. Write cycle
timing is given in Figure 4-5. Figure 4-9 details word and byte write cycle operation.

4.2.1.3 READ-MODIFY-WRITE CYCLE. The read-modify-write cycle performs a byte read,
modifies the data in the arithmetic-logic unit, and writes the data back to the same address. In the
MCB8008, this cycle is indivisible in that the address strobe is asserted throughout the entire cycle.
The test and set (TAS) instruction uses this cycle to provide meaningful communication between
processors in a multiple processor environment. This instruction is the only instruction that uses the
read-modify-write cycle and since the test and set instruction only operates on bytes, all read-
modify-write cycles are byte operations. A read-modify-write cycle flowchart is given in Figure 4-10
and a timing diagram is given in Figure 4-11.
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Figure 4-3. Word Read Cycle Flowchart




BUS MASTER SLAVE
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Figure 4-4. Byte Read Cycle Flowchart

SO S1 S2 S3 S4 Sb S6 S7 SO S1.S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S84 w w w w S5 S6 S7
CLK

FCO-FC2 :D( X A
AO-AT9 ::)—( Y Dl
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’,4 Read ::: Write >[|: Slow Read ———-)‘

Figure 4-5. Read and Write Cycle Timing Diagram
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[<———High Byte———}€——— Low Byte———3-|«———8yte Read——>| o

Figure 4-6. Word and Byte Read Cycle Timing

4.2.2 Bus Arbitration
Bus arbitration on the 52-pin version of the MC68008 is identical to that on the MC68000.

Bus arbitration on the 48-pin version of the MC68008 has been modified from that on the MC68000.
It is controlled by the same finite state machine as on the MC68000, but because the BGACK input
signal is not bonded out to a pin and is, instead, permanently negated internally, the bus arbitration
becomes a two-wire handshake circuit. Therefore, in reading the following paragraphs for a
description of bus arbitration on the 48-pin version of the MC68008, the BGACK signal should be
considered permanently negated.

Bus arbitration is a technique used by master-type devices to request, be granted, and acknowledge
bus mastership. In its simplest form, it consists of the following:
1. asserting a bus mastership request,
2. receiving a grant that the bus is available at the end of the current cycle, and
3. on the 52-pin version of the MC68008 only, acknowledging that mastership has been
assumed.
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Figure 4-7. Word Write Cycle Flowchart
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Figure 4-8. Byte Write Cycle Flowchart

SO S71 82 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 SO S1.S2 S3 S4 S5 S6 S7 SO _
CLK

Feorc2~ X X Y X i
A0~ I\ ~ — -

ke Word Wite —————————| .
fe———High Byte———>|&———Low Byte———>}«———Byte Write ——>|

Figure 4-9. Word and Byte Write Cycle Timing
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Figure 4-10. Read-Modify-Write Cycle Flowchart
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Figure 4-11. Read-Modify-Write Cycle Timing

Flowcharts showing the detail involved in a request from a single device are illustrated in Figure 4-12
for the 48-pin version and Figure 4-13 for the 52-pin version. Timing diagrams for the same opera-
tion are given in Figure 4-14 and Figure 4-15. This technique allows processing of bus requests dur-
ing data transfer cycles.

The timing diagram shows that the bus request is negated at the time that an acknowledge is
asserted. This type of operation would be true for a system consisting of the processor and one
device capable of bus mastership. In systems having a number of devices capable of bus master-
ship, the bus request line from each device is wire ORed to the processor. In this system, it is easy
to see that there could be more than one bus request being made. The timing diagram shows that
the bus grant signal is negated a few clock cycles after the transition of the acknowledge (BGACK)
signal.

However, if the bus requests are still pending, the processor will assert another bus grant within a
few clock cycles after it was negated. This additional assertion of bus grant allows external arbitra-
tion circuitry to select the next bus master before the current bus master has completed its re-
quirements. The following paragraphs provide additional information about the three steps in the
arbitration process.

4.2.2.1 REQUESTING THE BUS. External devices capable of becoming bus masters request the
bus by asserting the bus request (BR) signal. This is a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some external device
requires control of the external bus. The processor is effectively at a lower bus priority level than the
external device and will relinquish the bus after it has completed the last bus cycle it has started.

On the 52-pin version, when no acknowledge is received before the bus request signal goes inac-

tive, the processor will continue processing when it detects that the bus request is inactive. This
allows ordinary processing to continue if the arbitration circuitry responded to noise inadvertently.
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REQUESTING DEVICE
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Figure 4-12. Bus Arbitration Cycle Flowchart for the 48-Pin Version
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Figure 4-13. Bus Arbitration Cycle Flowchart for the 52-Pin Version
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Figure 4-14. Bus Arbitration Timing for the 48-Pin Version
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Figure 4-15. Bus Arbitration Timing for the 52-Pin Version
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4.2.2.2 RECEIVING THE BUS GRANT. The processor asserts bus grant (BG) as soon as possible.
Normally this is immediately after internal synchronization. The only exception to this occurs when
the processor has made an internal decision to execute the next bus cycle but has not progressed
far enough into the cycle to have asserted the address strobe (AS) signal. In this case, bus grant will
be delayed until AS is asserted to indicate to external devices that a bus cycle is being executed.

The bus grant signal may be routed through a daisy-chained network or through a specific priority-
encoded network. The processor is not affected by the external method of arbitration as long as the
protocol is obeyed.

4.2.2.3 ACKNOWLEDGEMENT OF MASTERSHIP (52-PIN VERSION OF MC68008 ONLY). Upon
receiving a bus grant, the requesting device waits until address strobe, data transfer acknowledge,
and bus grant acknowledge are negated before issuing its own BGACK. The negation of the ad-
dress strobe indicates that the previous master has completed its cycle; the negation of bus grant
acknowledge indicates that the previous master has released the bus. (While address strobe is
asserted, no device is allowed to "break into’ a cycle.) The negation of data transfer acknowledge
indicates the previous slave has terminated its connection to the previous master. Note that in some
applications data transfer acknowledge might not enter into this function. General purpose devices
would then be connected such that they were only dependent on address strobe. When bus grant
acknowledge is issued, the device is a bus master until it negates bus grant acknowledge. Bus grant
acknowledge should not be negated until after the bus cycle(s) is (are) completed. Bus mastership
is terminated at the negation of bus grant acknowledge.

The bus request from the granted device should be dropped after bus grant acknowledge is
asserted. If a bus request is still pending, another bus grant will be asserted within a few clocks of
the negation of the bus grant. Refer to 4.2.3 Bus Arbitration Control Unit. Note that the processor
does not perform any external bus cycles before it re-asserts bus grant.

4.2.3 Bus Arbitration Control

The bus arbitration control unit in the MC68008 is implemented with a finite state machine. A state
diagram of this machine is shown in Figure 4-16 for both pin versions of the MC68008. All asyn-
chronous signals to the MC68008 are synchronized before being used internally. This synchroniza-
tion is accomplished in a maximum of one cycle of the system clock, assuming that the asyn-
chronous input setup time (#47) has been met (see Figure 4-17). The input signal is sampled on the
falling edge of the clock and is valid internally after the next falling edge.

As shown in Figure 4-16, input signals labeled R and A are internally synchronized on the bus re-
quest and bus grant acknowledge pins respectively. The bus grant output is labeled G and the inter-
nal three-state control signal T. If T is true, the address, data, and control buses are placed in a
high-impedance state when AS is negated. All signals are shown in positive logic (active high)
regardless of their true active voltage level. State changes (valid outputs) occur on the next rising
edge after the internal signal is valid.
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(a) State Diagram for the 48-Pin Version of MC68008

R

e
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R

(b) State Diagram for the 52-Pin Version of MC68008

RA NOTES:

1. State machine will not change if the bus

is SO or S1. Refer to 4.2.3 Bus

Arbitration Contol.

2. The address bus will be placed in the high-
impedance state if T is asserted and AS
is negated.

Figure 4-16. MC68008 Bus Arbitration Unit State Diagram

R=Bus Request Internal
A= Bus Grant Acknowledge Internal RA
G=Bus Grant
T=Three-State Control to

Bus Control Logic2
X=Don’t Care
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Figure 4-17. Timing Relationship of External Asynchronous Inputs to Internal Signals

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in Figure
4-18. The bus arbitration sequence while the bus is inactive (i.e., executing internal operations such
as a multiply instruction) is shown in Figure 4-19.

Bus Three Stated
BG Asserted
BR Valid Internal

BR Sampled
BR Asserted4¢ l

Bus Released from Three State and
Processor Starts Next Bus Cycle
BGACK Negated Internal

CLK -
‘ﬁ: S0 S1.S2 S3 54 S5 S6 S7 / SO S1 S2 S354 S5 56 S7 50 ST _

BG \ ’ B
BGACK _ \ / .
FCO-FC2 X ~ - { X::
AAB — ) { DG
AS - A A
ws- N~/ A Y
ms- 0 /™ A A
RIW ~ 7\ < :
DTACK _ \ / /T
DO-D15 _ > "

<«——— Processor ————————3»}€———— Alternate Bus Master —————w}ag————— Processor —————3»

Figure 4-18. Bus Arbitration Timing Diagram—Processor Active
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popts . ————__ ) ]
<€— Processor ————H(—Bus Inactive—"k— Alternate Bus Master-——)f(— Processor =3

Figure 4-19. Bus Arbitration Timing Diagram— Bus Inactive

If a bus request is made at a time when the MPU has already begun as bus cycle but AS has not
been asserted (bus state S0), BG will not be asserted on the next rising edge. Instead, BG will be
delayed until the second rising edge following its internal assertion. This sequence is shown in
Figure 4-20.

4.2.4 Bus Error and Halt Operation

In a bus architecture that requires a handshake from an external device, the possibility exists that
the handshake might not occur. Since different systems will require a different maximum response
time, a bus error input is provided. External circuitry must be used to determine the duration
between address strobe and data transfer acknowledge before issuing a bus error signal. When a
bus error signal is received, the processor has two options: initiate a bus error exception sequence
or try running the bus cycle again.
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Figure 4-20. Bus Arbitration Timing Diagram— Special Case

4.2.4.1 EXCEPTION SEQUENCE. When the bus error signal is asserted, the current bus cycle is ter-
minated. AS will be negated 2.5 clock periods after BERR is recognized. See 4.4 ASYN-
CHRONOUS VERSUS SYNCHRONOUS OPERATION for more information. As long as BERR re-
mains asserted, the data and address buses will be in the high-impedance state. When BERR is
negated, the processor will begin stacking for exception processing. The sequence is composed of
the following elements:

1. Stacking the program counter and status register.

2. Stacking the error information.

3. Reading the bus error vector table entry.

4. Executing the bus error handler routine.

The stacking of the program counter and the status register is the same as if an interrupt had occur-
red. Several additional items are stacked when a bus error occurs. These items are used to deter-
mine the nature of the error and correct it, if possible. The processor loads the new program
counter from the bus error vector. A software bus error handler routine is then executed by the pro-
cessor. Refer to 5.2 EXCEPTION PROCESSING for additional information.
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4.2.4.2 RE-RUNNING THE BUS CYCLE. When the processor receives a bus error signal during a
bus cycle and the HALT pin is being driven by an external device, the processor enters the re-run se-
quence. Figure 4-21 is a timing diagram for re-running the bus cycle.

The processor terminates the bus cycle, then puts the address and data output lines in the high-
impedance state. The processor remains ‘“halted,” and will not run another bus cycle until the halt
signal is removed by external logic. Then the processor will re-run the previous cycle using the same
function codes, the same data (for a write operation), and the same controls. The bus error signal
should be removed at least one clock cycle before the halt signal is removed.

NOTE
The processor will not re-run a read-modify-write cycle. This restriction is made to
guarantee that the entire cycle runs correctly and that the write operation of a test-
and-set operation is performed without ever releasing AS. If BERR and HALT are
asserted during a read-modify-write bus cycle, a bus error operation results.

4.2.4.3 HALT OPERATION WITH NO BUS ERROR. The halt input signal to the MC68008 performs
a halt/run/single-step function in a similar fashion to the M6800 halt function. The halt and run
modes are somewhat self explanatory in that when the halt signal is constantly active the processor
“halts” (does nothing) and when the halt signal is constantly inactive the processor “‘runs’ (does
something). HALT operation timing is shown in Figure 4-22.

_ SO S1 S2 S3 S4 S5 S6 S7 SO S1 52 S3 S4 S5 56 S7 S0 S1
CLK

Feorcz X X X
ICISEIED o ¢ -

N

- >1 clock -

I: Read *}1 Halt ‘:‘ Rerun ;{

Figure 4-21. Re-Run Bus Cycle Timing Information
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CLK
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AALT \ /
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| < Read |

Figure 4-22, HALT Operation Timing Diagram

The single-step mode is derived from correctly timed transitions on the halt signal input. It forces
the processor to execute a single bus cycle by entering the ““run”’ mode until the processor starts a
bus cycle then changing to the “halt’”” mode. Thus, the single-step mode allows the user to proceed
through (and therefore debug) processsor operations one bus cycle at a time.

Figure 4-23 details the timing required for correct single-step operations. Some care must be exer-
cised to avoid harmful interactions between the bus error signal and the HALT pin when using the
single-cycle mode as a debugging tool. This is also true of interactions between the halt and reset
lines since these can reset the machine (see 4.2.4 Reset Operation).

When the processor completes a bus cycle after recognizing that the halt signal is active, the
address and data bus signals are put in the high-impedance state.

While the processor is honoring the halt request, bus arbitration performs as usual. That is, halting
has no effect on bus arbitration. It is the bus arbitration function that removes (i.e., three-states)
the control signals from the bus.

The halt function and the hardware trace capability allow the hardware debugger to trace single bus

cycles or single instructions at a time. These processor capabilities, along with a software debug-
ging package, give total debugging flexibility.
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Figure 4-23. HALT Signal Single-Step Operation Timing Characteristics

4.2.4.4 DOUBLE BUS FAULTS. When a bus error exception occurs, the processor will attempt to
stack several words containing information about the state of the machine. If a bus error exception
occurs during the stacking operation, there have been two bus errors in a row. This is commonly
referred to as a double bus fault. When a double bus fault occurs, the processor will halt. Once a
bus error exception has occurred, any bus error exception occurring before the execution of the
next instruction constitutes a double bus fault. Figure 4-24 is a diagram of the bus error timing.

Note that a bus cycle which is re-run does not constitute a bus error exception, and does not contri-
bute to a double bus fault. Note also that this means that as long as the external hardware requests
it, the processor will continue to re-run the same bus cycle.

The bus error pin also has an effect on processor operation after the processor receives an external
reset input. The processor reads the vector table after a reset to determine the address to start pro-
gram execution. If a bus error occurs while reading the vector table (or at any time before the first
instruction is executed), the processor reacts as if a double bus fault has occurred and it halts. Only
an external reset will start a halted processor.

4.2.5 Reset Operation

The reset signal is a bidirectional signal that allows either the processor or an external signal to reset
the system. Figure 4-25 is a timing diagram for processor generated reset operation.
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When the reset and halt lines are driven it is recognized as an entire system reset, including the pro-
cessor. For an external reset, both the HALT and RESET lines must be asserted to ensure total reset
of the processor. Timing diagram for system reset is shown in Figure 4-26. The processor responds
by reading the reset vector table entry (vector number zero, address $000000) and loads it into the
supervisor stack pointer (SSP). Vector table entry number one at address $000004 is read next and
loaded into the program counter. The processor initializes the status register to an interrupt level of
seven. No other registers are affected by the reset sequence.

When a reset instruction is executed, the processor drives the reset pin for 124 clock periods. In this
case, the processor is trying to reset the rest of the system. Therefore, there is no effect on the
internal state of the processor. All of the processor’s internal registers and the status register are
unaffected by the execution of a reset instruction. All external devices connected to the reset line
will be reset at the completion of the reset instruction.

Asserting the reset and halt lines for 10 clock cycles will cause a processor reset, except when VCC

is initially applied to the processor. In this case, an external reset must be applied for at least 100
milliseconds allowing stabilization of the on-chip circuitry and system clock.

xRV

Plus 6 Volts
Vee —/ .

l&—t >100 Milliseconds —3»].
RESET 1 |
HALT 1 |

&——>t<4 Clocks e 1>
Bus Cycies - XXXXXXXXKXXX- XXX
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NOTES:
1) Internal start-up time 4) PC High read in here Bus State Unknown:)()OO(

2) SSP High read in here 5) PC Low read in here

3) SSP Low read in here  6) First instruction fetched here  All Control Signals Inactive

Data Bus in Read Mode:
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Figure 4-26. System Reset Timing Diagram

4.3 THE RELATIONSHIP OF DTACK, BERR, AND HALT

In order to properly control termination of a bus cycle for a re-run or a bus error condition, DTACK,
BERR, and HALT should be asserted and negated on the rising edge of the MC68008 clock. This
will assure that when two signals are asserted simultaneously, the required setup time (#47) for both
of them will be met during the same bus state.

This, or some equivélent precaution, should be designed external to the MC68008. Parameter #48 is

intended to ensure this operation in a totally asynchronous system, and may be ignored if the above
conditions are met,
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The preferred bus cycle terminations may be summarized as follows (case numbers refer to
Table 4-4):

Normal Termination: DTACK occurs first (case 1).
Halt Termination: HALT is asserted at same time, or precedes DTACK (no BERR) cases 2
and 3.

Bus Error Termination: BERR is asserted in lieu of, at same time, or preceding DTACK (Case
4); BERR negated at same time, or after DTACK.

Re-Run Termination: HALT and BERR asserted at the same time, or. before DTACK (cases 5
and 6); HALT must be held at least one cycle after BERR.

Table 4-4 details the resulting bus cycle termination under various combinations of control signal se-
quences. The negation of these same control signals under several conditions is shown in Table 4-5
(DTACK is assumed to be negated normally in all cases; for correct results, both DTACK and BERR
should be negated when address strobe is negated).

EXAMPLE A:
A system uses a watch-dog timer to terminate accesses to unpopulated address space.
The timer asserts DTACK and BERR simultaneously after time out (case 4).

EXAMPLE B:
A system uses error detection on RAM contents. Designer may (a) delay DTACK until
data verified, and return BERR and HALT simultaneously to re-run error cycle (case 5), or
if valid, return DTACK; (b) delay DTACK until data verified, and return BERR at same time
as DTACK if data in error (case 4); (c) return DTACK prior to data verification, as
described in previous section. If data invalid, BERR is asserted (case 1) in next cycle.
Error-handling software must know how to recover error cycle.

4.4 ASYNCHRONOUS VERSUS SYNCHRONOUS OPERATION

4.4.1 Asynchronous Operation

To achieve clock frequency independence at a system level, the MC68008 can be used in an asyn-
chronous manner. This entails using only the bus handshake lines (AS, DS, DTACK, BERR, HALT,
and VPA) to control the data transfer. Using this method, AS signals the start of a bus cycle and the
data strobes are used as a condition for valid data on a write cycle. The slave device {(memory or
peripheral) then responds by placing the requested data on the data bus for a read cycle or latching
data on a write cycle and asserting the data transfer acknowledge signal (DTACK) to terminate the
bus cycle. If no slave responds or the access is invalid, external control logic asserts the BERR, or
BERR and HALT signal to abort or rerun the bus cycle.

The DTACK signal is allowed to be asserted before the data from a slave device is valid on a read
cycle. The length of time that DTACK may precede data is given as parameter #31 and it must be
met in any asynchronous system to insure that valid data is latched into the processor. Notice that
there is no maximum time specified from the assertion of AS to the assertion of DTACK. This is
because the MPU will insert wait cycles of one clock period each until DTACK is recognized.
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Table 4-4. DTACK, BERR, and HALT Assertion Results

Asserted on Rising
Case | Control | Edge of State
No. Signal N N+2 Result
DTACK A S Normal cycle terminate and continue.
1 BERR NA X
AALT NA X
DTACK A S Normal cycle terminate and halt. Continue
2 BERR NA X when HALT removed.
HAL A S
DTACK NA A Normal cycle terminate and halt. Continue
3 BERR NA NA | when HALT removed.
HALT A S
DTACK X X Terminate and re-run.
4 BERR A S
AALCT NA NA
DTACK X X Terminate and re-run.
5 BERR A S
HAACT A S
DTACK NA X Terminate and re-run when HALT removed.
6 BERR NA A
HALT A S
Legend:

N — the number of the current even bus state (e.g., S4, S6, etc.)

A — signal is asserted in this bus state

NA — signal is not asserted in this state

X — don't care

S — signal was asserted in previous state and remains asserted in this state

Table 4-5. BERR and HALT Negation Results

Conditions of Negated on Rising
Termination in Control Edge of State
Table 4-4 Signal N N+2 Results — Next Cycle
BERR [} or ® | Takes bus error trap.
Bus Error AACT ° or .
Re-run BERR [ ] or ® | lllegal sequence; usually traps to
HALT [ vector number 0.
BERR [ ] Re-runs the bus cycle.
Re-run AT °
BERR [ ] May lengthen next cycle.
Normal TALT ° or °
Normal BERR ® | If next cycle is started it will
HALT ° or___none| be terminated as a bus error.

® = Signal is negated in this bus state.
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4.4.2 Synchronous Operation

To allow for those systems which use the system clock as a signal to generate DTACK and other
asynchronous inputs, the asynchronous input setup time is given as parameter #47. If this setup is
met on an input, such as DTACK, the processor is guaranteed to recognize that signal on the next
falling edge of the system clock. However, the converse is not true—if the input signal does not
meet the setup time it is not guaranteed not to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data will be latched into the processor (on a read cycle) on the next falling
edge provided that the data meets the setup time given as parameter #27. Given this, parameter #31
may be ignored. Note that if DTACK is asserted, with the required setup time, before the falling
edge of S4, no wait states will be incurred and the bus cycle will run at its maximum speed of four
clock periods.

NOTE

During an active bus cycle, VPA and BERR are sampled on every falling edge of the clock
starting with SO. DTACK is sampled on every falling edge of the clock starting with S4
and data is latched on the falling edge of S6 during a read. The bus cycle will then be ter-
minated in S7 except when BERR is asserted in the absence of DTACK, in which case it
will terminate one clock cycle later in S9.
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SECTION 5
PROCESSING STATES

This section describes the actions of the MC68008 which are outside the normal processing asso-
ciated with the execution of instructions. The functions of the bits in the supervisor portion of the
status register are covered: the supervisor/user bit, the trace enable bit, and the processor interrupt
priority mask. Finally, the sequence of memory references and actions taken by the processor on
exception conditions is detailed.

The MC68008 is always in one of three processing states: normal, exception, or halted. The normal
processing state is that associated with instruction execution; the memory references are to fetch
instructions and operands, and to store results. A special case of the normal state is the stopped
state which the processor enters when a STOP instruction is executed. In this state, no further
memory references are made.

The exception processing state is associated with interrupts, trap instructions, tracing, and other
exceptional conditions. The exception may be internally generated by an instruction or by an
unusual condition arising during the execution of an instruction. Externally, exception processing
can be forced by an interrupt, by a bus error, or by a reset. Exception processing is designed to pro-
vide an efficient context switch so that the processor may handle unusual conditions.

The halted processing state is an indication of catastrophic hardware failure. For example, if during
the exception processing of a bus error another bus error occurs, the processor assumes that the
system is unusable and halts. Only an external reset can restart a halted processor. Note that a pro-
cessor in the stopped state is not in the halted state, nor vice versa.

5.1 PRIVILEGE STATES

The processor operates in one of two states of privilege: the ""user”’ state or the ““supervisor’” state.
The privilege state determines which operations are legal, is used by the external memory manage-
ment device to control and translate accesses, and is used to choose between the supervisor stack
pointer and the user stack pointer in instruction references.

The privilege state is a mechanism for providing security in a computer system. Programs should
access only their own code and data areas, and ought to be restricted from accessing information
which they do not need and must not modify.

The privilege mechanism provides security by allowing most programs to execute in user state. In
this state, the accesses are controlled, and the effects on other parts of the system are limited. The
operating system executes in the supervisor state, has access to all resources, and performs the
overhead tasks for the user state programs.
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5.1.1 Supervisor State

The supervisor state is the higher state of privilege. For instruction execution, the supervisor state is
determined by the S bit of the status register; if the S bit is asserted (high) or exception processing
is invoked, the processor is in the supervisor state. All instructions can be executed in the supervisor
state. The bus cycles generated by instructions executed in the supervisor state are classified as
supervisor references. While the processor is in the supervisor privilege state, those instructions
which use either the system stack pointer implicitly or address register seven explicitly access the
supervisor stack pointer.

5.1.2 User State

The user state is the lower state of privilege and is controlled by the S bit of the status register. If the
S bit is negated (low), the processor is executing instructions in the user state. The bus cycles
generated by an instruction executed in the user state are classified as user state references. This
allows an external memory management device to translate the address and to control access to
protected portions of the address space. While the processor is in the user privilege state, those in-
structions which use either the system stack pointer implicitly, or address register seven explicitly,
access the user stack pointer.

Most instructions execute the same in user state as in the supervisor state. However, some instruc-
tions which have important system effects are made privileged. User programs are not permitted to
execute the STOP instruction, or the RESET instruction. To ensure that a user program cannot
enter the supervisor state except in a controlled manner, the instructions which modify the whole
status register are privileged. To aid in debugging programs which are to be used as operating
systems, the move to user stack pointer (MOVE USP) and move from user stack pointer (MOVE
from USP) instructions are also privileged.

5.1.3 Privilege State Changes

Once the processor is in the user state and executing instructions, only exception processing can
- change the privilege ‘state. During exception processing, the current setting of the S bit of the
status register is saved and the S bit is asserted, putting the processor in the supervisor state.
Therefore, when instruction execution resumes at the address specified to process the exception,
the processor is in the supervisor privilege state.

5.1.4 Reference Classification

When the processor makes a reference, it classifies the kind of reference being made, using the en-
coding on the three function code output lines. This allows external translation of addresses, con-
trol of access, and differentiation of special processor states, such as interrupt acknowledge. Table
5-1 lists the classification of references.

5.2 EXCEPTION PROCESSING

Before discussing the details of interrupts, traps, and tracing, a general description of exception
processing is in order. The processing of an exception occurs in four steps, with variations for dif-
ferent exception causes. During the first step, a temporary copy of the status register is made, and
the status register is set for exception processing. In the second step the exception vector is deter-
mined, and the third step is the saving of the current processor context. In the fourth step a new
context is obtained, and the processor switches to instruction processing.
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Table 5-1. Reference Classification

Function Code Output

FC2

FC1

FCO

Reference Class

(Unassigned)

User Data

User Program

(Unassigned)

(Unassigned)

Supervisor Data

Supervisor Program

—~|l=|=]=-|o]lo|o|o

—|=lojo|-|=-|c|e

ol —-|ol=lola]lo

Interrupt Acknowledge

5.2.1 Exception Vectors

Exception vectors are memory locations from which the processor fetches the address of a routine
which will handle that exception. All exception vectors are two words in length (Figure b-1), except
for the reset vector, which is four words. All exception vectors lie in the supervisor data space, ex-
cept for the reset vector which is in the supervisor program space. A vector number is an 8-bit
number which, when multiplied by four, gives the address of an exception vector. Vector numbers
are generated internally or externally, depending on the cause of the exception. In the case of vec-
tored interrupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-bit vector
number (Figure 5-2) to the processor on data bus lines DO through D7. The processor translates the
vector number into a full 32-bit address, as shown in Figure 5-3. The memory layout for exception

vectors is given in Table 5-2.

<31:24> (Byte 0)
Word 0 | New Program Counter (MSWord) —_—
<23:16> (Byte 1)
<15:8> (Byte 2)
Word 1 | New Program Counter (LSWord)
(Byte 3)

<7:0>

A1=0, A0=0

A1=0,A0=1

Al=1, A0=0

Al=1, A0O=1

Figure 5-1. Format of Vector Table Entries

D7

DO

[v]w][w]w][w][w][wn]w]

Where: v7 is the MSB of the Vector Number

V0 is the LSB of the Vector Number

Figure 5-2. Vector Number Format

A31

A0 A9

A8

A6 Ab

1-236

A4 A3

Al

All Zeros

]v7Lv6lv5Iv4[v3Tv2Iv1]v0I0|OI

Figure 5-3. Vector Number Translated to an Address
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Table 5-2. Vector Table

Vector Address .
Assignment
Number(s) | Dec Hex |Space
0 0 000 SP Reset: Initial SSP
- 4 004 SP Reset: Initial PC
2 8 008 SD Bus Error
3 12 0oC SD Address Error
4 16 010 SD lilegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK  Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12* 48 030 SD (Unassigned, Reserved)
13* 52 034 SD (Unassigned, Reserved)
14* 56 038 SD (Unassigned, Reserved)
16 60 03C SD Uninitialized Interrupt Vector
16-23* 64 04C SD (Unassigned, Reserved)
95 05F -
24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector
32-47 128 080 SD TRAP Instruction Vectors
19 0BF -
48-63* 192 0Co SD (Unassigned, Reserved)
255 OFF -
64-255 256 100 sD User Interrupt Vectors
1023 | 3FF -

*Vector numbers 12, 13, 14, 16 through 23, and 48 through 63 are re-
served for future enhancements by Motorola. No user peripheral devices
should be assigned these numbers.

As shown in Table 5-2, the memory layout is 512 words long (1024 bytes). It starts at address 0 and
proceeds through address 1023. This provides 255 unique vectors; some of these are reserved for
TRAPS and other system functions. Of the 255, there are 192 reserved for user interrupt vectors.
However, there is no protection on the first 64 entries, so user interrupt vectors may overlap at the
discretion of the systems designer.

5.2.2 Kinds of Exceptions

Exceptions can be generated by either internal or external causes. The externally generated excep-
tions are the interrupts and the bus error and reset requests. The interrupts are requests from
peripheral devices for processor action while the bus error and reset inputs are used for access con-
trol and processor restart. The internally generated exceptions come from instructions, or from
address errors or tracing. The trap (TRAP), trap on overflow (TRAPV), check register against
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bounds (CHK), and divide (DIV) instructions all can generate exceptions as part of their instruction
execution. In addition, illegal instructions, word fetches from odd addresses and privilege violations
cause exceptions. Tracing behaves like a very high priority, internally generated interrupt after each
instruction execution.

5.2.3 Exception Processing Sequence

Exception processing occurs in four identifiable steps. In the first step, an internal copy is made of
the status register. After the copy is made, the S bit is asserted, putting the processor into the
supervisor privilege state. Also, the T bit is negated which will allow the exception handler to ex-
ecute unhindered by tracing. For the reset and interrupt exceptions, the interrupt priority mask is
also updated.

In the second step, the vector number of the exception is determined. For interrupts, the vector
number is obtained by a processor fetch, classified as an interrupt acknowledge. For all other ex-
ceptions, internal logic provides the vector number. This vector number is then used to generate the
address of the exception vector.

The third step is to save the current processor status, except for the reset exception. The current
program counter value and the saved copy of the status register are stacked using the supervisor
stack pointer. The program counter value stacked usually points to the next unexecuted instruction,
however, for bus error and address error, the value stacked for the program counter is unpredict-
able, and may be incremented from the address of the instruction which caused the error. Addi-
tional information defining the current context is stacked for the bus error and address error excep-
tions.

The last step is the same for all exceptions. The new program counter value is fetched from the ex-
ception vector. The processor then resumes instruction execution. The instruction at the address
given in the exception vector is fetched, and normal instruction decoding and execution is started.

5.2.4 Multiple Exceptions

These paragraphs describe the processing which occurs when multiple exceptions arise
simultaneously. Exceptions can be grouped according to their occurrence and priority. The group 0
exceptions are reset, address error, and bus error. These exceptions cause the instruction currently
being executed to be aborted, and the exception processing to commence within two clock cycles.

The group 1 exceptions are trace and interrupt, as well as the privilege violations and illegal instruc-
tions. The trace and interrupt exceptions allow the current instruction to execute to completion, but
pre-empt the execution of the next instruction by forcing exception processing to occur (privilege
violations and illegal instructions are detected when they are the next instruction to be executed).
The group 2 exceptions occur as part of the normal processing of instructions. The TRAP, TRAPV,
CHK, and zero divide exceptions are in this group. For these exceptions, the normal execution of an
instruction may lead to exception processing.

Group O exceptions have highest priority, while group 2 exceptions have lowest priority. Within
group O, reset has highest priority, followed by address error and then bus error. Within group 1,
trace has priority over external interrupts, which in turn takes priority over illegal instruction and
privilege violation. Since only one instruction can be executed at a time, there is no priority relation
within group 2.

5-6



The priority relation between two exceptions determines which is taken, or taken first, if the condi-
tions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP instruction, the
bus error takes precedence, and the TRAP instruction processing is aborted. In another example, if
an interrupt request occurs during the execution of an instruction while the T bit is asserted, the
trace exception has priority, and is processed first. Before instruction processing resumes,
however, the interrupt exception is also processed, and instruction processing commences finally in
the interrupt handler routine. A summary of exception grouping and priority is given in Table 5-3.

Table 5-3. Exception Grouping and Priority

Group Exception Processing
Reset Exception processing begins
0 Address Error within two clock cycles
Bus Error
Trace Exception processing begins before
1 Interrupt the next instruction
lllegal
Privilege
TRAP, TRAPV, | Exception processing is started by
2 CHK, normal instruction execution
Zero Divide

5.3 EXCEPTION PROCESSING DETAILED DISCUSSION

Exceptions have a number of sources, and each exception has processing which is peculiar to it.
The following paragraphs detail the sources of exceptions, how each arises, and how each is
processed.

5.3.1 Reset

The reset input provides the highest exception level. The processing of the reset signal is designed
for system initiation, -and recovery from catastrophic failure. Any processing in progress at the time
of the reset is aborted and cannot be recovered. The processor is forced into the supervisor state,
and the trace state is forced off. The processor interrupt priority mask is set at level seven. The vec-
tor number is internally generated to reference the reset exception vector at location 0 in the super-
visor program space. Because no assumptions can be made about the validity of register contents,
in particular the supervisor stack pointer, neither the program counter nor the status register is
saved. The address contained in the first two words of the reset exception vector is fetched as the
initial supervisor stack pointer, and the address in the last two words of the reset exception vector is
fetched as the initial program counter. Finally, instruction execution is started at the address in the
program counter. The power-up/restart code should be pointed to by the-initial program counter.

The reset instruction does not cause loading of the reset vector, but does assert the reset line to
reset external devices. This allows the software to reset the system to a known state and then con-
tinue processing with the next instruction.

5.3.2 Interrupts

Seven levels of interrupts are provided by the M68000 architecture. The MC68008 supports three
interrupt levels: two, five, and seven, level seven being the highest. Devices may be chained exter-
nally within interrupt priority levels, allowing an unlimited number of peripheral devices to interrupt
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the processor. The status register contains a 3-bit mask which indicates the current processor
priority, and interrupts are inhibited for all priority levels less than or equal to the current processor
priority.

An interrupt request is made to the processor by encoding the interrupt request level on the inter-
rupt request lines; a zero indicates no interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but are made pending. Pending interrupts are
detected between instruction executions. If the priority of the pending interrupt is lower than or
equal to the current processor priority, execution continues with the next instruction and the inter-
rupt exception processing is postponed. (The recognition of level seven is slightly different, as ex-
plained in the following paragraph.)

If the priority of the pending interrupt is greater than the current processor priority, the exception
processing sequence is started. First a copy of the status register is saved, and the privilege state is
set to supervisor, tracing is suppressed, and the processor priority level is set to the level of the
interrupt being acknowledged. The processor fetches the vector number from the interrupting
device, classifying the reference as an interrupt acknowledge and displaying the level number of the
interrupt being acknowledged on the address bus. If external logic requests an automatic vectoring,
the processor internally generates a vector number which is determined by the interrupt level
number. If external logic indicates a bus error, the interrupt is taken to be spurious, and the
generated vector number references the spurious interrupt vector. The processor then proceeds
with the usual exception processing, saving the program counter and status register on the super-
visor stack. The saved value of the program counter is the address of the instruction which would
have been executed had the interrupt not been present. The content of the interrupt vector whose
vector number was previously obtained is fetched and loaded into the program counter, and normal
instruction execution commences in the interrupt handling routine. A flowchart for the interrupt
acknowledge sequence is given in Figure 5-4, a timing diagram is given in Figure 5-5, and the inter-
rupt processing sequence is shown in Figure 5-6.

PROCESSOR INTERRUPTING DEVICE

Grant the Interrupt 3 1 Request the Interrupt ]

-

Compare Interrupt Level in Processor

Status Register and Wait for

Current Instruction to Complete

2) Place Interrupt Level on A1, A2, and A3

3) Drive AO, A4-A19 High

4) Set R/W to Read -

5) Set Function Code to Interrupt - Provide the Vector Number
Acknowledge

6) Assert Address Strobe (AS)

7) Assert Data Strobe (DS)

1) Place Vector Number on DO-D7
2) Assert Data Transfer Acknowledge

A

Acquire the Vector Number

1) Latch Vector Number

2) Negate DS
3) Negate AS Release
1) Negate DTACK
l Start Interrupt Processing Jl‘

Figure 5-4. Vector Acquisition Flowchart
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SO S1 S2 S3 S4 S5 56 S7 SO St S2 S3 S4 Sb S6 S7 SO S1 S2 S3 S4 S5 S6 S7

Saplinipliniipiniginiaiininin i

Feorcz X Y X -

A0, A4-A19 ::)-( N/ N -
AP ¢ — —C

AS

. Interrupt Vector .
l<—Stack Operatnon———)!(—Numb er Acquisiti on——)[(-——Stack Operatnon—>|

Figure 5-5. Interrupt Acknowledge Cycle
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. Acquire vector number via interrupt acknowledge. . Read upper half of program counter (PC). Refer to Figure 4-3
. Convert vector number to a full 32-bit address. for word read cycle operation.
. Stack the SR and PC by successive write cycles. Refer to 6. Increment vector table address by 2 and place it on AO-A19.
Figure 4-7 for word write cycle operation. 7. Read lower half of program counter (PC).
4. Place vector table address on AO-A19. Refer to Figure 5-3 for 8. Load new program counter (PC).
9
0

WN =

address translation. . Place contents of PC on A0-A19.
. Read first instruction of service routine.

Figure 5-6. Interrupt Processing Sequence

Priority level seven is a special case. Level seven interrupts cannot be inhibited by the interrupt
priority mask, thus providing a ‘‘non-maskable interrupt’’ capability. An interrupt is generated each
time the interrupt request level changes from some lower level to level seven. Note that a level seven
interrupt may still be caused by the level comparison if the request level is a seven and the processor
priority is set to a lower level by an instruction.

5.3.3 Uninitialized Interrupt

An interrupting device asserts VPA or provides an interrupt vector during an interrupt acknowledge
cycle to the MCB8008. If the vector register of the peripheral has not been initialized, the responding
M68000 Family peripheral will provide vector 15 ($0F), the uninitialized interrupt vector. This pro-
vides a uniform way to recover from a programming error.
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5.3.4 Spurious Interrupt

If during the interrupt acknowledge cycle no device responds by asserting DTACK or VPA, the bus
error line should be asserted to terminate the vector acquisition. The processor separates the pro-
cessing of this error from bus error by fetching the spurious interrupt vector instead of the bus error
vector. The processor then proceeds with the usual exception processing.

5.3.5 Instruction Traps

Traps are exceptions caused by instructions. They arise either from processor recognition of abnor-
mal conditions during instruction execution. or from use of instructions whose normal behavior is
trapping. The TRAP instruction always forces an exception, and is useful for implementing system
calls for user programs. The TRAPV and CHK instructions force an exception if the user program
detects a runtime error, which may be an arithmetic overflow or a subscript out of bounds. The
signed divide (DIVS) and unsigned divide (DIVU) instructions will force an exception if a division
operation is attempted with a divisor of zero.

5.3.6 lllegal and Unimplemented Instructions

“lllegal instruction’ is the term used to refer to any of the word bit patterns which are not the bit
pattern of the first word of a legal instruction. During instruction execution, if such an instruction is
fetched, an illegal instruction exception occurs. Motorola reserves the right to define instructions
whose opcodes may be any of the illegal instructions. Three bit patterns will always force an illegal
instruction trap on all M68000 Family compatible microprocessors. They are: $4AFA, $4AFB, and
$4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for Motorola system products. The
third pattern, $4AFC, is reserved for customer use.

Word patterns with bits 15 through 12 equaling 1010 or 1111 are distinguished as unimplemented in-
structions and separate exception vectors are given to these patterns to permit efficient emulation.
This facility allows the operating system to detect program errors, or to emulate unimplemented in-
structions in software.

5.3.7 Privilege Violations

In order to provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user state will cause an exception. The privileged instruc-
tions are: .

STOP AND Immediate to SR

RESET EOR Immediate to SR
RTE OR Immediate to SR
MOVE to SR MOVE USP

5.3.8 Tracing

To aid in program development, the MC68008 includes a facility to allow instruction-by-instruction
tracing. In the trace state, after each instruction is executed an exception is forced, allowing a
debugging program to monitor the execution of the program under test.



The trace facility uses the T bit in the supervisor portion of the status register. If the T bit is negated
(off), tracing is disabled, and instruction execution proceeds from instruction to instruction as nor-
mal. If the T bit is asserted (on) at the beginning of the execution of an instruction, a trace exception
will be generated after the execution of that instruction is completed. If the instruction is not
executed, either because an interrupt is taken, or the instruction is illegal or privileged, the trace
exception does not occur. The trace exception also does not occur if the instruction is aborted by a
reset, bus error, or address error exception. If the instruction is indeed executed and an interrupt is
pending on completion, the trace exception is processed before the interrupt exception. If, during
the execution of the instruction, an exception is forced by that instruction, the forced exception is
processed before the trace exception.

As an extreme illustration of the above rules, consider the arrival of an interrupt during the execu-
tion of a TRAP instruction while tracing is enabled. First the trap exception is processed, then the
trace exception, and finally the interrupt exception. Instruction execution resumes in the interrupt
handler routine.

5.3.9 Bus Error

Bus error exceptions occur when the external logic requests that a bus error be processed by an
exception. The current bus cycle which the processor is making is then aborted. Regardless of
whether the processor was doing instruction or exception processing, that processing is termi-
nated, and the processor immediately begins exception processing.

Exception processing for bus error follows the usual sequence of steps. The status register is
copied, the supervisor state is entered, and the trace state is turned off. The vector number is
generated to refer to the bus error vector. Since the processor was not between instructions when
the bus error exception request was made, the context of the processor is more detailed. To save
more of this context, additional information is saved on the supervisor stack (refer to Figure 5-7).
The program counter and the copy of the status register are of course saved. The value saved for
the program counter is advanced by some amount, two to ten bytes beyond the address of the first
word of the instruction which made the reference causing the bus error. If the bus error occurred
during the fetch of the next instruction, the saved program counter has a value in the vicinity of the
current instruction, even if the current instruction is a branch, a jump, or a return instruction.
Besides the usual information, the processor saves its internal copy of the first word of the instruc-
tion being processed, and the address which was being accessed by the aborted bus cycle. Specific
information about the access is also saved: whether it was a read or a write, whether the processor
was processing an instruction or not, and the classification displayed on the function code outputs
when the bus error occurred. The processor is processing an instruction if it is in the normal state or
processing a group 2 exception; the processor is not processing an instruction if it is processing a
group 0 or a group 1 exception. Figure 5-7 illustrates how this information is organized on the super-
visor stack. Although this information is not sufficient in general to effect full recovery from the bus
error, it does allow software diagnosis. Finally, the processor commences instruction processing at
the address contained in the vector. It is the responsibility of the error handler routine to clean up
the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, address error, or reset, the pro-
cessor is halted, and all processing ceases. This simplifies the detection of catastrophic system
failure, since the processor removes itself from the system rather than destroy all memory contents.
Only the RESET pin can restart a halted processor.
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Figure 5-7. Supervisor Stack Order (Group 0)

5.3.10 Address Error

Address error exceptions occur when the processor attempts to access a word or a long word
operand or an instruction at an odd address. When the MC68008 detects an address error it
prevents assertion of DS but asserts AS to provide proper bus arbitration support. The effect is
much like an internally generated bus error, in that the bus cycle is aborted, and the processor
ceases whatever processing it is currently doing and begins exception processing. After exception
processing commences, the sequence is the same as that for bus error including the information
that is stacked, except that the vector number refers to the address error vector instead. Likewise, if
an address error occurs during the exception processing for a bus error, address error, or reset, the
processor is halted. As shown in Figure 5-8, an address error will execute a short bus cycle followed
by exception processing.

SO S1 S2 S3 S4 S5 S6 S7 SO S1 S2 S3 S4 S5 S6 S7 | S0 S152S3 $4 S5
LK _ _
R ——— D ) < -

_ [ E——
O — p ) <
. Address Error Approx. 8 .
Read————>la—
fe——Read Wie ——)'<_Clocks Idle—b'(——Wnte Stack—|
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Figure 5-8. Address Error Timing
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SECTION 6
INTERFACE WITH M6800 PERIPHERALS

Motorola’s extensive line of M6800 peripherals are compatible with the MC68008. Some of these
devices that are particularly useful are:

MC6821 Peripheral Interface Adapter MC6852 Synchronous Serial Data Adapter
-MC6840 Programmable Timer Module MC6854 Advanced Data Link Controller
MC6845 CRT Controller MC68488 General Purpose Interface Adapter

MC6850 Asynchronous Communications
Interface Adapter

To interface the synchronous M6800 peripherals with the asynchronous MC68008, the processor
modifies its bus cycle to meet the M6800 cycle requirements whenever an M6800 device address is
detected. This is possible since both processors use memory mapped |/O. Figure 6-1 is a flowchart
of the interface operation between the processor and M6800 devices.

6.1 DATA TRANSFER OPERATION

Two signals on the processor provide the M6800 interface. They are: enable (E), and valid peripheral
address (VPA). In addition, a valid memory address (VMA) signal must be provided (see 4.1.7
M6800 Peripheral Control). Enable corresponds to the E signal in existing M6800 systems. The E
clock frequency is one tenth of the incoming MC68008 clock frequency. The timing of E allows 1
megahertz peripherals to be used with an 8 megahertz MC68008. Enable has a 60/40 duty cycle;
that is, it is low for six input clocks and high for four input clocks.

M6800 cycle timing is given in Section 8. At state zero in the cycle, the address bus is in the high-
impedance state. A function code is asserted on the function code output lines. One-half clock
later, in state one, the address bus is released from the high-impedance state.

During state two, the address strobe (AS) is asserted to indicate that there is a valid address on the
address bus. If the bus cycle is a read cycle, the data strobe is also asserted in state two. If the bus
cycle is a write cycle the read/write (R/W) signal is switched to low (write) during state two. One
half clock later, in state three, the write data is placed on the data bus, and in state four the data
strobe is issued to indicate valid data on the data bus. The processor now inserts wait states until it
recognizes the assertion of VPA.

The VPA input signals the processor that the address on the bus is the address of an M6800 device
(or an area reserved for M6800 devices) and that the bus should conform to the transfer
characteristics of the M6800 bus. Valid peripheral address is derived by decoding the address bus,
conditioned by address strobe. Chip select for the M6800 peripherals should be derived by decoding
the address bus conditioned by VMA (not AS).
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Figure 6-1. MC6800 Cycle Flowchart

After recognition of VPA, the processor assures that the enable (E) is low, by waiting if necessary.
Valid memory address (provided by an external circuit similar to that of Figure 4-2) is then used as
part of the chip select equation of the peripheral. This ensures that the M6800 peripherals are
selected and deselected at the correct time. The peripheral now runs its cycle during the high por-
tion of the E signal. Figure 6-2 depicts the M6800 cycle timing using the VMA generation circuit
shown in Figure 4-2. This cycle length is dependent strictly upon when VPA is asserted in relation-
ship to the E clock.
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Figure 6-2. M6800 Cycle Timing

During a read cycle, the processor latches the peripheral data in state six. For all cycles, the pro-
cessor negates the address and data strobes one half clock cycle later in state seven, and the enable
signal goes low at this time. Another half clock later, the address bus is put in the high-impedance
state. During a write cycle, the data bus is put in the high-impedance state and the read/write signal
is switched high. The peripheral logic must remove VPA within one clock after address strobe is
negated.

DTACK should not be asserted while VPA is asserted. Notice that VMA is active low, contrasted
with the active high M6800 VMA. Refer to Figure 4-2.

6.2 AC ELECTRICAL SPECIFICATIONS

The electrical specifications for interfacing the MC68008 to M6800 Family peripherals are located in
Section 8.
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6.3 INTERRUPT INTERFACE OPERATION

During an interrupt acknowledge cycle while the processor is fetching the vector, the VPA is
asserted, the MC68008 will complete a normal M6800 read cycle as shown in Figure 6-3. The pro-
cessor will then use an internally generated vector that is a function of the interrupt being serviced.
This process is known as autovectoring. The seven autovectors are vector numbers 25 through 31
(decimal).

SO S1 S2 S3S4 S5 S6 S7 SO S1S2S3 S4 w W w w w ww w w w w W S586 S7S0

CLK

Feo-rc2 X 4 Al
pants - =< D
aras Y

RIW
oack . \___/ -
D0-D7 { )- -

VPA _ _/
VMA* _ [/ \
'1————Read Cycle :{: Autovector Operation: >=
* Externally generated

Figure 6-3. Autovector Operation Timing Diagram

Autovectoring operates in the same fashion (but is not restricted to) the M6800 interrupt sequence.
The basic difference is that there are six normal interrupt vectors and one NMI type vector. As with
both the M6800 and the MC68008's normal vectored interrupt, the interrupt service routine can be
located anywhere in the address space. This is due to the fact that while the vector numbers are
fixed, the contents of the vector table entries are assigned by the user.

Since VMA is asserted during autovectoring, the M6800 peripheral address decoding should pre-
vent unintended accesses.
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7.1 INSTRUCTION SET
The following paragraphs provide information about the addressing categories and instruction set

of the MC68008.

7.1.1 Addressing Categories

SECTION 7

INSTRUCTION SET AND EXECUTION TIMES

Effective address modes may be categorized by the ways in which they may be used. The following
classifications will be used in the instruction definitions.
If an effective address mode may be used to refer to data operands, it is
considered a data addressing effective address mode.
If an effective address mode may be used to refer to memory operands, it
is considered a memory addressing effective address mode.
If an effective address mode may be used to refer to alterable (writeable)
operands, it is considered an alterable addressing effective address mode.
If an effective address mode may be used to refer to memory operands
without an associated size, it is considered a control addressing effective
address mode.
These categories may be combined, so that additional, more restrictive, classifications may be
defined. For example, the instruction descriptions use such classifications as alterable memory or
data alterable. The former refers to those addressing modes which are both alterable and memory
addresses, and the latter refers to addressing modes which are both data and alterable. Table 7-1
shows the various categories to which each of the effective address modes belong. Table 7-2 is the
instruction set summary.

Data
Memory
Alterable

Control

Table 7-1. Effective Addressing Mode Categories

Effective Addressing Categories
Address Modes Mode Register Data Memory Control Alterable
Dn 000 Register Number X — X
An 001 Register Number — — — X
(An) 010 Register Number X X X X
(An) + 011 Register Number X X — X
—(An) 100 Register Number X X — X
d(An) 101 Register Number X X X X
d(An, ix) 110 Register Number X X X X
xxx. W m 000 X X X X
xxx.L m 001 X X X X
d(PC) m 010 X X X -
d(PC, ix) 111 on X X X -
#xxx m 100 X X - -

7-1
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Table 7-2. Instruction Set (Sheet 1 of 2)

Condition
Codes
Mnemonic Description Operation X|INjZ|V]|C
ABCD Add Decimal with Extend (Destination) 10+ (Source) 19+ x = Destination *Tul*ful*
ADD Add Binary (Destination) + (Source) — Destination NN
ADDA Add Address (Destination) + (Source) = Destination —|=1-|=]-
ADDI Add Immediate (Destination) + Immediate Data — Destination S Bl Il el
ADDQ Add Quick (Destination) + Immediate Data=—> Destination Bl el el
ADDX Add Extended (Destination) + (Source) + x — Destination o e e
AND AND Logical (Destination) A (Source) — Destination —|*|*(o]o0
ANDI AND Immediate (Destination) A Immediate Data— Destination —-|1*]*]o]o
ASL, ASR Arithmetic Shift (Destination) Shifted by < count> — Destination Ll Bl Bl e
Bce Branch Conditionally If cc then PC+d—PC —=1-1-1-
~ (< bit number>) OF Destination—Z
BCHG Test a Bit and Change ~ (< bit number>) OF Destination — o et Bl B B
< bit number> OF Destination
R ~ (< bit number>) OF Destination—2Z
BCLR Testa Bitand Clear 0— <bit number> — OF Destination 11"
BRA Branch Always PC + displacement—PC e Bl el Rl B
R ~{<bit number>) OF Destination—Z2Z
BSET Testa Bitand Set 1— <bit number> OF Destination 117
BSR Branch to Subroutine PC— —(SP), PC+d—PC ——=1—-1-1-
BTST Test a Bit ~ (< bit number>) OF Destination—Z —[={*1-[-
CHK Check Register against Bounds If Dn <0 or Dn> (<ea>) then TRAP —|*|ufufu
CLR Clear an Operand 0= Destination —|0[1{0{0
CMP Compare (Destination) — (Source) —*1**
CMPA Compare Address (Destination) — (Source) — el
CMPI Compare Immediate (Destination) — Immediate Data — ¥ **T
CMPM Compare Memory (Destination) — (Source) —[***|*
- If~ then Dn—1=>Dn; if Dn# -1
DBcc Test Condition, Decrement and Branch th%?} PC+d— PC —|=1={-1-
DIVS Signed Divide (Destination)/ (Source) — Destination —{**[*]0
DIVU Unsigned Divide (Destination)/(Source) = Destination —[*|*]*]o
EOR Exclusive OR Logical (Destination) @ (Source) — Destination —{*]*{ofo
EORI Exclusive OR Immediate (Destination) @ Immediate Data ¢ Destination —|*|*[o]o
EXG Exchange Register Rx+<— Ry —|=1={=1-
EXT Sign Extend (Destination) Sign-extended — Destination —[**|o|o0
JMP Jump Destination=—PC —-1—=1-1-1-
JSR Jump to Subroutine PC— —(SP); Destination—PC e el et e B
LEA Load Effective Address Destination— An — —
LINK Link and Allocate An= —(SP); SP—An; SP + displacement— SP - =1-1-1-
LSL, LSR Logical Shift (Destination) Shifted by <count> — Destination *1*1*lo|*
MOVE Move Data from Source to Destination (Source) = Destination —|*|*|o]o
MOVE to CCR | Move to Condition Code (Source) — CCR ol el el el
MOVE to SR | Move to the Status Register (Source) = SR MMM
MOVE from SR| Move from the Status Register SR — Destination —|=1-1-|-
MOVE USP Move User Stack Pointer USP—An; An—USP —|—|-|-|-
MOVEA Move Address (Source) = Destination —1-1-1-1-
MOVEM Move Multiple Registers f;gﬁgsz'?e‘zsiz:;gm oo 2]-
MOVEP Move Peripheral Data (Source) = Destination —|=|=|-|=

7-2
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Table 7-2. Instruction Sheet (Sheet 2 of 2)

7.1.2 Instruction Prefetch

Condition
. Codes
Mnemonic Description Operation X[NfzZ]jviC
MOVEQ Move Quick Immediate Data— Destination —|**{o}|o
MULS Signed Multiply (Destination) x (Source) — Destination —[*[*|o]o
MULU Unsigned Multiply (Destination) x (Source) = Destination *|1*lo]o
NBCD Negate Decimal with Extend 0 - (Destination) 10 — x — Destination *lul*Jul*
NEG Negate 0— (Destination) = Destination i el el el
NEGX Negate with Extend 0-— (Destination) — x — Destination i Bl B e
NOP No Operation - — —--1-
NOT Logical Complement ~ (Destination) — Destination —1*1*lojo
OR Inclusive OR Logical (Destination) v (Source) — Destination —|*[*|o {0
ORI Inclusive OR Immediate (Destination) v Immediate Data — Destination —-{*1*fo]o
PEA Push Effective Address Destination — — (SP) o it el B B
RESET Reset External Devices - — el Bl
ROL, ROR Rotate (Without Extend) (Destination) Rotated by < count> — Destination *1*lo|*
ROXL, ROXR |Rotate with Extend (Destination) Rotated by <count> — Destination | * |*[* [0 [*
RTE Return from Exception (SP)+ — SR; (SP)+ —PC M.
RTR Return and Restore Condition Codes (SP)+ —CC; (SP)+ —PC e e N
RTS Return from Subroutine (SP)+ —PC —|-1-
SBCD Subtract Decimal with Extend (Destination) 19— (Source) 19— x — Destination *lul*ul*
Scc Set According to Condition If cc then 1's— Destination else 0's = Destination | — -|=
STOP Load Status Register and Stop Immediate Data— SR; STOP i el B e
SUB Subtract Binary (Destination) — (Source) = Destination e
SUBA Subtract Address (Destination) — (Source) = Destination =
SUBI Subtract Immediate (Destination) — Immediate Data — Destination IR
SUBQ Subtract Quick (Destination) — Immediate Data— Destination IR
SUBX Subtract with Extend (Destination) — (Source) — x — Destination e
SWAP Swap Register Halves Register [31:16] < Register [15:0] —|{*1*fo}o
TAS Test and Set an Operand (Destination) Tested— CC; 1—[7] OF Destination | —[* |* |0 |0
TRAP Trap PC— —(SSP); SR— —(SSP); (Vector) —PC —|=-1-1-1-
TRAPV Trap on Overflow If V then TRAP — — |-
TST Test an Operand (Destination) Tested— CC —|*1*10]o0
UNLK Unlink An—SP; (SP)+ — An === |-
@ logical exclusive OR * affected
A logical AND — unaffected
v logical OR 0 cleared
~ logical complement 1 set
U undefined

The MC68008 uses a two-word tightly-coupled instruction prefetch mechanism to enhance perfor-
mance. This mechanism is described in terms of the microcode operations involved. If the execu-
tion of an instruction is defined to begin when the microroutine for that instruction is entered, some
features of the prefetch mechanism can be described.
1) When execution of an instruction begins, the operation word and the word following have
already been fetched. The operation word is in the instruction decoder.

7-3
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2

In the case of multiword instructions, as each additional word of the instruction is used
internally, a fetch is made to the instruction stream to replace it.

The last fetch from the instruction stream is made when the operation word is discarded and
decoding is started on the next instruction.

If the instruction is a single-word instruction causing a branch, the second word is not used.
But because this word is fetched by the preceding instruction, it is impossible to avoid this
superfluous fetch. In the case of an interrupt or trace exception, neither word is used.

B} The program counter usually points to the last word fetched from the instruction stream.

3

4

7.2 INSTRUCTION EXECUTION TIMES

The following paragraphs contain listings of the instruction execution times in terms of external
clock (CLK) periods. In this timing data, it is assumed that both memory read and write cycle times
are four clock periods. Any wait states caused by a longer memory cycle must be added to the total
instruction time. The number of bus read and write cycles for each instruction is also included with
the timing data. This data is enclosed in parenthesis following the execution periods and is shown
as: (r/w) where r is the number of read cycles and w is the number of write cycles. The number of
periods includes instruction fetch and all applicable operand fetches and stores.

7.2.1 Operand Effective Address Calculation Times

Table 7-3 lists the number of clock periods required to compute an instruction’s effective address. It
includes fetching of any extension words, the address computation, and fetching of the memory
operand. The number of bus read and write cycles is shown in parenthesis as (r/w). Note there are
no write cycles involved in processing the effective address.

Table 7-3. Effective Address Calculation Times

Addressing Mode Byte Word Long
Register
Dn Data Register Direct 0(0/0) 0(0/0) 0(0/0)
An Address Register Direct 0(0/0) 0(0/0) 0(0/0)
Memory
(An) Address Register Indirect 4(1/0) 8(2/0) 16(4/0)
(An) + Address Register Indirect with Postincrement 4(1/0) 8(2/0) 16(4/0)
—(An) Address Register Indirect with Predecrement 6(1/0) 10(2/0) 18(4/0)
d(An) Address Register Indirect with Displacement 12(3/0) 16(4/0) 24(6/0)
d(An, ix)* Address Register Indirect with Index 14(3/0) 18(4/0) 26(6/0)
xxx. W Absolute Short 12(3/0) 16(4/0) 24(6/0)
xxx. L Absolute Long 20(5/0) 24(6/0) 32(8/0)
d(PC) Program Counter with Displacement 12(3/0) 16(4/0) 24(6/0)
d(PC, ix) Program Counter with Index 14(3/0) 18(4/0) 26(6/0)
#xXX Immediate 8(2/0) 8(2/0) 16(4/0)

* The size of the index register (ix) does not affect execution time.

7.2.2 Move Instruction Execution Times

Tables 7-4, 7-5, and 7-6 indicate the number of clock periods for the move instruction. This data in-
cludes instruction fetch, operand reads, and operand writes. The number of bus read and write
cycles is shown in parenthesis as: (r/w).

7-4
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Table 7-4. Move Byte Instruction Execution Times

Destination
Source Dn An (An) (An) + —(An) d(An) d(An, x)* xxx.W XXX. L
Dn 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 20(4/1) 22(4/1) 20(4/1) 28(6/1)
An 8(2/0) 8(2/0) 12(2/1) 12(2/1) 12(2/1) 20(4/1) 22(4/1) 20(4/1) 28(6/1)
(An) 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 24(5/1) 26(5/1) 24(5/1) 32(7/1
(An) + 12(3/0) 12(3/0) 16(3/1) 16(3/1) 16(3/1) 24(5/1) 26(5/1) 24(5/1) 32(7/1)
—(An) 14(3/0) 14(3/0) 18(3/1) 18(3/1) 18(3/1) 26(5/1) 28(5/1) 26(5/1) 34(7/1)
d(An) 20(5/0) 20(5/0) 24(5/1) 24(5/1) 24(5/1) 32(7/1) 34(7/1) 32(7/1) 40(9/1)
d(An, ix)* 22(5/0) 22(5/0) 26(5/1) 26(5/1) . | 26(5/1) 34(7/1) 36(7/1) 34(7/1) 42(9/1)
xxx.W 20(5/0) 20(5/0) 24(5/1) 24(5/1) 24(5/1) 32(7/1) 34(7/1) 32(7/1) 40(9/1)
xxx. L 28(7/0) 28(7/0) 32(7/1) 32(7/1) 32(7/1) 40(9/1) 42(9/1) 40(9/1) 48(11/1)
d(PC) 20(5/0) 20(5/0) 24(5/1) 24(5/1) 24(5/1) 32(7/1) 34(7/1) 32(7/1) 40(9/1)
d(PC, ix)* 22(5/0) 22(5/0) 26(5/1) 26(5/1) 26(5/1) 34(7/1) 36(7/1) 34(7/1) 42(9/1)
#xxx 16(4/0) 16(4/0) 20(4/1) 20(4/1) 20(4/1) 28(6/1) 30(6/1) 28(6/1) 36(8/1)
*The size of the index register (ix) does not affect execution time.
Table 7-5. Move Word Instruction Execution Times
Destination
Source Dn An (An) (An) + —{An) d(An) d(An, ix)* xxx.W Xxx.L
Dn 8(2/0) 8(2/0) 16(2/2) 16(2/2) 16(2/2) 24(4/2) 26(4/2) 20(4/2) 32(6/2)
An 8(2/0) 8(2/0) 16(2/2) 16(2/2) 16(2/2) 24(4/2) 26(4/2) 20(4/2) 32(6/2)
(An) 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 32(6/2) 34(6/2) 32(6/2) 40(8/2)
(An) + 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 32(6/2) 34(6/2) 32(6/2) 40(8/2)
—(An) 18(4/0) 18(4/0) 26(4/2) 26(4/2) 26(4/2) 34(6/2) 32(6/2) 34(6/2) 42(8/2)
d(An) 24(6/0) 24(6/0) 32(6/2) 32(6/2) 32(6/2) 40(8/2) 42(8/2) 40(8/2) 48(10/2)
d(An, ix)* 26(6/0) 26(6/0) 34(6/2) 34(6/2) 34(6/2) 42(8/2) 44(8/2) 42(8/2) 50(10/2)
xxx. W 24(6/0) 24(6/0) 32(6/2) 32(6/2) 32(6/2) 40(8/2) 42(8/2) 40(8/2) 48(10/2)
xxx. L 32(8/0) 32(8/0) 40(8/2) 40(8/2) 40(8/2) 48(10/2) 50(10/2) 48(10/2) 56(12/2)
d(PC) 24(6/0) 24(6/0) 32(6/2) 32(6/2) 32(6/2) 40(8/2) 42(8/2) 40(8/2) 48(10/2)
d(PC, ix)* 26(6/0) 26(6/0) 34(6/2) 34(6/2) 34(6/2) 42(8/2) 44(8/2) 42(8/2) 50(10/2)
#xxx 16(4/0) 16(4/0) 24(4/2) 24(4/2) 24(4/2) 32(6/2) 34(6/2) 32(6/2) 40(8/2)
* The size of the index register (ix) does not affect execution time.
Table 7-6. Move Long Instruction Execution Times
Destination
Source Dn An (An) (An) + —(An) d(An) d(An, ix)* xxx. W xxX. L
Dn 8(2/0) 8(2/0) 24(2/4) 24(2/4) 24(2/4) 32(4/4) 34(4/4) 32(4/4) 40(6/4)
An 8(2/0) 8(2/0) 24(2/4) 24(2/4) 24(2/4) 32(4/4) 34(4/4) 32(4/4) 40(6/4)
(An) 24(6/0) 24(6/0) 40(6/4) 40(6/4) 40(6/4) 48(8/4) 50(8/4) 48(8/4) 56(10/4)
(An) + 24(6/0) 24(6/0) 40(6/4) 40(6/4) 40(6/4) 48(8/4) 50(8/4) 48(8/4) 56(10/4)
~(An) 26(6/0) 26(6/0) 42(6/4) 42(6/4) 42(6/4) 50(8/4) 52(8/4) 50(8/4) 58(10/4)
d(An) 32(8/0) 32(8/0) 48(8/4) 48(8/4) 48(8/4) 56(10/4) 58(10/4) 56(10/4) 64(12/4)
d(An, ix)* 34(8/0) 34(8/0) 50(8/4) 50(8/4) 50(8/4) 58(10/4) 60(10/4) 58(10/4) 66(12/4)
xxx.W 32(8/0) 32(8/0) 48(8/4) 48(8/4) 48(8/4) 56(10/4) 58(10/4) 56(10/4) 64(12/4)
xxx.L 40(10/0) 40(10/0) 56(10/4) 56(10/4) 56(10/4) 64(12/4) 66(12/4) 64(12/4) 72(14/4)
d(PC) 32(8/0) 32(8/0) 48(8/4) 48(8/4) 48(8/4) 56(10/4) 58(10/4) 56(10/4) 64(12/4)
d(PC, ix)* 34(8/0) 34(8/0) 50(8/4) 50(8/4) 50(8/4) 58(10/4) 60(10/4) 58(10/4) 66(12/4)
#xxX 24(6/0) 24(6/0) 40(6/4) 40(6/4) 40(6/4) 48(8/4) 50(8/4) 48(8/4) 56(10/4)

* The size of the index register (ix) does not affect execution time.

7-6
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7.2.3 Standard Instruction Execution Times

The number of clock periods shown in Table 7-7 indicates the time required to perform the opera-
tions, store the results, and read the next instruction. The number of bus read and write cycles is
shown in parenthesis as: {r/w). The number of clock periods and the number of read and write
cycles must be added respectively to those of the effective address calculation where indicated. In
Table 7-7 the headings have the following meanings: An=address register operand, Dn=data
register operand, ea=an operand specified by an effective address, and M= memory effective
address operand.

Table 7-7. Standard Instruction Execution Times

Instruction Size op <ea>, An op <ea>, Dn op Dn, <M>
Byte - 8(2/0) + 12(2/1) +
ADD Word 12(2/0) + 8(2/0)+ 16(2/2) +
Long 10(2/0) + * * 10(2/0) + ** 24(2/4)+
Byte - 8(2/0) + 12(2/1) +
AND Word - 8(2/0) + 16(2/2) +
Long — 10(2/0) + * * 24(2/4)+
Byte - 8(2/0) + -
CMP Word 10(2/0) + 8(2/0) + -
Long 10(2/0) + 10(2/0) + —
DIVS - 162(2/0) + * —
DIVU — 144(2/0) + * -
Byte — 8(2/0)+ *** 122/ +
EOR Word - 8(2/0) + * ** 16(2/2) +
Long — 12(2/0) + * ** 24(2/4) +
MULS - 74(2/0)+ * —
MULU - 74(2/0)+ * —
Byte - 8(2/0) + 1202/ +
OR Word - 8(2/0) + 16(2/2) +
Long - 10(2/0) + * * 24(2/4) +
Byte - 8(2/0)+ 12(2/1) +
SuB Word 12(2/0) + 8(2/0)+ 16(2/2) +
Long 10(2/0)+ ** 10(2/0) + * * 24(2/4) +
NOTES: 1-254

+ Add effective address calculation time

Indicates maximum value

The base time of 10 clock periods is increased to 12 if the effective address mode is register direct or im-

mediate (effective address time should also be added).

*** Only available effective address mode is data register direct
DIVS, DIVU — The divide algorithm used by the MC68008 provides less than 10% difference between the best and
worst case timings.

MULS, MULU — The multiply algorithm requires 42 + 2n clocks where n is defined as:
MULS: n=tag the <ea> with a zero as the MSB; n is the resultant number of 10 or 01 patterns in
. the 17-bit source, i.e., worst case happens when the source is $5555.
MULU: n=the number of ones in the <ea>

* %

7.2.4 Immediate Instruction Execution Times

The number of clock periods shown in Table 7-8 includes the time to fetch immediate operands,
perform the operations, store the results, and read the next operation. The number of bus read and
write cycles is shown in parenthesis as: (r/w). The number of clock periods and the number of read
and write cycles must be added respectively to those of the effective address calculation where
indicated. In Table 7-8, the headings have the following meanings: #=immediate operand,-
Dn= data register operand, An=address register operand, and M= memory operand.

7-6



Table 7-8. Immediate Instruction Clock Periods

Instruction Size op#, Dn op#,An op#, M
Byte 16(4/0) - 20(4/1) +
ADD! Word 16(4/0) — 24(4/2) +
Long 28(6/0) - 40(6/4) +
Byte 8(2/0) - 1202/ +
ADDQ Word 8(2/0) 12(2/0) 16(2/2) +
Long 12(2/0) 12(2/0) 24(2/4) +
Byte 16(4/0) - 20(4/1) +
ANDI Word 16(4/0) - 24(4/2) +
Long 28(6/0) - 40(6/4) +
Byte 16(4/0) - 16(4/0) +
CMPI Word 16(4/0) - 16(4/0) +
Long 26(6/0) - 24(6/0) +
Byte 16(4/0) — 20(4/1) +
EORI Word 16(4/0) — 24(4/2) +
Long 28(6/0) - 40(6/4) +
MOVEQ Long 8(2/0) — . —
Byte 16(4/0) - 20(4/1) +
ORI Word 16(4/0) - 24(4/2) +
Long 28(6/0) - 40(6/4) +
Byte 16(4/0) = 12(2/1) +
suBl Word 16(4/0) - 16(2/2) +
Long 28(6/0) = 24(2/4) +
Byte 8(2/0) - 20(4/1) +
suBQ Word 8(2/0) 12(2/0) 24(4/2) +
Long 12(2/0) 12(2/0) 40(6/4) +
+add effective address calculation time : 1-255

7.2.5 Single Operand Instruction Execution Times

Table 7-9 indicates the number of clock periods for the single operand instructions. The number of
bus read and write cycles is shown in parenthesis as (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective address
calculation where indicated.

Table 7-9. Single Operand Instruction Execution Times

Instruction Size Register Memory
Byte 8(2/0) 12(2/1) +
CLR Word 8(2/0) 16(2/2) +
Long 10(2/0) 24(2/4) +
NBCD Byte 10(2/0) 12(2/1) +
Byte 8(2/0) 12(2/1) +
NEG Word 8(2/0) 16(2/2) +
Long 10(2/0) 24(2/4) +
Byte 8(2/0) 12(2/1) +
NEGX Word 8(2/0) 16(2/2) +
Long 10(2/0) 24(2/4) +
Byte 8(2/0) 12(2/1) +
NOT Word 8(2/0) 16(2/2) +
Long 10(2/0) 24(2/4) +
Sce Byte; False 8(2/0) 12(2/1) +
Byte, True 10(2/0) 12(2/1) +
TAS Byte 8(2/0) 14(2/1) +
Byte 8(2/0) 8(2/0) +
TST Word 8(2/0) 8(2/0)+
Long 8(2/0) 8(2/0)+

+add effective address calculation time. 1-256



7.2.6 Shift/Rotate Instruction Execution Times

Table 7-10 indicates the number of clock periods for the shift and rotate instructions. The number of
bus read and write cycles is shown in parenthesis as: (r/w). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective address
calculation where indicated.

Table 7-10. Shift/Rotate Instruction Clock Periods

Instruction Size Register Memory
Byte 10 + 2n(2/0) -

ASR, ASL Word 10 + 2n(2/0) 16(2/2) +
Long 12 + 2n(2/0) -
Byte 10 + 2n(2/0) -

LSR, LSL Word 10 + 2n(2/0) 16(2/2) +
Long 12 + 2n(2/0) —
Byte 10 + 2n(2/0) -

ROR, ROL Word 10 + 2n(2/0) 16(2/2) +
Long 12 + 2n(2/0) —
Byte 10 + 2n(2/0) -

ROXR, ROXL Word 10 + 2n(2/0) 16(2/2) +
Long 12 + 2n(2/0) —

+ add effective address calculation time

n is the shift count 1-257

7.2.7 Bit Manipulation Instruction Execution Times

Table 7-11 indicates the number of clock periods required for the bit manipulation instructions. The
number of bus read and write cycles is shown in parenthesis as: (r/w). The number of clock periods
and the number of read and write cycles must be added respectively to those of the effective
address calculation where indicated.

Table 7-11. Bit Manipulation Instruction Execution Times

Instruction Size Dynamic Static
Register Memory Register Memory
BCHG Egr:: 12(2_/ 0)* 12(211) ’ 20(4_/0) * 20(41” }
BCLR I.Bgr:(; 14(2_/0) * 12(211 o 22(4_/0) * 20(411 "
BSET fgrt\z 1202/0* i oo |
BTST E;:Z 10(;/0) 8(210) v 18(;/0) 16(410' +

+ add effective address calculation time

Mg : 1-258
indicates maximum value



7.2.8 Conditional Instruction Execution Times

Table 7-12 indicates the number of clock periods required for the conditional instructions. The
number of bus read and write cycles is indicated in parenthesis as: (r/w). The number of clock
periods and the number of read and write cycles must be added respectively to those of the effec-
tive address calculation where indicated.

Table 7-12. Conditional Instruction Execution Times

. . Trap or Branch Trap or Branch
Instruction Displacement Taken Not Taken
Bec Byte 18(4/0) 12(2/0)
Word 18(4/0) 20(4/0)
Byte 18(4/0) -
BRA Word 18(4/0) —
Byte 34(4/4) _
BSR Word 34(4/4) —
CC True - 20(4/0)
DBce CC False 18(4/0) 26(6/0)
CHK — 68(8/6) + * 14(2/0) +
TRAP — 62(8/6) —
TRAPV — 66(10/6) 8(2/0)

+ add effective address calculation time

*indicates maximum value

7.2.9 JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Table 7-13 indicates the number of clock periods required for the jump, jump-to-subroutine, load ef-
fective address, push effective address, and move multiple registers instructions. The number of

bus read and write cycles is shown in parenthesis as: (r/w).

Table 7-13. JMP, JSR, LEA, PEA, and MOVEM Instruction Execution Times

Instruction| Size (An) (An) + —(An) d(An) [ d(An, ix)*| xxx.W xxx.L d(PC) |d(PC,ix)*
JMP - 16(4/0) - - 18(4/0) 22(4/0) 18(4/0) 24(6/0) 18(4/0) 22(4/0)
JSR = 32(4/4) - — 34(4/4) 38(4/4) 34(4/4) 40(6/4) 34(4/4) 38(4/4)
LEA - 8(2/0) - - 16(4/0) 20(4/0) 16(4/0) 24(6/0) 16(4/0) 20(4/0)
PEA - 24(2/4) - - 32(4/4) 36(4/4) 32(4/4) 40(6/4) 32(4/4) 36(4/4)
Word 24+ 8n 24+8n — 32+8n 34+8n| 32+8n 40+8n 32+8n 34+8n
MOVEM (6+2n/0) |(6+2n/0) - (8+2n/0) | (8+2n/0) [(10+n/0) | (10+2n/0) |(8+2n/0) |(8+2n/0)
M — R Long 24+16n | 24+16n - 32+16n | 34+16n| 32+16n 40+16n | 32+16n | 34+16n
(6+4n/0) | (6+4n/0) - (8+4n/0) | (8+4n/0) [(8+4n/0) (8+4n/0) [(8+4n/0) |(8+4n/0)
Word 16+8n - 16+8n 24+8n 26 +8n 24+8n 32+8n
MOVEM (4/2n) - (4/2n) (6/2n) (6/2n) (6/2n) (8/2n)
R—M Long (16+16n — 16+16n| 24+16n | 26+16n| 24+16n 32+16n
(4/4n) - (4/4n) (6/4n) (6/4n) (8/4n) (6/4n)

n is the number of registers to move
* is the size of the index register (ix) does not affect the instruction’s execution time
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7.2.10 Multi-Precision. Instruction Execution Times

Table 7-14 indicates the number of clock periods for the multi-precision instructions. The number of
clock periods includes the time to fetch both operands, perform the operations, store the results,
and read the next instructions. The number of read and write cycles is shown in parenthesis as:
(r/w).

In Table 7-14, the headings have the following meanings: Dn=data register operand and
M = memory operand. ‘

Table 7-14. Multi-Precision Instruction Execution Times

Instruction Size op Dn, Dn opM, M

Byte 8(2/0) 22(4/1)

ADDX Word 8(2/0) 50(6/2)
Long 12(2/0) 58(10/4)

Byte - 16(4/0)

CMPM Word - 24(6/0)
Long — 40(10/0)

Byte 8(2/0) 22(4/1)

SUBX ) Word 8(2/0) 50(6/2)
Long 12(2/0) 58(10/4)

ABCD Byte 10(2/0) 20(4/1)

SBCD Byte 10(2/0) 20(4/1)

1-261

7.2.11 Miscellaneous Instruction Execution Times

Tables 7-15 and 7-16 indicate the number of clock periods for the following miscellaneous instruc-
tions. The number of bus read and write cycles is shown in parenthesis as: (r/w). The number of
clock periods plus the number of read and write cycles must be added to those of the effective
address calculation where indicated.

7.2.12 Exception Processing Execution Times

Table 7-17 indicates the number of clock periods for exception processing. The number of clock
periods includes the time for all stacking, the vector fetch, and the fetch of the first instruction of
the handler routine. The number of bus read and write cycles is shown in parenthesis as: (r/w).



Table 7-15. Miscellaneous Instruction Execution Times

Instruction Register Memory
ANDI to CCR 32(6/0) —
ANDI to SR 32(6/0) =
EORI to CCR 32(6/0) -
EORI to SR 32(6/0) -
EXG 10(2/0) —
EXT 8(2/0) -
LINK 32(4/4) -
MOVE to CCR 18(4/0) 18(4/0) +
MOVE to SR 18(4/0) 18(4/0) +
MOVE from SR 10(2/0) 16(2/2) +
MOVE to USP 8(2/0) —
MOVE from USP 8(2/0) —
NOP 8(2/0) -
ORIl to CCR 32(6/0) —
ORI to SR 32(6/0) —
RESET 136(2/0) —
RTE 40(10/0) —
RTR 40(10/0) —
RTS 32(8/0) —
STOP 4(0/0) —
SWAP 8(2/0) —
UNLK 24(6/0) -

+ add effective address calculation time

1-262

Table 7-16. Move Peripheral Instruction Execution Times

Instruction Size Register — Memory | Memory — Register
Word 24(4/2) 24(6/0)
MOVEP Tong EAIEY) 3208/0)

+add effective address calculation time

Table 7-17. Exception Processing

Execution Times

Exception Periods
Address Error 94(8/14)
Bus Error 94(8/14)
CHK Instruction 68(8/6) +
Interrupt 72(9/16)*
lllegal Instruction 62(8/6)
Privileged Instruction 62(8/6)
Trace 62(8/6)
TRAP Instruction 62(8/6)
TRAPV Instruction 66(10/6)
Divide by Zero 66(8/6) +
RESET** 64(12/0)

+add effective-address calculation time
*The interrupt acknowledge bus cycle is assumed

to take four external clock periods

* *Indicates the time from when RESET and HALT

are first sampled as negated to when instruction

execution starts.

7-11/7-12
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SECTION 8
ELECTRICAL SPECIFICATIONS

This section contains the electrical specifications and associated timing information for the
MC68008.

8.1 MAXIMUM RATINGS

Rating Symbol Value Unit This devicg contains circuitry to pnfotect the

inputs against damage due to high static

Supply Voltage vVee ~03t0 +7.0 v voltages or electric fields; however, it is ad-
Input Voltage Vin —0.31t0 +7.0 v vised that normal precautions be taken to
Operating Temperature Range TA 0to 70 °C avoid application of any voltages higher than
Storage Temperature Tstg — 55 to 150 oC maximum-rated voltages to this high-

impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap-
propriate logic voltage level (e.g., either
ground or V).

8.2 THERMAL CHARACTERISTICS

Value
Characteristic AT 0)c Rating
Thermal Resistance
Dual-in-Line, Ceramic, L 40 15%
Dual-in-Line, Plastic, P 40 20* °C/W
Quad, Plastic, FN 50 30*
* Estimated

8.3 POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:
Ty=Ta+ (Ppebya) (1)
Where:

TA=Ambient Temperature, °C
0JA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PI/0O
PINT=Ilccx Vce, Watts — Chip Internal Power
Pi/ 0= Power Dissipation on Input and Output Pins — User Determined

For most applications P|;0 <P|NT and can be neglected.

An approximate relationship between Pp and T (if P|/Q is neglected) is:

PD=K=(TJ+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Tpe(Ta+273°C)+84A°PD2 (3)



Where K is a constant pertaining to the particular part. K can be determined from equation 3 by
measuring Pp (at equilibrium) for a known TA. Using this value of K the values of Pp and T can be
obtained by solving equations (1) and (2) iteratively for any value of TA.

The curve shown in Figure 8-1 gives the graphic solution to these equations for the specification
power dissipation of 1.50 watts over the ambient temperature range of —55°C to 125°C usingaJA
of 45°C/W, a typical value for packages specified.
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Figure 8-1. MC68008 Power Dissipation (Pp) vs Ambient Temperature (TA)

The total thermal resistance of a package (JA) can be separated into two components, 8 JC and
0cA, representing the barrier to heat flow from the semiconductor junction to the package (case)
surface (8Jc) and from the case to the outside ambient (#CA). These terms are related by the equa-
tion:

0ya=04Cc+06CcA (4)

0Jc is device related and cannot be influenced by the user. However, 8CA is user dependent and
can be minimized by such thermal management techniques as heat sinks, ambient air cooling and
thermal convention. Thus good thermal management on the part of the user can significantly
reduce 6CA so that 8Ja=60JC. Substitution of 8JC for 8JA in equation 1 will result in a lower
semiconductor junction temperature.

Values for thermal resistance presented in this data sheet, unless estimated, were derived using the
procedure described in Motorola Reliability Report 7843, ““Thermal Resistance Measurement
Method for MC68XX Microcomponent Devices'’, and are provided for design purposes only.
Thermal measurements are complex and dependent on procedure and setup. User derived values
for thermal resistance may differ.



8.4 DC ELECTRICAL CHARACTERISTICS

(Vce=5.0 Vde +5%; GND=0 Vdc; TA=0°C to 70°C; see Figures 8-2, 8-3, and 8-4)

Characteristic Symbol Min Max Unit
Input High Voltage ViH 2.0 Vee \
Input Low Voltage Vi GND-0.3 0.8 \
Input Leal_@_ge Current @ 5.221 o
BERR, BR, DTACK, CLK, IPLO/2, IPL1, VPA, HALT, RESET, BGACK lin — 20 _A
Hi-Z (Off Sﬁe) Input Current @ 2_41 V/Q_4_V
A0-A19, AS, DO-D7, FCO-FC2, DS, R/W 1731 — 20 A
Output High Voltage (IoH = — 400 pA) E, A0-A19, AS, BG, DO-D7, FCO-FC2, { VoH \
DS, R/W, VMA 2.4 —
Output Low Voltage
(loL=1.6mA) HALT — 0.5
loL=3.2mA) A0-A19, BG, FCO-FC2 | VoL — 0.5 \
(loL=5.0mA) _ __RESET - 0.5
(loL=5.3mA) E, AS, DO-D7, DS, R/W — 0.5
Power Dissipation, * Ta =0°C PD - 1.5 W
Capacitance (Vi,=0V, To=25°C, Frequency=1 MH2z) * ¥ Cin — 20.0 pF
*During normal operation instantaneous VcC current requirements may be as high as 1.5 A.
* * Capacitance is periodically sampled rather than 100% tested.
+5V
+5V
R* =740
+5V Test MMD6150
910 Point or Equivalent
RESET 2¢
CL
HALT I MMD7000
130 pF — or Equivalent
CL=130pF i
—_— 70pF (Includes all Parasitics)
e RL=6.0 ki for AS, AQ-A19, —==
Figure 8-2. RESET Test Load = ., 56, poo7. B Fao-Fez.

Figure 8-3. HALT Test Load

8.5 CLOCK TIMING (See Figure 8-6)

*R=1.22 kQ for A0-A19, BG,

FCO-FC2

Figure 8-4. Test Loads
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tcr —> k— tcf

Figure 8-5. Input Clock Waveform
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8 MHz 10 MHz
Characteristic Symbol [ Min | Max [ Min | Max | Unit
Frequency of Operation f 20 | 80 | 2.0 | 10.0 | MHz
Cycle Time toye 126 | 500 | 100 | 500 | ns
Clock Pulse Width tcL 66 | 260 | 46 | 260 | ns
tCcH 55 | 260 | 45 | 250
Rise and Fall Times tCr - 10 - 10 ns
tcf - 10 - 10
< t cye >
[e—— tcL. —>§ tCH ——




8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES
(Vcc=5.0 Vdc £5%; GND=0 Vdc; TA=TL to TH; see Figures 8-6 and 8-7)

8 MHz 10 MHz
Num. Characteristic Symbol | Min | Max | Min | Max Unit
1 Clock Period : toye | 125 | 500 [ 100 | 500 ns
2 Clock Width Low tcL 55 | 250 | 45 | 250 ns
3 Clock Width High tcH 55 | 250 | 45 | 260 ns
4 Clock Fall Time tcf - 10 — 10 ns
5 Clock Rise Time tcr — 10 — 10 ns
6 Clock Low to Address Valid tCLAV | — 70 — 60 ns
6A Clock High to FC Valid tCHFCV | — 70 — 60 ns
7 Clock High to Address, Data Bus High Impedance (Maximum) tCHADZ | — 80 - 70 ns
8 Clock High to Address, FC Invalid (Minimum) tcHAFI | O — 0 — ns
9! | Clock High to AS, DS Low tcyst | 0 | 60 | 0 | 55 ns
112 | Address Valid to AS, DS Low (Read)/AS Low (Write) tayst | 30 | = |20 | — ns
11A2.7 | FC Valid to AS, DS Low (Read)/AS Low (Write) trcysL | 60 | — |50 | — ns
121 | Clock Low to AS, DS High tcosy | — 138 | — | 3 ns
132 | AS, DS High to Address/FC Invalid tsHARl | 30 | — [ 20 | — ns
1425 | AS, DS Width Low (Read)/AS Low (Write) tgt (270 | — |198 | — ns
14A2 | DS Width Low (Write) tpst | 140 ] — [95 | — ns
152 | AS, DS Width High tg [ 150 | — 105 | — ns
16 Clock High to Control Bus High Impedance tCHCZ | — 80 — 70 ns
172 | AS, DS High to R/W High (Read) tSHRH | 40 | — |20 | — ns
181 | Clock High to R/W High tcury | 0 | 40 | o | 40 ns
201 | Clock High to R/W Low tcHRL | — | 40 | — | 40 ns
20A8 | AS Low to R/W Valid (Write) tasrv | — [ 20 | — | 20 ns
212 Address Valid to R/W Low (Write) tAVRL | 20 — 0 — ns
21A2,7 | FC Valid to R/W Low (Write) trcvRL | 60 | — |80 | — ns
222 | R/W Low to DS Low (Write) tResL | 80 | — [80 | — ns
23 Clock Low to Data Out Valid (Write) tcLpo | — 70 — 55 ns
252 | AS, DS High to Data Out Invalid (Write) tsypor | 50 | — |20 | - ns
262 Data Out Valid to DS Low (Write) tposL | 36 ~ 20 — ns
275 Data In to Clock Low (Setup Time on Read) tDICL 15 — 10 = ns
2825 | AS, DS High to DTACK High tsHDAH| O | 2456 | 0 [ 190 ns
29 | AS, DS High to Data In Invalid (Hold Time on Read) tsHpll | O — 0 - ns
30 AS, DS High to BERR High tSHBEH | O — 0 — ns
3125 | DTACK Low to Data Valid (Asynchronous Setup Time on Read) tDALDI | — [ 90 | — | 65 ns
32 | HALT and RESET Input Transition Time tRHr, f | O 200 | O | 200 ns
33 Clock High to BG Low tCHGL | — 40 — 40 ns
34 Clock High to BG High tCHGH | — 40 — 40 ns
35 |BR Low to BG Low tgRLGL | 1.6 |90 ns | 1.5 [80 ns |Clk.Per.
+35 +35
368 | BR High to BG High tgRHGH| 1.5 [90ns | 1.6 |80 ns|Clk.Per.
+3.5 +3.5
37 | BGACK Low to BG High (62-Pin Version Only) tGALGH | 1.5 |90 ns | 1.6 |80 ns|Clk.Per.
+35 +3.5
37A9 [BGACK Low to BR High (562-Pin Version Only) tGALBRH| 20 [ 1.5 |20 | 156 ns
Clocks Clocks|
38 BG Low to Control, Address, Data Bus High Impedance (AS High) tGLz - 80 — 70 ns
39 [BG Width High tgH |15 | — |15 ] — [Cik.Per.
41 Clock Low to E Transition tCLET | — 50 — 50 ns
42 E Output Rise and Fall Time IEr, f — 15 — 15 ns
44 | AS, DS High to VPA High tsHvpH | O [120 [0 | %0 ns
— Continued



8.6 AC ELECTRICAL SPECIFICATIONS — READ AND WRITE CYCLES (Continued)
(Vcc=5.0Vdc +5%; GND=0 Vdc; TA=TL to TH; see Figures 8-6 and 8-7)

8 MHz 10 MHz

Num. Characteristic Symbol | Min | Max | Min | Max Unit

45 E Low to Control, Address Bus Invalid (Address Hold Time) teLcal | 30 — 10 - ns

46 | BGACK Width Low (52-Pin Version Only) tgaL | 15| — | 15| — | Ck.Per
475 Asynchronous Input Setup Time tASI 10 — 10 — ns
483 | BERR Low to DTACK Low tgepal 20 | - | 20 | — ns
4910 TAS, DS High to E Low tgHeL | —80 80 [ -80( 80 ns

50 E Width High tEH 450 | — [ 30| — ns

51 E Width Low tEL 700 | — | 6550 [ — ns

53 Clock High to Data Out Invalid tcHpol| O — 0 — ns

54 E Low to Data Out Invalid teLpol | 30 — 20 — ns

55 R/W to Data Bus Impedance Driven tRLDBD] 30 ~ 20 — ns
564 HALT/RESET Pulse Width tHrRpw | 10 - 10 — | Clk.Per.

57 BGACK High to Control Bus Driven (52-Pin Version Only) tGABD | 1.5 - 1.5 — | Clk.Per.
588 | BG High to Control Bus Driven tGHBD | 1.5 - |16 — | Clk.Per.

NOTES:

1. For a loading capacitance of less than or equal to 50 picofarads, subtract 5 nanoseconds from the values given in these columns.

2. Actual value depends on clock period.

3. If #47 is satisfied for both DTACK and BERR, #48 may be 0 nanoseconds.

4. For power up the MPU must be held in RESET state for 100 milliseconds to allow stabilization of on-chip circuitry. After the

system is powered up, #56 refers to the minimum pulse width required to reset the system.

o

nored. The data must only satisfy the data-in to clock-low setup time (#27) for the following cycle.

cCoomwo

. When AS and R/W are equally loaded (+20%), subtract 10 nanoseconds from the values in these columns.
. Setup time to guarantee recognition on next falling edge of clock.
. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before asserting BGACK.
The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.
. The falling edge of S6 triggers both the negation of the strobes (AS and XDS) and the falling edge of E. Either of these events can

. If the asynchronous setup time (#47) requirements are satisfied, the DTACK low-to-data setup time (#31) requirement can be ig-

occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur
between the rising edge of the strobes and the falling edge of the E clock.

Timing diagrams (Figures 8-6 and 8-7) are located on
foldout pages 1 and 2 at the end of this document.
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8.7 AC ELECTRICAL SPECIFICATIONS — MC68008 TO M6800 PERIPHERAL
(Vcc=5.0 Vdc +5%; GND=0 Vdc, TA=0° to 70°C; see Figures 8-8 and 8-9)

8 MHz 10 MHz

Num. Characteristic Symbol | Min | Max | Min | Max Unit
23 Clock Low to Data Out Valid (Write) tcLbo | ~ 70 - 55 ns
27 Data In to Clock Low (Setup Time on Read) tDICL 15 — 10 — ns
4 Clock Low to E Transition ACLET - 50 — 50 ns
42 E Output Rise and Fall Time tEr, f - | 15 - 15 ns
44 AS, DS High to VPA High tSHVPH| O | 120 ] 0 | 90 ns
45 E Low to Control, Address Bus Invalid (Address Hold Time) tercal | 30 - 10 - ns
47 Asynchronous Input Setup Time tASI| 10 - 10 - ns
491 [ AS, DS High to E Low tSHEL |—-80| 80 |-80| 80 ns
50 E Width High tEH 450 | — |30 | — ns
51 E Width Low teL 700 — |55 | - ns
54 E Low to Data Out Invalid teLpol | 30 - 20 - ns

NOTE:

1. The falling edge of S6 triggers both the negation of the strobes (AS and XDS) and the falling edge of E. Either of these events can
occur first, depending upon the loading on each signal. Specification #49 indicates the absolute maximum skew that will occur be-
tween the rising edge of the strobes and the falling edge of the E clock.

SO S1 82 S3 S4  w w w w w w w w w w w w S5 S6 S7 SO

SR Y AW BV VA WAV VAWAWAWE"Y
AQ-A19 —

E ) —

- @
vpa ~ q_ l—
I - @ — H<—
A j_‘?‘*_"—"} V.
e
Data E—
Out - -
— 4—-@ @ - >
Data In —
NOTE: This timing diagram is included for those who wish to design their own circuit to generate VMA It shows the best case possibly

attainable

Figure 8-8. MC68008 to M6800 Peripheral Timing Diagram — Best Case
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Figure 8-9. MC68008 to M6800 Peripheral Timing Diagram — Worst Case



8.8 AC ELECTRICAL SPECIFICATIONS — BUS ARBITRATION
(Vcc=5.0 Vde +5%; GND=0 Vdc; TA=TL to TH; see Figures 8-10, 8-11, and 8-12)

8 MHz 10 MHz
Num. Characteristic Symbol | Min | Max | Min | Max Unit
7 Clock High to Address, Data Bus High Impedance tCHADZ| — 80 — 70 ns
16 Clock High to Control Bus High Impedance tcHez | — 80 — 70 ns
33 Clock High to BG Low tcHGL | — | 40 | — | 40 ns
34 Clock High to BG High tCHGH | — 40 — 40 ns
35 BR Low to BG Low tgRLGL| 1.5 [90ns| 1.5 |80 ns | Clk.Per.
+3.5 +35
361 | BR High to BG High tBRHGH| 1.5 [90ns| 1.5 |80 ns | Clk.Per.
+3.6 +35
37 | BGACK Low to BG High (52-Pin Version Only) tGALGH| 1.5 |{90ns| 1.5 |80 ns | Clk.Per.
+3.6 +3.5
37A2 | BGACK Low to BR High (62-Pin Version Only) tGALBRHl 20 | 15 | 20 | 15 ns
) Clocks| Clocks
38 BG Low to Control, Address, Data Bus High Impedance (AS High) tGLZ — 80 — 70 ns
39 BG Width High tGH 16| — |15 | — |Clk.Per.
46 BGACK Width Low (52-Pin Version Only} tgaL | 15| — 15 | — |Clk.Per.
47 Asynchronous Input Setup Time tASI 10 - 10 — ns
57 | BGACK High to Control Bus Driven (52-Pin Version Only) tgaBD | 15| — |15 | — |Ck.Per.
581 BG High to Control Bus Driven tGHBD | 1.5 - 15 — | Clk.Per.
NOTES:

1. The processor will negate BG and begin driving the bus again if external arbitration logic negates—éﬁ before asserting BGACK.
2. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be reasserted.

Timing diagrams (Figures 8-10, 8-11, and 8-12) are located
on foldout pages 3, 4, and 5 at the end of this document.
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SECTION 9

ORDERING INFORMATION

This section contains detailed information to be used as a guide when ordering the MC68008.

9.1 PACKAGE TYPES

Suffix Package Type
L Dual-in-Line Ceramic
P Dual-in-Line Plastic
EN Plastic Leaded Chip Carrier

9.2 STANDARD MC68008 ORDERING INFORMATION

Package Type Frequency (MHz)
Ceramic DIP (48-Pin) 8.0
L Suffix 10.0
Plastic Dip (48-Pin) 8.0
P Suffix 10.0
Plastic Quad (52-Lead) 8.0
FN Suffix 10.0

Comments

Side Braze Package
Select Plate or
Gold Lead Finish

Copper Lead Frame
Solder Dip Lead Finish

Solder Dip Finish ,
Suitable for Socketing or
Surface Mounting

Temperature Order Number
0°C to 70°C MC6808L8
0°C to 70°C MC68008L10
0°C to 70°C MC68008P8
0°C to 70°C MC68008P 10
0°C to 70°C MC68008FN8
0°C to 70°C MC68008FN10

9.3 “BETTER” PROCESSING — STANDARD PRODUCT PLUS

Level IV (Suffix T) .
® Ceramic Package (Suffix L) Only

® 100% High Temperature Functional Test at TA Maximum
® Dynamic Burn-In at 125°C for 48 Hours at 6 Volts, or Equivalent
® Temperature Cycle is 10 Cycles From —65°C to 160°C

9-1/9-2



SECTION 10
MECHANICAL DATA
This section contains the pin assignments and package dimensions for the MC68008.

10.1 PIN ASSIGNMENTS

48-Pin Dual-in-Line

(Top View)

A3l @ N\ 4801 A2
A4 ]2 4711 A1
A5 []3 461 A0
A6 Q4 451 FCO
A7 15 441 FC
A8 []6 43[J FC2
A957 42[11PL2/0
A0 [8 apirca
A11 09 40E|E'E§ﬁ
A12010 39[] VPA
A3 QN 3B E
A14 Q12 371 RESET
vee 13 36[] HALT
A15014 35[] GND
GND 15 3] Lk
A16016 33[1 BR
a7017 32[1 BG
A18[]18 31[] DTACK
A19[019 30{1 R/'W
o7l 20 20[1 55
D6 [ 21 28[ AS
D5 [ 22 27{1 Do
D4 23 26[] D1
D3[] 24 25[] D2
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52-Lead Quad MC68008
(Top View)
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10.2 PACKAGE DIMENSIONS

48

25

24

L SUFFIX
CERAMIC PACKAGE
CASE 740-02

A

a8

1

AANNAANANAANNADNNANANADNNNANNANN
25

24
\YAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAY,

P SUFFIX
PLASIC PACKAGE
CASE 767-02

-

—lgl—

)

K] \.i le—M J”\\"

10-3

MILLIMETERS|  INCHES

MAX | MIN | MAX
60.35 | 61.567 | 2.376 | 2.424
14.63 | 15.34 | 0.576 | 0.604
.05 | 4.32 [ 0.120 [ 0.160
.381] 0.533] 0.015 | 0.021
.397] 0.030 | 0.065
2.54 BSC 0.100 BSC
0.203]_0.330] 0.008 | 0.013
2.54 | 4.19 |0.100 | 0.165
14.99 | 15.65 | 0.590 | 0.616
00 | 100 00 | 100
1.016] 1.524] 0.040 | 0.060

z|z|r|=x|—| o) n|o|efw| |2
-~
{-7]

NOTES:

1. DIMENSION [-A]] IS DATUM.

2. POSTIONAL TOLERANCE FOR LEADS:
[#]g 025 00101@[T[A@)]

3.[-T] IS SEATING PLANE.

4. DIMENSION “L" TO CENTER OF LEADS
WHEN FORMED PARALLEL.

5. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5, 1973,

MILLIMETERS
[ MIN_| MAX | WiN

DIM
A [61.34 |62
B | 13.72 | 14.
c 94
.36
UL B
.54 BSC
.79 BSC .070 BSC
0.20 | 0.38 | 0.008 | 0.015
292 | 3420.115]0.135

BSC .600 BSC
0° | 15° o T 15°
0.51 | 1.0110.020 [ 0.040

=[=|-[[-
o
>
>

NOTES:
1. [[R) 1S END OF PACKAGE DATUM PLANE.
1S BOTH A DATUM AND SEATING
PLANE.
. POSITIONAL TOLERANCE FOR LEADS 1
AND 48:
[#]051(0.020) [T B @[R]
POSITIONAL TOLERANCE FOR LEAD
PATTERN:
[#]025(0.010) [T] B @]
. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
DIMENSION L IS TO CENTER OF LEADS
WHEN FORMED PARALLEL.
DIMENSIONING AND TOLERANCING PER
ANSI Y14.5, 1982.
. CONTROLLING DIMENSION: INCH.

~

o o A W



FN SUFFIX

QUAD PACK
CASE 77801
L_ v NOTES:
onnooogoooonos—— 1. DIMENSIONS R AND U DO NOT INCLUDE MOLD
= FLASH
L )
J,,E b 2. DIMENSIONING AND TOLERANCING PER ANSI
d h Y14.5M, 1982.
E g 3. CONTROLLING DIMENSION: INCH
[x i
g b U A MILLIMETERS INCHES
g | DIM | MIN | MAX | MIN | MAX
g i A | 1994 | 2019 | 0785 | 079
i h B | 1994 | 2019 | 0785 | 0795
@ E c | 419 | 457 | 0165 | 0.180
| D | 064 | 101 | 0025 | 0.040
g g g g e g E 216 279 | 0085 [ 0.110
F | 033 | 053 | 0013 | 0021
b —R——— G 1.27 BSC 0.050 BSC
I H | 066 | 081 | 0.026 | 0.082
B J_ | 038 | 063 0015 | 0.0%
K | 1752 | 1854 | 0.690 | 0.730
R | 1905 | 19.20 | 0750 | 056
U | 1905 | 1920 | 0750 | 0756 |
V| 107 | 121 | 0042 | 0.048
W | 107 | 121 | 0042 | 0.048
X | 107 | 142 | 0.042 | 0056
Y | 000 | 050 [ 0000 | 0.020
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These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

1A

N
—»1 2

_ SO S1 S2 S3 S4 S5 S6 S7 —)| o _ _ SO S1 S2 s3 _s4 S5 S6 S7

cLk_ y ) / \ /) 7 5 ; _ CLK_ / Y, \' }r \ / \
O = 4_@_>@ O
- - - S -
_ — [=® - - il S -
) 5 - _’J*—@ ] 5 D . o @ |

7 = i ] 7 N -

D aaer® l ® SO G

— @ —3 28
DTACK: \ : DTACK: :
’—b‘ (:)——» - —> 4—(:)
@ )(|_ : [ »+—(29 __>J<_@ @
Data In: - ——— : Data Out: Y —— :
< —
—ﬁ (@7) <«—>—(30 @) < 30
ﬁ(gﬁ i 7 : BERR/BR (Note 2): F
Je—( :) r€— re—( ::)
- X 56
HALT/RESET _ : W/RESET: X :
—)l —>
Asynchronous = - A h - _
nputs (Note 1) - x - Inputs (Note 1 X _
NOTES: NOTES:

Write Cvycle 1. Setup time for the asynchronous inputs IPLO/2, iPL1, and VPA guarantees their recognition at the next falling edge of the clock. 1. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted.

eada an Yy 26 > as) ) i g cec vol ‘
Timing Diagrams 2. BR need fall at this time only in order to insure being recognized at the end of this bus cycle. 2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge of S2 (Specification

(Timi ? bl gl ted 3. Timing measurements are referenced to and from a low voltage of 0.8 volt and a high voltage of 2.0 volts, unless otherwise noted. 20A)
iming tables locate: 1280

on pages 8-4 and 8-5.) Figure 8-6. Read Cycle Timing Diagram
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Figure 8-7. Write Cycle Timing Diagram
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Bus Arbitration
Timing Diagrams
Timing tables located
on page 8-8.)

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

<

FCO-FC2 _

L

AO-AT9

<h

D0-D7

NOTE:
1. 52-Pin Version of MC68008 Only.

Figure 8-10. Bus Arbitration Timing — Idle Bus Case

<

These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.
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NOTE:

1. 52-Pin Version of MC68008 Only.
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Figure 8-11. Bus Arbitration Timing — Active Bus Case



These waveforms should only be referenced in regard to the edge-to-edge measurement of the tim-
ing specifications. They are not intended as a functional description of the input and output signals.
Refer to other functional descriptions and their related diagrams for device operation.

CLK
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BR_ )

il

!

FCO-FC2

A0-A19

D0-D7

NOTE:

1. 562-Pin Version of MC68008 Only.

4

Figure 8-12. Bus Arbitration Timing — Multiple Bus Requests

(62-Pin Version Only)
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